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Abstract  Drug delivery systems with molecular imaging capability are usually nanoscopic 
therapeutic systems that incorporate therapeutic agents and diagnostic imaging probes. Polymers 
(which form hydrogels) and molecular imaging probes used currently were reviewed firstly. 
Polymer-coated molecular imaging probes were also reviewed to introduce the basic component 
in the preparation of drug delivery systems with molecular imaging capability. Finally, the recent 
studies on the drug delivery systems with molecular imaging capability were summarized and 
their prospect was addressed.

Introduction

Hydrogels, a three dimensional polymer network, may absorb a large quantity of  
contact liquid. Because of this swelling phenomenon, hydrogels gives a new insight into a 
model system for the study of a viscoelastic body that is a major topic in polymer physics. In 
addition to its importance in science, it has many direct applications in the biomedical area, 
especially in the area of drug and cell delivery.

The concept of drug delivery system in the pharmaceutical area has been investigated 
using hydrogels as a candidate material. The three dimensional network of hydrogels dem-
onstrated the sustained release of loaded drug [1–3]. Because of presence of a large quantity 
of water, the swelling transition in response to various stimuli (pH, temperature, light, ionic 
concentration, metabolites…) is being intensively investigated with respect to the concept of 
stimulus-sensitive drug delivery [3–7]. In addition, hydrogels have the potential to execute 
cell delivery, such as pancreatic islet transplantation for diabetes. Transplanted islets are 
subject to immunologically mediated destruction by both autoimmunity and transplant rejection. 
Hydrogels can be used as a semipermeable, biocompatible membrane to protect the islets 
from host immune responses [8–10].

Current interest is focused on the development of nanomedicine platforms in drug 
delivery and molecular imaging applications. This led to the emergence of nanoscopic 
therapeutic systems that incorporate therapeutic agents and diagnostic imaging probes (Fig. 1). 
Studies have shown that this multifunctional nanomedicine improves the therapeutic outcome 
of drug therapy. To efficiently obtain information on nanomedicine (the drug delivery systems 
with molecular imaging capability), the nanomedicine should have the reservoir to contain 
drugs and molecular imaging probes.
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Hydrogels Polymers for Imaging Probes

Poly(vinyl pyrrolidone): Poly(vinyl pyrrolidone) (PVP) is a biocompatible, water-soluble, 
and nontoxic polymer. Using the hydrogen bonding between the carbonyl groups of PVP and 
the carboxyl groups of poly(acrylic acid) (PAA) [11] or chitosan [12], various forms of physical 
gels have been prepared and characterized. PVP gels are utilized as drug delivery systems 
with the forms of microspheres, nanoparticles, liposomes, and polymer conjugates [13–16].

Self-assembly in aqueous solutions of PVP-block-poly(d,l-lactide) [15], PVP-block-
poly(d,l-lactide)-block-PVP, PVP-block-poly(e-caprolactone)-block-PVP [17], and PVP-
block-poly(e-caprolactone) [18] is a very important property. As a consequence, PVP can 
be used to form polymeric micelles to deliver the medical drugs or molecular imaging 
probes.

Poly(vinyl alcohol): Poly(vinyl alcohol) (PVA) is a linear hydrophilic polymer that is non-
toxic and biocompatible. Because of intra/intermolecular interactions via hydrogen bonding, 
PVA forms hydrogels (physical gels). The freeze-thawing method is often used to enhance the 
mechanical properties [19, 20]. PVA hydrogels are also prepared by chemical crosslinking using 
irradiation or crosslinkers, such as glutaraldehyde or sodium borate and boric acid [21, 22].

The use of PVA as the base component for hydrogels formation is particularly advan-
tageous, due to the abundance of hydroxyl pendant groups on the PVA chains that can be 
further substituted with various functional groups. Several research groups have investigated 
the addition of methacrylate and acrylate pendant groups [23–25], sulfosalicylic acid [26], 
chitosan [27], hydroxyapatite [28], and alginate [29, 30].

Dextran Hydrogels: Dextran is a polysaccharide consisting of glucose molecules coupled 
into long branched chains, mainly through 1,6- and some through 1,3-glucosidic linkages. 
Dextrans are colloidal, hydrophilic, and water-soluble substances that have excellent biocom-
patibility and hence, they do not affect cell viability. It is susceptible to enzymatic digestion in 
the body [31]. Dextran has abundant pendant hydroxyl functional groups making it amenable 
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Fig. 1. Therapeutic agents and diagnostic imaging capabilities.
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to chemical modification [32–34]. Hydrophobically modified dextrans are used as stabilizers 
to produce stable hydrophilic poly(styrene) or poly(lactic acid) nanoparticles by the oil in 
water (o/w) emulsion and evaporation technique [35–37].

An interconnected macroporous glycidyl methacrylated dextran (Dex-GMA)/gelatin 
hydrogels scaffold containing microspheres loaded with bone morphogenetic proteins (BMP) 
has been developed [38]. Microspheres are formed when gelatin was mixed with glycidyl 
methacrylate dextrans (Dex-GMA); the characteristics of the dextran-co-gelatin hydrogels 
microspheres can be controlled by the crosslinking density and added substituents to Dex-
GMA. Controlled release of bone morphogenetic proteins was observed from 18 to more than 
28 days by changing the hydrogels/microsphere ratio.

As a drug delivery system, doxorubicin conjugated dextran nanoparticles have been 
prepared to improve its therapeutic efficacy in the treatment of solid tumors [39]. In vivo 
efficacy test of nanoparticles showed faster regression in tumor volume and increased survival 
time comparing with drug conjugate and free drug.

Chitosan Hydrogels: Chitosan (poly-b(1,4)-d-glucosamine) is a cationic polysaccha-
ride which is obtained by alkaline deacetylation of chitin, the main exoskeletal component in 
crustaceans. Its molecular weight ranges from 3,000 to 10,000, with a degree of deacetylation 
from 30 to 95%, depending on the source and preparation method. The amine groups of chi-
tosan are protonated in the acidic conditions (pH < 4). The quality and properties of chitosan 
products, such as purity, viscosity, deacetylation, and molecular weight, may vary widely 
because of many factors in the manufacturing process can influence the characteristics of 
the final product. Chitosan has biodegradability, nontoxicity, biocompatibility, and antifungal 
activity; chitosan and its derivatives have been studied as biomaterials which are used for drug 
delivery systems [40] and scaffolds for tissue engineering [41, 42].

Chitosan beads are prepared by simultaneous crosslinking with glutaraldehyde and 
precipitation in aqueous NaOH [40]. Metronidazole, an antiinfection agent, loaded chitosan 
beads give faster release at acidic conditions; this pH-sensitive release behavior can be utilized 
to design targeted delivery system for anticancer drugs.

The differentiation of mesenchymal stem cells (MSCs) and the mass formation of 
cartilage are possible using an injectable hydrogels composed of copolymer of thermosensi-
tive poly(N-isopropylacrylamide) and water-soluble chitosan. Cartilage formation in the 
submucosal layer of the bladder of rabbits and the in situ hydrogels system composed of 
dextran copolymer as a scaffold are being pursued [41].

The reactive amino groups in the backbone of chitosan make it possible to chemically 
conjugate various biological molecules such as different ligands and antibodies, which may 
improve targeting efficiency of the drug to the site of action [43, 44]. Chitosan-based poly-
meric vesicles and niosomes bearing glucose or transferrin ligands for drug targeting have 
been prepared [43]. Transferrin (TF) coupled to the surface of the polymeric vesicles appears 
to be accessible to the TF receptor in the A431 cell line. The TF receptors are over expressed 
on the surface of many proliferating cells and the active targeting of polymeric vesicles for 
drug/gene delivery can be accomplished.

One of the most useful properties of chitosan is ionic chelation. The strong positive 
charge of chitosan enables it to bind to negatively charged substrates, such as cholesterol, 
fats, metal ions, and proteins [45–48]. As a nutritional supplement, chitosan has been 
reported to reduce lipid absorption in the intestine by binding fatty acids and bile acids and 
by increasing their excretion [45, 46]. Therefore, oral administration of chitosan inhibits 
the development of atherosclerosis in individuals with hypercholesterolemia by lowering the 
serum cholesterol levels.
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Alginate: Alginate is a naturally derived anionic polysaccharide, obtained mainly 
from marine algae; it is widely utilized as a food additive and in drug formulations. Alginate 
consists of two sugar moieties, 1, 4-linked d-mannuronic acid (M) and l-gluronic acid (G), 
either block or random sequences [49–53]. Alginate forms complexes with divalent ions, such 
as Ca2+, Ba2+, and so on [52, 53].

Alginate hydrogels have pH-sensitive swelling transitions that are used in the design 
of drug delivery systems [54, 55]. Drug release from alginate gels is known to be blocked 
or sustained at low pH by forming a surface gels cover by deswelling, while drug release is 
accelerated at neutral pH by the swelling increase [56–59]. Alginate can potentially be used 
for cell delivery, such as microencapsulation of artificial pancreas [60]. The isolated islets of 
Langerhans suspended in the alginate aqueous solution are effectively encapsulated in the 
alginate gels when the solution is treated with divalent cations. For further stabilization of 
islet-encapsulated alginate gels, the polymer complex (an ionic complex) is usually formed at 
the surface of alginate gels with polycations, such as poly(l-lysine) [61, 62].

Pluronics: Pluronic is a triblock copolymer of poly(ethylene oxide)–poly(propylene 
oxide)–poly(ethylene oxide) (PEO–PPO–PEO, Poloxamers, Pluronics). Because of its 
nontoxicity and ability to form a gels, it is widely used in the pharmaceutical area [63–65]. 
For example, at 20% (w/v), aqueous solutions of poloxamer 407 form hydrogels at body 
temperature [66].

Poloxamer 188 (PEO80–PPO27–PEO80, molecular weight: 7,680–9,510) is used in 
intravenous injections and oral formulations and Poloxamer 407 (PEO101–PPO56–PEO101, 
molecular weight 9,840–14,600) is used in ophthalmic solutions. The sol–gel phase diagrams 
of poloxamer 188 and poloxamer 407, as a function of concentrations, are shown in Fig. 2.

In addition to the enhancement of the bioavailability of low-solubility drugs in oral 
solid dosage forms, Pluronics are used as an emulsifier, solubilizer, dispersant, and wetting 
agent in the preparation of solid dispersions [67, 68]. When these polymers are bound to the 
surface of nanospheres by the hydrophobic interaction of the PPO chains, the hydrophilic 
PEO chains stretch into the surrounding medium creating a steric barrier [69, 70]. This barrier 
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Fig. 2. Sol–gel phase diagram with different concentration of poloxamer 188 and poloxamer 407.
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prevents or restricts the adsorption of plasma proteins onto the particle surface decreasing 
recognition by liver and spleen macrophages [71, 72].

The adsorption of these surfactants is the most widely used procedure to modify the 
surface characteristics of the primitive carriers; the incorporation of these copolymers into 
the particles during the manufacturing process has become a significant alternative strategy.

Poly(Ethylene Glycol) (PEG) and Its Copolymers

Poly(ethylene glycol) (PEG) is a neutral, water-soluble, and nontoxic synthetic 
polymer approved by the FDA for internal use and inclusion in a variety of foods, cosmetics, 
and drug delivery systems. For prolong blood circulation time, PEG is used to modify 
nanoparticles to avoid uptake by the reticuloendothelial system (RES). This is important 
in the design of effective therapeutic systems for injectable delivery and for the controlled 
drug delivery [73–75].

Modifying the polymer composition, particularly, the middle block composition, the block 
length, and the block ratio, produced a new generation of PEG–(poly(l-lactic acid-co-glycolide 
acid))–PEG (PEG–PLGA–PEG) triblock copolymers. The sol–gel transition temperature can 
be controlled by changing the repeating units of PEG–PLGA–PEG triblock copolymers, such 
as the PLGA length. As the hydrophobic block (PLGA) length is increased, a stronger shear 
stress is required to make the gels system. Increasing the PEG length of a PEG–PLGA–PEG 
triblock copolymer shifts the thermo-phase diagrams to higher temperatures [76, 77].

In situ gels formation in  vivo was first made by subcutaneous injection of PEG–
PLGA–PEG triblock copolymer aqueous solutions into rats [78]. Based on this phenomenon, 
paclitaxel-loaded biodegradable polymeric micellar system using low molecular weight 
and biodegradable amphilic diblock copolymer and monomethoxy PEO2000-Poly(d,l-
Lactide)1750 micelles (Genexol®-PM) were published by Kim et al. [79, 80]. In Phase I human 
trials, micellar encapsulation of paclitaxel allowed safer administration of high doses of 
paclitaxel.

Poly(N-isopropylacrylamide) (PNIPAm)

Poly(N-isopropylacrylamide) (PNIPAm) is one of the most widely used thermosensi-
tive polymers. PNIPAm has a hydrophilic amide group and a hydrophobic isopropyl group. 
The linear PNIPAm chain undergoes a rapid dehydration of the hydrophobic isopropyl groups 
in aqueous solution at its lower critical solution temperature (LCST) of around 32–34°C in 
water due to its coil-to-globule transition [81–85]. The potential of PNIPAm for drug delivery 
system [86–89] and cell engineering [90–92] has been well documented. For example, hybrid 
block and graft copolymers of PNIPAm containing phosphocholine [93, 94], poly(d,l-lactide) 
[95], and alginate [96, 97] have been successfully synthesized and well characterized as bio-
material candidates.

The copolymers that include the LCST block and a hydrophilic block, such as PEG–
PNIPAm copolymers, form micelles above the LCST of PNIPAm, with PNIPAm block 
forming a micelle core [98]. Block copolymers consisting of the LCST block and a hydro-
phobic block, such as poly(N-isopropylacrylamide)-poly(methyl methacrylate) (PNIPAm–
PMMA), form micelles below the LCST, with PMMA block forming a core and PNIPAm 
block forming a shell [99].
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Molecular Probes for Imaging

With the advances in imaging technology, the importance of molecular imaging probes has 
increased for precise diagnosis. The visualization of the cellular function and the follow-up of the 
molecular process in living organisms without surgical operation are facilely carried out. Some of 
the techniques used for noninvasive imaging in diagnosis medicine are listed in Table 1.

Gold Nanoparticles

One of the most interesting aspects of gold nanoparticles is that their optical properties 
are varyingly dependant on the particle size and shape. Bulk gold looks yellow in reflected 
light, but this characteristic changes to orange, through several tones of purple and red, as par-
ticle size is reduced to ~20 nm. These effects are the result of changes in the so-called surface 
plasmon resonance (SPR) [100].

Gold nanoparticles are usually prepared by reduction in a boiling sodium citrate solu-
tion [101]. The formation of gold nanoparticles appears as a deep wine red color and the UV 
absorption in the aqueous media at around 520 nm. Functionalization of gold nanoparticles 
(gold surfaces) with molecules containing thiol (-SH), which has a high affinity for gold 
atoms is commonly used. A number of biosensors are designed based on this phenomenon.

The gold nanoparticles are biocompatible and nontoxic in vivo [102, 103]. However, 
plasma proteins and salts in the blood nonspecifically adsorb onto the surface of gold nano-
particles, this often causes aggregation; therefore, the direct use of gold nanoparticles in vivo 
can lead to clearance from the bloodstream due to uptake by the reticular endothelial system 
(RES) (Kupffer cells of the liver) [104–107]. Therefore, gold nanoparticles used in vivo are 
usually surface modified with PEG [104].

Magnetic Nanoparticles

Magnetic nanoparticles are manipulated under the influence of a magnetic field and 
are commonly composed of magnetic elements such as iron oxide (superparamagnetic iron 
oxide (SPIO) and ultrasuperparamagnetic iron oxide (USPIO)) and gadolinium compounds. 
Because of difficulties in recognizing tumors from normal tissues by magnetic resonance 

Table 1.  Noninvasive imaging in medical application

Technique Detection Contrast agent

Computered  
Tomography (CT)

X-rays Iodine (Ultravist®), Barium, Barium sulfate  
Gastrografin

Magnetic Resonance 
Imaging (MRI)

Magnetic field Paramagnetic agents: Gd-DTPA(Magnevist®), 
Gd-DTPA-BMA (Omniscan®)

Superparamagnetic agents: iron oxide nanoparticles 
(Resovist®, Feridex®)

Positron Emission 
Tomography (PET)

Gamma rays F18-FDG(2-Deoxy-2-fluoro-d-glucose)

Ultra-sonography Ultrasonic 
waves

Microbubbles(Albunex®, Levovist®)
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imaging (MRI), patients are often injected with a contrast agent, such as iron oxide nanopar-
ticles or gadolinium chelates.

Nanoparticles are prepared by either coprecipitation [108–110], high-temperature 
decomposition [111–113], or microemulsion [114, 115]. Coprecipitation is a facile and conve-
nient way to synthesize iron oxides (Fe3O4 or g-Fe2O3) from aqueous Fe2+ and Fe3+ salt solu-
tions by the addition of base at room temperature or at raised temperatures. The stability is 
maintained by electrostatic and repulsive interaction between counter-ions. The size, shape, 
and composition of the magnetic nanoparticles mainly depend on the type of salts used, the 
Fe2+/Fe3+ molar ratio, reaction temperature, the pH, and ionic strength of the media [116–118].

The high-temperature decomposition (>200°C) of an organic iron precursor in the pres-
ence of hydrophobic ligands, such as oleic acid, is typically used; the hydrophobic ligands 
form a dense coating around the nanoparticles, thereby avoiding their aggregation.

Microemulsions are used to obtain relatively small particles (high surface area) with 
well controlled properties; water-in-oil microemulsions are usually used to produce iron oxide 
nanoparticles. The type and concentration of surfactant [119, 120], type of oil [121] and alco-
hol [122–124], droplet core size [125], and the speed of microemulsion mixing [126] all play 
an important role in the formation of iron oxide nanoparticles by microemulsion techniques.

Iron oxide nanoparticles have been approved for clinical use, especially for MRI, for 
example, Endorem® (diameter 80–150  nm, Advanced Magnetics) and Resovist® (diameter 
60 nm, Schering) for liver/spleen imaging [127–129].

Gadolinium is also an FDA approved contrast agent for MRI. Gadolinium, or gadodi-
amide, provides greater contrast between normal tissue and abnormal tissue in the brain and 
body. Because of their paramagnetic properties, solutions of organic gadolinium complexes 
and gadolinium compounds are used as intravenous radiocontrast agents to enhance images 
in medical MRI. After it is injected into a vein, gadolinium accumulates in the abnormal 
tissue with bright (enhanced) images on the MRI. With the administration of MRI contrast 
agents, the relaxation times T1 and/or T2 of a proton in the vicinity of an agent change, thus 
generating image contrast (bright/dark) (Fig. 4) [130].

Fluorescence Dyes

Optical fluorescence depends on the inherent property of fluorophores, such as fluorescein 
isothiocyanate (FITC) and FITC derivatives, cysteine, cyanine dye (cydye), and Indicynine 
green dye (ICG) are used for fluorescence imaging (Fig. 5) [130].
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Fluorescein isothiocyanate (FITC) is used in several biological applications, such 
as fluorescent-labeled antibodies and molecules that are taken up by cells or organelles. Usually, 
the energy from an external source is absorbed by the fluorophores injected or accumulated at 
the tumor site.
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Fig. 5. Various used fluorophores in biological imaging.
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Microbubbles

Ultrasound contrast agents, which consist of a hydrophobic gas (microbubbles) and a 
stabilizing shell, have enabled clinical contrast echocardiography due to their enhanced stabil-
ity in circulation. Moderate intensity ultrasound assisted by encapsulated microbubbles has 
been used in in vitro and in vivo targeting drug delivery via a process called “sonoporation.” 
Ultrasound imaging is used to molecularly target microbubbles to the liver [131], breast [132], 
and prostate tumors [133].

These advances have created interest in ultrasound as a molecular imaging modality. 
Ultrasonic imaging of molecular targets associated with angiogenesis [134–137], thrombosis 
[138], and inflammation is being used [139, 140].

There are two types of bubbles that are related to sonoporation process: free bubbles 
and encapsulated microbubbles. Free bubbles are usually cavities filled with air, other gases, 
or gas vapor from surrounding liquid. However, due to their instability, free bubbles are usu-
ally encapsulated in biocompatible polymers as microbubbles for the ultrasonic imaging of 
angiogenesis [136, 141–146].

Quantum Dots

In general, the quantum dots are prepared in the organic solvent at high temperatures 
between 180 and 310°C, depending on the ligands and solvents employed in the preparation.

Quantum dots are nanoscale semiconductor crystals composed of Group II B 
(Transition metal)-Group VI A compounds (CdTe, CdS, CdHg, ZnS) or Group III A-Group 
V A elemental groups (InAs, InP, GaAs). A noble class of inorganic fluorophores is gaining 
widespread recognition as a result of their exceptional photophysical properties. Both the 
optical absorption and emission of quantum dots shift to the blue (higher energies) as the size 
of the dots gets smaller (Fig. 6) [147, 148].

Quantum dots have broad excitation spectrum; therefore, different-colored 
quantum dots can be activated by using a single source laser at the same time, making 
them extremely attractive in multiplexing studies [149–151]. For biological imaging 
applications, quantum dot materials are chosen based on size, optical properties, and 
toxicity. The emission wavelength should be in a region of the spectrum where blood and 
tissue absorb minimally but detectors are still efficient, approximately in the near-infrared 
(700–900 nm).

In spite of these attractive features the use of quantum dots in the biomedical application 
has been limited due to their hydrophobic character; now hydrophilic surface ligands, such 
as mercaptoacetic acid [152, 153] and polyethylene glycol (PEG), are used to increase their 
stability in aqueous media and to reduce the nonspecific adsorption. However, quantum dots 
capped with these small molecules are easily degraded by hydrolysis or oxidation of the 
capping ligands [153]. Heavy metal ions, such as Cd2+, that can escape from the quantum dot 
matrix are cytotoxic and cause biocompatibility concerns [154, 155].

Molecular Probe/Polymer Composite Systems

Metal nanoparticles used in the biological imaging applications, such as gold and iron 
oxide, are easily cleared from the body because of biofouling of metal nanoparticles in the body. 
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To overcome this limitation, the polymers used in the fabrication of hydrogels are utilized to 
stabilize the metal nanoparticles as molecular probe/polymer composite systems.

Contrast agents for Computer Tomography (CT) are based on iodinated small 
molecules because, among nonmetal atoms, iodine has a high X-ray absorption coefficient. 
However, iodinated compounds have very short imaging times due to rapid clearance by 
the kidney. Therefore, gold nanoparticles are used as they have a higher atomic number 
and X-ray absorption coefficient than iodine [156, 157]. However, gold nanoparticles also 
showed the rapid clearance by biofouling [158]. Gold nanoparticles can be combined 
with polymers containing thiol (-SH), which has a high affinity for gold atoms. Numerous 
modifications have been made based on this chemical nature of gold nanoparticles and this 
has led to several kinds of biosensors.

Poly(ethylene glycol)-SH (PEG-SH) can be design with CT contrast agents; the forma-
tion of PEG-coated gold nanoparticles enhances antibiofouling capability [159]. The X-ray 
absorption coefficient in vitro indicates that the attenuation of PEG-coated gold nanoparticles 
is 5.7 times higher than the iodine-based CT-contrast agent Ultravist in in-vivo animal test 
using rat.

The anionic character of gold nanoparticles stabilized with citrate attracts mac-
romolecules with cationic character (positively charged polymers), such as chitosan and 
poly(ethyleneimine) (PEI). Through this electrostatic interaction gold nanoparticles/polymer 
composite systems are formed.

Multilayer film composites of gold nanoparticles and chitosan are constructed using 
layer by layer assembly [160]. The formation of the multilayer film was verified by UV–Vis 
Spectrometry, Atomic Force Microscopy, and Electrochemical Impedance Spectroscopy, and 
applied to nanodevices.

Fig. 6. Fluorescence spectra depending on the size of quantum dots [147, 148] (Blue fluorescence can be emitted 
from small particles of approximately 2 nm in diameter, green from ~3 nm particles, yellow from ~4 nm particles, 
and red from large particles of ~5 nm. The wavelength of the excitation light is 365 nm).
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Gold nanoparticles protected/stabilized by biotinylated PNIPAM were prepared via a 
thiol anchoring end-group. The introduction of a biotin at the free chain-end of the stabilizer 
is to induce the supramolecular assembly containing gold nanoparticles via complexation 
with avidin in water [161].

As shown in Fig.  7, the gold nanoparticles stabilized by biotinylated PNIPAm 
demonstrated the nanostructure organization at the supramolecular level by biotin/avidin 
complexation in response to the biochemical species in the aqueous media, which can be 
utilized in the design of biosensors.

Iron Oxide Nanoparticle/Polymer Composite Systems

Iron oxide nanoparticles have been evaluated as an MRI contrast agent for the liver and 
the spleen. However, the applications are still subject to many limitations such as size mono-
dispersity, magnetization, stability, nontoxicity, biocompatibility, injectability, and the short 
blood half-life of magnetic nanoparticles for in vivo applications. To overcome these limitations, 
a variety of biocompatible polymeric materials, such as PVP [162], Pluronic [163], dextran 
[164], chitosan [165], poly(d,l-lactid-co-glycolide) [166], and e-caprolactone [167], have been 
employed as coating materials for MRI contrast agents.

Magnetic nanoparticles composites are prepared with Fe3O4 as core and chitosan as 
polymeric shell [168]. Chitosan and Fe3O4 aqueous suspensions are mixed in appropriate 
proportions using reverse-phase suspension crosslinking. The saturated magnetization of 
composite nanoparticles shows the characteristics of superparamagnets. The decrease in the 
saturated magnetization is related to the increased amounts of polymer incorporated in the 
polymer-coated magnetite suspension.

Similarly, sonochemistry can be employed to prepare iron oxide-loaded chitosan nano-
particles [165]. The magnetic Fe3O4 nanoparticles have been prepared by coprecipitation. 
Ferric chloride hexahydrate (FeCl3·6H2O) and ferrous chloride tetrahydrate (FeCl2·4H2O) are 
mixed with ammonium hydroxide (NH4OH) under irradiated ultrasonic waves. The ferrofluid, 
made of iron oxide nanoparticles and chitosan, is sprayed on the surface of the alkali solu-
tion (NaOH/ethanol/water, 4/30/66, w/v/v) to form iron oxide-loaded chitosan nanoparticles. 

Avidin

Clear liquid state Opaque gels state  

Fig. 7. Gold nanoparticles stabilized by biotinylated PNIPAM before and after the addition of avidin [161].
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These nanoparticles were injected into the left kidney of a rabbit and T2-weighted MR 
images of the kidney were obtained. The iron oxide-loaded chitosan nanoparticles enhanced 
contrast of the T2-weighted MR images.

Recently, active localizing imaging probes (gold nanoparticles and metal nanoparticles) 
in tumor tissue were accomplished by conjugating target specific molecules, such as folic acid 
[169], RGD peptide [170], or integrins [171] (Fig. 8).

The surface modification of iron oxide nanoparticles with folic acid was carried out to 
improve receptor binding and the efficiency of cellular internalization of nanoparticles [169]. 
To evaluate the targeting specificity of the nanoparticle–PEG–folic acid (NP–PEG–FA) conju-
gate to tumor cells, the uptake of the nanoconjugate by HeLa cells was compared with that by 
human osteosarcoma MG-63 cells (folate receptor negative cell line). Human osteosarcoma 
MG-63 cells express very low levels of the a and b forms of the folate receptor. The level of 
nanoparticle conjugate uptake by HeLa cells ranged from twice to as much as ten times that 
by MG-63 cells. Concomitant with this nanoparticle uptake, the T2-weighted MR phantom 
image showed a significant increase in the negative contrast enhancement of the HeLa cells 
compared with that of the MG-63 cells.

Quantum Dot/Polymer Composite Systems

Fluorescent semiconductor nanocrystals or quantum dots provide a new class of 
biomarkers that could overcome the limitations of organic dyes as in vitro and in vivo imaging 
probes. Despite of their advantages as a molecular probe, the semiconductor core of quantum 
dots has raised concerns regarding heavy metal cytotoxicity. In fact, quantum dots are cytotoxic 
due to cadmium oxidation and the leaching of heavy metal ions [171–173]. As quantum dots 
applications broaden in biotechnology research, it is important to consider these potential 
hazards and develop novel approaches to avoid toxicity, such as encapsulation or polymer 
coating, to form a protective insulating material or wide band gap semiconductor structurally 
matched with the core material.

Ligand
(folate or RGD peptide)

Receptor
(folate receptor)

Plasma membrane of
targeted cancer cell

Target specific molecules conjugated and
imaging dye-loaded nanoparticles

Fig. 8. Scheme of active cellular targeting [170].
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The formation of quantum dot/polymer nanocomposites involves strong noncovalent 
interactions, such as hydrogen bonding, ionic attraction [174–176], and physically entrapping 
quantum dots into particles formed by emulsion polymerization [177] or sol–gel synthesis [178].

Quantum dot-encapsulated nanoparticles are noncytotoxic during long-term incubation 
with viable cells in the absence of light exposure, which makes them appropriate for cell 
monitoring and drug delivery [179, 180]. The quantum dots were conjugated with various 
molecules and proteins, such as myosin VI, transferin, and kinesin; when these bioconju-
gated quantum dots were present, receptor-mediated endocytosis occurred and the luminescent 
quantum dots enabled the investigation of cellular uptake pathways and detection within cells 
due to the bright fluorescence of the colloids. Since the quantum dots have broad excitation 
properties for all colors, multiple colors can be efficiently excited simultaneously with one 
light source, such as blue-violet filtered light or a 405 nm or 488 nm laser [181, 182].

Microbubble/Polymer Composite Systems

Ultrasound contrast agents are widely used to image perfusion and have potential for 
drug and gene delivery, where therapeutic release is initiated by local sonication [183–192]. 
Microbubble-loaded and lipid-based contrast agents have a self-assembled shell that provides 
a flexible, protective membrane around a perfluorocarbon gas core. In the diagnosis, these 
agents have been successfully used in the measurement of blood volume and flow in cardiol-
ogy and radiology [192, 193].

Lipid-based microbubbles are usually stabilized with ligand and/or polymer molecules 
before bubble production, and the stabilized lipids are self-assembled into a shell with exposure 
to the aqueous medium. The approach for these lipid-stabilized contrast agents (diameters ~1–10) 
utilizes the lipid with PEG or PEG/ligand to specifically bind to a preferred target site [194].

Drug Delivery System with Molecular Imaging Capability

The development of noninvasive imaging technology (MRI, CT, PET, and Ultrasound) 
that integrates drug delivery systems with medical imaging is an important technology. 
A drug loaded with an imaging probe will enable real-time, targeted monitoring of drug 
delivery with medical imaging devices and to quantify drug uptake at the site as well as 
monitor the response to the therapy.

Yuk recently used composite gold nanoparticles, for the delivery of an anticancer drug; 
the ionic interaction between the gold nanoparticles and chitosan to form the composite 
nanoparticles loaded with paclitaxel [195]. Considering the optical property of gold nanopar-
ticles, the gold nanoparticles/chitosan composite was utilized as a drug delivery system with 
molecular imaging capability (Fig. 9) [195].

The oleic acid (OA)-Pluronic (F-127)-coated iron oxide nanoparticles were formed with 
high doses of water insoluble doxorubicin [163]. Because of drug partitions into the OA shell, 
the surrounding iron oxide nanoparticles and the Pluronic anchor at the water–OA interface 
which significantly increased the solubility (dispersity) of the doxorubicin. Neither the 
formulation components nor the drug loading affected the magnetic properties of the core iron 
oxide nanoparticles and sustained release of doxorubin was observed 2 weeks under in vitro 
conditions. The nanoparticles in this study showed an enhanced intracellular drug retention, 
comparing with free drug in the aqueous solution, and a dose-dependent antiproliferative 
effect in breast and prostate cancer cell lines.
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Doxorubicin-loaded superparamagnetic iron oxide (SPIO) nanoparticles were made 
using polymeric micelles with cRGD attached onto the surface of polymeric micelles for 
efficient targeting to tumors [196]. Amphiphilic block copolymers of maleimide-terminated 
poly(ethylene glycol)-block-poly(d,l-lactide) [MAL-PEG-PLA, Mn = 7,200, Mn(PEG) = 3,200] 
and methoxy-terminated poly-(ethylene glycol)-block-poly(d,l-lactide) copolymer [MPEG-
PLA, Mn = 6,400, Mn(PEG) = 2,000] were used to form micelles with cRGD attached to the 
surface through a thiol-maleimide linkage. The cRGD on the surface of polymeric micelle 
targeted the delivery of doxorubicin to avb3-expressing tumor cells. The in vitro MRI and 
cytotoxicity of the avb3-specific cytotoxic response of these multifunctional polymeric micelles 
were observed by ultrasensitive MRI.

To combine contrast-enhanced ultrasound tumor imaging with targeted drug delivery is 
a challenging task [197–199]. Rapoport et al. developed novel ultrasound-sensitive multifunc-
tional nanoparticles composed of nanoscale polymeric micelles that function as drug carriers 
and nano- or microscale echogenic bubbles that combine the properties of drug carriers, enhanc-
ers of ultrasound-mediated drug delivery with long-lasting ultrasound contrast agents 
[200, 201]. In their study, perfluoropentane (PFP) nanoemulsions dispersed in a solution of 
polymeric micelles were produced by introducing an aliquot of a sterilized PFP into a micellar 
solution of a copolymer which was subsequently subject to sonication to produce cavitation. 
Biodegradable diblock copolymers poly(ethylene oxide)-block-poly(lactide) and poly(ethylene 
oxide)-block-poly(caprolactone) were used to form polymeric micelles with doxorubicin as 
the drug model. The copolymer-stabilized PFP nanoemulsion systems undergo nanodroplet/
nanobubble conversion in vivo, accumulate locally in the tumor tissue and coalesce into larger, 
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Fig. 9. Schematic description of gold/chitosan composite nanoparticles [195].
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highly echogenic microbubbles, which provide long-lasting ultrasound contrast in the tumor 
while maintaining effective levels of doxorubicin at the tumor site.

The visualization and monitoring of transplanted islets using iron oxide nanoparticles 
covered with a modified dextran was carried out by incubating the Islets with magnetic nano-
particles consisting of a superparamagnetic iron core covered with a modified dextran coating 
[202]. The MRI showed a marked decrease in signal intensity on T2-weighted images at the 
implantation site in the left kidney as compared with the right kidney (implanted unlabeled 
islets). Thus, in vivo detection of transplanted human pancreatic islets using magnetic reso-
nance imaging (MRI) that allowed noninvasive monitoring of islet grafts in diabetic mice in 
real time is now possible [202].

Summary

The unique feature of hydrogel-based drug delivery systems with molecular imaging 
capability involves loading a therapeutic agent into polymer network (hydrogels) surrounding 
molecular imaging probes. Although understanding and demonstrating the combination of 
hydrogels containing therapeutic agents with molecular imaging probes has been performed 
successfully, there remains the challenge for efficient application of this technology to diag-
nosis and therapy. The realization of hydrogels/molecular imaging probe composite systems 
on the nanoscale and the optimized drug release in response to the diagnosis is an important 
step. In the near future, this integrated smart system will open many potential opportunities 
for the effective therapeutic delivery and monitoring as well as molecular imaging probes for 
noninvasive procedures in early detection of disease.
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