Semantic e-Science

Editors

Huajun Chen
Yimin Wang
Kei-Hoi Cheung

Annals of
Information Systems

@ Springer




Annals of Information Systems

Volume 11

Series Editors

Ramesh Sharda

Oklahoma State University
Stillwater, OK, USA

Stefan Vof
University of Hamburg
Hamburg, Germany

For further volumes:
http://www.springer.com/series/7573



Huajun Chen - Yimin Wang - Kei-Hoi Cheung
Editors

Semantic e-Science

@ Springer



Editors Yimin Wang

Huajun Chen Lilly Singapore Centre for
College of Computer Science Drug Discovery Pte Ltd.
Zhejiang University Biomedical Grove 8A
Zheda Road 38 138648 Singapore

310058 Hangzhou #02-05 Immunos

China, People’s Republic Singapore
huajunsir@zju.edu.cn wangyimin @lilly.com

Kei-Hoi Cheung

Center for Medical Informatics
Yale University School of Medicine
Cedar St. 333

06520-8009 New Haven

CT, USA

kei.cheung@yale.edu

ISBN 978-1-4419-5902-7 e-ISBN 978-1-4419-5908-9
DOI 10.1007/978-1-4419-5908-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010930503

© Springer Science+Business Media, LLC 2010

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The advancement of modern science is growing more and more dependent on the
Internet technology. Scientists rely upon it to retrieve valuable information and
knowledge, communicate research ideas, have virtual meetings, exchange resources,
and coordinate collaboration. As a matter of fact, the Internet has become an
indispensable media for various scientific research endeavors in many kinds of dis-
ciplines. Specifically, the rapid increase in complexity and scope of modern science
research brings up a protruding challenge, which is to support world-wide scale
collaboration and coordinated resource sharing across disciplinary, organizational,
social, and cultural boundaries. New discovery normally resides in those bound-
aries. Researchers working on one aspect typically are required to look into those
boundaries, utilize resources from other research institutes, and explore knowledge
from other fields from perspectives of a completely different scientific disciplinary.
A typical case study is integrative neuroscience research. For example, the study
of neurodegenerative diseases such as Parkinson, Alzheimer, Huntington needs to
combine knowledge and resources from a good many research institutions. The
activities normally span a wide range of the disciplines such as psychiatry, neurol-
ogy, microscopic anatomy, neuronal physiology, biochemistry, genetics, molecular
biology, and bioinformatics. These types of requirements require a new generation
of information infrastructure to enable scientific investigation performed through
distributed global collaborations between scientists and their resources. The term
e-Science was thus brought up to refer to such kind of computing infrastructure that
enables cross-institutions and interdisciplinary research.

The Semantic Web, coined by web inventor Tim Berners Lee, is normally
deemed as the next generation of web. It aims at providing much more advanced
integration capabilities that allow data, particularly the meaning of the data, to
be shared and reused across application, enterprise, and community boundaries.
The approach is to encode data semantics in a more formal and explicit way to
make data machine-understandable and automatically consumable. A number of

This book started before Yimin Wang joined Lilly Singapore Centre for Drug Discovery; there-
fore, this book does not contain any content or opinion related to Lilly Singapore Centre for Drug
Discovery and its parent company Eli Lilly & Co.



vi Preface

new web languages such as RDF (the Resource Description Framework) and OWL
(the Web Ontology Language) have been proposed and standardized by the World
Wide Web Consortium (W3C). These languages provide new capability for resource
description and knowledge representation going far beyond the content presentation
capabilities of HTML language and data tagging capabilities of the XML lan-
guage. These languages can be used to define meaning of data, describe meta-data,
represent terminologies and vocabularies, describe the input/output and functional
capability of web service, and so forth.

As a synthesis of knowledge and web technologies and after over 10 years of
development, the Semantic Web has been gaining tremendous attention worldwide.
One noteworthy movement is the increasing recognition of this new technology in
typical scientific areas such as life science,! earth science, and social science. For
example, the World Wide Web Consortium (W3C) has established a Semantic Web
interest group to focus on health care and life science (HCLSIG). This group is
designed to improve collaboration, research and development, and innovation adop-
tion of Semantic Web technologies in the health care and life science domains,
aiding decision-making in clinical research and helping bridge many forms of bio-
logical and medical information across institutions. Other examples include the
National Virtual Observatory, which is exploring the use of Semantic Web technolo-
gies for linking numerous astronomical resources together, and the FUSION project
which is to apply, extend, and combine Semantic Web technologies and image anal-
ysis techniques to develop a knowledge management system to optimize the design
of fuel cells.

As the semantic technology has been gaining momentum in various e-Science
areas, it is important to offer semantic-based methodologies, tools, and middle-
ware to facilitate scientific knowledge modeling, logical-based hypothesis checking,
semantic data integration and application composition, integrated knowledge dis-
covery, and data analyzing for different e-Science applications. However, such a
research area does not yet exist in a coherent form. Influenced by the Artificial
Intelligence community, the Semantic Web researchers have largely focused on
formal aspects of logic languages or general-purpose semantic application develop-
ment, with inadequate consideration of requirements from specific scientific areas.
On the other hand, general science researchers are growing ever more dependent
on the web, but they have no coherent agenda for exploring the emerging trends
on Semantic Web technologies. It urgently requires the development of a multi-
disciplinary field to foster the growth and development of e-Science applications
based on the semantic technologies and related knowledge-based approaches. We
regard it as necessity to set a research agenda at this point in time, in order to steer
the development and the research efforts in the most rewarding direction toward a
common goal of realizing the semantic e-Science.

I Three recent relevant special issues published in life science area:
(1) BMC Bioinformatics: Semantic e-Science in biomedicine.
(2) Journal of Biomedical Informatics: Special issue on Semantic BioMed Mashup.
(3) Journal of Web Semantics: Special issue on Semantic Web in life science.



Preface vii

This book surveys the state of the art in the field of applying semantic tech-
nologies in typical e-Science applications. We anticipate it to provide a sufficient
overview and valuable summary on semantic e-Science applications and to report
the cutting-edge research outcome in this field. The book is conceived from a series
of events.> We received nearly 30 submissions as a result of our public call for
chapters, from which we selected 8 as the candidate chapters.

In Chapter 1, Prof. David De Roure and Carole Goble introduce the field being
known as the ‘Semantic Grid’ that emphasizes on the Semantic Web and on the
joined-up infrastructure to support the increasing scale of data, computation, col-
laboration, and automation as science and computing advance. Since its instigation
in 2001 the Semantic Grid community has established a significant body of work on
the role of the ideas and technologies of the Semantic Web in providing and utilizing
the infrastructure for science.

In Chapter 2, Dr. M. Scott Marshall and colleagues introduce the Virtual
Laboratory for e-Science (VL-e) project, which is a project with academic and
industrial partners where e-Science has been applied to several domains of scien-
tific research. The authors explain what ‘semantic disclosure’ means and how it is
essential to knowledge sharing in e-Science. The authors describe several Semantic
Web applications and how they were built using components of the proposed
application toolkit.

In Chapter 3, Dr. Hock Beng Lim and colleagues describe a smart e-Science
cyber-infrastructure for cross-disciplinary scientific collaborations. The proposed
infrastructure forms the key resource sharing backbone that enables each partici-
pating scientific community to expose their sensor, computational, data, and intel-
lectual resources in a service-oriented manner, accompanied by the domain-specific
knowledge and semantic descriptions.

In Chapter 4, Dr. Alexander Garcia and colleagues propose a new methodology
for developing ontologies within a decentralized setting in the e-Science context.
The Melting Point (MP) approach is the product of direct first-hand experience and
observation of biological communities of practice in which some of the authors have
been involved.

In Chapter 5, Dr. Amitava Biswas and colleagues investigate semantic tech-
nologies for searching in e-Science grids. They present a survey of meaning
representation and comparison technologies, followed by a design of meaning rep-
resentation and comparison technique which is coherent to the cognitive science and
linguistics models. This meaning comparison technique discerns complex meaning
while enabling search query relaxation and search key interchangeability.

In Chapter 6, Dr. Enrico Pontelli and colleagues present a semantic e-Science
system called BioService Integration System (BSIS). BSIS is aimed at automating
bioinformatics tasks through intelligent workflow construction. It provides a

2Four recent events:
(1) WWW2008 Semantic Web for health care and life sciences workshop.
(2) WWW2007 Workshop on health care and life science data integration for the Semantic Web.
(3) AAAI2007 Workshop on Semantic e-Science.
(4) ASWC2006 Workshop on Semantic e-Science.



viil Preface

graphic-based workflow language that can enable the description of workflows
composed of abstract Semantic Web services and references to biologically relevant
data. The workflows constructed in BSIS can be instantiated through automated
planning techniques and automatically executed by adapting the Web Service
Integration Framework (WSIF).

In Chapter 7, Mikhail Simonov and Flavia Mazzitelli introduce the applications
of rules and semantics in near-miss detection in nursing. Nursing science deals
with human-to-human interaction delivering care service, showing several pecu-
liarities compared with other life science domains. Semantic technologies can be
applied to clinical nursing, where the risk management forms a particular appli-
cation class and requires error detection and semantic technologies complementing
best nursing strategies. The chapter investigates on possible risk control measures in
above-said nursing, suggesting a combination of Information and Communication
Technologies (ICT) and knowledge technologies.

In Chapter 8, Dr. Peisheng Zhao and colleagues describe a semantic e-Science
application in the earth science domain. The Sensor Web provides an interoperable
way to discover, task, and retrieve sensor data over the network. This chapter lever-
ages recent advances in autonomous control and the Semantic Web technologies to
present a systematic approach in which the Sensor Web and Earth science models
are annotated with semantic meta-data and chained together in an autonomous way
as a service chain to simulate the process of Sensor Web mining based on semantic
inference. This approach significantly advances sensor data exploration with seman-
tics in an interoperable way to improve the accuracy and timeliness of monitoring
and predicting rapidly changing Earth phenomena.

In Chapter 9, Vit Novacek and colleagues investigate the application of seman-
tic technologies in scientific publication. It describes the CORAAL system for
knowledge-based life science publication search. It presents the approach from three
different perspectives: (1) extraction of asserted publication meta-data together with
the knowledge implicitly present in the respective text; (2) integration, refinement,
and extension of the emergent content; (3) release of the processed content via a
meaning-sensitive search and browse interface catering for services complementary
to the current full-text search.

In summary, the merits of the Semantic Web with respect to scientific research are
exhibited in different perspectives encompassing collective knowledge acquisition,
semantic data integration, scientific workflow management and composition, inte-
grative knowledge discovery and data mining, logic-based hypothesis checking, and
so forth. The semantic e-Science is still an evolving area with rapid development.
Although this book cannot give a complete account on all issues and topics, we
hope it can shed some light on the most important aspects. We also hope it can push
and promote the semantic technologies within various science fields, particularly in
interdisciplinary scientific research.

Hangzhou, China Huajun Chen
Immunos, Singapore Yimin Wang
New Haven, Connecticut Kei-Hoi Cheung



Contents

1 Supporting e-Science Using Semantic Web Technologies —
The SemanticGrid . . . . . . . ... ... ... ... ... ... 1
David De Roure and Carole Goble

2 Semantic Disclosure in an e-Science Environment . . . . . . . . .. 29
M. Scott Marshall, Marco Roos, Edgar Meij, Sophia Katrenko,
Willem Robert van Hage, and Pieter W. Adriaans

3 A Smart e-Science Cyberinfrastructure for Cross-

Disciplinary Scientific Collaborations . . . . . . .. ... ... ... 67
Hock Beng Lim, Mudasser Igbal, Yuxia Yao, and
Wengiang Wang

4 Developing Ontologies within Decentralised Settings . . . . . . . . . 99

Alexander Garcia, Kieran O’Neill, Leyla Jael Garcia,
Phillip Lord, Robert Stevens, Oscar Corcho, and Frank Gibson

5 Semantic Technologies for Searching in e-Science Grids . . . . . . . 141
Amitava Biswas, Suneil Mohan, and Rabi Mahapatra

6 BSIS: An Experiment in Automating Bioinformatics Tasks
Through Intelligent Workflow Construction . . . . . . . . ... ... 189
Yu Pan, Enrico Pontelli, and Son Cao Tran

7 Near-Miss Detection in Nursing: Rules and Semantics . . . . . . . . 239
Mikhail Simonov and Flavia Mazzitelli

8 Toward Autonomous Mining of the Sensor Web . . . . . . ... .. 289
Peisheng Zhao, Liping Di, and Genong Yu

9 Towards Knowledge-Based Life Science Publication
Repositories . . . . . . ... 309
Vit Novacek, Tudor Groza, and Siegfried Handschuh

ix



Contributors

Pieter W. Adriaans Informatics Institute, University of Amsterdam, Amsterdam,
The Netherlands

Amitava Biswas Department of Computer Science, Texas A&M University,
College Station, TX, USA, amitabi @cs.tamu.edu

Huajun Chen College of Computer Science, Zhejiang University, Hangzhou
310027, CN, China, huajunsir@zju.edu.cn

Kei-Hoi Cheung Yale Center for Medical Informatics, Yale University, New
Haven, CT 06520-8009, USA, kei.cheung@yale.edu

Oscar Corcho Ontology Engineering Group, Departamento de Inteligencia
Artificial, Facultad de Informtica, Universidad Politecnica de Madrid, Campus de
Montegancedo, Madrid, Spain, ocorcho@fi.upm.es

David De Roure School of Electronics and Computer Science, University of
Southampton, Southampton, UK, dder @ecs.soton.ac.uk

Liping Di Center for Spatial Information Science and Systems (CSISS), George
Mason University, Fairfax, VA 22030, USA, 1di@gmu.edu

Alexander Garcia University of Bremen, Bremen, Germany,
alexgarciac @gmail.com

Leyla Jael Garcia E-Business and Web Science Research Group, Bundeswehr
University, Munich, Germany, leyla.garcia@ebusiness-unibw.org

Frank Gibson Abcam plc, Cambridge CB4 OWN, UK, frank.gibson@abcam.com

Carole Goble School of Computer Science, University of Manchester,
Manchester, UK, carole.goble @manchester.ac.uk

Tudor Groza Digital Enterprise Research Institute (DERI), National University of
Ireland, Galway, Ireland, tudor.groza@deri.org

Siegfried Handschuh Digital Enterprise Research Institute (DERI), National
University of Ireland, Galway, Ireland, siegfried.handschuh@deri.org

Xi



Xii Contributors
Mudasser Igbal Intelligent Systems Center, Nanyang Technological University,
Nanyang Avenue, Singapore, mmigbal @ntu.edu.sg

Sophia Katrenko Informatics Institute, University of Amsterdam, Amsterdam,
The Netherlands

Hock Beng Lim Intelligent Systems Center, Nanyang Technological University,
Nanyang Avenue, Singapore, limhb@ntu.edu.sg

Phillip Lord School of Computing Science, Newcastle University, Newcastle
upon Tyne, UK, phillip.lord@ncl.ac.uk

Rabi Mahapatra Department of Computer Science, Texas A&M University,
College Station, TX, USA, rabi@cs.tamu.edu

M. Scott Marshall Informatics Institute, University of Amsterdam, Amsterdam,
The Netherlands, marshall @science.uva.nl

Flavia Mazzitelli Universita di Torino, Facolta di Medicina e chirurgia, Turin
10138, Italy, flavia.mazzitelli @tiscali.it

Edgar Meij Informatics Institute, University of Amsterdam, Amsterdam, The
Netherlands

Suneil Mohan Department of Computer Science, Texas A&M University, College
Station, TX, USA, suneil @cs.tamu.edu

Vit Novacek Digital Enterprise Research Institute (DERI), National University of
Ireland, Galway, Ireland, vit.novacek @deri.org

Kieran O’Neill Terry Fox Laboratory, Vancouver, Canada, koneill @bccrc.ca

Yu Pan Department of Computer Science, New Mexico State University, Las
Cruces, NM, USA, ypan@cs.nmsu.edu

Enrico Pontelli Department of Computer Science, New Mexico State University,
Las Cruces, NM, USA, epontell @cs.nmsu.edu

Marco Roos Informatics Institute, University of Amsterdam, Amsterdam, The
Netherlands, roos @science.uva.nl

Mikhail Simonov ISMB, Turin 10138, Italy; Politecnico di Milano, Dipartimento
di energia, Milano 20133, Italy, simonov@ismb.it

Robert Stevens Department of Computer Science, University of Manchester,
Manchester M13 9PL, UK, robert.stevens @ manchester.ac.uk

Son Cao Tran Department of Computer Science, New Mexico State University,
Las Cruces, NM, USA, tson@cs.nmsu.edu

Willem Robert van Hage Business Informatics, Faculty of Sciences, Vrije
Universiteit, Amsterdam 108 1HV, The Netherlands



Contributors Xiii
Wengiang Wang Intelligent Systems Center, Nanyang Technological University,
Nanyang Avenue, Singapore, wqwang @ntu.edu.sg

Yimin Wang Lilly Singapore Centre for Drug Discovery, Immunos, Singapore
138648, Singapore, wangyimin@lilly.com

Yuxia Yao Intelligent Systems Center, Nanyang Technological University,
Nanyang Avenue, Singapore, yxyao@ntu.edu.sg

Genong Yu Center for Spatial Information Science and Systems (CSISS), George
Mason University, Fairfax, VA 22030, USA, gyu@gmu.edu

Peisheng Zhao Center for Spatial Information Science and Systems (CSISS),
George Mason University, Fairfax, VA 22030, USA, pzhao@gmu.edu



About the Editors

Huajun Chen received his BS from the Department of Biochemical Engineering,
and PhD from the College of Computer Science, both from Zhejiang University.
At present, he serves as an associate professor in the College of Computer Science
at Zheijiang University and was a visiting researcher at the School of Computer
Science, Carnegie Mellon University. He is currently working for the China 973
‘Semantic Grid’ initiative and is the leader of the e-Science DartGrid semantic grid
project.

Yimin Wang is an associate information consultant in Lilly Singapore Centre for
drug discovery. He is currently leading projects related to Semantic Web R&D
in the division of Integrative Computational Science to support drug discovery
research. Before joining Lilly Singapore, he was a research associate at the Institute
of Applied Informatics and Formal Description Methods (AIFB), University of
Karlsruhe. He received his MS in 2005 after studying advanced computer science in
the Medical Informatics Group at the University of Manchester, supervised by Prof.
Alan Rector.

Dr. Kei-Hoi Cheung is an associate professor at the Yale Center for Medical
Informatics. He received his PhD degree in computer science from the University
of Connecticut. Since his PhD graduation, Dr. Cheung has been a faculty member
at the Yale University School of Medicine. Dr. Cheung has a joint appointment with
the Computer Science Department and Genetics Department at Yale. Dr. Cheung’s
primary research interest lies in the area of bioinformatics database and tool integra-
tion. Recently, he has embarked on the exploration of Semantic Web in the context
of life sciences (including neuroscience) data and tool integration. Dr. Cheung
edited Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences
(Springer) and served as the chair of the First International Workshop on Health
Care and Life Sciences Data Integration for the Semantic Web, which was held
cooperatively with the WWW2007 conference. He was the guest editor of the
special issue ‘Semantic BioMed Mashup,” Journal of Biomedical Informatics.
Dr. Cheung is also an invited expert to the Semantic Web Health Care and Life
Science Interest Group launched by the World Wide Web Consortium.

XV



Chapter 1
Supporting e-Science Using Semantic Web
Technologies — The Semantic Grid

David De Roure and Carole Goble

Abstract The capabilities of the Web have had a very significant impact in
facilitating new practice in science: it supports wide-scale information discovery and
sharing, facilitating collaboration and enabling widespread participation in digital
science, and increasingly it also provides a platform for developing and delivering
software and services to support science. In this chapter we focus on the role of the
ideas and technologies of the Semantic Web in providing and utilising the infrastruc-
ture for science. Our emphasis on Semantic Web and on the joined-up infrastructure
to support the increasing scale of data, computation, collaboration and automation
as science and computing advance has led to this field being known as the “Semantic
Grid”. Since its instigation in 2001 the Semantic Grid community has established
a significant body of work, and the approach continues to underpin new scientific
practice in multiple disciplines.

1.1 Introduction

As science progresses we witness evolution and revolution in scientific under-
standing. Coupled intricately with this is an evolution and revolution in scientific
techniques and methods — the problem-solving ability of science advances as new
methods lead to new understanding, and this in turn leads to new methods. In the last
10 years science has experienced a step change in problem-solving ability brought
about by the increasing digitisation and automation of scientific instruments and
practice. This has in part been achieved through the engagement between scien-
tists and the providers of the advanced information, computational and software
techniques that they need. We call this e-Science.

This revolution in technique and method has partly come about due to the deluge
of data from new experimental methods and the rapidly evolving high-performance

D. De Roure ()
School of Electronics and Computer Science, University of Southampton, Southampton, UK
e-mail: dder@ecs.soton.ac.uk

H. Chen et al. (eds.), Semantic e-Science, Annals of Information Systems 11, 1
DOI 10.1007/978-1-4419-5908-9_1, © Springer Science+Business Media, LLC 2010



2 D. De Roure and C. Goble

computing infrastructure used to process it [1]. In addition there are many
technologies available to deliver the information infrastructure and software tools
to support the increasingly digital and increasingly multidisciplinary practice of
researchers. They involve tools for data, computation and collaboration, and their
success depends on recognising and respecting the needs and practices of the
researchers who use them [2].

The capabilities of the Web in particular have had a very significant impact in
facilitating the practice of science. The Web supports wide-scale information dis-
covery and sharing, facilitating collaboration and enabling widespread participation
in digital science. Increasingly it also provides a platform for developing and deliv-
ering software and services to support science. More recently, the social practices of
the Web are also influencing the social process of science, a movement characterised
as Science 2.0 [3].

In this chapter we focus in particular on the role of the ideas and technologies
of the Semantic Web in providing and utilising the infrastructure for science. Our
emphasis on Semantic Web and on the joined-up infrastructure to support science
has led to this field being known as the “Semantic Grid”. Since its instigation in
2001 [4] the Semantic Grid community has established a significant body of work
[5, 6] and the approach continues to underpin new scientific practice in multiple
disciplines. Broadly categorised as “Semantic e-Science”, Semantic Grid is distin-
guished by its emphasis on supporting the increasing scale of data, computation,
collaboration and automation as science and computing advances.

We commence by reviewing the vision of e-Science and then discuss the techno-
logical challenges that underpin it and how they can be addressed through Semantic
Web and “service-oriented science”. We then look at Semantic Grid architecture and
go on to illustrate how various Semantic Grid projects have demonstrated solutions
to some of the challenges. We close by looking at Services, Semantics and Society —
our evolving vision of e-Science.

1.2 The e-Science Vision

The UK e-Science programme was instigated in 2000 by John Taylor, then director
general of UK Research Councils. e-Science was defined as being “about global
collaboration in key areas of science and the next generation of infrastructure that
will enable it” [7]. e-Science undertook to change the dynamic of the way science is
undertaken, and this emphasis on science as well as infrastructure meant that success
would ultimately be measured by new scientific outcomes.

We can trace the infrastructural insights further back. The distributed compu-
tational infrastructure was anticipated back in the 1960s by J. C. R. Licklider, an
early architect of the Internet. Larry Roberts recalls: “Lick had this concept of the
intergalactic network . .. everybody could use computers anywhere and get at data
anywhere in the world. He didn’t envision the number of computers we have today
by any means, but he had the same concept — all of the stuff linked together through-
out the world, so that you can use a remote computer, get data from a remote



1 Supporting e-Science Using Semantic Web Technologies 3

computer, or use lots of computers in your job” [8]. While the Web has thus far
grown largely around information access and provision, Licklider’s vision also cap-
tures the computational aspect that underpins “in silico science” — using lots of
computers to do your job.

Another key proposition of the Internet for science was the ability to achieve
shared access to specialist facilities. This was captured in Wulf’s 1989 vision of
the collaboratory as “... a center without walls, in which researchers can perform
their research without regard to geographical location, interacting with colleagues,
accessing instrumentation, sharing data and computational resources, and accessing
information in digital libraries” [9]. A collaboratory was seen as a means to more
effective use of investments in facilities and also recognised that interaction between
researchers is crucial to scientific progress.

The e-Science programme in the UK and cyberinfrastructure in the USA
have been hugely significant because they provided the investment to realise this
infrastructural potential. The Blue-Ribbon Advisory Panel on Cyberinfrastructure
recognised the value in sharing the “commonalities”, such as services, that underpin
scientific applications: “Cyberinfrastructure makes applications dramatically easier
to develop and deploy, thus expanding the feasible scope of applications possible
within budget and organizational constraints, and shifting the scientist’s and engi-
neer’s effort away from information technology development and concentrating it
on scientific and engineering research. Cyberinfrastructure also increases efficiency,
quality, and reliability by capturing commonalities among application needs, and
facilitates the efficient sharing of equipment and services” [10].

We see then that e-Science envisages an infrastructure which provides a high
degree of easy-to-use and seamless automation enabling flexible collaborations and
computations on a global scale. It facilitates remote access to shared resources which
may include facilities, data and services, together with support for the collaborative
process of science. Furthermore, success involves not just building an infrastructure
but providing the tools and techniques that enable it to be used to achieve scientific
progress.

1.3 Semantic Grid: Service-Oriented Science

The Semantic Grid report, first published in 2001 [11], identified a set of tech-
nologies to deliver this e-Science vision. These included Web Services, Grid and
Semantic Web.

Services rapidly emerged as a key abstraction in e-Science, providing an architec-
tural model to achieve the vision of global collaboration and sharing of resource — in
many ways, e-Science is service-oriented science. The World Wide Web Consortium
(W3C) created the Web Services activity in 2002 to provide a standard means of
interoperating between different software applications, running on a variety of plat-
forms. As Web Services gained significant traction in industry and commerce —
in Service-Oriented Architectures (SOA) — several projects in the UK e-Science
programme successfully adopted this approach.



4 D. De Roure and C. Goble

The Grid also evolved to provide a service-oriented architecture, focused on
the special needs of e-Science. Ian Foster and Carl Kesselman described the Grid
as being “distinguished from conventional distributed computing by its focus on
large-scale resource sharing, innovative applications, and, in some cases, high-
performance orientation” [12]. Ultimately the Grid community established its own
Web Services architecture, known as the Open Grid Services Architecture (OGSA)
[13]. Grid services allow a client to discover more information about the state
and execution environment of a service, for example, this enables the monitoring
required in some applications.

Web Services underpin the vision of the future service-oriented architecture
for e-Science in which there are very large numbers of available services and an
essential degree of automation in their use. Hence they are described in a machine-
processable way, using the Web Services Description Language (WSDL), an XML
grammar for describing network services as collections of communication endpoints
capable of message exchange. WSDL definitions enable automation in both discov-
ery and use of Web Services. Web Services themselves (and hence Grid Services)
run over SOAP (originally defined as the “Simple Object Access Protocol”), a pro-
tocol for exchanging structured information in XML, typically using a Remote
Procedure Call (RPC) model. Most commonly HTTP is used as an application
layer transport for SOAP, providing message negotiation and transmission which
is effective through proxies and firewalls.

The service orientation that we aspire to in the e-Science infrastructure involves
dynamic composition of services. This is captured well in the Open Group Service
Integration Maturity Model (OSIMM) which provides a set of milestones that
measure progress towards SOA, defining seven levels of maturity: silo, inte-
grated, componentised, simple services, composite services, virtualised services and
dynamically reconfigurable services. Many legacy systems may have an emerging
SOA (simple services); we seek composite, virtualised and dynamically reconfig-
urable services. We note that the Virtual Organisations (VOs) of Grid computing are
relatively persistent and resourceful and have logically centralised, membership-
oriented management structures based on existing trust relationships, as opposed to
the dynamic business VOs that we seek [14].

It is also important to note that there is a widespread alternative service-oriented
approach to distributed systems using HTTP, namely the REST (Representational
State Transfer) architecture which underpins the Web and was defined by Fielding
[15]. In REST, the methods which can act on a resource are predefined to be those
supported by HTTP (i.e. GET, POST, PUT, DELETE), and instead of adding further
methods, new resources are introduced. This fundamentally different architectural
approach —sometimes called Resource-Oriented Architecture [16] — has enabled the
Web to scale; e.g. the Web infrastructure is highly optimised for the GET operation
through extensive caching. It also provides simplicity of programming and has wide
support in programming and scripting languages.

To address the increasing scale and variety of services as we move into the future
we need mechanisms for service discovery and we need automated mechanisms
for establishing agreements between multiple parties. One approach to the latter



1 Supporting e-Science Using Semantic Web Technologies 5

is provided by the WS-Agreement specification, an extensible XML language for
specifying the nature of an agreement together with agreement templates to facilitate
discovery of compatible agreement parties [17]. The Semantic Grid report also high-
lighted the techniques of multiagent systems to provide mechanisms for automatic
selection of the combinations of services required to tackle a task [18].

1.4 Semantic Web Essentials

In addition to services, the Semantic Grid report proposed Semantic Web as a key
enabling technology, for both information and knowledge. The Semantic Web brings
linked data in the same way as the Web has given us linked documents: “The
Semantic Web is an extension of the current web in which information is given well-
defined meaning, better enabling computers and people to work in cooperation”
[19]. Hence Semantic Web standards provide us with mechanisms for integration
and combination of data drawn from diverse sources. Semantic Web is also one
approach to working with knowledge, as presented in [5].

e-Science is very much about data and about being “joined up” in the context of
distributed collaborations, so there is a natural match with Semantic Web, a poten-
tial which is well recognised [20]. But here we see a relationship deeper in the
infrastructure, because the vision of sharing of services and resources requires us to
discover and use remote resources, and to do so in an automated way — imagine the
future with a vast number of services and vast amount of data, which must be dis-
covered and assembled to support the scientific task at hand. This vision of scale and
automation inevitably demands machine-processable descriptions, and Semantic
Web gives us exactly that. Hence, in addition to using Semantic Web to link up
the data being processed by applications, the Semantic Grid vision also includes the
description of resources and services — we push down into the infrastructure.

One technology that underpins both these propositions is the Resource
Description Framework (RDF). RDF consists of statements called “triples”, each
of which contains a subject, property and object. For example, we can express that
a particular computer (pc37) runs a particular operating system (redhat Linux) with
the statement

< pc37, hasOperatingSystem, redhat >

hasOperatingSystem
C pe37 ) »( redhat )

Here we add two more statements, about pc38:

< pc38, hasOperatingSystem, redhat >
< pc38, hasDomainName, pc38.cluster3.somedomain.edu >

The subject, property and object are actually expressed as URIs, so the object
“redhat” in the first two triples is represented by the same URI. Significantly, the



6 D. De Roure and C. Goble

property “hasOperatingSystem” is also a URI, so the property is also something
that can be agreed and shared.

The subject of one statement can be the object of another, so collections of RDF
statements form a directed, labelled graph. Hence we can also add a statement about
redhat:

< redhat, isTypeOf, linux >

hasOperatingSystem

hasOperatingSystem isTypaQf

hasDomainName

C pc38.cluster3. somedomain.edu )

Equivalently we could express these in a table:

Subject Property Object

pc37 hasOperatingSystem redhat

pc38 hasOperatingSystem redhat

pc38 hasDomainName pc38.cluster3.somedomain.edu
Linux isTypeOf Linux

Immediately we can see how RDF provides machine-processable metadata.
Standard metadata schema can be expressed in RDF by providing predefined prop-
erties, for example, the Dublin Core Metadata Initiative (DCMI) specifies a set of
properties such as dc:creator, dc:title, dc:date. We can also see how RDF can enable
accumulation of shared knowledge — we can make statements about any resources,
and these are interlinked by shared identifiers so that others can interpret them.

There are some standard ways of expressing relationships between things on top
of RDF. For example, we may wish to express that Windows and Unix are operating
systems, XP and VISTA are subclasses of Windows and Linux is a subclass of Unix
which in turn has redhat and Debian among its subclasses. RDF Schema (RDFS)
provides us with this sort of structure, providing standard mechanisms for describing
groups (classes) of related resources and the relationships between them. It also
defines the concept of subproperty: if a property P is a subproperty of property P’,
then all pairs of resources which are related by P are also related by P’.



1 Supporting e-Science Using Semantic Web Technologies 7

Meanwhile, concept schemes such as thesauri, classification schemes and tax-
onomies are supported by the Simple Knowledge Organization System (SKOS),
which classifies resources in terms of broader or narrower and allows preferred and
alternate labels for concepts. The SKOS data model enables existing systems to
be imported into the Semantic Web framework and makes it easy to develop new
organisation systems.

Figure 1.1 depicts the layering of the Semantic Web. For more sophistication
in expressing relationships and being able to use logic to make deductions, the
Web Ontology Language (OWL) provides more vocabulary and a formal logic,
Description Logic. One of the attractions of OWL is that it can be used in a sim-
ple way but can also extend to represent large and complex ontologies; it comes in
three levels: OWL Lite, OWL DL (Description Language) and OWL Full. OWL can
express much more than RDFS, such as the behaviour of properties (e.g. transitive,
symmetric, reflexive, irreflexive, symmetric, functional, inverse functional). OWL
also has a significant role in joining things up, for example, it provides owl:sameAs:
to indicate that two URISs refer to the same concept.

Trust
Proof
Logic

framework o =
- 2 B
o OwL Rues B S
[ — (&)
®  DLPbitof OWL/Rul N &

< RDF Schema

RDF Core

Fig. 1.1 The Semantic Web layer cake

The tooling to support these Semantic Web standards is now quite extensive. RDF
is often published directly, and it can also be added to existing content by using
microformats, which reuse HTML attributes and elements, or adding RDF state-
ments directly into XHTML using RDFa. One of the most popular tools is the RDF
triplestore, which stores and manages RDF triples and enables them to be queried.
Many triplestores are available and in terms of scale are now measured in billions
of triples [21]. The standard means of querying a triplestore is SPARQL (SPARQL
Query Language for RDF) which contains capabilities for querying required triple
patterns, conjunctions, disjunctions and optional patterns. A “SPARQL endpoint”



8 D. De Roure and C. Goble

provides a machine-friendly interface to query an RDF store, and we envisage that
they will be a key architectural abstraction for the future Semantic Grid.

Through these technologies, entire datasets are now being exposed in RDF.
The Linking Open Data initiative recommends best practice for exposing, sharing
and connecting datasets in this way, exposing them through SPARQL endpoints.
For example, Bio2RDF is an open source project which has created a network of
coherent linked data across life sciences databases by normalising external URIs
during the conversion from the original format to RDF — a “Semantic web atlas of
postgenomic knowledge”. Each converted database has a SPARQL endpoint, and
all documents can be retrieved using REST. Figure 1.2 illustrates the public data
sources available in the “Linked Data Cloud”.

Fig. 1.2 The Linked Data Cloud, as of March 2009

1.5 Achieving the e-Science Vision

How exactly do these technologies help? First we need to understand the require-
ments. The 2005 follow-up Semantic Grid paper identified the requirements of the
e-Science infrastructure under 12 headings [6]:

1. Resource description, discovery, and use;
2. Process description and enactment;



1 Supporting e-Science Using Semantic Web Technologies 9

3. Autonomic behaviour;
4. Security and trust;
5. Annotation,;
6. Information integration;
7. Synchronous information streams and fusion;
8. Context-aware decision support;
9. Communities;
10. Smart environments;
11. Ease of configuration and deployment;
12. Integration with legacy IT systems.

In the following sections we consider several of these in turn and discuss how
they are addressed through the Semantic Grid approach.

1.5.1 Resource Description, Discovery, and Use

The system must store and process potentially huge volumes of distributed content
in a timely and efficient fashion, perhaps through the federation of resources, and
hence be able to identify content, services, computational resources, Grid-enabled
instruments, and so on. It must be able to discover and locate these resources effi-
ciently and to negotiate access. It also requires generation and processing of job
descriptions and on-demand and dynamically planned use of resources in order to
meet quality of service requirements and achieve efficient resource utilisation.

This requirement is addressed by the machine-processable metadata. We have
four important observations based on our experience in Semantic Grid projects:

1. Metadata has a life cycle, like data. It is created, consumed and needs to be
maintained, preserved and curated. It is important to attend to the metadata fabric
of e-Science and recognise that it is as much part of the infrastructure as data
itself.

2. The type and quality of metadata needed to support discovery is different to that
which is needed for automated use. Discovery metadata can help us identify a
set of candidate services or resources, but acquisition and utilisation then require
different information about the specific service or resource.

3. It is not essential to store everything in RDF: it can suffice to be able to import
and export in RDF format. However, it is useful to adhere to RDF principles and
practice with respect to shared identifiers in order to achieve those benefits — to
be indistinguishable from everything being stored in RDF. Sometimes the best
way to achieve this is indeed to store data in RDF, perhaps by shadowing an
alternative store.

4. Often there is confusion between the data model and serialisations of that
model. A model expressed in RDF might be serialised in many different ways.
Conversely, just because something is serialised in RDF does not mean it has an
RDF data model.



10 D. De Roure and C. Goble
1.5.2 Process Description and Enactment

To support the creation of virtual organisations of services, the system needs
descriptions (such as workflows) to facilitate composition of multiple resources and
mechanisms for creating and enacting these in a distributed manner.

This is an important requirement: it takes us to “level 7” of the maturity model
and complements the e-Science focus on data with reusable descriptions of how that
data is processed. These descriptions enhance the derived data by providing a record
of its creation and provenance. They also enable processes to be replayed, repeated
and reused [22].

Two key approaches have emerged for describing assemblies of services:

1. Scientific workflows. A scientific workflow is the description of a process that
specifies the co-ordinated execution of multiple tasks so that, for example, data
analysis and simulations can be repeated and accurately reported. Alongside
experimental plans, Standard Operating Procedures and laboratory protocols,
these automated workflows are one of the most recent forms of scientific digital
methods and one that has gained popularity and adoption in a short time [23].
They represent the methods component of modern research and are valuable and
important scholarly assets in their own right.

2. Mashups. A mashup is a Web application that combines data from one or more
sources, typically achieved by a script which accesses open APIs. Mashups are
also characterised by rapid development, typically achieved using REST princi-
ples. The most popular examples of mashups are perhaps those that make use of
Google Maps to add location information to other data. Like workflows, mashups
can be shared and reused.

Figure 1.3 illustrates the Taverna workflow system [24]. The workflow is
described by a graph which is created in a workflow editor and then enacted with
a workflow enactment engine. Workflows and mashups can both be used to pro-
vide new services. Workflows can arguably provide a more abstract and declarative
description of process which facilitates reuse.

Workflow systems benefit from Semantic Web technologies for discovery, plan-
ning and use of services; for recording the provenance of derived data; and
ultimately for describing and sharing workflows themselves. We discuss this further
in the next section. It is anticipated that mashups will also benefit from Semantic
Web technologies, in discovering resources, services and previous mashups and in
integrating data that is semantically enriched [25].

1.5.3 Autonomic Behaviour
Systems should auto-configure to meet the needs of their multiple users in dynam-

ically changing circumstances and “‘self-heal” in the presence of faults (thus, the
systems will appear to be reliable but, in practice, they may conceal failures and



1 Supporting e-Science Using Semantic Web Technologies 11

IS o5 3 i s e, S| @ o e B i ]

Search # 5 wanen ot Graphical _interactive issperimental)

s Mwaiae Procesior e
[Ty a— 1] vt i || Beteein | o Caigere diagram

o Wi @ e
" o e
e [ ] [namespace
[ getbragonSimpleAnnotatedimages |

Advanced model expiocer

Werion e properie |Pm_Mmy_Dara_JPEG|mage|

% A Mested it | ) Gffing
Warkfiow siyet Hrbries | Dwliy  Backohl Thrasn Cresl
2 Feach Dragon images framm Baokdotry n

| Parse_Moby_Data_SimpleAnnotatedPEGImage

g rumaigace | DragenD8 Aluis
g Detoc_basebs.m by
* % poefromamstadinige
[ £ e T

Oegen
P Parse_ Mooy Dat JPECHe

Farse, Mooy, Dama_SimaieAseounea FECmag
D s

7" Dacote_bamt_in_troe pyini-mages . Rendering dane.

Fig. 1.3 The Taverna workflow workbench

exception handling at various levels). The system should also support evolutionary
growth as new content and services become available.

We see this behaviour first in delivering services and second in using them. For
example, cloud storage services provide a robust service through simple APIs, using
SOAP or REST, and hide the fault-tolerance mechanisms that are used in delivering
that service: some of the autonomic behaviour occurs in the cloud infrastructure,
which is designed to cope with the inevitable failure of components. Meanwhile
above the service level we need to deal with failure of services: lack of availability,
failure during execution, incorrect results or even malicious behaviour. Late-binding
of workflows to service instances, a failover mechanism with alternate services and
compensation mechanisms are established techniques to cope with faults above the
service level. In the future we anticipate a role for multiagent systems negotiation
techniques in achieving the required autonomic behaviour.

1.5.4 Security and Trust

There are authentication, encryption and privacy requirements, with multiple organ-
isations involved, and a requirement for these to be handled with minimal manual
intervention. Indeed from one perspective this is what really defines virtual organisa-
tions. Related to this are issues of agreements and accounting: different stakeholders
need to be able to retain ownership of their own content and processing capabilities,
allowing others access under the appropriate terms and conditions. By their nature,
policies need to be represented such that they can be applied to multiple resources
and with consistent interpretation.



12 D. De Roure and C. Goble

Semantic Web provides the mechanism for linking together data sources which
have different owners. It also gives us a means to represent policy and rules, for
example, through the creation of policy ontologies. Representing usage logs in RDF
promises to be a powerful mechanism to facilitate their interpretation, manually or
through use of automated tools.

1.5.5 Annotation

From logging a sample through to publishing the analysis, annotations enrich the
description of any digital content and enhance reuse. Annotation also supports
the important notion of provenance, whereby sufficient information is stored to
repeat the experiment, reuse the results or provide evidence that this information
was indeed produced at this time (the latter may involve a third party). Ideally, in
many cases, annotations will be acquired automatically. Obtaining annotations is
only half the story however; we also need to make use of them. Examples of such
usage include finding papers, finding people, finding a previous experimental design
(these queries may involve inference), annotating the uploaded analysis and config-
uring a smart space to suit its occupants. Annotation may thus be distributed and
collaborative.

Annotation adds value to existing information, and we have seen previously that
RDF is designed for exactly this purpose: we can create RDF statements about any
resources. The source of annotation may be explicit actions of users — such as tag-
ging resources using a Web page — or annotations can be collected automatically
through usage. For example, the choice of a service can be informed by the record
of its previous performance, which is effectively an automatic annotation of the ser-
vice. By recording that a data source has been used by a certain workflow, other
users of that data source can find the workflows (and hence services) that have used
it or the secondary data derived from it.

1.5.6 Information Integration

The ability to make meaningful queries over disparate information stores, and to
make use of content in ways which may or may not have been anticipated, requires
interoperability of information. For example, this may involve mapping between
terminologies used in different domains. This is the classical role of Semantic Web
technologies.

In discussing resource descriptions we have focused on metadata, but the Linked
Data activity demonstrates that RDF is effective for data representation too. This
is a field where ontologies have particular potential because they provide means
by which heterogeneous resources can be integrated. Research in this area predates
e-Science, dating back to knowledge representation, and has addressed important
challenges in complexity and scalability, in reasoning algorithms and in the tools
for developing and using ontologies. It is an important aspect of Semantic e-Science
and explored comprehensively in later chapters.



1 Supporting e-Science Using Semantic Web Technologies 13
1.5.7 Communities

Communities of practice need to be formed, maintained and disbanded, per-
haps with their own membership criteria and rules of operation. This involves
identifying the set of individuals in a virtual organisation through collabora-
tive tools and exploiting knowledge about communities of practice across dis-
ciplines. This is important for everything from expert-finding to assembling the
large teams needed in multidisciplinary research endeavours such as climate
change.

The representation of information about people, and of the social network,
is well established in the Semantic Web using the Friend-of-a-Friend (FOAF)
vocabulary which describes individuals, their activities and their relationships
to other people and objects. More recently, the Semantically Interlinked Online
Communities (SIOC) ontology is gaining acceptance for integration of online com-
munity information. Meanwhile, Google’s OpenSocial defines a common API for
social applications across multiple Web sites.

1.6 A Semantic Grid Approach to In Silico Bioinformatics

The first of our two Semantic Grid case studies is the myGrid project (www.
mygrid.org.uk).

The myGrid Consortium is a multi-institutional, multidisciplinary research team
focusing on the challenges of e-Science. Formed in 2001, myGrid has produced
the Taverna Workflow Management System (www.taverna.org.uk) which includes a
GUI-based rich-client workbench, an enactment engine for server and client deploy-
ment based on an extended lambda calculus [26] and knowledge management
services for provenance [27, 28] and discovery [29]. Over 3,500 publicly available
services are currently accessible as workflow components. Taverna is very widely
used and is the cornerstone of many of the consortium’s projects and the focus of
many collaborations.

myGrid is designed for openness and ease of extension: it is a loosely coupled,
extensible set of components that can be adopted independently by tool devel-
opers but which are designed to work together in a distributed service-oriented
architecture. They work together by being organised conceptually around two com-
munication buses into which myGrid’s software services are plugged, as shown
in Fig. 1.4. The use of two buses effectively decouples the business of creating
the experimental environment from the business of managing the rich e-Science
content.

The Experiment Interoperation “bus” is an event-enabled communication infras-
tructure that couples together during the running of the software:

e Common core myGrid services for creating, deleting, publishing and manag-
ing data and metadata. These are part of the software suite and not the actual
databases or analytical tools that will form steps of the workflows;



—_
~

D. De Roure and C. Goble

Taverna Taverna mExperiment Smart : Knowledge
Workflow Workflow Shared Experiment %ﬁ:ﬁ:r Agl?e?:;s Discovery
Enactor Workbench Portal Services Clients
) [} [} [} [} [} [}
myGrid Experiment Interoperability Bus
[] [ ] [] [] []
Data Identity Provenance Publication Discovery
Services Services Services Services Services

+

+

+

myGrid Semantic Information Bus

Data Icll.esr:t?ty Provenance Mismatch Workflow
model e Model Ontology

1

CLAVA

il

oty
External
Services

Domain
DB

Registry

Fig. 1.4 The myGrid middleware: Joining up in silico experiments with semantics

The core Taverna workflow enactor for running experiments that interact with the
core myGrid services;

Core myGrid clients such as the Taverna workbench, which has its own plug-in
architecture (i.e. new functions can easily be added using programs which comply
with its software interfaces), and provenance browsers;

Domain-specific and external client-side applications that use those services and
clients, for example, the Utopia sequence visualisation application [30].

The Semantic Information “bus” carries the persistent semantic and data content
and models that the core services share, provide and consume, for example, the
provenance model and service discovery model. The information flowing on this
bus is the annotated experimental data. On the one side are the services and even the
client-side applications that can tap into this semantic infrastructure; on the other
side are the services for creating and storing the semantic content. The Semantic
bus is the Semantic infrastructure for myGrid and can be seen as a Semantic Web of
experiments.

Taverna refers to both a workbench and a workflow enactment environment that
can be run separately from the workbench by a third-party application such as



1 Supporting e-Science Using Semantic Web Technologies 15

Utopia. The Taverna workbench is a myGrid application that services and clients
plug into and allows the scientist to design and run workflows. The myExperiment
Web-based collaborative environment [31] allows the scientist to organise, commu-
nicate, publish and share their experiments and their outcomes. Taverna provides
and consumes the Semantic Web of experiments for an individual scientist; myEx-
periment provides an environment for exploring and contributing to a wider
Semantic Web of science.

The myGrid team provides the ontologies and keeps a registry of the services and
makes available a repository of workflows that the scientist can draw upon or use
their own. The domain services that the workflow enactor invokes are separate from
the myGrid software suite and are hosted by their own service providers and regis-
tered in the Biocatalogue [22]. The provenance and data results are stored locally
with the scientist or they can configure shared stores as they wish; they are not held
centrally in a resource owned by myGrid.

This architecture is designed to support the flows of semantic information within
the scientific process. Our experience of building and using myGrid effectively pro-
vides an evaluation of the promise of the Semantic Web against the real requirements
of the Life Scientist.

1.7 A Semantic Datagrid for Chemistry

In our second case study we focus on the linking of data. The CombeChem project
(combechem.org) set out to achieve a complete end-to-end connection between the
chemistry laboratory bench and the intellectual chemical knowledge that is pub-
lished as a result of an experiment — this is described as “publication at source”
[32]. Underlying this is the crucial observation that the details of the origins of
data are just as important to understanding as their actual values. Publication at
source describes the need to capture data and its context from the outset — it is
much easier to collect this information at source and at creation than attempt to add
it later.

The creation of original data in the laboratory is accompanied by information
about the experimental plan that was being followed, a record of what actually
occurred and the laboratory conditions. There then follows a chain of processing
such as aggregation of experimental data, selection of a particular data subset,
statistical analysis or modelling and simulation; some of the steps in the process
require significant computing resources. The handling of this information may
include annotation of a diagram or editing of a digital image. All of this gener-
ates secondary data, accompanied by the information that describes the process
that produced it, and this might be maintained in a variety of distinct datastores.
Through the principle of publication at source, all this data is made available for
subsequent reuse in support of the scientific process, subject to appropriate access
control. Figure 1.5 illustrates the plan and experimental record captured as an RDF
graph.



D. De Roure and C. Goble

16

p10931 ssaoo1d pue ueld [eyuowirradxs ue jo ojdwexy ¢°f ‘S

ueos ‘69 ¢ Arepunoq sseooid/uoneaIasqo ay) i je uoneAIaS
SWB Wiy ‘ynb 14N ‘68 ¢Arepunog /uoenIasqo aus st ¥eym 0.3 - sanpesadwe) /\ uonenssqo
00z Arenuer og sojdwies jo sjo] Bupie} o1dap 0} MOH Spp—— O [esow
wayosquoy sessao0.1d aAlonIisap 101dep 0} Mo sdoup ‘|w - ainseaw O Induj
SUOIJEJOUUE UM 19MB) 10 S8sS8001d JO S8sse|oqns Auew aney 0} 18Uy sowwelb - yblom o) $50001d
sadA] uonealesqo
suonsanp aining oy
o 6 81651 6 610
ey bSEn b, b wapisresoustio [ 7] e b amegsome
n P 00 v
L] L[] [] ol
uopeioden; EEBEE(‘ ajejouus 4
e VEIOUUY X opsenxe O sooive oy
AydesBojewoiyy \uenjog (s0uyong) Jo aidwes [ Jwar

uwnjo) euid

ajejouLy

piooay
$S9920.id

“JoULIU0D
L] 1N0 YSEM 0} JUBA(OS BIIXG W PaSA
“YSel} g4 W0} 0! paInsesw
PUE ULIN|0D BO|IS BIA PaLp BUoUEING

lAueydiq
pereunnoy
-1 10 ojduies

oney
lonad
el
o wog~
W oplog L auq pappy ‘siafe|
6 gseaxo = 2 enjossip saueBiou) J—
uoneiodeny
Aiejoy Aq uonoeXd
AydesBojewoiyd Juanj0s pinby| ]
uwnjod 9snd gpowey o4 kg -pinbry xnpey pPY  100Q  Xn|jey PPV 9
jw ot suouelng -]
6 /02 8}eU0qIED WNISSEIO] -
oy 8 euoueing |6 eg) 8001 Hg -]
onoea YOSBIN Jan0 (lwopxe) uone|dwod ut [Ausydiq 660 IAuaydiq pajeuon|y )
Jo19d48Y10 Ul UWINIOD ul uanos fup ‘souebio Woa (woe) sovem  pun xnjjas g00k1ig  sinoy 'L o} Japmod  pajeunoly - =)
3 BOl|is 0} punoduiod asn4 anoway |UIqWOD  YiM JoeIXT PPE pUE [00D 1e jeaHy Ppe pue [00Q XNn|jeljejedH £002Y PPY i @Aj0ssIQ 117 aipaibu) (-]




1 Supporting e-Science Using Semantic Web Technologies 17
Our design approach adopted five principles [33]:

1. Grounding in established operational practice — our starting point was to study
chemists at work;

2. Capturing a rich set of associations between all types of things, expressed
pervasively in RDF and hence explicitly addressing the sharing of identifiers;

3. Metadata capture should be automated as far as possible;

. Information would be reused in both anticipated and unanticipated ways;

5. The storage, maintenance and transport of metadata will be given equal con-
sideration to data, ensuring availability of accurate metadata, a dependable
provenance record and comprehensive understanding of the context of data.

N

The system supports the chemist through the whole life cycle of an experiment,
broken down into four parts, with the “PPPP” mnemonic: plan, perform, ponder and
publish. Although simplistic, this does capture many of the aspects of the discovery
process.

The acquisition starts with planning and performing, using the smart laboratory
and Grid-enabled instrumentation [34]. By studying chemists within the laboratory,
Electronic Laboratory Notebook technology has been introduced to facilitate the
information capture at this earliest stage [35]. Additionally pervasive computing
devices are used to capture live metadata as it is created at the laboratory bench,
relieving the chemist of the burden of metadata creation. This aspect, which is a
significant enabler for publication at source, is set to grow considerably as pervasive
computing deployment advances.

It is significant that this capture makes use of both a record of the researcher’s
planned activity and what actually occurs. In the UK the chemist has to produce a
plan of the experiment as a list of the reagents to be used, and any associated hazards,
as part of the COSHH (Control Of Substances Hazardous to Health) assessment.
The plan is a key part of the knowledge capture in support of the publication at
source model. It also enables the Electronic Laboratory Notebook to provide a guide
to the experiments in the laboratory. Capturing the experiment as a reusable digital
artefact also facilitates sharing and reuse of experiment design.

Experimental results are then used by researchers within CombeChem’s grid-
based information and knowledge sharing environment that integrates existing
chemical knowledge, specifically structure and property data sources. The research
that is conducted, which may involve simulations using the Grid, leads to new results
and to publication. At the outset we anticipated that we would support this environ-
ment by using RDF as a means of integrating across the many established data
sources, which include relational databases and third-party information providers.
This is a good example of the use of RDF triplestores in conjunction with database
solutions.

In practice we found that the chemistry researchers were keen to import chemical
information directly into the RDF stores. The benefits were the uniform descrip-
tion and the flexible schema afforded by this approach, contrasting the diversity of
relational databases where changing schema was impossible or achievable only at



18 D. De Roure and C. Goble

very high cost. This triplestore contains tens of millions of RDF triples and rep-
resents a substantial Semantic Web deployment. The chemical data was obtained
from a range of publicly available databases including the ZINC database [36], the
National Institutes for Health (NIH) and in particular the National Cancer Institute
(NCI) chemical data. We used the open source 3store triplestore software, which
was used in a similar harvesting role in the CS AKTive Space project [37].

The current target is hundreds of millions of triples. However, CombeChem has
moved away from managing everything in one scalable triplestore. This harvesting
and hoarding approach to the “mashup” benefits the immediate users but itself is not
in the spirit of the open approach to publishing knowledge. Rather, the knowledge
sources are made available in RDF and imported into triplestores as required — the
Web itself then becomes the scalable triplestore, and the sources are available for
reuse. The ontologies that were created to support this environment are described
in [38].

As an example of the output of this process, the eCrystals interface shown in
Fig. 1.6 provides a Web page complete with a 3D visualisation of a molecule, data
collection parameters and links back to the files of data which led to this output (see
ecrystals.chem.soton.ac.uk). Behind this simple interface there is a complex picture
including a diverse set of stakeholders — the federation model involves data col-
lection, data curation and preservation in databases and databanks, institutional data

UNIVERSITY OF
!Crystals Southampton
I I I T N —
Login | Create Account [ e
{(2R.5R)-2.5-bis(4-Nitrophenyl)perhydrofuro(2,3-b)furan-3-yljtriisopropylsilane
Sample Origi Michael B. | and Simon J. Coles.
CarHashizOsSi

InChi=1/C27HIBN206Sic1 17 (2)36(18(3)4 19(5)6)27-15-24(20-.7-11.22(12-
B8-20)28(30)31)34-26(27)35-25(16-27)21-9-13-23(14-10-21)29@F2)33M7-
14,17-19,24-26H,15-16H2,1.6H3124- 25- 26- 27-/m fs1

Identification 10.3737fecrystals. chem. soton.ac.uk/ 08
Humber:

Date 28 July 2001
Created:

Deposited 21 Jan 2008 15:29
On:

Deposited A N. Admin
By:

Jmol

Available Files

Final Result
Depositor Comments
The title molecule, C27H3EM20BSI, contains a pair of fused Qisot104.CIF 19k
nngs, i i by p-ni groups 10k
at centres of R :hnality‘. The crystal structure is :nn‘;pused of dimers Osentidnl
interacting through -stacking to form columns. Validation
Data collection parameters 01s01104_checkeifh Bk
Chemical formula C27 H38 N2 06 Si
Refinernent
Crystallisation Solvent
01501104 105 9k
Crystal morphology R
01501104 _x].lst
Crystal system Triclinic

Fig. 1.6 The eCrystals interface



1 Supporting e-Science Using Semantic Web Technologies 19

repositories, aggregator services, portals and publishers. The CombeChem team also
produced an academic paper in this form [39].

The interlinking of research data and research publication is the subject of the
eBank project, which provides open access crystallography data interlinked with
its derived research publications — it is possible to chase back to see exactly where
results have come from or even to find research publications arising from data. In
line with the digital library context for this work, OAI (Open Archives Initiative)
metadata is harvested from institutional data repositories. As part of this exer-
cise, the Repository for the Laboratory (R4L) project is developing digital data
and document repositories for laboratory-based science (see r4l.eprints.org). R4L
addresses the interactions between repositories of primary research data, the labo-
ratory environment in which they operate and repositories of research publications
they feed into.

The CombeChem Semantic Datagrid demonstrates how an RDF triplestore can
be used to provide enhanced recording, storage and retrieval of scientific data, in a
flexible fashion. The triplestores contain the rich metadata that describes the rela-
tionships within the scientific information, and the data that is described may be
held in a variety of existing stores. Since the metadata is machine-processable, it
provides the necessary basis for sophisticated querying and for automation in infor-
mation processing, which could, for example, include curation. The analysis of the
complex data and provenance information needed for chemical information pro-
vides valuable lessons for representation and handling of the necessary level of
detail involved with data in other sciences.

The CombeChem project created an ontology for units. For example, when
we state that a solution has a strength of 0.02 mol dm™3 then 0.02 is the value
of the measurement, mol is the first unit (indicating one Avogadro’s constant of
molecules), dm 3 is the second unit (“per decimetre cubed”) which can be further
decomposed into deci (an SI prefix for 1/10th), metre (the ST unit for length) and —3
(the exponent of the preceding unit, present if not equal to one).

1.8 Architectures for the Semantic Grid

In Europe the 6th Framework Programme (2002-2006) funded many projects in
Advanced Grid Technologies, Systems and Services, depicted in Fig. 1.7, and con-
vened the Next Generation Grids Expert Group (NGG). Many of the projects involve
Semantic Grid in some form. In this section we will focus on one of these projects,
OntoGrid, and on a report produced by the experts group which looked into the
future of this approach.

1.8.1 S-OGSA - A Reference Architecture for the Semantic Grid

The OntoGrid project set out to produce the technological infrastructure for the
rapid prototyping and development of knowledge-intensive distributed open ser-
vices for the Semantic Grid, observing that designing applications that make use of



20 D. De Roure and C. Goble

Supporting the Grid community

Nessi-Grid Degree Grid services,

EchoGrid business models

Trust, security GridCoord | | Grid@Asia

1
|Grid"l'rust u AssessGrid U

ArguGrid Ed'g:;"@
Provenance
SIMDAT I BeinGrid AWare || Sorma
industrial business
Pfatfprms, user simnlations experiments
environments
- NextGRID| | Akogrimo|| BREIN ||XtreemOS Data, knowledge,
Ec-Gin service mobile agents& || oo roiing semantics
h services semantics
Griddall || KnowArc - systems
Gredia | | QosCosGrid CoreGRID
virtual laboratories -
g-Eclipse | | GridComp ’ InteliGrid

UniGrids | HPC4U OntuGrId

Fig. 1.7 The “Grid House” of projects funded in the European 6th framework programme

a Semantic Grid requires a new and sound methodology. The project used two case
studies to develop grid systems that optimised cross-process, cross-company and
cross-industry collaboration. Significantly, OntoGrid produced Semantic-OGSA
(S-OGSA), the first reference architecture for the Semantic Grid. S-OGSA is
depicted in Fig. 1.8 and is guided by six general design principles which are
reported in [40]:

1. Parsimony of architectural elements. The architectural framework should be as
lightweight as necessary and should minimise the impact on legacy Grid infras-
tructure and tooling. It should not impose the vocabulary or the structure to be
used in the semantic descriptions, since these will be application or middleware
dependent, though a basic set of reusable vocabularies can be provided, related
to different aspects of the model.

2. Extensibility of the framework. Rather than defining a complete and generic
architecture, define an extensible and customisable one.

3. Uniformity of the mechanisms. Semantic Grids are Grids, so any S-OGSA
entity included in the architecture will be OGSA-observant. Similar to the Grid
resources they are associated with, knowledge and metadata should exhibit
manageability aspects. Semantic descriptions could have state and soft state
characteristics — they have a lifetime and may change during their life. S-
OGSA must encapsulate both stateless and stateful Grid services, as OGSA
does. Knowledge services in S-OGSA are OGSA-observant Grid services; for
instance, metadata stores and ontology services are just special kinds of data
services.



1

Supporting e-Science Using Semantic Web Technologies 21

Application

Middleware

Fabric

¢ H O o

Fig. 1.8 A simplified view of the architecture proposed by OGSA, with the additional components
from S-OGSA (in the centre and in adjacent boxes)

4. Diversity of semantic capabilities. A dynamic ecosystem of Grid services rang-

ing over a spectrum of semantic capabilities should coexist at any one time. Grid
entities do not need to be Semantic Grid entities. Semantic capability may be
possible for some Grid resources all of the time, and maybe all Grid resources
some of the time, not all resources all of the time. Entities in the Semantic Grid
are thus classified as ignorant of the explicit semantics associated with another
entity, aware that another entity has explicit associated semantics but incapable
of processing it or aware that another entity has explicit associated semantics and
capable of processing it, partially or completely.

Heterogeneity of semantic representation. Any resource’s property may have
many different semantic descriptions, and each of them may be captured (or
not) in different representational forms (text, logic, ontology, rule).
Enlightenment of services. Services should have a straightforward migration path
that enables them to become knowledgeable. The cost involved in the migration
to the Semantic Grid must be minimised in order to improve the impact and



22 D. De Roure and C. Goble

uptake of Semantic Grid and to take advantage of current tooling and services.
Thus S-OGSA should have minimal impact on adding explicit semantics to cur-
rent Grid entity interfaces or on Grid services that are ignorant of Semantic Grid
entities; Grid entities should not break if they can consume and process Grid
resources but cannot consume and process their associated semantics, and if a
Grid entity understands only part of the knowledge it consumes it should be
able to use it as a best effort (that is, there are different degrees of awareness
and semantic processing capabilities). During their lifetime, Grid entities can
incrementally acquire, lose and reacquire explicit semantics.

1.8.2 The Service-Oriented Knowledge Utility

The Next Generation Grids Expert Group (NGG) also identified the need for seman-
tically rich facilities and a service-oriented approach. In the last quarter of 2005 the
group convened to identify the gaps between the leading-edge of Grid technologies
and the end-user. The convergence of the evolving NGG vision with the service-
oriented vision of significant European industry stakeholders in NESSI (Networked
European Software and Services Initiative, an industry-led Technology Platform
that aims to provide a unified view for European research in Services Architectures
and Software Infrastructures) naturally led the NGG group to define the scientific
and technological requirements necessary to evolve Grids towards the wider and
more ambitious vision of Service-Oriented Knowledge Utilities (SOKU). Figure 1.9
shows the influences on SOKU.

Webh and Web Services

Methodologies
Service Oriented Architecture

Grid
Stateful Service Utility

Agent Technologies
AutonomicStateful Service Utility

Semantics
Societal Autonomic Stateful Service Utility

Heuristics
Knowledge aware Societal Autonomic

Stateful Service Utility
Formal Languages

Reliable Knowledge aware Sacietal
Autonomic Stateful Service Utility = SOKU

Next Generation Grids and SOKU

Fig. 1.9 Influences on SOKU



1 Supporting e-Science Using Semantic Web Technologies 23

The confluence of the Service-Oriented Knowledge Utility paradigm and Next
Generation Grids is a compelling approach to the future IT architecture. It encom-
passes several important domains including foundations of service-oriented com-
puting, service-oriented architecture, grid and utility computing, business process
management and, business integration. In order to realise the vision a number of
challenging research topics were identified:

1. Life cycle management: on-the-fly service creation and deployment; robust, effi-
cient and semantically aware discovery of services; composition of services;
management of functional and non-functional properties and requirements; and
support for multiple “economy models” for the grid.

2. Trust and security: ad hoc and managed virtual organisations of digital and
physical entities; policy and business practice; service-level agreements; authen-
tication and authorisation in a multi-domain environment in which entities have
multiple identities and multiple roles.

3. Adaptability, dependability and scalability: self-systems; peer-to-peer; scal-
ability.

4. Raising the level of abstraction: higher level programming models and tools;
new or improved management abstractions; better operating systems capa-
ble of managing more complex resources and requirements from application,
service and system contexts; abstract/virtual service containers; compact data
formats.

5. Pervasiveness and context awareness of services: high-level interoperability,
smooth composition and automatic self-organisation of software with struc-
ture and behaviour changing at run time; non-functional requirements related
to interoperability, heterogeneity, mobility and adaptability.

6. Underpinning semantic technologies: mechanisation of composition; scalable
reasoning and formalisation; heterogeneous and dynamic semantic descriptions;
life cycle of knowledge; collaboration and sharing.

7. Human factors and societal issues: user requirements and evaluation; intersection
between the physical world and the digital; personalisation techniques; issues of
collaboration and community; socio-economic aspects.

1.8.3 The Semantic Grid Community

The Semantic Grid community has developed many interesting projects in a spec-
trum of application areas. The following examples give a flavour of the breadth of
activity:

e PolicyGrid (http://www.policygrid.org/) is a UK e-Science project funded as part
of the Economic and Social Research Council eSocial Science initiative. The
project aims to support policy-related research activities within social science
by developing appropriate Grid middleware tools which meet the requirements
of social science practitioners. The vision of the Semantic Grid is central to the
PolicyGrid research agenda.



24 D. De Roure and C. Goble

e Semantic sensor grids for rapid application development for environmental man-
agement (http://www.semsorgrid4env.eu/) use Semantic Web and Web Services
to develop an integrated information space where new sensor networks can be
easily discovered and integrated with existing ones, together with the rapid devel-
opment of flexible and user-centric environmental decision support systems that
use data from multiple, autonomous, independently deployed sensor networks
and other applications.

e The Networked Environment for Music Analysis (NEMA) project
(http://nema.lis.uiuc.edu/) brings together world leaders in the domains of
music information retrieval, computational musicology and e-humanities
research to create an open and extensible resource framework based on Web
Services and Semantic Web that facilitates the integration of music data and
analytic/evaluative tools.

e The Data Grid Team at the Grid Technology Research Center in AIST, Japan, has
developed a service-based middleware that utilises Grid and Semantic Web tech-
nology. The OGSA-DAI-RDF middleware extends OGSA-DAI (which allows
data resources to be accessed via Web services) to provide access to RDF
triplestores, with a query language interface based on SPARQL [41].

1.9 Moving Forward

In this chapter we have seen that Semantic Grid is about the semantic and service-
oriented infrastructure of e-Science and e-Research. This emphasises data, metadata
and services, but we have also seen that collaboration is fundamental to e-Science
and hence there is also an important social dimension to the fabric of the Semantic
Grid.

Our latest work builds on the experience of myGrid and CombeChem to
major on that social infrastructure. The myExperiment project (http://www.
myexperiment.org) is our social Web site for sharing scientific workflows and other
artefacts of digital science. It supports a social network and makes it easy to create
groups of people and to discover and share things. This approach makes it easier
for people to find workflows, and it also enables community curation of workflows
which in turn helps address the difficult problem of “workflow decay” due to the
flux of the service landscape.

The architecture of myExperiment is shown in Fig. 1.10. The myExperiment data
model is implemented in Ruby on Rails and is closely tied to the models for the user
interface as shown. Furthermore due to the perpetual beta approach to agile man-
agement of the project, that data model is subject to change. We have therefore built
a parallel server which is updated with the live content but has a stable data model
expressed as a modularised ontology and provides a SPARQL endpoint. The ontol-
ogy builds on Dublin Core, FOAF, SIOC and Object Reuse and Exchange (ORE).

The BioCatalogue (http://www.biocatalogue.org/) is a sister project which pro-
vides a registry of Web Service in the life sciences. The service descriptions are
curated by the service providers, expert, users and automatic tools, again taking a



1

Supporting e-Science Using Semantic Web Technologies 25

External Applications
Gadgets | [ Mashups |
I Facebook App I [‘l‘mma Plugin I

Users
i_.-
OpenlD Services Web Server Remote Workflow
P Apache Enactor Servers

‘ Anony U IP. d OpeniD HTTP Basic OAuth ’
Access Authentication Authentication || Auth ti Auth
']
Application Cluster Mongrel (Ruby on Rails)
Views (Interfaces) (2], ] . Bl
e [ Mt [ sssatce [ apunion | | £ [ 3 £ $
|Contm|lers ? %
Models % I’
[ Workflows | [ Files | [Packs| [ Groups | [users| [ Profiles | | Memberships | [Friendships |
| Tags I [anim] ll:ommems] Iciutlonsl [ Credits ] I Attributions | I Ratings I I Favourites I
I ) [(poticies ] [ Pemissions | [ pictures | [ Experiments | [ sobs ] [ Notiications ]
Mail Server Database Server Search Server
Google Apps MySQL Solr

Fig. 1.10 The myExperiment architecture

social approach. Coupled with myExperiment, BioCatalogue can learn about service
utilisation while myExperiment learns about services and their availability.

1.10 Summary

As we reflect over all the Semantic Grid activities, we observe three crucial aspects
which will lead us forward:

1. Automation is necessary to cope with scale, and automation requires machine-
processable metadata. At the time of writing, the SeekDa service registry
contains around 30,000 services: we are not yet at the scale of services that make
this critical but the trend is clear. At some degree of scale, solutions such as



26

D. De Roure and C. Goble

workflows and mashups have benefit, but the challenge ahead is to deal with
such a scale that we will need to enhance these solutions.

. e-Science is about joining up resources and joining up people, to achieve

new research outcomes. Again, the Semantic Web offers a solution, especially
through the Linked Data initiative and activities like SIOC. All usage leads to
annotation, and annotation adds value so that our resources can be used in ways
that were anticipated but also, importantly, unanticipated. Hence Semantic Web
can help tap the “wisdom of the crowd”. In fact we anticipate that research will
not always be shared via academic papers but rather by sharing reusable digi-
tal “Research Objects” which describe the bundles of resources that define our
scientific endeavours.

. In both cases the information fabric of e-Science comprises content, which has

a life cycle of its own, and the infrastructure to support it. The Semantic Web
tooling has reached a maturity which makes this viable, as demonstrated through
the projects presented above, and best practice is becoming established.

Acknowledgments This chapter includes material based on information provided by the myGrid,
CombeChem and OntoGrid teams. The authors wish to thank these teams and the Semantic Grid
community for their assistance in this work.

References

—

(95}

11.

Hey, T., Trefethen, A.: The data deluge: An e-science perspective. (2003) 809-824

De Roure, D., Goble, C.: Software design for empowering scientists. IEEE Software 26 (2009)
88-95

Shneiderman, B.: Computer science: Science 2.0. Science 319 (2008) 1349-1350

De Roure, D., Jennings, N.R., Shadbolt, N.R.: The semantic grid: A future e-science
infrastructure. (2003) 437-470

Goble, C.A., DeRoure, D., Shadbolt, N.R., Fernandes, A.A.A.: Enhancing services and appli-
cations with knowledge and semantics. In: Foster, I., Kesselman, C. (eds.) The Grid 2:
Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2004)
431-458

De Roure, D., Jennings, N.R., Shadbolt, N.R.: The semantic grid: Past, present, and future.
Proceedings of the IEEE 93 (2005) 669681

Taylor, J.: Talk given at UK e-Science Town Meeting in London (2001)

Segaller, S.: Nerds 2.0.1: A Brief History of the Internet, TV Books (1998)

National Research Council Committee on a National Collaboratory. National collaborato-
ries: Applying information technology for scientific research. National Research Council,
Washington, DC (1993)

Atkins, D.E., Droegemeier, K.K., Feldman, S.I., Garcia-Molina, H., Klein, M.L.,
Messerschmitt, D.G., Messina, P., Ostriker, J.P., Wright, M.H.: Revolutionizing Science
and Engineering Through Cyberinfrastructure: Report of the National Science Foundation
Blue-Ribbon Advisory Panel on Cyberinfrastructure, National Science Foundation
(2003)

De Roure, D., Jennings, N.R., Shadbolt, N.R.: Research Agenda for the Semantic Grid: A
Future e-Science Infrastructure in UK e-Science Technical Report Series, National e-Science
Centre, Edinburgh, UK (2001)

Foster, I.: The anatomy of the grid: Enabling scalable virtual organizations. International
Journal of Supercomputer Applications 15 (2001) 2001



1

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Supporting e-Science Using Semantic Web Technologies 27

Foster, 1., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the grid. (2003) 217-249
Surridge, M., Taylor, S., De Roure, D., Zaluska, E.: 2005. Experiences with GRIA —
Industrial Applications on a Web Services Grid. In Proceedings of the First international
Conference on E-Science and Grid Computing (December 05-08, 2005). E-SCIENCE.
IEEE Computer Society, Washington, DC, 98—105 (2005). DOI= http://dx.doi.org/10.1109/E-
SCIENCE.2005.38

Fielding, R.T.: Architectural Styles and the Design of Network-Based Software Architectures,
University of California, Irvine, Irvine, CA (2000)

Richardson, L., Ruby, S.: RESTful Web Services, O’Reilly Media (2007)

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-Agreement)
in, Open Grid Forum, Grid Resource Allocation Agreement Protocol (GRAAP) WG (2007)
Foster, 1., Jennings, N.R., Kesselman, C.: Brain Meets Brawn: Why Grid and Agents Need
Each Other in Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems — Volume 1, IEEE Computer Society, New York, NY (2004)
Berners-Lee, T., Hendler, J., Lassila, O.: “The semantic web.” Scientific American. (May
2001) 34-43

Hendler, J.: Communication: Enhanced science and the semantic web. Science 299 (2003)
520-521

Semantic Web Challenge http://challenge.semanticweb.org/, visited

Belhajjame, K., Goble, C., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R., Nzuobontane,
E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: A Curated Web Service Registry for
the Life Science Community in Microsoft eScience Workshop Indianapolis, Indiana (2008)
Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M.,
Moreau, L., Myers, J.: Examining the challenges of scientific workflows. Computer 40 (2007)
24-32

Oinn, T., Greenwood, M., Addis, M., Alpdemir, N., Ferris, J., Glover, K., Goble, C., Goderis,
A., Hull, D., Marvin, D., Li, P, Lord, P., Pocock, M., Senger, M., Stevens, R., Wipat, A., Wroe,
C.: Taverna: Lessons in creating a workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience 18 (2006) 1067-1100

Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: Semantically interoperable and easier-to-
use services and Mashups. Internet Computing, IEEE 11 (2007) 91-94

Turi, D., Missier, P, Goble, C., De Roure, D., Oinn, T.: “Taverna workflows: syntax and
semantics,” e-science and grid computing, International Conference on, pp. 441-448. In:
Third IEEE International Conference on e-Science and Grid Computing (e-Science 2007)
(2007). http://doi.ieeecomputersociety.org/10.1109/E-SCIENCE.2007.71

Zhao, J., Wroe, C., Goble, C., Stevens, R. Quan, D., Greenwood, M.: Using semantic web
technologies for representing e-science provenance. In: Proceedings of the 3rd International
Semantic Web Conference, volume 3298, pages 92—106, Hiroshima, Japan (2004)

Missier, P., Belhajjame, K., Zhao, J., Roos, M., Goble, C.A.: Data lineage model for taverna
workflows with lightweight annotation requirements. IPAW (2008) 17-30

Lord, P., Alper, P., Wroe, C., Feta, C.G.: A Light-Weight Architecture for User Oriented
Semantic Service Discovery In Proceedings of Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May—June 2005. pp. 17-31, Springer-Verlag LNCS
3532 2005

Pettifer, S.R., Sinnott, J.R., Attwood, T.K.: 2004. UTOPIA — user-friendly tools for operating
informatics applications: Conference reviews. Comparative and Functional Genomics 5(1)
(Feb. 2004) 56-60. DOI= http://dx.doi.org/10.1002/cfg.v5:1

De Roure, D., Goble, C., Stevens, R.: The design and realisation of the virtual research envi-
ronment for social sharing of workflows. Future Generation Computer Systems 25 (2009)
561-567

Frey, J.G., Roure, D.D., Carr, L.: Publication At Source: Scientific Communication from a
Publication Web to a Data Grid in EuroWeb 2002 Oxford (2002)



28

33.

34.

35.

36.

37.

38.

39.

40.

41.

D. De Roure and C. Goble

Taylor, K., Gledhill, R., Essex, J.W., Frey, J.G., Harris, S.W., De Roure, D.: 2005. A
semantic datagrid for combinatorial chemistry. In: Proceedings of the sixth [IEEE/ACM inter-
national Workshop on Grid Computing (November 13-14, 2005). International Conference
on Grid Computing. IEEE Computer Society, Washington, DC, 148-155 (2005). DOI=
http://dx.doi.org/10.1109/GRID.2005.1542736

Hughes, G., Mills, H., De Roure, D., Frey, J.G., Moreau, L., schraefel, M.C., Smith, G.,
Zaluska, E.: (2004) The semantic smart laboratory: a system for supporting the chemical
e-Scientist, Organic Biomolecular Chemistry 2(2004) 3284. DOI: 10.1039/B410075A
schraefel, M.C., Hughes, G., Mills, H., Smith, G., Payne, T., Frey, J.: Breaking the book:
Translating the chemistry lab book into a pervasive computing lab environment. In: CHI 2004,
April 24-29, 2004, Vienna, Austria (2004)

Irwin, J.J., Shoichet, B.K.: ZINC — A free database of commercially available compounds for
virtual screening. Journal of Chemical Information and Modeling 45(1) (2005) 177-182
Shadbolt, N., Gibbins, N., Glaser, H., Harris, S., schraefel, M.C.: “CS AKTive space, or how
we learned to stop worrying and love the semantic web.” IEEE Intelligent Systems 19(3)
(May/June 2004) 41-47. Doi:10.1109/MIS.2004.8

Taylor, K.R., Gledhill, R.J., Essex, J.W., Frey, J.G., Harris, S.W., De Roure, D.C.: Bringing
chemical data onto the semantic web. Journal of Chemical Information and Modeling 46(3)
(2006) 939-952. http://dx.doi.org/doi:10.1021/ci050378m

Rousay, E.R., Fu, H.C., Robinson, J.M., Essex, J.W., Frey, J.G.: Grid-based dynamic elec-
tronic publication: A case study using combined experiment and simulation studies of crown
ethers at the air/water interface. Philosophical Transactions Of the Royal Society of the
London A 363 (2005) 2075-2095

Corcho, O., Alper, P., Kotsiopoulos, 1., Missier, P., Bechhofer, S., Goble, C.: An overview of
S-OGSA: A reference semantic grid architecture. Journal of Web Semantics 4 (2006) 81-154
Kojima, I.: Design and Implementation of OGSA-DAI-RDF in GGF16 3rd Semantic Grid
Workshop, GGF (2006)



Chapter 2
Semantic Disclosure in an e-Science
Environment

M. Scott Marshall, Marco Roos, Edgar Meij, Sophia Katrenko,
Willem Robert van Hage, and Pieter W. Adriaans

Abstract The Virtual Laboratory for e-Science (VL-e) project serves as a backdrop
for the ideas described in this chapter. VL-e is a project with academic and indus-
trial partners where e-science has been applied to several domains of scientific
research. Adaptive Information Disclosure (AID), a subprogram within VL-e, is
a multi-disciplinary group that concentrates expertise in information extraction,
machine learning, and Semantic Web — a powerful combination of technologies
that can be used to extract and store knowledge in a Semantic Web framework. In
this chapter, the authors explain what “semantic disclosure” means and how it is
essential to knowledge sharing in e-Science. The authors describe several Semantic
Web applications and how they were built using components of the AIDA Toolkit
(AID Application Toolkit). The lessons learned and the future of e-Science are also
discussed.

2.1 Introduction

2.1.1 Semantic Disclosure

Knowledge discovery lies at the heart of scientific endeavor. The discovery, stor-
age, and maintenance of knowledge form the foundation of scientific progress.
Consequently, if we define e-Science as “enhanced Science,” then it is essen-
tial that e-Science should enhance knowledge discovery and re-use. Ultimately,
e-Science is about discovering and sharing knowledge in the form of experimen-
tal data, theory-rich vocabularies, and re-usable services that are meaningful to the
working scientist. Furthermore, the e-Scientist should be able to work with user
interfaces that tap into knowledge repositories to provide familiar terminologies and

M.S. Marshall ()
Informatics Institute, University of Amsterdam, Kruislaan 403, Amsterdam, The Netherlands
e-mail: marshall @science.uva.nl

H. Chen et al. (eds.), Semantic e-Science, Annals of Information Systems 11, 29
DOI 10.1007/978-1-4419-5908-9_2, © Springer Science+Business Media, LLC 2010



30 M.S. Marshall et al.

associations from the domain of inquiry, unencumbered by data schemas, format
conversion, or quirky user interfaces. For many scientists, there is the sense that if
we could somehow work with conceptual icons and the terms that we are already
using to think about a problem, we could more easily manipulate our ideas with the
logic and rules of our own definition.

As steadily more organizations build data and knowledge repositories, there is
a growing interest in information extraction and knowledge capture technologies.
In order to make knowledge discovery possible, we must be able to access and
harness existing knowledge. There are vast amounts of knowledge that are digitally
available in both publications and on the Web. However, most knowledge is not
available in a machine-readable form. The process of knowledge extraction, i.e.,
text mining from literature can provide us with knowledge distilled from scientific
discourse. The same principle can be applied to text documents associated with
a given type of data, where the knowledge extracted from the associated texts is
used as a semantic annotation of the associated data resource. Whether performed
manually or accomplished with the method that we’ve just described, the result is
semantic disclosure, where meaning about a thing (i.e., resource) is disclosed in a
machine-readable statement about it. The mined knowledge and associated data can
then be reasoned about by new computational experiments to create new hypotheses
and knowledge.

2.1.2 The Semantic Web

The semantic stack of the World Wide Web Consortium (W3C) was created in order
to provide machine readable and interoperable knowledge exchange. The “semantic
stack” is built on a set of standards that handle progressively more specific require-
ments. At the base is eXtended Markup Language (XML), which has provided a
basis for data exchange by providing the representation, schema, and syntax of
XML. On top of XML [1], the Resource Description Framework (RDF) provides a
way to express statements in “triples” of “subject predicate object.”! When the sub-
ject of one RDF statement unifies with the object of another, the statements connect
together to form a graph or “web.” The SPARQL Query Language for RDF, a 2008
W3C recommendation, enables query of the RDF graph to look for graph patterns.
The modeling language RDF-Schema (RDF-S) provides a basis for hierarchies and
subsumption reasoning (“dog isSA mammal” and “mammal isA animal” implies
“dog isA animal”). The Web Ontology Language (OWL) extends the basic class
definitions of RDF to enable reasoning and modeling using description logic. A rule
layer tops the semantic stack with the Rule Interchange Format (RIF). Although the
semantic stack cannot handle all forms of knowledge, it provides a practical basis for

Un the case of semantic disclosure, the subject could identify a data or service resource in order
to disclose something about it, such as its dc:creator (“dc” from the Dublin Core standard, see
http://dublincore.org/documents/dces/).



2 Semantic Disclosure in an e-Science Environment 31

interoperable storage, retrieval, and exchange of knowledge. This basis is supported
by a variety of implementations, many of them freely available and open source.
Additional W3C standards related to RDF are also available, including RDFa for
embedding RDF in web pages and Friend of a Friend (FOAF) for social networks.

The Simple Knowledge Organization System (SKOS) for vocabularies makes it
possible to relate concepts as “broader” or “narrower” in a way that is intuitive and
useful for structured vocabularies. One of the most useful aspects of SKOS is that
it enables forward chaining across relations skos:broader and skos:narrower for the
induction of hierarchies without the requirements of the more strict logic of OWL.
Modeling such relations with OWL properties can result in “ontological overcom-
mitment,” for example, where an instance that is assigned a class unintentionally
inherits inaccurate properties. The more vague semantics of SKOS can be conve-
nient for modeling “associations” or relations that are not only as well defined as in
OWL or RDF-S (or not defined at all yet) but also appropriate for modelling-type
hierarchies. We will discuss a few applications of SKOS in the remainder of this
chapter.

A common misconception about the Semantic Web is that all knowledge must be
first represented in a large ontology and that some sort of large knowledge network
on the scale of the Web must exist before anyone can reap the benefits. However,
Semantic Web technologies and tools are already being used today to effectively
manage and exchange knowledge without requiring practitioners to develop an
entire software infrastructure beforehand. As steadily more people follow Linked
Open Data principles” and learn how to apply the semantic stack, more data is
becoming available as interlinked RDF and a Semantic Web is gradually emerging.
An excellent introduction to Semantic Web can also be found in the book Semantic
Web for the Working Ontologist: Effective Modeling in RDFS and OWL [2].

2.1.3 Making Sense of the Digital Deluge

Many see biomedical science, with its wide spectrum of disciplines and correspond-
ing variety of data, as the ideal proving ground for Semantic Web. Indeed, biologists
seem keen to apply the new technologies being developed in the context of e-Science
[3]. Understanding the human body, with its many layers of interwoven dynamic
molecular systems that interact on subcellular, cellular, tissue, and organ levels may
well be one of the most formidable challenges left to science. While research in
the life sciences has provided us with additional knowledge about many biologi-
cal phenomena, many of the mechanisms that are most essential to understanding
disease remain mysteries. As an example, the gene for Huntington’s Disease was
the first genetic disease mapped to a chromosome with DNA polymorphisms in
1983 and isolated in 1993, yet the actual causal chain behind the progression from
gene mutation to neurodegeneration is still unknown. Starting in 1991, the Human

thtp://linkeddata.org/



32 M.S. Marshall et al.

Genome Project (HGP) sequenced the entire human genome, providing an initial
reference sequence of human DNA in 2001. In 1993, around the time the HGP was
getting started, the Web began its rapid expansion with the release of the Mosaic
Web Browser. Public databases such as the GDB Human Genome Database soon
became available on the Web, setting the stage for a new era of data sharing, public
data curation, code sharing, bioinformatics, and computational biology. The journal
Nucleic Acids Research now tracks more than 1,000 publicly accessible molecular
biology databases [4].

2.1.4 Data Integration

A logical approach to such an abundance and variety of data is to combine data from
several adjacent areas of research and look for patterns in the resulting aggregation.
However, researchers hoping that the assembly of the new genome-scale data being
amassed would bring new insight have experienced firsthand that the data integra-
tion of heterogeneous data is a non-trivial exercise and that scaling up only adds to
the problem. Large data archiving projects have experienced similar problems, with
researchers struggling to create the right data design and interface in order to avoid
creating yet another “massive data graveyard.” Translational medicine, an effort to
couple the results of fundamental life science research with clinical applications, has
become a visible goal of large organizations such as the National Institute of Health
(NIH) in the United States. The integration of data from “bench to bedside” (i.e.,
data from wet laboratory research domain to clinical domain called translational
medicine) is a key socio-economic issue for the health care and pharmaceutical
industries because it makes maximal use of data across multiple disciplines and
enables direct knowledge sharing between disciplines. In order to reach across the
boundaries of several disciplines, from life science to drug discovery and virtual
screening of compounds, and from drug design to clinical treatment, translational
medicine will require the bridging of many terminologies and a strong framework
for data integration as its foundation.

2.1.5 W3C Semantic Web for Health Care and Life Sciences
Interest Group

Semantic Web offers the means to perform data integration. Indeed, the W3C
Semantic Web for Health Care and Life Sciences Interest Group* (HCLS IG)
proposes that the necessary foundation for translational medicine goals could be
provided by a set of practices that make use of W3C Semantic Web standards
[5]. The HCLS IG got its start in 2004, when the W3C Workshop on Semantic

3David Shotton, University of Oxford.
“http://www.w3.0rg/2001/sw/hcls/



2 Semantic Disclosure in an e-Science Environment 33

Web for Life Sciences® brought a large community of interested parties with 115
participants, resulting in a charter for the HCLS IG in early 2005. Many workshop
participants were already performing pioneering research related to Semantic Web
for HCLS and banded together in task forces to create technology demonstrations
and document them. The HCLS IG was rechartered in 2008 for an additional 3 years
to continue its mission to develop, advocate for, and support the use of Semantic
Web technologies for biological science, translational medicine, and health care.
The group has approximately 100 official participants at the time of writing, with a
wide range of participation from industry and academia.

Within the “BioRDF” task force of the HCLS IG, a demonstration of data inte-
gration using Semantic Web was built and first shown at a WWW conference in
Banff in 2007. The demonstration successfully answered a scientific question about
Alzheimer’s disease to show the value of being able to query across the data of 15
public databases from the Web. The data was first aggregated into an RDF repos-
itory with care to choose an OWL design that was in line with OBO Foundry
Methodology. Many researchers contributed significantly to this effort as can be
seen from the list of Contributors and Acknowledgements in the HCLS Interest
Group Note [6]. Additional work also demonstrated the extension of the knowledge
base with SenseLab data [7]. The resulting knowledge base has reached production
level in the Neurocommons [8] and continues to be developed by the BioRDF task
force, with instances running at DERI Galway and at Free University Berlin.

2.1.6 Semantic Architecture

An e-Science environment brings with it an expanded set of resources and possibili-
ties. The familiar hardware-based set of resources known to system and middleware
programmers such as CPU, memory, network bandwidth, input and output devices,
and disk space are augmented by “soft” resources such as data, knowledge, and
services. In both grid and web environments, service-oriented architecture (SOA)
supplies the advantage of data and software components that are readily available
on the network for spontaneous incorporation into applications. In fact, the sheer
abundance of shared heterogeneous resources can become an impediment to use
and the complex tooling necessary to deploy them tends to hinder the uninitiated
developer. For an end user, the resources of interest could be things as diverse as
journal articles, image data, mass spectrometry data, R scripts, services, workflows,
and spreadsheets. How can the user discover and select the resources that are most
appropriate to the task at hand? Many factors conflate to make a complex prob-
lem of matching requirements, preferences, and policies with the resources at hand.
The resource discovery problem is present at many system levels. At the application
level, users must discover the knowledge resources (e.g., vocabularies), applications,
and parameters that are relevant to their particular task, in their particular application

Shttp://www.w3.0rg/2004/07/swls-ws.html



34 M.S. Marshall et al.

domain. At the application development and middleware level, developers must
discover services and data, preferably in a way that can be automated, in order to
dynamically adjust for variable resource availability and access. In fact, the prob-
lem of data and service discovery is common to many computing environments, not
only grid but also the Web and large data repositories of many sorts. An e-Science
scenario could involve resources from all of the above environments but the chal-
lenge remains the same: to manage heterogeneous resources from a single user
interface.

2.1.7 The Virtual Laboratory for e-Science Project

The Virtual Laboratory for e-Science® (VL-e) is a project with academic and indus-
trial partners where e-science has been applied to several domains of scientific
research. Adaptive Information Disclosure’ (AID), a subprogram within VL-e, is
a multi-disciplinary group that concentrates expertise in information extraction,
machine learning, and Semantic Web — a powerful combination of technologies
that can be used to extract and store knowledge in a Semantic Web framework that
enables effective retrieval via both keyword and semantic search. In order to sup-
port metadata and knowledge management, AID has created a set of web services
as generic components that support the building of applications that are customized
to a particular domain. The web services and the applications built around them
comprise the AIDA Toolkit (AID Application Toolkit). The AIDA Toolkit and its
applications have been developed in cooperation with project partners from sev-
eral application domains and address a variety of use cases. The AIDA Toolkit has
been applied to use cases in bioinformatics, medical imaging, and food informatics
during the first 4 years of the VL-e project.

Several AIDA applications have been created that can be executed from four dif-
ferent interfaces: Taverna (workflows), a Taverna plugin, a web interface, and a Java
application for accessing grid resources called the VBrowser. The AIDA Toolkit
and its applications have been developed in cooperation with project partners from
several application domains and address a variety of use cases. In the remaining
sections, we will describe our experiences and the lessons learned while designing,
building, and applying the AIDA Toolkit to use cases in bioinformatics, medical
imaging, and food informatics during the first 4 years of the VL-e project. We
will describe how we created a workflow for hypothesis support in biology through
information extraction and how this leads to issues in computational experimenta-
tion such as the choice of knowledge representation that enables knowledge re-use
and knowledge provenance, as well as the need to support semantic types in work-
flows. We will also discuss the quest for food terminologies that would be useful to
our Food Informatics partners and how this finally led to a Web browser interface

6http://www.vl—e“nl
7http://adaptivedisclosure.org/



2 Semantic Disclosure in an e-Science Environment 35

with access to customized (Lucene) indexes and multiple terminologies, among
them a SKOS translation of a food ontology that was specially developed by the
Food Informatics Consortium. The same combination of customizable indexes with
structured vocabularies for search has also been applied in a Java application that
provides access to grid resources, paving the way to perform semantic retrieval and
annotation of grid resources. This Java application can be used by medical imag-
ing researchers to manage image data that is stored and transported on the grid.
We also describe how we extended it to semantically annotate and retrieve medical
images.

2.2 The AIDA Toolkit

For the purpose of knowledge management, we would like to perform knowledge
capture. In the context of a laboratory, knowledge capture can be regarded as the
process of collecting and managing related knowledge resources, especially those
related to an experiment. In this case, knowledge capture can be directly compared
to resource management, where resource aggregation requires a way to associate
disparate resource types and the creation of intuitive methods for retrieval. In a lab-
oratory, the resource types can include various types of raw data, such as image data,
as well as ontologies and vocabularies for annotation of those resources. In contrast,
in a knowledge base, the emphasis is more on the collection of facts and rules than
that of data, although links to the evidence on which the knowledge is based are gen-
erally desired. Of course, this practical distinction between knowledge capture in a
laboratory and a knowledge base should eventually give way to a complete chain of
evidence from data and data provenance to distilled fact.

In order to build and maintain a knowledge base, a knowledge engineer needs
methods to extract, represent, and manipulate knowledge resources such as facts
and rules. Ideally, round-trip knowledge engineering would be possible, where facts
in the knowledge base could be directly extracted from the data, and knowledge
base maintenance would consist of updating the evidence with new data in order to
generate any new facts that would follow from it. The set of web services that we
describe here are components of AIDA in a service-oriented architecture that cover
the basic functionality necessary to create a knowledge management application.
In particular, a user can combine them in a flexible way with other web services
providing search, extraction, and annotation functionality.

The AIDA Toolkit is directed at groups of knowledge workers that cooperatively
search, annotate, interpret, and enrich large collections of heterogeneous documents
from diverse locations. It is a generic set of components that can perform a variety
of tasks such as learn new pattern recognition models, perform specialized search
on resource collections, and store knowledge in a repository. W3C standards are
used to make data accessible and manageable with Semantic Web technologies
such as OWL, RDF(S), and SKOS. AIDA is also based on Lucene and Sesame.
Most components are available as web services and are open source under an



36 M.S. Marshall et al.

Apache license. AIDA is composed of three main modules: Storage, Learning, and
Search.

2.2.1 Storage — The Metadata Storage Module

AIDA includes components for the storage and processing of ontologies, vocabular-
ies, and other structured metadata in the Storage module (see Annotation, Storage,
and Ontology editing in Fig. 2.1). The main component is RepositoryWS, a ser-
vice wrapper for Sesame® — an open source framework for storage, inferencing,
and querying of RDF data on which most of this module’s implementation is based
[9]. ThesaurusRepositoryWS is an extension of RepositoryWS that provides con-
venient access methods for SKOS thesauri. The Sesame RDF repository offers
an HTTP interface and a Java APL In order to be able to integrate Sesame into
workflows we created a SOAP service that gives access to the Sesame Java APL
We accommodate for extensions to other RDF repositories, such as the HP Jena,
Virtuoso, Allegrograph repositories, or future versions of Sesame, by implementing
the Factory design pattern. This pattern will allow parallel implementations of the
Repository service to coexist.

Pamad entity
recognition

‘create list of
i
Instances
relation

recogaition

Sarvices without ser interction
o % Actoe starts workfiow

I Services with user intaracson

U Data inputioutput Actor paricems workiow slep

Fig. 2.1 AIDA components can be applied in a variety of activities

8Sesame and related RDF software is available from http://openrdf.org



2 Semantic Disclosure in an e-Science Environment 37

RepositoryWS creates access to operations that enable the manipulation of an
RDF repository, but does not contain any specific reasoning facilities for RDF-based
knowledge representation languages such as OWL or FOAF. In order to support sim-
plified access to domain vocabularies, we implemented a set of convenience meth-
ods for SKOS on top of RepositoryWS called ThesaurusRepositoryWS. SKOS is
an RDF-based language for the representation of thesauri. ThesaurusRepositoryWsS
contains operations that enable querying for terms that represent a concept, their
synonyms, broader, narrower, and related concepts, and mappings to concepts in
other thesauri. Currently, the most common use of the thesaurus services is for
browsing and searching vocabularies that have been stored in the repository. By
starting at the top concepts (i.e., the “broadest concepts”) of a vocabulary and pro-
gressively showing “narrower” concepts, an interactive hierarchical view of the
vocabulary is provided in web browsers and the VBrowser application. Two exam-
ple web service clients that make use of thesaurus operations have also been made:
ThesaurusSearch for matching strings to concepts (i.e., searching for concepts in a
thesaurus) and ThesaurusBrowser for looking up related concepts (i.e., navigating a
thesaurus).

Most RDF manipulation will occur within workflows or applications that
access RepositoryWS or ThesaurusRepositoryWS. Because most of our applica-
tions require user interaction, several examples of user interactions have been made
available in AIDA clients such as HTML web forms, AJAX web applications, and
a Firefox toolbar. The clients access RepositoryWS for querying RDF through the
provided Java Servlets. An RDF web page demonstrates how to access web service
clients from HTML forms. A combination of AJAX code and Java Servlets was used
to create a web-based AIDA Thesaurus Browser. The AIDA Thesaurus Browser was
used to create Recall samples for the Ontology Alignment Evaluation Initiative.’
Another example can be found in the XUL Firefox extension for the annotation of
web pages, that also access RepositoryWS through Java Servlets. Another example
annotation client, similar to the Firefox extension, was implemented as an inter-
active web page that demonstrates auto-completion on labels of RDF Classes and
Properties.

In HCLS IG work on federation of knowledge bases, we added several features
to the Storage module. Our applications can now automatically detect and con-
nect to a repository that is either Sesame, Virtuoso, or AllegroGraph. What was
originally the Thesaurus Browser in our client user interface has now become the
Repository Browser, because it can browse OWL hierarchies, as well as SKOS.
Currently, autodetection also works to determine the contents of the repository:
the SKOS specification from 2004 is attempted, followed by SKOS 2008, OWL
classes, and a number of other specialized patterns. It is also possible to supply
the entity types and relations as analogs to the SKOS:Concept and SKOS:narrower
that were originally used in the ThesaurusRepositoryWS in functionality now called
the SKOS Lense. This enables the user to customize the hierarchical browsing

9http://www.few.Vu.nl/~wrvhage/oaei2007/f00d.html



38 M.S. Marshall et al.

to specialized types of RDF. The new functionality made it possible to easily
access a wide variety of RDF from several different repository types by sim-
ply entering a URL to the repository host and choosing a repository or named
graph.

The web services in Storage have recently been updated from the Sesame 1.2
Java API to the Sesame 2.0 Java API. Some of the new features that Sesame 2.0
provides, such as SPARQL support and named graphs, have been added to our web
service API’s and incorporated into our applications.

2.2.2 Learning — The Machine Learning Module

AIDA includes several components which enable information extraction from text
data in the Learning module. These components are referred to as learning tools. The
large community working on the information extraction task has already produced
numerous data sets and tools to work with them. To be able to use existing solutions,
we incorporated some of the models trained on the large corpora into the named
entity recognition web service NERecognizerService. These models are provided by
LingPipe [10] and range from the very general named entity recognition (detecting
locations, person, and organization names) to the specific models in the biomedical
field created to recognize protein names and other bio-entities. We specified several
options for input/output, which give us an opportunity to work with either text data
or the output of the search engine Lucene. The latter scenario is beneficial for a user
who intends first to retrieve documents of his interest and then to zoom into pieces
of text which are more specific. Output can be presented as a list of named entities
or as the annotated sentences.

However, such solutions may not comply with the users’ needs to detect named
entities in domains other than the biomedical domain. To address this problem, we
offer LearnModel web service whose aim is to produce a model given the annotated
text data. A model is based on the contextual information and use learning methods
provided by Weka [11] libraries. Once such a model is created, it can be used by
the TestModel web service to annotate texts in the same domain. Splitting the entire
process in two parts is useful from several perspectives. First of all, to annotate texts
(i.e., to use TestModel), it is not necessary for a user to apply his own model. Given
a large collection of already created models, he can compare them based on the
10-fold cross-validation performance. Another attractive option for creating models
is to use sequential models, such as conditional random fields (CRFs), which have
gained increasing popularity in the past few years. Although hidden Markov mod-
els (HMM) have often been used for labeling sequences, CRFs have an advantage
over them because of their ability to relax the independence assumption by defin-
ing a conditional probability distribution over label sequences given an observation
sequence. We used CRFs to detect named entities in several domains like acids of
various lengths in the food informatics field or protein names in the biomedical
field [12].



2 Semantic Disclosure in an e-Science Environment 39

Named entity recognition constitutes only one subtask in information extraction.
Relation extraction can be viewed as the logical next step after the named entity
recognition is carried out [13]. This task can be decomposed into the detection of
named entities, followed by the verification of a given relation among them. For
example, given extracted protein names, it should be possible to infer whether
there is any interaction between two proteins. This task is accomplished by the
RelationLearner web service. It uses an annotated corpus of relations to induce a
model, which consequently can be applied to the test data with already detected
named entities. The RelationLearner focuses on extraction of binary relations given
the sentential context. Its output is a list of the named entities pairs, where the given
relation holds.

The other relevant area for information extraction is detection of the collo-
cations (or n-grams in the broader sense). This functionality is provided by the
CollocationService which, given a folder with text documents, outputs the n-grams
of the desired frequency and length.

2.2.3 Search — The Information Retrieval Module

AIDA provides components which enable the indexing of text documents in various
formats, as well as the subsequent retrieval given a query, similar to popular search
engines such as Google, Yahoo!, or PubMed. The Indexer and Search components
are both built upon Apache Lucene, version 2.1.0 (http://lucene.apache.org). We
have chosen to extend this particular open source software suite for our information
retrieval components because of the long-standing history, as well as very active
user/developer community. This also means that indexes or other systems based on
Lucene can easily be integrated with AIDA.

Before any document set can be made searchable, it needs to be processed — a
procedure known as indexing. AIDA’s Indexer component takes care of the pre-
processing (the conversion, tokenization, and possibly normalization) of the text of
each document as well as the subsequent index generation. It is flexible and can be
easily configured through a configuration file. For example, different fields can be
extracted from each document type, such as title, document name, authors, or the
entire contents.

The currently supported document encodings are Microsoft Word,
Portable Document Format (PDF), MedLine, and plain text. The so-called
DocumentHandlers which handle the actual conversion of each source file are
loaded at runtime, so a handler for any other proprietary document encoding can
be created and used instantly. Because Lucene is used as a basis, there is a plethora
of options and/or languages available for stemming, tokenization, normalization,
or stop word removal which may all be set on a per-field, per-document type, or
per-index basis using the configuration file.

An index can currently be constructed using either the command-line, a SOAP
web service (with the limitation of 1 document per call), or using the Taverna



40 M.S. Marshall et al.

plugin. Once an index is created it can be searched through, using the AIDA
Search component. There are three distinct ways of interacting with an index:
(i) through a SOAP web service, (ii) using AJAX tools (based on JSON objects),
or (iii) through a web interface (made using the ExtJS framework'?). All methods
use and “understand” Lucene’s query syntax.

The Search SOAP web service (org.vle.aid.lucene.SearcherWS) can handle two
kinds of queries, which either search through a single (document) field (called
“search”) or through multiple fields at the same time (called “searchMFquery”).
The operation named “searchContent” is a convenience method which searches the
content field by default, thus eliminating one parameter.

The Search web interface uses the JSON search operation, called “searchJason.”
Since AJAX cannot handle SOAP messages, there is a servlet which bridges the
gap between the SOAP web service and the AJAX/JSON: org.vle.aid.client.jason.
Additionally, the web interface can display a thesaurus, loaded through AIDA’s
Storage components. This thesaurus “view” may then be used to look up terms,
synonyms, broader and narrower terms, and to perform interactive query expansion.
The generality of using JSON for searching is clearly demonstrated by the fact that
the output of this servlet can be used directly in Web 2.0 tools, such as Yahoo! Pipes
or MIT’s Exhibit.

2.3 Applications of Adaptive Information Disclosure

2.3.1 Food Informatics — Adaptive Information Disclosure
Collaboration

The collaboration between the Adaptive Information Disclosure subprogram (mid-
dleware layer) and the Food Science subprogram (application layer) began early in
the VL-e project in 2004, with regular meetings. AID had members from two univer-
sities in Amsterdam (University of Amsterdam and the Free University) and TNO,
a national research institute. The Food Science partners include both industry and
academia, with members at Wageningen UR, TI Food and Nutrition (TIFN), TNO
Quality of Life, Unilever, and Friesland Foods. Member organizations of the col-
laboration were located in diverse remote locations several hours of travel apart, so
there was substantial motivation to find ways of collaborating remotely. Of course,
the use of e-mail served to enhance initial communications, with an eventual mail-
ing list and archive devoted to the collaboration. Initial efforts focused on defining
the possibilities and applications of the machine learning, information retrieval, and
Semantic Web to Food Science.

Multi-disciplinary collaboration is a formidable challenge, even when the col-
laboration is between seemingly closely related disciplines such as the groups of
machine learning, information retrieval, and Semantic Web that are represented

http://www.extjs.com/



2 Semantic Disclosure in an e-Science Environment 41

within AID. Different terminologies and approaches to problem solving and
software implementation lead to an intensive process of checking intentions and
agreements. Of course, this process is not unlike the process that every software
engineer goes through when establishing software deliverables. There is not yet
an established “mainstream” terminology for verbal discourse about knowledge,
despite ample history provided by the fields of philosophy, logic, and artificial
intelligence. So, for example, a knowledge engineer might use the word metadata
to refer to semantic as well as syntactic-type information about data, whereas a
database engineer will typically understand metadata to refer to table structure and
syntactic-type information.

It is generally difficult to match the problems and tasks of an application domain
with the capabilities provided by a new technology. Some of the difficulty is due to
the knowledge gap between middleware developers and the users from a particular
application domain (we will call it the middleware gap). The users find it difficult
to understand what the possible applications are of a piece of middleware. On the
other hand, the middleware developers do not usually know enough about the target
domain to explain the possible applications of their middleware to the problems of
that domain. The only way to bridge the middleware gap is either for the domain
experts to become experts in the middleware or for the middleware developers to
become knowledgeable about the application domain. Although no one is obligated
to bridge the gap, it must be done in order to arrive at practical solutions.

With the goal of the collaboration being to use Semantic Web to effectively dis-
close information within and between the collaborating organizations, several areas
of focus were identified. Establishing the vocabularies of a given research domain
is an essential first step in defining the terms of discourse and interaction. In many
domains, including biomedical research, a number of vocabularies had been estab-
lished before Semantic Web standards reached Recommended status but are now
available in the SKOS format. In order to take advantage of such vocabularies, we
provide centralized access to important vocabularies such as AGROVOC, NALT,
MESH, and GEMET via the AIDA thesaurus web services. However, although some
existing agricultural vocabularies were related to Food Science, the development of
structured vocabularies and ontologies specific to Food Science tasks would also be
necessary. Document collections and query logs were also identified that could serve
as potential sources for the extraction of customized vocabularies. Related work led
to a knowledge acquisition method called Rapid Ontology Construction (ROC) [14]
as well as an ontology of units and measures.'!

A few areas of Food Science research serve as application use cases for the tech-
nology developed in the collaboration. One research area is centered on the study
of bitterness and the conditions (ingredients, processing, etc.) in which it arises.
Bitter perception affects the enjoyment of many foods and can even serve as an
indicator of toxicity. A database of bitter compounds was developed at Unilever
called BitterBase and web services were developed that could use information about

http://www.atoapps.nl/foodinformatics/Newsltem.asp?NID=18



42 M.S. Marshall et al.

a food component or molecule to predict its bitterness [15, 16]. The BitterBase
web services were combined in a Taverna workflow to create a demonstration. The
BitterBase web services can eventually serve as a link to knowledge about chemical
compounds in other applications. Another area of interest is Food Safety. Incidents
where toxic chemicals have entered the food-supply chain have resulted in huge
losses for the food industry and reduced consumer confidence in food. The Early
Warning System of TNO is being developed for the early detection of food safety
risks in the agro-food supply chain. Having made an ontology for food, our Food
Science partners were able to browse the OWL class hierarchy of the ontology after
we converted it to SKOS and created a web client that accessed it via the AIDA
thesaurus web services.

In interactive AIDA applications, the thesaurus services are employed to create
a hierarchical browser of the terms in a structured vocabulary, allowing the user
to navigate from the most general concepts down to the most specific with mouse
clicks. Search is also available to find concepts whose labels match string patterns.
These interactions make it possible to navigate large vocabularies, as well as the con-
cepts of a custom-built food ontology. In the case of the ontology, rdfs:subClassOf
in the ontology is mapped to skos:narrowMatch in a SKOS version of the subclass
hierarchy. Such a mapping can be used to convert OWL to SKOS using a SeRQL
Construct query.

An important application of vocabularies is query expansion and refinement. In
principle, adding a “narrower” term to a query does not change the intention of
the query. In fact, it should improve recall when we are searching for the presence
of the query terms in the documents such as is done in Lucene. SKOS allows us
to look up terms that are “narrower” than a given term programmatically, so that
we can automatically perform query expansion based on those terms when we find
our query terms in the vocabulary. For example, if our query contains the word
“bread,” and we find the narrower terms ‘“ciabatta” and “bread crumbs,” we can
automatically add both terms to the query. Our ThesaurusRepositoryWS offers this
capability in the method “getNarrowerTerms.” This functionality was incorporated
into the research management system called Tiffany, developed in a collaboration
between TIFN and Wageningen UR and used at TIFN. The AIDA web interface
that is used in TNO’s Early Warning System incorporates narrower terms with a
Query Builder and search of a Lucene index. The narrower terms are used in a new
way: the drag of a concept to the Query Builder recursively adds all narrower terms
“below” it, representing the concept with as many terms as possible within the given
vocabulary. In the example shown in Fig. 2.2, the resulting search is for a long list
of compound names in the index.

2.3.2 A Metadata Management Approach to fMRI Data

The data from medical imaging experiments brings with it a fundamental problem:
the system in which the data is stored can make it difficult or impossible to search



2 Semantic Disclosure in an e-Science Environment 43

800 fioh Serch -
Lale dle G+ ] o o st scomm.orgserrens |- C b |

Fig. 2.2 Concept search (upper right) for “pesticides and residues” (dragged from lower right)
using SKOS relations for query expansion to search Huntington’s disease corpus (with open
Document Viewer for one result document)

for data with a particular set of attributes. However, many types of analysis require
this type of search. In medical imaging, different data sets can result from different
acquisition protocols, subjects, studies, etc. Processed data can also result from dif-
ferent image analysis workflows and typically include intermediate and final results
obtained from different algorithms or parameter settings. In this section, we describe
our approach to the management of functional Magnetic Resonance Imaging (fMRI)
data using a metadata management plugin for the VBrowser.

Functional MRI (fMRI)[17] enables the non-invasive study of brain activation
by acquiring images while the subject is performing some physical or cognitive
activity in response to controlled stimulation. The raw data consists of functional
and anatomical images, stimulus data and other signals, which are submitted to a
complex analysis workflow to compute Brain Activation Maps (BAMs). An ongoing
study at the AMC has adopted grid technology to investigate the effect of acquisition
and analysis parameters on the resulting BAMs (Virtual Lab for fMRI'?). This study
generates a large amount of data that needs to be properly annotated to facilitate
retrieval for result interpretation, preparation of publications, and sharing with other
researchers.

The Virtual Resource Browser (VBrowser) is a user interface that provides
access to data resources on the grid [18]. The adoption of grid technology makes
the VBrowser an attractive interface choice because it provides support for basic
tasks such as direct data manipulation and transfer (view, delete, move, etc.) using
grid protocols such as SDSC Storage Resource Broker, gridFTP, and gLite Logical

12 www.science.uva.nl/~silvia/vIfmri



44 M.S. Marshall et al.

File Catalog. Moreover, the VBrowser is extensible via plugins that implement, for
example, access to grid and web services. The VBrowser is the primary front-end to
the Virtual Lab for fMRI.

A set of web services from the AIDA Toolkit were incorporated as a VBrowser
plugin that makes it possible to annotate and retrieve grid resources with RDF.
For the fMRI application, we have created a metadata schema in OWL that is
used for annotation. This allows users and programs to annotate a given fMRI
image or experiment result with associated parameters and their values. Using
another VBrowser plugin, the user can initiate and monitor experiments that per-
form large-scale fMRI analysis on the grid. In these experiments, a parameter sweep
is performed across the values and the result obtained with each parameter combi-
nation is annotated with the corresponding values. At a later stage, users can retrieve
results based on concepts available as knowledge resources in the AIDA plugin for
VBrowser. The adoption of concepts associated with the parameters of interest in
the study enhances usability by enabling the user to express queries in more famil-
iar terms. The query results are presented as a list that can be browsed directly on
the VBrowser. Query results are stored as permanent resources that can be reused,
refined, and shared among researchers involved in related studies. Besides the abil-
ity to query, our metadata approach also allows for the addition of concepts and
terminologies from other domains, making it possible to select images based on
concepts that are more directly related to the subject of study (e.g., area of brain,
type of neuron, type of activity, disease) as well as image features and image quality
(Fig. 2.3).

* | VBrowser[0srb:jkamel.boulebiar.vienl ® srb.grid.sara.nl:50000/VLENL/home/kamel. boulebiar. vien|/dataForExec OnGrid/experimentFeatioutld = 5 x
Location Edit Yiew Tools Windows Help

& |Locatione sty [ /kamel boulebiar venl@srb,orid sara nt'S 0000 VLENL fhorme/kamel. boulebiar venl/ dataForExecOnGrid/experimentFeal fo |-'ﬂ
% (BEW
Resource CobraViewer
3 My Vie Thresholded activation images I3 13.1 -
& [§ fhome/kboulebiar
o Oy SRE
¢ 0% ADA zstatl - Cl
¥ Knowledge Resources
¢ & MR Resource

v FEAT Parameters

¥ B2 Queries . .
[ fMRiquery 1 | Query * Execute
o [ Parameters| popresh
Result
= s Resource 4

rs| Propenies

atOutput4 vink

3 Ty ¢ 3 s 3 ..E.

Fig. 2.3 The right-hand pane shows the view of a query result. The left-hand pane shows fMRI
analysis parameters as knowledge resources that can be used in queries. Queries can be edited,
saved, and executed from the Queries folder of the AIDA resource



2 Semantic Disclosure in an e-Science Environment 45

2.3.3 Semantic Disclosure in Support of Biological
Experimentation

In this section we treat two related biological cases for semantic disclosure. In the
first we demonstrate the disclosure of human genome data for cases when we would
like to compare different data sets to test a biological hypothesis. In the second we
address the case of hypothesis formation itself that has become a formidable task
for biologists. In both cases Semantic Web languages and tools help to disclose
data and knowledge for use in computational experiments.

2.3.3.1 Application Case 1: Semantic Disclosure of Human
Genome Data

Over the last decades it has become increasingly clear that the activity of one gene
is regulated within the context of large networks of activities in the cell, including
the activities of many other genes. Instead of investigating genes one by one, we are
now able to perform genome-wide studies as a result of the Human Genome Project
and many of its followers that provided whole genome sequences and genome-
associated data such as gene expression profiles or binding locations of various
DNA-binding proteins. Typically, data is stored by a data provider in a relational
database and users access this data either by downloading it from the provider’s
web site or by interacting with the provider’s web user interface. A typical example
that we will use is the UCSC genome browser ([19]; http://genome.ucsc.edu), one
of the largest resources of genome data. One way to analyse this data is by com-
paring selections of data through the visual interface of the provider. The USCS
genome browser shows genome data as stacked “tracks,” where a track could be a
gene expression profile along a chromosome. This type of “visual integration” is of
course no longer appropriate when we want to perform a more complicated analysis
of several data sets, especially if we want to be able to repeat and rigorously evaluate
the analysis. That requires a computational approach. The traditional approach is to
download the data sets to a local database and query the tables locally through SQL
queries or via specific scripts. In most of these cases, the relational models used by
either the provider or the user are knowledge meager. For instance, UCSC tables
typically consist of rows of at least four columns, one for the chromosome number,
one for a start position on the chromosome, one for an end position, and one for a
value. Any meaning beyond the name of the columns is not directly linked with the
data. If we want to find out more about what the data means, its biological context
or how it was created and by whom, we will have to follow the hyperlinks on the
UCSC web site and read the descriptions and the papers that the web pages refer to.
Consequently, knowledge that is relevant for a particular data integration experiment
is known by the researcher, but not by the computer. We will not be able to use it
directly for computational data integration. In this section we show how we can link
data to one’s own semantic model and how we can use this to achieve semantic data
integration. We demonstrate how this allows us to address different data sets through
our own concepts and terms. In other words, we disclose the semantics for our data
integration experiments.



46 M.S. Marshall et al.

Integrating Data for a Specific Hypothesis: DNA-Binding Sites of Transcription
Factors and Histones

An intrinsic aspect of our approach is the focus on specific hypotheses within a bio-
logical research context. Within the broader context of investigating the relationship
between how DNA is structured in the cell and transcriptional activity of genes, the
question of how histone-binding sites relate to transcription factor-binding sites is of
interest (Fig. 2.4). Histones are specific types of proteins that bind DNA and as such
are central to packaging long DNA molecules in the nucleus of a cell. They undergo
specific chemical modifications that influence their position and binding affinity for
DNA, which can have an effect on transcriptional activity. “Transcription factors”
are also proteins that can bind DNA, but they typically influence gene expression
directly by binding specific sequences near specific genes. Many of these sequences
have been identified and localized on human DNA. The interplay between histones
and transcription factors is of interest and therefore we would like to be able to
query DNA positions of both types of proteins. As mentioned above, we can find
the appropriate data in the UCSC genome browser; the ENCODE project provided
data for histone-binding tracks and transcription factor-binding tracks [20]. We can
view these tracks together for visual inspection, but for any kind of genome-wide
analysis this does not suffice. Below we show how we enable ourselves to perform
these studies computationally by providing access to these data sets via our own
semantic model. The model contains the biological concepts and relationships that
we consider relevant for our biological hypothesis, where we assume a correlation
exists between the binding of specific modified histones and specific transcription
factors (Fig. 2.4).

N

Nucleosome —

DNA Q

Fig. 2.4 Cartoon model representing a biological hypothesis about the relationship between
positions of histones and transcription factors

B

Gene L




2 Semantic Disclosure in an e-Science Environment 47

“myModel” for Experimental Scientists

An important aspect of experiment biology that we would like to take into account
is that disagreement among peers is a key factor for scientific progress. Ontologies
often aspire to capture common agreement, but semantic models can also be used
to capture the view of an individual scientist or research group. Taking this into
account, we can follow these steps to integrate data:

Create or extend “myModel”.

Semantic disclosure: link data sets to myModel (Fig. 2.5).
Perform integrative analyses using elements from myModel.
For new experiments return to Step 1.

Rl e e

epiDMAbindingProten | | epiSequenceRegion
isa epibindsDNAregion® fsa
A isa 51 isa fepiisRegionOn
| histoneHIB |’ | histoneH3 | | histoneHl | | Tistone HIA | | IumnzCENPﬁl ] Thistone H4 | epiDMA_sequence | epi ChromosomeRegion |
isa 52 i ksa

|Instmri'i33 | |1:dswn:'H32 | | histoneH3. | |
[]

Fig. 2.5 Principle of semantic data integration. The rectangles represent classes in our OWL
model: histone classes on the left and transcription factor classes on the right. The bottom two
rectangles refer to data items from two different datasets (represented here as OWL instances).
The histone model and transcription factor model are linked by biological properties. Therefore,
linking data about histones and data about transcription factors to this model creates a biologically
meaningful link between the two data sets

In some cases it may be worthwhile to use existing (de facto) standard controlled
vocabularies such as the Gene Ontology, but here we follow the scenario where
we require a personal model and the ability to make full use of OWL modeling
possibilities. At a later stage we can map terms from more comprehensive ontologies
to our purpose-built model, if needed. Initially, myModel need not be larger than the
next biological analysis requires. We can exploit the extendibility of OWL for each
new experiment.

Technical: From Their Data to my Model

Once we have created a semantic model in OWL, how do we link it to the data sets
that we wish to query (step 2 in the previous paragraph)? In our example case we
have tables of chromosomal binding locations of histones and transcription factors.



48 M.S. Marshall et al.

We also have the relational schema for these tables from UCSC. However, for
linking with our OWL model we require data to be available in RDF or at least have
an RDF interface. If the provider does not provide this, then one possible procedure
is as follows:

1. Identify the data sets required for the experiment

2. Convert the provider’s table schemas or column headers into a RDF Schema
(theirDataModel).

3. Convert the data to RDF by linking the values in the data sets to the concepts in
theirDataModel

4. Create semantic links between theirDataModel and myModel.

We expect that increasingly more providers will follow the example of UniProt
(the main protein data provider) and provide a RDF interface to their data. This
would allow us to skip steps 2 and 3. Otherwise, a conversion or some kind of map-
ping to RDF is inevitable [21-26]. An ideal situation would be if data producers (the
wet laboratories), data providers, and data users would each provide their semantic
models and their relations to the data (Fig. 2.6).

It is generally advisable to create models for representing the data (preserving
the data supplier’s naming scheme) and models to represent biological knowledge,
with an explicit mapping to link them. We could have imported the raw data directly
into myModel, but this would be less flexible and less robust. For instance, changes
to our biological models could require an entire new conversion process for any

@ by problem uwnea

-

Conceptual
Mode! Mode! } level
Alignment Alignment concepts refer to
biological entities
by data QroclucerJ
theirModel theirModel
Annolation Annotation
by data provide
S Y provider Data level
theirDataModel theirDataModel concepts refer to
data storage
syntax

Fig. 2.6 Principle of semantic disclosure in an ideal world. All parties involved provide a semantic
model conform their role with respect to the data. Data integration is achieved by aligning semantic
models linked to different data sets



2 Semantic Disclosure in an e-Science Environment 49

data that is affected, whereas we only need to change the mapping in the case of
separated models.

Analyzing Semantically Integrated Data

By semantically disclosing data we achieve a situation where we can address sepa-
rate data sets via biological concepts and relations in our own model. We conclude
by an example query (in “pseudo-SeRQL”) that retrieves those regions of DNA
where both histones and transcription factors bind (see [22—24] for other examples).
The “domain of comparison” in this experiment is “ChromosomeRegion.” Note that
the query does not need to contain direct references to the UCSC data sets.

SELECT histone, transcriptionfactor, chroml, tStartl, tEndl
FROM {histone_region} myModel:Chromosome_ identifier {chroml};
myModel :hasStartLocation {tStartl};
myModel :hasEndLocation {tEndl};
myModelExperiment :hasMeasurementValue {scorel},
{histone} myModel :bindsDNAregion {histone_region};
rdfs:type {myModel:Histone} rdfs:type {owl:Class},
{tf_region} myModel :Chromosome identifier {chrom2};
myModel :hasStartLocation {tStart2};
myModel :hasEndLocation {tEnd2};
myModelExperiment :hasMeasurementValue {score2},
{transcriptionfactor} myModel:bindsDNAregion {tf_region};
rdfs:type {myModel:TranscriptionFactor} rdfs:type
{owl:Class},
WHERE chroml = chrom2 AND (tStartl <= tEnd2 AND tEndl >=
tStart2)

The above query is sometimes called a Stand-off Join or Interval Join, where the
boundaries of two intervals are compared in order to see if there is overlap. This
join is frequently necessary when scanning for voice annotations (e.g., reviewer’s
comments) over a film in a multimedia database. We note that this type of query
is challenging for any non-optimized database and certainly also for the seman-
tic repositories we tested some years ago [25]. Performance was generally very
poor for all the databases that we tried, including relational databases. However, the
XML database MonetDB [27] which is optimized for precisely this type of stand-
off join performed better by orders of magnitude. We conclude that considerable
performance gains are to be expected considering that semantic repositories are still
immature in this respect.

2.3.3.2 Application Case 2: Semantic Disclosure of Biological Knowledge
Trapped in Literature

A common way to study intracellular mechanisms in biology is via cartoon models
that represent a particular hypothesis. A typical example is a cartoon that represents



50 M.S. Marshall et al.

a hypothesis about the compaction of DNA, a key factor for sustained regulation
of gene expression (top left in Fig. 2.8; see also [28]). Hypotheses can contain
many different types of information: sequences, biophysical entities such as pro-
teins and lipids, 3 D structural information, biochemical reactions. They are the
basis for each experiment in the laboratory. Given that laboratory experiments are
expensive in terms of money and effort, hypothesis generation is an area of interest
for bioinformatics and e-Science. Forming a good hypothesis requires the integra-
tion of increasingly large amounts of resources. There are over a thousand public
databases with experimentally derived data available to biologists and over 17 mil-
lion biomedical publications are available via the prime knowledge resource for
most medical and molecular biologists, Entrez PubMed.!3 PubMed gives access
to the National Library of Medicine’s public digital library MedLine and sev-
eral other resources. It is increasingly challenging to ensure that all potentially
relevant facts are considered while forming a hypothesis. Support for retrieving
relevant information is therefore a general requirement. This leads to the question
of how to disclose this information such that it becomes a resource for computer-
aided hypothesis generation. Preferably, this process is under the control of a
biologist as much as possible, considering that no one else has a better under-
standing of the end goal: a better biological hypothesis. This presents a problem,
because automated information extraction is generally not the area of expertise
of a biologist. In this section we show how an e-Science approach based on the
application of (AIDA) Web Services, Workflow, and Semantic Web technology
enables application scientists to exploit the expertise of scientists from various disci-
plines for building a machine readable knowledge base as a resource for hypothesis
generation.

2.3.3.3 An e-Science Approach for Extracting Knowledge from Text

In order to demonstrate our approach, we will discuss an application in which we
would like to extend a hypothesis about condensation and decondensation of chro-
matin. This is an important determinant of gene expression, because the effects can
be sustained over generations of proliferating cells. In particular we would like
to investigate putative relationships between the protein “Histone deacetylase 17
(HDAC1), involved in condensation, and other proteins. A traditional scenario
would be to query PubMed and browse through the documents it retrieves (over 300
for the query “HDACI and Chromatin™). We obtain a “feel” for what is important
and read a selection of papers for more in depth information. However, this selec-
tion would probably be biased. Extracting the proteins related to HDAC1 without
human bias would be at least a highly laborious task. We also have to consider that
subsequent experiments based on alternative hypotheses will require new searches
that preferably extend our previously obtained information. Therefore, we would
like to address this problem computationally.

13 http://www.ncbi.nlm.nih.gov/pubmed/



2 Semantic Disclosure in an e-Science Environment 51
Our objectives are to

. Extract specific knowledge from literature, proteins in the case of our example

. Examine all relevant papers or at least papers selected without subjective bias

3. Store the results in a structured way such that they fit our biological hypothesis
and can be re-examined and extended

4. Enable biologists or bioinformaticians to design their own knowledge extraction

“experiments”

o =

In line with experimental science, we regard the whole knowledge extraction pro-
cedure as a “computational experiment”, analogous to a wet laboratory experiment.
Such an experiment requires an insightful and re-executable design of which the
results are structured enough to allow us to retrace evidence. In the wet laboratory
analogy we would use a laboratory journal for the latter.

We can achieve objectives 1-3 by implementing a basic text mining procedure
[2, 3] as follows:

(1) Retrieve appropriate documents from Medline (information retrieval)

(2) Extract protein names from their abstracts (information extraction)

(3) Store the results for later inspection. The results have to be linked to our hypo-
thetical model and we need to store the evidence that led to these results.
Evidence (provenance) in this case is, for instance, the documents from which
protein—protein relationships were derived and the computational resources that
were used.

Taking another look at these basic steps we see the desire for a multidisciplinary
approach. Step 1 is one of information retrieval, step 2 can be done using machine
learning techniques, and for step 3 Semantic Web formats and tools can be used.
Each of these steps relates to a distinct scientific discipline. Instead of one bioinfor-
matician reinventing many wheels, an e-Science approach leverages expertise from
disparate fields for an application. We achieve this when scientists in these fields
produce Web Services as part of their activities and make them publicly available.
We call this “collaboration by Web Services.” In our case, PhD students in three
research groups produced the Web Services and infrastructure that we need for our
application (see Section 2.2).

Making use of a service-oriented approach also allows us to meet objective 4.
AIDA Web Services and others can be strung together with a tool such as Taverna'*
[29] to form an executable workflow that performs the knowledge extraction proce-
dure (Fig. 2.7). The workflow reflects the basic steps of the text mining procedure
and its design can be stored and reused. For instance, we store our workflows on
myExperiment.org,'> a “web2.0” site for computational scientists to store and share

14http://www.my grid.org.uk/tools/taverna/
15 http://www.myExperiment.org



52 M.S. Marshall et al.

Query 3
‘ Add query to ’

v

Retrieve documents
from Medline l
-

‘ Add documents (IDs) ’

semantic model

v

Extract gene or
protein names l

to semantic model

v

Extract gene or

semantic model

‘ Add proteins to ’

protein interactions l
Add gene or protein
7 interactions to semantic model
Calculate |
ranking scores | l

y

semantic model
[ Create biological |

‘ Add scores to ]

cross references I l

v

Convert to
table (html)

Fig. 2.7 Workflow for extracting proteins from literature (/eft) and store them in a knowledge base
(right). We added steps to provide a likelihood score, cross-references to some popular biological
databases, and tabulated results

Add cross references
to semantic model

(publish) computational artifacts such as workflows. The final step of the proce-
dure, storing results, uses the Web Ontology Language (OWL) and the Resource
Description Framework (RDF) to represent the knowledge that we want to extend
with the text mining results. The next paragraph explains the knowledge modeling
step in more detail.

Modeling for Biological Knowledge Extraction in OWL

Our general approach toward modeling hypotheses for computational experiments
is to start with a “proto-ontology” that represents a minimal amount of knowledge
appropriate to the problem at hand. In our example case the model should repre-
sent at least proteins and artifacts related to the experiment itself to enable us to
express, for instance, that a protein was discovered in a particular document from
Medline. The purpose of our workflow is to extract knowledge from text and popu-
late this model with individual knowledge instances (e.g., a particular protein). We
should consider that our observations from text mining are just pieces of text until



2 Semantic Disclosure in an e-Science Environment 53

we have interpreted them and converted them into a machine readable form accord-
ingly. For instance, we will interpret the term “p53” found in a particular abstract as
an instance with label “p53” of the class “Protein,” and its collocation with the term
“HDAC1” as a (putative) biological relationship with the protein labeled “HDAC1.”
Obviously, “collocation” in text does not necessarily mean collocation in the biolog-
ical sense. To prevent conflation of the biological view and observational views we
create four distinct OWL models and one to map between these models (Fig. 2.8):

Entities and relations relevant for

Biological ) . : :
hypothesis | Sxheriment captured in OWL____| Biological
(cartoon) model
A
“references”
4

Text mining ndi ”
model | "discovered by Text model

(methods) b (observations)

“implemented by”

A 4

Workflow model
(implementation)

Fig. 2.8 Overview of models and their interrelationships. Arrows represent relationships between
instances of classes between the models. These relationships are defined in a separate mapping
model

1. Biological model The biological model is the primary model representing our
biological hypothesis. It contains classes such as “Protein,” “Interaction” and
“Biological model.” The model is not extensive, because part of our approach
is that we do not define more classes than are necessary for our experiment.
OWL allows us to extend the model later as needed by new experiments. We
follow the concept of the biologist’s cartoon model in that we do not necessarily
try to represent real entities or relationships, but hypothetical models of them.
Instances in this model are interpretations of certain observations, in our case of
text mining results. The evidence for these interpretations is important, but it is
not explicitly within the scope of this model.

2. Text model The text model contains classes such as “Document,” “term,”
and “interaction assertion.” Instances are the concrete results of the knowledge
extraction procedure. We can directly inspect documents or pieces of text, in
contrast to instances of the biological model such as proteins or DNA. Creating
an instance in the document model leads to creating an instance in the biolog-
ical model based on the assumption that if a protein name is found collocated



54

. Text mining model

M.S. Marshall et al.

with another protein name we assume that the referred-to proteins participate in
a biologically meaningful relationship.

The text mining model represents the knowledge extraction
process itself. It contains classes for information retrieval, information extrac-
tion, and the text mining process as a whole. In principle, these processes
could be implemented in different ways. Therefore we created a separate model,
in our case a workflow model. These models are linked by “implementation”
relationships.

. Workflow model The workflow model represents the computational artifacts

that are used to implement the text mining procedure. Example instances are
(references to) the AIDA Web Services and runs of these services. Following the
properties of these instances we can retrace a particular run of the workflow.

. Mapping model While we have a clear framework for representing our biolog-

ical hypothesis, text, text mining, and workflow, we also need a way to relate the
instances in these models. Therefore we created an additional mapping model
that defines the reference properties between the models.

In summary, we have created proto-ontologies that separate the different views

associated with a text mining experiment. We can create instances in these models
and the relationships between the instances in these views (Fig. 2.9). This allows us
to trace the experimental evidence for creating the instances in the biological model.

Decondensed chromatin

~ Histone methylation at H3K9
]
&‘s DNA methylation >

Condensed chromatin

“associated with”

HDAC1
[Protein]

p53
[Protein]

“references”

Named entity
recognition by CRF
[Text mining process]

“discovered by” ‘p53’

[ProteinTerm]

. J
“implemented by”
e A

AIDA NER-CRF
Web Service
[ComputationElement]

- J

Fig. 2.9 Examples of instances and their relationships between the views associated with a text
mining experiment



2 Semantic Disclosure in an e-Science Environment 55

In our case of text mining, evidence is modeled by the document, text mining, and
workflow models. A different type of computational experiment may require other
models to represent evidence and new mappings.

We note at this point that in our example case the distinction between proteins and
genes presents a problem. They are biologically distinct, but are typically referred
to by the same name. There are simple typographic rules to distinguish between
gene and protein names (e.g., ftsQ versus FtsQ), but these are not always adhered
to, are lost in digital copies, or are overlooked by text miners. Therefore, text mining
does not make this distinction generally. In our case, we chose to map the text min-
ing results, instances of protein (or gene) names to instances of proteins by default.
Alternatively, we could have defined a (biologically awkward) class “gene or pro-
tein” in the biological model and map protein (or gene) names in the text model to
instances of that class.

A Repository for Storing and Retrieving Biological Knowledge

For our knowledge extraction experiment, we now have a workflow and proto-
ontologies for structuring the results of the workflow. For storing this knowledge
we use Sesame, a freely available RDF repository. We can add the proto-ontologies
and let the workflow populate these ontologies with instances from the text min-
ing procedure (see right side of Fig. 2.7). One of the conveniences of this approach
is that by the relatively straightforward action of adding an instance with certain
properties, the instance becomes linked with any additional knowledge that was
previously added to the repository. For instance, when we add NF-KappaB to the
repository and its relationship with a hypothesis about HDACI, we find that NF-
KappaB is also related to a hypothesis about nutrients and chromatin that was used
in a previous experiment. Another practical convenience in comparison to relational
databases is that referential integrity or preventing redundancy is largely handled by
Sesame’s built-in RDFS reasoner.!® With AIDA services we can query and alter the
content of a Sesame repository not only from within a workflow but also in a client
such as VBrowser, a general purpose resource browser that has been extended by an
AIDA plugin. In addition, we can manipulate semantic content by using the Sesame
workbench user interface or the Sesame APL

Finally, OWL data can be used over the Internet to create a Semantic Web,
because each node and edge of the underlying RDF are referred to by a Universal
Resources Identifier (URI). This enables exploitation of powerful features, such as
virtual integration of distributed models and data. However, to make OWL models
truly part of the Semantic Web, we have to make sure that the URIs resolve prop-
erly. A simple way to do this is to ensure that the models are also stored as OWL
files on a publicly accessible URL that corresponds to the base of the URIs used in
the semantic models, in our case http://rdf.adaptivedisclosure.org/. It is also possible

16Sesame supports RDF reasoning for RDF-Schema repositories, not for RDF repositories.



56 M.S. Marshall et al.

to configure Virtuoso!” to expose repository contents to URL access in the Linked
Open Data tradition. Transparent access to the content of semantic repositories by
means of URLSs is currently subject to active research and development.

Results

The result of running the workflow is a knowledge base filled with instances of bio-
logical concepts, relationships between those instances, and links to instances that
can tell us why the instances were created. The instances were classified according
to our own proto-ontologies. We can examine the results in search of unexpected
findings or we can trail the evidence for certain findings, for instance, by examining
the documents in which some protein name was found. An interesting possibility
is to explore relationships between the results of one or more computational exper-
iments that added knowledge to the knowledge base. There are a number of ways
to explore the knowledge base. We can load the models and instances in Protégé to
use its browsing and reasoning features or we can use RDF query languages such as
SeRQL and SPARQL. We can also access the models and new instances with our
own web interface or Taverna plugin (see Fig. 2.10). It is also possible to perform

2| DeATD | BeAD_sandbo | | — ey BisAID_ProteinToDiscass_ 75) This o]
T Comcost { workflow was based on
| i T : e

52 B0 homalogous polyomb_NO_UNGROT_)_FOR 8. [ PhesChumenry (74 bt = o 2) e

o workflow finds desease reievant .0 he query
B} e v AnTenT 1
v e e BieAID Descover_protems from text phus sy

B D B prolcke_NO_LNIPROT 0

AR Drm oy _prulcin_rom el phe_spurmp. .

(0 B ONer_P 15516, SUms Refesh (ms_(§1) Thes woekilow dwoovers protems fon
-f. ‘?hw_pmw wh; JAD DsaseDiscnvery_court_[31) bt mm_w_eﬂ_(mm o
20 Bm2 ATRuse_NO_LMIPROY_J0L 1 ads cousizg b BieAlD Docasclucovay,
3 Bl NO_UNPROT D FOR iy Ps 8 S ki dnrus Bk BioATD peotein discovery (1) This

#-0 c-fos oene cromoser_NO_UNIPROT 1D FOR c-fos 0e..
L e gene MDY INTPROT_I_FORL_r i g

& )« o mANA_NO_LNIPROT_ID)_PON_¢ o A

W (2 ¢-fos promotey_NO_UNIPROT_ID_FOR_q-for prometer
b (] €-foa_Omect_ o100 1 PLIBYI_QIGEWE QAW Q...

‘werkfiow fnds protemt relsvant i the goery
fdl abapivedakneze og/~ma oo BATD P
ubibic; Workflows Bia ATD SwansonProtems xm |
Do) Dissseliacove y oyl basanlbaguot_{110). tat BinALD_DrsewseDricovery_tnHumalagnol i |

DuscoverProsenlrk_(31).ot

-0 C-H/0 proters_NO_UNPROT D) FOR C 110) This workflow finds dsease relevantvo | |
% ) Cvb Ol POSETS 10202 = . e IOt ibmrin Halods Simcewma faee 1%
£ (2 c-Mys promoter NO_UNPROT_IO_POR My promater 30T O Y Y | — |
f.;wm,mm,nm_m,., Query string : boaid

e M o N0 LNPROT ) ECR. ¢ M pedaeres.

Fig. 2.10 The AIDA Taverna plugin makes it possible to browse and search the results of the
workflow without leaving Taverna

http://virtuoso.openlinksw.com/



2 Semantic Disclosure in an e-Science Environment 57

another computational experiment by means of a workflow using the knowledge
base. To illustrate the principle we provide three examples of RDF queries'®:

1. This query retrieves instances of biological hypothesis models and their partial
representation by a user’s search query. The query tries to match “{node} edge

{node}” patterns in the RDF graph. The prefixes refer to our proto-ontologies
and standard models such as owl: and rdf:

SELECT model, label (query)

FROM {model} rdf:type {bio:BiologicalModel} rdf:type {owl:Class},
{representation} map:partially represents {model},
{representation} meth:has_qguery {query}

Output:

Instance of biological model query partially representing the model

http://rdf.adaptivedisclosure.org/owl/ “HDACI1 AND chromatin”
BioAID/myModel/Enriched-

ontology/BioAID_Instances.
owl#BioModel_HDACI1_AND_chromatin

2. The following query retrieves proteins that are shared between two subsequent
runs of the workflow with different biological models (hypotheses) as input.

We consider an input query of a workflow as a (partial) representation of the
hypothesis.

SELECT label (comment), label (queryl), label (query?2)
FROM {protein_instance} rdf:type {bio:Protein} rdf:type {owl:Class},
{protein_instance} rdfs:comment {comment};
bio:isModelComponentOf {modell};
bio:isModelComponentOf {model2},
{representationl} map:partially_represents {modell};
meth:has_query {queryl},
{representation2} map:partially represents {modell2};
meth:has_query {queryl}

WHERE modell = inst:BioModel_HDAC1_AND_chromatin AND
modell != model2

18The examples here are a simplified version of SeRQL; for complete SeRQL examples including
namespaces, see http://www.adaptivedisclosure.org/aida/workflows/bioaid-serql-query-examples



58 M.S. Marshall et al.

Output:

Protein Query for model 1 Query for model 2

“protein referred to by as “HDAC1 AND chromatin” “(Nutrician OR food) AND
NF-kappaB and UniProt (chromatin OR epigenetics)
ID: P19838” AND (protein OR proteins)”

“protein referred to by as “HDAC1 AND chromatin” “(Nutrician OR food) AND
p21 and UniProt ID: (chromatin OR epigenetics)
P38936” AND (protein OR proteins)”

“protein referred to by as “HDAC1 AND chromatin” “(Nutrician OR food) AND
Bax and UniProt ID: (chromatin OR epigenetics)
P97436” AND (protein OR proteins)”

3. Finally, a query that retrieves a “trail to evidence” for a protein instance. It
retrieves the process by which the name of the protein was found, the service
by which the process was implemented, and its creator, the document from
MedLine, that is the input for the service and contains the discovered protein
name and the time when the service was run. In this case we depict the query as
a graph emphasizing that RDF queries are in principle graph patterns that match
patterns in the knowledge base (Fig. 2.11).

Overall, using the December 2008 version of our MedLine index the workflow
created 257 protein instances linked to our biological model of HDACI and chro-
matin. They were discovered through 489 protein terms found in 276 documents
and we could recover by what process, web service, and workflow these were dis-
covered, and when. The discrepancy between the number of protein instances and
protein names is because proteins are referred to by various synonyms. As our
knowledge base grows with each experiment (not necessarily text mining), we can
perform increasingly interesting queries in search of novel relations with respect
to our nascent hypothesis. We can store these queries and share them as “canned
queries”. We are curious to see which queries will turn out to be biologically most
revealing.

Semantic Data Integration by Knowledge Extraction Workflows

The text mining workflow above, although created for building a knowledge base to
support hypothesis generation, can also be seen as a data integration or data anno-
tation workflow. If we consider documents contained in MedLine as data elements,
then we have annotated these data elements by linking them to proteins and several
semantic relationships in our proto-ontologies. The semantic annotation is provided
by mining the text that is associated with the data. We can now query these data
elements via our own concepts and instances (which we may have linked to de facto
standard ontologies for extra points of reference), as we could after semantically
annotating human genome data from the UCSC genome browser (see elsewhere
in this chapter and [25, 26]). One of the advantages of combining workflow and



2 Semantic Disclosure in an e-Science Environment 59

references

Protein
name

component of
discovered by

Discovery
process run

implemented by

Run creator

date & time

Fig. 2.11 Graph representing a RDF query to retrieve the evidence for a biological instance

Output for Protein identified by “P19838”.

Protein: “Protein referred to by as NF-kappaB and UniProt ID: P19838”

Discovered by: “Named entity recognition trained by conditional random fields (CRF) on protein
names”

Implemented by: “AIDA CRF Named Entity Recognition service”

Created by: “Sophia Katrenko (University of Amsterdam)”

Input/Component container: Document with PubMed ID 17540846

Timestamp: “2008-11-18T03:29:30+01:00”

Semantic Web technologies in this way is that we can dynamically create a seman-
tic “data warehouse” according to our own needs and wishes. This pattern could be
applied whenever data is coupled to some form of free text.

2.3.3.4 Conclusion

In this section we have explored mechanisms for semantic disclosure of human
genome data and knowledge enclosed in literature, both in the context of supporting
hypothesis-driven experimentation. In the first part of this section we could demon-
strate the principle of being able to query (experiment with) data in terms of our own
semantic model. Perhaps more importantly, it showed an elegant way to integrate
different data sets using Semantic Web formats and tools. Extracting knowledge

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&amp;db=PubMed&amp;list_uids=
17540846



60 M.S. Marshall et al.

from literature is a more challenging task requiring expertise from different fields
of science. We showed that by using a workflow we can combine the expertise
of several scientists for disclosing information trapped in literature and created
a biological knowledge base that can be explored by semantic queries in search
of biological hypotheses. The pattern of storing (interpretations of) results from a
workflow into a knowledge base can be used repeatedly to build an increasingly
rich resource for elucidating biological phenomena and may also be applied for
automated data integration

2.4 Discussion

A number of technologies are implemented in AIDA, each with particular uses and
advantages. For example, Sesame RDF repositories enable storage and retrieval of
knowledge with Semantic Web technology, creating support for significant portions
of the semantic stack. Lucene provides document indexing and retrieval, enabling
us to search through document collections from within applications. The ability to
create a personalized index using AIDA enables customized document management
and search on personal document collections using the same interface as that used
for larger public collections such as MedLine. The machine learning techniques
that have been applied within AIDA provide application builders with entity recog-
nition for bio-entities such as proteins, as well as relation extraction (“proteinA
interacts with proteinB”) within text. The main bottleneck in training the statisti-
cal models that comprise our machine learning components is annotated training
sets. This bottleneck points to the conundrum of how to produce annotated train-
ing sets without tedious manual annotation (impractical). Ideally, annotation would
be performed automatically by employing the very same statistical model that one
would like to train. This points to a natural progression of functionality: once you
can search (for knowledge resources such as vocabulary terms), you can proceed to
annotate, and once you have annotation, you can proceed to (machine) learn. This
is where the knowledge resource tooling of AIDA can come in handy: annotators
can use AIDA to search a number of repositories for the knowledge resources that
they then use to annotate a given word or phrase. The resulting annotations could
then be used to train a statistical model, as required for this approach to machine
learning.

Although each technology is useful on its own, it is the combination of the
aforementioned technologies that make AIDA truly useful. For example, in a well-
established approach to text mining, the services that have been created from
machine learning algorithms can be used to extract information from documents
that have been retrieved from a Lucene index with information retrieval techniques
such as query expansion (i.e., adding related terms to the query that increase recall).
In a new approach to resource management, a selection of indexes (both personal-
ized and public) can be searched with terms from vocabularies and ontologies that
are made available from the RDF repository interface. This makes it possible to cre-
ate a concept-based query of a personal resource collection, in which it is possible



2 Semantic Disclosure in an e-Science Environment 61

to switch to other terminologies. Alternative terminologies and ontologies not only
provide possible terms for queries but also for annotation.

It is the programmatic access to term-concept mappings (in our case, we make
use of labels that are part of the RDF — more elaborate schemes are possible), as
well as the ability to create them by annotation that lies at the core of personalized
search. The ability to access vocabulary and ontological terms for both search and
annotation enables the interface to be customized to the user. When mappings from
concepts to multiple query languages have been made, a customizable user interface
will become available for the browsing, management, search, and annotation of a
wide range of data types and documents. Furthermore, the current machine learning
web services could eventually be supplemented with other entity recognizers and
types of relation extraction and even other forms of pattern recognition, including
those from the field of image processing. This would make it possible to apply the
same architecture in order to link concepts to other types of data, such as images,
through the features pertinent to that domain that allow us to classify to certain
concepts (i.e., tumor).

A few formidable challenges for the Semantic Web remain: end users would like
to pose questions without having to know special query languages or know techni-
cal specifics such as where the information can be found. Technical solutions to this
challenge exist, but will require much more work in the areas of query federation
and repository annotation. Once the foundations have been laid, questions that are
posed in the terms of (RDF) vocabularies can be translated to the form of a SPARQL
query, where the query is automatically decomposed into subqueries that are dis-
patched to the data sources that contain the relevant data, the answers are assembled
and presented to the user in a single application. Such a one-stop-shop will require
sophisticated query federation, repository annotation, and software engineering.
Some initial work in this area has been reported by the HCLS Interest Group [30].

Another important challenge for Semantic Web is to make it easier for people
to use knowledge bases. When a user has access to a knowledge base, even if she
is very knowledgeable about SPARQL, she will have to issue a SPARQL query
in order to find out what can be matched as a subject, predicate, or object in sub-
sequent queries. The process of discovering which items are available and which
properties or predicates refer to them is a tedious and error-prone excercise. An
interface that allows users to start from keywords and find the closest related terms
in the knowledge base will lower this barrier considerably.

At the core of semantic e-Science is semantic disclosure. In order to enable com-
putational experiments for biology research to be conducted in terms of concepts,
with transparent access to workflow and grid resources such as data, knowledge
models, and (web)services, we must make the disclosure of semantics and data
provenance an essential part of experimental data production. It is our hope that this
will convert databases and repositories from “data graveyards” into re-useable data
pools, adding value to the data that then serves as evidence linked to the assertions
in knowledge models.

How far are we in reaching the goals of semantic e-Science? A new era of data
sharing has quietly begun. Enough organizations have opened up their data and



62 M.S. Marshall et al.

API’s, with the XML data format becoming standard practice, that data exchange
has become a trivial exercise. Service-Oriented Architectures (SOA) have also made
it possible to share expertise in the form of programs as well as their components
[31], such as the Taverna (and other) workflows that are shared on myExperiment
[32]. BioCatalogue [33] will enable the community that employs these services to
look up and report the quality and behavior of the services, as well as share infor-
mation about how to use them. However, in general, knowledge sharing is still quite
exceptional. Although it is simple enough to look up the syntactic type of a given
piece of data (i.e., Integer, Float), there is generally no provision for semantic types
(i.e., Chromosome Number, Score). This Do-It-Yourself (DIY) approach to seman-
tics means that the handling of semantics is left up to the application developer who
is building on the data and services. Until information systems provide the facilities
to supply the semantics of a given piece of data, developers will continue to code
assumptions about semantics into their programs and applications. Semantic support
is especially important for workflow systems, where computational experiments can
produce new knowledge but must store the new knowledge with labels that indicate
its origins. Without integrated support for semantics in workflow systems, individ-
ual users must be motivated and knowledgeable enough to come up with their own
ad hoc systems for disclosing metadata and knowledge from workflow components.
In this respect we look forward to integrating the semantic approaches described
in this chapter with the RDF-based provenance that is being developed for new
versions of Taverna [34]. We look further toward an e-Science environment where
semantics is just as much a fixed component as data and services, and knowledge
about data and services, can be used to distribute jobs across grid nodes and partition
data accordingly.

There are distinct benefits to collaborative research provided by the technologies
used to build the e-Science applications described in this chapter. The combina-
tion of platform independent technologies such as SOAP, WSDL, Java, and Ajax
in SOA-based applications has profoundly enhanced our ability to collaborate with
colleagues. Typical problems that require communications overhead such as obtain-
ing the latest version of code and compiling have been solved by simple web-based
access to web services. We were able to take advantage of remote collaboration via
web services in several ways. In the collaboration with Food Scientists, food vocab-
ularies could be served to all interested parties and the latest version of the web
interface that made use of those vocabularies via web services could be remotely
evaluated by partners and testers without requiring any extra steps. A synonym
server was made available to us as a web service by a partner in Erasmus University
in Rotterdam and the service was effortlessly incorporated in our text mining work-
flow. The services available from AIDA have been updated without change to the
API, allowing legacy applications to continue functioning.

How does our progress in semantic disclosure by the AIDA toolkit and others
relate to high-performance computing, such as enabled by a grid? Web services have
not yet been integrated with grid services in such a way that it is straightforward to
combine them in an application (as is now possible with web services in many pro-
grams such as Taverna, Galaxy). At the time of writing, there is an artificial division



2 Semantic Disclosure in an e-Science Environment 63

between grid and the Web largely due to data transport and security differences. For
example, the default data transport for web services is SOAP, a protocol that wasn’t
designed for large data volumes or high throughput. Also, there is apparently no sim-
ple way yet to proxy grid credentials in order to provide web services access to grid
services. The problem of data transport serves as an objection to web services for
bioinformatics practitioners who are already processing large data in their programs.
We expect that both the data transport and the security technical barriers to web and
grid integration will be addressed in the short term. We are already applying one
possible approach that has been implemented as a library that provides alternative
data transport protocols through proxy. This approach has allowed us to distribute
Lucene indexing over DAS?” cluster nodes, which we expect will eventually speed
up our nightly Medline indexing process and other large indexing jobs.

Despite the technical hurdles still to overcome, one of the most prominent chal-
lenges for e-Science is not of a technical nature but is related to the gaps in culture
between the many fields involved in this multidisciplinary discipline, in particu-
lar the gap between application sciences and computer science. We think that it
is important that application scientists try new developments in computer science
at an early stage, providing feedback from real-life practice while application sci-
entists can be the first to reap the benefits of a new approach. In our experience,
however, a computer scientist’s proof-of-concept is often not practically usable by
scientists from the application domain. The theory might be proven academically by
the computer scientist, but not implemented far enough to judge whether it is useful
in practice, i.e., in application to a particular domain. In our view, one of the aims of
e-Science is to overcome this gap. We believe that it is helpful to anticipate enough
software engineers to create the necessary proof-of-concept implementations during
the budgeting and planning stage of e-Science projects. We advocate their explicit
addition to e-Science projects by making the analogy to wet laboratories, where sci-
entists are typically supported by laboratory assistants who are trained at putting
theory to practice. In addition, we have experienced that many computer scientists
tend to apply the paradigm of “separation of concerns” to multidisciplinary collab-
orations, preferring to remain “domain agnostic” with the intent of providing only
generic solutions. In our experience, this is often counter-productive. Without sub-
stantial understanding of each other’s domains there is a risk that the mutual benefit
is small or even negative. In fact, it is impossible to demonstrate the benefits of a
new technology to a particular domain without carefully fitting it to an appropriate
problem or use case. However, when these social factors of e-Science are taken into
account, we are convinced that we will see some highly needed breakthroughs in,
for instance, life science and health care.

Acknowledgments This work was carried out in the context of the Virtual Laboratory for
e-Science project (http://www.vl-e.nl). This project is supported by a BSIK grant from the Dutch
Ministry of Education, Culture, and Science (OC&W) and is part of the ICT innovation program of
the Ministry of Economic Affairs (EZ). Special thanks go to Bob Herzberger, who made the VL-e

20http://www.cs.vu.nl/das3/



64 M.S. Marshall et al.

project a reality and to Pieter Adriaans for creating and leading AID. We also thank Edgar Meij,
Sophia Katrenko, Willem van Hage, Kostas Krommydas, Machiel Jansen, Marten de Rijke, Guus
Schreiber, and Frank van Harmelen. Our VL-e Food Informatics partners: Jeen Broekstra, Fred
van de Brug, Chide Groenouwe, Lars Hulzebos, Nicole Koenderink, Dirk Out, Hans Peters, Hajo
Rijgersberg, Jan Top. Other VL-e colleagues: Piter de Boer, Silvia Olabarriaga, Adam Belloum,
Spiros Koulouzis, Kasper van den Berg, Kamel Boulebiar, Tristan Glatard. Martijn Schuemie,
Barend Mons, Erik van Mulligen (Erasmus University and Knew Co.). Simone Louisse for careful
reading of this document. Thanks to Alan Ruttenberg and Jonathan Rees of Science Commons
for supplying the Huntington’s corpus. We appreciate the support of many colleagues at NBIC,
theW3C HCLS IG, myGrid, myExperiment, and OMII-UK.

References

1. Wang, X., Gorlitsky, R., Almeida, J.S.: From XML to RDF: How semantic web technologies
will change the design of ‘omic’ standards. Nature Biotechnology 23 (2005) 1099-1103

2. Allemang, D., Hendler, J.: Semantic Web for the Working Ontologist: Effective Modeling in
RDFS and OWL Morgan Kaufmann (2008)

3. Stein, L.D.: Towards a cyberinfrastructure for the biological sciences: Progress, visions and
challenges. Nature Reviews 9 (2008) 678—-688

4. Galperin, M.Y.: The molecular biology database collection: 2008 update. Nucleic Acids
Research 36 (2008) D2-D4

5. Ruttenberg, A., Clark, T., Bug, W., Samwald, M., Bodenreider, O., Chen, H., Doherty, D.,
Forsberg, K., Gao, Y., Kashyap, V., Kinoshita, J., Luciano, J., Marshall, M.S., Ogbuji, C.,
Rees, J., Stephens, S., Wong, G.T., Wu, E., Zaccagnini, D., Hongsermeier, T., Neumann, E.,
Herman, I., Cheung, K.H.: Advancing translational research with the semantic web. BMC
Bioinformatics 8(3) (2007) S2

6. Marshall, M.S., Prud’hommeaux, E.: A Prototype Knowledge Base for the Life Sciences
(W3C Interest Group Note). 2008 (2008)

7. Samwald, M., Cheung, K.: Experiences with the conversion of SenseLab databases to
RDF/OWL (W3C Interest Group Note). Vol. 2008 (2008)

8. Ruttenberg, A., Rees, J., Samwald, M., Marshall, M.S.: Life sciences on the semantic web:
The neurocommons and beyond. Briefings in Bioinformatics 10 (2009) 193-204

9. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. The Semantic Web — ISWC 2002: First International
Semantic Web Conference, Vol. 2342/2002. Springer, Berlin, Heidelberg, Sardinia, Italy
(2002) 54

10. LingPipe 4.0.0. http://alias-i.com/lingpipe (accessed October 1, 2008)

11. Witten, .H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco (2005)

12. Katrenko, S., Adriaans, P.: Using Semi-Supervised Techniques to Detect Gene Mentions.
Second BioCreative Challenge Workshop (2007)

13. Katrenko, S., Adriaans, P.: Learning Relations from Biomedical Corpora Using Dependency
Trees. KDECB (Knowledge Discovery and Emergent Complexity in Biolnformatics), Vol.
4366 (2006)

14. Koenderink, N.J.J.P,, Top, J.L., van Vliet, L.J.: Expert-based ontology construction: A case-
study in horticulture. In: Proceedings of the Sth TAKMA Workshop at the DEXA Conference
(2005) 383-387

15. Rodgers, S., Busch, J., Peters, H., Christ-Hazelhof, E.: Building a tree of knowledge: Analysis
of bitter molecules. Chemical Senses 30 (2005) 547-557

16. Rodgers, S., Glen, R.C., Bender, A.: Characterizing bitterness: Identification of key struc-
tural features and development of a classification model. Journal of Chemical Information
and Modeling 46 (2006) 569-576



2 Semantic Disclosure in an e-Science Environment 65

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Smith, S.M.: Overview of fMRI analysis. The British Journal of Radiology 77(2) (2004)
S167-S175

Olabarriaga, S.D., Boer, P.T.d., Maheshwari, K., Belloum, A., Snel, J.G., Nederveen, A.J.,
Bouwhuis, M.: Virtual lab for fMRI: bridging the usability gap. In: Proceedings of the 2nd
IEEE International Conference on e-Science and Grid Computing, Amsterdam, Netherlands
IEEE Computer Society, Los Alamitos, CA (2006)

Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler,
D.: The human genome browser at UCSC. Genome Res 12 (2002) 996-1006

Thomas, D.J., Rosenbloom, K.R., Clawson, H., Hinrichs, A.S., Trumbower, H., Raney, B.J.,
Karolchik, D., Barber, G.P., Harte, R.A., Hillman-Jackson, J., Kuhn, R.M., Rhead, B.L.,
Smith, K.E., Thakkapallayil, A., Zweig, A.S., Haussler, D., Kent, W.J.: The ENCODE project
at UC Santa Cruz. Nucleic Acids Research 35 (2007) D663-667

Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a
mashup to build bioinformatics knowledge systems. Journal of Biomedical Informatics 41(5)
(2008) 706-716

Cheung, K.H., Yip, K.Y., Smith, A., Deknikker, R., Masiar, A., Gerstein, M.: YeastHub: a
semantic web use case for integrating data in the life sciences domain. Bioinformatics 21(1)
(2005) 185-196

Dhanapalan, L., Chen, J.Y.: A case study of integrating protein interaction data using semantic
web technology. International Journal of Bioinformatics Research and Application 3 (2007)
286-302

Lam, H.Y., Marenco, L., Shepherd, G.M., Miller, P.L., Cheung, K.H.: Using web ontology lan-
guage to integrate heterogeneous databases in the neurosciences. AMIA Annual Symposium
Proceedings, Washington, DC (2006) 464—468

Marshall, M., Post, L., Roos, M., Breit, T.: Using semantic web tools to integrate experimental
measurement data on our own terms. On the move to meaningful internet systems 2006: OTM
2006 Workshops (2006) 679-688

Post, L.J., Roos, M., Marshall, M.S., van Driel, R., Breit, T.M.: A semantic web approach
applied to integrative bioinformatics experimentation: A biological use case with genomics
data. Bioinformatics 23 (2007) 3080-3087

Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB. Commun.
ACM 51 (2008) 77-85

Verschure, P.J.: Chromosome organization and gene control: It is difficult to see the picture
when you are inside the frame. Journal of Cellular Biochemistry 99 (2006) 23-34

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M.R., Li, P., Oinn, T.: Taverna:
a tool for building and running workflows of services. Nucleic Acids Research 34 (2006)
W729-W732

Cheung, K.-H., Frost, H.R., Marshall, M.S., Prud’hommeaux, E., Samwald, M., Zhao,
J., Paschke, A.: A journey to semantic web query federation in life sciences. BMC
Bioinformatics 10 (2009) S10

Miyazaki, S., Sugawara, H., Ikeo, K., Gojobori, T., Tateno, Y.: DDBJ in the stream of various
biological data. Nucleic Acids Research 32 (2004) D31-34

De Roure, D., Goble, C., Stevens, R.: The design and realisation of the myexperiment virtual
research environment for social sharing of workflows. Future Generation Computer Systems
(2008) 2009 May, 25(5)

Goble, C., De Roure, D.: Curating scientific web services and workflows. Educause Review
43 (2008)

Missier, P., Belhajjame, K., Zhao, J., Goble, C.: Data lineage model for Taverna workflows
with lightweight annotation requirements. IPAW’08, Salt Lake City, Utah (2008)



Chapter 3
A Smart e-Science Cyberinfrastructure
for Cross-Disciplinary Scientific Collaborations

Hock Beng Lim, Mudasser Igbal, Yuxia Yao, and Wenqiang Wang

Abstract Large-scale cross-disciplinary scientific collaborations are increasingly
common and require an overarching e-Science cyberinfrastructure. However, the
ad hoc and incoherent integration of computational and storage resources, sen-
sor networks, and scientific data sharing and knowledge inference models cannot
effectively support cross-domain and collaborative scientific research. In this work,
we design and develop a smart e-Science cyberinfrastructure which forms the
key resource-sharing backbone that enables each participating scientific commu-
nity to expose their sensor, computational, data, and intellectual resources in a
service-oriented manner, accompanied by the domain-specific knowledge.

3.1 Introduction

Science is broadly categorized into various distinct fields. However, there is a recent
trend toward large-scale cross-disciplinary scientific research projects involving
multiple organizations. A good example is in the field of environmental science,
which involves studying the interactions of the physical, chemical, and biolog-
ical components of the environment, with particular emphasis on the impact of
human activities on biodiversity and sustainability. The participating researchers
in such cross-disciplinary scientific research projects require efficient access to geo-
graphically distributed sensors and instruments, computational servers, and storage
to carry out time-critical data collection, processing, analysis, and management
tasks.

e-Science is a paradigm shift in scientific research that enables scientists to
generate, process, and access data from distributed sources while making use of

H.B. Lim (=)
Intelligent Systems Center, Nanyang Technological University, Nanyang Avenue, Singapore
e-mail: limhb@ntu.edu.sg

H. Chen et al. (eds.), Semantic e-Science, Annals of Information Systems 11, 67
DOI 10.1007/978-1-4419-5908-9_3, © Springer Science+Business Media, LLC 2010



68 H.B. Lim et al.

shared resources of computing, storage, and virtual laboratories. Existing efforts in
e-Science cyberinfrastructure aim to achieve the following objectives:

e Harness high-end computational resources available at distributed facilities.

e Access archived data and other intellectual resources from heterogeneous scien-
tific databases.

e Make the resources belonging to an organization accessible to other users via
secured and authenticated interfaces.

Although achieving these goals can help the scientific community to collaborate,
the type of collaborations enabled is at a very coarse level to deal with the hetero-
geneous standards that are used by different scientific communities to manage their
computing, data, storage, and intellectual resources. Such limitations hinder the pace
of scientific discovery as it requires human intervention to resolve issues that arise
due to the incoherent standards. For e-Science cyberinfrastructure to become a true
backbone for seamless collaboration between different scientific communities, it
should provide support to achieve the following additional goals:

e Publish and use the processes created in different scientific efforts in order to
allow the creation of more sophisticated and complex processes.

e Correctly interpreting data from domains that are, by provenance, different from
the one that is initiating the scientific process.

e Seamless integration with sensor and actuator networks to manage real-time
sensor data.

There are various attempts that address one or more of the above goals using existing
technologies available to scientific communities. For instance, grid computing [1]
makes high-end computational as well as data resources available to scientific pro-
cesses. Service-oriented architectures (SOA) provide a standards-based approach
for making scientific processes from one domain available to other domains as a
service. Semantic Web and ontology design enable the binding of data semantics
with the data for ease of sharing and correct interpretation. In the following section,
we discuss what these technologies aim to achieve and highlight various contem-
porary research attempts that aim to achieve one or more of the above-mentioned
objectives. However, none of the existing efforts provide a single backbone that can
support the entire spectrum of requirements that are essential to undertake effective
cross-disciplinary scientific collaborations.

Increasingly, scientific communities are making information tools accessible
as services that clients can access over the network, without knowledge of their
internal workings. Service-oriented and grid-enabled e-Science provides support
for dynamic selection of partners as well as abstractions through which the state
of a scientific transaction can be captured and flexibly manipulated. In this way,
dynamic selection is exploited to yield application-level fault tolerance. Services
provide higher level abstractions for organizing applications in large-scale and open



3 A Smart e-Science Cyberinfrastructure 69

environments. They enable us to improve the productivity and quality of the devel-
opment of software applications. Furthermore, if these abstractions are standard-
ized, they enable the interoperability of software produced by different scientific
communities.

In this work, we propose a smart e-Science cyberinfrastructure that integrates
grid computing, service-oriented architecture, and semantic Web in an innovative
manner. The proposed framework builds a high-level ontology for this cyberin-
frastructure that models sensor, computational, data, and intellectual resources as
services that can be published and accessed. Figure 3.1 shows the proposed frame-
work in the form of a smart e-Science fabric that binds together services, semantics,
and grid with the following characteristics:

7’ ; —
r’ [Memods ]( Data )[Know]edge] ; Grid :

'\ [ Sensors ] [Cumputers) [ Storage j 7
”

-
A Scientific VO L -

-

~
1

[
|

-

-

Fig. 3.1 Service-oriented e-Science fabric

e Use of grid middleware to handle state, transaction, notification, execution,
monitoring, and scalability of the smart e-Science cyberinfrastructure.

e Semantic and rule-based event-driven SOA to demonstrate how semantics can be
employed in SOA to share common vocabulary, knowledge, and services.

e Use of SOA for the composition of services to support development of scientific
workflows.

In the rest of this chapter, Section 3.2 provides the background of this work. We
describe the challenges in smart e-Science and the enabling technologies for smart
e-Science. We also discuss the contemporary efforts in e-Science cyberinfrastruc-
ture and our case study to integrate various scientific infrastructures to form a smart
e-Science cyberinfrastructure. In Section 3.3, we discuss our proposed smart e-
Science framework in detail. In Section 3.4, extensive implementation details of the
proposed framework are presented. Finally, we conclude this chapter and outline the
direction of our future work in Section 3.5.



70 H.B. Lim et al.

3.2 Background

3.2.1 Challenges for Smart e-Science

Although smart e-Science promises new vistas of scientific discovery by support-
ing collaborative scientific processes that span many disciplines, it poses many
challenges:

e In collaborative scientific processes, it is not appropriate to expect the con-
sistency of data from diverse sources that are parts of different scientific
domains. However, it would be reasonable to think of the high-level contractual
relationships through which the interactions among the components are specified.

e Such processes are usually so complicated that they cannot depend on the
details of the implementations of the interacting components. Instead of mod-
eling actions and interactions at a detailed level, it would be better to capture
the essential high-level qualities that are (or should be) visible for the purpose
of carrying out the process. Such a coarse granularity reduces dependencies
among the participants and reduces communications to a few messages of greater
significance.

e Individual components in the process must exist long enough to be able to detect
any relevant exceptions, to take corrective action, and to respond to the corrective
actions taken by others. Components must exist long enough to be discovered, to
be relied upon, and to engender trust in their behavior.

e The concerns between the construction and the hosting of scientific resources are
separated, so that scientists can focus on constructing content rather than on the
minutiae of operating scalable and robust facilities.

e An open data-rich information system requires a semantic information hierarchy
and a set of semantic services to process and reason about data, moving beyond
just protocol agreement and data format conversion.

e More and more scientific organizations publish and access their scientific data
using Web technology. Any scientific process requires a set of services to ful-
fill its goal. If this goal is not satisfied by a single resource then there is a
need to combine the functionality of a set of resources as composite resources
to fulfill the requirements of any complex scientific process. Distributed hetero-
geneous resources are to be integrated to complete the execution of a scientific
process, and interoperability among resources is to be achieved when a process
spans across the boundaries of multiple scientific domains, where vocabulary is
different.

e The immense amount of scientific data from heterogeneous domains demands
computing solutions that can use high-quality and domain-specific metadata
in order to automatically interpret, integrate, and process data. Such solutions
bring real value to scientists by answering domain-specific queries effectively to
support knowledge discovery over large volumes of scientific data.

e Human mediation is inadequate to process, analyze, integrate, store, and query
the petabytes of data and associated metadata generated by the industrial-scale



3 A Smart e-Science Cyberinfrastructure 71

processes in e-Science. For software agents to be able to use this data, they must
be able to interpret it correctly in the right context.

e Much of the scientific data are analogous in nature and are characterized
by similar calibration mechanisms but described using different terms. String
matching search techniques may not retrieve all the relevant data because dif-
ferent words/terms have been used to describe analogous processes in different
scientific domains.

e In addition to archived scientific data, real-time data from actively operating
infrastructures such as networks of environmental, seismic, and astrological sen-
sors are very important. Provision of access to such networks is a challenge due
to non-standard and domain-specific implementations and protocols.

3.2.2 Enabling Technologies for Smart e-Science

3.2.2.1 Grid Computing

Grid computing [1, 2] provides support for large-scale scientific and enterprise
applications by allowing runtime selection, integration, and coordination of dis-
tributed resources and also accommodates dynamic requirements. It gives scalability
and flexibility by following open standards, protocols, and technologies like Web
services. The modern grids are based on open grid services architecture (OGSA) and
Web services resource framework (WSRF), which extend the existing Web services
and make them stateful, transient, and give notification support. They have become
one of the standard solutions for scientific applications [3-5]. They enable the shar-
ing and aggregation of millions of resources (e.g., SETI@Home [6]) geographically
distributed across organizations and administrative domains. They consist of het-
erogeneous resources (PCs, work-stations, clusters, and supercomputers), fabric
management systems and policies (single system image OS, queuing systems, etc.),
and applications (scientific, engineering, and commercial) with varied requirements
(CPU, I/O, memory, and/or network intensive).

3.2.2.2 Service-Oriented Architecture and Web Services

The importance of service-oriented architecture (SOA) for e-Science is widely rec-
ognized. SOA is the software architecture to enable loosely coupled integration and
interoperability of distributed heterogeneous system by using services as compo-
nent elements. Services are computational entities that can be described, published,
discovered, orchestrated, and invoked by other software entities. An SOA usually
includes directory services that service providers register with. Even if no adequate
services are found in a service registry, it is still possible to build composite services
by combining several pre-existing services.

Web services (WS) can also be used to publish, discover, and invoke the software
components as services. They are loosely coupled, interoperable and enable the



72 H.B. Lim et al.

integration of distributed heterogeneous Web-hosted services. Web services are
based on open standards and protocols like XML, WSDL, UDDI, and SOAP [7, §].

3.2.2.3 Semantic Web and Ontology

Semantic Web [9] is an attractive solution for organizing meaningful informa-
tion. In particular, it is expected to revolutionize the real-time publishing and
sharing of scientific information. This semantic provenance imposes a formally
defined domain-specific conceptual view on scientific data, mitigates or eliminates
terminological heterogeneity, and enables the use of reasoning tools for knowl-
edge discovery. Ontology [10] is the key technology behind semantic Web for
making information more meaningful, by adding more knowledge. The term ontol-
ogy can be defined as an explicit formal specification of the knowledge by a
set of concepts within a domain and the relationships between those concepts.
Ontology binds together various concepts and makes sure that they are consistent
and not overlapping. It is an explicit formal specification of a shared conceptua-
lization [11].

An ontology consists of three components: (1) classes (or concepts) that may
have subclasses to represent more specific concepts than in superclasses, (2) prop-
erties or relationships that describe various features and properties of the concepts,
also termed as slots that are superimposed on the defined classes and/or properties
to define allowed values (domain and range), and (3) individuals which are sim-
ply the instances of the classes and properties. The ontology, together with a set
of instances of classes and slots, constitutes the knowledgebase. Many advantages
of ontologies have been identified, including sharing common understanding of
the structure of information, enabling reuse of domain knowledge, making domain
assumptions explicit, separating domain knowledge from operational knowledge.
The ontology development follows an evolving-type life cycle rather than a water-
fall or an iterative one. This implies that one can go from one stage to another stage
in the development process if the ontology does not satisfy or meet all the desired
requirements.

Ontology is based on metadata whose critical role in managing large volumes
of data has long been understood in various fields such as library management,
geography, multimedia, biological sciences. The database community has exten-
sively explored the use of metadata to exchange, share, and integrate data from
heterogeneous information sources. Since traditional metadata descriptions (such as
electronic data-interchange formats) require manual interpretation, researchers have
proposed using semantic metadata to automate the integration of large-scale dis-
tributed data. Semantic metadata is “metadata that describes contextually relevant or
domain-specific information about content (optionally) based on an ontology.” It not
only mitigates terminological heterogeneity but also enables software applications
to “understand” and reason over it. Ontologies can thus provide a natural means
for representing information for database management systems because databases
may have inconsistencies in naming conventions, synonyms, etc. Thus, having a



3 A Smart e-Science Cyberinfrastructure 73

common ontology for each application or scientific domain helps to unify informa-
tion presentation and permits software and information reuse.

3.2.3 Contemporary Efforts in e-Science Cyberinfrastructure

There have been various attempts to address the collaborative science challenges.
We will provide an overview of some of these existing efforts. TeraGrid [12] is
one of the foremost cyberinfrastructure in the scientific community. It comprises of
immense amounts of geographically distributed computational and data resources
that are accessible in a service-oriented manner. For job management (submission,
workflow, etc.), it provides a set of software packages that can be used by the users
to remotely administer their jobs on the resources that have been allocated to them.
Although its user base is large, the TeraGrid does not provide a facility for seamless
interoperability between the various scientific communities utilizing it. Essentially,
it only provides grid resources to the end users and a service-oriented means of
managing them while the operational and architectural challenges pertaining to the
use of TeraGrid for cross-disciplinary science are left to the end users.

GEO Grid [13] aims at providing e-Science infrastructure specifically for earth
science communities. It provides support for satellite imagery, geological, and
ground sensor data. Architecturally, GEO Grid provides different levels of inter-
actions among its users depending upon the role that the user wishes to play. At the
source sits a data publisher that can be any earth science community who can pro-
vide data in a service-oriented manner. A virtual organization (VO) manager forms
a virtual portal where he can request services from different data publishers and
provide to the end users. A VO manager may compose and provide complex ser-
vices by using the basic services provided by data publishers. The key limitation of
GEO Grid is that it mainly aims to serve the earth science community. In addition,
although GEO Grid allows data publishers to specify metadata, it requires them to
implement data access services which have a high risk of running into non-standard
data semantics and access methods.

The London e-Science Center (LESC) [14] is an effort similar to GEO Grid
that also provides VO-based access to integrated services from multiple service
providers. However, LESC’s scope is far broader than that of the GEO Grid in
terms of supporting different scientific communities. Both GEO Grid and LESC
are limited in terms of not providing any tools or guidelines for standardizing data
and resource ontologies to ensure precise interpretation of data. While the VOs may
serve as a platform to access integrated data and services, the absence of standard-
ized ontology definition and service definition framework makes the job of the VO
manager (who is going to compose new services) very difficult.

The Cambridge e-Science Center (CeSC) [15] aims to develop grid-based tools
for massive data handling, high-performance computing, and visualization appli-
cations. The infrastructure runs Globus on Condor for managing workloads of
compute-intensive jobs and MyProxy for credentials management. In terms of grid



74 H.B. Lim et al.

service provisioning, CeSC is similar to TeraGrid, with both of them providing no
framework for collaborative e-Science on the grid.

The OntoGrid [16] addresses this greatest challenge faced by grid computing
regarding the ability to explicitly share and deploy knowledge to be used for the
development of innovative grid infrastructure and for grid applications. To address
this challenge the OntoGrid project aims to produce the technological infrastruc-
ture for the rapid prototyping and development of knowledge-intensive distributed
open services for the semantic grid. However, the current test beds and imple-
mentations of OntoGrid do not demonstrate cross-disciplinary data exchange and
interoperability.

The MyGrid [17] effort aims to support the creation of e-laboratories to allow
scientists share valuable data and laboratory resources. However, its current imple-
mentations are limited to same-domain workflow service creations and cataloguing
[18].

The above-mentioned e-Science grid frameworks provide reasonably sufficient
and scalable grid resource provisioning infrastructures to the scientific communities
to carryout compute/data-intensive tasks. However, none of them provides a sci-
entific resource-sharing framework at the infrastructure level on top of which the
participating scientific communities can securely expose, discover, and exchange
their intellectual (data and methods) as well as instrument-based (sensor networks,
devices, laboratories, etc.) resources. In the absence of such a framework, the exist-
ing e-Science grids are just passive compute—storage resource providers. The smart
e-Science framework proposed in this chapter fills this gap by providing a semantic
resource-sharing framework that can be readily adopted by the existing e-Science
grids.

3.2.4 Case Study: Integration of Scientific Infrastructures

To design and develop a smart e-Science cyberinfrastructure for cross-disciplinary
scientific collaborations, we embark on a case study to integrate several scien-
tific infrastructures that we are involved with. In this section, we describe these
scientific infrastructures that drive the design and implementation of the pro-
posed smart e-Science framework. These infrastructures involve large-scale sensing
and monitoring deployments that produce high data rate heterogeneous scientific
data.

The Cyberinfrastructure for the Center for Environmental Sensing and Modeling
(CI@CENSAM) [19] is an effort under the Singapore—MIT Alliance for Research
and Technology (SMART) to integrate the data and services provided by var-
ious micro-to-meso scale sensor deployments for environmental monitoring in
Singapore. These deployments include those for Continuous Monitoring of Water
Distribution Systems (CMWDS), Ocean Modeling and Data Assimilation (OMDA),
and Marine and Underwater Sensing (MUS). CI@ CENSAM aims to develop a dis-
tributed data archive for multiple CENSAM research projects including both sensor-



3 A Smart e-Science Cyberinfrastructure 75

and model-generated data. The archive will associate data sets with appropriate
geospatial, sensor, accuracy, and access control metadata to optimize the data’s
utility, security, and longevity for collaborative scientific efforts.

The Continuous Monitoring of Water Distribution Systems (CMWDS) project
will develop the technologies to enable real-time monitoring of water distribution
systems in Singapore. Its objectives include the demonstration of the application
and control of a wireless sensor network-based cyber-physical infrastructure for
high data rate, real-time monitoring of hydraulic parameters within a large-scale
urban water distribution system. Real-time pressure and flow measurements will be
assimilated into hydraulic models to optimize the pump operations for the water
distribution network. CMWDS also develop the technologies to enable remote
detection and prediction of pipe burst and leak events. We have developed statistical
and wavelet-based algorithms to analyze high-frequency pressure measurements of
hydraulic transient events to detect pipe bursts, as well as algorithms for localiz-
ing the bursts based on arrival times of the pressure fronts associated with the burst
events. Finally, CMWDS also address the monitoring of water quality parameters.
This task will involve a detailed evaluation of the long-term performance and robust-
ness of water quality sensors (for measures such as pH, chlorine residual, turbidity,
conductivity, and dissolved oxygen), the use/development of multi-parameter sensor
technologies, and the application of cross-correlation techniques to interpret water
quality signatures through in-network processing.

The Ocean Modeling and Data Assimilation (OMDA) project aims to achieve
operational real-time assimilation and forecasting capabilities for the Singapore
region and surrounding seas. For this purpose, the Finite Volume Coastal Ocean
Model (FVCOM) is used and is adapted for different configurations such as the
coastal water around Singapore, the Singapore Straits and island, and the entire
South China Sea (90E-140E; 20S-30 N). The simulation of the ocean circulation
and property distributions (temperature, salinity) will be carried out under lateral
tidal forcing and surface forcing of wind stress, heat, and moisture fluxes and will
be validated with altimetric data as well as current velocity observations.

The Marine and Underwater Sensing (MUS) project’s objectives include the
development of sensors for environmental chemical monitoring that can be deployed
on automated underwater vehicles (AUVs). A major focus of MUS is a sensor
based on mass spectrometry for monitoring of natural waters, which measures
low molecular weight hydrocarbons, metabolic gases for geochemical studies, and
volatile organic compounds for pollution monitoring. The other major focus is a
sensor based on laser-induced fluorescence, capable of measuring higher molecular
weight hydrocarbons which are common components of oil leaks and spills, as well
as biological entities such as chlorophyll, aquatic humic substances, and fluores-
cent tracers. An associated project under MUS will deploy inexpensive, low-power
sensors for passively detecting dynamic and static pressure fields with sufficient
resolution to detect near-field flow patterns and near- and far-body obstacles and
vehicles, as well as mapping near-body objects. This will provide a unique capa-
bility for navigation in shallow water and/or cluttered environments, for use with
multiple AUVs, and for flow control in conventional and biomimetic vehicles.



76 H.B. Lim et al.

The National Weather Study Project (NWSP) [20] is a large-scale community-
based environmental initiative in Singapore that aims to promote the awareness
about weather patterns, climate change, global warming, and the environment. In
this project, hundreds of mini weather stations are deployed in schools through-
out Singapore. The data acquired by these weather stations include various weather
parameters such as temperature, humidity, rain, wind speed and direction, baromet-
ric pressure, solar radiation.

The aim of the Solar-enabled Water Production and Recycling (SWPR) project
is to develop and demonstrate self-sustaining water production and recycling tech-
nology based on solar energy. In this project, the solar radiation is one of the
most important parameters for data collection. Comprehensive spatio-temporal solar
radiation data analysis, data mining, and data modeling are carried out to iden-
tify suitable sites in Singapore for building pilot solar-enabled water production
and recycling plants. The project also addresses the optimization of the operation
of the solar-powered systems for the water production and recycling processes by
considering the variation in solar radiation pattern with time.

The Sensor Grid for GPS Data Processing Project (GPS) [21] is an effort to
develop a prototype sensor grid to support the acquisition, analysis, visualization,
and sharing of GPS data in the earth science domain. As a test case, we make use
of historical GPS data collected from the Sumatran cGPS Array, which consists of a
network of GPS stations deployed in the high earthquake activity zone of Sumatra,
Indonesia.

In the LiveE! Project [22] from Japan, a large-scale peer-to-peer network con-
necting environmental monitoring sensors is deployed across the Asia-Pacific region
in Japan, Taiwan, China, Indonesia, etc. The data produced by this large network
also comprises of various weather parameters.

Each of the deployments in CI@ CENSAM, NWSP, SWPR, GPS, and LiveE!
includes archived scientific data as well as real-time sensor resources with varied
data sampling frequency and heterogeneous types of sensors provided by different
vendors. In addition, the environmental, ocean, navigation, hydraulic, geospatial,
solar, and seismic modeling applications running on top of these deployments
require seamless sharing of scientific processes, data models, and raw data among
them.

3.3 The Smart e-Science Framework

We propose a proxy-based approach for our semantic grid infrastructure. With this
approach, the resources in a scientific facility (methods, data, storage, computa-
tional servers, etc.) are made available on the grid like conventional grid services.
Figure 3.2 shows various components of the proposed grid infrastructure. The key
entity in the infrastructure is a virtual organization (VO) that represents a resource-
sharing facility in the grid. Each VO may provide one or more resources such as
heterogeneous sensors and sensor networks, computational and storage resources,
scientific methods and knowledge, and grid-enabled service providers. Typical



3 A Smart e-Science Cyberinfrastructure 77

._,___,..._.......
AWeather |y

| Stations | b

\
Multihop Network of |
Weather Sustions. ;

|

7 I e
\ ; PEVE.
"*__ VO E { %
\. i Proxy \ 3 1
\ (&) : )
., ] /

-~ User - e VO’ ~

Computational Data
Resources

Network of Programmable
S, Sensors T

Fig. 3.2 Design components of the proposed infrastructure

examples of VOs are virtual laboratories, scientific data centers, supercomputing
facilities, networks for metropolitan traffic monitoring, environmental monitoring,
a smart home, an elderly care facility, a corporate office. From the above-mentioned
case study, each of the infrastructures in CI@ CENSAM, NWSP, SWPR, GPS, and
LiveE! is thus a VO. The key idea is to enable each VO to access and share the
resources of other VOs through distributed resource brokerage and user authentica-
tion. The proxy interface at each VO manages the VO-level ontology and exposes
the resources in the VO as services, thus allowing for cross-domain interopera-
bility.

3.3.1 The e-Science Ontology

In this section, we describe the e-Science ontology that allows semantic exposure
of resources in VOs in the form of services. First, we construct an ontology based
on the common vocabulary set in the participating VOs (CI@CENSAM, NWSP,
SWPR, GPS, and LiveE!). Each VO will then create an instance of this ontol-
ogy in its domain and share it with the rest of the VOs that belong to the grid.
We term the VO that owns the resources as server VO, whereas the one mak-
ing use of the resources as the client VO. The basis of this design strategy is
the fact that it is not practical to standardize the way tangible (storage, servers,
sensors) and intangible (intellectual knowledge, data, methods) resources are man-
aged within heterogeneous scientific communities. However, the interfaces to access
these resources from outside the server VO are still in infancy and thus must be
standardized.



78 H.B. Lim et al.

Fig. 3.3 The layered design strategy for e-Science ontology

Figure 3.3 shows the layered design of the proposed e-Science ontology. This
design is motivated by the natural organization of resources and data in a VO, where
a VO sits on top of the group of resources (ResourceGroup) which in turn defines
each resource in the VO such as compute grid, sensor networks, data archives. Each
resource then produces its own data which are exchanged between the participating
VOs.

Figure 3.4 shows the ontology framework that emerges out of the triangle design.
Figures 3.5-3.7 show the detailed ontologies of various components of the overall
ontology in Fig. 3.4. The ontology considers that each VO runs some R&D pro-
grams that comprise of some projects. In addition, each VO is assumed to consist
of Resource Groups, with the resource groups related to one or more projects. The
resource group class is the highest level class in the ontology hierarchy with two
immediate subclasses to categorize physical and non-physical resources in the VO.
The physical resource superclass refers to all tangible resources such as computa-
tional servers, storage, sensors, and sensor networks. Each of these classes is then
inherited by more specific physical resource types in order to explicitly elaborate
the resource attributes.

On the other hand, the non-physical resource superclass refers to data (raw as
well as processed) and scientific methods that can be made available for reuse to
client VOs. The data and methods superclasses are then inherited by more specific
data-related ontology hierarchy and methods-related process ontology hierarchy that
define characteristics like the type, nature, format, interpretation, input, output, and
the domain of data and scientific processes being expressed by the ontology. The
Methods class hierarchy is of key importance in this e-Science ontology since it cat-
egorizes scientific methods into data management (acquisition, transfer, archival)
and data processing (any scientific processes that result in data transformation).
The process ontology that defines these classes of methods thus forms the basis
for providing service-oriented access to intellectual resources in the VO and allows
for creation of complex workflows. Another key advantage of binding methods in



3 A Smart e-Science Cyberinfrastructure 79

TRuributes  Titributes

| hasArmribuses "
Vo )t [ T — “Rributes

Program

l hasProject

Proj heAnriuics e Relative Location
me,ﬂ as -— O Riitude
hasResourcelioup |

subclassof
i

subclassof subelassof

subclassof

subelussof

sub bassof.
‘5_ 3 $ a b Sensoe Ontology

7 Bandwidih
7 Signal Strength
—'m‘ém;uion

- Others

subclassal

Process Ontology Process Dmtology

i
£

hadC memunicatam

subclassof
subelassof

Fig. 3.4 The e-Science ontology

the same ontology hierarchy is that it allows operational standardization within
the ontology, as each scientific method also becomes a subclass of a common
ResourceGroup superclass. We will discuss this topic, commonly termed as service
composition, in Section 3.3.2.

Since the purpose of defining an ontology is to make the resources shareable, it is
the physical and non-physical superclasses hierarchy that should be laid down with
maximum details. Due to space limitation, the detailed ontology for each of the sub-
classes in the ResourceGroup hierarchy is not provided. However, as an example, we
have shown a part of the expanded SensorGroup ontology section that specifies the
categorization of sensor groups into various domain-specific sensing units, such as



80

H.B. Lim et al.
Fig. 3.5 The sensor ontology — PREVE Location
has
H 5 % | Sensing Rate
3 3 £
% £ = -
: 2| | e
L A
g
5
ﬁ Data Ontology
subclassof

Fig. 3.6 The data ontology



3 A Smart e-Science Cyberinfrastructure 81

Fig. 3.7 The process Process
ontology
‘ has
z z
= o =
5 5] “0 z =
= £ = = s
4 3 5 ] 2
S = S 5
< o

—— > Dependencies
subclassof

G
[=]
%
=
(5] -
= Gl
E a E
g —_—
o
]
|
W w
=
3 3 g S
= = = o
E E =) =
oW 5] E o
= = Q Q
1 —
5 = o =
y e

Data Ontology

weather stations, GPS stations, buoys and underwater sensors. A SensorGroup has
also been shown to have an associated geographical location identified by latitude,
longitude, elevation, and (if necessary) an x—y location relative to some reference.

Each SensorGroup may consist of multiple heterogeneous sensors with each
sensor being identified by its attributes such as its calibration coefficients, rate of
sensing, data transfer rate, and the data itself. The ontology also caters for situations
where a SensorGroup may have multiple instances of the same sensor which are
differentiated by their relative locations within the sensor group. For example, this
feature can cater for underwater sensors that may carry multiple temperature sensors
with each sensor responsible for monitoring water temperature at a different depth.
The data attribute under the sensor ontology is further expanded to represent dif-
ferent data types such as alpha (which includes alphanumeric), numeric, and binary
data. The numeric data can be any integer or real number quantity such as water
pressure, pH value. The binary data represent sensors such as acoustics and imagery
(such as satellite topographical images). Apart from the sensors, each SensorGroup
may have other resources such as communication modules, battery power, and stor-
age. Due to space limitation, only the communication module has been shown in
the ontology in Figs. 3.4-3.7 with its possible subclasses such as 3G, WiFi, and
Bluetooth, and its attributes such as available bandwidth and signal strength. The
complete ontology is available at [23].



82 H.B. Lim et al.

In defining the ontology, our main source for collecting commonly used terms
in the sensor domain was the IEEE 1451.4 smart transducers template descrip-
tion language [24], Semantic Web for Earth and Environmental Terminology
(SWEET) [25], Geography Markup Language (GML) [26], Sensor Web Enablement
(SWE) [27], SensorML [28], Suggested Upper Merge Ontology (SUMO) [29], and
OntoSensor [30], as well as domain-specific terminologies to handle our projects
discussed in Section 3.2.4. The ontology is implemented in Protégé with the data
ontology expressed in the Web Ontology Language (OWL) [31], whereas the meth-
ods ontology is expressed in the OWL-compliant OWL-S [32, 33] format. The
detailed OWL descriptions of the respective terms are found in the above-mentioned
ontologies. Specifically, the SWEET ontology may be consulted for scientific sen-
sor measurements such as water pressure, acoustic profile, underwater temperature,
relative humidity, whereas geographical and topographical ontology elements are
available from GML.

3.3.2 Grid-Based Service Orientation

In this section, we discuss the service advertisement, discovery, and access mech-
anisms on the grid-enabled infrastructure. Essentially, resource consumers in a
scientific community need a service-oriented model to allow them to specify
resource requirements and constraints. They need brokers that provide strategies
for choosing appropriate resources and dynamically adapt to changes in resource
availability at runtime to meet their requirements. In addition, in service-oriented
e-Science, there will be multiple, concurrent clients exercising different function-
alities of the system for different scientific processes. Thus, the infrastructure must
have a certain level of autonomy to decide on the best use of available resources to
fulfill multiple users’ concurrent uncoordinated requests.

Under these objectives, we argue that if the infrastructure provides means to
access the ontologies, one may encapsulate sophisticated domain-specific knowl-
edge and scientific methods into computational components or services. Each
service simply transforms input events into output events, adding new semantic
information as necessary. This semantic-based approach helps in search, discovery,
selection, composition, and integration of services and also in the automation of
their invocation, composition, and execution. Our proposed framework uses seman-
tic services as the basic programming model. We call these components as semantic
services since they provide access to various resource groups defined by the ontol-
ogy of a VO. Figure 3.8 shows the architecture for grid-based semantic service
management. The following sections provide details on each of the modules.

3.3.3 Service Interface

A scientist in a client VO needs to access resources in a server VO. In this case, the
proposed infrastructure supports the most easily accessible means of access, i.e.,
Web services, over unsecure channels (http) or via secure grid interfaces (https).



3 A Smart e-Science Cyberinfrastructure 83

180,54 Server-VO
Grid Resource Broker and Scheduler
5 : Service
Client-VO Betxice Dliey Advertisement
Scientist
Job Scheduling Job Dispatch
Security &
Authentication e Semantic Resource
. rf Registry
Service Interface Interface e
(Web Services, Secure Grid Interface)
Grid Services
Job
VO Ontology
Storage e
Management Manitoring

Fig. 3.8 The smart e-Science architecture

3.3.4 Semantic Interface

The semantic interface is a very important component of the entire infrastructure
since it provides access to both the resources directory and their semantics (ontol-
ogy). This component is implemented as a service that receives requests to locate
particular concepts in the directory and retrieve their semantics from the ontology.
The output from the semantic interface is always a list of semantic objects that
describe their type (data, scientific method, sensor, storage, computer), the access
mechanism (port type, address), and the interface (input, output).

3.3.5 The Proxy

The request from a client VO is received on the server VO side by the proxy
node that hosts resource brokerage and scheduling mechanisms. The request is first
authenticated via grid certificate credentials or directory-based third-party sign-on
mechanisms. The job scheduling and job dispatch components employ the grid’s
middleware services (such as ManagedjobFactory) for scheduling execution of a
service and dispatching it to the appropriate node on the grid. In order to find
the appropriate node, the grid explorer component is used. This grid explorer
component keeps grid node statistics via resource registry.

One of the key components residing at the proxy node is the service discov-
ery component that exposes the resources (physical as well as non-physical) in the
server VO to the outside world. Since the resources in the VO are modeled using
an ontology, the service discovery component provides interfaces to each of the ser-
vices listed in the resource directory, through which the services can be accessed.
For the resources to be discovered, they are first advertised in the form of service
ontologies by registering with the resource registry. While existing systems support
an attribute-based discovery as well as a simple name lookup to locate a service,
we exploit the OGSA'’s inter-grid interoperability and discovery mechanisms and



84 H.B. Lim et al.

bundle them with semantic matching based on the server VO’s ontology. This mech-
anism enables both the provider and the user to share a common understanding of
what capabilities the service offers and how they can be put to use.

3.3.6 Knowledgebase Design

Designing an archive for a smart e-Science cyberinfrastructure is a challenge
since the schema not only has to support high data rate Online Line Transaction
Processing (OLTP) queries but also has to cater for modeling and decision support
queries in the Online Analytical Processing (OLAP) domain. Thus, we designed the
schema for our smart e-Science cyberinfrastructure with the following features:

1. It supports high rate incoming data streams that comprise of binary as well as
discrete data types.

2. It supports real-time data retrieval (OLTP).

3. It supports large-scale data retrieval to interface with third-party modeling and
simulation tools (OLAP).

4. Tt supports distributed data storage and processing in order to handle vast amount
of sensor data.

5. Itis extensible and flexible to handle arbitrary new sensor type.

3.3.7 Data Exchange

The triangle design shown in Fig. 3.3 forms the basis of seamless data exchange
among the participating VOs. Starting from the lowest layer in the triangle, each
instance of the triangle, when coupled with a data set, provides the semantics of the
data itself, the resource that produced the data set, the resource group to which this
resource belongs, and the VO that owns this resource group. However, we need a
mechanism to let the participating VOs exchange these ontology triangles among
each other whenever they intend to exchange data. In addition, this data exchange
should conform to the data security and user access policies as defined by the VO
owning the data.

The proposed smart e-Science framework allows such a data exchange using grid
services that act like a middleman between the two VOs intending to exchange the
data. From the perspective of the client VO (the one seeking data), Fig. 3.9 shows
that the data emerging from heterogeneous scientific sources are interpreted by the
e-Science grid middleware using the data source’s ontology. The interpreted data
are then transformed using the highest level data ontology into the format expected
by the client VO, as described in the query specifications.

Figure 3.10 shows the step-by-step flow of events starting from the initiation of
query from a VO (VOL1) until it gets the interpreted and transformed data back from
another VO (VO2). The flow begins with VOI1 issuing a data acquisition request.



3 A Smart e-Science Cyberinfrastructure 85

Data Data :
& h Transformation ©  Interpretation = P

8 M
| i
Data VO

Onology Ontology

Fig. 3.9 Data flow from the perspective of client VO

Data Query
Discover VO
Data Access
Interface
Query User
Access Rights
User Access
Status
Data Access
Interface
Data Query
Data
Data
Interpretation &
Transformation
Request
Interpret &
Transform Data
Processed Data

Fig. 3.10 The data exchange between two VOs



86 H.B. Lim et al.

This request will include the high-level semantics regarding the type of data that is
sought and, possibly, the target VO (if known). The e-Science middleware searches
through the ontologies of all the participating VOs (if no target has been specified)
in order to discover a data access interface. Once such an interface is found, the
middleware contacts the target VO (VO2) to seek VO1’s access rights. If VO2 clears
VOI’s access, the data access interface is returned back to VOI1. This interface can
be a link to a Web service, a database connection information, or a Web-based data
archive. VO1 uses this interface to directly connect to VO2 seeking the data. VO2
responds back with the data set that satisfies VO1’s query. However, this data set
is incomprehensible to VOI as it belongs to a different operational and scientific
domain. Thus, VOI sends a service query to the e-Science middleware to interpret
the data and transform it into a format (such as XML, CSV) that is friendly to VOI1.
The e-Science middleware uses VO2’s ontology to identify the ontology triangle
for the data set and converts the data using the highest level data ontology. The
reformatted data are then sent back to VO1 which then uses it for the purpose they
were sought.

3.4 Implementation

Based on our sensor grid architecture design, we are building a large-scale smart e-
Science cyberinfrastructure to integrate hundreds of heterogeneous sensor resources
distributed across a wide geographical area under the CI@CENSAM, NWSP,
SWPR, GPS, and LiveE! projects into a single semantics-based service-oriented
access model. The details of our sensor grid design and implementation are
described in [34].

Our sensor grid-based cyberinfrastructure has several important features. First, it
connects heterogeneous sensor resources belonging to different scientific VOs via
the Internet to automatically collect and aggregate sensor data in real time. Second,
the varied types and formats of sensor data are linked to the ontology of the respec-
tive VO and the data are converted into a standard OWL format in order to bind data
semantics with the data for ease of access and processing. Third, the sensor data are
stored in distributed data archives whose schema is also derived from the common
concepts found in the ontologies of three VOs. Fourth, the grid models computa-
tional as well as storage resources as semantic services for the compute-intensive
processing of sensor data. Fifth, the sensor data can be conveniently accessed and
shared via the Web through mash-ups, blogs, and Web services. We are developing
techniques and tools to efficiently publish, archive, query, process, visualize, and
search the vast amount of sensor data in a unified manner.

In the following sections, the details of the data and process ontologies,
client and server VO service implementation, and the design of data schema are
provided.



3 A Smart e-Science Cyberinfrastructure 87
3.4.1 Ontology Design

We selected the Web Ontology Language (OWL) to implement various data and
process ontologies since it is designed for use by applications that need to process
the content of information instead of just presenting information to humans. OWL
facilitates greater machine interpretability of Web content than that supported by
XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along
with formal semantics. The OWL can be used to describe the classes and relations
between them that are inherent in Web documents and applications. An OWL ontol-
ogy may include descriptions of classes, properties, and their instances. Given such
an ontology, the OWL Formal Semantics specifies how to derive its logical conse-
quences, i.e., facts not literally present in the ontology, but entailed by the semantics.
The advantage of OWL over standard XML schema is that OWL is a knowledge
representation and helps accurate interpretation through its rich semantics.

We used the Protégé OWL for implementing the guidelines for building ontolo-
gies for our case study domains. The steps to define this ontology are as follows:

1. All elements from the CI@ CENSAM, NWSP, SWPR, GPS, and LiveE! projects
were identified and conceptualized as classes. Table 3.1 shows a list of such
concepts.

2. Various high-level concepts such as projects, ResourceGroup, data, and sensor

were identified as root classes.

A scientific VO was considered as the origin of the ontology.

4. The relationships such as has, subClassOYf, isDefinedBy between the root classes
with the VO were identified.

et

Table 3.1 Concepts in an ontology for various scientific domains

Sensor Sensor location Average temperature
Weather station Vantage Pro Surface temperature
GPS receiver Weather hawk Rain alerts
LiveE! Vaisala GPS observation data
NWSP SensorScope Satellite navigation data
APEC Earth plate movement Satellite
Sumatra, Indonesia Temperature Manufacturer
Japan Humidity Model
Singapore Wind speed Array of GPS stations
Station location Inside temperature Data rate
Numbers Outside temperature GPS position estimation
Strings School GPS velocity estimation
Project Data precision Underwater depth
Elevation Data format Total chlorine
Building geometry Leak PH
Underwater vehicle Pressure Velocity
Chemical sensors Sound Orientation

Surface wind Ocean carbon

Biological agents




88 H.B. Lim et al.

5. Subclasses for each of the root class were identified with their attributes and laid
in the ontology hierarchy.

6. Specific instances of various classes, such as WeatherStations, ThermalSensors,
AcousticSensors, SuperComputer, RAID, were created.

7. The data and process ontologies were defined for each VO.

Table 3.2 shows the characterization of various concepts in the resulting ontol-
ogy. A high-level view of the ontology for smart e-Science is shown in Figs 3.4-3.7.

Table 3.2 Characterization of concepts in an ontology

Domain Property name Range
Sensor_characterized_by Sensor Type, Max_Output,
Min_Output,
accuracy, location,
datastream
SensorGroup_characterized_by SensorGroup Type, location,
manufacturer, sensor
hasDataType Datastream Format

Project_characterized_by

Project_Canbe

Location_Canbe

Locationonearth_Has

LocationinGroup_Has

HasUnit

Project

Identification

Location

Location_on_earth
Location_

in_SensorGroup
Format

Identification,
SensorGroup
Developer, name,
starting_time,
country
Location_on_earth,
Location_in_
SensorGroup
Latitude and longitude
Distance to the ground
of the fix point
Physical_Unit

3.4.2 Server-Side Service Implementation

As mentioned earlier, the server VOs will provide access to their resources via
server-side services, whereas client VOs will utilize those services by deploying
client-side services. For our smart e-Science cyberinfrastructure, we have imple-
mented a number of services to expose both physical and non-physical resources.
The server-side services have been implemented in Java and deployed in Apache
Axis to produce server- and client-side SOAP wrappers. As an example, we will
provide the implementation details of a sensor data retrieval service GetSensorData.

Each service comprises of methods that can be categorized based on the type of
information they provide (a) metadata-related methods and (b) data-related meth-
ods. The metadata-related methods deal with obtaining meta information about the



3 A Smart e-Science Cyberinfrastructure 89

service itself, such as the list of methods that the service provides and the signatures
of those methods so that they can be accessed. Table 3.3 lists the metadata-related
methods of the GetSensorData service.

Table 3.3 Metadata-related methods of the GetSensorData service

Method Description
listMethods List all methods provided in the service
getMethodOntology Return the ontology of a specific method

The data-related methods provide the actual sensor data. These data come from
sensor deployments, with each deployment having specific number and type of
sensors. The data-related methods also include those methods that provide such
information. This is critical for cross-disciplinary data sharing since a client VO
that wishes to access the data from a particular server VO should first know what to
ask for so that the server VO can provide the relevant data. Thus, the methods, such
as listDeploymentSites, provide a list of all sensor deployment sites that the server
VO wishes to expose to others. Having obtained the list of sites, the client VO can
then choose one or more of the sites where it wishes to retrieve real-time or archived
data.

Once the client VO has selected the deployment sites, the next step is to know
what sensors have been deployed at that particular site, what are the attributes (such
as data types, data availability time period, data format.) of each sensor and how to
interpret the data and to translate it if necessary. For this purpose, the GetSensorData
service provides a method getSiteOntology that encapsulates this information as an
ontology in OWL format. The client can then process the OWL document to retrieve
the details of the sensors and their data. Finally, the method getData can be invoked
by the client with the specification of deployment sites, sensors, and period of data to
be retrieved (if accessing archived data). The client can also choose from a number
of formats in which the data should be provided, such as OWL, XML, and ASCIIL.
Table 3.4 lists the data-related methods of the GetSensorData service.

3.4.3 Client-Side Service Implementation

The client VOs implement client-side services that talk to their server VO counter-
parts to obtain access to the resources. While different approaches can be adopted

Table 3.4 Data-related methods of the GetSensorData service

Method Description
listDeploymentSites Return a list of all sensor groups available
getSiteOntology Return all attributes of the sensor group specified

getData Return the data for the specified sensor group of the specified start




90 H.B. Lim et al.

for client-side service implementation and deployment, the sequence in which var-
ious methods in the service are invoked will remain the same. Figure 3.11 shows
a basic flow of method invocation. The client VO first initiates a service discov-
ery request with parameters describing the high-level classification of the type of
resource the client is seeking. At the broadest level, these parameters will include:

1. Service|Discovery 5. Service |Description 9. Service|Call 12.[Service Result
4. Service([List 8. Service Dntology

3. Service|l 7. Service Dntology 11.[Service Result
2. Service|Discovery [Description 10. Service|Call

Fig. 3.11 Client VO-to-server VO service execution flow

1. Resource type (sensor, storage, compute, data, method)
2. Client credentials

While the resource-type parameters will be used by the server side to nar-
row down the type of services the client is looking for, the credentials will help
in the client’s authentication and the identification of his access level. Such ser-
vice requests are received by the service containers such as Apache/Tomcat and
handled by the services at the server VO. The services at the server side in turn
provide a list of relevant services to the client. The key to this client—server com-
munication is the exchange of OWL documents (such as services list, ontologies)
that enable both client and server sides to accurately interpret the information
supplied by the other party. The client VO selects a service from the list and
requests the description of the service. The client VO at this stage expects to know
how to invoke the service in order to gain access to a particular resource in the
server VO (such as data, storage). The server VO responds with the ontology of
the requested service in the OWL format describing service ontology, resource
ontology, and resource access level. The client then invokes the service using the
format prescribed in the ontology and waits for the results (data in case of a data
request and access to compute/storage resource in case of a corresponding resource
request).

We have implemented prototype client VO services in both Apache Axis and
without Apache Axis scenarios. In case of Axis-based deployment, the following
steps are needed to deploy the service and to invoke the sequence of methods in the
service, as described in Fig. 3.11.



(98

A Smart e-Science Cyberinfrastructure 91

Request OWL/WSDL for the service from server VO.

Generate client-side stubs: ServiceLocator and SoapBindingStub.
Implement the client logic using the generated stubs.

Invoke the service.

el NS

For deploying a client on a non-Axis platform, the following steps are needed:

1. Discover the service locator (such as URI/URL) by requesting service advertise-
ments from server VO.

2. Create a handle to the service.

Provide parameters needed by the service handle.

4. Invoke the service.

et

3.4.4 Fundamental and Composed Services

3.4.4.1 Users and Application Services

The users in the smart e-Science cyberinfrastructure usually access the services
through Web-based interfaces (such as a Web portal). On the other hand, researchers
usually use Web services to access the data as well as other resources exposed
by different VOs. For users sending data acquisition requests through the Web or
other TCP/IP networks, the Grid User Job Submission (GUJSub) service handles
remote job submission. The job may make use of services such as data acquisition,
weather statistics computation, alerts and notification, and visualization that have
been implemented as part of the smart e-Science cyberinfrastructure. Otherwise,
the user may submit his service to be executed. In such cases, the Grid User
Authentication (GUAuth) service validates the user first before GUJSub submits the
job for execution.

The Web interfaces also provide access to the Work flow Creation service that
enables users to compose and submit complex computational and data acquisition
tasks from basic services. Such tasks may include continuously acquiring sensor
data from a particular geographical region, running statistical analysis on the data,
and alerting the user in case some events are detected.

The Users & Applications (UA) components [34] also include Data Access
application programming interfaces (APIs) that provide pull/push-based access to
real-time as well as archived sensor data. The data are provided in various formats
that can be parsed and processed, such as plain ASCII, XML, and OWL. These APIs
are particularly useful for applications that require direct access to the data. Thus,
apart from browsing the data manually via the Web portal, users can also access the
data from their applications.

For example, in the case of the NWSP application, it should be noted that a
general public user who is only interested in making use of weather-related services
(such as obtaining a snapshot of current weather status, subscribing to weather



92 H.B. Lim et al.

alerts) does not need to know the technical details of how the smart e-Science
cyberinfrastructure has been implemented and how his request is serviced. Users
who submit their own services to be executed on the smart e-Science cyberinfras-
tructure should know the application programming interfaces (APIs) as well as how
the results of their jobs will be delivered to them. Finally, users who want to join
the smart e-Science cyberinfrastructure as an independent VO need to know the
details of publishing their resources and services to become shareable across the
smart e-Science infrastructure.

3.4.4.2 Sensor Resources Proxy Services

The sensor networks are integrated with the grid infrastructure via a proxy. This
proxy performs data acquisition and sensor network management tasks. Data
acquisition tasks can be persistent or ad hoc. In persistent data acquisition, the
proxy gathers data continuously from the sensor network, whereas in ad hoc
data acquisition, the rate of data acquisition from the sensor network is not
regular.

The proxy runs a Grid Sensor Network Management (GSMan) service that man-
ages the sensor network to which the proxy connects. GSMan has components that
perform sensor network administration and sensor data access. The administrative
tasks include Sensor Network Connectivity Management to intelligently maintain
connection with the sensor network Sensor Profile Reporting to provide meta infor-
mation regarding the sensor nodes in the network and Sensor Availability Tracking
to log information and provide alert on sensor nodes’ health status. In terms of data
acquisition, the Data Acquisition Scheduling component schedules the data sensing
and reporting cycles for each of the sensor nodes in the network. This schedule is
driven by the data acquisition requests submitted by users.

While GSMan handles the proxy’s interface to the sensor network, the UA-SR
Interface Management (USIMan) component manages the flow of requests and data
between the components in the UA and the Sensor Resources (SR) layers. The Grid
User Authentication and Data Security component of USIMan handles the secu-
rity of the data as well as the sensor network that the user wants to access. The
users in this category are usually collaborating researchers. USIMan carries out
Policy-based Data Acquisition in conjunction with GSMan to obtain sensor data
based on users’ requests. In addition, it includes data processing components such
as the Data Cleaning component that cleans the data to improve its quality and the
Data Archival and Conversion component to log the data locally and convert it into
suitable formats as needed by the users, such as XML.

Our current data representation format is XML based and it is similar to a sim-
plified version of SensorML. Our format follows the standard XML marshaling,
un-marshaling, and parsing standards. It defines groups of sensors bound together
as weather stations followed by sequences of sensor data in the parameter—value
pair format. The format is continuously being improved and extended as more het-
erogeneous sensors and more complicated processes are being integrated into the
system.



3 A Smart e-Science Cyberinfrastructure 93

3.4.4.3 Compute/Data Resources Services

The smart e-Science cyberinfrastructure provides middleware services to support
heterogeneity in the infrastructure in terms of resources, services, and geographical
location. These middleware services handle various important tasks as described
below.

The Resource Discovery and Brokerage service provides seamless access to
sensor networks and grid resources, irrespective of their specifications and loca-
tion. It discovers sensor networks that can fulfill a user’s (or application’s) data
requirements. It also discovers computational and storage resources needed by jobs
submitted by users or hosted on the grid.

In order to do its job, the Resource Discovery and Brokerage service makes use
of the Meta Scheduling service that maintains an ontology of resources and sensor
networks in participating VOs. This ontology includes the description of sensor net-
works with the detailed capabilities and specifications of sensors, specifications of
computational and data resources, and user access. Once the Resource Discovery
and Brokerage service identifies the needed data and services, the meta scheduler
helps to reserve and to provide access to particular resources to the jobs via Web
Services Definition Language (WSDL).

For workflow-based jobs, the Workflow Management middleware service handles
the execution of the user’s job that may include executing multiple services on the
grid and responding to the user with the results. The workflow management service
makes use of the Resource Discovery and Brokerage service to discover the data
as well as services that the user requires and then executes the job based on the
execution policy defined by the user.

The smart e-Science cyberinfrastructure supports distributed framework devel-
opment, i.e., the participating VOs may make the services running in their infras-
tructure to be accessible and used by others. Likewise, the computational as well
as data resources in different VOs may also be published for smart e-Science
community use. For this purpose, the smart e-Science middleware includes the
Resource Registration and Publishing services for service registration, compu-
tational resource registration, storage resource registration, and their publishing.
These services perform the task of registering the resources in smart e-Science
ontology so that the Resource Discovery and Brokerage service can search them
and make them available to users and other services when needed.

The Job Management and Execution service receives job requests from middle-
ware and activates the services and executables identified by the grid meta scheduler.
The Load Balancing service is utilized at this stage to identify a suitable grid node
where the job should be executed. In the current implementation, the average CPU
utilization of grid nodes is the parameter to be considered when selecting a node
where a job should be dispatched.

For the purpose of failure detection and recovery, the Monitoring and Fault
Tolerance services, based on tested schemes like heartbeats, are used in the
grid infrastructures as well as sensor network proxies. The information collected
includes dynamic statistics such as failure ratios and downtime/uptime ratios and



94 H.B. Lim et al.

is used with the VO’s ontology to provide recommendations as to the best possi-
ble resource usage plan. The fault tolerance component is used whenever a fault
is detected to carry out proactive as well as reactive data transfer, job transfer, and
service migration to ensure the seamless execution of a job.

For data resources, a Semantic Data Conversion service is provided that uses
ontology-based metadata to make sense of the sensor data and help to archive it
accurately. This service is critical since it enables seamless data sharing among VOs.
There is no industry standard that defines how the data from sensor networks should
be formatted and interpreted. Thus, this service converts sensor data from its raw
format to the one that is tightly coupled with its semantics and archived as various
ontology instances. These ontology instances are then provided to the users to allow
them to interpret and process the data accurately.

3.4.5 Conceptual and Semantic Schema

The schema for smart e-Science was designed and implemented using a combina-
tion of MySQL and file system. MySQL is used to manage discrete sensor data,
whereas raw binary data streams are co-managed using MySQL and the well-
indexed and meta-tagged Linux file system. The ontology documents (OWL) for
data and process ontology are also managed in the file system and indexed in the
database. The resource registry is managed in the MySQL database. We are also
experimenting with BLOB data type to handle raw binary data within the database
and analyzing performance gains as compared to file-based binary data manage-
ment. In order to support heterogeneous sensor types and extensibility to handle
new types, the schema is not tied to any particular sensor type. Figure 3.12 shows
the high-level database schema.

3.5 Conclusions

In this modern age of science, fundamental breakthroughs in any scientific field
are only possible by undertaking scientific research that spans many scientific dis-
ciplines. e-Science promises to provide the backbone to support resource sharing
among scientific communities. The provision of such an infrastructure is still in
infancy and existing attempts comprise of incoherent efforts in grid computing,
service-oriented architectures, and semantic Web. In this chapter, we have pro-
posed a smart e-Science cyberinfrastructure that integrates existing technology in
an innovative manner to realize the ultimate goal of sharing scientific resources.
While building on top of grid, service-oriented architecture, and resource semantics,
our proposed infrastructure builds an overarching ontology that binds every scien-
tific resource in standards-based semantics and makes it shareable with the outside
world via ontology-based services. We have also demonstrated the implementation
of this smart e-Science cyberinfrastructure involving several large-scale scientific



3 A Smart e-Science Cyberinfrastructure 95

VO_Detail
i) PHFKT (VO _id
o VO_Attribute Station_Attribute
PK | VO id < PKFK2 (VO _attribute_id -
PK |VO_attribute_id PK | Station_attribute_id
VO_Nama VO_attribute_value
r'y VO_attribute_name Station_attribute_name
Station
PK | Station_id Sensor_Type_Aftribute
vo.. Station_Detail PK
- < = Sensor type attribute id
PK.FK1 | VO i Station_name s -
PKFK2 ion i Station_id
Station id * PK.FK2 | Stati N Sensor_type_attribute_name
Station_Sensor A
PRFKY Station_attribute_value
Sensor_Simple_Data_Number PKFK2 |Sensor id
Sensor_Typa_Detall
PKFK1 | Sensor id
PK Time_sec PK.FK1 | Sensor_type id
PK Time_microses | PK.FK2 | Sensor_type attribute id
| Sensor
Value I e Sensor_type_attribute_valuo
»
Sensor_Simple_Data_String FK1 | Sensor_type_id
»
PKFK1 | Sensor i 4
PK Time_sec S Sensor_Type
PK Time_microsec PK |5 1
Velue Sensor_type_name
I Stream_Data
Sensor_Stream_Data Sensor_Detad I —moorro |
= LS ] PK |Value id = Sensor_Atribute
PKFK1 |Sensor id b PKFK1 | Sensor id 3
PK Time_sec Stream_Data PK,FK2 |Sensor_attribute_id p PK | Sensor atiribute id
PK Time_microsec
Sensor_attribute_value Fensor_alirbute_name
FK2 Value_id

Fig. 3.12 High-level database schema

facilities that produce real-time sensor data, contain archived scientific data for their
respective domains, and also contain computational and storage sources. We have
shown that our infrastructure provides reusable services that seamlessly adapt to
the respective domain based on its semantics. Thus, these services provide a means
for composing more complex services in order to execute cross-domain scientific
workflows.

Acknowledgments This work was supported by Microsoft Research, Intelligent Systems Center
of Nanyang Technological University, Research Support Office of Nanyang Technological
University, the Singapore National Research Foundation (NRF) under grant numbers NRF-G-
CRP-2007-02 and NRF2008IDM-IDMO001-005, and the Singapore National Research Foundation
(NRF) through the Singapore-MIT Alliance for Research and Technology (SMART) Center for
Environmental Sensing and Modeling (CENSAM).

References

Joseph, J., Fellenstein, C.: Grid Computing. IBM Press, USA (2004)

2. Sotomayor, B., Childers, L.: Globus Toolkit 4 Programming Java Services. Morgam
Kaufmann, San Francisco (2006)

3. Leymann, F, Giintzel, K.: The business grid: Providing transactional business processes via
grid services. In: Proceedings of the International Conference on Service Oriented Computing
(ICSOC), Trento, Italy (2003)

4. McKee, P.: Grid — the ‘white knight’ for business? BT Technology Journal 23(3) (July 2005)
45-51

5. Zhang, L., Li, H., Lam, H.: Toward a business process grid for utility computing. In: IT

Professional, IEEE Computer Society, 6(5), (September/October 2004) 62-64

—



96

10.

11.

12.
13.

14.
15.
16.

17.

18.

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.

H.B. Lim et al.

Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home — Massively
distributed computing for SETI. Computing in Science & Engineering 3(January) (2001)
78-83

Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer, Berlin (2003)

Singh, M.P., Huhns, M.N.: Service-Oriented Computing Semantics, Processes, Agents. Wiley,
New York (2005)

Stuckenschmidt, H.: van Harmelen, F.: Information sharing on the semantic web. Advanced
Information and Knowledge Processing. Springer, Heidelberg (2005)

Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications. Knowledge
Engineering Review 11(2) (1996) 93-115

Guarino, N., Carrara, M., Giaretta, P.. An ontology of meta-level categories. Proceedings
of the 4th International Conference on Knowledge Representation and Reasoning (KR94),
Morgan Kaufmann, San Mateo, CA (1994)

TeraGrid, http://www.teragrid.org/. Accessed 18 Jul 2010

Yamamoto, N., Nakamura, R., Yamamoto, H., Tsuchida, S., Kojima, I., Tanaka, Y., Sekiguchi,
S.: GEO grid: Grid infrastructure for integration of huge satellite imagery and geosciences.
In: Proceedings of the 6th IEEE/ACM International Conference on Computer and Information
Technology (CIT), Seoul, Korea, (2006) 75

The London e-Science Center, http://www.lesc.ic.ac.uk. Accessed 18 Jul 2010

The Cambridge e-Science Center, http://www.escience.cam.ac.uk. Accessed 18 Jul 2010
Alper, P., Corcho, O., Kotsiopoulos, 1., Missier, P., Bechhofer, S., Kuo, D., Goble, C.: S-OGSA
as a reference architecture for OntoGrid and for the semantic grid. In: Proceedings of the 16th
Global Grid Forum (GGF16) Semantic Grid Workshop, Athens, Greece, February (2006)
MyGrid: http://www.mygrid.org.uk/. Accessed 18 Jul 2010

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna:
A tool for building and running workflows of services. Nucleic Acids Research 34 (2006)
729-732

Cyberinfrastructure for the Centre for Environmental Sensing and Modeling, http:/
censam.mit.edu/research/res5/index.html#sec4. Accessed 18 Jul 2010

The National Weather Study Project, http:/nwsp.ntu.edu.sg. Accessed 18 Jul 2010

Sensor Grid for GPS Data Processing Project, http://sensorgrid.ntu.edu.sg/gps. Accessed 18
Jul 2010

The LiveE! Project, http://www.live-e.org/en/index.html. Accessed 18 Jul 2010

e-Science Ontology, http://sensorgrid.ntu.edu.sg/SmarteScience.html. Accessed 18 Jul 2010
The Open Geospatial Consortium, http://www.opengeospatial.org. Accessed 18 Jul 2010
Semantic Web for Earth and Environmental Terminology (SWEET), http:/
sweet.jpl.nasa.gov/ontology. Accessed 18 Jul 2010

Geography Markup Language, http://www.opengeospatial.org/standards/gml. Accessed 18
Jul 2010

Sensor Web Enablement Working Group, http://www.opengeospatial.org/projects/groups/
sensorweb. Accessed 18 Jul 2010

Sensor ML, http://www.opengeospatial.org/standards/sensorml. Accessed 18 Jul 2010

Pease, A., Niles, L., Li, J.: The suggested upper merged ontology: A large ontology for
the semantic web and its applications. In: Working Notes of the AAAI-2002 Workshop on
Ontologies and the Semantic Web, Edmonton, Canada, July (2002)

Russomanno, D.J., Goodwin, J.C.: OntoSensor: An Ontology for Sensor Network Application
Development, Deployment, and Management, Handbook of Wireless Mesh and Sensor
Networking. McGraw Hill, New York (2008)

OWL Web Ontology Language Reference, Mike Dean and Guus Schreiber, Editors, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/2004/REC-owl-ref-20040210/
Latest version available at http://www.w3.org/TR/owl-ref/. Accessed 18 Jul 2010



3 A Smart e-Science Cyberinfrastructure 97

32.

33.
34.

Liu, J., Zhao, F.: Towards semantic services for sensor-rich information systems. In:
Proceedings of the 2nd IEEE/CreateNet International Workshop on Broadband Advanced
Sensor Networks, Boston, MA, October (2005)

OWL-S. http://www.daml.org/services/owl-s. Accessed 18 Jul 2010

Lim, H.B., Igbal, M., Wang, W., Yao, Y.: The national weather sensor grid: A large-scale
cyber-sensor infrastructure for environmental monitoring. International Journal of Sensor
Networks (IJSNet), Inderscience 7(1/2) (2010) 19-36



Chapter 4
Developing Ontologies within Decentralised
Settings

Alexander Garcia, Kieran O’Neill, Leyla Jael Garcia, Phillip Lord, Robert
Stevens, Oscar Corcho, and Frank Gibson

Abstract This chapter addresses two research questions: “How should a
well-engineered methodology facilitate the development of ontologies within com-
munities of practice?” and “What methodology should be used?” If ontologies are
to be developed by communities then the ontology development life cycle should
be better understood within this context. This chapter presents the Melting Point
(MP), a proposed new methodology for developing ontologies within decentralised
settings. It describes how MP was developed by taking best practices from other
methodologies, provides details on recommended steps and recommended pro-
cesses, and compares MP with alternatives. The methodology presented here is the
product of direct first-hand experience and observation of biological communities
of practice in which some of the authors have been involved. The Melting Point is
a methodology engineered for decentralised communities of practice for which the
designers of technology and the users may be the same group. As such, MP pro-
vides a potential foundation for the establishment of standard practices for ontology
engineering.

4.1 Introduction

The maturity of a particular scientific discipline can be defined by its progress
through three main stages. First, innovation followed by the subsequent dissemi-
nation of the resulting knowledge or artefact. Second, the formation of communities
or collaborations, that utilise or build upon the innovations. Third, the proposal and
agreement upon standards for protocols to achieve the unified and consistent pro-
gression of innovation and knowledge [1]. The discipline of ontology engineering
can be thought of as progressing through the second stage of scientific maturity,
moving from ontologies developed by a single authoritative expert to harvesting the
collective intelligence of an application domain [2—4]. This trend is also reflected in

A. Garcia (X)
University of Bremen, Bremen, Germany
e-mail: alexgarciac @ gmail.com

H. Chen et al. (eds.), Semantic e-Science, Annals of Information Systems 11, 99
DOI 10.1007/978-1-4419-5908-9_4, © Springer Science+Business Media, LLC 2010



100 A. Garcia et al.

the availability of software supporting the engagement of several domain experts,
communities, representing knowledge and developing ontologies [2, 5]. Therefore,
ontology engineering is on the cusp of the third stage of scientific maturity, requiring
the development of common working practices or standard methodologies.

Knowledge engineering (KE) is a field that involves integrating knowledge
within computer systems [6] or the building, maintaining and development of
knowledge-based systems [7]. Therefore, some of the methods proposed within the
field of KE are applicable when building ontologies [8]. However, the experiences
from KE have not always been applied when developing ontologies. In general KE
methodologies focus primarily on the use of the ontology by a software system as
opposed to the development of the ontology [9].

Within the domain of ontology engineering several methodologies have been pro-
posed and applied [10—17]. The majority of the proposed methodologies have been
engineered for centralised settings. However, none of these have gained widespread
acceptance, predominant use or have been proven to be applicable for multiple
application domains or development environments [18]. To date the community
has not been widely involved or considered within ontology engineering method-
ologies. This situation has encouraged debate amongst those within the ontology
community as to which methodology or combination of methodologies are most
applicable [18, 9].

The language choice for encoding an ontology is still an open debate across
the ontology building communities. This situation can be illustrated by the use
of both the OBO format and the OWL within the bio-ontology community [19].
Conforming to or accepting a single formalism for ontology encoding would bring
consistency and standardisation to the engineering methodology, such as tool sup-
port and reasoning engines. However, it is outside the scope of this work to
recommend a particular formalism for ontology encoding. Therefore, the ontology
methodologies are considered and analysed in a language-independent manner.

Whatever methodology emerges, it is essential that the methodology should
be able to support the construction of ontologies by communities and utilise the
collective intelligence of the application domain. Of the published methodologies
that have been proposed or applied, no methodology completely satisfies all the
criteria for collaborative development. To this end, we have reviewed the exist-
ing methodologies, identified commonalities and assessed their suitability for use
within community ontology development. We have summarised these commonali-
ties into a convergence of existing methodologies, with the addition of new aspects
which we have termed the Melting Point (MP) methodology. The MP methodol-
ogy builds upon the authors’ experiences with community-developed ontologies,
re-using methods and techniques that already exist and suggesting new mechanisms
to cope with collaborative ontology development in decentralised settings.

4.1.1 Decentralised Communities

As knowledge is in a constant flux, ontologies should be flexible so they are re-
usable and easily extensible. This is not effortlessly achievable as representing



4 Developing Ontologies within Decentralised Settings 101

knowledge requires the active participation of domain experts. The majority of
existing methodologies have been engineered for centralised settings, in which the
ontology is developed and deployed on a one-off basis. Afterwards, the mainte-
nance, as well as the evolution of the ontology, is left to the knowledge engineer
and a reduced group of domain experts. This situation is also true through-
out the development process: a reduced group of domain experts work together
with the knowledge engineer to build the ontology. To date the community has
not been widely involved or considered within ontology engineering method-
ologies.

The costs and efforts associated with the development of ontologies are con-
siderable, it is therefore important to facilitate this process by allowing the
community to participate in the development. By having this active participation
some important aspects are covered: first, the quality of the model is constantly
verified and second the evolution of the ontology is feasible. This paradigm fol-
lows the “wisdom of crowds” — assuming that more contributors implies higher
quality or volume of information — as is employed within wiki-based collabora-
tions. Collaboration is thus at the Melting Point in a methodology for developing
ontologies.

4.1.2 Community-Driven Ontology Engineering

To illustrate the motivation and applicability of the MP methodology, examples are
given from the life sciences, specifically the biomedical ontology domain. Within
the knowledge-intensive biological domain, collaboration and community involve-
ment is common place and encouraged in ontology development maintenance,
evaluation and evolution.

Despite the lack of formal methodologies, bio-ontologies continue to be devel-
oped and the nature of this development has two very interesting properties. First,
it is highly distributed; domain experts in any given sub-domain of the biologi-
cal sciences are rarely in one place. Rather, they are distributed across the globe
yet frequently interact to either collaborate or peer review each others’ work.
Hence, when biologists build ontologies, they tend to form virtual organisations
in which experts with different but complementary skills collaborate in building
an ontology for a specific purpose. The structure of this collaboration does not
necessarily have a central control; different domain experts join and leave the
network at any time and decide on the scope of their contribution to the joint
effort. Leveraging this kind of virtual collaboration can be a powerful tool when
constructing an ontology. Second, biological ontologies continue to evolve, even
after the initial development drive. The continued evolution reflects the advance-
ment of scientific knowledge discovery. New classes, properties and instances may
be added at any time and new uses or extended scope for the ontology may be
identified [17]. By engendering and facilitating this level of community partic-
ipation, an ontology engineer can speed up the initial development and help to
ensure that the ontology remains up to date as knowledge within the domain
advances.



102 A. Garcia et al.

For example, the Ontology of Biomedical Investigations (OBI)! aims to provide
an ontological representation of life science investigations covering common
components of experimentation, such as equipment, materials and protocols. The
developer community of OBI? is currently affiliated with 18 diverse biomedical
communities, ranging from functional genomics to crop science to neuroscience. In
addition to having a diverse community of expertise, the OBI developers work in a
decentralised environment encompassing multiple countries and time zones.

The diversity of the life science domain results in a multitude of application
domains for ontology development. To account for and identify available bio-
ontologies the Open Biomedical Ontologies (OBO) Foundry [3] was formed. The
OBO Foundry acts as a registry to collect public domain ontologies that, by design
and revision, are developed by and available to the biomedical community, fostering
information sharing and data interpretation. As of 23 October 2008 there are 76 reg-
istered ontologies at the OBO Foundry, representing knowledge domains ranging
from Amphibian gross anatomy, infectious diseases to scientific experimentation.
Although registered in the same library, the bio-ontologies, often present overlap
in terminology or application domain. In addition to providing a registry, the OBO
Foundry was formed to reduce ontology overlap and ensure bio-ontology orthogo-
nality. Initial steps at achieving this aim have produced a set of design principles’ to
which domain ontologies should adhere, such as openness, a shared syntax and class
definitions. However, the OBO Foundry does not suggest a community-orientated
engineering methodology, methods or techniques by which these principles can
be met.

Case studies have been described for the development of ontologies in diverse
domains, yet surprisingly very few of these have been reported to have been applied
to a domain allied to bioscience, the chemical ontology [13], and the ontology for
immune epitopes [20] being noteworthy exceptions. The research focus for the bio-
ontology community to date has typically centred on the development of domain-
specific ontologies for particular applications, as opposed to the actual “how to” of
building the ontology or the “materials and methods” [17, 21]. This has resulted
in a proliferation of bio-ontologies, developed in different ways, often presenting
overlap in terminology or application domain.

The biomedical domain is not the only domain where ontologies are being devel-
oped and applied. The Semantic Web (SW) encompasses a vision where knowledge
and relationships between documents are disseminated via ontologies by annotating
the current, largely human-accessible Web, to facilitate a Web amenable to machine
processing [22]. Indeed, the creators of that vision consider the life sciences to
potentially be the “incubator” community for the SW, as the physics community
was for the Web [23]. Within the SW vision, as within the biomedical domain, the
involvement of communities of practice is crucial, not only for the development, but
also for the maintenance and evolution of ontologies.

Uhttp://purl.obofoundry.org/obo/obi/
Zhttp://obi-ontology.org/page/consortium
3http://www.obofoundry.org/crit.shtml



4 Developing Ontologies within Decentralised Settings 103
4.1.3 Upper Level Ontologies

As the biomedical domain is highly interconnected, domain ontologies may overlap
with each other. For instance, OBI requires the availability of definitions for those
chemicals used in any investigation. These definitions do not need to be developed
within the OBI ontology as there is already a biomedical ontology for the domain of
chemicals, called ChEBI [24]. Similarly, software making use of an ontology may
require more than a single domain ontology. Typically, in these types of scenar-
i0s, it is necessary to integrate multiple ontologies into a single coherent narrative.
In order to integrate or re-use specific domain ontologies following this “building-
block™ approach there has to be a high-level structure or common “scaffold” where
different parts of different domain ontologies may be “plugged” into. To ensure ease
of interoperation or re-use of a domain ontology, well designed and documented
ontologies are essential and upper ontologies are fundamental in this integrative
effort.

Upper level ontologies provide a domain-independent conceptual model that
aims to be highly re-usable across specific domain applications. Most of the
upper ontologies provide a general classification criterion that makes it easy to
re-use, extend and maintain those existing ontologies required by a particular
application. Therefore, it is essential, to aid interoperability and re-use, that ontol-
ogy development methodologies should provide general guidelines for the use of
upper level ontologies. These guidelines should cover the documentation of (i)
the design decisions and the justification for choosing one upper ontology over
another and (ii) examples that illustrate how they used in the conceptualisation
of a particular domain. Examples of upper level ontologies include the Basic
Formal Ontology (BFO) [25], DOLCE [26] and GFO [27]. This adoption has, how-
ever, not been documented within a methodological framework that facilitates both
the adoption of the upper level ontology and its proper use. However, the OBO
foundry has recommended that ontologies registered on the OBO Foundry should
use BFO.

4.1.4 Dynamic Ontologies

Ontologies, like software, evolve over time; specifications often change as the
development proceeds, making a straightforward path to the ontology unrealistic.
Different software process models have been proposed; for instance, linear sequen-
tial models and prototyping models. Linear sequential models are also known as
waterfall models [28, 29] and are designed for straight-line development. The linear
sequential model suggests a systematic, sequential approach in which the com-
plete system will be delivered once the linear sequence is completed [29]. The
role of domain experts is passive as end-users of technology. They are placed in
a reacting role in order to give feedback to designers about the product. The soft-
ware or knowledge engineer leads the process and controls the interaction amongst
domain experts. A high-speed adaptation of the linear sequential model is the



104 A. Garcia et al.

Rapid Application Development (RAD) model [30, 31]. This emphasises short
development cycles for which it is possible to add new software components, as
they are needed. RAD also strongly suggests reusing existing program components
or creating reusable ones [29].

The prototyping model is more flexible as prototypes are constantly being built.
Prototypes are built as a means for defining requirements [29], this allows for a
more active role from domain experts. A quick design is often obtained in short peri-
ods of time. The model grows as prototypes are being released [32]; engineers and
domain experts work on these quick designs. They focus on representational aspects
of the ontology, while the main development of the ontology (building the models,
defining what is important, documenting, etc.) is left to the knowledge engineer.

The evolutionary nature of the software is not considered in either of the afore-
mentioned models, from the software engineering perspective evolutionary models
are iterative, and allow engineers to develop increasingly more complex versions of
the software [29, 31, 33]. Ontologies are, in this sense, not different from other soft-
ware components for which process models have evolved from a “linear thinking”
into evolutionary process models that recognise that uncertainty dominates most
projects, that timelines are often impossibly short and that iteration provides the
ability to deliver a partial but extendible solution, even when a complete product is
not possible within the time allotted. Evolutionary models emphasise the need for
incremental work products, risk analysis, planning followed by plan revision, and
customer (domain expert) feedback [29].

4.1.5 The Melting Point: A Methodology for Distributed
Community-Driven Ontology Engineering

A general purpose methodology should aim to provide ontology engineers with a
sufficient perspective of the stages of the development process and the components
of the ontology life cycle, and account for community development. In addition,
detailed examples of use should be included for those stages, outcomes, deliver-
ables, methods and techniques; all of which form part of the ontology life cycle
[9, 34].

To address ontology development methodology in a distributed community envi-
ronment the “The Melting Point” methodology is described. Consideration has been
applied to the previously proposed methodologies and their integration adaptation
and the re-use of components were possible within the MP. Several IEEE soft-
ware engineering practices have also been included to formulate a methodology
applicable to the requirements of community ontology development. The Melting
Point also follows Sure’s [9] work as it considers throughout the whole process the
importance of the software applications that will ultimately use the ontology. The
following sections not only present the MP methodology but also the relationship
between methodological issues and the life cycle of community-based ontologies.

An analysis of current ontology engineering methodologies is presented in
Section 4.2, emphasising the significance of commonalities across methodologies as



4 Developing Ontologies within Decentralised Settings 105

well as the engagement of communities of practice. Section 4.3 presents a detailed
definition of the methodology and related components; methods, techniques, activi-
ties, and tasks of the MP methodology. Sections 4.4 and 4.5 contain discussion and
conclusions, respectively.

4.2 Review of Current Methodologies

Melting Point espouses the combination of good practices from existing method-
ologies. A comparison of these methodologies is therefore appropriate, in order to
give context to MP. Several ontology methodology approaches are analysed below,
according to criteria described in detail in Section 4.2.1. These criteria are derived
from the work done by Fernandez [35], Mirzaee [18] and Corcho et al. [36].

The engineering methodologies analysed are the Enterprise Methodology pro-
posed by Uschold and King [10]; the TOVE Methodology proposed by Gruninger
and Fox [11]; the Bernaras methodology proposed by Bernaras et al. [12]; the
METHONTOLOGY methodology proposed by Fernandez et al. [37] the SENSUS
methodology proposed by Swartout et al. [14]; the DILIGENT methodology pro-
posed by Pinto et al. [15, 16]; the GM methodology proposed by Garcia et al. [17]
the iCAPTURer Methodology proposed by Good et al. [38] and the NeOn method-
ology*. Table 4.1 provides a summary of the methodologies and the results of the
analysis against the criteria. Complete details of the analysis have been provided in
Appendix for reference.

4.2.1 Criteria for Review

Cl. Inheritance from knowledge engineering. Ontology building is ultimately the
assertion and representation of knowledge. Therefore, this criterion consid-
ers the influence traditional Knowledge Engineering (KE) has had on the
methodologies studied.

C2. Detail of the methodology. This criterion is used to assess the clarity with which
the methodology specifies the orchestration of methods and techniques.

C3. Strategy for building the ontology. This should provide information about the
purpose of the ontology, as well as the availability of domain experts. There
are three main strategic lines to consider: (i) the application of the ontology;
(ii) the use and type of domain experts available and (iii) the type of ontology
to be developed. These three aspects are defined in more detail from C3.1 to
C3.3.

C3.1. Application of the ontology. This criterion describes how tightly cou-
pled the ontology is going to be in relation to the application within

“http://www.neon-project.org



“193030)

Sunjiom
Koanoe
pawnsse st 9q 0} pawnsse
Ayunuwuod pauodar paquosaxd sIoouISud
Y jo syuawdoroaap [re1op oyr1oads jou Inq $9130[01UO K3o[oju0 pue Juopuadopur pasuanyur
jueoyuSis  uoneroqe[[o) ordnny P ‘Kuejy pastuSoooy V/N sel pue urewoq  suadxe urewo -uoneorddy 101 V K[Suong UOAN
PIIOPISUOD
suadxo
QAnRIN sa130[0JU0 urewop Jo juopuadopur
[easouy SOx V/N V/N  /Areuonnjoaqg dn wonog 3se) pue urewlo  S[AQ] [V :peoIg -uoneorddy 101V Mg YN LAVI!
POpULWILLIOdAT srodxo
urewop KSojouyoay, urewop
o1q oY) POPUSWIODI paziferoads
10J paytodar spoyjlaw pue adfyoroad $9130[01U0 uo arow juapuadop
pauoddng SOR syjuowdoroadq  senbruyod) swog Areuonn[oag umop doJ, yse) pue urewo SI $NO0J Y], uoneorddy 101 vV [rews D
juapuadop juapuadop
Airenreq SOk VIN VN V/N wa[qoid VIN V/N uoneorddy [rews [rews INEOITIA
sa130[0)u0
KSoj0juo Jo pury Aue Juopuadopur
Suruuerd 03 o[qeordde BUIEN
VN V/N  uSredwes iy VN VN V/N st opdioutid ug VN uonedrddy WAy Ju)SIXAU] SNSNAS
POPUSILIOdAT $9130[01U0
pauodar KSojouyoay, Jo pury Aue
syuawdoroaap ‘Jursstwr adKyor01d 0) o[qeordde Juopuadapur ADOTOLNO
Aqrenreq VIN oidny  senianoe owog  Areuonnjoag N0 JPPIN ST dfdrourid ug VIN uoneorddy 01V 101V -HIAN
urewop
Surroourguo QIEM]JOS sa130[0JU0 juopuadopur
V/N V/N (eI V/N SMO[[0] umop doJ, yse) pue urewoq V/N uoneorddy o K10 101 V sereuIg
sa130[0)U0 sa130[0ju0 Juopuadopur
[euonepunoy yse) BUIEN
VIN V/N pue ssoutsng VIN V/N 0 9[ppIA pue utewoq VIN uoneorddy oIy [rews dAOL
K3o10ju0 Juapuadopur
V/N VIN astidrojug V/N V/N WO 9[ppIA V/N VIN uoneorddy oy A1oA [ented asudrojuyg
UONE)IDI[Q  JUSUIDA[OAUL Anpqeoriddy  ASojouyo?) pue 9[0Kd 9J1] s1doouoo odf)  spadxe urewoq A3ojopuo oyy ASofop  Sunedurduo
a3paymouy] Aunuwuwo)) sanbruyo9)  popuowiodsay Surkjnuapt K3ojo1uQ Jo uoneorddy -oylow  a3parmouy
‘spoyjour 10} ASerens Ay jo [rereq woly
POPUAWIOIY A3oojuo oy Suipying 1oy £39eng QourLIdYU]

v x1puaddy ur papraoid a1e sqrejop [[ng *(] 4 UOI9S ul pay1dads) BLIDILID UOWWOD 0) SUIPI0dIe SIAIFo[opoylow JuLIdouISu A3010juo0 Jo uoneneAq [ IqeL



4 Developing Ontologies within Decentralised Settings 107

C3.2.

C3.3.

which, in principle, it should be used. This is often evaluated via compe-
tency questions. Competency questions can be typically classified in two
forms: informal competency questions (natural language) and formal
competency questions. The criteria for describing the level of application
engagement are described as follows:

C3.1.1. Application dependent. The ontology is built on the basis of
an application knowledge base, by means of a process of
abstraction [35].

C3.1.2. Application semi dependent. Possible scenarios of ontology use
are identified in the specification stage [35].

C3.1.3. Application independent. The process is totally independent of
the uses to which the ontology will be put in knowledge-based
systems or any software layer making use of the ontology.

Domain experts. This criterion outlines the level of perceived expertise
of the individuals consulted within the ontology development process. A
domain expert can be graded in the following manner:

C3.2.1. Specialised domain experts. Those with an in-depth knowledge
of their field. Within the biological context these are usu-
ally researches with vast laboratory experience, very focused
and narrowed within the domain of knowledge. Having the
specialised domain expert helps define very specific concepts
within the ontology; this can lead to a strategy for identifying
concepts known as the bottom-up approach (see C4.1).

C3.2.2. Broader-knowledge domain experts. Those who have a general
knowledge or a higher level view of the domain(s). Having this
kind of domain experts usually facilitates capturing concepts
more related to high-level abstraction, and general processes,
rather than specific vocabulary describing those processes. The
ontology may be built from high-level abstractions downwards
to specifics. This approach known as the top—down strategy for
identifying concepts (see C4.2).

Ontology type. The ontology-type criterion classifies the ontology being
developed into the following types or categories [39, 40]:

C3.3.1. Top-level ontologies. These describe very general concepts like
space, time, event, which are independent of a particular prob-
lem domain. Such unified top-level ontologies aim at serving
large communities [9]. These ontologies are also known as
foundational ontologies or commonly called upper ontologies;
see, for instance, the DOLCE ontology [26].



108

C4.

Cs.

Cé.

C7.

C8.

Co.

A. Garcia et al.

C3.3.2. Domain ontologies. These are focused within a particular
domain and describe specific vocabulary.

C3.3.3. Task ontologies. These describe vocabulary related to tasks,
processes or activities.

C3.3.4. Application ontologies. As Sure [9] describes them, application
ontologies are specialisations of domain and task ontologies as
they form a base for implementing applications with a concrete
domain and scope.

Strategy for identifying concepts. There are three strategies regarding the con-
struction of the ontology and the kinds of terms it is possible to capture
[41]:

C4.1. Bottom-up work from the most concrete or specific concepts to the most
abstract concepts. [41-43].

C4.2. Top-down work from the most abstract to the more domain/application
specific concepts [35].

C4.3. Middle-out work from the most relevant to the most abstract and most
domain/application-specific concepts [35, 40, 43].

Recommended life cycle. This criterion evaluates whether and to what degree
the methodology implicitly or explicitly proposes a life cycle [35].
Recommended methods and techniques. This criterion evaluates whether or not
there are explicit methods and techniques as part of the methodology. This is
closely related to C2. An important issue to be considered is the availability
of software supporting either the entire methodology or a particular method of
the methodology. This criterion also deals with the methods or software tools
available within the methodology for representing the ontology, for example,
in OWL?, or RDF®.

Applicability. As knowledge engineering is still in its infancy it is important to
evaluate the methodology in the context of those ontologies for which it has
been applied.

Community involvement. As has been pointed out before in this chapter, it is
important to know the level of involvement of the community. Phrasing this as
a question, is the community a consumer of the ontology or is the community
taking an active role in its development?

Knowledge elicitation. Knowledge elicitation is a major bottleneck when rep-
resenting knowledge [44]. It is therefore important to know if the methodology
assumes knowledge elicitation to be an integral part of the methodology; does
it describe the elicitation techniques?

Shitp://www.w3.org/TR/owl-ref/
Ohttp://www.w3.0rg/RDF/



4 Developing Ontologies within Decentralised Settings 109
4.2.2 Finding the Melting Point

The considerable number of methodologies coupled with the limited descriptive
detail of the ontology development approach makes it extremely difficult to present
a consensus or a melting point where the methodologies converge. From the method-
ologies studied, very few clearly state the methods and techniques suggested in
the methodology. However, the roles of those participating in the development
of the ontology are clearly outlined. The following sections discuss the identified
commonality and differences in approach, elucidated from the evaluation of the
methodologies.

Common features. There are certain commonalities in the ontology development
approach across the methodologies. For instance, all the studied methodologies con-
sider an inception, formalisation as well as an evaluation phase. Figure 4.1 illustrates
those shared stages across all methodologies. The DILIGENT and GM methodolo-
gies, however, present some fundamental differences when compared to the other
methodologies — both were engineered for developing ontologies within geograph-
ically distributed settings. The differences identified between the DILIGENT and
the GM methodology on the one hand and the other methodologies are presented
and described below:

Life cycle. For both DILIGENT and GM, the ontology is constantly evolving,
in a never-ending cycle. The life cycle of the ontology is understood as an
open cycle in which the ontology evolves in a dynamic manner.

The mod re
means of

Motivating scenarios,
competency questions,
requirements of the

ontology and scenarios ork, or formal

for those cases
in which the ontology
contains axioms

in which the ontology
should be used

Inception Formalization

By means of knowledge

representation, natural
language models are
built. This does not
imply the use of formal
logics

Fig. 4.1 Common features of the methodologies reviewed



110 A. Garcia et al.

Collaboration. For both DILIGENT and GM, a group of people agrees on the
formal specification of the concepts, relations, attributes, and axioms that the
ontology should provide. This approach empowers domain experts in a way
that sets DILIGENT apart from the other methodologies.

Knowledge elicitation. Due in part to the involvement of the community and
in part to the importance of the agreements, for DILIGENT and the GM
methodology knowledge elicitation is assigned a high level of importance; it
supports the process by which consensus is reached.

The GM, DILIGENT and NeOn methodologies consider the ontology to be con-
stantly evolving. In fact, the life cycle spirals, with the ontology progressing over
each iteration of the cycle. In addition, the GM methodology also emphasises the
notion of collaboration in the development process, particularly during knowledge
elicitation. The GM knowledge elicitation relies heavily on interaction; the higher
the level of interaction amongst domain experts, the more refined the specific models
are likely to be. Both DILIGENT and GM methodologies assume a leading role for
the domain experts as well as a tight relationship between the ontology and the soft-
ware application in which it will ultimately be used. Within the NeOn framework
the focus is more on the network of ontologies rather than specifically on the act of
collaboration amongst domain experts. However, NeOn offers a complete review of
methods that in principle support collaboration when building ontologies; NeOn
supports the collaboration over two main axes: argumentation and collaborative
editing.

The GM, DILIGENT and NeOn methodologies consider the ontology to be con-
stantly evolving. In fact, the life cycle spirals, with the ontology progressing over
each iteration of the cycle. In addition, the GM methodology also emphasises the
notion of collaboration in the development process, particularly during knowledge
elicitation. The GM knowledge elicitation relies heavily on interaction; the higher
the level of interaction amongst domain experts, the more refined the specific mod-
els are likely to be. Both DILIGENT and GM methodologies assume a leading role
for the domain experts as well as a tight relationship between the ontology and the
software application in which it will ultimately be used.

Differences amongst Methodologies. As illustrated by the summary table, no
methodology completely satisfies all the criteria. Some of the methodologies, such
as that of Bernaras, provide information about the importance of the relationship
between the final application using the ontology and the process by which the ontol-
ogy is engineered. This consideration is not always taken from the beginning of the
development; clearly the kind of ontology that is being developed heavily influences
this relationship. For instance, foundational ontologies rarely consider the software
using the ontology as an important issue; these ontologies focus more on funda-
mental issues affecting the classification system such as time, space, and events.
They tend to study the intrinsic nature of entities independently from the particular
domain in which the ontology is going to be used [37].



4 Developing Ontologies within Decentralised Settings 111

The final application in which the ontology will be used also influences which
domain experts should be considered for the development of the ontologies.
For instance, specialised domain experts are necessary when developing appli-
cation ontologies, domain ontologies or task ontologies, but they tend not to
have such a predominant role when building foundational ontologies. For these
kinds of ontologies philosophers and broader knowledge experts are usually more
appropriate.

None of the methodologies investigated provided detail; the descriptions for the
processes were scarce, and where present theoretical. There was no analysis of
actual ontology building sessions. The methods employed during the development
of the ontologies were not fully described. For instance the reasons for choos-
ing a particular method over a similar one were not presented. Similarly there
was no indication as to what software should be used to develop the ontologies.
METHONTOLOGY was a particular case for which there is a software environ-
ment associated to the methodology; the recommended software WebODE [45] was
developed by the same group to be used within the framework proposed by their
methodology.

Although the methodologies investigated have different views on the life cycle
of the ontology, only DILIGENT, NeOn and GM consider the life cycle to be
dynamic. This is reflected in the processes these methodologies propose. The devel-
opment happens in a continuum; some parts within the methodologies are iterative
processes, but the steps are linear, taking place one after the other. In the case of
DILIGENT the different view on the life cycle is clear. NeOn poses a view of the
process that is closer to the one proposed by the MP methodology; it provides a
clear view of the overall process and provides some detail as to the actual ontology
building practice.

The lack of support for the continued involvement of domain experts who may
be located around the world was not considered when engineering most of the stud-
ied methodologies. As both, the SW and the biodomain, pose a scenario for which
information is highly decentralised, domain experts are geographically distributed
and the interaction takes place mostly on a virtual basis, such consideration is impor-
tant. For both cases the realisation of the SW vision, as well as the achievement of
collaboration, is more about a change in people and communities of practices than
it is about technology [4, 46].

Evolution and community involvement. Ontologies in the biomedical domain not
only are domain and/or task specific but also application oriented. Within both, the
SW and the biodomain, the construction of applications and ontologies will not
always take place as part of the same software development projects. It is there-
fore important for these ontologies to be easily extensible; their life cycle is one in
which the ontologies are in constant evolution, highly dynamic and highly re-usable.
Ontologies in biology have always supported a wide range of applications; the
microarray ontology (MO) [47], for instance, is used by several, unrelated microar-
ray laboratories information systems around the world. In both scenarios, SW and
biology, not only is the structure of the ontology constantly evolving but also the



112 A. Garcia et al.

role of the knowledge engineer is not that of a leader but more that of a facilitator
of collaboration and communication amongst domain experts.

Parallels can be drawn between the biological domain and the SW. The SW-
related scenarios are often described as being distributed, loosely controlled and
evolving [15]. The main differences between the classic proposals for building
ontologies and those requirements applied to the SW have been summarised by
Pinto et al. [15], as well as Garcia et al. [17], and are described in four key
points:

1. Distributed information processing with ontologies: Within the SW scenario,
ontologies are developed by geographically distributed domain experts willing
to collaborate, whereas KE deals with centrally developed ontologies.

2. Domain expert-centric design: Within the SW scenario, domain experts guide the
effort while the knowledge engineer assists them. There is a clear and dynamic
separation between the domain of knowledge and the operational domain. In
contrast, traditional KE approaches relegate the role of the expert as an informant
to the knowledge engineer.

3. Ontologies are in constant evolution in SW, whereas in KE scenarios, ontologies
are simply developed and deployed.

4. Additionally, within the SW scenario, fine-grained guidance should be provided
by the knowledge engineer to the domain experts.

Collaboration is present in the DILIGENT, iCAPTURer, NeOn and GM method-
ologies. However, neither DILIGENT nor GM propose methods for engaging the
collaborators, nor do they provide clear methodological guidelines. Alternatively,
NeOn proposes a set of methods and techniques for most of the steps described.
Nevertheless, the process of knowledge elicitation, whether within the context of
collaboration or as a focus group activity, is not fully addressed in most of the
methodologies investigated. METHONTOLOGY and NeOn consider knowledge
elicitation as part of the methodology, but there are no recommendations regarding
knowledge elicitation methods.

One important feature that is not covered by any of the methodologies inves-
tigated is the use of upper level ontologies; as these are meant to support
classification based on universal criterion it is important to understand the struc-
ture proposed by these ontologies in order to ease the integration of domain
ontologies.

Collaboration, knowledge elicitation, a better understanding of the ontology life
cycle and detailed description for the different steps involved are important criteria
that should be documented to ensure that methodologies may be more efficiently
replicated and applied. There is also an increasing need to emphasis the reuse of
methodologies rather than developing ad hoc, de novo methodologies. The reuse
of methodologies will go some way to ensure efficient development, interoperabil-
ity and the elucidation of best practice in ontology development, irrespective of
the domain of application. These are precisely the issues that a methodology for
community-based ontologies needs to address.



4 Developing Ontologies within Decentralised Settings 113
4.3 The Melting Point Methodology

The following outlines the Melting Point methodology and can serve as a “manual”
for ontology engineering. As mentioned in Section 4.1, many of the techniques are
best practices chosen from other methodologies, and as such extensive reference is
made back to these methodologies. The MP methodology aims to provide ontology
developers with a detailed view of the processes that should take place when build-
ing ontologies; it supports the orchestration of steps in the development process
based on the inputs consumed and outputs produced by the methods and techniques
used. MP is not prescriptive about specific techniques or methods; ontology devel-
opers should consider the use of those that best suit their particular situation. This
document, as well as several deliverables from the NeOn project are a good source
of information regarding the methods and techniques available.

For the purpose of MP, the activities involved are framed within pro-
cesses and activities, as illustrated in Fig. 4.3; this conception is promoted by
METHONTOLOGY [35] for centralised settings. As these activities were not con-
ceived within decentralised settings, their scope has been redefined, so that they
better fit the life cycle of ontologies developed by communities. The methodology
here presented emphasises: decentralised settings and community involvement. It
also stresses the importance of the life cycle these ontologies follow, and provides
activities, methods and techniques coherently embedded within this life cycle.

The methodology and the life cycle are illustrated in Fig. 4.2. The overall
process starts with documentation and management processes; the development
process immediately follows. Managerial activities happen throughout the whole
life cycle; as the interaction amongst domain experts ensures not only the qual-
ity of the ontology, but also that those predefined control activities take place. The
development process has five main activities: specification, conceptualisation, for-
malisation implementation and evaluation. Different prototypes or versions of the
ontology are thus constantly being created. Initially these prototypes may be unsta-
ble, as the classes and properties may drastically change. In spite of this, the process
evolves rapidly, achieving a stability that facilitates the use of the ontology; changes
become more focused on the inclusion of classes and instances, rather than on the
redefinition of the class hierarchy.

4.3.1 Definition of Terminology

To aid the clarity of the methodology descriptions the interpretation of key
terminology must be made clear. The meaning of the terms methodologies,
techniques and methods follow the Institute of Electrical and Electronics Engineers
(IEEE) descriptions [18, 19], as recommended by Perez-Gomez et al. [32],
[48], Fernandez et al. [37] Pinto et al. [15, 49] and Garcia et al. [17]. Both
Fernandez et al. and Perez-Gomez et al. emphasise the importance of complying
with the Institute of Electrical and Electronics Engineers (IEEE) standards, more



114 A. Garcia et al.

=) Documentation Processes s S,

D Management Processes rul Kn .'owleﬁge )

~*  Management E

H - S Human
B ooctrmes e ol

1o ) Software

Engineering
,. Activity:
Activity:
: Control and
Evaluati
valuation QA
Activity:
Control and
QA Activity:
Conceptualization

Activities: -
Formalization and
implementation
[ Activity: Control and @A | |

Fig. 4.2 Life cycle, processes, activities and view of the methodology

specifically with the IEEE standard for software quality assurance plans [50]. Not
only does standards compliance ensure careful and systematic planning for the
development, but it also ensures the applicability of the methodology to a broad
range of problems. As such, we have also adopted terminology from the above-
mentioned IEEE standard. A methodology should be interpreted as a “comprehen-
sive integrated series of techniques or methods creating a general system theory of
how a class of thought-intensive work ought to be performed” [18]. Methodologies
are composed of both techniques and methods. A method is an “orderly” process or
procedure used in the engineering of a product or performing a service [20]. A tech-
nique is a “technical and managerial procedure used to achieve a given objective”
[18]. Thus methodologies bring together techniques and methods in an orches-
trated way such that the work can be done. Figure 4.3 illustrates these relationships
graphically.

Greenwood [51] and Gomez-Perez et al. [52] present these terminological rela-
tionships in a simple way: “a method is a general procedure while a technique is the
specific application of a method and the way in which the method is executed” [52].
According to the IEEE [53] a process is a “function that must be performed in the
software life cycle. A process is composed by activities”. The same set of standards
defines an activity as “a constituent task of a process” [53]. A task is the atomic unit



4 Developing Ontologies within Decentralised Settings 115

Composed of

Comppsed of

Makes_use_of
Methods [TE=="== Processes

Compgsed of

Composed_of -
Tasks |[+—| Activities

Fig. 4.3 Relationships amongst ontology engineering terms

of work that may be monitored, evaluated and/or measured; more formally, a task is
“a well defined work assignment for one or more project member. Related tasks are
usually grouped to form activities” [53].

4.3.2 Management Processes

The management activities are initiated as soon as there is a motivation (speci-
fication) and a decision for developing the ontology, therefore an artefact and a
process to manage. The management process continues through the remainder of the
ontology development process. Some of the activities involved in the management
processes are

Scheduling. Scheduling identifies tasks, time and resources needed.

Control. Control ensures that the planned tasks are completed.

Inbound interaction. Inbound interaction specifies how the interaction amongst
domain experts will take place, for instance, by phone calls, mailing lists,
wiki and static Web pages.

Outbound interaction. As different communities should in principle be allowed
to participate, there has to be an inclusion policy that specifies how a new
community could collaborate and engage with the ongoing development.

Quality assurance. This activity defines minimal standards for the outputs from
each and every process, activity or task carried out during the development
of the ontology.

Scheduling project management techniques can be employed such as Gantt
charts to and define milestones and deadlines. Several software suites exist to assist
in project management, both commercial and open source. Specific technologies
for documentation and communication are discussed in Garcia et al.17]. In addition,



116 A. Garcia et al.

more generic content management and communication systems can be employed for
documenting and communicating the management process, such as those identified
and reviewed by Mooney and Baenziger [54]. For both scheduling and controlling,
the software tool(s) should in principle

— help to plan the activities and tasks that need to be completed,

— give a basis for scheduling when these tasks will be carried out,

— facilitate planning the allocation of resources needed to complete the project,

— help to work out the critical path for a project where one must complete it by a
particular date,

— facilitate the interaction amongst participants and

— provide participants with simple means for exchanging information.

4.3.3 Documentation Processes

The documentation is a continuum process throughout the entire development of
the ontology. This documentation should make it possible for new communities of
practice to get involved in the development of the ontology. These include early
processes such as the specification of the purpose of the ontology right through to
later processes such as formalisation and evaluation of the ontology.

Documenting classes and properties. Although documentation can happen natu-
rally, facilitated by discussions via an email basis, it is often difficult to follow the
argumentative thread. Even so, the information contained in mailing lists is useful
and should whenever possible be related to classes and properties. Use cases, in
the form of examples for which the use of a term is well illustrated, should also be
part of the documentation of classes and properties. Ontology editors allow domain
experts to comment on the ontology; this kind of documentation is useful, as it
reflects the understanding of the domain expert. For classes and properties there are
three main sources of documentation:

Mailing lists. Discussions about why a class should be part of the ontology, why
it should be part of a particular class hierarchy, how it is being used by the
community, how a property relates two classes, and in general all discussions
relevant to the ontology happen on an email basis.

On-the-ontology comments. In the cases when domain experts are familiarised
with the ontology editor, they usually comment on classes and properties.
Use cases. This should be the main source of structured documentation pro-
vided by domain experts. However, gathering use cases is often difficult and
time consuming. The use cases should illustrate how a term is being used
in a particular context, how the term is related to other terms, and those
different uses or meanings a term may have. Guidance is available for the
construction of use cases when developing software; however, this direction
is not available when building ontologies. From those experiences in which



4 Developing Ontologies within Decentralised Settings 117

the author participated some general guide can be drawn, for instance, use
cases should be brief, they should be based upon real-life examples, knowl-
edge engineers have to be familiar with the terminology as well as with the
domain of knowledge because use cases are usually provided in the form
of narratives describing processes, graphical illustrations should be part of
the use case, and also whenever possible concept maps, or other related KA
artefacts, should be used.

4.3.4 Development-Oriented Processes

These are the processes by which the ontology is actually built and represent the
core of the methodology. The life cycle, documentation and management provide a
framework in which development-oriented processes are embedded.

Specification. The specification of the ontology involves defining the motivation;
in other words why the development of an ontology is required for the application
domain. The specification phase can also be called a feasibility study and includes
addressing straightforward questions such as “What is the ontology going to be used
for?”, “How is the ontology ultimately going to be used by the software implemen-
tation?”, “What do we want the ontology to be aware of?”” and “What is the scope of
the knowledge we want to have in the ontology?”. The answers to these questions
are typically represented as competency questions, which define the requirements of
the ontology. The requirements are dependent on the motivation and are described
as informal questions or tasks that an ontology must be able to answer or perform.
In other words, competency questions are those questions for which we want the
ontology to be able to provide support for reasoning and inferring processes [17].
It is often helpful to include competency questions, as they can help to enforce the
boundaries of the scope of the ontology.

Conceptualisation. The conceptualisation of the ontology is the process of identi-
fying the key concepts that exist in the domain, their properties and the relationships
that hold between them; this includes identifying natural language terms to refer to
such concepts, relations and attributes as well as structuring domain knowledge into
explicit conceptual models [55]. Gruber’s design principles. [4] are relevant to the
conceptualisation process as described below:

Gruber’s first principle. “The conceptualisation should be specified at the
knowledge level without depending on a particular symbol-level encoding.”

Gruber’s second principle. “Since ontological commitment is based on the con-
sistent use of the vocabulary, ontological commitment can be minimised by
specifying the weakest theory and defining only those terms that are essential
to the communication of knowledge consistent with the theory.”

Gruber’s third principle. “An ontology should communicate effectively
the intended meaning of defined terms. Definitions should be objective.
Definitions can be stated on formal axioms, and a complete definition



118 A. Garcia et al.

(defined by necessary and sufficient conditions) is preferred over a partial
definition. All definitions should be documented with natural language.”

The process of conceptualisation typically involves the activities of domain anal-
ysis (DA) and knowledge elicitation (KE) and knowledge acquisition (KA). DA is
the process by which a domain of knowledge is analysed in order to find common
and variable components that best describe that domain. KE the process of collecting
from a human source of knowledge, information that is relevant to that knowledge
[44]. KA includes the elicitation, collection, analysis, modelling and validation of
knowledge for knowledge engineering and knowledge management projects. The
notion for both KA and KE comes from the development of knowledge bases; for
the purposes of developing ontologies, KA and KE can be considered as transpos-
able terms. KA and DA are interchangeable and complementary activities by which
the information used in a particular domain is identified, captured and organised for
the purpose of making it available in an ontology [56].

Those activities related to DA and KA focus more on capturing and represent-
ing knowledge in a more immediate manner and not necessarily on having logical
expressions as part of the models; whereas when formalising and evaluating an
ontology, activities and tasks are more oriented to include logical constrains and
expressions. DA and KA may be seen as the art of questioning, since ultimately all
relevant knowledge is either directly or indirectly in the heads of domain experts.
This activity involves the definition of the terminology, i.e. the linguistic phase.
This starts by the identification of those reusable ontologies and terminates with the
baseline ontology, i.e. a draft version containing few but seminal elements of an
ontology.

Identifying available sources of knowledge is also important; by doing so it can
help to refine or confirm the ontology specification. In the bio-ontology domain this
process can be facilitated by the OBO Foundry, which is a registry of available and
accessible domain ontologies. Searching the registry can be made possible via the
BioPortal from the National Center for Biomedical Ontology (NCBO) [57] or the
Ontology Lookup Service’. The OLS provides a user-friendly single entry point for
querying publicly available ontologies in the Open Biomedical Ontology (OBO)
format. By means of the OLS it is possible to verify if an ontology term has already
been defined and in which ontology is available [58].

The following criteria are important during knowledge acquisition [17]:

Accuracy in the definition of terms. The linguistic part of the ontology devel-
opment is also meant to support the sharing of information/knowledge.
The availability of context as part of the definition is useful when sharing
knowledge.

Coherence. The narrative should be coherent; descriptions should make
sense within the context in which they are intended to have a meaning.

Thttp://www.ebi.ac.uk/ontology-lookup/



4 Developing Ontologies within Decentralised Settings 119

Moreover, narratives should provide examples from which instances can be
gathered.

Extensibility. This approach may be seen as an aggregation problem; CMs are
constantly gaining information, which is always part of a bigger narration.
Extending the conceptual model is not only about adding more detail to
the existing CMs or just about generating new CMs; it is also about group-
ing concepts into higher-level abstractions and validating these with domain
experts. Scaling the models involves the participation of both the domain
experts and the knowledge engineer. It is mostly done by direct interview
and confrontation with the models from different perspectives. The partici-
pation of new “fresh” domain experts, as well as the intervention of experts
from allied domains, allows analysing the models from different angles. This
participatory process allows re-factorising the models by increasing the level
of abstraction.

The OBO Foundry has tried to define their criteria for defining terms. These OBO
Foundry naming conventions® outline how to represent class labels and definitions
to maintain consistency within one ontology and to provide a common naming con-
ventions for integration across resources to avoid conflicts both at a human readable
level and at a logical level.

For the purpose of DA and KA it is critical to elicit and represent knowledge from
domain experts. They do not, however, have to be aware of knowledge representa-
tion languages; this makes it important that the elicited knowledge is represented
in a language-independent manner. Researchers participating in knowledge elicita-
tion sessions are not always aware of the importance of the session; however, they
are aware of their own operational knowledge. This is consistent with the first of
Gruber’s design principles.

Regardless of the syntactic format in which the information is encoded domain
experts have to communicate and exchange information. For this matter it is usually
the case that wide general theories, principles, broad-scope problem specifications
are more useful when engaging domain experts in discussions, as these tend to
contain only essential basic terms, known across the community and causing the
minimal number of discrepancies (see the second design principle). As the commu-
nity engages in the development process and the ontology grows, it becomes more
important to have definitions that are usable by computer systems and humans (see
the third design principle). The relevant milestones, techniques and tasks for DA-
and KA-related activities are

Tasks. Focal groups, limited information and constrained-processing tasks,
protocol analysis, direct one-to-one interviews, terminology extraction, and
inspection of existing ontologies.

8http://www.obofoundry.orglwiki/index.php/Naming



120 A. Garcia et al.

Techniques. Concept mapping, sorting techniques, automatic or semi-automatic
terminology extraction, informal modelling and identifying pre-existing
resources.

Milestones. Baseline ontology, knowledge sources, basic terminology, reusable
ontologies.

Formalisation. Formalisation of the ontology is the activity during which the
classes are constrained and instances are annotated against their corresponding
classes. For example, “a male is constrained to be an animal with a y-chromosome”.
During the formalisation domain experts and knowledge engineers work with an
ontology editor. When building iterative models and formalising the ontology the
model grows in complexity; instances, classes and properties are added and logi-
cal expressions are built in order to have definitions with necessary and sufficient
conditions. For both formalisation and iterative building of models, Gruber’s fourth
designing principle and Noy and McGuinness’ guidelines [59] are applicable:

Gruber’s fourth principle. “An ontology should be coherent: that is, it should
sanction inferences that are consistent with the definitions. [. . .] If a sentence
that can be inferred from the axioms contradicts a definition or example given
informally, then the ontology is inconsistent.”

Noy and McGuinness’ first guideline. “The ontology should not contain all the
possible information about the domain: you do not need to specialise (or
generalise) more than you need for your application.”

Noy and McGuinness’ second guideline. “Subconcepts of a concept usually (i)
have additional relations that the superconcept does not have or (ii) restric-
tions different from these of superconcepts or (iii) participate indifferent
relationships than superconcepts. In other words, we introduce a new con-
cept in the hierarchy usually only when there is something that we can say
about this concept that we cannot say about the superconcept. As an excep-
tion, concepts in terminological hierarchies do not have to introduce new
relations.”

Noy and McGuinness’ third guideline. “If a distinction is important in the
domain and we think of the objects with different values for the distinction
as different kinds of objects, then we should create a new concept for the
distinction.”

Implementation. The implementation of the ontology concerns the choice and jus-
tification of the encoding formalism, for example, the OBO format or the Web
Ontology Language (OWL). The choice and the justification of a language take
into account the required expressivity demanded by the specification process and by
extension the tools required to facilitate the encoding. For example, if the chosen
language was OWL, then it would be appropriate to use an ontology editor such
as Protege’. Ultimately implementation is concerned with encoding the decisions

http://protege.stanford.edu/



4 Developing Ontologies within Decentralised Settings 121

made as part of the formalisation process. However, the implementation process and
the formalisation process can often happen simultaneously as an iterative process.

Iterative building of ontology models (IBOM). Iterative building of informal
ontology models helps to expand the glossary of terms, relations, their definition
or meaning, and additional information such as examples to clarify the meaning
where appropriate. Different models are built and validated with the domain experts.
There is a fine boundary between the baseline ontology and the refined ontology;
both are works in progress, but the community involved has agreed upon the refined
ontology.

Methods, techniques and milestones for the IBOM. Some milestones, techniques
and tasks for IBOM related activities are

Tasks. Focal groups.
Techniques. Concept mapping, informal modelling with an ontology editor.
Milestones. Refined ontology.

4.3.5 Evaluation

There is no unified framework to evaluate ontologies and this remains an active
field of research [32]. When developing ontologies on a community basis four main
evaluation activities have been identified:

Specification evaluation. The specification defines the motivation and the scope
of the ontology in the form of competency questions. Specification evaluation
concerns the ability of the ontology to answer the competency questions and
therefore demonstrate fulfilment of the intended scope.

Application-dependent evaluation. It is considered that ontologies should be
evaluated according to their fitness for purpose, i.e. an ontology developed
for annotation purposes should be evaluated by the quality of the annotation
and the usability of the annotation software [17]. The community carries out
this type of evaluation in an interactive manner; as the ontology is being
used for several purposes a constant feedback is generated. The feedback
thus gathered also helps in the evolution of the ontology; as the community
comments on an ontology term being used to annotate a resource, ontology
engineers are able to include, delete or edit terms in the ontology. This makes
it possible for the community to effectively guarantee the usability and the
quality of the ontology. By the same token, the recall and precision of the
data, and the usability of the conceptual query builder, should form the basis
of the evaluation of an ontology designed to enable data retrieval.

Terminology evaluation. This activity was proposed by Perez-Gomez et al. [60].
The goal of the evaluation is to determine what the ontology defines and
how accurate these definitions are. Perez-Gomez et al. provides the following
criteria for the evaluation:



122 A. Garcia et al.

Consistency. It is assumed that a given definition is consistent if, and
only if, no contradictory knowledge may be inferred from other
definitions and axioms in the ontology.

Completeness. It is assumed that ontologies are in principle incomplete
[32, 60], however, it should be possible to evaluate the completeness
within the context in which the ontology will be used. An ontology
is complete if and only if All that is supposed to be in the ontology is
explicitly stated, or can be inferred.

Conciseness. An ontology is concise if it does not store unnecessary
knowledge, and the redundancy in the set of definitions has been
properly removed.

Taxonomy evaluation. This evaluation is usually carried out by means of rea-
soned systems such as RACER [61] and Pellet [62]. The knowledge engineer
checks for inconsistencies in the taxonomy, these may due to errors in the
logical expressions that are part of the axioms.

4.4 Discussion

4.4.1 Melting Point Evaluated

The Melting Point (MP) methodology emphasises an integral knowledge manage-
ment cycle. It is influenced by METHONTOLOGY and the work done by Sure in
the field of knowledge management. The MP makes use of several methods and
techniques, defining the steps which should be undertaken. The MP methodology
stresses the importance of the orchestration of methods and techniques based on
coherence between outcomes and deliverables for each step, thus proposing a flexi-
ble structure that can be adapted without losing rigor in the process. When evaluated
against the criteria presented in Section 4.1, the MP methodology can be seen to
have the following properties:

Cl. Inheritance from knowledge engineering. Highly influenced by knowledge
engineering.

C2. Detail of the methodology. Although it defines steps the MP methodology
stresses the importance of an orchestration based on those outcomes and deliv-
erables from each step. The MP aims for a flexible rigor, rather than a strict
series of steps.

C3. Strategy for building the ontology.

C3.1. Application of the ontology. application independent.

C3.2. Domain experts. The methodology is intended to make use of knowl-
edge gathered from all levels of domain experts. It is assumed an active
participation of domain experts.

C3.3. Ontology type. The methodology is best suited for domain ontologies.



4 Developing Ontologies within Decentralised Settings 123

C4. Strategy for identifying concepts. Concepts are identified by a variety of meth-
ods and techniques; the MP does not enforce the use of a particular method or
technique; it proposes processes for which there can be several methods and
techniques available. It assumes an active participation of domain experts in
that for the MP methodology domain experts are also modelers.

C5. Recommended life cycle. Processes, activities and tasks are proposed and
orchestrated within an incremental evolutionary spiral model.

C6. Recommended methods and techniques.] The MP methodology proposes some
methods and techniques; these are, however, changeable as the methodology
does not emphasise the use of particular methods and techniques but rather
stresses the impotence of an orchestrated Knowledge management process.

C7. Applicability. Parts of the proposed methodology have been applied and
reported [17, 63]. The MP methodology is based upon these experiences and
on the observation of several ontology development processes such as the
CARMEN project!?.

C8. Community involvment. Active steps are taken to ensure that the community
takes a leading role in the development process.

C9. Knowledge elicitation. Knowledge elicitation is an integral part of the overall
process.

4.4.2 IEEE Standards Compliance

As discussed by [34], METHONTOLOGY is the only methodology that rigorously
complies with IEEE standards; this facilitates the applicability and extendibility
of the methodology. Other methodologies, such as those studied by [42] do not
intentionally meet the terms posed by the IEEE. However, some of the proposed
activities by those ontologies may be framed within IEEE standards. The Melting
Point methodology proposed here reuses and adapts many components from
METHONTOLOGY and other methodologies within the context of decentralised
settings and participatory design. It also follows Sure’s [9] work as it considers
throughout the whole process the importance of the software applications that will
ultimately use the ontology. The work done by Sure is complementary to the one
presented in this chapter, as both works study different edges of the same process:
developing knowledge-based software.

4.4.3 Quality Assurance

METHONTOLOGY allows for a controlled development and evolution of the ontol-
ogy placing special emphasis on quality assurance (QA) thought the processes.

10http://carmen.org.uk/



124 A. Garcia et al.

Although QA is considered, the authors do not propose any methods for this spe-
cific task. Management, development and support activities are carried out in a
centralised manner; a limited group of domain experts interact with the knowledge
engineer, conceptualise and prototype the ontology, successive prototypes are then
built, the ontology gains more formality (e.g. logical constraints are introduced)
until it is decided that the ontology may be deployed. Once the ontology has been
deployed a maintenance process takes place. Neither the development nor the evo-
lution of the ontology involves a decentralised community; the process does not
assume a constant incremental growth of the ontology as it has been observed, and
reported by [17] QA is also considered to be a centralised activity, contrasting with
the way decentralised ontologies promote the participation of the community in part
to ensure the quality of the delivered ontology.

4.4.4 Activities Become Interrelated

As those required ontologies grow in complexity so does the process by which they
are obtained. Methods, techniques, activities and tasks become more group-oriented,
making it necessary to re-evaluate the whole process as well as the way by which it
is described. The IEEE proposes a set of concepts that should in principle facilitate
the description of a methodology; however, these guidelines should be better scoped
for decentralised environments.

Activities within decentralised ontology developments are highly interrelated.
However, the maturity of the product allows engineers and domain experts to deter-
mine boundaries and by doing so establishing milestones for each and every activity
and task. Although managerial activities are interrelated and impact at a high level
those development processes it is advisable not to have rigid management struc-
tures. For instance, control and inbound—outbound activities usually coexist with
some development activities when a new term needs to be added. This interac-
tion requires the orchestration of all the activities to ensure the evolution of the
ontology. This interaction and orchestration of activities with defined boundaries
and milestones are evident in the bio-ontology domain from the development of
the Proteomics Standards Initiatives (PSI) sample processing and separations con-
trolled vocabulary, sepCV. The PSI aims to facilitate global proteomics models for
publication, data storage,data comparisons and dataintegration and to standardise
and advance proteomics research [64]. To this end, they have developed mini-
mum reporting guidelines [65], data transfer formats and ontologies to control the
terminology used for reporting. The sepCV ontology had an initial specification
and therefore milestones to represent the technology of gel electrophoresis [66].
However, its scope was then expanded to cover gel image informatics, so the life
cycle continued collecting and representing community-defined concepts for both
gel electrophoresis and gel informatics. In addition to these two technologies the
sepCV is also expected to expand its specification to cover other separation tech-
nologies, such as column chromatography and capillary electrophoresis, with the



4 Developing Ontologies within Decentralised Settings 125

consequences that these interactions require the orchestration of all the activities
to ensure the evolution of the ontology to fit dynamic boundaries and expanding
specification over its life cycle.

4.4.5 Recommended Life Cycle: Incremental Evolutionary Spiral

When communities are developing ontologies the life cycle varies. The ontology
is not deployed on a one-off basis; there is thus no definitive final version of the
ontology. The involvement of the community allows for rapid evolution, as well as
for very high-quality standards; errors are identified and discussed then corrections
are made available within short time frames.

The model upon which this proposed methodology is based brings together ideas
from, linear sequential modelling [29, 67], prototyping, spiral [68], incremental
[69, 70] and the evolutionary models [29, 71]. Due to the dynamic nature of the
interaction when developing ontologies on a community basis the model grows
rapidly and continuously. As this happens prototypes are being delivered, docu-
mentation is constantly being generated, and evaluation takes place at all times as
the growth of the model is due to the argumentation amongst domain experts. The
development process is incremental as new activities may happen without disrupting
the evolution of the collaboration. The model is therefore an incremental evolution-
ary spiral in which tasks and activities can coexist simultaneously at some level of
detail. As the process moves forward activities and/or tasks are applied recursively
depending on the needs. The evolution of the model is dynamic and the interaction
amongst domain experts and with the model happens all the time. Figure 4.4 illus-
trates the model as well as how processes, activities and tasks are consistent with
the model.

4.5 Conclusions

The Melting Point methodology proposed here reuses some components that various
authors have identified as part of their methodologies for ontology development.
This chapter has investigated how to use these components within decentralised
settings, using the biomedical domain as an example. A domain where community
development is critical to understanding a large, complex and an ever expanding
knowledge base. Not only can the Melting Point methodology be demonstrated in
the life science domain, the methodology can also be applicable to the development
of the knowledge infrastructure of the Semantic Web, a decentralised environment
by design.

The Melting Point methodology stresses the importance of a detailed description
of the methods, techniques, activities, and tasks that could be used for developing
community-based ontologies. Furthermore, a discussion of how the development
process evolves adapts and expands with increasing or redefining of the ontology
specification is presented within the life cycle model of these ontologies.



126 A. Garcia et al.

| expert knowledge |
L 2

conceptual representation |1—-.\ knowledge acquisition :‘.—@
= v

; - 4 ¢ s,
{ domain analysis ; i evaluation }

L\

p
|ba5eline ontology [——-—-—-——-—-—--»l ontology |<-—-—-—----—-—--| formal ontology |
W ST s oo o 3 T
k-.’.‘?.f.'!lﬁ.f!’!f:'.’l.t,-’—'[ refined ontology |°—.f9tm§!'3§£'95,-‘

4 N
Key: 3
isa
——————
produces
—
{ development activity} consumes
—_—s
N P

Fig. 44 A view of the whole process, showing development activities and the artefacts they
produce and consume

The adoption of the Melting Point methodology should provide a level of rigour
and consistent development of ontologies, with a particular focus on community
contribution. The methodology may facilitate a process by which the OBO Foundry
principles for bio-ontology development!! can be achieved. Ontologies developed
within the same methodology framework may aid in increasing ontology interoper-
ability and integration, as the processes and design decisions can be disseminated
upon publication and therefore followed and evaluated.

As we increasingly build large ontologies against complex domain knowledge in
a community and collaborative manner there is an identified need for a method-
ology to provide a framework for this process. A shared methodology tailored
for the decentralised development environment, facilitated by the Internet should
increasingly enable and encourage the development of ontologies fit for purpose.
The Melting Point methodology provides this framework which should enable
the ontology community to cope with the escalating demands for scalability and

http://www.obofoundry.org/crit.shtml



4 Developing Ontologies within Decentralised Settings 127

repeatability in the representation of community-defined knowledge bases, such as
those in biomedicine and the Semantic Web.

A. Appendix: Review of Methodologies

A.I The Enterprise Methodology

Uschold and King proposed a set of four activities that are listed here and illustrated

in Fig. 4.5

Integrating
Existing
ontologies,

| Documentation >

Fig. 4.5 Uschold and King methodology

—

. Identify the purpose and scope of the ontology
2. Build the ontology, for which they specify three activities:

— Knowledge capture
— Development / coding
— Integrating with other ontologies

3. Evaluate
4. Document the ontology

C1. The methodology does not explicitly inherit methods from knowledge engi-
neering. Although Uschold and King identify steps that are in principle related
to some methodologies from knowledge engineering. Neither a feasibility
study nor a prototype method is proposed.

C2. Stages are identified, but no detail is provided. In particular the Ontology
Coding Integration and Evaluation sections are presented in a superfluous
manner [18].



128

C3.

C4.

Cs.
Cé.

C7.
C8.
Co.

A. Garcia et al.

Limited information is provided. The proposed method is application inde-
pendent and very general, in principle it is applicable to other domains. The
authors do not present information about the kind of domain experts they advise
working with.

Uschold and Kind do not provide a clear criterion for the selection of either
approach. For Uschold and King the disadvantage of using the top-down
approach is that by starting with a few general concepts there may be some
ambiguity in the final product. Alternatively, with the bottom-up approach too
much detail may be provided and not all this detail could be used in the final
version of the ontology [41]. This in principle favours the middle-out approach
proposed by Lakoff [43]. The middle-out is not only conceived as a middle
path between bottom-up and top-down, but also relies on the understanding
that categories are not simply organised in hierarchies from the most general to
the most specific, but are rather organised cognitively in such a way that cate-
gories are located in the middle of the general-to-specific hierarchy. Going up
from this level is the generalisation and going down is the specialisation [43,
18].

No life cycle is recommended.

No techniques or methods are recommended. The authors mention the impor-
tance of representing the captured knowledge but do not make explicit rec-
ommendations as to which knowledge formalism to use. This methodology
does not support any particular software as a development tool. The integra-
tion with other ontologies is not described, nor is any method recommended
to overcome this issue, nor is whether this integration involves extending the
generated ontology or merging it with an existing one explained.

The methodology was used to generate the Enterprise ontology [10].
Communities are not involved in this methodology.

For those activities specified within the building stage the authors do not pro-
pose any specific method for representing the ontology (e.g. frames, description
logic). The authors place special emphasis on knowledge elicitation. However,
they are not specific in developing this further.

A.2 The TOVE Methodology

The Toronto Virtual Enterprise (TOVE) methodology involves building a logical
model of the knowledge that is to be specified by means of an ontology. The steps
involved as well as their corresponding outcomes are illustrated in Fig. 4.6.

Cl.

C2.
C3.

The methodology is heavily influenced by the development of knowledge-
based systems using first-order logic [36].

No specifics are provided on the activities involved.

The TOVE methodology emphasises competency questions as well as motivat-
ing scenarios as important components in their methodology. This methodol-
ogy is application semidependent as specific terminology is used not only to



4 Developing Ontologies within Decentralised Settings 129

Better formalized
questions.
Relationships,
constraints and
classes

Application in
which the
ontology will

By means of
first -order logic
queries should

be used be solved

7
e q Informal Formalized
Motivating BT TG Terminology Formal Completeness
Scenario s First-order logic Axioms theorems

Queries which
will be
supported by
means of the
ontology

Sentences
defined as first-
order logic using
predicates from
the ontology

Fig. 4.6 The TOVE methodology

formalise questions but also to build the completeness theorems used to evalu-
ate the ontology. Once the competency questions have been formally stated, the
conditions under which the solutions to the questions must be defined should
be formalised. The authors do not present information about the kind of domain
experts they advise working with.

C4. This methodology adopts a middle-out strategy.

C5. No indication about a life cycle is given.

C6. The importance of competency questions are emphasised. However, they do
not provide techniques or methods to approach this problem.

C7. The Toronto Virtual Enterprise ontology was built using this methodology [72].

C8. Communities are not involved in this methodology.

C9. No particular indication for eliciting knowledge is given.

A.3 The Bernaras Methodology

Bernaras work was developed as part of the KACTUS [12] project which aimed to
investigate the feasibility of knowledge reuse in technical systems.

C1. This methodology is thus heavily influenced by knowledge engineering.
C2. Limited detail about the methodology is provided.



130

C3.

C4.
Cs.

Cé.

C7.
C8.
Co.

A. Garcia et al.

This methodology is application dependant. As the development of this
methodology took place within a larger engineering effort ontologies were
being developed hand-in-hand with the corresponding software. This implies
that domain experts were being used for both tasks, for requirements interviews
and studies as well as for ontology development. This, however, does not mean
that domain experts were taking an active role. The authors present very little
information about the kind of domain experts they advise working with.

This methodology adopts a bottom-up approach [36].

As the ontology is highly coupled with the software that uses it, the life cycle
of the ontology is the same as the software life cycle.

For the specific development of the ontology no particular methods or tech-
niques are provided. However, as this methodology was meant to support the
development of an ontology at the same time as the software it is reasonable
to assume that some software engineering methods and techniques were also
applied to the development of the ontology.

It has been applied within the electrical engineering domain.

Communities are not involved in this methodology

No particular indication for knowledge elicitation is provided.

A.4 The METHONTOLOGY Methodology

The authors of METHONTOLOGY aim to define a standardisation of the
ontology life cycle (development) with respect to the requirements of the Software
Development Process (IEEE 1074-1995 standard) [18]. The METHONTOLOGY
methodology is illustrated in Fig. 4.7.

Fig. 4.7 METHONTOLOGY. Reproduced with permission from [36]



4 Developing Ontologies within Decentralised Settings 131

Cl.
C2.

C3.

C4.
Cs.
Cé.

C7.

C8.
Co.

METHONTOLOGY has its roots in knowledge engineering.

Detail is provided for the ontology development process; Fig. 4.7 illustrates
the methodology. It includes the identification of the ontology development
process, a life cycle based on evolving prototypes, and particular techniques
to carry out each activity [36]. This methodology heavily relies on the IEEE
software development process as described in [50]. Gomez-Perez et al. [52]
consider that all the activities carried out in an ontology development process
may be classified into one of the following three categories:

1. Management activities: Including planning, control and quality assurance.
Planning activities are those aiming to identify tasks, time and resources.

2. Development activities: Including the specification of the states, concep-
tualisation, formalisation, implementation and maintenance. From those
activities related to the specification knowledge engineers should under-
stand the context in which the ontology will be used. Conceptualisation
activities are mostly those activities in which different models are built.
During the formalisation phase the conceptual model is transformed into
a semi-computable model. Finally, the ontology is updated and corrected
during the maintenance phase [42].

3. Support activities: These include knowledge elicitation, evaluation, integra-
tion, documentation, and configuration management.

Application independent. No indication is provided as to the kind of domain
experts they advise working with. In principle METHONTOLOGY could be
applied to the development of any kind of ontology.

This methodology adopts a middle-out

METHONTOLOGY adopts an evolving-prototype life cycle.

No methods or techniques recommended. METHONTOLOGY heavily relies
on WebODE [45] as the software tool for coding the ontology. However, this
methodology is in principle independent from the software tool.

This methodology has been used in the development of the Chemical
OntoAgent [73] as well as in the development of the Onto2Agent ontology
[73].

No community involvement is considered.

Knowledge elicitation is part of the methodology. However, no indication is
provided as to which method to use.

A.5 The SENSUS Methodology

The SENSUS-based methodology [14] is a methodology supported on those expe-
riences gathered from building the SENSUS ontology. SENSUS is an extension and
reorganisation of WordNet [74], this 70,000-node terminology taxonomy may'?

1 2http://www.isi.edu/natural—lan guage/projects/ONTOLOGIES.html



132 A. Garcia et al.

be used as a framework into which additional knowledge can be placed [75].
SENSUS emphasises merging pre-existing ontologies and mining other sources
such as dictionaries.

C1. SENSUS is not influenced by knowledge engineering as this methodology
mostly relies on methods and techniques from text mining.

C2. Although there is extensive documentation for those text-mining techniques
and developing structures for conceptual machine translation [75-77] no detail
is provided as for how to build the ontology.

C3. As SENSUS makes extensive use of both text mining and conceptual machine
translation the methodology as such is application semi-independent. The
methods and techniques proposed by SENSUS may, in principle, be applied
to several domains.

C4. SENSUS follows a bottom-up approach. Initially instances are gathered, as the
process moves forward abstractions are then identified.

CS. No life cycle is identified; from those reported experiences the ontology is
deployed on a one-off basis.

C6. Methods and techniques are identified for gathering instances. However, no
further detail is provided.

C7. SENSUS was the methodology followed for the development of knowledge-
based applications for the air campaign planning ontology [78].

C8. No community involvement is considered.

C9. Knowledge elicitation is not considered explicitly.

A.6 DILIGENT

Diligent (DIstributed, Loosely controlled and evolvInG Engineering of oNTologies)
was conceived as a methodology for developing ontologies on a community basis.
Although the DILIGENT approach assumes the active engagement of the commu-
nity of practice throughout the entire process, it does not give extensive details.
Some particularities may be found reported for those cases in which DILIGENT
has been used, for instance [15].

C1. DILIGENT is influenced by knowledge engineering as this methodology has
been developed assuming the ontologies will be used by knowledge-based sys-
tems. However, DILIGENT introduces novel concepts such as the importance
of the evolution of the ontology and the participation of communities within
the development and life cycle of the ontology.

C2. DILIGENT provides some details specifically for those developments in which
it has been used.

C3. DILIGENT is application dependant. There is no indication about the kind of
domain experts they advise working with.

C4. The selection between top-down, bottom-up or middle-out is problem depen-
dent. No indication is given as to which strategy would be best to follow.



4 Developing Ontologies within Decentralised Settings 133

Cs.

Cé.

C7.

C8.
Co.

DILIGENT assumes an iterative life cycle in which the ontology is in constant
evolution.

In principle DILIGENT does not recommend methods or techniques. By the
same token DILIGENT is not linked to any software supporting, either the
development or the collaboration.

Some cases for which DILIGENT has been used have been reported, for
instance, the study of legal cases [79].

The involvement of communities is considered in this methodology.

Although knowledge elicitation is considered in this methodology no special
emphasis is placed on it.

A.7 The GM Methodology

The GM methodology emphasises on knowledge acquisition when developing
ontologies within decentralised settings. Similar to DILIGENT, the GM method-
ology was engineered for scenarios in which geographically distributed domain
experts were working together on the same ontology. The GM methodology makes
use of conceptual maps to support the acquisition of knowledge. In contrast to the
DILIGENT methodology, the GM methodology provides a detailed description of
the process applied within their development scenario.

CI.
C2.
C3.

C4.
Cs.

Cé.
C7.

C8.
Co.

GM applies knowledge engineering principles.

A detailed description of the methods and techniques used are provided.

GM is application dependant. GM assumes the participation of both specialised
and broader knowledge domain experts.

A top-down approach is applied within GM.

GM assumes an iterative life cycle in which the ontology is in constant
evolution.

Methods and techniques for some of the stages of the development process are
recommended.

GM has been used within the biomedical domain [79].

GM assumes an active participation of the community.

GM has an emphasises on knowledge elicitation.

A.8 The iCapturer Methodology

The GM methodology emphasises on knowledge acquisition within decentralised
settings. Unlike GM and DILIGENT, iCapturer [38] makes use of text-mining
approaches, such as text-to-onto, to identify important terms and to suggest
candidate ontological relationships between them.



134

Cl.

C2.

C4.

Cs.

Ce.

C7.
C8.
Co.

A. Garcia et al.

The iCAPTURer approach has received little influence from knowledge engi-
neering.

The iCAPTURer methodology is very specific in terms of the orchestration of
methods used. The first step is term and relationship extraction from text con-
taining domain knowledge. The second is web-based, massively collaborative
correction, refinement and extension of the automatically extracted concepts
and relationships. The second step may be divided into phases of knowledge
elicitation, evaluation, and aggregation.

C3.1. Application of the ontology. Application independent.

C3.2. Domain experts. The methodology is intended to make use of knowl-
edge gathered from all levels of domain experts. It is assumed that the
pool of experts contains all of the knowledge that is intended to be
represented in the ontology.

C3.3. Ontology type. The methodology is best suited for domain ontologies.

Strategy for identifying concepts. The strategy for identifying concepts is to
extract representative terms automatically from text. Though this will typically
result in what appears to be a more bottom-up approach, different bodies of
text will produce different results.

Recommended life cycle. The recommended life cycle is to

1. identify a domain of knowledge to be represented in an ontology,

2. identify a corpus thought to contain that knowledge,

3. apply text-mining approaches, such as text-to-onto, to identify important
terms and to suggest candidate ontological relationships between them,

4. define user-interfaces for correcting and extending this knowledge,

5. assemble a broad array of experts in the domain and engage them in using
the interface to improve the ontology,

6. evaluate the quality of each contributor based on expected correct interac-
tions with the knowledge elicitation system,

7. weight their contributions based on this level of quality,

8. aggregate the contributions of all of the experts so that a candidate ontology
can be generated and

9. iterate and refine as needed.

Recommended methods and techniques. The methodology specifies the process
but does not suggest any specific method. Several text-mining algorithms or
knowledge gardening interfaces might be applied depending on the domain
and the community.

Applicability. iCAPTURer has not yet been applied in real scenarios.
Community involvement. The community is assumed to develop the ontology.
Knowledge elicitation. Knowledge elicitation is an integral part of the method-
ology. iCAPTURer describes some techniques for KE, but there is also wide
room for expansion and adaptation of other methods.



4

Developing Ontologies within Decentralised Settings 135

A.9 NeOn Methodology

Ne

On'3 is a framework for developing networked ontologies. It is one of the

most comprehensive works in terms of ontology engineering. The framework
incorporates a methodology.

Cl

C2.

. Highly influenced by knowledge engineering.
It defines those steps that should be undertaken when developing ontologies.

C3.

C4.

Cs.

Cé.

C7.

C8.

Co.

C3.1. Application of the ontology. Application independent.

C3.2. Domain experts. It assumes an active participation of domain experts
and ontology engineers.

C3.3. Ontology type. The methodology is best suited for domain ontologies.

Strategy for identifying concepts. No particular detail is provided for identify-
ing concepts.

Recommended life cycle. Project aims specifically to support life cycle activi-
ties, but does not prescribe a particular type of life cycle.

Recommended methods and techniques. It provides specifics for methods and
techniques.

Applicability. The methodology is proposed based on cases that have been stud-
ied; however, it is not clear which ontology has been developed applying the
proposed framework.

Community involvement. It assumes collaboration and the involvement of a
community of practice.

Knowledge elicitation. Knowledge elicitation is recognised to play a significant
role during the development process.

References

N =

Editorial: Compete, collaborate, compel. Nat Genet 39(8) (Aug 2007) 931

. Julian, S., J. Rector, A.: The state of multi-user ontology engineering. In: Proceedings of the

2nd International Workshop on Modular Ontologies, Canada (2007)

. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L., Eilbeck,

K., Lewis, S.: The obo foundry: Coordinated evolution of ontologies to support biomedical
data integration. Nature Biotechnology 25(11) (2007) 1251-1255

Gruber, T.: Collective knowledge systems: Where social web meets the semantic web. In:
Proceedings of the Sth International Semantic Web Conference, Athens, GA, USA (2006)
Tudorache, T., Noy, N.: Collaborative protege. In: Social and Collaborative Construction
of Structured Knowledge, Proceedings of 16th International WWW Conference, Alberta,
Canada (2007)

Feigenbaum, E., McCorduck, P.: The Fifth Generation. Addison-Wesley, Reading, MA (1983)

13 http://www.neon-project.org



136

11.

12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Garcia et al.

Kendal, S., Creen, M.: An Introduction to Knowledge Engineering. Springer, New York, NY
(2007)

Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundation.
Brooks Cole Publishing, Pacific Grove, CA (2000)

Sure, Y.: Methodology, Tools and Case Studies for Ontology Based Knowledge Management.
PhD Thesis, Universitat Fridericiana zu Karlsruhe (2003)

Uschold, M., King, M.: Towards methodology for building ontologies. In: Workshop on Basic
Ontological Issues in Knowledge Sharing, Held in Conjunction with IJCAI-95. Cambridge,
UK (1995)

Gruninger, M., Fox, M.S.: The role of competency questions in enterprise engineering.
In: Proceedings of the IFIP WG5.7 Workshop on Benchmarking — Theory and Practice,
Trondheim, Norway (1994)

Bernaras, A., Laresgoiti, L., Corera, J.: Building and reusing ontologies for electrical network
applications, 12th European Conference on Artificial Intelligence ECAIL Wiley, Budapest,
Hungary (1996) 298-302

Fernadez-Lopez, M., Perez, A.G., Pazos, S.J., Pazos, S.A.: Building a chemical ontology
using methontology and the ontology design environment. IEEE Intelligent Systems and Their
Applications 14 (1999) 37-46

Swartout, B., Ramesh, P., Knight, K., Russ, T.: Toward distributed use of largescale ontolo-
gies. In: Symposium on Ontological Engineering of AAAI, Stanford, California (1997)
Pinto, H.S., Staab, S., Tempich, C.: Diligent: Towards a fine-grained methodology for dis-
tributed, loosely-controlled and evolving engineering of ontologies. In: European Conference
on Artificial Intelligence, Valencia, Spain (2004) 393-397

Vrandecic, D., Pinto, H.S., Sure, Y., Tempich, C.: The diligent knowledge processes. Journal
of Knowledge Management 9(5) (2005) 85-96

Garcia, C.A., Rocca-Serra, P., Stevens, R., Taylor, C., Nashar, K., Ragan, M.A., Sansone, S.:
The use of concept maps during knowledge elicitation in ontology development processes —
the nutrigenomics use case. BMC Bioinformatics 7 (2006) 267

Mirzaee, V.: An Ontological Approach to Representing Historical Knowledge. MSc Thesis.
PhD Thesis, Department of Electrical and Computer Engineering, University of British
Columbia (2004)

Moreira, D., Musen, M.A.: Obo to owl: A protege owl tab to read/save obo ontologies.
Bioinformatics 23(14) (2007) 1868-1870

Sathiamurthy, M., Peters, B., Bui, H.H., Sidney, J., Mokili, J., Wilson S.S., Fleri, W.,
McGuinness, D., Bourne, P., Sette, A.: An ontology for immune epitopes: Application
to the design of a broad scope database of immune reactivities. BMC Immunology 1(2)
(2005)

Bada, M., Stevens, R., Goble, C., Gil, Y., Ashbourner, M., Blake, J., Cherry, J., Harris, M.,
Lewis, S.: A short study on the success of the geneontology. Journal of Web Semantics 1
(2004) 235-240

Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific American 284(5)
(2001) 28-37

Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelligent Systems
(2006) 96-101

Degtyarenko, K., Matos, P., Ennis, M., Hastings, J., Zbinden, M., McNaught, A., Alcantara,
R., Darsow, M., Guedj, M., Ashburner, M.: ChEBI: A database and ontology for chemical
entities of biological interest. Nucleic Acids Research (2007)

Smith, B., Kumar, A., Bittner, T.: Basic formal ontology for bioinformatics. Retrieved Jul.
12, 2010 from http://www.uni-leipzig.de/~akumar/JAIS.pdf Journal of Information Systems
(2005) 1-16

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies
with Dolce. Lecture Notes in Computer Science (2002) 166—181



4 Developing Ontologies within Decentralised Settings 137

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

48.

49.

Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., Michalek, H.: General Formal
Ontology (GFO) — A Foundational Ontology Integrating Objects and Processes. Onto-Med
Report 8

Eden, H.A., Hirshfeld, Y.: Principles in formal specification of object oriented design and
architecture. In: Proceedings of the 2001 Conference of the Centre for Advanced Studies on
Collaborative Research, Toronto, Canada, IBM Press (2001)

Pressman, S.R.: Software Engineering, A Practitioners Approach. 5th edn. McGraw-Hill
Series in Computer Science. Thomas Casson, New York, NY (2001)

Martin, J.: Rapid Application Development. Prentice-Hall, Englewood Cliffs, NJ (1991)
Gilb, T.: Evolutionary project management: Multiple performance, quality and cost metrics
for early and continuous stakeholder value delivery. In: International Conference on Enterprise
Information Systems, Porto, Portugal (2004)

Perez, A.G.: Some Ideas and Examples to Evaluate Ontologies. Technical Report, Stanford
University (1994a)

Gilb, T.: Principles of Software Engineering Management. Addison-Wesley Longman,
Boston, MA (1988)

Garcia, A.: Developing Ontologies Within the Biomedical Domain. PhD, University of
Queensland (2007)

Fernandez, M.: Overview of methodologies for building ontologies. In: Proceedings of
the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods(KRRS), Stockholm,
Sweden (1999)

Corcho, O., Fernadez-Lopez, M., Gomez-Perez, A.: Methodologies, tools, and languages for
building ontologies. Where is their meeting point? Data and Knowledge Engineering 46(1)
(2003) 41-64

Fernandez, M., Gomez-Perez, A., Juristo, N.: Methontology: From ontological art to
ontological engineering. In: Workshop on Ontological Engineering. Spring Symposium
Series. AAAI97, Stanford (1997)

Good, B., Tranfield, E.M., Tan, P.C., Shehata, M., Singhera, G., Gosselink, J., Okon,
E.B., Wilkinson, M.: Fast, cheap, and out of control: A zero curation model for ontology
development. In: Pacific Symposium on Biocomputing. Maui, Hawaii, USA. (2006)

Van Heijst, G., Van der Spek, R., Kruizinga, E.: Organizing corporate memories. In: Tenth
Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW’96). (1996)
Mizoguchi, R., Vanwelkenhuysen, J., Ikeda, M.: Task ontology for reuse of problem solving
knowledge. In: Towards Very Large Knowledge Bases: Knowledge Building and Knowledge
Sharing (KBKS’95). (1995) 46-57

Uschold, M., Gruninger, M.: Ontologies: Principles, methods and applications. Knowledge
Engineering Review 11 (1996) 93-136

Fernadez-Lopez, M., Gomez-Perez, A.: Overview and analysis of methodologies for building
ontologies. The Knowledge Engineering Review 17(2) (2002) 129-156

Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal About the Mind.
Chicago University Press, Chicago (1987)

Cooke, N.: Varieties of knowledge elicitation techniques. International Journal of Human-
Computer Studies 41 (1994) 801-849

Arpirez, J., Corcho, O., Fernadez-Lopez, M., Gomez-Perez, A.: Webode in a nutshell. AL
Magazine 24(3) (2003) 3747

Hinchcliffe, D.: Dion hinchcliffe’s web 2.0 blog web 2.0 (2008)

Stoeckert, C.J., Parkinson, H.: The mged ontology: A framework for describing functional
genomics experiments. Comparative and Functional Genomics 4 (2003) 127-132

Perez, A.G., Juristo, N., Pazos, J.: Evaluation and assessment of knowledge sharing tech-
nology. In Mars, N. (ed.) Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing(KBK95), 10S Press, Amsterdam, The Netherlands, (1995) 289-296
Pinto, H.S., Martins, P. J.: Ontologies: How can they be built? Knowledge and Information
Systems 6 (2004) 441-463



138

50.
S1.
52.
53.
54.
55.
56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

A. Garcia et al.

IEEE: IEEE standard for software quality assurance plans (1998)

Greenwood, E.: Metodologia de la investigacion social. Paidos, Buenos Aires (1973)
Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering. Springer,
London (2004)

IEEE: IEEE standard for developing software life cycle processes (1996)

Mooney, S.D., Baenziger, P.H.: Extensible open source content management systems and
frameworks: A solution for many needs of a bioinformatics group. Brief Bioinform 9(1) (Jan
2008) 69-74

Stevens, R., Goble, C., Bechhofer, S.: Ontology-based knowledge representation for bioinfor-
matics. Briefings in Bioinformatics (2000) 398-414

Gaines, B.R., Shaw, M.L.Q.: Knowledge acquisition tools based on personal construct
psychology. The Knowledge Engineering Review 8(1) (1993) 49-85

Rubin, D., Lewis, S., Mungall, C., Misra, S., Westerfield, M., Ashburner, M., Sim, 1., Chute,
C., Solbrig, H., Storey, M., Smith, B., Day-Richter, J., Noy, N., Musen, M.: National center
for biomedical ontology: Advancing biomedicine through structured organization of scientific
knowledge. OMICS 10(2) (2006) 85-98

Cote, R., Jones, P., Apweiler, R., Hermjakob, H.: The ontology lookup service, a lightweight
cross-platform tool for controlled vocabulary queries. BMC Bioinformatics 7(97) (2006)
Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First
Ontology. Technical Report, Stanford University (2001)

Perez, A.G., Fernadez-Lopez, M., Corcho, O.: Ontological Engineering. Computer Sciences.
Springer. London (2004)

Haarslev, V., Mller, R.: Racer: A core inference engine for the semantic web. In: Proceedings
of the 2nd International Workshop on Evaluation of Ontology-based Tools (EON2003),
Sanibel Island, Florida, USA (2003) 27-36

Sirin, E., Parsia, B., Cuenca-Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
resoner. Journal of Web Semantics 5(2) (2007)

Garcia, A., Zhang, Z., Rajapakse, M., Baker, C., Tang, S.: Capturing and modeling neuro-
radiological knowledge on a community basis: The head injury scenario. In: Health and Life
Sciences workshop at the WWW2008. (2008)

Orchard, S., Hermjakob, H., Apweiler, R.: The proteomics standards initiative. Proteomics
3(7) (2003) 1374-1376

Taylor, C., Paton, N., Lilley, K., Binz, P., Julian, R.J., Jones, A., Zhu, W., Apweiler, R.,
Aebersold, R., Deutsch, E., Dunn, M., Heck, A., Leitner, A., Macht, M., Mann, M., Martens,
L., Neubert, T., Patterson, S., Ping, P., Seymour, S., Souda, P., Tsugita, A., Vandekerckhove,
J., Vondriska, T., Whitelegge, J., Wilkins, M., Xenarios, 1., Yates, J.R., Hermjakob, H.: The
minimum information about a proteomics experiment (miape). Nature Biotechnology 25(8)
(2007) 887-93

Jones, A., Gibson, F.: An update on data standards for gel electrophoresis. Proteomics 7(Suppl
1) (2007) 3540

Dagnino, A.: Coordination of hardware manufacturing and software development lifecycles
for integrated systems development. In: IEEE International Conference on Systems, Man, and
Cybernetics 3 (2001) 850-1855

Boehm, B.: A spiral model of software development and enhancement. ACM SIGSOFT
Software Engineering Notes 11(4) (1986) 14-24

McDermid, J., Rook, P.: Software development process models. In: Software Engineer’s
Reference Book. CRC Press, Boca Raton, FL (1993) 15-28

Larman, C., Basili, R., V.: Iterative and incremental development: A brief history. Computer,
IEEE Computer Society 36 (2003) 47-56

May, L, E., Zimmer, A, B.: The evolutionary development model for software. HP Journal
(1996) Retrieved Jul. 12, 2010 http://www.hpl.hp.com/hpjournal/96aug/aug96a4.pdf

Fox, M.S.: The tove project: A common-sense model of the enterprise systems. In: Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems. (1992)



4 Developing Ontologies within Decentralised Settings 139

73.

74.

75.

76.

7.

78.

79.

80.

Arpirez, J., Corcho, O., Fernadez-Lopez, M., Gomez-Perez, A.: Webode in a nutshell. Al
Magazine 24(3) (2003) 3747

Fellbaum, C.: WordNet, An Electronic Lexical Database. The MIT Press, Cambridge, MA
(2000)

Knight, K., Luk, S.: Building a large-scale knowledge base for machine translation. In:
Proceedings of the National Conference on Artificial Intelligence. Wiley, New York (1994)
773-773

Knight, K., Chander, I.: Automated postediting of documents. In: Proceedings of the
12th National Conference on Artificial Intelligence (vol. 1) Table of Contents, American
Association for Artificial Intelligence Menlo Park, CA, USA (1994) 779-784

Knight, K., Graehl, J.: Machine transliteration. Computational Linguistics 24(4) (1998)
599-612

Valente, A., Russ, T., MacGregor, R., Swartout, W.: Building and (Re) Using an Ontology of
Air Campaign Planning. IEEE Intelligent Systems (1999) 27-36

Tempich, C., Pinto, H., Sure, Y., Vrandecic, D., Casellas, N., Casanovas, P.: Evaluating dili-
gent ontology engineering in a legal case study. In: XXII World Congress of Philosophy of
Law and Social Philosophy, IVR2005 Granada, May 24th, 29th (2005)

Garcia, A.: Developing Ontologies in the Biological Domain. PhD Thesis, University of
Queensland (2007)



Chapter 5
Semantic Technologies for Searching
in e-Science Grids

Amitava Biswas, Suneil Mohan, and Rabi Mahapatra

Abstract Searching is a key function in scientific cyber-infrastructures; there these
systems need to implement superior meaning-based search functionalities powered
by suitable semantic technologies. These required semantic technologies should
enable computers to comprehend meaning of the objects being searched and user’s
search intentions, compare these meanings, and discern which object may satisfy
user’s need. We present a survey of meaning representation and comparison tech-
nologies, followed by a design of meaning representation and comparison technique
which is coherent to the cognitive science and linguistics models. This proposed
design addresses the key requirement of meaning compositionality which has not
been addressed adequately and efficiently by existing research. We present an alge-
braic theory and techniques to represent hierarchically composed concepts as a
tensor which is amenable to efficient semantic similarity computation. We delin-
eate a data structure for the semantic descriptors/keys and an algorithm to generate
them and describe an algorithm to compute the semantic similarity of two given
descriptors (tensors). This meaning comparison technique discerns complex mean-
ing while enabling search query relaxation and search key interchangeability. This
is achieved without the need of a meaning knowledgebase (ontology).

5.1 Introduction

5.1.1 e-Science or Scientific Cyber-Infrastructure

Both terms “e-Science” and ‘“scientific cyber-infrastructure” indicate the same
concept. The term “cyber-infrastructure” was introduced by National Science
Foundation in USA whereas “e-Science” is used in UK. Scientific cyber-
infrastructure or e-Science indicates an assortment of digital resources, software

A. Biswas (X)
Department of Computer Science, Texas A&M University, College Station, TX, USA
e-mail: amitabi @cs.tamu.edu

H. Chen et al. (eds.), Semantic e-Science, Annals of Information Systems 11, 141
DOI 10.1007/978-1-4419-5908-9_5, © Springer Science+Business Media, LLC 2010



142 A. Biswas et al.

systems, and web applications that facilitate and enable activities carried out during
scientific investigations. The main argument in favor of such cyber-infrastructures
is that if all the data that are being generated in different scientific fields are made
available to the scientific community and public at large, then that alone can lead to
further scientific discoveries and applications. A hypothetical scenario presented in
text box TB1 illustrates this vision.

TB1: Eric, an atmospheric scientist, wants to predict the new climatic patterns
in Texas for the next 10 years. He explores the “Texas Mesonet” [1], iden-
tifies various required metrological data, receives the data feeds, and inputs
them into his model to generate the prediction. He stores his prediction data in
his local database server but he allows the grid to produce a basic descrip-
tion about his generated data and computation model and has read access
to them.

A few weeks later, an economist discovers and uses Eric’s generated data
and models along with other available semi-processed data on soil hydrology
from CUAHSI Hydrology Information System [2]. He uses these data to esti-
mate the requirements and cost of irrigation for ethanol-grade corn (for wet
areas) and sorghum (for dry areas) [9].

Quite a number of such cyber-infrastructures are available today. In bio-
science domain NIH’s (US) PubMed [1] and EMBL’s (Europe) SRS [2] are
well-known examples, whereas SAO/NASA Astrophysics Data System [3] is an
example in astronomy and Community Data Portal (CDP) [4], California Water
CyberInfrastructure [5] and CUAHSI Hydrologic Information System (CUAHSI-
HIS) [6] are examples in earth science domains. These cyber-infrastructures enable
scientists to (1) acquire new insights and knowledge from existing data; (2) beget
collaboration; (3) facilitate reuse of data and knowledge; (4) assist generation of new
knowledge from existing ones; and (5) encourage application of the available data
and knowledge for productive outcomes. The value of these cyber-infrastructures
lies in their usability and functionality. Therefore planning and designing a suitable
cyber-infrastructure that can deliver these functionalities to a large scientific user
community is a significant challenge.

5.1.2 Scientific Cyber-Infrastructure Planning and Designing
Challenges: Scope of Discussion

Cyber-infrastructure planning and design challenges can be categorized into two
broad classes: (1) social, behavioral, or “soft” issues and (2) “hard” technical
problems that can be addressed by engineering approaches. The planning prob-
lems mostly involve social and behavioral aspects of the usage environment.
During planning the key question that has to be addressed is how to manage the



5 Semantic Technologies for Searching in e-Science Grids 143

usage environment so that the combined emergent system comprising the cyber-
infrastructure and its users is most effective in enabling and facilitating scientific
investigations. These planning problems encountered here have to be addressed by
appropriate changes and innovations in the legal/regulatory framework, organiza-
tional designs, etc. Some discussions on these “soft” issues can be found in [7].
Whereas cyber-infrastructure design challenges are mostly technical in nature, the
technical side of this design problem involves managing the following three aspects:

1. Resources: These include data, information, knowledge in digital forms, com-
putational resources, and computational (software) tools that are shared among
users. One of the key roles of the cyber-infrastructure is to enable effective and
efficient sharing of these resources.

2. Processes: In addition to enabling resource sharing, a cyber-infrastructure should
also facilitate other high-level processes that are essential and intrinsic to scien-
tific investigations. These processes comprise a collection of activities and tasks
that are necessary to be carried out to explore existing data, information, and
knowledge to generate new insights or to re-examine old hypotheses; gather
secondary data and/or use computational resources to validate a new hypothe-
sis; etc. The cyber-infrastructure should be designed to have functionalities that
enable and facilitate these business processes. This requires business process
engineering/designing, which is considered part of information system design
activity. Scientific investigation is a creative practice which involves a wide
variety of well-established and unprecedented and yet-to-be defined processes.
This poses a significant challenge in designing a flexible encompassing system
which should preferably enable a large variety of standard and novel unidentified
processes.

3. Technologies: These include low-level processes, mechanisms, techniques, and
algorithms that enable the cyber-infrastructure functionalities. Two broad cat-
egories of technologies are involved here, these are core technologies and
user interaction technologies. The core technologies are embedded deep
within the cyber-infrastructure to support a wide array of functionalities,
whereas the user interaction technologies enable easy, user-friendly, and mean-
ingful user interaction between users and the cyber-infrastructure. Both of
these technologies are interdependent and together they enable the required
processes.

Both aspects of the problem, the planning and technical designing, are also
interdependent. Technical design activity should take into account the social (orga-
nizational, behavioral), economic, and regulatory realities of the usage context to
design effective and efficient processes and technologies. On the other hand, novel
cyber-infrastructure technologies enable new functionalities that can facilitate inno-
vative organizational designs and implement new regulations. In this chapter we
primarily focus on a specific kind of core semantic technologies that are needed to
address some of these cyber-infrastructure design challenges.



144 A. Biswas et al.
5.1.3 Role of Search and Semantic Technologies

Role of search. Search functionality is very central to the “resource reuse” objec-
tive of the scientific cyber-infrastructure paradigm. To reuse resources, users have
to first discover them (by searching). Search functionality is also essential to
support other key functionalities as well. For example, to aid creation of some
components of the cyber-infrastructure itself, a superior kind of search capability
is required. We discuss these roles of search technology in detail in subsequent
sections.

Need for sophisticated meaning-based search capability. The search capability
needed here has to be meaning based, more sophisticated than what we get today
in Internet search engines like Google and local specialized search engines like
PubMed’s All search feature [1], etc. Scientists will need to search for data, informa-
tion, knowledge objects, tools, and computational resources what are more complex
and heterogeneous compared to text documents. They will need a more pervasive
search service than what is currently provided by the local search engines. It is
well known that existing Internet search engines cannot index valuable “deep web”
database resources [8] which are more interesting in scientific explorations. In addi-
tion, they fail to carry out precise searching to yield fewer and more relevant results
even for general search queries (e.g., Table 5.1, where user wanted to identify a
supplier of mouse test subjects). Due to these fundamental deficiencies, Internet
search engines are not expected to perform well with scientific terms and keywords.
On the other hand the specialized search engines do not have the required level of
sophistication (an example is presented in Table 5.2).

Table 5.1 Deficiency of Internet search engines (Google, 2008) [9]

Keywords used Top 20 results Comments
Rodent supplier Relevant Indicates availability of
information
Mouse supplier Irrelevant Returns computer mouse suppliers
(disambiguation problem)
Supplier animal mouse medical Irrelevant Fails to return result even though keyword
experimentation is disambiguated by adding “animal”

Need for superior semantic technologies. Ability of a search technology to han-
dle large variety of heterogeneous objects, deliver improved search coverage across
all Internet sources, and provide precise search results depends on the capabilities
of the underlying semantic technology that enables the search. Semantic technolo-
gies are “meaning centered” software standards, methodologies, and techniques that
enable computers to recognize topics and concepts, extract meaning from data and
information, and categorize information and data. The rudimentary semantic tech-
nologies of the existing search technologies only allow searches based on broad
classification of topics or broad meaning of the object content. To deliver precise
search result we need superior semantic technologies that can capture, represent,



5 Semantic Technologies for Searching in e-Science Grids 145

Table 5.2 Semantic capability deficiency in NIH’s PubMed (as on Jul 29, 2008) [9]

Primary keywords used Combination of medical subject

to derive MeSH [10] heading (MeSH) [10] terms used Entries
terms to search in PubMed returned Comment
Type 1 diabetes “Diabetes mellitus, type 1” [Mesh] 38 Indicates presence of
mellitus, PTPN22 and “Protein tyrosine phosphatase, 38 publications
non-receptor type 22" [Mesh]
Type 1 diabetes “Diabetes mellitus, type 1 [Mesh] 37 This result should
mellitus, Lyp and “PTPN22 protein, human ” have been the
[Substance name] same as above
Type 1 diabetes “Diabetes mellitus, type 1 [Mesh] 0 Should have given
mellitus, Csk and “protein tyrosine kinase similar results as
pS50(csk) ” [Substance name] above rows

“PTPN22” gene encodes Lyp protein, which binds with Csk to inhibit T-cell activation in Type 1
diabetes [75].

and compare meanings more precisely. Semantic web technologies are a sub-class of
semantic technologies and the semantic technologies that are required for scientific
cyber-infrastructure are distinct from semantic web technologies.

5.1.4 Chapter Overview

In this chapter, cyber-infrastructure (e-Science) being the center of interest, we
start by analyzing their generic requirements. We discuss possible roles of search
and semantic technologies in satisfying some of these key requirements. Next
we review the concepts, performance metrics, user expectations regarding search
technology and present a proposed architecture for searching in e-Science grids
(scientific cyber-infrastructures). With this background we illustrate that to enable
sophisticated search capabilities we need techniques to capture user’s search inten-
tion, represent meaning of objects, and meaningfully match user’s search intention
against the meaning of the available objects. We present a brief survey of semantic
technologies, cognitive science, and linguistics literature that are relevant for mean-
ing representation and comparison. With this backdrop, we present a proposed set of
meaning representation and comparison techniques and design a distributed index
mechanism that can enable faster and scalable searching in a large grid. These tech-
niques are orthogonal to semantic web technologies and can be deployed along with
them to bolster overall semantic functionalities in scientific cyber-infrastructures.

5.2 Scientific Cyber-Infrastructure: Functional Requirements

The key motivation behind a cyber-infrastructure is that appropriate informatics
tools can facilitate and stimulate research. To design appropriate tools it is impor-
tant to first identify and understand the business processes involved in scientific



146 A. Biswas et al.

investigations. Therefore we identify and discuss these processes as part of the
requirement analysis.

5.2.1 Business Processes in Research

Processes in scientific investigations are sometimes indeterminate and often vary
widely depending on the domain, nature of problem being investigated, personal
style of the investigators, availability of scientific resources (data, tools, and meth-
ods), etc. Though low-level processes may vary, the high-level processes are
deterministic and generic across multiple domains. Figure 5.1 illustrates typical
generic high-level processes in natural science research domain.

Legend
Process/activity
:I Tools/systems
Research processes Data gathering & hypothesis validation
Empirical >
. tudi L
Exploration studies Simulation > Publication &
_phase —p studies p| knowledge
(identifying Re-analysis/ sharing
hypothesis) processing of >
secondary data
Facilitating solutions st T
Browsable and navigable Intention-based Tools for data Computation re- Publication & data/
web of cross referenced search and harvestin source management management
data and publications retrieval 9 functionalities functionalities

Fig. 5.1 Information technology tools and functionalities to aid research processes [9]

Initially researchers go through an exploratory phase to understand a particular
phenomenon and its related aspects to develop an intuition about the phenomenon
and to identify a possible hypothesis. Next they try to gather data to prove
the hypothesis. There are several alternative and complementary methods. Some
of these are (1) carrying out empirical studies under controlled experiments or
with real-life uncontrolled observations to gather primary data; (2) undertaking
computation-oriented simulations to generate simulated data; (3) gathering and
reprocessing existing (secondary) data. With the advent of computers and sophis-
ticated instrumentation there is a greater emphasis on use of computers to produce,
capture, analyze, present, and visualize large volume of data to generate insights and
knowledge. Therefore capturing/collecting data and preparing data, computational
models, and computational tools (software) for computation, marshalling computing
resources, etc., have also become part and parcel of the data gathering process.

To share, disseminate, and facilitate reuse of scientific knowledge, scientists pub-
lish results, study findings, and insights. These activities constitute the publication



5 Semantic Technologies for Searching in e-Science Grids 147

process (Fig. 5.1). With availability of information technology, the publishing is
increasingly becoming a web-and-electronic-media-centric process. Therefore these
days, the publishing also includes activities like uploading data, computation mod-
els, tools, computational objects, etc., to public digital libraries and repositories for
sharing with the user community at large. This involves large-scale data curation
(preparation, annotation, indexing) and management effort on part of the scientists
and repository maintainers.

5.2.2 Cyber-Infrastructure Functional Blocks and Enabling
Technologies

Each of the identified processes can be facilitated and enabled by appropriate
cyber-infrastructure functionalities. These functionalities are identified in Figure 5.1
under the processes that they enable. Figure 5.2 presents a high-level functional
architecture comprising functional blocks that embody these functionalities. The

User User using
— User _ § User  § . @ curating 3 grid .
User | searching for | @ gathering | | data .- %, computation
exploring =21 data =/ data T:"‘T"*_-— V Sy ;_-'3‘_,‘__ /resources
Scientific Information Web Tool for data Tool for data
(SIW) harvester curation
SIW Genera-
tor
Intention-based search
and retrle\:l system Computation re-
A source manage-
Semantic Index ment tools

data repositories Computation resources

T Digital libraries &

i | Data digesting

Optical
Character Syeton =
Recognition \ @& user u i
A ploading/
(OCR) E S a --".:"@%publishing data
Digitization

Instrumentation

Paper documents infrastructures

Fig. 5.2 Functional view of a generic scientific cyber-infrastructure [9]



148 A. Biswas et al.

arrows in Fig. 5.2 indicate the flow of information and dependency between func-
tional blocks. These functional blocks and semantic technologies that enable them
are discussed below.

Scientific information web (SIW). During exploration phase of the investiga-
tion, scientists will want to understand the relationships between various related
sub-phenomena and aspects of the problem (Fig. 5.1). This can be facilitated by
presenting the data and relevant scientific publications in the form of a navigable
and browsable Scientific Information Web-(SIW) where all related resources (data,
publications, and tools) are linked by cross-references (Fig. 5.2). The user interface
should enable scientists to (1) browse and navigate from one data entity or document
portion to another; (2) drill down into each resource object to progressively identify
other objects that are related to it; and (3) acquire insights and generate hypothe-
sis about a specific phenomenon. An example of this kind of data presentation is
SRS [2].

At present such cyber-infrastructures (cross-referenced web of data and informa-
tion) are manually constructed. To group related objects, create cross-references and
define index terms; data curators and indexers manually search for related objects,
index terms and publications (source of knowledge to use), and experts (to get help).
This manual and labor-intensive approach to process, curate, and index large vol-
ume of data not only suffers from a bottleneck due to paucity of expert data curators
but also is prone to errors and omissions. Text box TB2 presents a typical case of
such omission.

Sophisticated search technologies can be used to reduce or even obviate some of
these manual tasks. Availability of meaningful search capability would allow index-
ers to quickly identify knowledge sources, experts, and appropriate index terms. It
will also help pairing up related objects for cross-referencing (indexing). The omis-
sions in SIW can be avoided by deploying technologies that automate creation of
cross-references between related objects. If a sophisticated meaning-based search
technology is available it will be possible to automatically group related objects and
create cross-references between them (system-assisted cross-referencing and gen-
eration of data integration infrastructure) and automatically generate the SIW. The
SIW generator will carry out this task.

TB2: When a search related to diabetes biochemistry is carried out in EMBL’s
SRS [6] with “PPAR” (a nuclear receptor) as the query key, all data objects
that are related to “Fmoc-L-leucine” are expected among the results in addi-
tion to those related to PPAR, because the “Fmoc-L-leucine” molecule binds
to nuclear receptor (protein) named “PPAR” in the insulin signaling pathway
(related to diabetes). However, a particular published paper (a data object)
related to Fmoc-L-leucine could not be found either by using search keywords
“PPAR” or “Fmoc-L-leucine.” This paper was only identifiable by the IUPAC
name [7] of Fmoc-L-leucine This omission happened because the data curator
did not construct the link between “PPAR” and ‘“Fmoc-L-leucine,” even though
the link to its [IUPAC name was put in place [9].




5 Semantic Technologies for Searching in e-Science Grids 149

SIW generator. The SIW generator will take the description of a given object and
use it as the search key to identify all other objects that are similar (and related) to
the given object. This operation will be aided by a sophisticated search and retrieval
system and semantic index. The functionalities and components of this search and
retrieval system are described below.

Intention-based search and retrieval system. While focusing on a specific aspect
of a problem, scientists will prefer to get all related data, information, and knowl-
edge about that topic together at a single place (Fig. 5.1). On the other hand, to
allow organic (unfettered) growth and scalability in data collection, management,
and storage, data have to be distributed across multiple digital libraries and reposito-
ries. To reconcile these two conflicting requirements, a sophisticated intention-based
search and retrieval functionality is needed, which can quickly identify all related
data from multiple sources and present them to a user on demand. This search sys-
tem has to be more advanced than existing Internet and conceptual search engines
in several aspects. Researchers should be able to describe their search intention
and this search system should be able to search multiple public domain reposito-
ries to precisely identify the required data in a smaller number of search iterations
(Fig. 5.2). The search results can be presented as faceted, clustered, or ranked list
[9] based on search results or relationship between them. The closest example to
this idea is PubMed’s “All search” service. However, this service is not sufficiently
sophisticated (due to inconsistencies).

Similar to SRS, PubMed’s index is also incomplete as it is manually created
and curated. Sometimes a complete set of relevant results are not returned by this
service, even when exploded search is carried out using Medical Subject Heading
(MeSH) [10]. Table 5.2 presents a typical case of such inadequacy of the concep-
tual/exploded search capability in PubMed’s search service that hinders scientific
explorations.

The inconsistencies in Table 5.2 mean that users will miss many relevant data
objects unless they have exhaustively tried a large number of search iterations
with all possible combinations of all related keywords. There is a risk of missing
some keyword combinations and getting an incomplete picture, which is definitely
a public health and commercial risk in drug-related research. Sophisticated intention
(meaning)-based search capability can address these limitations.

Distributed semantic index. Intention-based searching and sophisticated data pre-
sentation will not require building a new repository or duplicating the data storage
effort. It will only need a new kind of meaning-based semantic index (catalog)
which will refer to data and portions of publications which already exist in pub-
lic domain digital repositories. This semantic index will be a key component of the
cyber-infrastructure grid that will bring together multiple data sources and provide
a single-window search service. This index will cluster these objects (e.g., publica-
tions or scientific data) in virtual groups based on similarity and relatedness of their
content (or its meaning). Based on such a semantic index it will be possible to auto-
matically create cross-references between related objects that are closely grouped
together and generate the Scientific Information Web. We need semantic technolo-
gies to build this kind of meaning-based index which will drive the intention-based



150 A. Biswas et al.

search functionality and generation of the information web. To achieve scalability
and organic growth, this index should be distributed.

Data collection, assimilation, data harvesting tools, and systems. To gather data,
scientists will need appropriate software tools to collect, manage, and assimilate
(annotate, prepare, and store) data in large scale. They have to gather these data from
multiple sources: existing hard copy and electronic publications, data repositories,
and instrumentation infrastructures. In some domains, for example in hydrology, a
wealth of data and knowledge are available in theses, dissertations, technical reports,
conference proceedings, and journal publications. Many of these publications are
still in paper or scanned image format. Suitable tools and applications are necessary
to seamlessly digitize these paper documents, OCR [11] the scanned images, and
meaningfully curate (annotate, index, cross-reference, and cluster) them. This is
necessary so that these publications can be searched and data can be harvested from
them to create primary and secondary (value-added) data products. Similar tools and
systems are also necessary to digest and prepare raw data gathered from small and
large-scale experiments, instrumentation, and observatory infrastructures.

Intention-based search technology can enable data indexers and curators to
quickly search for background knowledge, relevant search terms and expertise
and automate the cross-reference generation tasks. The cross-reference generated
automatically can be suggested to experts and they can either approve or reject
them. Similarly this search technology can help users to identify relevant portions
of the publications from where data can be harvested using suitable tools. When
large-scale sophisticated searching is possible then data harvesting from existing
publications can become a feasible and economic option in many scientific domains,
for example hydrology.

Resource management functionalities. Large-scale simulation and processing
often require large-scale computation facilities. Due to economic considerations,
generally only a limited number of such facilities are available. This necessitates
optimum utilization and sharing of these resources among large number of users.
This requires appropriate administration, resource allocation, and management
functionalities in the cyber-infrastructure that avoids elaborate bureaucratic admin-
istration mechanisms. Searching for available computing resources is also a search
problem, where need for meaning-based searching is not as critical. Nevertheless,
with availability of the distributed semantic index even this problem can be easily
addressed.

Publication support tools to ease data sharing. Scientists generate derived data
from the gathered data for their research. Both the primary and derived (secondary)
data can be repurposed if they are available to the scientific community and pub-
lic at large. Although many of these scientific data have resulted from publicly
funded projects, lack of incentives, existing reward systems, lack of publication
facilitating tools and mechanisms kept researchers from suitably organizing and
publishing their data. Various projects have demonstrated that availability of data
publication tools and mechanisms can change this culture and encourage scientists
to publish their data. This means that cyber-infrastructures have to incorporate the
functionalities that encourage scientists to publish their data in addition to traditional
scientific publications.



5 Semantic Technologies for Searching in e-Science Grids 151

Publication in electronic form means making the published object available in a
form that is easily searchable. The crucial task in the publication process is creation
of search handles (index keys) and inclusion of these along with the object locations
in the index. Existing search technologies require that data have to be elaborately
and manually prepared and annotated; metadata should be created with controlled
index terms and linked with existing objects in the libraries. Tools which automate
these tasks are needed here.

We discussed earlier how search technologies can help partial automation of
some of these data curation tasks. In addition, another approach is possible which
can automate the indexing task to a greater extent. In this scheme the publisher of
the object has to upload the data, preferably in standard format, to a web server
which need not be a specialized digital library. In addition, the publisher has to
also upload a well-articulated description of the object in natural language (e.g.,
English). Web crawlers and indexers powered by suitable semantic technologies will
identify suitable index terms and generate a semantic descriptor that represents the
precise meaning of the object and include that descriptor in the distributed semantic
index. The index will use these semantic descriptors for its operations. This opera-
tion requires a suitable semantic descriptor generation technology which has to be
more sophisticated than the vector-based approaches (e.g., TF-IDF [12]) used today
by Internet search engine web crawlers. Researchers can provide further specific
annotations and index terms if they wish to do so using the data curation tools.

Integrated operations under cyber infrastructure. All these identified tools and
systems will have to be integrated under a single cyber-infrastructure as pre-
sented in Fig. 5.2. Researchers will explore, search, and gather data from the
cyber-infrastructure. They will use the cyber-infrastructure to marshal computing
resources to run their data processing and computation jobs. Finally they will
publish their data using the cyber-infrastructure tools. This infrastructure will con-
tinuously enhance its capabilities as more users use and contribute to it. These
searching, curation, data harvesting, and publishing tools will facilitate appropri-
ate storage and use of data, information, and knowledge. This will lead to further
discoveries, generations of new knowledge, and high-impact applications.

5.3 Search Technology for Cyber-Infrastructures

In the last section we discussed how search technology can play a key role in cyber-
infrastructures. To understand the requirements for the search technology, in this
section we review the basics, evaluation criteria, and user expectations regarding
search.

5.3.1 Search Basics

Collection of objects and keys. A database being searched is considered as a collec-
tion of key and object/record pairs (Fig. 5.3). The object is the data item or entity
which we want to retrieve. In database systems, a record is an object, whereas in



152 A. Biswas et al.

the web an object is less structured and more heterogeneous. The object may be a
document file, entire or part of a webpage, a Web site, or web service URL. The
key is the identifier or handle for an object which is used in the search process. This
key may be a single numerical value, text string as in case of relational database
systems, a set of descriptive keywords to tag pictures or video files, or a vector of
keywords/terms as used in vector space information retrieval models. In essence,
this key is a descriptor that is a compact and structured description of the object
which enables retrieval.

User Index Collection

K2 ] [

Fig. 5.3 The existing search paradigm [9]

Search query and key comparison. To search, the user has to provide a search
criterion. This search criterion is represented by an entity (expression) called search
query. The search engine effectively compares all keys to identify which objects
have keys that satisfy this criterion and presents those objects as results. Comparing
numerical or text string keys is straightforward, but comparing complex descriptors
requires sophisticated algorithms. Numerical value and text string key comparisons
result in discrete Boolean values 0 (not equal) or 1 (equal), but complex descriptor
comparisons generate continuous values. In those cases a higher comparison value
means greater similarity between the object and the search key.

Role of Index. To enable faster searching across larger collections, pre-computed
indexes are used. Index serves the function of a catalog in a library. It is a data
structure of key and object pointer pairs, which is ordered based on the key. The
ordering and organization of the index drastically reduces the number of compar-
isons required to search the entire collection. For example, the hierarchical index
structure in Fig. 5.3 enables searching using only (log N/log k) comparisons instead
of N comparisons (in case no index is used), where N = number of objects and
k = the number of children in each index tree node.

Result presentation. Database searching produces results that exactly satisfied
the user’s search criterion, whereas the results from the advanced search technolo-
gies are a collection of probable items that finally may or may not match user’s
need. The best way to reduce user’s effort is to rank the results in terms of rele-
vance so that users can examine only the top few results to satisfy their need. This
requires computing the relevance of searched items and rank the items. In some



5 Semantic Technologies for Searching in e-Science Grids 153

cases, for example, in vector space models, the relevance computation is based
on descriptor comparison that yields continuous values. Objects whose descriptors
are more similar to the search key are attributed with higher relevance values. In
these cases, the key similarity computation itself gives the relevance metric to rank
results [9].

Alternate ways to present results are also possible. When users cannot produce a
precise search criterion, then large amounts of results can be returned by the search
systems. To help users to explore, discover, and refine their search criterion this
large volume of results can be presented as clusters (e.g., www.kartoo.com) and
facet-based categorizations (e.g., www.illumin8.com). The semantic technologies
that power the search technologies are expected to support some of these alternative
forms of result presentations expected by users.

5.3.2 Search and Retrieval Performance Metrics

The following metrics are useful to evaluate the performance of any search and
retrieval systems.

Precision. It is the fraction of the retrieved objects that are relevant to the user.
This metric is calculated as

number _ of _retrieved _objects _ that _are _relevant

precision = - -
number _ of _all _retrieved _ objects

Recall. 1t is the fraction of the available relevant objects in the collection that
were successfully retrieved. This metric is computed as

number _ of _retrieved _objects _ that _are _relevant
recall =

number _ of _all _relevant _objects _in _the _ collection

Search response time. This is the time a user has to wait to get all objects from
the retrieval system to satisfy his/her need. The user does not have to wait for all
available objects to be retrieved; he/she has to wait for a shorter duration to get the
minimal amount of objects that will just satisfy his/her needs.

Complete recall (response) time. This is the time required to complete the search
and recall all the available and relevant objects in the collection. This duration is
larger than search response time. The two response time metrics are not tradition-
ally used as retrieval performance evaluation criteria. So far information retrieval
has been limited within relatively small centralized systems, where these two times
are small enough to be ignored. However, these two time responses will become
significantly large and distinct in large distributed search systems which are needed
for grid searching. Hence we require to measure and manage both of them through
superior grid search system designs.



154 A. Biswas et al.
5.3.3 Existing Meaning-Based Search Techniques

For searching heterogeneous objects in grid, meaning-based searching is needed.
There are several varieties of meaning-based searching available. Some are desc-
ribed below.

Conceptual (exploded) searching. This kind of searching expands the scope of
search by automatically including search keywords that are conceptually related to
the given search/query keywords/terms. An example is PubMed’s exploded search
service [13] where a user can provide a standard Medical Subject Heading [10]
“Glucose Metabolism Disorder” as the search key to get all bio/medical science pub-
lications (objects) indexed under that topic. The results will also include objects that
are indexed under topics like “Diabetes Mellitus,” “Glycosuria,” “Hyperglycemia,”
in addition to those that are indexed under “Glucose Metabolism Disorder.” In med-
ical science the concept “Glucose Metabolism Disorder” encompasses “Diabetes
Mellitus” or “Glycosuria”; therefore the search is expanded to include all hyponyms
of “Glucose Metabolism Disorder.” The hyponym-hypernym relationships between
index terms are based on controlled taxonomies.

Semantic searching. This kind of searching has the flexibility to tolerate inter-
changeable search terms as long as these terms broadly convey similar meanings
(semantically related). This is best explained with an example as follows.

The gene “PTPN22” has several (single nucleotide polymorphic) vari-
ants: 1868C, 1858T, etc. The gene “PTPN22” is also known by synonyms
“IP100298016,” “PTPNS: Tyrosine-protein phosphatase non-receptor type 22.”
PTPN22 is related to a protein “LyP,” whose function is to bind with another
molecule known as “CsK.” Therefore all these terms “PTPN22,” “CsK,” “LyP,”
and “1858C,” are related. When these related terms are used as interchangeable
search keywords the semantic search engine should retrieve a similar set of objects
as results in all cases. The semantic relationships used here are available in upper
or domain-specific lower ontologies or word association (semantic) networks [14]
that can be generated by mining from a corpus of texts on the related subject
matter.

5.3.4 Intention-Based Web Searching

Basic concept. Intention-based searching is more sophisticated than the existing
meaning-based searching. In this paradigm a user need not provide the exact
description (matching keywords) of the data objects or its schema, instead he/she
can provide a natural language description of the search intention to the user inter-
face. The search system will search all public domain sources to precisely identify
the required information. It will produce a few useful accurate results instead of a
long list of probable results. Natural language is the easiest way for a user to describe
his search intentions accurately, hence it is a preferable method for interaction with
the search system. However, alternate user interaction and result presentation inter-
faces like result clustering, faceted categorization, cross-referenced web of data are



5 Semantic Technologies for Searching in e-Science Grids 155

also possible [9]. Intention-based search will involve capturing meaning of user’s
intentions and the text description of the objects (or the text objects themselves)
and then comparing these meanings to identify which texts/objects will suit user’s
need.

Implementation approach. To implement intention-based web searching we need
to extend the notion of key, key comparison, and index. Intention-based searching
involves comparing the meaning of user’s intention against description of the object.
Therefore the key should be a semantic descriptor data structure that represents
the meaning of user’s intention and the object. Key comparison should ascertain
the similarity between meanings represented by two semantic descriptors. Here the
semantic descriptor (key) will replace natural language in representing and com-
paring the meaning within computers. The index should enable faster searching. In
addition the index should be an infrastructure that can improve the search coverage.
Construction of distributed meaning-based index is possible by adopting the tech-
niques illustrated in [15, 17] which are based upon the findings of [16]. However
that will require techniques to represent and compare meanings of objects within
computers.

5.4 Semantic Technologies: Requirements and Literature Survey

5.4.1 Crucial Semantic Technologies

To enable the construction and operation of a meaning-based index system the
following semantic technologies are necessary:

1. An advanced data structure to represent keys (descriptors) that represent mean-
ings.

2. Technique to generate this semantic descriptor data structure from natural
language texts.

3. Method to compare two descriptor data structure for similarity in their meanings.

The design requirements and the designs for these artifacts are explained in the
next section.
5.4.2 Requirements for Semantic Technologies

Design of descriptor data structure and techniques to generate descriptors and
methods to compare them should address the following requirements:

1. Descriptor data structure should be able to express complex concepts (or mean-
ings). Human beings convey (narrate) and comprehend meanings using concepts.
Concept is the mental representation of meaning in human mind, so comparison



156 A. Biswas et al.

of meaning actually means comparison of concepts. Descriptions of objects can
be quite complex involving complex concepts. For example, the phrase “color of
the leaf is green” conveys a complex concept which human beings comprehend
and visualize in terms of elementary concepts such as the physical object “leaf,”
its “color,” and the instance of color “green.” Each elementary concept itself can
be a hierarchical composition of more elementary concepts under it. Therefore
descriptor data structure should enable hierarchical concept composition. The
elementary concepts may not always be available and mentioned in the text and
may have to be derived from tacit knowledge depending on the context.

This is a key requirement because this compositionality aspect is fundamen-
tal in meaning processing and meaning comprehension. The evidence of this
compositionality aspect of human thought is available from behavioral, cogni-
tive sciences, and neurological research findings. Behavioral studies indicated
that humans genuinely think in terms of combinatorial thought structures [18].
Humans combine elementary thoughts and ideas to generate more complex ones
(composition of concepts), which form the basis of reasoning and learning.
Neuro-scientific [19-22] and linguistic [23, 24] evidences of semantic (meaning)
composition are also available.

2. The descriptor design should be coherent with human cognitive processes and
supported by cognitive science understandings. This requirement is needed to
ensure realistic data structures to serve the needs of practical applications.

3. The meaning represented by the text should be seamlessly transferable to the
descriptor without loss of any information. This is necessary for easy generation
of unambiguous and accurate descriptors from text.

4. The descriptor should unambiguously capture the entire meaning represented by
a narrative and the similarity comparison algorithm should compare meanings
of the narratives instead of only sentence or terms. This is needed to ensure that
different texts having similar narrative meanings but having different sentences
and syntactic compositions should generate similar descriptors.

5. The semantic similarity comparison should be a self-contained process and the
descriptor should be sufficiently descriptive to preclude the need of additional
information or knowledge to disambiguate meaning.

6. Descriptor data structure should be compact for efficient storage in the index
and transmission as message payloads.

7. The similarity computation technique should be computationally efficient for
faster comparison during index operations (lookups, additions/deletions, etc.).

5.4.3 A Study of Meaning in Human Cognition and Language

To enable intention-based searching, we need a mechanism to capture, represent,
and compare meanings within computers. Therefore it is important to understand
how human beings comprehend meaning and use languages to convey mean-
ings. This will need integrating, developing, and applying notions assimilated from
cognitive science, neuroscience, linguistics, anthropology, and mathematics. In this



5 Semantic Technologies for Searching in e-Science Grids 157

section we discuss the ideas and evidences that are the key premises for the design
of a descriptor data structure that can represent and enable comparison meaning.

Meaning comprehension is distinct from language syntax processing. Here we
present evidence and argue that the thought process which involves comprehend-
ing complex concept (semantic processing) is distinct from interpreting a sentence
using its part of speech components (syntactic processing). This is supported by
the fact that non-linguistic species like primates, apes, and human children who do
not have language ability have complex thoughts, reasoning, and learning capabili-
ties [18].

Several other evidences also suggest this separation between syntactic and
semantic abilities of human brain. Broca’s aphasia is caused by damage to some
particular areas of the brain known as Broca’s area [21, 25-27]. These aphasia
patients can comprehend complex meaning which indicates presence of complex
thoughts. But they have severe difficulty in communicating them using language or
in interpreting language utterances or writings [27]. This situation is different from
Wernicke’s aphasia, which is caused by damage of Wernicke’s area of the brain
which is distinct from Broca’s area [21, 25]. Wernicke’s aphasia patients speak flu-
ently but their words do not have any meaning and the patients have difficulty in
comprehending and discerning meaning from sentences.

Brain scans and other neurological studies also indicated that interpretation of
language (syntactic processing) and meaning comprehension (semantic processing)
are two distinct neurological processes that use different parts of the brain and neu-
ral pathways [19, 20, 22, 28-30]. However during language processing these two
neurological processes challenge and test each other for incongruence or look for
support and cues in case of ambiguity [22, 28]. Studies on fluent bilinguals, mono-
linguals, monolinguals with different levels of second language competence suggest
that though sites for syntax processing vars for different languages and compe-
tency levels, the neural site, which is used for semantic processing, is common.
Interestingly this common site is also the Wernicke’s area of the brain [31, 32].
All these evidences indicate the importance of meaning composition in meaning
(semantic) processing and comprehension within human mind.

Principles of meaning composition. All the above—mentioned evidences are also
coherent with the “simpler syntax hypothesis” [24, 33] and “parallel architecture”
theory [18] from linguistics. These hypotheses argue that in human mind, semantics
or meaning has its own rules of composition, which are different from grammati-
cal composition (syntactic) rules. This is based on the observation that sometimes
language syntax alone does not sufficiently represent the entire meaning, but yet
humans understand the full meaning. For example, the sentence

“Jane attempted to pass the test” [9]

invokes more than one meaning. There is a tacit meaning which indicates that
Jane took a test, in addition to the explicit one which is about her attempt to pass.
The compositional principles that govern composition of semantics are not always
evident in the language’s explicit syntactic representation, but nonetheless they
definitely come into play during communication, just before language generation,



158 A. Biswas et al.

Semantic Syntactic
Composition Composition
Rules Rules
Semantic Syntactic
Structure Structure

\ Interface /

Fig. 5.4 Semantic and syntactic processing is distinct [9]

or during language comprehension. So there must be another parallel composition
process (Fig. 5.4) which is taking place in the human mind in addition to syn-
tactic processing. This notion is fundamental to language generation and meaning
comprehension [34].

Meaning composition as a simple collection of elementary concepts. Simpler
syntax hypothesis [18, 24] proposed that rules for composing meaning are inherently
simpler. A simple collection of elementary meanings is good enough to represent
a complex meaning. There is no need to specify the ordering of the elements or
the exact nature of association between individual elements. This is supported by
evidences like presence of compound words in modern natural languages and speech
of children, pidgin language speakers, and late language learners who communicate
complex notions with a collection of simple words and terms which are devoid of
any grammatical relationship. Some examples are illustrated below:

Children: “Walk street; Go store”, “Big train; Red book” [35]

Late language learner raised in the wild: “Want milk”, “Big elephant, long
trunk” [35]

Pidgin language: “And too much children, small children, house money pay”,
“What say? Me no understand” [35]

English compound words: “winter weather skin troubles”, “health management

9% ¢

cost containment services”, “‘campaign finance indictment” [36]

All of these utterances are just collections of words each of which conveys simple
elementary concept. These collections of words together convey a complex concept.
Here the meaning composition is happening without aid of sophisticated syntactic
(grammatical) rules. This indicates that a simple collection of words by itself can
represent a complex meaning. This notion is also directly supported by [30]. Here
the words stimulate elementary thoughts, meanings, or concepts in human mind
which then combine and invoke the complex meaning [23]. References [28, 35]
proposes that ability for this kind of semantic composition is intrinsic to human
brain and this is also the basic tier of language comprehension ability.

Generative mechanism for semantic composition: The parallel architecture
notion emphasizes that a generative mechanism for semantics also exists [18]. This
generative mechanism allows application of a simple set of composition rules to



5 Semantic Technologies for Searching in e-Science Grids 159

generate very complex structures from simpler elementary structures. There are two
simple rules, one that allows representation of complex meaning as a collection of
elementary meanings and the other that allows composition of a collection of mean-
ings to form higher level collections. Using these two rules it is possible to represent
a complex meaning as a hierarchical collection of elementary meanings (Fig. 5.5).
This representation of complex concept (meaning) is a tree structure which can rep-
resent complex meaning (concept) in terms of elementary concepts at the leaves
(Fig. 5.5) [9].

Text Representation
“The fisherman wearing a green shirt, caught a big trout”

a

Hierarchical collection of terms representation

{{fisherman, { green, shirt }}, catch, { trout, big }

N\

{{fisherman, {green, shirt}} catch {trout, big}
{fisherman} {green, shirt } trout big

N

green shirt

Fig. 5.5 Hierarchical collection of words representing complex meaning [9]

Simple composition and memory models in cognitive science. Collection of con-
cepts as a suitable representation of complex concepts is also supported by cognition
science research like [30]. This model is coherent with the spread activation model
of associative semantic memory [37-39]. Each of the elementary thoughts stimu-
lates independent spread activations in the human semantic memory in which all
of such activations acting together finally give rise to an thought in an associative
semantic memory [37]. This spread activation model explains how a collection of
elementary concepts can invoke a complex meaning.

This also corroborates well with the semantic memory-related empirical observa-
tions made by [40, 41]. These studies indicate how multiple elementary concepts are
useful in retrieving complex concepts through node activations and how these com-
plex concepts are manipulated in human mind using these elementary concepts as
search handles. In fact a larger number of elementary concepts are likely to generate
better activation (recalling) or invocation of a complex concept.

Need for a mathematical model to represent and compare meaning. A basic hier-
archical tree structure is reasonably good to represent a complex meaning. To use
this model to compare meaning inside computers we need mathematical logic and a
computational model to compare two such trees. In the following section we present
some previous research that has been done in the past to represent meaning within
computers.



160 A. Biswas et al.
5.4.4 Meaning Representation in Computers: Existing Works

Only a few designs for semantic descriptor data structures are available in published
literature. Descriptors for objects and also concepts are both necessary and most of
the designs are either descriptors for objects or for concepts. The object descriptor
designs that are available in literature are based on vector, set, and Galois lattice [42,
43]-based data structures, whereas the concept descriptor design reported in [44] is
based on graphs. On the other hand Biswas et al. [45] present a design that unifies
the notion of object and concept descriptors. This particular design views the entire
object description as a large complex concept. Therefore the object descriptor can
be represented by a concept descriptor. We present this idea later.

Set-and vector-based descriptors are based on elementary terms contained in
the (natural language) text description of the object. From this text, important
information-bearing terms are chosen to construct a vector or set which serves as the
object’s descriptor. To enable semantic search using vector-and set-based descrip-
tors, it is necessary to have techniques to compare the semantic similarity between
elementary terms. A large number of term-level semantic comparison techniques
are available in the literature, but vector-and set-based designs are the most adopted
ones. We explain the fundamental notions behind these designs and the term-level
semantic comparison techniques in detail because they are also behind a more
advanced descriptor design presented later. All these designs and their criticisms
are discussed in the subsequent paragraphs [9].

Galois lattice-based object descriptor. This design is based on Formal Concept
Analysis (FCA) theory [46] from mathematics and statistics. Details of this design
are available in [42, 43]. A technique to compare similarity of Galois lattice-based
descriptor is also available from the same researchers. A technique to compose
Galois lattice-based descriptor is available from Qi et al. [47]. This design assumes
that concepts are only based on classification taxonomy. Based on this oversimplis-
tic taxonomy it elaborately models all possible concepts present in the entire context
(in other words it defines the entire context in terms of finite number of concepts).
This is an unrealistic rigid model of a concept as used in human thought process.

Such elaborate rigid formal modeling and related computation does not deliver
any substantial gains in terms of meaning comparison confidence and therefore it
is too expensive in terms of computation. This design does not seem to be based
on any particular model and current understanding from cognitive science. On the
other hand the notion of requirement for parsimony in cognitive processing seems to
disagree with the elaborate FCA-based modeling. Description of the entire context
with all possible concepts may not be necessary. In addition, harvesting attribute
and object relationship from the object text description as suggested in [43] is not
a good solution because all the attribute—object relationships required to define the
concept may not be available in the object text. Though a technique to compose
Galois lattice is available, it does not elegantly support hierarchical concept compo-
sition in a manner that happens in human mind. Therefore Galois lattice design does
not achieve anything substantial in terms of meaning representation or comparison,
which simpler vector-or set-based models can-not.



5 Semantic Technologies for Searching in e-Science Grids 161

Graph-based concept descriptor. This design is based on graph where each ele-
mentary concept is a node and the relationships between the elementary concepts
are denoted as edges connecting those concepts. Details of this design are available
in [44]. This design is based on the notion of conceptual structure in human mind
as proposed by [48]. The technique to compose two elementary concepts to get a
representation of the complex concept is also available from Anderson [44]. It might
be possible to compare complex concepts based on available graph composition or
mapping techniques like [49, 50]; however those techniques are fairly computation
intensive and not very elegant.

Set-based object descriptors. The descriptor is a set of terms which are either
picked up from the object (text) or assigned by human indexers. The query descrip-
tor is either a similar set of terms or a Boolean (set) condition involving some terms
(Fig. 5.6). The similarity value between object and query descriptors is always
Boolean 0 (not similar) or 1 (similar). It is computed by either checking whether
any of the query descriptor terms are present in the object descriptors or strictly ver-
ifying whether the given Boolean condition in the query is satisfied for the object
descriptor (as illustrated in Fig. 5.6). For object O; in Fig. 5.6, we considered the
stemmed (base) terms “sales,” “manager,” “receipt,” “look,” and “took’ as the terms
for indexing. We ignored the terms “the,” “he,” “at,” “then,” and “it” because they
do not carry any useful information that may help to distinguish objects.

Objects Set based object descriptors
O4: “The sales manager looked at Ds1 = set { sales, manager, look, receipt, took}
the receipt. Then he took it”
O,: “The sales manager took DS, =set{ sales, manager, took, order }
the order.”
O5:  “It was not the sales manager DS; = set { sales, manager, hit, bottle, day, of-
who hit the bottle that day, but fice, worker, serious, drink, problem }

the office worker with the
serious drinking problem.”

O,4: “That day the office manager, DS4 = set { sales, manager, hit, bottle, day, office,
who was drinking, hit the worker, serious, drink, problem }
problem sales worker with a
bottle, but it was not a serious

Queries Results generated by queries

Q;: “sales” AND “manager” Ri: 04,02,05,0,4

...... )
Q,: “receipt” OR “order” > R,: 04, 0,
Q,: “took’ AND “order’ > Rg: Oy, 0,, 05,0,

Fig. 5.6 Search operation with set-based descriptor [9]



162 A. Biswas et al.

Generally these terms that do not carry information occur with high frequency in
all objects. Considering the set of four objects Oy, O,, O3, and Oy as the collection,
the three queries Qp, Q2, and Q3 resulted in the three result sets Ry, R», and R3. The
objects O3 and O4 are borrowed from [51]. These two texts have similar terms but
convey very different meanings.

Vector-based object descriptors. Here the descriptor of a text object is a vector
where each dimension corresponds to a vocabulary term found in the object which
should be included in the index. A term can be a single keyword, a compound word,
or a phrase which indicates an entity or an idea [12]. If a term occurs in the descrip-
tor, then the corresponding basis vector is assigned a non-zero scalar coefficient
(term weight). The following example illustrates this idea.

We consider the text object “O;” as in Fig. 5.6. The corresponding vector “V;”
for this text object consists of several basis vectors and is given as

Vi = i e . = .
1 = Wsales,1 * isales + Winanager,1 * € manager + Wreceipt,1 * € receipt
FWiook,1 * € look + Wiook,1 * € took

The basis vectors are shown as “e;”” with arrows over them and their correspond-
ing scalar coefficients are indicated as “w;”. The descriptor “D;” for this text object
is the normalized vector “V;” where the basis vectors remain the same, but their
scalar coefficients are normalized. This descriptor is given by

— — — — —
D1 Vi __ Wsales,1* € sales +Wmanager,l' € manager +Wreceipr,l‘ € receipt + Wiook,1* € look + Wiook,1* € took

\/(Wsules,l )2 + (Wmanager,l )2 + (Wreceipt,l )2 + (WloakA,I )2 + (Wtook,l )2

Vil —

_ — — ) —- —
= Xsales,1 * € sales T Xmanager,1 * € manager + Xreceipt,1 * € receipt T Xlook,1 * € look

—
+Xt00k,1 * € 100k

where

Wi

Xj = ——

VoL

Here we assume that the terms “sales,” “manager,” “receipt,” “look,” and “took”
are not at all similar, therefore their basis vectors “esales,” “€managers” “@receipts”
“elook,  and “eyok’” are orthogonal to each other. Which means the dot product, of
these basis vector tensors, represented by (e, @), are all zero, i.e., (emles, emu,mge,> =
<ema,,ager, ereceipt) = -+ = (€1o0k> €sales) = -+ = 0. Terms within the text that are
similar to each other are handled in a different way as explained later.

Assignment of weights: A term which is an important distinguishing factor should
have a higher weight. There are several alternative ways to assign these “w;” values,
the most popular being the term frequency—inverse document frequency (TF-IDF)
scheme [12]. In this scheme a high weight is assigned to a term if it occurs fre-
quently in a document but not frequently in all documents in the collection. The

99 ¢



5 Semantic Technologies for Searching in e-Science Grids 163

weight “wro” for a certain term “7” in the vector for a given object “O” in a collec-
tion is given by product of term frequency and inverse document frequency. This is
computed by the following equation.

Semantic similarity between vector descriptors: The level of semantic similar-
ity between two descriptor vectors, V1 and V3, is given by the cosine of the angle
between the normalized vectors. This kind of comparison generates continuous val-
ues between 0 and 1. A similarity value of zero means that two vectors are dissimilar
(orthogonal) and a higher value indicates more similarity.

1% 1% Vv 1%
COSO:(Dl,Dz):< ! 1>:| ! !

R °
Vil IVl Vil 1IV2ll

This is explained by the following example. Here we consider another text object
“0,,” also from Fig. 5.6, having descriptor vector “D,”:

D, = s e — —
D = Xsales,2 * € sales + Xmanager,2 * € manager + Xtook,2 * € took + Xorder,2 * € order

The similarity between “D1,” which was presented earlier, and “D,” is the sum
of product of the scalar coefficients of all basis vectors that are common in the two
vectors and then normalized. This is given by

DieD) = Xsales,1 * Xsales,2 + Xmanager,1 * Xmanager,2 + Xto0k, 1 * Xtook,?2

Searching using vector-based descriptor: The search query is given as a string
of terms or in the form of natural language text. A vector-based descriptor for the
search string is generated and compared with the object descriptors using cosine
similarity. The result objects are ranked based on the cosine similarity value. This
is illustrated in Fig. 5.7 for the same objects used in Fig. 5.6 earlier. The collection
of terms inside the quotes is treated as a single compound term and terms without
quotation are treated as separate terms.

Limitations of vector models: Vector-based descriptor generation and compar-
isons are computation intensive. The TF-IDF computation assumes presence of

Queries Ranked results generated by queries
Q,: “sales manager” ... > R1:0,>0,>05
Q,: receipt .. > R O
Q;: tookorder > R;: 0,> 0,

Fig. 5.7 Search operation with vector-based descriptor [9]



164 A. Biswas et al.

a centralized corpus. It also implies centralization of inverse document frequency
computation and the index.

Vector-based approach also has an inherent weakness in representing complex
descriptions which are based on complex meanings (concepts). This results in fail-
ure to discern between descriptions that have common keywords/terms but have very
different meanings. This is well explained by objects O3 and Oy as in Fig. 5.6, which
have similar terms but convey different meanings. A simple vector-based similarity
computation erroneously reports that these objects are similar (the TF-IDF-based
cosine similarity is 0.998). Considering compound words or named entities like
“sales manager,” “office manager,” “office worker,” “sales worker,” or “problem
sales worker” as the terms can improve the situation but will not report absolute zero
similarity and thus cannot entirely avoid this problem in all situations. Instead of
machine-generated vectors, if the vectors are based on standardized topics assigned
by human indexers, then some of these problems can be avoided. However, this
requires human involvement.

This problem exists primarily because vector-based models are based on a belief
that elementary syntactic terms contain the meanings and this meaning can be
entirely captured by a flat collection of the terms available in the text. Some of
these limitations have caught attention of researchers and enhancements like vec-
tor products [51, 52] and more sophisticated vector operations like [53, 54] are
being proposed. However, these are term-centric approaches which will have lim-
ited impact in meaning representation. We need new kind of designs for semantic
descriptors which are truly high level meaning centric approaches.

Semantic similarity between terms. To extend the vector cosine product simi-
larity approach to suit meaning-based search, there is a need to account for the
similarity between meanings conveyed by different terms. Considering the exam-
ple in Table 5.1, the object, query vectors, and their cosine product (with only
non-orthogonal terms) would be

9 EEINT3

— — —
D3 = Xrodent,3 * € E)dent + Xsup plier,3 * € supplier,3 and D4 = Xmouse,4 * € mouse
+Xsupplier,4 © € supplier

D3 e Dy = Xyodent,3 * Xmouse,4 * Y + Xsup plier,3 * Xsup plier, 4

Therefore there is need to recognize that the terms “rodent” and “mouse” are not
dissimilar (non-orthogonal basis vector) and there is a non-zero semantic similarity
value “y” which weights their dot products (which may not be 1 always). To handle
these kinds of issues during semantic searching, there is need to identify or assign
real values to the parameter “y” in all such pairs of terms (non-orthogonal basis vec-
tors). Hence we need techniques to identify similarity of meaning between different
terms in the first place. Various methods have been proposed to quantify semantic
similarity between lexical terms (synonyms, hypernyms, co-occurring terms). Some
of these are briefly discussed below.

Feature-based models: Here each term is modeled to have a set of attributes. For
example “dog” has the following attributes: “pet,” “mammal,” “carnivore,” “small

ELINT3



5 Semantic Technologies for Searching in e-Science Grids 165

animal,” etc. Considering these attributes as dimensions, the semantic similarity
between two terms can be based on the cosine similarity measure or Euclidean dis-
tance. Other ways to calculate similarity are based on how many attributes two terms
have in common. Several alternative ways to make these computations have been
documented in [55, 56].

It is also important to choose a minimal set of dimensions which will correctly
cluster terms according to their semantic distances. Automatic generation of these
attributes (dimensions) and dimension reduction techniques like Vector Generation
from Explicitly-defined Multi-dimensional semantic space (VGEM) [57]. Best path
Length On a Semantic Self-organizing Map (BLOSSOM) [58], and Latent Semantic
Analysis (LSA) [59] are useful. After clustering, the similarity value is assigned
based on distances between terms.

Ontology/taxonomy-based models: To compute similarity between individual
terms, these methods consider how far away is one term from another in a global
ontology or taxonomy graph (e.g., Fig. 5.8) in terms of number of edges that need
to be traversed to reach one term node from another; how many common ances-
tors they share; or how far away is the lowest level common ancestor, etc. [60—63].
Another method is to calculate how much common information the two terms share

Ontology Semantic Network

Conveyance/
Transport

Transportation
e '

self-
propelled_vehicle

motor_vehicle/
Automotive vehicle

Runs on

Runs on

automobile

Fig. 5.8 Example of ontology and semantic network with distance between two terms [9]



166 A. Biswas et al.

through a concept/term that subsumes both terms. The information content is given
by negative log of the reciprocal of the frequency of occurrences of a subsuming
term in the corpus (probability of occurrence) [56].

Corpus and semantic network-based models: Here the assumption is that more
information two terms share, more similar they are. The amount of information
they share is given by the concurrence probability. Normalized Google distance is a
classic example [64], where the similarity distance between two terms 77 and 75 is
given by

(7. 7y — M (og(umber _of _objects _having 1), log(uumber _of _objects _having _T2) ~ log(uumber _of _objects _having _both _T: _&_T>)
sim(Ty, Ty) =

Total _number _of _objects — min(log(number _of _objects _having _T1),log(number _of _objects _having _T>)

Semantic networks (e.g., Fig. 5.8) generated from a corpus can be also used to
identify the semantic similarity between terms. In these methods the similarity is
based on how far away one term is from another in the semantic network [65—-67].

Description logic-based models: These approaches [68—71] depend on explicit
logical descriptions of terms often using RDF [72] expression and identify similarity
based on inductive inferences. These are some basic techniques behind semantic
web proposals.

Word sense disambiguation of terms based on context is another associated
problem which has to be addressed. In the example as given in the second row
in Table 5.1, if the user had been searching for computer mouse, then consider-

[T

ing “y” > 0 (refer previous section) would not be proper. So there is a need to
disambiguate the term “mouse” appropriately to choose the right value of *“y” to
use given the context. Terms which need disambiguation can be detected using
Explicit Semantic Analysis (ESA) [73] and analyzing graph patterns in the seman-
tic network [14] constructed from corpus and then noting the pattern of connec-

tions [74].

5.5 Proposed Semantic Technologies for Cyber-Infrastructure

Here we propose a design of semantic descriptor and related techniques. In this
proposed method, to make an object (text document or service) searchable by
intention-based web search, the owner of the object must properly publish it on
the web (Fig. 5.9).

To publish the object it has to be placed in the web server and a text description of
the object has to be provided to the indexing mechanism. The index mechanism will
generate semantic descriptor (key) of the object and submit the key object address
pair to the index system (which maintains key to address mappings), whereas during
intention-based searching a user has to provide a text description of the desired
object to the search service’s user interface. The user interface generates a semantic
descriptor of the intention and uses it to execute the search. Both of these processes
require a method to generate semantic descriptor from the given natural language
text description. The subsequent sections explain this method.



5 Semantic Technologies for Searching in e-Science Grids 167

Searching process Content publication process
a Researcher/Data In- Q
User composing a \‘I’ " dexer publishing dataj) Vil / Provides
query ,____l_hé“‘_ / :ig%\L (Option 2)
Generates Text
Generates (option 1) description
Concept Tree ¢ 1)
representation of Concept Tree representation of
query content
@ v ! @
Tensor Tensor
representation representation
Query message carrying 3 Semantic Routing 3
query descriptor @3 Table O]
Descriptor Data structure: Descriptor Data structure:
1. Bloom Filter 1. Bloom Filter
2. Coefficient Table 2. Coefficient Table
3,4. Extensions 3, 4. Extensions
Two idescriptors

Computation of Semantic Similarity
(dot product)

Routing decisions

Fig. 5.9 Overview of descriptor related-processes [9]

5.5.1 Overview

A technique to generate semantic descriptor from the text description of an intention
or an object is presented in Fig. 5.10 [9, 45]. The generation process consists of three
steps. Bloom filter-based data structure is the final output that is generated from the
text representation.

Text description Concept Tree Tensor Bloom filter based
- g of the inten- |—»{ representation of [—»{ representation [— descriptor data
\)‘ @ tion/object the intention/ structure
ZIA / object description
User providing de- ™., ) Descriptor
scription of the intention o stored in routing ta-
or the object in natural Descriptor generation steps bles or carried in
language text messages

Fig. 5.10 Descriptor generation process [9]



168 A. Biswas et al.

In the first step, the meaning of the text, which is a complex concept, is cap-
tured and represented as concept tree which has basic concepts as its leaves. Basic
concepts are the ones which are defined by standard terms in the domain lexicon
or ontology. In the second step an algebraic (tensor) representation of this con-
cept tree is constructed and in the third step this derived tensor is encoded in a
Bloom filter-based data structure. The algebraic representation of the tree enables
the use of cosine similarity comparison method to compare two trees. The bloom
filter-based data structure for the algebraic representation allows us to carry out the
cosine similarity as parallel computation on a specialized but simple hardware. This
reduces processing time drastically, which is necessary for fast descriptor compari-
son and semantic routing. These three processing steps and four representations are
explained with an example in the following sections.

5.5.2 Concept Tree Representation

Generation process. To explain the descriptor generation process [9] we have con-
sidered a bioscience publication [75] as an object and its abstract as the textual
description. Figure 5.11 presents this text description along with its corresponding
concept tree representation. In the concept tree figure, the composed concepts are
underlined and the basic concepts (terms) are shown in bold. The basic concepts
are used as the leaves. The basic concepts are the ones which have been defined
as controlled terms in domain ontologies like Gene Ontology [76] and Disease
ontology [77].

Here the given text is a publication considered as a narrative about the disease
diabetes and the implicated gene 1858T and its normal variant 1858C. Therefore the
entire publication is expressed as a concept, which is shown at the top of the tree.
The concept is composed of two child concepts: the resulting disease and the gene.
Here each concept is defined by collection of elementary concepts. The rationale
behind this representation is explained later.

The next two levels of the tree describe the gene in terms of the parent gene
(PTPN22) and its function, which is encoding of the associated protein (Lyp). The
concept of the “Lyp” protein is defined in multiple ways: by its name “LyP”; by
its “binds with” relationship with another gene product “Csk”; and by its function
“negative regulation of T-cell activation.” Thus the “Lyp” concept is represented by
a collection of all these elementary concepts.

Construction rules. The specific rules of constructing this tree will depend on
the domain knowledge models and these rules can be codified as possible composi-
tion templates to be used to represent concepts as and when required. Here three
composition templates were used. The first one was the composition of disease
name and implicated gene which served as the template to describe the publica-
tion. The second one was a composition of gene name, protein name, and other
gene attributes (variations), which was used to represent the gene “PTPN22.” The
third template was a composition of protein name and functions, which was used
to represent the protein “Lyp.” These standard templates can be put in a library to



5 Semantic Technologies for Searching in e-Science Grids 169

Generation of Concept Tree from given text

Textual representation of the description
(Abstract of the publication)

“We report that a single-nucleotide polymorphism (SNP) in the gene (PTPN22) encoding the lymphoid pro-
tein tyrosine phosphatase (LYP), a suppressor of T-cell activation, is associated with type 1 diabetes mellitus
(T1D). The variants encoded by the two alleles, 1858C and 1858T, differ in a crucial amino acid residue in-
volved in association of LYP with the negative regulatory kinase Csk. Unlike the variant encoded by the
more common allele 1858C, the variant associated with T1D does not bind Csk” [75].

Concept tree representation of the description
Concept in the Publication
Involved Gene

caused disease

Type 1 diabetes Other attributes

mellitus PTPN22

has function allele Single nucleo-

LyP 1858T tide polymor-
phism

fhas name as function
LyP 7Binds
with negative regulation of T

Csk cell activation

Composition Templates used

Concept in Publication Gene Protein

Gene Protein Other

Disease Gene Name attributes Name Function Function

Fig. 5.11 Concept tree generation from text narrative [9]

be used during construction of the concept tree. Using these standard templates is
important because only that way all keys will be generated using a common set of
rules to construct concept trees. This will ensure that similar concepts are repre-
sented by similar concept tree representations (descriptors). This will enable proper
similarity comparison between meanings.

The keywords or phrases used at the leaves are selected from a controlled vocab-
ulary (based on the text) to represent the meaning of the text for indexing purpose.
When sufficient controlled vocabulary is available for a given domain, this technique
can be applied to generate concept trees from text. The actual nature of relation-
ships between concepts is ignored (however shown in Fig. 5.11 for the purpose of
illustration only).

Rationale. The justification of concept tree representation is based on the notions
presented in Section 5.4.3. There we discussed how complex meaning can be repre-
sented in the form of a tree structure where the nodes at the intermediate levels are
hierarchical collection of elementary meanings. The equivalence between concept
tree and hierarchy of collections of elementary meanings is illustrated in Fig. 5.12.



170 A. Biswas et al.

Hierarchy of word collection Concept Tree Representation

{ {fisherman, { green, shirt } }, catch, { trout, big }

{{fisherman, {green, shirt}} {trout, big}
catch
fisherman trout big
{fisherman} {green, shirt } big trout

green  shirt green s

Fig. 5.12 Equivalence between hierarchy of collections of elements and concept tree [9]

This shows that a concept tree can represent a complex concept (meaning) and has
backing from cognitive science. Therefore this satisfies requirement (1) and (2).

Neuro-scientific findings reported in [28] indicate that human brain uses similar
neurological processes to comprehend meaning from text and visual imagery. Other
evidences [31, 32] suggested that semantic processing takes place at a common site
irrespective of the kind of language that is being processed. This corroborates well
with the argument that semantic processing and composition has its own set of rules.
It seems that the semantic processing and composition rules are perhaps common
across different languages including visual imagery. As the concept tree is based on
the minimal set of semantic composition rules, and as these same set of rules are also
the basis behind all these languages [28, 35], therefore concept tree is compatible
with all these languages (and visual imagery). Hence seamless transfer of meaning
from these languages (texts and images) to concept tree representations is possible.
Therefore concept tree representation satisfies requirement (3).

5.5.3 Required Algebra

Definition of the vector space. An idea or concept is expressed as a tensor [78]
in an infinite-dimensional space. This space is represented by two kinds of basis
vectors. One kind comprises of a set of basic basis vectors “e;,” each of which
corresponds to a unique basic concept (e.g., “Csk,” “LyP,” “negative regulation of
T-cell activation”) in the domain lexicon. The other kind includes basis vectors
which are polyadic combinations represented in the form “e;ejex. .. . ect.” which
represent conjunction of concepts (e.g., “LyP” and “CsK” and “negative regulation
of T-cell activation,” and ect.). This second kind of basis vector is needed because
elementary concepts can combine with each other to form complex concepts which
are entirely different from the elementary ones. The basis vectors and their polyads
are hence orthogonal.



5 Semantic Technologies for Searching in e-Science Grids 171

Algebraic representation of composition. An ordered composition of three ten-
sors: A, B, and C can be represented as a triadic [78] tensor product ABC which is
represented as an ordered juxtaposition of three individual tensors. The tensor prod-
uct ABC represents a conjunction composition where elementary tensors A, B, and
C are arranged in a specific order from left to right. Similarly a conjunction compo-
sition with any arbitrary number of elements can be represented by a polyadic tensor
product [9, 45]. However this simple tensor product is not sufficient to represent a
tree because it does not satisfy the two important requirements:

1. Do not enforce ordering of children nodes.
2. Represent both conjunction and disjunction composition at the same time.

We need a different algebraic representation that can satisfy both these require-
ments to represent a tree, which does not enforce ordering of elements. To achieve
this purpose we introduce two algebraic binders (functions) (1) [e,e,..] and (2)
{e,e,...}, that bind two or more tensors (concepts) together. For example, by using
the binder function [e, e, ..], three tensors A, B, and C can be bound together to
represent a composition [A,B,C]. Using these two binder functions we will syn-
thesize an algebraic (tensor) representation that can depict a concept tree in terms
of its leaves. These binder functions represent compositions which do not enforce
ordering of arguments. This means that these binder functions are commutative with
respect to their arguments. This ensures that all possible isomorphic trees (Fig. 5.13)
that convey the same meaning are expressed by a single tensor.

Tree 1 Tree 2 Treen
E E E
(o] D (o] D D C
A B B A B A

Fig. 5.13 Isomorphic concept trees which convey the same meaning [45]

Definition of [e, e, ..] binder. For the case of one, two, and three arguments we
define as follows:

AB denotes a dyadic tensor product, ABC denotes a triadic tensor, and a polyadic
tensor is denoted by a juxtaposition (e.g., ABCD). In general, AB # BA. This def-
inition can be expanded for a general case of “n” arguments, where the sum of
product form has all permutations of arguments: A,B,C, etc. Figure 5.14 illustrates
the usefulness of this binder.

Role of [e,e,..] binder: This binder represents a conjunction composition that
does not impose ordering of leaves.

Proof for the commutative property: Proof for two argument cases is given which
can be extended for “n” arguments. [A, B] = AB +BA = BA + AB = [B, A].

Definition of {e, e, ...} binder. For one, two and three arguments we define



172 A. Biswas et al.

Ordered Tensor Algebraic
Composition product representation
(Isomorphic forms) representation using [e,°,...]
ABC

ABC \

>
(@]
]

BCA
/l\ = BCA
All of these
B C A isomorphic
CAB forms are

/l\ represented by
CAB

C A B
>[:> [AB,C]
CBA

CBA

)

BAC

/

0

Fig. 5.14 Usefulness of [e, e, ..] binder [9]

Vis'AL 514 BY = /18/2 *[A.BI+/ha *[Al+/h5 *[B]
\/g > H /haBl2 *[ABl+/Tx *[Al+/lig * [B] |

(5/hapc/6 *IAB.Cl+~/hap/2 *[A.Bl+/hpc/2 *[B,Cl+~/hac/2 *[A,Cl+~/ha *[Al++/hg *[Bl+/hc *[C))
”(«/ hapc[6*[A.B,Cl++/hap/2 *[ABI++/hpc/2 *[B.Cl+~/hac/2 *[A.Cl+/ha *[Al++/hp #[Bl++/he *[CD|

{A}

{A,B,C) =

This binder encompasses all possible combinations and permutations of argu-
ments. The resultant tensor is also normalized and used as an elementary tensor to
be incorporated for next higher level of composition. Each instance of this binder
has a corresponding set of co-occurring coefficients “H,” having real-valued scalar
elements (e.g., H = set {haBc, hAB, hBC, hAC, ha, hB, hc}), each of which indi-
cates the importance of the corresponding polyad to represent the meaning of the
composed concept. For example, when only sapc = 1 and all other scalars hap =
hgc ... = hc = 0, then the composed concept is the one which is given by a strict
conjunction of A,B, and C, whereas the set hpx = hg = hc = 1 and hapc = haB =
hpc = hac = 0 represents disjunction composition. A mix of all these extremes is



5 Semantic Technologies for Searching in e-Science Grids 173

possible by suitable choice of values for the co-occurring coefficients. Rules that
guide assignment of these values can be codified and made accessible along with
composition templates. These parameters are normalized by (n!)"/?, where “n” is
the number of arguments in {e, e, ...} binder.

Proof for the commutative property: When a function “F” is a linear composition
(linear functional) of two other functions “F;” and “F,,” such that F = A *F; +
M *F> where \; and A\ are real numbers, and if both functions F; and F» are
commutative, then their linear functional F is also commutative. The proof of this

property is shown for two arguments, but it can be extended for “n” arguments.
If F1(A,B) = Fi1(B,A) and F2(A, B) = F2(B, A),

Therefore F(A,B) = A; *F1(A, B) + A2 *Fa(A, B) = A *F1(B,A)
+X2 *F5(B,A) = F(B,A) '

As binder {e, o, ...} is a linear functional of commutative [e, e, ..] binders, binder
{e, e, ...} is also commutative.

5.5.4 Tensor Representation of Concept Tree

A concept tree can be represented by a tensor which is expressed as a sum of scalar-
weighted polyads of the basic basis vectors that represent the leaves. We illustrate
this with examples in Figs. 5.15 and 5.16, where each tree has three levels. A tensor
representation consists of basis vectors and their scalar coefficients. First we show
how to generate the basis vectors for the tensor that represents the entire concept
tree. Then we generate the scalar coefficients for each of these basis vectors.
Generation of basis vectors: The trees and the forms of their tensor represen-
tations are shown in Fig. 5.15. Basic basis vectors are denoted by lower case

Tree Representation Tensor representation

gaBLCL e T oo e
x&nm*(jb/iﬁq - xMM,’-‘DABcJC+ ACme$C‘£>BA<J+ xwlﬁ,-r»BAqC

{AB} C = +x,*CA+x, *AC+x,*CB+x, *BC
A B +x m*ﬁ:é+xm *BA ;x"*ﬁ +.,:'c.r_;.’:.‘§+ xc"’_C"
Ba‘sis Véctors
(B.CLA e
ot \A - Xy pe *;;E?E“:me(m *;E?E‘:;‘mecm FACBA+X o, FPCBA
//\ _ +xAB*XB+XBA*§E+IAC*E_C+XCA*_C’ﬁ
B C =

. s T * A s #
e BC+xCB CB+’UA A+xB B+x(_, C

Fig. 5.15 Basis vectors for the tensor for a simple three-level concept tree [9]



174 A. Biswas et al.

Tree representation Co-occurrence set
{{AB}, C}
(ABICDY — get {(AB)Ch(AB)C‘(AB)Ch(AB)‘(AB)CDhC}
C
{AB} > "BH=set{"®h,g, #hy, ABhg }

A B

Fig. 5.16 Tensor expression for a concept tree [9, 45]

alphabets with arrow on top and scalar coefficients are without arrows. Delimiter
vectors “" and “<” are introduced between tensors which are at different branches
(compositions). The delimiter vectors point toward the tensor which belongs to
another branch. For example, instead of “CAB” and “ABC” we write “C>AB<”
and ‘“>AB<C.” The use of delimiter vectors ensures that trees having same leaves
but different composition do not have similarity beyond which is contributed by the
individual leaves (Fig. 5.15). The ordering and combination of the leaf tensors and
the delimiter vectors “>" and “<” in the polyadic products retain the information
about the tree structure [9].

Generation of scalar coefficients: In Fig. 5.16 all the intermediate composed
concepts for this tree are represented by the expressions present at correspond-
ing node positions in the concept tree. These expressions are represented in terms
of the binders defined earlier. On expanding these expressions we get the tensor
in the form which is suitable for inner product (cosine similarity) computation.
Each composition in this tree has its own co-occurrence set, for example, the
set “H” for binder {A,B} is denoted by “BH. For two compositions in exam-
ple tree, the two co-occurrence sets “BH, AB)CH are also shown by arrows in
Fig. 5.16.

The expression {{A,B}, C} which represents the tree in Fig. 5.16 is expanded
bottom-up as an example using the basis vectors identified earlier.

The scalar coefficients of the basis vectors are products of normalized co-
occurring coefficients. The basic basis vectors are shown here as single alphabets: a,
b, c, etc., with arrows on top of them, and their polyads are shown as juxtaposition
of these alphabets.

ABhpp [ VI IA B+ (A1 Py * [B]
[48hap [ V214, BIAB Ry (4] +4Bhg * B |

A=d,B=b,C=7,and{A,B) =

ABhAB/\/Q(i)TJ)+?_a))+ABhA7+ABh37

BB P+ (B2




5 Semantic Technologies for Searching in e-Science Grids 175

{{A, B}, C}
(AB)C/’I(AB)C/I* >{A,B}<C+ (AB)Ch(AB)C/\/i*C >{A,B} <« +(AB)ChAB *{A, B} + (AB)ChC *C

J@BChiugy 002 4 (ABCy )2 4 (AB )2

1 1

* *

V@ Bhup? + By )2 1 (ABig)? \/((AB)Ch(AB)C)z + (ABChy )2 + (ABYCh )2

AB)Cy, ABy,
<<AB>C LV R o O S i i~y oo S, Sl oo O d Sy, oo i S

V2 V2
(AB)Ch
(AB)C 4xAB, %, —— , —>—
4+ hya*(d ¢ +¢ad)
V2 A

AB)C), AB),
+7f;’*3)c *ABpes (52 + 2 b )+ ABC,p *—ﬁg @D +ba)
FABIC), L #ABy vy (ABICy o ABl T | (ABC)  + 2

Superior performance of tensor-based approach: The following example illus-
trates how tensor model works. Here we compared the performance of our tensor-
based semantic similarity computation scheme against the vector-based approach.
We obtained four publications (objects) from PubMed [1] on gene—diabetes interac-
tion studies, which are denoted by O; in Table 5.3. The object pairs are ranked based
on (1) human interpretation; (2) semantic similarity values obtained by the tensor
scheme; and (3) similarity values given by the vector-based approach. MeSH index
terms and their hypernyms were considered as the vectors in the vector model as in
case of exploded search [13]. Semantic similarity ranking is our comparison crite-
rion here, since it is the key primitive operation carried out during semantic lookup
and semantic routing table optimization [17].

The non-parametric Kendall tau correlation of the rankings based on tensor
and human interpretation is 0.867 which is much higher than that between vector
approach and human interpretation (which is 0.067). This shows that the tensor-
based semantic descriptor model agrees more closely with humans in meaning
comparison.

Table 5.3 Superior performance of tensor-based approach for object similarity rankings [9, 45]

Semantic similarity rankings and (similarity values)

Object pairs Human Tensor approach Vector approach
01,0, Rank 1 Rank 1 (0.864) Rank 4 (0.442)
03,04 Rank 2 Rank 2 (0.689) Rank 1 (0.653)
0, O3 Rank 3 Rank 3 (0.557) Rank 5 (0.395)
01,03 Rank 4 Rank 5 (0.443) Rank 3 (0.521)
02, O4 Rank 5 Rank 4 (0.525) Rank 6 (0.376)
01,04 Rank 6 Rank 6 (0.317) Rank 2 (0.608)
Kendall tau rank correlation 1 0.867 0.067




176 A. Biswas et al.
5.5.5 Bloom Filter Basics

The inner (dot) product (A, B) of two concept tensors A and B is the sum of product
of the scalar coefficients of all basis vectors that are common in A and B. To quickly
pair up the scalar coefficients for multiplications we use bloom filters as explained
below.

A=pT 457 +5

— —
/ s+ sa i B=sE T +s5P +s5G +sF k

Bloom filter (BF) is a compact representation of a set [79, 80]. A BF is a large
single dimensional array of “m” bits and a set of “k” hash functions (Fig. 5.17).

To insert an element (a number or a text string) in this set we hash this element
to generate “k” different values using the “k” different hash functions. We use these
values as bit indices to decide which bits in the array should be set to 1. To test
whether an arbitrary element is in the BF, we similarly generate “k” bit indices and
check whether all of those bits are 1 or not. All bits being 1 indicates that the element
is in the set (Fig. 5.17).

Bloom Filter Generation Membership Testing
Element "x”
Hash Functions “K” hash values serving
as bit indices
Bit Array Bloom
Fix=0 {1 o Filter Address
(0] 1 [1] o
T 2 g 1 Data
1] 3 1] 2 & Output
1 4 ok )| o
T 1 4 MUX (AND)
Fe(x)=] -1 v
Bit Index > 1] ] m-1 (1= Element Present,
- o| M o] M 0= Element Absent)
Generation = 0]
Bloom Filter AND Operation Bloom Filter OR Operation
Set1 Set2 N Set Set1 Set2 U Set
BF1 BF2 NBF BF1 BF2 UBF
1] 1] 1] [1] 1] [
0] 1 0] 0] 1 1
| 1|Bitwise [0|— [0] 10 [Bitwise [0 |— | 0|
0] AND [0 0] 0] or [0] [0
1] 1] 1] 1] 1] 1]
! ! ! ' ' !
0] o]  [o] 0] o]  [o]
0] 1] 0] 0] 1] 1]

Fig. 5.17 Bloom filter basics: element insertion, membership testing, intersection, and union [9]



5 Semantic Technologies for Searching in e-Science Grids 177

The test of whether an arbitrary element is in the BF can result in false positives
(returns true even when the element is not present), but not false negatives (will
never return false when the element is present). The probability of false positives,

—kn e . .
Pralse+ve ~ (1 — e / ”’)k, can be minimized by choosing large “m,” and optimum
“k” (=0.7*m/n), where “m” is the number of bits in the BF, “k” is the number of
independent hash functions, and “n” is number of elements in the BF (Fig. 5.17).

For example, a basic BF with m = 132 kbits, k = 9 can keep 10* elements
with a small prsesve = 2*1073, which will have a negligible effect on similarity
comparison computation. When two similar sized BFs (same “m,” “k”) represent
two sets then the BF obtained by bitwise AND operation of these two parent BFs
(BF;, BF; in Fig. 5.17) represents a set which is an intersection of the two sets.
When tensor/vectors’ basis vectors are inserted in two BFs, then the intersection
BF is a set of common basis vectors whose scalar coefficients should be paired up
for multiplication. This technique is explained in detail later. Similarly bitwise OR
operation generates a BF which represents a set that is the union of the two parent
sets (Fig. 5.17).

5.5.6 Generation of Bloom Filter-Based Descriptor Data Structure

The tensor representation of the entire concept tree is encoded in a compact semantic
descriptor data structure, which has two basic components: (1) a big “m”-bit-
wide bloom filter BF using “k” hash functions and (2) a coefficient lookup table
(Fig. 5.18). Each element/row in the coefficient table has three columns: the 128-
bit id for a basis vector (vector id); the scalar coefficient of the basis vector, as
explained earlier; and a set of “k” logym bit integers which are indexes for the BF
bits that should be set to 1 when the basis vector id is inserted in the BF. These
data structure components together will be either transmitted as query key, stored as
semantic routing table row keys, or used to compute semantic similarity. The steps
to encode the concept tree tensor in this data structure are explained below:

e Step 1: The 128-bit vector identifiers for the basis vectors (polyads) are gen-
erated by hashing the concatenated textual representation of the polyad by
MDS5 algorithm. For example, one of the polyad in the tensor for the tree will
be a combination of five basic terms/vectors: “LyP”; “Csk”; “negative regu-
lation of T-cell activation”; ‘“>; “<”; and “PTPN22.” We concatenate these
three character strings together to get “=LyPCsk negative regulation of T-cell
activation<PTPN22” and then get its 128-bit MDS5 digest. Henceforth we use the
term vector ids and vectors interchangeably.

e Step 2: We insert the vector ids in the BF and note its BF bit cell indices.

e Step 3: For each basis vector, we insert a row in the coefficient lookup table
comprising of the vector id, the scalar coefficient of that vector, and the set of all
the BF bit cell indices (Fig. 5.18).



178 A. Biswas et al.

Tensor= s, v, + s,v, + ...+ s5,v, + ..
eg. 5=0.2,v,="LyPCsk" >
MD5("LyPCsk") =id,

Component 1: BF Component 2:
Element “x” Coefficient table
Hash
Functions .
_Bit Array Vecid | BF bitindices | Coeffs
% (1) Id, {x:0<x<m}| S
o] 2 :
1] 3 id; {0,3,...j} S =0.2
1] 4
. 1
Fi(x)=j £ M1 Id, {...} S,
Bit Index 6 m
Generation o

Fig. 5.18 Semantic descriptor data structure generation [9, 45]

5.5.7 Descriptor Comparison Algorithm

The steps for computing the inner product of two descriptors (D1, D2, Fig. 5.19) are
as follows:

Component 2 of D, Membership test

Vec | Set of BF | Coeff
Id_|bit indices| S’ nTBF BF2 BTF1
L' 1
idi [ {0,3,...j} 0.2 i H T
10 ¢ 0| Bitwise] 0
1 1] AND [1]
Component 2 of D, 1] El 1]
Vec | Set of BF | Coeff o ! !
Id_|bitindices| S% 0] 0] 0]
i, | {03,771 | 03 0] 0] 1]

Coefficient pair identified v
(Dy.D,)y= .. 402503 +.. +s's%

Fig. 5.19 Semantic descriptor comparison [9, 45]

e Step 1: Two BFs of the data structures being compared are intersected (ANDed).

e Step 2: Once the set of common basis vectors has been filtered out in step 1,
these are identified from the coefficient lookup table by verifying which vector
ids are in the intersection BF by using the set of the BF bit indices.



5 Semantic Technologies for Searching in e-Science Grids 179

e Step 3: If a vector is present in the intersection BF, then we use that common
vector id as the key and extract the coefficient value from the coefficient lookup
table of the other data structure.

e Step 4: We multiply the pair of the coefficients for each identified common basis
vectors and add all the products to get the similarity metric.

Each of these operations in steps 1 to 4 can be executed in parallel at high speeds
on simple hardware accelerators. When there are “n” basis vectors in the smallest
descriptor (tensor), “m” number of bits in the BF bit array, and “k” number of hash
functions, which is generally <24, then a simple hardware accelerator can complete
this computation in (¢ + k) amount of clock cycles, where “c” is a constant &~ 100.

The order of memory and hardware complexity is O(n*m).

5.5.8 Extensions for Incorporating Synonym and Hypernyms

To incorporate synonyms and hypernyms for the elementary terms, the basic data
structure described in Section 5.5.6 is extended by a third and fourth component: (3)
a collection (set) of synonymous vector sets and (4) a set of hypernym sequences.

Extensions for synonym. In the example of Fig. 5.20 the concept PTPN22 is
denoted by multiple synonyms like “IP100298016,” “PTPNS8: Tyrosine—protein
phosphatase non-receptor type 22,” in addition to “PTPN22,” so there is a need
to extend the concept tree tensor to incorporate all the known synonyms to
enable correct comparison when two descriptors are constructed using two dif-
ferent synonyms. The required technique is explained with an abstract example
(Fig. 5.20).

Fig. 5.20 Incorporation of Original tensor = 45 i jk +.....+s,,., abcd +..
synonyms in descriptor

» and 4 each has synonyms ;” and 7
generation [9, 45] b d ynonyms d,

Extended tensor =

ot Syqabed + s, abedy + s, abicd + s, abicd + ...

abcd

MD5(abed) = idy, » MDS(abedy) =id,,
MD5(abicd) = id,,» MD5(abicd,) = id,,

abed

Component 2 Component 3

Vecld|Coeff | BF indices Vec Id set BF indices set
o |02 | {0,3...} 1doo, Idor,dor 10 01,.3.5,.7,.11
Idm 02 {3‘ 7’) ( 00, Y01, -?11 II} ( 3 yeedyedyen e )
Ide | 02 | {1,5,...}
Id4 0.2 {3,11,...}

. . s
Suppose the final tensor expression contains a term sg,cqg @ b ¢ d , where the

basis vector _a)_b)_c)g) is a polyad and the scalar coefficient is sgpcq. If _b) and 71)



180 A. Biswas et al.

— — =
each have one synonym b; and dj, then the term sgpeq d b ¢ d
the sum of all combinations of the synonyms: sabcd_a)_l;_c)?l) + Sabed d

Sabed @01 € d +sapea @ by € dy. Weeall @b Cdy, @by ¢ d.d b € di,and
ab7 71) as synonymous vectors. This can be generalized to incorporate any num-
ber of synonyms for any number of basic concepts. The data structure generating

algorithm in Section 5.5.6 is extended as follows:

e Steps 4 and 5: The 128-bit vector ids for all the synonymous vectors are
generated and inserted in the BF as in steps 1 and 2.

e Step 6: For each synonymous vector, we insert a row in the coefficient lookup
table comprising the vector id, the scalar coefficient s,p.4, and the set of all the
BF bit cell indices (Fig. 5.20).

e Step 7: The set of synonymous vector ids is grouped together as a set and paired
with the set of all their BF bit indices, and inserted as an element in the third
component, the “set of synonymous vector sets (SVS)” (Fig. 5.20).

A step 2a is inserted between steps 2 and 3 of the inner product algorithm in
Section 5.5.7

e Step 2a: The set of common vectors identified in step 2 is further filtered to
N
remove the synonymous duplicates (e.g., G b7Cd,db¢d,db Cd)of
=
a vector (e.g., @ b 7 d), as follows. Using the BF bit indices from all the rows

that contain the common vector ids a “common vector BF” is quickly constructed
(Fig. 5.21)

Common vector id set {...., idy,» id, s}
Component 2
Vecld | Coeff BF indices

Common vector BF

Idoo 0.2 {0,3,...}

Id 0.2 {3,7..} -

o 02 (1,5, Lfrfofr)[of1]..,
Idy4 0.2 {3,11,...}

Intersected with Synony_mous Vector Set BFs
SVS-BF, \ Yoo SVS-BF, Y
Lof1]ofo][o]o] LoJ1fof1][o]+1]

Component 3

Vec id set BF indices set

Fig. 5.21 Removing
synonymous duplicates
during descriptor comparison
[9, 45]

{ Idoo, Idos, Ido1, Id4} {0,1,.3,.5,.7,.11... }




5 Semantic Technologies for Searching in e-Science Grids 181

Then we iterate (outermost loop in the nested iteration) over the “set of
synonymous vector sets” and for each element, a synonymous vector BF is quickly
constructed using BF indices and intersected with the common vector BF. If this
intersected BF is not empty, we perform a nested iteration over this set of synony-
mous vector ids (in the middle loop) and over the set of common vector ids (in the
innermost loop) to identify the ids that are in both sets. All subsequent common ids
except the first one are dropped from common vector id set.

Extensions for hypernyms. To enable searching for a resource by a generic term
(e.g., “Auto immune disease”) instead of using the specific term for the concept
(e.g., Type 1 diabetes), we have to incorporate all possible hypernyms for each term
for similar reason as in case of synonyms. We consider a general model where the
similarity value between a specific basic concept and its generic form is less than 1.
The proposed hypernym incorporation technique is similar to that of synonyms. In

the given example (Fig. 5.22) we replace ¢ in sgpeq d b ¢ d by a sum of scalar-
weighted hypernyms, ¢}, 3, ..., from the hypernym chain (Fig. 5.22) where €
corresponds to the term in the bottommost node. This chain is obtained from “is a”

taxonomies or ontologies (e.g., Disease Ontology [77]). The hypernymous polyads
have ranks and can be ordered to form a “hypernym sequences”: 779)_3_(1) >
_a)_l;?l)?i) > 7_19)?2)_61) > ..> 7_19)?,,) d . A set of all such ordered sequences
form the fourth component, the “set of hypernym sequences.”

Descriptor extensions for hypernyms Hypernym chain
- T e A=0.7
Original tensor = ... +s,, i jk +.....+ 5, abcd +..... is a Distance Wi
c has hypemyms .~ - = . 8o ¢ is replaced by o ImmianS
- - - - disease 0.46
(c+yci+y,60+.y,€,) - Expanded tensor = _
- . s —e. isa
oSy qabed + 5, vabe d +5,, y,abc,d +...S Y, abc,d +
Where vy, =(1+1i) when j is distance (in terms of
' . is a
number of edges) between the term » and its hypermyms
and 0 < A <1 is aconstant.

Type 1 diabe-
tes mellitus

Fig. 5.22 Incorporation of hypernyms in descriptor generation and comparison algorithms [9, 45]

The data structure generating algorithm is extended by additional steps paired
with the steps for the synonyms:

e Steps 4a (paired with step 4) and Sa (with step 5): The 128-bit vector ids for
all the hypernymous vectors are generated and inserted in the BE.

e Step 6a: Each of the vector ids of a set of hypernymous vectors are inserted in
additional rows in the coefficient lookup table. The coefficient columns of these
additional rows are filled with the coefficient 5,54 multiplied with the respective
terms y,, for each hypernymous vector _a>_b)c_,,>1;’) and with the set of BF bit
indices.



182 A. Biswas et al.

e Step 7a: The set of hypernymous vector ids is grouped together as a set and
paired with the set of BF bit indices to generate “set of hypernym sequences.”
We extend the inner product computation by a step 2b paired with step 2a:

e Step 2b: The set of common vectors identified in step 2a is further filtered to
remove the hypernymous vector duplicates. This is achieved in a manner similar
to step 2a with only two differences. Here instead of “set of synonymous vec-
tor sets” the “set of hypernym sequences” is used. While performing the nested
iteration, when a second common vector id is found between the set of common
vector ids and the current hypernym sequence, the common vector id having the
lowest rank in the sequence is dropped to get the final filtered common set of
vectors.

5.6 Discussions

The concept tree and its algebraic representation are not meant to replace natural
language techniques, but to represent an entire complex concept using controlled
terms for indexing purpose. However, these techniques can be used to solve
problems beyond the primary purpose (indexing). A composition skewed toward
conjunction and having the form as {<concept name>, <attributes>} defines a con-
cept with more specificity compared to a single basis vector having form <concept
name> (e.g., {“diabetes,” “PTPN22”} can be used instead of “diabetes” alone to
represent the object in Fig. 5.11). Similarly compositions like {“mouse,” “animal”}
or {“mouse,” “computer device”} can be disambiguated to mean the rodent or the
computer device. In this manner small compositions having small number of leaves
can be used instead of a single basis vector to bolster the existing vector models [9]
wherever such opportunity exists.

For scientific publications, the leaf terms are controlled scientific index terms,
which convey complex concepts themselves. This enables smaller trees to convey
more complex meanings compared to the vector representations. The number of
leaves generally came to ~10 and number of levels ~4 or less. Such trees can be
represented with moderate numbers of basis vectors. The memory footprint of these
tensor-based keys remained manageable such that a large number of such keys can
be accommodated in high-density memories (~GigaByte on single chip). As even
higher density memories (~TeraByte on single chip) become available in future,
the limit on tree sizes will get relaxed. However, there are ways (e.g., by using more
advanced binder functions) to reduce the number of basis vectors without trading
off the fidelity of the comparison accuracy. Adopting such methods improves the
scalability on the proposed scheme [9].

If there is hash collision during vector id generation, the proposed dot prod-
uct algorithm will produce wrong values. The likelihood (probability) of such an
event is in the order of peottision™ (111 *na+n12+n2%), where “peotiision” = probability of
hash collision and “n;,” “ny” are the number of basis vectors in each tensor. For a
high-quality 128-bit hash function, “peoliision” s sufficiently small ~27128 and for
ny, ny < 10* (a reasonably good budget), wrong computations are unlikely [9].



5 Semantic Technologies for Searching in e-Science Grids 183
5.7 Conclusion

Searching is a key function in scientific cyber-infrastructure. The search technology
should be able to search for objects from specialized scientific databases. Existing
Internet search engines do not have this capability. In addition, the search technol-
ogy should also provide more sophisticated meaning-based searching, compared
to what is possible by existing meaning-based search engines. This calls for new
kinds of semantic technologies that can enable sophisticated meaning-based search-
ing. These required semantic technologies should enable computers to comprehend
meaning of the objects being searched and user’s search intentions, compare these
meanings, and discern which object may satisfy user’s need.

In addition, other kinds of semantic technologies are required to ease and facil-
itate the electronic publication process. It is desirable that the cyber-infrastructure
allow users to describe meaning of objects being published using natural languages.
The idea is that during publishing the human publisher will provide a natural lan-
guage description of the object instead of just providing a few tag terms or a
RDF description of the object as required by the semantic web paradigm [81]. The
text objects will not need additional description as the text content itself will suf-
fice. Users who want to search objects will enter their search intentions in natural
language texts instead of just providing search terms.

To enable this kind of publishing and search operations, we need techniques to
capture complex meaning from text narratives that describe objects and search inten-
tions. We also need methods to compare the meanings conveyed by these texts in
a manner that is coherent with human cognitive processes. This will require assim-
ilating knowledge from cognitive sciences and linguistics to create computational
models that represent and compare meanings within computers.

To materialize intention-based searching over large grids a distributed search
technique is required as illustrated in [15, 17]. However, the operations of such
distributed index or distributed searching on grids also require the same semantic
technologies mentioned above.

In this chapter, as meaning representation and comparison is the key problem,
we reviewed the basic concepts and existing work regarding meaning represen-
tation and comparison from cognitive science, linguistics, and computer science
domains. With this given background, we presented a design of meaning repre-
sentation and comparison technique which is coherent to the cognitive science and
linguistics models. This proposed design addresses the key requirement of mean-
ing compositionality which had not been addressed adequately and efficiently by
existing works. We presented an algebraic theory and techniques to represent hier-
archically composed concepts as a tensor which is amenable to efficient semantic
similarity computation. Next we delineated a data structure for the semantic descrip-
tors/keys and an algorithm to generate them and described an algorithm to compute
the semantic similarity of two given descriptors (tensors). This meaning comparison
technique discerns complex meaning while enabling search query relaxation [82]
and search key interchangeability. This is achieved without the need of a meaning
knowledgebase (ontology) unlike in [82]. The computation models presented here
are suitable for efficient execution on simple hardware accelerators.



184 A. Biswas et al.

References

—

PubMed, http://www.ncbi.nlm.nih.gov/pubmed/. Accessed 1 Feb 2009

2. SRS Server at EMBI-EBI: http://srs.ebi.ac.uk. Accessed 1 Feb 2009

3. The SAO/NASA Astrophysics Data System: http://adswww.harvard.edu/. Accessed 1 Feb
2009

4. NCAR Community Data Portal (CDP) http://cdp.ucar.edu/. Accessed 1 Feb 2009

5. California Water CyberInfrastructure: http://bwc.lbl.gov/California/california.htm. Accessed
1 Feb 2009

6. CUAHSI Hydrologic Information System (CUAHSI-HIS) http://his.cuahsi.org/. Accessed 1
Feb 2009

7. Baker, K.S., Ribes, D., Millerand, F., Bowker, G.C.: Interoperability strategies for scien-
tific cyberinfrastructure: Research and practice. Proceedings of the American Society for
Information Science and Technology 42(1) (2005)

8. Bergman, M.K. White paper: The deep web: Surfacing hidden value. The Journal of
Electronic Publishing 7(1) (2001)

9. Biswas, A., Mohan, S., Panigrahy, J., Tripathy, A., Mahapatra. R.: Enabling intention based
search. Technical Report, Department of Computer Science, Texas A&M University (2008)

10. Medical Subject Headings, (MeSH): U.S. National Library of Medicine,
www.nlm.nih.gov/mesh/. Accessed 1 Feb 2009

11. OCR: Optical Character Recognition http://www.cdac.in/html/gist/research-areas/ocr.asp.
Accessed 1 Feb 2009

12. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information
Processing & Management 24(5) (1988) 513-523

13. Knecht, L.: PubMed: Truncation, Automatic Explosion, Mapping, and MeSH Headings, NLM
Technical Bulletin 1998 May—June, 302 (1998)

14. Sowa, J.F. Semantic networks. In: Shapiro, S.C. (ed.) Encyclopedia of Artificial Intelligence,
Wiley. http://www.jfsowa.com/pubs/semnet.htm (1992). Accessed 1 Feb 2009

15. Biswas, A., Mohan, S., Mahapatra, R.: Search co-ordination with semantic routed network.
In: Proceedings of the 18th International Conference on Computer Communications and
Networks, US Virgin Islands (2009)

16. Watts, D.J.: Six Degrees: The Science of A Connected Age. W.W. Norton & Company,
New York (2003)

17. Biswas, A., Mohan, S., Mahapatra, R.: Optimization of semantic routing table. In:
Proceedings of the 17th International Conference on Computer Communications and
Networks, US Virgin Islands (2008)

18. Culicover, P.W., Jackendoff, R.: Simpler Syntax. Oxford linguistics, Oxford University Press,
Oxford (2005)

19. Bai, C., Bornkessel-Schlesewsky, 1., Wang, L., Hung, Y., Schlesewsky, M., Burkhardt, P.:
Semantic composition engenders an N400: Evidence from Chinese compounds. NeuroReport
19(6) (2008) 695

20. Brennan, J., Pylkknen, L.: Semantic composition and inchoative coercion: An MEG study. In:
Proceedings of 21st Annual CUNY Conference on Human Sentence Processing, University
of North Carolina, Chapel Hill (2008)

21. Grodzinsky, Y. The neurology of syntax: Language use without Broca’s area. Behavioral and
Brain Sciences 23(1) (2001) 1-21

22. Piango, M.M.J.M.: The neural basis of semantic compositionality. In session hosted by the
Yale Interdepartmental Neuroscience Program, Yale University (2006)

23. Murphy, G.: Comprehending complex concepts. Cognitive Science 12(4) (1988) 529-562

24. Culicover, P.W., Jackendoff, R.: The simpler syntax hypothesis. Trends in Cognitive Sciences
10(9) (2006) 413418

25. Kirshner, H.S.: Language studies in the third millennium. Brain and Language 71(1) (January

2000) 124-128



5 Semantic Technologies for Searching in e-Science Grids 185

26.

217.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Hagoort, P.: On Broca, brain, and binding: A new framework. Trends in Cognitive Sciences
9(9) (2005) 416-423

Caramazza, A., Berndt, R.S.: Semantic and syntactic processes in Aphasia: A review of the
literature. Psychological Bulletin 85(4) (1978) 898-918

Kuperberg, G.: Neural mechanisms of language comprehension: Challenges to syntax. Brain
Research 1146 (2007) 23-49

Friederici, A.D., Opitz, B., Cramon, D.Y.: Segregating semantic and syntactic aspects of pro-
cessing in the human brain: An fMRI investigation of different word types cereb. Cortex 10
(2000) 698-705

Ye, Z., Zhou, X.: Involvement of cognitive control in sentence comprehension: Evidence from
erps. Brain Research 1203 (2008) 103-115

Ekiert, M.: The bilingual brain. Working Papers in TESOL and Applied Linguistics 3(2)
(2003)

Kim, K.H.S., Relkin, N.R., Hirsch, J.: Distinct cortical areas associated with native and second
languages. Nature 338 (1997) 171-174

Pinango, M.: Understanding the architecture of language: The possible role of neurology.
Trends in Cognitive Sciences 10(2) (2006) 49-51

Zurif, E.: Syntactic and semantic composition. Brain and Language 71(1) (2000) 261-263
Bickerton, D.: Language & Species, The University of Chicago Press, Chicago & London
(1990)

Jackendoff, R.: Compounding in the parallel architecture and conceptual semantics. In:
Lieber, R., Stekauer, P. (eds.) The Oxford Handbook of Compounding. Oxford Handbooks
in Linguistics. Oxford University Press, Oxford (2009)

Collins, A.M., Loftus, E.F: A spreading-activation theory of semantic processing.
Psychological Review 82(6) (November 1975) 407428

Anderson, J.R.: A spreading activation theory of memory. Journal of Verbal Learning and
Verbal Behavior 22 (1983) 261-295

Anderson, J.R., Pirolli, PL. Spread of activation. Journal of Experimental Psychology:
Learning, Memory, & Cognition 10 (1984) 791-799

Saffran, E.: The Organization of semantic memory: In support of a distributed model. Brain
and Language 71(1) (2000) 204-212

Rodriguez, R.A.: Aspects of cognitive linguistics and neurolinguistics: Conceptual structure
and category-specific semantic deficits. Estudios Ingleses de la Universidad Complutense, 12
(2004) 43-62

Rajapske, R., Denham, M.: Fast access to concepts in concept lattices via bidirectioanl
associative memory. Neural Computation 17 (2005) 2291-2300

Rajapske, R., Denham, M.: Text retrieval with more realistic concept matching
and reinforcement learning. In Information Processing and Management 42 (2006)
1260-1275

Andersen, C.: A Computational model of complex concept composition. Master’s thesis,
Department of Computer Science, University of Texas at Austin (1996)

Biswas, A., Mohan, S., Panigrahy, J., Tripathy, A., Mahapatra, R.: Representation and compar-
ison of complex concepts for semantic routed network, In: Proceedings of 10th International
Conference on Distributed Computing and Networking (ICDCN). Hyderabad (2009)

Wolff, K.E.: A first course in formal concept analysis, F. Faulbaum StatSoft *93, 429-438,
Gustav Fischer Verlag (2004)

Qi, J., Wei, L., Bai, Y.: Composition of concept lattices. Proceedings of the 7th International
Conference on Machine Learning and Cybernetics, Kunming (July 2008)

Murphy, G.L., Medin, D.L.: The role of theories in conceptual coherence, in Psychological
Review (1985)

Foggia, P., Sansone, C., Vento, M.: A performance comparison of five algorithms for
graph isomorphism, 3rd IAPR TC-15 workshop on graph-based representations in Pattern
Recognition (2001) 188-199



186

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

A. Biswas et al.

Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison algorithm and
its application to detect functionally related enzyme clusters. Nucleic Acids Research 28(20)
(2000) 4021-4028

Mitchell, J., Lapata, M.: Vector-based models of semantic composition. In: Proceedings of
ACL-08: HLT, Association for Computational Linguistics, Columbus, Ohio (2008) 236-244

Widdows, D.: Semantic vector products: Some initial investigations. In: Quantum Interaction:
Papers from the Second International Symposium, Oxford (2008)

Widdows, D. Geometric ordering of concepts, logical disjunction, and learning by induc-
tion. Compositional Connectionism in Cognitive Science, AAAI Fall Symposium Series,
Washington, DC, October (2004) 22-24

Widdows, D. Orthogonal negation in vector spaces for modeling word meanings and
document retrieval. In: Proceedings of the 41st Annual Meeting of the Association
for Computational Linguistics (ACL), http://acl.ldc.upenn.edu/acl2003/main/ps/Widdows.ps
(2003). Accessed 1 Feb 2009

Lin, D.: An information-theoretic definition of similarity. In: Shavlik, J.W (ed.) Proceedings
of the 15th International Conference on Machine Learning. Morgan Kaufmann Publishers,
San Francisco, CA (1998) 296-304

Rodriguez, A.: Semantic Similarity Among Spatial Entity Classes Ph.D. thesis, Department
of Spatial Information Science and Engineering University of Maine (2000)

Veksler, V., Govostes, R., Gray, W.: Defining the dimensions of the human semantic space.
In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society, Austin, TX
(2008)

Lindsey, R., Stipicevic, M.V.V.: BLOSSOM: Best path length on a semantic self-organizing
map. In: Proceedings of the 30th Annual Meeting of the Cognitive Science Society.
Washington, DC (2008)

Cederberg, S., Widdows, D.: Using LSA and noun coordination information to improve the
precision and recall of automatic hyponymy extraction. In: Proceedings of Conference on
Natural Language Learning (CoNLL), Edmonton, Canada (2003) 111-118

Maguitman, A.G., Menczer, F., Roinestad, H., Vespignani, A.: Algorithmic detection of
semantic similarity. In: Proceedings of the 14th International Conference on World Wide Web
(WWW °05) ACM, New York, NY (2005) 107-116

Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on
semantic nets. Systems, Man and Cybernetics, IEEE Transactions 19(1) (1989) 17-30

Jeh, G.: Simrank: A measure of structural-context similarity. In: Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton,
Alberta, Canada (2002)

Yang, D., Powers, D.M.: Measuring semantic similarity in the taxonomy of WordNet. In:
Proceedings of the 28th Australasian Conference on Computer Science, Newcastle, Australia
38 (2005)

Cilibrasi, R.L., Vitanyi, PM.B.: The Google similarity distance. In: IEEE Transactions on
Knowledge and Data Engineering 19(3) (2007) 370-383

Widdows, D.: Unsupervised methods for developing taxonomies by combining syntactic and
statistical information. In: Proceedings of the 2003 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Technology — Vol 1,
North American Chapter of the Association For Computational Linguistics. Association for
Computational Linguistics. Morristown, NJ (2003) 197-204

Lemaire, B., Denhiere, G.: Incremental construction of an associative network from a corpus.
In: Proceedings of the 26th Annual Meeting of the Cognitive Science Society, Hillsdale, NJ
(2004) 825-830

Dorow, B., Widdows, D., Ling, K., Eckmann, J.P., Sergi, D., Moses, E.: Using curvature
and Markov clustering in graphs for lexical acquisition and word sense discrimination. In:
Proceedings of the 2nd Workshop organized by the MEANING Project (MEANING 2005),
Las Vegas, Nevada, USA February 3—4 (2005)



5 Semantic Technologies for Searching in e-Science Grids 187

68.

69.

70.

71.

72.
73.
74.
75.
76.
7.
78.
79.

80.

81.

82.

Borgida, A., Walsh, T., Hirsh, H.: Towards measuring similarity in description logics. In:
Proceedings of the 2005 International Workshop on Description Logics (2005)

Hau, J., Lee, W., Darlington, J.: A semantic similarity measure for semantic web services.
In: Web Service Semantics: Towards Dynamic Business Integration, Workshop at WWW,
London, UK volume 5 (2005)

d’Amato, C., Fanizzi, N., Esposito, F.: A semantic similarity measure for expressive descrip-
tion logics. In: Proceedings of Convegno Italiano di Logica Computazionale (CILCO0S), Rome,
Italy (2005)

Janowicz, K. Sim-DL: Towards a Semantic Similarity Measurement Theory for the
Description Logic ALCNR in Geographic Information Retrieval On the Move to Meaningful
Internet Systems 2006: OTM 2006 Workshops, Montpellier, France (2006) 1681-1692
Resource Description Framework (RDF): www.w3.org/RDF/. Accessed 1 Feb 2009
Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipediabased
explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India (January 2007)

Widdows, D.: A mathematical model for context and word-meaning. Lecture Notes in
Computer Science (2003) 369-382

Bottini, N. et al.: A functional variant of lymphoid tyrosine phosphatase is associated with
type I diabetes. Nature Genetics 36 (2004) 337-338

Gene Ontology, http://www.geneontology.org/. Accessed 1 Feb 2009

Disease Ontology, http://diseaseontology.sourceforge.net/. Accessed 1 Feb 2009

Irgens, F.: Tensors. In: Continuum Mechanics. Springer, Berlin, Heidelberg (2008)

Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: A survey. In Internet
Mathematics 1(4) (2002) 485-509

Ripeanu, M., Iamnitchi, A.: Bloom Filters — Short Tutorial, Computer Science Department,
University of Chicago. www.cs.uchicago.edu/~matei/PAPERS/bf.doc (2001). Accessed 1
Feb 2009

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific American Magazine.
http://www.sciam.com/article.cfm?id=the-semantic-web&print=true. Retrieved on 26 March
2008 (2001). Accessed 1 Feb 2009

Tempich, C., Staab, S., Wranik, A.: Remindin’: Semantic query routing in peer-to-peer net-
works based on social metaphors. In: Proceedings of the 13th International Conference on
World Wide Web. WWW °04. (2004) 640-649



Chapter 6

BSIS: An Experiment in Automating
Bioinformatics Tasks Through Intelligent
Workflow Construction

Yu Pan, Enrico Pontelli, and Son Cao Tran

Abstract Existing bioinformatics tools are extremely difficult to integrate and
inter-operate, because of the diversity of service deployment techniques and the rep-
resentational heterogeneity of biological data they are interacting with. This chapter
presents the BioService Integration System (BSIS), a general framework which pro-
vides a graphic-based workflow language. The language enables the description of
workflows composed of abstract semantic Web services and references to biologi-
cally relevant data. The workflows constructed in BSIS can be instantiated through
automated planning techniques and automatically executed by adapting the Web
Service Integration Framework (WSIF). A prototype implementation of the system
is presented to demonstrate the effectiveness and efficiency of the approach.

6.1 Introduction

A typical, modern biological analysis requires an extensive use of bioinformatics
resources, in the form of biological databases, repositories, and computational tools.
These databases and software tools can be either downloaded and installed on the
scientist’s machine or can be accessed remotely, through Web-based forms and Web
portals.

While local databases and computational tools may provide better performance
in general, the task of maintaining and synchronizing these resources can be over-
whelming, given the high dynamics of data evolution in the field and the wide
variety of tools that are continuously developed and enhanced. The use of Web-
based applications and portals relieves the user from the burden of maintaining local
installations — however, this solution makes the process of creating analysis
pipelines significantly more cumbersome, forcing the user to switch between dif-
ferent Web sites, often requiring the manual shepherding of data between different

Y. Pan (X))
Department of Computer Science, New Mexico State University, Las Cruces, NM, USA
e-mail: ypan@cs.nmsu.edu

H. Chen et al. (eds.), Semantic e-Science, Annals of Information Systems 11, 189
DOI 10.1007/978-1-4419-5908-9_6, © Springer Science+Business Media, LLC 2010



190 Y. Pan et al.

portals. Moreover, data produced by one software tool may not be directly accept-
able by another tool — due to the widespread lack of standard data formats,
especially in several legacy applications. While several data conversion tools are
available, these are not comprehensive and often scientists have to resort on man-
ual data manipulations — which are tedious and error prone. Finally, if the same
computational procedure needs to be applied to large collections of data, the
manual approach quickly becomes impractical, without the help of an automated
programming environment.

This state of affairs has spawned a number of proposals, aimed at facilitating
the design, development and deployment of software workflows/pipelines, thus sim-
plifying the execution of bioinformatics analysis processes. A significant boost to
the research in this field has come from the availability of novel software technolo-
gies, that provide the foundations for the high-level and scalable development of
scientific workflows. In particular, advances in the areas of programming languages
(e.g., the emphasis on the creation of infrastructures for domain-specific languages
[9, 21]) and in the area of Web services and the Semantic Web [5, 36] have been
greatly beneficial to these endeavors.

In this Chapter, we present an experimental framework, called BioService
Integration System (BSIS), for the design and execution of bioinformatics work-
flows. BSIS provides a graphical computational workbench for bioinformaticians.
Similar to other concurrently developed frameworks, BSIS provides a graphi-
cal interface for the design of workflows. The novelties offered by BSIS can be
summarized as follows:

e BSIS is service oriented and extensible;
e BSIS supports semantic discovery and composition of services;
e BSIS provides a graphical and user-friendly interface.

To the best of our knowledge, no other existing bioinformatics computational
workbench concurrently provides all these features.

6.2 Related Work

The recent literature demonstrates an increased interest toward the development of
automated and semi-automated workflow design environments for bioinformatics.
In the next sections, we provide a brief overview of some of the relevant approaches
in this area, classified in increasing level of abstraction.

6.2.1 Custom Scripts

At the lowest level of abstraction, we encounter methodologies of workflow con-
structions based on custom-made scripts. These scripts are commonly encoded



6 BSIS 191

using traditional scripting languages, such as Perl, Python, or using makefile or
Windows batch files notations [15, 37]. These scripts are typically static and they
are often the result of tedious and years-long manual labor (e.g., [40]). The develop-
ment of custom-made scripts requires the user to be familiar with at least one type
of scripting language. The level of abstraction of scripting languages is very low and
the resulting workflows (beyond trivial ones) are often hard to maintain and evolve.
Such scripts can hardly be made general and, more importantly, bioinformaticians
are often not trained to handle complex programming tasks and handle the low level
of details required.

6.2.2 Domain-Specific Programming Environments

Concerted efforts have been proposed to reduce the level of details required in
using traditional scripting languages to code workflows for biomedical analyses. A
traditional approach pursued by several researchers is to enhance traditional script-
ing languages and programming languages with modules and packages specifically
designed to solve bioinformatics problems. Examples of bioinformatics-oriented
programming environments include BioPerl [43], BioJava [39], BioPython [6], and
BioRuby [19]. Combined with their host languages, these modules allow the users
to write sophisticated programs for their computational tasks, hiding the details
required to access frequently used tools and data repositories. For example, BioPerl
achieves this result by mapping distinct data formats to a common object model
for data manipulation. Similarly to the case of programming scripts, this approach
requires proficiency in both the programming language and the extension modules.

A different twist in this research direction comes from the Darwin [14] project.
Darwin is a completely new programming language, developed to assist users in
writing code related to bioinformatics tasks (with particular focus on evolutionary
biology applications). Darwin uses a C-like syntax, and it provides a compiler to
translate programs written in Darwin to C programs. Darwin provides data types for
representing biologically relevant objects, like genes and chromosomes, and it offers
a standard set of operators for manipulating these objects. Programming in Darwin
might be easier, because of its domain-specific features. However, as with other
approaches in this category, it requires users to be familiar with the concepts of tra-
ditional imperative programming; furthermore, the use of Darwin introduces a steep
learning curve. Observe also that Darwin does not provide features for discovery of
new modules and for extensibility.

6.2.3 Integrated Analysis Environments

An additional level of abstraction is provided by the several integrated analysis
environments for biomedical research. These environments have been proposed to
facilitate the development of analysis workflows that are specific to certain branches



192 Y. Pan et al.

of biomedical research. These environments usually compile a variety of computa-
tional models together and they allow the users to choose among those that are more
appropriate for realizing a specific analysis task.

For example, PartiGene [38] is a software for EST Clustering analysis; a menu-
driven environment allows the users to assemble a complete analysis pipeline,
starting from raw EST sequences processing, followed by clustering, assembling,
annotating, and reporting. Other examples of integrated environments include POY
(Phylogeny Reconstruction via Optimization of DNA and other Data) [27], MEGA
(Molecular Evolutionary Genetics Analysis) [22, 46], and Mesquite [27].

The use of integrated analysis environments is welcomed by many researchers,
because of its simplicity and it has gained popularity. For example, MEGA is one of
the most widely used environments in phylogenetic analysis, and there is an exten-
sive literature of evolutionary analysis results produced using MEGA. However,
integrated environments are not extensible and they provide only a fixed and limited
range of analysis options. The workflows provided are static, mostly generated from
fixed templates, and do not scale to the analysis of non-standard data sets.

6.2.4 Workflow Systems

The greatest level of abstraction and flexibility is provided by environments that
allow the scientist to assemble high-level descriptions of workflows.

The Biology Workbench [31], developed by the San Diego Supercomputer
Center, is an example of Web-based workflow system. It consists of a set of scripts
that link the user’s browser to a collection of information sources (databases) and
application programs. Users can choose which tools to execute at each step, com-
posing them into a workflow. The advantage of the Biology Workbench is that it
hides the interface of each tool into a uniform Web-based form, thus relieving the
users from the need to interact with concrete, low level, data formats. A limitation of
the Biology Workbench is its restriction to linear workflows — i.e., all computations
must be performed sequentially, under the control of the users’ mouse clicks. In par-
ticular, full automation is not achieved. Additionally, the maintenance burden (e.g.,
inclusion of new data formats or tools) is placed on the shoulders of the Workbench
developers.

An alternative class of workflow systems, local workflow systems, rely on the
local development of workflows, without the need to rely on remote Web portals.
Some relevant examples of local workflow system are Taverna [16] and Kepler [1].
Taverna is part of the " Grid [44] initiative, while Kepler is an open source project
supported by the National Science Foundation and the Department of Energy.
Both these environments provide graphical user interfaces, that allow the users
to graphically construct workflows consisting of Web services. In both methods,
the workflow construction requires the identification of the specific services to be
applied at each step. While part of the dynamic composition of services is taken care
by the underlying engine, the capabilities of automated discovery and composition
of services in these systems are limited.



6 BSIS 193
6.3 An Overview of the BioService Integration System

The BioService Integration System (BSIS) builds on the principles of the Semantic
Web [5] and Web service technologies [36]. Figure 6.1 shows the overall architec-
ture of the BioService Integration System, which consists of four major components:
(1) the Web service infrastructure, (2) the workflow language, (3) the planner, and
(4) the executor.

GUI
Workflow Workflow Service
Composer Validator Browser
Registry
I l Service
Ontology Manager Planner <
| |
QoS Manager Executor
Local Service Provider Remote Service Provider

Fig. 6.1 The overall architecture of BSIS

6.3.1 The Web Service Infrastructure

The Web service infrastructure consists of service providers and service registries.
By adopting the Web Service Integration Framework [11], service providers can
be of any type — a HTML form-based service, a Java RMI service, a SOAP Web
service, or even a local executable program. Their implementations are transparent
to the end users and they are visible only through their descriptions built using the
standard Web Services Description Language (WSDL) [7].

The service registries provide a location to store service information and they
offer a set of interfaces for the end users to query the service information. In order to
enable semantic discovery, we develop domain ontologies to annotate the services;
the registry services provide the capability of querying the repositories using such
semantic metadata.



194 Y. Pan et al.
6.3.2 The Workflow Language

BSIS defines a graphical workflow language and provides a graphical user interface
for workflow composition and validation. Users of the system can construct work-
flows using the workflow editor and validate them against the syntactic rules of the
language. The finished workflow can be concrete or abstract.' Intuitively, abstract
workflows are under-specified workflows, containing operations that refer to classes
of services instead of specific services. Abstract workflows must be instantiated
through planning before execution of the workflow is possible.

6.3.3 The Planner

The planner considers an abstract workflow and instantiates it into a concrete and
executable workflow. During this process, the planner communicates with registry
services for service instance information, it consults the ontology manager for data-
type information, and it relies on the quality-of-service manager to select among
alternative service instances.

6.3.4 The Executor

If planning is successful, then the executor will proceed with the execution of the
resulting workflow. The executor adopts the Web Service Invocation Framework and
uses a factory pattern for the execution of different types of services, based solely on
their Web services descriptions (in WSDL). The executor includes also an execution
monitor.

In the following sections, each component of the system will be discussed in
detail. In particular, Section 6.4 provides details of the Web service infrastruc-
ture; Section 6.5 describes the workflow design component of BSIS; Section 6.6
describes the planning infrastructure used by BSIS to make the workflow exe-
cutable; Section 6.7 overviews the workflow execution infrastructure; finally,
Sections 6.8 and 6.9 provide an evaluation of the infrastructure and discussion of
possible optimizations and extensions.

6.4 The BSIS Web Service Infrastructure

The semantic Web services infrastructure is the basis for all other components in the
system. It consists of semantic Web services — i.e., Web services whose descriptions
have been annotated with semantic information drawn from domain ontologies —
and service registries.

I'This distinction will be explained in detail later in the chapter, when we discuss the workflow
language.



6 BSIS 195

Following the general view of Web services provided by the W3C, Web services
are software systems designed to inter-operate in a networked environment. They
are commonly realized by enhancing existing applications with Web APIs. In order
to build semantic Web services, we adopt the Web Services Description Language
(WSDL) [7] to attach semantic annotations to Web services. WSDL enables the
discovery and automated composition of Web services. In the context of BSIS, we
extend the concept of Web service to include any accessible application that can be
described using an extended WSDL model.

6.4.1 Domain Ontologies

All metadata information used in the semantic description of Web services is defined
in terms of concepts drawn from domain ontologies. Currently, two prototype
ontologies have been introduced to characterize the bioinformatics domain: one for
describing processes and transformations implemented by bioinformatics services —
referred to as the Service Ontology — and the other for describing biological data —
the Data Ontology. Observe that the BSIS system has been realized in such a way
to reduce the dependency on any specific domain ontology. Users can configure the
system to select any ontologies for annotating the components of their workflows.

The ontologies proposed in BSIS have been encoded using the standard Web
Ontology Language (OWL) [4] and they are briefly discussed next.

6.4.1.1 Service Ontology

This ontology is used to define the different classes of typical bioinformatics appli-
cations and their mutual relationships. Figure 6.2 shows a hierarchical view of a
segment of the service ontology (the complete ontology is discussed in [35]). At the
highest level, the ontology organizes services in some general classes representing
the most common transformations (e.g., alignment, phylogenetic analysis), while
other classes provide description of non-transformation services, organized as (a)
database retrieval, (b) storage and persistency, (c) visualization, and (d) comparison.

Service types are defined in the ontology as OWL classes along with properties
that are applicable to them. For example, the following code fragment defines a
service type class named Alignment_Multiple which is a subclass of the type
Sequence_Alignment:

<owl:Class rdf:ID="Alignment_Multiple">
<rdfs:subClassOf
rdf:resource="#Sequence_Alignment" />
</owl:Class>

The Alignment_Multiple, in turn, has subclasses that distinguish the align-
ment process based on the type of procedure, for example,



196 Y. Pan et al.

Bioinformatic_Service

Sequence_Alignment Phylogeny_Analysis Database_Search
Phylogeny_Tree_Building Phylogeny_Consensus

Fig. 6.2 Sketch of the service ontology

e Maximum_ Likelihood Multiple_ Alignment,
e Parsimony_Multiple_Alignment, and
e Distance_Based_Multiple_Alignment.

The classes and their properties defined in the service ontology will be used to
annotate Web services.

An OWL parser can parse this ontology and store each class definition in an
OWLClass object, along with its properties. The object contains also all the relation-
ships (e.g., descendents and ancestors) with other classes defined in the ontology.
These pieces of information are crucial whenever we need to reason about the rela-
tionships between concepts defined in the ontology — e.g., during queries to find a
service matching certain constraints.

6.4.1.2 Data Ontology

This ontology defines the types of data and data formats used in the most com-
monly used bioinformatics applications and their relationships. Figure 6.3 shows a
hierarchical view of a segment of the data ontology. As in the case of the service
ontology, the different classes of data are defined in the ontology as OWL classes
and properties that are applicable to each specific type of data.

The root class of the data type ontology is BioData, which is a superclass
of all other classes defined in the ontology. The direct children of BioData are
Number, String, Boolean, BioObject, and List. The List class is
the superclass of all classes of data that encode homogeneous sequences of data,
while the BioObject class is a superclass of all data types of single structure
(e.g., Sequence, Nucleotide, and Tree). Bioinformatics data are organized



6 BSIS

BioData

i

ean

List

Number BioObject String Boo
Sequence
DNASequence RNASequence ProteinSequence

Fig. 6.3 Data ontology

197

in a style analogous to the organization adopted in the data ontology adopted in the
myGrid project. The first level of subclasses of BioObject includes the following

classes of entities:

e Record, e.g., describing protein family records (e.g., Pfam), protein structure
record (e.g., SCOP record), etc.
e Report, describing a report produced by typical applications (e.g., BLAST

report);

e Location, identifying data based on a location system (e.g., cellular location);
e Sequence, identifying different types of sequences (e.g., DNA, RNA);

e Structure, identifying a biological structure (e.g., RNA, protein).

Each of these classes are organized as sub-hierarchies.

As mentioned earlier, the system’s behavior is parameterized by the ontolo-
gies chosen for describing data and services. These can be modified through a
configuration file used by BSIS (e.g., see Fig. 6.4).

6.4.2 Services Description

Semantic Web services are Web services described with semantic information from

a specific application domain — in our case, the bioinformatics domain.



198 Y. Pan et al.

<ontologies>
<serviceOntology>
<ontologyName>BSIS Service Ontology</ontologyName>
<ontologyURL>http://www.cs.nmsu.edu/ “ypan/ontologies/
bsis_services.owl</ontologyURL>
</serviceOntology>
<datatypeOntology>
<ontologyName>BSIS Datatype Ontology</ontologyName>
<ontologyURL>http://www.cs.nmsu.edu/“ypan/ontologies/
bsis_datatype.owl</ontologyURL>
</datatypeOntology>
</ontologies>

Fig. 6.4 Configuration of ontologies

The functionalities of traditional Web services are described using WSDL
Eric-01. WSDL uses XML schemas to describe the interface to the Web ser-
vice. In particular, the description of the entities exchanged with the service are
described focusing on the “syntactic” features of the service. Thus, the description
is mostly focused on the operational aspects of the service and not on the semantic
classification of data and operations.

Several approaches have provided solutions that enable the introduction of
semantics in the description of Web services (e.g., [2, 30, 45]). Among them the
DAML-S/OWL-S [2] approach is the most widely adopted method for semantic
markup and composition of services. OWL-S defines an ontology that provides
concepts and relations that can be used for describing Web services. The ontol-
ogy consists of three sub-ontologies: service profile, service grounding, and process
model. The service profile defines the functional and non-functional properties of
the services. Service grounding contains information about service invocation. In
an effort to align with WSDL, service grounding provides mappings from OWL-S
atomic processes to WSDL operations. The process model describes how to define
atomic processes and use them to form composite processes through workflow
construction.

Although OWL-S is gaining acceptance in the Semantic Web arena, there are
several reasons why we decided not to adopt it in BSIS:

1. OWL-S is significantly more complex than what required to support BSIS;
indeed, the majority of the existing service repositories adopt syntactic (WSDL-
based) service representations and do not refer to OWL-S.

2. At the time the BSIS project was launched, there were no established registry
services that supported the OWL-S model. There have been some recent propos-
als in this area (e.g., [26]) for enhancing the UDDI model with OWL-S support,
but these proposals are not mature.

3. The main focus of OWL-S is on its process model, which provides an ontology
for describing workflow of services. Since we are creating our own work-
flow model, this feature is not significant to our needs. Furthermore, we found
the OWL-S process model inadequate to meet the needs of describing BSIS



6 BSIS 199

workflows — in particular, the lack of a notion of variable makes it cuambersome
to relate inputs and outputs of different services used within a workflow.

4. The OWL-S model requires several non-standard extensions (through the addi-
tion of the owl-s-parameter attribute to the wsdl:part component and the addition
of the owl-s-process attribute to the wsdl:operation component) to the WSDL
description of a Web service. These extensions are not recognized by the
Grimoires registry, which is the UDDI extended model that supports semantic
discovery of services adopted in BSIS.

Indeed, several of these shortcomings have been recognized by other practition-
ers in the field (e.g., [3]).

In the context of BSIS, we propose instead a lightweight model for associating
semantic metadata annotations to different components inside a WSDL description.

Figure 6.5 shows an example of a WSDL document for the description of the
Clustal-W service [47] deployed at New Mexico State University. For simplicity,
only relevant components of the WSDL document are shown. The components in
lines 7—15 include the traditional WSDL description of the service — e.g., the type

1: <wsdl:definitions name="ClustalWService"

2 targetNamespace="http://www.cs.nmsu.edu/bsis/services/clustalw"
3 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

4. xmlns:meta="http://www.cs.nmsu.edu/bsis/schema/metadata"

5: >

6 R

7 <wsdl :message name="ClustalWRequest">

8: <wsdl:part name="sequences" element="types:sequences"/>
9:

10: </wsdl:message>

11:

12: <wsdl :portType>

13: <wsdl:operation name="ClustalW">...</wsdl:operation>

14: </wsdl:portType>

15:

16: <meta:annotation>

17: <meta:metadata ref="tns:Clustalw">

18: <meta:metadataName>&rdf; type</meta:metadataName>

19: <meta:metadatavValue>

20: <meta:value>&serviceType;Alignment_Multiple</meta:value>
21: <meta:metadatavalue>

22: </meta:metadata>

23: <meta:metadata ref="tns:sequences">

24 : <meta:metadataName>&rdf; type</meta:metadataName>

25: <meta:metadatavalue>

26: <meta:value>&datatype;ListOfSequence</meta:value>
27: <meta:metadatavalue>

28: </meta:metadata>

29: </meta:annotation>

</wsdl:definitions>

Fig. 6.5 Annotated clustal-W service



200 Y. Pan et al.

of messages that can be accepted (message elements, lines 7-10) and the abstract
operations provided by the service (portType elements, lines 12—14).

The meta:annotation element (lines 16-29) is an extension of the standard
WSDL model, containing one or more metadata descriptions for some of the com-
ponents (operations and message parts) in the WSDL description. Each metadata
contains a name and a list of values, representing a collection of semantic infor-
mation about the component identified through the ref attribute. For example, in
Fig. 6.5, the metadata attached to Clustal-W indicates that the type of the service is
Alignment_Multiple (line 20). The second metadata is attached to the WSDL mes-
sage component named sequences and it states that the type of this message part is
ListOfSequence (line 26).

6.4.3 Services Registry

Traditional Web service architectures make use of UDDI (Universal Description,
Discovery and Integration) registries uddi for storing information about services.
UDDI is limited in the support for semantic discovery of services based on meta-
data information. UDDI also provides relatively limited support for the execution of
queries that target WSDL documents.

The Grimoires registry [25, 32] is an extension of the UDDI model, that pro-
vides support for querying WSDL documents and for the resolution of queries using
metadata annotation. The Grimoires registry uses RDF models to store all metadata
information. The Grimoires registry provides a number of functionalities that match
our needs for implementing a bioinformatics service registry. In particular

e Addition of metadata to entities: this operation is used to associate a metadata
component to an entity, where an entity is a named element within a WSDL
document, e.g., a message part or an operation.

e Metadata retrieval: this operation retrieves all metadata attached to an entity.

e Metadata-based querying: this operation searches for entities containing specific
components of metadata.

e Operation-based querying: this operation searches a WSDL interface according
to one of its operations.

e Message-based querying: this operation searches an operation according to one
of its message components.

As with other standard UDDI interface functions, these functionalities are
exposed as Web services and invoked through SOAP messages. The server pro-
cesses the requests, transferring them to RDF queries and using a RDF query engine.
The results of a query are wrapped into SOAP messages as sent back as responses.
When combined with the extended WSDL model, Grimoires provides us capabili-
ties to perform semantic-based discovery of service providers, using metadata from
domain ontologies.



6 BSIS 201
6.5 Workflow Language

The BSIS workflow language is a graphic-based language, used to describe both
concrete as well as abstract workflows, i.e., higher level workflows, that may not
be immediately executable. A workflow is described by a directed graph structure.
The workflow language introduces two types of entities to construct such graphs:
entity nodes and connectors. Nodes and connectors are described by a number of
properties.

In this section, we will first introduce the representation of nodes and connectors,
followed by examples of different control structures; we will successively provide a
more formal definition of the language.

6.5.1 Entity Nodes

The language provides four classes of entity nodes: service nodes, data nodes, oper-
ator nodes, and control nodes. These are summarized in Fig. 6.6. Purple (i.e., dark
gray) nodes represent services, yellow (i.e., very light gray) nodes represent built-in
operators, while light blue (i.e., medium gray) nodes represent data instances.

o @ (3 [

Start End Service Operator Data

Fig. 6.6 Entity nodes

6.5.1.1 Service nodes

A service node contains information about a Web service. The service node can
be either abstract or concrete. A concrete service node must have the following
properties specified:

e A URL to the WSDL document containing the service description;
e The name of a portType within the WSDL document,

e The namespace of that portType, and

e The name of an operation within the port type.

These items uniquely identify an operation within a WSDL document, which we
call a service instance. For example, a service instance of the Alignment_Service,
with sample property values, is shown in Fig. 6.7. Observe that the designer of the



202 Y. Pan et al.

WSDL : http://www.cs.nmsu.edu/ ypan/wsdls/clustalw.wsdl
PortType Namespace : http://www.cs.nmsu.edu/ ypan/services/clustalw
PortType : ClustalWPortType

Operation : Run

Fig. 6.7 Service instance properties

WORKFLOW DESIGN
PANE

SERVICE ONTOLOGY
EROWSER

Planning Monitor
Window

Fig. 6.8 Graphical interface for the creation of a workflow

workflow does not need to manually provide these properties — they are automati-
cally provided whenever the user drags and drops a service into the workflow from
a menu of services (see Fig. 6.8).

Compared to a concrete service node, an abstract service node need not specify
any of these properties. Rather, an abstract service must have a type information,
that identifies the service category — defined in terms of the service ontology.
Moreover, the user can specify additional metadata information for the abstract
service, that will be used in searching for a matching concrete service during the
planning process. Each metadata represents a user constraint, that may be satis-
fied by the matching concrete service instance. For example, we could specify a
metadata constraint to the Tree_Building service as follows:

Metadata name Metadata value Is optional?

&rdf; type &servicetype; No
#Phylogeny_Tree_building

&servicetype;algorithm &serviceMeta; #PARSIMONY Yes

&servicetype;software &serviceMeta; #PHYLIP Yes




6 BSIS 203

This metadata constrains the service to be of type Phylogeny_Tree_Building and it
is preferable to find a service instance that is from the PHILIP package and that uses
the PARSIMONY method for tree construction.

If the workflow contains at least one abstract service, then the workflow will
be referred to as an abstract workflow and it cannot be executed directly. At this
stage, the planner component will be executed to map all abstract services to their
service instances, based on the user constraints on the service descriptions. On the
other hand, a concrete workflow contains all the necessary service and flow informa-
tion to produce an execution (performed by the executor component, described in
Section 6.7).

6.5.1.2 Data Nodes

A data node represents a data item to be dealt with during the workflow execution.
A data item can be an input to a service, provided by the user, or it can represent
an output generated by an executed service. The user has the option to specify the
data either in their textual raw format (i.e., as a string of text) or as a URI to a
file containing the corresponding data. If the data is a user provided input, the I/O
module of the executor will load the data from the corresponding data file. If the
data is generated as output by a service, the I/O module will save the result to the
data file at the specified location.

As in the case of abstract services, we can associate metadata information to a
data node, that can be used as constraints during the planning process. For example,
an input data could have the following metadata:

Metadata name Metadata value Is optional?
&rdf; type &datatype; #ListOfSequence No
&datatype; sequenceFormat &datatypeMeta; #FASTA Yes

This metadata indicates to the planner that the input data to the service
Alignment_Service is of type ListOfSequence and has sequenceFormat FASTA.
When searching for appropriate service instances, these constraints will be taken
into consideration.

6.5.1.3 Control Nodes

Control nodes are employed to describe the control flow for the workflow execution.
These nodes play an analogous role as control statements in a traditional program-
ming language. Currently, there are six types of control nodes: Start, End, Split,
Synchronize, Choice, and XOR-Join. Their meanings are described next:

1. Start node: this node represents the start of the workflow. For the sake of sim-
plicity, we assume the Start node to have no incoming connections. Observe also



204 Y. Pan et al.

that if the Start node is connected to a data node, then such node represents one
of the inputs of the workflow.

2. End node: this node represents the termination of the workflow. It is expected to
have no outgoing connections. A connection from a data node to the End node
indicates an output of the workflow.

3. Split node: The Split node indicates the creation of multiple execution paths, to
be performed concurrently. For example, in Fig. 6.9, the execution is divided into
three concurrent paths. The Split node is optional in the workflow. By default, if
a node has multiple outgoing connections, it indicates a split event and each path
is executed independently. However, the explicit use of Split may help clarify the
execution path in a complicated workflow.

Fig. 6.9 Split and
synchronize nodes

K

4. Synchronize node: The Synchronize node indicates the merging of multiple exe-
cution paths. It must have more than one incoming connection. For example, in
Fig. 6.9 three execution paths are merged into one path. The execution cannot be
continued until all three incoming paths finished execution.

5. Choice node: The Choice node divides the execution into multiple paths and it
randomly selects one path for execution. The node must have more than one
outgoing connection and must be used with the XOR-Join node to indicate the
end of the divided paths. The divided paths must be independent of each other
(i.e., there cannot be any connections between nodes on different paths), since
only one of the path will be executed.



6 BSIS 205

6. XOR-Join node: The XOR-Join node must be paired with a previous Choice node
to indicate the end of multiple paths. It must have more than one incoming con-
nection. The execution will be continued as long as one of the incoming path
finished execution.

6.5.1.4 Operator Nodes

The operator nodes are used to represent simple local activities, such as string
manipulations, set operations, file I/O, or mathematical computations. The system
provides a variety of built-in operators for frequently used activities. It also allows
users to define their own operators for specific application needs.

In order for the operators to participate in the planning process, they need to
be annotated with semantic information, just as other service nodes in the work-
flow. However, there are no abstract operators. Every operator node must be bound
to a specific OperatorInfo object at its creation time, which contains all the infor-
mation about that operator. Figure 6.10 shows a sample annotation for the built-in
SequenceUnion operator.

Fig. 6.10 Example of an <operator id="bsis.operator.SequenceUnion">
operator annotation <description>
Merges two lists of sequences
</description>
<inputs>

<input name="SeqgListl"
type="&datatype; #ListOfSequence" />
<input name="SeqgList2"
type="&datatype; #ListOfSequence" />
</inputs>
<outputs>
<output name="SeqList"
type="&datatype; #ListOfSequence" />
</outputs>
</operator>

6.5.2 Connectors

There are two types of connectors in the workflow language: data flow connectors
and control flow connectors (see also Fig 6.11).

\/
®

Fig. 6.11 Connectors
Data Flow Control Flow



206 Y. Pan et al.

A data flow connector indicates the flow of information from one node to another
node in the workflow. In general, data flow connectors can only exist between a data
node and a service/operator node or between two service nodes or operator nodes.
One complication arises when there is a data flow between two service/operator
nodes which have multiple inputs/outputs. In this case, one must decide which out-
put of one service is mapped to with which input of another service. The planner
will give an educated guess first by using the data-binding algorithm. If the auto-
mated binding cannot resolve the ambiguity, the user will be asked to map the
inputs/outputs explicitly.

A control flow connector indicates a dependence between nodes in the workflow.
In other words, control flow connectors create a partial order among the nodes in a
workflow, that the executor must use to plan the correct order of execution of the
services in the workflow. Control flow cannot involve data nodes. All other nodes
must be connected through control flow connectors or hidden control flow connec-
tors. A hidden control flow connector is implicitly expressed through a data flow
connector between a service and an operator or two services/operators. In this case,
the data flow connector itself imposes an order constraint between the connected
nodes.

6.5.3 Development of Sample Workflows

The language components described so far allow us to graphically construct work-
flows, with control structures not dissimilar to those encountered in traditional
programming languages, such as sequencing, conditional executions, loops, concur-
rency, and selective executions. Figure 6.12 shows how these control flow structures
can be expressed using these workflow components.

In Fig. 6.12, the Sequence workflow shows a sequential execution of five ser-
vices for a typical phylogenetic study. The workflow takes a sequence as input,
performs a Blast search against some database, analyzes the Blast report to extract
a list of sequence identifiers, invokes a database search service to retrieve the
actual sequence data, performs a multiple sequence alignment, and finally builds
a phylogenetic tree.

The second workflow illustrates how conditionals and loops are constructed. The
workflow starts from a multiple sequence alignment, followed by some alignment
quality measurement service. The resulting score is compared with a predefined
threshold; if the score is larger, then the GreaterThan operator will return true,
the FaillfFalse operator will pass through, and the BuildTree service will be
invoked on the alignment result. Otherwise, the GreaterThan operator will return
false and the FaillfTrue operator will pass through. A Refinement operator will
be invoked on the original data to improve the input quality and the execution
will restart from the beginning. In this example, we can see that a conditional
execution is achieved using the two special operators, FaillfFalse and FaillfTrue,



6 BSIS 207

Sequence

Sequence Condition and Loop

2DA! Phylo! 3D:l.

Parallel Selection

Fig. 6.12 Control flow structures

that take a Boolean value as input and fail (continue) if the input is false (true)
(and vice versa for Faillf True). Loops are constructed when the workflow contains
cycles.

The third example illustrates a simple parallel execution case, where a
researcher might be interested in learning about secondary and tertiary struc-
tures of a protein, as well as performing a phylogenetic study using the protein
sequence.



208 Y. Pan et al.

The last workflow illustrates a selective execution case, where a researcher
might choose to pre-process a set of EST sequences using one service or invoke
a Repeat Mask service first, followed by a Vector Clipping service. The choice
of which branch to execute will be determined at run-time by the workflow
executor.

6.5.4 Workflow Language Formalization

This section provides a short formal definition of a BSIS workflow and related
concepts.
A BSIS Workflow is a graph (V, E):

1. Vis a finite set of vertices CUSUDU O,

a. Cis a finite set of control nodes
b. §is a finite set of service nodes
c. Dis a finite set of data nodes

d. O s afinite set of operator nodes

2. Eis afinite set of edges CF U DF

a. CF is a finite set of control flow connectors
b. DF is a finite set of data flow connectors

A valid BSIS Workflow is a BSIS Workflow conforming to the following syntactic
constraints:

e |Start| =1 and |End| = 1, i.e., it must contain one and only one Start and End
nodes.

e DFC (DxSUO)U(SUO)xD)U(ES xS)U (O x 0)U (S x 0)U (0 x
S) U (Start x D) U (D x End). A data flow can exist between data nodes and
service/operator nodes or between two service/operator nodes. It neither can exist
between a control node and another node, nor can it exist between two data nodes.
There are two exceptions: the Start node can have outgoing data flow connectors
to data nodes (indicating data inputs to the workflow), and the End node can have
incoming data flow connectors from data nodes (indicating data outputs from the
workflow).

o CFC(VxV)\(D x V)U(V x D)),i.e., control flow connectors cannot exist
between a data node and another node.

e For each node (except for a data node) in the workflow, there exists a path from
Start to End that contains the node. This rule ensures that each executable node
lies in a path from Start to End.



6 BSIS 209
6.5.5 A Prototype Implementation of the Workflow Language

The prototype implementation of the BSIS Workflow language uses the JGraph?
package, which is an open-source Java implementation of graph components.
It builds on the JTree component from the Java Swing library, and it allows the
association of user-defined objects to each component of the graph.

Figure 6.13 shows a snapshot of the graphic user interface for the workflow con-
struction. There are three areas within the application window. The left pane shows
the service hierarchy constructed from the service ontology file specified in the con-
figuration file. The right middle pane contains the workflow editor, where a user can
build the workflow by inserting the entity nodes using the toolbox icons and draw-
ing edges between nodes. The bottom right pane serves as a message board showing
information about the workflow when performing various activities.

The user can double-click a component in the workflow to open the Object
Property Editor, which shows information about the underlying object associated
with that component. The user can modify these properties like metadata annotation
and I/O bindings. Each type of component has different properties and Fig. 6.14
shows the object editor for data nodes in the workflow.

B The Bi a Sy e
File Workflow Operator
'3 '3 —
[F] webservices Br.. o' o E'Eworkl‘luwlidlml o & |
Bioinformatic_Serdce ol=tis|op| @@ |X|& K X

# ] Database Search|
[ Database_Keyword_Sed
[ Database_Retrieval
[ Database_Similarity_Seg
% [ Sequence_Alignment
=] Alignment _Multiple
[ Alignment_Consensus |
[ adignment_Differences ®
3 Alignment_Det_Plots
3 alignment_Global
£ adignment_local
¢ [ Sequence_Anahsis
o [ Nucleic_Sequence_Analy
o [ Protein_Sequence_Anaky

o [ Pogeny_Analysis

[ Microarray_Analysis | |
[ Format_Comversion Graph v5.9.2.0) |0/ 0Mb

< ] 3
=5, ] ¥ [ Process Monitor : : o o
Process monitoring ... |1
. I+~1
Fig. 6.13 Workflow ] I — —| 5 I N

construction tool

2Project home: http://www.jgraph.org.



210 Y. Pan et al.

Fig. 6.14 Object editor [ objec Eaitor ; e
Object: Datas J

(i Main | B Metadata |

Data Type: [ | —
\||Fite Location: | | —

String Value:

| oK ' Cancel
Lowte Pl ks -

6.6 The Planner

6.6.1 Objectives of the Planner

A key feature of the BSIS workflow is the presence of abstract service nodes. As
described in the previous section, a service node can be a service instance, in which
case it requires a description composed of four pieces of information —i.e., a WSDL
description, a portType name, a portType namespace, and an operation name — about
the service instance, in order to be executable. Alternatively, a service node can
be an abstract service node, with only metadata annotations specifying the user’s
requirements on the service provider.

For example, Fig. 6.15 shows an abstract service node with three metadata con-
straints: the rype of the service must be Phylogenetic_Tree_Building, the algorithm
used by the service must be Parsimony, and the software package from which the
service is constructed must be Phylip.

type: Phylogenetic_Tree_Building
algorithm: Parsimony
software_package: Phylip

Fig. 6.15 An abstract service
node



6 BSIS 211

A workflow containing abstract service nodes is an abstract workflow which can-
not be executed directly. The planner must be called to instantiate such workflow.
During the planning process, the planner performs two tasks:

e Service mapping. This phase is used to identify, for each abstract service node,
the matching service instances from the service registries that satisfy the user-
specified metadata constraints.

e Data binding. After identifying a matching service instance, the planner must
bind it to the service node in the workflow. This will determine the binding rela-
tionships among input/output parameters of the service instance and the data
nodes/data flows in the workflow. Moreover, if the planner detects any data
incompatibility, it will try to bridge the gaps by inserting appropriate services
between the workflow components.

For the first task, queries to the service registry must be executed to identify the
matching service instances. For the second task, the planner will make educated
choices between I/O data bindings and involve the user in the process only if all
efforts fail to resolve the ambiguity.

6.6.2 Service Mapping

When an abstract service node is created, it contains no more than a type informa-
tion. This type information is a special metadata whose value is drawn from the
service ontology. The use of abstract service nodes is helpful when the user of the
workflow wants to perform certain operations, but he/she is not aware of any spe-
cific service providers. In this case, the user can just specify the type of that service
and let the planner find out the matching instances from the service registry. Along
with the type information, users can provide additional metadata, such as the algo-
rithm used by the service or the software package from which the service should be
chosen. All metadata information are extracted from the domain ontologies.

Once the type of a service is specified, the ontology parser will be able to
extract just those properties that are applicable to that type of service. For exam-
ple, Fig. 6.16 shows the Metadata Composer from the prototype implementation,
that allows the user to add metadata to service nodes. The service node is of
type &servicetype;Alignment_Multiple. The left pane of the Metadata
Composer shows two metadata

&servicetypeMeta;multi_sequence_alignment_algorithm
&servicetypeMeta; sequence_align_software_package

that are applicable to this service. The right pane shows the valid values for these
metadata.



212 Y. Pan et al.

Fig. 6.16 Metadata = Witaduta Composer ®
Metadata Name Metadata Value
composer
=1 Property
0O rmultl_sequence_alignment_algerithm| |/bsis_senvces_meta owléMaximum_Likelihood |
D sequence_align_software_package fbsis_sendces_meta owl#Neighbor_joining
fbsis_sendces_meta owh#Parsimony

0K | Cancel

In order to provide greater flexibility, the metadata for a service can be spec-
ified as either mandatory or optional. A mandatory metadata constraint must
be satisfied by the service instance — otherwise the service cannot be instanti-
ated. Along with the metadata constraints imposed on the service itself, there
are also constraints imposed by the input/output connections to the service. For
example, Fig. 6.17 shows a situation where an abstract service has two incom-
ing data flows and one outgoing data flow. In this case, serviceO has input
constraints from Data0 as well as input constraints imposed by the output of ser-
vicel, if servicel is instantiated before serviceO. It also has output constraints
imposed by Data2. However, all these I/O constraints are considered optional
constraints; in fact, if these are not satisfied, the planner will attempt to intro-
duce additional steps (e.g., data conversions) to rectify the situation (as discussed
later).

Fig. 6.17 A service with /O [Serviced]

constraints

Data?



6 BSIS 213

Fig. 6.18 Querying strategy | Query with all metadata ‘

\ 4
| Query with all mandatory metadata ‘

v
Query with mandatory
service and input metadata

v
Query with mandatory
service and output metadata

v
Query with mandatory
service metadata only

\ 4
Fail

Ideally, all metadata constraints, whether they are on the service itself or on
its inputs/outputs, can be wrapped into a single database query, and the registry
service should be able to parse that information and return the satisfying results.
However, current registry models are not flexible enough to support this query-
ing strategy. For example, the registry service cannot differentiate a mandatory
constraint from an optional constraint. As a result, multiple queries must be com-
posed to obtain the service instance information satisfying the metadata constraints.
In order to strike a balance between user expectations and query efficiency, the
querying strategy of Fig. 6.18 and Algorithm 1 is used during the service-mapping
process.

The method ServiceMapping tries to instantiate an abstract service using
the following procedure. The first step is to obtain the current constraints on
the service, which initially include all the constraints — i.e., the constraints on
the service itself and on its inputs/outputs. A query is constructed to the reg-
istry using these constraints, and the resulting instances are returned, using
the QueryForInstances method. An instance is selected from the results,
using the method PickAndRemoveInstance, to bind to the service
(the UpdateConstraints method). If the binding is successful, the
ServiceMapping method successfully terminates. If the binding fails — var-
ious reasons could lead to a failure, discussed in the next sections — the inner
loop will continue to select other instances for binding. If the instances are
exhausted, the constraints will be relaxed (the RelaxConstraints method).



214 Y. Pan et al.

Algorithm 1 ServiceMapping

Require: Service
repeat
Instances = QueryForlnstances(Service,GetConstraints(Service))
success = False
while success = False do
if PickAndRemovelnstance(Service, Instances) then
success = UpdateConstraints(Service)
else
break
end if
end while
if success = True then
break
end if
until not RelaxConstraints(Service)

Figure 6.18 shows the query relaxation strategy used during the service-mapping
process. The planner starts by querying the registry with all metadata constraints. If
this query fails to return any results, then only mandatory constraints will be used
in the successive query. If this query fails as well, then only mandatory service and
input constraints will be used for the next query. Finally, if the result returned by
using only mandatory service constraints is empty, then the planner will fail. In
other words, no service instance can be found to satisfy the minimum requirements
imposed by the user. These constraints must be relaxed manually by the user before
continuing.

6.6.3 Quality of Service

Generally, the planner will find a set of service instances for each abstract service
node. The planner will have to select one service among them for binding. A natural
choice is to select services based on their guality. There have been a variety of
proposals for measuring service quality [28, 41, 49]. These approaches are either
global — i.e., they combine measurements from different users to provide a unique
score for a service provider — or local — they use only local preferences of a single
user.

In our implementation, we use a simple method for comparing quality of ser-
vices based on the history of service invocations by local users. We prefer local
preferences over global preferences because of the following reasons:

e No global standard or well-established implementation techniques exist for
measuring service quality.

e Different users may have different preferences for specific aspects of a service.
Thus, it is very hard to combine different users’ feedbacks in an objective way.

e Some quality aspects (for example, the network traffic and delay) may only be
meaningful to a specific client environment.



6 BSIS 215

For each service executed in BSIS, three pieces of information are saved for
future use: number of failures, number of successes, and the most recent execution
(time and whether it was a successful or a failed invocation).

Users of the workflow are given options to configure which of the following
methods should be used to select among available services:

e SELECT_MOST_RECENT_SUCCESS. The service that succeeded most recently
will be selected.

e SELECT_SUCCESS_RATE. The service that has the highest success rate will be
selected.

e SELECT_RANDOM. A service is randomly selected.

In order to design for extensibility, BSIS uses a quality manager as a proxy for
providing quality of service information. This manager provides an interface for
registering new quality of service providers. Thus, if well-established quality stan-
dards become available, and an infrastructure for measuring and gathering such data
is in place, it will be possible to write new service providers and register them with
the system to replace the old service provider.

6.6.4 Data Binding

Once a service instance is selected for an abstract service node, it is necessary to
make sure that the inputs and outputs of that service instance match the specification
of the workflow, as far as data flow is concerned. For example, in Fig. 6.19, let us
assume that Servicel produces two outputs, while Service2 accepts only one input.

sl

Fig. 6.19 Data binding t Servic -
between two services




216 Y. Pan et al.

In the first stage of data binding, we need to figure out which output of Servicel
flows into Service2 using the metadata annotations.

Two principles are applied in sequence to make a binding decision. The ancestor-
descendent principle checks to see if the data sender (the output of Servicel) belongs
to the same class or to one of the subclasses of the data receiver (the input of
Service2), as far as their data classes are concerned. The classes and subclasses
are described by the data ontology. If this is the case, then they can be bound
together, but not vice versa. For example, if Servicel in Fig. 6.19 produces a
ListOfAlignedSequences and a PhylogeneticTree, while Service2 accepts a BioTree
and we know from the domain ontology that PhylogeneticTree is a subclass of
BioTree, then these two data should be bound together.

When none of the outputs from Servicel has an ancestor—descendent relationship
with the input of Service2 in the data ontology, the algorithm applies the Closest-
Common-Ancestor principle to make an educated guess. This principle is based on
determining the common ancestors for each output—input data pair in the data ontol-
ogy. The output data that has the closest common ancestor with the input data will be
bound together. For example, suppose that the types of the two outputs of Servicel
(01 and O3) have the relationship with the type of the input of Service2 (I;) shown
in Fig. 6.20 (according to the data ontology). In this case, /1 will be bound to Oy,
since they share a closer ancestor (A1) compared to the ancestor of /1 and O3 (A3).

When both principles fail to differentiate between alternative binding options
(e.g., both outputs of Servicel may have the same metadata annotations), then the
user will be consulted to make the binding decision.

Several heuristics have been introduced to handle the other possible bindings
cases, e.g., many-to-one bindings, many-to-many bindings, and to deal with binding
between multiple services (e.g., one service to many services). These are mechanical
generalizations — and they are discussed in details in [35].

So far, we have only discussed the data bindings between service nodes. Data
bindings between other types of nodes (operator nodes and data nodes) can be fit
into the above binding patterns. In this regard, an operator node behaves exactly
as a service node and a data node can be seen as a service node with only one

Fig. 6.20 Data-binding
example




6 BSIS 217

input/output. Furthermore, a data node to/from a service/operator node will always
be bound before other types of bindings (service to service, operator to service, or
service to operator) take place.

Often the binding parties (data sender/receiver) are not exactly the same and
in many cases extra services are required to convert one data into another. For
example, the output of Servicel and the input of Service2 may be both of type
ProteinSequence, but they differ from each other when the former is in GenBank
format and the latter is in FASTA format. Sometimes even their data types can
be different. In these cases, data incompatibility events are triggered. In this case,
the planner will initiate a new search to determine additional service(s) to perform
format conversion before the workflow can be executed. This process is discussed
next.

6.6.5 Data Conversion

Data conversion is part of the data-binding process. It occurs whenever a data
incompatibility event is triggered. The objective of a data conversion is to expand
the workflow through the insertion of additional service nodes. The service nodes
will provide data transformations aimed at establishing compatibility between
incompatible data.

The compatibility between data depends on their metadata annotations (observe
that datatype is a special metadata). It is also important, when talking about com-
patibility, to differentiate two data items depending on their respective roles in the
data flow. A data flow is always directional — thus, one data item will be the receiver
while the other will be the sender.

Formally, a sender (S) is compatible with a receiver (R) if

1. S has exactly the same metadata as R — i.e., for each metadata of S, one can find
a metadata of R that has the same name and values and vice versa; or
2. Sis a subclass of R. The notion of subclass is defined as follows:

a. For each metadata of R, one can find a metadata of S that has the same name.
We will refer to these metadata as name-equivalent metadata.

b. For each metadata (MR) of R and its name-equivalent metadata (MS)of S,
there exist a metadata value (VS) of MS and a metadata value(VR) of MR
such that VS is a subclass of VR in the considered domainontology. Here we
consider subclass relationship to be reflexive, thus a class C is a subclass of
itself.

By checking the properties of the data sender and the data receiver, the planner
conducts either a guided search or a blind search for a data conversion. These are
discussed next.



218 Y. Pan et al.

6.6.5.1 Guided Search

Under the guided search, the users of BSIS may define a set of rules that should be
followed by the planner to find appropriate services for specific data incompatibility
events. For example, Fig. 6.21 illustrates a search strategy defined for data with
different sequence formats.

<searchStrategy meta="&datatypeMeta; sequenceFormat">
<senderValue/>
<receiverValue/>
<sequence>
<service>
<metadata>
<metadataName>&rdf; type</metadataName>
<metadataValue>
<value>&servicetype; Format_Conversion</value>
</metadatavValue>
</metadata>
</service>
</sequence>
</searchStrategy>

Fig. 6.21 Search strategy example

The search strategy defined in Fig. 6.21 instructs the planner to insert a Format-
_Conversion service between the data sender and the data receiver when they
differ in their sequenceFormats. The senderValue and receiverValue sub-elements
may also be specified for conversion between specific values. The sequence ele-
ment identifies a series of service nodes that should be inserted to make such
conversion.

There are no limits on the number of services that can be inserted during a guided
search. However, only sequential composition of services is supported at this time.

6.6.5.2 Blind Search

If a search strategy has not been established for a data incompatibility event, a blind
data conversion will be performed. In this case, the only information available is the
identification of who is the data sender (the output data from previous service with
its metadata constraints) and the data receiver (the input data of the current service
with its metadata constraints). The goal is to find a sequence of services that can
convert the data sender to the data receiver. The algorithm proceeds as follows:

1. The data sender is used as input constraint to query the registry for services that
may take this data as input. This will return a set of matched service instances,
referred to as 1S.

2. The data receiver is used as output constraint to query the registry for services
that may generate this data as output. This will return a set of matched service
instances, referred to as OSj.



6 BSIS 219

3. The intersection of ISy and OSy is computed. If the resulting set is not empty,
then one of the service instances in the resulting set is inserted in the workflow to
perform the conversion. If the result set is empty, it means that no single service
can realize such conversion and we will continue the search process as described
below.

4. For each service instance in ISy, we determine its output data. We create a
data set combining all output data from all services in ISy (denoted by IDy).
For each data in /D1, we repeat step 1 above and combine the results to get a
new set of service instances (denoted by IS1). We finally merge ISy and IS to
get IS .

5. For each service instance in OSg, we determine its input data. We create a data
set combining all input data from all services in OS( (denoted by OD). For each
data item in ODj, we repeat step 2 above and combine the results to obtain a
new set of service instances, denoted by OS;. Finally, OSy and OS; are merged
to produce OS] .

6. The intersection of IS} and OS] is computed. If the result set is not empty,
then we can backtrack to find the sequence of services that can be inserted into
the workflow to perform the conversion (we record the links between data and
services at each expansion step). Otherwise we need to return to step 4 above
and continue the search process.

7. The search process will stop when one of the following situations occurs:

a. A solution is found. In this case, the intersection of IS, and OS), at some
step n is not empty and we can extract the solution from the data-service links
maintained at each expansion step.

b. The search space is exhausted. In this case, neither IS, nor OS), are expand-
ing, i.e., no new service instances are added to the set. This indicates that no
solution can be found to perform the data conversion and the planning will
fail.

c. As an optimization strategy, the user may specify the maximum length of
a plan that can be generated in the configuration file. When that number is
reached and no plan is found, the planner will fail.

Figure 6.22 provides a graphical representation of the search algorithm
described above. Notice that this is a bi-directional breadth-first search algorithm
over the search space. The planner will find a shortest plan between the data sender
and the data receiver, if such plan exists. A formalization of this search is presented
in Algorithm 2.

Blind search should always be the last resort for data conversion. The reasons
are that (1) it is usually time consuming and (2) it may result in plans that are not
relevant to the computational tasks. The users of BSIS are encouraged to define
search strategies for their specific problems or set up a max search depth in the
configuration file. Libraries of search strategies are provided by BSIS to facilitate
the task of the user.



220 Y. Pan et al.

1So DS+ 1S4 OSH DS+ OSo

Fig. 6.22 Planning algorithm for data conversion

6.6.6 Planning the Workflow

So far, we have discussed how individual abstract service nodes are instantiated
through the data-binding process. A BSIS workflow usually contains more than
one abstract service node. The order in which the nodes are instantiated will
greatly affect the performance of the planner, since they may return totally differ-
ent workflows, in terms of the binding instances and the inserted data conversion
plans.

The heuristics we use for determining service binding order is the Most-
Constrained-Service-First (MCSF) heuristics. Abstract service nodes in the work-
flow are ordered by the number of user-specified constraints. The service node
with the largest number of constraints is selected for binding. The rationale behind
this heuristics is that the more constraints an abstract service has, the less ser-
vice instances it will be mapped to. Since new mapped service instances will
result in new constraints on existing service nodes, thus reducing the number
of service instances that can be mapped to those service nodes, we will expect
to find the solution faster or fail faster if the solution does not exist. If the
binding process succeeds, then the workflow will be updated with new informa-
tion from the binding instance (it may impose extra constraints to the service
nodes in the workflow). Otherwise the planner backtracks to find alternative
solutions.



6 BSIS 221
6.6.7 Planning with an External Planner

We have explored an alternative architecture to support the process of constructing
the executable workflow. The approach relies on the use of existing state-of-the-art
planners to achieve the goal of instantiating an abstract workflow. The alternative
approach builds on mapping the abstract workflow to a Golog [24] program with
concurrent execution (or C-Golog), with an underlying situation calculus theory
that will be used by the external planner to develop the concrete workflow. We will
begin with a short introduction of the basic terminology of situation calculus and
the language C-Golog.

Algorithm 2 Blind Search

Require: Sender
Require: Receiver
1Sy = QueryForlInstances(Sender, GetInputConstraint(Sender))
0S8 = QueryForInstances(Receiver,GetOutputConstraint(Receiver))
if (1So N OSy # 0) then
Select S € 1Sy N OSy
Insert S in the workflow
return True
end if
i=0
repeat
ID ={d|S € 1S;,d € GetOutputConstraint(S) }
OD = {d|S§ € 0S;,d € GetInputConstraint(S)}
ISiv1 =18; UUye1p QueryForlnstances(d, GetInputConstraints(d))
0S;1 = 0S;Uycop QueryForlnstances(d, GetOut putConstraints(d))
i=i+1
if (IS;NOS; # 0) then
Select S € IS; N OS;
Insert path from Sender to Receiver through S in the workflow
return True
end if
until ([S, = IS,',] and OS, = OS,',])
return False

6.6.7.1 Situation Calculus

Situation calculus is one of the most commonly used theoretical frameworks for
the description of planning problems. In situation calculus, a dynamic domain is
described in terms of the possible states of the domain (situations) and the actions
that can modify the state.

The basic components of the situation calculus language, following the notation
of [42], include

e a special constant Sy, denoting the initial situation,
e a binary function symbol do, where do(a,s) denotes the successor situation to s
resulting from executing the action a,



222 Y. Pan et al.

o fluent relations of the form f(s),> denoting the fact that the fluent fis true in the
situation s, and

e a special predicate Poss(a,s) denoting the fact that the action a is executable in
the situation s.

A dynamic domain D can be represented by a theory containing

(i) axioms describing the initial situation Sy — intuitively, a description of the
initial configuration of the world;

(ii) action precondition axioms, one for each action a, characterizing Poss(a,s) —
intuitively, a description of what conditions should be satisfied to enable the
execution of the action;

(iii) successor state axioms of the form F(x,do(a,s)) = y;?x)(a, $) Vv (F(x,s) A
—-yF_(x) (a, s)) — one for each fluent F, stating under what condition F(x, do(a, s))
holds, as a function of what holds in s;

(iv) some additional foundational, domain-independent axioms.

The semantics of situation calculus allows us to prove/check whether a property
¢ (expressed as a propositional composition of fluents) holds after the execution of
an action sequence & = [ay, . . ., a,] starting from the initial situation; this is denoted
by D k= ¢(do(an, do(an—1, . .. ,do(a1,50)))) or D |= ¢(Do(lat, ... ., anl, So)).

6.6.7.2 C-Golog

C-Golog is essentially the language Golog [24] extended with the concurrent
execution construct of ConGolog [10]. The constructs of concurrent Golog are
summarized in Fig. 6.23.

Fig. 6.23 Constructs of o primitive action

Golog ¢? wait for a condition
(o1;00) sequence
(o1]|02) concurrent execution
(o1]02) choice between actions
nx.0 choice of arguments
o* nondeterministic iteration
if ¢ then o) else 0y synchronized conditional
while ¢ do o synchronized loop
proc B(x)o procedure definition

Observe that the set of constructs of C-Golog is similar to the set of constructs
in well-known programming languages such as C, JAVA. The basic blocks of a
C-Golog program are actions and fluent formulae, whereas the basic blocks of a
C/JAVA program are variables and assignment statements.

3A fluentis a proposition whose truth value can change over time.



6 BSIS 223

The semantics of a C-Golog program can be described similarly to that of
ConGolog [10]. The precise semantic definitions of Golog and ConGolog can be
found in [24, 10]. Various extensions and implementations of Golog and ConGolog
can be found at http://www.cs.toronto.edu/~cogrobo Web site.

6.6.7.3 Workflows as Golog Programs

‘We adopt the perspective of looking at Web services as actions in a situation calculus
[29]. Roughly speaking, each Web service is viewed as an action with the following
properties:

e The action name corresponds to the identification of the service;
e The arguments of the action correspond to the parameters of the service; and
e The effects of the action correspond to the outputs of the service.

More precisely, we will use act (i,0) to represent a Web service act with the
list of input parameters i and the list of output parameters o. With a slight abuse
of notation, we will also identify with act (i, 0) a local activity act employed in
an operator node with the list of input parameters i and the list of output param-
eters 0. Observe that i may contain variables or constants. For example, the input
parameters of a partially instantiated service might contain some constants. On the
other hand, the input parameters of the service — in its full generality — contain only
variables.

Systems have been proposed (see, e.g., [12, 20]) to translate Web services
into actions, described using the Planning Domain Description Language (PDDL),
which is the input language for several state-of-the-art planners. These systems can
be easily adapted to produce a situation calculus theory instead, by (i) translating
each action precondition into an executability condition of the action, and (ii) com-
bining conditional effects of actions into successor state axioms for each fluents of
the domain.

Let us discuss the steps required to create a C-Golog program Py from an
abstract workflow W = (V, E) — where V are the nodes of the workflow and E are
the connectors. We will restrict our attention to the case of workflows that are well
structured — i.e., they correspond to structured uses of control constructs, where the
control nodes are used to implement control structures analogous to those of tra-
ditional programming languages. Under this condition, a workflow can be easily
converted into a C-Golog program through the following steps:

e Associate a unique integer to each node in W.

e Replace the label / of each service, operator, or data node, with [, , where ny is
the integer associated to the node.

e Ignore all the data nodes and the links to/from the data nodes from the workflow.

e Translate the workflow into a set of programs, whose basic components are the
labels of service and operator nodes of W, and the flows of the programs are spec-
ified by the control nodes of W. Moreover, we can create procedures to represent
Choice and/or Split control nodes.



224 Y. Pan et al.

The programs obtained from the transformation of the workflows in Fig. 6.12 are
as follows (using the constructs described in Fig. 6.23):

e Sequence:

(Blast;
ReportAns; ;
DiffSearchy ;
Aligny ;
BuildTrees

)

e Conditional and Loop:

(Aligny;
QualityEvas;
while Greater_Thanj do
( Refinementy;
Alignyg;
) QualityEva,
endwhile
) BuildTrees

e Parallel: P, ||P,||P; where

P, : 2DAnay;...;
P, : PhyloAnay;...;
P; : 3DAnaj

e Selection: P; | P, where

P, : Preprocessy;
P, : RepeatMaskj,; VectorClip;s

Observe that the translation of the second workflow employs a standard method
to convert a structured use of goto statements to a while-1loop, and the transla-
tions of the third and fourth workflows induce some additional labels (e.g., P1, P>).
The introduction of new labels is done for Split and Choice nodes, where each new
label represents an outgoing link from these nodes.

The set of programs obtained from the above transformations is denoted by
Py. Observe that, by ignoring the data nodes, the workflow resembles a dataflow
representation of a program in a parallel programming language with constructs
if-then-else, while, sequence, concurrent execution (Split), and
nondeterministic choice (Choice), which makes the last step in the
translation possible.* It is easy to see that the program obtained from the above
transformation is a C-Golog program if its components are basic actions and/or
procedures encoding C-Golog programs.

In the rest of the section, we will discuss the construction of a situation calculus
theory (D) for each workflow W. Let D be the set of actions representing the

4 Indeed, this is the internal representation of a workflow used in our system.



6 BSIS 225

concrete Web services used by the workflow W. For each data node d in W, let v; be
a unique variable representing d. Also, by n, we denote the integer associated to v.

1. For each concrete service node v in W, let act be the Web service in v and let its
representation be act (i, 0), then

e acty, is an action in Dyy.
e the action precondition axiom of act,, is

Poss (acty,, s) = /\ available(xy,,, s)

x€i

e for each variable x in o, the conjunct (¢ = act,, ) belongs to the positive
precondition effect y,"(xy,,5) of x.
2. For each data node d and service node v in W such that (d,v) € E:

e Let us assume that there is no link of the form (., d) € E. Let ¢, be the constant
associated to d and x be an input variable of act, whose value should be bound
to ¢4 as described in the previous section. Then we will add the axiom

available (xp,, So)

to Dy.

e Let us consider the case where there are links of the form (.,d) € E. Let ¢4
be the constant associated to d and x be an input variable of act, whose value
should be bound to cq4 as described in the previous section. Then we will add
the axiom

available (xp,, s) = available(cy, s)

to Dy.

3. For each data node d and service node v in W such that (v,d) € E, let ¢4 be the
constant associated to d and x be an output variable of act, whose value should be
bound to ¢y as described in the previous section. Then we will add the conjunct

a = acty,

to the positive precondition effect of the fluent available (cg, s).
4. For each pair of control nodes v and V' such that (v,V) € E, let X', ..., x* be the
set of outputs of v that are inputs of v'. Then we will add the conjunct

a = acty,

to the positive precondition effect of each fluent available (xfl OB
v



226 Y. Pan et al.

To complete the construction of the C-Golog program from W, we will need the
following generic C-Golog program, denoted by Transformation_Type,

nlol...ln

where #;’s are the available type conversion services. The translation is completed
by the following changes to Py:

e For each abstract service node v in W, let cond be the constraint on the service in
vand let S = {act!, ..., act*} be the set of services of the type mentioned in v.
Then we will replace in Pw [,, by the C-Golog program

Transformation_Type* (?cond) (act1 [ ... actk)Transformation_Type* (?cond)
e For each conditional node v in Py, if there are some inputs x;i, ..., xx of v, we
will replace [,, with [, (x;,...,xx).

Let Pc be the program obtained from Py after the changes and Dy be the sit-
uation calculus theory generated from W. We have that Pc is a set of C-Golog
programs representing W, whose traces can be computed using an interpreter
for C-Golog. These can be computed using any external planner that supports
C-Golog [42].

6.7 Executor

6.7.1 Execution Framework

The Web service Description Language (WSDL) is commonly used to describe
the functionality of a Web service, i.e., a service that is deployed over the Web
and accessed using a communication protocol, such as the Simple Object Access
Protocol (SOAP). However, since WSDL is just an interface description language,
nothing prevents its use to describe other type of services.

This is exactly the idea behind the Web Services Invocation Framework
(WSIF) [13], which defines extra binding extensions for software components, like
Enterprise Java Beans (EJBs), local Java classes, software accessible over mes-
sage queues using the Java Messaging Service (JMS) API, and software that can
be invoked using the Java Connector architecture. Following this idea, we define
additional binding extensions for other relevant classes of services (e.g., Perl scripts,
BioPerl modules) and provide a service executor factory with interfaces for regis-
tering, removing, and updating service providers with their corresponding WSDL
extensions. This is illustrated in Fig. 6.24.



6 BSIS

Local Java

Fig. 6.24 Service provider factory

Local Java Provider
EJB Provider

Service
Provider Perl Script Provider
Factory

CGl Provider

227

The execution of the complete workflow is highly parallel. The execution man-
ager will operate on a queue of nodes (see Algorithm 3); each node’s execution
will determine the successor steps, which will be instantiated as new threads. The
ExecutorFactory will create a different executor based on the type of service to
be processed (see Algorithm 4). The execution process is monitored with status
information for each service/operator node in the workflow. The input/output data
of each service/operator node can also be checked at any given point of time during
execution (e.g., Fig. 6.25 shows a monitor window during a workflow execution).

O Bxecution Monior
Processor

Status I Message

Start |Completed
SequenceSize |Completed
GreaterThan [Completed
FaillTrue |Completed
FaillfFalse Ic

(Completed

INPUTS
ouTPUTS
[} aiignease

>Q3837Y1 Q283Y1_9TRYP Hypothetical protein [Trypanosoma brucei] =

! MEERFLRTMEREEVRQQWPSSSSAERLHFEEQN(LFEQEITQYYS‘SGN?G\T

NV EKAYY QEVSSSSILT AYDM AKSNT TLSRLQALIDSSAKST QCPRSFKFSSASKP|

IAAAGAAT TEQPTIQCNEEPELPAGYLGNARDRT LCITPSKAVFLRGCENCLILIP |

WFSDCSQCRY YWY ACHOLRLENCT GSOMYWSCASTPIECCTCGMRFGPYGCWT |

|GEHRYNSHEEWLK CLGEIEDLORAGEM YKTVDDFOWLKKT PSPNWCYLAAED

WOEDAAAY |

>Q016M1 QO16M1_OSTTA Tubulin folding cofactor C (55 [Ostreococ|

i M T DT AKSSIAYLESFARRD AARKEHERARKDERLHSSEDPST ALY AFNDACAEN

(WLSDDEASRESNYREET RRESCLAALCAY NARAT ALDAT T CEFGRRASAYDY|

|DVRAALY RARGYIAPREPFRFESRASCTREARKDGTSKDEAAAYEDTDANDD|

: INEVVVVREVPEGEDYVLERLADCOVFVLGAYRALRAHDLKRCRVFIVAYAGSA

|CYFCLAT ROLRAHAY RRT RFHY RAASRPIEDSREY AF AP LM RGFAT QANFOVI|—|
-

_

Fig. 6.25 Execution manager



228 Y. Pan et al.

Algorithm 3 Executor

Require: Workflow

queue = new Queue();

queue.Push(StartNode);

while (not queue.Empty()) do
processor = queue.Pop();
executor = Create New Process Executor from ExecutorFactory for processor
new Thread(executor).start()

end while

Algorithm 4 Create New Process Executer from ExecutorFactory

Require: Processor

if (Processor is a Web Service) then
return new SOAPServiceExecutor()

end if

if (Processor is an Operator) then
return new OperatorExecutor()

end if

if (Processor is a local Java class) then
return new LocalJavaExecutor()

end if

if (Processor is a control structure) then
return new ControlStructureExecutor()

end if

An error during the execution of one service node will be propagated through
the workflow, so that the whole execution process can be stopped. Furthermore,
external programs can be associated with certain data formats so that they can be
automatically started for viewing/editing purposes.

6.7.2 Extension Mechanism

An important aspect of BSIS is its open and extensible architecture. This derives
from its design, which is based on standard Web services technologies like WSDL
and UDDI. In this section, we will overview the mechanisms used to extend the
functionalities of the system by incorporating third-party Web services or by devel-
oping custom operators. We will also discuss a way of interacting with BioPerl,
which is one of the most widely used tools in several areas of bioinformatics (e.g.,
for phylogenetic analyses).

6.7.2.1 Web Service Providers

In spite of the relatively young age of several Web service technologies, there are
already hundreds of bioinformatics Web services deployed by various parties (e.g.,
Taverna [44] lists over 3,000 services and BioMOBY [48] reports 600 services).



6 BSIS 229

Some relevant providers of services are NCBI [34], EMBL-EBI [23], BioMOBY
[48], and the Kyoto Encyclopedia of Genes and Genomes (KEGG) [18].

Ideally, to make use of these service repositories, we would only need to obtain
the services’ WSDL descriptions, create semantic annotations, and then register
them with our registry service. Unfortunately this simple approach will not work,
because each service provider has its own XML schema representation for biolog-
ical data. In order to use these existing Web services, we have to develop wrapper
services, taking care of the conversion between a piece of raw data and its XML
representation used by the specific service provider.

The full automation can only be achieved if every Web service provider adopts
the same XML schema representation (it is hard to have a global schema for every
biological data, though) for their biological data. Otherwise, we suggest using the
raw data format produced by an application and annotate its meaning in the domain
ontology. Web services also need to be registered in some UDDI compatible reg-
istry. In this case, BSIS can be configured to query multiple UDDI nodes and to
interact with the services through SOAP messages according to the description in
their WSDL documents.

6.7.2.2 Custom Operator

Operators are used to customize user operations in the workflow, especially when
users require some specialized handling of data which is not available from any
existing services. BSIS provides a way for users to define their own operators and
load them at run-time, so that they can be used in a workflow. It also provides a way
to store these definitions permanently, so that they will remain available for other
workflows.

The current implementation only supports custom operators written in Java. In
order to make the operator available for use in workflows, two things must be
done: first, we need to define the operator in Java — by creating a subclass of the
abstract class BsisOperator and then we need to annotate its functionality in XML.
An example of the annotation of a new operator (called SeqListSize), used to count
the number of sequences in a FASTA file, is shown in Fig. 6.26 The annotation
describes the input of the SeqListSize operator as being of type ListOfSequence and
its output as being of type Number.

<operator id ="edu.nmsu.cs.bsis.operator.SeqListSize">
<inputs>
<input name ="Sequences" type ="&datatype; #ListOfSequence"/>
</inputs>
<outputs>
<output name ="Size" type ="&datatype; #Number"/>
</outputs>
</operator>

Fig. 6.26 Annotation for the sample operator



230 Y. Pan et al.
6.7.3 BioPerl Modules

BioPerl [43] is an open source project aimed at providing accessible programming
modules to Biological community, which can be used in Perl programs. Currently,
BioPerl provides over 800 modules, covering almost every domain of bioinformatics
studies. Compared to the use of Web services, BioPerl modules are all installed
locally and this enables a more efficient execution. For this reason, we have provided
BSIS with the additional capability of transforming a workflow to a BioPerl program
that can be executed locally using the available BioPerl modules.

The idea is to annotate each BioPerl module, describing its interfaces and func-
tionalities using the domain ontologies, and creating a template that contains the
code for executing a generic task using the APIs from that module. These templates
are registered in the BSIS registry with special tags, indicating that they are BioPerl
modules.

During the workflow planning phase, the user may indicate his/her preference for
BioPerl modules and the planner will search the registry for BioPerl templates sat-
isfying the workflow specification. All BioPerl templates are combined to produce
an executable BioPerl program. Fig. 6.27 illustrates this process.

BioPerl Templates

@params = (‘output’ => $outformat,
‘outfile' => $outfile);
8 $factory = Clustalw->new(@params);
BIOPerI $alignment = $factory->align($infile);
i $tree_factory = ProtPars->
BU||der new(idlength=>30,threshold=>10);
$tree = $tree_factory->run($tinfile);

I

Fig. 6.27 From workflow to BioPerl

6.8 Case Studies and Optimizations

6.8.1 Some Case Studies

A number of use cases have been developed to evaluate the capabilities of the sys-
tem. All the use cases represent workflows that have been developed by domain
scientists assisted by the developers of BSIS. An extensive coverage of these use
cases is available in [35]. These use cases cover distinct bioinformatics domains,
including phylogenetic studies, gene expression analysis, Gene Ontology (GO)
annotations, and protein structure analysis.

Figure 6.28 illustrates a typical workflow in a phylogenetic study. The workflow
contains only three abstract service nodes before planning is performed: a BLAST



6 BSIS 231

service for the retrieval of relevant sequences, a multiple sequence alignment ser-
vice, and a phylogenetic tree building service. After planning, these service nodes
are instantiated to the NCBI Blast service, the TCoffee service from EMBL-EBI,
and the ProtPars service from the PHYLIP package, respectively. Moreover, two
additional services have been automatically inserted by the planner. One is used to
extract from the BLAST report the list of matched sequences before executing the
alignment service. The ReadSeq service is inserted between TCoffee and ProtPars
to convert the alignment results to the PHYLIP format, required by ProtPars.

Fig. 6.28 Phylogenetic analysis workflow

Figures 6.29 and 6.30 show other two use cases developed in BSIS. The work-
flow in Figure 6.29 is in the domain of protein structure analysis: given the primary
sequence of a protein, it checks whether the protein contains any trans-membrane
regions. If so, two programs are requested to investigate the properties of the trans-
membrane region: one draws the hydrophobicity profile and the other draws the
propensity profile.

The workflow in Fig. 6.30 describes the process of retrieving the context of a
term defined in the Gene Ontology. A term ID is used as input to the workflow. The
workflow splits into four branches. The first branch retrieves the ancestors of the
term, adding them to the session created by the last branch, and then marking these
terms using user-specified colors. The second branch performs a similar task for the
immediate children of the input term. The third branch retrieves the parents of the
term, then gets the children of the parents (i.e., the sibling of the input term), adding
them to the session and coloring them. Finally, these branches merge into a single
process, calling getResults, to retrieve a text representation of a special graph that
can be viewed using GraphViz.



232 Y. Pan et al.

[PrimaryStructureAnalysis)

sTransmembrane

FaillfFalse

FaillfTrue

gelPronesinrofile

ge‘tHvl:l:Pmﬁle

Hy droProfile

PropensityProfile|

Fig. 6.29 Protein primary structure study

6.8.2 Optimization

The effectiveness of the system depends in a large degree on the efficiency of the
planning algorithm, whose running time can be roughly described by the formula

A-aC-Q+R*- (p(I + 0) - Ps; + (1 — p)(bI + bO))
N —

TG Tp

where

A is the number of abstract services

C is the average number of constraints of a service

Q is the time required to execute a query to the registry

R is the average number of instances from the query results of each service

p is the percentage of data conversion required when performing data binding for
a service

I is the average number of input bindings for a service

e O is the average number of output bindings for a service

e Py is the running time for generating a data conversion plan, which is a function
of the search space (s) and the average length of the plan (/)



6 BSIS 233

N
getAncestors) (getimmediateChildren) (getParents) .
A
etChildren

[addimmediateChildren)

(addAncestors)
childrenColo

markinputTer

SynchronizeD

getResults

endSession output

Fig. 6.30 GO context search

e a and b are constant factors related to query processing and data binding,
respectively

e T represents the time for service mapping

e Tp represents the time for data binding

Figure 6.31 shows a plot which compares the total planning time with the time
spend on registry queries during the planning process (these are averages over a
collection of use cases).

The line at the top is the total planning time in milliseconds, measured from
12 test cases. The line at the bottom is the total query time during their planning
processes. As we can see from Fig. 6.31, a large portion of the planning time is spent
on querying (an average of 78.2% for the 12 test cases). Thus, in order to improve
plan performance, we should concentrate on decreasing the number of queries.

We have already discussed several methods for plan optimization, including
using the Most-Constraint-Service-First heuristics, setting the maximum search
depth and defining guided search strategies. The other optimization methods used
by BSIS include



234 Y. Pan et al.

2500

plan time —e—
query time -

2000

1500 |-

Time (ms)

1000 |

500

0 50 100 150 200 250
Number of Queries

Fig. 6.31 Planning time vs. query time

e Late interface binding. This technique is to delay the query for WSDL documents
until the data-binding time. The information of a WSDL document will not be
retrieved until that service instance is bound to a service node in the workflow.
This often helps reducing the number of registry queries to about half of their
original number.

e Data caching. A local data cache containing mappings between metadata and
WSDL components can greatly improve the planning performance. One problem
with local data cache is synchronization. Modules can be built to update the data
cache entries periodically or a time stamp can be maintained to enable discarding
information that is older than a certain age.

e Improve registry query interface. The most important improvement regarding the
number of queries is obtained by providing a more flexible query interface from
a Grimoires registry. For example, if we are going to search a phylogenetic tree
building service that uses either a parsimony or a maximum likelihood method,
in the current registry model this requires two separate queries, whose results
should be merged. By providing support for the OR logic within the registry
model, a single query could be used to accomplish the same task.

6.9 Conclusion and Future Work

In this chapter, we presented the design and development of the BioService
Integration System (BSIS), a computational workbench for bioinformatics. The
workbench makes use of Semantic Web and workflow technology to achieve intel-
ligent workflow generation and execution in the domain of bioinformatics investi-
gations. BSIS arguably resolves some of the weaknesses demonstrated by existing
state-of-the-art systems for workflow development in bioinformatics domains.

The major contributions of this work can be summarized as follows:



6 BSIS 235

e The design of a workflow language that is capable of representing bioinformatics
abstract plans of services through the use of metadata.

e The extension of the WSDL model for encoding metadata information from
domain-specific ontologies and associating them to Web services in that domain.

e The development of planning algorithms that can be used to convert an abstract
workflow into an executable workflow, through the use of dynamic instance
binding using the extended WSDL model and the metadata-aware Grimoires
registry model.

e The application of the WSIF model to the design of the execution module, using
the factory pattern and the extension of the WSIF model for executing local
BioPerl modules. A workflow consisting of BioPerl modules can be exported
as a BioPerl program for local execution.

e The implementation of a prototype system for the demonstration of feasibil-
ity, effectiveness, and efficiency. Also, extensibility of such system has been
demonstrated through integrating third-party Web services and custom operators.

The key to the success of such system is the adoption of well-known domain-
specific ontologies and the use of such ontologies to annotate services/applications.
Additionally, a user-friendly graphical interface, an efficient planning algorithm,
and a smooth execution process will speed the acceptance of the system.

The goal of a broader adoption of a workflow infrastructure in a computational
science domain requires additional steps to the technical developments illustrated in
this chapter. We have identified the following important activities to be performed:

Ontologies: The design we proposed has been created to build on and integrate
with existing ontologies for the description of both biologically relevant data and
bioinformatics services. Several efforts are in place, at the level of communities of
bioinformatics researchers, to create extensive ontologies with broader community
acceptance. For example, there is an active community of researchers in evolu-
tionary biology that are working on the creation of a comprehensive data ontology
for the field of phylogenetic analysis (the Comparative Data Analysis Ontology —
CDAO). It is important to maintain the integration of such emerging ontologies
within BSIS, to immediately take advantage of classes of metadata and not exclude
any community of potential users. For example, CDAO has already been integrated
into BSIS.

Further technical requirements: The developments we described in this chap-
ter provide an effective framework that is usable for several real-life applications.
Nevertheless, there are further technical developments that could enhance usability
and applicability. The Grimoires registry query interface can be expanded, by build-
ing dedicated registry servers that can provide interfaces for service registration and
querying. It is also important to expand the creation of wrappers to enable the use
of well-known bioinformatics applications as Web services.

Non-technical requirements: It is vital to expand the cooperation with field
practitioners (e.g., biomedical researchers, bioinformaticians) to create workflows
for typical bioinformatics studies in different domains, like phylogenetic analyses,
protein structure prediction, and microarray analyses.



236 Y. Pan et al.

Acknowledgments The authors would like to thank the anonymous reviewers for their insightful
comments. The authors wish to thank the following researchers for helping in different stages of
this project: Gopal Gupta, Arlin Stoltzfus, Julie Thompson, Francisco Prosdocimi, Brook Milligan,
Tu Phan, and Samat Jain.

The research has been partially supported by NSF grants 11S-0812267, HRD-0420407, and
CNS-0220590.

References

1. Altintas, 1., Berkley, C., Jaeger, E., Jones, M., Ludscher, B., Mock, S.: Kepler: An exten-
sible system for design and execution of scientific workflows. In: Proceedings of thel6th
International Conference on Scientific and Statistical Database Management (SSDBM’04),
IEEE Computer Society, Los Alamitos, CA (2004) 21-23

2. Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., Mcllraith, S., Narayanan,
S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: DAML-S: Semantic markup for web ser-
vices. In: Proceedings of the International Semantic Web Working Symposium (SWWS)
(2001)

3. Balzer, S., Liebig, T., Wagner, M.: Pitfalls of OWL-S: A practical semantic web use case.
In: International Conference on Service Oriented Computing, ACM Press, New York, NY
(2004)

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, 1., McGuinness, D., Patel-Schneider,
P, Stein, L.A.: OWL Web Ontology Language Reference. Technical Report, W3C (2004)

5. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, Harper, San
Francisco, CA (2001)

6. Chapman, B., Chang, J.: BioPython: Python tools for computational biology. ACM SIGBIO
Newsletter 20(2) 15-19 (2000)

7. Christensen, E., Curbera, F., Meredith, G., Weeravarana, S.: Web Services Description
Language (WSDL) 1.1. Technical Report, W3C (2001)

8. Clement, L., Hately, A., von Riegen, C., Rogers, T.: UDDI Version 3.0.2. Technical Report
20041019, OASIS (2004)

9. Consel, C.: Domain specific languages: What, why, how. Electronic Notes in Theoretical
Computer Science 65(3) (2002)

10. De Giacomo, G., Lesperance, Y., Levesque, H.: ConGolog, a concurrent programming
language based on the situation calculus. Artificial Intelligence 121(1-2) (2000) 109-169

11. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall,
Upper Saddle River, New Jersey (2005)

12. Fernandez-Olivares, J., Garzon, T., Castillo, L., Garcia-Pérez, O., Palao, F.: A middle-ware for
the automated composition and invocation of semantic web services based on temporal HTN
planning techniques. In: Conference of the Spanish Association for Artificial Intelligence
(CAEPIA). Springer, New York (2007) 70-79

13. Fremantle, P.: Applying the Web services invocation framework. IBM DeveloperWorks,
Technical Report, IBM, Armonk, NY (2002)

14. Gonnet, G.H., Hallett, M.T., Korostensky, C., Bernardin, L.: Darwin v. 2.0: An interpreted
computer language for the biosciences. Bioinformatics 16 101-103 (2000)

15. Holmes, I.: Use cases for GNU Make in Bioinformatics Analyses. Technical Report, Bio Wiki
(2007). biowiki.org/MakefileLabMeeting

16. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: A
tool for building and running workflows of services. Nucleic Acids Research Web Services
Issue (2006)

17. Janies, D.A., Wheeler, W.: POY version 3.0, Documentation and Command Summary,
Phylogeny Reconstruction Via Direct Optimization of DNA and Other Data. Technical
Report, BMI Technical Report: OSUBMI-TR-2002-n03 (2002)



6 BSIS 237

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K., Itoh, M., Kawashima, S., Katayama,
T., Araki, M., Hirakawa, M.: From genomics to chemical genomics: New developments in
KEGG. Nucleic Acids Research 34 354-357 (20006)

. Katayama, T., Nakao, M.C., Goto, N., Tanaka, N.: Bioruby+chemruby: An exploratory

software project. GIW 2004 Poster Abstracts, S06 (2005)

Kim, H.S., Kim, 1.C.: Mapping semantic web service descriptions to planning domain
knowledge. In: World Congress on Medical Physics and Biomedical Engineering (2006)
388-391

Kosar, T., Lopez, P.M., Barrientos, P., Mernik, M.: A preliminary study on various implemen-
tation approaches of domain-specific languages. Information and Software Technology 50(5)
(2008)

Kumar, S., Dudley, J., Nei, M., Tamura, K.: MEGA: A biologist-centric software for
evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9 (2008)
Labarga, A., Valentin, F.