
Chapter 9
Robust Ordinal Regression

Salvatore Greco, Roman Słowiński, José Rui Figueira, and Vincent Mousseau

Abstract Within disaggregation–aggregation approach, ordinal regression aims at
inducing parameters of a preference model, for example, parameters of a value func-
tion, which represent some holistic preference comparisons of alternatives given by
the Decision Maker (DM). Usually, from among many sets of parameters of a pref-
erence model representing the preference information given by the DM, only one
specific set is selected and used to work out a recommendation. For example, while
there exist many value functions representing the holistic preference information
given by the DM, only one value function is typically used to recommend the best
choice, sorting, or ranking of alternatives. Since the selection of one from among
many sets of parameters of the preference model compatible with the preference
information given by the DM is rather arbitrary, robust ordinal regression proposes
taking into account all the sets of parameters compatible with the preference in-
formation, in order to give a recommendation in terms of necessary and possible
consequences of applying all the compatible preference models on the considered
set of alternatives. In this chapter, we present the basic principle of robust ordinal
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Institute of Computing Science, Poznań University of Technology, Piotrowo 2,
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regression, and the main multiple criteria decision methods to which it has been ap-
plied. In particular, UTAGMS and GRIP methods are described, dealing with choice
and ranking problems, then UTADISGMS, dealing with sorting (ordinal classification)
problems. Next, we present robust ordinal regression applied to Choquet integral for
choice, sorting, and ranking problems, with the aim of representing interactions be-
tween criteria. This is followed by a characterization of robust ordinal regression
applied to outranking methods and to multiple criteria group decisions. Finally, we
describe an interactive multiobjective optimization methodology based on robust
ordinal regression, and an evolutionary multiobjective optimization method, called
NEMO, which is also using the principle of robust ordinal regression.

Keywords Robust ordinal regression � Multiple criteria � Choice, sorting and
ranking � Additive value functions � Choquet integral � Outranking methods �
Multiple criteria group decisions � Interactive multiobjective optimization �
Evolutionary multiobjective optimization

9.1 Introduction

In Multiple Criteria Decision Analysis (MCDA) (for a recent state of the
art see [14]), an alternative a, belonging to a finite set of alternatives A D
fa; b; : : :g (jAj D m), is evaluated on the basis of a family of n criteria F D
fg1; g2; : : : ; gi ; : : : ; gng, with gi WA ! R: For example, in a decision problem
regarding a recruitment of new employees, the alternatives are the candidates and
the criteria can be a certain number of characteristics useful to give a comprehensive
evaluation of the candidates, such as educational degree, professional experience,
age, and interview assessment. From here on, we will use the term criterion gi , or
criterion i interchangeably (i D 1; 2; : : : ; n). For the sake of simplicity, but without
loss of generality, we suppose that the evaluations on criteria are increasing with
respect to preference, i.e., the more the better, defining a marginal weak preference
relation as follows:

“a is at least as good as b” with respect to criterion i , gi .a/ � gi .b/:

The purpose of Multi-Attribute Utility Theory (MAUT) [13, 42] is to represent
the preferences of the Decision Maker (DM) on a set of alternatives,A, by an overall
value function U.g1.�/; : : : ; gn.�//W Rn ! R, such that:

� a is indifferent to b , U.g.a// D U.g.b//I
� a is preferred to b , U.g.a// > U.g.b//;

where for simplicity of notation, we used U.g.a//, instead of U..g1.a/, : : : ,
gn.a///.
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The principal value function aggregation model is the multiple attribute additive
utility [42]:

U.g.a// D u1.g1.a//C u2.g2.a//C � � � C un.gn.a// with a 2 A;

where ui are nondecreasing marginal value functions, i D 1; 2; : : : ; n:

Even if multiple attribute additive utility is the most well-known aggregation
model, some critics have been advanced to it because it does not permit to represent
interactions between the considered criteria. For example, in evaluating a car one
can consider criteria such as maximum speed, acceleration, and price. In this case,
very often there is a negative interaction (redundancy) between maximum speed
and acceleration of cars: in fact, a car with a high maximum speed has, usually, also
a good acceleration and thus, even if these two criteria can be very important for
a person who likes sport cars, their comprehensive importance is smaller than the
importance of the two criteria considered separately. In the same decision problem,
very often there is a positive interaction (synergy) between maximum speed and
price of cars: in fact, a car with a high maximum speed has, usually, also a high
price, and thus a car with a high maximum speed and not so high price is very much
appreciated. So, the comprehensive importance of these two criteria is greater than
the importance of the two criteria considered separately. To handle the interactions
between criteria one can consider nonadditive integrals, such as Choquet integral
[11] and Sugeno integral [61] (for a comprehensive survey on the use of nonadditive
integrals in MCDA, see [21, 25]).

Another interesting decision model permitting representation of interactions be-
tween criteria is the Dominance-based Rough Set Approach (DRSA) [29, 59]. In
DRSA, the DM’s preference model is a set of decision rules, i.e., easily understand-
able “if..., then...” statements, such as “if the maximum speed is at least 200 km/h
and the price is not greater than $50,000, then the car is attractive.” In general,
we shall call the decision models, which, differently from multiple attribute addi-
tive utility, permit to represent the interaction between criteria nonadditive decision
models.

Each decision model requires the specification of some parameters. For example,
using MAUT, the parameters are related to the formulation of the marginal value
functions ui .gi .a//, i D 1; 2; : : : ; n, while using nonadditive integrals, the parame-
ters are related to so-called fuzzy measures, which permit to model the importance
not only of each criterion gi 2 F , but also of any subset of criteria R � F . Within
MCDA, many methods have been proposed to determine the parameters character-
izing the considered decision model in a direct way, i.e., asking them directly to the
DM, or in an indirect way, i.e., inducing the values of such parameters from some
holistic preference comparisons of alternatives given by the DM. In general, this is
a difficult task for several reasons. For example, it is acknowledged that the DM’s
preference information is often incomplete because the DM is not fully aware of the
multiple criteria approach adopted, or because the preference structure is not well
defined in DM’s mind [43, 62].
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Recently, MCDA methods based on indirect preference information and on the
disaggregation approach [40] are considered more interesting, because they require
a relatively smaller cognitive effort from the DM than methods based on direct pref-
erence information. In these methods, the DM provides some holistic preference
comparisons on a set of reference alternatives AR, and from this information the
parameters of a decision model are induced using a methodology called ordinal re-
gression. Then, a consistent decision model is taken into consideration to evaluate
the alternatives from setA (aggregation approach.) Typically, ordinal regression has
been applied to MAUT models, such that in these cases we speak of additive ordinal
regression. For example, additive ordinal regression is applied by the well-known
method called UTA [39]. The principle of ordinal regression has also been applied
to some nonadditive decision models. In this case, we speak of nonadditive ordinal
regression exemplified by some UTA-like methods involving the Choquet integral
[1, 47], and by the DRSA methodology [29, 59].

Usually, from among many sets of parameters of a preference model represent-
ing the preference information given by the DM, only one specific set is selected
and used to work out a recommendation. For example, while there exist many value
functions representing the holistic preference information given by the DM, only
one value function is typically used to recommend the best choice, sorting, or rank-
ing of alternatives. Since the selection of one from among many sets of parameters
compatible with the preference information given by the DM is rather arbitrary,
robust ordinal regression proposes taking into account all the sets of parameters
compatible with the preference information, in order to give a recommendation in
terms of necessary and possible consequences of applying all the compatible pref-
erence models on the considered set of alternatives.

The first method of robust ordinal regression is a recent generalization of the UTA
method, called UTAGMS [34]. The UTAGMS is a multiple criteria method, which, in-
stead of considering only one additive value function compatible with the preference
information provided by the DM, as UTA does, takes into consideration the whole
set of compatible additive value functions.

In particular, the UTAGMS method requires from the DM a set of pairwise com-
parisons on a set of reference alternatives AR � A as preference information.

Then, using linear programming, one obtains two relations in set A: the nec-
essary weak preference relation, which holds for any two alternatives a; b 2 A if
and only if all compatible value functions give to a a value greater than the value
provided to b, and the possible weak preference relation, which holds for this pair
if and only if at least one compatible value function gives to a a value greater than
the value given to b.

More recently, an extension of UTAGMS has been proposed: the GRIP method
[18]. The GRIP method builds a set of additive value functions, taking into account
not only a set of pairwise comparisons of reference alternatives, but also the inten-
sities of preference among reference alternatives.

This kind of preference information is often required in other well-known MCDA
methods such as MACBETH [6] and AHP [54, 55].
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Both UTAGMS and GRIP apply the robust ordinal regression to the MAUT
models, so we can say that these methods apply the additive robust ordinal
regression.

Finally, nonadditive robust ordinal regression has been proposed, applying the
basic ideas of robust ordinal regression to a value function expressed as Choquet
integral in order to represent positive and negative interactions between criteria.
More precisely, the disaggregation–aggregation approach used in this context has
been inspired by UTAGMS and GRIP methods, but in addition to preference informa-
tion required by these methods, it includes some preference information on the sign
and intensity of interaction between couples of criteria.

The chapter is organized as follows. Section 9.2 is devoted to a presentation of a
general scheme of the constructive learning interactive procedure. It provides a brief
reminder on learning of one compatible additive piecewise-linear value function for
multiple criteria ranking problems using the UTA method. In Section 9.3, the GRIP
method is presented, which is presently the most general of all UTA-like methods.
Section 9.4, makes a comparison of GRIP to its main competitors in the field of
MCDA. First GRIP is compared to AHP method, which requires pairwise compar-
isons of alternatives and criteria, and yields a priority ranking of solutions. Then
GRIP is compared to MACBETH method, which also takes into account a prefer-
ence order of alternatives and intensity of preference for pairs of alternatives. The
preference information used in GRIP does not need, however, to be complete: the
DM is asked to provide comparisons of only those ordered pairs of selected alter-
natives on particular criteria for which his/her judgment is sufficiently certain. This
is an important advantage comparing to methods which, instead, require compar-
ison of all possible pairs of alternatives on all the considered criteria. Section 9.5
presents robust ordinal regression applied to sorting problems. Section 9.6 presents
the concept of “most representative” value function. Section 9.7 deals with nonaddi-
tive robust ordinal regression considering an application of robust ordinal regression
methodology to a decision model formulated in terms of Choquet integral. Section
9.8 describes an interactive multiobjective optimization method based on robust or-
dinal regression. Section 9.9 presents NEMO, being an evolutionary multiobjective
optimization method based on robust ordinal regression. Section 9.10 shows how
robust ordinal regression can deal with outranking methods. Section 9.11 deals with
robust ordinal regression applied to multiple criteria group decisions. Section 9.12
presents a didactic example relative to an interactive application of the robust ordi-
nal regression to a multiple objective optimization problem. In Section 9.13, some
conclusions and further research directions are provided.

9.2 Ordinal Regression for Multiple Criteria Ranking Problems

The preference information may be either direct or indirect, depending upon
whether it specifies directly values of some parameters used in the preference model
(e.g., trade-off weights, aspiration levels, discrimination thresholds, etc.) or, whether
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it specifies some examples of holistic judgments from which compatible values of
the preference model parameters are induced. Eliciting direct preference informa-
tion from the DM can be counterproductive in real-world decision-making situations
because of a high cognitive effort required. Consequently, asking directly the DM to
provide values for the parameters seems to make the DM uncomfortable. Eliciting
indirect preference is less demanding of the cognitive effort. Indirect preference
information is mainly used in the ordinal regression paradigm. According to this
paradigm, a holistic preference information on a subset of some reference or
training alternatives is known first and then a preference model compatible with the
information is built and applied to the whole set of alternatives in order to rank them.

The ordinal regression paradigm is concordant with the posterior rationality pos-
tulated by March in [46]. It has been known for at least 50 years in the field
of multidimensional analysis. It is also concordant with the induction principle
used in machine learning. This paradigm has been applied within the two main
MCDA approaches mentioned above: those using a value function as preference
model [39, 51, 58, 60], and those using an outranking relation as preference model
[44, 49, 50]. This paradigm has also been used since mid-1990s in MCDA meth-
ods involving a new, third family of preference models – a set of dominance
decision rules induced from rough approximations of holistic preference relations
[28, 29, 31, 59].

Recently, the ordinal regression paradigm has been revisited with the aim of con-
sidering the whole set of value functions compatible with the preference information
provided by the DM, instead of a single compatible value function used, for ex-
ample, in UTA-like methods [39, 58]. This extension has been implemented in a
method called UTAGMS [34], further generalized in another method called GRIP
[18]. UTAGMS and GRIP are not revealing to the DM only one compatible value
function, but they are using the whole set of compatible (general, not piecewise-
linear only) additive value functions to set up a necessary weak preference relation
and a possible weak preference relation in the whole set of considered alternatives.

9.2.1 Concepts: Definitions and Notation

We are considering an MCDA problem where a finite set of alternatives A D
fx; : : : ; y; : : : ;w; : : : ; zg (jAj D m), is evaluated on a family F D fg1; g2; : : : ;

gng of n criteria. Let I D f1; 2; : : : ; ng denote the set of criteria indices. We as-
sume, without loss of generality, that the greater gi .x/, the better alternative x on
criterion gi , for all i 2 I , x 2 A. A DM is willing to rank the alternatives of A from
the best to the worst, according to his/her preferences. The ranking can be complete
or partial, depending on the preference information provided by the DM and on
the way of exploiting this information. The family of criteria F is supposed to sat-
isfy consistency conditions, i.e., completeness (all relevant criteria are considered),
monotonicity (the better the evaluation of an alternative on the considered criteria,
the more it is preferable to another), and nonredundancy (no superfluous criteria are
considered) [53].
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Such a decision-making problem statement is called multiple criteria ranking
problem. It is known that the only information coming out from the formulation of
this problem is the dominance ranking. Let us recall that in the dominance ranking,
alternative x 2 A is preferred to alternative y 2 A, x � y, if and only if gi .x/ �
gi .y/ for all i 2 I , with at least one strict inequality. Moreover, x is indifferent to
y, x � y, if and only if gi .x/ D gi .y/ for all i 2 I . Hence, for any two alternatives
x; y 2 A, one of the four situations may arise in the dominance ranking: x � y,
y � x, x � y and x‹y, where the last one means that x and y are incomparable.
Usually, the dominance ranking is very poor, i.e., the most frequent situation is x‹y.

In order to enrich the dominance ranking, the DM has to provide preference in-
formation, which is used to construct an aggregation model making the alternatives
more comparable. Such an aggregation model is called preference model. It induces
a preference structure on set A, whose proper exploitation permits to work out a
ranking proposed to the DM.

In what follows, the evaluation of each alternative x 2 A on each criterion
gi 2 F will be denoted either by gi .x/ or xi . Let Gi denote the value set (scale)
of criterion gi , i 2 I . Consequently,

G D Q
i2I Gi

represents the evaluation space, and x 2 G denotes a profile of an alternative in such
a space. We consider a weak preference relation % on A which means, for each pair
of vectors, x; y 2 G,

x % y , “x is at least as good as y”:

This weak preference relation can be decomposed into its asymmetric and symmet-
ric parts, as follows,

(1) x � y � Œx % y and not y % x� , “x is preferred to y”, and
(2) x � y � Œx % y and y % x� , “x is indifferent to y”.

From a pragmatic point of view, it is reasonable to assume that Gi � R, for
i D 1; : : : ; n. More specifically, we will assume that the evaluation scale on each
criterion gi is bounded, such that Gi D Œ˛i ; ˇi �, where ˛i , ˇi , ˛i < ˇi are the
worst and the best (finite) evaluations, respectively. Thus, gi W A ! Gi , i 2 I .
Therefore, each alternative x 2 A is associated with an evaluation vector denoted
by g.x/ D .x1; x2; : : : ; xn/ 2 G.

9.2.2 The UTA Method

In this section, we recall the principle of the ordinal regression via linear program-
ming, as proposed in the original UTA method, see [39].
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9.2.2.1 Preference Information

The preference information is given in the form of a complete preorder on a subset
of reference alternatives AR � A (where jARj D p), called reference preorder.
The reference alternatives are usually those contained in set A for which the DM is
able to express holistic preferences. Let AR D fa; b; c; : : :g be the set of reference
alternatives.

9.2.2.2 Additive Model

The additive value function is defined on A such that for each g.x/ 2 G,

U.g.x// D
X

i2I

ui .gi .xi //; (9.1)

where, ui are nondecreasing marginal value functions, ui W Gi ! R, i 2 I . For the
sake of simplicity, we shall write .1/ as follows,

U.x/ D
X

i2I

ui .xi / or U.x/ D
nX

iD1

ui .xi /: (9.2)

In the UTA method, the marginal value functions ui are assumed to be piecewise-
linear functions. The ranges Œ˛i ; ˇi � are divided into �i � 1 equal sub-intervals
�
x0

i ; x
1
i

�
,
�
x1

i ; x
2
i

�
, : : :,

h
x

�i �1
i ; x

�i

i

i
, where xj

i D ˛i C j
�i
.ˇi � ˛i /, j D 0; : : : ; �i ,

and i 2 I . The marginal value of an alternative x 2 A is obtained by linear
interpolation,

ui .x/ D ui

�
x

j
i

�
C xi � xj

i

x
j C1
i � xj

i

�
ui

�
x

j C1
i

�
� ui

�
x

j
i

��
; xi 2

h
x

j
i ; x

j C1
i

i
: (9.3)

The piecewise-linear additive model is completely defined by the marginal values
at the breakpoints, i.e., ui

�
x0

i

� D ui .˛i /, ui

�
x1

i

�
, ui

�
x2

i

�
, � � � , ui

�
x

�i

i

� D ui .ˇi /.
In what follows, the principle of the UTA method is described as it was recently

presented in [58]. Therefore, a value functionU.x/ D Pn
iD1 ui .xi / is compatible if

it satisfies the following set of constraints.

U.a/ > U.b/ , a � b

U.a/ D U.b/ , a � b

9
=

;
8 a; b 2 AR

ui

�
x

j C1
i

�
� ui

�
x

j
i

�
� 0; i D 1; :::; n; j D 0; :::; �i � 1

ui .˛i / D 0; i D 1; :::; n

nX

iD1

ui .ˇi / D 1

(9.4)
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9.2.2.3 Checking for Compatible Value Functions Through
Linear Programming

To verify if a compatible value function U.x/ D Pn
iD1 ui .xi / restoring the refer-

ence preorder % onAR exists, one can solve the following linear programming prob-

lem, where ui

�
x

j
i

�
; i D 1; : : : ; n; j D 1; : : : ; �i , are unknown, and �C.a/; ��.a/

.a 2 AR/ are auxiliary variables:

Min Z D
mX

a2AR

�
�C.a/C ��.a/

�

s.t.
U.a/C �C.a/ � ��.a/ �

U.b/C �C.b/ � ��.b/C " , a � b

U.a/C �C.a/ � ��.a/ D
U.b/C �C.b/ � ��.b/ , a � b

9
>>=

>>;

8a; b 2 AR

ui

�
x

j C1
i

�
� ui

�
x

j
i

�
� 0; i D 1; :::; n; j D 0; :::; �i � 1

ui .˛i / D 0; i D 1; :::; n
nX

iD1

ui .ˇi / D 1

�C.a/; ��.a/ � 0; 8a 2 AR;

(9.5)

where " is an arbitrarily small positive value so that U.a/ C �C.a/ � ��.a/ >
U.b/C �C.b/� ��.b/ in case of a � b.

If the optimal value of the objective function of program (9.5) is equal to
zero (Z� D 0), then there exists at least one value function U.x/ D Pn

iD1 ui

.xi / satisfying (9.4), i.e., compatible with the reference preorder on AR. In other
words, this means that the corresponding polyhedron (9.4) of feasible solutions for

ui

�
x

j
i

�
; i D 1; :::; n; j D 1; :::; �i , is not empty.

Let us remark that the transition from the preorder % to the marginal value func-
tion exploits the ordinal character of the criterion scaleGi . Notice, however, that the
scale of the marginal value function is a conjoint interval scale. More precisely, for
the considered additive value function

Pn
iD1 ui .xi /, the admissible transformations

on the marginal value functions ui .xi / have the form u�
i .xi / D k 	 ui .xi / C hi ,

hi 2 R; i D 1; : : : ; n, k > 0, such that for all Œx1; :::; xn�; Œy1; :::; yn� 2 Qn
iD1Gi

nX

iD1

ui .xi / �
nX

iD1

ui .yi / ,
nX

iD1

u�
i .xi / �

nX

iD1

u�
i .yi /:

An alternative way of representing the same preference model is:

U.x/ D
X

i2I

wi Oui .x/; (9.6)
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where Ou.˛i / D 0; Ou.ˇi / D 1; wi � 0 8i 2 I; and
P

i2I wi D 1. Note that
the correspondence between (9.6) and (2) is such that wi D ui .ˇi /; 8i 2 I . Due to
the cardinal character of the marginal value function scale, the parameters wi can be
interpreted as trade-off weights among marginal value functions Oui .x/. We will use,
however, the preference model (2) with normalization constraints boundingU.x/ to
the interval Œ0; 1�.

When the optimal value of the objective function of the program (9.5) is greater
than zero (Z� > 0), then there is no value function U.x/ D P

i2I ui .xi / compati-
ble with the reference preorder on AR. In such a case, three possible moves can be
considered:

� Increasing the number of linear pieces �i for one or several marginal value
function ui could make it possible to find an additive value function compatible
with the reference preorder on AR.

� Revising the reference preorder onAR could lead to find an additive value func-
tion compatible with the new preorder.

� Searching over the relaxed domainZ 
 Z� C � could lead to an additive value
function giving a preorder on AR sufficiently close to the reference preorder (in
the sense of Kendall’s �).

9.3 Robust Ordinal Regression for Multiple Criteria
Ranking Problems

Recently, two new methods, UTAGMS [34] and GRIP [18], have generalized the or-
dinal regression approach of the UTA method in several aspects:

� Taking into account all additive value functions (1) compatible with the prefer-
ence information, while UTA is using only one such function.

� Considering marginal value functions of (1) as general nondecreasing functions,
and not piecewise-linear, as in UTA.

� Asking the DM for a ranking of reference alternatives, which is not necessarily
complete (just pairwise comparisons).

� Taking into account additional preference information about intensity of prefer-
ence, expressed both comprehensively and with respect to a single criterion.

� Avoiding the use of the exogenous, and not neutral for the result, parameter " in
the modeling of strict preference between alternatives.

UTAGMS and GRIP produce two rankings on the set of alternatives A, such that
for any pair of alternatives a; b 2 A:

� In the necessary ranking, a is ranked at least as good as b if and only if, U.a/ �
U.b/ for all value functions compatible with the preference information.

� In the possible ranking, a is ranked at least as good as b if and only if, U.a/ �
U.b/ for at least one value function compatible with the preference information.
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The necessary ranking can be considered as robust with respect to the preference
information. Such robustness of the necessary ranking refers to the fact that any pair
of alternatives compares in the same way whatever the additive value function com-
patible with the preference information. Indeed, when no preference information is
given, the necessary ranking boils down to the dominance relation, and the possible
ranking is a complete relation. It allows for taking into account the incomparability
between alternatives. Every new pairwise comparison of reference alternatives, for
which the dominance relation does not hold, is enriching the necessary ranking and
it is impoverishing the possible ranking, so that they converge with the growth of
the preference information.

Moreover, such an approach gives space for interactivity with the DM. Presenta-
tion of the necessary ranking, resulting from a preference information provided by
the DM, is a good support for generating reactions from part of the DM. Namely,
(s)he could wish to enrich the ranking or to contradict a part of it. Such a reaction
can be integrated in the preference information considered in the next iteration.

The idea of considering the whole set of compatible value functions was orig-
inally introduced in UTAGMS. GRIP (Generalized Regression with Intensities of
Preference) can be seen as an extension of UTAGMS permitting to take into account
additional preference information in the form of comparisons of intensities of pref-
erence between some pairs of reference alternatives. For alternatives x; y;w; z 2 A,
these comparisons are expressed in two possible ways (not exclusive): (i) compre-
hensively, on all criteria, like “x is preferred to y at least as much as w is preferred
to z”; and, (ii) partially, on any criterion, like “x is preferred to y at least as much as
w is preferred to z, on criterion gi 2 F ”. Although UTAGMS was historically the first
method among the two, as GRIP incorporates and extends UTAGMS, in the following
we shall present only GRIP.

9.3.1 The Preference Information Provided
by the Decision Maker

The DM is expected to provide the following preference information:

� A partial preorder % on AR whose meaning is: for x; y 2 AR

x % y , x is at least as good as y:

Moreover, � (preference) is the asymmetric part of % and � (indifference) is
the symmetric part given by % \ %�1. (%�1 is the inverse of %, i.e., for all
x; y 2 AR, x %�1 y , y % x).

� A partial preorder %� on AR 	 AR, whose meaning is: for x; y;w; z 2 AR,

.x; y/ %� .w; z/ , x is preferred to y at least as much as w
is preferred to z:
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Also in this case, �� is the asymmetric part of %� and �� is the symmetric part
given by %� \ %��1

(%��1

is the inverse of %�, i.e., for all x; y;w; z 2 AR,
.x; y/ %��1

.w; z/ , .w; z/ %� .x; y/).
� A partial preorder %�

i on AR 	 AR, whose meaning is: for x; y;w; z 2 AR,
.x; y/ %�

i .w; z/ , x is preferred to y at least as much as w is preferred to z on
criterion gi , i 2 I .

In the following, we also consider the weak preference relation %i being a com-
plete preorder whose meaning is: for all x; y 2 A,

x %i y , x is at least as good as y on criterion gi ; i 2 I:
Weak preference relations %i , i 2 I , are not provided by the DM, but it is

obtained directly from the evaluation of alternatives x and y on criterion gi , i.e.,
x %i y , gi .x/ � gi .y/.

9.3.2 Possible and Necessary Rankings

While the preference information provided by the DM is rather similar to that of
UTA, the output of GRIP is quite different. In GRIP, the preference information has
the form of a partial preorder in a set of reference alternatives AR � A (i.e., a set
of pairwise comparisons of reference alternatives), augmented by information about
intensities of preferences.

A value function is called compatible if it is able to restore the partial preorder %
on AR, as well as the given relation of intensity of preference among ordered pairs
of reference alternatives. Each compatible value function induces, moreover, a com-
plete preorder on the whole set A. In particular, for any two alternatives x; y 2 A,
a compatible value function orders x and y in one of the following ways: x � y,
y � x, x � y. With respect to x; y 2 A, it is thus reasonable to ask the following
two questions:

� Are x and y ordered in the same way by all compatible value functions?
� Is there at least one compatible value function ordering x at least as good as y

(or y at least as good as x)?

Having answers to these questions for all pairs of alternatives .x; y/ 2 A	A, one
gets a necessary weak preference relation %N (partial preorder), whose semantics
is U.x/ � U.y/ for all compatible value functions, and a possible weak prefer-
ence relation %P in A (strongly complete and negatively transitive relation), whose
semantics is U.x/ � U.y/ for at least one compatible value function.

Let us remark that preference relations %N and %P are meaningful only if there
exists at least one compatible value function. Observe also that in this case, for any
x; y 2 AR,

x % y ) x %N y

and
x � y ) not

�
y %P x

�
:
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In fact, if x % y, then for any compatible value function, U.x/ � U.y/ and,
therefore, x %N y. Moreover, if x � y, then for any compatible value function,
U.x/ > U.y/ and, consequently, there is no compatible value function such that
U.y/ � U.x/, which means not(y %P x).

9.3.3 Linear Programming Constraints

In this section, we present a set of constraints that interprets the preference informa-
tion in terms of conditions on the compatible value functions.

The value function U W A ! Œ0; 1� should satisfy the following constraints cor-
responding to DM’s preference information,

.a/ U.w/ > U.z/ if w � z

.b/ U.w/ D U.z/ if w � z

.c/ U.w/� U.z/ > U.x/� U.y/ if .w; z/ �� .x; y/
.d/ U.w/� U.z/ D U.x/ � U.y/ if .w; z/ �� .x; y/
.e/ ui .w/ � ui .z/ if w %i z, i 2 I
.f / ui .w/ � ui .z/ > ui .x/ � ui .y/ if .w; z/ ��

i .x; y/, i 2 I
.g/ ui .w/ � ui .z/ D ui .x/ � ui .y/ if .w; z/ ��

i .x; y/, i 2 I
Let us remark that within UTA-like methods, constraint .a/ is written as U.w/ �

U.z/ C ", where " > 0 is a threshold exogenously introduced. Analogously, con-
straints .c/ and .f / should be written as,

U.w/ � U.z/ � U.x/ � U.y/C "

and
ui .w/ � ui .z/ � ui .x/ � ui .y/C ":

However, we would like to avoid the use of any exogenous parameter and, there-
fore, instead of setting an arbitrary value of ", we consider it as an auxiliary variable,
and we test the feasibility of constraints .a/, .c/, and .f / (see Section 9.3.4). This
permits to take into account all possible value functions, even those which satisfy the
constraints for having a very small threshold ". This is safer also from the viewpoint
of “objectivity” of the selected methodology. In fact, the value of " is not meaning-
ful in itself and it is useful only because it permits to discriminate preference from
indifference.

Moreover, the following normalization constraints should also be taken into
account:

.h/ ui

�
x�

i

� D 0, where x�
i is such that x�

i D minfgi .x/ W x 2 Ag
.i/

P
i2I ui

�
y�

i

� D 1, where y�
i is such that y�

i D maxfgi .x/ W x 2 Ag
If the constraints from .a/ to .i/ are fulfilled, then the partial preorders % and %�
on AR and AR 	 AR can be extended on A and A 	A, respectively.
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9.3.4 Computational Issues

In order to conclude the truth or falsity of binary relations %N , %P , %�N

, %�P

,
%�N

i and %�P

i , we have to take into account that, for all x; y;w; z 2 A and i 2 I :

.1/ x %N y , inf
n
U.x/ � U.y/

o
� 0

.2/ x %P y , inf
n
U.y/ � U.x/

o

 0

.3/ .x; y/ %�N
.w; z/ , inf

n�
U.x/ � U.y/

�
�

�
U.w/� U.z/

�o
� 0

.4/ .x; y/ %�P
.w; z/ , inf

n�
U.w/� U.z/

�
�

�
U.x/ � U.y/

�o

 0

.5/ .x; y/ %�N

i .w; z/ , inf
n�

ui .xi / � ui .yi /
�

�
�

ui .wi /� ui .zi /
�o

� 0

.6/ .x; y/ %�P

i .w; z/ , inf
n�

ui .wi /� ui .zi /
�

�
�

ui .xi / � ui .yi /
�o


 0

with the infimum computed on the set of value functions satisfying constraints from
.a/ to .i/. Let us remark, however, that the linear programming is not able to handle
strict inequalities such as the above .a/, .c/, and .f /. Moreover, linear programming
permits to compute the minimum or the maximum of an objective function and not
an infimum. Nevertheless, reformulating properly the above properties .1/ to .6/, a
result presented in [47] permits to use linear programming for testing the truth of
binary relations, %N , %P , %�N

, %�P
, %�N

i and %�P

i .
In order to use such a result, constraints .a/, .c/ and .f / have to be reformulated

as follows:

.a0/ U.x/ � U.y/C " if x � y

.c0/ U.x/ � U.y/ � U.w/� U.z/C " if .x; y/ �� .w; z/
.f 0/ ui .x/ � ui .y/ � ui .w/ � ui .z/C " if .x; y/ ��

i .w; z/

with " > 0.
Then, properties .1/ � .6/ have to be reformulated such that the search of the

infimum is replaced by computing the maximum value of " on the set of value
functions satisfying constraints from .a/ to .i/, with constraints .a/, .c/ and .f /
transformed to .a0/, .c0/ and .f 0/, plus constraints specific for each point:

.10/ x %P y , "� > 0,
where "� D max ", subject to the constraints .a0/, .b/, .c0/, .d/, .e/, .f 0/,
plus the constraint U.x/ � U.y/

.20/ x %N y , "� 
 0,
where "� D max ", subject to the constraints .a0/, .b/, .c0/, .d/, .e/, .f 0/,
plus the constraint U.y/ � U.x/C "

.30/ .x; y/ %�P
.w; z/ , "� > 0,

where "� D max ", subject to the constraints .a0/, .b/, .c0/, .d/, .e/, .f 0/,
plus the constraint

�
U.x/ � U.y/

�
�

�
U.w/ � U.z/

�
� 0
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.40/ .x; y/ %�N
.w; z/ , "� 
 0,

where "� D max ", subject to the constraints .a0/, .b/, .c0/, .d/, .e/, .f 0/,
plus the constraint

�
U.w/� U.z/

�
�

�
U.x/ � U.y/

�
� "

.50/ .x; y/ %�P

i .w; z/ , "� > 0,
where "� D max ", subject to the constraints .a0/, .b/, .c0/, .d/, .e/, .f 0/,
plus the constraint

�
ui .xi /� ui .yi /

�
�

�
ui .wi / � ui .zi /

�
� 0

.60/ .x; y/ %�N

i .w; z/ , "� 
 0,
where "� D max ", subject to the constraints .a0/, .b/, .c0/, .d/, .e/, .f 0/,
plus the constraint

�
ui .wi /� ui .zi /

�
�

�
ui .xi / � ui .yi /

�
� ".

9.4 Comparison of GRIP with other MCDA Methods

9.4.1 Comparison of GRIP with the AHP

In AHP (Analytical Hierarchy Process) [54, 55], criteria should be pairwise com-
pared with respect to their importance. Alternatives are also pairwise compared on
particular criteria with respect to intensity of preference. The following nine point
scale is used:

1 – Equal importance-preference
3 – Moderate importance-preference
5 – Strong importance-preference
7 – Very strong or demonstrated importance-preference
9 – Extreme importance-preference

2, 4, 6, and 8 are intermediate values between the two adjacent judgements. The
ratio of importance of criterion gi over criterion gj is the inverse of the ratio of
importance of gj over gi . Analogously, the intensity of preference of alternative x
over alternative y is the inverse of the intensity of preference of y over x. The above
scale is a ratio scale. Therefore, the difference of importance is read as the ratio
of weights wi and wj , corresponding to criteria gi and gj , and the intensity of
preference is read as the ratio of the attractiveness of x and the attractiveness of y,
with respect to the considered criterion gi . In terms of value functions, the intensity
of preference can be interpreted as the ratio ui .gi .x//

ui .gi .y//
. Thus, the problem is how to

obtain values of wi and wj from ratio wi

wj
, and values of ui .gi .x// and ui .gi .y//

from ratio ui .gi .x//
ui .gi .y//

.
In AHP it is proposed that these values are supplied by the principal eigenvectors

of the matrices composed of the ratios wi

wj
and ui .gi .x//

ui .gi .y//
. The marginal value functions

ui .gi .x// are then aggregated by means of a weighted-sum using the weights wi .
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Comparing AHP with GRIP, we can say that with respect to single criteria the
type of questions addressed to the DM is the same: express intensity of preference
in qualitative-ordinal terms (equal, moderate, strong, very strong, extreme). How-
ever, differently from GRIP, this intensity of preference is translated in AHP into
quantitative terms (the scale from 1 to 9) in a quite arbitrary way. In GRIP, in-
stead, the marginal value functions are just a numerical representation of the original
qualitative-ordinal information, and no intermediate transformation in quantitative
terms is exogenously imposed.

Other differences between AHP and GRIP are related to the following aspects.

1. In GRIP, the value functions ui .gi .x// depend mainly on comprehensive pref-
erences involving jointly all the criteria, while this is not the case in AHP.

2. In AHP, the weights wi of criteria gi are calculated on the basis of pairwise
comparisons of criteria with respect to their importance; in GRIP, this is not
the case, because the value functions ui .gi .x// are expressed on the same scale
and thus they can be summed up without any further weighting.

3. In AHP, all unordered pairs of alternatives must be compared from the view-
point of the intensity of preference with respect to each particular criterion.
Therefore, ifm is the number of alternatives, and n the number of criteria, then
the DM has to answer n 	 m�.m�1/

2
questions. Moreover, the DM has to an-

swer questions relative to n�.n�1/
2

pairwise comparisons of considered criteria
with respect to their importance. This is not the case in GRIP, which accepts
partial information about preferences in terms of pairwise comparison of some
reference alternatives. Finally, in GRIP there is no question about comparison
of relative importance of criteria.

As far as point 2 is concerned, observe that the weights wi used in AHP represent
trade-offs between evaluations on different criteria. For this reason it is doubtful
that if they could be inferred from answers to questions concerning comparison of
importance. Therefore, AHP has a problem with meaningfulness of its output with
respect to its input, and this is not the case of GRIP.

9.4.2 Comparison of GRIP with MACBETH

MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Tec-
Hnique) is a method for MCDA [5,6], which builds a value function from qualitative
judgements obtained from DMs about differences of values quantifying the relative
attractiveness of alternatives or criteria.

When using MACBETH, the DM is asked to provide the following preference
information about every two alternatives from set A:

� First, through an (ordinal) judgement on their relative attractiveness.
� Second, (if the two alternatives are not considered to be equally attractive),

through a qualitative judgement about the difference of attractiveness between
these two alternatives.
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Seven semantic categories of difference of attractiveness are considered in
MACBETH: null, very weak, weak, moderate, strong, very strong, extreme.

The main idea of MACBETH is to build an interval scale from the preference
information provided by the DM. It is, however, necessary that the above cate-
gories correspond to disjoint intervals (represented in terms of the real numbers).
The bounds for such intervals should not be arbitrarily fixed a priori, but they should
be calculated simultaneously with the numerical values of all particular alternatives
fromA, so as to ensure compatibility between these values [5]. Linear programming
models are used for these calculations. In case of inconsistent judgments, MAC-
BETH provides the DM with information permitting to eliminate such inconsistency.

When comparing MACBETH with GRIP the following aspects should be
considered:

� Both deal with qualitative judgements.
� Both need a set of comparisons of alternatives or pairs of alternatives to work

out a numerical representation of preferences, however, MACBETH depends
on the definition of two characteristic levels on the original scale, “neutral”
and “good,” to obtain the numerical representation of preferences.

� GRIP adopts the disaggregation–aggregation approach and, therefore, it con-
siders also comprehensive preferences relative to comparisons involving jointly
all the criteria, which is not the case of MACBETH.

� GRIP is, however, more general than MACBETH since it can take into account
the same kind of qualitative judgments as MACBETH (the difference of attrac-
tiveness between pairs of alternatives) and the intensity of preferences of the
type “x is preferred to y at least as much as z is preferred to w”.

As for the last item, it should be noticed that the intensity of preference consid-
ered in MACBETH and the intensity coming from comparisons of the type “x is
preferred to y at least as strongly as w is preferred to z” (i.e., the quaternary relation
%�) are substantially the same. In fact, the intensities of preference are equivalence
classes of the preorder generated by %�. This means that all the pairs .x; y/ and
.w; z/, such that x is preferred to y with the same intensity as w is preferred to z,
belong to the same semantic category of difference of attractiveness considered in
MACBETH. To be more precise, the structure of intensity of preference consid-
ered in MACBETH is a particular case of the structure of intensity of preference
represented by %� in GRIP. Still more precisely, GRIP has the same structure of
intensity as MACBETH when %� is a complete preorder. When this does not occur,
MACBETH cannot be used while GRIP can naturally deal with this situation.

Comparison of GRIP and MACBETH could be summarized in the following
points:

1. GRIP is using preference information relative to: (a) comprehensive preference
on a subset of reference alternatives with respect to all criteria, (b) partial in-
tensity of preference on some single criteria, and (c) comprehensive intensity of
preference with respect to all criteria, while MACBETH requires preference in-
formation on all pairs of alternatives with respect to each one of the considered
criteria.



258 S. Greco et al.

2. Information about partial intensity of preference is of the same nature in GRIP
and MACBETH (equivalence classes of relation %�

i correspond to qualitative
judgements of MACBETH), but in GRIP it may not be complete.

3. GRIP is a “disaggregation–aggregation” approach while MACBETH makes use
of the “aggregation” approach and, therefore, it needs weights to aggregate eval-
uations on the criteria.

4. GRIP works with all compatible value functions, while MACBETH
builds a single interval scale for each criterion, even if many such scales would
be compatible with preference information.

9.5 Robust Ordinal Regression for Multiple Criteria
Sorting Problems

Robust ordinal regression has been proposed also for sorting problems [32, 35, 45].
In the following, we present the new UTADISGMS method [32,35]. UTADISGMS con-
siders an additive value function

U.a/ D
nX

iD1

ui .gi .a//

as a preference model (a 2 A). Let us remember that sorting procedures consider a
set of p predefined preference ordered classes C1; C2; : : : ; Cp, where ChC1 � Ch

(� a complete order on the set of classes), h D 1; : : : ; p � 1. The aim of a sorting
procedure is to assign each alternative to one class or to a set of contiguous classes.
The robust ordinal regression uses a value function U to decide the assignments in
such a way that if U.a/ > U.b/, then a is assigned to a class not worse than b.

We suppose the DM provides preference information in form of possibly impre-
cise assignment examples on a reference set A�, i.e., for all a� 2 A� the DM defines
a desired assignment a� ! ŒCLDM .a�/; CRDM .a�/�, where ŒCLDM .a�/; CRDM .a�/�

is an interval of contiguous classes CLDM .a�/, CLDM .a�/C1, ..., CRDM .a�/. Each
such alternative is called a reference alternative. A� � A is called the set of ref-
erence alternatives. An assignment example is said to be precise if LDM .a�/ D
RDM .a�/, and imprecise, otherwise.

Given a value function U , a set of assignment examples is said to be consistent
with U iff

8a�; b� 2 A�; U.a�/ � U.b�/ ) RDM .a�/ � LDM .b�/ (9.7)

which is equivalent to

8a�; b� 2 A�; LDM .a�/ > RDM .b�/ ) U.a�/ > U.b�/ (9.8)

On the basis of (9.8), we can state that, formally, a general additive compati-
ble value function is an additive value function U.a/ D Pn

iD1 ui .a/ satisfying the
following set of constraints:
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U.a�/ > U.b�/ , LDM .a�/ > RDM .b�/ 8a�; b� 2 A�
ui .gi .a�i .j ///� ui .gi .a�i .j �1/// � 0; i D 1; :::; n; j D 2; :::; m

ui .gi .a�i .1/// � 0; ui.gi .a�i .m/// 
 ui .ˇi /; i D 1; :::; n;

ui .˛i / D 0; i D 1; :::; n
nX

iD1

ui .ˇi / D 1;

9
>>>>>>>=

>>>>>>>;

.EA�

/

where ˛i and ˇi are, respectively, the worst and the best evaluations on each crite-
rion gi , and �i is the permutation on the set of indices of alternatives from A� that
reorders them according to the increasing evaluation on criterion gi , i.e.,

gi .a�i .1// 
 gi .a�i .2// 
 : : : 
 gi .a�i .m�1// 
 gi .a�i .m//:

Let us observe that the set of constraints .EA�

/ is equivalent to

U.a�/ � U.b�/C " , LDM .a�/ > RDM .b�/ 8a�; b� 2 A�
ui .gi .a�i .j /// � ui .gi .a�i .j �1/// � 0; i D 1; :::; n; j D 2; :::; m

ui .gi .a�i .1/// � 0; ui .gi .a�i .m/// 
 ui .ˇi /; i D 1; :::; n;

ui .˛i / D 0; i D 1; :::; n
nX

iD1

ui .ˇi / D 1;

9
>>>>>>>=

>>>>>>>;

.EA�

/0

with " > 0. Thus, to verify that the set of all compatible value functions UA� is not
empty, it is sufficient to verify that "� > 0, where "� D max ", subject to set of
constraints .EA�

/0.
Taking into account a single value function U 2 UA� and its associated assign-

ment examples relative to the reference set A�, an alternative a 2 A can be assigned
to an interval of classes ŒCLU .a/; CRU .a/�, in the following way:

LU .a/ D Max
�
f1g [

n
LDM .a�/ W U.a�/ 
 U.a/; a� 2 AR

o�
; (9.9)

RU .a/ D Min
�
fpg [

n
RDM .a�/ W U.a�/ � U.a/; a� 2 AR

o�
: (9.10)

For each nonreference alternative a 2 A n A� the indices satisfy the following
condition:

LU .a/ 
 RU .a/: (9.11)

In order to take into account the whole set of value functions one can proceed as
follows. Given a set A� of assignment examples and a corresponding set UA� of
compatible value functions, for each a 2 A, we define the possible assignment
CP .a/ as the set of indices of classes Ch for which there exist at least one value
function U 2 UA� assigning a to Ch, and the necessary assignment CN .a/ as set of
indices of classes Ch for which all value functions U 2 U assign a to Ch, that is:

CP .a/ D
n
h 2 H W 9U 2 UA� for which h 2

h
LU .a/; RU .a/

io
(9.12)

CN .a/ D
n
h 2 H W 8U 2 UA� it holds h 2

h
LU .a/; RU .a/

io
(9.13)
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To compute the possible and necessary assignments CP .a/ and CN .a/, we can
consider the following indices:

� minimum possible class:

LU
P .a/ D Max

�
f1g [

n
LDM .a�/ W 8U 2 UA� ; U.a�/ 
 U.a/; a� 2 A�o�

(9.14)� minimum necessary class:

LU
N .a/ D Max

�
f1g [

n
LDM .a�/ W 9U 2 UA� for which U.a�/ 
 U.a/; a� 2 A�o�

(9.15)
� maximum necessary class:

RU
N .a/ D Min

�
fpg [

n
RDM .a�/ W 9U 2 UA� for which U.a/ 
 U.a�/; a� 2 A�o�

(9.16)
� maximum possible class:

RU
P .a/ D Min

�
fpg [

n
RDM .a�/ W 8U 2 UA� ; U.a/ 
 U.a�/; a� 2 A�o�

(9.17)

Using indices LU
P .a/, L

U
N .a/, R

U
N .a/ and RU

P .a/, the possible and necessary
assignments CP .a/ and CN .a/ can be expressed as follows:

CP .a/ D �
LU

P .a/; R
U
P .a/

�

and, if LU
N .a/ 
 RU

N .a/, then

CN .a/ D �
LU

N .a/; R
U
N .a/

�

while, if LU
N .a/ > R

U
N .a/, then

CN .a/ D ;:

As in the methods UTAGMS and GRIP, on the basis of all compatible value functions
UA� , we can define two binary relations on the set of alternatives A:

� Necessary weak preference relation %N , in case U.a/ � U.b/ for all compat-
ible value functions

� Possible weak preference relation %P , in case U.a/ � U.b/ for at least one
compatible value function

Using necessary weak preference relation %N and possible weak preference re-
lation %P we can redefine indices LU

P .a/, L
U
N .a/, R

U
N .a/ and RU

P .a/ as follows:

� minimum possible class:

LU
P .a/ D Max

�
f1g [

n
LDM .a�/ W a %N a�; a� 2 A�o�

; (9.18)
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� minimum necessary class:

LU
N .a/ D Max

�
f1g [

n
LDM .a�/ W a %P a�; a� 2 A�

o�
; (9.19)

� maximum necessary class:

RU
N .a/ D Min

�
fpg [

n
RDM .a�/ W a� %P a; a� 2 A�o�

; (9.20)

� maximum possible class:

RU
P .a/ D Min

�
fpg [

n
RDM .a�/ W a� %N a; a� 2 A�o�

: (9.21)

Thus, using necessary weak preference relation %N and possible weak prefer-
ence relation %P , it is possible to deal quite simply with the sorting problem.

Therefore, on the basis of the above observations, the following example-based
sorting procedure can be proposed:

1. Ask the DM for an exemplary sorting.
2. Verify that the set of compatible value functions UA� is not empty.
3. Calculate the necessary and the possible weak preference relations a %N a�,
a %P a�, a� %N a and a� %P a, with a� 2 A� and a 2 A.

4. Calculate for each a 2 A the indices LU
P .a/, L

U
N .a/, R

U
N .a/ and RU

P .a/ using
(9.18), (9.19), (9.20) and (9.21).

5. Assign to each a 2 A its possible assignment CP .a/ D �
LU

P .a/; R
U
P .a/

�
.

6. Assign to each a 2 A its necessary assignment, which is CN .a/ D�
LU

N .a/; R
U
N .a/

�
in case LU

N .a/ 
 RU
N .a/, and CN .a/ D ; otherwise.

In [16], one can find a proposal how to handle within UTADISGMS an additional
preference information about intensity of preference.

9.6 The Most Representative Value Function

The robust ordinal regression builds a set of additive value functions compatible
with preference information provided by the DM and results in two rankings, nec-
essary and possible. Such rankings answer to robustness concerns, since they are
in general “more robust” than a ranking made by an arbitrarily chosen compatible
value function. However, in practice, for some decision-making situations, a score is
needed to assign to the different alternatives, and despite the interest of the rankings
provided, some users would like to see, and they indeed need to know, the “most
representative” value function among all the compatible ones. This allows assign-
ing a score to each alternative.
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Recently, a methodology to identify the “most representative” value function in
GRIP, without loosing the advantage of taking into account all compatible value
functions, has been proposed in [17]. The idea is to select among compatible value
functions that one which better highlights the necessary ranking maximizing the
difference of values between alternatives for which there is a preference in the nec-
essary ranking. As secondary objective, one can consider minimizing the difference
of values between alternatives for which there is no preference in the necessary rank-
ing. This comprehensive “most representative” value function can be determined via
the following procedure:

1. Determine the necessary and the possible rankings in the considered set of alter-
natives.

2. For all pairs of alternatives .a; b/, such that a is necessarily preferred to b, add
the following constraints to the linear programming constraints of GRIP:U.a/ �
U.b/C ".

3. Maximize the objective function ".
4. Add the constraint " D "�, with "� D max " from the previous point, to the

linear programming constraints of robust ordinal regression.
5. For all pairs of alternatives .a; b/, such that neither a is necessarily preferred to
b nor b is necessarily preferred to a, add the following constraints to the linear
programming constraints of GRIP and to the constraints considered in above
point 4): U.a/� U.b/ 
 ı and U.b/� U.a/ 
 ı.

6. Minimize the objective function ı.

This procedure maximizes the minimal difference between values of alternatives
for which the necessary preference holds. If there is more than one such value func-
tion, the above procedure selects the most representative compatible value function
giving the greatest minimal difference between values of alternatives for which the
necessary preference holds, and the smallest maximal difference between values of
alternatives for which the possible preference holds.

Notice that the concept of the “most representative” value function thus defined is
still based on the necessary and possible preference relations, which remain crucial
for GRIP, and, in a sense, it gives the most faithful representation of this necessary
and possible preference relations.

In [27] the concept of the “most representative” value function has been extended
to robust ordinal regression applied to sorting problems within UTADIS GMS.

The idea is to select among all compatible value functions that one which bet-
ter highlights the possible sorting considered as the most stable part of the robust
sorting obtained by UTADISGMS. In consequence, the selected value function is that
one which maximizes the difference of values between alternatives for which the in-
tervals of possible sorting are disjoint. As secondary objective, to tie-breaking, one
can wish to maximize the minimal difference between values of alternatives a and b
such that for any compatible value functionU a is assigned to a class not worse than
the class of b and for at least one compatible value function a is assigned to a class
which is better than the class of b. In case there is still more than one such value
function, the “most representative” function minimizes the maximal difference be-
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tween values of alternatives a and b being in the same class for all compatible value
functions U or such that the order of classes is not univocal in the sense that for
some compatible value functions U a is assigned to a class better than b and for
other compatible value function b is assigned to a class better than a.

The following three-stage procedure for determining the most representative
value function can be proposed:

1. Determine the possible sorting CP .a/ and the necessary sorting CN .a/ for each
considered alternative a 2 A.

2. For all pairs of alternatives .a; b/, such that LU
P .a/ > R

U
P .b/, add the following

constraint to the linear programming constraints of UTADISGMS, EAR
:

U.a/ � U.b/C ":

3. Maximize the objective function " subject to the set of linear constraints from
point 2.

4. Add the constraint " D "�, with "� D max " from the previous point, to the
linear programming constraints of UTADISGMS, EAR

.
5. For all pairs of alternatives .a; b/, such that for any compatible value function
U a is assigned to a class not worse than the class of b and for at least one
compatible value function a is assigned to a class which is better than the class
of b, add the following constraint to the linear programming constraints from
point 4:

U.a/ � U.b/C �:

6. Maximize the objective function � subject to the set of linear constraints from
point 5.

7. Add the constraint � D ��, with �� D max � from the previous point, to the
linear programming constraints from point 5.

8. For all pairs of alternatives .a; b/, such that they are in the same class for all
compatible value functions U , or such that the order of classes is not univo-
cal, add the following constraints to the linear programming constraints from
point 7:

U.a/� U.b/ 
 ı and U.b/� U.a/ 
 ı:

9. Minimize the objective function ı subject to the set of linear constraints from
point 8.

Notice that the concept of the “most representative” value function thus defined
is based on the possible assignments and supplies the most faithful representation of
the recommendation given by UTADISGMS. Therefore, it can play a significant role
in supporting the DM to understand the results of the robust sorting. Moreover, the
most representative value function UR chosen according to the above principles,
can be used along with the assignment examples supplied at the beginning by the
DM to drive an autonomous example-based sorting procedure. In such a way the
most representative assignment for each alternative a 2 A can be determined.
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9.7 Nonadditive Robust Ordinal Regression

To take into account interactions between criteria, robust ordinal regression has been
applied to Choquet integral [2].

Let 2G be the power set of G (i.e., the set of all the subsets of the set of criteria
G); a fuzzy measure onG is defined as a set function� W 2G ! Œ0; 1�which satisfies
the following properties:

(1a) �.;/ D 0 and �.G/ D 1 (boundary conditions)
(2a) 8 T � R � G; �.T / 
 �.R/ (monotonicity condition)

In the framework of multiple criteria decision problems, a fuzzy measure �.R/
is related to the importance weight given by the DM to every subset of criteria R
that can be evaluated by the Shapley value [56], defined later in this section.

Let x 2 A and � be a fuzzy measure on G, then the Choquet integral [11] is
defined by:

C�.x/ D
nX

iD1

��
g.i/.x/

� � �
g.i�1/ .x/

��
� .Ai /; (9.22)

where .�/ stands for a permutation of the indices of evaluations of criteria such that:

g.1/ .x/ 
 g.2/ .x/ 
 g.3/ .x/ 
 ::: 
 g.n/ .x/;

with Ai D f.i/; : : : ; .n/g, i D 1; : : : ; n; and g.0/ D 0.
One of the main drawbacks of the Choquet integral is the necessity to elicit and

give an adequate interpretation of 2jGj �2 parameters. In order to reduce the number
of parameters to be computed and to eliminate a too strict description of the inter-
actions among criteria, which is not realistic in many applications, one can consider
the concept of fuzzy k-additive measure [22].

Given a partial preorder � onAR, a set of fuzzy measures � is called compatible
if the Choquet integral, calculated with respect to it, restores the DM’s ranking on
AR, i.e.,

a � b , C�.a/ � C�.b/ 8a; b 2 AR:

The procedure proposed is composed of three successive phases:

(I) Elicitation of preference information on a reference setAR � A of alternatives
(II) Evaluation of all the compatible fuzzy measures to establish the preference

relations a �P b and a �N b for every ordered pair of alternatives .a; b/ 2
A 	 A

(III) Exploitation of the results obtained to detect possible DM’s inconsistencies or
to revise the preference model obtained

In the phase of elicitation of preference information, the DM is asked to provide
the following preference information:
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(a) A partial preorder � on AR, i.e., for a; b 2 AR:

a � b , a is at least as good as b:

(b) A partial preorder �� on AR 	 AR, i.e., for a; b; c; d 2 AR

.a; b/ �� .c; d / , a is preferred to b

at least as much as c is preferred to d:

(c) A partial preorder F on G, for i; j 2 G, whose definition is:

i F j , criterion i is more important than criterion j:

(d) A partial preorder F� on G 	G, whose definition is: for i; j; l; k 2 G .i; j / F�
.l; k/ , the difference of importance between criteria i and j is at least as
much as difference of importance between criteria l and k.

(e) A sign (positive or negative) of interaction of couples of criteria.
(f) A partial preorder FInt on G 	G, whose definition is: for i; j; l; k 2 G,

.i; j / FInt .l; k/ ,

intensity of interaction between criteria i and j is at least as strong as intensity
of interaction between criteria l and k.

(g) A partial preorder F�
Int on G4, whose definition is: for i; j; l; k; r; s; t;w 2 G,

Œ.i; j /; .l; k/� F�
Int Œ.r; s/; .t;w/� ,

difference of intensity of interaction between criteria i and j , and intensity of
interaction between criteria l and k is at least as strong as difference of intensity
of interaction between criteria r and s, and intensity of interaction between
criteria t and w: In this phase, the DM compares the intensity of interaction for
pairs of criteria, both redundant or synergic.

The preference information of type (b), (d), (f) and (g) can be provided by the
DM using a semantic scale in a similar way to the approaches of MACBETH [6],
AHP [54] and GRIP [18]. More precisely, given an ordinal scale such as “null,”
“small,” “medium,” “large,” and “extreme,” the DM can give information of the
type: “the preference of alternative a over alternative b is large” or “the difference of
importance between criteria gi and gj is medium” or “the synergy between criteria
gi and gj is small”.

In Phase II, the set of all compatible fuzzy measures is determined as those fuzzy
measures satisfying a system of linear constraints representing all the preference
information given by the DM in Phase I, plus the monotonicity and boundary con-
ditions of fuzzy measures.

In Phase III, the obtained preference model, i.e., the system of linear constraints
determining the set of all compatible fuzzy measures, is used to determine the
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necessary preference relation �N and the possible preference relation �P on A,
as follows:

x �N y , C�.x/ � C�.y/

for all compatible sets of fuzzy measures �, with x; y 2 A, and

a �P b , C�.x/ � C�.y/

for at least one compatible set of fuzzy measures �, with x; y 2 A.
In [3], nonadditive robust ordinal regression has been proposed to deal with

sorting problems. In simple words, the methodology follows the principle of
UTADISGMS, but considering the Choquet integral, instead of an additive value
function. In [4], nonadditive robust ordinal regression has been extended in turn
to deal with some generalizations of Choquet integral, such as bipolar Choquet
integral [23, 24, 30] and the level dependent Choquet integral [26].

9.8 Robust Ordinal Regression in Interactive Multiobjective
Optimization

Classical ordinal regression methods have been applied in Multiobjective Optimiza-
tion (MOO) in [38] and in [57], where an additive value function interactively built
using the UTA method is optimized within the feasible region. In the same spirit,
robust ordinal regression has been applied to MOO problems in [15], as explained
below. We assume that the Pareto optimal set of an MOO problem is generated prior
to an interactive exploration of this set. Instead of the whole and exact Pareto opti-
mal set of a MOO problem, one can also consider a proper representation of this set,
or its approximation. In any case, an interactive exploration of this set should lead
the DM to a conviction that either there is no satisfactory solution to the considered
problem, or there is at least one such solution. We will focus our attention on the
interactive exploration, and the proposed interactive procedure will be valid for any
finite set of solutions to be explored. Let us denote this set by A. Note that such
set A can be computed using evolutionary multiobjective optimization. For a recent
state of the art of interactive and evolutionary approaches to MOO, see [8].

In the course of the interactive procedure, the preference information provided
by the DM concerns a small subset of A, called reference or training sample, and
denoted by AR. The preference information is transformed by an ordinal regres-
sion method into a DM’s preference model. We propose to use at this stage the
GRIP method, thus the preference model is a set of general additive value functions
compatible with the preference information. A compatible value function compares
the solutions from the reference sample in the same way as the DM. The obtained
preference model is then applied on the whole set A, which results in possible and
necessary rankings of solutions. These rankings are used to select a new sample of
reference solutions, which is presented to the DM, and the procedure cycles until
a satisfactory solution is selected from the sample or the DM comes to conclusion
that there is no satisfactory solution for the current problem setting.
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The proposed interactive procedure is composed of the following steps:

� Step 1. Select a representative reference sample AR of solutions from set A.
� Step 2. Present the sample AR to the DM.
� Step 3. If the DM is satisfied with at least one solution from the sample, then this

is the satisfactory solution and the procedure stops. The procedure also stops in
this step if the DM concludes that there is no satisfactory solution for the current
problem setting. Otherwise continue.

� Step 4. Ask the DM to provide information about his/her preferences on set AR

in the following terms:

– Pairwise comparison of some solutions from AR

– Comparison of intensities of comprehensive preferences between some
pairs of solutions from AR

– Comparison of intensities of preferences on single criteria between some
pairs of solutions from AR

� Step 5. Use the GRIP method to build a set of additive monotonically nonde-
creasing value functions compatible with the preference information obtained
from the DM in Step 4.

� Step 6. Apply the set of compatible value functions built in Step 5 on the whole
set A, and present the possible and necessary rankings (see Section 9.4.2) re-
sulting from this application to the DM.

� Step 7. Taking into account the possible and necessary rankings, let the DM
select a new reference sample of solutions AR � A , and go to Step 2.

In Step 4, the information provided by the DM may lead to a set of constraints,
which define an empty polyhedron of the compatible value functions. In this case,
the DM gets information about which items of his/her preference information make
the polyhedron empty, so as to enable revision in the next round. This point is ex-
plained in detail in [18, 34]. Moreover, information provided by the DM in Step 4
cannot be considered as irreversible. Indeed, the DM can retract to one of previous
iterations and continue from this point. This feature is concordant with the spirit of a
learning oriented conception of multiobjective interactive optimization, i.e., it con-
firms the idea that the interactive procedure permits the DM to learn about his/her
preferences and about the “shape” of the Pareto optimal set (see [7]).

Notice that the proposed approach allows to elicit incrementally preference
information from the DM. In Step 7, the “new” reference sample AR is not neces-
sarily different from the previously considered, however, the preference information
elicited from the DM in the next iteration is richer than previously, due to the learn-
ing effect. This permits to build and refine progressively the preference model: in
fact, each new item of information provided in Step 4 restricts the set of compatible
value functions and defines the DM’s preferences more and more precisely.

Let us also observe that information obtained from the DM in Step 4 and infor-
mation given to the DM in Step 6 is composed of very simple and easy to understand
statements: preference comparisons in Step 4, and possible and necessary rankings
in Step 6 (i.e., a necessary ranking that holds for all compatible value functions,
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and a possible ranking that holds for at least one compatible value function; see
Section 9.4.2). Thus, the nature of information exchanged with the DM during the
interaction is purely ordinal. Indeed, monotonically increasing transformations of
evaluation scales of considered criteria have no influence on the final result.

Finally, observe that a very important characteristic of our method from the point
of view of learning is that the DM can observe the impact of information provided
in Step 4 in terms of possible and necessary rankings of solutions from set A.

9.9 Robust Ordinal Regression in Evolutionary Interactive
Multiobjective Optimization

Most of the research in evolutionary multiobjective optimization (EMO) attempts to
approximate the complete Pareto optimal front by a set of well-distributed represen-
tatives of Pareto optimal solutions. The underlying reasoning is that in the absence
of any preference information, all Pareto optimal solutions have to be considered
equivalent.

On the other hand, in most practical applications, the DM is eventually interested
in only a single solution. In order to come up with a single solution, it is necessary
to involve the DM. This is the underlying idea of another multiobjective optimiza-
tion paradigm: interactive multiobjective optimization (IMO). IMO deals with the
identification of the most preferred solution by means of a systematic dialogue with
the DM. Only recently, the scientific community has discovered the great potential
of combining the two paradigms (for a recent survey, see [41]). From the point of
view of EMO, involving the DM in an interactive manner will allow to focus the
search on the area of the Pareto front which is most relevant to the DM. This, in
turn, may allow to find more appropriate solutions faster. In particular, in the case
of many objectives, EMO has difficulties, because the number of Pareto-optimal
solutions becomes huge, and Pareto-optimality is not sufficiently discriminative
to guide the search into better regions. Integrating user preferences promises to
alleviate these problems, allowing to converge faster to the preferred region of the
Pareto-optimal front.

Robust ordinal regression has been applied to EMO in a methodology called
NEMO (Necessary preference-based Evolutionary Multiobjective Optimization)
presented in [9, 10]. NEMO combines NSGA-II [12], a widely used EMO tech-
nique, with the IMO methodology based on robust ordinal regression presented
in Section 9.4. The NEMO methodology takes into account the information about
necessary preferences, given by the robust ordinal regression, in order to focus the
search on the most promising parts of the Pareto optimal front. More specifically,
robust ordinal regression based on information obtained through interaction with
the DM determines the set of compatible value functions, and an EMO procedure
searches for all nondominated solutions taking into account all compatible value
functions in parallel.
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We believe that the integration of robust ordinal regression into EMO is
particularly promising for two reasons:

1. The preference information required by robust ordinal regression is very basic
and easy to provide by the DM. All that the DM is asked for is to compare two
nondominated solutions, and to reveal whether one is preferred over the other.

2. The resulting set of compatible value functions reveals implicitly an appropriate
scaling of the criteria, an issue that is largely ignored by the EMO community
so far.

A crucial step in NSGA-II, is the ranking of solutions (individuals) in a current
population according to two criteria.

The primary criterion is the so-called dominance-based ranking. This criterion
ranks individuals by iteratively determining the nondominated solutions in the pop-
ulation (nondominated front), assigning those individuals the next best rank, and
removing them from the population. The result is a partial ordering, favoring indi-
viduals closer to the Pareto optimal front.

According to the secondary criterion, individuals which have the same dominan-
ce-rank (primary criterion) are sorted with respect to the crowding distance, which
is defined as the sum of distances between a solution and its neighbors on either side
in each dimension of the objective space. Individuals with a large crowding distance
are preferred, as they are in a less crowded region of the objective space, which is
concordant with the goal of preserving diversity in the population.

NEMO combines the robust ordinal regression with NSGA-II in three different
variants:

� NEMO-0: a single compatible value function is used to rank solutions in a pop-
ulation. For example, one can consider the value function obtained by the UTA
method.

� NEMO-I: the whole set of compatible value functions is considered and the dom-
inance relation used in NSGA-II to rank solutions is replaced by the necessary
preference relation of robust ordinal regression.

� NEMO-II: the whole set of compatible value functions is also considered, but
differently from NEMO-I, the solutions in the population are ranked according
to a score calculated as the max–min difference of values between a given solu-
tion and other solutions in the population, for the whole set of compatible value
functions.

In NEMO-0, NEMO-I, and NEMO-II, the following types of value functions are
considered:

� Linear value function, i.e.,

U.g.a// D �1.g1.a//C �2.g2.a//C : : :C �n.gn.a// with a 2 A;

�1 � 0; �2 � 0; : : : ; �n � 0; �1 C �2 C : : :C �n D 1

� Piecewise-linear value function, as in the UTA method (see Section 9.3)
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� General additive value function, as in the UTAGMS and GRIP methods (see
Section 9.4)

Observe that the NEMO-I variant with a linear value function corresponds to the
method proposed in [37].

In the following, we present NEMO-I with a general additive value function,
which was the first variant proposed in [9]. The modifications of NEMO-I with
respect to NSGA-II are the following:

1. NEMO-I replaces the dominance-based ranking procedure by the necessary
ranking procedure. The necessary ranking procedure works analogously to the
dominance-based ranking procedure, but taking into account the preference in-
formation by the DM through the necessary preference relations. More precisely,
the procedure first puts in the best rank all solutions, which are not preferred by
any other solution in the population, then removes them from the population and
creates the second best rank composed of solutions, which are not preferred by
any other solution in the reduced population, and so on.

2. NEMO-I replaces the crowding-distance by a distance calculated in the space
of marginal values, taking into account the multidimensional scaling given by
the “the most representative” value function among the whole set of compatible
value functions (see Section 9.7). More precisely, the crowding distance is cal-
culated according to the procedure used in NSGA-II with the only difference that
in calculating the average side-length of the cuboid the distance is measured in
terms of marginal values of the “most representative” value function.

Preferences are elicited by asking the DM to compare pairs of nondominated solu-
tions, and specify a preference relation between them.

The overall NEMO-I algorithm is outlined in Algorithm 1. Although the gen-
eral procedure is rather straightforward, there are several issues that need to be
considered:

Algorithm 1: Basic NEMO-I
Generate initial solutions randomly
Elicit DM’s preferences fPresent to the DM a pair of nondominated solutions and ask for a
preference comparisong
Determine necessary ranking fReplaces dominance ranking in NSGA-IIg
Determine secondary ranking fOrder solutions within the same rank, based on the crowding
distance measured in terms of the “most representative value function”g
repeat

Mating selection and offspring generation
if Time to ask the DM then

Elicit DM’s preferences
end if
Determine necessary ranking
Determine secondary ranking
Environmental selection

until Stopping criterion met
Return all preferred solutions according to necessary ranking



9 Robust Ordinal Regression 271

1. How many pairs of solutions are shown to the DM, and when? In [9], one pair-
wise comparison of nondominated solutions was asked every k generations, i.e.,
every k generations, NEMO-I is stopped, and the user is asked to provide pref-
erence information about one given pair of individuals. Preliminary experiments
show that k D 20 in 300 generation runs gives satisfactory results.

2. Which pairs of solutions should be presented to the DM for comparison? In [9],
each pair of solutions was picked randomly from among the best solutions not
related by the necessary preference relation, i.e., from solutions having the best
rank. This avoids that the DM can specify inconsistent information, inverting the
necessary preference relation (including dominance) between two solutions. To
speed up convergence, it would be reasonable, however, to pick pairs of solutions
having the best rank and being close with respect to the overall value but diversi-
fied on respective marginal values, for “the most representative” value function.

An important remark about the NEMO methodology regards its approximation
power. In fact, NSGA-II can identify all nondominated solutions, even improper
ones, i.e., nondominated points that allow unbounded trade-off between objective
functions [20], in problems where the nondominated frontier has discontinuities or
it is nonconvex. From this point of view, NEMO methodology maintains this good
property. More precisely, considering linear value functions in NEMO-0 or NEMO-
II, one cannot deal with improper solutions and discontinuous or nonconvex frontier,
because there can be no linear value function giving the best value to some efficient
solutions. NEMO-I can find, however, all nondominated points because it compares
pairs of solutions and, therefore, there can be linear compatible value functions
for which the considered nondominated solution, possibly improper, is preferred
to other nondominated solutions, even in case of discontinuities of nonconvexity.
Using a general additive value function in NEMO-0, NEMO-I, or NEMO-II, im-
proper efficient points, discontinuous or nonconvex nondominated frontiers can be
dealt without any difficulty. To explain this ability, remark that:

(a) The class of value functions, which can be expressed as additive value functions
is very large, including, for instance, value functions of the form

U.g.a// D u1.g1.a//
�1 	 u2.g2.a//

�2 	 : : : 	 un.gn.a//
�n

with a 2 A; �1 � 0; �2 � 0; : : : ; �n � 0; whose logarithm takes the form

U �Œg.a/� D logŒU.g.a//� D �1 	 logŒu1.g1.a//�C �2 	 logŒu2.g2.a//�

C : : :C �n 	 logŒun.gn.a//�:

(b) Marginal value functions ui .gi .a//, i D 1; : : : ; n, can be constant in some parts
of their domains

Remark (a) explains why NEMO-I and NEMO-II are able to deal with discontinuous
and nonconvex nondominated frontiers, while remark (b) explains why NEMO-I and
NEMO-II are able to deal with improper points.
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Piecewise linear value functions have a behavior, which is intermediate between
the linear value functions and general additive value functions. One can say, in gen-
eral, that the greater the number of linear pieces assumed for each marginal value
function, the more similar the final results are to the case of general additive value
functions. This means that increasing the number of linear pieces, one improves
the capacity of dealing with improper solutions, discontinuities and nonconvexities.
However, the more flexible the value function model, the more preference informa-
tion, and thus more interactions with the DM, is required to focus the search on the
most preferred region of the Pareto optimal front.

9.10 Robust Ordinal Regression for Outranking Methods

Outranking relation is a noncompensatory preference model used in the ELECTRE
family of MCDA methods [52]. Its construction involves two concepts known as
concordance and discordance. Outranking relation, usually denoted by S , is a binary
relation on a setA of alternatives. For an ordered pair of alternatives .a; b/ 2 A, aSb
means “a is at least as good as b.” The assertion aSb is considered to be true if the
coalition of criteria being in favor of this statement is “strong enough” comparing
to the rest of criteria, and if among the criteria opposing to this statement, there
is no one for which a is “significantly worse” than b. The first condition is called
concordance test, and the second, non-discordance test.

Let us denote by ki the weight assigned to criterion gi , i D 1; : : : ; n; it represents
a relative importance of criterion gi within family F of n criteria. The indifference,
preference and veto thresholds on criterion gi are denoted by qi , pi and vi , respec-
tively. For consistency, vi > pi > qi � 0, i D 1; : : : ; n. In all formulae that follow,
we suppose, without loss of generality, that all these thresholds are constant, that
preferences are increasing with evaluations on particular criteria, and that criteria
are identified by their indices.

The concordance test involves calculation of concordance index C.a; b/. It rep-
resents the strength of the coalition of criteria being in favor of aSb. This coalition
is composed of two subsets of criteria:

� Subset of criteria being clearly in favor of aSb, i.e., such that gi .a/ � gi .b/�qi .
� Subset of criteria that do not oppose to aSb, while being in an ambiguous po-

sition with respect to this assertion; these are those criteria for which a weak
preference relation bQa holds; i.e., such that gi .b/� pi 
 gi .a/ < gi .b/� qi .

Consequently, the concordance index is defined as

C.a; b/ D

nX

iD1

	i .a; b/ 	 ki

nX

iD1

ki

; (9.23)
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where, for i D 1; : : : ; n,

	i .a; b/ D

8
ˆ̂
<

ˆ̂
:

1; if gi .a/ � gi .b/� qi ,
gi .a/ � Œgi .b/ � pi �

pi � qi

; if gi .b/� pi 
 gi .a/ < gi .b/� qi ,

0; if gi .a/ < gi .b/� pi .
(9.24)

	i .a; b/ is a marginal concordance index, indicating to what extent criterion gi

contributes to the concordance index C.a; b/. As defined by (9.24), 	i .a; b/ is a
piecewise linear function, nondecreasing with respect to gi .a/� gi .b/.

Remark that C.a; b/ 2 Œ0; 1�, where C.a; b/ D 0 if gi .a/ 
 gi .b/ � pi , i D
1; : : : ; n (b is strictly preferred to a on all criteria), and C.a; b/ D 1 if gi .a/ �
gi .b/� qi , i D 1; : : : ; n (a outranks b on all criteria).

The result of the concordance test for a pair .a; b/ 2 A is positive if C.a; b/� �,
where � 2 Œ0:5; 1� is a cutting level, which has to be fixed by the DM.

Once the result of the concordance test has been positive, one can pass to the non-
discordance test. Its result is positive for the pair .a; b/ 2 A unless “a is significantly
worse than b” on at least one criterion, i.e., if gi .b/� gi .a/ < vi for i D 1; : : : ; n.

It follows from above that the outranking relation for a pair .a; b/ 2 A is true,
and denoted by aSb if both the concordance test and the non-discordance test are
positive. On the other hand, the outranking relation for a pair .a; b/ 2 A is false,
and denoted by aScb, either if the concordance test or the non-discordance test is
negative.

KnowingS or Sc for all ordered pairs .a; b/ 2 A, one can proceed to exploitation
of the outranking relation in set A, which is specific for the choice, or sorting or
ranking problem, as described in [19].

Experience indicates that elicitation of preference information necessary for con-
struction of the outranking relation is not an easy task for a DM. In particular, the
inter-criteria preference information concerning the weights of criteria and the veto
thresholds are difficult to be expressed directly.

For this reason, some disaggregation–aggregation procedures have been pro-
posed in the past to assist the elicitation of the weights of criteria and all the
thresholds required to construct the outranking relation [48–50]. The most general
proposal, however, has been presented in [33,36]. It permits to asses the whole set of
outranking relations compatible with some exemplary pairwise comparisons of few
real or fictitious reference alternatives, using a robust ordinal regression approach.
Below, we briefly sketch this proposal.

We assume that the preference information provided by the DM is a set of pair-
wise comparisons of some reference alternatives. The set of reference alternatives
is denoted by AR, and it is usually, although not necessarily, a subset of set A. The
comparison of a pair of alternatives .a; b/ 2 AR states the truth or falsity of the
outranking relation, denoted by aSb or aScb, respectively. It is worth stressing that
the DM does not need to provide all pairwise comparisons of reference alternatives,
so this comparison can be confined to a small subset of pairs.
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We also assume that the intra-criterion preference information concerning indif-
ference and preference thresholds pi > qi � 0, i D 1; : : : ; n, is given. The last
assumption is not unrealistic because these thresholds are relatively easy to provide
by an analyst who is usually aware what is the precision of criteria, and how much
difference is nonsignificant or relevant.

In order to simplify calculations of the ordinal regression, we assume that the
weights of criteria sum up to one, i.e.,

Pn
iD1 ki D 1. Thus, (9.23) becomes

C.a; b/ D
nX

iD1

	i .a; b/ 	 ki D
nX

iD1

 i .a; b/; (9.25)

where the marginal concordance index  i .a; b/ D 	i .a; b/ 	 ki is a monotone
nondecreasing function with respect to gi .a/�gi .b/, such that  i .a; b/ � 0 for all
.a; b/ 2 AR 	 AR, i D 1; : : : ; n,  i .a; b/ D 0 for all gi .b/ � gi .a/ � pi , i D
1; : : : ; n, and

Pn
iD1 i .a; b/ D 1 in case gi .a/ � gi .b/ � �qi for all i D 1; : : : ; n.

The ordinal regression constraints defining the set of concordance indices
C.a; b/, cutting levels � and veto thresholds vi , i D 1; : : : ; n, compatible with
the pairwise comparisons provided by the DM have the following form:

C.a; b/ D
nX

iD1

 i .a; b/ � � and gi .b/� gi .a/ 	 vi � "; i D 1; : : : ; n;

if aSb; for .a; b/ 2 AR �AR;

C.a; b/ D
nX

iD1

 i .a; b/ 	 �� "CM0.a; b/ and gi.b/� gi .a/ 	 vi � ıMi .a; b/;

Mi .a; b/ 2 f0; 1g;
nX

iD0

Mi .a; b/ 	 n; i D 1; : : : ; n;

if aScb; for .a; b/ 2 AR �AR;

1 � � � 0:5; vi � pi ; i D 1; : : : ; n;

 i .a; b/ � 0; for all .a; b/ 2 AR �AR; i D 1; : : : ; n;

 i .a; b/ D 0 if gi .b/� gi.a/ � pi ; for all .a; b/ 2 AR � AR; i D 1; : : : ; n;
nX

iD1

 i .a; b/ D 1 if gi.a/� gi .b/ � �qi for all .a; b/ 2 AR � AR; i D 1; : : : ; n;

 i .a; b/ �  i.c; d/ if gi.a/� gi .b/ � gi .c/� gi.d/;

for all a; b; c; d 2 AR; i D 1; : : : ; n;

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

E.AR/

where " is a small positive value and ı is a big positive value. Remark that E.AR/

are constraints of a 0-1 mixed linear program.
Given a pair of alternatives .x; y/ 2 A, x necessarily outranks y, which is de-

noted by xSNy, if and only if d.x; y/ � 0, where

d.x; y/ D Min

(
nX

iD1

 i .x; y/ � �

)

;
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subject to constraints E.AR/, plus constraints  i .x; y/ � 0,  i .x; y/ D 0 if
gi .y/� gi .x/ � pi ;  i .a; b/ �  i .c; d / if gi .a/� gi .b/ � gi .c/� gi .d/, for all
a; b; c; d 2 AR [fx; yg; i D 1; : : : ; n,

Pn
iD1 i .x; y/ D 1 if gi .x/�gi .y/ � �qi

for all i D 1; : : : ; n, and gi .y/ � gi .x/ 
 vi , i D 1; : : : ; n.
d.x; y/ � 0 means that for all compatible outranking models x outranks y.

Obviously, for all .x; y/ 2 AR, xSy ) xSNy.
Analogously, given a pair of alternatives .x; y/ 2 A, x possibly outranks y,

which is denoted by xSPy, if and only if D.x; y/ � 0, where

D.x; y/ D Max

(
nX

iD1

 i .x; y/ � �

)

;

subject to constraints E.AR/, plus constraints  i .x; y/ � 0,  i .x; y/ D 0 if
gi .y/� gi .x/ � pi ;  i .a; b/ �  i .c; d / if gi .a/� gi .b/ � gi .c/� gi .d/, for all
a; b; c; d 2 AR [fx; yg; i D 1; : : : ; n,

Pn
iD1 i .x; y/ D 1 if gi .x/�gi .y/ � �qi

for all i D 1; : : : ; n, and gi .y/ � gi .x/ 
 vi , i D 1; : : : ; n.
D.x; y/ � 0 means that for at least one compatible outranking model x out-

ranks y.
Moreover, for any pair of alternatives .x; y/ 2 A:

xSNy , not.xScPy/ and xSPy , not.xScNy/

so, only xSNy and xSPy are to be checked.
The necessary and the possible outranking relations are to be exploited as usual

outranking relations in the context of choice, sorting, and ranking problems.

9.11 Robust Ordinal Regression for Multiple Criteria
Group Decisions

The robust ordinal regression can be adapted to the case of group decisions [36].
In this case, several DMs cooperate in a decision problem to make a collective de-
cision. DMs share the same “description” of the decision problem (the same set of
alternatives, family of criteria and performance matrix). Each DM provides his/her
own preference information, composed of pairwise comparisons of some reference
alternatives. The collective preference model accounts for the preference expressed
by each DM.

Let us denote the set of DMs by DD fd1; : : : ; dpg.
In case of ranking and choice problems, for each DM dh 2 D0 � D, we consider

all compatible value functions. Four situations are interesting for a pair .a; b/ 2 A:

� a �N;N
D0

b : a �N b for all dh 2 D0

� a �N;P
D0

b : a �N b for at least one dh 2 D0
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� a �P;N
D0

b : a �P b for all dh 2 D0

� a �P;P
D0

b : a �P b for at least one dh 2 D0

In case of sorting problems, for each DM dr 2 D0 � D, we consider the set of
all compatible value functions Udr

AR . Given a set AR of assignment examples, for
each a 2 A and for each DM dr 2 D0, we define his/her possible and necessary
assignments as

C
dr

P .a/ D
n
h 2 H W 9U 2 Udr

AR assigning a to Ch

o
; (9.26)

C
dr

N .a/ D
n
h 2 H W 8U 2 Udr

AR assigning a to Ch

o
: (9.27)

Moreover, for each subset of DMsD0 � D, we define the following assignments:

CD0

P;P .a/ D S
dr 2D0

C
dr

P .a/; (9.28)

CD0

N;P .a/ D S
dr 2D0

C
dr

N .a/; (9.29)

CD0

P;N .a/ D T
dr 2D0

C
dr

P .a/; (9.30)

CD0

N;N .a/ D T
dr 2D0

C
dr

N .a/: (9.31)

Possible and necessary assignments C
dr

P .a/ and C
dr

N .a/ are calculated for
each decision maker dr 2D using UTADISGMS, and then the four assignments
CD0

P;P .a/; C
D0

N;P .a/; C
D0

P;N .a/ and CD0

P;P .a/ can be calculated for all subsets of
decision makers D0 � D.

In case of application of robust ordinal regression to outranking methods, for
each DM dh 2D0 � D, we consider all compatible outranking models. Four situa-
tions are interesting for a pair .x; y/ 2 A:

� x S
N;N
D0

y : xSNy for all dh 2 D0

� x S
N;P
D0

y : xSNy for at least one dh 2 D0

� x S
P;N
D0

y : xSPy for all dh 2 D0

� x S
P;P
D0

y : xSPy for at least one dh 2 D0.

9.12 An Illustrative Example

In this section, we present a didactic example proposed in [15], illustrating how
robust ordinal regression can support the DM to specify his/her preferences in a
multiobjective optimization problem. In this didactic example, we shall imagine
an interaction with a fictitious DM so as to exemplify and illustrate the type of
interaction proposed in our methodology.

We consider an MOO problem involving five objectives that are to be maximized.
Let us consider a subset A of the Pareto frontier of the MOO problem consisting of
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Table 9.1 The set A of
Pareto optimal solutions for
the illustrative MOO problem

s1 D (14.5, 147, 4, 1014, 5.25)
s2 D (13.25, 199.125, 4, 1014, 4)
s3 D (15.75, 164.375, 16.5, 838.25, 5.25)
s4 D (12, 181.75, 16.5, 838.25, 4)
s5 D (12, 164.375, 54, 838.25, 4)
s6 D (13.25, 199.125, 29, 662.5, 5.25)
s7 D (13.25, 147, 41.5, 662.5, 5.25)
s8 D (17, 216.5, 16.5, 486.75, 1.5)
s9 D (17, 147, 41.5, 486.75, 5.25)
s10 D (15.75, 216.5, 41.5, 662.5, 1.5)
s11 D (15.75, 164.375, 41.5, 311, 6.5)
s12 D (13.25, 181.75, 41.5, 311, 4)
s13 D (12, 199.125, 41.5, 311, 2.75)
s14 D (17, 147, 16.5, 662.5, 5.25)
s15 D (15.75, 199.125, 16.5, 311, 6.5)
s16 D (13.25, 164.375, 54, 311, 4)
s17 D (17, 181.75, 16.5, 486.75, 5.25 )
s18 D (14.5, 164.375, 41.5, 838.25, 4)
s19 D (15.75, 181.75, 41.5, 135.25, 5.25)
s20 D (15.75, 181.75, 41.5, 311, 2.75)

20 solutions (see Table 9.1). Note that this set A is to be computed using MOO or
EMO algorithms (see [8]). Let us suppose that the reference sample AR of solu-
tions from set A is the following: AR D fs1; s2; s4; s5; s8; s10g. For the sake of
simplicity, we shall consider the set AR constant across iterations (although the in-
teraction scheme permitsAR to evolve during the process). For the same reason, we
will suppose that the DM expresses preference information only in terms of pair-
wise comparisons of solutions in AR (intensity of preference will not be expressed
in the preference information).

The DM does not see any satisfactory solution in the reference sample AR (s1,
s2, s4 and s5 have too weak evaluations on the first criterion, while s8 and s10

have the worst evaluation in A on the last criterion), and wishes to find a satisfac-
tory solution in A. Obviously, solutions in A are not comparable unless preference
information is expressed by the DM. In this perspective, he/she provides a first pair-
wise comparison: s1 � s2.

Considering the provided preference information, we can compute the necessary
and possible rankings on set A. The DM decided to consider the necessary ranking
only, as it has more readable graphical representation than the possible ranking at the
stage of relatively poor preference information. The partial preorder of the necessary
ranking is depicted in Fig. 9.1 and shows the comparisons that hold for all additive
value functions compatible with the information provided by the DM (i.e., s1 � s2).
It should be observed that the computed partial preorder contains the preference
information provided by the DM (dashed arrow), but also additional comparisons
that result from the initial information (continuous arrows); for instance, s3 �N s4
holds as U.s3/ > U.s4/ holds for all compatible value functions.
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s1

s2

s3

s4

s5 s6 s7 s8s9

s10

s11

s12 s13

s14 s15 s16

s17 s18 s19 s20

Fig. 9.1 Necessary partial ranking at the first iteration

Fig. 9.2 Necessary partial
ranking at the second iteration

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12 s13

s14

s15

s16

s17

s18

s19 s20

Analyzing this first result, the DM observes that the necessary ranking is still
very poor, which makes it difficult to discriminate among the solutions in A. He/she
reacts by stating that s4 is preferred to s5. Considering this new piece of preference
information, the necessary ranking is computed again and shown in Fig. 9.2. At this
second iteration, it should be observed that the resulting necessary ranking has been
enriched as compared to the first iteration (bold arrows), narrowing the set of “best
choices,” i.e., solutions that are not preferred by any other solution in the necessary
ranking: fs1, s3, s6, s8, s10, s14, s15, s17, s18, s19, s20 g.

The DM believes that this necessary ranking is still insufficiently decisive and
adds a new pairwise comparison: s8 is preferred to s10. Once again, the necessary
ranking is computed and shown in Fig. 9.3.

At this stage, the set of possible “best choices” has been narrowed down to a
limited number of solutions, among which s14 and s17 are judged satisfactory by the
DM. In fact, these two solutions have a very good performance on the first criterion
without “dramatically” bad evaluation on the other criteria.

The current example stops at this step, but the DM could then decide to provide
further preference information to enrich the necessary ranking. He/she could also
compute new Pareto optimal solutions “close” to s14 and s17 to focus the search
in this area. In this example, we have shown that the proposed interactive process
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s1
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s6

s7
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s9s10 s11
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s16

s17s18

s19 s20

Fig. 9.3 Necessary partial ranking at the third iteration

supports the DM in choosing most satisfactory solutions, without imposing any
strong cognitive effort, as the only information required is a holistic information.

9.13 Conclusions and Further Research Directions

In this chapter we presented the basic principle of robust ordinal regression, which
is to take into account all the sets of parameters of a preference model compatible
with the preference information given by the DM. We recalled the main multiple cri-
teria decision methods to which it has been applied, in particular UTAGMS and GRIP
dealing with choice and ranking problems, and UTADISGMS dealing with sorting
(ordinal classification) problems. We presented also robust ordinal regression ap-
plied to Choquet integral for choice, ranking, and sorting problems, with the aim
of representing interactions between criteria. Moreover, we described an interactive
multiobjective optimization methodology based on robust ordinal regression, and an
evolutionary multiobjective optimization methodology, called NEMO, which is also
using the principle of robust ordinal regression. In order to show that robust ordi-
nal regression is a general paradigm, independent of the type of preference model
involved, we described the robust ordinal regression methodology for outranking
methods, and for multiple criteria group decisions. Finally, we presented an exem-
plary application of robust ordinal regression methodology. Future research will be
related to the development of a user friendly software and to specialization of robust
ordinal regression methodology to specific real-life problems, such us environmen-
tal management, financial planning, and bankruptcy risk evaluation.
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