
Chapter 5
Preference Modelling, a Matter of Degree

Bernard De Baets and János Fodor

Abstract We consider various frameworks in which preferences can be expressed
in a gradual way. The first framework is that of fuzzy preference structures as a
generalization of Boolean (two-valued) preference structures. A fuzzy preference
structure is a triplet of fuzzy relations expressing strict preference, indifference and
incomparability in terms of truth degrees. An important issue is the decomposition
of a fuzzy preference relation into such a structure. The main tool for doing so is
an indifference generator. The second framework is that of reciprocal relations as
a generalization of the three-valued representation of complete Boolean preference
relations. Reciprocal relations, also known as probabilistic relations, leave no room
for incomparability, express indifference in a Boolean way and express strict pref-
erence in terms of intensities. We describe properties of fuzzy preference relations
in both frameworks, focusing on transitivity-related properties. For reciprocal rela-
tions, we explain the cycle-transitivity framework. As the whole exposition makes
extensive use of (logical) connectives, such as conjunctors, quasi-copulas and cop-
ulas, we provide an appropriate introduction on the topic.

Keywords Fuzzy relation � Preference structure � Transitivity � Reciprocal relation
� Cycle-transitivity

5.1 Introduction

Most of the real-world decision problems take place in a complex environment
where different forms of incompleteness (such as uncertainty, imprecision, vague-
ness, partial truth and the like) pervade our knowledge. To face such complexity, an
inevitable step is the use of appropriate models of preferences [45, 54].
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The key concept in preference modelling is the notion of a preference structure.
It represents pairwise comparison in a set of alternatives, and consists of three binary
relations expressing strict preference, indifference and incomparability. Neverthe-
less, the application of two-valued (yes-or-no) preferences, regardless of their sound
mathematical theory, is not satisfactory in everyday situations. Therefore, it is desir-
able to consider a degree of preference, which can be represented by fuzzy relations
in a natural way.

Thus we face the problem of extending classical preference structures to the
fuzzy case. Any proper extension must meet some minimal expectations. For sure, it
must allow preference degrees lying anywhere in the unit interval. Roughly speak-
ing, the extension relies mainly on two facts: first, on the right choice of the
underlying logical operations (t-norms and t-conorms); second, on the use of an
appropriate form of the completeness condition. These are really new features of
the extended models since in the Boolean case both the logical operations and the
completeness condition are unique.

It has been proved (see [51–53]) that even the above minimal condition is vi-
olated unless we use a particular class of t-norms. Within the group of continuous
t-norms, the only possibility is to use a transform of the Łukasiewicz t-norm [15,53].
This case leads to additive fuzzy preference structures, with a rather well-developed
theory [11, 26, 27, 52] on functional equations identifying suitable strict preference,
indifference and incomparability generators.

We reconsidered the construction of additive fuzzy preference structures [1], by
starting from the minimal definition of an additive fuzzy preference structure. We
have shown that a given additive fuzzy preference structure is not necessarily the re-
sult of applying monotone generators to a large preference relation. In order to cover
all additive fuzzy preference structures, we therefore start all over again, looking for
the most general strict preference, indifference and incomparability generators. We
pinpoint the central role of the indifference generator and clarify that the monotonic-
ity of a generator triplet is totally determined by using a commutative quasi-copula
as indifference generator.

Reciprocal relations, satisfyingQ.a; b/CQ.b; a/ D 1, provide another popular
tool for expressing the result of the pairwise comparison of a set of alternatives [5]
and appear in various fields such as game theory [22] and mathematical psychology
[24]. Reciprocal relations are particularly popular in fuzzy set theory where they are
used for representing intensities of preference [4, 34]. Compared to additive fuzzy
preference structures, however, they leave no room for incomparability.

In the context of preference modelling, transitivity is always an interesting, of-
ten desirable property. In fuzzy relational calculus, the notion of T -transitivity is
indispensable. Some types of transitivity have been devised specifically for recip-
rocal relations, such as various types of stochastic transitivity. Although formally
reciprocal relations can be seen as a special kind of fuzzy relations, they are not
equipped with the same semantics. One should therefore be careful in considering
T -transitivity for reciprocal relations, as well as in studying stochastic transitivity
of fuzzy relations.
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Recently, two general frameworks for studying the transitivity of reciprocal
relations have been established, both encompassing various types of T -transitivity
and stochastic transitivity. The first framework is that of FG-transitivity, developed
by Switalski [48], and is oriented towards reciprocal relations, although formally
(but maybe not in a meaningful way) applicable to fuzzy relations. The second
framework was developed in [10] and is restricted to reciprocal relations only. For
various reasons, this framework has been coined the cycle-transitivity framework.

All the above issues are touched upon in the present chapter. First we sum-
marize some necessary notions and results on fuzzy and probabilistic connectives
such as t-norms, t-conorms and (quasi-)copulas. In Section 5.3 we present the ba-
sics of fuzzy relations, including their fundamental properties and particular classes
such as fuzzy equivalence relations and weak orders. Then we summarize an ax-
iomatic approach to fuzzy preference structures. Closing the section, we show how
to build up fuzzy preference structures by the help of an indifference generator
and (quasi-)copulas. In Section 5.4 reciprocal relations are introduced. The cycle-
transitivity framework is established and studied in considerable detail. Random
variables are compared on the basis of winning probabilities, which are shown to be
characterizable in the cycle-transitivity framework. They key role played by copulas
for (artificially) coupling random variables is emphasized. We conclude by explain-
ing how also mutual ranking probabilities in partially ordered sets fit into this view.

5.2 Fuzzy and Probabilistic Connectives

It is essential to have access to suitable operators for combining the degrees of pref-
erence. In this paper, we are mainly interested in two classes of operators: the class
of t-norms [37] and the class of (quasi-) copulas [31, 41].

Definition 5.1. A binary operation T W Œ0; 1�2 ! Œ0; 1� is called a t-norm if it
satisfies:

(i) Neutral element 1: .8x 2 Œ0; 1�/ .T .x; 1/ D T .1; x/ D x/.
(ii) Monotonicity: T is increasing in each variable.

(iii) Commutativity: .8.x; y/ 2 Œ0; 1�2/ .T .x; y/ D T .y; x//.
(iv) Associativity: .8.x; y; z/ 2 Œ0; 1�3/ .T .x; T .y; z// D T .T .x; y/; z//.

The three prototypes of t-norms are the minimum TM.x; y/ D min.x; y/, the
product TP.x; y/ D xy and the Łukasiewicz t-norm TL.x; y/ D max.xCy�1; 0/.
The first one is idempotent, TP is strict, while TL is nilpotent.

The following parametric family of t-norms play a key role in fuzzy preference
structures. Consider a number s 2 �0; 1Œ[ �1;1Œ, and define a binary operation T F

s

on Œ0; 1� by

T F
s .x; y/ D logs

�
1C .sx � 1/.sy � 1/

s � 1

�
:
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Thus defined T F
s is a t-norm for the considered parameter values s. Taking the limits

in the remaining cases, we get

lim
s!0

T F
s .x; y/ D min.x; y/;

lim
s!1

T F
s .x; y/ D xy;

lim
s!1T

F
s .x; y/ D max.x C y � 1; 0/:

Thus, we employ also the following notations: T F
0 D TM, T F

1 D TP, T F1 D TL.
The parametric family

�
T F
s

�
s2Œ0;1�

is called the Frank t-norm family, after the

author of [29]. Notice that members are positive (i.e., T F
s .x; y/ > 0 when x; y > 0)

for 0 � s < 1, while T F1 D TL has zero divisors (i.e., there are positive x; y such
that T F1.x; y/ D 0).

T-conorms are the dual operations of t-norms, in the sense that for a given t-norm
T , the operation S W Œ0; 1�2 ! Œ0; 1� defined by

S.x; y/ D 1 � T .1� x; 1 � y/;

is a t-conorm. Formally, the only difference between t-conorms and t-norms is that
the former have neutral element 0, while the latter have neutral element 1.

Concerning the duals of the prototypes, we have SM.x; y/D max.x; y/,
SP.x; y/ D x C y � xy, and SL.x; y/ D min.x C y; 1/.

The t-conorm family consisting of duals of members of the Frank t-norm family
is called the Frank t-conorm family:

�
SF
s

�
s2Œ0;1�

. Corresponding pairs
�
T F
s ; S

F
s

�
are

ordinally irreducible solutions of the Frank equation:

T .x; y/C S.x; y/ D x C y:

For more details see [29].
Now we turn to the probabilistic connectives quasi-copulas and copulas.

Definition 5.2. A binary operation C W Œ0; 1�2 ! Œ0; 1� is called a quasi-copula if it
satisfies:

(i) Neutral element 1: .8x 2 Œ0; 1�/.C.x; 1/ D C.1; x/ D x/.
(i0) Absorbing element 0: .8x 2 Œ0; 1�/.C.x; 0/ D C.0; x/ D 0/.
(ii) Monotonicity: C is increasing in each variable.

(iii) 1-Lipschitz property: .8.x1; x2; y1; y2/ 2 Œ0; 1�4/

.jC.x1; y1/� C.x2; y2/j � jx1 � x2j C jy1 � y2j/:

If instead of (iii), C satisfies

(iv) Moderate growth: .8.x1; x2; y1; y2/ 2 Œ0; 1�4/
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.x1 � x2 ^ y1 � y2/ imply

C.x1; y1/C C.x2; y2/ � C.x1; y2/C C.x2; y1/;

then it is called a copula.

Note that in case of a quasi-copula condition (i0) is superfluous. For a copula,
condition (ii) can be omitted (as it follows from (iv) and (i0)). As implied by the
terminology used, any copula is a quasi-copula, and therefore has the 1-Lipschitz
property; the opposite is, of course, not true. It is well known that a copula is a t-
norm if and only if it is associative; conversely, a t-norm is a copula if and only if it
is 1-Lipschitz. Finally, note that for any quasi-copulaC it holds that TL � C � TM,
where TL.x; y/ D max.x C y � 1; 0/ is the Łukasiewicz t-norm and TM.x; y/ D
min.x; y/ is the minimum operator.

We consider a continuous De Morgan triplet .T; S;N / on Œ0; 1�, consisting of a
continuous t-norm T , a strong negationN (i.e., a decreasing involutive permutation
of Œ0; 1�) and the N -dual t-conorm S defined by

S.x; y/ D N.T .N.x/;N.y///:

Note that a strong negation is uniquely determined by the corresponding automor-
phism � of the unit interval, N�.x/ WD ��1.1 � �.x//.

For a t-norm T that is at least left-continuous,

IT .x; y/ D supfu 2 Œ0; 1� j T .x; u/ � yg

denotes the unique residual implication (R-implication) of T . This operation plays
an important role in Section 5.3.1.

5.3 Fuzzy Preference Structures

Binary relations, especially different kinds of orderings and equivalence relations,
play a central role in various fields of science such as decision making, measurement
theory and social sciences. Fuzzy logics provide a natural framework for extending
the concept of crisp binary relations by assigning to each ordered pair of elements
a number from the unit interval – the strength of the link between the two elements.
This idea was already used in the first paper on fuzzy sets by Zadeh [55].

In the whole section we assume thatA is a given set and .T; S;N / is a continuous
De Morgan triplet interpreting logical operations AND, OR and NOT, respectively.

5.3.1 Fuzzy Relations

Fuzzy relations are introduced naturally in the following way.
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Definition 5.3. A binary fuzzy relation R on the set A is a function R W A � A !
Œ0; 1�.

That is, R is a fuzzy subset of A � A. For any a; b 2 A the value R.a; b/ is
understood as the degree to which the elements a and b are in relation.

For a given � 2 Œ0; 1� the crisp relation R� is defined as the set of ordered pairs
with values not less than �:

R� D f.a; b/ 2 A2 j R.a; b/ � �g:

These �-cuts R� form a chain (a nested family) of relations.
The complement coN R, the converse Rt and the dual Rd of a given fuzzy rela-

tion R are defined as follows .a; b 2 A/:

coN R.a; b/ WD N.R.a; b//; Rt .a; b/ WD R.b; a/; Rd .a; b/ WD N.R.b; a//:

Notice that Rd D coN Rt D .coN R/t .
For two binary fuzzy relationsR andQ on A, we can define their T -intersection

R \T Q and S -unionR [S Q as follows:

.R \T Q/.a; b/ WD T .R.a; b/;Q.a; b//;

.R [S Q/.a; b/ WD S.R.a; b/;Q.a; b//:

Since we deal only with binary fuzzy relations, we often omit the adjective and
simply write fuzzy relation.

5.3.1.1 Properties of Fuzzy Relations

In this section we consider and explain the most basic properties of fuzzy relations.

Definition 5.4. A binary fuzzy relation R on A is called

� reflexive if R.a; a/ D 1 for all a 2 A;
� irreflexive if R.a; a/ D 0 for all a 2 A;
� symmetric if R.a; b/ D R.b; a/ for all a; b 2 A.

If a fuzzy relation R on A is reflexive (irreflexive) then all crisp relations R� are
reflexive (irreflexive for � 2 �0; 1�). It is obvious that R is irreflexive if and only if
Rd is reflexive, which holds if and only if coN R is reflexive.

Definition 5.5. A fuzzy relation R on A is called

� T -asymmetric if T .R.a; b/; R.b; a// D 0 holds for all a; b 2 A;
� T -antisymmetric if T .R.a; b/; R.b; a// D 0 holds for all a; b 2 A such that
a 6D b.
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One can prove easily that if a fuzzy relation R on A is TM-antisymmetric
(TM-asymmetric) then its cut relations R� are antisymmetric (asymmetric) crisp
relations for � 2 �0; 1�.

Obviously, if a fuzzy relation R on A is T -antisymmetric (T -asymmetric) for a
certain t-norm T , then R is also T 0-antisymmetric (T 0-asymmetric) for any t-norm
T 0 such that T 0 � T . Therefore, a TM-antisymmetric relation is T -antisymmetric
for any t-norm T .

If T is a positive t-norm then a fuzzy relation R is T -antisymmetric (T -
asymmetric) if and only ifR is TM-antisymmetric (TM-asymmetric). For positive T ,
T -asymmetry implies irreflexivity.

Remarkable new definitions (that is, different from the case TM) can only be
obtained by using t-norms with zero divisors. In such cases both values R.a; b/
and R.b; a/ can be positive, but cannot be too high simultaneously. More ex-
actly, if one considers the Łukasiewicz t-norm TL.x; y/ D maxfx C y � 1; 0g,
TL-antisymmetry (TL-asymmetry) of R is equivalent to the following inequality:
R.a; b/CR.b; a/ � 1.

Definition 5.6. A fuzzy relation R on A is called

� strongly S -complete if S.R.a; b/; R.b; a// D 1 for all a; b 2 A;
� S -complete if S.R.a; b/; R.b; a// D 1 for all a; b 2 A such that a 6D b.

Obviously, ifR is S -complete (strongly S -complete) on A then it is S 0-complete
(strongly S 0-complete) on A for any t-conorm S 0 such that S 0 � S .

Since .T; S;N / is a De Morgan triplet, S -completeness and T -antisymmetry
(strong S -completeness and T -asymmetry) are dual properties. That is, a fuzzy re-
lation R on A is S -complete (strongly S -complete) if and only if its dual Rd is
T -antisymmetric (T -asymmetric) on A. Using duality, it is easy to prove that when
T is a positive t-norm in the De Morgan triplet .T; S;N / then a fuzzy relationR on
A is S -complete (strongly S -complete) if and only if R is SM-complete (strongly
SM-complete) on A. Strong S -completeness implies reflexivity if and only if T is a
positive t-norm.

If a fuzzy relation R on A is SM-complete (strongly SM-complete) then its cut
relations R� are complete (strongly complete) crisp binary relations.

Now we turn to transitivity, which is certainly one of the most important prop-
erties concerning either equivalences or different types of orders. Since classical
transitivity can be introduced by using the composition of relations, first we define
the corresponding notion of T -composition for binary fuzzy relations.

Definition 5.7. Let R1; R2 be fuzzy relations on A. The T -composition of R1 and
R2 is a fuzzy relation denoted as R1 ıT R2, and defined by

.R1 ıT R2/.a; b/ D sup
c2A

T .R1.a; c/; R2.c; b//: (5.1)

This definition is natural. Indeed, if Q1 and Q2 are crisp binary relations on A
then a.Q1 ıQ2/b if and only if there exists an element c 2 A such that aQ1c and
cQ2b. This corresponds to (5.1) in the fuzzy case.
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Consider two fuzzy relations R1; R2 on A. We say that R1 is contained in R2
and denote byR1 � R2 if and only if for all a; b 2 Awe haveR1.a; b/ � R2.a; b/.
Fuzzy relations R1 and R2 are said to be equal if and only if R1.a; b/ D R2.a; b/

for all a; b 2 A.
It is easy to prove that

(a) R1 ıT .R2 ıT R3/ D .R1 ıT R2/ ıT R3
(b) R1 � R2 implies R1 ıT R3 � R2 ıT R3 and R3 ıT R1 � R3 ıT R2
for all fuzzy relations R1; R2 and R3 on A. In other words, composition of fuzzy
relations is an associative and increasing operation. For proof see [27].

Turning back to transitivity, the idea behind it is that “the strength of the link
between two elements must be greater than or equal to the strength of any indirect
chain (i.e., involving other elements)”, see [21]. This is expressed in the following
definition (see also [56]).

Definition 5.8. A fuzzy relation R on A is called T -transitive if

T .R.a; c/; R.c; b// � R.a; b/ (5.2)

holds for all a; b; c 2 A.

General representation theorems of T -transitive fuzzy relations have been estab-
lished in [28]. One of those is recalled now.

Theorem 5.1. [28] Let R be a fuzzy relation on A. Then R is T -transitive if and
only if there exist two families ff�g�2� , fg�g�2� of functions from A to Œ0; 1� such
that f� .a/ � g� .a/ for all a 2 A, � 2 � and

R.a; b/ D inf
�2� IT .f� .a/; g� .b//: (5.3)

It is easy to see that if R is a TM-transitive fuzzy relation on A then each �-cut
of R is a transitive relation for � 2 �0; 1�.

NegativeS -transitivity is the dual concept of T -transitivity and vice versa. There-
fore, only some main points are explained in detail. The others can be obtained by
corresponding results on T -transitivity.

Definition 5.9. A fuzzy relation R on A is called negatively S -transitive if
R.a; b/ � S.R.a; c/; R.c; b// for all a; b; c 2 A.

It is easily seen that a fuzzy relationR on A is negatively S -transitive if and only
if its dual Rd is T -transitive, where .T; S;N / is still a De Morgan triplet.

Suppose that R is negatively S -transitive for a given S . Then R is negatively
S 0-transitive for any t-conorm S 0 such that S 0 � S . In particular, a negatively SM-
transitive relation is negatively S 0-transitive for any t-conorm S 0.

If R is strongly S -complete and T -transitive on A then R is negatively
S -transitive on A (for the proof see [27]).
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5.3.1.2 Special Types of Fuzzy Relations

Fuzzy relations that are reflexive and T -transitive are called fuzzy preorders with
respect to T , short T -preorders. Symmetric T -preorders are called fuzzy equiv-
alence relations with respect to T , short T -equivalences. Note that the term
T -similarity relation is also used for a T -equivalence relation. Similarity relations
have been introduced and investigated by Zadeh [56] (see also [43, 44]).

The following result is a characterization and representation of T -equivalence
relations (published under the term “indistinguishability” instead of equivalence,
see [50]). Compare also with Theorem 5.1.

Theorem 5.2. [50] Let R be a binary fuzzy relation on A. Then R is a
T -equivalence relation onA if and only if there exists a family fh�g�2� of functions
from A to Œ0; 1� so that for all a; b 2 A

R.a; b/ D inf
�2� IT .maxfh� .a/; h� .b/g;minfh� .a/; h� .b/g/; (5.4)

where IT is the R-implication defined by T .

Equivalence classes of a T -equivalence relation consist of elements being close
to each other, and formally are defined as follows. LetR be a T -equivalence relation
onA. For any given a 2 A, an equivalence class of a is a fuzzy setRŒa� W A ! Œ0; 1�

defined by RŒa�.c/ D R.a; c/ for all c 2 A. It may happen that RŒa� D RŒb� for
different elements a; b 2 A. It is easy to verify that RŒa� D RŒb� holds if and only if
R.a; b/ D 1. Each �-cut of a fuzzy TM-equivalence relation is a crisp equivalence
relation, as one can check it easily.

Strongly complete T -preorders are called fuzzy weak orders with respect to T ,
short weak T -orders.

Given a T -equivalenceE W X2 ! Œ0; 1�, a binary fuzzy relation L W X2 ! Œ0; 1�

is called a fuzzy order with respect to T andE , short T -E-order, if it is T -transitive
and additionally has the following two properties:

� E-reflexivity: E.x; y/ � L.x; y/ for all x; y 2 X
� T -E-antisymmetry: T .L.x; y/; L.y; x// � E.x; y/ for all x; y 2 X

We are ready to state the first – score function-based – representation theorem of
weak T -orders. For more details and proofs see [3].

Theorem 5.3. [3] A binary fuzzy relation R W X2 ! Œ0; 1� is a weak T -order if
and only if there exists a non-empty domain Y , a T -equivalence E W Y 2 ! Œ0; 1�,
a strongly SM-complete T -E-order L W Y 2 ! Œ0; 1� and a mapping f W X ! Y

such that the following equality holds for all x; y 2 X :

R.x; y/ D L.f .x/; f .y//: (5.5)

This result is an extension of the following well-known classical theorem.
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Theorem 5.4. A binary relation . on a non-empty domain X is a weak order if
and only if there exists a linearly ordered non-empty set .Y;�/ and a mapping
f W X ! Y such that . can be represented in the following way for all x; y 2 X :

x . y if and only if f .x/ � f .y/: (5.6)

The standard crisp case consists of the unit interval Œ0; 1� equipped with its natural
linear order. Given a left-continuous t-norm T , the canonical fuzzification of the
natural linear order on Œ0; 1� is the residual implication IT [2,32,33]. The following
proposition, therefore, provides us with a construction that can be considered as a
straightforward counterpart of (5.6).

Proposition 5.1. Given a function f W X ! Œ0; 1�, the binary fuzzy relation R W
X2 ! Œ0; 1� defined by

R.x; y/ D IT
�
f .x/; f .y/

�
(5.7)

is a weak T -order.

The function f is called a score function. Note that there are weak T -orders that
cannot be represented by means of a single score function [3]. Therefore, a weak
T -order R W X2 ! Œ0; 1� is called representable if there exists a function f W X !
Œ0; 1�, called generating score function, such that Eq. 5.7 holds. A representable
weak TM-order is called Gödel-representable [12]. The following result is a unique
characterization of representable fuzzy weak orders for continuous t-norms.

Theorem 5.5. [3] Assume that T is continuous. Then a weak T -order R is repre-
sentable if and only if the following function is a generating score function of R:

Nf .x/ D inf
z2X R.z; x/:

The following well-known theorem shows that fuzzy weak orders can be repre-
sented by more than one score function. Compare also with Theorems 5.1 and 5.2.

Theorem 5.6. [50] Consider a binary fuzzy relation R W X2 ! Œ0; 1�. Then the
following two statements are equivalent:

(i) R is a T -preorder.
(ii) There exists a non-empty family ofX ! Œ0; 1� score functions .fi /i2I such that

the following representation holds:

R.x; y/ D inf
i2I IT .fi .x/; fi .y//: (5.8)

Now the following theorem provides us with a unique characterization of weak
T -orders.
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Theorem 5.7. [3] Consider a binary fuzzy relation R W X2 ! Œ0; 1�. Then the
following two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a crisp weak order . and a non-empty family of X ! Œ0; 1� score

functions .fi /i2I that are non-decreasing with respect to . such that represen-
tation (5.8) holds.

The following theorem finally characterizes weak T -orders as intersections of
representable weak T -orders that are generated by score functions that are mono-
tonic at the same time with respect to the same crisp linear order.

Theorem 5.8. [3] Consider a binary fuzzy relation R W X2 ! Œ0; 1�. Then the
following two statements are equivalent:

(i) R is a weak T -order.
(ii) There exists a crisp linear order � and a non-empty family of X ! Œ0; 1�

score functions .fi /i2I that are non-decreasing with respect to � such that
representation (5.8) holds.

The interested reader can find further representation and construction results in
[3]. This includes inclusion-based representations, and representations by decompo-
sition into crisp linear orders and fuzzy equivalence relations, which also facilitates
a pseudo-metric-based construction.

5.3.2 Additive Fuzzy Preference Structures: Bottom-Up Approach

5.3.2.1 Classical Preference Structures

Consider a set of alternatives A and suppose that a decision maker wants to judge
these alternatives by pairwise comparison. Given two alternatives, the decision
maker can act in one of the following three ways:

(i) He/she clearly prefers one to the other.
(ii) The two alternatives are indifferent to him/her.

(iii) He/she is unable to compare the two alternatives.

According to these cases, three binary relations can be defined in A: the strict pref-
erence relation P , the indifference relation I and the incomparability relation J .
For any .a; b/ 2 A2, we classify:

.a; b/ 2 P , he/she prefers a to b;

.a; b/ 2 I , a and b are indifferent to him/her;

.a; b/ 2 J , he/she is unable to compare a and b.
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One easily verifies that the triplet .P; I; J / defined above satisfies the conditions
formulated in the following definition of a preference structure. For a binary relation
R in A, we denote its converse by Rt and its complement by co R.

Definition 5.10. [45] A preference structure on A is a triplet .P; I; J / of binary
relations in A that satisfy:

(B1) P is irreflexive, I is reflexive and J is irreflexive.
(B2) P is asymmetrical, I is symmetrical and J is symmetrical.
(B3) P \ I D ;, P \ J D ; and I \ J D ;.
(B4) P [ P t [ I [ J D A2.

This definition is exhaustive: it lists all properties of the components P , I and J
of a preference structure. The asymmetry of P can also be written as P \ P t D ;.
Condition (B4) is called the completeness condition and can be expressed equiva-
lently (up to symmetry) in the following alternative ways: co .P [ I / D P t [ J ,
co .P [ P t / D I [ J , co .P [ P t [ I / D J , co .P [ P t [ J / D I and
co .P t [ I [ J / D P .

It is possible to associate a single reflexive relation to any preference structure so
that it completely characterizes this structure. A preference structure .P; I; J / on
A is characterized by the reflexive binary relation R D P [ I , its large preference
relation, in the following way:

.P; I; J / D .R \ co Rt ; R \Rt ; co R \ co Rt /:

Conversely, a triplet .P; I; J / constructed in this way from a reflexive binary rela-
tionR in A is a preference structure on A. The interpretation of the large preference
relation is

.a; b/ 2 R , b is considered at most as good as a:

The above definition of a preference structure can be written in the following
minimal way, identifying a relation with its characteristic mapping [13]: I is reflex-
ive and symmetrical, and for any .a; b/ 2 A2:

P.a; b/C P t .a; b/C I.a; b/C J.a; b/ D 1:

Thus, classical preference structures can also be considered as Boolean preference
structures, employing 1 and 0 for describing presence or absence of strict pref-
erences, indifferences and incomparabilities. Complement, intersection and union
then correspond to Boolean negation, conjunction (i.e. minimum) and disjunction
(i.e. maximum) on characteristic mappings.

5.3.2.2 The Quest for Fuzzy Preference Structures: The Axiomatic Approach

As preference structures are based on classical set theory and are therefore restricted
to two-valued relations, they do not allow to express degrees of strict preference,
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indifference or incomparability. This is seen as an important drawback to their prac-
tical use, leading researchers already at an early stage to the theory of fuzzy sets,
and in particular to the calculus of fuzzy relations. In that case, preference degrees
are expressed on the continuous scale Œ0; 1� and operations from fuzzy logic are used
for manipulating these degrees.

A fuzzy preference structure (FPS) on A is a triplet .P; I; J / of binary fuzzy
relations in A satisfying:

(F1) P is irreflexive, I is reflexive and J is irreflexive.
(F2) P is T -asymmetrical, I and J are symmetrical.
(F3) P \T I D ;, P \T J D ; and I \T J D ;.
(F4) a completeness condition, such as coN .P [S I / D P t [S J ,

coN .P [S P t [S I / D J or P [S P t [S I [S J D A2.

Invoking the assignment principle: for any pair of alternatives .a; b/ the deci-
sion maker is allowed to assign at least one of the degrees P.a; b/, P.b; a/, I.a; b/
and J.a; b/ freely in the unit interval, shows that only a nilpotent t-norm T is accept-
able, i.e. a �0-transform of the Łukasiewicz t-norm: T .x; y/ WD �0�1.max.�0.x/C
�0.y/ � 1; 0// [52]. For the sake of simplicity, we consider � D �0. Conse-

quently, we will be working with a Łukasiewicz triplet
�
T1
� ; S

1
� ; N�

�
. The latter

notation is used to indicate that the Łukasiewicz t-norm belongs to the Frank t-
norm family .T s/s2Œ0;1� (which is also a family of copulas) and corresponds to
the parameter value s D 1 (note that the minimum operator and the algebraic
product correspond to the parameter values s D 0 and s D 1, respectively). More-

over, in that case, the completeness conditions co�
�
P [1

� I
�

D P t [1
� J and

co�
�
P [1

� P t
�

D I [1
� J become equivalent and turn out to be stronger than the

other completeness conditions, with P [1
� P t [1

� I [1
� J D A2 as weakest con-

dition [52]. Restricting to the strongest completeness condition(s), we then obtain
the following definition.

Definition 5.11. Given a Œ0; 1�-automorphism �, a �-FPS (a �-fuzzy preference
structure) on A is a triplet of binary fuzzy relations .P; I; J / in A satisfying:

(F1) P is irreflexive, I is reflexive and J is irreflexive.
(F2) P is T1

� -asymmetrical, I and J are symmetrical.
(F3) P \1

� I D ;, P \1
� J D ; and I \1

� J D ;.

(F4) co�
�
P [1

� I
�

D P t [1
� J .

Moreover, a minimal formulation of this definition, similar to the classical one,
exists: a triplet .P; I; J / of binary fuzzy relations in A is a �-FPS on A if and only
if I is reflexive and symmetrical, and for any .a; b/ 2 A2:

�.P.a; b//C �.P t .a; b//C �.I.a; b//C �.J.a; b// D 1:

In view of the above equality, fuzzy preference structures are also called additive
fuzzy preference structures.
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Axiomatic Constructions

Again choosing a continuous de Morgan triplet .T; S;N /, we could transport the
classical construction formalism to the fuzzy case and define, given a reflexive bi-
nary fuzzy relation R in A:

.P; I; J / D .R \T coN Rt ; R \T Rt ; coN R \T coN Rt /:

At the same time, we want to keep R as the fuzzy large preference relation of the
triplet .P; I; J /, i.e. R D P [S I and coN R D P t [S J . Fodor and Roubens
observed that the latter is not possible in general, and proposed four axioms for
defining fuzzy strict preference, indifference and incomparability relations [26, 27].
According to the first axiom, the independence of irrelevant alternatives, there exist
three Œ0; 1�2 ! Œ0; 1� mappings p, i , j such that P.a; b/ D p.R.a; b/; R.b; a//,
I.a; b/ D i.R.a; b/; R.b; a// and J.a; b/ D j.R.a; b/; R.b; a//: The second and
third axioms state that the mappings p.x; N.y//, i.x; y/ and j.N.x/;N.y// are
increasing in both x and y, and that i and j are symmetrical. The fourth and main
axiom requires that P [S I D R and P t [S J D coN R, or explicitly, for any
.x; y/ 2 Œ0; 1�2:

S.p.x; y/; i.x; y//D x;

S.p.x; y/; j.x; y//D N.y/:

The latter axiom implies that coN .P [S I / D P t [S J , i.e. the first completeness
condition.

Theorem 5.9. [26,27] If .T; S;N / and .p; i; j / satisfy the above axioms, then there
exists a Œ0; 1�-automorphism � such that

.T; S;N / D �
T1
� ; S

1
� ; N�

�

and, for any .x; y/ 2 Œ0; 1�2:

T1
� .x;N�.y// � p.x; y/ � T 0.x;N�.y//;

T1
� .x; y/ � i.x; y/ � T 0.x; y/;

T1
� .N�.x/;N�.y// � j.x; y/ � T 0.N�.x/;N�.y//:

Moreover, for any reflexive binary fuzzy relation R in A, the triplet .P; I; J / of
binary fuzzy relations in A defined by

P.a; b/ D p.R.a; b/; R.b; a//;

I.a; b/ D i.R.a; b/; R.b; a//;

J.a; b/ D j.R.a; b/; R.b; a//

is a �-FPS on A such that R D P [1
� I and co� R D P t [1

� J .
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Although in general the function i is of two variables, and there is no need to
extend it for more than two arguments, it might be a t-norm. The following theorem
states that the only construction methods of the above type based on continuous
t-norms are the ones using two Frank t-norms with reciprocal parameters.

Theorem 5.10. [26, 27] Consider a Œ0; 1�-automorphism � and two continuous
t-norms T1 and T2. Define p and i by p.x; y/ D T1.x;N�.y// and i.x; y/ D
T2.x; y/. Then .p; i; j / satisfies the above axioms if and only if there exists a pa-
rameter s 2 Œ0;1� such that T1 D T

1=s
� and T2 D T s� . In this case, we have that

j.x; y/ D i.N�.x/;N�.y//:

Summarizing, we have that for any reflexive binary fuzzy relation R in A the
triplets

.Ps ; Is; Js/ D
�
R \ 1

s

� co� Rt ; R \s� Rt ; co� R \s� co� Rt
�
;

with s 2 Œ0;1�, are the only t-norm-based constructions of fuzzy preference struc-
tures that satisfy R D P [1

� I and co� R D P t [1
� J . Consequently, R is again

called the large preference relation. Note that

�.R.a; b// D �.P.a; b//C �.I.a; b//:

In fact, in [27] it was only shown that ordinal sums of Frank t-norms should be
used. For the sake of simplicity, only the ordinally irreducible ones were considered.
However, we can prove that this is the only option.

Finally, we deal with the reconstruction of a �-FPS from its large preference
relation. As expected, an additional condition is required. A �-FPS .P; I; J / on A
is called:

(i) an .s; �/-FPS, with s 2 f0; 1;1g, if P \s� P t D I \ 1
s

� J ;
(ii) an .s; �/-FPS, with s 2 �0; 1Œ[ �1;1Œ, if

s
�
�
P\s

�P
t
�

C s
��

�
I\1=s

� J
�

D 2:

One can verify that the triplet .Ps ; Is ; Js/ constructed above is an .s; �/-FPS.
Moreover, any .s; �/-FPS can be reconstructed from its large preference relation
by means of the corresponding construction. The characterizing condition of a
.0; �/-FPS, respectively .1; �/-FPS, can also be written as P \0 P t D ;, i.e.
min.P.a; b/; P.b; a// D 0 for any .a; b/, respectively. I\0J D ;, i.e. min.I.a; b/;
J.a; b// D 0 for any .a; b/.

5.3.2.3 Additive Fuzzy Preference Structures and Indifference Generators

Now we reconsider the construction of additive fuzzy preference structures, not by
rephrasing the conclusions resulting from an axiomatic study, but by starting from
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the minimal definition of an additive fuzzy preference structure. For the sake of
brevity, we consider the case �.x/ D x. For motivation and more details we refer
to [1].

Definition 5.12. A triplet .p; i; j / of Œ0; 1�2 ! Œ0; 1�mappings is called a generator
triplet compatible with a continuous t-conorm S and a strong negatorN if and only
if for any reflexive binary fuzzy relationR on a set of alternativesA it holds that the
triplet .P; I; J / of binary fuzzy relations on A defined by:

P.a; b/ D p.R.a; b/; R.b; a//;

I.a; b/ D i.R.a; b/; R.b; a//;

J.a; b/ D j.R.a; b/; R.b; a//

is a FPS on A such that P [S I D R and P t [S J D coN R.

The above conditions P [S I D R and P t [S J D coN R require the re-
constructability of the fuzzy large preference relation R from the fuzzy preference
structure it generates. The following theorem expresses that for that purpose only
nilpotent t-conorms can be used.

Theorem 5.11. If .p; i; j / is a generator triplet compatible with a continuous
t-conorm S and a strong negatorN D N� , then S D S1

 , i.e. S is nilpotent.

Let us again consider the case  .x/ D x. The above theorem implies that we
can omit the specification “compatible with a continuous t-conorm S and strong
negation N ” and simply talk about generator triplets. The minimal definition of a
fuzzy preference structure then immediately leads to the following proposition.

Proposition 5.2. A triplet .p; i; j / is a generator triplet if and only if, for any
.x; y/ 2 Œ0; 1�2:

(i) i.1; 1/ D 1

(ii) i.x; y/ D i.y; x/

(iii) p.x; y/C p.y; x/C i.x; y/C j.x; y/ D 1

(iv) p.x; y/C i.x; y/ D x

From this proposition it follows that a generator triplet is uniquely determined
by, for instance, the generator i . Indeed, for any generator triplet .p; i; j / it holds
that

p.x; y/ D x � i.x; y/;

j.x; y/ D i.x; y/ � .x C y � 1/:

The fact that p and j take values in Œ0; 1� implies that T1 � i � T 0. Moreover,
from any symmetrical i such that T1 � i � T 0 a generator triplet can be built. It is
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therefore not surprising that additional properties of generator triplets .p; i; j / are
completely determined by additional properties of i . In fact, in practice, it would be
sufficient to talk about a single generator i . We could simply talk about the generator
of the FPS. Note that the symmetry of i implies the symmetry of j .

Firstly, we try to characterize generator triplets fitting into the axiomatic
framework of Fodor and Roubens.

Definition 5.13. A generator triplet .p; i; j / is called monotone if:

(i) p is increasing in the first and decreasing in the second argument.
(ii) i is increasing in both arguments.

(iii) j is decreasing in both arguments.

Inspired by the paper [37], we can show that monotone generator triplets are
characterized by a 1-Lipschitz indifference generator, i.e. by a commutative quasi-
copula.

Theorem 5.12. A generator triplet .p; i; j / is monotone if and only if i is a com-
mutative quasi-copula.

The following theorem shows that when i is a symmetrical ordinal sum of Frank
t-norms, j.1� x; 1 � y/ is also a t-norm and p.x; 1 � y/ is symmetrical. Note that
by symmetrical ordinal sum we mean the following: if .a; b; T / is a summand, then
also .1 � b; 1 � a; T / is a summand.

The associativity of p.x; 1 � y/, however, can only be guaranteed in case of an
ordinally irreducible i , i.e. a Frank t-norm.

Theorem 5.13. Consider a generator triplet .p; i; j / such that i is a t-norm, then
the following statements are equivalent:

(i) The mapping j.1 � x; 1 � y/ is a t-norm.
(ii) The mapping p.x; 1 � y/ is symmetrical.

(iii) i is a symmetrical ordinal sum of Frank t-norms.

Theorem 5.14. Consider a generator triplet .p; i; j / such that i is a t-norm, then
the following statements are equivalent:

(i) The mapping p.x; 1 � y/ is a t-norm.
(ii) i is a Frank t-norm.

In the latter case, i.e. when i is a Frank t-norm, say i D T s , s 2 Œ0;1�, it holds
that

p.x; y/ D T 1=s.x; 1 � y/;

j.x; y/ D T s.1 � x; 1 � y/:

This result closes the loop, and brings us back to the conclusions drawn from the
axiomatic study of Fodor and Roubens expressed in Theorem 5.10.
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5.4 Reciprocal Preference Relations

5.4.1 Reciprocal Relations

5.4.1.1 Definition

Another interesting class of A2 ! Œ0; 1� mappings is the class of reciprocal rela-
tionsQ (also called ipsodual relations or probabilistic relations [20]) satisfying the
condition Q.a; b/CQ.b; a/ D 1, for any .a; b/ 2 A2. For such relations, it holds
in particular that Q.a; a/ D 1=2. Many authors like viewing them as particular
kinds of fuzzy relations, but we do not adhere to that view, as reciprocal relations
are of an inherent bipolar nature. The usual operations (such as intersection, union
and composition) on fuzzy relations simply make no sense on reciprocal relations.
Not surprisingly then, as will be shown further on, also other notions of transitivity
apply to them.

Reciprocity is intimately linked with completeness. Let R be a complete (f0; 1g-
valued) relation on A, i.e. for any .a; b/ 2 A2 it holds that max.R.a; b/; R.b;
a// D 1, then R has an equivalent f0; 1=2; 1g-valued reciprocal representation Q
given by

Q.a; b/ D

8̂
<
:̂
1; if R.a; b/ D 1 and R.b; a/ D 0;

1=2; if R.a; b/ D R.b; a/ D 1;

0; if R.a; b/ D 0 and R.b; a/ D 1;

or in a more compact arithmetic form:

Q.a; b/ D 1CR.a; b/�R.b; a/
2

: (5.9)

One easily verifies that R is transitive if and only if its reciprocal representationQ
satisfies, for any .a; b; c/ 2 A3:

.Q.a; b/ � 1=2 ^ Q.b; c/ � 1=2/ ) Q.a; c/ D max.Q.a; b/;Q.b; c//:
(5.10)

Reciprocal relations generalize the above representation by taking values also in the
intervals �0; 1=2Œ and �1=2; 1Œ.

5.4.1.2 A Fuzzy Set Viewpoint

In the fuzzy set community (see e.g., [23, 30, 35]), the semantics attributed to a
reciprocal relationQ is as follows:
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Q.a; b/ 2

8̂<
:̂
�1=2; 1�; if a is rather preferred to b;

f1=2g; if a and b are indifferent;

Œ0; 1=2Œ; if b is rather preferred to a:

Hence, a reciprocal relation can be seen as a compact representation of an additive
fuzzy preference structure in which the indifference relation I is a crisp relation,
the incomparability relation J is empty and the strict preference relation P and its
converse P t are fuzzy relations complementing each other. Reciprocal relations are
therefore closely related to fuzzy weak orders.

Note that, similarly as for a complete relation, a weakly complete fuzzy relation
R on A can be transformed into a reciprocal representation Q D P C 1=2I , with
P and I the strict preference and indifference components of the additive fuzzy
preference structure .P; I; J / generated from R by means of the generator i D
TL [14, 52]:

P.a; b/ D TM.R.a; b/; 1� R.b; a// D 1 � R.b; a/;

I.a; b/ D TL.R.a; b/; R.b; a// D R.a; b/CR.b; a/� 1;

J.a; b/ D TL.1 �R.a; b/; 1 �R.b; a// D 0:

Note that the corresponding expression for Q is formally the same as (5.9). This
representation is not equivalent to the fuzzy relation R, as many weakly complete
fuzzy relationsRmay have the same representation. Recall that, if the fuzzy relation
R is also strongly complete, then the generator i used is immaterial.

5.4.1.3 A Frequentist View

However, the origin of reciprocal relations is not to be found in the fuzzy set com-
munity. For several decades, reciprocal relations are used as a convenient tool for
expressing the results of the pairwise comparison of a set of alternatives in fields
such as game theory [22], voting theory [42] and psychology [20]. A typical use is
that where an individual is asked, in a controlled experimental set-up, to compare the
same set of alternatives multiple times, where each time he can either prefer alterna-
tive a to b or b to a. The fraction of times a is preferred to b then yieldsQ.a; b/. In
what follows, we will stay close to that frequentist view. However, we prefer to use
the more neutral term reciprocal relation, rather than the term probabilistic relation.

5.4.2 The Cycle-Transitivity Framework

5.4.2.1 Stochastic Transitivity

Transitivity properties for reciprocal relations rather have the conditional fla-
vor of (5.10). There exist various kinds of stochastic transitivity for reciprocal
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relations [5, 40]. For instance, a reciprocal relation Q on A is called weakly
stochastic transitive if for any .a; b; c/ 2 A3 it holds that Q.a; b/ � 1=2 ^
Q.b; c/ � 1=2 implies Q.a; c/ � 1=2. In [10], the following generalization of
stochastic transitivity was proposed.

Definition 5.14. Let g be an increasing Œ1=2; 1�2 ! Œ0; 1� mapping such that
g.1=2; 1=2/ � 1=2. A reciprocal relation Q on A is called g-stochastic transitive if
for any .a; b; c/ 2 A3 it holds that

.Q.a; b/ � 1=2 ^ Q.b; c/ � 1=2/ ) Q.a; c/ � g.Q.a; b/;Q.b; c//:

Note that the condition g.1=2; 1=2/ � 1=2 ensures that the reciprocal representation
Q of any transitive complete relation R is always g-stochastic transitive. In other
words, g-stochastic transitivity generalizes transitivity of complete relations. This
definition includes the standard types of stochastic transitivity [40]:

(i) Strong stochastic transitivity when g D max
(ii) Moderate stochastic transitivity when g D min

(iii) Weak stochastic transitivity when g D 1=2

In [10], also a special type of stochastic transitivity was introduced.

Definition 5.15. Let g be an increasing Œ1=2; 1�2 ! Œ0; 1� mapping such that
g.1=2; 1=2/ D 1=2 and g.1=2; 1/ D g.1; 1=2/ D 1. A reciprocal relation Q on
A is called g-isostochastic transitive if for any .a; b; c/ 2 A3 it holds that

.Q.a; b/ � 1=2 ^ Q.b; c/ � 1=2/ ) Q.a; c/ D g.Q.a; b/;Q.b; c//:

The conditions imposed upon g again ensure that g-isostochastic transitivity gen-
eralizes transitivity of complete relations. Note that for a given mapping g, the
property of g-isostochastic transitivity obviously is much more restrictive than the
property of g-stochastic transitivity.

5.4.2.2 FG-Transitivity

The framework of FG-transitivity, developed by Switalski [47,51], formally gener-
alizes g-stochastic transitivity in the sense thatQ.a; c/ is bounded both from below
and above by Œ1=2; 1�2 ! Œ0; 1� mappings.

Definition 5.16. Let F and G be two Œ1=2; 1�2 ! Œ0; 1� mappings such that
F.1=2; 1=2/ � 1=2 � G.1=2; 1=2/ and G.1=2; 1/ D G.1; 1=2/ D G.1; 1/ D 1

and F � G. A reciprocal relation Q on A is called FG-transitive if for any
.a; b; c/ 2 A3 it holds that
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.Q.a; b/ � 1=2 ^ Q.b; c/ � 1=2/

+
F.Q.a; b/;Q.b; c// � Q.a; c/ � G.Q.a; b/;Q.b; c//:

5.4.2.3 Cycle-Transitivity

Similarly as the FG-transitivity framework, the cycle-transitivity framework in-
volves two bounds. However, these bounds are not independent, and moreover,
the arguments are subjected to a reordering before they are applied. More specif-
ically, for a reciprocal relation Q, we define for all .a; b; c/ 2 A3 the following
quantities [10]:

˛abc D min.Q.a; b/;Q.b; c/;Q.c; a//;

ˇabc D median.Q.a; b/;Q.b; c/;Q.c; a//;

�abc D max.Q.a; b/;Q.b; c/;Q.c; a//:

Let us also denote� D f.x; y; z/ 2 Œ0; 1�3 j x � y � zg. A function U W � ! R is
called an if it satisfies:

(i) U.0; 0; 1/ � 0 and U.0; 1; 1/ � 1;
(ii) for any .˛; ˇ; �/ 2 �:

U.˛; ˇ; �/C U.1 � �; 1 � ˇ; 1 � ˛/ � 1: (5.11)

The function L W � ! R defined by L.˛; ˇ; �/ D 1 � U.1 � �; 1 � ˇ; 1 � ˛/ is
called the dual of a given upper bound function U . Inequality (5.11) then simply
expresses that L � U . Condition (i) again guarantees that cycle-transitivity gener-
alizes transitivity of complete relations.

Definition 5.17. A reciprocal relation Q on A is called cycle-transitive w.r.t. an
upper bound function U if for any .a; b; c/ 2 A3 it holds that

L.˛abc ; ˇabc ; �abc/ � ˛abc C ˇabc C �abc � 1 � U.˛abc ; ˇabc ; �abc/; (5.12)

where L is the dual lower bound function of U .

Due to the built-in duality, it holds that if (5.12) is true for some .a; b; c/, then
this is also the case for any permutation of .a; b; c/. In practice, it is therefore suf-
ficient to check (5.12) for a single permutation of any .a; b; c/ 2 A3. Alternatively,
due to the same duality, it is also sufficient to verify the right-hand inequality (or
equivalently, the left-hand inequality) for two permutations of any .a; b; c/ 2 A3

(not being cyclic permutations of one another), e.g., .a; b; c/ and .c; b; a/. Hence,
(5.12) can be replaced by
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˛abc C ˇabc C �abc � 1 � U.˛abc ; ˇabc ; �abc/: (5.13)

Note that a value of U.˛; ˇ; �/ equal to 2 is used to express that for the given values
there is no restriction at all (as ˛ C ˇ C � � 1 is always bounded by 2).

Two upper bound functionsU1 andU2 are called equivalent if for any .˛; ˇ; �/ 2
� it holds that ˛ C ˇ C � � 1 � U1.˛; ˇ; �/ is equivalent to ˛ C ˇ C � � 1 �
U2.˛; ˇ; �/.

If it happens that in (5.11) the equality holds for all .˛; ˇ; �/ 2 �, then the upper
bound function U is said to be self-dual, since in that case it coincides with its dual
lower bound function L. Consequently, also (5.12) and (5.13) can only hold with
equality then. Furthermore, it then holds that U.0; 0; 1/ D 0 and U.0; 1; 1/ D 1.

The simplest example of a self-dual upper bound function is the median, i.e.
UM.˛; ˇ; �/ D ˇ. Another example of a self-dual upper bound function is the func-
tion UE defined by

UE .˛; ˇ; �/ D ˛ˇ C ˛� C ˇ� � 2˛ˇ�:

Cycle-transitivity w.r.t. UE of a reciprocal relationQ on A can also be expressed as

˛ijkˇijk�ijk D .1 � ˛ijk/.1 � ˇijk/.1 � �ijk/:

It is then easy to see that cycle-transitivity w.r.t. UE is equivalent to the notion of
multiplicative transitivity [49]. Recall that a reciprocal relation Q on A is called
multiplicatively transitive if for any .a; b; c/ 2 A3 it holds that

Q.a; c/

Q.c; a/
D Q.a; b/

Q.b; a/
� Q.b; c/
Q.c; b/

:

The cycle-transitive formulation is more appropriate as it avoids division by zero.

5.4.2.4 Cycle-Transitivity Is a General Framework

Although C -transitivity is not intended to be applied to reciprocal relations, it can
be formally cast quite nicely into the cycle-transitivity framework.

Proposition 5.3. [10] Let C be a commutative conjunctor such that C � TM. A re-
ciprocal relation Q on A is C -transitive if and only if it is cycle-transitive w.r.t. the
upper bound function UC defined by

UC .˛; ˇ; �/ D min.˛ C ˇ � C.˛; ˇ/; ˇ C � � C.ˇ; �/; � C ˛ � C.�; ˛//:

Moreover, if C is 1-Lipschitz, then UC is given by

UC .˛; ˇ; �/ D ˛ C ˇ � C.˛; ˇ/: (5.14)
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This proposition applies in particular to commutative quasi-copulas and copulas.
In case of a copula, the expression in (5.14) is known as the dual of the copula.
Consider the three basic t-norms/copulas TM, TP and TL:

(i) For C D TM, we immediately obtain as upper bound function the median

UM.˛; ˇ; �/ D ˇ:

(ii) For C D TP, we find

UP.˛; ˇ; �/ D ˛ C ˇ � ˛ˇ:

(iii) For C D TL, we obtain

UL.˛; ˇ; �/ D
(
˛ C ˇ; if ˛ C ˇ < 1;

1; if ˛ C ˇ � 1:

An equivalent upper bound function is given by U 0
L.˛; ˇ; �/ D 1.

Cycle-transitivity also incorporates stochastic transitivity, although the latter fits
more naturally in the FG-transitivity framework. We list just one interesting propo-
sition under mild conditions on the function g.

Proposition 5.4. Let g be a commutative, increasing Œ1=2; 1�2 ! Œ1=2; 1�mapping
such that g.1=2; x/ � x for any x 2 Œ1=2; 1�. A reciprocal relation Q on A is g-
stochastic transitive if and only if it is cycle-transitive w.r.t. the upper bound function
Ug defined by

Ug.˛; ˇ; �/ D

8̂
<
:̂
ˇ C � � g.ˇ; �/; if ˇ � 1=2 ^ ˛ < 1=2;

1=2; if ˛ � 1=2;

2; if ˇ < 1=2:

(5.15)

A final simplification, eliminating the special case ˛ D 1=2 in (5.15), is obtained
by requiring g to have as neutral element 1=2, i.e. g.1=2; x/ D g.x; 1=2/ D x for
any x 2 Œ1=2; 1�.
Proposition 5.5. Let g be a commutative, increasing Œ1=2; 1�2 ! Œ1=2; 1�mapping
with neutral element 1=2. A reciprocal relation Q on A is g-stochastic transitive if
and only if it is cycle-transitive w.r.t. the upper bound Ug defined by

Ug.˛; ˇ; �/ D
(
ˇ C � � g.ˇ; �/; if ˇ � 1=2;

2; if ˇ < 1=2:
(5.16)

This proposition implies in particular that strong stochastic transitivity (g D
max) is equivalent to cycle-transitivity w.r.t. the simplified upper bound function
U 0
ss defined by
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U 0
ss.˛; ˇ; �/ D

(
ˇ; if ˇ � 1=2;

2; if ˇ < 1=2:

Note that g-stochastic transitivity w.r.t. a function g � max always implies strong
stochastic transitivity. This means that any reciprocal relation that is cycle-transitive
w.r.t. an upper bound function Ug of the form (5.16) is at least strongly stochastic
transitive. It is obvious that TM-transitivity implies strong stochastic transitivity and
that moderate stochastic transitivity implies TL-transitivity.

One particular form of stochastic transitivity deserves our attention. A prob-
abilistic relation Q on A is called partially stochastic transitive [24] if for any
.a; b; c/ 2 A3 it holds that

.Q.a; b/ > 1=2 ^ Q.b; c/ > 1=2/ ) Q.a; c/ � min.Q.a; b/;Q.b; c//:

Clearly, it is a slight weakening of moderate stochastic transitivity. Interestingly, also
this type of transitivity can be expressed elegantly in the cycle-transitivity frame-
work [17] by means of a simple upper bound function.

Proposition 5.6. Cycle-transitivity w.r.t. the upper bound function Ups defined by

Ups.˛; ˇ; �/ D �

is equivalent to partial stochastic transitivity.

Finally, not surprisingly, isostochastic transitivity corresponds to cycle-transiti-
vity w.r.t. particular self-dual upper bound functions [10]. An interesting way of
constructing a self-dual upper bound function goes as follows.

Proposition 5.7. Let g be a commutative, increasing Œ1=2; 1�2 ! Œ1=2; 1�mapping
with neutral element 1=2. It then holds that any� ! R function U of the form

U sg .˛; ˇ; �/ D
(
ˇ C � � g.ˇ; �/; if ˇ � 1=2;

˛ C ˇ � 1C g.1 � ˇ; 1 � ˛/; if ˇ < 1=2;

is a self-dual upper bound function.

Note that the function g in Proposition 5.7 has the same properties as the function
g in Proposition 5.5.

Proposition 5.8. A reciprocal relation Q on A is cycle-transitive w.r.t. a self-dual
upper bound function of type U sg if and only if it is g-isostochastic transitive.

In particular, a reciprocal relationQ is TM-transitive if and only if

.Q.a; b/ � 1=2 ^ Q.b; c/ � 1=2/ ) Q.a; c/ D max.Q.a; b/;Q.b; c//;

for any .a; b; c/ 2 A3. Note that this is formally the same as (5.10) with the differ-
ence that in the latter case Q was only f0; 1=2; 1g-valued.
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If the function g is a commutative, associative, increasing Œ1=2; 1�2 ! Œ1=2; 1�

mapping with neutral element 1=2, then the Œ0; 1�2 ! Œ0; 1� mapping Sg defined by

Sg.x; y/ D 2g

�
1C x

2
;
1C y

2

�
� 1

is a t-conorm. For the self-dual upper bound function UE , the associated t-conorm
SE is given by

SE .x; y/ D x C y

1C xy
;

which belongs to the parametric Hamacher t-conorm family, and is the co-copula of
the Hamacher t-norm with parameter value 2 [37].

We have shown that the cycle-transitivity andFG-transitivity frameworks cannot
easily be translated into one another, which underlines that these are two essentially
different frameworks [6].

5.4.3 Comparison of Random Variables

5.4.3.1 Dice-Transitivity of Winning Probabilities

Consider three dice A, B and C which, instead of the usual numbers, carry the
following integers on their faces:

A D f1; 3; 4; 15; 16; 17g; B D f2; 10; 11; 12; 13; 14g; C D f5; 6; 7; 8; 9; 18g:

Denoting by P.X; Y / the probability that dice X wins from dice Y , we have
P.A;B/ D 20=36, P.B; C / D 25=36 and P.C;A/ D 21=36. It is natural to
say that dice X is strictly preferred to dice Y if P.X; Y / > 1=2, which reflects
that dice X wins from dice Y in the long run (or that X statistically wins from Y ,
denoted X >s Y ). Note that P.Y;X/ D 1 � P.X; Y / which implies that the rela-
tion >s is asymmetric. In the above example, it holds that A >s B , B >s C and
C >s A: the relation >s is not transitive and forms a cycle. In other words, if we
interpret the probabilities P.X; Y / as constituents of a reciprocal relation on the set
of alternatives fA;B;C g, then this reciprocal relation is even not weakly stochastic
transitive.

This example can be generalized as follows: we allow the dice to possess any
number of faces (whether or not this can be materialized) and allow identical num-
bers on the faces of a single or multiple dice. In other words, a generalized dice can
be identified with a multiset of integers. Given a collection of m such generalized
dice, we can still build a reciprocal relation Q containing the winning probabilities
for each pair of dice [19]. For any two such dice A and B , we define

Q.A;B/ D PfA wins from Bg C 1

2
PfA and B end in a tieg:
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The dice or integer multisets may be identified with independent discrete random
variables that are uniformly distributed on these multisets (i.e. the probability of
an integer is proportional to its number of occurrences); the reciprocal relation Q
may be regarded as a quantitative description of the pairwise comparison of these
random variables.

In the characterization of the transitivity of this reciprocal relation, a type of
cycle-transitivity, which can neither be seen as a type of C -transitivity, nor as a type
of FG-transitivity, has proven to play a predominant role. For obvious reasons, this
new type of transitivity has been called dice-transitivity.

Definition 5.18. Cycle-transitivity w.r.t. the upper bound function UD defined by

UD.˛; ˇ; �/ D ˇ C � � ˇ�;

is called dice-transitivity.

Dice-transitivity is closely related to TP-transitivity. However, it uses the quan-
tities ˇ and � instead of the quantities ˛ and ˇ, and is therefore less restrictive.
Dice-transitivity can be situated between TL-transitivity and TP-transitivity, and also
between TL-transitivity and moderate stochastic transitivity.

Proposition 5.9. [19] The reciprocal relation generated by a collection of general-
ized dice is dice-transitive.

5.4.3.2 A Method for Comparing Random Variables

Many methods can be established for the comparison of the components (random
variables, r.v.) of a random vector .X1; : : : ; Xn/, as there exist many ways to extract
useful information from the joint cumulative distribution function (c.d.f.) FX1;:::;Xn

that characterizes the random vector. A first simplification consists in comparing the
r.v. two by two. It means that a method for comparing r.v. should only use the infor-
mation contained in the bivariate c.d.f. FXi ;Xj

. Therefore, one can very well ignore
the existence of a multivariate c.d.f. and just describe mutual dependencies between
the r.v. by means of the bivariate c.d.f. Of course one should be aware that not
all choices of bivariate c.d.f. are compatible with a multivariate c.d.f. The problem
of characterizing those ensembles of bivariate c.d.f. that can be identified with the
marginal bivariate c.d.f. of a single multivariate c.d.f. is known as the compatibility
problem [41].

A second simplifying step often made is to bypass the information contained in
the bivariate c.d.f. to devise a comparison method that entirely relies on the one-
dimensional marginal c.d.f. In this case there is even not a compatibility problem,
as for any set of univariate c.d.f. FXi

, the product FX1
FX2

� � �FXn
is a valid joint

c.d.f., namely the one expressing the independence of the r.v. There are many ways
to compare one-dimensional c.d.f., and by far the simplest one is the method that
builds a partial order on the set of r.v. using the principle of first order stochastic
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dominance [49]. It states that a r.v. X is weakly preferred to a r.v. Y if for all u 2 R
it holds that FX .u/ � FY .u/. At the extreme end of the chain of simplifications are
the methods that compare r.v. by means of a characteristic or a function of some
characteristics derived from the one-dimensional marginal c.d.f. The simplest ex-
ample is the weak order induced by the expected values of the r.v.

Proceeding along the line of thought of the previous section, a random vector
.X1; X2; : : : ; Xm/ generates a reciprocal relation by means of the following recipe.

Definition 5.19. Given a random vector .X1; X2; : : : ; Xm/, the binary relation Q
defined by

Q.Xi ; Xj / D PfXi > Xj g C 1

2
PfXi D Xj g

is a reciprocal relation.

For two discrete r.v. Xi and Xj , Q.Xi ; Xj / can be computed as

Q.Xi ; Xj / D
X
k>l

pXi ;Xj
.k; l/C 1

2

X
k

pXi ;Xj
.k; k/;

with pXi ;Xj
the joint probability mass function (p.m.f.) of .Xi ; Xj /. For two con-

tinuous r.v. Xi and Xj , Q.Xi ; Xj / can be computed as

Q.Xi ; Xj / D
Z C1

�1
dx

Z x

�1
fXi ;Xj

.x; y/ dy;

with fXi ;Xj
the joint probability density function (p.d.f.) of .Xi ; Xj /.

For this pairwise comparison, one needs the two-dimensional marginal distribu-
tions. Sklar’s theorem [41,46] tells us that if a joint cumulative distribution function
FXi ;Xj

has marginals FXi
and FXj

, then there exists a copula Cij such that for all
x; y:

FXi ;Xj
.x; y/ D Cij .FXi

.x/; FXj
.y//:

If Xi and Xj are continuous, then Cij is unique; otherwise, Cij is uniquely deter-
mined on Ran.FXi

/ � Ran.FXj
/.

As the above comparison method takes into account the bivariate marginal c.d.f.
it takes into account the dependence of the components of the random vector. The
information contained in the reciprocal relation is therefore much richer than if, for
instance, we would have based the comparison ofXi andXj solely on their expected
values. Despite the fact that the dependence structure is entirely captured by the
multivariate c.d.f., the pairwise comparison is only apt to take into account pairwise
dependence, as only bivariate c.d.f. are involved. Indeed, the bivariate c.d.f. do not
fully disclose the dependence structure; the r.v. may even be pairwise independent
while not mutually independent.

Since the copulas Cij that couple the univariate marginal c.d.f. into the bivariate
marginal c.d.f. can be different from another, the analysis of the reciprocal relation
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and in particular the identification of its transitivity properties appear rather cumber-
some. It is nonetheless possible to state in general, without making any assumptions
on the bivariate c.d.f., that the probabilistic relation Q generated by an arbitrary
random vector always shows some minimal form of transitivity.

Proposition 5.10. [8] The reciprocal relation Q generated by a random vector is
TL-transitive.

5.4.3.3 Artificial Coupling of Random Variables

Our further interest is to study the situation where abstraction is made that the r.v.
are components of a random vector, and all bivariate c.d.f. are enforced to depend
in the same way upon the univariate c.d.f., in other words, we consider the situation
of all copulas being the same, realizing that this might not be possible at all. In
fact, this simplification is equivalent to considering instead of a random vector, a
collection of r.v. and to artificially compare them, all in the same manner and based
upon a same copula. The pairwise comparison then relies upon the knowledge of
the one-dimensional marginal c.d.f. solely, as is the case in stochastic dominance
methods. Our comparison method, however, is not equivalent to any known kind of
stochastic dominance, but should rather be regarded as a graded variant of it (see
also [7]).

The case C D TP generalizes Proposition 5.9, and applies in particular to a
collection of independent r.v. where all copulas effectively equal TP.

Proposition 5.11. [18, 19] The reciprocal relation Q generated by a collection of
r.v. pairwise coupled by TP is dice-transitive, i.e. it is cycle-transitive w.r.t. the upper
bound function given by UD.˛; ˇ; �/ D ˇ C � � ˇ� .

We discuss next the case when using one of the extreme copulas to artificially
couple the r.v. In case C D TM, the r.v. are coupled comonotonically. Note that this
case is possible in reality.

Proposition 5.12. [16, 17] The reciprocal relation Q generated by a collection of
r.v. pairwise coupled by TM is cycle-transitive w.r.t. to the upper bound function
U given by U.˛; ˇ; �/ D min.ˇ C �; 1/. Cycle-transitivity w.r.t. the upper bound
function U is equivalent to TL-transitivity.

In case C D TL, the r.v. are coupled countermonotonically. This assumption
can never represent a true dependence structure for more than two r.v., due to the
compatibility problem.

Proposition 5.13. [16, 17] The reciprocal relation Q generated by a collection of
r.v. pairwise coupled by TL is partially stochastic transitive, i.e. it is cycle-transitive
w.r.t. to the upper bound function defined by Ups.˛; ˇ; �/ D max.ˇ; �/ D � .
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The proofs of these propositions were first given for discrete uniformly dis-
tributed r.v. [16, 19]. It allowed for an interpretation of the values Q.Xi ; Xj / as
winning probabilities in a hypothetical dice game, or equivalently, as a method for
the pairwise comparison of ordered lists of numbers. Subsequently, we have shown
that as far as transitivity is concerned, this situation is generic and therefore charac-
terizes the type of transitivity observed in general [17, 18].

The above results can be seen as particular cases of a more general result.

Proposition 5.14. [8] Let C be a commutative copula such that for any n > 1 and
for any 0 � x1 � � � � � xn � 1 and 0 � y1 � � � � � yn � 1, it holds that

X
i

C.xi ; yi /�
X
i

C.xn�2i ; yn�2i�1/�
X
i

C.xn�2i�1; yn�2i /

� C

 
xn C

X
i

C.xn�2i�2; yn�2i�1/ �
X
i

C.xn�2i ; yn�2i�1/;

yn C
X
i

C.xn�2i�1; yn�2i�2/�
X
i

C.xn�2i�1; yn�2i /
!
; (5.17)

where the sums extend over all integer values that lead to meaningful indices of
x and y. Then the reciprocal relation Q generated by a collection of random vari-
ables pairwise coupled by C is cycle-transitive w.r.t. to the upper bound function
UC defined by:

UC .˛; ˇ; �/ D max.ˇ C C.1 � ˇ; �/; � C C.ˇ; 1 � �//:

Inequality (5.17) is called the twisted staircase condition and appears to be
quite complicated. Although its origin is well understood [8], it is not yet clear
for which commutative copulas it holds. We strongly conjecture that it holds for all
Frank copulas.

5.4.3.4 Comparison of Special Independent Random Variables

Dice-transitivity is the generic type of transitivity shared by the reciprocal relations
generated by a collection of independent r.v. If one considers independent r.v. with
densities all belonging to one of the one-parameter families in Table 5.1, then the
corresponding reciprocal relation shows the corresponding type of cycle-transitivity
listed in Table 5.2 [18].

Note that all upper bound functions in Table 5.2 are self-dual. More striking
is that the two families of power-law distributions (one-parameter subfamilies of
the two-parameter Beta and Pareto families) and the family of Gumbel distribu-
tions all yield the same type of transitivity as exponential distributions, namely
cycle-transitivity w.r.t. the self-dual upper bound function UE , or, in other words,
multiplicative transitivity.
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Table 5.1 Parametric families of continuous distributions

Name Density function f .x/

Exponential �e��x � > 0 x 2 Œ0;1Œ

Beta �x.��1/ � > 0 x 2 Œ0; 1�

Pareto �x�.�C1/ � > 0 x 2 Œ1;1Œ

Gumbel �e��.x��/e�e��.x��/
� 2 R; � > 0 x 2 �� 1;1Œ

Uniform 1=a � 2 R; a > 0 x 2 Œ�; �C a�

Laplace .e�jx��j=�//=.2�/ � 2 R; � > 0 x 2 �� 1;1Œ

Normal .e�.x��/2=2	2 /=
p
2
	2 � 2 R; 	 > 0 x 2 �� 1;1Œ

Table 5.2 Cycle-transitivity for the continuous distributions in Table 5.1

Name Upper bound function U.˛; ˇ; �/

Exponential
Beta
Pareto ˛ˇ C ˛� C ˇ� � 2˛ˇ�

Gumbel

Uniform

8̂
ˆ̂<
ˆ̂̂:

ˇ C � � 1C 1

2

h
max.

p
2.1� ˇ/Cp

2.1� �/� 1; 0/
i2

ˇ � 1=2

˛ C ˇ � 1

2

h
max.

p
2˛ Cp

2ˇ � 1; 0/
i2
; ˇ < 1=2

Laplace

�
ˇ C � � 1C f �1.f .1 � ˇ/C f .1� �//; ˇ � 1=2

˛ C ˇ � f �1.f .˛/ C f .ˇ//; ˇ < 1=2

with f �1.x/ D 1
2

�
1C x

2

�
e�x

Normal

�
ˇ C � � 1Cˆ.ˆ�1.1� ˇ/Cˆ.1� �//; ˇ � 1=2

˛ C ˇ �ˆ.ˆ�1.˛/Cˆ�1.ˇ//; ˇ < 1=2

with ˆ.x/ D .
p
2
/�1

R x
�1

e�t2=2dt

In the cases of the unimodal uniform, Gumbel, Laplace and normal distribu-
tions we have fixed one of the two parameters in order to restrict the family to a
one-parameter subfamily, mainly because with two free parameters, the formulae
become utmost cumbersome. The one exception is the two-dimensional family of
normal distributions. In [18], we have shown that the corresponding reciprocal rela-
tion is in that case moderately stochastic transitive.

5.4.4 Mutual Ranking Probabilities in Posets

Consider a finite poset .P;�/ with P D fx1; : : : ; xng. A linear extension of P is
an order-preserving permutation of its elements (hence, also a ranking of the ele-
ments compatible with the partial order). We denote by p.xi < xj / the fraction of
linear extensions of P in which xi precedes xj . If the space of all linear extensions
of P is equipped with the uniform measure, the position of x in a linear exten-
sion can be regarded as a discrete random variable X with values in f1; : : : ; ng.
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Since p.xi < xj / D PfXi < Xj g, the latter value is called a mutual rank
probability. Note that P uniquely determines a random vector X D .X1; : : : ; Xn/

with multivariate distribution function FX1;:::;Xn
, whereas the mutual rank proba-

bilities p.xi < xj / are then computed from the bivariate marginal distributions
FXi ;Xj

. Note that for general P , despite the fact that the multivariate distribution
function FX1;:::;Xn

, or equivalently, the n-dimensional copula, can be very complex,
certain pairwise couplings are trivial. Indeed, if in P it holds that xi < yj , then xi
precedes yj in all linear extensions and Xi and Xj are comonotone, which means
that Xi and Xj are coupled by (a discretization of) TM. For pairs of elements in P
that are incomparable, the bivariate couplings can vary from pair to pair. The copu-
las are not all equal to TL, as can be seen already from the example where P is an
antichain with three elements.

Definition 5.20. Given a poset P D fx1; : : : ; xng, consider the reciprocal relation
QP defined by

QP .xi ; xj / D PfXi < Xj g D p.xi < xj /: (5.18)

The problem of probabilistic transitivity in a finite poset P was raised by
Fishburn [25]. It can be rephrased as follows: find the largest function ı W Œ0; 1�2 !
Œ0; 1� such that for any finite poset and any xi ; xj ; xk in it, it holds that

ı.QP .xi ; xj /;QP .xj ; xk// � QP .xi ; xk/:

Fishburn has shown in particular that

�
QP .xi ; xj / � u ^ QP .xj ; xk/ � u

� ) QP .xi ; xk/ � u

for u � � 	 0:78.
A non-trivial lower bound for ı was obtained by Kahn and Yu [36] via geometric

arguments. They have shown that ı� � ı with ı� the conjunctor

ı�.u; v/ D

8̂
ˆ̂<
ˆ̂̂:

0; if u C v < 1

min.u; v/; if u C v � 1 � min.u2; v2/
.1 � u/.1� v/

.1 � p
u C v � 1/2 ; elsewhere

Interestingly, the particular form of this function allows to state ı�-transitivity
also as

QP .xi ; xj /CQP .xj ; xk/ � 1

) QP .xi ; xk/ � ı�.QP .xi ; xj /;QP .xj ; xk//;

which can be seen to be closely related to stochastic transitivity. Moreover, ı�-
transitivity can be positioned within the cycle-transitivity framework.
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Proposition 5.15. [9] ı�-Transitivity implies cycle-transitivity w.r.t. the upper
bound function UP defined by

UP .˛; ˇ; �/ D ˛ C � � ˛�;

and hence also dice-transitivity.
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