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Abstract By now evolutionary multi-objective optimization (EMO) is an
established and a growing field of research and application with numerous texts
and edited books, commercial software, freely downloadable codes, a biannual
conference series running successfully since 2001, special sessions and workshops
held at all major evolutionary computing conferences, and full-time researchers
from universities and industries from all around the globe. In this chapter, we
discuss the principles of EMO through an illustration of one specific algorithm
and an application to an interesting real-world bi-objective optimization problem.
Thereafter, we provide a list of recent research and application developments of
EMO to paint a picture of some salient advancements in EMO research. Some of
these descriptions include hybrid EMO algorithms with mathematical optimization
and multiple criterion decision-making procedures, handling of a large number of
objectives, handling of uncertainties in decision variables and parameters, solution
of different problem-solving tasks better by converting them into multi-objective
problems, runtime analysis of EMO algorithms, and others. The development and
application of EMO to multi-objective optimization problems and their continued
extensions to solve other related problems has elevated the EMO research to a level
which may now undoubtedly be termed as an active field of research with a wide
range of theoretical and practical research and application opportunities.
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12.1 Introduction

Since the middle of Nineties, evolutionary multi-objective optimization (EMO) has
become a popular and useful field of research and application. In a recent survey
announced during the World Congress on Computational Intelligence (WCCI) in
Vancouver 2006, EMO has been judged as one of the three fastest growing fields of
research and application among all computational intelligence topics. Evolutionary
optimization (EO) algorithms use a population-based approach in which more than
one solution participates in an iteration and evolves a new population of solutions
in each iteration. The reasons for their popularity are many. Some of them are: (i)
EOs do not require any derivative information, (ii) EOs are relatively simple to im-
plement, and (iii) EOs are flexible and have a widespread applicability. For solving
single-objective optimization problems or in other tasks focusing on finding a sin-
gle optimal solution, the use of a population of solutions in each iteration may at
first seem like an overkill but they help provide an implicit parallel search ability,
thereby making EOs computationally efficient [48, 53], in solving multi-objective
optimization problems an EO procedure is a perfect match [19].

Multi-objective optimization problems, by nature, give rise to a set of Pare-
to-optimal solutions which need further processing to arrive at a single preferred
solution. To achieve the first task, it becomes quite a natural proposition to use an
EO, because the use of a population in an iteration helps an EO to simultaneously
find multiple nondominated solutions, which portrays a trade-off among objectives,
in a single run of the algorithm.

In this chapter, we begin with a brief description of the principles of an EMO
in solving multi-objective optimization problems and then illustrate its working
through a specific EMO procedure, which has been popularly and extensively
used over the past 5–6 years. Besides this specific algorithm, there exist a num-
ber of other equally efficient EMO algorithms which we do not describe here for
brevity. Instead, in this chapter, we discuss a number of recent advancements of
EMO research and application which are driving the researchers and practition-
ers ahead. Fortunately, researchers have utilized the EMO’s principle of solving
multi-objective optimization problems in handling various other problem-solving
tasks. The diversity of EMO’s research is bringing researchers and practitioners to-
gether with different backgrounds including computer scientists, mathematicians,
economists, and engineers. The topics we discuss here amply demonstrate why and
how EMO researchers from different backgrounds must and should collaborate in
solving complex problem-solving tasks which have become the need of the hour in
most branches of science, engineering, and commerce.

12.2 Evolutionary Multi-objective Optimization (EMO)

A multi-objective optimization problem involves a number of objective functions
which are to be either minimized or maximized subject to a number of constraints
and variable bounds:
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Minimize/Maximize fm.x/; m D 1; 2; : : : ; M I
subject to gj .x/ � 0; j D 1; 2; : : : ; J I

hk.x/ D 0; k D 1; 2; : : : ; KI
x

.L/
i � xi � x

.U /
i ; i D 1; 2; : : : ; n:
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>>>=

>>>;

(12.1)

A solution x 2 Rn is a vector of n decision variables: x D .x1; x2; : : : ; xn/T .
The solutions satisfying the constraints and variable bounds constitute a S in the
decision variable space Rn. One of the striking differences between single-objective
and multi-objective optimization is that in multi-objective optimization the objective
function vectors belong to a multidimensional objective space RM . The objective
function vectors constitute a feasible set Z in the objective space. For each solution
x in S , there exists a point z 2 Z, denoted by f.x/ D z D .z1; z2; : : : ; zM /T . To
make the descriptions clear, we refer a decision variable vector as a solution and the
corresponding objective vector as a point.

The optimal solutions in multi-objective optimization can be defined from a
mathematical concept of partial ordering. In the parlance of multi-objective opti-
mization, the term domination is used for this purpose. In this section, we restrict
ourselves to discuss unconstrained (without any equality, inequality, or bound con-
straints) optimization problems. The domination between two solutions is defined
as follows [19, 72]:

Definition 12.1. A solution x.1/ is said to dominate the another solution x.2/, if both
the following conditions are true:

1. The solution x.1/ is no worse than x.2/ in all objectives. Thus, the solutions are
compared based on their objective function values (or location of the correspond-
ing points (z.1/ and z.2/) in the objective function set Z).

2. The solution x.1/ is strictly better than x.2/ in at least one objective.

For a given set of solutions (or corresponding points in the objective function set Z,
for example, those shown in Fig. 12.1a), a pair-wise comparison can be made using
the above definition and whether one point dominates another point can also be
established.
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Fig. 12.1 A set of points and the first non-dominated front are shown
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All points which are not dominated by any other member of the set are called
the nondominated points of class one, or simply the nondominated points. For the
set of six points shown in the figure, they are points 3, 5, and 6. One property of
any two such points is that a gain in an objective from one point to the other hap-
pens only due to a sacrifice in at least one other objective. This trade-off property
between the non-dominated points makes the practitioners interested in finding a
wide variety of them before making a final choice. These points make up a front
when viewed together on the objective space; hence the non-dominated points are
often visualized to represent a non-dominated front. The theoretical computational
effort needed to select the points of the non-dominated front from a set of N points
is O.N log N / for two and three objectives, and O.N logM�2 N / for M > 3 ob-
jectives [65], but for a moderate number of objectives, the procedure need not be
particularly computationally effective in practice.

With the above concept, it is now easier to define the Pareto-optimal solutions
in a multi-objective optimization problem. If the given set of points for the above
task contain all points in the decision variable space, the points lying on the non-
domination front, by definition, do not get dominated by any other point in the
objective space; hence are Pareto-optimal points (together they constitute the Pareto-
optimal front) and the corresponding pre-images (decision variable vectors) are
called Pareto-optimal solutions. However, more mathematically elegant definitions
of Pareto-optimality (including the ones for continuous search space problems) exist
in the multi-objective optimization literature [55, 72].

12.2.1 EMO Principles

In the context of multi-objective optimization, the extremist principle of finding
the optimum solution cannot be applied to one objective alone, when the rest of
the objectives are also important. This clearly suggests two ideal goals of multi-
objective optimization:

Convergence: Find a (finite) set of solutions which lie on the Pareto-optimal front,
and
Diversity: Find a set of solutions which are diverse enough to represent the entire
range of the Pareto-optimal front.

EMO algorithms attempt to follow both the above principles, similar to a posteri-
ori MCDM method. Figure 12.2 shows schematically the principles followed in an
EMO procedure.

Since EMO procedures are heuristic based, they may not guarantee finding the
exact Pareto-optimal points, as a theoretically provable optimization method would
do for tractable (e.g., linear or convex) problems. But EMO procedures have es-
sential operators to constantly improve the evolving nondominated points (from the
point of view of convergence and diversity mentioned above) similar to the way
most natural and artificial evolving systems continuously improve their solutions.
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Fig. 12.2 Schematic of a two-step multi-criteria optimization and decision-making procedure

To this effect, a recent study [32] has demonstrated that a particular EMO procedure,
starting from random non-optimal solutions, can progress towards the theoretical
Karush-Kuhn-Tucker (KKT) points with iterations in real-valued multi-objective
optimization problems. The main difference and advantage of using an EMO com-
pared to a posteriori MCDM procedures is that multiple trade-off solutions can be
found in a single run of an EMO algorithm, whereas most a posteriori MCDM
methodologies would require multiple independent runs.

In Step 1 of the EMO-based multi-objective optimization and decision-making
procedure (the task shown vertically downwards in Fig. 12.2), multiple trade-off,
nondominated points are found. Thereafter, in Step 2 (the task shown horizontally,
towards the right), higher-level information is used to choose one of the obtained
trade-off points.

12.2.2 A Posteriori MCDM Methods and EMO

In the “a posteriori” MCDM approaches (also known as “generating MCDM
methods”), the task of finding multiple Pareto-optimal solutions is achieved by
executing many independent single-objective optimizations, each time finding a
single Pareto-optimal solution [72]. A parametric scalarizing approach (such as the
weighted-sum approach, �-constraint approach, and others) can be used to convert
multiple objectives into a parametric single-objective function. By simply varying
the parameters (weight vector or �-vector) and optimizing the scalarized function,
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Fig. 12.3 A posteriori MCDM methodology employing independent single-objective
optimizations

different Pareto-optimal solutions can be found. In contrast, in an EMO, multiple
Pareto-optimal solutions are attempted to be found in a single run of the algorithm
by emphasizing multiple non-dominated and isolated solutions in each iteration of
the algorithm without the use of any scalarization of objectives.

Consider Fig. 12.3, in which we sketch how multiple independent parametric
single-objective optimizations (through a posteriori MCDM method) may find dif-
ferent Pareto-optimal solutions.

It is worth highlighting here that the Pareto-optimal front corresponds to global
optimal solutions of several problems each formed with a different scalarization of
objectives. During the course of an optimization task, algorithms must overcome
a number of difficulties, such as infeasible regions, local optimal solutions, flat or
non-improving regions of objective landscapes, isolation of optimum, etc., to fi-
nally converge to the global optimal solution. Moreover, due to practical limitations,
an optimization task must also be completed in a reasonable computational time.
All these difficulties in a problem require that an optimization algorithm strikes a
good balance between exploring new search directions and exploiting the extent of
search in currently-best search direction. When multiple runs of an algorithm need
to be performed independently to find a set of Pareto-optimal solutions, the above
balancing act must be performed in every single run. Since runs are performed inde-
pendently from one another, no information about the success or failure of previous
runs is utilized to speed up the overall process. In difficult multi-objective optimiza-
tion problems, such memory-less, a posteriori methods may demand a large overall
computational overhead to find a set of Pareto-optimal solutions [85]. Moreover,
despite the issue of global convergence, independent runs may not guarantee achiev-
ing a good distribution among obtained points by an easy variation of scalarization
parameters.
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EMO, as mentioned earlier, constitutes an inherent parallel search. When a
particular population member overcomes certain difficulties and makes a progress
towards the Pareto-optimal front, its variable values and their combination must re-
flect this fact. When a recombination takes place between this solution and another
population member, such valuable information of variable value combinations gets
shared through variable exchanges and blending, thereby making the overall task of
finding multiple trade-off solutions a parallelly processed task.

12.3 A Brief History of EMO Methodologies

During the early years, EA researchers realized the need of solving multi-objective
optimization problems in practice and mainly resorted to using weighted-sum ap-
proaches to convert multiple objectives into a single goal [40, 78].

However, the first implementation of a real multi-objective evolutionary algo-
rithm (vector-evaluated GA or VEGA) was suggested by David Schaffer in the year
1984 [84]. Schaffer modified the simple three-operator genetic algorithm [53] (with
selection, crossover, and mutation) by performing independent selection cycles ac-
cording to each objective. The selection method is repeated for each individual
objective to fill up a portion of the mating pool. Then the entire population is thor-
oughly shuffled to apply crossover and mutation operators. This is performed to
achieve the mating of individuals of different subpopulation groups. The algorithm
worked efficiently for some generations but in some cases suffered from its bias
towards some individuals or regions (mostly individual objective champions). This
does not fulfil the second goal of EMO, discussed earlier.

Ironically, no significant study was performed for almost a decade after the
pioneering work of Schaffer, until a revolutionary 10-line sketch of a new non-
dominated sorting procedure suggested by David E. Goldberg in his seminal book
on GAs [48]. Since an EA needs a fitness function for reproduction, the trick was
to find a single metric from a number of objective functions. Goldberg’s sugges-
tion was to use the concept of domination to assign more copies to non-dominated
individuals in a population. Since diversity is the other concern, he also suggested
the use of a niching strategy [49] among solutions of a non-dominated class. Get-
ting this clue, at least three independent groups of researchers developed different
versions of multi-objective evolutionary algorithms during 1993–1994 [43, 54, 87].
These algorithms differ in the way a fitness assignment scheme is introduced to each
individual.

These EMO methodologies gave a good head-start to the research and applica-
tion of EMO, but suffered from the fact that they did not use an elite-preservation
mechanism in their procedures. Inclusion of elitism in an EO provides a mono-
tonically non-degrading performance [79]. The second generation EMO algorithms
implemented an elite-preserving operator in different ways and gave birth to elitist
EMO procedures, such as NSGA-II [21], Strength Pareto EA (SPEA) [94], Pareto-
archived ES (PAES) [60], and others. Since these EMO algorithms are state-of-the-
art and commonly used procedures, we describe one of these algorithms in detail.
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12.4 Elitist EMO: NSGA-II

The NSGA-II procedure [21] is one of the popularly used EMO procedures which
attempt to find multiple Pareto-optimal solutions in a multi-objective optimization
problem and has the following three features:

1. It uses an elitist principle
2. It uses an explicit diversity-preserving mechanism and
3. It emphasizes non-dominated solutions

At any generation t , the offspring population (say, Qt ) is first created by using the
parent population (say, Pt ) and the usual genetic operators. Thereafter, the two pop-
ulations are combined together to form a new population (say, Rt ) of size 2N . Then,
the population Rt is classified into different non-dominated classes. Thereafter, the
new population is filled by points of different non-dominated fronts, one at a time.
The filling starts with the first non-dominated front (of class one) and continues with
points of the second non-dominated front, and so on. Since the overall population
size of Rt is 2N , not all fronts can be accommodated in N slots available for the
new population. All fronts which could not be accommodated are deleted. When the
last allowed front is being considered, there may exist more points in the front than
the remaining slots in the new population. This scenario is illustrated in Fig. 12.4.
Instead of arbitrarily discarding some members from the last front, the points which
will make the diversity of the selected points the highest are chosen.

The crowded-sorting of the points of the last front which could not be accommo-
dated fully is achieved in the descending order of their crowding distance values and
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Fig. 12.4 Schematic of the NSGA-II procedure
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points from the top of the ordered list are chosen. The crowding distance di of point
i is a measure of the objective space around i which is not occupied by any other
solution in the population. Here, we simply calculate this quantity di by estimating
the perimeter of the cuboid (Fig. 12.5) formed by using the nearest neighbors in the
objective space as the vertices (we call this the crowding distance).

12.4.1 Sample Results

Here, we show results from several runs of the NSGA-II algorithm on two test
problems. The first problem (ZDT2) is two-objective, 30-variable problem with a
concave Pareto-optimal front:

ZDT2 W

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

Minimize f1.x/ D x1;

Minimize f2.x/ D s.x/
�
1 � .f1.x/=s.x//2

�
;

where s.x/ D 1 C 9
29

P30
iD2 xi

0 � x1 � 1;

�1 � xi � 1; i D 2; 3; : : : ; 30:

(12.2)

The second problem (KUR), with three variables, has a disconnected Pareto-optimal
front:

KUR W

8
ˆ̂
<

ˆ̂
:

Minimize f1.x/ D P2
iD1

h
�10 exp

�
�0:2

q

x2
i C x2

iC1

�i
;

Minimize f2.x/ D P3
iD1

�jxi j0:8 C 5 sin
�
x3

i

��
;

�5 � xi � 5; i D 1; 2; 3:

(12.3)

NSGA-II is run with a population size of 100 for 250 generations. The variables
are used as real numbers and an SBX recombination operator [20] with pc D 0:9,
distribution index of �c D 10, a polynomial mutation operator [19] with pm D
1=n (n is the number of variables), and distribution index of �m D 20 are used.
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Fig. 12.6 NSGA-II on ZDT2
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Figures 12.6 and 12.7 show that NSGA-II converges to the Pareto-optimal front and
maintains a good spread of solutions on both test problems.

There also exist other competent EMOs, such as strength Pareto evolutionary al-
gorithm (SPEA) and its improved version SPEA2 [93], Pareto-archived evolution
strategy (PAES) and its improved versions PESA and PESA2 [16], multi-objective
messy GA (MOMGA) [89], multi-objective-GA [12], neighbourhood constraint GA
[69], ARMOGA [80], and others. Besides, there exists other EA-based methodolo-
gies, such as particle swarm EMO [19,73], ant-based EMO [50,71], and differential
evolution-based EMO [1].

12.4.2 Constraint Handling in EMO

The constraint handling method modifies the binary tournament selection, where
two solutions are picked from the population and the better solution is chosen. In
the presence of constraints, each solution can be either feasible or infeasible. Thus,
there may be at most three situations: (i) both solutions are feasible, (ii) one is
feasible and other is not, and (iii) both are infeasible. We consider each case by
simply redefining the domination principle as follows (we call it the constrained-
domination condition for any two solutions x.i/ and x.j /):
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Definition 12.2. A solution x.i/ is said to ‘constrained-dominate’ a solution x.j / (or
x.i/ �c x.j /), if any of the following conditions are true:

1. Solution x.i/ is feasible and solution x.j / is not.
2. Solutions x.i/ and x.j / are both infeasible, but solution x.i/ has a smaller con-

straint violation, which can be computed by adding the normalized violation of
all constraints:

CV.x/ D
JX

j D1

max
�
0; � Ngj .x/

� C
KX

kD1

abs. Nhk.x//:

The normalization of a constraint gj .x/ � gj;r can be achieved as Ngj .x/ � 0,
where Ngj .x/ D gj .x/=gj;r � 1.

3. Solutions x.i/ and x.j / are feasible and solution x.i/ dominates solution x.j / in
the usual sense (Definition 12.1).

The above change in the definition requires a minimal change in the
NSGA-II procedure described earlier. Figure 12.8 shows the nondominated fronts
on a six-member population due to the introduction of two constraints (the mini-
mization problem is described as CONSTR elsewhere [19]). In the absence of the
constraints, the nondominated fronts (shown by dashed lines) would have been
((1,3,5), (2,6), (4)), but in their presence, the new fronts are ((4,5),
(6), (2), (1), (3)).

The first nondominated front consists of the “best” (i.e., nondominated and feasi-
ble) points from the population and any feasible point lies on a better nondominated
front than an infeasible point.
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12.5 Applications of EMO

Since the early development of EMO algorithms in 1993, they have been applied to
many challenging real-world optimization problems. Descriptions of some of these
studies can be found in books [13, 19, 77], dedicated conference proceedings [15,
41,76,91], and domain-specific books, journals and proceedings. In this section, we
describe one case study which clearly demonstrates the EMO philosophy which we
described in Section 12.2.1.

12.5.1 Spacecraft Trajectory Design

Coverstone-Carroll et al. [17] proposed a multi-objective optimization technique
using the original non-dominated sorting algorithm (NSGA) [87] to find multiple
trade-off solutions in a spacecraft trajectory optimization problem. To evaluate a
solution (trajectory), the SEPTOP (Solar Electric Propulsion Trajectory Optimiza-
tion) software [81] is called, and the delivered payload mass and the total time of
flight are calculated. The multi-objective optimization problem has eight decision
variables controlling the trajectory, three objective functions: (i) maximize the de-
livered payload at destination, (ii) maximize the negative of the time of flight, and
(iii) maximize the total number of heliocentric revolutions in the trajectory, and
three constraints limiting the SEPTOP convergence error and minimum and maxi-
mum bounds on heliocentric revolutions.

On the Earth–Mars rendezvous mission, the study found interesting trade-off so-
lutions [17]. Using a population of size 150, the NSGA was run for 30 generations.
The obtained nondominated solutions are shown in Fig. 12.9 for two of the three
objectives and some selected solutions are shown in Fig. 12.10.

It is clear that there exist short-time flights with smaller delivered payloads
(solution marked 44 with 1.12 years of flight and delivering 685.28 kg load) and
long-time flights with larger delivered payloads (solution marked 36 with close to
3.5 years of flight and delivering about 900 kg load).

While solution 44 can deliver a mass of 685.28 kg and requires about 1.12 years,
solution 72 can deliver almost 862 kg with a travel time of about 3 years. In these
figures, each continuous part of a trajectory represents a thrusting arc and each
dashed part of a trajectory represents a coasting arc. It is interesting to note that
only a small improvement in delivered mass occurs in the solutions between 73 and
72 with a sacrifice in flight time of about 1 year.

The multiplicity in trade-off solutions, as depicted in Fig. 12.10, is what we envis-
aged in discovering in a multi-objective optimization problem by using a posteriori
procedure, such as a generating method or using an EMO procedure vis-a-vis a pri-
ori approach in which a single scalarized problem is solved with a single preferred
parameter setting to find a single Pareto-optimal solution. This aspect was also dis-
cussed in Fig. 12.2. Once a set of solutions with a good trade-off among objectives
is obtained, one can analyze them for choosing a particular solution. For example,
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in this problem context, it makes sense to not choose a solution between points 73
and 72 due to poor trade-off between the objectives in this range, a matter which is
only revealed after a representative set of trade-off solutions are found. On the other
hand, choosing a solution within points 44 and 73 is worthwhile, but which particu-
lar solution to choose depends on other mission-related issues. But by first finding a
wide range of possible solutions and revealing the shape of front in a computation-
ally quicker manner, EMO can help a decision maker in narrowing down the choices
and in allowing to make a better decision (e.g., in the above example, focussing to
choose a solution with a transfer time less than 2 years). Without the knowledge of
such a wide variety of trade-off solutions, proper decision making may be a difficult
task. The use of a priori approach to find a single solution using for example, the
�-constraint method with a particular � vector, the decision maker will always won-
der what solution would have been derived if a different � vector was chosen. For
example, if �1 D 2:5 years is chosen and mass delivered to the target is maximized,
a solution in between points 73 and 72 will be found. As discussed earlier, this part
of the Pareto-optimal front does not provide the best trade-offs between objectives
that this problem can offer. A lack of knowledge of good trade-off regions before
a decision is made may allow the decision maker to settle for a solution which,
although optimal, may not be a good compromised solution. The EMO procedure
allows a flexible and a pragmatic procedure for finding a well-diversified set of solu-
tions simultaneously so as to enable picking a particular region for further analysis
or a particular solution for implementation.

12.6 Salient Recent Developments of EMO

An interesting aspect regarding research and application of EMO is that soon after a
number of efficient EMO methodologies had been suggested and applied in various
interesting problem areas, researchers did not waste any time to look for opportuni-
ties to make the field broader and more useful by diversifying EMO applications to
various other problem-solving tasks. In this section, we describe a number of such
salient recent developments of EMO.

12.6.1 Hybrid EMO Algorithms

Search operators used in EMO are heuristic-based. Thus, these methodologies are
not guaranteed to find Pareto-optimal solutions with a finite number of solution
evaluations in an arbitrary problem. In single-objective EA research, hybridization
of EAs is common for ensuring convergence to an optimal solution, it is not sur-
prising that studies on developing hybrid EMOs are now being pursued to ensure
finding of true Pareto-optimal solutions by hybridizing them with mathematically
convergent ideas.
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EMO methodologies provide adequate emphasis to currently non-dominated and
isolated solutions so that population members progress towards the Pareto-optimal
front iteratively. To make the overall procedure faster and to perform the task with
a more theoretical emphasis, EMO methodologies are combined with mathematical
optimization techniques having local convergence properties. A simple-minded ap-
proach would be to start the process with an EMO and the solutions obtained from
EMO can be improved by optimizing a composite objective derived from multiple
objectives to ensure a good spread by using a local search technique [22]. Another
approach would be to use a local search technique as a mutation-like operator in an
EMO so that all population members are at least guaranteed to be local optimal
solutions [22, 86]. To save computational time, instead of performing the local
search for every solution in a generation, a mutation can be performed only after
a few generations. Some recent studies [56, 82, 86] have demonstrated the useful-
ness of such hybrid EMOs for a guaranteed convergence.

Although these studies have concentrated on ensuring convergence to the
Pareto-optimal front, some emphasis should now be placed in providing an adequate
diversity among obtained solutions, particularly when a continuous Pareto-optimal
front is represented by a finite set of points. Some ideas of maximizing hypervolume
measure [39] or maintenance of uniform distance between points are proposed for
this purpose, but how such diversity-maintenance techniques would be integrated
with convergence-ensuring principles in a synergistic way would be interesting and
useful future research. Some relevant studies in this direction exist [4, 56, 66].

12.6.2 Multi-objectivization

Interestingly, the act of finding multiple trade-off solutions using an EMO procedure
has found its application outside the realm of solving multi-objective optimiza-
tion problems. The concept of finding near-optimal trade-off solutions is applied to
solve other kinds of optimization problems as well. For example, the EMO concept
is used to solve constrained single-objective optimization problems by convert-
ing the task into a two-objective optimization task of additionally minimizing an
aggregate constraint violation [14]. This eliminates the need to specify a penalty
parameter while using a penalty based constraint handling procedure. If viewed this
way, the usual penalty function approach used in classical optimization studies is
a special weighted-sum approach to the bi-objective optimization problem of min-
imizing the objective function and minimizing the constraint violation, for which
the weight vector is a function of the penalty parameter. A well-known difficulty in
genetic programming studies, called bloating, arises due to the continual increase
in the size of evolved “genetic programs” with iteration. The reduction of bloating
by minimizing the size of a program as an additional objective helped find high-
performing solutions with a smaller size of the code [3,57]. In clustering algorithms,
minimizing the intra-cluster distance and maximizing inter-cluster distance simul-
taneously in a bi-objective formulation of a is found to yield better solutions than
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the usual single-objective minimization of the ratio of the intra-cluster distance to
the inter-cluster distance [51]. An EMO is used to solve minimum spanning tree
problem better than a single-objective EA [75]. A recent edited book [62] describes
many such interesting applications in which EMO methodologies have helped solve
problems which are otherwise (or traditionally) not treated as multi-objective opti-
mization problems.

12.6.3 Uncertainty-based EMO

A major surge in EMO research has taken place in handling uncertainties among
decision variables and problem parameters in multi-objective optimization. Prac-
tice is full of uncertainties and almost no parameter, dimension, or property can
be guaranteed to be fixed at a value it is aimed at. In such scenarios, evaluation
of a solution is not precise, and the resulting objective and constraint function val-
ues becomes probabilistic quantities. Optimization algorithms are usually designed
to handle such stochasticities by using crude methods, such as the Monte Carlo
simulation of stochasticities in uncertain variables and parameters and by sophis-
ticated stochastic programming methods involving nested optimization techniques
[24]. When these effects are taken care of during the optimization process, the re-
sulting solution is usually different from the optimum solution of the problem and
is known as a “robust” solution. Such an optimization procedure will then find a
solution which may not be the true global optimum solution, but one which is less
sensitive to uncertainties in decision variables and problem parameters. In the con-
text of multi-objective optimization, a consideration of uncertainties for multiple
objective functions will result in a robust frontier which may be different from the
globally Pareto-optimal front. Each and every point on the robust frontier is then
guaranteed to be less sensitive to uncertainties in decision variables and problem
parameters. Some such studies in EMO are [2, 23].

When the evaluation of constraints under uncertainties in decision variables and
problem parameters are considered, deterministic constraints become stochastic
(they are also known as “chance constraints”) and involves a reliability index (R) to
handle the constraints. A constraint g.x/ � 0 then becomes Prob.g.x/ � 0/ � R.
In order to find left side of the above chance constraint, a separate optimization
methodology [18], is needed, thereby making the overall algorithm a bi-level op-
timization procedure. Approximate single-loop algorithms exist [34] and recently
one such methodology has been integrated with an EMO [24] and shown to find a
“reliable” frontier corresponding a specified reliability index, instead of the Pareto-
optimal frontier, in problems having uncertainty in decision variables and problem
parameters. More such methodologies are needed, as uncertainties is an integral part
of practical problem-solving and multi-objective optimization researchers must look
for better and faster algorithms to handle them.
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12.6.4 EMO and Decision Making

Searching for a set of Pareto-optimal solutions by using an EMO fulfils only one
aspect of multi-objective optimization, as choosing a particular solution for an im-
plementation is the remaining decision-making task which is equally important. For
many years, EMO researchers have postponed the decision-making aspect and con-
centrated on developing efficient algorithms for finding multiple trade-off solutions.
Having pursued that part somewhat, now for the past couple of years or so, EMO
researchers are putting efforts to design combined algorithms for optimization and
decision making. In the view of the author, the decision-making task can be consid-
ered from two main considerations in an EMO framework:

1. Generic consideration: There are some aspects which most practical users
would like to use in narrowing down their choice. We have discussed above the
importance of finding robust and reliable solutions in the presence of uncertain-
ties in decision variables and/or problem parameters. In such scenarios, an EMO
methodology can straightway find a robust or a reliable frontier [23, 24] and no
subjective preference from any decision maker may be necessary. Similarly, if a
problem resorts to a Pareto-optimal front having knee points, such points are of-
ten the choice of decision makers. Knee points demand a large sacrifice in at least
one objective to achieve a small gain in another thereby making it discouraging to
move out from a knee point [7]. Other such generic choices are related to Pareto-
optimal points depicting certain pre-specified relationship between objectives,
Pareto-optimal points having multiplicity (say, at least two or more solutions in
the decision variable space mapping to identical objective values), Pareto-optimal
solutions which do not lie close to variable boundaries, Pareto-optimal points
having certain mathematical properties, such as all Lagrange multipliers having
more or less identical magnitude – a condition often desired to make an equal im-
portance to all constraints, and others. These considerations are motivated from
the fundamental and practical aspects of optimization and may be applied to
most multi-objective problem-solving tasks, without any consent of a decision
maker. These considerations may narrow down the set of non-dominated points.
A further subjective consideration (discussed below) may then be used to pick a
preferred solution.

2. Subjective consideration: In this category, any problem-specific information
can be used to narrow down the choices and the process may even lead to a
single preferred solution at the end. Most decision-making procedures use some
preference information (utility functions, reference points [90], reference direc-
tions [63], marginal rate of return, and a host of other considerations [72]) to
select a subset of Pareto-optimal solutions. A recent book [8] is dedicated to the
discussion of many such multi-criteria decision analysis (MCDA) tools and col-
laborative suggestions of using EMO with such MCDA tools. Some hybrid EMO
and MCDA algorithms are suggested in the recent past [25, 26, 31, 70, 88].
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Many other generic and subjective considerations are needed and it is interesting
that EMO and MCDM researchers are collaborating on developing such complete
algorithms for multi-objective optimization [8].

12.6.5 EMO for Handling a Large Number of Objectives

Soon after the development of efficient EMO methodologies, researchers were in-
terested in exploring whether existing EMO methodologies are adequate to handle
a large number of objectives (say, ten or more). An earlier study [58] with eight
objectives revealed somewhat negative results. But the author in his book [19] and
recent other studies [59] have clearly explained the reason for this behavior of EMO
algorithms. EMO methodologies work by emphasizing non-dominated solutions in
a population. Unfortunately, as the number of objectives increase, most population
members in a randomly created population tend to become non-dominated to each
other. For example, in a three-objective scenario, about 10% members in a popu-
lation of size 200 are nondominated, whereas in a 10-objective problem scenario,
as high as 90% members in a population of size 200 are nondominated. Thus, in a
large-objective problem, an EMO algorithm runs out of room to introduce new pop-
ulation members into a generation, thereby causing a stagnation in the performance
of an EMO algorithm. It has been argued that to make EMO procedures efficient, an
exponentially large population size (with respect to number of objectives) is needed.
This makes an EMO procedure slow and computationally less attractive.

However, practically speaking, even if an algorithm can find tens of thousands of
Pareto-optimal solutions for a multi-objective optimization problem, besides simply
getting an idea of the nature and shape of the front, they are simply too many to
be useful for any decision-making purposes. Keeping these views in mind, EMO
researchers have taken two different approaches in dealing with large-objective
problems.

12.6.5.1 Finding a Partial Set

Instead of finding the complete Pareto-optimal front in a problem having a large
number of objectives, EMO procedures can be used to find only a part of the Pareto-
optimal front. This can be achieved by indicating preference information by various
means. Ideas, such as reference point-based EMO [31,70], “light beam search” [26],
biased sharing approaches [6], cone dominance [33], etc. are suggested for this pur-
pose. Each of these studies have shown that up to 10, and 20-objective problems,
although finding the complete frontier is a difficulty, finding a partial frontier corre-
sponding to certain preference information is not that difficult a proposition. Despite
the dimension of the partial frontier being identical to that of the complete Pareto-
optimal frontier, the closeness of target points in representing the desired partial
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frontier helps make only a small fraction of an EMO population to be nondominated,
thereby making rooms for new and hopefully better solutions to be found and stored.

The computational efficiency and accuracy observed in some EMO implementa-
tions have led a distributed EMO study [33] in which each processor in a distributed
computing environment receives a unique cone for defining domination. The cones
are designed carefully so that at the end of such a distributed computing EMO pro-
cedure, solutions are found to exist in various parts of the complete Pareto-optimal
front. A collection of these solutions together is then able to provide a good repre-
sentation of the entire original Pareto-optimal front.

12.6.5.2 Identifying and Eliminating Redundant Objectives

Many practical optimization problems can easily list a large of number of objectives
(often more than ten), as many different criteria or goals are often of interest to
practitioners. In most instances, it is not entirely sure whether the chosen objectives
are all in conflict to each other or not. For example, minimization of weight and
minimization of cost of a component or a system are often mistaken to have an
identical optimal solution, but may lead to a range of trade-off optimal solutions.
Practitioners do not take any chance and tend to include all (or as many as possible)
objectives into the optimization problem formulation. There is another fact which is
more worrisome. Two apparently conflicting objectives may show a good trade-off
when evaluated with respect to some randomly created solutions. But if these two
objectives are evaluated for solutions close to their optima, they tend to show a good
correlation. That is, although objectives can exhibit conflicting behavior for random
solutions, near their Pareto-optimal front, the conflict vanishes and optimum of one
becomes close to the optimum of the other.

Thinking of the existence of such problems in practice, recent studies [29, 83]
have performed linear and non-linear principal component analysis (PCA) to a set of
EMO-produced solutions. Objectives causing positively correlated relationship be-
tween each other on the obtained NSGA-II solutions are identified and are declared
as redundant. The EMO procedure is then restarted with non-redundant objectives.
This combined EMO-PCA procedure is continued until no further reduction in the
number of objectives is possible. The procedure has handled practical problems
involving five and more objectives and has shown to reduce the choice of real con-
flicting objectives to a few. On test problems, the proposed approach has shown to
reduce an initial 50-objective problem to the correct three-objective Pareto-optimal
front by eliminating 47 redundant objectives. Another study [9] used an exact and
a heuristic-based conflict identification approach on a given set of Pareto-optimal
solutions. For a given error measure, an effort is made to identify a minimal subset
of objectives which do not alter the original dominance structure on a set of Pareto-
optimal solutions. This idea has recently been introduced within an EMO [10], but
a continual reduction of objectives through a successive application of the above
procedure would be interesting.
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This is a promising area of EMO research and definitely more computationally
faster objective-reduction techniques are needed for the purpose. In this direction,
the use of alternative definitions of domination is important. One such idea rede-
fined the definition of domination: a solution is said to dominate another solution, if
the former solution is better than latter in more objectives. This certainly excludes
finding the entire Pareto-optimal front and helps an EMO to converge near the in-
termediate and central part of the Pareto-optimal front. Another EMO study used a
fuzzy dominance [38] relation (instead of Pareto-dominance), in which superiority
of one solution over another in any objective is defined in a fuzzy manner. Many
other such definitions are possible and can be implemented based on the problem
context.

12.6.6 Knowledge Extraction Through EMO

One striking difference between a single-objective optimization and multi-objective
optimization is the cardinality of the solution set. In the latter, multiple solutions
are the outcome and each solution is theoretically an optimal solution correspond-
ing to a particular trade-off among the objectives. Thus, if an EMO procedure can
find solutions close to the true Pareto-optimal set, what we have in our hand are a
number of high-performing solutions trading-off the conflicting objectives consid-
ered in the study. Since they are all near-optimal, these solutions can be analyzed
for finding properties which are common to them. Such a procedure can then be-
come a systematic approach in deciphering important and hidden properties which
optimal and high-performing solutions must have for that problem. In a number of
practical problem-solving tasks, the so-called innovization procedure is shown to
find important knowledge about high-performing solutions [30]. Such useful prop-
erties are expected to exist in practical problems, as they follow certain scientific and
engineering principles at the core, but finding them through a systematic scientific
procedure had not been paid much attention in the past. The principle of first search-
ing for multiple trade-off and high-performing solutions using a multi-objective
optimization procedure and then analyzing them to discover useful knowledge cer-
tainly remains a viable way forward. The current efforts to automate the knowledge
extraction procedure through a sophisticated data-mining task should make the over-
all approach more appealing and useful in practice.

12.6.7 Dynamic EMO

Dynamic optimization involves objectives, constraints, or problem parameters
which change over time. This means that as an algorithm is approaching the op-
timum of the current problem, the problem definition has changed and now the
algorithm must solve a new problem. This is not equivalent to another optimization
task in which a new and different optimization problem must be solved afresh.
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Often, in such dynamic optimization problems, an algorithm is usually not expected
to find the optimum, instead it is best expected to track the changing optimum with
iteration. The performance of a dynamic optimizer then depends on how close it
is able to track the true optimum (which is changing with iteration or time). Thus,
practically speaking, optimization algorithms may hope to handle problems which
do not change significantly with time. From the algorithm’s point of view, since
in these problems the problem is not expected to change too much from one time
instance to another and some good solutions to the current problem are already
at hand in a population, researchers fancied solving such dynamic optimization
problems using evolutionary algorithms [5].

A recent study [28] proposed the following procedure for dynamic optimization
involving single or multiple objectives. Let P.t/ be a problem which changes with
time t (from t D 0 to t D T ). Despite the continual change in the problem, we as-
sume that the problem is fixed for a time period � , which is not known a priori and
the aim of the (offline) dynamic optimization study is to identify a suitable value
of � for an accurate as well computationally faster approach. For this purpose, an
optimization algorithm with � as a fixed time period is run from t D 0 to t D T

with the problem assumed fixed for every � time period. A measure �.�/ deter-
mines the performance of the algorithm and is compared with a pre-specified and
expected value �L. If �.�/ � �L, for the entire time domain of the execution of
the procedure, we declare � to be a permissible length of stasis. Then, we try with a
reduced value of � and check if a smaller length of statis is also acceptable. If not,
we increase � to allow the optimization problem to remain static for a longer time
so that the chosen algorithm can now have more iterations (time) to perform better.
Such a procedure will eventually come up with a time period �� which would be
the smallest time of statis allowed for the optimization algorithm to work based on
chosen performance requirement. Based on this study, a number of test problems
and a hydrothermal power dispatch problem have been recently tackled [28].

In the case of dynamic multi-objective problem-solving tasks, there is an addi-
tional difficulty which is worth mentioning here. Not only does an EMO algorithm
needs to find or track the changing Pareto-optimal fronts, in a real-world implemen-
tation, it must also make an immediate decision about which solution to implement
from the current front before the problem changes to a new one. Decision-making
analysis is considered to be time-consuming involving execution of analysis tools,
higher-level considerations, and sometimes group discussions. If dynamic EMO is
to be applied in practice, automated procedures for making decisions must be devel-
oped. Although it is not clear how to generalize such an automated decision-making
procedure in different problems, problem-specific tools are certainly possible and
certainly a worthwhile and fertile area for research.

12.6.8 Quality Estimates for EMO

When algorithms are developed and test problems with known Pareto-optimal fronts
are available, an important task is to have performance measures with which the
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EMO algorithms can be evaluated. Thus, a major focus of EMO research has been
spent to develop different performance measures. Since the focus in an EMO task
is multifaceted – convergence to the Pareto-optimal front and diversity of solutions
along the entire front – it is also expected that one performance measure to evaluate
EMO algorithms will be unsatisfactory. In the early years of EMO research, three
different sets of performance measures were used:

1. Metrics evaluating convergence to the known Pareto-optimal front (such as error
ratio, distance from reference set, etc.)

2. Metrics evaluating spread of solutions on the known Pareto-optimal front (such
as spread, spacing, etc.) and

3. Metrics evaluating certain combinations of convergence and spread of solutions
(such as hypervolume, coverage, R-metric, etc.)

Some of these metrics are described in texts [13, 19]. A detailed study [61] com-
paring most existing performance metrics based on out-performance relations has
recommended the use of the S-metric (or the hypervolume metric) and R-metric
suggested by [52]. A recent study has argued that a single unary performance mea-
sure or any finite combination of them (e.g., any of the first two metrics described
above in the enumerated list or both together) cannot adequately determine whether
one set is better than another [95]. That study also concluded that binary perfor-
mance metrics (indicating usually two different values when a set of solutions A is
compared against B and B is compared against A), such as epsilon indicator, bi-
nary hypervolume indicator, utility indicators R1 to R3, etc., are better measures for
multi-objective optimization. The flip side is that the chosen binary metric must be
computed K.K �1/ times when comparing K different sets to make a fair compari-
son, thereby making the use of binary metrics computationally expensive in practice.
Importantly, these performance measures have allowed researchers to use them di-
rectly as fitness measures within indicator-based EAs (IBEAs) [92]. In addition, of
[42, 44] provide further information about location and inter-dependencies among
obtained solutions.

12.6.9 Exact EMO with Run-time Analysis

Since the suggestion of efficient EMO algorithms, they have been increasingly
applied in a wide variety of problem domains to obtain trade-off frontiers. Simulta-
neously, some researchers have also devoted their efforts in developing exact EMO
algorithms with a theoretical complexity estimate in solving certain discrete multi-
objective optimization problems. The first such study [68] suggested a pseudo-
Boolean multi-objective optimization problem – a two-objective LOTZ (Leading
Ones Trailing Zeroes) – and a couple of EMO methodologies – a simple evolution-
ary multi-objective optimizer (SEMO) and an improved version fair evolutionary
multi-objective optimizer (FEMO). The study then estimated the worst-case com-
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putational effort needed to find all Pareto-optimal solutions of the problem LOTZ.
This study spurred a number of improved EMO algorithms with run-time estimates
and resulted in many other interesting test problems [46,47,64,67]. Although these
test problems may not resemble common practical problems, the working princi-
ples of suggested EMO algorithms to handle specific problem structures bring in a
plethora of insights about the working of multi-objective optimization, particularly
in comprehensively finding all (not just one, or a few) Pareto-optimal solutions.

12.6.10 EMO with Meta-models

The practice of optimization algorithms is often limited by the computational over-
heads associated with evaluating solutions. Certain problems involving expensive
computations, such as numerical solution of partial differential equations describ-
ing the physics of the problem, finite difference computations involving an analysis
of a solution, computational fluid dynamics simulation to study the performance of
a solution over a changing environment, etc. In some such problems, evaluation of
each solution to compute constraints and objective functions may take a few hours
to a complete day or two. In such scenarios, even if an optimization algorithm needs
100 solutions to get anywhere close to a good and feasible solution, the application
needs an easy 3–6 months of continuous computational time. In most practical pur-
poses, this is considered a “luxury” in an industrial set-up. Optimization researchers
are constantly at their toes in coming up with approximate yet faster algorithms.

A little thought brings out an interesting fact about how optimization algorithms
work. The initial iterations deal with solutions which may not be close to optimal
solutions. Therefore, these solutions need not be evaluated with high precision.
Meta-models for objective functions and constraints have been developed for this
purpose. Two different approaches are mostly followed. In one approach, a sample
of solutions are used to generate a meta-model (approximate model of the original
objectives and constraints) and then efforts have been made to find the optimum of
the meta-model, assuming that the optimal solutions of both the meta-model and
the original problem are similar to each other [35, 45]. In the other approach, a suc-
cessive meta-modelling approach is used in which the algorithm starts to solve the
first meta-model obtained from a sample of the entire search space [27, 37, 74]. As
the solutions start to focus near the optimum region of the meta-model, a new and
more accurate meta-model is generated in the region dictated by the solutions of the
previous optimization. A coarse-to-fine-grained meta-modelling technique based on
artificial neural networks is shown to reduce the computational effort by about 30–
80% on different problems [74]. Other successful meta-modeling implementations
for multi-objective optimization based on Kriging and response surface methodolo-
gies exist [36, 37].
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12.7 Conclusions

The research and application in evolutionary multi-objective optimization
(EMO) is now at least over 15 years old and has resulted in a number of effi-
cient algorithms for finding a set of well-diversified, near Pareto-optimal solutions.
EMO algorithms are now regularly being applied to different problems involving
most branches of science, engineering, and commerce.

This chapter started with discussing principles of EMO and illustrated the prin-
ciple by depicting one efficient and popularly used EMO algorithm. Results from
an interplanetary spacecraft trajectory optimization problem reveal the importance
of principles followed in EMO algorithms. Thereafter, we made a brief description
of a specific constraint handling procedure used in EMO studies.

However, the highlight of this chapter is the description of some of the cur-
rent research and application activities involving EMO. One critical area of current
research lies in collaborative EMO-MCDM algorithms for achieving a complete
multi-objective optimization task of finding a set of trade-off solutions and finally
arriving at a single preferred solution. Another direction taken by the researchers
is to address guaranteed convergence and diversity of EMO algorithms through hy-
bridizing them with mathematical and numerical optimization techniques as local
search algorithms. Interestingly, EMO researchers have discovered its potential in
solving traditionally hard optimization problems, but not necessarily multi-objective
in nature, in a convenient manner using EMO algorithms. The so-called multi-
objectivization studies are attracting researchers from various fields to develop and
apply EMO algorithms in many innovative ways. A considerable research and appli-
cation interest has also been put in addressing practical aspects into existing EMO
algorithms. Towards this direction, handling uncertainty in decision variables and
parameters, meeting an overall desired system reliability in obtained solutions, han-
dling dynamically changing problems (on-line optimization), and handling a large
number of objectives have been discussed in this paper. Besides the practical as-
pects, EMO has also attracted mathematically oriented theoreticians to develop
EMO algorithms and design suitable problems for coming up with a computational
complexity analysis. There are many other research directions which could not even
mention due to space restrictions.

It is clear that the field of EMO research and application, in a short span of about
15 years, now has efficient algorithms and numerous interesting and useful applica-
tions, and has been able to attract theoretically and practically oriented researchers
to come together and make collaborative activities. The practical importance of
EMO’s working principle, the flexibility of evolutionary optimization which lies
at the core of EMO algorithms, and demonstrated diversification of EMO’s princi-
ple to a wide variety of different problem-solving tasks are the main cornerstones
for their success so far. The scope of research and application in EMO and using
EMO are enormous and open-ended. This chapter remains an open invitation to ev-
eryone who is interested in any type of problem-solving tasks to take a look at what
has been done in EMO and to explore how one can contribute in collaborating with
EMO to address problem-solving tasks which are still in need of a better solution
procedure.
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