
Chapter 8

Existence and Uniqueness
Theorems

8.1 Basic Results
In this chapter we are concerned with the first-order vector differential

equation

x′ = f(t, x). (8.1)

We assume throughout this chapter that f : D → R
n is continuous, where

D is an open subset of R × Rn.

Definition 8.1 We say x is a solution of (8.1) on an interval I provided
x : I → Rn is differentiable, (t, x(t)) ∈ D, for t ∈ I and x′(t) = f(t, x(t))
for t ∈ I.

Note that if x is a solution of (8.1) on an interval I, then it follows
from x′(t) = f(t, x(t)), for t ∈ I, that x is continuously differentiable on I.

In the next example we show that a certain nth-order scalar differential
equation is equivalent to a vector equation of the form (8.1).

Example 8.2 Assume that D is an open subset of R × Rn and F : D →
R is continuous. We are concerned with the nth-order scalar differential
equation

u(n) = F (t, u, u′, · · · , u(n−1)). (8.2)

In this equation t, u, u′, · · · , u(n) denote variables. We say a scalar function
u : I → R is a solution of the nth-order scalar equation (8.2) on an interval I
provided u is n times differentiable on I, (t, u(t), u′(t), · · · , u(n−1)(t)) ∈ D,
for t ∈ I, and

u(n)(t) = F (t, u(t), u′(t), · · · , u(n−1)(t)),

for t ∈ I. Note that if u is a solution of (8.2) on an interval I, then it
follows that u is n times continuously differentiable on I. Now assume that
u is a solution of the nth-order scalar equation (8.2) on an interval I. For
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t ∈ I, let

x(t) =











x1(t)
x2(t)

...
xn(t)











:=











u(t)
u′(t)

...
u(n−1)(t)











.

Then

x′(t) =











x′1(t)
x′2(t)

...
x′n(t)











=











u′(t)
u′′(t)

...

u(n)(t)











=











u′(t)
u′′(t)

...

F (t, u(t), u′(t), · · · , u(n−1)(t))











= f(t, x(t)),

if we define

f(t, x) = f(t, x1, x2, · · · , xn) =











x2

x3

...
F (t, x1, x2, · · · , xn)











, (8.3)

for (t, x) ∈ D. Note that f : D → Rn is continuous. Hence if u is a solution
of the nth-order scalar equation (8.2) on an interval I, then

x(t) =











x1(t)
x2(t)

...
xn(t)











:=











u(t)
u′(t)

...

u(n−1)(t)











,

t ∈ I, is a solution of a vector equation of the form (8.1) with f(t, x) given
by (8.3). Conversely, it can be shown that if x defined by

x(t) =











x1(t)
x2(t)

...
xn(t)











,

for t ∈ I is a solution of a vector equation of the form (8.1) on an interval
I with f(t, x) given by (8.3); then u(t) := x1(t) defines a solution of (8.2)
on the interval I. Because of this we say that the nth-order scalar equation
(8.2) is equivalent to the vector equation (8.1) with f defined by (8.3). △
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Definition 8.3 Let (t0, x0) ∈ D. We say that x is a solution of the IVP

x′ = f(t, x), x(t0) = x0, (8.4)

on an interval I provided t0 ∈ I, x is a solution of (8.1) on I, and x(t0) = x0.

Example 8.4 Note that if D = R × R
2, then x defined by

x(t) =

(

sin t
cos t

)

for t ∈ R is a solution of the IVP

x′ =

(

x2

−x1

)

, x(0) =

(

0
1

)

,

on I := R. △
Closely related to the IVP (8.4) is the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds. (8.5)

Definition 8.5 We say that x : I → Rn is a solution of the vector integral
equation (8.5) on an interval I provided t0 ∈ I, x is continuous on I,
(t, x(t)) ∈ D, for t ∈ I, and (8.5) is satisfied for t ∈ I.

The relationship between the IVP (8.4) and the integral equation (8.5)
is given by the following lemma. Because of this result we say the IVP
(8.4) and the integral equation (8.5) are equivalent.

Lemma 8.6 Assume D is an open subset of R × Rn, f : D → Rn is
continuous, and (t0, x0) ∈ D; then x is a solution of the IVP (8.4) on an
interval I iff x is a solution of the integral equation (8.5) on an interval I.

Proof Assume that x is a solution of the IVP (8.4) on an interval I. Then
t0 ∈ I, x is differentiable on I (hence is continuous on I), (t, x(t)) ∈ D, for
t ∈ I, x(t0) = x0, and

x′(t) = f(t, x(t)),

for t ∈ I. Integrating this last equation and using x(t0) = x0, we get

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds,

for t ∈ I. Thus we have shown that x is a solution of the integral equation
(8.5) on the interval I.

Conversely assume x is a solution of the integral equation (8.5) on an
interval I. Then t0 ∈ I, x is continuous on I, (t, x(t)) ∈ D, for t ∈ I, and
(8.5) is satisfied for t ∈ I. Since

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds,
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for t ∈ I, x(t) is differentiable on I, x(t0) = x0, and

x′(t) = f(t, x(t)),

for all t ∈ I. Hence we have shown that x is a solution of the IVP (8.4) on
the interval I. �

8.2 Lipschitz Condition and Picard-Lindelof
Theorem

In this section we first defined what is meant by a vector function
f : D → Rn satisfies a uniform Lipschitz condition with respect to x on
the open set D ⊂ R × Rn. We then state and prove the important Picard-
Lindelof theorem (Theorem 8.13), which is one of the main uniqueness-
existence theorems for solutions of IVPs.

Definition 8.7 A vector function f : D → Rn is said to satisfy a Lipschitz
condition with respect to x on the open set D ⊂ R × Rn provided for each
rectangle

Q := {(t, x) : t0 ≤ t ≤ t0 + a, ‖x− x0‖ ≤ b} ⊂ D

there is a constant KQ that may depend on the rectangle Q (and on the
norm ‖ · ‖) such that

‖f(t, x) − f(t, y)‖ ≤ KQ‖x− y‖,
for all (t, x), (t, y) ∈ Q.

Definition 8.8 A vector function f : D → Rn is said to satisfy a uniform
Lipschitz condition with respect to x on D provided there is a constant K
such that

‖f(t, x) − f(t, y)‖ ≤ K‖x− y‖,
for all (t, x), (t, y) ∈ D. The constant K is called a Lipschitz constant for
f(t, x) with respect to x on D.

Definition 8.9 Assume the vector function f : D → Rn, where D ⊂
R×Rn, is differentiable with respect to components of x. Then the Jacobian
matrix Dxf(t, x) of f(t, x) with respect to x at (t, x) is defined by

Dxf(t, x) =









∂
∂x1

f1(t, x) · · · ∂
∂xn

f1(t, x)
∂
∂x1

f2(t, x) · · · ∂
∂xn

f2(t, x)

· · · · · · · · ·
∂
∂x1

fn(t, x) · · · ∂
∂xn

fn(t, x)









.

Example 8.10 If

f(t, x) = f(t, x1, x2) =

(

t2x3
1x

4
2 + t3

3t+ x2
1 + x3

2

)

,

then

Dxf(t, x) =

(

3t2x2
1x

4
2 4t2x3

1x
3
2

2x1 3x2
2

)

.

△
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Lemma 8.11 Assume D ⊂ R × Rn such that for each fixed t, Dt := {x :
(t, x) ∈ D} is a convex set and f : D → Rn is continuous. If the Jacobian
matrix, Dxf(t, x), of f(t, x) with respect to x is continuous on D, then

f(t, x) − f(t, y) =

∫ 1

0

Dxf(t, sx+ (1 − s)y) ds [x− y], (8.6)

for all (t, x), (t, y) ∈ D.

Proof Let (t, x), (t, y) ∈ D; then Dt is convex implies that (t, sx + (1 −
s)y) ∈ D, for 0 ≤ s ≤ 1. Now for (t, x), (t, y) ∈ D, and 0 ≤ s ≤ 1, we can
consider

d

ds
f(t, sx+ (1 − s)y)

=
d

ds









f1(t, sx1 + (1 − s)y1, · · · , sxn + (1 − s)yn)
f2(t, sx1 + (1 − s)y1, · · · , sxn + (1 − s)yn)

· · ·
fn(t, sx1 + (1 − s)yn)y1, · · · , sxn + (1 − s)yn)









=









∂
∂x1

f1(· · · )(x1 − y1) + · · · + ∂
∂xn

f1(· · · )(xn − yn)
∂
∂x1

f2(· · · )(x1 − y1) + · · · + ∂
∂xn

f2(· · · )(xn − yn)

· · ·
∂
∂x1

fn(· · · )(x1 − y1) + · · · + ∂
∂xn

fn(· · · )(xn − yn)









= Dxf(t, sx+ (1 − s)y)[x − y],

where the functions in the entries in the preceding matrix are evaluated at
(t, sx + (1 − s)y). Integrating both sides with respect to s from s = 0 to
s = 1 gives us the desired result (8.6). �

Theorem 8.12 Assume D ⊂ R × R
n, f : D → R

n, and the Jacobian
matrix function Dxf(t, x) is continuous on D. If for each fixed t, Dt :=
{x : (t, x) ∈ D} is convex, then f(t, x) satisfies a Lipschitz condition with
respect to x on D.

Proof Let ‖ · ‖1 be the traffic norm (l1 norm) defined in Example 2.47
and let ‖ · ‖ denote the corresponding matrix norm (see Definition 2.53).
Assume that the rectangle

Q := {(t, x) : |t− t0| ≤ a, ‖x− x0‖1 ≤ b} ⊂ D.

Let
K := max{‖Dxf(t, x)‖ : (t, x) ∈ Q};

then using Lemma 8.11 and Theorem 2.54,

‖f(t, x) − f(t, y)‖1 = ‖
∫ 1

0

Dxf(t, sx+ (1 − s)y) ds [x− y]‖1

≤
∫ 1

0

‖Dxf(t, sx+ (1 − s)y)‖ ds · ‖x− y‖1

≤ K‖x− y‖1,
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for (t, x), (t, y) ∈ Q. Therefore, f(t, x) satisfies a Lipschitz condition with
respect to x on D. �

Theorem 8.13 (Picard-Lindelof Theorem) Assume that f is a continuous
n-dimensional vector function on the rectangle

Q := {(t, x) : t0 ≤ t ≤ t0 + a, ‖x− x0‖ ≤ b}

and assume that f(t, x) satisfies a uniform Lipschitz condition with respect
to x on Q. Let

M := max{‖f(t, x)‖ : (t, x) ∈ Q}
and

α := min

{

a,
b

M

}

.

Then the initial value problem (8.4) has a unique solution x on [t0, t0 +α].
Furthermore,

‖x(t) − x0‖ ≤ b,

for t ∈ [t0, t0 + α].

Proof To prove the existence of a solution of the IVP (8.4) on [t0, t0 +α],
it follows from Lemma 8.6 that it suffices to show that the integral equation

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds (8.7)

has a solution on [t0, t0 +α]. We define the sequence of Picard iterates {xk}
of the IVP (8.4) on [t0, t0 + α] as follows: Set

x0(t) = x0, t ∈ [t0, t0 + α],

and then let

xk+1(t) = x0 +

∫ t

t0

f(s, xk(s)) ds, t ∈ [t0, t0 + α], (8.8)

for k = 0, 1, 2, · · · . We show by induction that each Picard iterate xk is
well defined on [t0, t0 + α], is continuous on [t0, t0 + α], and its graph is
in Q. Obviously, x0(t) satisfies these conditions. Assume that xk is well
defined, xk is continuous on [t0, t0 + α], and

‖xk(t) − x0‖ ≤ b, on [t0, t0 + α].

It follows that

xk+1(t) = x0 +

∫ t

t0

f(s, xk(s)) ds, t ∈ [t0, t0 + α]
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is well defined and continuous on [t0, t0 + α]. Also,

‖xk+1(t) − x0‖ ≤
∫ t

t0

|f(s, xk(s))| ds

≤ M(t− t0)

≤ Mα

≤ b,

for t ∈ [t0, t0 + α] and the induction is complete.
Let K be a Lipschitz constant for f(t, x) with respect to x on Q. We

now prove by induction that

‖xk+1(t) − xk(t)‖ ≤ MKk(t− t0)
k+1

(k + 1)!
, t ∈ [t0, t0 + α], (8.9)

for k = 0, 1, 2, · · · . We proved (8.9) when k = 0. Fix k ≥ 1 and assume
that (8.9) is true when k is replaced by k−1. Using the Lipschitz condition
and the induction assumption, we get

‖xk+1(t) − xk(t)‖ = ‖
∫ t

t0

[f(s, xk(s)) − f(s, xk−1(s))] ds‖

≤
∫ t

t0

‖f(s, xk(s)) − f(s, xk−1(s))‖ ds

≤ K

∫ t

t0

‖xk(s) − xk−1(s)‖ ds

≤ MKk

∫ t

t0

(s− t0)
k

k!
ds

=
MKk(t− t0)

k+1

(k + 1)!
,

for t ∈ [t0, t0 + α]. Hence the proof of (8.9) is complete.
The sequence of partial sums for the infinite series

x0(t) +
∞
∑

m=0

[xm+1(t) − xm(t)] (8.10)

is

{x0(t) +
k−1
∑

m=0

[xm+1(t) − xm(t)]} = {xk(t)}.

Hence we can show that the sequence of Picard iterates {xk(t)} converges
uniformly on [t0, t0 +α] by showing that the infinite series (8.10) converges
uniformly on [t0, t0 + α]. Note that

‖xm+1(t) − xm(t)‖ ≤ M

K

(Kα)m+1

(m+ 1)!
,
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for t ∈ [t0, t0 + α] and

∞
∑

m=0

M

K

(Kα)m+1

(m+ 1)!
converges.

Hence from the Weierstrass M -test we get that the infinite series (8.10)
converges uniformly on [t0, t0+α]. Therefore, the sequence of Picard iterates
{xk(t)} converges uniformly on [t0, t0 + α]. Let

x(t) = lim
k→∞

xk(t),

for t ∈ [t0, t0 + α]. It follows that

‖x(t) − x0‖ ≤ b,

for t ∈ [t0, t0 + α]. Since

‖f(t, xk(t)) − f(t, x(t))‖ ≤ K‖xk(t) − x(t)‖
on [t0, t0 + α],

lim
k→∞

f(t, xk(t)) = f(t, x(t))

uniformly on [t0, t0 + α]. Taking the limit of both sides of (8.8), we get

x(t) = x0 +

∫ t

t0

f(s, x(s)) ds,

for t ∈ [t0, t0 + α]. It follows that x is a solution of the IVP (8.4).
To complete the proof it remains to prove the uniqueness of solutions of

the IVP (8.4). To this end let y be a solution of the IVP (8.4) on [t0, t0+β],
where 0 < β ≤ α. It remains to show that y = x. Since y is a solution of
the IVP (8.4) on [t0, t0 + β], it follows from Lemma 8.6 that y is a solution
of the integral equation

y(t) = x0 +

∫ t

t0

f(s, y(s)) ds

on [t0, t0 + β]. Similarly we can prove by mathematical induction that

‖y(t) − xk(t)‖ ≤ MKk(t− t0)
k+1

(k + 1)!
, (8.11)

for t ∈ [t0, t0 + β], k = 0, 1, 2, · · · . It follows that

y(t) = lim
k→∞

xk(t) = x(t),

for t ∈ [t0, t0 + β]. �

Corollary 8.14 Assume the assumptions in the Picard-Lindelof theorem
are satisfied and {xk(t)} is the sequence of Picard iterates defined in the
proof of the Picard-Lindelof theorem. If x is the solution of the IVP (8.4),
then

‖x(t) − xk(t)‖ ≤ MKk(t− t0)
k+1

(k + 1)!
, (8.12)
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for t ∈ [t0, t0 + α], where K is a Lipschitz constant for f(t, x) with respect
to x on Q.

Example 8.15 In this example we maximize the α in the Picard-Lindelof
theorem by choosing the appropriate rectangle Q for the initial value prob-
lem

x′ = x2, x(0) = 1. (8.13)

If

Q = {(t, x) : 0 ≤ t ≤ a, |x− 1| ≤ b},
then

M = max{|f(t, x)| = x2 : (t, x) ∈ Q} = (1 + b)2.

Hence

α = min

{

a,
b

M

}

= min

{

a,
b

(1 + b)2

}

.

Since we can choose a as large as we want, we desire to pick b > 0 so that
b

(1+b)2 is a maximum. Using calculus, we get α = 1
4 . Hence by the Picard-

Lindelof theorem we know that the solution of the IVP (8.13) exists on
the interval [0, 1

4 ]. The IVP (8.13) is so simple that we can solve this IVP

to obtain x(t) = 1
1−t . Hence the solution of the IVP (8.13) exists on [0, 1)

[actually on (−∞, 1)]. Note that α = 1
4 is not a very good estimate. △

Example 8.16 Approximate the solution of the IVP

x′ = cosx, x(0) = 0 (8.14)

by finding the second Picard iterate x2(t) and use (8.12) to find how good
an approximation you get.

First we find the first Picard iterate x1(t). From equation (8.8) with
k = 0 we get

x1(t) = x0 +

∫ t

t0

cos(x0(s)) ds

=

∫ t

0

1ds

= t.

From equation (8.8) with k = 1 we get that the second Picard iterate x2(t)
is given by

x2(t) = x0 +

∫ t

t0

cos(x1(s)) ds

=

∫ t

0

cos s ds

= sin t.
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To see how good an approximation x2(t) = sin t is for the solution x(t) of
the IVP (8.14), we get, applying (8.12), that

|x(t) − sin t| ≤ 1

6
t3.

△

Corollary 8.17 Assume D is an open subset of R × Rn, f : D → Rn

is continuous, and the Jacobian matrix Dxf(t, x) is also continuous on
D. Then for any (t0, x0) ∈ D the IVP (8.4) has a unique solution on an
interval containing t0 in its interior.

Proof Let (t0, x0) ∈ D; then there are positive numbers a and b such that
the rectangle

R := {(t, x) : |t− t0| ≤ a, ‖x− x0‖1 ≤ b} ⊂ D.

In the proof of Theorem 8.12 we proved that f(t, x) satisfies a uniform
Lipschitz condition with respect to x on R with Lipschitz constant

K := max{‖Dxf(t, x)‖ : (t, x) ∈ R},
where ‖ ·‖ is matrix norm corresponding to the traffic norm ‖ ·‖1 (see Defi-
nition 2.53). Let M = max{‖f(t, x)‖ : (t, x) ∈ R} and let α := min{a, bM }.
Then by the Picard-Lindelof theorem (Theorem 8.13) in the case where we
use the rectangle R instead of Q and we use the l1 norm (traffic norm), the
IVP (8.4) has a unique solution on [t0 − α, t0 + α]. �

Corollary 8.18 Assume A is a continuous n × n matrix function and h
is a continuous n× 1 vector function on an interval I. If (t0, x0) ∈ I × R,
then the IVP

x′ = A(t)x + h(t), x(t0) = x0

has a unique solution.

Proof Let

f(t, x) = A(t)x + h(t);

then

Dxf(t, x) = A(t),

and this result follows from Theorem 8.17. �

In Theorem 8.65, we will show that under the hypotheses of Corollary
8.18 all solutions of x′ = A(t)x + h(t) exist on the whole interval I. Also,
in Theorem 8.65 a bound on solutions will be given.

Corollary 8.19 Assume D is an open subset of R×R
n, the scalar function

F : D → R is continuous, and F (t, x1, x2, · · · , xn) has continuous partial
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derivatives with respect to the variables x1, x2, · · · , xn on D. Then for any
(t0, u0, u1, · · · , un−1) ∈ D the IVP

u(n) = F (t, u, u′, · · · , u(n−1)), (8.15)

u(t0) = u0, u′(t0) = u1, · · · , u(n−1)(t0) = un−1 (8.16)

has a unique solution on an interval containing t0 in its interior.

Proof In Example 8.2 we proved that the differential equation (8.15) is
equivalent to the vector equation x′ = f(t, x), where f is given by (8.3).
Note that f : D → R × Rn and the Jacobian matrix

Dxf(t, x) =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 · · · · · · 0 1
Fx1(t, x1, · · · , xn) · · · Fxn

(t, x1, · · · , xn)















are continuous on D. The initial condition x(t0) = x0 corresponds to










x1(t0)
x2(t0)

...
xn(t0)











=











u(t0)
u′(t0)

...
u(n−1)(t0)











=











u0

u1

...
un−1











and the result follows from Corollary 8.17. �

Example 8.20 In this example we apply Corollary 8.19 to the second-
order scalar equation

u′′ = (sin t)eu + u2 + (u′)2.

This equation is of the form u′′ = F (t, u, u′), where

F (t, x1, x2) = (sin t)ex1 + x2
1 + (x2)

2.

Let D := R3; then D is an open set and F (t, x1, x2) is continuous on
D. Also, Fx1(t, x1, x2) = (sin t)ex1 + 2x1 and Fx2(t, x1, x2) = 2x2 are
continuous on D. Hence by Corollary 8.19 we have that every IVP

u′′ = (sin t)eu + u2 + (u′)2,

u(t0) = u0, u′(t0) = u1

has a unique solution on an open interval containing t0. △
Example 8.21 In this example we apply Corollary 8.19 to the second-
order scalar equation

u′′ = u
1
3 + 3u′ + e2t.

This equation is of the form u′′ = F (t, u, u′), where

F (t, x1, x2) = x
1
3
1 + 3x2 + e2t.
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It follows that Fx1(t, x1, x2) = 1

3x
2
3
1

and Fx2(t, x1, x2) = 3. If we let D be

either the open set {(t, x1, x2) : t ∈ R, x1 ∈ (0,∞), x2 ∈ R} or the open
set {(t, x1, x2) : t ∈ R, x1 ∈ (−∞, 0), x2 ∈ R}, then by Corollary 8.19 we
have that for any (t0, u0, u1) ∈ D the IVP

u′′ = u
1
3 + 3u′ + e2t, u(t0) = u0, u′(t0) = u1 (8.17)

has a unique solution on an open interval containing t0. Note that if u0 = 0,
then Corollary 8.19 does not apply to the IVP (8.17). △

8.3 Equicontinuity and the Ascoli-Arzela
Theorem

In this section we define what is meant by an equicontinuous family of
functions and state and prove the very important Ascoli-Arzela theorem
(Theorem 8.26). First we give some preliminary definitions.

Definition 8.22 We say that the sequence of vector functions {xm(t)}∞m=1

is uniformly bounded on an interval I provided there is a constant M such
that

‖xm(t)‖ ≤M,

for m = 1, 2, 3, · · · , and for all t ∈ I, where ‖ · ‖ is any norm on Rn.

Example 8.23 The sequence of vector functions

xm(t) =

(

2tm

sin(mt)

)

,

m = 1, 2, 3, · · · is uniformly bounded on the interval I := [0, 1], since

‖xm(t)‖1 = 2|tm| + | sin(mt)| ≤M := 3,

for all t ∈ I, and for all m = 1, 2, 3, · · · . △

Definition 8.24 We say that the family of vector functions {xα(t)}, for α
in some index set A, is equicontinuous on an interval I provided given any
ǫ > 0 there is a δ > 0 such that

‖xα(t) − xα(τ)‖ < ǫ,

for all α ∈ A and for all t, τ ∈ I with |t− τ | < δ.

We will use the following lemma in the proof of the Ascoli-Arzela the-
orem (Theorem 8.26).

Lemma 8.25 (Cantor Selection Theorem) Let {fk} be a uniformly bounded
sequence of vector functions on E ⊂ Rn. Then if D is a countable subset
of E, there is a subsequence {fkj

} of {fk} that converges pointwise on D.
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Proof If D is finite the proof is easy. Assume D is countably infinite; then
D can be written in the form

D = {x1, x2, x3, · · · }.
Since {fk(x1)} is a bounded sequence of vectors, there is a convergent
subsequence {f1k(x1)}. Next consider the sequence {f1k(x2)}. Since this is
a bounded sequence of vectors, there is a convergent subsequence {f2k(x2)}.
Continuing in this fashion, we get further subsequences such that

f11(x), f12(x), f13(x), · · · converges at x1

f21(x), f22(x), f23(x), · · · converges at x1, x2

f31(x), f32(x), f33(x), · · · converges at x1, x2, x3

· · · · · · · · ·
It follows that the diagonal sequence {fkk} is a subsequence of {fk} that
converges pointwise on D. �

Theorem 8.26 (Ascoli-Arzela Theorem) Let E be a compact subset of Rm

and {fk} be a sequence of n-dimensional vector functions that is uniformly
bounded and equicontinuous on E. Then there is a subsequence {fkj

} that
converges uniformly on E.

Proof In this proof we will use the same notation ‖ · ‖ for a norm on Rm

and Rn. If E is finite the result is obvious. Assume E is infinite and let

D = {x1, x2, x3, · · · }
be a countable dense subset of E. By the Cantor selection theorem (Theo-
rem 8.25) there is a subsequence {fkj

} that converges pointwise on D. We
claim that {fkj

} converges uniformly on E. To see this, let ǫ > 0 be given.
By the equicontinuity of the sequence {fk} on E there is a δ > 0 such that

‖fk(x) − fk(y)‖ <
ǫ

3
, (8.18)

when ‖x− y‖ < δ, x, y ∈ E, k ≥ 1. Define the ball about xi with radius δ
by

B(xi) := {x ∈ E : ‖x− xi‖ < δ},
for i = 1, 2, 3, · · · . Then {B(xi)} is an open covering of E. Since E is
compact there is an integer J such that

{B(xi)}Ji=1

covers E. Since {fkj
(x)} converges pointwise on the finite set

{x1, x2, · · · , xJ},
there is an integer K such that

‖fkj
(xi) − fkm

(xi)‖ <
ǫ

3
(8.19)
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when kj , km ≥ K, 1 ≤ i ≤ J. Now assume x ∈ E; then

x ∈ B(xi0 ),

for some 1 ≤ i0 ≤ J. Using (8.18) and (8.19), we get

‖fkj
(x) − fkm

(x)‖ ≤ ‖fkj
(x) − fkj

(xi0 )‖
+ ‖fkj

(xi0) − fkm
(xi0 )‖ + ‖fkm

(xi0 ) − fkm
(x)‖

<
ǫ

3
+
ǫ

3
+
ǫ

3
= ǫ,

for kj , km ≥ K. �

8.4 Cauchy-Peano Theorem

In this section we use the Ascoli-Arzela theorem to prove the Cauchy-
Peano theorem (8.27), which is a very important existence theorem.

Theorem 8.27 (Cauchy-Peano Theorem) Assume t0 ∈ R, x0 ∈ Rn, and
f is a continuous n-dimensional vector function on the rectangle

Q := {(t, x) : |t− t0| ≤ a, ‖x− x0‖ ≤ b}.
Then the initial value problem (8.4) has a solution x on [t0−α, t0 +α] with
‖x(t) − x0‖ ≤ b, for t ∈ [t0 − α, t0 + α], where

α := min

{

a,
b

M

}

and

M := max{‖f(t, x)‖ : (t, x) ∈ Q}.

Proof For m a positive integer, subdivide the interval [t0, t0 + α] into 2m

equal parts so that the interval [t0, t0 + α] has the partition points

t0 < t1 < t2 · · · < t2m = t0 + α.

So

tj = t0 +
αj

2m
, 0 ≤ j ≤ 2m.

For each positive integer m we define the function xm (see Figure 1 for
the scalar case) recursively with respect to the intervals [tj , tj+1], 0 ≤ j ≤
2m, as follows:

xm(t) = x0 + f(t0, x0)(t− t0), t0 ≤ t ≤ t1,

x1 = xm(t1), and, for 1 ≤ j ≤ 2m − 1,

xm(t) = xj + f(tj , xj)(t− tj), tj ≤ t ≤ tj+1,

where

xj+1 = xm(tj+1).
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t0 t1 t2 t3

x0

t

x

Figure 1. Approximate solution xm(t).

We show by finite mathematical induction with respect to j, 1 ≤ j ≤ 2m,
that xm(t) is well defined on [t0, tj ], and

‖x(t) − x0‖ ≤ b, for t ∈ [t0, tj ].

First, for t ∈ [t0, t1],

xm(t) = x0 + f(t0, x0)(t− t0)

is well defined and

‖xm(t) − x0‖ = ‖f(t0, x0)‖(t− t0)

≤ Mα

2m

≤ b,

for t ∈ [t0, t1]. Hence the graph of xm on the first subinterval [t0, t1] is in
Q. In particular, x1 = xm(t1) is well defined with (t1, x1) ∈ Q.

Now assume 1 ≤ j ≤ 2m − 1 and that xm(t) is well defined on [t0, tj ]
with

‖xm(t) − x0‖ ≤ b, on [t0, tj ].

Since (tj , xj) = (tj , xm(tj)) ∈ Q,

xm(t) = xj + f(tj , xj)(t− tj), tj ≤ t ≤ tj+1



360 8. Existence and Uniqueness Theorems

is well defined. Also,

‖xm(t) − x0‖ = ‖[xm(t) − xj ] + [xj − xj−1] + · · · + [x1 − x0]‖

≤
j−1
∑

k=0

‖xk+1 − xk‖ + ‖xm(t) − xj‖

≤
j−1
∑

k=0

‖f(tk, xk)(tk+1 − tk)‖ + ‖f(tj, xj)(t− tj)‖

≤
j−1
∑

k=0

α

2m
‖f(tk, xk)‖ + ‖f(tj , xj)‖(t− tj)

≤ αj

2m
M +

α

2m
M

≤ αM

≤ b,

for t ∈ [tj , tj+1]. Hence we have shown that xm(t) is well defined on [t0, t0+
α] and

‖xm(t) − x0‖ ≤ b

on [t0, t0+α]. We will show that the sequence {xm} has a subsequence that
converges uniformly on [t0, t0 +α] to a vector function z and z is a solution
of the IVP (8.4) on [t0, t0 + α] whose graph on [t0, t0 + α] is in Q.

We now claim that for all t, τ ∈ [t0, t0 + α]

‖xm(t) − xm(τ)‖ ≤M |t− τ |. (8.20)

We will prove this only for the case tk−1 < τ ≤ tk < tl < t ≤ tl+1 as the
other cases are similar. For this case

‖xm(t) − xm(τ)‖

= ‖[xm(t) − xm(tl)] +

l−1
∑

j=k

[xm(tj+1) − xm(tj)] + [xm(tk) − xm(τ)]‖

≤ ‖xm(t) − xm(tl)‖ +

l−1
∑

j=k

‖xm(tj+1) − xm(tj)‖ + ‖xm(tk) − xm(τ)‖

≤ ‖f(tl, xl)‖(t− tl) +

l−1
∑

j=k

‖f(tj , xj)‖(tj+1 − tj)

+ ‖f(tk−1, xk−1)‖(tk − τ)

≤ M(t− τ).

Hence (8.20) holds for all t, τ ∈ [t0, t0 + α].
Since f is continuous on the compact set Q, f is uniformly continuous

on Q. Hence given any ǫ > 0 there is a δ > 0 such that

‖f(t, x) − f(τ, y)‖ < ǫ, (8.21)
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for all (t, x), (τ, y) ∈ Q with |t − τ | < δ, ‖x − y‖ < δ. Pick m sufficiently
large so that

max

{

α

2m
,
Mα

2m

}

< δ.

Then, for tj ≤ t ≤ tj+1, 0 ≤ j ≤ 2m − 1, since

‖xm(t) − xj‖ ≤ Mα

2m
< δ

and

|tj − t| ≤ α

2m
< δ,

we get from (8.21)

‖f(t, xm(t)) − f(tj , xj)‖ < ǫ,

for tj ≤ t ≤ tj+1, 0 ≤ j ≤ 2m − 1. Since

x′m(t) = f(tj , xj),

for tj < t < tj+1, 0 ≤ j ≤ 2m − 1, we get that

‖f(t, xm(t)) − x′m(t)‖ < ǫ,

for tj < t < tj+1, 0 ≤ j ≤ 2m − 1. Hence if

gm(t) := x′m(t) − f(t, xm(t)),

for t ∈ [t0, t0 + α], where x′m(t) exists, then we have shown that

lim
m→∞

gm(t) = 0

uniformly on [t0, t0 + α], except for a countable number of points.
Fix t ∈ [t0, t0 + α]; then there is a j such that tj ≤ t ≤ tj+1. Then

xm(t) − x0 = xm(t) − xm(t0)

= [xm(t) − xm(tj)] +

j
∑

k=1

[xm(tk) − xm(tk−1)]

=

∫ t

tj

x′m(s) ds+

j
∑

k=1

∫ tk

tk−1

x′m(s) ds

=

∫ t

t0

x′m(s) ds

for t ∈ [t0, t0 + α]. Hence

xm(t) = x0 +

∫ t

t0

[f(s, xm(s)) + gm(s)] ds, (8.22)

for t ∈ [t0, t0 + α]. Since

‖xm(t)‖ ≤ ‖xm(t) − x0‖ + ‖x0‖ ≤ ‖x0‖ + b,

the sequence {xm(t)} is uniformly bounded on [t0, t0+α]. Since the sequence
{xm(t)} is uniformly bounded and by (8.20) equicontinuous on [t0, t0 +α],
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we get from the Ascoli-Arzela theorem that the sequence {xm(t)} has a
uniformly convergent subsequence {xmk

(t)} on [t0, t0 + α]. Let

z(t) := lim
k→∞

xmk
(t),

for t ∈ [t0, t0 + α]. It follows that

lim
k→∞

f(t, xmk
(t)) = f(t, z(t))

uniformly on [t0, t0 + α]. Replacing m in equation (8.22) by {mk} and
letting k → ∞, we get that z(t) is a solution of the integral equation

z(t) = x0 +

∫ t

t0

f(s, z(s)) ds

on [t0, t0 +α]. It follows that z(t) is a solution of the IVP (8.4) with ‖z(t)−
x0‖ ≤ b, for t ∈ [t0, t0 + α]. Similarly, we can show that the IVP (8.4) has
a solution v(t) on [t0 − α, t0] with ‖v(t) − x0‖ ≤ b, for t ∈ [t0 − α, t0]. It
follows that

x(t) :=

{

v(t), t ∈ [t0 − α, t0],
z(t), t ∈ [t0, t0 + α]

is a solution of the IVP (8.4) with

‖x(t) − x0‖ ≤ b

on [t0 − α, t0 + α].
�

Under the hypotheses of the Cauchy-Peano theorem we get that IVPs
have solutions, but they need not be unique. To see how bad things can
be, we remark that in Hartman [19], pages 18–23, an example is given of a
scalar equation x′ = f(t, x), where f : R×R → R, is continuous, where for
every IVP (8.4) there is more than one solution on [t0, t0 + ǫ] and [t0− ǫ, t0]
for arbitrary ǫ > 0.

Theorem 8.28 Assume D is an open subset of R × Rn, f : D → Rn is
continuous, and K is a compact subset of D. Then there is an α > 0 such
that for all (t0, x0) ∈ K the IVP (8.4) has a solution on [t0 − α, t0 + α].

Proof For (t, x), (t, y) ∈ R×Rn, define the distance from (t, x) to (t, y) by

d[(t, x), (τ, y)] = max{|t− τ |, ‖x− y‖}.
If the boundary of D, ∂D 6= ∅, set ρ = d(K, ∂D) > 0. In this case define

Kρ = {(t, x) : d[(t, x),K] ≤ ρ

2
}.

If ∂D = ∅, then let

Kρ = {(t, x) : d[(t, x),K] ≤ 1}.
Then Kρ ⊂ D and Kρ is compact. Let

M := max{‖f(t, x)‖ : (t, x) ∈ Kρ}.
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Let (t0, x0) ∈ K; then if δ := min{1, ρ2},
Q := {(t, x) : |t− t0| ≤ δ, ‖x− x0‖ ≤ δ} ⊂ Kρ.

Note that
‖f(t, x)‖ ≤M, (t, x) ∈ Q.

Hence by the Cauchy-Peano theorem (Theorem 8.27) the IVP (8.4) has
a solution on [t0 − α, t0 + α], where α := min{ ρ2 ,

ρ
2M } if ∂D 6= ∅ and

α := min{1, 1
M } if ∂D = ∅. �

8.5 Extendability of Solutions
In this section we will be concerned with proving that each solution of

x′ = f(t, x) can be extended to a maximal interval of existence. First we
define what we mean by the extension of a solution.

Definition 8.29 Assume x is a solution of x′ = f(t, x) on an interval I.
We say that a solution y on an interval J is an extension of x provided
J ⊃ I and y(t) = x(t), for t ∈ I.

a b
t

x

Figure 2. Impossible solution of scalar equation x′ =
f(t, x) on [a, b).

The next theorem gives conditions where a solution of x′ = f(t, x) on a
half open interval [a, b) can be extended to a solution on the closed interval
[a, b]. This result implies that there is no solution to the scalar equation
x′ = f(t, x) of the type shown in Figure 2.

Theorem 8.30 Assume that f is continuous on D ⊂ R × Rn and that x
is a solution of x′ = f(t, x) on the half-open interval [a, b). Assume there is
an increasing sequence {tk} with limit b and limk→∞ x(tk) = x0. Further
assume there are constants M > 0, α > 0, β > 0 such that ‖f(t, x)‖ ≤ M
on D ∩ {(t, x) : 0 < b− t ≤ α, ‖x− x0‖ ≤ β}. Furthermore, if f(b, x0) can
be defined so that f is continuous on D ∪ {(b, x0)}, then x can be extended
to be a solution on [a, b].
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Proof Pick an integer N sufficiently large so that

0 < b− tk ≤ α, ‖x(tk) − x0‖ <
β

2
, and 0 < b− tk ≤ β

2M
,

for all k ≥ N. We claim

‖x(t) − x0‖ < β, for tN < t < b.

Assume not; then there is a first point τ > tN such that

‖x(τ) − x0‖ = β.

But then

β

2
= β − β

2
< ‖x(τ) − x0‖ − ‖x(tN ) − x0‖
≤ ‖x(τ) − x(tN )‖

= ‖
∫ τ

tN

x′(s) ds‖

= ‖
∫ τ

tN

f(s, x(s)) ds‖

≤ M |τ − tN |

≤ M · β

2M
=
β

2
,

which is a contradiction and hence our claim holds.
Note that for t, τ ∈ [tN , b),

‖x(t) − x(τ)‖ = ‖
∫ t

τ

x′(s) ds‖ = ‖
∫ t

τ

f(s, x(s)) ds‖ ≤M |t− τ |.

It follows that the Cauchy criterion for limt→b− x(t) is satisfied and hence

lim
t→b−

x(t) = x0

exists. Define

x(b) = x0 = lim
t→b−

x(t).

Now assume that f(b, x0) is defined so that f is continuous on D∪{(b, x0)},
then

lim
t→b−

x′(t) = lim
t→b−

f(t, x(t))

= f(b, x0).
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Hence, using the mean value theorem,

x′(b) = lim
t→b−

x(b) − x(t)

b− t

= lim
t→b−

x′(ξt), t < ξt < b,

= f(b, x0)

= f(b, x(b)).

Therefore, x is a solution on [a, b].
�

Definition 8.31 Assume D is an open subset of R × Rn, f : D → Rn

is continuous, and x is a solution of x′ = f(t, x) on (a, b). Then we say
(a, b) is a right maximal interval of existence for x provided there does not
exist a b1 > b and a solution y such that y is a solution on (a, b1) and
y(t) = x(t) for t ∈ (a, b). Left maximal interval of existence for x is defined
in the obvious way. Finally, we say (a, b) is a maximal interval of existence
for x provided it is both a right and left maximal interval of existence for
x.

Definition 8.32 Assume D is an open subset of R × R
n, f : D → R

n

is continuous, and x is a solution of x′ = f(t, x) on (a, b). We say x(t)
approaches the boundary of D, denoted ∂D, as t → b−, write x(t) → ∂D
as t→ b−, in case either
(i) b = ∞

or
(ii) b < ∞ and for each compact subset K ⊂ D there is a tK ∈ (a, b) such
that (t, x(t)) /∈ K for tK < t < b.
Similarly (see Exercise 8.20), we can define x(t) approaches the boundary
of D as t→ a+, write x(t) → ∂D as t→ a+.

Theorem 8.33 (Extension Theorem) Assume D is an open subset of R×
Rn, f : D → Rn is continuous, and x is a solution of x′ = f(t, x) on
(a, b), −∞ ≤ a < b ≤ ∞. Then x can be extended to a maximal interval of
existence (α, ω), −∞ ≤ α < ω ≤ ∞. Furthermore, x(t) → ∂D as t → ω−
and x(t) → ∂D as t→ α+ .

Proof We will just show that x can be extended to a right maximal interval
of existence (a, ω) and x(t) → ∂D as t→ ω−.

Let {Kk} be a sequence of open sets such that the closure of Kk, K̄k,
is compact, K̄k ⊂ Kk+1, and ∪∞

k=1Kk = D (see Exercise 8.21).
If b = ∞, we are done, so assume b <∞. We consider two cases:
Case 1. Assume for all k ≥ 1 there is a τk such that for t ∈ (τk, b) we

have that

(t, x(t)) /∈ K̄k.
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Assume there is a b1 > b and a solution y that is an extension of x to the
interval (a, b1). Fix t0 ∈ (a, b); then

A := {(t, y(t)) : t0 ≤ t ≤ b}
is a compact subset of D. Pick an interger k0 sufficiently large so that

{(t, x(t)) : t0 ≤ t < b} ⊂ A ⊂ Kk0 .

This is a contradiction and hence (a, b) is a right maximal interval of exis-
tence for x. Also, it is easy to see that x(t) → ∂D as t→ b− .

Case 2. There is an integer m0 and an increasing sequence {tk} with
limit b such that (tk, x(tk)) ∈ K̄m0 , for all k ≥ 1. Since K̄m0 is compact,
there is a subsequence (tkj

, x(tkj
)) such that

lim
j→∞

(tkj
, x(tkj

)) = (b, x0)

exists and (b, x0) ∈ K̄m0 ⊂ D. By Theorem 8.30 we get that we can extend
the solution x to (a, b] by defining x(b) = x0. By Theorem 8.28 for each
k ≥ 1 there is a δk > 0 such that for all (t1, x1) ∈ Kk the IVP

x′ = f(t, x), x(t1) = x1

has a solution on [t1 − δk, t1 + δk]. Hence the IVP x′ = f(t, x), x(b) = x0,
has a solution y on [b, b+ δm0 ] and so if we extend the definition of x by

x(t) =

{

x(t), on (a, b],

y(t), on (b, b+ δm0 ],

then x is a solution on (a, b+δm0]. If the point (b+δm0 , x(b+δm0)) ∈ Km0 ,
then we repeat the process using a solution of the IVP

x′ = f(t, x), x(b+ δm0) = x(b+ δm0),

to get an extension of the solution x to (a, b + 2δm0 ], which we also de-
note by x. Since Km0 is compact, there is a first integer j(m0) such that
(b1, x(b1)) /∈ Km0 , where

b1 = b+ j(m0)δm0 .

However, (b1, x(b1)) ∈ D and hence there is an m1 > m0 such that

(b1, x(b1)) ∈ Km1 .

Therefore, the extension procedure can be repeated using Km1 and the
associated δm1 . Then there is a first integer j(m2) such that (b2, x(b2)) /∈
Km1 , where

b2 = b1 + j(m1)δm1 .

Continuing in this fashion, we get an infinite sequence {bk}. We then define

ω = lim
k→∞

bk.

We claim we have that the solution x has been extended to be a solution of
x′ = f(t, x) on the interval (a, ω). To see this, let τ ∈ (a, ω); then there is
a bk0 such that τ < bk0 < ω and x is a solution on (a, bk0 ]. Since τ ∈ (a, ω)
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is arbritary, x is a solution on the interval (a, ω). If ω = ∞, we are done.
Assume that ω < ∞. Note that the interval (a, ω) is right maximal, since
(bk, x(bk)) /∈ Kmk−1

, for each k ≥ 1 (Why?).
We claim that

x(t) → ∂D as t→ ω − .

To see this, assume not; then there is a compact set H ⊂ D and a strictly
increasing sequence {τk} with limit ω such that

(τk, x(τk)) ∈ H, for k ≥ 1.

But by the definition of the sets {Km}, there is a m such that H ⊂ Km

which leads to a contradiction. �

Theorem 8.34 (Extended Cauchy-Peano Theorem) Assume that D is an
open subset of R × Rn and f : D → Rn is continuous. Let

Q := {(t, x) : |t− t0| ≤ a, ‖x− x0‖ ≤ b} ⊂ D.

Let

α = min

{

a,
b

M

}

,

where
M = max{‖f(t, x)‖ : (t, x) ∈ Q}.

Then every solution of the IVP (8.4) exists on [t0 − α, t0 + α].

Proof Assume x is a solution of the IVP (8.4) on [t0, t0 + ǫ], where 0 <
ǫ < α. Let [t0, ω) be a right maximal interval of existence for x. Since
x(t) → ∂D as t→ ω− and Q ⊂ D is compact, there is a β > t0 such that

x(t) 6∈ Q,

for β ≤ t < ω. Let t1 be the first value of t > t0 such that (t1, x(t1)) ∈ ∂Q.
If t1 = t0 + a, we are done. So assume

‖x(t1) − x0‖ = b.

Note that

b = ‖x(t1) − x0‖

= ‖
∫ t1

t0

x′(s) ds‖

= ‖
∫ t1

t0

f(s, x(s)) ds‖

≤
∫ t1

t0

‖f(s, x(s))‖ ds

≤ M(t1 − t0).

Solving this inequality for t1, we get

t1 ≥ t0 +
b

M
≥ t0 + α.
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The other cases of the proof are left to the reader. �

Corollary 8.35 Assume that f : R×R
n → Rn is continuous and bounded;

then every solution of x′ = f(t, x) has the maximal interval of existence
(−∞,∞).

Proof Since f is bounded on R × R
n, there is a M > 0 such that

‖f(t, x)‖ ≤M,

for (t, x) ∈ R × R
n. Assume x1 is a solution of x′ = f(t, x) with maximal

interval of existence (α1, ω1), −∞ ≤ α1 < ω1 ≤ ∞. Let t0 ∈ (α1, ω1) and
let

x0 := x1(t0).

Then x1 is a solution of the IVP (8.4). For arbitrary a > 0, b > 0 we have
by Theorem 8.34 that x1 is a solution on [t0 − α, t0 + α], where

α = min

{

a,
b

M

}

.

Since M is fixed, we can make α as large as we want by taking a and b
sufficiently large, and the proof is complete. �

Theorem 8.36 (Uniqueness Theorem) Assume t0 ∈ R, x0 ∈ R
n and the

n-dimensional vector function f is continuous on the rectangle

Q := {(t, x) : t0 ≤ t ≤ t0 + a, ‖x− x0‖ ≤ b}.
If the dot product

[f(t, x1) − f(t, x2)] · [x1 − x2] ≤ 0,

for all (t, x1), (t, x2) ∈ Q, then the IVP (8.4) has a unique solution in Q.

Proof By the Cauchy-Peano theorem (Theorem 8.27), the IVP (8.4) has a
solution. It remains to prove the uniqueness. Assume that x1(t) and x2(t)
satisfy the IVP (8.4) on the interval [t0, t0 + ǫ] for some ǫ > 0 and their
graphs are in Q for t ∈ [t0, t0 + ǫ]. Let

h(t) := ‖x1(t) − x2(t)‖2, t ∈ [t0, t0 + ǫ],

where ‖ · ‖ is the Euclidean norm. Note that h(t) ≥ 0 on [t0, t0 + ǫ] and
h(t0) = 0. Also, since h(t) is given by the dot product,

h(t) = [x1(t) − x2(t)] · [x1(t) − x2(t)],

we get

h′(t) = 2[x′1(t) − x′2(t)] · [x1(t) − x2(t)]

= 2[f(t, x1(t)) − f(t, x2(t))] · [x1(t) − x2(t)]

≤ 0
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on [t0, t0 + ǫ]. Thus h(t) is nonincreasing on [t0, t0 + ǫ]. Since h(t0) = 0 and
h(t) ≥ 0 we get that h(t) = 0 for t ∈ [t0, t0 + ǫ]. Hence

x1(t) ≡ x2(t)

on [t0, t0 + ǫ]. Hence the IVP (8.4) has only one solution. �

The following corollary follows from Theorem 8.36, and its proof is
Exercise 8.22.

Corollary 8.37 Assume t0 ∈ R, x0 ∈ R and the scalar function f is
continuous on the planar rectangle

Q := {(t, x) : t0 ≤ t ≤ t0 + a, |x− x0| ≤ b}.
If for each fixed t ∈ [t0, t0 + a], f(t, x) is nonincreasing in x, then the IVP
(8.4) has a unique solution in Q.

In the next example we give an application of Corollary 8.37, where
the Picard-Lindelof theorem (Theorem 8.13) does not apply.

Example 8.38 Consider the IVP

x′ = f(t, x), x(0) = 0, (8.23)

where

f(t, x) :=















0, t = 0, −∞ < x <∞,
2t, 0 < t ≤ 1, −∞ < x < 0,
2t− 4x

t , 0 < t ≤ 1, 0 ≤ x ≤ t2,
−2t, 0 < t ≤ 1, t2 < x <∞.

It is easy to see that f is continuous on [0, 1] × R and for each fixed
t ∈ [0, 1] f(t, x) is nonincreasing with respect to x. Hence by Corollary 8.37
the IVP (8.23) has a unique solution. See Exercise 8.23 for more results
concerning this example.

△

8.6 Basic Convergence Theorem

In this section we are concerned with proving the basic convergence
theorem (see Hartman’s book [19]). We will see that many results depend
on this basic convergence theorem; for example, the continuous dependence
of solutions on initial conditions, initial points, and parameters.

Theorem 8.39 (Basic Convergence Theorem) Assume that {fk} is a se-
quence of continuous n-dimensional vector functions on an open set D ⊂
R × Rn and assume that

lim
k→∞

fk(t, x) = f(t, x)

uniformly on each compact subset of D. For each integer k ≥ 1 let xk be
a solution of the IVP x′ = fk(t, x), x(tk) = x0k, with (tk, x0k) ∈ D, k ≥ 1,
and limk→∞(tk, x0k) = (t0, x0) ∈ D and let the solution xk have maximal
interval of existence (αk, ωk), k ≥ 1. Then there is a solution x of the
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limit IVP (8.4) with maximal interval of existence (α, ω) and a subsequence
{xkj

(t)} of {xk(t)} such that given any compact interval [τ1, τ2] ⊂ (α, ω)

lim
j→∞

xkj
(t) = x(t)

uniformly on [τ1, τ2] in the sense that there is an integer J = J(τ1, τ2) such
that for all j ≥ J , [τ1, τ2] ⊂ (αkj

, ωkj
) and

lim
j→∞,j≥J

xkj
(t) = x(t)

uniformly on [τ1, τ2]. Furthermore,

lim sup
j→∞

αkj
≤ α < ω ≤ lim inf

j→∞
ωkj

.

Proof We will only prove that there is a solution of the limit IVP (8.4)
with right maximal interval of existence [t0, ω) and a subsequence {xkj

(t)}
of {xk(t)} such that for each τ ∈ (t0, ω) there is an integer J = J(τ) such
that [t0, τ ] ⊂ (αkj

, ωkj
), for j ≥ J and

lim
j→∞,j≥J

xkj
(t) = x(t)

uniformly on [t0, τ ].
Let {Kk}∞k=1 be a sequence of open subsets of D such that Kk is

compact, Kk ⊂ Kk+1, and D = ∪∞
k=1Kk. For each k ≥ 1, if ∂D 6= ∅ let

Hk :=
{

(t, x) ∈ D : d((t, x),Kk) ≤
ρk
2

}

,

where ρk := d(∂D,Kk), and if ∂D = ∅ let

Hk :=
{

(t, x) ∈ D : d((t, x),Kk) ≤ 1
}

.

Note that Hk is compact and Kk ⊂ Hk ⊂ D, for each k ≥ 1. Let f0(t, x) :=
f(t, x) in the remainder of this proof. Since

lim
k→∞

fk(t, x) = f(t, x)

uniformly on each compact subset of D, f0(t, x) = f(t, x) is continuous on
D and for each k ≥ 1 there is an Mk > 0 such that

‖fm(t, x)‖ ≤Mk on Hk,

for all m ≥ 0. For each k ≥ 1 there is a δk > 0 such that for all m ≥ 0 and
for all (τ, y) ∈ Kk every solution z of the IVP

x′ = fm(t, x), x(τ) = y

exists on [τ − δk, τ + δk] and satisfies (t, z(t)) ∈ Hk, for t ∈ [τ − δk, τ + δk].
Since (t0, x0) ∈ D, there is an integer m1 ≥ 1 such that (t0, x0) ∈ Km1 . Let

ǫk :=
δk
3
, for k ≥ 1.

Since
lim
k→∞

(tk, x0k) = (t0, x0),
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there is an integer N such that

(tk, x0k) ∈ Km1 and |tk − t0| < ǫm1 ,

for all k ≥ N. Then for k ≥ N ,

[t0, t0 + ǫm1 ] ⊂ (αk, ωk)

and (t, xk(t)) ∈ Hm1 , for k ≥ N . This implies that the sequence of func-
tions {xk}∞k=N is uniformly bounded on [t0, t0 + ǫm1 ] and since

‖xk(τ2) − xk(τ1)‖ = ‖
∫ τ2

τ1

x′k(s) ds‖

= ‖
∫ τ2

τ1

fk(s, xk(s)) ds‖

≤ Mm1 |τ2 − τ1|,
for all τ1, τ2 ∈ [t0, t0 + ǫm1 ], the sequence of functions {xk}∞k=N is equicon-
tinuous on [t0, t0+ǫm1 ]. By the Ascoli-Arzela theorem (Theorem 8.26) there
is a subsequence {k1(j)}∞j=1 of the sequence {k}∞k=N such that

lim
j→∞

xk1(j)(t) = x(t)

uniformly on [t0, t0 +ǫm1]. This implies that x is a solution of the limit IVP
(8.4) on [t0, t0 + ǫm1 ].

Note that

lim
j→∞

(t0 + ǫm1 , xk1(j)(t0 + ǫm1)) = (t0 + ǫm1 , x(t0 + ǫm1)) ∈ Hm1 ⊂ D.

If (t0 + ǫm1 , x(t0 + ǫm1)) ∈ Km1 , then repeat the process and obtain a
subsequence {k2(j)}∞j=1 of {k1(j)}∞j=1 such that

lim
j→∞

xk2(j)(t)

exists uniformly on [t1 + ǫm1 , t1 + 2ǫm1] and call the limit function x as
before. Then x is a solution of the IVP

y′ = f(t, y), y(t0 + ǫm1) = x(t0 + ǫm1).

It follows that

lim
j→∞

xk2(j)(t) = x(t)

uniformly on [t0, t0 + 2ǫm1 ]. Continuing in this manner, there is a first
integer j(m1) such that an appropriate subsequence converges uniformly
to an extended x on [t0, t0 + j(m1)ǫm1 ] and

(t0 + j(m1)ǫm1 , x(t0 + j(m1)ǫm1)) /∈ Km1 .

Pick m2 > m1 so that

(t0 + j(m1)ǫm1 , x(t0 + j(m1)ǫm1)) ∈ Km2 .

We then continue this process in the obvious manner to get the desired
result. �
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8.7 Continuity of Solutions with Respect to
ICs

In this section we are concerned with the smoothness of solutions with
respect to initial conditions, initial points, and parameters. Two very im-
portant scalar equations that contain a parameter λ are Legendre’s equa-
tion

(1 − t2)u′′ − 2tu′ + λ(λ + 1)u = 0

and Bessel’s equation

t2u′′ + tu′ + (t2 − λ2)u = 0.

Theorem 8.40 (Continuity of Solutions with Respect to Initial Conditions
and Parameters) Assume that D is an open subset of R × Rn and Λ is an
open subset of Rm and f is continuous on D×Λ with the property that for
each (t0, x0, λ0) ∈ D × Λ, the IVP

x′ = f(t, x, λ0), x(t0) = x0 (8.24)

has a unique solution denoted by x(t; t0, x0, λ0). Then x is a continuous
function on the set α < t < ω, (t0, x0, λ0) ∈ D × Λ.

Proof Assume

lim
k→∞

(t0k, x0k, λk) = (t0, x0, λ0) ∈ D × Λ.

Define

fk(t, x) = f(t, x, λk),

for (t, x) ∈ D, k ≥ 1. Then

lim
k→∞

fk(t, x) = f(t, x, λ0)

uniformly on compact subsets of D. Let xk(t) = x(t; t0k, x0k, λk); then xk
is the solution of the IVP

x′ = fk(t, x), x(t0k) = x0k.

Let (αk, ωk) be the maximal interval of existence for xk, for k ≥ 1 and let
x(t; t0, x0, λ0) be the solution of the limit IVP (8.24) with maximal interval
of existence (α, ω). Then by the basic convergence theorem (Theorem 8.39),

lim
k→∞

xk(t) = lim
k→∞

x(t; t0k, x0k, λk))

= x(t; t0, x0, λ0)

uniformly on compact subintervals of (α, β) (see Exercise 8.28). The con-
tinuity of x with respect to its four arguments follows from this. �

Theorem 8.41 (Integral Means) Assume D is an open subset of R ×
Rn and f : D → Rn is continuous. Then there is a sequence of vector
functions {gk(t, x)}, called integral means, such that gk : R × R

n → R
n,

along with its first-order partial derivatives with respect to components of x,
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are continuous and gk satisfies a uniform Lipschitz condition with respect
to x on R × Rn, for each k = 1, 2, 3, · · · . Furthermore,

lim
k→∞

gk(t, x) = f(t, x)

uniformly on each compact subset of D.

Proof Let {Kk}∞k=1 be a sequence of open subsets of D such that Kk is

compact, Kk ⊂ Kk+1, and D = ∪∞
k=1Kk. By the Tietze-Urysohn extension

theorem [44], for each k ≥ 1 there is a continuous vector function hk on all
of R × Rn such that

hk |Kk
= f,

and

max{‖hk(t, x)‖ : (t, x) ∈ R × R
n} = max{‖f(t, x)‖ : (t, x) ∈ Kk} =: Mk.

Let {δk} be a strictly decreasing sequence of positive numbers with limit
0. Then for each k ≥ 1, define the integral mean gk by

gk(t, x) :=
1

(2δk)n

∫ x1+δk

x1−δk

· · ·
∫ xn+δk

xn−δk

hk(t, y1, y2, · · · , yn) dyn · · · dy1,

where x = (x1, x2, · · · , xn), for (t, x) ∈ R×Rn. We claim that the sequence
{gk(t, x)} satisfies the following:

(i) gk is continuous on R × R
n, for each k ≥ 1,

(ii) ‖gk(t, x)‖ ≤Mk on R × Rn, for each k ≥ 1,
(iii) gk has continuous first-order partial derivatives with respect to

components of x on R × Rn, for each k ≥ 1,
(iv) ‖∂gk

∂xi
‖ ≤ Mk

δk
on R × Rn, for 1 ≤ i ≤ n and for each k ≥ 1,

(v) limk→∞ gk(t, x) = f(t, x) uniformly on each compact subset of
D.

We will only complete the proof for the scalar case (n = 1). In this case

gk(t, x) =
1

2δk

∫ x+δk

x−δk

hk(t, y) dy,

for (t, x) ∈ R × R. We claim that (i) holds for n = 1. To see this, fix
(t0, x0) ∈ R × R. We will show that gk(t, x) is continuous at (t0, x0). Let
ǫ > 0 be given. Since hk(t, x) is continuous on the compact set

Q := {(t, x) : |t− t0| ≤ δk, |x− x0| ≤ 2δk},
hk(t, x) is uniformly continuous on Q. Hence there is a δ ∈ (0, δk) such
that

|hk(t2, x2) − hk(t1, x1)| <
ǫ

2
, (8.25)

for all (t1, x1), (t2, x2) ∈ Q with |t1 − t2| ≤ δ, |x1 − x2| ≤ δ.
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For |t− t0| < δ, |x− x0| < δ, consider

|gk(t, x) − gk(t0, x0)|
≤ |gk(t, x) − gk(t0, x)| + |gk(t0, x) − gk(t0, x0)|

≤ 1

2δk

∫ x+δk

x−δk

|hk(t, y) − hk(t0, y)| dy

+
1

2δk

∣

∣

∣

∣

∣

∫ x+δk

x−δk

hk(t0, y) dy −
∫ x0+δk

x0−δk

hk(t0, y) dy

∣

∣

∣

∣

∣

≤ ǫ

2
+

1

2δk

∣

∣

∣

∣

∣

∫ x+δk

x0+δk

hk(t0, y) dy −
∫ x−δk

x0−δk

hk(t0, y) dy

∣

∣

∣

∣

∣

≤ ǫ

2
+

1

2δk

∣

∣

∣

∣

∣

∫ x+δk

x0+δk

|hk(t0, y)| dy
∣

∣

∣

∣

∣

+
1

2δk

∣

∣

∣

∣

∣

∫ x−δk

x0−δk

|hk(t0, y)| dy
∣

∣

∣

∣

∣

≤ ǫ

2
+
Mk|x− x0|

δk

<
ǫ

2
+
δMk

δk
,

where we have used (8.25). Hence, if we further assume δ < ǫδk

2Mk
, then we

get that

|gk(t, x) − gk(t0, x0)| < ǫ,

if |t − t0| < δ, |x − x0| < δ. Therefore, gk is continuous at (t0, x0). Since
(t0, x0) ∈ R × R and k ≥ 1 are arbritary, we get that (i) holds for n = 1.

To see that (ii) holds for n = 1, consider

|gk(t, x)| =
1

2δk

∣

∣

∣

∣

∣

∫ x+δk

x−δk

hk(t, y) dy

∣

∣

∣

∣

∣

≤ 1

2δk

∫ x+δk

x−δk

|hk(t, y)| dy

≤ 1

2δk

∫ x+δk

x−δk

Mk dy

= Mk,

for all (t, x) ∈ R × R and for all k ≥ 1. To see that (iii) and (iv) hold for
n = 1, note that

∂gk
∂x

(t, x) =
1

2δk
[hk(t, x+ δk) − hk(t, x− δk)]

is continuous on R × R. Furthermore,
∣

∣

∣

∣

∂gk
∂x

(t, x)

∣

∣

∣

∣

≤ 1

2δk
[|hk(t, x+ δk)| + |hk(t, x− δk)|]

≤ Mk

δk
,
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for all (t, x) ∈ R × R and k ≥ 1. This last inequality implies that gk(t, x)
satisfies a uniform Lipschitz condition with respect to x on R × R.

Finally we show that (v) holds for n = 1. Let H be a compact subset
of D. Then there is an integer m0 ≥ 1 such that H ⊂ Km0 . Let ǫ > 0 be
given. Fix (t0, x0) ∈ H. Let

ρ := d(H, ∂Km0).

Since f is uniformly continuous on the compact set Km0 , there is an η > 0
such that

|f(t2, x2) − f(t1, x1)| < ǫ, (8.26)

if (t1, x1), (t2, x2) ∈ Km0 with |t1 − t2| < η, |x1 − x2| < η. Pick an integer
N ≥ m0 sufficiently large so that δk ≤ min{ρ, η}, for all k ≥ N . Then for
all k ≥ N ,

{(t, x) : |t− t0| ≤ δk, |x− x0| ≤ δk} ⊂ Km0 .

Then for all k ≥ N ,

|gk(t0, x0) − f(t0, x0)|

=

∣

∣

∣

∣

∣

1

2δk

∫ x0+δk

x0−δk

hk(t0, y) dy − f(t0, x0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1

2δk

∫ x0+δk

x0−δk

hk(t0, y) dy −
1

2δk

∫ x0+δk

x0−δk

f(t0, x0) dy

∣

∣

∣

∣

∣

≤ 1

2δk

∫ x0+δk

x0−δk

|f(t0, y) − f(t0, x0)| dy

< ǫ,

where we have used (8.26) in the last step. Since (t0, x0) ∈ H is arbitrary,
we get

|gk(t, x) − f(t, x)| < ǫ,

for all (t, x) ∈ H , for all k ≥ N. Since H is an arbritrary compact subset
of D, we get

lim
k→∞

gk(t, x) = f(t, x)

uniformly on compact subsets of D. �

8.8 Kneser’s Theorem
In this section we will prove Kneser’s theorem.

Theorem 8.42 (Kneser’s Theorem) Assume D is an open subset of R×R
n

and f : D → Rn is continuous. If the compact interval [t0, c] is a subset
of the maximal interval of existence for all solutions of the IVP(8.4), then
the cross-sectional set

Sc := {y ∈ R
n : y = x(c), where x is a solution of the IVP (8.4) on [t0, c]}

is a compact, connected subset of Rn.
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Proof To show that Sc is compact we will show that Sc is closed and
bounded. First we show that Sc is a closed set. Let {yk} ⊂ Sc with

lim
k→∞

yk = y0,

where y0 ∈ Rn. Then there are solutions xk of the IVP (8.4) on [t0, c] with
xk(c) = yk, k = 1, 2, 3, · · · . By the basic convergence theorem (Theorem
8.39) there is a subsequence {xkj

} such that

lim
j→∞

xkj
(t) = x(t)

uniformly on [t0, c], where x is a solution of the IVP (8.4) on [t0, c]. But
this implies that

y0 = lim
j→∞

ykj
= lim

j→∞
xkj

(c) = x(c) ∈ Sc

and hence Sc is closed.
To see that Sc is bounded, assume not; then there is a sequence of

points {yk} in Sc such that

lim
k→∞

‖yk‖ = ∞.

In this case there is a sequence of solutions {zk} of the IVP (8.4) such that
zk(c) = yk, k ≥ 1. But, by the basic convergence theorem (Theorem 8.39),
there is a subsequence of solutions {zkj

} such that

lim
j→∞

zkj
(t) = z(t)

uniformly on [t0, c], where z is a solution of the IVP (8.4) on [t0, c]. But
this implies that

lim
j→∞

zkj
(c) = z(c),

which contradicts

lim
j→∞

‖zkj
(c)‖ = lim

j→∞
‖ykj

‖ = ∞.

Hence we have proved that Sc is a compact set.
We now show that Sc is connected. Assume not; then, since Sc is

compact, there are disjoint, nonempty, compact sets A1, A2 such that

A1 ∪A2 = Sc.

Let

δ := d(A1, A2) > 0.

Then let

h(x) := d(x,A1) − d(x,A2),

for x ∈ R
n. Then h : Rn → R is continuous,

h(x) ≤ −δ, for x ∈ A1,

and

h(x) ≥ δ, for x ∈ A2.
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In particular, we have
h(x) 6= 0

for all x ∈ Sc. We will contradict this fact at the end of this proof. Since
f : D → Rn is continuous, we have by Theorem 8.41 that there is a
sequence of vector functions {gk} such that gk : R × R

n → R
n is bounded

and continuous and gk satisfies a uniform Lipschitz condition with respect
to x on R × Rn, for each k = 1, 2, 3, · · · . Furthermore,

lim
k→∞

gk(t, x) = f(t, x)

uniformly on each compact subset of D. Since Ai 6= ∅ for i = 1, 2 there are
solutions xi, i = 1, 2 of the IVP (8.4) with

xi(c) ∈ Ai.

Now define for i = 1, 2

gik(t, x) :=







gk(t, x) + f(t0, xi(t0)) − gk(t0, xi(t0)), t < t0,
gk(t, x) + f(t, xi(t)) − gk(t, xi(t)), t0 ≤ t ≤ c,
gk(t, x) + f(c, xi(c)) − gk(c, xi(c)), c < t,

for (t, x) ∈ R × Rn, k = 1, 2, 3, · · · . It follows that gik is continuous and
bounded on R×Rn and satisfies a uniform Lipschitz condition with respect
to x on R × Rn, for each i = 1, 2 and k = 1, 2, 3, · · · . Furthermore,

lim
k→∞

gik(t, x) = f(t, x)

uniformly on each compact subset of D, for i = 1, 2. From the Picard-
Lindelof theorem (Theorem 8.13) we get that each of the IVPs

x′ = gik(t, x), x(τ) = ξ

has a unique solution and since each gik is bounded on R×Rn, the maximal
interval of existence of each of these solutions is (−∞,∞). Note that the
unique solution of the IVP

x′ = gik(t, x), x(t0) = x0

on [t0, c] is xi for i = 1, 2.
Let

pk(t, x, λ) := λg1k(t, x) + (1 − λ)g2k(t, x),

for (t, x, λ) ∈ R × R
n × R, k = 1, 2, 3, · · · . Note that for each fixed λ ∈ R,

pk is bounded and continuous and satisfies a uniform Lipschitz condition
with respect to x. Furthermore, for each fixed λ,

lim
k→∞

pk(t, x, λ) = f(t, x)

uniformly on each compact subset of D. Let for each fixed λ ∈ R, xk(·, λ)
be the unique solution of the IVP

x′ = pk(t, x, λ), x(t0) = x0.

It follows that qk : R → R, defined by

qk(λ) = h(xk(c, λ)),
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is, by Theorem 8.40, continuous. Since

qk(0) = h(xk(c, 0)) = h(x2(c)) ≥ δ,

and

qk(1) = h(xk(c, 1)) = h(x1(c)) ≤ −δ,
there is, by the intermediate value theorem, a λk with 0 < λk < 1 such
that

qk(λk) = h(xk(c, λk)) = 0,

for k = 1, 2, 3, · · · . Since the sequence {λk} ⊂ [0, 1], there is a convergent
subsequence {λkj

}. Let

λ0 = lim
j→∞

λkj
.

It follows that the sequence xkj
(t, λkj

) has a subsequence xkji
(t, λkji

) that

converges uniformly on compact subsets of (−∞,∞) to x(t), where x is a
solution of the limit IVP

x′ = f(t, x), x(t0) = x0.

It follows that

lim
i→∞

xkji
(c, λkji

) = x(c) ∈ Sc.

Hence

lim
i→∞

h(xkji
(c, λkji

)) = h(x(c)) = 0,

which is a contradiction.
�

8.9 Differentiating Solutions with Respect to
ICs

In this section we will be concerned with differentiating solutions with
respect to initial conditions, initial points, and parameters.

Theorem 8.43 (Differentiation with Respect to Initial Conditions and
Initial Points) Assume f is a continuous n dimensional vector function
on an open set D ⊂ R × Rn and f has continuous partial derivatives with
respect to the components of x. Then the IVP (8.4), where (t0, x0) ∈ D, has
a unique solution, which we denote by x(t; t0, x0), with maximal interval of
existence (α, ω). Then x(t; t0, x0) has continuous partial derivatives with
respect to the components x0j , j = 1, 2, · · · , n of x0 and with respect to t0

on (α, ω). Furthermore, z(t) := ∂x(t;t0,x0)
∂x0j

defines the unique solution of the

IVP

z′ = J(t)z, z(t0) = ej ,

where J(t) is the Jacobian matrix of f with respect to x along x(t; t0, x0),
that is,

J(t) = Dxf(t, x(t; t0, x0))
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and

ej =











δ1j
δ2j
...
δnj











,

where δij is the Kronecker delta function, for t ∈ (α, ω). Also, w(t) :=
∂x(t;t0,x0)

∂t0
defines the unique solution of the IVP

w′ = J(t)w, w(t0) = −f(t0, x0),

for t ∈ (α, ω).

Proof Let τ ∈ (α, ω). Then choose an interval [t1, t2] ⊂ (α, ω) such that
τ, t0 ∈ (t1, t2). Since

{(t, x(t; t0, x0)) : t ∈ [t1, t2]} ⊂ D

is compact and D is open, there exists a δ > 0 such that

Qδ := {(t, x) : |t− t| ≤ δ, ‖x− x(t; t0, x0))‖ ≤ δ, for t ∈ [t1, t2]}
is contained in D. Let {δk}∞k=1 be a sequence of nonzero real numbers with
limk→∞ δk = 0. Let x(t) := x(t; t0, x0) and let xk be the solution of the
IVP

x′ = f(t, x), x(t0) = x0 + δkej ,

where 1 ≤ j ≤ n is fixed. It follows from the basic convergence theorem
(Theorem 8.39) that if (αk, ωk) is the maximal interval of existence of xk,
then there is an integer k0 so that for all k ≥ k0, [t1, t2] ⊂ (αk, βk) and

‖x(t) − xk(t)‖ < δ

on [t1, t2]. Without loss of generality we can assume that the preceding
properties of {xk} hold for all k ≥ 1. Since, for t1 < t < t2, 0 ≤ s ≤ 1,

‖[sxk(t) + (1 − s)x(t)] − x(t)‖
= s‖xk(t) − x(t)‖ ≤ sδ ≤ δ,

it follows that
(t, sxk(t) + (1 − s)x(t)) ∈ Qδ,

for t1 < t < t2, 0 ≤ s ≤ 1. By Lemma 8.6,

x′k(t) − x′(t) = f(t, xk(t)) − f(t, x(t))

=

∫ 1

0

Dxf(t, sxk(t) + (1 − s)x(t)) ds [xk(t) − x(t)],

for t1 < t < t2. Let

zk(t) :=
1

δk
[xk(t) − x(t)];

then zk is a solution of the IVP

z′ =

∫ 1

0

Dxf(t, sxk(t) + (1 − s)x(t)) ds z, x(t0) = ej,
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where ej is given in the statement of this theorem. Define hk : (t1, t2) ×
Rn → Rn by

hk(t, z) :=

∫ 1

0

Dxf(t, sxk(t) + (1 − s)x(t)) ds z,

for (t, x) ∈ (t1, t2) ×Rn, k ≥ 1. Then hk : (t1, t2)× Rn → Rn is continuous
and since

lim
k→∞

xk(t) = x(t)

uniformly on [t1, t2], we get that

lim
k→∞

hk(t, z) = Dxf(t, x(t))z

uniformly on each compact subset of (t1, t2)×Rn. By the basic convergence
theorem (Theorem 8.39),

lim
k→∞

zk(t) = z(t)

uniformly on each compact subinterval of (t1, t2), where z is the solution
of the limit IVP

z′ = Dxf(t, x(t))z = Dxf(t, x(t; t0, x0))z, z(t0) = ej . (8.27)

In particular,

lim
k→∞

1

δk
[xk(τ) − x(τ)] = z(τ),

where z is the solution of the IVP (8.27). Since this is true for any sequence
{δk} of nonzero numbers with limk→∞ δk = 0, we get that

∂x

∂x0j
(τ, t0, x0)

exists and equals z(τ). Since τ ∈ (α, ω) was arbitrary, we get that for each
t ∈ (α, ω),

∂x

∂x0j
(t, t0, x0)

exists and equals z(t). The rest of this proof is left to the reader. �

Definition 8.44 The equation z′ = J(t)z in Theorem 8.43 is called the
variational equation of x′ = f(t, x) along the solution x(t; t0, x0).

Example 8.45 Find ∂x
∂x0

(t; 0, 1) and ∂x
∂t0

(t; 0, 1) for the differential equation

x′ = x− x2. (8.28)

By inspection,
x(t, 0, 1) ≡ 1.

Here f(t, x) = x− x2, so the variational equation along x(t; 0, 1) is

z′ = (1 − 2x(t; 0, 1))z,

which simplifies to
z′ = −z.



8.9. Differentiating Solutions with Respect to ICs 381

By Theorem 8.43, z(t) := ∂x
∂x0

(t; 0, 1) solves the IVP

z′ = −z, z(0) = 1,

and w(t) := ∂x
∂t0

(t; 0, 1) solves the IVP

w′ = −w, w(0) = −f(0, 1) = 0.

It follows that

z(t) =
∂x

∂x0
(t; 0, 1) = e−t

and

w(t) =
∂x

∂t0
(t; 0, 1) = 0.

It then follows that

x(t; 0, 1 + h) ≈ he−t + 1,

for h close to zero and

x(t;h, 1) ≈ 1,

for h close to zero. Since the equation (8.28) can be solved (see Exercise
8.32) by separating variables and using partial fractions, it can be shown
that

x(t; t0, x0) =
x0e

t−t0

1 − x0 + x0et−t0
.

It is easy to see (see Exercise 8.32) from this that the expressions for
∂x
∂x0

(t; 0, 1) and ∂x
∂t0

(t; 0, 1) given previously are correct. △
Corollary 8.46 Assume that A is a continuous n×n matrix function and
h is a continuous n × 1 vector function on an interval I. Further assume
t0 ∈ I, x0 ∈ Rn, and let x(·; t0, x0) denote the unique solution of the IVP

x′ = A(t)x + h(t), x(t0) = x0.

Then z(t) := ∂x
∂x0j

(t; t0, x0) defines the unique solution of the IVP

z′ = A(t)z, z(t0) = ej,

on I. Also w(t) := ∂x
∂t0

(t; t0, x0) defines the unique solution of the IVP

w′ = A(t)x, w(t0) = −A(t0)x0 − h(t0).

Proof If f(t, x) := A(t)x + h(t), then

Dxf(t, x) = A(t)

and the conclusions in this corollary follow from Theorem 8.43. �

Example 8.47 Assume that f(t, u, u′, · · · , u(n−1)) is continuous and real
valued on (a, b)×Rn and has continuous first-order partial derivatives with
respect to each of the variables u, u′, · · · , u(n−1) on (a, b) × Rn. Then the
IVP

u(n) = f(t, u, u′, · · · , u(n−1)), u(t0) = y01, · · · , u(n−1)(t0) = y0n, (8.29)
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where t0 ∈ (a, b), y0k ∈ R, 1 ≤ k ≤ n, is equivalent to the vector IVP

y′ = h(t, y), y(t0) = y0,

where

h(t, y) :=















y2
y3
...
yn

f(t, y1, · · · , yn)















, y0 :=











y01
y02
...
y0n











.

Then

y(t; t0, y0) =











u(t; t0, y0)
u′(t; t0, y0)

...

u(n−1)(t; t0, y0)











,

where u(·; t0, y0) is the solution of the IVP (8.29). From Theorem 8.43,

z(t) :=
∂y

∂y0j
(t; t0, y0)

is the solution of the IVP

z′ = J(t)z, z(t0) = ej,

where J is the matrix function










0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

fu fu′ · · · fu(n−1)











evaluated at (t, y(t; t0, x0)). Since

∂u

∂y0j
(t; t0, y0)

is the first component of

z(t) =
∂y

∂y0j
(t; t0, y0),

we get that

v(t) :=
∂u

∂y0j
(t; t0, y0)

solves the IVP

v(n) =

n−1
∑

k=0

fu(k)(t, u(t; t0, y0), · · · , u(n−1)(t; t0, y0))v
(k),

v(i−1) = δij , i = 1, 2, · · · , n,
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where δij is the Kronecker delta function. The nth-order linear differential
equation

v(n) =

n−1
∑

k=0

fu(k)(t, u(t; t0, y0), u
′(t; t0, y0), · · · , u(n−1)(t; t0, y0))v

(k) (8.30)

is called the variational equation of u(n) = f(t, u, u′, · · · , u(n−1)) along
u(t; t0, y0). Similarly,

w(t) :=
∂u

∂t0
(t; t0, y0)

is the solution of the variational equation satisfying the initial conditions

w(t0) = −y02, · · · , w(n−2)(t0) = −y0n, w(n−1)(t0) = −f(t0, y01, · · · , y0n).
△

Example 8.48 If u(t; t0, c1, c2) denotes the solution of the IVP

u′′ = u− u3, u(t0) = c1, u
′(t0) = c2,

find
∂u

∂c2
(t; 0, 0, 0)

and use your answer to approximate u(t; 0, 0, h) when h is small.
We know that

v(t) :=
∂u

∂c2
(t; 0, 0, 0)

gives the solution of the IVP

v′′ = fu(t, u(t; 0, 0, 0), u′(t; 0, 0, 0))v + fu′(t, u(t; 0, 0, 0), u′(t; 0, 0, 0))v′,

v(0) = 0, v′(0) = 1.

Since in this example f(t, u, u′) = u− u3, we get that fu(t, u, u
′) = 1− 3u2

and fu′(t, u, u′) = 0. Since by inspection u(t; 0, 0, 0) ≡ 0, we get that

fu(t, u(t; 0, 0, 0), u′(t; 0, 0, 0)) = fu(t, 0, 0) = 1

and

fu′(t, u(t; 0, 0, 0), u′(t; 0, 0, 0)) = fu′(t, 0, 0) = 0.

Hence v solves the IVP

v′′ = v, v(0) = 0, v′(0) = 1,

which implies that v(t) = sinh t. Therefore,

∂u

∂c2
(t; 0, 0, 0) = sinh t.

It follows that

u(t; 0, 0, h) ≈ h sinh t,

for small h. Similarly, it can be shown that

∂u

∂c1
(t, 0, 0, 0) = cosh t
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and
∂u

∂t0
(t, 0, 0, 0) = 0.

It then follows that

u(t; 0, h, 0) ≈ h cosh t,

and

u(t;h, 0, 0) ≈ 0,

for h close to zero. △

Theorem 8.49 (Differentiating Solutions with Respect to Parameters) As-
sume f(t, x, λ) is continuous and has continuous first-order partial deriva-
tives with respect to components of x and λ on an open subset D ⊂ R ×
Rn × Rm. For each (t0, x0, λ0) ∈ D, let x(t; t0, x0, λ0) denote the solution
of the IVP

x′ = f(t, x, λ0), x(t0) = x0, (8.31)

with maximal interval of existence (α, ω). Then x(t; t0, x0, λ0) has con-
tinuous first-order partial derivatives with respect to components of λ0 =
(λ01, · · · , λ0m) and z(t) := ∂x

∂λ0k
(t; t0, x0, λ0), 1 ≤ k ≤ m, is the solution of

the IVP

z′ = J(t; t0, x0, λ0)z + gk(t), z(t0) = 0,

on (α, ω), where

J(t; t0, x0, λ0) := Dxf(t, x(t; t0, x0, λ0), λ0)

and

gk(t) =













∂f1
∂λ0k

(t, x(t; t0, x0, λ0), λ0)
∂f2
∂λ0k

(t, x(t; t0, x0, λ0), λ0)
...

∂fn

∂λ0k
(t, x(t; t0, x0, λ0), λ0)













,

for t ∈ (α, ω).

Proof Let

y :=





















x1

...
xn
λ1

...
λm





















, h(t, y) :=





















f1(t, x, λ)
...

fn(t, x, λ)
0
...
0





















.
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Then

y(t; t0, x0, λ0) :=





















x1(t; t0, x0, λ0)
...

xn(t; t0, x0, λ0)
λ01

...
λ0m





















is the unique solution of the IVP

y′ = h(t, y), y(t0) =





















x01

...
x0n

λ01

...
λ0m





















,

with maximal interval of existence (α, ω). It follows from Theorem 8.43
that

z̃(t) :=
∂y (t; t0, x0, λ0)

∂λ0k

exists, is continuous on (α, ω), and is the solution of the IVP

z̃′ = J(t, y(t; t0, x0, λ0))z̃, z̃(t0) = en+k,

where en+k is the unit vector in Rn+m whose n+ k component is 1 and

J(t, y(t; t0, x0, λ0)) =

















∂f1
∂x1

· · · ∂f1
∂xn

∂f1
∂λ01

· · · ∂f1
∂λ0m

· · · · · · · · · · · · · · · · · ·
∂fn

∂x1
· · · ∂fn

∂xn

∂fn

∂λ01
· · · ∂fn

∂λ0m

0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0

















,

where the entries of this last matrix are evaluated at (t, x(t; t0, x0, λ0), λ0).
This implies z̃′j(t) = 0, n+ 1 ≤ j ≤ n+m. This then implies that

z̃j(t) ≡ 0, n+ 1 ≤ j ≤ n+m, but j 6= n+ k,

and

z̃n+k(t) ≡ 1,
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for t ∈ (α, ω). Hence

z̃(t) =





























z(t)
0
...
0
1
0
...
0





























,

where the n+ k component of z̃(t) is 1. It follows that z(t) = ∂x(t;t0,x0,λ0)
∂λ0k

is the solution of the IVP

z′ = J(t; t0, x0, λ0)z + gk(t), z(t0) = 0,

on (α, ω), where

J(t; t0, x0, λ0) = Dxf(t, x(t; t0, x0, λ0), λ0),

and

gk(t) =













∂f1
∂λ0k

(t, x(t; t0, x0, λ0), λ0)
∂f2
∂λ0k

(t, x(t; t0, x0, λ0), λ0)
...

∂fn

∂λ0k
(t, x(t; t0, x0, λ0), λ0)













,

for t ∈ (α, ω). �

Similar to Example 8.47, we get the following result.

Example 8.50 Assume that f(t, u, u′, · · · , u(n−1), λ1, · · · , λm) is continu-
ous on (a, b) × Rn × Rm and has continuous first-order partial derivatives
with respect to each of the variables u, u′, · · · , u(n−1), λ1, · · · , λm. Then
the unique solution u(t; t0, y01, y02, · · · , y0n, λ01, · · · , λ0m) = u(t; t0, y0, λ0)
of the initial value problem

u(n) = f(t, u, u′, · · · , u(n−1), λ01, · · · , λ0m),

u(t0) = y01, u
′(t0) = y02, · · · , u(n−1)(t0) = y0n,

where (t0, y0, λ0) ∈ (a, b) × Rn × Rm has continuous first-order partial
derivatives with respect to λ01, λ02 · · · , λ0m and

v(t) :=
∂u

∂λ0j
(t; t0, y0, λ0),
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1 ≤ j ≤ m, is the solution of the IVP

v(n) =

n−1
∑

k=0

fu(k)(t, u(t; t0, y0, λ0), · · · , u(n−1)(t; t0, y0, λ0), λ0)v
(k)

+fλj
(t, u(t; t0, y0, · · · , un−1(t; t0, y0, λ0), λ0), · · · , u(n−1)(t; t0, y0, λ0), λ0),

v(i−1)(t0) = 0, i = 1, · · · , n.
△

Example 8.51 Let u(t; t0, a, b, λ), λ > 0, denote the solution of the IVP

u′′ = −λu, u(t0) = a, u′(t0) = b.

Then by Example 8.50 we get that

v(t) =
∂u

∂λ
(t; 0, 1, 0, λ)

is the solution of the IVP

v′′ = −λv − cos(
√
λt), v(0) = 0, v′(0) = 0.

Solving this IVP, we get

v(t) =
∂u

∂λ
(t; 0, 1, 0, λ) = − 1

2
√
λ
t sin(

√
λt).

Since

u(t; 0, 1, 0, λ) = cos(
√
λt),

we can check our answer by just differentiating with respect to λ. △

8.10 Maximum and Minimum Solutions

Definition 8.52 Assume that φ is a continuous real-valued function on an
open set D ⊂ R × R and let (t0, u0) ∈ D. Then a solution uM of the IVP

u′ = φ(t, u), u(t0) = u0, (8.32)

with maximal interval of existence (αM , ωM ) is called a maximum solution
of the IVP (8.32) in case for any other solution v of the IVP (8.32) on an
interval I,

v(t) ≤ uM (t), on I ∩ (αM , ωM ).

In a similar way we can also define a minimum solution of the IVP (8.32).

Theorem 8.53 Assume that φ is a continuous real-valued function on
an open set D ⊂ R × R. Then the IVP (8.32) has both a maximum and
minimum solution and these solutions are unique.

Proof For each n ≥ 1, let un be a solution of the IVP

u′ = f(t, u) +
1

n
, u(t0) = u0,
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with maximal interval of existence (αn, ωn). Since

lim
n→∞

(

f(t, u) +
1

n

)

= f(t, u)

uniformly on each compact subset of D, we have by Theorem 8.39 that
there is a solution u of the IVP (8.32) with maximal interval of existence
(αu, ωu) and a subsequence {unj

(t)} that converges to u(t) in the sense of
Theorem 8.39.

Similarly, for each integer n ≥ 1, let vn be a solution of the IVP

v′ = f(t, v) − 1

n
, v(t0) = u0,

with maximal interval of existence (α∗
n, ω

∗
n). Since

lim
n→∞

(

f(t, v) − 1

n

)

= f(t, v)

uniformly on each compact subset of D, we have by Theorem 8.39 that
there is a solution v of the IVP (8.32) with maximal interval of existence
(αv, βv) and a subsequence vnj

(t) that converges to v(t) in the sense of
Theorem 8.39. Define

uM (t) =

{

u(t), on [t0, ωu)
v(t), on (αv, t0),

and

um(t) =

{

v(t), on [t0, ωv)
u(t), on (αu, t0).

We claim that uM and um are maximum and minimum solutions of the
IVP (8.32), respectively. To see that uM is a maximum solution on [t0, ωu),
assume not, then there is a solution z of the IVP (8.32) on an interval I
and there is a t1 > t0, t1 ∈ I ∩ [t0, ωu) such that

z(t1) > uM (t1) = u(t1).

Since

lim
j→∞

unj
(t1) = u(t1),

we can pick J sufficiently large so that

unJ
(t1) < z(t1).

Since z(t0) = u0 = unJ
(t0), we can pick t2 ∈ [t0, t1) such that

z(t2) = unJ
(t2)

and

z(t) > unJ
(t)
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on (t2, t1]. This implies that z′(t2) ≥ u′nJ
(t2). But

u′nJ
(t2) = f(t2, unJ

(t2)) +
1

nJ
> f(t2, unJ

(t2))

= f(t2, z(t2))

= z′(t2),

which gives us our contradiction. There are three other cases that are
similar and so will be omitted (see Exercise 8.42). It is easy to see that the
maximal and minimal solutions of the IVP (8.32) are unique. Note that
since the maximal solution of the IVP (8.32) is unique, we have that any
sequence {un} of solutions of the IVPs

u′ = f(t, u) +
1

n
, u(t0) = u0

converges to uM on [t0, ωu) in the sense of Theorem 8.39. �

In the remainder of this section we use the following notation.

Definition 8.54 Assume u is defined in a neighborhood of t0. Then

D+u(t0) := lim sup
h→0+

u(t0 + h) − u(t0)

h
,

D+u(t0) := lim inf
h→0+

u(t0 + h) − u(t0)

h
,

D−u(t0) := lim sup
h→0−

u(t0 + h) − u(t0)

h
,

D−u(t0) := lim inf
h→0−

u(t0 + h) − u(t0)

h
.

Theorem 8.55 Assume that D is an open subset of R2 and φ : D → R is
continuous. Assume that (t0, u0) ∈ D, v : [t0, t0 + a] → R is continuous,
(t, v(t)) ∈ D, for t0 ≤ t ≤ t0 + a with D+v(t) ≤ φ(t, v(t)), and v(t0) ≤ u0;
then

v(t) ≤ uM (t), t ∈ [t0, t0 + a] ∩ (αM , ωM ),

where uM is the maximum solution of the IVP (8.32), with maximal inter-
val of existence (αM , ωM ).

Proof Let v and uM be as in the statement of this theorem. We now prove
that

v(t) ≤ uM (t), t ∈ [t0, t0 + a] ∩ (αM , ωM ).

Assume not; then there is a t1 > t0 in [t0, t0 + a] ∩ (αM , ωM ), such that

v(t1) > uM (t1).
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By the proof of Theorem 8.53 we know that if {un} is a sequence of solutions
of the IVPs

u′ = φ(t, u) +
1

n
, u(t0) = x0,

respectively, then
lim
n→∞

un(t) = uM (t)

uniformly on compact subintervals of [t0, ω). Hence we can pick a positive
integer N such that the maximal interval of existence of uN contains [t0, t1]
and

uN (t1) < v(t1).

Choose t2 ∈ [t0, t1) such that uN(t2) = v(t2) and

v(t) > uN (t), t ∈ (t2, t1].

Let
z(t) := v(t) − uN(t).

For h > 0, sufficiently small,

z(t2 + h) − z(t2)

h
> 0,

and so
D+z(t2) ≥ 0.

But

D+z(t2) = D+v(t2) − u′N(t2)

≤ φ(t2, v(t2)) − φ(t2, uN(t2)) −
1

N

= − 1

N
< 0,

which is a contradiction. �

Similarly, we can prove the following three theorems:

Theorem 8.56 Assume that D is an open subset of R
2 and φ : D → R is

continuous. Assume that (t0, u0) ∈ D, v : [t0, t0 + a] → R is continuous,
(t, v(t)) ∈ D, for t0 ≤ t ≤ t0 + a, with D+v(t) ≥ φ(t, v(t)), and v(t0) ≥ u0;
then

v(t) ≥ um(t), t ∈ [t0, t0 + a] ∩ (αm, ωm),

where um is the minimum solution of the IVP (8.32), with maximal interval
of existence (αm, ωm).

Theorem 8.57 Assume that D is an open subset of R
2 and φ : D → R is

continuous. Assume that (t0, u0) ∈ D, v : [t0 − a, t0] → R is continuous,
(t, v(t)) ∈ D, for t0 − a ≤ t ≤ t0, with D−v(t) ≥ φ(t, v(t)) and v(t0) ≤ u0;
then

v(t) ≤ uM (t), t ∈ [t0 − a, t0] ∩ (αM , ωM ),

where uM is the maximum solution of the IVP (8.32), with maximal inter-
val of existence (αM , ωM ).
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Theorem 8.58 Assume that D is an open subset of R2 and φ : D → R is
continuous. Assume that (t0, u0) ∈ D, v : [t0 − a, t0] → R is continuous,
(t, v(t)) ∈ D, for t0 − a ≤ t ≤ t0, with D−v(t) ≤ φ(t, v(t)), and v(t0) ≥ u0;
then

v(t) ≥ um(t), t ∈ [t0 − a, t0] ∩ (αm, ωm),

where um is the minimum solution of the IVP (8.32), with maximal interval
of existence (αm, ωm).

We will leave the proof of the following important comparison theorem
as an exercise (Exercise 8.46).

Corollary 8.59 Let D be an open subset of R
2 and assume that Ψ : D → R

and φ : D → R are continuous with

Ψ(t, u) ≤ φ(t, u), (t, u) ∈ D.

If uM is the maximum solution of the IVP (8.32), with maximal interval of
existence (αM , ωM ), then if v is a solution of v′ = Ψ(t, v) with v(t0) ≤ u0,
then v(t) ≤ uM (t) on [t0, t0 + a] ∩ (αM , ωM ).

We can now use Theorems 8.55 and 8.56 to prove the following corol-
lary.

Corollary 8.60 Assume that D is an open subset of R2 and φ : D →
R is continuous. Assume that (t0, u0) ∈ D, and there is a continuously
differentiable vector function x : [t0, t0 + a] → Rn such that (t, ‖x(t)‖) ∈ D
for t0 ≤ t ≤ t0 + a with ‖x′(t)‖ ≤ φ(t, ‖x(t)‖); then

‖x(t)‖ ≤ uM (t), t ∈ [t0, t0 + a] ∩ (αM , ωM ),

where uM is the maximum solution of the IVP

u′ = φ(t, u), u(t0) = ‖x(t0)‖,
with maximal interval of existence (αM , ωM ). Similarly, if um is the min-
imum solution of the IVP

u′ = −φ(t, u), u(t0) = ‖x(t0)‖,
then

‖x(t)‖ ≥ um(t), t ∈ [t0, t0 + a] ∩ (αm, ωm).

Proof Note that for h > 0, sufficiently small,

‖x(t+ h)‖ − ‖x(t)‖
h

≤ ‖x(t+ h) − x(t)‖
h

=

∥

∥

∥

∥

x(t+ h) − x(t)

h

∥

∥

∥

∥

,

implies that

D+‖x(t)‖ ≤ ‖x′(t)‖ ≤ φ(t, ‖x(t)‖),
for t ∈ [t0, t0 + a]. Hence by Theorem 8.55, we get that

‖x(t)‖ ≤ uM (t), t ∈ [t0, t0 + a] ∩ (αM , ωM ).
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Next, for h > 0, sufficiently small,

‖x(t+ h) − x(t)‖ ≥ ‖x(t)‖ − ‖x(t+ h)‖ = −{‖x(t+ h)‖ − ‖x(t)‖} .
Hence for h > 0, sufficiently small,

‖x(t+ h)‖ − ‖x(t)‖
h

≥ −‖x(t+ h) − x(t)‖
h

= −
∥

∥

∥

∥

x(t+ h) − x(t)

h

∥

∥

∥

∥

,

and consequently

D+‖x(t)‖ ≥ −‖x′(t)‖ ≥ −φ(t, ‖x(t)‖),
for t ∈ [t0, t0 + a]. It then follows from Theorem 8.56 that

‖x(t)‖ ≥ um(t), t ∈ [t0, t0 + a] ∩ (αm, ωm).

�

Theorem 8.61 (Generalized Gronwall’s Inequality) Assume φ : [t0, t0 +
a] × R → R is continuous and for each fixed t ∈ [t0, t0 + a], φ(t, u) is
nondecreasing with respect to u. Assume that the maximum solution uM of
the IVP (8.32) exists on [t0, t0 +a]. Further assume that v : [t0, t0 +a] → R

is continuous and satisfies

v(t) ≤ u0 +

∫ t

t0

φ(s, v(s)) ds

on [t0, t0 + a]. Then

v(t) ≤ uM (t), t ∈ [t0, t0 + a].

Proof Let

z(t) := u0 +

∫ t

t0

φ(s, v(s)) ds,

for t ∈ [t0, t0 + a]. Then v(t) ≤ z(t) on [t0, t0 + a] and

z′(t) = φ(t, v(t)) ≤ φ(t, z(t)), t ∈ [t0, t0 + a].

It follows from Theorem 8.55 that

z(t) ≤ uM (t), t ∈ [t0, t0 + a].

Since v(t) ≤ z(t) on [t0, t0 + a], we get the desired result. �

As a consequence to this last theorem, we get the well-known Gron-
wall’s inequality as a corollary.

Corollary 8.62 (Gronwall’s Inequality) Let u, v be nonnegative, continu-
ous functions on [a, b], C ≥ 0 be a constant, and assume that

v(t) ≤ C +

∫ t

a

v(s)u(s) ds,

for t ∈ [a, b]. Then

v(t) ≤ Ce
R

t

a
u(s)ds, t ∈ [a, b].

In particular, if C = 0, then v(t) ≡ 0.
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Proof This result follows from Theorem 8.61, where we let φ(t, w) :=
u(t)w, for (t, w) ∈ [a, b] × R and note that the maximum solution (unique
solution) of the IVP

w′ = φ(t, w) = u(t)w, w(a) = C

is given by

wM (t) = Ce
R

t

a
u(s)ds, t ∈ [a, b].

�

Theorem 8.63 (Extendability Theorem) Assume φ : [t0, t0 + a]× R → R

is continuous and uM is the maximum solution of the scalar IVP (8.32),
where u0 ≥ 0, and assume that uM exists on [t0, t0 + a]. If the vector
function f : [t0, t0 + a] × Rn → Rn is continuous and

‖f(t, x)‖ ≤ φ(t, ‖x‖), (t, x) ∈ [t0, t0 + a] × R
n,

then any solution x of the vector IVP

x′ = f(t, x), x(t0) = x0,

where ‖x0‖ ≤ u0, exists on [t0, t0 + a] and ‖x(t)‖ ≤ uM (t) on [t0, t0 + a].

Proof Fix x0 so that ‖x0‖ ≤ u0. By the extension theorem (Theorem
8.33) and the extended Cauchy–Peano Theorem (Theorem 8.34) there is
an α > 0 such that all solutions of this IVP exist on [t0, t0 + α]. Let x
be one of these solutions with right maximal interval of existence [t0, ωx).
Then

D+‖x(t)‖ = lim sup
h→0+

‖x(t+ h)‖ − ‖x(t)‖
h

≤ lim sup
h→0+

‖x(t+ h) − x(t)

h
‖

= ‖x′(t)‖ ≤ φ(t, ‖x(t)‖).

Hence from Theorem 8.55

‖x(t)‖ ≤ uM (t), t ∈ [t0, ωx).

If ωx ≤ t0 + a, then by the extended Cauchy-Peano theorem (Theorem
8.34),

lim
t→ωx

‖x(t)‖ = ∞,

which is a contradiction. Hence we must have

‖x(t)‖ ≤ uM (t), t ∈ [t0, t0 + a],

and, in particular, the solution x exists on all of [t0, t0 + a]. �



394 8. Existence and Uniqueness Theorems

Corollary 8.64 Assume that Ψ : [0,∞) → (0,∞) is continuous and there
is a y0 ∈ [0,∞) such that

∫ ∞

y0

dv

Ψ(v)
= ∞.

If f : [t0,∞) × R
n → R

n is continuous and

‖f(t, x)‖ ≤ Ψ(‖x‖), (t, x) ∈ [t0,∞) × R
n,

then for all x0 ∈ Rn with ‖x0‖ ≤ y0, all solutions of the vector IVP

x′ = f(t, x), x(t0) = x0

exist on [t0,∞).

Proof Let u be a solution of the IVP

u′ = Ψ(u), u(t0) = y0,

with right maximal interval of existence [t0, ωu). If ωu <∞, then

lim
t→ωu−

|u(t)| = ∞.

Since u′(t) = Ψ(u(t)) > 0, we must have

lim
t→ωu−

u(t) = ∞.

For t ≥ t0, u
′(t) = Ψ(u(t)) implies that

u′(t)

Ψ(u(t))
= 1.

Integrating from t0 to t, we obtain
∫ t

t0

u′(s)

Ψ(u(s))
ds = t− t0.

Letting v = u(s), we get that

∫ u(t)

y0

dv

Ψ(v)
= t− t0.

Letting t→ ωu−, we get the contradiction

∞ =

∫ ∞

y0

dv

Ψ(v)
= ωu − t0 <∞.

Hence we must have ωu = ∞ and so u is a solution on [t0,∞). It then
follows from Theorem 8.63 that all solutions of the vector IVP

x′ = f(t, x), x(t0) = x0

exist on [t0,∞). �
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Theorem 8.65 Assume A is a continuous n×n matrix function and h is
a continuous n× 1 vector function on I. Then the IVP

x′ = A(t)x + h(t), x(t0) = x0, (8.33)

where (t0, x0) ∈ I ×Rn, has a unique solution x and this solution exists on
all of I. Furthermore,

‖x(t)‖ ≤
{

‖x0‖ + |
∫ t

t0

‖h(s)‖ ds|
}

e
|

R

t

t0
‖A(s)‖ds|

, (8.34)

for t ∈ I.

Proof By Corollary 8.18 we have already proved the existence and unique-
ness of the solution of the IVP (8.33), so it only remains to show that the
solution of this IVP exists on all of I and that the inequality (8.34) holds.
We will just prove that the solution of this IVP exists on I to the right of
t0 and the inequality (8.34) holds on I to the right of t0. Assume t1 > t0
and t1 ∈ I. Let f(t, x) := A(t)x + h(t), for (t, x) ∈ I × Rn and note that

‖A(t)x+ h(t)‖ ≤ ‖A(t)‖‖x‖ + ‖h(t)‖
≤ M1‖x‖ +M2,

for (t, x) ∈ [t0, t1] × Rn, where M1, M2 are suitably chosen positive con-
stants. Since the IVP

u′ = M1u+M2, u(t0) = ‖x0‖,
has a unique solution that exists on [t0, t1], we get from Theorem 8.63 that
the solution of the IVP (8.33) exists on [t0, t1]. Since this holds, for any
t1 > t0 such that t1 ∈ I we get that the solution of the IVP (8.33) exists
on I to the right of t0.

Next we show that the solution x of the IVP (8.33) satisfies (8.34) on
I to the right of t0. Since x solves the IVP (8.33) on I, we have that

x(t) = x0 +

∫ t

t0

[A(s)x(s) + h(s)] ds,

for t ∈ I. It follows that for t ∈ I, t ≥ t0

‖x(t)‖ ≤ ‖x0‖ +

∫ t

t0

‖A(s)‖‖x(s)‖ ds+

∫ t

t0

‖h(s)‖ ds

=

{

‖x0‖ +

∫ t

t0

‖h(s)‖ ds
}

+

∫ t

t0

‖A(s)‖‖x(s)‖ ds.

Let t1 ∈ I and assume that t1 > t0. Then for t ∈ [t0, t1],

‖x(t)‖ ≤
{

‖x0‖ +

∫ t1

t0

‖h(s)‖ ds
}

+

∫ t

t0

‖A(s)‖‖x(s)‖ ds.
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Using Gronwall’s inequality, we get that

‖x(t)‖ ≤
{

‖x0‖ +

∫ t1

t0

‖h(s)‖ ds
}

e
R

t

t0
‖A(s)‖ds

,

for t ∈ [t0, t1]. Letting t = t1, we get

‖x(t1)‖ ≤
{

‖x0‖ +

∫ t1

t0

‖h(s)‖ ds
}

e
R t1

t0
‖A(s)‖ds.

Since t1 ∈ I, t1 > t0 is arbitrary, we get the desired result. The remainder
of this proof is left as an exercise (see Exercise 8.49). �

8.11 Exercises

8.1 Assume I is an open interval, pk : I → R is continuous for 0 ≤ k ≤ n,
pn(t) 6= 0 for t ∈ I, and h : I → R is continuous. Show that the nth-order
linear equation

pn(t)u
(n) + pn−1(t)u

(n−1) + · · · + p0(t)u = h(t)

is equivalent to a vector equation of the form (8.1) with D := I×Rn. Give
what you think would be the appropriate definition of u is a solution of
this nth-order equation on I.

8.2 Find the Jacobian matrix of f(t, x) with respect to x for each of the
following:

(a) f(t, x) =

(

x2
1e

2x1x2 + t2

5x1x
3
2

)

(b) f(t, x) =

(

sin(x2
1x

3
2)

cos(t2x1x2)

)

(c) f(t, x) =





x2
1t

2 + x2
2 + x2

3

x1x2x3

4x2
1x

4
3



 (d) f(t, x) =





ex
2
1x

2
2x

2
3

x3
1 + x2

3

4x1x2x3 + t





8.3 Show that f(t, x) = x2

1+t2 satisfies a Lipschitz condition with respect to
x on R×R, but does not satisfy a uniform Lipshitz condition with respect
to x on R × R.

8.4 Show that f(t, x) = e3t + 3|x|p, where 0 < p < 1, does not satisfy a
uniform Lipschitz condition with respect to x on R2.

8.5 Maximize the α in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle Q concerning the solution of the IVP

x′ = x3, x(0) = 2.

Then solve this IVP to get the maximal interval of existence of the solution
of this IVP.

8.6 Maximize the α in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle Q concerning the solution of the IVP

x′ = 5 + x2, x(1) = 2.
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8.7 Maximize the α in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle Q concerning the solution of the IVP

x′ = (x+ 1)2, x(1) = 1.

Then solve this IVP to get the maximal interval of existence of the solution
of this IVP.

8.8 Maximize the α in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle Q concerning the solution of the IVP

x′ = t+ x2, x(0) = 1.

8.9 Approximate the solution of the IVP

x′ = sin
(π

2
x
)

, x(0) = 1

by finding the second Picard iterate x2(t) and use (8.12) to find how good
an approximation you get.

8.10 Approximate the solution of the IVP

x′ = 2x2 − x3, x(0) = 1

by finding the second Picard iterate x2(t).

8.11 Approximate the solution of the IVP

x′ = 2x− x2, x(0) = 1

by finding the second Picard iterate x2(t).

8.12 Approximate the solution of the IVP

x′ =
x

1 + x2
, x(0) = 1

by finding the second Picard iterate x2(t) and use (8.12) to find how good
an approximation you get.

8.13 Approximate the solution of the IVP

x′ =
1

1 + x2
, x(0) = 0

by finding the second Picard iterate x2(t) and use (8.12) to find how good
an approximation you get.

8.14 Using Corollary 8.19, what can you say about solutions of IVPs for
each of the following?

(i) x′′ = sin(tx′) + (x− 2)
2
3

(ii) x′′′ = t2 + x+ (x′)2 + (x′′)3

8.15 Show that the sequence of functions {xn(t) := tn}, 0 ≤ t ≤ 1, satis-
fies all the hypotheses of the Ascoli-Arzela theorem (Theorem 8.26) except
the fact that this sequence is equicontinuous. Show that the conclusion of
the Ascoli-Arzela theorem (Theorem 8.26) for this sequence does not hold.
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8.16 Can the Ascoli-Arzela theorem (Theorem 8.26) be applied to the
sequence of functions {xn(t) := sin(nt)}∞n=1, 0 ≤ t ≤ π?

8.17 Verify that the sequence of functions {xn(t) := 1
n sin(nt)}∞n=1, is

equicontinuous on R.

8.18 Assume g : [0,∞) → R is continuous. Show that if g′(3) = 0, then
{gn(t) := g(nt) : n ∈ N} is not equicontinuous on [0,∞).

8.19 Assume that {xn} is an equicontinuous sequence of real-valued func-
tions on [a, b], which converges pointwise to x on [a, b]. Further assume

there is a constant p ≥ 1 such that for each n ∈ N,
∫ b

a |xn(t)|pdt exists, and

lim
n→∞

∫ b

a

|xn(t) − x(t)|pdt = 0.

Show that the sequence {xn} converges uniformly to x on [a, b].

8.20 Write out the definition of x(t) → ∂D as t → a+ mentioned in
Definition 8.32.

8.21 At the beginning of the proof of Theorem 8.33, show how you can
define the sequence of open sets {Kk} such that the closure of Kk, K̄k, is
compact, K̄k ⊂ Kk+1, and ∪∞

k=1Kk = D.

8.22 Use Theorem 8.36 to prove Corollary 8.37.

8.23 Find constants α and β so that x(t) = αtβ is a solution of the IVP
(8.23) in Example 8.38. Show that the the sequence of Picard iterates
{xk(t)} [with x0(t) ≡ 0] for the IVP (8.23) does not even have a subsequence
that converges to the solution of this IVP. Show directly by the definition
of a Lipschitz condition that the f(t, x) in Example 8.38 does not satisfy a
Lipschitz condition with respect to x on [0, 1] × R.

8.24 Show that x1(t) := 0 and x2(t) :=
(

2
3 t
)

3
2 define solutions of the IVP

x′ = x
1
3 , x(0) = 0.

Even though solutions of IVPs are not unique, show that the sequence of
Picard iterates {xk(t)} [with x0(t) ≡ 0] converges to a solution of this IVP.

8.25 For each constant x0 6= 0, find the maximal interval of existence
for the solution of the IVP x′ = x3, x(0) = x0. Show directly that the
conclusions of Theorem 8.33 concerning this solution hold.

8.26 Show that the IVP x′′ = −6x(x′)3, x(−1) = −1, x′(−1) = 1
3 , has a

unique solution x and find the maximal interval of existence of x. H int:
Look for a solution of the given IVP of the form x(t) = αtβ , where α and
β are constants.

8.27 Show that the IVP

x′ = −x 1
3 − t2 arctanx, x(0) = 0
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has a unique solution. What is the unique solution of this IVP? Does the
Picard-Lindelof theorem apply?

8.28 Show that if {xk}∞k=1 is a sequence of n-dimensional vector func-
tions on [a, b] satisfying the property that every subsequence has a sub-
sequence that converges uniformly on [a, b] to the same function x, then
limk→∞ xk(t) = x(t) uniformly on [a, b].

8.29 If f(x) = |x| for x ∈ R and if δ > 0 is a constant, find a formula for
the integral mean gδ : R → R defined by

gδ(x) =
1

2δ

∫ x+δ

x−δ
f(y) dy,

for x ∈ R. Use your answer to show that gδ is continuously differentiable
on R. Then show directly that limδ→0+ gδ(x) = f(x) uniformly R.

8.30 Given that

f(x) =

{

1, x ≥ 0
−1, x < 0,

and δ > 0, find the integral mean

gδ(x) =
1

2δ

∫ x+δ

x−δ
f(y) dy,

for x ∈ R.

8.31 Find the cross-sectional set S6 in Kneser’s theorem (Theorem 8.42)
for each of the following IVPs:

(i) x′ = x
2
3 , x(0) = 0

(ii) x′ = x2, x(0) = 1
8

8.32 Find a formula for the solution x(t; t0, x0) of the initial value problem

x′ = x− x2, x(t0) = x0.

Use your answer to find z(t) = ∂x
∂x0

(t; 0, 1) and w(t) = ∂x
∂t0

(t; 0, 1). Compare
your answers to the results given in Example 8.45.

8.33 Let x(t; a, b) denote the solution of the IVP

x′ = 8 − 6x+ x2, x(a) = b.

Without solving this IVP, find

∂x

∂b
(t; 0, 2) and

∂x

∂a
(t; 0, 2).

Use your answers to approximate x(t;h, 2), when h is close to zero and
x(t; 0, k), when k is close to 2.

8.34 Let x(t; a, b) denote the solution of the IVP

x′ = 1 + x2, x(a) = b.
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Use Theorem 8.43 to find

∂x

∂b
(t; 0, 0) and

∂x

∂a
(t; 0, 0).

Then check your answers by solving the preceding IVP and then finding
these partial derivatives.

8.35 Let x(t; a, b) denote the solution of the IVP

x′ = arctanx, x(a) = b.

Use Theorem 8.43 to find

∂x

∂b
(t; 0, 0) and

∂x

∂a
(t; 0, 0).

8.36 For the differential equation u′′ = u− u3, find

∂u

∂y01
(t; 0, 1, 0),

∂u

∂y02
(t; 0, 1, 0), and

∂u

∂t0
(t; 0, 1, 0),

and use your answers to approximate

u(t; 0, 1 + h, 0), u(t; 0, 1, h), and u(t;h, 1, 0),

respectively, for h close to zero.

8.37 Let u(t; t0, a, b) denote the solution of the IVP

u′′ = 4 − u2, u(t0) = a, u′(t0) = b.

Using a result in Example 8.47, find v(t) = ∂u
∂b (t; 0, 2, 0).

8.38 Let xk(t, t0), 0 ≤ k ≤ n−1, be the normalized solutions (see Definition

6.18) of Lnx = 0 (see Definition 6.1) at t = t0.Derive formulas for ∂xk

∂t0
(t, t0),

0 ≤ k ≤ n− 1, in terms of the coefficients of Lnx = 0 and the normalized
solutions xk(t, t0), 0 ≤ k ≤ n− 1.

8.39 For each of the following find the normalized solutions xk(t, t0), 0 ≤
k ≤ n − 1, of the given differential equation at t = t0, and check, by
calculating ∂xk

∂t0
(t, t0), 0 ≤ k ≤ n − 1, that the formulas that you got in

Exercise 8.38 are satisfied.

(i) x′′ + x = 0
(ii) x′′′ − x′′ = 0

8.40 Let u(t; t0, a, b, λ), λ > 0, denote the solution of the IVP

u′′ = λu, u(t0) = a, u′(t0) = b.

Use Example 8.50 to calculate

∂u

∂λ
(t; 0, 0, 1, λ).

Check your answer by finding u(t; 0, 0, 1, λ) and differentiating with respect
to λ.
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8.41 Let u(t; t0, a, b, λ) denote the solution of the IVP

u′′ + 4u = λ, u(t0) = a, u′(t0) = b.

Use Example 8.50 to find

∂

∂λ
u(t; 0, 0, 2, 0).

Check your answer by actually finding u(t; t0, a, b, λ) and then taking the
partial derivative with respect to λ.

8.42 Near the end of the proof of Theorem 8.53 one of the four cases was
considered. Prove one of the remaining three cases.

8.43 Find the maximum and minimum solutions of the IVP

x′ = x
2
3 , x(0) = 0,

and give their maximal intervals of existence.

8.44 Use Theorem 8.55 to show that if v : [a, b] → R is continuous and if
D+v(t) ≤ 0 on [a, b], then v(t) ≤ v(a) for t ∈ [a, b].

8.45 Prove Theorem 8.56.

8.46 Prove Corollary 8.59.

8.47 Show that every solution of the IVP x′ = f(x), x(0) = x0, where

f(x) =

{

x√
‖x‖

, x 6= 0

0, x = 0,
x0 =











1
0
...
0











,

exists on [0,∞) and find a bound on all such solutions.

8.48 Use Theorem 8.63 to find a lower bound for the right end point of
the right maximal interval of existence for the solution of the IVP

x′1 = x2
1 − 2x1x2,

x′2 = x1 + x2
2,

x1(0) = 1, x2(0) = 0.

8.49 Do the part of the proof of Theorem 8.65, where t ∈ I and t < t0.
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