Chapter 8

Existence and Uniqueness
Theorems

8.1 Basic Results

In this chapter we are concerned with the first-order vector differential
equation

= f(t,x). (8.1)

We assume throughout this chapter that f: D — R™ is continuous, where
D is an open subset of R x R™.

Definition 8.1 We say x is a solution of (8.1) on an interval I provided
x : I — R™ is differentiable, (¢,z(t)) € D, for t € I and 2/(t) = f(¢,x(t))
fort e I.

Note that if x is a solution of (8.1) on an interval I, then it follows
from 2/(t) = f(t,z(t)), for ¢t € I, that x is continuously differentiable on TI.

In the next example we show that a certain nth-order scalar differential
equation is equivalent to a vector equation of the form (8.1).

Example 8.2 Assume that D is an open subset of R x R™ and F': D —
R is continuous. We are concerned with the nth-order scalar differential
equation

u™ = F(t,u, o, uD), (8.2)

In this equation ¢, u, v/, - - - ,u™ denote variables. We say a scalar function
u : I — Ris asolution of the nth-order scalar equation (8.2) on an interval I
provided u is n times differentiable on I, (t,u(t),u'(t),--- ,u"~V(t)) € D,
fort eI, and

u™ () = F(t,ut),u' (), ,u""D(1),

for t € I. Note that if u is a solution of (8.2) on an interval I, then it
follows that u is n times continuously differentiable on I. Now assume that
u is a solution of the nth-order scalar equation (8.2) on an interval I. For
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tel, let
z1(t) U/(t)
o(t) = za(t) _ u'(t)
2n(l) w1 (5)
Then
4 (1) e
o - [H0| [0
7, (t) u(™ (t)
u'(t)
) " (0)
F(t,u(t), o' (t), - ,u= (1))
= f(t,z(1)),
if we define
Pt ) = flb 1,2, ) = " L 83)

F(t,.Tl,.’I?z,"’ ,.'lfn)

for (t,xz) € D. Note that f : D — R" is continuous. Hence if u is a solution
of the nth-order scalar equation (8.2) on an interval I, then

x1(t) u(t)
xo(t) u’(t)

z(t) = : = : ,
Ty (t) w1 (t)

t € I, is a solution of a vector equation of the form (8.1) with f(¢,z) given
by (8.3). Conversely, it can be shown that if = defined by

X1 (t)
i) (t)

T ()
for ¢ € I is a solution of a vector equation of the form (8.1) on an interval
I with f(t,z) given by (8.3); then u(t) := x(t) defines a solution of (8.2)

on the interval I. Because of this we say that the nth-order scalar equation
(8.2) is equivalent to the vector equation (8.1) with f defined by (8.3). A
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Definition 8.3 Let (tg,z0) € D. We say that x is a solution of the IVP
¥ = f(t,x), =x(to) = zo, (8.4)

on an interval I provided tg € I, z is a solution of (8.1) on I, and x(t9) = xo.

Example 8.4 Note that if D =R x R?, then z defined by

(0= ((onr)

for t € R is a solution of the IVP

’ T2 o 0
(). =)
on [ :=R. A
Closely related to the IVP (8.4) is the integral equation

fx0+/fsx (85)

Definition 8.5 We say that = : I — R"™ is a solution of the vector integral
equation (8.5) on an interval I provided ¢y € I, x is continuous on I,
(t,z(t)) € D, for t € I, and (8.5) is satisfied for ¢ € I.

The relationship between the IVP (8.4) and the integral equation (8.5)
is given by the following lemma. Because of this result we say the IVP
(8.4) and the integral equation (8.5) are equivalent.

Lemma 8.6 Assume D is an open subset of R x R™, f : D — R" is
continuous, and (to,xg) € D; then x is a solution of the IVP (8.4) on an
interval I iff x is a solution of the integral equation (8.5) on an interval I.

Proof Assume that x is a solution of the IVP (8.4) on an interval I. Then
to € I, z is differentiable on I (hence is continuous on I), (¢, z(t)) € D, for
tel, x(ty) = xo, and

a'(t) = f(t x(t)),

for t € I. Integrating this last equation and using z(tg) = xo, we get

x(t) =x0 + ) f(s,z(s)) ds,

for t € I. Thus we have shown that x is a solution of the integral equation
(8.5) on the interval I.

Conversely assume z is a solution of the integral equation (8.5) on an
interval I. Then tg € I, x is continuous on I, (t,z(t)) € D, for ¢t € I, and
(8.5) is satisfied for ¢ € I. Since

o(t) =0+ [ fls,a(s)) ds
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for t € I, x(¢) is differentiable on I, z(ty) = xo, and

a'(t) = f(t,2(1)),
for all ¢ € I. Hence we have shown that z is a solution of the IVP (8.4) on

the interval I. O
8.2 Lipschitz Condition and Picard-Lindelof
Theorem

In this section we first defined what is meant by a vector function
f D — R™ satisfies a uniform Lipschitz condition with respect to x on
the open set D C R x R™. We then state and prove the important Picard-
Lindelof theorem (Theorem 8.13), which is one of the main uniqueness-
existence theorems for solutions of IVPs.

Definition 8.7 A vector function f: D — R™ is said to satisfy a Lipschitz
condition with respect to x on the open set D C R x R” provided for each
rectangle

Q:={(t,z):to <t<to+a,lz—x] <b}CD

there is a constant K¢ that may depend on the rectangle @ (and on the
norm || - ||) such that

1f(t,z) = f(t 9)ll < Kellz -yl
for all (t,2), (t,y) € Q.
Definition 8.8 A vector function f: D — R" is said to satisfy a uniform

Lipschitz condition with respect to x on D provided there is a constant K
such that

1f @t z) = f&y)ll < Kllz—yl],
for all (t,x), (t,y) € D. The constant K is called a Lipschitz constant for
f(t,z) with respect to x on D.
Definition 8.9 Assume the vector function f : D — R™ where D C
R xR"™, is differentiable with respect to components of z. Then the Jacobian
matriz D, f(t,x) of f(t,z) with respect to x at (¢,x) is defined by

o0, filtia) o G filtw)
Dufitr) = | o) o B0
o fnltw) o g2 falt)

Example 8.10 If

t2x‘;’x§ + 13
) = fltonen) = (3,73 10 )

then
Dwf(t7 SL’) = <

t2x3ws  At2xdad
211 3x%
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Lemma 8.11 Assume D C R x R™ such that for each fixed t, Dy := {x :
(t,x) € D} is a convex set and f : D — R™ is continuous. If the Jacobian
matriz, D, f(t,x), of f(t,x) with respect to x is continuous on D, then

1
fta)= 1) = [ Dofttsas (=) dsle—sl  (59)

for all (t,z),(t,y) € D.
Proof Let (t,x),(t,y) € D; then Dy is convex implies that (¢, sz + (1 —

s)y) € D, for 0 < s < 1. Now for (t,z),(t,y) € D, and 0 < s < 1, we can
consider

d ft, sz + (1= 8)y)

ds
fit, sz + (1= 8)yr, - 525 + (1 — 8)yn)
d f2(f78$1+(1*5)y1,"' 35$n+(175)yn)

faltsszr + (L= s)yn)yr, -+, 520 + (1 = 5)yn)

oy J10 )@ =) -+ 2 fil ) (@ — )
oo foC )@ —yn) -+ 0 fal ) (@ — yn)

321 So( )@ —y1) +--- + 32" Fn( ) (@0 — yn)
= Do f(t, sz + (1= s)y)[z —y],
where the functions in the entries in the preceding matrix are evaluated at

(t,sx + (1 — s)y). Integrating both sides with respect to s from s = 0 to
s =1 gives us the desired result (8.6). O

Theorem 8.12 Assume D C R x R", f : D — R", and the Jacobian
matriz function D, f(t,x) is continuous on D. If for each fized t, Dy :=
{z : (t,z) € D} is convex, then f(t,x) satisfies a Lipschitz condition with
respect to x on D.

Proof Let || - ||1 be the traffic norm (/; norm) defined in Example 2.47
and let || - || denote the corresponding matrix norm (see Definition 2.53).
Assume that the rectangle
Q:={(t,z): |t —to| <a, ||z —z0|s <b} CD.
Let
K= max{|| Do f(t, 2)|| : (¢, 2) € Q};
then using Lemma 8.11 and Theorem 2.54,

1
1f(ta)— )l = | / Do f(t sz + (1— s)y) ds [z — ]|
1
< / IDaf(t 52+ (1 — syl ds - 1z — ylls
0
< Klz—ylh,
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for (t,x), (t,y) € Q. Therefore, f(t,x) satisfies a Lipschitz condition with
respect to x on D. O

Theorem 8.13 (Picard-Lindelof Theorem) Assume that f is a continuous
n-dimensional vector function on the rectangle

Q:: {(tvm):to §t§t0+a,”$*l’0” Sb}

and assume that f(t,x) satisfies a uniform Lipschitz condition with respect
tox on Q. Let

M = max{[|f(t, z)] : (t,2) € Q}

o :=min< a b
= (-

Then the initial value problem (8.4) has a unique solution x on [to,to + a.
Furthermore,

and

[(t) = 2ol < b,
for t € [to, to + a].

Proof To prove the existence of a solution of the IVP (8.4) on [to,to + @],
it follows from Lemma 8.6 that it suffices to show that the integral equation

x(t) = zo + t f(s,z(s)) ds (8.7)

has a solution on [tg, to + «]. We define the sequence of Picard iterates {x}
of the IVP (8.4) on [to, to + o] as follows: Set
xo(t):l’o, te [to,t0+a],

and then let

t
Tpt1(t) = z0 +/ f(s,zk(s)) ds, t € [to,to+ a], (8.8)

to
for k = 0,1,2,---. We show by induction that each Picard iterate xj is

well defined on [tg,tg + @], is continuous on [tg, ¢y + «], and its graph is
in Q. Obviously, zo(t) satisfies these conditions. Assume that zj is well
defined, xy, is continuous on [tg, o + «], and

llek(t) — a0l < b, on [to,to + .

It follows that

t

Tp1(t) =z + f(s,z(s)) ds, tE€ [to,to+
to
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is well defined and continuous on [tg, tg + «]. Also,
t

ki1 (t) — 20| < | f(s,2k(s))| ds
to
< M(t—to)
< Ma«a
< b,

for t € [to,to + ] and the induction is complete.
Let K be a Lipschitz constant for f(t,z) with respect to  on Q. We
now prove by induction that
MKk(t _ to)k-‘rl
(k+1)! ’
for k =0,1,2,---. We proved (8.9) when & = 0. Fix & > 1 and assume

that (8.9) is true when k is replaced by k — 1. Using the Lipschitz condition
and the induction assumption, we get

[ 41(8) = 2R ()] < t € [to, to + al, (8.9)

t

[ze41 () —2ze@®) = | t[f(s,xk(s))—f(s,wk—l(s))} ds|
< t £ (s, 2k (s)) — f(s,zr-1(s))|| ds
< K t |2k (s) — ze—1(s)| ds
< MK’f/t: (s k!t‘))kds
B MKk(t_tO)k+1

(k+1)! ’

for t € [to,to + ). Hence the proof of (8.9) is complete.
The sequence of partial sums for the infinite series

2o(t) + 3 (21 () — 2 ()] (8.10)
m=0
18 .
{2o(t) + ) [Eme1(t) = zm(B)]} = {an(D)}-
m=0

Hence we can show that the sequence of Picard iterates {xy(t)} converges
uniformly on [tg, to + @] by showing that the infinite series (8.10) converges
uniformly on [tg, ¢y + a]. Note that

M (Ka)™*!

&) o <
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for ¢ € [to, to + o] and

M (Ka)™t!
Z (Ka)

K ( i 1)' converges.
m !

m=0
Hence from the Weierstrass M-test we get that the infinite series (8.10)
converges uniformly on [tg, to+a]. Therefore, the sequence of Picard iterates
{z(t)} converges uniformly on [tg, %o + «]. Let

z(t) = lim xx(t),
k—o0
for t € [to, to + a]. It follows that
l(t) — ol < b,
for t € [to, to + a]. Since
1 (& 2k (t) = f(t2(0)]| < Kllzx(t) — ()]
on [to, to + &,
lim f(t,zx(t)) = f(t,2(t))
k—o0
uniformly on [tg, o + a]. Taking the limit of both sides of (8.8), we get

x(t) = a0 + ) f(s,z(s)) ds,

for t € [to, to + ). It follows that x is a solution of the IVP (8.4).

To complete the proof it remains to prove the uniqueness of solutions of
the IVP (8.4). To this end let y be a solution of the IVP (8.4) on [to, to+ 5],
where 0 < 8 < «. It remains to show that y = x. Since y is a solution of
the IVP (8.4) on [tg, to + 5], it follows from Lemma 8.6 that y is a solution
of the integral equation

y@:m+[f@mm@

on [to,to + B]. Similarly we can prove by mathematical induction that

MKk (t _ to)k+1

t) — 1) < 8.11

lote) = autey] < 1T (8.11)
for t € [to,to + ], k=0,1,2,--- . It follows that
y(t) = Jim a(t) = (1),

for t € [to,to-‘rﬁ]. O

Corollary 8.14 Assume the assumptions in the Picard-Lindelof theorem
are satisfied and {xy(t)} is the sequence of Picard iterates defined in the
proof of the Picard-Lindelof theorem. If x is the solution of the IVP (8.4),
then

MKk(t _ to)k-‘rl

Jot) — et < T

(8.12)
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for t € [to,to + ], where K is a Lipschitz constant for f(t,x) with respect
tox on Q.

Example 8.15 In this example we maximize the « in the Picard-Lindelof
theorem by choosing the appropriate rectangle ) for the initial value prob-
lem

o =a2? x(0)=1. (8.13)
If
Q={(t,x):0<t<a,|r—1] <b},
then
M = max{|f(t,z)] = 2 : (t,x) € Q} = (1 +b)*
Hence

. b . b
a—mm{a,M}—mm{a, (1+b)2}'

Since we can choose a as large as we want, we desire to pick b > 0 so that
(1_&)2 is a maximum. Using calculus, we get o = 411. Hence by the Picard-
Lindelof theorem we know that the solution of the IVP (8.13) exists on
the interval [0, }]. The IVP (8.13) is so simple that we can solve this IVP

to obtain x(t) = ,',. Hence the solution of the IVP (8.13) exists on [0,1)

1

, is not a very good estimate. A

[actually on (—o0, 1)]. Note that o =
Example 8.16 Approximate the solution of the IVP
¥ =cosz, x(0)=0 (8.14)

by finding the second Picard iterate z2(t) and use (8.12) to find how good
an approximation you get.

First we find the first Picard iterate z1(¢). From equation (8.8) with
k=0 we get

X1 (t)

ot [ costeo(s) ds

to

t
/ 1ds
0

= .

From equation (8.8) with k = 1 we get that the second Picard iterate xo(t)
is given by

o + /t cos(x1(s)) ds

to

t
/ cos s ds
0

sint.

o (t)
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To see how good an approximation zs(t) = sint is for the solution z(t) of
the IVP (8.14), we get, applying (8.12), that

1
|x(t) — sint| < 6t3.
A

Corollary 8.17 Assume D is an open subset of R x R", f : D — R"
is continuous, and the Jacobian matriz D, f(t,x) is also continuous on
D. Then for any (to,zo) € D the IVP (8.4) has a unique solution on an
interval containing to in its interior.

Proof Let (tg,z¢) € D; then there are positive numbers a and b such that
the rectangle

R:={(t,z): [t —to] <a, || —x0ls <b} C D.

In the proof of Theorem 8.12 we proved that f(¢,z) satisfies a uniform
Lipschitz condition with respect to  on R with Lipschitz constant

K = max{||D,f(t,z)| : (t,z) € R},
where || - || is matrix norm corresponding to the traffic norm || - ||; (see Defi-
nition 2.53). Let M = max{[|f(t,2)|| : (t,x) € R} and let o := min{a, /; }.
Then by the Picard-Lindelof theorem (Theorem 8.13) in the case where we

use the rectangle R instead of () and we use the [; norm (traffic norm), the
IVP (8.4) has a unique solution on [ty — a, tg + . O

Corollary 8.18 Assume A is a continuous n X n matrix function and h
is a continuous n X 1 vector function on an interval I. If (to,xo) € I X R,
then the IVP

¥ =At)r + h(t), xz(to) = xo

has a unique solution.

Proof Let
f(t,x) = A(t)z + h(t);
then
Dy f(t,x) = A(t),
and this result follows from Theorem 8.17. (|

In Theorem 8.65, we will show that under the hypotheses of Corollary
8.18 all solutions of 2’ = A(t)x + h(t) exist on the whole interval I. Also,
in Theorem 8.65 a bound on solutions will be given.

Corollary 8.19 Assume D is an open subset of RxR™, the scalar function
F : D — R is continuous, and F(t,xz1,xa, - ,x,) has conlinuous partial
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derivatives with respect to the variables x1,x2, -+ ,xy, on D. Then for any
(th Ug, g, -+~ aun—l) < D the IVP
u™ = F(t,uu, - ulmY), (8.15)
ulto) =ug, W(to)=wr, -, u" V(tg)=u,_1 (8.16)

has a unique solution on an interval containing to in its interior.

Proof In Example 8.2 we proved that the differential equation (8.15) is
equivalent to the vector equation 2’ = f(¢,x), where f is given by (8.3).
Note that f: D — R x R™ and the Jacobian matrix

0 1 o - 0
0 0 1 - 0
Dy f(t,x) = : : . . :
0 B ) 1
le(taxla"'axn) Fﬂ?n(taxla"'vxn)
are continuous on D. The initial condition x(tg) = o corresponds to
T (to) U(to) UQ
To (to) Ul(to) Ul
Tn (to) u(nfl)(to) Up—1
and the result follows from Corollary 8.17. O

Example 8.20 In this example we apply Corollary 8.19 to the second-
order scalar equation

v = (sint)e® +u? + (u')%
This equation is of the form u” = F(t,u,u’), where
F(t,z1,25) = (sint)e™ + 22 4 (x2)%
Let D := R3; then D is an open set and F(t,z1,22) is continuous on
D. Also, Fy, (t,z1,22) = (sint)e®™ + 2z and Fy,(t,z1,22) = 2xo are
continuous on D. Hence by Corollary 8.19 we have that every IVP
u” = (sint)e® +u? + (u')?,
u(ty) = uo, ' (to) = w1
has a unique solution on an open interval containing t. A

Example 8.21 In this example we apply Corollary 8.19 to the second-
order scalar equation

1
w =wus + 3u + e

This equation is of the form u” = F(t,u,u’), where

1
F(t,z1,20) = x} + 319 + .
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It follows that Fy, (t,z1,72) = ', and Fy,(t,z1,72) = 3. If we let D be
3z
either the open set {(t,z1,22) : t € R, 21 € (0,00), 22 € R} or the open
set {(t,z1,22) : t € R, x1 € (—0,0), z2 € R}, then by Corollary 8.19 we
have that for any (to, ug,u1) € D the IVP
W =us 4 3u + e, ulte) =uo, u(to) =u (8.17)

has a unique solution on an open interval containing ty. Note that if ug = 0,
then Corollary 8.19 does not apply to the IVP (8.17). VAN

8.3 Equicontinuity and the Ascoli-Arzela
Theorem

In this section we define what is meant by an equicontinuous family of
functions and state and prove the very important Ascoli-Arzela theorem
(Theorem 8.26). First we give some preliminary definitions.

Definition 8.22 We say that the sequence of vector functions {z, (¢)}2°_,
is uniformly bounded on an interval I provided there is a constant M such
that

lem @) < M,
for m=1,2,3,---, and for all ¢ € I, where || - || is any norm on R™.

Example 8.23 The sequence of vector functions

m(t) = <si§€:zt)> ’

m=1,2,3,--- is uniformly bounded on the interval I := [0, 1], since
Jm@)lls = 2/6™| + [sin(mt)] < M =3,
forallt € I, and for all m=1,2,3,--- . VAN

Definition 8.24 We say that the family of vector functions {x(¢)}, for «
in some index set A, is equicontinuous on an interval I provided given any
€ > 0 there is a § > 0 such that

20 (t) — za(T)l| <€
for all & € A and for all ¢t,7 € I with |t — 7| < 4.

We will use the following lemma in the proof of the Ascoli-Arzela the-
orem (Theorem 8.26).

Lemma 8.25 (Cantor Selection Theorem) Let { f;.} be a uniformly bounded
sequence of vector functions on E C R™. Then if D is a countable subset
of I, there is a subsequence {fy,} of {fx} that converges pointwise on D.
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Proof If D is finite the proof is easy. Assume D is countably infinite; then
D can be written in the form

D - {.’131,-%'2,-7;3,"'}.

Since {fr(x1)} is a bounded sequence of vectors, there is a convergent
subsequence { fix(z1)}. Next consider the sequence { fi5(z2)}. Since this is
a bounded sequence of vectors, there is a convergent subsequence { far(22)}.
Continuing in this fashion, we get further subsequences such that

fui(z), fia(x), fiz(z), --- converges at
fa1(z), foa(®), faz(z), --- converges at 1, s

f31(x), fsa2(x), fss(x), --- converges at r1, T2, T3

It follows that the diagonal sequence {fix} is a subsequence of {fx} that
converges pointwise on D. O

Theorem 8.26 (Ascoli-Arzela Theorem) Let E be a compact subset of R™
and {fr} be a sequence of n-dimensional vector functions that is uniformly
bounded and equicontinuous on E. Then there is a subsequence {fr;} that
converges uniformly on E.

Proof In this proof we will use the same notation || - || for a norm on R™
and R". If E' is finite the result is obvious. Assume FE is infinite and let

D: {.’El,xQ,x;},"'}

be a countable dense subset of E. By the Cantor selection theorem (Theo-

rem 8.25) there is a subsequence { fz; } that converges pointwise on D. We

claim that {fx,} converges uniformly on E. To see this, let € > 0 be given.

By the equicontinuity of the sequence { fi} on E there is a § > 0 such that
€

Ifee) = Sl <

when ||z —y| <6, x,y € E, k > 1. Define the ball about x; with radius ¢
by

(8.18)

B(z;):={z € E: |x — x| < 0},
for i = 1,2,3,---. Then {B(z;)} is an open covering of E. Since F is
compact there is an integer J such that

{Bzi)}i
covers E. Since { fx;(x)} converges pointwise on the finite set
{xla:EQa e ,.TJ},

there is an integer K such that

iy @) = o)l < (8.19)
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when kj, k, > K, 1 <7< J. Now assume x € E; then
x € B(zi,),
for some 1 <ig < J. Using (8.18) and (8.19), we get
[ fi; (@) = frn (@) < ([, (@) = o (i)l
+ s (@io) = from (@io) | + | fr (Ti0) — fr ()]
o € N € N €
3 3 3
== 6,

for kj, kyp, > K. O

8.4 Cauchy-Peano Theorem

In this section we use the Ascoli-Arzela theorem to prove the Cauchy-
Peano theorem (8.27), which is a very important existence theorem.

Theorem 8.27 (Cauchy-Peano Theorem) Assume tg € R, g € R", and
f is a continuous n-dimensional vector function on the rectangle

Q= {(t;z) : |t —to] < a,[lz — ol <b}.

Then the initial value problem (8.4) has a solution x on [ty — o, to + o with
lx(t) — zol| <O, fort € [to — o, to + ], where

pp— 3 b
ar=minqa,

M :=max{|| f(t, )| : (t,z) € Q}.

and

Proof For m a positive integer, subdivide the interval [to, o + «] into 2™
equal parts so that the interval [to,to + ] has the partition points

to <t <tg: - <togm =tg+ .
So
aj

tj:t0+2m, OSJSQm

For each positive integer m we define the function z,, (see Figure 1 for
the scalar case) recursively with respect to the intervals [¢;,¢;41], 0 < j <
2™ as follows:

Scm(t) :1’0+f(t0,x0)(t7t0), to <t <ty,
1 = xm(t1), and, for 1 < j < 2™ — 1,
T (t) = x5 + (b, 35)(t —t5), t; <t <tj,
where

Tip1 = T (tjr1)-
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Jo

to 31 to 13

FIGURE 1. Approximate solution x, (t).

We show by finite mathematical induction with respect to 7, 1 < 5 < 2™,
that 2,,(t) is well defined on [to, t;], and

|lz(t) — zol| < b, for te [to,t;].
First, for t € [to,tl],
T (t) = xo + f(to, z0)(t — to)

is well defined and

[zm(t) — 2ol = [If(to, zo)lI(t — to)
Mo
<
S om
< b,

for t € [to,t1]. Hence the graph of z,, on the first subinterval [to, ¢1] is in
Q. In particular, z1 = x,,(t1) is well defined with (t1,21) € Q.
Now assume 1 < j < 2™ — 1 and that x,,(t) is well defined on [tg, ¢,]
with
|zm () — x|l < b, on [to,t;].
Since (t;,2;) = (t;, 2m(t;)) € Q,

T (t) = x5 + f(t5,25)(t —t5), t; <t <tj1
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is well defined. Also,

[2m (@) = 2ol = [llzm(®) — 2] + [rj — 2] + -+ [21 = ]|

j—1

< D lwnen — @l + lem(t) — o]
k=0
j—1

< ST wr) tarn — Il + 1/ (L) — 1)
k=0
Jj—1 a

< ZQm\\f(tk,xk)ll+Hf(tj,wj)H(t*fj)
k=0
aj «a

= QmMJerM

< aM

< b

for t € [t;,t;41]. Hence we have shown that z,,(t) is well defined on [to, to+
«] and
[ (£) — 2ol <
on [to, to+«]. We will show that the sequence {x,,} has a subsequence that
converges uniformly on [tg, to + ] to a vector function z and z is a solution
of the IVP (8.4) on [to, to + a] whose graph on [to, o + ¢ is in Q.
We now claim that for all t, 7 € [tg, to + @]
|Xm () — zm ()| < M|t — 7). (8.20)

We will prove this only for the case t—1 < 7 <t < t; <t < t;41 as the
other cases are similar. For this case

[€m () = zm (7)|
-1

= |lem(t) = 2m@)] + Y _[em(tisn) = 2m(t;)] + [2m(te) = 2m(D)]]

=k
-1
< Nam(®) = 2@+ D lem(tin) = 2m )+ lem(tr) = 2m (1)
j=k
-1
< Gl —t) + > 1t )l (t — )
j=k
+ Wy e[| (B = 7)
< M(t—rT).

Hence (8.20) holds for all t, 7 € [to, to + a].
Since f is continuous on the compact set @, f is uniformly continuous
on ). Hence given any € > 0 there is a § > 0 such that

1 (t,z) = F(m )l <e (8.21)
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for all (¢,z),(r,y) € Q with [t — 7| < 4, ||z — y|| < ¢. Pick m sufficiently

large so that
{ a Ma }
max < 4.

gm’ gm
Then, for t; <t <t;41,0< 7 <2™ —1, since
Mo
lam(®) = 5]l < o <6
and o
[ty =t < ,,, <&

we get from (8.21)
1 (@t am(t) = f(tj, @)l <e,
fort; <t <tj41,0< 5 <2™ —1. Since
ZE;’L(t) = f(tj,xj)a
fort; <t <tjy1,0<5<2™ 1, we get that
1t 2m (1) — 25, ()] <,
fort; <t <tjr1,0< 5 <2™ —1. Hence if

for t € [to, to + «], where z, (t) exists, then we have shown that

lim g¢,,(t) =0

m— 00

uniformly on [tg, %o + ], except for a countable number of points.
Fix t € [to,to + a]; then there is a j such that ¢; <t <t;;1. Then

Tm(t) —xg = @ (t) — xm(to)
= [xm(t) — xm(t Z Ton (i) — Tyn (t—1)]
k=1
= xl (s) ds + " x..(s) ds
I, Z/

t
= /x’m(s) ds
to

for ¢ € [to, to + «. Hence
t
o) =0+ [ £(5,2m(5)) + g (s)] ds, (5.22)
to
for ¢ € [to, to + . Since
[Zm @] < [l2m (&) — ol + llzoll < [[zoll + b,

the sequence {x,,(t)} is uniformly bounded on [to, to+c]. Since the sequence
{zm(t)} is uniformly bounded and by (8.20) equicontinuous on [tg, to + &,
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we get from the Ascoli-Arzela theorem that the sequence {z,,(t)} has a
uniformly convergent subsequence {z,, (t)} on [to,to + «]. Let

z(t) == klim T, (1),
for t € [to, to + a]. It follows that
T f(t, 2, (1)) = £(t,2(1)

uniformly on [tg, %o + «]. Replacing m in equation (8.22) by {m} and
letting k — oo, we get that z(t) is a solution of the integral equation

z(t) =z + t f(s,2(s)) ds

on [to, to +a]. It follows that z(t) is a solution of the IVP (8.4) with ||z () —
xo|| < b, for t € [to, to + «]. Similarly, we can show that the IVP (8.4) has
a solution v(t) on [t — a,to] with ||v(t) — zo|| < b, for ¢t € [ty — a, to]. Tt

follows that ® [ |
L v(t), telto— a,tol,
o(t) = { 2(8), tEltoto+a]
is a solution of the IVP (8.4) with
() — zo <b
on [ty — a,tg + a].

O

Under the hypotheses of the Cauchy-Peano theorem we get that IVPs
have solutions, but they need not be unique. To see how bad things can
be, we remark that in Hartman [19], pages 18-23, an example is given of a
scalar equation 2’ = f(t,x), where f : R x R — R, is continuous, where for
every IVP (8.4) there is more than one solution on [tg, to+ €] and [tg — €, to)
for arbitrary € > 0.

Theorem 8.28 Assume D is an open subset of R x R, f: D — R™ is
continuous, and K is a compact subset of D. Then there is an o > 0 such
that for all (to,x0) € K the IVP (8.4) has a solution on [to — a,to + a].

Proof For (t,z),(t,y) € RxR", define the distance from (¢, z) to (¢,y) by
d[<tax)a (Tay)] = ma’X{|t - T|a H‘T - yH}
If the boundary of D, 8D # (0, set p = d(K,dD) > 0. In this case define
K, = {(t,«) : di(t,2), K] < [},
If D = 0, then let
K,={(tz):d|(tz), K] <1}.
Then K, C D and K, is compact. Let
M = max{||/(t,2)] : (t,) € K, ).



8.5. EXTENDABILITY OF SOLUTIONS 363

Let (to,x0) € K; then if ¢ := min{1, §},
Q :={(t,z) : [t —to] <4,]|z — xo] <} C K,.
Note that
[t 2)| <M, (tz) Q.
Hence by the Cauchy-Peano theorem (Theorem 8.27) the IVP (8.4) has
a solution on [tg — ., to + a], where o := min{%, 7 } if 9D # 0 and
o :=min{l, ), } if 9D = 0. O

8.5 Extendability of Solutions

In this section we will be concerned with proving that each solution of
a’ = f(t,x) can be extended to a maximal interval of existence. First we
define what we mean by the extension of a solution.

Definition 8.29 Assume z is a solution of 2’ = f(¢,2) on an interval I.
We say that a solution y on an interval J is an extension of x provided
J DI and y(t) = «(t), for t € I.

~

FIGURE 2. Impossible solution of scalar equation 2’ =
f(t,x) on [a,b).

The next theorem gives conditions where a solution of ' = f(¢,z) on a
half open interval [a, b) can be extended to a solution on the closed interval
[a,b]. This result implies that there is no solution to the scalar equation
a’ = f(t,x) of the type shown in Figure 2.

Theorem 8.30 Assume that [ is continuous on D C R x R™ and that x
is a solution of ' = f(t,x) on the half-open interval [a,b). Assume there is
an increasing sequence {ty} with limit b and limy_, o x(t) = xo. Further
assume there are constants M > 0, o > 0, 8 > 0 such that ||f(t,z)|| < M
on DN{(t,x): 0<b—t<a,lz— x| < B} Furthermore, if f(b,xq) can
be defined so that f is continuous on D U{(b,x0)}, then x can be extended
to be a solution on [a,b].
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Proof Pick an integer N sufficiently large so that

0<b—ty <a, Hx(tk)fxo||<§, and 0<bftk§2§4,
for all Kk > N. We claim
lx(t) — xol] < B, for ty <t<b.

Assume not; then there is a first point 7 > ¢y such that

lx(r) — o] = 8
But then
8 154
2 ﬁ72
< () — zoll - la(tn) — 2ol
< () - a(tw)]
IR
- , d
l;ﬂsﬂﬂ>s
< M|T—t1v|
s B
s Moo=y

which is a contradiction and hence our claim holds.
Note that for ¢,7 € [tn,b),

Jott) = = [ @' ash =1 [ 56,060 sl < Mt =7,
It follows that the Cauchy criterion for lim;_,— x(t) is satisfied and hence

li t) =
gL = oo

exists. Define

xz(b) =29 = lim x(t).

t—b—

Now assume that f(b, xo) is defined so that f is continuous on DU{(b, o)},
then

lim z'(t) = lim f(t,z(t))

t—b— t—b—

= f(b,x0).
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Hence, using the mean value theorem,

/ _ : .%‘(b) - x(t)
v(b) = tl—lgl— b—t
= tlirgt l’l(gt), t < ft < b,

= f(ba .’L’())
= f(b,z(b)).

Therefore, x is a solution on [a, ].
U

Definition 8.31 Assume D is an open subset of R x R, f : D — R"
is continuous, and z is a solution of @’ = f(t,z) on (a,b). Then we say
(a,b) is a right mazimal interval of existence for x provided there does not
exist a by > b and a solution y such that y is a solution on (a,b;) and
y(t) = x(t) for t € (a,b). Left mazimal interval of existence for x is defined
in the obvious way. Finally, we say (a,b) is a maximal interval of existence
for x provided it is both a right and left maximal interval of existence for
x.

Definition 8.32 Assume D is an open subset of R x R™, f : D — R"
is continuous, and x is a solution of «/ = f(¢,x) on (a,b). We say z(t)
approaches the boundary of D, denoted 0D, as t — b—, write z(t) — 0D
as t — b—, in case either
(i) b= 00

or
(ii) b < oo and for each compact subset K C D there is a tx € (a,b) such
that (t,z(t)) ¢ K for txg <t <b.
Similarly (see Exercise 8.20), we can define x(t) approaches the boundary
of D as t — a+, write z(t) — dD as t — a+.

Theorem 8.33 (Extension Theorem) Assume D is an open subset of R x
R™ f: D — R"™ is continuous, and x is a solution of ' = f(t,x) on
(a,b), —oo < a <b<oo. Then x can be extended to a mazimal interval of
existence (a,w), —o00 < a < w < oo. Furthermore, x(t) — 9D as t — w—
and z(t) — 0D ast — a+.

Proof We will just show that = can be extended to a right maximal interval
of existence (a,w) and z(t) — D as t — w—.

Let {K}} be a sequence of open sets such that the closure of K}, K,
is compact, Ky C K41, and U K = D (see Exercise 8.21).

If b = oo, we are done, so assume b < co. We consider two cases:

Case 1. Assume for all k > 1 there is a 73 such that for ¢ € (7%, b) we
have that

(t,2(t) & K.
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Assume there is a by > b and a solution y that is an extension of x to the
interval (a, b1). Fix to € (a,b); then
A= {(t,y(t)) : to <t <b}
is a compact subset of D. Pick an interger k¢ sufficiently large so that
{(t,x(t)) : to <t <b} C AC Ky,.

This is a contradiction and hence (a,b) is a right maximal interval of exis-
tence for . Also, it is easy to see that x(t) — 0D ast — b —.

Case 2. There is an integer mg and an increasing sequence {t;} with
limit b such that (t,x(t)) € Ky, for all k& > 1. Since K,,, is compact,
there is a subsequence (y,,z(tx;)) such that

jli,lgo(tkj ) x(tkj )) = (ba xO)

exists and (b, 79) € K,,, C D. By Theorem 8.30 we get that we can extend
the solution z to (a,b] by defining x(b) = x¢. By Theorem 8.28 for each
k > 1 there is a 6 > 0 such that for all (t1,21) € K} the IVP

¥ =f(t,x), =x(t1) =1

has a solution on [t; — d,t1 + dx]. Hence the IVP 2/ = f(¢, ), 2(b) = =0,
has a solution y on [b, b+ d,,,] and so if we extend the definition of x by

~Jx(t), on (a,b],
=) = {y(t), on (b, -+ Gy,

then z is a solution on (a, b+ d,,,]. If the point (b4 sy, (04 0my)) € King,
then we repeat the process using a solution of the IVP

2= f(t,x), x(b+dm,)=x(b+ ),

to get an extension of the solution z to (a,b + 24,,,], which we also de-
note by x. Since K,,, is compact, there is a first integer j(mg) such that
(b1, 2(b1)) ¢ Ky, where

b1 = b+ j(m0)dm,-
However, (b1, x(b1)) € D and hence there is an my > myg such that

(bl, .%‘(bl)) S Kml-
Therefore, the extension procedure can be repeated using K,,, and the
associated d,,,. Then there is a first integer j(ms) such that (ba, x(b2)) ¢
K., , where

by = b1 + j(m1)dm, -
Continuing in this fashion, we get an infinite sequence {by}. We then define

w = lim by.
k—oo

We claim we have that the solution z has been extended to be a solution of
a’ = f(t,x) on the interval (a,w). To see this, let 7 € (a,w); then there is
a by, such that 7 < by, < w and z is a solution on (a, by, ]. Since 7 € (a,w)
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is arbritary, « is a solution on the interval (a,w). If w = co, we are done.
Assume that w < oo. Note that the interval (a,w) is right maximal, since
(b, x(b)) & Km,_,, for each k > 1 (Why?).
We claim that
x(t) = 0D as t—w-—.

To see this, assume not; then there is a compact set H C D and a strictly
increasing sequence {7} with limit w such that

(Ti, (1)) € H, for k>1.

But by the definition of the sets {K,,}, there is a m such that H C K,,
which leads to a contradiction. ]

Theorem 8.34 (Extended Cauchy-Peano Theorem) Assume that D is an
open subset of R x R™ and f : D — R™ is continuous. Let

Q:={(t,z): |t —to| <a, ||z —x0]| < b} C D.

a=min< a b
- ’M )

M = max{[[f(t,2)] : (t,7) € Q}.
Then every solution of the IVP (8.4) exists on [to — o, o + .

Let

where

Proof Assume z is a solution of the IVP (8.4) on [to,to + €], where 0 <
€ < a. Let [to,w) be a right maximal interval of existence for z. Since
x(t) — dD as t — w— and @ C D is compact, there is a 3 > tg such that

x(t) € Q,

for 8 <t < w. Let t; be the first value of t >t such that (¢1,z(¢1)) € 0Q.
If t; = to + a, we are done. So assume

|z(t1) — zol| = b.
Note that
b = [lz(t1) — 2ol

t1
= [ [ 2'(s)ds]
to

=1 (s, 2(5)) ds|

< / 1 (s, 2(5))]| ds
< M(t, —to).

Solving this inequality for ¢1, we get

b
t12t0+M2to+a.
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The other cases of the proof are left to the reader. O

Corollary 8.35 Assume that f : RxR"™ — R" is continuous and bounded;
then every solution of ' = f(t,x) has the maximal interval of existence
(—00,00).

Proof Since f is bounded on R x R™, there is a M > 0 such that
1f(t2)]| < M,

for (t,z) € R x R™. Assume z; is a solution of 2’ = f(¢,x) with maximal
interval of existence (a1,w1), —00 < a1 < wy < oo. Let tg € (a1, wr) and
let

xo = x1(to).
Then x; is a solution of the IVP (8.4). For arbitrary a > 0, b > 0 we have
by Theorem 8.34 that z7 is a solution on [ty — «, tg + a, where

= min b
o= a,M .

Since M is fixed, we can make « as large as we want by taking a and b
sufficiently large, and the proof is complete. [

Theorem 8.36 (Uniqueness Theorem) Assume tg € R, g € R"™ and the
n-dimensional vector function f is continuous on the rectangle

Q:={(t,z) : to <t <tp+a,lz— x| <b}.
If the dot product
[f(t,@1) = f(t, @2)] - [w1 — 2] <0,
for all (t,z1), (t,z2) € Q, then the IVP (8.4) has a unique solution in Q.

Proof By the Cauchy-Peano theorem (Theorem 8.27), the IVP (8.4) has a
solution. It remains to prove the uniqueness. Assume that x;(¢) and z2(t)
satisfy the IVP (8.4) on the interval [tg,to + €] for some ¢ > 0 and their
graphs are in @ for ¢ € [tg, to + €. Let

h(t) = [la1(t) — 22 ()17, t € [to, to + ],

where || - || is the Euclidean norm. Note that h(t) > 0 on [to,to + €] and
h(to) = 0. Also, since h(t) is given by the dot product,

h(t) = e (t) — z2(8)] - [a1(8) — 22(8)],

we get

h'(t) 202 (t) — 25(1)] - [wa () — 22(1))]
= 2[f(t, 2 (t) — [t 22(t))] - [w1(F) — wa(D)]

0

IN
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on [tg,to + €]. Thus A(t) is nonincreasing on [to, to + €]. Since h(tp) = 0 and
h(t) > 0 we get that h(t) = 0 for t € [tg, to + €]. Hence

x1(t) = x2(t)
on [t,to + €]. Hence the IVP (8.4) has only one solution. O

The following corollary follows from Theorem 8.36, and its proof is
Exercise 8.22.

Corollary 8.37 Assume ty € R, g € R and the scalar function f is
continuous on the planar rectangle

Q= {(t,x):to <t <to+a,|r— a0 <D}

If for each fized t € [tg,to + al, f(t,x) is nonincreasing in x, then the IVP
(8.4) has a unique solution in Q.

In the next example we give an application of Corollary 8.37, where
the Picard-Lindelof theorem (Theorem 8.13) does not apply.
Example 8.38 Consider the IVP
a = f(tvx)v 1’(0) =0, (823)
where
0, t=0, —c0<z< 00,
Flta) = 2t, 0<t<1, —co<x <O,
T 2=t 0<t<1,0< <2
—2t, 0<t<1,t?<x<oo.
Tt is easy to see that f is continuous on [0,1] x R and for each fixed
t € [0,1] f(t, ) is nonincreasing with respect to . Hence by Corollary 8.37
the IVP (8.23) has a unique solution. See Exercise 8.23 for more results

concerning this example.
VAN

8.6 Basic Convergence Theorem

In this section we are concerned with proving the basic convergence
theorem (see Hartman’s book [19]). We will see that many results depend
on this basic convergence theorem; for example, the continuous dependence
of solutions on initial conditions, initial points, and parameters.

Theorem 8.39 (Basic Convergence Theorem) Assume that {fi} is a se-
quence of continuous n-dimensional vector functions on an open set D C
R x R"™ and assume that

khm fk(tvx) = f(t,(t)
uniformly on each compact subset of D. For each integer k > 1 let xy, be
a solution of the IVP z' = fi(t,x), x(ty) = xok, with (tg,xor) € D, k > 1,

and limy_, o0 (tg, Tor) = (to, 2o) € D and let the solution xj have mazimal
interval of existence (ag,wy), k > 1. Then there is a solution x of the
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limit TVP (8.4) with maximal interval of existence (a,w) and a subsequence
{on, (t)} of {xx(t)} such that given any compact interval [11,T2] C (o, w)

lim g, (t) = 2(t)

j—00
uniformly on [11, 2] in the sense that there is an integer J = J(71,72) such
that for all j > J, [11,T2] C (ag,;,wx;) and

li () = 2(t
jeingx“() x(t)

uniformly on |11, T2]. Furthermore,

limsup oy, <a <w < i

infwk]..
j—o0 J—o0

Proof We will only prove that there is a solution of the limit IVP (8.4)
with right maximal interval of existence [to,w) and a subsequence {x, (t)}
of {zx(t)} such that for each 7 € (tg,w) there is an integer J = J(7) such
that [to, 7] C (ag;,wx;), for j > J and

I (t) = a(t
jdim g (1) = (1)

uniformly on [tg, 7].
Let {Kj};2, be a sequence of open subsets of D such that Kj is
compact, K C Kyy1, and D = U2 | Kj,. For each k > 1, if 0D # 0 let

H = {(te) € D d((te), K0) < 0 )

where py := d(0D, K}), and if 9D = ) let

Hy = {(t,l’) eD: d((t,x),Kk) < 1}.
Note that Hy is compact and K C Hy C D, for each k > 1. Let fo(t,x) :=
f(t,z) in the remainder of this proof. Since

uniformly on each compact subset of D, fo(t,2) = f(¢, ) is continuous on
D and for each £ > 1 there is an M}, > 0 such that

[fm(t,2)[| < M) on  Hy,
for all m > 0. For each k > 1 there is a d; > 0 such that for all m > 0 and
for all (7,y) € K, every solution z of the IVP
wl:fm(tax)v x(T) =Y
exists on [T — 0y, T + ;] and satisfies (¢,z(t)) € Hy, for t € [T — 0, T + 0k].
Since (tg,zg) € D, there is an integer my > 1 such that (tg, zo) € Ky, . Let
Ok

€ 1= 3 for k>1.

Since
lim (tk,xok) = (to, x0),
k—o0
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there is an integer N such that
(ti,xor) € Ky, and  |tg — to| < €my,
for all K > N. Then for k > N,
[to,to + €m,] C (g, wr)
and (t,z(t)) € Hy,, for k > N. This implies that the sequence of func-
tions {x}7° y is uniformly bounded on [to, to + €,,] and since

T2

ek (r2) —zu(r)ll = |l [ (s) ds]|

| fe(s,21(s)) ds|

T1

Mm1|7—2 - 7_1|7

A

for all 71,7 € [to,to + €m, ], the sequence of functions {x}7° 5 is equicon-
tinuous on [tg, tg+€m, ]. By the Ascoli-Arzela theorem (Theorem 8.26) there
is a subsequence {k1(j)}32; of the sequence {k}pZ  such that

Jim g, ) (1) = (2)

uniformly on [tg, to+ €, ]. This implies that x is a solution of the limit IVP
(84) on [to, to + Eml].
Note that

hm (tO + Emlaxkl(j)(to + 6ml)) - (tO + Gml,.’ﬂ(to + 6ml)) € Hml CD.
j—o0
If (to + €my,x(to + €m,)) € Kp,, then repeat the process and obtain a
subsequence {k2(j)}32, of {k1(j)}32, such that
Jli)rgo Lhy () (t)

exists uniformly on [t; + €m,,t1 + 2€,,,] and call the limit function x as
before. Then x is a solution of the IVP

y' = f(ty), y(to+em,) = z(to + em,)-
It follows that
Jim g, ) (1) = (t)
uniformly on [tg,to + 2€,,]. Continuing in this manner, there is a first

integer j(mj) such that an appropriate subsequence converges uniformly
to an extended z on [to, to + j(m1)€em,| and

(tO +j(m1)6m1,1’(t0 +j(m1)6m1)) ¢ Kml'
Pick mgy > my so that
(tO +j(m1)€m1,w(t0 + j(ml)Gml)) € sz'

We then continue this process in the obvious manner to get the desired
result. ]
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8.7 Continuity of Solutions with Respect to
ICs

In this section we are concerned with the smoothness of solutions with
respect to initial conditions, initial points, and parameters. Two very im-
portant scalar equations that contain a parameter A are Legendre’s equa-
tion

(1 —t2)u" — 2tu' + A\ + 1u =0
and Bessel’s equation
2" +tu’ + (12— A2)u = 0.

Theorem 8.40 (Continuity of Solutions with Respect to Initial Conditions
and Parameters) Assume that D is an open subset of R x R™ and A is an
open subset of R™ and f is continuous on D x A with the property that for
each (to,xo, o) € D x A, the IVP

¥ = f(t,x, No), z(to) =m0 (8.24)

has a unique solution denoted by x(t;to,xo, o). Then x is a continuous
function on the set a <t < w, (to, o, No) € D x A.

Proof Assume

lim (tOk:,l'Ok,)\k) = (t(),.fc(),)\()) €D x A.

k—oo
Define
fk(t, x) = f(t, xZ, )\k),
for (t,x) € D, k > 1. Then
lim fk(t, .1‘) = f(t, Z, )\0)
k—o0

uniformly on compact subsets of D. Let xx(t) = x(¢t; tok, Tok, Ak ); then i
is the solution of the IVP
x' = fk(t,.’t), l’(tOk) = X0k-

Let (ax,wy) be the maximal interval of existence for xy, for k > 1 and let
x(t; to, o, Ag) be the solution of the limit IVP (8.24) with maximal interval
of existence (o, w). Then by the basic convergence theorem (Theorem 8.39),

lim l’k(t) = lim .’ﬂ(t;tOk,l’Ok,)\k))
k—o00 k—o00
= x(t;to, To, Ao)

uniformly on compact subintervals of («, 3) (see Exercise 8.28). The con-
tinuity of & with respect to its four arguments follows from this. O

Theorem 8.41 (Integral Means) Assume D is an open subset of R x
R™ and f : D — R" is continuous. Then there is a sequence of vector
functions {gi(t,x)}, called integral means, such that gi : R x R — R",
along with its first-order partial derivatives with respect to components of x,
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are continuous and gy satisfies a uniform Lipschitz condition with respect
tox on R x R™, for each k =1,2,3,--- . Furthermore,

kll{Iolc gk(tax) = f(t,ZL')

uniformly on each compact subset of D.

Proof Let {Kj}72, be a sequence of open subsets of D such that Kj, is
compact, K C Kj41, and D = U2 K. By the Tietze-Urysohn extension
theorem [44], for each k& > 1 there is a continuous vector function hy on all
of R x R™ such that

hk |Kk: f,

and
max{||hr(t,2)| : (t,z) € R x R"} = max{||f(¢t,z)| : (t,x) € K} =: M.

Let {dx} be a strictly decreasing sequence of positive numbers with limit
0. Then for each k > 1, define the integral mean g by

1 140k Tn+0k
t.xz) = he(t e dy, - - dyy,
gr(t, ) (260" /xl—ak /a:n—ak k(Y1 Y2, yn) dyn - - dy

where © = (x1, 22, -+ ,xy), for (t,2) € RxR™. We claim that the sequence
{gr(t,z)} satisfies the following:
(i) gk is continuous on R x R", for each k > 1,
(ii) |lgr(t,2)|| < My on R x R™, for each k > 1,
(iil) gx has continuous first-order partial derivatives with respect to
components of z on R x R", for each k > 1,
(iv) Hgi’: I < I(\Si"‘ on R x R™, for 1 <4 < n and for each k > 1,
(v) limg—oo gi(t,z) = f(t,2) uniformly on each compact subset of
D.

We will only complete the proof for the scalar case (n = 1). In this case
1 z+0g
gr(t,x) = / hi(t,y) dy,
26k x_ék

for (t,z) € R x R. We claim that (i) holds for n = 1. To see this, fix
(to, o) € R x R. We will show that g (¢, z) is continuous at (to,xo). Let
e > 0 be given. Since hy(t, z) is continuous on the compact set

Q:={(t,x): [t —to] < o, |z — 20| <201},

hi(t, ) is uniformly continuous on Q. Hence there is a 6 € (0,0)) such
that

€
|h(ta, w2) — hi(tr, 21)| < 9’

for all (t1,21), (t2,x2) € Q with [t; — to| <6, |x1 — x| < 6.

(8.25)
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For |t — to] < 6, |z — x| < J, consider

lgx(t, ) — gr(to, wo)]

< gk(t,w) — gr(to, )| + |gk(to, ¥) — gk (to, zo)|
1 T+0g
< gy [ Ielt) = atto,y)] dy
26k r—0
1 40y zo+0
+ / hi(to,y) dy —/ hi(to,y) dy
2§k $—5k x0—6k
€ 1 T+ T—0k
< T / hi(to,y) dy—/ hi(to,y) dy
k To+0k x0—0k
€ 1 T+ 1 T—0
< o | Watawldy+ oo | [ it dy
2 205, To+0k 20k zo—0k
€ Myglx — x|
<
- 2 + Ok
< € + 5Mk
2 0p

where we have used (8.25). Hence, if we further assume § < ;&’1, then we
get that
gk (¢, 2) — gr(to, xo)| <€,
if [t — to] < 6, |x — x| < &. Therefore, g is continuous at (¢g, zp). Since
(to,zp) € R x R and k > 1 are arbritary, we get that (i) holds for n = 1.
To see that (ii) holds for n = 1, consider

z+0g
/ hi(t,y) dy

If&k

1 z+0g
< hi(t d
< s ), Il

1 z+0g
< My, d

20k /:vék Y
= Mka

for all (t,2) € R x R and for all & > 1. To see that (iii) and (iv) hold for
n = 1, note that

3gk 1
o 2, [hk(t,$+§k) 7hk(t,1’f§k)]

is continuous on R x R. Furthermore,

1

ot = o

(t’ ZL’) -

gy 1
< _
| < g Dielto 801+ It - )]

M,

< )
Ok



8.8. KNESER'S THEOREM 375

for all (t,z) € R x R and k > 1. This last inequality implies that gi(t, x)
satisfies a uniform Lipschitz condition with respect to z on R x R.

Finally we show that (v) holds for n = 1. Let H be a compact subset
of D. Then there is an integer mo > 1 such that H C K,,,. Let ¢ > 0 be
given. Fix (to,x0) € H. Let

p:=d(H,0Ky,).

Since f is uniformly continuous on the compact set K ,,, there isann > 0
such that

|f(t2,$2) - f(tlaxl)‘ <, (826)

if (t1,21), (to,22) € K, with [t; — ta| <, |21 — 22| < 1. Pick an integer
N > my sufficiently large so that ¢, < min{p,n}, for all kK > N. Then for
all k > N,

{(t,z) : |t —to| < O,y |z — 20| < Ik} C Kiny-
Then for all £ > N,

lgr (to, xo) — f(to,o)|

1 zo+0p
26, / hi(to,y) dy — f(to, o)

0—0k

1 To+0k 1 To+0k
25k/ hi(to, y) dy — 25k/ f(to, xo) dy

0—0k 0—0k

1 zo+0g
< / 1 (tor ) — f(to,z0)] dy
255, /.

0—0k
< €,

where we have used (8.26) in the last step. Since (tg, o) € H is arbitrary,
we get

|gk(tvx) - f(t,l‘)| <¢
for all (t,z) € H, for all Kk > N. Since H is an arbritrary compact subset
of D, we get

kllr{:ogk(t,x) = f(t,x)

uniformly on compact subsets of D. O
8.8 Kneser’s Theorem

In this section we will prove Kneser’s theorem.

Theorem 8.42 (Kneser’s Theorem) Assume D is an open subset of R x R™
and f : D — R"™ is continuous. If the compact interval [to,c] is a subset
of the mazimal interval of existence for all solutions of the IVP(8.4), then
the cross-sectional set

S.:={y € R" : y = x(c), where x is a solution of the IVP (8.4) on [to,c|}

is a compact, connected subset of R™.
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Proof To show that S. is compact we will show that S, is closed and
bounded. First we show that S, is a closed set. Let {yx} C S, with
khjgo Yk = Yo,

where yo € R™. Then there are solutions zj, of the IVP (8.4) on [to, ¢] with
xi(c) =y, k = 1,2,3,--- . By the basic convergence theorem (Theorem
8.39) there is a subsequence {zy; } such that

lim ay, () = 2(1)
j—oo

uniformly on [tg, ¢], where x is a solution of the IVP (8.4) on [tg, c]. But
this implies that

yo = lim gy, = lim x4, (c) = z(c) € Se
J—00 J—0o0

and hence S, is closed.
To see that S. is bounded, assume not; then there is a sequence of
points {yx} in S. such that

lim ||yl = oo.
k—oo

In this case there is a sequence of solutions {zj} of the IVP (8.4) such that
zk(¢) =y, k > 1. But, by the basic convergence theorem (Theorem 8.39),
there is a subsequence of solutions {zy,} such that

lim 2, (1) = 2(1)
j—oo

uniformly on [tg, ¢], where z is a solution of the IVP (8.4) on [to, ¢]. But
this implies that
lim 2, (c) = z(c),

J—00

which contradicts
lim 24, (c)| = lim [y, | = oo.
j—oo j—oo

Hence we have proved that S, is a compact set.
We now show that S, is connected. Assume not; then, since S, is
compact, there are disjoint, nonempty, compact sets Ay, As such that

Ay UA; =S,
Let
0 :=d(Ay,Ag) > 0.
Then let
h(z) :=d(x, A1) — d(z, Ag),
for x € R™. Then h : R™ — R is continuous,
h(z) <=0, for xz€ A,

and
h(z) >0, for x€ A,.
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In particular, we have

h(z) # 0
for all z € S.. We will contradict this fact at the end of this proof. Since
f D — R" is continuous, we have by Theorem 8.41 that there is a
sequence of vector functions {g} such that gi : R x R" — R"™ is bounded
and continuous and gj satisfies a uniform Lipschitz condition with respect
to x on R x R™, for each k = 1,2,3,--- . Furthermore,

k—o0
uniformly on each compact subset of D. Since A; # () for i = 1,2 there are
solutions x;, i = 1,2 of the IVP (8.4) with
ZL’Z(C) € Al
Now define for i = 1,2
gr(t, ) + f(to, zi(to)) — gr(to, zi(to)), t < to,
gie(t,x) == gr(t,z) + f(t,2:(t) — g(t, zi(t)), to<t<eg,
gk(tvx) +f(C,ZL’Z(C)) 79/6(6,1'2'(0))7 c< ta
for (t,z) € Rx R", k =1,2,3,---. It follows that g;; is continuous and
bounded on R x R™ and satisfies a uniform Lipschitz condition with respect
to z on R x R™, for each i =1,2 and k =1,2,3,--- . Furthermore,
klim gik(t,x) = f(t,x)
uniformly on each compact subset of D, for ¢ = 1,2. From the Picard-
Lindelof theorem (Theorem 8.13) we get that each of the IVPs
x = gik(t’x)’ .13(7') =¢
has a unique solution and since each g;i is bounded on R x R™, the maximal
interval of existence of each of these solutions is (—oo, c0). Note that the
unique solution of the IVP
x' = ga(t,x), x(to) = xo
on [tg,c] is x; for i =1,2.
Let
pr(t,z, A) = Ag1i(t, ) + (1 — N)gar(t, z),

for (t,x,\) e RxR" xR, k=1,2,3,--- . Note that for each fixed \ € R,

pi is bounded and continuous and satisfies a uniform Lipschitz condition
with respect to z. Furthermore, for each fixed A,

lim pk(taxa )‘) = f(t,.’l))
k—oo
uniformly on each compact subset of D. Let for each fixed A € R, (-, \)
be the unique solution of the IVP
' =pr(t,z,N), x(to) = zo.
It follows that g : R — R, defined by
ar(A) = h(zk(c, A),
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is, by Theorem 8.40, continuous. Since

qk(0) = h(zx(c,0)) = h(z2(c)) = 6,
and

k(1) = h(zx(c, 1)) = h(z1(c)) < =0,

there is, by the intermediate value theorem, a A\p with 0 < A\ < 1 such
that

k(M) = h(zr(c, Ax)) =0,

for k =1,2,3,--- . Since the sequence {\;} C [0, 1], there is a convergent
subsequence {Ax, }. Let

)\0 = hm )\k:j~
J—0o0

It follows that the sequence xy; (¢, A, ) has a subsequence zy, (¢, Ay, ) that

converges uniformly on compact subsets of (—o0,00) to z(t), where = is a
solution of the limit IVP

= f(t,x), z(to) = zo.

It follows that
lim g, (¢, Ak, ) = z(c) € Se.

Hence
lim h(zy,, (¢, Ak;,)) = h(z(c)) =0,

11— 00
which is a contradiction.
O

8.9 Differentiating Solutions with Respect to
ICs

In this section we will be concerned with differentiating solutions with
respect to initial conditions, initial points, and parameters.

Theorem 8.43 (Differentiation with Respect to Initial Conditions and
Initial Points) Assume f is a continuous n dimensional vector function
on an open set D C R x R™ and f has continuous partial derivatives with
respect to the components of x. Then the IVP (8.4), where (to,zo) € D, has
a unique solution, which we denote by x(t;to, xo), with mazimal interval of
existence (a,w). Then x(t;to,xo) has continuous partial derivatives with

respect to the components xo;, j =1,2,---,n of xg and with respect to tg
on (a,w). Furthermore, z(t) := M%ggg’zo)

1VP

defines the unique solution of the

2 =Jt)z, =z(to) =ej,
where J(t) is the Jacobian matriz of f with respect to x along x(t;tg, xo),
that is,

J(t) - Dwf(tv x(t; to, -TO))
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and

52]'

€; = . 5

Onj
where 0;; is the Kronecker delta function, for t € (o,w). Also, w(t) =
am(ta;i‘;’zo) defines the unique solution of the IVP

w' = J(tw, wlte) =—f(to,20),

fort € (o,w).

Proof Let 7 € (a,w). Then choose an interval [¢1,t2] C (a,w) such that
T, to € (t1,t2). Since
{(t,.’ﬂ(t;to,xo)) 1t e [tl,tg}} cD
is compact and D is open, there exists a 0 > 0 such that
Qs :={(t,2) : [t —t| <0, [lx — x(t; 0, x0))|| <6, for ¢ € [t1,12]}
is contained in D. Let {6;}72, be a sequence of nonzero real numbers with
limy 00 0 = 0. Let a(t) := x(t;to, xo) and let 3 be the solution of the
VP
¥ = f(t,x), x(to) = xo + ke,
where 1 < j < n is fixed. It follows from the basic convergence theorem

(Theorem 8.39) that if (ay,ws) is the maximal interval of existence of xy,
then there is an integer ko so that for all k > ko, [t1,t2] C (ag, 8x) and

l2(t) =z ()] <6

on [t1,t2]. Without loss of generality we can assume that the preceding
properties of {xx} hold for all & > 1. Since, for t; <t < t3,0< s <1,

lswr() + (1 - s)a(t)] - 2(0)]
— sllan(t) — a()] < 56 <,

it follows that
(t,sz(t) + (1 —s)z(t)) € Qs,
for t1 <t <ty,0<s<1. By Lemma 8.6,

. (t) — 2'(t) [t ze(t)) — f(t2(t))
_ / Dauf(t, san(t) + (1— $)a(t)) ds [ex(t) — (1),

for t1 <t < to. Let

alt)i=  on(t) — ()

then z; is a solution of the IVP

o :/0 Do f(t, szi(t) + (1 — s)a(t)) ds 2,  x(to) = e;,
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where e; is given in the statement of this theorem. Define hy : (t1,t2) X
R™ — R™ by

hi(t, 2) = / Do f(t soa(t) + (1 — )z(t)) ds 2,

for (t,z) € (t1,t2) x R™, k> 1. Then hy, : (t1,t2) x R™ — R™ is continuous
and since
lim () = x(¢)

k—o0

uniformly on [t1, t2], we get that
lUm hy(t,z) = Dy f(t,z(t))z
k—oo

uniformly on each compact subset of (¢1, t2) x R™. By the basic convergence
theorem (Theorem 8.39),

lim zg(t) = 2(t)

k—o0

uniformly on each compact subinterval of (¢1,t2), where z is the solution
of the limit IVP

2" =D, f(t,x(t))z = Do f(t,z(t;to, 0))z, 2(to) = e;. (8.27)
In particular,
lim ! [k (T) — x(7)] = 2(7),
k—o00 5k

where z is the solution of the IVP (8.27). Since this is true for any sequence
{0k} of nonzero numbers with limy_,, 0 = 0, we get that

ox

t
aIOj (Ta 05 fIIO)

exists and equals z(7). Since 7 € (o, w) was arbitrary, we get that for each
t € (a,w),
ox

t,to,
5‘x0j( 0 900)

exists and equals z(t). The rest of this proof is left to the reader. O

Definition 8.44 The equation z’ = J(t)z in Theorem 8.43 is called the
variational equation of ¥’ = f(t,x) along the solution x(t;to,xo).

Example 8.45 Find g;o (t;0,1) and gg’f} (t;0,1) for the differential equation
=z — a2 (8.28)
By inspection,
x(t,0,1) = 1.
Here f(t,x) =  — 22, so the variational equation along z(t;0,1) is
2= (1-2z(¢0,1))z,

which simplifies to
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By Theorem 8.43, z(t) := 8650 (t;0,1) solves the IVP
2 =—z, 2(0)=1,
and w(t) := gt”f) (¢;0,1) solves the IVP
w' =—w, w(0)=-,(0,1)=0.

It follows that
ox

— . _ -t
z(t) = Dz (¢;0,1)=e
and o
x
w(t) = Oty (¢;0,1) = 0.

It then follows that

2(t;0,14+h) ~ he 4+ 1,
for h close to zero and

z(t;h, 1) =~ 1,

for h close to zero. Since the equation (8.28) can be solved (see Exercise
8.32) by separating variables and using partial fractions, it can be shown
that
xget~to
1 —zo + xpet—to”
It is easy to see (see Exercise 8.32) from this that the expressions for
é?;o (t;0,1) and gt:'f) (¢;0,1) given previously are correct. AN

x(t;to, x0) =

Corollary 8.46 Assume that A is a continuous n X n matrix function and
h is a continuous n x 1 vector function on an interval I. Further assume
to € I, xo € R™, and let x(-;tg, x9) denote the unique solution of the IVP

¥ = A(t)x + h(t), x(to) = xo.
Then z(t) := 9% (t;tg, o) defines the unique solution of the IVP

T 8.’,809
2 =At)z, =z(to) =ej,
on I. Alsow(t) := ggg (t;to, o) defines the unique solution of the IVP

U)/ = A(t)l’, ’w(to) = 7A(t0)$0 — h(to).

Proof It f(t,x) := A(t)x + h(t), then
Da:f(tax) = A(t)
and the conclusions in this corollary follow from Theorem 8.43. O

Example 8.47 Assume that f(¢,u, v, - ,u("_l)) is continuous and real
valued on (a,b) x R™ and has continuous first-order partial derivatives with
respect to each of the variables u,’,--- , (=Y on (a,b) x R™. Then the
Ivp

u(n) = f(tauvulv e ,u(nfl))’ u(to) = Yo1, * - au(nil)(to) = Yon, (829)
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where ty € (a,b), yor € R, 1 <k < n, is equivalent to the vector IVP

y' = hit,y)
where
Y2
Y3
Yn
f(t7 Y1, 0,
Then
y(ta t07 yO) =

) y(to) = Yo,
Yo1
Yo2
) Yo =
yn) Yon
u(t;to, yo)
u' (t;to, yo)
. )

ul™= D (t;to, yo)
where u(-; t, yo) is the solution of the IVP (8.29). From Theorem 8.43,

dy
z(t) == t;to,y
(t) 8y0j( 0:Y0)
is the solution of the IVP
2 =Jt)z, =z(to) =ej,
where J is the matrix function
0 1 0 0
0 0 1 0
fu fu’ fu("_1>
evaluated at (t,y(¢;to,20)). Since
ou
tito, Y
8190;‘( 0:%0)
is the first component of
dy
t) = t;to, Yo),
z(t) aij( 0, %0)
we get that
ou
v(t) = t;to,y
(t) 8y0j( 0:Y0)
solves the IVP
n—1
U(n) = Z fu(k) (t’ U(t, tO’ yo)? e 7u(n_1)(t; th yo))v(k)a
k=0
(i1 S, i=1,2,---,m,
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where ;5 is the Kronecker delta function. The nth-order linear differential
equation

n—1

v =" Fuo (b ultsto, yo), o/ (B t0,50), -+ u™ D (tst0, 0))o™) (8.30)
k=0

is called the variational equation of u(™ = f(t,u,u/,---,u(""1) along
u(t; to,yo). Similarly,

ou
w(t) := Oty (t;to,yo)

is the solution of the variational equation satisfying the initial conditions
w(to) = —yoz, -+, w2 (to) = —yon, W™V (to) = —f(to, o1, ,Yon)-
A

Example 8.48 If u(t; ty, c1,c2) denotes the solution of the IVP
u =u—u’, u(to) = c1, u(to) = ca,
find

ou
t.
802( ;0,0,0)

and use your answer to approximate u(t; 0,0, h) when h is small.
We know that

ou
t) = t;0,0,0
olt) = o (1:0.0.0)
gives the solution of the IVP
V" = fu(t,u(t;0,0,0),4'(£0,0,0))v + fu(t,u(t;0,0,0),u (¢ 0,0,0))v,
v(0) =0, 2'(0)=1.
Since in this example f(t,u,u') = u —u?, we get that f,(t,u,u’) = 1 — 3u?
and fu/ (t,u,u") = 0. Since by inspection u(¢;0,0,0) = 0, we get that
fult,u(t;0,0,0),4'(t;0,0,0)) = fu.(t,0,0) =1
and
fur (t,u(t;0,0,0),u/(¢;0,0,0)) = fur(£,0,0) = 0.
Hence v solves the IVP
"' =v, v(0)=0, J(0)=1,
which implies that v(t) = sinh¢. Therefore,

ou

ey (t;0,0,0) = sinh ¢.
It follows that

u(t;0,0,h) ~ hsinht,
for small h. Similarly, it can be shown that

ou

e, (t,0,0,0) = cosht
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and

SZ (£,0,0,0) = 0.
It then follows that

u(t; 0, h,0) ~ hcosht,

and

u(t; h,0,0) =~ 0,
for h close to zero. AN
Theorem 8.49 (Differentiating Solutions with Respect to Parameters) As-
sume f(t,x, \) is continuous and has continuous first-order partial deriva-
tives with respect to components of x and A on an open subset D C R x

R™ x R™. For each (to,x0, o) € D, let x(t;to,x0, o) denote the solution
of the IVP

¥ = f(t,x,No), z(to) = o, (8.31)

with maximal interval of existence (a,w). Then x(t;to, xo, Ao) has con-
tinuous first-order partial derivatives with respect to components of Ag =
(M1, , Aom) and z(t) = a?\”gk (t;to, x0, No), 1 < k <'m, is the solution of
the IVP

7 = J(t;to,:ﬂo, )\0)2 + gk(t), Z(to) =0,

on (a,w), where

J(t;to, x0, Ao) == Da f(t, 2(t; o, 2o, Ao), Xo)

and
aa,\flk (t, z(t; to, 0, Ao), Ao)
aa,\;k (t, 2(t;to, 2o, Ao), Ao)
gr(t) = : :
A8 (1, 2(t: to, 20, M), o)
fort € (a,w).
Proof Let
T1 fi (t, x, /\)
= .Tn P fn(tal', A)
Y= A . h(t,y) = 0
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Then

x1(t; o, zo, Ao)

T, (t; to, xo, A
y(t;to, 20, No) := ! §010 "
)\Om

is the unique solution of the IVP

Ton
Y =h(t,y), ylto) = AO
01
/\Om

with maximal interval of existence (a,w). It follows from Theorem 8.43
that

exists, is continuous on (o, w), and is the solution of the IVP
7= J(tay(t;twaOv)\O))g, 2(t0) = €n+k,

where e, is the unit vector in R*™™ whose n + k component is 1 and

ofr ... Of O .. Of

Oy Oxn 0ot 9Aom

Ofn ... Ofn  Ofn . Ofn

J(t, y(t; to, Zo, )\0)) = 881 o 88" 3601 o a)\éjm
0o -~ 0 0o ... 0

where the entries of this last matrix are evaluated at (¢, z(¢; to, o, Ao), No)-

This implies Z(t) =0, n +1 < j < n+m. This then implies that

Z(t) =0, n+l1<j<n+m, butj#n+k,

and

2n+k (t) = 1,
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for t € (o, w). Hence

0
- 0
Z(t) - 1 ’
0
0
where the n + k component of Z(t) is 1. It follows that z(t) = ax(tg‘;\’i‘)’)“))
is the solution of the IVP
2 = J(t;to,l’o,)\o)z+gk(t), Z(to) =0,
on (a,w), where
J(t;to, w0, Ao) = Da f(t, 2(t; o, To, Ao), Ao)s
and
aaAflk (t, SL’(t; Lo, %o, )‘0)7 )‘0)
a@)\ozk (t, SL’(t; lo, o, )‘0)7 )‘0)
gk(t) = . )
08){;,6 (t, SL’(t; to, o, )‘0)7 )‘0)
for t € (o, w). O
Similar to Example 8.47, we get the following result.
Example 8.50 Assume that f(t,u,u/,--- ,u™ Y X\ ---  \,) is continu-
ous on (a,b) x R™ x R™ and has continuous first-order partial derivatives
with respect to each of the variables w,u’, - ,u(" Y A;,---, \,. Then
the unique solution u(t; %0, Yo1, Y02, ** Yo, Aot -+ 5 Aom) = u(tito, Yo, Ao)

of the initial value problem

u™ = flt,udy - uTY Nty Aom),

u(to) = yo1, v (to) = yo2, -+, U(n_l)(to) = Yon,

where (to,v0,Ao) € (a,b) x R™ x R™ has continuous first-order partial
derivatives with respect to Ag1, Ag2 - -+ , Ao and

o(t) : ou

= t;t A
a)\Oj(7 0, Y0, O)a
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1 < j <m, is the solution of the IVP
n—1

v(n) = Z fu(k‘) (ta ’Z,L(t, t07 Yo, )\0)7 e 7u(n71)(t; t07 Yo, )\0)7 )‘O)v(k)
k=0

+fx, (Eultsto, Yo, -+ u™ "t to, Yo, No)s M)y -+ ul™ D (20, Yo, M)y Ao),
v V() =0, i=1,---,n.
A
Example 8.51 Let u(t;to,a,b,A\), A > 0, denote the solution of the IVP
u' = —-Xu, u(ty) =a, u'(ty)=0>.
Then by Example 8.50 we get that

u(t) = gz@;o, 1,0,))

is the solution of the IVP
v = =X —cos(VAt), v(0)=0, o'(0)=0.
Solving this IVP, we get

v(t) = gz (t:0,1,0,\) = —2\1//\tsin(\/)\t).
Since
u(t;0,1,0,\) = cos(VAt),
we can check our answer by just differentiating with respect to \. A

8.10 Maximum and Minimum Solutions

Definition 8.52 Assume that ¢ is a continuous real-valued function on an
open set D C R x R and let (tg,up) € D. Then a solution uys of the IVP

u = ¢(t,u), wu(to) = uo, (8.32)

with maximal interval of existence (aps,wnr) is called a mazimum solution
of the IVP (8.32) in case for any other solution v of the IVP (8.32) on an
interval I,

v(t) <wup(t), on IN(an,wn).

In a similar way we can also define a minimum solution of the IVP (8.32).

Theorem 8.53 Assume that ¢ is a continuous real-valued function on
an open set D C R x R. Then the IVP (8.32) has both a mazimum and
minimum solution and these solutions are unique.

Proof For each n > 1, let u,, be a solution of the IVP

1
u = f(t,u) + " u(to) = wo,
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with maximal interval of existence (c,,wy,). Since

lim (f(t,u)+ i) = f(t,u)

n—oQ

uniformly on each compact subset of D, we have by Theorem 8.39 that
there is a solution u of the IVP (8.32) with maximal interval of existence
(u,wy) and a subsequence {u,,(t)} that converges to u(t) in the sense of
Theorem 8.39.

Similarly, for each integer n > 1, let v,, be a solution of the IVP

v = f(t,v) — le’ v(to) = uo,

with maximal interval of existence (¢, w;). Since

lim <f(t,v) - ;) = f(t,v)

n—oo

uniformly on each compact subset of D, we have by Theorem 8.39 that
there is a solution v of the IVP (8.32) with maximal interval of existence
(e, By) and a subsequence vy, (t) that converges to v(t) in the sense of
Theorem 8.39. Define

[ w(t), on [to,wu)
UM(t){ v(t), on (ay,to),

and

um(t){ v(t), on [to,wy)

u(t), on (au,to).

We claim that uy; and u,, are maximum and minimum solutions of the
IVP (8.32), respectively. To see that ups is a maximum solution on [tg, wy,),
assume not, then there is a solution z of the IVP (8.32) on an interval I
and there is a t; > tg, t1 € I N [tg,w,,) such that

z(t1) > upr(t1) = u(ty).
Since

.lim unj (tl) = u(tl),

J—00

we can pick J sufficiently large so that
Up, (t1) < z(t1).

Since z(tp) = up = un, (to), we can pick to € [to,t1) such that
2(t2) = un, (t2)

and
2(t) > up, (t)
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on (tg,t1]. This implies that 2'(t2) > ), (t2). But

1

W) = flnun, () +

> f(t2, un, (t2))
= f(t2, 2(t2))
= Z/(t2)?

which gives us our contradiction. There are three other cases that are
similar and so will be omitted (see Exercise 8.42). It is easy to see that the
maximal and minimal solutions of the IVP (8.32) are unique. Note that
since the maximal solution of the IVP (8.32) is unique, we have that any
sequence {uy,} of solutions of the IVPs

1
u = f(t,u)+ W u(to) = uo
converges to uys on [tg,w,) in the sense of Theorem 8.39. O

In the remainder of this section we use the following notation.

Definition 8.54 Assume u is defined in a neighborhood of 5. Then

Dtu(tg) := limsup ulto +h) — ulto)

h—0+ h ’
T u(to + h) — u(to)
Dyu(ty) :== 1}35(1)3{ b ,
t h) —u(t
D~ u(ty) := limsup ulto +h) —u( 0),
h—0— h
D_u(to) = limng “(f0 + 1) —ulto)
h—0— h

Theorem 8.55 Assume that D is an open subset of R? and ¢ : D — R is
continuous. Assume that (to,uo) € D, v : [to,to + a] — R is continuous,
(t,v(t)) € D, for to <t <to+a with DV ou(t) < ¢(t,v(t)), and v(to) < uo;
then

v(t) <wup(t), tE [to,to+a]lN (anr,wn),
where ups is the mazimum solution of the IVP (8.32), with maximal inter-
val of existence (apr,whr).

Proof Let v and uys be as in the statement of this theorem. We now prove
that

v(t) <wup(t), tE [to,to+a]N(an,wn).

Assume not; then there is a t1 > to in [to, to + a] N (aar, war), such that

U(tl) > ’U,M(tl)
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By the proof of Theorem 8.53 we know that if {u, } is a sequence of solutions
of the IVPs 1
u = p(t,u) + . u(ty) = o,
respectively, then
lim wy,(t) = upn(t)
n—0o0
uniformly on compact subintervals of [tg,w). Hence we can pick a positive

integer N such that the maximal interval of existence of ux contains [tg, 1]
and

un(t1) < v(ty).
Choose ty € [to,t1) such that un(t2) = v(t2) and
v(t) >un(t), te (ta,t1].
Let
z(t) == v(t) — un(t).
For h > 0, sufficiently small,
z(ta + h) — z(t2)

>0,
h
and so
D+Z(t2) Z 0.
But
D+Z(t2) = D+U(t2) — u;v(tg)
1

< 9(ta,v(t2)) — ¢(ta, un(ta)) — N

= ! <0

= N ,
which is a contradiction. O

Similarly, we can prove the following three theorems:

Theorem 8.56 Assume that D is an open subset of R? and ¢ : D — R is
continuous. Assume that (to,uo) € D, v : [to,to + a] — R is continuous,
(t,v(t)) € D, forty <t <ty+a, with Dyv(t) > ¢(t,v(t)), and v(to) > uo;
then

v(t) > um(t), tE€ [to,to+ a] N (m,wm),
where wy, is the minimum solution of the IVP (8.32), with maximal interval
of existence (Qm,wm).

Theorem 8.57 Assume that D is an open subset of R? and ¢ : D — R is
continuous. Assume that (to,uo) € D, v : [to — a,to] — R is continuous,
(t,v(t)) € D, forto—a <t <ty, with D" v(t) > ¢(t,v(t)) and v(ty) < uo;
then

v(t) <um(t), te€to—a,to] N (anm,wn),
where upr is the mazimum solution of the IVP (8.32), with maximal inter-
val of existence (ang, whr).
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Theorem 8.58 Assume that D is an open subset of R? and ¢ : D — R is
continuous. Assume that (to,uo) € D, v : [to — a,to] — R is continuous,
(t,v(t)) € D, fortg—a <t <tgy, with D_v(t) < ¢(t,v(t)), and v(ty) > uo;
then

v(t) > um(t), tE [to— a,to] N (m,wm),
where wy, is the minimum solution of the IVP (8.32), with maximal interval
of existence (Qum,,wn,).

We will leave the proof of the following important comparison theorem

as an exercise (Exercise 8.46).

Corollary 8.59 Let D be an open subset of R? and assume that ¥ : D — R
and ¢ : D — R are continuous with

U(t,u) < ¢(t,u), (t,u) € D.

If ups is the mazimum solution of the IVP (8.32), with maximal interval of
existence (apr,war), then if v is a solution of v/ = W(t,v) with v(ty) < ug,
then v(t) < up(t) on [to, to + a] N (aar,war).

We can now use Theorems 8.55 and 8.56 to prove the following corol-

lary.
Corollary 8.60 Assume that D is an open subset of R* and ¢ : D —

R is continuous. Assume that (to,uo) € D, and there is a continuously
differentiable vector function x : [tg, to + a] — R™ such that (t,||z(t)||) € D
for to <t <to+a with ||2'(t)|| < o, |x(@®)|); then

@) <wun(t), tE€ to,to+a]lN (an,war),
where ups is the maximum solution of the IVP

u' = ¢(t,u), ulte) = |lz(to)l],

with mazimal interval of existence (g, war). Stmilarly, if w.y, is the min-
imum solution of the IVP

u'=—¢(t,u), ulto) = llz(to)ll,
then
[z@)]] = um(t), t € [to,to +al N (am,wm).

Proof Note that for h > 0, sufficiently small,

et + ) = [lz@l _ =+ h) =2l _
h = h

i

x(t+h) — m(t)‘
h

implies that
DF @)l < [l < (¢, =)D,
for t € [tg, to + a]. Hence by Theorem 8.55, we get that

@) <uam(t), € [to,to + a] N (anr, war).
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Next, for h > 0, sufficiently small,
lz(t+h) —z@)|| > |« — 2@+ h) | = = {llzt + R)]| = lz@)]]} -
Hence for h > 0, sufficiently small,
[+ = llz@®l o _lle+h) —2z@l _ _
h - h

and consequently

x(t+h) — x(t)
h

bl

Dillz@®)] = =ll2" @)l = =&, @),
for ¢ € [to, to + a]. It then follows from Theorem 8.56 that
lx@)]| > um(t), t€ [to,to+ a]l N (Qm,wm)-
]

Theorem 8.61 (Generalized Gronwall’s Inequality) Assume ¢ : [to,to +
al x R — R is continuous and for each fized t € [to,to + a], ¢(t,u) is
nondecreasing with respect to u. Assume that the mazimum solution uy; of
the IVP (8.32) exists on [to, to+a|. Further assume thatv : [to,to+a] — R
is continuous and satisfies

v(t) <wuo+ t o(s,v(s)) ds

on [to,to + a]. Then
v(t) <wup(t), tE [to,to+al.
Proof Let
t
2(t) =uo+ [ d(s,v(s)) ds,
to
for t € [to,to + a]. Then v(t) < z(t) on [tg, to + a] and
(1) = ot 0(t)) < (1, 2(1)), T € [foto +al.
It follows from Theorem 8.55 that
z(t) <up(t), tE€ to,to+ al.
Since v(t) < z(t) on [to, to + a], we get the desired result. O

As a consequence to this last theorem, we get the well-known Gron-
wall’s inequality as a corollary.

Corollary 8.62 (Gronwall’s Inequality) Let u, v be nonnegative, continu-
ous functions on |a,b], C > 0 be a constant, and assume that
t

v(t) <C —|—/ v(s)u(s) ds,

fort € [a,b]. Then
v(t) < Celav)ds 4 ¢ [a, b].
In particular, if C =0, then v(t) = 0.
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Proof This result follows from Theorem 8.61, where we let ¢(t,w) :=
u(t)w, for (t,w) € [a,b] x R and note that the maximum solution (unique
solution) of the IVP

w' =¢t,w) =ult)w, wla)=C
is given by
w(t) = Celavw()ds ¢ ¢ [a,b].
O
Theorem 8.63 (Extendability Theorem) Assume ¢ : [to,to +a] x R — R
is continuous and ups is the maximum solution of the scalar IVP (8.32),

where ug > 0, and assume that up; exists on [to,to + a]. If the vector
function f: [to,to + a] x R™ — R™ is continuous and

Hf(t,l‘)H S(b(t,H-TH), (t,l‘) € [tO,tO—i_a} Xan
then any solution x of the vector IVP
¥ = f(t,x), z(to) = o,

where ||xo|| < wo, exists on [to, to + a] and ||x(t)]] < unr(t) on [to,to + al.

Proof Fix xg so that ||xg|| < ug. By the extension theorem (Theorem
8.33) and the extended Cauchy—Peano Theorem (Theorem 8.34) there is
an « > 0 such that all solutions of this IVP exist on [tg,to + «a]. Let x
be one of these solutions with right maximal interval of existence [to,ws).
Then

[ + )| = =@l

DY|zt)|| = limsup
h—0+ h
t+h)—a(t
< limsup T —20)
h—0+ h

2" ()] < o, lz(B)]])-
Hence from Theorem 8.55
[z < unm(t), tE€ [to,ws)

If w, <ty + a, then by the extended Cauchy-Peano theorem (Theorem
8.34),

lim ||z(t)]| = oo,

t—wy
which is a contradiction. Hence we must have
[z <unm(t), tE [to,to+al,

and, in particular, the solution z exists on all of [tg,tg + a]. O
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Corollary 8.64 Assume that ¥ : [0,00) — (0,00) is continuous and there

is a yo € [0,00) such that
/OO dv -
Yo \I/(”U)

If f : [to,00) x R™ — R™ is continuous and
L& @) < (lz]]), (8 x) € [to, 00) x R,
then for all xo € R™ with ||xo|| < yo, all solutions of the vector IVP
¥ = f(t,x), w(ty) = w0

exist on [to, 00).

Proof Let u be a solution of the IVP
u =W(u), u(to) = vo,
with right maximal interval of existence [to,w, ). If w, < oo, then

. lim |u(t)| = oo.

Since u/(t) = W(u(t)) > 0, we must have

lim  wu(t) = oo.

For t > tg, v/(t) = ¥(u(t)) implies that
u'(t)
U(u(t))

Integrating from %y to ¢, we obtain

=1

Letting v = u(s), we get that

/u(t) d'U
=1t —1p.
Yo \II(U)

Letting t — w,—, we get the contradiction

o) /OC dv w to < o0
= = u - 0 .
v ()

0

Hence we must have w,, = oo and so u is a solution on [tg,00). It then
follows from Theorem 8.63 that all solutions of the vector IVP

= f(t,x), z(to) =m0

exist on [tg, 00). O
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Theorem 8.65 Assume A is a continuous n X n matriz function and h is
a continuous n X 1 vector function on I. Then the IVP

o = A(t)x + h(t), xz(to) = zo, (8.33)

where (to, o) € I X R™, has a unique solution x and this solution exists on
all of I. Furthermore,

t t
|M@§{Mﬂ+|/ﬂﬂ@@@eﬁJ“m“h (8.34)
to

fortel.

Proof By Corollary 8.18 we have already proved the existence and unique-
ness of the solution of the IVP (8.33), so it only remains to show that the
solution of this IVP exists on all of I and that the inequality (8.34) holds.
We will just prove that the solution of this IVP exists on I to the right of
to and the inequality (8.34) holds on I to the right of to. Assume t; > t
and t1 € I. Let f(t,z) := A(t)x + h(t), for (¢,2) € I x R™ and note that

[A@®)z +h@®l < [A@[] + 1A @]
< Milz|| + My,

for (¢t,x) € [to,t1] x R™, where My, My are suitably chosen positive con-
stants. Since the IVP

u = Myu + Mo, ’U,(to) = ||.%‘0||,

has a unique solution that exists on [to, t1], we get from Theorem 8.63 that
the solution of the IVP (8.33) exists on [to,t1]. Since this holds, for any
t1 > to such that t; € I we get that the solution of the IVP (8.33) exists
on I to the right of tg.

Next we show that the solution z of the IVP (8.33) satisfies (8.34) on
I to the right of ty. Since = solves the IVP (8.33) on I, we have that

t

2(t) = 20 + / [A()2(s) + h(s)] ds,
to

for t € I. It follows that for t € I, t > tg

t

@] < ||fc0||+/t [AG)z() ds+ | h(s)] ds

- {Mﬂ+Ljh@n@}+A:A@WM@H@.

Let t; € T and assume that t; > tg. Then for ¢ € [to, t1],

@) < {Ilwo||+/tll|h(8) d8}+-/t [A(s)[[llz(s)]] ds-
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Using Gronwall’s inequality, we get that

t1 .
o0 < {hwoll + [ e oo,
to

for t € [to,t1]. Letting t = t1, we get

1 t1 . N
xmms{w0+/ M@)w}&H“W@
to

Since t1 € I, t; >ty is arbitrary, we get the desired result. The remainder
of this proof is left as an exercise (see Exercise 8.49). g

8.11 Exercises

8.1 Assume [ is an open interval, p : I — R is continuous for 0 < k < n,
pr(t) # 0 for t € I, and h: I — R is continuous. Show that the nth-order
linear equation

Pu()u'™ + pp_ 1 (a4 o (t)u = h(t)

is equivalent to a vector equation of the form (8.1) with D := I x R™. Give
what you think would be the appropriate definition of u is a solution of
this nth-order equation on I.

8.2 Find the Jacobian matrix of f(¢,z) with respect to x for each of the
following:

@ faa) = () o = (it )

5ri cos(t?x1x9)

222 + 22 + 22 e®17523

(c) f(t,z) = T1T2T3 (d) f(t,z) = i + 3
4w%x§ driroxs +1

8.3 Show that f(t,z) = 1?;2 satisfies a Lipschitz condition with respect to
x on R x R, but does not satisfy a uniform Lipshitz condition with respect
to x on R x R.

8.4 Show that f(t,z) = e3' + 3|z|P, where 0 < p < 1, does not satisfy a
uniform Lipschitz condition with respect to z on R2.

8.5 Maximize the « in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle ) concerning the solution of the IVP

=23 2(0)=2.

Then solve this IVP to get the maximal interval of existence of the solution
of this IVP.

8.6 Maximize the « in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle ) concerning the solution of the IVP

o =5+2% z(1) =2
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8.7 Maximize the « in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle ) concerning the solution of the IVP

o= (z+1)?% 2(1) =1

Then solve this IVP to get the maximal interval of existence of the solution
of this IVP.

8.8 Maximize the « in the Picard-Lindelof theorem by choosing the ap-
propriate rectangle ) concerning the solution of the IVP

o =t+2%  2(0)=1.

8.9 Approximate the solution of the IVP

2’ = sin (;rx) , z(0)=1
by finding the second Picard iterate x5 (t) and use (8.12) to find how good
an approximation you get.
8.10 Approximate the solution of the IVP

o' =20 — 2% 2(0)=1
by finding the second Picard iterate x2(t).
8.11 Approximate the solution of the IVP

o =22 —2% x(0)=1
by finding the second Picard iterate x2(t).
8.12 Approximate the solution of the IVP

, x
= 0)=1
d= T o)

by finding the second Picard iterate x2(t) and use (8.12) to find how good
an approximation you get.

8.13 Approximate the solution of the IVP
1
g 0)=0
R L #(0)
by finding the second Picard iterate 3 (t) and use (8.12) to find how good
an approximation you get.

8.14 Using Corollary 8.19, what can you say about solutions of IVPs for
each of the following?

(i) 2" =sin(ta’) 4 (z — 2)3

(ii) x/// — t2 +x+ (.%‘/)2 + (.Z‘N)B
8.15 Show that the sequence of functions {x,(¢) := ¢}, 0 <t <1, satis-
fies all the hypotheses of the Ascoli-Arzela theorem (Theorem 8.26) except

the fact that this sequence is equicontinuous. Show that the conclusion of
the Ascoli-Arzela theorem (Theorem 8.26) for this sequence does not hold.
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8.16 Can the Ascoli-Arzela theorem (Theorem 8.26) be applied to the

sequence of functions {z,(t) := sin(nt)}2>,, 0<t¢t<7?

1
n

8.17 Verify that the sequence of functions {x,(t) :=
equicontinuous on R.

sin(nt)}22 ,, is

8.18 Assume g : [0,00) — R is continuous. Show that if ¢’(3) = 0, then
{gn(t) := g(nt) : n € N} is not equicontinuous on [0, c0).

8.19 Assume that {z,} is an equicontinuous sequence of real-valued func-
tions on [a,b], which converges pointwise to z on [a,b]. Further assume
there is a constant p > 1 such that for each n € N, fab |z, (1) [Pdt exists, and

b
lim |z, () — 2(t)|Pdt = 0.

n—oo
a
Show that the sequence {x,} converges uniformly to z on [a, b].

8.20 Write out the definition of z(t) — 9D as t — a+ mentioned in
Definition 8.32.

8.21 At the beginning of the proof of Theorem 8.33, show how you can
define the sequence of open sets {K}} such that the closure of K}, K, is
compact, Ky C K1, and Up2 | K = D.

8.22 Use Theorem 8.36 to prove Corollary 8.37.

8.23 Find constants a and 3 so that 2(t) = at” is a solution of the IVP
(8.23) in Example 8.38. Show that the the sequence of Picard iterates
{zk(t)} [with 2o(t) = 0] for the IVP (8.23) does not even have a subsequence
that converges to the solution of this IVP. Show directly by the definition
of a Lipschitz condition that the f(¢,2) in Example 8.38 does not satisfy a
Lipschitz condition with respect to « on [0,1] x R.

3
8.24 Show that x(t) := 0 and zo(t) := (it) 2 define solutions of the IVP
o =x5, x(0)=0.

Even though solutions of IVPs are not unique, show that the sequence of
Picard iterates {zx(t)} [with 29(¢) = 0] converges to a solution of this TVP.

8.25 For each constant zp # 0, find the maximal interval of existence
for the solution of the IVP 2/ = z3, x(0) = x. Show directly that the
conclusions of Theorem 8.33 concerning this solution hold.

8.26 Show that the IVP 2" = —6z(2/)®, (~1) = —1, 2/(-1) = }, has a
unique solution z and find the maximal interval of existence of x. Hint:
Look for a solution of the given IVP of the form z(t) = at?, where a and
[ are constants.

8.27 Show that the IVP

o =~ — t>arctanz, x(0) =0
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has a unique solution. What is the unique solution of this IVP? Does the
Picard-Lindelof theorem apply?

8.28 Show that if {4}, is a sequence of n-dimensional vector func-
tions on [a,b] satisfying the property that every subsequence has a sub-
sequence that converges uniformly on [a,b] to the same function z, then
limg— 00 2 (t) = x(¢t) uniformly on [a, b].

8.29 If f(x) = |z| for z € R and if § > 0 is a constant, find a formula for
the integral mean gs; : R — R defined by

1 40
gs(w) = 05 /75 fy) dy,

for x € R. Use your answer to show that gs is continuously differentiable
on R. Then show directly that lims_.o4 gs(z) = f(x) uniformly R.

8.30 Given that
1, x>0

f(m){—l, x <0,

and § > 0, find the integral mean

@) = s | T dy.
for z € R.

8.31 Find the cross-sectional set Sg in Kneser’s theorem (Theorem 8.42)
for each of the following IVPs:

(i) 2’ =23, 2(0)=0
(i) o' =2, x(0) =4
8.32 Find a formula for the solution z(¢; to, ) of the initial value problem
o=z -2 x(ty) = x0.
Use your answer to find z(t) = 6850 (¢;0,1) and w(t) = gt”fj (t;0,1). Compare
your answers to the results given in Example 8.45.
8.33 Let x(t;a,b) denote the solution of the IVP
¥’ =8—6x+a2% x(a)=0.
Without solving this IVP, find
ox ox
t;0,2).
b 6‘a( 10,2)
Use your answers to approximate x(t; h,2), when h is close to zero and
x(t;0,k), when k is close to 2.

(¢;0,2) and

8.34 Let x(t;a,b) denote the solution of the TVP
' =1+22 z(a) =0b.



400 8. EXISTENCE AND UNIQUENESS THEOREMS

Use Theorem 8.43 to find
Oz ox
8b< 8a(

Then check your answers by solving the preceding IVP and then finding

these partial derivatives.

t;0,0) and t;0,0).

8.35 Let x(t;a,b) denote the solution of the IVP
z' = arctanz, xz(a)=b.
Use Theorem 8.43 to find

Oz ox
t;0,0).
b 8a( 10,0)
8.36 For the differential equation v’ = u — v?, find
ou ou ou
t;0,1,0), t;0,1,0), and t;0,1,0),
dyo1 ( ) Yoz ( ) Oto ( )

and use your answers to approximate

u(t;0,1+ h,0), wu(t;0,1,h), and wu(t;h,1,0),

(¢;0,0) and

respectively, for h close to zero.
8.37 Let u(t; to,a,b) denote the solution of the IVP
' =4 —u?  u(ty) =a, u(ty) =Db.
Using a result in Example 8.47, find v(t) = g“g (¢;0,2,0).
8.38 Let xy(t,t9), 0 < k < n—1, be the normalized solutions (see Definition
6.18) of L,z = 0 (see Definition 6.1) at t = to. Derive formulas for %”;’; (t,to),

0 <k <n-—1,in terms of the coefficients of L,z = 0 and the normalized
solutions zy(t,tp), 0 <k <n—1.

8.39 For each of the following find the normalized solutions xy (¢, %), 0 <
k < n — 1, of the given differential equation at ¢ = ty, and check, by
calculating aaf(’; (t,tg), 0 < k < n — 1, that the formulas that you got in
Exercise 8.38 are satisfied.

(i) 2" +2=0

(11) x/// _ x// — O

8.40 Let wu(t;to,a,b,A), A > 0, denote the solution of the IVP
u'=Xu, u(to) =a, u'(to) =0.

Use Example 8.50 to calculate

ou
O\

Check your answer by finding u(¢; 0,0, 1, \) and differentiating with respect
to A.

(¢;0,0,1, \).
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8.41 Let wu(¢;to,a,b, \) denote the solution of the IVP
u' +4du= N, u(ty) =a, u'(to)=">.
Use Example 8.50 to find

B)
9y (£:0.0,2,0).

Check your answer by actually finding u(t; to, a, b, A) and then taking the
partial derivative with respect to A.

8.42 Near the end of the proof of Theorem 8.53 one of the four cases was
considered. Prove one of the remaining three cases.

8.43 Find the maximum and minimum solutions of the IVP
o =23, x(0)=0,
and give their maximal intervals of existence.

8.44 Use Theorem 8.55 to show that if v : [a,b] — R is continuous and if
D*u(t) <0 on [a,b], then v(t) < v(a) for t € [a,b].

8.45 Prove Theorem 8.56.
8.46 Prove Corollary 8.59.
8.47 Show that every solution of the IVP 2’ = f(x), x(0) = ¢, where

1

z 0
f(x){\/|ﬂf|’ x?éo Ty = A,

0, z =0, :

0

exists on [0, 00) and find a bound on all such solutions.

8.48 Use Theorem 8.63 to find a lower bound for the right end point of
the right maximal interval of existence for the solution of the IVP

= 2% —2x2,
T = x4 22,
21(0) =1, x2(0)=0.
8.49 Do the part of the proof of Theorem 8.65, where t € I and ¢ < tg.
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