
Chapter 2

Linear Systems

2.1 Introduction

In this chapter we will be concerned with linear systems of the form

x′1 = a11(t)x1 + a12(t)x2 + · · · + a1n(t)xn + b1(t)

x′2 = a21(t)x1 + a22(t)x2 + · · · + a2n(t)xn + b2(t)

· · ·
x′n = an1(t)x1 + an2(t)x2 + · · · + ann(t)xn + bn(t),

where we assume that the functions aij , 1 ≤ i, j ≤ n, bi, 1 ≤ i ≤ n,
are continuous real-valued functions on an interval I. We say that the
collection of n functions x1, x2, · · · , xn is a solution on I of this linear
system provided each of these n functions is continuously differentiable on
I and

x′1(t) = a11(t)x1(t) + a12(t)x2(t) + · · · + a1n(t)xn(t) + b1(t)

x′2(t) = a21(t)x1(t) + a22(t)x2(t) + · · · + a2n(t)xn(t) + b2(t)

· · ·
x′n(t) = an1(t)x1(t) + an2(t)x2(t) + · · · + ann(t)xn(t) + bn(t),

for t ∈ I.
This system can be written as an equivalent vector equation

x′ = A(t)x + b(t), (2.1)

where

x :=











x1

x2

...
xn











, x′ :=











x′1
x′2
...
x′n











,

and

A(t) :=







a11(t) · · · a1n(t)
...

. . .
...

an1(t) · · · ann(t)






, b(t) :=







b1(t)
...

bn(t)






,
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for t ∈ I. Note that the matrix functions A and b are continuous on I (a
matrix function is continuous on I if and only if (iff) all of its entries are
continuous on I). We say that an n × 1 vector function x is a solution of
(2.1) on I provided x is a continuously differentiable vector function on I
(iff each component of x is continuously differentiable on I) and

x′(t) = A(t)x(t) + b(t),

for all t ∈ I.

Example 2.1 It is easy to see that the pair of functions x1, x2 defined by
x1(t) = 2 + sin t, x2(t) = −t + cos t, for t ∈ R is a solution on R of the
linear system

x′1 = x2 + t,

x′2 = −x1 + 1

and the vector function

x :=

[

x1

x2

]

is a solution on R of the vector equation

x′ =

[

0 1
−1 0

]

x+

[

t
1

]

.

△
The study of equation (2.1) includes the nth-order scalar differential equa-
tion

y(n) + pn−1(t)y
(n−1) + · · · + p0(t)y = r(t) (2.2)

as a special case. To see this let y be a solution of (2.2) on I, that is,
assume y has n continuous derivatives on I and

y(n)(t) + pn−1(t)y
(n−1)(t) + · · · + p0(t)y(t) = r(t), t ∈ I.

Then let
xi(t) := y(i−1)(t),

for t ∈ I, 1 ≤ i ≤ n. Then the n× 1 vector function x with components xi
satisfies equation (2.1) on I if

A(t) =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
−p0(t) −p1(t) −p2(t) · · · −pn−1(t)















, b(t) =















0
0
...
0
r(t)















for t ∈ I. The matrix function A is called the companion matrix of the
differential equation (2.2). Conversely, it can be shown that if x is a solution
of the vector equation (2.1) on I, where A and b are as before, then it
follows that the scalar function y defined by y(t) := x1(t), for t ∈ I is a
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solution of (2.2) on I. We next give an interesting example that leads to a
four-dimensional linear system.

Example 2.2 (Coupled Vibrations) Consider the system of two massesm1

andm2 in Figure 1 connected to each other by a spring with spring constant
k2 and to the walls by springs with spring constants k1 and k3 respectively.
Let u(t) be the displacement of m1 from its equilibrium position at time t
and v(t) be the displacement of m2 from its equilibrium at time t. (We are
taking the positive direction to be to the right.) Let c be the coefficient
of friction for the surface on which the masses slide. An application of
Newton’s second law yields

m1u
′′ = −cu′ − (k1 + k2)u+ k2v,

m2v
′′ = −cv′ − (k2 + k3)v + k2u.

Here we have a system of two second-order equations, and we define x1 := u,
x2 := u′, x3 := v, and x4 := v′, obtaining the first-order system









x1

x2

x3

x4









′

=









0 1 0 0

−k1+k2
m1

− c
m1

k2
m1

0

0 0 0 1
k2
m2

0 −k2+k3
m2

− c
m2

















x1

x2

x3

x4









.

△

m1 m2

k1 k2 k3

Figure 1. Coupled masses.

The following theorem is a special case of Theorem 8.65 (see also Corol-
lary 8.18) .

Theorem 2.3 Assume that the n × n matrix function A and the n × 1
vector function b are continuous on an interval I. Then the IVP

x′ = A(t)x + b(t), x(t0) = x0,

where t0 ∈ I and x0 is a given constant n× 1 vector, has a unique solution
that exists on the whole interval I.

Note that it follows from Theorem 2.3 that in Example 2.2 if at any
time t0 the position and velocity of the two masses are known, then that
uniquely determines the position and velocity of the masses at all other
times.

We end this section by explaining why we call the differential equation
(2.1) a linear vector differential equation.
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Definition 2.4 A family of functions A defined on an interval I is said to
be a vector space or linear space provided whenever x, y ∈ A it follows that
for any constants α, β ∈ R

αx+ βy ∈ A.

By the function αx + βy we mean the function defined by

(αx + βy)(t) := αx(t) + βy(t),

for t ∈ I. If A and B are vector spaces of functions defined on an interval
I, then L : A → B is called a linear operator provided

L [αx + βy] = αL[x] + βL[y],

for all α, β ∈ R, x, y ∈ A.

We now give an example of an important linear operator.

Example 2.5 Let A be the set of all n × 1 continuously differentiable
vector functions on an interval I and let B be the set of all n×1 continuous
vector functions on an interval I and note that A and B are linear spaces.
Define L : A → B by

Lx(t) = x′(t) −A(t)x(t),

for t ∈ I, where A is a given n × n continuous matrix function on I. To
show that L is a linear operator, let α, β ∈ R, let x, y ∈ A, and consider

L [αx+ βy] (t) = (αx+ βy)′(t) −A(t)(αx + βy)(t)

= αx′(t) + βy′(t) − αA(t)x(t) − βA(t)y(t)

= α [x′(t) −A(t)x(t)] + β [y′(t) −A(t)y(t)]

= αLx(t) + βLy(t)

= (αLx+ βLy)(t),

for t ∈ I. Hence

L [αx+ βy] = αLx+ βLy

and so L : A → B is a linear operator. △

Since the differential equation (2.1) can be written in the form

Lx = b,

where L is the linear operator defined in Example 2.5, we call (2.1) a linear
vector differential equation. If b is not the trivial vector function, then
the equation Lx = b is called a nonhomogeneous linear vector differential
equation and Lx = 0 is called the corresponding homogeneous linear vector
differential equation.
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2.2 The Vector Equation x′ = A(t)x

To solve the nonhomogeneous linear vector differential equation

x′ = A(t)x+ b(t)

we will see later that we first need to solve the corresponding homogeneous
linear vector differential equation

x′ = A(t)x. (2.3)

Hence we will first study the homogeneous vector differential equation (2.3).
Note that if the vector functions φ1, φ2, · · · , φk are solutions of x′ = A(t)x
(equivalently, of Lx = 0, where L is as in Example 2.5) on I, then

L [c1φ1 + c2φ2 + · · · + ckφk]

= c1L [φ1] + c2L [φ2] + · · · + cnL [φk]

= 0.

This proves that any linear combination of solutions of (2.3) on I is a
solution of (2.3) on I. Consequently, the set of all such solutions is a
vector space. To solve (2.3), we will see that we want to find n linearly
independent solutions on I (see Definition 2.9).

Definition 2.6 We say that the constant n× 1 vectors ψ1, ψ2, · · · , ψk are
linearly dependent provided there are constants c1, c2, · · · , ck, not all zero,
such that

c1ψ1 + c2ψ2 + · · · + ckψk = 0,

where 0 denotes the n × 1 zero vector. Otherwise we say that these k
constant vectors are linearly independent.

Note that the constant n × 1 vectors ψ1, ψ2, · · · , ψk are linearly in-
dependent provided that the only constants c1, c2, · · · , ck that satisfy the
equation

c1ψ1 + c2ψ2 + · · · + ckψk = 0,

are c1 = c2 = · · · = ck = 0.

Theorem 2.7 Assume we have exactly n constant n× 1 vectors

ψ1, ψ2, · · · , ψn
and C is the column matrix C = [ψ1ψ2 · · ·ψn]. Then ψ1, ψ2, · · · , ψn are
linearly dependent iff detC = 0.

Proof Let ψ1, ψ2, · · · , ψn and C be as in the statement of this theorem.
Then

detC = 0



28 2. Linear Systems

if and only if there is a nontrivial vector










c1
c2
...
cn











such that

C











c1
c2
...
cn











=











0
0
...
0











if and only if
c1ψ1 + c2ψ2 + · · · + cnψn = 0,

where c1, c2, · · · , cn are not all zero, if and only if

ψ1, ψ2, · · · , ψn are linearly dependent.

�

Example 2.8 Since

det





1 2 −4
2 1 1
−3 −1 −3



 = 0,

the vectors

ψ1 =





1
2
−3



 , ψ2 =





2
1
−1



 , ψ3 =





−4
1
−3





are linearly dependent by Theorem 2.7. △
Definition 2.9 Assume the n × 1 vector functions φ1, φ2, · · · , φk are de-
fined on an interval I. We say that these k vector functions are linearly
dependent on I provided there are constants c1, c2, · · · , ck, not all zero,
such that

c1φ1(t) + c2φ2(t) + · · · + ckφk(t) = 0,

for all t ∈ I. Otherwise we say that these k vector functions are linearly
independent on I.

Note that the n×1 vector functions φ1, φ2, · · · , φk are linearly indepen-
dent on an interval I provided that the only constants c1, c2, · · · , ck that
satisfy the equation

c1φ1(t) + c2φ2(t) + · · · + ckφk(t) = 0,

for all t ∈ I, are c1 = c2 = · · · = ck = 0.
Any three 2 × 1 constant vectors are linearly dependent, but in the

following example we see that we can have three linearly independent 2×1
vector functions on an interval I.
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Example 2.10 Show that the three vector functions φ1, φ2, φ3 defined by

φ1(t) =

[

t
t

]

, φ2(t) =

[

t2

t

]

, φ3(t) =

[

t3

t

]

are linearly independent on any nondegenerate interval I (a nondegenerate
interval is any interval containing at least two points).

To see this, assume c1, c2, c3 are constants such that

c1φ1(t) + c2φ2(t) + c3φ3(t) = 0,

for all t ∈ I. Then

c1

[

t
t

]

+ c2

[

t2

t

]

+ c3

[

t3

t

]

=

[

0
0

]

,

for all t ∈ I. This implies that

c1t+ c2t
2 + c3t

3 = 0, (2.4)

for all t ∈ I. Taking three derivatives of both sides of equation (2.4), we
have

6c3 = 0.

Hence c3 = 0. Letting c3 = 0 in equation (2.4) and taking two derivatives
of both sides of the resulting equation

c1t+ c2t
2 = 0,

we get that
2c2 = 0

and so c2 = 0. It then follows that c1 = 0. Hence the three vector functions
φ1, φ2, φ3 are linearly independent on I. △

In the next theorem when we say (2.5) gives us a general solution
of (2.3) we mean all functions in this form are solutions of (2.3) and all
solutions of (2.3) can be written in this form.

Theorem 2.11 The linear vector differential equation (2.3) has n linearly
independent solutions on I, and if φ1, φ2, · · · , φn are n linearly independent
solutions on I, then

x = c1φ1 + c2φ2 + · · · + cnφn, (2.5)

for t ∈ I, where c1, c2, · · · , cn are constants, is a general solution of (2.3).

Proof Let ψ1, ψ2, · · · , ψn be n linearly independent constant n×1 vectors
and let t0 ∈ I. Then let φi be the solution of the IVP

x′ = A(t)x, x(t0) = ψi,

for 1 ≤ i ≤ n. Assume c1, c2, · · · , cn are constants such that

c1φ1(t) + c2φ2(t) + · · · + cnφn(t) = 0,

for all t ∈ I. Letting t = t0 we have

c1φ1(t0) + c2φ2(t0) + · · · + cnφn(t0) = 0
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or, equivalently,

c1ψ1 + c2ψ2 + · · · + cnψn = 0.

Since ψ1, ψ2, · · · , ψn are n linearly independent constant vectors, we have
that

c1 = c2 = · · · = cn = 0.

It follows that the vector functions φ1, φ2, · · · , φn are n linearly independent
solutions on I. Hence we have proved the existence of n linearly independent
solutions.

Next assume the vector functions φ1, φ2, · · · , φn are n linearly inde-
pendent solutions of (2.3) on I. Since linear combinations of solutions of
(2.3) are solutions of (2.3), any vector function x of the form

x = c1φ1 + c2φ2 + · · · + cnφn

is a solution of (2.3). It remains to show that every solution of (2.3) is of
this form. Let t0 ∈ I and let

ξi := φi(t0),

1 ≤ i ≤ n. Assume b1, b2, · · · , bn are constants such that

b1ξ1 + b2ξ2 + · · · + bnξn = 0.

Then let

v(t) := b1φ1(t) + b2φ2(t) + · · · + bnφn(t),

for t ∈ I. Then v is a solution of (2.3) on I with v(t0) = 0. It follows from
the uniqueness theorem (Theorem 2.3) that v is the trivial solution and
hence

b1φ1(t) + b2φ2(t) + · · · + bnφn(t) = 0,

for t ∈ I. But φ1, φ2, · · · , φn are linearly independent on I, so

b1 = b2 = · · · = bn = 0.

But this implies that the constant vectors ξ1 := φ1(t0), ξ2 := φ2(t0), · · · ,
ξn := φn(t0) are linearly independent.

Let z be an arbitrary but fixed solution of (2.3). Let t0 ∈ I, since
z(t0) is an n×1 constant vector and φ1(t0), φ2(t0), · · · , φn(t0) are linearly
independent n× 1 constant vectors, there are constants a1, a2, · · · , an such
that

a1φ1(t0) + a2φ2(t0) + · · · + anφn(t0) = z(t0).

By the uniqueness theorem (Theorem 2.3) we have that

z(t) = a1φ1(t) + a2φ2(t) + · · · + anφn(t), for t ∈ I.

Hence

x = c1φ1 + c2φ2 + · · · + cnφn

is a general solution of (2.3). �
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First we will see how to solve the vector differential equation

x′ = Ax,

where A is a constant n×n matrix. We recall the definitions of eigenvalues
and eigenvectors for a square matrix A.

Definition 2.12 Let A be a given n × n constant matrix and let x be a
column unknown n-vector. For any number λ the vector equation

Ax = λx (2.6)

has the solution x = 0 called the trivial solution of the vector equation. If
λ0 is a number such that the vector equation (2.6) with λ replaced by λ0

has a nontrivial solution x0, then λ0 is called an eigenvalue of A and x0 is
called a corresponding eigenvector. We say λ0, x0 is an eigenpair of A.

Assume λ is an eigenvalue of A, then equation (2.6) has a nontrivial
solution. Therefore,

(A− λI) x = 0

has a nontrivial solution. From linear algebra we get that the characteristic
equation

det (A− λI) = 0

is satisfied. If λ0 is an eigenvalue, then to find a corresponding eigenvector
we want to find a nonzero vector x so that

Ax = λ0x

or, equivalently,
(A− λ0I)x = 0.

Example 2.13 Find eigenpairs for

A =

[

0 1
−2 −3

]

.

The characteristic equation of A is

det (A− λI) =

∣

∣

∣

∣

−λ 1
−2 −3 − λ

∣

∣

∣

∣

= 0.

Simplifying, we have

λ2 + 3λ+ 2 = (λ+ 2)(λ+ 1) = 0.

Hence the eigenvalues are λ1 = −2, λ2 = −1. To find an eigenvector
corresponding to λ1 = −2, we solve

(A− λ1I)x = (A+ 2I)x = 0

or
[

2 1
−2 −1

] [

x1

x2

]

=

[

0
0

]

.

It follows that

−2,

[

1
−2

]
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is an eigenpair for A. Similarly, we get that

−1,

[

1
−1

]

is an eigenpair for A. △
Theorem 2.14 If λ0, x0 is an eigenpair for the constant n× n matrix A,
then

x(t) = eλ0tx0, t ∈ R,

defines a solution x of

x′ = Ax (2.7)

on R.

Proof Let

x(t) = eλ0tx0,

then

x′(t) = λ0e
λ0tx0

= eλ0tλ0x0

= eλ0tAx0

= Aeλ0tx0

= Ax(t),

for t ∈ R. �

Example 2.15 Solve the differential equation

x′ =

[

0 1
−2 −3

]

x.

From Example 2.13 we get that the eigenpairs for

A :=

[

0 1
−2 −3

]

are

−2,

[

1
−2

]

and − 1,

[

1
−1

]

.

Hence by Theorem 2.14 the vector functions φ1, φ2 defined by

φ1(t) = e−2t

[

1
−2

]

, φ2(t) = e−t
[

1
−1

]

,

are solutions on R. Since the vector functions φ1, φ2 are linearly indepen-
dent (show this) on R, a general solution x is given by

x(t) = c1e
−2t

[

1
−2

]

+ c2e
−t
[

1
−1

]

,

t ∈ R. △
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Theorem 2.16 If x = u+ iv is a complex vector-valued solution of (2.3),
where u, v are real vector-valued functions, then u, v are real vector-valued
solutions of (2.3).

Proof Assume x is as in the statement of the theorem. Then

x′(t) = u′(t) + iv′(t) = A(t) [u(t) + iv(t)] , for t ∈ I,

or
u′(t) + iv′(t) = A(t)u(t) + iA(t)v(t), for t ∈ I.

Equating real and imaginary parts, we have the desired results

u′(t) = A(t)u(t), v′(t) = A(t)v(t), for t ∈ I. �

Example 2.17 Solve the differential equation

x′ =

[

3 1
−13 −3

]

x. (2.8)

The characteristic equation of the coefficient matrix is

λ2 + 4 = 0

and the eigenvalues are

λ1 = 2i, λ2 = −2i.

To find an eigenvector corresponding to λ1 = 2i, we solve

(A− 2iI)x = 0

or
[

3 − 2i 1
−13 −3 − 2i

] [

x1

x2

]

=

[

0
0

]

.

Hence we want
(3 − 2i)x1 + x2 = 0.

It follows that

2i,

[

1
−3 + 2i

]

is an eigenpair for A. Hence by Theorem 2.14 the vector function φ defined
by

φ(t) = e2it
[

1
−3 + 2i

]

= [cos(2t) + i sin(2t)]

[

1
−3 + 2i

]

=

[

cos(2t)
−3 cos(2t) − 2 sin(2t)

]

+ i

[

sin(2t)
2 cos(2t) − 3 sin(2t)

]

is a solution. Using Theorem 2.16, we get that the vector functions φ1, φ2

defined by

φ1(t) =

[

cos(2t)
−3 cos(2t) − 2 sin(2t)

]

, φ2(t) =

[

sin(2t)
2 cos(2t) − 3 sin(2t)

]
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are real vector-valued solutions of (2.8). Since φ1, φ2 are linearly indepen-
dent (show this) on R, we have by Theorem 2.11 that a general solution x
of (2.8) is given by

x(t) = c1

[

cos(2t)
−3 cos(2t) − 2 sin(2t)

]

+ c2

[

sin(2t)
2 cos(2t) − 3 sin(2t)

]

,

for t ∈ R. △

Example 2.18 Let’s solve the system in Example 2.2 involving two masses
attached to springs for the special case that all the parameters are equal
to one.

In this case we have

A =









0 1 0 0
−2 −1 1 0
0 0 0 1
1 0 −2 −1









.

By expanding det(A − λI) along the first row, we get the characteristic
equation

0 = det(A− λI) = λ(λ+ 1)(λ2 + λ+ 2) + 2(λ2 + λ+ 2) − 1

= (λ2 + λ+ 2)2 − 1

= (λ2 + λ+ 1)(λ2 + λ+ 3).

Hence the eigenvalues of A are

λ = −1

2
±

√
3

2
i, −1

2
±

√
11

2
i.

As in the Example 2.17, the eigenpairs are computed to be

−1

2
±

√
3

2
i,









1

− 1
2 ±

√
3

2 i
1

− 1
2 ±

√
3

2 i









and − 1

2
±

√
11

2
i,









1

− 1
2 ±

√
11
2 i

−1
1
2 ∓

√
11
2 i









(use your calculator to check this). Complex vector solutions corresponding
to the first two eigenpairs are

e(−
1
2±

√
3

2 i)t









1

− 1
2 ±

√
3

2 i
1

− 1
2 ±

√
3

2 i









,

and complex vector solutions for the remaining eigenpairs are obtained in a
similar way. Finally, by multiplying out the complex solutions and taking
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real and imaginary parts, we obtain four real solutions. The first two are

e−
t
2











cos
√

3
2 t

− 1
2 cos

√
3

2 t−
√

3
2 sin

√
3

2 t

cos
√

3
2 t

− 1
2 cos

√
3

2 t−
√

3
2 sin

√
3

2 t











, e−
t
2











sin
√

3
2 t√

3
2 cos

√
3

2 t− 1
2 sin

√
3

2 t

sin
√

3
2 t√

3
2 cos

√
3

2 t− 1
2 sin

√
3

2 t











,

and the second two are

e−
t
2









cos(at)
− 1

2 cos(at) − a sin(at)
− cos(at)

1
2 cos(at) + a sin(at)









, e−
t
2









sin(at)
a cos(at) − 1

2 sin(at)
− sin(at)

−a cos(at) + 1
2 sin(at)









,

where a =
√

11
2 . We will show later (Example 2.26) that these four solutions

are linearly independent on R, so a general linear combination of them gives
a general solution of the mass-spring problem. Note that as t → ∞, the
masses must experience exponentially decreasing oscillations about their
equilibrium positions. △

If the matrix A has n linearly independent eigenvectors, then Theorem
2.14 can be used to generate a general solution of x′ = Ax (see Exercise
2.15). The following example shows that an n × n constant matrix may
have fewer than n linearly independent eigenvectors.

Example 2.19 Consider the vector differential equation x′ = Ax, where

A :=

[

1 1
−1 3

]

.

The characteristic equation for A is

λ2 − 4λ+ 4 = 0,

so λ1 = λ2 = 2 are the eigenvalues. Corresponding to the eigenvalue 2
there is only one linearly independent eigenvector, and so we cannot use
Theorem 2.14 to solve this differential equation. Later (see Example 2.36)
we will use Putzer’s algorithm (Theorem 2.35) to solve this differential
equation. △

We now get some results for the linear vector differential equation (2.3).
We define the matrix differential equation

X ′ = A(t)X, (2.9)

where

X :=









x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · ·
xn1 xn2 · · · xnn
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and

X ′ :=









x′11 x′12 · · · x′1n
x′21 x′22 · · · x′2n
· · · · · ·
x′n1 x′n2 · · · x′nn









are n×n matrix variables and A is a given n×n continuous matrix function
on an interval I, to be the matrix differential equation corresponding to
the vector differential equation (2.3). We say that a matrix function Φ is
a solution of (2.9) on I provided Φ is a continuously differentiable n × n
matrix function on I and

Φ′(t) = A(t)Φ(t),

for t ∈ I. The following theorem gives a relationship between the vector
differential equation (2.3) and the matrix differential equation (2.9).

Theorem 2.20 Assume A is a continuous n × n matrix function on an
interval I and assume that Φ defined by

Φ(t) = [φ1(t), φ2(t), · · · , φn(t)] , t ∈ I,

is the n × n matrix function with columns φ1(t), φ2(t), · · · , φn(t). Then Φ
is a solution of the matrix differential equation (2.9) on I iff each column
φi is a solution of the vector differential equation (2.3) on I for 1 ≤ i ≤ n.
Furthermore, if Φ is a solution of the matrix differential equation (2.9),
then

x(t) = Φ(t)c

is a solution of the vector differential equation (2.3) for any constant n× 1
vector c.

Proof Assume φ1, φ2, · · · , φn are solutions of (2.3) on I and define the
n× n matrix function Φ by

Φ(t) = [φ1(t), φ2(t), · · · , φn(t)] , t ∈ I.

Then Φ is a continuously differentiable matrix function on I and

Φ′(t) = [φ′1(t), φ
′
2(t), · · · , φ′n(t)]

= [A(t)φ1(t), A(t)φ2(t), · · · , A(t)φn(t)]

= A(t) [φ1(t), φ2(t), · · · , φn(t)]

= A(t)Φ(t),

for t ∈ I. Hence Φ is a solution of the matrix differential equation (2.9)
on I. We leave it to the reader to show if Φ is a solution of the matrix
differential equation (2.9) on I, then its columns are solutions of the vector
differential equation (2.3) on I.

Next assume that the n × n matrix function Φ is a solution of the
matrix differential equation (2.9) on I and let

x(t) := Φ(t)c, for t ∈ I,
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where c is a constant n× 1 vector. Then

x′(t) = Φ′(t)c

= A(t)Φ(t)c

= A(t)x(t),

for t ∈ I. This proves the last statement in this theorem. �

Theorem 2.21 (Existence-Uniqueness Theorem) Assume A is a continu-
ous matrix function on an interval I. Then the IVP

X ′ = A(t)X, X(t0) = X0,

where t0 ∈ I and X0 is an n× n constant matrix, has a unique solution X
that is a solution on the whole interval I.

Proof This theorem follows from Theorem 2.3 and the fact that X is a
solution of the matrix equation (2.9) iff each of its columns is a solution of
the vector equation (2.3). �

We will use the following definition in the next theorem.

Definition 2.22 Let

A(t) =









a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
· · · · · ·
an1(t) an2(t) · · · ann(t)









.

Then we define the trace of A(t) by

tr[A(t)] = a11(t) + a22(t) + · · · + ann(t).

Theorem 2.23 (Liouville’s Theorem) Assume φ1, φ2, · · · , φn are n so-
lutions of the vector differential equation (2.3) on I and Φ is the matrix
function with columns φ1, φ2, · · · , φn. Then if t0 ∈ I,

detΦ(t) = e
R

t

t0
tr[A(s)] ds

detΦ(t0),

for t ∈ I.

Proof We will just prove this theorem in the case when n = 2. Assume
φ1, φ2 are n = 2 solutions of the vector equation (2.1) on I and Φ(t) is the
matrix with columns

φ1(t) =

[

φ11(t)
φ21(t)

]

, φ2(t) =

[

φ12(t)
φ22(t)

]

.

Let

u(t) = detΦ(t) =

∣

∣

∣

∣

φ11(t) φ12(t)
φ21(t) φ22(t)

∣

∣

∣

∣

,
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for t ∈ I. Taking derivatives we get

u′(t) =

∣

∣

∣

∣

φ′11(t) φ′12(t)
φ21(t) φ22(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

φ11(t) φ12(t)
φ′21(t) φ′22(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

a11(t)φ11(t) + a12(t)φ21(t) a11(t)φ12(t) + a12(t)φ22(t)
φ21(t) φ22(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

φ11(t) φ12(t)
a21(t)φ11(t) + a22(t)φ21(t) a21(t)φ12(t) + a22(t)φ22(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

a11(t)φ11(t) a11(t)φ12(t)
φ21(t) φ22(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

φ11(t) φ12(t)
a22(t)φ21(t) a22(t)φ22(t)

∣

∣

∣

∣

= a11(t)

∣

∣

∣

∣

φ11(t) φ12(t)
φ21(t) φ22(t)

∣

∣

∣

∣

+ a22(t)

∣

∣

∣

∣

φ11(t) φ12(t)
φ21(t) φ22(t)

∣

∣

∣

∣

= [a11(t) + a22(t)]

∣

∣

∣

∣

φ11(t) φ12(t)
φ21(t) φ22(t)

∣

∣

∣

∣

= tr[A(t)] det Φ(t)

= tr[A(t)]u(t).

Solving the differential equation u′ = tr[A(t)]u, we get

u(t) = u(t0)e
R

t

t0
tr[A(s)] ds

, for t ∈ I,

or, equivalently,

detΦ(t) = e
R

t

t0
tr[A(s)] ds

detΦ(t0), for t ∈ I.

�

Corollary 2.24 Assume φ1, φ2, · · · , φn are n solutions of the vector equa-
tion (2.3) on I and Φ is the matrix function with columns φ1, φ2, · · · , φn.
Then either
(a) detΦ(t) = 0, for all t ∈ I,

or
(b) detΦ(t) 6= 0, for all t ∈ I.
Case (a) holds iff the solutions φ1, φ2, · · · , φn are linearly dependent on I,
while case (b) holds iff the solutions φ1, φ2, · · · , φn are linearly independent
on I.

Proof The first statement of this theorem follows immediately from Liou-
ville’s formula in Theorem 2.23. The proof of the statements concerning
linear independence and linear dependence is left as an exercise (see Exer-
cise 2.24). �

It follows from Corollary 2.24 that if φ1, φ2, · · · , φn are n solutions of
the vector equation (2.3) on I and Φ is the matrix function with columns
φ1, φ2, · · · , φn and t0 ∈ I, then φ1, φ2, · · · , φn are linearly independent on
I iff

detΦ(t0) 6= 0, for any t0 ∈ I.
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We show how to use this in the next example.

Example 2.25 Show that the vector functions φ1, φ2 defined by

φ1(t) =

[

cos(2t)
−3 cos(2t) − 2 sin(2t)

]

, φ2(t) =

[

sin(2t)
2 cos(2t) − 3 sin(2t)

]

,

for t ∈ R are linearly independent on R.
In Example 2.17 we saw that φ1, φ2 are solutions of the vector differ-

ential equation (2.8) on R. Let Φ be the matrix function with columns φ1

and φ2, respectively. Then

detΦ(0) =

∣

∣

∣

∣

1 0
−3 2

∣

∣

∣

∣

= 2 6= 0.

Hence φ1, φ2 are linearly independent on R. △
Example 2.26 Let’s show that the four real solutions computed in Exam-
ple 2.18 involving the oscillations of two masses are linearly independent
on R.

If we evaluate each solution at t = 0, then we obtain the following
determinant:

∣

∣

∣

∣

∣

∣

∣

∣

1 0 1 0

− 1
2

√
3

2 − 1
2

√
11
2

1 0 −1 0

− 1
2

√
3

2
1
2 −

√
11
2

∣

∣

∣

∣

∣

∣

∣

∣

,

which has value
√

33, so linear independence is established. △
In the preceding examples, it was essential that the vector functions

were solutions of a vector equation of the form (2.3). In the following
example, two linearly independent vector functions on an interval I are
shown to constitute a matrix with zero determinant at a point t0 ∈ I.

Example 2.27 Show that the vector functions φ1, φ2 defined by

φ1(t) =

[

t2

1

]

, φ2(t) =

[

t · |t|
1

]

,

for t ∈ R are linearly independent on R.
Assume c1, c2 are constants such that

c1φ1(t) + c2φ2(t) = 0,

for t ∈ R. Then

c1

[

t2

1

]

+ c2

[

t · |t|
1

]

=

[

0
0

]

,

for t ∈ R. This implies that

c1t
2 + c2t · |t| = 0,

for t ∈ R. Letting t = 1 and t = −1, we get the two equations

c1 + c2 = 0

c1 − c2 = 0,
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respectively. This implies that c1 = c2 = 0, which gives us that φ1, φ2 are
linearly independent on R. Notice that if Φ(t) = [φ1(t), φ2(t)], then

detΦ(0) =

∣

∣

∣

∣

0 0
1 1

∣

∣

∣

∣

= 0.

It must follow that

φ1(t) =

[

t2

1

]

, φ2(t) =

[

t · |t|
1

]

are not solutions of a two-dimensional vector differential equation of the
form (2.3) on the interval I = R. △
Definition 2.28 An n× n matrix function Φ is said to be a fundamental
matrix for the vector differential equation (2.3) provided Φ is a solution of
the matrix equation (2.9) on I and detΦ(t) 6= 0 on I.

Theorem 2.29 An n× n matrix function Φ is a fundamental matrix for
the vector differential equation (2.3) iff the columns of Φ are n linearly
independent solutions of (2.3) on I. If Φ is a fundamental matrix for the
vector differential equation (2.3), then a general solution x of (2.3) is given
by

x(t) = Φ(t)c, t ∈ I,

where c is an arbritrary n × 1 constant vector. There are infinitely many
fundamental matrices for the differential equation (2.3).

Proof Assume Φ is an n × n matrix function whose columns are linearly
independent solutions of (2.3) on I. Since the columns of Φ are solutions of
(2.3), we have by Theorem 2.20 that Φ is a solution of the matrix equation
(2.9). Since the columns of Φ are linearly independent solutions of (2.9),
we have by Corollary 2.24 that detΦ(t) 6= 0 on I. Hence Φ is a fundamental
matrix for the vector equation (2.3). We leave it to the reader to show that
if Φ is a fundamental matrix for the vector differential equation (2.3), then
the columns of Φ are linearly independent solutions of (2.3) on I. There
are infinitely many fundamental matrices for (2.3) since for any nonsingular
n× n matrix X0 the solution of the IVP

X ′ = A(t)X, X(t0) = X0,

is a fundamental matrix for (2.3) (a nonsingular matrix is a matrix whose
determinant is different than zero).

Next assume that Φ is a fundamental matrix for (2.3). Then by The-
orem 2.20

x(t) = Φ(t)c,

for any n × 1 constant vector c, is a solution of (2.3). Now let z be an
arbitrary but fixed solution of (2.3). Let t0 ∈ I and define

c0 = Φ−1(t0)z(t0).
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Then z and Φc0 are solutions of (2.3) with the same vector value at t0.
Hence by the uniqueness of solutions to IVPs (Theorem 2.3),

z(t) = Φ(t)c0.

Therefore,

x(t) = Φ(t)c, for t ∈ I,

where c is an arbitrary n× 1 constant vector defines a general solution of
(2.3). �

Example 2.30 Find a fundamental matrix Φ for

x′ =

[

−2 3
2 3

]

x. (2.10)

Verify that Φ is a fundamental matrix and then write down a general
solution of this vector differential equation in terms of this fundamental
matrix.

The characteristic equation is

λ2 − λ− 12 = 0

and so the eigenvalues are λ1 = −3, λ2 = 4. Corresponding eigenvectors
are

[

3
−1

]

and

[

1
2

]

.

Hence the vector functions φ1, φ2 defined by

φ1(t) = e−3t

[

3
−1

]

and φ2(t) = e4t
[

1
2

]

,

for t ∈ R are solutions of (2.10). It follows from Theorem 2.20 that the
matrix function Φ defined by

Φ(t) = [φ1(t), φ2(t)] =

[

3e−3t e4t

−e−3t 2e4t

]

,

for t ∈ R is a matrix solution of the matrix equation corresponding to (2.9).
Since

det Φ(t) =

∣

∣

∣

∣

3e−3t e4t

−e−3t 2e4t

∣

∣

∣

∣

= 7et 6= 0,

for all t ∈ R, Φ is a fundamental matrix of (2.10) on R. It follows from
Theorem 2.29 that a general solution x of (2.10) is given by

x(t) = Φ(t)c =

[

3e−3t e4t

−e−3t 2e4t

]

c,

for t ∈ R, where c is an arbritrary 2 × 1 constant vector. △
Theorem 2.31 If Φ is a fundamental matrix for (2.3), then Ψ = ΦC
where C is an arbitrary n × n nonsingular constant matrix is a general
fundamental matrix of (2.3).
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Proof Assume Φ is a fundamental matrix for (2.3) and set

Ψ = ΦC,

where C is an n×n constant matrix. Then Ψ is continuously differentiable
on I and

Ψ′(t) = Φ′(t)C

= A(t)Φ(t)C

= A(t)Ψ(t).

Hence Ψ = ΦC is a solution of the matrix equation (2.9). Now assume that
C is also nonsingular. Since

det [Ψ(t)] = det [Φ(t)C]

= det [Φ(t)] det [C]

6= 0

for t ∈ I, Ψ = ΦC is a fundamental matrix of (2.9). It remains to show
any fundamental matrix is of the correct form. Assume Ψ is an arbitrary
but fixed fundamental matrix of (2.3). Let t0 ∈ I and let

C0 := Φ−1(t0)Ψ(t0).

Then C0 is a nonsingular constant matrix and

Ψ(t0) = Φ(t0)C0

and so by the uniqueness theorem (Theorem 2.21)

Ψ(t) = Φ(t)C0, for t ∈ I.

�

2.3 The Matrix Exponential Function

In this section, we show how to compute a fundamental matrix for the
linear system with constant coefficients

x′ = Ax.

Specifically, we will compute the special fundamental matrix whose initial
value is the identity matrix. This matrix function turns out to be an
extension of the familiar exponential function from calculus. Here is the
definition:

Definition 2.32 Let A be an n× n constant matrix. Then we define the
matrix exponential function by eAt is the solution of the IVP

X ′ = AX, X(0) = I,

where I is the n× n identity matrix.

Before we give a formula for eAt (see Theorem 2.35) we recall without
proof the following very important result from linear algebra. In Exercise
2.29 the reader is asked to prove Theorem 2.33 for 2 × 2 matrices.
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Theorem 2.33 (Cayley-Hamilton Theorem) Every n×n constant matrix
satisfies its characteristic equation.

Example 2.34 Verify the Cayley-Hamilton Theorem (Theorem 2.33) di-
rectly for the matrix

A =

[

2 3
4 1

]

.

The characteristic equation for A is
∣

∣

∣

∣

2 − λ 3
4 1 − λ

∣

∣

∣

∣

= λ2 − 3λ− 10 = 0.

Now

A2 − 3A− 10I =

[

16 9
12 13

]

−
[

6 9
12 3

]

−
[

10 0
0 10

]

=

[

0 0
0 0

]

,

which is what we mean by A satisfies its characteristic equation. △
Theorem 2.35 (Putzer Algorithm for Finding eAt) Let λ1, λ2, · · · , λn be
the (not necessarily distinct) eigenvalues of the matrix A. Then

eAt =
n−1
∑

k=0

pk+1(t)Mk,

where M0 := I,

Mk :=

k
∏

i=1

(A− λiI) ,

for 1 ≤ k ≤ n and the vector function p defined by

p(t) =









p1(t)
p2(t)
· · ·
pn(t)









,

for t ∈ R, is the solution of the IVP

p′ =















λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 λn















p, p(0) =















1
0
0
...
0















.

Proof Let

Φ(t) :=
n−1
∑

k=0

pk+1(t)Mk, for t ∈ R,
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where pk, 1 ≤ k ≤ n and Mk, 0 ≤ k ≤ n are as in the statement of this
theorem. Then by the uniqueness theorem (Theorem 2.21) it suffices to
show that Φ satisfies the IVP

X ′ = AX, X(0) = I.

First note that

Φ(0) =
n−1
∑

k=0

pk+1(0)Mk

= p1(0)I

= I.

Hence Φ satisfies the correct initial condition. Note that since the vector
function p defined by

p(t) :=









p1(t)
p2(t)
· · ·
pn(t)









is the solution of the IVP

p′ =















λ1 0 0 · · · 0
1 λ2 0 · · · 0
0 1 λ3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 λn















p, p(0) =















1
0
0
...
0















,

we get that

p′1(t) = λ1p1(t),

p′i(t) = pi−1(t) + λipi(t),

for t ∈ R, 2 ≤ i ≤ n.
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Now consider, for t ∈ R,

Φ′(t) −AΦ(t)

=
n−1
∑

k=0

p′k+1(t)Mk −A
n−1
∑

k=0

pk+1(t)Mk

= λ1p1(t)M0 +

n−1
∑

k=1

[λk+1pk+1(t) + pk(t)]Mk −
n−1
∑

k=0

pk+1(t)AMk

= λ1p1(t)M0 +

n−1
∑

k=1

[λk+1pk+1(t) + pk(t)]Mk

−
n−1
∑

k=0

pk+1(t) [Mk+1 + λk+1IMk]

=

n−1
∑

k=1

pk(t)Mk −
n−1
∑

k=0

pk+1(t)Mk+1

= −pn(t)Mn

= 0,

since Mn = 0, by the Cayley-Hamilton theorem (Theorem 2.33). �

Example 2.36 Use the Putzer algorithm (Theorem 2.35) to find eAt when

A :=

[

1 1
−1 3

]

.

The characteristic equation for A is

λ2 − 4λ+ 4 = 0,

so λ1 = λ2 = 2 are the eigenvalues. By the Putzer algorithm (Theorem
2.35),

eAt =

1
∑

k=0

pk+1(t)Mk = p1(t)M0 + p2(t)M1.

Now

M0 = I =

[

1 0
0 1

]

and

M1 = A− λ1I = A− 2I =

[

−1 1
−1 1

]

.

Now the vector function p given by

p(t) :=

[

p1(t)
p2(t)

]

,

for t ∈ R is the solution of the IVP

p′ =

[

2 0
1 2

]

p, p(0) =

[

1
0

]

.
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Hence the first component p1 of p solves the IVP

p′1 = 2p1, p1(0) = 1

and so we get that

p1(t) = e2t.

Next the second component p2 of p is a solution of the IVP

p′2 = e2t + 2p2, p2(0) = 0.

It follows that

p2(t) = te2t.

Hence

eAt = p1(t)M0 + p2(t)M1

= e2t
[

1 0
0 1

]

+ te2t
[

−1 1
−1 1

]

= e2t
[

1 − t t
−t 1 + t

]

.

It follows from Defintion 2.28 and Theorem 2.29 that a general solution of
the vector differential equation

x′ =

[

1 1
−1 3

]

x (2.11)

is given by

x(t) = eAtc

= c1e
2t

[

1 − t
−t

]

+ c2e
2t

[

t
1 + t

]

,

for t ∈ R. Note that in Example 2.19 we pointed out that we can not solve
the vector differential equation (2.11) using Theorem 2.14. △
Example 2.37 (Complex Eigenvalues) Use the Putzer algorithm (Theo-
rem 2.35) to find eAt when

A :=

[

1 −1
5 −1

]

.

The characteristic equation for A is

λ2 + 4 = 0,

so λ1 = 2i, λ2 = −2i are the eigenvalues. By the Putzer algorithm (Theo-
rem 2.35),

eAt =

1
∑

k=0

pk+1(t)Mk = p1(t)M0 + p2(t)M1.

Now

M0 = I =

[

1 0
0 1

]
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and

M1 = A− λ1I =

[

1 − 2i −1
5 −1 − 2i

]

.

Now the vector function p given by

p(t) :=

[

p1(t)
p2(t)

]

for t ∈ R must be a solution of the IVP

p′ =

[

2i 0
1 −2i

]

p, p(0) =

[

1
0

]

.

Hence p1 is the solution of the IVP

p′1 = (2i)p1, p1(0) = 1,

and we get that

p1(t) = e2it.

Next p2 is the solution of the IVP

p′2 = e2it − (2i)p2, p2(0) = 0.

It follows that

p2(t) =
1

4i
e2it − 1

4i
e−2it

=
1

2
sin(2t),

for t ∈ R. Hence

eAt = p1(t)M0 + p2(t)M1

= e2it
[

1 0
0 1

]

+
1

2
sin(2t)

[

1 − 2i −1
5 −1 − 2i

]

= [cos(2t) + i sin(2t)]

[

1 0
0 1

]

+
1

2
sin(2t)

[

1 − 2i −1
5 −1 − 2i

]

=

[

cos(2t) + 1
2 sin(2t) − 1

2 sin(2t)
5
2 sin(2t) cos(2t) − 1

2 sin(2t)

]

,

for t ∈ R. △
Example 2.38 Use the Putzer algorithm (Theorem 2.35) to help you solve
the vector differential equation

x′ =





2 0 0
1 2 0
1 0 3



 x. (2.12)

Let A be the coefficient matrix in (2.12). The characteristic equation
for A is

(λ− 2)
2
(λ− 3) = 0,
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so λ1 = λ2 = 2, λ3 = 3 are the eigenvalues of A. By the Putzer algorithm
(Theorem 2.35),

eAt =
2
∑

k=0

pk+1(t)Mk = p1(t)M0 + p2(t)M1 + p3(t)M2.

Now

M0 = I =





1 0 0
0 1 0
0 0 1



 ,

M1 = (A− λ1I) =





0 0 0
1 0 0
1 0 1



 ,

and

M2 = (A− λ2I) (A− λ1I)

=





0 0 0
1 0 0
1 0 1









0 0 0
1 0 0
1 0 1





=





0 0 0
0 0 0
1 0 1



 .

Now the vector function p given by

p(t) :=





p1(t)
p2(t)
p3(t)



 ,

for t ∈ R solves the IVP

p′ =





2 0 0
1 2 0
0 1 3



 p, p(0) =





1
0
0



 .

Since p1 is the solution of the IVP

p′1 = 2p1, p1(0) = 1,

we get that

p1(t) = e2t.

Next p2 is the solution of the IVP

p′2 = e2t + 2p2, p2(0) = 0.

It follows that

p2(t) = te2t.

Finally, p3 is the solution of the IVP

p′3 = te2t + 3p3, p3(0) = 0.
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Solving this IVP, we obtain

p3(t) = −te2t − e2t + e3t.

Hence

eAt = p1(t)M0 + p2(t)M1 + p3(t)M2

= e2t





1 0 0
0 1 0
0 0 1



+ te2t





0 0 0
1 0 0
1 0 1





+
(

−te2t − e2t + e3t
)





0 0 0
0 0 0
1 0 1





=





e2t 0 0
te2t e2t 0

e3t − e2t 0 e3t



 .

Hence a general solution x of (2.12) is given by

x(t) = eAtc

=





e2t 0 0
te2t e2t 0

e3t − e2t 0 e3t



 c

= c1





e2t

te2t

e3t − e2t



+ c2





0
e2t

0



+ c3





0
0
e3t



 ,

for t ∈ R. △
In the following theorem we give some properties of the matrix expo-

nential.

Theorem 2.39 Assume A and B are n× n constant matrices. Then

(i) d
dte

At = AeAt, for t ∈ R,

(ii) det
[

eAt
]

6= 0, for t ∈ R and eAt is a fundamental matrix for
(2.7),

(iii) eAteAs = eA(t+s), for t, s ∈ R,
(iv) {eAt}−1 = e−At, for t ∈ R and, in particular,

{eA}−1 = e−A,

(v) if AB = BA, then eAtB = BeAt, for t ∈ R and, in particular,

eAB = BeA,

(vi) if AB = BA, then eAteBt = e(A+B)t, for t ∈ R and, in particular,

eAeB = e(A+B),

(vii) eAt = I +A t
1! +A2 t2

2! + · · · +Ak t
k

k! + · · · , for t ∈ R,

(viii) if P is a nonsingular matrix, then ePBP
−1

= PeBP−1.
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Proof The result (i) follows immediately from the definition of eAt.
Since eAt is the identity matrix at t = 0 and det(I) = 1 6= 0, we get

from Corollary 2.24 that det(eAt) 6= 0, for all t ∈ R and so (ii) holds.
We now prove that (iii) holds. Fix s ∈ R, let t be a real variable and

let

Φ(t) := eAteAs − eA(t+s).

Then

Φ′(t) = AeAteAs −AeA(t+s)

= A
[

eAteAs − eA(t+s)
]

= AΦ(t),

for t ∈ R. So Φ is a solution of the matrix equation X ′ = AX . Also,
Φ(0) = eAs − eAs = 0, so by the uniqueness theorem, Theorem 2.21,
Φ(t) = 0 for t ∈ R. Hence

eAteAs = eA(t+s),

for t ∈ R. Since s ∈ R is arbitrary, (iii) holds.
To show that (iv) holds, we get by using (iii)

eAte−At = eAteA(−t)

= eA(t+(−t))

= I,

for t ∈ R. This implies that

{eAt}−1 = e−At,

for t ∈ R. Letting t = 1, we get that

{eA}−1 = e−A,

and so (iv) holds.
The proof of (v) is similar to the proof of (iii) and is left as an exercise

(see Exercise 2.39).
To prove (vi), assume AB = BA and let

Φ(t) := eAteBt − e(A+B)t.

Then using the product rule and using (iv),

Φ′(t) = AeAteBt + eAtBeBt − (A+B)e(A+B)t

= AeAteBt +BeAteBt − (A+B)e(A+B)t

= (A+B)
[

eAteBt − e(A+B)t
]

= (A+B)Φ(t),

for t ∈ R. Also, Φ(0) = I − I = 0, so by the uniqueness theorem, Theorem
2.21, Φ(t) = 0 for t ∈ R. Hence

e(A+B)t = eAteBt,
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for t ∈ R. Letting t = 1, we get that

e(A+B) = eAeB

and hence (vi) holds.
We now prove (vii). It can be shown that the infinite series of matrices

I +A
t

1!
+A2 t

2

2!
+ · · · +An

tn

n!
+ · · ·

converges for t ∈ R and that this infinite series of matrices can be differen-
tiated term by term. Let

Φ(t) := I +A
t

1!
+A2 t

2

2!
+ · · · +An

tn

n!
+ · · · ,

for t ∈ R. Then

Φ′(t) = A+A2 t

1!
+A3 t

2

2!
+ · · ·

= A

[

I +A
t

1!
+A2 t

2

2!
+ · · ·

]

= AΦ(t),

for t ∈ R. Since Φ(0) = I, we have by the uniqueness theorem, Theorem
2.21, Φ(t) = eAt, for t ∈ R. Hence

eAt = I + A
t

1!
+A2 t

2

2!
+ · · · ,

for t ∈ R and so (vii) holds.
Finally, (viii) follows from (vii). �

Theorem 2.40 (Variation of Constants Formula) Assume that A is an
n× n continuous matrix function on an interval I, b is a continuous n× 1
vector function on I, and Φ is a fundamental matrix for (2.3). Then the
solution of the IVP

x′ = A(t)x + b(t), x(t0) = x0,

where t0 ∈ I and x0 ∈ Rn, is given by

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)b(s) ds,

for t ∈ I.

Proof The uniqueness of the solution of the given IVP follows from The-
orem 2.3. Let Φ be a fundamental matrix for (2.3) and set

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)b(s) ds,
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for t ∈ I. Then

x′(t) = Φ′(t)Φ−1(t0)x0 + Φ′(t)

∫ t

t0

Φ−1(s)b(s) ds+ Φ(t)Φ−1(t)b(t)

= A(t)Φ(t)Φ−1(t0)x0 +A(t)Φ(t)

∫ t

t0

Φ−1(s)b(s) ds+ b(t)

= A(t)

[

Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)b(s) ds

]

+ b(t)

= A(t)x(t) + b(t),

for t ∈ I. Also,

x(t0) = Φ(t0)Φ
−1(t0)x0

= x0.

�

Corollary 2.41 Assume A is an n × n constant matrix and b is a con-
tinuous n× 1 vector function on an interval I. Then the solution x of the
IVP

x′ = Ax+ b(t), x(t0) = x0,

where t0 ∈ I, x0 ∈ Rn is given by (the reader should compare this to the
variation of constants formula in Theorem 1.6)

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)b(s) ds,

for t ∈ I.

Proof Letting Φ(t) = eAt in the general variation of constants formula in
Theorem 2.40, we get, using the fact that {eAt}−1 = e−At,

x(t) = Φ(t)Φ−1(t0)x0 + Φ(t)

∫ t

t0

Φ−1(s)b(s) ds

= eAte−At0x0 + eAt
∫ t

t0

e−Asb(s) ds

= eA(t−t0)x0 +

∫ t

t0

eA(t−s)b(s) ds,

for t ∈ I. �

In the next theorem we see under a strong assumption (2.13) we can
find a fundamental matrix for the nonautonomous case x′ = A(t)x.

Theorem 2.42 Assume A(t) is a continuous n×n matrix function on an
interval I. If

A(t)A(s) = A(s)A(t) (2.13)
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for all t, s ∈ I, then

Φ(t) := e
R

t

t0
A(s) ds

(defined by it’s power series (2.14)) is a fundamental matrix for x′ = A(t)x
on I.

Proof Let

Φ(t) := e
R

t

t0
A(s) ds

:=

∞
∑

k=0

1

k!

[∫ t

t0

A(s)ds

]k

. (2.14)

We leave it to the reader to show that the infinite series of matrices in
(2.14) converges uniformly on each closed subinterval of I. Differentiating

term by term and using the fact that (2.13) implies that A(t)
∫ t

t0
A(s) ds =

∫ t

t0
A(s) ds A(t) we get

Φ′(t) = A(t)

∞
∑

k=1

1

(k − 1)!

[∫ t

t0

A(s)ds

]k−1

= A(t)

∞
∑

k=0

1

k!

[∫ t

t0

A(s)ds

]k

= A(t)Φ(t).

Since

det Φ(t0) = det I = 1 6= 0,

we have that Φ(t) is a fundamental matrix for the vector differential equa-
tion x′ = A(t)x. �

Note that condition (2.13) holds when either A(t) is a diagonal matrix
or A(t) ≡ A, a constant matrix.

Example 2.43 Use the variation of constants formula to solve the IVP

x′ =

[

1 1
−1 3

]

x+

[

e2t

2e2t

]

, x(0) =

[

2
1

]

.

Since

A :=

[

1 1
−1 3

]

,

we have from Example 2.36 that

eAt = e2t
[

1 − t t
−t 1 + t

]

.
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From the variation of constants formula given in Corollary 2.41,

x(t) = e2t
[

1 − t t
−t 1 + t

] [

2
1

]

+

∫ t

0

e2(t−s)
[

1 − t+ s t− s
−t+ s 1 + t− s

] [

e2s

2e2s

]

ds

= e2t
[

2 − 2t+ t
−2t+ 1 + t

]

+ e2t
∫ t

0

[

1 − t+ s+ 2t− 2s
−t+ s+ 2 + 2t− 2s

]

ds

= e2t
[

2 − t
1 − t

]

+ e2t
∫ t

0

[

1 + t− s
2 + t− s

]

ds

= e2t
[

2 − t
1 − t

]

+ e2t

[

t+ t2

2

2t+ t2

2

]

= e2t

[

2 + t2

2

1 + t+ t2

2

]

,

for t ∈ R. △

Example 2.44 Use the variation of constants formula to solve the IVP

x′ =





1 2 0
0 1 2
0 0 1



x+





2tet

0
0



 , x(0) =





2
1
0



 .

Let

A :=





1 2 0
0 1 2
0 0 1



 .

We will find eAt by an alternate method. Note that

eAt = e(B+C)t,

where

B =





1 0 0
0 1 0
0 0 1



 , C =





0 2 0
0 0 2
0 0 0



 .

Since BC = CB,

eAt = e(B+C)t = eBteCt.

It follows from Exercise 2.41 that

eBt =





et 0 0
0 et 0
0 0 et



 .



2.3. The Matrix Exponential Function 55

Also,

eCt = I + C
t

1!
+ C2 t

2

2!
+ C3 t

3

3!
+ · · ·

=





1 0 0
0 1 0
0 0 1



+





0 2 0
0 0 2
0 0 0



 t+





0 0 4
0 0 0
0 0 0





t2

2!

=





1 2t 2t2

0 1 2t
0 0 1



 .

Hence

eAt = eBteCt

=





et 0 0
0 et 0
0 0 et









1 2t 2t2

0 1 2t
0 0 1





=





et 2tet 2t2et

0 et 2tet

0 0 et



 .

From the variation of constants formula given in Corollary 2.41

x(t) =





et 2tet 2t2et

0 et 2tet

0 0 et









2
1
0





+

∫ t

0





et−s 2(t− s)et−s 2(t− s)2et−s

0 et−s 2(t− s)et−s

0 0 et−s









2ses

0
0



 ds

=





2et + 2tet

et

0



+ et
∫ t

0





2s
0
0



 ds

=





2et + 2tet

et

0



+





t2et

0
0





=





2et + 2tet + t2et

et

0



 ,

for t ∈ R. △

Example 2.45 Use Theorem 2.40 and Theorem 2.42 to help you solve the
IVP

x′ =

[

1
t 0
0 2

t

]

x+

[

t2

t

]

, x(1) =

[

1
−2

]

.
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on the interval I = (0,∞). By Theorem 2.42,

Φ(t) = e
R

t

1
A(s) ds = e

R

t

1

2

4

1
s 0
0 2

s

3

5 ds

= e

2

4

ln t 0
0 2 ln t

3

5

=

[

t 0
0 t2

]

is a fundamental matrix for

x′ =

[

1
t 0
0 2

t

]

x.

Using the variation of constants formula in Theorem 2.40 we get the solu-
tion x(t) of the given IVP is given by

x(t) = Φ(t)Φ−1(1)x0 + Φ(t)

∫ t

1

Φ−1(s)b(s)ds

=

[

t 0
0 t2

]

I

[

1
−2

]

+

[

t 0
0 t2

] ∫ t

1

[

1
s 0
0 1

s2

] [

s2

s

]

ds

=

[

t
−2t2

]

+

[

t 0
0 t2

] ∫ t

1

[

s
1
s

]

ds

=

[

t
−2t2

]

+

[

1
2 t

3 − 1
2 t

t2 ln t

]

=

[

1
2 t

3 + 1
2 t

−2t2 + t2 ln t

]

.

△
Definition 2.46 Let Rn denote the set of all n×1 constant vectors. Then
a norm on Rn is a function ‖ · ‖ : Rn → R having the following properties:

(i) ‖x‖ ≥ 0, for all x ∈ Rn,
(ii) ‖x‖ = 0 iff x = 0,
(iii) ‖cx‖ = |c| · ‖x‖ for all c ∈ R, x ∈ Rn,
(iv) (triangle inequality) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ Rn.

Example 2.47 Three important examples of norms on R
n are

(i) the Euclidean norm (l2 norm) defined by

‖x‖2 :=
√

x2
1 + x2

2 + · · · + x2
n,

(ii) the maximum norm (l∞ norm) defined by

‖x‖∞ := max{|xi| : 1 ≤ i ≤ n},
(iii) the traffic norm (l1 norm) defined by

‖x‖1 := |x1| + |x2| + · · · + |xn|.
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We leave it to the reader to check that these examples are actually norms.
△

A sequence {xk}∞n=1 in Rn is said to converge with respect to a norm
‖ · ‖ on Rn if there is a x0 ∈ Rn such that

lim
k→∞

‖xk − x0‖ = 0.

It can be shown that a sequence in Rn converges with respect to one norm
on Rn iff it converges with respect to any norm on Rn (think about this
for the three norms just listed). Unless otherwise stated we will let ‖ · ‖
represent any norm on R

n.

Definition 2.48 Let φ(t, x0) = eAtx0 denote the solution of the IVP

x′ = Ax, x(0) = x0.

(i) We say that the trivial solution of (2.7) is stable on [0,∞) pro-
vided given any ǫ > 0 there is a δ > 0 such that if ‖y0‖ < δ,
then

‖φ(t, y0)‖ < ǫ,

for t ≥ 0.
(ii) We say that the trivial solution of (2.7) is unstable on [0,∞)

provided it is not stable on [0,∞).
(iii) We say that the trivial solution of (2.7) is globally asymptotically

stable on [0,∞) provided it is stable on [0,∞) and for any y0 ∈
Rn,

lim
t→∞

φ(t, y0) = 0.

The next theorem shows how the eigenvalues of A determine the sta-
bility of the trivial solution of x′ = Ax.

Theorem 2.49 (Stability Theorem) Assume A is an n×n constant matrix.

(i) If A has an eigenvalue with positive real part, then the trivial
solution is unstable on [0,∞).

(ii) If all the eigenvalues of A with zero real parts are simple (mul-
tiplicity one) and all other eigenvalues of A have negative real
parts, then the trivial solution is stable on [0,∞).

(iii) If all the eigenvalues of A have negative real parts, then the trivial
solution of x′ = Ax is globally asymptotically stable on [0,∞).

Proof We will prove only part (iii) of this theorem. The proof of part (i)
is Exercise 2.46. A proof of part (ii) can be based on the Putzer algorithm
(Theorem 2.35) and is similar to the proof of part (iii) of this theorem.

We now prove part (iii) of this theorem. By part (ii) the trivial solution
is stable on [0,∞), so it remains to show that every solution approaches the
zero vector as t → ∞. Let λ1, · · · , λn be the eigenvalues of A, and choose
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δ > 0 so that ℜ(λk) ≤ −δ < 0 for k = 1, 2, · · · , n. Let x0 ∈ Rn, then by
Putzer’s algorithm (Theorem 2.35)

φ(t, x0) = eAtx0 =

n−1
∑

k=0

pk+1(t)Mkx0.

Since p1 solves the IVP

p′1 = λ1p1, p1(0) = 1,

we get
|p1(t)| = |eλ1t| ≤ e−δt,

for all t ≥ 0. Next, p2 satisfies

p′2 = λ2p2 + p1, p2(0) = 0,

so by the variation of constants formula (Theorem 1.6 or Corollary 2.41),

p2(t) =

∫ t

0

eλ2(t−s)eλ1s ds.

Since |eλ1s| ≤ e−δs and |eλ2(t−s)| ≤ e−δ(t−s) for t ≥ s,

|p2(t)| ≤
∫ t

0

e−δ(t−s)e−δs ds = te−δt.

We can continue in this way (by induction) to show

|pk(t)| ≤
tk−1

(k − 1)!
e−δt,

for k = 1, 2, · · · , n. It follows that each pk(t) → 0, as t → ∞, and conse-
quently that

φ(t, x0) =
n−1
∑

k=0

pk+1(t)Mkx0 → 0,

as t→ ∞. �

Example 2.50 In the example involving the vibration of two coupled
masses (see Example 2.18), we showed that the eigenvalues were λ = − 1

2 ±√
3

2 i and λ = − 1
2 ±

√
11
2 i. Since all four eigenvalues have negative real parts,

the origin is globally asymptotically stable. △
Example 2.51 Determine the stability of the trivial solution of

x′ =

[

0 −1
1 0

]

x,

on [0,∞).
The characteristic equation is

λ2 + 1 = 0,

and hence the eigenvalues are λ1 = i, λ2 = −i. Since both eigenvalues have
zero real parts and both eigenvalues are simple, the trivial solution is stable
on [0,∞). △
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Example 2.52 Determine the stability of the trivial solution of

x′ =





−2 1 0
−1 −2 0
0 0 1



x,

on [0,∞).
The characteristic equation is

(λ2 + 4λ+ 5)(λ− 1) = 0

and hence the eigenvalues are λ1 = −2 + i, λ2 = −2− i, and λ3 = 1. Since
the eigenvalue λ3 has a positive real part, the trivial solution is unstable
on [0,∞). △

2.4 Induced Matrix Norm
Definition 2.53 Assume that ‖ · ‖ is a norm on Rn. Let Mn denote the
set of all n × n real matrices. We define the matrix norm on Mn induced
by the vector norm by

‖A‖ := sup
‖x‖=1

‖Ax‖.

Note that we use the same notation for the vector norm and the cor-
responding matrix norm, since from context it should be clear which norm
we mean. To see that ‖A‖ is well defined, assume there is a sequence of
points {xk} in Rn with ‖xk‖ = 1 such that

lim
k→∞

‖Axk‖ = ∞.

Since ‖xk‖ = 1, k = 1, 2, 3, · · · , there is a convergent subsequence {xkj
}.

Let
x0 := lim

j→∞
xkj

.

But then
lim
j→∞

‖Axkj
‖ = ‖Ax0‖,

which gives us a contradiction. Using a similar argument (see Exercise
2.51), it is easy to prove that

‖A‖ := max
‖x‖=1

‖Ax‖.

This induced matrix norm is a norm on Mn (see Exercise 2.50).

Theorem 2.54 The matrix norm induced by the vector norm ‖ · ‖ is given
by

‖A‖ = max
x 6=0

‖Ax||
‖x‖ .

In particular,
‖Ax‖ ≤ ‖A‖ · ‖x‖,

for all x ∈ Rn.
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Proof This result follows from the following statement. If x 6= 0, then

‖Ax‖
‖x‖ = ‖A

(

x

‖x‖

)

‖ = ‖Ay‖,

where y = x
‖x‖ is a unit vector. �

Theorem 2.55 The matrix norm induced by the traffic norm (l1 norm) is
given by

‖A‖1 = max
1≤j≤n

n
∑

i=1

|aij |.

Proof Let ‖ · ‖1 be the traffic norm on Rn, let A ∈ Mn, x ∈ Rn, and
consider

‖Ax‖1 = ‖





∑n
j=1 a1jxj
· · ·

∑n
j=1 anjxj



 ‖1

= |
n
∑

j=1

a1jxj | + · · · + |
n
∑

j=1

anjxj |

≤
n
∑

j=1

|a1j ||xj | + · · · +
n
∑

j=1

|anj ||xj |

=

n
∑

i=1

|ai1||x1| + · · · +
n
∑

i=1

|ain||xn|

≤ max
1≤j≤n

n
∑

i=1

|aij |
n
∑

j=1

|xj |

= max
1≤j≤n

n
∑

i=1

|aij |‖x‖1.

It follows that

‖A‖1 ≤ max
1≤j≤n

n
∑

i=1

|aij |.

We next prove the reverse inequality. To see this, pick j0, 1 ≤ j0 ≤ n,
so that

n
∑

i=1

|aij0 | = max
1≤j≤n

n
∑

i=1

|aij |.
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Let ej0 be the unit vector in Rn in the j0 direction. Then

‖A‖1 = max
‖x‖=1

‖Ax‖1

≥ ‖Aej0‖1

= ‖





a1j0

· · ·
anj0



 ‖1

=

n
∑

i=1

|aij0 |

= max
1≤j≤n

n
∑

i=1

|aij |.

It follows that

‖A‖1 = max
1≤j≤n

n
∑

i=1

|aij |.

�

The proof of the next theorem is Exercise 2.53.

Theorem 2.56 The matrix norm induced by the maximum vector norm
is given by

‖A‖∞ = max
1≤i≤n

n
∑

j=1

|aij |.

One could also prove the following result.

Theorem 2.57 The matrix norm induced by the Euclidean vector norm is
given by

‖A‖2 =
√

λ0,

where λ0 is the largest eigenvaue of ATA.

Note that if I is the identity matrix, then

‖I‖ = max
‖x‖=1

‖Ix‖ = max
‖x‖=1

‖x‖ = 1.

This fact will be used frequently throughout the remainder of this section.
We now define the Lozinski measure of a matrix A and we will see that

this measure can sometimes be used in determining the global asymptotic
stability of the vector equation x′ = Ax.

Definition 2.58 Assume ‖ ·‖ is a matrix norm on Mn induced by a vector
norm ‖ · ‖ on Rn. Then we define the Lozinski measure µ : Mn → R by

µ(A) = lim
h→0+

‖I + hA‖ − 1

h
.
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The limit in the preceding definition exists by Exercise 2.49.
The Lozinski measure is not a norm, but satisfies the properties given

in the following theorem.

Theorem 2.59 (Properties of µ) The function µ satisfies the following
properties:

(i) µ(αA) = αµ(A), for A ∈Mn, α ≥ 0,
(ii) |µ(A)| ≤ ‖A‖ for A ∈Mn,
(iii) µ(A+B) ≤ µ(A) + µ(B) for A,B ∈Mn,
(iv) |µ(A) − µ(B)| ≤ ‖A−B‖ for A,B ∈Mn,
(v) Re(λ) ≤ µ(A) for all eigenvalues λ of A.

Proof Since

µ(0A) = µ(0) = lim
h→0+

‖I + h0‖ − 1

h
= 0 = ‖0‖,

part (i) is true for α = 0. Now assume that α > 0 and consider

µ(αA) = lim
h→0+

‖I + hαA‖ − 1

h

= lim
k→0+

‖I + kA‖ − 1
k
α

= α lim
k→0+

‖I + kA‖ − 1

k

= αµ(A)

and hence (i) is true. Part (ii) follows from the inequalities

|(‖I + hA‖ − 1)| ≤ ‖I‖ + h‖A‖ − 1 = h‖A‖
and the definition of µ(A). To see that (iii) is true, consider

µ(A +B) = lim
h→0+

‖I + h(A+B)‖ − 1

h

= lim
k→0+

‖I + k
2 (A+B)‖ − 1

k
2

= lim
k→0+

‖2I + k(A+B)‖ − 2

k

≤ lim
k→0+

‖I + kA‖ + ‖I + kB‖ − 2

k

= lim
k→0+

‖I + kA‖ − 1

k
+ lim
k→0+

‖I + kB‖ − 1

k

= µ(A) + µ(B).

To prove (iv), note that

µ(A) = µ(A−B +B)

≤ µ(A−B) + µ(B).
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Hence

µ(A) − µ(B) ≤ ‖A−B‖.
Interchanging A and B, we have that

µ(B) − µ(A) ≤ ‖B −A‖ = ‖A−B‖.
Altogether we get the desired result

|µ(A) − µ(B)| ≤ ‖A−B‖.
Finally, to prove (v), let λ0 be an eigenvalue ofA. Let x0 be a corresponding
eigenvector with ‖x0‖ = 1. Consider

lim
h→0+

‖(I + hA)x0‖ − 1

h
= lim

h→0+

‖(1 + hλ0)x0‖ − 1

h

= lim
h→0+

|1 + hλ0| · ‖x0‖ − 1

h

= lim
h→0+

|1 + hλ0| − 1

h

= lim
h→0+

( |1 + hλ0| − 1

h
· |1 + hλ0| + 1

|1 + hλ0| + 1

)

= lim
h→0+

|1 + hλ0|2 − 1

h[|1 + hλ0| + 1]

= lim
h→0+

(1 + hλ0)(1 + hλ̄0) − 1

h[|1 + hλ0| + 1]

= lim
h→0+

(λ0 + λ̄0)h+ h2λ0λ̄0

h[|1 + hλ0| + 1]

=
λ0 + λ̄0

2
= Re(λ0).

On the other hand,

lim
h→0+

‖(I + hA)x0‖ − 1

h
≤ lim

h→0+

‖(I + hA)‖ · ‖x0‖ − 1

h

= lim
h→0+

‖I + hA‖ − 1

h

= µ(A).

So we have that (v) holds. �

Corollary 2.60 If µ(A) < 0, then the trivial solution of the vector equation
x′ = Ax is globally asymptotically stable.

Proof This follows from part (v) of Theorem 2.59 and Theorem 2.49. �

Theorem 2.61 The following hold:
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(i) if µ1 corresponds to the traffic vector norm, then, for A ∈Mn

µ1(A) = max
1≤j≤n







ajj +

n
∑

i=1,i6=j
|aij |







;

(ii) if µ∞ corresponds to the maximum vector norm, then

µ∞(A) = max
1≤i≤n







aii +
n
∑

j=1,j 6=i
|aij |







;

(iii) if µ2 corresponds to the Euclidean norm, then

µ2(A) = max{λ : λ is an eigenvalue of 1
2 (A+AT )}.

Proof We will prove part (i) here. The proof of part (ii) is Exercise 2.59
and the proof of part (iii) is nontrivial, but is left to the reader. Using
Theorem 2.55

µ1(A) = lim
h→0+

‖I + hA‖1 − 1

h

= lim
h→0+

max
1≤j≤n

∑n
i=1,i6=j |haij | + |1 + hajj | − 1

h

= max
1≤j≤n

lim
h→0+

h
∑n

i=1,i6=j |aij | + hajj

h

= max
1≤j≤n







ajj +
n
∑

i=1,i6=j
|aij |







.

�

Example 2.62 The trivial solution of the vector equation

x′ =









−3.3 .3 3 −.4
1 −2 1 1.3

−1.2 .4 −5 .2
−1 .8 .5 −2









x (2.15)

is globally asymptotically stable because

µ1(A) = −.1 < 0,

where A is the coefficient matrix in (2.15). Note that µ∞(A) = 1.3 > 0. △

2.5 Floquet Theory

Differential equations involving periodic functions play an important
role in many applications. Let’s consider the linear system

x′ = A(t)x,
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where the n× n matrix function A is a continuous, periodic function with
smallest positive period ω. Such systems are called Floquet systems and the
study of Floquet systems is called Floquet theory. A natural question is
whether a Floquet system has a periodic solution with period ω. Although
this is not neccessarily the case, it is possible to characterize all the solutions
of such systems and to give conditions under which a periodic solution does
exist. Fortunately, the periodic system turns out to be closely related to a
linear system with constant coefficients, so the properties of these systems
obtained in earlier sections can be applied. In particular, we can easily
answer questions about the stability of periodic systems.
First we need some preliminary results about matrices.

Theorem 2.63 (Jordan Canonical Form) If A is an n×n constant matrix,
then there is a nonsingular n× n constant matrix P so that A = PJP−1,
where J is a block diagonal matrix of the form

J =













J1 0 · · · 0

0 J2
. . .

...
...

. . .
. . . 0

0 · · · 0 Jk













,

where either Ji is the 1 × 1 matrix Ji = [λi] or

Ji =



















λi 1 0 · · · 0

0 λi 1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . λi 1
0 · · · 0 0 λi



















,

1 ≤ i ≤ k, and the λi’s are the eigenvalues of A.

Proof We will only prove this theorem for 2 × 2 matrices A. For a proof
of the general result, see Horn and Johnson [24]. There are two cases:

Case 1: A has two linearly independent eigenvectors x1 and x2.
In this case we have eigenpairs λ1, x

1 and λ2, x
2 of A, where λ1 and λ2

might be the same. Let P be the matrix with columns x1 and x2, that is,

P = [x1 x2].

Then

AP = A[x1 x2]

= [Ax1 Ax2]

= [λ1x
1 λ2x

2]

= PJ,
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where

J =

[

λ1 0
0 λ2

]

.

Hence

A = PJP−1,

where P is of the correct form.
Case 2: Assume A has only one linearly independent eigenvector x1.
Let v be a vector that is independent of x1. By the Cayley-Hamilton

Theorem (Theorem 2.33),

(A− λ1I)(A − λ1I)v = 0,

so

(A− λ1I)v = cx1,

for some c 6= 0. Define x2 = v/c, so that

(A− λ1I)x
2 = x1.

Set

P = [x1 x2].

Then

AP = A[x1 x2]

= [Ax1 Ax2]

= [λ1x
1 λ1x

2 + x1]

= PJ,

where

J =

[

λ1 1
0 λ1

]

.

Hence

A = PJP−1,

where P is of the correct form.
�

Theorem 2.64 (Log of a Matrix) If C is an n×n nonsingular matrix, then
there is a matrix B such that

eB = C.

Proof We will just prove this theorem for 2 × 2 matrices. Let µ1, µ2 be
the eigenvalues of C. Since C is nonsingular µ1, µ2 6= 0. First we prove the
result for two special cases.

Case 1. Assume

C =

[

µ1 0
0 µ2

]

.
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In this case we seek a diagonal matrix

B =

[

b1 0
0 b2

]

,

so that eB = C. That is, we want to choose b1 and b2 so that

eB =

[

eb1 0
0 eb2

]

=

[

µ1 0
0 µ2

]

.

Hence we can just take

B =

[

lnµ1 0
0 lnµ2

]

.

Case 2. Assume

C =

[

µ1 1
0 µ1

]

.

In this case we seek a matrix B of the form

B =

[

a1 a2

0 a1

]

,

so that eB = C. That is, we want to choose a1 and a2 so that

eB =

[

ea1 a2e
a1

0 ea1

]

=

[

µ1 1
0 µ1

]

.

Hence we can just take

B =

[

lnµ1
1
µ1

0 lnµ1

]

.

Case 3. C is an arbritary 2 × 2 nonsingular constant matrix. By
the Jordan canonical form theorem (Theorem 2.63) there is a nonsingular
matrix P such that C = PJP−1, where

J =

[

µ1 0
0 µ2

]

or J =

[

µ1 1
0 µ1

]

.

By the previous two cases there is a matrix B1 so that

eB1 = J.

Let

B := PB1P
−1;

then, using part (viii) in Theorem 2.39,

eB = ePB1P
−1

= PeB1P−1 = C.

�

Example 2.65 Find a log of the matrix

C =

[

2 1
3 4

]

.
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The characteristic equation for C is

λ2 − 6λ+ 5 = 0

and so the eigenvalues are λ1 = 1, λ2 = 5. The Jordan canonical form (see
Theorem 2.63) of C is

J =

[

1 0
0 5

]

.

Eigenpairs of C are

1,

[

1
−1

]

, and 5,

[

1
3

]

.

From the proof of Theorem 2.64, if we let

P :=

[

1 1
−1 3

]

,

then

PB1P
−1

is a log of C provided B1 is a log of J . Note that by the proof of Theorem
2.64,

B1 =

[

0 0
0 ln 5

]

is a log of J . Hence a log of C is given by

B = PB1P
−1

=

[

1 1
−1 3

] [

0 0
0 ln 5

] [

3
4 − 1

4
1
4

1
4

]

=

[

1
4 ln 5 1

4 ln 5
3
4 ln 5 3

4 ln 5

]

.

△
Before we state and prove Floquet’s theorem (Theorem 2.67) we give

a motivating example.

Example 2.66 Consider the scalar differential equation

x′ = (sin2 t) x.

A general solution of this differential equation is

φ(t) = ce
1
2 t− 1

4 sin(2t).

Note that even though the coefficient function in our differential equation
is periodic with minimum period π, the only period π solution of our differ-
ential equation is the trivial solution. But note that all nontrivial solutions
are of the form

φ(t) = p(t)ebt,

where p(t) = ce−
1
4 sin(2t) 6= 0, for all t ∈ R, is a continuously differentiable

function on R that is periodic with period π (which is the minimum positive
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period of the coefficient function in our differential equation) and b = 1
2 is

a constant (1 × 1 matrix). △
Floquet’s theorem shows that any fundamental matrix for the Floquet

system x′ = A(t)x can be written in a form like shown in Example 2.66.

Theorem 2.67 (Floquet’s Theorem) If Φ is a fundamental matrix for the
Floquet system x′ = A(t)x, where the matrix function A is continuous on
R and has minimum positive period ω, then the matrix function Ψ defined
by Ψ(t) := Φ(t + ω), t ∈ R is also a fundamental matrix. Furthermore
there is a nonsingular, continuously differentiable n× n matrix function P
which is periodic with period ω and an n × n constant matrix B (possibly
complex) so that

Φ(t) = P (t)eBt,

for all t ∈ R.

Proof Assume Φ is a fundamental matrix for the Floquet system x′ =
A(t)x. Define the matrix function Ψ by

Ψ(t) = Φ(t+ ω),

for t ∈ R. Then

Ψ′(t) = Φ′(t+ ω)

= A(t+ ω)Φ(t+ ω)

= A(t)Ψ(t).

Since detΨ(t) 6= 0 for all t ∈ R, Ψ is a fundamental matrix of x′ =
A(t)x. Hence the first statement of the theorem holds.

Since Φ and Ψ are fundamental matrices for x′ = A(t)x, Theorem 2.31
implies that there is a nonsingular constant matrix C so that

Φ(t+ ω) = Φ(t)C, for t ∈ R.

By Theorem 2.64 there is a matrix B such that

eBω = C.

Then define the matrix function P by

P (t) = Φ(t)e−Bt,

for t ∈ R. Obviously, P is a continuously differentiable, nonsingular matrix
function on R. To see that P is periodic with period ω consider

P (t+ ω) = Φ(t+ ω)e−Bt−Bω

= Φ(t)Ce−Bωe−Bt

= Φ(t)e−Bt

= P (t).

Finally note that
Φ(t) = P (t)eBt,
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for all t ∈ R. �

Definition 2.68 Let Φ be a fundamental matrix for the Floquet system
x′ = A(t)x. Then the eigenvalues µ of

C := Φ−1(0)Φ(ω)

are called the Floquet multipliers of the Floquet system x′ = A(t)x.

Fundamental matrices for x′ = A(t)x are not unique, so we wonder if
Floquet multipliers are well defined in Definition 2.68. To see that Floquet
multipliers are well defined, let Φ and Ψ be fundamental matrices for the
Floquet system x′ = A(t)x and let

C := Φ−1(0)Φ(ω)

and let
D := Ψ−1(0)Ψ(ω).

We want to show that C and D have the same eigenvalues. Since Φ and Ψ
are fundamental matrices of x′ = A(t)x, Theorem 2.31 yields a nonsingular
constant matrix M such that

Ψ(t) = Φ(t)M

for all t ∈ R. It follows that

D = Ψ−1(0)Ψ(ω)

= M−1Φ−1(0)Φ(ω)M

= M−1CM.

Therefore, C and D are similar matrices (see Exercise 2.14) and hence have
the same eigenvalues. Hence Floquet multipliers are well defined.

Example 2.69 Find the Floquet multipliers for the scalar differential
equation

x′ = (sin2 t) x.

In Example 2.66 we saw that a nontrivial solution of this differential
equation is

φ(t) = e
1
2 t− 1

4 sin(2t).

Hence
c := φ−1(0)φ(π) = e

π
2

and so µ = e
π
2 is the Floquet multiplier for this differential equation. △

Example 2.70 Find the Floquet multipliers for the Floquet system

x′ =

[

1 1

0 (cos t+sin t)
(2+sin t−cos t)

]

x.

Solving this equation first for x2 and then x1, we get that

x2(t) = β(2 + sin t− cos t),

x1(t) = αet − β(2 + sin t),
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for t ∈ R. It follows that a fundamental matrix for our Floquet system is

Φ(t) =

[

−2 − sin t et

2 + sin t− cos t 0

]

.

Since

C = Φ−1(0)Φ(2π) =

[

1 0
0 e2π

]

,

the Floquet multipliers are µ1 = 1 and µ2 = e2π. △
Theorem 2.71 Let Φ(t) = P (t)eBt be as in Floquet’s theorem (Theorem
2.67). Then x is a solution of the Floquet system x′ = A(t)x iff the vector
function y defined by y(t) = P−1(t)x(t), t ∈ R is a solution of y′ = By.

Proof Assume x is a solution of the Floquet system x′ = A(t)x. Then

x(t) = Φ(t)x0,

for some n× 1 constant vector x0. Let y(t) = P−1(t)x(t). Then

y(t) = P−1(t)Φ(t)x0

= P−1(t)P (t)eBtx0

= eBtx0,

which is a solution of

y′ = By.

Conversely, assume y is a solution of y′ = By and set

x(t) = P (t)y(t).

Since y is a solution of y′ = By, there is an n× 1 constant vector y0 such
that

y(t) = eBty0.

It follows that

x(t) = P (t)y(t)

= P (t)eBty0

= Φ(t)y0,

which is a solution of the Floquet system x′ = A(t)x. �

Theorem 2.72 Let µ1, µ2, · · · , µn be the Floquet multipliers of the Floquet
system x′ = A(t)x. Then the trivial solution is

(i) globally asymptotically stable on [0,∞) iff |µi| < 1, 1≤ i ≤ n;
(ii) stable on [0,∞) provided |µi| ≤ 1, 1 ≤ i ≤ n and whenever |µi| = 1,

µi is a simple eigenvalue;
(iii) unstable on [0,∞) provided there is an i0, 1 ≤ i0 ≤ n, such that

|µi0 | > 1.
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Proof We will just prove this theorem for the two-dimensional case. Let
Φ(t) = P (t)eBt and C be as in Floquet’s theorem. Recall that in the proof
of Floquet’s theorem, B was picked so that

eBω = C.

By the Jordan canonical form theorem (Theorem 2.63) there are matrices
M and J so that

B = MJM−1,

where either

J =

[

ρ1 0
0 ρ2

]

, or J =

[

ρ1 1
0 ρ1

]

,

where ρ1, ρ2 are the eigenvalues of B. It follows that

C = eBω

= eMJM−1ω

= MeJωM−1

= MKM−1,

where either

K =

[

eρ1ω 0
0 eρ2ω

]

, or K =

[

eρ1ω ωeρ1ω

0 eρ1ω

]

.

Since the eigenvalues of K are the same (see Exercise 2.14) as the eigen-
values of C, we get that the Floquet multipliers are

µi = eρiω,

i = 1, 2, where it is possible that ρ1 = ρ2. Since

|µi| = eRe(ρi)ω,

we have that

|µi| < 1 iff Re(ρi) < 0

|µi| = 1 iff Re(ρi) = 0

|µi| > 1 iff Re(ρi) > 0.

By Theorem 2.71 the equation

x(t) = P (t)y(t)

gives a one-to-one correspondence between solutions of the Floquet system
x′ = A(t)x and y′ = By. Note that there is a constant Q1 > 0 so that

‖x(t)‖ = ‖P (t)y(t)‖ ≤ ‖P (t)‖‖y(t)‖ ≤ Q1‖y(t)‖,
for t ∈ R and since y(t) = P−1(t)x(t) there is a constant Q2 > 0 such that

‖y(t)‖ = ‖P−1(t)x(t)‖ ≤ ‖P−1(t)‖‖x(t)‖ ≤ Q2‖x(t)‖,
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for t ∈ R. The conclusions of this theorem then follow from Theorem 2.49.
�

Theorem 2.73 The number µ0 is a Floquet multiplier of the Floquet sys-
tem x′ = A(t)x iff there is a nontrivial solution x such that

x(t + ω) = µ0x(t),

for all t ∈ R. Consequently, the Floquet system has a nontrivial periodic
solution of period ω if and only if µ0 = 1 is a Floquet multiplier.

Proof First assume µ0 is a Floquet multiplier of the Floquet system x′ =
A(t)x. Then µ0 is an eigenvalue of

C := Φ−1(0)Φ(ω),

where Φ is a fundamental matrix of x′ = A(t)x. Let x0 be an eigenvector
corresponding to µ0 and define the vector function x by

x(t) = Φ(t)x0, t ∈ R.

Then x is a nontrivial solution of x′ = A(t)x and

x(t+ ω) = Φ(t+ ω)x0

= Φ(t)Cx0

= Φ(t)µ0x0

= µ0x(t),

for all t ∈ R.
Conversely, assume there is a nontrivial solution x such that

x(t + ω) = µ0x(t),

for all t ∈ R. Let Ψ be a fundamental matrix of our Floquet system, then

x(t) = Ψ(t)y0,

for all t ∈ R for some nontrivial vector y0. By Floquet’s theorem the matrix
function Ψ(· + ω) is also a fundamental matrix. Hence x(t + ω) = µ0x(t),
so Ψ(t+ ω)y0 = µ0Ψ(t)y0 and therefore

Ψ(t)Dy0 = Ψ(t)µ0y0,

where D := Ψ−1(0)Ψ(ω). It follows that

Dy0 = µ0y0,

and so µ0 is an eigenvalue of D and hence is a Floquet multiplier of our
Floquet system. �

Theorem 2.74 Assume µ1, µ2, · · · , µn are the Floquet multipliers of the
Floquet system x′ = A(t)x. Then

µ1µ2 · · ·µn = e
R

ω

0
tr[A(t)] dt.
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Proof Let Φ be the solution of the matrix IVP

X ′ = A(t)X, X(0) = I.

Then Φ is a fundamental matrix for x′ = A(t)x and

C := Φ−1(0)Φ(ω) = Φ(ω).

Then we get that

µ1µ2 · · ·µn = detC

= detΦ(ω)

= e
R

ω

0
tr[A(t)] dt detΦ(0)

= e
R

ω

0
tr[A(t)] dt,

where we have used Liouville’s theorem (Theorem 2.23), which is the de-
sired result.

�

Example 2.75 (Hill’s Equation) Consider the scalar differential equation
(Hill’s equation)

y′′ + q(t)y = 0,

where we assume that q is a continuous periodic function on R with mini-
mum positive period ω. G. W. Hill [21] considered equations of this form
when he studied planetary motion. There are many applications of Hill’s
equation in mechanics, astronomy, and electrical engineering. For a more
thorough study of Hill’s equation than is given here, see [35]. Writing Hill’s
equation as a system in the standard way, we get the Floquet system

x′ =

[

0 1
−q(t) 0

]

x.

By the Floquet multipliers of Hill’s equation we mean the Floquet multi-
pliers of the preceding Floquet system. It follows from Theorem 2.74 that
the Floquet multipliers of Hill’s equation satisfy

µ1µ2 = 1.

△
Example 2.76 (Mathieu’s Equation) A special case of Hill’s equation is
Mathieu’s equation,

y′′ + (α+ β cos t)y = 0,

where α and β are real parameters. We will assume that β 6= 0. Note that
the Floquet multipliers of Mathieu’s equation depend on α and β. From
Theorem 2.74 the Floquet multipliers of Mathieu’s equation satisfy

µ1(α, β)µ2(α, β) = 1.

Let

γ(α, β) := µ1(α, β) + µ2(α, β).



2.5. Floquet Theory 75

Then the Floquet multipliers of Mathieu’s equation satisfy the quadratic
equation

µ2 − γ(α, β)µ + 1 = 0.

In particular,

µ1,2 =
γ ±

√

γ2 − 4

2
.

There are five cases to consider:
Case 1: γ > 2.
In this case the Floquet multipliers satisfy

0 < µ2 < 1 < µ1.

It then follows from Theorem 2.72 that the trivial solution of Mathieu’s
equation is unstable on [0,∞) in this case. Using Exercise 2.70, we can
show in this case that there is a general solution of Mathieu’s equation of
the form

y(t) = c1e
σtp1(t) + c2e

−σtp2(t),

where σ > 0 and pi, i = 1, 2, are continuously differentiable functions on R

which are periodic with period 2π.
Case 2: γ = 2.
In this case

µ1 = µ2 = 1.

It follows, using Exercise 2.70, that there is a nontrivial solution of period
2π. It has been proved in [35] that there is a second linearly independent
solution that is unbounded. In particular, the trivial solution is unstable
on [0,∞).

Case 3: −2 < γ < 2.
In this case the Floquet multipliers are not real and µ2 = µ1 In this

case, using Exercise 2.70, there is a general solution of the form

y(t) = c1e
iσtp1(t) + c2e

−iσtp2(t),

where σ > 0 and the pi, i = 1, 2 are continuously differentiable functions
on R that are periodic with period 2π. In this case it then follows from
Theorem 2.72 that the trivial solution is stable on [0,∞).

Case 4: γ = −2.
In this case

µ1 = µ2 = −1.

It follows from Exercise 2.67 that there is a nontrivial solution that is
periodic with period 4π. It has been shown in [35] that there is a second
linearly independent solution that is unbounded. In particular, the trivial
solution is unstable on [0,∞).

Case 5: γ < −2.
In this case the Floquet multipliers satisfy

µ2 < −1 < µ1 < 0.
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In this case it follows from Theorem 2.72 that the trivial solution is unstable
on [0,∞). △

A very interesting fact concerning Mathieu’s equation is that if β > 0 is
fixed, then there are infinitely many intervals of α values, where the trivial
solution of Mathieu’s equation is alternately stable and unstable on [0,∞)
(see [35]).

2.6 Exercises

2.1 Show that the characteristic equation for the constant coefficient scalar
differential equation y′′ + ay′ + by = 0 is the same as the characteristic
equation for the companion matrix of this differential equation.

2.2 Let A be the set of all continuous scalar functions on an interval I and
define M : A → A by

Mx(t) =

∫ t

a

x(s) ds,

for t ∈ I, where a is a fixed point in I. Prove that M is a linear operator.

2.3 Determine in each case if the constant vectors are linearly dependent
or linearly independent. Prove your answer.

(i)

ψ1 =





−4
4
1



 , ψ2 =





1
−1
−2



 , ψ3 =





2
−2
1





(ii)

ψ1 =





2
1
−1



 , ψ2 =





−1
3
2



 , ψ3 =





1
−2
1





(iii)

ψ1 =









2
1
−1
−2









, ψ2 =









−1
2
1
1









, ψ3 =









1
13
2
−1









2.4 Determine if the scalar functions φ1, φ2 defined by φ1(t) = ln(t),
φ2(t) = ln(t2) for t ∈ (0,∞) are linearly dependent or linearly independent
on (0,∞). Prove your answer.

2.5 Determine if the given functions are linearly dependent or linearly
independent on the given interval I. Prove your answers.

(i) x1(t) = 4 sin t, x2(t) = 7 sin(−t), I = R

(ii) x1(t) = 2 sin(2t), x2(t) = −3 cos(2t), x3(t) = 8, I = R

(iii) x1(t) = e3tt, x2(t) = e−2t, I = R

(iv) x1(t) = e3tt, x2(t) = e3t+4, I = R
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(v) x1(t) = sin t, x2(t) = cos t, x3(t) = sin(t+ π
4 ), I = R

2.6 Prove that if x1, x2, · · · , xk are k functions defined on I and if one of
them is identically zero on I, then x1, x2, · · · , xk are linearly dependent on
I.

2.7 Prove that two functions x, y defined on I are linearly dependent on
I iff one of them is a constant times the other.

2.8 Determine if the scalar functions φ1, φ2, φ3 defined by φ1(t) = 3,
φ2(t) = 3 sin2 t, φ3(t) = 4 cos2 t for t ∈ R are linearly dependent or lin-
early independent on R. Prove your answer.

2.9 Determine if the scalar functions φ1, φ2 defined by φ1(t) = t2 + 1,
φ2(t) = 2t2+3t−7 for t ∈ R are linearly independent or linearly dependent
on R. Verify your answer.

2.10 Determine if the scalar functions φ1, φ2, φ3, φ4 defined by φ1(t) =
sin2 t, φ2(t) = cos2 t, φ3(t) = tan2 t, φ4(t) = sec2 t for t ∈ (−π

2 ,
π
2 ) are

linearly dependent or linearly independent on (−π
2 ,

π
2 ). Prove your answer.

2.11 Find four two dimensional vector functions that are linearly indepen-
dent on R and prove that they are linearly independent on R.

2.12 Find two scalar functions that are linearly independent on R, but
linearly dependent on (0,∞). Prove your answer.

2.13 Find the inverse of each of the following matrices:

(i) A =

[

2 −6
−1 4

]

(ii) B =





2 −2 2
0 1 0
4 0 3





2.14 Two n×nmatrices A,B are said to be similar if there is a nonsingular
n×n matrix M such that A = M−1BM. Prove that similar matrices have
the same eigenvalues.

2.15 Show that if an n × n matrix has eigenvalues λ1, λ2, · · · , λn (not
necessarily distinct) with linearly independent eigenvectors

x1, x2 · · · , xn,
respectively, then a general solution of x′ = Ax is x(t) = c1e

λ1tx1 + · · · +
cne

λntxn.

2.16 Show that if a square matrix has all zeros either above or below the
main diagonal, then the numbers down the diagonal are the eigenvalues of
the matrix.

2.17 If λ0 is an eigenvalue of A, find an eigenvalue of

(i) AT (the transpose of A)
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(ii) An, where n is a positive integer
(iii) A−1, provided det(A) 6= 0

Be sure to verify your answers.

2.18 Show that any n+1 solutions of (2.3) on (c, d) are linearly dependent
on (c, d).

2.19 Show that the characteristic equation for any 2 × 2 constant matrix
A is

λ2 − tr[A]λ+ det(A) = 0,

where tr[A] is defined in Definition 2.22. Use this result to find the char-
acteristic equation for each of the following matrices:

(i) A =

[

1 4
−2 3

]

(ii) A =

[

1 2
3 4

]

(iii) A =

[

3 2
2 0

]

2.20 Using Theorem 2.14, solve the following differential equations:

(i) x′ =

[

2 1
3 4

]

x

(ii) x′ =

[

2 2
2 −1

]

x

(iii) x′ =





3 2 4
2 0 2
4 2 3



x

2.21 Solve the IVP

x′ =

[

1 3
3 1

]

x, x(0) =

[

−2
1

]

x.

2.22 Work each of the following:

(i) Find eigenpairs for the matrix A =

[

−1 −6
1 4

]

x

(ii) Use your answer in (i) to find two linearly independent solutions
(prove that they are linearly independent) of x′ +Ax on R.

(iii) Use your answer in (ii) to find a fundamental matrix for x′ = Ax.
(iv) Use your answer in (iii) and Theorem 2.31 to find eAt.

2.23 (Complex Eigenvalues) Using Theorem 2.14, solve the following dif-
ferential equations:

(i) x′ =

[

0 9
−9 0

]

x

(ii) x′ =

[

1 1
−1 1

]

x
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(iii) x′ =





1 2 1
−2 1 0
0 0 3



x

2.24 Prove the last statement in Corollary 2.24.

2.25 Using Theorem 2.14, solve the following differential equations:

(i) x′ =

[

−2 5
−2 4

]

x

(ii) x′ =

[

1 1
−1 1

]

x

(iii) x′ =





3 0 4
0 2 0
0 0 −3



x

2.26 Use Theorem 2.14 to find a fundamental matrix for

x′ =





4 0 0
0 5 1
0 1 5



 x.

2.27 Show that the matrix function Φ defined by

Φ(t) :=

[

t2 t3

2t 3t2

]

,

for t ∈ (0,∞) is a fundamental matrix for the vector differential equation

x′ =

[

0 1
− 6
t2

4
t

]

x.

2.28 Show that the matrix function Φ defined by

Φ(t) :=

[

e−t 2
1 et

]

,

for t ∈ R is a fundamental matrix for the vector differential equation

x′ =

[

1 −2e−t

et −1

]

x.

Find the solution satisfying the initial condition

x(0) =

[

1
−1

]

.

2.29 Verify the Cayley-Hamilton Theorem (Theorem 2.33) directly for the
general 2 × 2 matrix

A =

[

a b
c d

]

.
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2.30 Verify the Cayley-Hamilton Theorem (Theorem 2.33) directly for the
matrix

A =





1 0 2
2 1 −1
1 −1 2



 .

2.31 Use the Putzer algorithm (Theorem 2.35) to find eAt for each of the
following:

(i) A =

[

2 1
−9 −4

]

(ii) A =

[

10 4
−9 −2

]

(iii) A =





2 −2 2
0 1 1
−4 8 3





(iv) A =





4 0 0
0 5 1
0 1 5





2.32 (Multiple Eigenvalue) Use the Putzer algorithm (Theorem 2.35) to
find eAt given that

A =

[

−5 2
−2 −1

]

.

2.33 (Complex Eigenvalues) Use the Putzer algorithm (Theorem 2.35) to
find eAt for each of the following:

(i) A =

[

1 2
−5 −1

]

(ii) A =

[

2 3
−3 2

]

(iii) A =

[

0 2
−1 2

]

2.34 Use the Putzer algorithm (Theorem 2.35) to help you solve each of
the following differential equations:

(i) x′ =

[

1 1
1 1

]

x

(ii) x′ =

[

2 1
−1 4

]

x

(iii) x′ =

[

−1 −6
1 4

]

x

(iv) x′ =





1 1 0
0 1 0
0 1 1



x

2.35 Solve each of the following differential equations:
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(i) x′ =

[

−4 3
−2 3

]

x

(ii) x′ =

[

−4 1
2 −3

]

x

(iii) x′ =





2 −2 2
0 1 1
−4 8 3



x

2.36 Work each of the following:

(i) Solve the differential equations for the vibrating system in Exam-
ple 2.2 in case there is no friction: m1 = m2 = k1 = k2 = k3 = 1
and c = 0.

(ii) Decide whether the trivial solution is stable in this case, and
discuss the implications of your answer for the vibrating system.

(iii) Find the solution that satisfies the initial conditions u(0) = 1,
u′(0) = v(0) = v′(0) = 0. Also, sketch a graph of the solution.

2.37 Work each of the following:

(i) Solve the differential equations for the vibrating system in Exam-
ple 2.2 for the parameter values m1 = m2 = k1 = k2 = k3 = 1,
c = 2. (Note: The eigenvalues are not distinct in this case.)

(ii) Show that the trivial solution is globally asymptotically stable.

2.38 Find 2 × 2 matrices A and B such that

eAeB 6= eA+B.

2.39 Show that if A and B are n × n constant matrices and AB = BA,
then

eAtB = BeAt,

for t ∈ R. Also, show that eAB = BeA.

2.40 Use the Putzer algorithm (Theorem 2.35) to find

e

2

4

0 1
−1 0

3

5t

.

Repeat the same problem using Theorem 2.39 part (vii). Use your an-
swer and Theorem 2.39 part (iii) to prove the addition formulas for the
trigonometric sine and cosine functions:

sin(t+ s) = sin(t) cos(s) + sin(s) cos(t)

cos(t+ s) = cos(t) cos(s) − sin(t) sin(s).
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2.41 Show that

e

2

6

6

6

6

6

6

6

6

6

6

6

6

4

λ1 0 0 · · · 0

0 λ2 0
. . . 0

0 0 λ3
. . . 0

...
. . .

. . .
. . . 0

0 0 · · · 0 λn

3

7

7

7

7

7

7

7

7

7

7

7

7

5

=



















eλ1 0 0 · · · 0

0 eλ2 0
. . . 0

0 0 eλ3
. . . 0

...
. . .

. . .
. . . 0

0 0 · · · 0 eλn



















.

2.42 Use the variation of constants formula to solve each of the following
IVPs:

(i) x′ =

[

1 0
0 2

]

x+

[

1
2

]

, x(0) =

[

1
1

]

(ii) x′ =

[

2 0
0 3

]

x+

[

e2t

e3t

]

, x(0) =

[

1
2

]

(iii) x′ =

[

2 1
0 2

]

x+

[

e2t

te2t

]

, x(0) =

[

−1
1

]

(iv) x′ =





0 0 0
0 2 1
0 0 2



x+





t
0
0



 , x(0) =





1
1
1





2.43 Use the variation of constants formula to solve each of the following
IVP’s

(i) x′ =

[

0 1
−1 0

]

x+

[

0
t

]

, x(0) =

[

0
1

]

(ii) x′ =

[

−2 0
0 4

]

x+

[

1
e−t

]

, x(0) =

[

−1
2

]

2.44 Use Theorem 2.40 and Theorem 2.42 to help you solve the IVP

x′ =

[

2t 0
0 3

]

x+

[

t
1

]

, x(0) =

[

0
2

]

.

2.45 Let ǫ > 0. Graph {x ∈ R
2 : ‖x‖ < ǫ} when

(i) ‖ · ‖2 is the Euclidean norm (l2 norm
(ii) ‖ · ‖∞ is the maximum norm (l∞ norm)
(iii) ‖ · ‖1 is the traffic norm (l1 norm)

2.46 Prove: If A has an eigenvalue with positive real part, then there is a
solution x of x′ = Ax so that ‖x(t)‖ → ∞ as t→ ∞.

2.47 Determine the stability of the trivial solution for each of the following:

(i) x′ =

[

−1 3
2 −2

]

x

(ii) x′ =

[

5 8
−7 −10

]

x
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(iii) x′ =





0 2 1
−2 0 −1
0 0 −1



x

2.48 Determine the stability of the trivial solution for each of the following:

(i) x′ =

[

−1 −6
0 4

]

x

(ii) x′ =

[

0 −9
4 0

]

x

(iii) x′ =

[

0 1
−2 −3

]

x

2.49 Show that the limit in Definition 2.58 exists by showing, for 0 < θ <
1, h > 0, that ‖I + θhA‖ ≤ θ‖I + hA‖ + (1 − θ), which implies that

‖I + θhA‖ − 1

θh
≤ ‖I + hA‖ − 1

h

and by showing that ‖I+hA‖−1
h is bounded below by −‖A‖.

2.50 Show that a matrix norm induced by a vector norm on Rn is a norm
on Mn.

2.51 Show that the matrix norm on Mn induced by the vector norm ‖ · ‖
is given by

‖A‖ = max
‖x‖=1

‖Ax‖.

2.52 Show that if A,B ∈Mn, then ‖AB‖ ≤ ‖A‖ · ‖B‖.
2.53 Prove Theorem 2.56.

2.54 Find the matrix norm of the matrix

A =

[

−1 1
2 −2

]

corresponding to the maximum norm ‖ · ‖∞, the traffic norm ‖ · ‖1, and the
Euclidean norm ‖ · ‖2, respectively. Also, find µ∞(A), µ1(A), µ2(A).

2.55 Find the matrix norm of the matrix

A =





−2 −1 1
−1 −3 2
0 −1 −5





corresponding the maximum norm ‖ · ‖∞ and the traffic norm ‖ · ‖1, re-
spectively. Also, find µ∞(A) and µ1(A).

2.56 Determine if the trivial solution of the vector equation

x′ =









−2.2 .3 1 −.4
1.5 −3 −1 .3
−1.2 .8 −3 .7
−.1 .3 .3 −1









x

is globally asymptotically stable or not.
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2.57 Determine if the trivial solution of the vector equation

x′ =









−2 1.7 .1 .1
1.8 −4 1 1
0 1 −2 .5
.4 1 .5 −2









x

is globally asymptotically stable or not.

2.58 Work each of the following:

(i) Find the matrix norm of

A =





−6 2 −3
2.5 −7 4
−2 1 −8





(ii) Find the matrix norm of A corresponding to the traffic norm
‖ · ‖1.

(iii) Find the Lozinski measure µ1(A).
(iv) What can you say about the stability of the trivial solution of

x′ = Ax?

2.59 Prove part (ii) of Theorem 2.61.

2.60 Find a log of each of the following matrices:

(i) A =

[

1 0
0 e

]

(ii) B =

[

2 0
0 −1

]

(iii) C =

[

4 2
−1 1

]

(iv) D =

[

3 1
−1 1

]

2.61 Find the Floquet multipliers for each of the following scalar equations:

(i) x′ = (2 sin(3t)) x
(ii) x′ = (cos2 t) x
(iii) x′ = (−1 + sin(4t)) x

2.62 Assume the scalar function a is continuous on R and a(t+ω) = a(t) for
t ∈ R, where ω > 0. Prove directly by solving the scalar differential equation
x′ = a(t)x that every nontrivial solution is of the form x(t) = p(t)ert for
t ∈ R, where p(t) 6= 0 for t ∈ R is a continuously differentiable function on
R that is periodic with period ω and r is the average value of a(t) on [0, ω],
[i.e. r = 1

ω

∫ ω

0 a(t) dt]. Show that µ = erω is the Floquet multiplier for
x′ = a(t)x. In particular, show that all solutions of x′ = a(t)x are periodic
with period ω iff

∫ ω

0
a(t) dt = 0.

2.63 Find the Floquet multipliers for each of the following Floquet systems:
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(i) x′ =

[

3 0
0 sin2 t

]

x

(ii) x′ =

[

−1 + cos t 0
cos t −1

]

x

(iii) x′ =

[

−1 0
sin t −1

]

x

(iv) x′ =

[

−3 + 2 sin t 0
0 −1

]

x

2.64 Determine the stability of the trivial solution for each of the differ-
ential equations in Exercise 2.61 by looking at the Floquet multipliers that
you found in Exercise 2.61.

2.65 Find the Floquet multipliers for each of the following Floquet systems
and by looking at the Floquet multipliers determine the stability of the
trivial solution on [0,∞):

(i) x′ =

[

−3 + 2 sin t 0
0 −1

]

x

(ii) x′ =

[

cos(2πt) + 1 0
cos(2πt) 1

]

x

(iii) x′ =

[

−2 0
sin(2t) −2

]

x

2.66 Show that

Φ(t) =

[

et(cos t− sin t) e−t(cos t+ sin t)
et(cos t+ sin t) e−t(− cos t+ sin t)

]

is a fundamental matrix for the Floquet system

x′ =

[

− sin(2t) cos(2t) − 1
cos(2t) + 1 sin(2t)

]

x.

Find the Floquet multipliers for this Floquet system. What do the Floquet
multipliers tell you about the stability of the trivial solution?

2.67 Show that if µ = −1 is a Floquet multiplier for the Floquet system
x′ = A(t)x, then there is a nontrivial periodic solution with period 2ω.

2.68 Without finding the Floquet multipliers, find the product of the Flo-
quet multipliers of the Floquet system

x′ =

[

2 sin2 t
cos2 t sin t

]

x.

2.69 Show that

x(t) =

[

−e t
2 cos t

e
t
2 sin t

]

is a solution of the Floquet system

x′ =

[

−1 + (3
2 ) cos2 t 1 − (3

2 ) cos t sin t
−1 − (3

2 ) sin t cos t −1 + (3
2 ) sin2 t

]

x.
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Using just the preceding solution, find a Floquet multiplier for the proced-
ing system. Without solving the system, find the other Floquet multiplier.
What can you say about the stability of the trivial solution? Show that for
all t the coefficient matrix in the proceding Floquet system has eigenvalues
with negative real parts. This example is due to Markus and Yamabe [36].

2.70 (Floquet Exponents) Show that if µ0 is a Floquet multiplier for the
Floquet system x′ = A(t)x, then there is a number ρ0 (called a Floquet
exponent) such that there is a nontrivial solution x0(t) of the Floquet
system x′ = A(t)x of the form

x0(t) = eρ0tp0(t),

where p0 is a continuously differentiable function on R that is periodic with
period ω.
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