
Chapter 1

First-Order Differential
Equations

1.1 Basic Results
In the scientific investigation of any phenomenon, mathematical models

are used to give quantitative descriptions and to derive numerical conclu-
sions. These models can take many forms, and one of the most basic and
useful is that of a differential equation, that is, an equation involving the
rate of change of a quantity. For example, the rate of decrease of the mass
of a radioactive substance, such as uranium, is known to be proportional
to the present mass. If m(t) represents the mass at time t, then we have
that m satisfies the differential equation

m′ = −km,
where k is a positive constant. This is an ordinary differential equation since
it involves only the derivative of mass with respect to a single independent
variable. Also, the equation is said to be of first-order because the highest
order derivative appearing in the equation is first-order. An example of
a second-order differential equation is given by Newton’s second law of
motion

mx′′ = f(t, x, x′),

where m is the (constant) mass of an object moving along the x-axis and
located at position x(t) at time t, and f(t, x(t), x′(t)) is the force acting on
the object at time t.

In this chapter, we will consider only first-order differential equations
that can be written in the form

x′ = f(t, x), (1.1)

where f : (a, b) × (c, d) → R is continuous, −∞ ≤ a < b ≤ ∞, and
−∞ ≤ c < d ≤ ∞.

Definition 1.1 We say that a function x is a solution of (1.1) on an interval
I ⊂ (a, b) provided c < x(t) < d for t ∈ I, x is a continuously differentiable
function on I, and

x′(t) = f(t, x(t)),

for t ∈ I.
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2 1. First-Order Differential Equations

Definition 1.2 Let (t0, x0) ∈ (a, b)× (c, d) and assume f is continuous on
(a, b) × (c, d). We say that the function x is a solution of the initial value
problem (IVP)

x′ = f(t, x), x(t0) = x0, (1.2)

on an interval I ⊂ (a, b) provided t0 ∈ I, x is a solution of (1.1) on I, and

x(t0) = x0.

The point t0 is called the initial point for the IVP (1.2) and the number x0

is called the initial value for the IVP (1.2).

Note, for example, that if (a, b) = (c, d) = (−∞,∞), then the function
m defined by m(t) = 400e−kt, t ∈ (−∞,∞) is a solution of the IVP

m′ = −km, m(0) = 400

on the interval I = (−∞,∞).
Solving an IVP can be visualized (see Figure 1) as finding a solution

of the differential equation whose graph passes through the given point
(t0, x0).

x(t)

(t0, x0)

t0

x0

t

x

−
0

Figure 1. Graph of solution of IVP.

We state without proof the following important existence-uniqueness
theorem for solutions of IVPs. Statements and proofs of some existence
and uniqueness theorems will be given in Chapter 8.

Theorem 1.3 Assume f : (a, b) × (c, d) → R is continuous, where −∞ ≤
a < b ≤ ∞ and −∞ ≤ c < d ≤ ∞. Let (t0, x0) ∈ (a, b)×(c, d), then the IVP
(1.2) has a solution x with a maximal interval of existence (α, ω) ⊂ (a, b),
where α < t0 < ω. If a < α, then

lim
t→α+

x(t) = c, or lim
t→α+

x(t) = d

and if ω < b, then

lim
t→ω−

x(t) = c, or lim
t→ω−

x(t) = d.
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If, in addition, the partial derivative of f with respect to x, fx, is continuous
on (a, b) × (c, d), then the preceding IVP has a unique solution.

We now give a couple of examples related to Theorem 1.3. The first
example shows that if the hypothesis that the partial derivative fx is con-
tinuous on (a, b)× (c, d) is not satisfied, then we might not have uniqueness
of solutions of IVPs.

Example 1.4 (Nonuniqueness of Solutions to IVPs) If we drop an object
from a bridge of height h at time t = 0 (assuming constant acceleration of
gravity and negligible air resistance), then the height of the object after t
units of time is x(t) = − 1

2gt
2 + h. The velocity at time t is x′(t) = −gt, so

by eliminating t, we are led to the IVP

x′ = f(t, x) := −
√

2g|h− x|, x(0) = h. (1.3)

Note that this initial value problem has the constant solution x(t) = h,
which corresponds to holding the object at bridge level without dropping
it! We can find other solutions by separation of variables. If h > x, then

∫

x′(t) dt
√

2g(h− x(t))
= −

∫

dt.

Computing the indefinite integrals and simplifying, we arrive at

x(t) = −g
2
(t− C)2 + h,

where C is an arbitrary constant. We can patch these solutions together
with the constant solution to obtain for each C > 0

x(t) :=

{

h, for t ≤ C

h− g
2 (t− C)2, for t > C.

Thus for each C > 0 we have a solution of the IVP (1.3) that corresponds
to releasing the object at time C. Note that the function f defined by
f(t, x) = −

√

2g|h− x| is continuous on (−∞,∞)×(−∞,∞) so by Theorem
1.3 the IVP (1.3) has a solution, but fx does not exist when x = h so we
cannot use Theorem 1.3 to get that the IVP (1.3) has a unique solution. △

To see how bad nonuniqueness of solutions of initial value problems can
be, we remark that in Hartman [18], pages 18–23, an example is given of a
scalar equation x′ = f(t, x), where f : R×R → R, is continuous, where for
every IVP (1.2) there is more than one solution on [t0, t0 + ǫ] and [t0− ǫ, t0]
for arbitrary ǫ > 0.

The next example shows even if the hypotheses of Theorem 1.3 hold
the solution of the IVP might only exist on a proper subinterval of (a, b).

Example 1.5 Let k be any nonzero constant. The function f : R
2 →

R defined by f(t, x) = kx2 is continuous and has a continuous partial
derivative with respect to x. By Theorem 1.3, the IVP

x′ = kx2, x(0) = 1
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has a unique solution with a maximal interval of existence (α, ω). Using
separation of variables, as in the preceding example, we find

x(t) =
1

C − kt
.

When we apply the initial condition x(0) = 1, we have C = 1, so that the
solution of the IVP is

x(t) =
1

1 − kt
,

with maximal interval of existence (−∞, 1/k) if k > 0 and (1/k,∞) if
k < 0. In either case, x(t) goes to infinity as t approaches 1/k from the
appropriate direction.

Observe the implications of this calculation in case x(t) is the density
of some population at time t. If k > 0, then the density of the population
is growing, and we conclude that growth cannot be sustained at a rate
proportional to the square of density because the density would have to
become infinite in finite time! On the other hand, if k < 0, the density is
declining, and it is theoretically possible for the decrease to occur at a rate
proportional to the square of the density, since x(t) is defined for all t > 0
in this case. Note that limt→∞ x(t) = 0 if k < 0. △

1.2 First-Order Linear Equations
An important special case of a first-order differential equation is the

first-order linear differential equation given by

x′ = p(t)x+ q(t), (1.4)

where we assume that p : (a, b) → R and q : (a, b) → R are continuous
functions, where −∞ ≤ a < b ≤ ∞. In Chapter 2, we will study systems
of linear equations involving multiple unknown functions. The next theo-
rem shows that a single linear equation can always be solved in terms of
integrals.

Theorem 1.6 (Variation of Constants Formula) If p : (a, b) → R and
q : (a, b) → R are continuous functions, where −∞ ≤ a < b ≤ ∞, then the
unique solution x of the IVP

x′ = p(t)x+ q(t), x(t0) = x0, (1.5)

where t0 ∈ (a, b), x0 ∈ R, is given by

x(t) = e
R

t

t0
p(τ) dτ

x0 + e
R

t

t0
p(τ) dτ

∫ t

t0

e
−

R

s

t0
p(τ) dτ

q(s) ds,

t ∈ (a, b).

Proof Here the function f defined by f(t, x) = p(t)x + q(t) is continuous
on (a, b)× (−∞,∞) and fx(t, x) = p(t) is continuous on (a, b)× (−∞,∞).
Hence by Theorem 1.3 the IVP (1.5) has a unique solution with a maximal
interval of existence (α, ω) ⊂ (a, b) [the existence and uniqueness of the
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solution of the IVP (1.5) and the fact that this solution exists on the whole
interval (a, b) follows from Theorem 8.65]. Let

x(t) := e
R

t

t0
p(τ) dτ

x0 + e
R

t

t0
p(τ) dτ

∫ t

t0

e
−

R

s

t0
p(τ) dτ

q(s) ds

for t ∈ (a, b). We now show that x is the solution of the IVP (1.5) on the
whole interval (a, b). First note that x(t0) = x0 as desired. Also,

x′(t) = p(t)e
R

t

t0
p(τ) dτ

x0 + p(t)e
R

t

t0
p(τ) dτ

∫ t

t0

e
−

R

s

t0
p(τ)dτ

q(s) ds+ q(t)

= p(t)

[

e
R

t

t0
p(τ) dτ

x0 + e
R

t

t0
p(τ) dτ

∫ t

t0

e
−

R

s

t0
p(τ)dτ

q(s) ds

]

+ q(t)

= p(t)x(t) + q(t)

for t ∈ (a, b). �

In Theorem 2.40, we generalize Theorem 1.6 to the vector case. We
now give an application of Theorem 1.6.

Example 1.7 (Newton’s Law of Cooling) Newton’s law of cooling states
that the rate of change of the temperature of an object is proportional to the
difference between its temperature and the temperature of the surrounding
medium. Suppose that the object has an initial temperature of 40 degrees.
If the temperature of the surrounding medium is 70 + 20e−2t degrees after
t minutes and the constant of proportionality is k = −2, then the initial
value problem for the temperature x(t) of the object at time t is

x′ = −2(x− 70 − 20e−2t), x(0) = 40.

By the variation of constants formula, the temperature of the object after
t minutes is

x(t) = 40e
R

t

0
−2dτ + e

R

t

0
−2dτ

∫ t

0

e
R

s

0
2dτ (140 + 40e−2s) ds

= 40e−2t + e−2t

∫ t

0

(

140e2s + 40
)

ds

= 40e−2t + e−2t[70(e2t − 1) + 40t]

= 10(4t− 3)e−2t + 70.

Sketch the graph of x. Does the temperature of the object exceed 70 degrees
at any time t? △

1.3 Autonomous Equations

If, in equation (1.1), f depends only on x, we get the autonomous
differential equation

x′ = f(x). (1.6)
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We always assume f : R → R is continuous and usually we assume its
derivative is also continuous. The fundamental property of autonomous
differential equations is that translating any solution of the autonomous
differential equation along the t-axis produces another solution.

Theorem 1.8 If x is a solution of the autonomous differential equation
(1.6) on an interval (a, b), where −∞ ≤ a < b ≤ ∞, then for any constant
c, the function y defined by y(t) := x(t−c), for t ∈ (a+c, b+c) is a solution
of (1.6) on (a+ c, b+ c).

Proof Assume x is a solution of the autonomous differential equation (1.6)
on (a, b); then x is continuously differentiable on (a, b) and

x′(t) = f(x(t)),

for t ∈ (a, b). Replacing t by t− c in this last equation, we get that

x′(t− c) = f(x(t− c)),

for t ∈ (a+ c, b+ c). By the chain rule of differentiation we get that

d

dt
[x(t− c)] = f(x(t− c)),

for t ∈ (a+ c, b+ c). Hence if y(t) := x(t − c) for t ∈ (a+ c, b+ c), then y
is continuously differentiable on (a+ c, b+ c) and we get the desired result
that

y′(t) = f(y(t)),

for t ∈ (a+ c, b+ c). �

Definition 1.9 If f(x0) = 0 we say that x0 is an equilibrium point for
the differential equation (1.6). If, in addition, there is a δ > 0 such that
f(x) 6= 0 for |x− x0| < δ, x 6= x0, then we say x0 is an isolated equilibrium
point.

Note that if x0 is an equilibrium point for the differential equation
(1.6), then the constant function x(t) = x0 for t ∈ R is a solution of (1.6)
on R.

Example 1.10 (Newton’s Law of Cooling) Consider again Newton’s law
of cooling as in Example 1.7, where in this case the temperature of the
surrounding medium is a constant 70 degrees. Then we have that the
temperature x(t) of the object at time t satisfies the differential equation

x′ = −2(x− 70).

Note that x = 70 is the only equilibrium point. All solutions can be written
in the form

x(t) = De−2t + 70,

where D is an arbitrary constant. If we translate a solution by a constant
amount c along the t-axis, then

x(t− c) = De−2(t−c) + 70 = De2ce−2t + 70
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is also a solution, as predicted by Theorem 1.8. Notice that if the tempera-
ture of the object is initially greater than 70 degrees, then the temperature
will decrease and approach the equilibrium temperature 70 degrees as t goes
to infinity. Temperatures starting below 70 degrees will increase toward the
limiting value of 70 degrees. A simple graphical representation of this be-
havior is a “phase line diagram,” (see Figure 2) showing the equilibrium
point and the direction of motion of the other solutions.

70
x

−

Figure 2. Phase line diagram of x′ = −2(x− 70).

△
Definition 1.11 Let φ be a solution of (1.6) with maximal interval of
existence (α, ω). Then the set

{φ(t) : t ∈ (α, ω)}
is called an orbit for the differential equation (1.6).

Note that the orbits for

x′ = −2(x− 70)

are the sets
(−∞, 70), {70}, (70,∞).

A convenient way of thinking about phase line diagrams is to consider
x(t) to be the position of a point mass moving along the x-axis and x′(t) =
f(x(t)) to be its velocity. The phase line diagram then gives the direction
of motion (as determined by the sign of the velocity). An orbit is just the
set of all locations of a continuous motion.

Theorem 1.12 Assume that f : R → R is continuously differentiable.
Then two orbits of (1.6) are either disjoint sets or are the same set.

Proof Let φ1 and φ2 be solutions of (1.6). We will show that if there are
points t1, t2 such that

φ1(t1) = φ2(t2),

then the orbits corresponding to φ1 and φ2 are the same. Let

x(t) := φ1(t− t2 + t1);

then by Theorem 1.8 we have that x is a solution of (1.6). Since

x(t2) = φ1(t1) = φ2(t2),

we have by the uniqueness theorem (Theorem 1.3) that x and φ2 are the
same solutions. Hence φ1(t − t2 + t1) and φ2(t) correspond to the same
solution. It follows that the orbits corresponding to φ1 and φ2 are the
same. �
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Example 1.13 (Logistic Growth) The logistic law of population growth
(Verhulst [52], 1838) is

N ′ = rN

(

1 − N

K

)

, (1.7)

where N is the number of individuals in the population, r(1−N/K) is the
per capita growth rate that declines with increasing population, and K > 0
is the carrying capacity of the environment. With r > 0, we get the phase
line diagram in Figure 3. What are the orbits of the differential equation
in this case?

K

N
0

Figure 3. Phase line diagram of N ′ = rN(1 −N/K).

We can use the phase line diagram to sketch solutions of the logistic
equation. In order to make the graphs more accurate, let’s first calculate
the second derivative of N by differentiating both sides of the differential
equation.

N ′′ = rN ′
(

1 − N

K

)

− r
NN ′

K

= rN ′
(

1 − 2N

K

)

= r2N

(

1 − N

K

)(

1 − 2N

K

)

.

It follows that N ′′(t) > 0 if either N(t) > K or 0 < N(t) < K/2 and
N ′′(t) < 0 if either N(t) < 0 or K/2 < N(t) < K. With all this in mind,
we get the graph of some of the solutions of the logistic (Verhulst) equation
in Figure 4.

△
Phase line diagrams are a simple geometric device for analyzing the

behavior of solutions of autonomous equations. In later chapters we will
study higher dimensional analogues of these diagrams, and it will be use-
ful to have a number of basic geometric concepts for describing solution
behavior. The following definitions contain some of these concepts for the
one-dimensional case.

Definition 1.14 Assume f : R → R is continuously differentiable. Then
we let φ(·, x0) denote the solution of the IVP

x′ = f(x), x(0) = x0.

Definition 1.15 We say that an equilibrium point x0 of the differential
equation (1.6) is stable provided given any ǫ > 0 there is a δ > 0 such that
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K/2

K

N

t

Figure 4. Graph of some solutions of N ′ = rN(1 −N/K).

whenever |x1 − x0| < δ it follows that the solution φ(·, x1) exists on [0,∞)
and

|φ(t, x1) − x0| < ǫ,

for t ≥ 0. If, in addition, there is a δ0 > 0 such that |x1 − x0| < δ0 implies
that

lim
t→∞

φ(t, x1) = x0,

then we say that the equilibrium point x0 is asymptotically stable. If an
equilibrium point is not stable, then we say that it is unstable.

For the differential equation N ′ = rN(1−N/K) the equilibrium point
N1 = 0 is unstable and the equilibrium point N2 = K is asymptotically
stable (see Figures 3 and 4).

Definition 1.16 We say that F is a potential energy function for the
differential equation (1.6) provided

f(x) = −F ′(x).

Theorem 1.17 If F is a potential energy function for (1.6), then F (x(t))
is strictly decreasing along any nonconstant solution x. Also, x0 is an equi-
librium point of (1.6) iff F ′(x0) = 0. If x0 is an isolated equilibrium point
of (1.6) such that F has a local minimum at x0, then x0 is asymptotically
stable.

Proof Assume F is a potential energy function for (1.6), assume x is a
nonconstant solution of (1.6), and consider

d

dt
F (x(t)) = F ′(x(t))x′(t)

= −f2(x(t))

< 0.
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Hence the potential energy function F is strictly decreasing along noncon-
stant solutions. Since f(x0) = 0 iff F ′(x0) = 0, x0 is an equilibrium point
of (1.6) iff F ′(x0) = 0.

Let x0 be an isolated equilibrium point of (1.6) such that F has a local
minimum at x0, and choose an interval (x0 − δ, x0 + δ) such that F ′(x) > 0
on (x0, x0 + δ) and F ′(x) < 0 on (x0 − δ, x0). Suppose x1 ∈ (x0, x0 + δ).
Then F (φ(t, x1)) is strictly decreasing, so φ(t, x1) is decreasing, remains in
the interval (x0, x0 + δ), and converges to some limit l ≥ x0. We will show
that l = x0 by assuming l > x0 and obtaining a contradiction. If l > x0,
then there is a positive constant C so that F ′(φ(t, x1)) ≥ C for t ≥ 0
(Why is the right maximal interval of existence for the solution φ(t, x1) the
interval [0,∞)?). But

φ(t, x1) − x1 =

∫ t

0

(−F ′(φ(s, x1))) ds ≤ −Ct,

for t ≥ 0, which implies that φ(t, x1) → −∞ as t → ∞, a contradiction.
We conclude that φ(t, x1) → x0 as t→ ∞. Since the case x1 ∈ (x0 − δ, x0)
is similar, we have that x0 is asymptotically stable. �

Example 1.18 By finding a potential energy function for

x′ = −2(x− 70),

draw the phase line diagram for this differential equation.
Here a potential energy function is given by

F (x) = −
∫ x

0

f(u) du

= −
∫ x

0

−2(u− 70) du

= x2 − 140x.

In Figure 5 we graph y = F (x) and using Theorem 1.17 we get the phase
line diagram below the graph of the potential energy function. Notice that
x = 70 is an isolated minimum for the potential energy function.

△

1.4 Generalized Logistic Equation

We first do some calculations to derive what we will call the generalized
logistic equation. Assume p and q are continuous functions on an interval
I and let x(t) be a solution of the first order linear differential equation

x′ = −p(t)x+ q(t) (1.8)

with x(t) 6= 0 on I. Then set

y(t) =
1

x(t)
, t ∈ I.
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y = F (x)

70

70

140

−4900

x

x

y
−
0 05

Figure 5. Potential energy function and phase line dia-
gram for x′ = −2(x− 70).

It follows that

y′(t) = − x′(t)

x2(t)

= [p(t)x(t) − q(t)] y2(t)

= [p(t) − q(t)y(t)] y(t), t ∈ I.

We call the differential equation

y′ = [p(t) − q(t)y] y (1.9)

the generalized logistic equation. Above we proved that if x(t) is a nonzero
solution of the linear equation (1.8) on I, then y(t) = 1

x(t) is a nonzero

solution of the generalized logistic equation (1.9) on I. Conversely, if y(t)
is a nonzero solution of the generalized logistic equation (1.9) on I, then
(Exercise 1.28) x(t) = 1

y(t) is a nonzero solution of the linear equation (1.8)

on I.
We now state the following theorem.

Theorem 1.19 If y0 6= 0 and

1

y0
+

∫ t

t0

q(s)e
R

s

t0
p(τ) dτ

ds 6= 0, t ∈ I,
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then the solution of the IVP

y′ = [p(t) − q(t)y] y, y(t0) = y0, t0 ∈ I (1.10)

is given by

y(t) =
e

R

t

t0
p(τ) dτ

1
y0

+
∫ t

t0
q(s)e

R

s

t0
p(τ) dτ

ds
. (1.11)

Proof Note that by Theorem 1.3 every IVP (1.10) has a unique solution.
Assume y0 6= 0 and let x0 = 1

y0
. By the variation of constants formula in

Theorem 1.6 the solution of the IVP

x′ = −p(t)x+ q(t), x(t0) = x0

is given by

x(t) = e
−

R

t

t0
p(τ) dτ

x0 + e
−

R

t

t0
p(τ) dτ

∫ t

t0

e
R

s

t0
p(τ) dτ

q(s) ds

= e
−

R

t

t0
p(τ) dτ 1

y0
+ e

−
R

t

t0
p(τ) dτ

∫ t

t0

e
R

s

t0
p(τ) dτ

q(s) ds

which is nonzero on I by assumption. It follows that the solution of the
IVP (1.10) is given by

y(t) =
1

e
−

R

t

t0
p(τ) dτ 1

y0
+ e

−
R

t

t0
p(τ) dτ ∫ t

t0
q(s)e

R

s

t0
p(τ) dτ

ds
.

Multiplying the numerator and denominator by e
R

t

t0
p(τ) dτ

we get the de-
sired result (1.11). �

In applications (e.g., population dynamics) one usually has that

p(t) = q(t)K

where K > 0 is a constant. In this case the generalized logistic equation
becomes

y′ = p(t)
[

1 − y

K

]

y. (1.12)

The constant solutions y(t) = 0 and y(t) = K are called equilibrium solu-
tions of (1.12). The constant K is called the carrying capacity (saturation
level).

We now state the following corollary of Theorem 1.19.

Corollary 1.20 If y0 6= 0 and

1

y0
− 1

K
+

1

K
e

R

t

t0
p(s) ds 6= 0, t ∈ I,

then the solution of the IVP

y′ = p(t)
[

1 − y

K

]

y, y(t0) = y0 (1.13)



1.4. Generalized Logistic Equation 13

is given by

y(t) =
e

R

t

t0
p(s) ds

1
y0

− 1
K + 1

K e
R

t

t0
p(s) ds

. (1.14)

Proof This follows from Theorem 1.19, where we use the fact that
∫ t

t0

e
R

s

t0
p(τ) dτ

q(s) ds =
1

K

∫ t

t0

e
R

s

t0
p(τ) dτ

p(s) ds

=
1

K

[

e
R

t

t0
p(s) ds − 1

]

.

�

The following theorem gives conditions under which the solutions of the
generalized logistic equation (1.12) with nonnegative initial conditions be-
have very similar to the corresponding solutions of the autonomous logistic
equation (1.7).

Theorem 1.21 Assume p : [t0,∞) → [0,∞) is continuous and
∫∞
t0
p(t) dt =

∞. Let y(t) be the solution of the IVP (1.13) with y0 > 0, then y(t)
exists on [t0,∞). Also if 0 < y0 < K, then y(t) is nondecreasing with
limt→∞ y(t) = K. If y0 > N , then y(t) is nonincreasing with limt→∞ y(t) =
K.

Proof Let y(t) be the solution of the IVP (1.13) with y0 > 0. Then from
(1.14)

y(t) =
e

R

t

t0
p(s) ds

1
y0

− 1
K + 1

K e
R

t

t0
p(s) ds

. (1.15)

By the uniqueness of solutions of IVP’s the solution y(t) is bounded below
by K and hence y(t) remains positive to the right of t0. But since

y′(t) = p(t)

[

1 − y(t)

K

]

y(t) ≤ 0,

y(t) is decreasing. It follows from Theorem 1.3 that y(t) exists on [t0,∞)
and from (1.15) we get that limt→∞ y(t) = K.

Next assume that 0 < y0 < K. Then by the uniqueness of solutions of
IVP’s we get that

0 < y(t) < K,

to the right of t0. It follows that y(t) is a solution on [t0,∞) and by (1.15)
we get that limt→∞ y(t) = K. Also 0 < y(t) < K, implies that

y′(t) = p(t)

[

1 − y(t)

K

]

y(t) ≥ 0,

so y(t) is nondecreasing on [t0,∞). �
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1.5 Bifurcation

Any unspecified constant in a differential equation is called a parameter.
One of the techniques that is used to study differential equations is to let
a parameter vary and to observe the resulting changes in the behavior of
the solutions. Any large scale change is called a bifurcation and the value
of the parameter for which the change occurs is called a bifurcation point.
We end this chapter with some simple examples of bifurcations.

Example 1.22 We consider the differential equation

x′ = λ(x − 1),

where λ is a parameter. In Figure 6 the phase line diagrams for this differ-
ential equation when λ < 0 and λ > 0 are drawn. There is a drastic change
in the phase line diagrams as λ passes through zero (the equilibrium point
x = 1 loses its stability as λ increases through zero). Because of this we
say bifurcation occurs when λ = 0.

λ < 0

λ > 0 x

x

1

1

−
0

Figure 6. Phase line diagrams for x′ = λ(x − 1), λ < 0,
λ > 0.

△
Example 1.23 (Saddle-Node Bifurcation) Now consider the equation

x′ = λ+ x2.

If λ < 0, then there is a pair of equilibrium points, one stable and one
unstable. When λ = 0, the equilibrium points collide, and for λ > 0, there
are no equilibrium points (see Figure 7). In this case, the bifurcation that
occurs at λ = 0 is usually called a saddle-node bifurcation.

λ < 0

λ > 0

−
√

|λ|
√

|λ|

x

x
0

30

Figure 7. Phase line diagrams for x′ = λ+ x2, λ < 0, λ > 0.
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△

Example 1.24 (Transcritical Bifurcation) Consider

x′ = λx− x2.

For λ < 0, there is an unstable equilibrium point at x = λ and a stable
equilibrium point at x = 0. At λ = 0, the two equilibrium points coincide.
For λ > 0, the equilibrium at x = 0 is unstable, while the one at x = λ
is stable, so the equilibrium points have switched stability! See Figure 8.
This type of bifurcation is known as a transcritical bifurcation.

λ < 0

λ > 0
λ

λ

x

x

0

0

0.15

Figure 8. Phase line diagrams for x′ = λx − x2, λ < 0,
λ > 0.

△

Example 1.25 (Pitchfork Bifurcation) We will draw the bifurcation dia-
gram (see Figure 9) for the differential equation

x′ = f(λ, x) := (x− 1)(λ− 1 − (x − 1)2). (1.16)

Note that the equations

x = 1, λ = 1 + (x− 1)2

give you the equilibrium points of the differential equation (1.16). We
graph these two equilibrium curves in the λx-plane (see Figure 9). Note
for each λ ≤ 1 the differential equation (1.16) has exactly one equilibrium
point and for each λ > 1 the differential equation (1.16) has exactly three
equilibrium points. When part of an equilibrium curve is dashed it means
the corresponding equilibrium points are unstable, and when part of an
equilibrium curve is solid it means the corresponding equilibrium points
are stable. To determine this stability of the equilibrium points note that
at points on the pitchfork we have f(λ, t) = 0, at points above the pitchfork
f(λ, t) < 0, at points below the pitchfork f(λ, t) > 0, at points between the
top two forks of the pitchfork f(λ, t) > 0, and at points between the lower
two forks of the pitchfork f(λ, t) < 0. Note that the equilibrium point
x = 1 is asymptotically stable for λ < 1 and becomes unstable for λ > 1.
We say we have pitchfork bifurcation at λ = 1.

△

In the final example in this section we give an example of hysteresis.
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λ

x

1 2

0.15

Figure 9. Bifurcation diagram for (1.16).

Example 1.26 (Hysteresis) The bifurcation diagram for the differential
equation

x′ = λ+ x− x3 (1.17)

is given in Figure 10. Note that if we start with λ < λ1 := − 2
3
√

3
and

slowly increase λ, then for all practical purposes solutions stay close to the
smallest equilibrium point until when λ passes through the value λ2 := 2

3
√

3
,

where the solution quickly approaches the largest equilibrium point for
λ > λ2. On the other hand, if we start with λ > λ2 and start decreasing
λ, solutions stay close to the largest equilibrium point until λ decreases
through the value λ1, where all of a sudden the solution approaches the
smallest equilibrium point. △

There are lots of interesting examples of hysteresis in nature. Murray
[37], pages 4–8, discusses the possible existence of hysteresis in a population
model for the spuce budworm. For an example of hysteresis concerning the
temperature in a continuously stirred tank reactor see Logan [33], pages
430–434. Also for an interesting example concerning the buckling of a wire
arc see Iooss and Joseph [28], pages 25–28. Hysteresis also occurs in the
theory of elasticity.

1.6 Exercises

1.1 Find the maximal interval of existence for the solution of the IVP

x′ = (cos t)x2, x(0) = 2.
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1

−1

λ
λ2λ1

x

Figure 10. Hysteresis.

1.2 Find the maximal interval of existence for the solution of the IVP

x′ =
2tx2

1 + t2
, x(0) = x0

in terms of x0.

1.3 Show that the IVP

x′ = x
1
3 , x(0) = 0

has infinitely many solutions. Explain why Theorem 1.3 does not apply to
give you uniqueness.

1.4 Assume that f : R × (0,∞) → R is defined by f(t, x) = x
1
3 , for

(t, x) ∈ R × (0,∞). Show that for any (t0, x0) ∈ R × (0,∞) the IVP

x′ = f(t, x), x(t0) = x0

has a unique solution. Find the maximum interval of existence for the
solution of this IVP when (t0, x0) = (1, 1).

1.5 Use the variation of constants formula in Theorem 1.6 to solve the
following IVPs:

(i) x′ = 2x+ e2t, x(0) = 3
(ii) x′ = 3x+ 2e3t, x(0) = 2
(iii) x′ = tan(t)x+ sec(t), x(0) = −1
(iv) x′ = 2

tx+ t, x(1) = 2
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1.6 Use the variation of constants formula in Theorem 1.6 to solve the
following IVPs:

(i) x′ = −2x+ eat, x(0) = 2
(ii) x′ = 4x+ 3t, x(0) = 1
(iii) tx′ − 3x = 1 − 3 ln t, x(0) = 1

1.7 Draw the phase line diagram for x′ = −2x. Show that there are infin-
itely many solutions that give you the orbits (0,∞) and (−∞, 0) respec-
tively.

1.8 Draw the phase line diagrams for each of the following:

(i) x′ = −x+ x3

(ii) x′ = x4

(iii) x′ = x2 + 4x+ 2
(iv) x′ = x3 − 3x2 + 3x− 1

1.9 Draw the phase line diagrams for each of the following:

(i) x′ = coshx
(ii) x′ = coshx− 1
(iii) x′ = (x− a)2

(iv) x′ = sinx
(v) x′ = sin(2x)
(vi) x′ = ex

(vii) x′ = sinh2(x− b)
(viii) x′ = cosx− 1

1.10 Show that if x is a nonzero solution of the linear equation x′ =
−rx+ r

K , where r and K are positive constants, then N = 1
x is a solution of

the logistic equation (1.7). Use this and the variation of constants formula
to solve the IVP N ′ = rN

(

1 − N
K

)

, N(0) = K
2 .

1.11 Solve the logistic equation (1.7) by using the method of separation
of variables. Note in general we can not solve the more general logistic
equation (1.9) by the method of separation of variables.

1.12 (Bernoulli’s Equation) The differential equation y′ = p(t)y + q(t)yα,
α 6= 0, 1 is called Bernoulli’s equation. Show that if y is a nonzero solution
of Bernoulli’s equation, then x = y1−α is a solution of the linear equation
x′ = (1 − α)p(t)x + (1 − α)q(t).

1.13 Use Exercise 1.12 to solve the following Bernoulli equations:

(i) x′ = − 1
tx+ tx2

(ii) x′ = x+ etx2

(iii) x′ = − 1
tx+ 1

tx2

1.14 Assume that p and q are continuous functions on R which are periodic
with period T > 0. Show that the linear differential equation (1.4) has a
periodic solution x with positive period T iff the differential equation (1.4)
has a solution x satisfying x(0) = x(T ).
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1.15 Show that the equilibrium point x0 = 0 for the differential equation
x′ = 0 is stable but not asymptotically stable.

1.16 Determine the stability (stable, unstable, or asymptotically stable) of
the equilibrium points for each of the differential equations in Exercise 1.8.

1.17 A yam is put in a 200oC oven at time t = 0. Let T (t) be the temper-
ature of the yam in degrees Celsius at time t minutes later. According to
Newton’s law of cooling, T (t) satisfies the differential equation

T ′ = −k(T − 200),

where k is a positive constant. Draw the phase diagram for this differential
equation and then draw a possible graph of various solutions with various
initial temperatures at t = 0. Determine the stability of all equilibrium
points for this differential equation.

1.18 Given that the function F defined by F (x) = x3 + 3x2 − x − 3, for
x ∈ R is a potential energy function for x′ = f(x), draw the phase line
diagram for x′ = f(x).

1.19 Given that the function F defined by F (x) = 4x2 − x4, for x ∈ R is
a potential energy function for x′ = f(x), draw the phase line diagram for
x′ = f(x).

1.20 For each of the following differential equations find a potential energy
function and use it to draw the phase line diagram:

(i) x′ = x2

(ii) x′ = 3x2 − 10x+ 6
(iii) x′ = 8x− 4x3

(iv) x′ = 1
x2+1

1.21 Find and graph a potential energy function for the equation

x′ = −a(x− b), a, b > 0

and use this to draw a phase line diagram for this equation.

1.22 Determine the stability (stable, unstable, or asymptotically stable) of
the equilibrium points for each of the differential equations in Exercise 1.20.

1.23 Given that a certain population x(t) at time t is known to satisfy the
differential equation

x′ = ax ln

(

b

x

)

,

when x > 0, where a > 0, b > 0 are constants, find the equilibrium
population and determine its stability.

1.24 Use the phase line diagram and take into account the concavity of
solutions to graph various solutions of each of the following differential
equations

(i) x′ = 6 − 5x+ x2
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(ii) x′ = 4x2 + 3x3 − x4

(iii) x′ = 2 + x− x2

1.25 A tank initially contains 1000 gallons of a solution of water and 5
pounds of some solute. Suppose that a solution with the same solute of
concentration .1 pounds per gallon is flowing into the tank at the rate of 2
gallons per minute. Assume that the tank is constantly stirred so that the
concentration of solute in the tank at each time t is essentially constant
throughout the tank.

(i) Suppose that the solution in the tank is being drawn off at the
rate of 2 gallons per minute to maintain a constant volume of
solution in the tank. Show that the number x(t) of pounds of
solute in the tank at time t satisfies the differential equation

x′ = .2 − x

500
,

and compute x(t);
(ii) Suppose now that the solution in the tank is being drawn off at

the rate of 3 gallons per minute so that the tank is eventually
drained. Show that the number y(t) of pounds of solute in the
tank at time t satisfies the equation

y′ = .2 − 3y

1000− t
,

for 0 < t < 1000, and compute y(t).

1.26 (Terminal Velocity) Letm be the mass of a large object falling rapidly
toward the earth with velocity v(t) at time t. (We take downward velocity
to be positive in this problem.) If we take the force of gravity to be constant,
the standard equation of motion is

mv′ = mg − kv2,

where g is the acceleration due to gravity and −kv2 is the upward force
due to air resistance:

(i) Sketch the phase line diagram and determine which of the equilib-
rium points is asymptotically stable. Why is “terminal velocity”
an appropriate name for this number?

(ii) Assume the initial velocity is v(0) = v0, and solve the IVP. Show
that the solution v approaches the asymptotically stable equilib-
rium as t→ ∞.

1.27 Assume that x0 ∈ (a, b), f(x) > 0 for a < x < x0, and f(x) < 0 for
x0 < x < b. Show that x0 is an asymptotically stable equilibrium point for
x′ = f(x).

1.28 Show that if y(t) is a nonzero solution of the generalized logistic
equation (1.9) on I, then x(t) = 1

y(t) is a nonzero solution of the linear

equation (1.8) on I.



1.6. Exercises 21

1.29 If in Theorem 1.21 we replace
∫∞
t0
p(t) dt = ∞ by

∫∞
t0
p(t) dt = L,

where 0 ≤ L <∞, what can we say about solutions of the IVP (1.13) with
y0 > 0

1.30 (Harvesting) Work each of the following:

(i) Explain why the following differential equation could serve as a
model for logistic population growth with harvesting if λ is a
positive parameter:

N ′ = rN

(

1 − N

K

)

− λN.

(ii) If λ < r, compute the equilibrium points, sketch the phase line
diagram, and determine the stability of the equilibria.

(iii) Show that a bifurcation occurs at λ = r. What type of bifurca-
tion is this?

1.31 Solve the generalized logistic equation (1.13) by the method of sepa-
ration of variables.

1.32 (Gene Activation) The following equation occurs in the study of gene
activation:

x′ = λ− x+
4x2

1 + x2
.

Here x(t) is the concentration of gene product at time t.

(i) Sketch the phase line diagram for λ = 1.
(ii) There is a small value of λ, say λ0, where a bifurcation occurs.

Estimate λ0, and sketch the phase line diagram for some λ ∈
(0, λ0).

(iii) Draw the bifurcation diagram for this differential equation.

1.33 For each of the following differential equations find values of λ where
bifurcation occurs. Draw phase line diagrams for values of λ close to the
value of λ where bifurcation occurs.

(i) x′ = λ− 4 − x2

(ii) x′ = x3(λ− x)
(iii) x′ = x3 − x+ λ

1.34 Assume that the population x(t) of rats on a farm at time t (in weeks)
satisfies the differential equation x′ = −.1x(x− 25). Now assume that we
decide to kill rats at a constant rate of λ rats per week. What would be
the new differential equation that x satisfies? For what value of λ in this
new differential equation does bifurcation occur? If the number of rats
we kill per week is larger than this bifurcation value what happens to the
population of rats?

1.35 Give an example of a differential equation with a parameter λ which
has pitchfork bifurcation at λ = 0, where x0 = 0 is an unstable equilibrium
point for λ < 0 and is a stable equilibrium point for λ > 0.
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1.36 Draw the bifurcation diagram for each of the following

(i) x′ = λ− x2

(ii) x′ = (λ− x)(λ − x3)

1.37 In each of the following draw the bifurcation diagram and give the
value(s) of λ where bifurcation occurs:

(i) x′ = (λ− x)(λ − x2)
(ii) x′ = λ− 12 + 3x− x3

(iii) x′ = λ− x2

1+x2

(iv) x′ = x sinx+ λ

In which of these does hysteresis occur?
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