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Foreword

Welcome!
I am especially privileged and honored that Professors Maugin, Metrikine and Ero-
feyev, the organizers and chairmen of this meeting, the Euromech Colloquium 510
honoring the Cosserats for the 100 year anniversary of the publication of their book,
have asked me to say a few words to express my welcome salute to you. Much as
I would have liked to do this in person, my physical being is no longer keeping pace
with my mental desires and, thus, alas, is denying me this luxury.

Sometime in the past, I remember reading an article whose author’s name has
slipped my memory—perhaps it was Marston Morse, Professor Emeritus at the In-
stitute for Advanced Study, who wrote (and I paraphrase):

Discovery of new mathematical disciplines originates from two criteria:

1. Generalization
2. Inversion

Some of the earliest examples for the validity of these criteria are:

(a) The Newton–Leibniz discovery of differentiation and integration, which started
calculus; and

(b) The Theory of Elasticity, which was conceived when Robert Hooke, in 1678,
published an anagram: “ceiiinosssttuu”, which he expressed as “ut tensio sic
vis”, meaning, the power of any material is in the same proportion within the
tension thereof. Presently, this is known as “Hooke’s Law”.

Some 250 years later, “The modern theory of elasticity may be considered to
have its birth in 1821, when Navier first gave the equations for the equilibrium and
motion of elastic solids, . . . ” (Todhunter and Pearson).

Of course, many other scientists, Cauchy, Poisson, Stokes, and others, after 1821,
improved and extended the theory to other materials, e.g., viscous fluids, and they
investigated atomic and molecular foundations. This is typical—for the maturation
of any discipline is the result of the contributions of many scientists and often takes
a long time.

v



vi Foreword

Improvements and extensions of the theory of elasticity continued in the nine-
teenth and early part of the twentieth century: rigorous mathematical theory of non-
linear elasticity, relativistic continuum mechanics, magneto-elasticity and other “hy-
phenated” sister fields, like viscoelasticity and thermoelasticity. Underlying basic
postulates (e.g., frame-independence, thermodynamical restrictions, relativistic in-
variance) were introduced and applied in the development of field equations and ad-
missible constitutive laws. Research in granular and porous elastic solids, composite
elastic materials, polymeric materials, and statistical and molecular foundations of
continua are but a few examples that still remain as active research fields.

Eugène Maurice Pierre Cosserat and his brother François Cosserat, 100 years
ago, cast the seed of Generalized Continua, by publishing a book, in 1909, entitled
Théorie des Corps Déformables (Hermann, Paris). The revolutionary contribution
of this book is that material points of an elastic solid are considered equipped with
directors, which give rise to the concept of couple stress and a new conservation law
for the moment of momentum. By means of a variational principle which they called
“l’action euclidienne”, they obtained “balance laws of elasticity”. The introduction
of the director concept made it possible to formulate anisotropic fluids, e.g., liquid
crystals, blood.

The Cosserats did not give constitutive equations. These, and the introduction of
the microinertia tensor and the associated conservation law, which are crucial to the
dynamic problems in solid and fluent media (e.g., liquid crystals, suspensions, etc.)
were introduced later by other scientists.

Over half a century elapsed before the Cosserats’ book was discovered by re-
searchers. After 1960, independent, Cosserat-like theories were published in Euro-
pean countries, the USA and the USSR, under a variety of nomenclature (e.g., cou-
ple stress, polar elasticity, asymmetric elasticity, strain gradient theories, micropolar
elasticity, multipolar theory, relativistic continua with directors, etc.). I recall a liter-
ature search on these subjects that was shown to me by a visiting scholar, Professor
Listrov, from the USSR This book contained several hundred entries of papers pub-
lished by 1970.

The next significant generalizations appear in 1964 and thereafter, in the areas
of microelasticity, microfluid mechanics, micropolar continua, micromorphic elec-
trodynamics, and others that constitute the family of micromorphic continua or mi-
crostructure theories.

The conception of these theories was based on the query, “Is it possible to
construct continuum theories that can predict physical phenomena on the atomic,
molecular, or nano scales?” These would require supplying additional degrees of
freedom to the material point beyond a director. After all, the molecules that con-
stitute the internal structures of the material points (particles) undergo deformations
and rotations arising from the displacement and rotations of their constituent atoms.
This supplies twelve degrees of freedom. A body with such an internal structure is
called Micromorphic grade 1. Micromorphic continua of grade N > 1 have also
been formulated.

To understand the difference between the Cosserat and the micromorphic elastic-
ities, it is important to note that micromorphic elasticity gives rise to two different
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second-order strain tensors (only one of which is symmetric), and to one third-order
microstrain tensor. Correspondingly, the balance laws introduce two second-order
stress tensors (only one of which is symmetric), and one third-order microstress
(moment-stress) tensor.

In special cases, the Micromorphic Theory leads to other special continuum the-
ories:

Micromorphic → Microstretch → Micropolar (Cosserats) → Classical

The next important contributions are the nonlocal continuum theories that gener-
alize constitutive equations for classical and micromorphic continuum theories, by
introducing the influence of distant material points, e.g., the stress tensor is a func-
tional of the strain tensors of all material points of a body. In this sense, micromor-
phic grade 1 is a nonlocal theory with a short nonlocality (or discrete nonlocality).
Among the many important contributions of nonlocality, I mention that it eliminates
the stress singularity (infinite stress) at the crack tip predicted by classical elasticity.
Moreover, a natural fracture criterion was born which states that failure occurs when
the maximum stress becomes or exceeds the cohesive stress.

The Present State. No doubt other generalized continuum theories are in a state
of composition. But mathematical theories cannot be considered the truth without
experimental verification. Unfortunately, excluding classical theories, the experi-
mental work for all these theories is left wanting. The opportunity is here and now,
for experimentalists to determine the material moduli and/or to confirm or challenge
the validity of some of these theories.

A Note on the Future. Ultimately, all continuum theories must be based on the
quantum field theory, or perhaps, on the quantum theory of general relativity (when
unified). This offers the greatest challenges to future scientific investigators.

I am pleased to see so many interesting contributions to some of these fields
included in this meeting, which are in the spirit of the Cosserats’ work.

I welcome you and send my best wishes for what, I am sure, will be an inspira-
tional and productive meeting.

Littleton, Colorado, May 2009 A. Cemal Eringen
Professor Emeritus,

Princeton University



Preface

This volume gathers in some organized and edited manner most of the contributions
delivered at the EUROMECH Colloquium 510 held in Paris, May 13–16, 2009. The
explicit aim of the colloquium was, on the occasion of the centennial of the publica-
tion of a celebrated book (Théorie des corps déformables) by the Cosserat brothers,
to examine the evolution in time since the Cosserats, and the actuality of the notion
of generalized continuum mechanics to which the Cosserats’ work contributed to
some important extent. Of course, the Cosserat book belongs to this collection of
classics that are more often cited than read. The reason for this is twofold. First, the
vocabulary and mathematical symbols have tremendously evolved since the early
1900s, and second, the Cosserat book by itself is an intrinsically difficult reading.
As a matter of fact, more than introducing precisely the notion of Cosserat media
(a special class of generalized continua), the Cosserats’ book had a wider ambition,
that of presenting a reflection on the general framework of continuum mechanics,
with the notion of group permeating—not explicitly—its structure (cf. the notion of
“action euclidienne”). This is reflected in many of the following contributions.

Overall, the whole landscape of contemporary generalized continuum mechanics
was spanned from models to applications to structures, dynamical properties, prob-
lems with measurement of new material coefficients, numerical questions posed by
the microstructure, and new possible developments (nanomaterials, fractal struc-
tures, new geometrical ideas). Remarkably absent were models and approaches us-
ing the concept of strong nonlocality (constitutive equations that are functionals over
space). This is a mark of a certain evolution.

An interesting comparison can be made with the contents of the landmark IU-
TAM Symposium gathered in 1967 in Stuttgart-Freudenstadt under the chairmanship
of the late E. Kröner. Most of the models presented at that meeting by luminaries
such as Noll, Eringen, Rivlin, Green, Sedov, Mindlin, Nowacki, Stojanovic, and
others were essentially of the Cosserat type and, still in their infancy, had a much
questioned usefulness that is no longer pondered. Most of the contributions were
either American or German. With the present EUROMECH we witnessed an en-
largement of the classes of models with a marked interest in gradient-type theories.
Also, because the political situation has drastically changed within forty tears, we

ix
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realize now the importance of the Russian school. The latter was, in fact, very much
ignored in the 1960s and 1970s while some Russian teams were ahead of their West-
ern colleagues in acknowledging their debt to the Cosserats and other scientists such
as Leroux, Le Corre and Laval in France. Of these heroic Soviet times, E. Aero and
V. Palmov, both from St. Petersburg, who published on the subject matter in the
early 1960s, were present in Paris. Professor A.C. Eringen (he also in Freundenstadt
in 1967), unable to attend, kindly sent us a Welcome address that is reproduced here
in the way of a Foreword.

Unfortunately, the editing of this book was saddened by the passing away of
A.C. Eringen on December 06, 2010, at the age of 88, after more than sixty years of
devotion to engineering science, physics and applied mathematics.

The Colloquium was financially and materially supported by the Engineering
UFR of the Université Pierre et Marie Curie (UPMC), the STII Directorate of the
French Centre National de la Recherche Scientifique, and the Institut Jean Le Rond
d’Alembert, UPMC–Paris Universitas and UMR 7190 of CNRS. Members of the
MPIA Team of this Institute helped much in the local organization. Ms Simona
Otarasanu is to be thanked for her efficient treatment of many questions. Without
the expertise of Ms Janine Indeau, the present volume would not exist.

Paris Gérard A. Maugin

Delft Andrei V. Metrikine
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Part I
On the Cosserat’s Works



Chapter 1
Generalized Continuum Mechanics:
What Do We Mean by That?

Gérard A. Maugin

Dedicated to A.C. Eringen

Abstract Discursive historical perspective on the developments and ramifications
of generalized continuum mechanics from its inception by the Cosserat brothers
(Théorie des corps déformables. Hermann, 1909) with their seminal work of 1909
to the most current developments and applications is presented. The point of view
adopted is that generalization occurs through the successive abandonment of the
basic working hypotheses of standard continuum mechanics of Cauchy, that is, the
introduction of a rigidly rotating microstructure and couple stresses (Cosserat con-
tinua or micropolar bodies, nonsymmetric stresses), the introduction of a truly de-
formable microstructure (micromorphic bodies), “weak” nonlocalization with gra-
dient theories and the notion of hyperstresses, and the introduction of characteristic
lengths, “strong nonlocalization” with space functional constitutive equations and
the loss of the Cauchy notion of stress, and finally giving up the Euclidean and even
Riemannian material background. This evolution is paved by landmark papers and
timely scientific gatherings (e.g., Freudenstadt, 1967; Udine, 1970, Warsaw, 1977).

Preliminary note: Over 40 years, the author has benefited from direct studies under, and lectures
from, P. Germain, A.C. Eringen, E.S. Suhubi, R.D. Mindlin, W. Nowacki, V. Sokolowski, S. Sto-
janovic, from contacts with J.L. Ericksen, C.A. Truesdell and D.G.B. Edelen, from friendship with
C.B. Kafadar, J.M. Lee, D. Rogula, H.F. Tiersten, J. Jaric, P.M. Naghdi, I.A. Kunin, L.I. Sedov,
V.L. Berdichevskii, E. Kröner, and most of the authors in the present volume as co-workers or
friends, all active contributors to the present subject matter. He apologizes to all these people who
certainly do not receive here the fully deserved recognition for their contribution to the field.
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1.1 Introduction

The following question is naturally raised with the venue of EUROMECH 510 in
Paris in May 2009. What do we understand by generalized continuum mechanics?
Note already some ambiguity since the last expression can be alternately phrased
as “generalized (continuum mechanics)” or “(generalized continuum) mechanics”.
We do not pursue this semantic matter. We simply acknowledge the fact that with
the publication of the book of the Cosserat brothers in 1909 a true “generalized con-
tinuum mechanics” developed, first slowly and rather episodically and then with a
real acceleration. That a new era was borne at the time in the field of continuum
mechanics is not obvious if we remember that the Cosserats’ theory was published
as a supplement to the French translation (by them for some, I suppose, alimen-
tary purpose) of Chowlson’s Russian Encyclopedia of mathematics (the translation
was done from the German edition). Another valid subtitle of the present contribu-
tion could be “From the classical to the less classical”. But what is classical? Then
the “less classical” or “generalized” will be defined by successively discarding the
working hypotheses of the classical case, simple as the latter may be.

1.2 From Cauchy and the Nineteenth Century

Here we consider as a classical standard the basic model considered by engineers in
solid mechanics and the theory of structures. This essentially is the theory of con-
tinua set forth by A.L. Cauchy in the early nineteenth century for isotropic homo-
geneous elastic solids in small strains. The theory of continua respecting Cauchy’s
axioms and simple working hypotheses is such that the following holds true:

1. Cauchy’s postulate. The traction exerted on a facet cut in the solid depends on
the geometry of that facet only at the first order (the local unit normal); it will
be linear in that normal. From this the notion of a stress tensor follows, the
so-called stress being the only “internal force” in the theory.

2. It is understood that both physical space (of Newton) and material manifold (the
set of material particles constituting the body) are Euclidean and connected,
whence the notion of displacement is well defined.

3. Working hypothesis (i). There are no applied couples in both volume and sur-
face.

4. Working hypothesis (ii). There exists no “microstructure” described by addi-
tional internal degrees of freedom.

According to Points 3 and 4, the Cauchy stress tensor is symmetric. This results
from the application of the balance of angular momentum. Isotropy, homogeneity,
and small strains are further hypotheses but they are not so central to our argu-
ment. Then generalizations of various degrees consist in relaxing more or less these
different points above, hence the notion of generalized continuum. This notion of
generalization depends also on the culture and physical insight of the scientists. For
instance, the following generalizations are “weak” ones:
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• “Generalized” Hooke’s law (linear, homogeneous, but anisotropic medium);
• Hooke–Duhamel law in thermoelasticity;
• Linear homogeneous piezoelectricity in obviously anisotropic media (no center

of symmetry).

These are “weak” generalizations because they do not alter the main mathemati-
cal properties of the system. Of course, thermoelasticity and linear piezoelectricity
require adding new independent variables (e.g., temperature θ or scalar electric po-
tential ϕ). In some sense, the problem becomes four-dimensional for the basic field
(elastic displacement and temperature in one case, elastic displacement and electric
potential in the other). The latter holds in this mere simplicity under the hypoth-
esis of weak electric fields, from which there follows the neglect of the so-called
ponderomotive forces and couples, e.g., the couple P × E when electric field and
polarization are not necessarily aligned; see Eringen and Maugin [24]. Such theo-
ries, just like standard elasticity, do not involve a length scale. But classical linear
inhomogeneous elasticity presents a higher degree of generalization because a char-
acteristic length intervenes necessarily.

From here on, we envisage three true (in our view) generalizations.

1.2.1 The Cauchy Stress Tensor Becomes Nonsymmetric
for Various Reasons

This may be due to

(i) The existence of body couples (e.g., in electromagnetism: P×E or/and M×H;
the case of intense EM fields or linearization about intense bias fields);

(ii) The existence of surface couples (the introduction of “internal forces” of a new
type of the so-called couple stresses); the medium possesses internal degrees
of freedom that modify the balance of angular momentum;

(iii) The existence of internal degrees of freedom of a nonmechanical nature in ori-
gin, e.g., polarization inertia in ferroelectrics, intrinsic spin in ferromagnetics
(see Maugin’s book [57]);

(iv) The existence of internal degrees of freedom of “mechanical” nature.

This is where the Cosserats’ model comes into the picture.
The first example in this class pertains to a rigid microstructure (three addi-

tional degrees of freedom corresponding to an additional rotation at each material
point, independently of the vorticity). Examples of media of this type go back to
the early search for a continuum having the capability to transmit transverse waves
(as compared to acoustics in a pure fluid), i.e., in relation to optics. The works of
McCullagh [64] and Lord Kelvin must be singled out (cf. Whittaker [85]). Pierre
Duhem [9] proposes to introduce a triad of three rigidly connected directors (unit
vectors) to represent this rotation. In modern physics, there are other tools for this,
including Euler’s angles (not very convenient), quaternions and spinors. It is indeed
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the Cosserats, among other studies in elasticity, who really introduced internal de-
grees of freedom of the rotational type (these are micropolar continua in the sense
of Eringen) and the dual concept of couple stress. Hellinger [36], in a brilliant es-
say, recognized at once the new potentialities offered by this generalization but did
not elaborate on these. A modern rebirth of the field had to await works in France
by crystallographs (Laval [45–47]; Le Corre [49]), in Russia by Aero and Kuvshin-
skii [1], and Palmov [71], in Germany by Schaeffer [77], Günther [34], Neuber [67],
and in Italy by Grioli [33] and Capriz—see Capriz’s book of 1989 [3]. But the best
formulations are those obtained by considering a field of orthogonal transformations
(rotations) and not the directors themselves, see Eringen [19–21], Kafadar and Erin-
gen [37], Nowacki [70], although we note some obvious success of the “director”
representation, e.g., in liquid crystals (Ericksen [17]; Leslie [52]) and the kinematics
of the deformation of slender bodies (Ericksen, Truesdell, Naghdi)—in this volume
see the contribution of Lhuillier. But there was in the mid 1960s a complete revival
of continuum mechanics (cf. Truesdell and Noll [82]) which, by paying more at-
tention to the basics, favored the simultaneous formulation of many more or less
equivalent theories of generalized continua in the line of thought of the Cosserats
(works by Mindlin and Tiersten [66], Mindlin and Eshel [65], Green and Rivlin
[32], and Green and Naghdi [31], Toupin [80, 81], Truesdell and Toupin [83], and
Eringen and Suhubi [25, 26], etc.).

More precisely, in the case of a deformable microstructure at each material point,
the vector triad of directors of Duhem–Cosserats becomes deformable and the ad-
ditional degree of freedom at each point, or micro-deformation, is akin to a general
linear transformation (nine degrees of freedom). These are micromorphic continua
in Eringen’s classification. A particular case is that of continua with microstretch.
A truly new notion here is that of the existence of a conservation law of micro-inertia
(Eringen [18], Stokes [79]). In the present volume, this is illustrated by several con-
tributions. A striking example is due to Drouot and Maugin [8] dealing with fluid
solutions of macromolecules, while Pouget and Maugin [73] have provided a fine
example of truly micromorphic solids with the case of piezoelectric powders treated
as continua.

Remark 1.1. Historical moments in the development of this avenue of generalization
have been the IUTAM symposium organized by E. Kröner in Freudenstadt in 1967
(see Kröner [41]) and the CISM Udine summer course of 1970 (Mindlin, Eringen,
Nowacki, Stojanovic, Sokolowski, Maugin, Jaric, Micunovic, etc. were present).

Remark 1.2. Strong scientific initial motivations for the studies of generalized media
at the time (1960–1970s) were (i) the expected elimination of field singularities in
many problems with standard continuum mechanics, (ii) the continuum description
of real existing materials such as granular materials, suspensions, blood flow, etc.
But further progress was hindered by a notorious lack of knowledge of new (and
too numerous) material coefficients despite trials of estimating such coefficients,
e.g., by Gauthier and Jashman [28] at the Colorado School of Mines by building
artificially microstructured solids.

Remark 1.3. Very few French works were concluded in the 1960–1970s if we note
the exceptional work of Duvaut [10, 11] on finite strains after a short stay in the
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USA, the variational principle for micromorphic bodies by Maugin [53] from the
USA, and those on micropolar fluids by C. Hartmann [35] under the influence of
R. Berker (who had been the teacher of Eringen in Istanbul).

Remark 1.4. The intervening of a rotating microstructure allows for the introduction
of wave modes of rotation of the “optical” type with an obvious application to many
solid crystals (e.g., crystals equipped with a polar group such as NaNO2, cf. Pouget
and Maugin [74]).

1.2.2 The Loss of Validity of the Cauchy Postulate

Then the geometry of a cut intervenes at a higher order than one (variation of the
unit normal, role of the curvature, edges, apices and thus capillarity effects). We
may consider two different cases referred to as the weakly nonlocal theory and the
strongly nonlocal theory (distinction introduced by the author at the Warsaw meet-
ing of 1977, cf. Maugin [55]). Only the first type does correspond to the exact def-
inition concerning a cut and the geometry of the cut surface. This is better referred
to as gradient theories of the nth order; it is understood that the standard Cauchy
theory is, in fact, a theory of the first gradient (by this we mean the first gradient of
the displacement or the theory involving just the strain and no gradient of it in the
constitutive equations).

1.2.2.1 Gradient Theories

Now, to tell the truth, gradient theories abound in physics, starting practically with
all continuum theories in the nineteenth century. Thus, Maxwell’s electromagnetism
is a first-gradient theory (of the electromagnetic potentials); the Korteweg [39] the-
ory of fluids is a theory of the first gradient of density (equivalent to a second-
gradient theory of displacement in elasticity); Einstein’s [12] (also [13]) theory of
gravitation (general relativity, 1916) is a second-gradient theory of the metric of
curved space–time, and Le Roux [50] (also [51]) seems to be the first public exhibi-
tion of a second-gradient theory of (displacement) elasticity in small strains (using
a variational formulation). There was a renewal of such theories in the 1960s with
the works of Casal [4] on capillarity, and of Toupin [80], Mindlin and Tiersten [66],
Mindlin and Eshel [65], and Grioli [33] in elasticity.

However, it is with a neat formulation basing on the principle of virtual power
that some order was imposed in these formulations with an unambiguous deduc-
tion of the (sometimes tedious) boundary conditions and a clear introduction of the
notion of internal forces of higher order, i.e., hyperstresses of various orders (see,
Germain [29, 30], Maugin [56]). Phenomenological theories involving gradients of
other physical fields than displacement or density, coupled to deformation, were en-
visaged consistently by the author in his Princeton PhD thesis (Maugin [54]) deal-
ing with typical ferroïc electromagnetic materials. This is justified by a microscopic
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approach, i.e., the continuum approximation of a crystal lattice with medium-range
interactions; with distributed magnetic spins or permanent electric dipoles. This also
applies to the pure mechanical case (see, for instance, the Boussinesq paradigm in
Christov et al. [5]).

Very interesting features of these models are:

F1. Inevitable introduction of characteristic lengths;
F2. Appearance of the so-called capillarity effects (surface tension) due to the ex-

plicit intervening of curvature of surfaces;
F3. Correlative boundary layers effects;
F4. Dispersion of waves with a possible competition and balance between nonlin-

earity and dispersion, and the existence of solitonic structures (see Maugin [60],
Maugin and Christov [63]);

F5. Intimate relationship with the Ginzburg–Landau theory of phase transitions and,
for fluids, van der Waals’ theory.

Truly sophisticated examples of the application of these theories are found in

(i) The coupling of a gradient theory (of the carrier fluid) and consideration of a
microstructure in the study of the inhomogeneous diffusion of microstructures
in polymeric solutions (Drouot and Maugin [8]);

(ii) The elimination of singularities in the study of structural defects (disloca-
tions, disclinations) in elasticity combining higher-order gradients and polar mi-
crostructure (cf. Lazar and Maugin [48]).

Most recent works consider the application of the notion of gradient theory in elasto-
plasticity for nonuniform plastic strain fields (works by Aifantis, Fleck, Hutchinson,
and many others)—but see the thermodynamical formulation in Maugin [58]. In the
present volume, this trend is exemplified by the first-hand synthesis contribution of
E.C. Aifantis.

Insofar as general mathematical principles at the basis of the notion of gradient
theory are concerned, we note the fundamental works of Noll and Virga [69] and
Dell’Isola and Seppecher [7], the latter with a remarkable economy of thought.

1.2.2.2 Strongly Nonlocal Theory (Spatial Functionals)

Initial concepts in this framework were established by Kröner and Datta [42], Kunin
[43, 44], Rogula [76], Eringen and Edelen [23]. As a matter of fact, the Cauchy con-
struct does not apply anymore. In principle, only the case of infinite bodies should
be considered as any cut would destroy the prevailing long-range ordering. Con-
stitutive equations become integral expressions over space, perhaps with a more or
less rapid attenuation with distance of the spatial kernel. This, of course, inherits
from the action-at-a-distance dear to the Newtonians, while adapting the disguise of
a continuous framework. This view is justified by the approximation of an infinite
crystal lattice; the relevant kernels can be justified through this discrete approach.
Of course, this raises the matter of solving integro-differential equations instead of
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PDEs. What about boundary conditions that are in essence foreign to this represen-
tation of matter-matter interaction? There remains a possibility of the existence of a
“weak-nonlocal” limit by the approximation by gradient models.

The historical moment in the recognition of the usefulness of strongly nonlocal
theories was the EUROMECH colloquium on nonlocality organized by D. Rogula
in Warsaw (cf. Maugin [55]). A now standard reference is Eringen’s book [22], also
Kunin [44]. A recent much publicized application of the concept of nonlocality is
that to damage by Pijaudier–Cabot and Bazant [72].

Note in conclusion to this point that any field theory can be generalized to a
nonlocal one while saving the notions of linearity and anisotropy; but loosing the
usual notion of flux. Also, it is of interest to pay attention to the works of Lazar and
Maugin [48] for a comparison of field singularities in the neighborhood of structural
defects in different “generalized” theories of elasticity (micropolar, gradient-like,
strongly nonlocal or combining these). In this respect, see Lazar’s contribution in
this volume.

1.2.3 Loss of the Euclidean Nature of the Material Manifold

Indeed, the basic relevant problem emerges as follows. How can we represent ge-
ometrically the fields of structural defects (such as dislocations associated with a
loss of continuity of the elastic displacement, or disclinations associated with such
a loss for rotations). A similar question is raised for vacancies and point defects.
One possible answer stems from the consideration of a non-Euclidean material
manifold, e.g., a manifold without curvature but with an affine connection, or an
Einstein–Cartan space with both torsion and curvature, etc. With this, one enters
a true “geometrization” of continuum mechanics of which conceptual difficulties
compare favorably with those met in modern theories of gravitation. Pioneers in the
field in the years 1950–1970 were K. Kondo [38] in Japan, E. Kröner [40] in Ger-
many, Bilby in the UK, Stojanovic [78] in what was then Yugoslavia, W. Noll [68]
and C.C. Wang [84] in the USA. Modern developments are due to, among others,
M. Epstein and the author [14, 15], M. Elzanowski and S. Preston (see the theory
of material inhomogeneities by Maugin [59]). Main properties of this type of ap-
proach are (i) the relationship to the multiple decomposition of finite strains (Bilby,
Kroener, Lee) and (ii) the generalization of theories such as the theory of volumet-
ric growth (Epstein and Maugin [16]) or the theory of phase transitions within the
general theory of local structural rearrangements (local evolution of reference; see
Maugin [62], examining Kröner’s inheritance and also the fact that true material
inhomogeneities (dependence of material properties on the material point) are then
seen as pseudo-plastic effects [61]. All local structural rearrangements and other
physical effects (e.g., related to the diffusion of a dissipative process) are recipro-
cally seen as pseudo material inhomogeneities (Maugin [62]). An original geometric
solution is presented in the book of Rakotomanana [75] which offers a representa-
tion of a material manifold that is everywhere dislocated. Introduction of the notion
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of fractal sets opens new horizons (cf. Ostoja-Starzewski’s contribution in this vol-
ume). An antiquated forerunner work of all this may be guessed in Burton [2], but
only with obvious good will by a perspicacious reader.

1.3 Conclusion

Since the seminal work of the Cosserats, three more or mess successful paths haven
been taken towards the generalization of continuum mechanics. These were recalled
above. They are also fully illustrated in the various contributions that follow. An es-
sential difference between the bygone times of the pioneers and now is that artificial
materials can be man-made that are indeed generalized continua. In addition, math-
ematical methods have been developed (homogenization techniques) that allow one
to show that generalized continua are deduced as macroscopic continuum limits of
some structured materials. This is illustrated by the book of Forest [27].
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Chapter 2
On Semi-Holonomic Cosserat Media

Marcelo Epstein

Dedicated to the memory of the Cosserat brothers on the centenary of the publica-
tion of their magnum opus [1]

Abstract The notions of semi-holonomic and quasi-holonomic Cosserat media are
introduced and their differences outlined. Contrary to the classical holonomic and
non-holonomic counterparts, the definition of semi- and quasi-holonomic media is
not kinematic but constitutive. Possible applications include granular media embed-
ded in a rigid matrix and colloidal suspensions in an ideal incompressible fluid.

2.1 Cosserat Bodies

In Continuum Mechanics, a material body B is defined as a 3-dimensional differen-
tiable manifold that can be covered with a single coordinate chart. A configuration
κ is defined as an embedding of B into the 3-dimensional Euclidean space E

3:

κ : B −→ E
3. (2.1)

In terms of coordinate charts XI (I = 1, 2, 3) and xi (i = 1, 2, 3) in the body and
in space, respectively, the configuration κ is given by three smooth functions:

XI �→ xi = κi
(
XI
)
. (2.2)

To convey the presence of extra kinematic degrees of freedom, however, these
definitions need to be expanded so that the differential geometry can properly reflect
the existence of the microstructure and its possible deformability. We recall that,
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given an m-dimensional differentiable manifold M , its principal frame bundle FM
is obtained by adjoining at each point x ∈ M the collection FxM of all the possible
bases of its tangent space TxM . The set thus obtained has a canonical structure of
a differentiable manifold of dimension m + m2. It is endowed with the natural
projection map:

πM : FM −→ M (2.3)

that assigns to each point p ∈ FM the point π(p) ∈ M to which it is attached. If
xi (i = 1, . . . ,m) is a coordinate chart on U ⊂ M with natural basis ei = ∂/∂xi,
we can construct an associated chart in FM by assigning to each point p ∈ π−1

M (U)
the numbers {xi, pi

j}, where pi
j is the ith component of the jth vector of the frame

p in the natural basis {e1, . . . , em}. Expressed in terms of coordinates, the natural
projection is given by:

xi, pi
j �→ xi. (2.4)

We define a Cosserat body as the principal frame bundle FB of an ordinary ma-
terial body B. The physical intent is that, while the underlying body B represents
the macro-medium, each fibre FxB represents the micro-particle or grain at x ∈ B.

Concomitantly with the enlargement of the scope of material bodies, we need to
envisage a more general definition of the notion of configuration. To this end, we
consider fibre-preserving maps:

K : FB −→ FE
3 (2.5)

such that K is a principal fibre-bundle morphism between FB and its image. By
fibre preservation, we mean the commutativity of the diagram:

FB �K
FE

3

�
πE

E
3

�
πB

B �
κ

(2.6)

where κ is a well-defined map between the base manifolds. Thus, a Cosserat defor-
mation K automatically implies the existence of an ordinary deformation κ, repre-
senting the deformation of the macro-structure. By fibre-bundle morphism we imply
that, fibre by fibre, each of the restrictions K|X (X ∈ B) commutes with the multi-
plicative right-action of the general linear group GL(3; R). In terms of coordinates,
this means that there exists an X-dependent matrix Ki

I such that any Cosserat con-
figuration is completely defined by twelve smooth functions:

xi = κi
(
XJ
)
, (2.7)

and
Ki

I = Ki
I

(
XJ
)
. (2.8)
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The physical meaning of these assumptions is that each grain can undergo only
homogeneous deformations, as represented by the local matrix Ki

I . In other words,
each grain behaves as a pseudo-rigid body. A more detailed treatment can be found
in [2–4].

Remark 2.1. As already pointed out, the original formulation by the Cosserat broth-
ers considered the case in which Ki

I is orthogonal. In the terminology of [5], this
case corresponds to the micropolar continuum. The more general case in which
Ki

I is an arbitrary non-singular matrix corresponds to the micromorphic continuum
of [5]. We use the terminology “Cosserat body” in this more general sense.

We can see that in a Cosserat body there exist two, in principle independent,
mechanisms for dragging vectors by means of a deformation: The first mechanism
is the ordinary dragging of vectors by means of the deformation gradient of the
macro-medium, represented by the matrix with entries F i

I = xi
,I . The second mech-

anism is the one associated with the deformation of the micro-particle or grain, and
is represented by the matrix with entries Ki

I . Note that in a second-grade body these
two mechanisms are identified with each other, thus suggesting that different kinds
of Cosserat media may be obtained by either kinematic restrictions of this kind or by
constitutive restrictions. In fact, the Cosserat brothers themselves already advanced
these possibilities and introduced the outmoded terminology of “trièdre caché” (hid-
den triad) and “W caché” (hidden strain-energy function) to refer, respectively, to
these kinematic or constitutive restrictions. We will follow in their steps.

2.2 Various Jets

Given two smooth manifolds, M and N , of dimensions m and n, respectively, we
say that two maps f, g : M −→ N have the same k-jet at a point X ∈ M if:
(i) f(X) = g(X); (ii) in a coordinate chart in M containing X and a coordinate
chart in N containing the image f(X), all the partial derivatives of f and g up to
and including the order k are respectively equal.

Although the above definition is formulated in terms of charts, it is not difficult
to show by direct computation that the property of having the same derivatives up
to and including order k is, in fact, independent of the coordinate systems used in
either manifold. Notice that, in order for this to work, it is imperative to equate
all the lower-order derivatives. If, for example, we were to equate just the second
derivatives, without regard to the first, the equality of the second derivatives would
not be preserved under arbitrary coordinate transformations.

The property of having the same k-jet at a point is, clearly, an equivalence rela-
tion. The corresponding equivalence classes are called k-jets at X . Any function in
a given k-jet is then called a representative of the k-jet. The k-jet at X of which a
given function f : M −→ N is a representative is denoted by jk

Xf . The collection
of all k-jets at X ∈ M is denoted by Jk

X(M ,N ). The point X is called the source
of jk

Xf and the image point f(X) is called its target.
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Let a smooth map f : M −→ N be given in terms of coordinates XI (I =
1, . . . ,m) and xi (i = 1, . . . , n) in M and N , respectively, by the functions:

xi = xi
(
X1, . . . , Xm

)
, i = 1, . . . , n. (2.9)

The jet j2
Xf , for example, is then given by the following coordinate expressions:

xi
(
X1, . . . , Xm

)
,

[
∂xi

∂XI

]

X

,

[
∂2xi

∂XJ ∂XI

]

X

, (2.10)

a total of n + mn + m2n numbers.
We are particularly interested in the case of 1-jets. Let us evaluate, accordingly,

the coordinate expression of j1
XK, where K is a Cosserat configuration, as defined

in coordinates by (2.7) and (2.8). Notice that the dimension of both the source and
the target manifolds in this case is 12. Following the definition, we conclude that the
j1
XK consists of the following elements:

xi, Ki
I ,

[
∂xi

∂XI

]

X

,

[
∂Ki

I

∂XJ

]

X

, (2.11)

which we can abbreviate as:

xi, Ki
I , F i

I = xi
,I , Ki

I,J . (2.12)

If no further restrictions are imposed on K, we speak of the components (2.12)
as the representatives of a non-holonomic 1-jet at X ∈ B. It is possible, however,
to demand in an intrinsic manner, independent of the coordinates, that the functions
K under consideration satisfy the following compatibility requirement in a neigh-
borhood of X:

Ki
I ≡ xi

,I . (2.13)

In this case, the collection of 1-jets obtained is smaller. Not only the second and
third entries in (2.12) are the same, but also, by virtue of the identical satisfaction
of (2.13) in a neighborhood of X , we must have:

Ki
I,J = xi

,IJ = Ki
J,I . (2.14)

In other words, the last element of the jet is symmetric with respect to its lower in-
dices. We will indicate the coordinate expression of these holonomic jets as follows:

xi, F i
I , Ki

I,J = Ki
J,I . (2.15)

Finally, there exists a third type of jet, somewhat intermediate between the two
extremes just presented. It is obtained when the potential representatives K are re-
stricted to satisfy the condition:

Ki
I(X) = xi

,I(X). (2.16)
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In other words, we demand the satisfaction of (2.13) not identically in a neighbor-
hood of X , but just at the point X itself. The 1-jets thus obtained are known as
semi-holonomic jets. The coordinate expression of a semi-holonomic jet is:

xi, Ki
I , Ki

I,J . (2.17)

Notice that the last entry is no longer necessarily symmetric.

Remark 2.2. Given an actual arbitrary configuration K, it will give rise automat-
ically to point-wise non-holonomic jets. If the configuration is restricted so that
Condition (2.13) is satisfied over the whole base manifold B, it will give rise to ev-
erywhere holonomic jets. In this sense, it is possible to speak of non-holonomic or
holonomic configurations, respectively. On the other hand, it is not possible to de-
fine semi-holonomic configurations. Indeed, if Condition (2.16) were to be imposed
at each point, we would immediately revert to Condition (2.13), thus obtaining a
holonomic configuration.

2.3 Semi-Holonomic Cosserat Media

The last section ended in a definitely pessimistic note. Indeed, if semi-holonomic
configurations cannot be properly defined, there seems to be no point in attempting a
definition of semi-holonomic media. This kinematic impasse, however, can perhaps
be resolved by means of a constitutive statement. We could say, for example, that
a non-holonomic Cosserat medium is semi-holonomic if its constitutive equation
involves only the semi-holonomic part of the 1-jet of the configuration. Physically,
this would correspond to a response that is in some sense oblivious of the presence
of the macro-medium. In this section, we look into this and other possibilities with
some care.

Since we are contemplating a particular case of non-holonomic Cosserat media,
it will be useful to record the law governing the change of constitutive law of such
a medium under a change of reference configuration. For specificity, we will limit
ourselves to a single scalar constitutive law, such as the free-energy density per unit
mass ψ. Let the constitutive law with respect to a reference configuration K0 be
given in a coordinate system XI by the expression:

ψ = ψ0

(
Ki

I , F
i
I ,K

i
I,J ;XI

)
, (2.18)

and let the counterpart for a reference configuration K1 with coordinates Y A be
given by:

ψ = ψ1

(
Ki

A, F i
A,Ki

A,B ;Y A
)
, (2.19)

with an obvious notational scheme. The deformation from K0 to K1 is given by
twelve quantities denoted as:

Y A = Y A
(
XI
)
, KA

I = KA
I

(
XJ
)
. (2.20)
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By the law of composition of jets (or derivatives), we obtain the following relation
between the constitutive expressions:

ψ1

(
Ki

A, F i
A,Ki

A,B ;Y A
(
XJ
))

= ψ0

(
Ki

AKA
I , F i

AFA
I ,Ki

A,BKA
I FB

J + Ki
AKA

I,J ;XJ
)
, (2.21)

where FA
I = Y A

,I .
The point of bringing this transformation to bear is the proof of the following:

Proposition 2.1. If the constitutive law (2.18), in the reference configuration K0,
is independent of the second argument (F i

I ), so is the expression of the same con-
stitutive law in any other reference configuration K1 independent of the second
argument (F i

A).

Proof. The proof is an immediate consequence of the transformation law (2.21). ��

As a direct corollary of this proposition, we can propose the following definition.

Definition 2.1. A non-holonomic Cosserat medium is said to be semi-holonomic at
X if its constitutive law at X is independent of the deformation gradient of the
macro-medium.

From the mathematical standpoint, it is necessary to note that this definition does
not imply the existence of a canonical projection of a non-holonomic jet onto a
semi-holonomic part. In fact, such a canonical projection does not exist. What the
definition implies is that, once a non-canonical choice is effected in one partic-
ular reference configuration, this choice can be convected to all other configura-
tions by means of the correct application of the transformation equation (2.21). In
particular, this convection involves the gradient of the change of reference con-
figuration (FA

I ). Another way to state the choice of a particular “projection” is
to say that a particular parallelism (whose physical meaning may, for example,
be related to the existence of some particular stress-free configuration) must be
chosen as part and parcel of the constitutive law of a semi-holonomic Cosserat
medium.

From the physical point of view, a semi-holonomic Cosserat medium may be
said to consist of an incoherent matrix upon which a coherent micro-medium has
been installed. The interaction between the grains may “remember” the existence of
a particular configuration of the macro-medium whereby the constitutive law takes a
particularly simple form. It is interesting to remark that, since it plays no other role,
the macro-medium of a semi-holonomic medium may be, in a possible application,
assumed to be rigid.

The converse of the above statement is not true: a non-holonomic Cosserat
medium with a rigid matrix is not automatically semi-holonomic. Indeed, by a direct
application of the principle of frame indifference, the constitutive law (2.18) can be
reduced to the form:

ψ = ψ
(
RT K,U,RT ∇K;X

)
, (2.22)
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Fig. 2.1 A rigid-matrix semi-
holonomic Cosserat medium

where the polar decomposition F = RU has been exploited and where block let-
ters stand for the collections of homonymous indexed quantities used in previous
formulas. Using now the polar decomposition:

K = R′U′, (2.23)

we may write (2.22) as:

ψ = ψ
(
RU′,U, rR′T ∇K;X

)
, (2.24)

where:

R = RT R′ (2.25)

is the (referential) relative rotation of the grain with respect to the macro-medium.
If the macro-medium is rigid, we must have necessarily U = I. But for a semi-
holonomic body the constitutive law must be independent of both components U
and R of the polar decomposition of F. It follows, therefore, that rigidity alone
does not imply semi-holonomy. If, on the other hand, the constitutive law of a rigid-
matrix Cosserat medium is independent of the rotation R, we may choose R = R′

(or, equivalently, R = I), thereby leading to the following reduced equation of a
semi-holonomic Cosserat body:

ψ = ψ
(
U′,R′T ∇K;X

)
. (2.26)

In the physical interpretation, we may say that the grains are attached to the rigid
macro-medium by means of ideal frictionless pins, so that there is no energetic cost
to produce a relative rotation between them. In the admittedly imperfect pictorial
representation of Fig. 2.1, the grains in the reference configuration are depicted
as squares pin-jointed at their centers to the rigid matrix and connected to their
neighbors by means of springs (represented by broken lines) designed to detect dif-
ferential stretches and rotations between contiguous grains. The grains themselves
behave as pseudo-rigid bodies, so that their deformed versions are represented by
parallelograms.

The reduced form (2.26) of the constitutive law of a semi-holonomic Cosserat
material applies whether or not the matrix is rigid, since in either case the response
is independent of both U and R.
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2.4 Quasi-Holonomic Cosserat Media

As defined, a semi-holonomic Cosserat medium may not necessarily have any ma-
terial symmetries. We want to contrast the above definition with the following one
that, by demanding the maximum possible symmetry of the macro-medium, appears
to carry the same physical meaning.

Definition 2.2. A non-holonomic Cosserat medium is said to be quasi-holonomic at
X if, for some (local) reference configuration, its symmetry group H at X contains
the subgroup given by:

G =
{
{I,G, 0} | G ∈ GL(3; R)

}
, (2.27)

where I is the unit of GL(3; R).

The reason to suspect that this definition might be equivalent to the previous one
is that, due to the assumed arbitrariness of G, it seems to imply that the deformation
of the macro-medium plays no role in the constitutive response. A direct application
of the definition of a non-holonomic symmetry, however, leads to the conclusion
that a quasi-holonomic medium must have a constitutive law of the form:

ψ = ψ
(
Ki

I ,K
i
I,JF

−J
j ;XI

)
, (2.28)

in the special reference configuration used in the definition.1

Physically, this means that the price to pay for this large symmetry group is,
surprisingly, the reappearance of the deformation gradient of the macro-medium in
the last argument of the constitutive law so as to permit the interaction between the
grains to take into account their relative spatial locations (rather than those pulled
back to some putative, perhaps unstressed, reference configuration).

The purpose of the following simple example is to shed light on the subtle differ-
ence between semi-holonomic and quasi-holonomic media, as conceived in Defini-
tions 2.1 and 2.2, respectively. To this end, we consider the successive application
of two deformations, the first of which can be regarded as a change of reference
configuration so as to bring the notation in line with that of the previous section.
The (Cartesian) coordinate systems XI , Y A, xi are assumed to coincide with each
other. The first deformation is a uniaxial contraction along the X1-axis, namely:

Y 1 = 0.8X1, Y 2 = X2, Y 3 = X3, KA
I = δA

I . (2.29)

The second deformation is a micro-rotation about the Y 3 axis that increases lin-
early with Y 1. Specifically:

1 In any other reference configuration, the symmetry group will contain a conjugate of the group
G and the form of the constitutive law will be, accordingly, somewhat more involved.
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x1 = Y 1, x2 = Y 2, x3 = Y 3,

{
Ki

A

}
=

⎡

⎢
⎢
⎣

cos (π
3Y

1) − sin (π
3Y

1) 0

sin (π
3Y

1) cos (π
3Y

1) 0

0 0 1

⎤

⎥
⎥
⎦ .

(2.30)

The effect of each of the two deformations on a unit-width strip in the X1, X2

and Y 1, Y 2 planes, respectively, is shown in Figs. 2.2 and 2.3, while Fig. 2.4 shows
the composition. Notice that, at the moment of composition, it is the already con-
tracted strip that encounters the values of the rotation field already in place (as dic-
tated by the second deformation), thus resulting in a maximum value for the rotation
of the grain in the deformed strip of 48◦ rather than 60◦, which was the value at the
right-hand end of the strip as far as the second deformation alone was concerned. If
the Cosserat body is semi-holonomic, the gradient of the rotation would be obtained
by dividing 48◦ by the original unit width. On the other hand, if the Cosserat body
is quasi-holonomic, it is the width measured in the final deformed configuration
that matters in the calculation of the gradient. Since this width is of 0.8, we verify
that the rotation gradient in the composite deformation turns out to be identical to
the gradient in the second deformation. In other words, the pre-application of the
first deformation (in this case a contraction of the macro-medium) is irrelevant for a
quasi-holonomic medium.

Fig. 2.2 First deformation

Fig. 2.3 Second deformation

Fig. 2.4 Composition
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Among various possible physical applications of both semi-holonomic and quasi-
holonomic Cosserat media, beyond those with a rigid matrix, we mention the mod-
eling of aggregates [7], such as colloidal suspensions [6], when the underlying con-
tinuum upon which the interacting particles dwell is, say, an ideal incompressible
fluid. The choice of model depends on the physical nature of the interactions be-
tween the dispersed particles.
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neering Research Council of Canada.
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Chapter 3
On the Theories of Plates Based
on the Cosserat Approach

Holm Altenbach and Victor A. Eremeyev

Abstract The classical isotropic linear elastic material behavior is presented by two
material parameters, e.g., the Young’s modulus and the Poisson’s ratio, while the
Cosserat continuum is given by six material parameters. The latter continuum model
can be the starting point for the deduction of the governing equations of the Cosserat
plate theory via a through-the-thickness integration. In contrast, the basic equations
of the Cosserat plate theory can be established applying the direct approach. It can
be shown that both systems of equations are similar in the main terms. The assumed
identity of both systems results in consistent stiffness parameters identification for
the two-dimensional theory based on the direct approach and, in addition, in some
constraints. Using the experimental results of Lakes, one can show in which cases
the additional material properties coming from the tree-dimensional Cosserat mate-
rial model have a significant influence on the stiffness parameters.

3.1 Introduction

The continuum model of the Cosserat brothers [5] is founded on the a priori in-
troduction of the independence of both the translations and rotations. From this it
follows that one symmetric stress tensor is not enough to represent the response of
the continuum on the external loadings. The base of such a new continuum model
generalizing the Cauchy’s model was known since Euler because he introduced two
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independent laws of motion: the balance of momentum and the balance of moment
of momentum (see [18] among others).

Applications of the Cosserat continuum could not be established for a long time.
Only in the 1950s, the Cosserat continuum was recognized as a starting point for
various constructions of generalized continuum models. Let us note that some of
them are presented for the three-dimensional case to describe complex behavior of
solids and fluids. Let us mention here only the pioneering works summarized in the
proceedings [11]. In addition, the Cosserat approach was used in establishing less
than three-dimensional continuum theories to model shells, plates and rods.

Below we limit our discussion to the plate theory. Any set of governing equations
for plates can be deduced using the conventional three-dimensional continuum equa-
tions together with the some engineering hypotheses or mathematical techniques.
Finally, the manipulated equations are integrated over the thickness. Another pos-
sibility is the a priori introduction of the two-dimensional field equations for a
so-called deformable surface. The latter is an elegant and a more natural way to
formulate the plate equations, but the identification of the effective properties is a
non-trivial problem. Let us note only some fundamental publications presenting the
basic items of the direct approach [9, 16, 17, 8], and the reviews of the Cosserat
approach in the shell and plate theories [1, 3].

Here we firstly present two sets of plate equations of the Cosserat type. The first
set is introduced by the direct approach, while the second is based on the three-
dimensional equations of the Cosserat continuum and a through-the-thickness inte-
gration. Secondly, both sets will be compared and analyzed. This way one gets the
equivalent terms in both sets showing which terms in the equations introduced by
the direct approach correspond to which terms in the integrated three-dimensional
equations. As in any dimension-reduction problem, some constraints can be ob-
tained. Last but not least, using the experimental data of Lakes [12, 13] for an open-
cell and a closed-cell foam, the influence of the additional material parameters is
discussed. It can be shown that in some cases the classical continuum model does
not allow the description of the material behavior with a sufficient accuracy, and so
a generalized continuum model must be applied.

3.2 A Priori Two-Dimensional Governing Equations

Let us introduce the basic equations for micropolar plates based on the direct ap-
proach. We consider a deformable plane surface, see Fig. 3.1. Each material point
of this surface is an infinitesimal rigid body with 3 translational and 3 rotational
degrees of freedom. The balances of momentum and moment of momentum are
formulated as follows

F∗
s ≡

∫

M∗

q dA +
∫

C∗

ts ds = 0,

M∗
s ≡

∫

M∗

(x× q + c) dA +
∫

C∗

(x× ts + ms) ds = 0,
(3.1)
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Fig. 3.1 Deformable plane surface

where q and c are the vectors of surface loads (forces and moments), x is the po-
sition vector of the plane surface M , × denotes the cross-product, ts and ms are
the surface analogues of the stress vector and the couple stress vector, respectively.
Here the direct (index-free) notation in the sense of [15] is used. From (3.1) we ob-
tain the local form of the balances of momentum and moment of momentum as well
as the static boundary conditions. In the case of sufficiently smooth fields, the local
equilibrium equations can be stated as follows

∇s · T + q = 0, ∇s ·M + T× + c = 0. (3.2)

Here the surface (plane) nabla operator ∇s is given as ∇s = iα(∂/∂xα) with the
Cartesian coordinates xα, and iα being the unit base vectors. The Greek indices take
the values 1 and 2. The tensors T and M denote the surface stress and couple stress
tensors, respectively. They relate to ts and ms by the equations ν · T = ts and
ν ·M = ms, where ν is the outward normal vector to C . T and M take the form

T = Tαβiαiβ + Tα3iαn, M = Mαβiαiβ + Mα3iαn (α, β = 1, 2). (3.3)

Let us introduce the linear strain measures

e = ∇sv + A× θ, k = ∇sθ, (3.4)

where A ≡ I−n⊗n is the first metric tensor, and n the unit normal to M . Applying
the methodology presented in [4, 14], one can show that the linear strain measures
are work-conjugated to the stress measures T and M.

For the isotropic plate, the surface strain energy W can be introduced by [4, 6, 8]

2W = α1 tr2 eS + α2 tr e2
S + α3 tr

(
eS · eT

S

)
+ α4n · eT · e · n

+ β1 tr2 kS + β2 tr k2
S + β3 tr

(
kS · kT

S

)
+ β4n · kT · k · n. (3.5)

Here eS = e · A, kS = k · A, and αi, βi are the elastic stiffness parameters,
i = 1, 2, 3, 4. The constitutive equations are T ≡ ∂W/∂e and M ≡ ∂W/∂k.

The surface strain energy W must be positive definite, from which it follows [7]

2α1 + α2 + α3 > 0, α2 + α3 > 0, α3 − α2 > 0, α4 > 0,
2β1 + β2 + β3 > 0, β2 + β3 > 0, β3 − β2 > 0, β4 > 0.

(3.6)
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Note that for an isotropic three-dimensional micropolar solid we have only 6 elastic
moduli, while the micropolar plate theory contains 8 elastic stiffness parameters.
The increase in the number of parameters can be explained by at least two reasons:

• Reduced symmetry of the constitutive equations.
In the case of two-dimensional equations, a smaller number of symmetry groups
in comparison with the three-dimensional theory can be established. This fact
is well-known also for other plate theories, see, e.g., [2, 6].

• Reduction of three-dimensional equations to two-dimensional.
In the isotropic elasticity, material behavior is presented by two material pa-
rameters (e.g., Lamé’s moduli). The number in the full Kirchhoff plate theory
including both the in-plane and out-of-plane behavior is greater. Similar con-
clusions can be given for other plate theories, too.

3.3 Reduction of the Three-Dimensional Micropolar Elasticity
Equations by the Through-the-Thickness Integration

Let us introduce the balance equations of the micropolar elasticity [10]. The equi-
librium conditions of any part of a micropolar body occupying the volume V∗ ⊂ V
consist of the following relations

F∗ ≡
∫

V∗

ρf dV +
∫

S∗

tdA = 0,

M∗ ≡
∫

V∗

ρ(r× f + l) dV +
∫

S∗

(r× t + m) dA = 0,
(3.7)

where f and l are the mass forces and mass couples vectors, respectively, ρ is the
density, r is the position vector, S∗ = ∂V∗, t and m are the stress and couple stress
vectors, respectively. F∗ and M∗ are the total force and the total couple acting on
V∗, respectively. Hence, for any part of the micropolar body, (3.7)1 states that the
vector of total force is zero, while (3.7)2 states that the vector of total moment is
zero. With the relations n · σ = t, n · μ = m, the local equilibrium equations are

∇ · σ + ρf = 0, ∇ · μ + σ× + ρl = 0. (3.8)

Now the nabla operator ∇ is a three-dimensional operator, ρ is the density, and
σ and μ are the stress and couple stress tensors, respectively. σ× is the vectorial
invariant of a second-order tensor σ.

The small strains of the micropolar continuum are usually presented by the dis-
placement vector u and the vector of microrotation ϑ. The linear strain measures,
i.e., the stretch tensor E and the wryness tensor K, are given by the relations

E = ∇u + ϑ× I, K = ∇ϑ. (3.9)
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Fig. 3.2 Plate-like body

The classical isotropic elasticity can be deduced by setting κ = α = β = γ = 0.
In this case, the stress tensor σ will be a symmetric tensor. In addition, μ and l
vanish.

Finally, the isotropic elastic constitutive equations are

σ = λI tr E + μET + (μ + κ)K, μ = αI tr K + βKT + γK. (3.10)

The integration procedure is performed as follows. Let us assume that our plate-
like body occupies a volume with one dimension which is significantly smaller in
comparison with the other two. The coordinate z denotes this special direction and h
is the plate thickness; z takes the values −h/2 ≤ z ≤ h/2 (Fig. 3.2). The boundary
conditions of the upper (+) and lower (−) plate surfaces can be given by

n± · σ = t±, n± · μ = m±, (3.11)

where t± and m± are the surface loads (forces and moments) and n± = i3.
The main idea of the reduction procedure is the application of the 3D equilibrium

conditions (3.7) to any volume V∗ of the plate-like body and the transformation of
the results to the 2D case as in (3.1). Following [1], we transform (3.7) into the
relations

F∗ =
∫

M∗

q dA +
∫

C∗

ν · 〈σ〉 ds = 0,
〈
(. . .)

〉
=

h/2∫

−h/2

(. . .) dz,

M∗ =
∫

M∗

[x× q + c] dA

+
∫

C∗

[
ν · 〈μ〉 − ν · 〈zσ × i3〉 − ν · 〈σ〉 × x

]
dA = 0,

(3.12)

where the following notations are introduced

q = 〈ρf〉+ t+ + t−,

c = 〈ρl〉+ m+ + m− + i3 × 〈ρzf〉+ h
2 i3 × (t+ − t−).

The comparison of (3.12) and (3.1) leads to the determination of the stress resul-
tant and stress couple tensors by the following relations



32 H. Altenbach and V.A. Eremeyev

T = 〈A · σ〉, M = 〈A · μ〉 − 〈A · zσ × i3〉. (3.13)

From the second equation in (3.13), it follows that the components Mα3 depend
only on the couple stress tensor μ. Indeed, M · i3 = 〈A · μ · i3〉.

To establish the relations with the vectors u and ϑ used in the 3D theory and
their analogues v and θ in the 2D theory, we use the following approximation of u
and ϑ, see [1] for details,

u(x, y, z) = v(x, y)− zφ(x, y),
ϑ = φ(x, y)× i3 + ϑ3(x, y)i3 = θ, φ · i3 = 0.

(3.14)

This means that the couple stress tensor μ does not depend on z, while the stress
tensor σ depends on z linearly as in [10]. But the approximation (3.14) is more
restrictive than the one applied by Eringen [10]. As a result, the effective stiffness
parameters can be estimated as

α1 = λ̃h, λ̃ ≡ λ(2μ + κ)
λ + 2μ + κ

,

α2 = μh, α3 = (μ + κ)h, α4 = (μ + κ)h,

β1 = αh− μ
h3

12
, β2 = βh− λ̃

h3

12
,

β3 = γh + (2μ + κ + λ̃)
h3

12
, β4 = γh.

The in-plane stiffness parameters α1, α3, α3, and the transverse shear stiffness α4

depend linearly on h. The dependence of βi, i = 1, . . . , 4, on h is more complicated.
The parameters βi have linear asymptotes when h tends to zero, i.e., βi ∼ h. The
considered case differs from the cases of Kirchhoff’s and Reissner’s plates when
βi ∼ h3.

Introducing the engineering constants

G =
2μ + κ

2
, ν =

λ

2λ + 2μ + κ
, l2b =

γ

2(2μ + κ)
,

where G is the shear modulus, ν the Poisson ratio, lb the characteristic length under
bending, see [10], we obtain the expression

D =
Gh3

12(1− ν)

[
1 + 2

l2b
h2

]
. (3.15)

The dependence D/D̃ on h is given in Fig. 3.3, where D̃ = Gh3/[12(1− ν)] is
the value of the bending stiffness used by Eringen [10]. From Fig. 3.3 it can be
seen that the micropolar properties are inessential if h > 2lb. The values of the
elastic stiffness parameters for two porous materials are given in Table 3.1. Here we
have used the experimental data presented by Lakes [12, 13]. The index ∗ denotes
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the case of the material without the micropolar properties, i.e., if κ = α = β =
γ = 0.

To calculate the elastic stiffness we have used the approximation (3.14). Let us
note that in the literature on the shell theory there are many different approaches
to derive the shell equations from the 3D elasticity which lead to different values
of the stiffness parameters, see [4, 14] among others. For the Cosserat continuum
the derivation of the shell theories are given in many publications, see the reviews
in [1, 3] and [19]. This means that the elastic stiffness parameters presented above
can be considered as some estimates. In other words, these parameters show the
influence of the micropolar properties. In particular, (3.15) demonstrates the size-
effect which is well-known in the micropolar elasticity, see [10, 12, 13]. The anal-
ysis of (3.15) shows that the influence of the micropolar properties is essential if
the thickness of the plate h has the same value as the characteristic length of the
microstructure of the material.

Fig. 3.3 Dimensionless bend-
ing stiffness D/D̃ vs. the
dimensionless thickness h/lb

Table 3.1 Effective stiffness of a plate made of different foams (h has dimension m)

Elastic constants Foam, PU Foam, PU * Foam, PS Foam, PS *
α1, N/m 106 0.165h 0.165h 138.67h 138.67h

α2, N/m 106 1.001h 1.1h 99.84h 104h

α3, N/m 106 1.199h 1.1h 108.16h 104h

α4, N/m 106 1.199h 1.1h 108.16h 104h

β1, N·m 106 −2.6 × 10−6h − 0.083h3 −0.092h3 −6.7 × 10−6h − 8.3h3 −8.67h3

β2, N·m 106 −10−4h − 0.014h3 −0.014h3 −2.5 × 10−5h + 11.6h3 −11.5h3

β3, N·m 106 1.1 × 10−4h + 0.197h3 0.197h3 4.5 × 10−5h + 28.9h3 28.8h3

β4, N·m 106 1.1 × 10−4h 0 4.5 × 10−5h 0
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3.4 Conclusion

In this paper, we present the general six-parametric or micropolar linear plate lin-
ear theory with two vector fields of the translations and rotations as the independent
kinematic variables. Within the proposed theory one may take into account an exter-
nal surface drilling moment. We discuss the relations between the direct approach
and the through-the-thickness integration procedure to derive the plate equilibrium
equations and the constitutive equations. The influence of the micropolar properties
on the stiffness parameters of the plate is illustrated for two foams.
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Chapter 4
Cracks in Cosserat Continuum—Macroscopic
Modeling

Arcady V. Dyskin and Elena Pasternak

Abstract Modeling of particulate and layered materials (e.g., concrete and rocks,
rock masses) by Cosserat continua involves characteristic internal lengths which
can be commensurate with the microstructural size (the particle size or layer thick-
ness). When fracture propagation in such materials is considered, the criterion of
their growth is traditionally based on the parameters of the crack-tip stress singular-
ities referring to the distances to the crack tip smaller than the characteristic lengths
and hence smaller than the microstructural size. This contradicts the very notion
of continuum modeling which refers to the scales higher than the microstructural
size. We propose a resolution of this contradiction by considering an intermedi-
ate asymptotics corresponding to the distances from the crack tip larger than the
microstructural sizes (the internal Cosserat lengths) but yet smaller than the crack
length. The approach is demonstrated using examples of shear crack in particulate
and bending crack in layer materials.

4.1 Introduction

In a variety of materials with microstructure, there are two important types whose
adequate continuum modeling requires the consideration of rotational degrees of
freedom—the particulate and layered materials with week bonding. Such materials
represent a wide class of natural and structural materials including rocks and rock
masses, soils, concrete and composites. As the continuum modeling is based on a
homogenization procedure which introduces the averaging scale (e.g., the volume
element size), the distances smaller than the averaging scale cannot be addressed
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in such a modeling even if all distances are equally accessible in the continuum.
When the higher order continua such as Cosserat continuum are employed, they
bring their own characteristic lengths. Then the interplay between the characteristic
lengths of the continuum and the scale of averaging becomes important and in some
cases can control the results of the modeling. This paper investigates crack propa-
gation in the Cosserat continua whose characteristic lengths commensurate with the
microstructural length of the material (the particle size or the layer thickness).

4.2 The Length Scales in Continuum Description

Continuum modeling is based on the introduction of the volume element of size
H satisfying the following double inequality under the hypothesis of separation of
scales:

lm � H � L, (4.1)

where lm is the characteristic size of the material microstructure (e.g., the grain or
defect size, the distance between the microstructural elements, etc.), L is the charac-
teristic size of the area under consideration, the wave length, etc. The first inequality
in (4.1) is required for the volume element to be representative. The second inequal-
ity stipulates that the characteristic length lg of redistribution of the fields involved
in the description be considerably greater than H since the fields in the continuum
description are approximated by uniform within H . In other words, the variations
of the field over distance H should be negligible. This can be quantified as follows.

Consider, for the sake of simplicity, a scalar function f(x) continuously differ-
entiable in a vicinity of 0, which signifies the origin of a suitable coordinate frame.
If the variations of f are negligible over H then

∣
∣f(H)− f(0)

∣
∣�

∣
∣f(0)

∣
∣.

Keeping only the linear term in the Taylor expansion, this condition gives

lg =
∣
∣
∣
∣
f(0)
f ′(0)

∣
∣
∣
∣� H. (4.2)

If the function is regular at the origin then lg ∼ L and (4.2) are equivalent to the
right-hand inequality (4.1). If, however, the field is singular at the origin then we
shall write (4.2) at a point x �= 0 and then allow x tend to zero. In particular, when
the singularity is a power law, |f(x)| ∼ xa, as in the cases of corner singularities,
Condition (4.2) is replaced by x/a � H . This corresponds to the asymptotics

x/H →∞ (4.3)

which is the outer asymptotics of the singularity. Thus in dealing with singularities,
one first has to obtain the asymptotics (4.3) by fixing x and tending H (and subse-
quently lm) to zero and then tending L to infinity. Upon rescaling this leads to the
inner asymptotics x → 0.
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Fig. 4.1 In particulate material, the traditional asymptotic range falls within the microstructural
elements. The proposed asymptotics works on the boundary between the microstructural scale and
the scale of the crack

Standard continua do not inherit a microstructural length, hence this asymptotics
becomes redundant. For non-standard continua possessing characteristic lengths,
the asymptotics (4.3) can be put to use to achieve considerable simplification. The
practical way of doing this is to neglect the terms of the type of Hf ′(x) as compared
to f(x). By continuing the expansion in the Taylor series, one can obtain that in this
asymptotics the terms of the type of H2f ′ ′(x), . . . should also be neglected.

In essence, a continuum constructed to represent a heterogeneous material cannot
address the distances shorter than the volume element size. This fact manifests itself
in the vicinity of a stress singularity: The stress distribution computed in the contin-
uum may misrepresent the stress state of the original homogeneous material in the
vicinity of the crack tip. Instead, the inner region of the outer asymptotics should
be used. Therefore, instead of the traditional modeling based just on the x → 0 sin-
gularity, one needs to obtain the outer asymptotics first and then use it to determine
the singularity, see Fig. 4.1.

Of course, if the continuum is a classical one without a characteristic length then
the complete solution and the outer asymptotics coincide, so the traditional approach
does not change. The difference only comes for continua with internal crack lengths,
such as Cosserat continua.

The characteristic lengths, l, are related to the microstructural length of the ma-
terial through the values of the material constants. In principle, the characteristic
lengths can be considerably higher than the microstructural length such that if the
latter is beyond the resolution of the continuum the formers are not. We, however,
distinguish one important case when l ∼ H such that the Cosserat characteristic
lengths are also beyond the resolution of the continuum. We call it the small scale
Cosserat continuum. The following sections will provide two examples of small
scale continua and consider the simplest cases of crack propagation in them.
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4.3 Small Scale Isotropic Cosserat Continuum as a Model
of Particulate Material

We start with an isotropic Cosserat continuum model of particulate materials (such
as rock, concrete, ceramics). A model was proposed in [1] whereby the particulate
material was represented as an assembly of spherical particles connected at random
points. Each connection was considered as a combination of 6 elastic springs: 1 ten-
sile and 2 shear springs, as well as 1 torsional and 2 bending springs. The stiffnesses
of the springs were estimated by considering the springs as elastic cylinders of di-
ameter commensurate with the grain size loaded either by uniform stress (for the
normal and shear stiffnesses) or linearly distributed stress with vanishing average
(for the torsional and bending stiffnesses). After applying homogenization by dif-
ferential expansions (e.g., [7]) an isotropic Cosserat continuum was obtained with
the characteristic lengths of the order of the grain size. Thus l ∼ H , i.e., the Cosserat
characteristic lengths are also beyond the resolution of the continuum, and hence the
asymptotics of l → 0 discussed in the previous section applies.

Consider, for the sake of simplicity, a two dimensional Cosserat continuum in
the plane (x1, x2). The Lamé equations read (e.g., [5, 4])

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λ + 2μ)[∂2u1
∂x2

1
+ ∂2u2

∂x1∂x2
] + (μ + α)[∂2u1

∂x2
2
− ∂2u2

∂x1∂x2
] + 2α∂ϕ3

∂x2
= 0,

(λ + 2μ)[ ∂2u1
∂x1∂x2

+ ∂2u2
∂x2

2
] + (μ + α)[∂2u2

∂x2
1
− ∂2u1

∂x1∂x2
]− 2α∂ϕ3

∂x1
= 0,

l22[
∂2ϕ3
∂x2

1
+ ∂2ϕ3

∂x2
2

]− ϕ3 + 1
2 [∂u2

∂x1
− ∂u1

∂x2
] = 0.

(4.4)

The only characteristic length present here is the length l2 of the following group of
lengths which characterize the isotropic Cosserat continuum:

l1 =
√

B/(4μ); l2 =
√

B/(4α);

l =
√

l21 + l22,
(4.5)

where λ and μ are the Lamé constants (μ is the shear modulus), α is the Cosserat
shear modulus, B is the bending stiffness.

As l2 is the only length parameter explicit in (4.4), the asymptotics of small
volume elements requires that l2 → 0, which reduces the third equation of (4.4) to

ϕ3 =
1
2

(
∂u2

∂x1
− ∂u1

∂x2

)
, (4.6)

implying that the asymptotics of small characteristic size formally leads to the
Cosserat continuum with constrained rotations. We can use the corresponding solu-
tions to obtain the required asymptotics.
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4.4 Shear Crack in Small Scale Isotropic Cosserat Continuum:
A Mechanism of In-Plane Growth

Traditional treatment of cracks in Cosserat continuum [4, 2] is based on extracting
of asymptotics r � l, where r is the distance to the crack tip. Subsequently, the
Cosserat continuum with constrained rotations had to be employed to avoid insur-
mountable technical difficulties. Here we use the above intermediate asymptotics
and obtain the Cosserat continuum with constrained rotations as a consequence of
the asymptotics rather than a palliative.

Consider a shear crack of length 2L under uniform loading. The boundary con-
ditions for this problem are

σ21 = τ0, σ22 = 0, μ23 = 0 for − L ≤ x1 ≤ L, x2 = 0, (4.7)

while the stresses and displacements are continuous outside [−L,L].
We represent the crack as a continuous distribution of dislocations (displacement

discontinuities) and disclinations (rotation discontinuities in the case of Cosserat
continuum) of unknown density in the otherwise continuous material and then
equating the stress produced by all dislocations at the points of the crack con-
tour to the boundary conditions. However, due to symmetry of boundary condi-
tions (4.7), only dislocations with Burgers vector parallel to x1 need to be taken into
account [1].

A solution for this dislocation in the Cosserat continuum with constrained rota-
tions (as required by the small scale asymptotics) can be found in [2], from where
the main terms of asymptotics r � l are:

σ11

μb
=

1
r

[
−3 sin θ + sin 3θ

4π(1− ν)
+ O

(
l2

r2

)]
,

σ22

μb
=

1
r

[
sin 3θ − sin θ

4π(1− ν)
+ O

(
l2

r2

)]
,

σ12

μb
=

1
r

[
cos θ + cos 3θ

4π(1− ν)
+ O

(
l2

r2

)]
,

σ21

μb
=

1
r

[
cos θ + cos 3θ

4π(1− ν)
+ O

(
l2

r2

)]
,

μ13 = 2
μbl2

πr2
cos 2θ + O

(
l2

r2

)
,

μ23 = 2
μbl2

πr2
sin 2θ + O

(
l2

r2

)
.

(4.8)

Here b is the value of the Burgers vector, r2 = x2
1 + x2

2, θ is the polar angle.
The main asymptotic terms for stress (4.8) coincide with the solution for a con-

ventional dislocation in the classical isotropic elastic continuum [3]. Furthermore,
moment stress μ23 created by the dislocation on the crack line (θ = 0,±π) is equal
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to zero. This means that the dislocation does not contribute to the moment stress on
the crack line. Therefore, the boundary conditions (4.7) can be satisfied by the ap-
propriate distribution of the dislocations without disclinations. (There is no coupling
between the dislocations and disclination for shear cracks.) Subsequently, the prob-
lem reduces to the conventional one for a shear crack whose solution for a uniform
load is known. Furthermore, since we are only interested in the stress concentration
at the crack tip, we can obtain a general result using the expression for the displace-
ment discontinuity at the crack tip. We use the expression for the distribution of the
relevant displacement component u1 in a vicinity of a Mode II crack tip [8] as well
as its discontinuity across the crack line and its derivative, which is the dislocation
density, ρ1:

u1 =
KII

μ

√
r

2π
sin

θ

2

[
2(1− ν) + cos2

θ

2

]
,

ρ1(r) =
2KII(1− ν)

μ
√

2πr
.

(4.9)

Here (r, θ) is the polar coordinate frame with the origin placed at the crack tip, KII

is the conventional Mode II stress intensity factor, ν is the Poisson’s ratio.
Using the expression for the dislocation-generated moment stresses (4.8) one

obtains the moment stress at the crack tip on the line of crack continuation (θ = 0)
whose leading asymptotic term (as r → 0) reads

μ13 =
KII(1− ν)√

2πr3/2
l2, μ23 = 0. (4.10)

This is a stronger singularity than the classical one. However, it does not contribute
to the energy release rate because of the absence of reciprocal rotation discontinuity
in Mode II. In the spirit of the philosophy proposed, the way to treat it is to compare
the values of μ13(l), which are finite. In particular, the criterion of crack propagation
can be formulated in terms of the critical value of the moment stress needed to break
the bonds and make the particles rotate. It is important that the maximum moment
stress is acting at the continuation of the crack, which forms a mechanism of often
observed in-plane shear crack propagation.

4.5 Anisotropic Cosserat Continuum for Layered Material
with Sliding Layers

In 2D layered materials, the role of rotation is played by the bending angle (the
derivative of layer deflection). For the corresponding Cosserat continuum, in the
case of freely sliding layers the displacement and rotation fields, in the absence of
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body forces and moments, are governed by the following set of equations [6]:

∂σ11

∂x1
+

∂σ21

∂x2
= 0,

∂σ12

∂x1
+

∂σ22

∂x2
= 0,

∂μ31

∂x1
+ σ12 − σ21 = 0,

σ11 = A11γ11 + A12γ22, σ22 = A12γ11 + A22γ22,

σ21 = 0, σ12 = Gγ12, μ13 = Bκ13,

(4.11)

where

γ11 =
∂u1

∂x1
, γ21 =

∂u1

∂x2
+ ϕ3, γ22 =

∂u2

∂x2
,

γ12 =
∂u2

∂x1
− ϕ3, κ13 =

∂ϕ3

∂x1
,

(4.12)

E, ν are the layer’s Young’s modulus, and Poisson’s ratio, G = E/(2(1 + ν)), b is
the layer thickness,

A11 = A22 =
(1− ν)E

(1 + ν)(1− 2ν)
,

A12 =
νE

(1 + ν)(1− 2ν)
, B =

Eb2

12(1− ν2)
.

(4.13)

4.6 Bending Crack

We consider now a special type of the crack—a bending crack which is oriented
normal to the layering and is represented as a continuous distribution of disclina-
tions, which are discontinuities in rotations, see Fig. 4.2. The leading terms of the
outer asymptotics of stress and moment stress are [6]:

σ22(0, x2) = − Eb1/2

4(1− ν2)
√

2π31/4

1
√
|x2|

,

μ13(0, x2) = − Eb3/231/4

24(1− ν2)
√

2π
sgn(x2)√

|x2|
.

(4.14)

The crack can be modeled as a distribution of disclinations sitting on the x2 axis,
as shown in Fig. 4.2, then the only stress component the disclinations produce there
is μ13. This leads to an integral equation whose solution for a semi-infinite crack
loaded by a couple of concentrated moments, m, applied at a distance a from its tip
is [6]:

μ13 ∼
M3

(x2)1/4
, M3 = − m

√
2

2πa3/4
. (4.15)

The stress singularity here is much weaker than in the Mode II crack (Sect. 4.4).
Similarly to the case of a crack in particulate materials, the criterion of crack prop-



44 A.V. Dyskin and E. Pasternak

Fig. 4.2 Bending crack in
layered material

agation can be formulated in terms of μ13(b) compared with the bending moment
per unit area required to break the layers.

4.7 Conclusions

Modeling particulate materials with the small-scale Cosserat continuum—a con-
tinuum with characteristic scales of the order of the microstructural size—justifies
the asymptotics of small characteristic lengths. In 2D isotropic Cosserat continuum,
this asymptotics formally produces a Cosserat continuum with constraint rotations,
which is the first simplification of the proposed modeling. Furthermore, the stress
singularities should be considered at the distances greater than the characteristic
lengths, as opposed to the traditional approach.

The Mode II crack in a small scale isotropic Cosserat continuum produces mo-
ment stress with a strong (3/2 power) singularity controlled by the conventional
Mode II stress intensity factor. The bending crack (discontinuity in rotations) in a
small scale Cosserat model of layered material with sliding layers produces moment
stress with a weak (1/4 power) singularity. In both cases, the singularity can only be
interpreted up to the distances to the crack tip exceeding the microstructural length
of the material. Subsequently, the moment stress values at these distances are to be
used in the (force) criteria of crack propagation.
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Chapter 5
Micropolar Fluids: From Nematic Liquid
Crystals to Liquid-Like Granular Media

Daniel Lhuillier

Abstract The micropolar model is certainly the best continuum-mechanical model
to describe the collective behavior of molecules or rigid particles interacting via
short-range forces and couples. We look at the necessary modifications of the orig-
inal model for it to describe two unusual materials: nematic liquid crystals on the
one hand and liquid-like granular materials on the other hand.

5.1 Continuum-Mechanical Description

The continuum-mechanical description of matter with rotational degrees of freedom
is now well-known. In the present contribution, we focus on liquid-like materials
only, known by the generic name of micropolar fluids. Encompassing the seminal
works of Aero [1], Cowin [2], Eringen [5] and many others, the description of mi-
cropolar fluids involves the mass and momentum conservation together with balance
equations for the intrinsic moment of momentum and the internal energy

dρ
dt

= −ρ∇ ·V, (5.1)

ρ
dV
dt

= ∇ · σ + Fext, (5.2)

ρ
dm
dt

= ∇ · μ− ε · σ + Lext, (5.3)

ρ
de
dt

= σT : (∇V + ε · ω) + μT : ∇ω −∇ · q. (5.4)

Here ρ is the mass density of the material, ρV and ρ(m + r ×V) are the momen-
tum and moment of momentum per unit volume, Fext and Lext are external forces
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and couples, σ and μ are the stress and couple-stress tensors, and q is the heat flux.
Moreover, ω is the rotating velocity of the material (independent of the bulk angular
velocity represented by (1/2)∇ ×V), while ρe is the internal energy per unit vol-
ume, defined as the total energy minus the kinetic energy (1/2)ρV2 +(1/2)ρm ·ω.
Lastly, ε is the alternating third-order tensor, a superscript T on a tensor means its
transpose and d/dt = ∂/∂t+V ·∇ is the material time-derivative. Our purpose is to
apply that well-known set of equations to the description of rather unusual materials
such as nematic liquid crystals and liquid-like granular media. The former mate-
rial offers an opportunity to define an “ordered” micropolar fluid and the latter will
provide us with an example of “agitated” micropolar fluid for which the velocity
fluctuations play an important role.

5.2 Ordered Micropolar Fluids

Nematic liquid crystals are made of small rod-like molecules, almost perfectly
aligned along some direction. Since these small molecules interact through short-
range forces and couples, the micropolar framework is relevant. And, in fact, Erin-
gen [6] and Lee and Eringen [10] did propose an extended version of the micropo-
lar fluid model to describe the dynamics of nematic liquid crystals. However, their
model was progressively superseded by the Ericksen–Leslie model which is now
considered as the standard model for that material [3]. What is the reason that led
to abandon the Lee–Eringen model? It must be stressed that the two models do in-
troduce a unit vector to describe the microstructure. But while Ericksen and Leslie
considered their unit vector n as giving the mean direction of the molecular axis
with a simple transport equation like

dn
dt

= ω × n, (5.5)

Lee and Eringen introduced a micro-rotation tensor depending on a scalar φ and a
unit vector nE which evolves in time according to

sinφ
dnE

dt
× nE + (1− cosφ)

dnE

dt
= ω × nE .

It is clear that no value of the parameter φ is compatible with (5.5). This means that
the unit vector nE cannot be considered as the “director”, i.e., a body-fixed unit
vector aligned with the molecular axis. The use of nE is thus not recommended and
consequently a second feature that needs to be modified as compared to the original
Lee–Eringen model is the description of the elastic energy that appears whenever the
director field departs from uniformity. The most convenient expression is certainly
the Franck–Oseen distortion energy [3] which depends explicitly on the director and
its gradients and leads to writing the internal energy of the nematic liquid crystal as

e = e(ρ, s,n,∇n). (5.6)
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One thus ends with the picture of an ordered micropolar fluid for which the internal
energy not only depends on the usual variables (the mass density ρ and the specific
entropy s) but also on the director which plays the role of an order parameter. With
Alejandro Rey (Mac-Gill University) we revisited the micropolar model with due
account for (5.5) and (5.6). The complete set of results is presented in [13], while
below we focus on the main steps and findings. The starting point is the Gibbs
relation which is the differential form of (5.6)

de = T ds− pd
(

1
ρ

)
+

∂e

∂n
· dn +

∂e

∂(∇n)
: d(∇n), (5.7)

where p and T are the pressure and the temperature of the medium. At equilibrium
the entropy of the system is a maximum for fixed values of its mass, momentum,
moment of momentum, and total energy. With the help of the Gibbs relation that
maximization of entropy is obtained with the equilibrium conditions

∇T = 0, ∇ω = 0, ∇V +∇VT = 0,

ω − 1
2
∇×V = 0, n× h = 0,

(5.8)

where h is the molecular field defined by

h = −ρ
∂e

∂n
+ ρ∇ ·

(
∂e

∂∇n

)
. (5.9)

The Gibbs relation (5.7) is useful not only at equilibrium but also out of equilibrium.
From it one can derive the entropy balance in the form

T

[
ρ
ds
dt

+∇ ·
(

q
T

)]

= −q
T
· ∇T + (σ + pI −Σ)T : (∇V + ε · ω)

+ (μ−M)T : ∇ω + ω · [n× h + ε : Σ −∇ ·M], (5.10)

where

Σij = −ρ
∂e

∂(∇ink)
∇jnk, (5.11)

Mij = ρεjlknl
∂e

∂(∇ink)
(5.12)

are the elastic stress and elastic couple stress, respectively. The right-hand side
of (5.10) represents the entropy production rate and must vanish at equilibrium.
Taking the equilibrium conditions (5.8) into account, one can check that all terms
vanish at equilibrium except the last one because at equilibrium the molecular rota-
tion is uniform but has no reason to vanish. To ensure that the entropy production
rate does vanish at equilibrium one is obliged to require
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n× h + ε : Σ −∇ ·M = 0. (5.13)

That imposed relation between the elastic stresses and couples can also be obtained
as a necessary condition for the internal energy to be a scalar function of n and ∇n,
and that relation was coined “rotational identity” in [3]. Here we showed that the
rotational identity is necessary to avoid spurious terms in the entropy production.
The next step is to define the viscous stress σV and the viscous couple stress μV by

σ = −pI + Σ + σV , (5.14)

μ = M + μV . (5.15)

The viscous stress is not symmetric. Its symmetric part will be noted σVS and its
antisymmetric part will be associated with the viscous torque

LV = −ε : σV . (5.16)

The entropy balance is now rewritten as

T

[
ρ
ds
dt

+∇ ·
(

q
T

)]

= −q
T
· ∇T + σVS : D + LV · (Ω − ω) +

(
μV
)T : ∇ω, (5.17)

where D = (1/2)(∇V +∇VT ) is the strain rate and Ω = (1/2)∇×V is the bulk
rotation rate. The right-hand side of (5.17) displays the four types of dissipative
phenomena that are specific to micropolar fluids. It is worthy to notice that, with the
rotational identity (5.13) and the definitions (5.14) to (5.16), the angular momentum
balance (5.3) finally appears as

ρ
dm
dt

= ∇ · μV + n× h + LV + Lext. (5.18)

There is a last intriguing difference between the micropolar model and the Ericksen–
Leslie model. It concerns the entropy production rate which is written [3] as

−q
T
· ∇T + σVS : D + h ·

(
dn
dt

−Ω × n
)

(5.19)

and looks rather different from the right-hand side of (5.17). In fact, there is no
contradiction between the dissipation rates of the two models. Suppose that we may
neglect the rotary inertia, the viscous couple stress and the external torques acting
on the rod-like molecules. As a consequence of these assumptions, the moment of
momentum balance simplifies to

0 ≈ n× h + LV (5.20)

so that with (5.5)
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LV · (Ω − ω) ≈ h ·
(

dn
dt

−Ω × n
)
. (5.21)

We conclude that Lee and Eringen [10] gave a description of micro-rotation and
elasticity in nematics which was rigorous but apparently not compatible with the
existence and role of a body-fixed director. It was shown above that the microp-
olar fluid model, completed with (5.5) and (5.6), offers a natural extension to the
Ericksen–Leslie model. The main difference between a simple micropolar fluid and
an ordered one is the presence of three elastic (non-dissipative) quantities h, Σ
and M. The micropolar model is able to reveal all the assumptions implicitly made
to get the Ericksen–Leslie model, as witnessed, for example, by the simplified mo-
ment of momentum balance written in (5.20). The reader is referred to [13] for more
details on the comparison between the two models.

5.3 Agitated Micropolar Fluids

Granular materials are media made from particles of macroscopic (millimeter) size.
They behave like a gas when the particles are dilute but they have a more complex
dynamic behavior at high particle concentrations, when the grains display more or
less permanent contacts with their immediate neighbors. To give an order of magni-
tude, for spherical particles all of the same size, that complex behavior is observed
for a particle volume fraction φ between φ ≈ 0.5 and φ ≈ 0.65, that is to say, be-
tween the random loose packing and the random close packing. Those dense gran-
ular materials have a solid-like behavior when submitted to relatively small shear
stresses but above some critical shear they display a liquid-like behavior, much like
the sand at the surface of a dune which is either motionless or is flowing as an
avalanche depending on the shear exerted by gravity. We are interested in these
dense granular liquids and will consider small loads only, so that the grains can be
considered as rigid. Moreover, the grains will be considered as so massive that the
interstitial gas will have no influence on their dynamics. Since our granular liquid
is a collection of rigid particles interacting through contact (or collision) forces and
contact (or collisions) couples mainly (hence short-range forces and couples), it is
expected that the micropolar framework is quite relevant to describe its dynamics.
Our purpose in what follows is to prove that this is indeed the case. To simplify the
issue, we suppose that all the particles are rigid spheres with the same radius a, the
same mass m and the same moment of inertia J = 2ma2/5. A given grain is labeled
by α. At contact, or when colliding, particle β exerts on particle α a force Fαβ and a
couple Lαβ . The trajectory of particle α is given by the position Rα(t) of its center,
and its motion is depicted by its velocity vα(t) = dRα/dt and its angular velocity
ωα(t). The equations of motion of particle α are

m
dvα

dt
=
∑

β �=α

Fαβ + f ext, (5.22)
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J
dωα

dt
=
∑

β �=α

Rβ −Rα

2
× Fαβ +

∑

β �=α

Lαβ + lext. (5.23)

In these equations, f ext and lext are the external force and couple acting on each
particle. We want to check that the continuum-mechanical version of those equa-
tions are given by the micropolar equations (5.1) to (5.4) and to provide some rig-
orous definitions for the quantities involved. To achieve that goal, we introduce a
Dirac-like function δα which is located on the instantaneous position of the center
of particle α

δα(x, t) = δ
(
x−Rα(t)

)
. (5.24)

Since δα follows the trajectory of particle α, it obeys the evolution equation

∂δα

∂t
+∇ ·

(
δαvα

)
= 0. (5.25)

To get the Eulerian equations of motion is now straightforward. After multiplying
the equations of motion of particle α by δα, one takes the sum over all particles,
takes (5.25) into account and performs a statistical average denoted by 〈· · ·〉. All the
details are given in [12], and we give only the main results below. Mass conservation
is expressed as in (5.1) with definitions

ρ =
〈∑

α

δαm

〉
= npm, ρV =

〈∑

α

δαmvα

〉
, (5.26)

where np = 〈
∑

α δα〉 is the number density of the particles which, according
to (5.25), obeys the conservation equation ∂np/∂t + ∇ · (npV) = 0. Momentum
conservation and moment of momentum balance for the collection of grains stem
from the equations of motion (5.22) and (5.23) for individual grains. They can be
presented like in (5.2) and (5.3) with the definitions Fext = npf ext, Lext = nplext,
ρm = 〈

∑
α δαJωα〉 = npJω and

σij =
〈

(1/2)
∑

α

∑

β �=α

δα

(
Rβ −Rα

)
i
Fαβ

j

〉
−
〈∑

α

δαmv′α
i v′α

j

〉
, (5.27)

μij =
〈

(1/2)
∑

α

∑

β �=α

δα

(
Rβ −Rα

)
i
Lαβ

j

〉
−
〈∑

α

δαJv′α
i ω′α

j

〉
. (5.28)

Note the similarities between the definitions of the stress and the couple stress and
the presence of a kinetic contribution linked to the velocity fluctuations v′α =
vα − V and the angular velocity fluctuations ω′α = ωα − ω. The last issue is
to check whether we can obtain an equation for the internal energy like (5.4). It is
now widely accepted that velocity fluctuations play an important role in granular
materials where the concept of a “granular temperature” is widely used. Two quan-
tities that proved to be important in that context are the mean fluctuational kinetic
energies kv and kω defined as
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ρkv =
〈∑

α

δαm
(v′α)2

2

〉
, ρkω =

〈∑

α

δαJ
(ω′α)2

2

〉
. (5.29)

One can manipulate the equations of motion (5.22) and (5.23) of particle α to deduce
the transport equations for the total fluctuational kinetic energy

ρ
d
dt

(kv + kω) = σT : (∇V + ε · ω) + μT : ∇ω −∇ · qk − γ, (5.30)

where γ is the dissipation rate of the so-called “granular temperature” kv + kω

γ =
〈

1
2

∑

α

∑

β �=α

δα

(
ωβ − ωα

)
· Lαβ

〉
+
〈

1
2

∑

α

∑

β �=α

δαVαβ · Fαβ

〉
, (5.31)

where Vαβ is the relative velocity at the contact between particles α and β

Vαβ = vβ − vα − (1/2)
(
ωβ + ωα

)
×
(
Rβ −Rα

)
. (5.32)

Because of the dissipation rate γ, we do not have a transport equation looking like
(5.4), yet. But we remark that the dissipated energy is absorbed by the grains (re-
sulting in an increase of their “true” temperature) and is then diffused by collisions
or contacts. One can model these two processes with a transport equation for the
internal energy e0 per unit mass

ρ
de0

dt
= γ −∇ · qe. (5.33)

It is now clear that if we define the effective internal energy of the medium as

e = e0 + kv + kω (5.34)

then e will obey (5.4) with a total energy flux q = qe + qk. Hence granular matter
can be described by the micropolar model provided the internal energy is understood
as the sum of the true internal energy and the total fluctuational kinetic energy. In
other words, (5.34) is the main characteristic feature of an “agitated” micropolar
fluid. A second specific property of granular liquids is the unusual expression of
their stress tensor, itself a consequence of the unusual features of the contact forces
between grains. A very suggestive way to obtain the expression of the stress tensor
was proposed by Kanatani [9]. As usual, the stress tensor is split into a pressure
stress and a dissipative stress σ = −pI + τ . Neglecting the role of the inter-grain
couples, the dissipation rate is approximately τ : D, and considering result (5.31)
Kanatani writes

τ : D ≈ npV
TFT , (5.35)

where V T is the mean value of the tangential velocity at contact and FT the mean
value of the tangential force at contact. FT is a solid friction force proportional
to the normal component FN itself proportional to the granular pressure, hence
FT ≈ μ(p/npa) where μ is the solid friction coefficient and a is the mean grain size.
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The relative velocity at contact is approximately V T ≈ a
√

D : D. As a consequence,
the order of magnitude of the dissipation is τ : D ≈ μp

√
D : D and the dissipative

stress is

τ ≈ μp
D√

D : D
. (5.36)

The dissipative stress in granular liquids is thus very different from the usual vis-
cous stress proportional to the strain rate D. It is proportional to the pressure and it
depends on the direction of the strain rate and not on its magnitude. That unusual
expression was extended in different ways to take collisions into account [8, 7].

5.4 Conclusions

We showed that it was possible to achieve the rheological description of two un-
usual materials within the micropolar framework. The versatility of the micropolar
model is thus demonstrated. A generalization to the case of deformable molecules
or deformable particles is offered by the micromorphic fluid model and was already
used in the past to describe polymer solutions [4] and bubbly fluids [11].
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Chapter 6
Linear Cosserat Elasticity, Conformal
Curvature and Bounded Stiffness

Patrizio Neff, Jena Jeong, Ingo Münch, and Hamidréza Ramézani

Abstract We describe a principle of bounded stiffness and show that bounded
stiffness in torsion and bending implies a reduction of the curvature energy in lin-
ear isotropic Cosserat models leading to the so called conformal curvature case
1
2μL

2
c‖dev sym∇ axlA‖2 where A ∈ so(3) is the Cosserat microrotation. Impos-

ing bounded stiffness greatly facilitates the Cosserat parameter identification and
allows a well-posed, stable determination of the one remaining length scale param-
eter Lc and the Cosserat couple modulus μc.

6.1 Introduction

Non-classical size-effects are becoming increasingly important for materials at the
micro- and nanoscale regime. There are many possibilities in order to include size-
effects on the continuum scale. One such prominent model is the Cosserat model.
In its simplest isotropic linear version, the Cosserat model introduces six material
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parameters. However, parameter identification for Cosserat solids remains a difficult
and challenging issue.

We motivate how to a priori reduce the number of curvature parameters in the
linear, isotropic, centro-symmetric Cosserat model by requiring what we identify
with bounded stiffness. First, we recall the Cosserat model and we motivate bounded
stiffness in general. Imposing bounded stiffness reduces the curvature energy to
the conformally invariant case, which is the weakest possible requirement for well-
posedness of the linear isotropic Cosserat model [1].

It is well-known that a Cosserat solid displays size-effects. These size effects re-
fer to a non-classical dependence of rigidity of an object upon one or more of its
dimensions. In classical linear elasticity for a circular cylinder with radius a, the
rigidity in tension is proportional to a2, and the rigidity in torsion and bending is
proportional to a4. For the Cosserat solid, the ratio of rigidity to its classical value
is increased: thinner samples of the same material respond stiffer. For certain pa-
rameter ranges of the Cosserat solid, this effect may be dramatic. For example, the
rigidity in torsion could become proportional to a2 so that the normalized torsional
rigidity (normalized against the classical value) has a singularity proportional to
1/a2. However, Lakes [3] already notes: “. . . infinite stiffening effects are unphysi-
cal.”

Our principle of bounded stiffness requires simply that the stiffness increase
for thinner and thinner samples (normalized against the classical stiffness) should
be bounded independently of the wire radius a, i.e., a singularity free response.
In bending and torsion, we can directly read off the corresponding requirement.
It leads in a straightforward way to what we term the conformal curvature case
1
2μL

2
c‖ dev sym∇ axlA‖2. In separate contributions [10, 2, 7, 9, 1, 8], we have

investigated, in more detail, this novel conformal curvature case from alternative
perspectives.

6.2 The Linear Elastic Cosserat Model

For the displacement u : Ω ⊂ R
3 �→ R

3 and the skew-symmetric infinitesimal mi-
crorotation A : Ω ⊂ R

3 �→ so(3), we consider the two-field minimization problem

I(u,A) =
∫

Ω

Wmp(ε) + Wcurv(∇ axlA)− 〈f, u〉 dV

−
∫

∂Ω

〈fs, u〉 − 〈Ms, u〉 dS �→ min w.r.t. (u,A), (6.1)

under the following constitutive requirements and boundary conditions:

ε = ∇u−A, first Cosserat stretch tensor

u|Γ
= ud, essential displacement boundary conditions

Wmp(ε) = μ‖ sym ε‖2 + μc‖ skew ε‖2 +
λ

2
tr[sym ε]2, strain energy
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φ := axlA ∈ R
3, k = ∇φ, (6.2)

‖ curlφ‖2
R3 = 4‖ axl skew∇φ‖2

R3 = 2‖ skew∇φ‖2
M3×3 ,

Wcurv(∇φ) =
γ + β

2
‖ dev sym∇φ‖2 +

γ − β

2
‖ skew∇φ‖2

+
3α + (β + γ)

6
tr[∇φ]2.

Here, f are given volume forces while ud are Dirichlet boundary conditions for
the displacement at Γ ⊂ ∂Ω where Ω ⊂ R

3 denotes a bounded Lipschitz do-
main. Surface tractions, volume couples and surface couples can be included in the
standard way. The strain energy Wmp and the curvature energy Wcurv are the most
general isotropic quadratic forms in the infinitesimal non-symmetric first Cosserat
strain tensor ε = ∇u− A and the micropolar curvature tensor k = ∇ axlA = ∇φ
(curvature-twist tensor). The parameters μ, λ [MPa] are the classical Lamé moduli
and α, β, γ are further micropolar curvature moduli with dimension [Pa ·m2] = [N]
of a force. The additional parameter μc ≥ 0 [MPa] in the strain energy is the
Cosserat couple modulus. For μc = 0 the two fields of displacement u and microro-
tations A ∈ so(3) decouple, and one is left formally with classical linear elasticity
for the displacement u. The strong form Cosserat balance equations are given by

Div σ = f, balance of linear momentum

−Divm = 4μc · axl skew ε, balance of angular momentum

σ = 2μ · sym ε + 2μc · skew ε + λ · tr[ε] · 1

= (μ + μc) · ε + (μ− μc) · εT + λ · tr[ε] · 1 (6.3)

= 2μ · dev sym ε + 2μc · skew ε + K · tr[ε] · 1,

m = (γ + β) dev sym∇φ + (γ − β) skew∇φ +
3α + (γ + β)

3
tr[∇φ]1,

φ = axlA, u|Γ
= ud.

For simplicity we do not make an explicit statement for the boundary conditions
which are satisfied by the microrotations. Note only that if the microrotations
A ∈ so(3) remain free at the boundary, we would have m.n|∂Ω

= 0. This Cosserat
model can be considered with basically three different sets of moduli for the cur-
vature energy which in each step relaxes the curvature energy. The situations are
characterized by possible estimates for the curvature energy:

1. Wcurv(k) ≥ c+‖k‖2,
2. Wcurv(k) ≥ c+‖ sym k‖2,
3. Wcurv(k) ≥ c+‖ dev sym k‖2.
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The different estimates give rise to the introduction of representative cases:

1. (Pointwise positive case) 1
2μL

2
c‖∇φ‖2. This corresponds to α = β = 0,

γ = μL2
c .

2. (Symmetric case) 1
2μL

2
c‖ sym∇φ‖2. This corresponds to α = 0, β = γ and

γ = 1
2μL

2
c .

3. (Conformal case) 1
2μL

2
c‖ dev sym∇φ‖2 = 1

2μL
2
c(‖ sym∇φ‖2 − 1

3 tr[∇φ]2).
This corresponds to β = γ and γ = 1

2μL
2
c and α = −1

3μL
2
c . In terms of the

polar ratio Ψ = (β+γ)/(α+β+γ), it corresponds to the limit value Ψ = 3/2.

All three cases are mathematically well-posed [1, 5]. The pointwise positive Case 1
is usually considered in the literature. Case 2 leads to a symmetric couple-stress ten-
sor m, and a new motivation for Case 3 is the subject of this contribution. In a plane
strain problem, all three cases coincide and only one curvature parameter matters,
thus not permitting to discern any relation between the three curvature parameters.

Case 3 is called the conformal curvature case since the curvature energy is invari-
ant under superposed infinitesimal conformal mappings, i.e., mappings
φC : R

3 �→ R
3 that satisfy dev sym∇φC = 0. Such mappings infinitesimally

preserve shapes and angles [7]. In that case, the couple stress tensor m is symmetric
and trace-free. In Case 2 and Case 3, the constitutive couple stress/curvature tensor
relation cannot be inverted, but the system of equations is nevertheless well-posed.

6.3 The Idea of Bounded Stiffness

Let us turn our attention to the practical aspects of the problem of determining ma-
terial parameters. We investigate the question for which parameter values (μc, α,
β, γ) the linear elastic Cosserat model can be considered to be a consistent descrip-
tion for a continuous solid showing size-effects. We assume the continuous solid to
be available in any small size we can think of, the possibility of which is certainly
included in the very definition of a continuous solid. Note that this assumption ex-
cludes, e.g., man made grid-structures but includes, e.g., polycrystalline material.
We are investigating the situation when one or several dimensions of the specimen
get small. Denoting by a such a dimension, the limit a → 0 is purely formal in the
sense that we are only interested in the leading order behavior for small, but not
arbitrarily small a. Understanding this limiting process a → 0 opens us, indirectly,
the possibility to bound the stiffness of the material at smallest reasonable specimen
size away from unrealistic orders of magnitude. Our conclusions are based on sim-
ple three-dimensional boundary value problems for which analytical solutions are
available.

By examining the bending and torsion analytical formula and calculating the
stiffness increase at small wire radius a, we are forced to conclude that the confor-
mal curvature case 1

2μL
2
c‖ dev sym∇φ‖2 is the only one possible [8]. Any other

combination of parameters will lead to unphysical stiffening effects. The require-
ment of bounded stiffness is also very natural if we compare with atomistic simu-
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lations; in such a case, all response curves will show bounded energy and bounded
stiffness.

One should keep in mind, however, that the internal length scale Lc remains
a phenomenological parameter in the Cosserat model, the value of which is not
necessarily determined by a given microstructural length scale, although this is often
tacitly understood. On the contrary, Lc could also be chosen large in which case
the ratio Lc/a may be very large, although wires with given radius a can still be
experimentally investigated.

The remainder of this paragraph is a free adaption of a statement given by
Metrikine in [4, p. 740] to our situation: No material at no scale is perfectly rigid.
Therefore, their stiffness is bounded at all scales. This is one of the most funda-
mental principles in modern physics, and any general model, which is supposed
to be applicable at the complete length scale, must satisfy it. All researchers agree
with that statement. Many models, however, are designed to work only at a spe-
cific length scale. Homogeneous continuum elasticity models, for example, are all
applicable only at a relatively large length scale (i.e., the length scale of the cor-
responding mechanical processes is much larger than the characteristic length of
the material microstructure). Should such models comply with bounded stiffness?
There is no consensus among researchers as to how to answer this question in the
case that unbounded stiffness is associated with those length scales at which the
model in question is not applicable according to its initial assumptions.

The authors of this paper advocate the following answer to the above question.
Imagine two models of a material which, with the same accuracy, describe static
behavior of the material at a desired length scale. Imagine further that one model has
bounded stiffness whereas the other has not, but its singular stiffness is associated
with the length scales outside the considered length scale range. In this case, the
bounded stiffness model should be preferred.

It should not only be done because it complies with bounded stiffness. More im-
portantly, models with bounded stiffness profit from an insensitive parameter iden-
tification. This is important for experimental identification of material properties.

Whether or not the Cosserat model with conformal curvature shows bounded
stiffness in all possible boundary value problems is not yet clear. We surmise that
the micromorphic model [6] is a good candidate for that purpose.

6.4 Infinitesimal Conformal Mappings

The maps uC : R
3 �→ R

3 that satisfy dev sym∇uC = 0 are called infinitesimal
conformal mappings. They form a ten-dimensional vector space and are given in
closed form by

uC(x) =
1
2
(
2
〈
axl(Ŵ ), x

〉
x− axl(Ŵ )‖x‖2

)
+ [p̂1 + Â].x + b̂, (6.4)
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Fig. 6.1 Deformed and un-
deformed shape of the unit
cube under infinitesimal con-
formal transformation uC as
boundary condition using the
linear elastic Cosserat model
and Case 3 assumption with
Ŵ12 = Ŵ13 = Ŵ23 = 3,
p̂ = −4, Â12 = Â13 =

Â23 = 4 and b̂ = 0,
DOFs = 4300, quadratic
elements

where Ŵ , Â ∈ so(3), b̂ ∈ R
3 and p̂ ∈ R are arbitrary constants. The conformal

mappings may be used to construct a universal solution of the Cosserat model if the
conformal curvature expression (Case 3) is considered. The solution is invariant of
the Cosserat coupling constant μc and the internal length scale Lc.1 To understand
this claim, let us consider the boundary value problem of linear Cosserat elasticity
in strong form with conformal curvature:

Div σ(∇u,A) = f, −Divm = 4μc · axl(skew∇u−A),
σ = 2μ · dev sym∇u + 2μc · skew(∇u−A) + K · tr[∇u] · 1, (6.5)

m = μL2
c · dev sym∇ axl(A), u|∂Ω

= uC ,

where K is the bulk modulus. Inserting for u an infinitesimal conformal map uC

(Fig. 6.1) which is defined by (6.4) and choosing A(x) = anti( 1
2 curlu(x)) simpli-

fies the equations to

Div σ(∇u,A) = f̂ , −Divm = 0,

σ = 2μ · dev sym∇u + K · tr[∇u] · 1,

m = μL2
c dev sym∇

[
1
2

curlu(x)
]
.

(6.6)

Div σ(∇uC) = 3K axl(Ŵ ), for p̂ is constant and Div[〈k̂, x〉1] = k̂. Since the
boundary value problem Div σ(∇u) = 3K axl(Ŵ ), u|Γ

(x) = uC(x) for a given

constant Ŵ ∈ so(3) admits a unique solution, this solution is already given by
u(x) = uC(x). We have therefore obtained an inhomogeneous, three-dimensional
analytical solution for the boundary value problem of linear Cosserat elasticity with
constant body forces f̂ = 3K axl(Ŵ ). To gain further understanding of the confor-
mal Cosserat model (Case 3) we subject a regular and rectangular network of beams

1 Here, even a strong variation in shear modulus μ(x) would be allowed (as well as a strong
variation in the couple modulus μc(x) and internal length scale Lc(x). Only the bulk modulus K

must be constant.
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to an infinitesimal conformal displacement (6.4). In our comparison, we use b̂ = 0,
Â = 0 and some generic values for p̂ and Ŵ . The area of the squared structure
is 1 and the beams are characterized by a quadratic cross-section of dimension 0.05.
Thus, the area of the cross-section amounts to 0.0025 and the moment of inertia
to 5.208 × 10−7 against bending. The Young’s modulus is set to E = 1. We use
the Bernoulli beam theory of second order. Thus, displacements and rotations are
limited to a reasonable amount. First, only nodes on the boundary are conformally
displaced, all other organize themselves by minimizing strain and curvature energy
of the beams. In Fig. 6.2, one can see the initial rectangular beam structure, the
boundary conditions and the displacement vectors bringing all nodes of the bound-
ary into the conformally corresponding points. The nodes within the structure meet
the condition, which is fulfilled for all beams balance of momentum and balance of
angular momentum.

The right picture in Fig. 6.2 indicates that curvature appears nearly everywhere
in all beams. The maximum value of this curvature is about 6.24. Now, all nodes
of the structure are conformally displaced. Thus, only the curvature energy of the
beams can be minimized. In Fig. 6.3, one can see the initial rectangular beam struc-
ture, the boundary conditions and the displacement vectors bringing all nodes into
their conformally corresponding points. The beams preserve the balance of angular
momentum. The right picture in Fig. 6.3 indicates that curvature appears also nearly
everywhere in all beams. The maximum value of this curvature is about 7.02. While
the infinitesimal conformal mapping does not give rise to a curvature contribution
in the Cosserat model with conformal curvature (Case 3), we clearly see that the
beam-network response is always with curvature. This allows us to already con-

Fig. 6.2 (Left) Initial structure with boundary conditions, conformal displacement of boundary
nodes and deformed mesh. (Right) Trend of curves (plotted on undeformed mesh) indicates the
curvature of beams

Fig. 6.3 (Left) Initial structure with boundary conditions, conformal displacement of all nodes and
deformed mesh. (Right) Trend of curves (plotted on undeformed mesh) indicates the curvature of
beams
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clude that the conformal Cosserat model cannot be identified with a homogenized
beam model. We rather expect a homogenized beam model to give rise to a uniform
positive definite curvature expression as embodied in Case 1 of our classification.

Notation

Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a

smooth subset of ∂Ω with non-vanishing two-dimensional Hausdorff measure. For
a, b ∈ R

3 we let 〈a, b〉R3 denote the scalar product on R
3 with associated vector

norm ‖a‖2
R3 = 〈a, a〉R3 . We denote by M

3×3 the set of real 3 × 3 second order
tensors, written with capital letters and Sym denotes symmetric second orders ten-
sors. The standard Euclidean scalar product on M

3×3 is given by 〈X,Y 〉M3×3 =
tr[XY T ], and thus the Frobenius tensor norm is ‖X‖2 = 〈X,X〉M3×3 . In the
following, we omit the indices R

3,M3×3. The identity tensor on M
3×3 will be

denoted by 1, so that tr[X] = 〈X, 1〉. We set sym(X) = 1
2 (XT + X) and

skew(X) = 1
2 (X −XT ) so that X = sym(X) + skew(X). For X ∈ M

3×3 we set
for the deviatoric part devX = X 1

3 tr[X]1 ∈ sl(3) where sl(3) is the Lie-algebra
of traceless matrices. The set Sym(n) denotes all symmetric n × n-matrices. The
Lie-algebra of SO(3) := {X ∈ GL(3) | XTX = 1, detX = 1} is given by the set
so(3) := {X ∈ M

3×3 | XT = −X} of all skew symmetric tensors. The canonical
identification of so(3) and R

3 is denoted by axlA ∈ R
3 for A ∈ so(3). Note that

(axlA)× ξ = A.ξ for all ξ ∈ R
3 so that

axl

⎛

⎝
0 α β
−α 0 γ
−β −γ 0

⎞

⎠ :=

⎛

⎝
−γ
β
−α

⎞

⎠ , Aij =
3∑

k=1

−εijk · axlAk,

‖A‖2
M3×3 = 2‖ axlA‖2

R3 , 〈A,B〉M3×3 = 2〈axlA, axlB〉R3 ,

(6.7)

where εijk is the totally antisymmetric permutation tensor. Here, A.ξ denotes the
application of the matrix A to the vector ξ and a × b is the usual cross-product.
Moreover, the inverse of axl is denoted by anti and defined by

⎛

⎝
0 α β
−α 0 γ
−β −γ 0

⎞

⎠ := anti

⎛

⎝
−γ
β
−α

⎞

⎠ ,

axl
(
skew(a⊗ b)

)
= −1

2
a× b,

(6.8)

and 2 skew(b ⊗ a) = anti(a × b) = anti(anti(a).b). Moreover, curlu =
2 axl(skew∇u).
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Chapter 7
Application of Generalized Continuum Theory
to the Problem of Vibration Decay
in the Complex Mechanical Structures

Vladimir Palmov

Abstract A generalized continuum approach is considered for structures in which
a set of oscillators is attached to each material point of a linear elastic body. Dynam-
ical consequences are given concerning traveling waves.

7.1 Introduction

One of the significant problems of modern engineering is the problem of vibra-
tions of such structures as airplanes, trains, industrial buildings, vessels, ships, sub-
marines, rockets, etc. A direct approach to this problem, especially in the high fre-
quency range, is very complex due to a large number of structural elements. The
specific feature of the vibration field of these complex structures is a finite value of
spatial decay. This effect cannot be explained by friction because this is too small.
Instead, we intend to apply the theory of generalized continua to this problem.

The analysis of media with complex structure has attracted much attention. The
simplest among the media with complex structure is the Cosserat medium [1]. The
Mindlin medium with a microstructure is more sophisticated. Of extreme complex-
ity is the multipolar mechanics developed by Green and Rivlin [2].

An essential feature of the above mentioned theories is the concept of a material
point. Classical continuum mechanics deals with media of ordinary structure, that is,
a material point possesses three translational degrees of freedom. In contrast to this,
a point in the Cosserat theory has all of the degrees of freedom of a rigid body, i.e.,
six degrees of freedom. In the Mindlin theory of a medium with microstructure, each
point possesses the degrees of freedom of a classical solid with a uniform strain, i.e.,
twelve degrees of freedom. In the multipolar mechanics, a point is governed by n
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kinematic parameters, where n is finite but can be arbitrarily large. In what follows,
we consider one of the simplest media of this type.

7.2 Equations of Dynamics of Continuous Medium with Complex
Structure

We postulate the existence of a carrier medium and assume that it is governed by
the Lamé equation of the classical theory of elasticity, i.e.,

(λ + μ)∇∇ · u + μΔu− ρü + K = 0, (7.1)

where ρ is the mass density, λ and μ are the Lamé moduli of elasticity, u is the
vector of displacement of points in the carrier medium, and K is the intensity of
external volume forces.

A set consisting of an infinite number of isotropic non-interacting oscillators with
continuously distributed eigenfrequencies is attached to each point of the carrier
medium. The equation of motion of a generic oscillator with an eigenfrequency k is
as follows

m(k)v̈k + c(k)
[
1 + Rk(∂/∂t)

]
(vk − u) = Qk. (7.2)

Here vk is the vector of absolute displacement of the oscillator mass and Qk is
an external force acting on the oscillator mass. The value of m(k) dk is equal to the
mass of the oscillators having the eigenfrequencies in the interval (k, k + dk) per
unit volume. Thus, the total mass density of the oscillators attached to the carrier
structure is given by

m =
∫ ∞

0

m(k) dk. (7.3)

The static rigidity of an oscillator suspension is denoted in (7.2) by c(k) which
is given by

c(k) = k2m(k). (7.4)

The term with Rk(∂/∂t) is introduced in (7.2) in order to take into account the
energy dissipation in the oscillator suspension. It will be shown below that this ac-
count of damping is absolutely necessary for obtaining physically meaningful re-
sults. Accounting for the damping will be achieved by means of two rheological
models, namely a viscoelastic model and a model of an elastoplastic material. In the
first case, Rk(∂/∂t) denotes an operator of viscoelasticity, while in the second case
it is a hysteretic operator. The term with Rk(∂/∂t) is assumed to be small for any
oscillator motion in both cases.

It is now necessary to take into account the effect of the oscillators’ suspension
on the carrier medium. The force of this interaction per unit volume is given by

F =
∫ ∞

0

c(k)
[
1 + Rk(∂/∂t)

]
(vk − u) dk. (7.5)
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As this force is a volume force it must be added to (7.1). Thus, the system of
equations which governs the dynamics of the medium takes the following form:

(λ + μ)∇∇ · u + μΔu− ρü−
∫ ∞

0

m(k)v̈k dk + K + Q = 0,

m(k)v̈k + c(k)
[
1 + Rk(∂/∂t)

]
(vk − u) = Qk.

(7.6)

The vector Q is equal to the external volume force acting on the oscillators, that
is,

Q =
∫ ∞

0

Qk(k) dk. (7.7)

The boundary conditions for the introduced medium coincide with those of the
classical theory of elasticity because they are prescribed only for the carrier medium.

The proposed model is useful for describing the vibration propagation in such
mechanical structures as industrial buildings, vessels, airplanes, spacecrafts, etc.
because all of these structures possess a primary structure and secondary systems
attached to the primary structure. In the framework of the proposed method, the
properties of the primary structure are described by the equations of the elasticity
theory. The suspended oscillators reflect the frequency properties of the secondary
systems attached to the primary structure. This model allows us to determine the
global properties of the vibration field of complex structures without unnecessary
details of the structure and its vibrational field.

A one-dimensional version of (7.6) was presented in [3], while the full three-
dimensional one is given in [4, 5].

7.3 Analysis of Traveling Waves

Using (7.6), it is possible to study arbitrary wave propagation in the medium. But
we restrict ourselves only to three typical waves: compressive, shear, and one-
dimensional longitudinal waves.

In order to analyze compressional waves, we accept the following expression for
the wave motion

u = (∇c) exp
[
i(n · r− ωt)

]
.

Substituting this into (7.6) and eliminating vk, we get following expression for the
wave number

n2 =
ω2

λ + 2μ
λ2,

where

λ2 = ρ +
∫ ∞

0

c(k) dk
k2 − ω2/(1 + iΨ)

. (7.8)

For analyzing shear waves, we consider that

u = (∇× c) exp
[
i(n · r− ωt)

]
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and then get

n2 =
ω2

μ
λ2.

At last, for the case of one-dimensional longitudinal waves we take

u = c exp
[
i(n · r− ωt)

]

and get the result

n2 =
ω2

E
λ2.

7.4 Analysis of Space Decay in Traveling Waves

Let us next prove that the vibration decay does not depend primarily on the oscil-
lators’ damping and that it remains finite even for vanishingly small damping. To
this end, it is sufficient to show that the expression for λ2 remains complex when
Ψk → 0. For the sake of simplicity, we assume that the damping properties of all
oscillators coincide, i.e., Ψk = Ψ does not depend upon parameter k but can depend
on the excitation frequency ω.

Let us introduce a complex function

z =
ω√

1 + iΨ
. (7.9)

Let us agree that we take that branch of the radical in (7.9) which takes on the value
+1 for Ψ = 0. The imaginary part of z is then negative for any frequency ω except
ω = 0. Hence, as Ψ → 0 the complex function z approaches the real axis from the
lower half-plane of the complex variable z. By using the newly introduced variable
z in (7.9), we rewrite (7.8) as follows

λ2 = ρ +
1
2z

∫ ∞

0

c(|k|)
k − z

dk. (7.10)

In the Cauchy integral, z always lies in the lower half-plane. As Ψ → 0, the complex
variable z approaches the real axis, along which the integration (7.8) proceeds. In
accordance with the Sokhotsky–Plemelj formula, we obtain the following limit in
(7.10) as Ψ → 0

λ2 = ρ +
1
2ω

[
−πic

(
|ω|
)

+ v.p.
∫ +∞

− ∞

c(|k|)
k − z

dk
]
. (7.11)

Here the principal value of the integral is to be taken.
As the imaginary part in (7.11) does not vanish, the coefficient of the spatial

decay has a finite value even for vanishingly small damping in oscillators, and is de-
termined by the dependence of the oscillators’ suspension on their eigenfrequencies.
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This effect is typical only for the model which accounts for the complex structure
of the medium, i.e., in presence of the suspended oscillators. From a physical point
of view, the effect can be explained by the fact that the suspended oscillators act as
dynamic absorbers.

Note that accounting for damping in the oscillators is needed to determine their
vibrational amplitudes. The second formula in (7.6) indicates that the amplitude of
the oscillators bk becomes unbounded at Ψ = 0.

Another sophisticated analysis shows that the result (7.11) remains valid as
Ψk → 0, with Ψk depending not only on the frequency ω but also the eigenfre-
quency k.

Let us illustrate our analysis by a particular example. Let

m(k) = A
(
β2 + k2

)−1
, Ψk = Ψ, (7.12)

where A and β are positive parameters and Ψk = Ψ does not depend upon parame-
ter k. Substituting (7.12) into (7.3) and evaluating the integral yield

m =
πA

2β
.

This result allows us to remove the parameter A from the forthcoming equations,
retaining only m and β. Inserting now (7.12) into (7.4) and (7.8) gives

λ2 = ρ +
∫ ∞

0

Ak2 dk
(β2 + k2)[k2 − ω2/(1 + iΨ)]

.

Evaluating the integral by means of the calculus of residues, we arrive at the
following final result

λ2 = ρ + m

[
1 +

iω
β
√

1 + iΨ

]−1

. (7.13)

The structure of this formula completely confirms our analysis. Further, it shows
a weak dependence of λ on Ψ for realistic, i.e., not very large, values of Ψ .

This example is remarkable for another reason. If one sets ρ = 0 and Ψ = 0 in
(7.13), then

n2 =
ω2

E

m

1 + iω/β
.

Exactly the same expression for the wave number can be obtained for the problem
of linear longitudinal vibrations in a rod of the Kelvin–Voigt material, i.e., a rod with
a finite value of damping. Therefore, the medium under consideration possesses the
following interesting peculiarity. Though the medium is “built” from high-quality
elements, such as an ideally elastic carrier medium and slightly damped oscillators,
it behaves like a medium of ordinary structure with finite damping.

At first glance, this conclusion seems to be paradoxical. However, careful anal-
ysis shows that the energy dissipation has a finite value even for small damping in
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oscillators, which is explained by the considerable amplitudes of vibrations for the
resonating oscillators.

7.5 Local Property of Vibration Field

Thus we had investigated global properties of a vibration field in a complex engi-
neering structure. These properties are very interesting for engineers. But engineers
want to know more details. For instance, they want to have full information about
the vibration of any element of equipment of the engineering structure. We cannot
give a direct answer on this question because, in our description, this element of
equipment is totally absent from our equations. So we should improve our motiva-
tion in order to include this specific element of equipment in our equations. In order
to do that, we select this element that is closely surrounded by a set of other elements
of the engineering structure. We use a direct and detailed modeling of this part of
the structure. For the modeling of the remaining part of the engineering structure,
we use the equation of the continuous medium with a complex structure, which was
presented above. We formulate appropriate boundary conditions at the boundary be-
tween the zone of continuum medium and the selected zone of direct mathematical
description. Thus the solution of the formulated boundary value problem will give
the full answer about the selected element in the mechanical structure.

In order to be convinced that we get thus a satisfactory result, let us consider the
sequence of boundary value problems with an increasing zone of direct mathemat-
ical description of the surrounding of some element of the engineering structure. If
this surrounding covers the whole engineering structure, we get the exact result for
the element of interest. But we believe that we get approximately the same result
even if this zone is not so large.
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Chapter 8
Measuring of Cosserat Effects
and Reconstruction of Moduli
Using Dispersive Waves

Elena Pasternak and Arcady Dyskin

Abstract We revisit the problem of identification of effects of independent rotations
and reconstruction of the parameters of Cosserat continuum. The effect of rotational
degrees of freedom leads to the appearance of additional shear and rotational waves;
however, only at high frequencies corresponding to the wave lengths comparable to
the microstructural sizes. Such waves are difficult to detect. Rotations also affect
the conventional s-waves (shear-rotational waves) making them dispersive for all
frequencies. We considered propagation of planar waves in 2D granulate materials
consisting of parallel cylindrical particles connected by tensile, shear and rotational
springs and arranged in either square or hexagonal patterns. We deduced the s-wave
dispersion relationships for both cases and determined the main terms of asymp-
totics of low frequency; they were found to be quadratic in the frequency. These
terms, alongside with the zero order terms, can be determined by fitting of the the-
oretically determined frequency dependence of the phase shift between the sent and
received wave to its experimentally determined counterpart. This opens a way for
direct experimental identification of Cosserat effects in granulate materials.

8.1 Introduction

It has been quite a while since the first realization of importance of internal rota-
tional degrees of freedom for the correct description of mechanics of deformable
solids. In 1909, two French scientists, the Cosserat brothers [4], conjectured that
internal parts of materials can experience relative rotations beyond the ones caused
by the displacement field and that the effect thereof warrants investigation. They
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developed a complex theory, which went unnoticed at the time, rediscovered half
a century later and named the Cosserat theory (e.g., [8, 6, 7]). However, numerous
attempts to detect the Cosserat effects in ordinary materials proved to be inconclu-
sive (e.g., see the review [18]). In the 1980s and 1990s a realization came that one
should look for the Cosserat effects in non-homogeneous materials. Since then the
theory (with various modifications) found its acceptance in modeling of geomate-
rials, especially layered (e.g., [19, 9, 1]) and granular (e.g., [9, 11, 10, 3]) matter.
The main obstacle to its use, however, is the inability to determine and calibrate
the Cosserat elastic moduli from the experiments. The frustration of the researchers
was so great that the question was raised if one should revert to the use of stan-
dard theories. As a result, the higher order theories are sometimes demoted to be
used as numerical stabilizers for otherwise mesh-dependent numerical models (e.g.,
[16]) despite the general understanding that internal grain/block rotations do exist.
As another extreme, calls have been made to abandon continuum mechanics alto-
gether in favor of particle models that automatically reproduce complex behavior of
particulate materials, requiring only few parameters [5].

The problem is that the direct manifestations of Cosserat effects are hard to see
as they require detection of either microrotations or specific Cosserat wave modes
which exist only at very high frequencies (e.g., [13]), both impossible to perform in
highly heterogeneous materials such as, for example, geomaterials. It appears that
the major impediment was the reliance on a ‘head-on’ approach whereby specific
rotational effects (often microscopic) were targeted. (A recent example is an attempt
to directly measure rotational waves in the Earth’s crust, e.g., [17].) The picture
becomes less gloomy if one recalls that the rotational degrees of freedom affect the
propagation of much easier detectable conventional shear waves creating dispersion
(frequency dependence of the wave velocity).

Experimental verification of the theoretical methods of Cosserat continuum mod-
eling meets an additional challenge: It is difficult to produce materials with notice-
able rotational effects and well controlled microstructure to allow independent de-
termination of Cosserat parameters. An obvious choice – the particulate materials,
i.e., materials consisting of particles (preferably spherical) with soft links permit-
ting measurable rotations – is difficult to manufacture in such a way that the particle
arrangement and the consistency of the links can be well controlled. We propose a
way to overcome this problem by considering a 2D model of particulate material
consisting of cylindrical rods in square and hexagonal packings glued together. The
2D nature of the material allows much greater control of the particle placement and
linking. To this end, we develop a 2D Cosserat continuum for this packings employ-
ing on the homogenization procedure based on differential expansions [15] and then
derive the dispersion relationships for the shear waves.

8.2 Cosserat Continuum Models of Particulate 2D Materials

We consider a material with the 2D particles in the shape of circular cylinders in
square and hexagonal packings, see Fig. 8.1. The bonding between the particles is
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Fig. 8.1 The cells of periodicity of square (a) and hexagonal (b) packings of the cylindrical parti-
cles

presumed to be elastic and represented as a combination of in-plane tensile, shear
and rotational springs with stiffnesses kn, ks, kθ, respectively.

We derive the constitutive relationships by homogenizing the discrete expression
for elastic energy. The latter consists of the sum of energies of deformed links,
vertical and horizontal in the square packing and horizontal and two inclined in the
hexagonal packing. The corresponding link energies associated with node (i, j) for
the square packing read:

Wsquare(i, j) =
1
2
kn

[
u2(i + 1, j)− u2(i, j)

]2

+
1
2
ks

[
u3(i + 1, j)− u3(i, j)− r ×

(
φ1(i + 1, j) + φ1(i, j)

)]2

+
1
2
kφ

[
φ1(i + 1, j)− φ1(i, j)

]2

+
1
2
kn

[
u3(i, j + 1)− u2(i, j)

]2

+
1
2
ks

[
u2(i, j + 1)− u2(i, j) + r ×

(
φ1(i, j + 1) + φ1(i, j)

)]2

+
1
2
kφ

[
φ1(i, j + 1)− φ1(i, j)

]2
. (8.1)

For the hexagonal packing, there are 3 expressions related to different links:
• Horizontal link

W (i, j)1,n =
1
2
kn

[
u2(i + 1, j)− u2(i, j)

]2
,

W (i, j)1,φ =
1
2
kφ

[
φ1(i + 1, j)− φ1(i, j)

]2
,

W (i, j)1,s =
1
2
ks

[
u3(i + 1, j)− u3(i, j)− r ×

(
φ1(i + 1, j) + φ1(i, j)

)]2
.

(8.2)
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• Link (i, j) → (i + 1/2, j +
√

3/2)

W (i, j)n =
kn

2

[
1
2
u2

(
i +

1
2
, j +

√
3

2

)
+
√

3
2

u3

(
i +

1
2
, j +

√
3

2

)

− 1
2
u2(i, j)−

√
3

2
u3(i, j)

]2

,

W (i, j)φ =
kφ

2

[
φ1

(
i +

1
2
, j +

√
3

2

)
− φ1(i, j)

]2

,

W (i, j)s =
ks

2

[
−
√

3
2

u2

(
i +

1
2
, j +

√
3

2

)
+

1
2
u3

(
i +

1
2
, j +

√
3

2

)

+
√

3
2

u2(i, j)−
1
2
u3(i, j)

− r ×
(
φ1

(
i +

1
2
, j +

√
3

2

)
+ φ1(i, j)

)]2

.

(8.3)

• Link (i, j) → (i− 1/2, j +
√

3/2)

W (i, j)3,n =
kn

2

[
− 1

2
u2

(
i− 1

2
, j +

√
3

2

)
+
√

3
2

u3

(
i− 1

2
, j +

√
3

2

)

+
1
2
u2(i, j)−

√
3

2
u3(i, j)

]2

,

W (i, j)3,φ =
kφ

2

[
φ1

(
i− 1

2
, j +

√
3

2

)
− φ1(i, j)

]2

,

W (i, j)3,s =
ks

2

[
−
√

3
2

u2

(
i− 1

2
, j +

√
3

2

)
− 1

2
u3

(
i− 1

2
, j +

√
3

2

)

+
√

3
2

u2(i, j) +
1
2
u3(i, j)

− r ×
(
φ1

(
i− 1

2
, j +

√
3

2

)
+ φ1(i, j)

)]2

.

(8.4)

Here 2r is the distance between the particle centers, u2, u3, φ1 are the corre-
sponding components of displacement and rotation.

We apply the homogenization procedure based on differential expansions [15] to
the energy and then introduce the deformation measures [14]

γ22 =
∂u2

∂x2
, γ23 =

∂u3

∂x2
− φ1, γ32 =

∂u2

∂x3
+ φ1,

γ33 =
∂u3

∂x3
, κ21 =

∂φ1

∂x2
, κ31 =

∂φ1

∂x3
,

(8.5)

where γij , κij are strains and curvatures. We now determine the constitutive rela-
tions by differentiating the homogenized energy over the deformation measures [14]
and obtain
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σ22 =
1
L
knγ22, σ33 =

1
L
knγ33, σ23 =

1
L
ksγ23,

σ32 =
1
L
ksγ32, μ21 =

1
L
kφκ21, μ31 =

1
L
kφκ31

(8.6)

for the square packing, and

σ22 =
√

3
4L
[
γ22(3kn + ks) + γ33(kn − ks)

]
,

σ33 =
√

3
4L
[
γ22(kn − ks) + γ33(3kn + ks)

]
,

σ23 =
√

3
4L
[
γ23(kn + 3ks) + γ32(kn − ks)

]
,

σ32 =
√

3
4L
[
γ23(kn − ks) + γ32(kn + 3ks)

]
,

μ21 =
√

3
L

kφκ21, μ31 =
√

3
L

kφκ31

(8.7)

for the hexagonal packing.
Here L is the size of the unit cell, and σij , μij are stress and moment stress

tensors. After either [2] or [12] are substituted into the Cosserat equations of motion,
one obtains

kn
∂2u2

∂x2
2

+ ks

(
∂2u2

∂x2
3

+
∂φ1

∂x3

)
= ρ̃

∂2u2

∂t2
,

kn
∂2u3

∂x2
3

+ ks

(
∂2u3

∂x2
2

− ∂φ1

∂x2

)
= ρ̃

∂2u3

∂t2
,

kφ

(
∂2φ1

∂x2
2

+
∂2φ1

∂x2
3

)
+ ks

(
∂u3

∂x2
− ∂u2

∂x3
− 2φ1

)
= J̃

∂2φ1

∂t2

(8.8)

for the square packing, and

kn

(
3
∂2u2

∂x2
2

+ 2
∂2u3

∂x2∂x3
+

∂2u2

∂x2
3

)

+ ks

(
∂2u2

∂x2
2

− 2
∂2u3

∂x2∂x3
+ 3

∂2u2

∂x2
3

+ 4
∂ϕ1

∂x3

)
=

4ρ̃√
3
∂2u2

∂t2
,

kn

(
∂2u3

∂x2
2

+ 2
∂2u2

∂x2∂x3
+ 3

∂2u3

∂x2
3

)

+ ks

(
3
∂2u3

∂x2
2

− 2
∂2u2

∂x2∂x3
+

∂2u3

∂x2
3

− 4
∂ϕ1

∂x3

)
=

4ρ̃√
3
∂2u3

∂t2
,

kφ

(
∂2φ1

∂x2
2

+
∂2φ1

∂x2
3

)
+ ks

(
∂u3

∂x2
− ∂u2

∂x3
− 2φ1

)
=

J̃√
3
∂2φ

∂t2

(8.9)

for the hexagonal packing.
Here ρ̃, J̃ are the density and rotational inertia per unit volume.
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8.3 Dispersive Waves in 2D Cosserat Continuum

We are seeking the plane wave solution ∂/∂x1 = ∂/∂x2 = 0 of (8.8), (8.9) in
the form (u2, u3, φ1) = (C1, C2, C3) exp{iξ(x2− vt)}. This leads to the following
characteristic equations:

v2ρ̃− kn = 0,

ρ̃ω2
(
J̃ω2 − 2ks

)
v4 + ω2

(
k2

s − J̃ω2ks − ρ̃ω2kφ

)
v2 + ω4kskφ = 0

(8.10)

for the square packing, and

v2ρ̃−
√

3
4

(3kn + ks) = 0,

ρ̃ω2
[
J̃ω2 − 2

√
3ks

]
v4

+
1
4
ω2

[
6knks + 6k2

s −
√

3
(
knJ̃ω2 + 3J̃ω2ks + 4ρ̃ω2kφ

)
]
v2

+
3
4
ω4kφ(kn + 3ks) = 0

(8.11)

for the hexagonal packing.
In both cases, the first equations correspond to the conventional non dispersive

p-waves. From the second equations, we extract the long wave asymptotics. The
only wave that exists in this asymptotics is a shear-rotational wave with velocity:

v2
3 =

ks

2ρ̃
−
(

J̃

4ρ̃
− kφ

2ks

)
ω2 + O

(
ω3
)

(8.12)

for the square packing, and

v2
3 =

√
3

4
kn + ks

ρ̃
−
(

J̃

4ρ̃
− kφ

kn + ks

)
ω2 + O

(
ω3
)

(8.13)

for the hexagonal packing.
These equations represent the dispersion relations in the low frequency (long

wave) asymptotics, which can potentially be detectable by measurements without
the heterogeneities attenuating the waves below the noise level.

8.4 Extension of the Phase Method for Long Wave Dispersion
Measurements

Dispersion relationships (8.12), (8.13) could be used for detection of the effect of
micro-rotations and the determination of the link stiffnesses constants in a particu-
late material if the wave velocities are measured for different frequencies. This is,
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however, difficult to accomplish with monochrome continuous waves, so one has to
resort to pulses which contain a combination of different frequencies. We propose
using the phase method, whereby the frequency dependence of phase difference
Δφ(ω) between the output and input signals extracted from the Fourier transform
of the recorded wave forms. The phase difference is obviously proportional to the
time delay between the input and output signals which, due to dispersion, can be
different for different frequencies. Expressing the time delay via the length of the
propagation path and the wave velocity, we write

dΔφ/dω = τdelay, τdelay = Lv(ω)−1 + τsystem. (8.14)

Here τsystem is the time delay imposed by the wave generation/recording system.
By noting that the asymptotics (8.12), (8.13) of the dispersion relationships can

be expressed in a general form as

v = v0

√
1− α2ω2,

{
v2
0 = ks

2ρ̃ , α2 = J̃
2ks

− kφρ̃
k2

s
, square

v2
0 =

√
3

4
kn+ks

ρ̃ , α2 = 1√
3(kn+ks)

[J̃ − 4kφρ̃
kn+ks

], hexagonal

(8.15)

one obtains the asymptotic solution of the differential equation (8.14) in the form

Δφ ∼=
(

L

v0
+ τsystem

)
ω +

(
Lα2

6v0

)
ω3 + const. (8.16)

The three parameters of (8.16) are determined by fitting (8.16) to the experimental
curve Δφ(ω) obtained from the measurements, and then the stiffnesses are deter-
mined from (8.15).

8.5 Conclusions

We considered the propagation of planar waves in 2D granulate materials consisting
of parallel cylindrical particles connected by tensile, shear and rotational springs
and arranged in either square or hexagonal patterns. For such materials, the de-
rived characteristic equations show the existence of dispersion relationships in the
conventional shear waves, which extends to low frequencies (long waves). In the
asymptotics of low frequencies, the Cosserat effects control the terms proportional
to the square of frequency—the first terms reflecting the dispersion. These terms,
alongside with the terms of zero order which are the constant parts of wave veloci-
ties, can be determined by fitting of the theoretically determined frequency depen-
dence of the phase shift between the sent and received wave to its experimentally
determined counterpart. This opens a way for direct experimental identification of
Cosserat effects in granulate materials.
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Chapter 9
Natural Lagrangian Strain Measures
of the Non-Linear Cosserat Continuum

Wojciech Pietraszkiewicz and Victor A. Eremeyev

Abstract Definitions of the Lagrangian stretch and wryness tensors in the non-
linear Cosserat continuum are discussed applying three different methods. The re-
sulting unique strain measures have several distinguishing features and are called
the natural ones. They are expressed through the translation vector and either the ro-
tation tensor or various finite rotation vector fields. The relation of the natural strain
measures to those proposed in the representative literature is reviewed.

9.1 Introduction

The stretch and wryness tensors of the non-linear Cosserat continuum were origi-
nally defined by Cosserats [2] through components of some fields in the common
Cartesian frame. Today their approach is hardly readable. During the last 50 years,
the strain measures have been redefined by different authors in various forms us-
ing, for example, (a) components in two different curvilinear coordinate systems
associated with the undeformed (reference) of deformed (actual) placements of the
body, (b) components in the convective coordinate system, (c) Lagrangian or Eule-
rian descriptions, (d) different representations of the rotation group SO(3) in terms
of various finite rotation vectors, Euler angles, quaternions etc., (e) formally differ-
ent tensor operations and sign conventions, as well as (f) requiring or not the strain
measures to vanish in the undeformed placement of the body. Even the gradient and
divergence operators as well as the Cauchy theorem influencing definitions of work-
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conjugate pairs of the stress and strain measures are not defined in the same way in
the literature. The strain measures introduced by Kafadar and Eringen [4] are among
the most referred to in the literature, but even their derivation is not fully complete.

In this paper, we discuss three different methods of introducing the strain mea-
sures into the non-linear Cosserat continuum: (a) by a direct geometric approach,
(b) defining the strain measures as the fields work-conjugate to the respective inter-
nal stress and couple-stress tensor fields, and (c) applying the principle of invariance
under superposed rigid-body deformations to the strain energy density of the polar-
elastic body. Each of the three ways allows one to associate different geometric
and/or physical interpretations to the corresponding strain measures. In the discus-
sion, we use the coordinate-free vector and tensor notation. Orientations of material
particles in the reference and deformed placements, respectively, as well as their
changes during deformation are described in the most general way by the proper
orthogonal tensors. Our primary strain measures, called the natural ones, are of the
relative type, for they are required to vanish in the reference placement.

In the reference (undeformed) placement κ(B) = Bκ ⊂ E , the material particle
X ∈ B is given by its position vector x ∈ E relative to a point o ∈ E of the 3D
physical space E and by three orthonormal directors ha ∈ E, a, b = 1, 2, 3, fixing
orientation of X in the 3D vector space E.

In the actual (deformed) placement γ(B) = Bγ = χ(Bκ) ⊂ E , the position of
X becomes defined by the vector y ∈ E, taken here for simplicity relative to the
same point o ∈ E , and by three orthonormal directors da ∈ E. As a result, the finite
displacement of the Cosserat continuum can be described by two following smooth
mappings:

y = χ(x) = x + u(x), da = Q(x)ha, (9.1)

where u ∈ E is the translation vector and Q = da ⊗ ha ∈ SO(3) is the proper
orthogonal microrotation tensor. Two independent fields u = u(x) and Q = Q(x)
describe translational and rotational degrees of freedom of the Cosserat continuum,
respectively.

9.2 Strain Measures by Geometric Approach

Differentials of the independent kinematic fields are

dx = (Gradx) dx, dy = (grady) dy = (Grady) dx = Fdx,
dha = B dx× ha, dda = C dy × da,

B =
1
2
ha ×Gradha, C =

1
2
da × gradda,

(9.2)

where Grad and grad are the gradient operators in Bκ and Bγ , and B and C are
the microstructure curvature tensors in the undeformed (reference) and deformed
(actual) placements of the Cosserat continuum, respectively. In particular, for any
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nth order tensor field Z(x) we define its gradient in Bκ to satisfy [GradZ(x)]a =
(d/dt)Z(x + ta)|t=0 for any t ∈ R,a ∈ E.

The relative changes of lengths and orientations of the Cosserat continuum dur-
ing deformation are governed by differences of differentials (9.2) brought by the
tensor Q to two comparable orientations

dy −Q dx = Xdx = Gdy, C dy −QB dx = Φ dx = Δdy,

QT dy − dx = E dx = Y dy, QT C dy −B dx = Γ dx = Ψ dy,

E = QT F− I, Γ = QT CF−B = −1
2
ε :
(
QT GradQ

)
,

(9.3)

where E, Γ are the relative Lagrangian stretch and wryness tensors, G, Δ are the
relative Eulerian strain measures, while X, Φ, Y, Ψ are the relative two-point defor-
mation measures. In (9.3), I is the identity (metric) tensor of E ⊗ E, the 3rd-order
skew tensor ε = −I × I is the Ricci tensor of E ⊗ E ⊗ E, and the double dot-
product : of two 3rd-order tensors A, P represented in the base ha is defined as
A : P = AamnPmnbha ⊗ hb.

Let us note some interesting features of the relative Lagrangian strain measures:

1. They are given in the common coordinate-free notation; their various compo-
nent representations can easily be generated, if necessary.

2. Definitions of the measures are valid for finite translations and rotations as well
as for unrestricted stretches and changes of microstructure orientation of the
Cosserat body.

3. The measures are expressed in terms of the rotation tensor Q; for any specific
parametrization of the rotation group SO(3) by various finite rotation vectors,
Euler angles, quaternions, etc. appropriate expressions for the measures can
easily be found, if necessary.

4. The measures vanish in the rigid-body deformation y = Ox + a, da = Oha

with a constant vector a and a constant proper orthogonal tensor O defined for
the whole body.

5. In the absence of deformation from the reference placement, that is, when F =
Q = I, the measures vanish identically.

6. The measures are not symmetric, in general: ET �= E, ΓT �= Γ.

In our purely geometric approach, there is no need for discussing whether these
measures might be defined as transposed ones or with opposite signs. The derivation
process itself is concise, elegant, direct, and seems to be the most complete one in
the literature.

9.3 Principle of Virtual Work and Work-Conjugate Strain
Measures

Already Reissner [7] noted that the internal structure of two local equilibrium equa-
tions of the Cosserat elastic body requires specific two strain measures expressed
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in terms of independent translation and rotation vectors as the only field variables.
We develop this idea here in the general case of the non-linear Cosserat continuum
using the coordinate-free approach.

If the local coordinate-free form of the equilibrium conditions of the Cosserat
continuum derived in Appendix of [5] are multiplied by two arbitrary smooth vector
fields v, ω ∈ E, then we generate the integral identity

∫

Bκ

{
(Div T + f) · v +

[
Div M− ax

(
FT−TT FT

)
+ m

]
· ω
}

dv

−
∫

∂Bκf

{
(nT− t∗) · v + (nM−m∗) · ω

}
da = 0. (9.4)

Here f and m are the volume force and couple vectors applied at any point y = χ(x)
of the deformed body, but measured per unit volume of Bκ, t∗(x) and m∗(x) the
external force and couple vector fields prescribed on the part ∂Bγf , but measured
per unit area of ∂Bκf , t(n) = nT(n) and m(n) = nM the surface traction and
couple vector fields applied at any point of ∂Pγ ∈ ∂Bγ , but measured per unit area
of ∂Pκ ∈ ∂Bκ, expressible as linear functions of the nominal type stress T and
couple-stress M tensors, respectively, n the unit vector externally normal to ∂Pκ,
axA the axial vector of the skew tensor A, and the divergence operator Div is
defined to satisfy [Div Z(x)]a = Div[Z(x)a] for any a ∈ E.

The vector field v can be interpreted as the kinematically admissible virtual trans-
lation v ≡ δy and the vector field ω as the kinematically admissible virtual rotation
ω ≡ ax(δQQT ) in Bγ such that v = ω = 0 on ∂Bκd = ∂Bκ\∂Bκf , where
δ is the symbol of virtual change (variation). Then using the divergence theorem
Identity (9.4) can be transformed into the principle of virtual work of the non-linear
Cosserat continuum

∫

Bκ

[
TT : (Gradv −ΩF) + MT : Grad ω

]
dv

=
∫

Bκ

(f · v + m · ω) dv +
∫

∂Bκf

(t∗ · v + m∗ · ω) da. (9.5)

But we can show that δE = QT (Gradv − ΩF) and δΓ = QT Gradω, where
Ω = ω × I, and the internal virtual work density under the first volume integral of
(9.5) can now be given by the expressions

σ = TT : (QδE) + MT : (QδΓ) = S : δE + K : δΓ, (9.6)

where S = QT TT , K = QT MT are the stress and couple-stress tensors whose
natural components are referred entirely to the reference (undeformed) placement.
The stress measures S, K require the relative Lagrangian strain measures E, Γ as
their work-conjugate counterparts.
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9.4 Invariance of the Polar-Elastic Strain Energy Density

In the polar-elastic body, the constitutive relations are defined through the strain
energy density Wκ per unit volume of the undeformed placement κ. In general, the
density Wκ can be assumed in the following form:

Wκ = Wκ(y,F,Q,GradQ;x, B). (9.7)

But Wκ in (9.7) should satisfy the principle of invariance under the superposed
rigid-body deformations. After appropriate transformations we can show that this
requires the form of Wκ to be reduced to

Wκ = Wκ(E + I, I× Γ;x,B) = Wκ(E,Γ;x,B). (9.8)

This again confirms that the relative Lagrangian strain measures E, Γ are required
to be the independent fields in the polar-elastic strain energy density in order it to be
invariant under the superposed rigid-body deformation.

The geometric approach, the structure of equilibrium conditions and invariance
of the polar-elastic strain energy density all require the tensors E, Γ as the most
appropriate Lagrangian strain measures for the non-linear Cosserat continuum. We
call the measures the natural stretch and wryness tensors, respectively.

9.5 The Vectorial Parameterization

While the three components of u in (9.3) are all independent, the nine components
of Q in (9.3) are subject to six constraints following from the orthogonality condi-
tions Q−1 = QT , detQ = +1, so that only three rotational parameters of Q are
independent. In many applications, it is more convenient to use the strain measures
expressed in terms of six displacement parameters all of which are independent.

In the literature, many techniques how to parameterize the rotation group SO(3)
were developed, which can roughly be classified as vectorial and non-vectorial ones.
Various finite rotation vectors as well as the Cayley–Gibbs and exponential map
parameters are examples of the vectorial parametrization, for they all have three
independent scalar parameters as Cartesian components of a generalized vector in
the 3D vector space E. The non-vectorial parameterizations are expressed either in
terms of three scalar parameters that cannot be treated as vector components, such
as Euler-type angles, for example, or through more scalar parameters subject to ad-
ditional constraints, such as unit quaternions, Cayley–Klein parameters, or direction
cosines. Each of these expressions may appear to be more convenient than others
when solving specific problems of the non-linear Cosserat continuum.

The microrotation tensor Q represents the isometric and orientation-preserving
transformation of the 3D vector space E into itself. By the Euler theorem, such a
transformation can be expressed in terms of the angle of rotation φ about the axis
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of rotation described by the eigenvector e corresponding to the real eigenvalue +1
of Q such that Qe = +e, cosφ = 1

2 (trQ − 1), sinφe = 1
2 ax(Q −QT ), where

trA is the trace of the second-order tensor A. In terms of e and φ, the microrotation
tensor Q can be expressed by the Gibbs [3] formula

Q = cosφ I + (1− cosφ)e⊗ e + sinφ e× I. (9.9)

In the vectorial parametrization of Q, one introduces a scalar function p(φ) gen-
erating three components of the finite rotation vector p ∈ E defined as p = p(φ)e,
see, for example, [1]. The generating function p(φ) has to be an odd function of φ
with the limit behavior limφ→0(p(φ)/φ) = κ, where κ is a positive real normaliza-
tion factor (usually 1 or 1/2), and p(0) = 0. Then the tensor Q can be represented
as

Q = cosφ I +
1− cosφ

p2
p⊗ p +

sinφ

p
p× I. (9.10)

Taking the gradient of (9.10) and substituting it into (9.3), after appropriate trans-
formations the natural Lagrangian stretch E and wryness Γ tensors can be repre-
sented in terms of the finite rotation vector p by the general relations

E =
[
cosφ I +

1− cosφ
p2

p⊗ p− sinφ

p
p× I

]
(I + Gradu)− I, (9.11)

Γ =
[
sinφ

p
I +

1
p2

(
1
p′ −

sinφ

p

)
p⊗ p− 1− cosφ

p2
p× I

]
Gradp. (9.12)

Among definitions of p used in the literature, let us mention the finite rotation
vectors defined as

θ = 2 tan
φ

2
e, φ = φe, 	 = sinφe, ρ = tan

φ

2
e, (9.13)

σ = 2 sin
φ

2
e, μ = 4 tan

φ

4
e, β = 4 sin

φ

4
e, (9.14)

where the generating functions are θ = 2 tan(φ/2), φ,� = sinφ, ρ = tan(φ/2),
σ = 2 sin(φ/2), μ = 4 tan(φ/4), and β = 4 sin(φ/4), respectively.

The explicit formulae for E and Γ expressed in terms of the corresponding finite
rotation vectors (9.13) and (9.14) are summarized in Tables 9.1 and 9.2, see [6].

When the values of u and φ as well as their spatial gradients are infinitesimal
‖u‖ � 1, ‖Gradu‖ � 1, |φ| � 1, ‖Gradφ‖ � 1, we also have sinφ ≈ φ,
cosφ ≈ 1, and p(φ) ≈ κφ. Then it follows that p ≈ κϑ, Q ≈ I + ϑ × I, where
ϑ = φe is now the infinitesimal rotation vector. Then from (9.11) and (9.12) we
obtain E ≈ e ≡ Gradu − ϑ × I, Γ ≈ γ ≡ Grad ϑ. The infinitesimal strain
measures e, γ or their transpose were used in many papers and books on linear
Cosserat continuum.
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Table 9.1 The natural Lagrangian stretch tensor for different finite rotations vectors

p φ ∈ E

θ ≡ 2 tan φ
2
e (−π, π) [1 + θ2

4
]−1[(1 − θ2

4
)I + 1

2
θ ⊗ θ − θ × I](I + Gradu) − I

φ ≡ φ e (−2π, 2π) [cos φ I + 1−cos φ
φ2 φ ⊗ φ − sin φ

φ
φ × I](I + Gradu) − I

� ≡ sin φ e (−π, π) [cos φ I + 1−cos φ
�2 � ⊗ � − � × I](I + Gradu) − I

ρ ≡ tan φ
2
e (−π, π) 1

1+ρ2 [(1 − ρ2)I + 2ρ ⊗ ρ − 2ρ × I](I + Gradu) − I

σ ≡ 2 sin φ
2
e (−π, π) [(1 − 1

2
σ2)I + 1

2
σ ⊗ σ − cos φ

2
σ × I](I + Gradu) − I

μ ≡ 4 tan φ
4
e (−2π, 2π) (1 + μ2

16
)−2{[1 − μ2

16
( 3
8

− μ2

16
)]I + 1

2
μ ⊗ μ

−(1 − μ2

16
)μ ⊗ I}(I + Gradu) − I

β ≡ 4 sin φ
4
e (−2π, 2π) {[1 − β2

2
(1 − β2

16
)]I + 1

2
(1 − β2

8
)β ⊗ β

−
√

1 − β2

16
(1 − β2

8
)β × I}(I + Gradu) − I

Table 9.2 The natural Lagrangian wryness tensor for different finite rotations vectors

p φ ∈ Γ

θ ≡ 2 tan φ
2
e (−π, π) [1 + θ2

4
]−1(I − 1

2
θ × I)Grad θ

φ ≡ φ e (−2π, 2π) [ sin φ
φ

I + φ−sin φ
φ3 φ ⊗ φ − 1−cos φ

φ2 φ × I] Grad φ

� ≡ sin φ e (−π, π) [I + 1
�2 ( 1

cos φ
− 1)� ⊗ � − 1−cos φ

�2 � × I] Grad �

ρ ≡ tan φ
2
e (−π, π) 2

1+ρ2 (I − ρ × I)Grad ρ

σ ≡ 2 sin φ
2
e (−π, π) [cos φ

2
I − 1

4 cos(φ/2)
σ ⊗ σ − 1

2
σ × I] Grad σ

μ ≡ 4 tan φ
4
e (−2π, 2π) [1 + μ2

16
]−2[(1 − μ2

16
)I + 1

8
μ ⊗ μ − 1

2
μ × I] Grad μ

β ≡ 4 sin φ
4
e (−2π, 2π) [

√
1 − β2

16
(1 − β2

8
)I +

1−(1−β2/8)(1−β2/16)

β2
√

1−β2/16
β ⊗ β

− 1
2
(1 − β2

16
)β × I] Grad β

9.6 Review of Some Other Lagrangian Non-Linear Strain
Measures

In Table 9.3, we present a review of various definitions of the Lagrangian strain
measures proposed in 14 representative papers in the field. In those works, different
notation, sign conventions, notions of gradient and divergence operators, coordinate
systems, description of rotations, etc. are applied. To compare them with our natural
strain measures (9.3)3, we bring them into the common coordinate-free form using
the microrotation tensor Q, see [5].

The results summarized in Table 9.1 show that the stretch and wryness tensors
introduced in many papers do not agree with each other and with our Lagrangian
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Table 9.3 Definitions of the stretch and wryness tensors

Paper The stretch tensor The wryness tensor

Kafadar and Eringen (1971) FT Q − 1
2
ε : (QT GradQ)

Stojanovic (1972) FT F FT 1
2
ε : (QGradQT )

Besdo (1974) Q − I F[ 1
2
ε : (F−1 GradF) + B]

− Q(Γ + B)

Shkutin (1980) FT Q − I − 1
2
[ε : (QT GradQ)]T + BT

Badur and Pietraszkiewicz (1986) QT F 1
2
ε : (QT GradQ)

Reissner (1987) FT Q − 1
2
[ε : (QT GradQ)]T

Zubov (1990) FT Q − 1
2
[ε : (QT GradQ)]T

Dłużewski (1993) QT F QT Grad φ

Merlini (1997) F − Q, −Q 1
2
ε : (QT GradQ),

QT F − I − 1
2
ε : (QT GradQ)

Steinmann and Stein (1997) QT F − 1
2
ε : (QT GradQ)

Nikitin and Zubov (1998) QT F − 1
2
ε : (QT GradQ)

Grekova and Zhilin (2001) FT Q 1
2
ε : (QT GradQ)

Nistor (2002) FT Q − 1
2
[ε : (QT GradQ)]T

Ramezani and Naghdabadi (2007) FT Q 1
2
ε : (QT GradQ)

The present paper and [5] QT F − I − 1
2
ε : (QT GradQ)

strain measures defined in (9.3). Most definitions differ only by transpose of the
measures, or by opposite signs, or the measures do not vanish in the absence of
deformation. Such differences are not essential for the theory, although one should
be aware of them. But we have also discovered a few strain measures which are
incompatible with our Lagrangian stretch and wryness tensors. One should avoid
such incompatible strain measures when analyzing problems of physical importance
using the Cosserat continuum model.
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Chapter 10
Practical Applications of Simple Cosserat
Methods

David A. Burton and Robin W. Tucker

Abstract Motivated by the need to construct models of slender elastic media that
are versatile enough to accommodated non-linear phenomena under dynamical evo-
lution, an overview is presented of recent practical applications of simple Cosserat
theory. This theory offers a methodology for modeling non-linear continua that is
physically accurate and amenable to controlled numerical approximation. By con-
trast to linear models, where non-linearities are sacrificed to produce a tractable
theory, large deformations are within the range of validity of simple Cosserat mod-
els. The geometry of slender and shell-like bodies is exploited to produce a the-
ory that contains as few degrees of freedom as is physically reasonable. In certain
regimes it is possible to include fluid-structure interactions in Cosserat rod theory
in order to model, for example, drill-string dynamics, undersea riser dynamics and
cable-stayed bridges in light wind-rain conditions. The formalism also lends itself
to computationally efficient, effective models of microscopic carbon nanotubes and
macroscopic gravitational antennae.

10.1 Overview

The pioneering efforts of Euler and Bernoulli in the seventeenth and eighteenth
centuries extended Newton’s laws for discrete mass points to any continuous de-
formable body and initiated the recognition of the independent Angular Momentum
Principle. With the introduction of the concept of the stress-tensor by Cauchy in the
nineteenth century the essential framework of classical (non-relativistic) elastody-
namics was complete. However, the implementation of this framework for the solu-
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tion of many practical engineering problems had to wait for effective mathematical
tools. Naturally, the first use of the theory involved linearizations of the equations
about stationary configurations commensurate with the linear response properties of
particular materials. This led to the development of effective practical tools for solv-
ing linear partial differential equations on suitably shaped domains (e.g., Fourier and
Laplace techniques) and their efficacy obscured for some time the need to address
the fundamental non-linear nature of the basic equations or their boundary condi-
tions. Indeed, until new mathematical tools became available, the theory was largely
restricted to all pervading linear approximations. Although these had indisputable
value it was finally appreciated that such approximations had limited domains of
applicability and that the full theory was much richer in its scope.

If one takes the attitude that the methodology in constructing an effective model
of a physical system should follow three distinct steps: formulation, analysis and
interpretation then the analysis should consist solely in the application of pre-
cise mathematical processes exempt from any further ad-hoc physical simplifica-
tions [1]. The predominance of linearization methods for elastic problems involv-
ing strings, rods, beams, shells, etc. gave rise to somewhat haphazard modeling as-
sumptions in which mathematical assumptions became unnecessarily involved with
physical assumptions about the system under consideration. A typical example that
pervades the majority of elementary texts even today is the derivation of the equa-
tion of motion of small transverse vibrations of an elastic string. Such derivations
often assume that each material point is confined to a plane through its equilibrium
position perpendicular to the line joining the ends of the string. Very few strings
can execute purely transverse motion (without longitudinal deformation) and most
derivations ignore the role played by the inextensibility of the string by assuming
that the tension in the string is essentially constant. Such dubious assumptions are
unnecessary since the wave equation follows most naturally from a systematic per-
turbation scheme applied to the exact (non-linear) equations of motion [1].

In recent years, an efficient approach to modeling the non-linear behavior of cer-
tain special classes of continuous mechanical structures has been developed. Based
on the early work of the Cosserat brothers and others, the mathematical theory of
Cosserat media is now well established. Antman [1] has formulated a complete the-
ory of the mechanics of slender structures (rods) and thin structures (shells) in a
recent book. The essential idea is to exploit the geometry of the structure to reduce
the dimension of its configuration space. The genesis of the Cosserat approach lies
in the application of the basic laws of Continuum Mechanics to a slender material
continuum and the disengagement of these physical principles from the constitu-
tive relations that model the material properties of particular structures. Then the
analysis of the model is based on mathematical methods in which approximations
may be controlled. Today one can often assess the validity of a particular approx-
imation scheme in the absence of exact analytical solutions using computational
techniques. The methods also permit an exploration of non-differentiable solutions
(shock phenomena) that lie outside the remit of approaches based on the discretiza-
tion of classical differential equations.

By contrast, one cannot a priori assume that approximations based on small dis-
placements about particular configurations will necessarily provide accurate dy-
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namical predictions over extended periods of time and one may cite ample ev-
idence where linearized equations will completely miss dynamical behavior that
arises from the underlying equations of motion, boundary conditions or material
properties. The full (non-linear) equations of motion may admit distinct classes of
solutions that are parametrically connected in the space of all solutions [14, 13, 2].
By contrast, stable solutions of the linearized equations are restricted to domains
about particular configurations. Unstable linearized solutions signal that the ap-
proximation eventually breaks down and recourse to the full equations of motion
becomes mandatory in order to understand how the system develops in time from
prescribed initial and boundary conditions.

An example of this situation [15] arises in modeling the dynamics of on-shore
drill-strings. Traditional models can be constructed based on Euler–Bernoulli lin-
earized beam theory for planar vibrations coupled to axial vibrations of a heavy
drill-string confined to the vertical bore cavity of an active drilling assembly. The
drill-string is driven in a rotary fashion from the top and reacts to non-linear fric-
tion at the attached drill-bit. Thus the boundary conditions are generally non-linear
functions of the drill-string configuration and their linearization limits the temporal
evolution to a superposition of small amplitude stable eigenmodes. Without such
a linearization, the drill-string can execute a complex motion in space eventually
making contact with the bore-cavity along its length. A similar phenomenon occurs
if one executes the evolution as a perturbation of the drill-string about a distinct
whirling motion [10] in which the entire string vibrates in a plane rotating about a
vertical axis in the bore cavity. The existence of these different dynamical config-
urations and the attendant clash with the bore-cavity renders a linearized approach
ineffective and recourse to a Cosserat model is both simpler and more reliable. This
not only accommodates naturally the coupling between lateral, axial and torsional
motions but enables the inherently non-linear interaction of the drill-string with the
bore cavity to be modeled.

In the context of vertical steel marine risers attached to floating platforms, simi-
lar boundary interactions can induce parametric excitations that feed energy among
the various elastic modes of vibration of the riser (axial, lateral and torsional motion
about its length) in unsuspected ways and the use of a Cosserat description elimi-
nates the need for ad-hoc assumptions about the significance of the various energy
transfer channels. For flexible risers that are not vertically constrained, the need for a
non-perturbative approach becomes even more important since one often deals with
forces and torques in which the riser executes larger curved motions in space as well
as extended dynamical interactions along its length where contact with the sea-bed
is in evidence. Problems of riser collisions, either with other risers externally or with
internal elements, are further situations where linearized methods become suspect.
In both cases, internal dampings of the structure (viscoelastic or possibly of mem-
ory type (hysteretic)) provide further sources of non-linearity that are accessible to
a time domain evolution in the Cosserat description.

Recent applications of Cosserat methods have included the non-linear analysis
of complex vibration states of drill-strings, marine risers, MEMS structures, rigid
gears, gravitational antennae and carbon nanotubes. It has been shown that the in-
herent non-linearities in the simple Cosserat theory of rods [1] can be exploited for
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the design of space-based slender elastic gravitational wave antennae [17, 16]. Such
structures are more sensitive to perturbation by gravitational waves and respond to
broader frequency ranges than linearized elasticity models might suggest.

A Cosserat model of a drill-string is a flexible Cosserat rod connected at one end
to a rotary drive and connected at the other end to a heavy drill bit subject to non-
linear frictional forces. A Cosserat model of a marine riser is a flexible Cosserat rod
vertically immersed in sea water and connected to the sea bed. A Cosserat model
of a cable in a cable stayed bridge is a high tension Cosserat rod immersed in air.
In the models above, the fluid-structure interaction in which the external forces and
torques on the structure arise from its contact with a fluid play a role. One must
model such forces and torques in terms of the structure configuration variables and
properties of the external stimuli, and the dynamics of such stimuli are coupled to
the motion of the structure by appropriate boundary conditions. In certain regimes
such interactions can be rendered tractable to analysis, particularly in the presence
of laminar potential flow with possible vorticity.

Long stay cables are important structural components of cable-stayed bridges.
Due to their large flexibility and small structural damping, they are prone to vibra-
tion induced by motion of their supports and/or aerodynamic forces such as wind
and rain loadings. Under the simultaneous occurrence of light-to-moderate wind
and rain, large amplitude vibrations of stay cables have been observed in a number
of cable-stayed bridges worldwide. The mechanism leading to rain–wind induced
vibration in stay cables has recently become of concern to bridge engineers and sci-
entists in various countries and, clearly, this phenomenon involves a complex inter-
play between the cables, rain rivulets and air. A fully detailed mathematical analysis
would require the equations of multi-phase fluid dynamics, a model for accretion
and fluid–solid adhesion and the continuum mechanics of an elastic structure. How-
ever, such an approach is extremely complicated, unwieldy and involves consider-
able computing power. Fortunately, in low ambient wind speeds, experiments with
an artificial mobile rivulet on a fixed cylinder subject to aerodynamic loading do in-
dicate an approach to steady rivulet oscillation. A fully dynamical Cosserat model of
a cable section and a mobile rain rivulet was developed in which the complex fluid–
structure interaction was approximated in two distinct ways. The first employed an
approximation that permitted the use of data extrapolated from wind-tunnel mea-
surements [8]. The second approach [7] modeled the aerodynamic interaction in
terms of a sub-critical vortex description [5] which took account of the effects due to
the boundary layers between the cable, rivulet and air. This was based on the obser-
vation that the instantaneous Reynolds number associated with the relative air-cable
velocity is in the sub-critical range and hence dynamical vortex shedding should
play a role. It is likely that the fluid vorticity generated by a cable will interact with
other cables downstream and contribute significantly to their ensuing motion. One
advantage of the second modeling approach is that it can be naturally generalized
to accommodate more than one cable. A method for constructing flows containing
point vortices in the vicinity of a pair of cable sections was recently proposed in [6],
and a fluid model employing vortex sheets was developed in [4].

Recent years have seen a surge of interest in carbon nanotubes with the aim to en-
gineer nano-scale devices. Calculations of the electronic and mechanical properties
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of carbon nanotubes often rely on ab-initio techniques employing density-functional
theory. However, numerical implementations of such schemes are intensive and can
require considerable computing power. Cosserat methods afford a natural alterna-
tive for formulating more efficient models of nanotubes. This approach was used to
successfully describe the equilibria of a nanotube under an external load [11] and
investigate its radial breathing modes [3].

The following is a brief summary of the Cosserat models used to investigate the
above physical systems.

10.2 Simple Cosserat Methods

The motion of a Cosserat rod may be represented in terms of the motion in space
of the line of centroids of its cross-sections and the material deformation about that
line. The configuration of such a rod is modeled mathematically by a space-curve
with structure: i.e., as a principal SO(3) bundle over a moving space-curve. This
structure defines the relative orientation of neighboring cross-sections along the rod.
Specifying a unit vector d1 (which may be identified with the normal to the cross-
section) at each point along the rod centroid enables the state of flexure to be related
to the angle between this vector and the tangent to the space-curve. Specifying a
second unit vector d2 orthogonal to the first vector (thereby placing it in the plane
of the cross-section) permits an encoding of the state of bending and twist along its
length. Thus a field of two mutually orthogonal unit vectors along the rod provides
three continuous dynamical degrees of freedom that, together with the continuous
three degrees of freedom describing a space-curve relative to some arbitrary origin
in space, define a simple Cosserat rod model.

The general mathematical theory of non-linear Newtonian elasticity is well es-
tablished. The dynamics of the Cosserat rod theory follows as a well defined limit
of a three-dimensional continuum and is conventionally formulated in a Lagrangian
picture in which material elements are labeled by s. In the following, objects asso-
ciated with an un-deformed reference configuration are superscripted with 0.

The dynamical evolution of a (transversely homogeneous) simple Cosserat rod
with reference length L0, reference mass density, s ∈ [0, L0] �→ ρ0(s), and cross-
sectional area, s ∈ [0, L0] �→ A(s), is governed by Euler’s dynamical laws:

ρ0Ar̈ = n′ + f , ∂t(ρ0I (w)) = m′ + r′ × n + l (10.1)

involving implicitly the triad of orthonormal vector fields {d1(s, t),d2(s, t),
d3(s, t)} (directors) over the space-curve: s ∈ [0, L0] �→ r(s, t) at time t where
r′ = ∂sr, ṙ = ∂tr, etc. The external force and torque densities (including couplings
to external gravitational, friction, electromagnetic and fluid forces) are denoted f
and l, and s ∈ [0, L0] �→ ρ0I is a moment of inertia tensor. In these field equa-
tions, the contact force fields n and contact torque fields m are related to the “strain”
fields u, v, w by constitutive relations. The strains are themselves defined in terms
of the configuration variables r and dk for k = 1, 2, 3 by the relations: r′ = v,
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d′
k = u× dk, ḋk = w × dk. The latter ensures that the triad remains orthonormal

under evolution. The last equation identifies w = 1
2

∑3
k=1 dk × ḋk with the local

angular velocity vector field of the director triad. To close the above equations of
motion constitutive relations appropriate to the rod must be specified. These relate
the contact forces and torques to the strains u, v, their time rates of change for
viscoelastic materials and their possible dependence on the history of the evolution
of the structure. In general, the model accommodates continua whose character-
istics (density, cross-sectional area, rotary inertia) vary with s and the thermody-
namic state of the material [9]. For a system of several rods coupled to localized
regions with mass or rotary inertia, one matches rod degrees of freedom according
to junction conditions describing the coupling [12]. If the rod characteristics change
discontinuously conditions on the contact forces and torques on either side of the
discontinuity must be satisfied.

Mechanically deforming a carbon nanotube will lead to changes in the relative
positions of the nanotube’s carbon atoms. Bending and twisting the nanotube may
lead to significant cross-section deformation outside the remit of the simple Cosserat
rod theory described above. Motivated by the efficiency and wide domain of appli-
cability of simple Cosserat rod theory, an extended shell-like model (a Cosserat
tube) was developed [11, 3] to describe such cross-section deformation.

It is widely accepted that a carbon nanotube may be effectively modeled as an
elastic continuum over spatial scales that greatly exceed interatomic distances. The
mechanical properties of a simple Cosserat tube may be motivated using the Kirchoff
[1] constitutive relations for a simple Cosserat rod. The balance laws (10.1) for such
a rod may be recovered from an action principle [3], and a concise description of
a Cosserat tube may be developed by demanding that the tube’s action reduces to
the rod’s action when the tube’s cross-section is constrained to remain in its un-
deformed state. The position R of a material point (s, σ, ζ) in the wall of a Cosserat

Fig. 10.1 The directors d1,
d2, d(m) and the position
vectors r, r+q of the (dashed)
space-curves representing the
tube’s “bulk” and the cross-
section are shown. The vector
fields d(m) and q lie in the
plane spanned by d1, d2
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tube can be written

R(s, σ, ζ, t) = r(s, t) + q(s, σ, t) + ζ d(m)(s, σ, t) (10.2)

with
q(s, σ, t) = q1(s, σ, t)d1(s, t) + q2(s, σ, t)d2(s, t)

where the unit vector field d(m) is an additional “microstructure” director and the
functions q1, q2, d(m) encode the shape of the cross-section (see Fig. 10.1). The
elastic potential V of the tube,

V =
∫ L0

0

ds
∫

C 0(s)

dA0

×
[
1
2
G
(
∂sR · d1 − ∂sR0 · d0

1

)2

+
1
2
G
(
∂sR · d2 − ∂sR0 · d0

2

)2

+
1
2
E
(
∂sR · d3 − ∂sR0 · d0

3

)2

+
1
2
G
(
∂σR · d(m) − ∂σR0 · d0

(m)

)2

+
1
2
E
(
∂σR · d3 × d(m) − ∂σR0 · d0

3 × d0
(m)

)2
]

(10.3)

vanishes in the reference (un-deformed) configuration, where G is the shear mod-
ulus, E is Young’s modulus, ρ0 is the mass density of the reference configuration
and dA0 is the area element of the cross-section C 0(s) in the reference configura-
tion. The variable s is the arc parameter of a space-curve running along the tube
(s ∈ [0, L0]) in the reference configuration and σ is the arc parameter of a closed
space-curve within a cross-section in the reference configuration (see the dashed
space-curves in Fig. 10.1). The action Stube for the Cosserat tube taken to be

Stube[r,d1,d2, q1, q2,d(m)] =
∫

dt
[ ∫ L0

0

ds
∫

C 0(s)

dA0 1
2
ρ0∂tR · ∂tR− V

]

(10.4)
and equations of motion for r, dk, q1, q2, d(m) are obtained by varying Stube subject
to appropriate boundary conditions.

Under a constrained variation, Stube reduced to an action Srod for a simple
Cosserat rod with Kirchoff constitutive properties. This follows by writing

Srod[r,d1,d2] = Stube[r,d1,d2, q̌1, q̌2, ď(m)] (10.5)

and enforcing the constraints
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d(m) = ď(m) ≡ cos(θ)d1 + sin(θ)d2,

q1 = q̌1 ≡ R0 cos(θ),

q2 = q̌2 ≡ R0 sin(θ)

(10.6)

prior to variation with respect to r, d1, d2. The variable θ = σ/R0 is the angle
around the rod, where the constant R0 is the radius of the circular space-curve rep-
resenting the rod’s cross-section (the circular dashed curve in Fig. 10.1). The con-
straints (10.6) remove the final two terms from the integrand in the potential (10.3).
Euler’s dynamical laws (10.1) for a simple Cosserat rod with Kirchoff constitutive
relations are then recovered as the Euler–Lagrange equations derived from the ac-
tion Srod.

10.3 Conclusion

Cosserat methods afford dynamical models of non-linear continua that are phys-
ically accurate and yet computationally amenable. By contrast to linear models,
where non-linearities are sacrificed to produce a tractable theory, large deforma-
tions are within the range of validity of simple Cosserat models. The geometry of
slender and shell-like bodies can be exploited to develop efficient tools for analyzing
the dynamics of a broad range of important physical systems.
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Chapter 11
Requirements on Periodic Micromorphic Media

Ralf Jänicke and Stefan Diebels

Abstract In order to investigate the properties of microstructured materials, the un-
derlying heterogeneous material is commonly replaced by a homogeneous material
involving additional degrees of freedom. Making use of an appropriate homogeniza-
tion methodology, the present contribution compares deformation states predicted
by the homogenization technique to the deformation state within a reference solu-
tion. The results indicate on what terms the predicted deformation modes can be
clearly interpreted from the physical point of view.

11.1 Introduction

Microstructured materials are known to feature a complex mechanical behavior
which is strongly dominated by the underlying microtopology. A well documented
phenomenon is the stiff boundary layer effect inducing size-dependent effective ma-
terial properties, e.g., [2, 17, 18]. In the literature, various approaches exist which
replace the heterogeneous microcontinuum by a homogeneous macrocontinuum,
enriched by additional degrees of freedom. A wide range of those approaches goes
back to the fundamental considerations of the Cosserat brothers[1], and these con-
siderations were systematically generalized by Eringen [3]. Different approaches
deal with second gradient media, e.g., [8, 11, 14]. During the last decade, consid-
erable advances in the numerical modeling of microstructured materials took place,
namely by using the so-called two-level FEM or FE2 approaches, e.g., [4, 11, 15].

In the present contribution, we make use of a second order homogenization pro-
cedure introduced in detail in [10]. For this purpose, the kinematic quantities are
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expressed in terms of a polynomial mean field and a periodic fluctuation on a mi-
crovolume attached to the macroscopic material point. After having reviewed the
scale transition of the kinematic quantities, several numerical experiments will help
analyze the significance of the deformation modes involved in the proposed ap-
proach in comparison to a reference solution. Special attention will be paid to the
methodology’s requirements on the attached microvolume.

11.2 Micromorphic Media

The physical picture Following the seminal works of Eringen [3], we assume the
physical body BM to consist of a set of deformable material points which capture a
small but finite space Bm. The microcontinuum’s mapping from the material to the
spatial frame is considered to be affine and reads

Δx(XM , χM , t) = χM (XM , t) ·ΔX(XM ). (11.1)

χM is defined as the microdeformation tensor, the index (�)M refers to the macro-
scale and (�)m to the microscale, respectively. By calculating the square of the de-
formed arc length (dxm)2, one has to introduce a set of three independent deforma-
tion measures. Without loss of generality, we choose the common deformation gra-
dient FM , the microdeformation χM and its gradient GradχM . Obviously, this set
of two-field quantities does not fulfill the requirements of objectivity. Nevertheless,
the given set is admissible for the following investigations because no constitutive
assumptions will be met.

Scale transition of the kinematic quantities In the sequel, a consistent averaging
technique will be sketched replacing a heterogeneous Cauchy medium, represent-
ing the cellular network, by a homogeneous micromorphic medium. Based on a
methodology proposed by Forest and Sab [5, 7] and presented in detail in [10], one
can identify the kinematic quantities of the micromorphic macrocontinuum in terms
of a polynomial mean field and a periodic perturbation of the heterogeneous Cauchy
microcontinuum attached to the micromorphic material point on the macroscale. To
simplify matters, the attached microvolume is assumed to be a rhombic unit cell as

Fig. 11.1 The attached rhombic microvolume representing the cellular network. The volume cen-
troid of Bm is defined by the position vector XM (material frame)
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depicted in Fig. 11.1. We postulate the set (uM , χM ) to characterize the macrostate
that best fits the microscopic displacement field um in an averaged sense. Thus, we
minimize the functional

F (uM , χM ) =
〈
(um − uM − (χM − I) ·ΔX)2

〉
(11.2)

with the volume average 〈�〉 = 1/Vm

∫
BM

� dVm and we find

〈Δu〉 = 0 and χM = 〈um ⊗ΔX〉 ·G−1 + I, (11.3)

where G is a second order geometry tensor defined by the shape of the attached
microvolume. Assuming a microscopic displacement field as a polynomial of grade
three, one can show that the expression

Δx = FM ·ΔX +
1
2

GradχM : (ΔX⊗ΔX)

+
1
6

∗
χM ·G4

...(ΔX⊗ΔX⊗ΔX) + Δx̃ (11.4)

satisfies the averaging rules of (11.3), where a fourth order geometry tensor G4 de-
pending on the microvolume’s shape has been introduced and where the difference

∗
χM= χM −FM has been used as an independent quantity. Δx̃ represents a fluctua-
tion field due to the microstructural periodicity. Having in mind the linear displace-
ment field Δx = FM ·ΔX + Δx̃ of a so-called first-order FE2 approach replacing
a heterogeneous Cauchy microcontinuum by a homogeneous Cauchy macrocon-
tinuum, (11.4) is pointing out the extended character of the introduced projection
rule. Equation (11.4) clearly indicates the restricted character of the cubic projec-
tion link. For the 2D case, there only exist 4 independent cubic deformation modes
in contrast to an unrestricted cubic polynomial allowing for 8 independent cubic
deformation modes. In the sequel, the significance of the higher order deformation
modes, i.e., quadratic and cubic ones, will be investigated for several perfectly peri-
odic microstructures.

11.3 Higher Order Deformation Modes in Periodic
Microstructures

The substitution of a heterogeneous microcontinuum by an extended but homoge-
neous macrocontinuum requires the additional macroscopic degrees of freedom to
display the real deformation mechanisms of the microstructure in an adequate way.
As it has been shown in the precedent section, the micromorphic kinematics enrich
the microscopic displacement field by quadratic and cubic parts. In order to deter-
mine the relevance of these higher order deformation modes, a set of four perfectly
periodic microstructures is subject to several numerical experiments. The analyzed
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Fig. 11.2 The periodic unit cells of the investigated cellular microstructures. The structures are
considered as lattices of struts which are rigidly connected in vertices. The interaction between
two vertices only depends on the geometry and the material properties of the connecting struts.
Microstructure (a) represents an 1-particle system, whereas microstructures (b) and (c) involve 2
particles, microstructure (d) 4 particles, respectively. The struts feature an aspect ratio r ≈ 1/20

for (a) and (d), r ≈ 1/12 for (b) and (c), respectively

periodic unit cells are depicted in Fig. 11.2. The given microstructures can be con-
sidered as lattices of struts which are rigidly connected in vertices. Thus, the material
properties and the geometry of the struts control the interaction between two joined
vertices. In analogy to systems consisting of discrete particles interacting via their
boundary, one may interpret the vertices as particles and the given microstructures
as n-particle systems, cf. [16], scaling n from 1 to 4. Thus, n involves the num-
ber of particles within the periodic unit cell. The experimental setup is depicted in
Fig. 11.3 in a schematic way for microstructure (a) and has been accomplished in
an analogous way for the microstructures (b)–(d), i.e., the particular microstructures
have been microscopically resolved by finite elements. The performed deformations
are assumed to be small. The cell walls follow Hooke’s law.

At 4 different positions 1© – 4© of the numerical experiments, the displacement
field on the boundary of the labeled unit cell embedded in the microscopically re-
solved cellular structure is observed. In order to determine how accurate this real
displacement field can be reproduced by the projection rule in (11.4), several pro-
jection polynomials have been fitted to the observed displacement field using the
method of least squares. The study comprises a linear polynomial (4 independent
deformation modes) in analogy to a first order FE2 approach, a quadratic polyno-
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Fig. 11.3 Setup of the numerical experiments: (1) homogeneous tension test, (2) inhomogeneous
shear test, (3) bending test, exemplary displayed for microstructure (a), microstructures (b)–(d)
analogously. The struts are microscopically resolved by finite elements and follow Hooke’s law
(Young’s modulus Y = 200 GPa, Poisson’s ratio ν = 0.33). The embedded unit cells subject to
the further investigations are denoted with 1© – 4©

mial (4 + 6 = 10 independent deformation modes) in analogy to a second order
FE2 approach using a second-gradient continuum on the macroscale, e.g., [11, 12],
a micromorphic polynomial (4 + 6 + 4 = 14 independent deformation modes) as
introduced earlier, and finally an unrestricted cubic one (4+6+8 = 18 independent
deformation modes). Note that the fitting procedure is up to the well-defined poly-
nomial orders. Thus, no periodic fluctuations are taken into account. In Figs. 11.4–
11.7, the observed least squares of the fitted displacement field normalized to the
linear one is plotted over the number of independent deformation modes.

11.4 Discussion

Considering Figs. 11.4–11.7, one may generally notice several points of interest:

• The increase in the fitting polynomial from a linear to a cubic one involves a
decrease in the error over several orders of magnitude for the cross-like mi-
crostructure (a). In a less distinct manner, the same correlation holds for the
honeycomb unit cells (b) and (c). Obviously, this is not the case for microstruc-
ture (d) showing the same symmetry as (a) but involving 4 vertices (4-particle
system).

• For the microstructure (a), no higher significance of the quadratic polynomial
compared to the linear one can be detected whereas, at least in the bending
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Fig. 11.4 Normalized least squares for several projection polynomials in the homogeneous tension
experiment for the different microstructures at position 1©. Whereas microstructure (a) shows a
significantly decreasing error with increasing polynomial order, the decrease for (b) and (c) is less
pronounced and it is nearly not observable for (d). Furthermore, the homogeneous deformation
field does not account for differing accuracies due to the anisotropy of (b) and (c)

Fig. 11.5 Normalized least squares for several projection polynomials in the inhomogeneous shear
experiment at the homogeneous position 2©. Similar to the tension test, one can observe an dramatic
decrease of the error for microstructure (a), a smaller but still significant decrease for (b) and (c).
For (d), the extension to a cubic projection polynomial seems to influence the fitting accuracy only
in a subordinate way
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Fig. 11.6 Normalized least squares for several projection polynomials in the numerical shear ex-
periment at the inhomogeneous position 3©. Analogous to the homogeneous deformation states at
1© and 2©, one may observe the decrease of the error. Nevertheless, the difference between the mi-

cromorphic and the cubic polynomial is much less pronounced for microstructure (a). In contrast,
the fitting accuracy for microstructures (b)–(d) is not seriously affected by the more inhomoge-
neous character of the deformation state. Merely the difference between (b) and (c) seems to be
slightly more pronounced

experiment, the microstructures (b) and (c) respond to the quadratic, i.e., bend-
ing, deformation modes. This difference can be clarified taking into account the
effective bending stiffnesses of the particular microstructures which depend,
besides other effects, on the aspect ratio of the struts. Thus, one may expect
a slightly higher effective bending stiffness for (b) and (c), r ≈ 1/12, than
for (a), r ≈ 1/20. From the physical point of view, a low bending stiffness of
the structure concentrates the bending effects close to the boundary. For (a), the
bending modes decay within one layer of unit cells can not be detected at the
investigated positions.

• A third point of interest is the relation between the micromorphic and the cubic
polynomials at 3© and 4© for the microstructure (a). Obviously, the relevance of
the complete cubic polynomial is less pronounced as it is at 1© and 2©.

To summarize the found observations, we want to conclude the proposed micro-
morphic projection rules to meet the real displacement fields of the reference com-
putation in a significantly exacter way than the linear projection of a first order FE2

approach does. However, the advantage of the higher order projection rules strongly
depends on the topology within the investigated periodic unit cell, i.e., within the
volume representative for the particular microstructure. In order to return to the anal-
ogy of vertices and particles, the present study indicates that for (n > 1)-particle
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Fig. 11.7 Normalized least squares for several projection polynomials in the numerical bending
experiment at position 4©. Similar to position 3©, the micromorphic and the cubic polynomials
show a significantly higher accuracy for microstructure (a) than the linear and quadratic polyno-
mials. The difference between the micromorphic and the cubic polynomials is less pronounced
than at positions 1© and 2©. For (b) and (c), the fitting accuracy is obviously influenced by the
microstructure’s orientation

systems the microstructural degrees of freedom within the micromorphic continuum
theory, i.e., the microrotation, the microdilatation, etc. loose their physical meaning.
This result is in accordance to [16, 17] which have found similar properties iden-
tifying an effective Cosserat medium. Nevertheless, the micromorphic kinematics
are able to reproduce the periodic 1-particle microstructure in a rather exact way,
i.e., the deformation modes activated by the extended projection rule cover all es-
sential deformation mechanisms of this particular microstructure. Furthermore, the
second order homogenization methodology offers the fundamental advantage to re-
produce size dependent boundary layer effects which has been verified in literature
for several approaches, e.g., [9, 12, 13]. Thus, even assuming an arbitrary (n > 1)-
particle system, the second order methodologies, the micromorphic as well as the
second gradient approach, are a priori able to capture higher order effects. How-
ever, for the (n > 1)-particle case, we want to point out the present methodology
to describe a phenomenological model beyond the straight interpretation based on
the microtopology. Future investigations will focus on the polynomial coefficients
found by the fitting technique. The question arises if one is able to restrict the full
micromorphic medium to one of the subclasses proposed in [6] by an appropriate
interpretation of those coefficients.
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Chapter 12
Extending Micromorphic Theory to Atomic
Scale

James D. Lee, Youping Chen, and Xianqiao Wang

Abstract Micromorphic theory envisions a material body as a continuous collec-
tion of deformable particles; each possesses finite size and inner structure. It may be
considered as the most successful top-down formulation of a two-level continuum
model, in which the deformation is expressed as a sum of macroscopic continu-
ous deformation and microscopic deformation of the inner structure. To enlarge the
domain of applicability of the micromorphic theory, starting from many-body dy-
namics, we took a bottom-up approach to formulate a generalized continuum field
theory in which a crystalline material is viewed as a continuous collection of lattice
points while embedded within each lattice point is a group of discrete atoms. In
this work, atomistic definitions and the corresponding field representations of fun-
damental physical quantities are introduced. The balance laws and the constitutive
relations are obtained through the atomistic formulation, which naturally leads to a
generalized continuum field theory. It is identical to molecular dynamics at atomic
scale and can be reduced to classical continuum field theory at macroscopic scale.

12.1 Introduction to Micromorphic Theory

Microcontinuum field theories constitute extensions of the classical field theories
concerned with deformations, motions, and electromagnetic interactions of mate-
rial media, as continua, in microscopic space and short time scales. In terms of a
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physical picture, a microcontinuum may be envisioned as a continuous collection
of deformable point particles, each with finite size and inner structure. It is worth-
while to note that in the classical continuum theory a point particle is represented
by a geometrical point, which is infinitesimal in size. Then the question arises: How
can one represent the intrinsic deformation of a point particle in microcontinuum?
Eringen settled this question by replacing the deformable particle with a geometric
point P and some vectors attached to P , which denote the orientations and intrin-
sic deformations of all the material points in the deformable point particle. This is
compatible with the classical picture where a material point in a continuum is en-
dowed with physical properties such as mass density, displacement vector, electric
field, stress tensor, etc. Therefore, the vectors assigned to P represent the additional
degrees of freedom arising from the motions, relative to P , of all the material points
in the particle. Geometrically, a particle P is identified by its position vector X, in
the reference (Lagrangian or material) state B, and vectors attached to P , represent-
ing the inner structure of P by Ξα (α = 1, 2, 3, . . . , N) while N is the number of
material points in the particle. The motions may be expressed as

x = x(X, t), (12.1)

ξα = ξα
(
X, Ξα, t

)
α ∈ [1, 2, 3, . . . , N ], (12.2)

where t is the time; x and ξα, corresponding to X and Ξα, respectively, are the
position vectors in the deformed (Eulerian or spatial) state b. A medium with such
general motions is named microcontinuum of grade N by Eringen. In the two-level
continuum model, let the position vector of a material point be decomposed as the
sum of the position vector of the centroid (mass center) of the particle and the po-
sition vector of the material point relative to the centroid (cf. Fig. 1.1.2 of Eringen
[6]), i.e.,

x′ = x + ξ, X′ = X + Ξ, (12.3)

and let the motions be expressed as

x = x(X, t), ξ = ξ(X, Ξ, t). (12.4)

If the micromotion ξ = ξ(X, Ξ, t) is further reduced to an affine motion, i.e.,

ξ = χK(X, t)ΞK or ξk = χkK(X, t)ΞK , (12.5)

we arrive at the doorstep of the micromorphic theory. It is seen that the macromotion
x = x(X, t) accounts for the motion of the centroid of the particle; the micromotion
ξk = χkK(X, t)ΞK accounts for the intrinsic motions of the particle; and χkK is
called the microdeformation tensor. Because χkK is a second order tensor, the parti-
cle has 9 independent degrees of freedom in addition to the 3 classical translational
degrees of freedom of the centroid. A unit cell or a polyatomic molecule may be
viewed as a point particle in micromorphic theory [6, 7].
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12.2 Balance Laws of Micromorphic Theory

The balance laws of micromorphic theory, namely conservation of mass, microin-
ertia, energy and balance of linear momentum and momentum moments, were first
derived by Eringen and Suhubi [8, 11] and Eringen [5] by means of a “microscopic
space-averaging” process. Later Eringen [6] derived the balance laws in a more
elegant way: balance of linear momentum and momentum moments are the conse-
quences of the objectivity of conservation of energy:

dρ
dt

+ ρ∇x · v = 0, (12.6)

ρ
di
dt

= ρϕ + ρϕT , (12.7)

ρ
dv
dt

= ∇x · t + f , (12.8)

ρ
dϕ

dt
= ∇x ·m + tT − s + υ · ρi · υT + l, (12.9)

ρ
De

Dt
= m

...∇x ⊗ υ + t : ∇x ⊗ v + (s− t)T : υ +∇x · q + h, (12.10)

where ρ is the mass density; ρi is the microinertia tensor; ρϕ = υ · ρi is the gen-
eralized spin tensor; t is the Cauchy stress; s = sT is the microstress; m is a third
order tensor, called the moment stress; v is the velocity; υ is a second order tensor,
called the gyration tensor; l is a second order tensor, called the body couple density;
e is the internal energy density; q is the heat flux; and h is the heat source.

To demonstrate that the micromorphic theory can be built on a more profound
physical foundation, in this work, we follow the approach of Hardy [9] to link vari-
ables between the phase space and the physical space of a many-body system and
to derive the balance laws for microcontinuum. Microscopic dynamic quantities in
many-body dynamics are functions of phase-space coordinates (r, p), i.e., the posi-
tions and momenta of atoms. For a single crystal of a multi-element system

r =
{
Rkα = Rk + Δrkα | k = 1, 2, 3, . . . , Nl;α = 1, 2, 3, . . . , Na

}
, (12.11)

p =
{
mαVkα = mα

(
Vk + Δvkα

)
| k = 1, 2, 3, . . . , Nl;

α = 1, 2, 3, . . . , Na

}
, (12.12)

where Nl is the total number of unit cells in the system; Na is the number of atoms
in a unit cell; the superscript kα refers to the αth atom in the kth unit cell; mα is the
mass of the αth atom; Rkα and Vkα are the position and velocity of the kαth atom,
respectively; Rk and Vk are the position and velocity of the centroid of the kth unit
cell, respectively; Δrkα and Δvkα are the position and velocity of the kαth atom
relative to the centroid of the kth unit cell, respectively.

A dynamic function A(r,p) in phase space can be linked to its corresponding
local density function a(x, t) in physical space as
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a(x, t) =
Nl∑

k=1

Na∑

α=1

A(r,p)δ
(
Rk − x

)
, (12.13)

where the δ-function can be any localization function with
∫

Ω(x)
δ(Rk −

x) dx = 1 [9]. With the properties of the δ-function [10], the time evolution of
physical quantities can be obtained as

∂a(x, t)
∂t

∣
∣
∣
∣
x

=
Nl∑

k=1

Na∑

α=1

•
A(r,p)δ

(
Rk − x

)

−∇x ·
Nl∑

k=1

Na∑

α=1

Vk ⊗A(r,p)δ
(
Rk − x

)
. (12.14)

When a(x, t) is the local density of a conserved quantity, (12.14) is the corre-
sponding microscopic balance law. The conserved quantities in micromorphic the-
ory are

ρ =
Nl∑

k=1

Na∑

α=1

mαδ
(
Rk − x

)
=

Nl∑

k=1

mδ
(
Rk − x

)
, (12.15)

ρi =
Nl∑

k=1

Na∑

α=1

mαΔrkα ×Δrkαδ
(
Rk − x

)
, (12.16)

ρv =
Nl∑

k=1

Na∑

α=1

mαVkαδ
(
Rk − x

)
=

Nl∑

k=1

mVkδ
(
Rk − x

)
, (12.17)

ρϕ =
Nl∑

k=1

Na∑

α=1

mαΔvkα ×Δrkαδ
(
Rk − x

)
, (12.18)

ρE =
Nl∑

k=1

{
1
2
m
(
Vk
)2 +

Na∑

α=1

[
1
2
mα
(
υk ·Δrkα

)2 + Ukα

]}

δ
(
Rk − x

)
. (12.19)

Notice that the micromotion of micromorphic material is affine, i.e., Δvkα =
υk ·Δrkα, we obtained almost the same set of balance laws except

ρ
di
dt

= ρϕ + ρϕT −∇x · γ, (12.20)

ρ
dϕ

dt
= ∇x ·m + tT − s + υ · ρi · υT + l−∇x · (υ · γ), (12.21)

where

γ =
Nl∑

k=1

(
Vk − v

)
⊗

Na∑

α=1

mαΔrkα ⊗Δrkαδ
(
Rk − x

)
. (12.22)
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It is seen that Vk−v is the difference between phase space velocity and physical
space velocity and it is easy to understand why γ does not appear in the “microscopic
space-averaging” process. The detailed expressions of m, t, s, q, l and h are referred
to Chen and Lee [2, 3].

12.3 Extension of Micromorphic Theory to Atomic Scale

In the process of constructing a multiscale concurrent atomistic/continuum theory,
to keep the knowledge and information at the atomistic level as much as possible,
we now relax the assumption of affine motion and let the motions be back to the
generality as indicated in (12.1), (12.2). Now the link between a dynamic function
in phase space and its corresponding local density function in physical space can be
established through a localization function and the Kronecker δ-function as [1]

a
(
x,yα, t

)
=

Nl∑

k=1

Na∑

ξ=1

A(r,p)δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.23)

with

δ̃
(
Δrkξ − yα

)
≡
{

1, if ξ = α and Δrkα = yα,
0, otherwise.

(12.24)

Similarly, the time evolution of a physical quantity can be obtained as:

∂a(x,yα, t)
∂t

∣
∣
∣
∣
x,yα

=
Nl∑

k=1

Na∑

ξ=1

•
A(r,p)δ

(
Rk − x

)
δ̃
(
Δrkξ − yα

)

−∇x ·
Nl∑

k=1

Na∑

ξ=1

Vk ⊗A(r,p)δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)

−∇yα ·
Nl∑

k=1

Na∑

ξ=1

Δvkξ ⊗A(r,p)δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
.

(12.25)

Following the pattern of (12.23), the mass density ρα, linear momentum density
ρα(v + Δvα), angular momentum density ραψα, internal energy density ραeα,
interatomic force density fα, external force density fα

ext, the homogeneous part tα

and inhomogeneous part τα of stress tensor, the homogeneous part qα and inhomo-
geneous part jα of heat flux, and heat source h are defined as

ρα =
Nl∑

k=1

Na∑

ξ=1

mξδ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.26)
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ρα
(
v + Δvα

)
=

Nl∑

k=1

Na∑

ξ=1

mξ
(
Vk + Δvkξ

)
δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.27)

ραψα =
Nl∑

k=1

Na∑

ξ=1

mξVkξ ×Rkξδ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.28)

ραeα =
Nl∑

k=1

Na∑

ξ=1

[
1
2
mξ
(
Ṽ

kξ)2 + Ukξ

]
δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.29)

fα =
Nl∑

k=1

Na∑

ξ=1

Fkξδ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.30)

fα
ext =

Nl∑

k=1

Na∑

ξ=1

Fkξ
extδ

(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.31)

tα = −
Nl∑

k=1

Na∑

ξ=1

mξṼ
k
⊗ Ṽ

kξ
δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)

− 1
2

Nl∑

k,l=1

Na∑

ξ,η=1

(
Rk −Rl

)
⊗ FkξB

(
k, ξ, l, η,x,yα

)
, (12.32)

τα = −
Nl∑

k=1

Na∑

ξ=1

mξΔṽkξ ⊗ Ṽ
kξ

δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)

− 1
2

Nl∑

k,l=1

Na∑

ξ,η=1

(
Δrkξ −Δrlη

)
⊗ FkξB

(
k, ξ, l, η,x,yα

)
, (12.33)

qα = −
Nl∑

k=1

Na∑

ξ=1

Ṽ
k
[
1
2
mξ
(
Ṽ

kξ)2 + Ukξ

]
δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)

− 1
2

Nl∑

k,l=1

Na∑

ξ,η=1

(
Rk −Rl

)
Ṽ

kξ
· FkξB

(
k, ξ, l, η,x,yα

)
, (12.34)

jα = −
Nl∑

k=1

Na∑

ξ=1

Δṽkξ

[
1
2
mξ
(
Ṽ

kξ)2 + Ukξ

]
δ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)

− 1
2

Nl∑

k,l=1

Na∑

ξ,η=1

(
Δrkξ −Δrlη

)
Ṽ

kξ
· FkξB

(
k, ξ, l, η,x,yα

)
, (12.35)

hα =
Nl∑

k=1

Na∑

ξ=1

Ṽ
kξ
· Fkξ

extδ
(
Rk − x

)
δ̃
(
Δrkξ − yα

)
, (12.36)
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where Ṽ
kξ

= Vkξ − (v + Δvξ), Ṽ
k

= Vk −v and Δṽkξ = Δvkξ −Δvξ are the
differences between phase space velocities and physical space velocities; Fkξ

ext is the
body force, such as gravitational force and Lorentz force, acting on the kξth atom;
Ukξ is the potential energy of the kξth atom; Fkξ is the interatomic force acting on
the kξth atom with the understanding that the total potential energy U is additive,
i.e.,

U =
Nl∑

k=1

Na∑

ξ=1

Ukξ, Fkξ = − ∂U

∂Rkξ
= −∂Ukξ

∂Rkξ
(12.37)

and B(k, ξ, l, η,x,yα) is defined as

B ≡
∫ 1

0

δ
(
Rkλ + Rl(1− λ)− x

)
δ̃
(
Δrkξλ + Δrlη(1− λ)− yα

)
dλ. (12.38)

Based on (12.25), a lengthy but straightforward process leads to the local balance
laws of mass, linear momentum, angular momentum, and energy for each atom
α ∈ [1, 2, 3, . . . , Na] at any point in the field (x, t) as [4]

dρα

dt
+ ρα∇x · v + ρα∇yα ·Δvα = 0, (12.39)

ρα d(v + Δvα)
dt

= ∇x · tα +∇yα · τα,+fα
ext (12.40)

tα + τα =
(
tα + τα

)T
, (12.41)

ρα deα

dt
= tα : ∇x

(
v + Δvα

)
+ τα : ∇yα

(
v + Δvα

)
+∇x · qα

+∇yα · jα + hα, (12.42)

where the material time-rate of Aα is defined as

dAα

dt
≡ ∂Aα

∂t
+ v · ∇xA

α + Δvα · ∇yαAα. (12.43)

Similar to the situation in classical field theory, the balance of angular momentum
leads to the symmetry of stress tensor tα +τα. It is seen that, from (12.32), (12.33),
the symmetry of the stress tensor is automatically satisfied.

12.4 Discussions

If the point particle in micromorphic theory is reduced to a geometrical point, i.e.,
infinitesimal in size, then one can easily verify that m = l = υ = i = ϕ = 0,
t = s = tT , and the balance laws of micromorphic theory become exactly the same
as in classical continuum theory.
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Each point particle in micromorphic theory has 12 degrees of freedom, i.e.,
3 translational degrees of freedom for the centroid and 9 degrees of freedom for
the micromotion, (12.5). In this sense, each unit cell in the multiscale concurrent
atomistic/continuum theory has 3Na degrees of freedom, where Na is the number
of atoms in a unit cell. The multiscale theory is a theory in physical space (x, t);
(12.38), (12.39), (12.41) are the balance laws of mass, linear momentum, and en-
ergy for each and every atom in the unit cell; unlike classical continuum theories,
the constitutive equations for the internal energy density ραeα, stress tensors tα and
τα, heat fluxes qα and jα, (12.29), (12.32)–(12.35), for each and every atom are
explicitly obtained; the only constitutive relation needed is the interatomic potential
energy Ukξ . In other words, although this theory that we derived is a field theory,
we never lose the sight of atoms. This is the fundamental difference between this
work and many other multiscale theories.

It is worthwhile to note that, from (12.29), the summation of internal energy
density over all the atoms in a unit cell gives the internal energy per volume of a
unit cell as

Na∑

α=1

ραeα =
Nl∑

k=1

Na∑

α=1

[
1
2
mα
(
Ṽ

kα)2 + Ukα

]
δ
(
Rk − x

)

=
3
2
kB

V
T (x, t) + Upot(x, t), (12.44)

where kB is the Boltzmann constant; T (x, t) is the temperature; Upot(x, t) is the
potential energy density; and V is the volume of a unit cell. Then it is seen that the
summation of (12.41) essentially emerges as the governing equation for tempera-
ture.
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Chapter 13
Nonlinear Theory of Cardinal Rearrangement
of the Solid Body Structure in the Field
of Intensive Pressure

Eron L. Aero and A.N. Bulygin

Abstract A nonlinear theory of microscopic and macroscopic strains is developed
for the case of large inhomogeneous relative displacements of two sublattices mak-
ing up a complex crystal lattice. The standard linear theory of acoustic and opti-
cal oscillations of a complex lattice is generalized, taking into account new addi-
tive principle of internal translational symmetry—relative shear of two sublattices
leaving deformation energy invariant. As a result, the force interaction between the
sublattices is characterized by a nonlinear periodic force of its mutual displace-
ments. The theory describes large microdisplacements due to bifurcation transitions
of atoms into neighboring cells. As a result, the theory predicts defect formations,
switching interatomic bonds, phase transitions, formation of nanoclasters, etc. Some
examples of resolutions of nonlinear equations of equilibrium are presented.

13.1 Introduction

Now considerable attention is called to the problem of structural and phase transi-
tions in nano-structured materials, degradation of material properties under loading
(ageing and fatigue) and to with it connected processes of generations of defects of
the structure and other damages of it. A well-developed approach to the solution of
the problem is based on an artificial introduction of concrete, previously designed
elements of a damage of a crystalline structure with subsequent monitoring of their
evolution under intensive power and temperature influence. A more universal ap-
proach, following a remarkable work of Cosserats [7], is based on an introduction of
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internal degrees of freedom into a continuum model of a solid. Numerous attempts
of its realizations revealed new effects in the framework of linear theory. Main new
results concern an appearance of new optical oscillations, spatial–temporal disper-
sion of elastic features and border effects in statics.

However, this approach is not adequate enough to the new problems arising while
studying the formation and control of the structure of new materials. Small varia-
tions in the internal structure described by the linear theories, simple precise vari-
ations in the macroscopic geometry of the lattice, giving only re-normalization of
material constants. Hence a model of a complex structure is reduced to that of a
simple one. The cardinal rearrangements of the structure appear beyond the linear
approach. The transition to the essentially nonlinear equations yields a possibility to
predict drastic structural rearrangements, lowering of the potential barriers, switch-
ing of interatomic connections, arising of singular defects and other damages, phase
transitions.

There is a limitation of a phenomenological theory. Indeed, internal parameters,
like micro-strains describing structural deviations, may be incorporated into the the-
ory, they could be even estimated. However, their physical sense might be under-
stood provided that an initial structural state of the body is defined, and material
scales of length and time are introduced. The last is skipped in the continua theory.

It turns out that simultaneous description of discreteness and nonlinearity of the
model allows us to formulate a new principle of translation invariance of the en-
ergy. A similar principle was introduced for the first time by E. and F. Cosserat for
a medium with rotational degrees of freedom. A model of complex lattice may be
used as a base of a suggested theory. The complex lattice consists of two sub-lattices
which coincide or merge into one by a shift for a constant structural vector u0, ap-
pearing as a parameter of the complex lattice (Fig. 13.1). The model is known in the
physics of solid state, however, it was developed in a linear and anharmonic limit.
Two equations arise in the linear theory of crystalline lattice of Karman and Born-
Huang [6], one for the acoustic (U) and the other for the optical (u) displacement.
The physical mechanics of non-ideal crystalline lattice with defects has been devel-
oped in the works of Kosevich [8]. A linear nonlocal theory of complex crystalline
lattice was developed by Kunin [9] where a long-range action was refined.

Here, in the local nonlinear theory [1, 3, 2, 4, 5, 10], the main attention is paid to
the effects of a short-range action responsible for the cardinal variations in the struc-
ture, in particular, for the generation of defects, new phases and the so-called recon-
structive transitions or changing of the class of lattice symmetry. The employment
of essentially nonlinear equations gives rise to predicting the lowering of potential
barriers and switching of interatomic connections.

The introduction of variations of a local topology in the theory by means of in-
ternal degrees of freedom (u) turns out efficient, provided that the generation of
the linear approach is done as follows. Consider arbitrarily large displacements of
sub-lattices u and put an additional element of translational symmetry, typical for
complex lattices but have not used before in physics of solid state. Certainly, the
relative displacement of one sub-lattice for one period (or for its integer number)
yields a merge of the sub-lattice with itself, and the structure of the complex lat-
tice is reproduced. It means that its energy should be a periodic function of the
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Fig. 13.1 (a) The complex
crystalline lattice consisting
of two sublattices. (b) Macro-
scopic deformation without
a relative shear of sublat-
tices. (c) Microdeformations
at twinning. (d) Bifurcation of
the structure of an elementary
cell during microdeformation

relatively tough displacements of sub-lattices u which are invariant to such a trans-
lation. Certainly, a classical principle of translational symmetry is kept, that yields
an invariance of the energy of the lattice to the shared translation U of both sub-
lattices for one period of the complex lattice. The approach allows us to introduce
new parameters of a crystal in micromechanics, that makes possible a description
of micromechanisms of the cardinal rearrangements of the lattice such as charac-
teristics of the short-range order, potential barriers, typical sizes of the elements of
structure and interphase boundaries, bifurcation parameters.

13.2 General Equations

Let us introduce a displacement U of the center of inertia of a pair of atoms (ele-
mentary cell) and their relative displacement u inside the cell (due to variation of
u0) as follows

U =
m1U1 + m2U2

(m1 + m2)
, u =

U1 −U2

a
. (13.1)

Here U1 and U2 are the displacements of atoms with masses m1 and m2 of the first
and the second sub-lattices, respectively, a is the period of a sub-lattice.

The development of a three-dimensional theory requires explicit introduction of
an energy invariant both to the mutual displacements and rotations of sub-lattices.
The basic idea is in the development of a scalar periodic function of the simplest
rotation invariants of the vector field. This might be done by choosing it as

Φ →
(
1− cos

√
uiαikuk

)
, αik = a−2

1 kiki + a−2
2 mimi + a−2

3 nini, (13.2)
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where αik is a tensor of inverse periods of the lattice (a1, a2, a3), while k, m, n are
the unit vectors of crystallographic directions.

The force of interaction of neighboring atoms reads

Pi =
∂Φ

∂ui
− ∂Φ

∂uR

∂uR

∂ui
− ∂uR

∂ui
sin(uR), uR = (uiαikuk)1/2. (13.3)

Simpler relationships arise for the crystals of cubic symmetry (a1 = a2 =
a3 − a),

αik = a−2(kiki + mimi + nini), u2
R = u2;

Pi = li sin(u), li = ui/u,

u =
(
u2

x + u2
y + u2

z

)1/2
.

(13.4)

Here u is the absolute value of the vector of micro-displacements, li is its basic
vector.

It is easy to see that both functions are periodic along the directions k, m, n with
periods equal to a1, a2, a3, respectively.

General equations for macro- and micro-displacements U(t, x, y, z), u(t, x, y, z)
follow using the Lagrangian

L =
∫ t

0

∫

V

[
1
2
ρU̇nU̇n +

1
2
μu̇nu̇n −

1
2
λikmnU(i,k)U(m,n)

− 1
2
Kikmnui,kum,n + sikU(i,k)Φ(uR)− pΦ(uR)

]
dV (13.5)

and they read (due to the variations of U̇i, u̇i, U(i,k), ui,k, ui)

ρÜi = λikmnU(km),n − sin

[
Φ(uR)

]
,n
, (13.6)

μüi = Kikmnuk,mn − Pli
∂Φ

∂uR
;

li =
∂uR

∂ui
; P = p− sikU(i,k).

(13.7)

Here commas in interlinear indices denote spatial derivatives, their inclusion in
parentheses denotes symmetrization, and a period on top corresponds to the tem-
poral derivative.

The first equation is useful in rewriting the equation of mechanics of a continuum
medium in the standard form:

ρÜi = σik,k, (13.8)

where the stress tensor σik is introduced as

σik = λikmnU(m,n) − sikΦ(uR). (13.9)
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Equations (13.7)–(13.9) correspond to the translation invariant equations of the dy-
namics of the double continuum. Equation (13.9) allows us to consider the stress as
a sum of an elastic part (the first term) and an inelastic part caused by a microstruc-
ture of the lattice. The latter disappears at small micro-displacements and achieves a
maximum value equal to sik, when u = π, or at the shift of atoms from the potential
holes to the peaks of interatomic potential barriers. Certainly, the value of the mate-
rial tensor sik is the limit of inelastic stresses corresponding to the loss of stability of
the lattice. The plastic strains as well as interphase transitions and other bifurcation
processes are possible further. They are defined by the field of micro-displacements
that is obtained from (13.7).

The value of P in (13.7) corresponds to an effective potential barrier of the rear-
rangement of the lattice, depending on the strain gradient Ui,k. It might be excluded
expressing through σik. This gives another representation for P

P = p− smnλ
−1
mnikσik. (13.10)

Choosing the periodic function Φ according to (13.2) and taking into account
(13.3), the governing equations are rewritten as

ρÜi = λikmnU(mn),k − siklk sin(uR), uR = (uiαikuk)1/2, (13.11)

μüi = Kikmnuk,mn − Pli sin(uR), P = p− sikU(ik). (13.12)

These equations correspond to the crystal of any class of symmetry but they are
too complicated for an analysis. Therefore, a more simple case will be considered
further.

13.3 Two-Component Two-Dimensional Micro-Fields in Cubic
Crystals

Consider a plane problem with the strain field of the form

Ux = Ux(x, y, t), Uy = Uy(x, y, t), Uz = 0,

ux = ux(x, y, t), uy = uy(x, y, t), uz = 0.
(13.13)

According to (13.4) for cubic crystals uR = u = (u2
x + u2

y)1/2, (13.11), (13.12)
read as

μüx = −Plx sin
(
u2

x + u2
y

)1/2 + K1ux,xx + K23uy,xy + K3ux,yy, (13.14)

μüy = −Ply sin
(
u2

x + u2
y

)1/2 + K1uy,yy + K23ux,yx + K4uy,xx, (13.15)

ρÜx = σxx,x + σxy,y, ρÜy = σyy,y + σyx,x. (13.16)
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Here the components of the strain tensor are expressed according to (13.9)

σxx = λ1Ux,x + λ2Uy,y − sxx

(
1− cos

(
u2

x + u2
y

)1/2)
, (13.17)

σyy = λ2Ux,x + λ1Uy,y − syy

(
1− cos

(
u2

x + u2
y

)1/2)
, (13.18)

σyx = λ3(Ux,y + Uy,x)− syx

(
1− cos

(
u2

x + u2
y

)1/2)
. (13.19)

Further simplifications are needed for obtaining analytical solutions.

13.4 Thin Layer Assumption. Statics

Consider a static version of (13.16) with the defining parities given by (13.17)–
(13.19).

Assume that a layer is directed along the OY axis, while the solution is local-
ized in the vicinity of this axis, then besides the conditions Ü = ü = 0 a natural
assumption may be suggested

Ux � Uy, ux � uy, lx � ly, ∂()/∂y � ∂()/∂x. (13.20)

Equations (13.20) allow us to write leading order equations defining two-dimension-
al stationary fields of macro- and micro-strains Ux(x, y), Uy(x, y); ux(x, y), uy(x, y).
The substitution of (13.17)–(13.19) into (13.16) allows simplifying them with the
help of (13.20). Neglecting the terms with derivatives Ux,yy , Uy,xy , ux,y in the equa-
tion for the x projection and terms Uy,yy , uy,y in the equation for y projection, one
obtains two equations of the second order that may be integrated once with respect
to x, giving

λ1Ux,x + (λ2 + λ3)Uy,y − sxx

(
1− cos(uy)

)
= ε0(y), (13.21)

λ3Uy,x − syx

(
1− cos(uy)

)
= σ0(y). (13.22)

Here σ0(y), ε0(y) are the constants of integration with respect to x. Then the system
of two equations appears for the macroscopic fields Ux(x, y), Uy(x, y) connected
with the micro-field u(x, y). Then a consideration of the static reduction of (13.14),
(13.15) is needed. Leaving the left-hand side in (13.14) and changing u with uy in
(13.15), we rewrite the system (13.14)–(13.15) as

0 ≈ K1ux,xx + K23uy,xy, (13.23)

μüy ≈ −Ply sin(uy) + K1uy,yy + K23ux,yx + K4uy,xx. (13.24)

The term ux,yy is skipped in (13.23) due to smoothness along the layer. It is
integrated once with respect to x, giving the first order equation

B ≈ K1ux,x + K23uy,y. (13.25)
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Here B is a constant of integration. Differentiating (13.25) with respect to y, one
excludes from (13.23) the mixed derivative ux,yx; this gives rise to

μüy ≈ −Ply sin(uy) + K4uy,xx + K5uy,yy. (13.26)

Its right-hand side may be simplified using (13.23) and the assumption ly ≈ 1.
Due to the smallness of the component ux, the equation may be finally written as

μüy ≈ −P sin(uy) + K5uy,yy + K4uy,xx, K5 = K1 −K2
23/K1. (13.27)

Here P is an effective potential, depending on deformation gradients according to
(13.7). For cubic crystals we get

P = p− sxxUx,x + syyUyy + (sxy + syx)(Ux,y + Uy,x). (13.28)

Then the equations for macro- and micro-fields become coupled, which strongly
complicates their analysis. However, according to (13.21) and (13.22), the deforma-
tion gradients are expressed through two arbitrary functions σ0(y) and ε0(y) that
may be replaced with constants. Then only one of the three functions Ux,x, Uy,y ,
Ux,y remains in (13.28). It simplifies a choice of useful hypothesis for obtaining
solutions.

It is useful to transform to the dependence of the effective potential barrier P
on the stresses according to its equivalent definition (13.10). For cubic crystals,
following (13.17), (13.18) and (13.19), we have

P = p− σ̄; σ̄ = ε1σxx + ε2σyy + ε3σyx + Ŝ
(
1− cos(u)

)
. (13.29)

Here ε1, ε2, ε3, Ŝ are complicated combinations of the material constants
(λ1, λ2, λ3) and coefficients of striction (sxx, syy, syx). The three components of
stresses are expressed through two constants σ0, ε0 according to (13.21) and (13.22).
Then the useful hypothesis may be chosen for construction of particular solutions,
assuming P does not depend on the coordinates under certain boundary conditions.
The stress is a constant in the one-dimensional case when only dependence of one
coordinate is taken into account.

13.5 Some Particular Solutions

One of the solutions of (13.26) reads

tan(uy/4) =
A cn(xK1/H)

sn(xK1/H) dn(yK2/B)
≈ A

sh(x/L) dn(yK2/B)
. (13.30)

Here K̄1 = K̄1(ν1), K̄2 = K̄2(ν2) are complete elliptic integrals of the first kind.
The arguments ν1, ν2 play the role of constants of integration in the present theory,
while sn(), cn(), dn() are the standard notations for the Jacobi elliptic functions.
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The second equality in (13.29) is obtained in the particular case ν1 → 1, ν2 → 0,
when the form of the elliptic functions is simplified. The function sh(x/L) describes
a variation of the structure within a contact zone of the width L. One gets obvious
limiting relationships

|x| → 0, | sh()| → 0, tan(uy/4) → ±∞, uy → 2π,
|x| → ∞, | sh()| → ∞, tan(uy/4) → 0, uy → 0.

(13.31)

The first relationship means that structural variations in the center of contact
zone x = 0 are maximal, and the atoms move for an integer number of the periods
of the lattice. The second one means that the atoms remain in the initial state of
equilibrium, ±uy = 0, far from the contact zone. These relationships are the basis
for the statement of the boundary conditions.

Using the field found and substituting it into (13.24), one obtains the solution for
the second component of the displacement of the form

K1ux = K23

∫ [
arctan(uy/4)

]
dx− ε0x. (13.32)

Using these relationships for the dependence of macro-displacements on micro-
strains and stresses, one can obtain the distortion of the size and shape of the plate,
calculating the micro-displacement Ui. The employment of (13.16), (13.17) and
(13.18) allows us to obtain the stresses σxx, σyy , σxy . A tribute of the structure in
them is described by the formula

1− cos(u) =
8A2 tn2(xK1/H) dn2(yK2/B)
A2 + tn2(xK1/H) dn2(yK2/B)

. (13.33)

Another particular solution of (13.27) reads

tg(uy/4) = A dn(xK1/H) dn(yK2/B),

A2 = 1/
(
1− ν2

1

)(
1− ν2

2

)
.

(13.34)

Some features of a super-structure are caused by the boundedness of the Jacobi
function dn(∗). Therefore, the right-hand side of the solution does not apply at
infinity, though reaches large values at ν1 → 1, ν2 → 1. It means that uy < 2π, and
the atoms do not jump into the neighboring holes, as it happens at the appearance of
singularities. The corresponding micro-structure has the form of two-dimensional
periodic system of nanocrystals separated by wide boundaries, when the lattice is
disordered to some extent. No singular defects arise, contrary to the previous case.

One can find more particular solutions in [1, 3, 2]. Similar solutions of (13.14)
and (13.15) may be obtained in the dynamical case of plane waves propagating with
constant velocities and depending on the phase variables χ = x−V1t, η = y−V2t.
Some dynamical problems were studied in [4, 5, 10].
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13.6 Conclusions

An important feature of adequate structural rearrangements should be an essential
nonlinearity of the processes that may reach the points of bifurcation of the structure
and give rise to the cardinal variations in the existing properties and the arising of
new ones, including possible description of the process of the defect generation. The
development of a theory is possible on the base of the known model of a compli-
cated lattice whose elementary cell contains more than one atom. Existing theories
are linear as a rule, however, they could describe anharmonicities of low degree
as a last resort. The presented theory allows describing some interesting mecha-
nisms of structural rearrangements by the exact solutions of nonlinear governing
equations. Some nontrivial effects are revealed for the first time, like switching of
interatomic connections by lowering of potential barriers under an influence of ex-
ternal stresses. As a result, the theory predicts an appearance of surface defects in
initially ideal structure, its fragmentation with singular boundaries, loss of stabil-
ity of homogeneous strains beyond the threshold of intensive action on the body,
inelastic diffusionless strains, loss of long-range and short-range orders which are
the micro-mechanisms of the surface reconstruction. It is interesting to note that in
the complex stressed state the lattice hardening is also possible besides an inverse
effect of softening. The criteria of the transitions in the form of bifurcating depen-
dencies of the amplitude of microscopic field on the stresses and the domain sizes
at the surface are obtained in [3, 2]. Further development of the theory is required to
connect with the problem of thermodynamical stability of defects both in the fields
of stresses and temperatures.
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Chapter 14
Generalized Beams and Continua.
Dynamics of Reticulated Structures

Claude Boutin, Stéphane Hans, and Céline Chesnais

Abstract This paper deals with the dynamic behavior of periodic reticulated beams
and materials. Through the homogenization method of periodic discrete media the
macro-behavior is derived at the leading order. With a systematic use of scaling, the
analysis is performed on the archetypical case of symmetric unbraced framed cells.
Such cells can present a high contrast between shear and compression deformability,
conversely to “massive” media. This opens the possibility of enriched local kinemat-
ics involving phenomena of global rotation, inner deformation or inner resonance,
according to studied configuration and frequency range.

14.1 Introduction

This paper deals with the macroscopic dynamic behavior of periodic reticulated
structures and materials widely encountered in mechanical engineering. Periodic
lattices have been studied through various approaches such as transfer matrix, vari-
ational approach [8], finite difference operator, cf. [10]. Asymptotic methods of ho-
mogenization [11] initially developed for periodic media, were extended to multi-
ple parameters and scale changes by [5] and adapted to periodic discrete structures
by [3], then [9]. Those studies aim at relate the local structure and the global behav-
ior.

The structural morphology of reticulated media makes that the basic cells can
present a high contrast between shear and compression deformability (conversely to
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Fig. 14.1 Examples of typical and atypical dynamic behaviors of 1D framed structures

“massive” media). This opens the possibility of enriched local kinematics involving
phenomena of global rotation, inner deformation or inner resonance, according to
studied configuration and frequency range. A numerical illustration of these atypical
situations is given in Fig. 14.1 that shows the some unusual macroscopic modes. The
present study investigates and summarizes those phenomena by a systematic anal-
ysis performed on the archetypical case of symmetric unbraced framed cells [1, 7].
Assuming the cell size is small compared to the wavelength, the homogenization of
periodic discrete media leads to the macro-behavior at the leading order. The pa-
per is organized as follows. Section 14.2 gives an overview of the method and the
assumptions. In Sect. 14.3, several beam modeling under transverse vibrations are
established by varying the properties of the basic frame elements, and the frequency
range. Section 14.4 is devoted to longitudinal vibrations. Section 14.5 focuses on
the analogy between these results and the mechanics of generalized continua.

14.2 Overview of Discrete Homogenization

The analysis of periodic beam lattices is performed in two steps [12]: first, the dis-
cretization of the balance of the structure under harmonic vibrations; second, the
homogenization, leading to a continuous model elaborated from the discrete de-
scription. An outline of this method is given hereafter.

Discretization of the Dynamic Balance Studied structures (Fig. 14.2) are made
of plates behaving as Euler–Bernoulli beam in out-of-plane motion, and assembled
with rigid connections. The motions of each extremity connected to the same node
are identical and define the discrete nodal kinematic variables of the system. The
discretization consists in integrating the dynamic balance (in harmonic regime) of
the beams, the unknown displacements and rotations at their extremities taken as
boundary conditions. Forces applied by an element on its extremities are then ex-
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Fig. 14.2 The class of unbraced framed structures (left) and the basic frame and notations (right)

pressed as functions of the nodal variables. The balance of each element being sat-
isfied, it remains to express the balance of forces applied to the nodes. Thus, the
balance of the whole structure is rigorously reduced to the balance of the nodes.

Homogenization Method The key assumption of homogenization is that the cell
size  is small compared to the characteristic size L of the vibrations of the structure.
Thus ε =  /L � 1. The existence of a macro scale is expressed by means of
macroscopic space variable x. The physical variables are continuous functions of x
coinciding with the discrete variables at any node, e.g., Uε(x = xn) = U(node n).
These quantities, assumed to converge when ε tends to zero, are expanded in powers
of ε: Uε(x) = U0(x)+εU1(x)+ε2U2(x)+ · · ·. Similarly, all unknowns, including
the modal frequency, are expanded in powers of ε. As  = εL is a small increment
with respect to x, the variations of the variables between neighboring nodes are
expressed using Taylor’s series; this in turn introduces the macroscopic derivatives.

To account properly for the local physics, the geometrical and mechanical char-
acteristics of the elements are scaled according to the powers of ε. As for the modal
frequency, scaling is imposed by the balance of elastic and inertia forces at macro
level. This scaling insures that each mechanical effect appears at the same order
whatever the ε value is. Therefore, the same physics is kept when ε → 0, i.e., for
the homogenized model. Finally, the expansions in ε power are introduced in the
nodal balances. Those relations, valid for any small ε, lead for each ε-order to bal-
ance equations whose resolution defines the macroscopic governing equations.

Inner Quasi-Statism and Inner Dynamics In general, the scale separation re-
quires that, at the modal frequency of the global system, wavelengths of the com-
pression and bending vibrations generated in each local element are much longer
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than the element length. In that case, the nodal forces can be developed in Taylor’s
series with respect to ε. This situation corresponds to a quasi static state at the local
scale. Nevertheless, in higher frequency range, it may occurs that only the com-
pression wavelength is much longer than the length elements while local resonance
in bending appears. The homogenization remains possible through the expansions
of the compression forces and leads to atypical descriptions with inner dynamics.
Above this frequency range, the local resonance in both compression and bending
makes impossible the homogenization process.

14.3 Studied Structures

We study the vibrations of structures of height H = N. w constituted by a pile of
a large number N of identical unbraced frames called cells (Fig. 14.2). The param-
eters of horizontal elements (i = f ) and vertical elements (i = w) are: length  i;
thickness ai; section area Ai; inertia Ii = a3

i h/12 in direction e3; density ρi; elastic
modulus Ei.

The kinematic is characterized at any level n by the motions of the two nodes
in the plane (e1, e2), i.e., the displacements in the two directions and the rotation
(u1, u2, θ). These six variables can be replaced by (i) three variables associated to
the rigid body motion of the level n: the mean transverse displacements, U(n) along
e1, V (n) along e2 and the rotation α(n) (differential vertical nodal motion divided
by  p) and (ii) three variables corresponding to its deformation: the mean and dif-
ferential rotations of the nodes, θ(n) and Φ(n), and the transverse dilatation Δ(n),
cf. Fig. 14.3. Because of the longitudinal symmetry the transverse and longitudinal
kinematics respectively governed by (U,α, θ) and (V, Φ,Δ) are uncoupled.

A systematic study enables to identify the family dynamic behaviors by evolving
gradually the properties of the frame elements and the frequency range.

Fig. 14.3 Decoupling of transverse (left) and longitudinal (right) kinematics
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14.4 Transverse Vibrations

The transverse vibrations can be classified in two categories. For the first category,
the horizontal elastic force balances the horizontal translation inertia. In this situa-
tion, it can be shown that the corresponding range of frequency is such that the cell
behaves in the quasi static range. Lower frequencies would lead to a static descrip-
tion of the structure. Conversely, at higher frequencies the horizontal elastic forces
cannot balance the translation inertia so that the translation should vanish. Then the
vibration results from the balance between the elastic momentum and the rotation
inertia. This leads a second unusual category.

14.4.1 Low Frequency Range—Generic Beam Model

The possible beam-like behaviors are established by varying the properties of the ba-
sic frame elements. The synthesis of the different macroscopic behaviors derived ac-
cording to the properties of the frame elements shows that only three mechanisms—
shear, global bending, inner bending—governs the physics at the macroscale. Each
of them is associated to an elastic cell parameter of stiffness: in shear K, in global
bending EwI , and in inner bending 2EwIw. Owing to the quasi static local state,
these parameters are deduced from the elastic properties of elements in statics.

The method enables to build a generic beam model involving the three kinematic
variables U , α, θ and including the three mechanisms. It is governed by the follow-
ing sixth order equation:

2EwIw
EwI

K
U (6)(x)− (2EwIw + EwI)U (4)(x)

− EwI

K
Λω2U ′ ′(x) + Λω2U(x) = 0. (14.1)

Equation (14.1) generalizes the classical beam dynamics. In addition to the common
bending, it includes at the leading order shear and inner bending. Usual descriptions
(as Timoshenko, Euler–Bernoulli, Shear) can be recovered by vanishing one or two
of these mechanisms. Note that for this category, the rotation inertia of the section
do not appear, while the shear may governs the behavior of slender structures.

The dominating effect(s) that drive(s) the effective behavior of a given structure
can be identified through a dimensional analysis performed on the generic beam.
Introducing the characteristic size of vibration L the change of variables x = x/L

transforms the governing equation (14.1) into

CγU ∗(6)(x)− (1 + γ)U ∗(4)(x)−Ω2U ∗(2)(x) +
(
Ω2/C

)
U ∗(x) = 0, (14.2)
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Fig. 14.4 (Left) Map of transverse behaviors in function of the dimensionless parameters C = ε̃p

and γ = ε̃q . (Right) The three transverse mechanisms

where, by construction, the dimensionless terms denoted by a * are O(1) and using
for L the actual vibration’s size L̃ = 2H/π (for a clamped-free beam):

C =
EwI

KL̃2
, γ =

2EwIw

EwI
=

2Iw

I
, Ω2 =

Λω2L̃2

K
. (14.3)

Here C evaluates the contrast between global bending and shear, and γ the contrast
between inner and global bending. C and γ supply identification criteria of behavior:
according to their order of magnitude with respect to ε̃ =  /L̃ = π/(2N), (14.2)
degenerates in simplified forms. For instance, if C = O(1) and γ = O(ε̃), the terms
related to Cγ and γ disappear and the resulting model is:

U ∗(4) + Ω2U ∗(2) −
(
Ω2/C

)
U ∗ = 0

that corresponds to a slender Timoshenko beam, etc. Doing so, seven behaviors are
obtained depending on the value of C, Cγ and γ compared to ε̃ powers. A synthetic
representation (Fig. 14.4) is deduced by mapping the domain of validity of each
behavior according to the two parameters p and q defined by: C = ε̃p and γ = ε̃q .

14.4.2 Higher Frequency Range—Gyration Beam Model

At higher frequencies the translation U must vanish at the leading order (when
seeking for a macroscopic description). A new dynamic equilibrium between elas-
tic momentum and rotation inertia leads to the second category of macroscopic
transverse vibrations. The corresponding atypical gyration beam model involves
only the two kinematic variables α, θ, driven by the mechanisms of opposite
traction-compression of vertical elements (global bending without translation (!),
see Fig. 14.1(b)) and the frame shear. Because of the higher frequency domain, the
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condition of local quasi statism is not necessarily respected and thus two models are
obtained.

Inner Quasi-Statism This situation corresponds to bending (then compression)
wavelength much longer than the elements length. The governing equation is of the
second degree whose parameters are the elastic stiffnesses already determined and
the usual rotation inertia J . It reads

EwIα′ ′(x)−Kα(x) + Jω2α(x) = 0. (14.4)

It can be interpreted as the balance of the global momentum with a classical inertial
source term and an inner elastic source of momentum.

Inner Dynamics In this case, the bending wavelength in the element is of the or-
der of their length, meanwhile the compression wavelength remains much larger.
This enables expanding the compression forces and deriving a macro behavior. The
governing equation of the second degree presents the same global momentum pa-
rameters as for local quasi-statism but differs fundamentally by the inertia term and
the inner elastic source of momentum, both depending on frequency

EwIα′ ′(x)−K(ω)α(x) + J(ω)ω2α(x) = 0. (14.5)

The reason of these modifications lies in the non-expanded forces associated to the
local dynamic bending that strongly depends on the frequency and gives rise to ap-
parent inertia J(ω) and momentum source. This effect also appears in longitudinal
vibrations and is discussed in the next section.

14.5 Longitudinal Vibrations

The longitudinal vibrations, described by (V, Φ,Δ), present a lesser complexity be-
cause the main mechanism is the vertical compression. The difference between the
identified models only relies in the possible presence of inner dynamics.

Inner Quasi-Statism This case leads to the classical description of beam charac-
terized by the compression modulus 2EwAw and the line mass Λ

2EwAwV ′ ′(x) + Λω2V (x) = 0. (14.6)

The domain of validity of this model is derived by expressing that the orders of
magnitude of the fundamental frequency of the whole structure (described by (14.6))
is much smaller than the one of the elements in bending. This leads to the following
lower bound of the number of cells: N≥ slender ratio of the elements. In other
words, the validity of usual model requires a sufficiently large number of cells.

Inner Dynamics Similarly to gyration modes, the inner dynamics introduces an
frequency depending apparent mass, that can be expressed analytically [4]
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Fig. 14.5 Effect of the inner resonance on the apparent dimensionless mass, (1 + ψ(ω/ωf1))/2

2EwAwV ′ ′(x) + Λ(ω)ω2V (x) = 0; Λ(ω) = Λw + Λfψ (ω/ωf1) , (14.7)

ψ(ω̃) =
8 sin(3

4π
√

ω̃)sh( 3
4π
√

ω̃)

3π
√

ω̃(sin( 3
4π
√

ω̃)ch( 3
4π
√

ω̃)) + sh( 3
4π
√

ω̃) cos( 3
4π
√

ω̃))
. (14.8)

The study of Λ(ω) (cf. Fig. 14.5), shows that (i) Λ(ω) → Λ when ω → 0, and
(ii) |Λ(ω)| → ∞ when ω → ωf2k+1 , where ωf2k+1 are the odd eigenmodes of hor-
izontal elements in bending. This induces abnormal response in the vicinity of the
ωf2k+1 that results in discrete spectrum of cut-off frequencies. The domain of valid-
ity of this model is derived by equating the orders of magnitude of the fundamental
frequencies of (i) the whole structure and (ii) the elements in bending. This leads to
bounding of the number of cells by N≤ slender ratio of the elements.

14.6 Analogy with Micromorphic Media

This section points out an analogy between the several beam behaviors and those
of micromorphic materials [6]. Conveniently, we focus on the first (low frequency)
mode of transverse vibration polarized in direction e2, propagating in direction e1.

14.6.1 From 1D to 2D Structures

Consider a cell F of shear stiffness K, inner bending stiffness EIw and global
bending stiffness EI , corresponding to the intrinsic coefficients β = EI/Kl2w and
γ = Iw/I . From this frame, build a periodic beam B = Ne1 × F , made of Ne1

frame cells repeated in the direction e1, as in Fig. 14.2. The transverse behavior of
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B is driven by the two dimensionless parameters and the actual scale ratio

C = β

(
π

2Ne1

)2

= ε̃p, γ = ε̃q, ε̃ =
π

2Ne1

.

Build the 2D periodic structure S by Ne2 lateral repetition in the transverse di-
rection e2 of B, that is, S = Ne2 × B = Ne1 × (Ne2 × F ). The properties
of the S ’s cell made of Ne2 × F frames can be estimated from those of F ; the
stiffnesses are O(Ne2K) in shear, O(Ne2EIw) in inner bending, and O(N3

e2
EI) in

global bending. Thus, the transverse behavior of S is driven by CS and γS

CS =
(

πNe2

2Ne1

)2

β > C, γS =
(

1
Ne2

)2

γ < γ

then CSγS = Cγ =
(

π

2Ne1

)2

βγ. (14.9)

Moreover, since B and S have the same number Ne1 of cells, ε̃S = ε̃. Introducing
(pS , qS) such that CS = ε̃pS and γS = ε̃qS , relations (14.9) lead to

pS < p, qS > q,

pS + qS = p + q.

Consequently, according to the previous results (cf. Fig. 14.4), the nature of B and
S behavior would be the same if p ≤ −1, but may differ if p > −1.

14.6.2 Micromorphic Media

Consider now an infinite media made of the cell F and assume that—in a domain
D restricted to Ne1 ×Ne2 ×F—appropriate boundary conditions impose normally
to the direction e1 a shear polarized in the direction e2. The equivalent behavior in
D is identified by comparing the power of ε̃ = π/(2Ne1) with the two parameters:

CD =
(

πNe2

2Ne1

)2

β, γD =
(

1
Ne2

)2

γ.

Four behaviors may arise according to the independent kinematic variable(s).

Cauchy Elastic Continuum Behavior This will be observed when the kinematic
involves the solely translation U , which occurs when CDγD ≤ ε̃ and CD ≥ ε̃−1.
These conditions require that the D geometry follows the constraints: in the direc-
tion normal to the shear motion, Ne1 ≥ (π/2)βγ, i.e., a number of cells higher than
the intrinsic critical number Nc = (π/2)βγ = EIw/Kl2w; in the direction of the
shear motion, Ne2 ≥ (2Ne1/π)3/2/

√
β = M2, i.e., a weak slenderness aspect ratio

of D .
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Micromorphic Elastic Media with Inner Deformation This appears when the
kinematic involves the translation U and the inner rotation θ, i.e., when CDγD ≥ ε̃
and CD ≥ ε̃−1. In terms of D geometry, this requires that Ne1 ≤ Nc and
Ne2 ≥ M2.

Cosserat Like Behavior The kinematic variables are the translation U and the
rotation α. This appears when CDγD ≤ ε̃ and CD ≤ ε̃−1, i.e., when Ne1 ≥ Nc

and Ne2 ≤ M2. In this case, the cell rotation breaks the lateral periodicity, whereas
the periodicity in the perpendicular direction is kept. For this reason, such a phe-
nomenon is not be described by the usual 2D homogenization applied the basic F
(that would impose the periodicity in both directions). Nevertheless, the deforma-
tion presents a scale separation in a single direction that enables the treatment by a
1D homogenization. In such a domain, the effects of global bending and shear are
of same order.

Complex Micromorphic Media with Inner Deformation and Rotation involv-
ing the three variables U , α and θ. This situation is obtained when CDγD ≥ ε̃ and
CD ≤ ε̃−1 that is for rather restricted domain geometry defined by Ne1 ≤ Nc and
Ne2 ≤ M2.

To respect the scale separation, the micromorphic behaviors with inner deforma-
tion can only be reached if Nc = (π/2)βγ is significantly larger than 1.

14.7 Conclusion

Reticulated media present a much larger diversity of behavior than the usual “mas-
sive” media. In particular, the enriched local kinematics introduces modes of dif-
ferent nature (as gyration modes), based on different kind of equilibrium (as inner
bending modes). The atypical inner resonance effect is also demonstrated to be pos-
sible for those reticulated structure, while they cannot develop in massive beams.

The comparisons of these theoretical results with numerical modeling are satis-
factory [7], and dynamics experiments on real regular buildings [2] also demonstrate
the reliability of this approach and its interest in engineering domain. Finally, these
results may be extended to the rheology of reticulated materials such as foam, glass
wool, vegetal, bones, etc. and presents strong analogies with generalized continua.
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Chapter 15
Wave Propagation in Damaged Materials Using
a New Generalized Continuum Model

Vladimir I. Erofeyev, Elena A. Nikitina, and Alla V. Sharabanova

Abstract An approach is proposed that allows formulating self-consistent problem
that includes equations of the material’s dynamics and conditions of its damage. It is
shown that damage in the material introduces a frequency-dependent damping and
dispersion of the phase velocity of ultrasonic acoustic waves that allows estimating
damage using the acoustic method. Applied field of deformations leads to the ac-
cumulation of damage. A kinetic equation is obtained, whose analysis shows that
damage grows exponentially. The parameters of the system for which accumulation
of damage can be considered as linear are estimated.

15.1 Introduction

Nowadays, ensuring the safety of mechanical engineering structures is performed
with the help of non-destructive control methods. The acoustic method is currently
considered as the most promising one. The precision of parameter measurement and
further interpretation of the condition of structural material depend on the numer-
ous factors, including the exploitation conditions. The durability and longevity of a
structure depend on strength characteristics of the material in local zones that expe-
rience highest loading. During the exploitation, the material experiences structural
changes, and the degree of degradation depends on the exploitation conditions of
loading. Clearly, during the diagnostics of structures exploited for a long time pe-
riod, such structural changes lead to a significant change of data compared to the
original calibration data.

The goal of this work is to develop methods of deciphering the data of acoustic
measurement tools to account for the damage of structural material. An approach
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is proposed that allows formulating a self-consistent problem that includes equa-
tions of the material’s dynamics and conditions of its damage. It is shown that dam-
age in the material introduces a frequency-dependent damping and dispersion of
the phase velocity of ultrasonic acoustic wave that allows estimating damage us-
ing the acoustic method. Applied field of deformations leads to the accumulation of
damage. A kinetic equation is obtained, whose analysis shows that damage grows
exponentially. Parameters of the system for which accumulation of damage can be
considered as linear are estimated.

15.2 Mathematical Model

The mechanics of damaged continuum is being actively developed, starting with the
fundamental works of L.M. Kachanov [1] and Y.N. Rabotnov [2].

What is usually meant by damage is the shortening of elastic response of the
body due to a reduction of effective area that transmits internal stress from one part
of the body to the other. This reduction, in turn, is caused by appearance and devel-
opment of a disperse field of micro-defects (micro-cracks in elasticity, dislocations
in plasticity, micro-pores for creepage and surface micro-cracks for fatigue).

In traditional approaches to damageability computations, a measure of damage-
ability during deformation development is represented by a scalar parameter ψ(x, t)
which characterizes the relative density of equally-spread micro-defects in the unit
volume. This parameter is equal to zero when there is no damage, and is close to
1 at the moment of destruction.

We study a sample, shaped as a rod, through which a longitudinal wave can prop-
agate. We denote middle-line particle’s dislocation by u(x, t). Let us consider that
the rod undergoes static and cyclic testing and its material can accumulate damage.
To measure damage, we introduce a function ψ(x, t).

As a rule, in mechanics of deformable solid body, dynamic problems are stud-
ied separately from damage accumulation problems. During these method develop-
ments, it is common to postulate that velocity of an elastic wave is a function of
damageability and then determine the proportional coefficients experimentally.

Phase velocity (υph) of the wave and its dissipation (frequency-dependent damp-
ing) are considered to be power functions of frequency (ω) and linear functions of
damageability (ψ):

υph(ω) = c0
(
1− h1ψ − h2ψω2

)
, (15.1)

α(ω) = (h3 + h4ψ)ω4, (15.2)

where C0 =
√

E/ρ is the velocity of a longitudinal wave in the main medium
if there were no damage; E Young modulus; ρ material density, hi, i = 1, . . . , 4,
coefficients that need experimental determination.

Damageability evolution can be described with the following kinetic equation:
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dψ
dt

= f(σ, ψ), (15.3)

where σ is the external stress.
The function f(σ, ψ) is most often approximated as a linear function. Sometimes

as a polynomial.
While this method, based on (15.1) and (15.2), has an important advantage,

namely, it is rather simple, it also has drawbacks like all methods that are not based
on mathematical models of processes and systems.

Let us consider that the studied problem is self-consistent and includes, besides
an equation for damageability development which we rewrite as

∂ψ

∂t
+ αψ = β2E

∂u

∂x
, (15.4)

an equation for the rod dynamics

∂2u

∂t2
− C2

0

∂2u

∂x2
= β1

∂ψ

∂x
. (15.5)

Here α, β1, β2 are constants that characterize material damageability and a connec-
tion between cyclic testing and damage accumulation.

15.3 Damping and Dispersion of Elastic Waves

We look for a solution of the system (15.4) and (15.5) in the form of harmonic waves
u, ψ ≈ ei(ωt−kx), where ω is the circular frequency, K = 2π/λ the wave number
(λ the wave length), and arrive at the dispersion equation

ω2 −
(
C2

0 +
Eβ1β2

α

)
K2 +

i

α
ω3 − iC2

0

α
ωK2 = 0. (15.6)

Please note that (15.6), which connects special and temporal scales of the longi-
tudinal wave, also contains complex coefficient, which means that the wave will not
only propagate through medium, it will also dissipate.

Let us consider the wave number to be complex K = K1 + iK11, where K1

characterizes the propagation constant (υph = ω/K1 is the phase velocity of the
wave), and K11 = α(ω) characterizes wave dissipation.

Solving algebraic equation (15.6) allows the determination of both components
of the complex wave number

K1 = ±

√
aω2 + C2

0ω
4/α2 ±

√
a2ω4 + C4

0ω
8/α4 + (a2 + C4

0 )ω6/α2

2[a2 + C4
0ω

2/α2]
,

(15.7)
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K11 = ±
√

(a− C2
0 )ω3/α

aω2 + C2
0ω

4/α2 ±
√

a2ω4 + C4
0ω

8/α4 + (a2 + C4
0 )ω6/α2

.

(15.8)

Here a denotes a = C2
0 + Eβ1β2/α.

From (15.7) and (15.8), it follows that the existence of damage causes dispersion,
i.e., the phase velocity of the wave depends on the wave frequency υph = υph(ω)
(Fig. 15.1) and frequency-dependent dissipation K11 = K11(ω) (Fig. 15.2).

In the lower frequency range (ω → 0), the wave velocity works for

υph(0) ≈
√

C2
0 + Eβ1β2/α.

The wave dissipation is proportional to the square of wave frequency:

K11(0) ≈ Eβ1β2ω
2

α2
√

C2
0 + Eβ1β2/α

.

In the higher-frequency range (ω → ∞), the phase velocity works for C0:
υph(∞) ≈ C0, and dissipation is proportional to the frequency:

K11(∞) ≈ Eβ1β2ω

αC0
.

Fig. 15.1 Dispersion of the phase velocity

Fig. 15.2 Frequency-
dependent damping
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In the lower frequency range,

K1(0)
K11(0)

=
(

1 +
C2

0α

β1β2E

)
α

ω2
→∞,

which means that the wave propagates almost without dissipation.
In the higher frequency range,

K1(∞)
K11(∞)

=
C2

0α

β1β2Eω
→ 0,

which means that in this case dissipation is a dominant factor.
Note that the imaginary part of the wave number K11 can be measured in both

the low-frequency and higher-frequency ranges. Therefore, the constants introduced
in (15.4) and (15.5), namely α, β1, β2, can be computed from measured parameters:

α =
K11(∞)ω

K11(0)
√

1 + K11(∞)/(C0ω)
, (15.9)

β1β2 =
C0(K11(∞))2

EK11(0)
√

1 + K11(∞)/(C0ω)
. (15.10)

The system (15.4)–(15.5) can be rewritten as one equation in terms of ψ, charac-
terizing damageability:

∂2ψ

∂t2
−
(
C2

0 +
Eβ1β2

α

)
∂2ψ

∂x2
+

1
α

∂3ψ

∂t3
− C2

0

α

∂3ψ

∂x2∂t
= 0. (15.11)

Equation (15.11) represents a kinetic equation of damage accumulation. From its
analysis it follows that damage grows exponentially. The exponent factor is deter-
mined from expression (15.8), and only with a few values of these parameters the
process can be approximated as a linear function.

15.4 Conclusions

The suggested approach has allowed obtaining the new dependencies relating the
dynamical equations of a material and the kinetics of its damage. This fact enables
one to consider a problem about a deformation of a structural material and its dam-
age as a unified self-consistent process.
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Chapter 16
On the Uniqueness of the Lagrangian
of Gradient Elastic Continua

Andrei V. Metrikine and Julia M. Prokhorova

Abstract In this paper, the volumetric density of the Lagrangian of a second-order
isotropic gradient continuum is critically examined. This density is first derived from
a cubic lattice using an implicit continualization procedure. Then, using the derived
Lagrangian, an equation of motion of the continuum as well as expressions for the
standard and second-order stresses are obtained. It is shown that these expressions
are contradictory. To obtain non-contradictory expressions for the stresses, the La-
grangian density is trimmed using the so-called null-Lagrangians that do not affect
the equation of motion but influence the expressions for the stresses. This results in
a unique non-contradictory expression for the Lagrangian of the continuum.

16.1 Introduction

This paper contributes to the theory of the gradient continua [22]. Such continua
are a quasi-local case of the non-local continua and the continua with memory. The
integral relations between the field variables and the kinematic variables in the latter
continua are replaced by differential equations in the gradient continua. The gradient
continua with invariant material properties are capable of describing the weak wave
dispersion in inhomogeneous materials [7, 11–13, 16, 20, 19, 21, 24, 29, 30, 33]
and are instrumental for regularization of solutions of the elasticity, plasticity and
damage problems of mechanics, see, e.g., [1, 2, 6, 3, 8–10, 15, 14, 17, 23, 25, 27,
28, 34, 35]. The gradient continua are applicable for modeling the processes whose
wavelength is comparable with but a few times larger than the characteristic length
of inhomogeneity.
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The governing equations for gradient continua can be obtained phenomenolog-
ically [11, 22], by homogenization of an inhomogeneous continuum [7, 12, 13] or
by continualization of a lattice [4, 20, 19, 21, 26, 31, 32]. The two latter approaches
seem to be more useful as they allow the parameters of the gradient continuum to
be explicitly expressed through parameters of the underlying micro-structural or in-
homogeneous material.

Conventionally, in the homogenization and continualization techniques, attention
has been paid to derivation of the equation of motion in dynamics and the force-
balance equation in statics. The boundary-value problems have been addressed, but
the natural boundary conditions have been retrieved from the equation of motion
without noting that this procedure is not unique.

In this paper, the Lagrangian density of a gradient continuum is addressed. It
seems to be important to derive this density as it should allow both the equation of
motion and the natural boundary conditions to be defined consistently. It is shown,
however, that a Lagrangian density derived by direct continualization of the La-
grangian of a cubic lattice results in contradictory expressions for the stresses in
the continuum. It is argued then that the Lagrangian density should be trimmed by
using the null-Lagrangians [21] such as to obtain non-contradictory expressions for
the stresses. This is shown to be possible and a non-contradictory Lagrangian den-
sity is obtained for an isotropic second-order continuum, which constitutes the main
novel result of this paper.

16.2 The Governing Equations and the Lagrangian of the Lattice

A cubic lattice of period l is considered that consists of identical particles of mass
M and linear-elastic translational springs which connect these particles. Each par-
ticle of the lattice is connected to 50 neighbors which belong to the four smallest
concentric spheres around this particle. This number of connections is the minimal
necessary allowing an isotropic second-order gradient continuum to be derived.

Consider a central particle (m,n, k) whose undisturbed position is defined by
x1 = nl, x2 = ml, x3 = kl. The closest six neighbors of this particle belong to the
sphere of radius l and are connected to the central particle by springs of stiffness K1.
The numbers of particles on the next spheres, the radii of which are

√
2l,

√
3l and√

5l, are 12, 8 and 24, respectively. The stiffnesses of the springs that connect the
particles on these spheres to the central particle are K2, K3 and K4, respectively.
All springs are not pre-stressed.

The kinetic energy U
(m,n,k)
kin and the potential energy U

(m,n,k)
pot , which are asso-

ciated with the central particle (m,n, k), can be written as

U
(m,n,k)
kin =

M

2

3∑

i=1

(
ẋ

(m,n,k)
i

)2
,

(16.1)

U
(m,n,k)
pot =

K1

2

6∑

j=1

(Δlj)2 +
K2

2

18∑

j=7

(Δlj)2 +
K3

2

26∑

j=19

(Δlj)2 +
K4

2

50∑

j=27

(Δlj)2,
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where x
(m,n,k)
i (t), i = 1, 2, 3 are the displacements of the particle (m,n, k) from its

undisturbed position, Δlj are the elongations of the springs attached to the particle
(m,n, k) that are obtained assuming small displacements of the particles.

To obtain the equations of motion of the particle Δl
(m,n,k)
j , the Lagrangian

L (m,n) is composed as the difference of U (m,n,k)
kin and U

(m,n,k)
pot , and then sub-

stituted into the Euler–Lagrange equation.

16.3 Continualization of the Lattice

To continualize the lattice, a procedure proposed by Metrikine and Askes [20] is
used. According to this procedure, a non-local relation is introduced between the
displacements x

(m,n,k)
i of the particles and the displacements ui(x1, x2, x3, t) of the

to-be-derived continuum. The latter displacement is assumed to be a weighted aver-
age of the displacements of the particles surrounding the central particle (m,n, k):

ui(x, t) =
a1
∑6

1 x
(sphere 1)
i + a2

∑12
1 x

(sphere 2)
i + a3

∑8
1 x

(sphere 3)
i + a4

∑24
1 x

(sphere 4)
i

1 + 6a1 + 12a2 + 8a3 + 24a4
,

(16.2)

where a1, a2, a3, a4 are the dimensionless weighting coefficients for the particles
belonging to the corresponding spheres. These coefficients may not be negative and
should be smaller than unity.

To continualize the lattice, the kinematic relation (16.2) is to be inverted to ex-
press the displacements of the particles x

(m,n,k)
i (t) through the continuum displace-

ments. This inversion is carried out by assuming that the deviation of x
(m,n,k)
i (t)

from ui(x, t) is small, so that the following relation holds

x
(m,n,k)
i (t) = ui(x, t) +

2N∑

j=1

ljf
(j)
i (x, t) + O

(
L2N+1

i

)
, (16.3)

where l is the period of the lattice, N is the order of the to-be-derived continuum and
f

(j)
i (x, t) are unknown deviation functions, which have to be defined in correspon-

dence with (16.2). The differential operators Li = l∂/∂xi in (16.3) should be much
smaller than unity in the sense that the result of application of these operators to a
function should be much smaller that the function itself. Physically, this means that
the wavelength of the processes to be considered should be sufficiently large relative
to the period of the lattice. To find explicit expressions for the deviation functions,
the displacements x

(m,n,k)
i (t) and the displacements of the surrounding particles are

to be substituted into the kinematic relation (16.2). The latter displacements can be
derived expanding equation (16.3) into the Taylor series.

Using the above-outlined procedure the following equation of motion for a
second-order (N = 2) gradient continuum can be derived:
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ρüi − ρl2Aüi,jj =
2
5
E(ui,jj + 2uj,ij) +

1
18

El2(ui,jj + 4uj,ij),kk

− 2
5
El2A(ui,jj + 2uj,ij),kk, (16.4)

where

A =
a1 + 4a2 + 4a3 + 20a4

1 + 6a1 + 12a2 + 8a3 + 24a4
,

(16.5)
ρ =

m

l3
, E =

6K3

l
.

To achieve isotropy of the continuum in the bulk, when deriving (16.2), the fol-
lowing constraints were imposed on the spring constants:

K1 = 4K3/3, K2 = 0, K4 = K3/3. (16.6)

It is of great significance to note that all four weighting coefficients have been
automatically accumulated in only one constant in the equation of motion.

To assure that both shear and compressional waves in the derived continuum have
real speeds and taking into account that all weighting coefficients must be smaller
than unity, it can be found that parameter A may vary within the following limits

25
108

< A <
4
5
. (16.7)

The exact value of this parameter for a physical material should be determined
experimentally.

Equation (16.4) governs the linear dynamics of a second-order unbounded iso-
tropic gradient continuum with Poisson’s ration equal to 0.25. This continuum is
unconditionally stable provided that constraint (16.7) is satisfied.

16.4 Volumetric Density of the Lagrangian

In order to formulate the natural boundary conditions that are in one-to-one cor-
respondence with the derived equation of motion (16.4), it is customary to derive
the volumetric density of the Lagrangian of the continuum. This can be done via
direct continualization of the Lagrangian of the lattice. The continualization proce-
dure is the same as proposed by Metrikine and Askes. Employing this procedure,
the following expression for the volumetric density of the Lagrangian λ(x, t) can be
derived:

λ =
1
2
ρu̇iu̇i −

1
2
ρl2Au̇iu̇i,jj −

1
5
E(ui,juj,i + ui,jui,j + ui,iuj,j)

− 1
9
l2E

[
ui,jkuj,ik + ui,ikuj,jk + ui,kkuj,ij +

1
4
ui,jjui,kk
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+
1
2
ui,jkui,kj + ui,jui,jkk + ui,juj,ikk + ui,iuj,jkk + 2ui,juk,ijk

]

+
1
5
l2AE(ui,jui,jkk + ui,juj,ikk + ui,iuj,jkk), (16.8)

where the mass density and the Young’s modulus are defined by (16.6).
Application of the Hamilton–Ostrogradsky variational principle allows the equa-

tion of motion and the natural boundary conditions (the standard and higher-order
stresses) to be expressed in terms of the density of the Lagrangian. As shown in [21],
for any Lagrangian density whose dependence of the continuum displacements can
be expressed as

λ = λ(u̇i, ui,j , ui,jk, u̇i,jk, ui,jkl) (16.9)

the equation of motion, the standard stresses, and the second-order stresses are given
as

∂

∂t

∂λ

∂u̇i
+

∂

∂xj

∂λ

∂ui,j
− ∂2

∂xj∂xk

∂λ

∂ui,jk

+
∂3

∂t∂xj∂xk

∂λ

∂u̇i,jk
+

∂3

∂xj∂xk∂xl

∂λ

∂ui,jkl
= 0, (16.10)

σij = − ∂λ

∂ui,j
+

∂

∂xk

∂λ

∂ui,jk
− ∂2

∂t∂xk

∂λ

∂u̇i,jk
− ∂2

∂xk∂xl

∂λ

∂ui,jkl
, (16.11)

τijk = − ∂λ

∂ui,jk
+

∂

∂t

∂λ

∂u̇i,jk
+

∂

∂xl

∂λ

∂ui,jkl
. (16.12)

Substituting (16.8) into (16.10) results in the equation of motion (16.4). The
stresses resulting from (16.11) and (16.12) read

σij =
2
5
E(ui,j + uj,i + uk,kδij) +

l2E

18
(ui,jkk + uj,ikk + 2uk,ijk + uk,kllδij)

+
1
2
ρl2Aüi,j +

2
15

l2AE(3ui,jkk + 2uj,ikk + 2uk,ijk + 2uk,kllδij),
(16.13)

τijk = −ρl2

2
Aüiδjk +

l2E

54
[
2ui,jk + 2uk,ij + 2uj,ik + (2ul,kl + uk,ll)δij

+ (2ul,jl + uj,ll)δik + (2ul,il + ui,ll)δjk

]

+
l2A

15
E
[
2ui,jk + uj,ik + uk,ij + ul,klδij + ul,jlδik + (ui,ll + 2ul,il)δjk

]
.

(16.14)

Let us check the symmetry of the standard stress tensor. From (16.13), the fol-
lowing holds:

σij − σji =
1
2
ρl2A(üi,j − üj,i) +

2
15

l2AE(ui,jkk − uj,ikk). (16.15)
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Obviously, the standard stress tensor is asymmetric. The asymmetry associated with
the time derivatives can be expected as the non-local relation (16.2) introduces an
effective mass moment of inertia to every differential element of the continuum. In
statics, however, the asymmetry of the standard stress tensor must disappear and the
following equation must hold:

σstatic
ij = σstatic

ji . (16.16)

Yet, (16.15) obviously shows that σij remains asymmetric also in statics. Thus, we
have come to an inconsistency that the density of the Lagrangian given by (16.8)
results in a seemingly non-contradictory equation of motion (16.2) and in a con-
tradictory non-symmetric stress tensor. This inconsistency will be addressed in the
next section.

Before that, however, let us illuminate a few other controversies contained in
(16.13) and (16.14) which are associated with the second-order stress. As argued in
[4], the standard stresses and the second-order stresses have to satisfy the following
equation that reflects the balance of forces at the lower observation scale:

σ
(1)
ij = −τijk,k, (16.17)

where σ
(1)
ij is the higher-order part of the stress tensor that is proportional to l2.

From (16.13) and (16.15), it follows that

σ
(1)
ij + τijk,k =

1
9
l2E(ui,jkk + uj,ikk + 2uk,ijk + uk,kllδij)

+
1
15

l2AE(9ui,jkk + 5uj,ikk + 8uk,ijk + 5uk,kllδij). (16.18)

Equations (16.17) and (16.18) are obviously incompatible, which constitutes an
inconsistency of the standard and second-order stresses obtained from the La-
grangian (16.8).

The second-order stresses given by (16.14) are also self-inconsistent. The phys-
ical meaning of these stresses was suggested in [22] and elaborated upon in [4].
Based on the above papers, it can be concluded that in order to ensure equilibrium
of the moment of momentum at the lower scale and to have non-contradicting ex-
pressions at the corners of a considered lower-scale volume, τijk must be invariant
with respect to all possible permutations of the indices, i.e., the following identities
must hold:

τ static
ijk = τ static

ikj = τ static
jik = τ static

jki = τ static
kij = τ static

kji . (16.19)

Obviously, the stress-tensor defined by (16.14) does not satisfy the above identities.
Thus, the Lagrangian (16.8) results in a handful of contradictions. In the next

section, this function is modified to a unique form that allows the above-formulated
contradictions to be removed.
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16.5 Non-Contradictory Lagrangian and Stresses

Strictly speaking, the Lagrangian derived in the previous section cannot be expected
to automatically satisfy the symmetries of the standard and the higher-order stress-
tensors. Indeed, (16.8) was derived from the Lagrangian of an inner particle of the
lattice. Consequently, the derived density of the Lagrangian of the continuum must
provide a non-contradictory equation of motion, whereas the natural boundary con-
ditions that result from this function can be just expected to be correct as they are
obtained from the same variational procedure. As shown in the previous section, this
expectation is false and the obtained Lagrangian density results in the contradictory
stress-tensors. Thus, one and the same Lagrangian gives a “correct” equation of mo-
tion and “incorrect” natural boundary conditions. Given that, it seems reasonable to
raise the following question: Is it possible to modify the Lagrangian (16.8) so that,
upon insertion into (16.10)–(16.12), it would give the “correct” equation of motion
(16.2) and non-contradictory expressions for the stresses? Such a question would be
unthinkable for a local non-gradient continuum as the equation of motion of such a
continuum is in one-to-one correspondence with a Lagrangian defined to within an
additive total time derivative of any function of coordinates and time. The gradient
continua, however, do not possess this property. It is known, see, e.g., [21], that there
exists more than one Lagrangian that leads to the same equation of motion. Indeed,
it is obvious that the volumetric density of the Lagrangian

λ̃ = λ(u̇i, ui,j , ui,jk, u̇i,jk, ui,jkl) + λ0(ui,j , ui,jk, ui,jkl) (16.20)

results in the same equation of motion as the density λ given by (16.9), provided
that λ0 satisfies the following equation:

∂

∂xj

∂λ0

∂ui,j
− ∂2

∂xj∂xk

∂λ0

∂ui,jk
+

∂3

∂xj∂xk∂xl

∂λ0

∂ui,jkl
= 0. (16.21)

The following expressions for λ0 can be given as examples:

λ0 = ui,jui,jkk + ui,jkui,jk. (16.22)

Additionally, a number of quadratic forms in the Lagrangian density (that include
derivatives of the order higher than one) result in the same term in the equation of
motion. For example, ui,jkuj,ik, ui,ikuj,jk, and ui,juj,ikk upon substitution into
(16.10) result in −2uj,ijkk. Thus, it is definitely possible to modify the Lagrangian
density in (16.8) without changing the corresponding equation of motion. The ques-
tion now is: What modifications are to be undertaken? To answer this question, it is
customary to classify the terms in the Lagrangian density as shown in Table 16.1.
The second column in Table 16.1 shows the higher-order quadratic forms that are
contained in the Lagrangian (16.8). The next columns contain the corresponding
terms in the equation of motion, in the standard stress and in the second-order
stress obtained according to (16.10), (16.11) and (16.12), respectively. The last two
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columns show if the symmetry of the standard stress tensor and the relation between
the standard and the second-order stresses are respected.

The most important conclusion that can be drawn from Table 16.1 is that the rela-
tion σ

(1)
ij = −τijk,k is respected by none of the quadratic forms that contain the third

derivatives of the displacement (the last four terms in the λ-column). Therefore, to
respect the above relation these terms must be removed from the Lagrangian. This
is a far-reaching conclusion that means, actually, that the Lagrangian of a consistent
second-order continuum may not contain derivatives of the displacement of the or-
der higher than two. Most likely, this conclusion can be generalized to an N th order
gradient continuum: the highest derivative of the displacement in the Lagrangian
must be the same as the order of the continuum.

Thus, the question now is: How to remove the terms containing the third dis-
placement derivatives from the Lagrangian without changing the resulting equation
of motion? As the third column of Table 16.1 shows, it can be done quite easily,
as all quadratic terms in the second column of Table 16.1 produce in the equation
of motion either ±2uj,ijkk or ±2ui,jjkk. Straightforward evaluations show that the
originally derived Lagrangian (16.8) has to be replaced by the following trimmed
Lagrangian, the higher-order part of which contains only second derivatives of the
displacement:

λ =
1
2
ρu̇iu̇i −

1
2
ρl2Au̇iu̇i,jj −

1
5
E(ui,juj,i + ui,jui,j + ui,iuj,j)

+
l2E

27

[
ui,jkuj,ik + ui,ikuj,jk + ui,kkuj,ij +

1
4
ui,jjui,kk +

1
2
ui,jkui,kj

]

− l2A

5
E(ui,jkui,kj + 2ui,jkuj,ik). (16.23)

The insertion of the above Lagrangian into (16.13) and (16.14) results in the follow-
ing expressions for the standard and the second-order stresses:

σij =
2
5
E(ui,j + uj,i + uk,kδij) +

l2E

18
(ui,jkk + uj,ikk + 2uk,ijk + uk,kllδij)

+
1
2
ρl2Aüi,j −

2
5
l2AE(ui,jkk + uj,ikk + uk,ijk), (16.24)

τijk = − l2E

54
[
2ui,jk + 2uj,ik + 2uk,ij + (2ul,kl + uk,ll)δij

+ (2ul,jl + uj,ll)δik + (2ul,il + ui,ll)δjk

]

− 1
2
ρl2Aüiδjk +

2
15

l2AE(ui,jk + uj,ik + uk,ij). (16.25)

It can be checked straightforwardly that the insertion of the Lagrangian (16.23) into
the Euler–Lagrange equation gives the equation of motion (16.4) that was derived
by the direct continualization of the lattice. The symmetry of the standard stress
tensor in statics, (16.16), is obviously observed by (16.24). The second order stress
is invariant in statics with respect to the permutation of indices, which means that
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the requirement (16.19) is satisfied. So is (16.17), as can be checked by direct sub-
stitution of (16.24) and (16.25). Thus, the Lagrangian given by (16.23) provides
a non-controversial description of a second-order isotropic gradient elastic contin-
uum.

16.6 Discussion and Conclusions

It is well-known that the Lagrangian of a system is defined to within an additive total
time derivative of any function of coordinates and time [18]. In this paper, a less-
known non-uniqueness of the Lagrangian that is associated with gradient continua
has been addressed. For such continua, the Lagrangian is defined to within the so-
called null-Lagrangians whose contribution to the Euler–Lagrange equation is zero.
It is important to note that the null-Lagrangians are not total time derivatives of a
function.

Whereas the classical non-uniqueness of the Lagrangian does not influence the
prediction of the dynamics of systems, the null-Lagrangians do affect that of gra-
dient continua. The reason for the latter is that the null-Lagrangians do contribute
to the natural boundary conditions (expressions for the stresses). This means that
the non-uniqueness associated with the null-Lagrangians is unacceptable, as every
physical system must correspond to one or a set of the Lagrangians that result in one
and the same boundary value problem.

The main aim of this paper has been to show that a unique Lagrangian can be
identified for an isotropic gradient continuum. To achieve this, first, by means of
continualization of the Lagrangian of a cubic lattice, a density of the Lagrangian
of a second-order gradient isotropic continuum has been derived. Then, it has been
shown that the derived density corresponds to a non-contradictory equation of mo-
tion and, at the same time, results in contradictory expressions for both the classical
and higher-order stresses. To resolve this, a procedure has been proposed that, mak-
ing use of the null-Lagrangians, allows the Lagrangian density to be trimmed so
that the stresses become not contradictory while the equation of motion remains un-
affected. The presented trimming procedure has clearly shown that the Lagrangian
of a second-order continuum may not contain the displacement derivatives of the
order higher than second. It is tempting to generalize this statement to an N th or-
der gradient continuum by stating that the order of the displacement derivatives in
the Lagrange function of such a continuum may not be higher than N . The latter
statement, however, has not been proven in this paper.

It should be noted that whenever the Lagrangian density of an N th order gradient
continuum is derived (not postulated phenomenologically), either by homogeniza-
tion of an inhomogeneous continuum or continualization of a lattice, this density
seems to contain the displacement derivatives of the order higher than N [5, 21, 24].
The results of this paper suggest that these densities should not be used in formu-
lating boundary value problems which require formulation of the natural boundary
conditions. Another indirect but useful conclusion of this paper can be formulated
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as follows. When the equation of motion is taken as the starting point in the finite
element formulation of a boundary-value problem [9, 12, 13], one has to keep in
mind that the natural boundary conditions cannot be derived uniquely unless cer-
tain symmetry requirements are employed to obtain a non-contradictory set of the
boundary conditions.
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Chapter 17
Dynamic Properties of Essentially Nonlinear
Generalized Continua

Alexey V. Porubov, Eron L. Aero, and B.R. Andrievsky

Abstract Essentially nonlinear proper structural model for continua with inter-
nal structure is analyzed using the localized strain wave solutions of the governing
equations for macro- and micro-strains. The intervals of the velocity are found when
either compression or tensile localized strain waves exist. It is obtained that simul-
taneous existence of compression and tensile macro-strain waves is impossible in
contrast to the micro-strains responsible for the lattice defects. Also, it is shown that
similar profiles of the macro-strain solitary waves may be accompanied by distinct
profiles of the micro-strain waves. Generation of the bell-shaped defects in the lat-
tice is studied numerically that allows us to describe structural deviations caused by
the dynamical loading due to the localized macro-strain wave propagation.

17.1 Modeling of Essentially Nonlinear Processes in Media
with Internal Structures

Usually, classic elastic materials possess weakly nonlinear features that allow us
to employ truncated power series in strains to model nonlinearity. However, the
presence of an internal structure gives rise to an essential nonlinearity [1, 2]. Thus,
it was found in [3, 4] that the presence of the components with contrasting elastic
features in some rocks and soils gives rise to the essential nonlinearity, and the
contribution of the quadratic and cubic nonlinearities in the stress-strain relationship
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turns out to be of the same order. Similar effect has been found in [5, 6] while
studying an influence of an external magnetic field on paramagnetic crystals. In both
cases, the weakly nonlinear models in the form of power series truncation cannot be
applied in a strict sense. Nevertheless, they are used already as the exact expressions
in the framework of a phenomenological approach. Some of such phenomenological
models are considered in [8] where it is shown that they are usually transformed
into a single equation for macro-strains, while micro- or internal field is introduced
via variations of the constants relative to those of the classic elastic materials. An
advantage of these models is in the possibility to measure or estimate the values of
these constants.

Essentially nonlinear processes may be described by a proper model for the in-
ternal structure of the material. Thus, the rotatory molecular groups were added to
the usual one in atomic chain in [7], and large rotations were considered. A more
complicated internal motion is modeled in [1, 2] where translational internal motion
is considered together with rotations. In both models, this essential nonlinearity has
not been modeled by any power series truncation.

Here we consider essentially proper structural nonlinear models that treats a con-
tinuum approach and a crystal translational symmetry without making a continuum
limit of a discrete model [1, 2]. The equations are derived for the vectors of macro-
displacement U and relative micro-displacement u for the pair of atoms with masses
m1, m2,

U =
m1U1 + m2U2

m1 + m2
, u =

U1 −U2

a
,

where a is a period of sub-lattice. The first variable allows describing macro-strains,
while the second variable accounts for the reference displacement of the internal
or the lattice structure. The following coupled governing equations are obtained in
[1, 2] in the 1D case:

ρUtt − EUxx = S
(
cos(u)− 1

)
x
, (17.1)

μutt − κuxx = (SUx − p) sin(u). (17.2)

The choice of the trigonometric function allows us to describe translational sym-
metry of the crystal lattice. A comparison between phenomenological models and
the structural model (17.1), (17.2) has been done in [8]. Here we continue this com-
parison emphasizing an advantage of the structural modeling in description of the
lattice defects using exact solitary wave solutions and numerical solutions of (17.1)
and (17.2).

17.2 Localized Macro-Strain Waves and Corresponding
Deviations in Crystalline Lattice

It is possible to obtain exact traveling wave solutions to (17.1) and (17.2) depending
on the phase variable θ = x− V t. Indeed, (17.1) is resolved for the micro-field by
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cos(u) = 1− (E − ρV 2)Uθ − σ

S
, (17.3)

where σ is a constant of integration. Equation (17.2) is integrated once, multiplied
by uθ and integrated again. Then (17.3) is substituted into this equation, finally
giving an ordinary differential equation for the macro-strain v = Uθ:

v2
θ = a0 + a1v + a2v

2 + a3v
3 + a4v

4, (17.4)

with the coefficients found in [8] where the solutions of (17.4) vanishing at infinities
were studied in detail. Here we only briefly mention the main results. When a0 = 0,
a1 = 0, the ODE (17.4) possesses known exact localized solutions of two kinds that
may be obtained by direct integration

v1 =
A

Q cosh(kθ) + 1
, (17.5)

v2 = − A

Q cosh(kθ)− 1
. (17.6)

The parameters for σ = 0 read

A =
4S

ρ(c20 + c2L − V 2)
, Q± = ±c2L − V 2 − c20

c2L − V 2 + c20
,

(17.7)
k = 2

√
p

μ(c2l − V 2)
,

and for σ = −2S we have

A =
4S

ρ(c20 + V 2 − c2L)
, Q± = ±V 2 − c2L − c20

V 2 − c2L + c20
,

(17.8)

k = 2
√

p

μ(V 2 − c2l )
,

where c2L = E/ρ, c2l = κ/μ, c20 = S2/(pρ).
An analysis of the shapes of the exact solutions also should take into account

the coupling governed by (17.3). Depending upon the value of the first derivative
at θ = 0, one can express it in a different way. Reversing the cosine function for
derivation of the expression for u, one has to avoid the point where the first deriva-
tive does not exist. This breaking happens for θ = 0 at σ = 0 and for Q = Q+.
Therefore, the solution for u obtained using both (17.5) and (17.6) should be written
as

u = ± arccos
(

(ρV 2 − E)Ux

S
+ 1
)

for θ ≤ 0, (17.9)

u = ±π ∓ arccos
(

(ρV 2 − E)Ux

S
+ 1
)

for θ > 0, (17.10)
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Table 17.1 Wave shapes for σ = 0

V 2 (0; c2L − c20) (c2L − c20; c
2
L) (c2L; c2L + c20) > c2L + c20

Shape of v Tensile (17.5) Tensile (17.5) Compression (17.6) Compression (17.5)
Shape of u Kink Bell-shaped Kink Kink
Choice of Q± Q+ Q− Q+ Q+

Table 17.2 Wave shapes for σ = −2S

V 2 (0; c2L − c20) (c2L − c20; c
2
L) (c2L; c2L + c20) > c2L + c20

Shape of v Compression (17.5) Compression (17.6) Tensile (17.5) Tensile (17.5)
Shape of u Kink Kink Bell-shaped Kink
Choice of Q± Q+ Q+ Q− Q+

However, the first derivative is zero for Q = Q− at θ = 0, and the expression for
u reads

u = ± arccos
(

(ρV 2 − E)Ux

S
+ 1

)
. (17.11)

The solution (17.9)–(17.10) accounts for the kink-shaped profile of the wave,
while solution (17.11) describes bell-shaped localized wave. The velocity inter-
vals when one or another profile exists are shown in Table 17.1. Similar results
for σ = −2S are summarized in Table 17.2.

It is known [8] that simultaneous existence of macro-strain waves of tensile and
compression is impossible. This is not true for the waves u describing deviations
in the lattice. In particular, the localized bell-shaped profile exists in the interval
(c2L; c2L + c20) for σ = 0. Shown in Fig. 17.1 is the propagation of macro-strain
tensile wave and the tensile wave of u. However, the same macro-strain wave may be
accompanied by the micro-strain compression wave, this is governed by the initial
condition for u. An important problem is to know which wave is generated when
an initial condition for u differs from the exact solution (17.11) at t = 0. It will be
studied numerically in the next section.

17.3 Generation of Localized Defects in Crystalline Lattice

We consider only the interval (c2L; c2L + c20) for σ = 0. According to the exact solu-
tion, see Table 17.1, here only bell-shaped localized waves may propagate. Numer-
ical simulations with initial conditions coinciding with the exact solution confirm
this prediction of the exact solution as shown in Fig. 17.1.

What happens when an initial profile contains both the tensile and compression
parts, and how its initial position relative to the initial position of the macro-strain
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Fig. 17.1 Simultaneous propagation of macro- and micro-strain waves according to the exact so-
lution. Points of time correspond to the neighboring peaks

wave v affect generation of the localized waves? To address this question, we keep
the initial condition for v in the form of the exact solution while only a small distur-
bance of u is used.

One can see in Fig. 17.2 that tensile localized wave u is generated, and its ampli-
tude is modulated in time below the value of the exact solution shown in Fig. 17.1.
The value of the amplitude of the macro-strain wave v is close to that of the exact so-
lution shown in Fig. 17.1 but both the macro-strain wave and the wave u accelerate.
Also additional disturbances arise around the bell-shaped waves. Note that an initial
position of the peak of small disturbance u coincides with that of the macro-strain
wave v.

One can see in Fig. 17.3 that a compression bell-shaped wave is generated if the
initial position of the negative part of the input of u coincides with that of the peak
of the macro-strain wave v. The positive part does not give rise to the formation of
the tensile waves. Profiles of the localized compression wave is mirror to the tensile
one shown in Fig. 17.2.

However, the coincidence of the initial positions is not necessary for the for-
mation of localized waves. One can see in Fig. 17.4 that the compression wave is
generated as soon as the macro-strain wave v overtakes the micro-strain wave u. It
meets first the compression part of u that results in generation of the compression
localized wave while the tensile wave is not generated. Similarly, a tensile wave
is generated if the macro-wave first achieves the tensile part of the micro-strain
wave u.
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Fig. 17.2 Generation of moving tensile localized defect of lattice. Points of time correspond to the
neighboring peaks

Fig. 17.3 Influence of an initial position of a lattice disturbance on generation of moving compres-
sion localized defect in a lattice. Points of time correspond to the neighboring peaks
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Fig. 17.4 Influence of an initial position of a lattice disturbance on generation of moving compres-
sion localized defect in a lattice. Points of time correspond to the neighboring peaks

17.4 Conclusions

To sum up, the microstructural crystalline model (17.1)–(17.2) allows us to describe
deviations in the crystalline lattice depending on the velocity of the bell-shaped lo-
calized macro-strain wave. It is shown that predictions of the traveling wave exact
solution are realized in a more general numerical simulation. Some important fea-
tures of the lattice defects generation are revealed in numerics. Therefore, an anal-
ysis based on the use of the strain solitary waves demonstrates an advantage of the
proper structural approach relative to the phenomenological ones studied in [8].
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Chapter 18
Reissner–Mindlin Shear Moduli of a Sandwich
Panel with Periodic Core Material

Arthur Lebée and Karam Sab

Abstract Cecchi and Sab homogenization method (Cecchi and Sab in Int. J. Solids
Struct. 44(18–19):6055–6079, 2007) for the derivation of the effective Reissner–
Mindlin shear moduli of a periodic plate is applied to sandwich panels including
chevron pattern. Comparison with existing bounds (Lebée and Sab in Int. J. Solids
Struct., 2010) and full 3D finite element computation validates the method. Finally,
the skins effect on transverse shear stiffness is put forward.

18.1 Introduction

Sandwich panels made of two thin skins separated by a thick periodic core such
as honeycomb are commonly used in many fields. They offer good compromise
between strength and weight especially for aeronautics applications.

When bending the sandwich panel, the skins are subjected to in-plane traction
and compression whereas the core is subjected to transverse shear. Recently, new
types of promising cores have emerged. Especially, folded cores are promising be-
cause of new production means [1, 11, 7, 9]. Among them, chevron folded cores
were probably the first to be machined (Fig. 18.1).

Chevron folded cores transverse shear behavior has been experimentally inves-
tigated by Kintscher et al. [9] and Fisher et al. [5]. In a previous work, Lebée and
Sab [10] applied Kelsey et al. [8] method to the chevron pattern and derived ana-
lytical and numerical bounds for transverse shear moduli. Kelsey et al. method is a
First order Shear Deformation Theory (FSDT) approximation according to [3]: the
core material is homogenized first with respect to out-of-plane shearing. It yields
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Fig. 18.1 Chevron folded
paper

Fig. 18.2 Kelsey et al. unit load method

transverse shear constitutive equation τα3 = Gα3β3γβ3, where α, β, γ, δ = 1, 2.
Then, the overall Reissner–Mindlin (R–M) shear moduli of the panel are evaluated
as Fαβ = hGα3β3, where h is the panel thickness. Fαβ links the shear forces to the
dual R–M strains through Qα = Fαβdβ . The upper bound G+

α3β3 is derived by sub-
mitting the upper face of the core to a unit displacement load hγβ3 while the lower
face remains clamped (Fig. 18.2). The average upper-skin stress τα3 is equated to
G+

α3β3γβ3. Likewise, the lower bound G−
α3β3 is derived by submitting the upper

face of the core to a uniform stress load τβ3 and the lower face to −τβ3. The av-
erage relative displacement of the skins hγα3 is computed and G−

α3β3 is identified.
See also Gibson and Ashby [6].

The main conclusion of [10] is that the upper and lower bounds for the already
produced chevron pattern geometries are very loose (100% discrepancy). The in-
terpretation proposed is that the interaction between the skins and the core is not
taken into account. In this paper, Cecchi and Sab [4] Higher Order Homogenization
(HOH) method is recalled and applied to sandwich panels including the chevron
pattern. Its ability to capture the influence of the skins on R–M shear moduli will be
demonstrated.

18.2 The Chevron Pattern

Like the honeycomb, the chevron pattern is periodic in the in-plane directions.
Four identical parallelogram faces are necessary to generate the whole pattern by
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Fig. 18.3 The four elemen-
tary faces of the pattern

Fig. 18.4 Geometric parame-
ters for the chevron pattern

Table 18.1 Vertices coordinates
Vertex A B C D A′ D′ A′′ B′′ A′′′

x1 0 v a + v a 0 a 2a 2a + v 2a

x2 0 s s 0 2s 2s 0 s 2s
x3 0 0 h h 0 h 0 0 0

periodicity along the e1 vector (period 2a) and the e2 vector (period 2s) where
M = (A, e1, e2, e3) is the main coordinate system (Fig. 18.3). Table 18.1 gives
the coordinates of the vertices in terms of four geometric parameters: a, s, v, and h,
where v is a horizontal offset parameter (v = 0 when B is aligned with A and A′)
and h is the pattern height. The full parametrization is given in Fig. 18.4. The face
thickness is tf .

The chevron pattern is glued or welded between two skins along AB, BA′ edge
for the lower skin and along DC, CD′ edge for the upper skin and then becomes a
sandwich panel (Fig. 18.5).

The sandwich panel including the chevron pattern has three major symmetries.
These symmetries lead to several simplifications in the Reissner–Mindlin plate con-
stitutive law [12]. The central symmetry with respect to the intersection point of
line AC and BD uncouples in-plane (membrane) stresses and out-of-plane (flexu-
ral) stresses. The symmetry with respect to the (B,C,B′ ′) plane uncouples trans-
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Fig. 18.5 The unit cell of a
sandwich panel including the
chevron pattern

verse shear stresses. Finally, there are only two R–M shear moduli to be determined:
F11 and F22.

18.3 Homogenization Method

The HOH method for the derivation of the effective R–M shear moduli of a periodic
plate [4] is recalled. This method is implemented in two steps. First, the Love–
Kirchhoff homogenization auxiliary problem proposed by Caillerie [2] is solved on
a unit cell using finite elements. It yields the effective Love–Kirchhoff membrane
and flexural moduli of the periodic plate, as well as the local 3D stresses. Then,
a second unit cell problem is solved using a linear combination of the above men-
tioned local stress fields as external loading. The overall elastic energy is used to
identify the R–M shear moduli. For more details, see [4]. Y is the unit cell, and |Y |
is its volume. The upper face ∂Y +

3 and the lower face ∂Y −
3 are free. The lateral

faces ∂Yl must fulfill periodicity conditions (Fig. 18.6).

18.3.1 Homogenized Love–Kirchhoff Model

The unit cell auxiliary problem is:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div σ = 0,
σ = a(y) : ε,

ε = e + y3χ + ∇s(uper),
σ · e3 = 0 on free faces ∂Y 3

±,

σ · n skew periodic on ∂Yl,

uper(y1, y2, y3) (y1, y2)-periodic on ∂Yl,

(18.1)
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Fig. 18.6 A unit cell

where eαβ are the membrane strains and χαβ are the curvatures. Solving the prob-
lem for each individual component of e and χ leads to the local 3D stress fields
σeαβ (y) and σχαβ (y). The complete local stress field can be reconstructed by lin-
ear combination:

σLK = eαβσeαβ (y) + χαβσχαβ (y). (18.2)

The Love–Kirchhoff plate moduli are evaluated as follows:

Aαβγδ =
h

|Y |

∫

Y

σeαβ : εeγδdY,

Bαβγδ =
h

|Y |

∫

Y

σeαβ : εχγδdY,

Dαβγδ =
h

|Y |

∫

Y

σχαβ : εχγδdY.

(18.3)

The Love–Kirchhoff plate constitutive law writes:

Nαβ = Aαβγδeγδ + Bαβγδχγδ, Mαβ = Bγδβαeγδ + Dαβγδχγδ, (18.4)

where Nαβ are the membrane stress and Mαβ are the bending moments.
Chevron pattern symmetries uncouple membrane and flexural stiffnesses which

enforce Bαβγδ = 0. This is a prescribed condition for applying the second homog-
enization step.

18.3.2 Homogenized Reissner–Mindlin Model

The second auxiliary problem to be solved on the unit cell is:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

div σQ + fQ(y) = 0,
σQ = a(y) : ∇s(uQ),
σQ · e3 = 0 on free faces (∂Y ±

3 ),
σQ · n skew periodic on (∂Yl),

uQ(y1, y2, y3) (y1, y2)-periodic on ∂Yl,

(18.5)

where
fQ

i = dααββσ
χββ

αi Qα, (18.6)

Qα is the shear force and dαβγδ is the inverse tensor of the flexural stiffness Dαβγδ .
As for (18.2), this leads to the local 3D stress fields associated to Q which are
obtained by the linear combination:

σQ = QασQα(y). (18.7)

It is then possible to identify the R–M shear moduli with:

1
Fαβ

=
h

|Y |

∫

Y

σQα : εQβ dY. (18.8)

18.4 Application to the Chevron Pattern

The considered sandwich panel is fully made of aluminium sheets with E = 73 GPa
and ν = 0.3. Similarly to Nguyen et al. [11], the following geometric parameters
are investigated: a0 = 30 mm, b0 ∈ [20, 60] mm, tf = 0.1 mm, δ = 72◦, ζ = 34◦.
Figure 18.7 shows configurations for several investigated shape ratios a0/b0. Three
skin thicknesses are considered in order to point out ts effect on shear constants,
ts = [0.5, 1, 2] mm.

The computation of the R–M shear modulus for each direction has been per-
formed within the linear elasticity framework. Since faces are very thin, Kirchhoff
shell elements were used with ABAQUS finite element software (Linear quadran-
gular S4R element). The unit cell of Fig. 18.5 was chosen. The R–M shear modulus
normalized with ρGh was compared to FSDT bounds derived in Lebée and Sab
[10] (ρ is the volume fraction of the core, G is the shear modulus of the constitutive
material of the core).

In order to validate the HOH method, full 3D simulation of a 3-point bending of
a sandwich panel including the chevron pattern has been performed. Results are not
detailed here; however, less than 5% discrepancy has been found between HOH and
the 3D estimated R–M shear moduli.

Figure 18.8 shows von Mises stress and the deformed unit cell under Q1 loading
for a0 = b0 and ts = 1 mm. The overall deformation consists of a horizontal
relative displacement of the skins which is commonly associated to transverse shear
deformation in thick sandwich panels. Moreover, it is clear that the skins do not
remain planar in Fig. 18.8.
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Fig. 18.7 Chevron pattern
investigated configurations

Fig. 18.8 Mesh deformation
under Q1 loading for ts =

1 mm, tf = 0.1 mm. View
from e2

Figures 18.9 and 18.10 show the normalized R–M shear moduli for each loading
direction versus shape ratio. FSDT finite element bounds are compared with the
HOH method. The skin thickness has clear influence on the actual shear stiffness
of the sandwich plate. The reader may have noticed that FSDT bounds are not fully
respected even if the estimation is good. Actually, these bounds are only valid under
specific hypothesis which will be developed in a further work.

For both loading cases, the thicker the skins, the closer to the upper bound the
R–M shear moduli. These observations are consistent with Kelsey et al. conclusion
that the upper bound is relevant for thick skins while the lower bound is relevant for
thin skins.

Moreover, for loading case Q1, shear constants globally remain close to the lower
bound, whereas for loading case Q2 they are much closer to the upper bound. It has
also been noticed that for loading case Q1 the skins are much more distorted than
for loading case Q2. Thus, the core geometry has a key role in the emergence of
skins distortion.

18.5 Conclusion

FSDT bounds have been widely used for honeycomb sandwich panels since they
give quite good estimation of the actual R–M shear moduli. However, in the case
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Fig. 18.9 Normalized Reissner shear modulus for Q1 loading versus shape ratio

Fig. 18.10 Normalized Reissner shear modulus for Q2 loading versus shape ratio
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of the chevron pattern, the gap between the upper and lower bounds is much larger
than in the case of honeycombs, and requires more refined estimation procedures.
In this paper, we applied Cecchi and Sab higher order homogenization method for
estimating the R–M shear moduli and confronted results both to 3D full computa-
tion and to FSDT bounds. From this, we conclude that the proposed method gives
accurate estimation of shear behavior and enables pointing out the critical effect of
skins on transverse shear stiffness, especially for the chevron pattern.
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Chapter 19
Waves in Residual-Saturated Porous Media

Holger Steeb, Marcel Frehner, and Stefan Schmalholz

Abstract We present a three-phase model describing wave propagation phenomena
in residual-saturated porous media. The model consists of a continuous non-wetting
phase and a discontinuous wetting phase and is an extension of classical biphasic
(Biot-type) models. The model includes resonance effects of single liquid bridges
or liquid clusters with miscellaneous eigenfrequencies taking into account a visco-
elastic restoring force (pinned oscillations and/or sliding motion of the contact line).
For the quasi-static limit case, i.e., ω �→ 0, the results of the model are identical with
the phase velocity obtained with the well-known Gassmann–Wood limit.

19.1 Introduction and Motivation

Understanding the dynamical and acoustical behavior of porous rocks is of great
importance in geophysics, e.g., earthquakes, and for various seismic applications,
e.g., hydrocarbon exploration. While many studies investigated wave propagation
in fully-saturated porous rocks analytically and numerically, cf. [13, 5–7, 27], stud-
ies for partially-saturated porous rocks are rare, cf. [8, 20, 14, 4, 23, 24, 26, 29, 31,
32, 9, 18, 19]. However, several physical processes relevant at low frequencies take
place only in partially saturated rocks but not in fully saturated rocks such as, for
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example, capillarity-induced resonance of oil blobs [16] or wave-induced fluid flow
(cf. [33, 11]). Capillarity-induced resonance of trapped oil blobs at residual satu-
ration can be excited by sound waves and is caused by the contact-line dynamics
[16, 15]. The resonant oscillations of fluid blobs can also cause considerable attenu-
ation at the resonance frequency [2]. However, in models describing such resonance
effects the porous skeleton is often assumed rigid and only relative movements be-
tween the discontinuous fluid blobs and the solid skeleton are considered [3, 15, 16].
Reference [12] presented a first attempt to combine the dynamical behavior of wave
propagation and rock-internal oscillations caused by capillarity effects.

Wave-induced fluid flow in partially-saturated rocks is considered to be an impor-
tant wave attenuation mechanism at low frequencies where the viscous (i.e., dissi-
pative) flow is caused by the differences in pore fluid pressures, cf. [33, 11, 22, 28].
Wave-induced flow caused by partial saturation is frequently studied with the so-
called patchy-saturation models that apply Biot’s theory (i.e., a two-phase model
for full saturation) with spatially varying material parameters, for example, fluid
compressibilities, to model a partial saturation on the meso-scale, i.e., scale larger
than the pore size but smaller than the wavelength, cf. [33, 11]. Such models have
attracted considerable attention because they predict significant attenuation and dis-
persion for low frequencies in wide agreement with laboratory measurements [21]
and field observations [10]. However, applying the theory for fully-saturated rocks
to study partially-saturated rocks causes some disadvantages such as: (i) the satura-
tion is not a primary model parameter, (ii) partial saturation can only be modeled on
the meso-scale but not on the micro-scale, (iii) the calculation of the effective meso-
scale patch size distribution from the real continuous saturation distribution is not
obvious, and (iv) the impact of capillary pressure is neglected which may be espe-
cially important for residual saturations (e.g., [7] speculated that capillary pressure
could have a significant influence on phase velocities and attenuation).

In the present investigation, our aim is to study attenuation due to fluid oscil-
lations and attenuation due to wave-induced flow with the macroscopic three-phase
model, i.e., a mixture consisting of one solid constituent building the elastic skeleton
and two immiscible fluid constituents. Thus we briefly describe the governing field
equations, especially the momentum interaction between the inherent constituents.
Finally, we study monochromatic waves in transversal and longitudinal direction
and discuss the resulting dispersion relations for a typical reservoir sandstone equiv-
alent (Berea sandstone).

19.2 Field Equations of the Multi-Phase Model

In a certain Representative Volume Element (RVE) with volume dv, the volume
fractions of the constituents ϕα are defined as nα = dvα/dv. The volume occupied
by a single constituent ϕα is defined as dvα. Furthermore, the partial densities are
introduced as the mass of the constituent dmα related to the volume of the RVE
dv, i.e., ρα := dmα/dv. The true densities are given by ραR := dmα/dvα. Note
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Fig. 19.1 A residual-saturated porous medium. (Left) Pendular state with individual liquid bridges.
(Right) Funicular state with a liquid cluster, cf. [1, 25]

that both densities are related by the volume fractions, i.e., ρα = nαραR. Let us
denote the continuous phases as ϕβ with β ∈ {s, n} (s denoting the solid phase
and n denoting the non-wetting phase) while the discontinuous wetting fluid phase
is denoted as ϕw. On the one hand, the geometry and mass distribution of the dis-
continuous phase is rather complex in realistic porous media. On the other hand,
this information, obtained, e.g., by modern non-destructive imaging techniques, in
principle allows calculating the eigenmodes ωi of the liquid blobs numerically, cf.
Fig. 19.1. This topic will be investigated in detail in the future. An obvious result
from the realistic, i.e., inhomogeneous distribution of the discontinuous liquid in
the pore space of the material is that liquid bridges or clusters with varying eigen-
frequencies ωi have to be taken into account. From a modeling perspective, this
could be, for instance, captured with a probability distribution function in the RVE.
We begin by formulating the partial density ρw

i of a single blob ϕw
i with a certain

eigenfrequency ωi. Furthermore, we can introduce the partial density of the total
wetting phase ρw in the RVE

ρw
i =

zi dmw
i

dv
, and ρw =

z∑

i=1

ρw
i = ρwR

z∑

i=1

nw
i . (19.1)

In contrast to a continuous distribution of eigenfrequencies in the RVE, we focus
ourselves on a set of discrete eigenfrequencies. Note that the number of blobs in
the RVE with the eigenfrequency ωi is given by zi, and z is the total number of
(discrete) eigenfrequencies.

19.2.1 Balance Equations of Momentum of Continuous Phases

The balance equations of momentum in local form for a biphasic mixture consisting
of a solid skeleton ϕs and a continuous non-wetting phase ϕn are written in the
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Fig. 19.2 Rheology of a
residual-saturated porous
model with a coupled set
of z undamped oscilla-
tors with eigenfrequency
ωi(K

z
i , dmw

i ). Note that each
oscillator could occur zi-time

following form

ρsüs − div σs = p̂s, and ρnün − div σn = p̂n. (19.2)

Furthermore, we assume that the wetting phase ϕw is in a discontinuous state of
residual saturation. Thus, the momentum interaction of the solid constituent con-
sists of a viscous (Darcy-like) term and an viscoelastic restoring force caused by
the oscillations of the wetting phase. The viscous momentum term describes the
exchange of (non-equilibrium) momentum between the solid and the non-wetting
phase while the elastic momentum term captures the exchange of equilibrium mo-
mentum between the solid and the pinned discontinuous wetting phase. With respect
to the large differences in compressibilities between an (incompressible) wetting
fluid (oil, water) and a (compressible) non-wetting fluid (gas), we are able to ne-
glect the exchange of momentum between the fluid phases.

∑

α

p̂α = 0, p̂s = −
(
p̂n + p̂w

)
, and p̂w =

∑

i

p̂w
i . (19.3)

19.2.2 Balance Equation of Momentum of Discontinuous Wetting
Phase

As we would like to describe pinned oscillations as well as sliding motion of the
wetting constituent, the balance of momentum for one single liquid patch is given
by a damped oscillator-like equation (Fig. 19.2)

dmw
i üi

w = −dmw
i ω2

i

(
ui

w − us

)
− dcw

i

(
u̇i

w − u̇s

)
= fw

i . (19.4)

This equation can be easily averaged in the volumetrical sense within the RVE. In
the RVE, we obtain the coarse-grained equation for one eigenfrequency ωi

ρw
i üi

w = −ρw
i ω2

i

(
ui

w − us

)
− ci

(
u̇i

w − u̇s

)
= p̂w

i . (19.5)

An equation equivalent to (19.5) exists for each set of oscillators with a certain
eigenfrequency ωi. According to classical results obtained from equilibrium and
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non-equilibrium evaluation of the balance of entropy, we obtain results for the mo-
mentum interaction terms p̂α = p̂α

eq + p̂α
neq of the constituents:

p̂n
eq = p gradnn and p̂n

neq = −b0
(
u̇n − u̇s

)
,

p̂w
eq = p gradnw and

(19.6)
p̂w

neq = −
∑

i

[
ρw

i ω2
i

(
ui

w − us

)]
−
∑

i

[
ci

(
u̇i

w − u̇s

)]
,

p̂s
eq = p gradns and p̂s

neq = p̂n
neq + p̂w

neq,

with b0 = [(nn)2γgR]/kn. Note that Eq. (19.6)b refers to the wetting constituent,
i.e., the sum of all damped oscillators. Furthermore, we have introduced the ef-
fective weight of the non-wetting fluid γnR and the Darcy permeability (hydraulic
conductivity) kn. Inserting stress-strain relations (Hooke’s law) and neglecting the
convective part of the material time derivatives (linearized model), we obtain the
linear set of field equations exemplarily written down for the special case of a set of
oscillators with two distinct eigenfrequencies ω1 and ω2

N div gradus + (A + N) grad div us + Q grad div un = ρsüs − p̂s
neq,

Q grad div us + R grad div un = ρnün − p̂n
neq,

0 = ρw
1 ü1

w − p̂w
1,neq,

0 = ρw
2 ü2

w − p̂w
2,neq.

(19.7)

The set of field equations (19.7) can be regarded is an extension of the classical Biot
equations, cf. [5–7]. The bi-phasic limit case given by nw = 0 reduces (19.7) to
two the Biot equations (19.7)a,b. The parameters P := 2N + A, Q and R are the
classical Biot parameters. They can be related to the physical-based shear modulus
of the solid skeleton (G) and the bulk moduli of the grains (Ks), the skeleton (K)
and the non-wetting fluid (Kn), cf. [26].

19.2.3 Monochromatic Waves

With the help of a standard ansatz for harmonic waves and usual splitting tech-
niques, we study monochromatic waves for the developed three-phase model. For
notational convenience, we restrict ourselves again to the special case of a set of
oscillators with ω1 and ω2.

19.2.3.1 Transversal Mode

The generalized eigenvalue problem for shear waves can be written in matrix nota-
tion as det(A− k2BT ) = 0 with
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A =

⎡

⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎣

ρ̃s −
∑

(
ω2

i
ω2 ) −

∑
( ici

ω
) ρ̃sn ω2

1
ω2 ρ̃w

1 + ic1
ω

ω2
2

ω2 ρ̃w
2 + ic2

ω

ρ̃sn ρ̃n 0 0

ω2
1

ω2 ρw
1 + ic1

ω
0 ρw

1 (1 − ω2
1

ω2 − ic1
ωρw

1
) 0

ω2
2

ω2 ρw
2 + ic2

ω
0 0 ρw

2 (1 − ω2
2

ω2 − ic2
ωρw

2
)

⎤

⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎦

ω2

(19.8)

and

BT =

⎡

⎢
⎢
⎣

N 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ and

ρ̃s = ρs − ib0/ω,

ρ̃n = ρn − ib0/ω,

ρ̃sn = ib0/ω.

(19.9)

The structure of the eigenvalue problems for both cases (transversal and shear mode)
clearly shows that the dimension of the characteristic polynomial is of the same
order as for the Biot case. Therefore, additional and higher order wave modes cannot
be expected.

19.2.3.2 Longitudinal Mode

The generalized eigenvalue problem for compressional waves can be written in ma-
trix notation as det(A − k2BL) = 0. Note that the matrix A is equal to the case of
shear waves.

BL =

⎡

⎢
⎢
⎢
⎣

P Q 0 0
Q R 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎦

(19.10)

In Fig. 19.3 we plot the dispersion relations for a residual-saturated Berea sandstone,
i.e., a typical reservoir sandstone equivalent.

19.3 Discussion and Conclusion

We propose a new model capturing resonance effects in partially-saturated porous
media. The basic rheology of the material consists of the classical Biot mechanism
(or physics introduced by equivalent mixture theory-based models) and a set of un-
damped oscillators with particular eigenfrequencies. The model contains all the ef-
fects described by the Biot model, e.g., the existence of a second compressional
wave (i.e., Biot slow wave) or the characteristic velocity dispersion of the different
waves. Additionally, the presented model shows a distinct dispersive effect governed
by the discrete oscillating fluid-blobs or liquid clusters.
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Fig. 19.3 Dispersion relations for a residual-saturated Berea sandstone. According to [30], we
assume the following material properties: G = 6.0 GPa, K = 8.0 GPa, Ks = 36.0 GPa,
ks = 190 mD, Kn = 131 kPa, φ0 = 1 − ns = 0.19 and the saturation of the wetting fluid
is sw = 0.25. Furthermore, the non-wetting fluid has the properties of water and the wetting fluid
has the properties of air. The wetting fluid consists of two distinct patch sizes with eigenfrequen-
cies of ω1 = 100 Hz and ωs = 10 kHz. The viscous damping parameters c1 and c2 are chosen
arbitrarily

The proposed model, in its current form, is valid for a discontinuous wetting
phase and a continuous non-wetting phase with a much smaller compressibility. One
example for such a system is residual water in an otherwise air-filled porous rock or
soil, as it occurs, for example, in the vadose zone above the groundwater table. In
future studies, we will seek for a more general model that can handle two immiscible
fluids with similar compressibilities. With such a model we will be able to study, for
example, oscillation effects in hydrocarbon reservoir rocks partially saturated by oil
and water. This will be particularly interesting for the case of residual oil saturation
in a water-flooded reservoir.
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One yet unsolved problem of the current model is the determination of the res-
onance frequency of individual fluid blobs, fluid bridges or fluid patches. Refer-
ences [16] or [17] give analytical solutions for the resonance frequency of very par-
ticular geometries of the fluid blobs. However, it is questionable if these geometries
are realistic in real partially saturated rocks. In the presented study, we assume only
two discrete values for the eigenfrequency, representing two different sizes of fluid
blobs or patches. Eigenfrequencies of naturally occurring fluid blobs or patches will
need to be measured in the laboratory or determined by numerical analysis tech-
niques. We expect a certain range of eigenfrequencies for natural geometries, rather
than discrete values. However, such eigenfrequency distributions will be relatively
easy to implement in the current model.

A second, yet unsolved, problem is the determination of the viscous damping
force acting on the individual oscillators. For the presented study, we arbitrarily
choose two values, one for each eigenfrequency. However, for future studies, we
will try to present a physically-based derivation of the viscous damping force.

Despite the discussed problems, we believe that the newly presented model is
an important extension of the Biot model. We include a micro-scale effect, i.e.,
oscillation of the residual fluid phase, that was not considered in these types of
models until now. The presented model contains all the effect described by the Biot
model, matches the high- and low-frequency limits of the Biot model and reduces to
the original Biot model when the newly introduced parameters are set accordingly.
The new model therefore represents the possibility to study micro-scale oscillation
effects using a well-known and accepted theory.
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Chapter 20
A Personal View on Current Generalized
Theories of Elasticity and Plastic Flow

Elias C. Aifantis

To the Memory of Ioannis Vardoulakis

Abstract A brief discussion of some current generalized continuum mechanics the-
ories of elasticity and plasticity is provided. Attention is focused on works directly
or indirectly motivated by the initial gradient models proposed by the author which,
in turn, rest on ideas pioneered by Maxwell and van der Waals for fluid-like bodies
but within a solid mechanics framework in the spirit of the celebrated monograph of
brothers Cosserat published a quarter of a century later. The work of Cosserat, being
dormant for half a century, ignited in the 1960s a plethora of generalized elasticity
theories by the founders of modern continuum mechanics, as described in the trea-
tises of Truesdell and Toupin and Truesdell and Noll. But it was not until another
quarter of a century later that the interest in generalized continuum mechanics theo-
ries of elasticity and plasticity was revived, partly due to the aforementioned robust
gradient models introduced and elaborated upon by the author and his co-workers in
relation to some unresolved material mechanics and material physics issues; namely,
the elimination of elastic singularities from dislocation lines and crack tips, the in-
terpretation of size effects, and the description of dislocation patterns and spatial
features of shear bands. This modest contribution is not aiming at a detailed account
and/or critical review of the current state-of-the-art in the field. It only aims at a brief
account of selected recent developments with some clarification on difficult points
that have not been adequately considered or still remain somewhat obscure (origin
and form of gradient terms, boundary conditions, thermodynamic potentials).
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20.1 Introduction

Even though gradient type generalizations of classical elasticity may be traced back
to original writings of Bernoulli, Euler and Cauchy and more explicitly discussed
by Voigt and the brothers Cosserat, it was not until the early 1960s that an abun-
dance of mathematical theories were developed in this area due to contributions
by Rivlin, Toupin, Mindlin, Kroner, Eringen, and many others. After that the field
remained dormant until the early 1990s when a robust gradient elasticity model pro-
posed by the author was shown by him and his collaborators, as well as others, to
eliminate elastic singularities and discontinuities and to also account for size ef-
fects. While the aforementioned model (involving the Laplacian of strain) may be
viewed as a special case of Mindlin’s strain gradient theory, there was no physical
basis or experimental evidence for adopting such particular specialization. More-
over, various variants of the model (involving the Laplacian of stress) which were
also subsequently elaborated upon, in connection with the interpretation of related
experiments on size dependence, could not be obtained as specializations of any of
the previously proposed generalized theories. One of the purposes of this modest
article is to provide a more flexible, yet simple, framework for gradient elasticity
models and discuss some salient aspects concerning the origin of gradient terms
and associated boundary conditions, as well as thermodynamics.

About ten years earlier than the appearance of the aforementioned gradient elas-
ticity model, a simple gradient plasticity model was proposed by the author to
predict the thickness and spacing of shear bands, as well as to dispense with the
mesh-size dependence of related finite element calculations in the material soft-
ening regime. At the same time, a gradient dislocation dynamics model was also
advanced by the author to interpret dislocation patterning phenomena. Despite the
fact that both of these early models were the predecessors of what has evolved to
become today the disciplines of strain gradient plasticity and discrete/statistical dis-
location dynamics, respectively, it is not always pointed out what the advantages
and disadvantages of the original models are. Another modest purpose of the article
is to pave the way for forthcoming work illustrating how the original gradient plas-
ticity and gradient dislocation models can be improved and slightly generalized to
account for some recent advances in the literature.

The present article is dedicated to the memory of an early close collaborator and
profound contributor on current generalized continuum mechanics theories of both
Cosserat and gradient type: Ioannis Vardoulakis, who had a fatal accident falling
from his yard tree during the first weekend of this last September. Vardoulakis was
one of the first soil mechanics researchers to realize the importance of both Cosserat
and gradient type theories in modeling shear bands and size effects in granular me-
dia. In the late 1980s—early 1990s, a series of discussions with him and our com-
mon friend Hans Muhlhaus have led to an adaptation of gradient plasticity for met-
als (as progressing at that time with the vigorous participation of my students Doug
Bammann and Hussein Zbib) to gradient plasticity for soils and rocks. This resulted
in several joint or separate publications where the participation and numerical exper-
tise of René de Borst and his students have provided a long-lived effect in the field.
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Later, in the mid 1990s, similar discussions with Ioannis and George Exadaktylos
on generalized elasticity have led to an extension of the initial gradient elasticity
model to include surface energy effects and to its usage for exploring these effects
in fracture and wave propagation studies. This latter work has sparked a remarkable
recent research activity on this field by several prominent faculty in Greece (e.g.,
Georgiadis, Beskos, Aravas, Giannakopoulos, Tsamasphyros, Lazopoulos, and their
co-workers).

20.2 Gradient Elasticity

20.2.1 Simple Gradient Elasticity Models

A brief review of generalized theories of elasticity with the emphasis on gradient
type may be found in [18]. The model that was elaborated upon in that article reads

σ = λ(tr ε)1 + 2με− c∇2
[
λ(tr ε)1 + 2με

]
= σc − c∇2σc, (20.1)

where (σ, ε) denote the stress and strain tensors; (λ, μ) are the Lamé constants;

and c is a newly introduced gradient coefficient (c =  2, with  denoting an internal
length. [The auxiliary quantity σc = λ(tr ε)1 + 2με denotes the classical Hookean
stress.] This model first proposed in [9] could be derived from a strain energy density
function of the form

W = W c +
1
2
cσc

ij,kεij,k = W c + c

(
1
2
λεii,kεjj,k + μεij,kεij,k

)
,

W c =
1
2
σc

ijεij ,

(20.2)

where the first term W c of the right hand side is the classical contribution and the

second term multiplied by c is the gradient contribution. Equation (20.2) is a special
form of Mindlin’s expression (e.g., [41] and references quoted therein)

W = W c + c1εij,jεik,k + c2εii,kεkj,j + c3εii,kεjj,k

+ c4εij,kεij,k + c5εij,kεkj,i (20.3)

involving five gradient coefficients. A virtual work ‘principle’ of the form

∫

Ω

δW dΩ =
∫

∂Ω

(tiδui + τiDδui) d(∂Ω), (20.4)



194 E.C. Aifantis

where ti denotes traction, τi denotes hypertraction and Dδui = δui,jnj (n is the
unit outer normal of ∂Ω and u is the displacement), gives

σij,j = σc
ij,j − cσc

ij,kkj = 0,

ti = σijnj + ctGi , τi = cσc
ij,knknj ,

(20.5)

with the extra ‘gradient’ traction tG = njnk(Dmnm)σc
ij,k − (Djnk)σc

ij,k −
nk(Djσ

c
ij,k) and Dj = (δjk − njnk)∂k. Thus, the appropriate boundary condi-

tions associated with this virtual work statement consist of the pairs (ui or ti) and
(ui,jnj or τi) being prescribed on ∂Ω. It also turns out that uniqueness is ensured
provided that (3λ + 2μ, μ, c) are all positive constants. This was first established
in [18] and rederived by others, e.g., [29], without reference to the original work; it
was also later generalized to the theory of gradient elasticity with surface tension by
Exadaktylos et al. [24]).

A yet simpler model than that given by (20.1) has been used by the author and
co-workers [10] to interpret size effects in bore holes under plane strain conditions.
This model reads σ = λ(tr ε)1+ 2με− c∇2(tr ε)1, while a conjugate model, ε =
[(1 + ν)/E]σ − (ν/E)(tr σ)1 − c(ν/E)∇2(tr σ)1 (E and ν denote Young’s and
Poisson’s moduli), was also used in [12] for interpreting size effects in perforated
thin plates under plane stress conditions. Such variants of gradient elasticity cannot
be obtained as special cases of (20.1) or Mindlin’s general theory. The same is true
for the model discussed in [11] involving both stress and strain gradients which
reads σ − c∇2σ = λ(tr ε)1 + 2με − c∇2[λ(tr ε)1 + 2με], where the gradient
coefficients measuring the effect of the Laplacian of stress and the Laplacian of
strain were set equal for simplicity. It follows that a more general framework than the
one leading to (20.1) is desirable. Such a framework is provided below by making
use of the concept of implicit constitutive equations.

20.2.2 Implicit Gradient Elasticity Models

The idea of implicit constitutive equations seems to have been first introduced by
Morgan [42] in relation to plasticity and the formulation of yield conditions. It was
later generalized and elaborated upon in a more general manner by Rajagopal and
coworkers (e.g., [47]) in relation to constitutive equations for both fluids and solids.
In the present case of gradient elasticity, it may most simply be pursued through an
implicit constitutive equation of the form

f
(
σ, ε,∇2ε,∇2σ

)
= 0, (20.6)

where f is a general linear isotropic function of both stress and strain, as well as
their Laplacians. In the special case when f is a linear isotropic tensor function of
its arguments, the relevant representation theorem for f gives tr(α1ε + α2σ)1 +
α3ε + α4σ +∇2[tr(α5ε + α6σ)1 + α7ε + α8σ] = 0. It follows that the various
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gradient models mentioned in the previous section can be obtained by properly se-
lecting the constants αi. It is also pointed out that the models obtained by allowing
α6 and α8 not to vanish identically are not contained in Mindlin’s strain gradient
theory. In fact, the models containing the Laplacian of strain may not be invertible
to produce models containing the Laplacian of stress. The situation is reminiscent of
the case of linear viscoelasticity where the viscoelastic model containing the rate of
strain (Kelvin–Voigt solid) exhibiting creep is different than the viscoelastic model
containing the rate of stress (Maxwell’s fluid) exhibiting relaxation.

In concluding this section, it is noted that the following gradient models may be
obtained on the basis of the implicit constitutive equation (20.6)

σ = C
(
1− c∇2

)
ε, ε = C−1

(
1− c∇2

)
σ, (20.7)

(
1− c1∇2

)
σ = C

(
1− c2∇2

)
ε, (20.8)

where C is the usual fourth-order elastic stiffness tensor (the inverse C−1 denotes
elastic compliance) which in the isotropic case is expressed in terms of the Lamé
constants (λ, μ) as Cijkl = λδijδkl + μ(δikδjl + δilδjk). Next, we consider the
problem of boundary conditions associated with the gradient constitutive equations
(20.7)–(20.8).

20.2.3 Some Comments on Boundary Conditions

Solutions of boundary value problems based on (20.1) and the boundary conditions
resulting from (20.4) are, in general, difficult to obtain. Besides, the physical mean-
ing of the extra boundary conditions is not clear. These difficulties are alleviated
for certain situations where the solution of gradient elasticity may be reduced to
the solution of an inhomogeneous Helmholtz equation with the source term being
the solution of the corresponding classical elasticity problem. This was first shown
by Ru and Aifantis ([48]; see also [49]) for special traction-type boundary condi-
tions for which the solution of the model given by (20.7)1 is obtained from (R–A
theorem) (

1− c∇2
)
u = uc, σ = σc, (20.9)

where uc is the classical elasticity solution satisfying the same form of traction
boundary condition, i.e., t = σn = σcn and an extra boundary condition of the
form ∂2u/∂n2 = 0. Such type of ‘extra’ boundary condition for the displacement
may be deduced, for example, on a boundary surface (y = const) for zero hypertrac-
tion. In this case, (20.5)3 gives u,yy +υ,xy = 0; λ(u,xy +υ,yy +w,zy)+2μυ,yy = 0;
w,yy + υ,yz = 0, where (u, υ, w) denote the corresponding components of the dis-
placement field in the (x, y, z) directions. It is then seen that these conditions are
reduced to the previously mentioned one (u,yy = υ,yy = w,yy) in the sense of a
one-dimensional (y-direction) approximation. In other words, when the variation of
displacement in the normal direction to the boundary is much larger than the corre-
sponding one in the tangential direction, this extra boundary condition is drastically
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simplified. An analogous but less restrictive type of such boundary-layer approxi-
mation (x → εx, y → y, z → εz; ε � 1) may be assumed only for the difference
u−uc where uc is the known classical displacement field corresponding to the same
classical traction boundary condition. Then, the above listed extra boundary condi-
tions become u,yy +υc

xy = 0; (λ+2μ)υ,yy +λ(uc
,xy +wc

,zy) = 0; w,yy +υc
,yz = 0.

If, instead of the hypertraction τi, the condition Dui = ui,jnj is adopted, then the
extra boundary condition reads ∂u/∂n = 0.

For 2-D cases, the above boundary conditions for the hypertraction τi result in
u,yy + υ,xy = 0 and λu,xy + (λ + 2μ)υ,yy = 0 for plane problems; and w,yy = 0
for anti-plane problems. In this connection, it is also noted that for two-dimensional
plane problems (y = const) the sufficient conditions which ensure the vanishing
of the extra traction tG in (20.5)2 are given by (λ + 2μ)u,xy + μυ,yy = 0 and
u,yy + υ,xy = 0; while for anti-plane problems the corresponding condition is
w,y = 0. Both types of displacement conditions involving the first and second
derivatives were first used and explored for dislocation and crack problems in an un-
published MTU report co-authored with Ru [48]; see also [49]. This report provided
the foundation for obtaining subsequent gradient elasticity results (e.g., Gutkin [33]
(see also [34, 35]), Askes [19] (see also [21, 20]), Lazar [37] (see also [39, 38]) and
their co-workers).

Similar results can be deduced for the gradient elasticity model given by (20.7)2.
The counterpart of the R–A theorem of (20.9) is now expressed in terms of an Airy’s
stress type function φ and, in 2-D, reads

(
1− c∇2

)
φ = φc; ε = εc, (20.10)

where (φc, εc) denote the classical solutions corresponding to the same boundary
values of the displacement field for both classical and gradient problems. The ex-
tra boundary conditions can be deduced from a variational statement for the com-
plementary strain energy density function [48]; see also [49]. For anti-plane prob-
lems, it turns out that the extra free-boundary conditions read ∂2φ/∂n2 = 0 or
∂φ/∂n = 0, in analogy to the displacement ‘extra’ boundary conditions for the
model of (20.7)1.

Solution techniques for the gradient elasticity model given by (20.8) have also
been developed and certain non-singular solutions for dislocation and crack prob-
lems have been derived for the above type of boundary conditions [48]; see also
[49]. These solutions, which dispense with unwanted elastic singularities for both
stress and strain fields, have a rather complex form. More appealing analytical so-
lutions have been obtained by the author (e.g., [12]). These may be viewed as im-
provements of previous solutions obtained for crack problems by the author and
his co-workers (e.g., [24, 17]) which provide finite strains but singular stresses, as
well as those obtained earlier by Eringen (e.g., [23]) which provide singular strains
but finite stresses. Moreover, they may be considered as improvements of recent
solutions obtained by various authors (e.g., [50, 22, 36, 51]) which seem to predict
negative singular stresses at the tip of a tensile crack.
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20.2.4 An Alternative Derivation of the ∇2-Stress/∇2-Strain
Model

Due to the success of the (stress/strain) gradient elasticity model given by (20.8),
we provide an alternative derivation, without resorting to the implicit formulation of
Sect. 20.2.1. First, we start with Eringen’s non-local model, i.e.,

σij =
∫

Ω

k
(
|x− x′|

)(
λεc

kk(x′)δij + 2μεc
ij(x

′)
)
dΩ, (20.11)

and assume [18] the following form for the non-local kernel

k(x− x′) = c1/(2π) K0

(
c1
√

(x− x′)2 + (y − y′)2
)
,

where K0 denotes the modified Bessel function. It then follows, through a Taylor
expansion that, up to second order terms, the following expression holds

σij − c1∇2σij = σc
ij ; σc

ij = λεc
kkδij + 2μεc

ij . (20.12)

Next, we use the definition of a ‘macroscopic’ strain tensor εij as a volume-type
average of the local strain tensor εc

ij , e.g.,

εij =
1
VΩ

∫

Ω

εc
ij dΩ,

which through a Taylor expansion gives εij = εc
ij + c2∇2εc

ij . The positive constant
c2 depends on the size of the elementary volume (∼1/R2) for a spherical volume
VΩ of radius R) which, in turn, depends on the underlying microstructure and the
degree of existing heterogeneity. A direct consequence of the above relation, within
a second spatial order approximation (e.g., [53]; see also [43]), reads εc

ij = εij −
c2∇2εij and, thus, (20.12) is reduced to the model of (20.8).

Yet another, atomistic-like derivation of (20.8) may be obtained by utilizing an
argument recently explored by the author [13] for a two-dimensional lattice. In this
case, the strain and stress tensors (σ, ε) for a linearized isotropic configuration turn
out to be of the form

ε = αe1 + βeM; σ = as1 + bsM, (20.13)

where (e, s) denote the one-dimensional scalar measures of strain and stress in a
representative ‘atomic chain’, while (α, β) and (a, b) are constants, and 2Mij =
niνj +νjni with (n, ν) being the orthonormal vectors defining the lattice directions.
If the atomic chain s–e relation is of the form s − c1∇2s = k(e − c2∇2e), then it
turns out that (σ, ε) are related through (20.8), where the Lamé constants λ and μ
are easily expressed in terms of the elastic-like modulus k of the atomic chain and
the (lattice orientation) constants (α, β) and (a, b).
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20.2.5 Some Comments on Continuum Thermodynamics

Continuum thermodynamic arguments for gradient-dependent elastic media or elas-
tic media with internal variables obeying ‘complete balance laws’ or evolution equa-
tions containing both a rate and a flux term have been advanced, among others, by
the author (e.g., [3, 7]), as well as others (e.g., [40]; see also [52, 44] and references
quoted therein). The main relevant issues to the present case of gradient elasticity are
the concepts of a non-classical continuum which may exchange mass, momentum,
energy and entropy with its bounding surface ([3]; see also [7]) and the modification
of the energy equation (1st law) to include an additional working term to account
for the extra work due to higher order gradients [3, 4]; see also [7, 6]. Associated
with the form of this extra term is the concept of a divergence-free extra stress (null
Lagrangian) which does not affect the equilibrium equations but may directly in-
fluence the form of the boundary conditions in ‘finite’ problems and the validity of
equal area Maxwell’s rule in the ‘infinite’ liquid–vapor transition problem [4]; see
also [6]. The relevance of all these concepts to the problem of gradient elasticity has
been recently undertaken and thoroughly examined by Polizzotto [44]. By applying
these arguments (nonlocal thermodynamics and null Lagrangians) to the gradient
elasticity model of (20.1), it was concluded that, under certain hypotheses, (20.5)
hold with ti = σijnj and τi = 0. This was essentially established by allowing an
extra surface energy term

∫
∂Ω

δψ� d(∂Ω) to enter in the variational statement given
by (20.4) such that ∂ψ�/∂ui = σs

ijnj , where σs
ij with σs

ijnj = Gj(σc
ij,knk) and

Gj ≡ ninkDk −Dj , is a surface stress which acts on the boundary of the body but
not in its interior as it is taken to be divergence free.

Further discussions on the gradient elasticity model given by (20.1) and its vari-
ants (including dynamic and wave propagation aspects, conservation laws, gauge
theories of dislocations, and nanotube behavior) can be found in recent contributions
by H. Askes and M. Lazar and their co-workers (e.g., their papers in this volume and
references quoted therein). In this connection, it is remarked that the higher-order
stress ∂w/∂εij,k ≡ τijk used by Mindlin in the development of his general gradient
theory based on (20.3) is identified as τijk = cσc

ij,k for the robust model based on
(20.2). This amounts to choosing c1 = c2 = c5 = 0, c3 = λc/2, c4 = μc in (20.3).
In Feynmann’s linear theory of gravity, an expression identical to that containing the
ci’s in (20.3) also appears but he has chosen c1 = −c2 = −2μc, c3 = −c4 = −μc,
c5 = 0. Then, the quantity (1/2μc)τijk,k = −(inc ε)ij = εiklεjmnεln,km is equiv-
alent to the 3-D linear Einstein’s tensor. Initially, gauge theories of dislocations were
based on Feynmann’s choice of the constants ci, but they gave unphysical results;
the situation was repaired afterwards by essentially employing another gauge trans-
formation motivated by the choice of ci’s leading to (20.1).

20.3 Gradient Plasticity

Only a few comments will be given here concerning the evolution of this field since
the original model of the author was proposed in early 1980s (e.g., [5]; see also [8]).
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The next major contribution to this field was due to the theory of Fleck/Hutchinson
and co-workers (e.g., [28]; see also [25, 26]), which was developed by adopting
Mindlin’s strain gradient elasticity theory to the case of plasticity. But as was re-
cently pointed out by Gurtin and Anand [32] this theory was not consistent with
thermodynamics, a problem not encountered in the original 1984/1987 model. The
next major contribution was the inclusion of interfacial energy, as introduced inde-
pendently by Gudmundson [30] and in a more robust manner by Aifantis and Willis
([14]; see also [15, 16]) who produced an analytical expression for the grain bound-
ary yield stress and provided experimental support for it through nanoindentation.
A most recent work by Fleck and Willis [27] modified the Fleck/Hutchinson’s 2001
version of their theory to make it consistent with thermodynamics and also gen-
eralized the earlier Aifantis/Willis strain gradient plasticity theory with interfacial
energy [27].

In this connection, it is pointed out that a large number of generalized theories
including interfacial energy have been proposed recently by several authors. For ex-
ample, Abu Al-Rub and co-workers ([2]; see also [1]) included in their proposal
both a scalar and tensorial measure of plastic flow, but they started with a varia-
tional statement involving inter-dependent quantities. A more general question for
introducing thermodynamic potentials and variational principles in plasticity has to
do with Bridgman’s remark on ‘plasticity being an island in the sea of irreversibil-
ity’ and the related problem about the existence of entropy in this case. Perhaps,
micromechanically based constitutive equations and mechanical equilibrium may
be a more safe avenue to pursue, thus making economy of axioms in modeling
nonlinear far-from-equilibrium dissipative phenomena. The situation of a van der
Waals fluid and Maxwell’s rule considered by the author in [4] (see also [6]) is
only an example of this class of problems. Nevertheless, the recent thermodynamics
works using the concept of nonlocal energy (or entropy production) residual (e.g.,
[45, 54]), as also utilized by the author in [4] (see also [6]), certainly deserve atten-
tion and further examination, but always in connection with the underlying physical
(dislocation) mechanisms and in relation to critical experiments.

Finally, it should be mentioned that the ‘lower-order’ gradient plasticity models
have also been proposed which do not require higher order boundary conditions.
Despite their difficulty in predicting efficiently boundary layers, they also need fur-
ther examination. A unifying framework for lower and higher gradient plasticity
models has recently been outlined by Gudmundson and Aifantis [31].

20.4 Gradient Dislocation Dynamics

At the same time that the aforementioned gradient plasticity model was proposed,
a gradient dislocation dynamics model (sometimes referred to as W–A model) was
also outlined [5]; see also [8]. The motivation for it was the prediction of the ladder
structure of persistent slip bands (PSB’s) and related dislocation patterning phenom-
ena. The situation has recently been discussed by Pontes/Walgraef/Aifantis [46],
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where a brief historical account and more recent developments on discrete and
statistical dislocation mechanics considerations are reviewed. The basic premise
of the W–A model was to write ‘complete’ balance laws for dislocation popula-
tions, modeling both dislocation transport and production/annihilation processes.
This was done for both positive and negative dislocations (and thus for their sum
ρ+ + ρ− = ρstatistical, and their difference ρ+ − ρ− = ρGND), a practice which is
extensively used today (e.g., Peerlings in this volume and refs quoted therein), some-
times without reference to the original work. Under certain conditions, the final evo-
lution equations for dislocation populations turn out to contain diffusion-like terms
(where the diffusivities depend on strain rates), and these terms were essential—in
competition with the nonlinearities in the production/annihilation terms—for ob-
taining ‘stable’ dislocation patterns. Subsequently to the W–A model, several rig-
orous but a lot more complex works—based on statistical mechanics, as well as
discrete dislocation dynamics (DDD) simulations—were published, thus bringing
the field to a next level of development. The W–A model, however, still remains as
a robust method to model dislocation patterns. It was recently revisited to produce
an integrated model by incorporating both the W–A and the Groma/Zaiser approach
([56] and references quoted therein; see also [57, 55]).
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Chapter 21
Review and Critique of the Stress Gradient
Elasticity Theories of Eringen and Aifantis

Harm Askes and Inna M. Gitman

Abstract This chapter discusses the stress gradient theories of Eringen and Aifan-
tis in terms of their original formulations, their differing dispersion properties in
dynamics, and their finite-element implementation. A proposed combination of the
two provides a dynamically consistent gradient enrichment while avoiding imple-
mentation difficulties.

21.1 Introduction

Classical elasticity, in which stresses are related to strains without the incorporation
of higher-order spatial or temporal derivatives, is an appropriate model if the scale
of observation is significantly larger than the characteristic dimensions of the un-
derlying material microstructure. However, when processes are modeled on a scale
similar to the size of the microstructure, unrealistic results may be found when clas-
sical elasticity is used. For instance, classical elasticity predicts singular stresses
and strains at the tips of sharp cracks and at dislocation cores, non-dispersive prop-
agation of waves, and size-independent structural behavior. These anomalies can be
rectified if the field equations are extended with appropriate higher-order gradients
of the state variables—thus, so-called gradient theories are obtained.

Gradient elasticity has been used successfully to remove singularities from crack
tips and dislocation cores. It is also possible to predict elastic wave dispersion and
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size-dependent mechanical behavior with gradient elasticity. Many formats of gra-
dient elasticity exist that are equipped with additional gradients of strain or acceler-
ation, but in this contribution we wish to discuss two theories of gradient elasticity
with stress gradients, namely the 1983 theory of Eringen [13] and the 1992 theory
of Aifantis [1] with its operator split formulation due to Ru and Aifantis for dis-
placements [21], strains [16, 17] and, in particular, stresses [15, 9]. The gradient
enrichment of the stresses in these two theories takes the same form, that is,

σij −  2σij,mm = Cijklεkl, (21.1)

where σij are the stresses, εkl = 1
2 (uk,l + ul,k) are the strains, Cijkl are the elastic

moduli, and  is the internal length scale parameter that represents the microstruc-
ture. Since (21.1) appears in the gradient elasticity theories of Eringen as well as
Aifantis, one could conclude that these two theories are identical. However, the two
theories are, in fact, subtly different, and in this contribution we aim to clarify these
differences and their consequences.

In Sect. 21.2, we will treat the continuum equations of the two stress gradient
elasticity theories, the extent to which they coincide and how they differ. Two im-
portant implications of these differences are (i) the prediction of wave dispersion
and (ii) the complexity of subsequent finite element implementations, which are
treated in Sects. 21.3 and 21.4, respectively. It follows that Eringen’s theory is bet-
ter suited to use in dynamics, whereas Aifantis’ theory is to be preferred for finite
element implementations. In Sect. 21.5, we discuss how the advantageous aspects
of the two theories can be combined. Throughout, the emphasis of the discussion is
on offering clarification of the similarities and differences of the two theories. For
the sake of brevity, we will not present a historical context nor will we attempt to
provide an appropriate overview of all the available literature.

21.2 Continuum Field Equations

Although boundary conditions are an important aspect of gradient theories, the dis-
cussion below focuses on the field equations. We will first revisit the most important
equations of the theories of Eringen and Aifantis in isolation, after which we will
compare them in a unified manner.

Eringen’s Theory

The majority of Eringen’s work on nonlocal elasticity is concerned with integral
formulations, in which volume averages of relevant state variables are computed.
For example, the nonlocal stress tensor σg

ij is computed from its local counterpart
σc

ij as

σg
ij(x) =

∫

V

α(s)σc
ij(x + s) dV, (21.2)
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where α(s) is a kernel function that is non-negative and normally adopts decreasing
values for increasing values of s.

In 1983, Eringen formulated an equivalent theory of nonlocal elasticity in which
the spatial integrals are replaced by differential operators. For certain kernel func-
tions, the transition in going from integral nonlocality to gradient nonlocality occurs,
in fact, without approximation error, thus highlighting the equivalence between the
two types of nonlocality. In particular, nonlocal stresses can be computed from local
stresses via

σg
ij −  2σg

ij,kk = σc
ij , (21.3)

where the local stresses are related to the local strains εij as usual.

Aifantis’ Theory

In 1992, Aifantis suggested elastic constitutive relations extended with strain gradi-
ents as

σij = Cijkl

(
εkl −  2εkl,mm

)
(21.4)

that lead to equilibrium equations as

Cijkl

(
ug

k,jl −  2ug
k,jlmm

)
+ bi = 0, (21.5)

where bi are the body force components and ui are the displacement components
which carry a superscript g to indicate that they are affected by the nonlocality.

In a subsequent study, Ru and Aifantis argued that the fourth-order partial dif-
ferential equations (21.5) can be solved as a sequence of two sets of second-order
partial differential equations, namely

Cijklu
c
k,jl + bi = 0 (21.6)

followed by
ug

k −  2ug
k,mm = uc

k. (21.7)

Equation (21.6) represents the equilibrium equations of classical elasticity, hence a
superscript c is used for the associated displacements uc

i . Once uc
i are known, they

are to be used as a source term in (21.7) by which the gradient-enriched displace-
ments ug

i can be computed.
By differentiation, (21.7) can also be expressed in terms of strains [16, 17, 9] or,

after multiplication with the elastic moduli Cijkl, indeed in terms of stresses [15, 9]:

σg
ij −  2σg

ij,kk = σc
ij , (21.8)

where σc
ij = Cijklu

c
k,l. The use of (21.8) instead of the original (21.7) has sig-

nificant advantages: the variationally consistent boundary conditions of (21.7) are
insufficient to remove all singularities from crack tip fields, whereas the boundary
conditions consistent with (21.8) result in crack tip fields that are free of singulari-
ties [9].
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Comparison

Expressions (21.3) and (21.8) are obviously identical, which raises the question to
which extent the theories of Eringen and Aifantis coincide. To answer this, it is
important to note the format of the momentum balance equations used in the two
theories. Eringen’s theory was formulated for use in dynamics, and the equations of
motion contain the divergence of the nonlocal stress tensor σg

ij :

σg
ij,j + bi = ρüi, (21.9)

where ρ is the mass density. In contrast, Aifantis’ theory was originally formulated
to be used in statics; the equilibrium equations include the divergence of the local
stress tensor σc

ij :
σc

ij,j + bi = 0. (21.10)

Equations (21.3) and (21.9) are solved together with the constitutive relation in
terms of the local stress σc

ij = Cijklεkl and the kinematic equation εk,l =
1
2 (uk,l + ul,k); the same holds for (21.8) and (21.10). Superscripts c and g have
been dropped from the displacements since there is only one displacement field in
either theory.

An overview of all field equations is given in Table 21.1. For each theory, the
resulting equations can be expressed in a reducible form of two sets of second-
order equations with unknowns ui and σg

ij , or in an irreducible form of fourth-
order equations with unknowns ui only. For the Eringen theory, the reducible form
is coupled, that is, ui and σg

ij appear in both sets of equations and the two sets
of equations must thus be solved simultaneously [7]. The reducible form of the
Aifantis theory is uncoupled since σg

ij does not appear in (21.6). Thus, the two sets
of equations can be solved sequentially, which is a great advantage for numerical
implementations [22, 9], see also Sect. 21.4.

The irreducible form of Eringen’s theory is obtained by taking the Laplacian of
(21.9), multiplying with  2 and subtracting the result from (21.9). Assuming that the

Table 21.1 Stress gradient elasticity theories of Eringen and Aifantis—overview of field equations

Eringen Aifantis

Balance σg
ij,j + bi = ρüi σc

ij,j + bi = 0

of momentum (dynamics) (statics)

Gradient enrichment σg
ij − �2σg

ij,mm = σc
ij

Constitutive relation σc
ij = Cijklεkl

Kinematics εkl = 1
2

(
uk,l + ul,k

)

Reducible form

{
σg

ij,j + bi = ρüi

σg
ij − �2σg

ij,mm = Cijkluk,l

{
Cijkluk,jl + bi = 0

σg
ij − �2σg

ij,mm = Cijkluk,l

Irreducible form Cijkluk,jl + bi Cijkl

(
uk,jl − �2uk,jlmm

)

= ρ
(
üi − �2üi,mm

)
+ bi = 0
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second derivatives of the body forces vanish, we end up with

Cijkluk,jl = ρ
(
üi −  2üi,mm

)
, (21.11)

that is, the stress gradients have been replaced by inertia gradients. It is immediately
clear that such an irreducible form is only available in dynamics—in statics, the
gradient-dependence would be lost. Finally, the irreducible form of Aifantis’ theory
is simply the original expression (21.5).

Both theories are capable of avoiding singularities in the state variables around
the tips of sharp cracks and/or dislocations, see, for instance, [13, 14, 7] and
[21, 2, 17, 9], respectively. However, important differences concern wave dispersion
and finite element implementations, which we will discuss in the next two sections.

21.3 Dispersion Analysis

The simplest way to clarify the differences between the two theories is to carry
out a one-dimensional dispersion analysis, thereby excluding body forces. We use
the irreducible forms of Table 21.1, adding a standard inertia term to the Aifantis
model, and substitute a general harmonic solution u = A exp(ik(x − ct)), with
amplitude A, wave number k and phase velocity c. For Eringen’s theory, this results
in

c2

c2e
=

1
1 + k2 2

, (21.12)

and for Aifantis’ theory we obtain

c2

c2e
= 1 + k2 2, (21.13)

where ce =
√

E/ρ. It is easily seen that in both theories the phase velocity c de-
pends on the wave number k, hence both theories are dispersive.

The two expressions are plotted in Fig. 21.1 together with the response of a dis-
crete lattice (see [13] for details on the relation between gradient elasticity and the
discrete lattice response). It is clear that Eringen’s model provides a better approxi-
mation of the discrete model. In Aifantis’ model, the phase velocities are unbounded
for increasing wave numbers.

It is sometimes claimed that the Aifantis model is also capable of providing a
good approximation of the dynamic behavior of the discrete model [3, 2], but this
would require to change the sign of the gradient term in (21.4) from negative to
positive, which would make the model unstable [10, 18]—thus, we do not recom-
mend such a modification. However, it must be emphasized that the straightforward
extension of (21.5) to dynamics was not the original motivation to include gradi-
ents, and it would be unfair to judge the Aifantis theory solely on its performance in
dynamics.
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Fig. 21.1 Normalized phase velocity c/ce versus normalized wave number k� for discrete lattice
(solid), Eringen’s model (dashed) and Aifantis’ model (dot-dashed)

21.4 Finite Element Implementation

In Sect. 21.2, it was shown that the reducible forms of the two theories are a set of
coupled equations (Eringen theory) and uncoupled equations (Aifantis theory). The
implications for numerical implementations, such as with the finite element method,
are significant.

The coupled equations of the Eringen model are of the so-called mixed type,
whereby the nonlocal stresses are the primary variables and the displacements are
the Lagrange multipliers. The requirements put on the finite element implementa-
tion of equivalent classical elasticity models has been studied for decades, and turns
out to be nontrivial matter. To avoid numerical instabilities, the stresses need to be
interpolated with a polynomial order larger than that of the displacements, but for
optimal convergence rates additional requirements based on the symmetry of the
nonlocal stresses σg

ij need to be imposed. This has resulted in many attempts at ef-
ficient interpolations, see, for instance, the earlier discussion in [4] and the more
recent efforts in [5, 12], but the resulting implementations are quite complicated
with a mixture of nodal degrees of freedom, edge degrees of freedom and element
degrees of freedom. Unfortunately, no simple effective finite element implementa-
tion seems to be available as yet. The fact that the two fields need to be interpolated
with different polynomial orders remains a significant drawback.

On the other hand, the reducible form of the Aifantis model is uncoupled, which
implies that the two interpolations can be chosen independently. The most straight-
forward option is to employ the same polynomial order and the same finite element
discretization to the displacements and the nonlocal stresses [9]. This facilitates the
implementation of this theory in existing finite element software enormously.
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21.5 Closure and Outlook: Dynamically Consistent Gradient
Elasticity

Gradient elasticity theories have been motivated for a variety of reasons, among
others to dispense with singularities, to describe dispersive wave propagation and
to predict size-dependent response of structures. In addition to these physical re-
quirements, we also wish to emphasize that simplicity of the formulation and of
subsequent finite element implementations are highly desirable.

In this chapter, we have discussed two theories with stress gradients, namely the
ones due to Eringen and Aifantis. Both of these are simple in that they contain only
one length scale parameter, which facilitates interpretation compared to theories
with a multitude of length scales. Furthermore, both theories are able to remove
singularities from the stresses around crack tips and dislocations. The advantage
of Eringen’s model is its better performance in dynamics, although it is emphasized
that Aifantis’ model was not originally intended to be used in dynamics. On the other
hand, the advantage of the Aifantis model is that finite element implementations are
straightforward and simple.

The irreducible forms presented in Table 21.1 give an indication how to combine
the best aspects of the theories of Eringen and Aifantis, namely a simultaneous
inclusion of inertia gradients and strain gradients. This idea was already present
in Mindlin’s 1964 theory of elasticity with microstructure [20]. Such a model was
also derived from a discrete lattice [18, 19] and the simultaneous appearance of
strain gradients and inertia gradients was denoted as dynamically consistent gradient
enrichment. In a simple version of such a model the equations of motion can be
written as

Cijkl

(
uk,jl −  2suk,jlmm

)
+ bi = ρ

(
üi −  2düi,mm

)
, (21.14)

where two length scales  s and  d accompany the strain gradients and inertia gra-
dients, respectively. The simultaneous presence of the two length scales  s and  d

allows controlling the dispersive behavior of the model [18, 8, 19].
Recently, we have devised an operator split that allows rewriting the fourth-order

equations (21.14) as a coupled set of symmetric second-order equations [6], that is,

Cijklu
m
k,jl + bi = ρ

(
�2d
�2s

üm
i − �2d −�2s

�2s
üM

i

)
, (21.15)

0 = ρ

(
− �2d −�2s

�2s
üm

i + �2d −�2s
�2s

üM
i −

(
 2d −  2s

)
üM

i,mm

)
. (21.16)

This set of equations is coupled but not of the mixed type, thus avoiding the imple-
mentational difficulties of mixed formulations [6]. The original unknowns ui from
(21.14) are identified as the macroscopic displacements uM

i in (21.15)–(21.16), ac-
companied by additional unknowns which turn out to be the microscopic displace-
ments um

i , see [11] for details. Thus, (21.15)–(21.16) represent a multiscale for-
mulation of gradient elasticity, in which the microscale and macroscale are fully
coupled, and in which the gradient effects of the theories of Eringen and Aifantis
are unified.
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Chapter 22
On Natural Boundary Conditions in Linear
2nd-Grade Elasticity

Francesco Froiio, A. Zervos, and Ioannis Vardoulakis

Abstract This work aims at drawing the attention of mechanicians interested in the
development of extended continuum theories on the unresolved issue of the physical
interpretation of the additional boundary conditions introduced by 2nd-grade mod-
els. We discuss this issue in the context of the linearized theory of elasticity as an
appropriate platform for discussion. Apart from lineal densities of edge-forces, 2nd-
grade models allow for the prescription of force-like quantities energy-conjugated to
the gradient of the velocity field on the boundary. Previous works proposed reduc-
tionistic interpretations, treating 2nd-grade models as particular cases of continua
with affine microstructure; from the latter one can deduce field equations reminis-
cent of 2nd-grade models, either in the “low-frequency, medium wavelength” limit
or by constraining the microstructural degrees of freedom to the gradient of the
velocity field. The interpretation we propose here is based on the concept of ortho-
fiber, and has the merit of achieving a simple physical interpretation of the boundary
conditions without recourse to extensive algebra or the need to invoke microstruc-
ture.
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22.1 Introduction

22.1.1 Notation

Boldface lowercase Latin characters will denote Euclidean vectors, i.e., tensors of
order one, while boldface lowercase Greek characters will be reserved for tensors of
higher order, e.g., τ ∈ Lin or ξ ∈ LIN where Lin and LIN represent the linear space
of 2nd-order tensors and of 3rd-order tensors, respectively. We will later mention the
linear space of symmetric and of antisymmetric 2nd-order tensors, Sym and Asym,
along with the linear space SYM = {α ∈ LIN |αijk = αikj} of 3rd-order tensors
with symmetry in the last two orders (subscripts denote Cartesian components).
Scalar products in the respective linear spaces will be denoted by interposed single
dots, while the column symbol will refer to the mixed product between 2nd-order
tensors and 3rd-order tensors: for α ∈ LIN and β ∈ Lin we define α : β =
αijkβjkei and β : α = αjkiβjkei, where {ei}i=1,2,3 is the canonical basis of the
Euclidean vector space and in which further use of Einstein summation convention
is anticipated. A cross will denote the inner product in the Euclidean vector space.

22.1.2 Problem Statement

By 2nd-grade elasticity we refer to the class of elasticity models in which the stored
energy W is defined as a quadratic functional of the first two gradients of the dis-
placement ∇u and ∇∇u:

W [u] =
∫

V

w(∇u,∇∇u) dV,

where w is the stored energy density and V is the Euclidean region occupied by
the body. We recall here briefly the context established by previous works (e.g.,
[15, 9–11, 1, 5–7]), in particular the papers of Mindlin and coworkers among them.

Toupin [15] pointed out the question of the proper extension of classical elastic-
ity models when postulating internal stress fields energy-coupled to local rotations
(couple-stress fields). This theory was not of the Cosserat type since no microstruc-
ture was introduced and the considered rotation rates were intended as rotors of the
linear velocity field. The choice expressed in Toupin’s paper led to some important
indeterminacies in the formulation and opened a number of questions that have been
debated since.

A first important issue concerns the analytical form and physical interpretation
of the boundary conditions for 2nd-grade models. For ease of discussion, we focus
in the following on the linearized formulation and require the displacement field and
its first two gradients to be small. We compute the first variation of the stored energy
functional in the reference, undeformed configuration:
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δW =
∫

V

(τ · δ∇u + ξ · δ∇∇u) dV (22.1)

in which

τ :=
∂w

∂∇u
∈ Sym and ξ :=

∂w

∂∇∇u
∈ SYM

are generalized forces in the sense of analytical mechanics. Integration by parts of
the right hand side of (22.1) gives the classical expression obtained in [9]:

δW =
∫

V

(−div τ + div (div ξ)) · δu dV (22.2)

+
∫

S

(
(τ − div ξ)n− divs(ξn) +

(
divsn

)
(ξ : n⊗ n)

)
· δu dS (22.3)

+
∫

S

(ξ : n⊗ n) · δDudS (22.4)

+
∫

E

(
ξ : �m⊗ n�

)
· δu dE, (22.5)

in which divs denotes the surface divergence operator, n is the unit-normal vector
field for the boundary S of V and the edge tensor �m⊗ n� ∈ Sym is a geometrical
descriptor of the edge E formed by discontinuities along S.

Comparing the above expression to the analogous one for 1st-grade materials one
notices, apart from more complex forms of terms (22.2) and (22.3), the presence of
two additional integrals (22.4) and (22.5). We assume, as a starting point, a potential
of the external loads P of the same form as for 1st-grade materials:

P [u] =
∫

V

F · udV +
∫

S

t · u dS. (22.6)

In this case, the principle of virtual work, i.e., the requirement that δP − δW = 0
for arbitrary variations δu, results in the following Euler’s equations:

−div τ + div (div ξ) = F in V , (22.7)

(τ − div ξ)n− divs(ξn) +
(
divsn

)
(ξ : n⊗ n) = t in S, (22.8)

ξ : n⊗ n = 0 in S, (22.9)

ξ : �m⊗ n� = 0 in E. (22.10)

It is evident that the question of the physical interpretation of the quantities in in-
tegrals (22.4) and (22.5) has to be addressed in order to explore the full range of
applications for 2nd-grade models. It was clear since [9] and [10] that (22.5) is
linked to the application of lineal force densities along the edge (though some as-
pects of this interpretation still deserve a rigorous systematization, cf. [2]). It can
be asserted in this sense that most of the controversy concerns integral (22.4) and
in particular the interpretation of the normal derivative Du as a degree of freedom
of the system; we focus on this specific question in the following. As a starting
point of the controversy one usually refers to [9], where Toupin’s theory is framed
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by Mindlin as the limit of a “low-frequency, long wavelength approximation” of a
continuum theory with affine microstructure. In the most general form of Mindlin’s
theory, each material point was assumed to undergo homogeneous “micro-strains”
and rigid “micro-rotations”, as well as displacements. In this form, Mindlin’s theory
is more general than Toupin’s, as the latter invokes only the rotor of the displacement
field. However, [9] did not clearly answer the question of the interpretation of the
normal derivative Du, neither did [11] where further development was presented.

In the following, we try to give a convincing—and possibly simple—physical
interpretation of the terms in the integral (22.4) by introducing the concept of ortho-
fiber. We propose two examples in the context of linear 2nd-grade isotropic elastic-
ity. Our derivations are presented succinctly and we refer the interested reader to the
forthcoming publication [4] for a more complete presentation.

22.2 Ortho-Fiber Kinematics

By the term ortho-fiber we refer to a thin, notional fiber of a material, starting at the
surface and extending inward along the direction of n. We assume the length l of
the ortho-fiber to be small compared to the macroscopic characteristic length of the
problem. In that limit, i.e., for l → 0, the kinematics of the fiber is fully determined
by a scalar measure of stretch Σ and a measure of rotation Ω ∈ Orth. According to
the above definition, for the measure of stretch one must use

Σ =
√(

(∇χ)n
)
·
(
(∇χ)n

)
− 1,

where χ is the deformation. The inherent measure of rotation should express the
change of orientation of the ortho-fiber under the action of χ. The structure of Ω
can be given in the terms of Beatty’s formula, i.e.,

Ω := I− (sin θ)εr + (1− cos θ)(r⊗ r− I),

where

θ = arcsin
∣
∣
∣
∣n×

∇χn
|∇χn|

∣
∣
∣
∣

is the rotation angle, ε is the permutation tensor and

r =
n× (∇χn)
|n× (∇χn)| (22.11)

is the axial vector. Notice that, by virtue of (22.11), r is orthogonal to n, excluding
rotations of the ortho-fiber about its own axis. In the limit ‖∇u‖ → 0, one can
derive the respective infinitesimal expressions

Σ = ς + O
(
‖∇u‖

)
, ς := Du · n,

as well as
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Ω = (I + ω) + O
(
‖∇u‖

)
,

ω := (Du)⊗ n− n⊗ (Du) ∈ Asym.

In the following, we use the infinitesimal formulation and call ς the infinitesimal
ortho-fiber stretch and ω the infinitesimal ortho-fiber rotation. These two quantities
are shown schematically in Fig. 22.1. The above definitions allow us to split the
normal gradient of the displacement and its variation as

Du = ςn + ωn, δDu = (δς)n + (δω)n. (22.12)

The importance of this decomposition can be appreciated by introducing (22.12)
in (22.4). Algebraic manipulation then gives

∫

S

(ξ : n⊗ n) · δDu dS

=
∫

S

(ξ · n⊗ n⊗ n)δς dS +
∫

S

asym
(
(ξ : n⊗ n)⊗ n

)
· δω dS.

The above decomposition identifies the additional degrees of freedom evoked by
the term (22.4) with the infinitesimal ortho-fiber stretch and rotation, addressing the
issue of the physical interpretation of the boundary conditions.

The term (22.5), on the other hand, accounts for the special status that forces
applied on slope discontinuities of the boundary have, compared to forces applied
on smooth parts of the boundary. The edge tensor �m⊗ n� quantifies such discon-
tinuities; however, a more extensive discussion has to be postponed till [4].

Fig. 22.1 (a) Material surface under the displacement field u. (b) Embedded ortho-fiber field.
(c) Effect of the ortho-fiber stretch ς and of the ortho-fiber rotation ω
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22.3 Principle of Virtual Work and Balance Laws

We now extend the potential of the external loads by introducing additional terms
energy-conjugated to the variations of the degrees of freedom identified in Sect. 22.2.
We substitute (22.6) by

P [u] =
∫

V

F · u dV +
∫

S

(t · u + fς + μ · ω) dS +
∫

E

s · udE (22.13)

and call f the ortho-fiber tension, μ the ortho fiber couple and s the edge- or
line traction. Notice that the ortho-fiber couple μ and rotation ω, being energy-
conjugated, vary in the same linear space, that is,

{
α ∈ Asym | ∀b : (I− n⊗ n)αb = 0

}
.

In other words, neither ortho-fiber rotation about the axis n is allowed, nor couples
can be prescribed that have axial vectors with direction n (i.e., “torques” about n).
In this context, the principle of virtual work leads again to Euler’s equations (22.7)
and (22.8). On the other hand, (22.9) and (22.10) are now substituted by, respec-
tively,

ξ · n⊗ n⊗ n = f,

asym
(
(ξ : n⊗ n)⊗ n

)
= μ in S,

(22.14)

ξ : �m⊗ n� = s in E. (22.15)

A robust way to introduce balance laws is to deduce them from objectivity
requirements posed on energetic quantities [12, 8]. When dealing with extended
continuum theories, to which our intuition is less accustomed, this practice is
particularly useful. Requiring Galilean invariance of the potential of the external
loads (22.13) gives in particular the force balance law for the external actions:

∫

V

FdV +
∫

S

tdS +
∫

E

s dE = 0.

Following loosely the terminology adopted in [13], we refer to Leibnitz invariance
as the property of a scalar quantity to be measured identically by two observers in
relatively constant angular motion. Requiring the potential P in (22.13) to have such
invariance gives a momentum balance law in the form:

∫

V

p× F dV +
∫

S

(p× t + μ) dS +
∫

E

p× s dE = 0

(cf. [3]), where p denotes the position vector with respect to a fixed pole.
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22.4 Stored Energy Density

To achieve a suitable format for the expression of the stored energy density, we first
seek an efficient decomposition of the native tensor spaces of its two variables. The
problem being trivial for∇u, we only focus on∇∇u ∈ SYM and adopt a procedure
inspired by Spencer’s representation formula [14]. The projection operators (·)S and
(·)A, with

(αijk)S =
1
3
(αijk + αjki + αkij), (αijk)A = αijk − αS

ijk, α ∈ SYM

define by their images the linear spaces SYMS of totally symmetric 3rd-order ten-
sors and SYMA of partially antisymmetric 3rd-order tensors. Notice that SYMS and
SYMA provide a direct-sum decomposition of SYM and a finer one can be achieved
by introducing further projection operators (·)SS , (·)SD, (·)AS and (·)AD, where the
additional superscripts evoke the terms “spherical” and “deviatoric”. We define in
particular

(αijk)SS =
1
5
(αillδjk + αljlδki + αllkδij),

(αijk)SD = αijk − αSS
ijk, α ∈ SYMS

and

(αijk)AS =
1
2
(αillδjk + αljlδki + αllkδij),

(αijk)AD = αijk − αAS
ijk , α ∈ SYMA

which lead to the direct-sum decomposition

SYM = SYMSS ⊕ SYMSD

︸ ︷︷ ︸
SYMS

⊕ SYMAS ⊕ SYMAD

︸ ︷︷ ︸
SYMA

, (22.16)

where SYMSS, SYMSD, SYMAS, and SYMAD are the images of SYMS and SYMA

under the action of corresponding projection operators.
The above results are exploited in the expression

w =
3λ + 2μ

2
(sph∇u) · (sph∇u) + μ(dev∇u) · (dev∇u)

+
G(1)

2
(∇∇u)SS · (∇∇u)SS +

G(2)

2
(∇∇u)SD · (∇∇u)SD

+
G(3)

2
(∇∇u)AS · (∇∇u)AS +

G(4)

2
(∇∇u)AD · (∇∇u)AD

+ G(5)
(
(∇∇u)SS : I

)
·
(
(∇∇u)AS : I)

)
,

where the stored energy density w is expressed in terms of mutually orthogonal
components of ∇u and ∇∇u. Along with Lame’s μ and λ one counts five addi-
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tional constitutive parameters, from G(1) to G(5), that complete the set of material
constants. By virtue of the direct-sum decomposition (22.16), one proves that the
inequalities

G(1) > 0, G(2) > 0, G(3) > 0, G(4) > 0 (22.17)

and

−
√

1
5
G(1)G(3) <

2
3
G(5) <

√
1
5
G(1)G(3) (22.18)

complete the set of positive-definiteness conditions for the stored energy density
w along with the classical inequalities for Lame’s constants. The latter, along
with (22.17) and (22.18), are assumed to hold in the following sections.

22.5 Bolted-Layers

The system we consider here is given by an infinite layer of thickness H . We treat
the latter as a periodic assembly of rectangular prisms of dimensions L1, L2 and
H along the directions e1, e2 and e3, respectively. We therefore restrict our at-
tention to the base element of the paving, the prism centered at the origin of our
reference. We call S[−1], S[+1], S[−2], S[+2], S[−3], and S[+3] the six rectangular
portions of the boundary of the base element, where the superscripts refer to the
corresponding outward-oriented unit normals: e1, −e1, e2, −e2, e3, and −e3, re-
spectively.

In the problem considered here, the displacements are inhibited on the “lower
boundary” S[−3] while negative (compressive) ortho-fiber tension is applied on both
S[−3] and on the “upper boundary” S[+3]. We imagine that this condition is re-
alized physically by regular arrays of bolts implanted along the two boundaries,
anchored at a depth d which small compared to the thickness H , and properly
pretensioned by screwing the externally accessible nuts. Representing the assigned
pretension by the surface density F̂ , one can implement these conditions in the
form

u = 0 in S[−3], f = −F̂ d in S[−3], f = −F̂ d in S[+3]. (22.19)

To have the considered base element representative of the behavior of the whole
layer we assign periodic boundary conditions in the form

u|S[−1]

(
−L1

2
, ·, ·
)

= u|S[+1]

(
L1

2
, ·, ·
)
,

u|S[−2]

(
·, −L2

2
, ·
)

= u|S[+2]

(
·, L2

2
, ·
)
,

ς|S[−1]

(
−L1

2
, ·, ·
)

= ς|S[+1]

(
L1

2
, ·, ·
)
,
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ς|S[−2]

(
·, −L2

2
, ·
)

= ς|S[+2]

(
·, L2

2
, ·
)
,

ω|S[−1]

(
−L1

2
, ·, ·
)

= ω|S[+1]

(
L1

2
, ·, ·
)
,

ω|S[−2]

(
·, −L2

2
, ·
)

= ω|S[+2]

(
·, L2

2
, ·
)
.

Attempting to solve Euler’s equations (22.7), (22.8), (22.14), and (22.15) demands
computing τ and ξ according to the expression of the elastic energy density given
in Sect. 22.4. Using in addition the boundary condition introduced in this section
will give a solution of the form

u3 = − F̂ d

2(λ + 2μ)

(
1 +

sinh(x3/l̂)

sinh(H/(2l̂))

)
, l̂ :=

√
3G(1) + 2G(2)

5(λ + 2μ)
, (22.20)

where l̂ plays the role of internal length. Notice that the displacement field in (22.20)
is characterized by a “vertical” strain ∂u3/∂x3 with exponential decay with re-
spect to the distance from the upper and lower boundaries. We also remark that
the solution in (22.20) is unique, as it can be shown in view of the boundary
conditions and of the assumed positive-definiteness of the stored energy den-
sity.

22.6 Eccentric Boundaries

Under the same geometry as in Sect. 22.5, we consider now a different type of
boundary conditions apt to implement “rugosity” or other physical situations as-
similable to an eccentricity e of the surface tractions of magnitude comparable
to internal lengths of the model. We focus on the shear layer problem. We as-
sign

t = −F̃e1 in S[−3],

t = F̃e1 in S[+3],
(22.21)

and implement the eccentricity e of the boundary in the form of ortho-fiber cou-
ples:

μ = asym
(
t⊗ (−ee3)

)
in S[−3],

μ = asym
(
t⊗ (ee3)

)
in S[+3].

(22.22)

We additionally require antisymmetry of the displacements on the upper and lower
boundaries in order to exclude uncontrolled rigid motions:

u|S[−3]

(
·, ·, −H1

2

)
= u|S[+3]

(
·, ·, H1

2

)
. (22.23)
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Following the same procedure addressed in Sect. 22.5 but using (22.21)–(22.23)
instead of (22.19), one obtains the solution

u1 =
F̃

μ

(
x3 + e

sinh(x3/l̃)
sinh(H/(2l̃))

)
,

l̃ =

√
1
3μ

[
G(1)

5
+

4
5
G(2) + G(3) + G(4) +

4
3
G(5)

]
,

(22.24)

where the internal length l̃ is given evidence. Once more the solution is unique.
We remark, moreover, that (22.24) differs from the classical (1st-grade) solution
of the shear-layer problem for an additional amount of shear strain, computed as
(∂u3/∂x1 + ∂u1/∂x3)/2, decaying exponentially with respect to the distance from
the upper, “eccentric” boundary.

22.7 Conclusions

In this work we proposed an interpretation of the additional boundary conditions
allowed by 2nd-grade models on the normal-to-the-boundary derivative of the dis-
placement. This is based on the concept of a material ortho-fiber that can indepen-
dently extend or compress and rotate. Example boundary value problems were used
to demonstrate the effect of these additional boundary conditions and how they can
be applied in different settings. The advantage over past work is that the proposed
concept of ortho-fiber has a clear physical meaning, allowing a more confident use
of higher-order boundary conditions for general boundary value problems.
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Chapter 23
Gradient Theory of Media with Conserved
Dislocations: Application to Microstructured
Materials

Sergey Lurie, Petr Belov, and Natalia Tuchkova

Abstract In the paper, a rigorous continuous media model with conserved dislo-
cations is developed. The important feature of the newly developed classification
is a new kinematic interpretation of dislocations, which reflects the connection of
dislocations with distortion, change in volume (porosity), and free forming. Our
model generalizes those previously derived by Mindlin, Cosserat, Toupin, Aero–
Kuvshinskii and so on, and refines some assertions of these models from the point
of view of the account of adhesive interactions.

23.1 Introduction

Gradient theories have their origin in work written over a half century ago, see the
review of Mindlin (1972) [17]. In most applications of gradient theories, second
gradient theories have been used for describing of the size effects in the miniatur-
ized structures and devices [2, 1, 4, 3, 5–8, 16, 17, 13–15] because of their relative
simplicity. It has been shown that gradient theories are quite effective in the analy-
ses of the media at the nano- and micro-levels. We surmise that gradient corrections
to the physical equations of continuous media (the Laplace equation, the Maxwell
equations, etc.) can also significantly extend the scope of their validity and make
them suitable for predicting and interpreting the properties of nanostructured me-
dia, materials, and small-size devices.
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In the present work, the second-order unified gradient model of the continuous
media with conserved dislocations is used to describe the spectrum of cohesion and
the superficial phenomena. Generalization of the more common isotropic gradient
Mindlin’s model with a complete description of corresponding adhesive properties
of the boundary surfaces for the elastic bodies is offered. Actually, the gradient
continual theory of adhesive interactions is being developed. Variation formulations
of the generalized applied models of the medium of Toupin’s type are received.
They are constructed using of the additional hypothesis which is generalization of a
hypothesis of Aero–Kuvshinskii about proportionality of spins and vortices of dis-
placements. These models have only one additional physical parameter quantifying
strain-gradient effects; the models are simple enough and can be used for simulation
in mechanics of filled composites because they give full enough description of the
cohesion field with adhesion interactions in the contact zone of different compo-
nents [9–12].

Let us assume that the kinematic relations of the media under consideration are
defined by, generally speaking, asymmetric Cauchy relations d0

in = Ri,n and Pap-
kovich non-homogeneous equations [4, 3]:

din,mΘnmj = Ξij . (23.1)

Here din = γin + (1/3)θδin − ωkΘink, Ri is a continuous displacement vector,
d0

ij = Ri,j is a distortion tensor, γin is a strain deviator tensor, θ is the change in
volume, ωk is a vector of elastic spins, Θijk is the permutation symbol, δij is the
Kronecker’s delta; Ξij is a second-rank pseudo-tensor which defines incompatibility
of displacements.

The tensor Ξij is the dislocations density tensor [4, 3, 9, 10]. This means that in
the case under consideration the continuum with a field of defects, dislocations, is
considered. Solution of the non-homogeneous equations (23.1) can be presented as
the sum dij = Ri,j + dΞ

ij , where d0
in,mΘnmj = 0, dΞ

ij is a partial solution of the
non-homogeneous equation (Ξij �= 0). Along with a continuous component, dΞ

ij ,
one can consider quantities γΞ

ij , ωΞ
k and θΞ as generalized displacements, [γΞ

in +
(1/3)θΞδin − ωΞ

k ink]mΘnmj = Ξij �= 0. The general solution of the Papkovich
non-homogeneous (23.1) can be written in the symmetrized form:

γij =
1
2
(Ri,j + Rj,i)−

1
3
Rk,kδij + γΞ

ij ,

ωk = −1
2
Ri,jΘijk + ωΞ

k ,

θ = Rk,k + θΞ .

Three types of dislocations are defined, namely related to γΞ
ij , ωΞ

k and θΞ :

Ξij =
[
γΞ

in +
1
3
θΞδin − ωΞ

k Θink

]

,m

Θnmj

= Ξγ
ij + Ξθ

ij + Ξω
ij .
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Here

Ξγ
ij = γΞ

in,mΘnmj , Ξθ
ij =

1
3
θΞ

,mΘimj , Ξω
ij = −ωΞ

k,mΘnkiΘnmj .

The quantities Ξγ
ij , Ξθ

ij , Ξω
ij are the sources of the corresponding three types of

dislocations: γ-dislocations, θ-dislocations ω-dislocations. The law of conservation
of dislocations holds: Ξγ

ij,j = 0, Ξθ
ij,j = 0, Ξω

ij,j = 0.
In the recent works [2, 8–11], the minimal variant of the theory of the media

with conserved dislocations was elaborated on the base of the kinematic variational
principle [4, 9–11]. It was shown that for such continuous media it is generally
possible to write the following equation for potential energy densities in the volume
V and on the surface F :

UV = UV

(
d0

ij ; d
Ξ
ij ;Ξij

)
, UF = UF

(
dΞ

ij , d
0
ij

)
,

U =
∫∫∫

UV dV +
∫∫∫

UF dF.

For physically linear continuous media, the potential energy densities in the volume
and on the surface is a quadratic form of its arguments:

UV =
1
2
(
C11

ijnmRn,mRi,j + 2C12
ijnmRn,mdΞ

ij

+ C22
ijnmdΞ

nmdΞ
ij + C33

ijnmΞnmΞij

)
,

UF =
1
2
(
A11

ijnmd0
nmd0

ij + A12
ijnmd0

nmdΞ
ij + A22

ijnmdΞ
nmdΞ

ij

)
.

(23.2)

Note that the kinematic variables of the model (23.2) are defined by Rid
Ξ
ij , and

the kinematic parameters of the model are Ri, dΞ
ij , gradients of displacements gra-

dients Ri,j and density of dislocations Ξij . The tensors of moduli Cpq
ijnm, Aαβ

ijnm

in (23.3) define the physical constants of the model (constitutive equations) in the
volume and on the surface. The structure of these tensors will be presented in more
detail below. The mathematical formulation of the model (constitutive equations,
equilibrium equations and boundary value problem as a whole) is completely de-
fined by the potential energy. Therefore, for brevity, we will formulate only the
density of potential energy in a volume and on a surface.

23.2 Variational Model of Generalized Continuous Media

Let us examine the more general Mindlin model of the medium with conserved
dislocations rather than the model (23.2). In the general model, the displacement
vector Ri and free distortion tensor dΞ

ij are also independent kinematic variables.
The kinematic variables Ri, dΞ

ij and their gradients Ri,j , dΞ
ij,k are the independent

kinematic parameters [16]. Let us propose that the energy density UV depends on
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the full curvature tensor dΞ
in,k. Then the potential energy densities in the volume and

on the surface, UV and UF , can be written in the following form:

UV =
1
2
[
C11

ijnmRi,jRn,m + 2C12
ijnmRi,jd

Ξ
nm

+ C22
ijnmdΞ

ijd
Ξ
nm + Cijknmld

Ξ
ij,kd

Ξ
nm,l

]
,

UF =
1
2
[
A11

ijnmRi,jRn,m + 2A12
ijnmRi,jd

Ξ
nm + A22

ijnmdΞ
ijd

Ξ
nm

]
,

(23.3)

where Cαβ
ijnm is the tensor of generalized elastic constants of the forth order

(α, β = 1, 2), Cijknml is a Mindlin’s tensor quantifying gradient effects, Aαβ
ijnm

is the tensor of the physical constants of the model on the surface. Note, that
in the particular case (see (23.2)) the potential energy density depended only on
the anti-symmetric tensor Ξij of curvature tensors dΞ

in,k with respect to indices
n, k. By analogy with the dislocations density tensor, the disclinations density ten-
sor is naturally entered: Tijk = dija,bΘabk, where dija are the curvature tensors,
dijk = (Ri,j + dΞ

ij),k. Let us consider a further gradient elastic medium where the
following conditions are satisfied: Tijk = dija,bΘabk = 0. These integrability con-
ditions represent the existence criterion for the tensor potential of the tensor of the
curvatures dija = (Ri,j + dΞ

ij),a. The equation Tijk = 0 is a necessary and suffi-
cient condition for the absence of the disclinations field in the considered medium.
Thus, the generalized model (23.3) also concerns the mediums with conserved dis-
locations because the disclinations are absent [3]. The conservation law takes place
for the dislocation tensor Ξij , too.

For an isotropic, generally asymmetrical model of a continuum, tensors Cαβ
ijnm

in (23.3) have the usual structure

Cαβ
ijnm = λαβδijδnm +

(
μαβ + χαβ

)
δinδjm +

(
μαβ − χαβ

)
δimδjn, (1, 2, 3),

where μαβ are analogs of the shear modulus; 2μαβ + 3λαβ are spherical tensors;
χαβ are the third Lame coefficients for an asymmetrical model. The tensor Cijknml

has the same structure as in Mindlin theory, with 11 independent moduli. The tensor
moduli Aαβ

ijnm for the surface of the body with normal vector ni (ηmp = δmp −
nmnp) can be represented as follows [4, 9]:

Aαβ
ijnm = λαβ

F ηijηnm + δαβ
F ninnηjm

+
(
μαβ

F + χαβ
F

)
ηinηjm +

(
μαβ

F − χαβ
F

)
ηimηjn. (23.4)

Taking into account (23.3), we can find the constitutive equations and write the
variational equation of the problem δL = δ(A− U) = 0:

δL =
∫∫∫ [(

C11
ijnmRn,mj + C12

ijnmdΞ
nm,j + PV

i

)
δRi

+
(
Cijknmld

Ξ
nm,lk − C12

ijnmRn,m − C22
ijnmdΞ

nm

)
δdΞ

ij

]
dV
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+
∫∫
©
{[

PF
i −

(
C11

ijnmRn,m + C12
ijnmdΞ

nm

)
nj

+
(
A11

ijnmRn,mj + A12
ijnmdΞ

nm,j

)]
δRi

−
[
A12

ijnmRn,m + A22
ijnmdΞ

nm + Cijknmlnkd
Ξ
nm,l

]
δdΞ

ij

}
dF

−
∑∮ (

A11
ijnmRn,m + A12

ijnmdΞ
nm

)
vjδRi ds = 0, (23.5)

where vj is a normal to the bars on the surface, A is the work of external forces
in the volume and on the surface, A =

∫∫∫
PV

i Ri dV +
∫∫◦PF

i Ri dF ; PV
i , PF

i are
the given densities of volume and surface forces. It is important to point out that
the dimension of moduli Cijknml differs by a square of length from the dimension
of moduli Cαβ

ijnm. As a result, the account of the contribution of the invariants of
the dislocation tensor Cijknmld

Ξ
ij,kd

Ξ
nm,l in the expression for the potential energy

(23.3) inevitability results in the volumetric scale effects. It should be also noted that
the dimension of moduli of adhesion Aαβ

ijnm in (23.3) and (23.5) also differs from
the bulk moduli by the dimension of length. Thus, the account of the component
of adhesion in the expression for potential energy (23.4) results in the surface scale
effects.

23.3 Decomposition of Equilibrium Equations

Let us introduce the potential vector-function ϕi using the following equations

dΞ
nm = C−22

nmabC
12
abpqϕp,q, Rn = enkpqϕp,qk − ϕn, (23.6)

where eijnm = λ∗δijδnm + (μ∗ + χ∗)δinδjm + (μ∗ − χ∗)δimδjn is the normal-
ized tensor of the effective moduli for the volumetric gradient effects. For isotropic
media, the components of the tensor eijnm can be submitted as linear combinations
from components of the tensor CijknmlC

−22
nmabC

12
abpq. Substituting (23.6) into equa-

tions of equilibrium for the moments in (23.5), Cijknmld
Ξ
nm,lk − C12

ijnmRn,m −
C22

ijnmdΞ
nm = 0, we can see that the nine equations of equilibrium for the moments

in (23.5) are automatically satisfied for an arbitrary vector, ϕn. Consider the equi-
librium equations for forces in (23.5), C11

ijnmRn,mj + C12
ijnmdΞ

nm,j + P 3D
i = 0.

Substituting (23.6) into these equations and rearranging terms, we obtain the equa-
tions of equilibrium of isotropic strain-gradient elasticity in decomposed form:

Lij(Hjkϕk) + PV
i = 0, (23.7)

where Lij(·) = (μ + χ)(·),ppδij + (μ + λ− χ)(·),ij is the operator of the classical
theory of elasticity; the effective moduli (μ + χ)(μ + λ − χ) are defined by the
relations

Cijpq = C11
ijpq−C12

ijnmC−22
nmabC

12
abpq = λδijδnm +(μ+χ)δinδjm +(μ−χ)δimδjn,
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Hij(·) is a generalized Helmholtz operator,

Hij(·) = l21(·),ppδij +
(
l22 − l21

)
(·),ij − δij ,

l21 = (μ∗ + χ∗)
μ11 + χ11

μ + χ
, l22 = (2μ∗ + λ∗)

2μ11 + λ11

2μ + λ
.

Equation (23.7) states that the general integral of equations of equilibrium can be
written as a sum of that of the classical equations of equilibrium and that of gener-
alized Helmholtz equations. It is seen from the structure of the operator (23.7) that
the total solution of the boundary problem can be represented in two different forms.
The first form of solution allows defining the classical field Uj which satisfies the
classical equations of equilibrium Hjkϕk = Uj , LijUj +PV

i = 0. The second form
of solution gives the definition of the local cohesive field uj satisfying the general-
ized Helmholtz equations Ljkϕk/(μ+χ) = uj , (μ + χ)Hijuj + PV

i = 0. Here l21,
l22 are the only two nonclassical physical constants of the model that determine the
cohesive interactions [9].

Note that we use classification of kinematics, which allows us to introduce three
types of dislocations: γ-dislocations, ω-dislocations, and θ-dislocations. The offered
classification allows prediction of certain particular cases of dislocations and exam-
ination of some interesting exact special cases of the theory when only one or two
types of dislocations are dominating in the medium. In special models, it is pos-
sible to reduce the number of degrees of freedom, which essentially simplifies the
research of separate properties of the mediums with conserved dislocations.

Let us consider the Cosserat media model as the theory of ω-dislocations. It is a
special case of the general model of medium with the conserved defects in which
the tensor of free distortion dΞ

ij = γΞ
ij + (1/3)θΞδij − ωΞ

k iijk is determined only
by free rotations dΞ

ij = −ωΞ
k Θijk, free deformations γΞ

ij and θΞ are equal to zero,
γΞ

ij = 0, θΞ = 0. Then the potential energy of the generalized Cosserat model
with adhesive properties of a surface is defined by the energy densities (C33

ijnm =
CabjcdmΘabiΘcdn):

UV =
(
C11

ijnmRi,jRn,m − 2C12
ijnmΘnmqRi,jω

Ξ
q

+ C22
ijnmΘijpΘnmqω

Ξ
p ωΞ

q + C33
ijnmωΞ

i,jω
Ξ
n,m

)
/2,

UF =
(
A11

ijnmRi,jRn,m − 2A12
ijnmΘnmqRi,jω

Ξ
q + A22

ijnmΘijpΘnmqω
Ξ
p ωΞ

q

)
/2.

Similarly, the porous media model as the theory of θ-dislocations can be con-
sidered. For this model, in the kinematic model only scalar porosity characteristic
prevails dΞ

ij = (1/3)θΞδij , θΞ �= 0, γΞ
ij = 0, ωΞ

k = 0. As a consequence, the media
with the free forming (γ-dislocations) can be considered as such a medium in which
γ-dislocations prevail, so that γΞ

ij �= 0, θΞ = 0 and ωΞ
k = 0. As a result, it is easy

to write the density of potential energies in the volume and on the surfaces for the
generalized porous model and for the model of the media with the free forming.

The “minimal” model of the media with conserved dislocations (23.2) can be
obtained also as a particular case of the common model (23.3). Assume that the
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tensor Cijknml has the following specific structure: Cijknml = C33
ianbΘjkaΘmlb.

Then (23.3) gives the strain energy densities of the “minimal” model (23.2).
In this model, the volume density depends on the quadratic form of the dislo-

cation density Ξij . Thus the model (23.2) is a model of the media with conserved
dislocations of the minimal complexity. Nevertheless, it allows studying interaction
of various types of dislocations contained in the potential energy. Moreover, it re-
mains as full as the generalized Mindlin’s model [16] because both characteristic
lengths are present in this theory.

23.4 Generalized Toupin Model as Applied Model of Mindlin
Theory

To describe the generalized Toupin model of media [16], let us introduce a gener-
alization of the hypothesis about the proportionality of spins and vortices for the
continuous media with the conserved dislocations (generalized Aero–Kuvshinskii
hypothesis [1]):

dΞ
ij = aijnmRn,m,

aijnm = aδijδnm + (b + c)δinδjm + (b− c)δimδjn,
(23.8)

where a, b, c are some constants. The densities of energy for the generalized Toupin
model are obtained as a special case of the general theory by taking into ac-
count (23.5) and (23.8):

UV =
1
2
(EijnmRi,jRn,m + EijknmlRi,jkRn,ml),

UF =
1
2
AijnmRi,jRn,m,

Eijnm = C11
ijnm +

(
C12

abnmaabij + C12
abijaabnm

)
+ C22

abcdaabijacdnm

= Enmij ,

Eijknml = Cabkcdlaabijacdnm = Enmlijk,

Aijnm = A11
ijnm +

(
A12

abnmaabij + A12
abijaabnm

)
+ A22

abcdaabijacdnm

= Anmij .

(23.9)

Let us notice that the structure of the tensor Aijnm here differs from the struc-
ture tensor of the adhesive moduli Apq

ijnm in (23.4). If the tensor Apq
ijnm satisfies

Apq
ijnmnj = 0 and Apq

ijnmnm = 0, the tensor Aijnm does not possess such prop-
erties any more. The tensor of the adhesive properties here possesses properties of
the general tensor of the fourth rank, which is the transversal-isotropic tensor corre-
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sponding to the normal to a surface:

Aijnm =
[
λF (δij − ninj)(δnm − nnnm) + δFninn(δjm − njnm)

+ (μF + χF )(δin − ninn)(δjm − njnm)

+ (μF − χF )(δim − ninm)(δjn − njnn)
]

+ α
(
ninm(δjn − njnn) + nnnj(δim − ninm)

)

+ β
(
ninj(δnm − nnnm) + nnnm(δij − ninj)

)

+ Aninjnnnm + B(δin − ninn)njnm. (23.10)

In the square brackets, the part of adhesion tensor coinciding in structure with the
tensor Apq

ijnm in (23.4) is allocated.
Let us examine a special case of the general Toupin model (23.9) which was used

for construction of the interphase layer model and for prediction of the micro- and
nanocomposites’ properties [10–12]. Assume that Eijknml = EijrkEnmrl/C. As a
result, in accordance with (23.9), we obtain the following energy densities:

UV =
1
2

[
EijnmRi,jRn,m +

1
C

(EijrkRi,jk)(EnmrlRn,mk)
]
,

UF =
1
2
AijnmRi,jRn,m.

(23.11)

Equilibrium equations for the forces for the model (23.11) can be written:

LijHjkRk + PV
i = 0, Hjk = (·)δjk − Ljk(·)/C. (23.12)

It is seen from the structure of operator (23.12) that the total solution of the bound-
ary problem can be represented as the sum of two components: the classical field
Uj = Rj − LjkRk/C satisfying the classical equations of equilibrium of elasticity
theory LijUj + PV

i = 0 and the local cohesive field uj = −LjkRk/C satisfying
the generalized Helmholtz equations Lijuj − Cui + PV

i = 0. Here C is an addi-
tional physical constant of the model (the nonclassical module) that determines the
cohesive interactions (see [9]). It was shown that the physical constant C can be
defined through specific surface energy and other parameters of fracture mechanics:
the length of the Barenblatt’s zone, stress intensity factor, and so on. Gradient cohe-
sion solution uj allows receiving the strong theoretical justification for the famous
hypothesis of Barenblatt in fracture mechanics [9]. Let us notice that the mathe-
matical formulation of the applied model of the interphase layer (23.12) can be ob-
tained from the more general model (23.5)–(23.7) as a special case if we assume that
the following relations take place: ϕn = −Rn instead of more common relations
Rn = enkpqϕp,qk − ϕn. Nevertheless, the advantage of the interphase layer model
is its relative simplicity and that the accurate physical objects, namely classical and
cohesion displacement fields, are used in it.
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23.5 Conclusions

The generalized model of the Mindlin’s media model with corresponding spec-
trum of adhesive interactions is constructed. The energetically consistent continual
model of adhesive interactions is offered. For comparison we note that the variant
of the continual model of adhesive interactions of Young–Laplace [6] is not con-
sistent in the framework of the classical theory of elasticity. This model demands
definition of the second derivative of displacements on a boundary surface. Such
smoothness of the solution cannot be provided by the classical Lame operator. The
suggested gradient model of adhesion is completely consistent and is full enough.
In the works [4, 9] it is shown that this model describes all known adhesion ef-
fects (superficial tension, capillarity, a meniscus, and so forth). This model also
models the adhesion damage effects on the interfaces with the aid of parameters
Aninjnnnm + B(δin − ninn)njnm in (23.10). It is expected that using the adhe-
sion model with parameters Aninjnnnm+B(δin−ninn)njnm will allow carrying
out the real optimization of technological processes for the micro-structured mate-
rials.

It was shown that in the generalized Mindlin model all gradient effects in a vol-
ume are described only by two scale parameters, l1 �= 0 and l2 �= 0, which corre-
spond to scale effects for a potential and vortical component of the displacements.
All other gradient parameters (there are 9 of them) are included into boundary con-
ditions. In this regard, “adhesive generalization” of the gradient models is rather
relevant. Adhesive components in boundary conditions define the main effects as
adhesive moduli differ from the classical moduli by a length; at the same time, the
gradient moduli defined in a volume differ from the classical by a square of length.

The “minimal” gradient model (23.2) and its applied model of an interphase layer
(23.11)–(23.12), in which parameters l1, l2 are proportional, also describe all scale
effects characteristic for the general Mindlin model.

In spite of the fact that in these models there is only one additional gradient
parameter in comparison with the theory of elasticity, they describe a full spectrum
of the scale effects in a volume and a full spectrum of the adhesive interactions,
characteristic for the general Mindlin model.

As a result, the applied gradient model of the interfacial layer is very effective in
modeling of the properties of micro-and nano-structured materials [9–12].
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(Often with Application to Dislocations)



Chapter 24
Dislocations in Generalized Continuum
Mechanics

Markus Lazar

Abstract An overview on dislocations in the framework of different types of gener-
alized continua is given. We consider Cosserat elasticity, gradient Cosserat elasticity,
strain gradient elasticity, and dislocation gauge theory. We review similarities and
differences between these generalized continuum theories. In fact, we discuss the
constitutive relations for the linear and isotropic case. Moreover, we demonstrate
how the characteristic length scales are given in terms of the material parameters.
Also, we discuss the mathematical solutions of the elastic fields of a screw disloca-
tion.

24.1 Introduction

In this paper, we want to give an overview of theories of generalized elasticity.
The theory of Cosserat elasticity [3] is maybe the simplest generalization of ‘classi-
cal’ elasticity. It describes a continuum with orientation (rotational microstructure).
Also, it possesses asymmetric force stresses and moment stresses. Characteristic
length scale parameters appear in Cosserat elasticity.

Other generalized continuum theories are micromorphic elasticity [18, 6] for
more complicated microstructures and gradient elasticity [18, 1, 2] in order to model
microstructures and to succeed regularization of stress and strain fields. Nonlocal
theories [12, 7, 13] contain nonlocal constitutive relation to describe the discrete-
ness coming from the lattice. Dislocation gauge theory [10, 4, 17] turns out to be a
straightforward theory of dislocations.

In this context, the following question comes up: What is the proper framework
of a dislocation theory? First of all, we have to mention that a dislocation field the-
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ory is not a Cosserat theory in contrast to what is often claimed in the literature.
First, Günther [8] formulated the dislocation density tensor as the incompatibility
condition in the framework of Cosserat elasticity. Schaefer [20] pointed out that
constitutive equations for the dislocation density tensor are missing in conventional
dislocation theories. Later, Eringen and Claus [5] showed that a dislocation theory is
contained in micromorphic elasticity as a special case. Recently, Lazar and Anastas-
siadis [17] have proven that the (static) translation gauge theory of dislocations can
be derived from micromorphic elasticity. Therefore, a static dislocation field theory
is a special version of micromorphic elasticity.

24.2 Cosserat Elasticity

Cosserat elasticity [3, 19] can be used to describe materials with three translational
degrees of freedom and three micro-rotational degrees of freedom. In Cosserat elas-
ticity, the total deformation tensors (relative deformation tensor γT

ij and wryness
tensor κT

ij) are given in terms of the displacement vector ui and the microrotation
axial vector φi, and may be decomposed into the elastic (γij , κij) and plastic parts
(γP

ij , κ
P
ij)

γT
ij = ∂jui + εijkφk = γij + γP

ij , (24.1)

κT
ij = ∂jφi = κij + κP

ij . (24.2)

The stored energy reads

W =
1
2
σijγij +

1
2
μijκij . (24.3)

The force and moment stress tensors are defined by

σij =
∂W

∂γij
, μij =

∂W

∂κij
. (24.4)

The equilibrium conditions turn out to be

∂jσij = 0 (force equilibrium), (24.5)

∂jμij − εijkσjk = 0 (moment equilibrium). (24.6)

The local, linear, isotropic constitutive relations with six material parameters are:

σij = λδijγkk + (μ + η)γij + (μ− η)γji, (24.7)

μij = αδijκkk + (β + γ)κij + (β − γ)κji. (24.8)

One can define two characteristic lengths l and h in terms of the six material param-
eters according to:
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l2 =
(μ + η)(β + γ)

4μη
, h2 =

α + 2β
4η

. (24.9)

The solution of a screw dislocation in Cosserat elasticity was given by Kessel [11]
and Nowacki [19]. For a straight screw dislocation with the dislocation density ten-
sor, αzz = bδ(x)δ(y), the force stress reads (r =

√
x2 + y2)

σzφ =
b

2π
1
r

[
μ + η

r

h
K1

(
r

h

)]
, (24.10)

σφz =
b

2π
1
r

[
μ− η

r

h
K1

(
r

h

)]
(24.11)

and has 1/r-singularities. On the other hand, the moment stress is given by

μrr = − b

2π

[
β

r2

(
1− r

h
K1

(
r

h

))
+

α + 2β
2

K0

(
r

h

)]
, (24.12)

μφφ =
b

2π

[
β

r2

(
1− r

h
K1

(
r

h

))
− α

2
K0

(
r

h

)]
, (24.13)

μzz =
bα

4πh2
K0

(
r

h

)
, (24.14)

and it possesses 1/r2- and ln r-singularities.

24.3 Gradient Cosserat Elasticity

Due to the appearance of singularities in the stress fields of dislocations, Lazar et
al. [14, 16] have introduced a simple version of gradient Cosserat elasticity in order
to regularize the force and moment stress fields of dislocations in Cosserat elasticity.
The stored energy reads

W = W (γij , κij , ∂kγij , ∂kκij) (24.15)

and

W =
1
2
σijγij +

1
2
μijκij +

1
2
ε2∂kσij∂kγij +

1
2
ε2∂kμij∂kκij , ε ≥ 0. (24.16)

Such a theory possesses three internal length scales h, l and ε. In addition to the
constitutive relations (24.7) and (24.8), we have additional constitutive relations
for the double force and double moment stress tensors with the appearance of the
gradient parameter ε:

τijk =
∂W

∂(∂kγij)
= ε2∂kσij , λijk =

∂W

∂(∂kκij)
= ε2∂kμij . (24.17)
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Thus, such a gradient Cosserat elasticity has 6 + 1 material parameters. The field
equations of gradient Cosserat elasticity reduce to:

∂j

(
σij − ∂kτijk

)
= 0 (force equilibrium), (24.18)

∂j

(
μij − ∂kλijk

)
− εijk

(
σjk − ∂lτjkl

)
= 0 (moment equilibrium). (24.19)

The dislocation density of a screw dislocation in gradient Cosserat elasticity
reads: αzz = [b/(2πε2)]K0(r/ε). The force stress of a screw dislocation is cal-
culated as

σzφ =
b

2π
1
r

{
μ

[
1− r

ε
K1

(
r

ε

)]
+

ηh2

h2 − ε2

[
r

h
K1

(
r

h

)
− r

ε
K1

(
r

ε

)]}
,

(24.20)

σφz =
b

2π
1
r

{
μ

[
1− r

ε
K1

(
r

ε

)]
− ηh2

h2 − ε2

[
r

h
K1

(
r

h

)
− r

ε
K1

(
r

ε

)]}
,

(24.21)

and the moment stress reads

μrr = − b

2π
1
r2

{
β − 1

h2 − ε2

[
β

(
hrK1

(
r

h

)
− εrK1

(
r

ε

))

+
α + 2β

2
r2

(
K0

(
r

h

)
−K0

(
r

ε

))]}
, (24.22)

μφφ =
b

2π
1
r2

{
β − 1

h2 − ε2

[
β

(
hrK1

(
r

h

)
− εrK1

(
r

ε

))

− αr2

2

(
K0

(
r

h

)
−K0

(
r

ε

))]}
, (24.23)

μzz =
bα

4π
1

h2 − ε2

[
K0

(
r

h

)
−K0

(
r

ε

)]
. (24.24)

In can be seen that the stress fields do not possess singularities. They are zero or
finite at the dislocation line (see Fig. 24.1).

24.4 Strain Gradient Elasticity

As a special case of the simple version of gradient Cosserat elasticity, we obtain
the version of strain gradient elasticity derived by Aifantis [1, 2] and Lazar & Mau-
gin [15]. With φi = 0 and eij = β(ij), the gradient Cosserat elasticity reduces to
the strain gradient elasticity with the following strain energy density

W = W (eij , ∂keij) =
1
2
σijeij +

1
2
ε2∂kσij∂keij , ε ≥ 0 (24.25)
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Fig. 24.1 Characteristic fields of a screw dislocation in gradient Cosserat elasticity. Choice of the
parameters: h = 2ε, μ = 3η

with only one internal length scale ε. It is obvious that it is a particular case of
Mindlin’s gradient elasticity [18] with two length parameters.

The linear, isotropic constitutive relations with 2 + 1 material parameters are
given by

σij = λδijekk + 2μeij , σij = σji, (24.26)

τijk = ε2∂kσij , τijk = τjik, (24.27)

and the field equations reduce to

2∂j

(
σij − ∂kτijk

)
= 0 (force equilibrium). (24.28)

For a screw dislocation with the dislocation density tensor, αzz = [b/(2πε2)] ×
K0(r/ε), the force stress reads [9, 15]

σzφ =
μb

2π
1
r

{
1− r

ε
K1

(
r

ε

)}
. (24.29)

It does not have a singularity.
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24.5 Dislocation Field Theory

In this section, we want to demonstrate how one can derive a dislocation field the-
ory from a compatible micromorphic elasticity using the symmetry of the transla-
tion group. In the framework of micromorphic elasticity, each material point is en-
dowed with three translational degrees of freedom ui and a microdeformation tensor
φij with nine independent components. In the compatible micromorphic elasticity
[18, 6], we have three deformation tensors:

(classical strain tensor) eij = ∂(iuj), (24.30)

(relative deformation tensor) γij = ∂jui + φij , (24.31)

(microdeformation gradient) κijk = ∂kφij . (24.32)

Using the following statements, we can derive the translation gauge theory of
dislocations as a particular version of micromorphic elasticity:

• Postulate a local T (3)-transformation for the displacement vector ui:

u∗
i = ui + τi(x), τi(x)-local (or space-dependent) translations. (24.33)

• Identify the microdeformation tensor φij with the translational gauge potential
(negative plastic deformation) which possesses an ‘inhomogeneous’ transfor-
mation under the translation group:

φ∗
ij = φij − ∂jτi(x). (24.34)

• Require translation-gauge invariance of the physical state quantities.

Using the argument of translational invariance, the state quantities of the disloca-
tion theory are derived from the micromorphic deformation tensors (24.30)–(24.32)
as follows:

(incompatible elastic deformation tensor) γij → βij := ∂jui + φij , (24.35)

(dislocation density tensor) κijk → Tijk := −2κi[jk] = ∂jφik − ∂kφij (24.36)

and αij = 1
2εjklTikl. The classical strain tensor eij is not a state quantity because it

is not gauge invariant. Thus, the relative deformation tensor reduces to the incom-
patible elastic distortion tensor and the microdeformation gradient to the dislocation
density tensor. The stored energy of the dislocation field theory is a quadratic func-
tion of the state variables βij , Tijk:

W = W (βij , Tijk). (24.37)

The corresponding stress tensors are the force stress tensor and the pseudomoment
stress tensor given by

σij =
∂W

∂βij
, Hi[jk] = 2

∂W

∂Ti[jk]
. (24.38)
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Moreover, σij is a dislocation stress. The linear, isotropic constitutive relations pos-
sess six material parameters:

σij = λδijβkk + (μ + γ)βij + (μ− γ)βji, (24.39)

Hijk = c1Tijk + c2(Tjki + Tkij) + c3(δijTllk + δikTljl). (24.40)

Boundary conditions can be considered by means of a so-called null Lagrangian:

Wbg = ∂j

(
σ0

ijui

)
=
(
∂jσ

0
ij

)
ui + σ0

ij∂jui −→ σ0
ijβij , (24.41)

where σ0
ij is the classical stress of dislocations which plays the role of a background

stress or applied stress. The classical stress acts as a source term in the gauge theory
of dislocations. Using (24.37) and (24.41), the Euler–Lagrange equations are:

δW

δβij
≡ ∂W

∂βij
− ∂k

∂W

∂βij,k
= 0. (24.42)

The equation of motion in terms of the force stress and pseudomoment stress tensors
has the form

Hijk,k + σij = σ0
ij (pseudomoment equilibrium). (24.43)

Thus, the source stress of the pseudomoment stress is the sum of the dislocation
stress and the background stress. The force equilibrium is a continuity equation and
is a trivial consequence of (24.43) since the pseudomoment stress tensor is skew-
symmetric in the last two indices

σij,j = 0 (force equilibrium). (24.44)

It is obvious that the translation gauge theory of dislocations is not a Cosserat theory.
Moreover, the pseudomoment equilibrium may be written in terms of the elastic
distortion as

c1(βik,jk − βij,kk) + c2(βji,kk − βjk,ki + βkj,ki − βki,kj)
+ c3

[
δij(βlk,kl − βll,kk) + βll,ji − βlj,li

]
+ σij = σ0

ij , (24.45)

and in terms of the force stress tensor as
[
(c1 − c2 + 2c3)

2γν
1 + ν

− 2c3γ
]
(δijσll,kk − σll,ij)

−
[
c1(γ + μ)− c2(γ − μ)

]
σij,kk +

[
c1(γ − μ)− c2(γ + μ)

]
(σki,kj − σji,kk)

+
[
2c2μ− c3(γ + μ)

]
σkj,ki + 4μγσij = 4μγσ0

ij . (24.46)

Equation (24.46) is a system of coupled partial differential equations with six mate-
rial parameters.

At this point the following question comes up: How many length scales can we
define in terms of six material moduli? To answer to this question, we calculate the
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Green tensor of the field equation (24.46)

σij = Gijkl ∗ σ0
kl, σ0

ij = Lijδ(x)δ(y)δ(z). (24.47)

The three-dimensional Green tensor is found as

Gijkl =
1
8π

{
(δikδjl + δilδjk)

e−r/�1

 21r
+ (δikδjl − δilδjk)

e−r/�4

 24r

− (δijΔ− ∂i∂j)δkl

[
1
r

(
e−r/�1 − e−r/�2

)
]

− (δjl∂i + δil∂j)∂k

[
1
r

(
e−r/�1 − e−r/�3

)
]

− (δjl∂i − δil∂j)∂k

[
1
r

(
e−r/�4 − e−r/�3

)
]}

, (24.48)

where the characteristic length scales are:

 21 =
c1 − c2

2μ
,  22 =

(1− ν)(c1 − c2 + 2c3)
2μ(1 + ν)

, (24.49)

 23 =
(μ + γ)(c1 − c2 + c3)

4μγ
,  24 =

c1 + c2
2γ

. (24.50)

Thus, the dislocation field theory possesses four length scales. Here,  1 is the length
scale for shear effects,  2 is the length scale for dilatation effects and  3,  4 depend
on γ and they are Cosserat-like length scales (compare with  and h in (24.9)).

For a screw dislocation in the framework of dislocation gauge theory the field
equation (24.45) simplifies to

[
1− c1

μ + γ
Δ

]
βzφ = β0

zφ,

[
1 +

c2
μ− γ

Δ

]
βzφ = β0

zφ (24.51)

with the elastic distortion of a Volterra screw dislocation as source term:
β0

zφ = b/(2πr). From (24.51) we find the relation

c2 = −μ− γ

μ + γ
c1. (24.52)

The length scale of anti-plane strain reduces to

 21 =  24 =
c1

μ + γ
. (24.53)

Finally, the incompatible elastic distortion reads

βzφ =
b

2π
1
r

[
1− r

 1
K1

(
r

 1

)]
, (24.54)

and the asymmetric force stress is given by
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σzφ =
(μ + γ)b

2π
1
r

[
1− r

 1
K1

(
r

 1

)]
, (24.55)

σφz =
(μ− γ)b

2π
1
r

[
1− r

 1
K1

(
r

 1

)]
. (24.56)

The dislocation density tensor reads

αzz = Tzxy =
b

2π 21
K0

(
r

 1

)
, (24.57)

and the pseudomoment stress is

Hxyz = Hyzx = − (μ− γ)b
2π

K0

(
r

 1

)
,

Hzxy =
(μ + γ)b

2π
K0

(
r

 1

)
.

(24.58)

24.6 Conclusions

We have reviewed the following generalized continuum theories of linear elasticity:

• Cosserat elasticity: six material moduli, two length scales, stresses and strains
of dislocations are singular.

• Gradient Cosserat elasticity: 6+1 material moduli, 2+1 length scales, stresses
and strains of dislocations are nonsingular.

• Strain gradient elasticity: 2+1 material moduli, one length scale, force stresses
and strains of dislocations are nonsingular.

• T(3)-gauge theory of dislocations: six material moduli, four length scales, force
stresses and strains of dislocations are nonsingular.

The dislocation field theory, Cosserat elasticity and strain gradient elasticity are
contained in the theory of micromorphic elasticity as shown in Fig. 24.2.

(a) Micromorphic elasticity:
Hijk,k + σij = 0 (hyperstress) Hijk ∼ κijk = φij,k

(b) Dislocation field theory:
Hi[jk],k + σij = 0 (pseudomoment stress) Hi[jk] ∼ Ti[jk] = φik,j − φij,k

(c) Cosserat elasticity:
H[ij]k,k + σ[ij] = 0 (moment stress) H[ij]k ∼ κ[ij]k = φ[ij],k

(d) Strain gradient elasticity:
H(ij)k,k + σ(ij) = 0 (double stress) H(ij)k ∼ κ(ij)k = φ(ij),k ≡ e(ij),k

Fig. 24.2 Flow chart for hyperstresses in generalized elasticity contained in micromorphic elastic-
ity
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Chapter 25
Higher-Order Mesoscopic Theories of Plasticity
Based on Discrete Dislocation Interactions

Robert H.J. Peerlings, Y. Kasyanyuk, A. Roy, and M.G.D. Geers

Abstract In this chapter, a rigorous analysis is given as a reference in which dis-
locations are treated as discrete entities. Then the transition towards a crystalline
continuum is made in a number of steps by subsequent averaging along and perpen-
dicular to the slip direction. This procedure eliminates the short-range dislocation
interactions. Based on the considered idealized configuration, a back-stress term is
derived which allows the conventional theory to predict finite-size pile-ups and turns
out to be virtually identical to the result obtained by means of statistical arguments.

25.1 Introduction

Conventional crystal plasticity theories fail to correctly predict the pile-up of dis-
locations against, e.g., hard particles in a plastically deforming matrix. Instead of
a gradually increasing slip gradient (and therefore dislocation density) towards the
particle, they predict a jump in slip (i.e., a continuous array of super-dislocations)
at the particle-matrix interface. As a consequence, the interaction of the stress fields
within the particle and matrix is incorrectly described and size effects, such as the
Hall–Petch effect, cannot be captured. A number of higher-order crystal plasticity
theories have been proposed in recent years which repair this shortcoming, e.g.,
[1–3]. Most of these theories are phenomenological, and the relationship between
the introduced higher-order terms and the underlying dislocation interactions is not
always very clear.

In this contribution, we aim to pinpoint the precise reasons for the limitations of
the classical theory by studying an idealized pile-up configuration of infinite edge
dislocation walls. A rigorous analysis, in which the dislocations are treated as dis-
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crete entities, serves as a reference. A transition towards a (crystalline) continuum
is then made in a number of steps by subsequent averaging along and perpendic-
ular to the slip direction. It is shown that the latter, i.e., averaging out the internal
structure of an individual wall, eliminates the short-range dislocation interactions
which govern the pile-up response. Based on the idealized configuration consid-
ered, a back-stress term is derived which, when inserted in the conventional theory,
allows it to predict finite-size pile-ups and which turns out to be virtually identical
to that proposed by Groma et al. [2] based on statistical arguments.

25.2 Discrete Analysis

The discrete dislocation configuration on which our analysis is based is shown in
Fig. 25.1. It consists of a series of dislocation walls in an infinite linear elastic
medium. A single slip system is assumed, with discrete slip planes perpendicular
to the y coordinate at a constant spacing h. The dislocation lines are straight, in-
finitely long and perpendicular to the xy-plane. They are organized in planar walls
which are perpendicular to the x-direction. The wall at x = 0 (indicated in red in
Fig. 25.1) is immobilized and the other walls pile-up against it under the influence
of an externally applied shear stress σ. Here we limit ourselves to the case of edge
dislocations with Burgers vector in the positive x-direction; see [6] for the screw
dislocation case, as well as for details of the present analysis.

The relevant stress component for dislocation motion is the shear stress σxy .
As the dislocations sit on the discrete slip planes, this stress component should be

Fig. 25.1 Discrete dislocation configuration considered. The (red) dots at x = 0 represent the
immobile dislocations which form the barrier against which the (blue) dislocations pile-up
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evaluated on such a plane. Given the periodicity of the configuration, we can freely
choose y = 0. The shear stress acting on this slip plane due to a single dislocation
wall at x = xj is given by [4]:

τ(x, xj) =
G

2(1− ν)
b

h

x̄

sinh2 x̄
, (25.1)

where G, ν are the elastic constants, b is the length of the Burgers vector and
x̄ = π(x − xj)/h. This stress field decays rapidly (exponentially) with x and is
of a short-range nature. The infinite walls considered here can indeed be shown not
to generate a long-range stress field as they do not introduce a net incompatibility.

An equilibrium state is reached if for each of the n mobile walls in the pile-up
the applied stress σ is balanced by the sum of the interaction stresses τ exerted by
all other dislocation walls. This condition results in a set of n nonlinear equations
in terms of the n unknowns xi:

σ +
n∑

j=1
j �=i

τ(xi, xj) = 0 (i = 1, . . . , n). (25.2)

These equations have been solved numerically [6]. The numerical solution for
n = 50 and an external stress of σ = 50Gb/(2h(1 − ν)) is shown in the dia-
gram of Fig. 25.1 by the circular markers. Along the vertical axis of the diagram
the local dislocation wall density f has been plotted, which is defined at each wall
position xi (0 < i < n) as f(xi) = 2/(xi−1 − xi+1). Both axes have been made
dimensionless using the slip plane spacing h. The diagram clearly shows the typical
expected pile-up response, with an increasing dislocation density (decreasing wall
spacing) while approaching the barrier at x = 0.

25.3 Averaging Towards Conventional Crystal Plasticity

We now examine the consequences of the transition from the above, fully discrete
analysis to a continuum description in which the precise positions of the individ-
ual dislocations are no longer traced. First, the discreteness of the individual walls
within the pile-up is gradually removed by increasing the number of walls while
reducing the Burgers vector of the dislocations inversely proportionally. Results of
this exercise are shown in Fig. 25.2. They show that “smearing out” of the walls
to—in the limit—a continuous distribution of walls leaves the shape of the pile-up
essentially unchanged and is therefore allowed.

If, however, instead of the (horizontal) discreteness of the walls, we attempt to
average out the (vertical) internal discreteness of the walls, a different conclusion
is reached. Continuous walls are obtained by taking the limit b → 0, h → 0 while
keeping constant the ratio b/h. In this limit, the interaction stress τ as defined above
vanishes for all x̄ > 0. This implies that individual walls can no longer “sense” each
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Fig. 25.2 Discrete pile-up solution (n = 50) and distributions obtained as the discreteness of the
walls is gradually removed by repeatedly doubling reducing the number of dislocations n while
reducing beffective so that the dislocation content nb remains constant

other and the discrete balance equations can no longer be satisfied for finite wall
spacings. As a consequence, the external stress σ drives all walls into the barrier at
x = 0, thus creating a super-dislocation wall there. Removing the discreteness of the
individual slip systems thus results in a non-physical response because it removes
the short-range stress field associated with the wall.

Conventional crystal plasticity theories are fully continuous and thus combine
both limits as discussed above. As a result of their failure to account for the short-
range stresses associated with individual dislocations, they also predict a pile-up of
vanishing width.

25.4 Averaging Towards Higher-Order Crystal Plasticity

The shortcoming of conventional crystal plasticity theories as discussed above can
be partially repaired by incorporating the effect of short-range interactions via a
back-stress. To this end, focus on one of the walls in the discrete dislocation config-
uration of Fig. 25.2 and the interaction with its nearest neighbors only. The resultant
of the interaction stresses τ exerted on the central wall at xi by the nearest neighbors
at xi+1 and xi−1 can be approximated by

τ(xi, xi+1) + τ(xi, xi−1) ≈ − Gb

2π(1− ν)

[
1

xi−1 − xi
− 1

xi − xi+1

]
, (25.3)

where a first-order approximation has been introduced for the hyperbolic sine in
(25.1) and the definition of x̄ has been employed.
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The discrete distances xi−1 − xi and xi − xi+1 may be rewritten in terms of
overall (mesoscopic) quantities by defining the dislocation density ρ at xi as

ρ =
2

h(xi−1 − xi+1)
. (25.4)

A signed, net dislocation density ρGND, also termed Geometrically Necessary Dis-
location (GND) density, may be introduced analogically. In the configuration con-
sidered here (Fig. 25.1), where all dislocations are positive, we have ρGND = ρ, but
for negative dislocations we would have ρGND = −ρ where ρ ≥ 0; in the more
general case of a mixed distribution, the absolute values of the two quantities no
longer coincide, and we can only say that ρ ≥ |ρGND|. The—again signed—spatial
derivative of the GND density is defined consistently with the above as

∂ρGND

∂x
=

2
xi−1 − xi+1

[
1

h(xi−1 − xi)
− 1

h(xi − xi+1)

]
. (25.5)

Combining Expressions (25.4) and (25.5) allows us to eliminate the factor be-
tween brackets in (25.3) to finally obtain the following estimate for the net effect of
short-range interactions with the neighboring walls:

τb = − Gb

2π(1− ν)
1
ρ

∂ρGND

∂x
. (25.6)

This influence of short-range internal stress should be added to the mesoscopic
stress, i.e., the stress field which is the combined effect of external loads and in-
ternal (long-range) stresses due to mesoscopic incompatibilities (or geometrically
necessary dislocations). It therefore enters the crystal plasticity framework like a
back-stress—hence the symbol τb used for it.

Interestingly, Expression (25.6) virtually coincides with that derived by Groma
et al. [2] based on statistical arguments. Inserting it in a crystal plasticity formu-
lation results in pile-ups of finite width, as in the discrete analysis [2, 6, 5]. For
the idealized pile-up configuration considered here, this can be seen as follows. No
long-range internal stresses exist in this configuration and the stress responsible for
dislocation (wall) motion thus equals the sum of the externally applied stress and
the back stress. Rather than by the discrete balance equations (25.2), the equilib-
rium state reached at constant σ is therefore now governed by the continuous bal-
ance equation σ+τb = 0. Substituting the back-stress according to (25.6) and using
ρGND = ρ this equation can be rewritten as

Gb

2π(1− ν)
dρ
dx

− σρ = 0. (25.7)

The solution of this equation clearly is of the form ρ(x) = A exp(x/λ), with
λ = Gb/(2π(1 − ν)σ) and A a constant which remains to be determined. Thus,
rather than the collapse into a wall of super-dislocations predicted by the conven-
tional theory, an exponential increase of the dislocation density towards the barrier
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is now predicted, which appears to qualitatively agree with the discrete solutions
of Fig. 25.2. Note also that the length of the pile-up is predicted to be inversely
proportional to the applied stress by the above analysis.

25.5 Discussion and Concluding Remarks

A more detailed comparison with numerically generated solutions of the discrete
pile-up problem has revealed that the exponential pile-up predicted by the higher-
order theory does not fit very well to some of the discrete results [6]. Recent discrete
simulations (not shown here) show that an exponential pile-up is obtained if only
nearest-neighbor interactions are taken into account in the discrete balance equa-
tions (25.2). This suggests that the assumption that nearest neighbors dominate the
short-range stress fields may be too crude in pile-up situations.

It can be concluded that, whereas higher-order crystal plasticity theories based
on the back-stress (25.6) do repair an essential shortcoming of the conventional
theories, further work needs to be done to make their predictions to be in agreement
with the underlying discrete response.
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Chapter 26
An Approach Based on Integral Equations
for Crack Problems in Standard Couple-Stress
Elasticity

H.G. Georgiadis and P.A. Gourgiotis

Abstract The distributed dislocation technique proved to be in the past an effective
approach in studying crack problems within classical elasticity. The present work
aims at extending this technique in studying crack problems within standard couple-
stress elasticity (or Cosserat elasticity with constrained rotations), i.e., within a the-
ory accounting for effects of microstructure. This extension is not an obvious one
since rotations and couple-stresses are involved in the theory employed to analyze
the crack problems. Here, the technique is introduced to study the case of a Mode I
crack. Due to the nature of the boundary conditions that arise in couple-stress elas-
ticity, the crack is modeled by a continuous distribution of climb dislocations and
wedge disclinations that create both standard stresses and couple stresses in the
body. In particular, it is shown that the Mode I case is governed by a system of cou-
pled singular integral equations with both Cauchy and logarithmic kernels. The nu-
merical solution of this system shows that a cracked solid governed by couple-stress
elasticity behaves in a more rigid way (having increased stiffness) as compared to a
solid governed by classical elasticity.

26.1 Introduction

The present work is concerned with the problem of a Mode I crack in a mate-
rial with microstructure. We assume that the response of the material is governed
by standard couple-stress elasticity (Cosserat elasticity with constrained rotations).
This theory falls into the category of generalized continuum theories and is a par-
ticular case of the general approach of Mindlin [13]. One of the earlier works that
advanced ideas underlying couple-stress elasticity was the treatise by the Cosserat
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brothers [3]. Other important contributions include the work by Toupin [17] and
Mindlin and Tiersten [14].

Earlier applications of couple-stress elasticity, mainly on stress-concentration
problems, met with some success providing solutions physically more adequate than
solutions based on classical elasticity [18]. Work employing couple-stress theories
on elasticity and plasticity problems is also continued in recent years [5, 11, 7].
Nevertheless, there is only a limited number of studies concerning the effects of
couple-stresses in crack problems. One of the earlier works on this subject is that of
Sternberg and Muki [15], who considered the Mode I finite-length crack by employ-
ing the method of dual integral equations. They provided only asymptotic results
and showed that both stress and couple-stress fields exhibit a square-root singular-
ity while the rotation field is bounded at the crack-tip. More recently, Huang et al.
[9] also provided near-tip asymptotic fields for Mode I and Mode II crack prob-
lems by using the method of eigenfunction expansion. In addition, Huang et al.
[10] obtained full-field solutions for a semi-infinite crack by using the Wiener–Hopf
method.

Here, we aim at providing a full-field solution to the Mode I finite-length crack
problem within couple-stress elasticity by introducing an approach based on dis-
tributed dislocations and disclinations. Since the pioneering work of Bilby and Es-
helby [2], the distributed dislocation technique has been employed to analyze var-
ious crack problems in classical elasticity (see, e.g., Hills et al. [8]). The strength
of this analytical/numerical technique lies in the fact that it gives very detailed in-
formation about crack problems at the expense of relatively little computational
demands as compared to the methods of Finite Elements and Boundary Elements.
Although the technique proved to be very successful in studying crack problems
within classical elasticity, it appears that there is no work at all in modeling cracks
with distribution of dislocations and/or disclinations in materials with microstruc-
ture. Therefore, the present work aims at extending the technique in solving crack
problems within couple-stress elasticity. This extension is not an obvious one since
rotations and couple-stresses are involved in the theory employed. In another re-
cent work by the present authors [6], cracks under Mode II and Mode III conditions
were also considered within the same framework. A comparison between the Mode
I case studied here and the Mode II case [6] leads to the conclusion that the opening
mode is mathematically more involved than the shear mode. This is in some con-
trast with situations of classical elasticity where the two plane-strain crack modes
involve equivalent mathematical effort.

As in analogous situations of classical elasticity, a superposition scheme will be
followed. Thus, the solution to the basic problem (body with a traction-free crack
under a remote constant tension) will be obtained by the superposition of the stress
and couple-stress fields arising in an un-cracked body (of the same geometry) to the
‘corrective’ stresses induced in the cracked body with a loading only along the crack
faces. Due to the nature of the boundary conditions, it will be shown that in order to
obtain the corrective solution, we need to distribute not only climb dislocations but
also constant discontinuities of the rotation along the crack faces. We name the latter
discontinuities constrained wedge disclinations. The term ‘constrained’ refers to the
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requirement of zero normal displacement along the disclination plane. Notice that
in the classical sense of a wedge disclination [1], the normal displacement along the
disclination plane increases linearly with distance from the core and is unbounded
at infinity. The Green’s functions of our problem (i.e., the stress fields of a discrete
climb dislocation and a discrete constrained wedge disclination) are obtained by the
use of Fourier transforms. Finally, it is shown that the continuous distribution of the
discontinuities along the crack faces results in a system of coupled singular integral
equations with both Cauchy and logarithmic kernels. The numerical solution of this
system shows that a cracked solid governed by couple-stress elasticity behaves in
a more rigid way (having increased stiffness) as compared to a solid governed by
classical elasticity. Also, the stress level at the crack-tip region is appreciably higher
than the one predicted by classical elasticity.

26.2 Basic Equations of Plane Strain in Couple-Stress Elasticity

For a body that occupies a domain in the (x, y)-plane and is under conditions
of plane strain the displacement components are ux ≡ ux(x, y) �= 0, uy ≡
uy(x, y) �= 0, and uz = 0. We generally assume the absence of inertial effects and
body-force and body-couple fields. The constitutive equations for the non-vanishing
components of the asymmetric force-stress and couple-stress tensors are written as
[15, 12]

σxx = (λ + 2μ)
∂ux

∂x
+ λ

∂uy

∂y
, σyy = (λ + 2μ)

∂uy

∂y
+ λ

∂ux

∂x
, (26.1)

σyx = μ

(
∂ux

∂y
+

∂uy

∂x

)
+ μ 2

(
∂3uy

∂x3
− ∂3ux

∂x2∂y
+

∂3uy

∂x∂y2
− ∂3ux

∂y3

)
,

σxy = μ

(
∂ux

∂y
+

∂uy

∂x

)
− μ 2

(
∂3uy

∂x3
− ∂3ux

∂x2∂y
+

∂3uy

∂x∂y2
− ∂3ux

∂y3

)
,

(26.2)

mxz = 2μ 2
(

∂2uy

∂x2
− ∂2ux

∂x∂y

)
, myz = 2μ 2

(
∂2uy

∂x∂y
− ∂2ux

∂x2

)
, (26.3)

where the moduli (λ, μ) have the same meaning with the Lamé constants of classical
elasticity theory, and  ≡

√
η/μ is a characteristic material length with η being a

modulus accounting for couple-stress effects.
Then, the equations of equilibrium written in terms of displacements are ex-

pressed as follows

1
1− 2ν

∂

∂x

[
2(1− ν)

∂ux

∂x
+

∂uy

∂y

]
+

∂2ux

∂y2

+  2
[

∂4uy

∂x3∂y
− ∂4ux

∂x2∂y2
+

∂4uy

∂x∂y3
− ∂4ux

∂y4

]
= 0, (26.4)
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1
1− 2ν

∂

∂y

[
2(1− ν)

∂uy

∂y
+

∂ux

∂x

]
+

∂2uy

∂x2

+  2
[

∂4ux

∂x3∂y
− ∂4uy

∂x2∂y2
+

∂4ux

∂x∂y3
− ∂4uy

∂y4

]
= 0. (26.5)

26.3 Formulation of Crack Problem

Consider a straight finite-length crack of length 2a embedded in the (x, y)-plane of
infinite extent in a field of uniform uni-axial tension (Fig. 26.1). The crack faces
are traction free and the body is considered to be in plane-strain conditions. The
boundary conditions along the faces of the crack are written as

σyx(x, 0) = 0, σyy(x, 0) = 0, myz(x, 0) = 0, for |x| < a, (26.6)

while the regularity conditions at infinity are given as

σ∞
yx, σ

∞
xy, σ

∞
xx → 0, σ∞

yy → σ0, m∞
xz,m

∞
yz → 0 as r →∞, (26.7)

where r ≡
√

x2 + y2.
Then, the crack problem is decomposed into the following two auxiliary prob-

lems.

The Un-Cracked Body The un-cracked body is in a state of uniform tension σ0.
It can readily be verified that the appropriate Mindlin’s stress functions [12] are

Φ =
σ0

2
x2, Ψ = 0. (26.8)

There are no couple-stresses induced in the un-cracked body under uniform ten-
sion.

Fig. 26.1 Cracked body
loaded by a remote constant
tension field σ0
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The Corrective Solution Consider a body geometrically identical to the initial
cracked body but with no remote loading now. The only loading applied is along the
crack faces. This consists of equal and opposite tractions to those generated in the
un-cracked body. The boundary conditions along the faces of the crack are written
as

σyy(x, 0) = −σ0, myz(x, 0) = 0, σyx(x, 0) = 0 for |x| < a. (26.9)

Notice that in classical elasticity it would suffice to continuously distribute climb
dislocations with Burger’s vector b = (0, b, 0) in order to produce the desired nor-
mal stress in (26.9)1. However, this is not the case in couple-stress elasticity because
a discrete climb dislocation produces both normal stresses σyy and couple-stresses
myz along the crack line y = 0. Therefore, it is not possible to satisfy both (26.9)1
and (26.9)2 just by a continuous distribution of climb dislocations. On the other
hand, within the framework of couple-stress elasticity, we know that the work con-
jugates of the reduced force traction Py ≡ σyyny and the tangential couple traction
Rz ≡ myzny are the normal displacement uy and the rotation ω respectively. In
light of the above, we are led to the conclusion that in order to satisfy the boundary
conditions in (26.9) we should distribute both discontinuities in the displacement
(climb dislocations) and in the rotation (constrained wedge disclinations) along the
crack faces.

Next, our aim is determining the stress and couple-stress fields, along the crack-
line y = 0, induced by a discrete climb dislocation and a discrete constrained wedge
disclination both located at the origin of the (x, y)-plane. The above stress fields will
serve as the Green’s functions of our problem.

26.4 Green’s Functions

We impose at the origin of the (x, y)-plane a discrete climb dislocation of strength b
and a discrete constrained wedge disclination of strength Ω. In the upper half-plane,
the climb dislocation gives rise to the boundary value problem

uy

(
x, 0+

)
= − b

2
H(x), ω

(
x, 0+

)
= 0, σyx

(
x, 0+

)
= 0, (26.10)

whereas the constrained wedge disclination generates the boundary value problem

uy

(
x, 0+

)
= 0, ω

(
x, 0+

)
=

Ω

2
H(x), σyx

(
x, 0+

)
= 0, (26.11)

where H(x) is the Heaviside step-function. We emphasize that the term ‘constrained
wedge disclination’ is justified from the fact that the discontinuity in the rotation
(26.11)2 does not affect the normal displacement in (26.11)1. This concept departs
from the one of the classical ‘wedge disclination’, which generates a field where the
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jump in rotation implies a discontinuity in the normal displacement too (see, e.g.,
Anthony [1]).

Both boundary value problems are attacked with Fourier transforms. The inver-
sion procedure involves use of some distribution theory. By a superposition of the
solutions of the above boundary value problems, we obtain the expressions for the
normal stress and the couple-stress

σyx

(
x, y = 0+

)
=

μb

2π(1− ν)x
+ 2

μb

πx

[
2
 2

x2
−K2

(
|x|/ 

)
]

− 2
μΩ

π

[
2
 2

x2
−K2

(
|x|/ 

)
]

+ 2
μΩ

π
K0

(
|x|/ 

)
, (26.12)

myx

(
x, y = 0+

)
= −μb

π

[
2
 2

x2
−K2

(
|x|/ 

)
]
− μb

π
K0

(
|x|/ 

)

− μ Ω +
μ Ω

2π
sgn(x)G2,1

1,3

(
x2

4 2

∣
∣
∣
∣

1
−1/2, 1/2, 0

)
, (26.13)

where Ki(x/ ) is the ith order modified Bessel function of the second kind, and
Ga,b

c,d[x2/(4 2)|[ ], [ ]] is the Meijer G-function [4]. Equations (26.12) and (26.13)
are the Green’s functions of the crack problem.

26.5 Reduction of the Problem to a System of Singular Integral
Equations

In order to satisfy the boundary conditions of the corrective solution (26.9), we con-
tinuously distribute climb dislocations of strength b and constrained wedge discli-
nations of strength Ω along the crack-faces (|x| < a). The normal stresses σyy and
the couple-stresses myz induced by the continuous distribution of dislocations and
disclinations are obtained as integrals of (26.12) and (26.13). We also notice that
(26.9)3 is automatically satisfied since neither the discrete dislocation nor the con-
strained wedge disclination produce shear stresses σyx along the crack-line. Then,
satisfaction of the boundary conditions (26.9)1 and (26.9)2 leads to a system of cou-
pled singular integral equations (|x| < a)

σyy = −σ0 =
μ(3− 2ν)
2π(1− ν)

∫ +a

−a

B(ξ)
x− ξ

dξ − 2μ
πa

∫ +a

−a

W (ξ) ln |x− ξ| dξ

+
2μ
πa

∫ +a

−a

B(ξ)Ka1(x, ξ) dξ

+
2μ
πa

∫ +a

−a

W (ξ)Ka2(x, ξ) dξ, (26.14)
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myz = 0 = −2μ
π

∫ +a

−a

W (ξ)
x− ξ

dξ +
μa

π 2

∫ +a

−a

B(ξ) ln |x− ξ| dξ

− μ

πa

∫ +a

−a

B(ξ)Ka3(x, ξ) dξ

+
μ

2πa

∫ +a

−a

W (ξ)Ka4(x, ξ) dξ, (26.15)

where

Ka1(x, ξ) =
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(26.16)

It can be readily proved using asymptotic analysis that the above kernels are
regular as x → ξ.

The unknown functions B(ξ) and W (ξ) are the dislocation and the disclination
densities at a point ξ. These are defined as

B(ξ) =
db(ξ)
dξ

= −dΔuy(ξ)
dξ

, W (ξ) = a
dΩ(ξ)

dξ
= a

dΔω(ξ)
dξ

, (26.17)

where Δuy(x) represents the relative opening displacement, and Δω(x) represents
the relative rotation between the upper and lower crack faces. Physically, the dislo-
cation density can be interpreted as the negative of the slope whereas the disclination
density as the curvature at any point between the crack faces. Both dislocation and
disclination densities can be written as a product of a regular-bounded function and
a fundamental solution that takes into account the asymptotical behavior of the lat-
ter quantities. A previous asymptotic analysis [9] for the Mode I case showed that
both the displacement uy and the rotation ω behave as ∼ x1/2 near the crack tips.
Consequently, the dislocation and the disclination densities have the following end-
point behavior, respectively, B(x) ∼ x−1/2 and W (x) ∼ x−1/2. Finally, in order
to ensure uniqueness in the values of displacement and rotation for a closed loop
around the crack, we impose pertinent closure conditions.

26.6 Numerical Results

For the numerical solution of the coupled system of singular integral equations
(26.14) and (26.15) the Gauss–Chebyshev quadrature is employed with a modifi-
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Fig. 26.2 Normalized upper-half crack-displacement profile (ν = 0.3)

Fig. 26.3 Variation of the ratio of the stress intensity factor KI in couple-stress elasticity to the
respective one in classical elasticity

cation that takes into account the existence of logarithmic kernels [16]. Figure 26.2
depicts the dependence of the normal crack-face displacement upon the ratio a/ .
It is noteworthy that as the crack length becomes comparable to the characteristic
length (a < 10 ), the material exhibits a more stiff behavior, i.e., the crack-face
displacement becomes smaller in magnitude as compared to the one in the classical
elasticity solution.

Figure 26.3 now shows the ratio of the stress intensity factors given by couple-
stress elasticity and classical elasticity. Notice that both theories predict stresses with
the same order of singularity (inverse square root) near the crack tips. Further, it is
observed that for  /a → 0 and Poisson’s ratio ν = 0.5 there is a 20% increase in Kl



26 An Approach Based on Integral Equations for Crack Problems 261

when couple-stress effects are taken into account, while for ν = 0.25 and ν = 0 the
increase is 27% and 32%, respectively. It should also be noted that when  /a = 0
(no couple-stress effects) the above ratio becomes evidently KI/K

clas
I = 1. There-

fore, the ratio plotted in Fig. 26.3 exhibits a finite jump discontinuity at  /a = 0;
the ratio being increased abruptly as  /a departs from zero. The same disconti-
nuity was observed by Sternberg and Muki [15], who attributed this behavior to
the severe boundary-layer effects predicted by couple-stress elasticity in singular
stress-concentration problems.

26.7 Concluding Remarks

In this paper, the technique of distributed dislocations was extended in couple-stress
elasticity for the solution of the Mode I crack problem. The results of our analysis
indicate that when the microstructure of the material is taken into account a more
rigid behavior is exhibited. In particular, in the Mode I crack problem the crack-
face displacements become significantly smaller than their counterparts in classical
elasticity, when the length of the crack is comparable to the characteristic length  of
the material (about 25% decrease for a/ = 5). On the other hand, it is observed that
the stress intensity factor KI is higher than the one predicted by classical elasticity,
while the couple-stress effects are dominant within a zone of 3 .
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Chapter 27
A Cosserat Point Element (CPE)
for the Numerical Solution of Problems
in Finite Elasticity

Mahmood Jabareen and Miles B. Rubin

Abstract The theory of a Cosserat Point is a special continuum theory that char-
acterizes the motion of a small material region which can be modeled as a point
with finite volume. This theory has been used to develop a 3-D eight-noded brick
Cosserat Point Element (CPE) to formulate the numerical solution of dynamical
problems in finite elasticity. The kinematics of the CPE are characterized by eight
director vectors which are functions of time only. Also, the kinetics of the CPE are
characterized by balance laws which include: conservation of mass, balances of lin-
ear and angular momentum, as well as balances of director momentum. The main
difference between the standard Bubnov–Galerkin and the Cosserat approaches is
the way that they each develop constitutive equations. In the direct Cosserat ap-
proach, the kinetic quantities are given by derivatives of a strain energy function
that models the CPE as a structure and that characterizes resistance to all models of
deformation. A generalized strain energy function has been developed which yields
a CPE that is truly a robust user friendly element for nonlinear elasticity that can be
used with confidence for 3-D problems as well as for problems of thin shells and
rods.

27.1 Introduction

In 1909, the Cosserat brothers introduced the notion of a deformable body with
generalized kinematics [6]. Specifically, the usual vector locating the position of
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Fig. 27.1 Sketch of a
Cosserat surface that is “thin”
in one dimension

a material point in the body was supplemented by director vectors that character-
ize additional localized degrees of freedom. This concept has been used to discuss
Cosserat theories that model “thin” structures which introduce director vectors to
characterize material line elements in the dimensions that are reduced due to “thin-
ness”. For example, Naghdi [15] discusses the notion of a Cosserat surface (see
Fig. 27.1) which is a shell-like structure that is “thin” in one dimension. The po-
sition vector x∗ locating material points in this structure is represented in terms of
three convected coordinates θi (i = 1, 2, 3) and time t, and it is approximated by the
kinematic assumption

x∗(θi, t
)

= x
(
θα, t

)
+ θ3d3

(
θα, t

)
. (27.1)

In (27.1), x locates points on a reference surface of the shell that is characterized by
two convected coordinates θα (α = 1, 2), and d3 is a director vector that models
deformations of a material line element through the shell’s thickness.

A Cosserat curve (see Fig. 27.2) is a rod-like structure that is “thin” in two di-
mensions. Antman [1, 2] models the cross-section of the rod as rigid using a triad
of orthonormal directors. Green et al. [7, 8] model the cross-section of the rod as
deformable. In this later theory, the vector x∗ is approximated by

x∗(θi, t
)

= x
(
θ3, t

)
+

2∑

α=1

θαdα

(
θ3, t

)
, (27.2)

where x locates points on a reference curve of the rod that is characterized by one
convected coordinate θ3, and dα are two deformable director vectors that character-
ize deformations of the rod’s cross-section.

Following this line of thought, it is possible to introduce a model for a point-like
structure that is “thin” in all three-dimensions, like a finite element. In its earliest
form [16, 17], attention was limited to one-dimensional deformations and it was
shown that the theory can be used to formulate the numerical solution of prob-
lems of finite elasticity. Later [18], the theory was generalized for the numerical
solution of two- and three-dimensional thermomechanical problems. For example,
Fig. 27.3 shows a sketch of a homogeneously deformed tetrahedral element for
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Fig. 27.2 Sketch of a
Cosserat curve that is “thin”
in two dimensions

Fig. 27.3 Sketch of a
Cosserat point that is “thin” in
three dimensions

three-dimensional problems. The position vector x∗ for this element is approxi-
mated by

x∗(θi, t
)

= x(t) +
3∑

i=1

θidi(t), (27.3)

where x locates one of the nodes of the element and di are three deformable director
vectors that characterize deformations of the tetrahedral element. Other models for
a homogeneously deformable body have also been considered in [3–5, 20–22, 24–
26, 13]. A more complete discussion of these Cosserat theories of structures can be
found in [19].

27.2 Basic Equations of a 3-D brick Cosserat Point Element
(CPE)

Figure 27.4 shows a sketch of a 3-D eight-noded brick Cosserat Point Element
(CPE) which can experience homogeneous deformations and inhomogeneous de-
formations that include bending, torsion and higher-order hourglassing. Within the
context of the direct approach, the kinematics of the CPE are characterized by

{Di,di,wi = ḋi} (i = 0, 1, . . . , 7), (27.4)

where the reference element director vectors Di are constants, their present values
di and the director velocities wi are functions of time only, and a superposed (·)
denotes time differentiation. These directors are restricted so that
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D1/2 = D1 ×D2 •D3, Di •Dj = δi
j ,

d1/2 = d1 × d2 • d3, di • dj = δi
j .

(27.5)

Moreover, the inertia properties of the CPE are characterized by its constant mass
m and director inertia coefficients yij

ṁ = 0, ẏij = 0, yji = yij (i, j = 0, 1, . . . , 7). (27.6)

The balances of director momentum are given by

d
dt

7∑

j=0

myijwj = mbi −mi − ti (i = 0, 1, . . . , 7), t0 = 0, (27.7)

where {bi,mi} are external director couples due body forces and surface tractions,
respectively, and ti are intrinsic director couples which require constitutive equa-
tions. Also, the reduced form of the balance of angular momentum requires the
tensor T to be symmetric

TT = T = d−1/2
7∑

i=1

ti ⊗ di. (27.8)

Next, introducing the additional kinematic variables

F =
3∑

i=1

di ⊗Di, βi = F−1di+3 −Di+3 (i = 1, 2, 3, 4),

L = Ḟ F−1 =
3∑

i=1

wi ⊗ di, D =
1
2
(
L + LT

)
,

(27.9)

it can be shown that βi are pure measures of inhomogeneous deformations. For an
elastic CPE, the rate of material dissipation vanishes

D = d1/2T +
4∑

i=1

FT ti+3 • β̇i −mΣ̇ = 0 (27.10)

for all deformations, and the strain energy function takes the form

Σ = Σ(C,βi), C = FT F. (27.11)

Then, using standard arguments, the constitutive equations for an elastic CPE take
the forms

d1/2T = mF
∂Σ

∂C
FT , t(i+3) = mF−T ∂Σ

∂βi
(i = 1, 2, 3, 4),

ti =

(

d1/2T−
7∑

j=4

tj ⊗ dj

)

di (i = 1, 2, 3, 4).
(27.12)
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Fig. 27.4 Sketch of a general
brick CPE showing the num-
bering of the nodes

27.3 Numerical Solutions of Problems of Finite Elasticity

An important difference between standard Bubnov–Galerkin methods and the CPE
approach is that the strain energy function Σ for the CPE characterizes the response
of the CPE as a structure. In particular, it was shown in [14] that can be restricted
to satisfy a nonlinear patch test which ensures that the CPE predicts exact solutions
for all homogeneous deformations of a uniform homogeneous elastic material and
for all reference element shapes. Also, it was shown in [14] that the CPE can be
formulated in terms of nodal quantities which are compatible with kinematic and
kinetic conditions at nodes that are standard in finite element codes.

Loehnert et al. [12] implemented the CPE into the computer code FEAP [23]
and showed that the CPE produces robust and accurate results for many problems
which typically exhibit unphysical hourglassing or exhibit locking due to poor el-
ement aspect ratios or near incompressible material response. Loehnert et al. [12]
also showed that the accuracy of the original CPE decreases with increased element
irregularity. Determining a functional form for Σ which produces accurate results
for element irregularity has proven to be challenging [9–11]. However, a general-
ized form for Σ was developed in [10, 11] and example problems were considered
to show that the generalized CPE is truly a robust user friendly element that is free of
locking and hourglass instabilities and can be used with confidence for the numer-
ical solution of challenging problems in finite elasticity that include 3-D elements
and thin shells and rods.
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Chapter 28
Discretization of Gradient Elasticity Problems
Using C1 Finite Elements

Stefanos-Aldo Papanicolopulos, A. Zervos, and Ioannis Vardoulakis

Abstract Strain-gradient theories have been used to model a variety of problems
(such as elastic deformation, fracture behavior and plasticity) where size effect is of
importance. Their use with the finite element method, however, has the drawback
that specially designed elements are needed to obtain correct results.

This work presents an overview of the use of elements with C1 continuous in-
terpolation for strain-gradient models, using gradient elasticity as an example. After
showing how the C1 requirement arises and giving details concerning the imple-
mentation of specific elements, a theoretical comparison is made between elements
based on this approach and elements resulting from the use of some alternative for-
mulations.

28.1 Introduction

Strain-gradient theories have seen increased use since the seminal papers of Toupin
[14], Mindlin [8] and Mindlin and Eshel [9] on gradient elasticity. Indicatively, we
can mention some examples of the use of strain-gradient models in problems of
elastic deformation [13, 3, 18, 15, 11], fracture behavior [1, 4, 10] and plasticity
[7, 16, 17].
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The main characteristic of these models is that they necessarily introduce a mate-
rial parameter with dimensions of length, thus introducing a material scale different
from the geometrical scale of the problem. They can thus model problems where
size effect is noticeable, either because the material and geometry scales are com-
parable or because localization of deformation occurs.

Independently of the details of the actual model used, the use of strain-gradient
theories introduces the following problems, when compared to classical continuum
theories:

1. Additional constitutive parameters must be determined. Even in the simplest
case, there is always one additional parameter with dimensions of length.

2. Due to the higher order of the underlying partial differential equations, addi-
tional boundary conditions are needed. Their physical meaning, the way they
can be applied in reality and their values for a given problem are not always
clear.

3. The higher order of the governing equations necessitates a different, more com-
plicated numerical treatment.

This work considers only the last point, it presents the complications this introduces
into a finite element formulation, it considers one possible way of overcoming these
difficulties and compares it to other methods that have been proposed.

28.2 Summary of Basic Equations

This section presents the main equations of Form II of gradient elasticity [8, 9], as
they apply in Cartesian coordinates for small strains and static loading.

For a given displacement field ui, a potential energy density W = W (εij , κijk)
is defined as a function of the strains εij = 1

2 (ui,j + uj,i) and the strain gradients
κijk = εjk,i. Computing the variation

δW =
∂W

∂εij
δεij +

∂W

∂κijk
δκijk = τijδεij + μijkδκijk (28.1)

introduces the stresses τij and double-stresses μijk. Integrating the variation δW
over the body volume V and using the divergence theorem leads, after extensive
manipulation, to the virtual work equation

∫

V

(τijδεij + μijkδκijk) dV

=
∫

V

Fkδuk dV +
∫

S

(
Pkδuk + Rkδ(Duk)

)
dS +

∮

C

Ekδuk dC, (28.2)

where Fk are body forces, Pk and Rk are tractions and double tractions on the
surface S of the body, Ek are edge tractions along the edges C of the body and
D ≡ ni∂i is the normal derivative operator.
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In linear gradient elasticity, stresses and double stresses are linear combinations
of strains and strain gradients. W is generally assumed to be the quadratic form

W =
1
2
cijklεijεkl + fijklmκijkεlm +

1
2
aijklmnκijkκlmn, (28.3)

while in the linear isotropic case the above expression becomes

W =
1
2
λ̃εiiεjj + μ̃εijεij + â(1)

κiik + κiki

2
κkjj

+ â(2)κijjκikk + â(3)κjjkκiki + â(4)κijkκijk + â(5)κikjκkji. (28.4)

28.3 Displacement-Only Finite Element Discretization

The usual displacement-only numerical discretization (see, e.g., [19]) can be used
for gradient elasticity. The resulting formulae, when expressed in matrix notation,
are very similar to the ones for the classical case, although the nature of their com-
ponents introduces additional constraints.

The displacement field u(x) can be interpolated as

u(x) = N(x)uN , (28.5)

where N is a matrix of shape functions and uN is a column vector of degrees of
freedom. Note that the components of uN are not necessary displacements.

Stress-strain relations can be written in a compact and computationally efficient
way by introducing the “generic strain” vector ε̌ and “generic stress” vector τ̌ de-
fined so that

ε̌T τ̌ = τijεij + μijkκijk. (28.6)

The components of ε̌ are linear combinations of the first and second order deriva-
tives of the displacements u, so using (28.5) the discretization of the generic strain
is

ε̌(x) = B(x)uN , (28.7)

where B(x) is a matrix containing linear combinations of the first and second
derivatives of the components of N(x).

Substituting (28.5), (28.6) and (28.7) into the virtual work equation (28.2) yields

δ
(
uN
)T
∫

V

BT τ̌ dV = δ
(
uN
)T
(∫

V

NT F dV +
∫

S

(
NT P + D

(
NT

)
R
)
dS

+
∮

C

NT E dC
)
, (28.8)

where the dependence of B and N on x has been omitted for clarity. The above
scalar equation must hold for every δuN , so it is equivalent to the vector equation
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∫

V

BT τ̌ dV =
∫

V

NT F dV +
∫

S

(
NT P+D

(
NT

)
R
)
dS+

∮

C

NT EdC. (28.9)

Generic stresses are generally a nonlinear function of generic strains, so the
above nonlinear equation can be solved using the Newton–Raphson method. For
linear gradient elasticity the stress-strain relation is

τ̌ = Dε̌ = DBuN , (28.10)

where D is a matrix of material parameters incorporating the components of tensors
cijkl, fijklm and aijklmn appearing in (28.3). Therefore, (28.9) becomes

KuN = f , (28.11)

where

K =
∫

V

BT DB dV (28.12)

is the stiffness matrix and f is the vector of external actions. The solution of the lin-
ear system (28.11) yields the values of the degrees of freedom uN and, using (28.5),
the approximate solution for the displacement field.

28.4 Finite Elements with C1 Continuity

The procedure described in the previous section differs from the one for classical
elasticity in the following points:

1. The expression for the external actions f includes additional terms for surface
double tractions and edge tractions.

2. The ε̌ vector contains both strains and strain gradients and the τ̌ vector contains
both stresses and double stresses.

3. The B matrix contains both first and second derivatives of the shape functions.

It is this last difference that introduces difficulties in the numerical treatment of
the problem. Calculation of the integral of (28.12) requires that the first derivatives
present in the B matrix must be continuous on the whole domain, i.e., the shape
functions must ensure C1 continuity of the interpolation. This is generally not a
problem within each element, since the interpolation is usually polynomial, but is
indeed a problem when interfaces between different elements are considered.

In one-dimensional problems, it is easy to satisfy the C1 requirement, since el-
ements have only single nodes in common. The discretization can employ Hermite
elements, with cubic interpolation, where at each node both the value of the dis-
cretized field and its derivative are considered as degrees of freedom. An example
of the use of such elements with strain-gradient theories can be found in [5].

In two-dimensional problems the C1 requirement is much harder to satisfy, since
the inter-element boundaries consist of both nodes and element edges, along which
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C1 continuity must be ensured. Appropriate elements have been however devel-
oped for problems of plate-bending and have been successfully adapted for strain-
gradient problems.

One such element is the triangle presented in [2] and then in [6], which has been
used for problems of gradient elastoplasticity [16, 17], elastic deformation [18] and
fracture mechanics [10]. This element has straight edges, uses only corner nodes,
and uses as degrees of freedom the displacement and all its derivatives of first and
second order. The displacement is interpolated by a quintic polynomial, but along
the edges the normal derivative is constrained to be cubic.

Development of isoparametric elements with C1 continuity, on the other hand, is
hindered by the necessity to map degrees of freedom which are spatial derivatives
of the displacement from the parametric to the global (e.g., Cartesian) coordinate
system. It is not therefore straightforward to extend the one-dimensional Hermite
element to two dimensions. Such extension to two dimensions has nevertheless been
presented by Petera and Pittman [12], who developed a C1 isoparametric Hermite
quadrilateral. This element employs as degrees of freedom at each node the dis-
placement, its first derivatives and the mixed second derivative. Due to the details
of the element construction, the first derivatives are in the global coordinate system
while the mixed derivative is in the parametric system. Due to the isoparametric
formulation, the derivatives of the global coordinates with respect to the parametric
coordinates must be calculated in a pre-processing step. Additionally, the element
can only be used in structured meshes, otherwise special interface-type elements
would be needed to enable correct mapping of degrees of freedom to neighboring
elements. Despite these restrictions, this element has been successfully used for
problems of elastic deformation [18] and fracture mechanics [10].

The development of C1 elements has generally not been extended to three di-
mensions. The only three-dimensional C1 element, a Hermite hexahedron, has been
recently developed by the authors [11], based on the respective quadrilateral.

28.5 Alternative Formulations

In Sect. 28.3, it was shown that discretizing only the displacement field leads to
the requirement for C1 continuity. A variety of techniques have been developed to
avoid this requirement; a brief description of a number of such techniques and the
resulting elements is given in this section.

Shu et al. [13] used a mixed formulation where, besides the displacements, the
displacement gradients are discretized as a separate field, called the relaxed dis-
placement gradient field. The relation between the two fields is enforced through
the use of Lagrange multipliers, which constitute a third field to be discretized.
Both quadrilateral and triangular elements are presented, with varying degrees of
numerical performance. Quadratic interpolation is used to interpolate the displace-
ments while either linear or quadratic interpolation is used to interpolate the relaxed
displacement gradients. The Lagrange multipliers are either constant or are interpo-
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lated linearly. Full integration is used for the displacements, but reduced integration
is used for integrating terms containing the Lagrange multipliers.

Amanatidou and Aravas [1] have presented a series of quadrilateral elements
based on a mixed formulation for Form I or Form III of gradient elasticity. For
Form I relaxed displacement gradients are discretized, while for Form III relaxed
strains and relaxed rotations are discretized. Lagrange multipliers are interpolated
linearly while all other fields are interpolated quadratically. Reduced integration is
used for all quantities.

Matsushima et al. [7] presented a quadrilateral element, also based on a formu-
lation using Lagrange multipliers. The displacements are interpolated quadratically
while the relaxed displacement gradients are interpolated linearly. The Lagrange
multipliers are constant within each element. Uniquely among the elements pre-
sented here, a large-strain formulation is presented for this element. The stiffness
matrix is given in detail, showing that it is non-symmetric.

Askes and Aifantis [3] propose a meshless formulation, using the element-free
Galerkin method, which provides directly the required C1 continuity, as no inter-
element boundaries exist.

Askes and Gutiérrez [4] propose a mixed formulation based on a reformula-
tion of gradient elasticity as an implicit gradient elasticity. Only two fields are dis-
cretized: the displacements and the nonlocal strains, the latter defined as a function
of the strains and their Laplacian. Counter to intuition, the quadrilateral element im-
plementing this formulation uses a quadratic interpolation of the nonlocal strains,
which are considered the primary variable, and only a linear interpolation of the
displacements which are considered the constraint variables. Full integration with
respect to the nonlocal strains is used.

Zervos [15] presents a series of elements (triangle, quadrilateral, tetrahedron and
hexahedron) which discretize the more general theory of elasticity with microstruc-
ture [8]. Displacements and micro-deformations are interpolated using either lin-
ear or quadratic interpolations, and full integration is used. Through an appropriate
choice of material parameters, the same elements can be used for solving gradient
elasticity problems, using one of the material parameters as a penalty parameter that
forces the micro-deformations to coincide with the gradients of the displacement.
A comparison of the results obtained using the two dimensional elements based on
this formulation with similar results obtained using C1 elements is given in [18].

28.6 Comparison Between Different Formulations

As shown in Sect. 28.3, the use of C1 elements is a direct consequence of choosing
a simple, displacement-only discretization. Due to the limited number of such ele-
ments and their perceived complexity and computational cost, other elements such
as the ones listed in Sect. 28.5 were developed to avoid the need for C1 continuity,
usually based on a mixed formulation where multiple fields are discretized. This
section attempts a comparison of C1 and mixed-formulation elements, considering
various strengths and weaknesses of each approach.
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One clear advantage of pursuing a mixed formulation is that, due to its relaxed re-
quirements, it allows creating a much larger variety of elements, while there are only
a few elements that satisfy the C1 requirement. Of course, not all mixed-formulation
elements perform equally well as seen, for example, in works that present different
variations of a given element [13, 1].

Considering ease of implementation, almost all elements considered here can
be implemented with relative ease within any finite element code that allows for
arbitrary, non-displacement degrees of freedom. The exceptions are the C1 Hermite
quadrilateral and hexahedron, whose implementation requires the ability to compute
and store for each node additional “coordinates” which are the derivatives of global
coordinates with respect to parametric coordinates.

An inherent advantage of the C1 approach is that the strain field is easily and
accurately calculated at the nodes without additional effort. In mixed formulations
there may be a discretization of the relaxed strain field, but it is not the exact strain
field corresponding to the computed displacements. Especially for the C1 triangle,
the nodal values of the strain gradient are also computed directly, although the strain
gradient is not continuous along element edges. It should be noted that the easy and
accurate evaluation of the strains is very useful in problems of gradient elasticity
where it can be used to directly calculate the stresses as well. An example of such
calculations for fracture mechanics can be found in [10]. A related advantage of the
C1 formulation is the accurate enforcement of boundary conditions on the normal
derivative of the displacement.

The usual criterion used, however, when comparing different formulations is
their computational performance. A direct comparison of the performance is quite
difficult, especially in terms of execution speed, as it requires implementing dif-
ferent elements within the same numerical code. A first indirect measurement of
the element performance, both in terms of execution speed and memory require-
ments, can however be attempted by examining the number of degrees of freedom
employed by each element, as done in Table 28.1 for quadrilaterals and hexahedra.

Table 28.1 shows that it is not only the total number of degrees of freedom that
is important, but also the number of degrees of freedom actually used to interpolate
the requested solution for the displacement field. It is seen for example that the

Table 28.1 Number of degrees of freedom for different quadrilaterals and hexahedra used with
gradient models [11]. Numbers in parentheses are theoretical estimates, as the respective elements
have not been presented in the literature

Element 2D DOFs 3D DOFs
Total u field Total u field

C1 Hermite element [12, 18, 11] 32 32 192 192

Penalty Quad8U4P/Bri20U8P [15] 32 16 132 60

Implicit element [4] 32 8 (144) (24)

Element with Lagrange multipliers [7] 36 16 (141) (60)

Element QU34L4 with Lagrange multipliers [13] 38 18 (162) (81)

Form III, III9-70 [1] 70 18 (396) (81)
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C1 Hermite quadrilateral is one of the “cheapest” elements, while the respective
hexahedron is one of the most “expensive”, in terms of degrees of freedom used.
They both are, however, the “richer” in their category, since they provide a cubic
interpolation for the displacements instead of the quadratic interpolation provided
by the other elements.

It is important to note that this is a general advantage of the C1 approach, shared
for example by the C1 triangle. Discretizing an additional field allows the use of C0

elements, but introduces a significant overhead in degrees of freedom that do not
enrich the interpolation being employed for the primary field. In other words, where
a C1 element exists, it is computationally cheaper than a C0 element using a mixed
formulation with the same order of interpolation for the displacements.

28.7 Conclusions

A variety of solutions have been proposed to address the problems arising in the
numerical implementation of strain-gradient models. This work presents the way
these problems arise and how the requirement for elements with C1 continuity nat-
urally follows the simple choice of a displacement-only discretization. Alternative
techniques are presented as well, and an attempt is made to indicate the main ad-
vantages and disadvantages of different formulations.

Although the numerical behavior of each element should be tested in practice for
different types of problems to be solved, the comparison presented here indicates
that C1 elements have, in theory at least, some interesting advantages. Importantly, it
is shown that, where they exist, C1 elements are computationally cheaper than other
elements providing the same order of interpolation for the displacement field. This
means that it is worthwhile to implement existing C1 elements for strain-gradient
problems, and also to look for new C1 elements, especially in three dimensions.
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Chapter 29
C1 Discretizations for the Application
to Gradient Elasticity

Paul Fischer, Julia Mergheim, and Paul Steinmann

Abstract For the numerical solution of gradient elasticity, the appearance of strain
gradients in the weak form of the equilibrium equation leads to the need for C1-
continuous discretization methods. In the present work, the performances of a vari-
ety of C1-continuous elements as well as the C1 Natural Element Method are inves-
tigated for the application to nonlinear gradient elasticity. In terms of subparamet-
ric triangular elements the Argyris, Hsieh–Clough–Tocher and Powell–Sabin split
elements are utilized. As an isoparametric quadrilateral element, the Bogner–Fox–
Schmidt element is used. All these methods are applied to two different numerical
examples and the convergence behavior with respect to the L2, H1 and H2 error
norms is examined.

29.1 Gradient Elasticity

In contrast to the classical (Boltzmann) continuum, the free energy density of a
gradient continuum is not solely dependent on F := ∇Xϕ but also on the curvature
measure G := ∇XF, i.e.,

W0 := W0(F,G),

leading to the following weak form of equilibrium equation [10]:
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δΠ =
∫

B0

[P : δF + Q : ·δG− b · δϕ] dV

−
∫

∂BP
0

tP · δϕ dA +
∫

∂BQ
0

tQ · (∇Xϕ) ·N dA = 0, (29.1)

where P := ∂W0/∂F and Q := ∂W0/∂G. The following boundary conditions are
applied

ϕ = ϕ on ∂Bϕ

0 , tP = tP on ∂BP

0 ,

(∇Xϕ) ·N = (∇Xϕ) ·N on ∂BF

0 , tQ = tQ on ∂BQ

0 .
(29.2)

The two types of independent boundaries have the properties ∂BP
0 ∩ ∂Bϕ

0 =
∂BQ

0 ∩ ∂BF
0 = ∅ and ∂BP

0 ∪ ∂Bϕ
0 = ∂BQ

0 ∪ ∂BF
0 = ∂B0.

29.2 Numerical Methods

For the numerical solution of gradient elastic problems, usually alternative meth-
ods not requiring C1-continuous elements are used. These can either be implicit
methods [4, 3], mixed formulations [1] and micromorphic continuum formulations
with Lagrange multipliers [15] or penalty parameters [9, 10]. These methods are
employed due to the increase of complexity caused by the C1 finite elements. How-
ever, the better performance of the C1-continuous elements could legitimate the
additional implementational effort, which is shown in [8, 18, 11]. Nevertheless, an
extensive overview on the behavior of C1-continuous methods is still missing.

29.2.1 Subparametric Triangular Elements

C1-continuous finite elements are mostly used in subparametric meshes, where the
geometry is approximated linearly. This has the major advantage that the mesh con-
struction is as easy as for C0-continuous elements. However, a poor geometry ap-
proximation can lead to significant numerical errors.

The triangular C1 finite elements which are compared in this contribution are the
Argyris and Bell elements [2], the Hsieh–Clough–Tocher (HCT) element [6] and
the group of Powell–Sabin split (PS) elements [13].

The shape functions of the Argyris and Bell elements are completely polynomial
on the triangle. The other elements are macroelements, and their shape functions
are piecewise cubic on the three subelements of the HCT element and quadratic on
the 6/12 subelements of the PS elements. We apply all elements in the original and
reduced form. For the Powell–Sabin 12 split element (PS-12), the normal deriva-
tive along the edge has been left piecewise linear for the original form. The PS-6
element is slightly modified with respect to the usual case, i.e., instead of the cir-
cumcircle midpoint, the barycenter of the triangle is used for the subdivision of the
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Fig. 29.1 (Left) Schematic representation of the PS-6 element. (Right) Since the lines dividing the
macroelement edges have to be perpendicular to the element sides, the shape functions are piece-
wise polynomials on different subsections of the edge resulting in discontinuous displacements
and strains

element. Therefore, the usually used heuristic criterion that the maximum angle of
the element has to be smaller than 75◦ in order to avoid skinny subtriangles is not
necessary. However, the displacement and the first derivative in tangential direction
loose their continuity along the element edges, which is sketched in Fig. 29.1. Nev-
ertheless, since the normal derivative is defined to be linear along the element sides,
it is obviously continuous. Fortunately, the jumps in the stresses are not significant,
i.e., see Fig. 29.3.

29.2.2 Isoparametric Quadrilateral Element

Since subparametric meshes with a linear geometry approximation for quadrilateral
elements are strongly restricted, i.e., the mesh has to be composed of rhomboids,
these elements should be used isoparametrically. In this contribution, the Bogner–
Fox–Schmidt element [5] is used. It has been successfully applied to gradient elas-
ticity in [18, 11]. The major advantage of the isoparametric quadrilateral element is
its ability of approximating different kinds of geometries much better than the sub-
parametric elements of the previous section. However, it has the disadvantage that
the mesh is restricted to four elements at a node otherwise the C1-continuity will be
lost. One algorithm for the mesh construction is given in [12]. However, this method
may not be resulting in an optimal mesh, see [8]. Therefore, the following fictitious
energy is used which is minimized in order to obtain an optimal isoparametric mesh:

Π̄ =
1
2

∫

Bξ

Ḡ : ·ḠdVξ, (29.3)

where dVξ is the volume element in the local coordinate system of each reference el-
ement and Ḡ := ∂2X/∂ξ2. As Dirichlet boundary conditions, all nodal coordinates
are given.
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29.2.3 Natural Element Method

The third method for the comparison of the presented examples is the C1-Natural
Element Method (C1-NEM) [17]. That the method can be successfully used for gra-
dient elastic problems is shown in [8, 14]. The C1-NEM shape functions are based
on the Voronoi tessellation and its dual Delaunay triangulation [16], i.e., their con-
struction is done without any given mesh. Its main advantage over different mesh-
free methods is that essential boundary conditions can directly be applied. As ex-
tension to non-convex domains, the α-shape method is used [7]. The integration is
performed with a 16 point Gauss-integration on the Delaunay triangulation.

In this particular case, the set of points will be arranged in a regular way, i.e.,
they are created by the nodal points of a regular bilinear mesh.

29.3 Numerical Examples

In the following section, the performance of the different numerical methods is
tested on two experiments. One is a specimen with external pressure and the other a
cracked specimen under uniaxial loading. We employ the same material model for
both, i.e.,

W0(F,G) = WH
0 (F) + WG

0 (G),

whereby a compressible Neo–Hookean model is chosen for WH
0

WH
0 =

1
2
λ ln2 J +

1
2
μ
[
F : F− ndim − 2 lnJ

]

and a quadratic expression for WG
0

WG
0 =

1
2
μl2G : ·G.

For the material parameters, a Young’s modulus of 200 kN/mm2 and a Poisson’s
ratio of 0.3 are used. For the internal length parameter, l = L is applied. For both
numerical examples, homogeneous Neumann boundary conditions for the double
tractions are assumed, i.e., tQ = 0.

Since to the authors best knowledge, no analytical solution for these nonlinear
gradient elastic problems is available, the error is computed with respect to another
numerical solution with a significantly higher amount of degrees of freedom. Ad-
ditionally, we want to point out that all the meshes are regular, i.e., the rates of
convergence with respect to the number of degrees of freedom are approximately
half the convergence rate with respect to the mesh diameter h.
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Fig. 29.2 The two tested specimen. (Left) Uniaxial loading of cracked specimen. (Right) Thick
hollow cylinder

Fig. 29.3 First principal σ stress. (Left) two BFS elements. (Center) 15 given computational points
for the C1 NEM. (Right) 32 PS-6 elements

29.3.1 Thick Hollow Cylinder

In the first example, a thick hollow cylinder under external pressure is considered.
The specimen is loaded with an external pressure tP = −18 kN/mm2 at the out-
side of the cylinder. The external radius R = 3L and the internal radius r = 2L are
chosen. A detailed description of the geometry is presented in Fig. 29.2. For symme-
try reasons, only a quarter of the geometry is computed. The symmetry conditions
lead to the following set of Dirichlet boundary conditions along the thickness of the
cylinder:

un = 0, ∂nut = 0, ∂tun = 0,

∂2
nun = 0, ∂2

t un = 0, and ∂n∂tut = 0.
(29.4)

The higher order derivatives are necessary for the use of the Argyris and Bell el-
ement since they have higher order derivatives as nodal degrees of freedom. In
Fig. 29.4, it can be observed that the error values for the subparametric methods are
much higher than those of the isoparametric elements. The differences in the contour
plots for the first principal Cauchy-stress can be observed in Fig. 29.3. However, the
rates of convergence for the HCT and the BFS elements are similar to each other.
Second best are the Argyris and Bell elements. All the other methods seem to be
very similar. Except the NEM, they all have in common that the normal derivative
across the element edges is linear, which seems to reduce the convergence behavior
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Fig. 29.4 Convergence behavior for the thick hollow cylinder

of the elements. In this particular example, the higher numerical costs for the NEM
shows to be inefficient.

29.3.2 Uniaxial Loading of Cracked Specimen

The second numerical example is a cracked specimen under uniaxial loading. Due to
the fact, that the singularity in the stresses is shifted to the double stress Q(G), our
aim is in the investigation of the L2, H1 and H2 errors while using mesh refinement.
Again the symmetry of the specimen is utilized with the conditions (29.4). At the
upper part of the specimen, the displacement in normal direction is prescribed.

In contrast to the previous example, all methods seem to behave similarly. The
convergence rates are far from the rates of the previous examples, compare Ta-
ble 29.1. This is caused by the crack tip singularity.

29.4 Discussion

In this contribution, the Argyris, Bell, Hsieh–Clough–Tocher, Powell–Sabin and the
Bogner–Fox–Schmidt elements are analyzed for the simulation of nonlinear gra-
dient elasticity. Additionally, the results for the C1-NEM are investigated. For the
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Fig. 29.5 Convergence behavior for the cracked specimen

Table 29.1 Convergence rates of the different elements. (Left) Thick hollow cylinder. (Right)
Cracked specimen

Method L2 H1 H2

BFS 2.23 1.68 1.19
Argyris 1.79 1.50 0.86
HCT 2.14 1.66 1.04
NEM 0.97 0.95 0.43
Bell 1.65 1.40 0.80
HCT red. 1.05 1.05 0.52
PS12 1.08 1.15 0.55
PS12 red. 1.07 1.07 0.53
PS6 1.07 1.07 0.50

Method L2 H1 H2

BFS 0.71 0.72 0.45
Argyris 0.55 0.56 0.40
HCT 0.64 0.65 0.40
NEM 0.72 0.71 0.33
Bell 0.56 0.58 0.30
HCT red. 0.53 0.55 0.30
PS12 0.57 0.58 0.35
PS12 red. 0.53 0.54 0.32
PS6 0.54 0.54 0.31

thick hollow cylinder problem, an optimal geometry approximation seems to be the
most important issue for good performance of the elements, showing up in the su-
perior quantitative behavior of the BFS element in the H2-seminorm, see Fig. 29.4.
The best choice in terms of triangular elements seems to be the HCT element in its
original form. Compared to the reduced form of the HCT element, the Powell–Sabin
elements have shown a better performance with respect to the number of global de-
grees of freedom.

For the cracked specimen under uniaxial loading, due to the singularity all ele-
ments show very poor performance. Therefore, special crack tip elements have to be
developed which are able to capture singularities in the gradient elasticity formula-
tion.
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Chapter 30
A Generalized Framework and a Multiplicative
Formulation of Electro-Mechanical Coupling

Carlo Sansour, Sebastian Skatulla, and A. Arunachalakasi

Abstract Electro-active polymers (EAP) recently attracted much interest because,
upon electrical loading, EAP exhibit a large amount of deformation while sustain-
ing large forces. On the other hand, generalized continuum frameworks are relevant
to electro-mechanical coupled problems as they naturally incorporate couples or
higher order stresses and can describe scale effects. Here, we want to adopt a strain
gradient approach based on the generalized continuum framework as formulated in
(Sansour in J. Phys. IV, Proc. 8:341–348, 1998; Sansour and Skatulla in Geomech.
Geoeng. 2:3–15, 2007) and extend it to encompass the electro-mechanically coupled
behavior of EAP. A new aspect of the electro-mechanical formulation relates to the
multiplicative decomposition of the deformation gradient, well known from plastic-
ity, into a purely elastic part and a further part which relates to the electric field. The
formulation is elegant, makes for clarity and is numerically efficient. A numerical
example of coupled large deformations is presented as well.
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30.1 A Generalized Continuum Framework and Higher
Gradients

The generalized continuum framework [6] is based on the mathematical concept of
a fiber bundle, where in the simplest case the generalized space is constructed as
the Cartesian product of a macro space B ⊂ E(3) and a micro space S which we
write as G := B ×S . Appropriate projection maps are to be defined. The macro-
space B is parameterized by the curvilinear co-ordinates ϑi, i = 1, 2, 3 and the
micro-space S by the curvilinear coordinates ζα. Here, and in what follows, Greek
indices take the values 1, . . . , n. The dimension of S denoted by n is arbitrary, but
finite.

We assume that the placement vector x̃ of a material point P (X̃ ∈ G ) can be
formulated as the sum of its position in the macro-continuum x ∈ Bt and in the
micro-continuum ξ ∈ St as follows

x̃ = x
(
ϑk, t

)
+ ξ

(
ϑk, ζβ , t

)
. (30.1)

Accordingly, for t = t0 the placement of a material point (30.1) takes

X̃ = X
(
ϑk
)

+ Ξ
(
ϑk, ζβ

)
, with Ξ ∈ S . (30.2)

The fundamental idea now is to assume for ξ(ϑk, ζβ , t) explicit expressions as to its
dependency on the coordinates ζβ . While the framework allows for general expres-
sions, for the time being we want to restrict ourselves to a linear function according
to

x̃ = x
(
ϑk, t

)
+ ζαaα

(
ϑk, t

)
. (30.3)

The vector functions aα(ϑk, t) correspond to the micro-coordinates ζα, the number
of which must be chosen according to a specific topology of the micro-space as well
as certain physical properties of the material.

In order to avoid the incorporation of additional degrees of freedom, other than
the displacement degrees of freedom, we restrict the dimensionality of the mi-
crospace to three and Greek indices take the values 1, 2, or 3. This allows us to
define the directors of the micro-continuum aα from now on as follows

aα =
∂x
∂ϑα

= gα

(
ϑk, t

)
, (30.4)

with gα ∈ T Bt, the tangent space of Bt. Then, the generalized deformation
field (30.3) takes the following form

x̃ = x
(
ϑk, t

)
+ ζαgα

(
ϑk, t

)
, (30.5)

which essentially constitutes a higher gradient continuum. Note that even if the
micro-continuum S is defined by the spatial derivatives of the macroscopic place-
ment vector (30.4), it is important to realize that the dimension of the micro-space
does not have to coincide with the dimension of the macro-space, but must not
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be larger than three. A variable orientation of the microspace with respect to the
macrospace can be modeled by defining (30.5) as follows

x̃ = x
(
ϑk, t

)
+ ζαQiαgi, (30.6)

where, in general, Qiα denotes a constant rotation matrix of dimension (3× 3).
Taking the derivatives of x̃ with respect to the coordinates ϑi and ζα

x̃,i =
∂x̃
∂ϑi

= x,i

(
ϑk, t

)
+ ζαgα,i

(
ϑk, t

)
, x̃,α =

∂x̃
∂ζα

= gα

(
ϑk, t

)
, (30.7)

the generalized deformation gradient tensor can be expressed as follows

F̃ =
[
x,i

(
ϑk, t

)
+ ζαgα,i

(
ϑk, t

)]
⊗ G̃

i
+ gα

(
ϑk, t

)
⊗ Iα, (30.8)

where the operator ⊗ denotes the dyadic product of two vectors and G̃
i
, Iα are

contra-variant base vectors in the generalized space. In order to formulate a gener-
alized strain measure based on (30.8) we proceed in analogy to the definition of the
classical right Cauchy–Green deformation tensor. Thus, its generalized equivalent
is expressed as

C̃ = F̃
T
F̃, C̃ = C + ζαKα, (30.9)

where higher order terms in ζα are neglected. By denoting the scalar products of
vectors by a dot, we arrive at

C = x,k · x,lG̃k ⊗ G̃l + x,k · gα

(
G̃k ⊗ Iα + Iα ⊗ G̃k

)

+ gα · gβIα ⊗ Iβ , (30.10)

Kα = (x,k · gα,l + gα,k · x,l)G̃
k ⊗ G̃

l

+ gα,k · gβ

(
G̃k ⊗ Iβ + Iβ ⊗ G̃k

)
. (30.11)

Note that the first term of C represents the conventional right Cauchy–Green defor-
mation tensor. Note also that the terms of the strain measures with the base vectors
G̃k⊗ G̃l are the most dominant ones. Unless otherwise stated we confine ourselves
to them. The equilibrium equations of a continuum with the above strain measures
are derived in [9].

30.2 Basic Relations of Electro-Elasticity

In this section, we present the fundamental electric fields and the field equations in
electrostatics in both forms as defined at the actual configuration as well as at the
reference one. For further details of electrostatics, the reader is referred to [3–5].
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30.2.1 Electro-Mechanical Fields and Their Governing Equations

For an electro-mechanically coupled material behavior we consider, besides the me-
chanical fields previously introduced, the electric field and the electric displacement
field (or the electric charge potential). In the current configuration, the electric field
and the electric displacement are given by

ẽt = −grad φ̃, d̃t = ε0ẽt + p̃t, (30.12)

where φ̃ denotes the electric potential defined in the generalized space, ε0 denotes
the vacuum electric permittivity and p̃t the dielectric polarization or simply the po-
larization. The polarization represents a derived quantity as it depends on the electric
field and the material and its state which includes density, temperature and strain [2].

With the restriction to electrostatics only two of Maxwell’s equations are of in-
terest. Gauss’s law for electricity and Faraday’s law of induction read:

∇x̃ · d̃t = 0 in Bt ×St and ∇x̃ × ẽt = 0 in Bt ×St, (30.13)

respectively, where the del operator is defined as∇x̃ = (g̃i·g̃i)−1/2 ∂/∂ϑi (no sum-
mation over i) and its counterpart in B×S is given by∇X̃ = (G̃i·G̃i)−1/2 ∂/∂ϑi.
Here g̃i, G̃i are base vectors in the actual and reference configurations in the gen-
eralized space, respectively. The governing equations are supplemented with corre-
sponding Neumann and Dirichlet boundary conditions which read as follows:

d̃t · ñt = −q̃s
t on ∂Bq

t,N ×St, φ̃ = h̃φ on ∂Bφ
t,D ×St, (30.14)

respectively, q̃s
t denotes the electric surface charge density in the deformed config-

uration, ñ the normal vector on ∂B ×S with ñt as its equivalent in the deformed
configuration and ∂Bφ

D×S ⊂ ∂B×S and ∂Bq
N ×S = ∂B×S \∂Bφ

D×S .
In this sense, the electric boundary conditions are represented as a microscopical
average.

The above equations can be reformulated in a purely material setting. First, the
following material quantities are defined by means of pull-back operations:

ẽ = F̃T ẽt, d̃ = J̃F̃−1d̃t, p̃ = J̃F̃−1p̃t, (30.15)

where J̃ = det F̃ denotes the Jacobian. Using (30.12) and (30.15), the material
electric displacement vector and the electric field are given as

d̃ = ε0J̃C̃−1ẽ + p̃, ẽ = −Grad φ̃, (30.16)

where it is assumed that p̃t is given by a constitutive equation.
Finally, the governing equations of the electric field and the electric displacement

can be recast in a material setting as

∇X̃ × ẽ = 0 in B ×S and ∇X̃ · d̃ = 0 in B ×S , (30.17)
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respectively. The electric Neumann and Dirichlet boundary conditions (30.14) are
expressed in the undeformed configuration as

d̃ · ñ = −q̃s on ∂Bq
N ×S , φ̃ = h̃φ on ∂Bφ

D ×S , (30.18)

respectively, where qs denotes the electric surface charge density in the reference
configuration. For further details, the reader is referred to [9].

It can be shown that all field equations can be derived from a coupled free energy
function suitably defined. Assuming that such a function exists and defined per unit
volume, one has

d̃ = −∂Ψcoupled

∂ẽ
, σ̃ = 2F̃

∂Ψcoupled

∂C̃
F̃T , (30.19)

where σ̃ is a Kirchhoff-type tensor which also captures Maxwell’s stress tensor.
The question now arises of how to define Ψcoupled(C, e). In previous work on

the subject, simple formulations have been suggested such as, e.g., [10]

Ψcoupled(C, e) = Ψmech(C) + c11 : e⊗ e + c2C : (e⊗ e)− c3
2
J̃C̃

−1
: ẽ⊗ ẽ.

(30.20)
While the first term Ψmech(C) reflects the usual formulation of the elastic energy,
two further terms are added to account for the electro-mechanical coupling while the
last term is an extra term which accounts for an energy contribution of the nearly
rigid body. The material constants involved are to be determined by experiments.
Very often, however, the nature of these coupling terms is not clear from the out-
set and one is motivated to resort to very simple forms of them, as, in fact, has
been done in (30.20). We notice also that no linear terms in e are included in the
first place and it is also not clear how to proceed should higher order terms (higher
order nonlinearities) be deemed relevant. While it is true that one can resort to rep-
resentation theorems of tensor-valued functions, such representations are by far not
adequate as they result, in general, in a large number of material constants and entail
complicated issues regarding convexity and existence of solutions.

30.2.2 Multiplicative Electro-Mechanical Coupling Theory

Now, instead of incorporating the electro-mechanical coupling by adding additional
terms to the free energy function to account for the polarization of dielectric mate-
rial, we alternatively aim to achieve this via a proper decomposition of the deforma-
tion gradient. We consider now the multiplicative decomposition of the deformation
gradient

F̃ = F̃mechF̃elec, (30.21)

which clearly constitutes a point of departure from conventional electro-mechanical
coupling formulations. Such a decomposition is best known from plasticity. How-
ever, plasticity is a dissipative process and the constitutive laws are defined in rate
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form, in contrast to the present case. The electric part of the deformation gradient
tensor is now defined as

F̃elec := exp(D), (30.22)

where the second order tensor D is given via a separate electro-mechanical consti-
tutive law. The choice of the exponential map is motivated by the fact that polymers
are nearly incompressible materials. Accordingly, J = det F̃ = 1. Since the relation

det F̃elec = exp(trD) (30.23)

holds, the incompressibility condition det F̃elec = 1, highly nonlinear in the com-
ponents of F̃elec, becomes simply linear in terms of components of D : trD = 0.

For D an appropriate constitutive law is to be formulated. It is assumed that it
depends only on ẽ, the electric field vector in the un-deformed configuration:

D =
4

Celec : ẽ⊗ ẽ, (30.24)

where
4

Celec denotes a fourth order constitutive tensor and the : operator represents
the double contraction of a fourth order tensor with a second order tensor defined as
Dij = C(elec)ijklẽkẽl. The component matrix C(elec)ijkl is considered to be sym-
metric with respect to indices k, l. For polymers, due to near incompressibility of
the material, the resulting deformation in compression and expansion needs to ac-
commodate the volume preservation. That is, it holds

trD = 0 ⇒ D11 + D22 + D33 = 0. (30.25)

Now, as the electro-mechanical constitutive law (30.24) is assumed to take into ac-
count only contraction and expansion due to the electric field but no shear, con-
sequently, the component matrix of the electro-mechanical constitutive tensor is
sparsely set as shown below:

C(elec)1111 = C(elec)2222 = C(elec)3333 = c1

as well as

C(elec)1122 = C(elec)1133 = C(elec)2211 = C(elec)2233

= C(elec)3311 = C(elec)3322 = c2.

The additional electro-mechanical material constants c1 and c2 are required to be
determined by experiments. The remaining entries of the component matrix have
zero values. Accordingly, with (30.25) we find that the two material constants are
related by

c2 = −0.5c1. (30.26)

With (30.21), the purely mechanical right Cauchy–Green deformation tensor C̃mech

can be expressed as

C̃mech = F̃
−T

elecC̃F̃
−1

elec (30.27)
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where C̃ = F̃T F̃ represents the conventional right Cauchy–Green deformation ten-
sor. Subsequently, the electro-mechanical coupling is incorporated into the free en-
ergy function per unit volume Ψcoupled(C̃, ẽ) by simply formulating its mechanical
part Ψmech as a function of the mechanical right Cauchy–Green deformation tensor
C̃mech and we have

Ψcoupled(C̃, ẽ) = Ψmech(C̃mech)− 1
2
c3J̃C̃−1 : ẽ⊗ ẽ. (30.28)

The last term refers to the polarization of a rigid body but transferred to the reference
configuration. For further details, the reader is referred to [8].

30.3 Numerical Examples

We present an example of a coupled deformation. A fully 3-D computation is carried
out via a mesh-free Moving Least Square (MLS)-approximation scheme. The MLS-
approximation functions have to meet the continuity and consistency requirements
which is C1(Ω) continuity and consistency of order 2 due the incorporated strain
gradients. The numerical integration over the micro-continuum S is carried out
with the help of the Gauss quadrature, the order of which has to be second according
to the used basis polynomial. The enforcement of the essential boundary conditions
is carried out using the penalty method.

The mechanical part of the stored energy density function (30.28) is assumed to
be of the nonlinear statistically based hyperelastic type [1]. It makes use of three
constants, the shear modulus CR, the bulk modulus κ and parameter N which ad-
dresses the limited extensibility of the macromolecular network structure of the
polymer material.

The example features a cantilever beam which has the shape of angle consist-
ing of two equally long pieces. One side of the beam is clamped and the electric
potential is assumed as φ = 0. The other free end is subjected to electric surface

Fig. 30.1 Problem configuration
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Fig. 30.2 Electric surface charge versus displacement at the tip of the beam in x-direction sim-
ulating the generalized approach based on a one-dimensional microspace using as micro-director
a = x,x with different magnitudes for the internal length scale parameter lx

charge loading depicted in Fig. 30.1. The problem is discretized by 189 particles,
where each cross-section consists of 9 particles as shown by the mesh of the prob-
lem configuration. The generalized solutions illustrated in Fig. 30.2 are obtained
with a one-dimensional micro-space choosing the micro-director as a = x,1 = x,x.
Three scaling levels are considered setting the internal length scale parameter as
lx = 0.1, 0.25, and 0.5 denoted by the blue, green, and purple line, respectively.
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Chapter 31
Generalized Variational Principle for Dissipative
Continuum Mechanics

German A. Maximov

Abstract The generalization of the Hamilton’s and Onsager’s variational principles
for dissipative hydrodynamical systems is represented in terms of the mechanical
and the heat displacement fields. A system of equations for these fields is derived
from the extreme condition for action with a Lagrangian in the form of the difference
between the kinetic and the free energies minus the time integral of the dissipation
function. The generalized hydrodynamic equation system is then evaluated on the
basis of the generalized variational principle. At low frequencies, this system corre-
sponds to the traditional Navier–Stokes equation system, and in the high frequency
limit it describes propagation of acoustical and heat modes with the finite propaga-
tion velocities.

31.1 Introduction

A system of hydrodynamic equations for a viscous, heat conducting fluid is usu-
ally derived on the basis of the mass, momentum and energy conservation laws [7].
Certain assumptions about forms of viscous stresses tensor and energy density flow
vector are made to complete it. This system is considered presently as the one de-
scribing quite adequately a large set of hydrodynamical phenomena. However, there
are some aspects which suggest that this system is only an approximation.

For example, if we consider propagation of small perturbations described by this
system, then it is possible to separate formally the longitudinal, shear and heat
and/or entropy waves. The coupling of the longitudinal and heat waves results in
their splitting into independent acoustic-thermal and thermal-acoustic modes [1, 2].
For these modes, the limits of phase velocities tend to infinity at high frequencies so
that the system is in formal contradiction with the requirements for a finite propaga-
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tion velocity of any perturbation. For this reason, it is possible to suggest that such
a hydrodynamic equation system is a mere low frequency approximation.

In particular, taking into account the viscosity relaxation phenomenon [8], it al-
lows guaranteeing the limit for the propagation velocity of the shear mode and in-
troducing the heat relaxation term [3, 14, 9] which, in turn, ensures the finite prop-
agation velocities of the acoustic-thermal and thermal-acoustic modes.

However, the introduction of such relaxation processes requires serious efforts
especially for more complicated cases, e.g., in the case of a multi-phase medium
which possesses additional internal degrees of freedom.

Classical mechanics provides us with the Lagrange’s variational principle which
allows deriving easily the equations of motion for a mechanical system knowing
the forms of kinetic and potential energies. The difference between these energies
determines the Lagrange’s function. This approach translates easily into continuum
mechanics by introduction of the Lagrangian density for non-dissipative media. In
this approach, the dissipation forces can be accounted for by the introduction of
the dissipation function derivatives into the corresponding equations of motion in
accordance with Onsager’s principle of symmetry of kinetic coefficients [6]. There
is an established opinion that for a dissipative system it is impossible to formulate
the variational principle analogously to the least action principle of Hamilton [6]. At
the same time, there are successful approaches in which the variational principles for
heat conduction theory and for irreversible thermodynamics are applied to account
explicitly for the dissipation processes [4, 5].

Therefore, there are good reasons to attempt to formulate the generalized Hamil-
ton’s variational principle for dissipative systems which argues against its estab-
lished opposition [7]. It is shown [12, 13] that such variational principle can be
formulated in terms of the displacements of the mechanical and thermal fields.

31.2 Hamilton’s Variational Principle

The non-dissipative case of the Hamilton’s variational principle can be formulated
for a continuous medium in the form of extremum of the action functional δS = 0:

S =
∫ t2

t1

dt
∫

V

drL, (31.1)

where, by analogy with mechanics, the Lagrangian density is represented as a dif-
ference of kinetic K and potential U energies:

L(u̇,∇u) = K(u̇)− U(∇u). (31.2)

Here, as it is seen from (31.2), the Lagrangian is considered as a function of
velocities of displacements u̇ = du/dt and deformations ∇u = div u.

Motion equations derived from the variational principle (31.1)–(31.2) have form



31 Generalized Variational Principle for Dissipative Continuum Mechanics 299

d
dt

∂L

∂u̇
+∇ ∂L

∂∇u
= 0. (31.3)

In the simplest case, when kinetic and potential energies are determined by
quadratic forms

2K
(
u̇2
)

= ρ0u̇2, 2U = λε2
ll + 2με2

ik, εik =
1
2

(
∂ui

∂xk
+

∂uk

∂xi

)
, (31.4)

the well known motion equation for elastic medium is derived as

ρ0
d
dt

u̇− μΔu− (λ + μ)∇(∇u) = 0, (31.5)

where the constants of the quadratic form (31.4) are the density ρ0, and Lame’s
constants λ and μ.

31.3 Onsager’s Variational Principle

Further, if we were to consider the quasi-equilibrium systems only, then the varia-
tional principle of the least energy dissipation was formulated for them by Onsager
[15, 16]. This principle is based on the symmetry of kinetic coefficients and can
be formulated as an extreme of a functional built as a difference between entropy
increase rate ṡ and dissipation function D, considered as functions of rates α̇ of
thermodynamical relaxation processes:

δα̇

[
ṡ(α)−D(α̇)

]
= 0. (31.6)

The kinetic equation, derived from the variational principle (31.6) and describing
relaxation of the thermodynamical system to equilibrium state, can be written in the
form:

d
dt

s(α) = 2D(α̇), (31.7)

which is satisfied by the symmetry principle for kinetic coefficients.

31.4 Variational Principle for Mechanical Systems
with Dissipation

As it was mentioned, generalization of the motion equation (31.3) in the presence
of dissipation is fulfilled by introducing the dissipation function differentiated with
respect to velocities into the right part of (31.3), that is, in correspondence with
Onsager’s symmetry principle for the kinetic coefficients [6], we have
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d
dt

∂L

∂u̇
+∇ ∂L

∂∇u
= −∂D

∂u̇
. (31.8)

It is possible to show that the motion equation in the form (31.8) can be obtained, if
Hamilton’s variational principle is considered with Lagrangian function in the form

L(u̇,∇u) = K(u̇)− U(∇u)−
∫ t

0

D(u̇) dt′, (31.9)

where the term in the form of a time integral of dissipation function is added, which
is different from (31.2). The initial time in the integral (31.9) denoted as 0 corre-
sponds to the time t1 in the functional (31.1). In particular, if the dissipation function
is considered as a quadratic form of deformation velocities

D(∇u̇) = η′
(

∂u̇i

∂xk
+

∂u̇k

∂xi

)2

+ ς ′
(

∂u̇l

∂xl

)2

, (31.10)

then the derived motion equation with an account of (31.4) corresponds to the lin-
earized Navier–Stokes equation

ρ
d
dt

u̇− (λ + μ)Δu− λ∇(∇u) = (η′ + ς ′)Δu̇ + ς ′∇(∇u̇), (31.11)

where the shear η and volume ς viscosities are determined by the following combi-
nation of the constants in (31.10): η′ − ς ′ and (2ς ′ − η′)/3, respectively.

31.5 Generalized Variational Principle for Dissipative
Hydrodynamics

The considered example with derivation of the motion equations for dissipative
systems on the base of Hamilton’s variational principle with Lagrangian (31.10)
demonstrates that there exists a possibility to formulate a generalized variational
principle for dissipative hydrodynamical systems, and this formulation can be ob-
tained by the simple combination of Hamilton’s variational principle (31.1)–(31.2)
and Onsager’s variational principle (31.6), if the latter is integrated with respect
to time and multiplied by temperature. The Lagrangian density in this case can be
written in the form

L = K − E + T

[
s−

∫ t

0

D dt′
]

= K − F − T

∫ t

0

D dt′, (31.12)

where E and F are the internal (potential for the dissipationless case) and the free
energies. In this case, as it was shown in the report, the equation system for dis-
sipative hydrodynamics corresponds to the motion equations for mechanical and
thermal fields, derived from stationary condition for action built on the Lagrangian
(31.12) with quadratic forms for all the terms. If, in accordance with Biot [2], we
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consider the field of heat displacements uT , together with mean mass displacement
u, then the temperature is determined as the divergence of the field uT :

T = T0(1− θ∇uT ). (31.13)

The dimensionless constant θ is purposely introduced in the definition (31.13) for
simplification of the dissipation function. Then in these terms the generalized La-
grangian can be written in the form:

L(u̇,∇u,∇uT ) = K(u̇)− F (∇u,∇uT )− T0

∫ t

0

D(u̇, u̇T ) dt′, (31.14)

where the kinetic energy is given by the quadratic form (31.4), the free energy is
given by the usual thermo-elasticity quadratic form [8]:

2F (∇u, T ) = με2
ik + λε2

ll + κ

(
T − T0

θT0

)2

+ 2αεll

(
T − T0

θT0

)
(31.15)

(with substitution of expression (31.13)) in temperature terms), and the dissipation
function is a square of the difference between mean mass and heat displacements

2D(u̇, u̇T ) = β(u̇− u̇T )2. (31.16)

Then the motion equations for the mean displacement field and for temperature
field derived on the base of generalized variational principle coincide practically
with the linearized traditional hydrodynamical system:

ρ0
d
dt

u̇− μΔu− (λ + μ + α)∇(∇u) =
α + κ

θT0
∇T, (31.17)

β(Ṫ − T0θ∇u̇)− κΔT = αT0θΔ(∇u). (31.18)

31.6 Comparison with the System of Hydrodynamics Equations

The coefficients of the quadratic forms in (31.15) and (31.16) can be determined
by comparison of the equation system (31.17)–(31.18) with the linearized hydrody-
namics equation system in the variables u, T :

ρ = ρ0(1−∇u),

ρ0
d2u
dt2

− ρ0c
2
0Δu = −ρ0α̃∇T + ηΔu̇ +

(
ζ +

η

3

)
∇(∇u̇), (31.19)

ρ0CV
dT
dt

+ ρ0T0α̃∇u̇− κΔT = 0. (31.20)

In the absence of viscosity η = 0, ζ = 0, which was not taken into account in the
dissipation function (31.16), the structure of (31.17) and (31.18) practically coin-
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cides with the second (31.19) and the third (31.20) equations of the hydrodynamics
system. The only difference is the additional term in the right part of (31.18) in com-
parison with (31.20). We briefly note here that the reason for the introduction of this
term is related with the generalized form of Fourier law for heat energy flow, and
it is discussed in detail in [11]. A direct comparison of the coefficients of (31.17),
(31.18) and (31.19), (31.20) with the condition rot u̇ = 0 gives us a relationship be-
tween them. One only needs to take into account the different dimension of (31.18)
and (31.20), and hence the presence of common dimension multiplier when com-
paring the coefficients for these equations. In the explicit form, the parameters of
the quadratic forms are expressed through the known parameters as

β
ρ0c

2
0

χ

(
γ2 − 1

)
, θ = −γ − 1

αT0
, α̃ = ρ0c

2
0(γ − 1),

λ + 2μ = ρ0c
2
0γ, κ̃ = ρ0c

2
0

(
γ2 − 1

)
,

where γ is the specific heat capacity ratio γ = CP /CV , and χ = κ/ρ0CV is the
heat conductivity coefficient. It is remarkable that the coefficient of the dissipation
function happens to be inversely proportional to the heat conductivity coefficient.

31.7 Mandelshtam–Leontovich Approach for Description
of Viscosity Relaxation

Let us consider now how to derive equations accounting for viscosity on the ba-
sis of a generalized variational principle. In complete analogy with Mandelshtam–
Leontovich approach [1], let us consider together with the basic thermodynamical
parameters such as specific volume and temperature (in our description the fields of
mean u and heat uT displacements) some additional (internal) parameters {ξi}, by
which the state of the system is characterized in a vicinity of the thermodynamical
equilibrium. If there is only one scalar internal parameter, the deviation of which
from its thermodynamically equilibrium value is denoted by ξ, then the quadratic
form of the free energy expansion can be written as

2F (∇u, T, ξ) = με2
ik + λε2

ll + κ

[
T − T0

T0

]2

,

+ 2αεll

[
T − T0

T0

]
aξ2 + 2bξεll + 2cξ

[
T − T0

T0

]
, (31.21)

analogously, the dissipation function will have the form

2D
(
u̇, u̇T , ξ̇

)
= β(u̇− u̇T )2 + γξ̇2. (31.22)

Then, taking the variation by the fields u and uT together with the variation by the
field of the internal parameter ξ, we obtain the following system of motion equations
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ρ0
d
dt

u− μΔu− (λ + μ)∇(∇u)− α∇(∇uT )− b∇ξ = β(uT − u),

β(u̇T − u̇)− κ∇(∇uT ) = α∇(∇u) + c∇ξ,

γ
dξ
dt

+ aξ + b(∇u) + c(∇uT ) = 0,

(31.23)

where the last equation represents by itself the linear kinetic equation for the internal
parameter ξ, which is simply postulated in the Mandelshtam–Leontovich approach
[10]. Since in relation to the parameter ξ this equation is an ordinary differential
equation of the first order, it can be integrated, and its solution can be represented in
the form

ξ = − 1
γ

∫ t

0

exp
{
−α

γ
(t− t′)

}(
b∇u− c

T − T0

T0

)
dt′. (31.24)

It is seen that this solution describes the relaxation of the internal parameter to the
current values of the basic thermodynamical fields. Substituting (31.24) into rested
equations of the system (31.23), it is possible to obtain the motion equations which
account for the relaxation of the internal parameter:

ρ0
d
dt

u̇− μΔu + (μ + λ + α̃)∇(∇u) + (α + κ̃)∇T

=
b + c

a

∫ t

0

exp
{
−α

γ
(t− t′)

}
∇(b∇u− cṪ ) dt′, (31.25)

β(Ṫ −∇u̇)−
(
κ− c2

a

)
ΔT

=
(
α− bc

a

)
Δ∇u +

c

a

∫ t

0

exp
{
−α

γ
(t− t′)

}
Δ(b∇u− cṪ ) dt′, (31.26)

where the following notations are used

α̃ = α− b

a
(b + c), κ̃ = κ− c

a
(b + c).

Now, it is easy to see that at the long times in comparison with the relaxation time
τ = γ/a (or in the limit τ → 0) the integrand can be taken out in the vicinity of the
top integration limit, and the resulting equation in this limiting case can be written
in the form

ρ0
d
dt

u̇− μΔu + (μ + λ + α̃)∇(∇u) + (α + κ̃)∇T

= γ(b + c)∇(b∇u− cṪ ), (31.27)

β(Ṫ −∇u̇)−
(
κ− c2

a

)
ΔT =

(
α− bc

a

)
Δ∇u + γcΔ(b∇u− cṪ ). (31.28)

It is easy to see that at c = 0 and μ = 0 (31.27) coincides in structure with (31.19),
so we will have also the relation γb2 = ς + (4/3)η.
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Thus, the account of internal parameters allows us to introduce naturally the vis-
cous terms in the motion equation, that is usually the principal difficulty in other
variational approaches. Moreover, the presence of viscosity relaxation appears to be
natural. The introduction of this relaxation for viscosity is required, for example, for
finite speed of perturbation propagation in dissipative hydrodynamics.

It should also be mentioned that additional terms in the quadratic forms (31.21)–
(31.22) dealt with the internal parameter ξ, assuming its scalar nature. However,
such parameters can possess vector or tensor properties. In the latter case, relaxation
of viscosity will be attributed to the shear viscosity together with the bulk viscosity.

31.8 Conclusion

The following principal results are obtained in the framework of the given article:
The generalization of the Hamilton’s and Osager’s variational principles for dissi-
pative hydrodynamical systems is represented in terms of the mechanical and heat
displacement fields. A system of equations for these fields is derived from the ex-
treme condition for action with a Lagrangian in the form of the difference between
the kinetic and free energies minus the time integral of the dissipation function.
The generalized hydrodynamic equation system is then evaluated on the basis of the
generalized variational principle. At low frequencies, this system corresponds to the
traditional Navier–Stokes equation system

It is shown how to introduce a viscosity into the fluid motion equation on the
basis of the generalized variational principle. An internal parameter is used for the
description of quasi-equilibrium state in analogy to Mandelshtam–Leontovich ap-
proach. The derived motion equation describes viscosity relaxation and generalizes
the well known Navier–Stokes equation.
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Chapter 32
Cosserat Continua Described by Mesoscopic
Theory

Wolfgang Muschik and Christina Papenfuss

Abstract Beyond the usual 5-field theory (the basic fields are the mass density,
velocity, internal energy), additional variables are needed for the unique description
of complex media. Beside the conventional method of introducing additional fields
by their balances, another procedure, the mesoscopic theory, is here discussed and
applied to Cosserat continua.

32.1 Introduction

Continuum mechanics is based on the balance equations of mass, momentum, angu-
lar momentum or spin, total or kinetic energy, and internal energy. Additionally, one
has to consider the balance of entropy for taking into account the second law. In non-
relativistic physics, all these balances are defined with respect to time and position
(x, t). Beyond the quantities whose balance equations are mentioned above, com-
plex materials need more variables for their unique description. Examples for these
additional quantities are internal variables, order and damage parameters, Cosserat
triads, directors and alignment and conformation tensors.

In principle, there are two possibilities to include these additional quantities into
the continuum theoretical description: One can introduce additional fields and their
balance equations defined with respect to (x, t) as in the case of Cosserat continua,
or the additional quantities, the so-called mesoscopic variables, are introduced as
variables extending space–time to the so-called mesoscopic space. This description
introducing the mesoscopic space is called the mesoscopic theory. According to its
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construction, the dimension of the mesoscopic space is equal to the number of the
mesoscopic variables plus four.

The balances of mass, momentum, etc. can be easily written down on the meso-
scopic space because only the number of dimensions changed in comparison with
the usual balances on space-time. The different values of the mesoscopic variables in
a given volume element are described by a mesoscopic distribution function (MDF),
representing the statistical tool of the mesoscopic description. The moments of the
MDF, generated by integration over the mesoscopic variables, are additional macro-
scopic fields which are beyond the fields appearing in the balance equations. The
Cosserat continuum is generated by integrating the mesoscopic balances over the
mesoscopic variables.

32.2 The Mesoscopic Concept

In principle, there are two possibilities to include additional quantities into the con-
tinuum theoretical description [21]. One can introduce additional fields and their
balance equation defined with respect to (x, t) ∈ R3 × R1, or the additional quan-
tities are introduced as variables extending R3 × R1 to the so-called mesoscopic
space on which now the balances of mass, momentum, etc. are defined. The first
possibility for describing complex materials by introducing additional fields has a
long history in continuum mechanics. Starting out with the first contribution of the
Cosserat brothers [6, 7], the development of mechanics of generalized continua is
lasting even today [12, 13, 16, 5]. The second possibility to introduce the meso-
scopic space is called the mesoscopic concept which stems historically from the
theory of liquid crystals [9, 11, 18, 15, 25, 14, 17] by taking the orientation distri-
bution function of the molecules into consideration [8, 2, 4].

As discussed above, the mesoscopic concept introduces the mesoscopic space

(m,x, t) ∈ M ×R3 ×R1 (32.1)

on which the balances are defined. Here m ∈ M is a set of mesoscopic variables
which is an element of a suitable manifold M on which an integration can be de-
fined.

Beyond the use of additional variables m, the mesoscopic concept introduces a
statistical element, the so-called mesoscopic distribution function (MDF) f(m,x, t)
generated by the different values of the mesoscopic variables of the molecules in a
volume element

f(m,x, t) ≡ f(·), (·) ≡ (m,x, t) ∈ M ×R3 ×R1. (32.2)

The MDF is defined on the mesoscopic space M × R3 × R1 describing the dis-
tribution of m in a volume element around x at time t, and therefore it is always
normalized ∫

f(m,x, t) dM = 1. (32.3)
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32.3 Local Mesoscopic Balances

Starting out with a usual local balance equation on R3 ×R1

∂

∂t
X(x, t) +∇x ·

[
v(x, t)X(x, t)

]
= Σ(x, t), (32.4)

we introduce the mesoscopic part by replacing R3×R1 with M ×R3×R1 and by
adding the differentiated part belonging to M . Thus, we obtain the shape of a local
mesoscopic balance

∂

∂t
X(·) +∇x ·

[
v(·)X(·)− S(·)

]
+∇m ·

[
u(·)X(·)−R(·)

]
= Σ(·). (32.5)

The special balances are obtained by a special physical identification of X(·), S(·),
R(·) and Σ(·). Beside the mesoscopic velocity v(·), the mesoscopic change velocity
u(·) occurs, which is defined as follows

(m,x, t) −→
(
m + u(·)Δt,x + v(·)Δt, t + Δt

)
. (32.6)

In particular, we obtain the following local mesoscopic balance equations:

1. Mass
∂

∂t
'(·) +∇x ·

{
v(·)'(·)

}
+∇m ·

{
u(·)'(·)

}
= 0, (32.7)

2. Momentum

∂

∂t
['(·)v(·)] +∇x ·

[
v(·)'(·)v(·)−T	(·)

]

+∇m ·
[
u(·)'(·)v(·)−T 	(·)

]
= '(·)k(·), (32.8)

3. Angular Momentum and Spin

M(·) := x× v(·) + s(·), s(·) := mesoscopic specific spin, (32.9)

∂

∂t

[
'(·)s(·)

]
+∇x ·

[
v(·)'(·)s(·)−W(·)T

]

+∇m ·
[
u(·)'(·)s(·)−W (·)T

]
= ε : T(·) + '(·)g(·). (32.10)

The meaning of the used quantities is as follows: T is the mesoscopic Cauchy
stress tensor, T its analogue on the mesoscopic space. k is the mesoscopic force
density and g the mesoscopic angular momentum exerted by the external forces
on m. W is the mesoscopic couple stress and W its analogue acting on the meso-
scopic variables m.

The mesoscopic balances can be written down very easily because only the num-
ber of dimensions differ with respect to the macroscopic balances. Consequently,
a setting of new balances is not necessary: the quantities beyond the 5-field the-
ory are included in the mesoscopic space as variables. Of course, not all variables
beyond 5-field theory are mesoscopic ones. If there is no mesoscopic distribution
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function for a special quantity, it is not a mesoscopic variable and cannot be treated
with the mesoscopic theory.

32.4 Cosserat Media

Finally, we are not interested in the mesoscopic fields, but we have to create macro-
scopic ones from them. To do so, it is obvious that we have to integrate over the
mesoscopic variables to obtain the macroscopic balances of Cosserat media

∫
· · · dM −→ balances of Cosserat media. (32.11)

Taking into account that the integral over the divergence with respect to the meso-
scopic variables vanish [2], i.e.,

∫
∇m · [· · ·] dM = 0, (32.12)

we obtain by integrating the mesoscopic mass balance (32.7) the following meso-
scopic definitions of the macroscopic mass density and velocity

'(x, t) :=
∫

'(·) dM , v(x, t) :=
∫

f(·)v(·) dM . (32.13)

In the same way by integrating balances, we obtain the mesoscopic definitions of
the macroscopic spin, stress tensor, couple stress, and external momentum

s(x, t) :=
∫

f(·)s(·) dM , (32.14)

T(x, t) :=
∫ [

T(·)− v(·)'(·)v(·)
]
dM + v(x, t)'(x, t)v(x, t), (32.15)

W(x, t) :=
∫ [

W(·)− s(·)'(·)v(·)
]
dM + s(x, t)'(x, t)v(x, t), (32.16)

'(x, t)g(x, t) :=
∫ [

'(·)g(·) + ε : T(·)−∇m ·W 	(·)
]
dM

− ε : T(x, t). (32.17)

Interesting is that the mesoscopic stress tensors and the mesoscopic external mo-
ments are not additive forming the macroscopic quantities.

The macroscopic spin balance which is the main equation of Cosserat continua
results from integration of (32.10) [1]

∂

∂t

[
'(x, t)s(x, t)

]
+∇x ·

[
v(x, t)'(x, t)s(x, t)−WT (x, t)

]
(32.18)

= ε : T(x, t) + '(x, t)g(x, t). (32.19)

With this, the mesoscopic background of the Cosserat continua is elucidated.



32 Cosserat Continua Described by Mesoscopic Theory 311

32.5 Entropy Balance

Because of the second law which can be formulated only macroscopically, the en-
tropy balance is only interesting in its macroscopic form. It is written

∂

∂t

[
'(x, t)η(x, t)

]
+∇x ·

[
'(x, t)η(x, t)v(x, t) + φ(x, t)

]

= ζ(x, t) + σ(x, t). (32.20)

Here, the fields have the following meaning: η(x, t) = is specific entropy, φ(x, t) =
entropy flux density, ζ(x, t) = entropy supply, σ(x, t) = entropy production den-
sity. The second law is now expressed by the dissipation inequality

σ(x, t) ≥ 0 (32.21)

which has to be taken into account for writing down constitutive equations [19, 26].

32.6 Distribution Function Balance

Taking (32.13)1 and (32.3) into account, we obtain

'(·) = '(x, t)f(·). (32.22)

The macroscopic mass balance results from integrating (32.7) over the mesoscopic
variables by taking (32.12) into account

∂

∂t
'(x, t) +∇x ·

{
v(x, t)'(x, t)

}
= 0. (32.23)

The macroscopic mass balance induces a differential equation for the mesoscopic
distribution function [20]

∂

∂t
f(·) +∇x ·

[
v(·)f(·)

]
+∇m ·

[
u(·)f(·)

]

+ f(·)
[
∂

∂t
+ v(·) · ∇x

]
ln '(x, t) = 0. (32.24)

This differential equation for the MDF is a derived one, and consequently, it does
not represent an approximation or an ad-hoc equation in the frame of the mesoscopic
theory. From the mathematical point of view, (32.24) is an integro-differential equa-
tion due to the appearance of the macroscopic mass density which is an integral over
the mesoscopic mass density according to (32.13)1. Form a physical point of view,
(32.24) is a mean field equation because the mesoscopic distribution function is also
determined by the macroscopic mass density.
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32.7 Beyond Cosserat, the Order Parameters

Cosserat continua are characterized by a non-trivial macroscopic spin balance
(32.10) with non-vanishing couple stress which can be derived mesoscopically. But
beyond Cosserat, the mesoscopic theory creates macroscopic balances by the mo-
ments of the MDF. These moments generate the so-called family of the order pa-
rameters

1 =
∫

f(·) dM , (32.25)

A(x, t) :=
∫

f(·)mdM , (32.26)

a(x, t) :=
∫

f(·) mm dM , (32.27)

aN (x, t) :=
∫

f(·)
N times

m · · ·m dM . (32.28)

Here A · · ·B denotes a symmetric and traceless tensor. As an example, a(x, t) is
the alignment tensor of liquid crystal theory which is beyond the theory of Cosserat
continua.

32.8 Remarks on Constitutive Theory

All balance equations contain constitutive equations whose choice makes the sys-
tem of balances mathematically complete for solution and which determine the ma-
terial for which the considered system of balance equations is valid. The domain of
the constitutive equations is called the state space or the constitutive space which
characterizes the material and which has to be chosen. The mesoscopic constitutive
theory is up to now poorly developed. The reason for that is that there are different
kinds of state spaces whose final choice is difficult. There are

1. Purely mesoscopic state spaces without any mean field influence

Z =
(
m, '(·), ∇v(·),

[
u(·)

]obj
, ε(·)

)
; (32.29)

2. Purely macroscopic state spaces whose macroscopic variables are defined by a
mesoscopic background [3]

Z =
(
'(x, t) ∇v(x, t), ε(x, t),a(x, t),a4(x, t),∇a(x, t)

)
, (32.30)

and finally we have
3. Mixed state spaces [10]

Z =
(
m, '(·), ∇v(·),∇n ln '(·), ∇v(x, t),a(x, t)

)
. (32.31)
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Often it is difficult to find the suitable state space describing a special material.
That is one of the reasons why the mesoscopic constitutive theory is poorly devel-
oped.

32.9 Summary

Cosserat continua have a mesoscopic background because the macroscopic spin bal-
ance including the couple stress can be derived by using a mesoscopic description.
The former is characterized by introducing the mesoscopic space, the product of
space–time and the mesoscopic variables, and by introducing the mesoscopic dis-
tribution function defined on the mesoscopic space describing the distribution of
the values of the mesoscopic variables around a point in space–time. No additional
balances for the mesoscopic variables are necessary because they are introduced as
variables of the mesoscopic space and not as additional fields which need also ad-
ditional, first of all, unknown balances. Instead of them, the mesoscopic description
needs a model for the transient behavior of the mesoscopic variables, the mesoscopic
change velocity. Having solved the mesoscopic balances by introducing constitutive
equations (a difficult task), the macroscopic quantities, the only that can be mea-
sured, are derived by integrating over the mesoscopic variables. Beyond Cosserat,
additional macroscopic fields, the moments of the mesoscopic distribution function,
the so-called order parameters can be derived which includes the additional infor-
mation stemming from the mesoscopic background.

Successful application of the mesoscopic theory is always possible, if meso-
scopic variables can be defined. Up to now, liquid crystals [22], micro-cracks
[27, 24] and ferrofluids [23] are mesoscopically described.
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Chapter 33
Fractal Solids, Product Measures
and Continuum Mechanics

Jun Li and Martin Ostoja-Starzewski

Abstract This paper builds on the recently begun extension of continuum thermo-
mechanics to fractal porous media which are specified by a mass (or spatial) fractal
dimension D, a surface fractal dimension d, and a resolution length scale R. The fo-
cus is on pre-fractal media (i.e., those with lower and upper cut-offs) through a the-
ory based on a dimensional regularization, in which D is also the order of fractional
integrals employed to state global balance laws. In effect, the governing equations
may be cast in forms involving conventional (integer-order) integrals, while the local
forms are expressed through partial differential equations with derivatives of integer
order but containing coefficients involving D, d and R. The formulation allows a
generalization of the principles of virtual work, and virtual stresses, which, in turn,
allow us to extend the extremum and variational theorems of elasticity and plasticity,
as well as handle flows in fractal porous media. In all the cases, the derived relations
depend explicitly on D, d and R, and, upon setting D = 3 and d = 2, reduce to
conventional forms of governing equations for continuous media with Euclidean ge-
ometries. While the original formulation was based on a Riesz measure—and thus
more suited to isotropic media—the new model is based on a product measure mak-
ing it capable of grasping local material anisotropy. The product measure allows one
to grasp the anisotropy of fractal dimensions on a mesoscale and the ensuing lack of
symmetry of the Cauchy stress, as noted in condensed matter physics. On this basis,
a framework of micropolar mechanics of fractal media is developed.
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33.1 Background

Mandelbrot’s seminal work on fractals [11] was first followed, outside mathemat-
ics itself, by the condensed matter physicists who focused on the effects of frac-
tal geometries on bulk material responses, e.g., [5]. That work concentrated on
explaining physical phenomena and properties of materials whose fractal (non-
Euclidean) geometry plays a key role, but a field theory—as an analogue of con-
tinuum physics/mechanics—has been sorely lacking. Some progress in that respect
has recently been made by mathematicians [8, 19] looking at classical problems,
like Laplace’s or heat equation, on fractal (albeit self-similar and non-random) sets.
Also, various specialized models have also been developed for particular problems
like wave scattering at fractals [1], fracture mechanics [3], or geomechanics [4].
A new step in the direction of continuum physics and mechanics, relying on dimen-
sional regularization, was taken by Tarasov [20–22]. He developed continuum-type
equations of conservation of mass, momenta, and energy for fractal porous media,
and on that basis studied several fluid mechanics and wave motion problems. In
principle, one can then map a mechanics problem of a fractal (which is described
by its mass (D) and surface (d) fractal dimensions plus the spatial resolution (R))
onto a problem in the Euclidean space in which this fractal is embedded, while hav-
ing to deal with coefficients explicitly involving D, d and R. As it turns out, D is
also the order of fractional integrals employed to state global balance laws. This
approach’s great promise stems from the fact that much of the framework of contin-
uum mechanics/physics may be generalized and partial differential equations (with
derivatives of integer order) may still be employed [13, 14].

Whereas the original formulation of Tarasov was based on the Riesz measure—
and thus more suited to isotropic media—the model proposed here is based on a
product measure introduced very recently [18, 9]. That measure grasps the aniso-
tropy of fractal geometry (i.e., different fractal dimensions in different directions)
on mesoscale, which, in turn, leads to asymmetry of the Cauchy stress. This leads to
a framework of micropolar mechanics of fractal materials, formulated here for the
case of small strains and rotations. While all the derived relations depend explicitly
on D, d and R, upon setting D = 3 and d = 2, they reduce to conventional forms
of governing equations for continuous media with Euclidean geometries. Prior re-
search has already involved an extension to continuum thermomechanics and frac-
ture mechanics, a generalization of extremum and variational principles, and turbu-
lent flows in fractal porous media [15–17].

33.2 Product Measures and Basic Integral Theorems

We begin with a fractal material whose mass m obeys a power law

m(R) = kRD, D < 3. (33.1)
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Here R is the length scale of measurement (or resolution), D is the fractal dimension
of mass, and k is a proportionally constant. Certainly, (33.1) can be applied to a pre-
fractal, i.e., a fractal-type, physical object with lower and upper cut-offs. Next, we
use a fractional integral to represent mass in a 3D region

m(W ) =
∫

W

ρ(r) dVD =
∫

W

ρ(r)c3(D,R) dV3, (33.2)

where the first and second equalities, respectively, involve fractional (Riesz-type)
integrals and conventional integrals, while the coefficient c3(D,R) provides a trans-
formation between the two [20–22]. In order to deal with generally anisotropic
rather than isotropic media, we replace (33.1) by a more general power law rela-
tion with respect to each coordinate

m(R) ∼ xα1
1 xα2

2 xα3
3 ,

whereby the mass distribution is specified via a product measure

m(x1, x2, x3) =
∫∫∫

W

ρ(x1, x2, x3) dμ(x1) dμ(x2) dμ(x3). (33.3)

Here the length measurement in each coordinate is provided by

dμ(xk) = c
(k)
1 (αk, xk) dxk, k = 1, 2, 3. (33.4)

Then, the total fractal dimension D of mass m is α1 + α2 + α3, while

c3 = c
(1)
1 c

(2)
1 c

(3)
1 =

3∏

i=1

c
(i)
1 . (33.5)

For the surface coefficient (c2) we typically consider a cubic volume element,
whose each surface element is specified by the normal vector (along axes; Fig. 33.1).
Therefore, c(k)

2 associated with the surface element S(k)
d is

c
(k)
2 = c

(i)
1 c

(j)
1 = c3/c

(k)
1 , i �= j and i, j �= k. (33.6)

Fig. 33.1 Constructing coefficients c
(k)
2 and c3 via product measures
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We adopt a modified Riemann–Liouville fractional integral of Jumarie [6, 7], so that

c
(k)
1 = αk(lk − xk)αk −1, k = 1, 2, 3, (33.7)

where lk is the total length (integral interval) along xk. Note that, for a point mass
ρ(x1, x2, x3) = m0δ(x1)δ(x2)δ(x3), when D → 3 (α1, α2, α3 → 1), then
m(W ) = α1α2α3l

D−3m0 → m0, and so the conventional concept of a point mass
is recovered [23]. However, the Riesz fractional integral has a non-smooth transi-
tion of mass with respect to its fractal dimension (m(W ) = 0 except when D = 3,
m(W ) = m00D−3 = m0).

One can now obtain a fractional Gauss theorem via dimensional regularization,
formulated within the framework of product measures discussed above,

∫

∂W

fknk dSd =
∫

W

(
fkc

(k)
2

)
,k
c−1
3 dVD

=
∫

W

fk,k c
(k)
2 c−1

3 dVD =
∫

W

fk,k

c
(k)
1

dVD. (33.8)

It is important to observe three properties of the (fractal gradient) operator
∇D

k = (·),k/c
(k)
1 under product measures:

(1) It is the “inverse” operator of fractional integrals.
(2) The rule of “term-by-term” differentiation is satisfied, i.e.,

∇D
k (AB) = ∇D

k (A)B + A∇D
k (B).

(3) Its operation on any constant is zero, which indeed is a desired property not
possessed by the usual fractional derivative of Riemann–Liouville [12].

While we note that Properties (2) and (3) do not hold in Tarasov’s Riesz measure
formulations, the fractional generalization of Reynold’s transport theorem is

d
dt

∫

W

P dVD =
∫

W

[
∂

∂t
P + (Pvk),k

]
dVD. (33.9)

It follows that the fractal material time derivative is the same as the conventional
one (

d
dt

)

D

P =
d
dt

P =
∂

∂t
P + P,kvk. (33.10)

From a homogenization standpoint this allows an interpretation of the fractal (in-
trinsically discontinuous) medium as a continuum with a ‘fractal metric’ embedded
in the equivalent homogenized continuum model, that is,

dlD = c1 dx, dSd = c2 dS2, dVD = c3 dV3. (33.11)

Here dlD, dSd, dVD represent the line, surface, and volume elements in the fractal
body, while dx, dS2, dV3, respectively, denote those in the homogenized model, see
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Fig. 33.2 An illustration of the homogenization process from geometry configurations

Fig. 33.2. The coefficients c1, c2, c3 provide relations between both pictures. Stan-
dard image analysis techniques (such as the “box method” or the “sausage method”)
allow a quantitative calibration of these coefficients for every direction and every
cross-sectional plane.

33.3 Micropolar Continuum Mechanics of Fractal Media

Now we proceed to develop a framework of continuum mechanics in fractal media.
Analogous to the classical continuum mechanics, first we specify the surface force
TS in terms of the Cauchy stress tensor σ via fractional integrals

TS
k =

∫

∂W

σlknl dSd. (33.12)

The conservation of linear and angular momenta in fractal media can be written as

d
dt

∫

W

ρvk dVD =
∫

W

Xk dVD +
∫

∂W

σlknl dSd, (33.13)

and

d
dt

∫

W

ρeijkxjvk dVD =
∫

W

eijkxjXk dVD +
∫

∂W

eijkxjσlknl dSd, (33.14)

where vk denotes the velocity and Xk is the body force density; eijk is the per-
mutation tensor. From the fractional Gauss theorem (33.8) and Reynold’s transport
theorem (33.9), we obtain the balance equations of linear and angular momenta in
local form:
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ρ

(
d
dt

)

D

vk = Xk +∇D
l σlk (33.15)

and
eijk

σjk

c
(j)
1

= 0. (33.16)

In general, c
(j)
1 �= c

(k)
1 , meaning that the medium exhibits anisotropic fractal

dimensions, thus making the Cauchy stress asymmetric, and suggesting a Cosserat
(micropolar mechanics) formulation. This can be physically understood by noting
that fractal media display a heterogeneous fine structure at arbitrarily small scales,
also note [5, 10]. Motivated by this result, we introduce a couple-stress tensor μ
and a rotation vector ϕ augmenting, respectively, the Cauchy stress tensor τ (thus
denoted so as to distinguish it from the symmetric σ) and the deformation vector u.
The surface force and surface couple can be specified by fractional integrals of τ
and μ, respectively, as

TS
k =

∫

∂W

τlknl dSd, MS
k =

∫

∂W

μlknl dSd. (33.17)

Now, proceeding in a fashion similar as before, we arrive at the balance equations
of linear and angular momenta

ρ

(
d
dt

)

D

vi = Xi +∇D
j τji, (33.18)

Iij

(
d
dt

)

D

wj = Yi +∇D
j μji + eijk

τjk

c
(j)
1

. (33.19)

In the above, Iij is the rotational inertia tensor determined by

Iii = ρ

∫

W

[
|x|2 − x2

i

]
dVD, Iij = ρ

∫

W

xixj dVD, (33.20)

which follows from considering a helicoidal vector field of velocity [23]. Also, Xi is
the external body force density, Yi is the body force couple, while vi(≡ u̇i) and
wi(≡ ϕ̇i) are deformation and rotation velocities, respectively.

Let us now consider the conservation of energy. It has the following form

d
dt

∫

W

(u+ k) dVD =
∫

W

(Xivi + Yiwi) dVD +
∫

∂W

(tivi +miwi) dSd, (33.21)

where k = (1/2)(ρvivi + Iijwiwj) is the kinetic energy density and u denotes the
internal energy density. (Note here that, just like in conventional continuum me-
chanics, the balance equations of linear momentum (33.18) and angular momentum
(33.19) can be consistently derived from the invariance of energy (33.21) with re-
spect to rigid body translations (vi → vi + bi) and rotations (vi → vi + eijkxjωk,
wi → wi +ωi), respectively.) Next, we want to obtain the expression for the rate of
change of internal energy, and so we start with
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∫

w

[(
d
dt

)

D

u + ρvi

(
d
dt

)

D

vi + Iijwi

(
d
dt

)

D

wj

]
dVD

=
∫

W

[
(Xivi + Yiwi) +∇D

j (τjivi + μjiwi)
]
dVD, (33.22)

which yields the local form

(
d
dt

)

D

u + ρvi

(
d
dt

)

D

vi + Iijwi

(
d
dt

)

D

wj

= (Xivi + Yiwi) +∇D
j (τjivi + μjiwi). (33.23)

In view of (33.18) and (33.19), and noting the “term by term” rule of ∇D
j , we find

(
d
dt

)

D

u = τji

(
∇D

j vi − ekji
wk

c1(j)

)
+ μji∇D

j wi. (33.24)

It is now convenient to define the strain tensor γji and the curvature tensor κji in
fractal media as

γji = ∇D
j ui − ekji

ϕk

c1(j)
, κji = ∇D

j ϕi. (33.25)

For small motions (d/dt)Du = u̇, thus we can write the energy balance (33.24) as

u̇ = τjiγ̇ji + μjiκ̇ji. (33.26)

Assuming u to be a state function of γji and κji only, this leads to

τji =
∂u

∂γji
, μji =

∂u

∂κji
, (33.27)

which shows that, in the fractal setting, (τji, γji) and (μji, κji) are still conjugate
pairs.

The specification of constitutive equations involves more physical arguments,
and we choose to keep the stress–strain relations while modifying their definitions to
the fractal setting. This is consistent with [2], where scale effects of material strength
and stress are discussed from the standpoint of fractal geometry and confirmed by
experiments of both brittle and plastic materials. Thus, we have

τij = C
(1)
ijklγkl + C

(3)
ijklκkl, μij = C

(3)
ijklγkl + C

(2)
ijklκkl. (33.28)

Equations (33.18), (33.19), (33.25), and (33.28) constitute a complete set of equa-
tions describing the initial-boundary value problems in fractal media.
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33.4 Closure

Our approach builds on, but modifies, Tarasov’s approach in that it admits an arbi-
trary anisotropic structure. This involves, in the first place, a specification of geom-
etry of continua via ‘fractal metric’ coefficients, which then allows a construction
of continuum mechanics of fractal solids. The anisotropy of fractal geometry on
mesoscale leads to asymmetry of the Cauchy stress and to admission of the couple
stress, i.e., to a fractal micropolar continuum. The proposed methodology broadens
the applicability of continuum mechanics/physics to studies of material responses.
The highly complex, fractal-type media which have so far been the domain of con-
densed matter physics, geophysics and biophysics, etc. (multiscale polycrystals,
cracked materials, polymer clusters, gels, rock systems, percolating networks, ner-
vous systems, pulmonary systems, . . . ) will become open to studies conventionally
reserved for smooth materials. This will allow solutions of initial-boundary value
problems of very complex, multiscale materials of both elastic and inelastic type.
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Chapter 34
Magnetoelasticity of Thin Shells and Plates
Based on the Asymmetrical Theory of Elasticity

Smuel H. Sargsyan and Lusine S. Sargsyan

Abstract In the present, paper we aim at constructing three variants of general
mathematical models of micropolar elastic electro-conducting and non-ferromag-
netic shells and plates: one with independent fields of transition and rotation, one
with constraint rotation and one with “small shift rigidity”. The construction is based
on the asymptotic method.

34.1 Introduction

In the course of constructing the theory of elasticity with the account of force and
momental stresses, we sometimes face the problem of defining the stress-deformed
state for materials which are endowed with electromagnetic properties [6, 2, 4, 5, 1].
From this point, the construction of general mathematical models of micropolar
elastic electro-conducting and non-ferromagnetic shells and plates becomes actual.

In [7], we can follow the application of the asymptotic method while constructing
general applied two-dimensional theory of magnetoelasticity of thin shells accord-
ing to the classical theory of elasticity. The construction of theories of thin bars,
shells and plates based on the above-mentioned principle is demonstrated in [9, 8,
10, 11].

In the present paper, our task consists in constructing the fundamental system
of 2D equations of magnetoelasticity of electro-conducting and non-ferromagnetic
thin plates and shells based on the three-dimensional asymmetrical theory of mag-
netoelasticity. In order to define the electromagnetic field in the region surrounding
the shell or plate, it is convenient to represent the 3D space as a mathematical cut
along the shell’s or plate’s mid-surface. The electro-conducting currents, averaged
along the shell’s or plates thickness, are supposed to flow along this cut. Thus, we
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obtain 2D conditions on the boundary contour of the shell’s or plate’s mid-surface
both for the mechanical and for corresponding electrodynamic values. As a result,
with the account of dimensionless physical parameters, the above mentioned three
variants of mathematical models are constructed.

34.2 Formulation of the Problem

Let us consider an isotropic shell with constant thickness 2h as a micropolar elas-
tic electro-conducting (non-ferromagnetic) homogeneous body in a static three-
orthogonal system of coordinates [7, 3]. The shell is supposed to be located in an ex-
ternal stationary homogeneous magnetic field described by the vector:
H0 = {H01, H02, H03}. We start from the main equations of the linearized the-
ory of magnetoelasticity for 3D micropolar medium [2, 4, 5]. Taking into account
volume forces of electromagnetic origin, the equations of motion become

∇mσmn + fn = ρ
∂2V n

∂t2
, ∇mμmn + enmkσmk = J

∂2ωn

∂t2
. (34.1)

The generalized Hooke’s law is

σmn = (μ + α)γmn + (μ− α)γnm + λγkkδnm,

μmn = (γ + ε)κmn + (γ − ε)κnm + βκkkδnm,
(34.2)

with geometrical correlations

γmn = ∇mVn − ekmnω
k, κmn = ∇mωn. (34.3)

Quasi-stationary equations of electrodynamics with finite electro-conductivity in
the region of moving medium consist of

roth =
4π
c

j, rotE = −1
c

∂h
∂t

, div h = 0, div E = 4πρe, (34.4)

while in the external region (in the vacuum) they are

roth(e) = 0, rotE(e) = −1
c

∂h(e)

∂t
,

div E(e) = 0, div h(e) = 0.
(34.5)

Here, m,n = 1, 2, 3; σnm, μnm stand for contra-variant components of force and
momental stress tensors; γmn, κmn are covariant components of deformation and
bending-torsion tensors; Vn are covariant components of the displacement vector
(V); ωn stands for covariant components of the vector of independent rotation (ω)

F =
{
f1, f2, f3

}
=

1
c
j×H0. (34.6)
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F denotes the vector of volume forces of electro-magnetic origin

j = σ

(
E +

1
c

∂V
∂t

×H0

)
. (34.7)

j stands for the disturbed electrical current in the body; E, E(e) are the vectors of the
induced electrical current in the body and vacuum, respectively; h, h(e) are vectors
of the induced magnetic field in the body vacuum, respectively; ρe is the electrical
charge in the body; λ, μ, α, β, γ, ε are the elastic constants of the shell’s micropolar
material; ρ is the thickness of the material; J is the measure for inertia during the
rotation of the material; σ is the coefficient of electro-conduction; c is the electro
dynamic constant which is equal to the speed of light in the vacuum; δnm stand for
the Kroneker’s symbols; enmk are contra-variant components of Levi–Civita tensor.

Mechanical boundary conditions on the shell’s facial surface appear as

σk3|α3=±h = ∓q±
k (k = 1, 2, 3). (34.8)

It is assumed that the boundary conditions on the shell’s boundary surface Σ corre-
spond to either the first, second or mixed types of the theory of micropolar elasticity.

Electrodynamic boundary conditions both on the facial and boundary surfaces
will be represented by the following correlations [6, 2]:

nk[Ek]− = 4πρ̂e, enmknm[hk]− = 0,

nk[hk]− = 0, enmknm[Ek]− = 0,
(34.9)

where [·] stands for the jump of the unknown at the boundary surface between the
body and vacuum, and ρ̂e is the surface charge. At infinity, we require that the
electromagnetic vectors in vacuum decrease as [7]

∣
∣⇀E (e)

∣
∣ = O(1/r),

∣
∣h(e)

∣
∣ = O(1/r), r →∞, 0 ≤ t < ∞, (34.10)

where r is the distance from the origin of coordinates to the reference point.
The initial conditions of the defined problem characterize the positions and

speeds of the body points, and the changes in electromagnetic field at t = 0 ini-
tial time moment.

34.3 The Asymptotic Method

Let us consider a problem of reducing the 3D initial condition–boundary value prob-
lem (34.1)–(34.10) of the asymmetric theory of magnetoelasticity for thin shells to
2D by the asymptotic method with boundary layer, including the problem of satis-
fying the boundary and initial conditions. Let us also mention that this problem is
tightly connected with the construction of the internal iterative process, which is a
2D problem, as shown below.
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For this purpose, in 3D equations of asymmetric theory of magnetoelasticity we
introduce special stress tensors [7, 11, 3]:

τii =
(

1 +
α3

Rj

)
σii, τij =

(
1 +

α3

Rj

)
σij , τi3 =

(
1 +

α3

Rj

)
σi3

(i ↔ 3),

vii =
(

1 +
α3

Rj

)
μii, vij =

(
1 +

α3

Rj

)
μij , vi3 =

(
1 +

α3

Rj

)
μi3

(i ↔ 3),

τ33 =
(

1 +
α3

R1

)(
1 +

α3

R2

)
σ33, v33 =

(
1 +

α3

R1

)(
1 +

α3

R2

)
μ33,

and switch to dimensionless quantities and replace independent variables (coordi-
nate αn and time t)

αi =
R

λp
ξi, α3 =

R

λl
ζ, t = λω h

c0
τ, c0 =

√
E

ρ
,

λl(2k+1)J̄ =
J

ρh2
, τ̄ij =

τij

E
, ν̄ij =

νij

RE
,

V̄k =
Vk

h
, H∗

0k =
H0k√

E
, H̄0k = λk1H∗

0k,

h̄k =
hk√
E

, Ēk =
c

c0

Ek√
E

, ρ̄e =
c

c0

hρe√
E

,

j̄k =
c

c0

jk

σ
√

E
, Rm =

c0
c

σh

c
, R̄i =

Ri

R
,

q̄±
k =

q±
i

E
, m̄±

: =
m±

:

RE
, t0 = λ−l(ω−1) R

c0
.

(34.11)

Here Rm is a dimensionless parameter of electro-conduction of shell material;
ω characterizes the changeability of stress-deformable state (SDS) in time; the value
p/l characterizes the changeability of SDS along the coordinates; p, l are whole
numbers, l > p ≥ 0 and λ is a large constant dimensionless geometrical parameter
defined by h = Rλ−l formula.

In defining the SDS of a shell, the values of physical constants of shell micropolar
material are of great importance. From this point of view, we also introduce the
following dimensionless parameters:

α

E
,

β

R2E
,

γ

R2E
,

ε

R2E
, (34.12)

where R is a characteristic radius of shell midplane curvature; c0 is some character-
istic speed (for example, the speed of longitudinal disturbance in long elastic bars
in the classical theory of elasticity).
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In what follows, we assume that Rm ∼ 1. Following to asymptotic method of
construction of the internal problem, we aim at an approximate reduction of 3D
equations of magnetoelasticity with independent variables ξ1, ξ2, ζ, and time τ into
2D with independent variables ξ1, ξ2 and time τ .

34.4 Magnetoelasticity Theory of Micropolar Thin Shells
with Independent Fields of Displacements and Rotations

We suppose that dimensionless physical parameters (34.12) are of order of unity:

α

E
∼ 1,

β

R2E
∼ 1,

γ

R2E
∼ 1,

ε

R2E
∼ 1. (34.13)

The numbers ω, k and k1 are chosen as to obtain reconcilable equations in asymp-
totic approximations s and include the inertial terms in the initial system of equa-
tions. It leads to

ω = 1 +
p

l
, k =

1
2
− p

l
, 2k1 = −l − p. (34.14)

For the values of the internal problem in the 3D region of the shell body, we
obtain the following asymptotic representations of O(λp−l) order:

Vi = hλl−p
(
V 0

i + λ−l+2p−cζV 1
i

)
,

V3 = hλl−2p+c
(
V 0

3 + λ−l+cζV 1
3

)
,

ωi = λ−p+c
(
ω0

i + λ−l+2p−cζω1
i

)
,

ω3 = λ0
(
ω0

3 + λ−l+cζω1
3

)
,

τii = Eλ0
(
τ0
ii + λ−l+cζτ1

ii

)
,

τij = Eλ0
(
τ0
ij + λ−l+cζτ1

ij

)
,

τ3i = Eλ−p+c
(
τ0
3i + λ−l+2p−cζτ1

3i + λ−2l+2pτ2
3i

)
,

τi3 = Eλ−p+c
(
τ0
i3 + λ−l+2p−cζτ1

i3

)
,

vii = REλ−2p+c
(
v0

ii + λ−l+2p−cζv1
ii

)
,

vij = REλ−2p+c
(
v0

ij + λ−l+2p−cζv1
ij

)
,

v3i = REλ−p
(
v0
3i + λ−l+cζv1

3i

)
,

vi3 = REλ−p
(
v0

i3 + λ−l+cζv1
i3

)
,

τ33 = Eλ−l+c
(
τ0
33 + ζτ1

33 + λ−l+2p−cζ2τ2
33

)
,

v33 = REλ−l
(
v0
33 + ζv1

33 + λ−l+cζ2v2
33

)
,

(34.15)

where c = 2p− l for l ≤ 2p, c = 2p for l ≥ 4p, c = l − 2p otherwise.
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The fact that the rotation field of the shells’ points is independent from the dis-
placement field is important in the constructed iterative process.

We use the concept of the averaged force and momental stresses [11] and dis-
placements and independent rotations of the shell’s midplane surface:

ui = Vi|ζ=0, w = −V3|ζ=0,

Ωi = ωi|ζ=0, Ω3 = −ω3|ζ=0.
(34.16)

As the main result, on the basis of the constructed internal problem, we obtain the
principal system of equations of the general applied 2D theory of magnetoelasticity
of micropolar thin shells with independent fields of displacement and rotation in the
asymptotic approximation of O(λp−l) order:

The motion equations

⎧
⎪⎪⎨

⎪⎪⎩

1
Ai

∂Tii

∂αi
+

1
AiAj

∂Aj

∂αi
(Tii − Tjj) +

1
Aj

∂Sji

∂αj
+

1
AiAj

∂Ai

∂αj
(Sji + Sij)

+ (−1)j 1
c
jj0H03 = 2ρh∂2ui

∂t2 + (q+
i + q−

i ),

⎧
⎪⎨

⎪⎩

1
Ai

∂Lii

∂αi
+

1
AiAj

∂Aj

∂αi
(Lii − Ljj) +

1
Aj

∂Lji

∂αj
+

1
AiAj

∂Ai

∂αj
(Lji + Lij)

+ (−1)j(N3j −Nj3) = 2Jh∂2Ωi

∂t2 + (m+
i + m−

i ),
⎧
⎪⎨

⎪⎩

T11

R1
+

T22

R2
+

1
A1A2

[
∂(A2N13)

∂α1
+ ∂(A1N23)

∂α2

]
− 1

c
j10H02 +

1
c
j20H01

= 2ρh∂2w
∂t2 − (q+

3 + q−
3 ),

⎧
⎪⎨

⎪⎩

L11

R1
+

L22

R2
+

1
A1A2

[
∂(A2L13)

∂α1
+ ∂(A1L23)

∂α2

]
− (S12 − S21)

= 2Jh∂2Ω3
∂t22 − (m+

3 + m−
3 ).

(34.17)

The elasticity relations

Tii =
2Eh

1− v2
[Γii + vΓjj ]−

v

1− v
h(q+

3 − q−
3 ),

Sij = 2h
[
(μ + α)Γij + (μ− α)Γji

]
,

Lii = 2h
[
4γ(β + γ)
β + 2γ

χii +
2γβ

β + 2γ
χjj

]
− h

β

β + 2γ
m,

Lij = 2h
[
(γ + ε)χij + (γ − ε)χji

]
,

Ni3 = −2h
4αμ

α + μ
Γi3 +

μ− α

μ + α
h(q+

i − q−
i ),

Li3 = −2h
4γε
γ + ε

χi3 +
γ − ε

γ + ε
h(m+

i −m−
i ).

(34.18)



34 Magnetoelasticity of Thin Shells and Plates 331

The geometrical relations

Γi3 = − 1
Ai

∂w

∂αi
− ui

Ri
+ (−1)jΩj , χi3 = − 1

Ai

∂Ω3

∂αi
− Ωi

Ri
,

Γii =
1
Ai

∂ui

∂αi
+

1
AiAj

∂Ai

∂αj
uj −

w

Ri
,

Γij =
1
Ai

∂uj

∂αi
− 1

AiAj

∂Ai

∂αj
ui + (−1)jΩ3,

χii =
1
Ai

∂Ωi

∂αi
+

1
AiAj

∂Ai

∂αj
Ωj −

Ω3

Ri
,

χij =
1
Ai

∂Ωj

∂αi
− 1

AiAj

∂Ai

∂αj
Ωi.

(34.19)

The integro-differential equations of the conductivity surface current

j10(P, t) = −2σh
c2

∂

∂t

∫

Ω

[
j10(Q, t)e1(Q)e1(P )

RPQ
+

j20(Q, t)e2(Q)e1(P )
RPQ

]
dΩ

+
2σh
c

(
H03

∂u2(P, t)
∂t

−H02
∂w(P, t)

∂t

)
, P ∈ Ω,

j20(P, t) = −2σh
c2

∂

∂t

∫

Ω

[
j10(Q, t)e2(P )e1(Q)

RPQ
+

j20(Q, t)e2(Q)e2(P )
RPQ

]
dΩ

+
2σh
c

(
H01

∂w(P, t)
∂t

−H03
∂u1(P, t)

∂t

)
, P ∈ Ω.

(34.20)

Here Tii, Sij , Ni3 are the averaged forces, Lii, Lij , Li3 are the averaged mo-
ments from momental stresses; Γii, Γij , Γi3 are the components of deformation ten-
sor; χii, χij , χi3 are the components of bending-torsion tensor in shell’s midplane;
e1 are sorts of coordinate lines and α2 on the midplane; RPQ is the fundamental so-
lution of the system (34.5) for the entire 3D vacuum space (R3) [7] for 3D distance
between a point Q ∈ Ω and an arbitrary reference point P ∈ R3.

The mechanical boundary conditions on the midplane Γ are expressed as [11]:

T11|Γ =
∫ +h

−h

p∗
1 dα3, S12|Γ =

∫ +h

−h

p∗
2 dα3, N13|Γ = −

∫ +h

−h

p∗
3 dα3,

L11|Γ =
∫ +h

−h

m∗
1 dα3, L12|Γ =

∫ +h

−h

m∗
2 dα3,

L13|Γ = −
∫ +h

−h

m∗
3 dα3.

(34.21)

The electrodynamic boundary conditions on the same contour look as fol-
lows [7]:

j1 = 0, j2 = 0. (34.22)

By adding to the main equations (34.17)–(34.20) and boundary conditions (34.21)–
(34.22) the corresponding initial conditions, we construct the general mathematical
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model of micropolar elastic electro-conducting non-ferromagnetic shells with inde-
pendent fields of displacements and rotations.

34.5 Theory of Magnetoelasticity of Micropolar Thin Shells
with Constraint Rotation

Let us consider now a different set of values of dimensionless physical parameters
(34.12):

α

E
∼ 1,

β

R2E
= λ−2lβ∗,

γ

R2E
= λ−2lγ∗,

ε

R2E
= λ−2lε∗, β∗, γ∗, ε∗ ∼ 1.

(34.23)

In this case, the numbers ω, k and k1 are determined by

ω = 1 +
c

l
, k = −1

2
− c

l
+

p

l
,

2k1 = −l − p + 2c, c = 2p− l, l ≤ 2p,
(34.24)

and 0 otherwise. Qualitatively, the rotations and displacements of the shell’s mid-
plane points are now coupled. If in the given case we introduce the averaged force
and momental characteristics and use the notations (34.16), as the main result we
obtain a system of the main equations of the applied 2D theory of magnetoelasticity
of micropolar elastic thin shells with constraint rotation:

The motion equations

⎧
⎪⎨

⎪⎩

1
Ai

∂Tii

∂αi
+

1
AiAj

∂Aj

∂αi
(Tii − Tjj) +

1
Aj

∂Sji

∂αj
+

1
AiAj

∂Ai

∂αj
(Sji + Sij)

+ (−1)j 1
c
jj0H03 = 2ρh∂2ui

∂t2 + (q+
i + q−

i ),
⎧
⎨

⎩

T11

R1
+

T22

R2
+

1
A1A2

[
∂(A2N13)

∂α1
+ ∂(A1N23)

∂α2

]
− 1

c
j10H02 +

1
c
j20H01

= 2ρh∂2w
∂t2 − (q+

3 + q−
3 ),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Ai

∂
∂αi

(Gii − (−1)jLij)

+
1

AiAj

∂Aj

∂αi

[
(Gii − (−1)jLij)− (Gjj + (−1)jLji)

]

− 1
Aj

∂
∂αj

(Hji + (−1)jLjj)

− 1
AiAj

∂Ai

∂αj

[
(Hji + (−1)jLjj) + (Hij − (−1)jLii)

]
−Ni3

= (−1)j

[
2Jh

∂2Ωj

∂t2 + (m+
j + m−

j )
]
− h(q+

i − q−
i ).

(34.25)
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The elasticity relations

Tii =
2Eh

1− v2
[Γii + vΓjj ],

Sij =
2Eh

1 + v
[Γ12 + Γ21] + (−1)j 1

2
[m+

3 + m−
3 ],

Gii = − 2Eh3

3(1− v2)
[Kii + vKjj ],

Hij =
Eh3

3(1 + v)
[K12 + K21] + (−1)j 1

2
[m+

3 + m−
3 + L33],

Lii = 2h
[
4γ(β + γ)
β + 2γ

χii +
2γβ

β + 2γ
χjj

]
+

β

β + 2γ
L33,

Lij = 2h
[
(γ + ε)χij + (γ − ε)χji

]
.

(34.26)

The geometrical relations

Γii =
1
Ai

∂ui

∂αi
+

1
AiAj

∂Ai

∂αj
uj −

w

Ri
,

Γij =
1
Ai

∂uj

∂αi
− 1

AiAj

∂Ai

∂αj
ui,

Kii =
1
Ai

∂βi

∂αi
+

1
AiAj

∂Ai

∂αj
βj ,

Kij =
1
Ai

∂βj

∂αi
− 1

AiAj

∂Ai

∂αj
βi,

χii =
1
Ai

∂Ωi

∂αi
+

1
AiAj

∂Ai

∂αj
Ωj −

Ω3

Ri
,

χij =
1
Ai

∂Ωj

∂αi
− 1

AiAj

∂Ai

∂αj
Ωi,

βi =
1
Ai

∂w

∂αi
+

ui

Ri
,

Ωi = −(−1)j 1
2
(ψj − βj), Ω3 =

1
2
(Γ21 − Γ12),

(34.27)

where

L33 =
(

th(hk1)
hk1

− 1
)

4γh(χ11 + χ22)−
th(hk1)

hk1
(m+

3 −m−
3 ).

The system of integro-differential equations (34.20) for the electrical currents
j10, j20 averaged along the shell’s midplane should be added to (34.25)–(34.27).

The mechanical boundary conditions on the midplane contour Γ become [11]:
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T11|Γ =
∫ +h

−h

p∗
1 dα3, S12|Γ =

∫ +h

−h

p∗
2 dα3,

(L12 −G11)|Γ =
∫ h

−h

(
α3p

∗
1 + m∗

2

)
dα3,

[
−N13 +

1
A2

∂

∂α2
(H12 − L11)

]∣∣
∣
∣
Γ

=
∫ +h

−h

[
p∗
3 +

1
A2

∂

∂α2
(α3p

∗
2 −m∗

1)
]

dα3.

(34.28)

The electrodynamic boundary conditions on Γ will be the same as (34.22).

34.6 Theory of Magnetoelastic Micropolar Thin Shells
with a Small Shift Rigidity

Let us consider the third set of values for the physical dimensionless parameters
(34.12):

α

E
= λ−2l+2pα∗,

β

R2E
= β∗,

γ

R2E
= γ∗,

ε

R2E
= ε∗, α∗, β∗, γ∗, ε∗ ∼ 1.

(34.29)

In this case, the numbers ω, k and k1 are determined by

ω = 1 +
c

2l
, k =

1
2

+
p

l
− c

2l
, 2k1 = −l − p + c, (34.30)

where c = 2p− l if l ≤ 2p, c = 2p if l ≥ 4p and c = l − 2p otherwise.
Note that, on the basis of (34.29) and (34.30), in the obtained 2D equations of the

internal problem of magnetoelasticity of micropolar shells on the basis of asymp-
totic accuracy O(λp−l), the variables of “pure momental” origin come apart and
form a separate system of equations.

Let us formulate these groups of 2D equations. The equations of “pure momen-
tal” part of the magnetoelasticity problem of micropolar thin shells are:

The motion equations

1
Ai

∂Lii

∂αi
+

1
AiAj

∂Aj

∂αi
(Lii − Ljj) +

1
Aj

∂Lji

∂αj
+

1
AiAj

∂Ai

∂αj
(Lji + Lij)

= 2Jh
∂2Ωi

∂t2
+ (m+

i + m−
i ),

L11

R1
+

L22

R2
+

1
A1A2

[
∂(A2L13)

∂α1
+

∂(A1L23)
∂α2

]

= 2Jh
∂2Ω3

∂t2
− (m+

3 + m−
3 ).

(34.31)
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The elasticity relations

Lii = 2h
[
4γ(β + γ)
β + 2γ

χii +
2γβ

β + 2γ
χjj

]
+ h

β

β + 2γ
(m+

3 −m−
3 ),

Lij = 2h
[
(γ + ε)χij + (γ − ε)χji

]
,

Li3 = −2h
4γε
γ + ε

χi3 +
γ − ε

γ + ε
L3i, L3i = h(m+

i −m−
i ).

(34.32)

The geometrical relations

χii =
1
Ai

∂Ωi

∂αi
+

1
AiAj

∂Ai

∂αj
Ωj −

Ω3

Ri
,

χij =
1
Ai

∂Ωj

∂αi
− 1

AiAj

∂Ai

∂αj
Ωi, χi3 = − 1

Ai

∂Ω3

∂αi
− Ωi

Ri
.

(34.33)

The equations of the “pure force” part of the magnetoelasticity problem of mi-
cropolar thin shells are:

1
Ai

∂Tii

∂αi
+

1
AiAj

∂Aj

∂αi
(Tii − Tjj) +

1
Aj

∂Sji

∂αj
+

1
AiAj

∂Ai

∂αj
(Sji + Sij)

+ (−1)j 1
c
jj0H03 = 2ρh

∂2ui

∂t2
+ (q+

i + q−
i ),

T11

R1
+

T22

R2
+

1
A1A2

[
∂(A2N13)

∂α1
+

∂(A1N23)
∂α2

]
− 1

c
j10H02 +

1
c
j20H01

= 2ρh
∂2w

∂t2
− (q+

3 + q−
3 ),

N3i =
1
Ai

∂Gii

∂αi
+

1
AiAj

∂Aj

∂αi
(Gii −Gjj)−

1
Aj

∂Hji

∂αj

− 1
AiAj

∂Ai

∂αj
(Hji + Hij) +

2
3
ρh3 ∂

2ψi

∂t2
+ h(q+

i − q−
i ),

(34.34)

Tii =
2Eh

1− v2
[Γii + vΓjj ]−

v

1− v
h(q+

3 − q−
3 ),

Sij = 2μh(Γ12 + Γ21)− (−1)j4αhΩ3,

Ni3 = N3i − 2h · 4αΓi3,

Gii = − 2Eh3

3(1− v2)
[Kii + vKjj ],

Hij =
2h3

3
μ(K12 + K21),

(34.35)
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Γi3 = − 1
Ai

∂w

∂αi
− ui

Ri
+ (−1)jΩj ,

Γii =
1
Ai

∂ui

∂αi
+

1
AiAj

∂Ai

∂αj
uj −

w

Ri
,

Γij =
1
Ai

∂uj

∂αi
− 1

AiAj

∂Ai

∂αj
ui,

Kii =
1
Ai

∂βi

∂αi
+

1
AiAj

∂Ai

∂αj
βj ,

Kij =
1
Ai

∂βj

∂αi
− 1

AiAj

∂Ai

∂αj
βi,

(34.36)

Equations (34.20) should be added to (34.31)–(34.36) for the electrical currents
averaged along the shell’s midplane.

The mechanical boundary conditions on Γ are respectively expressed as

L1i|Γ =
∫ h

−h

m∗
i dα3,

L13|Γ = −
∫ h

−h

m∗
3 dα3 −

γ − ε

γ + ε

1
A2

∂

∂α2

∫ h

−h

α3m
∗
2 dα3

(34.37)

and

T11|Γ =
∫ h

−h

p∗
1 dα3, S12|Γ =

∫ h

−h

p∗
2 dα3,

G11|Γ = −
∫ h

−h

α3p
∗
1 dα3,

(
−N13 +

1
A2

∂H12

∂α2

)∣∣
∣
∣
Γ

=
∫ h

−h

p∗
3 dα3 +

1
A2

∂

∂α2

∫ h

−h

α3p
∗
2 dα3.

(34.38)

The same as above boundary conditions remain valid on Γ . It is necessary to
mention that from the constructed models we can obtain the main equations, bound-
ary and initial conditions for micropolar elastic electro-conductive plates with free
rotation, with constraint rotation and “with small shift rigidity”.
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