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Foreword

Close to fifty years ago, when two generations of neuroscientists contributing to this
book had not yet been born and I was still happy in high school, George Gerstein,
Donald Perkel, and colleagues, in a series of papers, laid the foundations for what
was to become the quantitative analysis of the dynamics of neuronal spiking activ-
ity and the interactions within and across neuronal networks. In the context of the
present textbook, it is instructive to reread some of these papers.

The full abstract of the 1960 Science paper (Gerstein 1960) reads:

The use of a high-speed digital computer for investigation of neural firing patterns is de-
scribed. The high sensitivity of the method permits detection of stimulus-response relations
buried in a background of spontaneous activity.

The abstract of the 1964 Science paper (Gerstein and Clark 1964) continues:

A tungsten microelectrode with several small holes burnt in the vinyl insulation enables the
action potentials from several adjacent neurons to be observed simultaneously. A digital
computer is used to separate the contributions of each neuron by examining and classi-
fying the waveforms of the action potentials. These methods allow studies to be made of
interactions between neurons that lie close together.

Such studies were indeed made, albeit that their numbers increased only very
slowly initially, mostly due to rather formidable problems with the experimental
technology involved. With regard to the analysis of data resulting from such ex-
periments, the abstracts of the two companion papers in Biophysical Journal 1967
(Perkel et al. 1967a, 1967b) are strikingly explicit and, even in 2010, scaringly
timely. In fact, taken together, they read as an ambitious programme manifesto,
aimed at establishing a novel, theory-driven data analysis paradigm for network
physiology, which, as we now know, it indeed did.

First, on the spiking activity of single neurons:

In a growing class of neurophysiological experiments, the train of impulses (“spikes”) pro-
duced by a nerve cell is subjected to statistical treatment involving the time intervals be-
tween spikes. The statistical techniques available for the analysis of single spike trains are
described and related to the underlying mathematical theory, that of stochastic point pro-
cesses, i.e., of stochastic processes whose realizations may be described as series of point
events occurring in time, separated by random intervals. For single stationary spike trains,
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vi Foreword

several orders of complexity of statistical treatment are described; the major distinction
is that between statistical measures that depend in an essential way on the serial order
of interspike intervals and those that are order-independent. The interrelations among the
several types of calculations are shown, and an attempt is made to ameliorate the current
nomenclatural confusion in this field. Applications, interpretations, and potential difficul-
ties of the statistical techniques are discussed, with special reference to types of spike trains
encountered experimentally. Next, the related types of analysis are described for experi-
ments which involve repeated presentations of a brief, isolated stimulus. Finally, the effects
of nonstationarity, e.g. long-term changes in firing rate, on the various statistical measures
are discussed. Several commonly observed patterns of spike activity are shown to be differ-
entially sensitive to such changes.

Then, on the activity of pairs of neurons and their interactions:

The statistical analysis of two simultaneously observed trains of neuronal spikes is de-
scribed, using as a conceptual framework the theory of stochastic point processes. The first
statistical question that arises is whether the observed trains are independent; statistical
techniques for testing independence are developed around the notion that, under the null
hypothesis, the times of spike occurrence in one train represent random instants in time
with respect to the other. If the null hypothesis is rejected—if dependence is attributed to
the trains—the problem then becomes that of characterizing the nature and source of the ob-
served dependencies. Statistical signs of various classes of dependencies, including direct
interaction and shared input, are discussed and illustrated through computer simulations of
interacting neurons. The effects of nonstationarities on the statistical measures for simulta-
neous spike trains are also discussed. For two-train comparisons of irregularly discharging
nerve cells, moderate nonstationarities are shown to have little effect on the detection of
interactions. Combining repetitive stimulation and simultaneous recording of spike trains
from two (or more) neurons yields additional clues as to possible modes of interaction
among the monitored neurons; the theory presented is illustrated by an application to ex-
perimentally obtained data from auditory neurons.

Rereading these abstracts leaves us wondering, what the present book is all about
and why, in the year 2010, we would still need it. Indeed, these early studies in
the 1960s already formulated the fundamental questions that are still very much
with us: How can neuronal interactions be segregated from ongoing background
activity? How can the concepts of activity dynamics and correlations be refined and
reconciled? And, most of all: What is their role in brain function? It is, therefore, a
reassuring thought to have the same George Gerstein contributing a chapter on these
issues in this new textbook.

In the 1980s, Computational Neuroscience established itself as a new research
field in the neurosciences (Sejnowski et al. 1988; Schwartz 1990; Rumelhart et
al. 1986). As Valentino Braitenberg so aptly put it (Braitenberg 1992): “We are
convinced that ultimately a satisfactory explanation of thought and behavior will
be given in a language akin to that of physics, i.e. in mathematical terms.” In-
deed, the theory of neuronal networks explaining basic features of single neu-
rons and simple networks made rapid progress, and many theoreticians were at-
tracted to the field. Thus, over the next decade, many papers, dedicated confer-
ences (e.g., Palm and Aertsen 1987; Aertsen and Braitenberg 1992; Aertsen 1993;
Aertsen and Braitenberg 1996), and monographs (e.g., Abeles 1982; Amit 1992;
Braitenberg 1984; Palm 1982) explored the foundations of a future theory of brain
function. Soon, text books suitable for advanced courses, followed (e.g., Abeles
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1991; Dayan and Abbot 2001; Gerstner and Kistler 2002; Hertz et al. 1991;
Koch 1998).

Compared to this rapid progress in the development of computational models and
theory, progress in the analysis of experimental spike train recordings soon lagged
behind. The nonstationarity and irregularity of spiking activity recorded from the
brain in action, its considerable variability across repetitions of a task, and the com-
plex interplay of multiple time scales, all taken together constituted very severe
problems—and continue to do so—for the adequate handling of the experimental
data. As a result, an unambiguous interpretation of the various quantitative mea-
sures and the search for meaningful structure in the recorded data all too often re-
mained illusive. I recall that one night, many years ago, I awoke in front of the TV
screen after the program had ended. After studying the nonprogram on the screen
for a while, I concluded that it was evidently packed with highly interesting spatio-
temporal patterns—in any case, I saw them occurring and recurring virtually any-
where, almost at will. Needless to say, though, that it proved a bit hard to establish
their statistical and functional significance. Thus, despite some early groundbreak-
ing overviews on advanced data analysis methods for specific areas (e.g., Eggermont
1990; Rieke et al. 1997), it should take another 20 years before this first comprehen-
sive textbook on the state of the art in the analysis of parallel spike train recordings
could be produced.

Important techniques are now available for routine usage in the laboratory, and
their limits are in most cases well understood. Thus, it is timely to bring this knowl-
edge to the classroom now. Consequently, the present book luckily avoids the rep-
etition of lengthy conceptual discussions from earlier times and, instead, hurries to
present the material in a format suitable for the practitioner and the student. The
scope of the contributions ranges from the mathematical framework underlying the
various methods to practical questions like the generation of random numbers. Clos-
ing the cycle, one chapter in the book returns to the earlier cited question on The use
of a high-speed digital computer for investigation of neural firing patterns. It ex-
plains how, with the help of modern computer clusters and high-level parallel pro-
gramming, we can now compute statistical tests capturing biological constraints to
a precision inaccessible by analytical approaches of the past.

However, this book in no way presents an end point to the quest. The authors
can only hint at the challenges posed by the advent of massively parallel recording
technology. Many such systems are already installed worldwide. Yet, presently they
are still mostly used to increase the speed of data collection, rather than utilizing the
qualitatively new opportunity to assess the higher-order structure of neuronal assem-
blies in action. I am confident that in the years to come, the authors will continue in
their endeavor and will surprise us with many fascinating new insights into the func-
tioning of the brain. A rewarding prospect, indeed, since the alternative of studying
a TV screen outside broadcasting time has meanwhile ceased to be an option.

Bernstein Center Freiburg Ad Aertsen



viii Foreword

References

Abeles M (1982) Local cortical circuits. Springer, Berlin
Abeles M (1991) Corticonics. Cambridge University Press, Cambridge
Aertsen A (ed) (1993) Brain theory: spatio-temporal aspects of brain function. Elsevier Science

Publ., Amsterdam
Aertsen A, Braitenberg V (eds) (1992) Information processing in the cortex: experiments and the-

ory. Springer, Berlin
Aertsen A, Braitenberg V (eds) (1996) Brain theory: biological basis and computational principles.

Elsevier Science Publ., Amsterdam
Amit D (1992) Modeling brain function: the world of attractor neural networks. Cambridge Uni-

versity Press, Cambridge
Braitenberg V (1984) Vehicles: experiments in synthetic psychology. MIT Press, Cambridge
Braitenberg V (1992) Manifesto of brain science. In: Aertsen A, Braitenberg V (eds) Information

processing in the cortex. Springer, Berlin
Dayan P, Abbot LF (2001) Theoretical neuroscience. MIT Press, Cambridge
Eggermont JJ (1990) The correlative brain. Springer, Berlin
Gerstein GL (1960) Analysis of firing patterns in single neurons. Science 131:1811–1812
Gerstein GL, Clark WA (1964) Simultaneous studies of firing patterns in several neurons. Science

143:1325–1327
Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, Cambridge
Hertz JA, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Perseus

Publishing, Cambridge
Koch C (1998) Biophysics of computation: information processing in single neurons. Oxford Uni-

versity Press, New York
Palm G (1982) Neural assembilies – an alternative approach to artificial intelligence. Springer,

Berlin
Palm G, Aertsen A (eds) (1987) Brain theory. Springer, Berlin
Perkel DH, Gerstein GL, Moore GP (1967a) Neuronal spike trains and stochastic point processes.

I. The single spike train. Biophysical J 7:391–418
Perkel DH, Gerstein GL, Moore GP (1967b) Neuronal spike trains and stochastic point processes.

II. Simultaneous spike trains. Biophysical J 7:419–440
Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural

code. MIT Press, Cambridge
Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel distributed processing,

explorations in the microstructure of cognition. MIT Press, Cambridge
Schwartz E (ed) (1990) Computational neuroscience. MIT Press, Cambridge
Sejnowski TJ, Koch C, Churchland PC (1988) Computational neuroscience. Science 241:1299–

1306



Preface

Why Data Analysis of Parallel Spike Trains is Needed

The brain is composed of billions of neurons, the elementary units of neuronal infor-
mation processing. The neocortex, which is critical to most higher brain functions,
is a highly complex network of neurons each of which receives signals from thou-
sands of other neurons and projects its own spikes to thousands of other neurons.
In order to observe neuronal activity in the active brain, a large variety of recording
techniques are being employed: intra-cellular recordings of the membrane potentials
of individual neurons, extra-cellular spike recordings from one or more individual
neurons, and recordings of signals that measure the activity of populations of neu-
rons either locally as the local field potential, or from larger brain regions via the
EEG, MEG, or fMRI. Any particular choice of the recording technique reflects the
hypothesis the researcher has in mind about the mechanisms of neuronal processing.

The focus on spike recordings from individual neurons imposed on this book
implies that one strives to understand the elementary units of neuronal processing.
Early electro-physiological experiments were bound to record from single neurons
only. The resulting insights are now the basis for the “classical” view of sensory
coding: firing rates are modulated in a feed-forward hierarchy of processing steps.
Signals from sensory epithelia are assumed to eventually converge to cortical detec-
tors for certain combinations of stimulus features. Highly specific percepts would
be represented by the elevated firing of a single nerve cell or a small group of neu-
rons. Due to a number of conceptual shortcomings, however, it has been seriously
questioned whether such a scheme qualifies as a universal method for representation
in the brain.

It was Donald Hebb (1949) who first demonstrated the conceptual power of a
brain theory based on cell assemblies. Inspired by Hebb’s influential writings, and
driven by more recent physiological and anatomical evidence in favor of a dis-
tributed network hypothesis, brain theorists constructed models that rely on groups
of neurons, rather than single nerve cells, as the functional building blocks for repre-
sentation and processing of information. Despite conceptual similarities, such con-
cepts of neuronal cooperativity differ in their detailed assumptions with respect to
the spatio-temporal organization of the neuronal activity.

ix
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To understand the principles of coordinated neuronal activity and its spatio-
temporal scales, it is obligatory to observe the activity of multiple single-neurons si-
multaneously. Due to recent technological developments in recording methodology,
this can easily and regularly be done. Coordinated activity of neurons is only visible
in (wide-sense) correlations of their respective spike trains, which typically admit no
simple interpretation in terms of fixed synaptic wiring diagrams. Rather, it became
evident that the correlation dynamics apparent in time-resolved multiple-channel
measurements reflect variable and context-dependent coalitions among neurons and
groups of neurons. Thus, the analysis of simultaneously recorded spike trains allows
us to relate concerted activity of ensembles of neurons to behavior and cognition.
Different analysis approaches are thereby relevant to distinguish different or even
complementary spatio-temporal scales. Analysis of parallel spike trains is the logi-
cal next step to improve our understanding of the neuronal mechanisms underlying
information processing in the brain.

Purpose of the Book

Solid data analysis is the most important basis for the meaningful evaluation and
reliable interpretation of experiments. Although the technology of parallel spike
train recording using multielectrode arrangements has been available for decades
now, it only recently gained wide popularity among electro-physiologists. However,
the relevant literature for the analysis of cooperative phenomena in parallel spike
trains is unfortunately scattered across many journal publications, and we know of
the pain to compile a useful reader for our students. Reinforced by the considerable
interest in courses and schools on data analysis on these issues (offered by us and
other colleagues), the idea came up to collect the knowledge on spike train analysis
that is available in the literature in a single book.

This first textbook on spike train analysis concentrates on the analysis of par-
allel spike trains. The focus is on concepts and methods of correlation analysis
(synchrony, patterns, rate covariance), combined with a solid introduction into ap-
proaches for single spike trains, that represent the basis of correlation analysis. Any
specific method of analysis must make assumptions about the nature of the data it
operates on. It happens that those who apply any particular analysis procedure are
not well informed about the underlying assumptions, because they are only implicit
or not discussed at all in the literature. Many traditional analysis methods are based
on firing rates obtained by trial-averaging, and some of the assumptions for such
procedures to work can indeed be ignored without serious consequences.

The situation is different for correlation analysis, the result of which may be
considerably distorted if certain critical assumptions for the method to work are vi-
olated by the data. Therefore, we have put efforts in stating explicitly the underlying
assumptions of the various methods, and giving methods at hand allowing to test
if the assumptions are indeed fulfilled. In addition, we supply the reader also with
stochastic modeling tools and numerical methods to test if the analysis method cho-
sen serves the intended purpose. In the still ongoing discussion on the relevance of
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temporal coordination of spikes it is even more important to be aware of prerequi-
sites and pitfalls to avoid potentially wrong interpretations of data due to violations
of critical assumptions.

Intended Audience

This book is, on the one hand, written for the practitioners of data analysis, irrespec-
tive of whether they use available software packages or whether they implement the
procedures themselves. On the other hand, some parts of the book feature abstract
mathematical background necessary for a deeper understanding of the formal foun-
dations of point processes that underlie most discussed analysis methods. Thus, the
book is directed to research neurophysiologists, data analysts, and theoretical neu-
roscientists, but also to graduate and postgraduate students in systems neuroscience,
computational neuroscience, and related neuroscience schools and courses.

Organization of the Book

There are very many different approaches to the analysis of parallel spike trains, and
the field is far from having agreed upon a set of canonical tools everybody knows
and everybody uses in the lab. In fact, almost every major publication written since
the seminal papers by George Gerstein and his colleagues in the 1960s featured
a new variant of multiple spike train analysis, matched to the specific experimen-
tal design and associated data format, and catering to the particular question their
authors had in mind. Doing justice to all of them would require an encyclopedic
work, not necessarily helpful in providing guidance for the inexperienced. Instead
we concentrate here on a selection of methods that we consider most sound and also
most inspiring with respect to their actual purpose: elucidating some aspect of brain
function on the level of individual neurons and their interactions.

Part I of the book first gives an introduction to stochastic point processes which is
the appropriate mathematical object to represent a spike train, or a statistical ensem-
ble of spike trains, to be precise (Chap. 1). In this framework, estimating the firing
rate of a neuron becomes a well-defined statistical procedure (Chap. 2). Second-
order properties of spike trains associated with irregularity in time or variability
across trials can also be dealt with consistently if embedded into point process the-
ory (Chap. 3). Peculiarities of signals obtained in a periodic setting are then dealt
with separately (Chap. 4).

Part II concentrates on the pairwise comparison of spike trains and first intro-
duces classical cross-correlation techniques, both in the time domain and in the
frequency domain (Chap. 5). Time scale issues of correlation analysis are the topic
of a separate article (Chap. 6). A general framework for the comparison of spike
trains in terms of abstract distance functions is then developed (Chap. 7). Finally,
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a method is described that can, based on pairwise comparisons, identify clusters of
similar spike trains in larger populations (Chap. 8).

Part III focuses on multineuron spike configurations and first describes the
concept of precise spatio-temporal firing patterns (Chap. 9). Patterns of near-
simultaneous spikes are then discussed, along with statistical issues associated with
their detection (Chap. 10). An information-geometric perspective on spike patterns
in discrete time (Chap. 11) is finally complemented by a continuous-time framework
to deal with correlations of higher order in parallel spike trains (Chap. 12).

Part IV introduces population-based analyses and gives first an introduction to
the classical theory of Shannon information (Chap. 13). Encoding and decoding
of neuronal population activity is then discussed in the light of information theory
(Chap. 14). Finally, different types of multivariate point process models are em-
ployed to characterize neuronal ensemble spike trains (Chap. 15).

Part V deals with practical issues that are critical for neuronal data analysis.
Methods to numerically simulate stochastic point processes with well-defined sta-
tistical properties are first explained (Chap. 16). Alternatively, data recorded from
real neurons can be manipulated to obtain surrogate spike trains that preserve some
properties and destroy others (Chap. 17). For testing complex hypotheses about neu-
ronal spike trains, the bootstrap method can be effectively employed (Chap. 18).
For numerical simulation, manipulation of recorded data, or bootstrap procedures,
the availability of high-quality pseudo-random numbers is of great importance
(Chap. 19). The last contribution in the book deals with the effective use of parallel
and distributed computing facilities for data analysis in a neuroscience laboratory
(Chap. 20).

How to Read This Book

The book can be read at two levels. Researchers whose main interest is in applica-
tions should read enough of each chapter to understand purpose and scope of the
method presented and to be able to explore their own data with the software pro-
vided by the authors (see below). The theoretically oriented reader will find some
mathematical details in most chapters, and in all cases pointers are given to the
primary literature on the subject.

Software Download

For supplying the reader with the analysis software kindly provided by various au-
thors of this book, we set up a website http://www.apst.spiketrain-analysis.org that
links to all the websites of the various contributors. This has the advantage—in con-
trast to supplying the readers with the software on CD—that the software can stay at
the original websites of the respective authors, and can there be updated as needed.
Also links can easily be changed if necessary. If you are also willing to provide your
software to the public, please let us know, and we add the links.

http://www.apst.spiketrain-analysis.org
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Part I
Basic Spike Train Statistics:

Point Process Models



Chapter 1
Stochastic Models of Spike Trains

Carl van Vreeswijk

Abstract This chapter reviews the theory of stochastic point processes. For sim-
ple renewal processes, the relation between the stochastic intensity, the inter-spike
interval (ISI) distribution, and the survival probability are derived. The moment
and cumulant generating functions and the relation between the ISI distribution
and the autocorrelation is investigated. We show how the Fano factor of the spike
count distribution depends on the coefficient of variation of the ISI distribution.
Next we investigate models of renewal processes with variable rates and CV2, which
is often used to assess the variability of the spike train in this case and compare the
latter to the CV. The second half of the chapter deals with stochastic point pro-
cesses with correlations between the intervals. Several examples of such processes
are shown, and the basic analytical techniques to deal with these processes are ex-
pounded. The effect of correlations in the ISIs on the Fano factor of the spike count
and the CV2 are also explored.

1.1 Introduction

Neurons in the vertebrate central nervous system fire highly irregularly: Upon stim-
ulation, there is a large trial-to-trial variability, not only in the precise timing of the
spikes, but also in the total number of spikes that the stimulus elicits. This behav-
ior can be replicated in deterministic model neurons if a sufficiently noisy input is
injected into the cell. However, the analysis of the spike statistics for such neurons
is very difficult. For simple models, such as the nonleaky integrate and fire neuron,
one can determine spike statistics if the input has constant mean and temporally un-
correlated fluctuations (Gerstein and Mandelbrod 1964), but beyond this, analytical
solutions are few and far between.
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If one nevertheless wants to investigate how spike train statistics affects a mea-
sure of neuronal activity, one has to come up with models of spike trains that are
susceptible to analytical treatment or at least can be simulated easily. An important
class of such models are stochastic models of spike trains. In these models one does
not aim to capture the behavior of the neurons between spikes, but instead one posits
a probabilistic model for the timing of the spikes, based on the spike history.

The simplest such model is the Poisson process. In a Poisson process the proba-
bility of a spike between time t and t + δt is, for sufficiently small δt , simply given
by Rδt , independently of the position of previous spikes. Here R is the firing rate.
Since the probability of a spike at some time t is totally independent of the history,
the Poisson process is the easiest stochastic model for spike trains to analyze.

However, because the spiking is completely independent of the history, Poisson
neurons behave in some aspects quite differently from real neurons. For example,
they have no refractory period. Therefore, if one has developed some measure of the
spike statistics, one cannot investigate how this measure depends on the properties
of the refractory period using Poisson processes. Hence it is useful to consider more
complex model for stochastic spike trains. There is of course a price to pay for
considering more complex models; namely the analysis is rather more involved than
that for Poisson processes.

Nevertheless an enormous amount of work has been done on the analysis of
stochastic models of spike trains. In this chapter I will review some of these models
and of the analytical techniques that can be used to investigate them. The analysis
of stochastic point processes is a subject that has been investigated for decades and
has a vast literature, from which one cannot hope to cover even a substantial part
of the topics most relevant to neuroscience in a single chapter. In this chapter we
will therefore only consider spike trains from a single neuron. Issues involving the
interplay of several spike trains will regretfully have to be ignored here. For a review
of these and other topics, one should consult some of the monographs on point
processes such as (Andersen et al. 1994; Cox 1962; Cox and Isham 1980).

Before we turn to these processes, let us introduce some notation that will be used
throughout this chapter: Spikes occur at times t1, t2, t3, . . . . Inter-spike intervals will
be denoted by �, where �n is given by �n = tn − tn−1. The firing rate is denoted
by R(t) or simply by R if the rate is constant, and the coefficient of variation will
be written as CV.

1.2 Renewal Processes

As mentioned above, the simplest model for a stochastic spike train is the Poisson
process in which in each sufficiently small interval δt there is a probability Rδt
that there is a spike. (For simplicity, we will assume here that the rate is constant.)
Consider the survival probability, S(�), which is the probability that, if there is a
spike at time t0, the next spike will occur after time t0+�. Obviously, S(0)= 1, and
S(�+ δt) is equal to S(�) times the probability that there was no spike between
times t0 +� and t0 +�+ δt , or S(�+ δt)= S(�)(1−Rδt). From this we obtain
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S(�)= e−R�.
This allows us to calculate the inter-spike interval (ISI) distribution �(�), where
�(�)δt is the probability that there is an ISI between � and �+ δt . The ISI distri-
bution is given by

�(�)=−dS(�)

d�
=Re−R�.

This gives us another way to look at the Poisson process with constant rate. The
Poisson process with constant rate is a process where the ISIs are independently
drawn from an exponential distribution.

This suggests models for spike trains in which the ISIs are independently drawn
from some other distribution �. Such models are known as renewal processes, be-
cause the time of the next spike only depends on the time of the last spike. As soon
as the latter is known, the previous history becomes irrelevant for the statistics of
later spikes.

1.2.1 Some General Properties of Renewal Processes

For a renewal process with constant rate R, or stationary ISI distribution, � has to
satisfy ∫ ∞

0
�(�)d�= 1 and

∫ ∞

0
��(�)d�≡ 〈�〉 =R−1.

(In principle one could have that
∫∞

0 �(�)d�= 1−p, with 0<p < 1. This should
be interpreted to mean that after each spike there is a probability p that the neuron
stops spiking. We will not consider this case here.)

Using the definition of the coefficient of variation, CV =
√〈�2〉/〈�〉2 − 1, one

has that CV is given by ∫ ∞

0
�2�(�)d�= (C2

V + 1
)
R−2.

For the Poisson process, we used that the probability of a spike between time t
and t + δt is equal to Rδt , independently of when the previous spike occurred. For
an arbitrary renewal process, the probability of a spike between times t and t + δt
will depend on the time of the last spike. If this spike occurred at time t0, we can use
as an alternative description for the renewal process that the probability of a spike in
the interval [t, t+δt] is equal toH(t− t0)δt . The functionH is called the stochastic
intensity or hazard rate (Collett 2003).

Following the same logic as for the Poisson process, for the survival function, we
can write S(�+ δt)= S(�)[1−H(�)δt]. Thus the survival probability S and the
ISI distribution � can be expressed in terms of the stochastic intensity H as

S(�)= exp

(
−
∫ �

0
H
(
�′
)

d�′
)

and �(�)=H(�) exp

(
−
∫ �

0
H
(
�′
)

d�′
)
.
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Conversely, H can be expressed in terms of � as

H(�)= �(�)
S(�)

= �(�)∫∞
�
�(�′)d�′

.

Let us now consider the probability distribution for n consecutive events, �n(tn),
the probability density for the nth spike at tn, given that t0 = 0. Clearly �1(t1) =
�(t1). The probability density ρn(tn) is the probability density for tn−1 times the
probability density for �n = tn − tn−1, integrated over tn−1:

�n(tn)=
∫ tn

0
�n−1(tn−1)�(tn − tn−1)dtn−1. (1.1)

From this we see that the Laplace transform (see box) �n,L of �n can be expressed
in terms of the Laplace transform �L of � as

�n,L(s)= �L(s)�n−1,L(s)= �nL(s),
where

�L(s)=
∫ ∞

0
�(t)e−st dt and �n,L(s)=

∫ ∞

0
�n(t)e

−st dt.

The Laplace transform is also convenient to determine the moments of the ISI
distribution (Tuckwell 1988). Since dk�L(s)/dsk = (−1)k

∫∞
0 tk�(t) exp(−st), the

kth moment μk defined as μk ≡ 〈�k〉 can be written as

μk = (−1)k
dk

dsk
�L(s)

∣∣∣∣
s=0

= �(k)L (0),

where �(k)L denotes the kth derivative of �L. If the moments satisfy μk/k! ≤ CMk ,
for some finite C andM , we can for |s|< 1/M write �L as

�L(s)=
∞∑
k=0

(−1)kμk
sk

k! . (1.2)

Here we have used that μ0 ≡ 〈�0〉 = 1.
Alternatively, we can write �L as

�L(s)= exp

( ∞∑
k=1

(−1)kκk
sk

k!

)
,

where the cumulants κk are given by κk = (−1)k dk log[�L(s)]/dsk|s=0.

The Laplace Transform

In probability theory the Laplace transform is an extremely useful tool. Here
we will very briefly review some of its most important features. For more
details, see (Davies 2002; Spiegel 1965; Wikipedia 2009).
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The Laplace transform is closely related to the Fourier transform, and the
Laplace transform fL(s) of a function f (t) is defined as

fL(s)= L
[
f (t)
]
(s)≡

∫ ∞

0
f (t)e−st dt.

It can be shown that if two continuous functions f and g have the same
Laplace transform, fL(s)= gL(s), then f and g are the same, f (t)= g(t).

The Laplace transform is a linear operator: L[af (t)+bg(t)](s)= afL(s)+
bgL(s).

The Laplace transform of the convolution f ∗ g of two functions f and g,
defined as f ∗ g(t) ≡ ∫ t0 f (t ′)g(t − t ′)dt ′, is the product of their Laplace
transforms fL and gL,

L
[
f ∗ g(t)](s)= fL(s)gL(s).

The inverse Laplace transform L−1 is given by the complex inversion integral

f (t)= L−1[fL(s)
]
(t)≡ 1

2πi

∫ c+i∞
c−i∞

fL(s)e
st ds,

where the integration is over the line c+ ix in the complex plain, with x going
from −∞ to +∞, and the real value c has to be large enough, so that all sin-
gularities of fL lie to the left of the line s = c+ ix. The inverse Laplace trans-
form is often difficult to calculate, but most books on the Laplace transform
have extensive tables of Laplace pairs f and fL (see, for example, Davies
2002; Spiegel 1965). Together with the manipulations on the functions f and
fL in Table 1.1A, these suffice in most cases to find the inverse Laplace trans-
form. Table 1.1B gives some of the important Laplace pairs.

Table 1.1 A: Effect of some transformations of f on its Laplace transform. B: Laplace
pairs f and fL for some elementary functions. � is the Heaviside function: �(x)= 1 for
x ≥ 0 and �(x)= 0 for x < 0

A. Transformations B. Laplace pairs

f (t) fL(s) f (t) fL(s)

∫ t
0 f (t

′)dt ′ fL(s)/s 1 1
s

f ′(t) f (0)+ sfL(s) tn n!
sn+1

e−at f (t) fL(s + a) sin(ωt) ω

s2+ω2

f (at) 1
a
fL(

s
a
) cos(ωt) s

s2+ω2

�(t − a)f (t − a) e−asfL(s) exp(−at) 1
s+a

tf (t) −f ′L(s) tν−1

�(ν)
exp(−at) 1

(a+s)ν
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Fig. 1.1 ISI distributions for Gamma, Log-Normal, and inverse Gaussian processes. For each
class, the distribution is shown for CV = 0.5 (red), CV = 0.75 (green), CV = 1 (blue), and
CV = 1.5 ( purple)

1.2.2 Examples of Renewal Processes

Besides the Poisson process, processes that are commonly used to model spike trains
are the Gamma process, the Log-Normal process, and the Inverse Gaussian Process.
The ISI distribution is shown for these processes for different values of the CV in
Fig. 1.1. Note that the Poisson process is a special case of the Gamma process,
namely the Gamma process with CV = 1. Table 1.2 show some the properties of
these processes discussed. For other distributions and their properties, the reader is
referred to (Balakrishnan and Nevzorov 2003; Evans et al. 2002).

The Gamma process is often used to model spike trains because it is the easiest
non-Poisson process to analyze. However, if the CV is larger than 1, the ISI distri-
bution diverges as � approaches 0. It is not unlikely that this leads to pathological
results, and it is not recommended that Gamma processes be used to model spike
trains of bursty neurons. If one still insists in using them for bursty neurons, one
should at least, in a limited number of cases, check whether the results also hold for
other renewal processes.

The Log-Normal process is a process in which the logarithm of the ISI is drawn
from a Gaussian distribution. This makes it very easy to generate spike trains with
a Log-Normal distribution: Using standard software, one draws values yn indepen-
dently from a normalized Gaussian distribution and sets �n = exp(σyn + μ). It is
straightforward to show that with this procedure, 〈�k〉 = exp(kμ+ k2σ 2/2), so that

for a given rate and coefficient of variation, one has to use σ =
√

log(C2
V + 1) and

μ = − log(R)− 1
2 log(C2

V + 1). A disadvantage of the Log-Normal distribution is
that there is no closed-form expression for its Laplace transform �L or for the distri-
bution ρn of n consecutive intervals. This limits how much can be done analytically
with this distribution.

The final ISI distribution we will mention here is the Inverse Gaussian or Wald
distribution. This distribution is obtained by considering Brownian motion of a vari-
able x with a positive drift: x satisfies x(0)= 0 and dx/dt = ν + ση(t), where η(t)
is a stochastic variable with Gaussian white noise statistics. If � is the first time x
exceeds the value 1, the distribution of � is the Wald distribution. One can show
that 〈�〉 = ν−1 and 〈�2〉− 〈�〉2 = σ 2ν−3 (Gerstein and Mandelbrod 1964), so that
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Table 1.2 Properties of some commonly used renewal processes. The ISI distribution, �, its
Laplace transform, �L, the distribution of the sum of n intervals, �n and the cumulants, κk are
given, except for the Log-Normal distribution, for which there is no analytical expression for �L
and �n and for which the moments μk instead of the cumulants κk are given

Poisson process:

�(�)=Re−R�, �L(s)= R
R+s ,

�n(�)=R (R�)n−1

(n−1)! e−R�, κk = (k − 1)!/Rk .
Gamma process:

�(�)= γR (γR�)γ−1

�(γ )
e−γR�, �L(s)= ( γR

γR+s )
γ ,

�n(�)= γR (γR�)nγ−1

�(nγ )
e−γR�, κk = γ (k − 1)!/[γR]k ,

CV =√1/γ .

Log-Normal process:

�(�)= 1√
2πσ�

exp(− (log�−μ)2
2σ 2 ), μk = exp(kμ+ k2σ 2/2),

R = exp(−μ− σ 2/2), CV =
√

exp(σ 2)− 1.

Inverse Gaussian process:

�(�)= C−1
V√

2πR�3
exp(−C−2

V
2
(R�−1)2

R�
), �L(s)= exp(C−2

V [1−
√

1+C2
Vs/R ]),

�n(�)= nC−1
V√

2πR�3
exp(−C−2

V
2
(R�−n)2
R�

), κk = C−2
V
(2k)!
2k k! [C2

V/R]k .

we need to use ν =R and σ = CV
√
R to get the desired rate and coefficient of vari-

ation. We will not derive this distribution here, but note that its form is specified in
Table 1.2.

The Laplace transform can also be derived analytically. The distribution �n can
be inferred for the Brownian model: If we initialize x at x(0)= 0 and let it evolve
according to the Brownian motion with positive drift, the first spike occurs the first
time that x reaches 1, the second when x reaches 2, etc. So the nth spike occurs the
first time the x reaches n. This means that �n has the same shape as ρ, except that
R has to be replaced by R/n and CV by CV/

√
n.

ISIs drawn from an Inverse Gaussian distribution can be generated efficiently
using the following recipe (for details, see Chhikara and Folks 1989): Draw
yn from a normalized Gaussian distribution. Calculate xn = 1 + C2

Vy
2
n/2 −√

[1+C2
Vy

2
n/2]2 − 1. Draw pn from a uniform distribution between 0 and 1. If

pn < 1/(1+ xn), take �n = xn/R, else take �n = 1/(Rxn).

1.2.3 Autocorrelation

For renewal processes, the autocorrelation of the spikes is simply related to ISI
distribution. The autocorrelation A can be written as A(τ)= Rδ(τ)+ Ã(τ ), where
Rδ(τ) is the joint probability density of a spike at time t and the same spike at time
t + τ , while Ã(τ ) is the joint probability density of a spike at time t and another
spike at time t + τ . The probability density of a spike k occurring at time t is R,
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while the probability density of spike k+ n occurring at time t + τ , given that spike
k occurred at time t , is equal to �n(τ), so the joint probability density of a spike at
time t and the nth next spike at time t + τ is equal to R�n(τ). For τ ≥ 0, the joint
probability Ã(τ ) of a spike occurring at time t and another spike at time t + τ is
just the sum of the probability densities of a spike at time t and the nth spike at time
t + τ for all n > 0. Thus,

Ã(τ )=R
∞∑
n=1

�n(τ).

Using (1.1) for �n, this can be written as

Ã(τ )=R�(τ)+
∫ τ

0
�
(
τ ′
)
Ã
(
τ − τ ′)dτ ′.

From this we obtain for the Laplace transform ÃL of Ã

ÃL(s)= R�L(s)

1− �L(s)
.

1.2.4 Spike Count and Fano Factor

Because the spike count distribution is often available in experimental data, it is
useful to consider the probability of observing n spikes if the spikes are counted
in a time window of duration T , in renewal processes. To determine this, we first
have to specify how the time window is chosen. The simplest case, the so-called
ordinary renewal process, is when the process is started at time t = 0, the begin-
ning of the counting period. In this case the probability density for the first spike
occurring at time t1 is �(t1), while the probability density for the nth spike oc-
curring at time tn is �n(tn). The survival probability Sn(t), the probability that, at
time t , the neuron has not yet spiked n times is given by Sn(t) =

∫∞
t
�n(t

′)dt ′,
which has a Laplace transform Sn,L(s) = [1 − �n,L(s)]/s = [1 − �nL(s)]/s. The
probability P(n,T ) of observing n is simply the probability that tn < T and
tn+1 > T , P(n,T )= Sn+1(T )−Sn(T ), which has a relatively simple Laplace trans-
form,

PL(n, s)= [1− �L(s)]
s

�nL(s).

The second important case is the equilibrium renewal process. Here we consider
a process that has been started at time t � 0, while spikes are counted between times
t = 0 and t = T . Let t0 < 0 be the time of the last spike before we start counting.
For a given t0, the probability density for the first spike to occur at time t1, given
that the last spike occurred at t0, is �(t1 − t0), while the probability for a spike
between t0 and t0 + δt is Rδt . Hence the probability density, �̃1(t1) for the first at t1
is �̃1(t1)=R

∫ 0
−∞ �(t1− t0)dt0 =RS1(t1). The probability density for the nth spike
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in an equilibrium renewal process, �̃n(tn), is given by �̃n(tn)=
∫ tn

0 �̃1(t1)�n−1(tn −
t1)dt1. Note that for the Poisson process, �(t) = �̃(t) = R exp(−Rt), so that the
equilibrium renewal process and the ordinary renewal process have the same spike
statistics. From �̃n(t) the survival functions S̃n and their Laplace transforms S̃n,L
are readily determined. Using S̃n,L, we obtain for the Laplace transform of P(n,T )
that

PL(n, s)= [1− �L(s)]2
μ1s2�L(s)

�nL(s) for n≥ 1

and PL(0, s)= 1/s − [1− �L(s)]/μ1s
2. Here μ1 =R−1 is the average ISI interval.

For the Poisson process, P(n,T ) is given by P(n,T ) = (RT )n exp(−RT )/n!.
For most other renewal processes, an analytical expression for P(n,T ) is not easily
obtained. If the period T over which the spikes are counted becomes large compared
to the average ISI, the spike count distribution approaches a Gaussian distribution,
for which the asymptotic value of the mean and variance can be calculated. The kth
moment Mk(T ) of the spike count distribution satisfies Mk(T )=∑∞

n=1 n
kP (n,T )

and has a Laplace transform Mk,L(s) which satisfies

Mk,L(s)=
∞∑
n=0

nkPL(n, s)= C(s)
∑
n

nk�nL(s),

where C(s) = [1 − �nL(s)]/s for the ordinary renewal process, and C(s) =
[1 − �nL(s)]2/s2μ1�L(s) for the equilibrium renewal process. Using

∑
n nx

n =
x/(1 − x)2 and

∑
n n

2xn = (x + x2)/(1 − x)3 for |x| < 1, one obtains for the
Laplace transform of the first two moments

M1,L(s)= �L(s)

s[1− �L(s)] , M2,L(s)= �L(s)+ �2
L(s)

s[1− �L(s)]2 ,

for the ordinary renewal process, while for the equilibrium renewal process, they
are given by

M1,L(s)= 1

μ1s2
, M2,L(s)= 1+ �L(s)

μ1s2[1− �L(s)] .

From this we see that for the equilibrium renewal process, the average the spike
count M1 is given by M1(T )= RT . For the ordinary renewal process, we can find
the approximate value of M1(T ) for large T by expanding M1,L(s) for small s
using (1.2) for �L(s), M1,L(s) = 1/μ1s

2 + (μ2 − 2μ2
1)/2μ

2
1s + · · · . This yields

M1(T )=RT + (C2
V − 1)/2+ · · · . Notice that if CV �= 1, the difference in the aver-

age spike count for the ordinary and equilibrium renewal processes stays finite as T
is increased and approaches (C2

V − 1)/2.
For the Laplace transform of the second moment, we obtain for small s,

M2,L(s)= 2/μ2
1s

3+ (2μ2− 3μ2
1)/μ

3
1s

2+· · · andM2,L(s)= 2/μ2
1s

3+ (μ2−μ2
1)/

μ3
1s

2 + · · · for the ordinary and equilibrium renewal processes, respectively. Thus,
for large T , the second moment of the spike count distribution is given byM2(T )=
R2T 2 + (2C2

V − 1)RT for the ordinary renewal process and M2(T ) = R2T 2 +
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C2
VRT for the equilibrium renewal process. The difference in the second moment

for the two processes increases as (C2
V − 1)RT . Perhaps surprisingly, the variance

in the spike count, σ 2
N(T )=M2(T )−M2

1 (T ), is to leading order the same for both
processes and given by σ 2

N(T )= C2
VRT . For renewal processes, the Fano factor of

the spike count, FN , defined as the spike count variance divided by its mean, satis-
fies, for large T , FN = C2

V. It should be emphasized however that this result only
holds in the large T limit. For short time window, the Fano factor of the spike count
can differ substantially from the square of the coefficient of variation.

1.2.5 Variable Rates

So far we have only considered renewal processes with a constant firing rate
R(t)= R. In many cases we will be interested in stochastic spike trains with vari-
able rates. For example, if we measure from neurons in the primary visual cortex, we
will observe a transient response when a visual stimulus is presented. If the same
stimulus is presented several times, the precise timing of the spikes will vary for
different stimulus presentations, but the firing rates will evolve in roughly the same
way for each of the presentations. It is natural to try to model this with a stochastic
point process with a rate that changes with time. The simplest point process to model
this is the inhomogeneous Poisson process in which the rate R(t) is not constant.
For each value of t , we put a spike with probability R(t)δt in interval between t and
t + δt . For this process, the probability density Pr(t1|t0) for the next spike at time t1,
given that the last spike occurred at time t0, is Pr(t1|t0)=R(t1) exp(− ∫ t1

t0
R(t)dt).

There are many possible ways in which renewal processes with variable rate can
be formulated (Bagdonavičius and Nikulin 2001), the precise formulation being de-
pendent on how the ISI distribution changes with the firing rate. One straightforward
way is the so-called proportional hazard or Cox model (Cox 1975). Assume that for
some base-line rate R0, the stochastic intensity for a spike at time t , given that the
last spike was at time t0, is H0(t − t0). We can make the assumption that when the
rate varies, the stochastic intensity can be written as H(t) = λ(t)H0(t − t0) with
λ > 0. The firing rate R depends on λ, and for constant λ, it is relatively straightfor-
ward to determine the ISI distribution and hence how R depends on λ. However, if
λ varies with time, it is generally not possible to find an analytical expression that
relates λ(t) and R(t). This severely limits the usefulness of this model for analysis.

A more useful model of renewal processes with changing rates is the process
which, in the area of survival analysis, is known as the accelerated failure time
(AFT) model (Hougaard 1999). The fundamental assumption here is that if the firing
rate is increased, the effect on the ISI distribution is to shrink it along the x axis,
without otherwise changing shape. With constant rate R, the ISI distribution �R is
given by �R(�)= R�̂(R�). This can be generalized to a spike train with variable
rate R(t) by writing, for the probability density Pr(t1|t0) for a spike at time t1, given
that the last spike occurred at t0,
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Pr(t1|t0)=R(t1)�̂
(∫ t1
t0

R(t)dt

)
.

In such a process it is useful to consider a rescaled time variable τ given by τ(t)=∫ t
0 R(t

′)dt ′. In this rescaled time, the renewal process with varying rate becomes a
renewal process with a constant rate of 1 and ISI distribution �̂. Thus, in the rescaled
time, the probability density for the n spike �̂n and the autocorrelation Â can be
calculated as before. This can be used to calculate the probability density Pr(tn|t0)
for the nth spike at time tn, given that the zeroth spike occurred at time t0:

Pr(tn|t0)=R(tn)�̂n
[
τ(tn)− τ(t0)

]
.

Similarly, the joint probability density A(t1, t0) of a spike at time t1 and a spike at
time t0 is given by

A(t1, t0)=R(t1)R(t0)Â
[
τ(t1)− τ(t0)

]
.

If the firing rate changes, the naive measure for the coefficient of variation con-
founds the intrinsic variability in spike generation with the effect of the rate change
on the ISI distribution. If one knows how the rate R evolves over time, one can
make the transformation to the rescaled time τ(t) and use τn = τ(tn) to calculate
the mean μ̂1 ≡ 〈τn+1 − τn〉 and mean square μ̂2 ≡ 〈(τn+1 − τn)2〉 to calculate the
CV in rescaled time. This can be used as a measure for the intrinsic variability.

If R(t) is not known, we cannot determine the intrinsic variability exactly. How-
ever, if we assume that the rate changes on a time scale that is long compared to the
average inter-spike interval, we can assume that the rate is approximately constant
over the period between three consecutive spikes. This has led Holt et al. (1996) to
propose a new measure, CV2, for the variability of the spike train that can be used
when the firing rate changes slowly. This measure is defined as

CV2 = 2

〈 |�n+1 −�n|
�n+1 +�n

〉
. (1.3)

The factor of 2 in this definition is chosen so that for a Poisson process, we have
CV2 = 1.

Nothing prevents us from using CV2 in models where the rate is constant. This
allows us to explore the relationship between CV2 and CV. It is clear from the def-
inition, (1.3), that CV2 ≤ 2, and therefore CV2 �≡ CV. For Gamma processes, where
CV = 1/

√
γ , it can be shown that CV2 is given by CV2 = �(2γ )/{γ [2γ−1�(γ )]2}.

For Log-Normal processes, where CV =
√

exp(σ 2)− 1, CV2 satisfies the equation
CV2 = 4π−1/2

∫∞
0 exp(−x2) tanh(σx)dx. For the Log-Normal process, this gives

CV2 ≈ 0.8 if CV = 1, while for the Poisson process, CV2 = CV = 1. This illustrates
that different processes with the same CV can have different CV2. The two measures
CV and CV2 capture somewhat different aspects of the ISI variability.

Figure 1.2 shows CV2 plotted against CV for Gamma and Log-Normal pro-
cesses. In both cases we have that CV2 ≈ 2CV/

√
π for small CV and that, as CV

increases, the slopes of the curves decrease. For increasing CV, CV2 asymptotically
approaches 2. However, in the Log-Normal case, the approach is much slower than
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Fig. 1.2 CV2 plotted against
CV for Gamma processes
(red) and Log-Normal
processes (green). For
comparison, the line x = y
(dotted line) is also shown

that for Gamma processes. Indeed, for Gamma processes, 2 − CV2 ≈ 2 log 2/C2
V,

when CV is large. For the Log-Normal process, under the same condition, 2−CV2 ≈
4/
√

2π log CV.

1.3 Spike-Train Models with Memory

Up to now we have considered only renewal processes, in which the probability of
a spike at time tn+1 only depends on the time tn of the previous spike and not on
the times of earlier spikes. This makes the analysis relatively simple but ignores
biophysical features which may be important to take into account.

For example, with renewal processes we can generate spike trains which look
bursty if we assume an ISI distribution with a large coefficient of variation, but in
such a process next ISI has the same probability distribution independent of the
duration of previous ISI. For real bursting neurons, a short ISI indicates that it is
more likely that the neuron is in the burst state and therefore the next ISI has a higher
probability of also being short. Another important feature which renewal processes
cannot capture is spike adaptation. For neurons with spike adaptation, the level of
adaptation is likely to be higher after a short interval, increasing the probability that
the next ISI will be long.

To capture these and other phenomena, we have to go beyond renewal processes
and consider processes with serial correlations in ISIs. The rest of this chapter gives
an outline of how to deal with such processes.

1.3.1 Some Models of Stochastic Spike Trains with Serial
Correlation

Before we discuss the analytical approach to stochastic spike train models with cor-
relations, we will first briefly mention a few examples of such processes.

Hidden Markov processes: In a hidden Markov process, the neuron can be in one
of N states. If at time tn the neuron is in state An, then the next ISI is drawn from a
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distribution �(�|An), and at the next spike the state will be An+1 with probability
Q(An+1|An).
Processes with memory of theN last ISIs: Interval�n is drawn from a distribution
�(�n|�n−1,�n−2, . . . ,�n−N), which depends on the N preceding ISIs.

Processes with adaptation: A stochastic spike train model that mimics the effect
of adaptation could be model variable rate in which

Pr(tn+1|tn, tn−1, tn−2, . . .)=R(tn+1)�

(∫ tn+1

tn

R(t)dt

)
,

where the rate R depends on the level of adaptation a as R(t)= R0(1− a(t)), and
a satisfies

τA
d

dt
a =−a + γ (1− a)

∑
k

δ(t − tk).

Doubly stochastic processes: This is a process where the spikes are drawn ac-
cording to a renewal process with a variable rate R, which itself has a stochastic
component. For example, Pr(tn+1|tn, tn−1, . . .)=R(tn+1)�̂[τ(tn+1)− τ(tn)], where
τ(t)= ∫ t0 R(t ′)dt ′, and the rate is given by R = f (z), where z satisfies the stochas-
tic differential equation

d

dt
z=−g(z)+ η(t),

where f and g are some suitably chosen functions, and η(t) is Gaussian white noise.

1.3.2 General Description of Stochastic Point Processes with
Memory

These and many other models belong to the class of models in which the neuron at
time of the nth spike is in state an and the next ISI, �n+1, and state an+1 are drawn
from a distribution �(�n+1, an+1|an). Before we use this to develop the theory for
stochastic processes with serial correlations, let us verify that this statement is true
for the four examples above.

The hidden Markov model is the most straightforward. In this model, the state
an is the integer state value An, and �(�n+1, aN+1|an)= �(�n+1|an)Q(an+1|an).

In the model where the ISI depends on the N preceding intervals, the “state”
a is the N -dimensional vector (�n,�n−1, . . . ,�n+1−N). If we write an as an =
(�
(1)
n ,�

(2)
n , . . . ,�

(N)
n ), �(�n+1, an+1|an) is given by

�(�n+1, an+1|an)= δ
(
�n+1 −�(1)n+1

)
�
(
�
(1)
n+1|�(1)n ,�(2)n , . . . ,�(N)n

)

×
N∏
j=2

δ
(
�
(j)

n+1 −�(j−1)
n

)
.
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In the model with adaptation we have that if immediately after the nth spike at
time tn, the level of adaptation is an, then a(tn + �) = an exp(−�/τA) for � <
tn+1 − tn. Hence we can write Pr(tn+1|tn, tn−1, tn−2, . . .)= �(tn+1 − tn|an), where

�(�|an)=R0
[
1− an exp(−�/τA)

]
�
(
R0�− anR0τA

[
1− exp(−�/τA)

])
.

Given an and�n+1, the level of adaptation immediately after the (n+1)st spike sat-
isfies an+1 = γ + (1− γ ) exp(−�n+1/τA)an. In this model, the level of adaptation,
an, immediately after the nth spike can be used as the state variable, and

�(�n+1, an+1|an)= �(�|an)δ
(
an+1 − an(1− γ )e−�n+1/τA

)
.

In the doubly stochastic process, the rate R(t) can be used the state variable,
since if Rn ≡ R(tn), then z(tn) = f−1(Rn) is known, and this fully specifies the
joint probability distributions of R(t) and τ(t) − τ(tn) for t > tn. This allows us,
at least in principle, to calculate the probability density P(�n+1,Rn+1|Rn), so that
we can use Rn as the state variable.

These examples show that the state an is a rather abstract concept. It can refer
to the state of neuronal variables directly, such as in the model with adaptation, or
indirectly, as in the model with memory of the N previous intervals, or to the state
of the neuron’s input as in the doubly stochastic model.

1.3.3 Properties of Stochastic Point-Processes with Memory

The transition probability density Q(an+1|an) for the transition from state an at the
spike n to state an+1 at spike n+ 1 is given by

Q(an+1|an)=
∫
�(�n+1, an+1|an)d�n+1.

Using Q, the equilibrium distribution peq for the states can be determined and is
given by

∫
Q(a′|a)peq(a)da = peq(a

′) and
∫
peq(a)da = 1. The inter-spike inter-

val distribution �(�) satisfies

�(�)=
∫∫

�
(
�,a′|a)peq(a)da da′.

Assuming that t0 = 0, the probability density �n(tn, an|a0) that the nth spike occurs
at time tn and has a state an, given that at time t = 0 the state is a0, can be determined
iteratively using

�n+1(tn+1, an+1|a0)=
∫∫

�(tn+1 − tn, an+1|an)�n(tn, an|a0)dan dtn,

where �1(t1, a1|a0)= �(t1, a1|a0).
As for the renewal process, this relation is simpler for the Laplace transform �n,L

of �n, �n+1,L(s, an+1|a0)=
∫
�L(s, an+1|an)�n,L(s, an|a0)dan.
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Fig. 1.3 Autocorrelation (red) and ISI distribution (blue) for a two-state hidden Markov process.
In both states the ISI is drawn from an inverse Gaussian distribution with CV = 0.3, while the rate
R satisfies R = 1.5 in state 1 and R = 0.75 in state 2. After each spike, the probability of a state
switch is 0.15. The autocorrelation for a renewal process with the same ISI distribution is also
shown (green)

At this point it is useful to introduce the operator Pn(s) and the “bra-ket” notation
(Cohen-Tannoudji et al. 1977; Dirac 1939; Wikipedia 2009), in which Pn(s)|f 〉 and
〈g|Pn(s) are defined as

Pn(s)|f 〉 ≡
∫
ρn,L
(
s, a′|a)f (a)da and 〈g|Pn(s)≡

∫
g
(
a′
)
ρn,L
(
s, a′|a)da′,

while 〈g|Pn(s)|f 〉 is given by 〈g|Pn(s)|f 〉 ≡
∫∫
g(a′)ρn,L(s, a′|a)f (a)da da′.

Since Pn|f 〉 = P · Pn−1(s)|f 〉 = Pn|f 〉, where P is the operator associated with
�L, we can write

�n,L(s)= 〈1|Pn(s)|peq〉 = 〈1|Pn(s)|peq〉,
where we have used 〈1| to denote the function g with g(a′)= 1.

It is important to note here that 〈1|Pn(s)|peq〉 �= 〈1|P(s)|peq〉n, so that �n,L(s) �=
�nL(s). Due to the serial correlations, the probability density for the nth spike is not
equal to the convolution of n inter-spike interval distributions.

With these results the Laplace transform of Ã can be written as

Ã(s)=R
∞∑
n=1

〈1|Pn(s)|peq〉 =R〈1|P(I− P)−1|peq〉,

where I is the identity operator. This implies that ÃL does not satisfy ÃL(s) =
R�L(s)/[1 − �L(s)]. This is illustrated in Fig. 1.3. This figure shows the ISI dis-
tribution and the autocorrelation for a spike train generated by a two-state hidden
Markov model where in both states the ISI is drawn from an inverse Gaussian dis-
tribution, with a different rate in the two states. For comparison, the ISI distribution
for a renewal process with the same ISI distribution is also shown. This is clearly
different from the autocorrelation of the process with serial correlations.
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The operator P can also be used to characterize the moments and correlations
of the ISIs. Because 〈1|P(sk)P(sk−1) · · ·P(s1)P(s0)|peq〉 = 〈exp(−∑k

j=0 sj�n+j )〉
we can write for the moments of the ISI distribution 〈�k〉 = (−1)k〈1|P(k)(0)|peq〉,
while the two-point correlations satisfy 〈�n�n+k〉 = 〈1|P(1)(0)Pk−1(0)P(1)(0)
|peq〉. Here P(k) = dkP/dsk . Higher-order correlations can be treated analogously.

1.3.4 Dependence of the Fano Factor on Serial Correlations

For renewal processes, we have seen that the Fano factor of the spike count ap-
proaches FN = C2

V as the observation window becomes much larger than the typical
ISI. It should be clear that serial correlations in the ISIs will affect the spike count
distribution. An exact derivation of this effect is beyond the scope of this chapter.
We will instead give a simple heuristic derivation of its effect on FN .

Suppose that the process is started at time t = 0 and we count spikes up to time T .
The average value of the time tk of the kth spike is given by 〈tk〉 =∑k

l=1〈�l〉 =
k〈�〉. The mean square of tk satisfies 〈t2k 〉 =

∑k
l=1
∑k
m=1〈�l�m〉, so that we can

write the variance σ 2(tk) of tk as

σ 2(tk)=
k∑

l,m=1

[〈�l�m〉 − 〈�〉2].

If the correlation time is finite, there will be a value n0 such that 〈�l�l+n〉 − 〈�〉2
is negligible for |n| > n0. Thus, if k � n0, we can, for n0 < l < k − n0, write∑k
m=1[〈�l�m〉−〈�〉2] ≈

∑∞
n=−∞[〈�l�l+n〉−〈�〉2] ≡�2

0 . This holds for almost
all values of l between 1 and k, so that the variance in tk can be approximated by
σ 2(tk)≈ k�2.

Now assume that T =K〈�〉 with K � n0. Then the statistics for the K th spike
has a mean 〈tK〉 = T and standard deviation σ(tK)=√T/〈�〉�. On the other hand,
if the spike count is N , the spike times tN and tN+1 satisfy tN ≤ T < tN+1. For T
sufficiently large, we can assume that tN = T . The difference N −K will approx-
imately be given by N − K = (tN − tK)/〈�〉 = (T − tK)/〈�〉. Thus the average
of the spike count satisfies 〈N〉 = K = T/〈�〉, and its standard deviation is given
σ(N)= σ(tK)/〈�〉 =

√
T/〈�〉3�. Accordingly, the Fano factor of the spike count

is given by

FN ≡ σ
2(N)

〈N〉 =
∞∑

n=−∞

[ 〈�l�l+n〉
〈�〉2 − 1

]
. (1.4)

Detailed analysis (McFadden 1962) shows that this result is exact in the large
T limit. Note also that if the ISI are generated with a renewal process, so that
〈�l�l+n〉 = 〈�〉2 for n �= 0, we recover FN = C2

V.
For renewal processes, the Fano factor is well approximated by FN = C2

V if
T � 〈�〉. In the above derivation we have used that K � n0, so for (1.4) to give a
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good approximation of the Fano factor, T has to satisfy T � n0〈�〉, where n0〈�〉
can be interpreted as the time over which the ISIs are correlated.

It is also important to note that if the correlation time is large, the correlations
in the ISIs can have an appreciable effect on the FN even if 〈�l�l+n〉 − 〈�〉2 is
small for all n �= 0 because many terms will contribute. This makes the comparison
between FN and C2

V a very sensitive test for the renewal property. Alternatively,
one could argue that calculations of FN which rely on the renewal property almost
certainly will not apply to experimental data.

1.3.5 Sensitivity of CV2 to Serial Correlations

In the section on renewal processes with varying rate, we introduced the measure
CV2 as an estimate for the intrinsic variability in the spiking. But if there are serial
correlations in the ISIs, one has to be very careful in interpreting the CV2. Positive
(negative) correlations will tend to make consecutive ISIs more (less) similar and
therefore increase (decrease) the CV2.

It is instructive to consider this with an example: Consider a point process in
which the intervals �n satisfy

log�n = α log�n−1 +
√

1− α2σξn + (1− α)μ, (1.5)

where −1 < α < 1, and ξn are independently drawn from a normalized Gaussian
(Farkhooi et al. 2009).

The distribution ρ of the ISIs is a Log-Normal distribution with parameters μ
and σ and is independent of α. It can be shown that 〈�l�l+n〉 = exp(α|n|σ 2)〈�〉2.
With positive (negative) α, the correlations between consecutive ISIs are positive
(negative). To calculate the CV2, it is useful to write�n = exp(μ+√(1+ α)/2x++√
(1− α)/2x−) and �n+1 = exp(μ+√(1+ α)/2x+ −√(1− α)/2x−), where x+

and x− are independent normalized Gaussian variables. With this it is easy to show
that CV2 is given by CV2 = 4π1/2

∫∞
0 exp(−x2) tanh(

√
1− ασx)dx. Comparing

this to the CV2 for the Log-Normal renewal process, we see that adding a correlation
[exp(ασ 2)− 1]〈�〉2 to consecutive ISIs has, for this model, the same effect on CV2
as the transformation σ 2 → (1− α)σ 2, or C2

V → (C2
V + 1)1−α − 1 and keeping the

ISIs uncorrelated.
In Fig. 1.4, CV2 and FN are plotted against α for a neuron with CV = 1 (σ =√

log 2 ). The coefficient CV2 decreases monotonically as α is increased, reaching
CV2 = 0 as α reaches 1. Starting at α = 0, the Fano factor first decreases as α is
decreases, but for α less than α ≈−0.6, the Fano factor increases with decreasing
α even though correlation between consecutive intervals continues to decrease. The
reason for this is that the correlation between intervals �l and �l+2n is positive and
growing as α is decreased further.

If we observe a change in CV2 in experimental data, this could be the result of
either a change in the CV or change in the serial correlations. These two potential
causes imply an opposite effect on, for example, FN , and one should be careful in
the functional meaning that is assigned to this change in CV2.
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Fig. 1.4 Dependence of CV2
and FN on serial correlations
in the ISIs. The Fano factor
(red, left-hand scale) in the
large T limit and the CV2
(green, right-hand scale) are
plotted for a correlated
Log-Normal process with
CV = 1 against α
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Chapter 2
Estimating the Firing Rate

Shigeru Shinomoto

Abstract Neuronal activity is measured by the number of stereotyped action po-
tentials, called spikes, elicited in response to a stimulus or the behavioral conditions
of an animal. Any nonparametric method for grasping the time-varying rate of spike
firing contains a single parameter that controls the jaggedness of the estimated rate,
such as the binsize of the time histogram or the bandwidth of the kernel smoother.
In most neurophysiological studies, the parameter that determines the interpretation
of neuronal activity has been selected subjectively by individual researchers. Re-
cently, theories for objectively selecting the parameter have been developed. This
chapter introduces the standard rate estimation tools, such as the peri-stimulus time
histogram (PSTH), kernel density estimation, or Bayes estimation, and shows ways
of selecting their parameters under the principles of minimizing the mean integrated
squared error or maximizing the likelihood. We also sum up the methods in handy
recipes that may be useful in practical data analysis.

2.1 Introduction

In the beginning of the last century, Edgar Adrian discerned that a neuron expresses
the intensity of a stimulus in the frequency or occurrence rate of stereotyped action
potentials (Adrian 1928; Rieke et al. 1997). Since then, the most basic protocol in
neurophysiology has been computing the occurrence rate of neuronal action poten-
tials, called spikes or firings, as the correlate of an animal’s behavior (Gerstein and
Kiang 1960; Johnson 1996; Dayan and Abbott 2001). The rate of neuronal firing,
defined in the unit of frequency [Hz], or spikes per second [sp/s], can be computed
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by simply counting the number of spikes and dividing it by the period of the ob-
servation interval. Thus the computation of the firing rate is a mere realization of
simple descriptive statistics, as exemplified by a census of the population.

However, to grasp the temporal modulation of neuronal activity in relation to
sequential behaviors of the animal, one has to go beyond the simple description
and treat a hard problem of inferential statistics in estimating an instantaneous rate
of firing. If neurons were generating temporally regular spikes, the instantaneous
spike rate or the firing frequency may be given by simply inverting the interspike
intervals (ISIs). However, this method leads to a messy diagram for highly irregular
spike trains recorded from cortical neurons in vivo. If, on the contrary, we spend
a long time collecting a large number of spikes for precise estimation of the firing
rate, we cannot grasp the fine temporal modulation. This seemingly naive issue may
arise in any sophisticated method. Any rate estimation tool has a (hyper)parameter,
such as the binsize of a time histogram and the bandwidth of a kernel smoother
that controls the jaggedness of the estimate. The estimated rate may become highly
fluctuating if the binsize or bandwidth is small, and constant in the opposite limit.
In neurophysiological studies, the parameter that critically determines the goodness
of rate estimation has mostly been selected subjectively by individual researchers.

Originally, neurons generate spikes according to their inputs in a mostly deter-
ministic manner, and there is no definite entity for the firing rate in the brain. The
endeavor to capture the rate of spike occurrence from discrete data can be viewed as
a process for compressing information. Rate estimation inevitably depends on the
method of information compression and is therefore not determined uniquely for a
set of data. Nevertheless, the range of plausible principles and estimation methods is
limited, and the rate estimated from a given set of data should not vary among prin-
cipled methods. In applying statistical principles, one views spikes as sample events
derived from a certain underlying probabilistic process and strives to estimate the
underlying probability from the spike data. In this respect, methods for selecting the
parameter based on statistically plausible principles, such as minimizing the mean
integrated squared error (MISE) or maximizing the likelihood, have recently been
developed.

In this chapter, we introduce several standard rate estimation tools, the peri-
stimulus time histogram (PSTH) (Gerstein and Kiang 1960; Abeles 1982), the ker-
nel smoother (Parzen 1962; Richmond et al. 1990; Nawrot et al. 1999), and the
Bayesian estimation method, and unfold the principles for optimizing rate estima-
tion methods. These methods are summed up in handy recipes that may be useful
for neurophysiologists in analyzing their own data. Package programs are available
at

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/english.htm or http://www.
apst.spiketrain-analysis.org/.

2.2 Methods for Estimating the Firing Rate

Let us first describe how to construct a PSTH and a kernel density estimation, given
a set of spike data obtained from repeated trials.

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/english.htm
http://www.apst.spiketrain-analysis.org/
http://www.apst.spiketrain-analysis.org/
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Fig. 2.1 Methods for
estimating instantaneous rate.
A: An underlying spike rate
r(t). B: Sample spike raster
diagrams for five trials.
C: A peri-stimulus time
histogram (PSTH).
D: A kernel density
estimation

2.2.1 PSTH

A histogram is a realization of a simple counting method and can be constructed
from a set of spike trains, according to the following instructions (Figs. 2.1A–C).

A method for constructing a PSTH

1. Align n spike trains at the onset or offset of stimuli.
2. Divide an observation period T into intervals of width �.
3. Count spikes collected from all trials as ki for ith bin.
4. Draw a bar at the height ki/(n�) in a time period of [(i − 1)�, i�].
5. Repeat 3 and 4 for each bin from i = 1 to Nb(= T/�).

In many neurophysiological papers, the height of the PSTH is represented by
the raw spike count per bin. We recommend representing the height of the PSTH
in the units of spike rate for one trial, so that integration over the period T gives
the number of spikes averaged over trials. Due to this normalization procedure, the
heights of PSTHs obtained with different binsize � should be approximately equal,
and estimates can be compared across different binsizes.

2.2.2 The Kernel Density Estimation

A kernel density estimation can be obtained by blurring each spike with a kernel
function, according to the following instructions (Figs. 2.1A, B, and D).
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A method for constructing a kernel density estimation

1. Align n spike trains at the onset or offset of stimuli.
2. At every spike, apply a kernel function f�(t) of bandwidth �.
3. Divide the summed function by the number of trials n, or

r̂(t)= 1

n

n∑
j=1

N
j
s∑

i=1

f�
(
t − tji

)
, (2.1)

where tji is the time of the ith spike in the j th trial, and Njs is the total
number of spikes recorded in the j th trial.

The height of the density estimation measures the spike rate per one trial, similar
to the above-mentioned PSTH. The filtering kernel should satisfy the normaliza-
tion to unit area,

∫
f (t) dt = 1. The kernel is normally assumed to be nonnegative,

f (t) ≥ 0, and to have a finite bandwidth defined by the variance that is normally
finite, �2 = ∫ t2f (t) dt <∞, and is often chosen to be symmetric, f (t)= f (−t).
Many kernel functions satisfy these conditions (Paulin 1992; Nawrot et al. 1999;
Paulin and Hoffman 2001; Cherif et al. 2008): A rectangular “boxcar” kernel may
give rise to a jagged density function with an appearance similar to that of the
PSTH. The width of the boxcar should be 2

√
3� in order to give the variance

of �2,

f�(t)=
{ 1

2
√

3�
for −√3�≤ t ≤√3�,

0 otherwise.
(2.2)

A smooth density estimation can be obtained by using a smooth kernel such as the
Gaussian function,

f�(t)= 1√
2π�

exp

(
− t2

2�2

)
. (2.3)

Alternatively, emphasis may be put on the evidence for spike occurrence from the
cusp of the exponential kernel,

f�(t)= 1√
2�

exp

(
−√2

∣∣∣∣ t�
∣∣∣∣
)
. (2.4)

It is noteworthy that exponential functions turn out to be the optimal kernels under
the MISE minimization principle for several underlying rates (Koyama and Shi-
nomoto 2004).

Both the Gaussian kernel (2.3) and the exponential kernel (2.4) have infinite sup-
port. However, since they decay rapidly, they can be approximated as functions with
compact support. For instance, the normalization condition to unit area is in practice
not violated even if we cut them off outside the range of ±5�; the integrated areas
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Fig. 2.2 The boxcar, Gaussian, and exponential kernels that give an identical bandwidth, or the
variance

∫
t2f (t) dt = 1

∫ 5�
−5� f�(t) dt become 0.999999 and 0.999151, respectively, for the Gaussian and

exponential kernels, thus practically losing nothing in both cases. (See Fig. 2.2.)

2.3 Methods for Optimizing the Rate Estimation

For a single set of spike trains, either a PSTH or a kernel density estimation is
not given uniquely, and its shape depends greatly on the choice of the binsize or
bandwidth. Figure 2.3 exemplifies three PSTHs constructed from an identical set of
spike trains. If the binsize is too small, the time histogram fluctuates greatly, and
one cannot discern the underlying spike rate, whereas if it is too large, one cannot
capture the time dependence of the rate. There would be an appropriate binsize or
bandwidth for each set of spike sequences, based on the goodness-of-fit of a PSTH
or a kernel density estimation.

Several plausible principles exist for the goodness-of-fit of the estimator. Here,
we introduce two of them and demonstrate formulae that may be practically useful
in the application to spike data. One is the principle of minimizing the distance be-
tween the estimated rate and the unknown underlying rate measured in the MISE,
and another is the principle of maximizing the likelihood function for a given set of
data.

Fig. 2.3 Time histograms
with various binsizes.
A: Spike data given in
Fig. 2.1. B–D: The time
histograms constructed with
small, medium, and large
binsizes. Dashed line
represents the underlying rate
r(t) from which the spikes
were derived
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2.3.1 MISE Principle

First, we select the binsize or the bandwidth parameter � such that the PSTH or
the kernel rate estimator r̂�(t) best approximates the underlying rate r(t) under the
principle of minimizing the MISE,

MISE(�)≡ 1

T

∫ T
0
E
(
r̂�(t)− r(t)

)2
dt, (2.5)

where E refers to the expectation over different realizations of point events,
given r(t).

The definition of MISE contains the underlying rate r(t) itself, which is un-
known by nature. Nevertheless, using the spike data as a clue, it is possible to
minimize the expected MISE with respect to the parameter � (Rudemo 1982; Shi-
mazaki and Shinomoto 2007a, 2007b, 2010). Note that the optimization method
can be derived rigorously without assuming anything about the time-dependent
rate r(t), such as the continuity of the rate. The only assumption needed in de-
riving the rule is that spikes are drawn from an inhomogeneous Poisson process
in which spikes are independently derived from an underlying rate r(t). Though
spikes recorded from a biological neuron correlate in each sequence (Shinomoto
et al. 2003, 2005, 2009), spikes collected from a number of independent trials are
statistically independent, and the superimposed sequence can be approximated as a
single inhomogeneous Poisson process (Snyder 1975; Daley and Vere-Jones 2003;
Kass et al. 2005).

2.3.1.1 MISE Optimization of PSTH

Leaving the derivation of the rule for minimizing MISE for the PSTH to the liter-
ature (Shimazaki and Shinomoto 2007a), we introduce the method of selecting the
binsize � in a form of a simple recipe in the following.

A method for selecting the binsize of PSTH

1. Compute the average k̄ and the variance v of the spike counts {ki} for all
bins, i = 1,2, . . . ,Nb,

k̄ ≡ 1

Nb

Nb∑
i=1

ki, (2.6)

v ≡ 1

Nb

Nb∑
i=1

(ki − k̄)2, (2.7)
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and evaluate the cost function (Shimazaki and Shinomoto 2007a),

C(�)= 2k̄ − v
(n�)2

, (2.8)

where n is the number of trials, and � is the binsize.

2. Repeat 1 by moving the initial binning position to take an average ofC(�).
3. Repeat 2 while changing � to draw the cost as a function of the bin size.
4. The MISE optimal binsize �∗ is given by the one that minimizes C(�).

Note here that the variance v is not the unbiased variance, but the biased variance
as defined by (2.7). The averaging of C(�) over the initial binning positions is
useful for limiting the possible fluctuation due to the finiteness of data. Figure 2.4
displays the raw and averaged cost functions computed for the set of spike data
given in Fig. 2.3, demonstrating significant fluctuation for a raw cost function.

By applying the optimization method to spike trains whose intensity does not
modulate greatly in time, it might come to pass that the original cost function C(�)
computed for n spike sequences does not have a minimum or has a minimum at a
binsize comparable to the observation period T . This implies that the data are insuf-
ficient for estimating the time-dependent rate. The divergence of�∗ implies that any
PSTH of a finite binsize captures a spurious rate and therefore is worse than sim-
ply drawing a constant rate, in the sense of MISE (Koyama and Shinomoto 2004).
This cost function evaluation may be useful in justifying the estimation of the time-
dependent rate, in particular for discussing the presence or absence of oscillatory
activity.

Because a shortage of data underlies the divergence of the optimized binsize, one
would consider carrying out more experiments to obtain reliable rate estimation. In
making the experimental plan, one may want to estimate how many experiments
should be added to secure the PSTH resolution one deems sufficient. This can be
done through extrapolating the cost function C(�) obtained with a given number of
trials n to the case of a different number of trials m, as

Fig. 2.4 The cost functions C(�) obtained for the set of spike data given in Fig. 2.1B. A: Raw cost
function obtained for a single set of counting statistics (�∗ = 0.1). B: The cost function averaged
over the initial binning positions (�∗ = 0.2)
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C(�|m)=
(

1

m
− 1

n

)
k̄

n�2
+C(�), (2.9)

where k̄ is the average spike count (2.6) obtained from n sequences. Even if the
optimal binsize �∗ diverged for a given number of spike sequences, implying the
incapability of drawing a meaningful PSTH, one can still estimate the number of
additional experimental trials needed to make the optimal binsize finite, justifying
the evaluation of the time-dependent rate from the data.

It is also possible to extend the estimation method from the bar-graph PSTH to
the line-graph PSTH, which generally provides a superior goodness-of-fit (Koyama
and Shinomoto 2004). We do not go into the details of the line-graph histogram
optimization, which is more complicated than the optimization method presented
here (Shimazaki and Shinomoto 2007a).

2.3.1.2 MISE Optimization of Kernel Density Estimation

The same principle of minimizing the MISE can also be applied to the kernel density
estimation (Shimazaki and Shinomoto 2007b, 2010). Leaving the derivation of the
rule to the literature, we introduce the method of selecting the bandwidth � in a
form of a simple recipe in the following.

A method for selecting the bandwidth of the kernel density estimator

1. Compute the cost function (Shimazaki and Shinomoto 2007b, 2010)

C(�)= 1

n2

∑
i,j

φ�(ti − tj )− 2

n2

∑
i �=j
f�(ti − tj ), (2.10)

where φ�(ti − tj )≡
∫
f�(s − ti )f�(s − tj ) ds.

2. Repeat 1 while changing� to draw the cost as a function of the bandwidth.
3. The MISE optimal bandwidth�∗ is given by the one that minimizesC(�).

Note here that the computational cost can be significantly reduced by neglecting
unnecessary parts in the double summation in (2.10), based on the practical com-
pactness of either the Gaussian or the exponential kernel. In addition, the convoluted
function is given simply as φ�(t) = 1/(2

√
π�) exp (−t2/4�2), for the Gaussian

kernel, f�(t)= 1/(
√

2π�) exp (−t2/2�2).
Kernel density estimation with a smooth kernel function is generally much supe-

rior to PSTH in its goodness-of-fit to the underlying rate, as demonstrated in Fig. 2.5.

2.3.1.3 TIPS

Application programs for optimizing the PSTH and kernel density estimation meth-
ods under the MISE principle were provided by Hideaki Shimazaki at
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Fig. 2.5 Comparison of the
optimized PSTH and
optimized kernel density
estimator. A: Spike data given
in Fig. 2.1. B: The time
histograms of the optimal
binsize �∗ = 0.2. C: The
Gaussian kernel density
estimation of the optimal
bandwidth �∗ = 0.1

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/sshist/hist.html or http://
www.apst.spiketrain-analysis.org/

and

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/sskernel/kernel.html or http://
www.apst.spiketrain-analysis.org/.

By simply copying and pasting a data set of spike times to the application, one
can obtain the optimal binsize or bandwidth �∗ for the PSTH or the kernel, and a
list of {t, r̂�∗(t)}, with which to draw the PSTH or kernel density function. One may
also download MATLAB codes for these optimization algorithms.

2.3.2 Likelihood Principle

Another standard optimization principle is maximizing the likelihood. This can
be done by treating a rate function r(t) as a distribution function of spike times.
If one does not have a prior idea for a particular set of rate functions, one may
construct a rate estimator nonparametrically. However, one still needs to deter-
mine a (hyper)parameter for the smoothness or jaggedness of the estimator. Here,
we introduce a relatively simple Bayesian method (Koyama and Shinomoto 2005;
Koyama et al. 2007; Shimokawa and Shinomoto 2009) and show the ways to de-
termine a hyperparameter that plays a role similar to the bandwidth of the filtering
kernel.

2.3.2.1 Empirical Bayes Method of Rate Estimation

Let us first consider a time-dependent Poisson process in which spikes are derived
randomly in time from a given underlying rate r(t). In this process, the probability
for spikes to occur at {ti} ≡ {t1, t2, . . . , tNs } in the period of t ∈ [0, T ] is given by

p
({ti} | r(t))=

[
Ns∏
i=1

r(ti )

]
exp

(
−
∫ T

0
r(t) dt

)
. (2.11)

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/sshist/hist.html
http://www.apst.spiketrain-analysis.org/
http://www.apst.spiketrain-analysis.org/
http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/sskernel/kernel.html
http://www.apst.spiketrain-analysis.org/
http://www.apst.spiketrain-analysis.org/
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Fig. 2.6 The rate-modulated
Poisson process. The
probability for a spike to
occur in each short interval δt
is r(t)δt � 1, and the
probability of having no spike
is 1− r(t)δt ≈ exp(−r(t)δt)

Here the exponential term is the survivor function that represents the probability that
spikes have not occurred in the interval (Cox and Lewis 1966; Daley and Vere-Jones
2003): The probability for a spike to occur in each short interval of δt is r(t)δt � 1
(see Fig. 2.6), and the probability of having no spike from the time t1 to t2 is given
by

lim
δt→0

∏
m

(
1− r(tm)δt

)= exp

(
−
∫ t2
t1

r(t) dt

)
.

We invert the arguments of the conditional probability (2.11) so that the unknown
underlying rate is inferred from the spikes observed. This “inverse probability” can
be obtained using the Bayes formula

pβ
(
r(t) | {ti}

)= p({ti} | r(t))pβ(r(t))
pβ({ti}) . (2.12)

As a Bayesian prior distribution of r(t), we incorporates the tendency of the esti-
mated rate to be flat by penalizing the large gradient, |dr(t)/dt |,

pβ
(
r(t)
)∝ exp

[
−β
∫ T

0

(
dr(t)

dt

)2

dt

]
, (2.13)

where β is a hyperparameter representing the “flatness”; the estimated rate becomes
insensitive/sensitive to individual spike occurrences as β is large/small. The flat-
ness may be replaced by the smoothness by changing the first-order derivative to
the second-order derivative. The result of the inference is known to be robust to
the order of differentiation in the prior distribution (Nemenman and Bialek 2002).
The probability of having spikes at {ti} ≡ {t1, t2, . . . , tNs } is given by the “marginal
likelihood function” or the “evidence,”

pβ
({ti})=

∫
D
{
r(t)
}
p
({ti} | r(t))pβ(r(t)), (2.14)

where
∫
D{r(t)} represents a functional integration over all possible paths of the un-

known underlying rate r(t). The method of selecting the hyperparameter according
to the principle of maximizing the marginal likelihood function is called the Em-
pirical Bayes method (Good 1965; Akaike 1980; MacKay 1992; Carlin and Louis
2000). The marginalization path integral (2.14) for a given set of spike data {ti} can
be carried out by the Expectation Maximization (EM) method (Dempster et al. 1977;
Smith and Brown 2003) or the Laplace approximation (Koyama and Paninski 2009).
With the hyperparameter determined as β = β∗, we can further obtain the maximum
a posteriori (MAP) estimate of the rate r̂(t), so that their posterior distribution,

pβ∗
(
r(t) | {ti}

)∝ p({ti} | r(t))pβ∗(r(t)), (2.15)
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Fig. 2.7 Comparison of the
optimized kernel density
estimator and Empirical
Bayes rate estimator. A: Spike
data given in Fig. 2.1. B: The
kernel density estimation of
the optimal binsize �∗ = 0.1.
C: The MAP rate estimate of
the Empirical Bayes method

is maximized. The MAP estimate resembles the kernel filtering method in that the
estimated rate r̂(t) is lifted at every spike. The Bayesian MAP rate estimate gives
a similar result to the optimized kernel density estimator for a given set of data
(Fig. 2.7). With the flatness constant β large/small, the rate estimation becomes
insensitive/sensitive to individual spike occurrences. Here we outline the algorithms
for maximizing the marginalized likelihood (2.14) by using the EM method, and
Kalman filtering and smoothing or “point-process filtering” (Brown et al. 1998) for
a given set of spike trains.

An Empirical Bayes method for estimating the rate

1. Perform the marginalization path integral (2.14) using a state-space model
or the hidden Markov model, in which the rates and spikes are treated as
states and observations, respectively defined at every time a spike occurred.

2. Optimize the hyperparameter by the EM method.
3. Obtain the expected values and the expected variances of the latent vari-

ables with Kalman filtering and smoothing.

2.3.2.2 TIPS

An application program that helps the readers to analyze their own neuronal data
with the Empirical Bayesian rate estimation was provided by Takeaki Shimokawa
at

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/ssBayes/bayes.html or http://
www.apst.spiketrain-analysis.org/.

By simply copying and pasting a data set of spike times, one may obtain the MAP
estimate of the rate and a list of {t, r̂(t)}, with which one can draw the Bayesian

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/ssBayes/bayes.html
http://www.apst.spiketrain-analysis.org/
http://www.apst.spiketrain-analysis.org/
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estimation of the rate. The extension to the simultaneous estimation of the rate and
the instantaneous irregularity is given at

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/ssNeCo09/page_SULAB2.
html or http://www.apst.spiketrain-analysis.org/

which are based on the theory developed in Shimokawa and Shinomoto (2009).

2.4 Discussion

In this chapter, we introduced typical rate estimation methods, the PSTH, kernel
density estimation, and Bayesian estimation. We also demonstrated optimization
of the PSTH and the kernel method under the principle of minimizing the MISE
and optimizing the Bayesian rate estimation under the principle of maximizing the
likelihood function.

Those who intended to practically perform rate estimation may waver regarding
the choice of the multiple methods of rate estimation and multiple principles for
parameter optimization to use. There is in fact no oracle that may select one of the
different optimization principles, and therefore one may choose any of them. Nev-
ertheless, one may expect that reasonable optimization principles provide similar
rate estimations for a given set of spike data. It is interesting in this respect to ex-
amine whether the different methods may give qualitatively different conclusions
for the detectability of rate modulation. For a small number of spike trains derived
from an underlying rate r(t) that fluctuates moderately in time, the optimal binsize
may diverge, indicating the incapability of detecting a time-dependent rate. For a
doubly stochastic process in which the rate is modulated according to the Ornstein–
Uhlenbeck process, we may analytically obtain the conditions for the divergence of
the optimized binsize �∗ (Koyama and Shinomoto 2004) and the optimized flat-
ness constant β∗ (Koyama et al. 2007). It is noteworthy that both parameters �∗
and β∗ diverge for the identical condition, nσ 2τ/μ ≤ 1/2, where the μ, σ 2, and τ
are the mean, variance, and timescale of rate fluctuation, respectively. This implies
that the different principles such as MISE minimization for a PSTH and marginal
likelihood maximization for the Bayes estimation may render similar detectability
for rate modulation.

Though these optimization principles may provide reasonable rate estimations,
there may still be room for improvement. The practical problem we did not con-
sider in this chapter is the nonstationarity of the rate, such that neuronal activ-
ity exhibits abrupt changes in response to a stimulus given to an animal. In such
a case, it would be more efficient to modulate the hyperparameter according to
the time-varying circumstances. Methods have been proposed for locally adaptive
determination of hyperparameters (Abramson 1982; Sain and Scott 1996, 2002;
Loader 1999a, 1999b; DiMatteo et al. 2001; Kass et al. 2003; Endres et al. 2008;
Shimazaki and Shinomoto 2010).

When applying any sophisticated optimization method to neurophysiological
data, one might feel the optimized binsize or bandwidth to be larger than expected.

http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/ssNeCo09/page_SULAB2.html
http://www.ton.scphys.kyoto-u.ac.jp/~shino/toolbox/ssNeCo09/page_SULAB2.html
http://www.apst.spiketrain-analysis.org/
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In practice, the PSTH binsize chosen in neurophysiological literature has tended to
be much smaller than the optimal one. This would be because we are inclined to see
the details rather than to ignore unnecessary parts. Therefore, the choice lies with the
researcher to not use any of the optimization principles. However, there are circum-
stances in which objective optimization principles are essential. The most important
application of the optimal rate estimation method would be the detectability of a sig-
nificant rate modulation, such as oscillation in neuronal firing. The presence of rate
modulation may be judged from the finiteness of the optimal binsize or bandwidth
and the systematic modulation of the estimated rate.

Another important application of rate estimation is the analysis of the intrin-
sic regularity of neuronal firing: It has been revealed that neuronal firing bears
non-Poisson aspects; the spike occurrence depends on the preceding spike. The
neuronal firing patterns have been analyzed by paying attention to the variabil-
ity of ISIs (Kuffler et al. 1957; Gerstein and Mandelbrot 1964; Stein 1965;
Baker and Lemon 2000; Barbieri et al. 2001; Oram et al. 1999; Kostal and Lan-
sky 2006). However, ISI analysis is vulnerable to firing rate fluctuation, which tends
to broaden the ISI distribution and makes the regular sequence evaluated closer to
Poissonian randomness. The analysis of firing patterns includes an essential diffi-
culty in its definition of firing regularity. An apparently random sequence of spikes
can be interpreted as being derived either irregularly in time from a constant rate
or regularly from a fluctuating rate. To determine which interpretation is more
plausible in any given case, we introduced a metric measuring the ISI variability
rescaled locally in time (Shinomoto et al. 2003, 2005, 2009) and also considered
rescaling the sequence of spikes by the instantaneous firing rate (Reich et al. 1998;
Koyama and Shinomoto 2005; Nawrot et al. 2008; Shimokawa and Shinomoto
2009). To carry out the time rescaling correctly, one needs to accurately estimate
the instantaneous rate. Inversely, the information on firing regularity may be used in
improving the firing rate estimation (Cunningham et al. 2008). In this way, the rate
and the regularity are complementary aspects of a single spike train; this interesting
issue will be discussed in other chapters in more detail (Chaps. 1, 3).
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Chapter 3
Analysis and Interpretation of Interval and
Count Variability in Neural Spike Trains

Martin Paul Nawrot

Abstract Understanding the nature and origin of neural variability at the level of
single neurons and neural networks is fundamental to our understanding of how
neural systems can reliably process information. This chapter provides a starting
point to the empirical analysis and interpretation of the variability of single neuron
spike trains. In the first part, we cover a number of practical issues of measuring the
inter-spike interval variability with the coefficient of variation (CV) and the trial-
by-trial count variability with the Fano factor (FF), including the estimation bias for
finite observations, the measurement from rate-modulated spike trains, and the time-
resolved analysis of variability dynamics. In the second part, we specifically explore
the effect of serial interval correlation in nonrenewal spike trains and the impact of
slow fluctuations of neural activity on the relation of interval and count variability
in stochastic models and in in vivo recordings from cortical neurons. Finally, we
discuss how we can interpret the empirical results with respect to potential neuron-
intrinsic and neuron-extrinsic sources of single neuron output variability.

3.1 Introduction

In the living animal, neural signals fluctuate on various temporal and spatial scales.
Across experimental repetitions, neural responses may vary considerably in micro-
scopic and macroscopic signals, both in invertebrate and vertebrate brains. Under-
standing how nervous systems ensure reliable function under the variable and seem-
ingly noisy in vivo conditions is a key issue in computational systems neuroscience
that is of fundamental importance for theories on sensory coding, learning and mem-
ory, and behavioral control.
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In this chapter, we introduce methods to analyze two aspects of neural output
variability. The variance of inter-spike intervals reflects intra-trial variability on a
relatively fast time scale of tens to hundreds of milliseconds. In contrast, the vari-
ance of the number of spikes counted during repeated experimental observations re-
flects a variability on a comparably slow time scale of seconds or even minutes. On
theoretical grounds, interval and count statistics are fundamentally related. We will
thus place a special focus on the coanalysis of both aspects, and we suggest ways
to interpret their empirical relation in the light of stochastic models. The present
chapter emphasizes practical issues that are relevant for the analysis of experimen-
tal data. The Appendix provides reference to a number of Matlab tools for point
process simulation and spike train analysis which are publicly available with the
FIND toolbox (Meier et al. 2008). Additional course material including example
data sets is made available at the portal site of the German Neuroinformatics Node
(http://www.g-node.org or http://www.apst.spiketrain-analysis.org/).

3.2 The Analysis of Inter-Spike Interval Variability

3.2.1 The Coefficient of Variation and Bias of Estimation

Definition 1 We consider the empiric observation of a series of spike events within
a finite interval (a, b] with a < b and duration T = b− a. We assume a finite num-
ber of spike events N within (a, b]. We denote the spike times as a < t1 < t2 <
· · ·< tN ≤ b and define the N − 1 inter-spike intervals as X1,X2, . . . ,XN−1, where
Xi = ti+1 − ti . Repeated and independent observations j result in an ensemble of k
independent spike trains, each with a spike count Nj .

Practically, we obtain repeated independent measurements of action potentials
either during repeated experimental trials, the time-frame of which is defined by
the experimental protocol (e.g., in fixed temporal relation to a sensory stimulus pre-
sentation). Repeated observations may also be obtained through segmentation of a
continuous spike train (e.g., recorded during sleep or under spontaneous conditions)
into subsequent, nonoverlapping observation windows of equal length. In this sec-
tion we assume the repeated observation of a spiking process that has a constant
spike rate, and we assume that the constant firing rate is identical in each trial.

The empirical distribution of inter-spike intervals, its mean, variance, and higher
moments generally depend on the length T of the observation window. Suppose that
we empirically sample intervals X that were drawn from a fix interval distribution
f (x) within a finite observation window of length T as in Fig. 3.1A, where the
observation window is expressed in multiples of the mean inter-spike interval (we
will call this the operational time axis). Evidently, we can only observe intervals
X that are shorter than the observation window T , and thus the empirical interval
distribution is f̂ (x) = 0 for x > T (cf. Fig. 3.1B). For all intervals x ∈ (0, T ], the
likelihood of their observation is proportional to T −x, which leads to the following
expression for the empiric distribution

http://www.g-node.org
http://www.apst.spiketrain-analysis.org/
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Fig. 3.1 Bias of CV estimator for a finite observation window. (A) Independent empiric observa-
tions (trials) of a gamma renewal process within the finite observation window (0,2] in operational
time results in an empiric sample of inter-spike intervals X (orange). Intervals X > T ′ cannot be
observed; long intervals are more likely to span across one or both interval limits than short ones.
(B) Gamma distribution f (x) of order α = 2 (gray) and distribution f̂ (x) restricted to intervals
X ≤ T ′ = 2 (orange, (3.1), normalized to unit area). Mean and variance are clearly smaller for
f̂ (x) than for f (x). (C) Dependence of the CV on the observation window. Shown is the expecta-
tion value for the empiric squared coefficient of variation CV2 (black) and the Fano factor (gray;
cf. 3.3.1) in dependence on the interval T ′ in operational time for gamma processes of different
order α = 0.5,1,2,4 (from top to bottom). Dashed lines correspond to the Poisson process. For
increasing T ′ the empiric CV2 and the empiric FF approach CV2∞ = 1/α

f̂ (x)=
{
η−1(T − x)f (x) for x ∈ [0, T ],
0 otherwise,

(3.1)

where

η=
∫ T

0
(T − s)f (s) ds

normalizes the distribution to unit area. Thus, long intervals (X � T ) are less fre-
quently observed than short ones (X� T ), a statistical effect also known as right
censoring (Wiener 2003). This becomes intuitively clear when we consider that long
intervals are likely to span across the left or right limit of our observation window
such that, e.g., ti < a < ti+1. On the contrary, multiple small intervals may fit into
one single observation (cf. Fig. 3.1A).

Definition 2 We define the empiric coefficient of variation for a set of inter-spike
intervals as the standard deviation of interval lengths divided by the mean interval
length

CV= SD[X]
E[X] . (3.2)

In the case of repeated independent observations (trials) j we have two options
for computing the CV. The standard procedure is to compute the CV across the
complete set of intervals pooled from all observations. Alternatively, we may first
compute the individual CVj for each trial separately and in a second step calculate
the mean CV= 1

k

∑
CVj across trials. Under stationary conditions where the gener-

ating stochastic process has a constant rate which is identical in all trials it follows
that CV= CV, on expectation.



40 M.P. Nawrot

Right censoring introduces a systematic error to the empirical estimation of the
coefficient of variation (Nawrot et al. 2008). For a unimodal interval distribution
the empirical CV underestimates the theoretical value CV∞ that is derived from the
full distribution. To explore this effect in more detail we calculated the empirical
CV(T ′) for the widely used model of the gamma interval distribution (see Appendix)
as a function of the observation time. In Fig. 3.1C we explore this dependence for
the squared coefficient of variation because it directly relates to the Fano factor
(see Subsect. 3.3.1). We find that the empiric CV2 drops with decreasing observation
time. Conversely, with increasing observation time, the empiric CV2 approaches the
theoretical CV2∞. The dashed line refers to the special case of the Poisson process
with α = 1. Note, that we expressed observation time T ′ = T/E[X] in multiples
of the mean inter-spike interval E[X] (operational time), which gives results that
are independent of the actual firing rate. In practice, we may produce calibration
curves similar to those in Fig. 3.1C from experimental data to explore this bias
behavior in a given set of data. Elsewhere, we estimated that for regular spiking
cortical neurons, observation intervals that comprise about 5–10 ISIs are practically
of sufficient length to avoid a strong bias (Nawrot et al. 2008).

Due to the finite length T of the observation window, one cannot sam-
ple the full interval distribution f (x) that is generally defined on R+. This
introduces a bias of estimation for the empiric CV which generally leads to
the underestimation of the theoretic CV∞ (Fig. 3.1). Practical consequences:
1. Use long observation windows, i.e., clearly longer than the average ISI
(T � E[X]). 2. If short observation windows are necessary, e.g., to uncover
fast variability dynamics (see Fig. 3.2D), use a fixed window size in opera-
tional time to ensure a constant bias across repeated measurements.

3.2.2 Analysis of Rate-Modulated Spike Trains

The CV measures the dispersion of the interval distribution. It characterizes the ir-
regularity of spike trains and allows one to quantify the stochastic nature of the
observed spiking process. However, the CV is a useful measure only if the spike
rate is constant over time and if the variation of intervals is of stochastic nature such
as in the case of the gamma renewal process illustrated in Fig. 3.1. Whenever a
neuron modulates its output firing rate, e.g., in response to a sensory stimulus, then
this rate modulation strongly influences the empiric interval distribution. Any rate
modulations that are slow compared to the mean ISI will increase the dispersion of
the empiric interval distribution and thus lead to an increased CV which no longer
reflects the stochastic nature of the spiking process alone (see Fig. 3.2A).

Here, we describe one possible strategy to overcome this problem which requires
two additional steps of analysis as demonstrated in Fig. 3.2. First, one obtains an es-
timate λ̂(t) of the time-varying firing rate on the basis of repeated measurements.
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Fig. 3.2 Estimation of interval variability in operational time. (A) Repeated observations of a
rate-modulated gamma process with order α = 4. We expect for the gamma renewal process
CV∞ = 1/

√
α = 0.5. The empiric estimate CV= 0.73 is artificially increased due to the changing

rate. (B) Kernel estimate of the time-varying firing rate λ̂(t) (black) from N = 20 spike trains in A
(triangle kernel, σk = 45 ms) and integrated rate functionΛ(t) (maroon). The gray function depicts
the original intensity used to simulate the spike trains in A. (C) Demodulated spike trains in oper-
ational time. Each single spike time in A was transformed according to t ′i =Λ(ti ). In operational
time the empiric estimate CV = 0.46 agrees well with the expectation CV∞ = 0.5. (D) Time-re-
solved estimate of the CV in operational time. Window width is T ′ = 5. (E) Time-resolved CV as
in D back-transformed to experimental time (maroon). The time-resolved CV estimated from the
original spike trains in A (black) is modulated due to the changes in firing rate

Second, one transforms the experimental time axis to the so-called operational time
axis such that the firing rate modulation is compensated (time warping). In opera-
tional time we then proceed with estimating the CV.

3.2.2.1 Step 1. Estimation of the Rate Function

Obtaining a reasonably good estimate of the rate function is crucial. Here, we use the
method of linear kernel convolution (Nawrot et al. 1999; Shimazaki and Shinomoto
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2010; Parzen 1962) with a fixed kernel function. After choosing a kernel shape
which has little influence on the quality of the estimate, one has to fix the kernel
width which determines the time resolution of the rate estimate. In the example
of Fig. 3.2, we first pooled the spike trains from all observations (trials) and then
estimated the trial-averaged rate function. To this end, we chose a symmetric kernel
of triangular shape. To obtain an estimate for the optimal kernel width σk (defined
as the standard deviation of the normalized kernel function) on the basis of the
empirical data, we applied a heuristic method outlined elsewhere (Nawrot et al.
1999). Recently, Shimazaki and Shinomoto (2010) formalized this optimization of
the kernel width for fixed and variable width kernels using a Bayesian approach on
the basis of a specific model assumption for the generating point process. For fixed
width kernels, this approach is outlined in detail in Chap. 2 of this book.

3.2.2.2 Step 2. Demodulation and Analysis in Operational Time

Based on the estimated firing rate λ(t), we define the time transformation (Reich et
al. 1998; Brown et al. 2002; Nawrot et al. 2008)

t ′ =Λ(t)=
∫ t

0
λ(s) ds, (3.3)

according to the integrated rate function for all spike events tji . We call t ′ the opera-
tional time because on this new time axis the empirical spiking process has constant
unit rate. Figure 3.2B shows the integral Λ(t) (maroon) of the empiric rate func-
tion λ(t) (black). The transformed spike trains depicted in Fig. 3.2C do not display
any overt rate modulation and result in an empiric estimate CV = 0.46, which is
close to the theoretic CV∞ = 0.5 of the underlying gamma process that was used
for simulation.

Transformation of spike times from the experimental time axis to the op-
erational time axis according to the integrated rate function can eliminate rate
fluctuations in the spike train. In a next step, this allows us to obtain an em-
piric estimate of the CV in operational time. This method requires a reliable
estimate of the time-varying rate function (Fig. 3.2).

3.2.2.3 Time-Resolved Analysis of the CV

It is now straightforward to analyze the CV(t ′) as a function of operational time
using a sliding window approach. The window width T ′ defines the time resolution
of this analysis, and we are faced with a trade-off between short windows that ensure
a good time resolution of our analysis and large windows that reduce the variance
and the bias of estimation (see Subsect. 3.2.1). In Fig. 3.2D, we estimated CV(t ′)
within a window of length T ′ = 5, i.e., the window size is 5 times the average
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interval. We find no significant variation with a mean of 〈CV(t ′)〉 = 0.45, a faithful
representation of the underlying gamma process used for simulation in Fig. 3.2A. In
a final step we may use the inverse time transformation of (3.2) (Meier et al. 2008;
Nawrot et al. 2008) to represent our time-resolved estimate CV(t ′) in experimental
time CV(t) (see Fig. 3.2E). Note that the support points at which the measured
values CV(t) are represented are not equidistant in experimental time.

3.2.2.4 Alternative Methods

There are several alternative parametric and nonparametric methods to estimate in-
terval variability from rate-modulated spiking activity and in a time-resolved man-
ner. A number of nonparametric so-called local measures have been proposed that
estimate normalized interval variability locally in time. The common idea behind
these approaches is that a temporally confined estimate will largely ignore rate mod-
ulations that are comparatively slow. At each step in time, local measures are based
on rather small data samples and are thus inherently noisy—i.e., they express a
large variance of estimation—and they are in general subject to estimation biases.
Estimation variance may be decreased by temporal averaging over local estimates.
Here, I briefly outline two local measures. A simple yet efficient method for es-
timating the local CV from repeated trials has been introduced by Benda (2002).
At any given point in time t , this method computes the empiric CV from all in-
tervals in all trials that contain t , i.e., for which ti < t < ti+1. Evidently, shorter
intervals are less likely to be observed than longer ones. This introduces an esti-
mation bias with respect to the CV∞ which is opposed to the one we described
in Subsect. 3.2.1, and which can be compensated (Nawrot and Benda 2006). Rate
fluctuations on a time scale that are longer than the average ISI will have little in-
fluence on this measure. It is, however, sensitive to across-trial nonstationarities of
the rate. The “classical” local measure termed CV2 was introduced in 1996 by Holt
et al. (1996). It simply computes the coefficient of variation for each successive pair
of intervals (Xi,Xi+1), i.e., it normalizes the variance across two successive inter-
vals by their mean and thus becomes insensitive to across-trial nonstationarities and
largely ignores rate modulations that are slower than twice the average ISI. Other
local measures are mostly variants thereof, and each has been designed under a cer-
tain optimization constraint. The robustness of these measures is typically increased
by averaging across trials and across time. An in-depth review and calibration of
the CV2 and three other local measures (Shinomoto et al. 2005; Davies et al. 2006;
Miura et al. 2006) was recently published by Ponce-Alvarez et al. (2009).

In competition to nonparametric local measures, a few parametric methods of
estimating the firing irregularity have been proposed. They assume a specific un-
derlying model (e.g., a nonhomogeneous Poisson process) and estimate a single or
several model parameters from the empiric spike train. Recently, Shimokawa and
Shinomoto (2009) introduced an elegant method for which they assume a gamma
process with time-varying intensity (firing rate) λ(t) and time-varying regularity (or-
der of the gamma process) α(t). Using a Bayesian approach, the proposed method
allows us to estimate both λ(t) and α(t) from a given set of empirical data.
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3.3 The Combined Analysis of Interval and Count Variability

In the case of a mathematically defined point process model, its interval and count
statistics are uniquely determined and inherently related (see Appendix). To charac-
terize an unknown neural spiking process on the basis of experimental observations,
it is therefore useful to coanalyze interval and count statistics, and their specific re-
lation. This can help to choose a particular stochastic model (or a class of models)
that adequately describes the experimentally observed process.

3.3.1 Fano Factor and Bias of Estimation

The Fano factor is a well-established measure of count variability and has been re-
peatedly used to quantify spike train variability (for review, see Nawrot et al. 2008).

Definition 3 The empiric Fano factor FF is defined as the ratio of the variance and
the mean of the spike countNj as measured within an observation interval of length
T during repeated observations j :

FF= V ar[N
j ]

E[Nj ] . (3.4)

The distribution of spike count across repeated observations and thus the mean
and variance of this distribution generally depend on the length T of the observation
window. This introduces an estimation bias for the empiric FF with respect to the
limit value FF∞ = limT→∞ FF which can be derived analytically from the defini-
tion of the process. In Fig. 3.1C we demonstrate how the Fano factor depends on the
observation window T ′ = T/E[X] for gamma processes of different order α. With
increasing observation time T ′, the FF estimates approach the limit values FF∞.
As for the CV, an observation window of length T ′ = 5–10 seems practically suffi-
cient to avoid a strong bias if the observed process is more regular than the Poisson
process (α ≥ 1), e.g., in regular spiking cortical neurons (Nawrot et al. 2008). For
decreasing observation times T ′ → 0, the Fano factor approaches unity. This can be
easily understood as an approximation of the Bernoulli process for which in each
small interval we observe either 1 spike with probability p or 0 spikes with probabil-
ity 1−p. As T ′ → 0, the variance p(1−p) of the Bernoulli distribution approaches
the mean p (Teich et al. 1997).

The finite length T of the observation window introduces a bias of estima-
tion for the empiric FF (Fig. 3.1C). As T ′ → 0, the Fano factor approaches
unity. Practical consequences as in Subsect. 3.2.1: 1. Use long observation
windows, and 2. If short observation intervals are necessary, use a fix window
size in operational time to ensure a constant bias.
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Fig. 3.3 Count variability (FF) versus interval variability (CV2). (A) Variance of estimator and
residual bias effect. The renewal prediction FF∞ = CV2∞ is depicted by the black diagonal. Grey
shadings represent 90% confidence regions for numeric ensemble simulation of gamma processes
of order α = 2 (CV2∞ = 0.5) and α = 5 (CV2∞ = 0.2). Grey colors indicate number of trials
(N = 20,50,100, from dark to light gray). The observation time comprised T ′ = 10 intervals
on expectation. Each confidence region was computed from 10,000 ensembles as follows. A 2D
Gaussian filter produced a smooth 2D histogram of all log-transformed value pairs. After sorting
all histogram entries starting with the largest entry, their cumulative sum was computed. All in-
dices up to the index for which the 90% quantile was reached define the 2D confidence region. The
black squares and lines depict average and standard deviation for n= 100 trials. The red squares
indicate expectation values. (B) The effect of serial interval correlation on interval and count vari-
ability. Colored shadings represent the 90% confidence regions from 10,000 numeric ensemble
simulations (50 trials, T ′ = 10) of the autoregressive process with marginal log-normal interval
distribution (see text). The blue (red) region shows the effect of a negative (positive) serial inter-
val correlation with respective parameter β = −0.3 (β = 0.3); gray region is computed from the
interval-shuffled spike trains which do not exhibit serial correlations. Black triangles reproduce
the empiric results obtained from 7 cortical cells (Nawrot et al. 2007). Data courtesy of Clemens
Boucsein, University of Freiburg, Germany

3.3.2 Fano Factor vs. Squared Coefficient of Variation

For the class of renewal point processes, the expectation values of FF and CV2 are
simply related by

FF∞ = CV2∞. (3.5)

Renewal processes are widely used as models for neural spiking. As a starting point
for our analysis of experimental data, we may therefore formulate the renewal pre-
diction (3.5) as the null-hypothesis. Any deviation from this null-hypothesis may
then trigger further analysis.

A direct way of jointly visualizing the empiric relation of interval and count vari-
ability is to plot FF against CV2 in a scatter diagram as demonstrated in Figs. 3.3
and 3.4. Individual empirical estimates of FF and CV2 are computed from a finite
number of samples and are, therefore, subject to statistical errors that are expressed
in the variance of estimation (Nawrot et al. 2008). Repeated measurements will
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thus lead to values that scatter around the theoretic expectation value. Figure 3.3A
demonstrates the effect of a limited sample size in numeric simulations of the
gamma renewal process with order parameters α = 2 and α = 5 and correspond-
ing expectation values CV2∞ = FF∞ = 1/α. We chose different numbers of trials
n = 20,50,100 and constructed the 90% confidence region from 10,000 indepen-
dent simulations, depicted as gray shadings. The empirical sample size of intervals
and counts scales linearly with the number of trials. Consequently, reducing the
number of trials increases the variance of estimation for both, FF (horizontal) and
CV2 (vertical). The number of intervals additionally scales with T ′ and, thus, re-
ducing observation time will increase the variance of the CV2 estimator (not shown;
Nawrot et al. 2008).

In practice, residual estimation biases due to the experimentally limited observa-
tion time T for CV2 (see Subsect. 3.2.1) and FF (see Subsect. 3.3.1) may affect their
empirical relation. As a consequence, in Fig. 3.3A the average empiric values for
T ′ = 10 (black squares) of the Fano factor is larger, and the average empiric value
of the CV2 is smaller than the expectation values indicated by red squares.

For any (stationary) renewal point process, the relation of Fano factor and
coefficient of variation is given by FF∞ = CV2∞. For the special case of the
Poisson process, it holds that FF= CV2∞ = 1.

3.3.3 The Effect of Serial Interval Correlation

Renewal processes represent the most prominent class of stochastic models for
neural spiking. Yet, serial correlations of inter-spike intervals have been observed
experimentally in various systems including neocortical cells (for review, see
Farkhooi et al. 2009). For stationary point processes in equilibrium with seri-
ally correlated inter-event intervals, the following equality holds (McFadden 1962;
Cox and Lewis 1966):

lim
T→∞FF= CV2∞(1+ 2 ξ) with ξ =

∞∑
i=1

ξi, (3.6)

where ξi denotes the ith-order linear correlation coefficient, i.e., the expected linear
correlation for all pairs of intervals (ISIk, ISIk+i ) that are separated by i−1 interme-
diate intervals. If all correlation coefficients vanish, we obtain the renewal statistics
where FF∞ = CV2∞. Overall negative serial correlation ξ < 0 will result in a Fano
factor that is smaller than the CV2, while a positive correlation ξ > 0 leads to an
increased count variability.

We demonstrate this effect in numerical simulations of a simple autoregressive
model as outlined in (Farkhooi et al. 2009) (see Appendix). The intervals X of this
model are log-normal distributed. The serial correlation of intervals is controlled
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by an additional correlation parameter β . Correlations are short ranged, i.e., the
linear correlation coefficients ξi quickly diminish with increasing serial correlation
order i (Farkhooi et al. 2009). In Fig. 3.3B, we consider two cases: (i) negative
serial correlation of ISIs (ξ < 0, blue), and (ii) positive correlation (ξ > 0, red). Both
are compared to the corresponding renewal process (ξ = 0, gray). In each case we
simulated 10,000 spike train ensembles of 50 trials, and each ensemble represents
the repeated measurement of one neuron with a single estimate for CV2 and FF.
For each neuron, we adjusted the model parameters to obtain a specific value of
the squared coefficient of variation in the range CV2∞ ∈ [0.2,0.5]. This covers the
empirically relevant range for regular spiking neocortical neurons under stationary
conditions (e.g., Nawrot et al. 2007; Nawrot et al. 2008). From all 10,000 simulated
samples we numerically constructed the confidence region which covers 90% of the
measurements. As theoretically predicted, the negative serial correlations reduce the
Fano factor, in this case by about 30%, while positive correlations increase the Fano
factor by about 60%.

To compare the modeling results with experimental findings, we reanalyzed in-
tracellular recordings from rat somatosensory cortex of the anesthetized rat (Nawrot
et al. 2007). 7 of 8 regular spiking cortical cells expressed short-ranged negative
interval correlations with ξ ≈ −0.2 leading to a count variability reduced by 30%
(black triangles in Fig. 3.3B).

Negative serial interval correlations (ξ < 0) in a stationary point process
realization lead to a reduced count variance as compared to the count variance
of a renewal process with the same interval distribution, and thus FF< CV2.
Positive serial interval correlations (ξ > 0) lead to an increased count vari-
ance, and thus FF> CV2; see (3.6) and Fig. 3.3B.

3.3.4 The Effect of Nonstationarity

In the typical experimental situation, we make repeated observations in time (trial
design). This allows us to perform statistical analyses on the trial ensemble, e.g.,
estimating the trial-averaged firing rate or the variance of the spike count across
trials. By doing so, we make the implicit assumption that the observed spik-
ing process is stationary in time and across trials (Knoblauch and Palm 2005;
Nawrot et al. 2008). However, this assumption is often violated in neural systems.
In this section we explore the influence of a particular type of nonstationarity: we
assume slow modulations of the firing rate on time scales of seconds or even min-
utes. In the living animal, such modulations are likely to occur for various reasons
(see Sect. 3.4).
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3.3.4.1 Slow Activity Fluctuations Introduce Across-Trial Nonstationarity

To model slow fluctuations of the firing rate, we use the following approach. In
a first step we generate a time-dependent intensity φ(t) using a moving average
process with log-normal distributed noise (see Appendix). The intensity (or rate)
fluctuates about the mean of r ′ = 1 on a slow time scale τ ′ = 20 in operational time
(e.g., equivalent to a rate of 10 Hz and τ = 2 s in experimental time). In the next
step we generate a realization of a rate-modulated gamma process with intensity
φ(t) and order parameter α = 2 and with a total duration of 500 expected spikes in
operational time. In a final step we divide this spike train into n= 50 observations
(or trials) of length T ′ = 10 and analyze interval and count variability. Again, we
compute confidence regions for FF vs. CV2 in the scatter diagram of Fig. 3.4A.

The Fano factor is boosted by the additional nonstationarity (green shadings) and
can reach very high values that are up to 20 times larger than in the stationary case
(gray shading). This effect can be easily understood. The expectation value for the
spike count varies from trial to trial as the process intensity modulates on long time
scales and thus across trials. This has a dramatic effect on the distribution and vari-
ance of the spike count. The CV2 is only slightly increased (light green shading), and
the effect dominates in ensembles that also show high count variability. The general
explanation for the increased CV2 is simple: shorter intervals in trials with higher
intensity and longer intervals in trials of lower intensity will lead to an additional
dispersion of the interval distribution. This effect can be avoided. In Subsect. 3.2.1

we introduced an alternative way of estimating the CV
2

by estimating the CVi in
each individual trial and subsequent averaging. This procedure normalizes per trial
and thus is not susceptible to across-trial nonstationarities. In Fig. 3.4A the dark
green shading indicates the corresponding confidence region. In summary, the FF

is strongly increased, while the distribution of the CV
2

with mean 0.37 is similar to
that of the control with mean 0.38.

We compare the simulation results to a set of in vivo single unit recordings from
the primary motor cortex of a monkey (Macaca mulatta) that performed a delayed
center-out reaching task (Rickert et al. 2009). We analyzed interval and count vari-
ability during the first 900 ms of the 1-s delay period. At the start of this period, the
monkey had received a directional cue but was not allowed to move his arm until
the GO signal appeared at the end of the delay period. Many neurons showed a task-
related activation profile that was tuned for the specific target cue. We therefore es-
timated the trial-averaged firing rate and performed the analysis in operational time
(see Subsect. 3.2.2). The results are shown in Fig. 3.4B. The Fano factor assumes
high values with a mean of FF = 1.87 (median 1.39), while the values of the CV2

are considerably lower with average CV2 = 0.76 (median 0.70). The shape of the
90% confidence region compares to that of the numeric simulations in Fig. 3.4A.
Two additional factors will likely lead to an overestimation of the empiric CV2 in
the present data. First, we may assume that the activity is not stationary across trials
due to slow modulations, as in our model simulations. As a consequence, the result-
ing estimate of the task related rate profile from the trial-averaged spike trains does
not properly reflect the single-trial rate profile. Second, we deal with another type
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Fig. 3.4 Slow rate modulations can boost count variance. (A) Simulation. The gray shading rep-
resents the confidence interval for gamma processes with α ∈ [2,5]. The green shadings demon-
strate the effect of slow modulations of the process intensity (MA log-normal noise; σ = 200,
τ ′ = 20). The FF is strongly increased. The empiric CV2 (light green) was estimated by pool-
ing intervals from all trials. The CV2 (dark green) was estimated in each trial separately and
then averaged. Bottom panel shows spike raster for one ensemble (red square). (B) Experiment.
In vivo estimates from 56 motor cortical single units, each recorded in 6 directions (see text).
The FF strongly exceeds the CV2. The CV2 was estimated from intervals pooled across tri-
als. For each ensemble the number of trials was ≥ 15 (to limit the variance) and the observa-
tion window comprised T ′ ≥ 10 intervals (to avoid a strong bias). This included a total of 223
samples. Bottom panel shows one example (red square). Modified from (Nawrot et al. 2001;
Nawrot 2003). Data courtesy of Alexa Riehle, CNRS, Marseille, France

of variability, namely the trial-by-trial variation of the response onset time (Nawrot
et al. 2003). This further impairs the trial-averaged estimate of the rate profile. Both
factors will lead to an imperfect demodulation of the single-trial spike trains and,
thus, to an increased dispersion of the inter-spike interval distribution and an in-
creased empiric CV2. An in-depth analysis of interval and count variability for this
data set and a second monkey is provided in (Nawrot 2003). A time-resolved anal-
ysis of variability for this monkey (monkey 1) is provided in (Rickert et al. 2009).

In the model of slow rate fluctuations, we introduced a single time scale τ ′ for
the temporal modulation. How does this time scale interact with the length T ′ of
the empiric observation interval? In Fig. 3.5A, B the Fano-time curve FF(T ′) dis-
plays a nonmonotonic behavior resulting from two independent factors. For small
observation times T ′ ≤ E[X], the bias effect dominates, and the FF tends to unity as
T ′ → 0. With increasing T ′ > E[X], the slow intensity fluctuations cause a strong
increase in count variance. As the positive serial interval correlations introduced
by the rate fluctuation vanish for large correlation lags i � τ ′ (Fig. 3.5C), the FF
saturates for large T ′ � τ ′ (Fig. 3.5B) because the spike count averages across the
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Fig. 3.5 Effect of slow rate modulations on the Fano-time curve and serial interval correlation.
(A) FF(T ′) estimated from three individual realizations of a rate-modulated gamma process of
order α = 2. The process intensity φ(t) was modulated according to an MA process with log-nor-
mal noise (σ = 200, τ ′ = 20). The gray curve represents the expectation value for the stationary
gamma process. (B) For large observation intervals T ′ � τ ′, the Fano factor saturates. (C) Serial
interval correlation coefficients diminish only for large serial correlation lags i� τ ′

stochastic fluctuations within the observation interval. Importantly, the trial-by-trial
variability assumes a minimum for observation times T ′ ≈ E[X], which is even more
pronounced for a nonrenewal process with short-lived negative serial interval corre-
lation (not shown; see Subsect. 3.3.3).

3.3.4.2 Task-Related Variability Dynamics

In a next step we extended the previous model for slow-rate modulation by adding a
task-related response profile ψ(t) during repeated trials that represents task-related
activation of a neuron (or neural ensemble), e.g., in response to a stimulus. We
model ψ(t) with a Gaussian profile as in Subsect. 3.2.2. Now we have the situ-
ation that the same intensity profile repeats identically in each trial and adds to
a fluctuating background φ(t). How does this affect the time-resolved variability?
Figure 3.6 shows the result: The time-resolved Fano factor (blue curve) expresses
a task-related dynamics. It is high during the initial phase of the trial before the re-
sponse is triggered at t = 0 and again at the end of the trial. During the response,
the FF strongly decreases and almost reaches the expected value for a stationary
process with FF= 1/α = 0.5. This modulation can be easily understood: Whenever
the firing rate is dominated by the task-related component ψ , the relative trial-by-
trial fluctuations of the point process intensity, and thus of the empiric Fano factor,
are minimal. Conversely, at times when the task-related component ψ is essentially
zero, the spike count variability is dominated by the trial-to-trial variations due to

the fluctuating intensity φ(t). The trial-based estimate of the CV2 (dark green curve
in Fig. 3.6D) does not show any apparent modulation. It correctly signifies the “true”
stochasticity of the underlying gamma process except for a small bias that under-
estimates the expected value CV2∞ (see Subsect. 3.2.1). The ratio of FF/CV2 in
Fig. 3.6F combines both analyses and reveals dynamic deviations from the renewal
hypothesis for which FF= CV2.
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Fig. 3.6 Temporal modulation of spike count variability. (A) Five individual single trial intensities
resulting from the superposition of the slow fluctuating background rate φ(t) and the task-related
Gaussian modulation ψ(t) (width σ = 100 ms, amplitude 30/s). (B) Spike raster from rate-mod-
ulated gamma process (α = 2) realizations during 100 trials. (C) Kernel estimate of firing rate.

(D) The time-resolved CV2 (light green) is slightly modulated. The CV2 (dark green) expresses an

expected residual bias. (E) Time-resolved FF. (F) The ratio of FF/CV2 combines both analyses.
Renewal prediction FF∞ = CV2∞ is indicated by the dashed line. Length of observation interval in
D–F was T ′ = 5

Slow modulations of the output firing rate can be modeled by a nonstation-
ary point process with time-varying intensity φ(t) and large time constant of
modulation τ � E[X]. Such a modulation introduces a positive serial interval
correlation (ξ > 0) and can strongly increase the count variance. The CV2 is
less sensitive to the nonstationarity. As a result, we observe that FF > CV2

(see Fig. 3.4A). When this model is combined with a task-related intensity
profile ψ(t) which is identical in each trial, we observe a task-related modu-
lation of the FF(t) (see Fig. 3.6).

3.4 Interpretations

3.4.1 Components of Single Neuron Variability

We may coarsely distinguish two components of single-neuron output variability
(DeWeese and Zador 2004). The first component is attributable to neuron-intrinsic
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sources such as synaptic failures and variability of synaptic event amplitude (e.g.,
DeWeese and Zador 2004; Nawrot et al. 2009; Zador 1998), noise caused by
dendritic integration (e.g., Nawrot et al. 2009; Ariav et al. 2003; Shoham et al.
2005), and the reliability of spike initiation (e.g., Mainen and Sejnowski 1995;
Nowak et al. 1997). The second, neuron-extrinsic component results from the spatial
and temporal statistics of the synaptic input, i.e., the spiking statistics of the presy-
naptic excitatory, inhibitory, and neuromodulatory networks. Biological neurons are
nonlinear, complex input–output devices that translate synaptic input into an output
comprising a sequence of action potentials. When we analyze a neuron’s output, we
cannot distinguish between the different sources that caused the observed variabil-
ity. Also, the concept of an “intensity” that we use in the framework of stochastic
point process theory and that we like to interpret as “underlying rate” of neural fir-
ing has no physical equivalent in biological neurons. Therefore, we must base our
interpretations on additional numerical studies of biophysical neuron models and ex-
perimental studies that focus on basic neural mechanisms in reduced preparations,
which allow for highly controlled experimental conditions.

3.4.2 Serial Interval Correlations

Negative serial correlations have been reported for various neuron types in in-
vertebrate and vertebrate systems (for review, see Farkhooi et al. 2009). These
correlations are short-ranged, typically extending over only a few intervals, and
they are of intermediate strength (e.g., ξ ≈ −0.2 for cortical neurons) which re-
sults in a considerable reduction of the Fano factor of up to 50%. A plausi-
ble physiological explanation for this phenomenon are neuron-intrinsic mecha-
nisms of spike frequency adaptation (SFA) (Benda and Herz 2003), which can
introduce negative interval correlations in the output spike train when the neu-
ron is in a steady state (i.e., for constant output rate), a result that has been es-
tablished in various types of biophysical single neuron models (e.g., Wang 1998;
Prescott and Sejnowski 2008; Muller et al. 2007). The reduction of the Fano factor
implies that SFA neurons have an improved signal-to-noise ratio which increases
the coding capacity of a rate code on slow time scales. On fast time scales, i.e.,
for very short observation windows, however, the Fano factor tends to unity (see
Subsect. 3.3.1). In the frequency domain this results in a reduction of the low
frequency noise (noise shaping; Chacron et al. 2001, 2005; Lindner et al. 2005;
Chacron et al. 2007).

Systematic reports of negative serial correlations in experimental data are rare, in
particular, in central brain structures such as the neocortex or the central insect brain.
We briefly discuss two factors that may impair their empiric observation. First, serial
correlation analysis assumes stationarity of the spike train. Any modulation of the
firing rate will introduce positive serial correlations, which may conceal the nega-
tive correlations and increase the Fano factor (see Subsect. 3.3.4). The second issue
is of technical nature. At extracellular electrodes we measure spikes that stem from
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multiple neurons. Subsequent spike sorting procedures are error prone. Therefore
the resulting single unit spike trains, to some extend, represent the activity of mul-
tiple neurons. From surrogate data we estimated that only 10–15% falsely assigned
spikes can impair the detection of realistic negative serial correlations in recordings
that comprise ∼ 1,000 spikes (unpublished observation).

In the context of cross-correlation analysis of two (or more) simultaneously
recorded neurons, renewal models are typically used to calculate the expected joint
count distribution under the assumption that the neurons’ activity is independent.
Serial interval correlations affect the joint count distribution, and the renewal statis-
tics may thus not be appropriate to test for deviations from independent spiking in
SFA neurons (Grün et al. 2008).

3.4.3 Nonstationary Conditions in the Living Brain

There have been frequent reports on a large trial-by-trial variability in in vivo single-
unit recordings, notably in the mammalian cortex where, with few exceptions, large
average values of the Fano factor (FF ≥ 1) have been measured (e.g., Shadlen and
Newsome 1998; for review, see Nawrot et al. 2008). This has lead to the dogma that
the activity of cortical neurons is well characterized by Poisson statistics, which has
subsequently become a benchmark for cortical network models. However, the large
variability in vivo is contrasted by a series of in vitro studies that have quantified
the output variability of pyramidal neurons for stationary input conditions. They
used intracellular injection of currents generated by stochastic trains of excitatory
and inhibitory synaptic inputs. It showed that the interval and count variability is
in the range of CV2 ≈ FF ∈ [0.1,0.8], depending mostly on the relative fractions of
excitation and inhibition (for review, see Nawrot et al. 2008). Negative serial interval
correlations may further reduce the count variance such that FF< CV2 (Fig. 3.3B;
Nawrot et al. 2007). From these studies we may conclude that—for stationary input
conditions—cortical neurons are more regular and less variable than the Poisson
process.

What could be the reason for the discrepancy between the in vivo and in vitro
results? One possibility is that in the living brain, stationary input conditions do not
exist for neurons that are embedded in a recurrent and permanently active network.
Local networks may be exposed to global changes of their activation state, e.g.,
due to homeostatic regulation, changes in the general state of arousal, plasticity,
adaptation, etc., and they may be subject to top–down influences such as attentional
modulation.

The simple stochastic model outlined in Subsect. 3.3.4 generates a random fluc-
tuation of the firing intensity that underlies the stochastic production of spike events.
We found that slow modulations of the intensity on time scales τ � E[X] can
strongly increase the count variance across independent observations, leading to
large values of FF � 1 as observed in vivo. The more important result, however,
are expressed in the relation of count and interval variability. The CV2 was only



54 M.P. Nawrot

slightly increased so that FF � CV2, indicative of positive serial interval correla-
tions due to the slow-rate modulations. This is what we also observed in the single-
unit recordings from M1 in the behaving monkey (Fig. 3.4B; Nawrot et al. 2001;
Nawrot 2003). These results suggest nonstationary input conditions in vivo, and
they may indicate that the large in vivo variability does not characterize the stochas-
tic nature of the individual neuron. Experimental studies (Nowak et al. 1997;
Carandini 2004; Nawrot 2003) suggest that even mild fluctuations in the neuron’s
input are sufficient to cause a strong variability in the neuron’s output. This is ex-
plained by the nonlinear transfer function of synaptic input drive and output firing
rate. Mechanistically, such modulation of the presynaptic network input may be
achieved by various means, e.g., through unbalancing of (presynaptic) excitatory
and inhibitory networks, or through neuromodulatory regulation.

A number of theoretical models have investigated the effect of long-ranged tem-
poral correlations in the driving noise of biophysical model neurons. These studies
established the result of positive serial interval correlations in the output spike train
and of the nonmonotonic behavior of the Fano-time curve (Chacron et al. 2001;
Middleton et al. 2003; Schwalger and Schimansky-Geier 2008; Farkhooi et al.
2009). The strong increase of the Fano factor with increasing observation window,
and in some cases also the characteristic of a nonmonotonic Fano-time dependence,
has been reported in several experimental studies, e.g., in the cat striate (Teich et
al. 1996) and in the monkey motor cortex (Nawrot 2003), in the LGN (Teich et al.
1997), in the retina (Teich et al. 1997), in medullary sympathetic neurons (Lewis et
al. 2001), and most pronounced in the electrosensory afferents of the weakly elec-
tric fish (Ratnam and Nelson 2000). The fact that experimental Fano-time curves
can express a minimum for a certain range of observation times may indicate that
there exists an optimal temporal scale for information processing in these systems.

In Fig. 3.6A we added to the spontaneous intensity fluctuation φ(t) a task-
related phasic component ψ(t), which repeats identically in each trial. As a di-
rect consequence, we observe a task-related modulation of the Fano factor. Indeed,
this behavior has been repeatedly observed in motor cortical single-unit activity
(Nawrot et al. 2001, 2003; Nawrot 2003; Churchland et al. 2006; Nawrot et al. 2008;
Rickert et al. 2009) and, more recently, also in other cortical areas (Churchland et
al. 2010). Thus, we may hypothesize that individual neurons or neural populations
are specifically recruited for a computational task, e.g., the processing of a sensory
stimulus, through a task-specific and dynamic input that overrides the background
input, which represents ongoing activity and/or global changes of the network acti-
vation state.
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Appendix

3.4.4 Matlab Tools for Simulation and Analysis

The following functions are available online in the FIND open source Matlab tool-
box (Meier et al. 2008); http://find.bccn.uni-freiburg.de/.

makeKernel builds simple kernel functions of predefined shape and
normalized temporal width (Nawrot et al. 1999; Meier et
al. 2008); used in Subsect. 3.2.2.

optimizeKernelWidth estimates the optimal kernel width from spike train data
according to a heuristic method (Nawrot et al. 1999;
Meier et al. 2008); used in Subsect. 3.2.2.

sskernel optimizes kernel width from spike train data according to
the method by Shimazaki and Shinomoto (Shimazaki and
Shinomoto 2010).

unWarpTime demodulation of point or counting process according to a
monotonic warp function. For details, see (Nawrot et al.
2008; Meier et al. 2008).

warpTime inverse modulation of point or counting process.
gamprc/simulateGamma simulates constant rate/rate-modulated gamma process

using time rescaling.
arlogn/simSCP simulates autoregressive log-normal point processes;

used in Sect. 3.2. For details, see (Farkhooi et al. 2009).

3.4.5 Point Process Models

Chapter 1 of this book provides a formal introduction to stochastic point process
theory, covering a number of issues that have been addressed in the present chapter.
Chapter 16 deals in more detail with the simulation of stochastic point processes.

For any point process, interval and count statistics are related. Define the kth-
order interval as τk =∑k

i=1Xi . For an ordinary process, τk ≤ t ⇐⇒ N [0, t) ≥ k.
The distribution of τk relates to the distribution of event count N by

P {τk ≤ t} = P {N[0,t) ≥ k}.
The class of renewal point processes is widely used for the simulation of neu-

ral spiking. The renewal process is defined as a process for which all inter-event
intervals are independent and identically distributed. Thus, we can define a particu-
lar renewal process by specifying its interval distribution. For nonbursting neurons,
there are a number of distributions that have been repeatedly used, in particular,
the (centralized) gamma distribution which includes the special case of the Poisson
process, the log-normal distribution, and the inverse Gaussian distribution.

http://find.bccn.uni-freiburg.de/
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The interval distribution of the (centralized) gamma process is defined as

fα,ρ(x)=
{ 1
�(α)

ρ(ρx)α−1e−ρx, x ≥ 0,

0, x < 0,

where � denotes the gamma function, and α > 0 and ρ > 0 are its two parameters.
The mean interval is α/ρ, and the variance is α/ρ2. For α = 1, we obtain the Poisson
process. For α > 1, the gamma process is more regular and, for 0 < α < 1, more
irregular than the Poisson process.

We used an autoregressive model to generate serially correlated interval series.
A generalization of this model is described in detail elsewhere (Farkhooi et al.
2009). Assume that a series of random variables Ys = βYs−1 + εs , where εs is as-
sumed to be normally distributed with mean μ and variance σ 2

N . β describes the
serial dependence of the series Ys . Then, the series

Xs = exp(Ys)= exp(βYs−1 + εs)
is asymptotically log-normal distributed. For parameterization according to defini-
tions of E[Y ] and CV, we used the following relations:

σN =
√

log
(
CV2 + 1

)(
1− β2

)
,

μ= log
(
E[Y ]) ∗ (1− β)− σ 2 (1− β)/(2(1− β2)).

In Subsect. 3.3.4, we simulated a moving-average noise process to generate a
modulated rate function φ(t). To this end we drew random noise samples from
a log-normal distribution with mean 1 (corresponding to unit rate) and standard
deviation σ = 200 with a time resolution of 0.01 (operational time). In a second step
we convolved the noise with a symmetric kernel of triangular shape and standard
deviation σk = 20 (operational time). The resulting rate function fluctuates on a
time scale that is 20 times larger than the mean interval.
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Chapter 4
Processing of Phase-Locked Spikes and Periodic
Signals

Go Ashida, Hermann Wagner,
and Catherine E. Carr

Abstract Studies of synchrony in the nervous system have revealed circuits spe-
cialized for the encoding and processing of temporal information. Periodic signals
are generally coded by phase-locked action potentials and often processed in a dedi-
cated pathway in parallel with other stimulus variables. We discuss circular statistics
and current data analysis tools to quantify phase locking such as vector strength.

4.1 Introduction

Accurate coding of temporal information is widespread in the nervous system, and
many theories in sensory biology depend upon the detection of signals that are cor-
related in time (see also Chap. 9). This chapter specifically deals with periodic sig-
nals, where some of the component variables are angular. A famous early example
of angular data in biology deals with bird migrations, which are tracked by com-
pass direction, yielding a distribution on a unit circle. Originally, the work tracked
caged migrants, which were observed to orient in their normal migratory direction,
with southerly headings in autumn and northerly headings in spring in the north-
ern hemisphere. A vector sum of all headings yielded a mean direction of migration
(for review, see Mouritsen and Ritz 2005). Other biological examples include events
that are periodic in time, such as those dependent on time of day (Liu et al. 2006), or
upon a repeating, periodic stimulus, such as breathing. Circular statistics have been
developed to analyze this class of data (Batschelet 1981) and later adapted to mea-
sure neural data and relate spike timing to a number of different periodic oscillatory
signals (Goldberg and Brown 1969).

Typical periodic phenomena discussed in this chapter include phase-locked re-
sponses to pure-tone sound stimuli (Köppl 1997) and the periodic discharges of the
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electric organ of weakly electric fish (Kawasaki and Guo 1996). Other notable ex-
amples discussed in other chapters include cortical oscillations (Engel et al. 1990)
and the analysis of the oscillations underlying rhythmic movement (Rybak et al.
2006). Readers are also directed to a review of temporal processing in the nervous
system (Mauk and Buonomano 2004). In the auditory and electrosensory examples
used in this chapter, receptors encode the phase of signals with microsecond preci-
sion, and central circuits compute relevant features of the stimulus, like the phase
difference between two ears (Carr 1993). These periodic signals are generally coded
by phase-locked action potentials and processed in a dedicated pathway in parallel
with other stimulus variables. In this chapter, we will first discuss circular statis-
tics and the analysis of angular data, then the data analysis tools used to quantify
phase-locking, followed by modeling of phase-locked spike sequences.

4.2 Analysis of Angular Data

Analyses of circular data differ from the application of conventional statistics. For
example, consider α = 30◦ and β = 70◦, their mean μ = 50◦, both geometrically
and arithmetically. However, consider α′ = α = 30◦ and β ′ = β + 360◦ = 430◦;
their arithmetical mean μ′ = 230◦ is geometrically incorrect. α, β are geometrically
the same as α′, β ′, although their arithmetical means μ, μ′ are different. Thus con-
ventional analyses cannot be directly applied to derive the mean angle. An appro-
priate approach to compute the mean angle converts all angles into corresponding
points on a unit circle, i.e., α can be converted to a vector −→a = (cosα, sinα), and
β to

−→
b = (cosβ, sinβ). The mean vector −→m of the two vectors −→a and

−→
b can then

be obtained as

−→m =
−→a +−→b

2
=
(

cosα + cosβ

2
,

sinα+ sinβ

2

)
.

The value of the mean angleμ can be determined as the angle of−→m and is calculated
as

μ= atan 2

(
sinα + sinβ

2
,

cosα+ cosβ

2

)
,

where

atan2(y, x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

arctan(y/x), x > 0,
180◦ + arctan(y/x), x < 0, y ≥ 0,
−180◦ + arctan(y/x), x < 0, y < 0,
90◦, x = 0, y > 0,
−90◦, x = 0, y < 0,
undefined, x = 0, y = 0.

The function atan 2(y, x) gives the angle between the positive x-axis and the vector
(x, y) in the range of (−180◦,180◦].



4 Processing of Phase-Locked Spikes and Periodic Signals 61

This approach can also be generalized to determine the average of many angles.
Consider, for instance, angles θ1, θ2, . . . , θn. Their average, also referred to as mean
phase, can be calculated as

θ = atan 2

(
1

n

n∑
j=1

sin θj ,
1

n

n∑
j=1

cos θj

)
= atan 2

(
n∑
j=1

sin θj ,
n∑
j=1

cos θj

)
.

Another important quantity to compute when analyzing directional data is the
strength of the vector-field. Consider vectors −→v and −→w of unit length subtending
angles of 45◦ and 225◦ on the positive x-axis. The angle subtended by −→w on the
negative x-axis would be 45◦. Since they are two vectors that have equal magni-
tude and opposite directions, they would effectively cancel out each other, and the
resultant (= sum) vector would therefore be a zero vector. While this problem it-
self might seem trivial, the calculation of the resultant vector length benefits from
analysis when considering a larger set of vectors with different angles. The resul-
tant vector length is resolved by calculating the projections of the vectors on the
x-axis and y-axis of a unit circle. Having computed the Abscissas xj and Ordinates
yj for all the individual vectors −→vj , we sum them to obtain the Abscissa x and Or-
dinate y of the resultant vector, so we can compute the length L of the resultant
vector as L =√x2 + y2. In the example being discussed here, the pair (Abscissa,
Ordinate) for −→v and −→w would be (cos 45◦, sin 45◦) and (cos 225◦, sin 225◦). The
resultant vector would be (cos 45◦ + cos 225◦, sin 45◦ + sin 225◦)= (0,0), and thus
its length L= 0.

Generalizing the above explanation for a set of n unit vectors that subtend angles
θ1, θ2, . . . , θn, the (Abscissa x, Ordinate y) pair of the resultant vector would be

(x, y)=
(

n∑
j=1

xj ,

n∑
j=1

yj

)
=
(

n∑
j=1

cos θj ,
n∑
j=1

sin θj

)
.

The resultant vector length L would be

L=

√√√√√
(

n∑
j=1

cos θj

)2

+
(

n∑
j=1

sin θj

)2

.

If all the individual vectors are unidirectional, then the length of the resulting vector
would simply be the arithmetic sum of individual vector lengths, i.e., L = n. This
property leads us to derive the quantity termed vector strength, which is defined as
the length of the resultant vector L divided by the number of vectors n. Namely,
vector strength r is the ratio

r = L
n
= 1

n

√√√√√
(

n∑
j=1

cos θj

)2

+
(

n∑
j=1

sin θj

)2

.

Note that vector strength r can also be regarded as the length of the mean vector
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(x̄, ȳ)=
(

1

n

n∑
j=1

xj ,
1

n

n∑
j=1

yj

)
=
(

1

n

n∑
j=1

cos θj ,
1

n

n∑
j=1

sin θj

)
.

If all the vectors cancel out each other, the resultant vector length is 0, and conse-
quently vector strength is also 0. Vector strength becomes 1 if and only if all the
vectors are unidirectional. In other cases, vector strength takes values between 0
and 1.

In this section we have used degrees for angles and phases so that beginners
can readily understand. In the following text, we will mainly use radians and cy-
cles rather than degrees so that theoretical considerations are straightforward. Note
that the definition of vector strength does not depend on the choice of degrees or
radians.

4.3 Calculating Vector Strength

In 1969, Goldberg and Brown (1969) introduced circular statistics and vector
strength to the analysis of neural data. They quantified the synchronization or
phase-locking of the discharges of auditory neurons to low-frequency sound stim-
uli. In measuring the degree of phase-locking (Fig. 4.1A), each spike is consid-
ered as a vector of unit length with a phase angle θj (0 ≤ θj < 2π) by taking

Fig. 4.1 Phase-locked action potentials. A. Timing information encoded by phase-locked action
potentials. This example shows an intracellular recording from a phase-coding afferent from the
electrosensory lateral line lobe (bottom) and a 300-Hz sinusoidal stimulus (top). Taken from Carr
et al. (1986). B. Spike timing measured with respect to the phase of a 1 kHz stimulus. Typically a
zero-crossing detector or Schmitt trigger circuit creates time stamps of the spikes. C. Spike phase
plotted in a period histogram. Example from an electrosensory lateral line neuron in Gymnarchus
niloticus. Taken from Kawasaki and Guo (1996)
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Fig. 4.2 Variation in phase locking. A–B. Phase-locking recorded in an auditory nerve fiber (A)
and in a bushy cell in the cat cochlear nucleus (B). The plots show the spike occurrence in dot
rasters to 50 repetitions of short (25 ms) tones at the characteristic frequency (670 Hz). C–D. The
same data are shown as both period and cycle histograms of responses to 100 repetitions. The
vector strength is 0.64 for the auditory nerve fiber and 0.93 for the spherical bushy cell (mean
phase is 0.64 and 0.84 cycles, respectively). The total number of spikes in these histograms is 667
(nerve fiber) and 1775 (bushy cell). Note that the period histograms are on the same scale, but not
the polar plots (cycle histograms), where the outer circle indicates instantaneous rates of 1,000 and
6,000 spikes/sec. Taken from Joris and Smith (2008)

θj = 2πf tj (mod 2π), where tj is the timing of j th spike, and f is the stimulus
frequency. The n vectors characterizing a spike train are treated as a distribution
on a unit circle (Greenwood and Durand 1955), and θj gives the phase relation be-
tween the sinusoidal stimulus waveform and the unit’s discharge (Fig. 4.1B). The
mean vector, mean phase, and vector strength can then be calculated according to
the formulae shown in the previous section. The mean phase, or the direction of the
mean vector, gives the average phase relation between the stimulus and discharge
(see also Fig. 4.2). The vector strength, sometimes called the “synchronization in-
dex”, provides information of spike synchrony with respect to the stimulus. A vector
strength of 1 implies perfect phase-locking; a value of 0, a random relationship be-
tween stimulus and response.
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In order to visually examine phase-locked spiking activities, period histograms
are often used. A period histogram shows a single stimulus cycle, with spikes plot-
ted with respect to stimulus phase angle (Fig. 4.1C). Spike phase may be plotted
with any radial measure (radians, degrees, cycles, etc.). If most action potentials
fall within a small range of phase angles, vector strength is expected to be high
(near 1). If action potentials are evenly distributed in the histogram, vector strength
would be close to 0. Cycle histograms, which show spike phase distribution on a
circle, are sometimes preferred because periodicity can be understood more clearly
(Fig. 4.2C–D).

4.4 Sources of Variation in Phase-Locking, Frequency
Dependence and Temporal Dispersion

Variation in phase-locking can emerge from various sources in biological systems.
Most prominently, phase-locking in the auditory system is limited by stimulus fre-
quency. Vector strength generally decreases with increasing frequency (Fig. 4.3).
Recordings from auditory nerve fibers have a statistical tendency to phase-lock to
the waveform of the acoustic stimulus up to a certain frequency (Kiang et al. 1966).
Spikes occur most frequently at a particular phase of the tone, although not neces-
sarily in every tonal cycle (see raster plots in Figs. 4.2A–B and 4.5D). Thus, the
discharge pattern of a cochlear nerve fiber can encode the phase of a tone with a fre-
quency considerably above 1,000 Hz, even though the average discharge rate is low.
Eventually biophysical constraints limit the ability of biological systems to phase-
lock, presumably when neurotransmitter release and membrane time constants are
too slow to modulate at the stimulus frequency. The upper limit of phase-locking
quality in barn owl auditory nerve fibers appears to be the highest measured, with
vector strength measures of 0.2 at 9 kHz (Köppl 1997) (Fig. 4.3).

There are a number of adaptations for precise temporal coding (for review, see
Carr and Soares 2002). For example, the auditory nerve forms large endbulb or
caliciform synapses with multiple sites of synaptic contact on the cell body to
provide the substrate for the preservation of the phase-locked action potentials be-
tween the auditory nerve fibers and first-order auditory neurons (Carr et al. 2001;
Trussell 2008). This timing information is degraded for high-frequency sounds, pre-
sumably because of low pass filter effects in the hair cell, since electrical stimulation
of the auditory nerve increases the high-frequency cutoff of phase-locking (Dynes
and Delgutte 1992). A comparison of maximal vector strength as a function of fre-
quency in the auditory nerve of several species is provided in Fig. 4.3.

In the ear, sensory hair cells phase-lock to sound frequencies that are higher than
maximal firing rates of auditory nerve fibers, which are about 300 Hz. As discussed
above, auditory nerve axons can skip cycles (see Figs. 4.2A–B, 4.5D), and thus the
upper limit of phase-locking is not imposed by refractoriness (Joris and Smith 2008;
Wever and Bray 1930). Instead the upper limit of phase-locking appears to depend
on biophysical features of the inner ear (Kidd and Weiss 1990) and to be about
4–5 kHz in cats and about 9 kHz in the barn owl (Fig. 4.3).
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Fig. 4.3 Limits of phase locking. Köppl (1997) assembled data on phase locking for a number of
birds and mammals. Barn owl (Köppl 1997), emu (Manley et al. 1997), redwing blackbird (Sachs
and Sinnott 1978), starling (Gleich and Narins 1988), pigeon (Hill et al. 1989), chicken (Salvi et
al. 1992). For the cat and guinea pig, average values in 0.1 decade bins as determined by (Weiss
and Rose 1988) from the original data (Johnson 1980; Palmer and Russell 1986) were used. Two
different data sets for electrical stimulation in the cat (Dynes and Delgutte 1992; Hartmann 1987)
are also plotted. Taken from Köppl (1997). Data for the alligator lizard and tree frog are added

Vector strength increases with increasing sound loudness. Phase-locking often
begins below rate threshold, then increases. Individual units vary in the rate at which
their vector strength increases, reaching a plateau of vector strength somewhere
between near rate threshold and about 20 dB above it. These features are illustrated
in an example of phase locking in pigeon auditory nerve in Fig. 4.4A. For each
frequency, vector strength increases with level, while vector strength declines with
increasing frequency (compare along rows in Fig. 4.4A).

Even though vector strength deteriorates with increasing frequency (Fig. 4.4B),
the precision of spike timing actually increases over a certain frequency range. This
decrease in jitter or increase in precision is measured as temporal dispersion (Hill et
al. 1989). Phase-locking at increasingly higher frequencies requires an increasingly
better temporal precision of the neuron because the stimulus period is steadily de-
creasing on an absolute time scale. For example, to achieve the same vector strength
at 10 kHz (0.1 msec period) as at 1 kHz (1 msec period), the temporal jitter or dis-
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Fig. 4.4 Changes in phase locking with sound frequency and intensity. A. Period histograms ob-
tained from a pigeon auditory nerve fiber for a range of sound frequencies and intensities. Columns
show histograms for different sound pressure levels (dB SPL), and rows show histograms for dif-
ferent sound frequencies. Vector strengths are shown at the left of each column, and each histogram
has been adjusted to align its mode to π radians. Modified from Hill et al. (1989). B. Vector strength
as a function of stimulus frequency. The solid lines connect the median values calculated for quar-
ter octave bins for barn owl auditory nerve fibers. C. Temporal dispersion as a function of stimulus
frequency for the same data set of auditory nerve fibers. B and C from Köppl (1997)

persion of spikes must decrease by one order of magnitude. Temporal dispersion d
(in seconds) can be related to vector strength r according to

d =
√

2(1− r)
2πf

,

where f is the frequency (in Hz) (Hill et al. 1989; Köppl 1997) (see also Paolini
et al. 2001 for a slightly different formula). A vector strength of 0 would indicate
that there is so much dispersion that a mean angle cannot be determined, while a
vector strength of 1 means that all the data are concentrated at one direction. Köppl
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(1997) derived values for temporal dispersion for a large data set from barn owl
auditory nerve (Fig. 4.4C). Temporal dispersion was highest, up to 1 msec, at the
lowest frequencies tested and fell with increasing frequency, approaching 22 µsec
at 9–10 kHz. The overall decline was well described by a power law (Figs. 4.3,
4.4B–C).

4.5 Rayleigh Test and Statistical Tests of Vector Strength

It is important to know what confidence can be placed in the vector strength cal-
culated from the spike data. To assess the significance of any periodicity found,
the chance of getting a vector strength r from a list of random numbers needs to be
found. This can be done by generating a set of random vectors uniformly distributed
on a unit circle, as many as the original spike dataset, and computing vector strength.
This is then repeated many times. For example, if on 10 occasions out of the 1,000,
the vector strength from the list of random numbers was equal to or exceeded that
obtained from the real dataset, then there is a 1% chance of obtaining this result
from a random dataset or a dataset with no signal.

Another way to examine the statistical significance of vector strength r is to per-
form a test derived from Rayleigh’s studies of periodic motion (Rayleigh 1894).
The Rayleigh test asks how large a sample size n must be to indicate confidently
a nonuniform population distribution. The null hypothesis H0: The sampled distri-
bution is uniformly distributed around the circle. The alternative hypothesis HA:
The population is not a uniform circular distribution. “Rayleigh’s R” defined as
R = nr and “Rayleigh’s z” defined as z = R2/n = nr2 have been used for testing
the null hypothesis of no population mean direction (Batschelet 1981; Fisher 1993;
Mardia 1972). The quantity 2z is known to obey the chi-square distribution with 2
degrees of freedom in the case of large samples (typically n > 15). Thus a table of
the chi-square distribution can be used for testing. Or, more directly, the significance
probability p of vector strength r can be approximated as

p � exp(−z)= exp
(−nr2)

for a larger set of samples (typically n > 50) (Fisher 1993). Therefore, for example,
a vector strength of r = 0.1 with n = 500 samples yields statistical significance
of p < 0.01 (Köppl 1997). For more information on the Rayleigh test, readers are
referred to texts on circular statistics (Batschelet 1981; Fisher 1993; Mardia 1972).

4.6 Relationship to Fourier Analysis

In this section we give a brief description on the relationship between vector strength
and the Fourier analysis. By regarding each spike as a delta function, a train con-
taining n spikes can be written as

s(t)=
n∑
j=1

δ(t − tj ).
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The Fourier transform of s(t) is

ŝ = ŝ(f )=
∫ ∞

−∞
s(t)e−2πif t dt

=
∫ ∞

−∞

n∑
j=1

δ(t − tj )
(
cos(2πf t)− i sin(2πf t)

)
dt

=
n∑
j=1

cos(2πf tj )− i
n∑
j=1

sin(2πf tj ).

Then we have

|ŝ|2 =
(

n∑
j=1

cos(2πf tj )

)2

+
(

n∑
j=1

sin(2πf tj )

)2

.

Using
∫ ∞

−∞
δ(t − tj ) dt = 1 (for every tj ),

we obtain
∫ ∞

−∞
s(t) dt =

n∑
j=1

∫ ∞

−∞
δ(t − tj ) dt =

n∑
j=1

1= n.

Therefore, vector strength r can be rewritten as

r = |ŝ|
n
=
∣∣∣∣
∫ ∞

−∞
s(t)e−2πif t dt

∣∣∣∣
/∫ ∞

−∞
s(t) dt.

From this equation relating vector strength with the Fourier transform, we can sum-
marize: “Vector strength is the Fourier component of the spike sequence at the stim-
ulus frequency normalized by the total number of spikes”.

4.7 Additional Measures and Some Technical Issues

An additional metric, the correlation index, was developed by Joris et al. (2006).
The correlation index is the peak value of the normalized shuffled autocorrelogram,
and it provides a quantitative summary of temporal structure in the neural response
(see Chap. 6 for correlation analyses). It quantifies the degree to which spikes are
generated at the same time with repeated stimulus presentations, with both preci-
sion and consistency of spikes required for large values. The correlation index is
normalized for average firing rate, and the same research group have developed an
unnormalized metric (maximal coincidence rate) (Louage et al. 2005). Technically,
the correlation index and correlograms are easier to measure than vector strength or
measures of reverse correlation because they can be measured more quickly (vector
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strength measures require many stimulus presentations). The correlation index can
also be used for aperiodic stimuli and does not require knowledge of the stimulus.
However, there are some disadvantages to the use of the correlation index, because
phase information is discarded.

A technical issue, raised by Joris et al. (2006), and germane to all measures of
temporal precision, relates to the measure of spike timing. From recorded neural
responses, the timing of each spike is usually determined by a level detector or a
Schmitt trigger circuit and converted to a standard pulse (Fig. 4.1B). A Schmitt
trigger switches its output when the input passes upward through a reference volt-
age, then prevents switching back to the other state until the input passes through
a lower threshold voltage. This stabilizes the switching against rapid triggering by
noise as it passes the trigger point. However, Joris et al. (2006) found that changes
in the voltage level of triggering relative to the spike maximum could produce no-
ticeable shifts, and therefore spike triggering should be done at a consistent point
of the spike waveform throughout the recording. This problem may be eliminated
by using a peak-detection circuit instead of a Schmitt trigger (see also Sullivan and
Konishi 1984 for discussion).

There are two more considerations to be noted when measuring phase-locking:
sampling frequency and good signal-to-noise ratio. First, timing of every spike
needs to be recorded with high temporal resolution, typically around 5–10 µsec
for the auditory system responding to signals from 1 to 10 kHz. In cases where
microsecond precision is required, it is possible for measurement error to interfere
with real variation. For example, assuming that the signal frequency is 2 kHz (the
length of one cycle is 500 µsec) and the sampling frequency is 200 kHz (the length
of one cycle is 5 µsec), estimation error of spike timing will be less than 1%, and
vector strength is expected to be calculated with similar accuracy. However, if the
sampling frequency is 10 kHz (the length of one cycle is 100 µsec), estimation error
of spike timing could be as much as 20% and lead to a significant error in the cal-
culation of vector strength. Systematic investigation needs to be conducted to more
accurately estimate the influence of measurement errors on vector strength calcu-
lation. Second, to obtain good vector strength estimation, good signal-to-noise is
also important. Since spike timing is recorded with such high temporal resolution,
low signal-to-noise in the recording can produce a temporal jitter in zero crossing
detection, degrading phase-locking, while the presence of a stimulus artifact in the
recording can artificially increase phase-locking (the Johnson effect, Johnson 1980).

4.8 Modeling Phase-Locked Spike Trains

In the modeling of neuronal spike trains, the Poisson process is one of the sim-
plest and most common computational tools. Let N(t) be the number of spikes that
occurred before time t . N(t) is called a Poisson process with mean rate m if

Prob
(
N(t +�t)−N(t)= k)= (m�t)k

k! exp(−m�t).
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Fig. 4.5 Continued
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Note that N(t + �t) − N(t) means the number of spikes that occurred between
time t and time t +�t . If the length of the time interval�t is small enough, namely
m�t � 1, probabilities of spike counts in the interval can be approximated as:

Prob
(
N(t +�t)−N(t)= 0

)= exp(−m�t)� 1−m�t,
Prob
(
N(t +�t)−N(t)= 1

)= (m�t) exp(−m�t)�m�t,
Prob
(
N(t +�t)−N(t) > 1

)� 0.

The mean rate m, which is also called the intensity, indicates the average number
of spikes per unit time. If m changes with time t , N(t) is called an inhomogeneous
Poisson process (Gerstner et al. 1996) (see, for example, Kempter et al. 1998 for
more detailed formulation). In generating periodic (phase-locked) spike trains, pe-
riodic functions are adopted as m=m(t). The von Mises distribution, which is also
called the circular normal distribution, is one of the most commonly used probability
distributions for this purpose. Its probability density function is defined as

pa,k(x)= 1

2πI0(k)
exp
(
k cos(x − a)).

The period of this function is 2π . a is a parameter determining the “mean direction”
of the distribution, and k is a parameter determining the “concentration” (Fig. 4.5A).
The distribution is uniform for k = 0 and becomes steep around a as k increases.
I0(k) is the modified Bessel function of order 0 satisfying

I0(k)= 1

2π

∫ π
−π

exp(k cosx)dx,

and thus 1/2πI0(k) is the normalization constant assuring∫ π
−π
pa,k(x) dx = 1.

By using the von Mises distribution, periodic signal can be modeled as an inhomo-
geneous Poisson process with rate

m(t)= 2πR̄× pa,k(2πf t),
where R̄ is the average spiking rate over time, and f is the signal frequency (see
Fig. 4.5C for example). Collection of many periodic spikes (typically several hun-
dred to several thousand) gives a period histogram with the same shape as the dis-
tribution function used for the inhomogeneous Poisson process.

Fig. 4.5 Modeling phase-locked spikes. A. Probability density function of the von Mises distri-
bution (mean direction a = 0). B. Concentration parameter k of the von Mises distribution and
vector strength. C. Rate function of the inhomogeneous Poisson spike trains (solid line) oscillating
around the temporal average (dashed line). Signal frequency is 1 kHz. The concentration param-
eter k = 2.8713 so that vector strength r = 0.8. D. Raster plot of simulated spike trains. Each dot
indicates a spike. 200 trials are shown. E. Simulated synaptic input oscillating with a frequency
of 1 kHz. F. Synaptic input modeled as an alpha-function (τ = 0.3 msec). G. Power spectrum
calculated from the Fourier transform of the simulated synaptic input (E). Note the main peak at
1 kHz
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We can calculate vector strength from the distribution function by the continu-
ous extension of the definition of vector strength. Let q(x) be a probability density
function over [−π,π]. The mean vector (x̄, ȳ) of many spikes generated by the
inhomogeneous Poisson process with rate m(t)= 2πR̄q(2πf t) can be obtained as

(x̄, ȳ)=
(∫ π

−π
cos(x)q(x) dx,

∫ π
−π

sin(x)q(x) dx

)
,

and then vector strength r =√x̄2 + ȳ2 can be calculated.
For the von Mises distribution, probability density q(x) = pa,k(x). We can as-

sume the mean direction a = 0 in calculating vector strength because pa,k(x) is a
periodic function with period 2π . Since p0,k(x) is symmetric about x = 0, vector
strength r can simply be calculated as

r =
∫ π
−π

cos(x)p0,k(x) dx = 1

2πI0(k)

∫ π
−π

exp
(
k cos(x)

) · cos(x) dx.

Vector strength r is zero for k = 0 and monotonically increases with the concentra-
tion parameter k (Fig. 4.5B).

An example of simulated periodic spike trains is shown in Fig. 4.5C–D. Spiking
rate changes periodically around the average rate over time (Fig. 4.5C). Since signal
frequency was set at 1 kHz and average spiking rate was 500 Hz, spikes occur not
in every single cycle but about every two cycles on average. The raster plot shows
that spikes are concentrated around a particular phase (Fig. 4.5D, compare with
Fig. 4.2A–B).

We here assume that all the spike trains shown in Fig. 4.5D converge onto one
target neuron and that every single spike gives a synaptic current modeled as an
alpha-function (Fig. 4.5F)

Isyn(t)= Ht
τ

exp

(
1− t

τ

)
.

Setting the time constant τ = 0.3 msec and the peak current of single synaptic
input H = 1 pA, we can calculate the total synaptic input into the target neuron
(Fig. 4.5E). Since the spikes are phase-locked, the simulated synaptic input oscil-
lates at the signal frequency. This is confirmed by the Fourier transform. Power
spectrum density of the synaptic input has a main peak at the signal frequency of
1 kHz and smaller peaks at higher harmonics (Fig. 4.5G). Thus the periodic signal
can be “reconstructed” with accumulation of periodic spike sequences (Ashida et al.
2007).

In this section we have discussed how to model phase-locked spike trains. In the
real nervous system, temporal information coded by phase-locked spikes would be
processed in higher-order centers in the brain and finally lead to behavioral actions.
Since the motor output generally operates on the mean activity rate of the motor
efferents, temporal codes should be “decoded” or “translated” into the rate code
somewhere in the brain. This translator is expected to act as a coincidence detector
that senses temporal structure of the input and modulates spiking activity. Thus it
is important to examine how and to what extent a coincidence detector can extract
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information from oscillatory inputs. It has been proposed that membrane time con-
stant, spiking threshold, and the number of inputs per period are key parameters that
determine the performance of a coincidence detector (Kempter et al. 1998).
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Part II
Pairwise Comparison of Spike Trains



Chapter 5
Pair-Correlation in the Time and Frequency
Domain

Jos J. Eggermont

Abstract Neural pair-correlation can be analyzed and represented in both the time
and frequency domains. Sometimes it is easier to see the effects in the time domain
correlograms, sometimes the frequency representation in the form of the coherence
function gives more insight, for instance, about which frequency regions contribute
to the correlation. Regardless the preference one might have of the domain for repre-
senting the interactions, calculations are generally easier and faster when performed
in the frequency domain.

5.1 Dual Worlds: Time and Frequency Domain Representations
are Related by Fourier Transforms

Any time signal x(t), be it a densely sampled train of action potentials or an ab-
stracted version in the form of unit pulses (spikes), has an equivalent description in
the frequency domain, Sx(f ). This spectrum can be obtained by Fourier transfor-
mation of the spike train x(t),

Sx(f )=
∫ T

0
x(t).e−i2πf t dt or, in sampled form,

Sx(f )=
N∑
n=1

x(n)e−i2πf n, (5.1)

where n ∈ [1,N ] indicates the bin number. The spectrum is complex valued, i.e.,
consists of magnitude and phase spectra.

The autocorrelation function Rxx(τ ) of x(t) is defined as the average lagged
cross-product of the signal with itself over signal duration T ,
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Rxx(τ )= 1

T

∫ T
0
x(t)x(t + τ) dt or, in sampled form,

Rxx(k)= 1

K

K∑
n=1

x(n)x(n+ k). (5.2)

The autocorrelation function reflects the self-similarity of the signal as a function
of the delay, expressed as a time delay τ or as the number of bins k. We only have
to delay in one direction because we are dealing here with only one signal, and
therefore the autocorrelation function is symmetric around zero lag time. For a pe-
riodic signal, the autocorrelation function will indicate a complete self-similarity
after each repetition period. For all signals, the value of Rxx(τ ) is never larger than
its value for τ = 0, i.e., the correlation of the signal with itself. In practice the auto-
correlation function is obtained in the form of a correlation histogram. A given bin
size is selected, small enough so that there are no two spikes in the same bin, and
coincidences between the original spike train and the time-shifted one are counted
in each bin k starting anew from every spike time n.

The power spectrum Sxx(f )= Sx(f )S∗x (f ). S∗x (f ) is the complex conjugate of
Sx(f ),

S∗x (f )=
N∑
n=1

x(n)ei2πf n.

The power spectrum of the signal x(t) also results from the Fourier transform of
Rxx(τ ):

Sxx(f )= 1

T

∫ T
0
Rxx(τ ).e

−i2πf τ dτ or, in sampled form,

Sxx(f )= 1

K

K−1∑
k=0

Rxx(k)e
−i2πf k. (5.3)

The information present in the autocorrelation function and the power spectrum is
complementary. In theory the Wiener–Khintchine theorem expressed in Sxx(f ) =
1
T

∫ T
0 Rxx(τ ).e

−i2πf τ dτ is only valid when the integration boundaries extend from
−∞ to ∞, i.e., Sxx(f )= 1

T

∫∞
−∞Rxx(τ ).e

−i2πf τ dτ .

5.1.1 Cross-Correlation and Cross-Spectrum: FFT Pairs

When we have two different spike trains, their correspondence in firing times is
given by the cross-correlation function

Rxy(τ )= 1

T

∫ T
0
x(t)y(t + τ) dt or, in sampled form,

Rxy(k)= 1

N

N∑
n=1

x(n)y(n+ k). (5.4)
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Note that here we take both lag and lead times; in practice, τ ∈ [−0.5T ,0.5T ] and
k ∈ [−0.5N,0.5N ], respectively, to calculate the cross-correlation function, since
there is no reason to assume that there is symmetry between the two signals or spike
trains as there was in case of the autocorrelation.

The Fourier transform of the cross-correlation function is called the cross-
spectrum:

Sxy(f )= 1

T

∫ T
0
Rxy(τ ).e

−i2πf τ dτ or, in sampled form,

Sxy(f )= 1

K

K−1∑
k=0

Rxy(k)e
−i2πf k. (5.5)

The cross-spectrum is complex, because Rxy(τ ) is not an even function, i.e., it is
not symmetric around τ = 0.

5.1.2 Practical Issues in Estimating Correlations and Spectra

In practice, correlation functions and coherence functions are not estimated from
[−∞ ∞] for lag-time and frequency, respectively, but a window w(n) is typically
imposed. Ponomarenko et al. (2004) have shown that when the upper integration
boundary T is � the duration of the window filter, one can in fact extend it to ∞.
By changing the original integration window from [0 T ] to [−0.5T 0.5T ], the in-
tegral boundaries can thus be extended to [−∞,∞]. However, the autocorrelation
function in (5.2) has to be computed for windowed signals as well.

It is noted that all correlation functions and spectra used here and in the following
are considered as averaged values (y = x for autocorrelations and power spectra)
and including window functions (omitted here):

Rxy(τ )=E
[

1

T

∫ 0.5T

−0.5T
x(t)y(t + τ) dt

]
and Sxy(f )=E

[
Sx(f )S

∗
y (f )
]
.

Generally, the averaging is over consecutive time segments of length T , but it could
also be ensemble averaging over limited time segments following a repeated stimu-
lus.

5.1.3 Impulse Response and Cross-Correlation

If one considers the spike train x(t) as the input to a system and spike train y(t)
as the output of that system, then the frequency response function of that system is
given by H(f )= Sxy(f )

Sxx(f )
, and its inverse Fourier transform is, in the case of a linear

system, equal to the impulse response h(τ). In a sense, h(τ) is the cross-correlation
function Rxy(τ ) normalized on the input. Note that since h(τ) captures only the
linear aspects of the system, the same holds for Rxy(τ ) and Sxy(f ).
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5.1.4 Correlation and Coherence: Symmetry Breaking
Through Normalization

In the form we have presented the auto- and cross-correlation functions, there was no
normalization, so the values increase when the number of spikes in the spike trains
increases. For an analog signal, the signal power is also known as the variance σ 2

x ,
defined as 〈(x(t)− μx)〉2 with μx the mean of x(t), and a standard normalization
for the autocorrelation function is to subtract the mean signal value and divide by
the variance to obtain the autocorrelation coefficient function:

ρxx(τ )=
(

1

2T

∫ T
−T
(
x(t)−μx

)(
x(t + τ)−μx

)
dt

)/
σ 2
x . (5.6)

This is equal to the autocovariance function divided by the variance. One obtains
the cross-correlation coefficient function in the same way:

ρxy(τ )=
(

1

2T

∫ T
−T
(
x(t)−μx

)(
y(t + τ)−μy

)
dt

)/√
σ 2
x σ

2
y . (5.7)

In this case one obtains the cross-covariance divided by the square root of the prod-
uct of the variances. Similarly, a normalization is carried out in the frequency do-
main to give the complex coherence function (or coherency), excluding frequencies
for which the denominator equals 0:

γxy(f )= Sxy(f )√
Sxx(f )Syy(f )

. (5.8)

However, the Fourier transform of ρxy(τ ) is bound to be different from γxy(f ) since

the Fourier transform of ρxy(τ ) = Rxy(τ)−μxμy√
σ 2
x σ

2
y

is equal to Sxy(f )−μxμyδf√∫
Sxx(f )df

∫
Syy(f )df

.

Thus the symmetry between time and frequency domains breaks down after nor-
malization.

Quite often squared correlation coefficients are used that indicate the percentage
of variance in y(t) predicted in a linear way from knowing x(t). Analogously, the
squared coherency (commonly known as coherence) is defined as

γ 2
xy(f )=

|Sxy(f )|2
Sxx(f )Syy(f )

(5.9a)

and indicates the linearly explained power in the spectrum of y(t) at each frequency
f on the basis of knowing the spectrum of signal x(t) at each frequency f . Note that
because of the linearity, frequencies f2 �= f1 in x(t) have no effect on frequency f1
in y(t). The squared coherence can also be expressed as the product of the forward
and backward transfer functions:

γ 2
xy(f )=

|Sxy(f )|2
Sxx(f )Syy(f )

=
∣∣∣∣Sxy(f )Sxx(f )

∣∣∣∣
∣∣∣∣Sxy(f )Syy(f )

∣∣∣∣=
∣∣Hxy(f )∣∣∣∣Hyx(f )∣∣. (5.9b)

Note that for the practical calculation of this function, one has to use average power-
and cross-spectra; otherwise the function always turns out to be equal to 1. Again,
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the correlation coefficients and coherence reflect only linear relationships between
the two spike trains. Any deviation from a value of 1 for both the squared correlation
coefficient and the squared coherence is due to (1) nonlinearity of the system, (2) to
the presence of noise in the system, and (3) to the presence of other inputs to the
system that contribute to y(t) but are not accounted for by x(t).

In a simple example of a system representing a static nonlinearity such as y = x2,
and given a sinusoidal x(t) with frequency f , the output of the system y(t) will be
a raised cosine with the double frequency 2f . The cross-spectrum between x(t)
and y(t) will be zero, and so will be the coherence. The same holds, of course, for
the cross-correlation function because the product of a sine and a cosine squared is
zero on average. A general practical reference for the topics reviewed above is Van
Drongelen (2007) and Chap. 20 of this book.

5.2 Practical Pair-Correlation Estimation for Neural Spike
Trains Under Spontaneous Firing Conditions

5.2.1 Representation of the Cross-Correlogram in Terms of
Coincidences

In case of Poisson spike trains, the variance is equal to the number of spikes in
the train (see also Chap. 6 by Tetzlaff and Diesmann), and the cross-correlation
coefficient becomes (Eggermont 1992a)

ρxy(τ )=
[
Rxy(τ )− NxNy

N

]/√(
Nx − N

2
x

N

)(
Ny −

N2
y

N

)
. (5.10)

Here, Nx and Ny are the number of spikes in spike trains x(t) and y(t), respec-

tively, and N is the number of bins in the total spike train duration. NxNy
N

is the
expected number of coincidences in case of independence. For small numbers of
spikes compared to the number of bins, i.e., low firing rates, in the record (N ) this
can be approximated by

ρxy(τ )=
[
Rxy(τ )− NxNy

N

]/√
(NxNy). (5.11)

For statistical purposes, this can also be converted (holds for all firing rates) to a
z-score, i.e., the number of standard deviations above the mean-corrected R, which
is equal to zero:

zxy(τ )=
[
Rxy(τ )− NxNy

N

]/√
NxNy

N
. (5.12)

Statistical significance should be set conservatively, e.g., at z≥ 4.
The standard normal distribution that is the basis for the interpretation of z, as the

number of standard deviations between a value x and the mean μ of the distribution,
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is based on the z-score z= (x −μ)/σ . For our cross-correlograms, we do not have
normal (i.e., Gaussian) distributions, but we assume that the bin filling with coinci-
dences follows a Poisson process (so bin size should be so small that the probability
of >1 coincidence is vanishingly small). For a Poisson process (see Chap. 1), the
standard deviation is the square root of the mean, leading to the standard deviation

of the number of coincidences σxy =
√
NxNy
N

.
If one wants to assess significance based on the cross-correlation coefficient, the

standard deviation thereof is equal to SD(ρxy)=
√

1
N
(1− NxNy

N2 ). For large numbers
of bins in the record and relatively low firing rates, this can be approximated as

SD(ρxy)=
√

1
N

. So for a 900-s record length and 2-ms bins, the SD = 0.0015. So
taking 4 SD would make ρxy values above 0.006 significant. For larger numbers of
spikes, the SD decreases compared to this estimate.

5.2.2 Representations of the Cross-Correlogram in Terms
of Firing Rate

Rxy(τ ) is sometimes defined as a first-order conditional rate function Rx|y(τ ) =
Rxy(τ )/μy that measures, for one cell y and close to any particular time t , the
average instantaneous rate or the likelihood of generating a spike, conditional on
an x spike τ time units away (Brillinger et al. 1976). If the trains are independent,
then Rx|y(τ ) = μy , where μy is the mean firing rate for spike train y, for all τ .
If y spikes are independent of “later” x spikes (causality), then Rx|y(τ ) = μy for
all τ < 0. This “causality” may apparently be violated if both x and y spikes are
caused with some jitter by a third, unobserved, input. Deviation of Rx|y(τ ) from μy
is suggestive of dependency of the y-train on what happened in the x-train τ time
units earlier. For all natural spike trains, Rx|y(τ ) will be flat and essentially equal to
μy at large |τ | values because inevitably any influence of x on y will have vanished.
Assuming a Poisson distribution, one can plot

√
Rx|y(τ ). The variance of

√
Rx|y(τ )

is approximately constant for all τ at a level of (4�Tμx)−1, so SD lines can be
drawn at ±(4�Tμx)−2 and become smaller in proportion to

√
T . This provides a

good approximation if � is not too large, and the correlation width of the process is
not too large (Voigt and Young 1990).

5.3 Testing for Stationarity of Individual Spike Trains

5.3.1 Time-Dependent Cross-Correlation Functions

Visual inspection of the time-dependent cross-correlation function Rxy(t, τ ), with
t the running time in the spike trains and τ as the lag-lead time between spikes
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Fig. 5.1 Time-dependent cross-correlation diagrams of spike trains. The different symbols used
indicate the order of the spikes following the reference spike, “|” indicates the first-order recurrence
time, i.e., the first spike in the y-train following or preceding a spike in the x-train (for the left-
hand column), “�” indicates the second-order recurrence time, i.e., the second spike in the y-train
following or preceding a spike in the x-train. Finally “×” indicates the third-order recurrence time
(Perkel et al. 1967). a Simultaneous time-dependent cross-correlation diagram, spikes from unit x
(2188 events) are used as triggers; b as a, but now with spikes from unit y (528 events) as triggers;
c simultaneous and nonsimultaneous (shaded) recurrence-time histograms of order 1, 2, and 3, and
cross-correlation histogram derived from a and e, respectively; d as c, but now derived from b
and f; e nonsimultaneous time-dependent cross-correlation diagram, spikes from unit x are used as
triggers; f as e, but now with spikes from unit y as triggers. From Van Stokkum et al. (1986)

in trains x and y, shown here in an example (Fig. 5.1) taken from Van Stokkum
et al. (1986), is often the best first step in judging stationarity. The example re-
flects simultaneous recordings from two neurons in the auditory midbrain of the
grassfrog in response to species-specific vocalizations. The left-hand and right-hand
columns refer to the same data, but on the left-hand side the correlation shown is
Rxy(t, τ ), whereas the right-hand side shows Ryx(t, τ ), i.e., the reference unit has
changed.
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Vertically, the time over the first 150 seconds since stimulus onset, t , is shown,
and, horizontally, the lag-lead times, τ , between the x and y spikes. Different sym-
bols indicate different order recurrence times (see Chaps. 1 and 3 in this book). One
observes that, with the exception of the first 10 seconds or so, the occurrence of the
recurrence times is stationary. The most important events that determine the various
order cross-correlograms here (shown in parts c, d) are the first-order recurrences,
i.e., there are hardly any bursts in the y-train and only some in the x-train, which
had the higher firing rate. The top correlogram is that based on only first-order re-
currence times, the second one on second-order, and the third one on third-order re-
currence times, and the fourth shows the all-order cross-correlogram as commonly
used. All correlograms are on the same scale. The shaded correlograms are the shift-
predictors (see next section), calculated from the time-dependent shift correlograms
shown in the bottom row that show only modest stimulus locking to the stimulus.
The shape of the cross-correlogram suggests common input as the main source of
correlated spike times (see later in this chapter).

5.3.2 Stationarity Tests for Spike Trains

Several types of nonstationarity have been identified in spike trains, which can lead
to misleading results; an important one being firing rate (FR) changes throughout
the duration of the experiment (Grün et al. 2002; Chap. 10). Nonstationarities in
firing rate generally have two causes: they are either preparation-related ones that
are caused, e.g., by changes in anesthesia level, or stimulus-related ones that cause
modulations in FR (Averbeck and Lee 2004). The latter will be discussed under
stimulus correction procedures. Most signal analysis methods require that the data
are at least weakly stationary for the FR (Brown et al. 2004). The concept of weak
stationarity in neural spike trains is defined as a stability of average firing rate and
variance of FR over time. Nonstationarity in FR leads to biased results in numerous
cross-correlation techniques (Perkel et al. 1967) and may sometimes even be the
only cause of correlation between spike trains (Brody 1999). In Chap. 6 by Tetzlaff
and Diesmann, the inhomogeneous Poisson source is discussed as an example of
nonstationarity. Gourévitch and Eggermont (2007) recently reviewed suitable tests
for stationarity and also proposed a new stationarity test for use with spike trains.
The reader is referred to that paper for details.

5.4 Pair-Correlation Under Stimulus Conditions

A peak in the cross-correlogram can be the result of a neural interaction between
units (“noise correlation”) and also the result of a coupling of the firings of the
neurons to a stimulus (“signal correlation”). As we will see, the interpretation of the
cross-correlogram will require both the autocorrelograms of the two units and the
correlation due to stimulus coupling. Following our earlier approach (Eggermont et
al. 1983), we consider two spike trains x(t) and y(t) of duration T , represented as
a sequence of δ-functions, see Chap. 1:
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Table 5.1 Overview of possible correlation histograms for a double unit recording with two
presentations of the stimulus ensemble

x1(t) y1(t) x2(t) y2(t)

x1(t) Cx1x1 Cx1y1 Cx1x2 Cx1y2

y1(t) Cy1y1 Cx2y1 Cy1y2

x2(t) Cx2x2 Cx2y2

y2(t) Cy2y2

x(t)=
Nk∑
i=1

δ(t − ti ) and y(t)=
M∑
j=1

δ(t − tj ) (5.13)

with cross-correlation function

Rxy(τ )= 1

T

N∑
i−1

M∑
j=1

δ
[
τ − (ti − tj )

]
. (5.14)

For a bin width �, the cross-correlation histogram

Cxy(τ,�)= 1

�

∫ τ+�/2
τ−�/2

Rxy(σ )dσ (5.15)

can be defined. If one presents the stimulus ensemble twice, then in case of a double
unit recording, the resulting spike trains are x1(t) and y1(t) for the first stimulus
presentation and, respectively, x2(t) and y2(t) for the second one. For those four
spike trains, one can compute ten correlation histograms (or correlograms) as shown
in Table 5.1.

On the main diagonal two estimates each of the units’ autocorrelation histograms
are found. Under long-term stationary firing conditions, Cx1x1 = Cx2x2 , and one
commonly uses Cxx = (Cx1x1 + Cx2x2)/2 as an estimator of the autocorrelation
function for spike train x(t).

For the off-diagonal elements, it is noted that, e.g., Cx1y1(τ ) = Cy1x1(−τ);
therefore, the table is symmetric, provided that the sign of τ is adjusted. We
define Cx1y1(τ ) and Cx2y2(τ ) as simultaneous cross-coincidence histograms, and
again we may use their average as an estimate for the cross-correlation func-
tion. Following our previously introduced terminology (Eggermont et al. 1983;
Epping and Eggermont 1987), cross-correlations obtained under stimulus condi-
tions will be called neural synchrony, and they will be a mix of signal- and noise-
correlations (e.g., Gawne and Richmond 1993). Cross-correlations obtained under
spontaneous firing conditions or after appropriate correction for correlation result-
ing from stimulus locking will be called neural correlation; they exclusively are
noise correlations. During stimulation, the “total” neural synchrony consists of a
component due to stimulus synchrony and one that is a result of neural connectivity,
the neural correlation.

The nonsimultaneous cross-correlation histograms between spike trains x1(t)

and y2(t) and, respectively, x2(t) and y1(t) are considered to represent correlation
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between spike trains x(t) and y(t) as a result of stimulus coupling. These stimulus-
induced correlations are known as the shuffle- or shift-predictors (see also Chap. 17).

Another nonsimultaneous cross-correlation histogram is obtained by taking both
spike trains for the same unit to obtain Cx1x2 and Cy1y2 . These histograms repre-
sent the amount of stimulus coupling of the units individually and have been called
the “existence functions” (Aertsen et al. 1979) because any significant peak around
τ = 0 indicates a stimulus coupling effect and hence the existence of a stimulus re-
sponse relation. This shuffled autocorrelogram technique was rediscovered by Joris
et al. (2006).

There is no model-free approach for the separation of correlations produced by
direct neural interaction and those caused by stimulus coupling. Under the assump-
tion that the effects of an external stimulus and the effects of neural connectivity to
the neural synchrony are additive, Perkel et al. (1967) proposed a correction for the
effects of the stimulus. Two formally identical stimulus predictors were suggested;
one resulting from a cross-correlation of the two single-unit post-stimulus-time his-
tograms (PSTHs) and the other from calculating the cross-correlogram between one
spike train and a shifted (by 1 stimulus period) version of the second spike train.
This latter procedure, resulting in the shift predictor, has been the most popular and
has the advantage that it can be applied to very long stimuli (such as a set of animal
vocalizations) that allow only one or a few repetitions; in such a case calculating the
PSTH would be useless. The shift predictor was assumed to represent the amount of
correlation that could be attributed to the locking of the neuron’s firings to the stim-
ulus. Subtracting the shift predictor from the neural synchrony then would result in
the neural correlation.

The assumption of additivity of stimulus-induced correlation and neural correla-
tion may well be the weakest link in the chain of reasoning that leads to an interpre-
tation of stimulus-dependent neural correlations. A strong warning against the use of
the shift predictor in estimates of the neural interaction strength came from studies
using realistic model neurons (Melssen and Epping 1987). Because stimulus effects
and neural connectivity effects on the neural synchrony are generally nonadditive,
it was concluded that the use of the shift predictor to separate stimulus and neural
effects was of limited value. Yang and Shamma (1990) underlined these objections
to the use of correlation methods in identifying neural connectivity and arrived at
conclusions similar to those of Melssen and Epping (1987) using simulations with
similar model neurons. In case of strong stimulus-locking, even all synchrony can
be due to stimulus-correlation (Eggermont 1994). Under “adequate” stimulus con-
ditions that evoke strongly stimulus-driven and reproducible spike trains, especially
for auditory stimuli, the neural synchrony becomes identical to the expected cor-
relation based on the shift predictor, and consequently no inference can be made
about possible underlying connectivity (changes). One may avoid this overcorrec-
tion effect due to stimulus locking by applying suboptimal stimulation. Thus a suf-
ficient amount of “neural noise” in the record is required to allow conclusions about
changes in functional neural connectivity.

Thus, when stimulus-dependent neural correlations are obtained, there are a num-
ber of possibilities: the interneuronal coupling itself changes due to application of
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a stimulus (facilitation, depression, short-term learning), the finding is an artifact
due to the selection of the wrong model, or the finding can be explained on the ba-
sis of a pool of neurons affecting the firing behavior of the pair under study in a
stimulus-dependent way.

5.4.1 Practical Estimation of Stimulus Correlation

During spontaneous activity, one estimates the expected value of the cross-
correlogram under the assumption of independence and subtracts this in order to
obtain the neural correlation. During stimulation, the effect of a common input to
both spike trains as a result of a correlation of the neuronal firing to the stimulus has
to be taken into account if one wants an estimate of the true neural correlation. There
are two ways to do this. The first can be used whenever the stimulus is truly periodic.
One constructs the post-stimulus-time histograms, i.e., the cross-correlograms be-
tween stimulus onsets and spikes (i.e., the post-stimulus-time histograms), RSx (σ )
andRSy (σ ), and calculates their correlation integral modulo stimulus period P (here
σ is the post-stimulus time):

RScorr(τ )=
∫ P

0
RSx (σ )RSy (σ + τ) dσ. (5.16)

One can also use the shift predictor obtained by calculating the cross-correlation
between spike trains x(t) and y(t +P), i.e., between the original x-train and the y-
train shifted over one stimulus period. This latter method is the only one that can be
used if a long stimulus sequence, e.g., a sequence of vocalizations or other natural
sounds, is only repeated once, as discussed above.

As an example of this latter stimulus correction procedure, we show record-
ings from the auditory midbrain to repeated one-second long 30-Hz amplitude-
modulated noise-burst stimulation (Fig. 5.2). The shift predictor is shaded and in-
corporates the 30-Hz modulation in the firing rate that obviously is stimulus locked.
The triangular shape of the predictor is the result of using an approximately rect-
angular envelope for the 500-ms-long noise burst. The neural correlation consists
of a narrow zero-lag centered peak approximately 5 ms in width (W ) at half peak
amplitude (Fig. 5.2B, see Fig. 5.2C for detail).

Another example is based on recordings from the primary auditory cortex of the
cat. Here the stimulus consisted of a 450-s-long tone pip ensemble with random
presentation in frequency and time (Valentine and Eggermont 2004; Fig. 5.3, de-
tails in the legend) that was repeated once, thus resulting in an overall duration of
15 minutes. The functions shown are the cross-correlation coefficient function ac-
cording to (5.10) as a solid line, the shift predictor (dashed line), and the stimulus-
corrected neural correlation (the beaded solid line). One observes a very modest
stimulus correlation (shift predictor) because these long continuous stimuli produce
perstimulatory adaptation that reduces the degree of stimulus locking.
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Fig. 5.2 A: Simultaneous
and nonsimultaneous (i.e., the
shift-predictor; shaded)
cross-correlation histograms
for two units recorded from
the auditory midbrain in the
grassfrog under
amplitude-modulated noise
burst stimulation of 500-ms
duration. The triangular
shift-predictor results from
the approximately rectangular
stimulus envelope. A 30-Hz
stimulus-locked oscillation is
visible as well. B and C:
Difference histogram shown
on different time scales; W is
the width of the peak at half
amplitude. Bin width was
4 ms in A and B, and 1 ms
in C. The number of spikes
for each unit is indicated in
the top right of panel A. From
Epping and Eggermont
(1987)

5.4.2 Rate Correlation and Event Correlation

Cross-correlograms not infrequently show a narrow peak on a broader pedestal (e.g.,
Figs. 5.2A and 5.4E), especially when units are recorded on the same electrode
(Eggermont 1992a, 1992b; Nowak et al. 1995). The broader pedestal is typically
the result of covariance in firing rate between the two spike trains, e.g., caused by
the stimulus, whereas the sharp peak indicates event synchrony (Neven and Aertsen
1992). The rate covariance under spontaneous conditions can easily be estimated by
calculating a cross-correlogram for 50-ms bins that slide in 10-ms steps (Eggermont
and Smith 1995). Subtracting the rate covariance from the overall correlogram will
result in the event correlation.

This generally assumed model, even if correct, may result in an inaccurate es-
timation of the true event correlation. Staude et al. (2008) decomposed the raw
cross-correlation as the sum of the modulation rate covariance and spike coordi-
nation based on the mean conditional covariance of the processes given the rates.
Both, rate covariation and spike coordination alike, contribute to the raw correlation
function by triangular peaks. This separation does not always have to result in a
broad triangular peak for rate correlation and a narrow one for spike correlation; at
least in their procedure the reverse can be possible as well. Staude et al. (2008) posit
that “without prior knowledge of the underlying model class, rate estimation will
most likely be suboptimal. The resulting predictor leaves a residual central peak in
the corrected correlation function, which is likely to be wrongly interpreted as spike
coordination”.
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Fig. 5.3 This set of three cross-correlograms illustrates the stimulus-correction procedure applied
to spike trains recorded during a 900-s-long random frequency stimulus where the second half was
equal to the first. Stimuli were tone pips presented randomly in frequency and time with an overall
rate of 28/s across 7 octaves (112 frequencies, so an average rate of 0.25 frequencies/s). The record-
ing comprised two arrays of 16 electrodes each. Here we show the pair-correlation between two
neighboring electrodes separated by 0.5 mm. The uncorrected cross-correlation coefficient function
is shown in solid line, and the peak cross-correlation is approximately 0.082. The frequency tuning
of the two recording sites was nearly identical, yet the stimulus correlation obtained as a shift pre-
dictor (dashed line) shows only modest stimulus locking. The stimulus-corrected cross-correlation
coefficient function is shown in a connected-dot line

5.4.3 Stimulus-Dependent Neural Correlation

An example, exhibiting stimulus-dependent correlation, is provided in Fig. 5.4. As
discussed above, this may potentially result from using the invalid assumption of
“neural synchrony equals the sum of stimulus correlation and neural correlation”.
The two spontaneously active units shown were recorded in the auditory midbrain of
the grass frog on electrodes with an estimated tip separation of 130 µm. The sponta-
neous rates were 0.34 (A) and 2.5 (B) spikes/s, respectively. Their spectro-temporal
sensitivities, represented as dot displays of neural activity, as determined with tone
pips presented once per second, are shown in Fig. 5.4A, B. The spontaneous activity
of unit 1 was suppressed by frequencies below 1,000 Hz (Fig. 5.4A), whereas unit
2 was activated in this frequency range with a latency of 67 ms (Fig. 5.4B). Neu-
ral synchrony histograms and shift predictors (shaded) of spontaneous and stimulus
evoked activity are shown in Fig. 5.4C–H. In case of spontaneous activity the neu-
ral synchrony and shift predictor are flat and hardly different (Fig. 5.4C). For tone
pips, the shift predictor (Fig. 5.4D) shows a decrement due to the antagonistic (sup-
pression vs. activation) stimulus influence on the two units. Just showing on top
of the shift predictor a small, rather symmetric peak around the origin is visible,
likely indicating shared neural input. The shift predictor to sinusoidally amplitude-
modulated (AM) tone bursts is broad (Fig. 5.4E) with a sharp (W = 6 ms) peak of
the neural synchrony visible on top. The cross-correlation histograms to a low-pass
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Fig. 5.4 Unit pair with a
stimulus-dependent neural
correlation. A and B: dot
displays of single-unit
activity to tone pips with
carrier frequencies in the
range 100–3,200 Hz. C–F:
Simultaneous and
nonsimultaneous (shift
predictor; shaded)
cross-correlation histograms
for a variety of stimuli. Bin
width is 4 ms. From Epping
and Eggermont (1987)

noise AM tone (Fig. 5.4F), with an asymmetric peak of 16-ms half width. In addition
to the primary peak flanking valleys are present due to the autocorrelation structure
of the individual spike trains (Tetzlaff et al. 2008). The two units responded antag-
onistically to the tone-pip stimulus, but more alike to the other stimulus ensembles;
e.g., when stimulated with sinusoidally AM tonebursts (Fig. 5.4E) with a carrier
frequency of 500 Hz, the units both were excited by a band-limited range of AM
rates around 100 Hz. So it can be concluded that this unit pair exhibits stimulus
dependencies of both stimulus-induced cross-correlations as revealed by the shift
predictor as well as on neurally mediated cross-correlations because of changes in
form and width of peaks in the neural synchrony as compared with the shift predic-
tor.
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5.5 Pair Coherence for Neural Spike Trains

The spectrum of a spike train x(t) of length T with spikes at times xj is equal to

Sx(f )=
∑

0<xj≤T
w(n)e−i2πf xj .

If a long spike train of length U is divided into L disjoint sections of length T
such that LT = U , then useful estimates of the power spectra, cross-spectrum, and
coherence can be obtained that allow estimating statistical significances:

Ŝxy(f )= 1

LT

L∑
1

Sx(f )S
∗
y (f )

= 1

LT

L∑
l=1

( ∑
(l−1)T <xj≤lT

e−i2πf xj
∑

(l−1)T <yk≤lT
ei2πfyk

)
, (5.17)

γ̂ 2
xy(f )=

|Ŝxy(f )|2
Ŝxx(f )Ŝyy(f )

(5.18)

where the statistical significance boundary for γ̂ 2
xy(f ) is equal to 1− (1−α)1/(L−1)

at all frequencies f �= 0 (Brillinger et al. 1976). If the desired level of confidence,
α, is, for instance, 0.95, then (1 − α) gives the desired P -value of 0.05. Inserting
the number of disjoint sections over which the averaging was done gives the value
of γ̂ 2

xy(f ) that needs to be exceeded to get the desired significance level at all fre-
quencies.

Figure 5.5 gives an example for the same recording for which we previ-
ously showed the pairwise cross-correlogram and stimulus-correction procedure
(Fig. 5.3). An average over 90 segments of 10-s length results in a significance level
of P < 0.05 to be reached when the squared coherence exceeds 0.03. In contrast,
the same level of significant correlation in the time domain is already reached for a

level of SD(ρxy)=
√

1
N

, which for 2 SD and 450,000 bins, would be 0.003, i.e., 10
times smaller as for the coherence. This is likely the result of the correlogram peak
reflecting the coherence distributed over all frequencies.

5.5.1 Correcting for Common Input Firing Periodicities and
Firing Rates

According to de la Rocha et al. (2007), the stimulus-corrected cross-correlation co-
efficient for common input depends on the geometric mean of the firing rates of the
two neurons in cortical slice recordings and in their simulated data. This effect was
also very clear for in vivo recordings from visual cortex (Krüger 1991), and it was
used to argue that nearly all of the cortical cell correlations resulted from common
retinal input. It is therefore prudent to correct for these dependencies.
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Fig. 5.5 Powerspectra, magnitude of the cross-spectrum and squared coherence. The coherence
below 20 Hz is significant at all frequencies. Frequency zero is suppressed in all plots. The magni-
tudes are given in spikes/stimulus

The coherency γxy(f ) corrects for common periodicities (frequencies in the
spectra) in the firing rates and also for the level of the unit-firing rates by virtue of
the normalization based on the product of the powerspectra of the two spike trains.
This does not mean that it eliminates the effects of common input (Tetzlaff et al.
2008). The example shown (Fig. 5.6) was recorded from primary auditory cortex
in an anesthetized cat where the EEG showed spindle waves in the frequency range
of 8–10 Hz. These periodic oscillations are reflected in the firing times of the spike
trains and in the weak oscillatory character of the cross-correlogram (solid line).
The coherency corrects for the common periodicity in both spike trains, as can be
seen from its inverse Fourier transform (the dashed curve). This correction is akin to
deconvolving the cross-correlogram by the geometric mean of the autocorrelation
functions of the two spike trains (Eggermont and Smith 1996). One notices also the
strong contribution (>50%) of these spindle-related correlations on the peak value
of the cross-correlogram.
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Fig. 5.6 The
coherence-based-correction
procedure eliminates the
oscillatory aspects resulting
from anesthesia-induced
spindle oscillations in
auditory cortex. The dashed
curve represents the IFFT of
the complex coherence. Since
both units showed an
oscillatory autocorrelation at
the same frequency, the effect
thereof is eliminated using
the coherency. The vertical
axis represents the
cross-correlation coefficient

5.5.2 Oscillatory Cross-Correlograms

Especially in visual cortex, ketamine-anesthetized or awake, cross-correlograms
with a pronounced oscillatory character (frequencies in the gamma-band) have been
reported frequently (Singer and Gray 1995). In auditory cortex these oscillations
have been observed in local field potentials (Barth and MacDonald 1996) but not
in spiking activity (Eggermont 1992b; Horikawa et al. 1994). Consequently, these
high-frequency oscillations are commonly absent from correlograms in the audi-
tory system. In anesthetized animals spindle-related oscillations are frequently ob-
served (Fig. 5.6), and correction procedures therefore have been described above.
The high-frequency oscillations likely reflect common input as the correlograms
typically appear symmetric around zero lag, so their effect should disappear in
the coherence-corrected correlogram. Oscillatory symmetric correlation functions
can also result from the dynamics of the local network (Brunel and Hakim 1999;
Meyer and van Vreeswijk 2002), even without common input. Moreover, the co-
herence can reveal peaks at the network oscillation frequency (see, e.g., Fig. 9 in
Tetzlaff et al. 2008, or Fig. 6 in Kriener et al. 2008).

5.5.3 Stimulus Corrections in the Frequency Domain

The effects of stimulus correlations can be incorporated in the frequency domain
analysis and corrected for by using the partial coherency (Rosenberg et al. 1998) of
spike trains x(t) and y(t) given stimulus S(t), and is defined as

γxy|S(f )= γxy(f )− γSx(f )γyS(f )√
(1− |γSx(f )|2)(1− |γyS(f )|2)

. (5.19)

Here the effect of the stimulus S is incorporated as a common input to neurons x
and y.
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Fig. 5.7 Uncorrected cross-correlation coefficient functions (solid line) and coherency-corrected
ones (dashed line) for stimulation with a Poisson-distributed click train (mean rate 8/s) of
15-minute duration. Four pairs among three simultaneously recorded sorted units are shown. The
electrodes were 0.5 mm apart except for the [3 6] pair, which had a separation of 0.7 mm

For the example shown in Figs. 5.3 and 5.5, the partial coherency is smaller
than the coherency but only by a few percent. It is clear that either the shift pre-
dictor correction is more sensitive or that it is overcorrecting. This overcorrection
of the shift predictor is very clear for strong stimulus effects on the firing rate (Eg-
germont 1994). An example where the difference between the coherence and the
partial coherence is somewhat larger is found in data obtained with 15-minute stim-
ulation with a Poisson-distributed click train. In Fig. 5.7 we show the peak cross-
correlation coefficient (solid lines) for four simultaneously recorded pairs (neigh-
boring electrode separation 0.5 mm) from primary auditory cortex, as well as the
inverse Fourier transform of the (complex) coherence (dashed lines).

For the same data set, we show the magnitude of the coherency (solid lines)
and partial coherency (dashed lines) in Fig. 5.8. One observes that even for a fairly
strong stimulus correlation as was observed here, the partial coherence is, except
at frequency 0 representing the mean value, at most only 15% smaller than the
coherence.

In order to compare stimulus correction in the time and frequency domains, we
calculated the effect of stimulus-induced common input based on both the shift-
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Fig. 5.8 Magnitude of the coherence (solid line) and partial coherence conditional upon the stim-
ulus (dashed line) for the same pairs as in Fig. 5.7

predictor-corrected coherence and the partial coherence for a very simple model
(see insert in Fig. 5.9). Neurons x and y have different and uncorrelated Poisson-
distributed firing patterns with the same mean rate. The stimulus-induced activity
is also Poisson distributed, is exactly the same for both units, and repeats once (so
that a shift predictor can be calculated). The stimulus-evoked firing rate was fine
tuned by P(firing) which was between 0 and 1. If we define the signal-to-noise
ratio, SNRP = Stimulus rate ∗ P(firing)/Spontaneous rate, then we obtain the fol-
lowing expressions (for this special simple model) for the coherence γxy , the shift-
prediction-corrected coherence γxy|Shift, and the partial coherence γxy|S :

γxy = SNRP /(1+ SNRP ),

γxy|Shift =
[
1− P(firing)

] ∗ SNRP /(1+ SNRP ),

γxy|S =
[
1− P(firing)

] ∗ SNRP /
{
1+ SNRP ∗

[
1− P(firing)

]}
.

The ratio between the shift-predictor-corrected coherence γxy|Shift and the partial
coherence γxy|S is 1− [SNRP /(1+ SNRP )] ∗P(firing). The contours in the figure
result from a change in P (firing) from 0 to 1 in counter-clock wise fashion. For
P(firing)= 0 and for P(firing)= 1, the shift-predictor-corrected coherence and the
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Fig. 5.9 Relationship between the partial coherence (correcting for common input induced
by a stimulus) and the shift-predictor-corrected coherence (calculated from an FFT of the
shift-predictor corrected cross-correlation function, and the powerspectra of x(t) and y(t)) for
the model shown in the insert. SNR values are representing Stimulus rate/Spontaneous rate,
the P (firing) is the variable here (between 0.0125 and 1, anti-clockwise). Thus the smallest
SNRP = Stimulus rate ∗ P (firing)/Spontaneous rate (see text) used was 0.0062. The partial co-
herence is always highest at P (firing)= 0.5, because of the product (1− P (firing))(P (firing)) in
the numerator of the equation for γxy|S

partial coherence give the same result. For 0 < P(firing) < 1, the shift-predictor-
corrected coherence is always smaller than the partial coherence, and there is no
one-to-one relationship between them. For P(firing) < 0.2, the relationship between
shift-predictor-corrected coherence and partial coherence is approximately linear.
For lower SNR, this is graphically shown in Fig. 5.9.

There is a time domain counterpart of the partial coherency in the form of the
partial correlation optionally with different delays (Stark et al. 2006),

ρxy(τ1)|S(τ2) =
ρxy(τ1) − ρxS(τ2)ρy(τ1)S(τ2)√
(1− ρ2

xS(τ2)
)(1− ρ2

y(τ1)S(τ2)
)
; (5.20)

here τ1 is the delay between x(t) and y(t), and τ2 is the delay between S(t) onset
and x(t). This formulation has the advantage that delayed correlations, such as re-
sulting from conduction delays in the common stimulus correlation, can be taken
into account. When no delays are used, one obviously has the partial correlation at
delay zero.
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5.5.4 Time-Dependent Coherence

Most neurophysiological spike trains, e.g., under stimulus conditions, are nonsta-
tionary, although they are often periodic stationary. A simple extension of the co-
herence function allows visualization of the change in coherence as a function of
time after stimulus onset. This can be very useful if long but repeated stimuli are
used, such as vocalizations or changing natural scenes. It is also useful to inspect
whether the coherence changes for all frequency ranges (e.g., in the delta, alpha,
and gamma ranges) in the same way.

The time-dependent coherence is given as

γ 2
xy(τ, f )=

|Sxy(τ, f )|2
Sxx(τ, f )Syy(τ, f )

. (5.21)

Here τ is the time since stimulus onset. If the spike trains are periodic stationary
(interval T ), the standard averaging procedure is done modulo T , and significance
levels can be calculated (Zhan et al. 2006).

5.6 Correlation and Connectivity

In general, there is a unique relationship between known connectivity and observed
cross-correlation. The reverse is unfortunately not true; a given cross-correlogram
can result from many potential underlying neural connectivities. From the neural
correlation one can, only under certain assumptions with respect to the integration
of neural input and the shape on the neuron’s response curve, estimate the strength
of the neural interaction. Because the estimate of the peak neural correlation is very
sensitive to the shape and working point of the neuron’s response curve (Melssen
and Epping 1987), it is generally not permitted to equate the strength of the neural
correlation estimated from extracellular recordings with the strength of the neural
interaction. When an actual stimulus is applied, one of its effects, especially for
cortical neurons, will be to shift the neuron’s working point, and apparent changes
in neural correlation may be found without a concomitant change in the strength of
the neural interaction (Aertsen and Gerstein 1985; Melssen and Epping 1987).

The simplest interactions shown by a pair of neurons are that one neuron makes a
direct excitatory or inhibitory connection with the other, or that both neurons share a
common excitatory or inhibitory input. It has been shown in simulation studies that
common excitatory input and common inhibitory input result in a peak in the cross-
correlogram around zero lag time. Reciprocal excitatory and inhibitory inputs to the
neurons provided by the same source result in a central dip in the cross-correlogram
(Moore et al. 1970). Unilateral excitation shows a peak shifted to positive lag times,
and unilateral inhibition shows a dip at positive lag times.

In auditory cortex evidence for direct excitation or inhibition has been scant,
unless the neuron pairs were recorded on the same electrode (Eggermont 1992a,
1992b), and all correlograms are of the common-input type. In visual cortex sev-
eral interaction types have been shown for recordings with dual electrodes from
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Fig. 5.10 Potential functional connectivity underlying cross-correlation functions. Simultaneous
and nonsimultaneous (shift predictor; shaded) cross-correlation histograms are superimposed.
A: neural synchrony, incremental correlogram. B: neural synchrony, decremental correlogram.
C: unidirectional excitatory input. D: neural shared input. E: unidirectional excitatory input.
F: neural shared input. Stimulus-driven activity in A–D, spontaneous activity in E and F. Note
different time scales. Simple connectivity schemes that can account for the observed phenomena
are shown as insets. S, stimulus; 1, neuron 1; 2, neuron 2; u, unobserved neuron. Open and closed
triangles indicate excitatory and inhibitory connections, respectively. From Epping and Eggermont
(1987)

cells at different depth in the same cortical column (Toyama et al. 1981). However,
more variety in correlogram shapes was found in the auditory midbrain (Epping
and Eggermont 1987). In the examples shown in Fig. 5.10 we show (A) stimulus-
induced common excitatory effects without neural correlation for units recorded on
the same electrode and (B) stimulus-induced common suppressive effects for a pair
recorded on electrodes separated by 130 µm. In both cases the shift predictor is
equal to the neural synchrony. Weak stimulus-induced activation combined with a
direct excitatory effect from one neuron upon the other recorded on the same elec-
trode (C) is inferred because the shift predictor is hardly visible and the peak of the
correlogram is displaced by 6 ms from the origin and highly asymmetrical. This is
interpreted as a unidirectional excitatory influence of unit 1 on unit 2. In these three
examples the stimulus consisted of random frequency tone pips presented once per
second. Part D shows stimulus-induced (Poisson-distributed clicks) common input
for a pair recorded with electrodes separated by 290 µm putatively via an unob-
served neuron (D), because it has a pronounced shift predictor. For two spontaneous
recordings (E, F), reason for the flat shift predictors, unidirectional excitatory input
was observed for a single electrode pair (E) and common input for a dual electrode
pair (separation 160 µm; F). The highly asymmetrical peak of the neural synchrony
displaced from the origin in part E indicates that unit 1 exerts a unidirectional ex-
citatory influence on unit 2. However, there may be a complication due to the dead
time of the spike sorting procedure, and it may well be a common input neural cor-
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relation as well. This is a known drawback of using sorted units recorded on the
same electrode.

5.7 Effects of Spike Sorting on Pair-Correlations

Multiunit (MU) recording is common in structures with high cell densities and es-
pecially using multielectrode arrays. Spike sorting can result in well-sorted units,
but by no means one can be sure that one is dealing with single units (SU); that is,
only the case when doing intracellular or patch-clamp recordings. Evidence from
neural modeling suggests that interpretation of neural correlations from multiunit
recordings may be ambiguous as it is not a linear combination of correlations for
the various single-unit pairs (Bedenbaugh and Gerstein 1997; Gerstein 2000). How-
ever, changes in single-unit correlation strengths will be accompanied by compa-
rable changes in the correlation between multiunit activity as shown in Eggermont
(2000). Thus, if a number of single units contribute to each multiple-single-unit
recording, the changes in the MU values will be positively, but nonlinearly, related
to those for the corresponding SU ones. So if SU correlations go up, so will the
MU correlation. The only difference is that the R-values are larger for MU than
for the corresponding SU ones but smaller than the sum of all the relevant SU pair
R-values. Trying to estimate functional connectivity from sorted multiunit activity
is not encouraged.

5.8 Correlations and the Brain

Calculating a shift predictor or any other type of stimulus predictor is a way to
extract the effects of stimulation on the effective neural connectivity despite the
drawbacks that we discussed. However, as we have previously argued (Tomita and
Eggermont 2005), it is unlikely that the nervous system performs a correction for
stimulus-induced correlation as estimated by the various predictors. It is the ac-
tual spike coincidences, i.e., the neural synchrony, that are affecting the potential
for firing in a target neuron the nonstimulus-corrected ones. Thus raw correlations
may effectively estimate those coincident firings between neurons that could play
a role in neural population coding of sound. The effect of removing common pe-
riodicities in spike firing and common bursting activity from the cross-correlation
can be justified because these contributions typically do not occur, or occur much
less, in awake animals and are often the result of using anesthesia. Nevertheless,
in our data for long steady-state stimuli, the effects of a stimulus correction based
on the shift predictor are minimal (Fig. 5.3), so using the stimulus-correction pro-
cedure has minimal effect on the interpretation of the data. However, for transient
and optimal stimuli, the stimulus correction can be extensive and even remove all
correlation (Eggermont 1994), so in this case one has to consider what the corre-
lation estimate needs to support. If one is concerned with estimating connectivity
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or deciding which wiring scheme is most likely, then both stimulus corrections and
corrections for common, network-induced, activity need to be performed. If one is
concerned with how the brain performs its task in vivo, then these corrections may
obscure the very aspects one wants to understand.
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Chapter 6
Dependence of Spike-Count Correlations on
Spike-Train Statistics and Observation
Time Scale

Tom Tetzlaff and Markus Diesmann

Abstract Spiking activity is typically measured by counting the number of spikes
in a certain time interval. The length of this interval, the “bin size”, varies con-
siderably across studies. In this chapter, we provide a mathematical framework to
relate the spike-count statistics to the statistics of the underlying point processes. We
show that spike-count variances, covariances, and correlation coefficients generally
depend in a nontrivial way on the bin size and on the spike-train auto- and cross-
correlation structure. The spike-count coherence, in contrast, constitutes a correla-
tion measure independent of bin size.

6.1 Introduction

Spiking activity is commonly considered as the computational basis of neural
processing. Spike data, however, can be represented in many different forms.
A standard measure of spiking activity is the spike count, i.e., the number of ob-
served action potentials in a given time interval. Depending on the underlying
question and method, the length of this time interval—the bin size—can con-
siderably differ in different studies and preparations. Measured “spike trains”,
for example, are typically spike-count signals at small time scales in the mil-
lisecond or submillisecond range, usually resulting in binary sequences of zeros
and ones. In many studies, however, spike counts are computed on larger time
scales of several milliseconds, seconds, or even minutes (e.g., Bair et al. 2001;
Kohn and Smith 2005). This chapter is particularly dedicated to the question to
what extent the choice of the observation time scale affects standard correlation
measures like correlation functions, correlation coefficients, or coherences. To this
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Fig. 6.1 Relation between shot-noise and spike-train correlation functions. Two spike trains ξi (t)
and ξj (t) are transformed by the linear filters fi(t) and fj (t), respectively, into shot-noise signals
xi(t) and xj (t). The resulting shot-noise correlation function cij (τ ) follows from the spike-train
correlation function ψij (τ ) by convolution with the filter correlation φij (τ ) (see (6.6))

end, we will use a rather general approach and consider spike-count signals as lin-
early filtered point processes, i.e., as shot-noise signals. The results of this chapter
can therefore be applied to a much broader class of neuronal signals: intracellular
membrane potentials, membrane currents, and the resulting extracellular signals like
local-field potentials, ECoG, or EEG signals can be considered as superpositions of
spike trains filtered by components of the neural system (synapses, membranes) and
the measurement process. In many cases, these filters can be approximated by lin-
ear filters. Here, we will mainly focus on spike-count signals. For a more general
discussion, see Tetzlaff et al. (2008).

In Sect. 6.2, we will show that the second-order statistics of shot-noise signals,
quantified, for example, by correlation functions, variances, covariances, or corre-
lation coefficients, generally exhibits a complex dependence on the filter properties
(e.g., the bin size of spike counts) and the statistics of the underlying point processes
(spike trains)—even under simplifying conditions like stationarity. The shot-noise
coherence, in contrast, is independent of a (unique) linear filter kernel and therefore
provides a much less ambiguous correlation measure (as compared to correlation
coefficients).

One of the major causes of correlated firing in neural networks is common presy-
naptic input. In Sect. 6.3, we will therefore consider a simple common-input model
which allows us to generate correlated spike trains in a natural fashion and to il-
lustrate how the spike-train statistics and the observation time scale alter measured
spike-count correlations.

6.2 Shot-Noise Correlations

This section reviews how linear filtering of spike-trains affects the correlation struc-
ture of the resulting shot-noise signals both in the time and frequency domain (see
Fig. 6.1).
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6.2.1 Shot-Noise

In the following, we consider signals xi(t) constructed from spike trains1 ξi(t) by
convolution (∗) with some time-invariant kernel fi(t) (linear filtering):

xi(t) := (ξi ∗ fi)(t)=
∫ ∞

−∞
ds ξi(s)fi(t − s). (6.1)

In the literature, xi(t) is commonly called shot-noise if ξi(t) is a realization of a
Poisson point process (e.g., Papoulis and Pillai 2002). Here, we adopt this term for
general point processes. Various measures in theoretical and experimental neuro-
science can be described as shot-noise. The subthreshold membrane potential of
the linear Integrate-and-Fire neuron model with current-based synapses (Tuckwell
1988), for example, is a convolution of the incoming spike trains with the post-
synaptic potentials (PSPs). It has been shown that population signals like local-
field potentials (LFPs), EEG, and even fMRI (BOLD) signals exhibit a consid-
erable correlation with linearly filtered spike data (e.g., Logothetis et al. 2001;
Mukamel et al. 2005).

In spike-train analysis, we typically have to deal with spike counts

xhi (t) :=
∫ t+h
t

ds ξi(s), (6.2)

i.e., the number of spikes observed in a time window [t, t+h). The spike count (6.2)
is a shot-noise process since it can be considered as resulting from the convolution
of a spike train ξi(t) with the rectangular kernel

fi(t)=
{

1, −h < t ≤ 0,

0, else.
(6.3)

In many applications, the spike count is computed on a discrete-time grid t ∈ {k ·h |
k ∈N}, whereas here we consider the general case of continuous time where spikes
are counted in a sliding window (moving average). The results of this section are
formally the same both for the continuous and discrete cases. In the latter, time
integrals (convolutions) have to be replaced by sums over time steps.

6.2.2 Correlation Functions

We define the two-dimensional spike-train and shot-noise correlation functions
ψij (t, t

′) := E[ξi(t)ξj (t ′)] and cij (t, t ′) := E[xi(t)xj (t ′)], respectively, as the ex-
pected2 products of the two spike trains ξi(t), ξj (t ′) and the two shot-noise signals

1Throughout this chapter, we refer to a specific spike-train realization ξi(t) as a sum over delta-
functions centered at the spike times tki : ξi (t) :=∑k δ(t − tki ).
2Here, E[·] denotes an average over realizations (trials).
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xi(t), xj (t ′) evaluated at times t and t ′ (Aertsen et al. 1989). Offset subtraction,
ξ̃i (t) := ξi(t)− νi(t) and x̃i (t) := xi(t)− (νi ∗ fi)(t), yields the corresponding co-
variance functions

ψ̃ij
(
t, t ′
) := E

[
ξ̃i (t)ξ̃j

(
t ′
)]
,

c̃ij
(
t, t ′
) := E

[
x̃i (t)x̃j

(
t ′
)]
. (6.4)

Here, νi(t) := E[ξi(t)] denotes the instantaneous rate of the process ξi(t) (see
Chap. 2). According to (6.1) and (6.4), the shot-noise and spike-train covariance
functions are linked by a two-dimensional convolution with the filter kernels fi(t)
and fj (t):

c̃ij
(
t, t ′
)=
∫ ∞

−∞
ds
∫ ∞

−∞
ds′ ψ̃ij

(
s, s′
)
fi(t − s)fj

(
t ′ − s′). (6.5)

Assuming time invariance of ψ̃ij (t, t ′) (second-order stationarity), we obtain the
one-dimensional shot-noise covariance function (Papoulis and Pillai 2002)

c̃ij (τ ) := c̃ij (t, t + τ)= (ψ̃ij ∗ φij )(τ ) (6.6)

as a convolution between the one-dimensional spike-train covariance function

ψ̃ij (τ ) := ψ̃ij (t, t + τ)= ψ̃ij (0, τ ) (∀t, τ ) (6.7)

and the (deterministic) correlation function φij (τ ) :=
∫∞
−∞ dt fi(t)fj (t + τ) of the

two filter kernels fi(t) and fj (t).
For the analysis of parallel spike-count signals xhi (t) and xhj (t), typically a unique

bin size h is used. The filter kernels fi(t) and fj (t) given in (6.3) are therefore
identical, i.e., f (t) := fi(t)= fj (t). According to (6.6), the spike-count covariance
function c̃ij (τ ) results from smoothing the spike-train covariance function ψ̃ij (τ )
with the triangular autocorrelation3

φ(τ)=
∫ ∞

−∞
dt f (t)f (t + τ)=

{
h− |τ |, −h < τ ≤ h,
0, else,

(6.9)

of the rectangular spike-count kernel f (t).

3If fi(t) �= fj (t) and assuming hi < hj , φ(τ) has to be replaced by the filter cross-correlation

φij (τ )=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, τ ≤−hj ,
hj + τ, −hj < τ ≤ − (hj − hi),
hi , −(hj − hi) < τ ≤ 0,

hi − τ, 0< τ ≤ hi,
0, τ > hi .

(6.8)
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6.2.3 Variance, Covariance and Correlation Coefficient

The shot-noise covariance c̃ij (or variance for i = j ) is obtained by evaluating the
covariance function c̃ij (τ ) at zero lag τ = 0. According to (6.6), this is the area of
the product of the spike-train covariance function and the filter correlation function:

c̃ij := c̃ij (0)=
∫ ∞

−∞
dt ψ̃ij (t)φij (−t). (6.10)

For signals xi(t), xj (t) with finite variance, the covariance can be normalized by
the fluctuations of the individual signals to the scale [−1,1]. This defines Pearson’s
correlation coefficient (Perkel et al. 1967b; Hollander and Wolfe 1999; Feller 1971)

rij := c̃ij√
c̃ii c̃jj

=
∫∞
−∞ dt ψ̃ij (t)φij (−t)√∫∞

−∞ dt ψ̃ii (t)φii(t)
∫∞
−∞ dt ′ ψ̃jj (t ′)φjj (t ′)

. (6.11)

Note that rij generally depends on both the (joint and marginal) statistics of the
underlying spike trains and the features of the filter kernels, even if the kernels fi(t)
and fj (t) are identical, i.e., φij (t)= φii(t)= φjj (t). Only if, in addition, all spike-
train covariance functions ψ̃ii/jj/ij (τ ) are delta-shaped (e.g., precisely correlated,
stationary Poisson processes), the filter contributions cancel out.

With the autocorrelation (6.9) of the spike-count kernel (6.3), we obtain the
spike-count covariance

c̃hij =
∫ h
−h

dτ
(
h− |τ |) · ψ̃ij (τ ) (6.12)

for a given (unique) bin size h. For i = j , (6.12) resembles the result for the spike-
count variance presented in Papoulis and Pillai (2002). The spike-count correlation
coefficient

rhij :=
c̃hij√
c̃hii c̃

h
jj

=
∫ h
−h dτ (h− |τ |)ψ̃ij (τ )√∫ h

−h dτ (h− |τ |)ψ̃ii (τ )
∫ h
−h dτ ′ (h− |τ ′|)ψ̃jj (τ ′)

(6.13)

is, up to the triangular prefactors (h − |τ |), the normalized area of the spike-train
cross-covariance function in the interval [−h,h]. The dependence of the spike-count
covariance c̃hij and correlation coefficient rhij on the bin size is emphasized here by
the superscript “h”.

Consider the simple example of two stationary Poisson processes ξi(t), ξj (t)
with constant rates νi , νj and autocovariance functions (Papoulis and Pillai 2002)

ψ̃ii/jj (τ )= νi/j δ(τ ). (6.14)

Applying (6.12) immediately recovers the well-known result for the spike-count
variance of a Poisson process,

c̃hii/jj = νi/j
∫ h
−h

dτ
(
h− |τ |) · δ(τ )= νi/jh, (6.15)
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with a linear dependence on the bin size h. A similar result is obtained for the
count covariance c̃hij of two processes with delta-shaped cross-covariance function

ψ̃ij (τ ) ∼ δ(τ ). Only in this highly artificial case, the dependence on the bin size
h disappears in the correlation coefficient rhij . Natural spike trains typically exhibit
structured covariance functions. It is a major objective of this chapter to point out
that a non-delta-type correlation structure leads to a complex dependence of corre-
lation coefficients on the properties of the filter kernels, in particular on the bin size
h for spike-count signals.

6.2.4 Spectra and Coherence

Correlations in or between time series are often considered not only in the time
but also in the Fourier (frequency) domain (see Chap. 5). If we denote Ξi(ω) and
Fi(ω) as the Fourier transforms4 of the spike-train ξi(t) and the filter kernel fi(t),
respectively, the Fourier transform of the shot-noise xi(t) defined in (6.1) reads
Xi(ω)=Ξi(ω)Fi(ω). Given the one- and two-dimensional spike-train spectra5

Ψ̃ij
(
ω,ω′

) := F
[
ψ̃ij
(
t, t ′
)](
ω,ω′

)
and Ψ̃ij (ω) := F

[
ψ̃ij (τ )

]
(ω), (6.16)

we obtain

C̃ij
(
ω,ω′

)= Ψ̃ij (ω,ω′)Fi(ω)Fj (ω′) and C̃ij (ω)= Ψ̃ij (ω)Φij (ω) (6.17)

as the one- and two-dimensional power- (i = j ) and cross-spectra (i �= j ) of the
shot-noise signals by Fourier-transforming equations (6.5) and (6.6), respectively.
Φij (ω) := Fi(ω)F ∗j (ω) in (6.17) denotes the power- (i = j ) or cross-spectrum
(i �= j ) of the filter kernels fi(t) and fj (t) (the superscript “∗” represents the com-
plex conjugate).

A normalized correlation measure in the frequency domain is the complex coher-
ence (Priestley 1983; Jarvis and Mitra 2001)

κ ′ij (ω) :=
C̃ij (ω)√

C̃ii(ω)C̃jj (ω)

= Ψ̃ij (ω)Φij (ω)√
Ψ̃ii(ω)Ψ̃jj (ω)Φii(ω)Φjj (ω)

, (6.18)

which is defined as the ratio between the cross-spectrum C̃ij (ω) and the geomet-
ric mean of the power spectra C̃ii/jj (ω). Its modulus (amplitude) κ(ω) := |κ ′(ω)|,
restricted to the range [0,1], is called coherence. The phase of the complex coher-
ence (6.18) contains information about the temporal alignment of the two signals
xi(t) and xj (t) and can therefore be used to study delays or negative correlations
(anti-correlations). Note, that the definition of the coherence is only meaningful at
frequencies with nonvanishing power.

4Throughout this chapter, Fourier transforms will be represented by capital letters.
5F[·](ω,ω′) and F[·](ω) denote the two- and one-dimensional Fourier integrals, respectively.
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With Φij (ω)= Fi(ω)F ∗j (ω), it turns out that the coherence κ(ω) is—in contrast
to the correlation coefficient rij in (6.11)—independent of the linear filter kernels
fi/j (t) and exclusively reflects the statistical properties of the spike trains (Brown
et al. 2004):

κ(ω)= |Ψ̃ij (ω)|√
Ψ̃ii(ω)Ψ̃jj (ω)

(
for any fi(t) and fj (t)

)
. (6.19)

This, however, does not hold if the shot-noise signals arise from superpositions
xi(t)=∑n

k=1(ξk ∗ fik)(t) of n spike trains convolved with different kernels fik(t).
In this case, the spectra read C̃ij (ω)=∑k

∑
l Ψ̃kl(ω)Fik(ω)F

∗
j l(ω). In general, the

resulting coherence is filter independent only if the kernels fik(t) (k ∈ [1, n]) are
identical.

Note that κ ′(ω) evaluated at frequency ω = 0 is the area of the covariance func-
tion normalized by the areas of the autocovariance functions

κ ′(0)=
∫∞
−∞ dτ c̃ij (τ )√∫∞

−∞ dτ c̃ii (τ )
∫∞
−∞ dτ ′ c̃jj (τ ′)

. (6.20)

In the neuroscientific context, κ ′(0) is frequently called “correlation coefficient”,
too (e.g., Bair et al. 2001; Kohn and Smith 2005; Moreno-Bote and Parga 2006).
The motivation to prefer κ ′(0) over rij in these works is the observation that peaks
in neuronal correlation functions typically have some temporal extent and that the
width of the peaks varies depending on the system and the experimental proto-
col. Therefore, an integrated measure appears adequate. Our considerations above
demonstrate an additional advantage of κ ′(0): it is independent of a joint shot-
noise kernel. Here, we reserve the term “correlation coefficient” for rij as defined
in (6.11).

6.3 Spike-Count Correlations in a Simple Common-Input Model

Equipped with the formalism to study the correlation between two shot-noise sig-
nals developed in the previous section, we demonstrate in this section how non-
Poissonian spike statistics and nonstationary firing rates affect pairwise correlations
between spike-count signals generated by a simple common-input model. To this
end, we define a minimal structural model describing two neurons sharing part of
their inputs (Sect. 6.3.1) and derive the resulting spike-train correlation functions
(Sect. 6.3.2). Section 6.3.3 exploits the results of Sect. 6.2 to calculate the variance,
the covariance, and the correlation coefficient of spike-count signals for two ex-
amples introduced in Sects. 6.3.2.1 and 6.3.2.2. A Gamma process (Sect. 6.3.2.1)
is considered to highlight how measured correlations depend on the autocorrela-
tion of the common source. An inhomogeneous Poisson processes with sinusoidal
rate modulation in time and random phase across trials (Sect. 6.3.2.2) is employed
to clarify the notion of nonstationarity in the context of the correlation coefficient.
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Fig. 6.2 Sketch of two correlated model spike trains ξi (t), ξj (t) constructed by merging spikes
from a common source ξc(t) (gray bars) and two disjoint independent Poissonian sources ξdi (t)
and ξdj (t) (black bars). The common source ξc(t) is modeled either as a Gamma process
(Sect. 6.3.2.1) or as an inhomogeneous Poisson process with oscillating firing rate (Sect. 6.3.2.2).
Figure modified from Tetzlaff et al. (2008)

The subsequent section Sect. 6.3.4 demonstrates that for a large class of processes,
the high-frequency coherence reflects the common-input strength and therefore pro-
vides an unambiguous measure that depends neither on the filter nor on the marginal
spike-train statistics. The final part (Sect. 6.3.5) of this section is concerned with
the natural situation where spike cross-correlations exhibit a temporal dispersion as
originating from heterogeneous delays, a finite rise time of the postsynaptic poten-
tials, or other mechanisms.

6.3.1 Model Definition

Two spike trains ξi(t) and ξj (t) constituting the total presynaptic activity of two
neurons i and j are constructed by superimposing two disjoint processes ξdi (t) and
ξdj (t) with a process ξc(t) shared by both neurons:

ξi(t)= ξdi (t)+ ξc(t), ξj (t)= ξdj (t)+ ξc(t) (6.21)

(see Fig. 6.2 for an illustration of the architecture). To reduce the number of param-
eters, we assume that the rates of ξi(t) and ξj (t) are identical, ν(t) := νi(t)= νj (t).
The strength of the common source is parameterized by the relative contribution
α := νc(t)/ν(t) of its firing rate to the total rate. The rates of the background
processes ξdi (t) and ξdj (t) can thus be expressed as νd(t) := νdi (t) = νdj (t) =
(1− α)ν(t).

6.3.2 Correlation Functions

The (one-dimensional) auto- and cross-covariance functions of the two (centered)
spike trains ξ̃i (t) and ξ̃j (t) are

ψ̃ii(τ )= E
[
ξ̃i (t)ξ̃i (t + τ)

]= ψ̃didi (τ )+ ψ̃dic(τ )+ ψ̃cdi (τ )+ ψ̃cc(τ ), (6.22)

ψ̃ij (τ )= E
[
ξ̃i (t)ξ̃j (t + τ)

]= ψ̃didj (τ )+ ψ̃dic(τ )+ ψ̃cdj (τ )+ ψ̃cc(τ ). (6.23)
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In general, both are determined by the marginal and the joint second-order spike-
train statistics. Let us, again for the sake of simplicity, assume that the disjoint and
the common processes are mutually uncorrelated:

ψ̃didj (τ )= ψ̃dic(τ )= ψ̃dj c(τ )= 0. (6.24)

In this case, (6.22) and (6.23) reduce to

ψ̃ii(τ )= ψ̃didi (τ )+ ψ̃cc(τ ), (6.25)

ψ̃ij (τ )= ψ̃cc(τ ). (6.26)

The disjoint inputs are modeled as stationary Poissonian sources with constant firing
rate νd ; hence,

ψ̃didi (τ )= νdδ(τ ). (6.27)

In order to dissect the effect of different aspects of the common source process ξc(t)
on common-input correlations, we investigate two specific cases. The stationary
Gamma process (Sect. 6.3.2.1) is discussed as a simple example of a non-Poissonian
point processes in order to demonstrate how common-input correlations are altered
by the interval distribution of the common source process. The effect of nonsta-
tionarity in time and across trials on common-input correlations is discussed by
modeling the common source process as an inhomogeneous Poisson process with
sinusoidal rate and random phase (Sect. 6.3.2.2).

6.3.2.1 Gamma Source

Let the common source emit spikes at intervals drawn from a Gamma distribution

p1(τ )= νcγ (νcγ τ)
γ−1

(γ − 1)! exp(−νcγ τ) (6.28)

with positive integer orders γ ∈N
+. The autocorrelation function of a general point

process is determined by the sum over all kth-order interval distributions pk(τ)
(Perkel et al. 1967a, see also Chap. 1 of this book):

ψcc(τ )= νc
(
δ(τ )+

∞∑
k=1

pk
(|τ |)
)
. (6.29)

For any renewal process, consecutive intervals are independent (Cox 1962). There-
fore, pk(τ) is the k-fold convolution of the first-order density

pk(τ)= (p1 ∗ · · · ∗ p1)︸ ︷︷ ︸
k

(τ ). (6.30)

As (6.30) factorizes in the Fourier domain, i.e., Pk(ω) = P1(ω)
k , the power-

spectrum of a renewal process reads:
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Ψcc(ω)= F
[
ψcc(τ )

]
(ω)

= νc
(

1+
∞∑
k=1

{
P1(ω)

k + P ∗1 (ω)k
})

= νc
(

1− 2+
∞∑
k=0

{
P1(ω)

k + P ∗1 (ω)k
})

= νc
([

1− P1(ω)
]−1 + [1− P ∗1 (ω)]−1 − 1

)
. (6.31)

The Fourier transformed first-order interval density of the Gamma process is given
by Cox (1962)

P1(ω)= F
[
p1(t)

]
(ω)=

(
γ νc

γ νc + ıω
)γ
. (6.32)

The autocorrelation function ψcc(τ ) can now be obtained by (numerically) comput-
ing the inverse Fourier transform of the spectrum (6.31). A closed analytical expres-
sion for the autocovariance function can also be derived by a direct evaluation of
(6.29)6:

ψ̃cc(τ )= νcδ(τ )+ ν2
c

γ−1∑
l=1

e2πil/γ exp
(
γ νcτ

[
e2πil/γ − 1

])
. (6.33)

Gamma processes are frequently considered as models of neuronal firing since
they can mimic the refractory behavior of neurons following spike emission. For
γ > 1, short inter-spike intervals become more and more unlikely. This is reflected
in the autocovariance functions which exhibit a trough around the central peak at
τ = 0 (see Fig. 6.3A, left). A limitation of the choice of Gamma processes is their
tendency to become more and more regular with the coefficient of variation scaling
as 1/

√
γ (Cox 1962). Observed coefficients of variation in cortical spike trains,

however, are close to one (Softky and Koch 1993).

6.3.2.2 Inhomogeneous Poisson Source

In a second example, we model the common source as a doubly stochastic pro-
cess (“Cox process”; see Daley and Vere-Jones 2005) where not only the spike-train
realizations l but also the rate profiles are random. In the kth trial, ξ lc(t |k) is con-
sidered as a realization of a Poisson process with a time-dependent rate function
νkc (t) := El[ξ lc(t |k)] and autocorrelation (Papoulis and Pillai 2002)

ψkcc
(
t, t ′
) := El

[
ξ lc(t |k)ξ lc

(
t ′|k)]= νkc (t)δ(t − t ′)+ νkc (t)νkc (t ′). (6.34)

6For a derivation, see Pipa et al. (2010).



6 Time-Scale Dependence of Spike-Count Correlations 113

Fig. 6.3 Bin-size dependence of spike-count correlations (analytical results: curves, simulation:
symbols) in the simple common-input model. Left column: common Gamma source of orders γ = 1
(black, circles), γ = 2 (dark gray, squares), and γ = 15 (light gray, diamonds) with common-in-
put strength α = 0.5 and total firing rate ν = 10 s−1 (40 trials, simulation time T = 1000 s). Right
column: common Poissonian source with sinusoidal rate function of frequency f0 = 10 Hz (black,
circles), f0 = 20 Hz (dark gray, squares), and f0 = 100 Hz (light gray, diamonds; common-input
strength α = 0.5, total firing rate ν = 1000 s−1, 10 trials, simulation time T = 2 s). (A) Spike-train
cross-covariance functions ψ̃ij (τ ) (zero-lag peaks truncated). (B) Normalized spike-count vari-
ances c̃hii/h, (C) covariances c̃hij /h, and (D) correlation coefficients rhij as functions of the bin size
h (log-scaled abscissa). Figure modified from Tetzlaff et al. (2008)

Across trials, the firing rate profiles νkc (t) change randomly. In the following, all
expectation values E[·] therefore have to be interpreted as expectations over realiza-



114 T. Tetzlaff and M. Diesmann

tions l and over trials k, i.e., E[·] = Ek[El[·]]. After averaging over k, the covariance
function reads

ψ̃cc
(
t, t ′
)= Ek

[
νkc (t)

]
δ
(
t − t ′)+ γ̃cc(t, t ′), (6.35)

with

γ̃cc
(
t, t ′
)= Ek

[
νkc (t)ν

k
c

(
t ′
)]− Ek

[
νkc (t)

]
Ek
[
νkc
(
t ′
)]

(6.36)

being the autocovariance function of the firing rate. If the rate functions were iden-
tical in each trial, averaging over k would not have any effect; the two terms in
(6.36) would cancel out, and in (6.35) only the delta peak would remain. In all other
cases, however, the rate covariance function γ̃cc(t, t ′) determines the structure of the
spike-train covariance function.

In order to study the interplay between nonstationarity in time and nonstationarity
across trials, it is sufficient to restrict the discussion to processes where the average
firing rate is constant in time,

Ek
[
νkc (t)

]=: νc. (6.37)

At first sight, this seems to imply simultaneous stationarity of the spike-generating
process in time and across trials. Thus, for any given trial k, we would expect the
firing rate describing the process to be constant in time, νkc (t) = νkc , and for any
given point in time t , we would expect the firing rate to be constant across trials,
νkc (t) = νc(t). In fact, however, stationarity in time only follows if, in addition to
(6.37), the system is stationary across trials. Consider, as an example, a process
with sinusoidal rate function and stationary frequency f0 = ω0/2π , but phase φk ∈
[0,2π) uniformly distributed across trials:

νkc (t)= νc
[
1+ cos(ω0t + φk)

]
. (6.38)

Averaging over the ensemble of trials (k) results in a constant value νc =
Ek[νkc (t)]—despite the nonstationary firing rate driving spike generation in each
individual trial. Thus, by construction of the process, the trial averaged firing rate
does not expose any underlying nonstationarity. In contrast, the trial averaged auto-
covariance function does. The rate covariance function is given by

γ̃cc
(
t, t ′
)= 1

2
ν2
c cos
(
ω0
[
t − t ′]) (6.39)

and depends only on the time difference τ = t − t ′. Hence, we obtain for the spike-
train covariance function of the common source,

ψ̃cc(τ )= νcδ(τ )+ 1

2
ν2
c cos(ω0τ) (6.40)

(see Fig. 6.3A, right). The fact that the two-dimensional correlation function
ψ̃cc(t, t

′) is time invariant allows us to compute the one-dimensional shot-noise
correlations using (6.6) in the subsequent sections.
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6.3.3 Bin-Size and Autocorrelation Dependence of Spike-Count
Correlations

With a generic correlation model at hand, we can now discuss how measured spike-
count correlations depend on the choice of the bin size and on the marginal spike-
train statistics parameterized by the γ -order in the first example (Sect. 6.3.2.1) and
by the oscillation frequency ω0 in the Poisson example (Sect. 6.3.2.2).

With (6.12) and the spike-train autocovariance function ψ̃cc(τ ) of the common
sources given by (6.33) and (6.40), we obtain for the spike-count covariance of the
Gamma example,

c̃hij = νch+ 2
γ−1∑
l=1

Al

Bl

(
h−B−1

l

[
1− e−Blh

])
(6.41)

with Al = ν2
c e2πil/γ and Bl = γ νc(1− e2πil/γ ), and for the oscillating Poisson ex-

ample,

c̃hij = νch−
ν2
c

ω2
0

(
cos(ω0h)− 1

)
. (6.42)

The variances are given by c̃hii = νdh+ c̃hij .

The bin-size dependence of spike-count variance c̃hii , covariance c̃hij , and cor-

relation coefficient rhij = c̃hij /c̃hii determined by (6.41) and (6.42) is shown in
Fig. 6.3B, C, and D for different γ -orders (left column) and oscillation frequen-
cies (right column), respectively. Figure 6.3A depicts the corresponding spike-train
cross-covariance functions (6.33) (left) and (6.40) (right). Note, that these cross-
covariance functions ψ̃ij (τ ) are identical to the autocovariance functions ψ̃cc(τ ) of
the common sources (see (6.26)). Only at short time scales, the count variances and
covariances do not deviate from the Poisson case. In the Gamma example (Fig. 6.3,
left), “short” means short compared to the mean inter-spike interval 1/νc of the com-
mon source (here 200 ms). In the Poisson example (Fig. 6.3, right), the bin size must
be considerably smaller than the oscillation period 2π/ω0. The count variances c̃hii
and covariances c̃hij exhibit a nontrivial dependence on the bin size h. The normal-

ization of the covariance by the variances in the correlation coefficient rhij does not
remove this dependence. In the Gamma example, the deviations from the Poisson
case become more pronounced with increasing γ -order and bin size. In the Poisson
example, the count variances and covariances oscillate as functions of the bin size.

By comparing the results for the two examples shown in Fig. 6.3 with the case
where the common process is a stationary Poisson process, we arrive at the fol-
lowing conclusion. For a given bin size h, spike-count variance, covariance, and
correlation coefficient are generally decreased if the common process is a Gamma
process; they are increased if the common process is a Poisson process with sinu-
soidal rate profile. To gain an intuitive understanding, consider the number of spikes
xh(t) in a certain time window [t, t +h) for a given realization of the point process.
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In a Gamma process, the probability of spike generation immediately after a spike
is reduced (reflected in the correlation functions shown in Fig. 6.3A, left). Hence,
the number of possible spikes in a time window that is small compared to the mean
inter-spike interval is decreased (compared to a stationary Poisson process with the
same rate). Conversely, for an oscillatory Poisson process, the spiking probability
after spike emission is enhanced for time intervals that are small compared to the
oscillation period (see Fig. 6.3A, right). Therefore, the spike count increases. Recall
that this does not affect the mean spike count obtained by averaging over realiza-
tions of the point process. It does affect, however, the expectation of the square of
the spike count and therefore the spike-count variance. Studying the variances, we
realize that in the common-input scenario each process results from a superposi-
tion of a common Gamma or inhomogeneous Poisson process, respectively, and a
stationary Poissonian background process. In contrast, the spike-count covariances
reflect the variances of the common process only. Thus, the normalization of the
covariance by the variances does not remove the bin-size dependence.

A dependence of the count variance c̃hii and the Fano factor F = c̃hii/νih (Fano
1947) on the bin size for (non-Poissonian) renewal processes has already been re-
ported by Rotter et al. (2005). In particular, the authors point out that the Fano factor
of a Gamma process is biased towards 1 for small bin sizes (see Chap. 3). Our con-
siderations demonstrate that this is the case for all point processes with a finite (or
zero) interval density p1(τ ) (inter-spike interval distribution) at small time lags τ .
The autocovariance function (Cox 1962; Perkel et al. 1967a)

ψ̃ii(τ )= νi
(
δ(τ )+

∞∑
k=1

pk
(|τ |)
)
− ν2

i

of such a process is in the vicinity of τ = 0 always dominated by the delta-peak with
amplitude νi . According to (6.12), the count variance c̃hii therefore approaches the
count mean νih for small bin sizes h, resulting in a Fano factor close to one. In other
words, at time scales which are small compared to the mean inter-spike interval a
point process is not distinguishable from a Poisson process.

Figure 6.3 does not only illustrate that measured spike-count correlations depend
on the choice of the bin size h but also demonstrates that the variance, the covari-
ance, and the correlation coefficient are determined by the statistics of the common
source. In the Gamma example (left column in Fig. 6.3), the correlation coefficient
decreases as the γ -order increases (Fig. 6.3D, left). This dependence on the γ -order
is made explicit in Fig. 6.4A. For common sources with oscillating Poisson statis-
tics (right column in Fig. 6.3), the correlation coefficient decreases with increasing
oscillation frequency f0 (Fig. 6.3D, right).

6.3.4 Coherence

The dependence of the correlation coefficient on the filter properties and on the
structure of the spike-train correlation functions (Fig. 6.3D, Fig. 6.4A) renders its
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Fig. 6.4 Dependence of spike-count correlations on the order of a common Gamma source (com-
mon-input model). (A) Measured spike-count correlation coefficients rhij and (B) averaged high-
frequency (>10 Hz) coherences κ for three different bin sizes h = 1 ms (circles), h = 128 ms
(squares), and h= 1024 ms (diamonds) as functions of the order γ of the common Gamma source
(common-input strength α = 0.5, total firing rate ν = 10 s−1). Symbols represent simulation re-
sults obtained from averaging over 1000 trials (simulation time per trial T = 4.096 s). Error bars
indicate standard deviations resulting from 100 repetitions of the experiment, each with 10 tri-
als (error bars in (A) for h = 1 ms and in (B) are too small to be visible). Thick gray curves in
(A) show analytical results for the correlation coefficient. In (B), they depict the common-input
strength α = 0.5. Figure modified from Tetzlaff et al. (2008)

interpretation difficult and limits its usefulness for the comparison of data from dif-
ferent preparations and laboratories. In Sect. 6.2 we remarked that, in contrast to
the correlation coefficient, the coherence κ(ω) (6.18) is independent of a joint linear
filter kernel. This is illustrated for the Gamma example in Fig. 6.5C. However, the
coherence still depends on the shape of the auto- and cross-spectra of the input spike
trains. As we assumed mutual independence between the common and the disjoint
input processes (6.24), the coherence is given by

κ(ω)= Ψ̃cc(ω)

Ψ̃dd(ω)+ Ψ̃cc(ω)
, (6.43)

where Ψ̃dd(ω) := Ψ̃didi (ω) = Ψ̃dj dj (ω). For a large class of point processes, the
power-spectrum becomes constant at high frequencies with its amplitude approach-
ing the numerical value of the firing rate (Jarvis and Mitra 2001; Halliday 2000)

lim
ω→∞ Ψ̃cc(ω)= νc,
lim
ω→∞ Ψ̃dd(ω)= νd . (6.44)

This is trivial for the disjoint Poissonian processes with Ψ̃dd(ω) = νd (∀ω). But
also the Gamma process exhibits this property: both the real and imaginary parts
of (6.32) approach zero in the limit ω→∞. With (6.31), the first equation in (6.44)
follows immediately. If the common source is an oscillating Poisson process, its
power-spectrum, i.e., the Fourier transform of (6.40), is identical for all frequencies
ω except ω0:

Ψ̃cc(ω)= νc (∀ω �= ω0). (6.45)
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Fig. 6.5 Extraction of correlation from spike trains with structured autocorrelation generated by
the simple common-input model (see Fig. 6.2). (A) Spike-train power- Ψ̃ii (ω) and (B) cross-spec-
tra Ψ̃ij (ω) estimated from measured spike-count spectra C̃ii/ij (ω) (total rate ν = 10 s−1, common
Gamma source with γ = 20, common-input strength α = 0.5, simulation time T = 65.536 s, aver-
aged over 30 trials). The panels show data for three bin sizes superimposed (light gray to black and
with decreasing thickness: h= 1, 128, and 1024 ms), no further smoothing of graphs. The white
curves show analytical results. (C) Coherence κ(ω)= |Ψ̃ij (ω)|/Ψ̃ii (ω)= |C̃ij (ω)|/C̃ii (ω). Figure
modified from Tetzlaff et al. (2008)

In general, (6.44) holds for all point processes with interval densities pk(τ) ab-
sent of high-frequency components. This becomes apparent by inspection of (6.29):
if F[pk(τ)](ω) = Pk(ω) vanishes in the limit ω→∞ for all orders k, the Fourier
transform of the autocorrelation (6.29)—the power-spectrum—saturates at a con-
stant level which is determined by the firing rate. Typically, natural point processes
fulfill this condition. To mention an exception, consider a regular process with a
constant inter-spike interval T , i.e., p1(τ )= δ(τ − T ).

Given the property (6.44) and the assumptions of Sect. 6.3.2, the coherence at
high frequencies recaptures the common-input strength α:

lim
ω→∞κ(ω)=

νc

νd + νc = α. (6.46)

Figure 6.5 compares the power-spectra Ψ̃ii(ω) = Ψ̃cc(ω)+ Ψ̃dd(ω) (A), the cross-
spectra Ψ̃ij (ω) = Ψ̃cc(ω) (B), and the coherences κ(ω) (C) for the Gamma exam-
ple obtained from simulations with analytical expressions. The spike-train spectrum
Ψ̃ii/ij (ω) based on simulated spike trains is estimated by dividing the spike-count
spectrum C̃ii/ij (ω) by the spectrum Φ(ω) of the spike-count filter (excluding fre-
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quencies with Φ(ω)= 0). The figure compares results for three different bin sizes.
The coherences in Fig. 6.5C are computed directly from the spike-count spectra.
Both the spectra and the coherence become constant at frequencies above 10 Hz.
The total rate ν = 10 s−1, the rate νc = 5 s−1 of the common process, and the
common-input strength α = 0.5 can be clearly identified as the limiting values of
the three panels.

Figure 6.4B summarizes the results for measured high-frequency coherences for
different bin sizes h and γ -orders. Here, the coherences are averaged over fre-
quencies > 10 Hz. In contrast to the correlation coefficient (Fig. 6.4A), the high-
frequency coherence depends neither on the bin size nor on the order of the common
Gamma process.

The measurement of the common-input strength α is not limited to the case
where the disjoint and the common processes are mutually uncorrelated. In the
presence of mutual correlations between the source processes, the common-input
strength can still be extracted from the coherence—provided that the spike-train
correlation coefficient is known (see Appendix 6.5.1).

6.3.5 Jittered Correlations

In general (Sect. 6.2), the correlation coefficient observed for two shot-noise sig-
nals results from the interaction between the correlation functions of the underlying
spike trains and the filters determining the shot-noise. In the foregoing, we have
considered the case where the structure of the correlation functions is determined
exclusively by the spike-train autocorrelations. However, even in the simplest case
where the latter are stationary Poisson processes with delta-shaped autocorrelations,
the resulting cross-correlations can be structured. If, for example, a presynaptic neu-
ron consistently contributes spikes to the two input trains with different but static
delays, the cross-correlation exhibits an off-center delta-peak. Assuming that joint
contributions come from many different sources and that there is no bias in the distri-
bution of delays, a temporally extended and centered peak results. The same would
be true for sources which deliver spikes to the two input trains with dynamical de-
lays described by an identical mean delay and nonvanishing uncorrelated temporal
jitter.

Consider two processes ξi(t) and ξj (t) constructed as explained in Fig. 6.2. As-
sume that both the common ξc(t) and the two disjoint sources ξdi/j (t) are homo-
geneous Poisson processes. If spikes of the common process ξc(t) are precisely
copied into both processes ξi(t) and ξj (t), the resulting cross-correlation function
is delta-shaped. However, if one of the two processes receives a jittered version of
the common process

ξ
jit
c (t)=

∑
k

δ(t − tk + εk) (6.47)

such that each spike at time tk is shifted by a random number εk , the shape of the
cross-covariance function reflects the probability density function (pdf) pjit(ε) of
εk , i.e.,
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Fig. 6.6 Trivial bin-size dependence of the spike-count correlation coefficient for temporally ex-
tended cross-correlations. Two correlated Poisson spike trains (ν = 10 s−1, α = 0.5) of duration
T = 8 s are constructed as described in Fig. 6.2. In addition, in one of the spike trains the spikes
from the common source are jittered by a random offset drawn from a symmetric distribution
(dark gray curves: standard deviation σ = 2 ms; light gray curves: σ = 16 ms) with zero mean:
(A) rectangular, (B) Gaussian distribution (see insets). In both panels, the spike-count correlation
coefficient c̃ij /(νh) is shown (gray curves: analytical results, dots: simulations, averages over 200
trials) as a function of the bin size h (log-scaled abscissa). Figure modified from Tetzlaff et al.
(2008)

ψ̃ij (τ )= νcpjit(τ ). (6.48)

Here, νc denotes the firing rate of the common source ξc(t) which is of course not
affected by the jittering procedure. Since we assumed that all involved processes are
Poissonian, the autocovariance functions remain unaffected, too:

ψ̃ii/jj (τ )= νδ(τ ). (6.49)

According to (6.13), the count correlation coefficient reads

rhij =
νc

νh

∫ h
−h

dτ
(
h− |τ |)pjit(τ ). (6.50)

Its bin-size dependence is illustrated in Fig. 6.6 for a rectangular (A) and a Gaussian
(B) delay distribution pjit(τ ) (see Appendix 6.5.2).

With Pjit(ω) being the Fourier transform of pjit(τ ), the coherence reads

κ(ω)= νc
ν

∣∣Pjit(ω)
∣∣. (6.51)

As pjit(τ ) is a probability density with Pjit(0) =
∫

dτ pjit(τ ) = 1, the coherence at
frequency ω= 0 recaptures the common-input strength α:

κ(0)= νc
ν
= α. (6.52)

In contrast to the correlation coefficient, κ(0) does not depend on the filter proper-
ties. It recaptures the strength of the common input α, however, only if the spike
trains are stationary Poisson processes.
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In a realistic setting, we must expect that both the spike-train statistics and the
presence of (distributions of) delays will shape the resulting correlation functions.
In this case, the coherence in our model reads

κ(ω)= |Pjit(ω)Ψ̃cc(ω)|
Ψ̃cc(ω)+ Ψ̃dd(ω)

. (6.53)

In Sect. 6.3.4 we argued that in the neuroscientific context many processes exhibit
power-spectra which approach a constant value, the firing rate, in the ω→∞ limit.
In the absence of temporal jitter this enables us to determine the common-input
strength α from the coherence κ(ω) at large frequencies. In the presence of temporal
jitter this approach is problematic if Pjit(ω) decays to zero at large frequencies,
which seems natural for non-delta-type jitter distributions. According to (6.53), in
this case the high-frequency coherence will become zero, too. This is, of course, not
surprising because if the spread of pjit(τ ) is large, the spike trains become de facto
uncorrelated on short time scale. Hope to recover α rests on the assumption that the
temporal spread of pjit(τ ) is much smaller than the time scale of the structure of the
autocovariance function ψ̃cc(τ ) such that Ψ̃cc(ω) falls off faster than Pjit(ω).

6.4 Summary

For second-order stationary processes, the one-dimensional shot-noise correlation
functions result from the spike-train correlation functions by convolution with the
deterministic filter (auto)correlation. In consequence, standard second-order statis-
tical measures like the variance and the covariance generally depend on the filter
properties in a nontrivial way. The normalization of the covariance by the geomet-
ric mean of the variances does not compensate for this in general: the shot-noise
correlation coefficient depends on the filter kernel, even under optimal conditions
like stationarity across trials and time. In particular, the spike-count correlation co-
efficient depends on the choice of the bin size. Only for the highly artificial case of
Poisson point processes with delta-shaped auto- and cross-correlation functions, the
filter dependence of the correlation coefficient disappears.

The coherence, in contrast, is filter independent if each signal can be de-
scribed as a simple shot-noise process arising from a linear convolution of a sin-
gle (compound) spike-train with some filter kernel (as is the case for spike-count
signals). Therefore, coherence measurements often constitute a less ambiguous
quantification of neuronal interactions. In this light it is not surprising that the
literature frequently refers to the zero-frequency coherence, i.e., the normalized
cross-correlation area, also as the “correlation coefficient”. Although this defi-
nition differs from that of standard textbooks (e.g., Hollander and Wolfe 1999;
Feller 1971), it has the advantage that this measure is not sensitive to filtering by
a joint linear kernel.

Both the correlation coefficient and the coherence generally depend not only on
the joint spike-train statistics but also on the marginal second-order statistics of
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the individual point processes. It is therefore questionable whether these quantities
qualify as appropriate measures for the co-relation between two sources. This prob-
lem is difficult to address in a general context. We therefore focused on a specific
type of correlations caused by common input. The relative common-input strength
α = νc/ν, i.e. the ratio between the compound firing rate νc of the common sources
and the total rate ν, is a well-defined quantity which moreover corresponds to the
(functional) connectivity of an underlying network (see Tetzlaff et al. 2008). We
showed that the high-frequency coherence can—under simplifying assumptions—
provide a direct measure of the common-input strength for a large class of point
processes.

A drawback of using the coherence as a correlation measure is that it always
requires some sort of time averaging (Fourier integral). Thus, time-resolved coher-
ences can be computed only with a finite temporal resolution. As a result, correla-
tions in the time domain may still be more appropriate (e.g., the joint-PSTH; see
Aertsen et al. 1989) if a high temporal resolution is desired.

Spike train correlation functions and the corresponding cross-spectra are gener-
ally structured for various reasons. Depending on the measurement time scale, these
correlations can be observed only in limited frequency bands. In most cases, this
is a minor restriction for the experimenter measuring correlations between spike
trains (spike counts) of individual neurons, because the average inter-spike inter-
val of single-unit recordings typically exceeds the bin size used to compute spike
counts (Aertsen et al. 1989: h = 1.5–50 ms, Vaadia et al. 1995: 30–70 ms, Lampl
et al. 1999: 1 ms, Sakurai and Takahashi 2006: 0.1–1 ms). There are, however, ex-
amples in the literature where the bin size is much larger than the mean inter-spike
interval (Zohary et al. 1994: h= 2 s, firing rates up to 50 s−1). According to our re-
sults in Sects. 6.2 and 6.3.3, one can expect that the resulting spike-count correlation
coefficients in these cases depend on the marginal spike-train statistics.
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Appendix

6.5.1 Estimation of the Common-Input Strength for Correlated
Spike Trains

In Sect. 6.3.2 we assumed that common and disjoint processes are mutually uncorre-
lated. However, the results of Sect. 6.3.4 can be generalized to the case of correlated
spiking, i.e., for ψ̃pq(τ ) �= 0 (p,q ∈ {c, di, dj }). For Poisson processes with delta-
type correlations, the covariance functions reads

ψ̃pq(τ )= rpq√νpνqδ(τ ). (6.54)
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Here, rpq denotes the pairwise correlation coefficient between the processes ξp(t)
and ξq(t). The corresponding spectra are constant:

Ψ̃pq(ω)= rpq√νpνq. (6.55)

We can generalize this to a broader class of processes for which (6.55) still holds
for large frequencies, i.e.,

lim
ω→∞ Ψ̃pq(ω)= rpq

√
νpνq. (6.56)

Similar to Sect. 6.3.1, let us assume that the disjoint processes have identical au-
tocorrelations (ψ̃didi (τ ) = ψ̃dj dj (τ )) and therefore identical rates νd . For simplic-
ity, we further assume that all correlation coefficients are identical (i.e., r = rpq
∀{p,q}). In this case, the high-frequency coherence between the input signals

ξi/j (t)= ξc(t)+ ξdi/j (t) (6.57)

becomes

lim
ω→∞κ(ω)= lim

ω→∞
Ψ̃cc(ω)+ Ψ̃didj (ω)+ Ψ̃cdj (ω)+ Ψ̃dic(ω)
Ψ̃cc(ω)+ Ψ̃didi (ω)+ Ψ̃cdj (ω)+ Ψ̃dic(ω)

= νc + rνd + 2r
√
νcνd

νc + νd + 2r
√
νcνd

. (6.58)

With νc = αν and νd = (1− α)ν, this can be written as

lim
ω→∞κ(ω)= α

1+ rα−1(1− α)+ 2r
√
α−1(1− α)

1+ 2r
√
α(1− α) . (6.59)

Thus, by solving (6.59) for α, the common-input strength can be estimated from
the high-frequency coherence if the spike correlation coefficient r is known. Note
that, according to (6.56), r can be determined by measuring the high-frequency

coherences of the spike signals, i.e., limω→∞ |Ψ̃pq(ω)|/
√
Ψ̃pp(ω)Ψ̃qq(ω).

6.5.2 Count Covariances for Jittered Correlations

Here we derive the spike-count correlation coefficient rij for two Poissonian spike
trains with rectangular and Gaussian cross-covariance function. The results are vi-
sualized in Fig. 6.6.

6.5.2.1 Rectangular Cross-Correlations

For a rectangular covariance function

ψ̃ij (τ )(τ )=
{ νc

2σ , −σ ≤ τ ≤ σ,
0, else,

(6.60)
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the count covariance is according to (6.12) given by

c̃ij = νc
{

1
2σ h

2, h≤ σ,
(h− σ

2 ), h > σ.
(6.61)

After normalizing c̃ij by the count variance c̃ii = νh and with α = νc/ν, the corre-
lation coefficient reads

rij = α
{

1
2σ h, h≤ σ,
(1− σ

2h ), h > σ.
(6.62)

Fig. 6.6A shows how rij depends on the bin size h for σ = 2 ms and 16 ms and
α = 0.5.

6.5.2.2 Gaussian Cross-Correlations

If the spike covariance function has a Gaussian shape, i.e.,

ψ̃ij (τ )= n(τ, σ ) := νc√
2πσ 2

exp

(
− τ 2

2σ 2

)
, (6.63)

the count covariance becomes

c̃ij = 2νc

[
h

2
erf

(
h√
2σ

)
− σ 2[n(0, σ )− n(h,σ )]

]
, (6.64)

where erf(·) denotes the error function

erf(x)= 2√
π

∫ x
0

dx′ exp
(−x′2). (6.65)

Thus, the count correlation coefficient is given by

rij = α
[

erf

(
h√
2σ

)
− 2σ 2

h

[
n(0, σ )− n(h,σ )]

]
. (6.66)

Its bin-size dependence is illustrated in Fig. 6.6B (σ = 2 ms and 16 ms, α = 0.5).

6.5.3 Notation

α common-input strength
capital letters Fourier transforms
cij (t, t

′) two-dimensional (raw) auto- (i = j ) or cross- (i �= j ) correlation
function of shot-noise processes i and j

c̃ij (t, t
′) two-dimensional (raw) auto- (i = j ) or cross- (i �= j ) covariance

function of shot-noise processes i and j
C̃ij (ω,ω

′) two-dimensional power- (i = j ) or cross-spectrum (i �= j ) of
shot-noise processes i and j
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cij (τ ) one-dimensional (raw) auto- (i = j ) or cross- (i �= j ) correlation
function of shot-noise processes i and j

c̃ii variance of shot-noise process i
c̃ij covariance of shot-noise processes i and j
c̃hii spike-count variance of process i for bin size h

c̃hij spike-count covariance of processes i and j for bin size h

c̃ij (τ ) one-dimensional auto- (i = j ) or cross- (i �= j ) covariance
function of shot-noise processes i and j

C̃ij (ω) power- (i = j ) or cross-spectrum (i �= j ) of shot-noise processes
i and j

E[·] expectation value
f0 oscillation frequency of rate function for inhomogeneous

Poisson process
fi(t) ith filter kernel
Fi(ω) Fourier transform of ith filter kernel
F[x(t)](ω) Fourier transform of x(t)
F[x(t, t ′)](ω,ω′) two-dimensional Fourier transform of x(t, t ′)
φk phase of rate function for oscillatory Poisson process
φij (τ ) auto- (fi = fj ) or cross- (fi �= fj ) correlation of the filter

kernels fi(t), fj (t)
Φij (τ ) power- (fi = fj ) or cross- (fi �= fj ) spectrum of the filter

kernels fi(t), fj (t)
γ order of Gamma process
h bin size
κij (ω) coherence of processes i and j
κ ′ij (ω) complex coherence of processes i and j
νi time-averaged rate of process (neuron) i
νi(t) instantaneous rate of process (neuron) i
ω angular frequency
ω0 angular oscillation frequency of rate function for

inhomogeneous Poisson process
p1(τ ) inter-spike interval distribution
P1(ω) Fourier transform of inter-spike interval distribution
pk(τ) kth-order inter-spike interval distribution
pjit(τ ) jitter (delay) distribution
Pjit(ω) Fourier transform of jitter (delay) distribution
ψij (t, t

′) two-dimensional auto- (i = j ) or cross- (i �= j ) correlation
function of spike trains i and j

ψ̃ij (t, t
′) two-dimensional auto- (i = j ) or cross- (i �= j ) covariance

function of spike trains i and j
Ψ̃ij (ω,ω

′) two-dimensional power- (i = j ) or cross-spectrum (i �= j ) of
spike trains i and j

ψij (τ ) one-dimensional (raw) auto- (i = j ) or cross- (i �= j ) correlation
function of spike trains i and j
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ψ̃ij (τ ) one-dimensional auto- (i = j ) or cross- (i �= j ) covariance
function of spike trains i and j

Ψ̃ij (ω) one-dimensional power- (i = j ) or cross-spectrum (i �= j ) of
spike trains i and j

rij correlation coefficient of processes i and j
rhij spike-count correlation coefficient of processes i and j
t time
T simulation time
τ time lag
xi(t) ith shot-noise signal
xhi (t) ith spike-count signal with bin size h
ξi(t) ith spike train
x̃i (t) fluctuations of ith shot-noise signal
x̃hi (t) fluctuations of ith spike-count signal with bin size h
ξ̃i(t) fluctuations of ith spike train
·̃ (tilde) centralized measures (fluctuations around mean,

e.g., spike-count fluctuations) or derived quantities
(e.g., spike-count covariance)

z∗ complex conjugate of z
(f ∗ g)(τ ) convolution between f (t) and g(t)
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Chapter 7
Spike Metrics

Jonathan D. Victor and Keith P. Purpura

Abstract Important questions in neuroscience, such as how neural activity repre-
sents the sensory world, can be framed in terms of the extent to which spike trains
differ from one another. Since spike trains can be considered to be sequences of
stereotyped events, it is natural to focus on ways to quantify differences between
event sequences, known as spike-train metrics. We begin by defining several fam-
ilies of these metrics, including metrics based on spike times, on interspike inter-
vals, and on vector-space embedding. We show how these metrics can be applied
to single-neuron and multineuronal data and then describe algorithms that calculate
these metrics efficiently. Finally, we discuss analytical procedures based on these
metrics, including methods for quantifying variability among spike trains, for con-
structing perceptual spaces, for calculating information-theoretic quantities, and for
identifying candidate features of neural codes.

7.1 Introduction

7.1.1 Mathematics and Laboratory Data

Mathematical analysis of laboratory data plays a crucial role in systems neuro-
science. Perhaps the most fundamental reason is that often, the questions that we
ask of data are abstract. A prime example is the investigation of neural coding—
delineation of the relationship between stimuli, actions, and/or behavioral states,
and the activity of one or more neurons.
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To apply mathematical analysis to laboratory data in a principled way, a neces-
sary first step is to choose an appropriate mathematical framework. This would be
simple if laboratory data corresponded precisely to mathematical entities, but this
is rarely the case (Slepian 1976). Laboratory data do not permit one to apply meth-
ods that require taking limits as time goes to infinity or to zero, and one does not
have access to statistical ensembles, just individual experiments. Thus, explicitly or
implicitly, the neuroscientist must identify and abstract the essential features of the
data that are relevant to the problem at hand or the goal of the analysis. We there-
fore begin with a discussion of these considerations as they relate to the electrical
activity of neurons and to the problem of neural coding.

7.1.2 Representing Spike Trains as Samples of Point Processes

The electrical activity of individual neurons can be recorded extracellularly, intra-
cellularly, and somewhat more indirectly by optical means. The electrical activ-
ity, as often measured with micro- or macroelectrodes, consists of a combination
of small voltage fluctuations (on the order of 10 mV), upon which are superim-
posed larger, brief “action potentials”: stereotyped voltage transients of approxi-
mately 100 mV that last a fraction of a millisecond. Since action potentials prop-
agate without loss and result in the release of neurotransmitter, they are generally
considered to represent the components of a neuron’s activity that are “seen” by the
rest of the nervous system. Consequently, the sequences of action potentials emitted
by individual neurons (i.e., “spike trains”) are a natural focus for the study of brain
activity at the level of cells and circuits (Segundo and Perkel 1969; Abbott 2000;
Sen et al. 1996). To abstract the brief, stereotyped nature of spike trains, we choose
to represent them as instances of point processes, i.e., event sequences.1

7.1.3 Analyzing Point Processes: The Rationale for a Metric-Space
Approach

The point-process representation (see Chap. 1) has substantial implications for the
choice of signal-processing strategies. Had we chosen a vectorial representation2

1Waveforms of real action potentials are not completely stereotyped, and at least some of the
waveform-to-waveform differences are systematic. By representing neural activity as a point pro-
cess, we make the conscious decision to ignore these differences, as is typically done both in this
book and in general. However, this simplification is not as restrictive as it might at first seem. By
representing action potentials as instances of point processes, we are not assuming that every action
potential has the same effect on post-synaptic neurons; we are merely assuming that the differences
in the effects of each action potential can be understood from their temporal pattern. This makes
good biological sense, since temporal pattern (in particular, the time since the preceding spike) is
a crucial factor in governing both transmitter release and the subtle variations in action potential
shape.
2More specifically, a Hilbert space—because the dot-product is defined.
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(e.g., had we represented neural activity as a continuous voltage record), certain
algebraic operations would immediately be defined—the usual vector-space opera-
tions of addition, multiplication by scalars, and inner (“dot”) product. These opera-
tions are the basis of signal-processing methods such as filtering, averaging, spectral
estimates, and signal detection. For point processes, these operations are not appli-
cable, and these vector-based signal-processing methods cannot be directly applied.

While this might at first seem to be a severe disadvantage of the point process
framework, further consideration shows that this is not the case. The reason is that
vector-based procedures require the imposition of a high degree of mathematical
structure, and this structure is often not appropriate or practical. One reason for this
is that in a vector space, linearity plays a fundamental role, and this is arguably at
odds with the nature of neural dynamics. A second reason is that the dot-product
induces an intrinsic Euclidean geometry. By representing spike trains as samples
of point processes, we are driven to analytical procedures that do not require us to
define vector-space operations (e.g., how two spike trains can be added). The point
process perspective can thus allow the researcher to investigate a wider gamut of
behavior in the spike trains.

Two examples from sensory physiology emphasize this point. Human color vi-
sion is a three-parameter space determined by the three cone absorption spectra,
and thus, one might hope that a three-dimensional vector space would provide an
appropriate representation for color percepts. However, experimental measurement
of perceptual distances within this three-dimensional space shows that perpendicu-
lars need not be unique (Wuerger et al. 1995)—in contrast to the requirements of a
Euclidean space. In olfaction, the situation is far more complex. Olfactory percep-
tual space may not even have a well-defined dimension, mixing of odorants need not
lead to intermediate percepts, and gross violations of linearity are present (Hopfield
1995). Thus, the Euclidean geometry implied by vector spaces may be too confining
to support a correspondence between neural activity and sensory perception.

To broaden our scope, we consider analytic procedures in which relationships
between pairs of spike trains play a central role, but we do not require that we know
how to “add” spike trains or to multiply them by scalars. Instead, our basic opera-
tion is a way to compute a distance (i.e., a measure of dissimilarity) between two
spike trains, d(A,B). In keeping with the philosophy of limiting our assumptions,
we only require that the distances d(A,B) are a “metric” (defined below). That is,
spike trains are considered to be points in a metric space, rather than a vector space.
While distances derived from vector spaces are necessarily metrics, the distances
derived from metric spaces typically cannot be mimicked by a vector space. Vector
space distances are unchanged by linear transformation; no corresponding property
holds for metrics in general. Typical metric spaces, including the several of those we
consider below, do not have Euclidean geometry (Aronov and Victor 2004). Thus,
metric spaces (and the distances that define them) are much more general than vector
spaces.

The reader might wonder about mathematical frameworks that are even more
general. For example, the notion of a “topology” on the set of spike trains is even
more general than that of a metric (see Singh et al. 2008 for a recent application of
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this notion to spike-train analysis). A topology merely requires that we define rela-
tionships between spike trains via a system of “open sets”, while a metric requires
that we quantify distances (and these distances in turn define the open sets). Fun-
damentally, there is no a priori reason to exclude nonmetrizable topologies, though
such spaces are typically quite strange and nonintuitive. Conversely, the notion of
“distance” is widely applicable to our current understanding of perception and be-
havior, and can be readily quantified, at least in principle, for example, as the num-
ber of “just noticeable differences” between two stimuli. Moreover, a compilation
of the distances between all pairs of points describes the intrinsic geometry of a
space. Thus, the metric-space framework is capable of capturing the essence of
what one hopes to account for (the intrinsic structure of the space represented by
neural activity) and carries with it only minimal restrictions. Finally, we point out
that under some circumstances, perceptual comparisons (Tversky and Gati 1982;
Tversky 1977; Maloney and Yang 2003) and other components of cognition and
learning may be nonmetric in that they violate either the postulate of symmetry or
the triangle inequality. Generalizations of metrics that accommodate this behavior
are straightforward; the reader is referred to (Victor et al. 2007) for further details.

We emphasize that we are not suggesting a single best way to define distances
in neurophysiological data. Rather, we present the metric approach (especially as
it applies to neural coding) as a general strategy to formalize biologically moti-
vated hypotheses concerning the meaningful features of spike trains and to deter-
mine whether these hypotheses are supported by observed neural activity associated
with sensory and motor events.

7.1.4 Plan for this Chapter

We begin with some formal preliminaries. We then define several families of met-
rics for spike trains, first considering metrics applicable to single-neuron responses
and then metrics applicable to multineuronal activity. We then describe several al-
gorithms by which these metrics can be calculated. We conclude by discussing a
range of analytical procedures based on these metrics that can provide insight into
spike trains and their relationship to behavior. These procedures include methods
of quantifying variability among spike trains, describing their relationship to per-
ceptual spaces, and information-theoretic techniques aimed at identifying candidate
features of neural codes.

7.2 Spike Train Metrics

In this section, we define several families of metrics for spike trains. We empha-
size “edit-length” metrics, which are specifically applicable to event sequences and
yield distances that are fundamentally distinct from vector-space distances. Follow-
ing this, we consider a second class of metrics that are consequences of embedding
spike trains into vector spaces.
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7.2.1 Notation and Preliminaries

We represent the activity of a single neuron as a sequence of stereotyped events. Cor-
respondingly we represent multineuronal activity as a sequence of labeled events.
More formally, we represent a spike train A observed over a period [0, T ] by a se-
quence of distinct real numbers t1, . . . , tM(A), the times of occurrence of the spikes.
M(A) is the total number of spikes (and may be 0), and the spike times are as-
sumed to be listed in increasing order. When considering the activity of multiple
neurons, we augment this framework by adding labels l1, l2, . . . , lM(A). The labels
lj are drawn from a set {1, . . . ,L} of abstract tags, indicating which neuron was
responsible for each spike.

A metric d(A,B) is a mapping from pairs of spike trains to the nonnegative real
numbers. It satisfies three properties, namely (i) d(A,B) > 0, with equality only
when A = B , (ii) symmetry: d(A,B) = d(B,A), and (iii) the triangle inequality,
d(A,C) ≤ d(A,B)+ d(B,C). With these three conditions, the present use of the
term “metric” is consistent with the topological definition of this term (Gaal 1964)
and endows the set of event sequences (the spike trains) with the properties of a
topological “metric space”.3

7.2.2 Cost-Based (Edit Length) Metrics

7.2.2.1 General Definition

A simple, intuitive strategy enables the construction of metrics that formalize a
range of biologically motivated notions of similarity. The common element in these
metrics is that of a set of “elementary steps” between two spike trains, each of which
has an associated nonnegative cost. We require that the cost c(X,Y ) of an elemen-
tary step from X to Y is symmetric and that for any two spike trains A and B , it is
possible to find some sequence of elementary steps that begins at A and ends at B .

Any set of elementary steps satisfying these conditions leads to a metric between
spike trains: the cheapest total cost to transform A to B via elementary steps. More
formally, we define

d(A,B)=min

{
n−1∑
j=0

c(Xj ,Xj+1)

}
, (7.1)

3Below we will also want to consider a very simple distance that is not, strictly speaking, a metric.
This is the “spike count distance” Dspike[0]. For the spike-count distance, the distance between
two spike trains is given by the difference in the number of spikes they contain. Thus, we can have
Dspike[0](A,B) = 0 for distinct spike trains A and B if they contain the same number of spikes.
While this distance is not strictly a metric, the formal structure of a metric space still applies,
because we can think of Dspike[0] as acting on the equivalence classes of “distinguishable” spike
trains, rather than on the spike trains themselves.
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where {X0,X1, . . . ,Xn} is a sequence of spike trains with X0 = A and Xn = B .
Metrics defined in this fashion are guaranteed to satisfy the triangle inequal-
ity, since the cheapest path from A to C cannot be more expensive than a path
that is constrained to stop at B . These cost-based distances are analogous to
“edit-length” distances for symbol sequences, including those used in analysis
of EEG data (Wu and Gotman 1998), and, more prominently, in comparison of
genetic sequences (Sellers 1974; Needleman and Wunsch 1970). In this anal-
ogy, each of the elementary steps can be considered to be a way of “editing”
the spike train. The minimum total cost of the elementary transformations, the
“edit-length”, quantifies the dissimilarity of the spike trains. Thus, efficient dy-
namic programming algorithms for comparison of genetic sequences (Sellers 1974;
Needleman and Wunsch 1970) can be adapted to calculate many kinds of spike
metrics (Victor and Purpura 1997, 1996). Interestingly, although these algorithms
have been in use for almost 40 years for genetic sequence comparison, their use in
neuroscience is much more recent.

7.2.2.2 Spike Time Metrics

As a first example of the strategy described above, we create a family of metrics that
are sensitive to the timing of individual spikes (Victor and Purpura 1997, 1996). The
biological motivation for these metrics is that neurons have a firing threshold. As a
consequence, neurons can often be regarded as coincidence detectors (Softky and
Koch 1993; Egger et al. 1999; Kuba et al. 2005; Abeles 1982): one spike arriving
on a presynaptic neuron will not cause a postsynaptic neuron to fire, but a sufficient
number of spikes arriving within a sufficiently narrow time window will cause the
postsynaptic neuron to fire. Thus, the “meaning” of a spike train depends on the
timing of its spikes.

To capture this dependence in a metric, we invoke the above machinery with two
kinds of elementary steps (Fig. 7.1). The first elementary step consists of inserting
or deleting a spike and is assigned a cost of 1. This rule ensures that every spike train
can be transformed to any other spike train by some path: the path that successively
deletes all spikes from one train and then successively inserts all spikes into the
second train. The second elementary step defines the sensitivity to spike timing.
It consists of moving a single spike, and the associated cost is proportional to the
amount of time that the spike is moved. That is, if two spike trains X and Y are
identical except for a single spike that occurs at tX in X and tY in Y , then

c(X,Y )= q|tX − tY |. (7.2)

Along with (7.1), this set of elementary steps defines a spike time metric, Dspike[q].
Note that these metrics constitute a parametric family, parameterized by the value
of q that specifies the cost per unit time to move a spike. Since moving a spike by
an amount �T = 1/q has the same cost as deleting it altogether, q can be viewed
as determining the relative sensitivity of the metric to spike count and spike tim-
ing.
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Fig. 7.1 A diagram of a
sequence of elementary steps
that transforms spike train X
into spike train Y . Each
elementary step is one of
three types: deletion of a
spike (deleted spike shown in
red), insertion of a spike
(inserted spike shown in
green), or shifting a spike in
time (blue arrows)

The character of Dspike[q] depends strongly on q . When q is small, then the
times of individual spikes have little influence on the calculated distance between
spike trains. In the limit of q = 0, spikes can be shifted freely in time, and
Dspike[0](A,B) = |M(A) −M(B)|. So Dspike[0] corresponds to comparing spike
trains in terms of their spike counts alone. As q increases, the metric Dspike[q] be-
comes increasingly sensitive to spike timing: a change in the time of a spike by
1/q sec has the same cost as deleting the spike altogether. That is, for neurons
that act like a coincidence detector with integration time (or temporal resolution)
1/q , spike trains will have similar postsynaptic effects if they are similar in the
sense quantified by Dspike[q]. Since the effective temporal resolution is typically
not known in advance, it is useful to carry out analyses across a range of values
of q , rather than specifying the resolution a priori.

7.2.2.3 Spike Interval Metrics

Within the same framework of (7.1), we next define a contrasting metric (Victor and
Purpura 1997, 1996), one that is sensitive to the pattern of spike intervals, rather
than individual times. The biological motivation is that the postsynaptic effects of
a spike may depend strongly on the recent activity at that synapse (Sen et al. 1996;
Dan and Poo 2004; Markram et al. 1997). For transformations dominated by this
dependency, the meaning of a spike train does not depend on the spike times them-
selves (as captured byDspike[q]) but rather on the sequence of intervals. To quantify
this notion, we define Dinterval[q] by (7.1), along with a different set of elementary
steps. For Dinterval[q], the first kind of elementary step is insertion or deletion of
an interspike interval, at a cost of 1. The second elementary step consists of short-
ening or extending an existing interspike interval. The cost of this step is equal to
q�T , where �T is the amount of time by which the interval has been lengthened
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or shortened.4 Since changing the length of an interval changes the time of occur-
rence of all subsequent spikes at no additional cost, Dinterval[q] and Dspike[q] have
fundamentally different topological characteristics (Victor and Purpura 1997).

7.2.2.4 Multineuronal Cost-Based Metrics

We now consider ways of extending the above metrics to multineuronal data. While
multineuronal extensions can be constructed for either of the above single-neuron
metrics, the extension is more natural for Dspike[q], so we focus on it.

Recall that our formal representation of multineuronal activity A is a sequence
of M(A) spike times tj , each of which is associated with a label lj ∈ {1, . . . ,L}
that indicates its neuron of origin. To extend Dspike[q] to the multineuronal context
(Aronov et al. 2003), we add another elementary step, consisting of changing the
label associated with an event. The simplest way to do this is to assign the same cost,
a parameter k, to any label change. These three steps, along with (7.1), define a two-
parameter family of metrics, Dspike[q, k], where for k = 0, the metric ignores the
label associated with each event. The metrics with k = 0 correspond to a “summed
population” of neural activity. Conversely, when k = 2, the impact of the label is
maximal, since it costs as much to change the label as it does to delete a spike and
then reinsert it with a new label. Metrics with k = 2 correspond to a “labeled lines”
interpretation of neural activity.

7.2.2.5 Other Cost-Based Metrics

There are many directions in which the above examples can be generalized, and we
present some of the more important ones here. In each case, additional degrees of
freedom are added to the metrics described above. This flexibility arguably provides
a closer approximation to biologic reality but often carries the penalty that a greater
amount of data is required for a meaningful analysis. We also indicate which exten-
sions are readily incorporated into the dynamic programming algorithms described
in Sect. 7.2.2.6.

More Flexible Assignments of Costs to the Elementary Steps First, the cost of
moving a spike by an amount of time �t (or the amount by which an interval is
changed) need not be proportional to �t .

4Special consideration needs to be applied to the interval between the start of data collection and
the first spike and to the interval between the last spike and the end of data collection. These are not
interspike intervals, since they are bounded by the limits of data collection, rather than a second
spike. It is therefore natural to take the view that each of these “intervals” could be considered
an exact match to any interspike interval that is at least as long. This is equivalent to minimizing
the distance to any spike train that matches the observed spike train within the data collection
interval. A simpler (but arguably more arbitrary) strategy is simply to place an artificial spike at
the beginning and end of data collection.
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For example, Dspike[q] can be generalized by replacing the cost defined in (7.2)
by

c(X,Y )=Q(|tX − tY |) (7.3)

for any nondecreasing cost function Q(|�T |) satisfying Q(0)= 0 and

Q
(|�T | + ∣∣�T ′∣∣)≤Q(|�T |)+Q(∣∣�T ′∣∣). (7.4)

This does not interfere with the dynamic programming algorithms, since (7.4)
means that breaking down a single elementary step into two smaller ones can never
decrease the total cost.

Another generalization is that the cost to move a spike could depend on its abso-
lute time and on the distance moved. General dependences of this sort will interfere
with the dynamic programming algorithm, since they allow for a minimal path in
which a spike moves twice, once to enter a region of low-cost movement and once
to move to its final position. But certain forms of this dependence are consistent
with the dynamic programming algorithm. One such form is

c(X,Y )= q(∣∣F(tX)− F(tY )∣∣), (7.5)

where F is an increasing function. That is, τ = F(t) represents a distortion of time,
and the cost to move a spike is uniform in the distorted time τ . Because of this
distortion, the cost assignment of (7.5) allows for the metric to have a nonuniform
dependence on spike times in the original time t . In particular, for small displace-
ments, (7.5) can be approximated by

c(X,Y )≈ F ′
(
tX + tY

2

)
q�T . (7.6)

So for example, a decelerating function F would lead to a stronger dependence of
the metric on the time of early spikes than on the time of late spikes.

Since the cost of moving a spike determined by (7.5) is related to a uniform
cost through a time-distortion the corresponding metric (7.1) can be calculated from
Dspike[q](F (A),F (B)), where F(X) denotes a spike train derived from X by the
time-distortion τ = F(t).

Other Kinds of Elementary Steps The kinds of elementary steps used to define a
cost-based metric can be thought of as formalizing a hypothesis that certain aspects
of spike train structure are meaningful. Above we have considered two contrasting
metrics, focusing on absolute spike times and on spike intervals; these are but two of
many possibilities. As another example, we consider the notion that spike times are
important, but absolute time is uncertain. This arises in the analysis of spike trains
associated with spontaneous motor activity (i.e., not synchronized to an external
event or clock). Under these circumstances, spike trains that differ only by an overall
translation in time have the same meaning. To capture this in a metric, one could
augment Dspike[q] by a step that allows an entire spike train to be translated en bloc
at reduced cost per unit time, say, q ′, with q ′ � q .
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For this metric, the dynamic programming algorithm for Dspike[q] enables a cal-
culation in polynomial time (see below). The reason is that in this metric, a minimal-
cost path between two spike trains can always be found in which the en bloc transla-
tion moves at least one spike in train A into coincidence with a spike in train B . To
see this, assume that no spikes are in coincidence and consider the effects of chang-
ing the size of the block movement by an infinitesimal (signed) amount dT . Say
that this block movement is part of a path (7.1) in which there are nA→B individual
spikes that move forward in time between A and B , and nB→A individual spikes
that move backward. Then this infinitesimal en bloc translation incurs a net cost of
(q ′ − qnA→B + qnB→A)dT . If this number is nonzero, then either an infinitesimal
translation forward or backward would reduce the total cost further. If it is zero,
then an infinitesimal movement in either direction would leave the cost unchanged.
In either case, further infinitesimal translations could be applied, without incurring
additional cost, until at least one spike pair was in coincidence. Thus, to calculate
this metric, it suffices to calculate Dspike[q] for all M(A)M(B) block translations
that move any spike in train A into coincidence with any spike in train B .

Another kind of elementary step is motivated by the notion that motifs of spikes
(Abeles and Prut 1996) (i.e., a set of three spikes, not necessarily contiguous, with
specific interspike intervals) are meaningful. To capture this notion, one adds an el-
ementary step that allows subsets of noncontiguous spikes to be moved as a block.
One could also combine the rules of Dspike[q] and Dinterval[q], perhaps associated
with different costs. Unfortunately, it is unclear how to incorporate these generaliza-
tions into a polynomial-time algorithm, since in either case, there is the possibility
that a minimal-cost sequence of transformations will require several movements of
individual spike-train components.

Further Generalizations For the multineuronal metric Dspike[q, k], the cost to
change the label (neuron) associated with an event, k, is independent of the label
itself. This restriction is inessential to the definition of the metric; the cost to change
a label from l to l′ can be an arbitrary symmetric function k(l, l′) of the labels. In
its full generality, this extension incurs a substantial increase in the number of pa-
rameters, but this parameter explosion can be mitigated by a priori hypotheses on
the form of k(l, l′). For each choice of values of k(l, l′), the time required for calcu-
lation of the metric does not increase, but the storage requirements of the “parallel”
algorithm (see below) increase dramatically.

7.2.2.6 Algorithms

Identification of a minimal-cost path (7.1) might at first seem to be a daunting task.
However, because the cost-based metrics Dspike[q] and Dinterval[q] are similar to
the edit-length distances used for comparison of genetic sequences, the efficient dy-
namic programming algorithms developed for sequence comparison (Sellers 1974;
Needleman and Wunsch 1970) are readily adapted to calculate spike train metrics
(Victor and Purpura 1997, 1996). For all of these algorithms, the number of com-
putations required to calculate a distance between two responses is bounded by a
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polynomial function of the number of spikes. This efficiency (in contrast to the very
laborious search of all possible sequences of elementary steps) is important in that
it makes the application of metric-space methods practical.

The algorithms described below have been implemented in public-domain
software, available at http: http://neuroanalysis.org/toolkit/ or http://www.apst.
spiketrain-analysis.org/ and described in (Goldberg et al. 2009).

The Basic Dynamic Programming Algorithm To describe this algorithm, we
use a formulation (Victor et al. 2007) that, while perhaps more elaborate, provides
an easier path to generalization. We focus on Dspike[q], but the same algorithmic
structure is applicable to Dinterval[q]. A simpler formulation, but one that is less-
readily generalized, can be found in (Victor and Purpura 1997, 1996).

We begin by deducing certain properties that any minimal-cost path (7.1) must
have. First, we observe that we can always reorganize a minimal-cost path so that the
first steps consist of deleting spikes that occur in train A but not in train B , the inter-
mediate steps consist of moving some spikes that occur at times Aa1 ,Aa2 , . . . ,AaR
in train A to “linked” spikes that occur at times Bb1 ,Bb2 , . . . ,BbR in train B , and
the final steps consist of inserting spikes that occur in train B but not in train A
(Fig. 7.1). This reorganization is always possible because any movement of a spike
before it is deleted (or insertion of a spike followed by moving it) is inefficient—the
spike should simply be deleted before it is moved, or inserted where it is needed.
Moreover, the cost of moving a spike is independent of the times of moving any
other spike, so performing the deletions first and the insertions last does not change
the costs of the moves.

Therefore, a minimal-cost path can be summarized as an “alignment”: a desig-
nated subset of R spikes in train A and a designated subset of R spikes in train B
to which they are linked by R elementary steps that move a single spike. Given this
alignment, the distance between the two spike trains can be expressed as

d(A,B)= (M(A)−R)+ q
R∑
j=1

|Aaj −Bbj | +
(
M(B)−R), (7.7)

where the first term is the cost of the deletions, the final term is the cost of the
insertions, and the middle term is the cost of the moves, namely, the total link length
multiplied by the cost, q .

Since (by hypothesis) the total cost of these steps is minimal, then the total
link length

∑R
j=1 |Aaj − Bbj | must also be minimal, among all possible links be-

tween R pairs of spikes. This in turn implies that the two sequences of spike times
Aa1 ,Aa2, . . . ,AaR and Bb1 ,Bb2 , . . . ,BbR must be monotonic. In other words, the
links between spikes cannot cross, since if they did, then the total link length could
be reduced by uncrossing them.

Let us now assume that we have found the minimal cost path between spike
trains A and B . We now focus on the final spike in the two trains, at times AM(A)
and BM(B). We use X(k) to denote a spike train consisting of the first k spikes
in X. For example, A(M(A)−1) is the spike train A with the last spike deleted. If

http://neuroanalysis.org/toolkit/
http://www.apst.spiketrain-analysis.org/
http://www.apst.spiketrain-analysis.org/
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the final spikes are connected by a link, then removing those spikes and their link
must yield a minimal-cost path between the truncated spike trains. That is, if the final
spikes are linked, then d(A,B)= d(A(M(A)−1),B(M(B)−1))+ q|AaM(A) − BbM(B) |.
Alternatively, if the final spikes are not connected to each other by a link, it must be
that at least one of the spikes is unlinked, since otherwise, their links would cross.
If the final spike in A is unlinked, then d(A,B)= d(A(M(A)−1),B)+ 1; if the final
spike in B is unlinked, then d(A,B)= d(A,B(M(B)−1))+ 1. Since at least one of
these possibilities must hold, we have the relationship

d(A,B)= min
{
d
(
A(M(A)−1),B(M(B)−1))+ q|AaM(A) −BbM(B) |,

d
(
A(M(A)−1),B

)+ 1, d
(
A,B(M(B)−1))+ 1

}
. (7.8)

That is, we have expressed the distance between two spike trains in terms of the
distances between spike trains that have been shortened by one spike.

It is far more efficient to implement (7.8) as a forward iteration than as a recur-
sion. To make this explicit, we note that (7.8) holds for all spike trains A and B , so
it may be recast as

d
(
A(α),B(β)

)= min
{
d
(
A(α−1),B(β−1))+ q|Aα −Bβ |,

d
(
A(α−1),B(β)

)+ 1, d
(
A(α),B(β−1))+ 1

}
. (7.9)

Equation (7.9) amounts to an iterative procedure for calculating Dspike[q](A,B)=
d(A(M(A)),B(M(B))) by building up each spike train one spike at a time. The itera-
tion is initialized (at α = 0 or β = 0 when one spike train is empty) by noting that
d(A(α),B(0)) = α (since all spikes must be deleted) and d(A(0),B(β)) = β (since
all spikes must be inserted). At each stage of the algorithm, one spike train or the
other is elongated by a single spike, and the resulting distance is the minimum of
three simply calculated quantities. Thus, the computational burden is proportional
to the product of the number of spikes in each spike train, i.e., O(M2), where M is
the typical number of spikes in each train to be compared.

We also mention that fast algorithms for identifying minimal-cost alignments
can also be based on weighted bipartite matching (Dubbs et al. 2009), and these are
applicable not only to Dspike[q] but also to variants that may be more suitable for
Euclidean embedding and multidimensional scaling.

Extensions of the Dynamic Programming Algorithm Dspike[q](A,B) can be
calculated for multiple values of the cost parameter q in an efficient, parallel fashion
(Victor et al. 2007). The key observation is that the dependence of Dspike[q](A,B)
on q is piecewise linear. The breakpoints occur when the cost of a link is equal to 2
(so that removing it is equal to the cost of deleting and inserting its paired spikes).
The positions of the breakpoints can be calculated by a dynamic programming al-
gorithm whose computational burden is O(M3).

The above algorithms can also be applied to the multineuronal spike-time met-
ric Dspike[q, k]. The main hurdle is that in a minimal-cost alignment of multineu-
ronal spike trains, links between paired spikes may cross if their labels are different
(Fig. 7.2A). Thus, it would appear that the iterative process of (7.9) would have to
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Fig. 7.2 The noncrossing rule for alignment of multineuronal responses. Spikes from different
neurons (i.e., with different labels) are diagrammed as filled, open, and hashed. Panel A shows a
configuration in which an alignment with crossed links may have a lower cost than an uncrossed
alignment. Although the total link length is longer in the crossed alignment, one linked pair of
spikes has the same label, allowing it to have a lower cost. In configuration B, both spikes in one
of the spike trains (here, train X) have the same label. Because of this, the minimal-cost alignment
must be uncrossed, since uncrossing the links does not influence whether the links connect spikes
of the same label or of different labels

be implemented in nested loops for each of the L labels on each of the two spike
trains. This would yield an algorithm with a computational burden of O(M2L).

However, a closer look (Aronov 2003) yields an algorithm with a computational
burden of only O(ML+1). The reason for this reduction is the observation (Aronov
2003) that for certain configurations of labeled spikes, the noncrossing rule still
holds (Fig. 7.2B). In particular, noncrossing can be guaranteed if both spikes in one
train have the same label, since in this case, uncrossing the links does not affect
whether any labels need to be changed and thus, cannot incur an additional cost k.
To exploit this observation, the two spike trains are treated asymmetrically. That
is, the iterative process of (7.9) is applied to one spike train independently of label
and to the other spike train on a label-by-label basis. Details of the algorithm are
provided in Aronov (2003).

7.2.3 Spike-Train Metrics Based on Vector-Space Embeddings

Above, we began with the notion of spike trains as event sequences and defined
distances based on the “cost” of transformations between these sequences. Here,
we describe another class of metrics that are based on embedding the spike trains
into a vector space. Typically (van Rossum 2001; Richmond and Optican 1987), the
embedding is linear, so that the resulting metric respects linearity. But this is not a
prerequisite for this approach, and, more recently, Houghton (2009) has developed
metrics based on nonlinear embeddings.

There are two main reasons for considering vector-space embeddings. First, the
embedding process (i.e., the transformation of an event sequence t1, . . . , tM(A) into
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a function of time A(t)) can be considered as an abstraction of what happens at a
synapse: a sequence of action potentials results in a pattern of transmitter release,
and this, in turn, has an effect A(t) on the postsynaptic conductance. Second, in
many cases, these metrics are simpler to calculate than the cost-based metrics.

7.2.3.1 Single-Neuron Metrics Based on Vector Space Embeddings

We use a formulation that encompasses the metrics considered by van Rossum
(2001) and Houghton and Sen (2008). The first step is to represent a spike train A
as a function of continuous time, A(t). To do this, the event sequence t1, . . . , tM(A)
is taken to be a sum of delta-functions

δA(t)=
M(A)∑
j=1

δ(t − tj ), (7.10)

and the resulting sum δA(t) is convolved with a kernel function K(t). This is equiv-
alent to replacing each spike by the kernel waveshape and adding the waveshapes
when they overlap. More formally,

A(t)= (δA ∗K)(t)=
∫ ∞

−∞
δA(τ)K(t − τ) dτ =

M(A)∑
j=1

K(t − tj ). (7.11)

With the above embedding, any vector-space distance can be used to define a dis-
tance between the two spike trains, d(A,B); in particular, the Lp-norm yields the
distance

d(A,B)=
(∫ ∞

−∞
∣∣A(t)−B(t)∣∣p dt

)1/p

. (7.12)

For all metrics defined in this fashion, the distance between two spike trains that
differ by inserting or deleting one spike is given by the Lp-norm of the kernel K ,
i.e., (

∫∞
−∞ |K(t)|p dt)1/p .

van Rossum (2001) focuses on the L2-distance (the Euclidean distance) and the
exponential kernel

KVR(tc; t)=
{

1√
tc
e−t/tc , t ≥ 0,

0, t < 0.
(7.13)

We denote the metric that results from combining (7.11), (7.12) and (7.13) by
DVR[tc](A,B), where tc is a parameter that controls the sensitivity of the metric
to temporal detail. The kernel is normalized so that for two spike trains that differ
by the addition or deletion of a single spike, (DVR[tc](A,B))2 = 1/2, regardless
of tc.
DVR[tc](A,B) is designed to be similar to Dspike[q](A,B), with 1/tc playing

a role analogous to that of q in the cost-based metrics. That is, small values of
1/tc compare spike trains based on the number of spikes, while large values of 1/tc
compare spike trains based on precise times of occurrence. To see this, we consider
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several simple cases. For two spike trains that have only a single spike for which
the times differ by an amount �T , the distance is given by (DVR[tc](A,B))2 = 1−
e−|�T |/tc , a quantity that is 0 at�T = 0 and, for small�T , increases proportionally
to |�T |/tc . In the limit as tc→∞, 2(DVR[tc](A,B))2 is the square of difference in
the number of spikes in the two trains (similar to the count-dominated behavior of
Dspike[q](A,B) as q→ 0), while in the limit as tc→ 0, 2(DVR[tc](A,B))2 is the
number of spikes in the two spike trains that occur at distinct times (matching the
timing-dominated behavior of Dspike[q](A,B) as q→∞).

Houghton and Sen (2008) explicitly consider L1-norms and a kernel that makes
the correspondence to Dspike[q](A,B) even closer. For their kernel choice

KHS(q; t)=
{
q/2, 0≤ t < 2/q,
0, otherwise,

(7.14)

and p = 1 in (7.12), the correspondence of the distance DHS[q](A,B) to
Dspike[q](A,B) is exact when one spike train has no spikes, when both spike
trains have one spike, when all spikes within each train are widely separated, when
q → 0, or when q →∞. However, like DVR[tc](A,B), the correspondence of
DHS[q](A,B) to Dspike[q](A,B) is typically not exact when there are many spikes
in each train, and the spikes occur with separations less than 2/q (or O(tc)). The
main qualitative difference is that DVR[tc](A,B) and DHS[q](A,B) are Euclidean
or can be converted to a Euclidean distance by a power-law transformation, while
Dspike[q](A,B) cannot (Aronov and Victor 2004).

In addition to the exponential (van Rossum 2001) and boxcar (Houghton and Sen
2008) kernel, other kernel shapes, such as a Gaussian, have been used in this context
(Schreiber et al. 2004). Metrics on spike trains can also be derived by binning the
spike times (Lim and Capranica 1994). Here, the temporal function A(t) used in
(7.12) is the mean firing rate in each bin. These metrics can be viewed as approx-
imate versions of the metrics considered above, in which the convolution integral
(7.11) is replaced by a discrete sum, and the kernel (for a bin width 2/q) is given by
(7.14).

Finally, we point out that the transformation from the sequence of delta-functions
(7.10) to the temporal function A(t) (7.11) need not be linear. Indeed, since the lat-
ter can be considered to represent the postsynaptic effect of an impulse train, it is
reasonable to consider nonlinear transformations that caricature biophysical mech-
anisms, such as an incomplete return to resting potential when spikes are in rapid
sequence. Houghton (Houghton and Sen 2008) has recently done this, implementing
a simple model of short-term synaptic adaptation (Sen et al. 1996).

7.2.3.2 Multineuronal Metrics Based on Vector-Space Embeddings

Houghton and Sen (2008) have extended the above strategy to multineuronal met-
rics. The construction begins by extending, to multiple neurons, the representation
(10) of a single neuron’s spike train A as a sequence of delta-functions δA(t). To do
this, they augment the delta-function corresponding to each spike by a unit vector �cl ;
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the direction of this unit vector represents the label l (neuron of origin) of that spike.
However, rather than simply assigning a separate orthogonal unit vector �el as the di-
rection for each of the L labels l, they allow the directions to be nonorthogonal,
i.e., �cl =∑ cl,r �er . As we will see below, orthogonal labels correspond to labeled
lines (the k = 2 extreme for Dspike[q, k]), collinear labels correspond to a summed
population code (the k = 0 extreme for Dspike[q, k]), and intermediate choices cor-
respond to intermediate behaviors.

With these preliminaries, a multineuronal spike train (with L neurons) with
events at times tj and associated with labels lj is represented by an L-dimensional
array of sums of scaled delta-functions,

�δA(t)=
M(A)∑
j=1

�clj δ(t − tj ). (7.15)

In coordinates, �δA(t) = (δA,1(t), . . . , δA,L(t)), where each scaled delta-function
δA,r (t) is given by

δA,r (t)=
M(A)∑
j=1

clj ,r δ(t − tj ). (7.16)

As in the single-neuron metrics, temporal factors are taken into account by con-
volving the delta-function array (7.15) by a kernel, yielding �A(t) = (�δA ∗ K)(t),
with the convolution carried out separately for each coordinate (7.11). (In principle,
different kernels can be assigned to each coordinate, or different kernels can be as-
signed to each neuron prior to mixing them in (7.15).) Finally, the distance between
two multineuronal spike trains A and B is the Lp-norm between their associated
temporal functions �A(t) and �B(t), namely,

d(A,B)=
(∫ ∞

−∞

L∑
l=1

∣∣Al(t)−Bl(t)∣∣p dt
)1/p

, (7.17)

where Al(t) and Bl(t) are, respectively, the lth component of �A(t) and �B(t). We
note that (7.17) is equivalent to

dp(A,B)=
L∑
l=1

dp(Al,Bl). (7.18)

As an example of this construction, Houghton and Sen (2008) consider the two-
neuron case and assign the unit vector �c1 =

(1
0

)
to the first neuron, and �c2 =

(cos θ
sin θ

)
to the second neuron. θ = 0 corresponds to summing the spikes independent of
neuron of origin, because spikes of all labels are represented by the same direc-
tion (�c1 = �c2). On the other hand, θ = π/2 (for which �c1 and �c2 are orthogonal)
corresponds to a labeled line code. In this case, each Al(t) and Bl(t) consists of a
sequence of delta-functions corresponding to the spikes of an individual neuron, and
(7.18) shows that their contributions to the overall squared distance, (7.17), merely
add.
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7.2.3.3 Computational Considerations

Computation of metrics based on vector-space embeddings is straightforward. One
strategy is to approximate the integrals in (7.12) or (7.17) or by a discrete sum; in this
situation, the computational burden is O(ML2D), where M is the typical number
of spikes from each neuron, L is the number of neurons, and D is the number of
points used for the discretization (Houghton and Sen 2008). For the typical norms
of p = 1 or p = 2, these integrals can be reduced to sums over all spikes (p = 1)
or spike pairs (p = 2), resulting in a further saving if the density of spikes is low.
Note that the computational burden of these metrics grows much more slowly as a
function of the number of neurons (L) than for the cost-based metrics (O(ML+1),
see above).

7.2.4 Applications

7.2.4.1 Overview

In this section, we discuss several ways in which spike metrics can be used to ask
biological questions about neuronal spike trains. (Here, we no longer distinguish
between single-unit spike trains and multineuronal “labeled” spike trains; the mate-
rial in this section applies to both.) We will mention applications to specific neural
systems, but we organize our discussion in terms of the nature of the analytical goal.
To do this, it is helpful to take a geometrical view, in which each spike train is repre-
sented by a point in an abstract space. The most direct application of spike metrics
is simply to use the distances to quantify the variability within a set of spike trains.
In the geometric view, the statistics of these distances provides a description of the
cloud of neural responses.

However, quantifying variability does not probe the manner in which the spike
trains relate to perception or behavior. One way to take this next step is to analyze the
pairwise distances by standard multivariate techniques, such as multidimensional
scaling. Via multidimensional scaling, the individual responses are then embedded
into a neural “response space”. In the neural response space, the distances between
the points representing individual responses approximate the metric distances be-
tween the spike trains (as determined by a spike metric), and each kind of stimulus
or behavior corresponds to a labeled cloud of points in the response space. One can
then examine the positions of the clouds of spike trains that correspond to each stim-
ulus or behavior and ask whether similarities in these domains correspond to similar
kinds of neural activity. In other words, one can ask whether the notion of similarity
provided by the spike metric provides a neural representation of the perceptual or
behavioral phenomena.

From the point of view of neural coding, it is crucial to measure the quality
of the representation of the perceptual or behavioral domain by the spike trains.
Geometrically, this corresponds to asking whether the clouds that correspond to
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each stimulus or behavior are distinct, vs. overlapping. The former corresponds to
a high-fidelity representation, while the latter corresponds to a noisy one. Because
of their nonparametric nature, the tools of information theory are natural to use
in this context. If a spike metric leads to a high-fidelity representation, then the
temporal features that it captures are candidates for neural codes. Conversely, when
it is possible to show that behavioral performance exceeds that of a candidate code
(Jacobs et al. 2009), the neural code can be ruled out.

7.2.4.2 Assessment of Variability

Measures of variability for time series depend in general on the time scale of inter-
est; for example, a standard way of describing the variability of a continuous-time
series is to compute its power spectrum, which quantifies variability as a function of
frequency. This holds for point processes as well. In the present context, this obser-
vation means that in assessing the variability of spike trains, it makes sense to use
spike metrics that are sensitive to a range of timescales (e.g., Dspike[q] for a range
of values of q).

Some examples of the use of spike metric for this purpose include the study of
Kreiman et al. (2000), who examined a class of afferents in the weakly electric fish
Eigenmannia whose spike trains are loosely phase-locked to the periodic discharge
of its electrosensory organ. Kreiman et al. (2000) chose to quantify the variability
byDspike, since (because of the phase-locking) measures based on spike count or its
variance proved ineffective in capturing trial-to-trial variability.

Grewe et al. (2003) used Dspike, along with a Euclidean metric, to examine vari-
ability in a motion-sensitive visual neuron (H1) of the blowfly. By examining vari-
ability in the presence of varying amounts of added sensory noise, they determined
that performance of the H1 neuron was limited by its internal noise, rather than
photon noise.

In response to full-field random flicker, retinal and lateral geniculate neurons
often fire in discrete “firing events” consisting of several spikes, at times that are
reproducible across trials. Reinagel and Reid (2002) used Dspike to quantify this
reproducibility and, moreover, to show that these firing patterns were conserved not
only across trials, but also across animals.

Finally, several authors have used Dspike to evaluate spike train variability of
synthetic data for the purpose of evaluating models and describing their qualitative
behavior (Keat et al. 2001; Tiesinga 2004; Banerjee et al. 2008).

7.2.4.3 Construction of Response Spaces

A variety of multivariate techniques can be used to visualize the geometry of the
neural “response spaces” that correspond to a spike-train metric. The basic strategy
for doing this is multidimensional scaling (MDS) (Kruskal and Wish 1978). In the
framework of MDS, given a set of spike trains A and a particular spike metric D,
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one seeks an embedding ϕ from the spike trains A to n-dimensional vectors ϕ(A)=
(ϕ1(A), . . . , ϕn(A)) for which the spike metrics D(A,B) are well approximated by
the standard Euclidean distances between ϕ(A) and ϕ(B):

D(A,B)2 ≈ ∣∣ϕ(A)− ϕ(B)∣∣2 =
n∑
j=1

(
ϕj (A)− ϕj (B)

)2
. (7.19)

Standard Multidimensional Scaling To determine an embedding ϕ that satisfies
(7.19), we carry out the classical MDS recipe (Kruskal and Wish 1978). The crucial
step is to diagonalize the symmetric matrixMAB :

MAB = 1

2

(
−D(A,B)2 + 1

N

∑
S

D(A,S)2 + 1

N

∑
S

D(B,S)2

− 1

N2

∑
S,S′
D
(
S,S′
)2)
, (7.20)

where N is the number of spike trains in the dataset, and the summations range
over all spike trains S or pairs of spike trains S and S′. Rows and columns of M
are indexed by each of the spike trains in the data set, so the entries in each of its
eigenvectors φ[j ] are indexed by the spike trains as well. Thus, we may write

MAB =
N∑
j=1

λjφ
[j ]
A φ

[j ]
B , (7.21)

where φ[j ]A denotes the value of the j th eigenvector at spike train A. Provided that
the eigenvalues λj are all nonnegative, this allows us to write the desired embedding
ϕ as

ϕ(A)= (ϕ1(A), . . . , ϕn(A)
)= (√λ1φ

[1]
A , . . . ,

√
λnφ

[n]
A

)
(7.22)

(see Kruskal and Wish 1978).
The analysis also yields embeddings in lower-dimensional spaces that approxi-

mate the metric D(A,B). To find an approximate embedding, we simply number
the eigenvalues in descending order and only use the first K <N of them for coor-
dinates in (7.22). These approximate embeddings (e.g., with K = 2 or K = 3) can
be used to visualize the relative similarities of a set of spike trains, as determined
by D(A,B).

Examples The above procedures have been used to characterize the geometry of
response spaces in several sensory systems. In the auditory system, Victor and Pur-
pura (1997) applied this approach to the data of Middlebrooks et al. (1994), who
recorded responses of single neurons in cat ectosylvian gyrus to sounds that varied
in spatial location. The original data showed that these neurons’ responses could dis-
tinguish the origin of the sound source in a panoramic (360◦) fashion and that spike
timing at a resolution of ca. 4 ms was critical for this (Middlebrooks et al. 1994;
Furukawa and Middlebrooks 2002). The reanalysis (Victor and Purpura 1997),
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which applied MDS to the distances yielded by Dspike and Dinterval, added to this
picture by showing that the geometry of these responses (i.e., their relative dis-
tances) recovered the circular geometry of the stimulus space.

In the visual system, Aronov et al. (2003) used Dspike[q, k] to characterize the
representation of spatial phase across pairs of neurons in primary visual cortex. The
geometry of the stimulus set (the circle of spatial phase) could be recovered by
applying MDS to the response similarities, as quantified by Dspike[q, k]. Moreover,
response spaces became more nearly circular for nonzero values of k, indicating
that within a local cluster, the neuron of origin of a spike, as well as its timing,
contributes to the representation of spatial phase.

Aronov et al. (2003) also introduced a technique that can be used to interpret the
axes obtained in the MDS procedure. Essentially, for each dimension m in (7.22),
they regressed the coordinate value m of each response, φ[m]A , against a binned post-

stimulus histogram A(t). By showing that φ[m]A could be approximated by a linear
weighting of the response time course, i.e.,

φ
[m]
A ≈

∫
A(t)Lm(t) dt, (7.23)

they identified “temporal profiles” Lm(t) that could be associated with each dimen-
sion of the embedding.

Recently, Di Lorenzo et al. (2009) applied this procedure to single-neuron record-
ings in the nucleus tractus solitarius of the rat, during stimulation by each of the
four primary tastants (salt, sweet, sour, bitter) and their binary mixtures. Neurons
that were broadly tuned in terms of spike count were nevertheless able to distin-
guish among these tastants via temporal coding. The neural response space, as con-
structed by the above procedure, recapitulated the tetrahedral geometry anticipated
from gustatory psychophysics (Erickson 1984).

Implications of Non-Euclidean Nature of Spike Metrics The above approach
(standard MDS) seeks to embed spike trains into a Euclidean vector space in a
distance-preserving manner. Thus, the embedding can only be exact if the spike
metric itself is Euclidean, which is not the case (Aronov and Victor 2004). The
above procedure fails to be exact for non-Euclidean metrics because some of the
eigenvalues of M are negative. Consequently, the bilinear form (7.21) is not pos-
itive definite (and hence, not an inner product), and the coordinates (7.22) are not
real. Nevertheless, since the first several eigenvalues ofM are typically positive, the
above procedure finds an Euclidean approximation of the spike metric that suffices
for visualization of the spike trains. Other approaches to deal with this problem are
described below.

Relationship to the “Kernel Trick” and van Rossum-Type Metrics The “kernel
trick” is applicable to a situation in which one wishes to classify a set of objects
(here, the spike trains) which either do not have a linear structure, or in which the
important features are nonlinearly related to the objects. To do this, one introduces
an embedding ψ , which maps the objects into a vector space. Then, the original
objects can be classified via linear classifiers in the feature space.
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This is a generalization of the approach of van Rossum (2001), Richmond and
Optican (1987), in which spike trains are embedded into an infinite-dimensional
vector space (functions of time) by convolving them with a smoothing kernel (e.g.,
(7.11)). Suppose that we have a set of spike trains Ak that correspond to temporal
functions Ak(t) via this transformation. It is natural to ask what would happen if
we apply the above MDS procedure to their L2-distances, (7.12). Since this is man-
ifestly a Euclidean distance, an exact embedding must be possible. However, we
cannot recover the original vector space of functions of time, because the latter is
infinite-dimensional, but the MDS procedure necessarily yields a finite-dimensional
embedding. Instead, we would find that the successive eigenvectors of M corre-
spond to the successive principal components of the set of temporal functions Ak(t)
(minus their overall mean). That is, although the MDS procedure does not recover
the smoothing kernel that defines the distance, it finds the vector space that contains
all of the temporal functions that result from applying this kernel.

As a converse, we mention that these relationships imply that the non-Euclidean
spike metrics cannot be calculated via a “kernel trick”, since if this were possible,
then the metrics could be recovered exactly by an MDS procedure (see below).

Nonlinear Scaling Above we have focused on finding an embedding ϕ that ap-
proximates a spike metric by a Euclidean distance (7.19). However, since spike
metrics typically do not correspond to any Euclidean distance (Aronov and Victor
2004), there is no guarantee that embeddings that satisfy (7.19) can be found. This
motivates several other strategies for response space construction, which we now
briefly mention. One such strategy is to seek embeddings into a curved space. That
is, the Euclidean distance on the right-hand side of (7.19) is replaced by the geodesic
distance between ϕ(A) and ϕ(B) within a data-defined curved manifold. This can
be accomplished by the isomap (Tenenbaum et al. 2000) and geometric diffusion
(Coifman et al. 2005) methods of dimensionality reduction. A second approach is
to replace D(A,B) in (7.19) by f (D(A,B)) for some monotonic function f . The
resulting embedding preserves the rank order of the distances, and, if f is concave,
f (D(A,B)) remains a metric. f (D(A,B))=D(A,B)β for 0< β < 1 is a natural
choice for this transformation, since it is scale-invariant. However, while specific
choices of β (e.g., β = 1/2) may be useful to “euclideanize” particular datasets, it
is possible to show (Aronov and Victor 2004) that there is no single choice of β > 0
that universally suffices to transform Dspike[q, k] into a Euclidean distance.

7.2.4.4 Applications to Information-Theoretic Analysis

Finally, we consider applications of spike metrics to information-theoretic analysis
of neural data. Information theory (IT) (Shannon and Weaver 1949) (see Cover and
Thomas 1991 for a general review) forms a natural framework for the analysis of
neural coding (Rieke et al. 1997) (Chap. 13). However, the application of IT to neu-
ral systems can be difficult: estimates of mutual information from laboratory data
can be biased, imprecise, or both. The estimation problem, whose origin is that the
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space of possible responses is undersampled, is compounded for analyses of multi-
neuronal activity, because the dimensionality of the response domain is proportional
to the number of neurons.

To motivate some strategies to mitigate this difficulty, we consider a naïve at-
tempt to estimate mutual information from laboratory data. The mutual information
between a set of stimuli S and a set of responses R is defined as

I (S,R)=−
∑
s∈S
p(s) logp(s)+

∑
r∈R
p(r)

∑
s∈S
p(s|r) logp(s|r), (7.24)

where the first term is the entropy of the unconditioned distribution of stimuli, and
the second term subtracts the average entropy of the distribution of stimuli, condi-
tioned on observing a particular response r ∈ R. Typically, the distribution of stim-
uli is known, so the estimation of information rests on the conditional probabilities
p(s|r)= p(s, r)/p(r). Below we will make use of a reorganization of (7.24) into a
symmetric form,

I (S,R)=−
∑
s∈S
p(s) logp(s)−

∑
r∈R
p(r) logp(r)+

∑
s∈S,r∈R

p(s, r) logp(s, r),

(7.25)

which states that mutual information is the difference between the entropies of the
stimulus and response distributions (the first two terms) and the entropy of their
joint distribution (the third term).

Implementing (7.24) or (7.25) directly requires estimates of the joint stimulus-
response probabilities p(s, r). The obvious way to obtain these estimates is to count
up the number of joint occurrences of each stimulus s and each response r , and di-
vide by the number of events. To do this, the investigator must know how to partition
the response domain R into different kinds of responses, r1, r2, . . . . The Data Pro-
cessing Inequality states that if probability estimates from different responses r1 and
r2 are inadvertently pooled, then the resulting estimate of mutual information will
be downwardly biased. Thus, it might appear that the most conservative approach
would be to estimate p(s, r) by separately tracking all distinguishable responses.
This would then avoid the downward bias due to pooling responses.

The difficulty with this approach is that when the response domain is partitioned
very finely, then the number of events that contributes to each estimate of p(s, r) is
small, often either 0 or 1. Since entropy and information are nonlinear functions of
the underlying probabilities, an overly narrow binning of the response space incurs
an upward bias (Treves and Panzeri 1995; Miller 1955; Carlton 1969; Victor 2000)
in the estimate of mutual information. So the investigator has a dilemma: to avoid
a downward bias due to the Data Processing Inequality, the stimulus domain must
be sampled as finely as possible, but this leads to an upward bias because of the
nonlinearity of the logarithm.

There are two general strategies that can be used to mitigate this dilemma
(see Victor 2006 for further details). One strategy is to use a fine partitioning of
the response domain but to use advanced estimation techniques (Paninski 2003;
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Nemenman et al. 2004) to reduce the upward estimation bias inherent in naïve es-
timators. This strategy makes minimal assumptions about the nature of the neural
code but still has large data requirements.

The second strategy, which is where spike metrics are relevant, is based on the
observation that pooling distinct responses r1 and r2 only reduce the estimate of mu-
tual information when the responses are associated with distinct a posteriori proba-
bilities, p(s|r1) and p(s|r2). Conversely, if two responses r1 and r2 have the same
“meaning” (i.e., lead to identical a posteriori estimates of what the stimulus was),
then probability estimates can be pooled without incurring an upward bias.

This places the focus on determining which neural responses have the same
meaning. Each spike metric, in essence, is a formal hypothesis about exactly this:
two neural responses are hypothesized to have the same meaning if their distance is
zero, and increasing distances indicates progressively different meanings.

Motivated by this observation, a spike metric can be used to provide an estimate
of mutual information that is relatively unaffected by the undersampling problem
but strongly sensitive to whether, in fact, the hypothetical distance is close to the
correct one. A strategy for doing this for a discrete stimulus set is detailed in Victor
and Purpura (1997); we summarize it here.

The first step in the analysis is to calculate all of the pairwise distances between
the responses. Then, response clusters are created, with one cluster for each stim-
ulus sα . The clusters are formed based on the experimenter’s knowledge of which
stimulus elicited each response. In particular, a response r is placed into a cluster
β if the average distance between r and all the responses elicited by the stimulus
sβ is smaller than the average distance between r and the responses elicited by any
other stimulus. (The averaging process is carried out following a negative-power
law transformation, to emphasize near-matches. The exponent, typically −2, is the
parameter z of Victor and Purpura 1997.) The result of applying this clustering to
all responses is a table N(α,β) which counts the number of times that a response
to the stimulus sα is assigned to cluster β . From this table mutual information is
estimated as

I (S,R)≈ −
∑
α

p(α,•) logp(α,•)−
∑
β

p(•, β) logp(•, β)

+
∑
α,β

p(α,β) logp(α,β), (7.26)

where p(α,β)= N(α,β)∑
α,β N(α,β)

,p(α,•)=∑β p(α,β), and p(•, β)=∑α p(α,β).

The reason that (7.26) represents a useful approach to the undersampling strat-
egy is that p(s, r) has been replaced by p(α,β). The former requires keeping track,
separately, of the number of occurrences of each response, while the latter only re-
quires keeping track of the number of occurrences of responses in the same cluster.
That is, we have dealt with the undersampling problem by introducing a clustering
procedure: we have lumped responses together (into the same cluster β) if they are
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similar to responses that are known to be elicited by the stimulus sβ .5 The Data Pro-
cessing Inequality guarantees that this will result in an underestimate of information
(assuming that the clusters are sufficiently well sampled), but the key point is that
the extent of this underestimate is determined by whether or not the metric-based
clustering properly classifies spike trains that have the same meaning.

In sum, estimates of information based on (7.26) reflect the extent to which
the chosen spike metric accurately captures meaningful differences between spike
trains. That is, the dependence of the information estimates of (7.26) on the choice of
spike metric (e.g., forDspike[q, k], the temporal precision parameter q and the spike
label parameter k) characterizes the informative features of the neural response. In
particular, if qmax is the value of q for which estimates of information via (7.26)
based on Dspike[q] (or Dspike[q, k]) achieves its highest value, then 1/qmax can be
viewed as the “informative temporal precision” of a spike, namely, the amount of
time by which moving a spike has the same impact on the meaning of the spike train
as deleting the spike altogether.

Examples Victor and Purpura (1996) used this approach extensively to charac-
terize how individual neurons in primary (V1) and secondary (V2 and V3) visual
cortices carried information about multiple stimulus attributes, such as contrast,
orientation, and texture. They found that greater information was recovered from
clustering based on Dspike[q] than from that based on Dinterval[q]. Moreover, using
Dspike[q], they found that the informative precision of a neuron’s response depended
on the stimulus attribute—with the highest precision for contrast (10 to 30 ms) and
lowest precision for texture (∼100 ms). Thus, individual spike trains can be con-
sidered to carry information about several stimulus attributes in a temporally multi-
plexed fashion.

Estimates of informative temporal precision obtained by the above approach are
necessarily averages across the entire response. This is underscored by the study of
Reich et al. (2000), who used Dspike to show that most of the information about
contrast could be extracted from the latency of the first spike and that, if only the
first spike is considered, the informative temporal precision can be as low as 2 to
5 ms.

Samonds and Bonds (2004) and Samonds et al. (2003), examined signaling of
orientation in cat primary visual cortex with Dspike and Dinterval, including multi-
neuronal extensions of these measures. Their analysis showed that large orientation
differences could be signaled by firing rate but that orientation differences of 10◦
or less were signaled by the temporal fine structure (2 to 10 ms) of spike times and
spike intervals.

Additional information-theoretic applications of spike metrics in the visual sys-
tem include the work of Mechler et al. (1998), who showed that temporal structure

5The “hard clustering” used in this procedure might also lead to an underestimate of information, in
comparison to a procedure that gives soft, or probabilistic, assignments to each response. Recently,
I. Nelken (2009) has proposed a procedure that circumvents this difficulty, by applying the “binless
embedding” method (Victor 2002) to the distances calculated by spike metrics.
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played a much larger role in the coding of edges (square-wave gratings) than of
smooth variations (sine gratings), and the study of Chichilnisky and Rieke (2005),
who found that for near-threshold responses in retinal ganglion cells, the informative
temporal precision was approximately 100 ms.

There have also been a number of applications of this approach in other sen-
sory systems (e.g., Machens et al. 2001 in the grasshopper auditory system, Di
Lorenzo and Victor 2003, 2007 in the gustatory system). Particularly noteworthy
are the combined behavioral and neurophysiological experiments of Laurent and
colleagues (MacLeod et al. 1998) in the olfactory system of the locust. They used
Dspike to show that increasing timing jitter of spike trains in projection neurons leads
to loss of behavioral discrimination of similar odors, though coarse odor discrimi-
nation remains intact (Stopfer et al. 1997). These elegant experiments demonstrate
the functional relevance of precise spike timing for fine sensory discriminations.

Several of the above studies (e.g., Victor and Purpura 1996; Di Lorenzo and
Victor 2003, 2007) made use of a surrogate data technique, “exchange resampling”.
The authors reanalyzed surrogate data sets in which individual spikes were swapped
across pairs of responses to the same stimulus. These surrogate data sets, by con-
struction, have the same number of spikes in each trial as the original data and have
the same time-varying firing rates as the original data, but spike correlations within
trials are destroyed. Information estimates from these surrogate data sets were some-
what less than the estimates obtained from the original data, indicating that the pat-
tern of spikes in individual trials, and not just the time course of firing probability,
was informative.

It is important to emphasize that these methods quantify the amount of in-
formation that is available in the neural response and the spike train features
that carry this information. In order to claim that the information is actually
used, the analyses must eventually be coupled to behavior (MacLeod et al. 1998;
Jacobs et al. 2009).

7.3 Conclusion

Spike metrics provide a formal structure for analyzing neural activity as event se-
quences and provide a means to assess variability, to visualize patterns of response
similarity, and to estimate information-theoretic quantities. While many simple and
useful spike metrics can be calculated by efficient dynamic programming algo-
rithms, extensions of the approach to additional metrics present a range of algo-
rithmic challenges.
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Chapter 8
Gravitational Clustering

George Gerstein

Abstract When multiple spike trains are simultaneously recorded, it is desirable
to screen the data for signs of neuronal association. The gravity transformation does
this by representing the N observed spike trains as charges on N particles moving
in an N -space. An appropriate force law results in particle trajectories and aggre-
gations that can be interpreted in terms of dynamic neuronal interactions and of
neuronal assemblies.

8.1 Introduction

Since the seminal work of Hebb (1949), it has been commonly accepted that neurons
do not act alone but form assemblies for their various tasks. Indeed as soon as it be-
came possible to simultaneously record the activity of two neurons, at the same time
it was noted that some neurons exhibited nonrandom, frequently near-synchronous
time relationships to each other and to external events in the laboratory like stimu-
lus or movement. Various analysis methods related to correlation of spike activity
allowed parsing of such observations into “effective connectivity”, a simplified car-
toon of neuron-like elements that would produce similar temporal activity relations
(Gerstein and Perkel 1972; Aertsen et al. 1989). The attendant vocabulary included
(a) direct synaptic connection, (b) shared synaptic input, (c) stimulus-related mod-
ulation of either, and (d) stimulus-related shared rate modulations. These circuit
models have a progressively increasing time scale starting in the milliseconds for
direct synaptic effects and going up to seconds for the shared rate effects. However,
two or three neurons do not make an assembly.
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In due course recording technology has advanced. It is now possible to record
some 100 neurons at a time in a given structure either by optical or electrode means.
There remain problems in the spike shape sorting which is needed to produce clean
spike trains, each coming from only a particular neuron. Sufficient effort and ver-
ification, tedious though it be, can overcome these problems. However, because
of a combinatorial explosion, it is highly impractical to use pairwise analysis on
such data to search for signatures of assemblies and for investigation of their prop-
erties. This chapter about gravitational clustering is one approach to an efficient
search for evidence of interactions among many simultaneously recorded neurons.
Although the representation is still fundamentally pairwise, it allows evaluation of
all observed neurons at the same time. Furthermore, like the time-resolved corre-
lation methods for neuronal pairs, the gravity representation allows the observation
of dynamic behavior in assembly structure and membership. In its basic form the
gravity representation (Gerstein et al. 1985; Gerstein and Aertsen 1985) is most
sensitive to near-synchronous time relations among neurons, a restriction similar
to that of “Unitary Event” analysis (Grün et al. 2002; Pauluis and Baker 2000).
See Chap. 10. Various modifications of the basic gravity analysis allow lifting this
restriction and enhancing performance. The gravitational clustering approach has
been successfully applied to a range of experimental data (Aertsen et al. 1987,
1991; Gochin et al. 1990; Lindsey et al. 1989, 1992a, 1992b, 1997; Lindsey 2001;
Maldonado and Gerstein 1996; Gerstein et al. 1998; Arata et al. 2000; Martin 2001;
Morris et al. 2003).

We first describe the basic gravity representation and various visualization tools
available to examine its results. We then will examine variations on the theme for
increased sensitivity and selectivity. However, the exposition in this article is nec-
essarily condensed, and it is advisable to consult the original papers for details and
examples.

8.2 The Basic Gravity Representation

Temporal analysis of multiple spike train data is mapped into a mechanical sys-
tem where spike timing effects produce spatial clustering; this type of clustering
analysis was originally proposed for detecting botanical similarity (Wright 1977).
Each neuron is represented as a particle in a high-dimensional space. Action po-
tentials produce transient “charges” on the particle which corresponds to the neu-
ron fired. The particles move according to forces caused by attraction or repulsion
of the charges. In consequence there will be aggregation of articles corresponding
to neurons which fire near synchronously. Such aggregation then is the signature
of synchronous neuronal assemblies if they are present. The speed of aggregation
or disaggregation reflects the dynamics of the assembly structure during the time
course of the recording. This approach should be compared to multiple pair corre-
lation. See Chap. 5.
N neurons are assumed to be simultaneously recorded. Following the original

work on gravitational clustering (Gerstein et al. 1985; Gerstein and Aertsen 1985),
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we represent these neurons as N particles in N -dimensional space. The initial coor-
dinate along the j th axis of the ith particle is given by

xji =
{

1, i = j,
0, i �= j. (8.1)

The charge on particle i at time t is given by

qi(t)=
∑
k

K(t − Tk)− λi, (8.2)

where Tk are the times of the spikes fired by this cell, and K(t) is a kernel function
which is convolved with the spike train. The kernel function is assumed to have
unit area and is frequently taken as a simple decreasing exponential with a time
constant τ . The firing rate of the ith neuron is given by λi ; this is subtracted to
ensure that the mean charge on a given particle is zero. In the basic version of the
analysis, only data with stationary firing rates are considered. However, it is possible
to extend the method to nonstationary rates, in which case a time varying rate λi(t)
is subtracted in (8.2). The rate is normally estimated over a short window of data
(Gerstein and Aertsen 1985). Figure 8.1 illustrates the transformation of a spike
train into a charge function (8.2) using forward or backward exponential kernels.
Obviously kernels of different shape and time scale can be used; in particular it is
worth considering gamma like kernels that mimic synaptic potentials and have an
effective dead time. Issues of kernel time scale are addressed in Chap. 6.

In the usual gravitational clustering analysis, particle positions are adjusted ac-
cording to the pairwise attractions between particles. Thus, using a discrete time
step of δt , the position update rule is

xi (t + ∂t)= xi (t)+ κ∂t
∑
∀j �=i

Qi,j
xj − xi
|xj − xi | , (8.3)

where

Qi,j = qiqj . (8.4)

Note that this is a force and update rule that has velocity rather than acceleration
proportional to attractive force. In real physical systems this would only occur over
a narrow range of conditions for particles moving in a viscous medium.

The constant κ controls both the observed variance (noise) in the particle tra-
jectories and the rate of aggregation of particles which correspond to synchronized
neurons. The time step ∂t has usually been fixed at 1 ms in most applications. The
denominator term within the summation prevents a dependence of the force on the
current separation of particles. The computational instability as the two particles
approach very closely is usually eliminated by setting the interparticle force to zero
when the interparticle distance is less than some critical threshold, typically 10% of
the original distance. An alternative version of (8.3), where the denominator term
is omitted, has also been described (Dayhoff 1994) and eliminates the instability at
close particle approach distance. That version has a computational advantage since
its run time scales as N2 rather than N3 of the original formulation. However, the
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Fig. 8.1 Cartoon of spike train, forward and backward charges using an exponential kernel in
convolution with the spike train

resulting particle trajectories are noisier and may be harder to interpret; comparative
testing needs to be done.

Discrimination between particle distances corresponding to independent or syn-
chronous neuron pairs depends on the variance of the charge product (8.4). Using a
standard statistic for discrimination (Green and Swets 1966)

d ′ = Q
SYNC
i,j −QINDEP

i,j

stdev(QINDEP
i,j )

(8.5)

it turns out (Baker and Gerstein 2000) that discrimination increases with the degree
of synchrony and in addition that interval statistics of the spike train are important.
For Poisson spike trains, discrimination does not depend on firing rate. For spike
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Fig. 8.2 Cartoon of the
neuronal groups used in a
simulator to produce the data
used in subsequent figures of
this article. There are six
presynaptic neurons, 12
postsynaptic neurons, and one
independent neuron. Interval
distributions of spike trains
are gamma order 4, with rate
10/second

trains with gamma interval distributions, discrimination increases both with firing
rate and order of the gamma distribution.

8.3 Visualization of the Gravitational Analysis

With the above equations, there will be aggregation of the particles representing ap-
proximately synchronously firing neurons, while particles representing independent
neurons will remain roughly near their starting points in the N -space. Such ag-
gregations cannot be directly visualized because they are N -dimensional and their
detection is generally a problem in cluster analysis. However, we have found sev-
eral simple and useful graphical methods that reduce the dimensionality for such
visualization.

In order to illustrate the several visualization tools, we generate a data set which
has six small groups of neurons, each consisting of a driver and two post synaptic
followers and one independent neuron. Individual homogeneous spike trains have a
rate of 10 spikes/second and a gamma interval distribution of order four. Synaptic
strength between driver and followers has been adjusted to give cross-correlograms,
similar to those observed in real recordings, and is the same in all six subassemblies.
The effective connectivity used in the simulator is summarized in Fig. 8.2.

The first such method graphs the time course of the distance between particles
for each pair of particles. The distance between any two particles in the N -space
is of course a vector quantity, but here we will consider only its magnitude. For
N neurons, there will be N(N − 1)/2 of such intrapair distance trajectories. The
trajectories for pairs involving independent neurons will remain (noisily) at the ini-
tial distance value; trajectories for pairs involving synchronous neurons will slope
downward at rates related to the strength of the synchrony.

The pair distance trajectories for this data set are shown in Fig. 8.3. The major-
ity of trajectories remain noisily near the original value and correspond to neuron
pairs that are not interacting and therefore without excess near synchronous spike
timings. Trajectories for interacting neuron pairs decrease systematically in time,
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Fig. 8.3 Evolution of intrapair particle distance during the gravity computation. The same kernel
is used for acceptor and effector charges, so that both particles in each pair are moved (see text).
The labeled trajectory bundles are: (a) prepost (12), (b) shared input (6), (d) independent-other
(18), and (c) all other pairings (135)

sloping down to the minimum approach distance. Thus the most rapidly aggregat-
ing particles with pair distance trajectories involved in bundle a result from the 12
direct prepost synaptic interactions of the data set. The slightly slower aggregation
of the 6 trajectories in bundle b result from pairs with shared input. The least aggre-
gation is seen in the 18 trajectories of bundle d where one neuron of each pair is the
independent 19. Finally the large trajectory bundle labeled c shows some relatively
small movement and involves the remaining pairs that are not directly or indirectly
related through synaptic activity. These small but systematic movements in bun-
dle c are caused by the effect of the strong particle aggregations in the underlying
N -space on the geometric projection. Since all six of the three neuron groups were
simulated with the same synaptic strength parameters, the aggregating trajectories
within bundles a and b are similar, although not identical, and barely allow the sep-
aration of direct synaptic interaction from shared input. Note that if the synaptic
parameters in the subgroups had been varied, we would expect to see descending
trajectories with more varied slopes and times, shallower slopes corresponding to
the weaker synaptic strengths resulting in overlap of bundles a and b.

It is sometimes useful to display the particle pair velocity by smoothing and
taking the time derivative of the trajectories of the pair distance graph. This is shown
in Fig. 8.4 with the same four bundle identifications as in Fig. 8.3.



8 Gravitational Clustering 163

Fig. 8.4 Evolution of intrapair particle velocity during the gravity computation. The picture is
somewhat distorted by the low-pass filters used in the velocity calculation, but the several trajectory
bundles correspond to those in Fig. 8.3

Projection of the N -dimensional system to a two-dimensional plane loses in-
formation, can produce spurious apparent particle aggregation, and must be care-
fully checked against the pair distance data. However such projection allows di-
rect visualization of the development of the particle movements and their in-
terpretation in terms of neuronal interactions. Such projections can be made in
many ways (Sammon 1969; Stuart et al. 2002); we have found a simple geo-
metric projection convenient for small numbers of neurons <20. Here the pro-
jection plane is determined by the centers of gravity of various particle combina-
tions and hence is dynamic rather than a fixed plane. An example for the same
data used for Figs. 8.3 and 8.4 is shown in Figs. 8.5 and 8.6. The projection of
the starting particle positions is shown in Fig. 8.5. In Fig. 8.6 gray projected tra-
jectories for each particle are shown, with the final position indicated by the par-
ticle number (1–19 for these data). There are six clusters of three particles, and
one noisily stationary particle 19; the clustering is in agreement with the con-
nection diagram (Fig. 8.2) used in the simulator that produced these spike trains.
In a more complicated situation with overlapping assemblies (Strangman 1997;
Gerstein 1998) a simple strategy to clarify the overlaps is to delete from the data
all members of a defined cluster and then recompute, cycling one at a time through
all defined clusters.



164 G. Gerstein

Fig. 8.5 Initial particle
positions in a projection to a
two-dimensional plane. The
plane is determined by a
function of the current
particle coordinates in the
original N -space and hence
varies during the progress of
the computation

Fig. 8.6 Final particle
positions and their
trajectories in a projection to
the two-dimensional plane

Note also that the gravity calculation itself is dynamic. Aggregations can proceed
at varying rates, may pause and even disaggregate. This is seen by changes of slope
in trajectories of pair distance (Fig. 8.3) or in the process of forming the clusters in
the projection display. Such behavior is best seen if the projection display is viewed
as a movie.
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8.4 Significance Testing for Distance Trajectories

For noninteracting neurons, the bundle of corresponding pair distance trajectories
will remain noisily near the starting value, with gradually widening envelope. In
contrast, trajectories corresponding to interacting neuron pairs will steadily slope
downward, and it is important to have a significance test to properly distinguish the
two situations. Unfortunately, no analytic significance test has yet been devised. We
must resort to Monte Carlo methods with surrogates. Surrogates of the original data
are best produced by shuffling or shifting in any way that destroys temporal relations
on the time scale of physiological neuronal interactions but does not alter the general
rate structure or any other characteristics of each spike train. See Chap. 17 for more
general surrogate issues. If there is no rate modulation in the data, an adequate
surrogate is to shift each spike train by some random amount larger than say 100 ms.
For data with a known stimulus structure, the shifts should be on known stimulation
boundaries, i.e., by an integral number of stimulus intervals. To avoid losing data,
shifts are made circular. By generating and running the gravity analysis on 100
such surrogates we get a one percent envelope of the trajectories for (artificially)
noninteracting neuron pairs. Examples are shown in Lindsey et al. (1992a, 1992b)
and Lindsey and Gerstein (2006).

Note that if shifting on known stimulus boundaries, it is necessary to avoid re-
peating a particular relative shift between two particular spike trains in different
surrogates. With numbers like 20 neurons and 100 stimuli, this is not difficult but
requires some care in making programs that produce surrogates.

8.5 Variations on the Basic Gravity Computation

8.5.1 Forward and Backward Charges

In the basic gravity computation all particle charges use the same kernel as shown,
for example, in the middle panel of Fig. 8.1. In these conditions two particles repre-
senting neurons with some near-synchronous activity will move toward each other
irrespective of the order of firing since for appropriate delays, the two charges will
overlap. The gravity computation can be made sensitive to firing sequence by letting
each particle carry two charges, one for use when it is the particle being moved (the
i index in (8.3), called the “acceptor charge”), and one for use when it is one of
the other particles that are causing the movement (the j index in (8.3), called the
“effector charge”). If the charge on the i particle is like the middle panel in Fig. 8.1
(a forward exponential) and the charges on the j particles are like the bottom panel
of Fig. 8.1 (a backwards exponential), the charges will overlap only if the neuron
corresponding to the i particle fires before the ones represented by the j particles,
i.e., if it is presynaptic to them. Thus, in the N -space, the i particle will move to-
ward the relevant j particles, while the j particles stay noisily in place. If the charge
definitions are reversed, the i particle will move only when its neuron fires after
the ones represented by the j particles, i.e., if it is postsynaptic to them. Additional
details and examples are in Gerstein and Aertsen (1985).
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8.5.2 Nonlinear Functions of Charge Product

The force driving the particles in the N -space is proportional to the charge product
Qij = qiqj as in (8.3) and (8.4). It is sometimes convenient to make the force a
nonlinear function of the charge product. In this case we modify (8.3) so that

xi (t + ∂t)= xi (t)+ κ∂t
∑
∀j �=i

f (Qi,j )
xj − xi
|xj − xi | . (8.6)

Here f (u) is a nonlinear function with a slope which increases its magnitude with
increasing distance from u= 0. This will have the effect of suppressing small, noisy
fluctuation relative to the large excursions in Qi,j that are unlikely to have been
caused by chance. The simplest form of suitable nonlinearity is

f (u)=A|u|m sign(u), (8.7)

where the power m can be varied to change the functional form; use of this form
permits even and nonintegral m whilst ensuring that the sign of f (u) always equals
the sign of u. The constant A permits scaling of the nonlinear function.

It is very advisable to apply a moving window smoothing to the charge product
Qi,j when using a nonlinearity as in (8.6) and (8.7). This avoids degradation of per-
formance by excess standard deviation of the charge product. A detailed analysis of
performance under various levels of synchrony (the d ′ of (8.5)) and for various pow-
ers m is given in Baker and Gerstein (2000). Essentially for small d ′, i.e., low levels
of synchrony, the nonlinear formulation gives no improvement over the original ver-
sion of (8.3). For d ′ values greater than 1.5, there is considerable improvement of
performance.

For practical application of the algorithm, we have found that it is advisable to
initially scale Qi,j by its standard deviation:

Q′
i,j (t)=

Qi,j

stdev(Qi,j )
. (8.8)

Such a scaling makes the variability of all charge products the same, regardless
of cell firing rate or interspike interval statistics. By normalizing for this first, the
choices of constant κ in (8.3) can be standardized, and the same value used across
different datasets. This reduces the need to “tune” performance of the algorithm by
testing multiple values of κ , although it may still be necessary to explore various
kernels that can be used to convert the spike trains into charge. The standard devia-
tion of the charge product can be calculated over the entire length of the data if the
firing rate of the neurons is stationary, or by using a moving window if not (com-
pare with the calculation of mean charge using a moving window in nonstationary
data, Gerstein and Aertsen 1985). Normalization by standard deviation as a means
to correct for nonstationarity has also been used by Aertsen et al. (1987, 1989).
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8.5.3 Temporal Clustering of Pair Interactions

In the basic gravity computation synchrony in the firing of two neurons creates an
attractive force between the two corresponding particles and causes their aggrega-
tion. If however these two neurons are members of a larger synchronous assembly,
we may expect that additional particle pairs will also coalesce into the same cluster
in the N -space.

Suppose that three neurons, i, j , and k, are members of the same assembly. The
paired synchronous firings (i, j), (i, k), and (j, k) will each occur at above chance
rates, and this will lead the three corresponding particles to move toward each other.
However, since all three neurons are part of the same assembly, we might expect an
excess temporal clustering of the several pair coincidences within a moving window
of length w; such counts of multiple pair coincidences are highly unlikely to occur
by chance. The closely spaced occurrence of multiple pair synchronies will be a
much more robust indicator of assembly membership than any one of the individual
pairwise synchronies alone. Note that this is not a measure of triple coincidences
since we are looking for closely spaced but not synchronous pair occurrences. See
Chap. 12 for calculation of high-order coincidences.

These ideas suggest a further enhancement to the particle movement rule of (8.6):

xi (t + ∂t)= xi (t)+ κ∂t
∑
∀j �=i

f
(
Q′
i,j

)
g

( ∑
∀k �=i,j

Q′
i,kQ

′
j,k

)
xj − xi
|xj − xi | . (8.9)

The time window w for the two-pair product term is implicit in the kernel used to
calculate the several charge functions; it may be useful to use a kernel with a longer
time constant for the pair product term in g than used for the single argument of the
f function. The scaling function g(u) should be always positive with a minimum
of zero and a small integer maximum; also we require that g(0) = 1 with a slope
near zero in a region around u= 0. Many such functions are possible; an example
is given in Baker and Gerstein (2000).

If no other neuron fires near-synchronously with cells i and j during the win-
dow period w, the summation over k in (8.9) will be close to zero; g will be nearly
one, and the basic gravity algorithm will be unaffected. However, if another cell
k does participate in the assembly in the period w, the summation will on aver-
age be above zero, since both Q′

i,k and Q′
j,k will have nonzero, positive mean. The

force causing aggregation between i and j will therefore be enhanced. By symme-
try, a similar effect will occur for the force between particle pairs (i, k) and (j, k),
and all three particles will therefore aggregate more rapidly than had the term in
g(u) not been included. Examples and performance measures are given in Baker
and Gerstein (2000). It turns out that both the nonlinear and the multiple pair ver-
sions enhance aggregation if the interval structure of the spike trains is given by a
gamma function of low order. However, there is no enhancement and even degra-
dation of performance over the basic linear gravity algorithm if the spike trains are
Poisson. It is apparently easier to detect synchronies among neurons that produce
gamma interval distributions (i.e., with dead time) as compared to Poisson interval
distributions.
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8.6 Tuned Gravity

The usual application of the gravity analysis is as a preliminary screening tool to
identify neuronal groupings defined by near synchronous firing. Once identified,
the spike trains from neurons in such groups may be studied by various additional
detailed spike train analysis methods such as joint peri-stimulus histograms (JP-
STH) (Aertsen et al. 1989) or cross-correlation. The detection of near-synchrony in
the gravity computation depends critically on the kernel chosen for the initial con-
version of spike train into a charge function. In particular, the kernel must cover the
expected range of near-synchrony. This poses a problem if there are long but fairly
exact delays among the different neuron firings, i.e., “delayed synchrony”. The usual
limited duration kernels would simply be blind to such delayed interactions since
there would never be charge overlaps. If a kernel long enough to encompass the
delays is used, the overall computation will become excessively noisy and will also
lose time resolution. One way to deal with such a situation without losing sensitivity
to ordinary near-synchrony is to do a preanalysis with cross-correlation.

All pairs in the data set are analyzed with cross-correlation. When an offset peak
corresponding to a delayed interaction is noted, the kernels used for that particular
pair of spike trains are offset by the same amount but only when they both appear
respectively as i and j in (8.3). Kernels used for all the other i and j combinations
remain in their normal un-shifted form. The gravity computation and consequent
particle aggregations will now be sensitive both to the usual near synchronies but
also to the longer delays between certain neurons as detected through the prelimi-
nary cross-correlation step.

More detail and examples are given in Lindsey and Gerstein (2006).

8.7 Repeating Synchrony Patterns and Time Markers

The aggregation process in the gravity computation reflects near synchronies among
the recorded neurons in a dynamic way. This is evident in short periods of high slope
in the pair distance display and is even more evident in the corresponding pair ve-
locity display. Often multiple pairs show transient rapid aggregation (high velocity)
during the same short period, representing the transient activation of a particular
neuronal assembly. Such epochs can be identified by setting an amplitude criterion
in the pair velocity display or alternatively a slope criterion in the pair distance
display. A small amount of smoothing may reduce noise in such a procedure. The
several neurons participating in each of the selected epochs define multiple syn-
chrony patterns. It is then easy to compare these patterns and search for repeats that
might be expected in any real repetitive stimulation or behavioral paradigm. Partic-
ular repeating synchrony patterns may be associated with some particular phase of
the paradigm. Details and illustrations of these ideas are in Lindsey et al. (1997).

There is another interesting approach to the relation between the particle aggre-
gation process and time markers of events like stimuli in the laboratory. Conceptu-
ally, we want to average each pair distance trajectory relative to the time markers
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Fig. 8.7 Distance each particle has moved from its original position during the computation.
In this case the acceptor charges were taken as forward and effector charges as backward (see
Fig. 8.1), so that only postsynaptic particles move, while the presynaptic and independent particles
are noisily stationary

and over some short time window like 1 or 2 seconds. This would detect any signifi-
cant modulation of the synchrony process by the marked laboratory events. For each
trial entering into this average, we set the pair distance value at the marker to zero,
thus avoiding the long slope over the course of the long duration of the data set.
Computationally, this process is better carried out at the level of the charge product.
Thus we calculate the event time-locked average of the Qi,j or, better, its variance-
normalized version Q′

i,j of (8.4) and (8.8). These are then used in the basic (8.3)
or enhanced versions ((8.6) and (8.9)) of the computation. Details and examples are
given in Baker and Gerstein (2000).

8.8 Other Visualizations

Two final useful visualization tools for the “move postsynaptic” situation discussed
above in the “forward and backward charge” section are available in both two-
dimensional and three-dimensional displays. We start with the same data as used for
Figs. 8.3–8.6 but with parameters set so that only the postsynaptic particle moves
during the gravity computation. In the two-dimensional display in Fig. 8.7, we plot
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Fig. 8.8 A three-dimensional display of the same data as used for Fig. 8.7. The x coordinate is
distance the i particle has moved from its initial position, the y coordinate is the distance the j
particle has moved from its initial position, and the z coordinate is the distance between the i and
j particles. The identities of the several distinct bundles of trajectories are labeled on the figure

the distance of each particle from its initial position as the gravity computation pro-
ceeds. The lower bundle of trajectories shows the seven particles that hardly move
from their initial position (the six drivers 1–6 and the independent 19). The up-
per bundle of trajectories contains the movements of all the postsynaptic particles
(7–18).

For the three-dimensional display shown in Fig. 8.8, we expand on the idea of
particle distance from initial position. Here we plot trajectories for each particle
pair using three coordinate values: the distance of particle i from its original po-
sition along x; the distance of particle j from its original position along y; and
the distance between particles i and j along z. Distinct bundles of trajectories are
formed in the 3D plot and are labeled according to the timing (synaptic) relations
of the corresponding neuron pairs. More detail is given in Lindsey and Gerstein
(2006).
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8.9 Conclusion

The gravity transformation is a useful tool for initial screening of a multi-single-
neuron recording. By processing all available spike trains at once it can rapidly iden-
tify neuron groupings based on near-synchrony of firing. The process is dynamic,
so that temporal modulations and relative strengths of the neuronal associations are
easily made visible.

Interesting neuronal groupings can then be examined more thoroughly by various
other appropriate analytic tools.

This article has presented a brief overview of the basic gravity transformation
with appropriate visualization tools and significance testing, and has described a
number of enhancements that may be useful for particular data sets. Most of these
enhancements deal with improved sensitivity, but it should be noted that with some
of them performance will depend on the types of interval distributions in the spike
trains.

A somewhat primitive suite of programs to perform the gravity transformation
together with a “readme” and some test data sets is available for downloading at
http://mulab.physiol.upenn.edu or http://www.apst.spiketrain-analysis.org/ and may
be freely used and modified as desired. Although these programs can handle any
number of neuronal spike trains, the projection of the N -space to a two-dimensional
plane is limited to 10 neurons. The relevant projection algorithm may be examined
in the Fortran program “prjtmaml5.for” in the “fsources” directory of the download
and easily extended for larger numbers of neurons as a standalone program in new
programming languages (preferably directly in Matlab).
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Part III
Multiple-Neuron Spike Patterns



Chapter 9
Spatio-Temporal Patterns

Moshe Abeles

Abstract Precise time relations among spikes was reported by many authors and
criticized by many. This chapter describes how such patterns may be detected and
how to assess their statistical significance. The stress is on practical aspects of the
methodology. The chapter illustrates examples of analysis of real data that were
recorded in the cortex of behaving monkeys.

9.1 Introduction

There are numerous reports in the literature describing the existence of precise
spatio-temporal patterns in recordings from the cerebral cortex. The earliest ones
were probably: Klemm and Sherry (1981); Abeles (1982); Dayhoff and Gerstein
(1983); Landolt et al. (1985); and Legendy and Salckman (1985). Many others were
published since then. My own observations of precise patterns involving 3 neurons
with long delays in between led to the hypothesis that cortical activity may be or-
ganized in groups of neurons firing synchronously. Each such group excites the
next group by multiple converging diverging connections. A chain of such groups
with essentially feed-forward was called a synfire chain. (See Chaps. 6 and 7 of
Abeles 1982, for the first explicit description of the findings and the synfire chain
model.) The hypothesis that cortical activity is generated by synfire chains predicts
the existence of such patterns. Yet methods to reliably detect such patterns are still
lacking. To better understand the progress that has been made and the obstacles
which need to be overcome, three issues must be addressed as regards any study of
spatio-temporal patterns. The first two are methodological: how were the patterns
detected, and which statistics were used to rule out chance occurrence? The third is

M. Abeles (�)
The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan
University, Ramat-Gan 52900, Israel
e-mail: abelesm@mail.biu.ac.il
url: http://www.biu.ac.il/interdis/gondabrain/researchers/ABELES%20MOSHE.html

S. Grün, S. Rotter (eds.), Analysis of Parallel Spike Trains,
Springer Series in Computational Neuroscience 7,
DOI 10.1007/978-1-4419-5675-0_9, © Springer Science+Business Media, LLC 2010

175

mailto:abelesm@mail.biu.ac.il
http://www.biu.ac.il/interdis/gondabrain/researchers/ABELES%20MOSHE.html
http://dx.doi.org/10.1007/978-1-4419-5675-0_9


176 M. Abeles

both empirical and theoretical and involves showing that observed spatio-temporal
patterns of activity in the cortex are a necessary ingredient of brain activity and not
simply an epiphenomenon.

This chapter deals only with the first two issues. The first section describes the
various types of precise spatio-temporal patterns and how they can be detected. The
second and third parts explore the statistical methods for evaluating the probability
that the detected patterns are due to chance.

9.2 Types of Precise Spatio-Temporal Patterns

Firing patterns may also be produced by internal ionic mechanisms of single neu-
rons. The simplest examples are the periodic firing of a pace maker or the internal
structure of a burst of spikes. Firing patterns may be generated by a network of neu-
rons. This chapter only deals with patterns that may be attributed to the network
activity, and therefore, it relates only to patterns whose spikes are elicited by dif-
ferent neurons. Note that this is a very conservative approach as a pattern such as
“neuron A fired, then neuron B fired and then neuron A fired again” may well be
generated by a network.

The simplest cross-neuronal pattern one can think of is the precise pairwise
synchrony. Such patterns were explicitly described in the visual cortex of cats by
Toyama et al. (1981). However, synchronous spiking drew much attention only
when it was suggested that they are associated with the binding of different vi-
sual elements into an object (Eckhorn et al. 1988; Gray and Singer 1989). Zero-lag
correlations may be clearly seen when computing the cross-correlations between
the firing times of two neurons (see Chaps. 5, 6). Often, they are so strong that no
statistics is needed to convince the researcher that they exist. Figure 9.1 illustrates
an extreme but very rare case. In our lab we encountered 2–3 occurrences out of
thousands of cross-correlations.

The requirement for a very tight correlation is often relaxed and correlations
within a few ms are also classified as zero-lag correlations. S. Grün termed these
correlations “unitary events” and analyzed them extensively (Grün et al. 1999,
Chap. 10).

More broadly, a pairwise pattern can be defined as a tight synchronization with
a delay. This type of pattern, as shown in Fig. 9.2, is more frequent although not
often reported since there is no a priori reason to look for precise synchrony at
a lag of 70 ms (and not at any other lag). Judging whether this type of peak is
statistically significant is problematic. Figure 9.2 shows one way to attempt to assess
the statistical significance of such a peak which is dealt with in more detail the next
section. Note that the correlogram in Fig. 9.2 is by no means a very extreme case.
Many cases in which the delayed peaks are much more extreme have been found.

A general definition for a precise firing pattern is an N -tuplet pattern composed
of N spikes {1,2, . . . ,N} with delays of {t2 ± δ2, t3 ± δ3, . . . , tN ± δN } from the
first spike. The time tolerance around the delay (±δ) may be different for each spike
(e.g., Tetko and Villa 2001), but typically it is kept constant and is set at ±0.5 or
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Fig. 9.1 Zero-lag correlation. Cross-correlation between two well-isolated single units recorded
through two separate microelectrodes in the premotor cortex of a behaving monkey. The bin size
is 0.1 ms (and this was the resolution with which the spike time was recorded). The center peak is
less than 0.5-ms wide. The distance between the electrode tips was ∼5.6 mm, so the peak cannot
be due to both electrodes recording the same neuron. Careful inspection of the electrode records
in wide band (1–6,000 Hz) shows clearly that the coincident spikes were not artifacts. No relation
between the synchronous spikes and behavior was found

±1.5 ms. The maximal allowed delay tN is set a priori. Here, this type of sequence
is termed a precise firing sequence (PFS) of order N and tolerance δ.

When the activity of K (K ≥ N ) neurons over a duration of T seconds is mea-
sured, there are

(
K
N

)
types of PFS of order N composed of N different neurons, and

for each type, there are (tN/2δ)N−1 different time delays. If the neurons fire inde-
pendently at fixed rates of {λi}, i = 1,2, . . . ,N , the expected number of PFSs of a
given composition and time delays is

xN = T · λ1 ·
N∏
i=2

λi · 2δ.

Unless this expected number is small, there are likely to be a huge number of pat-
terns occurring by chance, and it is difficult to differentiate the real ones from the
random ones. If the firing rates are high or the tolerance is high, so that the product
2λ · δ is not much smaller than 1, the researcher should start looking for patterns that
repeat at least R times so that prob{R or more | xN } is small. This probability can
normally be safely estimated by assuming that the counts for a particular pattern are
distributed in a Poissonian fashion. If so distributed, then

prob{R or more | x} =
∞∑
i=R
e−x · xi/i! = 1−

R−1∑
i=0

e−x · xi/i!.

See the next section for a validity of the formula above.
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Fig. 9.2 Example of precise lagged synchrony. Top – cross-correlation between two premotor neu-
rons of a monkey while freely scribbling. The highest peak is at a delay of 70 ms where 43 counts
were found. This does not appear to be particularly significant. Bottom – the spike trains were
teetered within ±3.5 ms, cross-correlated with the exact same parameters (bin size and maximal
delay) as for the original trains. In each correlation the highest count was located. This was it-
erated 1,000 times, and a histogram of the highest count in each correlogram noted. Clearly the
probability of obtaining 43 counts by chance with a spiking accuracy of less than 7 ms is below
0.001

As an example with realistic values, assume that we are dealing with 3 (N = 3)
units whose activity was measured for 200 s, the neurons fired at 5 Hz, and we
want to detect PFSs with tolerance of ±1.5 ms. The expected count is 200 · 5 · (5 ·
0.003)2 = 0.225, which is small, and a few repetitions of the very same pattern
could easily be detected (e.g., the probability of finding 5 or more repetitions when
the expected is 0.225 is below one in 300,000). However, if the firing rates were
10 Hz, and the tolerance±5 ms, the expected count would be 20, and there would be
hardly any point in looking for triplets that returned a few times more than expected
(prob{25 or more | 20} > 0.15). If we were looking for quintuplets, the expected
count would be 200 · 10 · (10 · 0.01)4 = 0.2.

The main stumbling block is to find an algorithm which (after deciding on the
desired: tolerance, max duration of a PFS, its order and the minimal number of
repetitions desired) can find all PFSs that meet these limits. An early algorithm of
this type was the “sliding tape” algorithm suggested by G.L. Gerstein (Abeles and
Gerstein 1988). In this algorithm the data are depicted as though they were lying
along a long paper tape. The firing of each neuron is marked by holes in one line
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along the tape (this would look very much like the old paper tape used to feed data
to a computer). Now imagine that two copies of the same tape are slid past each
other. Whenever there is a repeated constellation of holes, they would be laid one
on top of the other (after appropriate shift). Thus this algorithm detects all patterns
that repeat twice or more. In step one, a list is made of the PFSs that meet the
criteria for total duration and minimal complexity, and step two identifies those that
repeated above the minimal desired number (see Abeles and Gerstein 1988, for more
details). However, as this algorithm starts with all patterns that repeated twice, the
initial conditions should be such that the expected rate of such N -tuplets is small.

When the expected number is small, then there is no limit to the complexity of
the searched pattern (N ). Any N overlapping holes within tn seconds in the two
tapes will be discovered. However, so far, when N was large, we found only very
few repetitions of patterns, and it may be impossible to reliably associate between
the patterns and behavior (or stimuli). A personal advice is not to go beyond quin-
tuplets, unless there is a large number of repeating quintuplets. (If there is one ex-
cessively repeated N -tuplet, then there might be N -choose-5 excessively repeating
subpatterns of order 5.)

A limited scope may be searching for triplets only (Abeles and Gat 2001), i.e.,
triplets of the form 〈u1, u2, u3; t2 ± δ, t3 ± δ〉 where ui is the id of the neuron, and
ti is the delay of spike of neuron i from the firing of the first neuron. If the maximal
delay is τ , we define a table with τ/2δ by τ/2δ square bins. Whenever there are 3
spikes from u1, u2, u3 within τ , we add one to the appropriate bin. An example of
such a histogram is illustrated in Fig. 9.3a.

If the two delays from the first spike are t2 ± δ, t3 ± δ, then the delay between
a spike from the second neuron to a spike of the third neuron can be in the range
of t3 − t2 ± 2δ. This may be avoided by splitting the square bins into two triangles,
making sure that no delay range is above ±δ. This was done by Abeles (1983) but
was not exploited much in the literature.

Finally, a sequence of synchronized groups of neurons may be detected by the
appearance of oblique “worms” when the similarity between the activity of many
spikes recorded in parallel at time t1 and the activity at time t2 is plotted on a t1 vs.
t2 plan (Schrader et al. 2008).

9.2.1 Statistical Significance

It was justifiably pointed out that if you record enough data, you may occasionally
find a PFS that repeats many times such as in Figs. 9.2 or 9.3 (Oram et al. 1999).
Thus, the crucial point is to assess the probability that such a pattern occurred by
chance.

Typically, we record from several neurons in parallel and have no prior knowl-
edge of the time delays involved in an excessively repeating pattern. Thus, we at-
tempt to find patterns by testing a large number of possibilities. If the recording was
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Fig. 9.3 3-fold patterns. Recordings were from the premotor area of a monkey. Data were parsed
so that only pieces around a certain drawing arc-shape were left. The spike trains were first filtered
so as to leave only the first spike in a burst. The data here relate to three well-isolated spike trains
recorded by three different microelectrodes. Bin size was 2δ = 3 ms. a. A flat view of the counting
matrix from above. Two patterns with delays of (40,10) and (70,40) ms from the trigger spike
stand out (in red). b. A flat view from above of the expected counts, as obtained by convolving
the matrix in (a) with a Gaussian kernel having standard deviations of five bins with the central
value set to 0 (similar smoothing could be achieved by repeatedly teetering the spike trains within
±6 bins and computing the average histogram). c. A 3D view of a small region around the bin at
(40,70). The Z-axis describes the surprise (minus log probability) of finding so many or more in a
bin given the expected number. At the peak it reaches 5.5 meaning one in 300,000. d. Dot display
of all the spikes around the occurrence of the pattern 〈8001,5001,2001;40± 1.5,70± 1.5〉. All
spikes in the period are shown (no “burst filtering” applied before plotting). Time 0 designates the
time of the first spike of the pattern. As all of them are aligned, they form a straight vertical line.
Indirect evidence that these were not merely chance events may be derived from the following
observation. When chance spikes are picked, the density of spikes before and after them should
be the same (the autocorrelation is symmetric). Here, a short period just before the spikes of 8001
and 5001 in the pattern is quiescent, but the immediate period after them is not. So they cannot be
randomly picked spikes. A similar asymmetry was reported in Shmiel et al. (2006)
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made from K neurons and we are looking for triplets with delays up to τ and res-
olution of ±δ, we are searching for excessively repeating triplets in one out of N
possibilities:

N =
(
K

3

)
·
(
τ

2δ

)2

.

Take, for example, 10 neurons, max delay of 0.3 s, and bin of ±1.5 ms. This would
amount to 1,200,000 possible different PFSs. Obviously there would be a vast num-
ber of (around 12,000) triplets with a significance of 0.01 appearing by chance. This
is the issue of multiple testing. When so doing, the fact that we try again and again
to find a significant event should be taken into account. The most conservative so-
lution is to use a Bonferroni correction, by which we divide the desired significance
(say 0.01) by the number of possibilities (1,200,000 in the example above), and look
for an event with a probability below that number (1 in 120,000,000 for the exam-
ple above). If we find one such event, then the activity is not likely to be random.
But what if in the above example we find 200 different PFSs with chance proba-
bility below 1 in 10,000? We would expect to see 120 such events by chance; the
probability of seeing 200 or more by chance when 120 are expected is miniscule.
(1-poisscdf (199,120)= 0.000000000016 for Poisson counting).

This issue is examined in two parts. First, the issue of assigning significance to
one particular pattern is discussed, followed in part two by the issue of multiple
trials.

9.2.2 Significance of a Particular PFS

Suppose that you expect to see a particular triplet PFS= 〈u1, u2, u3; t2, t3〉 and want
to know whether it indeed excessively repeated in the data. How does such a situ-
ation arise? You may expect true synchrony (t2 = t3 = 0) and look for such events.
The chapter on “unitary events” 10 deals with this issue. The pattern may be an
expectation put forward by a model. Or, you can divide the data into a training and
a test dataset. The PFS that was most prominent in the training set can be selected,
and then the significance of its occurrence in the test set can be tested.

Let us assume that you looked at the data and found that a particular (predefined)
pattern appeared N times. Is it significant? One way to answer this question is to
generate many (say 1,000) surrogatespike trains with similar statistics to the actual
spike trains (see Chap. 17 on Surrogate spike train generation) and for each sur-
rogate, calculate how many times this particular pattern appeared. These measure-
ments are then used to build a probability density function for obtaining 0,1, . . .
repetitions, and then the probability of seeing N or more repetitions is calculated. If
the result is below the defined threshold α, it is considered significant.

This approach can run up against two types of problems, inappropriate surrogate
and erroneous classification of nonprecise time patterns as precise.
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Inappropriate surrogate: If the surrogate is made up of high-order gamma distribu-
tions, there may be a great number of chance patterns because high-order gamma
distributions generate quasiperiodic spike trains. In a periodic spike train any set
of spikes will appear repeatedly. Or, if the spike trains are actually quasiperiodic
but the surrogate is a Poissonian spike train, the surrogate will reveal much fewer
patterns than unrelated but periodic spike trains. See Baker and Lemon (2000) for
such cases.

Nonprecise time patterns: Suppose that there is a wide hill in the 3-fold correlation.
Its peak may well be significant when compared to 3-fold correlations of uncor-
related surrogates. However, we are interested in precise patterns, and this peak
is not precise in the sense that there are multiple similar patterns that also repeat
many times.

A partial solution to both problems is as follows: we determine whether the sus-
pected PFS occurred excessively by considering its neighboring patterns. In other
words, we count how many PFSs there are within bins representing little shorter or
longer delays than the target bin, and use the mean number of repetitions per bin as
the expected count (call it x). We then need to compute

P = {N or more | x}.
This probability, obviously, depends on the pdf of the counts. This pdf may be
Poissonian even if the spike trains themselves are not (Abeles and Gerstein 1988;
Abeles and Gat 2001). In short, the argument is as follows: for every possible delay
〈t2, t3, . . .〉 and every possible instance of a recording t ∈ T , we test whether the
pattern PFS= 〈u1, u2, u3, . . . ; t2, t3, . . .〉 occurred. (For example, if T = 100 s, and
the recording resolution is 1 ms, we try 100,000 times.) The probability of finding
such a pattern on a given trial is extremely small. Counting how many times we
succeeded is expected to be distributed in a Poissonian fashion. Note that this is true
even for nonstationary firing processes, because “if the individual processes are well
behaved, their superposition is asymptotically a Poisson process” (Cox and Isham
1980).

Usually, a point process is judged to be Poissonian by the finding that its Fano
factor (variance-to-mean ratio) for the inter-event-intervals is 1. However, the vari-
ance of a point process is often inappropriately measured. The correct way is to
compute the power spectrum of the point process and extrapolate the low-frequency
component to zero frequency (Brillinger 1975). In our case we take a region in the
delays of the PFSs (for instance, a small square of 10 by 10 bins in the 3-fold count
matrix). Now we generate a counting point process and insert an event whenever 1 is
added to one of the bins in this region. This counting point process should be Pois-
sonian. This has been shown to be the case in many simulated nonstationary point
processes and many recorded spike trains when burst-filtering was applied (Fig. 3
in Abeles and Gat 2001 clearly shows the superiority of computing Fano factors by
FFT and the value of burst filtering, but without burst filtering), this FFT method
may be misleading.

A sufficient burst-filtering is to define a burst as two or more spikes with intervals
between two successive spikes that are smaller than 3 times the bin size (6δ in the
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symbols used above). For each such burst, only the first spike is considered when
searching for PFSs. The rationale is that bursts represent strong deviations from
Poissonian point processes, and with a limited amount of data, they also affect the
statistics of the counting process. If we had a huge amount of data so that the above
counting process could be generated by looking at one bin alone (and not a square
region of bins), then as long as the bin was smaller than the spiking refractory period,
this burst-filtering would not be required.

It could be argued that bursts signify moments at which very strong excitatory
inputs reached the recorded neuron and therefore should be assigned a higher weight
than an isolated spike. It could also be claimed that in many pyramidal-to-pyramidal
connections the synapse is of the “depressing type”, so that for a high-frequency
burst, the effect of the second, third, etc. spikes are much reduced (see Thomson
and Lamy 2009 for a review). Therefore, by extension only the first spike is relevant.
Regardless, it is clear that by considering only the first spike in a burst, the number
of repeating PFSs is reduced, so that the estimate of PFSs is conservative.

If the spike times are teetered within a window W and then a search for patterns
is made, the counts in the count-matrix are likely to be smeared as though they had
been convolved with a window WS that looks like WS=W ∗ (−W), where ∗ sym-
bolizes convolution (Abeles and Gat 2001). Such a convolution demands much less
computations than generating multiple versions of teetered spike trains. However,
when this idea was tested on the pairwise correlations of a very large number of
simulated Poissonian spike trains, it became obvious that the estimates were over-
conservative. Instead, we gain maximal power by convolving with WS′ given by:

WS′ =
{

WS(t), t �= 0,
f ·WS(0), t = 0,

where f = 0.4 for a rectangular WS, and 0.6 for a Gaussian WS (Stark and Abeles
2009). WS′ gives less weight to the counts in the very bin for which we are estimat-
ing the expectation by the convolution.

A practical point is that instead of convolution in time, it is faster to multiply the
FFT of the data with the FFT of WS′ and then transform back to the time domain.
To avoid edge effects, one may expand the counting vector or matrix by repeating
it symmetrically at the edges and then trimming after transforming back to the time
domain.

9.2.3 Multiple Comparisons

When there is no prior knowledge on the detailed structure of the PFS, it is tempt-
ing to scan through all the possible PFSs and pick the most prominent ones. As
this means looking for significance out of a huge number of possibilities, it is not
clear how to judge what is significant. Two approaches to this situation have been
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suggested: examining the PDF of the probabilities over all the trials and devising a
statistic that is expected to reach extreme values if there is an excess of PFSs.

9.2.3.1 PDF of Probabilities

For every possible PFS, we estimate the probability of its being a chance occur-
rence, as we would do if it were the one we were a priori looking for (by one of the
methods in the previous sections). In the example above, we would obtain 1,200,000
probabilities. These probabilities can be treated as random variables. If every occur-
rence was due to chance, these probabilities should be equally distributed between
0 and 1. If they are not, then the samples we had are not governed by chance alone
(Fisher 1932). However in our case, there is a further complication. The counts
upon which we base our calculations are discrete random variables (having values
of 0,1,2, . . .). To remedy this, the probability of {R or more given x} is replaced by
a random value between {R or more given x} and {R+1 or more given x} (Pearson
1950). (The author is grateful to D.R. Brillinger for these references.) Figure 9.4
illustrates the PDF of such probabilities.

Real data distributions such as in Fig. 9.4 were either flat or showed a small
excess of very low probabilities. Such excess indicates the presence of an excess of
PFSs above chance.

Fig. 9.4 PDF of probabilities in multiple comparisons. The black strip shows the top of a his-
togram (with ∼ 5,000 bins) of the probabilities in each element of ∼ 2,000,000 different counts
of possible PFSs. The gray line at the middle is the expected count if counts were random (and the
way of computing their probabilities was accurate). It is often hard to see in such histograms what
happens at very low probabilities. Therefore, in d, e, and f some summary statistics are given in the
four lines at the bottom of the figure. These describe, from top to bottom: What are the probability
of seeing the total number of elements with probabilities below 0.001 given the expected; same
for elements with probabilities below 0.01; same for the smallest bin in the histogram; and the
probability of finding correlations with significant PFSs by chance. These probabilities are com-
puted by assuming that the number of cases in the histogram are distributed in Poissonian manner
around the expected. In the random spike trains (d) and in some real data (e), these statistics are
insignificant, but in some real data (f), the first three statistics were highly significant. a. Probability
of obtaining n or more given x. 2,001,000 x’s were randomly distributed between 5 and 15, and
2,001,000 n’s were obtained by sampling Poisson distribution with expectation x ( poissrndf (n, x)
in Matlab). The probabilities of getting n or more by chance (1-poisscdf (n− 1, x) in Matlab) are
not equally distributed between 0 and 1. b. When probabilities are taken as a random value between
{n or more given x} and {n+1 or more given x}, the distribution is flat. c. 201 count matrices were
computed for 201 simulations of three correlated spike trains. Each matrix had 100×100 bins. The
expected (×) was estimated by convolving the matrices with a 2D Gaussian kernel having standard
deviations of five bins. There are too few very small probabilities. d. Same as (c), but the center
of the smoothing kernel was set to 0. Now the distribution of probabilities is exactly flat. e. Data
from the premotor cortex of a scribbling monkey. Data around a certain arc shape were selected.
The distribution is flat, like for random numbers. f. Data from the same recording date, but se-
lected around a different arc. There is a very slight, but highly significant (p < 0.002), excess of
probabilities below 1�
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9.2.3.2 A Summarizing Statistic

This approach was suggested by Geman and Bienenstock (Hatsopoulos et al. 2003).
Their basic premise is as follows: We make the null hypothesis (H0) that in the
spike train there is nothing which is precise up to ±w. If so, then teetering all spikes
within ±w should not affect any statistic that we derive from the data. Therefore,
choose a statistic that you believe to represent precise firing, compute it for the data,

Fig. 9.4 Continued
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Fig. 9.5 Teetered and real statistics (adapted from Shmiel et al. 2006). Data were eight spike trains
recorded in the premotor cortex of a monkey that was freely scribbling. Data around a particular
arc were collected and all pairwise correlations computed. Only pairs recorded through different
electrodes were used. S was computed for the data. Then, the spikes were teetered within ±5 ms,
and S was recomputed. This was repeated 5,000 times. Clearly, the probability of getting S of the
actual data is well below 0.0002

and then teeter the spike train many times and after each teeter recompute the same
statistic. Find in how many cases the statistic derived from the teetered data exceeds
the statistic from the actual data. This yields you an estimate of the probability of
finding so many PFSs by chance.

A simple illustration of that is given in Fig. 9.2(bottom). There the statistic was
the value at the highest bin of the correlogram.

Figure 9.5 illustrates such a procedure for a more complex statistic. There, the
chosen statistic (S) was S =−∑i∈{10 lowest P } log2(Pi{leastlikely bin}).

This approach has the advantage that by using a teetering window (W ) of differ-
ent width one may also estimate the timing accuracy of the data, as is illustrated in
Fig. 9.6.

Fig. 9.6 Time accuracy for five experimental sessions (adapted from Shmiel et al. 2006). If we
select 2.5% as the desired significance level, the accuracy on these five experimental days was
between 0.5 and 8 ms. The significance level is for the S-values as defined in the text. Data from
two monkeys moving at will in a curved manner on the horizontal plan. This analysis proves that
there are precise timing relations between pairs of neurons. It shows that these are found in relation
to particular drawing shapes and not other, but are not precisely time locked to any known external
event (see Shmiel et al. 2006, for more details). The issue of how such precise timing is generated is
beyond the scope of this method chapter. It suffices it to state that the synfire-chain model predicts
the existence of such PFSs



9 Spatio-Temporal Patterns 187

Fig. 9.7 The statistics of jittering. Jittering statistics for spikes in the premotor cortex of a monkey
while scribbling. a. ISI histograms. Blue for the real data, red – average for 20 jitters. b. Histogram
of jittering intervals. The spike trains were pruned so that no two spikes came closer than 9 ms.
Jittering was done within ±2.5 ms. However, when two spikes were closer than 14 ms, the jittering
did not allow them to come closer than 9. In this way the total number of spikes in the jittered
trains was identical to the real data, and the ISI histograms were identical. However, the jittering
distribution (b) is not exactly square. Note: If the recovery from refractoriness was a step function,
the ISI of the teetered data would show an S-shaped recovery. However the “noisiness” of the real
ISI (blue in a) may mask such effects. It may take large amount of data to show significant small
changes. This issue requires further studies and quantitative statements about the amount of data
needed for detecting a given (small) change in the histogram.

This approach indicates the level of confidence with which we can reject the null
hypothesis. However it does not tell us which PFSs are significant. Nevertheless, it
is reasonable first to test whether there are any precise PFSs and define the optimal
time resolution to use in a search. Only then can we proceed to look for the exact
composition of these patterns.

This approach has several shortcomings. The first is that any teetering will con-
volve firing rates with the teetering window. Thus, any statistics that are affected by
firing rates will be affected by teetering. However, if the effect of teetering is small
and the amount of data is limited, this may not be detectable. The following example
deals with such a case. Suppose that we have uncorrelated spike trains measured for
T seconds and that at a certain bin we found 100 counts. After teetering we found
only 98 counts. The chances of detecting 100 or more when 98 is expected is 0.433,
which would not be considered significant. If we measure the data for 10T s and
find 1000 counts, whereas the teetered data accounted for 980, the probability of
obtaining 1000 when 980 is expected is 0.271, which is still not significant. With
this example, one would need to find a situation with 13,000 counts in a bin (with
12,740 after teetering) to reject the null hypothesis with 1% confidence. No exper-
imental situation approaches anywhere near such high counts per bin. However, if
there are sharp frequency transitions and a large teetering window, such problems
may arise. Figure 9.7 illustrates the effect of teetering on recovery from (artificially
imposed) refractoriness.
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Note that the limitation on no sharp rate transitions does not invalidate the Ge-
man and Bienenstock approach. Very sharp firing rate transitions do arise when
there is some precise mechanism of controlling spike timing, and therefore it is
valid to claim that teetering indeed proves the presence of such timing. However,
often researchers are not interested in precise spike timing controlled by an external
stimulus (such as a click in the auditory system), intracellular mechanisms (such
as recovery from refractoriness, or pacemaker firing), or experimental limitations
(such as detection dead time imposed by one spike on a second spike from the same
electrode). To avoid such pitfalls, the following precautions should be taken:

1. Pass all spike trains through a burst-filter such that no two spikes come closer
than D ms. When teetering, if two spikes come closer than 2D, alter the teeter-
ing window to prevent the teetered spikes from being closer than D. This may
slightly affect the teetering window as illustrated in Fig. 9.7b.

2. Look for firing patterns using only units that come from different electrodes.
If this is too stringent, do not look for patterns with intervals shorter than the
maximal dead time of the spike detection algorithm.

3. Avoid including units with close to periodic firing patterns.
4. Be cautious when finding PFSs with 0 lags. This may represent electric coupling

between two neurons or a very strong but brief common drive.

All the above restrict the chances of detecting PFSs, but caution should be the
watchword until the scientific community is convinced that PFSs exist and that they
are clearly related to behavior.

9.2.4 Further Work

This chapter does not relate to the issue of relevance of PFSs to behavior. In our
view, the existence and dependence on behavior of PFSs has already been proven
(Villa et al. 1999; Shmiel et al. 2006; Maldonado et al. 2008). There is a need for
more work on these issues from other labs.

The methods described above may be computationally too time consuming when
a very large number of units are recorded simultaneously. A recent method devel-
oped by G.L. Gerstein (Schrader et al. 2008) is very useful for such cases.

The methods described above do not allow for time-warping of the patterns.
Tetko and Villa (2001) provided a partial solution to this issue, but this work has
not been further developed or extensively used.

PFSs are expected to appear if activity is propagated as a wave in a synfire chain.
The multiple converging/diverging connections in such a chain suggest that it may
occupy a limited volume. Detecting these requires recording from many neurons in a
small (say 0.2×0.2×1 mm) volume in a behaving animal. To date, such recordings
are not available.
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Chapter 10
Unitary Event Analysis

Sonja Grün, Markus Diesmann, and Ad Aertsen

Abstract It has been proposed that cortical neurons organize dynamically into
functional groups (“cell assemblies”) by the temporal structure of their joint spiking
activity. The Unitary Events analysis method detects conspicuous patterns of coin-
cident spike activity among simultaneously recorded single neurons. The statistical
significance of a pattern is evaluated by comparing the number of occurrences to the
number expected on the basis of the firing rates of the neurons. Key elements of the
method are the proper formulation of the null hypothesis and the derivation of the
corresponding count distribution of coincidences used in the significance test. Per-
forming the analysis in a sliding window manner results in a time-resolved measure
of significant spike synchrony. In this chapter we review the basic components of
UE analysis and explore its dependencies on parameters like the allowed temporal
imprecision and features of the data like firing rate and coincidence rate. Violations
of the assumptions of stationarity of the firing rate within the analysis window and
Poisson statistics can be tolerated to a reasonable degree without inducing false pos-
itives. We conclude that the UE method is robust already in its basic form. Still, it
is preferable to use coincidence distributions for the significance test that are well
adapted to particular features of the data. The chapter presents practical advice and
solutions based on surrogates.

10.1 Introduction

The principles of neuronal information processing are still not well understood
and continue to be debated (Shadlen and Movshon 1999). In the classical view,
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firing rates play a central role in neural coding (Barlow 1972). This idea in-
deed led to fundamental insights into the neuronal mechanisms of brain func-
tion. In parallel, however, a different concept was developed, in which the tem-
poral organization of spike discharges within functional groups of neurons, so-
called neuronal assemblies (Hebb 1949; Gerstein et al. 1989), contributes to neu-
ral coding (Von der Malsburg 1981; Abeles 1991; Singer 1999; Harris 2005). It
was argued that the biophysics of synaptic integration favors coincident presy-
naptic events over asynchronous ones (Abeles 1982; Softky and Koch 1993;
Goedeke and Diesmann 2008). Accordingly, synchronized spikes are considered
a property of neuronal signals that can be detected and propagated by other neurons
(Diesmann et al. 1999). In addition, these spike correlations should be dynamic, re-
flecting varying affiliations of the neurons, depending on stimulus and behavioral
context. Thereby, synchrony of firing would be directly available to the brain as a
potential neural code.

Experimental studies provide support for both perspectives, and both coding
schemes may well coexist. However, the discussion about the relevant coding
scheme is often implicitly a discussion about the analysis methods and their abil-
ity to decide between the two. Therefore, there is a need for analysis tools that allow
us to reliably detect correlated spiking activity that is not explained by the firing
rates of the neurons alone. The Unitary Events (UE) analysis is such a tool. It was
designed to detect coordinated spiking activity that occurs significantly more often
than predicted by the firing rates of the neurons. The method allows one to analyze
correlations not only between pairs of neurons but also between multiple neurons,
by considering the various spike patterns across the neurons. In addition, the method
allows one to extract the dynamics of correlation between the neurons by perform-
ing the analysis in a time-resolved manner. This enables us to relate the occurrence
of spike synchrony to behavior.

This chapter reviews first the basic components of the UE method: a signifi-
cance test based on the null hypothesis of independent firing and the machinery
for a time-resolved analysis. Under certain conditions, the analysis can be based
on analytical expressions. We use these expressions to discuss the characteristics of
the method and demonstrate that the approach copes well with typical features of
experimental data (nonstationarities in time and across trials, deviation from Pois-
son). Subsequently, we discuss solutions based on surrogates that incorporate more
complex features of experimental data into the null hypothesis. After relating the
UE approach to other correlation analysis methods, we conclude with a practical
guideline for data analysis.

10.2 Basic Elements of the UE approach

The UE analysis method (Grün et al. 2002a) is designed to detect coincident spike
patterns between two or more simultaneously recorded spike trains and to assess the
significance of the observation. The specific questions addressed by this analysis
are: (1) do the simultaneously recorded neurons show correlations of their spiking
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Fig. 10.1 A. Binary data representation of N parallel spike trains within a data stretch of T
bins of width h. B. Distribution of coincidences given the expected number nexp. Significance
(jp-value, black area) of the number of empirically found coincidences nemp. C. Transformation
of the jp-value into the surprise measure S. The arrow indicates the surprise value corresponding
to the identified jp-value in B. (Modified from Grün 2009.)

activity, (2) is any such correlation specific to subgroups of the neurons, and (3) do
these correlations change dynamically in dependence of stimuli or behavior?

10.2.1 Detection of Joint-Spike Events

The spiking activity of all simultaneously recorded neurons is represented, after ap-
propriate time discretization (e.g., h = 1 ms), as parallel sequences of zeros and
ones; “1” indicating the existence of at least one spike (clipping), and “0” the ab-
sence of spikes (Fig. 10.1A). Under the assumption of stationary firing, the marginal
firing probability pi of neuron i is estimated by evaluating its spike frequency, i.e.,
the number of ones ci within the total number of bins T/h in the observed time in-
terval of duration T , and thus, pi = ci/(T /h). A similar statistic can be obtained for
a particular coincidence pattern composed of zeros and ones. There are at most 2N

different coincidence patterns in data of N simultaneously observed neurons. Due
to the finite recording time and the dominance of zeros, however, the actual number
of different coincidence patterns found is typically much lower. A unique index k is
assigned to each existing pattern based on some arbitrary sorting. For each pattern k,
we determine the number of occurrences termed the empirical count nkemp.

10.2.2 Null Hypothesis

We are interested in detecting whether a coincidence pattern occurs significantly
more often than expected on the basis of the firing rates of the neurons involved.
To this end, we compare the empirical number of occurrences of pattern k to the
expected number by calculating the joint probability of occurrence of the particular
0–1 configuration assuming statistical independence:

P kexp =
N∏
i=1

ϕ
(−→v (i)) with ϕ

(−→v (i))=
{
pi if −→v (i)= 1,
1− pi if −→v (i)= 0,

(10.1)



194 S. Grün et al.

where pi is the occupation probability of a bin of neuron i.
The expected number of occurrences of pattern k is then simply given by

nkexp = P kexp ·
T

h
.

For better readability, we omit from now on the pattern index k but keep in mind
that each expression also holds for any pattern k with Pexp defined by (10.1).

If multiple trials are available and cross-trial stationarity cannot be guaranteed,
the total number of expected coincidences (10.1) is calculated as the sum of the
expected counts of the individual trials

nexp =
M∑
j=1

T

h
Pexp,j =

M∑
j=1

T

h
·
N∏
i=1

ϕj
(−→v (i))

with ϕj
(−→v (i))=

{ ci,j
T /h

if −→v (i)= 1,

1− ci,j
T /h

if −→v (i)= 0,
(10.2)

where ci,j is the count for neuron i in trial j . In case we can assume stationarity
across trials within T , the firing probabilities of the neurons can be derived as aver-
ages across the M trials pi = 1

M

∑M
j=1

ci,j
T /h

. The empirical coincidence count is the

sum of the coincidences found in the individual trials, nemp =∑M
j=1 nemp,j .

10.2.3 Significance of Joint-Spike Events

Next, we evaluate whether the empirical number of coincidences significantly devi-
ates from the expected number. To this end we test if the number of empirical coin-
cidences is consistent with the coincidence distribution resulting from independent
processes. The probability Pexp to observe pattern k in a particular bin is typically
low because already the contributing spikes have a low probability of occurrence.
As Pexp holds for all bins of the analysis interval, the observed number of patterns is
governed by a binomial distribution. For moderate nexp, it is well approximated by
a Poisson distribution P(n,nexp) with nexp as the sole parameter. Note that this dis-
tribution ignores any dependencies between the bins. For example, there is a finite
probability for n occurrences of a pattern requiring a spike of a particular neuron,
even if n exceeds the total number of bins in the interval or the number of spikes the
neuron has generated. Similarly, any interval statistics of the spike generation pro-
cess deviating from Poisson leads to correlation between the bins. More complex
analytical distributions can take some of these boundary conditions into account
(see Grün et al. 2002a, 2003). Here we use the Poisson distribution because the
closed-form expression enables us to illustrate the construction of the significance
test and its main characteristics. In Sect. 10.4 we show that the Poisson distribution
is also of practical use because it is quite robust against typical violations of the
simple assumption that spike trains are generated by a Poisson process with con-
stant rate. In later sections we argue that the large diversity of the experimental data
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suggests the generation of count distributions employing the idea of surrogate data
rather than the use of explicitly parameterized analytical expressions.

Based on the count distribution P , we define the significance of the empirical
number of coincidences nemp as the p-value (here called joint-p-value, jp), i.e., the
probability of observing at least nemp coincidences (Fig. 10.1B):

jp(nemp|nexp)=
∞∑

n=nemp

P(nemp, nexp)

=
∞∑

n=nemp

(nexp)
n

n! · exp(−nexp). (10.3)

If jp is smaller than a predefined significance level α, we infer excess synchrony.
If jp is larger than 1− α, we infer significantly missing coincidences. If excess is
detected for the respective coincidence pattern, we call the instantiations of the spike
patterns Unitary Events (UE).

Because highly significant events are indicated by very small jp values, we loga-
rithmically transform the jp value into the surprise measure (Palm 1981) for better
visualization (Fig. 10.1C):

S(jp)= log
1− jp

jp
. (10.4)

This measure is zero for no deviation from expectation, positive in the presence of
more coincidences than expected, and negative if the measurement is lower than the
expected count. Large values of S indicate significance (e.g., significance at the 1%
level results in a surprise measure of 2.0).

10.2.4 Capturing Dynamics of Correlation

In order to capture time dependent changes of the correlation between neurons,
we formulate a time-resolved version of the UE analysis defined in the previous
section, using a sliding-window approach. To improve the statistics, neuronal data
are typically recorded multiple times under the same stimulus presentation or the
same behavioral condition (“trials”). The underlying assumption is that the same
neuronal computation is performed across the trials. Therefore, data are cut into
trials and aligned on the corresponding stimulus or behavioral event. Then we decide
on the width Tw (expressed in the number of bins h) of a time window which we
slide along the data (Fig. 10.2). At each window position, we separately carry out
the UE analysis restricted to this window and simultaneously for all trials (Grün et
al. 2002b).

The result of the analysis of a window is represented at the center of the
window. The time series of results from subsequent windows provides us with
a time-resolved analysis. The offset of successive sliding window positions de-
fines the time resolution of the analysis. For each pattern k, the empirical and
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Fig. 10.2 Capturing correlation dynamics by sliding window analysis. After alignment of trials, a
window of size Tw is slid along time. At each position of the window, the time segments of all trials
covered by the window (gray, indicated by circled trial numbers from 1, . . . ,M) are extracted and
analyzed for UEs. The procedure is repeated at each new position of the sliding window. The results
of each sliding window position are represented at the center of the window, thereby deriving time
dependent measures. (Modified from Grün et al. 2002b.)

expected numbers of coincidences are obtained as functions of time (nexp(t),
nemp(t), Fig. 10.3B), and the significance is expressed by the surprise measure
S(t) (Fig. 10.3C). Thus, the approach enables us to directly relate the dynam-
ics of synchrony (Fig. 10.3D) to the dynamics of the stimulation or the specific
behavior of the animal (Riehle et al. 1997, 2000; Grammont and Riehle 2003;
Maldonado et al. 2008). In addition, by observing the time-dependent modulation
of the occurrence of the different joint-spike patterns we can draw conclusions on
the composition of currently active assemblies and the respective participation of
the recorded neurons (Grammont and Riehle 1999).

Unitary Event computation

1. Align trials, decide on width of analysis window.
2. Decide on allowed coincidence width.
3. Perform a sliding window analysis. In each window:

a. Detect and count coincidences.
b. Calculate expected number of coincidences.
c. Evaluate significance of detected coincidences.
d. If significant, the window contains Unitary Events.

4. Explore behavioral relevance of UE epochs.
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10.3 Parameter Dependencies

10.3.1 Analysis Window Width

The time scales of the change in firing rate and the modulation of the rate of co-
incidence events can differ. Even for a temporally stationary firing rate, synchrony
may be modulated on a time scale of tens or hundreds of milliseconds (e.g., Vaadia
et al. 1995). The UE uses a sliding-window approach to capture such modulation
of synchrony (Fig. 10.3). The proper choice of the sliding window width required
to identify excess synchrony as significant depends on two factors, the width of the
time interval Tc containing excess synchrony (“hot region”) and the rate of coin-
cidences λc relative to the independent background rate. In the following we ana-
lytically study an injection model where coincidences of rate λc are injected into
independent background activity of rate λb in a predefined time interval, yielding a
total rate of λ= λc + λb. The background activity is adjusted so that the total rate λ
exactly matches the spike rate outside the injection interval, where it consists only
of independent activity.

Let us first consider the case of homogeneously inserted coincidences. Trivially,
the larger the analysis window Tw, the more coincidences are expected and de-
tected. In the case of two parallel neurons, we expect nexp = (λ · h)2 · Tw

h
, while

observing nemp = λc · Tw + (λb · h)2 · Tw
h

coincidences. The larger the coincidence
rate, the larger the increase in detected empirical coincidences with increasing Tw
(Fig. 10.4A, top, black curves). The expected number of coincidences also in-
creases with Tw (horizontal axis, bottom panel), however, in the same way for all
λc (Fig. 10.4A, top, dashed curve). The graphs in the bottom panel show the cor-
responding surprise values as functions of the size of Tw for the different injection
rates. Note that for a larger coincidence rate λc, the significance level of 1% (dashed
line in bottom panels) is reached at a smaller Tw. The values chosen for the coinci-
dence rate were taken in the range detected in experimental data (Grün et al. 1999;
Denker et al. in press), i.e., in the range of a few Hz. We find that a minimal size
of the analysis window Tmin is required for detecting excess coincidences as signifi-
cant. If the analysis window is chosen smaller, the difference of nemp and nexp is too
small to be detected as significant. On the other hand, the required difference is not a
constant value but scales with the expected number of coincidences: the larger nexp,
the more excess coincidences are required, as is indicated by the minimal number
of coincidences required for significance nα (Fig. 10.4A, top, gray). Note that nα
increases in discrete fashion due to the discrete nature of the Poisson distribution,
thereby also reflecting changes of the effective significance level (see also Pauluis
and Baker 2000).

In case the time interval containing excess coincidences is limited (“hot region”),
additional constraints on the detectability of excess synchrony are imposed. Con-
sider a hot region of duration Tc (gray bar in Fig. 10.4B, bottom) and an analy-
sis window of width Tw centered on Tc. For increasing Tw, the empirical count
increases linearly up to Tw = Tc due to the increasing amount of injected coinci-
dences. As described for the homogeneous case above, depending on the injected
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Fig. 10.3 Temporal modulation of synchronous activity. UE analysis of two simultaneously
recorded single neurons from motor cortex of awake behaving monkey. The monkey was involved
in a delayed pointing task, where the duration of the preparation period (after the preparatory signal
(PS) up to the reaction signal (RS)) for the movement was selected randomly from four possible
durations (PP; 600, 900, 1200, 1500 ms) from trial to trial. The 36 trials with longest PP dura-
tion (1500 ms) were pooled in this example. Thus the monkey could expect the RS to occur at
three successive moments (ES1, ES2, ES3) before it actually occurred at RS. A. Raster displays
of spike discharges of two neurons. B. Comparison of measured (black) and expected (gray) co-
incidence rates. Allowed coincidence width ±2 ms. C. Surprise as a function of trial time. D. Dot
display with Unitary Events (squares) detected based on a significance level of α = 0.05, in sliding
windows of Tw = 100 ms. (Modified from Riehle et al. 1997.)

coincidence rate, nemp may become significant at a minimal analysis window size
Tmin. A further increase of Tw beyond Tc only leads to an accumulation of chance
coincidences from outside the hot region; therefore, the slope of nemp is reduced
to the slope of nexp, only maintaining the offset. As a consequence, the distance to
the minimal number of coincidences necessary to reach the significance threshold
(nα) shrinks, and the surprise decreases until it falls below the significance level at
Tmax. Thus, the detection of injected coincidences requires Tmin < Tw < Tmax. The
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Fig. 10.4 Impact of analysis window size. All subfigures show in the top panels the coincidence
count, and in the bottom panels the corresponding surprise value. Two parallel neurons are con-
sidered, both of a total firing rate of λ = 20 Hz, in M = 50 trials, significance level is α = 0.01
corresponding to Sα = 2 (dashed lines in bottom panels). The background rate during a coinci-
dence injection is λb = λ − λc. A.–B.: Measures as functions of the analysis window width Tw
(horizontal axis in bottom panel) that can also be interpreted as functions of nexp (horizontal axis
top panels) for given parameters. nα as a function of nexp is shown in gray, and the diagonal
n(Tw)= nexp(Tw) as dashed. A. Homogeneously injected coincident events. Three curves of nemp
as functions of Tw for λc = 0.1, 0.5, 1.0 Hz (top) and the corresponding surprise curves (bottom).
The crossings of nemp with nα indicate Tmin (marked for λc = 1.0 Hz) values for the different coin-
cidence rates, or correspondingly the crossings of S with the significance threshold Sα for α = 0.01
(dashed, bottom). B. Injected coincidences within a hot region. Curves for injection rates λc = 0.5,
1.3, 2.0 Hz are shown for increasing Tw centered at the hot region (Tc = 100 ms, gray bar). The
crossings of nemp with nα (or correspondingly S (bottom) with Sα (dashed)) before the bend in
slope indicate Tmin (marked for λc = 1.3 Hz), the crossings after the bend indicate Tmax (marked
for λc = 1.3 Hz). C. Time-resolved sliding window analysis. A hot region of width Tc = 100 ms
(gray bar) with fixed λc = 1.3 Hz is centered at 1000 ms. nemp(t) and S(t) are shown for dif-
ferent analysis window widths (from bottom to top: Tw = 20, 60, 100, 200, 300, 400 ms). The
corresponding expected number of coincidences are constant throughout the trial (dashed lines)

larger λc, the larger Tmax and the smaller Tmin, and, consequently, the larger the
range of possible Tw in which excess coincidences are detected as significant. For
any λc > 0, the surprise peaks at Tw = Tc, even for nonsignificant outcomes, i.e.,
Tmin > Tc.

Figure 10.4C illustrates the situation for an analysis window sliding along the
data. The three measures nemp, nexp, and surprise S resulting from the analysis are
indicated at the center position of the respective analysis window. The top panel
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shows nemp(t) for different analysis window widths (Tw = 400, 300, 200, 100, 60,
20 ms, top to bottom curves). The corresponding nexp(t) curves (dashed) are station-
ary but have a different offset depending on Tw. The empirical coincidence count
starts to increase when the sliding window reaches the hot region (gray bar), as-
sumes a peak value or plateau, and decays again when the window leaves the hot
region. The larger Tw, the larger the maximum value of nemp(t). However, as dis-
cussed above, significance does not depend on the absolute number of empirical
coincidences but on its amount relative to the expected number, which increases
for larger Tw. Thus, for the example values of Tw shown in Fig. 10.4C, only a few
curves become significant, i.e., in the cases where Tmin < Tw < Tmax, which for
Tc = 100 ms is fulfilled at Tw = 200, 100, 60 ms. The shape of the surprise curve
only depends on the size of Tw relative to Tc: for Tw ≤ Tc, the plateau is as large as
Tc, then becomes narrower with increasing Tw, until it exhibits a cusp at Tw = Tc.
This process is accompanied by an increase in the maximum surprise value. For
Tw > Tc, the plateau broadens at the cost of a declining amplitude.

In practice we do not know the width of any hot region in the data beforehand. We
therefore suggest to vary the analysis window and observe the shape and height of
the joint-surprise curve: at a triangular shape, the width of the window corresponds
to the duration of the period of excess synchrony, and the analysis is adjusted to
maximum sensitivity.

10.3.2 Firing Rate

Next, we study the detection reliability of UEs as a function of the firing rate of
the neurons and the injected coincidence rate. We choose λc in the range of a few
Hz as found in experimental data (Grün et al. 1999; Denker et al. in press). The
total rate of the neurons is varied between λ= 1, . . . ,100 Hz. Figure 10.5A shows
the detection rate (true positives) of the coincidence pattern with the largest pos-
sible number of spikes (“complexity” ξ = N ) for systems with different numbers
of neurons N . The curves of a particular color correspond to specific total number
of neurons (N = 2, . . . ,5) at four different injection rates (λc = 0,1,2,3 Hz). The
lower the number of neurons and the lower the injected coincidence rate, the earlier
detectability is corrupted by increasing background rate. The reason is that the rela-
tive amount of excess synchrony compared to the predicted level is decreasing with
increasing firing rate, leading to a nonlinear decrease in the surprise value (compare
Fig. 10.4A). For systems of more neurons but the same coincidence rate, this de-
cay is slower because the expected number of occurrences of a synchronous pattern
drops with increasing complexity ξ like

nexp,ξ = Tw

h
·M · Pexp,ξ = Tw

h
·M · pξ · (1− p)N−ξ . (10.5)

Thus, for an N = 5-neuron system, coincidences of ξ = 5 injected at a rate of λ=
3 Hz are perfectly detected even at high firing rates (Fig. 10.5A, red curve with
diamonds), whereas pair coincidences are down to a detection rate of about 50% at
a background rate of about 50 Hz.
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Fig. 10.5 True positive and false positive rates as functions of firing rate for systems with differ-
ent numbers of neurons. Each data point is the result of 1,000 Bernoulli process realizations of N
parallel neurons at stationary rate (horizontal axis, varied from 1 to 100 Hz), with injected coinci-
dences (A. λc = 1, 2, 3 Hz) and without (B. λc = 0 Hz), of total duration T = 3 s (corresponding
e.g. to M = 30 trials and Tw = 100 ms). The background rate is λb = λ− λc. The range of firing
rates corresponds to spike counts of a single neuron ranging from a mean of 3 to 300. Each realiza-
tion is evaluated for its empirical nemp and expected nexp coincidence count, and its significance
(α = 0.01). The number of neurons in the evaluated system is varied from N = 2, . . . ,5 indicated
by blue, green, magenta, and red, respectively. For each N , the statistics is shown for the spike
coincidences of the largest complexity (ξ =N )

The false positive rate, i.e., the rate of significant outcomes in independent data
(without injected coincidences) is around 1% as expected by a significance level of
α = 1% (Fig. 10.5B). The variation of the false positive levels, which are typically
lower than the significance level of 1%, corresponds to the changes in the effective
significance levels described by Roy et al. (2000). Due to the discreteness of the
coincidence counts, in particular for low expected values, the effective significance
level may be much lower than the prescribed α, and the significance tests are more
conservative. As a result, for the experimentally realistic range of parameters stud-
ied here, we find a low false positive rate independent of the number of neurons
considered.

10.3.3 Temporal Precision of Joint-Spike Events

One way to capture potential jitter in coincident spike events is to adjust the bin
width accordingly. The choice of the bin width w (in units of time steps h) for de-
tecting coincidences is optimal if the width just catches the temporal jitter of the
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Fig. 10.6 Detection of temporally jittered coincidences. A. Comparison of the disjunct binning
method (DB, top) and the multiple-shift method (MS, bottom) using analytical descriptions. The
parallel spike trains are assumed as stationary Poisson processes (λ1 = λ2 = 30 Hz) with inserted
coincident events (λc = 1 Hz) of a given temporal jitter (s = ±0,1, . . . ,5 ms, different curves).
The graphs show the surprise for increasing analysis widths (top: for bin sizes w ranging from 1 to
11 ms; bottom: for maximal shifts from b=±0, . . . ,±10 ms; both in steps of h= 1 ms). For better
visualization, the horizontal axes are aligned to correspond to the same maximal spike distances
(b=w−1). Each of the surprise curves shows a distinct peak, marked by filled circles if the values
are above the significance level of α = 0.01, i.e., S = 2, and marked by an empty circle if below.
The values of S for b = w − 1 = 0 (not shown) are 16.76 (DB) and 16.73 (MS). (Modified from
Grün et al. 1999.)

coincidences. Of course, also this width is not known in advance, but predictions
may be available based on results from other analyses or on the biophysical prop-
erties of the neuronal system under study. One way of optimally adjusting the bin
width is to systematically vary w. Using simulated data, generated by the injection
of coincident events in otherwise independent data, one can show that the signifi-
cance is largest at the optimal bin width (Fig. 10.6A) (Grün et al. 1999). The peak in
the surprise S can be understood as follows: Up to the optimal bin width, more and
more of the existing coincidences are detected. At the optimal width, the maximal
number is reached. For larger allowed coincidence widths, the number of coinci-
dences only increases because of chance coincidences thereby reducing the relative
contribution of excess coincidences and, consequently, significance.

However, binning has a considerable drawback; there is a high probability that
coincidences are split by the bin borders such that contributing spikes fall into neigh-
boring bins and, thus, are not detected as coincidences. The division of the time axis
into disjunct bins (DB) can lead to a considerable loss of the originally existing co-
incidences of up to 60% for bin sizes equal to the temporal jitter of the coincidences
(Grün et al. 1999). One way to avoid this is to leave the data on a rather fine temporal
resolution and shift the spike trains against each other up to the allowed coincidence
width b (multiple-shift method (MS), Grün et al. 1999). In this case, the analytical
expression for the expected number of coincidences needs to be adjusted to account
for the various shifts l. For two parallel spike trains i = 1,2 andM trials, this yields:
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Fig. 10.7 Dynamic changes in coincidence precision. Two simultaneously recorded neurons
recorded from monkey motor cortex while the animal was involved in a movement preparation
task (for details, see Riehle et al. 2000). PS indicates the time of the preparatory signal, and RS the
response signal. The data are analyzed for UEs by the sliding window approach (Tw = 100 ms, off-
set 20 ms). To account for jittered synchronous spikes, the multiple-shift analysis is applied, with
variable coincidence widths ranging from 1, . . . ,20 ms. The surprise function is calculated sepa-
rately for each coincidence width and then displayed in matrix form (horizontal axis: trial time,
vertical axis: coincidence width). The surprise values ranges from −2.19 to 2.42, displayed here
in gray scale (see color bar, display clipped below −2 to white and above 2 to black). (Modified
from Riehle et al. 2000.)

nMSexp =
M∑
j=1

2b+1∑
l=1

pi=1,jpi=2,j,lTw, (10.6)

where pi,j,l is the firing probability of neuron i in trial j at shift l. In this calcula-
tion, the number of coincidences resulting from the various shifts is assumed to be
independent, which is not necessarily the case in real data. The multiple-shift ap-
proach is more sensitive to excess coincidences, and the significance at the optimal
coincidence width is considerably larger compared to disjunct binning.

By systematic variation of the maximal shift, the MS method enables us to un-
cover the typical temporal precision of excess synchronous events in experimental
data as the coincidence width with the largest significance. Grün et al. (1999) and
Pazienti et al. (2008) found, in two different cortical systems and with different
analysis approaches, very similar typical coincidence widths of a few ms. A time-
resolved analysis enables us to observe also the dynamics of the temporal precision
of coincident events and its relation to the behavioral protocol (Fig. 10.7). In the ex-
ample shown here, the spike synchrony changes during the trial not only in strength
(change in surprise values) but also in temporal precision (Riehle et al. 2000). With a
latency of about 200 ms, after the preparatory signal, neuronal activity becomes sig-
nificantly synchronized at a low temporal precision (jitter of 15 ms). The precision
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then increases to a maximum (jitter 2–4 ms) in the middle of the preparatory period
at 500 ms. During the remaining time in the preparatory period, neurons become
desynchronized and fire independently.

10.4 Impact of Nonstationarities and Other Violations of
Assumptions

The basic Unitary Event analysis relies on assumptions, which are typically not ful-
filled in experimental neuronal data. The most obvious violation is that firing rates
change as functions of time (nonstationarity in time). Another type of nonstation-
arity is that the base level of firing may change across trials (cross-trial nonstation-
arity). Latency variability, i.e., variability in the onsets of the rate changes across
trials (see, e.g., Richmond 2009; Nawrot et al. 2003), may be seen as a combination
of the two. Furthermore, the spike train interval statistics of experimental data (e.g.,
shape of interval distribution Baker and Lemon 2000, spike-count variability and
spike-train irregularity Nawrot et al. 2008a, serial correlations between successive
intervals Nawrot et al. 2007) often indicate that the data do not follow Poisson statis-
tics. In the following, we discuss the impact of these features on the UE analysis,
in how far they can be tolerated, and how we can cope with biologically realistic
properties by incorporating them into the statistical test.

10.4.1 Nonstationary Rates

In the basic UE analysis it is assumed that the firing rates of the neurons are sta-
tionary within the analysis time window Tw. If rates change as functions of time,
the average rate is not a good description of the rate profile. As a consequence, the
expected number of coincidences may not be correct and could give rise to false pos-
itive outcomes. The most intuitive way to treat such cases would be to cut the data
into stationary pieces and perform the analysis separately in each of those. However,
this requires to find time segments that are jointly stationary for all the neurons under
consideration. This, in turn, first requires reliable rate estimation and, second, de-
tection of joint-stationary regions (see Appendix D in Grün et al. 2002b). While the
idea is appealing, it heavily depends on reliable rate estimation, which is not a trivial
task, in particular, if the rate is to be estimated in single trials (e.g., Nawrot et al.
1999; Ventura et al. 2002; Shimazaki and Shinomoto 2010 and Chap. 2 by Shimo-
moto). In addition, temporal segments corresponding to the joint-stationary regions
need to be analyzed independently from each other, and, thus, a smooth transition
in time is not given. For these reasons, this route has not been further explored.

An alternative idea is to slide a window of predefined width along the data and
carry out the UE analysis separately in each of the windows (Grün et al. 2002b) as
introduced in Sect. 10.2.4 to capture the potential dynamics of synchrony. Within
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the window, data are assumed to be stationary. We now address the question which
consequences we have to expect in terms of false positives (FP) if the rates are
not stationary within the analysis window and how much nonstationarity can be
tolerated before leading to FPs. For doing this, we consider the worst-case scenario:
(1) neurons change their rates in a step-like fashion, and (2) neurons change their
rates simultaneously.

For simplicity, we consider here the situation of two neurons changing their rate
at the same time from λ1 to λ2. The duration of the interval of rate λ1 is t1 =
f · Tw, and the duration of the second interval of rate λ2 is t2 = Tw − f · Tw =
(1 − f ) · Tw. We assume that this holds for all trials M . Ignoring the rate change
implies to calculate the expected number of coincidences based on the average rate
λ̄= λ1 · f + λ2 · (1− f ) within Tw:

ñ= λ̄2h2 · Tw ·M = (λ1 · f + λ2 · (1− f )
)2
h2 · Tw ·M. (10.7)

However, the correct number of expected coincidences is obtained by calculating the
expected number of coincidences separately for each of the stationary rate periods
and then taking the sum of the two:

n∗ = n∗,1 + n∗,2 = (λ1 · h)2f TwM + (λ2 · h)2(1− f )TwM. (10.8)

Note that summation and multiplication are exchanged in the two expressions. Thus,
for λ1 �= λ2, n∗ is larger than ñ, since the latter underestimates the expected number
of coincidences. As a consequence, we tend to overestimate the significance of the
empirically found coincidences n∗ and obtain false positives. The amount of FPs for
a given rate difference can be computed as the part of the area of the coincidence
distribution with mean n∗ above the minimal coincidence count nα required for
significance derived on the basis of the coincidence distribution with mean ñ:

FP=
∞∑
n=nα

(n∗)n

n! · exp(−n∗) (10.9)

(see Grün et al. 2003 for details and Fig. 5 therein for illustration). Figure 10.8A
shows the FP percentage as a function of the rate difference �λ = λ2 − λ1 for a
fixed λ1. For increasing �λ, FPs increase and at �λα surpass the significance level
α = 0.01. Each curve (color coded) shows this dependence for a different relation f
of rate level durations. The curves are nonmonotonic due to changes in the effective
significance level (cf. Sect. 10.3.1).

Figure 10.8B shows the minimal rate level difference �λα leading to FPs as
functions of f for different λ1 (color coded). For small and large f , quite large rate
level differences are tolerated before FPs are induced. For intermediate values of f ,
the tolerated rate level difference decreases, and �λα exhibits a minimum around
f ≈ 0.6–0.7. The exact minimum is difficult to derive due to the discretized samp-
ling and the nonmonotonicity of FP(�λ). The curves for different λ1 are similar in
shape but have a systematically higher minimum for larger λ1. For larger number of
trials (or, equivalently, longer time window), the tolerated rate difference is lower,
e.g., forM = 100, �λα is about half as compared toM = 30 (not shown here).
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Fig. 10.8 Probability of false positives generated by coherent stepwise rate change. Two neurons
are considered which change their rates stepwise in parallel from rate level λ1 to λ2. The relative
durations of the two rate levels within the time window (here Tw = 100 ms) are parameterized
by f . The number of trials is M = 30. A. Percentage of FPs as a function of rate difference
�λ= λ2−λ1. λ1 is fixed at 20 Hz, and λ2 is varied from 20 to 120 Hz in steps of 1 Hz. Each curve
is parameterized by f (color coded, see legend). The dashed black line shows the significance level
of α = 0.01. B. Critical rate relation �λα that leads to false positives ≥ α as a function of f (here
varied in steps of 0.05 in the range 0.05, . . . ,0.95). Each curve is retrieved for a different λ1. The
curve for λ1 = 20 Hz corresponds to the data shown in A

For the analysis of experimental data, these results imply that UE analysis shows
a certain robustness to nonstationarity of rate, even if the rates change coherently and
in stepwise fashion. The lower the rate level, the smaller the tolerated rate difference.
In experimental data, however, rates typically do not perform such instantaneous
rate jumps but rather change with finite rise times, reducing the risk of false positives
even further.

10.4.2 Cross-Trial Nonstationarity

Next to nonstationarity of firing rate in time, experimental data may also exhibit
nonstationarity across trials. For instance, in the simplest case, the offset of the fir-
ing rate profile may be different from trial to trial. This may be a consequence of
a variation in the depth of the anesthesia or a change in the attention of the an-
imal, etc. In analyses that involve the evaluation of first moments only (e.g., the
trial-averaged firing rate), this aspect is often neglected. However, for analysis ap-
proaches that involve higher-order statistical moments, as in correlation analysis, ig-
norance of such cross-trial nonstationarity may lead to false positive results (Brody
1999a, 1999b; Ben-Shaul et al. 2001; Grün et al. 2003; Pauluis and Baker 2000;
Ventura et al. 2005).

Here we study false positive outcomes in UE analysis if cross-trial nonstationar-
ity of firing rates is neglected in the calculation of the predictor (Grün et al. 2003).
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Fig. 10.9 Effect of cross-trial nonstationarity on occurrence of false positives. A. Example of an
individual M-trial sequence and composition of rate states s1, s2, s3, s4. Gray refers to the rate level
of neuron 1, black to neuron 2. Below is the reordered sequence of rate states, with m1 +m2 states
forming a coherent rate step, and the remaining m3 +m4 form opposing rates. B. False positives
FP as a function of rate step duration r and rate step proportion qr (horizontal) for all macrostates
of an example system (�λ= 70 Hz, q = 0.5, M = 10, Tw = 1000 ms, α = 0.05). Curves connect
data (dots) for macrostates with identical r (as labeled, dark gray encodes large r , large dots for
r = 0.2). Multiple values of FP at identical (r, qr ) reflect macrostates distinguished by m3 and m4
(vertically connected dots). C. Analysis of a coherent rate step corresponding to r = 1, M = 10,
Tw = 1000 ms, α = 0.05. The upper graph shows n∗ (black solid), n̄ (dashed), and nα (gray)
as functions of qr . The middle graph shows the difference of the correct expected number n∗ to
the expected number derived by averages n̄ (dashed) and to the minimal number at threshold nα
(solid). The lower graph shows the false positives FP for each pair n∗ and n̄ as a function of qr .
Steps are due to the discrete nature of nα . (Modified from Grün et al. 2003.)

For simplicity, we again assume a system of two neurons, however, with stationary
firing rates within the analysis window but with rate levels changing from trial to
trial. Based on a two-rate-state model, rates are randomly drawn from two possible
rate levels λ1 (low rate) and λ2 (high rate), independently for each trial and each
neuron. Their distance �CT = λ1 − λ2 gives a measure for the degree of cross-trial
nonstationarity. An additional parameter of the model is the probability to select one
of the two rate levels (“occupation probability”) termed q for λ1 and (1− q) for λ2.
Thus, the degree of nonstationarity across trials and the occupation probability of
the rate levels can systematically be varied.

One realization ofM trials is composed of a sequence of four possible rate com-
binations (“rate states”), [λ1, λ1] called s1, [λ2, λ2] called s2, [λ1, λ2] called s3, and
[λ2, λ1] called s4 (Fig. 10.9A, top panel). The occurrence counts of the respective
rate states [m1,m2,m3,m4] depend on the occupation probabilities of the rate levels
defined by q (see derivations in Grün et al. 2003). As in the foregoing section, we are
interested in the FP probability originating if nonstationarity is ignored. The number
of coincidences expected under the assumption that rates are identical across trials
is given by the rate averages λ̄1 and λ̄2 across trials:

n̄= λ̄1h · λ̄2h · Tw ·M =
(

1

M

M∑
i=1

λ1,i

)
h ·
(

1

M

M∑
i=1

λ2,i

)
h · Tw ·M. (10.10)
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The correct expected number of coincidences is the sum of the expected number of
coincidences per trial n∗,i :

n∗ =
M∑
i=1

n∗,i =
(
M∑
i=1

λ1,ih · λ2,ih

)
· Tw. (10.11)

Note, as in the foregoing section, the interchange of sum and product in the two ex-
pressions. With these two expressions, we are able to calculate the FP rate as above
by calculating the area of the Poisson coincidence distribution with mean n∗ starting
at n̄α derived from the coincidence distribution with mean n̄ (cf. (10.9)). However,
the number of possible rate state realizations acrossM trials (“microstates”) is huge
because the four possible rate states si may occur in different sequences and num-
bers of occurrences mi . Fortunately, the expressions for the number of coincidences
are not dependent on the specific sequence of the rate states, but just on their na-
ture. Therefore, we can reduce the complexity by combining all microstates with
the same number of rate state occurrences [m1,m2,m3,m4] into one macrostate.
The coincidence counts of a macrostate are then calculated as

n̄m =
(

1

M

4∑
i=1

miλ1,ih

)
·
(

1

M

4∑
i=1

miλ2,ih

)
· Tw ·M (10.12)

and

n∗,m =
(

4∑
i=1

mi · λ1,ih · λ2,ih

)
· Tw. (10.13)

We can think of the consecutive trials 1, . . . ,M as a temporal sequence of time
segments. By ordering the rate states as a sequence of first low–low rates (m1 times
s1), followed by a region where both neurons have high rates (m2 times s2), and two
regions with opposing rates (m3 times s3, m4 times s4), the temporal sequence can
be viewed as a coherent rate step followed by anticorrelated rate levels (Fig. 10.9A,
bottom panel). This situation is very similar to the one treated for covarying rate
steps in Sect. 10.4.1, with the difference that there the rate steps lasted for the whole
duration of time considered. Here, a part of the time sequence of duration (m3 +
m4) · Tw contains opposing rates (states s3 and s4).

We characterize a macrostate more compactly by the relative length of the rate
step r = m1+m2

M
and the relative duration of the low-rate and high-rate regimes

qr = m1
m1+m2

, a relation comparable to the relation f in the foregoing. In Fig. 10.9B
we use the variables r and qr to structure the set of macrostates of a system with
M = 10 trials in terms of false positives. Macrostates containing a rate step generate
a high fraction of false positives. (The absolute FP rate is higher than in the example
shown in Sect. 10.4.1, because here Tw is 10 times larger than in the former exam-
ple.) The longer the rate step (large r), the larger the fraction of false positives. For
constant r , the FPs reach a maximum at qr close to ≤ 0.7. Figure 10.9C demon-
strates the relation of the expected number of coincidences n∗ and n̄ to the minimal
number required to be significant (nα) (top panel). The numbers n∗ and n̄ decrease
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in different manner with the expansion of the low-rate regime, i.e., increasing qr .
The difference of the two (middle panel) exhibits a maximum at qr = 0.5. However,
the false positive rate for each pair of n∗, n̄ (bottom panel) reaches a maximum at
qr ≈ 0.7 due to the nonlinearity involved in the calculation of the significance (cf.
Fig. 10.4A).

10.4.2.1 Intermediate Summary on Nonstationarities

In conclusion, the most effective generator of false positives turns out to be covaria-
tion of firing rates across trials, i.e., trials where both neurons are in the same of the
two rate states. The rate of false positives is maximal, if in approximately 70% of
the trials, the neurons are jointly in the low-rate state, the remainder in the high-rate
state. However, directly including the trial-by-trial spike counts and calculating the
expected number of coincidences in a trial-by-trial manner (10.2) avoids the occur-
rence of FPs.

This consideration of cross-trial nonstationarity can also be interpreted in the
context of nonstationarity in time, by reinterpreting the trials as time segments. In
this view, the most efficient generator of false positives is a step of coherent firing
rates, with 70% of the time spent in the low–low rate configuration, and 30% in
the high–high rate configuration. The longer the duration of the coherent rate step,
compared to the full duration of the data set, the more false positives are generated.
In the extreme, the complete data set represents a coherent rate step as studied in
Sect. 10.4.1 (see also Kass and Ventura 2006 for a related aspect). Unfortunately,
there is no such simple solution for nonstationarity in time as we had for the cross-
trial nonstationarity. Theoretically, the solution is straightforward if the bin-by-bin
firing probabilities pi,k,j are known, with i being the neuron index:

nexp =
M∑
j=1

Tw/h∑
k=1

p1,k,j · p2,k,j . (10.14)

This would also be a way of calculating the expected number of coincidences for
combinations of nonstationarities in time and cross-trial, even in the absence of co-
herent onsets of rate changes (latency variability). However, the problem is the esti-
mation of the firing probabilities, which typically involves taking averages (Nawrot
et al. 1999; Ventura et al. 2002; Shimazaki and Shinomoto 2010) either across trials
or over time and thus is not as instantaneous as required.

A practical solution is to choose a nonparametric approach, i.e., the generation of
the coincidence distribution for the significance test on the basis of surrogate data.
The idea is to specifically destroy in the original data the feature one is going to test
for, in our case the exact temporal coordination of spikes across neurons, but to con-
serve all other statistical properties of the original data (see Sect. 10.5.1 below for
details). The coincidence distribution results from the different coincidence counts
of a sufficiently large number of surrogate data sets.
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Fig. 10.10 Impact of non-Poisson spike trains on significance estimation. A. Dot displays of three
different examples of realizations of Gamma processes (left to right: CV = 3 (“bursty”); CV = 1
(Poisson); CV = 0.1 (regular)). B. Comparison of coincidence distributions of two parallel spike
trains (dashed: Poisson; gray: Gamma process with CV = 0.1; firing rates are 50 Hz, M = 105

trials of 5-s duration, bin width h = 4 ms, no clipping). C. Coincidences are evaluated based on
binning (h= 4 ms, clipped). Both processes are parameterized by the product of bin width and fir-
ing rate, here 0.1. Probability of false positives (UE analysis, Poisson assumption; significance level
α = 0.01) for coincidences detected in pairs of independent Gamma processes (rates λ = 50 Hz,
104 realizations of 5 s for each CV ). (Modified from Grün 2009.)

10.4.3 Non-Poisson Processes

The UE analysis method as presented so far assumes the individual spike trains to
have Poisson statistics. However, neuronal spike trains often deviate from this as-
sumption. This poses the question to what extent UE analysis is affected by the
properties of the individual processes. In particular, whether an error in the assumed
process type (here: Poisson) influences the significance estimation of spike coinci-
dences. To investigate this, we model spike trains as renewal processes with inter-
spike intervals (ISIs) drawn from a Gamma distribution (see, e.g., Chap. 16 by Car-
danobile and Rotter), which is presently considered to be a reasonable model for
experimental spike trains (see references in Nawrot et al. 2008a).

Figure 10.10A shows dot displays of example realizations of a Gamma process
for three parameter settings. The processes are parameterized by their coefficient of
variation CV = σ(ISI)

μ(ISI) . Processes with higher ISI variability than Poisson (CV = 1)
have a CV larger than 1, and processes with more regular ISIs than Poisson have
values smaller than 1 (see Chap. 3 by Nawrot). Figure 10.10B illustrates the distri-
bution of coincidence counts derived from simulations of parallel, stationary, and
independent Gamma processes. The shape of the coincidence distribution changes
with CV (or, correspondingly, with the shape of the ISI distribution). For the investi-
gated process type, the distribution is unimodal and becomes wider for CV > 1. For
CV < 1, the distribution first gets narrower than Poisson and for even smaller CV
widens again. For unclipped processes (i.e., bins may contain more than 1 spike),
the mean of the distribution is the same as for the Poisson process, fully defined by
the firing rates of the neurons (Pipa et al. under revision).

Yet, in spite of these obvious deviations from the simple Poisson assumption, UE
analysis is in large parts unaffected if the spike trains have Gamma-renewal statis-
tics. Only for very regular processes (CV � 1), UE analysis leads to an increased
number of false positives. Nevertheless, the significance of coincident events of pro-
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cesses with moderate CV < 1 or bursty processes (CV > 1) tends to be underesti-
mated (Fig. 10.10C). The reason why UE analysis does not generate false posi-
tives for bursty processes is twofold. First, it operates on binned and clipped spike
trains, which considerably reduces the burstiness and leads to a Poisson-like coin-
cidence distribution. Second, UE analysis adjusts the mean of the distribution used
for the significance evaluation according to the spike counts in the data under eval-
uation (Pipa et al. in preparation). Most cortical data show a CV > 0.2 (Nawrot et
al. 2008a) leading to the conclusion that when Poisson processes are wrongly as-
sumed, the test is more conservative and does not generate FPs, as was also found
in Pipa et al. (2007). A further study extending the scope to nonrenewal processes
with first-order negative serial correlation, as found in cortical data (Nawrot et al.
2008a), shows the same general findings (Nawrot et al. 2008b).

Taken together, these results show that the temporal structure of the spike trains
influences the significance evaluation of coincident spike events. If Poisson statistics
are assumed, the significance may be under- or overestimated, depending on the CV
of the analyzed processes. Obviously, it is preferable to use the proper coincidence
distribution for the significance test. Unfortunately, to the best of our knowledge,
there is currently no analytical expression for the coincidence distribution, given the
CV , available.

One solution would be to model the simultaneous processes as independent
processes and to generate the coincidence distribution from simulated data. How-
ever, this requires knowledge about the statistics of the measured data for proper
model selection. This is not a trivial task, since ISI distributions of experimental
data are often confounded by changes of the firing rates (Baker and Lemon 2000;
Johnson 1996). This problem may be solved by time-rescaling approaches, mak-
ing the firing stationary prior to constructing the ISI distribution and perform-
ing parameter estimation (Nawrot et al. 1999, 2008a; Brown et al. 2002). This
procedure relies on the assumption that the process parameters do not change in
time. If they do, parameters have to be estimated in a time-dependent manner.
Another way to create the proper distribution without having to assume a cer-
tain point process model is to generate the distribution directly from the mea-
sured data with the help of surrogate data (Pipa et al. 2007, 2008; Ito 2007;
Louis et al. in press, see Sect. 10.5.1).

10.5 Discussion

Unitary Event analysis is a tool for the analysis of time-dependent spike correla-
tions. Its application has provided important insights into principles of information
processing in the cortex in a number of studies. In the visual (Maldonado et al.
2008), the prefrontal (Grün et al. 2002b), and the motor cortex (Riehle et al. 1997,
2000; Grammont and Riehle 1999, 2003; Kilavik et al. 2009), Unitary Events oc-
cur at distinct and relevant points in time during the behavior, which could not have
been detected by conventional cross-correlation analysis due to averaging over time.
Changes in firing rates and spike synchrony often occur in complementary fashion
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and may even show complementary tuning. The precision of UEs is typically found
in the range of a few ms (Grün et al. 1999) but may also change as a function of
time during the trial.

The existence and functional role of spike synchrony are still debated, al-
though both theoretical (Abeles 1982; Bernander et al. 1994; Diesmann et al. 1999;
Goedeke and Diesmann 2008; Marsalek et al. 1997; Kumar et al. 2008) and ex-
perimental (e.g., Reyes 2003; Rodriguez-Molina et al. 2007) studies have shown
that neurons are much more likely to exhibit output spikes if the input activ-
ity is synchronized. Reliable tools to decide between rate fluctuations and spike
synchrony are required. In this chapter we have outlined the properties and as-
sumptions of UE analysis and have also demonstrated the limitations of the anal-
ysis based on analytical expressions for the expected number, the coincidence
distribution, and, thus, the significance of coincident events. As we showed, UE
analysis can tolerate a reasonable range of nonstationarities and deviations from
Poisson before causing false positives. Still, to avoid a wrong interpretation of
experimental data, we suggest the following approach: Start the analysis of the
data with the UE analysis based on the null hypothesis expressed by (10.2). If
there are UEs at time instances were firing rates change abruptly, or the spike
trains are extremely regular, perform additional tests by intentionally destroying
spike coincidences, or by modeling neuronal activity (Maldonado et al. 2008;
Pazienti et al. 2008), or by comparing the analysis results with the results of other
analyses (e.g., as done in Pipa et al. 2007), or directly apply nonparametric tests
based on surrogates (see below). We stress that these concerns are not specific to
UE analysis but apply to any correlation analysis method since any method has spe-
cific assumptions that may be violated by the data (Grün 2009).

In the following, we will discuss three further issues of interest in connection
to UE analysis. First, we discuss the use of surrogate data as an alternative ap-
proach in the analysis of significance. Second, we discuss the use of UE analysis
as a time-dependent measure of synchronization in population activity. Finally, we
briefly describe the relation between UE analysis and other correlation-based meth-
ods of neuronal ensemble activity.

10.5.1 Surrogates

UE analysis rests on a number of assumptions, like stationarity of the processes
within the analysis time window and Poisson statistics of the individual processes
involved. Under these conditions, the analysis can be performed computationally
fast since the distribution for the statistical test (Poisson distribution) is known an-
alytically. Also the parameter for the distribution, the expected number of coinci-
dences, can be derived from the experimental data by simply taking into account the
spike counts of the neurons. Nonstationarity across trials can be directly and easily
incorporated into that measure by considering the spike counts of each neuron in
each trial.
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Although UE analysis based on Poisson-distributed coincidence counts exhibits a
certain robustness to violations of the assumptions, it is desirable to have a method
to construct a coincidence distribution by taking into account more details of the
experimental data. The potential advantage is not only an increased reliability (re-
duction of false positives, FPs) but also an increased sensitivity (reduction of false
negatives, FNs). The price is an increased computation time.

One approach is to model the simultaneous processes as independent processes
and to realize the coincidence distribution on this basis. This, however, also requires
precise knowledge about the statistics of the measured data and reliable methods
of model selection. Therefore we suggest to make use of surrogate data to directly
generate the proper distribution for the significance test. Surrogate data are artificial
data that are generated from the original data by specific manipulations. The idea
is to specifically destroy the feature one is going to test for, while conserving all
other properties of the original data. In our case the property of interest is the exact
temporal coordination of the spikes across the neurons. Thus we intend to destroy
the exact timing of spikes. Meanwhile there is a large body of surrogate generation
methods available, each with somewhat different characteristics. Some are designed
to preserve the ISI distribution of the spike trains, and others preserve the spike
counts or rates but at the same time often ignore other features and destroy these.
Thus, one has to carefully check the applicability of the surrogate for the question
being studied. Chapter 17 by Louis et al. illustrates how to select proper surrogates
for particular features present in the data (e.g., strong rate modulations, cross-trial
nonstationarity, etc.) in the framework of correlation analysis. A recent review by
Grün (2009) gives an overview of currently available surrogate methods, the features
they preserve and those they destroy.

The way surrogates are employed for UE analysis is the following: For each
position of the analysis window, we construct the coincidence distribution from
surrogate data. If the significance level is specified up to two decimals, typically
1000 surrogate data sets are sufficient. Each surrogate is analyzed for the occurrence
of coincidences in the same way and with the same parameters (e.g., coincidence
width, number of trials) as the original data. For example, if we are interested in the
significance of the spike pattern [1 0 1 1 0 0] of neurons 1, . . . ,6, we need to count
the occurrences of the same pattern in the surrogate data. The coincidence count
distribution is constructed from the different counts in the surrogates. Subsequently,
the empirical count is compared to the distribution by computing the p-value or sur-
prise. For the next sliding window position, the procedure is repeated. In practice
a surrogate is typically created for the whole data set and then evaluated in sliding
window fashion in order to avoid border effects.

The contribution by Louis et al. (Chap. 17) illustrates proper selection of sur-
rogates in the context of pairwise correlation analysis of coincident spike events.
The study is directly related to UE analysis, since it basically performs UE analysis
between a pair of neurons for one position of the analysis window. The only differ-
ence is that in their case the analysis window spans the whole trial which includes
considerable nonstationarities. Thus their results on the performances of different
surrogates result from averaging across the whole trial. The study shows that proper
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surrogates can well account for nonstationarities in time and across trials, and for
non-Poisson ISI statistics.

Obviously, the surrogate approach is costly in computation time and memory
requirements. However, with the help of today’s computer clusters and high-level
programming languages, this is not a practical problem. Chapter 20 by Denker et al.
provides a hands-on introduction into the use of distributed and parallel computing
techniques for the analysis of neuronal data.

10.5.2 Population Measures

UE analysis allows one to examine the occurrence of excess spike synchrony within
a set of simultaneously recorded neurons and its relation to sensory stimulation
and/or to behaviorally relevant events. For example, Riehle et al. (1997) found that
neurons in monkey motor cortex synchronize their activity at instances in time when
the monkey expects a go signal to initiate an arm movement, even if the signal does
not occur. This leads to the interpretation that the cortical network is preparing for
the upcoming movement by the activation of neuronal assemblies.

A next step is to confirm that such time- and behavior-dependent phenomena are
consistent across the population of neurons. Such questions are often approached
by performing many recordings of different sets of neurons from the same net-
work, session by session, under the assumption that the recordings form represen-
tative samples. The idea is to capture phenomena reappearing consistently across
the different recordings. A simple averaging of the time-dependent surprise func-
tions (or p-value functions) across sessions is not a meaningful approach, since
these measures are nonlinear and would need complicated statistical treatment in
order to be averaged. An alternative is to indicate time instances that exhibit sig-
nificant spike synchrony and to calculate the percentage of sessions which show
excess spike synchrony at a specific instant in time. For example, if pairs of neu-
rons are analyzed for UEs, the center bins of the sliding analysis window can be
marked as “1”, if the window contains excess coincidences, otherwise “0”, re-
sulting in a binary vector. Doing this for all pairs of neurons under the same be-
havioral condition yields binary vectors that can be averaged across the popula-
tion bin-by-bin. The result is a measure of the probability of finding significant
synchronization across the population at any instant in time (Riehle et al. 2000;
Grammont and Riehle 2003). This time-dependent population measure can then be
compared, e.g., to the firing rate averaged across the population of recorded neurons.
Grammont and Riehle (2003) found by such an analysis directional tuning of spike
synchrony at a specific instant in the preparatory period without any sign of rate
tuning. However, the finding was reversed during movement onset which was taken
as evidence that coherent activation of cell assemblies may trigger the increase in
firing rate in large groups of neurons.

Kilavik et al. (2009) evaluated whether intensive practice induces long-term mod-
ifications in the temporal structure of synchrony and firing rate at the population
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level. Monkeys were trained in a delayed pointing task in which the selection of
movement direction depended on correct time estimation. The goal was to quantify
the evolution of synchrony in time and the temporal precision at the level of the pop-
ulation. The observation in individual neuron pairs is that spike synchrony typically
occurs in relation to an expected event, but not in a strictly time-locked fashion.
Thus the approach to sum the binary vectors is not able to capture this observation.
An intuitive approach would be to simply smooth the summed binary vector to allow
some temporal spread of the synchrony responses. Unfortunately, the resulting val-
ues of the filtered vector cannot be interpreted as the percentage of significant pairs
since they are perturbed by multiple testing. An alternative, however, is to slide an
integration window along the binary vector of each pair and evaluate if the count
of “1”s per window is significant compared to surrogate data. Using this approach,
Kilavik et al. (2009) found that the timing of the task is represented in the tem-
poral structure of significant spike synchronization at the population level. During
practice, the temporal structure of synchrony is shaped, with synchrony becoming
stronger and more localized in time during later experimental sessions, in parallel
with an improvement in behavioral performance. Concurrently, the average popula-
tion firing rate mainly decreases, which is interpreted as performance optimization
through practice by boosting the computation via spike synchrony, allowing an over-
all reduction in population activity.

Another approach used in Kilavik et al. (2009) extracts the strength of the signif-
icance of spike correlation of the whole population of pairs. For a particular behav-
ioral condition, the trial-by-trial empirical and expected numbers of coincidences
are derived in each sliding window for each neuron pair. Instead of calculating the
significance on a pair-by-pair basis and combining the results in terms of UE rate
(Maldonado et al. 2008; Ito et al. submitted), one first sums the respective num-
bers of all trials and all pairs and computes the significance of the total empirical
counts given the total sum of expected numbers. By performing this computation
at each sliding window position, one obtains a time-dependent surprise function of
the population data. All these computations are not restricted to coincidence events
between pairs of neurons only but can be performed for any kind of spike pattern
across multiple neurons of interest.

10.5.3 Relation to Other Analysis Methods

The standard tool of spike correlation analysis is the cross-correlation histogram
(CCH; Perkel et al. 1967, Chaps. 5, 6). It analyzes spike correlation between pairs
of spike trains by retrieving the probability for spike occurrence in one spike train
relative to the spikes of a reference spike train. It therefore extracts delayed and
near-coincidences. Normalization of the CCH by subtracting the expected number
of coincidences given the firing rates and dividing by the products of the standard
deviations of the spike counts provides a correlation coefficient for each time delay.
The approach assumes stationarity of the firing rates and needs to integrate over
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relatively long data stretches of time. A typical result of a CCH analysis is a peak
around a certain delay, for cortical data typically around zero delay. However, if
firing rates are nonstationary, the CCH may also exhibit a peak solely reflecting the
nonstationarity of the rates and not the coordination of spike times (see illustration
in Chap. 17). The fact that experimental data typically reveal synchronized or near-
coincident spike events led to the focus of UE analysis on spike synchrony. Thus,
UE analysis is basically evaluating the significance of coincidences with zero or
small delay, which corresponds to an evaluation of the central bin entries of the
CCH only. In addition, UE is performed in a sliding window manner, which can in
principle also be done for the CCH but restricts the maximal delay.

The Joint Peri-Stimulus Histogram (JPSTH) analysis method provides a time-
resolved spike correlation analysis (Aertsen et al. 1989). Spike coincidences of any
delay of a pair of neurons are entered in a matrix with zero-delay coincident spikes
along the diagonal and delayed coincidences at corresponding time delays off the
diagonal. The statistics is evaluated across trials separately within each bin. Within
each bin, corrections for chance coincidences are performed by computing the cor-
relation coefficient. Along the diagonal, the tool captures the dynamics of coinci-
dences. The applicability of the JPSTH requires a large number of trials (typically,
tens to hundreds) to retrieve reliable statistics within the individual bins. In compari-
son, the UE analysis basically integrates the coincidence counts in a window sliding
along the diagonal, thereby requiring fewer trials, but for the price of smoothed
results. An approach related to the JPSTH was used for the evaluation of spatio-
temporal spike patterns between three neurons (Prut et al. 1998; Abeles and Gat
2001 and Chap. 9). Here the spikes of one neuron are used as the triggers relative
to which the temporal relations of the spikes of two further neurons are entered into
the matrix. The matrix is actually a section of the snowflake plot (Perkel et al. 1975;
Czanner et al. 2005) which was developed as a natural extension of the pairwise to a
tripplewise analysis of parallel spike trains. In all these tools, except in the JPSTH,
the time dependence of the patterns is lost.

As outlined in Chap. 9, the calculation of the expected number of coincidences
for N > 2 becomes more difficult, since considerations of higher-order correlations
come into play. The null hypothesis may not only be based on full independence
of the firing, but should also enable us to test whether tripple events are not triv-
ially explained by the presence of pairwise correlations. However, this makes the
formulation of the null hypothesis considerably more complicated (see Chap. 12 by
Staude et al.). UE analysis in its present formulation tests for deviations from full in-
dependence only. Thus a significant triplet may be the result of a significant pairwise
correlation, i.e., pair coincidences coinciding with background spikes. Shimazaki et
al. (2009) tackle this problem and develop a state-space-based time-resolved higher-
order analysis method using the framework of information geometry (see Chap. 11
by Amari) to identify periods expressing higher-order correlations. In such an ap-
proach, the number of parameters to be estimated faces the danger of a combi-
natorial explosion, thereby reducing the possible number of parallel processes to
be analyzed simultaneously or requires huge numbers of trials. Another approach
to the analysis of synchronization in the spiking activities of larger ensembles of
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neurons is given by the ‘gravitational clustering’ method (Gerstein et al. 1985;
Gerstein and Aertsen 1985). The basic ideas of this method, later improvements,
and results of its application to physiological multiple-neuron recordings are de-
scribed in Chap. 8 by Gerstein.

Finally, two variants of UE analysis, each one with its specific interesting prop-
erties, should be mentioned. Gütig et al. (2002) reformulated the statistical test un-
derlying the UE method using a coincidence count distribution based on empirical
spike counts, rather than on estimated spike probabilities. This led to the hyperge-
ometric distribution, rather than the binomial distribution, as the test distribution
of interest. By analytical calculations of the test power curves of the original and
the revised method, they demonstrated that the test power could be increased by a
factor of two or more in physiologically realistic regimes. Moreover, in the case of
two neurons, they showed that the requirement of stationary firing rates, originally
imposed on both neurons, could be relaxed; only the rate of one neuron needs to be
stationary, while the other may follow any arbitrary time course. A second variant,
called NeuroXidence (Pipa et al. 2008), detects coincident spike events in multiple
neurons by a method comparable to the multiple-shift approach and directly uses
surrogate data for the generation of the null hypothesis. The method proposes a par-
ticular surrogate to use, i.e., to shift the spike trains as a whole against each other
by a small amount of time to destroy spike synchrony (see also Harrison and Ge-
man 2009 and Chap. 17). Significance of the empirical number of coincidences is
evaluated by comparison with the counts resulting from the shifted versions using
a t-test. A comparison of analysis results based on UE and NeuroXidence (Pipa et
al. 2007) of experimental data from motor cortex of monkey confirmed the results
derived using the standard UE, however with slightly higher significance. This may
reflect the fact that the method is accounting for the spike train autostructure.

10.5.4 Conclusion

• The UE method provides a tool to analyze multiple parallel spike trains for time-
dependent spike synchrony, enabling the study of the relation between spike syn-
chrony and behavioral context.

• The basic UE method relies on the assumption of trial-by-trial stationary Poisson
processes to enable rapid analysis on the basis of an analytical expressions for the
significance estimation.

• The basic UE method tolerates reasonable amounts of nonstationarity, as well as
non-Poisson ISI statistics for experimentally found CV s without generating false
positive results.

• Concerns with respect to false positives can be alleviated by cross-checking the
results using count distributions constructed from surrogate data.

The software is available at http://www.apst.spiketrain-analysis.org.
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Chapter 11
Information Geometry of Multiple Spike Trains

Shun-ichi Amari

Abstract Information geometry studies a family probability distributions by using
modern geometry. Since a stochastic model of multiple spike trains is described by a
family of probability distributions, information geometry provides not only intuitive
understanding, but also useful tools to analyze complex spike trains. A stochastic
model of neuronal spikes represents average firing rates and correlations of spikes.
We separate correlations of spikes from their firing rates orthogonally. We further
separate higher-order correlations from lower-order ones, and thus the effect of cor-
relations is decomposed orthogonally. However, a general model is too complicated
and is not adequate for practical use. So we study characteristics of various tractable
models. We study among them a mixture model, which is simple and tractable and
has many interesting properties. We also study a marginal model and its character-
istics.

11.1 Introduction

Information is encoded by trains of spikes in a neuron pool. They have large vari-
ability so that such spikes may be regarded as samples from a stochastic model (see
Chap. 1 and also Kass et al. 2005; Dayan and Abbott 2005; Salinas and Sejnowski
2001). Information processing takes place through dynamics of mutual interactions
of spikes. It is, hence, important to understand characteristics of stochastic models
of neural firing and their capabilities and limitations of representing probability dis-
tributions. There are a vast number of papers on this topic as is seen in the present
book and references cited therein.

Information geometry (Amari and Nagaoka 2000) studies the geometrical struc-
ture of a family of probability distributions which forms a manifold. Its geometry
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gives various relations among probability distributions. For example, we can discuss
divergences or discrepancies between two probability distributions, orthogonality
of two small deviations of distributions, and flatness of the manifold. Information
geometry provides a mathematical tool to study intrinsic features of stochastic phe-
nomena. The present chapter is devoted to studies of various models of correlated
spikes from the point of view of information geometry.

We begin with a general model of multiple spikes in Sect. 11.2. It consists of
all joint probability distributions of firing of neurons, where temporal aspects are
neglected for the moment. Let x = (x1, x2, . . . , xn) be a random vector variable,
where xi = 1 represents emission of a spike from neuron i, and xi = 0 otherwise. We
discretize the continuous time axis into bins of duration�t , so that Prob{xi = 1}/�t
represents the firing rate of neuron i. Hereafter, we simply use the firing probability
and firing rate interchangeably, although they are different in the exact sense (see
Chap. 2). The full model consists of all the probability distributions p(x). We first
study characteristic features of the full model by defining a Riemannian metric due
to Fisher information matrix and two types of special coordinates systems. They are
m-affine and e-affine coordinate systems that are mutually orthogonal.

The structure of the full model (Sect. 11.2) is simple and beautiful, but its di-
mensionality is extremely high when n is large, so that such a model is not tractable
for analyzing experimental data. We need to use a tractable model of multiple spike
trains, which is a submodel (submanifold) of the full model. Some of the properties
of the full model are inherited by these submodels. This shows the importance of the
geometrical study of the full model, although the full model itself is seldom used.

By using the full model, we show in Sect. 11.3 how measures of correlations
can be separated orthogonally from the firing rates of component neurons (Amari
2009a). We further show how higher-order correlations (see Chap. 12) are sepa-
rated from lower-order correlations orthogonally (Amari 2001; Nakahara and Amari
2002). This gives an orthogonal decomposition of the Kullback–Leibler divergence
used as a measure of difference between two probability distributions into the terms
due to firing rates and respective orders of correlations.

In Sect. 11.4, we study various tractable models. One topic treats the problem
how higher-order correlations emerge from a simple model receiving common in-
puts (Amari et al. 2003). Emphasis is put on the mixture model in Sect. 11.5, which
is simple but has interesting properties. We use the mixture model to study the dy-
namic transition of the hidden state of a neuron pool and demonstrate how the firing
rates and correlations change in the intermediate state (Amari 2010).

In Sect. 11.6, we then investigate the temporal structure of correlations existing
in a spike train emitted from a single neuron. In addition to the full model, we study
a Markov process as an example. The second topic is estimation of the gamma
parameter of a neuron in a renewal process under the condition that the firing rate is
changing over time (Miura et al. 2006). The third topic is the discrimination of ISI
distribution from data and how the discrimination power depends on the stochastic
model (Kang and Amari 2008).
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Fig. 11.1 (Left) Manifold S1; (right) Manifold S2

11.2 Joint Probability Distributions of Neural Firing

11.2.1 Joint Firing Coordinates of Full Statistical Model

Let us begin with a simple case where an ensemble of neurons emits spikes stochas-
tically. Here, we focus on the joint probability distributions of firing of n neurons.
Temporal aspects of neural firing will be considered in later sections. Let us consider
n neurons, and let x1, . . . , xn be random variables taking a value 0 or 1 represent-
ing firing or nonfiring of neurons in a time bin. When neuron i fires, xi = 1, and 0
otherwise. Firings of neurons are correlated in general, so we need to study a joint
probability distribution p(x1, . . . , xn).

We consider the set of all joint probability distributions,

Sn =
{
p(x1, . . . , xn)

}
, (11.1)

which is called the full model. Let x = (x1, . . . , xn) be a vector representing a firing
pattern of the n neurons. Since there are 2n firing patterns, probabilities are assigned
to each of them, and they should satisfy∑

x

p(x1, . . . , xn)= 1. (11.2)

Hence, the degrees of freedom to specify a probability distribution is 2n − 1. The
set Sn is regarded geometrically as a (2n − 1)-dimensional manifold. When n =
1, this is a line (see Fig. 11.1, left), where p(1) + p(0) = 1. When n = 2, S2 =
{p(x1, x2)}, which includes four probabilities p(0,0), p(0,1), p(1,0), and p(1,1)
with the constraint p(0,0)+ p(0,1)+ p(1,0)+ p(1,1) = 1. Hence, it is a three-
dimensional space. It is a 3-simplex (see Fig. 11.1, right).

We have interest in the firing rates and correlations of neural spikes. The firing
rate of neuron i is given by its firing probability, which in our case is the expectation
of xi ,

ηi =E[xi] = Prob{xi = 1}, (11.3)

where E denotes expectation. Similarly, the pairwise joint firing rate of xi and xj is
given by
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Fig. 11.2 Submanifold I2
in S2; δij (x) denotes the
deterministic distribution of
x1 = i and x2 = j , i, j = 0,1

ηij =E[xixj ] = Prob{xi = xj = 1}. (11.4)

We may continue this way to give joint firing rates of many neurons. For example,
for k neurons ii , . . . , ik , their joint firing rate is

ηi1···ik =E[xi1 · · ·xik ] = Prob{xi1 = · · · = xik = 1}. (11.5)

Finally, the joint firing rate of all n neurons is

η12···n =E[x1 · · ·xn] = Prob{x1 = x2 = · · · = xn = 1}. (11.6)

All of the above probabilities η’s are 2n − 1 in number, and they can be used to
specify a probability distribution p(x). This plays the role of a coordinate system
of Sn, which is called the joint firing coordinate system. We summarize them in a
vector having 2n − 1 components,

η= (ηi;ηij ; . . . ;η1···n), i, j, . . .= 1, . . . , n. (11.7)

In information geometry (Amari and Nagaoka 2000), this is called the m-
coordinates (mixture coordinates), η-coordinates, or joint firing coordinates.

When x1, . . . , xn fire independently, we have

p(x)= p1(x1) · · ·pn(xn). (11.8)

Let In be the set of all independent probability distributions. Because of (11.8),
a probability distribution in In can be specified by n firing rates η1, . . . , ηn. Hence,
In is an n-dimensional submanifold of Sn (see Fig. 11.2 for the case of n= 2). All
other η-coordinates are determined as

ηi1···ik = ηi1ηi2 · · ·ηik . (11.9)

11.2.2 Log Interaction Coordinates

We have another coordinate system, emerging from the additive decomposition of
the log probability function,

logp(x)=
∑
i

θixi +
∑
i<j

θij xixj + · · · + θ12···nx1 · · ·xn −ψ. (11.10)
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Since xi takes values on 0 and 1, this expansion is exact, and this is known as the
log-linear model (see Chap. 12). A coefficient, for example, θij , represents pairwise
interaction of xi and xj , and θijk triplewise interaction of xi , xj , and xk .

The coefficients of the above expansion can be summarized into a vector of 2n−1
dimensions,

θ = (θi; θij ; . . . ; θ1···n), i, j, . . .= 1, . . . , n, (11.11)

and they can be used as another coordinate system of Sn. This is called the log-
linear coordinate system or log-interaction coordinate system, and the e-coordinate
system (exponential coordinate system) in information geometry (Amari and Na-
gaoka 2000; see also Amari 2001). The parameters θ are also called the natural or
canonical parameters of the exponential family in statistics.

The full model Sn is an exponential family of distributions, where distribution
(11.10) is written together with parameters θ as

p(x, θ)= exp
{∑

θixi +
∑
θij xixj + · · · + θ1···nx1 · · ·xn −ψ(θ)

}
, (11.12)

where ψ(θ) corresponds to the normalization factor given by

ψ(θ)= log

{∑
x

exp
(∑

θixi + · · · + θ1···nx1 · · ·xn
)}
. (11.13)

This is the cumulant-generating function and is called the free energy in physics.
When p(x, θ) is an independent distribution belonging to In, all θi1···ik (k ≥ 2) van-
ish except for the first-order terms θ1, . . . , θn, so that

p(x, θ)= exp
{∑

θixi −ψ
}
. (11.14)

As is shown in (11.10), θi1···ik represents the intensity of interaction among k vari-
ables xi1, . . . , xik .

11.2.3 Coordinate Transformation Between θ and η

The η-coordinates are given by the expectations of the random variables xi1 · · ·xik ,
ηi1···ik =E[xi1 · · ·xik ], k = 1, . . . , n. (11.15)

It is known that the transformation of the coordinates from θ to η is given by

η=∇ψ(θ), (11.16)

where ∇ is the gradient, and hence

ηi = ∂

∂θi
ψ(θ), (11.17)

· · · (11.18)
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ηi1···ik =
∂

θi1···ik
ψ(θ), (11.19)

· · · (11.20)

η12···n = ∂

∂θ1···n
ψ(θ). (11.21)

The inverse transformation is given by

θ =∇ϕ(η), (11.22)

where ϕ(η) is the negative entropy,

ϕ(η)=
∑
x

p(x,η) logp(x,η), (11.23)

where, in slight abuse of notation, p(x,η) is the probability distribution whose m-
coordinates are η. The negative entropy is given by the Legendre transformation,

ϕ(η)=max
θ

{
θ · η−ψ(θ)}. (11.24)

These show that θ and η are connected by the Legendre transformation, and both
ψ(θ) and ϕ(η) are convex functions (Amari and Nagaoka 2000).

11.2.4 Fisher Information

We consider a general statistical model M = {p(x, ξ)} parameterized by ξ , which
is not necessarily the full model Sn but can be any model. In the case of the full
model Sn, ξ represents θ ,η or any others. The model M is a statistical manifold,
where ξ is its coordinate system. The Fisher information matrix of a statistical model
M = {p(x, ξ)} is defined by

gij =E
[
∂

∂ξi
logp(x, ξ)

∂

∂ξ j
logp(x, ξ)

]
. (11.25)

The Fisher information is given equivalently by

gij =−E
[
∂2

∂ξi∂ξj
logp(x, ξ)

]
. (11.26)

This is the Hessian of log-probability. Since

E

[
∂

∂ξi
logp(x, ξ)

]
= 0 (11.27)

holds by simple calculations, the function

D
(
ξ , ξ ′
)=E[logp

(
x, ξ ′
)]
, (11.28)

where E denotes the expectation with respect to p(x, ξ), has the peak at ξ ′ = ξ .
Hence, when n independent observations x1, . . . ,xn are given, for estimating
the parameter, we can use the maximum likelihood estimator (mle) ξ̂ that maxi-
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mizes

ξ̂ = arg max
ξ ′

n∑
i=1

logp
(
xi , ξ

′). (11.29)

This is because we may replace the expectation of (11.28) by the empirical mean
of observed data x1, . . . ,xn. The mle is its maximizer. Since the Fisher information
(11.26) is the second derivative of the log-probability at its maximum, it represents
how easy it is to find the peak. Hence, it is interpreted as the amount of information
that one observation xi carries for estimating the true ξ .

The following Cramér–Rao theorem shows the role and meaning of the Fisher
information.

Cramér–Rao theorem Let ξ̂ be any unbiased estimator. The covariance matrix of
the estimation error e= (ei),

e= ξ̂ − ξ , (11.30)

is bounded by the inverse of the Fisher information

E[eiej ] ≥ 1

n
(gij )

−1. (11.31)

Moreover, the equality is asymptotically attained by the mle ξ̂ when n is large.
The theorem shows that the error is approximately the inverse of the information.

In our case of the full model, the parameters are θ or η. It should be noted that the
indices in the full model have hierarchical structure so that they run over multiple
indices i, ij, ijk, . . . , as θi, θij , . . . . To simplify the notation, we will from now on
use capital letters K,L, . . . to denote indices that run over i, ij, ijk, . . . .

We then have

p(x, θ)= exp

{∑
K

θKXK −ψ(θ)
}
, (11.32)

where

XK = xi1 · · ·xik (11.33)

for K = (i1 · · · ik). It is clear that

ηK =E[XK ]. (11.34)

Since Sn is an exponential family, the Fisher information matrix G = (gKL) is
directly obtained as

G=∇∇ψ(θ)= ∂2

∂θK∂θL
ψ(θ) (11.35)

in terms of the θ -coordinates. This is equal to the covariance of XK ,

gKL = Cov[XK,XL]. (11.36)

The Fisher information matrix in terms of the η-coordinates is given by the inverse
G−1 of G.
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11.2.5 Geometry of Sn and Orthogonal Parameters

The length between two nearby points of Sn is defined by using the Fisher informa-
tion matrix. This is given by considering the Fisher information as the Riemannian
metric on Sn. Let us consider two nearby probability distributions P = p(x, θ) and
P + dP = p(x, θ + dθ), each represented by the parameters θ and θ + dθ . Then,
the square of their distance is given by

ds2 = 〈dθ, dθ〉 = dθT Gdθ, (11.37)

where 〈dθ, dθ〉 is the inner product defined by the right-hand side of (11.37), and
dθT is the transposition of column vector dθ . This can be represented also by

ds2 = 〈dη, dη〉 = dηT G−1 dη, (11.38)

when we use the η-coordinate system. The Fisher information matrix is the unique
matrix that is invariant, that is, its structure does not change, under both transforma-
tions of parameters and of data (Chentsov 1972; Amari and Nagaoka 2000).

It is shown from (11.38) that dθ and dη are related by

dη=Gdθ . (11.39)

Next, we define the orthogonality of two small deviations, dP and d ′P , that
is, the two deviations from P to P + dP and P + d ′P , respectively. Here, the
deviations are represented by two small changes in coordinates dθ and d ′θ . The
two small deviations are said to be orthogonal if

〈
dθ , d ′θ

〉= dθT Gd ′θ = 0. (11.40)

Similarly, two curves θ1(t) and θ2(t) specified by parameter t , which intersect at
t = 0, θ1(0) = θ2(0), are said to be orthogonal at t = 0 if their tangent vectors θ̇1
and θ̇2 are orthogonal,

〈θ̇1, θ̇2〉 = 0, (11.41)

where

θ̇ = d

dt
θ(t)

∣∣∣∣
t=0
. (11.42)

For a statistical model M = {p(x, ξ)}, let us consider two small deviations dξ
and d ′ξ of the parameter ξ . Assume that the first deviation is caused by a small
change dξi of the coordinate curve ξi , all the other coordinates being fixed, and the
second one by a small change d ′ξj of ξj . Then, the inner product of the two small
changes is

〈
dξ , d ′ξ

〉= gij (ξ) dξi d ′ξj . (11.43)

Two parameters ξi and ξj are orthogonal if gij (ξ)= 0 for all ξ .
It is desirable to use orthogonal parameters when it is possible. Intuitively speak-

ing, when the angle of two coordinates curves ξi , ξj is very small, it is difficult to
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distinguish a change caused by an increment of ξi and that of ξj . More technically,
the score functions

si(x, ξ)= ∂

∂ξi
logp(x, ξ), i = 1, . . . , n, (11.44)

are correlated,

E
[
si(x, ξ)sj (x, ξ)

]= gij �= 0, (11.45)

when ξi and ξj are not orthogonal. This implies that the errors ei and ej of esti-
mation are correlated. When ξi and ξj are orthogonal, one can easily test if ξi has
changed or not, even when ξj is not fixed but is fluctuating, since the effects of their
changes are orthogonal.

We show in the next section how we separate the firing rates and correlations
orthogonally.

11.3 Separation of Correlations from Firing Rates

11.3.1 Orthogonal Measure of Correlation

Given a joint probability distribution p(x), one can calculate both firing rates of
neurons and their correlations. Since firing rates may change over time, it is im-
portant to have a measure of correlation which does not explicitly depend on the
firing rates. Geometrically speaking, such a measure of correlation is desirable that
is orthogonal to the firing rates.

We begin with a simple case of two neurons. A probability distribution is given
by p(x1, x2), and the set S2 of all probability distributions is three-dimensional.
Among three degrees of freedom, two are the firing rates of the two neurons,

ηi =E[xi], i = 1,2, (11.46)

and the third is correlation of x1 and x2. There are a number of measures to represent
correlation. The covariance is

cov= η12 − η1η2, (11.47)

and the correlation coefficient is

ρ = η12 − η1η2√
η1η2(1− η1)(1− η2)

. (11.48)

Mutual information is another one,

I (X1 :X2)=
∑
p(x1, x2) log

p(x1, x2)

p1(x1)p2(x2)
, (11.49)

where pi(xi) is the marginal probability of xi . The coefficient θ12 in additive log-
decomposition (11.10), which is abbreviated as θ in the present section, is also a
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measure of correlation,

θ = log
η12(1− η1 − η2 + η12)

(η1 − η12)(η2 − η12)
. (11.50)

All of them vanish when x1 and x2 are independent.
Which is adequate as a measure of correlation? It is desirable to use the one that is

orthogonal to changes in firing rates. In order to obtain an orthogonal measure, let us
denote by c an arbitrary measure of correlation which satisfies c= 0 when x1 and x2

are independent. Then, probability distributions p(x1, x2) in S2 are parameterized
by ξ = (η1, η2, c). A small change in the firing rate is represented by dηi , where
firing rate changes from ηi to ηi + dηi but the other parameters do not change.
Similarly, a small change in correlation is represented by dc. They are orthogonal
when

〈dc, dηi〉 =E
[
∂ logp(x, ξ)

∂c

∂ logp(x, ξ)

∂ηi

]
= 0, (11.51)

since a change of parameter dξi in the coordinate system ξ is represented by the
score function

si(x, ξ)= ∂ logp(x, ξ)

∂ξi
. (11.52)

This is a random variable representing the corresponding change of log-likelihood
when ξi changes. The inner product (11.51) is the same as that defined by using the
Fisher information matrix in the coordinates (η1, η2, c).

By using the coordinate system ξ = (η1, η2, c), let us consider the set of proba-
bility distributions M(η1, η2) having fixed firing rates η1 and η2. For any (η1, η2),
this set forms a line in S2 in which c changes but η1 and η2 are fixed. There are many
lines M(η1, η2) depending on (η1, η2), all of which fill S2 densely (Fig. 11.3). As
for correlation c, we consider the set E(0) consisting of all independent probability
distributions where η1 and η2 are free. This is a two-dimensional subspace of S2.
We further consider the subspace E(c) which consists of all the probability distribu-
tions having the same fixed measure of correlation c but firing rates change freely.
The measure c defines a scale of correlations inM(η1, η2) (see Fig. 11.3).

We search for an orthogonal measure c such that E(c) and M(η1, η2) are or-
thogonal to each other. That is, a small change dc is orthogonal to small changes
dηi .

Theorem 1 (Amari 2009a, 2009b, 2010). The log-linear measure θ is orthogonal
to the firing rates η1, η2.

Proof We can show from direct but careful calculations that

〈dηi, dθ〉 =E
[
∂ logp(x, η1, η2, c)

∂ηi

∂ logp(x, η1, η2, c)

∂c

]
= 0 (11.53)

for c= θ . �
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Fig. 11.3 Dual foliations by
{E(c)} and {M(η)}

The covariance, correlational coefficient, or other measures are not orthogonal,
so that, when firing rates change, the scale of correlations changes depending on the
firing rates.

From now on, we use the firing rates η1, η2 and the orthogonal correlation θ as
a new coordinate system to specify a distribution. We call ξ = (η1, η2, θ) the mixed
coordinate system in which e-coordinate and m-coordinates are mixed (see Amari
2001; Nakahara and Amari 2002; Amari 2009a). Because of the orthogonality prop-
erty, for two probability distributions P(η1, η2, θ) and P ′(η′1, η′2, θ ′), we may say
that the firing rates change from (η1, η2) to (η′1, η′2) and the correlation changes
from θ to θ ′.

11.3.2 Kullback–Leibler Divergence

We study the Kullback–Leibler divergence (KL-divergence) to decompose the dif-
ference of two probability distributions into one due to firing rates and the other due
to correlation. This is a unique divergence having both invariance and flatness, see
Amari (2009b).

Let P = {p(x)} and P ′ = {p′(x)} be two probability distributions. The KL-
divergence between the two is defined by

KL
[
P : P ′]=∑

x

p(x) log
p(x)

p′(x)
. (11.54)

This is not symmetric, because

KL
[
P : P ′] �= KL

[
P ′ : P ] (11.55)

in general, but it is nonnegative and vanishes if and only if P = P ′,
KL[P : P ] = 0, (11.56)

KL
[
P : P ′]> 0 for P �= P ′. (11.57)
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Fig. 11.4 Pythagorean
decomposition of
KL-divergence

When P and P ′ = P + dP are infinitesimally close, we have

KL[P : P + dP ] = 1

2

∑
gij dξi dξj (11.58)

in the general ξ -coordinates, where G= (gij ) is the Fisher information matrix with
respect to ξ . Because of invariance, KL[P : P + dP ] is the same in any coordinate
systems. Hence, it is locally a half of the square of the Riemannian distance.

Let P and P ′ be two distributions whose mixed coordinates are ξ = (η1, η2, θ)

and ξ ′ = (η′1, η′2, θ ′). They are different both in the firing rates and correlation. Their
difference can be decomposed into a sum of two terms, one due to the difference
in firing rates and the other in correlation. To show this, we use the two associated
distributions P ∗ and P ∗∗. The coordinates of P ∗ are (η1, η2, θ

′), that is, its firing
rates are the same as P , and its correlation is the same as P ′. The coordinates of
P ∗∗ are (η′1, η′2, θ), where the firing rates are the same as P ′, and correlation is the
same as P . See Fig. 11.4.

Theorem 2 (Amari and Nagaoka 2000). The KL-divergence is decomposed as

KL
[
P ′ : P ]= KL

[
P ′ : P ∗∗]+KL

[
P ∗∗ : P ], (11.59)

KL
[
P : P ′]= KL

[
P : P ∗]+KL

[
P ∗ : P ′]. (11.60)

Here, KL[P ′ : P ∗∗] represents the divergence due to the change of correlation
from θ ′ to θ , where (η1, η2) is fixed, and KL[P ∗∗ : P ] is that due to firing rates from
(η′1, η′2) to (η1, η2), where θ is fixed. We have similar interpretation for the second
equation.

Let P be ξ = (η1, η2, θ), and P0 be the uniform distribution without correlation,
ξ0 = (0.5,0.5,0), that is, p0(x1, x2)= 1/4 for all x1, x2. Then, we have

KL[P : P0] = KL
[
P : P ∗∗]+KL

[
P ∗∗ : P0

]
, (11.61)

where P ∗∗ is the independent distribution having the same firing rates (η1, η2)

with P . Here, KL[P : P ∗∗] represents how far P is from the independent distri-
bution, that is, the effect of correlation, and KL[P ∗∗ : P0] represents the deviation
of firing rates of P from the uniform distribution.
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11.3.3 Higher-Order Correlations

The theories we have studied in the case of n = 2 can be generalized to a neuron
pool with more than two neurons. In the case of Sn, n ≥ 3, there are higher-order
correlations that cannot be reduced to the lower-order correlations. For example, in
the case of three neurons, even when three pairwise correlations are 0, this does not
mean that x1, x2, and x3 are independent. There may exist triplewise correlation
which is not reducible to pairwise correlations. Therefore, it is required to separate
higher-order correlations from lower ones orthogonally.

To this end, consider marginal distributions of k random variables xi1, . . . , xik
among n variables x1, . . . , xn. The marginal distribution of the first k variables
x1, . . . , xk , for example, is given by summing up p(x) over all irrelevant random
variables xk+1, . . . , xn as

p(x1, . . . , xk)=
∑

xk+1,...,xn

p(x1, . . . , xn). (11.62)

The marginal distribution is represented by the m-coordinates of the related random
variables,

ηi, ηij , . . . , η1···k, i, j, . . .= 1, . . . , k. (11.63)

Any marginal distribution p(xi1, . . . , xik ) is represented similarly by the joint
firing probabilities ηi1···ip , 1≤ p ≤ k, of the related variables, no more than k vari-
ables. We represent the joint firing rates of all combinations of no more than k
variables by

ηk = (ηi, ηij , . . . , ηi1···ik ), (11.64)

which consist of a part of the coordinates η. This includes n firing rates ηi , nC2
joint firing rates ηij of two neurons xi and xj , until nCk joint firing rates of any k
variables, where nCk is the binomial coefficient,

nCk = n!
k!(n− k)! . (11.65)

In other words, ηk is the first s components of

η= (ηi, ηij , . . . , ηi1···ik ; ηi1···ik+1, . . . , η1···n), (11.66)

where

s =
k∑
p=1

nCp. (11.67)

In the case of n= 3, when k = 1, the marginal distributions of neurons are given
by the firing rates

η1 = (η1, η2, η3). (11.68)

The marginal distributions of pairs of neurons (k = 2) are given by

η2 = (η1, η2, η3; η12, η23, η31). (11.69)
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Let us consider the submanifold M(ηk) in which any distributions of n random
variables x have the same marginal distributions of k variables, given by ηk . They
differ only in higher-order correlations.

In a similar way, we divide the θ coordinates into two parts

θ = (θk, θn−k), (11.70)

in which the former part θk consists of the components with at most k indices,
i1, . . . , ip , p ≤ k, and the latter part having indices more than k. Hence, θn−k denote
the last 2n − 1− s coordinates of θ . The indices of θn−k are complements to those
of ηk (but in the θ coordinates),

θn−k = (θi1···in−k+1 , . . . , θ12···n). (11.71)

They show the log-interaction terms of more than k variables. Let E(θn−k) be the
submanifold where all the distributions have the same fixed θn−k but θk are free.

This is an s-dimensional submanifold. In the case of n= 3, the complement of η1
is

θ2 = (θ12, θ23, θ31, θ123), (11.72)

and the complement of η2 is

θ3 = (θ123). (11.73)

Now we show that coordinates ηk are orthogonal to θn−k for any k (see Amari
and Nagaoka 2000; Amari 2001).

Theorem 3 The two families of submanifolds M(ηk) and E(θn−k) are orthogonal
to each other.

All the marginal correlations within k neurons are fixed in M(ηk), so that for
two distributions P,P ′ belonging to the same M(ηk), their difference is solely due
to the higher-order correlations of more than k neurons. The parameters orthogo-
nal to ηk are given by θn−k , so that we may say that θn−k represents higher-order
correlations of neurons, higher than order k, which are orthogonal to the firing
rates and lower-order correlations up to k variables. We may use the mixed coor-
dinates

ξ = (ηk, θn−k) (11.74)

for extracting higher-order correlations.
By using the mixed coordinates, we have the orthogonal decomposition of the

KL-divergence.

Theorem 4 (Amari 2001). The KL-divergence between P and P ′ is decomposed as

KL
[
P ′ : P ]= KL

[
P ′ : P ∗∗]+KL

[
P ∗∗ : P ], (11.75)

KL
[
P : P ′]= KL

[
P : P ∗]+KL

[
P ∗ : P ′], (11.76)
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where the coordinates of P ∗ and P ∗∗ are, respectively, given by the mixed coordi-
nates

ξ∗ = (ηk, θ ′n−k), ξ∗∗ = (η′k, θn−k). (11.77)

Here, KL[P ′ : P ∗∗] represents the divergence responsible for difference only in
higher-order correlations, higher than k, and KL, [P ∗∗ : P ] represents the divergence
purely responsible for the change in the marginal distributions of degrees less than
or equal to k.

11.4 Tractable Models of Probability Distributions

The full model Sn of all the probability distributions includes 2n − 1 parameters.
Even when n= 10, the number is 1,023. Hence, even though the full model is the-
oretically well defined, this is not useful for the purpose of analyzing experimental
data. It is impossible to estimate all the parameters from data. Therefore, we need
much simpler models for analyzing real data. We show here some of them (see also
Nakahara et al. 2006). We present a mixture model in the next section.

11.4.1 Homogeneous Model

A model is said to be homogeneous if the roles of all the neurons are the same. In
other words, the probability distribution p(x1, . . . , xn) of a homogeneous model is
invariant under a permutation of variables x1, . . . , xn.

In this case, the firing rates of all neurons are the same,

ηi = η̄1, i = 1, . . . , n, (11.78)

and the joint firing rates of any two neurons are the same, and so on,

ηij = η̄2, i �= j, i, j = 1, . . . , n, (11.79)

ηijk = η̄3, i, j, k = 1, . . . , n, (11.80)

· · · (11.81)

η12···n = η̄n. (11.82)

Therefore, in order to specify a distribution, we need only n parameters,

η̄= (η̄1, η̄2, . . . , η̄n). (11.83)

This implies that the homogeneous model is a subspace of Sn specified by (11.78)–
(11.82) that are linear in the η-coordinates. Hence, the model is a linear subspace
of Sn in the η-coordinates. In other words, it ism-flat in terms of information geom-
etry. The m- and e-flat structures play a fundamental role in information geometry
(Amari and Nagaoka 2000).
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Correspondingly, a homogeneous model satisfies

θi = θ̄1, (11.84)

θij = θ̄2, (11.85)

· · · (11.86)

θ1···n = θ̄n (11.87)

in the θ -coordinates system, too, so that it is also an exponential family and e-flat.
The distributions is written as

p(x; θ̄)= exp

{
1

n
θ̄1

∑
xi + 2

n(n− 1)
θ̄2

∑
xixj + · · · + θ̄nx1 · · ·xn − ψ̄(θ̄)

}
.

(11.88)

The θ̄ coordinates and η̄-coordinates correspond to each other, and their relation is
given by

η̄i = ∂

∂θ̄i
ψ̄(θ̄). (11.89)

Theoretical analysis of such a model is given in Bohte et al. (2000) and Amari et al.
(2003).

Montani et al. (2009) analyzed experimental data by using the homogeneous
model to demonstrate the effects of higher-order correlations. However, the assump-
tion of homogeneity might not hold in many cases. It is possible to extend the model
to include two types of neurons such that homogeneity holds only within each type.

11.4.2 Boltzmann Machine

A Boltzmann machine is a neural model having a Markovian state transition rule
(Ackley et al. 1985). Its stationary probability distribution is written as

p(x)= exp

{∑
θixi +

∑
i<j

θij xixj −ψ(θ)
}
. (11.90)

This is the same as the Ising spin model used in physics. One can easily see that
the set of distributions is of exponential type and is a submodel of Sn such that all
higher-order correlations, higher than two, vanish,

θijk = · · · = θ1···n = 0. (11.91)

Hence, firing rates are arbitrary, and pairwise correlations exist, but higher-order
correlations of order higher than two do not exist.

When the model includes extra neurons called hidden neurons whose states are
denoted by random variables y1, . . . , ym, even when the entire distribution is of
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Boltzmann type, the marginal distributions are

p(x)=
∑

y1,...,ym

exp
{∑

θixi +
∑
θij xixj +

∑
θ ′i yi +

∑
θ ′ij yiyj

+
∑
θ ′′ij xiyj −ψ

}
. (11.92)

This is no more an exponential family. Moreover, they include higher-order cor-
relations. However, the analysis of such an extended model is not easy in general
(Amari et al. 1992).

11.4.3 Marginal Models

It is difficult to handle a firing pattern x of n neurons as a whole. We often pick up a
small number of neurons at one time and study its characteristics. When we pick up
single neurons, all the correlations are discarded. Hence, the firing rates of neurons
are the only quantities to be studied. This is trivial, and it is the marginal model
M1 of order 1. We have marginal probability distributions pi(xi) of neuron i, and
they are characterized by the firing rates η1 = (η1, . . . , ηn). For each neuron, say
neuron i, we have the firing rate ηi , and the dual quantity in modelM1 = {pi(xi)} is

θ∗i = log
ηi

1− ηi . (11.93)

Note that θ∗i is different from θi of the full model Sn, because θi depends on all
(η1, . . . ,ηn). This is shown from the relation

(gij )
−1 = ∂θi

∂ηj
, (11.94)

which is not a diagonal matrix in general. The explicit form of θi in terms of
η1, . . . ,ηn is complicated.

We then consider a pair of neurons (i, j). There are n(n − 1)/2 pairs of neu-
rons. The firing rates and joint firing rate of neurons i, j are ηi, ηj , and ηij . We
marginalize p(x) to

pij (xi, xj )=
∑
p(x1, . . . , xn), (11.95)

where the summation is taken over x1, . . . , xn except for xi and xj . We then have
the η-coordinates (ηi, ηj , ηij ), and the corresponding θ -coordinates are calculated
from the marginal model M2 consisting of pij (xi, xj ). We denote the second-order
interaction term of this marginal distribution by θ∗ij ,

θ∗ij = log
ηij (1− ηi − ηj + ηij )
(ηi − ηij )(ηj − ηij ) . (11.96)

We cannot write θij of Sn in terms of the marginal quantities ηi , ηj , and ηij .
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We further consider triplets of neurons i, j, k and the marginal distributions
pijk(xi, xj , xk). Its η-coordinates are the corresponding part of η3, but the θ -co-
ordinates are different from those of θ . Let θ∗ijk be the third-order interaction term
of the marginal modelM3. We then have new coordinates (θ∗i , θ∗ij , θ∗123) in M3.

In this way, we consider a sequence of marginal models M1,M2, . . . ,Mn. We
have the same sequence of η-coordinates

η= (η1,η2, . . . ,ηn), (11.97)

representing joint firing rates. We also have a sequence

θ∗ = (θ∗1, θ∗2, θ∗3, . . . , θ∗n), (11.98)

where θ∗k are the kth-order interactions of the marginal distributions Mk of k neu-
rons. We should note that θ∗1, . . . , θ∗k−1 are different from the interaction terms of
the marginal model Mk of k neurons. For example, θ∗k−1 are the interactions of the
marginal distributions of k − 1 neurons in Mk−1 and are not in Mk nor in Mn.

We call θ∗ the marginal interaction coordinates. They have the following proper-
ties.

Theorem 5

(1) θ∗k are functions of η1, . . . ,ηk .
(2) θ∗k are orthogonal to (θ∗1, . . . , θ∗k−1).

Proof Since θ∗k are the interactions of the marginal distributions of k neurons, they
can be written as functions of η1, . . . ,ηk . The interactions θ∗k in Mk are orthogonal
to η1, . . . ,ηk−1. Since θ∗1, . . . , θ∗k−1 are functions of η1, . . . ,ηk−1, θ∗k is orthogonal
to them. �

The marginal model of order k is useful when we neglect interactions of orders
higher than k. Even when interactions higher than k exist, their effects are not simply
neglected, but included in θ∗k , because of marginalization. For example, consider the
marginal model M2 consisting of three neurons, S3. The full model is represented
by η= (ηi, ηij , η123) and the interaction coordinates (θi, θij , θ123). Pairwise interac-
tions θ∗2 are different from θ2. Even when θ12 = 0, θ∗12 is not necessarily equal to 0.
This is because the pairwise interaction of neurons exists through the third neuron
x3 and also θ∗12 includes term due to θ123. Hence, one may say that θ∗k includes the
functional connectivity even when there are no direct connections.

The marginal model provides a reasonable framework when we disregard higher-
order interactions but take their effect into account. The marginal model is new, and
its details will appear soon (Shimazaki et al. 2010).
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11.4.4 Higher-Order Correlations Generated from Common
Inputs

We use a simple toy model in order to show how higher-order correlations emerge.
We also study the probability distribution of the ensemble activity in a pool of neu-
rons and show how it is related to higher-order correlations. The model is a pool
of McCulloch–Pitts neurons receiving a common input. Let si be the ith input, and
suppose that neuron j receives it with synaptic weight wji . Then the total weighted
sum of the inputs to neuron j is

uj =
∑
wjisi − h, (11.99)

where we subtracted a common threshold h. The output of neuron j is

xj = 1(uj ), (11.100)

where 1 is the Heaviside function

1(u)=
{

1, u > 0,

0, u≤ 0.
(11.101)

The outputs x1, . . . , xn are correlated because they use common inputs si .
When the connections wij are randomly assigned independently and identically,

because of the central limit theorem, we see that uj are subject to a joint Gaussian
distribution, in which they have the same variance σ 2

i = σ 2 and the same covari-
ance ρ for any pair uj ,uk . There are no higher-order correlations because they are
Gaussian. We normalize the variance of ui equal to 1, and let ρ be the normalized
common covariance. Then we may put

ui =
√
(1− ρ)vi +√ρε− h, (11.102)

where v1, . . . , vn and ε are independent Gaussian random variables subject to
the standard Gaussian distribution N(0,1). Here, ui are indeed subject to a joint
Gaussian distribution with mean −h and variance–covariance matrix, V[ui] = 1,
Cov[ui, uj ] = ρ.

The joint distribution of x1, . . . , xn is rather complicated, because it includes
higher-order correlations in spite that the inputs ui do not include higher-order cor-
relations. The θ -coordinates of the probability distribution p(x, ρ,h) of x are ana-
lyzed in Amari et al. (2003), and shown to include higher-order correlations even in
this simple case. Let us present the central arguments.

We consider the activity of the pool, that is, the ensemble firing rate,

a = 1

n

∑
xi, (11.103)

which shows the ratio of neurons excited in the pool. This is a random variable.
When all xi are independent, due to the law of large numbers, the distribution of
a is concentrated at its mean value ā. In such a case, the activity of the pool is
always the same, although different combinations of neurons fire each time. When
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Fig. 11.5 Distributions p(a)
of activities of a pool for
various p

the distribution p(a) of a is widely spread, or even is bimodal, a large number of
neurons fire in one time, while only a small number of neurons fire in another time.
This type of widely spread distribution is a characteristic of a neuronal ensemble
to have synchronized firing behavior. See Montani et al. (2009) for the study of the
distribution p(a), both theoretically and experimentally.

The distribution of a is calculated, when n is large, by the following theorem
(Amari et al. 2003).

Theorem 6 The distribution of a is given asymptotically by

p(a;ρ,h)= c exp

[
2ρ − 1

2(1− ρ)
{
F−1(a)−

√
ρ

2ρ − 1
h

}2]
, (11.104)

where c is a normalization constant, F is the error function of the form

F(u)= 1√
2π

∫ ∞

(h−ρu)/√1−ρ
exp

{
−x

2

2

}
dx, (11.105)

and F−1 is its inverse function.

From the theorem we see how the shape of p(a;ρ,h) changes as the correlation
ρ increases. In the range of 0< ρ < 1/2, p(a;ρ,h) is unimodal, having a peak at

a = F(
√
ρ

2ρ−1h). When ρ = 1/2, it is a uniform distribution, and when ρ > 1/2, it is
bimodal, having peaks at a = 0 and a = 1 (Fig. 11.5).

11.5 Mixture Model and Its Dynamics

Let u= (u1, . . . , un) be a vector to show firing rates of neurons, that is, ui = ηi . We
call u a firing rate vector. Let us denote by p(x,u) a probability distribution with
firing vector u,

u=E[x] =
∑
x

xp(x,u). (11.106)



11 Information Geometry of Multiple Spike Trains 241

When p(x,u) is independent, we have

p(x,u)=
n∏
i=1

p(xi, ui), (11.107)

where p(1, u)= u and p(0, u)= 1− u.
We begin with a mixture of two independent distributions p(x,u) and p(x,v).

We consider their mixture

p(x;u,v, t)= tp(x,u)+ (1− t)p(x,v), (11.108)

where t is the mixing rate. This model chooses p(x,u) with probability t and
p(x,v) with probability 1 − t each time and then generates x from the chosen
distribution. Even when the component distributions are independent, p(x;u,v, t)
is not.

Let us introduce a new random variable y which takes 1 with probability t and 0
with probability 1− t . We consider a conditional distribution p(x|y) given by

p(x|y = 1)= p(x,u), (11.109)

p(x|y = 0)= p(x,v). (11.110)

Then, the joint distribution of x and y is

p(x, y)= p(x|y)p(y), (11.111)

and the mixture model (11.108) is the marginal distribution of p(x, y),

p(x)=
∑
y

p(x, y). (11.112)

The mixture model is hence considered as a model including a hidden variable y
which affects the probability of x conditionally.

We study the various quantities of the mixture model. The firing rate vector is
simply given by the mixture of the two,

ηi = tui + (1− t)vi . (11.113)

Furthermore, the η-coordinates of the mixture model are simply the mixtures of the
respective components,

ηi1···ik = tη1
i1···ik + (1− t)η2

i1···ik , (11.114)

where η1
i1···ik and η2

i1···ik are the η-coordinates of the component distributions.
The behavior of pairwise covariance cij of xi and xj is interesting, as is shown

in the following theorem. Here, we do not assume that p(x,u) and p(x,v) are
independent distributions.

Theorem 7 The covariances among two neurons in the mixture model are given by

cij = tc1
ij + (1− t)c2

ij + t (1− t)(ui − vi)(uj − vj ), (11.115)

where c1
ij and c2

ij are those of the component distributions p(x,u) and p(x,v).
They are 0 for independent distributions.
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The proof is straightforward. The theorem shows that the covariances are not
mere mixtures of those of the components. The correlations emerge even when the
component distributions are independent. They are positive or negative, depending
on the differences of their firing rates. It is not easy to obtain explicit forms of
the θ -coordinates, but it is sure that the higher-order correlations exist in a mixture
model even when the component distributions are independent.

We give a simple but interesting interpretation of (11.115). Let pA(x) and pB(x)
be two distributions, which are not necessarily independent. The distributions are
assumed to represent stochastic activities of two Hebbian assemblies A and B of
neurons. A Hebbian assembly A is a set of neurons such that, when A is active, the
neurons in A have high firing rates. Its distribution is given by PA(x). Assume that
there are two Hebbian assemblies A and B and that the state of the neuron pool
changes from pA(x) to pB(x) gradually by a dynamical process. We assume that
the intermediate state is the mixture, depending on the transition time t , 0 ≤ t ≤ 1.
The intermediate state at time t is given by the mixture model

p(x, t)= (1− t)pA(x)+ tpB(x). (11.116)

The pairwise covariances of neurons in the initial and last states are denoted by
cAij and cBij , respectively. The firing rate vectors are uA and uB . It is interesting to
see how the covariances change in the process of state transition. From (11.115) we
have

cij (t)= (1− t)cAij + tcBij + t (1− t)
(
uAi − uBi

)(
uAj − uBj

)
. (11.117)

Hence, for two neurons i and j belonging to A and not to B , the firing rates of
both neurons decrease, uAi > u

B
i and uAj > u

B
j by the state transition. Hence, their

covariance increases in the process of state transition more than their mixture. For
neurons i and j belonging to B and not to A, the situation is the opposite. But their
covariance also increases in the process of state transition. However, for neuron i
belonging to A and neuron j belonging to B , uAi −uBi > 0 and uAj −uBj < 0. Hence,
their covariance decreases in the middle of the state transition. This shows that the
covariances of two neurons belonging to the same Hebbian assembly increase in
the intermediate state, while those of two neurons belonging to different assemblies
decrease, even becoming negative.

We generalize the mixture model so that it consists of more than two compo-
nents. Let u1, . . . ,um be m firing vectors, and let p (x,ui ), i = 1, . . . ,m, be the
corresponding independent distributions. We introduce a random variable y which
takes values 1, . . . ,m. Letwi be the probability of y = i. The general mixture model
is defined by

p
(
x,u1, . . . ,um,w

)=∑wip
(
x,ui

)
, (11.118)

where
∑
wi = 1. We define the joint probability distributions of x and y by

p(x, y)=wip
(
x,ui

)
when y = i. (11.119)

Then, p(x,ui ) is regarded as the conditional probability,
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p
(
x,ui

)= p(x|y = i), (11.120)

and the mixture model is the marginal model

p
(
x,u1, . . . ,um,w

)=∑
y

p(x, y). (11.121)

Let r be the expectation of the firing rate vector of a mixture model,

r =E[x] =
∑
wiu

i , (11.122)

and define the vectors

δi = ui − r (11.123)

showing the deviations of ui from the average.
In order to show higher-order interactions, we define the kth-order central mo-

ments of x,

ci1···ik =E
[
(xi1 − ri1) · · · (xik − rik )

]
. (11.124)

The covariance is a special case of k = 2. We then have the following theorem.

Theorem 8 (Amari 2010). The kth-order central moment of a mixture model is

ci1···ik =
∑
wiδii1 · · · δiik . (11.125)

We can use a general mixture model to study the dynamics of Hebbian assemblies
(see Chap. 10). Let us consider the case where a pool of neurons is divided into
m Hebbian assemblies H1, . . . ,Hm, where a neuron may belong to a number of
assemblies. When Hi is active, we assume that its firing probability is p(x,ui ).
Then, the overall probability is their mixture,

p(x,w)=
∑
wip
(
x,ui

)
, (11.126)

where p(x,ui ) may be an independent distribution or a more general one.
If the mixture vector w changes dynamically, depending on the activities of neu-

rons and external stimuli I , we have the control equation

dw

dt
= f (w,x, I ). (11.127)

The mixture model changes in this way dynamically. Such a model is proposed in
Amari (2010).

We finally remark that many existing models for correlated spike generation are
special cases of the mixture model. For example, the additive interaction model and
the eliminating interaction model (Kuhn et al. 2002; Feng and Brown 2000; Kuhn
et al. 2003), and a more general replacement model (Niebur 2007) belong to the
mixture model with m = 2. The Bretta model (Brette 2009) is also a special case
with large m.
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11.6 Temporal Correlations of Spikes in a Single Neuron

A train of spikes of a neuron are not usually temporally independent but have tem-
poral correlations. We study its stochastic nature from the information-geometric
viewpoint. We first give the full model and then various simple models.

11.6.1 Full Model of Train of Spikes and Stationary Model

Let x(1), . . . , x(T ) be random variables representing spikes at time bin t = 1, . . . , T
of a neuron. Let XT = (x(1), . . . , x(T )) be its vector notation, and let p(XT ) be its
probability distribution. We then have the following two types of coordinates: joint
firing coordinates (m-coordinates) are

ηi =E
[
x(i)
]
, (11.128)

ηij =E
[
x(i)x(j)

]
, (11.129)

ηijk =E
[
x(i)x(j)x(k)

]
, (11.130)

· · · (11.131)

and interaction coordinates (e-coordinates) are

θi, θij , θijk, . . . , (11.132)

where θi1···ik are the coefficients of the expansion of the log-probability,

logp
{
XT
}=∑ θix(i)+

∑
θij x(i)x(j)+ · · · + θ1···T x(1) · · ·x(T )−ψ.

(11.133)

This is the full model which includes so many parameters and is too general for
practical use. There are two ways of simplification: One is the stationarity assump-
tion under which the stochastic properties do not change over time. In this case, all
the firing rates are the same,

η1 = η2 = · · ·ηT = η(1); θ1 = θ2 = · · · = θT = θ(1). (11.134)

Further, the pairwise firing rates ηij depend only on the difference of two time bins
i, j ,

ηij = η(2)|j−i|. (11.135)

Higher-order joint firing probabilities also have this type of stationarity.

11.6.2 Markov Chain

When the probability p{x(t)} at time t is determined based on the history of firing
at k past time bins, xk(t)= {x(t − k), . . . , x(t − 1)}, it is a kth-order Markov chain.
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It is given by the conditional probability distribution p(x(t)|xk(t)). We first study
the simplest case of the first-order Markov chain, where the conditional probability
is given by p(x(t)|x(t − 1)) based on Amari (2010). This gives a (2 × 2)-state
transition matrix,

aij = p
(
x(t)= i∣∣x(t − 1)= j), i, j = 0,1, (11.136)

and obviously

2∑
i=1

aij = 1. (11.137)

Hence, the number of free parameters is 2, and the set of all first-order Markov
chains is a two-dimensional manifoldM .

The Markov chain has a stationary distribution p̄(x), p̄i = Prob{x = i}, such that
∑
x′
p
(
x
∣∣x′)p̄(x′)= p̄(x), (11.138)

∑
j

aij p̄j = p̄i . (11.139)

The firing rate η1 of the neuron is given by

η1 =E
[
x(t)
]= Prob

{
x(t)= 1

}= p̄1, (11.140)

which is solved as

p̄1 = a10

a10 + a01
. (11.141)

We next consider the probability of successive spikes,

η11 =E
[
x(t)x(t − 1)

]= Prob
{
x(t)= x(t − 1)= 1

}
. (11.142)

This is given by

η11 = p̄1a11 = a10a11

a10 + a01
. (11.143)

This is responsible for the temporal correlation of spikes. The temporal covariance

c= Cov
[
x(t), x(t − 1)

]
(11.144)

is given by

c= η11 − η2
1 =

a10a01(a11 − a10)

(a10 + a01)2
. (11.145)

The two quantities η1 and η11 play the role of a coordinate system ofM . We now
consider a sequence XT = x(1), . . . , x(T ) of length T . Then, its probability is
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p
(
XT
)= p{x(1)}

T−1∏
t=1

p
(
x(t + 1)

∣∣x(t)) (11.146)

= p{x(1)}
T−1∏
t=1

p{x(t + 1)x(t)}
p(x(t))

. (11.147)

Its logarithm divided by T is asymptotically given by

1

T
logp

(
XT
)= 1

T

∑{
logp

{
x(t + 1)x(t)

}− logp
(
x(t)
)}
, (11.148)

where the small order term of logp{x(1)}/T is neglected.
Now we introduce the random variables

n1 =
T∑
t=1

x(t), (11.149)

n11 =
T−1∑
t=1

x(t)x(t + 1) (11.150)

that represent the number of spikes and the number of successive spikes. Their rates
are, for large T ,

f1 = n1

T
, (11.151)

f11 = n11

T
. (11.152)

We show that the Markovian modelM is an exponential family for large T :

Theorem 9 (Amari 2001). The probability distribution of Markov chain is written
as

p
(
XT ; θ1, θ2

)= exp{θ1f1 + θ2f11 −ψ}, (11.153)

where f1 and f11 are random variables determined from XT , ψ corresponds to the
normalization factor, and θ1, θ2 are given, respectively, by

θ1 = log
a01a10

a2
00

, (11.154)

θ2 = log
a11a00

a10a01
. (11.155)

The transformation between θ - and η-coordinates is

θ1 = log
(η1 − η11)

2

(1− 2η1 + η11)2

1− η1

η1
, (11.156)

θ2 = log
η11(1− 2η1 + η11)

(η1 − η11)2
. (11.157)
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We also have the relation

a11 = η11

η1
, a01 = η1 − η11

η1
, a10 = η1 − η11

1− η1
, a00 = 1− 2η1 + η11

1− η .

(11.158)

Theorem 10 (Amari 2010). The coordinate θ2 is a measure of temporal correlation
orthogonal to the firing rate η1.

We can generalize the above theory to the kth-order Markov chain. Here, we state
the case with k = 2, where the state transition is given by p{x(t)|x(t − 1)x(t − 2)}.
We have the stationary distribution p̄{x(t − 1)x(t − 2)} with which the stationary
distribution of three consecutive variables is given by

p̄
{
x(t)x(t − 1)x(t − 2)

}
= p{x(t)∣∣x(t − 1)x(t − 2)

}
p̄
{
x(t − 1)x(t − 2)

}
. (11.159)

A Markov chain is determined by the stationary distribution

p̄
{
x(t)x(t − 1)x(t − 2)

}
, (11.160)

from which we can recover the stationary distribution p̄{x(t)x(t − 1)} and the tran-
sition probability p{x(t)|x(t − 1)x(t − 2)}.

The manifold of the second-order Markov chain is a four-dimensional exponen-
tial family. Its η-coordinates are

η1 =E
[
x(t)
]
, (11.161)

η11 =E
[
x(t)x(t − 1)

]
, (11.162)

η1·1 =E
[
x(t)x(t − 2)

]
, (11.163)

η111 =E
[
x(t)x(t − 1)x(t − 2)

]
. (11.164)

The first one, η1, is the firing rate, and (η11, η1·1) are joint firing rates of two time
bins, one neighboring and the other separated by one bin, and η111 is the joint firing
rate of three consecutive time bins. By expanding logp(XT ), we have the corre-
sponding θ -coordinates (θ1; θ11, θ1·1, θ111). Here, (θ11, θ1·1, θ111) are orthogonal to
the firing rate η1, and θ111 represents the intrinsic triplewise interaction orthogonal
to the firing rate η1 and pairwise correlations η11 and η1·1.

11.6.3 Estimation of Shape Parameter in Renewal Process

The gamma distribution gives a good approximation to the interspike interval (ISI)
of a real cortical neuron. It is believed that the value κ of the shape parameter is
fixed for a neuron depending on its type, although the firing rate changes over time
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(Shinomoto et al. 2003). It is important to estimate κ robustly from experimen-
tal data of spike trains. Let {T } = {T1, . . . , Tm} be m ISIs observed from a neu-
ron when m + 1 spikes are observed. Then, the likelihood of such data is given
by

p(T ;λ,κ)=
m∏
i=1

f (Ti, λ, κ), (11.165)

where f (T ,λ, κ) is the density of the gamma distribution with fixed unknown pa-
rameters λ and κ . We can calculate the maximum likelihood estimators λ̂, κ̂ that
maximize the likelihood. This is a consistent and Fisher-efficient estimator of the
pair (λ, κ) when m is large.

However, the firing rate λ(t) changes over time in the real situation while κ is
fixed. See Miura et al. (2006) for this problem. The number of the unknown param-
eters is T + 1 in this case, because λ(1), . . . , λ(T ) are additional unknown parame-
ters. Hence, it is difficult to estimate κ . Such a problem is known as a semiparamet-
ric estimation since function λ(t) is unknown. The maximum likelihood estimator
is not necessarily consistent, because this is known as one of the Neymann–Scott
problems.

The method of estimating function (Godambe 1991) was developed for the pur-
pose of obtaining a semiparametric estimator, and information geometry plays a
fundamental role for elucidating the structure of estimating functions (Amari and
Kawanabe 1997). Let us consider a function y(T , κ) of T depending on κ but not
on λ. When it satisfies, for any λ,

E
[
y(T , κ)

]= 0, (11.166)

where expectation is taken with respect to p(T , κ,λ), the function y is said to be an
unbiased estimating function. When such a function exists, we have the estimating
equation

m∑
i=1

y(Ti, κ)= 0. (11.167)

Its solution κ̂ is a consistent estimator of κ , in whatever way λ(t) changes, because
the above sum divided by m,

∑
y(Ti, κ)/m, converges to 0 as m increases when κ

is the true value.
The best unbiased estimating function is the projection of the κ-score function

to the information subspace in the fiber bundle of the manifold of semiparametric
probability distributions (Amari and Kawanabe 1997).

However, we can prove unfortunately that such an estimation function does not
exist in the present case. We modify the situation that λ may change at least after
two consecutive ISIs such as Tt and Tt+1 (Miura et al. 2006). Hence, we divide
the whole time into N subintervals and assume that λ has a fixed value λl for the
lth interval, l = 1, . . . ,N , where each interval includes k + 1 spikes and hence k
observations T (l)1 , . . . , T

(l)
k (k ≥ 2). Then, an unbiased estimating function exists
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for k observations T1, . . . , Tk , where k ≥ 2. It is given by

y(T1, . . . , Tk;κ)=
∑

logTi − k log
(∑

Ti

)
(11.168)

−k{φ(kκ)− φ(κ)}, (11.169)

where

φ(κ)= �
′(κ)
�(κ)

. (11.170)

Hence, the estimating equation is

N∑
l=1

y
(
T
(l)
1 , . . . , T

(l)
k ;κ)= 0. (11.171)

This gives a consistent estimator which is Fisher efficient and is different from
the maximum likelihood estimator, which is not consistent.

A number of measures of irregularity for spike trains have been proposed so far.
The coefficient of variation

cV = σ̂T
T̄
, (11.172)

which is the ratio of the standard deviation σ̂T of {T1, . . . , Tm} divided by the mean
T̄ is one of them and is different from 1 when the process is not Poissonian. In the
case of the gamma distribution, we have

κ = 1

cV 2
. (11.173)

Hence, we have an estimator of κ based on (11.172). However, this is biased and
worse than our estimator, which is optimal. The Fano factor is another one. Shi-
nomoto et al. (2003) proposed

LV = 1

m− 1

m−1∑
i=1

3(Ti − Ti+1)

(Ti + Ti+1)2
, (11.174)

which works well for many experimental data.
Miura et al. (2006) proposed

SI =− 1

m− 1

m−1∑
i=1

1

2
log

(
4TiTi+1

(Ti + Ti+1)2

)
, (11.175)

which is derived from the theory of estimating function (Amari and Kawanabe
1997). Indeed, the consistent estimator κ̂ of the gamma distribution is a function
of SI . The relation between SI and LV was also shown (Miura et al. 2006), and the
difference lies in the arithmetic mean and geometric mean of the inverses of Ti .
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11.6.4 Discrimination of ISI Distributions

Let f1(T ) and f2(T ) be two ISI distributions of renewal processes. There are many
divergence measures between the two distributions, such as the Kullback–Leibler
divergence, Hellinger distance, and the α-divergence (Amari and Nagaoka 2000).
Kang and Amari (2008) used the Chernoff divergence

D[f1, f2] = −max
α

log
∫
f1(T )

αf2(T )
1−α dT . (11.176)

This is related to the α-divergence of two distributions

Dα = α(1− α)
[

1−
∫
f1(T )

αf2(T )
1−α dT

]
(11.177)

and is the KL-divergence as α→ 1. The Chernoff divergence is directly related to
the error probability of discrimination of the two distributions from data including
N observations,

perror ≈ exp
{−ND[f1, f2]

}
. (11.178)

See Cover and Thomas (1991).
Let k∗ be the solution of∫

exp
(
k∗t
)
f1(t)

α
2f (t)

1−α dt = 1. (11.179)

Then, for large observation time T , the asymptotic form is obtained as

Dα ≈ k∗T . (11.180)

This shows that the probability of discrimination error is

perror ≈ exp
(−k∗T ). (11.181)

When f1 and f2 are close to each other, we have the Fisher information for
discrimination, which is also used for evaluating the estimation error. The Fisher
information of various models, such as the gamma distribution, inverse Gaussian
distribution, and leaky integration-and-fire distribution, were studied by Kang and
Amari (2008). It was shown that the gamma distribution has the minimum Fisher
information for estimating the firing rate.

11.7 Conclusions

The present chapter is devoted to an introduction to information-geometrical ap-
proach to stochastic spike trains. We began with the full model of probability distri-
butions of multiple spikes, in order to understand its mathematical structure such as
orthogonality and flatness. We then studied properties of tractable models such as
the homogeneous model, marginal model, and mixture model. We also studied the
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structure of temporal correlations and related tractable models from the mathemati-
cal point of view. Spatio-temporal models remain still to be a subject of research in
future, and we need to study underlying stochastic dynamics of neurons in addition
to stochastic approach.
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Chapter 12
Higher-Order Correlations and Cumulants

Benjamin Staude, Sonja Grün, and Stefan Rotter

Abstract Recent advances in electrophysiological and imaging techniques have
highlighted the need for correlation measures that go beyond simple pairwise analy-
ses. In this chapter, we discuss cumulant correlations as natural and intuitive higher-
order generalizations of the covariance. In particular, we show how cumulant cor-
relations fit to a frequently used additive model of correlation, an idea that mimics
correlations among spike trains that originate from overlapping input pools. Finally,
we compare the cumulant correlations to the interaction parameters of the well-
known exponential family by computing the respective parameters for two different
models. We find that the different frameworks measure entirely different aspects, so
that populations can have higher-order correlations in one framework but none in
the other.

12.1 Introduction

It has long been suggested that fundamental insight into the nature of neuronal com-
putation requires the understanding of the cooperative dynamics of populations of
neurons (Hebb 1949; Gerstein et al. 1989; and Chaps. 5–11 in this book). Indeed,
the increasing experimental evidence for computationally relevant neuronal inter-
actions on various temporal and spatial scales supports the concept of cooperative
computation (see, e.g., Salinas and Sejnowski 2001; Lestienne 2001; Womelsdorf
and Fries 2007; Kohn et al. 2009, and references therein). Direct experimental ev-
idence for coordinated activity on the level of spike trains, however, relies almost
exclusively on the correlations between pairs of nerve cells (Gray and Singer 1989;
Vaadia et al. 1995; Riehle et al. 1997; Bair et al. 2001; Kohn and Smith 2005;
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Fig. 12.1 Origin and signature of higher-order correlations. Connection diagrams (A, D), cross-
and autocorrelation functions (B, E), and raster plots (C, F) of two hypothetical populations of
N = 3 neurons (s1, s2, and s3). Additional to independent background (small black arrows in A
and D), the three neurons of the left panel share one common pool y123 (A), which induces coordi-
nated spikes in all three spike trains (red ticks in C). In the right population, only pairs of neurons
have overlapping input pools (y12, y13, and y23 in D). As a consequence, coordinated spikes occur
only in pairs of spike trains si (t) (colored ticks in F). The relative strength of the common compo-
nents in the two populations is adjusted so that cross- and autocorrelation functions are identical
(B, E; estimated from T = 100 seconds, central peaks of autocorrelations removed)

Fujisawa et al. 2008). Such pairwise correlations, however, do not resolve the coop-
erative dynamics of neuronal populations (Martignon et al. 1995; Bohte et al. 2000;
Kuhn et al. 2003). To illustrate the limitations of pairwise analyses, consider two
hypothetical input scenarios into N = 3 neurons. In the first scenario, schematized
in the left panel of Fig. 12.1, the three neurons s1, s2, and s3 share one common
input pool y123 (Fig. 12.1A), additional to independent inputs (black arrows in
Fig. 12.1A). In such a scenario, spike events in the common pool y123 arrive at
the three neurons synchronously and, assuming sufficiently strong synapses, induce
coincident events in all three output spike trains s1(t), s2(t), and s3(t) (red marks
in Fig. 12.1C). In a different scenario (right panel of Fig. 12.1), the inputs to pairs
of neurons overlap without a common input pool to all three neurons. As a conse-
quence, pairs of spike trains do have coincidences (colored spikes in Fig. 12.1F), but
this input configuration does not directly generate triplet coincidences. Importantly,
the relative strengths of the common components and the independent inputs can be
such that firing rates of individual neurons and pairwise correlations in both scenar-
ios are identical, as illustrated by the identical cross- and autocorrelation functions
(Fig. 12.1B and E). Thus, the apparent differences between these two populations
are not captured by mere pairwise correlations. It is the higher-order correlations
that determine whether coincident spikes of two neurons are also coincident with
the spikes of the third neuron (see also Chap. 11). The population in the left panel
of Fig. 12.1 has positive triplet correlations, while the right population has only
pairwise correlations but no correlations of order three.

This contribution presents a mathematical framework of higher-order cumu-
lant correlations that is compatible with the “common component” interpretation
presented in Fig. 12.1. We begin by reviewing the covariance as a measure of
pairwise correlations and show how it can be interpreted in terms of a common
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component. Section 12.2.2 introduces cumulant-based higher-order correlations as
the generalization of the covariance to more than two processes. The mathemat-
ical description of the common component model for N > 2 neurons and its re-
lationship to higher-order cumulant correlations is presented in Sect. 12.2.3. To
interpret cumulant correlations for spike trains, we introduce a parametric model
of correlated Poisson processes in Sect. 12.2.3 (Holgate 1964; Kawamura 1979;
Karlis and Meligkotsidou 2005; Johnson and Goodman 2007; Ehm et al. 2007;
Staude et al. 2009, 2010), where we also present tractable models with only few pa-
rameters. In Sect. 12.4, we review two recent analysis techniques (Ehm et al. 2007;
Staude et al. 2009, 2010) that exploit the common source model. Importantly, the
cumulant correlations presented here are not identical to the higher-order parame-
ters of the binary exponential family (see Chap. 11 and, e.g., Martignon et al. 1995;
Shlens et al. 2006; Nakahara and Amari 2002; Schneidman et al. 2006; Montani
et al. 2009; Shimazaki et al. 2009). We illustrate their difference by computing the
respective parameters for two representative examples in Sect. 12.5.

12.2 Correlation

The first step in most correlation analysis procedures is discretization, or binning.
Here, the original continuous-time spike trains si(t)=∑j δ(t− t ij )with spike times

{t ij } = {t i1, t i2, . . .} are converted into a sequence of integer counting values Si(l),
indexed by the bin number l. The value of Si at l is the spike count, i.e., the number
of spikes the ith neuron emitted in the lth bin of length h,

Si(l)=
∫ (l+1)h

lh

si(t) dt. (12.1)

In most correlation studies, the bin size h is chosen in the range of a few milliseconds
such that at most one spike falls in each bin and the Si(l) are binary, spike/no spike
variables (see, e.g., Chaps. 10, 11, and 13). In this contribution, we allow also larger
bins, so that Si(l) can have arbitrary integer values. If not stated otherwise, we will
assume stationarity in the sense that the statistical properties of Si(l) do not change
with time. We thus regard subsequent values of Si(l) as i.i.d. random variables and
drop the time argument l in the remainder of this study.

We wish to stress that although the focus of this contribution is on spike train
analysis, the cumulant correlations presented here are well defined for general real-
valued random variables, like, e.g., membrane potentials. The recurrence to spike
trains will be made when introducing correlated Poisson processes in Sect. 12.3.

12.2.1 Pairwise Correlation

A common measure for the dependence between two real-valued variables S1 and
S2 is the covariance

Cov[S1, S2] := E[S1S2] − E[S1]E[S2], (12.2)
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or normalized versions thereof. The standard normalization divides the covariance
by the geometric mean of the individual variances. The resulting Pearson’s correla-
tion coefficient

c12 := Cov[S1, S2]√
Var[S1]Var[S2] (12.3)

is a dimensionless quantity with values between −1 and 1, where c12 = 1 implies
identity (S1 = S2), and c12 =−1 implies negatively correlated variables (see, e.g.,
Chap. 11 for a different normalization).

In terms of spike trains, the standard interpretation assumes that the Si are binary
spike/no spike variables. In this case, the expectation E[Si] equals the probability for
a spike, and thus E[S1]E[S2] is the probability for a spike coincidence, or synchrony,
under the assumption of independent firing. Furthermore, S1(l)S2(l)= 1 if and only
if both spike trains have a spike in the lth bin, and hence E[S1S2] is the actual
probability for a spike coincidence. Thus, the covariance subtracts the probability
of a “chance coincidence” from the actual probability of a coincidence. The result
has been termed the probability for “excess synchrony” (see Chaps. 10 and 17).

An alternative interpretation that does not require binary variables (or even spike
trains) assumes that the dependence between S1 and S2 originates from a common
additive component (e.g., overlapping input pools of neurons, compare Fig. 12.1).
In this framework, S1 and S2 can be expressed with the help of three independent
random variables Y1, Y2, and Y12 as

S1 = Y1 + Y12, (12.4)
S2 = Y2 + Y12.

Given the decomposition of (12.4), the linearity of the covariance implies

Cov[S1, S2] = Cov[Y1 + Y12, Y2 + Y12]
= Cov[Y1, Y2]︸ ︷︷ ︸

=0

+Cov[Y1, Y12]︸ ︷︷ ︸
=0

+Cov[Y12, Y2]︸ ︷︷ ︸
=0

+Cov[Y12, Y12]︸ ︷︷ ︸
=Var[Y12]

=Var[Y12]. (12.5)

Thus, correlation as measured by the covariance captures the strength (the vari-
ance) of the common component Y12. This simple interpretation of correlation has
made the additive construction of (12.4) a very common tool to model and inter-
pret correlated stochastic signals, both in neuroscience (De la Rocha et al. 2007;
Staude et al. 2008; Tetzlaff et al. 2008) and other research areas. In the next sec-
tion, we introduce cumulant correlations κ as natural higher-order generalizations
of the covariance. These higher-order correlations respect in particular the common
component interpretation of correlation, as we will show in Sect. 12.2.3.

12.2.2 Higher-Order Correlations (N > 2)

The straightforward generalization of the covariance as a measure for dependence
among N = 3 variables subtracts the product of the expectation values from the
expectation value of the product (compare Stratonovich 1967)



12 Higher-Order Correlations and Cumulants 257

E[S1S2S3] − E[S1]E[S2]E[S3]. (12.6)

If the Si are binary, this expression computes the probability to observe a coin-
cident spike in all three neurons (first term) and subtracts from it the prediction that
assumes complete independence (second term). Thus, (12.6) vanishes if all three
neurons are independent. However, the dependence structure between three neurons
can be more complicated. If, for instance, S1 and S2 are correlated, but both are
independent of S3, we have

E[S1S2S3] S3 independent= E[S1S2]E[S3]
(S1,S2) correlated�= E[S1]E[S2]E[S3].

In this case, expression (12.6) will not be zero even though the dependence in the
population is only pairwise, without any triplet correlations. To quantify triplet
correlations, we have to subtract from E[S1S2S3] not only the prediction of com-
plete independence, but also the predictions that assume nonzero covariances be-
tween neuron pairs and independence of the third neuron, i.e., all terms of the form
Cov[Si, Sj ]E[Sk] = E[SiSj ]E[Sk] − E[Si]E[Sj ]E[Sk] (i, j, k = 1,2,3). Putting ev-
erything together, we obtain the expression

κ1,1,1[S1, S2, S3] := E[S1S2S3] − E[S1]E[S2]E[S3] −Cov[S1, S2]E[S3]
−Cov[S1, S3]E[S2] −Cov[S2, S3]E[S1]

= E[S1S2S3] + 2E[S1]E[S2]E[S3]
− E[S1S2]E[S3] − E[S1S3]E[S2] − E[S2S3]E[S1], (12.7)

where the second equality results from inserting the definition of the covariance.
The quantity κ1,1,1[S1, S2, S3] is the third connected cumulant. It measures the

dependence in the triplet (S1, S2, S3) that is not already contained in the pairwise
correlations. Cumulants κ arise in various fields of theoretical and applied statis-
tics as variants of the more familiar (raw) moments μk[S] := E[Sk] (Stuart and
Ord 1987; Brillinger 1996; Bell and Sejnowski 1996; Gardiner 2003; Mattner 2004;
Blaschke and Wiskott 2004; Zhou et al. 2006; Di Nardo et al. 2008; and Chap. 1).

While the above “corrective” construction has its intuitive advantages, defining
kth-order correlations by subtracting appropriate corrections from E[X1 · · ·Xk] is
exceedingly complicated for large k. Therefore, the standard construction of higher-
order connected cumulants follows an alternative approach. Recall that the expecta-
tion operator is additive-linear, i.e., E[∑N

i=1 Si] =
∑N
i=1 E[Si]. The variance, how-

ever, is only additive-linear if the individual variables Si are pairwise uncorrelated.
If not, we have the well-known variance–covariance relationship

Var

[
N∑
i=1

Si

]
=

N∑
i=1

Var[Si] +
∑
i �=j

Cov[Si, Sj ].

Thus, alternative to the “corrective” interpretation of (12.2), the covariance can also
be regarded as a measure for the degree to which pairwise dependencies in a pop-
ulation compromise the linearity of the variance of their sum. This is the basis of
the standard definition of higher-order connected cumulants (e.g., Gardiner 2003).
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The formal construction in the multivariate case is quite involved, however, and the
details are therefore postponed to Appendix A. The basic ingredient is the loga-
rithm of the Fourier transform F [fS] of the distribution function, the so-called log-
characteristic function ψS(u) = log E[eiuS] = log

∫
eiusfS(s) ds = log F [fS](u).

The (univariate) cumulants κk[S] are the coefficients of the Taylor-series expansion
of ψS(u),

ψS(u)=
∞∑
k=1

ik
uk

k! κk[S],

provided that the series converges and all coefficients are finite.
The rationale behind this construction are the facts that the distribution of a sum

of independent variables is the convolution of the individual distributions and that
the Fourier transform maps convolutions to products. The log-characteristic function
of the sum of an independent family {Si} therefore fulfills

ψS1+···+SN = log F [fS1+···+SN ]
= log

(
F [fS1 ∗ · · · ∗ fSN ]

)
= log

(
F [fS1 ] · · ·F [fSN ]

)
=ψS1 + · · · +ψSN .

As this equality has to hold in all powers of the Taylor-series expansion, the cumu-
lants of an independent population satisfy

κk[S1 + · · · + SN ] = κk[S1] + · · · + κk[SN ] for k = 1,2, . . . .

If, however, the Si are not independent, then ψS1+···+SN �= ψS1 + · · · + ψSN . As a
consequence, also κk[S1 + · · · + SN ] �= κk[S1] + · · · + κk[SN ], and the connected
cumulants measure the degree to which equality is violated. For k = 3, for instance,
we have

κ3[S1 + · · · + SN ] =
N∑
i=1

κ3[Si] +
∑
i �=j

Cov
[
S2
i , Sj
]

+
∑

i �=j, j �=k, i �=k
κ1,1,1[Si, Sj , Sk].

Thus, κ1,1,1 measures the extent to which triplet correlations influence the linearity
of the third cumulant.

The above paragraphs provide only a very abstract interpretation of cumulant
correlations. For a more concrete intuition, the next section generalizes the common
component interpretation of the covariance (12.5) to higher-order connected cumu-
lants. Before, however, we will fix some notation and discuss the central “interaction
property” of connected cumulants.

Definition 1 Let S = (S1, . . . , SN) be an N -dimensional random variable, e.g.,
the spike counts of N parallel spike trains, let M = {m1, . . . ,mk} be a subset of
{1, . . . ,N} with k = |M| elements, and denote by σ (M) ∈ {0,1}N the binary in-
dicator vector of the set M whose ith component is 1 if i ∈M and 0 otherwise.
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Then we measure kth-order correlations among {Si}i∈M by the connected cumu-
lant κσ (M)[S]. We say that S has correlations of order k if and only if at least one
kth-order connected cumulant of S is nonzero.

As discussed above, cumulants can be expressed in terms of sums of (mixed) mo-
ments of the Si . For instance, κσ ({1})[S] = κ1,0,0,...,0[S] = E[S1] and κσ ({1,2})[S] =
κ1,1,0,...,0[S] = Cov[S1, S2] = E[S1S2] − E[S1]E[S2]. Furthermore, κ2,0,...,0[S] =
κ2[S1] = Var[S1] = E[S2

1 ] − E[S1]2 and κ3,0,...,0[S] = κ3[S1] = E[(S1 − E[S1])3].
Similar expressions relating higher cumulants to moments exist but are increasingly
complicated for higher orders (Stuart and Ord 1987).

The theoretical foundation for cumulants as measures for higher-order corre-
lations is their “interaction property” (see Appendix A, Theorem 2, and Streit-
berg 1990). In the simplest case, where the order of measured correlation equals
the size of the population, i.e., k = N , it states that a population whose distribu-
tion factorizes into independent components does not have N th-order correlations.
Even though this property appears to be a fundamental requirement, not all candi-
date measures for higher-order correlation fulfill it. The Sarmanov–Lancaster pa-
rameters (Lancaster 1958; Lancaster and Adams 1986; Bahadur 1961; Sarmanov
1962) that recently found their way into neuroscience (Johnson and Goodman 2008;
Roudi et al. 2009), for instance, do not fulfill this requirement for orders> 3 (Streit-
berg 1990). Note that the reverse of the interaction property does not hold in general,
i.e., a distribution that does not contain higher-order correlations does not necessar-
ily factorize (e.g., the population in the right panel of Fig. 12.1).

12.2.3 The Additive Common Component Model

Besides the “corrective” and “linearity” interpretations presented in the previous
section, higher-order cumulant correlations also inherit the common component
interpretation from the covariance. The underlying additive model of (12.4) in
the case N > 2 assigns independent “component variables” YM to all subgroups
M ⊂ {1, . . . ,N}. The ith individual variable Si is then defined as the sum of those
YM with i ∈M ,

Si =
∑
M�i

YM (i = 1, . . . ,N). (12.8)

Before we proceed, we wish to stress that the YM are typically not observable
in experimental situations but are targets of statistical analysis. In Fig. 12.1, for
instance, we regarded the yM as inputs to neurons. Estimating higher-order correla-
tions can then be interpreted as the estimation of overlaps in input pools from output
spike counts Si .

Now recall that for N = 2, the common component of S1 and S2 was Y12 (12.4).
For N > 2 and M ⊂ {1, . . . ,N}, the common component of the subgroup {Si}i∈M
is the superposition of all those component variables YB that affect all members of
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the group {Si}i∈M . Given (12.8), these are the YB whose index sets B contain M .
Thus, the total common component of the group {Si}i∈M is the sum

∑
B⊃M YB . The

following theorem states that the connected cumulants of Definition 1 respect this
additive construction (see Sect. 12.7.3 for a proof).

Theorem 1 Let S be an N -dimensional random variable that obeys the represen-
tation of (12.8). Let M ⊂ {1, . . . ,N} be a subset with k = |M| elements. Then the
kth-order correlation of the set {Si}i∈M , i.e. the connected cumulant κσ (M)[S], is
the sum of the kth cumulants of all YB withM ⊂ B ,

κσ (M)[S] =
∑
B⊃M

κk[YB ]. (12.9)

Theorem 1 requires a few remarks. First of all, it shows that connected cumulants
directly estimate the strength of common components in observed signals, like, e.g.,
overlaps in input pools of neurons (however, see Tetzlaff et al. 2008). In particular,
the kth-order correlation of the subgroup {Si}i∈M is the strength of its common
component, as measured by the sum of the cumulants

∑
B⊃M κk[YB ]. Note that

(12.5) is a special case of the above theorem with N = 2 and the identities κ1,1[S] =
Cov[S1, S2] and κ2[Y12] =Var[Y12].

Second, if the higher cumulants of the YB vanish, then also κσ (M)[S] = 0, even
though the variables {Si}i∈M do have common components. This holds, for instance,
if the YB are Gaussian variables, because κk[YB ] = 0 for k > 2 for Gaussian YB .
As a consequence, the additive Gaussian model does not have higher-order corre-
lations. However, the Gaussian distribution is the only distribution with vanishing
cumulants, and any other distribution has κk[YM ] �= 0 for all k > 2.

Third, for pairwise correlations, i.e., |M| = 2, Theorem 1 implies that κσ (M)[S] =∑
M⊂B Var[YB ] ≥ 0, because the variance is nonnegative. The additive model can

thus only model positive pairwise correlations. Note that this is not a limitation of
cumulant correlations, but of the additive model only.

Fourth, a component variable YM generates correlations among all Si with i ∈M .
As a consequence, correlations of order k in the additive model automatically gen-
erate correlations of orders < k (Johnson and Goodman 2007).

Fifth, the construction of (12.8) imposes constraints on the variables Si . As
the Si are sums of the independent random variables YM , the distribution of Si
is the convolution of the distributions of the YM . In order to control the statisti-
cal properties of the Si , we thus have to know how convolutions of distributions
of the YM look like. For practical purposes, one typically assumes that the YM
are either Gaussian (De la Rocha et al. 2007; Shea-Brown et al. 2008; Tetzlaff et
al. 2008) or Poisson (see next section and, e.g., Holgate 1964; Kawamura 1979;
Karlis and Meligkotsidou 2005; Johnson and Goodman 2007; Ehm et al. 2007;
Brette 2009; Staude et al. 2009, 2010), as in this case also the Si are Gaussian
or Poisson, respectively.

Finally, if YB = 0 for all groupsB above a given size |B|> ξ0, Theorem 1 implies
that κσ (M)[S] = 0 for all |M| > ξ0. Thus, the presence of correlations beyond a
given order ξ0 requires the presence of a common component of more than ξ0 of
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the Si . This is precisely the intuition of higher-order correlations which was used in
Fig. 12.1.

We wish to emphasize that although the additive model provides a strong in-
tuition, the alternative interpretations presented in Sect. 12.2.2 render cumulant
correlations meaningful even without assuming an underlying additive model (see
Sect. 12.5).

12.3 Correlated Poisson Processes

In order to interpret cumulant correlations for parallel spike trains si(t), we simply
assume that their counting variables Si can be decomposed according to (12.8).
Then, the component variables YM of Sect. 12.2.3 can be interpreted as the counting
variables of independent point processes yM(t), obtained by discretization with bin
size h. For the individual spike trains si(t), we then have (see Fig. 12.2A)

si(t)=
∑
i∈M

yM(t). (12.10)

Assuming the yM(t) to be Poisson processes with “component rates” νM , the
si(t) are also Poisson processes. For the associated counting variables YM , the
Poisson property implies that cumulants of all orders are identical to the mean of
the distribution (Papoulis and Pillai 2002), i.e., κk[YM ] = νMh for all subgroups
M ⊂ {1, . . . ,N} and orders k ∈N. Hence, Theorem 1 implies that

κσ (M)[S] =
∑
B⊃M

νBh. (12.11)

The left-hand side of (12.11) is a measure for the strength of the correlation
among the counting variables {Si}i∈M . In the “corrective” interpretation with bi-
nary Si , for instance, κσ (M)[S] should be the probability for “excess coincidences”
of the entire group {Si}i∈M . The right-hand side of (12.11), on the other hand,
sums the expected spike counts of all components yB(t) with M ⊂ B . As the
spikes of those components occur with perfect temporal precision in all {si(t)}i∈M ,
(12.11) states that the probability for an excess coincidence in a given group is the
sum of the rates of the perfectly synchronized spikes.

Due to the perfect temporal precision of common spikes, spike trains generated
in the above model have correlations at zero lag, i.e., the cross-correlation function
E[s1(t)s2(t − τ)] has a delta-peak at τ = 0. To model broader and/or nonzero-lag
correlations as in Fig. 12.1B and E, a common remedy is to jitter the spikes of the
common components before superposition. The cross-correlation function of s1 and
s2 is then determined by the details of the jitter. If, for instance, a jitter is added
independently to every spike of yM and for every spike train si , a uniform jitter of
width Jc results in a triangular correlation function of base length 2Jc (Staude et
al. 2008), while a Gaussian jitter of standard deviation σ yields a Gaussian corre-
lation function of width

√
2σ (Brette 2009). For the present study, however, it is

crucial to keep in mind that correlations are described strictly on the basis of the
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Fig. 12.2 Two parameterizations of correlated Poisson processes. In the component parameter-
ization (A), individual spike trains si (t) (gray boxes) are constructed as superposition of inde-
pendent component processes yM(t) (M ⊂ {1,2,3}; compare (12.10)). Correlation is induced
by components yM(t) with |M| ≥ 2. In the marked point process parameterization (B), the car-
rier process m(t) determines the spike-event times tj irrespective of the neuron IDs. The am-
plitudes aj determine the number of neurons, while the marks σ j determine the precise neu-
ron IDs that fire at time tj . Here, correlation is induced by events with amplitudes aj ≥ 2.
To model temporally imprecise correlation, jitters can be added to the common spikes, i.e., the
events of yM(t) with |M| ≥ 2 (A) or the events of m(t) with aj ≥ 2 (B) (Staude et al. 2008;
Brette 2009). Note that the different parameterizations generate identical raster displays in A and B

counting variables Si , not via cross-correlation functions between the spike trains
si(t) in continuous time. Given a large enough bin size h, most potentially impre-
cise coincidences among s1 and s2 fall into the same bin of the counting variables
S1 and S2. As a consequence, the effect of jittering on the correlation measures, i.e.,
the cumulants of the Si , is negligible. We therefore neglect potential imprecision in
the remainder of this contribution.

To study the correlation structure of the additive Poisson model in more detail,
it is instructive to write the population of spike trains s(t)= (s1(t), . . . , sN (t)) as a
marked Poisson process (Fig. 12.2B; Staude et al. 2009, 2010). To this end, we first
collapse the event times {tMi } of all the independent component processes {yM(t)}M
into a single “carrier process” m(t)=∑j δ(t − tj ) by letting {tj } =⋃M{tMi }. Be-
cause the yM are independent Poisson processes, also the carrier process m(t) is a
Poisson process, and it has a “carrier rate” of ν =∑M νM . Second, we keep track
of the neuron IDs that fire at time tj by associating to each “carrier event” an N -
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dimensional binary pattern variable σj ∈ {0,1}N according to the rule σj = σ (M)
for tj = tMi . Then, the population of spike trains s(t) has the simple representation

s(t)=
∑
j

δ(t − tj ) · σj . (12.12)

The independence of the yM implies that the so-called “marks” σj associated to
subsequent carrier spikes tj can be regarded as i.i.d. random variables with com-
mon “mark distribution” Pσ . It should be evident that constructing individual spike
trains si(t) by summing the appropriate components yM (via (12.30)) yields a (sta-
tistically) identical population as generating the population s(t) as a marked Poisson
process (via (12.12)) if the mark distribution fulfills

Pσ (M) := Pr
{
σj = σ (M)

}= νM
ν
. (12.13)

To simplify the correlation structure, let us for now ignore the precise neuron IDs
that fire at time tj and keep track only of the number of neurons aj =∑N

k=1(σj )k
(Fig. 12.2B, above the carrier m(t)). We call the {aj } the amplitudes of the events
{tj } and denote their common amplitude distribution by

fA(ξ)= Pr{aj = ξ} =
∑
|M|=ξ

Pσ (M).

The amplitude distribution fA encodes the orders of correlation that are present
in a population of spike trains, irrespective of the specific neuron IDs that realize
these correlations, and independent of their firing rates (see Fig. 12.3 for examples).
If fA vanishes above a given ξ0 ∈ {1, . . . ,N}, for instance, all components yB with
|B|> ξ0 vanish. With the last remark of Theorem 1, the corresponding population
has correlations of maximal order ξ0. Thus, a model whose amplitude distribution
vanishes for ξ > ξ0 does not have correlations beyond order ξ0.

12.3.1 Firing Rate and Pairwise Correlations

The marked Poisson parameterization with the carrier rate ν and the amplitude dis-
tribution fA is very intuitive in terms of the correlation structure (see Fig. 12.3).
To parameterize neuronal populations, however, it is more customary to prescribe
parameters that are readily accessible in empirical data, such as the firing rates λi
and/or the pairwise correlation coefficients cij (12.3). To relate the latter to the for-
mer parameters, consider the compound signal or “population spike count” (Staude
et al. 2009)

Z :=
N∑
i=1

Si. (12.14)

Using the independence of the component variables YM , the cumulants of the pop-
ulation spike count Z can be expressed in terms of the moments of the amplitude
distribution as (Sect. 12.7.4)
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κk[Z] = νh
N∑
ξ=1

ξk · fA(ξ)= νhE
[
Ak
]
. (12.15)

The population-average firing rate λ is then given by

λ= 1

N

N∑
i=1

E[Si]
h

= E[Z]
Nh

= κ1[Z]
Nh

(12.15)= ν
E[A]
N
. (12.16)

To derive the population-average pairwise correlation coefficient c = 〈cij 〉, we as-
sume for simplicity that the population is homogeneous, so that all spike trains have
identical firing rate, all pairwise covariances are identical, all triplet correlations are
identical, and so forth. In this case, we obtain (e.g., Staude et al. 2009)

c= κ2[Z] − κ1[Z]
κ1[Z](N − 1)

=
κ2[Z]
κ1[Z] − 1

N − 1
(12.15)=

E[A2]
E[A] − 1

N − 1
. (12.17)

Note that pairwise correlations c are determined by the moments ratio E[A2]
E[A] of

the amplitude distribution, but do not depend on higher moments of A. As a conse-
quence, keeping this ratio fixed but changing higher moments of A generates pop-
ulations with identical pairwise correlations but different higher-order correlations
(see next section and Fig. 12.3C–F for examples). Note also that c is not affected
by the carrier rate ν, illustrating a separation of correlation structure and intensity in
the marked point process parameterization.

Finally, we wish to point out that the correlated Poisson processes as presented
here impose explicit constraints between correlations of different orders (Johnson
and Goodman 2007; Staude et al. 2009). For instance, allowing only correlations
below a certain order ξ0 imposes an upper bound on the pairwise correlation coeffi-
cient. In fact, if fA(ξ)= 0 for all ξ > ξ0, then

E[A2]
E[A] =

∑ξ0
ξ=1 ξ

2fA(ξ)∑ξ0
ξ=1 ξfA(ξ)

≤
∑ξ0
ξ=1 ξ0ξfA(ξ)∑ξ0
ξ=1 ξfA(ξ)

= ξ0·

With (12.17), we thus have

c ≤ ξ0 − 1

N − 1
, (12.18)

where equality holds for the amplitude distribution that has all its mass concentrated
at ξ0.

12.3.2 Examples

In the marked Poisson parameterization of the previous section, the generation of
a population of spike trains proceeds in two steps. First, we realize the Poissonian
carrier processes m(t) and draw for each of its events tj a corresponding amplitude
aj from the amplitude distribution. In a second step, we assign the spike at tj to
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Fig. 12.3 Examples of amplitude distributions fA and corresponding raster plots with homoge-
neous populations of N = 10 neurons. A. All mass is centered at ξ = 1, and the corresponding
population consists of independent spike trains. B. All mass is centered at ξ = 10, the corre-
sponding population is fully synchronized. In C–F, the parameters that determine fA are set to
generate identical pairwise correlation coefficient c = 0.4 in the populations: (C) MIP-like model
with ε = 0.5, η = 0.55; (D) SIP-like model with ξsyn = 9, η = 0.91; (E) Exponential amplitude
distribution fA(ξ ; τ)= e−τξ /∑N

k=1 e
−τk with τ = 0.36; (F) Uniform amplitude distribution with

additional background, fA(ξ ;η)= ηδ1,ξ + 1−η
N

with η = 0.65. Note the strong differences in the
higher-order structure of C–F despite the identical pairwise correlations

aj individual process, where the precise process IDs have to be determined by a
separate “assignment distribution”. In the simplest case, one could assume uniform
assignment, where the aj neuron IDs that receive the spike at tj are drawn randomly
from {1, . . . ,N}, resulting in a homogeneous population. We here ignore the assign-
ment distribution and focus on the amplitude distribution only. Then, the model has
N parameters in total: the carrier rate ν and the N − 1 parameters of the ampli-
tude distribution (N probabilities minus the normalization condition

∑
fA(ξ)= 1).

A further reduction of parameters is achieved by describing the (N−1)-dimensional
amplitude distribution with fewer parameters. Let us present two examples.

12.3.2.1 SIP-Like Models

In our first example, the amplitude distribution has two isolated peaks: a “back-
ground peak” at ξ = 1 that determines the number of independent spikes and a
“network peak” at ξ = ξsyn that determines the maximal order of correlation in the
population (Fig. 12.3D). Parameterizing the relative number of background and net-
work spikes by η ∈ [0,1], the amplitude distribution can be written as

f SIP
A (ξ)= ηδ1,ξ + (1− η)δξsyn,ξ , (12.19)
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where δi,ξ = 1 if i = ξ and zero otherwise. The parallel spike trains in Fig. 12.1
were generated by this model (C: ξsyn = 3; F: ξsyn = 2). This model can be inter-
preted as a population of independent spike trains, with additional coincident spikes
injected into random subsets of ξsyn processes. The Single Interaction Process (SIP)
presented by Kuhn et al. (2003) is a special case of this model with ξsyn =N .

12.3.2.2 MIP-Like Models

As a slight modification, the network peak at ξsyn can be substituted by a distribution
that allows for some spread around ξsyn. This is achieved, for instance, by letting

fMIP
A (ξ)= ηδ1,ξ + (1− η)BN,ε(ξ), (12.20)

where BN,ε(ξ)=
(
N
ξ

)
εξ (1− ε)1−ξ is the binomial distribution with population size

N and probability ε (Fig. 12.3C). For η = 0, this amplitude distribution is a bino-
mial distribution with parameters N and ε, and thus corresponds to a model where
each event of the carrier process is copied into a spike train with fixed copy prob-
ability ε. Thus, this second model corresponds to the Multiple Interaction Process
(MIP) presented by Kuhn et al. (2003), with additional independent background
added.

Concrete expressions relating physiological parameters (λ and c) to the model
parameters (ν, η, and ξsyn or ε) are obtained by computing the first two moments
of the respective amplitude distributions and inserting into (12.16) and (12.17). The
resulting expressions are summarized in Table 12.1, together with the constraining
relations among the parameters. Note that both model classes have three parameters
and hence allow one to describe different models with identical rates and pairwise
correlations. In SIP, for instance, fixing λ and c leaves ξsyn as a free parameter to
determine the order of correlation that is used to realize the prescribed pairwise
correlations.

It is easy to add more parameters to this model. One could substitute the BN,ε -
part in the second model by Bξsyn,ε , or use other positive, discrete distributions with
finite support (see Fig. 12.3E, F). For such cases, expressions relating model param-
eters to average firing rates and pairwise correlations can become more complicated
but can be solved by straightforward computation or using computer algebra sys-
tems, yielding a plethora of models with fixed firing rates and pairwise correlations
but different higher-order properties.

12.4 Data Analysis

To use the cumulant correlations presented here for data analysis, they have to
be estimated from a given data sample. The corresponding estimators, the so-
called l-statistics, or polykays, have been extensively studied (Stuart and Ord 1987;
Di Nardo et al. 2008). However, the estimation of higher-order cumulant correla-
tions suffers from the same limitations as other higher-order correlation measures.
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Table 12.1 Relationships and constraints between model parameters ν and η and the population
average firing rate λ and pairwise correlation coefficient c for homogeneous populations of N
neurons with either SIP-like amplitude distributions with fixed value of ξsyn (top) or MIP-like
amplitude distributions for fixed value of ε (bottom)

SIP-like amplitude distributions

Prescribed parameters λ, c and N , ξsyn ν, η and N , ξsyn

Retrieved parameters ν = Nλ(ξsyn−c(N−1))
ξsyn

λ= ν(η+ξsyn(1−η))
N

η= ξsyn(ξsyn−1−c(N−1))
(ξsyn−1)(ξsyn−c(N−1)) c= ξsyn(ξsyn−1)(1−η)

(N−1)(η+ξsyn(1−η))

Constraints 0≤ c ≤ ξsyn−1
N−1 ≤ 1 ν > 0, η ∈ [0,1]

MIP-like amplitude distributions

Prescribed parameters λ, c and N , ε ν, η and N , ε

Retrieved parameters ν = λ(Nε(ε−c)+c)
ε2 λ= ν(η+Nε(1−η))

N

η= Nε(ε−c)
Nε(ε−c)+c c= Nε2(1−η)

Nε(1−η)+η

Constraints 0≤ c ≤ ε ≤ 1 ν > 0, η ∈ [0,1]

Namely, the number of parameters grows exponentially with the size of the neu-
ronal population. As a consequence, exorbitant sample sizes are required for the
reliable estimation of correlations of high orders (Martignon et al. 1995). In this
section, we outline two recent approaches that avoid the need for such large sample
sizes. Both approaches assume the additive Poisson model presented in the pre-
vious section to underlie the data, and base their inference on the superimposed
activity of the discretely sampled spike trains, i.e., the population spike count Z
(12.14).

12.4.1 CuBIC

Rather than directly estimating particular correlation parameters, the cumulant
based inference of higher-order correlations (CuBIC) presented by Staude et al.
(2009) aims at a lower bound ξ̂ for the maximal order of correlation in a given data
set. This lower bound is inferred by exploiting constraining relations between corre-
lations of different orders within the framework of correlated Poisson processes. For
instance, as shown in (12.18), if the order of correlation is at most ξ0, the correlation
coefficient in a homogeneous population cannot exceed the value ξ0−1

N−1 . Reversing

this statement, a homogeneous data set with correlation coefficient c > ξ0−1
N−1 must
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have correlations of order > ξ0. CuBIC exploits this observation and generalizes it
in two ways. First, it estimates summed correlations in a population by the sample
cumulants of the population spike count Z, thereby superseding the homogeneity
constraint. And second, it allows one to infer the presence of higher-order correla-
tions not only from measured pairwise correlations, but also from measured corre-
lations of higher order. In total, CuBIC is a collection of statistical hypothesis tests
H
m,ξ
0 , indexed by the estimated order of correlation m and the maximal order of

correlation allowed in the null hypothesis, ξ . The rejection of Hm,ξ0 implies that the
combination of the first mth-order correlations in the data requires correlations of
at least order ξ + 1. Subsequent tests with different values for m and ξ finally yield
the lower bound ξ̂ for the order of correlation in a given data set.

The power of CuBIC is that the lower bound ξ̂ can exceed the estimated order
of correlation m. For instance, in artificial data sets of N = 100 parallel spike trains
with correlations up to order 30, simulated for T = 100 seconds, the lower bound
obtained by CuBIC with m = 3 can be expected in the range of ∼ 25 (Staude et
al. 2009), even if the effect of the higher-order correlations on pairwise correlations
is extremely small (c ∼ 0.01). Furthermore, using a nonstationary version of the
additive Poisson model, time-varying firing rates can be incorporated into the for-
mulation of the null hypothesis, allowing CuBIC to analyze also nonstationary data
(Staude et al. 2010).

12.4.2 De-Poissonization

Instead of only aiming for a lower bound, the empirical de-Poissonization devel-
oped by Ehm et al. (2007) directly estimates the compounded component rates
νk :=∑|M|=k νM = ν · fM(k) from the population spike count Z. The underlying
observation is that the logarithm of the characteristic function γ (u)= E[exp(iuZ)]
can be written as

logγ (u)= h
N∑
k=1

νk
(
eiku − 1

)
. (12.21)

Noting that the right-hand side of (12.21) is essentially a Fourier series with coeffi-
cients νk obtained by Fourier-inversion,

νk = 1

2π

∫ ∞

−∞
h−1 logγ (u)e−iku du. (12.22)

The study of Ehm et al. (2007) is concerned with asymptotic properties of the
estimators ν̂k that are defined by replacing the true characteristic function in (12.22)
by their estimate, the so-called empirical characteristic function

γ̂ (u)= 1

L

L∑
k=1

eiuZl ,
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where {Z1, . . . ,ZL} is the available data sample. Besides the direct estimation of the
compound rates νk , Ehm et al. (2007) derive asymptotic properties of linear func-
tionals in the ν̂k , i.e., expressions of the form

∑
k ckν̂k . As an application, “tail sums”

ρ̂m =∑∞
k=m ν̂k are discussed as measures of correlation beyond a given order m.

Similar to the hypothesis tests of CuBIC, a rejection of the hypothesis “ρm = 0”
provides evidence for existing correlations of orders >m.

The major difference between these two approaches is that CuBIC exploits only
the first few cumulants of the population spike count, while the empirical de-
Poissonization integrates the entire empirical characteristic function to estimate the
component rates νk (12.22). As a consequence, this latter method can be expected
to have higher test power than CuBIC, but also to be less robust against empiri-
cal variations. For instance, while the analytical characteristic function γ does not
have zeros in the unit disk (when considered as a polynomial in C), its empiri-
cal counterpart γ̂ can have zeros. If this is the case, the complex logarithm of γ̂
can end up in a different branch, which systematically biases the estimators com-
puted via (12.22). Furthermore, the validity of the asymptotics of the variances of
ν̂k depends on expressions related to the average population spike count per bin,
so that large populations, high firing rates, and/or large bin sizes might impede the
reliability of the empirical de-Poissonization. Although both of these problems are
discussed, and remedies for the first issue have been proposed, additional simula-
tions are required to outline the scope of empirical de-Poissonization for particular
applications.

Note that the sensitivity for higher-order correlations of both CuBIC and de-
Poissonization is bought at the price of neglecting the neuron IDs that realize this
correlation. This issue has to be addressed in additional steps.

12.5 Cumulants vs. Exponential Interactions

In this contribution, we presented connected cumulants as intuitive measures of
higher-order correlations in populations of spike trains. In the neuroscience lit-
erature, however, attempts to elucidate the role of higher-order correlations rely
almost exclusively on the higher-order parameters of the exponential, log-linear
family (Martignon et al. 1995, 2000; Shlens et al. 2006; Schneidman et al. 2006;
Montani et al. 2009; Shimazaki et al. 2009 and Chap. 11). In this latter framework,
the bin size h is chosen such that the Si are binary, in which case the probability to
observe the pattern S= (S1, . . . , SN) is given as

PS = exp

[
N∑
i=1

θiSi +
∑
i<j

θij SiSj +
∑
i<j<k

θijkSiSjSk + · · ·

+ θNS1 · · ·SN −ψ
]
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=
N∏
i=1

exp[θiSi] ×
∏
i<j

exp[θij SiSj ] ×
∏
i<j<k

exp[θijkSiSjSk] × . . .

× exp[θNS1 · · ·SN ] × 1

expψ
, (12.23)

where ψ is a normalization factor, and the {θM}M⊂{1,...,N} are the “interaction pa-
rameters”. To interpret the parameters θM , suppose that θM = 0 for all |M| > 1.
In this case, PS is the product of the exp[θiSi]s and does not explicitly depend on
products of the Si . Hence, the population is independent. If, however, θM ′ �= 0 for
some |M ′| > 1, the probabilities for patterns where Si = 1 for i ∈M ′ are altered
with respect to the independent case. In this sense, the parameter θM ′ determines
the interactions of the neurons with i ∈M ′ (see Chap. 11 for more details).

Importantly, connected cumulants and the exponential interactions do not mea-
sure the same kind of dependence. While higher-order cumulant correlations in-
dicate additive common components as described in Sect. 12.2.3, the exponential
parameters directly change the probabilities of certain patterns multiplicatively. Ab-
stractly, the former parameters therefore measure additive interactions, while the lat-
ter capture multiplicative interactions. Although mathematical differences between
these concepts of dependence are being investigated (Darroch and Speed 1983;
Streitberg 1990, 1999; Ip et al. 2004), little is known about their respective advan-
tages and disadvantages for the analysis of parallel spike trains.

To explore potential differences between the two frameworks, we computed the
respective correlation parameters from two different multivariate pattern distribu-
tions, PMaxEnt

S and P SIP
S (Fig. 12.4). Both distributions model homogeneous popu-

lations with binary spike counts of N = 7 spike trains. Furthermore, the populations
are identical with respect to their single-process properties (Bernoulli processes with
spike probability p = Pr{Si = 1} = 0.001) and pairwise correlations (correlation co-
efficient c = 0.01). The only difference between the models lies in the way higher-
order correlations are arranged. Specifically, the difference lies in the framework in
which higher-order correlations are set to zero.

In the first model (blue lines in Fig. 12.4), we maximized the entropy H =
−∑M PS(σ (M)) logPS(σ (M)) of the pattern distribution PS with the given spike
probability and pairwise correlations (Jaynes 1957b, 1957a; Bohte et al. 2000;
Shlens et al. 2006; Schneidman et al. 2006; Montani et al. 2009). The resulting
model PMaxEnt

S is known to have no higher-order interactions in the exponential
framework, i.e., θM = 0 for all |M|> 2.

The second model (red lines in Fig. 12.4) is a discretized SIP-like model with
ξsyn = 2 (see Sect. 12.3.2.1), firing rate λ= 1 Hz, and a bin size of h= 1 ms. Note
that the resulting pattern distribution P SIP

S does not denote the spike trains si(t) in
continuous time, but really the population of discretized spike counts Si . To achieve
a pairwise correlation coefficient of c = 0.01, the model parameters ν and η were
fixed according to Table 12.1. As the amplitude distribution vanishes for ξ > 2 in
this model, it has no higher-order cumulant-correlations (see the paragraph before
Sect. 12.3.1). Because the Si are the discretized spike counts of Poisson processes,
P SIP

S assigns nonzero probabilities also to patterns with Si > 1. However, for λh=
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Fig. 12.4 Cumulant correlations vs. exponential interactions. Shown are the distribution of the
population spike counts Z =∑N

=1 Si (A; note the logarithmic y-scale), cumulant correlations
κσ (M)[S] (B), and the interaction parameters θM of the exponential family (C) of two homoge-
neous populations of N = 7 neurons (as the populations are homogeneous, we show only one
parameter for every order k = |M|). Both populations have identical single process properties (bi-
nary Bernoulli variables with firing probability p = 0.001) and pairwise correlations (cij = 0.01).
However, while PMaxEnt

S (blue lines) determines the higher-order correlations by maximizing the
entropy under the given constraints and thus has θM = 0 for |M| > 2, P SIP

S (red lines) is a dis-
cretized additive Poisson model (firing rate λ = 1 Hz and bin size of h = 1 ms) with amplitude
distribution fA(ξ) = 0 for ξ > 2 and thus has κσ (M)[S] = 0 for |M| > 2. The dashed line shows
the results for a population of independent Bernoulli processes with the same spike probability.
Note the dramatic differences in higher-order correlations between the two populations

0.001, the probability for Si > 1 on the order of 10−7. We therefore neglect this
effect and regard P SIP

S as the distribution of binary patterns S ∈ {0,1}N .
To avoid estimation bias, we computed the exponential parameters and the cu-

mulant correlations for both models directly from the available multivariate distri-
butions PMaxEnt

S and P SIP
S . The details of the respective computations are given in

Appendix B.
As predicted by the parameterization, both models have identical cumulant cor-

relations for orders k = |M| = 1 and k = 2 (Fig. 12.4B). For orders k > 2, however,
the exponential parameters and cumulant correlations differ strongly between the
two models.

In P SIP
S , cumulant correlations of orders k > 2 are zero by construction, and the

computation of κσ (M)[S] for |M| > 2 supports this with high precision (red line
in Fig. 12.4B; deviations from 0 are due to numerical issues, as is illustrated by
the fact that also independent Bernoulli processes have nonzero cumulant correla-
tions to accuracy of 10−10, see dashed lines). In contrast, the lack of exponential
interactions in PMaxEnt

S produces positive higher cumulant correlations of all orders
k = 1, . . . ,7 (blue line in Fig. 12.4B). An intuitive explanation might be that the
distribution with the highest entropy is the uniform distribution. Thus, conceptu-
ally, maximizing the entropy under constraints pushes the distribution as close to
the uniform distribution as possible. As a consequence, PMaxEnt

S has a much higher
probability for patterns with large spike counts than P SIP

S (Fig. 12.4A; see also Bo-
hte et al. 2000). Interpreting the patterns with large spike count in the framework
of the additive Poisson model assigns such “network events” (Schneidman et al.
2006) to injected coincidences into many neurons, i.e., nonzero-component process
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yM(t) with |M| � 2. This, in turn, implies positive higher cumulant correlations
(Fig. 12.4C).

The lack of cumulant correlations in P SIP
S , on the other hand, generates strongly

nonzero exponential parameters of all orders (red lines in Fig. 12.4C). The sign of
these parameters alternates with the order k, generating negative correlations of odd
orders and positive correlations of even orders. An interesting consequence is that
the sign of the highest correlation parameter θN changes with N so that θN < 0 for
odd N , while θN > 0 for even population sizes N .

In summary, the presence of cumulant correlations does not provide evidence for
nonvanishing exponential parameters, and vice versa. Furthermore, the complicated
behavior of the exponential parameters for P SIP

S makes it unlikely that a simple re-
lationship between the two frameworks exists. More work is required to understand
the relationship between θ -parameters, synchronous firing and cumulant correla-
tions (Bohte et al. 2000; Ince et al. 2009a; Montani et al. 2009).

12.6 Conclusions

This chapter presented higher-order cumulant correlations as generalizations of the
count-covariance to more than two spike trains. An “additive common component
model” was presented, whose implementation in terms of correlated Poisson pro-
cesses provides a very intuitive relationship between cumulant correlations and
above-chance coincident firing (“excess synchrony”) in neuronal populations. This
makes cumulants particularly attractive when analyzing parallel spike trains with re-
spect to synchronous activity. Importantly, cumulant correlations differ drastically
from the higher-order parameters of the exponential family, as we discussed in the
last section. While cumulant-correlations might be easier to interpret, the exponen-
tial parameters possess preferable statistical properties, especially with the orthog-
onal decomposition of correlation of different orders (see Chap. 11). We conclude
that the analysis technique used for higher-order correlation measurements should
be carefully chosen with respect to the scientific question in mind.

Appendix A: Cumulants

This appendix provides a mathematically rigorous definition of cumulants and lists
their most important properties. We begin by reviewing characteristic functions and
cumulants of a single random variable (Sect. 12.7.1), before we define the cumulant
correlations as measured by the connected cumulants of vector-valued variables in
Sect. 12.7.2.

12.7.1 Univariate Random Variables

12.7.1.1 Moments

Given the probability density fS of S, the characteristic function of S is defined as
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γS(u) := E
[
exp(iuS)

]=
∫ ∞

−∞
eiusfS(s) ds. (12.24)

Inspection of the last expression of (12.24) reveals that the characteristic function
of S is the Fourier transform F [fS](u) of its density fS . Using the power series

expansion of the exponential function ex =∑∞
k=0

xk

k! and the linearity of the expec-
tation operator, E[aS1 + bS2] = aE[S1] + bE[S2], we obtain a series expansion of
the characteristic function in terms of the raw moments of S

γS(u)=
∫ ∞

−∞

∞∑
k=0

(ius)k

k! fS(s) ds =
∞∑
k=0

ik
uk

k! E
[
Sk
]
. (12.25)

Thus, the raw moments E[Sk] can be regarded as the coefficients in a series-
approximation of the distribution of S in Fourier space. Differentiation of γS(u)
at u= 0, gives back the moments

E
[
Sk
]= 1

ik

∂kγS(u)

∂uk

∣∣∣∣
u=0
.

Unfortunately, some distributions, like the log-normal distribution, have infinite
moments. To avoid notational complications, however, we here assume that all mo-
ments are finite.

12.7.1.2 Cumulants

While moments are the coefficients of the series-expansion of the characteristic
function, cumulants are the coefficients for the log-characteristic function. That is,

ψS(u) := log
(
γS(u)

)=
∞∑
k=1

ik
uk

k! κk[S], (12.26)

and reversely

κk[S] = 1

ik

∂kψS(u)

∂uk

∣∣∣∣
u=0
.

Expressions for the cumulants in terms of the moments are obtained by compar-
ing the coefficients with equal powers of u in (12.25) and (12.26). For k = 1,2,3,
we obtain

κ1[S] = E[S],
κ2[S] = E

[
S2]− E[S]2,

κ3[S] = E
[
S3]− 3E

[
S2]E[S] + 2E[S]3. (12.27)

Furthermore, the second and third cumulants correspond to the corresponding cen-
tral moments, i.e.,



274 B. Staude et al.

κ2[S] = E
[(
S − E[S])2]=Var[S],

κ3[S] = E
[(
S − E[S])3].

For higher k, the expressions become increasingly complex (Stuart and Ord 1987),
but efficient algorithms for their computation are available (Di Nardo et al. 2008).

12.7.2 Multivariate Random Variables and Correlation

Mixed cumulants arise if the random variable under consideration is vector valued,
i.e., S = (S1, . . . , SN). In this case, the log-characteristic function is a function of
the N -dimensional variable u= (u1, . . . , uN) and is defined as

ψS(u) := log E
[
exp(iu · S)]=

∞∑
k=1

ik
∑
|j|=k

u
j1
1 · · ·ujNN
j1! · · · jN ! κj[S], (12.28)

where u · S = ∑N
k=1 ukSk is the standard Euclidean scalar product, and |j| =∑N

k=1 jk is the order of the multiindex j = (j1, . . . , jN ) ∈ {0, . . . ,N}N . As in the
univariate case, the cumulant that corresponds to a specific multiindex j is obtained
from ψS via differentiation

κj[S] = 1

i|j|
∂ |j|ψS(u)

∂u
j1
1 · · · ∂ujNN

∣∣∣∣
u=�0
, (12.29)

where �0= (0, . . . ,0).
Note that cumulants κj[S] are defined for arbitrary multiindices j ∈ {0, . . . ,N}N ,

while the connected cumulant used to define correlations in the main text (Def-
inition 1) refer only to binary multiindices σ (M) ∈ {0,1}N , where the set M ⊂
{1, . . . ,N} determines the IDs of components among which correlation is mea-
sured (compare Gardiner 2003). For instance, κσ ({1,2})[S1, S2] = κ1,1[S1, S2] =
Cov[S1, S2], while κ{1,2}[S1, S2] = Cov[S1, S

2
2 ]. Just like the covariance measures

linear correlation between pairs, higher connected cumulants therefore capture only
linear higher-order correlation.

Let us summarize the general properties of cumulants (Streitberg 1990).

Theorem 2 For allM = (m1, . . . ,mk)⊂ {1, . . . ,N}, the cumulant κσ (M)[S] fulfills

1. Symmetry: κσ (M)[S] = κσ (M)[Sπ ] for all permutations π of {1, . . . ,N} that leave
the setM invariant, where Sπ = (Sπ(1), . . . , Sπ(N)).

2. Multilinearity: κσ (M)[αS1, . . . , SN ] = ακσ (M)[S1, . . . , SN ] for α ∈ R, and
κσ (M)[S1 + S′1, . . . , SN ] = κσ (M)[S1, . . . , SN ] + κσ (M)[S′1, . . . , SN ].

3. Moment property: κσ (M)[S] = κσ (M)[S′] if S and S′ have identical mixed mo-

ments (terms of the form E[Sk1
1 . . . S

kN
N ]) up to order |M|.

4. Normalization: If expressing κσ (M)[S] in terms of mixed moments as in (12.7),
the coefficient in front of E[Sm1 . . . Smk ] is equal to 1.
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5. Interaction property: If the population S can be decomposed into two (or more)
independent subgroups, none of which contains M , then κσ (M)[S] = 0. That is,
assume that here exists B ⊂ {1, . . . ,N} with M ∩ B /∈ {M,∅} such that fS =
fS|BfS|B ′ , where B ′ = {1, . . . ,N} \ B is the complement of B , and fS|B is the
multivariate distribution of the variables Si with i ∈ B . Then κσ (M)[S] = 0.

Properties 1–4 are direct consequences of the definition of the cumulants (12.28),
while the interaction property results from the Fourier-and-convolution argument
of Sect. 12.2.2. Interestingly, Theorem 2 can also be used to define cumulants, as
cumulants are the only dependence measures that fulfill properties 1–5 (Streitberg
1990).

12.7.3 Proof of Theorem 1

Let {YB}B⊂{1,...,N} be a family of independent random variables, and define the Si
by

Si =
∑
B�i
YB. (12.30)

for i = 1, . . . ,N . Then we can write the population S= (S1, . . . , SN) as

S=
∑

B⊂{1,...,N}
YB · σ (B),

where σ (B) is a binary column-vector whose ith component is 1 if i ∈ B and zero
otherwise.

LetM be a subset of {1, . . . ,N}. The independence of the {YB} provides

κσ (M)[S] = κσ (M)

[ ∑
B⊂{1,...,N}

YB · σ (B)
]

{YB } independent=
∑

B⊂{1,...,N}
κσ (M)

[
YB · σ (B)

]
.

Now recall that κσ (M)[S] computes correlations among the variables {Si}i∈M
and, as such, is a sum where each summand is a product of (expectations of) all
Si with i ∈ M . If Si = 0 for some i ∈ M , we therefore have κσ (M)[S] = 0. Let
B ⊂ {1, . . .N}. IfM � B , there is j ∈M with j /∈ B . In this case the j th component
of the vector YB · σ (B) equals zero. Hence κσ (M)[YB · σ (B)] = 0 by the above
argument. If M ⊂ B , we have κσ (M)[YB · σ (B)] = κσ (M)[YB · σ (M)] = κ|M|[YB ],
because κσ (M) ignores all components j with j /∈M , and all nonzero components
of YB · σ (M) are YB . Hence

κσ (M)[S] =
∑
B⊃M

κ|M|[YB ],

which proves Theorem 1.
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12.7.4 Cumulants of the Population Spike Count in the Additive
Poisson Model

LetZ =∑N
i=1 Si be the population spike count of a population of correlated Poisson

processes with carrier rate ν and amplitude distribution fA. In Z, a given component
YM occurs exactly |M| times; hence,

Z =
N∑
i=1

∑
M�i

YM

=
∑

M⊂{1,...,N}
|M|YM.

Using the independence of the components {YM}, the multilinearity of the cumu-
lants, and the identities

∑
|M|=ξ νM = νξ = νfA(ξ), the cumulants of Z can thus be

computed as

κk[Z] =
∑

M⊂{1,...,N}
κk
[|M|YM]

=
∑

M⊂{1,...,N}
|M|kκk[YM ]

=
∑

M⊂{1,...,N}
|M|kνMh

= h
N∑
ξ=1

ξk
∑
|M|=ξ

νM

︸ ︷︷ ︸
=νfA(ξ)

= νh

N∑
ξ=1

ξkfA(ξ)

= νhE
[
Ak
]
.

Appendix B: Computing Correlation Parameters in Practice

To compute the correlation parameters κσ (M)[S] and θM , we first derive the multi-
variate binary pattern distributions

PS(s)= Pr{S1 = s1, . . . , SN = sN }
for the two models of Sect. 12.5, where s= (s1, . . . , sN ) ∈ {0,1}N . For the MaxEnt
model, the multivariate distribution PMaxEnt

S is a direct result of the maximization
of the entropy under the given constraints (spike probability p = 0.001, pairwise
correlation c= 0.01; see Ince et al. 2009b).
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For the SIP model, we use the equations of Table 12.1 with N = 7, ξ = 2,
c= 0.01, λ= 1 Hz, and h= 1 ms to obtain the amplitude distribution fA and carrier
rate ν. To derive the multivariate pattern distribution P SIP

S , we compute the distri-

bution of the population spike count Z =∑N
i=1 Si . In the marked point process

framework, Z is the number of spikes of the carrier process m(t) per bin, with each
carrier spike being multiplied by its amplitude. As the carrier process is Poisson and
amplitudes of subsequent carrier spikes are drawn independently, we have

PZ(n)=
∞∑
k=1

Pr
{
m(t) has k spikes in the bin

}

× Pr{those k spikes are copied into n spike trains}

=
∞∑
k=0

e−νh (νh)
k

k! · fA ∗ · · · ∗ fA︸ ︷︷ ︸
k times

(n). (12.31)

In practice, (12.31) has two issues, especially for the specific case of Sect. 12.5. The
first issue is that a binned SIP model does not produce strictly binary variables Si ,
because the discretization may produce spike counts Si > 1. For a rate of λ= 1 Hz
and bin size of h= 1 ms as investigated in Sect. 12.5, however, the probability for
this to happen is Pr{Si > 1} = 1− Pr{Si ≤ 1} = 1− (e−0.001 + 0.001e−0.001)∼ 5 ·
10−7. We therefore ignore this effect and assume that (12.31) is the true distribution
even if we set all Si > 1 to 1.

The second issue concerns the infinite sum over k, the number of spikes in the
carrier process in (12.31). In practice, an upper bound kmax has to be chosen. For
the parameters of Sect. 12.5 and kmax = 100, the result of (12.31) has a total error
of 1−∑N

n=0PZ(n) ∼ 10−16, illustrating that PZ is accurately approximated with
kmax = 100.

Finally, as the population under consideration is homogeneous, the probability
for the patterns s with given spike count n=∑N

i=1 si can be computed form PZ by
(compare Ince et al. 2009a)

P SIP
S (s)= 1(

N
n

)PZ(n).
With both multivariate pattern distributions available, connected cumulants are

computed by first constructing the multivariate log-characteristic function (12.28)

ψS(u)= log E
[
eis·u
]

= log
∑

s∈{0,1}N
eis·uPS(s).

The kth-order connected cumulant for the subset M = (m1, . . . ,mk) ⊂ {1, . . . ,N}
is then given by (12.29), i.e.,

κσ (M)[S] = 1

ik

∂kψS(u)
∂um1 · · · ∂umk

∣∣∣∣
u=�0
.
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Although this construction is straightforward, computing κσ (M)[S] in practice can
become tedious. The cumulants of the examples of Sect. 12.5 were computed with
the help of Mathematica (Wolfram Research, Inc 2008).

The computation of the θM s from PS(s) is explained in detail in Chap. 11, and
a Python implementation is available (Ince et al. 2009b).
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Chapter 13
Information Theory and Systems Neuroscience

Don H. Johnson, Ilan N. Goodman,
and Christopher J. Rozell

Abstract Information theory reveals the performance limits of communication and
signal processing systems, the brain being an interesting example. However, apply-
ing this powerful theory to neural signals has many pitfalls. The problem areas are
discussed and we describe how to resolve the issues. In addition, we describe mod-
ern information theoretic results pertinent to neuroscience.

13.1 Introduction

Shannon’s classic work (Shannon 1948) on information theory determined the ulti-
mate fidelity limits that communication and signal processing systems can achieve.
Because of obvious similarities, neuroscientists have long thought that the tools of
information theory, so successful in characterizing communication systems, should
enable a deeper understanding of how neural systems process information. Indeed,
in systems neuroscience, many of the same issues Shannon addressed have always
been research issues. How is information encoded? What is the fidelity of informa-
tion represented by neural signals? Despite the similarities between the terminology
used by sensory neuroscientists and communication engineers—information, infor-
mation encoding and decoding, communication channels—the issues and goals of
the two communities are very different. Communication engineers want to design
systems; neuroscientists want to analyze an existing system. A designer wants to
know what he or she has to do to meet a performance specification. Shannon’s clas-
sic theory not only provides a framework for design but also shows how well the
system can perform. However, Shannon’s results are notoriously vague about how
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Fig. 13.1 The classic information theory model ubiquitously applied to communications and con-
trol problems is shown as well as its translation to a neuroscience context

to achieve these limits. To analyze an existing system, his work suggests what quan-
tities could be used to assess effectiveness, but not how they can be used in this
role or how they can be measured. This problem is not a question of finding good
measurement techniques; rather, a much deeper problem arises. The key informa-
tion theoretic quantities—capacity and the rate-distortion function—are solutions of
mathematical optimization problems. His theory is silent on how to judge a given
system’s performance relative to these milestones. Despite this quandary, informa-
tion theory encompasses many issues of interest and can provide insight into neural
processing. Furthermore, post-Shannon developments do provide some tools for an-
alyzing neural systems.

Figure 13.1 shows the fundamental model underlying classic information theory.
An information source produces an information-bearing signal S that, from a neuro-
science perspective, is either the stimulus in sensory systems or an intended motion
in motor systems. To simplify the presentation, we use terminology from sensory
systems, but information theoretic results developed here apply to motor systems as
well. The signal X encodes the stimulus in such a way that preserves the informa-
tion contained in the stimulus. In neuroscience, the encoder represents neural cod-
ing: how the stimulus is represented in the firing pattern of one or several neurons.
For simplicity in the following discussion, X and the (population) instantaneous
rate λ are one and the same. The encoded signal passes through the channel, which
disturbs the signal in such a way that the channel’s input X cannot be precisely
determined from its output Y . In neuroscience, the channel represents a neuron or
a population of neurons, wherein “channel disturbances” arise from the stochastic
behavior of neural responses. Here, Y represents spike train(s), sometimes repre-
sented in neuroscience papers as the response R (Borst and Theunissen 1999). The
decoder, which represents the final processing stage, produces Ŝ, an estimate of the
stimulus. Thus, the standard model of information theory does, in fact, encompass
many common situations of interest to neuroscience. In systems neuroscience, all
elements of the standard information model shown in Fig. 13.1 occur naturally but
are ill characterized to varying degrees.

This chapter has two goals: tutorial and prospective. The fundamental results of
information theory are reviewed, but from a neuroscience, not a digital communica-
tion, perspective. We go on to demonstrate new results that have both practical and
theoretical applications in systems neuroscience.
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13.2 The Encoder

The first stage in the basic model (Fig. 13.1) is the encoder which, in a well-designed
system, presumably represents an effective (and efficient) way of converting the
stimulus into a signal that can be transmitted through the channel. A fundamental
assumption of information theory is that all stimulus signals are stochastic and de-
scribed by their probability distribution pS(s). Any encoder will be limited by the
fundamental complexity of the stimulus under consideration, an effect characterized
in Shannon’s first important result through the notion of entropy.

13.2.1 Entropy

Let S be a discrete-valued stimulus that assumes one ofM values, S ∈ {s1, . . . , sM},
and let P(sm) denote the probability with which each component of the stimulus
occurs. The entropy of the stimulus, H(S), is defined according to

H(S)
Δ=−
∑
m

P (sm) log2P(sm). (13.1)

By using base-two logarithms, we implicitly express entropy in units of bits. En-
tropy must be nonnegative: it equals zero when one stimulus has unit probabil-
ity and achieves its upper bound—log2M—when all stimuli are equally likely.
Thus, entropy generally characterizes stimulus uncertainty: the greater the entropy,
the greater the uncertainty (the more uniform the stimulus probabilities). Note
that discrete-valued stimulus sets usually consist of a predetermined selection of
continuous-valued signals (such as a series of sinusoidal gratings at several distinct
spatial frequencies, orientations and contrasts). Regardless of what comprises the
stimulus set, its entropy depends only on stimulus probabilities and not on stimulus
complexity.

Shannon showed that entropy provides an operational bound on the minimum
length (number of bits) of any binary code needed to accurately represent the stim-
ulus.

Source Coding Theorem The smallest number of bits B required to represent a
discrete-valued stimulus S without incurring decoding errors satisfies

H(S)≤ B <H(S)+ 1. (13.2)

The lower bound in the Source Coding Theorem defines a fundamental limit: if
fewer bits than entropy are used, at least one stimulus having a nonzero probability
cannot be correctly decoded, even if communicated via a noiseless channel. The
upper bound means that no more than one bit beyond entropy need be used to have
a decodable source coding algorithm.

Unfortunately, extending the definition of entropy to the case of continuous-
valued stimuli (a piece of music, for example) proves problematic, so much so that it



286 D.H. Johnson et al.

has a different name and symbol to emphasize its different properties. The so-called
differential entropy is defined for continuous-valued random variables analogously
to the definition of entropy given above:

h(S)
Δ=−
∫
pS(s) log2 pS(s) ds. (13.3)

While the entropy of a discrete-valued random variable is always nonnegative, dif-
ferential entropy can assume any real value, positive or negative. For example, the
differential entropy of a Gaussian random variable (having meanm and variance σ 2)
equals 1

2 log2 2πeσ 2. Depending on whether 2πeσ 2 is greater than or less than one,
the differential entropy can be positive or negative, even zero if the variance pre-
cisely equals 1/2πe. Moreover, when the stimulus is continuous-valued, the Source
Coding Theorem cannot apply: the number of bits required to encode a continuous-
valued quantity without error must be infinite, regardless of the underlying proba-
bility distribution. Consequently, the differential entropy has decidedly lesser im-
portance in information theory than the entropy of a set of stimuli.

13.2.2 Entropy and Neuroscience

At first glance, entropy would thus seem to be a useful quantity in neuroscience,
providing experimenters a simple means to characterize stimulus complexity. How-
ever, “large” entropy does not mean that the component stimuli {sm} are themselves
complicated. Rather a larger entropy means the encoder requires more bits to de-
scribe the stimulus indices. Because the probabilities assigned to the stimulus set
are typically determined by the experimenter, entropy calculations do not quantify
inherent stimulus complexity in a typical laboratory setting. Therefore, these issues
make it difficult to apply entropy directly to characterize stimulus complexity in
most realistic laboratory settings where stimuli have probabilities chosen by the ex-
perimenter.

Whether or not entropy provides a meaningful measure of stimulus content, using
entropy to characterize neural spike trains poses an even more basic dilemma (Mc-
Fadden 1965). Spike times are continuous variables, so the Source Coding Theorem
certainly does not apply to timing codes. But even applying it to rate codes, wherein
the number of spikes is all that matters, is problematic. Consider a Poisson process
(Chap. 1) having a constant rate λ over the interval [0, T ). The probability distribu-
tion of this process can be written two ways, both of which express the fact that in a
rate code, event times do not matter.

• The probability distribution of the number of events that occur,N{0≤t<T }, is given
by

pN{0≤t<T }(n)=
(λT )ne−λT

n! . (13.4)
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The event count is a discrete-valued random variable, and its entropy is nonnega-
tive. Using (13.1) to calculate the entropy yields

H(N{0≤t<T })= λT (1− lnλT )− E [lnN !]
ln 2

.

The expected value E [lnN !] has no closed-form expression but is easily com-
puted.

• The joint probability distribution of the number of events and the event times
equals

pw,N{0≤t<T }(w, n)= λne−λT . (13.5)

Here, w = w1, . . . ,wN{0≤t<T } , 0 ≤ w1 ≤ w2 ≤ · · · ≤ wN{0≤t<T } ≤ T , is the vector
of event times. The fact that the joint distribution does not depend on event times
indicates that they do not matter. Because this joint distribution contains both
discrete- and continuous-valued random variables, we can only describe it using
differential entropy. Evaluating the entropy according to (13.3) yields

h(w,N{0≤t<T })= λT (1− lnλ)

ln 2
,

an expression significantly different from the first.

The underlying reasons for this discrepancy are the differences between differen-
tial entropy and the entropy of discrete-valued variables. Because these two models
describe the same stochastic process but cannot be described by the same entropy
function, the entropy cannot be defined unambiguously for Poisson processes and,
for that matter, any point process. Thus, entropy stands out from other common
manipulations of probability distributions: regardless of which model is used, we
obtain the same results for the expected number of events, the variance, the maxi-
mum likelihood estimate of λ, and the accompanying Cramér–Rao bound.

Measuring entropy from spike train recordings presents a similar problem. The
standard approach to spike train analysis is to chop time into a sequence of abut-
ting bins of duration �t . Assuming the bin duration is small, either zero or one
spike occurs in each bin, which means that the spike train has been converted into
a Bernoulli (binary-valued) discrete-time random process. Under a Poisson model
for the spike train, the probability of a spike in a bin equals λ�t . Since a Bernoulli
random variable is discrete valued, its entropy can be computed according to (13.1).
Moreover, since the event occurrence in each bin is statistically independent under
the Poisson model, the entropy of the spike train can be found by simply adding the
entropies of the individual bins. Accordingly, for small values of λ�t , we obtain

H(N{0≤t<T })≈ λT (1− lnλ)− λT ln�t

ln 2
. (13.6)

This result most closely resembles the differential entropy produced by the second
model, but it is always positive since it is the entropy of a discrete-valued variable.
However, the dangling ln�t term means that the result depends on binwidth and
diverges in the small binwidth limit, resulting in an infinite entropy asymptotically.
Note that this binwidth term cannot be removed by normalizing.
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With three different answers for the entropy of a simple point process, we must
question the utility of using entropy alone to characterize neural responses. The only
valid information-theoretic interpretation of entropy occurs for discrete-valued sig-
nals. Even when the stimulus is encoded via a rate code into spike counts (certainly
a discrete-valued quantity), entropy cannot be uniquely defined. Looking beyond
rate codes, the timing of neural responses can be translated in a discrete framework
by binning, but only by making strong assumptions about the way information is
encoded: assuming a fixed temporal resolution and a fixed internal clock defining
response bin boundaries. We have already seen that even when these assumptions
can be overcome, entropy calculations are suspect.

More fundamentally, when analyzing information flow, no rule governs how the
entropy of a signal changes as it passes through a system: examples show that en-
tropy can increase, decrease, or stay the same.1 Thus, when entropy changes do
occur, they cannot be interpreted to mean that information has been extracted or
inserted.

One viable application of entropy to spike train analysis is testing for statistical
independence of simultaneous recordings. If Y = [Y1, . . . , YN ] represents record-
ings from N neurons, the joint entropy can be no larger than the sum of the compo-
nent entropies, the result that obtains when the recordings are statistically indepen-
dent:

max
pY(y)

H(Y)=
∑
n

H(Yn).

This result holds for differential entropy as well, and, regardless of how the spike
trains are digitized, this property summarizes statistical dependence. Another way
of stating this property is that statistical dependence reduces entropy. This result is
quite powerful: the joint entropy equals the sum of the individual entropies if and
only if the underlying quantities are statistically independent.

13.3 The Channel

Much more interesting to neuroscience is the way information theory characterizes
the channel, especially its ability to convey information. The channel’s input–output
relation is defined by the conditional probability distribution pY |X(y|x). Shannon’s
characterization of a channel begins by defining what is known today as mutual
information.

1Consider a Gaussian process passing through an amplifier. Since the amplifier’s gain affects the
variance, the expression for a Gaussian random variable’s entropy given earlier shows that it can
increase or decrease.
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13.3.1 Mutual Information

The mutual information between two jointly defined random quantitiesX and Y has
similar forms for both discrete- and continuous-valued versions, exemplified here in
integral form:

I (X;Y)=
∫ ∫

pX,Y (x, y) log2
pX,Y (x, y)

pX(x)pY (y)
dx dy. (13.7)

The discrete version can be obtained by replacing the integration by summation
over the values taken by the channel’s input and output. Again, mutual information
has units of bits because of the base-two logarithm. In both discrete and continuous
versions, mutual information is nonnegative. This expression can be simplified by
making explicit the channel’s input–output relationship, which can be rewritten as
the difference of two entropies:

I (X;Y)=
∫ ∫

pY |X(y|x)pX(x) log2
pY |X(y|x)
pY (y)

dx dy = h(Y )− h(Y |X). (13.8)

Here, the so-called conditional entropy H(Y |X) is defined to be

h(Y |X) Δ=−
∫
pX(x)

(∫
pY |X(y|x) log2 pY |X(y|x)dy

)
dx.

Two important properties of mutual information are that I (X;Y)= 0 only when
X and Y are statistically independent and that it achieves its maximal value when
X = Y : I (X;X) = H(X) in the discrete-valued case and I (X;X) = +∞ in the
continuous-valued case. Mutual information completely characterizes the degree of
similarity between the statistical properties of two random variables, making it a far
more powerful measure of statistical dependence than the correlation coefficient.

The difficulties in reconciling entropy between discrete- and continuous-valued
cases do not carry over to mutual information. To illustrate, perhaps the simplest
model for a rate code has a constant rate λ serving as the input to a Poisson pro-
cess generator. To calculate the mutual information, we assume that the event rate
is a random variable having the probability distribution pλ(λ). We can interpret
both mathematical descriptions for the neuron’s input–output relationship ((13.4)
and (13.5)) as being pN{0≤t<T }|λ(n|λ) and pw,N{0≤t<T }|λ(w, n|λ), respectively, with
λ now a random variable. In contrast to entropy, the same but difficult to evaluate
result emerges from using either description:

I (λ;N{0≤t<T })=
∞∑
n=0

∫
(λT )neλT

n! pλ(λ) log2
λne−λT∫

αne−αT pλ(α)dα
dλ.

This result can also be derived from the Bernoulli approximation used to de-
rive (13.6) as the inherent binwidth-related error that plagues entropy estimates does
not carry over to mutual information: the offending binwidth-related term in (13.6)
cancels because mutual information equals the difference of entropies (13.8). When
the rate is allowed to vary with time as a stochastic process, the expression for mu-
tual information is much more complicated (Brémaud 1981).
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More importantly, writing mutual information as the difference of entropies
(13.8) shows that it depends upon both the channel’s input–output relationship and
the probability distribution of the input. The dependence on the input is disguised:
the probability distribution of the output pY (y) equals

∫
pY |X(y|x)pX(x)dx, show-

ing that H(Y) depends on both the channel’s characteristics and the input’s proba-
bility distribution. Loosely speaking, mutual information indicates how much infor-
mation is shared between the input and output. Consequently, mutual information
does not summarize the behavior of the channel. The mutual information between
the stimulus and a measured response depends on neural processing, the stimuli,
and the stimulus probabilities. Especially when the stimulus set is chosen to be
nonnaturalistic stimuli (e.g., gratings) with probabilities determined by the experi-
menter, mutual information does not constitute an objective measure of information
processing that is relevant to the organism’s ecological behavior.

13.3.2 Capacity and Reliable Communication

Shannon sought a fundamental quantity that characterized the channel for any in-
put. One way to eliminate the dependence of mutual information on the input’s
probability distribution is to maximize or minimize mutual information over all in-
put probability distributions. Maximizing in this way yields the channel capacity,
a fundamental quantity that characterizes any channel:

C = max
pX(·)∈C

1

T
I (X;Y). (13.9)

Mutual information usually increases in proportion to the length of the observation
interval T ; hence the division by T , which results in capacity having units of bits/s.
The maximization is usually restricted to probability distributions for the channel
input that has characteristics defined by the constraint class C . For example, in com-
munication systems, the input power might be constrained to be less than some
value. In neuroscience, we might want to constrain the spike rate to lie within some
range.

In his landmark 1948 paper, Shannon showed that the channel capacity captures
everything required to determine when a digital communications channel conveys an
encoded source sequence at a rate of R bits/s can reliably communicate information.

Noisy Channel Coding Theorem If the data rate R produced by a discrete-valued
source and its encoder is less than capacity, there exists a channel coding scheme so
that all errors incurred in the transmission of information can be corrected. Further-
more, the converse is true: if R >C, no scheme can prevent errors from occurring.

The converse makes capacity a fundamental quantity: capacity uniquely defines a
sharp boundary between reliable (error-free) and unreliable digital communication.
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In conjunction with the Source Coding Theorem, Shannon’s result completely de-
termines (theoretically) when a discrete source can be communicated over a digital
channel without error. Shannon’s proof and the others that followed are not con-
structive: what channel coding scheme results in reliable communication over an
unreliable channel is not known to this day. Systems that come closest to the capac-
ity limit must produce a channel-input probability distribution that approaches the
mutual information maximizing distribution (Shamai and Verdú 1997).

13.3.3 Capacity and Neuroscience

As we shall see, to capture how well any neural code could express a discrete stim-
ulus set, we will need to know the capacities of a single neuron and a population. To
calculate capacity for situations relevant to neuroscience, we need to detail the neu-
ral channel: how are encoded stimuli converted into a discharge pattern? The most
frequently used model is the point process (Johnson 1996), wherein the occurrence
of a spike depends on the stimulus and on when previous events from the same or
other neurons occurred. Considering first a single neuron, the point process’s in-
tensity has the general form of μ(t;Ht ), where Ht denotes the neuron’s discharge
pattern history (what occurred before time t). The intensity summarizes how dis-
charge rate at any moment depends on previous events and on the stimulus. The
simplest point process is the Poisson process, wherein the intensity does not depend
on previous events, which allows us to express the intensity as an instantaneous rate
function: μ(t;Ht )= λ(t).

Despite the fact that most ecological stimuli are naturally thought of as a con-
tinuous distribution, laboratory experiments are often run (out of necessity) using a
discrete approximation with a finite set test of stimuli. While this artificial experi-
mental setting does fall into the digital communications framework described above,
trying to find the capacity for a simple case illustrates the problems induced by us-
ing such a randomly presented discrete-stimulus set. Again consider the constant-
rate Poisson channel model expressed by (13.4), where the rate λ will assume one
of M values. We can maximize mutual information to determine what rates should
be chosen within the range [λmin, λmax] and what the corresponding stimulus prob-
abilities should be for effective coding (achieve capacity). Stein (1967) solved this
problem, finding that equally likely stimuli are not optimal and that the rates should
lie on an approximately quadratic curve. However, this result depends on the num-
ber of stimuli in a very nonlinear manner. Once the number of stimuli exceeds a
threshold number, the number of “extra” stimuli should be assigned zero proba-
bility, which means presenting them anyway lowers mutual information from its
maximal value (Johnson 2002). Thus, just as with entropy considerations, imposing
the discrete-stimulus model on an information theoretic analysis leads to difficul-
ties. The results thus obtained cannot be considered an approximation to the more
interesting and realistic case with a continuous stimulus distribution.
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Kabanov (1978) derived the capacity of the single point process channel, and
Johnson and Goodman (2008) extended his result to the multiple Poisson pro-
cess case. Neither of these derivations restricted the probability distribution of the
channel input to have any particular form (as was done in Stein’s calculation). Ka-
banov’s result imposes minimal and maximal constraints on the instantaneous rates:
C = {μ(t;Ht ): λmin ≤ μ(t;Ht )≤ λmax}. If the maximal rate were not constrained,
the capacity would be infinite. Note that this maximal rate equals the peak rate a
given neuron can produce, even though it may be only capable of doing so tran-
siently. Kabanov found that C(1), the capacity of the single neuron channel, to be
attained by a Poisson process and was related to the constraints according to

C(1) = λmin

ln 2

[
1

e

(
λmax

λmin

) λmax
λmax−λmin − ln

(
λmax

λmin

) λmax
λmax−λmin

]
.

Typically, a neuron’s rate of discharge can dip to zero, making λmin = 0. In this case,
the expression for capacity simplifies greatly and we shall frequently use this result
in subsequent expressions:

C(1) = λmax

e ln 2
. (13.10)

Frey (1991) showed that when the maximal rate varies with time, as it would to
describe a neuron’s response to a suddenly applied stimulus, Kabanov’s capacity
result easily generalizes:

C(1) = 1

e ln 2

1

T

∫ T
0
λmax(t) dt.

The input that achieves capacity is known as a random telegraph wave, a square
wave that randomly switches between the minimal and maximal rates in such a way
that the probability of the input equaling λmax at any random time is 1/e. Kabanov
further showed that no non-Poisson process satisfying the constraints can have a
larger capacity. Our recent work details his result, showing that more realistic point
process models that embrace refractory effects and other dependencies on previous
events have a strictly smaller capacity neatly given by the expression

C(1) = max
μ(t;Ht )∈C

E [μ(t;Ht )]

e ln 2
,

where E [μ(t;Ht )] equals the expected value of intensity with respect to all possi-
ble histories. For a Poisson process that has no history effects, this quantity equals
λmax. For more realistic models of single-neuron discharge characteristics, the aver-
age rate is strictly less than λmax, thereby resulting in a smaller capacity. For exam-
ple, if absolute refractory effects occur (refractory interval �), the capacity under a
maximal rate constraint of λmax is given by

C(1) = 1

1+ λmax�
· λmax

e ln 2
. (13.11)

Capacity results are quite limited for neural populations. In contrast with Ka-
banov’s general single point process result, multineuron results are confined to
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jointly Poisson process descriptions of a restricted type (Johnson and Goodman
2008). Two issues arise in an information theoretic analysis of a population’s capac-
ity. The first is the input innervation: do the neurons comprising the population have
individual innervation, do they share a single input, or do they have a combination
of the two? Secondly, are there lateral connections among the population’s mem-
bers? Interestingly, when no lateral connections exist, input innervation (at least for
the two extremes) does not affect the capacity result. For a population of N neu-
rons, each of which is modeled as a Poisson process having a maximal firing rate
of λmax, the population capacity C(N) simply equals NC(1). Thus, the capacity is
simply proportional to the population size, which makes a population far more ca-
pable of encoding a stimulus to a high degree of fidelity than a single neuron. When
lateral connections amongst population members do exist, capacity depends on the
degree of connection-induced correlation and on the input innervation. If a common
input serves the population, increased coupling between neurons results in a capac-
ity smaller than NC(1). If each neuron has its own input, a different result emerges:
capacity increases with increased coupling, attaining values that can double it from
the uncoupled baseline.

This result puts on a sound theoretical basis the empirical finding that populations
can express information better than can a population of independently functioning
neurons (Latham and Nirenberg 2005; Brenner et al. 2000; Schneidman et al. 2003;
Reich et al. 2001): from an information theoretic perspective, the whole can be
greater than the sum of its parts. “Synergy” means that C(N) > NC(1); “re-
dundancy” means that C(N) < NC(1). For the Poisson population model, syn-
ergy/redundancy depend on both innervation and lateral connections. Only extremes
of innervation were considered by Johnson and Goodman (2008); whether synergy
can be sustained with partial sharing of inputs was not determined.

But what good befalls knowing the capacity? The capacity achieving distribution
in both the single Poisson process and a Poisson population (equivalent to the neu-
ron’s discharge rate) is the random telegraph wave described above. Theory suggests
that effective communications systems should have channel-input probability distri-
butions mimicking the capacity achieving one (Shamai and Verdú 1997). We know
of no firing rate resembling a square wave ever being reported, which means that
neural systems viewed from an information-theoretic paradigm are operating ineffi-
ciently to some degree. When the input probability distribution does not correspond
to its capacity achieving form, information theory is silent about the resulting fidelity
losses. But, more fundamentally, neurons are not likely constrained to be digital de-
vices with binary codewords and synchronized signalling with a fixed internal clock
to represent a discrete set of stimuli. This makes the relevance of the Noisy Chan-
nel Coding Theorem problematic. Shannon had similar issues with analog com-
munication schemes prevalent in his day, like AM and FM radio. Furthermore, the
digital communication framework discussed above only addresses communicating
information from point to point and does not encompass the information processing
that underlies the fundamental task of neural systems. Is channel capacity relevant
to neuroscience? In response to his own questions about generalizing the commu-
nication paradigm, Shannon developed his all encompassing result: rate-distortion
theory.
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13.4 Entire System Analysis

13.4.1 Rate-Distortion Theory

The Source Coding Theorem and Noisy Channel Coding Theorem together provide
fundamental limits on reliable communication for discrete-valued sources. Rate-
distortion theory embraces all situations—discrete- and continuous-valued sources
and channels—and provides a unifying theory of entire communication systems.
This theory begins by introducing a distortion measure d(S, Ŝ) that expresses how
the fidelity of the communication (or signal processing) system is to be assessed.
As in Fig. 13.1, S represents the stimulus, and Ŝ its “estimate”. Presumably the
distortion increases as the discrepancy increases between the stimulus and its recon-
structed value. Interestingly, Shannon’s framework allows any reasonable distortion
measure (d(S, Ŝ) ≥ 0, equaling zero when Ŝ = S). It can be chosen according to
whatever criteria evaluate what effective communication means in any particular
scenario. A common distortion measure used in communications and signal pro-
cessing is the squared-error measure: d(S, Ŝ)= (Ŝ − S)2. More relevant to sensory
neuroscience would be a perceptual error measure, such as one that reflects We-
ber’s Law. Importantly, the distortion measure could also incorporate some desired
stimulus processing, in which Ŝ is an estimate of some feature of S. Rate-distortion
theory also applies to motor systems, where S represents the intended motion, and
Ŝ the actual motion. In this case, the distortion measure might include a penalty for
too slow a motion as well as path and target errors.

Next, define the average distortionD as the expected value of the distortion mea-
sure with respect to the joint distribution of the stimulus and its estimate:

D
Δ= E
[
d(S, Ŝ)

]=
∫ ∫

d(s, ŝ)pS,Ŝ (s, ŝ) ds dŝ =
∫ ∫

d(s, ŝ)pŜ|S(ŝ|s)pS(s) ds dŝ.
The conditional distribution pŜ|S(ŝ|s) depends on virtually everything in a neural
coding scenario: how the stimulus is encoded, the neuron’s spiking characteris-
tics, and how the decoder works. Shannon proceeded by defining the rate-distortion
function R(D) to be the minimal mutual information between the stimulus and its
estimate over all possible channels, encoders and decoders that yield an average
distortion smaller than D:

R(D) Δ= 1

T
min

pŜ|S(·|·):D≤D
I (S; Ŝ). (13.12)

Note that the minimization is calculated over all possible relationships between a
stimulus and its estimate, not just the one under study. Rate-distortion functions
are notoriously difficult to calculate, with only a few results known. If the stimu-
lus source is a bandlimited Gaussian random process having power P and band-
width W , and the distortion measure is squared error, the rate-distortion function
equals (Cover and Thomas 2006)

R(D)=
{
W log2

P
D
, D ≤ P ,

0, D > P .
(13.13)
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Fig. 13.2 The key quantities in Shannon’s classic information theory—capacity and the rate-dis-
tortion function—are defined in the context of the standard model shown in Fig. 13.1. Capacity (C)
summarizes the channel that presumably introduces disturbances into the communication process.
The rate-distortion function R(D) depends solely on stimulus characteristics. Shannon’s Rate-Dis-
tortion Theorem relates these two quantities, showing that the smallest possible distortion Dmin is
determined by C = R(Dmin)

This result, shown in Fig. 13.2, illustrates the properties all rate-distortion functions
satisfy.

• R(D) is a strictly decreasing and convex function.
• R(D) equals zero at some distortion, equaling zero for any larger values. This

critical value is known as the maximal distortionDmax and corresponds to the de-
coder’s best guess as to what the stimulus might be with no data. For example, in
the Gaussian case, mean-squared distortion is minimized by guessing Ŝ = E [S].
Consequently, no combination of encoder, channel, and decoder should yield a
distortion larger than Dmax.

Shannon’s crowning result, the Rate-Distortion Theorem, unifies all of his results.

Rate-Distortion Theorem The distortion at which the rate-distortion function
equals the channel capacity defines the smallest possible distortion Dmin any en-
coder and decoder can obtain (see Fig. 13.2): R(Dmin)= C.

The rate-distortion function depends only on stimulus characteristics and on the
desired level of distortion. Capacity summarizes the properties of the channel and
determines via the rate-distortion function the smallest possible distortion that any
encoder and decoder can achieve for a given source. Shannon’s proof of this result
was not constructive, providing no guidance on how to find the encoder/decoder pair
that produces the smallest possible distortion. However, the value of Dmin defined
by the source and the channel determines how well a given system can perform,
thereby serving as a benchmark.

When the source is discrete valued, the value of the rate-distortion function is
indeed the data rate, the number of bits transmitted per second that can result in a
specified or greater distortion. Thus, the Source Coding Theorem and the Channel
Coding Theorem are actually special cases of the Rate Distortion Theorem: for dis-
crete sources, the zero-distortion rate equals the entropy of the source and is only
achievable if it does not exceed the capacity of the channel.

However, rate-distortion theory also applies when no digital scheme is involved.
We can interpret R(D) as the virtual data rate in such examples, which would sug-
gest that some equivalent digital scheme exists. Whether this equivalent system can
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be found or not is irrelevant. More importantly, “bits/s” is the fundamental unit of
exchange in any communication or signal processing system, whether it commu-
nicates discrete- or continuous-valued signals. Information-theoretic rate (not to be
confused with spike rate) serves as an intermediary. What we really want to know
is the distortion a given channel imposes. Because the rate-distortion function is al-
ways a decreasing function, increasing capacity always allows the possibility of a
smaller distortion. In our Gaussian stimulus example (13.13), the smallest possible
distortion decreases exponentially with capacity,

Dmin =Dmax2−C/W . (13.14)

Note that this result applies no matter what channel intervenes between the encoder
and decoder. It could be a radio channel, cable television, or a group of neurons.
This generality of information theory makes it fundamental to the study of commu-
nication, signal processing, and control systems, be they natural or man-made.

13.4.2 Rate-Distortion Theory and Neuroscience

To explore how to use rate-distortion theory in a neuroscience application, con-
sider encoding a Gaussian stimulus in the discharge rate of a single neuron and use
mean-squared error as the average distortion measure. We can determine the effec-
tiveness of any single-neuron encoding/decoding scheme for Gaussian stimuli by
simply plugging in the capacity formula: Dmin =Dmax exp{−λmax/eW }. Thus, the
maximal rate needs to be several times the bandwidth to obtain significant distor-
tion reductions from the performance Dmax provided by the intelligent but data-
blind decoder. Even for signals with a modest bandwidth (visual signals having a
bandwidth of about 30 Hz, for example), maximal firing rates would need to be
well over 100 Hz for a single neuron to represent temporal stimulus changes ac-
curately. In the auditory system, the situation is much worse. Auditory-nerve fibers
having a center frequency of 1 kHz have a bandwidth of about 500 Hz. Thus, a sin-
gle neuron would need to be capable of a maximal discharge rate of several thou-
sand spikes/s. In this case, refractory effects would come into effect, and, as (13.11)
shows, higher rates may not suffice: refractory effects limit capacity to be no more
than 1/(�t · e ln 2). We arrive at our first result directly applicable to neuroscience:
only with population coding can measured perceptual distortions be achieved. Us-
ing C(N) = Nλmax/(e ln 2) for a population’s capacity, the best possible distortion
decreases exponentially in the population size: Dmin = Dmax exp{−Nλmax/eW }.
Now, almost without regard to its input innervation pattern or to the stimulus band-
width, a sufficiently large population has the capability to render a stimulus ac-
curately. When synergy occurs, the exponent increases, which means that smaller
distortions can occur with the same size population.
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13.5 Post-Shannon Information Theory

Many developments have occurred in information theory since the publication of
Shannon’s defining results. For example, Gastpar et al. (2003) found that if the dis-
tortion measure d(S, Ŝ) and the capacity constraint class C are well matched to
source and channel characteristics, then the rate-distortion limit can be achieved.
For example, squared-error distortion was shown to be well matched to the addi-
tive Gaussian noise channel commonly used in studies of communication systems.
A distortion measure well matched to the Poisson channel has not been found.

On another front, the importance of the Kullback–Leibler distance to systems
neuroscience has become evident, especially in light of a post-Shannon fundamental
result known as the Data Processing Theorem.

13.5.1 Kullback–Leibler Distance

The Kullback–Leibler distance between two probability distributions is defined by

DX (α1‖α0)=
∫
pX(x;α1) log2

pX(x;α1)

pX(x;α0)
dx. (13.15)

The semicolons in the probability functions denote that α0 and α1 are parameters of
the distribution, not random variables. While mutual information defines how simi-
lar two random variables are, the Kullback–Leibler distance characterizes disparity:
how much one random variable’s probability distribution changes when its param-
eters change from α0 to α1. Only when the probability distributions are unchanged
does this quantity equal zero; in all other cases, the Kullback–Leibler distance is
positive. This distance can be infinite, expressing that the two distributions are max-
imally different. Note that calling this quantity a “distance” is a misnomer: it is not
a symmetric function of the two probability distributions, a technical requirement
for any quantity to be called a distance. Consequently, we do not use “distance” in
the strict sense here.

The Kullback–Leibler distance has emerged as the information-theoretic quan-
tity to assess how two probability distributions differ. Furthermore, it can be related
to how well the parameters can be estimated and how well the parameter change can
be discerned with an optimal detector (Sinanović and Johnson 2007). The bigger the
Kullback–Leibler distance for some parameter change, the smaller the error in es-
timating the parameter, and the easier a parameter change is to detect. We interpret
the parameter α to reflect stimulus parameters, with α0 and α1 denoting two dif-
ferent stimulus conditions. Unfortunately, a relation between the Kullback–Leibler
distance ratio and mutual information has not been discovered and may not exist,
making it difficult to relate Kullback–Leibler analysis to channel coding.
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13.5.2 Data Processing Theorem

Of particular relevance to neuroscience is how stimulus fidelity—the ability to ex-
tract information—changes when a system acts on an information-bearing signal.

Data Processing Theorem The Kullback–Leibler distance between two inputs
X(α0) and X(α1) must exceed that between the corresponding outputs Y(α0) and
Y(α1):

DX (α1‖α0)≥ DY (α1‖α0) or γX,Y (α0,α1)
Δ= DY (α1‖α0)

DX (α1‖α0)
≤ 1.

Successive stages of processing only maintains or, more likely, decreases the
fidelity to which information can be extracted. The closer the ratio γX,Y (α0,α1) is
to one, the more the system has preserved in its output the fidelity of the parameter
encoding inherent in the input. Note that as opposed to classic information theory,
which seeks the ultimate limits of fidelity, the Data Processing Theorem can be
used to assess whether existing systems are optimal or not. The Kullback–Leibler
distance has been used to measure the fidelity of neural coding (Johnson et al. 2001;
Rozell et al. 2004). A system theory based on Kullback–Leibler distance analysis
complements classic information theoretic considerations (Sinanović and Johnson
2007). In particular, for a population innervated with a common input, the ratio
γX,Y (α0,α1) has been shown to increase monotonically with population size N
regardless of what comprises the population (Johnson 2004).

13.6 Measuring Information Theoretic Quantities

How to measure entropy, mutual information and the Kullback–Leibler distance
from recordings has been largely overlooked by the information theory community.
The best algorithms have been developed by neuroscientists seeking to quantify
neural information processing. We do not include capacity or the rate-distortion
function in the list because they result from maximizing/minimizing mutual infor-
mation. Capacity would seem to be possible to estimate since it depends only on
pY |X(y|x), the stimulus-response characteristic of the neural system in question.
To perform the required maximization, this quantity would be needed for all con-
ceivable stimuli, which creates a daunting empirical task. If the stimulus-response
characteristics were available, the Blahut–Arimoto algorithm (Cover and Thomas
2006) could be used to compute capacity. Also, as noted earlier, the capacity can
be calculated analytically from a few simple parameters (e.g., maximum firing rate)
when the responses are well modeled by simple point process encoders.
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13.6.1 Entropy and Mutual Information

Aside from questions pertaining to analytically calculating or interpreting entropy
and mutual information in neuroscience, there are many interesting and difficult
statistical issues that must be considered when trying to estimate these quantities
empirically from limited neural data. The primary difficulty arises because the quan-
tities of interest depend critically on the joint distribution pX,Y (x, y) over very high-
dimensional stimulus and responses spaces with limited observations of pY |X(y|x)
and highly restricted choices of pX(x). A number of methods have been devised
by the neuroscience community to estimate mutual information or entropy (useful
in calculating mutual information via (13.8)), generally customized to try and deal
with the particular strengths and weakness of different experimental scenarios (re-
peated trials vs. many single trials, for example) and types of signals (binned spike
times vs. continuous spike times or nonspike waveforms). Victor (2006) provides a
thorough review of the many different estimation methods.

One of the first mutual information estimation methods used in analyzing neural
data is the “reconstruction method”. In this approach, the best linear predictor of the
stimulus given the spike response is found, and the mutual information is calculated
from the stimulus to the reconstruction (Bialek et al. 1991). Exploiting the Data
Processing Theorem expressed in terms of mutual information (Cover and Thomas
2006), using any system in this calculation will give a lower bound on the true
mutual information. While this technique is not guaranteed to give a tight bound, it
is sometimes possible to derive upper bounds independently based on physiological
constraints that can reduce the uncertainty in estimating the true mutual information.

The most commonly used mutual information estimation method is the “direct
method”. This algorithm bins the response of a single neuron into discrete time
slices to indicate whether a spike in each bin. The method then forms “words”—a se-
quence of bits—from the binary values both over time and across jointly recorded
neurons. The probability of a word occurring is estimated with a simple histogram,
and the quantity of interest is calculated by “plugging in” the estimated distributions
into the desired formulas (Strong et al. 1998). Many of these estimators have signif-
icant bias and variance; several lines of work have attempted to reduce these effects.
Paninski (2003) provides a nice discussion of estimator quality.

Several researchers have taken a different tack by decomposing mutual informa-
tion into quantities that express how much rate, timing, and interneuronal correla-
tions contribute to the overall value (Panzeri et al. 1999; Panzeri and Schultz 2001)
(see also Chap. 14). This approach provides an information-theoretic insight into
various components of a population response.

13.6.2 Kullback–Leibler Distance

The Kullback–Leibler distance and the input–output ratio of distances was de-
veloped expressly for empirical studies. Theoretical results (Johnson et al. 2001;
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Sinanović and Johnson 2007) relate measured distance values to the asymptotic per-
formance of optimal processing systems that use the signal in question as its input.
Many of the statistical techniques developed for measuring entropy and mutual in-
formation apply to the Kullback–Leibler distance as well. In particular, an algorithm
very similar to the direct method described above has been successfully applied to
estimating Kullback–Leibler distances when paired with statistical resampling tech-
niques to reduce bias (Johnson et al. 2001; Rozell et al. 2004).

13.7 Conclusions

Shannon’s information theory is one of the greatest technical achievements of the
twentieth century. In fact, once the power of Shannon’s results became evident,
the title of his work changed from “A mathematical theory of communication” to
“The mathematical theory. . . ”. His theory defines the ultimate fidelity limits that
communication and information processing systems can attain under a wide variety
of situations. A good reference for information theory is the book by Cover and
Thomas (2006).

However, information theory provides few answers when it comes to analyzing
a preexisting system, whose components and constraints are only vaguely known.
For neuroscience applications, even the simple act of applying a stochastic stimulus
presents a major hurdle. Furthermore, the point-process nature of the signals com-
plicates the use of information theoretic viewpoints such as rate-distortion theory
where only a very few situations (Gaussian and Bernoulli statistics) can be char-
acterized analytically. Finally, we have followed in the footsteps of many other
authors in ignoring the existence of feedback. Feedback is a notoriously difficult
concept to handle with the traditional tools of information theory, but it would be
foolish to discount the role of feedback connections when they are so prominent
anatomically even in the most peripheral sensory pathways. Some recent work has
sparked interested on feedback in the information theory community (Massey 1990;
Venkataramanan and Pradhan 2005), however none of it has yet been translated to a
neural setting.

Despite these obstacles, information theory has certainly provided insights into
neural processing that other approaches have not provided. For information theory
to yield significantly more important gains in our understanding of neural process-
ing, the difficulties surrounding empirical studies of information theoretic properties
need to be removed, and the structures it can embrace expanded. In particular, the
grand challenge of finding tractable approaches to calculating rate-distortion func-
tions and understanding the role of feedback in reasonably complex systems needs
to be advanced.
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Chapter 14
Population Coding

Stefano Panzeri, Fernando Montani,
Giuseppe Notaro, Cesare Magri,
and Rasmus S. Peterson

Abstract Population coding is the quantitative study of which algorithms or repre-
sentations are used by the brain to combine together and evaluate the messages car-
ried by different neurons. Here, we review an information-theory-based approach to
population coding. We discuss how to quantify the information carried by a neural
population and how to quantify the contribution of individual members of the pop-
ulation, or the interaction between them, to the overall information encoded by the
considered group of neurons. We present examples of applications of this formalism
to simultaneous recordings of multiple spike trains.

14.1 Introduction

Brains support highly reliable sensory perception: in most conditions, animals need
to be presented a sensory stimulus only once in order to perceive it correctly, and this
perception is highly robust even to the presence of sensory noise. Yet, responses of
individual neurons in the central nervous system of mammals are often highly vari-
able: repeated presentations (“trials”) of the same stimulus elicit each time a dif-
ferent single-neuron response. As a result, single-neuron messages are ambiguous.
Neurophysiologists, in order to describe the responses of single neurons to stim-
uli, often reduce the effect of this variability by averaging responses over repeated
trials. However, the brain itself must resort to a different strategy than trial averag-
ing, because it can process information and take decisions based on single events.
It is widely believed that the brain makes sense of the noisy responses of individual
neurons by evaluating the activity of large neural populations.

Population coding is the quantitative study of which algorithms or representa-
tions are used by the brain to combine together and evaluate the messages carried
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by different neurons. In other words, population coding studies how other neu-
rons within a population resolve the ambiguity of the messages carried within a
single trial by each individual neuron (Quian Quiroga and Panzeri 2009), for ex-
ample, by coordinating their relative firing time to tag particularly salient events
(Singer and Gray 1995; Engel and Singer 2001) or by having each neuron repre-
sent a particular stimulus feature (Quian Quiroga et al. 2005; Reich et al. 2001;
Barlow et al. 1964).

In this chapter, we will consider an “information-based” approach (Quian
Quiroga and Panzeri 2009) to population coding, i.e. an approach based on informa-
tion theory (see Chap. 13). We will discuss how to quantify the information carried
by a neural population and how to quantify the contribution of individual members
of the population, or the interaction between them, to the overall encoding of infor-
mation by the considered group of neurons.

The chapter is structured as follows. First, we establish the basic definitions and
notation. Second, we consider a breakdown of the population information which
permits to quantify the impact of correlations across neurons to population coding.
Third, we discuss a link between information-based and decoding-based population
analysis. Fourth, we consider how to address whether pooling together the responses
of different neurons is a viable population coding mechanism.

14.2 Definitions of the Experimental Quantities

Consider an experiment in which the animal is presented with a stimulus s selected
with probability P(s) from a stimulus set S, and the consequent response of a popu-
lation ofC neurons is recorded and quantified in a certain poststimulus time window.
We assume that the neural population response is quantified as a discrete, multidi-
mensional array r= r1, . . . , rC of dimension C, where rc is the response of neuron
c on a given trial in the response window. For example, the experimenter may be
interested in a spike count code. In this case, rc would be the number of spikes emit-
ted by neuron c during the trial in the response window. Or else, the experimenter
may wish to investigate a spike timing code. In this case, the response window can
be divided into L bins of width �t (the assumed time precision of the code), and
the response rc over the individual neuron is an L-dimensional array containing the
number of spikes fired in each time bin (Strong et al. 1998). We denote by R the set
of possible values taken by the response array.

The reason why it is convenient to quantify the neural response as a discrete vari-
able is that it makes it easier to estimate the probability of different neural responses
to stimuli, which are necessary for information calculation (see below). Discrete re-
sponse representations are very natural for spike train analysis, due to the all-or-none
nature of spikes (for example, the spike count is a discrete variable). If the response
is measured as an analog signal (such as, for example, a Local Field Potential), the
signal can also be naturally discretized into bins, although in principle with analog
signals it is possible to circumvent the discretization in cases when there are suitable
analytical models for the probability distribution (e.g. Gaussian distribution).
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Having measured the responses to the presented stimuli, we can quantify how
well it allows us to discriminate among the different stimuli by using Shannon’s
mutual information (see Chap. 13):

I (S;R)=
∑
s∈S

∑
r∈R

P(s)P (r|s) log2
P(r|s)
P (r)

, (14.1)

where P(r|s) is the probability of observing response r when stimulus s is pre-
sented, P(s) is the probability of presentation of stimulus s, and P(r) is the prob-
ability of observing r in response to any stimulus. For the purpose of illustration,
a simple algorithmic implementation of Eq. (14.1) is reported in Fig. 14.1.

Mutual information quantifies how much of the information capacity provided
by stimulus-evoked differences in neural activity is robust to the presence of trial-
by-trial response variability. Alternatively, it quantifies the reduction of uncertainty
about the stimulus that can be gained from observation of a single trial of the neural
response. We refer to Chap. 13 for a complete introduction to information theory. In
this chapter, we will concentrate on how to adapt information theory to the study of
population codes.

14.3 Quantifying the Role of Correlated Firing in Population
Coding

Simultaneous recordings of the activity of individual neurons placed within local
networks in the central nervous system show that a large fraction of pairs of neu-
rons are correlated. The probability of observing near-simultaneous spikes from two
different neurons is often significantly higher than the product of the probability
of observing the individual spikes from each neuron (Li 1959; Perkel et al. 1967;
Mastronarde 1983). The ubiquitous presence of correlations among the activity
of different neurons has raised the question of what is the impact of correla-
tion upon neural population coding of sensory stimuli (see Averbeck et al. 2006;
Salinas and Sejnowski 2001 for recent reviews). Although the potential role of cor-
relations in neural population codes is still unclear and robustly debated (Shadlen
and Movshon 1999; von der Malsburg 1999), theoretical studies have suggested that
correlations can profoundly affect the information transmitted by neural populations
(Abbott and Dayan 1999; Averbeck et al. 2006). It is therefore of great interest to
quantify, from experimental simultaneous recordings of population of neurons, the
impact of correlations on the information carried by a population of neurons. This
section describes algorithms and quantities that have been designed for this purpose.

14.3.1 Signal vs Noise Correlations

Before we consider the impact of correlations on coding, let us first introduce pre-
cisely what correlations are. Suppose that we record from two somatosensory neu-
rons in the rat cerebral cortex which receive both a common connection from thala-
mic neurons selective for a particular whisker (let us call it the “preferred” whisker),
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Fig. 14.1 A simple Matlab algorithm to compute information between a set of stimuli and the
spike count of a single neuron. The algorithm was written for the purpose of illustration only; it is
aimed to aid readers with limited experience of programming; it was deliberately kept simple and
transparent, and was not optimized

and also share a source of stimulus-independent variation: for example, a contribu-
tion from a neuromodulatory pathway unrelated to the processing of the whisker
stimulation. Suppose that there is also a direct fast excitatory connection between
these two cortical neurons. During periods of whisker stimulations, these two ex-
ample neurons tend fire nearly simultaneously. However, this joint firing has several
causes. One is the common stimulus selectivity: the two neurons tend to fire together
whenever the preferred whisker is stimulated. However, they could fire together also
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because of the direct excitatory interaction between them, or because of the common
source of neuromodulatory noise. Ideally, we would need to be able to separate all of
these types of contribution to correlations, but in practice this is very difficult. How-
ever, it is at least possible to separate the correlations entirely attributable to common
or related stimulus preferences (“signal correlations”) from the correlations which
are not entirely attributable to stimulus preference (“noise correlations”), as follows.
In the context of neural coding, the importance of separating noise from signal is,
as revealed by theoretical studies (see below), that signal and noise correlations
have a radically different impact on the sensory information carried by neural pop-
ulations. In particular, signal correlations always reduce the information, whereas
noise correlations can decrease it, increase it, or leave it unchanged, depending on
certain conditions (Abbott and Dayan 1999; Oram et al. 1998; Panzeri et al. 1999;
Pola et al. 2003; Schneidman et al. 2003).

In the population coding literature, correlations manifested as covariations in the
trial-by-trial fluctuations of correlations at fixed stimulus are traditionally called
“noise correlations” (Gawne and Richmond 1993; Averbeck et al. 2006). Because
these noise covariations are measured at fixed stimulus, they ignore all effects at-
tributable to shared stimulation. Although we will stick with the well-established
“noise” terminology, we point out that the name is potentially misleading: noise
correlations can reflect interesting neural effects. For example, they may reflect the
presence of a direct connection between two neurons. Mathematically speaking, we
say that there are noise correlations if the simultaneous joint response probability
P(r|s) at fixed stimulus is different from the “conditionally independent” response
probability in which responses to a given stimulus are statistically independent:

Pind(r|s)=
C∏
c=1

P(rc|s). (14.2)

The conditional probability Pind(r|s) can be computed by taking the product of the
marginal response probabilities of single neurons, as in (14.2), or alternatively by
the empirical “shuffling” procedure described in the following. One generates a new
set of shuffled responses to stimulus s by randomly permuting, for each neuron, the
order of trials collected in response to the stimulus s considered, and then join-
ing together the shuffled responses into a shuffled population response vector rsh.
This shuffling operation leaves each single-neuron marginal probability P(rc|s) un-
changed, while destroying any within-trial correlation at fixed stimulus between dif-
ferent neurons. The distribution of rsh to given stimulus s approximates Pind(r|s).

A natural definition for the normalized noise correlation strength of population
response r is the following (Pola et al. 2003):

γ (r|s)=
{

P(r|s)
Pind(r|s) − 1 if Pind(r|s) �= 0,

0 if Pind(r|s)= 0.

The noise correlation coefficient γ (r|s) quantifies how much the probability that
neurons emit a response r is higher than that expected in the uncorrelated case, nor-
malized to the probability of response r expected in the uncorrelated case. Positive
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values of this coefficient mean that the individual cell responses happen together
during the same trial more frequently than if there was no cross-cell correlation.
This correlation coefficient goes beyond second-order (pairwise) correlations, and
it takes into account all possible interaction orders between all neurons in the popu-
lation (Pola et al. 2003).

Correlation that is entirely attributable to common or related stimulus prefer-
ences is known as signal correlation (Averbeck et al. 2006; Gawne and Richmond
1993). We also need to introduce a coefficient that quantifies how similar the stim-
ulus modulation of responses of individual cells is. This parameter is important for
describing population coding: if all cells have similar stimulus selectivity, it is likely
that the population code is redundant. To quantify the similarities of individual cell
responses across stimuli, we hence introduce a signal similarity coefficient. In a way
analogous to γ (r|s), the signal similarity coefficient is defined as follows:

ν(r)=
{

Pind(r)∏
c P (rc)

− 1 if
∏
c P (rc) �= 0,

0 if
∏
c P (rc)= 0,

where

Pind(r)=
〈
Pind(r|s)

〉
s
; P(rc)=

〈
P(rc|s)

〉
s
, (14.3)

and for any function of the stimulus f (s), we use the bracket notation to de-
note its probability-weighted average over the stimulus distribution: 〈f (s)〉 ≡∑
s P (s)f (s). The signal similarity coefficient ν(r) is different from zero if sig-

nals coming from individual neurons are either positively correlated (i.e. similar) or
negatively correlated.

14.3.2 The Information Breakdown

Shannon’s mutual information, as expressed in (14.1), quantifies the overall infor-
mation transmitted by the neuronal population activity. However, it tells us little
about the specific contribution of correlations. In addition, it does not tell us di-
rectly whether correlations make the code redundant or synergistic. In the following
we describe a formalism that aims at addressing this limitation of mutual infor-
mation. This formalism is called the “information breakdown” (Pola et al. 2003)
and takes the total mutual information I (S;R) and decomposes it into a number
of components, each reflecting a different way into which signal and noise cor-
relation contribute to information transmission. The information breakdown for-
malism was introduced first in Panzeri et al. (1999), Panzeri and Schultz (2001)
in the low spike rate limit and then generalized to arbitrary spike rates in Pola et
al. (2003). This is not the only formalism proposed to quantify the contribution of
correlation to information (see e.g. Nirenberg et al. 2001; Schneidman et al. 2003;
Nakahara and Amari 2002). We decided to focus on the information breakdown
formalism partly because it was developed by one of the authors of this chapter,
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Fig. 14.2 Information component breakdown. The population mutual information I (S;R) can
be broken down into a linear component, the reduction of information due to signal correlation,
and the contribution of noise correlation (Icor). The noise correlation term can be further broken
down to separate out the effect of the average level of noise correlation over all stimuli, and the
stimulus-dependence of noise correlation—the latter term captures any effects due to coding by
explicit modulation of noise correlation. Modified from Montani et al. (2007)

and partly because it naturally includes most of the quantities proposed by other
investigators (Nirenberg et al. 2001; Schneidman et al. 2003).

The information breakdown writes the total mutual information into a sum of
components that are related to different ways in which correlations contribute to
population coding (Panzeri and Schultz 2001; Pola et al. 2003), as follows:

I (S;R)= Ilin + Isig-sim + Icor = Ilin + Isig-sim + Icor-ind + Icor-dep. (14.4)

The meaning and mathematical expression of each of the components is summa-
rized in Fig. 14.2 and is described in the following.

14.3.2.1 The Linear Term

The first term of the information breakdown, Ilin, gives the total amount of informa-
tion which would be conveyed if all the cells were sharing neither noise nor signal.
In this case, the total information transmitted by the population would just be a
linear sum of the information provided by each cell:

Ilin =
∑
c

Ic, (14.5)

where Ic is the information about the stimuli carried by the responses of cell c:

Ic =
∑
s∈S
P (s)

∑
rc

P (rc|s) log2P(rc|s)
P (rc)

. (14.6)

The difference between Ilin and I (S;R) is called redundancy. Positive values
of redundancy indicate that the population information is less than the sum of the
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information provided by each individual neuron. Negative values of redundancy
denote the presence of synergistic interaction between neurons, which make the
total population information more than the sum of that provided by each individual
neuron.

14.3.2.2 The Signal Similarity Term

The amount of redundancy specifically due to signal correlation (i.e. similarity of
the stimulus modulation of responses of individual cells) is quantified by the sec-
ond term of the information breakdown, the signal similarity term Isig-sim, which is
defined as follows (Pola et al. 2003):

Isig-sim = 1

ln 2

∑
r

(∏
c

P (rc)

){
ν(r)+ (1+ ν(r)) ln 1

1+ ν(r)
}
. (14.7)

It can be shown (Pola et al. 2003) that Isig-sim ≤ 0 and that Isig-sim = 0 if and only
if there are no signal correlations at all (i.e. ν(r) = 0). This matches intuition: if
there are signal correlations but no noise correlations, one would intuitively expect
that I (S;R) to be less than Ilin. Isig-sim can be equivalently rewritten as Isig-sim =
Iind(S;R)− Ilin, where Iind(S,R) is the information that would be conveyed if there
was no noise correlation at all, but the single-neuron marginal response probabilities
P(rc|s) were the same:

Iind(S;R)=
∑
s∈S

∑
r∈R

P(s)Pind(r|s) log2
Pind(r|s)
Pind(r)

. (14.8)

It should be noted that the negative of Isig-sim equals the quantity�Isignal defined by
Schneidman et al. (2003).

14.3.2.3 The Terms Quantifying the Impact of Noise Correlation

The next two terms in the information breakdown, given in what follows, are the
correlational terms. They are the only terms that depend on the noise correlation
strength γ (r|s). They can be nonzero only if γ (r|s) is different from zero for some
response or stimulus. Hence they express any further effects that noise cell correla-
tions might have beyond that accounted for by individual cell properties. These two
“correlational” components reflect two different ways in which correlations may
contribute to coding (Pola et al. 2003).

The component Icor-ind reflects the contribution of stimulus-independent correla-
tions and is defined as

Icor-ind =
∑

r

〈
Pind(r|s)γ (r|s)

〉
s

log2
1

1+ ν(r) . (14.9)

The first multiplicative factor reflects the effect of noise correlation, but these cor-
relations are averaged across stimuli (weighted proportional to the probability of



14 Population Coding 311

Fig. 14.3 The effect of stimulus-independent correlations on information encoding. Each panel
sketches joint distributions of responses of two hypothetical cells to two different stimuli (data for
stimulus one and two are plotted in orange and green color, respectively). The dots represent a
hypothetical scatter plot from single-trial responses to the given stimulus, and each ellipse denotes
95% confidence limits. In the upper panel, there is positive signal similarity (i.e. individual cell
responses to each stimulus are positive correlated), whereas in the lower panels there is negative
signal similarity. Positive noise correlations correspond to ellipses aligned along the diagonal. The
more the ellipses are elongated, the stronger the noise correlation. The sign of noise correlations
between the joint responses differs across columns of this figure (noise correlation is positive in
the left column and negative in the right column). In this figure, noise correlations are stimulus in-
dependent equally strong across stimuli (all the ellipses within a panel have the same elongation).
In general, if noise correlation and signal similarities have opposite signs, the effect of stimu-
lus-independent correlations increases the information about stimuli, because the joint response
probabilities to each stimulus become more separated. If instead cross-cell correlation and signal
similarities have the same sign, stimuli are less discriminable than in the other case. This intuitively
explains the mathematical properties of Icor-ind

each response). The logarithmic term depends instead on signal similarity. In gen-
eral, if noise and signal correlations have opposite signs, Icor-ind is positive. In
this case, stimulus-independent noise correlations increase stimulus discriminabil-
ity compared to what it would be if noise correlations were zero (Oram et al. 1998;
Pola et al. 2003). If, instead, noise and signal correlations have the same sign, Icor-ind
is negative, and stimuli are less discriminable than the zero noise correlation case.
In the absence of signal correlation, Icor-ind is zero, whatever the strength of noise
correlation. For intuitive illustration of these effects, see Fig. 14.3 and (Oram et al.
1998; Petersen et al. 2002a).

The final term of the information breakdown, Icor-dep, is associated with stimulus
modulation of correlations

Icor-dep =
∑

r

〈
Pind(r|s)

(
1+ γ (r|s)) log2

〈Pind(r|s′)〉s′(1+ γ (r|s))
〈Pind(r|s′)(1+ γ (r|s′))〉s′

〉
s

. (14.10)

This term is nonnegative. It is associated with stimulus-dependent correlations
because it equals zero if and only if the correlation coefficient γ (r|s) does not
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depend on the stimulus s for every response. If a neuronal population carries
information by emitting patterns of correlated spikes that ‘tag’ each stimulus,
Icor-dep is greater than zero. The expression reported above for Icor-dep was first
introduced in Nirenberg et al. (2001) (they gave to this term the name �I );
Pola et al. (2003) then introduced this equation into the information breakdown.
Nirenberg, Latham and colleagues have shown that Icor-dep is an upper bound to
the information lost by a downstream system interpreting the neural responses
without taking into account the presence of correlations (Nirenberg et al. 2001;
Latham and Nirenberg 2005).

The sum of the two correlational terms Icor-ind and Icor-dep is called Icor, and
it quantifies the total impact of noise correlation in information encoding. Icor,
originally introduced by Hatsopoulos et al. (1998), equals the difference between
the information I (S;R) in the presence of noise correlations and the information
Iind(S,R) in the absence of noise correlation. Icor quantifies whether the pres-
ence of noise correlations increases or decreases the information available in the
neural response, compared to the case where such correlations are absent but the
marginal stimulus-conditional response probabilities of all the individual neurons
are the same.

14.3.3 Examples of Application of the Information Breakdown to
Neural Data

To illustrate the type of insights that could be gained by studying neural population
responses using these methods, we briefly review results obtained using the infor-
mation breakdown in the somatosensory and in the visual pathways.

14.3.3.1 Role of Correlated Firing in Coding Whisker Stimuli

We will begin by describing a study of the population code used by neurons in the rat
somatosensory cortex to encode the identity of the deflected whisker (Petersen et al.
2001, 2002b). The whisker representation of the rat somatosensory cortex is known
to be organized into anatomically defined columns, arranged in one-to-one corre-
spondence with the whiskers on the rat snout, and containing approximately ten
thousand neurons with similar whisker selectivity. To gain insights into how such
columnar organization may affect the population code, Petersen and colleagues (Pe-
tersen et al. 2001, 2002b) used the information breakdown formalism to compute
the information about the location of a rapidly deflected whisker and studied the
differences in the coding mechanisms employed by pairs of neurons located either
in the same column or in different columns. When pairs of neurons were both lo-
cated in the same column, they found that the stimulus-independent correlational
component Icor-ind was negative and appreciable in size (Icor-ind was approximately
10% of the total information). The reason why this component was negative was
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that neurons within the same column tended to have similar stimulus selectivity (i.e.
positive signal correlation) and also positive noise correlations. When considering
pairs of neurons located in different columns, Icor-ind became very close to zero. This
is because neurons in different columns have different stimulus preferences (weak
signal correlation) and also very weak noise correlations. This result suggests that
cross-neuronal correlations limit the information encoding capacity of single corti-
cal columns, but they influence less the information encoding capabilities obtained
when putting together several columns.

The contribution of stimulus-dependent noise correlations Icor-dep was very small
both for same-column and different-column pairs. Given that Icor-dep is an upper
bound to the information lost by a downstream system interpreting the neural re-
sponses without taking into account the presence of correlations (Latham and Niren-
berg 2005), these results suggest that noise correlations in somatosensory cortex can
be ignored, at only a little information cost, during decoding.

14.3.3.2 Role of Correlations in Encoding Stimulus Contrast in Monkey
Visual Cortex

The information breakdown has also been applied to the study of how groups of
neurons in primary visual cortex (V1) encode contrast and direction of motion of vi-
sual stimuli. To address this question, Kohn and colleagues (Kohn and Smith 2005)
recorded, from area V1 of anesthetized macaques, responses of pairs of neurons
to drifting sinusoidal gratings of different directions and contrasts. Using cross-
correlation measures, they showed that an orientation-sensitive component of the
response correlation dominated at short time scales, and an orientation-insensitive
component was prevalent at longer time scales. In a subsequent analysis of the same
data, Montani and colleagues (Montani et al. 2007) used the information break-
down to gain more quantitative insights into the role of noise correlations in the
encoding of contrast and orientation. Fig. 14.4 summarizes the results, averaged
over the whole population, of the breakdown of information about direction carried
by pairs of neurons (Montani et al. 2007). For this analysis, the neural response of
each pair was quantified as the spike count carried over a post-stimulus window of
fixed length. Different window lengths (in the range 2–80 ms) were used. The con-
tribution of the information components was strongly dependent on the length of
the response window: while the negative contribution of Icor-ind grew with the time
window, the effects of the other components follow a ‘U’ or inverted ‘U’ curve
(Fig. 14.4). For time windows shorter than 10 ms, the temporally precise noise
correlations (Kohn and Smith 2005) led to a large contribution from correlational
components (Fig. 14.4). At time windows longer than 10 ms the contribution from
Icor-dep was significantly curtailed and was effectively canceled by the signal sim-
ilarity term, Isig-sim, and also by Icor-ind, which provided a greater negative contri-
bution as the time window increased (Fig. 14.4). Since the various components had
different signs, their total contribution to information almost canceled out, and the
total information I (S;R) was roughly equal to the linear term Ilin. Thus, the linear
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Fig. 14.4 The breakdown of
the information about
stimulus direction carried by
pairs of V1 neurons. Bar
charts report the fraction of
the mutual information
accounted for by the different
components of the
information breakdown
plotted as functions of the
length of the post-stimulus
time window used to compute
the spikes. Modified from
Montani et al. (2007)

approximation was relatively accurate even despite the presence of substantial and
very informative noise correlations. The additional information they provided was
approximately offset by the redundancy arising from the similar tuning properties
of the two cells. A potential function of this cancelation may be that of allowing
cortical circuits to enjoy the stability provided by having similarly tuned neurons
without suffering the penalty of redundancy (Montani et al. 2007). The coding of
contrast was far more redundant than that of direction at all time windows consid-
ered (Montani et al. 2007).

Other studies have applied some or all of the information component analysis
discussed above to simultaneously recorded pairs of neurons from visual cortex
(Golledge et al. 2003; Montani et al. 2007; Rolls et al. 2003) or from the retina
(Nirenberg et al. 2001). A result which is highly consistent across all such experi-
ments is that Icor-dep is always relatively small, in most cases much less than 10% of
the total mutual information. A caveat to all work done on pairs is that in principle,
it may be possible for correlations to exert a weak effect at the level of neuron pairs
yet a strong one at the level of larger populations. A key challenge is to be able
to extend the analysis to much larger populations of cells and characterize how the
contribution of correlation scales with population size.

14.4 Studying the Information Content Through Decoding
Algorithms

When the neuronal population is large, the number of possible responses r is very
high. As a consequence, it becomes extremely difficult to sample the response prob-
abilities P(r|s) from the relatively small number of experimental trials that is typ-
ically possible to collect from an experimental session. The poor sampling of the
response probabilities of large populations eventually leads to a severe systematic
error (“bias”) in the estimation of mutual information (Panzeri et al. 2007). Al-
though techniques are available to estimate and subtract out the bias, they usually
work well only for relatively small populations (Panzeri et al. 2007). This has re-
stricted most information analyses of population codes to the study of pairs or of
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triplets of simultaneously recorded neurons (see previous section). How best to ex-
tend the information approach to larger populations remains an open and debated
question.

A promising approach to the information analysis of larger populations is the use
of information theory coupled to decoding approaches (Quian Quiroga and Panz-
eri 2009). These procedures use a stimulus-decoding procedure (see Chap. 15) to
predict the most likely stimulus elicited from a single-trial population response, and
this makes it possible to compress the response space into the ‘predicted stimulus’
(Quian Quiroga and Panzeri 2009). If the number of stimuli is much smaller than
the number of responses, stimulus-decoding is an effective and simple way to reduce
the space of responses.

In more detail, this approach works as follows. In each trial, a stimulus s is pre-
sented and a stimulus sp is predicted by a decoding algorithm, and the correspond-
ing probability P(sp|s) (of predicting stimulus sp when stimulus s is presented) is
computed. The “decoded” information I (S;SP ) is then quantified as follows:

I
(
S;SP )=∑

s

∑
sp

P (s)P
(
sp|s) log2

P(sp|s)
P (sp)

. (14.11)

Information-theoretic inequalities ensure that I (S;SP ) ≤ I (S;R) (Quian Quiroga
and Panzeri 2009). To validate decoding results, some trials can be used to optimize
the decoder (the training set) and the rest to testing its performance, a procedure
called cross-validation (Quian Quiroga and Panzeri 2009). It is important that tri-
als belonging to the training set are not used to evaluate the decoding performance
because this may lead to artificial high values due to overfitting. A common proce-
dure is the “leave-one-out” validation, in which each trial is predicted based on the
distribution of all the other trials. This has the advantage that both optimization and
assessment testing are based on the largest possible number of trials (Quian Quiroga
and Panzeri 2009).

It is interesting to consider how to evaluate the role of correlations using the
decoding step. As discussed above, a simple but effective way to destroy noise cor-
relations is the shuffling procedure described earlier. The shuffling procedure can be
applied to the evaluation of population information through decoding in the follow-
ing way. When trying to understand whether the presence of correlations decreases
or increases information (a question addressed using Icor within the information
breakdown), the correct procedure is to shuffle both the training and the test dataset,
as done e.g. in Quian Quiroga et al. (2007). When trying to evaluate whether any
information is lost when interpreting correlated data with a decoding algorithm ig-
noring correlations (a question addressed using Icor within the information break-
down), the appropriate procedure is to shuffle only the training data while leaving
the test data untouched.

14.5 Pooling as a Strategy for Population Coding

The previous sections concentrated on one particular question about population
codes: the role of correlations in the representation of sensory information. How-
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ever, the use of stimulus-related correlations is only one of several possibilities that
have been proposed for reducing the ambiguity of the noisy messages carried by in-
dividual neurons. It has been suggested that another strategy that neural populations
may use to reduce the variability of single-neuron messages is that of “pooling”
together the responses of the neural population, by summing the spikes from differ-
ent neurons into a single, pooled population response (Darian-Smith et al. 1973;
Zohary et al. 1994; Shadlen and Newsome 1998). If all neurons in the popula-
tion are similarly tuned to the stimulus, this strategy is effective at reducing (by
simple averaging) the trial to trial noise of each neuron. The noise reduction by
pooling is particularly effective if the neurons are not correlated or are only very
weakly correlated (Darian-Smith et al. 1973; Zohary et al. 1994). However, pool-
ing poses also a problem: if different neurons in the population respond in a var-
ied manner to the stimuli (for example, each neuron may fire only to a very spe-
cific and small subset of stimuli Quian Quiroga et al. 2005), then reading out the
population information requires to keep track of which neuron fired each spike (a
labeled-line code Reich et al. 2001), and pooling would destroy the information car-
ried by the population. In practice, whether or not pooling is an effective scheme
depends on the balance between the benefits of averaging away noise and of the
disadvantages of wiping away the differences in the stimulus selectivity of each
neuron.

One way to address quantitatively the question of how good pooling is as a can-
didate scheme for population coding is to compare the overall information available
in the population response (14.1) to the information available in the pooled response
σ =∑C

c=1 rc , which is defined as follows:

Ipooled(S,	)=
∑
s,σ

P(s)P (σ |s) log2

(
P(σ |s)
P (σ )

)
. (14.12)

This analysis has been applied to population recordings from visual, somatosen-
sory, and auditory cortices (Reich et al. 2001; Panzeri et al. 2003; Kayser et al.
2009). In one such study, Panzeri et al. (2003) considered the encoding of stimu-
lus location and analysed small populations of up to three neurons simultaneously
recorded in the whisker representation of the rat somatosensory cortex. Panzeri et
al. (2003) found that for populations of neurons located in the same column, pool-
ing was effective at reducing noise while preserving the full information content of
the population. For same-column neurons, the information in the pooled code was
equal to the one in the full population responses. This also means that differences
in the response properties of neurons located within the same column are not es-
sential for representing salient stimulus features (Panzeri et al. 2003). Thus, in rat
somatosensory cortex the columnar organization could act as a framework to facili-
tate pooling with minimal information loss. However, pooling neurons belonging to
different columns led to large information losses (Panzeri et al. 2003). Thus, pool-
ing was a viable scheme, but only on spatially restricted populations. Other coding
schemes have to be used to bring together the information carried by distant popu-
lations.
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14.6 Software Implementation

A software implementation of most of these algorithms is described in Ma-
gri et al. (2009) and can be found at http://www.ibtb.org/ or http://www.apst.
spiketrain-analysis.org/.

14.7 Conclusions

We have described an information-theoretic approach to the quantitative study of
neural population codes. An advantage of this approach is that it allows a de-
tailed characterization of how different aspects of neuronal population activity may
contribute to transmission of information on a single trial basis. A limitation of
this approach is that accurate calculations of information are difficult with neu-
ronal populations because of large number of trials needed to sample the popu-
lation response probabilities (Panzeri et al. 2007). Recent progress on the statis-
tical estimation techniques now permits the computation of the information car-
ried by populations of up to five–ten neurons (Panzeri et al. 2007). This is use-
ful to get some insights into the details of information processing in some lo-
cal networks. A major and important challenge for computational neuroscientists
is to find ways to further extend the feasibility of performing information com-
putations with large populations (Quian Quiroga and Panzeri 2009). This step
would be crucial to enable us to gain better insights into how information is
processed by distributed networks and would be an important analytical comple-
ment to the experimental progress in recording technology, which already enables
the observation of the activity of several tens of neurons (Csicsvari et al. 2003;
Kerr and Denk 2008).
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Chapter 15
Stochastic Models for Multivariate Neural Point
Processes: Collective Dynamics and Neural
Decoding

Wilson Truccolo

Abstract This chapter reviews a stochastic point process framework for the mod-
eling, analysis and decoding of neuronal ensembles. The spiking probability of any
neuron in an ensemble is computed recursively via a system of stochastic nonlin-
ear equations with delays in discrete time. These equations are expressed in terms
of conditional intensity functions, which capture the effects of the neuron’s own
spiking history (intrinsic dynamics), ensemble history (collective dynamics), and
dependencies on stimuli and behavioral covariates. Four related approaches for the
statistical modeling of conditional intensity functions are presented: generalized lin-
ear models (GLM), penalized splines, hierarchical Bayesian P-splines, and nonpara-
metric function approximation. Decoding of neuronal ensemble spike trains is im-
plemented via stochastic state-space models with point process observations. The
framework is illustrated with examples of neural decoding of hand velocities and
assessment of collective dynamics in primary motor cortex.

15.1 Introduction

Recent advances in microelectrode array recordings allow us to measure the si-
multaneous spiking activities of hundreds of neurons: in the hippocampus (Wil-
son and McNaughton 1993; Harris et al. 2003), retina and primary visual cor-
tex (Pillow et al. 2008; Jermakowicz et al. 2009), and cortical sensorimotor areas
in behaving nonhuman primates (Hatsopoulos et al. 1998; Nicolelis et al. 2003;
Riehle et al. 1997), and humans (Hochberg et al. 2006; Truccolo et al. 2008a, 2008b;
Truccolo et al. 2009). These data open the window to addressing how coordinated
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activity in neuronal ensembles relates to representation, computation, physiological
states, and dynamics in the brain. These questions are central not only to theoretical
neuroscience, but also to translational neuroscience, in particular the new emerg-
ing field of neuroengineering and brain-machine interfaces (Hochberg et al. 2006;
Donoghue 2008; Truccolo et al. 2008a, 2008b; Nicolelis and Lebedev 2009). Un-
til recently, most approaches to neural encoding, decoding, and collective dynam-
ics of spike train data were not directly applied to the neural point process itself,
i.e., sequences of spike times, but to smoothed versions of the spike trains or to
spike counts within relatively large time bins. In this chapter we focus on stochastic
models and decoding approaches that preserve the point process nature of neuronal
spiking. We take advantage of the conditional intensity function and the general
likelihood for discrete time point processes. Before we address the neural decod-
ing and collective dynamics of neuronal ensembles, basic concepts and terminology
are introduced, followed by a framework for the modeling of conditional intensity
functions.

Consider an ensemble of C neurons whose recorded individual spike times are
denoted by

0< uc1 < u
c
2 < · · ·< ucJc ≤ T ,

c = 1, . . . ,C. These spike times induce counting processes, Nc(t), which express
the number of spikes up to time t . We would like to characterize how these spik-
ing activities relate to the neuron’s own spiking history (intrinsic dynamics), the
spiking history of other neurons in the recorded ensemble, and other covariates of
interest. We will denote the spiking history of the entire ensemble up to (but not
including) time t as Ht . In addition, x0:t will denote measured covariates in the
same time interval. These covariates could include discrete and continuous stimuli
or behavioral variables, and also other quantities related to physiological variables
and neural states (e.g., spectral power in different field potential frequency bands).
The case where x0:t may also include hidden variables has been considered in Yu
et al. (2006), Kulkarni and Paninski (2007), Brockwell et al. (2007), Lawhern et al.
(2010). Our goal is to construct stochastic models where the spiking probability in a
given small enough time interval [t, t+�) for each neuron in the ensemble is recur-
sively computed based on spiking history and covariates. This probability, denoted
by

Pr
(
Nc(t +�)−Nc(t)= 1

∣∣Ht , x0:t
)
,

will be fundamental to our approach to decoding and to our study of collective dy-
namics in neuronal ensembles. The time evolution of a neuronal ensemble will be
represented by these probabilities, which will be computed recursively via a system
of stochastic nonlinear equations with delays. The state-space approach for neural
decoding in Sect. 15.3 will explicitly require the computation of these probabilities.
These models will be time “causal” in Ht , but not necessarily in x. For example,
when modeling sensorimotor cortical neurons, we might want to examine the sta-
tistical relationship between spiking at time t and some covariate at multiple time
offsets t + τ for negative and positive lags, such as hand kinematics preceding and
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following spiking activity. Although this issue should be kept in mind, we will put
it aside for notational convenience.

The conditional intensity function and the general likelihood function for point
processes will be key in our goal of modeling the spiking probability. The condi-
tional intensity function for a given univariate point process is defined as

λ(t |Ht , x0:t )� lim
�→0+

P(N(t +�)−N(t)= 1|Ht , x0:t )
�

. (15.1)

This function is a history-dependent generalization of the inhomogeneous Poisson
process intensity function and completely specifies any point process that admits a
conditional intensity function representation (Daley and Vere-Jones 2003). Based
on this definition, the recursive spiking probability of a given neuron can then be
computed as

Pr
(
N(t +�)−N(t)= 1

∣∣Ht , x0:t
)= λ(t |Ht , x0:t )�+ o(�). (15.2)

A discrete-time version of the process can be obtained by partitioning the time in-
terval (0, T ] into k = 1, . . . ,K subintervals (tk − 1, tk] of length � = TK−1 such
that at most one spike is observed in

�N(tk)=N(tk)−N(tk−1). (15.3)

Due to the refractory period in neurons, a typical choice in practical applications is
such that �≤ 1 ms. Let λk = λ(tk|Hk, x1:k), �Nk =�N(tk), Hk = {�Nc1:k−1}Cc=1,
and xk = x(tk). The discrete-time point process likelihood for a sequence of J
spikes of a particular neuron corresponds to

L(N1:K ;HK,x1:K)= exp

{
K∑
k=1

log(λk�)�Nk − λk�
}
+ o(�J ). (15.4)

(See Truccolo et al. 2004 for a derivation.) This distribution belongs to the expo-
nential family with natural or canonical parameter log(λk�). The problem we are
concerned with is therefore the statistical modeling or approximation of

log(λk�)= F(Hk, x1:k), (15.5)

via methods that will use the discrete time likelihood in (15.4). We will focus on
“direct” models of the conditional intensity, rather than on deriving it from modeled
interspike time interval (ISI) densities (e.g., Chap. 1; Barbieri et al. 2001). In addi-
tion to (15.2), note that (15.4) uses a second form of the single-neuron conditional
spiking probability

Pr(�Nk|Hk, x1:k)= exp
{
�Nk log(λk�)− λk�

}+ o(�), (15.6)

which will also be employed in the next sections.
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15.2 Estimation of Conditional Intensity Functions

We review parametric, semiparametric, and nonparametric approaches, all of which
take advantage of the discrete-time point process likelihood function in order to
model the conditional intensity function of each neuron in a recorded ensemble.

15.2.1 Generalized Linear Models

We start by considering the following class of models:

log
[
λ̂(tk|zk, θ)�

]= μ0 +
∑
i

βiFi(zi,k)+
∑
i,j

βi,jFi,j (zi,k, zj,k)+ · · · , (15.7)

where λ̂(tk|zk, θ) is the estimated conditional intensity function, zk = {Hk, x1:k}
(zi,k corresponds to a specific covariate), θ = {μ0, βi, βij , . . .} are model parame-
ters, and {Fi} and {Fi,j } are general functions. In particular, {Fi,j } corresponds to
functions that capture second-order interaction effects between covariates. Higher-
order terms can also be included. Even though the conditional intensity function in
the log domain is linear in the parameters, the covariates can enter the model in
any nonlinear form. Under this formulation of the conditional intensity function, the
log-likelihood in (15.4) has the same form as the log-likelihood function for a GLM
under a Poisson distribution and log link function (McCullagh and Nelder 1989;
Truccolo et al. 2004). For small enough �, (15.4) can also be expressed in terms
of a log-likelihood function for a GLM under a Bernoulli probability and logistic
link function (Truccolo et al. 2004; Brillinger 1988). The GLM framework offers a
class of very flexible models. For example, one can implement neural system iden-
tification via Volterra kernels (Marmarelis 2004) by choosing appropriate functions
(e.g., Laguerre basis functions) and time lags (temporal memory) for the covariates.
Neural point process models in the GLM class have been explored in Brillinger
(1988), Kass and Ventura (2001), Paninski (2004), Truccolo et al. (2004), Harris et
al. (2003), Pillow et al. (2008). The linear–nonlinear-Poisson (LNP) cascade model
(Paninski 2004) is a particular case in this class.

Generalized linear models can be readily fit via maximum likelihood. If the maxi-
mum likelihood (ML) exists, it is unique (Wedderburn 1976). Conditions for unique-
ness of solutions for certain conditional intensity models in noncanonical form have
been presented in Paninski (2004). However, even if the ML solution exists, there
are potential problems when collinearity in the covariate (design) matrix or in the
Fisher information matrix is present (Lesaffre and Marx 1993). In this case, so-
lutions can become inaccurate, and the estimated variance of model’s parameters,
based on the observed Fisher information matrix, tends to be inflated. Some statisti-
cal packages will by default solve the optimization problem in the subspace spanned
by a subset of ranked covariates and dimension specified by the rank of the covariate
matrix. Although this approach is computationally convenient, highly explanatory
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Fig. 15.1 Simulation example. (a) The conditional intensity function given by (15.8) (in spikes/s,
� = 1 ms, T = 200 s, C = 6) and (b) the corresponding simulated point process for neuron 1.
The smoother curve in (a) corresponds to the modulation due exclusively to the hand velocity.
Excitatory and inhibitory inputs to neuron 1 consisted of the past 3-ms spiking histories of neurons
2 and 3, respectively. (c) The corresponding parameters for the inputs from these two neurons were
correctly estimated from the 6-neuron simulated data. (d) True and estimated coefficients for the
intrinsic history component. The thicker curve in (d) corresponds to the true coefficients. Negative
values following a spike relate to refractory and recovery periods. (e) The estimated conditional
intensity passed the K–S goodness-of-fit test based on the time-rescaling theorem (Brown et al.
2001). (Modified with permission from Truccolo et al. 2004.)

covariates are often left out of the estimated model (Lesaffre and Marx 1993). Dif-
ferent alternatives to handling collinearity problems include other dimensionality
reduction techniques and regularization. Efficient algorithms for L1 (Lasso) and L2
(ridge regression) regularization in the context of GLMs have been presented by
Friedman et al. (2008). (See also penalized splines below.) Zhao and Iyengar (2010)
examined convergence problems due to complete or quasi-complete data separa-
tion in the case of logistic link functions, or due to bursty behavior or particular
choices of time discretization in the case of log link functions. In most statistical
packages (e.g., functions glmfit and glm in Matlab and R, respectively), maximiza-
tion of the log-likelihood function is typically implemented via iterative reweighted
least squares (IRLS) algorithms. Direct maximization via gradient methods is also
a common choice (Friedman et al. 2008). Which approach performs numerically
better is still an issue being examined.

For concreteness, Fig. 15.1 shows a simple simulation example where the condi-
tional intensity function of a modeled M1 neuron is given by

log
[
λ̂c(tk|zk, θ)�

]= μc +
C∑
i=1

O∑
q=1

αci,q�N
i
k−q + βc1x1,k+τ + βc2x2,k+τ , (15.8)

with model parameters θ = {μc,αci,q , βc1, βc2}. The parameter μ relates to a back-
ground level of activity, and xk+τ is the two-dimensional hand velocity at a single
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time lag corresponding to 150 ms. This model can be easily extended by includ-
ing hand velocities at multiple time lags (Hatsopoulos et al. 2007) and by letting
these velocities enter the model via more complex, nonlinear functions. The double
summation term captures the effects of the intrinsic and ensemble spiking histories.
The order of the history component O can be estimated via model comparison (e.g.,
Akaike Information Criterion or cross-validation). In this simple model, previous
spikes act as “impulses” on temporal filters defined by the {α} coefficients. Related
models for temporal filters, estimated via basis functions, have been presented in
Pillow et al. (2008). Spiking history effects can also be modeled in terms of the
elapsed times since past spikes, as, for example, in the inhomogeneous Markov
interval process model (Kass and Ventura 2001). See Chap. 1 for an overview of
stochastic neural point processes with correlated ISIs. Johnson (1996) presents an
interesting discussion about single-neuron intrinsic dynamics models based on re-
newal, Markov and Hawkes’ point processes, and their relationship to the classic
Hodgkin–Huxley model. A review of stochastic point process models, diffusion and
continuous-state hidden Markov models (HMM) in the context of integrate-and-fire
neurons was presented by Paninski et al. (2009b).

15.2.2 Penalized Generalized Linear Models and Penalized
B-Splines

As the number of parameters increases and the general functions become more and
more flexible in the model (15.7), it also becomes important to prevent overfitting
and preserve generalization of the model. This can be achieved by adding a penalty
term P to the log-likelihood function

log L∗ = log L − ηP, (15.9)

where η is a regularization parameter. A modified version of the IRLS algorithm or
gradient methods can be used to maximize this penalized log-likelihood function.
Computationally efficient and flexible models in this approach can be implemented
via penalized B-splines. B-splines have the important property of being local basis
functions that look like Gaussians (Hastie et al. 2001). Reformulate (15.7) as

log
[
λ̂(tk|zk, θ)�

]=∑
i

Fi(zi,k)+
∑
i,j

Fi,j (zi,k, zj,k)+ · · · + z′kγ, (15.10)

where z′kγ is the strictly linear part of the model. Eilers and Marx (1996) assume that
Fi and Fi,j are smooth and can be approximated by B-splines and tensor product
B-splines, respectively. In particular, Fi is approximated by Mi B-splines of degree
l (usually cubic) with ni equally spaced knots

Fi(zi,k)=
Mi∑
m=1

βi,mBi,m(zi,k), (15.11)

where Mi = ni + l, Bi,m(zi,k) is the projection of zi,k onto the mth basis function,
and the {βi,m} are parameters to be estimated. A relatively large number of knots
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(e.g., 20 to 40) is chosen to ensure enough flexibility. Because roughness is con-
trolled by a penalty term, once a minimum number of knots is reached, the fit given
by a penalized spline should be almost independent of the knot number and loca-
tion. Typically, the penalty term is based on squared r th-order differences applied
to adjacent B-spline coefficients. The penalty term, for a model containing only Fi
terms, corresponds to

P = 1

2

∑
i

β ′iH rj βi, (15.12)

whereHrj = (Drj )′Drj , andDrj corresponds to the matrix representation of the differ-
ence operator of order r . If r = 0, the regularization corresponds to ridge regression
with B-splines. A common choice is to use second-order differences. Wood (2006)
presents extensions of this approach for additive models, and a software package
(MGCV) is available for R.

15.2.3 Hierarchical Bayesian P-Spline Models

Penalized splines can be readily extended into a Bayesian framework. In Brezger
and Lang (2006), second-order differences are replaced with their stochastic ana-
logues, i.e., second-order random walks defined by

βi,m = 2βi,m−1 − βi,m−2 + εi,m, (15.13)

with Gaussian error εi,m ∼ N (0, σ 2
i ) and diffuse priors βi,1, βi,2 ∝ const for ini-

tial values. While first-order random walks penalize abrupt jumps βi,m − βi,m−1
between successive spline parameters, second-order random walks penalize devi-
ations from the linear trend 2βi,m−1 − βi,m−2. The amount of smoothing is con-
trolled by a parameter σ 2

i , which corresponds to the inverse smoothing parameter
in the traditional smoothing spline setting. By defining an additional hyperprior for
the variance parameters, the amount of smoothness can be estimated simultaneously
with the regression coefficients. A common choice is to assign the conjugate prior
for σ 2

i , which is the inverse gamma prior σ 2
i ∼ IG(aj , bj ) with hyperparameters aj

and bj . The posterior of the model’s parameters θ = {β1, β2, . . . , σ
2
1 , σ

2
2 , . . . , γ } is

given by

p(θ |�N1:K,HK,x1:K)∝ L(�N1:K ;HK,x1:K, θ)

×
∏
i

1

(σ 2
i )
R/2

exp

(
− 1

2σ 2
i

β ′iH 2
i βi

)

×
∏
i

(
σ 2
i

)−ai−1 exp

(
− bi
σ 2
i

)
, (15.14)

where the last two terms on the right are the priors for the spline coefficients and for
the variance of the random walk, respectively; the termH 2

i corresponds to a second-
order difference matrix with rank denoted by R. (Parameters related to tensor prod-
uct splines were omitted here for simplicity.) Spline parameters and smoothing
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terms are estimated via MCMC sampling. Good mixing properties of the Markov
chain are provided by a sampling scheme that combines an approximation of the
full conditionals of regression parameters via IRLS and uses them as proposals in
a Metropolis–Hastings algorithm (Gamerman 1997). BayesX (Brezger et al. 2005)
is a publicly available software for Bayesian P-spline modeling. Its algorithmic im-
plementation has been shown (Brezger et al. 2005) to be exceptionally faster than
WinBUGS, another commonly used software for Bayesian inference (Spiegelhalter
et al. 2003). Initial exploration of penalized B-splines and Bayesian P-splines in the
context of neural point processes was presented in Truccolo and Donoghue (2007).
A free-knot Bayesian spline approach where the number of knots is inferred via
reversible-jump MCMC sampling was proposed by DiMatteo et al. (2001). Related
Bayesian inference approaches for GLMs have also appeared in Rigat et al. (2006)
and in Stevenson et al. (2009). A general approach based on variational Bayesian
inference for GLMs has been presented by Chen et al. (2010).

15.2.4 Nonparametric Function Approximation

The development of nonparametric methods for the approximation of conditional
intensity functions of neural point processes is a recent topic of interest (Truc-
colo and Donoghue 2007; Coleman and Sarma 2007; Cunningham et al. 2008;
Rahnama Rad and Paninski 2008). In this case, estimation of the conditional in-
tensity function can be formulated as an optimization in function space. Truccolo
and Donoghue (2007) extended a greedy function approximation approach based
on stochastic gradient boosting (Friedman 2001) to neural point processes. Briefly,
the function in (15.5) is represented as a target function

F ∗ = arg min
F

E[�N,z]
[
L
(
�N1:K,F (z1:K)

)]
(15.15)

to be approximated, where L(·) is a loss function which corresponds here to the
negative of the discrete-time point process log-likelihood. Greedy function approx-
imation approaches commonly involve an iterative procedure in which the approxi-
mation to F ∗(z) takes the form

F ∗(z)≈ F̂ (z)=
M∑
m=0

fm(z), (15.16)

where f0(z) is an initial guess, and {fm(z)}Mm=1 are successive increments (“steps”
or “boosts”), each dependent on the preceding step. In the particular case of function
approximation via steepest-descent gradient, the mth step has a (steepest-descent)
direction defined by the negative gradient vector of the loss function with respect
to F(z) and a magnitude obtained via line search. Generalization to new data is
achieved by fitting a parametric model to the negative gradient at each of the suc-
cessive steps

F̂ (z)= F̂0(z)+
M∑
m=1

ηβmh(z;am), (15.17)
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where F̂0(z) is a constant, h(z, a) is a regressor or base learner in the form of in-
dicator functions (regression trees) with parameters βm and am = a1, a2, . . . , and
0 < η ≤ 1 is a regularization parameter. The conditional intensity function is thus,
in this case, approximated by piecewise constant functions. The update rule at each
iteration is given by

F̂m(z)= F̂m−1(z)+ ηβmh(z;am). (15.18)

Intuitively, stochastic gradient boosting can be seen as the iterative and regularized
fitting of the “residuals” in a gradual fashion. Note also that, in principle, other
regressors or base learners, such as GLMs, could be chosen. However, among many
advantages, the choice of indicator functions also provides an easy way to control
for the interaction order of the approximation

F ∗(z)=
∑
i

Fi(zi)+
∑
ij

Fij (zi , zj )+
∑
ijk

Fijk(zi, zj , zk)+ · · · , (15.19)

i.e., second- and higher-order interactions among the covariates (see Truccolo and
Donoghue 2007 for details). Function approximation based on stochastic gradient
boosting offers a robust nonparametric approach particularly when dealing with
large datasets and a large number of covariates. Kernel-based methods (e.g., Gaus-
sian processes) and tensor product splines are often not practical in these cases.
Bayesian approaches still require a substantial amount of “fine tuning” of hyperpa-
rameters and considerable expertise in MCMC sampling.

Another interesting function approximation approach was proposed in Coleman
and Sarma (2007). The optimization problem corresponds to minimization of the
negative log-likelihood function under the constraint that the canonical parameter is
Lipschitz continuous:

∣∣log[λ̂k1�] − log[λ̂k2�]
∣∣≤M‖zk1 − zk2‖∞ (15.20)

for k1, k2 = 1, . . . ,K .M is the Lipschitz constant which works here as a regulariza-
tion parameter or model selection term. For example, asM→∞, the estimated con-
ditional intensity converges pointwise to the spike train data. This parameter can be
determined according to some goodness-of-fit measure (e.g., via the time-rescaling
theorem) or some other performance measure under a crossvalidation scheme. Cole-
man and Sarma (2007) implemented the minimization in terms of a computationally
efficient dual problem.

Figure 15.2 illustrates some of the estimation approaches described in this sec-
tion. The conditional intensity function of a primary motor cortex (M1) neuron,
from a monkey performing a center-out point-to-point reaching task, was modeled
as a function of the time elapsed since the last spike, the hand movement direc-
tion, and the two-dimensional hand kinematics (position, velocity, acceleration).
This particular neuron showed little, if any, modulation for movements in the lower-
left quadrant of the workspace. Four different models were used: log-linear both in
the parameters and covariates, penalized B-splines, Bayesian P-splines, and gradi-
ent boosting regression using indicator functions. The gradient boosting regression
model performed best (based on comparison of log-likelihood functions evaluated
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Fig. 15.2 Examples of conditional intensity functions (in log scale) estimated for an M1 neuron
using: (a) simple log-linear model, (b) penalized B-splines, (c) Bayesian P-splines, and (d) gradient
boosting regression. Only the partial dependencies on velocity (in cm/s) are shown. (Modified with
permission from Truccolo and Donoghue 2007.)

on test data), while the penalized splines model incurred large oscillations in specific
ranges of the velocity space. Note, however, that these differences in performance
might also reflect the choices of regularization parameters and hyperparameters in
these different approaches.

15.2.5 Statistical Inference

We conclude this section by briefly reviewing a few aspects of statistical inference
for conditional intensity function models. The important issue of consistency and ef-
ficiency of estimators in the context of neural spike-train data has been discussed in
Kass et al. (2005). Approximate confidence intervals for GLMs are typically derived
from the observed Fisher information matrix. In this case, standard errors for esti-
mated parameters are given by the square root of the inverse of the observed Fisher
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information matrix evaluated at the maximum likelihood estimate. Confidence in-
tervals, corresponding Wald-statistics and p-values based on this approximation are
readily available in most statistical packages for GLMs. Estimation of confidence
intervals where the Fisher-information-based approximation may fail (due to, for
example, small sample size) or is not feasible, as in the nonparametric function
approximation approaches described above, can be attempted via parametric boot-
strap methods (Chap. 18). Efficient simulation of the neural point process, required
in parametric bootstrap, can be implemented via the time-rescaling theorem (Brown
et al. 2001).

Goodness-of-fit tests for continuous-time conditional intensity models can be
derived from the time-rescaling theorem (Brown et al. 2001; Truccolo et al. 2004).
Specifically, once a conditional intensity function model has been fit to a spike-train
data series, rescaled times vj can be computed as

vj =
∫ uj+1

uj

λ̂
(
t
∣∣z(t), θ)dt (15.21)

for j = 1, . . . , J − 1 spike times. Via this change of measure, the rescaled times
should correspond to a homogeneous Poisson process with rate 1 if the estimated
conditional intensity function is a good approximation of the true conditional in-
tensity of the process. Thus the rescaled times should be independent. Further, the
transformation

v∗j = 1− exp(vj ) (15.22)

results in v∗j being uniformly distributed random variables in the interval [0,1).
Therefore, to assess whether an estimated conditional intensity function fits the data,
we need to check whether the v∗j are independent and uniformly distributed. The
Kolmogorov–Smirnov (K–S) test can be used to check for departure from the uni-
form distribution. Independence is a more difficult property to check. Czanner et al.
(2008) suggested applying a further transformation

v∗∗j =Φ−1(v∗j ), (15.23)

whereΦ(·) is the cumulative distribution of a zero-mean and unit-variance Gaussian
random variable. If the rescaled times v∗j are independent and uniformly distributed
in [0,1), then the v∗∗j will be independent Gaussian random variables with mean
zero and variance 1. Independence up to time lag τ of consecutive interspike inter-
vals can then be checked by testing if the corresponding autocorrelation function
departs significantly from zero.

The direct application of the above time-rescaling based goodness-of-fit assess-
ment to discrete-time point process models can be problematic if � is not small
enough. In this case, the rescaled ISIs are no longer exponentially distributed, and
K–S tests might indicate poor fit even for exact conditional intensity function mod-
els. To address this issue, an extension of the time-rescaling theorem to discrete-
time point processes has been proposed by Haslinger et al. (2009). A different
approach for goodness-of-fit assessment, based on a generalization of the Rosen-
blatt’s transformation, has been developed by Brockwell (2007). This generalized
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transformation will map any arbitrary random vector (including binary and count
variables) into a sequence of independent and uniformly distributed variables if the
underlying probabilistic model is correct. K–S tests based on the time-rescaling
theorem or on the generalized Rosenblatt’s transformation provide an absolute mea-
sure of goodness-of-fit. When comparing different models, one will also be inter-
ested in relative measures such as the Akaike information criterion (Truccolo et
al. 2004), predictive power based on receiver operating characteristic curves com-
puted on test data (Truccolo et al. 2008a, 2009) and information rates (Harris et al.
2003).

15.3 Neural Ensemble Decoding

We can use the conditional intensity function models and estimation approaches
described above to capture the encoding properties and dynamics of an ensemble
of neurons. A reciprocal question is then: What is the probability of a covariate
state, given observed ensemble spiking activities and estimated conditional inten-
sity models? We follow the discrete-time stochastic state-space approach developed
in Brown et al. (1998) and Eden et al. (2004). Among many applications, this ap-
proach has been used to decode from hippocampus (Brown et al. 1998) and sen-
sorimotor cortex of humans and monkeys (Truccolo et al. 2004, 2008a). We will
focus on the case where both the state and neural observations are jointly measured
in a training dataset. The estimation of latent variable models (e.g., continuous-state
HMMs) will not be treated here (see Smith and Brown 2003; Brockwell et al. 2007;
Paninski et al. 2009a; Lawhern et al. 2010). We will consider state-space models that
assume Markov state evolution. In addition, we will focus on the forward inference
problem, rather than on smoothing, since the former is more relevant to real-time
neural decoding applications, such as in neuroprostheses. More formally, the state
and observation equations are given by

xk ∼ p(xk|xk−1), (15.24)

�Nck ∼ Pr
(
�N
∣∣λc(tk|Hk, xk)

)
, (15.25)

where xk ∈R
d . The state transition probability p(xk|xk−1) is commonly defined by

a linear Gaussian dynamical system

xk =Axk−1 + εk (15.26)

with εk ∼ N (0,Q). The state and covariance matrices A and Q can be easily esti-
mated from training data via maximum likelihood. Note that this first-order process
can represent higher-order Markov processes by simple augmentation of the state
space. The distribution for the observations in (15.25) is given by (15.6). Using
Bayes’ theorem and letting Nk = {Nck }Cc=1, we can write the posterior density as

p(xk|N1:k)= p(N1:k, xk)
Pr(N1:k)
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= Pr(�Nk|N1:k−1, xk)p(N1:k−1, xk)

Pr(N1:k)

= Pr(�Nk|Hk, xk)p(xk|Hk)

Pr(�Nk|Hk)
.

The one-step predictive density p(xk|Hk) can be obtained recursively via
the Chapman–Kolmogorov equation, which corresponds to marginalizing
p(xk, xk−1|Hk) over xk−1. The exact posterior density thus corresponds to

p(xk|N1:k)= Pr(�Nk|Hk, xk)

×
∫
p(xk|xk−1)p(xk−1|�Nk−1,Hk−1) dxk−1

Pr(�Nk|Hk)
. (15.27)

Exact posterior computation can be implemented via numerical integration or via
sequential Monte Carlo methods such as particle filters (Doucet et al. 2001; Brock-
well et al. 2004; Ergun et al. 2007). However, these are currently not computation-
ally efficient for real-time applications or for higher-dimensional state spaces (e.g.,
in particle filtering, the number of particles grows exponentially with the dimension
of the space). Exact maximum a posteriori (MAP) solutions in the context of point
process smoothing filters have been presented in Koyama and Paninski (2009) and
Paninski et al. (2009a). In most applications, first- and second-order (fully exponen-
tial) Laplace approximations are the typical choice (Tierney et al. 1989; Koyama et
al. 2010). Koyama et al. (2010) have shown that the approximation error in these se-
quential approximations is stable over time. Further, in typical applications to neural
decoding, the inherent statistical error of the posterior tends to be much larger than
the gain in accuracy obtained by using the second-order approximation. In this case,
the first-order approximation will be as good (Koyama et al. 2010). The approach
presented here is based on the first-order Laplace approximation (Eden et al. 2004;
Truccolo et al. 2004).

The goal is to obtain a recursive expression for the mean and covariance of the
posterior density of xk in terms of observed spiking and estimated previous states.
Let

xk|k−1 =E[xk|Hk], (15.28)

Wk|k−1 = var[xk|Hk] (15.29)

be the one-step prediction mean and covariance of the posterior density. The above
definitions, along with the assumed evolution model, are sufficient to compute the
one-step prediction to be defined below. Let

xk|k =E[xk|�Nk,Hk], (15.30)

Wk|k = var[xk|�Nk,Hk] (15.31)

be the mean and covariance of the posterior density, respectively. We seek the ap-
proximation

p(xk|N1:k)≈ N (xk|k,Wk|k)

∝ exp

{
−1

2
(xk − xk|k)′W−1

k|k (xk − xk|k)
}

(15.32)
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in terms of parameters xk|k and Wk|k to be estimated. These two parameters are
recursively estimated via the following stochastic state-space point process filter.

One-step prediction equations:

xk|k−1 =Axk−1|k−1, (15.33)

Wk|k−1 =AWk−1|k−1A
′ +Q; (15.34)

posterior variance and mean equations:

W−1
k|k =W−1

k|k−1

+
C∑
c=1

[(
∂ logλck
∂xk

)′[
λck�
](∂ logλck

∂xk

)
− (�Nck − λck�)∂

2 logλck
∂xk∂x

′
k

]
xk|k−1

,

(15.35)

xk|k = xk|k−1 +Wk|k
C∑
c=1

[(
∂ logλck
∂xk

)′(
�Nck − λck�

)]
xk|k−1

. (15.36)

The derivation of the above stochastic point process filter involves two main steps
(Eden et al. 2004). First, the one-step predictive density is given by p(xk|Hk) ∼
N (xk|k−1,Wk|k−1). Under the true conditional intensity functions and according to
the single neuron spiking probability in (15.6), the conditional spiking probability
for the entire ensemble factorizes into

Pr(�Nk|N1:k−1, xk)=
C∏
c=1

[
λck�
]�Nck exp

{−λck�}+ o(�). (15.37)

Therefore, the exact posterior, up to o(�), corresponds to

p(xk|N1:k)∝
C∏
c=1

[
λck�
]�Nck exp

{−λck�}

× exp

(
−1

2
(xk − xk|k−1)

′W−1
k|k−1(xk − xk|k−1)

)
. (15.38)

This expression represents the posterior as a function of the variable xk . Second,
after equating the target approximation (15.32) to the above and taking the log of
both sides, we obtain

−1

2
(xk − xk|k)′W−1

k|k (xk − xk|k)

=
C∑
i=1

[
�Nik log

[
λck�
]− λck�]− 1

2
(xk − xk|k−1)

′W−1
k|k−1(xk − xk|k−1)+ const.

(15.39)

Taking partial derivatives with respect to the state variables results in an equation
with only linear terms in the posterior mean and covariance. This equation can then
be solved for these two parameters. Figure 15.3 illustrates the application of this
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Fig. 15.3 Neural decoding of
hand velocity. Decoded hand
velocities (horizontal and
vertical coordinates, in cm/s)
are shown by the thicker
curves. The bottom plot
shows the decoded direction
(in radians, thicker dots) of
the velocity vector. (Modified
with permission from
Truccolo et al. 2004.)

stochastic state-space point process filter to the decoding of hand velocity from an
ensemble of M1 neurons from a monkey performing a pursuit tracking task (Truc-
colo et al. 2004). The conditional intensity functions were given by velocity tuning
models. A similar algorithm can also be implemented for neural decoding based on
state-space models with count process observations, i.e., spike counts in specified
time bins.

Note that the above algorithm requires the computation of partial derivatives of
the conditional intensity function with respect to the decoded covariates. When us-
ing conditional intensity functions estimated via the nonparametric function approx-
imation approaches described in Sect. 15.2.4, this might not be feasible. In those
cases, neural decoding via particle filters provides an alternative. Neural decoding
involving hybrid states (e.g., hand kinematics trajectories and discrete endpoint tar-
gets) have been explored in Srinivasan et al. (2007), Kulkarni and Paninski (2008).
The stochastic state-space point process filter can also be used to track changes in the
parameters of estimated conditional intensity function models. In this case, model
parameters are represented as states in the state-space model (Eden et al. 2004;
Czanner et al. 2008). Similar versions of this state-space approach can be ex-
tended to the estimation of hidden covariates and hidden common inputs, that is,
continuous-state HMMs with point process observations (Smith and Brown 2003;
Yu et al. 2006; Kulkarni and Paninski 2007; Brockwell et al. 2007; Wu et al. 2009;
Lawhern et al. 2010). Further, instead of applying the commonly used expectation-
maximization (EM) algorithm when estimating the parameters in these models, one
can directly maximize an approximation to the marginal log-likelihood (Koyama
and Paninski 2009). In this case, a Laplace approximation, centered at the exact
MAP path for the hidden states, is used to approximate and efficiently compute the
marginal log-likelihood and its gradients.
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15.4 Neuronal Ensemble Collective Dynamics

It is widely accepted that the coordinated activity of neuronal ensembles, both lo-
cally and across different cortical areas, is the basis for cognition and adaptive be-
havior. Nonetheless, the study of this coordination at the level of single neurons
remains a major challenge at both technological and statistical levels. Point process
models to address this issue have been introduced in Brillinger (1988), Chornoboy
et al. (1988), Martignon et al. (2000), Truccolo et al. (2004), Okatan et al. (2005),
Nykamp (2007), Pillow et al. (2008), Truccolo et al. (2009). See also Chaps. 8, 9,
10, 11, and 12 for other approaches addressing the analysis of multineuron spatio-
temporal patterns based on precise spike times. Here we briefly describe how the
stochastic neural point process framework presented in this chapter can be used to
investigate the collective dynamics of neuronal ensembles. Ultimately, we would
like to estimate the joint distribution of neuronal states at any time instant condi-
tioned on their previous history. We assume that this distribution, conditioned on
the modeled history effects, factorizes into the product of the individual recursive
distributions given in (15.6). As before, the main issue is then to approximate the
conditional intensity of single neurons as a function of previous spiking history. We
consider the following specific model:

log
[
λ̂c(tk|Ht , θ)�

]= μc +
10∑
j=1

G1,c,j ·�Nc +
C∑
i �=c

4∑
j=1

G2,c,i,j ·�Ni, (15.40)

where �Nc is the spiking train of the cth neuron in the past 100 ms, and G1,c and
G2,c,i are temporal filters for the intrinsic and ensemble spiking histories, respec-
tively, consisting of raised cosine basis functions with coefficients to be estimated
(Pillow et al. 2008; Truccolo et al. 2009). Ten and four basis functions are used for
the intrinsic and ensemble history filters, respectively. Model parameters are esti-
mated via direct maximization of the penalized likelihood functions, with a ridge
regression penalty term for the parameters related to the ensemble history. This
and similar types of models can be used to study how functional connectivity is
modulated in different task stages and experimental conditions (Harris et al. 2003;
Okatan et al. 2005), the effect of correlations on neuronal responses to stimuli (Pil-
low et al. 2008), and collective dynamics in human and monkey sensorimotor cortex
(Truccolo et al. 2009). As an illustration, we compare this model to a simpler model
where the joint distribution of instantaneous collective states is approximated by
a maximum entropy model (Jaynes 1982) constrained on mean spiking rates and
(zero-lag) pairwise correlations

Pr
({
�Nck

}C
c=1

)= 1

Z(α,β)
exp

{∑
i

αizi,k + 1

2

∑
i �=j
βi,j zi,kzj,k

}
, (15.41)

where zi,k = 1 if �Nik = 1 and zi,k = −1 if �Nik = 0, Z(α,β) is a normaliza-
tion term (Partition function), the {αi} reflect constraints imposed by the empir-
ical mean spiking rates, and the {βij } reflect constraints imposed by the pair-
wise correlations. Equation (15.41) corresponds to the Ising model in statisti-
cal physics (Landau and Lifshitz 1958) and has been successfully used to study
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Fig. 15.4 Collective dynamics: predicting single-neuron spiking from ensemble spiking history.
Intensity function models conditioned on intrinsic and ensemble histories were fitted to 45 M1
neurons of a monkey performing a reach and grasp task. (a) Each curve represents the contribution
(exponentiated temporal filters) of the spiking history of each input neuron in the ensemble to an
example target neuron. (b) ROC curves for spike prediction of the same example neuron based
on the history model. TP and FP denote the true and false positive prediction rates. The thicker
curve relates to the prediction based on both intrinsic (dashed curve) and ensemble histories (thin
curve). The diagonal line represents the expected chance level prediction. (c) Comparison of the
predictive power of ensemble history models (vertical axis) and of the pairwise maximum entropy
joint distribution (Ising model, horizontal axis). Each dot corresponds to a target neuron

collective dynamics of ganglion cells in the retina (Schneidman et al. 2006;
Shlens et al. 2006). This pairwise maximum entropy model does not explicitly incor-
porate history effects, but see Marre et al. (2009) for maximum entropy models con-
strained on multiple-lag auto- and pairwise cross-correlation functions. Both models
were fitted to an ensemble of neurons recorded from M1 in a monkey performing
point-to-point hand reaching movements. We assessed the strength of the collective
dynamics by measuring how well the recent spiking history of the ensemble pre-
dicted single-neuron spiking. A measure based on Receiver Operating Characteris-
tics (ROC) curves was used. Predictive power was computed as 2× (AUC−AUC∗),
where AUC is the area under the ROC curve, and AUC∗ is the estimated area for
the chance-level prediction. The predictive power of the ensemble history can be
substantial (Fig. 15.4). In addition, these history models showed higher predictive
power than the instantaneous collective state captured by the zero-lag pairwise max-
imum entropy model. Truccolo et al. (2009) have shown that the spiking history of
small, randomly sampled ensembles of cortical neurons in both human and non-
human primates can predict subsequent single-neuron spiking. Spiking could be
predicted by both local ensemble spiking histories and those in other cortical areas.
These results provide evidence for strong collective cortical dynamics at the level of
neuronal spikes in humans and monkeys performing sensorimotor tasks.

As mentioned before, the conditional spiking probabilities of all of the neurons
in the ensemble (15.40) are recursively computed via a system of stochastic non-
linear equations with delays for the conditional intensity functions. Mean-field ap-
proximations to this system can be used to facilitate the analysis of the statistical
and qualitative properties of the modeled collective dynamics and the relationship
of these dynamics to other covariates such as sensory stimuli and behavior. Toy-
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oizumi et al. (2009) derived corresponding ordinary differential equations for the
mean spiking rates, auto- and cross-correlation functions, under the assumption of
weak network coupling and weak history effects. To deal with the case of strong his-
tory effects (absolute refractory period), Toyoizumi et al. (2009) introduced a gen-
eralized linear model with Markov refractoriness. Cardanobile and Rotter (2010)
applied mean-field approximations to study the dynamics of recurrent neuronal net-
works consisting of multiplicatively interacting point processes. Related theoretical
work on mean-field approximations based on different neuronal and network models
has been presented in Meyer and van Vreeswijk (2002) and in Ginzburg and Som-
polinsky (1994). Commonly, the analysis of statistical models of stochastic neuronal
networks has to rely on Monte Carlo simulations, which besides being computation-
ally intensive, do not always provide direct insight into the network’s properties. If
assumptions and required conditions are satisfied, mean-field approximations might
provide a complementary and efficient approach for the analysis of the network’s
statistical and dynamical system properties.

15.5 Summary and Future Directions

Spiking probability models for neuronal ensembles play a fundamental role in state-
space neural decoding algorithms and in the analysis of neuronal collective dynam-
ics. The framework described in this chapter offers computationally efficient ways to
estimate this probability via the statistical estimation of conditional intensity func-
tions. One important application of this framework will be the study of how neu-
ronal collective dynamics affect the encoding properties of single neurons and the
performance of decoding algorithms that incorporate information about neuronal
interdependencies.
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Chapter 16
Simulation of Stochastic Point Processes with
Defined Properties

Stefano Cardanobile and Stefan Rotter

Abstract We describe procedures that allow one to numerically simulate artificial
spike trains matching real spike trains with respect to interspike interval distribu-
tions, in particular firing rates, interspike interval irregularity, and spike-count vari-
ability, and also time-varying firing rates and the corresponding properties in the
nonstationary case.

Spike trains recorded from neocortical neurons result from complicated interactions
among very many cells. Due to a notorious lack of knowledge about the structure of
the underlying network, it is currently impossible to capture the dynamical processes
directly in terms of explicit biophysical models. It is useful, though, to consider ab-
stract stochastic models that summarize all unknown details in terms of appropriate
statistical ensembles.

Stochastic point processes represent a useful mathematical abstraction of neu-
ronal spike trains (see Chap. 1, this volume). Therefore, numerical simulations of
point processes with defined properties are an important tool for exploration and for
the reliable interpretation of measured data. Certain statistical procedures critically
depend on the availability of data in a format analogous to measured data, but with
well-defined probabilistic properties.

16.1 Point Processes and Thinning

This section gives a general definition of stochastic point processes along with a
general framework to simulate them in a continuous-time environment. A stochas-
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tic point process in time is, loosely speaking, a sequence of spikes occurring at ran-
dom times. An additional formal requirement is that only finitely many spikes are
generated during an observation of finite duration. Here, we are interested in causal
point processes, i.e., processes for which the instantaneous firing rate at a given time
only depends on the previous history of the process and on some external covariates
(Cox and Isham 1980). Let H(t) represent the history of the system until time t .
Assuming a sufficiently regular process, the requirement of causality reads

P
[
spike in [t, t + dt)]= h(x(t),H(t)

)
dt

for small dt . In a neuroscientific setting, the covariates x(t) could be some sensory
input, the activity of neighboring neurons, or any other relevant external informa-
tion. The function h has many names: hazard rate, conditional intensity, age-specific
failure rate. We will refer to it as the hazard rate of the process.

The simplest example is where the hazard rate is constant,

h
(
x(t),H(t)

)= λ.
In this case, the actual firing rate is a constant and depends neither on any external
variable nor on the previous history of the process itself. This process is known as
the Poisson process. We will return to it in Sect. 16.2.

In this paper we are concerned with the generation of point process with bounded
hazard rate, where a positive number λmax exists such that h(x(t),H(t))≤ λmax for
all times t . Many useful processes, including the Poisson process with dead time,
certain gamma-processes, and log-normal processes, are of this type. The bounded
hazard is, from a practical point of view, a very weak assumption.

We will follow a general strategy to simulate point processes. We will start by
realizing a Poisson process with rate λmax (see Sect. 16.2) and then randomly reject
spikes according to the hazard rate of the process. We discuss a simple example first.
Assume that a neuron is receiving sinusoidal input x(t)= 1+ sin(t) and we want to
simulate it by using

h
(
x(t),H(t)

)= x(t). (16.1)

This case is known as the inhomogeneous Poisson process. The hazard h satisfies
our assumption, since h(t)≤ 2 for all t . We start the simulation by generating ran-
dom spikes at rate 2, following the algorithm described in Sect. 16.2. Using this
method, we obtain a spike train, and we denote from now on the sequence of spikes
by (ti). If we now retain each spike in the original Poisson train independently with
probability h(t)/2, we obtain a spike train which corresponds to the point process
defined by the hazard (16.1): Since we are keeping spikes randomly, the probability
of having a spike at time t is given by

P
[
“raw” spike in [t, t + dt)]× P[keep spike around t] = λmax dt

x(t)

λmax
= x(t) dt,

which is exactly what we wanted.
There are two main alternatives to the thinning approach. The first uses dis-

cretized time and approximates the continuous-time point process by a discrete se-
quence of 0s and 1s. This method is usually fast, but it has the distinct disadvantage
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of a finite time resolution determined by the bin width of the discretization. The
second simulates renewal processes by directly sampling i.i.d. interspike intervals
(ISIs) τi from the corresponding interspike interval distribution and stacking them
on top of each other to obtain the actual spike times. This method can also be used
in cases where the ISI distribution is known, but not the conditional rate, or if the
conditional rate diverges. If the ISIs are sampled by a rejection method, this leads
to algorithms very similar to the ones described in this manuscript. One could also
draw independent random numbers ui that are uniformly distributed on [0,1] and
then solve

ui = F(τi),
where F is the cumulative distribution function (c.d.f.) of the ISI distribution. This
method is computationally expensive if no closed expression is known for the in-
verse of the cumulative distribution function.

We prefer the thinning method mainly because of its flexibility. It can be ap-
plied whenever the conditional intensity is bounded. But, in contrast to discrete-time
methods, it yields spike times with machine precision. It is computationally disad-
vantageous only if the hazard rate has large excursions such that too many events
are rejected. Let us finally mention that thinning is nothing but rejection sampling
in the context of point processes, see, e.g., Ripley (1987).

16.2 Poisson Processes

16.2.1 Homogeneous Poisson Process

The Poisson process is the simplest conceivable point process, and it is the basis
to generate other point processes via thinning. We now explain in detail how to
simulate a Poisson process with constant rate λ on an observation interval [0, T ].
A Poisson neuron fires spikes at any point in time with the same probability, in-
dependently of the own history. From this assumption it is possible to derive the
distribution of the spike times, conditional on the number of spikes. The number of
spikes in an observation is random, but let us for a moment assume that it is given.
Then, by the definition of the process, spikes will occur with the same probability at
any point in time. This means that each spike is uniformly distributed on the interval
[0, T ] and independent on the position of all the others.

We can thus generate the Poisson process if we know the distribution of the
number of spikes in an observation. As a matter of fact, the number of spikes is a
Poisson-distributed random variable:

P
[
N spikes in [0, T ]]= (λT )N

N ! e−λT .

This can be proven by representing the Poisson process as a sum of Bernoulli vari-
ables for small time bins and resorting to the Euler definition of the exponential
function, see, e.g., Wikipedia, the free encyclopedia (2009) for details.
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To summarize, the Poisson process can be simulated by the following algorithm:

Poisson process:

(1) Draw a random number NT distributed according to the Poisson distribution
with mean λT .

(2) For k = 1, . . . ,NT , draw an independent spike time uniformly distributed on
[0, T ].

16.2.2 Inhomogeneous Poisson Process

We now move to the generation of nonstationary Poisson processes. This will be
the first application of the thinning approach that we have described in Sect. 16.1.
Before describing the algorithm, however, we have to formally define the inhomo-
geneous Poisson process. We fix a positive function λ(t), where t is a real variable
ranging in the observation interval [0, T ]. We assume that the function λ(t) has an
upper bound λmax for all t ∈ [0, T ]. For the inhomogeneous Poisson process, the
hazard rate may depend on time, but not on the history of the process,

P
[
spike in [t, t + dt) ∣∣H(t)

]= λ(t) dt (16.2)

for small dt , independently on the history H(t). Since the hazard is independent of
the history, it is possible to generate an inhomogeneous Poisson process by copying
spikes from a homogeneous Poisson process with a certain probability. We call the
original homogeneous process the reference Poisson process, and the spike train
we want to generate the target inhomogeneous Poisson process. Our strategy is to
randomly copy spikes from the reference to the target, since spikes from the target
process occur at a rate that is λ(t)

λmax
times the rate of the reference process.

These considerations lead us to the following algorithm to generate an inhomo-
geneous Poisson process with rate profile λ(t):

Inhomogeneous Poisson process:

(1) The set of the target spikes si is initially empty.
(2) Generate a Poisson random number P with mean λmaxT .
(3) Place P random spikes ti uniformly and independently on the interval [0, T ].
(4) For every spike ti , draw an independent random number ri uniformly distributed

in [0,1].
For every reference spike ti :

(5) Check whether

ri <
λ(ti)

λmax
.

(6) If yes, add ti to the list of target spikes.
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Fig. 16.1 Visualization of
the algorithm for the
simulation of an
inhomogeneous Poisson
process. Continuous line: rate
profile. Points: reference
random numbers. Bars:
surrogate spikes,
corresponding to the
x-coordinates of the reference
random numbers that are
below the rate profile

Observe that the expected number of random numbers needed for the simulation
is 1 + 2λmaxT . This is of advantage in the case where the rate profile is highly
dynamic, but the maximal rate is of moderate size. In this case, low-resolution time
discretization is a source of errors, but for fine discretizations, a very large number
of random numbers is needed.

This algorithm can be rephrased as follows (see Fig. 16.1): Consider a rectangle
with base T and height λmax that contains the rate profile. Draw a random number
N from a Poisson distribution with mean λmaxT . Place N points randomly (uni-
form density) and independently within the rectangle. The target spikes are the t-
coordinates of the points with a λ-coordinate below the rate profile.

16.2.3 Count Distribution and Operational Time

The count distribution of the number of spikes observed in an inhomogeneous Pois-
son process can be understood from the simulation algorithm. The inhomogeneous
Poisson process is obtained by independently rejecting spikes of a homogeneous
Poisson process, where the rejection probability is a function of time. Therefore,
their total number is also Poisson distributed, and we only have to know its mean
to determine the distribution completely. In view of the simulation algorithm (see
Fig. 16.1), the expected number of spikes in the observation interval [0, t] is propor-
tional to the corresponding area under the rate profile λ(t):

Λ(t) :=
∫ t

0
λ(s) ds. (16.3)

The function Λ(t) plays an important role in the theory of point processes. It rep-
resents the transformation from real time to operational time: If ti are the points of
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an inhomogeneous Poisson process with rate profile λ(t), then si = Λ(ti) are the
points of a homogeneous Poisson process with unit rate. They all lie in the interval
[0,Λ(T )] in (unit-less) operational time. The number of spikes in an inhomoge-
neous Poisson processes is distributed as

P[N spikes until T ] = Λ(T )
N

N ! e−Λ(T ).

We will come back to this concept in the next section, when introducing nonstation-
ary renewal processes.

16.2.4 Correlated Poisson Processes

In real data correlations between different neurons are often observed, see Chap. 12,
this volume. Here, we present a simple procedure to generate correlated Poisson
spike trains. The algorithm generates surrogate data with the following properties:
each individual spike train should be a Poisson process, and there is a nonvanish-
ing probability for spikes to occur simultaneously in pairs or larger groups of spike
trains. Independent Poisson processes cannot have the latter property, since the prob-
ability of having two spikes in the interval (t, t +dt) is (λ1 dt)(λ2 dt)= (λ1λ2) dt

2,
and so the rate (probability per unit time) of simultaneous spikes is necessarily 0.

To define correlated Poisson processes, we exploit the fact that a superposition
of two independent Poisson processes with rates λ1 and λ2, respectively, is again
a Poisson process with rate λ1 + λ2. If S1 and S2 denote the corresponding spike
trains, S1 + S2 is then used to denote the superposition.

We can now formulate our algorithm, referring to a population of n neurons.
A pattern is a spike that occurs simultaneously in groupM ⊆ {1, . . . , n} of neurons.
For each of the possible 2n − 1 different nonempty patterns in such a population,
we assume an independent Poisson process SM with rate λM that governs the occur-
rence of the corresponding joint spikes. The spike train of neuron i is then exactly
the superposition of all those pattern processes SM that include neuron i:

Si =
∑
i∈M

SM,

which has the rate

λi =
∑
i∈M

λM.

Two neurons Si and Sj have spikes in common if there are patterns M with
{i, j} ⊆M that occur with nonzero rate λM . The two neurons will then be (posi-
tively) correlated. More generally, consider a group G ⊆ {1, . . . , n} comprising k
neurons. If a patternM exists such thatG⊆M , all neurons ofG will have spikes in
common with rate

∑
G⊆M λM . In this case, correlations of order k are present (see

Fig. 16.2). For details, see Chap. 12, this volume.
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Fig. 16.2 Correlated multivariate Poisson processes (Staude et al. 2009). Shown are examples of
an ensemble of four neurons, colors indicate different patterns. A subgroup of neurons exhibits a
“higher-order correlation”, if and only if appropriate patterns occur with nonzero rate. The size of
patterns differs, and so do the pairwise correlation coefficients in the three examples shown. Left:
pattern size 4, γ = 1; center: pattern size 3, γ = 1/2; right: pattern size 2, γ = 1/6

We also mention that the generation of correlated point processes with controlled
properties is an important research topic, see, for example, Brette (2009), Krumin
and Shoham (2009), Macke et al. (2009), Niebur (2007).

16.3 Renewal Processes

16.3.1 Ordinary Renewal Processes

In the previous section we have generalized the Poisson process by defining

h
(
x(t),H(t)

)= x(t),
and we called the resulting process the inhomogeneous Poisson process. Let us now
assume that at time t the most recent spike of the neuron was fired at time t − τ and
that

h
(
x(t),H(t)

)= h(τ).
Such processes are called renewal processes, and it is justified to call τ the age of the
neuron. In this case, the instantaneous firing rate depends only on the time elapsed
since the most recent spike. For small dt , we have

P
[
spike in (t, t + dt) ∣∣ last spike at time t − τ ]= h(τ) dt.

The function h(τ) is called the hazard rate of the renewal process. A typical example
is the Poisson process with dead time: the neuron fires with constant rate like a
regular Poisson process, provided that it did not fire a spike within a fixed dead
time d .

An effective algorithm for the simulation of a renewal process can be devised,
provided that

h(τ)≤H for all τ ≥ 0

for some finite bound H . This condition is satisfied for Poisson processes, Poisson
processes with dead time, and also for a large class of other processes that are rele-
vant for the applications (in particular, gamma-processes and log-normal processes,
see Chap. 1, this volume).
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The algorithm to generate surrogate data on the interval [0, T ] is the following:

Renewal process:

(1) The set of the target spikes si initially contains only s0 = 0.
(2) Generate a Poisson random number P with mean HT .
(3) Place P random spikes ti uniformly and independently on the interval [0, T ].
(4) Sort the spikes so that ti < ti+1.
(5) For every spike ti draw an independent random number ri uniformly distributed

in [0,1].
For every reference spike ti :

(6) Compute the age

τi = ti −max{sk: sk < ti}.
(7) Check whether

ri <
h(τi)

H
.

(8) If yes, add ti to the list of target spikes.

Again, it can be shown easily that this algorithm indeed yields a renewal process
with the desired hazard rate.

Renewal processes can also be simulated by summing up interspike intervals.
But if the interspike interval distribution is not a standard one, there may be no fast
and effective algorithm to sample from it. In contrast, the procedure we have just
presented works for every bounded hazard rate. It needs only uniformly distributed
random numbers, in addition to a single Poisson random number.

In the algorithm described above, the first interval has the same distribution as
all the consecutive ISIs. Since the firing probability depends only on the age of
the neuron, it has age 0 at the beginning of the simulation. In other words, we are
simulating neuron that fired its last spike just before the observation started. This
choice of the first interval distribution is arbitrary, and it generally implies that the
process is not in equilibrium. In fact, the short-time statistics of a renewal process
strongly depend on the choice of the initial distribution. Such dependencies do not
exist for Poisson processes, since in that case the hazard rate does not depend on the
neuron’s age τ . For any reasonable ISI distribution, however, the age distribution
will, in the course of time, converge to a uniquely defined equilibrium distribution.
This equilibrium distribution of ages plays a special role, because it reflects the
properties of a process that has been running for a long time, far away from any
onset transients. A renewal process, where the first interval is sampled from this
distribution, is called renewal processes in equilibrium. Later in this section, we will
address the issue of generating surrogate data obeying the statistics of equilibrium
renewal processes.
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16.3.2 The Master Equation of a Point Process with
Time-Dependent Hazard

Before we discuss how to simulate a renewal processes in equilibrium, we address a
related topic. In the algorithm for the simulation of renewal processes described in
the previous section, it is natural (and legitimate) to allow h(τ) to depend not only
on the age τ , but also on time t . The algorithm then defines what is called a renewal
process with time-dependent hazard, and one could wonder to which degree the
resulting type of process can be characterized statistically. In particular, we want
to predict the instantaneous firing rate of such a process. For stationary renewal
processes, firing rate responses can be efficiently computed for arbitrary initial age
distributions by methods involving Laplace transforms (see Chap. 1, this volume).

In the case of a time-dependent hazard this is much more difficult, and even if one
simplifies the situation by assuming that the hazard factorizes according to h(t, τ )=
λ(t)h0(τ ), it is not possible to connect the statistics of the time-dependent process
to the statistics of the renewal process with hazard h0(τ ) in a simple manner. For
instance, it is not generally the case that the instantaneous rate of the nonstationary
process is obtained through multiplying the instantaneous rate of the stationary one
by λ(t).

However, it is possible to write down the master equation for the age variable
of the nonstationary equation (Gerstner and Kistler 2002). It is a partial differential
equation which describes the time evolution of the age distribution a(t, τ ),

∂

∂t
a(t, τ )=− ∂

∂τ
a(t, τ )− h(t, τ )a(t, τ ),

a(0, τ )= a0(τ ), (16.4)

a(t,0)=
∫ ∞

0
h(t, τ )a(t, τ ) dτ.

Here a(t, τ ) is the probability density that the neuron has age τ at time t , i.e., that
at time t its most recent spike was at time t − τ . The terms on the right-hand side
of the first equation are due to the ageing of the neuron and to the neuron being
removed from the distribution because it spikes, respectively. The second equation
represents the initial condition corresponding to the initial age distribution a0(τ ).
The third equation is a boundary condition reflecting the reinsertion of neurons at
age 0 after each spike. Therefore, the instantaneous firing rate is given by

f (t)=
∫ ∞

0
h(t, τ )a(t, τ ) dτ.

16.3.3 Renewal Processes in Equilibrium

The simulation method described above has both advantages and disadvantages in
the case of time-dependent firing rates. If many observations (trials) of the same
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experiment are available, it is, in principle, possible to estimate the time-dependent
hazard and to come up with a model matching the data. The associate procedures
are quite involved, though, and in practice it may be quite difficult to turn this into a
reliable statistical procedure. To circumvent this problem, one can use the approach
based on operational time described in Sect. 16.2.

For any given time-independent hazard rate, there exists an initial age distribu-
tion such that the rate profile is flat, the equilibrium distribution. In particular, for
h(t, τ )= h(τ), the equilibrium age distribution is the stationary solution of (16.4),
given by

aeq(t)= 1

μ
e−
∫ t

0 h(τ) dτ , (16.5)

where μ is the mean ISI. This leads us finally to the algorithm for simulating a
renewal process in equilibrium.

Renewal process in equilibrium:

(1) Draw a random number X from the distribution (16.5).
(2) The set of the surrogate spikes si initially contains only s0 =X.
(3) Generate a Poisson variable P with rate H(T −X).
(4) Place P random spikes ti (i = 1, . . . ,P ) uniformly on the interval [X,T ].
(5) Sort the spikes so that ti < ti+1.
(6) For every spike ti , draw an independent random number ri uniformly distributed

in [0,1].
For every spike i = 1,2, . . . :

(7) Compute the age

τi = ti −max{sk: sk < ti}.
(8) Check whether

ri <
h(τi)

H
.

(9) If yes, add ti to the set of surrogate spikes.

16.3.4 Nonstationary Renewal Processes and Operational Time

We already have observed in Sect. 16.2 that the map from real time to operational
time transforms an inhomogeneous Poisson process into a homogeneous one. The
same rationale can be applied to renewal processes. In fact, the inverse transforma-
tion can be employed to construct nonstationary renewal processes. For any given
rate profile λ(t), the transformation from real time to operational time is given by

Λ(t)=
∫ t

0
λ(s) ds.
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Fig. 16.3 General procedure to map stationary to nonstationary processes. Assume that the firing
rate profile (dashed line) and a realization of a nonstationary process are given. Based on the
rate profile, a nonlinear transformation from real time to operational time can be computed, based
on the integrated rate function (continuous line). A stationary spike train in operational time is
obtained by applying the transformation to every individual event time si =Λ(ti ). Also the inverse
operation can be realized, yielding an ensemble of nonstationary spike trains, the PSTH of which
exactly matches the prescribed firing rate profile

The inverse transformation is obtained by

Λ−1(s)=min
{
s′: Λ

(
s′
)≥ s}.

What is the effect of this inverse transformation? Start with a renewal process si with
unit rate, which is in equilibrium. It has a flat rate profile, i.e., the instantaneous
firing rate is constant in time. Apply the above inverse transformation and obtain
the process ti =Λ−1(si). This process will retain some statistical properties of the
original renewal process, but it will have a rate profile prescribed by λ(t). This
procedure is known as time warping. A visual explanation of this procedure can be
found in Fig. 16.3. Below, a formal description of the algorithm is given.

Time warping:

(1) Draw spikes (si) for a renewal process in equilibrium.
(2) Compute ti :=Λ−1(si) employing, e.g., bisection or Newton’s method.
(3) The target process is (ti).

16.3.5 Operational Time and Real Neural Data

Operational time can be employed for neural data analysis (see Chap. 3, this volume,
for applications). Assume that repeated trials of an experiment are performed, each
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Fig. 16.4 Continued
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Fig. 16.4 Spike trains recorded from a motor cortical neuron before the execution of an arm move-
ment at time 0 ( panel 1). The peristimulus time histogram (PSTH) estimated from 40 repeated
trials shows a clear modulation of firing rate several hundred milliseconds before movement onset
( panel 2). The firing rate profile extracted in this way was used to simulate 40 trials of a nonsta-
tionary Poisson process ( panel 3), of which the PSTH was again extracted for control purposes
( panel 4). Although the rate profile of the simulated Poisson ensemble is the same as the origi-
nal apart from inevitable statistical fluctuations, the irregularity of individual traces does not match
the original spike trains. This problem is solved by simulating a nonstationary gamma process with
suitable order parameter α instead of a Poisson process ( panel 5). This can again be done matching
the original firing rate profile ( panel 6). Data courtesy of A. Riehle, simulations by S. Grün

yielding a spike train of a given duration, such that the PSTH can be computed. If
this analysis shows that spike trains are nonstationary, it is difficult to infer a point
process to generate surrogate data directly based on the interspike intervals.

A possible solution is to map the recorded spikes to operational time, via the
transformation Λ(t). The point process is now stationary in operational time, and
a renewal process (or a stationary nonrenewal process) can be identified based on
the transformed spike data in operational time. Surrogate data are then obtained by
mapping the simulated stationary spike trains from operational time back to real
time, via the inverse transformation Λ−1(s). The method is explained with a con-
crete example in Fig. 16.4.
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Chapter 17
Generation and Selection of Surrogate Methods
for Correlation Analysis

Sebastien Louis, Christian Borgelt,
and Sonja Grün

Abstract Generating artificial data from experimental data as a means for imple-
menting a null hypothesis is becoming widely used. The reason is twofold: increas-
ing computer power now allows for this type of approach, and it has become clear
that the complexity of experimental data does not in general allow one to formulate
a null hypothesis analytically. This is particularly true for the correlation analysis of
parallel spike trains. Neglecting statistical features of experimental data can easily
lead to the occurrence of false positive results, which of course needs to be avoided.
Therefore surrogate data are used to generate the predictor by modifying the origi-
nal data in such a way that the feature of interest (temporal coordination of spikes)
is destroyed but other features of the data are preserved. The latter aspect is the
most demanding and requires the selection of a surrogate type that best fits the data
at hand. This chapter will demonstrate the need for such a selection and will show
selection criteria.

17.1 Introduction

In the correlation analysis of experimentally recorded parallel spike trains, one has
to thoroughly consider the statistical features of the data in order to prevent false
positive results (Grün 2009). Typically, the complexity of the data prevents us from
using analytical expressions for evaluating the significance of a correlation. Sim-
ilarly, parametric tests presuppose models that are typically simplifications of the
real neuronal data and thus may ignore important features. An alternative to these
approaches is to use surrogate data, i.e., modified versions of the original data, to
assess the significance (see Chap. 18). The objective of surrogate data generation
is to leave all statistical features of the original experimental data intact, except
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Table 17.1 Definition of example data sets used in our experiments. Each data set is composed of
40 trials of 1,000-ms duration for two neurons recorded simultaneously, with a time resolution of
1 ms. The complexity of the data sets is increasing from top to bottom; type 5 may be considered
as a representative example of experimental data (see also Fig. 17.2 for a visualization)

Type Process Nonstat. in time Cross-trial nonstat. γ �

1 Poisson no no 1 0

2 Poisson yes no 1 0

3 Poisson no yes 1 0.235

4 Poisson yes yes 1 0.5

5 Gamma yes yes 3 0.5

those we want to test for; these we wish to destroy. Stochastic modeling of neuronal
spike trains is an alternative way to generate artificial data that may be used for sig-
nificance evaluation (see Chap. 16). However, such approaches often imply model
assumptions that may not be tolerated.

In this chapter we illustrate how surrogates can be used to estimate the pres-
ence and significance of spike correlation. The main issue is to avoid false positive
(FP) results that originate from the destruction of statistical features inherent to the
original data. If one is interested in the spike synchronization between neurons, one
should aim at destroying the precise timing of the spikes, while conserving as far as
possible all other features, such as the time course of the firing rate and interspike
interval (ISI) statistics. In order to study the applicability of surrogates, we will de-
fine a number of example data sets exhibiting different statistical features found in
typical experimental data. We then proceed to apply different surrogate methods to
these data sets in order to explore how reliably spike correlation can be detected, in
the form of false negative (FN) results, and how significant the danger is to get false
positive (FP) results. This will be illustrated through the cross-correlogram (CCG)
analysis method (Perkel et al. 1967) (see also Chaps. 5 and 6) before quantifying the
performances of the various surrogates in the context of the Unitary Event analysis
method (Grün et al. 2002) (see also Chap. 10). In the final section, we discuss the
results and argue how to select the proper surrogate for a specific data set, and in
particular which choice is suitable for the analysis of experimental data.

17.2 Example Data Sets

In this section we explain the generation and choice of the data types used for
demonstrating the performance of the surrogate methods. Data are generated by
stochastic models exhibiting controlled statistical properties similar to those found
in experimental data. The properties are: nonstationarity of firing rates in time,
cross-trial nonstationarity of firing rates (parameter �), and (ir)regularity of the
spike trains (parameter γ ). The data sets are generated as renewal point processes
following a given rate profile (for details, see Chap. 16). Table 17.1 shows the cho-
sen parameter values and combinations, explained in the following.
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Fig. 17.1 Rate profiles for data sets with nonstationary firing rates. The thick black line represents
the reference profile. This rate profile is used for all trials for both neurons in the case of cross-trial
stationarity (data set of type 2). For data sets including cross-trial nonstationarity (type 4 and 5),
the rate profile per trial is chosen randomly from two profiles. These differ from the default profile
by an enhanced or reduced (modulation factor �= 0.5 in gray) amplitude of the response peaks.
The mean profile averaged across trials corresponds to the reference profile

In case of stationary firing rates in time (types 1 and 3), the spike trains are
generated according to a constant rate of λ = 37.75 Hz, insuring an average spike
count consistent with richer data sets. Data sets with nonstationary firing rate in time
(types 2, 4, 5) are generated according to rate profiles that mimic a phasic-tonic rate
response (starting at 100 ms after trial onset at 0 ms), followed by an off-response
(beginning at 600 ms) (Fig. 17.1). The two rate modulations are modeled as sums
of two exponential functions with different amplitudes (Nawrot et al. 1999).

In case of absence of cross-trial nonstationarity (type 2), all trials of both neurons
are modeled according to the profile shown in black in Fig. 17.1, called reference
profile. Cross-trial nonstationarity is then introduced by a modulation of the maxima
of the reference profile by a factor � to derive a pair of profiles with higher and
lower rates. The strength of this modulation is quantified by 0≤�≤ 1, defining for
the high profile, the peak heights relative to the peak heights of the reference profile:
Max�,1,2 =Maxref,1,2(�+1), where Max is the maximum relative to the base firing
rate (see Fig. 17.1, e.g., gray curves for�= 0.5). The higher rate profile is obtained
by increasing the function amplitudes, and the lower profile is reconstructed by
exploiting the fact that the reference profile is the mean of the two. Thus, the average
rate (summed over trials) is conserved. For a given �, the rate profile is selected by
randomly choosing one of two profiles per trial. Since we aim to study the worst case
scenario, which is given by trial-by-trial rate covariation of the neurons (see Grün et
al. 2003 for details), we select trial-by-trial the same rate profile for both neurons.

For comparability, the trials of data type 3 (stationary within but nonstationary
across trials) are created with a constant rate corresponding to the mean rate of the
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upper and the lower profile leading to a modulation factor of �= 0.235 (compared
to �= 0.5 in the nonstationary case).

To account for the (ir)regularity of the spike trains, we model these as Gamma
processes (Chap. 1). The shape factor γ allows for the generation of spike trains
with arbitrary coefficients of variation (CVs; see Chap. 3). In data sets of types
1–4 we model the spike trains as Poisson processes (γ = 1), which have in the
stationary case a CV of 1. To account for the fact that experimental spike trains may
exhibit more regular spike trains (Nawrot et al. 2007, 2008; Shinomoto et al. 2009),
we include a data set with regular spike trains (γ = 3; type 5). The spike trains
are initially generated as unit rate processes with a chosen γ in operational time.
The resulting processes are then mapped to real time through the integrated rate
profile, producing rate and interspike interval modulated spike trains (Chap. 16).
The mapping from real time (t) to operational time (τ ) is given by τ = ∫ t0 λ(t) dt ,
where λ(t) is the rate profile (Chap. 3).

Table 17.1 shows the parameter values and combinations selected for our exam-
ple data types that will be used in the following. The complexity of the data types
increases from type 1 to type 5. The most complex data set (type 5), exhibits non-
stationarity within and across trials, in addition to a shape factor of 3 (in operational
time), introducing regularity in the spiking activity. The visualization of this data
type in Fig. 17.2 clearly shows the strong cross-trial variability of spike counts and
a nonexponential ISI distribution.

The reference data sets are generated as “independent” spike trains without cor-
related spiking on a finer time scale than the rate covariation. To create data sets that
include spike synchronization, we generate the data types of Table 17.1 as back-
ground activity and additionally insert coincident spike events at a rate λc in the
order of 1 to 3 Hz homogeneously into the spike trains (see details in Grün et al.
1999). The coincident spikes are inserted with a small temporal jitter (±1 ms) to
mimic experimental data. From the data sets that include injected synchrony we
examine the FN rates and compare how sensitive the different surrogate methods
are.

17.3 Surrogate Generation

In order to demonstrate the impact of surrogate schemes on correlation analysis, we
examine six surrogate generation methods, which are commonly used in the litera-
ture (for a review, see Grün 2009) and cover many issues that need to be considered:
trial shuffling, spike time randomization, spike train dithering, spike time dithering,
joint-ISI dithering, and spike exchanging (see the top part of Table 17.2).

Some other surrogate methods are also included in Table 17.2 for completeness.
ISI shuffling within and across trials (Nádasdy et al. 1999; Masuda and Aihara 2003;
Ikegaya et al. 2004), for example, will have similar effects as spike time random-
ization and trial shuffling respectively, the former flattening the rate profile to a sta-
tionary one, and the latter ignoring cross-trial nonstationarities. A localized form of
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Fig. 17.2 Visualization of a type 5 data set. a. Dot displays of the two simulated neurons;
b. Peri-stimulus time histograms (PSTHs, bin width 5 ms) of each of the neurons; c. Spike counts
per trial. Solid lines mark the mean spike count across trials, and dashed lines mark± one standard
deviation for the case in which counts were produced by a stationary Poisson process of identical
mean firing rate, as a reference for the observed variability. The observed variability is due to the
fact that the count distribution is in fact bimodal, being a mixture of two count distributions with
different means. d. Interspike interval (ISI) distributions of both neurons. Note the deviation from
the exponential distribution corresponding to stationary Poisson processes with the same average
firing rate (black). Colors correspond to the two neurons

within-trial ISI shuffling would constitute an interesting additional surrogate. How-
ever, it would be difficult to compare the “locality” parameter of the shuffle with the
dither width of dither-based methods. Cross-neuron spike shuffling (within the same
trial) has also been used in the analysis of experimental data (Nádasdy et al. 1999;
Ikegaya et al. 2004) but is only applicable to population recordings. For two neu-
rons, exchange of spikes does not destroy correlation.

The shift predictor (Gerstein and Perkel 1972) was one of the earliest surrogate
methods proposed, gaining over trial shuffling through the possibility to accommo-
date for slow drifts in firing rates across trials. However the cross-trial nonstation-
arity exhibited by data sets 3, 4, and 5 is random: each trial rate profile is drawn
independently from one of two profiles. Thus the performance of the shift predictor
is expected to be very similar to trial shuffling.

In the following we briefly describe the generation of the surrogates and the
features they preserve, together with Python routines (sometimes simplified in a
pseudocode manner) by which we implemented them.
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Table 17.2 List of surrogates with execution times. The first six methods are those being com-
pared in this book chapter. Durations are expressed as factors relative to the duration of trial shuf-
fling, which is the fastest method for generating surrogates. Values are rounded to integer multiples
of 0.5. Sp-exg runtime depends on the data as explained in the text

Surrogate type Abbreviation Req. time

trial shuffling tr-shu 1

spike time randomization sp-rnd 2.5

spike train dithering tr-di 1.5

spike time dithering sp-di 6

joint-ISI dithering jisi-di 7

spike exchange sp-exg 7–10

ISI shuffling (within trials)

ISI shuffling (across trials)

spike shuffling (across neurons)

shift predictor

The input to any surrogate generation method is a list TS= [T0,T1, . . . ,TN−1]
of trials for one neuron. Each trial consists of a list of spike times, that is, T =
[t0,t1, . . . ,tn−1] with 0≤ ti < tmax. Here tmax is the trial duration, which we
assume to be the same for all trials. A surrogate data set is generated from the trials
of one of the two neurons in each data set, while the trials of the other neuron are
kept intact. This is sufficient to destroy correlations on a chosen time scale between
the spike trains (Pazienti and Grün 2007). For correlation analysis approaches in-
cluding more than two parallel spike trains, typically more than one of the spike
trains has to be modified.

Figure 17.3 illustrates each method schematically and is meant to clarify what
the pseudocodes are effectively implementing. We now proceed to consider each
surrogate method separately and begin with trials shuffling.

17.3.1 Trial Shuffling

Trial shuffling (tr-shu) is a well-established way of destroying the relationship be-
tween simultaneously recorded spike trains. The trials of one of the neurons are
randomly permuted, so that each trial is no longer paired with the corresponding
trial of the other neuron, but with a randomly selected one. Provided that it is rea-
sonable to assume that possible coincidences occur at different times in different
trials, trial shuffling can be expected to effectively destroy all existing spike correla-
tions across neurons (Gerstein and Perkel 1972). However, the internal structure of
the spike trains, including time dependent variations of parameters within trials, is
left intact.
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Fig. 17.3 Illustration of the surrogate methods examined. a. Trial-shuffling (tr-shu), which ran-
domizes trial IDs. b. Spike time randomization (sp-rnd). c. Spike train dither (tr-di) relative to the
trial onset (dashed line). d. Uniform spike dithering (sp-di) with dither range (box). e. Joint-ISI
dithering ( jisi-di) according to the joint-ISI distribution. f. Spike exchange across trials (sp-exg)
within predefined windows (dotted lines)

Trial shuffling is easily implemented with the built-in Python function shuffle
(available in the package random) which permutes the elements of a list:

from random import shuffle
def TrialShuffling(TS):

ouTS = [T for T in TS] # copy the top level, i.e., the list of trials
shuffle(ouTS) # shuffle the copied list of trials
return ouTS # return the shuffled copy

Following the # signs are comments indicating the function of the code. Note that
the trial set TS given as an argument is copied, because shuffle works in place
and thus modifies its argument. This is a fundamental difference to MatLab, where
all arguments to functions are passed “by value”. That is, in MatLab a function
receives only a copy of any object passed to it, and any changes made to an argument
inside a function do not have any effect outside it. Python, however, uses “call by
value” only for elementary data types (like integer and real-valued numbers) and
“call by reference” for all more complex data types (like lists and tuples). That is, a
list passed to a Python function is only a reference (or pointer) to this list, and thus
the same list that is accessible outside the function. As a consequence, any changes
made to the list inside the function are visible outside.

The advantage of “call by reference” is much higher efficiency, because unnec-
essary copying is avoided. The disadvantage is that one has to be more careful when
calling functions: they may modify the arguments passed to them. Likewise, when
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writing functions, one should strive not to modify arguments that are passed by ref-
erence, as these changes will be reflected outside the function.

Here the function shuffle modifies its argument, and thus applying it directly
to the trial set TS would change it, and this change would be visible outside the
function TrialShuffling. Hence TS has to be copied—although it suffices to
copy its top level, as no changes are made to the individual spike time lists. Note that
MatLab would always copy both levels, thus introducing unnecessary overhead.

The copying is done with a list comprehension (creating a list from an existing
list), a very powerful feature of the Python language, which makes handling lists
and tuples very easy and efficient. A list comprehension is a statement enclosed in
square brackets, indicating that a list is to be formed (round parentheses indicate
a tuple—an “unchangeable” list). The statement consists of an expression describ-
ing the list elements and an iterator (here a for loop over the elements of TS),
which provides the range of values for which the expression is to be evaluated. Each
iteration generates one list element.

The created copy ouTS of the trial set TS is then shuffled and returned. Note
that the original argument TS is left unchanged and thus not affected outside the
function. Trial shuffling is clearly the fastest surrogate generation method, since it
does not go down to the level of the spike times (only the top level of the list is
copied and shuffled). To convey an idea of the speed of the other methods, we state
their execution times relative to this method as summarized in Table 17.2.

17.3.2 Spike Time Randomization

Randomizing the times at which spikes occur (sp-rnd) is another very simple sur-
rogate generation method, in which the number of spikes in a trial is preserved,
but the spike times are randomly chosen in the trial duration, that is, in the interval
[0,tmax[.

Spike time randomization is easily implemented with the built-in Python function
sample (also available in the package random), which produces a sample of given
size, without replacement, from a provided list or range. Here we sample len(T)
spikes times from the trial duration, that is, from the interval [0,tmax[:
from random import sample
def SpikeTimeRandomization (TS):

return [sample(xrange(tmax),len(T)) for T in TS]
# for each trial: sample as many new spike times as there are spikes

Note how list comprehension makes it possible to write this procedure as a single
expression: for each trial T, a sample of len(T) spike times is drawn from the
range [0,tmax[. These samples are combined into a list and then returned.

Spike time randomization is a relatively fast surrogate generation method, but
about 2.5 times slower than trial shuffling, mainly due to the need of generating
many (pseudo)random numbers for the sampling.
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17.3.3 Spike Train Dithering

In order to destroy possibly existing coincidences, but conserve firing rate and ISI
properties, one may consider spike train dithering (tr-di). In this method an entire
spike train of one neuron is shifted relative to that of the other neuron by a uniformly
distributed amount of time (Pipa et al. 2008; Harrison and Geman 2009). To be more
precise, for each trial, a random value is sampled from a given interval (symmetric
around 0, like [−w,w], with the width w to be specified by a user), by which all spike
times are then shifted. Interspike intervals are fully maintained, and firing rates are
smoothed on the timescale of the dither width.

We implement spike train dithering with the built-in Python function randint
(also available in the package random) to generate the random shift value:

from random import randint
def SpikeTrainDithering (TS,w): # TS: trial set, w: shift window size

D=[randint(-w,+w) for T in TS] # create dither values—one per trial
return [[(t+d+tmax)%tmax for t in T] for d,T in zip(D,TS)]

# shift/roll spike times in each trial

Note how nested list comprehensions and the function zip make it possible to
write this procedure as two simple expressions. The first expression generates a
different shift value for each trial. In the second expression these shift values are
paired with the trials using the built-in Python function zip. This function returns
a list of tuples (here specifically: pairs), the ith element of which consists of the ith
elements of each argument list. These individual elements are then accessed by d
(shift value) and T (trial). In the inner list comprehension, the shift value is added to
each spike time t. Note here that, in order to conserve the net time overlap between
the trials of the two neurons and thus not to underestimate the expected coincidence
count, we actually roll the spike train. That is, spikes that are shifted out of the
train at one end are shifted in at the other end (implemented by using the new spike
time modulo the trial duration tmax). This is acceptable for our data sets, because
the rate profiles are such that start and end rates are the same. In general, however,
this may not be the case, and a readjustment of the analysis time window may be
necessary.

Spike train dithering is almost as fast as trial shuffling, taking only about
1.5 times as long to execute in Python. It is faster than spike time randomization,
because it has to generate much fewer (pseudo)random numbers.

17.3.4 Spike Time Dithering

Spike dithering (also known as “jittering” or “teetering”) was introduced in (Date
et al. 1998) and has been used in many studies (Abeles and Gat 2001; Hatsopoulus
et al. 2003; Gerstein 2004; Shmiel et al. 2006; Jones et al. 2004; Maldonado et
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al. 2008; Butts et al. 2007). Spike time dithering (sp-di) randomly displaces each
individual spike within a small time window around its original position. We prefer
to use the term dithering to indicate the manipulation of the data in contrast to the
temporal jitter of joint spike events found in the experimental data.

The dither probability distribution within the time window is typically chosen
to be uniform or Gaussian. We will restrict ourselves to the former as it is more
common in the literature. This procedure destroys the exact timing of the spikes and,
in consequence, the temporal relations between spikes of simultaneously observed
neurons (Pazienti and Grün 2007; Pazienti et al. 2008).

To implement spike time dithering, we use the randint function again and
replace each spike time t by randint(t-w,t+w). To make sure that the dithered
spike still falls into the interval [0,tmax[, we bound the acceptable range between
0 and tmax-1:

from random import randint
def SpikeTimeDithering (TS,w): # TS: trial set, w: dither window size

return [[randint(max(t-w,0),min(t+w,tmax-1))
for t in T] for T in TS]

# for each spike in each trial: sample a new time in dither window

Note again how list comprehensions make it possible to write this procedure in
one line. The lower bound of the sample window is max(t-w,0), where t is the
old spike time and w the window size, to make sure that any new spike time is
≥ 0, and the upper bound is min(t+w,tmax-1) to make sure that any new spike
time is <tmax. A new spike time is sampled for each spike time t in each trial T.
Note, however, that the above code is a simplification of our actual implementation,
because it does not ensure that all dithered spikes are distinct, inducing a possible
loss of spikes. For reasons of simplicity, we skip the technical details of how we
achieved distinct dithered spikes without losing spikes and without a prohibitively
large execution time penalty.

Spike time dithering is one of the slower surrogate generation methods, taking
(in the more sophisticated version that guarantees distinct spike times) about 6 times
as long as trial shuffling but does not take prohibitively long to execute.

17.3.5 Joint Interspike Interval Dithering

While in spike time dithering the new position of a spike is sampled from a local
uniform distribution centered at the old spike time, joint interspike interval dither-
ing (jisi-di) restricts the new spike time in such a way that it falls in between the
preceding and the following spikes. That is, the sampling window is the intersection
of the dithering window and the window spanned by the preceding and succeeding
spikes. Furthermore, the sampling distribution is no longer uniform but is chosen
in such a way that it reflects the distribution of the lengths of pre- and post-spike
intervals as it is present in the original spike trains. More precisely, Gerstein (2004)
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suggested to dither spikes according to the square-rooted joint-ISI (JISI) histogram
for adjacent intervals. Dithering a spike on such a two-dimensional surface corre-
sponds to a movement along a trajectory perpendicular to the principal diagonal (see
Fig. 17.3e).

Since our actual Python code is somewhat lengthy (due to several technical de-
tails arising from the added complexity of the method), the following is a simplified
version, which spells out the key steps of the procedure:

def JISIdithering (TS,w): # TS: trial set, w: dither window size
M = sqrt(JISI(TS)) # take square root of joint-ISI distribution
ouTS = [ ] # initialize the output trial list
for T in TS: # traverse the trials, expanded by pseudo-spikes

U = [-1]+T+[tmax] # to unify handling of first and last interval
ouT = set( ) # initialize the output set of spike times
for i in xrange(1,len(U)-1): # traverse the spikes of the trial

S = slice of M corresponding to U[i+1]-U[i-1]
truncate S to [max(U[i]-w,0),min(U[i]+w,tmax-1)]
o = U[i]+x with x distributed according to S
ouT.add(o) # dither the spike and add it to the output

ouTS.append([t for t in ouT])
# add the output set as a list to the trial list

return ouTS # return the created dithered trial set

The matrix slice referred to in the above code contains those matrix elements, for
which the sum of the row and column indexes equals U[i+1]-U[i-1] (the time
difference between the pre- and the post-spikes and thus the sum of the lengths of
the pre- and post-spike intervals). These elements are located on a diagonal that is
perpendicular to the main diagonal of the matrix M.

In our actual Python code the JISI matrix is smoothed with a Gaussian kernel
in order to avoid problems that could result in sparsely populated parts of the ma-
trix. In addition, sophisticated preprocessing takes place, which extracts the matrix
slices beforehand and transforms them into cumulative distribution functions (one
for each possible value of U[i+1]-U[i-1]), from which one can sample much
more quickly. Finally, additional code tries to avoid that the same spike time is cho-
sen more than once (inducing spike loss). The idea is to repeat a sampling if it has
yielded a spike time that already exists in the output and to drop the spike only if
several repetitions failed.

Due to various optimizations, which are mainly concerned with preprocessing
the joint interspike interval distribution, this method is (in our implementation) not
much more costly than simple spike time dithering. It takes about 7 times as long as
trial shuffling, compared to a factor of 6 for normal spike time dithering.

17.3.6 Spike Exchanging

Spike exchanging (sp-exg) splits all spike trains into exclusive windows of a user-
specified size and then reassigns the spike times within the windows across the trials
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(Harrison et al. 2007; Smith and Kohn 2008). That is, a spike can only be moved to
a time at which a spike occurs in at least one trial. In this process both the number
of spikes per trial window and the number of spikes per time bin are preserved.
Necessarily, this places fairly tight restrictions on the possible reassignments, which
sometimes make it difficult to find a spike assignment that differs (significantly)
from the one in the original data.

As for jisi-di, we present here a simplified version of our Python code, because
the actual implementation is again, due to certain technical subtleties, somewhat
lengthy.

def SpikeExchanging (TS,w): # TS: trial set, w: window size
ouTS = [[ ] for T in TS] # initialize the output trials
for i in xrange(0,tmax,w): # traverse the time windows

W,C = [],[0] # initialize the spike time and offset lists
for T in TS: # traverse the trials

X = [t for t in T if i <= t and t < i+w]
W.extend(X) # add spikes of trial T in current window
C.append(C[-1]+len(X)) # note offset of last spike per trial

conflict = True # execute the following loop at least once
while conflict: # while no valid reassignment found

shuffle(W) # shuffle spikes (reassign spikes to trials)
conflict = False # default: no conflict in reassignment
for j in xrange(len(TS)):

# traverse the trials
if len(set(W[C[j]:C[j+1]])) != C[j+1]-C[j]:

conflict = True # if duplicate spike times in a trial,
break # the reassignment is invalid, so repeat

for j in xrange(len(TS)): # append reassigned spikes to the output
ouTS[j].extend(W[C[j]:C[j+1]])

return ouTS # returned the reorganized spike trains

Intuitively, the above code generates permutations of a list of all spikes in a win-
dow [i∗w,(i+1)∗w[ and checks whether the sections that refer to a trial do not
contain duplicates. If this is the case, the permutation specifies a valid reassignment
of the spikes to the trials and thus is appended to the output. Otherwise a new per-
mutation is generated and tested, until a valid permutation is found.

In the actual implementation, the splitting into windows is achieved in a better
(faster) way than in the above code (all windows are generated in a single traversal
of the trials and stored in a matrix), and the permutation generation is only executed
a very limited number of times. After that, if no valid permutation could be found, a
more sophisticated procedure is executed, which is slower but much more likely to
produce a valid reassignment. The basic idea is to collect all spikes that occur at the
same time, because such spikes must be assigned to different trials and thus are the
reason for invalid reassignments. Counters for the number of spikes already assigned
to a trial keep track of the trials further spikes may still be assigned to, so that the
number of spikes a trial has in a window is not changed. The spikes are reassigned
by processing the occurring spike times in decreasing order of their frequency. This
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order increases the chances that enough trials are still available to receive another
spike. Nevertheless, even this procedure may fail, and thus it is repeated only up to
a limit, and if no valid reassignment is found, the original assignment is preserved.
However, in our experiments we never observed that this was necessary.

Spike exchanging is the most costly surrogate generation method, and its exe-
cution time depends strongly on the data: usually it takes (in our implementation)
between 7 and 10 times as long as trial shuffling. Nevertheless, compared to the
other methods, these times are still bearable and thus not an argument against the
application of this method.

17.4 Correlation Analysis

In this section we show how surrogates can be used in testing for the presence
of correlation between spike trains and for deriving its significance. This will
also include a study showing how well various types of surrogates perform in
this task. We begin with demonstrations in the context of the cross-correlation
analysis and then compare the surrogate methods by concentrating on coincident
events and their significance as done in the Unitary Events analysis (Grün 2009;
Grün et al. 2002).

17.4.1 Cross-Correlogram Analysis

The cross-correlogram (CCG) is a histogram of spikes of one neuron relative to the
spike times of another neuron (for details, see Chaps. 5, 6). Thus the CCG contains
coincidence counts as a function of the time difference τ of joint-spike events. It can
be computed on arbitrary time scales by changing the bin width h. In Fig. 17.4a, the
black line shows the CCG on h= 1-ms resolution obtained from a data set of type 5.
It shows a broad, symmetrical peak around zero delay which lasts approximately
±100 ms. Superimposed onto this one observes a very fine peak (a few ms wide)
centered at τ = 0 ms, which results from the inserted coincidences (λc = 2 Hz with
1-ms jitter). The broad peak is due to the nonstationarity in the firing rates of the
neurons which leads to a trivial increase in joint-spike events. Typically the aim
of cross-correlation analyses is to differentiate temporally coordinated spike events
from chance coincidences produced by (covarying) firing rates. This is done by
comparing the empirical CCG to a predictor which conserves the firing rates. The
simplest way to do so is to make use of surrogate data.

CCGs computed from different types of surrogate data are shown in Fig. 17.4a
(colored curves). The thick and fine lines represent the mean and the mean plus
two standard deviations, respectively. Such a confidence limit is sometimes used as
a threshold to detect significant correlations between neurons (Berger et al. 2007).
We observe that the threshold (representing a significance level of approximately
5%) is exceeded at several time lags through random fluctuations, as expected by
multiple testing.
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Fig. 17.4 Surrogate cross-correlograms (CCGs) and coincidence distributions. a. Comparison of
CCGs of original and surrogate data. The CCG of an original data set of type 5 (40 trials, �= 0.5,
γ = 3, λc = 2 Hz, jitter=±1 ms) is shown in black. Surrogates generated by trial shuffling (tr-shu,
blue), spike time randomization (sp-rnd, red), and spike dithering (sp-di, generated with a ±20 ms
dither window; cyan) are shown as the mean over 1,000 surrogates (thick lines) and the mean plus
twice the standard deviation over the surrogates ( fine lines). The slight curvature seen in the CCG
for sp-rnd is due to a smaller number of samples at larger time lags. b. Estimating significance.
The coincidence count distribution constructed from 1,000 surrogates allows for the estimation
of the significance (p-value) of the empirical coincidence count (thick black vertical line) of the
original data (type 5) with a jittered (±1 ms) injection of coincidences at a rate of λc = 0.5 Hz.
Significance of the empirical count is derived using the same three surrogates as in a. To account
for the temporal jitter of the coincidences, we use as test statistics the sum of coincidences up to a
±1 ms time lag

Obviously, the different surrogates differ in the shapes of their CCGs. Some,
such as those generated by tr-shu (blue) or sp-di (cyan), follow the shape of the
original CCG quite closely. In contrast, sp-rnd (red) leads to a total destruction of
the original shape and produces a flat histogram. This is due to the fact that sp-
rnd reduces an inhomogeneous process to a homogeneous one, removing all rate
fluctuations. Using this surrogate method to detect precise temporal correlation in
such a data set would be completely inadequate, as even the broad peak itself (in
the absence of excess synchrony) becomes highly significant (i.e., above the two
standard deviations threshold), leading to FP results. In consequence, this surrogate
method should only be used when firing rates are stationary within trials.

The sp-di method (±20 ms) in contrast follows the original CCG closely, ex-
cept for the narrow peak around 0 ms time lag. This demonstrates a basic feature of
the spike dithering approach. Although the dithering somewhat smooths the origi-
nal rate profile, the slow components are nonetheless preserved which is reflected
directly in the CCG. The center peak of the original CCG exceeds the two-standard-
deviation threshold (corresponding to a p-value of 5%) and would convincingly
qualify the pair as exhibiting excess synchrony.
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The trial shuffling of the data (tr-shu) destroys the cross-trial covariation in fir-
ing rates between the two neurons. This means trials of one neuron following the
upper rate profile are occasionally paired with trials of the other neuron following
the lower profile. This leads to a lower predicted number of chance coincidences
than by using sp-di (the blue CCG has a smaller peak than the cyan one). Here
again the method would detect the excess synchrony as significant, but the result is
now questionable. More extreme cases of nonstationarity across trials may lead to a
significant result even though no excess synchrony is present.

The other three surrogate schemes we consider in this chapter are generated on a
time resolved, trial-by-trial basis and thus conserve rate modulations. Their resulting
CCGs are not distinguishable from the spike dither CCG (not shown here).

The above discussion shows how useful the CCG is in visualizing the effect a
surrogate method may have on the original data. Thus we would recommend as a
starting point, before proceeding to more advanced analyses, to view the resulting
CCG. This could help in immediately ruling out an inadequate method.

17.4.2 Significance of Spike Coincidences

To quantify the applicability of surrogates for significance estimation of spike corre-
lation, we concentrate now on the entries of the central peak of the CCG, i.e., spike
coincidences. We count the total number of coincidences nemp in the original data
(test statistic) and decide whether they occur significantly more often than expected
by chance given other features of the data. To estimate the p-value of the empirical
count, we compare it to the coincidence count distribution derived from the surro-
gate data which has destroyed fine temporal correlation. This basically constitutes
the Unitary Event (UE) analysis approach (for details, see Chap. 10 and Grün et
al. 2002). However UE analysis is applied in a time-resolved manner to resolve the
dynamics of correlation and can also be used to detect the correlation between more
than two simultaneously recorded neurons. We focus here on pair coincidences. As
the excess synchrony is injected homogeneously, we consider our data as one time
segment.

Under specific conditions (homogeneous Poisson process), one can express the
coincidence count distribution for the significance estimation analytically as a Pois-
son distribution with a mean given by the expected coincidence count derived as the
product of the firing probabilities of the neurons. However, if the data do not fulfill
such conditions, one should instead use surrogate data to generate the distribution.
From the repetitive creation of surrogates we can construct a coincidence count dis-
tribution. The vertical black line in Fig. 17.4b marks the empirical coincidence count
nemp derived from a data set of type 5. It is compared to the distributions of coinci-
dence counts (nsurr) derived from different surrogate types. Obviously, these distri-
butions differ in their mean and width. In all the three cases shown (same methods
as illustrated for the CCG in Fig. 17.4a), the excess spike synchrony (λc = 0.5 Hz)
present is detected as significant for a significance level of 0.05. However, as ob-
served in the CCG analysis, the sp-rnd method, which is neglecting the modulation
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of the firing rates, severely underestimates the expected number of coincidences.
The distribution generated by trial shuffling is shifted to higher coincidence counts,
and for the dithering, it is even shifted a little more to the right. From our previous
CCG analysis we know that spike dithering accounts best for the changes in the fir-
ing rates, out of these three surrogate methods. Consistent with this, its distribution
is the most conservative.

17.4.3 Performance of Surrogates

To evaluate the true performance of the surrogates, we now look at FP and FN
rates with data sets of type 5, as they contain many typical features of experi-
mental data. For each parameter configuration and surrogate method, the FP and
FN rates are obtained as follows. We begin by generating 1,000 data sets with
the same parameter configuration. For each data set, we produce 1,000 surro-
gate versions. From these surrogate versions we construct a surrogate coincidence
count distribution and calculate the p-value of the original coincidence count.
Thus, for each parameter configuration and surrogate method, we obtain 1,000
p-values (pi for i = 1, . . . ,1,000). Given a significance level α, which we fix
at 0.01 in the following, we convert these results into counts of positive (signif-
icant) results, i.e., N+ =∑i ϕ(pi ≤ α), and counts of negative (nonsignificant)
results, i.e., N− =∑i ϕ(pi > α), where ϕ(x) = 1|0 if x is true|false. If the cho-
sen parameter configuration involves injected synchrony, then the FN percentage
is given by N−/N · 100% (where N = N+ +N− = 1,000), i.e., the percentage of
falsely undetected correlation. Conversely, if the parameter configuration does not
involve injections, then the FP percentage reads 100 · N+/N indicating the per-
centage of falsely detected correlation. We found that this level of repetition pro-
vided us with stable estimates of FN and FP rates (standard deviation in the order
of 1%).

In Fig. 17.5 we explore the impact of specific parameter configurations on the oc-
currence of FN and FP results, over all surrogate methods. We start with Fig. 17.5a,
in which the percentage of FN results is shown as a function of the degree of
cross-trial nonstationarity � of the firing rates. The general anticipated trend is
for FN rates to decrease as the strength of the nonstationarities increases, at least
for surrogate methods which smooth the rate profile within trials or across trials.
This is due to the fact that the chance contributions originating from neglected rate
modulations increase and thereby “reinforce” the impact of injections. The effect
is quite noticeable for tr-shu and sp-exg. Tr-di is the most conservative method
and keeps high FN rates throughout, between 10% and 12%. The sp-di and jisi-di
also show a weak dependence on �, although they are less conservative. As ex-
pected, sp-rnd has 0% FN throughout, which is due to the overall destruction of the
rate modulation in the surrogates, leading to an underestimation of chance coinci-
dences.
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Fig. 17.5 FP and FN rates as functions of data parameters for different surrogate types. All four
panels are based on data sets of type 5, whose parameters were systematically varied. Surrogate
types are the same as introduced in Sect. 17.3, and the injected synchrony was jittered by ±1 ms.
The significance level was set to 1%. a. Percentages of FN as a function of the degree of cross-
trial nonstationarity parameterized by �. The injection of coincidences is homogeneous and at
a constant rate of λc = 2 Hz, and γ is set to 3. b. FN percentages as a function of coincidence
injection rate (homogeneously injected). Other parameters are set constant to �= 0.5 and γ = 3.
c. FP percentages are shown as a function of cross-trial nonstationarity parameterized by �, γ is
set to 3, λc = 0 Hz. d. FP percentages as a function of the regularity of the spike trains expressed
by the shape factor γ = 0.2 to 10 (not equidistant), �= 0.5, and λc = 0 Hz

Not surprisingly, we find for the same surrogate 0% FN rate throughout various
injection rates (from 1 Hz to 3 Hz) and fixed�= 0.5 (Fig. 17.5b). For the other sur-
rogate types, the FN rate decreases with increasing injection rate due to an increase
of signal-to-noise (chance coincidence) level. We find again that tr-di is the most
conservative (lowest FP rate), followed by sp-exg, jisi-di, sp-di, and tr-shu in order.
Above an injection rate of 3 Hz, all surrogate methods reliably detect the presence
of excess synchrony.

The initial surrogate ordering of FN rates found in Fig. 17.5b is reversed in the
FP rates observed in Fig. 17.5c for high �. The breakdown of the tr-shu method
is evident, rapidly worsening once � > 0.4. Interestingly, it performs better than
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other methods for small cross-trial nonstationarities (� < 0.2), with the exception
of tr-di. This is because tr-shu does not erode the rate profile like other dithering
methods do. Sp-di shows to be quite susceptible to sharp rate transitions, provided
that the dithering window is large enough. We clearly see a pronounced increase
in FP rates for this method, nearly reaching 40% at �= 1, corresponding to a first
rate burst of 190 Hz. The jisi-di method is much more robust, keeping an FP rate
below 20%. This can be explained by the fact that for the same dither range, the
jisi-di method does not displace spikes as much as the uniform method (sp-di), as
it follows the square-rooted JISI profile and can have forbidden regions within the
range. The sp-exg method is more noticeably affected by the increase in �, starting
at 7% and ending just below 20%. The train dither on the other hand is the most
conservative, seemingly unaffected by the strength of the modulations.

This is also the case in Fig. 17.5d, in which we plot the FP rate as a function of
the shape parameter γ (from 0.2 to 10) used in the generation process with fixed
� = 0.5. This corresponds to a coefficient of variation (CV) lying between 0.3
and 1.6. Tr-di remains in the FP range of 1% to 4%, whereas all other methods see
their FP rates increasing as the processes become more regular. This is understand-
able: the strength of the rate modulation is kept constant (first burst either 150 Hz or
70 Hz), while the regularity is increased. In these high-rate regions, regularity will
produce a wider coincidence count distribution (Pipa et al. 2010), and if the surro-
gate method destroys this regularity, FP results are to be expected. This is the case
for the sp-di method whose performance again worsens for γ > 2, nearly reach-
ing 30% for γ = 10. Even though it is designed to conserve the ISI distribution,
the performance of the jisi-di dither method also deteriorates with regularity. The
reason is that we are applying it to an inhomogeneous process, for which the ISI
distribution is not as meaningful. This ISI distribution is modulated by the rate pro-
file, within and across trials, and thus a single JISI distribution produced over all
times and trials cannot be an adequate reference. A potential solution to this prob-
lem is to first map the spike train to operational time, where it becomes stationary
(Louis et al. in press). The sp-exg method performs relatively well even though it
does not conserve the ISI distribution, ending at FP rates of 12% for γ = 10. The
spike randomization method rapidly reaches 100% FP rates, the level also found
in Fig. 17.5c. Finally, on a smaller scale, the tr-shu method progressively worsens,
even though the method conserves the overall ISI distribution. This points to the ob-
servation that the effects of rate mismatch are amplified in the presence of spiking
regularity.

The results discussed so far described the limitations of various surrogate meth-
ods with respect to parameter variations of the most complex data type. How they
perform in the face of different data types is the subject of the next section.

17.4.4 Suitability of Surrogates for Different Data Sets

Next, we test the suitability of our surrogate methods for data having specific fea-
tures (see Table 17.1). As before, we generate 1,000 data sets for each data type with
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Fig. 17.6 False positive (a) and false negative (b) percentages for all tested surrogate methods
across the five different data types listed in Table 17.1. Colors code FP and FN percentages. White
squares mark the position of bars (not shown for convenience) of 100% FP

the parameters given in Table 17.1. For each data set, we produce 1,000 surrogate
versions of one type and calculate the percentage of FN and FP.

Figure 17.6 shows the FP and FN results for all combinations of our data and sur-
rogate types. The results for data type 5 are identical to the ones shown in Fig. 17.5
for the corresponding parameter configurations. In addition, we find here the re-
sults for the less complex data sets (types 1–4), giving a better understanding of the
parameters relevant to FP and FN rates.

We first discuss the FP rates and observe that sp-rnd is strictly inadequate for
data sets which exhibit nonstationary firing rates in time, since it produces 100% FP
rates. For stationary data sets, the FP rate is very low, and thus sp-rnd would be an
acceptable method in such a setting.

Tr-shu provides some surprising results. Even though data type 3 is nonstationary
across trials, the underestimation of coincidences is much weaker than for the data
set with firing rate modulation within the trial (type 4). The reason is that in the
latter case the firing rate differences are locally (in particular at rate peaks) much
larger than in the stationary case. Adding regularity in the data set (type 5), FP rates
increase even further to 24%. Thus, the underestimation of chance coincidences
is even larger for destroyed rate covariance combined with regularity of the spike
trains, as concluded at the end of the previous section.

A similar type of dependence is observed for the sp-exg method, although the
final rise of FP rates in type 5 is much more acceptable. It remains at a level of 1%
until regularity is included (type 5), at which point it increases to 9%. The deletion
of the original ISIs by spike exchange induces FPs. An analogous effect is also
seen with sp-di, which performs reasonably well for all data types except the one
including regularity (type 5). The study by Pipa et al. (2010) has shown that the
coincidence distribution of independent Gamma processes is typically wider than
the one of its dithered version. Consequently, if the latter is used as a reference,
the chance for FPs is enhanced. More surprising is that for jisi-di, the FP rate also
increases for data type 5, although in this case the regularity is kept. As argued in
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Fig. 17.7 Table illustrating
the classification probabilities
with the extracted precision
and recall

the previous section, the JISI is an average over different firing rates and thus does
not constitute a valid reference.

In contrast, tr-di leads to very low FP rates and, in particular, for regular pro-
cesses. Thus the preservation of the ISI sequence and the local firing rates avoids
an increase of FPs, although there is some rate smoothing involved due to the train
dither. In consequence, train dithering seems to be by far the most robust method.

One can easily see the reverse situation for the FN rates in Fig. 17.6b. The tr-
shu and sp-rnd methods show very low FN rates for the complex data sets as the
erroneous contributions to the detection of excess synchrony are higher. The tr-di
method is consistently conservative across data types (around 7%), in particular, for
type 5, where it reaches a 13% FN level. However, the most conservative method
to detect spike synchrony is the sp-exg method, with FN rates reaching 20% (the
maximum across all combinations of surrogate methods and data types) for Pois-
son processes which are nonstationary within and across trials (type 4). This may
be explained by the limited effect of spike permutations across trials in high-rate
regions. Sp-di sees a fall in FN rates from 6% to 1% in type 5 presumably due to er-
roneous coincidence contributions. The jisi-di method operates at an FN rate around
6% throughout all data types and thus constitutes an acceptable method.

To summarize these results, we now use a common method in information re-
trieval. First we define the false positive probability fp that a data set is negative
(no injection) and that it is detected as significant. This being a joint probability,
we can use the above FP probability FP, which is conditional on the data set being
negative, and write fp = 1

2 FP. Similarly, the false negative probability f n is given
by f n = 1

2 FN, where FN is the false negative probability obtained above. Finally
we define the true positive probability tp that a data set is positive and is detected as
significant. It is given by tp = 1

2 − f n, as the probability that a data set is positive
p(+)= tp+f n= 1

2 . The precision π and the recall ρ of a classifier (van Rijsbergen
1979) are then given by

π = tp

tp+ fp and ρ = tp

tp+ f n.

The precision corresponds to the probability that a data set detected as significant is
indeed a positive data set (accuracy), while the recall is the probability that a positive
data set is detected as significant (sensitivity). These quantities are illustrated in
Fig. 17.7.
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Fig. 17.8 Fβ measures extracted from the bar charts in Fig. 17.6. The measure is calculated as
explained in the text, from the precision and the recall properties of the surrogates. F0.5 corre-
sponds to an equal weighting of precision and recall, whereas F0.9 places more importance on the
precision. The lower 1− Fβ is, the better the surrogate

A standard way to combine precision and recall into one number is to compute
the Fβ measure (van Rijsbergen 1979), which is the weighted harmonic mean of
precision and recall

Fβ = 1
β
π
+ 1−β

ρ

, β ∈ [0,1].

With β = 0.5, one attaches equal importance to precision and recall (Fig. 17.8).
However, if presented with a single experimental data set, one would naturally tend
to place more importance on the precision. If a hypothesis is being tested for on
this data set, an inconclusive result (FN) is preferable, over the mistaken validation
of this hypothesis (FP). A possible weighting would then be β = 0.9 (Fig. 17.8),
setting the emphasis on precision.

We find that for β = 0.5, the three dither-based surrogate methods (tr-di, sp-di,
and jisi-di) are the most reliable, with minor differences across data types. However,
once the emphasis is put on precision (β = 0.9), tr-di is by far the most adequate
method, showing robust detection across data types. The other dither methods show
a similar performance up to data type 5, at which point their Fβ shows a sharp
decrease. Adding regularity to the processes severely impairs all methods, with the
exception of tr-di.

17.5 Discussion

What is a good surrogate? Surrogates implement a null hypothesis and should be as
far as possible from the alternative hypothesis. In our case we want to test if spike
synchrony at a fine temporal scale exists (alternative hypothesis), such that it may
not be trivially explained by the firing rates and the spiking regularity of the neu-
rons (null hypothesis). The analysis should then proceed by generating surrogates
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that have the same firing rate and ISI statistics as the original data, but in which
the spike trains of the neurons are independent on this fine temporal scale. As the
results presented above suggest, different surrogate methods conserve different fea-
tures of the original data. For example, sp-rnd only conserves the spike count per
trial, destroying any rate modulation and non-Poissonian interval statistics. In con-
sequence, it places very stringent requirements on the original data in order to itself
be a meaningful surrogate method. On the other hand, sp-di aims at conserving the
rate profile, all the while destroying the potential correlation present on the time
scale of interest. It has become a very widely used surrogate generation method, but
as we observed above, it also has its limitations. Because the spikes are randomly
displaced within a fixed dither range, whether they are in high or low firing rate re-
gions, the rate profile is necessarily smoothed. The gravity of the smoothing effect
will depend both on the strength of the rate fluctuations found in the data and the
chosen dither width. Thus, for slowly varying firing rates, it can be considered ade-
quate, but this again is only true if the ISI statistics do not differ too strongly from
that of a Poisson process.

Considering all the simulation results presented above, it is clear that the safest
surrogate method proposed so far is the tr-di method. It has shown to be highly
robust to, if not unaffected by, both the strength of rate transients and the regularity
of the spiking activity. FP rates remained between 1% and 2% for all data types,
while the FN rates were at 7% before increasing to 13% for data type 5. These levels
are satisfactory and could be explained by the exact conservation of the rate profile
and ISI statistics. The superiority of the method is further illustrated by its high Fβ
measure, as soon as emphasis is put on precision (low FP) instead of recall (low FN),
that is, β > 0.5. The main feature of this surrogate method which could raise some
questions is the fact that for each surrogate data set, the whole profile is uniformly
shifted. So for some large shifts, the effective difference with the original profile,
integrated over time, could be considerable. But a type of process still remains to
be found for which this full shift would lead to severe increases in FP and FN rates.
Thus, based on the study presented in this chapter, we recommend the use of the
tr-di surrogate method to detect excess synchrony and other types of fine time scale
correlation in experimental data.

Of course, we did not cover all the surrogate methods available in the literature,
since this was not the goal of this contribution. We rather wanted to demonstrate
how to generate surrogates and wanted to deliver criteria on how to select the proper
surrogate for the data at hand. Thus we carefully selected a representative set of sur-
rogates that address a wide range of features present in data. For example, we did
not explicitly treat the shift predictor method (Gerstein and Perkel 1972) since it is
a special case of the trial shuffling method, involving a shift of trial ids. Another
example is that we did not explicitly treat is the ISI-shuffle method, where the in-
terspike intervals are either shuffled in time or across trials (Denker et al. 2007;
Ito 2007). Instead, we treated a more advanced method aimed at conserving
the JISI distribution. Recently it was shown that the transformation of the spike
trains to operational time before applying a dither to the whole spike train pre-
serves the rate and the ISI distribution perfectly and leads to an FP rate that
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corresponds to the applied significance level (Louis et al. in press). We also left
out some surrogate methods designed for spike pattern analysis in many par-
allel spike trains, involving cross-neuron spike exchanges (Ikegaya et al. 2004;
Nádasdy et al. 1999). A recent review on data driven analysis methods discusses
a large body of surrogate methods together with their assumptions and their appli-
cability (Grün 2009).

The amount of execution time required for the generation of surrogates is an
issue, in particular, if repetitively performed for the calculation of distributions and
estimation of significance. In such cases one may consider the implementation of
the numerical calculations in a parallelized fashion, for example, each data point
could be calculated in parallel on a different computer. This leads to considerable
savings in execution time and can easily be implemented (see Chap. 20 for a general
introduction with Python and MatLab code).

The conclusion of this study is that the surrogate method needs to be carefully
selected, taking into account both the statistical hypothesis at hand and the features
present in the data. For example, testing for the existence of spatio-temporal firing
patterns across neurons has particular requirements with respect to treating the ISI
statistics of the data to avoid false positive outcomes (Abeles and Gat 2001; Gerstein
2004). Thus, we strongly suggest to carefully test the behavior of the surrogates in
the context of the hypothesis to be tested for using artificial data, before applying
them to experimental data. The artificial data should be designed such that their
statistical features are as close as possible to the experimental data and requires a
reliable estimation of these features.

The Python source code that we used in our experiments can be downloaded at
http://www.borgelt.net/surrogates.html or http://www.apst.spiketrain-analysis.org/.

Acknowledgements We thank Michael Denker for technical assistance. Partially supported by
the Helmholtz Alliance on Systems Biology.

References

Abeles M, Gat I (2001) Detecting precise firing sequences in experimental data. J Neurosci Meth
107(1–2):141–154

Berger D, Warren D, Normann R, Arieli A, Grün S (2007) Spatially organized spike correlation in
cat visual cortex. Neurocomputing 70:2112–2116

Butts DA, Weng C, Jin J, Yeh C, Lesica NA, Alonso J, Stanley GB (2007) Temporal precision in
the neural code and the timescales of natural vision. Nature 449:92–95

Date A, Bienenstock E, Geman S (1998) On the temporal resolution of neural activity. Technical
report. Division of Applied Mathematics, Brown University

Denker M, Roux S, Timme M, Riehle A, Grün S (2007) Phase synchronization between LFP and
spiking activity in motor cortex during movement preparation. Neurocomputing 70:2096–2101

Gerstein GL (2004) Searching for significance in spatio-temporal firing patterns. Acta Neurobiol
Exp (Wars) 64(2):203–207

Gerstein GL, Perkel DH (1972) Mutual temporal relationships among neuronal spike trains. Sta-
tistical techniques for display and analysis. Biophysical J 12(5):453–473

Grün S (2009) Data-driven significance estimation of precise spike correlation. J Neurophysiol
101:1126–1140 (Review)

http://www.borgelt.net/surrogates.html
http://www.apst.spiketrain-analysis.org/


382 S. Louis et al.

Grün S, Diesmann M, Grammont F, Riehle A, Aertsen A (1999) Detecting unitary events without
discretization of time. J Neurosci Meth 94(1):67–79

Grün S, Diesmann M, Aertsen A (2002) Unitary events in multiple single-neuron spiking activity.
I. Detection and significance. Neural Comput 14(1):43–80

Grün S, Riehle A, Diesmann M (2003) Effect of cross-trial nonstationarity on joint-spike events.
Biol Cybern 88(5):335–351

Harrison MT, Geman S (2009) A rate and history-preserving resampling algorithm for neural spike
trains. Neural Comput 21(5):1244–1258

Harrison MT, Amarasingham A, Geman S (2007) Jitter methods for investigating spike train de-
pendencies. Computat Systems Neurosci Abstracts 3(17)

Hatsopoulus N, Geman S, Amarasingham A, Bienenstock E (2003) At what time scale does the
nervous system operate?. Neurocomputing 52:25–29

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and
cortical songs: temporal modules of cortical activity. Science 304(5670):559–564

Ito H (2007) Bootstrap significance test of synchronous spike events a case study of oscillatory
spike trains. Stat Med 26:3976–3996

Jones LM, Depireux DI, Simons DJ, Keller A (2004) Robust temporal coding in the trigeminal
system. Science 304(5679):1986–1989

Louis S, Gerstein GL, Grün S, Diesmann M (in press) Surrogate spike train generation through
dithering in operational time. Front Comput Neurosci

Maldonado P, Babul C, Singer W, Rodriguez E, Berger D, Grün S (2008) Synchronization of neu-
ronal responses in primary visual cortex of monkeys viewing natural images. J Neurophysiol
100:1523–1532

Masuda N, Aihara K (2003) Duality of rate coding and temporal coding in multilayered feedfor-
ward networks. Neural Comput 15:103–125

Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G (1999) Replay and time compression of
recurring spike sequences in the hippocampus. J Neurosci 19(21):9497–9507

Nawrot M, Aertsen A, Rotter S (1999) Single-trial estimation of neuronal firing rates: from single-
neuron spike trains to population activity. J Neurosci Meth 94:81–92

Nawrot M, Boucsein C, Rodriguez-Molina V, Riehle A, Aertsen A, Rotter S (2007) Serial inter-
val statistics of spontaneous activity in cortical neurons in vivo and in vitro. Neurocomputing
70:1717–1722

Nawrot M, Boucsein C, Rodriguez-Molina V, Riehle A, Aertsen A, Rotter S (2008) Measurement
of variability dynamics in cortical spike trains. J Neurosci Meth 169:374–390

Pazienti A, Grün S (2007) Bounds of the ability to destroy precise coincidences by spike dithering.
Advances in brain, vision, and artificial intelligence. Lecture notes in comput sci, vol 4729.
Springer, Berlin, pp 428–437

Pazienti A, Maldonado P, Diesmann M, Grün S (2008) Effectiveness of systematic spike dithering
depends on the precision of cortical synchronization. Brain Research 1225:39–46

Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes.
II. Simultaneous spike trains. Biophys J 7(4):419–440

Pipa G, Grün S, van Vreeswijk C (2010) Impact of spike-train autostructure on probability distri-
bution of joint-spike events. Neural Comput (under revision)
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Chapter 18
Bootstrap Tests of Hypotheses

Valérie Ventura

Abstract Simulation-based calculation of p-values is an important technique in
situations where it is difficult to obtain an exact or approximate distribution for a
test, or when such an approximation exists but is of dubious validity, either because
the conditions it requires are not met, or because it relies on questionable assump-
tions about the distribution of the data. But even in applications where we are fairly
confident in a particular parametric model and the statistical analysis based on that
model, it can still be helpful, in the spirit of robustness, to see what can be inferred
from the data without particular parametric model assumptions. A substantial litera-
ture has demonstrated both theoretically and in numerical studies that the bootstrap
is widely effective (Davison and Hinkley in Bootstrap methods and their applica-
tions. Cambridge University Press, Cambridge, 1997; Efron and Tibshirani in An
introduction to the bootstrap. Chapman and Hall, New York, 1993). But the sim-
plicity of the bootstrap conceals an important point: its properties depend on how
resampling is done; arbitrary shuffles of the data do not necessarily accomplish de-
sired statistical goals. Moreover, in the context of hypotheses testing, the p-value
must be obtained under the hypothetical reality imposed by the null hypothesis. In
this chapter, we review the general framework for statistical tests of hypotheses, and
introduce the basics for Monte Carlo, permutation, and bootstrap tests.

18.1 Tests of Hypotheses

Suppose that we want to know if some stimulus increases the firing rate of a neuron
whose baseline rate is 10 Hz. A sensible approach proceeds as follow. We present
the stimulus n times. For each trial i = 1, . . . , n, we record yi , the number of times
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that the neuron spikes in, say, one second. The sample average y = 1
n

∑n
i=1 yi is the

observed mean firing rate of the neuron under presentation of the stimulus. Then we
compare y to the baseline firing rate of 10 Hz. Consider the following two hypothe-
ses:

The null hypothesis: the stimulus induced firing rate is 10 Hz.
The alternative hypothesis: the stimulus-induced firing rate is greater than 10 Hz.

If y is much larger than 10 Hz, we will reject the null hypothesis and conclude
that the evidence supports the alternative hypothesis. This is an example of a test.

The difficult part is deciding what much larger should be. Should we favor the al-
ternative hypothesis if y exceeds 10 Hz by more than 1 Hz, 2 Hz, 3 Hz? A small cut-
off will make it easy to reject the null hypothesis in favor of the alternative, which is
desirable if the latter is true, but not otherwise. Rejecting the null hypothesis when it
is true is called a type 1 error. Conversely, a large cut-off will make it hard to favor
the alternative hypothesis, which is desirable if the null is true, but not otherwise.
Retaining the null hypothesis when it is false is a type 2 error. However, whatever
cut-off we choose and decision we subsequently make about rejecting or retaining
the null hypothesis, we cannot know with certainty if our decision is correct. Indeed,
the true stimulus induced firing rate of the neuron is unknown. A statistical test of
hypotheses is a method to choose the cut-off so that the probability of erroneously
rejecting the null hypothesis (a type 1 error) is below some probability α, say 1% or
5%.1 A test is performed as follows:

Test of hypotheses procedure

1. Set the null and alternative hypotheses H0 and HA.
2. Choose a test statistic T , a function of the data that helps determine if the

data support H0 or HA.
Denote by tobs the value of T in the observed sample.
Specify the values of T that provide evidence against H0 in favor of HA.

3. Determine the null distribution of T , the distribution of the values of T
when H0 is true.

4. Choose the significance level α, the chance you are prepared to take of
committing a type 1 error.

5. Compare tobs to the null distribution of T : values of tobs that are unlikely
under the null distribution give evidence in favor of HA.
This comparison is summarized by the p-value, the probability of observ-
ing tobs when H0 is true, or a value that would give even more evidence
than tobs in favor of HA.

1At the end of this section, we show that in this example, the cut-off, also called critical value, is
approximately 11.04 for α = 5%.
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6. Make your decision: reject H0 in favor of HA if p ≤ α. The probability of
erroneously rejecting H0 is less than α.

Consider the previous example. The spike counts are in Table 18.1. We set
H0: μ = μ0 and HA: μ > μ0, where μ is the stimulus-induced mean firing rate
of the neuron, and μ0 = 10 Hz its baseline rate. Functions of the data that can
help us choose between H0 or HA are estimators of μ, such as the sample mean,
trimmed mean, and median. We use the former as the test statistic. Values of
T = Y = 1

n

∑n
i=1 Yi that are larger than μ0 = 10 Hz provide evidence against H0

in favor of HA. The value of T in the sample is tobs = y = 10.92; it is larger than
10 Hz, but is it large enough to cast doubt aboutH0? We answer this by determining
what sort of values T would take ifH0 was true, summarized by the null distribution
of T . It is often too difficult to derive analytically the distribution of a statistic, but
here we can rely on the approximate normality of the sample mean. If we further
assume that spike counts are Poisson, so that their mean and variance are equal, then
T = Y has mean μ0 and variance μ0/n under H0. Figure 18.1 shows the approx-
imate N(μ0,μ0/n) null distribution of T . We see that when H0 is true, common
values for T are around 10, while values less than 8 or greater than 12 are extremely
unlikely. The observed value tobs = 10.92 is not very likely under that distribution,
since it lies in its right tail; this provides some evidence against H0. Values larger
than tobs would provide stronger evidence against H0. This statement guides how
we calculate the p-value:

p = Pr(T ≥ tobs |H0 true), (18.1)

where “| H0 true ” means that (18.1) is calculated with respect to the null distri-
bution of T . We obtain p = 7.3%. This means that if H0 is true, the probability of
observing a value of T larger than tobs = 10.92 is 7.3%. A high probability means
that tobs is a likely value when H0 is true. A low probability indicates that tobs is
an unusual value for T , which means that either we observed a rare event (a very
unusual value of T ), or H0 is not true. Therefore, a small p-value provides strong,
although not foolproof, evidence against H0; rejecting H0 could be the wrong de-
cision. The significance level α is the chance we are willing to take of rejecting
the null hypothesis by mistake. Here, p = 7.3% is greater than α = 5%: we fail to
reject H0 and conclude that the stimulus does not significantly increase the firing
rate of the neuron. Note that this could be the wrong decision if HA is in fact true
(a type 2 error). The testing procedure does not control the probability of making a
type 2 error. Only the probability of a type 1 error is bounded by α. For this reason,
a large p-value does not provide evidence to endorse H0, since the probability of
committing a type 2 error could be large.

Table 18.1 Spike counts in n = 25 independent and identical trials of a simulated experiment.
Their sample mean is y = 10.92. We want to know if their true mean is 10 Hz or more

Spike counts: 9 10 10 13 9 9 15 11 11 10 16 12 11 12 8 10 16 13 11 10 13 7 8 10 9
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Fig. 18.1 Approximate
N(μ0,μ0/n) null distribution
of the sample mean T = Y ,
with μ0 = 10 and n= 25.
The approximation relies on
the central limit theorem and
assumes that spike counts are
Poisson

Critical value: it is the value c that tobs would need to take to achieve p = α. In our
example, c is such that α = Pr(T ≥ c |H0 true), obtained by replacing p and tobs
by α and c in (18.1). A normal calculation yields c ≈ μ0 + 1.64

√
μ0/n = 11.04

with α = 0.05 and μ0 = 10. The relationship between α and c is such that we
reject H0 if p ≤ α or equivalently if tobs ≥ c.

Two-sided null hypothesis: consider testing H0: μ = μ0 versus HA: μ �= μ0. The
sample mean remains an appropriate test statistic since it carries information about
the true mean μ. However, values of T that are either larger or smaller than μ0
now provide evidence against H0. Hence the p-value is p = Pr(T ≥ tobs or T ≤
ts | H0 true), where ts is as small compared to μ0 = 10 as tobs is large. In our
example, the null distribution of T is symmetrical about μ0, so ts = μ0 − (tobs −
μ0)= 9.08, and p = 14.6%. The two-sided test has a lower and an upper critical
value, clow and cup, that satisfy α = Pr(T ≥ cup or T ≤ clow | H0 true) and that
can be uniquely determined by solving α/2 = Pr(T ≥ cup | H0 true) = Pr(T ≤
clow |H0 true). A normal calculation yields clow ≈ μ0 − 2

√
μ0/n and cup ≈ μ0 +

2
√
μ0/n, with α = .05. The relationship between α and the critical values is such

that we reject H0 if p ≤ α or if tobs ≥ cup or tobs ≤ clow.

18.2 Bootstrap Tests of Hypotheses

A Bootstrap test is a test of hypotheses for which the null distribution of T is ob-
tained by a bootstrap simulation. The rest of the testing procedure outlined in the
previous section remains unchanged.

Recall that the null distribution of a statistic T shows the values that T can take
when H0 is true. In the previous example, T is the sample mean of n= 25 Poisson
spike counts. Thus, whenH0: μ= μ0 = 10 Hz is true, the values that T can take are
the means of n= 25 independent Poisson(10) random variables. Table 18.2 shows
two such samples and their means, which tells us that possible values for T under
H0 are 8.44 and 9.84. Figure 18.2A displays the histogram of R = 1,000 such val-
ues of t∗, calculated from R = 1,000 samples of n = 25 Poisson(10) counts. This
histogram is composed of 1,000 values that T can take when H0 is true; it is there-
fore the approximate2 null distribution of T under the assumption that spike counts

2The true null distribution is obtained as R→∞.
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Table 18.2 Two bootstrap samples of size n = 25 simulated from Poisson(10), from which we
calculate their sample means t∗

sample 1: 11 14 6 8 7 9 9 9 7 7 7 6 5 9 8 14 12 11 7 6 8 5 7 9 10 t∗1 = 8.44

sample 2: 11 14 8 4 8 10 7 13 9 9 16 8 11 17 12 6 4 12 12 10 8 8 8 9 12 t∗2 = 9.84

Fig. 18.2 (A) Parametric and (B) nonparametric bootstrap null distribution of T = Y ; tobs is the
value of T in the observed sample

are Poisson. Because it is obtained via simulation from a parametric model rather
than via a theoretical calculation or an approximation, this histogram is referred to
as the parametric bootstrap null distribution of T .3 Note that the null distributions in
Figs. 18.1 and 18.2A are almost identical. This is not surprising: both were obtained
assuming that spike counts are Poisson(10) under H0, and the normal approxima-
tion for the sample mean used to obtain Fig. 18.1 is typically accurate even for small
sample sizes.

Parametric methods make the most efficient use of data, provided that model
assumptions are correct. But spike counts are known to exhibit non-Poisson be-
havior, so it may be desirable to avoid the assumption of a specific paramet-
ric family of distributions. For this purpose, we assume instead that if H0 was
true, the distribution of the spike counts would be the same as that of the ob-
served spike counts, but shifted to have mean μ0 = 10, to satisfy H0: μ = μ0.
This may or may not be a reasonable assumption. In particular, it implies that the
variance of the spike counts does not vary with their mean, which contrasts with
the implication of equal mean and variance under the Poisson assumption. Next
we estimate the distribution of the spike counts under H0 with the shifted counts
x1 = y1 − (y − μ0), x2 = y2 − (y − μ0), . . . , xn = yn − (y − μ0), which have the
same empirical distribution as the yi ’s, except that their mean is μ0 = 10. Then
to create one nonparametric bootstrap sample, we sample at random and with re-
placement n = 25 values from the set {x1, . . . , xn}. We calculate t∗, the mean of
that sample, and repeat R times. Figure 18.2B shows the histogram of R = 1,000
such values of t∗: this is the approximate nonparametric bootstrap null distribution
of T = Y under the assumptions stated above. It does not match closely the null dis-

3In this particular application, it is also the Monte Carlo null distribution becauseH0 fully specifies
the data distribution under the Poisson assumption.
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tributions in Figs. 18.1 and 18.2A, which is not surprising since it relies on different
assumptions.

We have just described how to obtain parametric and nonparametric bootstrap
null distributions for T in our simple example. The same process applies generally:

Bootstrap null distribution of T

For r = 1, . . . ,R, with R large:

1. Create the r th bootstrap sample—a bootstrap sample has the same size as
the observed sample, and the same distribution the data would have if H0
was true. That distribution is typically unknown, and the greatest challenge
in conducting bootstrap tests is to design appropriate estimates for it.

2. Calculate t∗r , the value of the test statistic T in bootstrap sample r .

The histogram of the R values of t∗r approximates the null distribution
of T .

To complete the test of H0: μ= 10 versus HA: μ> 10, we calculate the p-value
in (18.1). Because the bootstrap null distribution of T is a histogram, (18.1) reduces
to the proportion of samples for which t∗ ≥ tobs,

pboot = number of bootstrap samples such that {t∗r ≥ tobs}
R

, (18.2)

which is the histogram area to the right of tobs in Fig. 18.2AB. The parametric and
nonparametric bootstrap p-values are thus pboot = 5.8% and pboot = 2%, respec-
tively: they lead to opposite decisions about H0 at the α = 5% significance level.
Which p-value we should trust depends on whether or not spike counts are Poisson.
See Sects. 18.3 and 18.4.

It is sometimes useful (for example, see Sects. 18.6 and 18.7) to calculate the
critical value, that is, the value c that tobs would need to take to achieve pboot = α.
When the null distribution is a histogram, c is such that α% of the t∗’s are greater
than c. Hence, c is the (Rα)th ordered value of the t∗’s.

Simulation-based calculation of p-values is an important technique in situations
where it is difficult to obtain an exact or approximate distribution for a test statis-
tic T , or when such an approximation exists but is of dubious validity, either be-
cause the conditions it requires are not met, or because it relies on questionable
assumptions about the distribution of the data. The test statistic in Sect. 18.1 was a
sample mean, whose distribution is approximately normal (this result is known as
the central limit theorem). This approximation is often accurate even for small sam-
ple sizes, so we could have foregone the parametric bootstrap tests of Sect. 18.2.
The approximation also relied on the assumption that spike counts are Poisson
under H0. If this assumption is questionable, a different approximation, if avail-
able, or a nonparametric bootstrap test are recommended. But even in applications
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where we are fairly confident in a particular parametric model and the statistical
analysis based on that model, it can still be helpful, in the spirit of robustness, to
see what can be inferred from the data without particular parametric model as-
sumptions. A substantial literature has demonstrated both theoretically and in nu-
merical studies that the bootstrap is widely effective (Davison and Hinkley 1997;
Efron and Tibshirani 1993). But the simplicity of the bootstrap conceals an impor-
tant point: its properties depend on how resampling is done; arbitrary shuffles of the
data do not necessarily accomplish desired statistical goals. Moreover, in the context
of hypotheses testing, the p-value must be obtained under the hypothetical reality
imposed by H0. In the example above, we needed to compute P(Y ≥ 10.52) un-
der the supposition that the observations y1, . . . , yn have mean μ0 = 10. We cannot
simply resample the yi ’s because their mean μ may not equal μ0 (in fact, this is
precisely what we want to test). Instead, we based the p-value calculation on data
that resembled the yi ’s except that they had mean μ0, so that they would satisfy H0.

18.3 Goodness of Fit Test

The test in Sect. 18.1 and the parametric bootstrap test in Sect. 18.2 relied on the
assumption that the spike counts in Table 18.1 are Poisson. We now test this assump-
tion. The null and alternative hypotheses are H0: the spike counts are Poisson and
HA: they are not Poisson. The hypotheses are not expressed in terms of parameters,
so choosing a test statistic T is not immediately obvious. In such cases, the alter-
native hypothesis should guide the choice of T , since we want to detect deviations
fromH0 towardHA. Poisson data have equal mean and variance, so deviations from
equality is evidence of non-Poisson behavior. This suggests that we take as a test
statistic the dispersion index (Fano factor) T = V/Y , where Y and V are the sample
mean and variance of the spike counts. Values of T that are very different from one
give evidence in favor of HA. The observed value of T for the data in Table 18.1 is
tobs = 0.52. An exact or approximate null distribution for T is not available, so we
bootstrap. The null hypothesis specifies that spike counts are Poisson, but unlike the
parametric bootstrap test in Sect. 18.2, H0 does not specify the mean of the Poisson
distribution. One solution is to use the sample mean y = 10.52. We thus simulated
R = 1,000 samples of size n = 25 from a Poisson(10.52) distribution and calcu-
lated the value of T for each of these samples. Figure 18.3A shows their histogram.
Values of T smaller and larger than one provide evidence against H0, and tobs is in
the left tail of the distribution, so the p-value is twice the probability of observing
T smaller than tobs, that is, pboot = 2× 2.3%= 4.6%. This corresponds to T ≤ 0.52
or T ≥ 1.66. There is weak evidence in the sample to suggest that the counts are not
Poisson. But see the next section for an amended conclusion.

If we wanted to test if the spike counts were consistent with some distribution G
other than Poisson, we would need to design a test statistic whose deviation from
a specific value provided evidence against G, and simulate bootstrap spike counts
from G, the distribution of the data under H0. If we wanted to test the Poisson
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Fig. 18.3 (A) Bootstrap null distribution of the dispersion index T = V/Y under the null hypothe-
sis that the spike counts are Poisson. (B) Bootstrap p-value as function of the bootstrap simulation
size R

assumption against a more specific alternative than “not Poisson,” say G, the like-
lihood ratio test statistic typically yields a powerful test, that is a test with a small
probability of a type 2 error for a fixed significance level (Kass et al. 2005). An
approximate χ2 null distribution is sometimes available for the likelihood ratio, or
it can be obtained from bootstrap samples simulated under the null hypothesis.

18.4 Simulation Error and Statistical Error

Bootstrap p-values such as (18.2) are sample proportions, so they vary across
bootstrap simulations and their accuracies increase with R. This is illustrated in
Fig. 18.3B, which shows the bootstrap p-values obtained from repeating the Pois-
son test of Sect. 18.3 for several values of R. We see that the p-values concentrate
around 5% as we increase R, but with a simulation of size R = 1,000, they could
vary between 2.5% and 6.5% and beyond, and thus lead to the rejection or retention
of H0 at random. The solution to eliminate simulation error is an infinite bootstrap
simulation, which is impossible. We therefore recommend using R = 1,000. Then
if pboot � α or pboot � α, it is clear that there is, respectively, no evidence and
compelling evidence in the data to support HA. If pboot ≈ α, either increase R, or
mention that pboot is variable and mitigate your conclusions. See also Davison and
Hinkley (1997) for a more complete discussion of simulation size. In Sect. 18.3,
the bootstrap Poisson test had p-value pboot = 4.6% with R = 1,000, and although
pboot < 5%, we cannot reject H0 with the guarantee that the probability of commit-
ting a type 1 error is below α = 5%, since the true bootstrap p-value could deviate
from 4.6% by several percentage points. In Sect. 18.2, the p-values of the parametric
and nonparametric bootstrap tests were slightly above and below 5% respectively,
but with R = 1,000, these two p-values may not actually be statistically different.
Therefore we conclude that based on parametric and nonparametric bootstrap tests,
the data provide weak evidence against H0, with p-values close to 5%.

Statistical error can arise from using inappropriate data models. The optimal sit-
uation involves a null hypothesis H0 that fully specifies the distribution of the data
under H0, for example, Poisson(μ0) with μ0 = 10 in Sect. 18.2. But more often,
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some aspects of the data distribution remain unknown under H0. In Sect. 18.3, H0

dictated that we simulate bootstrap samples from a Poisson distribution with un-
specified mean; we used the sample mean of the spike counts as an estimate. In
nonparametric problems, H0 typically specifies very little about the data distribu-
tion. For the nonparametric bootstrap of Sect. 18.2, all we knew about the data
under H0 was their mean μ0 = 10 Hz. Therefore, to specify a sampling scheme, we
further assumed that the distribution of the spike counts was the same as that of the
observed data, but shifted to have mean μ0 = 10. We could instead have shifted the
data to have mean 10 and further rescaled them to achieve a particular variance. In
fact, there are many other distributions that satisfy H0, and the bootstrap p-value
will depend on which model is used to obtain bootstrap samples. One solution to
avoid this problem is to design a test statistic whose null distribution does not de-
pend, at least approximately, on unknown aspects of the data distribution. Another is
to calculate the p-value conditional on sufficient statistics for the unknown parame-
ters, since then the distribution of T no longer depends on those parameters. These
solutions are seldom easy to apply, but they constitute good guiding principles.

To illustrate this, consider the test of H0: μ = μ0 versus HA: μ > μ0 in
Sect. 18.1. We had assumed that spike counts were Poisson, so that the null dis-
tribution for the sample mean T = Y was N(μ0,μ0/n). Without the Poisson as-
sumption, the approximate normality of sample means still yields T ∼ N(μ0, νT ),
where νT is the unknown variance of T . If we estimate νT by V = S2/n, where S2

is the sample variance of the spike counts, then Z = (T − μ0)/
√
V has approxi-

mately a Student-t distribution. The t-distribution does not depend on the unknown
νT ; we say that Z is a pivot. This suggests a better nonparametric bootstrap test
than that of Sect. 18.2: instead of T = Y , we use Z = (Y −μ0)/

√
V as test statistic.

As before, we simulate bootstrap samples {x∗1 , . . . , x∗n} by sampling from the shifted
spike counts {x1, . . . , xn}, from which we calculate z∗ = (x∗−μ0)/

√
V ∗, where V ∗

is the variance estimate of x∗. The histogram of R such values of z∗ approximates
the distribution of Z and is independent of νT for large n. The nonparametric boot-
strap p-value is the proportion of z∗s that exceed zobs. Finding exact pivots relies on
theoretical calculations, so they are generally hard to find, if they exist. Studentized
bootstrap methods use statistics that are designed to be approximate pivots.

To illustrate the idea of conditioning on sufficient statistics, we consider the Pois-
son test in Sect. 18.3. Under H0, the Poisson mean is unknown, so we estimated it
with the sample mean; the bootstrap p-value depends on that estimate. But the sum
of the spike counts

∑
i Yi is sufficient for the true mean, so that the bootstrap p-

value will not depend on the unknown Poisson mean if it is calculated conditional
on
∑
i Yi . To do that, bootstrap samples y∗1 , . . . , y∗n must be simulated from a Pois-

son distribution, as before, but they must satisfy
∑
i y

∗
i =
∑
i yi , the sum of the ob-

served spike counts. It is often difficult or lengthy to obtain bootstrap samples that
satisfy such conditions, but it is trivial in our example: a simple theoretical calcula-
tion implies that y∗1 , . . . , y∗n can be simulated from a multinomial distribution with
denominator

∑
i yi and n categories with equal probabilities n−1. The permutation

tests mentioned later are other examples of conditional tests.
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Table 18.3 Spike counts of a neuron in a 400-ms window, in np = ns = 15 repeats of two experi-
mental conditions

Spike counts, pattern condition: 18 22 15 27 25 12 14 17 18 11 16 28 14 21 19

Spike counts, spatial condition: 18 10 11 17 17 13 16 24 15 15 18 18 14 17 9

18.5 Comparing Neuronal Responses

Many experiments involve comparing the responses of neurons to different stimuli.
Consider the spike counts in Table 18.3, which come from a neuron in the supple-
mentary eye field (SEF) of a macaque monkey (Olson et al. 2000). The monkey
was shown visual cues to instruct him of the direction in which he was to look
next. There were two cues: the “spatial” cue was cognitively simple, while the “pat-
tern” cue was cognitively demanding. For a given eye movement, any significant
difference between the neural responses in the two conditions can be attributed to
cognitive rather than to motor functions.

Letting μs and μp denote the true mean spike counts in the two conditions, we
testH0: μp−μs = 0 versusHA: μp−μs �= 0. A natural test statistic is an estimator
of μp − μs , for example, T = Yp − Y s , the difference in the sample mean firing
rates in the two conditions. Its value for the data in Table 18.3 is tobs = 3. Values
of T larger or smaller than μp − μs = 0 provide evidence against H0, so the p-
value is p = P(T ≥ 3 or T ≤−3 | μp = μs)= 2× 4.2%= 8.4%, using a standard
approximation4; see Fig. 18.4A. We fail to reject H0 at significance level 5% and
conclude that the data do not support the hypothesis that the SEF participates in
cognitive functions. Note that Olson et al. (2000) reach the opposite conclusion
based on a more carefully designed and more powerful test.

In this example, an approximate null distribution is available, and there is no rea-
son to suspect its validity. However, for the sake of illustration, we suggest several
bootstrap procedures that depend on various assumptions. We could first test if the
spike counts in Table 18.3 were Poisson and if so, simulate spike counts in the two
conditions from the same Poisson(μ) distribution; H0 does not specify μ, so we re-
place it with the sample mean of the spike counts combined across conditions since
under H0, spike counts have the same true mean μ = μp = μs in the two condi-
tions. Better yet, as suggested in Sect. 18.4, we can use the multinomial distribution
Poisson spike counts conditional on the sum of the spike counts combined across
conditions, which is sufficient for the common mean μ under H0.

If spike counts are not Poisson and if we cannot identify an alternative model, we
proceed with a nonparametric bootstrap. A simple option is to shift the spike counts
in the spatial condition by some amount and the spike counts in the pattern condition
by some different amount, so that the two shifted samples have the same sample
means, to satisfy H0. Then one bootstrap sample consists of ns counts sampled
from the spatial condition shifted spike counts and np counts sampled from the

4(T − (μp − μs))/
√
Vp + Vs is approximately Student-t with (Vp+Vs )2

V 2
p /(np−1)+V 2

s /(ns−1)
degrees of

freedom, where Vp and Vs are the usual variance estimates of Yp and Y s .
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Fig. 18.4 (A) Approximate and (B) permutation like nonparametric bootstrap null distributions
for T = Yp − Y s for the equality of population means test

pattern condition shifted spike counts, from which the value of the test statistic T is
calculated. Although we avoided explicit model assumptions, we assumed implicitly
that if H0 was true, the distributions of the spike counts in the two conditions would
be the same as the distributions of the observed counts, except for a shift in their
means. This assumption does not constrain the variance of the spike counts to be
equal in the two conditions, which is odd given that H0 specifies that the neuron
has the same firing rate in the two conditions. It might therefore be more sensible to
extend H0: μs = μp to mean H0: the spike counts have the same distribution in the
two conditions. However, it then becomes more tricky to obtain bootstrap samples,
since shifting the spike counts as suggested earlier does not satisfy the extended
H0. The shifted counts would also need to be rescaled in some way to achieve at
least equality of variances in the two conditions, if not equality of distributions.
Alternatively, we can apply the ideas in Sect. 18.4, and use Z = T/√Vp + Vs as the
test statistic in place of T , where Vp and Vs are the sample variances of Ȳp and Ȳs .
Because it is standardized, Z is more pivotal than T , so that its null distribution
and therefore the resulting p-value depend less on unknown aspects of the data
distribution.

An exact conditional test is also available under the extendedH0: the spike counts
have the same distribution in the two conditions: combine the unshifted spike counts
in the two conditions, sample at random and with replacement ns + np spike counts
from the combined sample, assign the first ns to the spatial task, and the other np
to the pattern task, and calculate the value t∗ of T = Yp − Y s in that sample. The
histogram of R = 1,000 such values of t∗ is in Fig. 18.4B, which we use to obtain
the p-value pboot = 2 × 4.1 = 8.2%. This p-value does not depend on unknown
quantities, because it was calculated conditionally on a sufficient statistic for the
unknown distribution of the spike counts under H0 (the empirical distribution func-
tion). If sampling is done at random and without replacement, this procedure is the
classic two-sample permutation test. See Olson et al. (2000) for a similar bootstrap
simulation but use a more powerful test statistic.
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Fig. 18.5 Raster plots, PSTHs, main JPSTH diagonal, and product of the PSTHs, of the n joint
spike trains of two neurons simulated jointly from a known model

18.6 Synchrony

We now examine the simultaneous firing of two neurons, with simultaneity de-
fined as coincident spikes occurring within a specified window of time such as
1 ms (cf. Chaps. 10 and 17). The issue is whether neurons are independent. Let-
ting p1(t) and p2(t) denote the probabilities of spiking at time t for neurons 1
and 2, and pjoint(t) the probability of simultaneously spiking at t , independence im-
plies pjoint(t)= p1(t)p2(t). We therefore testH0: pjoint(t)= p1(t)p2(t) versusHA:
pjoint(t) �= p1(t)p2(t) and use an estimate of pjoint(t)− p1(t)p2(t) as test statistic.
Any apparent deviation of this estimate from 0 suggests extra correlation between
the two neurons above the correlation induced by modulations in the firing rate.

An estimate of p1(t) is obtained as follows: discretize the spike trains of neu-
ron 1: cut the time line of the experiment into, say, 1 msec bins, assign a value of
1 to the bins that contain a spike, and a value of 0 to the other bins; sum the n
discretized spike trains bin by bin across trials and divide by n to obtain the 1 ms
bins PSTH. Each bin contains the spiking proportion for the corresponding time: it
is an estimate p̂1(t) of the true spiking probability p1(t). Similarly, the 1 ms bin
PSTH of neuron 2 estimates p2(t). An estimate of pjoint(t) is obtained as follows:
for a given trial, multiply, bin by bin, the discretized spike trains of the two neu-
rons; the resulting joint spike train is a sequence of 0s and 1s, where a 1 is obtained
only for the time bins that have a 1 in the spike trains of both neurons; repeat for
all n pairs of spike trains and average the resulting n joint spike trains bin by bin
(the result is the 1 ms bin main diagonal of the joint peri-stimulus time histogram
or JPSTH; Aertsen et al. 1989). Figure 18.5 displays p̂1(t), p̂2(t), p̂joint(t), and
p̂1(t)p̂2(t), averaged over 50 ms bins to improve clarity, for two neurons simulated
from a known model. Figure 18.6 shows tobs(t), the observed value of the test statis-
tic T (t)= p̂joint(t)− p̂1(t)p̂2(t), which we smoothed to reduce its variability. The
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Fig. 18.6 Probable null
envelope for the probability
of joint spiking above chance,
T (t)= p̂joint(t)− p̂1(t)p̂2(t)

with 95% pointwise coverage
(gray area), and tobs(t)

(bold), the value of T (t) we
observed. Excursions of
tobs(t) outside the envelope
suggest that the neurons are
dependent for the
corresponding times t

nominal shape of T (t) under H0 is a line with value zero for all t , so the large de-
viation of tobs(t) from zero in the [50,150] ms range suggests that the two neurons
may be dependent during that period. To be sure, we need the null distribution of
T (t) to assess the chance of such a deviation when the neurons are independent.

The following nonparametric bootstrap simulation is inspired by the permutation
test for a correlation, which is a classic conditional test (Sect. 18.4): sample at ran-
dom and with replacement the n spike trains of neuron 1, and independently, sample
the n spike trains of neuron 2; put the two samples together to form n pairs of spike
trains. This is a bootstrap sample. The spike trains have the same marginal distribu-
tions as the observed data, and they also satisfy H0, since potential dependencies in
pairs of spike trains were removed by sampling spike trains separately for the two
neurons. Calculate t∗(t), the value of T (t) in that sample, following the instructions
provided earlier to calculate tobs(t), and repeat R times. Note that if we had sampled
the spike trains without replacement, the average of the t∗(t) would be related to a
(smoothed) shuffle corrector (Perkel et al. 1967).

Alternatively, we can perform a parametric bootstrap test: fit models to the spike
trains of the two neurons, for example, Poisson or Gamma processes (see Chap. 16)
or other models deemed more appropriate; sample n spike trains for neuron 1, and
independently, sample n spike trains for neuron 2; put the two samples together to
form n pairs of spike trains. This is a bootstrap sample. Calculate t∗(t), the value of
T (t) in that sample, and repeat R times.

The R values of t∗(t) cannot easily be displayed in a histogram to depict the null
distribution of T (t), since they are functions, not scalars. An alternative is to obtain
a probable envelope for T (t) under H0: for each time t , define Tlow(t) and Tup(t) to
be the 2.5th and 97.5th quantiles of the R values t∗(t), so that 95% of those values
lie between Tlow(t) and Tup(t) for any given t . The envelope obtained from the
nonparametric bootstrap described above is plotted in Fig. 18.6. Basically, Tlow(t)

and Tup(t) are the critical values of the 5% level tests at each time t (see Sects. 18.1
and 18.2). Hence excursions of tobs(t) outside the envelope at t provide evidence
against H0 at t . For these times, we reject the null hypothesis of independence, with
probability α = 5% of making a type 1 error.

Note that the cross-correlogram (CC) (see Chaps. 5 and 6) is often used to test
if neurons are dependent. Since our parametric or nonparametric bootstrap samples
satisfy H0, they can be used not only to obtain the null distribution of the JPSTH,
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as we have done above, but also to obtain the null distribution of the CC or the null
distribution of any test statistic we may fancy to test H0 versus HA.

Trial-to-trial variability effects: spike trains recorded from behaving animals dis-
play variation in spike timing that is sometimes consistent with the variation ex-
pected of Poisson or other point process models. In others, the irregularity is be-
yond that predicted by a common model for all trials. One aspect of extra trial-
to-trial variation is the tendency for neurons to spike overall more or less for the
duration of a trial, which is sometimes called spike count correlation. If such ef-
fects are shared across simultaneously recorded neurons, they will induce extra
correlation in the neurons’ spike trains and in turn inflate measures of dependence
such as the JPSTH or the CC. This may cause one to wrongly claim that the two
neurons are dependent, since apparent dependencies could be due to trial-to-trial
variability effects. Figure 18.6 suggested that the neurons were dependent around
t = 100 ms. But looking at Fig. 18.5 closely, we can see that some pairs of trials
have many more spikes than others, which may be responsible for the significant
result in Fig. 18.6.

Therefore we would like to assess if the neurons are correlated above what is
expected from modulations in their firing rates and from trial-to-trial variability ef-
fects. We can still carry out a test based on significant excursions of tobs(t) outside a
null envelope for T (t)= p̂joint(t)− p̂1(t)p̂2(t), but that envelope must be obtained
from bootstrap spike trains that have the same firing rates and the same trial-to-trial
variability effects as the observed data, but that do not contain the short-term syn-
chrony effects we wish to detect. The bootstrap samples used to obtain the envelope
in Fig. 18.6 are not appropriate, because they do have the trial-to-trial variability
effects observed in the data. The methods required to complete this test exceed the
scope of this chapter. We refer to Ventura et al. (2005) for a parametric bootstrap
solution and to Geman et al. (2009) for a nonparametric conditional test based on
principles outlined in Sect. 18.3.

18.7 Joint Null Envelope for a Function

When we perform N independent tests simultaneously, we should expect to reject
α% of them on average when H0 is true. Indeed, it is precisely the meaning of α.
An equivalent notion is that, although a (1− α)-coverage envelope has probability
1− α of containing each test statistic, the chance that it captures all N of them is
(1− α)N , which is much less than 1− α for large N . In Fig. 18.6, we rejected 124
out of the 1,000 tests at each of the time points in [1,1000] msec, which might seem
sufficiently larger than 1,000α = 50 to suggest that some of these rejections are real.
However that comparison is irrelevant because our tests are not independent. Indeed
neurons may be similarly correlated in contiguous time bins, and we induced further
correlation by smoothing T (t)= p̂joint(t)− p̂1(t)p̂2(t).

A solution to determine the significance of the excursion of tobs(t) outside the
envelope is to obtain a joint null envelope which has some suitably high probability,
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Fig. 18.7 Null envelope with
joint coverage 89% for
T (t)= p̂joint(t)− p̂1(t)p̂2(t).
tobs(t) exceeds the envelope
around t = 100 ms, which
suggests that the neurons
exhibit above chance
correlated activity around that
time

β say, to capture an entire function T (t) when H0 is true. Then if tobs(t) exceeds
the joint envelope, we reject the null hypothesis of independence with probability
1 − β of being wrong. A joint envelope is difficult to obtain exactly, but the pre-
vious bootstrap simulation can be used to find an approximation, as described in
Davison and Hinkley (1997): given the R bootstrap functions t∗(t), we set one of
them aside, t∗1 (t) say, calculate the (1− α) pointwise envelope from the (R− 1) re-
maining t∗(t), and record if it fully covers t∗1 (t). We repeat, setting aside each t∗(t)
in turn, and tally the proportion of t∗(t)’s that were fully included in their respective
envelopes. This estimates β , the chance of the envelope fully covering T (t) when
H0 is true. Following this procedure, we calculated that the 95% pointwise enve-
lope in Fig. 18.6 has joint coverage β = 23%. Hence, the chance that tobs(t) exits
the envelope when the neurons are independent is 77%, which casts serious doubts
on our earlier conclusion that the neurons are dependent. We can also calibrate α
to achieve a desired β . For example, α = 1% and 0.5% yield β = 71% and 89%,
respectively. The joint 89% coverage null envelope is plotted in Fig. 18.7. It does
not fully contain tobs(t), so we conclude with some degree of confidence that the
neurons are indeed correlated above chance around t = 100 ms.

Note that to achieve a high β requires that α be very small. This means that
the joint envelope is made of extreme quantiles in the tails of the bootstrap null
distribution of T (t), which are highly variable (this is related to simulation error in
Sect. 18.4). Therefore we do not recommend obtaining a very high joint coverage
envelope, since it would be too variable to be reliable, unless a very large simulation
size R is used.
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Chapter 19
Generating Random Numbers

Hans Ekkehard Plesser

Abstract Large-scale parallel surrogate data generation and neuronal network sim-
ulation require far more pseudorandom numbers than many popular pseudorandom
number generators (PRNGs) can deliver. Fortunately, random number generation
has progressed from black art to science over the past two decades, providing us
with reliable algorithms for generating random numbers and rigorous tests for such
algorithms. In this chapter we will first review requirements for good PRNGs, be-
fore presenting the basic principles of some widely used generators, including cryp-
tographic generators. We then discuss seeding strategies and the transformation of
integer random numbers to random variates following other distributions.

Random number generation has progressed from black art to science over the past
two decades (Panneton et al. 2006; Park and Miller 1988), providing us with reliable
algorithms for generating random numbers and rigorous tests for such algorithms
(L’Ecuyer and Simard 2007). No deterministic algorithm can generate truly random
numbers. Strictly speaking, we are considering pseudorandom number generators
(PRNGs). For any generator, there will be some application that reverberates with
the correlation structure hidden in the generator’s algorithm, leading to false results
(Ferrenberg et al. 1992; Compagner 1995).

Before considering pseudorandom number generators in detail, let us briefly
consider the number of random numbers required for a large project that keeps
a 1024-core computer busy for a year, or roughly 255 nanoseconds. Assuming a
clock speed of 1 GHz, the project goes through 265 ≈ 4 × 1019 clock cycles. If
one pseudorandom number is consumed per 104 clock cycles, a total of 4 × 1015

numbers will be consumed (Knuth 1998, Chap. 3.6). Empirical evidence indicates
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that a PRNG used in this project should be able to generate a sequence of at least
(4×1015)3 = 64×1045 pseudorandom numbers before repeating itself (Brent 2006;
Matsumoto et al. 2006; L’Ecuyer and Simard 2007). This exceeds by far the capa-
bilities of many widely used generators.

In this chapter we will first review requirements for good PRNGs, before present-
ing the basic principles of some widely used generators, including cryptographic
generators. We then discuss seeding strategies and the transformation of integer
random numbers to random variates following other distributions.

For details, please see the textbook by Gentle (2003), Knuth’s classical treatise
(1998), or the review by L’Ecuyer and Simard (2007); the latter two references in-
clude a comprehensive treatment of tests for PRNGs. Devroye (1986) is the canon-
ical reference for nonuniform random variates.

19.1 Requirements for Pseudorandom Number Generators

A pseudorandom number generator is an algorithm providing a drawing function
D() which emits a new pseudorandom number rj ∈W each time the drawing func-
tion is executed; W is the finite, discrete set from which numbers are chosen. The
period ρ of the generator is the number of PRNs that can be drawn before the se-
quence of numbers repeats itself. If different initializations of the generator can lead
to different periods, one considers the minimal period as the period of the generator.
For most modern generators, the period is much larger than the set of values W.

Brent (2006) lists the following requirements for good PRNGs:

Uniformity The numbers (r0, r1, . . .) generated should be distributed uniformly
over W.

Independence Any subsequence of the full sequence (r0, r1, . . .) of random num-
bers should be statistically independent.

Long period From a PRNG with period ρ, one should draw at most ρ1/3 random
numbers (cube-root rule; Brent 2006; Matsumoto et al. 2006; L’Ecuyer and Simard
2007).

Initialization Any choice of seed should yield equally random numbers.
Skip ahead Certain random generators allow one to “skip ahead”, e.g., to go

directly to the 2100th random number in a sequence (L’Ecuyer et al. 2002;
Haramoto et al. 2008).

Repeatability Especially when debugging simulations, it is crucial that the same
random number sequence can be generated over and over again.

Portability A PRNG should produce exactly the same sequence of numbers for
any computer on which it is run, without modifications to the source code.

Efficiency Random number generators should consume as little as possible of the
total simulation time.

Unpredictability A truly random number sequence is unpredictable: no matter how
long we observe the sequence, we will never be able to predict the next number.
This is not the case for most PRNGs.
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Uniformity and independence are ascertained by standard tests for pseudoran-
dom number generators, while the period is usually known from the design of the
generator. Initialization has received systematic attention only recently (Matsumoto
et al. 2007); we will return to it in Sect. 19.4.

The ability to skip ahead in a random number stream is essential for the par-
allel generation of random number sequences and thus useful for generating large
numbers of surrogate spike trains. It will be discussed in detail in Sect. 19.4.1.

Since pseudorandom number generators are based on deterministic algorithms,
it is straightforward to reproduce their output in repeated simulations, provided that
their initial state is known. Ill-designed parallel programs may still lead to irrepro-
ducible consumption of random numbers; we will not discuss such issues here.

Portability and efficiency of PRNGs are of lesser concern today than a decade
ago, since several well-tested, portable PRNG libraries exist. An interesting new
development are PRNGs exploiting the superior performance of vector extensions
to CPUs and of graphics processors (Saito and Matsumoto 2008; Tzeng and Wei
2008).

Unpredictability of PRNGs is of little concern in simulations, while it is essential
in cryptography and gaming. We will discuss unpredictable cryptographic genera-
tors in Sect. 19.3.

19.2 Recurrence-Based Generators

Most pseudorandom number generators used today are recurrence-based generators.
These generators are defined by three mathematical functions operating upon a state
variable Σ . The random generator is initialized by a seed value S according to a
seeding rule

Σ0 = S(S). (19.1)

Each time a new random number is required, the state of the generator is updated
by an iteration rule

Σj = I(Σj−1) (j > 0), (19.2)

before the j th random number is drawn from the state variable according to a draw-
ing rule

rj = D(Σj ). (19.3)

The size of the state variableΣ sets an upper limit for the period of the generator.
If Σ is n bits long, then the generator is at all times in one of 2n states. Since (19.2)
dictates that each state has exactly one successor state, it follows that the longest
possible sequence of states without repetition has 2n states, limiting the period to
ρ ≤ 2n. PRNGs with 32-bit integers as state variables thus cannot have periods of
more than ρ = 232 ≈ 109, which is far too short to be of practical use.

The random numbers rj that can be drawn from a generator are typically 32-
bit integers, although some generators provide floating point numbers directly. The
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range of values that can be generated stretches from 0, 1, or 2 to some large integer
M < 2n. Note that the period ρ of a generator can be much larger thanM .

19.2.1 Linear Congruential Generators

Additive linear congruential generators (LCGs) have been popular due to their
simplicity and efficiency and are infamous for their weaknesses (Knuth 1998,
Chap. 3.2.1). Seeding and drawing functions are trivial for these generators, while
the iteration function is straightforward modulo arithmetic:

S(s)= s (0< s <m), (19.4)

D(Σ)=Σ, (19.5)

I(Σ)= (aΣ + c) mod m, (19.6)

where a is the multiplier, c the increment, and m the modulus. Lewis et al. (1969)
proved that choosing a = 75 = 16807, c = 0, and m = 231 − 1 = 2,147,483,647
results in a generator with maximum period, i.e., period ρ = 231 − 2. Care must
be taken to avoid integer overflow when implementing this algorithm using 32-bit
integers (Park and Miller 1988).

Even though this generator has been considered a “minimal standard” for a long
time (Park and Miller 1988; Press et al. 1992, Chap. 7), it is no longer a viable
choice for large-scale simulations today due to its short period: strict application of
the cube-root rule would allow the use of only 1290 random numbers, and even a
common PC will zip through the entire period within a minute.

19.2.2 Lagged Fibonacci Generators

Lagged Fibonacci generators (LFG) were first proposed by Mitchell and Moore
some 50 years ago and have long been considered reliable (Knuth 1998,
Chap. 3.2.2). Their state vector 	 consists of the last l 32-bit random numbers
drawn according to the generalized Fibonacci recurrence relation

rn = (rn−s ± rn−l ) mod m (0< s < l ≤ n). (19.7)

Several valid pairs (l, s) of long and short lags are given by Knut (1998, Chap. 3.2.2,
Table 1). Mitchell and Moore originally proposed lags (55,24), while Knuth recom-
mends (100,37) in his Chap. 3.6. For moduli of the formm= 2k , the LFG generator
has a period of ρ = 2k−1(2l − 1). For the parameters given by Knuth, one thus ob-
tains a period ρ ≈ 2129.

Some weaknesses in these generators can be overcome by decimation, e.g., using
only the first 100 of every 1009 numbers generated (Lüscher 1994). This gives the
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canonical implementation of the LFG. Source Code is freely available from Donald
Knuth’s website.1

Properly initializing the state vector 	, which contains l 32-bit integers, based on
a single 32-bit seed S is not trivial; Knuth has revised the initialization routine for
the LFG as recently as in 2002.2 The present initialization scheme appears robust
under stringent tests (Matsumoto et al. 2007).

L’Ecuyer (2004) advises strongly against the use of LFGs, since the triplets
(Xn,Xn−s ,Xn−l ) have strong correlations between themselves, so that simulators
which should happen to combine random numbers in these intervals in unfortunate
ways may suffer.

Marsaglia and Tsang (2004) suggest to combine a lagged Fibonacci generator
with lags 97 and 33 with an arithmetic sequence of the form c − jd mod p for
suitable constants c, d , and p, to obtain a generator with period ρ ≈ 2202. This
generator does not suffer from the shortcomings of “plain” LFGs, and thus one does
not need to decimate the random number stream.

19.2.3 Combined Multiple Recursive Generators

Multiple recursive generators (MRG) generalize the lagged Fibonacci generators
by introducing more terms and arbitrary coefficients into the recurrence (L’Ecuyer
2004)

Xn = (a1Xn−1 + a2Xn−2 + · · · + akXn−k) mod m. (19.8)

LCGs are a special case of an MRG for k = 1, while LFGs are MRGs for which
two aj = ±1 while all other coefficients vanish. Combining two such generators
with carefully chosen parameters results in a combined multiple recursive generator
(CMRG) such as MRG32k3awith the following equations describing the recurrence
and drawing (L’Ecuyer 1999):

Σ1,n = (1,403,580×Σ1,n−2 − 810,728×Σ1,n−3) mod m1, (19.9)

Σ2,n = (527,612×Σ2,n−1 − 1,370,589×Σ2,n−3) mod m2, (19.10)

rn = (Σ1,n −Σ2,n) mod m1, (19.11)

m1 = 232 − 209= 4,294,967,087, (19.12)

m2 = 232 − 22,853= 4,294,944,443, (19.13)

where Σ1 and Σ2 are stored as doubles with 53-bit mantissa. This combined gen-
erator has a period ρ = (m3

1 − 1)(m3
2 − 1)/2 ≈ 2191 ≈ 1057 and passes all tests in

the TestU01 suite (L’Ecuyer and Simard 2007). An implementation in C is avail-
able from L’Ecuyer.3 It is included in Matlab 7.7 and later. The cmrg generator in

1http://www-cs-faculty.stanford.edu/~knuth/programs/rng.c.
2As of the 9th printing of Knuth (1998).
3http://www.iro.umontreal.ca/~lecuyer/myftp/papers/combmrg2.c.

http://www-cs-faculty.stanford.edu/~knuth/programs/rng.c
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/combmrg2.c


404 H.E. Plesser

the GNU Scientific Library is a similar CMRG with a period ρ ≈ 2185, which also
passes all TestU01 tests but shows some weakness in initialization tests (Galassi et
al. 2001; Matsumoto et al. 2007). We will return to MRG32k3a in Sect. 19.4.1.

19.2.4 Mersenne Twister and Related Generators

Mersenne Twister (MT) random number generators were introduced by Matsumoto
and Nishimura (1998) based on a class of generators known as feedback shift reg-
ister generators. These generators do not operate on integer or double numbers, but
on vectors of individual bits. This permits fast code based on bit-shift and bit-wise
logical operations, thorough mathematical analysis, and efficient skipping ahead.
Mersenne Twisters have thus become very popular in the ten years since their in-
vention. For an introduction to the principles behind Mersenne Twisters and related
generators, see L’Ecuyer (2004), on which the following is based.

For MT generators, all arithmetic is done modulo 2, i.e., in the finite field F2
with the two elements 0 and 1. The state variable 	 is a vector of k 0s and 1s, and
iteration and drawing rules are given by

	j =A	j−1, (19.14)

rj = B	j , (19.15)

uj =
w∑
l=1

rj,l2
−l , (19.16)

with the k×k transition matrix A and thew×k output transformation matrix B, both
with elements from F2. uj ∈ [0,1) is the output of the algorithm given as a double.
Since doubles have only a 53-bit mantissa, one usually has w ≤ 53, while k� w.
The matrix multiplications in the equations above can be implemented efficiently
through bit-shift and bit-wise logical operations.

The most commonly used Mersenne Twister today is MT19937 published in
1998, with an improved initialization routine published in 2002; source code is
available from Matsumoto and others4 and is available in the GNU Scientific Li-
brary as mt199375; it is the default PRNG in NumPy and Matlab (since version
7.4). MT19937 has k = 19,937, i.e., the transition matrix A is a very sparse matrix
of 19,937× 19,937 bits. The state variable 	 correspondingly contains 19,937 bits,
stored in 624 32-bit words. The period of the generator is ρ = 219,937− 1≈ 106,000,
so that even after application of the cube-root rule we are left with a mindboggling
number of usable random numbers. MT19937 is fast in spite of its huge state vector
and has passed all tests in the TestU01 testsuite except two, which all feedback shift
register generators fail. On this failure, L’Ecuyer and Panneton (2005) comment that

4http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.
5GSL v. 1.2 and later; earlier versions have the defective pre-2002 initialization routine.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
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“this is very unlikely to cause a problem in practice, unless the system we simulate
has a lot to do with linear dependencies among bits”. Doubts about the MT19937
recently raised by Kim et al. (2008) were based on a faulty analysis (Plesser and
Jahnsen 2010).

19.2.5 Nonlinear Random Number Generators

All PRNGs presented so far are linear. Nonlinear generators, such as inversive con-
gruential generators (ICG) proposed first by Eichenauer and Lehn (1986), are based
on recurrences of the type

Xj+1 = (aXj + b) mod m,

where the bar denotes the inverse with respect to multiplication modulo m, and m
is a large prime. Integer division modulo a large prime is slow, whence ICGs are
about 50 times slower than MT19937 (L’Ecuyer and Simard 2007). Due to their
short period (typically ρ ≈ 231), ICGs also fail the TestU01 tests. They may still be
of interest in special situations, as they produce random numbers in a quite different
fashion than all linear generators. If you doubt your simulation results, it may be
an idea to redo a few simulations using an ICG or other nonlinear generator. The
PRNG library by Otmar Lendl provides several such generators.6

19.3 Cryptographically Strong Random Number Generators

Cryptography, as well as gaming and gambling, have very different demands on
random number generators than simulation-based science. For secure cryptography,
it is crucial that a random number generator is unpredictable, i.e., that no efficient
algorithm exists that permits an observer to predict future random numbers based
on numbers produced by the generator in the past.

Reasonably fast cryptographic random number generators are based on encryp-
tion algorithms such as the Advanced Encryption Standard (AES) (Hellekalek and
Wegenkittl 2003) and hash functions (Barker and Kelsey 2007). Encryption func-
tions take a key K and a plaintext P and return a ciphertext

C =E(K,P ). (19.17)

They can be used as random number generators in one of three ways (Hellekalek
and Wegenkittl 2003; Dworkin 2001):

• In output feedback mode (OFB) one chooses a fixed key K and some plaintext S
to generate C0 = E(K,S). Random numbers are then generated by iterating the
encryption on the ciphertext Cj =E(K,Cj−1).

6http://statistik.wu-wien.ac.at/software/prng.

http://statistik.wu-wien.ac.at/software/prng
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• In counter mode (CTR) one chooses a fixed key K and obtains a sequence of
ciphertexts by encrypting a counter that is increased by one for each number
drawn, Cj =E(K,S + j).

• Key counter mode (KTR) is complementary to counter mode: subsequent num-
bers are used as keys to encrypt a fixed plaintext, Cj =E(S + j,P ).

Random numbers are obtained from the ciphertext using a suitable drawing func-
tion rj = D(Cj ). The period of a generator based on (key) counter mode can obvi-
ously not be larger than the range of values the counter can assume. Therefore, long
counters with hundreds of bits should be used. Several cryptographic RNGs have
passed the TestU01 suite (L’Ecuyer and Simard 2007); the testsuite also contains
implementations of random generators based on AES and SHA-1 encryption with
periods of 2130 and 2440, respectively.

Cryptographic RNGs in a (key) counter mode have no internal state variable:
each random number is generated independently of all previous and subsequent
numbers. This has two interesting advantages: First, skipping ahead is trivial.
Second, many random numbers can be generated in parallel exploiting single-
instruction, multiple-data (SIMD) coprocessors such as SSE and AltiVec extensions
in modern CPUs or the massive power of current graphics cards (Tzeng and Wei
2008).

19.4 Seeding Random Number Generators

The choice of seeds for random number generators is subject of much folklore and
little systematic investigation. Deficiencies in the seeding process of the Mersenne
Twister and Knuth’s LFG were discovered as late as 2002, and Matsumoto et al.
(2007) recently reported that most PRNGs in the GNU Scientific Library have weak
seeding strategies. Marsaglia and Tsang (2004) provide an interesting perspective
on seeding of random number generators for legal or gambling purposes.

We assume here that surrogate data generation requires one to generate streams
of random numbers to generate spike trains. All these streams must be statistically
independent, no matter how they are generated and consumed: sequentially (se-
rial algorithm runs many times in succession), simultaneously (many instances of
a serial algorithm run independently on a cluster), or in parallel (parallel algorithm
consuming several PRN streams).

Unfortunately no generator can provide provably statistically independent
streams. The best a good PRNG can offer is to guarantee, or at least make it highly
likely, that different seeds lead to nonoverlapping random number sequences of a
certain length. A good PRNG should thus come with an explicit seeding algorithm
which ensures reliable results for any admissible seed. Use it, instead of relying on
traded advice on the choice of seeds such as choosing seeds with a roughly equal
number of 0 and 1 bits.

The good news is that if the PRNG is well behaved for any choice of seed, then
we can choose seeds systematically throughout our project. Assuming 32-bit num-
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bers as seeds, we could, for example, compute the seed for any given stream accord-
ing to

Sstream = ncoll × 226 + nex × 216 + ntr (19.18)

with collaborator number ncoll(1–63), experiment number nex(0–1,023), and trial
number ntr(0–65,535), specifying the stream. This scheme is easily extended to a
wider range of components by using seeds with more than 32 bits. Such a scheme
provides a systematic and clear way of enumerating random number streams, en-
sures that no two collaborators or simultaneous runs will use identical seeds, and
leaves the difficult task of actually initializing the PRNG to the expert developers of
generators.

That said, it is still useful to have a minimal understanding of how seeding ac-
tually works. For most PRNGs, the state vector 	 will take on any possible value
at some point during the period ρ of the generator. Seeding simply initializes the
state vector to some value, based on the value of the seed. Good seeding algo-
rithms spread starting points evenly across the period ρ. When seeding the Mersenne
Twister with ρ = 219,937−1 with 32-bit integer seeds, starting points should be sep-
arated by roughly 219,905 random numbers, provided that the seeding algorithm is
good. Naive initialization of the state vector, on the other hand, may lead to initial
states separated by only very few numbers and thus overlapping, highly correlated
streams.

19.4.1 Parallel Streams of Random Numbers

We shall now briefly discuss the block splitting technique, also known as cycle di-
vision used to initialize PRNGs in a way that ensures nonoverlapping random num-
ber streams (L’Ecuyer et al. 2002; Bauke and Mertens 2007). Parameterization of
PRNGs is another technique for the same purpose, see Mascagni and Srinivasan
(2000, 2004).

Block splitting exploits that some PRNGs allow us to jump ahead by a certain
number B of random numbers: given state 	0, we can quickly find any 	nB . Us-
ing n as a stream index, we can thus choose between ρ/B provably nonoverlapping
random number streams of length B . The MRG32k3a generator (cf. Sect. 19.2.3)
has a full period of ρ ≈ 2191, which can be split into 264 streams of length B = 2127

(L’Ecuyer et al. 2002). Similar techniques are available for lagged Fibonacci gener-
ators (Mascagni and Srinivasan 2004; Knuth 1998, Chap. 3.6, Ex. 3.6-9). Haramoto
et al. (2008) developed a jump-ahead algorithm for the Mersenne Twister and related
PRNGs, but no implementations appear to be publicly available at this time. Matlab
v. 7.7 provides nonoverlapping streams of random numbers using block splitting
for some generators; unfortunately, neither the Python random.jumpahead()
(v. 2.6.2) nor the GSL gsl_rng_set() provide any similar guarantees.

Selecting random streams using block splitting does not mix well with changing
the seed of the underlying PRNG, as both select starting points for random number
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sequences from the same overall sequence. When using generators with multiple
streams, you should choose one fixed seed for your entire study and then use (19.18)
to select streams. For parallel simulations, simply extend the equation to include
MPI rank or thread number.

19.5 Transforming Random Numbers

Most random number generators draw “raw” numbers rj uniformly from the set
W = {0,1, . . . ,M} with M ≈ 232. These raw numbers need to be transformed for
use in simulations. We will consider here transformation to the unit interval, to a
given range of integers, the exponential distribution, and some more general meth-
ods; for more information, see Gentle (2003), Knuth (1998), or Devroye (1986).
If your software package or library provides methods to generate random deviates
with the required distribution, you should use those methods.

Raw numbers rj are usually converted to floating-point random numbers in the
unit interval [0,1) using uj = rj /(M + 1). While most scientific software today
uses floating point variables with a 53-bit mantissa, yielding a machine resolution
of O(10−16), 32-bit integer random numbers will yield uj with a resolution of only
O(10−9). This need not be a problem in practice, but you should be aware of this
limitation. Random numbers with 53-bit mantissa can be obtained by suitable com-
bination of two subsequent raw numbers.

The most common approach concerning the endpoints of the unit interval appears
to be to draw from [0,1). Including 0 in the range of values can lead to problems
in algorithms taking the logarithm of or dividing by random numbers. The most
common strategies to exclude 0 are to redraw if 0 is drawn, or to substitute a very
small value for 0. Doornik (2007) recently proposed an efficient way of obtaining
floating point random numbers on the open interval (0,1) that are strictly symmetric
about 1

2 . To our knowledge, his algorithm has not yet been incorporated in standard
random number libraries.

Uniformly distributed integers ij from a range {1,2, . . . , n} are most easily com-
puted as ij = 1+ %nuj&, although some libraries transform the rj into ij directly.
You should not use 1 + (rj mod n) to obtain the ij , since this exploits only the
lowest bits of the generated random numbers.

Random deviates following any other probability density p(x) with pertaining
cumulative distribution function P(x)= ∫ x−∞ p(s) ds can be obtained in a number
of ways. If P(x) can be inverted analytically, then xj = P−1(uj ) will be distributed
according to p(x). Exponentially distributed numbers with p(x) = e−x/μ/μ are
thus obtained as xj =−μ ln(1− uj ).

If P−1(x) is not available analytically or is computationally expensive, rejection
methods are often useful. Let q(x) be another probability density with an easily
computable inverse Q−1(u), p(x)≤ αq(x) for all x, and α ≥ 1. Obtain a candidate
z = Q−1(uj ); if αq(z)uj+1 < p(z), accept x = z, otherwise obtain a new candi-
date z. To be efficient, this method requires that the majorizing function αq(x) is a
tight bound on the actual distribution p(x). This can often be achieved by compos-
ing q(x) from suitable functions for parts of the support of p(x).
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19.6 Recommendations

Donald Knuth (1998, Chap. 3.6) reminds us that

“. . . the history of the subject warns us to be cautious. The most prudent
policy . . . to follow is to run each Monte Carlo program at least twice using
quite different sources of random numbers, before taking the answers of the
program seriously; this will not only give an indication of the stability of the
results, it will also guard against the danger of trusting in a generator with
hidden deficiencies. (Every random number generator will fail in at least one
application.)”

Many a lesson has been learned the hard way about the interference between random
number generators and Monte Carlo simulations in physics (Ferrenberg et al. 1992;
Bauke and Mertens 2004). No comparable problems caused by random number
generators have been reported in the computational neuroscience literature—yet.
This does by no means mean that such problems do not exist: they might just have
gone undetected so far, for want of analytical solutions to model equations providing
gold standards. Spurious observations due to numerical inaccuracies in neuronal
simulations should serve as a warning (Hansel et al. 1998).

With this in mind, we conclude with four recommendations:

1. Do not tie yourself to a single random number generator but implement a flexible
interface to existing random number libraries.

2. Do not implement random number generators yourself but use existing, well-
tested libraries such as the GNU Scientific Library.

3. Test your scheme for drawing random numbers against reference data provided
by the RNG developers or against established test resources, such as L’Ecuyer’s
TestU01 testsuite, to make sure that random numbers are correctly handled by
your interface to the random generator libraries. Include such tests in the test-
suite for your software, so you can validate the interface when porting to a new
architecture.

4. Consult recent tests of random number generators, at the time of writing the
TestU01 test report (L’Ecuyer and Simard 2007).

And finally, before you submit your groundbreaking results for publication, repeat
at least some simulation runs with at least one different random number generator.
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Chapter 20
Practically Trivial Parallel Data Processing in a
Neuroscience Laboratory

Michael Denker, Bernd Wiebelt, Denny Fliegner,
Markus Diesmann, and Abigail Morrison

Abstract The complexity of modern data analysis techniques and the increasing
amounts of data gushing out from neuroscientific experiments place new demands
on the computing infrastructure required for data processing. The needs exceed the
speed and memory constraints of a classical serial program design and require sci-
entists to parallelize their analysis processes on distributed computer systems. In
this chapter we explore, step by step, how to transform a typical data analysis pro-
gram into a parallelized application. On the conceptual level, we demonstrate how
to identify those parts of a serial program best suited for parallel execution. On
the level of the practical implementation, we introduce four methods that assist in
managing and distributing the parallelized code. By combining high-level scientific
programming languages with modern techniques for job control and metaprogram-
ming, no knowledge of system-level parallelization and the hardware architecture is
required. We describe the solutions in a general fashion to facilitate the transfer of
insights to the specific software and computer system environment of a particular
laboratory.

The last two decades have seen a rapid gain in interest for increasingly complex
methods employed in the analysis of neuronal spike train data, many of which
are highlighted in this book. Partly, this trend may be attributed to a new qual-
ity of interaction between researchers in theoretical and experimental fields. How-
ever, equally important, data analysis with such techniques could not have been
implemented without the steady increase in computation speed and memory stor-
age of modern computers. There are three primary challenges in spike train anal-
ysis where increased computing capabilities are direly needed. First, many ad-
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vanced algorithms are computationally expensive. Second, neuronal data sets are
typically large, so that a terabyte of data is not a rare sight. In past times, data
was often downsampled and reduced in order to accommodate the technology of
the time, at the price of discarding the raw data forever. Thus, many questions
that first arose during the analysis could not be answered. Modern storage tech-
nology allows the electrophysiologist to retain the complete recorded data set for
reference. In addition to this increased amount of data coming from each elec-
trode, the number of electrodes has also steadily increased, and techniques such
as tetrodes or laminar electrodes provide multiple data streams per electrode. The
third challenge stems from the observation that neuronal data typically exhibits
nonstationary behavior, which complicates the task of finding the correct null hy-
pothesis to assess the significance of an analysis. With modern computer power,
it is possible to utilize a data-based approach to tackle significance estimation:
surrogate techniques (see also Chap. 17). In this framework the original data is
modified in a specific way so as to keep some aspects of the data (e.g., the non-
stationary nature of the data), while deliberately destroying others (i.e., those de-
scribed by the test parameter). Repeating this procedure many times estimates the
expected distribution of the test parameter under the null hypothesis. The caveat
lies in the repetition: N surrogates will increase the calculation time by a factor of
about N .

As we have seen, the increased complexity of analysis, the large amount of
recorded data, and the need for surrogate techniques increases demand for both
speed and memory. Although the memory capacity of computers can still be ex-
pected to show gradual improvement, the same can no longer be said for the speed
of the computer processors since the clock-speed of the basic processing unit is un-
likely to become significantly higher in the near future. However, a different trend
compensates for the stalling processor speeds: instead of having just one processor
in a given machine, the computer possesses several. These are either realized as an
array of CPU chips, or several subprocessors, called cores, within one physical chip
(e.g., dual-core CPUs). In the following, we will use the terms cores or processors
synonymously to denote a computer’s processing units independent of their physical
realization, e.g., a computer with 2 dual-core CPUs has 4 cores (processors). In this
chapter we will not cover how distinguishing between the two can be utilized for
optimization purposes. The design of having several cores share a computer’s com-
ponents (e.g., memory) is cost-effective and enables a substantially more efficient
use of resources than a single core can realize. Programs started on the computer
request a time share on the cores, and both the hardware and the operating system
take care to balance the load and optimize performance of programs competing for
the different processor resources.

Although this design intrinsically confers advantages for typical office com-
puter usage (where the user will have several distinct applications running at the
same time), the programming neuroscientist is faced with a severe problem: without
further work, an analysis program will typically only run on one core and hence
will not profit from the additional number of cores. Whereas some high-level lan-
guages, such as Python or Matlab, provide the option to have their internal func-
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tions use several cores in parallel automatically (using a technique called multi-
threading, Butenhof 1997), the increase in speed that can be achieved by relying
on just a few parallelized built-in methods is severely limited by the serial (sequen-
tial) design of the original program (Amdahl’s law, see, e.g., Miller and Boxer 2005;
Wilkinson and Allen 2004). Therefore, in order to accommodate the future demands
of data analysis, neuroscientists need to become acquainted with the programming
concept of trivial parallelization: splitting up the analysis into independent parts that
can be computed in parallel without communication (Bader 2008). Applications for
which this decomposition into independent processes is possible are known as em-
barrassingly parallel (Foster 1995). A major advantage that comes as an almost free
bonus of a parallel program is the possibility of distributing it not merely over the
cores of a single computer, but over all the cores of a set of independent nodes (com-
puters) belonging to a cluster (or a grid, see Foster and Kesselman 2004). With the
increased availability of cluster systems, the effort of parallelization provides high
rewards in terms of speed gain and opens up the possibility of tackling the large
amounts of data that will likely become commonplace in electrophysiology in years
to come.

Our text summarizes the experience we have gained since we started to use
trivial parallelization (Fliegner et al. 2003) and is inspired by the seminal work
of Gerstein et al. (1983) on the design of a laboratory for multineuron studies.
In the following sections, we provide a hands-on tutorial using a simple example
task to help get the reader started with the idea of trivially parallel programming.
The details of implementation naturally depend on a variety of factors, in partic-
ular, the computer hardware and software installation available to the reader. In
particular, if you consider using a computer cluster shared by other parties, you
will probably not have any influence on the methods available to you depending
on the setup of the system. Therefore, we present the following approaches in a
general style that emphasizes the common concepts of adapting an existing serial
program to a parallelization scheme, rather than focusing on the technical details
of a particular hardware and software setup. We describe parallelization on four
levels of increasing complexity: manual and automated parallelization on the sin-
gle multicore computer, queuing systems typically found on clusters of computers,
and high-level interfaces to coordinate parallelized jobs that are available in some
programming languages. These methods should be easy to adapt to most parallel
computing environments and provide a starting point when designing and installing
a high-performance computing infrastructure from scratch. All examples assume
a Linux-based system, as scientifically used clusters are commonly UNIX-based.
However, similar tools and approaches are also available for other operating sys-
tems. The code examples in this chapter are expressed in the Python programming
language (http://www.python.org), which is presently gaining importance in scien-
tific computing (Langtangen 2006) and neuroscience (Kötter 2009). The $ sym-
bol indicates commands run from the Linux (bash) shell prompt (Newham and
Rosenblatt 1995). All code presented in this chapter, in addition to further pro-
grams not reproduced here, is available at the web site associated with this book
(http://www.apst.spiketrain-analysis.org).

http://www.python.org
http://www.apst.spiketrain-analysis.org
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Listing 20.1 The original serial program.
import pickle
from numpy import *

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#read spike data
f = open(’./spikes.dat’, ’r’)
spikes = pickle.load(f)
f.close()

#preallocate result variables
num_ccs = (num_neurons**2 - num_neurons)/2
cc_orig = zeros((num_ccs,2*maxlag+1))
cc_surrs = zeros((num_ccs,2*maxlag+1,num_surrs))
idxrange = range(num_bins-maxlag,num_bins+maxlag+1)
row = 0

#for all pairs ni,nj such that nj > ni
for ni in range(num_neurons-1):

for nj in range(ni+1,num_neurons):
cc_orig[row,:] = correlate(spikes[ni,:],spikes[nj,:],"full")[idxrange]

num_spikes_i = sum(spikes[ni,:])
num_spikes_j = sum(spikes[nj,:])
for surrogate in range(num_surrs):

surr_i = zeros(num_bins)
surr_i[random.random_integers(0,num_bins-1,num_spikes_i)] = 1
surr_j = zeros(num_bins)
surr_j[random.random_integers(0,num_bins-1,num_spikes_j)] = 1
cc_surrs[row,:,surrogate] = correlate(surr_i,surr_j,"full")[

idxrange]
row = row +1

#save results
f = open(’./result_cc_originals.dat’,’w’)
pickle.dump(cc_orig,f)
f.close()
f = open(’./result_cc_surrogates.dat’,’w’)
pickle.dump(cc_surrs,f)
f.close()

20.1 Introducing a Simple Serial Program

Let us first introduce a serial program of the type one encounters in the analysis
of neuronal data. Assume that we have recorded spike times from num_neurons=
100 neurons in parallel over a duration of num_secs = 10 s each. The spike data
is provided as a binary vector with millisecond binning, i.e., num_bins = 10,000
bins. We are interested in the mutual cross-correlation functions between all pairs,
retaining a lag of up to maxlag = 200 ms. In order to assess the significance of
all pairwise correlations, we calculate the cross-correlations for num_surrs= 1,000
surrogate data sets for each neuron pair. For the sake of simplicity, each surrogate
is generated by randomly redistributing the times of the original spikes. A simple
program to accomplish this task is given in Listing 20.1.

First, parameters describing the experiment (num_neurons, num_secs, num_bins)
and parameters of the subsequent analysis (maxlag, num_surrs) are imported from
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two separate files, which contain nothing but the assignment of the values given
above to the respective variables. Later, when we separate the program into individ-
ual parts during the parallelization process, it will pay off to have put parameters
into such extra files rather than hard-wiring them into the code, as this way we are
certain that different parts of the program use the same parameter values. In a second
step, the data is loaded from file into the variable spikes. Next, two for-loops with
loop control variables ni and nj realize all combinations of cell pairs. As the cross-
correlation function is symmetrical, only those pairs are considered where the ID of
the first neuron (ni) is lower than that of the second (nj). In practice this is realized
by letting the inner nj-loop start at ni+ 1, i.e., dependent on the value ni of the outer
loop. In Python, array indexing starts from zero, so it is convenient to use neuron
IDs between 0 and 99 for the 100 neurons. Thus, in this example, ni runs from 0 to
98, and nj from ni+ 1 to 99 (for the particulars of the corresponding Python syntax,
see Langtangen 2006). The enclosing block of these for-loops can be seen as two
parts. First, the cross-correlation of both neurons is calculated. Second, each itera-
tion of an additional for-loop running from 1 to num_surrs creates one surrogate
spike train pair and calculates its cross-correlation. The original and all 1,000 sur-
rogate cross-correlations are then inserted into the structures cc_orig and cc_surrs,
respectively. The last lines, outside the for-loops, save the final results to disk in
two separate files.

As simple as the program seems, it is not without two serious problems. First,
the computation time is rather long. The block enclosed by the nj -loop (calcu-
lating 1,001 cross correlations) takes on the order of two minutes on a modern
desktop computer. Therefore, all 4,950 combinations of neurons would take about
150 hours. Although this time span is still bearable, if the computations performed
in the inner loop become more involved, for example, if we use a more sophisti-
cated method to create the surrogate, the computation time might easily get into
the range of weeks. A second problem is the memory requirement of the result
variable: 4,950 combinations × 1,001 cross-correlations × 401 ms lag time × 8
bytes to store each value per lag time bin amounts to roughly 15 GB, which ex-
ceeds the typical memory capacity of present-day workstations. In this example, we
would have no choice other than to rewrite the code so that it continuously frees
memory by writing smaller data segments to disk during the calculation, as op-
posed to saving the whole block of results at the end. For instance, a natural choice
would be to save the data separately for each neuron combination (just before the
end of the nj-loop) in a file whose name clearly identifies the corresponding pair
of neuron IDs ni and nj for later reference. In short, even simple programs may
be unexpectedly demanding in terms of computing power and memory consump-
tion.



418 M. Denker et al.

20.2 The Idea of Trivial Parallelization

20.2.1 Theoretical Considerations

The principal challenge posed by the trivial parallelization process is to identify
those parts of a program that are repeatedly executed (i.e., occur within a loop), and
where each individual execution is independent of the results of any other execu-
tion. Such independent parts of the program can be executed in parallel, instead of
sequentially. In the following, we term each execution of an independent part a job.
In contrast, a nontrivial parallelization involves heterogeneous parts of the program
running in parallel and/or communication between the parallel execution streams.
Fortunately, in typical applications of data analysis in electrophysiology (and many
other disciplines), this identification process is a relatively straightforward task, as
virtually all analyses are carried out in some sort of looped structure. In the exam-
ple Listing 20.1 we loop over individual neuron pairs and the individual surrogates.
Other common loops iterate animals, recording sessions, stimuli, time windows, or
technical parameters of the analysis (e.g., a defined bin width). Typically, the anal-
ysis performed in each loop iteration is independent of every other, for example,
the spike data in rat A is independent of that in rat B, or a PSTH with a large bin
width can be computed independently of a PSTH with a smaller one. Therefore,
the individual iterations of these types of loops are the natural choice for defining
independent jobs.

In many cases, the loop that is best suitable for parallelization is simply the outer-
most loop (in our example, the ni-loop). However, sometimes it is worth considering
a loop that is more deeply nested. There is no rule to say which loop is best, but here
are some points to consider:

• Optimization of run time: a job’s run time should be neither too short nor too
long. Having a large number of jobs that each run for a very short time (on the
order of seconds) wastes a lot of time on overhead: the time required to start,
initialize, and finalize each job. Moreover, such a strategy makes it difficult to
monitor all the jobs and results in an inconveniently large number of output files
(at least one per job). Conversely, having a few long jobs (on the order of days)
is not optimal either, since they might not fully exploit the number of available
cores, and any tendency for differing run times will be exacerbated (unbalanced
jobs, see below). On a practical note, the longer a single job runs, the longer it
may take to spot programming errors in the code. As a rule-of-thumb, a run time
on the order of minutes to hours is a good choice between the two extremes. In
particular, one should take care that the overhead required is small compared to
the actual computation within the loop.

• Ease of implementation: inner loops often depend on variables that are set in pre-
vious iterations or by outer loops, therefore they can be more difficult to isolate.
In this case, these variables must be passed appropriately to each job.

• Equalization of run time: an optimal parallelization has balanced jobs that take
equal amounts of time; this is also known as load balancing. Assume the case
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where each job analyzes a specific recording session of an experiment: if the
sessions differ in length, e.g., session A takes 5 min and session B 200 min, the
complete analysis will still take 200 min. If the run times are unpredictable, this
can be compensated by creating more jobs than the number of processors avail-
able; a processor that finishes a job quickly can start on the next, while another
one is still working on a long running job.

Once we have selected a loop to transform into a job, we must think about pa-
rameterizing the loop. This will later help to easily differentiate between individual
instances of the job. In some cases this is trivial; if a loop extends over record-
ing sessions labeled by sequential integer IDs, then these already uniquely identify
each loop iteration. However, sometimes a loop runs over more complicated values,
like floating point numbers, strings, or even complex data types. In this case, we
recommend introducing a job index k as an integer variable to replace the former
loop variable, and which can be mapped back to the original parameter via a pre-
defined look-up table Z(k). Thus, each job is identified by a unique index k, and
no round-off errors or string conversions can confuse the association between a par-
ticular job and its parameter. For example, assume that a loop runs over different
stimulus intensities given as Z = [1.4325, 4.3214, 10.5423] or different animals
given as Z = [′monkeyA′, ′monkeyB′]. In this case a practical approach is to in-
clude the look-up table Z in the analysis parameter file (analysis_params.py
in our example), use k = 0,1, . . . as the job index, and have each job extract its
actual parameter value as Z[k]. A similar procedure can be employed when n > 1
parameters should be varied: Z stores the n-tuple of all parameter configurations,
and each value of k indexes a specific configuration.

The next step is to isolate the parameterized loop and transform it into a stand-
alone job. Additionally, a distributor program may be required that takes care of
executing the individual jobs. As outlined above, the job is derived from a loop,
whereas the distributor is typically derived from the rest of the program and en-
sures that the required number of jobs are executed with the correct parameteriza-
tion. Several mechanisms to achieve this are presented in Sect. 20.3, Sect. 20.4, and
Sect. 20.6. Depending on the circumstances, the distributor may also serve as a col-
lector of results or perform further analysis steps once all jobs have finished. This
topic will be covered in more detail in Sect. 20.5.

Three principal changes must be carried out to convert a loop into a job. First, all
data necessary for the loop to run must be loaded when the job starts. Second, the
variable used to control the loop must be converted to the job index k, possibly using
a look-up table Z. Third, results that used to be calculated in one iteration of the loop
and are now calculated by the job must be saved to disk before the job terminates.
The name of this results file should contain the index k for later reference.

Note that for most parallelization mechanisms (here, Sect. 20.3 and Sect. 20.4),
the job must be a program that is executable from the command line of the computer
that is running it. For some interpreted languages, such as Matlab, it can be advisable
to compile the job script into a standalone application that can be run independently
of whether the interpreter is installed on a specific machine. A further situation
where compiling is advisable arises when the required number of parallel instances
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of the job is prohibited by the specific licensing model of the interpreter application.
Compiled code is often not subject to limitations regarding the number of instances
executed in parallel.

20.2.2 Basic Parallelization of the Example Program

Let us now apply the concepts introduced in Sect. 20.2.1 to our example program
(Listing 20.1). Each iteration of the ni-loop is independent and runs for between two
minutes and about three hours, depending on the value of ni. Although this is not
optimal load balancing, we start with the parallelization of this loop as it is particu-
larly easy to extract and results in a manageable number of 99 jobs (the loop ranges
from 0 to 98). In Sect. 20.7 we discuss better balanced alternatives. As ni is a plain
integer value that denotes the unique ID of the first neuron of a pair, we can incorpo-
rate it into our parallel job as the job index k without the need of a look-up table Z.

Let us now transform the ni-loop into a job for parallel distribution. In the sub-
sequent sections, for simplicity, we assume that this standalone program is called
job. The result of the three-step recipe is shown in Listing 20.2. The first lines are
the typical lines that initialize the program. Note that we first need to load neces-
sary data and parameters. This is part of the overhead, i.e., the set of instructions
that need to be performed by each individual call to the job. Recall that in order for
parallel programs to be efficient, the time required for the overhead should be small
compared to the actual calculations. In our example this constraint is fulfilled, as the
data loads in a matter of seconds. On the following lines, we see that the variable
ni that is used to control the loop in Listing 20.1 is now passed to the program in
string form as the job index k, whereupon it is converted into an integer. A call to
the program with the argument k performs the kth iteration of the former loop. For
example, to calculate the 16th iteration of the original loop that calculates only the
correlations of neuron 15 with neurons 16 to 99, we would call

$ job 15

The main part of the program is unchanged from the body of the original ni-
loop in Listing 20.1, except that on the last lines we save the results to disk,
using the job index variable k to create a uniquely identifiable file name for
each iteration of the job, in this case result_cc_originals_k.dat and
result_cc_surrogates_k.dat. Note that we obtain 198 different output files,
which may at first seem bothersome. However, in Sect. 20.1 we discussed the fact
that a single output file containing all the data would be extremely large, so splitting
the results into several files may well be desirable.

In the following sections we demonstrate how to run the new program in parallel.
Several methods are available, and the design of the distributor program will depend
on the method chosen. In Sect. 20.3 we present two simple techniques that are re-
stricted to running parallel jobs on a computer with multiple cores. In Sect. 20.4
and Sect. 20.5 we show how to utilize more complex systems to distribute parallel
jobs on different computers and how to deal with dependencies between jobs. In
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Listing 20.2 The generic job created from the example program.
import sys
import pickle
from numpy import *

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#read neuron id from the command line
k_str = sys.argv[1]
k = int(k_str)

#read spike data
f = open(’./spikes.dat’, ’r’)
spikes = pickle.load(f)
f.close()

#preallocate result variables
num_ccs = num_neurons - k - 1
cc_orig = zeros((num_ccs,2*maxlag+1))
cc_surrs = zeros((num_ccs,2*maxlag+1,num_surrs))
idxrange = range(num_bins-maxlag,num_bins+maxlag+1)
row = 0

#for all pairs neuron,nj such that nj > neuron
for nj in range(k+1,num_neurons):

cc_orig[row,:] = correlate(spikes[k,:],spikes[nj,:],"full")[idxrange]

num_spikes_i = sum(spikes[k,:])
num_spikes_j = sum(spikes[nj,:])
for surrogate in range(num_surrs):

surr_i = zeros(num_bins)
surr_i[random.random_integers(0,num_bins-1,num_spikes_i)] = 1
surr_j = zeros(num_bins)
surr_j[random.random_integers(0,num_bins-1,num_spikes_j)] = 1
cc_surrs[row,:,surrogate] = correlate(surr_i,surr_j,"full")[idxrange]

row = row +1

#save results
f=open(’./result_cc_originals_’+k_str+’.dat’, ’w’)
pickle.dump(cc_orig,f)
f.close()
f=open(’./result_cc_surrogates_’+k_str+’.dat’, ’w’)
pickle.dump(cc_surrs,f)
f.close()

Sect. 20.6 we present a different approach to parallelization that allows jobs to be
defined and executed in a flexible fashion using the high-level parallelization inter-
faces that have been implemented in some programming languages.

20.3 Starting a Parallel Job on a Single Multicore Computer

20.3.1 A Manual Solution: Screen

As an instructive first step, let us discuss the most simple way to distribute jobs to
the different cores of a single computer: by hand. To this end, we simply start all 99
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instances of the program in such a way that they are executed in the background and
independent of the calling terminal:

$ nohup job 0 &
$ nohup job 1 &
...
$ nohup job 98 &

On each line the program nohup (a contraction of “no hang up”) calls job so that
the process is detached from the shell (i.e., closing the console will not kill the job)
and returns control immediately to the shell via the & directive. On each call of job
we pass as an argument the job index k. It is converted into the variable k in the job
program Listing 20.2.

A more interactive way to manually start a number of jobs that can be detached
from the current terminal is to use the program screen. Calling

$ screen

provides a virtual console, where any of the jobs may be started, e.g.,

$ job 0

Using the keyboard short-cut Ctrl− a followed by c, a new console is created in
which another job can be started. The shortcuts Ctrl− a n (next) and Ctrl− a p
(previous) may be used to cycle between these virtual consoles. On each console,
the job outputs may be monitored. Most importantly, pressing Ctrl− a d detaches
the virtual consoles from your shell and continues execution of all running jobs in
the background. The console may be reattached to your terminal at any later point
by calling

$ screen -R

which allows you to monitor the progress of your jobs. See the installed manual
page for screen (man screen) for a complete list of commands.

However, in addition to the laborious task of having to start each job by hand,
there is a more fundamental problem with this approach: the above procedure only
works if the computer has at least 99 cores available. A typical serial job requires
one core (unless it starts multiple threads, see Sect. 20.7). If fewer cores are present
than running jobs, individual jobs compete for time, creating additional overhead
for the operating system and resulting in an overall slower execution. In addition,
all 99 jobs must fit into the memory of the machine. Given our earlier estimate of
15 GB for the example program, we see that memory can be an equally important
constraint. Assuming that the total amount of memory of the computer divided by
the number of cores is sufficient for any one job, a better solution would be a smart
mechanism that automatically starts jobs from a given list of jobs in such a way that
only one job per core is running at any given point in time.



20 Practically Trivial Parallel Data Processing in a Neuroscience Laboratory 423

20.3.2 An Automated Solution: Make

A straightforward way to accomplish this is the program make (Oram and Talbott
1991). Although this program was originally intended to aid the process of com-
piling programs, its features are ideally suited to provide an easy and flexible way
of parallelizing a program on a personal workstation. Central to the idea of make
is a script known as a makefile that lists targets, the commands to execute for each
target, and target dependencies defining the order in which targets are executed.
A simple makefile to run our jobs might look like this (note that all indentations are
essential):

all: dep0 dep1 dep2 dep3 ... dep98
echo Done

dep0:
job 0

dep1:
job 1

...
dep98:

job 98

The first line specifies a target “all”, which depends on 99 other targets: “dep0”
up to “dep98”. Therefore, the commands of target “all” will execute (i.e., printing
the message “Done” on the screen) only if all these 99 dependent targets have fin-
ished executing. On the following lines the individual targets “depX” are defined:
they have no dependency by themselves, and each executes exactly one job with a
unique value for the job index k.

Assuming the makefile is stored in the file job.make, a call of

$ make job.make

does not confer any advantage: make will first sequentially execute the command(s)
of the first target without dependencies (“dep0”), then of the second (“dep1”), and
so on. Finally, when “dep98” has been executed, it will have fulfilled all required
targets to execute the echo command of last remaining target “all”. The trick is to
call make with a parameter that indicates that targets which do not depend on one
another should be executed in parallel:

$ make -j P job.make

where P is the number of parallel process that may be started in parallel (i.e., on a
quad-core processor, you would specify 4). In this example, make would simulta-
neously execute the commands that belong to “dep0” to “dep3”, and start “dep4” as
soon as one of the four finishes.
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Listing 20.3 The generic distributor program for using make to parallelize.
import os
import glob

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#number of simultaneous jobs
ncores=4;

#filename of makefile
make_name=’./job.make’

#write makefile
f = open(make_name, ’w’)
f.write(’all: ’);
for k in range(num_neurons-1):

f.write(’dep’+str(k)+’ ’);
f.write(’\n\n’)
for k in range(num_neurons-1):

f.write(’dep’+str(k)+’\n’);
f.write(’\tjob ’+str(k)+’\n’);

f.close()

#start make
os.system(’make -j ’+str(ncores)+’ -f ’+make_name);

Writing a makefile like the one above can be a tiresome job. In addition, the anal-
ysis parameters must be entered explicitly. In our example we need one entry per
neuron; the makefile would need to be adapted in order to perform an identical anal-
ysis on a different number of neurons. As previously indicated (see Sect. 20.2.1),
a more elegant and error-safe way is to write a distributor program. The task of this
program is to create all necessary files needed for parallelization (here the makefile)
and then start the actual execution. A distributor for our example is given in List-
ing 20.3. The program first loads the variables describing the data and the analysis,
allowing the distributor to automatically detect how many neurons (num_neurons)
were recorded and therefore how many jobs should be run. The main body of the
program employs metaprogramming (Czarnecki and Eisenecker 2000): it creates
the makefile job.make discussed above by opening a text file and entering the cor-
responding lines in an automated fashion. Lastly, a system call to make executes
the newly created makefile using ncores cores in parallel (here 4).

20.4 Using a Queuing System to Distribute Jobs

As we have seen in the previous section, the program make provides an intuitive
and easy way to execute a parallelized program on the different cores of a single
computer. However, there are two important scenarios in which make turns out
to be too simplistic. First, a user may have access to several different computers.
However, make cannot exploit this by distributing the jobs over multiple comput-
ers. Therefore, the maximum number of parallel jobs is restricted to the maximum
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number of cores on a single computer. Second, large computer systems are typi-
cally shared by several users. However, make does not have knowledge about how
much of the computers’ resources are occupied by other users running their jobs
on the same machine. Therefore, their jobs would compete for resources. In par-
ticular, if jobs demand more memory than is available, the machine will eventually
crash.

To solve these problems, computing infrastructures of medium to large size are
often equipped with a set of programs termed a queuing system. The description
that follows is based on the syntax of the freely available TORQUE/MAUI sys-
tem (http://www.clusterresources.com), also known by the acronym PBS. Another
popular queuing system is the Sun Grid Engine (http://gridengine.sunsource.net).
On the whole, most queuing systems work on similar principles to those described
here. The same holds true for grid computing environments (Foster and Kessel-
man 2004; Backofen et al. 2006), which provide a more complex version of the
queuing infrastructure that combines the power of computing resources at distant
sites.

Let us first outline the standard procedure for running a single job via a queuing
system. A user who wishes to run a program first writes a small script, termed a job
description file (jdf). The purpose of the jdf is similar to the makefile described in
Sect. 20.3. It contains the name of the program(s) to run and some additional infor-
mation on various parameters for the queuing system. In particular, it should list the
resources required to run the program, such as the number of cores or the amount
of memory. In a subsequent step, the jdf is submitted to the queuing system by a
command typically named qsub. This command parses the requirements stated in
the jdf file and enters a corresponding request in the queue, assigning it a unique,
numerical job ID. An independent program, the queue server, periodically commu-
nicates with a set of computers (nodes) that are all assigned to devote their resources
to the queue. As soon as any of these nodes reports a vacant slot, the queue server
queries a scheduler program to select a jdf from the queue that fits the free resources
of this node. The job is then executed on the available node and marked as “run-
ning” within the queue. Upon completion of the job, it is removed from the queue,
and the freed resources will be assigned to the next appropriate jdf in the queue.
When selecting a job, the scheduler considers not only the resources required ver-
sus resources available, but also tries to balance jobs from individual users, so that
users receive a fair share of the processing power. The extent to which this balancing
is implemented in different queuing systems varies widely, but for small setups (in
terms of machines and users), a simple solution just balances the number of jobs per
user at any point in time.

Knowing how to submit a single job to the queuing system, we now extend this
concept to a set of parallel jobs in a straightforward way. For each execution of the
job, a separate jdf file is created that calls the job with its corresponding job index k.
In a second step, all jdfs are submitted to the queuing system. From then on, the
queuing system takes care that the jobs are executed in parallel on all available
nodes. The following jdf file could be used to submit our example program with job
index k = 10:

http://www.clusterresources.com
http://gridengine.sunsource.net
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#!/bin/bash
#PBS -q my_cluster
#PBS -l nodes=1:ppn=1,mem=2gb,walltime=24:00:00
#PBS -N CC
#PBS -d /home/user/my_cc_project

./job 10

The first line is a stereotypical line that indicates that all following commands should
be executed using the bash shell as interpreter. In principle, however, the jdf could
be written in any script language, even in Python directly. The following four lines
all start with #PBS and provide information to the queue in terms of options of
qsub (which will be explained in more depth in the following paragraphs). Be-
fore the queue server submits and executes a jdf file, it preprocesses these lines and
extracts the directives contained within. All of the options following the #PBS state-
ments could also have been directly passed to qsub on the command line, but by
placing them explicitly in the jdf, they remain clearly visible for future reference.
In the case of conflicting arguments, options given on the command line override
those given in the jdf. The hash mark preceding these lines identifies the line as
commentary for most shell interpreters. Therefore in our example the bash inter-
preter will ignore these queue directives when the jdf is actually executed. Note that
qsub only interprets #PBS statements that are directly located at the top of the file.
Furthermore, the format of these lines will differ for queuing systems that are not
implemented by TORQUE. Finally, the last line of the jdf calls our job with k = 10.

A number of options to qsub control how jobs are sent to the queue. Although
in many cases the system default values of the following options will work fine,
it is still good practice to develop a habit of specifying them in order to accurately
describe your job. First and foremost,−q queue selects the queue in which to run the
job. In general, a queue server may provide several queues, which typically differ in
the identity of the machines that are used to process jobs submitted to that queue. For
example, you might have two server systems that run under a different architecture
or operating system, or maybe a laboratory has a private cluster system and one that
is shared with another laboratory. In such a case, one might use different queues to
control on which category of machine a specific job is executed.

A further option −l req informs the queue about the requirements of the sub-
mitted job in terms of resources. Here, req is a comma separated list of those re-
quirements that deviate from the default values of a particular queue. The number of
nodesX and the number of processors per node Y for the single job submitted in the
file (not including any other jobs you may submit independently of the current job)
is passed using −l nodes=X : ppn=Y . In our single-threaded example, each
job requires only one node and one core, and hence X = Y = 1 (which is typically
the default). The memory requirement of our job is specified using −l mem=R,
where is R is a human readable memory requirement, such as 2gb. This value
should be chosen with some care since different jobs compete for the shared mem-
ory of a single node: too low, and jobs might run out of memory; too high, and
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the queue will run fewer jobs in parallel than it actually could. To illustrate the lat-
ter point, assume 16 jobs that each require 2 GB are submitted to a computer with
32 GB and 16 processors. Obviously, there is no problem in running all 16 jobs in
parallel. However, if we were to generously specify −l mem= 16gb, only 2 jobs
would be executed at the same time, each one reserving the requested amount of
memory. In our example program, we estimate that 2 GB is a reasonable number.
Lastly, the maximum running time in hours, minutes, and seconds is controlled by
−l walltime=HH :MM : SS, after which the job is mercilessly killed. This
mechanism is intended to automatically remove hung jobs in larger queuing sys-
tems.

The remaining parameters are less crucial but useful nonetheless. The parameter
−d specifies the working directory in which the job is started. The parameter−N as-
signs a user-defined internal name to the job that is used within the queuing system.
By default, this name is the program’s file name. A useful feature of most queuing
systems is that they retain the output (stdout) and error output (stderr) created by the
program during execution. These text streams are written to files that start with the
job’s name and end in .oXXXX for output and .eXXXX for error streams, where
XXXX indicates the unique job ID assigned to the job at time of submission to the
queue. Use the option −j oe to merge the two output and error files into one, or
specify −o /dev/null and −e /dev/null to disable the output and error files,
respectively.

As in the case of make, the task of creating all the individual jdf files can be eas-
ily automated by a distributor program. For our simple example, such a program is
provided in Listing 20.4. Again, the data is first loaded in order to extract the num-
ber of neurons, which determines the total number of jobs we need to submit. The
variable q is assigned the name of the queue to which we want to submit the jobs.
Then, a for-loop over the job index k creates a unique jdf file for each neuron with
a unique file name parameterized by k. The contents of each jdf file resembles our
example above, except that in each jdf the job is called with a different parameter k.
The last line issues a system call to qsub to submit the newly created jdf files to the
queue. Thus, this program creates and submits 99 uniquely parameterized jdf files
for execution.

This approach is very general and should work without problems on any queue-
ing system. However, creating a separate jdf for each job is neither particularly ele-
gant nor efficient. Fortunately, advanced queuing systems provide the useful concept
of job arrays which significantly simplify the process. The underlying idea is to in-
clude an option that instructs the queuing system to insert the job into the queue
not once, but several times, each instance with a specific, user-defined integer value.
This integer may then be exploited as the job index. Job arrays are initialized by sup-
plying the additional parameter −t range, where range specifies the integer values
that should be assigned to individual jobs. Valid examples for range would be 1,2,3
(execute the script three times with integer identifiers 1–3), and 10–15,1000 (exe-
cute the script seven times with integer identifiers 10, 11, 12, 13, 14, 15, and 1,000).
This integer can be queried from within the jdf file—or the job program itself—via
the system environment variable $PBS_ARRAYID. Consider the following modified
jdf for our example:
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Listing 20.4 A distributor program for the queuing system.
import os
import glob

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#queue to use
q=’my_cluster’

#create one jdf file per job
for k in range(num_neurons-1):

#filename of jdf file
jdf_name=’./job’+str(k)+’.jdf’
f = open(jdf_name, ’w’)
f.write(’#!/bin/bash\n’)
f.write(’#PBS -q ’+q+’\n’)
#...add more PBS options as required
f.write(’./job ’+str(k)+’\n’)
f.close()

#submit job
os.system(’qsub ’+jdf_name);

#!/bin/bash
#PBS -q my_cluster
#PBS -l nodes=1:ppn=1,mem=2gb,walltime=24:00:00
#PBS -N CC
#PBS -d /home/user/my_cc_project
#PBS -t 0-98

./job $PBS_ARRAYID

Note that the option −t is used and that our job is called with the variable place-
holder $PBS_ARRAYID instead of a fixed value. When qsub interprets this modi-
fied jdf, it will infer from the−t option that it should submit a total of 99 executions
of this jdf script. Furthermore, it will set the $PBS_ARRAYID to 0 for the first of
these calls, to 1 for the second, and so on.

The job IDs of a job array share an identical part, similar to the single submitted
job, appended by a minus sign and the corresponding value of $PBS_ARRAYID.
Assuming that the initial job submission was assigned the job ID 1234, the individ-
ual jobs would be assigned the IDs 1234− 0, 1234− 1, 1234− 2, . . . ,1234− 98.
In conclusion, the concept of job arrays allows us to parallelize our job efficiently
using an integer parameter and a single jdf. A modified distributor program for this
type of job submission is listed in Listing 20.5. An analysis of the remaining dif-
ferences between this distributor and that given in Listing 20.4 is left as an easy
exercise for the reader.

After qsub has entered the jobs into the queue, it returns control to the user; the
details of distributing jobs to available nodes is performed in the background. The
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Listing 20.5 A distributor program for the queuing system using the job array concept.
import os
import glob

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#queue to use
q=’my_cluster’

#filename of jdf file
jdf_name=’./job.jdf’

f = open(jdf_name, ’w’)
f.write(’#!/bin/bash\n’)
f.write(’#PBS -q ’+q+’\n’)
f.write(’#PBS -t 0-’+str(num_neurons-2)+’\n’)
#...add more PBS options as required
f.write(’./job $PBS_ARRAYID\n’)
f.close()

#submit job
os.system(’qsub ’+jdf_name);

program qstat is used to gain an overview over the jobs in the queue, including
several statistics such as their run time, and their status, which is in most situations
coded by the letters Q (queued, not yet assigned to a computer), R (running), or C
(complete). After completion, jobs are automatically removed from this list. Useful
options to qstat are −n1 for a more detailed output and −u username to restrict
the list to jobs of a specified user. Furthermore, calling qdel jobid removes (and
kills) the specified job or job array from the queuing system.

20.5 Introducing Job Dependencies

Often data analysis involves a sequence of several processing steps. In our example,
we might be interested in merely collecting the generated data, or we may want
to analyze how many of the cross-correlation functions have significant peaks. An
example of such a program is provided with the online resources. Whatever the
nature of the post-processing, the simplest approach is to wait for all jobs to finish
and then to call the program that performs the subsequent analysis step manually.
However, it is more efficient if the post-processing starts automatically once all
computations are complete, especially if the structure of the analysis is complex. In
this section, we introduce methods to realize such dependencies between jobs for
each of the parallelization mechanisms described above.

Using make to parallelize a program intrinsically provides the possibility of in-
cluding dependencies: in the makefile introduced in Sect. 20.3.2, we can just in-
clude the call to the post-processing program (in the following called post− job
for simplicity) as a command that will be executed once the dependency “all” is
fulfilled:
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all: dep0 dep1 dep2 dep3 ... dep98
post-job

dep0:
job 0

dep1:
job 1

...
dep98:

job 98

Of course, there is no reason why the post-processing program should not itself be
a distributor program for another set of parallel jobs.

If using a queuing system, things are slightly more complicated as we do not
receive direct feedback when a job is finished. A general solution to the problem is
to have each job write a specific file at the end of its completion, e.g., jobk.done,
where again k denotes the job index. The post-processing program is submitted to
the queue immediately along with the parallel jobs and waits for all ∗.done files
to be created before starting its analysis. However, the drawback of this solution is
that the post-processing job blocks a slot in the queue without doing anything use-
ful. Also, generating myriad ∗.done files is somewhat unsightly. A more practical
method available on some queuing systems is to specify a job dependency directly
as an option to the queue using the syntax:

#PBS -w dependok=JOBID[,JOBID[,...]]

A job submitted using this directive will not be run until all specified jobs have
completed execution successfully and so does not block a slot unnecessarily. To this
end, we need to retain the job IDs of the initial parallel jobs. They are provided
as the output of qsub, possibly modified by an identifier of the used queue (e.g.,
.my− cluster.edu). If the job initiates subjobs using a job array (option −t),
only the primary job ID is returned, the sub ID corresponding to the job index k must
be added manually. To clarify this point, calling qsub with the option −t 1− 3
might return a string like 1234.my− cluster.edu, but not explicitly the job
IDs of the three single jobs making up the job array, 1234− 1, 1234− 2, and
1234− 3. Listing 20.6 shows a modified distributor script (using job arrays) for our
example program that submits the post-processing job post− job to the queue
with a dependency on completion of the original 98 jobs. To this end, the primary
job ID is extracted from the first call to qsub, and by attaching the job indices k
from 0 to 98, a dependency list is generated as a string. Finally, the post-processing
job is submitted using a new jdf file that includes this dependency list. A similar
approach can be taken to modify the corresponding distributor Listing 20.4 that
does not utilize the job array functionality.
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Listing 20.6 The modified distributor in a queue environment for calling a post-processing job
after completion of the parallelized program.
import os
import glob
import subprocess

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#queue to use
q=’my_cluster’

#filename of jdf file
jdf_name=’./job.jdf’

f = open(jdf_name, ’w’)
f.write(’#!/bin/bash\n’)
f.write(’#PBS -q ’+q+’\n’)
f.write(’#PBS -t 0-’+str(num_neurons-2)+’\n’)
#...add more PBS options as required
f.write(’./job $PBS_ARRAYID\n’)
f.close()

#modified statement to submit original jobs and save primary job ID
p = subprocess.Popen(’qsub ’+jdf_name, shell=’true’,stdout=subprocess.PIPE)
sts = os.waitpid(p.pid, 0)
jobid_str=p.stdout.read()

#add : and - to primary job ID
jobid_str=’:’+jobid_str.split(’.’)[0]+’-’
#duplicate string, each time with a different secondary ID (job index)
#result is a dependency list of the form XXX-AA:XXX-BB:XXX-CC...
#where XXX is the primary job ID, and AA, BB,... are the job indices
jobdeplist=(jobid_str+jobid_str.join([str(i) for i in range(num_neurons-1)]))[

1:]

#filename of jdf file for post processing
jdf_post_name=’./post-job.jdf’

f = open(jdf_post_name, ’w’)
f.write(’#!/bin/bash\n’)
f.write(’#PBS -q ’+q+’\n’)
f.write(’#PBS -w dependok=’+jobdeplist+’\n’)
#...add more PBS options as required
f.write(’./post-job\n’)
f.close()
os.system(’qsub ’+jdf_post_name)

20.6 Using Parallelization Libraries

The previous sections have dealt with various methods for managing the distri-
bution of serial jobs that can be characterized by a job index k. However, many
languages have libraries that permit a researcher to write programs that exploit
parallelization from the outset. The advantages of this approach are that the indi-
vidual jobs can communicate with each other, if necessary, and that the adminis-
tration aspects, such as monitoring when individual jobs have finished, are gen-
erally taken care of behind the scenes. For C and Fortran, the most commonly
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used libraries are based on the Message Passing Interface (MPI) standard (http://
www.mcs.anl.gov/research/projects/mpi). For Python, several such libraries are
available. Listing 20.7 is based on the Parallel Python module (http://www.
parallelpython.com). Here we show a program which is intended for a shared-
memory architecture; a version of the code adapted to cluster computing is available
in the online repository.

The script consists of two parts: a function definition (cc_surrogate_
range), which is analogous to the serial jobs defined in the previous sections, and a
script section, which submits jobs and collates the results. First of all, the script ini-
tializes the job server with either the number of processors stated in the command
line or through automatic detection of the number of cores on the local machine.
Next, the script demonstrates a different approach to load balancing. Instead of di-
viding the work by parallelizing a loop, we consider the total number of operations
to be performed and divide those in an equal fashion. Concretely, the script divides
the total number of neuron pairs to be correlated by the number of cores to obtain the
number of neuron pairs each job should process. This can easily be converted into
start and end indices of a range of neuron pairs, assuming that each job increments
a counter (here idx) over the double for-loop (for ni . . .for nj . . .). Note that,
as a consequence, the serial function cc_surrogate_range contains all three
nested for-loops of the original program (see Listing 20.1) and a fair distribution
of loads is ensured.

The serial function can return any data type or collection of data types to the
main program. To illustrate the flexibility of this approach without requiring huge
amounts of memory, the serial function does not write the correlation functions to
file. Instead, having calculated the correlation function for a neuron pair and all
the corresponding surrogate trains, the surrogate correlation functions are sorted.
The return value of the function consists of one 2D-array containing the correlation
function for each neuron pair considered and one 3D-array containing the 5% and
95% values for the sorted surrogate correlations.

The first for-loop in the script section defines each job and sends it off using the
routine submit(). In our case each job is very simple and consists of a function to
be called (cc_surrogate_range), the parameters to be passed as arguments to
the function (params), and the modules required by the function (depmods). The
parameters to be passed to the function in this case include the start and end of the
index range the job should process. Having submitted all the jobs, the second for-
loop iterates through the list of submitted jobs and collates their results. In contrast
to the methods introduced in Sect. 20.5, no explicit steps must be taken to wait for
completion of the parallel jobs. The issue of job dependencies is taken care of behind
the scenes, as the () operator used in the command result= jobs[worker]()
automatically waits until the job is complete.

Such a framework allows an entire parallelized program including job definition,
submission, results collation, and post-processing to be defined flexibly and com-
pactly. Parallelization based on language-specific libraries can of course be com-
bined with the parallelization based on queuing systems (see Sect. 20.4); the tech-
nical details of this depend on the systems and architectures involved.

http://www.mcs.anl.gov/research/projects/mpi
http://www.mcs.anl.gov/research/projects/mpi
http://www.parallelpython.com
http://www.parallelpython.com
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Listing 20.7 The example program parallelized using the capabilities of the parallel Python mod-
ule.
import pp
import sys
import pickle
import numpy

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs

#cc_surrogate range calcates cc and surrogate cc for a given range of indices
def cc_surrogate_range(start_idx, end_idx, seed):

#load experiment and analysis parameters
from experiment_params import num_neurons,num_secs,num_bins
from analysis_params import maxlag,num_surrs
f = open(’./spikes.dat’, ’r’)
spikes = pickle.load(f)
idx = 0
row = 0
my_cc_original = numpy.zeros((end_idx-start_idx,2*maxlag+1))
my_cc_surrs = numpy.zeros((end_idx-start_idx,2*maxlag+1,2))
idxrange = range(num_bins-maxlag,num_bins+maxlag+1)
surrs_ij = numpy.zeros((num_surrs,2*maxlag+1))
numpy.random.seed(seed)
for ni in range(num_neurons-1):

for nj in range(ni+1,num_neurons):
#get to first index of relevant range
if (idx < start_idx):

idx = idx + 1
continue

#calculate cc and surrogate ccs for all indices in relevant range
elif (idx < end_idx):

my_cc_original[row,:] = numpy.correlate(spikes[ni,:],spikes[nj
,:],"full")[idxrange]

num_spikes_i = numpy.sum(spikes[ni,:])
num_spikes_j = numpy.sum(spikes[nj,:])
for surrogate in range(num_surrs):

surr_i = numpy.zeros(num_bins)
surr_i[numpy.random.random_integers(0,num_bins-1,

num_spikes_i)] = 1
surr_j = numpy.zeros(num_bins)
surr_j[numpy.random.random_integers(0,num_bins-1,

num_spikes_j)] = 1
surrs_ij[surrogate,:] = numpy.correlate(surr_i,surr_j,"full

")[idxrange]
#save point-wise 5% and 95% values of sorted surrogate ccs
surrs_ij_sorted = numpy.sort(surrs_ij,axis=0)
my_cc_surrs[row,:,0] = surrs_ij_sorted[round(num_surrs*0.95),:]
my_cc_surrs[row,:,1] = surrs_ij_sorted[round(num_surrs*0.05),:]
idx = idx + 1
row = row + 1

#reached end of relevant range; return results
else:

return [my_cc_original, my_cc_surrs]
return [my_cc_original, my_cc_surrs]



434 M. Denker et al.

Listing 20.7 (continued)
#script section starts here!
#tuple of all parallel python servers to connect with
ppservers = ()

if len(sys.argv) > 1:
ncpus = int(sys.argv[1])
#creates jobserver with ncpus workers
job_server = pp.Server(ncpus, ppservers=ppservers)

else:
#creates jobserver with automatically detected number of workers
job_server = pp.Server(ppservers=ppservers)

nworkers = job_server.get_ncpus()
num_ccs = (num_neurons**2 - num_neurons)/2

#calculate number of pairs each worker should process
step = numpy.ceil(float(num_ccs)/nworkers)
start_idx = 0
end_idx = 0
starts = numpy.zeros((nworkers+1,))
starts[-1] = num_ccs

seed = 2398645
delta = 1782324
jobs = []

#send out jobs
for worker in range(nworkers):

start_idx = end_idx
end_idx = int(min((worker+1)*step,num_ccs))
print start_idx, " -> ", end_idx - 1
starts[worker] = start_idx
params = start_idx, end_idx, seed,
depmods = "numpy","pickle",
jobs.append(job_server.submit(cc_surrogate_range,params,modules=depmods))
seed = seed + delta

print "submitted all jobs"

#collect results from workers
cc_original = numpy.zeros((num_ccs,2*maxlag+1))
cc_surrs = numpy.zeros((num_ccs,2*maxlag+1,2))
for worker in numpy.arange(nworkers):

start = starts[worker]
end = starts[worker + 1]
result = jobs[worker]()
cc_original[start:end,:] = result[0]
cc_surrs[start:end,:,:] = result[1]

#save results
f = open(’./result_cc_originals.dat’,’w’)
pickle.dump(cc_original,f)
f.close()
f = open(’./result_cc_surrogates_conf.dat’,’w’)
pickle.dump(cc_surrs,f)
f.close()
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20.7 Concluding Remarks

A critical issue that has been mentioned on several occasions in this chapter
concerns the load balancing between individual jobs. As we have outlined in
Sect. 20.2.2, our original implementation of the job (Listing 20.2) is not optimal,
as the runtime of the job depends on the job index k. A better load balance might
be achieved by choosing a different loop to parallelize. For instance, we could have
opted to rearrange the order of the loops and submit 1,000 jobs that each calculate
exactly one surrogate cross-correlation for all combinations of neurons (see the on-
line code repository for an implementation). In this case, all jobs would calculate an
equal number of 4,950 cross-correlations. However, a word of caution: rearranging
loops must be done with care, and even if the resulting code is executable, it may
lead to a conceptually different analysis. As an alternative approach, we showed in
Sect. 20.6 that the load may be balanced by maintaining the complete nested loop
structure but assigning an equal number of neuron pairs to each of the jobs.

A matter of utmost importance—especially in the context of surrogates—is the
issue of correctly initializing the random number generator in each call to the job.
For the sake of simplicity only, we have ignored this issue in the first examples in
this chapter. However, Listing 20.7 shows a very basic way of ensuring that each
job at least receives a different random number seed for initialization. To this end,
each job is assigned a unique seed according to the linear relation seed + k · delta,
where k is the job index, and seed and delta are arbitrarily defined at the beginning
of the script. This seed is passed to the function cc_surrogate_range as a
further parameter. Note that this strategy does not guarantee independence of the
parallel random number streams. Please consult Chap. 19 for a thorough exploration
of the issue of random number generation and the additional constraints of parallel
generators, including appropriate initialization strategies (e.g., using a high-level
interface, such as the Python function random.jumpahead(n)).

Lastly, let us mention again that even if it appears that a job is single-threaded
and will therefore only occupy one core, some applications may try to automat-
ically use more than one core by means of multithreading its built-in functions.
The Matlab interpreter is one such example. The increased demand for proces-
sors of the single job must be reflected in the parallelization procedure in two
steps. First, it is typically possible to instruct the application to use up to a spec-
ified maximum number n of threads only (in Matlab, e.g., using the function
maxNumCompThreads(n)). Second, if n > 1, this maximum number must ei-
ther be passed to make (dividing the value passed via the −j option by n) or to
the queue (using the −l nodes=1 : ppn=n option to request one node with n
cores per job). This guarantees that each job will have enough cores to run on with-
out competition from other jobs. It is worth considering turning off multithreading
(n= 1) altogether, since custom-tailored parallelization schemes such as those pre-
sented throughout this chapter are likely to be superior in efficiently utilizing the
processor power of the available cores.

Ten years after we introduced parallel computing in our laboratory to simulate
large-scale models of neuronal networks, we finally also routinely use these tech-
niques in our data analysis projects. This is despite the fact that neuronal network
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simulations require nontrivial parallelization (Morrison et al. 2005), whereas, as
argued above, a large class of data analysis problems can be solved by trivial par-
allelization. The main reason for this seemingly paradoxical delay is probably that
of exigency: large-scale simulations cannot be performed without harnessing the
collective working memory of a computer cluster, whereas even very complex data
analysis could still be done sequentially on a single computer. An additional reason
is cultural: researchers working on network models typically have a higher affinity
to computer science problems than those working on experimental data. However,
with the burgeoning amount of available data, parallelizing analysis is becoming
less a matter of convenience and more one of necessity.
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Shannon information, 305
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shuffling, 307
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threads, 422
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V
variability, 146
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Wald distribution, 8
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