
Chapter 6
A Science of Design for Software-Intensive
Systems

There is something fascinating about science. One gets such
wholesale returns of conjecture out of such a trifling investment
of fact.

Mark Twain, Life on the Mississippi, 1883

6.1 Science of Design Challenges

Future complex software-intensive systems (SIS) will be vastly different from the
software systems that run today’s world. Revolutionary advances in hardware,
networking, information, and human interface technologies will require entirely
new ways of thinking about how software-intensive systems are conceptualized,
built, and evaluated. As we envision the future of tera1-computing and even peta2-
computing environments, new science of design principles are needed to provide
the foundations for managing issues of complexity, composition, quality, cost, and
control of software-intensive systems.

Evidence suggests that software-intensive systems development has already
reached the limits of technologies developed in the first 60 years of computing.
New, innovative principles, practices, and tools will be needed to move software
development into the next generation of computing environments. Manual methods
of software and systems engineering must be replaced by computational automation
that will transform the field into a true scientific and engineering discipline. Other
science/engineering fields have made this transformation to their everlasting ben-
efit. Computational theories, models, and tools of subject matter dominate mature
disciplines, such as electrical engineering and aeronautical engineering. Analogous

1Tera = 1012 or 1 trillion. Tera-computing environments support trillion-line software programs
running on networks connecting trillions of computers at terahertz bandwidth speeds.
2Peta = 1015 or 1000 trillion.

63A. Hevner, S. Chatterjee, Design Research in Information Systems, Integrated Series
in Information Systems 22, DOI 10.1007/978-1-4419-5653-8_6,
C© Springer Science+Business Media, LLC 2010

64 6 A Science of Design for Software-Intensive Systems

computational models for software are now just emerging and must be incubated
with focused research and development (R&D) and supportive demonstration envi-
ronments. While much of the research focus during first 60 years of computing
was on correct syntax-directed computation of details for computer execution, the
focus of the next 60 years will shift to semantics-directed computation of correct
abstractions for human understanding and manipulation.

The challenges of building large-scale software-intensive systems are unique and
very different from the challenges of building large physical systems. Wulf (2006)
identifies three principal reasons for the unique challenges of software-intensive
systems:

1. Software-intensive systems are more complex than physical systems. Emergent
properties are difficult to predict. We do not understand the science and first-class
properties of software design.

2. Software has fewer constraints than physical systems. Thus, there are many
more design options. The design space is enormous. It is very difficult to
understand, model, and make effective design trade-offs for software-intensive
systems.

3. The mathematics describing software-intensive systems lacks continuity.
Discrete mathematics does not support efficient testing and analysis of software.
It is impossible to exhaustively test a software-intensive system based on the
discontinuities of the underlying mathematics.

A new vision of science of design research for SIS must achieve the following
essential objectives:

• Intellectual amplification: Research must extend the human capabilities (cog-
nitive and social) of designers to imagine and realize large-scale, complex
software-intensive systems.

• Span of control: Research must revolutionize techniques for the management and
control of complex software-intensive systems through development, operations,
and adaptation.

• Value generation: Research must create value and have broad impacts for human
society via the science and engineering of complex software-intensive systems
and technologies.

The goal of this chapter is to present a vision of science of design research directions
and to propose a framework for achieving this vision. The content of this chapter has
benefitted greatly from my experiences at the National Science Foundation (NSF)
during 2006–2008 and draws from many discussions with colleagues at NSF which
I gratefully acknowledge here.

6.2 Software-Intensive Systems 65

6.2 Software-Intensive Systems

A difficulty faced when discussing research in the field of software-intensive sys-
tems is the lack of common terminology for key concepts. The field is teeming with
terms that are overloaded with meanings (e.g., system, design) or varied terms for
the same basic concept (e.g., object, component, module). The goal of the following
discussion is not to propose a new ontology but to simply define the terms used in
this chapter.

A system can be defined generally as a collection of elements that work together
to form a coherent whole. Software-intensive systems (SIS), then, are systems in
which some, but not necessarily all, of the component elements are realized in
software. Figure 6.1 illustrates three layers of any software-intensive system – the
human layer, the software layer, and the platform layer. Two critical interfaces are
shown – the human–software interface and the software–platform interface.

Platform Layer

Software Layer

Human Layer

Behavior Design and
Allocation

Qualities Design and
Allocation

Human-SW Interface

SW-Platform Interface

Application

Systems

Fig. 6.1 Software-intensive system layers

The development of a SIS entails many important decisions such as the design
and allocation of system behaviors (e.g., functions, actions) and system qualities
(e.g., performance, security, reliability) to the different layers. For example, a par-
ticular system activity could be realized in hardware (platform), via a service call
(software), by human behavior (human), or some combination of activities across
all three layers. Likewise, a performance requirement (e.g., response time) for a SIS
transaction could be divided and allocated as performance requirements in each of
the layers.

Figure 6.2 shows the growth of the software layer, in size and percentage of the
overall system, as a future trend. The role of software will become dominant in
nearly all complex systems. Thus, research and development in SIS must actively
address the challenges of using software as the primary building material in future
complex systems.

66 6 A Science of Design for Software-Intensive Systems

Platform Layer

Software Layer

Human Layer

Human-SW Interface

SW-Platform Interface

Platform
Layer

Human Layer

Human-Platform Interface

Past Current Future

Platform Layer

Software Layer

Human Layer

Human-SW Interface

SW-Platform Interface

50% to 90% of Future SIS
will be Software (Ref: Wulf 2006)

Fig. 6.2 Software-intensive system trends

Beyond individual, self-contained SIS, nearly all future systems will be con-
nected to environmental resources and other systems via network connections.
These connections lead to complex systems-of-systems architectures for providing
behaviors and qualities. Figure 6.3 demonstrates that there are identifiable networks
across all three SIS layers. Physical networks support the transmission of digital
and analog data among system platforms. Software networks provide the middle-
ware layers and protocols that transform the transmitted data into information that is
shared among the information processing systems. Social networks provide a means
of interaction and community among the human participants of the complex system
(Fiadeiro 2007). Humans use the system information to make decisions, execute
actions on the environment, and build application domain knowledge bases.

Figure 6.4 zooms in on the software layer to show its makeup of software code,
information, and control within the context of an application domain. The overlaps
among these three concepts support varying methods and techniques of understand-
ing and building the software layer of systems. For example, software architectures
define structures for integrating the concepts of code, information, and control for
a particular application domain system. The message is that the software layer in a
SIS is a challenging and fertile field of research opportunities.

6.3 Science of Design Principles

The science that provides foundations for the engineering of complex software-
intensive system must be predicated on a set of fundamental principles. A principle
is a clear statement of truth that guides or constraints action. A principle can also
be formed as a rule or a standard of conduct. It is this search and discovery of
fundamental principles that underlie the research agenda of a SIS research program.

6.3 Science of Design Principles 67

Platform Layer

Software Layer

Human Layer
Human-SW Interface

SW-Platform Interface

Platform Layer

Software Layer

Human Layer
Human-SW Interface

SW-Platform Interface Platform Layer

Software Layer

Human Layer
Human-SW Interface

SW-Platform Interface

Platform Layer

Software Layer

Human Layer
Human-SW Interface

SW-Platform Interface

Physical
Networks

Social
Networks

Software
Networks

Fig. 6.3 Physical, software, and social networks of software-intensive systems

Code Information

Control
(Intelligence)

Application
Domain

Components (Modules,
Objects, Services)

Agents
(Control Code)

Rules
(Knowledge)

Software
Architectures

Fig. 6.4 Concepts in the software layer

68 6 A Science of Design for Software-Intensive Systems

Table 6.1 Current CSIS development principles

Principle Related practices References

System Abstraction Hierarchical decomposition
Systems architecting

Simon (1996); Maier and Rechtin
(2000)

Levels Protocol layering Dijkstra (1968)
Information hiding Objects Object-oriented

languages
Parnas (1972); Kay (1984)

Intellectual control Computer architectures
Chief programmer teams

Brooks (1995); Mills (1983)

Computational thinking Relational database
Systems and languages

Codd (1970)

Form and function Design patterns Alexander (1979)
Economics of systems Software economics Boehm (1981)

This vision for a set of science of design principles aligns with Peter Denning’s
project to identify a framework for the fundamental principles for the field of
computing (Denning 2003, 2005).3 Whereas Denning’s goal is to demonstrate
the central role of computing as a true scientific field in relationship to other
sciences; the goal of a SIS research program will be to discover, articulate, and use
these principles to guide the effective and efficient development of future complex
software-intensive systems.

A quick look back at the computer science field shows only a handful of
truly fundamental principles that have guided the current development of complex
software-intensive systems over the past 60 years. Table 6.1 summarizes several of
these key principles.

The research and development projects that led to the principles and related
practices found in Table 6.1 were transformative in providing breakthrough ideas
for developing complex software-intensive systems. New transformative ideas
are needed to move the field forward to build and manage SIS for the 21st
century.

6.4 Categories of Software-Intensive Systems Principles

The future challenge is to bring researchers from multiple disciplines to discover and
define fundamental principles and practices upon which future complex software-
intensive systems will be imagined, architected, designed, built, and operated. As
exemplars of critically important categories of fundamental principles that should
be addressed in science of design research, we propose the following:

3Great Principles of Computing web site: http://cs.gmu.edu/cne/pjd/GP

6.5 A Proposed Research Vision 69

• Computational principles: Computational thinking underlies true scientific and
engineering fields (Wing 2006; Denning 2007). The field must better iden-
tify its rigorous mathematical and computational foundations to support the
more effective and efficient SIS representations, models, analyses/manipulations,
development methods/tools, and system instantiations

• Scalability principles: Scalability of system concepts is absolutely essential in
order to build ultra-large-scale systems (Northrop et al. 2006). Effective ideas
must apply equally well to the development and operations of small systems and
of massive, complex systems.

• Creative principles: We solicit fundamental principles that enhance human
cognitive abilities and support the creative process in the development of com-
plex software-intensive systems. Effective human–computer interfaces for both
development environments and application systems will embody these principles.

• Adaptability principles: In the development of future SIS, it will be impossible to
specify or predict a priori all of the behaviors or qualities of the system. Runtime
composition of system components will result in unknown, emergent behaviors
and qualities during operation. Thus, key principles of adaptability must be dis-
covered and applied to manage the evolution of the system as it adapts to its
environment and transaction load.

• Ethical principles: The development of a SIS implies an ethical responsibility
of how the system shapes its environment. The consequences of the system are
formed by the ethical principles on which it was designed and built. Ethical prin-
ciples would help us understand what values inform the development of the SIS
and whose interests are served by the system.

• Economic principles: Cost goes hand-in-hand with complexity. Complex systems
cost significantly more to develop, produce, and operate. Under current eco-
nomics, the coordination costs of SIS rise exponentially with increases in size
and complexity. A deeper understanding of the economic principles of complex
systems is required in order to evaluate the feasibility and market impacts of SIS.

• Decidability principles: Consideration of a wide range of fundamental principles
must eventually lead to decisions on how to imagine, architect, design, build, and
operate a desired complex software-intensive system. What are the decidability
principles that underlie the construction of such SIS decision models? How, for
example, would we evaluate trade-offs among ethical principles and economic
principles in a SIS decision model?

Among others, these are several of the key categories of principles that must be
studied in a comprehensive science of design research agenda.

6.5 A Proposed Research Vision

A research vision for the science of design of software-intensive systems is pre-
sented in Figs. 6.5 and 6.6. As seen in Fig. 6.5, the intellectual merit of this
research must be drawn from scientific theories originating from several disciplines

70 6 A Science of Design for Software-Intensive Systems

Science of Design in Software-Intensive Systems
Research Vision

SIS Intellectual Merit SIS Broader Impacts

Software Design Theories
• Building Artifacts

• Evaluating Artifacts

• Artifact Behaviors

• Artifact Qualities

• Representations

• Utility Theories

Dynamic System Theories

• Control Theories

• Emergent Behaviors

• Emergent Qualities

• Adaptive Design Theories

• Real-Time Systems

Socio-Economic Theories

• Human Cognitive Abilities

• Social and Group Behaviors

• Human-Computer Interaction
• Economic Theories

• Market Forces

Domain Theories

• Laws, Rules, and Constraints
of the Application Domain

Industry Impacts

Engineering Methods, Models, and

Tools

• Imagination
•Needs

•Requirements

• Architecture

•Static and Dynamic
• Realization

•Provisioning

•Acquisition

•Validation and Verification

• Operations
•Transaction Management

•User Flows

• Adaptation

•Feedback and Correction
•Evolution

Educational and Workforce Impacts

Diversity Impacts

Fig. 6.5 Science of design in SIS research vision

including computer science, software engineering, systems engineering, socio-
economic fields, and the application domain. The broader impacts of the research
must be felt in the scientific community, industry, government, academia, and
human society.

6.6 SIS Scientific Theories

The scientific theories for fundamental science of design research in SIS are identi-
fied in the following categories and briefly discussed. A full description of all these
grounding theories is beyond the scope of this chapter but can be readily found via
a literature review on the listed topics.

6.6.1 Software Design Theories

• Building artifacts
• Evaluating artifacts

6.6 SIS Scientific Theories 71

Fig. 6.6 Research on science of design in software-intensive systems

• Artifact behaviors
• Artifact qualities
• Representations
• Utility theories

New ideas in software design research will necessarily draw from the classic works
of software theory by Simon (1996), Mills (1983), Parnas (1972), Dijkstra (1968),
Brooks (1995), Freeman (1987), Boehm (1981), and many other thought leaders
in the software field. These time-tested software principles are weighed alongside
the latest ideas in the field to find the right balance of pure and applied research
directions.

6.6.2 Dynamic System Theories

• Control theories
• Emergent behaviors
• Emergent qualities
• Adaptive design theories
• Real-time systems

Dynamic system theories provide the bases for understanding the dynamic behav-
iors of complex systems (Forrester 1961; Randers 1980). The essence is the

72 6 A Science of Design for Software-Intensive Systems

recognition that the structure of any system — the circular, interlocking, temporal,
spatial, and sometimes non-deterministic relationships among its components — is
often just as important in determining its behavior as the individual components
themselves. There are often properties-of-the-whole which result in dynamic, emer-
gent behaviors and qualities which cannot be explained in terms of the behaviors
and qualities of the parts.

6.6.3 Socio-economic Theories

• Human cognitive abilities
• Social and group behaviors
• Human–computer interaction
• Economic theories
• Market forces

Socio-economic theories will play a major role toward understanding the factors
leading to success or failure in the development and use of software-intensive
systems. For example, the design of software system architectures and software
components must support economic business cases for utility, marketability, usabil-
ity, and other system features important for successful deployment. Initial research
on economic models for software design, such as Baldwin and Clark’s (2000) study
of design in the computing industry, is an important first step in this research
area. Another research area of great interest is the open-source models of software
development, operations, and evolution.

6.6.4 Domain Theories

Each and every software-intensive system is embedded within an application
domain from which it draws its relevance and utility. Domain theories provide
essential laws, rules, and constraints that ground the development and use of all sys-
tems in that domain. For example, complex software-intensive systems for airplanes
must be developed in full awareness of the science and engineering of aeronautics.
Similarly, a banking system must be grounded in the regulations and policies of the
international and national financial systems.

6.7 SIS Engineering Activities

The effective engineering of software-intensive systems of any size and complexity
consists of five primary activities as performed by skilled development teams:

6.7 SIS Engineering Activities 73

1. Imagination: All system stakeholders participate in imagining the needs and
requirements of a desired system. New and better methods and models for cap-
turing and specifying system requirements are greatly needed. In particular, the
search for rigorous specification models that are efficiently usable by software
developers and effectively understandable by system stakeholders remains an
important research effort.

2. Architecture: The need to architect complex systems has been recognized by the
scientific and engineering communities in all domain fields of design. Theories
of systems architecture are commonplace in fields ranging from buildings and
landscaping (Alexander 1979) to nanotechnologies and even to an evolving
understanding of the architecture of the human brain and body. Research on soft-
ware architectures is relatively new (Shaw and Garlan 1996; Bass et al. 2003) and
many of the underlying principles and theories are yet to be discovered (Maier
and Rechtin 2000). Architecting involves both the art and science of designing
and building systems. The architecture of a software system can be envisioned
as the structures, protocols, standards, and aesthetics that provide the required
system behaviors, state, qualities, and, even beauty (Gelernter 1998).

3. Realization: The actual construction of the system can be realized in many dif-
ferent ways. Software components are composed in an integrated application
system. A software component provides a unit of behavior in the software sys-
tem (Brown 2000). The component can be realized in forms such as software
modules, services, objects, routines, and functions depending on the devel-
opment environment. Artifacts of component development include behavioral
specifications, designs, program code, test cases for unit, integration, and system
testing, and documentation for system operators and system users. The state of
a software component is represented in its data structures – variables, files, and
databases. The designs for service behavior and state go hand-in-hand to achieve
the greatest service utility and quality.

4. Operations: The deployment and effective operation of a system in the applica-
tion environment are key engineering challenges. The interactions of software
components and key user and environmental interfaces during system execution
make up the real-time behaviors of the software system as a whole. The goals
of management and control of software dynamics leads to a number of interest-
ing research topics. User transactions can be described and formalized as flows
of control, data, and qualities among software components. As an example of
this line of thinking, consider a user transaction in a software system as an iden-
tifiable flow with requested behaviors and qualities. This flow is presented to
the software architecture in a dynamic environment which can determine at that
point in time whether the software system can provide the behaviors and qualities
requested. If the flow is allowed to execute on the architecture, its instantiation
will draw behaviors and qualities from a dynamic composition of components in
the software system. While some research and development has been performed
in the areas of workflows and business process flows (e.g., Aalst and Hee, 2002),
more work is needed on the analysis and design of complex, network-centric
systems to support and optimize user flows.

74 6 A Science of Design for Software-Intensive Systems

5. Adaptation: It is impossible to specify or predict a priori all of the behaviors or
dynamic properties of a complex system while it is operating in unpredictable,
possibly adverse, dynamic environments. Runtime composition of systems will
result in unknown, emergent behaviors and qualities during operation. Thus,
dynamic composition methods and key principles of adaptability must be dis-
covered and applied to manage the evolution of the system as it adapts to its
environment and transaction load. Complex systems often operate in complex
environments on which they have little control and to which they must react
quickly and reliably. The flexible nature of software and its inherent malleabil-
ity provide the potential for systems to adapt autonomously to environmental
conditions.

6.8 SIS Research Project Framework

A science of design research project, as shown in Fig. 6.5, is a cross-product of the
grounding scientific theories and broader impacts of the research to include the new
contributions to an engineering phase of the software-intensive system life cycle.
Figure 6.6 provides a SIS research project framework. The inputs to the research are
the SIS theories, principles, and application domain and the output of the research
is the contributions to the application environment (relevance) and the scientific
knowledge base (rigor).

Examples of challenging science of design for SIS research questions include the
following:

• How can we design and evaluate SIS architectures for future computing environ-
ments to achieve the greatest understandability, utility, and quality?

• Knowing that designs of complex systems emerge throughout the development
process and operations, how do we build flexibility into processes, methods, and
models?

• How do we analyze and perform trade-offs between information design, control
design, and software design?

• How can complex systems be designed in environments where the component
parts are developed and controlled by multiple, independent entities?

• How will new physical platforms (hardware, communications) be integrated most
effectively into SIS? What new interfaces and systems software are needed?

• What economic and social trade-offs are needed to best describe and under-
stand the dynamics of SIS and the impacts of those systems on industrial,
governmental, and societal infrastructures?

• How do we produce software system designs leading to systems that have the
capacity to respond to surprise in operational environments?

• How do we best achieve human in the loop for SIS to enable and enhance human
capabilities and values? What new human–computer interfaces are needed?

6.9 Intellectual Drivers for Science of Design in SIS Research 75

6.9 Intellectual Drivers for Science of Design in SIS Research

To conclude this chapter, we will focus on three key intellectual drivers for science
of design research in software-intensive systems. One potentially radical approach
for rethinking SIS foundations is to start from a small set of intellectual drivers
of systems thinking and then apply an in-depth understanding of these drivers to
real-world problems via science of design SIS research. The following three sys-
tem concepts provide the most basic challenges and opportunities for transformative
research: complexity, composition, and control.

Managing complexity (technical, human, and societal) in the development, oper-
ation, and evolution of software-intensive systems is an overriding challenge.
Research to rethink IS complexity can be inspired by models in other scientific
fields, both physical sciences and social sciences. For example, consider the devel-
opment of IS artifacts that have the same robustness in the presence of complexity
as biological organisms. Designing models and methods for managing complex-
ity will require creative ideas for new information technology (IT) abstractions,
representations, and languages.

Rethinking complexity will necessarily lead to changes in the way the quali-
ties of IT artifacts are viewed. Current thinking assumes that if an accurate system
specification can be produced up front then a system that fits stakeholder needs
will naturally follow. Such an assumption is wrong when systems become complex
enough to result in unexpected, emergent behaviors and properties in unstable oper-
ational environments. Software-intensive IS are subject to multiple stakeholders’
inconsistent, contradictory, and partially understood objectives for behaviors and
properties, such as performance, reliability, security, usability, and sustainability.
While model-checking technologies have provided some useful forms of systems
assurance, new ways of understanding and conceptualizing how IS qualities can be
measured and evaluated are desired.

The essence of SIS design and evolution is composition of the system from com-
ponent parts that may be developed by different parties in different languages and to
different specifications. Mashups are examples of innovative approaches for com-
posing disparate components of software and information. A composed system must
interact properly with complex, uncertain environments, and the aggregate must
be trusted. This concept requires that IS implementations respect the concerns of
the domain, the intended usage, and the technology substrate (hardware and soft-
ware) upon which systems execute. Successful identification of useful properties of
IS must draw upon the relevant disciplines. We need new theories of abstraction,
structuring, behavior and configuration as well as new logics for representing and
reasoning about large systems in support of efficient and sustainable component-
oriented engineering approaches. New theories of complexity and composition are
needed to predict and reason about scalability in ways that can be empirically veri-
fied. A key challenge will be to identify perspicuous, useful, end-to-end properties
and models that span hardware and software technology platforms, the problem
domain, user interaction, and context of use.

76 6 A Science of Design for Software-Intensive Systems

Control of SIS has become increasingly challenging in situations of diverse soft-
ware and data provenance, such as open-source communities and dynamic supply
chains. In such settings, requirements for dynamic composition have both human
and automation aspects. Human cognition imposes limits on our abilities to design
complex artifacts. New techniques to augment human intellectual control and coor-
dination of the design, development, and use of complex software-intensive systems
are desired. For example, autonomic control of large-scale, distributed software-
intensive systems can reduce or remove the requirement for human attention during
runtime while still satisfying the needs of human users. Concepts of software system
self-awareness and human–computer partnerships can lead to optimum system per-
formance, negotiated access to resources, and novel IS configurations suitable to a
particular situation. Research projects in this field might be inspired by emerging
ideas in collective intelligence (e.g., wisdom of the crowds), virtual organiza-
tions (e.g., open-source user communities), and cognitive theories of abstraction,
decomposition, and synthesis.

As we enter a future world of pervasive computing and ubiquitous cyber-physical
devices it is essential that IT artifacts and the integrated systems containing these
artifacts are reliable, adaptable, and sustainable. Science of design for SIS research
must draw its foundations from multiple research disciplines and paradigms in order
to effectively address a wide range of system challenges. Three of the most impor-
tant intellectual drivers of future science of design in SIS research will be dealing
with complexity, composition, and control. Consideration of these drivers must be
the basis for the design of innovative artifacts and the development of rigorous the-
ories to rethink the development, evolution, and adaptation of future information
systems.

References

van der Aalst, W. and K. van Hee (2002) Workflow Management: Models, Methods, and Systems,
The MIT Press, Cambridge, MA.

Alexander, C. (1979) The Timeless Way of Building, Oxford University Press, Oxford.
Baldwin, C. and K. Clark (2000) Design Rules: The Power of Modularity, The MIT Press,

Cambridge, MA.
Bass, L., P. Clements, and R. Kazman (2003) Software Architecture in Practice, 2nd edn, Addison-

Wesley, Boston, MA.
Boehm, B. (1981) Software Engineering Economics, Prentice-Hall, Upper Saddle River, NJ.
Brooks, F. (1995) The Mythical Man-Month: Essays on Software Engineering, 2nd edn, Addison-

Wesley, Reading, MA.
Brown, A. (2000) Large-Scale Component Based Development, Prentice-Hall, Upper Saddle

River, NJ.
Codd, E. (1970) A relational model of data for large shared databanks, Communications of the

ACM 13 (6), pp. 380–387.
Denning, P. (2003) Great principles of computing, Communications of the ACM 46 (11), pp. 15–20.
Denning, P. (2005) Is computer science science? Communications of the ACM 48 (4), pp. 27–31.
Denning, P. (2007) Computing is a natural science, Communications of the ACM 50 (7), pp. 13–18.
Dijkstra, E. (1968) The structure of the ‘T.H.E.’ multiprogramming system, Communications of

the ACM 11 (5), pp. 341–346.

References 77

Fiadeiro, J. (2007) Designing for software’s social complexity,” IEEE Computer, 40 (1), pp. 34–39.
Forrester, J. (1961) Industrial Dynamics. Pegasus Communications, Waltham, MA.
Freeman, P. (1987) Software Perspectives: The System is the Message, Addison-Wesley,

Reading, MA.
Gelernter, D. (1998) Machine Beauty: Elegance and the Heart of Technology, Basic Books, New

York.
Kay, A. (1984) Computer software, Scientific American, 250, pp. 41–47.
Maier M. and E. Rechtin (2000) The Art of Systems Architecting, 2nd edn, CRC Press, Boca

Raton, FL.
Mills, H. (1983) Software Productivity, Little, Brown, and Co., Boston, MA.
Northrop, L. et al. (2006) Ultra-Large-Scale Systems: The Software Challenges of the Future,

Software Engineering Institute Report at http://www.sei.cmu.edu/uls/files/ULS_Book2006.pdf,
Carnegie-Mellon University.

Parnas, D. (1972) On the criteria for decomposing systems into modules, Communications of the
ACM 15 (12), pp. 1053–1058.

Randers, J. (1980) Elements of the System Dynamics Method, MIT Press, Cambridge, MA.
Shaw, M. and D. Garlan (1996) Software Architecture: Perspectives on an Emerging Discipline,

Prentice-Hall, Englewood Cliffs, NJ.
Simon, H. (1996) The Sciences of the Artificial, 3rd edn, The MIT Press, Cambridge, MA.
Wing, J. (2006) Computational thinking, Communications of the ACM 49 (3), pp. 33–35.
Wulf, W. (2006) Keynote Presentation to USC Center for Software & Systems Engineering

Symposium, Los Angeles, CA.

	6 A Science of Design for Software-Intensive Systems
	6.1 Science of Design Challenges
	6.2 Software-Intensive Systems
	6.3 Science of Design Principles
	6.4 Categories of Software-Intensive Systems Principles
	6.5 A Proposed Research Vision
	6.6 SIS Scientific Theories
	6.6.1 Software Design Theories
	6.6.2 Dynamic System Theories
	6.6.3 Socio-economic Theories
	6.6.4 Domain Theories

	6.7 SIS Engineering Activities
	6.8 SIS Research Project Framework
	6.9 Intellectual Drivers for Science of Design in SIS Research

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

