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  Abstract 

 We have developed a computer-based learning environment that helps 
students learn science by constructing causal concept map models. The sys-
tem builds upon research in learning-by-teaching (LBT) and has students 
take on the role and responsibilities of being the teacher to a virtual student 
named Betty. The environment is structured so that successfully instructing 
their teachable agents requires the students to learn and understand the sci-
ence topic for themselves. This learning process is supported through the 
use of adaptive scaffolding provided by feedback from the two agents in the 
system: the teachable agent, Betty, and a mentor agent, Mr. Davis. For 
example, if Betty performs poorly on a quiz, she may tell the student that 
she needs to learn more about the topics on which she is performing poorly. 
In addition, Mr. Davis may suggest that students ask Betty questions and 
get her to explain her answers to help them trace the causal reasoning chains 
in their map and  fi nd out where she may be making mistakes. Thus the 
system is designed to help students develop and re fi ne their own knowledge 
construction and monitoring strategies as they teach their agent. 

 This chapter provides an overview of two studies that were conducted 
in  fi fth-grade science classrooms. A description of the analysis techniques 
that we have developed for interpreting students’ activities in this learning 
environment is also provided. More speci fi cally, we discuss the generation 
of hidden Markov models (HMMs) that capture students’ aggregated 
behavior patterns, which form the basis for analyzing students’ metacog-
nitive strategies in the system. Our study results show that students who 
utilized LBT versions of our system performed better than students who 
used a non-teaching version of the system. Further, students’ performances 
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were strongest when the system explicitly provided support to help them 
develop self-regulated learning strategies. To gain further insight into the 
students’ reactions to feedback from the two agents, we present results 
from a second study that employed a think-aloud protocol. Overall, the 
results from this study illustrated that students were more receptive to the 
explicit strategy-oriented feedback from the mentor agent. Interestingly, 
this study also suggested that students had dif fi culty in correctly applying 
Betty’s feedback related to metacognitive monitoring activities.      

   Introduction 

 Cognitive scientists have established that metacog-
nition and self-regulation are important compo-
nents for developing effective learning in the 
classroom and beyond (Bransford, Brown, & 
Cocking,  2000 ; Zimmerman,  2001  ) . The frame-
work for self-regulated learning (SRL) originated 
from the social cognitive theory of learning pro-
posed by Bandura  (  1997  ) , who postulated 
that learning is governed by three interacting fac-
tors: (1)  personal  (e.g., learners attitudes and 
beliefs); (2)  behavioral  (e.g., the ability to invoke 
relevant prior knowledge, the ability to employ 
appropriate strategies to support learning); and (3) 
 environmental  (e.g., type of instruction, quality of 
feedback, nature of interactions with parents and 
peers). A number of researchers (e.g., Pintrich,  2000 ; 
Zimmerman,  2001 ; Zimmerman, Bandura, & 
Martinez-Pons,  1992  )  have demonstrated that stu-
dents’ SRL capabilities can play a signi fi cant role 
in high school academic achievement. In addition, 
studies by Brown and Palincsar  [  1989  ]  have dem-
onstrated that through instruction younger students 
can acquire and apply metacognitive skills, such as 
planning and monitoring. However, students in 
typical classrooms are rarely provided opportuni-
ties to learn and exercise these strategies (Paris & 
Paris,  2001 ; Zimmerman,  1990  ) . 

 For about 8 years, our research team, the 
Teachable Agents Group, has been developing 
computer-based-learning environments that uti-
lize the learning-by-teaching (LBT) approach to 
instruction in order to foster students’ acquisition 
of knowledge and development of sophisticated 
metacognitive strategies. The system embodies 
the social cognitive learning framework and 

 provides students with opportunities for self-
directed, open-ended learning in the domains of 
science and mathematics (Biswas, Leelawong, 
Schwartz, Vye, & Vanderbilt,  2005 ; Blair, 
Schwartz, Biswas, & Leelawong,  2007 ; 
Leelawong & Biswas,  2008  ) . In the system, stu-
dents are given a  knowledge construction  task in 
which they engage in the iterative process of 
reading and building causal concept maps for a 
range of instructional topics (e.g., climate 
change, ecology, and thermoregulation). This 
process is enhanced through the  social interac-
tion  component of the system in which students 
assume the role and responsibilities of being 
their agent’s teacher. The environment is struc-
tured so that successfully instructing their teach-
able agent (“Betty”) requires the students to 
learn and understand the topic for themselves. 
Our previous work has shown that students  fi nd 
the task of teaching and interacting with Betty to 
be motivating, and it also helps them enhance 
their own learning (Chase, Chin, Oppezzo, & 
Schwartz,  2009 ; Schwartz, Blair, Biswas, 
Leelawong, & Davis,  2007 ; Schwartz 
et al.,  2009  ) . The teachable agent’s performance 
is a function of how well it has been taught by 
the student, which provides the student with a 
non-threatening way of assessing their own 
understanding and areas of confusion (e.g., 
“Ugh, Betty is so stupid, now I’ve got to  fi gure 
out another way to help her learn this stuff,” as 
opposed to “Why am I not able to get the correct 
answer?”). Based upon the student’s level of 
progress and pattern of activities, the system 
triggers responses at appropriate times from 
Betty or Mr. Davis, the mentor agent, who pro-
vides guidance on problem-solving and meta-
cognitive strategies. As a result, the students are 
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more likely to increase their knowledge of the 
speci fi c domain content and develop more 
sophisticated problem-solving and metacogni-
tive strategies, which in turn helps their prepara-
tion for future learning (Biswas et al.,  2005 ; 
Bransford & Schwartz,  1999 ; Schwartz & 
Martin,  2004 ; Schwartz et al.,  2007  ) . 

 This chapter presents analyses from several 
studies that were conducted in middle school 
science classrooms, in which students taught 
their agent about complex science topics, such 
as river ecosystems and global climate change. 
One of our goals was to determine the degree to 
which the agents’ metacognitive and SRL 
prompts could help improve students’ learning. 
Within this framework, we have developed ana-
lytical methods to identify and interpret stu-
dents’ learning strategies based on their activity 
traces in the system. Such analyses can shed 
light on students’ underlying learning processes 
and the strategies they employ in achieving their 
learning tasks (Roscoe & Chi,  2007  ) . To date 
there has been very little work on deriving stu-
dents’ SRL strategies from their activity 
sequences in computer-based learning environ-
ments (some exceptions are Hadwin, Nesbit, 
Jamieson-Noel, Code, and Winne  (  2007  ) , Roll, 
Aleven, Mclaren, and Koedinger  (  2007  ) , and 
Azevedo, Witherspoon, Chauncey, Burkett, and 
Fike  (  2009  ) ). In this chapter, we present a 
novel methodology that derives HMMs (Li & 
Biswas,  2002 ; Rabiner,  1989  )  from student 
activity sequences to quantify and assess stu-
dent learning and metacognition. In addition, 
we report the results of a second study, where 
we performed verbal protocol analyses to deter-
mine students’ acceptance of the strategies dis-
cussed by the two agents, and how the feedback 
provided by the agents in fl uenced their subsequent 
learning activities.  

   Measuring Self-Regulated Learning 

 To effectively design, test, and re fi ne a system pro-
moting SRL skills, it requires the ability to identify 
and measure metacognitive processes. The tradi-
tional approach to measuring students’ SRL has 
been through the use of self-report  questionnaires 

(e.g., Pintrich, Smith, Garcia, & McKeachie,  1993 ; 
Weinstein, Schulte, & Palmer,  1987 ; Zimmerman 
& Martinez-Pons,  1986  ) . The underlying assump-
tion in these questionnaires is that self-regulation 
is an aptitude that students possess. For example, 
the questionnaire items might attempt to assess 
students’ inclination to elaborate as they read a 
passage or to determine their approach to manag-
ing available time resources (Perry & Winne,  2006 ; 
Zimmerman,  2008  ) . This approach has been use-
ful, as the self-report questionnaires have been 
shown to be good predictors of students’ standard 
achievement test scores and they correlate well 
with achievement levels (Pintrich, Marx, & 
Boyle,  1993 ; Zimmerman & Martinez-Pons, 
 1986  ) . However, Hadwin and others (Azevedo & 
Witherspoon,  2009 ; Hadwin, Winne, Stockley, 
Nesbit, & Woszczyna,  2001 ; Hadwin et al.,  2007 ; 
Perry & Winne,  2006  )  have argued that while the 
questionnaires provide valuable information about 
the learners’ self-perceptions, they fail to capture 
the dynamic and adaptive nature of SRL as stu-
dents are involved in learning, knowledge-build-
ing, and problem-solving tasks. 

 Increasingly, researchers have begun to utilize 
trace methodologies in order to examine the 
 complex temporal patterns of SRL (Aleven, 
McLaren, Roll, & Koedinger,  2006 ; Azevedo & 
Witherspoon,  2009 ; Azevedo et al.,  2009 ; Biswas, 
Jeong, Kinnebrew, Sulcer, & Roscoe,  2010 ; 
Hadwin et al.,  2007 ; Jeong & Biswas,  2008 ; 
Zimmerman,  2008  ) . Perhaps the most common 
type of data collected, and the focus of this chap-
ter, is computer logs, which can record every 
action that the student performs in a computer-
based learning environment. An example of com-
puter trace log analysis is presented in Hadwin 
et al.  (  2007  ) . They performed a study that col-
lected activity traces of 8 students using the gStudy 
system (Perry & Winne,  2006  ) . The activity traces 
were analyzed in four different ways: (1) fre-
quency of studying events, (2) patterns of studying 
activity, (3) timing and sequencing of events, and 
(4) content analyses of students’ notes and sum-
maries. The results of this analysis were compared 
against students’ self-reports on their SRL. One of 
the important  fi ndings was that many participants’ 
self-reports of studying tactics, as determined by 
the MSLQ items, were not well calibrated with 
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studying events traced in the gStudy system. The 
researchers found that the best matched item 
showed a 40% agreement, and the average agree-
ment was 27%. The authors concluded from this 
study that trace data of student activity in e-learn-
ing environments are important for furthering our 
understanding of SRL. 

 More recently, trace data is being supple-
mented with other sources of data, such as con-
current verbal think-alouds (e.g., Azevedo & 
Witherspoon,  2009  )  and measures of effect 
(e.g., automatic recording of facial expression 
and posture) (Burleson, Picard, Perlin, & 
Lippincott,  2004 ; D’Mello, Craig, Witherspoon, 
Mcdaniel, & Graesser,  2008 ; D’Mello, Picard, 
& Graesser,  2007 ; Lester et al.,  1997  ) . Azevedo 
et al.  (  2009  )  have developed a hypermedia envi-
ronment called MetaTutor to help students learn 
about complex and challenging science topics, 
such as the circulatory processes in human 
body systems. The system is also designed to 
train students in key SRL processes that relate 
to planning, metacognitive monitoring, learn-
ing strategies, and methods for handling task 
dif fi culties and demands. The authors used a 
combination of student trace data and think-
aloud protocols to understand the nature of stu-
dents’ learning outcomes and their deployment 
of SRL processes. For example, one of their 
studies showed that students predominantly 
used strategies that pertained to acquiring 
knowledge from the multimedia resources, and 
they only occasionally employ monitoring 
strategies to check what they have learned 
(Azevedo & Witherspoon,  2009  ) . Combining 
trace and think-aloud protocols provides more 
insight into the students’ thought processes that 
govern the use of strategies. Furthermore, they 
can be used to validate the results of the trace 
data analysis.  

   Betty’s Brain and Self-Regulated 
Learning 

 The Betty’s Brain system, illustrated in Fig.  29.1 , 
implements the LBT paradigm to help middle school 
students develop cognitive and metacognitive 

skills in science and mathematics domains 
(Biswas et al.,  2005 ; Blair et al.,  2007 ; Leelawong 
& Biswas,  2008 ; Schwartz et al.,  2007  ) . The sys-
tem supports  fi ve primary types of activities: 

    • Read : The system contains a set of indexed, 
hypermedia resources that students can access 
and read at any time while working on the sys-
tem. These resources contain all of the science 
information (and more) that students need to 
build their concept maps.  
   • Edit : Students explicitly teach Betty using a 
causal concept map representation (Jonassen & 
Ionas,  2008  ) , where the relevant science con-
cepts are nodes, and causal relations between 
the concepts are modeled as links. For exam-
ple,  fi sh eat (decrease) macroinvertebrates and 
this representation allows students to reason 
that an increase in  fi sh causes a decrease in 
macroinvertebrates. Students teach Betty new 
concepts and links using a visual interface that 
includes menu selections and templates for 
adding and modifying information (e.g., the 
interface contains these four buttons: Teach 
Concept, Teach Link, Delete, and Edit).  
   • Query : Students use a template, illustrated in 
Fig.  29.1 , to check their teaching by asking 
Betty questions, which she answers using 
causal reasoning through chains of links 
(Forbus,  1984 ; Leelawong & Biswas,  2008  ) .  
   • Explain : Students can probe Betty’s reason-
ing, by asking her to explain her answer to 
a query. She demonstrates the use of causal 
reasoning processes to derive her answer, 
and verbalizes her reasoning process using 
speech and simultaneous animation on the 
concept map.  
   • Quiz : Students can assess how much Betty has 
learned by having her take a quiz, which is 
made up of a set of questions chosen by the 
Mentor agent. Betty’s inability to answer some 
of the questions correctly usually motivates 
the students to learn more so that they can 
make improvements to the concept map and 
help Betty do better on her quizzes.     
 Since our middle school students are novices in 

the science topics and the teaching tasks, we pro-
vide them with a variety of scaffolds to help them 
overcome obstacles they may face in learning and 
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teaching the domain material. In addition to 
answering queries and taking/administering quiz-
zes, the agents also provide spontaneous feedback 
to the student on the relative effectiveness of their 
teaching performance. This feedback is designed 
to help students develop and employ more meta-
cognitive learning strategies (Schwartz et al.,  2007 ; 
Tan, Biswas, & Schwartz,  2006 ; Wagster, Tan, 
Wu, Biswas, & Schwartz,  2007  ) . 

 Schunk and Zimmerman  (  1997  )  point out that 
the self-regulation pro fi les of novice learners are 
quite distinct from those of experienced learners. 
Novices are often poor at forethought, and their 
self-judgment abilities are not well developed. 
These strategies can be taught, but students in typ-
ical classrooms are rarely provided opportunities 
needed to learn and master them. Our system 
addresses this problem by adopting a SRL frame-
work that promotes a set of comprehensive skills, 
such as setting goals for learning new materials 

and applying them to map building tasks; 
 deliberating about strategies to enable this learn-
ing; monitoring one’s learning progress; and revis-
ing one’s knowledge, beliefs, and strategies as new 
material and strategies are learned (Azevedo,  2005 ; 
Schraw, Kauffman, & Lehman,  2002 ; Winne & 
Hadwin,   2008 ; Zimmerman,  2001  ) . 

 Figure  29.2  illustrates our conceptual cogni-
tive/metacognitive model that we have employed 
in designing the Betty’s Brain system. Pintrich 
 (  2002  )  differentiates between two major aspects of 
metacognition for learners: (1)  metacognitive 
knowledge  that includes knowledge of general 
strategies and when they apply, as well as aware-
ness of one’s own abilities, and (2)  metacognitive 
control  and self-regulatory processes that learners 
use to monitor and regulate their cognition and 
learning. In our model, metacognitive control is 
illustrated in the monitoring and knowledge con-
struction strategies in Fig.  29.2 . In more detail, 

  Fig. 29.1    Betty’s Brain system with query window       
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Pintrich discusses a goal orientation framework 
for characterizing SRL that covers mastery and 
performance orientations to achieving goals 
(Pintrich,  2000  ) . In our approach, feedback from 
the mentor promotes mastery orientation, e.g., 
focus on learning with understanding, and setting 
standards for checking and probing the map (asking 
queries and re fl ecting on the explanations gener-
ated by Betty) to make sure it has no errors. Betty’s 
interactions with the student focus more on the 
avoidance aspect of mastery orientation, i.e., mak-
ing sure students strive for self-improvement and 
work toward producing an error-free map.  

 For knowledge construction in the Betty’s 
Brain system (i.e., building causal concept maps), 
we identify two key types of mastery-oriented 
self-regulation strategies: (1)  information seek-
ing , in which students study and search available 
resources in order to gain missing domain infor-
mation or remediate existing knowledge, and (2) 
 information structuring , in which students struc-
ture the information gained into causal and taxo-
nomic relationships to build and revise their 
concept maps. Information seeking strategies are 

directed toward effective use of the resources in 
the system, whereas information structuring 
focuses on strategies for construction and revi-
sion of the concept map. 

 The model also posits two types of monitoring 
strategies: (1)  checking , where students use the 
query or the quiz features to test the correctness 
of their concept map and (2)  probing , a stronger 
monitoring strategy, where students systemati-
cally analyze their map in greater detail, by ask-
ing for explanations and following the causal 
reasoning steps generated by the agent to locate 
potential errors. Effective guidance (i.e., relevant 
and timely feedback) based on this SRL model 
makes students aware of their learning strategies 
and helps them develop better strategies, such as 
rereading the resources to check if there are errors 
in their concept maps (combining information 
seeking and checking strategies), and asking que-
ries and checking explanations to  fi nd the source 
of an error (a probing strategy). 

 Table  29.1  provides examples of the agent 
feedback, which is triggered by students’ activity 
patterns (see column 2) and linked to strategies for 

Monitoring StrategiesKnowledge Construction Strategies

Information
Seeking

Information
Structuring Checking Probing

Metacognitive
Knowledge

Domain Knowledge
(Concept Map)

Reading Editing Querying Quizzing
Requesting

Explanations

Metacognitive

Cognitive

  Fig. 29.2    Our model of self-regulated learning strategies and activities in the Betty’s brain system linked to these 
strategies       
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   Table 29.1    Examples of agent responses to observed student behavior patterns   

 SRL strategy  Triggering activities  Betty response  Mr. Davis response 

 Knowledge 
construction: 
information 
seeking 

 Student taught Betty several 
concepts, but has added only 
a few links. 

  What do the resources 
say about that concept? 
Could we search the 
resources to learn more?  

  Reading is a very important part of 
learning. You should read the resources 
often to help you understand and double-
check what you are teaching. Here are 
some strategies that you can use to improve 
your reading skills.  

 Knowledge 
construction: 
information 
structuring 

 Student has just added a 
number of concepts but no 
links to the concept map. 

  Can we read the 
resources to make sure 
we understand the 
relations between these 
concepts?  

  A good teacher explains to her students 
how concepts affect each other. Add links to 
the map to teach Betty how the concepts 
cause other concepts to change.  

 Monitoring: 
checking 

 Betty has incorrect answers 
on the quiz she just took. 

  Could you ask me 
some review questions 
to see how good my 
answers are?  

  Questions are the best way to test Betty’s 
knowledge. When you teach Betty new 
links, make sure you ask her questions to 
 fi nd out how her answers have changed.  

 Monitoring: 
probing 

 Betty has got some of her 
quiz answers wrong. 

  These quizzes can be 
tough. Can we go over 
my explanations to see 
how well I understand?  

  After each quiz, try to review a few of 
Betty’s answers and explanations. Follow 
each step in her explanations carefully to 
be sure that they make sense.  

 Monitoring: 
pointing out a 
suboptimal 
strategy 

 Student asks Betty to take 
repeated quizzes without 
reading or asking questions. 

  I want to do well on the 
quizzes. It would help if 
I learned more between 
each quiz instead of 
taking so many.  

  You have been asking Betty to take a lot of 
quizzes recently. Try asking her questions 
to see where she is making mistakes, and 
teach her more in between quizzes.  

knowledge construction and monitoring implied 
by our model. 1  The agents have different roles 
(and relationships with the student) in the system, 
which affects the wording and the content of the 
feedback they provide. Betty’s persona and role as 
an engaged student “interested in learning and 
performing well,” is in fl uenced by the social cog-
nitive framework. Betty’s feedback incorporates 
metacognitive awareness that she conveys to the 
students at appropriate times to help them develop 
and apply monitoring and self-regulation strate-
gies (Schwartz et al.,  2009 ; Wagster et al.,  2007  ) . 
Mr. Davis, the mentor, and, therefore, the more 
knowledgeable persona in the system, provides 
help in the form of suggested activities linked to 

effective SRL strategies (e.g., “if you are not sure, 
check the resources to see if Betty is answering 
her questions correctly.”).   

   Experimental Studies 

 We have conducted several classroom studies 
where students use the teachable agents system to 
learn and gain a better understanding of a variety 
of science topics, such as river ecosystems, ther-
moregulation, and climate change. In these stud-
ies, the topics and speci fi c science content provided 
by the system are closely linked to the middle 
school science curriculum. At the beginning of 
each study, the science teacher introduces students 
to the topic during regular classroom instruction. 
The intervention phase starts with an overview of 
causal relations and causal mapping during a 
45-min class period. This is followed by a hands-
on training session with the system the next day. 
Over the next 4 or 5 days, the students teach Betty 
by building a causal concept map for the science 
topic, which represents what Betty knows. 

   1   In the system, the same triggering conditions are used to 
generate Betty’s and Mr. Davis’ feedback. The system is 
designed so that the feedback is provided only after the 
triggering pattern is activated a certain number of times. 
This number is chosen randomly from a prede fi ned range 
of values (e.g., [2, 5]) and recomputed after every instance 
of feedback. The numbers for Betty and Mr. Davis are 
chosen independently.  
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 To assess students’ acquisition of science 
domain knowledge and causal reasoning skills, 
we employ two measures. The  fi rst is a pretest to 
posttest gain score. These tests contain a mix of 
content-related multiple choice and free response 
items (Biswas et al.,  2010 ; Leelawong & Biswas, 
 2008  )  that are administered before the students 
are introduced to causal reasoning, and at the 
end of the intervention. The second measure 
examines students’  fi nal maps, in terms of 
 completeness and accuracy. 

 In this chapter, we analyze the results from two 
classroom studies. The  fi rst study compared the 
students’ use of SRL strategies in three different 
conditions described below. We had two ques-
tions: (1) Would students who taught an agent use 
more SRL strategies in their learning and teach-
ing tasks than students learning entirely for them-
selves? and (2) Would students who received SRL 
feedback from the agents use more sophisticated 
SRL strategies than students who did not? The 
second study used verbal protocol analysis to 
assess the effectiveness of different kinds of SRL 
strategies, and also checked whether the feedback 
provided by one agent was more effective than the 
feedback provided by the other agent. The results, 
and a discussion of these results, are presented in 
the remainder of this section. 

   Study 1: Modeling Students’ SRL 
Strategies 

 In this study, our goal was to determine if teach-
ing the Betty agent and providing metacognitive 
feedback would help students become better 
learners than those who did not teach or receive 
the feedback. Our participants were 56 students 
in 2  fi fth-grade science classrooms taught by the 
same teacher. Students were assigned to one of 
three conditions using strati fi ed random assign-
ment based on standardized test scores. All stu-
dents created river ecosystem concept maps over 
 fi ve 45-min sessions. Two of the conditions (1) 
the LBT group and (2) the self-regulated learn-
ing-by-teaching (SRL) group created their map 
to teach Betty so that she could pass a test on her 
own. In addition to the teachable agent, both 
groups had access to Mr. Davis, the mentor agent. 

As students taught Betty, they could ask her 
questions, get her to explain her answers to the 
questions, and take quizzes, which were sets of 
questions created by Mr. Davis. After Betty took 
a quiz, the mentor graded the quiz and displayed 
the results to the students. Both systems also pro-
vided feedback to students after a quiz. 

 The differences between the LBT and SRL 
groups were in the feedback provided. In the LBT 
version of the system, Mr. Davis provided  cor-
rective  feedback after the quiz results were dis-
played. The corrective feedback was linked to a 
quiz question that produced an incorrect answer, 
and it included information about one of the fol-
lowing: (1) a missing concept that would be 
required to generate the correct answer; (2) a 
missing link that would be required to generate 
the correct answer, or (3) a link that was incor-
rectly represented in the map (e.g., one of the link 
effects was incorrect, or the direction of a link 
was reversed). The mentor’s feedback would  fi rst 
pick on missing concepts, then missing links (i.e., 
if the student’s map contained the relevant con-
cepts to answer the question), and last, incorrect 
links (i.e., if all necessary concepts and links 
were on the map, but one or more links were 
incorrectly speci fi ed or extraneous). 

 In contrast, the SRL version of the system pro-
vided the SRL strategy feedback presented in 
Sect.  29 . After seeing Betty’s quiz results, the 
students could ask the mentor for suggestions. In 
response, Mr. Davis would suggest relevant SRL 
strategies, such as an information seeking strat-
egy: he would point to keywords for  fi nding rel-
evant sections of the resources to learn more 
about concepts and relations that were missing/
incorrect in the map. In addition to feedback after 
a quiz, Betty and Mr. Davis also generated spon-
taneous responses triggered by the activity pat-
terns, such as the ones described in Table  29.1 . 

 Our control condition for the study, the intel-
ligent coaching system (ICS) group was told to 
create the map to learn for themselves. The Betty 
agent was removed from this version of the sys-
tem, and the students interacted only with the 
mentor, Mr. Davis. Otherwise, the activities avail-
able in the ICS interface were identical to the two 
LBT systems. For example, students in the ICS 
group could also query their map and ask for 
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explanations, but in this case, it was Mr. Davis, 
and not Betty, who responded to them. Similarly, 
ICS students took the quiz for themselves rather 
than having Betty take the quiz. The content and 
form of quizzes and explanations were identical 
for the ICS, LBT, and SRL groups. In the ICS 
group, Mr. Davis provided the same corrective 
feedback as in the LBT version of the system. 

 All student activities in the system were cap-
tured in log  fi les. Each activity was assigned to 
one of  fi ve primary categories: (1) EDIT—add, 
edit, or delete concepts and links in the concept 
map; (2) QUER(y)—query Betty on a portion 
of the map; (3) QUIZ—ask Betty to take a 
quiz; (4) READ—read the resources; and (5) 
EXPL(anation)—ask Betty to explain her answer 
to a query. For each activity, the program cap-
tured additional information related to the activity. 
For example, when the student asked a question, 
the question and Betty’s response to the question 
were also stored in the log  fi le. 

 Analyses that do not take into account the 
sequential nature of student interactions with the 
system, such as counting the frequency of student 
activities, can provide only limited information 
for learning strategy models of student behavior 
(Biswas et al.,  2010  ) . We believe that a state-
based representation that captures the sequential 
characteristics of students’ activities provides a 
more powerful narrative of the student learning 
behaviors. HMMs (Rabiner,  1989  ) , which con-
tain a set of states and probabilistic transitions 
between those states (more likely transitions are 
assigned higher probabilities), provide such a 
representational scheme. The states in a HMM 
are hidden, meaning that they cannot be directly 
observed in the environment/system. Instead, 
they produce output (e.g., student activities in the 
Betty’s Brain system) that can be observed. 
Deriving a HMM from activity traces requires 
simultaneous estimation of (1) the number of 
states; (2) the probabilities associated with transi-
tions between states; (3) the probabilities associ-
ated with observing certain outputs (i.e., particular 
student activities, such as reading or querying 
activities); and (4) the probability of a state being 
the initial state in an activity sequence. 

 By providing a concise representation of stu-
dent learning strategies and behaviors, HMMs 

have the potential for providing a high-level view 
of how students approach their learning tasks 
(e.g., what strategies they use and how they 
switch between strategies) (Biswas et al.,  2010 ; 
Jeong & Biswas,  2008  ) . Algorithms for learning 
an HMM from output sequences are well known 
but require appropriate con fi guration/initializa-
tion parameters for effective use (Rabiner,  1989  ) . 
Speci fi cally, HMM learning algorithms require 
an initial HMM description, whose parameters 
are then modi fi ed to maximize the likelihood of 
producing observed output sequences. In particu-
lar, the number of states in the HMM and their 
initial output probabilities can have a signi fi cant 
effect on the resulting, learned HMM. 

 We have developed an algorithm designed to 
generate HMMs from a set of student activity 
sequences (Jeong & Biswas,  2008 ; Li & 
Biswas,  2000 ,  2002  ) . The  fi rst step in the analysis 
is to extract each students’ activity sequences 
over the period of the study from the log  fi les. 
Although all students had access to the full set of 
actions, not all of them used them effectively. 
Using queries to check whether recent revisions 
to the map were correct, or to locate errors in the 
concept map, is an example of effective use of 
queries.   On the other hand, asking questions 
simply to make Betty speak, so that the student 
could make fun of her mechanical, computer-
generated voice is clearly an ineffective use of 
queries for the learning task. When students gen-
erated questions that were not related to parts of 
the map they had worked on recently, it was 
unclear whether these queries were related to 
effective learning. We addressed this issue by 
developing a  relevance score  that took into 
account how much the current action could be 
linked to other recent actions. 

 Each student action was assigned a relevance 
score that depended on the number of relevant 
previous actions within a pre-speci fi ed window. 
This score provides a measure of  informedness  
for knowledge construction activities and, simi-
larly, a measure of  diagnosticity  for monitoring 
activities. Overall, the relevance score provides a 
rough measure of strategy consistency or coher-
ence over a sequence of actions. For this analysis, 
a prior action was considered relevant to the cur-
rent action if it was related to, or operated on, one 
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of the same map concepts or links. For example, 
if a student edited a link that was used to generate 
an answer in a recent query, the query action was 
counted in the edit’s relevance score. The 
increased relevance score suggested a more 
informed edit action because it was related to a 
recent query. 

 The relevance score is employed in HMM gen-
eration by re fi ning the classi fi cation of student 
activities. Each of the actions in an activity 
sequence is assigned a label, H (high) or L (low), 
based on its relevance score, in order to maintain 
the context and relevance information of the 
actions in the sequence. For example, a QUER-H 
activity implies that the query the student asked is 
related to other activities recently performed, 
while a QUER-L implies that the query activity is 
largely unrelated to the students’ recent activities. 

 The HMM models derived for the ICS, LBT, 
and SRL groups are shown in Figs.  29.3  and  29.4 . 
States in the models are named based on an inter-
pretation of their outputs (activities) illustrated in 

Figs.  29.5  and  29.6 . The possible transitions 
between states are shown as arrows, and the tran-
sition probabilities are expressed as percentages. 
For example, the ICS behavior model indicates 
an 84% likelihood that a student who just per-
formed an applied reading action (i.e., one of the 
observable actions associated with the Applied 
Reading state described below) will next perform 
another applied reading action, but there is a 13% 
chance that the student will perform an informed 
editing action (i.e., an action produced by the 
Informed Editing state) next. The models for the 
ICS and LBT groups each have three states, but 
the activities associated with some of those states 
differ signi fi cantly. Therefore, the states are inter-
preted, and named, differently for those groups. 
Further, the derived model for the SRL group has 
 fi ve states instead of three and shows some inter-
esting differences in the set of actions associated 
with those states.     

 We used the activities associated with a state 
to categorize the states of the three derived HMM 

  Fig. 29.3    ICS and LBT group HMMs derived from activity sequences       
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models. This analysis produced seven different 
types of states that are described below.
    1.     Applied reading —students are primarily 

engaged in reading the resources and applying 
the knowledge gained from reading by editing 
their maps. This state combines information-
seeking strategies with informed information 
structuring.  

    2.     Uninformed editing —students are primarily 
making uninformed changes to their map, 
indicating the use of trial-and-error or guessing 
strategies for information structuring. Students 
may generate queries, but the queries gener-
ally do not relate directly to the editing activi-
ties. This represents a suboptimal information 
structuring strategy.  

    3.     Informed editing —students are primarily 
making informed changes to their map (infor-
mation structuring) based on relevant queries 
or quiz questions. As opposed to uninformed 
editing, the students are using queries and 
quizzes to guide their map editing actions.  

    4.     Uninformed and informed editing —students 
are primarily making changes to their map, 
some of which are based on relevant queries 
or quizzes. This state combines the activities 
of the uninformed editing and informed edit-
ing states, including situations where students 
are making edits relevant to recent queries and 
quizzes, as well as situations in which students 
are making edits without focusing on a single 
area of the map.  

  Fig. 29.4    SRL group HMM derived from activity sequences       
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  Fig. 29.5    Activities in knowledge construction states       

  Fig. 29.6    Activities in monitoring states       
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    5.     Checking —students are querying and quizzing 
Betty to check the correctness of their concept 
maps. However, the use of queries and quizzes 
may be unfocused. For example, queries may 
not be related to recently edited areas of the 
map, and it is not clear that students are using 
the quiz results to focus on areas on the map 
where there are errors. Therefore, this state 
corresponds to a weak monitoring strategy.  

    6.     Probing —students combine querying and 
quizzing with the explanation feature, which 
illustrates the chain of links that were followed 
to generate an answer to a question. Further, 
the queries, explanations, and quizzes are 
focused on a particular area of the map, and 
the results inform map editing. This combina-
tion implies a deeper, more focused monitor-
ing strategy than the checking state and may 
be evidence of metacognitive re fl ection on the 
quality of the student’s map/knowledge.  

    7.     Transitional probing —students perform activ-
ities similar to the probing state, but generally 
with lower relevance scores, suggesting that 
they may be transitioning to probing a differ-
ent area of the concept map.     
 As discussed above, each of the interpreted 

states can be mapped onto one or more knowl-
edge construction and monitoring strategies out-
lined in our conceptual SRL model that was 
illustrated in Fig.  29.2 . The HMMs provide evi-
dence that the SRL condition uses more effective 
monitoring strategies (i.e., probing strategies in 
addition to checking strategies) than the LBT and 
ICS conditions. 

 We probed further to determine the prevalence 
of individual states suggested by a generated 
HMM. To do this, we calculated the proportion 

of  expected state occurrences  by condition in 
Table  29.2 . This calculation uses the HMM to 
provide an  expected value  for the average fre-
quency with which a state would occur when pro-
ducing sequences of a given length. Speci fi cally, 
the expected state occurrences measure employs 
state transition probabilities in the derived HMM 
and average activity sequence lengths from the 
trace data to calculate an expected value for the 
proportion of individual state occurrences 
(Biswas et al.,  2010  ) . Although states correspond-
ing to knowledge construction behaviors account 
for a signi fi cant percentage of behaviors in all 
groups, the HMMs for the LBT and SRL groups 
also show use of monitoring strategies (10% for 
LBT and 49% for SRL). The SRL HMM also 
includes more states suggesting a greater number 
(and possibly greater complexity) in the types of 
strategies employed. Further, the activities 
involved in these additional states suggest use of 
 probing , a more advanced monitoring behavior, 
which is absent from the ICS and LBT HMMs.  

 The results of the HMM analysis identify 
 differences in strategies employed by the differ-
ent groups of students, but do not directly indi-
cate the effect of these behaviors on student 
learning. Therefore, Table  29.3  2  shows the learning 
gains measured by tests and map scores for each 

   2   All statistical comparisons of means among conditions 
were made with ANOVA post-hoc (Tukey HSD) tests, and 
effect sizes are computed as Cohen’s     d̂   . Further, since 
some of the differences falling outside of the signi fi cance 
cutoff of  p  < 0. 05 still had moderately large effect sizes, 
we report the results for multiple signi fi cance cutoff val-
ues ( p  < 0. 1 and  p  < 0. 05), allowing the reader to make 
their own determinations based on the reported results.  

   Table 29.2    Proportion of expected state occurrences by condition   

 Behaviors 

 ICS  LBT  SRL 

 Proportion (%)  Proportion (%)  Proportion (%) 

 Applied reading  33  30  17 
 Uninformed editing  36  –  – 
 Uninformed and informed editing  –  60  34 
 Informed editing  31  –  – 
 Checking  –  10  13 
 Transitional probing  –  –  7 
 Probing  –  –  29 
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condition in the study. Results indicate that the 
two groups that taught Betty (LBT and SRL) out-
performed the ICS group on gains in both test 
and map scores, although not all of these differ-
ences were statistically signi fi cant. In particular, 
differences on multiple choice test score gain 
were not statistically signi fi cant between any of 
the conditions. However, for the free response 
test questions, the SRL group showed greater 
gains than the ICS group ( p  < 0. 1 and a moder-
ately large effect size of     ̂d 0.72=   ). For the gain in 
correct map concepts, the SRL group outper-
formed both the ICS group ( p  < 0.05,     ̂d   = 0.81) 
and the LBT group ( p  < 0.01,     ̂d   = 1.05). Similarly, 
for the gain in correct map links, the SRL group 
outperformed the ICS and LBT groups ( p  < 0. 05, 
    ̂d 0.97=    and  p  < 0. 1,     ̂d 0.72=   , respectively).  

 Overall, these results indicate that the students 
who taught Betty (i.e., LBT and SRL groups) out-
performed the other students (i.e., the ICS group), 
both in learning gains and the use of monitoring 
strategies. Although the SRL group received dif-
ferent feedback (SRL rather than corrective) from 
the mentor, the only difference between the LBT 
and ICS groups was whether students taught 
Betty or learned for themselves. The ICS students 
use of less effective learning strategies, as appar-
ent in the HMMs, may explain their smaller 
learning gains. Further, the SRL group had higher 
free response and map score gains than the LBT 
group (although not all of the differences were 
statistically signi fi cant for the number of students 
in this study), suggesting that the SRL feedback 
promoted more effective learning and concept 
mapping performance. Moreover, while 60% of 
SRL students completed their concept maps dur-
ing the  fi ve sessions, only 44% of LBT students 
and 31% of ICS students were able to complete 

their concept maps. The results of the HMM 
analysis, combined with the results on learning 
gains, suggest that the metacognitive feedback 
helped students implement SRL strategies, which 
allowed them to more effectively learn the sci-
ence content. Although the HMM analysis illus-
trates the effectiveness of providing metacognitive 
feedback in Betty’s Brain, it does not indicate 
which agent or types of feedback were most 
effective. This was the focus of the second study, 
which we describe next.  

   Study 2: Comparing the Mentor 
and Teachable Agent Feedback 

 In order to assess the effectiveness of different 
forms of feedback in our system (i.e., differences 
by (1) agent and (2) content of feedback: knowl-
edge construction versus monitoring), we con-
ducted a study, which included a think-aloud 
protocol to determine students’ reactions to the 
agent feedback. The study was conducted in 3 
 fi fth-grade science classrooms in the same school 
as study 1. 3  Two of the classrooms had the same 
science teacher as in study 1. The third classroom 
had a different teacher, but teacher 2 worked 
closely with teacher 1 for the unit taught in this 
study. All students worked on a newer version of 
the SRL system from study 1. In this version of 
the system, the feedback from the two agents was 
better organized into the categories described in 
Table  29.1 . 

 Students worked in a total of 40 pairs chosen 
by the teachers to ensure that the paired students 
were at similar academic levels and had compat-
ible personalities. Before the study began, the 
teachers instructed students on how to collabo-
rate on the system. The students had to discuss 
with one another and come to a consensus before 
they performed an action on the system. Control 
of the keyboard and mouse alternated between 
the students (e.g., if one student had control of 
the input devices on day 1, then the partner was 
given control on day 2). The science teachers 

   Table 29.3    Mean pre-to-post test and concept map score 
gains   

 Gain score 

 Conditions 

 ICS  LBT  SRL 

 Multiple choice  0.4 (2.4)  1.1 (3.1)  0.4 (1.5) 
 Free response  1.9 (3.0)  4.3 (3.2)  4.8 (4.7) 
 Map concepts  8.1 (2.4)  7.3 (2.7)  10.4 (3.1) 
 Map links  12.2 (3.8)  12.7 (5.3)  16.2 (4.4) 

   3  Study 1 and study 2 were conducted in different years.  
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ran a brief practice session on working with the 
system before the students started this phase of 
the study. All students had worked individually 
with the Teachable Agent system on another sci-
ence unit (ecosystems), so they were familiar 
with the system. 

 Students worked on the topic of pollution in 
river ecosystems for three 45-min periods. We 
recorded student conversations and interactions 
using webcams. After the study was concluded, 
two coders reviewed all of the video data and 
recorded students’ responses to the feedback. For 
every instance in which the TA or the mentor pro-
vided feedback, the coders noted whether the stu-
dents’ subsequent discussion  af fi rmed, dismissed , 
or  deferred  the agent’s feedback. Inter-rater 
reliability for each category was over 85% with 
Cohen’s kappa values over 0.6, and the results are 
summarized in Table  29.4 .  

 Students explicitly referenced the feedback 
from the agents about a third of the time (34% for 
Betty and 30% for Mr. Davis). Even when stu-
dents did not explicitly reference the feedback, 
they sometimes responded to the feedback by 
talking directly to the agent in response or sug-
gesting a course of action directly indicated (or 
contra-indicated) by the feedback. All student 
discussions following feedback were coded in 
three categories of possible response to the feed-
back 4 : (1) af fi rm (e.g., “We should do that” or 
“We need to read more” responding to feedback 
suggesting the students read the resources), (2) 
dismiss (e.g., “No, I don’t want to read” or “Let’s 
just keep giving her quizzes” responding to feed-
back suggesting students teach Betty more 
between giving her quizzes), and (3) defer 
(e.g., “Hold on, we will get to that in a second”). 

 As illustrated in Table  29.4 , there were 
 differences between how frequently the students 
af fi rmed or dismissed feedback from the two 
agents. Students were more likely to af fi rm feed-
back from Mr. Davis, and were more likely to 
dismiss feedback from Betty. This suggests that 
students paid less attention to the self-re fl ective 
feedback from Betty than to the more explicit, 
strategy-oriented feedback from Mr. Davis. 
Although one possible explanation for this dif-
ference is that Mr. Davis provided better feed-
back and advice, the tenor of student discussions 
indicated that they treated Betty like a less-
knowledgeable peer, while according Mr. Davis 
the status of a knowledgeable authority  fi gure 
and considering his advice more carefully. 

 To understand how students’ verbal responses 
related to learning, we analyzed the study results 
for the two metacognitive categories of feedback 
from each agent: (1) knowledge construction 
strategies, and (2) monitoring strategies. Table  29.5  
summarizes the percentages of each type of ver-
bal reaction to the different forms of feedback, as 
well as their correlation with the student pair’s 
 fi nal map score. Students who more frequently 
af fi rmed the knowledge construction strategy 
feedback from either the TA or the mentor had 
higher map scores, but the correlations were not 
statistically signi fi cant. Students who dismissed 
either the knowledge construction or the monitor-
ing feedback from either agent had lower map 
scores (negative correlations). However, when the 
students af fi rmed the monitoring feedback, the 
results were surprising. Af fi rming Mr. Davis’s 
monitoring feedback showed a positive correla-
tion with map score (not statistically signi fi cant), 
but af fi rming Betty’s monitoring feedback was 
negatively correlated with map score ( p  < 0. 05). 
We discuss this result in greater detail later, but 
overall the students seemed to af fi rm the knowl-
edge construction feedback more, and af fi rming 
this feedback implied higher map scores.  

   Table 29.4    Student verbal response to agent feedback   

 Agent  →    N   Referenced (%)  Af fi rmed (%)  Dismissed (%)  Deferred (%) 

 Betty  649  34  6  16  2 
 Mr. Davis  275  30  18  10  2 

   4   Many student discussions, including some that explicitly 
referenced the feedback, neither af fi rmed, dismissed, nor 
deferred the feedback.  
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 The verbal responses to feedback listed in 
Table  29.4  suggest a difference in the way stu-
dents react to the feedback from the two agents, 
and these reactions affect their concept map 
building performance. 5  For example, those who 
af fi rmed Mr. Davis’s knowledge construction and 
monitoring feedback seemed to do better in their 
map building task. 

 To determine whether the students’ verbal 
responses to feedback matched their expected 
actions in the system, we analyzed student actions 
immediately following each agent feedback state-
ment. For example, if Betty said “Can we go over 
my explanations to see if I am missing anything,” 
we checked to see if the subsequent student 
actions included asking Betty to explain an 
answer. Table  29.6  reports for both Betty and Mr. 
Davis (1) the average number of feedback events 
by category per student, (2) the average propor-
tion, 6  of subsequent activities that matched the 
actions advised by the feedback (using a window 
size of 3 actions) 7  and (3) the correlation between 
the percentage of matched actions and the stu-
dents’  fi nal map scores.  

 Overall, the correlation between percentage of 
matching actions (out of the three student actions 
subsequent to the feedback) and the students’ 
 fi nal map scores was positive (0.34 for Betty and 
0.36 for the Mentor), but the correlations were 
not statistically signi fi cant. More detailed analy-
sis by category of metacognitive feedback, 
showed a positive correlation between students’ 
 fi nal map scores and their following Betty’s and 
Mr. Davis’s advice on knowledge construction 
feedback. Students were more likely to follow 
Betty’s feedback suggestions than those of the 
Mentor, but the differences were small (28–24%). 
The more students’ subsequent actions matched 
the feedback, the higher their map scores, as 
measured by the correlations: 0.52 for matching 
Betty’s knowledge construction advice ( p  < 0. 1) 
and 0.11 for matching the Mentor’s knowledge 
construction advice. These results differ from the 
verbal responses to feedback, where students 
af fi rmed Mr. Davis’s knowledge construction 
feedback more than they did Betty’s, and the cor-
responding correlations with map scores were 
also higher for the mentor (0.37 versus 0.2). 

 On the other hand, for monitoring feedback, 
Mr. Davis appears to have been more effective 
than Betty. Though the relative number of Betty 
monitoring feedback events was high compared 
to Mr. Davis’s (13.1–5.5), student actions after 
Betty’s feedback showed a poor match to the 
feedback content (only 0.5%). For the mentor 
feedback the match was 33%. Combining this 
information with the verbal response results indi-
cates that the students were more dismissive of 
Betty’s monitoring feedback, and at the same 
time they rarely followed up with activities that 
matched the feedback content. In addition, the 
correlation between the activity match percentage 
and students’ map scores was negative, implying 

   Table 29.5    Verbal responses to feedback and corresponding map score correlations (b  p  < 0. 05)   

 Agent →  

 Betty  Mentor 

 Percent verbal response  Percent verbal response 

 (Correlation with map score)  (Correlation with map score) 

 Category  ↓   Af fi rm  Dismiss  Defer  Af fi rm  Dismiss  Defer 

 Knowledge construction  9%  27%  2%  20%  22%  2% 
 (0.20)  ( − 0.45b)  ( − 0.16)  (0.37)  ( − 0.31)  (0.24) 

 Monitoring  4%  11%  2%  17%  6%  2% 
 ( − 0.46b)  ( − 0.35)  (0.04)  (0.28)  ( − 0.44b)  ( − 0.16) 

   5   Agent role (and consequently relationship with the stu-
dent) and the content of agent feedback are inextricably 
linked in this study, making it impossible to attribute stu-
dent responses to one factor or the other. However, the 
correlation between students’ responses to agent feedback 
has useful implications for future system design and 
experimental study opportunities discussed in this section 
and the next.  

   6  We employed a proportion in a window of subsequent 
actions because agent feedback often suggested a course 
of action that could involve repeated actions (e.g., edits or 
reads), and it is not possible to determine precisely 
whether a student’s action was an attempt to follow agent 
advice or not.  

   7   We tested a variety of different window sizes, and all of 
them produced similar results.  
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those who af fi rmed Betty’s monitoring feedback 
or tried to apply it ended up with lower map 
scores. On the other hand, Mr. Davis’s monitor-
ing feedback had more af fi rmations and there 
were more attempts to follow his suggestion, and 
these correlated with higher map scores (though 
the correlations were not statistically signi fi cant). 

 Together the verbal and action response results 
show clear differences in the way students 
responded to the two agents. Overall, the students 
af fi rmed the mentor’s feedback more than they 
did the teachable agent’s, and in general, higher 
af fi rmation levels implied better  fi nal map scores. 
These results also indicate that the monitoring 
feedback was less effective than knowledge con-
struction feedback. With the exception of Betty’s 
monitoring feedback, the results showed positive 
correlations with map scores for both verbal and 
action response measures. Although there are 
many potential explanations for the negative cor-
relation between Betty’s monitoring feedback 
and map scores, the results suggest that her mon-
itoring feedback was generally ineffective in 
helping students improve their concept maps. 
This could imply that students could not under-
stand Betty’s feedback and, therefore, they did 
not apply her suggestions during their learning 
and teaching tasks. The few who did, may have 
applied them inappropriately, and, therefore, 
used up time that could have been more produc-
tively spent in other activities. Alternatively, this 
could have been the result of self-selection, in 
which lower-performing students attempted to 
apply Betty’s monitoring advice even though 
they did not understand it. However, those who 
followed similar feedback from Mr. Davis did 
better on their map. Overall, the results indicate 
that the metacognitive feedback had a generally 
positive effect on students’ learning, but the more 

explicit strategy feedback from the Mentor agent 
was more effective than Betty’s self-evaluative 
statements and suggestions.   

   Discussion and Conclusions 

 The Betty’s Brain system is designed to leverage 
the bene fi ts of learning by teaching and causal rea-
soning to help students learn science. The teaching 
interactions and agent feedback support students’ 
engagement and promote the development and use 
of educationally productive cognitive and meta-
cognitive processes. In study 1, students who uti-
lized learning by teaching versions of our system 
(i.e., the LBT and SRL groups) constructed better 
concept maps than students who used the non-
teaching ICS version of the system. Moreover, stu-
dents’ performances were strongest when the 
system explicitly supported their use of SRL strat-
egies by having Betty model and prompt for such 
behaviors, and having the mentor provide addi-
tional strategy-oriented advice. 

 Our approach to analyzing students’ activity 
sequences using HMMs produced good results. 
We were able to characterize students’ activity 
patterns into a number of (good and bad) knowl-
edge construction and monitoring strategies. The 
interpretation of SRL group behavior with the 
HMMs also matched the SRL feedback model 
we implemented in the Betty’s Brain system, while 
the LBT group HMM showed only one of the two 
types of monitoring strategies (i.e., checking 
behaviors) and the ICS group HMM did not show 
either of the monitoring strategies. 

 Although the HMM analysis illustrated the 
effectiveness of providing metacognitive feed-
back in the Betty’s Brain system, it did not indi-
cate which agent or types of feedback were most 

   Table 29.6    Action response to feedback and corresponding map score correlations (*  p  < 0. 1)   

 Feedback category →  
 Agent  ↓   Measures 

 Knowledge 
construction  Monitoring 

 Betty  Feedback events  5.77  13.08 
 Action (proportional) Match  28.2%  0.5% 
 Map score correlation  0.52*   − 0.41 

 Mr. Davis  Feedback events  2.46  5.54 
 Action (proportional) Match  24.02%  33.0% 
 Map score correlation  0.11  0.26 
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effective in promoting SRL behaviors. Our  second 
study included a think-aloud protocol to deter-
mine students’ reactions to the agent feedback. 
We combined the think-aloud protocols with 
analysis of student activity traces to develop a 
more complete picture of how well students 
employed the feedback to their map building 
tasks. Overall, students’ verbal responses to agent 
feedback  suggested that they were more receptive 
to the explicit, strategy-oriented advice from the 
mentor agent, as opposed to the self-re fl ective, but 
less explicit, feedback from the teachable agent. 
Further, students were more likely to af fi rm the 
knowledge construction feedback from each agent 
than the monitoring feedback. This analysis also 
showed a positive correlation between af fi rming 
feedback and students’ map scores, except in the 
case of Betty’s monitoring feedback. 

 Additional analysis of student responses to 
feedback, in terms of actions taken following 
feedback events, showed a similar differentiation 
between knowledge construction and monitoring 
feedback. Students taking more actions consis-
tent with an attempt to apply the knowledge con-
struction feedback tended to have better map 
scores. However, students taking more actions 
advised by Betty’s monitoring feedback tended 
to have lower map scores, suggesting they were 
unable to apply the strategies suggested by that 
feedback. This brings up a number of issues. It 
suggests that students  fi nd it easier to understand 
and apply knowledge construction strategies 
(e.g., read the resources to  fi nd the correct rela-
tion between two concepts or check the resources 
to see if all of the required concepts appear on the 
map) than monitoring strategies (e.g., ask a query 
to check if the map is correct or ask for an expla-
nation to check an answer step-by-step to iden-
tify errors). Other studies, such as Azevedo 
et al.  (  2009  )  also suggest that students rarely 
employ monitoring strategies during learning and 
knowledge construction tasks, but frequently 
apply a variety of other metacognitive strategies. 

 It may also be true that students understand a 
monitoring strategy but do not know when to 
apply it, since the feedback only implicitly 
addressed this issue by advising strategies at 
appropriate times. For example, when constructing 

their concept map, students may not know when 
to switch from map building to map checking and 
back in an effective way. Moreover, they may 
have dif fi culty in formulating “good” queries that 
help them check a relevant part of their map. 
Therefore, monitoring strategy feedback may 
need to be presented in more elaborate detail with 
justi fi cation of its importance in the learning task 
and identi fi cation of applicable situations. For 
example, analysis of the context and details of 
advised actions (e.g., Betty’s feedback “Can we 
go over my explanation step by step and check it 
with the resources?”) suggests the use of explain-
and-read actions, but effective application of the 
feedback involves reading sections of the 
resources related to the map concepts and links in 
the current query and explanation. Some of these 
details may need to be built into the feedback 
mechanisms, especially in the early stages, to 
help students learn  when  and  how  to apply strate-
gies in an effective way. 

 Since students appeared to be more receptive 
to the explicitly strategy-oriented feedback from 
the more authoritative agent, i.e., the mentor, it 
may be especially fruitful to improve the mentor 
agent’s feedback. We intend to continue analyz-
ing the data from this and future studies in order 
to better understand how speci fi c phrasing and 
different forms of metacognitive feedback affect 
student behavior. We have also been conducting 
studies to determine how to make the timing and 
content of strategy feedback more relevant to the 
student’s current activities on the system. 

 In addition to analyzing and enhancing the 
agent feedback to promote metacognitive strate-
gies and prepare students for future learning, we 
also plan to re fi ne our HMM analysis technique. 
Enhanced HMM analysis could provide a better 
understanding of the different strategies employed 
by students when learning complex science topics 
and allow for more adaptive feedback suited to 
the current context of the students’ activities. In 
particular, we intend to employ clustering of indi-
vidual student HMMs to improve the accuracy of 
our HMM analysis and use sequence mining to 
pre-process the trace data in the HMM analysis to 
maintain more of the temporal information in the 
aggregated behaviors of HMM states. 
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