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 Modern learning technology (e.g., hypermedia 
systems, intelligent tutoring systems, micro-
worlds) usually provides information in various 
forms such as text, “realistic” pictures, formal 
graphs, or algebraic equations. In other words, 
information is presented by multiple external 
representations (MER). Although these MER can 
support learning processes in various ways, the 
integration function is most important (see 
Ainsworth,  2006  ) . This function refers to the fact 
that internally representing and integrating dif-

ferent external representations on an abstract 
level can lead to deeper understanding. Actually, 
it is typical of experts to have multiple internal 
representations (de Jong et al.,  1998  ) . Consider 
the example of linear regression: In order to 
approach expert-like understanding, a learner has 
to encode and integrate verbal-conceptual infor-
mation about the meaning and interpretation of 
regression analyses, the corresponding equation 
(e.g.,  y  =  a  +  bx ), and typical scatter plots with 
regression lines. 

 An instructional problem arises from the fact 
that students very often do not spontaneously 
integrate different MER and they may not be 
successful even when trying to do so (e.g., 
Ainsworth,  2006  ) . As a consequence, although 
MER presented by learning technology are 
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  Abstract 

 Modern learning technology (e.g., hypermedia systems) usually provides 
information in various forms such as text, “realistic” pictures, formal 
graphs, or algebraic equations in order to foster learning. However, it is 
well known that learners usually make sub-optimal use of such multiple 
external representations. In this chapter, we present a series of experiments 
with older students (senior high-school and up) that analyzed the effects of 
two metacognitive intervention procedures: self-explanation prompts and 
“instruction for use” (information on how to use multiple representations). 
Basically, both interventions foster conceptual understanding and proce-
dural skills. However, there are important boundary conditions. For exam-
ple, if learners have little prior knowledge they cannot react productively 
to self-explanation prompts.      
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expected to foster learning, they frequently do 
not enhance and sometimes even impede learn-
ing (e.g., Ainsworth, Bibby, & Wood,  2002  ) . 
Against this background, learners must be sup-
ported to productively use MER. 

 Typical instructional procedures to support 
the integration of MER include measures that 
make the particular elements in one representa-
tion that correspond to particular elements in 
another representation salient. For example, text 
and pictures are often presented in an integrated 
format, meaning that both information sources 
are not provided in separate information boxes; 
instead the text parts are located in close proxim-
ity to the corresponding parts of the picture (e.g., 
Chandler & Sweller,  1991  ) . Another possibility 
is color coding (e.g., Kalyuga, Chandler, & 
Sweller,  1999  )  in which the same colors are used 
for corresponding information elements in differ-
ent presentations. Although such instructional 
procedures can foster learning, they have the 
 disadvantage of just supporting the mapping of 
different presentations on the surface level (e.g., 
Berthold & Renkl,  2009 ; Seufert & Brünken, 
 2006  ) . They do not directly support the integra-
tion of different representations at an abstracted 

and deep (i.e., semantic) level. For example, 
Fig.  26.1  provides a multi-representational 
worked example. By integrating the tree diagram 
and the equation, it becomes clear why the fractions 
have to be multiplied. Ideally, the learners would 
integrate the multiplication sign of the equation 
and the “points of branching” in the tree diagram. 
This is done in order to understand the underly-
ing structure, that is, that the multiplication sign 
stands for the inclusion of all possible combina-
tions represented by the 20 branches in the picto-
rial tree diagram. The employed color coding, 
however, just hints at “which belongs to what” 
but it does not convey conceptual information; 
the latter has to be inferred by integrating the 
MER on an abstract, semantic level.  

 In a series of studies, we investigated two 
measures tightly related to metacognition in order 
to foster the integration of MER provided in 
computer-based learning environments at the 
semantic level: (a) self-explanation prompts and 
(b) informing the learners about the function of 
MER. We employed learning environments about 
mathematics, typically but not exclusively about 
probability (see Fig.  26.1 ). The learners could 
gain conceptual understanding of the domain as 

  Fig. 26.1    Screenshot from a learning environment with worked examples from the domain of probability       
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well as domain-speci fi c problem-solving skills 
(i.e., procedural knowledge). The participating 
learners were typically senior high-school stu-
dents or university freshmen. 

   Self-Explanation Prompts 

   The Self-Explanation Effect 

 Chi, Bassok, Lewis, Reimann, and Glaser  (  1989  )  
introduced the “self-explanation effect” by show-
ing that students who engage in actively explain-
ing the solution procedures of worked examples to 
themselves achieve better learning outcomes; the 
 self  in self-explanation, thus, refers both to the 
agent who provides the explanation and, even 
more importantly, to the addressee of the explana-
tion. Different concrete learning activities are sub-
sumed under the umbrella of self-explanation 
depending on the speci fi c authors and, in part, on 
the speci fi c study (for a recent overview, see 
Fonseca & Chi,  2011  ) . In any case, self-explanations 
go beyond the information given. Four very typi-
cal types of self-explanations are principle-based 
self-explanations (i.e., relating solution or problem 
features to underlying domain principles), goal-
operator elaborations (i.e., the subgoals that were 
achieved by certain operators are explicated), 
elaborations on preconditions to apply certain 
operators, and identifying communalities and 
differences between examples or problems (see 
Chi et al.,  1989 ; Reimann & Neubert,  2000 ; Renkl, 
 1997,   2011  ) . 

 Meanwhile, it has been shown that self-expla-
nations foster knowledge acquisition in a variety 
of learning methods such as text learning (Chi, de 
Leeuw, Chiu, & LaVancher,  1994    ; Ozuru, Briner, 
Best, & McNamara,  2010  )  or problem solving 
(e.g., Aleven & Koedinger,  2002  ) . Roy and Chi 
 (  2005  )  also argued that self-explanations are 
especially helpful when learning from MER 
(called multimedia in their chapter); however, 
they mainly relied on indirect evidence. 

 An instructional problem is that many learners 
do not spontaneously engage in effective self-
explanation activities (Renkl,  1997  ) . A well-
established approach of assistance is the use of 

self-explanation prompts (see Koedinger & 
Aleven,  2007  ) . Prompts are questions or hints that 
induce productive learning processes. They are 
designed to overcome passive or super fi cial pro-
cessing by inducing activities that the learners are, 
in principle, capable of but do not spontaneously 
demonstrate or demonstrate to an unsatisfactory 
degree (production de fi ciency; e.g., Pressley et al., 
 1992  ) . For example, Atkinson, Renkl, and Merrill 
 (  2003  )  showed that prompting principle-based 
self-explanations in a computer-based learning 
environment that provided worked examples on 
probability led to favorable learning outcomes 
(for similar  fi ndings on self-explanation prompts 
in computer-based learning environments see, 
e.g., Aleven & Koedinger,  2002 ; Conati & 
VanLehn,  2000 ; Schworm & Renkl,  2007  ) .  

   Is Self-Explanation Metacognition? 

 Self-explanation is often considered to be a 
metacognitive learning strategy (e.g., Aleven & 
Koedinger,  2002 ; Conati & VanLehn,  2000  ) . 
Against the background of the classical notion of 
metacognition as “cognition about cognition” 
(e.g., Efklides,  2008 ; Flavell,  1979 ; Nelson, 
 1996  ) , one might argue that self-explanation is 
“just” a cognitive learning strategy because 
activities such as justifying solution steps by 
underlying principles or subgoals to be achieved 
are not related to cognition but to the learning 
domain. So, is self-explanation really a metacog-
nitive activity? The answer provided in this 
chapter is very clear: yes and no. How can such 
an answer be clear? 

 Recently, Renkl  (  2008,   2009  )  has argued that 
categorizing certain learning activities into the 
usual strategy categories is rarely convincing. For 
example, Weinstein and Mayer’s  (  1986  )  classic 
taxonomy “generating an example” would be 
classi fi ed as a cognitive strategy or, more 
speci fi cally, as an elaboration (i.e., relating new 
contents to prior knowledge or experiences), but 
not as a metacognitive strategy. However, learn-
ing activities such as “generating an example” 
can, of course, ful fi ll several functions. The effort 
of “generating an own example” has not only an 
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elaborative function but also it can tell the learn-
ers whether or not they have understood a con-
cept or principle (i.e., usually it requires 
understanding to generate an own example). 
Against the background that certain learning 
activities can very often ful fi ll different functions, 
Renkl  (  2008,   2009  )  argues that the analysis of 
learning activities should mainly consider the 
function of activities, being aware (a) that 
“super fi cially” different learning activities can 
ful fi ll the same function (e.g., generating an 
example and self-questioning can both have the 
function of comprehension monitoring) and (b) 
that one activity can ful fi ll different functions 
(e.g., generating an example can have both the 
functions of comprehension monitoring and of 
elaboration). 

 Under such a functional perspective, a “clear 
answer” might be to say yes and no when consid-
ering self-explanation as metacognition. The typi-
cal self-explanation activity of principle-based 
explanation (i.e., relating a solution or problems 
feature to a domain principle) elaborates on the 
learning contents on the one hand. On the other 
hand, it can lead to metacognitive knowledge 
about task types and solution strategies (Flavell, 
 1979  ) . In particular, self-explanations should lead 
to conditional knowledge (Paris, Lipson, & 
Wixson,  1983 ; Schraw,  1998  ) , that is, knowledge 
about the “when and why” of knowledge, in par-
ticular about solution strategies.  

   Experiments on Prompting Self-
Explanation for Processing Multiple 
Representations 

 In three experiments, we employed learning 
environments in the domains of combinatorics 
and probability. When teaching these closely 
related domains, it is common to use multiple 
representations. In addition to text (e.g., prob-
lem formulations), there are two types of typical 
solution methods: arithmetic solution (relying 
on an equation) and pictorial solution (relying 
on a tree diagram). In all experiments, we tested 
self-explanation prompts as an instructional 
support procedure. As the main dependent vari-

ables, we assessed conceptual understanding 
and problem-solving performance (procedural 
knowledge). 

 Grosse and Renkl  (  2006 , Exp. 1) analyzed the 
effects of self-explanation prompts in comparison 
to instructional explanations or no such support 
when students learned combinatorics from worked 
examples with multi-representational solutions 
(i.e., arithmetic equation  and  pictorial tree dia-
gram). We tested 170 student teachers of an edu-
cational university (mean age approximately 22 
years) in a 2 × 3-factorial experiment: (a) type of 
solutions (multi-representational solutions vs. 
mono-representational solutions) and (b) instruc-
tional support (self-explanation prompts vs. 
instructional explanations vs. no support). 

 The learning materials included two pairs of 
examples (four examples in total). Each example 
could be solved by two different methods (arith-
metic equation or pictorial tree diagram). Each 
pair contained two structurally identical problems 
that also shared a number of surface features in 
order to make the correspondence salient to the 
learners. The  fi rst factor,  solutions , referred to the 
number of different presented solutions (multi-
representational solutions vs. mono-representa-
tional solutions). In the “multi-representational 
solution” conditions, the two almost identical 
examples of a pair were solved using different 
solution methods (i.e., a pictorial tree diagram in 
one example and an arithmetic equation in the 
other example). Thus, the participants could learn 
that more or less the same problem can be solved 
by two different solutions procedures. In the 
“mono-representational solution” conditions, 
both examples of a pair were solved with the same 
solution method; the two examples of one pair 
included a pictorial tree diagram, and the two 
examples of the other pair included an arithmetic 
equation. Thus, two different solution methods 
were demonstrated in the “mono-representational” 
conditions as well. However, they were not 
presented as being interchangeable. The second 
factor,  instructional support , referred to the help 
the learners received: open self-explanation 
prompts vs. instructional explanations vs. no sup-
port. For the multi-representational solutions con-
ditions, self-explanation prompts and instructional 
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explanations concentrated on commonalities 
between the pictorial and arithmetic solutions and 
on advantages and disadvantages of these meth-
ods dependent on the given problem type. The 
learners in the “self-explanation prompts” condi-
tion were asked to answer in written form, for 
example, the following question for an example 
pair: “Where do you see commonalities and dif-
ferences between the two solution methods?” The 
instructional explanations could be regarded as 
the answers to the self-explanation prompts. The 
self-explanation prompts and instructional expla-
nations for the “mono-representational solution” 
conditions focused on a single solution but were 
roughly equivalent to those used for the multi-
representational solution groups with respect to 
the number of covered aspects and time necessary 
to process them (as determined by pilot studies). 

 We found that multi-representational solutions 
fostered conceptual knowledge and procedural 
knowledge. However, no positive effect was 
found for instructional support in the form of self-
 explanation prompts or instructional explanations. 
Self-explanation prompts actually even led to 
inferior conceptual understanding when learning 
with MER compared to having no support at all 
(no negative prompt effect when learning with 
mono-representational solutions). This  fi nding 
con fi rmed recent assumptions that the demand to 
self-explain complex material (i.e., including 
MER) may take cognitive load over the limits 
(Kalyuga,  2010 ; Sweller,  2006  ) . Thus, even when 
self-explanations are prompted, they can be inef-
fective or can even have a detrimental effect with 
respect to conceptual understanding. 

 In line with this conclusion, we also found in 
a pilot study in the domain of probability that 
learners have dif fi culties with self-explanation 
prompts added to complex multi-representational 
materials (see Berthold, Eysink, & Renkl,  2009  ) . 
When we used open self-explanation prompts 
(i.e., open questions inducing self-explanations 
such as “Why do you calculate the total accept-
able outcomes by multiplying?”), the learners 
had severe dif fi culties in adequately answering 
such prompts. Often the learners could not pro-
vide the correct explanation. Thus, we assumed 
that the learners might bene fi t from stronger 

instructional support than open self-explanation 
prompts (cf. Roy & Chi,  2005  ) . We chose to also 
include a condition with some form of instruc-
tional assistance (Koedinger & Aleven,  2007  ) . 
Hence, in the main study of Berthold et al.  (  2009  ) , 
we tested the effects of three conditions: “assist-
ing self-explanation prompts” that directed the 
learners to integrate the MER on a conceptual 
level, open self-explanation prompts, and no self-
explanation prompts. We presented eight worked 
examples with multi-representational solutions 
from the domain of probability in a computer-
based learning environment. Participants were 62 
psychology students with a mean age of about 25 
years. In all conditions, a relating aid consisting 
of color coding and  fl ashing was included to help 
learners see which elements in different represen-
tations corresponded to each other on a surface 
level (see Fig.  26.1 ). By supporting the learners 
in  fi nding the corresponding parts in different 
representations, cognitive capacity for self-expla-
nation and learning should have been increased. 

 The experimental variation was realized as 
follows. Participants in the condition assisting 
self-explanation prompts received six questions 
such as “Why do you calculate the total accept-
able outcomes by multiplying?” in each worked-
out example. In the  fi rst worked-out example of 
each pair of isomorphic examples, the answers 
were supported in the form of  fi ll-in-the-blank 
self-explanations (e.g., “There are ___ times ___ 
branches. Thereby, all possible combinations are 
included,” see Fig.  26.1 ). In the isomorphic 
examples that followed, this support was faded 
out, and the participants received six open self-
explanation prompts. The answers had to be 
typed into corresponding text boxes. In the con-
dition open self-explanation prompts, the learn-
ers were provided with six open self-explanation 
prompts only (e.g., open answer to “Why do you 
calculate the total acceptable outcomes by multi-
plying?”) in each worked-out example. The 
assisting self-explanation prompts and the open 
prompts put an emphasis on integrating the picto-
rial and arithmetic representations to each other 
on a structural level. For example, the prompt, 
“Why is there a 4 in the denominator of the sec-
ond single experiment, even though there are 
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20 branches in the tree diagram?” referred to the 
arithmetic representations (“the 4 in the denomi-
nator”)  and  to the pictorial representations (“20 
branches in the tree diagram”). To answer this 
question, the learners had to relate the denomina-
tor of the arithmetic equation to the correspond-
ing branches of the pictorial tree diagram. 
Thereby, they could understand that the 4 stands 
for the number of remaining events of one initial 
branch. Due to the fact that there are  fi ve initial 
branches in the  fi rst single experiment,  fi ve times 
four branches, that is, 20, are included. 

 In the condition without self-explanation 
prompts (control condition), the learners studied 
the same worked examples as presented in the 
other two conditions. The only difference was 
that the learners of the condition without self-
explanation prompts were merely provided with 
a text box in order to take notes. They did not 
receive any prompts. 

 Both types of self-explanation prompts fos-
tered conceptual knowledge. Furthermore, assist-
ing self-explanation prompts had additional 
effects on conceptual understanding in compari-
son to open self-explanation prompts. The effect 
on conceptual understanding was mediated by 
self-explanations that not only relate a solution 
step to an underlying principle but also explicate 
the rationale of the principle (e.g., “For the 
denominator, there are  fi ve  times  four branches. 
Thus, each of the  fi ve  fi rst branches of the tree 
diagram forks out in four further branches as each 
of the  fi ve  fi rst events can occur in combination 
with one of the four remaining events,” Berthold 
& Renkl,  2009  ) . With respect to procedural 
knowledge, the pattern of results shows that either 
type of prompts was effective; the two prompt 
types did not differ. 

 To conclude, both prompt types fostered pro-
cedural knowledge. For conceptual knowledge 
assisting self-explanation prompts, interleaved 
with open self-explanation prompts, worked best 
because they supported the learners in generating 
self-explanations about the rationale of a princi-
ple. The overall pattern of performance indicated 
that assisting self-explanation prompts best fos-
tered the integration of MER. In particular for 
enhancing high-quality self-explanations and con-

ceptual understanding, assisting self- explanation 
prompts should be provided. 

 In a further experiment, Berthold and Renkl 
 (  2009  )  took up the  fi ndings on the effects of self-
explanation prompts. We used a relating aid and 
assisting self-explanation prompts that were more 
or less identical to the ones used in Berthold et al. 
 (  2009  ) . In a computer-based learning environ-
ment which was also almost identical to Berthold 
et al., 170 high-school students (mean age approx. 
16 years) learned about probability theory. We 
varied the type and number of representations 
(multi-representational solutions vs. mono- 
representational solutions) and the availability of 
two support procedures: (a) a relating aid and (b) 
assisting self-explanation prompts (for details of 
the complex experimental design of this study, 
see Berthold & Renkl). In the multi-representa-
tional conditions, the solution steps were pro-
vided in the form of both a pictorial tree diagram 
and an arithmetic equation in each example. In 
the mono-representational conditions, which we 
included to have a baseline for evaluating the 
effects of multiple solutions, the solution steps 
were presented in the form of a pictorial tree dia-
gram  or  an arithmetic equation. 

 We found that MER per se did not foster con-
ceptual understanding. In contrast, both support 
instructional procedures enhanced it: The relat-
ing aid and assisting self-explanation prompts 
had additive effects on conceptual understand-
ing. Similar to Berthold et al.  (  2009  ) , the effects 
of self-explanation prompts on conceptual 
knowledge were mediated by self-explanations 
that not only relate a solution step to an underlying 
principle but also explicate the rationale of the 
principle. 

 Interestingly, there was a relatively small but 
statistically signi fi cant negative effect of self-
explanation prompts on procedural knowledge. 
This detrimental effect was mediated by prompt-
induced incorrect self-explanations in terms of 
mixing up different probability principles. Hence, 
the assisting prompts had double-edged effects: 
positive effects on conceptual knowledge, via the 
elicitation of productive self-explanations, and 
simultaneously negative effects on procedural 
knowledge, via the elicitation of incorrect self-
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explanations (for analogous double-edged effects 
of self-explanation prompts, see also Berthold, 
Röder, Knörzer, Kessler, & Renkl,  2011  ) . Note, 
however, that Berthold et al.  (  2009  )  found posi-
tive effects for the same type of prompts and the 
same learning contents on both conceptual and 
procedural knowledge. The main difference 
between these experiments was how advanced 
the participating learners were. Whereas gener-
ally positive effects were found for university 
students in a (selective) psychology program, the 
double-edged effects were found for high-school 
students. For the latter learners, the learning 
materials were more complex in relation to their 
prior knowledge. Hence, a tentative conclusion is 
that prompts lose their general effectiveness if 
learners are heavily loaded by the complexity of 
the learning materials (Kalyuga,  2010 ; Sweller, 
 2006  ) . Prompts added to the learning material 
may overload them or “enforce” that they con-
centrate on selected aspects (i.e., conceptual 
aspects) in order to prevent overload. 

 In summary, prompting self-explanation can 
help learning from MER. However, there are 
boundary conditions to be considered. Prompts 
can lead to negative effects if the learners are 
confronted with learning materials that are very 
complex in relation to their prior knowledge. In 
addition, it may depend on the desired learning 
outcomes whether prompts are effective and 
whether it is sensible to employ assisting prompts. 
Assisting prompts are particularly helpful when 
conceptual understanding should be fostered.   

   “Instructions for Use” of Multiple 
Representations 

 The rationale of employing prompts is to more or 
less directly activate self-explanations. As previ-
ously shown, such an “intrusive” method can have 
detrimental side effects, presumably by posing 
overwhelming demands to the learners. Another, 
more indirect option to induce effective process-
ing of MER might be to inform the learners about 
what to do with MER. Note, however, that such an 
intervention also presupposes that the learners 
just have a production de fi ciency, that is, they can 

“produce” the appropriate strategy if they are  fi rst 
informed how to use the MER. 

   Metacognitive Knowledge on How 
to Use the Affordances of Learning 
Environments 

 A typical metacognitive instructional procedure 
is to inform learners about “what to do with strat-
egies.” In other words, the learners are provided 
with conditional knowledge about when and why 
to use certain knowledge such as strategies (Paris, 
Lipson, & Wixson,  1983  ) . In recent studies, we 
expanded this idea and informed learners about 
“what to do” with the instructional affordances of 
a learning environment (e.g., multiple representa-
tions). Although this knowledge is not about 
strategies or about tasks (i.e., the learning tasks; 
see Flavell,  1979  ) , it can be considered metacog-
nitive knowledge about the instructional context, 
that is, about how to use the instructional features 
of a learning environment. 

 When instructional designers include certain 
elements into learning environments, they may 
rely on certain models, empirical  fi ndings, and—
in many cases—on their intuitive knowledge 
about what can help learning. For example, when 
they present information in MER, they have 
some ideas on how these instructional features 
should be used. In the case of MER, it is typi-
cally expected that the learners relate the differ-
ent representations to each other in order to gain 
deeper understanding (e.g., Ainsworth,  2006 ; 
Berthold et al.,  2009  ) . Often, however, the learners 
ignore some representations and concentrate on 
only one type of representation that seems to be 
most useful to them (Ainsworth,  2006  ) . Such 
behavior can be seen as a strategy de fi cit on the 
learner’s side (e.g., a production de fi ciency); 
accordingly prompts that activate effective strat-
egies seem to be a sensible remedy (see Berthold 
et al.,  2009 ; Berthold & Renkl,  2009  ) . However, 
one can also ask: How should learners know 
what the ideas of the instructional designer on 
how to use the learning environment were? 
Maybe the de fi cit of suboptimal use of instruc-
tional affordances such as MER is, at least in 
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part, a “de fi cit” of the instructional designer who 
has not provided “instructions for use.” Actually, 
Schwonke, Berthold, and Renkl  (  2009  )  found 
that learners are hardly aware of any helpful 
function that MER can have.  

   Experiments on “Instructions for Use” 

 Schwonke, Renkl et al., ( 2009 ) used a slightly 
modi fi ed version of the learning environment of 
Berthold and Renkl  (  2009 ; version without relat-
ing aid and prompts). We tested the effects of 
informing learners about how to use MER on 
learning outcomes. More speci fi cally, we brie fl y 
explained to the learners that there are two solu-
tions procedures—tree diagram and arithmetic 
equation—and that the tree diagram should be 
used to gain an understanding on how the arith-
metic equation is related to the problem formula-
tion. For this purpose, we used the metaphor of a 
bridge (“… the tree diagrams ‘build’ a bridge 
between the problem texts and the equations…”). 
This instruction consisted just of an enrichment 
of one introductory screen that oriented the learn-
ers about the upcoming type of learning tasks in 
the form of worked examples. In addition, a line 
drawing of a bridge shortly popped up between 
the single worked examples as a reminder. 

 In this experiment, 30 students of psychology 
were randomly assigned to the “informed” condi-
tion and a control condition (introductory screen 
without instructions for the use of MER and 
 without “reminding” line drawings). In addition, 
we collected eye-tracking data in order to gain 
some insight into learning processes. 

 The instructions for use led to higher learning 
outcomes (as assessed by a posttest that included 
problems tapping conceptual and procedural 
knowledge) without leading to increased learning 
time. In addition, this effect was mediated by 
altering the patterns of attention of students with 
different levels of prior knowledge, as assessed 
by eye-tracking (e.g., preventing learners with 
high prior knowledge to neglect the tree diagrams 
and leading the low-prior-knowledge learners to 
study the presented examples more ef fi ciently; 
for details see Schwonke, Renkl et al.,  2009 ). 

 In a nutshell, a lean intervention that provides 
metacognitive knowledge about the use of MER 
can lead to substantial learning gains. A restric-
tion of this study might be seen in the fact that 
our instructions for use concentrated on just one 
aspect of certain MER. However, complex learn-
ing environments pose many problems to the 
learners when they try to optimally use its multi-
ple information sources and representations. In 
other words, when learning environments are 
suboptimally constructed in the sense that they 
require manifold integration demands, “instruc-
tion for use” as employed by Schwonke, Renkl 
et al., ( 2009 ) might not work. 

 Schwonke, Ertelt, Otieno, Renkl, Aleven, &  
Salden   (  2013  )  employed a rather complex learn-
ing environment that is widely used in the  fi eld: 
Cognitive Tutor (Koedinger & Aleven,  2007 ; 
Koedinger & Corbett,  2006 ; see also 
Carnegielearning.com,  2011  ) . This learning envi-
ronment is an intelligent tutor system, primarily 
for mathematics learning. We used a Cognitive 
Tutor lesson on geometry that included worked 
solution steps that were gradually faded and 
replaced by steps to be solved by the learners; 
this version proved to be particularly effective in 
prior studies (e.g., Schwonke, Renkl et al.,  2009  ) . 
Nevertheless, informal observations showed 
that many learners had dif fi culties in handling 
this in the generally effective environment. These 
dif fi culties are not really surprising given that the 
geometry lesson involved MER (e.g., problem 
text, diagrams, and computations) and a number 
of support facilities such as hints for performance 
demands, a glossary including the relevant geom-
etry principles, and areas providing an overview 
of the single subgoals to be achieved when solv-
ing the geometry problems at hand; these help 
devices also included multiple representations. 
We tested the effects of a cue card providing meta-
cognitive knowledge about what to do with all 
these elements (Fig.  26.2 ). The design of the cue 
card was partly inspired by a help-seeking model 
developed by Aleven and Koedinger  (  2000  ) .  

 In this experiment, 60 high-school students 
with a mean age of about 14 years were randomly 
assigned to one of two conditions. Half of the par-
ticipants worked on a Cognitive Tutor geometry 
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lesson while having metacognitive support in the 
form of the cue card available; the other half of 
the participants worked without a cue card. The 
length of the lesson was about 1 h. As learning 
outcomes, we used measures of conceptual and 
procedural knowledge. Again, eye-tracking 
should help to get insight into learning processes. 

 We found that the provision of the cue card 
reduced learning time by about 20% in compari-
son to the control condition. With respect to con-
ceptual knowledge, learners with low prior 
knowledge pro fi ted from the cue card; no such 
positive effect was found for learners with high 
prior knowledge. With respect to procedural 
knowledge, we also found that the learners with 
clearly below-average prior knowledge (lower 
third) pro fi ted from the cue card. Mediation anal-
yses with the eye-tracking data suggested that the 
cue card effects on conceptual knowledge were 
in particular due to a more focused use of the 
Cognitive Tutor’s different elements. Low-prior-
knowledge students spend less time on inspect-
ing available help facilities, while they 
simultaneously achieved better learning out-
comes. Obviously, unfocussed and overextended 
use of the help facilities was prevented by the cue 

card. In a nutshell, the cue card had positive 
effects for all learners in terms of reducing learn-
ing time. However, only learners with low prior 
knowledge also gained more knowledge within 
this reduced learning time. 

 In summary, the studies by Schwonke, 
Berthold et al.  (  2009  )  and Schwonke et al.  (  2013  )  
showed that providing learners with metacogni-
tive knowledge about the affordances of the 
learning environments can be sensible. It is 
important to note that these interventions were 
very parsimonious. Such interventions did not 
increase learning time in Schwonke, Berthold et 
al. ( 2009 ) and even saved time in Schwonke 
et al.  (  2013  ) . Nevertheless, we have to admit that 
the positive effects were different in both stud-
ies: Schwonke, Berthold et al.  (  2009  )  found 
“generally” enhanced learning outcomes, 
whereas Schwonke et al.  (  2013  )  found “gener-
ally” reduced learning times and enhanced out-
comes for low-prior-knowledge learners. In 
addition, the cue card of Schwonke et al.  (  2013  )  
included a number of elements that were not 
related to MER. Hence, it might be that other 
aspects and not primarily the information about 
MER were effective. Substantial further research 

1. How do I solve the problem?

a. Which are the known values in the problem text? Can you locate the known values in

the line drawing?

b. Which are the unknown values in the problem text? Can you locate the unknown

values in the line drawing?

c. How are the known values and unknown values related mathematically?

2. What can I do when I get stuck?

a. If you want to find out which value to calculate next then take a look at the overview

tool.

b. If you want to find out about the relevant mathematical principle then take a look at

the glossary tool.

c. If you want to find out how to proceed in the present problem then take a look at the

hints tool.

  Fig. 26.2    Cue card providing metacognitive knowledge about the use of different elements of a Cognitive 
Tutor lesson (translated from German)       
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is needed in order to determine the  speci fi c  
effects and their particular boundary conditions 
(e.g., prior knowledge level of the learners) that 
the  different  metacognitive information about 
learning environments’ affordances has.   

   Conclusions and Outlook 

 In this  fi nal section, we outline the most impor-
tant points that we have learned from our studies 
and the issues that have to be addressed in further 
studies. In doing so, we touch on theoretical, 
methodological, and instructional issues.
    (a)    One important issue relates to the  generaliz-

ability  of our  fi ndings. We have gained some 
knowledge about how to foster mathematics 
learning of senior high-school students and 
university students by self-explanation 
prompts and by “instruction for use.” 
Obviously, it is not straightforward to gener-
alize our  fi nding to other learning domains 
and to younger learners. With respect to the 
generalizability to other age groups, it is 
important to note that we found striking dif-
ferences even between university students 
(Berthold et al.,  2009  )  and senior high-school 
students (Berthold & Renkl,  2009  ) . Although 
this difference in educational level does not 
seem to be so large at a  fi rst glance, it seems 
all the more implausible that the present 
 fi ndings can be generalized to younger learn-
ers. Also developmental research on meta-
cognition and strategies (for an overview, see 
Schneider & Bjorklund,  1998  )  shows that 
substantial development can be found up until 
the age of 16 (i.e., the average age of the par-
ticipants in Berthold & Renkl). Hence, 
younger students might have not only produc-
tion de fi ciencies that can be remedied by 
prompts or “instructions for use” but also 
more profound de fi cits (e.g., mediation 
de fi ciencies, meaning that the learners are not 
able to execute the relevant strategies appro-
priately). Successful interventions with 
younger students might need additional 
instructional components by which strategies 
are explicitly taught (e.g., via modeling or 

worked examples; see Hübner, Nückles, & 
Renkl,  2010  ) .  

    (b)    Although we have shown that  self - explana-
tion prompts  can be helpful when learning 
from multiple representations, the pattern of 
results clearly shows that there are boundary 
conditions, even for a given educational level. 
If these conditions are not met, even negative 
effects can result. As discussed, one important 
boundary condition seems to be the complex-
ity of the learning materials in relation to the 
learners’ prior knowledge. Prompts can be 
useless or even detrimental when necessary 
prior knowledge prerequisites are missing. A 
theoretical as well as instructional problem is 
that we presently lack ways to specify, a priori 
and in a precise manner, what prior knowl-
edge is “necessary.” It might not be too 
dif fi cult to determine whether a learner just 
has a production de fi ciency so that s/he is 
actually able to provide adequate self-expla-
nations when prompted. However, it might be 
much more dif fi cult to determine when a 
learner gets overloaded by prompts. Perhaps 
recent developments in online measures of 
cognitive load (Park & Brünken,  2010 : devia-
tions in foot tapping rhythm; Walter, Cierniak, 
Bogdan, Rosenstiel, & Gerjets,  2010 : EEG 
measures) can help to solve this challenge in 
the future, at least for research purposes (such 
measures are still too intrusive for practical 
use in the  fi eld). Prompts can be automati-
cally omitted if learners show (too) high cog-
nitive load. Nevertheless, it would be desirable 
to  fi rst re fi ne our theoretical models of self-
explanation so that precise assumptions can 
be made about prior knowledge prerequisites 
necessary for prompts to be effective.  

    (c)    The idea to provide  instructions for use  with 
respect to the central affordances of learning 
environments is relatively new (for similar 
approaches see Roll, Aleven, McLaren, & 
Koedinger,  2007,   2011  ) . This instructional 
procedure seems to be promising because it 
is parsimonious and can even save learning 
time (i.e., greater learning ef fi ciency). It has 
to be noted, however, that so far, all we have 
are initial promising studies, and these stud-
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ies used instructions for use that were rather 
speci fi c to the respective learning environ-
ments. What is presently missing is a general 
rationale or a set of principles to guide the 
construction of instructions for use that  fi t 
other learning environments. A sound basis 
for the construction of instructions for use 
might come from usability studies (Nielsen, 
 1994  )  or learning process data (e.g., thinking 
aloud protocols) showing suboptimal use of 
the learning environment. Such evidence 
might reveal that learners lack speci fi c knowl-
edge about how to best use the affordances of 
a given learning environment. However, in 
practical settings such data are often not 
available, rather informal observations and 
“intuition” have to be used in order to deter-
mine what information might best help the 
learners to work in a learning environment. 
On the other hand, we assume that future 
learning technologies will more easily pro-
duce usable log data of student activities so 
that information about how learners use these 
environments will be increasingly available.     

 In addition, it is also open as to when it is best 
to provide instructions for use: in advance 
(Schwonke, Berthold et al.,  2009  )  or concurrently 
with the learning environment (Schwonke et al., 
 2013  ) ? Both options have advantages and disad-
vantages. For example, providing a “concurrent” 
cue card as in Schwonke et al.  (  2013  )  might be 
suboptimal because it creates a type of split-
attention problem (i.e., problems in relating the 
contents of the cue card with the learning envi-
ronment and distraction from the learning con-
tents). On the other hand, instructions for use 
provided in advance might be forgotten when 
working in the learning environments. Further 
research has to compare different options to present 
such instructions.      
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