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  Abstract 

 In this chapter, metacognitive skills are considered to be an organized set 
of metacognitive self-instructions for the monitoring of and control over 
cognitive activity. These self-instructions can be represented as a produc-
tion system of condition-action rules. For the assessment of metacognitive 
skills, however, these covert rules have to be inferred from overt learner 
behavior during task performance. In computerized learning tasks, on-line 
traces of learner activities can be unobtrusively stored in log fi les. 
Prerequisite to log fi le assessment is the selection of relevant indicators of 
metacognitive learning activities on the basis of a rational task analysis, 
which indicators have to be validated against other on-line measures 
obtained with, for instance, thinking-aloud protocols. Such analyses of 
log fi les will allow for the assessment of metacognitive skills as an apti-
tude, that is, as a relatively stable repertoire of self-instructions. In order 
to further capture the dynamic change in metacognitive processes over 
time, progressive patterns of metacognitive activity can be identi fi ed in 
logged traces through time-series analysis. It is argued that the aptitude 
and dynamic approaches to assessing metacognitive skills are complemen-
tary to one another, rather than excluding each other.  
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       Introduction 

 Metacognition is a relevant predictor of learning 
outcomes in traditional learning settings (Wang, 
Haertel, & Walberg,  1990  )  as well as in com-

puter-based learning environments (Veenman, 
 2008 ; Winters, Greene, & Costich,  2008  ) . In con-
ceptions of metacognition, a distinction is often 
made between knowledge of cognition and regu-
lation of cognition (Brown,  1987 ; Schraw & 
Dennison,  1994  ) . Metacognitive knowledge is 
declarative knowledge about the interplay 
between person characteristics, task characteris-
tics, and strategy characteristics (Flavell,  1979  ) . 
Having declarative metacognitive knowledge at 
one’s disposal, however, does not guarantee that 
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this knowledge is actually used for the regulation 
of learning behavior (Veenman, Van Hout-
Wolters, & Af fl erbach,  2006 ; Winne,  1996  ) . 
Metacognitive knowledge may be incorrect or 
incomplete; the learner may fail to see the useful-
ness or applicability of that knowledge in a par-
ticular situation, or the learner may lack the skills 
for doing so. 

 Metacognitive skills refer to procedural 
knowledge that is required for the regulation of 
and control over one’s learning behavior. 
Orientation, goal setting, planning, monitoring, 
checking, evaluation, and recapitulation are 
manifestations of those skills (Veenman,  2011  ) . 
These skills directly affect learning behavior 
and, consequently, learning outcomes. Veenman 
 (  2008  )  estimated that metacognitive skillfulness 
account for about 40% of variance in learning 
outcomes for a broad range of tasks. 
Metacognitive skillfulness is regarded here as 
an aptitude, which is a relatively stable disposi-
tion for how the individual interacts with learn-
ing environments (Snow,  1989  ) . This is not to 
say that metacognitive skills are entirely  fi xed. 
Learning experiences, instruction, and training 
may affect those skills (Pressley & Gaskins, 
 2006 ; Veenman,  2011  ) . This chapter addresses 
issues related to the assessment of metacogni-
tive skills in computer-based learning environ-
ments and, in particular, the necessity of 
validating these assessments through a multi-
method approach.  

   Theoretical Framework 

    In an attempt to formulate a unifying theory of 
metacognition, Nelson  (  1996 ; Nelson & Narens, 
 1990  )  distinguished an “object level” from a 
“meta-level” in the cognitive system. At the cog-
nitive level, lower-order cognitive activity takes 
place, usually referred to as  execution  processes. 
For instance, when solving a math problem, basic 
reading processes are needed for assessing the 
problem statement, and calculation processes are 
needed for producing the outcome. Higher-order 
 executive  processes of evaluation and planning at 
the meta-level govern the object level. Two  fl ows 

of information between both levels are postulated. 
Information about the state of the object level is 
conveyed to the meta-level through monitoring 
processes, while instructions from the meta-level 
are transmitted to the object level through control 
processes. Thus, if an error occurs on the object 
level, a metacognitive monitoring process will 
give notice of it to the meta-level, and control 
processes will be activated to resolve the 
problem. 

 Nelson’s model essentially is a bottom-up pro-
cess model. Anomalies in task performance trig-
ger monitoring activities, which in turn activate 
control processes on the meta-level in order to 
restore cognitive processing at the object level. 
This model, however, does not clarify how 
monitoring processes themselves are activated 
(Dunlosky,  1998  ) . Moreover, Nelson’s model 
ignores the goal-directedness of human problem-
solving and learning behavior as it does not allow 
for spontaneous activation of control processes 
without prior monitoring activity (Veenman, 
 2011  ) . Koriath, Ma’ayan, and Nussinson  (  2006  )  
have shown that causality in the relation between 
monitoring and control processes is bidirectional. 
Monitoring processes may elicit control processes, 
like Nelson emphasized, but control processes can 
also be activated without prior monitoring and, 
subsequently, elicit monitoring processes. The 
question, then, is how these control processes are 
activated if not by sheer coincidence. 

 Veenman  (  2011  )  extended Nelson’s bottom-up 
model with a top-down approach. Metacognitive 
skills are perceived as an acquired program of 
self-instructions for the control over and the regu-
lation of task performance. This program of self-
instructions is activated whenever the learner is 
faced with a task that is familiar to the learner to a 
certain extent. Either the task has been practiced 
before or the task resembles another familiar task. 
These self-instructions can be represented as a 
production system of condition-action rules 
(Anderson,  1996 ; Winne,  2010  ) . For instance, 
activating prior knowledge can be represented as: 
If you have read the task assignment, then retrieve 
all that you know about the topic from memory. 
Planning could be triggered by the rule: If you 
have set your goal, then design an action plan for 
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attaining that goal. Even self-induced, intentional 
monitoring is part of this production system: If 
you have executed a step from your action plan, 
then look out for errors in the executed step. This 
system of self-instructions is acquired through 
experience and training, much in the same way as 
the acquisition of cognitive skills (for more 
details, see Veenman,  2011  ) . The more experi-
enced a learner becomes, the more  fi ne grained 
the condition-action rules will be with regard to, 
for instance, the selection of retrieval cues for 
memory search, the conversion from goal states to 
action plans, and the recognition of potential errors. 
In line with Nelson’s model, self-instructions from 
the meta-level evoke various cognitive activities 
on the object level. However, self-instructions are 
self-induced, that is, they need not necessarily be 
triggered by a monitoring process of  anomalies  
in task performance. In fact, the monitoring infor-
mation  fl ow in Nelson’s model should be extended 
with the monitoring of conditions for activating 
self-instructions at the meta-level, although the 
latter is not necessarily a conscious process. 
Recognition of applicable conditions may also be 
automated to a certain extent in case self-instruc-
tions have become pro fi cient metacognitive hab-
its (Veenman et al.,  2006  ) . With reading, for 
instance, many monitoring processes run in 
the “background” of cognitive processes that are 
being executed. Pro fi cient readers may not notice 
them, not even when thinking aloud. In this 
notion of self-instructions, the monitoring infor-
mation  fl ow represents the input to the produc-
tion rule system at the meta-level. In the same 
vein, the control information  fl ow represents the 
output of production rules. 

 What does this notion of self-instructions 
imply for the assessment of metacognitive skills? 
The aim of metacognitive assessment is to cap-
ture the learner’s program of self-instructions at 
the meta-level. However, metacognitive skills 
that operate at the meta-level are not directly 
available for inspection (Veenman,  2011  ) . The 
production system of self-instructions itself is 
covert and cannot be assessed, like the program 
lines of a compiled computer program that cannot 
be read. Verbalizations of the learner, however, 
can disclose the input and output of the production 

system. Thus, the thinking-aloud method gives 
access to the monitoring and control information 
 fl ow, and a production rule may be inferred from 
the relation between input and output informa-
tion. For instance, we may hear a math learner 
say that the outcome of a calculation is odd. Yet, 
we  infer  from its cooccurrence with subsequent 
recalculation of the problem that a self-instruc-
tion for checking the outcomes must have been 
activated. Such inferences may be  fl awed, either 
because the input information is incomplete or 
because the output information is generated for 
another reason. When the math learner says 
“Let’s do this again,” this output information 
does not necessarily refer to recalculating the 
problem. Careful inspection of contingencies 
between monitoring and control information is 
warranted. 

 Most of the control information is gathered 
from overt operations on the object level. A task 
assignment is read, a sketch of the problem is 
drawn, a goal is written down, actions are taken 
step by step according to a plan, a dictionary is 
consulted for an unknown word, the  fl ow of cog-
nitive activity is interrupted for checking results, a 
recalculation is done, and conclusions are formu-
lated. In fact, the execution of metacognitive skills 
draws heavily on lower-order cognitive processes 
(Veenman,  2011  ) . From the perspective of the 
object level, one has to consider the context in 
which these cognitive processes occur in order to 
appraise their metacognitive origin. For instance, 
rereading is not a metacognitive activity as such, 
but it becomes a metacognitive activity if effort-
less reading is interrupted by the presence of a 
dif fi cult word or a complex phrase. Thus, an infer-
ence process is required to identify speci fi c cogni-
tive activities at the object level and to tag them as 
“metacognitive activities.” Unfortunately, this 
inference process is also prone to misinterpreta-
tion. Recalculation may be due to the metacogni-
tive self-instruction of checking outcomes, but it 
may equally result from a learner’s sloppiness in 
note taking. Observation techniques without con-
current thinking aloud or computer registrations 
of learner activities are more vulnerable to misin-
terpretations because they only have access to 
(metacognitive) activities at the object level.  
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   Off-Line vs. Online Assessments 

 Generally, off-line methods for assessment of 
metacognitive skills are distinguished from online 
methods (Veenman,  2005  ) . Off-line assessments 
concern the learners’ self-reports that are gathered 
 prior to  or  after  task performance. Questionnaires 
(e.g., MSLQ, Pintrich & De Groot,  1990 ; MAI, 
Schraw & Dennison,  1994  )  and interviews 
(Zimmerman & Martinez-Pons,  1990  )  are off-
line assessment methods that are frequently being 
used because they are relatively easy to adminis-
ter. Off-line self-reports of metacognitive skills, 
however, suffer from validity problems. A  fi rst, 
fundamental problem concerns the off-line nature 
of self-reports, which requires learners to recon-
struct their earlier performance. This reconstruc-
tion process might suffer from memory failure 
and distortions, especially if experiences from 
the past have to be retrieved (Veenman,  2011  ) . 
The second validity problem is embedded in 
common questions about the relative frequency 
of certain activities (“How often do/did you…?”). 
In order to answer these questions, learners have 
to compare themselves to others (peers, parents, 
or teachers). The individual reference point cho-
sen, however, may vary from one learner to 
another or even within a learner from one ques-
tion to another (Veenman, Prins, & Verheij, 
 2003  ) . Variation in reference points chosen by 
learners may yield disparate data. It is much like 
measuring the temperature with differently scaled 
thermometers, however, without being able to 
rescale measurements. Moreover, some learners 
may produce socially desirable answers. 

 Online assessments are obtained  during  task 
performance, that is, they are based on actual per-
formance of the learner. Typical online assessments 
include observational methods (Whitebread et al., 
 2009  ) , the analysis of thinking-aloud protocols 
(Azevedo, Greene, & Moos,  2007 ; Pressley & 
Af fl erbach,  1995 ; Veenman, Elshout, & Meijer, 
 1997  ) , and eye-movement registration (   Kinnunen 
& Vauras,  1995 ). The essential difference between 
off-line and online methods is that off-line mea-
sures merely rely on learner self-reports, whereas 
online measures pertain to the coding of actual 

learner behavior on externally de fi ned criteria by 
external agencies, such as “blind” judges and 
observers (Veenman,  2011  ) . The use of a standard-
ized coding system circumvents the validity prob-
lems mentioned before. Online assessments also 
have their limitations. Thinking aloud may not 
always yield complete protocols, for instance, 
when processes are highly automated or, con-
versely, when the task is extremely dif fi cult 
(Ericsson & Simon,  1993  ) . Observed behavior 
needs to be interpreted by observers whenever the 
learner fails to express the reasons for his/her con-
duct (Veenman,  2011  ) . Similarly, the registration 
of eye movements only captures the motor activi-
ties of the eyes. The meaning of these overt activi-
ties is subject to interpretation for which the coding 
system should provide perspicuous standards. 

 Research with multi-method designs has 
shown that off-line measures hardly correspond 
to online measures. Correlations between off-
line and online measures are invariably low 
( r  = 0.15 on the average; Bannert & Mengelkamp, 
 2008 ; Cromley & Azevedo,  2006 ; Veenman, 
 2005,   2011 ; Veenman et al.,  2003  ) , and qualita-
tive analyses show that off-line self-reports do 
not converge with speci fi c online behaviors 
(Hadwin, Nesbit, Jamieson-Noel, Code, & 
Winne,  2007 ; Winne & Jamieson-Noel,  2002  ) . 
Apparently, learners do not do what they pro-
spectively say they will do nor do they accu-
rately recollect what they have recently done. 
Moreover, correlations among off-line measures 
are often low to moderate, whereas correlations 
among online measures are moderate to high 
(Cromley & Azevedo,  2006 ; Veenman,  2005  ) . 
Obviously, off-line methods yield rather diverg-
ing results, while online methods converge in 
their assessments of metacognitive skills. Finally, 
the external validity of assessment methods 
should be considered (Veenman,  2007  ) . Online 
assessments are strong predictors of learning 
outcomes, contrary to off-line assessments. In a 
review study, Veenman  (  2005  )  found that cor-
relations with learning performance range from 
slightly negative to 0.36 for off-line measures 
and from 0.45 to 0.90 for online measures. In 
conclusion, off-line measures suffer from low 
convergent validity and low external validity, 
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which makes an argument for resorting to online 
assessment of metacognitive skills (Veenman, 
 2007  ) . Yet, a majority of studies rely on off-line 
self-reports for the assessment of metacognition 
(Dinsmore, Alexander, & Loughlin,  2008 ; 
Veenman,  2005  ) , including studies with com-
puter-based learning environments (Gress, Fior, 
Hadwin, & Winne,  2010 ; Winters et al.,  2008  ) .  

   Log fi le Assessments 

 Thinking aloud and observation are time-consuming 
methods because they have to be administered on 
an individual basis. With the emergence of 
computer-based learning environments, the online 
method of tracing metacognitive behaviors of 
learners in computer log fi les has become available 
(Greene, & Azevedo,  2010 ; Hadwin et al.,  2007 ; 
Kunz, Drewniak, & Schott,  1992 ; Veenman, 
Elshout, & Groen,  1993 ; Veenman, Wilhelm, & 
Beishuizen,  2004 ; Winne,  2010  ) . Obviously, the 
nature of the task should allow for a computerized 
version, or otherwise it would impair the ecologi-
cal validity of assessments. The advantage of 
log fi le assessment is that the method is minimally 
intrusive and that it can be administered to large 
groups at the same time (Aleven, Roll, McLaren, 
& Koedinger,  2010 ; Azevedo, Moos, Johnson, & 
Chauncey,  2010 ; Veenman et al.,  2006 ; Winne, 
 2010  ) . Typically, a log fi le contains traces of the 
learner’s overt cognitive activities during task 
performance on the computer. The frequencies of 
certain key presses, button pushes, object manipula-
tions, link and screen selections, scrolling, and 
menu clicks are registered along with time indications. 
Log fi les do not contain the learner’s metacogni-
tive deliberations for enacting those activities, 
since prompting learners to type in their thoughts 
would interfere with spontaneous metacognitive 
processing. Basically, the concrete activities regis-
tered in a log fi le represent rather raw materials on 
a low cognitive level, also referred to as “events” 
(Azevedo et al.,  2010 ; Winne,  2010  ) . In order to 
lift log fi le analysis to a metacognitive level, two 
steps need to be taken in order to select and vali-
date relevant indicators of metacognition 
(Veenman,  2007  ) . 

 A  fi rst step in log fi le analysis concerns the 
selection of which cognitive activity may be con-
sequential to metacognitive regulation. This 
selection of potential indicators of metacognitive 
skills should be based on a rational analysis of 
the task at hand, knowledge of the metacognition 
literature, and common sense. For instance, push-
ing a particular button at a critical moment in the 
course of task performance may be such an indi-
cator. The outcome of this selection process, 
however, is not always entirely successful. Some 
activities that initially appear to be metacognitive 
by nature may turn out to be non-metacognitive 
after all. Hence, a second step is to validate these 
potential log fi le measures with concurrent online 
assessments, such as think-aloud protocols or 
systematical observation. This multi-method 
approach is prerequisite for establishing a  fi rm 
set of adequate log fi le indicators of metacogni-
tive skillfulness (Veenman,  2007 ; Winters et al., 
 2008  ) . Selection and validation of indicators need 
to be done prior to log fi le assessments if the cod-
ing of learner activities in log fi les is automated. 
Otherwise, log fi les have to be coded by hand 
afterwards. Three empirical studies may eluci-
date the necessity of this two-step procedure. 

 Veenman and colleagues  (  1993  )  assessed the 
metacognitive skills from log fi les of 40 partici-
pants who were either thinking aloud or working 
silently in a computer-simulated    Heat Lab. 
Participants, novices in the domain of physics, 
were required to discover principles of calorime-
try by designing their own experiments. Several 
objects of different weights (100 g, 200 g, 1 kg) 
and materials (gold, copper, glass) could be 
heated on a burner. The amount of heat trans-
ferred to an object was regulated with a time 
switch and could be read off    a joules-meter. 
Temperature was measured by attaching a ther-
mometer to an object. Thus, the virtual labora-
tory contained the required means for examining 
the relationship between heat and temperature 
depending on weight and material. All activities 
in Heat Lab were logged. In order to determine 
which of these activities could be labeled as 
representing metacognitive skillfulness, a refer-
ence group with a similar background was 
included from an earlier study with Heat Lab 
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(Veenman et al.,  1993  ) . Thinking-aloud protocols 
of this reference group had been analyzed on the 
quality of metacognitive skillfulness (i.e., on 
indications of task orientation, goal setting, plan-
ning, monitoring, evaluation, recapitulation, and 
re fl ection). Their log fi les were coded on potential 
positive indicators of metacognitive orientation 
(frequency of rereading the task assignment and 
frequency of asking for help with lab operations), 
positive indicators of planning (frequency of 
switching on the burner for starting a new experi-
ment, frequency of object manipulations, and the 
number of unique objects used), as well as nega-
tive indicators of planning and monitoring (fre-
quency of  not  measuring either the initial 
temperature or the  fi nal temperature). Although 
the selection of these indicators was based on a 
rational task analysis, only three log fi le measures 
appeared to be substantially related to thinking-
aloud measures. Frequency of switching the 
burner on, frequency of  not  measuring the initial 
temperature, and frequency of  not  measuring the 
 fi nal temperature correlated 0.40, −0.40, and 
−0.37 with the thinking-aloud measures, while 
correlations for the other log fi le measures were 
low. Regression analysis con fi rmed that these 
three log fi le measures each contributed to the 
prediction of the thinking-aloud measure, whereas 
the others did not. A composite score of these 
three log fi le measures correlated 0.62 with the 
thinking-aloud measures. Using the same proce-
dure for obtaining a composite score from log fi les 
in the main experiment, Veenman and colleagues 
 (  1993  )  showed that participants who were thinking 
aloud did not differ in metacognitive skillfulness 
from those who worked silently,  F (1,38) = 0.02. 
Thinking aloud did not affect metacognitive 
processes, although it slowed down those 
processes a bit (cf. Ericsson & Simon,  1993  ) . 

 In another study, Veenman and colleagues 
 (  2004  )  assessed metacognitive skillfulness from 
the log fi les of 113 children and adolescents in 
the age of 9–22 years, who performed four 
computer-simulated, inductive-learning tasks. 
Participants completed two biology tasks (a plant-
growing task and a food task) as well as two 
geography tasks (one about the conservation of 
otter habitats, the other about ageing). In each 

task,  fi ve independent variables with discrete 
levels (either two or three levels) could be varied, 
and their effects on the dependent variable could 
be inspected. The model underlying the relations 
between the independent and the dependent 
variables was identical in each task; two indepen-
dent variables interacted with one another; one 
variable had a nonlinear effect, and two variables 
were irrelevant. Each task model corresponded to 
plausible real-life phenomena. Figure  11.1  shows 
the interface of the plant-growing task as an 
example. The task was to  fi nd out how different 
independent variables affected plant growth. 
Independent variables were (1) giving water, 
either once or twice a week; (2) using an insecti-
cide or not; (3) putting dead plant leaves in the 
 fl owerpot or not; (4) placing the plant either 
indoors, on a balcony, or in a greenhouse; and (5) 
size of the  fl ower pot, either large or small. 
Distinct levels of plant growth as a dependent 
variable were 5, 10, 15, 20, and 25 cm. Variable 4 
had a nonlinear effect, meaning that growing the 
plant indoors resulted in 5 cm less growth, rela-
tive to a balcony or greenhouse. Variable 2 and 3 
did not affect plant growth at all. Variable 1 and 5 
interacted, as giving water once or twice a week 
did not matter for a large pot, but it did matter 
when a small  fl owerpot was used. In that case, 
giving water twice a week would reduce plant 
growth, while giving water once a week would 
increase growth, relative to growth in the large 
 fl owerpot. Within each task, participants per-
formed a series of “experiments.” Such an experi-
ment consisted of choosing a value for each of 
the independent variables, predicting the plant 
growth as a result of these values, and asking the 
computer for the actual plant growth. Results of 
earlier experiments could be inspected by scroll-
ing through the result window at the right side 
in Fig.  11.1 .  

 During the food task, participants had to  fi nd 
out how eating and drinking habits affected the 
health status of an imaginary person, called Hans. 
Independent variables were the consumption of 
fat, carbohydrates, alcohol, albumen, and supple-
mentary vitamins. In the otter task, the relevance 
of factors affecting the extinction of otters had to 
be investigated. Independent variables were extra 
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food provision or not, environmental pollution, 
natural habitat, media exposure, and closing otter 
areas to the public or not. In the population-age-
ing task, independent variables that could affect 
the ageing rate of a population were state of the 
economy, quality of the educational system, 
means of living, climate, and general safety. In all 
cases, two variables interacted, one variable had a 
nonlinear effect, and two variables were irrele-
vant to the dependent variable. 

 The computer program automatically recoded 
learner activities in the log fi les of each task into 
several potential indicators of metacognitive 
skillfulness. Log fi le measures included the num-
ber of (unique) experiments conducted, the mean 
number of variables changed per experiment, fre-
quency of scrolling activities, frequency of vari-
able selection activities, the prediction-error rate 
(mean distance between predicted and actual out-
come), and time on task, among others (see 
   Wilhelm, Beishuizen, & Van Rijn,  2005  ) . As par-
ticipants were required to think aloud during all 
tasks, log fi le measures could be validated against 

thinking-aloud data. Two judges separately rated 
10% of the plant-growing-task protocols and 5% 
of the otter-task protocols on the quality of meta-
cognitive skillfulness. Protocols were judged on 
the quality of orientation activities (elaborateness 
of hypotheses generated before each experiment), 
systematical behavior (planning a sequence of 
experiments and avoiding unsystematic varia-
tions between subsequent experiments), evalua-
tion (detection and correction of mistakes), and 
elaboration (drawing conclusions, relating out-
comes of experiments, generating explanations, 
and recapitulating). From the log fi le measures, 
only the mean number of variables changed per 
experiment, and the frequency of scrolling 
appeared to be substantially correlated to the 
thinking-aloud scores. The mean number of vari-
ables changed per experiment (VOTAT; Chen & 
Klahr,  1999  )  was a negative indicator of think-
aloud metacognition. Varying more than one 
variable at a time represents poor planning behavior 
(Veenman et al.,  1997  )  and lack of experimental 
control (Glaser, Schauble, Raghavan, & Zeitz, 

  Fig. 11.1    Interface of the plant-growing task (Veenman et al.,  2004  )        
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 1992  ) . Frequency of scrolling back to earlier 
experiments, on the other hand, was a positive 
indicator of think-aloud metacognition. 
Participants use scrolling to check earlier experi-
mental con fi gurations or to relate outcomes of 
experiments. Scores on both measures were stan-
dardized and the sign of the negative indicator 
was inverted. Composite scores of these two 
log fi le measures correlated 0.85 and 0.84 with 
the thinking-aloud data of the plant-growing task 
and the otter task, respectively. Veenman and col-
leagues  (  2004  )  used the composite scores of 
log fi le measures to show that the metacognitive 
skills of learners develop with age. The mean 
composite scores of the four age groups (9, 12, 
14, and 22 year) revealed a steep linear increment 
with age,  F (3,109) = 38.60,  p  < 0.001. Moreover, 
composite scores correlated 0.74 with an overall 
measure of learning performance. 

 In a recent, unpublished study, Veenman, Van 
Haaren, and Rens used an adapted version of the 
plant-growing task to assess the metacognitive 
skills of gifted secondary-school students. Task 
complexity was increased to meet the intellec-
tual level of the target group of gifted students. 
Numerical relations between the variables were 
made more complex, and a second interaction 
effect was included: Using insecticides with 
dead leaves in the pot reduced the growth of the 
plant, while leaving out any of the two did not 
affect plant growth. Due to changes in both task 
settings and target group compared to the origi-
nal study, a pilot study with  fi ve gifted learners 
needed be carried out to validate log fi le mea-
sures once more. Think-aloud and log fi le data 
were gathered according to the procedures of 
Veenman and colleagues  (  2004  ) . A new posttest 
with multiple-choice and open-ended questions 
about the effects of the  fi ve independent vari-
ables on plant growth was also administered. As 
expected, VOTAT (converted to positive scores) 
and the frequency of scrolling activities corre-
lated respectively 0.68 and 0.58 with think-
aloud metacognition. However, this time the 
number of unique experiments, corrected for the 
total number of experiments, correlated 0.56 
with think-aloud metacognition. The number of 
unique experiments represents coverage of the 

problem space, consisting of maximal 48 
possible experiments. Composite scores of these 
three log fi le measures correlated 0.96 ( p  < 0.01) 
with think-aloud metacognition and 0.90 
( p  < 0.05) with posttest learning outcomes. 

 The  fi rst two studies show that a selection of 
log fi le indicators based on a rational task analysis 
is fallible. Validation of potential indicators is 
necessary to sift out irrelevant, non-metacogni-
tive activities. Moreover, the third study reveals 
that additional validation is required when task 
conditions or participant samples are altered. 
These studies further show that a limited set of 
log fi le measures may adequately represent a 
broader range of metacognitive skills assessed 
from thinking-aloud protocols. Veenman and col-
leagues  (  2004  )  asserted that metacognitive skills 
during various phases of task performance are 
highly interdependent. Good orientation leads to 
good planning and systematical behavior, which 
in turn allows for more monitoring and evaluative 
control. This interdependency of metacognitive 
skills (with intercorrelations of about 0.90; 
Veenman,  1993  )  accounts for why a limited set of 
indicators may adequately represent broad 
metacognition.  

   Patterns of Activity in Log fi le 
Assessments 

 Log fi les assessments often merely capture the 
quantity of metacognitive activities and not the 
quality of those activities (Winters et al.,  2008  ) . 
Plain rereading of task assignments, for instance, 
is not the same as rereading the task assignment 
consequential to monitoring the understanding of 
the task. The latter is more goal oriented. One 
way to access quality is to detect meaningful pat-
terns in the sequence of activities or events. 
Transition analysis is used to analyze trace data 
on the sequence and transitions of events 
(Azevedo et al.,  2010 ; Hadwin et al.,  2007  ) . All 
frequencies of transitions from one event to 
another are entered in a matrix of all possible 
events. Inspection of this matrix yields informa-
tion about the regularity of certain transitions 
(density) and about the exclusivity of transition 
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starting points (centrality). Transition analysis 
may be done on group level as well as on the indi-
vidual level. In the same vein, Biswas, Hogyeong, 
Kinnebrew, Sulcer, and Roscoe  (  2010  )  used a 
technique of hidden Markov models to detect 
probability patterns of transitions between (meta-
cognitive) activities over time. Such techniques 
allow us to detect patterns of contingent events, 
rather than registering single, isolated ones 
(Winne,  2010  ) . The metacognitive nature of these 
patterns, however, remains to be inferred by the 
researcher. 

 Researchers in self-regulated learning stress 
the dynamic nature of metacognitive processes 
(Azevedo et al.,  2010 ; Greene & Azevedo,  2010 ; 
Winne,  2010  ) . Strategy choices and frequency of 
activities may change over time in interaction 
with the learning environment. Time-series anal-
ysis is a technique for assessing changes in meta-
cognitive functioning. For time-series analyses, 
either the task is subdivided in distinguishable 
learning episodes, or a series of highly similar 
tasks is presented. Repeated assessments over 
time are analyzed. In the unpublished study of 
Veenman, Van Haaren,    and Rens, eventually 153 
students from preuniversity secondary education 
performed both the plant-growing task and the 
ageing task in randomized order. Log fi le mea-
sures were analyzed by means of repeated-mea-
sures ANOVA with task order as between-subjects 
factor. Results show that the total number of 
experiments,  F (1,151) = 36.84,  p  < 0.001, con-
verted VOTAT,  F (1,151) = 54.09,  p  < 0.001, and 
the number of unique experiment,  F (1,151) = 26.57, 
 p  < 0.001, increased between task 1 and task 2, 
while the scrolling frequency,  F (1,151) = 22.80, 
 p  < 0.001, decreased. Participants became more 
active and showed more experimental control 
over time, at the cost of scrolling activities. 
Perhaps, referring back to previous experiments 
became less compulsory due to the enhanced 
experimental control. 

 Elshout, Veenman, and Van Hell  (  1993  )  used 
time-series analysis to study help-seeking behavior 
in a computerized learning-by-doing environment. 
Novice and advanced learners in physics learned 
to solve a series of 20 complex thermodynamics 
problems about the relation between volume, 

pressure, and temperature with the option of 
asking for help from the computer program. The 
help facility offered a sequence of steps that 
would lead the learner through an orientation 
phase, an execution phase, and an evaluation 
phase of the problem-solving process.    Participants 
were free to choose a type of help: clue (hint 
about one speci fi c step), one step (working out of 
one speci fi c step), student performed (all subse-
quent steps, but learner executed), or computer 
demonstrated (working out of all steps, demon-
strated by the program). Traces of help requests 
were logged, while metacognitive skillfulness 
was assessed from think-aloud protocols. 
Analysis over the series of 20 problems revealed 
that metacognitively poor novices preferred the 
quick and dirty way out by choosing    one-step 
formula with direct access to a working out of the 
appropriate formula (cf. Aleven et al.,  2010  ) . 
Help requests of metacognitively skilled novices, 
on the other hand, shifted from merely execution 
help to orientation help over the 20 problems, 
thereby matching the help-seeking behavior of 
advanced learners in the end. These two studies 
show that time-series analysis of logged traces 
may capture patterns of change in metacognitive 
functioning.  

   Discussion 

 In the introduction of this chapter, metacogni-
tive skillfulness was de fi ned as an aptitude. 
Recently, Winne  (  2010  )  argued against such an 
aptitude approach because self-regulation is a 
dynamic process that unfolds in the course of 
learning. Self-regulatory processes change in 
nature and frequency as learning progresses. 
According to Winne, aptitude measures do not 
capture the dynamic nature of self-regulation, 
contrary to computer traces of events that allow 
for a  fi ne-grained analysis of processes over 
time. The construct of metacognitive skillful-
ness is an aptitude indeed, because it represents 
the availability of self-instructions in learning 
situations. Assessments of metacognitive skills 
as an aptitude would provide a static measure of 
the amount and quality of available skills 
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(Winne,  2010  ) . Yet, both positions of metacog-
nitive skills as aptitude and as dynamic pro-
cesses are equally tenable, provided that 
metacognitive skills are assessed with behavior 
measures. Studies have shown that learners 
bring along a rather stable, general repertoire of 
metacognitive skills when entering various new 
learning situations (Veenman,  2011  ) . The 
deployment of this general repertoire, however, 
must be adapted to task demands and other con-
textual factors during the learning process, as 
shown by the studies with time-series analysis. 
Metacognitive skills are gradually tailored to 
the task at hand because production rules 
become more specialized and sensitive to task 
constraints. Thus, any learning experience may 
alter the repertoire of production rules for meta-
cognitive self-instruction. Veenman  (  1993  )  pos-
tulated that a separate set of task- or 
domain-speci fi c production rules is generated 
during the acquisition of expertise, alongside 
the general production rules that serve as default 
repertoire for novel learning situations. Even 
general production rules are subject to change 
due to experience and training, yet at a slow 
pace (Veenman et al.,  2006  ) . Therefore, the 
notion of metacognitive skills as self- instructions 
does not preclude a peaceful coexistence of 
aptitude and dynamic change in learning. 

 There is ample evidence that online assessments 
are more valid than off-line assessments of 
metacognitive skills. Nevertheless, all online assess-
ments make inferences about metacognitive 
self-instructions, albeit to a different extent. The 
think-aloud method is a powerful tool for assess-
ing monitoring and control information  fl ows. 
Yet, protocols may be incomplete and research-
ers have to  fi ll in the gaps by making inferences 
about relations between both information  fl ows. 
The same is true for observations that include the 
learner’s verbalizations. More far-reaching infer-
ences need to be made for observations without 
verbalization, eye-movement registration, and 
log fi le analysis as these methods only access 
information about concrete, overt behaviors on 
the object level of Nelson’s model. For two 
contingent events, the researcher has to infer the 

causal relation between the two events and their 
metacognitive nature. First, one needs to infer 
that the  fi rst event represents the condition part of 
a production rule. Next, one needs to infer that 
the second event corresponds to the action part of 
the  same  production rule. Finally, the metacogni-
tive function of the entire production rule has to 
be inferred. Contingencies in time may offer a 
plausible but not suf fi cient reason for making 
these inferences (cf. Winne,  2010  ) . A further 
complication is that the conditions for evoking a 
control event may not become manifest in trace 
logs, either because the conditions of a production 
rule are activated by mental operations that are 
not accessible with trace data or because the trac-
ing system is not sensitive to a particular event. 
Here is a major challenge that researchers of trace 
data in computer-based learning environments are 
facing: extracting an appropriately contextualized 
(i.e., neither overly general nor overly speci fi c) 
set of conditions from multiple data points. 

 Log fi le assessment is an unobtrusive method 
for gaining access to events in detail on the object 
level, which assessments can be done on a large 
scale and over extended periods of time. Log fi le 
analysis allows for different levels of granularity 
in assessment, ranging from tracing the occur-
rence of separate events to detecting patterns of 
contingent events. Although scarcely out of the 
egg, tracing events can be used for attuning feed-
back and scaffolding of metacognitive function-
ing to individual needs (Aleven et al.,  2010 ; 
Azevedo et al.,  2010 ; Gress et al.,  2010  )  and for 
verifying that these interventions have been suc-
cessful (Veenman,  2007  ) . However, validation of 
log fi le events with other online assessments is 
prerequisite to making justi fi ed inferences about 
the metacognitive nature of those events. Ultimate 
assessments would include different online meth-
ods rendering data that are aligned in time and 
produce converging results.    Like a converging 
lens that directs rays of light to a focal point, even 
the focal distance may change due to learning 
experiences. Unfortunately, multi-method research 
in metacognition is scarce so far (Veenman,  2011 ; 
Veenman et al.,  2006  ) . Metacognition researchers 
should sharpen their lenses.      
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