
Chapter 5
Existence Theory of Nonlinear Dissipative
Dynamics

Abstract In this chapter we present several applications of general theory to
nonlinear dynamics governed by partial differential equations of dissipative type
illustrating the ideas and general existence theory developed in the previous sec-
tion. Most of significant dynamics described by partial differential equations can
be written in the abstract form (4.1) with appropriate quasi-m-accretive operator A
and Banach space X . The boundary value conditions are incorporated in the domain
of A. The whole strategy is to find the appropriate operator A and to prove that it is
quasi-m-accretive. The main emphasis here is on parabolic-like boundary value pro-
blems and the nonlinear hyperbolic equations although the area of problems covered
by general theory is much larger.

5.1 Semilinear Parabolic Equations

The classical linear heat (or diffusion) equation perturbed by a nonlinear poten-
tial β = β (y), where y is the state of system, is the simplest form of semilinear
parabolic equation arising in applications and is treated below. The nonlinear poten-
tial β might describe exogeneous driving forces intervening over diffusion process
or might induce unilateral state constraints.

The principal motivation for choosing multivalued functions β in examples be-
low is to treat problems with a free (or moving) boundary as well as problems
with discontinuous monotone nonlinearities. In the latter case, filling the jumps
[β (r0−0),β (r0 +0)] of function β , we get a maximal monotone multivalued graph
β ⊂ R×R for which the general existence theory applies.

To be more specific, assume that β is a maximal monotone graph such that
0 ∈ D(β ), and Ω is an open and bounded subset of RN with a sufficiently smooth
boundary ∂Ω (for instance, of class C2). Consider the parabolic boundary value
problem
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194 5 Existence Theory of Nonlinear Dissipative Dynamics




∂y
∂ t
−∆y+β (y) 3 f in Ω × (0,T ) = Q,

y(x,0) = y0(x) ∀x ∈Ω ,

y = 0 on ∂Ω × (0,T ) = Σ ,

(5.1)

where y0 ∈ L2(Ω) and f ∈ L2(Ω) are given.
We may represent problem (5.1) as a nonlinear differential equation in the space

H = L2(Ω): 



dy
dt

(t)+Ay(t) 3 f (t), t ∈ [0,T ],

y(0) = y0,
(5.2)

where A : L2(Ω)→ L2(Ω) is the operator defined by

Ay = {z ∈ L2(Ω); z =−∆y+w, w(x) ∈ β (y(x)), a.e. x ∈Ω},
D(A) = {y ∈ H1

0 (Ω)∩H2(Ω); ∃w ∈ L2(Ω), w(x) ∈ β (y(x)), a.e. x ∈Ω}. (5.3)

Here, (d/dt)y is the strong derivative of y : [0,T ]→ L2(Ω) and

∆y =
N

∑
i=1

(∂ 2y/∂x2
i )

is considered in the sense of distributions on Ω .
As a matter of fact, it is readily seen that if y is absolutely continuous from [a,b]

to L1(Ω), then dy/dt = ∂y/∂ t in D ′((a,b); L1(Ω)), and so a strong solution to
equation (5.2) satisfies this equation in the sense of distributions in (0,T )×Ω . For
this reason, whenever there is no any danger of confusion we write ∂y/∂ t instead
of dy/dt.

Recall (see Proposition 2.8) that A is maximal monotone (i.e., m-accretive) in
L2(Ω)×L2(Ω) and A = ∂ϕ , where

ϕ(y) =





1
2

∫

Ω
|∇y|2dx+

∫

Ω
g(y)dx, if y ∈ H1

0 (Ω), g(y) ∈ L1(Ω),

+∞, otherwise,

and ∂g = β . Moreover, we have

‖y‖H2(Ω) +‖y‖H1
0 (Ω) ≤C(‖A0y‖L2(Ω) +1), ∀y ∈ D(A). (5.4)

Writing equation (5.1) in the form (5.2), we view its solution y as a function of t
from [0,T ] to L2(Ω). The boundary conditions that appear in (5.1) are implicitly
incorporated into problem (5.2) through the condition y(t) ∈ D(A), ∀t ∈ [0,T ].

The function y : Ω × [0,T ] → R is called a strong solution to problem (5.1) if
y : [0,T ] → L2(Ω) is continuous on [0,T ], absolutely continuous on (0,T ), and
satisfies
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



d
dt

y(x, t)−∆y(x, t)+β (y(x, t)) 3 f (x, t), a.e. t ∈ (0,T ), x ∈Ω ,

y(x,0) = y0(x), a.e. x ∈Ω ,

y(x, t) = 0, a.e. x ∈ ∂Ω , t ∈ (0,T ).

(5.5)

Proposition 5.1. Let y0 ∈ L2(Ω) and f ∈ L2(0,T ;L2(Ω)) = L2(Q) be such that
y0(x) ∈ D(β ), a.e. x ∈Ω . Then, problem (5.1) has a unique strong solution

y ∈C([0,T ];L2(Ω))∩W 1,1((0,T ];L2(Ω))

that satisfies

t1/2y ∈ L2(0,T ;H1
0 (Ω)∩H2(Ω)), t1/2 dy

dt
∈ L2(0,T ;L2(Ω)). (5.6)

If, in addition, f ∈W 1,1([0,T ];L2(Ω)), then y(t) ∈ H1
0 (Ω)∩H2(Ω) for every

t ∈ (0,T ] and

t
dy
dt
∈ L∞(0,T ;L2(Ω)). (5.7)

If y0 ∈ H1
0 (Ω), g(y0) ∈ L1(Ω), and f ∈ L2(0,T ;L2(Ω)), then

dy
dt
∈ L2(0,T ;L2(Ω)), y ∈ L∞(0,T ;H1

0 (Ω))∩L2(0,T ;H2(Ω)). (5.8)

Finally, if y0 ∈ D(A) and f ∈W 1,1([0,T ];L2(Ω)), then

dy
dt
∈ L∞(0,T ;L2(Ω)), y ∈ L∞(0,T ;H2(Ω)∩H1

0 (Ω)) (5.9)

and
d+

dt
y(t)+(−∆y(t)+β (y(t))− f (t))0 = 0, ∀t ∈ [0,T ]. (5.10)

Proof. This is a direct consequence of Theorems 4.11 and 4.12, because, as seen in
Proposition 2.8, we have

D(A) = {u ∈ L2(Ω); u(x) ∈ D(β ), a.e. x ∈Ω}.

In particular, it follows that for y0 ∈H1
0 (Ω), g(y0)∈ L1(Ω), and f ∈ L2(Ω×(0,T )),

the solution y to problem (5.1) belongs to the space

H2,1(Q) =
{

y ∈ L2(0,T ;H2(Ω)),
∂y
∂ t
∈ L2(Q)

}
, Q = Ω × (0,T ).

Problem (5.1) can be studied in the Lp setting, 1≤ p < ∞ as well, if one defines
the operator A : Lp(Ω)→ Lp(Ω) as
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Ay = {z ∈ Lp(Ω); z =−∆y+w, w(x) ∈ β (y)), a.e. x ∈Ω}, (5.11)

D(A) = {y ∈W 1,p
0 (Ω)∩W 2,p(Ω); w ∈ Lp(Ω) such that (5.12)

w(x) ∈ β (y(x)), a.e. x ∈Ω} if p > 1,

D(A) = {y ∈W 1,1
0 (Ω); ∆y ∈ L1(Ω), ∃w ∈ L1(Ω) such that (5.13)

w(x) ∈ β (y(x)), a.e. x ∈Ω} if p = 1.

As seen earlier (Theorem 3.2), the operator A is m-accretive in Lp(Ω)×Lp(Ω)
and so, also in this case, the general existence theory is applicable. ¤

Proposition 5.2. Let y0 ∈ D(A) and f ∈ W 1,1([0,T ];Lp(Ω)), 1 < p < ∞. Then,
problem (5.1) has a unique strong solution

y ∈C([0,T ];Lp(Ω)),

that satisfies

d
dt

y ∈ L∞(0,T ;Lp(Ω)), y ∈ L∞(0,T ;W 1,p
0 (Ω)∩W 2,p(Ω)) (5.14)

d+

dt
y(t)+(−∆y(t)+β (y(t))− f (t))0 = 0, ∀t ∈ [0,T ]. (5.15)

If y0 ∈ D(A) and f ∈ L1(0,T ;Lp(Ω)), then (5.1) has a unique mild solution

y ∈C([0,T ];Lp(Ω)).

Proof. Proposition 5.2 follows by Theorem 4.6 (recall that X = Lp(Ω) is uniformly
convex for 1 < p < ∞). ¤

Next, by Theorem 4.1 we have the following.

Proposition 5.3. Assume p = 1. Then, for each y0 ∈D(A) and f ∈ L1(0,T ;L1(Ω)),
problem (5.1) has a unique mild solution y ∈C([0,T ];L1(Ω)); that is,

y(t) = lim
ε→0

yε(t),

where yε is the solution to the finite difference scheme

yi+1
ε = yi

ε + ε∆yi+1
ε − εβ (yi+1

ε )+
∫ (i+1)ε

iε
f (t)dt in Ω , i = 0,1, ...,m,

m =
[T

ε
]
+1,

yi+1
ε ∈ H1

0 (Ω)

yε(t) = yi
ε for t ∈ (iε,(i+1)ε).
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Because the space X = L1(Ω) is not reflexive, the mild solution to the Cauchy
problem (5.2) in L1(Ω) is only continuous as a function of t, even if y0 and f are
regular. However, also in this case we have a regularity property of mild solutions;
that is, a smoothing effect on initial data, which resembles the case p = 2.

Proposition 5.4. Let β : R → R be a maximal monotone graph, 0 ∈ D(β ), and
β = ∂g. Let f ∈ L2(0,T ;L∞(Ω)) and y0 ∈ L1(Ω) be such that y0(x) ∈ D(β ), a.e.
x ∈Ω . Then, the mild solution y ∈C([0,T ];L1(Ω)) to problem (5.1) satisfies

‖y(t)‖L∞(Ω) ≤C
(

t−(N/2)‖y0‖L1(Ω) +
∫ t

0
‖ f (s)‖L∞(Ω)ds

)
, (5.16)

∫ T

0

∫

Ω
(t(N+4)/2y2

t + t(N+2)/2|∇y|2)dxdt +T (N+4)/2
∫

Ω
|∇y(x,T )|2dx

≤C

((
‖y0‖4/(N+2)

L1(Ω) +
∫ T

0

∫

Ω
| f |dxdt

)(N+2)/2

+T (N+4)/2
∫ T

0

∫

Ω
f 2dxdt

)
.

(5.17)

Proof. Without loss of generality, we may assume that 0∈ β (0). Also, let us assume
first that y0 ∈H1

0 (Ω)∩H2(Ω). Then, as seen in Proposition 5.1, problem (5.1) has a
unique strong solution such that t1/2yt ∈ L2(Q), t1/2y ∈ L2(0,T ;H1

0 (Ω)∩H2(Ω)):




∂y
∂ t

(x, t)−∆y(x, t)+β (y(x, t)) 3 f (x, t), a.e. (x, t) ∈ Q,

y(x,0) = y0(x), x ∈Ω ,

y = 0, on Σ .

(5.18)

Consider the linear problem




∂ z
∂ t
−∆z = ‖ f (t)‖L∞(Ω) in Q,

z(x,0) = |y0(x)|, x ∈Ω ,

z = 0, on Σ .

(5.19)

Subtracting these two equations and multiplying the resulting equation by (y− z)+,
and integrating on Ω we get

1
2

d
dt
‖(y− z)+‖2

L2(Ω) +
∫

Ω
|∇(y− z)+|2dx≤ 0, a.e. t ∈ (0,T ),

(y− z)+(0)≤ 0 in Ω ,

because z ≥ 0 and β is monotonically increasing. Hence, y(x, t) ≤ z(x, t), a.e. in Q
and so |y(x, t)| ≤ z(x, t), a.e. (x, t) ∈ Q. On the other hand, the solution z to problem
(5.19) can be represented as

z(x, t) = S(t)(|y0|)(x)+
∫ t

0
S(t− s)(‖ f (s)‖L∞(Ω))ds, a.e. (x, t) ∈ Q,
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where S(t) is the semigroup generated on L1(Ω) by −∆ with Dirichlet homoge-
neous conditions on ∂Ω . We know, by the regularity theory of S(t) (see also Theo-
rem 5.4 below), that

‖S(t)u0‖L∞(Ω) ≤Ct−(N/2)‖u0‖L1(Ω), ∀u0 ∈ L1(Ω), t > 0.

Hence,

|y(x, t)| ≤Ct−(N/2)‖y0‖L1(Ω) +
∫ t

0
‖ f (s)‖L∞(Ω)ds, (t,x) ∈ Q. (5.20)

Now, for an arbitrary y0 ∈ L1(Ω) such that y0 ∈ D(β ), a.e. in Ω , we choose a se-
quence {yn

0} ⊂ H1
0 (Ω)∩H2(Ω), yn

0 ∈ D(β ), a.e. in Q, such that yn
0 → y0 in L1(Ω)

as n → ∞. (We may take, for instance, yn
0 = S(n−1)(1 + n−1β )−1y0.) If yn is the

corresponding solution to problem (5.1), then we know that yn → y strongly in
C([0,T ];L1(Ω)), where y is the solution with the initial value y0. By (5.20), it fol-
lows that y satisfies estimate (5.16).

Because y(t) ∈ L∞(Ω) ⊂ L2(Ω) for all t > 0, it follows by Proposition 5.1 that
y∈W 1,2([δ ,T ];L2(Ω))∩L2(δ ,T ;H1

0 (Ω)∩H2(Ω)) for all 0 < δ < T and it satisfies
equation (5.18), a.e. in Q = Ω × (0,T ). (Arguing as before, we may assume that
y0 ∈ H1

0 (Ω)∩H2(Ω) and so yt ,y ∈ L2(0,T ;L2(Ω)).) To get the desired estimate
(5.17), we multiply equation (5.18) by yttk+2 and integrate on Q to get

∫ T

0

∫

Ω
tk+2y2

t dxdt +
1
2

∫ T

0

∫

Ω
tk+2|∇y|2t dxdt +

∫ T

0

∫

Ω
tk+2 ∂

∂ t
g(y)dxdt

=
∫ T

0

∫

Ω
tk+2yt f dxdt,

where yt = ∂y/∂ t and ∂g = β . This yields

∫

Q
tk+2y2

t dxdt +
T k+2

2

∫

Ω
|∇y(x,T )|2dx+T k+2

∫

Ω
g(y(x,T ))dx

≤ k +2
2

∫

Q
tk+1|∇y|2dxdt +(k +2)

∫

Q
tk+1g(y)dxdt

+
1
2

∫ T

0
tk+2y2

t dxdt +
1
2

∫

Q
tk+2 f 2dxdt.

Hence,
∫

Q
tk+2y2

t dxdt +T k+2
∫

Ω
|∇y(x,T )|2dx

≤ (k +2)
∫

Q
tk+1|∇y|2dxdt +2(k +2)

∫

Q
tk+1β (y)dx+T k+2

∫

Q
f 2dxdt.

(If β is multivalued, then β (y) is of course the section of β (y) arising in (5.18).)
Finally, writing β (y)y as ( f +∆y− yt)y and using Green’s formula, we get
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∫

Q
tk+2y2

t dxdt +T k+2
∫

Ω
|∇y(x,T )|2dx+

∫

Q
tk+1|∇y|2dxdt

≤ (k +2)(k +1)
∫

Q
y2tkdxdt

+T k+2
∫

Q
f 2dxdt +2(k +2)

∫

Q
tk+1| f | |y|dxdt

≤C
(∫

Q
tky2dxdt +T k+2

∫

Q
f 2dxdt

)
.

(5.21)

Next, we have, by the Hölder inequality
∫

Ω
y2dx≤ ‖y‖(N−2/N+2)

Lp(Ω) ‖y‖4/(N+2)
L1(Ω)

for p = 2N(N−2)−1. Then, by the Sobolev embedding theorem,

∫

Ω
|y(x, t)|2dx≤

(∫

Ω
|∇y(x, t)|2dx

)N/(N+2) (∫

Ω
|y(x, t)|dx

)4/(N+2)

. (5.22)

On the other hand, multiplying equation (5.18) by sign y and integrating on
Ω × (0, t), we get

‖y(t)‖L1(Ω) ≤ ‖y0‖L1(Ω) +
∫ t

0

∫

Ω
| f (x,s)|dxds, t ≥ 0,

because, as seen earlier (Section 3.2),
∫

Ω
∆y signydx≤ 0.

Then, by estimates (5.21) and (5.22), we get
∫

Q
tk+2y2

t dxdt +T k+2
∫

Ω
|∇y(x,T )|2dx+

∫

Q
tk+1|∇y(x, t)|2dxdt

≤C
((
‖y0‖4/(N+2)

L1(Ω) +
∫ T

0

∫

Ω
| f (x, t)|dxdt

)

×
∫ t

0
tk‖∇y(t)‖2N/(N+2)

L2(Ω) dt +T k+2
∫

Q
f 2dxdt

)
.

On the other hand, we have, for k = N/2,

∫ T

0
tk|∇y(t)|2N/(N+2)dt ≤

(∫ T

0
tk+1|∇y(t)|2dt

)N/(N+2)

T 2/(N+2).

Substituting in the latter inequality, we get after some calculation involving the
Hölder inequality
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∫

Q
t(N+4)/2y2

t dxdt +
∫

Q
t(N+2)/2|∇y(x, t)|2dxdt

+ T (N+4)/2
∫

Ω
|∇y(x,T )|2dx

≤C1

(
‖y0‖4/(N+2)

L1(Ω) +
∫

Q
| f (x, t)|dxdt

)(N+2)/2

+ C2T (N+4)/2
∫

Q
f 2(x, t)dxdt,

(5.23)

as claimed. ¤
In particular, it follows by Proposition 5.4 that the semigroup S(t) generated by

A (defined by (5.11) and (5.13) on L1(Ω) has a smoothing effect on initial data; that
is, for all t > 0 it maps L1(Ω) into D(A) and is differentiable on (0,∞).

In the special case where

β (r) =

{
0 if r > 0,

R− if r = 0,

problem (5.1) reduces to the parabolic variational inequality (the obstacle problem)




∂y
∂ t
−∆y = f in {(x, t); y(x, t) > 0},

y≥ 0,
∂y
∂ t
−∆y≥ f in Q,

y(x,0) = y0(x) in Ω , y = 0 on ∂Ω × (0,T ) = Σ .

(5.24)

This is a problem with free (moving) boundary that is discussed in detail in the next
section.

We also point out that Proposition 5.1 remains true for equations of the form




∂y
∂ t
−∆y+β (x,y) 3 f in Q,

y(x,0) = y0(x) in Ω ,

y = 0 on Σ ,

where β : Ω ×R → 2R is of the form β (x,y) = ∂yg(x,y) and g : Ω ×R → R is a
normal convex integrand on Ω ×R sufficiently regular in X and with appropriate
polynomial growth with respect to y. The details are left to the reader.

Now, we consider the equation




∂y
∂ t
−∆y = f in Ω × (0,T ) = Q,

∂
∂ν

y+β (y) 3 0 on Σ ,

y(x,0) = y0(x) in Ω ,

(5.25)
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where β ⊂ R×R is a maximal monotone graph, 0 ∈ D(β ), y0 ∈ L2(Ω), and
f ∈ L2(Q). As seen earlier (Proposition 2.9), we may write (5.25) as





dy
dt

(t)+Ay(t) = f (t) in (0,T ),

y(0) = y0,

where Ay =−∆y, ∀y ∈ D(A) = {y ∈ H2(Ω); 0 ∈ ∂y/∂ν +β (y), a.e. on ∂Ω}.
More precisely, A = ∂ϕ , where ϕ : L2(Ω)→ R is defined by

ϕ(y) =
1
2

∫

Ω
|∇y|2dx+

∫

∂Ω
j(y)dσ , ∀y ∈ L2(Ω),

and ∂ j = β .
Then, applying Theorems 4.11 and 4.12, we get the following.

Proposition 5.5. Let y0 ∈ D(A) and f ∈ L2(Q). Then, problem (5.25) has a unique
strong solution y ∈C([0,T ];L2(Ω)) such that

t1/2 dy
dt
∈ L2(0,T ;L2(Ω)),

t1/2y ∈ L2(0,T ;H2(Ω)).

If y0 ∈ H1(Ω) and j(y0) ∈ L1(Ω), then

dy
dt
∈ L2(0,T ;L2(Ω)),

y ∈ L2(0,T ;H2(Ω))∩L∞(0,T ;H1(Ω)).

Finally, if y0 ∈ D(A) and f ,∂ f /∂ t ∈ L2(Ω), then

dy
dt
∈ L∞(0,T ;L2(Ω)),

y ∈ L∞(0,T ;H2(Ω))

and
d+

dt
y(t)−∆y(t) = f (t), ∀t ∈ [0,T ].

It should be mentioned that one uses here the estimate (see (2.65))

‖u‖H2(Ω) ≤C(‖u−∆u‖L2(Ω) +1), ∀u ∈ D(A).

An important special case is

β (r) =

{
0 if r > 0,

(−∞,0] if r = 0.
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Then, problem (5.25) reads as




∂y
∂ t
−∆y = f in Q,

y
∂y
∂ν

= 0, y≥ 0,
∂y
∂ν

≥ 0 on Σ ,

y(x,0) = y0(x) in Ω .

(5.26)

A problem of this type arises in the control of a heat field. More generally, the
thermostat control process is modeled by equation (5.26), where

β (r) =





a1(r−θ1) if −∞ < r < θ1,

0 if θ1 ≤ r ≤ θ2,

a2(r−θ2) if θ2 < r < ∞,

ai ≥ 0, θ1 ∈ R, i = 1,2. In the limit case, we obtain (5.26).
The black body radiation heat emission on ∂Ω is described by equation (5.26),

where β is given by (the Stefan–Boltzman law)

β (r) =

{
α(r4− y4

1) for r ≥ 0,

−αy4
1 for r < 0,

and, in the case of natural convection heat transfer,

β (r) =

{
ar5/4 for r ≥ 0,

0 for r < 0.

Note, also, that the Michaelis–Menten dynamic model of enzyme diffusion reaction
is described by equation (5.1) (or (5.25)), where

β (r) =





r
λ (r + k)

for r > 0,

(−∞,0] for r = 0,

/0 for r < 0,

where λ ,k are positive constants.
We note that more general boundary value problems of the form





∂ y
∂ t
−∆y+ γ(y) 3 f in Q,

y(x,0) = y0(x) in Ω ,

∂y
∂ν

+β (y) 3 0 on Σ ,
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where β and γ are maximal monotone graphs in R×R such that 0∈D(β ), 0∈D(γ)
can be written in the form (5.2) where A = ∂ϕ and ϕ : L2(Ω)→ R is defined by

ϕ(y) =





1
2

∫

Ω
|∇y|2dx+

∫

Ω
g(y)dx+

∫

∂Ω
j(y)dσ if y ∈ H1(Ω),

+∞ otherwise,

and ∂g = γ, ∂ j = β .
We may conclude, therefore, that for f ∈ L2(Ω) and y0 ∈ H1(Ω) such that

g(y0) ∈ L1(Ω), j(y0) ∈ L1(∂Ω) the preceding problem has a unique solution
y ∈W 1,2([0,T ];L2(Ω))∩L2(0,T ;H2(Ω)).

On the other hand, semilinear parabolic problems of the form (5.1) or (5.25)
arise very often as feedback systems associated with the linear heat equation. For
instance, the feedback relay control

u =−ρ sign y, (5.27)

where

signr =





r
|r| if r 6= 0,

[−1,1] if r = 0,

applied to the controlled heat equation




∂y
∂ t
−∆y = u in Ω ×R+,

y = 0 on ∂Ω ×R+,

y(x,0) = y0(x) in Ω

(5.28)

transforms it into a nonlinear equation of the form (5.1); that is,




∂y
∂ t
−∆y+ρ signy 3 0 in Ω ×R+,

y = 0 on ∂Ω ×R+,

y(x,0) = y0(x) in Ω .

(5.29)

This is the closed-loop system associated with the feedback law (5.27) and, ac-
cording to Proposition 5.4, for every y0 ∈ L1(Ω), it has a unique strong solution
y ∈C(R+;L2(Ω)) satisfying

y(t) ∈ L∞(Ω), ∀t > 0,

t(N+4)/4yt ∈ L2
loc(R

+;L2(Ω)), t(N+2)/4y ∈ L2
loc(R

+;H1(Ω)).

(Of course, if y0 ∈ L2(Ω), then y has sharper properties provided by Proposition
5.1.)
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Let us observe that the feedback control (5.27) belongs to the constraint set
{u ∈ L∞(Ω ×R+);‖u‖L∞(Ω×R+) ≤ ρ} and steers the initial state y0 into the origin
in a finite time T . Here is the argument. We assume first that y0 ∈ L∞(Ω) and consi-
der the function w(x, t) = ‖y0‖L∞(Ω)−ρt. On the domain Ω × (0,ρ−1‖y0‖L∞(Ω)) =
Q0, we have





∂w
∂ t
−∆w+ρ sign w 3 0 in Q0,

w(0) = ‖y0‖L∞(Ω) in Ω ,

w≥ 0 on ∂Ω × (0,ρ−1‖y0‖L∞(Ω)).

(5.30)

Then, subtracting equations (5.29) and (5.30) and multiplying by (y−w)+ (or, sim-
ply, applying the maximum principle), we get

(y−w)+ ≤ 0 in Q0.

Hence, y≤ w in Q0. Similarly, it follows that y≥−w in Q0 and, therefore,

|y(x, t)| ≤ ‖y0‖L∞(Ω)−ρt, ∀(x, t) ∈ Q0.

Hence, y(t) ≡ 0 for all t ≥ T = ρ−1‖y0‖L∞(Ω). Now, if y0 ∈ L1(Ω), then inserting
in system (5.28) the feedback control

u(t) =

{
0 for 0≤ t ≤ ε,

−ρ sign y(t) for t > ε,

we get a trajectory y(t) that steers y0 into the origin in the time

T (y0) < ε +ρ−1‖y(ε)‖L∞(Ω) ≤ ε +C(ρεN/2)−1‖y0‖L1(Ω),

where C is independent of ε and y0 (see estimate (5.16)). If we choose ε > 0 that
minimizes the right-hand side of the latter inequality, then we get

T (y0)≤
(

CN
2ρ

‖y0‖L1(Ω)

)2/(N+2)

+
(

N
2

)−(N/(N+2)) (C
ρ
‖y0‖L1(Ω)

)2/(N+2)

.

We have, therefore, proved the following null controllability result for system (5.28).

Proposition 5.6. For any y0 ∈ L1(Ω) and ρ > 0 there is u ∈ L∞(Ω × R+),
‖u‖L∞(Ω×R+) < ρ , that steers y0 into the origin in a finite time T (y0).

Remark 5.1. Consider the nonlinear parabolic equation




∂y
∂ t
−∆y+ |y|p−1y = 0, in Ω ×R+,

y(x,0) = y0(x), x ∈Ω ,

y = 0, on ∂Ω ×R+,

(5.31)
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where 0 < p < (N +1)/N and y0 ∈ L1(Ω). By Proposition 5.4, we know that the
solution y satisfies the estimates

‖y(t)‖L∞(Ω) ≤ Ct−(N/2)|y0‖L1(Ω),

‖y(t)‖L1(Ω) ≤ C‖y0‖L1(Ω),

for all t > 0.
Now, if y0 is a bounded Radon measure on Ω ; that is, y0 ∈ M(Ω) = (C0(Ω))∗

(C0(Ω) is the space of continuous functions on Ω that vanish on ∂Ω), there is a
sequence {y j

0} ⊂C0(Ω) such that ‖y j
0‖L1(Ω) ≤C and y j

0 → y0 weak-star in M(Ω).
Then, if y j is the corresponding solution to equation (5.31) it follows from the pre-
vious estimates that (see Brezis and Friedman [17])

y j → y in Lq(Q), 1 < q <
N +2

N
,

|y j|p−1y j → |y|p−1y in L1(Q).

This implies that y is a generalized (mild) solution to equation (5.31).
If p > (N +2)/N, there is no solution to (5.31).

Remark 5.2. Consider the semilinear parabolic equation (5.1), where β is a conti-
nuous monotonically increasing function, f ∈Lp(Q), p > 1, and y0 ∈W p,2−(2/p)

0 (Ω),
g(y0)∈ L1(Ω), g(r) =

∫ r
0 |β (s)|p−2β (s)ds. Then, the solution y to problem (5.1) be-

longs to W 2,1
p (Q) and

‖y‖p
W 2,1

p (Q)
≤C

(
‖ f‖p

Lp(Ω) +‖y0‖p

W p,2−(2/p)
0 (Ω)

+
∫

Ω
g(y0)dx

)
.

Here, W 2,1
p (Q) is the space

{
y ∈ Lp(Q);

∂ r+s

∂ tr∂xs y ∈ Lp(Q), 2r + s≤ 2
}

.

For p = 2, W 2,1
2 (Q) = H2,1(Q).

Indeed, if we multiply equation (5.1) by |β (y)|p−2β (y) we get the estimate
(as seen earlier in Proposition 5.1, for f and y0 smooth enough this problem has
a unique solution y ∈W 1,∞([0,T ];Lp(Ω)), y ∈ L∞(0,T ;W 2,p(Ω)))

∫

Ω
g(y(x, t))dx+

∫ t

0

∫

Ω
|β (y(x,s))|pdxds

≤
∫ t

0

∫

Ω
|β (y(x,s))|p−1| f (x,s)|dxds+

∫

Ω
g(y0(x))dx

≤
(∫ t

0

∫

Ω
|β (y(x,s))|pdxds

)1/q (∫ t

0

∫

Ω
| f (x,s)|pdxds

)1/p

,
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where 1/p+1/q = 1. In particular, this implies that

‖β (y)‖Lp(Q) ≤C(‖ f‖Lp(Q) +‖g(y0)‖L1(Ω))

and by the Lp estimates for linear parabolic equations (see, e.g., Ladyzenskaya,
Solonnikov, and Ural’ceva [31] and Friedman [27]) we find the estimate (5.34),
which clearly extends to all f ∈ Lp(Q) and y0 ∈W p,2−(2/p)

0 (Ω), g(y0) ∈ L1(Ω).

Nonlinear Parabolic Equations of Divergence Type

Several physical diffusion processes are described by the continuity equation

∂y
∂ t

+divx q = f ,

where the flux q of the diffusive material is a nonlinear function β of local density
gradient ∇y. Such an equation models nonlinear interaction phenomena in material
science and in particular in mathematical models of crystal growth as well as in
image processing (see Section 2.4). This class of problems can be written as





∂y
∂ t

(x, t)−divx β (∇(y(x, t))) 3 f (x, t), x ∈Ω , t ∈ (0,T ),

y = 0 on ∂Ω × (0,T ),

y(x,0) = y0(x), x ∈Ω ,

(5.32)

where β : RN →RN is a maximal monotone graph satisfying conditions (2.138) and
(2.139) (or, in particular, conditions (2.134) and (2.135) of Theorem 2.15).

In the space X = L2(Ω) consider the operator A defined by (2.155) and thus
represent (5.32) as a Cauchy problem in X ; that is,





dy
dt

(t)+Ay(t) 3 f (t), t ∈ (0,T ),

y(0) = y0.
(5.33)

In Section 2.4, we studied in detail the stationary version of (5.37) (i.e., Ay = f ) and
we have proven (Theorem 2.18) that A is maximal monotone (m-accretive) and so,
by Theorem 4.6, we obtain the following existence result.

Proposition 5.7. Let f ∈W 1,1([0,T ];L2(Ω)), y0 ∈W 1,p
0 (Ω) be such that divη0 ∈

L2(Ω) for some η0 ∈ (Lq(Ω))N, η0 ∈ β (∇y0), a.e. in Ω . Then, there is a unique
strong solution y to (5.32) (equivalently to (5.33)) such that

y ∈ L∞(0,T ;W 1,p
0 (Ω))∩W 1,∞([0,T ];L2(Ω))

d+

dt
y(t)−divx η(t) = f (t), ∀t ∈ [0,T ],
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where η ∈ L∞(0,T ;L2(Ω)), η(t,x) ∈ β (∇y(x, t)), a.e. (x, t) ∈ Ω × (0,T ) = Q.
Moreover, if β = ∂ j, then the strong solution y exists for all y0 ∈ L2(Ω) and
f ∈ L2(Q).

The last part of Proposition 5.7 follows by Theorem 4.11, because, as seen earlier
in Theorem 2.18, in this latter case A = ∂ϕ .

Now, if we refer to Theorem 2.19 and Remark 2.4 we may infer that Proposi-
tion 5.7 remains true under conditions β = ∂ j and (2.161) and (2.162). We have,
therefore, the following.

Proposition 5.8. Let β satisfy conditions (2.161) and (2.162). Then, for each
y0 ∈ L2(Ω) and f ∈ L2(0,T ;L2(Ω)) there is a unique strong solution to (5.32)
or to the equation with Neumann boundary conditions β (∇y(x)) · ν(x) = 0 in the
following weak sense,

d
dt

∫

Ω
y(x, t)v(x)dx+

∫

Ω
η(x, t) ·∇v(x)dx =

∫

Ω
f (x, t)v(x)dx, ∀v ∈C1(Ω),

η(x, t) ∈ β (∇y(x, t)), a.e. (x, t) ∈Ω × (0,T ),

y(x,0) = y0(x).

Now, if we refer to the singular diffusion boundary value problem




∂y
∂ t
−divx (sign (∇y)) 3 f in Ω × (0,T ),

y = 0 on ∂Ω × (0,T ),

y(x,0) = y0(x),

it has for each y0 ∈ BV 0(Ω) a unique strong solution

y ∈W 1,2([0,T ];L2(Ω))∩C([0,T ];L2(Ω))

with ‖Dy(t)‖ ∈W 1,∞([0,T ]) (similarly for the case of Neumann boundary condi-
tions).

Indeed, as seen earlier, it can be written as a first-order equation of subgradient
type in L2(Ω), 




dy
dt

(t)+∂ϕ(y(t)) 3 f (t), t ∈ (0,T ),

y(0) = y0,

where ϕ is given by (2.182). Then, the existence follows by Theorem 4.11.
By (2.149) and the Trotter–Kato theorem (see Theorem 4.14), we know that the

solution y is the limit in C([0,T ];L2(Ω)) of solution yε to the problem




∂yε
∂ t

− ε∆yε −divxβε(∇yε) = f in Ω × (0,T )

yε = 0 on ∂Ω ; yε(x,0) = y0(x),
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where βε is the Yosida approximation of β = sign.
As noticed earlier, this equation is relevant in image restoration techniques and

crystal-faceted growth theory. In particular, for f (t) ≡ fe ∈ L2(Ω) it follows by
Theorem 4.13 that

lim
t→∞

y(t) = ye strongly in L2(Ω),

where ye is an equilibrium solution; that is, ∂ϕ(ye) 3 fe.
In image processing, the solution y = y(·, t) might be seen as a family of restored

images with the scale parameter t. The parabolic equation (5.32) itself acts as a filter
that processes the original corrupted version f = f (x).

Semilinear Parabolic Equation in RN

We consider here equation (5.1) in Ω = RN ; that is,




∂y
∂ t
−∆y+β (y) 3 f in (0,T )×RN ,

y(0,x) = y0(x) x ∈ RN ,

y(t, ·) ∈ L1(RN) ∀t ∈ (0,T ).

(5.34)

With respect to the case of bounded domain Ω previously studied, this problem
presents some peculiarities and the more convenient functional space to study it is
L1(RN).

We write (5.34) as a differential equation in X = L1(RN) of the form




dy
dt

(t)+Ay(t) 3 f (t), t ∈ (0,T ),

y(0) = y0,

where A : D(A)⊂ L1(RN)→ RN is defined by

Ay = {z ∈ L1(RN); z =−∆y+w, w ∈ β (y), a.e. in RN},
D(A) = {y ∈ L1(RN); ∆y ∈ L1(RN), ∃w ∈ L1(RN),

such that w(x) ∈ β (y(x)), a.e. x ∈ RN}.

By Theorem 3.3 we know that, if N = 1,2,3, then A is m-accretive in L1(RN)×
L1(RN).

Then, by Theorem 4.1, which neatly applies to this situation, we get the following
existence result.

Proposition 5.9. Let y0 ∈ L1(RN) and f ∈ L1(0,T ;RN) be such that ∆y0 ∈ L1(RN)
and ∃w ∈ L1(RN), w(x) ∈ β (y0(x)), a.e. x ∈RN. Then, problem (5.34) has a unique
mild solution y ∈C([0,T ];L1(RN)). In other words,
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y(t) = lim
ε→0

yε(t) strongly in L1(Rn) for each t ∈ [0,T ], (5.35)

where yε is the solution to the finite difference scheme

yε(t) = yi
ε for t ∈ (iε,(i+1)ε), i = 0,1, ...,M,

yi+1
ε − yi

ε − ε∆yi+1
ε + εβ (yi+1

ε ) 3
∫ (i+1)ε

iε
f (t)dt in Rn,

yi
ε ∈ L1(RN), i = 0,1, ...,M =

[T
ε
]
.

(5.36)

5.2 Parabolic Variational Inequalities

An important class of multivalued nonlinear parabolic-like boundary value problem
is the so-called parabolic variational inequalities which we briefly present below in
an abstract setting.

Here and throughout in the sequel, V and H are real Hilbert spaces such that V is
dense in H and V ⊂ H ⊂ V ′ algebraically and topologically. We denote by | · | and
‖ ·‖ the norms of H and V , respectively, and by (·, ·) the scalar product in H and the
pairing between V and its dual V ′. The norm of V ′ is denoted ‖ · ‖∗. The space H is
identified with its own dual.

We are given a linear continuous and symmetric operator A from V to V ′ satis-
fying the coercivity condition

(Ay,y)+α|y|2 ≥ ω‖y‖2, ∀y ∈V, (5.37)

for some ω > 0 and α ∈R. We are also given a lower semicontinuous convex func-
tion ϕ : V → R = (−∞,+∞], ϕ 6≡+∞.

For y0 ∈V and f ∈ L2(0,T ;V ′), consider the following problem.

Find y ∈ L2(0,T ;V )∩C([0,T ];H)∩W 1,2([0,T ];V ′) such that




(y′(t)+Ay(t),y(t)− z)+ϕ(y(t))−ϕ(z)≤ ( f (t),y(t)− z),

a.e. t ∈ (0,T ), ∀z ∈V,

y(0) = y0.

(5.38)

Here, y′ = dy/dt is the strong derivative of the function y : [0,T ]→V ′. In terms
of the subgradient mapping ∂ϕ : V →V ′, problem (5.38) can be written as

{
y′(t)+Ay(t)+∂ϕ(y(t)) 3 f (t), a.e. t ∈ (0,T ),

y(0) = y0.
(5.39)

This is an abstract variational inequality of parabolic type. In applications to partial
differential equations, V is a Sobolev subspace of H = L2(Ω) (Ω is an open subset
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of RN), A is an elliptic operator on Ω , and the unknown function y : Ω × [0,T ]→R
is viewed as a function of t from [0,T ] to L2(Ω).

As seen earlier in Section 4.1, in the special case where ϕ = IK is the indicator
function of a closed convex subset K of V ; that is,

ϕ(y) = 0 if y ∈ K, ϕ(y) = +∞ if y /∈ K, (5.40)

the variational inequality (5.38) reduces to the reflection problem




y(t) ∈ K, ∀t ∈ [0,T ],

(y′(t)+Ay(t),y(t)− z)≤ ( f (t),y(t)− z), a.e. t ∈ (0,T ), ∀z ∈ K,

y(0) = y0.

(5.41)

Regarding the existence for problem (5.38), we have the following.

Theorem 5.1. Let f ∈W 1,2([0,T ];V ′) and y0 ∈V be such that

{Ay0 +∂ϕ(y0)− f (0)}∩H 6= /0. (5.42)

Then, problem (5.38) has a unique solution y∈W 1,2([0,T ];V )∩W 1,∞([0,T ];H) and
the map (y0, f )→ y is Lipschitz from H×L2(0,T ;V ′) to C([0,T ];H)∩L2(0,T ;V ).
If f ∈W 1,2([0,T ];V ′) and ϕ(y0) < ∞, then problem (5.38) has a unique solution
y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ). If f ∈ L2(0,T ;H) and ϕ(y0) < ∞, then problem
(5.38) has a unique solution y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ), that satisfies

y′(t) = ( f (t)−Ay(t)−∂ϕ(y(t)))0, a.e. t ∈ (0,T ).

Here Cw([0,T ];V ) is the space of weakly continuous functions from (0,T ) to V ; that
is, from (0,T ) to V endowed with the weak topology.

Proof. Consider the operator L : D(A)⊂ H → H,

Ly = {Ay+∂ϕ(y)}∩H, ∀y ∈ D(L),

D(L) = {y ∈V ; {Ay+∂ϕ(y)}∩H 6= /0}.

Note that αI + L is maximal monotone in H×H (I is the identity operator in H).
Indeed, by hypothesis (5.37), the operator αI +A is continuous and positive definite
from V to V ′. Because ∂ϕ : V →V ′ is maximal monotone we infer by Theorem 2.6
(or by Corollary 2.6) that αI + L is maximal monotone from V to V ′ and, conse-
quently, in H×H.

Then, by Theorem 4.6, for every y0 ∈ D(L) and g ∈W 1,1([0,T ];H) the Cauchy
problem 




dy
dt

(t)+Ly(t) 3 g(t), a.e. in (0,T ),

y(0) = y0,
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has a unique strong solution y ∈W 1,∞([0,T ];H). Let us observe that ∂ϕα = αI +L,
where ϕα : H → R is given by

ϕα(y) =
1
2

(Ay+αy,y)+ϕ(y), ∀y ∈ H. (5.43)

Indeed, ϕα is convex and lower semicontinuous in H because

lim
‖y‖→∞

ϕα(y)
‖y‖ = ∞

and ϕα is lower semicontinuous on V .
On the other hand, it is readily seen that αI + L ⊂ ∂ϕα , and because αI + L

is maximal monotone, we infer that αI + L = ∂ϕα , as claimed. In particular, this
implies that D(L) = D(ϕα) = D(ϕ) (in the topology of H).

Now, let y0 ∈V and f ∈W 1,2([0,T ];V ′), satisfying condition (5.42).
Let {yn

0} ⊂ D(L) and { fn} ⊂W 1,2([0,T ];H) be such that

yn
0 → y0 strongly in H, weakly in V ,

fn → f strongly in L2(0,T ;V ′),
d
dt

fn → d f
dt

strongly in L2(0,T ;V ′).

Let yn ∈W 1,∞([0,T ];H) be the corresponding solution to the Cauchy problem




dyn

dt
(t)+Lyn(t) 3 fn(t), a.e. in (0,T ),

yn(0) = yn
0.

(5.44)

If we multiply (5.44) by yn− y0 and use condition (5.37), we get

1
2

d
dt
|yn(t)− y0|2 +ω‖yn(t)− y0‖2

≤ α|yn(t)− y0|2 +( fn(t)−ξ ,yn(t)− y0), a.e. t ∈ (0,T ),

(5.45)

where ξ ∈ Ay0 +∂ϕ(y0)⊂V ′. After some calculation involving Gronwall’s lemma,
this yields

|yn(t)− y0|2 +
∫ t

0
‖yn(s)− y0‖2ds≤C, ∀n ∈ N, t ∈ [0,T ]. (5.46)

Now, we use the monotonicity of ∂ϕ along with condition (5.37) to get by (5.44)
that
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1
2

d
dt
|yn(t)− ym(t)|2 +ω‖yn(t)− ym(t)‖2

≤ α |yn(t)− ym(t)|2 +‖ fn(t)− fm(t)‖∗‖yn(t)− ym(t)‖, a.e. t ∈ (0,T ).

Integrating on (0, t), and using Gronwall’s lemma, we obtain the inequality

|yn(t)− ym(t)|2 +
∫ T

0
‖yn(t)− ym(t)‖2dt

≤C
(
|yn

0− ym
0 |2 +

∫ t

0
‖ fn(t)− fm(t)‖2dt

)
.

Thus, there is y ∈C([0,T ];H)∩L2(0,T ;V ) such that

yn → y in C([0,T ];H)∩L2(0,T ;V ). (5.47)

Now, again using equation (5.44), we get

1
2

d
dt
|yn(t +h)− yn(t)|2 +ω‖yn(t +h)− yn(t)‖2

≤ α|yn(t +h)− yn(t)|2 +‖ fn(t +h)− fn(t)‖∗‖yn(t +h)− yn(t)‖,

for all t,h ∈ (0,T ) such that t +h ∈ (0,T ). This yields

|yn(t +h)− yn|2 +
∫ T−h

0
‖yn(t +h)− yn(t)‖2dt

≤C
(
|yn(h)− yn

0|2 +
∫ T−h

0
‖ fn(t +h)− fn(t)‖2

∗dt
)

and, letting n tend to +∞,

|y(t +h)− y(t)|2 +
∫ T−h

0
‖y(t +h)− y(t)‖2dt

≤C
(
|y(h)− y0|2 +

∫ T−h

0
‖ f (t +h)− f (t)‖2

∗dt
)

,

∀t ∈ [0,T −h].

(5.48)

Next, by (5.45) we see that, if ξ ∈ Ay0 +∂ϕ(y0) is such that f (0)−ξ ∈ H, then we
have

1
2

d
dt
|yn(t)− y0|2 +ω‖yn(t)− y0‖2

≤ α|yn(t)− y0|2 +‖ fn(t)− fn(0)‖∗‖yn(t)− yn
0‖+ | fn(0)−ξ | |yn(t)− yn

0|.

Integrating and letting n→ ∞, we get by the Gronwall inequality
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|y(t)− y0| ≤C
(∫ t

0
‖ f (s)− f (0)‖∗ds+ | f (0)−ξ |t

)
, ∀t ∈ [0,T ].

This yields, eventually with a new positive constant C,

|y(t)− y0| ≤Ct, ∀t ∈ [0,T ].

Along with (5.48), the latter inequality implies that y is H-valued, absolutely conti-
nuous on [0,T ], and

|y′(t)|2+
∫ t

0
‖y′(t)‖2dt ≤C

(
|y0|2+

∫ T

0
‖ f ′(t)‖2

∗dt +1
)

, a.e. t∈(0,T ),

where y′ = dy/dt, f ′ = d f /dt. Hence, y ∈W 1,∞([0,T ];H)∩W 1,2([0,T ];V ).
Let us show now that y satisfies equation (5.38) (equivalently, (5.39)). By (5.44),

we have

1
2

d
dt
|yn(t)− z|2 ≤ ( fn(t)−αyn(t)−η ,yn(t)− z), a.e. t ∈ (0,T ),

where z ∈ D(L) and η ∈ Lz. This yields

1
2

(|yn(t + ε)− z|2−|yn(t)− z|2 ≤
∫ t+ε

t
( fn(s)+αyn(s)−η ,yn(s)− z))ds

and, letting n→ ∞,

1
2

(|y(t + ε)− z|2−|y(t)− z|2)≤
∫ t+ε

t
( f (s)+αy(s)−η ,y(s)− z)ds.

Finally, this yields

(y(t + ε)− y(t),y(t)− z)≤
∫ t+ε

t
( f (s)+αy(s)−η ,y(s)− z)ds.

Because y is, a.e., H-differentiable on (0,T ), we get

(y′(t)−αy(t)+η− f (t),y(t)− z)≤ 0, a.e. t ∈ (0,T ),

for all [z,η ] ∈ L. Now, because L is maximal monotone in H×H, we conclude that

f (t) ∈ y′(t)+Ly(t), a.e. t ∈ (0,T ),

as desired.
Now, if (yi

0, fi), i = 1,2, satisfy condition (5.42) and the yi are the corresponding
solutions to equation (5.39), by assumption (5.37) it follows that
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|y1(t)− y2(t)|2 +
∫ T

0
‖y1(t)− y2(t)‖2dt

≤C
(
|y1

0− y2
0|2 +

∫ T

0
‖ f1(t)− f2(t)‖2

∗dt
)

, ∀t ∈ [0,T ].

Now, assume that f ∈W 1,2([0,T ];V ′) and y0 ∈D(ϕ). Then, as seen earlier, we may
rewrite equation (5.39) as

{
y′(t)+∂ϕα(y(t))−αy(t) 3 f (t), a.e. t ∈ (0,T ),

y(0) = y0,
(5.49)

where ϕα : H →R is defined by (5.43). For f = fn and y0 = yn
0, y = yn, we have the

estimate

|y′n(t)|2 +
d
dt

ϕα(yn(t))− α
2

d
dt
|yn(t)|2 ≤ ( fn(t),y′n(t)), a.e. t ∈ (0,T ).

This yields

∫ T

0
|y′n(t)|2dt+ϕα(yn(t))≤ ( fn(0),y0

n)+
∫ T

0
‖ f ′n(t)‖∗‖yn(t)‖dt−α

2
|y0

n|2.

Finally,

∫ T

0
|y′n(t)|2dt +‖yn(t)‖2 ≤C(‖ fn‖W 1,2([0,T ];V ′) + |y0

n|2)≤C.

Then, arguing as before, we see that the function y given by (5.47) belongs to
W 1,2([0,T ];H)∩L∞(0,T ;V ) and is a solution to equation (5.38).

Because y ∈ C([0,T ];H)∩L∞(0,T ;V ), it is readily seen that y is weakly conti-
nuous from [0,T ] to V .

If f ∈ L∞(0,T ;H) and y0 ∈D(ϕα), we may apply Theorem 5.1 to equation (5.49)
to arrive at the same result. ¤

Theorem 5.2. Let y0 ∈ K and f ∈W 1,2([0,T ];V ′) be given such that

( f (0)−Ay0−ξ0,y0− v)≥ 0, ∀v ∈ K, (5.50)

for some ξ0 ∈ H.
Then, (5.41) has a unique solution y ∈W 1,∞([0,T ];H)∩W 1,2([0,T ];V ).
If y0 ∈ K and f ∈ W 1,2([0,T ];V ′), then system (5.41) has a unique solution

y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ). If f ∈ L2(0,T ;H) and y0 ∈ K, then (5.41) has
a unique solution y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ). Assume in addition that

(Ay,y)≥ ω‖y‖2, ∀y ∈V, (5.51)

for some ω > 0, and that there is h ∈ H such that
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(I + εAH)−1(y+ εh) ∈ K, ∀ε > 0, ∀y ∈ K. (5.52)

Then, Ay ∈ L2(0,T ;H).

Proof. The first part of the theorem is an immediate consequence of Theorem 5.1.
Now, assume that f ∈ L2(0,T ;H), y0 ∈ K, and conditions (5.51) and (5.52) hold.
Let y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ) be the solution to (5.41). If in (5.41) we take
z = (I + εAH)−1(y+ εh) (we recall that AHy = Ay∩H), we get

(y′(t)+A(t),Aε(t)− (I + εAH)−1h)

≤ ( f (t),Aε y(t)− (I + εAH)−1h), a.e. t ∈ (0,T ),

where Aε = A(I +εAH)−1 = ε−1(I− (I +εAH)−1). Because, by monotonicity of A,

(Ay,Aε y)≥ |Aε y|2, ∀y ∈ D(AH) = {y; Ay ∈ H}

and
1
2

d
dt

(Aε y(t),y(t)) = (y′(t),Aε(t)), a.e. t ∈ (0,T ),

we get

(Aε y(t),y(t))+
∫ t

0
|Aε y(s)|2ds

≤ (Aε y0,y0)+2
∫ t

0
(Aε y(s)− (I + εAH)−1 f (s),h)ds

+
∫ t

0
| f (s)|2ds+2(y(t)− y0,(I + εAH)−1h), a.e. t ∈ (0,T ).

Hence, ∫ T

0
|Aε y(t)|2dt +(Aε(t),y(t))≤C, ∀ε > 0, t ∈ [0,T ],

and, by Proposition 2.3, we conclude that Ay ∈ L2(0,T ;H), as claimed. ¤

Now, we prove a variant of Theorem 5.1 in the case where ϕ : V → R is
lower semicontinuous on H. (It is easily seen that this happens, for instance, if
ϕ(u)/‖u‖→+∞ as ‖u‖→ ∞.

Proposition 5.10. Let A : V →V ′ be a linear, continuous, symmetric operator satis-
fying condition (5.37) and let ϕ : H →R be a lower semicontinuous convex function.
Furthermore, assume that there is C independent of ε such that either

(Ay,∇ϕε(y))≥−C(1+ |∇ϕε(y)|)(1+ |y|), ∀y ∈ D(AH), (5.53)

or
ϕ((I + εAH)−1(y+ εh))≤ ϕ(y)+C, ∀ε > 0, ∀y ∈ H, (5.54)

for some h ∈ H, where Aα = αI +AH .
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Then, for every y0 ∈ D(ϕ)∩V and every f ∈ L2(0,T ;H), problem (5.41) has
a unique solution y ∈W 1,2((0,T ];H)∩C([0,T ];H) such that t1/2y′ ∈ L2(0,T ;H),
t1/2Ay ∈ L2(0,T ;H). If y0 ∈ D(ϕ)∩V , then y ∈W 1,2([0,T ];H)∩C([0,T ];V ). Fi-
nally, if y0 ∈ D(AH)∩D(∂ϕ) and f ∈W 1,1([0,T ];H), then y ∈W 1,∞([0,T ];H).

Here, ϕε is the regularization of ϕ .

Proof. As seen previously, the operator

Aα y = αy+Ay, ∀y ∈ D(Aα) = D(AH),

is maximal monotone in H×H. Then, by Theorem 2.6 (if condition (5.53) holds)
and, respectively, Theorem 2.1 (under assumption (5.54)), Aα + ∂ϕ is maximal
monotone in H×H and

|Aα y| ≤C(|(Aα +∂ϕ)0(y)|+ |y|+1), ∀y ∈ D(AH)∩D(∂ϕ).

Moreover, Aα +∂ϕ = ∂ϕα , where (see (5.43))

ϕα(y) =
1
2

(Ay,y)+ϕ(y)+
α
2
|y|2, ∀y ∈V,

and writing equation (5.39) as

y′+∂ϕα(y)−αy 3 f , a.e. in (0,T ),

y(0) = y0,

it follows by Theorem 4.1 that there is a strong solution y to equation (5.43) satis-
fying the conditions of the theorem. Note, for instance, that if y0 ∈ D(ϕ)∩V , then
y ∈W 1,2([0,T ];H) and ϕα(y) ∈W 1,1([0,T ]). Because y is continuous from [0,T ]
to H and bounded in V , this implies that y is weakly continuous from [0,T ] to V .
Now, because t → ϕα(y(t)) is continuous and ϕ : H → R is lower semicontinuous,
we have

lim
tn→t

(Ay(tn),y(tn))≤ (Ay(t),y(t)), ∀t ∈ [0,T ],

and this implies that y ∈C([0,T ];V ), as claimed. ¤

Corollary 5.1. Let A : V → V ′ be a linear, continuous, and symmetric operator sa-
tisfying condition (5.37) and let K be a closed convex subset of H with

(I + εAα)−1(y+ εh) ∈ K, ∀ε > 0, ∀y ∈ K, (5.55)

for some h ∈H. Then, for every y0 ∈ K and f ∈ L2(0,T ;H), the variational inequa-
lity (5.41) has a unique solution

y ∈W 1,2([0,T ];H)∩C([0,T ];V )∩L2(0,T ;D(AH)).

Moreover, one has
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dy
dt

(t)+(AHy(t)− f (t)−NK(y(t)))0 = 0, a.e. t ∈ (0,T ),

where NK(y)⊂ L2(Ω) is the normal cone at K in y.

The parabolic variational inequalities represent a rigorous and efficient way to
treat dynamic diffusion problems with a free or moving boundary. As an example,
consider the obstacle parabolic problem





∂y
∂ t
−∆y = f in {(x, t) ∈ Q; y(x, t) > ψ(x)},

∂y
∂ t
−∆y≥ f in Q = Ω × (0,T ),

y(x, t)≥ ψ(x) ∀(x, t) ∈ Q,

α1y+α2
∂y
∂ν

= 0 on Σ = ∂Ω × (0,T ),

y(x,0) = y0(x) x ∈Ω ,

(5.56)

where Ω is an open bounded subset of RN with smooth boundary (of class C1,1, for
instance), ψ ∈ H2(Ω), and α1,α2 ≥ 0, α1 +α2 > 0.

This is a problem of the form (5.41), where

H = L2(Ω), V = H1(Ω),

and A ∈ L(V,V ′) is defined by

(Ay,z) =
∫

Ω
∇y ·∇zdx+

α1

α2

∫

∂Ω
yzdσ , ∀y,z ∈ H1(Ω), (5.57)

if α2 6= 0, or

(Ay,z) =
∫

Ω
∇y ·∇z dx, ∀y,z ∈ H1

0 (Ω), (5.58)

if α2 = 0. (In this case, V = H1
0 (Ω), V ′ = H−1(Ω).)

The set K ⊂V is given by

K = {y ∈ H1(Ω); y(x)≥ ψ(x), a.e. x ∈Ω}, (5.59)

and condition (5.55) is satisfied if

α1ψ +α2
∂ψ
∂ν

≤ 0, a.e. on ∂Ω . (5.60)

Note also that AH : D(AH)⊂ L2(Ω)→ L2(Ω) is defined by

AHy = −∆y, a.e. in Ω , ∀y ∈ D(AH),

D(AH) =
{

y ∈ H2(Ω); α1y+α2
∂y
∂ν

= 0, a.e. on ∂Ω
}

,
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and
‖y‖H2(Ω) ≤C(‖AHy‖L2(Ω) +‖y‖L2(Ω)), ∀y ∈ D(AH),

Then, we may apply Corollary 5.1 to get the following.

Corollary 5.2. Let f ∈ L2(Q), y0 ∈ H1(Ω) (y0 ∈ H1
0 (Ω) if α2 = 0) be such that

y0 ≥ ψ , a.e. in Ω . Assume also that ψ ∈ H1(Ω) satisfies condition (5.60). Then,
problem (5.56) has a unique solution

y ∈W 1,2([0,T ];L2(Ω))∩L2(0,T ;H2(Ω))∩C([0,T ];H1
0 (Ω)).

Noting that

NK(y) = {v ∈ L2(Ω); v(x) ∈ β (y(x)−ψ(x)), a.e. x ∈Ω},

where β : R→ 2R is given by

β (r) =





0 r > 0,

R− r = 0,

/0 r < 0,

it follows by Corollary 5.1 that the solution y satisfies the equation

d
dt

y(t)+(−∆y(t)+β (y(t)−ψ)− f (t))0 = 0, a.e. t ∈ (0,T ).

Hence, the solution y to problem (5.56) given by Corollary 5.2 satisfies the system




∂
∂ t

y(x, t)−∆y(x, t)= f (x, t), a.e. in {(x, t) ∈ Q; y(x, t) > ψ(x)},
∂
∂ t

y(x, t)=max{ f (x, t)+∆ψ(x),0}, a.e. in {(x, t); y(x, t)=ψ(x)},
(5.61)

because y(·, t) ∈ H2(Ω) and so ∆y(x, t) = ∆ψ(x), a.e. in {y(x, t) = ψ(x)}.
It follows, also, that the solution y to the obstacle problem (5.56) is given by

y(t) = lim
ε→0

yε(t) in C([0,T ];L2(Ω)),

where yε is the solution to the penalized problem




∂y
∂ t
−∆y− 1

ε
(y−ψ)− = f in Q,

y(x,0) = y0(x) in Ω ,

α1y+α1
∂y
∂ν

= 0 on Σ .

(5.62)

Now, let us consider the obstacle problem (5.56) with nonhomogeneous boun-
dary conditions; that is,
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



∂y
∂ t
−∆y = f in {(x, t) ∈ Q; y(x, t) > ψ(x)},

∂ y
∂ t
−∆y≥ f , y≥ 0 in Q,

αy+
∂y
∂ν

= g on Σ1 = Γ1× (0,T ),

y = 0 on Σ2 = Γ2× (0,T ),

y(x,0) = y0(x) on Ω ,

(5.63)

where ∂Ω = Γ1∪Γ2, Γ1∩Γ2 = /0, and g ∈ L2(Σ1).
If we take

V = {y ∈ H1(Ω); y = 0 on Γ2},
define A : V →V ′ by

(Ay,z) =
∫

Ω
∇y ·∇z dx+α

∫

Γ1

yz dx, ∀y,z ∈V,

and f0 : [0,T ]→V ′ by

( f0(t),z) =
∫

Γ1

g(x, t)z(x)dx, ∀z ∈V,

we may write problem (5.63) as
(

dy
dt

(t)+Ay(t),y(t)− z
)
≤ (F(t),y(t)− z), ∀z ∈ K, a.e. t ∈ (0,T ),

y(0) = y0,

(5.64)

where F = f + f0 ∈ L2(0,T ;V ′) and K is defined by (5.59).
Equivalently,

∫

Ω

∂y
∂ t

(x, t)(y(x, t)− z(x))dx +
∫

Ω
∇y(x, t) ·∇(y(x, t)− z(x))dx

+ α
∫

Γ1

f (x, t)(y(x, t)− z(x))dx

≤
∫

Ω
f (x, t)(y(x, t)− z(x))dx

+
∫

Γ1

g(x, t)(y(x, t)− z(x))dx,

∀z ∈ K, t ∈ [0,T ].

(5.65)

Applying Theorem 5.2, we get the following.

Corollary 5.3. Let f ∈ W 1,2([0,T ];L2(Ω)), g ∈ W 1,2([0,T ];L2(Γ1)), and y0 ∈ K.
Then, problem (5.65) has a unique solution
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y ∈W 1,2([0,T ];V )∩Cw([0,T ];V ).

If, in addition,




∂y0

∂ν
+αy0 = g(x,0), a.e. on {x ∈ Γ1; y0(x) > ψ(x)},

∂ψ
∂ν

+αψ ≤ g(x,0), a.e. on {x ∈ Γ1; y0(x) = ψ(x)},
(5.66)

then y ∈W 1,2([0,T ];V )∩W 1,∞([0,T ];L2(Ω)).

(We note that condition (5.66) implies (5.50).)
It is readily seen that the solution y to (5.65) satisfies (5.63) in a certain genera-

lized sense. Indeed, assuming that the set E = {(x, t); y(x, t) > ψ(x)} is open and
taking z = y(x, t)±ρϕ in (5.65), where ϕ ∈C∞

0 (E) and ρ is sufficiently small, we
see that

∂y
∂ t
−∆y = f in D ′(E). (5.67)

It is also obvious that
∂y
∂ t
−∆y≥ f in D ′(Q). (5.68)

Regarding the boundary conditions, by (5.65), (5.67), and (5.68), it follows that

∂y
∂ν

+αy = g in D ′(E ∩Σ1),

respectively,
∂y
∂ν

+αy≥ g in D ′(Σ1).

In other words,




∂y
∂ν

+αy = g on {(x, t) ∈ Σ1; y(x, t) > ψ(x)},

∂ψ
∂ν

+αψ ≥ g on {(x, t) ∈ Σ1; y(x, t) = ψ(x)}.

Hence, if g satisfies the compatibility condition

∂ψ
∂ν

+αψ ≤ g on Σ1,

then the solution y to problem (5.65) satisfies the required boundary conditions
on Σ1.

Also in this case, the solution y given by Corollary 5.3 can be obtained as the
limit as ε → 0 of the solution yε to the equation
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



∂yε
∂ t

−∆yε +βε(yε −ψ) = f in Ω × (0,T ),

yε(x,0) = y0(x) in Ω ,

∂yε
∂ν

+αyε = g on Σ1, yε = 0 on Σ2,

(5.69)

where

βε(r) =−
(

1
ε

)
r−, ∀r ∈ R.

If Q+ = {(x, t) ∈ Q; y(x, t) > ψ(x)}, we may view y as the solution to the free
boundary problem





∂y
∂ t
−∆y = f in Q+,

y(x,0) = y0(x) in Ω ,

α1y+α2
∂y
∂ν

= 0 on Σ , y = ψ,
∂y
∂ν

=
∂ψ
∂ν

on ∂Q+(t),

(5.70)

where ∂Q+(t) is the boundary of the set Q+(t) = {x ∈Ω ; y(x, t) > ψ(x)}. We call
∂Q+(t) the moving boundary and ∂Q+ the free boundary of problem (5.70).

In problem (5.70), the noncoincidence set Q+ as well as the free boundary ∂Q+

is not known a priori and represents unknowns of the problem. In problem (5.41)
or (5.65), the free boundary does not appear explicitly, but in this formulation the
problem is nonlinear and multivalued.

Perhaps the best-known example of a parabolic free boundary problem is the
classical Stefan problem, which we briefly describe in what follows and which has
provided one of the principal motivations of the theory of parabolic variational in-
equalities.

The Stefan Problem

This problem describes the conduction of heat in a medium involving a phase
charge. To be more specific, consider a unit volume of ice Ω at temperature θ < 0.
If a uniform heat source of intensity F is applied, then the temperature increases at
rate E/C1 until it reaches the melting point θ = 0. Then, the temperature remains
at zero until ρ units of heat have been supplied to transform the ice into water (ρ is
the latent heat). After all the ice has melted the temperature begins to increase at the
rate h/C2 (C1 and C2 are specific heats of ice and water, respectively). During the
process, the variation of the internal energy e(t) is therefore given by

e(t) = C(θ(t))+ρH(θ(t)),

where
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C(θ) =

{
C1θ for θ ≤ 0,

C2θ for θ > 0,

and H is the Heaviside graph

H(θ) =





1 θ > 0,

[0,1] θ = 0,

0 θ < 0.

In other words, we have

e = γ(θ) =





C1θ if θ < 0,

[0,ρ] if θ = 0,

C2θ +ρ if θ > 0.

(5.71)

The function γ is called the enthalpy of the system.
Now, let Q = Ω×(0,∞) and denote by Q−,Q+,Q0 the regions of Q, where θ < 0,

θ > 0, and θ = 0, respectively. We set S+ = ∂Q+, S− = ∂Q−, and S = S+∪S−.
If θ = θ(x, t) is the temperature distribution in Q and q = q(x, t) the heat flux,

then, according to the Fourier law,

q(x, t) =−k∇θ(x, t), (5.72)

where k is the thermal conductivity. Consider the function

K(θ) =

{
k1θ if θ < 0,

k2θ if θ > 0,

where k1,k2 are the thermal conductivity of the ice and water, respectively.
If f is the external heat source, then the conservation law yields

d
dt

∫

Ω∗
e(x, t)dx =−

∫

∂Ω∗
(q(x, t),ν)dσ +

∫

Ω∗
F(x, t)dx

for any subdomain Ω ∗× (t1, t2)⊂Q (ν is the normal to ∂Ω ∗) if e and q are smooth.
Equivalently,

∫

Ω∗
et(x, t)dx+

∫

S∩Ω∗
[|e(t)|]V (t)dt

=−
∫

Ω∗
divq(x, t)dx+

∫

∂Ω∗∩S
[|(q(t),ν)|]dσ +

∫

Ω∗
F(x, t)dx,

where V (t) = −Nt‖Nt‖ is the true velocity of the interface S (N = (N1,N2) is the
unit normal to S) and [| · |] is the jump along S.

The previous inequality yields
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∂
∂ t

e(x, t)+divq(x, t) = F(x, t) in Q\S,

[|e(t)|]Nx +[|(q(t),Nt |] = 0 on S.

(5.73)

Taking into account equations (5.71)–(5.73), we get the system




C1
∂θ
∂ t
− k1∆θ = f in Q−,

C2
∂θ
∂ t
− k2∆θ = f in Q+,

(5.74)

{
(k2∇θ+− k1∇θ−) ·Nx = ρNt on S,

θ+ = θ− = 0 on S.
(5.75)

If we represent the interface S by the equation t = σ(x), then (5.75) reads
{

(k1∇θ+− k2∇θ−) ·∇σ =−ρ in S,

θ+ = θ− = 0.
(5.76)

The usual boundary and initial value conditions can be associated with equations
(5.74) and (5.76), for instance,

θ = 0 in ∂Ω × (0,T ), (5.77)

θ(x,0) = θ0(x) in Ω , (5.78)

or Neumann boundary conditions on ∂Ω .
This is the classical two-phase Stefan problem. Here, we first study with the

methods of variational inequalities a simplified model described by the one-phase
Stefan problem





∂θ
∂ t
−∆θ = 0 in Q+ = {(x, t) ∈ Q; σ(x) < t < T},

θ = 0 in Q− = {(x, t) ∈ Q; 0 < t < σ(x)},
∇x(x, t) ·∇σ(x) =−ρ on S = {(x, t); t = σ(x)},
θ = 0 in S∪Q−,

θ ≥ 0 in Q+.

(5.79)

These equations model the melting of a body of ice Ω ⊂ R3 maintained at θ 0C.
Therefore, assume that ∂Ω = Γ1 ∪Γ2, where Γ1 and Γ2 are disjoint and Γ1 is in
contact with a heating medium with temperature θ1; t = σ(x) is the equation of the
interface (moving boundary) St , which separates the liquid phase (water) and solid
(ice). Thus, to equations (5.79) we must add the boundary conditions
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



∂θ
∂ν

+α(θ −θ1) = 0 on Σ1 = Γ1× (0,T ),

θ = 0 on Σ2 = Γ2× (0,T )
(5.80)

and the initial value conditions

θ(x,0) = θ0(x) > 0, ∀x ∈Ω0, θ(x,0) = 0, ∀x ∈Ω \Ω0. (5.81)

There is a simple device due to G. Duvaut [21] that permits us to reduce problem
(5.79)–(5.81) to a parabolic variational inequality. To this end, consider the function

y(x, t) =





∫ t

σ(x)
θ(x,s)ds if x ∈Ω \Ω0, t > σ(x),

∫ t

0
θ(x,s)ds if x ∈Ω0, t ∈ [0,T ],

0 if (x, t) ∈ Q−,

(5.82)

and let

f0(x, t) =

{
−ρ if x ∈Ω \Ω0, 0 < t < T,

θ0(x) if x ∈Ω0, 0 < t < T.
(5.83)

Lemma 5.1. Let θ ∈ H1(Q) and σ ∈ H1(Ω). Then,

∂y
∂ t
−∆y = f0χ in D ′(Q), (5.84)

where χ is the characteristic function of Q+.

Proof. By (5.82), we have

∂y
∂ t

(ϕ) =
∫

Q+
θ(x, t)ϕ(x, t)dxdt, ∀ϕ ∈C∞

0 (Q).

On the other hand, we have

(yx,ϕ) = −y(ϕx)

= −
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕx(x, t)dt

∫ t

σ(x)
θ(x,s)ds

−
∫

Ω0

dx
∫ T

0
ϕx(x, t)dt

∫ t

0
θ(x,s)ds

= −
∫

Ω\Ω0

dxdiv
(∫ T

σ(x)
ϕ(x, t)dt

∫ t

σ(x)
θ(x,s)ds

)

=
∫

Ω\Ω0

dx
(∫ T

σ(x)
ϕ(x, t)dt

∫ t

σ(x)
θx(x,s)ds

)

−
∫

Ω0

dxdiv
(∫ T

0
ϕ(x, t)dt

∫ t

0
θ(x,s)ds

)
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=
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕ(x, t)dt

∫ t

σ(x)
θx(x,s)s

+
∫

Ω0

dx
∫ T

0
ϕ(x, t)dt

∫ t

σ(x)
θx(x,s)ds.

(Here, yx = ∇xy, ϕx = ∇xϕ.) This yields

∆y(ϕ) =−yx(ϕx) = −
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕx(x, t)dt ·

∫ T

σ(x)
θx(x,s)ds

−
∫

Ω0

dx
∫ T

0
ϕx(x, t)dt ·

∫ t

0
θx(x,s)ds

and, by the divergence formula, we get

∆y(ϕ) =
∫

Ω\Ω0

dx
∫ T

σ(x)
dt

(∫ t

σ(x)
∆θ(x,s)dsϕ(x, t)

)

+
∫

Ω0

ds
∫ T

0
dt

(∫ t

0
∆θ(x,s)dsϕ(x, t)

)
, ∀ϕ ∈C∞

0 (Q),

because ∇xθ(x,σ(x)) ·∇σ(x) = −ρ , ∀x ∈ Ω \Ω0. Then, by equations (5.79), we
see that

(
∂y
∂ t
−∆y

)
(ϕ) = −

∫

Ω\Ω0

dx
∫

σ(x)
dt

(∫ t

σ(x)
θt(x,s)ds−θ(s, t)

)
ϕ(x, t)

−
∫

Ω0

dx
∫ T

0
dt

(∫ t

0
θt(x,s)ds−θ(x, t)

)
ϕ(x, t)

−ρ
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕ(x, t)dt

=
∫

Q+
f0(x, t)ϕ(x, t)dxdt,

as claimed. ¤

By Lemma 5.1 we see that the function y satisfies the obstacle problem




y≥ 0,
∂y
∂ t
−∆y≥ f0 in Q,

∂y
∂ t
−∆y = f0 in {(x, t) ∈ Q; y(x, t) > 0},

y = 0 in {(x, t) ∈ Q; σ(x) > t},

(5.85)

and the boundary value conditions

∂
∂ν

∂y
∂ t

=−α
(

∂y
∂ t
−θ1

)
on Σ1,

∂y
∂ t

= 0 on Σ2, (5.86)
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(see (5.80) and (5.82)). Then, by Corollary 5.2, we have the following.

Corollary 5.4. Let θ1 ∈ L2(Σ1) be given. Then, problem (5.85) and (5.86) has a
unique (generalized) solution y ∈W 1,∞([0,T ];L2(Ω))∩W 1,2([0,T ];H1(Ω)).

Keeping in mind that St = ∂{(x, t); y(x, t) = 0}, we can derive from Corollary
5.4 an existence result for the one-phase Stefan problem (5.79)–(5.81).

Other mathematical models for physical problems involving a free boundary such
as the oxygen diffusion in an absorbing tissue (Elliott and Ockendon [23]) or elec-
trochemical machining processes lead by similar devices to parabolic variational
inequalities of the same type. It should be mentioned also that dynamics of elasto-
plastic materials as well as the phase transition in systems composed of different
metals are better described by parabolic variational inequalities, eventually com-
bined with linear hyperbolic equations. This is the case for instance with Fremond’s
model of thermomechanical dynamics of shape memory delay. The phase transition
often manifests a hysteretic behavior due to irreversible changes in process dyna-
mics and the study of hypothesis models is another source of variational inequalities
although the hysteresis operator, in general, is not monotone in the sense described
above. However, some standard hysteresis equations (stop and play, for instance)
are expressed in terms of variational inequalities. (We refer to Visintin book’s [42]
for a treatment of these problems.)

5.3 The Porous Media Diffusion Equation

The nonlinear diffusion equation models the dynamic of density in a substance un-
dergoing diffusion described by Fick’s first law (or Darcy’s law). It also models
phase transition dynamics (the Stefan problem) or other physical processes that are
of diffusion type (heat propagation, filtration, or dynamics of biological groups).
Such an equation can be schematically written as





∂y
∂ t
−∆β (y) 3 f in Ω × (0,T ) = Q,

β (y) = 0 on ∂Ω × (0,T ) = Σ ,

y(x,0) = y0(x) in Ω ,

(5.87)

where Ω is a bounded and open subset of RN with smooth boundary, and β : R→ 2R

is a maximal monotone graph in R×R such that 0 ∈ D(β ).
The steady-state equation associated with (5.87) is just the stationary porous me-

dia equation studied in Sections 2.2 and 3.2.
The function y ∈ C([0,T ];L1(Ω)) is called a generalized solution to problem

(5.87) if
∫

Q
(yϕt +β (y)∆ϕ)dxdt +

∫

Q
f ϕ dxdt +

∫

Ω
y0ϕ(x,0)dx = 0 (5.88)
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for all ϕ ∈C2,1(Q) such that ϕ(x,T ) = 0 in Ω and ϕ = 0 on Σ .
Let us first briefly describe some specific diffusive-like problems that lead to

equations of this type.

1. The flow of gases in porous media. Let y be the density of a gas that flows
through a porous medium that occupies a domain Ω ⊂ R3 and let v̄ be the pore
velocity. If p denotes the pressure, we have p = p0yα for α ≥ 1. Then, the conser-
vation law equation

k1
∂y
∂ t

+div(y v̄) = 0

combined with Darcy’s law
γ v̄ =−k2∇p

(k1 is the porosity of the medium, k2 the permeability, and γ the viscosity) yields
the porous medium equation

∂y
∂ t
−δ∆yα+1 = 0 in Q, (5.89)

where
δ = k2 p0(k1(α +1)γ)−1.

Equation (5.89) is also relevant in the study of other mathematical models, such
as population dynamics. The case where −1 < α < 0 is that of fast diffusion pro-
cesses arising in physics of plasma. In particular, the case

β (x) =

{
logx for x > 0

−∞ for x≤ 0

emerges from the central limit approximation to Carleman’s model of Boltzman
equations. Nonlinear diffusion equations of the form (5.87) perturbed by a term of
transport; that is,

∂y
∂ t
−∆β (y)+divK(y) 3 f

with appropriate boundary conditions arise in the dynamics of underground water
flows and are known in the literature as the Richards equation. The special case

β (y) =





β0(y) for y < ys,

[β0(ys),+∞) for y = ys,

/0 for y > ys,

where β0 : R → R is a continuous and monotonically increasing function, models
the dynamics of saturated–unsaturated underground water flows. The treatment of
such an equation with methods of nonlinear accretive differential equations is given
in Marinoschi [34, 35].
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2. Two-phase Stefan problem. We come back to the two-phase Stefan problem
(5.74), (5.75), (5.77), (5.78); that is





C1θt − k1∆θ = f in Q−{(x, t); θ(x, t) < 0}
C2θt − k2∆θ = f in Q+ = {(x, t); θ(x, t) > 0},
(k1∇θ+− k2∇θ−) ·∇σ(x) =−ρ on S,

(5.90)

where t = σ(x) is the equation of the interface S.
We may write system (5.90) as

∂
∂ t

γ(θ)−∆K(θ) 3 f in Q, (5.91)

where γ : R→ 2R is given by (5.71). Indeed, for every test function ϕ ∈C∞
0 (Q) we

have
(

∂
∂ t

γ(θ)−∆K(θ)
)

(ϕ)

=−
∫

Q
(γ(θ)ϕt +K(θ)∆ϕ)dxdt

= C1

∫

Q−
θtϕ dxdt +C2

∫

Q+
θt dxdt− k1

∫

Q−
ϕ∆θ dxdt

−k2

∫

Q+
ϕ∆θ dxdt +

∫

S

(
k2

∂θ+

∂ν
− k1

∂θ−

∂ν

)
ϕ ds−ρ

∫

Q+
ϕtdxdt

=
∫

Q−
(C1θt − k1∆θ)ϕ dxdt +

∫

Q+
(C2θt − k2∆θ)ϕ dxdt

+
∫

S
((k2∇θ+− k1∇θ−) ·∇σ +ρ)dx = 0.

(5.92)

If we denote by β the function γ−1K; that is,

β (r) =





k1C−1
1 r for r < 0,

0 for 0≤ r < ρ,

k2C−1
2 (r−ρ) for r ≥ ρ ,

(5.93)

we may write (5.91) in the form (5.87).
Problem (5.87) can be treated as a nonlinear accretive Cauchy problem in two

functional spaces: H−1(Ω) and L1(Ω).

3. The Hilbert space approach. In the space H−1(Ω), consider the operator

A = { [y,w] ∈ (H−1(Ω)∩L1(Ω))×H−1(Ω); w =−∆v,

v ∈ H1
0 (Ω), v(x) ∈ β (y(x)), a.e. x ∈Ω}.

We assume that
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β−1 is everywhere defined and bounded on the bounded subsets of R. (5.94)

Then, by Proposition 2.10, A is maximal monotone in H−1(Ω)×H−1(Ω). More
precisely, A = ∂ϕ , where ϕ : H−1(Ω)→ R is defined by

ϕ(y) =





∫

Ω
j(y(x))dx if y ∈ L1(Ω)∩H−1(Ω), j(y) ∈ L1(Ω),

+∞ otherwise,

where ∂ j = β .

Then, we may write problem (5.87) as

dy
dt

+Ay 3 f in (0,T ),

y(0) = y0,
(5.95)

and so, by Theorem 4.11, we obtain the following existence result.

Theorem 5.3. Let β be a maximal monotone graph in R×R satisfying condition
(5.94). Let f ∈ L1(0,T ;H−1(Ω)) and let y0 ∈H−1(Ω)∩L1(Ω) be such that y0(x)∈
D(β ), a.e. x ∈Ω . Then, there is a unique pair of functions y ∈C([0,T ];H−1(Ω))∩
W 1,2(0,T ;H−1(Ω)) and v : Q→ R, such that v(t) ∈ H1

0 (Ω), ∀t ∈ [0,T ] satisfying




∂y
∂ t
−∆v = f , a.e. in Q = Ω × (0,T ),

v(x, t) ∈ β (y(x, t)), a.e. (x, t) ∈ Q,

y(x,0) = y0(x), a.e. in Ω .

(5.96)

t1/2 ∂y
∂ t
∈ L2(0,T ;H−1(Ω)), t1/2v ∈ L2(0,T ;H1

0 (Ω)). (5.97)

Moreover, if j(y0) ∈ L1(Ω), then

∂y
∂ t
∈ L2(0,T ;H−1(Ω)), v ∈ L2(0,T ;H1

0 (Ω)). (5.98)

If y0 ∈ D(A) and f ∈W 1,1([0,T ];H−1(Ω)), then

∂y
∂ t
∈ L∞(0,T ;H−1(Ω)), v ∈ L∞(0,T ;H1

0 (Ω)). (5.99)

We note that the derivative ∂y/∂ t in (5.96) is the strong derivative dy/dt of the
function t → y(·, t) from [0,T ] into H−1(Ω), and it coincides with the derivative
∂y/∂ t in the sense of distributions on Q. It is readily seen that the solution y (see
Theorem 5.3) is a generalized solution to (5.87) in the sense of definition (5.88).

4. The L1-approach. In the space X = L1(Ω), consider the operator
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A = {[y,w] ∈ L1(Ω)×L1(Ω); w =−∆v,

v ∈ W 1,1
0 (Ω), v(x) ∈ β (y(x)), a.e. x ∈Ω}.

(5.100)

We have seen earlier (Theorem 3.5) that A is m-accretive in L1(Ω)×L1(Ω). Then,
applying the general existence Theorem 4.2, we obtain the following.

Proposition 5.11. Let β be a maximal monotone graph in R×R such that 0∈ β (0).
Then, for every f ∈ L1(0,T ;L1(Ω)) and every y0 ∈ L1(Ω), such that y0(x) ∈ D(β ),
a.e. x ∈Ω , the Cauchy problem





dy
dt

(t)+Ay(t) 3 f (t) in (0,T ),

y(0) = y0,
(5.101)

has a unique mild solution y ∈C([0,T ];L1(Ω)).

We note that D(A) = {y0 ∈ L1(Ω); y0(x) ∈ D(β ), a.e. x ∈Ω}.
Indeed, (1 + εβ )−1y0 → y0 in L1(Ω) as ε → 0, if y0 ∈ D(β ), a.e. x ∈ Ω , and

(I + εA)−1y0 → y0 if j(y0) ∈ L1(Ω).
Proposition 5.11 amounts to saying that

y(t) = lim
ε→0

yε(t) in L1(Ω), uniformly on [0,T ],

where yε is the solution to the difference equations




1
ε

(yε(t)− yε(t− ε))−∆vε(t) = fε(t) in Ω × (0,T ),

vε(x, t) ∈ β (yε(x, t)), a.e. in Ω × (0,T ),

vε = 0 on ∂Ω × (0,T ),

yε(t) = y0 for t ≤ ε, x ∈Ω .

(5.102)

The function t → vε(t) ∈W 1,1
0 (Ω) is piecewise constant on [0,T ] and fε(t) = fi,

∀t ∈ [iε,(i+1)ε] is a piecewise constant approximation of f : [0,T ]→ L1(Ω).
By (5.102), it is readily seen that y is a generalized solution to problem (5.87).

In particular, it follows by Proposition 5.11 that the operator A defined by (5.100)
generates a semigroup of nonlinear contractions S(t) : D(A) → D(A). This semi-
group is not differentiable in L1(Ω), but in some special situations it has regularity
properties comparable with those of the semigroup generated by the Laplace ope-
rator on L2(Ω) under Dirichlet boundary conditions. In fact, we have the following
smoothing effect of nonlinear semigroup S(t) with respect to the initial data.

Theorem 5.4. Let β ∈ C1(R \ {0})∩C(R) be a monotone function satisfying the
conditions

β (0) = 0, β ′(r)≥C|r|α−1, ∀r 6= 0, (5.103)

where α > 0 if N ≤ 2 and α > (N−2)/N if N ≥ 3. Then, S(t)(L1(Ω))⊂ L∞(Ω) for
every t > 0,
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‖S(t)y0‖L∞(Ω) ≤Ct−(N/(Nα+2−N))‖y0‖2/(2+N(α−1))
L1(Ω) , ∀t > 0, (5.104)

and S(t)(Lp(Ω))⊂ Lp(Ω) for all t > 0 and 1≤ p < ∞.

Proof. First, we establish the estimates

‖(I +λA)−1 f‖p
p + Cλ

(∫

Ω
|(I +λA)−1 f |((p+α−1)N)/(N−2)dx

)(N−2)/N

≤ ‖ f‖p
p, ∀ f ∈ Lp(Ω), λ > 0,

(5.105)

for N > 2, and

|(I +λA)−1 f‖p +Cλ
(∫

Ω
|(I +λA)−1 f |(p+1−α)qdx

)1/q

≤
∫

Ω
| f |pdx,

∀q>1,

(5.106)

if N = 2. Here ‖ · ‖p is the Lp norm in Ω , C is independent of p ≥ 1, and A is the
operator defined by (5.100).

We set u = (I +λA)−1 f ; that is,
{

u−λ∆β (u) = f in Ω ,

β (u) = 0 on ∂Ω .
(5.107)

We recall that β (u) ∈W 1,q
0 (Ω), where 1 < q < N/(N−2) (see Corollary 3.1).

Multiplying equation (5.107) by |u|p−1 signu and integrating on Ω , we get
∫

Ω
|u|pdx+λ p(p−1)

∫

Ω
β ′(u)|u|p−2|∇u|2dx≤

∫

Ω
| f |pdx.

Now, using the identity

|u|p+α−3|∇u|2 =
4

(p+α−1)2

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2
, a.e. in Ω

and condition (5.103), we get
∫

Ω
|u|pdx+

4λ p(p−1)
(p+α−1)2

∫

Ω

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2

dx≤C
∫

Ω
| f |pdx. (5.108)

On the other hand, by the Sobolev embedding theorem

∫

Ω

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2

dx≤C
(∫

Ω
|u|(p+α−1)N/(N−2)dx

)(N−2)/N

if N > 2,

and
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∫

Ω

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2

dx≤C
(∫

Ω
|u|(p+α−1)/qdx

)1/q

, ∀q > 1,

for N = 2. Then, substituting these inequalities into (5.108), we get (5.105) and
(5.106), respectively.

We set Jλ = (I +λA)−1 and

ϕ(u) = ‖u‖p
p, ψ(u) = C‖u‖p+α−1

(p+α−1)N/(N−2).

Then, inequality (5.105) can be written as

ϕ(Jλ f )+λψ(Jλ f )≤ ϕ( f ), ∀ f ∈ Lp(Ω).

This yields
ϕ(Jk

λ f )+λψ(Jk
λ f ) = ϕ(Jk−1

λ ), ∀k.

Summing these equations from k = 1 to k = n, and taking λ = t/n, yields

ϕ(Jn
t/n f )+

n

∑
k=1

1
n

ψ(Jk
t/n f ) = ϕ( f ).

Recalling that, by Theorem 4.3, Jn
t/n f → S(t) for n→ ∞, the latter equation implies

that
ϕ(S(t) f )+

∫ t

0
ψ(S(τ) f )dτ = ϕ( f ), ∀t ≥ 0. (5.109)

In particular, it follows that the function t → ϕ(S(t) f ) is decreasing and so is
t → ψ(S(t) f ). Then, by (5.109), we see that ϕ(S(t) f )+ tψ(S(t) f )≤ ϕ( f ), ∀t > 0;
that is,

‖S(t) f‖p
p +Ct‖S(t) f‖p+α−1

(p+α−1)N/(N−2) ≤ ‖ f‖p
p, ∀t > 0, (5.110)

where C is independent of p and f .
Let pn be inductively defined by

pn+1 = (pn +α−1)
N

N−2
.

Then, by (5.110), we see that

‖S(tn+1) f‖(N/(N−2))pn+1
pn+1 ≤ ‖S(tn) f‖pn

pn

C(tn+1− tn)
,

where t0 = 0 and tn+1 > tn. Choosing tn+1− tn = t/(2n+1), we get after some calcu-
lation that

limsup
n→∞

‖S(t) f‖((N−2)/N)npn+1
pn+1 ≤C‖ f‖p0

(
2
t

)µ
, ∀t > 0,
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where µ = N/2, because pn is given by

pn =
(

N
N−2

)n

p0 +
Nα

2(N−2)

((
N

N−2

)n

−1
)

(here, we have used the fact that α > (N−2)/N), we get the final estimate

‖S(t) f‖∞ ≤C‖ f‖2p0/(2p0+N(α−1))
p0 t−(N/(2p0+N(α−1))), ∀p0 ≥ 1,

as claimed.
The case N = 2 follows similarly. Moreover, by inequality (5.105) and the expo-

nential formula defining S(t), it follows that

‖S(t) f‖p ≤ ‖ f‖p, ∀p ∈ Lp(Ω), t ≥ 0.

This completes the proof of Theorem 5.4. ¤

The Porous Media Equation in RN

Consider now equation (5.87) in Ω = RN , for N = 1,2,3 :




∂y
∂ t
−∆β (y) 3 f in RN × (0,T ),

y(0,x) = y0(x), x ∈ RN ,

β (y(t)),y(t) ∈ L1(Rn), ∀t ∈ [0,T ].

(5.111)

where ∂/∂ t and ∆ are taken in the sense of distributions on (0,T )×RN (see (5.88)).
We may rewrite equation (5.111) in the form (5.83) on the space X = L1(RN), where

Ay = {−∆w; w(x) ∈ β (y(x)), a.e. x ∈Ω , w,∆w ∈ L1(RN)}, ∀y ∈ D(A),

D(A) = {y ∈ L1(RN); ∃w ∈ L1(RN), ∆w ∈ L1(RN), w(x) ∈ β (y(x)), a.e. x ∈ RN},

where ∆w is taken in the sense of distributions. Here β is a maximal monotone
graph in R×R such that 0 ∈ β (0) and 0 ∈ intD(β ) if N = 1,2. Then, as shown
earlier in Theorem 3.7, A is m-accretive in L1(RN)×RN and so, by Theorem 4.1,
we obtain the following.

Proposition 5.12. Assume that f ∈ L1(0,T ;L1(RN)) and y0 ∈ L1(RN) is such that
∃w ∈ L1(RN), ∆w ∈ L1(RN), w(x) ∈ β (y0(x)), a.e. x ∈ RN. Then, problem (5.111)
has a unique mild solution y ∈C([0,T ];L1(RN)).

Remark 5.3. The continuity of solutions to (5.111) with respect to ϕ is studied in
the work of Bénilan and Crandall [9]. In this context, we mention also the work of
Brezis and Crandall [16] and Alikakos and Rostamian [1].
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Localization of Solutions to Porous Media Equations

A nice feature of solutions to the porous media equation are finite time extinction
for the fast diffusion equation (i.e., β (y) = yα , 0 < α < 1), and propagation with
finite velocity for the low diffusion equation (i.e., 1 < α < ∞). We refer the reader
to the work of Pazy [36] and to the recent book of Antontsev, Diaz, and Shmarev [2]
for detailed treatment of this phenomena. (See also the Vasquez monograph [40] for
a detailed study of the localization of solutions to a porous media equation.) Here,
we briefly discuss the extinction in finite time.

Proposition 5.13. Let y ∈C([0,∞);L1(Ω)∩H−1(Ω)) be the solution to equation

∂y
∂ t
−µ∆(|y|α signy) = 0 in Ω × (0,∞), (5.112)

where y0 ∈ H−1(Ω)∩ L1(Ω), µ > 0, 0 < α < 1 if N = 1,2 and 1/5 ≤ α < 1 if
N = 3. Then,

y(x, t) = 0 for t ≥ T (y0),

where

T (y0) =
|y0|1−α

−1

µγ1+α ·

If α = 0 and N = 1, then y(x, t) = 0 for t ≥ (|y0|−1)/µγ.

Proof. Assume first that N > 1. As seen earlier, the equation has a unique smooth
solution y ∈W 1,2([0,T ];H−1(Ω)) for each T > 0. Multiplying scalarly in H−1(Ω)
equation (5.112) by y and integrating on (0,T ), we obtain

1
2

d
dt
|y(t)|2−1 + µ

∫

Ω
|y(s,x)|α+1dx = 0, ∀t ≥ 0.

Now, by the Sobolev embedding theorem (see Theorem 1.4), we have

γ|y(s)|−1 ≤ |y(s)|Lα+1(Ω) for all α > 0 if N = 1,2 and for α ≥ N−2
N +2

if N ≥ 3.

(Here, | · |−1 is the H−1(Ω) norm.) This yields

d
dt
|y(t)|2−1 +2µγα+1|y(t)|α+1

−1 ≤ 0, ∀t ≥ 0,

and therefore
d
dt
|y(t)|1−α

−1 + µγ1+α ≤ 0, a.e. t > 0.

Hence,

|y(t)|−1 = 0 for t ≥ |y0|1−α
−1

µγ1+α .

If N = 1, then, multiplying scalarly in H−1(Ω) equation (5.112) by y(t), we get
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1
2

d
dt
|y(t)|2−1 + µ|y(t)|L1(Ω) ≤ 0, a.e. t > 0.

This yields (we have |y|L1(Ω) ≥ γ|y0|−1):

|y(t)|−1 + µγt ≤ |y0|−1, ∀t ≥ 0

and, therefore,

|y(t)|−1 = 0 for t ≥ |y0|−1

µγ
. ¤

Remark 5.4. The extinction in finite time is a significant nonlinear behavior of so-
lutions to fast diffusion porous media equations and this implies that the diffusion
process reaches its critical state (which is zero in this case) in finite time. The case
α = 0 models an important class of diffusion processes with self-organized critica-
lity, the so-called Bak’s sand-pile model.

5.4 The Phase Field System

Consider the parabolic system




∂
∂ t

θ(t,x)+ `
∂ϕ
∂ t

(t,x)− k∆θ(t,x) = f1(t,x), in Q = Ω × (0,T ),

∂
∂ t

ϕ(t,x)−α∆ϕ(t,x)−κ(ϕ(t,x)−ϕ3(t,x))

+δθ(t,x) = f2(t,x), in Q,

θ(0,x) = θ0(x), ϕ(0,x) = ϕ0(x), x ∈Ω ,

θ = 0, ϕ = 0, on ∂Ω × (0,T ),

(5.113)

where `,k,α ,κ ,δ are positive constants. This system, called in the literature the
phase-field system, was introduced as a model of a phase transition process in
physics and, in particular, the melting and solidification phenomena. (See Caginalp
[18].) In this latter case, θ = θ(t,x) is the temperature, whereas ϕ is the phase-field
transition function. The two-phase Stefan problem presented above can be viewed
as a particular limit case of this model. In fact, it can be obtained from the two-phase
Stefan model of phase transition by the following heuristic argument.

As seen earlier, the two-phase Stefan problem (5.74) and (5.75) can be rewrit-
ten as

∂
∂ t

γ(θ)−∆K(θ) = f in D ′(Ω × (0,T )),

where γ is the multivalued graph (5.71); that is, γ = C +ρH. Equivalently,

∂
∂ t

ϕ(θ)θ −∆K(θ) = f in D ′(Ω × (0,T )), (5.114)
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where ϕ : R→ R is given by the graph

ϕ(θ) =





C1 if θ < 0,

C2 +
ρ
θ

if θ > 0.
(5.115)

The idea behind Caginalp’s model of phase transition is to replace the multivalued
graph ϕ by a function ϕ = ϕ(t,x), called the phase function and equation (5.114) by

ϕ
∂θ
∂ t

+θ
∂ϕ
∂ t
−∆K(θ) = f . (5.116)

The phase function ϕ should be interpreted as a measure of phase transition and
more precisely as the proportion related to the first phase and the second one. For
instance, in the case of liquid–solid transition, one has, formally, ϕ ≥ 1 in the liquid
zone {(t,x); u(t,x) > 0} and ϕ < 0 in the solid zone {(t,x); u(t,x) < 0}. In general,
however, ϕ remains in an interval [ϕ∗,ϕ∗] which is determined by the specific phy-
sical model. This is the reason why ϕ is taken as the solution to a parabolic equation
of the Ginzburg–Landau type

∂ϕ
∂ t
−α∆ϕ−κ(ϕ−ϕ3)+δθ = f2, (5.117)

which is the basic mathematical model of phase transition. Equations (5.116) and
(5.117) lead, after further simplifications, to system (5.113).

As regards the existence in problem (5.113), we have the following.

Theorem 5.5. Assume that ϕ0,θ0 ∈ H1
0 (Ω)∩H2(Ω), Ω ⊂ RN , N = 1,2,3, and

that f1, f2 ∈W 1,2([0,T ];L2(Ω)). Then, there is a unique solution (θ ,ϕ) to system
(5.113) satisfying

(θ ,ϕ) ∈ (W 1,∞([0,T ];L2(Ω)))2∩ (L∞(0,T ;H1
0 (Ω)∩H2(Ω)))2. (5.118)

Proof. We set y = θ + `ϕ and reduce system (5.113) to




∂
∂ t

y− k∆y+ k`∆ϕ = f1 in Q,

∂
∂ t

ϕ−α∆ϕ−κ(ϕ−ϕ3)+δ (y− `ϕ) = f2 in Q,

y(0) = y0 = θ0 + `ϕ0, ϕ(0) = ϕ0 in Ω , y = ϕ = 0 on Σ .

(5.119)

In the space X = L2(Ω)×L2(Ω) consider the operator A : X → X ,

A

(
y

ϕ

)
=

(
−k∆y+ k`∆ϕ
−α∆ϕ−κ(ϕ−ϕ3)+δ (y− `ϕ)

)



5.4 The Phase Field System 237

with the domain D(A) = {(y,ϕ) ∈ (H2(Ω)∩H1
0 (Ω))2; ϕ ∈ L6(Ω)}. Then, system

(5.119) can be written as




d
dt

(
y

ϕ

)
+A

(
y

ϕ

)
=

(
f1

f2

)
, t ∈ (0,T ),

(
y

ϕ

)
(0) =

(
y0

ϕ0

)
.

(5.120)

In order to apply Theorem 4.4 to (5.120), we check that A is quasi-m-accretive in X .
To this aim we endow the space X = L2(Ω)×L2(Ω) with an equivalent Hilbertian
norm provided by the scalar product

〈(
y

ϕ

)
,

(
ỹ

ϕ̃

)〉
= a(y, ỹ)L2(Ω) +(ϕ , ϕ̃)L2(Ω),

where a = α/k`2. Then, as easily seen, we have
〈

A

(
y

ϕ

)
−A

(
y∗

ϕ∗

)
,

(
y

ϕ

)
−

(
y∗

ϕ∗

)〉

≥ η(‖∇(y− y∗)‖2
L2(Ω) +‖∇(ϕ−ϕ∗)‖2

L2(Ω))−ω(‖y− y∗‖2
L2(Ω) +‖ϕ−ϕ∗‖2

L2(Ω)),

for some ω,η > 0. Clearly, this implies that A is quasi-accretive; that is, A + ωI is
accretive.

Now, consider for g1,g2 ∈ L2(Ω) the equation

λ

(
y

ϕ

)
+A

(
y

ϕ

)
=

(
g1

g2

)
; (5.121)

that is,




λy− k∆y+ k`∆ϕ = g1 in Ω ,

λϕ−α∆ϕ−κ(ϕ−ϕ3)+δ (y− `ϕ) = g2,

y = ϕ = 0 on ∂Ω .

(5.122)

System (5.122) can be equivalently rewritten as
(

λy

(λ −κ− `δ )ϕ +δy

)
+A0

(
y

ϕ

)
+F

(
y

ϕ

)
=

(
q1

q2

)
, (5.123)

where F,A0 : L2(Ω)×L2(Ω)→ L2(Ω)×L2(Ω) are given by
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A0

(
y

ϕ

)
=

(
−k∆y+ k`∆ϕ
−α∆ϕ

)

D(A0) = (H2(Ω)×H1
0 (Ω))2

and

F

(
y

ϕ

)
=

(
0

κϕ3

)

D(F) = L2(Ω)×L6(Ω).

By the Lax–Milgram lemma (Lemma 1.3), it is easily seen that A0 is m-accretive
and coercive in X = L2(Ω)×L2(Ω). On the other hand, F is quasi-m-accretive and

〈
A0

(
y

ϕ

)
,F

(
y

ϕ

)〉
≥ 0, ∀

(
y

ϕ

)
∈ D(A0).

Hence, by Proposition 3.8, A0 +F is quasi-m-accretive and this implies that (5.123)
has a solution for λ sufficiently large. ¤
Remark 5.5. The liquid and solid regions in the case of a melting solidification pro-
blem are those that remain invariant by the flow t → (θ(t),ϕ(t)). This is one way
of determining in specific physical models the range interval [ϕ∗,ϕ∗] of phase-field
function ϕ . A more general nonlinear phase-field model is proposed and studied
by Bonetti, Colli, Fabrizio, and Gilardi [12] in connection with a phase transition
model proposed by Fremond [26]. More precisely, under our notation this system is
of the following form





∂u
∂ t
− ∂

∂ t
(G(ϕ))−λ∆ logu = f ,

µ
∂ϕ
∂ t
−ν∆ϕ +F ′(ϕ)+uG′(ϕ) = 0,

and the above functional treatment applies as well to this general problem.

5.5 The Equation of Conservation Laws

We consider here the Cauchy problem




∂y
∂ t

+
N

∑
i=1

∂
∂xi

ai(y) = 0 in RN ×R+,

y(x,0) = y0(x), x ∈ RN ,

(5.124)

where a = (a1, ...,aN) is a continuous map from R to RN satisfying the condition
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limsup
|r|→0

‖a(r)‖
|r| < ∞,

and y0 ∈ L1(RN).
This equation can be treated as a nonlinear Cauchy problem in the space

X = L1(RN). In fact, we have seen earlier (Theorem 3.8) that the first-order
differential operator y → ∑N

i=1 (∂/∂xi)ai(y) admits an m-accretive extension
A ⊂ L1(RN)×L1(RN) defined as the closure in L1(RN)×L1(RN) of the operator
A0 given by Definition 3.2.

Then, by Theorem, 4.3, the Cauchy problem




dy
dt

+Ay 3 0 in (0,+∞),

y(0) = y0,

has for every y0 ∈ D(A) a unique mild solution y(t) = S(t)y0 given by the exponen-
tial formula (4.17) or, equivalently,

y(t) = lim
ε→0

yε(t) uniformly on compact intervals,

where yε is the solution to difference equation

ε−1(yε(t)− yε(t− ε))+Ayε(t) = 0 for t > ε,

yε(t) = y0 for t < 0.
(5.125)

We call such a function y(t) = S(t)y0 a semigroup solution or mild solution to the
Cauchy problem (5.124).

We see in Theorem 5.6 below that this solution is in fact an entropy solution to
the equation of conservation laws.

Theorem 5.6. Let y = S(t)y0 be the semigroup solution to problem (5.124). Then,

(i) S(t)Lp(RN)⊂ Lp(RN) for all 1≤ p < ∞ and

‖S(t)y0‖Lp(RN) ≤ ‖y0‖Lp(RN ), ∀y0 ∈ D(A)∩Lp(RN). (5.126)

(ii) If y0 ∈ D(A)∩L∞(RN), then

∫ T

0

∫

RN

(|y(x, t)−k|ϕt(x, t)

+sign0(y(x, t)− k)(a(y(x, t))−a(k)) ·ϕx(x, t)
)
dxdt ≥ 0

(5.127)

for every ϕ ∈C∞
0 (RN × (0,T )) such that ϕ ≥ 0, and all k ∈ RN and T > 0.

Here ϕt = ∂ϕ/∂ t and ϕx = ∇xϕ .
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Inequality (5.127) is Kruzkhov’s [30] definition of entropy solution to the Cauchy
problem (5.124) and its exact significance is discussed below.

Proof of Theorem 5.6. Because, as seen in the proof of Theorem 3.8, (I + λA)−1

maps Lp(RN) into itself and

‖(I +λA)−1u‖Lp(RN) ≤ ‖u‖Lp(RN), ∀λ > 0, u ∈ Lp(RN) for 1≤ p≤ ∞,

we deduce (i) by the exponential formula (4.17).
To prove inequality (5.126), consider the solution y to equation (5.125), where

y0 ∈ L1(RN)∩L∞(RN) and A0 = A. (Recall that L1(RN)∩L∞(RN) ⊂ R(I + λA)−1

for all λ > 0.) Then, ‖yε(t)‖Lp(RN ) ≤ ‖y0‖Lp(RN) for p = 1,∞ and so, by Definition
3.2 and by (5.125), we have

∫

RN
(sign0(yε(x, t)− k)(a(yε(x, t))−a(k))) ·ϕx(x, t)

+ε(yε(x, t− ε)− yε(x, t))sign0(yε(x, t)− k)ϕ(x, t))dx≥ 0,

∀k ∈ R, ϕ ∈C∞
0 (RN × (0,T )), ϕ ≥ 0, t ∈ (0,T ).

(5.128)

On the other hand, we have

(yε(x, t− ε)− yε(x, t))sign0(yε(x, t)− k)

= (yε(x, t− ε)− k)sign0(yε(x, t)− k)− (yε(x, t)− k)sign0(yε(x, t)− k)

≤ zε(x, t− ε)− zε(x, t),

where zε(x, t) = |yε(x, t)− k|.
Substituting the latter into (5.128) and integrating on RN × [0,T ], we get

∫ T

0

∫

RN
(sign0(yε(x, t)− k)(a(yε(x, t))−a(k)) ·ϕx(x, t)

+ε−1(zε(x, t− ε)− zε(x, t))ϕ(x, t))dxdt ≥ 0.

This yields

∫ T

0

∫

RN
(sgn0(yε(x, t)− k)(a(ye(x, t))−a(k)) ·ϕx(x, t))dxdt

−ε−1
∫ ε

0

∫

RN
|yε(x, t)− k|ϕ(x, t)dxdt + ε−1

∫ T

0

∫

RN
zε(x, t)ϕ(x, t)dxdt

+ε−1
∫ T

T−ε

∫

RN
zε(x, t)(ϕ(x, t + ε)−ϕ(x, t))dxdt ≥ 0.

Now, letting ε tend to zero, we get (5.127) because yε(t)→ y(t) uniformly on [0,T ]
in L1(RN) and ε−1(zε(x, t− ε)− zε(x, t))→ |y(x, t)− k|. This completes the proof
of Theorem 5.5.
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As mentioned earlier, equation (5.124) is known in the literature as the equation
of conservation laws and has a large spectrum of applications in mechanics and was
extensively studied in recent years. A function η : R → R is called an entropy of
system (5.124) if there is a function q : R → Rn (the entropy flux associated with
entropy η) such that ∇2q≥ 0 and

∇q j(y) = ∇η(y) ·∇a j(y), ∀y ∈ RN , j = 1, ...,N.

(Such a pair (η ,q) is called an entropy pair.)
The bounded measurable function y : [0,T ]×RN → R is called an entropy solu-

tion to (5.124) if, for all convex entropy pairs (η ,q),

∂
∂ t

η(y(t,x))+divx q(y(t,x))≤ 0 in D ′(RN × (0,T ));

that is, ∫ T

0

∫

RN
(η(y(t,x))ϕt(t,x)+q(y(t,x)) ·ϕx(t,x))dtdx≥ 0

for all ϕ ∈C∞
0 ((0,T )×RN), ϕ ≥ 0.

If take η(y)≡ |y−k| and q(y)≡ sign0(y−k)(a(y)−a(k)), we see that y satisfies
equation (5.127). The existence and uniqueness of the entropy solution were proven
by S. Kruzkhov [30]. (See also Bénilan and Kruzkhov [11] for some recent results.)
Recalling that the resolvent (I + λA)−1 of the operator A can be approximated by
the family of approximating equation (3.74), one might deduce via the Trotter–Kato
Theorem 4.14 that the entropy solution y can also be obtained as the limit for ε → 0
to solutions yε to the parabolic nonlinear equation

∂y
∂ t
− ε∆y+(a(y))x = 0,

in RN which is related to Hopf’s viscosity solution approach to nonlinear conserva-
tion laws equations.

5.6 Semilinear Wave Equations

The linear wave equation perturbed by a nonlinear term in speed can be conveniently
written as a first order differential equation in an appropriate Hilbert space defined
below and treated so by the general existence theory developed in Chapter 4.

We are given two real Hilbert spaces V and H such that V ⊂ H ⊂ V ′ and the
inclusion mapping of V into H is continuous and densely defined. We have denoted
by V ′ the dual of V and H is identified with its own dual. As usual, we denote by ‖·‖
and | · | the norms of V and H, respectively, and by (·, ·) the duality pairing between
V and V ′ and the scalar product of H.

We consider the second-order Cauchy problem
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d2y
dt2 +Ay+B

(
dy
dt

)
3 f , y(0) = y0,

dy
dt

(0) = y1, (5.129)

where A is a linear continuous and symmetric operator from V to V ′ and B⊂V ×V ′
is maximal monotone operator. We assume further that

(Ay,y)+α|y|2 ≥ ω‖y‖2, ∀y ∈V, (5.130)

where ω > 0 and α ∈ R.
One principal motivation and model for equation (5.129) is the nonlinear hyper-

bolic boundary value problem




∂ 2y
∂ t2 −∆y+β

(
∂y
∂ t

)
3 f (x, t) in Ω × (0,T ),

y = 0 on ∂Ω × (0,T ),

y(x,0) = y0(x),
dy
dt

(x,0) = y1(x) in Ω ,

(5.131)

where β is a maximal monotone graph in R×R and Ω is a bounded open subset of
RN with a smooth boundary.

As regards problem (5.129), we have the following existence result.

Theorem 5.7. Let f ∈W 1,1([0,T ];H) and y0 ∈V , y1 ∈ D(B) be given such that

{Ay0 +By1}∩H 6= /0. (5.132)

Then, there is a unique function y ∈W 1,∞([0,T ];V )∩W 2,∞([0,T ];H) that satisfies




d+

dt

(
dy
dt

)
(t)+Ay(t)+B

(
d+

dt
y(t)

)
3 f (t), ∀t ∈ [0,T ],

y(0) = y0,
dy
dt

(0) = y1,

(5.133)

where d+/dt(dy/dt) is considered in the topology of H and (d+/dt)y in V .

Proof. Let X = V ×H be the Hilbert space with the scalar product

〈U1,U2〉= (Au1,u2)+α(u1,u2)+(v1,v2),

where U1 = [u1,v1], U2 = [u2,v2].
In the space X , define the operator A : D(A )⊂ X → X by





D(A ) = {[u,v] ∈V ×H;{Au+Bv}∩H 6= /0},

A [u,v] = [−v;{Au+Bv}∩H]+σ [u,v], [u,v] ∈ D(A ),
(5.134)

where



5.6 Semilinear Wave Equations 243

σ = sup
{

α(u,v)
((Au,u)+α|u|2 + |v|2) ; u ∈V, v ∈ H

}
.

We may write equation (5.129) as a first-order differential system





dy
dt
− z = 0 in (0,T ),

dy
dt

+Ay+Bz 3 f .

Equivalently,




dt
dt

U(t)+A U(t)−σU(t) 3 F(t), t ∈ (0,T ),

U(0) = U0,

(5.135)

where
U(t) = [y(t),z(t)], F(t) = [0, f (t)], U0 = [y0,y1].

It is easily seen that A is monotone in X×X . Let us show that it is maximal mono-
tone; that is, R(I +A ) = V ×H, where I is the unity operator in V ×H. To this end,
let [g,h] ∈ V ×H be arbitrarily given. Then, the equation U +A U 3 [g,h] can be
written as 




y− z+σy = g,

z+Ay+Bz+σz 3 h.

Substituting y = (1+σ)−1(z+g) in the second equation, we obtain

(1+σ)z+(1+σ)−1Az+Bz 3 h− (1+σ)−1Ag.

Under our assumptions, the operator z Γ−→ (1 + σ)z +(1−σ)−1Az is continuous,
positive, and coercive from V to V ′. Then, R(Γ +B) = V ′ (see Corollary 2.6, and so
the previous equation has a solution z ∈ D(B) and a fortiori [g,h] ∈ R(I +A ).

Then, the conclusions of Theorem 5.7 follow by Theorem 4.6 because there is a
unique solution U ∈W 1,∞([0,T ];V ×H) to problem (5.135) satisfying

d+

dt
U(t)+A U(t)−σU(t) 3 F(t), ∀t ∈ [0,T ) :





d+

dt
y(t) = z(t), ∀t ∈ [0,T ),

d+

dt
z(t)+Ay(t)+B(z(t)) 3 f (t), ∀t ∈ [0,T ),

where (d+/dt)y is in the topology of V whereas (d+/dt)z is in the topology of H. ¤
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The operator B that arises in equation (5.129) might be multivalued. Moreover,
if B = ∂ϕ , where ϕ : V → R is a lower semicontinuous convex function, problem
(5.129) reduces to a variational inequality of hyperbolic type.

In order to apply Theorem 5.7 to the hyperbolic problem (5.131), we take V =
H1

0 (Ω), H = L2(Ω), V ′ = H−1(Ω), A =−∆ , and B : H1
0 (Ω)→H−1(Ω) defined by

B = ∂ϕ , where ϕ : H1
0 (Ω)→ R is the function

ϕ(y) =
∫

Ω
j(y(x))dx, ∀y ∈ H1

0 (Ω), β = ∂ j. (5.136)

The operator B is an extension of the operator (B0y)(x) = {w ∈ L2(Ω); w(x) ∈
β (y(x)), a.e. x ∈Ω}, from H1

0 (Ω) to H−1(Ω). It should be said that, in general, the
operator B does not coincide with B0. The simplest example is j(r) = 0 if 0≤ r≤ 1,
j(r) = +∞ otherwise. In this case, ∂ϕ = ∂ IK , where K = {y∈H1

0 (Ω); 0≤ y(x)≤ 1,
a.e., x∈Ω}. Then µ ∈ ∂ϕ(y) satisfies µ(y−z)≥ 0, ∀z∈K and, therefore, µ(ϕ) = 0
for all ϕ ∈C∞

0 (Ω). Hence, µ is a measure with support on ∂Ω . More generally (see
Brezis [13]), if ϕ is defined by (5.136), then µ ∈ ∂ϕ(y) ∈ H−1(Ω), and then µ is
a bounded measure on Ω and µ = µadx + µs where the absolutely continuous part
µa ∈L1(Ω) has the property that µa(x)∈ β (y(x)), a.e. x∈Ω . However, if D(β )= R,
then, by Lemma 2.2, if µ ∈H−1(Ω)∩L1(Ω) is such that µ(x)∈ β (y(x)), a.e. x∈Ω ,
then µ ∈ By.

Then, by Theorem 5.7, we get the following.

Corollary 5.5. Let β be a maximal monotone graph in R×R and let B = ∂ϕ , where
ϕ is defined by (5.136). Let y0 ∈ H1

0 (Ω)∩H2(Ω), y1 ∈ H1
0 (Ω), and f ∈ L2(Q) be

such that ∂ f /∂ t ∈ L2(Q) and

µ0(x) ∈ β (y1(x)), a.e. x ∈Ω for some µ0 ∈ L2(Ω). (5.137)

Then, there is a unique function y ∈C([0,T ];H1
0 (Ω)) such that

∂y
∂ t
∈C([0,T ];L2(Ω))∩C([0,T ];H1

0 (Ω)),
∂ 2y
dt2 ∈ L∞(0,T ;L2(Ω)) (5.138)





d+

dt
∂y
∂ t

(t)−∆y(t)+B
(

∂
∂ t

y(t)
)
3 f (t), ∀t ∈ [0,T ),

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x), in Ω ,

y = 0, on ∂Ω × (0,T ).

(5.139)

Assume further that D(β ) = R. Then, ∆y(t) ∈ L1(Ω) for all t ∈ [0,T ) and

d+

dt
dy
dt

(x, t)−∆y(x, t)+ µ(x, t) = f (x, t), x ∈Ω , t ∈ [0,T ), (5.140)

where µ(x, t) ∈ β ((∂y/∂ t)(x, t)), a.e. x ∈Ω .

(We note that condition (5.139) implies (5.132).)
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Problems of the form (5.131) arise in wave propagation and description of the
dynamics of an elastic solid. For instance, if β (r) = r|r|, this equation models the
behavior of an elastic membrane with the resistance proportional to the velocity.

If j(r) = |r|, then β (r) = sign r and so equation (5.139) is of multivalued type.
As another example, consider the unilateral hyperbolic problem




∂ 2y
∂ t2 = ∆y+ f in

{
(x, t) ∈ Q;

∂y
∂ t

(x, t) > ψ(x)
}

,

∂ 2y
∂ t2 ≥ ∆y+ f ,

∂
∂ t

y≥ ψ in Q,

y = 0 on ∂Ω × [0,T ),

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω ,

(5.141)

where ψ ∈ H2(Ω) is such that ψ ≤ 0, a.e. on ∂Ω . This is a reflection-type pro-
blem for the linear wave equation with constraints on velocity that exhibits a free
boundary type behavior with moving boundary.

Clearly, we may write this variational inequality in the form (5.129), where V =
H1

0 (Ω), H = L2(Ω), A =−∆ , and B⊂ H1
0 (Ω)×H−1(Ω) is defined by

Bu = {w ∈ H−1(Ω); (w,u− v)≥ 0, ∀v ∈ K}

for all u ∈ D(B) = K = {u ∈ H1
0 (Ω); u≥ ψ, a.e. in Ω}.

By Theorem 5.7, we have therefore the following existence result for problem
(5.141).

Corollary 5.6. Let f , ft ∈ L2(Q) and y0 ∈H1
0 (Ω)∩H2(Ω), y1 ∈H1

0 (Ω) be such that
y1(x)≥ ψ(x), a.e. x ∈Ω . Then, there is a unique function y ∈W 1,∞([0,T ];H1

0 (Ω))
with ∂y/∂ t ∈W 1,∞([0,T ];L2(Ω)) satisfying




∫

Ω

(
d+

dt
∂y
∂ t

(x, t)
(

∂y
∂ t

(x, t)−u(x)
)

+∇y(x, t) ·∇
(

∂y
∂ t

(x, t)−u(x)
))

dx

≤
∫

Ω
f (x, t)

(
∂y
∂ t

(x, t)−u(x)
)

dx, ∀u ∈ K, ∀t ∈ [0,T ),

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x), ∀x ∈Ω .

(5.142)

Problem (5.142) is a variational (or weak) formulation of the free boundary problem
(5.141).

The Klein–Gordon Equation

We consider now the hyperbolic boundary value problem
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



∂ 2y
∂ t2 −∆y+g(y) = f in Ω × (0,T ) = Q,

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω ,

y = 0 on ∂Ω × (0,T ) = Σ ,

(5.143)

where Ω is a bounded and open subset of RN , with a sufficiently smooth boundary
(of class C2, for instance), and g ∈W 1,∞(R) satisfies the following conditions.

(i) |g′(r)| ≤ L(1 + |r|p), a.e. r ∈ R, where 0 ≤ p ≤ 2/(N−2) if N > 2, and p is
any positive number if 1≤ N ≤ 2;

(ii) rg(r)≥ 0, ∀r ∈ R.

In the special case where g(y) = µ|y|ρ y, assumptions (i) and (ii) are satisfied
for 0 < ρ ≤ 2/(N−2) if N > 2, and for ρ ≥ 0 if N ≤ 2. For ρ = 2, this is the
classical Klein–Gordon equation, arising in the quantum field theory (see Reed and
Simon [37]).

In the sequel, we denote by ψ the primitive of g, which vanishes at 0: ψ(r) =∫ r
0 g(t)dt, ∀r ∈ R.

Theorem 5.8. Let f ,(∂ f /∂ t) ∈ L2(Q) and y0 ∈ H1
0 (Ω)∩H2(Ω), y1 ∈ H1

0 (Ω) be
such that ψ(y0) ∈ L1(Ω). Then, under assumptions (i) and (ii) there is a unique
function y that satisfies





y ∈ L∞(0,T ;H1
0 (Ω)∩H2(Ω))∩C1([0,T ];H1

0 (Ω)),

∂y
∂ t
∈C([0,T ];H1

0 (Ω)),
∂ 2y
∂ t2 ∈ L∞(0,T ;L2(Ω)),

ψ(y) ∈ L∞(0,T ;L1(Ω)),

(5.144)

and 



∂ 2y
∂ t2 −∆y+g(y) = f , a.e. in Q,

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x), a.e. x ∈Ω .

(5.145)

Proof. As in the previous case, we write equation (5.143) as a first-order differential
equation in X = H1

0 (Ω)×L2(Ω); that is,

∂y
∂ t
− z = 0,

dz
dt
−∆y+g(y) = f in [0,T ]. (5.146)

Equivalently,




d
dt

U(t)+A0U(t)+GU(t) = F(t), t ∈ [0,T ],

U(0) = [y0,y1],
(5.147)

where U(t) = [y(t),z(t)], G(U) = [0,g(y)], A0U = [−z,−∆y], and F(t) = [0, f (t)].
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The space X = H1
0 (Ω)×L2(Ω) is endowed with the usual norm:

‖U‖2
X = ‖y‖2

H1
0 (Ω) +‖z‖2

L2(Ω), U = [y,z].

It should be said that although the operator A0 + G is not quasi-m-accretive in the
space X , the Cauchy problem (5.147) can be treated with the previous method.

We note first that the operator G is locally Lipschitz on X . Indeed, we have

‖G(y1,z1)−G(y2,z2)‖X = ‖g(y1)−g(y2)‖L2(Ω).

On the other hand, we have

|g(y1)−g(y2)| ≤
∣∣∣∣
∫ 1

0
g′(λy1 +(1−λ )y2)dλ (y1− y2)

∣∣∣∣

≤ L|y1− y2|
∫ 1

0
(1+ |λ (y1− y2)+ y2|p)dλ

≤ C|y1− y2|(max(|y1|p, |y2|p)+1), ∀y1,y2 ∈ R.

Hence, for any z ∈ L2(Ω) and yi ∈ H1
0 (Ω), i = 1,2, we have

∫

Ω
z(x)(g(y1(x))−g(y2(x)))dx

≤C
∫

Ω
|z(x)| |y1(x)− y2(x)|(max(|y1(x)|p, |y2(x)|p)+1)dx

and, therefore, by the Hölder inequality,
∫

Ω
z(g(y1)−g(y2))dx ≤C‖z‖L2(Ω)‖y1−y2‖Lβ (Ω) max(‖y1‖p

L2p(Ω),‖y2‖p
L2p(Ω))

+C‖z‖L2(Ω)‖y1−y2‖L2(Ω),

where
1
β

+
1
δ

+
1
2

= 1.

Now, we take in the latter inequality δ = N and β = 2N/(N−2). We get

‖g(y1)−g(y2)‖2

≤C‖y1−y2‖2N/(N−2) max(‖y1‖p
N p,‖y2‖p

N p)+C‖y1−y2‖2, ∀y1,y2 ∈ H1
0 (Ω).

Then, by the Sobolev embedding theorem and assumption (i), we have

‖yi‖N p ≤ Ci‖yi‖H1
0 (Ω), i = 1,2,

‖y1− y2‖2N/(N−2) ≤ C0‖y1− y2‖H1
0 (Ω).

(We have denoted by ‖ · ‖p the Lp norm.) This yields



248 5 Existence Theory of Nonlinear Dissipative Dynamics

‖g(y1)−g(y2)‖2 ≤C‖y1− y2‖H1
0 (Ω)(max(‖y1‖p

H1
0 (Ω)

,‖y2‖p
H1

0 (Ω)
)+1)

and, therefore,

‖G(y1,z1)−G(y2,z2)‖X

≤C‖y1−y2‖H1
0 (Ω)(1+max(‖y1‖p

H1
0 (Ω)

,‖y2‖p
H1

0 (Ω)
)),

∀y1,y2 ∈ H1
0 (Ω),

(5.148)

as claimed. ¤

To prove the existence of a local solution, we use the truncation method presented
in Section 4.1 (see Theorem 4.8).

Let r > 0 be arbitrary but fixed. Define the operator G̃ : X → X ,

G̃(y,z) =





G(y,z) if ‖y‖H1
0 (Ω) ≤ r,

G

(
r

y
‖y‖H1

0 (Ω)
, z

)
if ‖y‖H1

0 (Ω) > r.

By (5.148), we see that the operator G̃ is Lipschitz on X . Hence, A0 + G is ω-m-
accretive on X and, by Theorem 4.6, we conclude that the Cauchy problem





d
dt

U(t)+A0U(t)+ G̃U(t) = F(t), a.e. t ∈ (0,T ),

U(0) = [y0,y1],
(5.149)

has a unique solution U ∈ W 1,∞([0,T ];X). This implies that there is a unique
y ∈W 1,∞([0,T ];H1

0 (Ω)) with dy/dt ∈W 1,∞([0,T ];L2(Ω)) such that




d2y
dt2 (t)−∆y(t)+ g̃(y(t)) = f (t), a.e. t ∈ (0,T ),

y(0) = y0,
dy
dt

(0) = y1 in Ω ,

(5.150)

where g̃ : H1
0 (Ω)→ L2(Ω) is defined by

g̃(y) =





g(y) if ‖y‖H1
0 (Ω) ≤ r,

g

(
r

y
‖y‖H1

0 (Ω)

)
if ‖y‖H1

0 (Ω) > r.

Choose r sufficiently large such that ‖y0‖H1
0 (Ω) < r. Then, there is an interval

[0,Tr] such that ‖y(t)‖H1
0 (Ω) ≤ r for t ∈ [0,Tr] and ‖y(t)‖H1

0 (Ω) > r for t > Tr. We
have therefore

∂ 2y
∂ t2 −∆y+g(y) = f in Ω × (0,Tr),
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and multiplying this by yt and integrating on Ω × (0, t), we get the energy equality

‖yt(t)‖2
2 +‖y(t)‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y(x, t))dx

= ‖y1‖2
2 +‖y0‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y0(x))dx+2

∫ t

0

∫

Ω
f ys dxds.

Because ψ(y)≥ 0 and ψ(y0) ∈ L1(Ω), by Gronwall’s lemma we see that

‖yt(t)‖2 ≤ (‖y1‖2
2 +‖y0‖2

H1
0 (Ω) +2‖ψ(y0)‖L1(Ω))

1/2 +
∫ Tr

0
‖ f (s)‖2ds

and, therefore,

‖yt(t)‖2
2 +‖y(t)‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y(x, t))dx

≤ ‖y1‖2
2 +‖y0‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y0)dx+

(∫ t

0
‖ f (s)‖2

2ds
)1/2

×
(

(‖y1‖2
2 +‖y0‖2

H1
0 (Ω)

+2‖ψ(y0)‖L1(Ω))
1/2 +

∫ Tr

0
‖ f (s)‖2ds

)
.

The latter estimate shows that, given y0 ∈ H1
0 (Ω), y1 ∈ L2(Ω), T > 0, and f ∈

L2(QT ), there is a sufficiently large r such that ‖y(t)‖H1
0 (Ω) ≤ r for t ∈ [0,T ]. We

may infer, therefore, that for r large enough the function y found as the solution
to (5.150) is, in fact, a solution to equation (5.145) satisfying all the conditions of
Theorem 5.8.

The uniqueness of y satisfying (5.144) and (5.145) is the consequence of the
fact that such a function is the solution (along with z = ∂y/∂ t) to the ω-accretive
differential equation (5.149).

By the previous proof, it follows that, if one merely assumes that

y0 ∈ H1
0 (Ω), y1 ∈ L2(Ω), ψ(y0) ∈ L1(Ω),

then there is a unique function y∈C([0,T ];H1
0 (Ω)), ∂y/∂ t ∈C([0,T ];L2(Ω)), that

satisfies equation (5.143) in a mild sense. However, if ψ(y0) /∈ L1(Ω) or, if one
drops assumption (ii), then the solution to (5.143) exists locally in time, only; that
is, in a neighborhood of the origin.

Under appropriate assumptions on g and β , the above existence results extend to
equations of the form





∂ 2y
∂ t2 −∆y+β

(
∂y
∂ t

)
+g(y) = f in Q,

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω ,

y = 0 on ∂Ω × (0,T ).
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(See Haraux [28].) In Barbu, Lasiecka and Rammaha [5], the local and global ex-
istence of generalized solutions is studied in the case of more general equations of
the form

∂ 2y
∂ t2 −∆y+ |y|kβ

(
∂ y
∂ t

)
= |y|p−1y in Ω × (0,T ),

where β (r)≤C0rm,
∫ r

0 β (s)ds≥Crm+1, 0≤ k < N/(N +2), 1 < p < ∞.
It turns out that, if 1 < p≤ k+m, then there is a global solution but every solution

is only local and blows up if p is greater than m+ k. For other recent results in this
context we refer also to the work of Serrin, Todorova, and Vitillaro [38].

5.7 Navier–Stokes Equations

The classical Navier–Stokes equations




yt(x, t)−ν0∆y(x, t)+(y ·∇)y(x, t) = f (x, t)+∇p(x, t),

x ∈Ω , t ∈ (0,T )

(∇ · y)(x, t) = 0, ∀(x, t) ∈Ω × (0,T )

y = 0 on ∂Ω × (0,T )

y(x,0) = y0(x), x ∈Ω

(5.151)

describe the non-slip motion of a viscous, incompressible, Newtonian fluid in an
open domain Ω ⊂ RN , N = 2,3. Here y = (y1,y2, ...,yN) is the velocity field, p is
the pressure, f is the density of an external force, and ν0 > 0 is the viscosity of the
fluid.

We have used the following standard notation




∇ · y = divy =
N

∑
i=1

Diyi, Di =
∂

∂xi
, i = 1, ...,N

(y ·∇)y =
N

∑
i=1

yiDiy j, j = 1, ...,N.

By a classical device due to J. Leray, the boundary value problem (5.151) can be
written as an infinite-dimensional Cauchy problem in an appropriate function space
on Ω . To this end we introduce the following spaces

H = {y ∈ (L2(Ω))N ; ∇ · y = 0, y ·ν = 0 on ∂Ω} (5.152)

V = {y ∈ (H1
0 (Ω))N ; ∇ · y = 0}. (5.153)

Here ν is the outward normal to ∂Ω .
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The space H is a closed subspace of (L2(Ω))N and it is a Hilbert space with the
scalar product

(y,z) =
∫

Ω
y · zdx (5.154)

and the corresponding norm |y| =
(∫

Ω |y|2dx
)1/2

. (We denote by the same symbol

| · | the norm in RN , (L2(Ω))N , and H, respectively.) The norm of the space V is
denoted by ‖·‖ :

‖y‖=
(∫

Ω
|∇y(x)|2dx

)1/2

. (5.155)

We denote by P : (L2(Ω))N →H the orthogonal projection of (L2(Ω))N onto H (the
Leray projector) and set

a(y,z) =
∫

Ω
∇y ·∇zdx, ∀y,z ∈V. (5.156)

A = −P∆ , D(A) = (H2(Ω))N ∩V. (5.157)

Equivalently,
(Ay,z) = a(y,z), ∀y,z ∈V. (5.157)′

The Stokes operator A is self-adjoint in H, A ∈ L(V,V ′) (V ′ is the dual of V with the
norm denoted by ‖ · ‖V ′ ) and

(Ay,y) = ‖y‖2, ∀y ∈V. (5.158)

Finally, consider the trilinear functional

b(y,z,w) =
∫

Ω

N

∑
i, j=1

yiDiz jw j dx, ∀y,z,w ∈V (5.159)

and we denote by B : V →V ′ the nonlinear operator defined by

By = P(y ·∇)y (5.160)

or, equivalently,
(By,w) = b(y,y,w), ∀w ∈V. (5.160)′

Let f ∈ L2(0,T ;V ′) and y0 ∈ H. The function y : [0,T ]→ H is said to be a weak
solution to equation (5.151) if

y ∈ L2(0,T ;V ′)∩Cw([0,T ];H)∩W 1,1([0,T ];V ′) (5.161)




d
dt

(y(t),ψ)+ν0a(y(t),ψ)+b(y(t),y(t),ψ)=( f (t),ψ), a.e. t∈(0,T ),

y(0) = y0, ∀ψ∈V.
(5.162)
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(Here (·, ·) is, as usual, the pairing between V,V ′ and the scalar product of H.)
Equation (5.162) can be equivalently written as





dy
dt

(t)+ν0Ay(t)+By(t) = f (t), a.e. t ∈ (0,T )

y(0) = y0

(5.163)

where dy/dt is the strong derivative of function y : [0,T ]→V ′.
The function y is said to be the strong solution to (5.151) if y ∈W 1,1([0,T ];H)∩

L2(0,T ;D(A)) and (5.163) holds with dy/dt ∈ L1(0,T ;H) the strong derivative of
function y : [0,T ]→ H.

There is a standard approach to existence theory for the Navier–Stokes equation
(5.163) based on the Galerkin approximation scheme (see, e.g., Temam [39]). The
method we use here relies on the general results on the nonlinear Cauchy problem
of monotone type developed before and, although it leads to a comparable result, it
provides a new insight into existence theory of this problem.

It should be said that equation (5.163) is not of monotone type in H, but it can be
treated, however, into this framework by an argument described below.

Before proceeding with the existence for problem (1.1), we pause briefly to
present some fundamental properties of the trilinear functional b defining the inertial
operator B (see Constantin and Foias [19], Temam [39]).

Proposition 5.14. Let 1≤ N ≤ 3. Then

b(y,z,w) = −b(y,w,z), ∀y,z,w ∈V (5.164)

|b(y,z,w)| ≤ C‖y‖m1
‖z‖m2+1‖w‖m3

, ∀u ∈Vm1 , v ∈Vm2 , w ∈Vm3 (5.165)

where mi ≥ 0, i = 1,2,3 and

m1 +m2 +m3 ≥ N
2

if mi 6= N
2

, ∀i = 1,2,3,

m1 +m2 +m3 >
N
2

if mi =
N
2

, for some i = 1,2,3.

(5.166)

Here Vmi = V ∩ (Hmi
0 (Ω))N .

Proof. It suffices to prove (5.165) for y,z,w ∈ {y ∈ (C∞
0 (Ω))N ; ∇ · y = 0}. We have

b(y,z,w) =
∫

Ω
yiDiz jw jdx =

∫

Ω
(yiDi(z jw j)− yiDiw jz j)dx

= −
∫

Ω
yiDiw jz jdx =−b(y,z,w)

because ∇ · y = 0. By Hölder’s inequality we have

|b(y,z,w)| ≤ |yi|q1

∣∣Diz j
∣∣
q2

∣∣w j
∣∣
q3

,
1
q1

+
1
q2

+
1
q3
≤ 1. (5.167)
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(Here | · |q is the norm of Lq(Ω).) On the other hand, by the Sobolev embedding
theorem we have (see Theorem 1.5)

Hmi(Ω)⊂ Lqi(Ω) for
1
qi

=
1
2
− mi

N

if mi < N/2. Then, (5.167) yields

|b(y,z,w)| ≤C‖y‖m1
‖z‖m2+1‖w‖m3

if mi < N/2, i = 1,2,3.
If one mi is larger than N/2 the previous inequality still remains true because, in

this case,
Hmi(Ω)⊂ L∞(Ω).

If mi = N/2 then
Hmi(Ω)⊂

⋂

q>2

Lq(Ω)

and so (5.167) holds for 1/q2+1/q3 < 1 and q1 = ε where

1
ε

= 1− 1
q2
− 1

q3
·

Then (5.165) follows for m1 +m2 +m3 > N/2 as claimed.
We have also the interpolation inequality

‖u‖m ≤ c‖u‖1−α
` ‖u‖α

`+1, for α = m− ` ∈ [0,1]. (5.168)

In particular, it follows by Proposition 5.14 that B is continuous from V to V ′.
Indeed, we have

(By−Bz,w) = b(y,y− z,w)+b(y− z,z,w), ∀w ∈V

and this yields (notice that ‖ · ‖= ‖ · ‖1 and |Ay|= |y|2)

|(By−Bz,w)| ≤C(‖y‖‖y− z‖‖w‖+‖y− z‖‖z‖‖w‖).

Hence
‖By−Bz‖V ′ ≤C‖y− z‖(‖y‖+‖z‖), ∀y,z ∈V. (5.169)

We would like to treat (5.163) as a nonlinear Cauchy problem in the space H. How-
ever, because the operator ν0A+B is not quasi-m-accretive in H, we first consider a
quasi-m-accretive approximation of the form taken in the proof of Theorem 4.8.

For each M > 0 define the operator BM : V →V ′ (see (4.67))

BMy =





By if ‖y‖ ≤M,

M2

‖y‖2 By if ‖y‖> M,
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and consider the operator ΓM : D(ΓM)⊂ H → H

ΓM = ν0A+BM, D(ΓM) = D(A). (5.170)

Let us show that ΓM is well defined. Indeed, we have

|ΓMy| ≤ ν0|Ay|+ |BMy|, ∀y ∈ D(A).

On the other hand, by (5.165) for m1 = 1, m2 = 1/2, m3 = 0, we have for ‖y‖ ≤M

|(BMy,w)|= |b(y,y,w)| ≤C‖y‖3/2|Ay|1/2|w|

because ‖y‖3/2 ≤ ‖y‖1/2|Ay|1/2. Hence

|BMy| ≤C|Ay|1/2‖y‖3/2, ∀y ∈ D(A).

Similarly, we get for ‖y‖> M

|BMy| ≤ CM2

‖y‖2 |Ay|1/2‖y‖3/2 ≤C|Ay|1/2‖y‖3/2.

This yields
|ΓMy| ≤ ν0|Ay|+C|Ay|1/2‖y‖3/2, ∀y ∈ D(A) (5.171)

as claimed. ¤

Lemma 5.2. There is αM such that ΓM +αMI is m-accretive in H×H.

Proof. We show first that for each ν > 0

((ΓM +λ )y− (ΓM +λ )z,y− z)≥ ν
2
‖y− z‖2, ∀y,z ∈ D(A), for λ ≥Cν

M.

To this end we prove that

|(BMy−BMz,y− z)| ≤ ν
2
‖y− z‖2 +CM|y− z|2. (5.172)

We treat only the case N = 3 because N = 2 follows in a similar way.
Let ‖y‖,‖z‖ ≤M. Then we have

(BMy−BMz,y− z) = (By−Bz,y− z) = b(y,y,y− z)−b(z,z,y− z)

= b(y− z,y,y− z)+b(z,y− z,y− z) = b(y− z,y,y− z).

Hence, by Proposition 5.14, for m1 = 1, m2 = 0, m3 = 1/2 we have
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|(BMy−BMz,y−z)| = |b(y−z,y,y−z)| ≤C‖y−z‖‖y‖‖y−z‖1/2

≤ C‖y−z‖3/2‖y‖|y−z|1/2

≤ CM‖y−z‖3/2|y−z|1/2

≤ ν
2
‖y−z‖2+CM|y−z|2

as desired.
Now consider the case where ‖y‖> M, ‖z‖> M. We have

(BMy−BMz,y− z)

=
M2

‖y‖2 (b(y,y,y− z)−b(z,z,y− z))+

(
M2

‖y‖2 −
M2

‖z‖2

)
b(z,z,y− z)

=
M2

‖y‖2 b(y− z,y,y− z)+M2

(
‖z‖2−‖y‖2

‖y‖2‖z‖2

)
b(z,z,y− z).

This yields

|(BMy−BMz,y−z)| ≤ CM2

‖y‖ ‖y−z‖3/2|y−z|1/2

+
CM2

‖y‖2‖z‖2

∣∣∣‖z‖2−‖y‖2
∣∣∣‖z‖‖y−z‖1/2

≤ ν
2
‖y−z‖2+C1

M|y−z|2.

Assume now that ‖y‖> M, ‖z‖ ≤M. We have

|(BMy−BMz,y− z)|=
∣∣∣∣∣

M2

‖y‖2 b(y,y,y− z)−b(z,z,y− z)

∣∣∣∣∣

≤
∣∣∣∣∣

M2

‖y‖2 −1

∣∣∣∣∣ |b(z,z,y− z)|+ M2

‖y‖2 |b(y,y,y− z)−b(z,z,y− z)|

≤C
‖y‖2−M2

‖y‖2 ‖z‖2‖y− z‖1/2|y− z|1/2 +
M2

‖y‖2 |b(y− z,y,y− z)|

≤C1
M‖y− z‖3/2|y− z|1/2

which again implies (5.172), as claimed.
We note also that by (5.169) it follows that

‖BMy−BMz‖V ′ ≤C‖y− z‖(‖y‖+‖z‖), ∀y,z ∈V, (5.173)

where C is independent of M.
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Let us now proceed with the proof of αM-m-accretivity of ΓM . Consider the ope-
rator

FMu = ν0Au+BMu+αMu, ∀u ∈ D(FM)

D(FM) = {u ∈V ; ν0Au+BMu ∈ H}. (5.174)

By (5.172) we see that for αM ≥CM the operator u→ ν0Au+BMu+αMu is mono-
tone, coercive, and continuous from V to V ′. Hence its restriction to H; that is, FM
is maximal monotone (m-accretive) in H×H. To complete the proof it suffices to
show that D(FM) = D(A) for αM large enough. (Clearly D(A)⊂ D(FM).)

Note first that by (5.165) we have

|(BMy,w)| ≤C|b(y,y,w)| ≤C‖y‖‖y‖3/2|w|, ∀w ∈ H,

and this yields by interpolation (see (5.168))

|BM(y)| ≤C‖y‖3/2|Ay|1/2 ≤CM|Ay|1/2.

Hence

|Ay| ≤ 1
ν0

(|ΓMy|+ |BMy|)≤ 1
ν0

(|ΓMy|+CM|Ay|1/2), ∀y ∈ D(A);

that is,
|Ay| ≤CM(|ΓMy|+1), ∀y ∈ D(A). (5.175)

Now we consider the operators

F1
M = ν0(1− ε)A, D(F1

M) = D(A)

F2
M = εν0A+BM +αMI, D(F2

M) = {u ∈V ; εν0Au+BMu ∈ H},

where αM is large enough so that F2
M is m-accretive in H×H. (We have seen above

that such an αM exists.)
We have

∣∣F2
M(y)

∣∣ ≤ εν0|Ay|+ |BMy|+αM|y|
≤ εν0|Ay|+CM|Ay|1/2 +αM|y| ≤ ε(1+δ )|Ay|+αM|y|+C1

M

≤ ε(1+δ )
ν0(1− ε)

∣∣F1
M(y)

∣∣+αM|y|+C1
M, ∀y ∈ D(A) = D(F1

M).

Thus for ε small enough it follows by Proposition 3.9 that F1
M +F2

M with the domain
D(A) is m-accretive in H×H. Because FM = F1

M + F2
M on D(A) ⊂ D(FM) we infer

that D(FM) = D(A) as claimed. ¤
For each M > 0 consider the equation





dy
dt

(t)+ν0Ay(t)+BMy(t) = f (t), t ∈ (0,T )

y(0) = y0.
(5.176)
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Proposition 5.15. Let y0 ∈ D(A) and f ∈ W 1,1([0,T ];H) be given. Then there is
a unique solution yM ∈W 1,∞([0,T ];H)∩L∞(0,T ;D(A))∩C([0,T ];V ) to equation
(5.176). Moreover, (d+/dt)yM(t) exists for all t ∈ [0,T ) and

d+

dt
yM(t)+ν0AyM(t)+BMyM(t) = f (t), ∀t ∈ [0,T ). (5.177)

Proof. This follows by Theorem 4.4. Because ΓMyM = ν0AyM +BMyM ∈L∞(0,T ;H),
by (5.175) we infer that AyM ∈ L∞(0,T ;H). As dyM/dt ∈ L∞(0,T ;H), we conclude
also that yM ∈C([0,T ];V )∩L∞(0,T ;D(A)), as claimed. ¤

Now we are ready to formulate the main existence result for the strong solutions
to Navier–Stokes equation (5.151) ((5.151)′).

Theorem 5.9. Let N = 2,3 and f ∈W 1,1([0,T ];H), y0 ∈ D(A) where 0 < T < ∞.
Then there is a unique function y∈W 1,∞([0,T ∗);H)∩L∞(0,T ∗;D(A))∩C([0,T ∗];V )
such that 




dy(t)
dt

+ν0Ay(t)+By(t) = f (t), a.e. t ∈ (0,T ∗),

y(0) = y0,

(5.178)

for some T ∗ = T ∗(‖y0‖) ≤ T. If N = 2 then T ∗ = T. Moreover, y(t) is right diffe-
rentiable and

d+

dt
y(t)+ν0Ay(t)+By(t) = f (t), ∀t ∈ [0,T ∗). (5.179)

Proof. The idea of the proof is to show that for M sufficiently large the flow yM(t),
defined by Proposition 5.15, is independent of M on each interval [0,T ] if N = 2 or
on [0,T (y0)] if N = 3. Let yM be the solution to (5.176); that is,





dyM

dt
(t)+ν0AyM(t)+BMyM(t) = f (t), a.e. t ∈ (0,T ),

y(0) = y0.

(5.180)

If we multiply (5.180) by yM and integrate on (0, t), we get

|yM(t)|2 +ν0

∫ t

0
‖yM(s)‖2ds≤C

(
|y0|2 +

1
ν0

∫ T

0
| f (t)|2dt

)
, ∀M.

Next, we multiply (5.180) (scalarly in H) by AyM(t). We get

1
2

d
dt
‖yM(t)‖2 +ν0|AyM(t)|2 ≤ |(BMyM(t),AyM(t))|+ | f (t)||AyM|,

a.e. t ∈ (0,T ).

This yields
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‖yM(t)‖2 +ν0

∫ t

0
|AyM(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

∫ t

0
|(BMyM,AyM)|ds

)
.

(5.181)

On the other hand, for N = 3, by (5.165) we have (the case N = 2 is treated separately
below)

|(BMyM,AyM)| < |b(yM,yM,AyM)|
≤ C‖yM‖‖yM‖3/2|AyM|
≤ C‖yM‖3/2|AyM|3/2, a.e. t ∈ (0,T ).

(Everywhere in the following C is independent of M,ν0.) Then, by (5.181) we have

‖yM(t)‖2 +ν0

∫ t

0
|AyM(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

∫ t

0
|AyM(s)|3/2‖yM(s)‖3/2ds

)

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

1
ν0

∫ t

0
‖yM(s)‖6ds

)
+

ν
2

∫ t

0
|AyM(s)|2ds,

∀t ∈ [0,T ].

Finally,

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds

≤C0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds+

1
ν0

∫ t

0
‖yM(s)‖6ds

)
.

(5.182)

Next, we consider the integral inequality

‖yM(t)‖2 ≤C0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds+

1
ν0

∫ t

0
‖yM(s)‖6ds

)
. (5.183)

We have
‖yM(t)‖2 ≤ ϕ(t), ∀t ∈ (0,T ),

where
ϕ ′ ≤ C0

ν0
ϕ3, ∀t ∈ (0,T )

ϕ(0) = C0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds

)
.

This yields

ϕ(t)≤
(

ν0ϕ3(0)
ν0−3tϕ3(0)

)1/3

, ∀t ∈
(

0,
ν0

3ϕ3(0)

)
.
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Hence

‖yM(t)‖2 ≤
(

ν0ϕ3(0)
ν0−3tϕ3(0)

)1/3

, ∀t ∈ (0,T ∗), (5.184)

where
T ∗ =

ν0

3C3
0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds

)3 ·

Then, by (5.182) we get

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds≤C1(δ )

(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt

)
,

0 < t < T ∗ −δ .

(5.185)

For N = 2, we have (see (5.165))

|(BMyM,AyM)| ≤ C|yM|1/2‖yM‖|AyM|3/2

≤ ν0

2
|AyM|2 +

C
ν0
‖yM‖4.

This yields

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

1
ν0

∫ t

0
‖yM(s)‖4ds

)
.

Then, by (5.182) and the Gronwall lemma, we obtain

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds≤C

(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt

)
,

∀t ∈ (0,T ).
(5.186)

By (5.184), (5.186) we infer that for M large enough, ‖yM(t)‖ ≤ M on (0,T ∗) if
N = 3 or on the whole of (0,T ) if N = 2.

Hence BMyM = ByM on (0,T ∗) (respectively on (0,T )) and so yM = y is a solu-
tion to (5.178). This completes the proof of existence.

Uniqueness. If y1,y2 are two solutions to (5.178), we have

1
2

d
dt
|y1(t)− y2(t)|2 +ν0‖y1(t)− y2(t)‖2

≤ |(B(y)(t)−By2(t),y1(t)− y2(t))|
= |b(y1(t),y1(t),y1(t)− y2(t))−b(y2(t),y2(t),y1(t)− y2(t))|
≤C‖y1(t)− y2(t)‖2(‖y1(t)‖+‖y2(t)‖), a.e. t ∈ (0,T ∗).



260 5 Existence Theory of Nonlinear Dissipative Dynamics

Hence, y1 ≡ y2.
It is useful to note that the solution y to (5.178) satisfies the estimates

|y(t)|2 +ν0

∫ t

0
‖y(s)‖2ds≤C

(
|y0|2 +

1
ν0

∫ T

0
| f (s)|2ds

)
(5.187)

and (for N = 3)

‖y(t)‖2 +ν0

∫ t

0
|Ay(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T ∗

0
| f (t)|2dt

)(∫ t

0

ds
T ∗ − t

+1
)

, t ∈ (0,T ∗),
(5.188)

whereas, for N = 2,

‖y(t)‖2 +ν0

∫ t

0
|Ay(s)|2ds≤C

(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt

)
,

∀t ∈ (0,T ),
(5.189)

where C is independent of y0 and f .
If N = 2, we have a sharper estimate for y. Indeed, if we multiply (5.178) by tAy

and integrate on (0, t), we get after integration by parts

t
2
‖y(t)‖2 +ν0

∫ t

0
s|Ay(s)|2ds

=−
∫ t

0
(sb(y(s),y(s),Ay(s))− s( f (s),Ay(s)))ds+

1
2

∫ t

0
‖y(s)‖2ds

≤C
∫ t

0
s|Ay(s)|3/2|y(s)|1/2‖y(s)‖ds+

ν0

2

∫ t

0
s|Ay(s)|2ds

+
1
2

∫ t

0
s| f (s)|2ds+

1
2

∫ t

0
‖y(s)‖2ds.

Then, by (5.188), we get the estimate

t‖y(t)‖2+ν0

∫ t

0
s|Ay(s)|2ds≤C

(
|y0|2+ 1

ν0

∫ T

0
| f (t)|2dt

)
,

∀t∈(0,T ).
(5.190)

Estimates (5.186), (5.188), and (5.190) suggest that equation (5.151) could have a
strong solution y under weaker assumptions on y0 and f . We show below that this is
indeed the case. ¤

Theorem 5.10. Let y0 ∈ H, f ∈ L2(0,T ;H), T > 0, and N = 2. Then there is a
unique solution
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y ∈ C(]0,T ];V )∩Cw([0,T ];H)∩L2(0,T ;V ),

t1/2y ∈ L2(0,T ;D(A))∩L∞(0,T ;V ),

t1/2 dy
dt
∈ L2(0,T ;H),

dy
dt
∈ L2/(1+ε)(0,T ;V ′)

to equation (5.178); that is,




dy
dt

(t)+ν0Ay(t)+By(t) = f (t), a.e. t ∈ (0,T )

y(0) = y0.
(5.191)

If y0 ∈V , then y ∈ L∞(0,T ;V )∩L2(0,T ;D(A)).

Proof. Let {y j
0} ⊂ D(A) and { f j} ⊂W 1,1([0,T ];H) be such that

y j
0 → y0 strongly in H,

f j → f strongly in L2(0,T ;H).

By (5.187), (5.190), we have

∣∣y j(t)
∣∣2 +

∫ T

0

∥∥y j(t)
∥∥2dt + t

∥∥y j(t)
∥∥2 +

∫ T

0
t
∣∣Ay j(t)

∣∣2dt ≤C, t ∈ (0,T ).

Then, by (5.165), we obtain that

∫ T

0

∥∥By j(t)
∥∥2/(1+ε)

V ′ dt +
∫ T

0
t
∣∣By j(t)

∣∣2dt ≤C, ∀ε > 0

because ∣∣(By j,ϕ)
∣∣ =

∣∣b(y j,y j,ϕ)
∣∣≤C

∣∣y j
∣∣1/2∥∥y j

∥∥∣∣Ay j
∣∣1/2|ϕ|

and ∣∣(By j,ϕ)
∣∣≤C

∥∥y j
∥∥

ε

∥∥y j
∥∥‖ϕ‖.

This yields ∣∣By j
∣∣ ≤ C

∣∣y j
∣∣1/2∥∥y j

∥∥∣∣Ay j
∣∣1/2

,
∥∥By j

∥∥
V ′ ≤ C

∥∥y j
∥∥

ε

∥∥y j
∥∥≤C

∥∥y j
∥∥1+ε ∣∣y j

∣∣1−ε
.

Hence ∫ T

0

(∥∥∥∥
dy j(t)

dt

∥∥∥∥
2/(1+ε)

V ′
+ t

∣∣∣∣
dy j(t)

dt

∣∣∣∣
2
)

dt ≤C.

Because the embeddings D(A)⊂V ⊂H ⊂V ′ are compact, it follows by the Ascoli–
Arzelà theorem that on a subsequence, again denoted y j, we have
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y j(t)
j→∞−→ y(t) in C([0,T ];V ′)

y j −→ y weak-star in L∞(0,T ;H),

weakly in L2(0,T ;V ),
√

t
dy j

dt
−→ √

t
dy
dt

weakly in L2(0,T ;H)

Ayj −→ Ay weakly in L2(0,T ;V ′),
√

t y j −→
√

t y weak-star in L∞(0,T ;V ),

weakly in L2(0,T ;D(A)).

Moreover, by the Aubin compactness theorem, we have
√

t y j(t) −→
√

t y(t) uniformly in H on [0,T ]
√

t y j −→
√

t y strongly in L2(0,T ;V ).

Next, we have
∣∣(By j(t)−By(t),ϕ)

∣∣ ≤ ∣∣b(y j(t)− y(t),y j(t),ϕ)
∣∣+ ∣∣b(y(t),y j(t)− y(t),ϕ)

∣∣

≤ C
∣∣y j(t)− y(t)

∣∣1/2∥∥y j(t)− y(t)
∥∥1/2∣∣Ay j(t)

∣∣1/2∥∥y j(t)
∥∥1/2|ϕ |

+ C‖y(t)‖1/2∥∥y j(t)− y(t)
∥∥1/2|y(t)|1/2∣∣A(y j(t)− y(t))

∣∣1/2|ϕ |.

Hence,
∣∣By j(t)−By(t)

∣∣ ≤ C
∥∥y j(t)−y(t)

∥∥1/2(
∣∣Ay j(t)

∣∣1/2∣∣y j(t)− y(t)
∣∣1/2∣∣y j(t)

∣∣1/2

+ ‖y(t)‖1/2∣∣A(y j(t)−y(t))
∣∣1/2∣∣y j(t)

∣∣1/2).

We have, therefore,
∫ T

0
t2∣∣By j(t)−By(t)

∣∣2dt → 0 as j → ∞.

Letting j → ∞, we conclude that y satisfies, a.e. on (0,T ), equation (5.191) and that

t‖y(t)‖2 + |y(t)|2 +
∫ T

0
(‖y(t)‖2 + t|Ay(t)|2)dt ≤C,

∫ T

0

(∥∥∥∥
dy
dt

(t)
∥∥∥∥

2/(1+ε)

V ′
+ t

∣∣∣∣
dy
dt

(t)
∣∣∣∣
2
)

dt ≤C,

where d/dt is considered in the sense of distributions.
If y0 ∈V , then we have

∥∥y j(t)
∥∥2 +ν0

∫ T

0

∣∣Ay j(t)
∣∣2dt ≤C
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and this implies the last part of the theorem. This completes the proof. (The unique-
ness follows as in the proof of Theorem 5.9.) ¤

Theorem 5.11. Let N = 3, y0 ∈V , and f ∈ L2(0,T ;H). Then there is

T ∗0 = T (‖y0‖,‖ f‖L2(0,T ;H))

such that on (0,T ∗0 ) equation (5.151) has a unique solution

y ∈ L∞(0,T ∗0 ;V )∩L2(0,T ∗0 ;D(A))∩C([0,T ∗0 ];H)
dy
dt
∈ L2(0,T ∗0 ;H), By ∈ L2(0,T ∗0 ;H).

Proof. Let {y j
0} and { f j} be as in the proof of Theorem 5.10 (y j

0 → y0 in V this
time.) By the above estimates (see (5.188)), we have

∥∥y j(t)
∥∥2 +ν0

∫ T ∗0

0

∣∣Ay j(t)
∣∣2dt ≤C

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds

)
, ∀t ∈ [0,T ∗0 ),

where T ∗0 < T ∗ < T.
We also have (see (5.165))

∣∣By j(t)
∣∣≤C

∥∥y j(t)
∥∥3/2∣∣Ay j(t)

∣∣1/2∣∣y j(t)
∣∣1/2 ≤C1

∣∣Ay j(t)
∣∣1/2

, ∀t ∈ (0,T ∗0 ).

Hence, ∫ T ∗0

0

(
∣∣By j(t)

∣∣2 +
∣∣∣∣
dy j

dt
(t)

∣∣∣∣
2
)

dt ≤C.

Hence, on a subsequence

y j(t) → y(t) strongly in H uniformly on [0,T ]

weak-star in L∞(0,T ;V )
dy j

dt
→ dy

dt
weakly in L2(0,T ;H)

Ayj → Ay weakly in L2(0,T ;H)

By j → η weakly in L2(0,T ;H).

Moreover, by the Aubin compactness theorem we have y j → y strongly in L2(0,T ;V ).
Note also that, by (5.165), we have

∣∣(By j−By,ϕ)
∣∣≤C(

∥∥y j− y
∥∥3/2∣∣A(y j− y)

∣∣1/2 +
∥∥y j− y

∥∥‖y‖3/2)|ϕ|.

Hence,
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∫ T

0

∣∣By j−By
∣∣dt ≤C

(∫ T

0

∥∥y j− y
∥∥2dt

)1/2
((∫ T

0

∥∥y j− y
∥∥∣∣A(y j− y)

∣∣dt
)1/2

+
∫ T

0
|Ay|1/2‖y‖3/2dt

)
≤C

∫ T

0

∥∥y j− y
∥∥2dt → 0 as j → 0

and, therefore,
By j → By strongly in L1(0,T ;H),

which implies that η = By. Hence, y is a strong solution on (0,T ∗0 ). The uniqueness
is immediate. ¤

The main existence result for a weak solution to equation (5.151) ((5.151)′) is
Leray’s theorem below.

Theorem 5.12. Let y0 ∈H, f ∈ L2(0,T ;V ′). Then there is at least one weak solution
y∗ to equation (5.151). Moreover,

dy∗

dt
∈ L4/3(0,T ;V ′) for N = 3. (5.192)

dy∗

dt
∈ L2/(1+ε)(0,T ;V ′) for N = 2. (5.193)

If N = 2, there is a unique weak solution satisfying (5.193).

Proof. We return to approximating equation (5.176) and note the estimates

|yM(t)|2 +
∫ T

0
‖yM(t)‖2dt ≤C

(
|y0|2 +

∫ T

0
| f (t)|2∗dt

)
. (5.194)

(For simplicity, we denote below by | · |∗ the norm ‖ · ‖V ′ of V ′.) We also have by
(5.165)

|(BMyM(t),w)| ≤C‖yM(t)‖1/2‖yM(t)‖‖w‖ ≤C|yM(t)|1/2‖yM(t)‖3/2‖w‖.

Hence, |BMyM|∗ ≤C‖yM‖3/2|yM|1/2 and, therefore,

∫ T

0
|BMyM(t)|4/3

∗ dt ≤C
(
|y0|2 +

∫ T

0
| f (t)|2∗dt

)
(5.195)

∫ T

0

∣∣∣∣
dyM

dt
(t)

∣∣∣∣
4/3

∗
dt ≤C

(
|y0|2 +

∫ T

0
| f (t)|2∗dt

)
. (5.196)

For N = 2 we have (see (5.165)) for m1 = ε, m2 = 0, m3 = 1,

|BMyM(t)|∗ ≤C|yM(t)|1−ε‖yM(t)‖1+ε ≤C1‖yM(t)‖1+ε .

Hence,
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∫ T

0

(∣∣∣∣
dyM

dt

∣∣∣∣
2/(1+ε)

∗
+ |BMyM|2/(1+ε)

∗

)
dt ≤C for N = 2. (5.197)

Assume now that y0 ∈ H and f ∈ L2(0,T ;V ′).
Let y j

0 ∈ D(A) and { f j} ⊂W 1,1([0,T ];H) be such that

y j
0 → y0 in H, f j → f in L2(0,T ;V ′).

Let y j be the corresponding solution to equation (5.151)′. By estimates (5.195)–
(5.197), we have for a constant C independent of M,

∫ T

0

(
∥∥y j

∥∥2 +
∥∥∥∥

dy j

dt

∥∥∥∥
4/3

∗
+

∣∣BMy j
∣∣4/3
∗

)
dt +

∣∣y j(t)
∣∣2 ≤C (5.198)

if N = 3, and

∫ T

0

(
∥∥y j(t)

∥∥2 +
∥∥∥∥

dy j

dt

∥∥∥∥
2/(1+ε)

∗
+

∣∣BMy j
∣∣2/(1+ε)
∗

)
dt +

∣∣y j(t)
∣∣2 ≤C (5.199)

if N = 2.
Hence, on a subsequence we have

y j → yM weakly in L2(0,T ;V )

Ay j → AyM weakly in L2(0,T ;V ′)
dy j

dt
→ dyM

dt
weakly in L4/3(0,T ;V ′) if N = 3

weakly in L2/(1+ε)(0,T ;V ′) if N = 2

BMy j → ηM weakly in L4/3(0,T ;V ′) if N = 3

weakly in L2/(1+ε)(0,T ;V ′) if N = 2.

Moreover, recalling inequality (5.172) we get

1
2

d
dt

∣∣y j(t)− yk(t)
∣∣2 +

ν0

2

∥∥y j(t)− yk(t)
∥∥2

≤ αM
∣∣y j(t)− yk(t)

∣∣2 +
∣∣ f j(t)− fk(t)

∣∣∥∥y j(t)− yk(t)
∥∥
∗ .

By Gronwall’s lemma we have

∣∣y j(t)− yk(t)
∣∣2 ≤

∣∣∣y j
0− yk

0

∣∣∣
2
+C

∫ T

0

∣∣ f j(t)− fk(t)
∣∣2
∗dt

and, therefore,
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∫ T

0

∥∥y j(t)− yk(t)
∥∥2dt ≤C

(∣∣∣y j
0− yk

0

∣∣∣
2
+

∫ T

0

∣∣ f j(t)− fk(t)
∣∣2
∗dt

)
.

Hence,
y j → yM strongly in L2(0,T ;V )∩C([0,T ];H).

Clearly, we have




dyM

dt
(t)+νAyM(t)+ηM(t) = f (t), a.e. t ∈ (0,T )

yM(0) = y0.

On the other hand, by (5.165), where m1 = 1, m2 = 0, m3 = 1, it follows that
∣∣BMy j−BMyM

∣∣
∗ ≤C

∥∥y j− y j
∥∥(

∥∥y j
∥∥+‖yM‖).

Hence,
BMy j → BMyM = ηM strongly in L1(0,T ;V ′).

We have shown therefore that for each y0 ∈ H and f ∈ L2(0,T ;V ′) the equation




dyM

dt
(t)+νAyM(t)+BMyM(t) = f (t), a.e. t ∈ (0,T )

yM(0) = y0

(5.200)

has a solution yM ∈ L2(0,T ;V )∩C([0,T ];H) with dyM/dt ∈ L4/3(0,T ;V ′) if N = 3,
dyM/dt ∈ L2/(1+ε)(0,T ;V ′) if N = 2. Moreover, yM satisfies estimates (5.194)–
(5.196).

Now, we let M → ∞. Then on a subsequence, again denoted M, we have

yM → y∗ weak-star in L∞(0,T ;H)
weakly in L2(0,T ;V )

dyM

dt
→ dy∗

dt
weakly in L4/3(0,T ;V ′) if N = 3

weakly in L2/(1+ε)(0,T ;V ′) if N = 2

AyM → Ay∗ weakly in L2(0,T ;V ′)

BMyM → η weakly in L4/3(0,T ;V ′) if N = 3
weakly in L2/(1+ε)(0,T ;V ′) if N = 2.

We have 



dy∗

dt
(t)+ν0Ay∗(t)+η(t) = f (t), a.e. in (0,T )

y∗(0) = y0.
(5.201)

To conclude the proof it remains to be shown that η(t) = By∗(t), a.e. t ∈ (0,T ).
We note first that, by Aubin’s compactness theorem, for M → ∞,
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yM → y∗ strongly in L2(0,T ;H).

We note also that by (5.194) we have m{t; ‖yM(t)‖> M} ≤C/M2.
Let ϕ ∈ L∞(0,T ;V ). Then, we have

∫ T

0
|(BMyM−By∗,ϕ)|dt

≤
∫

EM

|(ByM−By∗,ϕ)|dt +C
∫

Ec
M

‖ϕ‖(|yM|1/2‖yM‖3/2 + |y∗|1/2‖y∗‖3/2)dt,

where EM = {t; ‖yM(t)‖> M}. Hence, by estimates (5.194) we have

∫ T

0
|(BMyM−By∗,ϕ)|dt

≤
∫ T

0
(|b(yM− y∗,yM,ϕ)|+ |b(y∗,yM− y∗,ϕ)|)dt +CM−2‖ϕ‖L∞(0,T ;V ).

Recalling that yM → y∗ strongly in L2(0,T ;H) and weakly in L2(0,T ;V ), we get

lim
M→∞

∫ T

0
(BMyM−By∗,ϕ)dt = 0, ∀ϕ ∈ L2(0,T ;V ),

where V = {ϕ ∈C∞
0 (Ω); divϕ = 0}. Hence, η = By∗ and this concludes the proof.

If N = 2, the solution is unique. Indeed, for two such solutions y1,y2 we have

1
2

d
dt
|y1− y2|2 +ν0‖y1− y2‖2 +b(y1− y2,y1,y1− y2) = 0, a.e. t ∈ (0,T ).

This yields

1
2

d
dt
|y1− y2|2 +ν0‖y1− y2‖2 ≤ C‖y1− y2‖1/2‖y1‖‖y1− y2‖1/2

≤ C|y1− y2|‖y1− y2‖‖y1‖.

By Gronwall’s lemma, we get y1 = y2. ¤

Remark 5.6. The existence results presented in this section are classic and can be
found in a slightly different form in the monographs of Temam [39], Constantin
and Foias [19]. However, the semigroup approach used here is new and it closely
follows the work of Barbu and Sritharan [6].

Perhaps the main advantage of the semigroup approach is that one can apply the
general theory developed in Chapter 4 to get existence, regularity, and approxima-
tion results for Navier–Stokes equations.

In fact, as shown earlier, the Navier–Stokes flow t → y(t) is the restriction to
[0,T ] of the flow t → yM(t) generated by an equation of quasi-m-accretive type.
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Bibliographical Remarks

There is an extensive literature on semilinear parabolic equations, parabolic varia-
tional inequalities, and the Stefan problem (see Lions [33], Duvaut and Lions [22],
Friedman [27]and Elliott and Ockendon [23] for significant results and complete re-
ferences on this subject). Here, we were primarily interested in the existence results
that arise as direct consequences of the general theory developed previously, and
we tried to put in perspective those models of free boundary problems that can be
formulated as nonlinear differential equations of accretive type. The L1-space semi-
group approach to the nonlinear diffusion equation was initiated by Bénilan [8] (see
also Konishi [29]), and the H−1(Ω) approach is due to Brezis [15]. The smooth-
ing effect of the semigroup generated by the semilinear elliptic operator in L1(Ω)
(Proposition 5.5) is due to Evans [24, 25]. The analogous result for the nonlinear
diffusion operator in L1(Ω) (Theorem 5.4) was first established by Bénilan [8], and
Véron [41], but the proof given here is essentially due to Pazy [36]. For other re-
lated contributions to the existence and regularity of solutions to the porous medium
equation, we refer to Bénilan, Crandall, and Pierre [10], and Brezis and Crandall
[16]. The semigroup approach to the conservation law equation (Theorem 5.6) is
due to Crandall [20]. Theorem 5.7 along with other existence results for abstract hy-
perbolic equations has been established by Brezis [15] (see also Haraux’s book [28]
and Barbu [4]). The semigroup approach to Navier–Stokes equations was developed
in the works of Barbu [3] and Barbu and Sritharan [6] (see also Barbu and Sritharan
[7] and Lefter [32] for other results in this direction).
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