
Chapter 1
Fundamental Functional Analysis

Abstract The aim of this chapter is to provide some standard basic results pertaining
to geometric properties of normed spaces, convex functions, Sobolev spaces, and
variational theory of linear elliptic boundary value problems. Most of these results,
which can be easily found in textbooks or monographs, are given without proof or
with a sketch of proof only.

1.1 Geometry of Banach Spaces

Throughout this section X is a real normed space and X∗ denotes its dual. The value
of a functional x∗ ∈ X∗ at x∈ X is denoted by either (x∗,x) or x∗(x), as is convenient.
The norm of X is denoted by ‖ · ‖, and the norm of X∗ is denoted by ‖ · ‖∗. If there
is no danger of confusion we omit the asterisk from the notation ‖ · ‖∗ and denote
both the norms of X and X∗ by the symbol ‖ · ‖.

We use the symbol lim or → to indicate strong convergence in X and w-lim or
⇀ for weak convergence in X . By w∗-lim or ⇀ we indicate weak-star convergence
in X∗. The space X∗ endowed with the weak-star topology is denoted by X∗w.

Define on X the mapping J : X → 2X∗ :

J(x) = {x∗ ∈ X∗; (x∗,x) = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X . (1.1)

By the Hahn–Banach theorem we know that for every x0 ∈ X there is some x∗0 ∈ X∗
such that (x∗0,x0) = ‖x0‖ and ‖x∗0‖ ≤ 1.

Indeed, the linear functional f : Y → R defined by f (x) = α‖x0‖ for x = αx0,
where Y = {αx0; α ∈ R}, has a linear continuous extension x∗0 ∈ X∗ on X such
that |(x∗0,x)| ≤ ‖x‖ ∀x ∈ X . Hence, (x∗0,x0) = ‖x0‖ and ‖x∗0‖ ≤ 1 (in fact, ‖x∗0‖= 1).
Clearly, x∗0‖x0‖ ∈ J(x0) and so J(x0) 6= /0 for every x0 ∈ X .

The mapping J : X → X∗ is called the duality mapping of the space X . In general,
the duality mapping J is multivalued.
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The inverse mapping J−1 : X∗ → X defined by J−1(x∗) = {x∈ X ; x∗ ∈ J(x)} also
satisfies

J−1(x∗) = {x ∈ X ; ‖x‖= ‖x∗‖, (x∗,x) = ‖x‖2 = ‖x∗‖2}.
If the space X is reflexive (i.e., X = X∗∗), then clearly J−1 is just the duality mapping
of X∗ and so D(J−1) = X∗. As a matter of fact, reflexivity plays an important role
everywhere in the following and it should be recalled that a normed space is reflexive
if and only if its dual X∗ is reflexive (see, e.g., Yosida [16], p. 113).

It turns out that the properties of the duality mapping are closely related to the
nature of the spaces X and X∗, more precisely to the convexity and smoothing pro-
perties of the closed balls in X and X∗.

Recall that the space X is called strictly convex if the unity ball B of X is strictly
convex, that is the boundary ∂B contains no line segments.

The space X is said to be uniformly convex if for each ε > 0, 0 < ε < 2, there is
δ (ε) > 0 such that if ‖x‖= 1, ‖y‖= 1, and ‖x−y‖ ≥ ε , then ‖x+y‖ ≤ 2(1−δ (ε)).

Obviously, every uniformly convex space X is strictly convex. Hilbert spaces
as well as the spaces Lp(Ω), 1 < p < ∞, are uniformly convex spaces (see, e.g.,
Köthe [13]). Recall also that, by virtue of the Milman theorem (see, e.g., Yosida
[16], p. 127), every uniformly convex Banach space X is reflexive. Conversely, it
turns out that every reflexive Banach space X can be renormed such that X and X∗
become strictly convex. More precisely, one has the following important result due
to Asplund [4].

Theorem 1.1. Let X be a reflexive Banach space with the norm ‖ · ‖. Then there is
an equivalent norm ‖ · ‖0 on X such that X is strictly convex in this norm and X∗ is
strictly convex in the dual norm ‖ · ‖∗0.

Regarding the properties of the duality mapping associated with strictly or uni-
formly convex Banach spaces, we have the following.

Theorem 1.2. Let X be a Banach space. If the dual space X∗ is strictly convex,
then the duality mapping J : X → X∗ is single-valued and demicontinuous (i.e., it is
continuous from X to X∗w). If the space X∗ is uniformly convex, then J is uniformly
continuous on every bounded subset of X.

Proof. Clearly, for every x∈X , J(x) is a closed convex subset of X∗. Because J(x)⊂
∂B, where B is the open ball of radius ‖x‖ and center 0, we infer that if X∗ is
strictly convex, then J(x) consists of a single point. Now, let {xn} ⊂ X be strongly
convergent to x0 and let x∗0 be any weak-star limit point of {J(xn)}. (Because the
unit ball of the dual space is w∗-compact (Yosida [16], p. 137) such an x∗0 exists.)
We have (x∗0,x0) = ‖x0‖2 ≥ ‖x∗0‖2 because the closed ball of radius ‖x0‖ in X∗ is
weak-star closed. Hence ‖x0‖2=‖x∗0‖2−(x∗0,x0). In other words, x∗0=J(x0), and so

J(xn) ⇀ J(x0),

as claimed. ¤

To prove the second part of the theorem, let us first establish the following lemma.
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Lemma 1.1. Let X be a uniformly convex Banach space. If xn ⇀ x and
limsupn→∞ ‖xn‖ ≤ ‖x‖, then xn → x as n→ ∞.

Proof. One can assume of course that x 6= 0. By hypothesis, (x∗,xn)→ (x∗,x) for
all x ∈ X , and so, by the weak lower semicontinuity of the norm in X ,

‖x‖ ≤ liminf
n→∞

‖xn‖ ≤ ‖x‖.

Hence, limn→∞ ‖xn‖= ‖x‖. Now, we set

yn =
xn

‖xn‖ , y =
x
‖x‖ ·

Clearly, yn ⇀ y as n → ∞. Let us assume that yn 6→ y and argue from this to a
contradiction. Indeed, in this case we have a subsequence ynk , ‖ynk − y‖ ≥ ε , and
so there is δ > 0 such that ‖ynk + y‖ ≤ 2(1− δ ). Letting nk → ∞ and using once
again the fact that the norm y→ ‖y‖ is weakly lower semicontinuous, we infer that
‖y‖ ≤ 1−δ . The contradiction we have arrived at shows that the initial supposition
is false. ¤

Proof of Theorem 1.2 (continued). Assume now that X∗ is uniformly convex. We
suppose that there exist subsequences {un},{vn} in X such that ‖un‖,‖vn‖ ≤ M,
‖un− vn‖ → 0 for n → ∞, ‖J(un)− J(vn)‖ ≥ ε > 0 for all n, and argue from this
to a contradiction. We set xn = un‖un‖−1, yn = vn‖vn‖−1. Clearly, we may assume
without loss of generality that ‖un‖ ≥ α > 0 and that ‖vn‖ ≥ α > 0 for all n. Then,
as easily seen,

‖xn− yn‖→ 0 as n→ ∞

and

(J(xn)+ J(yn),xn) = ‖xn‖2 +‖yn‖2 +(xn− yn,J(yn))≥ 2−‖xn− yn‖.

Hence
1
2
‖J(xn)+ J(yn)‖ ≥ 1− 1

2
‖xn− yn‖, ∀n.

Inasmuch as ‖J(xn)‖ = ‖J(yn)‖ = 1 and the space X∗ is uniformly convex, this
implies that limn→∞(J(xn)− J(yn)) = 0. On the other hand, we have

J(un)− J(vn) = ‖un‖(J(xn)− J(yn))+(‖un‖−‖vn‖)J(yn),

so that limn→∞(J(un)− J(vn)) = 0 strongly in X∗. ¤

Now, let us give some examples of duality mappings.

1. X = H is a Hilbert space identified with its own dual. Then J = I, the iden-
tity operator in H. If H is not identified with its dual H∗, then the duality map-
ping J : H → H∗ is the canonical isomorphism Λ of H onto H∗. For instance, if
H = H1

0 (Ω) and H∗ = H−1(Ω) and Ω is a bounded and open subset of RN , then
J = Λ is defined by
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(Λu,v) =
∫

Ω
∇u ·∇vdx, ∀u,v ∈ H1

0 (Ω). (1.2)

In other words, J = Λ is the Laplace operator −∆ under Dirichlet homo-
geneous boundary conditions in Ω ⊂ RN . Here H1

0 (Ω) is the Sobolev space
{u ∈ L2(Ω);∇u ∈ L2(Ω); u = 0 on ∂Ω}. (See Section 1.3 below.)

2. X = Lp(Ω), where 1 < p < ∞ and Ω is a measurable subset of RN . Then, the
duality mapping of X is given by

J(u)(x) = |u(x)|p−2u(x)‖u‖2−p
Lp(Ω), a.e. x ∈Ω , ∀u ∈ Lp(Ω). (1.3)

Indeed, it is readily seen that if Φp is the mapping defined by the right-hand side
of (1.3), we have

∫

Ω
Φp(u)udx =

(∫

Ω
|u|pdx

)2/p

=
(∫

Ω
|Φp(u)|qdx

)2/q

, where
1
p

+
1
q

= 1.

Because the duality mapping J of Lp(Ω) is single-valued (because Lp is uni-
formly convex for p > 1) and Φp(u)∈ J(u), we conclude that J = Φp, as claimed.
If X = L1(Ω), then as we show later (Corollary 2.7)

J(u) = {v ∈ L∞(Ω); v(x) ∈ signu(x) · ‖u‖L1(Ω), a.e. x ∈Ω}. (1.4)

3. Let X be the Sobolev space W 1,p
0 (Ω), where 1 < p < ∞ and Ω is a bounded and

open subset of RN . (See Section 1.3 below.) Then,

J(u) =−
N

∑
i=1

∂
∂xi

(∣∣∣∣
∂u
∂xi

∣∣∣∣
p−2 ∂u

∂xi

)
‖u‖2−p

W 1,p
0 (Ω)

. (1.5)

In other words, J : W 1,p
0 (Ω)→W−1,q(Ω), (1/p)+(1/q) = 1, is defined by

(J(u),v) =
N

∑
i=1

∫

Ω

∣∣∣∣
∂u
∂xi

∣∣∣∣
p−2 ∂u

∂xi

∂v
∂xi

dx‖u‖2−p
W 1,p

0 (Ω)
, ∀v ∈W 1,p

0 (Ω). (1.6)

We later show that the duality mapping J of the space X can be equivalently
defined as the subdifferential (Gâteaux differential if X∗ is strictly convex) of the
function x→ 1/2‖x‖2.

1.2 Convex Functions and Subdifferentials

Here we briefly present the basic results pertaining to convex analysis in infinite-
dimensional spaces. For further results and complete treatment of the subject we
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refer the reader to Moreau [14], Rockafellar [15], Brezis [8], Barbu and Precupanu
[6] and Zălinescu [17].

Let X be a real Banach space with dual X∗. A proper convex function on X is
a function ϕ : X → (−∞,+∞] = R that is not identically +∞ and that satisfies the
inequality

ϕ((1−λ )x+λy)≤ (1−λ )ϕ(x)+λϕ(y) (1.7)

for all x,y ∈ X and all λ ∈ [0,1].
The function ϕ : X → (−∞,+∞] is said to be lower semicontinuous (l.s.c.) on X if

liminf
u→x

ϕ(u)≥ ϕ(x), ∀x ∈ X ,

or, equivalently, every level subset {x ∈ X ; ϕ(x)≤ λ} is closed.
The function ϕ : X →]−∞,+∞] is said to be weakly lower semicontinuous if it

is lower semicontinuous on the space X endowed with weak topology.
Because every level set of a convex function is convex and every closed convex

set is weakly closed (this is an immediate consequence of Mazur’s theorem, Yosida
[16], p. 109), we may therefore conclude that a proper convex function is lower
semicontinuous if and only if it is weakly lower semicontinuous.

Given a lower semicontinuous convex function ϕ : X → (−∞,+∞] = R, ϕ 6≡ ∞,
we use the following notations:

D(ϕ) = {x ∈ X ; ϕ(x) < ∞} (the effective domain of ϕ), (1.8)

Epi(ϕ) = {(x,λ ) ∈ X×R; ϕ(x)≤ λ} (the epigraph of ϕ). (1.9)

It is readily seen that Epi(ϕ) is a closed convex subset of X ×R, and as a matter
of fact its properties are closely related to those of the function ϕ .

Now, let us briefly describe some elementary properties of l.s.c., convex func-
tions.

Proposition 1.1. Let ϕ : X → R be a proper, l.s.c., and convex function. Then ϕ is
bounded from below by an affine function; that is there are x∗0 ∈ X∗ and β ∈R such
that

ϕ(x)≥ (x∗0,x)+β , ∀x ∈ X . (1.10)

Proof. Let E(ϕ) = Epi(ϕ) and let x0 ∈ X and r ∈ R be such that ϕ(x0) > r. By
the classical separation theorem (see, e.g., Brezis [7]), there is a closed hyperplane
H = {(x,λ )∈ X×R;−(x∗0,x)+λ = α} that separates E(ϕ) and (x0,r). This means
that

−(x∗0,x)+λ ≥ α, ∀x ∈ E(ϕ) and − (x∗0,x0)+ r < α.

Hence, for λ = ϕ(x), we have

−(x∗0,x)+ϕ(x)≥−(x∗0,x0)+ r, ∀x ∈ X ,

which implies (1.10). ¤
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Proposition 1.2. Let ϕ : X → R be a proper, convex, and l.s.c. function. Then ϕ is
continuous on intD(ϕ).

Proof. Let x0 ∈ intD(ϕ). We prove that ϕ is continuous at x0. Without loss of gene-
rality, we assume that x0 = 0 and that ϕ(0) = 0. Because the set {x : ϕ(x) >−ε} is
open it suffices to show that {x : ϕ(x) < ε} is a neighborhood of the origin. We set
C = {x ∈ X ; ϕ(x) ≤ ε}∩{x ∈ X ; ϕ(−x) ≤ ε}. Clearly, C is a closed balanced set
of X (i.e., αx ∈C for |α| ≤ 1 and x ∈C). Moreover, C is absorbing; that is, for every
x ∈ X there exists α > 0 such that αx ∈C (because the function t → ϕ(tx) is convex
and finite in a neighborhood of the origin and therefore it is continuous). Because X
is a Banach space, the preceding properties of C imply that it is a neighborhood of
the origin, as claimed. ¤

The function ϕ∗ : X∗ → R defined by

ϕ∗(p) = sup{(p,x)−ϕ(x); x ∈ X} (1.11)

is called the conjugate of ϕ .

Proposition 1.3. Let ϕ : X → R be l.s.c., convex, and proper. Then ϕ∗ is l.s.c., con-
vex, and proper on the space X∗.

Proof. As supremum of a set of affine functions, ϕ∗ is convex and l.s.c. Moreover,
by Proposition 1.2 we see that ϕ∗ 6≡ ∞. ¤

Proposition 1.4. Let ϕ : X → (−∞,+∞] be a weakly lower semicontinuous function
such that every level set {x ∈ X ; ϕ(x) ≤ λ} is weakly compact. Then ϕ attains its
infimum on X. In particular, if X is reflexive and ϕ is an l.s.c. proper convex function
on X such that

lim
‖x‖→∞

ϕ(x) = ∞, (1.12)

then there exists x0 ∈ X such that ϕ(x0) = inf{ϕ(x); x ∈ X}.
Proof. Let d = inf{ϕ(x); x ∈ X} and let {xn} ⊂ X such that d ≤ ϕ(xn)≤ d +(1/n).
Then {xn} is weakly compact in X and, therefore, there is {xnk} ⊂ {xn} such that
xnk ⇀ x as nk →∞. Because ϕ is weakly semicontinuous, this implies that ϕ(x)≤ d.
Hence ϕ(x) = d, as desired. If X is reflexive, then formula (1.12) implies that {x∈X ;
ϕ(x)≤ λ} are weakly compact. As seen earlier, every convex and l.s.c. function is
weakly lower semicontinuous, therefore we can apply the first part. ¤

Given a function f from a Banach space X to R, the mapping f ′ : X ×X → R
defined by

f ′(x,y) = lim
λ↓0

f (x+λy)− f (x)
λ

, x,y ∈ X , (1.13)

(if it exists) is called the directional derivative of f at x in direction y.
The function f : X →R is said to be Gâteaux differentiable at x∈X if there exists

∇ f (x) ∈ X∗ (the Gâteaux differential) such that
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f ′(x,y) = (∇ f (x),y), ∀y ∈ X . (1.14)

If the convergence in (1.13) is uniform in y on bounded subsets, then f is said to be
Fréchet differentiable and ∇ f is called the Fréchet differential (derivative) of f .

Given an l.s.c., convex, proper function ϕ : X → R, the mapping ∂ϕ : X → X∗
defined by

∂ϕ(x) = {x∗ ∈ X∗; ϕ(x)≤ ϕ(y)+(x∗,x− y), ∀y ∈ X} (1.15)

is called the subdifferential of ϕ .
In general, ∂ϕ is a multivalued operator from X to X∗ not everywhere defined

and can be seen as a subset of X×X∗.
An element x∗ ∈ ∂ϕ(x) (if any) is called a subgradient of ϕ in x. We denote as

usual by D(∂ϕ) the set of all x ∈ X for which ∂ϕ(x) 6= /0.
Let us pause briefly to give some simple examples.

1. ϕ(x) = 1/2‖x‖2. Then, ∂ϕ = J (the duality mapping of the space X). Indeed, if
x∗ ∈ J(x), then

(x∗,x− y) = ‖x‖2− (x∗,y)≥ 1
2

(‖x‖2−‖y‖2), ∀x ∈ X .

Hence x∗ ∈ ∂ϕ(x). Now, let x∗ ∈ ∂ϕ(x); that is,

1
2
(‖x‖2−‖y‖2)≤ (x∗ − y,x), ∀y ∈ X . (1.16)

We take y = λx, 0 < λ < 1, in (1.16), getting

(x∗,x)≥ 1
2
‖x‖2(1+λ ).

Hence, (x∗,x)≥ ‖x‖2. If y = λx, where λ > 1, we get that (x∗,x)≤ ‖x‖2. Hence,
(x∗,x) = ‖x‖2 and ‖x∗‖ ≥ ‖x‖. On the other hand, taking y = x + λu in (1.16),
where λ > 0 and u is arbitrary in X , we get

λ (x∗,u)≤ 1
2

(‖x+λu‖2−‖x‖2),

which yields
(x∗,u)≤ ‖x‖ ‖u‖.

Hence, ‖x∗‖ ≤ ‖x‖. We have therefore proven that (x∗,x) = ‖x‖2 = ‖x∗‖2 as
claimed.

2. Let K be a closed convex subset of X . The function IK : X → R defined by

IK(x) =

{
0, if x ∈ K,

+∞, if x /∈ K,
(1.17)
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is called the indicator function of K, and its dual function H,

HK(p) = sup{(p,u); u ∈ K}, ∀p ∈ X∗,

is called the support function of K. It is readily seen that D(∂ IK) = K, ∂ IK(x) = 0
for x ∈ intK (if nonempty) and that

∂ IK(x) = NK(x) = {x∗ ∈ X∗; (x∗,x−u)≥ 0, ∀u ∈ K}, ∀x ∈ K. (1.18)

For every x ∈ ∂K (the boundary of K), NK(x) is the normal cone at K in x.

3. Let ϕ be convex and Gâteaux differentiable at x. Then ∂ϕ(x) = ∇ϕ(x). Indeed,
because ϕ is convex, we have

ϕ(x+λ (y− x))≤ (1−λ )ϕ(x)+λϕ(y)

for all x,y ∈ X and 0≤ λ ≤ 1. Hence,

ϕ(x+λ (y− x))−ϕ(x)
λ

≤ ϕ(y)−ϕ(x),

and letting λ tend to zero, we see that ∇ϕ(x) ∈ ∂ϕ(x). Now, let w be an arbitrary
element of ∂ϕ(x). We have

ϕ(x)−ϕ(y)≤ (w,x− y), ∀y ∈ X .

Equivalently,

ϕ(x+λy)−ϕ(x)
λ

≥ (w,y), ∀λ > 0, y ∈ X ,

and this implies that (∇ϕ(x)−w,y)≥ 0 for all y ∈ X . Hence, w = ∇ϕ(x).

By the definition of ∂ϕ it is easily seen that ϕ(x) = inf{ϕ(u); u∈ X} iff 0∈ ∂ϕ(x).
There is a close relationship between ∂ϕ and ∂ϕ∗. More precisely, we have the
following.

Proposition 1.5. Let X be a reflexive Banach space and let ϕ : X → R be an l.s.c.,
convex, proper function. Then the following conditions are equivalent.

(i) x∗ ∈ ∂ϕ(x),
(ii) ϕ(x)+ϕ∗(x∗) = (x∗,x),
(iii) x ∈ ∂ϕ∗(x∗).
In particular, ∂ϕ∗ = (∂ϕ)−1 and (ϕ∗)∗ = ϕ.

Proof. By definition of ϕ∗, we see that

ϕ∗(x∗)≥ (x∗,x)−ϕ(x), ∀x ∈ X ,

with equality if and only if 0∈ ∂x(−(x∗,x)+ϕ(x)). Hence, (i) and (ii) are equivalent.
Now, if (ii) holds, then x∗ is a minimum point for the function ϕ∗(p)− (x, p) and so
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x ∈ ∂ϕ∗(x∗). Hence, (ii) ⇒ (iii). Because conditions (i) and (ii) are equivalent for
ϕ∗, we may equivalently express (iii) as ϕ∗(x∗)+(ϕ∗)∗(x) = (x∗,x). Thus, to prove
(ii) it suffices to show that (ϕ∗)∗ = ϕ . It is readily seen that (ϕ∗)∗ = ϕ∗∗ ≤ ϕ . We
suppose now that there exists x0 ∈ X such that ϕ∗∗(x0) < ϕ(x0), and we argue from
this to a contradiction. We have, therefore, (x0,ϕ∗∗(x0)) /∈ Epi(ϕ) and so, by the
separation theorem, it follows that there are x∗0 ∈ X∗ and α ∈ R such that (x∗0,x0)+
αϕ∗∗(x0) > sup{(x∗0,x)+αλ ; (x,λ ) ∈ Epi(ϕ)}. After some calculation, it follows
that α < 0. Then, dividing this inequality by −α , we get that

−
(

x∗0,
x0

α

)
−ϕ∗∗(x0) > sup

{(
x∗0,−

x
α

)
−λ ; (x,λ ) ∈ Epi(ϕ)

}

= sup
{(

−x∗0
α

,x
)
−ϕ(x); x ∈ D(ϕ)

}
= ϕ∗

(
−x∗0

α

)
,

which clearly contradicts the definition of ϕ∗∗. ¤

We mention without proof the following density result. (See, e.g., [2].)

Proposition 1.6. Let ϕ : X → R be an l.s.c., convex, and proper function. Then
D(∂ϕ) is a dense subset of D(ϕ).

Proposition 1.7. Let ϕ be an l.s.c., proper, convex function on X. Then intD(ϕ) ⊂
D(∂ϕ).

Proof. Let x0 ∈ intD(ϕ) and let V = B(x0,r) = {x; ‖x− x0‖ < r} be such that
V ⊂ D(ϕ). We know by Proposition 1.2 that ϕ is continuous on V and this implies
that the set C = {(x,λ ) ∈V ×R; ϕ(x) < λ} is an open convex set of X ×R. Thus,
there is a closed hyperplane, H = {(x,λ ) ∈ X ×R; (x∗0,x)+λ = α}, that separates
(x0,ϕ(x0)) from C. Hence, (x∗0,x0)+ϕ(x0) < α and

(x∗0,x)+λ ≥ α, ∀(x,λ ) ∈C.

This yields
ϕ(x0)−ϕ(x) <−(x∗0,x0− x), ∀x ∈V.

But, for every u ∈ X , there exists 0 < λ < 1 such that x = λx0 + (1− λ )u ∈ V .
Substituting this x in the preceding inequality and using the convexity of ϕ , we
obtain that

ϕ(x0)≤ ϕ(u)+(x∗0,x0−u), ∀u ∈ X .

Hence, x0 ∈ D(∂ϕ) and x∗0 ∈ ∂ϕ(x0). ¤

There is a close connection between the range of subdifferential ∂ϕ of a lower
semicontinuous convex function ϕ : X → R and its behavior for ‖x‖ → ∞. Namely,
one has

Proposition 1.8. The following two conditions are equivalent.

(j) R(∂ϕ) = X∗, and ∂ϕ∗ = (∂ϕ)−1 is bounded on bounded subsets,
(jj) lim‖x‖→∞ ϕ(x)/‖x‖= +∞.
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Proof. (jj)⇒ (j). If (jj) holds, then by Proposition 1.4 it follows that for each f ∈ X∗
the equation f ∈ ∂ϕ(x) or, equivalently, 0∈ ∂ (ϕ(x)− f (x)), has at least one solution
x ∈D(∂ϕ). Moreover, if { f} remains in a bounded subset of X∗, the same is true of
(∂ϕ)−1 f .

(j) ⇒ (jj). By Proposition 1.5 we have

ϕ(x)≥ (x∗,x)−ϕ∗(x∗), ∀x∗ ∈ X∗, ∀x ∈ X .

This yields, for x∗ = ρJ(x)‖x‖−1,

ϕ(x)≥ ρ‖x‖−ϕ∗(ρJ(x)‖x‖−1), ∀ρ > 0, ∀x ∈ X .

Because ϕ∗ and ∂ϕ∗ are bounded on bounded subsets, the latter implies (jj). ¤

1.3 Sobolev Spaces and Linear Elliptic Boundary Value
Problems

Throughout this section, until further notice, we assume that Ω is an open subset of
RN . To begin with, let us briefly recall the notion of distribution. Let f = f (x) be a
complex-valued function defined on Ω . By the support of f , abbreviated supp f , we
mean the closure of the set {x ∈ Ω ; f (x) 6= 0} or, equivalently, the smallest closed
set of Ω outside of which f vanishes identically. We denote by Ck(Ω), 0 ≤ k ≤ ∞,
the set of all complex-valued functions defined in Ω that have continuous partial
derivatives of order up to and including k (of any order < ∞ if k = ∞). Let Ck

0(Ω)
denote the set of all functions ϕ ∈Ck(Ω) with compact support in Ω .

It is readily seen that C∞
0 (Ω) is a linear space. We may introduce in C∞

0 (Ω) a
convergence as follows. We say that the sequence {ϕk} ⊂C∞

0 (Ω) is convergent to
ϕ , denoted ϕk ⇒ ϕ , if

(a) There is a compact K ⊂Ω such that suppϕk ⊂ K for all k = 1, ... .
(b) limk→∞ Dα ϕk = Dα ϕ uniformly on K for all α = (α1, ...,αn).

Here Dα = Dα
x1
· · ·Dαn

xN
, Dxi = ∂/∂xi, i = 1, ...,n. Equipped in this way, the space

C∞
0 (Ω) is denoted by D(Ω). As a matter of fact, D(Ω) can be redefined as a locally

convex, linear topological space with a suitable chosen family of seminorms.

Definition 1.1. A linear continuous functional u on D(Ω) is called a distribution
on Ω .

In other words, a distribution is a linear functional u on C∞
0 (Ω) having the pro-

perty that limk→∞ u(ϕk) = 0 for every sequence {ϕk} ⊂C∞
0 (Ω) such that ϕk ⇒ 0.

The set of all distributions on Ω is a linear space, denoted by D ′(Ω).
The distribution is a natural extension of the notion of locally summable function

on Ω for if f ∈ L1
loc(Ω), then the linear functional u f on C∞

0 (Ω) defined by
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u f (ϕ) =
∫

Ω
f (x)ϕ(x)dx, ∀ϕ ∈C∞

0 (Ω)

is a distribution on Ω ; that is, u f ∈ D ′(Ω). Moreover, the map f → u f is injective
from L1

loc(Ω) to D ′(Ω).
Given u ∈ D ′(Ω), by definition, the derivative of order α = (α1, ...,αn), Dα u,

of u, is the distribution

(Dα u)(ϕ) = (−1)|α |u(Dα ϕ), ∀ϕ ∈D(Ω), where |α|= α1 + · · ·+αn.

Let Ω be an open subset of RN and let m be a positive integer. Denote by Hm(Ω)
the set of all real valued functions u ∈ L2(Ω) such that distributional derivatives
Dα u of u of order |α| ≤ m all belong to L2(Ω). In other words,

Hm(Ω) = {u ∈ L2(Ω); Dα u ∈ L2(Ω), |α| ≤ m}. (1.19)

This is the Sobolev space of order m on Ω . It is easily seen that Hm(Ω) is a linear
space by (u1 + u2)(x) = u1(x) + u2(x), (λu)(x) = λu(x), ∀λ ∈ R, a.e., x ∈ Ω ,
under the convention that two L2(Ω) functions u1,u2 represent the same element
of Hm(Ω) if u1(x) = u2(x), a.e., x ∈ Ω . In other words, we do not distinguish two
functions in Hm(Ω) that coincide almost everywhere. In this context we say that
u ∈ Hm(Ω) is continuous, differentiable, or absolutely continuous if there exists a
function ū ∈ Hm(Ω) which has these properties and coincides almost everywhere
with u on Ω .

We present below a few basic properties of Sobolev spaces and refer to the books
of Brezis [7], Adams [1] and Barbu [5] for proofs.

Proposition 1.9. Hm(Ω) is a Hilbert space with the scalar product

〈u,v〉m = ∑
|α |≤m

∫

Ω
Dα u(x)Dα v(x)dx, ∀u,v ∈ Hm(Ω). (1.20)

If Ω = (a,b),−∞ < a < b < ∞, then H1(Ω) reduces to the subspace of absolutely
continuous functions on the interval [a,b] with derivative in L2(a,b).

Proposition 1.10. H1(a,b) coincides with the space of absolutely continuous func-
tions u : [a,b]→ R having the property that u′ ∈ L2(a,b). Moreover, for each func-
tion u ∈ H1(a,b) the derivative D1u in the sense of distributions coincides with the
ordinary derivative u′ that exists almost everywhere.

More generally, for an integer m≥ 1 and 1≤ p≤ ∞, one defines the Sobolev space

W m,p(Ω) = {u ∈ Lp(Ω); Dα u ∈ Lp(Ω), |α| ≤ m} (1.21)

with the norm

‖u‖m,p =

(
∑
|α|≤m

∫

Ω
|Dα u(x)|pdx

)1/p

. (1.22)
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For 0 < m < 1, the space W m,p(Ω) is defined by (see Adams [1], p. 214)

W m,p(Ω) =
{

u ∈ Lp(Ω);
u(x)−u(y)
|x− y|m+(N/p) ∈ Lp(Ω ×Ω)

}

with the natural norm. For m > 1, m = s+a, s = [m], 0 < a < 1, define

W m,p(Ω) = {u ∈W s,p(Ω); Dα u ∈W a,p(Ω); |α| ≤ s}.

It turns out that, if u ∈W 1,p(a,b), then there is an absolutely continuous function
ū with ū′ ∈ Lp(a,b) such that ū(x) = u(x) and ū′(x) = (D1u)(x), a.e., x ∈ (a,b).
Conversely, any absolutely continuous function u with u′ in Lp(a,b) belongs to
W 1,p(a,b) and u′ coincides, a.e. on (a,b), with the distributional derivative D1u
of u.

Proposition 1.10 and its counterpart in W 1,p(Ω) show that, in one dimension, the
Sobolev spaces are just the classical spaces of absolutely continuous functions with
derivatives in Lp(Ω).

It turns out, via regularization, that C∞
0 (RN) is dense in H1(RN).

We recall that an open subset Ω of RN and its boundary ∂Ω are said to be of class
C1 if for each x ∈ ∂Ω there are a neighborhood U of x and a one-to-one mapping ϕ
of Q = {x = (x′,xN) ∈ RN ; ‖x′‖< 1, |xN |< 1} onto U such that

ϕ ∈C1(Q), ϕ−1 ∈C1(U), ϕ(Q+) = U ∩Ω , ϕ(Q0) = U ∩∂Ω ,

where Q+ = {(x′,xN) ∈ Q; xN > 0}, Q0 = {(x′,0); ‖x′‖< 1}.
We are now ready to formulate the extension theorem for the elements of the

space H1(Ω), a result upon which most of the properties of this space are built.

Theorem 1.3. Let Ω be an open subset of RN that is of class C1. Assume
that either ∂Ω is compact or Ω = RN

+. Then, there is a linear operator
P : H1(Ω)→ H1(RN) and a positive constant C independent of u, such that

(Pu)(x) = u(x), a.e. x ∈Ω , ∀u ∈ H1(Ω), (1.23)

‖Pu‖L2(RN ) ≤C‖u‖L2(Ω), ∀u ∈ H1(Ω), (1.24)

‖Pu‖H1(RN ) ≤C‖u‖H1(Ω), ∀u ∈ H1(Ω). (1.25)

Theorem 1.3 follows from the next extension result.

Let u ∈ H1(Q+) and let u∗ : Q→ R be the extension of u to Q

u∗(x′,xN) =

{
u(x′,xN) if xN ≥ 0
u(x′,−xN) if xN < 0.

Then u∗ ∈ H1(Q) and ‖u∗‖L2(Q) ≤ 2‖u‖L2(Q+), ‖u∗‖H1(Q) ≤ 2‖u‖H1(Q+). The ge-
neral result follows by a specific argument involving partition of unity (see, e.g.,
Brezis [7] or Barbu [5]).
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Now, we mention without proof an important property of the space H1(Ω)
known as the Sobolev embedding theorem.

Theorem 1.4. Let Ω be an open subset of RN of class C1 with compact boundary
∂Ω , or Ω = RN

+, or Ω = RN. Then, if N > 2,

H1(Ω)⊂ Lp∗(Ω) for
1
p∗

=
1
2
− 1

N
· (1.26)

If N = 2, then H1(Ω)⊂ Lp(Ω) for all p ∈ [2,∞[.

The inclusion relation (1.26) should be considered of course in the algebraic and
topological sense; that is,

‖u‖Lp∗ (Ω) ≤C‖u‖H1(Ω) (1.27)

for some positive constant C independent of u.
Theorem 1.4 has a natural extension to the Sobolev space W m,p(Ω) for any

m > 0. More precisely, we have (see Adams [1], p. 217)

Theorem 1.5. Under the assumptions of Theorem 1.4, we have

W m,p(Ω)⊂ Lp∗(Ω) if 1≤ p <
N
m

,
1
p∗

=
1
p
− m

N
,

W m,p(Ω)⊂ Lq(Ω) for all q≥ p if p =
N
m

,

W m,p(Ω)⊂ L∞(Ω) if p >
N
m

.

Remark 1.1. If Ω is a bounded and open subset of RN of class C1, then the following
norm on W 1,p(Ω),

‖u‖1,p = |∇u|Lp(Ω) + |u|Lq(Ω),

where 1≤ q≤ p∗ if 1≤ p < N, 1≤ q < ∞ if p = N and 1≤ q≤ ∞ if p > N,

1
p∗

=
1
p
− 1

N

is equivalent with the norm (1.22) for m = 1 (see, e.g., Brezis [7], p. 170).

We note also the following compactness embedding result.

Theorem 1.6. Let Ω be an open and bounded subset of RN that is of class C1. Then,
the injection of the space H1(Ω) into L2(Ω) is compact.

The “trace” to ∂Ω of a Function u ∈ H1(Ω)

If Ω is an open C1 subset of RN with the boundary ∂Ω , then each u ∈ C(Ω) is
well defined on ∂Ω . We call the restriction of u to ∂Ω the trace of u to ∂Ω and it
is denoted by γ0(u). If u ∈ L2(Ω), then γ0(u) is no longer well defined. We have,
however, the following.
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Lemma 1.2. Let Ω be an open subset of class C1 with compact boundary ∂Ω or
Ω = RN

+. Then, there is C > 0 such that

‖γ0(u)‖L2(∂Ω) ≤C‖u‖H1(Ω), ∀u ∈C∞
0 (RN). (1.28)

Taking into account that for domains Ω of class C1 the space {u|Ω ; u∈C∞
0 (RN)}

is dense in H1(Ω) (see, e.g., Adams [1], p. 54, or Brezis [7], p. 162), a natural way
to define the trace of a function u ∈ H1(Ω) is the following.

Definition 1.2. Let Ω be of class C1 with compact boundary or Ω = RN
+. Let

u ∈ H1(Ω). Then γ0(u) = lim j→∞ γ0(u j) in L2(∂Ω), where {u j} ⊂C∞
0 (RN) is such

that u j → u in H1(Ω).

It turns out that the definition is consistent; that is, γ0(u) is independent of {u j}.
Indeed, if {u j} and {ū j} are two sequences in C∞

0 (RN) convergent to u in H1(Ω),
then, by (1.28),

‖γ0(u j− ū j)‖L2(∂Ω) ≤C‖u j− ū j‖H1(Ω) → 0 as j → ∞.

Moreover, it follows by Lemma 1.2 that the map γ0 : H1(Ω) → L2(∂Ω) is conti-
nuous. As a matter of fact, it turns out that the trace operator u → γ0(u) is conti-
nuous from H1(Ω) to H1/2(∂Ω) and so it is completely continuous from H1(Ω) to
L2(∂Ω).

In general (see Adams [1], p. 114), we have W m,p(Ω)⊂ Lq(∂Ω) if mp < N and

p≤ q≤ (N−1)p
(N−mp)

·

Definition 1.3. Let Ω be any open subset of RN . The space H1
0 (Ω) is the closure

(the completion) of C1
0(Ω) in the norm of H1(Ω).

It follows that H1
0 (Ω) is a closed subspace of H1(Ω) and in general it is a proper

subspace of H1(Ω). It is clear that H1
0 (Ω) is a Hilbert space with the scalar product

〈u,v〉1 =
N

∑
i=1

∫

Ω

∂u
∂xi

∂v
∂xi

dx+
∫

Ω
uvdx

with the corresponding norm

‖u‖1 =
(∫

Ω
(|∇u(x)|2 +u2(x))dx

)1/2

.

Roughly speaking, H1
0 (Ω) is the subspace of functions u ∈ H1(Ω) that are zero

on ∂Ω . More precisely, we have the following.

Proposition 1.11. Let Ω be an open set of class C1 and let u ∈ H1(Ω). Then, the
following conditions are equivalent.
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(i) u ∈ H1
0 (Ω).

(ii) γ0(u)≡ 0.

Proposition 1.12 below is called the Poincaré inequality.

Proposition 1.12. Let Ω be an open and bounded subset of RN. Then there is C > 0
independent of u such that

‖u‖L2(Ω) ≤C‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω).

In particular, Proposition 1.12 shows that if Ω is bounded, then the scalar product

((u,v)) =
∫

Ω
∇u(x) ·∇v(x)dx

and the corresponding norm

‖u‖=
(∫

Ω
|∇u(x)|2dx

)1/2

define an equivalent Hilbertian structure on H1
0 (Ω).

We denote by H−1(Ω) the dual space of H1
0 (Ω); that is, the space of all linear

continuous functionals on H1
0 (Ω). Equivalently,

H−1(Ω) = {u ∈D ′(Ω); |u(ϕ)| ≤Cu‖ϕ‖H1(Ω), ∀ϕ ∈C∞
0 (Ω)}.

The space H−1(Ω) is endowed with the dual norm

‖u‖−1 = sup{|u(ϕ)|; ‖ϕ‖ ≤ 1}, ∀u ∈ H−1(Ω).

By Riesz’s theorem, we know that H−1(Ω) is isometric to H1
0 (Ω). Note also that

H1
0 (Ω)⊂ L2(Ω)⊂ H−1(Ω)

in the algebraic and topological sense. In other words, the injections of L2(Ω) into
H−1(Ω) and of H1

0 (Ω) into L2(Ω) are continuous. Note also that the above injec-
tions are dense.

There is an equivalent definition of H−1(Ω) given in Theorem 1.7 below.

Theorem 1.7. The space H−1(Ω) coincides with the set of all distributions
u ∈D ′(Ω) of the form

u = f0 +
N

∑
i=1

∂ fi

∂xi
in D ′(Ω), where fi ∈ L2(Ω), i = 1, ...,N.

The space W 1,p
0 (Ω), p ≥ 1, is similarly defined as the closure of C1

0(Ω) into
W 1,p(Ω) norm. The dual of W 1,p

0 (Ω) is the space
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W−1,q(Ω),
1
p

+
1
q

= 1

defined as in Theorem 1.7 with f0, f1, ..., fN ∈ Lq.

Variational Theory of Elliptic Boundary Value Problems

We begin by recalling an abstract existence result, the Lax–Milgram lemma, which is
the foundation upon which all the results of this section are built. Before presenting
it, we need to clarify certain concepts.

Let V be a real Hilbert space and let V ∗ be the topological dual space of V . For
each v∗ ∈ V ∗ and v ∈ V we denote by (v∗,v) the value v∗(v) of functional v∗ at v.
The functional a : V ×V → R is said to be bilinear if for each u ∈V , v→ a(u,v) is
linear and for each v ∈ V, u → a(u,v) is linear on V . The functional a is said to be
continuous if there exists M > 0 such that

|a(u,v)| ≤M‖u‖V ‖v‖V , ∀u,v ∈V.

The functional a is said to be coercive if

a(u,u)≥ ω‖u‖2
V , ∀u ∈V,

for some ω > 0, and symmetric if

a(u,v) = a(v,u), ∀u,v ∈V.

Lemma 1.3 (Lax–Milgram). Let a : V ×V → R be a bilinear, continuous, and
coercive functional. Then, for each f ∈V ∗, there is a unique u∗ ∈V such that

a(u∗,v) = ( f ,v), ∀v ∈V. (1.29)

Moreover, the map f → u∗ is Lipschitzian from V ∗ to V with Lipschitz constant
≤ ω−1. If a is symmetric, then u∗ minimizes the function u→ (1/2)a(u,u)− ( f ,u)
on V ; that is,

1
2

a(u∗,u∗)− ( f ,u∗) = min
{

1
2

a(u,u)− ( f ,u); u ∈V
}

. (1.30)

If a is symmetric, then the Lax–Milgram lemma is a simple consequence of
Riesz’s representation theorem. Indeed, in this case (u,v) → a(u,v) is an equiva-
lent scalar product on V and so, by the Riesz theorem, the functional v→ ( f ,v) can
be represented as (1.29) for some u∗ ∈V . In the general case we proceed as follows.
For each u ∈ V , the functional v → a(u,v) is linear and continuous on V and we
denote it by Au ∈V ∗. Then, the equation

a(u,v) = ( f ,v), ∀v ∈V
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can be rewritten as Au = f . Then, the conclusion follows because R(A) is simulta-
neously closed and dense in V ∗.

Weak Solutions to the Dirichlet Problem

Consider the Dirichlet problem
{
−∆u+ c(x)u = f in Ω ,

u = 0 on ∂Ω ,
(1.31)

where Ω is an open set of RN , c ∈ L∞(Ω), and f ∈ H−1(Ω) is given.

Definition 1.4. The function u is said to be a weak or variational solution to the
Dirichlet problem (1.31) if u ∈ H1

0 (Ω) and
∫

Ω
∇u(x) ·∇ϕ(x)dx+

∫

Ω
c(x)u(x)ϕ(x)dx = ( f ,ϕ) (1.32)

for all ϕ ∈ H1
0 (Ω) (equivalently, for all ϕ ∈C∞

0 (Ω)).

In (1.32), ∇u is taken in the sense of distributions and ( f ,ϕ) is the value of the
functional f ∈ H−1(Ω) into ϕ ∈ H1

0 (Ω). If f ∈ L2(Ω)⊂ H−1(Ω), then

( f ,ϕ) =
∫

Ω
f (x)ϕ(x)dx.

By the Lax–Milgram lemma, applied to the functional

a(u,v) =
∫

Ω
(∇u(x) ·∇v(x)+ cuv)dx, u,v ∈V = H1

0 (Ω),

we obtain the following.

Theorem 1.8. Let Ω be a bounded open set of RN and let c ∈ L∞(Ω) be such that
c(x)≥ 0, a.e. x ∈Ω . Then, for each f ∈H−1(Ω) the Dirichlet problem (1.31) has a
unique weak solution u∗ ∈H1

0 (Ω). Moreover, u∗ minimizes on H1
0 (Ω) the functional

1
2

∫

Ω
(|∇u(x)|2 + c(x)u2(x))dx− ( f ,u) (1.33)

and the map f → u∗ is Lipschitzian from H−1(Ω) to H1
0 (Ω).

Weak Solutions to the Neumann Problem

Consider the boundary value problem
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−∆u+ cu = f in Ω ,

∂u
∂ν

= g on ∂Ω ,
(1.34)

where c ∈ L∞(Ω), c(x)≥ ρ > 0, and f ∈ L2(Ω), g ∈ L2(∂Ω).

Definition 1.5. The function u ∈ H1(Ω) is said to be a weak solution to the Neu-
mann problem (1.34) if

∫

Ω
∇u ·∇vdx+

∫

Ω
cuvdx =

∫

Ω
f vdx+

∫

∂Ω
gvdσ , ∀v ∈ H1(Ω). (1.35)

Because for each v ∈H1(Ω) the trace γ0(v) is in L2(∂Ω), the integral
∫

∂Ω gvdσ
is well defined and so (1.35) makes sense.

Theorem 1.9. Let Ω be an open subset of RN. Then, for each f ∈ L2(Ω) and
g ∈ L2(∂Ω), problem (1.34) has a unique weak solution u ∈H1(Ω) that minimizes
the functional

u→ 1
2

∫

Ω
(|∇u(x)|2 + c(x)u2(x))dx−

∫

Ω
f (x)u(x)dx−

∫

∂Ω
gudσ on H1(Ω).

Proof. One applies the Lax–Milgram lemma on the space V = H1(Ω) to the
functional a(u,v) =

∫
Ω (∇u ·∇v + cuv)dx, ∀u,v ∈ H1(Ω), and ( f̃ ,v) =

∫
Ω f vdx

+
∫

∂Ω gvdσ . ¤

Regularity of the Weak Solutions

We briefly recall here the regularity of the weak solutions to the Dirichlet problem
{
−∆u = f in Ω ,

u = 0 on ∂Ω .
(1.36)

By Theorem 1.8 we know that if Ω is a bounded and open subset of RN and
f ∈ L2(Ω), then problem (1.36) has a unique solution u ∈ H1

0 (Ω). It turns out that
if ∂Ω is smooth enough, then this solution is actually in H2(Ω)∩H1

0 (Ω). More
precisely, we have the following theorem.

Theorem 1.10. Let Ω be a bounded and open subset of RN of class C2. Let
f ∈ L2(Ω) and let u ∈ H1

0 (Ω) be the weak solution to (1.36). Then, u ∈ H2(Ω)
and

‖u‖H2(Ω) ≤C‖ f‖L2(Ω), (1.37)

where C is independent of f .

To prove the theorem, one first shows that u ∈ H2(Ω ′) for each open subset
Ω ′ ⊂Ω compactly embedded in Ω (interior regularity). The most delicate part
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(boundary regularity) follows by the method of tangential quotients due to L. Niren-
berg. In short, the idea is to reduce problem (1.36) to an elliptic Dirichlet problem on
RN

+ and to estimate separately the tangential quotients (∇u)h, h = (h1, ...,hN−1,0)
and the normal quotient (∇u)h, h = (0, ...,0,hN) in order to show that v ∈ H2(RN

+).
For details we refer to Brezis’ book [7]. (See also [5].)

In particular, Theorem 1.10 implies that if A : H1
0 (Ω)→ H−1(Ω) is the elliptic

operator A =−∆ in D ′(Ω); that is,

(Au,ϕ) =
∫

Ω
∇u ·∇ϕ dx, ∀ϕ ∈ H1

0 (Ω),

then
{u ∈ H1

0 (Ω); Au ∈ L2(Ω)} ⊂ H2(Ω)

and
‖u‖H2(Ω) ≤C‖Au‖L2(Ω), ∀u ∈ H1

0 (Ω)∩H2(Ω).

Theorem 1.10 remains true if Ω is an open, convex, and bounded subset of RN .
For the proof which uses some specific geometrical properties of Ω we refer the
reader to Grisvard [10]. More generally, we have the following.

Theorem 1.11. If Ω is of class Cm+2 and f ∈ Hm(Ω), then the weak solution u to
problem (1.36) belongs to Hm+2(Ω) and

‖u‖m+2 ≤C‖ f‖m, ∀ f ∈ Hm(Ω).

If m > N/2, then u ∈C2(Ω). In particular, if Ω is of class C∞ and f ∈C∞(Ω), then
u ∈C∞(Ω).

We conclude this section with a regularity result for the weak solution u∈H1(Ω)
to Neumann’s problem 




u−∆u = f in Ω ,

∂u
∂ν

= 0 on ∂Ω .
(1.38)

Theorem 1.12. Under the assumptions of Theorem 1.10 the weak solution
u ∈ H1(Ω) to problem (1.38) belongs to H2(Ω) and

‖u‖H2(Ω) ≤C‖ f‖L2(Ω), ∀ f ∈ L2(Ω). (1.39)

Theorem 1.10 remains true in Lp(Ω) for p > 1. Namely, we have (Agmon,
Douglis and Nirenberg [2])

Theorem 1.13. Let Ω be a bounded open subset of RN with smooth boundary ∂Ω
and let 1 < p < ∞. Then, for each f ∈ Lp(Ω), the boundary value problem

−∆u = f in Ω , u = 0 on ∂Ω

has a unique weak solution u ∈W 1,p
0 (Ω)∩W 2,p(Ω). Moreover, one has
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‖u‖W 2,p(Ω) ≤C‖ f‖Lp(Ω),

where C is independent of f .

The Space BV (Ω)

Let Ω be an open subset of RN with smooth boundary ∂Ω .
A function f ∈ L1(Ω) is said to be of bounded variation on Ω if its gradient D f

in the sense of distributions is an RN-valued measure on Ω ; that is,

‖D f‖ := sup
{∫

Ω
f divψ dξ : ψ ∈C∞

0 (Ω ;RN), |ψ|∞ ≤ 1
}

< +∞,

or, equivalently,

‖D f‖=
∫

Ω
|D f (x)|dx,

where |D f | is the total variation of measure D f .
The space of all functions of bounded variation on Ω is denoted by BV (Ω). It is

a Banach space with the norm

‖ f‖BV (Ω) = | f |L1(Ω) +‖D f‖.

Let f ∈ BV (Ω). Then there is a Radon measure µ f on Ω and a µ f -measurable
function σ f : Ω → RN such that |σ f (x)|= 1, µ f , a.e., and

∫

Ω
f divψ dξ =−

∫

Ω
ψ ·σ f dµ f , ∀ψ ∈C1

0(Ω ;RN). (1.40)

For each f ∈ BV (Ω) there is the trace γ( f ) on ∂Ω (assumed sufficiently smooth)
defined by

∫

Ω
f divψ dξ =−

∫

Ω
ψ ·σ f dµ f +

∫

∂Ω
γ( f )ψ ·ν dHN−1,

∀ψ ∈C1(Ω ;RN),
(1.41)

where ν is the outward normal and dHN−1 is the Hausdorff measure on ∂Ω .
We have that |γ( f )|N ∈ L1(∂Ω ;dHN−1).

We denote by BV 0(Ω) the space of all BV (Ω) functions with vanishing trace
on ∂Ω . By the Poincaré inequality it follows that, on BV 0(Ω), ‖D f‖ is a norm
equivalent with ‖ f‖BV 0(Ω).

Theorem 1.14. Let 1 ≤ p ≤ N/(N−1) and Ω be a bounded open subset. Then,
we have BV (Ω) ⊂ Lp(Ω) with continuous and compact embedding. Moreover, the
function u→‖Du‖ is lower semicontinuous in Lp(Ω).

We refer the reader to Ambrosio, Fusco and Pallara [3] for proofs and other basic
results on functions with bounded variations.
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Weak compactness in L1(Ω)

Let Ω be a measurable subset of RN . Contrary to what happens in Lp(Ω) spaces
with 1 < p < ∞ that are reflexive, a bounded subset M of L1(Ω) is not necessarily
weakly compact. This happens, however, under some additional conditions on M .

Theorem 1.15. (Dunford–Pettis) Let M be a bounded subset of L1(Ω) having the
property that the family of integrals {∫E u(x)dx; E ⊂Ω measurable, u ∈M } is uni-
formly absolutely continuous; that is, for every ε > 0 there is δ (ε) > 0 independent
of u, such that

∫
E |u(x)|dx≤ ε for m(E) < δ (ε) (m is the Lebesgue measure). Then

the set M is weakly sequentially compact in L1(Ω).

For the proof, we refer the reader to Edwards [9], p. 270.
Theorem 1.15 remains true, of course, in (L1(Ω))m, m ∈ N.

1.4 Infinite-Dimensional Sobolev Spaces

Let X be a real (or complex) Banach space and let [a,b] be a fixed interval on the
real axis. A function x : [a,b] → X is said to be finitely valued if it is constant on
each of a finite number of disjoint measurable sets Ak ⊂ [a,b] and equal to zero on
[a,b] \∪kAk. The function x is said to be strongly measurable on [a,b] if there is
a sequence {xn} of finite-valued functions that converges strongly in X and almost
everywhere on [a,b] to x. The function x is said to be Bochner integrable if there
exists a sequence {xn} of finitely valued functions on [a,b] to X that converges
almost everywhere to x such that

lim
n→∞

∫ b

a
‖xn(t)− x(t)‖dt = 0.

A necessary and sufficient condition guaranteeing that x : [a,b] → X is Bochner
integrable is that x is strongly measurable and that

∫ b
a ‖x(t)‖dt < ∞. The space of all

Bochner integrable functions x : [a,b]→ X is a Banach space with the norm

‖x‖1 =
∫ b

a
‖x(t)‖dt,

and is denoted by L1(a,b;X).
More generally, the space of all (classes of) strongly measurable functions x from

[a,b] to X such that

‖x‖p =
(∫ b

a
‖x(t)‖pdt

)1/p

< ∞

for 1≤ p < ∞ and ‖x‖∞ = esssupt∈[a,b] ‖x(t)‖< ∞, is denoted by Lp(a,b;X). This
is a Banach space in the norm ‖ · ‖p.
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If X is reflexive, then the dual of Lp(a,b;X) is the space Lq(a,b;X∗), where
p < ∞, 1/p + 1/q = 1 (see Edward [9]). Recall also that a function x : [a,b]→ X
is said to be weakly measurable if for any x∗ ∈ X∗, the function t → (x∗,x(t)) is
measurable. According to the Pettis theorem, if X is separable then every weakly
measurable function is strongly measurable, and so these two notions coincide.

An X-valued function x defined on [a,b] is said to be absolutely continuous on
[a,b] if for each ε > 0 there exists δ (ε) such that ∑N

n=1 ‖x(tn)−x(sn)‖≤ ε , whenever
∑N

n=1 |tn−sn| ≤ δ (ε) and (tn,sn)∩(tm,sm) = /0 for m 6= n. Here, (tn,sn) is an arbitrary
subinterval of (a,b).

A classical result in real analysis says that any real-valued absolutely continuous
function is almost everywhere differentiable and it is expressed as the indefinite
integral of its derivative. It should be mentioned that this result fails for X-valued
absolutely continuous functions if X is a general Banach space.

However, if the space X is reflexive, we have (see, e.g., Komura [12]):

Theorem 1.16. Let X be a reflexive Banach space. Then every X-valued absolutely
continuous function x on [a,b] is almost everywhere differentiable on [a,b] and

x(t) = x(a)+
∫ t

a

d
ds

x(s)ds, ∀t ∈ [a,b], (1.42)

where (dx/dt) : [a,b]→ X is the derivative of x; that is,

d
dt

x(t) = lim
ε→0

x(t + ε)− x(t)
ε

·

Let us denote, as above, by D(a,b) the space of all infinitely differentiable real-
valued functions on [a,b] with compact support in (a,b), and by D ′(a,b;X) the
space of all continuous operators from D(a,b) to X . An element u of D ′(a,b;X) is
called an X-valued distribution on (a,b). If u∈D ′(a,b;X) and j is a natural number,
then

u( j)(ϕ) = (−1) ju(ϕ( j)), ∀ϕ ∈D(a,b),

defines another distribution u( j), which is called the derivative of order j of u.
We note that every element u ∈ L1(a,b;X) defines uniquely the distribution

(again denoted u)

u(ϕ) =
∫ b

a
u(t)ϕ(t)dt, ∀ϕ ∈D(a,b), (1.43)

and so L1(a,b;X) can be regarded as a subspace of D ′(a,b;X). In all that follows,
we identify a function u ∈ L1(a,b;X) with the distribution u defined by (1.43).

Let k be a natural number and 1≤ p≤∞. We denote by W k,p([a,b];X) the space
of all X-valued distributions u ∈D ′(a,b;X) such that

u( j) ∈ Lp(a,b;X) for j = 0,1, ...,k. (1.44)

Here, u( j) is the derivative of order j of u in the sense of distributions.
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We denote by A1,p([a,b];X), 1 ≤ p ≤ ∞, the space of all absolutely continuous
functions u from [a,b] to X having the property that they are a.e. differentiable on
(a,b) and (du/dt) ∈ Lp(a,b;X). If the space X is reflexive, it follows by Theorem
1.16 that u ∈ A1,p([a,b];X) if and only if u is absolutely continuous on [a,b] and
(du/dt) ∈ Lp(a,b;X).

It turns out that the space W 1,p can be identified with A1,p. More precisely, we
have (see Brezis [7]) the following theorem.

Theorem 1.17. Let X be a Banach space and let u ∈ Lp(a,b;X), 1 ≤ p ≤ ∞. Then
the following conditions are equivalent.

(i) u ∈W 1,p([a,b];X).

(ii) There is u0 ∈ A1,p([a,b];X) such that u(t) = u0(t), a.e., t ∈ (a,b).
Moreover, u′ = du0/dt, a.e. in (a,b).

Proof. For simplicity, we assume that [a,b] = [0,T ].
Let u ∈W 1,p([0,T ];X); that is, u ∈ Lp(0,T ;X) and u′ ∈ Lp(0,T ;X), and define

the regularization un of u,

un(t) = n
∫ T

0
u(s)ρ((t− s)n)ds, ∀t ∈ [0,T ], (1.45)

where ρ ∈ D(R) is such that
∫

ρ(s)ds = 1, ρ(t) = ρ(−t), suppρ ⊂ [−1,1]. It is
well known that un → u in Lp(0,T ;X) for n → ∞. Note also that un is infinitely
differentiable. Let ϕ ∈D(0,T ) be arbitrary but fixed. Then, by (1.45), we see that

∫ T

0

dun

dt
(t)ϕ(t)dt = −

∫ T

0
un(t)

dϕ
dt

(t)dt =−
∫ T

0
u(t)

dϕn

dt
(t)dt

= u′(ϕn) =
∫ T

0
u′nϕ dt if suppϕ ⊂

(
1
n
,T − 1

n

)
.

Hence,
dun

dt
= u′n, a.e. in

(
1
n
,T − 1

n

)
.

On the other hand, letting n tend to ∞ in the equation

un(t)−un(s) =
∫ t

s

dun

dτ
(τ)dτ,

we get

u(t)−u(s) =
∫ t

s
u′(τ)dτ, a.e. t,s ∈ (0,T ),

because (u′)n → u′ in Lp(0,T ;X). The latter equation implies that u admits an ex-
tension to an absolutely continuous function u0 on [0,T ] that satisfies the equation

u0(t)−u0(0) =
∫ t

0
u′(τ)dτ, ∀t ∈ [0,T ].
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Hence, (i) ⇒ (ii).

Conversely, assume now that u ∈ A1,p([0,T ];X). Then,

u′(ϕ) = −
∫ T

0
u(t)ϕ ′(t)dt =− lim

ε→0

∫ T

0
u(t)

ϕ(t)−ϕ(t− ε)
ε

dt

= − lim
ε→0

1
ε

∫ T−ε

0
(u(t)−u(t + ε))ϕ(t)dt− lim

ε→0

1
ε

∫ T

T−ε
u(t)ϕ(t)dt

+ lim
ε→0

1
ε

∫ ε

0
u(t)ϕ(t− ε)dt, ∀ϕ ∈D(0,T ).

Hence

u′(ϕ) =
∫ T

0

du
dt

(t)ϕ(t), ∀ϕ ∈D(0,T ).

This shows that u′ ∈ Lp(0,T ;X) and u′ = du/dt. ¤

Theorem 1.18. Let X be a reflexive Banach space and let u∈ Lp(a,b;X), 1 < p≤∞.
Then the following two conditions are equivalent.

(i) u ∈W 1,p([a,b];X).
(ii) There is C > 0 such that

∫ b−h

a
‖u(t +h)−u(t)‖pdt ≤C|h|p, ∀h ∈ [0,b−a]

with the usual modification in the case p = ∞.

Proof. (i) ⇒ (ii). By Theorem 1.17, we know that

u(t +h)−u(t) =
∫ t+h

t

du0

ds
(s)ds, ∀t, t +h ∈ [a,b],

where u0 ∈ A1,p([a,b];X) that is, (du0/dt) ∈ Lp(a,b;X). This yields via the Hölder
inequality and Fubini theorem

∫ b−h

a
‖u(t +h)−u(t)‖pdt ≤ |h|p−1

∫ b−h

a
dt

∫ t+h

t

∥∥∥∥
du0

ds

∥∥∥∥
p

ds≤ |h|p
∫ b

a

∥∥∥∥
du0

ds

∥∥∥∥
p

ds

and this implies estimate (ii).

(ii)⇒ (i). Let un be the regularization of u. A simple straightforward computation
involving formula (1.45) reveals that {u′n} is bounded in Lp(a,b;X). Because un → u
in Lp(a,b;X), u′n → u′ in D ′(a,b;X), and {u′n} is weakly compact in Lp(a,b;X),
which is reflexive, we infer that u′ ∈ Lp(a,b;X), as claimed. ¤

Remark 1.2. If u ∈W 1,1([a,b];X), then it follows as above that

∫ b−h

a
‖u(t +h)−u(t)‖dt ≤C|h|, ∀h ∈ [0,b−a].
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However, this inequality does not characterize the functions u in W 1,1([a,b];X), but
the functions u with bounded variation on [a,b].

Let V be a reflexive Banach space and H be a real Hilbert space such that
V ⊂ H ⊂V ′ in the algebraic and topological senses. Here, V ′ is the dual space of V
and H is identified with its own dual. Denote by | · | and ‖ · ‖ the norms of H and V ,
respectively, and by (·, ·) the duality between V and V ′. If v1,v2 ∈H, then (v1,v2) is
the scalar product in H of v1 and v2.

Denote by Wp([a,b];V ), 1 < p < ∞, the space

Wp([a,b];V ) = {u ∈ Lp(a,b;V ); u′ ∈ Lq(a,b;V ′)}, 1
p

+
1
q

= 1, (1.46)

where u′ is the derivative of u in the sense of D ′(a,b;V ). By Theorem 1.17, we
know that every u ∈Wp([a,b];V ) can be identified with an absolutely continuous
function u0 : [a,b]→V ′. However, we have a more precise result.

Theorem 1.19. Let u ∈ Wp([a,b];V ). Then there is a continuous function
u0 : [a,b]→H such that u(t) = u0(t), a.e., t ∈ (a,b). Moreover, if u,v∈Wp([a,b];V ),
then the function t → (u(t),v(t)) is absolutely continuous on [a,b] and

d
dt

(u(t),v(t)) = (u′(t),v(t))+(u(t),v′(t)), a.e. t ∈ (a,b). (1.47)

Proof. Let u,v ∈Wp([a,b];V ) and ψ(t) = (u(t),v(t)). As we have seen in Theorem
1.17, we may assume that u,v ∈ AC([a,b];V ′) and

lim
ε↓0

∫ b−ε

a

∥∥∥∥
u(t + ε)−u(t)

ε
−u′(t)

∥∥∥∥
q

V ′
dt = 0,

lim
ε↓0

∫ b−ε

a

∥∥∥∥
v(t + ε)− v(t)

ε
− v′(t)

∥∥∥∥
q

V ′
dt = 0.

Then, we have, by the Hölder inequality,

lim
ε↓0

∫ b−ε

a

∣∣∣∣
ψ(t + ε)−ψ(t)

ε
− (u′(t),v(t))− (u(t),v′(t))

∣∣∣∣dt = 0.

Hence, ψ ∈W 1,1([a,b];R) and (dψ/dt)(t)= (u′(t),v(t))+(u(t),v′(t)), a.e. t ∈ (a,b),
as claimed.

Now, in equation (1.47) we take v = u and integrate from s to t. We get

1
2

(|u(t)|2−|u(s)|2) =
∫ t

s
(u′(τ),u(τ))dτ.

Hence, the function t → |u(t)| is continuous. On the other hand, for every v ∈V the
function t → (u(t),v) is continuous. Because |u(t)| is bounded on [a,b], this implies
that for every v∈H the function t → (u(t),v) is continuous; that is, u(t) is H-weakly
continuous. Then, from the obvious equation
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|u(t)−u(s)|2 = |u(t)|2 + |u(s)|2−2(u(t),u(s)), ∀t,s ∈ [a,b]

it follows that lims→t |u(t)−u(s)|= 0, as claimed. ¤
The spaces W 1,p([a,b];X), as well as Wp([a,b];V ), play an important role in the

theory of differential equations in infinite-dimensional spaces.
The following compactness result, which is a sharpening of the Arzelà–Ascoli

theorem, is particularly useful in this context.

Theorem 1.20 (Aubin). Let X0,X1,X2 be Banach spaces such that X0 ⊂ X1 ⊂ X2,
Xi reflexive for i = 0,1,2, and the injection of X0 into X1 is compact. Let 1 < pi < ∞,
i = 0,1. Then the space

W = Lp0(a,b;X0)∩W 1,p1([a,b];X2)

is compactly embedded in Lp0(a,b;X1).

The proof relies on the following property of the spaces Xi (see Lions [11], p. 58).
For every ε > 0 there exists Cε > 0 such that

‖u‖X1 ≤ ε‖u‖X0 +Cε‖u‖X2 , ∀u ∈ X0.
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