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Preface

In the last decades, functional methods played an increasing role in the qualita-
tive theory of partial differential equations. The spectral methods and theory of C0-
semigroups of linear operators as well as Leray–Schauder degree theory, fixed point
theorems, and theory of maximal monotone nonlinear operators are now essential
functional tools for the treatment of linear and nonlinear boundary value problems
associated with partial differential equations.

An important step was the extension in the early seventies of the nonlinear dy-
namics of accretive (dissipative) type of the Hille–Yosida theory of C0-semigroups
of linear continuous operators. The main achievement was that the Cauchy problem
associated with nonlinear m-accretive operators in Banach spaces is well posed and
the corresponding dynamic is expressed by the Peano exponential formula from
finite-dimensional theory. This fundamental result is the corner stone of the whole
existence theory of nonlinear infinite dynamics of dissipative type and its contri-
bution to the development of the modern theory of nonlinear partial differential
equations cannot be underestimated.

Previously, in mid-sixties, some spectacular properties of maximal monotone
operators and their close relationship with convex analysis and m-accretivity were
revealed. In fact, Minty’s discovery that in Hilbert spaces nonlinear maximal mono-
tone operators coincide with m-accretive operators was crucial for the development
of the theory. Although with respect to the middle and end of the seventies, little new
material on this subject has come to light, the field of applications grew up and still
remains in actuality. In the meantime, some excellent monographs were published
where these topics were treated exhaustively and with extensive bibliographical re-
ferences. Here, we confine ourselves to the presentation of basic results of the theory
of nonlinear operators of monotone type and the corresponding dynamics generated
in Banach spaces. These subjects were also treated in the author’s books Nonlinear
Semigroups and Differential Equations in Banach Spaces (Noordhoff, 1976) and
Analysis and Control of Nonlinear Infinite Dimensional Systems (Academic Press,
1993), but the present book is more oriented to applications. We refrain from an
exhaustive treatment or details that would divert us from the principal aim of this
book: the presentation of essential results of the theory and its illustration by sig-
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viii Preface

nificant problems of nonlinear partial differential equations. Our aim is to present
functional tools for the study of a large class of nonlinear problems and open to
the reader the way towards applications. This book can serve as a teaching text for
graduate students and it is self-contained. One assumes, however, basic knowledge
of real and functional analysis as well as of differential equations. The literature
on this argument is so vast and accessible in print that I have dispensed with de-
tailed references or bibliographical comments. I have confined myself to a selected
bibliography arranged at the end of each chapter.

The present book is based on a graduate course given by the author at the Univer-
sity of Iaşi during the past twenty years as well as on one-semester graduate courses
at the University of Virginia in 2005 and the University of Trento in 2008.

In the preparation of the present book, I have received valuable help from my
colleagues, Ioan Vrabie and Cătălin Lefter (Al.I. Cuza University of Iaşi), Gabriela
Marinoschi (Institute of Mathematical Statistics and Applied Mathematics of the
Romanian Academy) and Luca Lorenzi from University of Parma, who read the
preliminary draft of the book and made numerous comments and suggestions which
have permitted me to improve the presentation and correct the errors. Elena Mocanu
from the Institute of Mathematics in Iaşi has done a great job in preparing and
processing this text for printing.

Iaşi, September 2009 Viorel Barbu
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R the real line (−∞,∞)
RN the N-dimensional Euclidean space
R+ = (0,+∞),
R− = (−∞,0),
R = (−∞,+∞],
RN

+ = {(x1, ...,xN);xN > 0}
Ω open subset of RN

∂Ω the boundary of Ω
Q = Ω × (0,T ),
Σ = ∂Ω × (0,T ), where 0 < T < ∞
‖ · ‖X the norm of a linear normed space X
X∗ the dual of space X
L(X ,Y ) the space of linear continuous operators from X to Y
∇ f the gradient of the map f : X → R
∂ f the subdifferential of f : X → R
B∗ the adjoint of the operator B
C the closure of the set C
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sign the signum function on X : signx = x/‖x‖X if x 6= 0

sign0 = {x; ‖x‖ ≤ 1}
Ck(Ω) the space of real-valued functions on Ω that are con-

tinuously differentiable up to order k, 0≤ k ≤ ∞
Ck

0(Ω) the subspace of functions in Ck(Ω) with compact
support in Ω

D(Ω) the space C∞
0 (Ω)

dku
dtk , u(k) the derivative of order k of u : [a,b]→ X
D ′(Ω) the dual of D(Ω) (i.e., the space of distributions

on Ω )
C(Ω) the space of continuous functions on Ω
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Lp(Ω) the space of p-summable functions u : Ω → R
endowed with the norm ‖u‖p = (

∫
Ω |u(x)|pdx)1/p ,

1≤ p < ∞, ‖u‖∞ = esssupx∈Ω |u(x)| for p = ∞
Lp

m(Ω) the space of p-summable functions u : Ω → Rm

W m,p(Ω) the Sobolev space {u∈Lp(Ω); Dα u∈Lp(Ω),
|α| ≤ m, 1≤ p≤ ∞}

W m,p
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0 (Ω) in the norm of W m,p(Ω)
W−m,q(Ω) the dual of W m,p

0 (Ω); (1/p)+(1/q) = 1,
p < ∞, q > 1

Hk(Ω),Hk
0(Ω) the spaces W k,2(Ω) and W k,2

0 (Ω), respectively
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(Banach space) 1≤ p≤ ∞, −∞≤ a < b≤ ∞
AC([a,b];X) the space of absolutely continuous functions from

[a,b] to X
BV ([a,b];X) the space of functions with bounded variation on

[a,b]
BV (Ω) the space of functions with bounded variation on Ω
W 1,p([a,b];X) the space

{
u ∈ AC([a,b];X); du/dt ∈ Lp([a,b];X)

}



Chapter 1
Fundamental Functional Analysis

Abstract The aim of this chapter is to provide some standard basic results pertaining
to geometric properties of normed spaces, convex functions, Sobolev spaces, and
variational theory of linear elliptic boundary value problems. Most of these results,
which can be easily found in textbooks or monographs, are given without proof or
with a sketch of proof only.

1.1 Geometry of Banach Spaces

Throughout this section X is a real normed space and X∗ denotes its dual. The value
of a functional x∗ ∈ X∗ at x∈ X is denoted by either (x∗,x) or x∗(x), as is convenient.
The norm of X is denoted by ‖ · ‖, and the norm of X∗ is denoted by ‖ · ‖∗. If there
is no danger of confusion we omit the asterisk from the notation ‖ · ‖∗ and denote
both the norms of X and X∗ by the symbol ‖ · ‖.

We use the symbol lim or → to indicate strong convergence in X and w-lim or
⇀ for weak convergence in X . By w∗-lim or ⇀ we indicate weak-star convergence
in X∗. The space X∗ endowed with the weak-star topology is denoted by X∗w.

Define on X the mapping J : X → 2X∗ :

J(x) = {x∗ ∈ X∗; (x∗,x) = ‖x‖2 = ‖x∗‖2}, ∀x ∈ X . (1.1)

By the Hahn–Banach theorem we know that for every x0 ∈ X there is some x∗0 ∈ X∗
such that (x∗0,x0) = ‖x0‖ and ‖x∗0‖ ≤ 1.

Indeed, the linear functional f : Y → R defined by f (x) = α‖x0‖ for x = αx0,
where Y = {αx0; α ∈ R}, has a linear continuous extension x∗0 ∈ X∗ on X such
that |(x∗0,x)| ≤ ‖x‖ ∀x ∈ X . Hence, (x∗0,x0) = ‖x0‖ and ‖x∗0‖ ≤ 1 (in fact, ‖x∗0‖= 1).
Clearly, x∗0‖x0‖ ∈ J(x0) and so J(x0) 6= /0 for every x0 ∈ X .

The mapping J : X → X∗ is called the duality mapping of the space X . In general,
the duality mapping J is multivalued.

1V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,
Springer Monographs in Mathematics, DOI 10.1007/978-1-4419-5542-5_1, 
© Springer Science+Business Media, LLC 2010 



2 1 Fundamental Functional Analysis

The inverse mapping J−1 : X∗ → X defined by J−1(x∗) = {x∈ X ; x∗ ∈ J(x)} also
satisfies

J−1(x∗) = {x ∈ X ; ‖x‖= ‖x∗‖, (x∗,x) = ‖x‖2 = ‖x∗‖2}.
If the space X is reflexive (i.e., X = X∗∗), then clearly J−1 is just the duality mapping
of X∗ and so D(J−1) = X∗. As a matter of fact, reflexivity plays an important role
everywhere in the following and it should be recalled that a normed space is reflexive
if and only if its dual X∗ is reflexive (see, e.g., Yosida [16], p. 113).

It turns out that the properties of the duality mapping are closely related to the
nature of the spaces X and X∗, more precisely to the convexity and smoothing pro-
perties of the closed balls in X and X∗.

Recall that the space X is called strictly convex if the unity ball B of X is strictly
convex, that is the boundary ∂B contains no line segments.

The space X is said to be uniformly convex if for each ε > 0, 0 < ε < 2, there is
δ (ε) > 0 such that if ‖x‖= 1, ‖y‖= 1, and ‖x−y‖ ≥ ε , then ‖x+y‖ ≤ 2(1−δ (ε)).

Obviously, every uniformly convex space X is strictly convex. Hilbert spaces
as well as the spaces Lp(Ω), 1 < p < ∞, are uniformly convex spaces (see, e.g.,
Köthe [13]). Recall also that, by virtue of the Milman theorem (see, e.g., Yosida
[16], p. 127), every uniformly convex Banach space X is reflexive. Conversely, it
turns out that every reflexive Banach space X can be renormed such that X and X∗
become strictly convex. More precisely, one has the following important result due
to Asplund [4].

Theorem 1.1. Let X be a reflexive Banach space with the norm ‖ · ‖. Then there is
an equivalent norm ‖ · ‖0 on X such that X is strictly convex in this norm and X∗ is
strictly convex in the dual norm ‖ · ‖∗0.

Regarding the properties of the duality mapping associated with strictly or uni-
formly convex Banach spaces, we have the following.

Theorem 1.2. Let X be a Banach space. If the dual space X∗ is strictly convex,
then the duality mapping J : X → X∗ is single-valued and demicontinuous (i.e., it is
continuous from X to X∗w). If the space X∗ is uniformly convex, then J is uniformly
continuous on every bounded subset of X.

Proof. Clearly, for every x∈X , J(x) is a closed convex subset of X∗. Because J(x)⊂
∂B, where B is the open ball of radius ‖x‖ and center 0, we infer that if X∗ is
strictly convex, then J(x) consists of a single point. Now, let {xn} ⊂ X be strongly
convergent to x0 and let x∗0 be any weak-star limit point of {J(xn)}. (Because the
unit ball of the dual space is w∗-compact (Yosida [16], p. 137) such an x∗0 exists.)
We have (x∗0,x0) = ‖x0‖2 ≥ ‖x∗0‖2 because the closed ball of radius ‖x0‖ in X∗ is
weak-star closed. Hence ‖x0‖2=‖x∗0‖2−(x∗0,x0). In other words, x∗0=J(x0), and so

J(xn) ⇀ J(x0),

as claimed. ¤

To prove the second part of the theorem, let us first establish the following lemma.



1.1 Geometry of Banach Spaces 3

Lemma 1.1. Let X be a uniformly convex Banach space. If xn ⇀ x and
limsupn→∞ ‖xn‖ ≤ ‖x‖, then xn → x as n→ ∞.

Proof. One can assume of course that x 6= 0. By hypothesis, (x∗,xn)→ (x∗,x) for
all x ∈ X , and so, by the weak lower semicontinuity of the norm in X ,

‖x‖ ≤ liminf
n→∞

‖xn‖ ≤ ‖x‖.

Hence, limn→∞ ‖xn‖= ‖x‖. Now, we set

yn =
xn

‖xn‖ , y =
x
‖x‖ ·

Clearly, yn ⇀ y as n → ∞. Let us assume that yn 6→ y and argue from this to a
contradiction. Indeed, in this case we have a subsequence ynk , ‖ynk − y‖ ≥ ε , and
so there is δ > 0 such that ‖ynk + y‖ ≤ 2(1− δ ). Letting nk → ∞ and using once
again the fact that the norm y→ ‖y‖ is weakly lower semicontinuous, we infer that
‖y‖ ≤ 1−δ . The contradiction we have arrived at shows that the initial supposition
is false. ¤

Proof of Theorem 1.2 (continued). Assume now that X∗ is uniformly convex. We
suppose that there exist subsequences {un},{vn} in X such that ‖un‖,‖vn‖ ≤ M,
‖un− vn‖ → 0 for n → ∞, ‖J(un)− J(vn)‖ ≥ ε > 0 for all n, and argue from this
to a contradiction. We set xn = un‖un‖−1, yn = vn‖vn‖−1. Clearly, we may assume
without loss of generality that ‖un‖ ≥ α > 0 and that ‖vn‖ ≥ α > 0 for all n. Then,
as easily seen,

‖xn− yn‖→ 0 as n→ ∞

and

(J(xn)+ J(yn),xn) = ‖xn‖2 +‖yn‖2 +(xn− yn,J(yn))≥ 2−‖xn− yn‖.

Hence
1
2
‖J(xn)+ J(yn)‖ ≥ 1− 1

2
‖xn− yn‖, ∀n.

Inasmuch as ‖J(xn)‖ = ‖J(yn)‖ = 1 and the space X∗ is uniformly convex, this
implies that limn→∞(J(xn)− J(yn)) = 0. On the other hand, we have

J(un)− J(vn) = ‖un‖(J(xn)− J(yn))+(‖un‖−‖vn‖)J(yn),

so that limn→∞(J(un)− J(vn)) = 0 strongly in X∗. ¤

Now, let us give some examples of duality mappings.

1. X = H is a Hilbert space identified with its own dual. Then J = I, the iden-
tity operator in H. If H is not identified with its dual H∗, then the duality map-
ping J : H → H∗ is the canonical isomorphism Λ of H onto H∗. For instance, if
H = H1

0 (Ω) and H∗ = H−1(Ω) and Ω is a bounded and open subset of RN , then
J = Λ is defined by
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(Λu,v) =
∫

Ω
∇u ·∇vdx, ∀u,v ∈ H1

0 (Ω). (1.2)

In other words, J = Λ is the Laplace operator −∆ under Dirichlet homo-
geneous boundary conditions in Ω ⊂ RN . Here H1

0 (Ω) is the Sobolev space
{u ∈ L2(Ω);∇u ∈ L2(Ω); u = 0 on ∂Ω}. (See Section 1.3 below.)

2. X = Lp(Ω), where 1 < p < ∞ and Ω is a measurable subset of RN . Then, the
duality mapping of X is given by

J(u)(x) = |u(x)|p−2u(x)‖u‖2−p
Lp(Ω), a.e. x ∈Ω , ∀u ∈ Lp(Ω). (1.3)

Indeed, it is readily seen that if Φp is the mapping defined by the right-hand side
of (1.3), we have

∫

Ω
Φp(u)udx =

(∫

Ω
|u|pdx

)2/p

=
(∫

Ω
|Φp(u)|qdx

)2/q

, where
1
p

+
1
q

= 1.

Because the duality mapping J of Lp(Ω) is single-valued (because Lp is uni-
formly convex for p > 1) and Φp(u)∈ J(u), we conclude that J = Φp, as claimed.
If X = L1(Ω), then as we show later (Corollary 2.7)

J(u) = {v ∈ L∞(Ω); v(x) ∈ signu(x) · ‖u‖L1(Ω), a.e. x ∈Ω}. (1.4)

3. Let X be the Sobolev space W 1,p
0 (Ω), where 1 < p < ∞ and Ω is a bounded and

open subset of RN . (See Section 1.3 below.) Then,

J(u) =−
N

∑
i=1

∂
∂xi

(∣∣∣∣
∂u
∂xi

∣∣∣∣
p−2 ∂u

∂xi

)
‖u‖2−p

W 1,p
0 (Ω)

. (1.5)

In other words, J : W 1,p
0 (Ω)→W−1,q(Ω), (1/p)+(1/q) = 1, is defined by

(J(u),v) =
N

∑
i=1

∫

Ω

∣∣∣∣
∂u
∂xi

∣∣∣∣
p−2 ∂u

∂xi

∂v
∂xi

dx‖u‖2−p
W 1,p

0 (Ω)
, ∀v ∈W 1,p

0 (Ω). (1.6)

We later show that the duality mapping J of the space X can be equivalently
defined as the subdifferential (Gâteaux differential if X∗ is strictly convex) of the
function x→ 1/2‖x‖2.

1.2 Convex Functions and Subdifferentials

Here we briefly present the basic results pertaining to convex analysis in infinite-
dimensional spaces. For further results and complete treatment of the subject we
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refer the reader to Moreau [14], Rockafellar [15], Brezis [8], Barbu and Precupanu
[6] and Zălinescu [17].

Let X be a real Banach space with dual X∗. A proper convex function on X is
a function ϕ : X → (−∞,+∞] = R that is not identically +∞ and that satisfies the
inequality

ϕ((1−λ )x+λy)≤ (1−λ )ϕ(x)+λϕ(y) (1.7)

for all x,y ∈ X and all λ ∈ [0,1].
The function ϕ : X → (−∞,+∞] is said to be lower semicontinuous (l.s.c.) on X if

liminf
u→x

ϕ(u)≥ ϕ(x), ∀x ∈ X ,

or, equivalently, every level subset {x ∈ X ; ϕ(x)≤ λ} is closed.
The function ϕ : X →]−∞,+∞] is said to be weakly lower semicontinuous if it

is lower semicontinuous on the space X endowed with weak topology.
Because every level set of a convex function is convex and every closed convex

set is weakly closed (this is an immediate consequence of Mazur’s theorem, Yosida
[16], p. 109), we may therefore conclude that a proper convex function is lower
semicontinuous if and only if it is weakly lower semicontinuous.

Given a lower semicontinuous convex function ϕ : X → (−∞,+∞] = R, ϕ 6≡ ∞,
we use the following notations:

D(ϕ) = {x ∈ X ; ϕ(x) < ∞} (the effective domain of ϕ), (1.8)

Epi(ϕ) = {(x,λ ) ∈ X×R; ϕ(x)≤ λ} (the epigraph of ϕ). (1.9)

It is readily seen that Epi(ϕ) is a closed convex subset of X ×R, and as a matter
of fact its properties are closely related to those of the function ϕ .

Now, let us briefly describe some elementary properties of l.s.c., convex func-
tions.

Proposition 1.1. Let ϕ : X → R be a proper, l.s.c., and convex function. Then ϕ is
bounded from below by an affine function; that is there are x∗0 ∈ X∗ and β ∈R such
that

ϕ(x)≥ (x∗0,x)+β , ∀x ∈ X . (1.10)

Proof. Let E(ϕ) = Epi(ϕ) and let x0 ∈ X and r ∈ R be such that ϕ(x0) > r. By
the classical separation theorem (see, e.g., Brezis [7]), there is a closed hyperplane
H = {(x,λ )∈ X×R;−(x∗0,x)+λ = α} that separates E(ϕ) and (x0,r). This means
that

−(x∗0,x)+λ ≥ α, ∀x ∈ E(ϕ) and − (x∗0,x0)+ r < α.

Hence, for λ = ϕ(x), we have

−(x∗0,x)+ϕ(x)≥−(x∗0,x0)+ r, ∀x ∈ X ,

which implies (1.10). ¤
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Proposition 1.2. Let ϕ : X → R be a proper, convex, and l.s.c. function. Then ϕ is
continuous on intD(ϕ).

Proof. Let x0 ∈ intD(ϕ). We prove that ϕ is continuous at x0. Without loss of gene-
rality, we assume that x0 = 0 and that ϕ(0) = 0. Because the set {x : ϕ(x) >−ε} is
open it suffices to show that {x : ϕ(x) < ε} is a neighborhood of the origin. We set
C = {x ∈ X ; ϕ(x) ≤ ε}∩{x ∈ X ; ϕ(−x) ≤ ε}. Clearly, C is a closed balanced set
of X (i.e., αx ∈C for |α| ≤ 1 and x ∈C). Moreover, C is absorbing; that is, for every
x ∈ X there exists α > 0 such that αx ∈C (because the function t → ϕ(tx) is convex
and finite in a neighborhood of the origin and therefore it is continuous). Because X
is a Banach space, the preceding properties of C imply that it is a neighborhood of
the origin, as claimed. ¤

The function ϕ∗ : X∗ → R defined by

ϕ∗(p) = sup{(p,x)−ϕ(x); x ∈ X} (1.11)

is called the conjugate of ϕ .

Proposition 1.3. Let ϕ : X → R be l.s.c., convex, and proper. Then ϕ∗ is l.s.c., con-
vex, and proper on the space X∗.

Proof. As supremum of a set of affine functions, ϕ∗ is convex and l.s.c. Moreover,
by Proposition 1.2 we see that ϕ∗ 6≡ ∞. ¤

Proposition 1.4. Let ϕ : X → (−∞,+∞] be a weakly lower semicontinuous function
such that every level set {x ∈ X ; ϕ(x) ≤ λ} is weakly compact. Then ϕ attains its
infimum on X. In particular, if X is reflexive and ϕ is an l.s.c. proper convex function
on X such that

lim
‖x‖→∞

ϕ(x) = ∞, (1.12)

then there exists x0 ∈ X such that ϕ(x0) = inf{ϕ(x); x ∈ X}.
Proof. Let d = inf{ϕ(x); x ∈ X} and let {xn} ⊂ X such that d ≤ ϕ(xn)≤ d +(1/n).
Then {xn} is weakly compact in X and, therefore, there is {xnk} ⊂ {xn} such that
xnk ⇀ x as nk →∞. Because ϕ is weakly semicontinuous, this implies that ϕ(x)≤ d.
Hence ϕ(x) = d, as desired. If X is reflexive, then formula (1.12) implies that {x∈X ;
ϕ(x)≤ λ} are weakly compact. As seen earlier, every convex and l.s.c. function is
weakly lower semicontinuous, therefore we can apply the first part. ¤

Given a function f from a Banach space X to R, the mapping f ′ : X ×X → R
defined by

f ′(x,y) = lim
λ↓0

f (x+λy)− f (x)
λ

, x,y ∈ X , (1.13)

(if it exists) is called the directional derivative of f at x in direction y.
The function f : X →R is said to be Gâteaux differentiable at x∈X if there exists

∇ f (x) ∈ X∗ (the Gâteaux differential) such that
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f ′(x,y) = (∇ f (x),y), ∀y ∈ X . (1.14)

If the convergence in (1.13) is uniform in y on bounded subsets, then f is said to be
Fréchet differentiable and ∇ f is called the Fréchet differential (derivative) of f .

Given an l.s.c., convex, proper function ϕ : X → R, the mapping ∂ϕ : X → X∗
defined by

∂ϕ(x) = {x∗ ∈ X∗; ϕ(x)≤ ϕ(y)+(x∗,x− y), ∀y ∈ X} (1.15)

is called the subdifferential of ϕ .
In general, ∂ϕ is a multivalued operator from X to X∗ not everywhere defined

and can be seen as a subset of X×X∗.
An element x∗ ∈ ∂ϕ(x) (if any) is called a subgradient of ϕ in x. We denote as

usual by D(∂ϕ) the set of all x ∈ X for which ∂ϕ(x) 6= /0.
Let us pause briefly to give some simple examples.

1. ϕ(x) = 1/2‖x‖2. Then, ∂ϕ = J (the duality mapping of the space X). Indeed, if
x∗ ∈ J(x), then

(x∗,x− y) = ‖x‖2− (x∗,y)≥ 1
2

(‖x‖2−‖y‖2), ∀x ∈ X .

Hence x∗ ∈ ∂ϕ(x). Now, let x∗ ∈ ∂ϕ(x); that is,

1
2
(‖x‖2−‖y‖2)≤ (x∗ − y,x), ∀y ∈ X . (1.16)

We take y = λx, 0 < λ < 1, in (1.16), getting

(x∗,x)≥ 1
2
‖x‖2(1+λ ).

Hence, (x∗,x)≥ ‖x‖2. If y = λx, where λ > 1, we get that (x∗,x)≤ ‖x‖2. Hence,
(x∗,x) = ‖x‖2 and ‖x∗‖ ≥ ‖x‖. On the other hand, taking y = x + λu in (1.16),
where λ > 0 and u is arbitrary in X , we get

λ (x∗,u)≤ 1
2

(‖x+λu‖2−‖x‖2),

which yields
(x∗,u)≤ ‖x‖ ‖u‖.

Hence, ‖x∗‖ ≤ ‖x‖. We have therefore proven that (x∗,x) = ‖x‖2 = ‖x∗‖2 as
claimed.

2. Let K be a closed convex subset of X . The function IK : X → R defined by

IK(x) =

{
0, if x ∈ K,

+∞, if x /∈ K,
(1.17)
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is called the indicator function of K, and its dual function H,

HK(p) = sup{(p,u); u ∈ K}, ∀p ∈ X∗,

is called the support function of K. It is readily seen that D(∂ IK) = K, ∂ IK(x) = 0
for x ∈ intK (if nonempty) and that

∂ IK(x) = NK(x) = {x∗ ∈ X∗; (x∗,x−u)≥ 0, ∀u ∈ K}, ∀x ∈ K. (1.18)

For every x ∈ ∂K (the boundary of K), NK(x) is the normal cone at K in x.

3. Let ϕ be convex and Gâteaux differentiable at x. Then ∂ϕ(x) = ∇ϕ(x). Indeed,
because ϕ is convex, we have

ϕ(x+λ (y− x))≤ (1−λ )ϕ(x)+λϕ(y)

for all x,y ∈ X and 0≤ λ ≤ 1. Hence,

ϕ(x+λ (y− x))−ϕ(x)
λ

≤ ϕ(y)−ϕ(x),

and letting λ tend to zero, we see that ∇ϕ(x) ∈ ∂ϕ(x). Now, let w be an arbitrary
element of ∂ϕ(x). We have

ϕ(x)−ϕ(y)≤ (w,x− y), ∀y ∈ X .

Equivalently,

ϕ(x+λy)−ϕ(x)
λ

≥ (w,y), ∀λ > 0, y ∈ X ,

and this implies that (∇ϕ(x)−w,y)≥ 0 for all y ∈ X . Hence, w = ∇ϕ(x).

By the definition of ∂ϕ it is easily seen that ϕ(x) = inf{ϕ(u); u∈ X} iff 0∈ ∂ϕ(x).
There is a close relationship between ∂ϕ and ∂ϕ∗. More precisely, we have the
following.

Proposition 1.5. Let X be a reflexive Banach space and let ϕ : X → R be an l.s.c.,
convex, proper function. Then the following conditions are equivalent.

(i) x∗ ∈ ∂ϕ(x),
(ii) ϕ(x)+ϕ∗(x∗) = (x∗,x),
(iii) x ∈ ∂ϕ∗(x∗).
In particular, ∂ϕ∗ = (∂ϕ)−1 and (ϕ∗)∗ = ϕ.

Proof. By definition of ϕ∗, we see that

ϕ∗(x∗)≥ (x∗,x)−ϕ(x), ∀x ∈ X ,

with equality if and only if 0∈ ∂x(−(x∗,x)+ϕ(x)). Hence, (i) and (ii) are equivalent.
Now, if (ii) holds, then x∗ is a minimum point for the function ϕ∗(p)− (x, p) and so
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x ∈ ∂ϕ∗(x∗). Hence, (ii) ⇒ (iii). Because conditions (i) and (ii) are equivalent for
ϕ∗, we may equivalently express (iii) as ϕ∗(x∗)+(ϕ∗)∗(x) = (x∗,x). Thus, to prove
(ii) it suffices to show that (ϕ∗)∗ = ϕ . It is readily seen that (ϕ∗)∗ = ϕ∗∗ ≤ ϕ . We
suppose now that there exists x0 ∈ X such that ϕ∗∗(x0) < ϕ(x0), and we argue from
this to a contradiction. We have, therefore, (x0,ϕ∗∗(x0)) /∈ Epi(ϕ) and so, by the
separation theorem, it follows that there are x∗0 ∈ X∗ and α ∈ R such that (x∗0,x0)+
αϕ∗∗(x0) > sup{(x∗0,x)+αλ ; (x,λ ) ∈ Epi(ϕ)}. After some calculation, it follows
that α < 0. Then, dividing this inequality by −α , we get that

−
(

x∗0,
x0

α

)
−ϕ∗∗(x0) > sup

{(
x∗0,−

x
α

)
−λ ; (x,λ ) ∈ Epi(ϕ)

}

= sup
{(

−x∗0
α

,x
)
−ϕ(x); x ∈ D(ϕ)

}
= ϕ∗

(
−x∗0

α

)
,

which clearly contradicts the definition of ϕ∗∗. ¤

We mention without proof the following density result. (See, e.g., [2].)

Proposition 1.6. Let ϕ : X → R be an l.s.c., convex, and proper function. Then
D(∂ϕ) is a dense subset of D(ϕ).

Proposition 1.7. Let ϕ be an l.s.c., proper, convex function on X. Then intD(ϕ) ⊂
D(∂ϕ).

Proof. Let x0 ∈ intD(ϕ) and let V = B(x0,r) = {x; ‖x− x0‖ < r} be such that
V ⊂ D(ϕ). We know by Proposition 1.2 that ϕ is continuous on V and this implies
that the set C = {(x,λ ) ∈V ×R; ϕ(x) < λ} is an open convex set of X ×R. Thus,
there is a closed hyperplane, H = {(x,λ ) ∈ X ×R; (x∗0,x)+λ = α}, that separates
(x0,ϕ(x0)) from C. Hence, (x∗0,x0)+ϕ(x0) < α and

(x∗0,x)+λ ≥ α, ∀(x,λ ) ∈C.

This yields
ϕ(x0)−ϕ(x) <−(x∗0,x0− x), ∀x ∈V.

But, for every u ∈ X , there exists 0 < λ < 1 such that x = λx0 + (1− λ )u ∈ V .
Substituting this x in the preceding inequality and using the convexity of ϕ , we
obtain that

ϕ(x0)≤ ϕ(u)+(x∗0,x0−u), ∀u ∈ X .

Hence, x0 ∈ D(∂ϕ) and x∗0 ∈ ∂ϕ(x0). ¤

There is a close connection between the range of subdifferential ∂ϕ of a lower
semicontinuous convex function ϕ : X → R and its behavior for ‖x‖ → ∞. Namely,
one has

Proposition 1.8. The following two conditions are equivalent.

(j) R(∂ϕ) = X∗, and ∂ϕ∗ = (∂ϕ)−1 is bounded on bounded subsets,
(jj) lim‖x‖→∞ ϕ(x)/‖x‖= +∞.
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Proof. (jj)⇒ (j). If (jj) holds, then by Proposition 1.4 it follows that for each f ∈ X∗
the equation f ∈ ∂ϕ(x) or, equivalently, 0∈ ∂ (ϕ(x)− f (x)), has at least one solution
x ∈D(∂ϕ). Moreover, if { f} remains in a bounded subset of X∗, the same is true of
(∂ϕ)−1 f .

(j) ⇒ (jj). By Proposition 1.5 we have

ϕ(x)≥ (x∗,x)−ϕ∗(x∗), ∀x∗ ∈ X∗, ∀x ∈ X .

This yields, for x∗ = ρJ(x)‖x‖−1,

ϕ(x)≥ ρ‖x‖−ϕ∗(ρJ(x)‖x‖−1), ∀ρ > 0, ∀x ∈ X .

Because ϕ∗ and ∂ϕ∗ are bounded on bounded subsets, the latter implies (jj). ¤

1.3 Sobolev Spaces and Linear Elliptic Boundary Value
Problems

Throughout this section, until further notice, we assume that Ω is an open subset of
RN . To begin with, let us briefly recall the notion of distribution. Let f = f (x) be a
complex-valued function defined on Ω . By the support of f , abbreviated supp f , we
mean the closure of the set {x ∈ Ω ; f (x) 6= 0} or, equivalently, the smallest closed
set of Ω outside of which f vanishes identically. We denote by Ck(Ω), 0 ≤ k ≤ ∞,
the set of all complex-valued functions defined in Ω that have continuous partial
derivatives of order up to and including k (of any order < ∞ if k = ∞). Let Ck

0(Ω)
denote the set of all functions ϕ ∈Ck(Ω) with compact support in Ω .

It is readily seen that C∞
0 (Ω) is a linear space. We may introduce in C∞

0 (Ω) a
convergence as follows. We say that the sequence {ϕk} ⊂C∞

0 (Ω) is convergent to
ϕ , denoted ϕk ⇒ ϕ , if

(a) There is a compact K ⊂Ω such that suppϕk ⊂ K for all k = 1, ... .
(b) limk→∞ Dα ϕk = Dα ϕ uniformly on K for all α = (α1, ...,αn).

Here Dα = Dα
x1
· · ·Dαn

xN
, Dxi = ∂/∂xi, i = 1, ...,n. Equipped in this way, the space

C∞
0 (Ω) is denoted by D(Ω). As a matter of fact, D(Ω) can be redefined as a locally

convex, linear topological space with a suitable chosen family of seminorms.

Definition 1.1. A linear continuous functional u on D(Ω) is called a distribution
on Ω .

In other words, a distribution is a linear functional u on C∞
0 (Ω) having the pro-

perty that limk→∞ u(ϕk) = 0 for every sequence {ϕk} ⊂C∞
0 (Ω) such that ϕk ⇒ 0.

The set of all distributions on Ω is a linear space, denoted by D ′(Ω).
The distribution is a natural extension of the notion of locally summable function

on Ω for if f ∈ L1
loc(Ω), then the linear functional u f on C∞

0 (Ω) defined by
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u f (ϕ) =
∫

Ω
f (x)ϕ(x)dx, ∀ϕ ∈C∞

0 (Ω)

is a distribution on Ω ; that is, u f ∈ D ′(Ω). Moreover, the map f → u f is injective
from L1

loc(Ω) to D ′(Ω).
Given u ∈ D ′(Ω), by definition, the derivative of order α = (α1, ...,αn), Dα u,

of u, is the distribution

(Dα u)(ϕ) = (−1)|α |u(Dα ϕ), ∀ϕ ∈D(Ω), where |α|= α1 + · · ·+αn.

Let Ω be an open subset of RN and let m be a positive integer. Denote by Hm(Ω)
the set of all real valued functions u ∈ L2(Ω) such that distributional derivatives
Dα u of u of order |α| ≤ m all belong to L2(Ω). In other words,

Hm(Ω) = {u ∈ L2(Ω); Dα u ∈ L2(Ω), |α| ≤ m}. (1.19)

This is the Sobolev space of order m on Ω . It is easily seen that Hm(Ω) is a linear
space by (u1 + u2)(x) = u1(x) + u2(x), (λu)(x) = λu(x), ∀λ ∈ R, a.e., x ∈ Ω ,
under the convention that two L2(Ω) functions u1,u2 represent the same element
of Hm(Ω) if u1(x) = u2(x), a.e., x ∈ Ω . In other words, we do not distinguish two
functions in Hm(Ω) that coincide almost everywhere. In this context we say that
u ∈ Hm(Ω) is continuous, differentiable, or absolutely continuous if there exists a
function ū ∈ Hm(Ω) which has these properties and coincides almost everywhere
with u on Ω .

We present below a few basic properties of Sobolev spaces and refer to the books
of Brezis [7], Adams [1] and Barbu [5] for proofs.

Proposition 1.9. Hm(Ω) is a Hilbert space with the scalar product

〈u,v〉m = ∑
|α |≤m

∫

Ω
Dα u(x)Dα v(x)dx, ∀u,v ∈ Hm(Ω). (1.20)

If Ω = (a,b),−∞ < a < b < ∞, then H1(Ω) reduces to the subspace of absolutely
continuous functions on the interval [a,b] with derivative in L2(a,b).

Proposition 1.10. H1(a,b) coincides with the space of absolutely continuous func-
tions u : [a,b]→ R having the property that u′ ∈ L2(a,b). Moreover, for each func-
tion u ∈ H1(a,b) the derivative D1u in the sense of distributions coincides with the
ordinary derivative u′ that exists almost everywhere.

More generally, for an integer m≥ 1 and 1≤ p≤ ∞, one defines the Sobolev space

W m,p(Ω) = {u ∈ Lp(Ω); Dα u ∈ Lp(Ω), |α| ≤ m} (1.21)

with the norm

‖u‖m,p =

(
∑
|α|≤m

∫

Ω
|Dα u(x)|pdx

)1/p

. (1.22)
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For 0 < m < 1, the space W m,p(Ω) is defined by (see Adams [1], p. 214)

W m,p(Ω) =
{

u ∈ Lp(Ω);
u(x)−u(y)
|x− y|m+(N/p) ∈ Lp(Ω ×Ω)

}

with the natural norm. For m > 1, m = s+a, s = [m], 0 < a < 1, define

W m,p(Ω) = {u ∈W s,p(Ω); Dα u ∈W a,p(Ω); |α| ≤ s}.

It turns out that, if u ∈W 1,p(a,b), then there is an absolutely continuous function
ū with ū′ ∈ Lp(a,b) such that ū(x) = u(x) and ū′(x) = (D1u)(x), a.e., x ∈ (a,b).
Conversely, any absolutely continuous function u with u′ in Lp(a,b) belongs to
W 1,p(a,b) and u′ coincides, a.e. on (a,b), with the distributional derivative D1u
of u.

Proposition 1.10 and its counterpart in W 1,p(Ω) show that, in one dimension, the
Sobolev spaces are just the classical spaces of absolutely continuous functions with
derivatives in Lp(Ω).

It turns out, via regularization, that C∞
0 (RN) is dense in H1(RN).

We recall that an open subset Ω of RN and its boundary ∂Ω are said to be of class
C1 if for each x ∈ ∂Ω there are a neighborhood U of x and a one-to-one mapping ϕ
of Q = {x = (x′,xN) ∈ RN ; ‖x′‖< 1, |xN |< 1} onto U such that

ϕ ∈C1(Q), ϕ−1 ∈C1(U), ϕ(Q+) = U ∩Ω , ϕ(Q0) = U ∩∂Ω ,

where Q+ = {(x′,xN) ∈ Q; xN > 0}, Q0 = {(x′,0); ‖x′‖< 1}.
We are now ready to formulate the extension theorem for the elements of the

space H1(Ω), a result upon which most of the properties of this space are built.

Theorem 1.3. Let Ω be an open subset of RN that is of class C1. Assume
that either ∂Ω is compact or Ω = RN

+. Then, there is a linear operator
P : H1(Ω)→ H1(RN) and a positive constant C independent of u, such that

(Pu)(x) = u(x), a.e. x ∈Ω , ∀u ∈ H1(Ω), (1.23)

‖Pu‖L2(RN ) ≤C‖u‖L2(Ω), ∀u ∈ H1(Ω), (1.24)

‖Pu‖H1(RN ) ≤C‖u‖H1(Ω), ∀u ∈ H1(Ω). (1.25)

Theorem 1.3 follows from the next extension result.

Let u ∈ H1(Q+) and let u∗ : Q→ R be the extension of u to Q

u∗(x′,xN) =

{
u(x′,xN) if xN ≥ 0
u(x′,−xN) if xN < 0.

Then u∗ ∈ H1(Q) and ‖u∗‖L2(Q) ≤ 2‖u‖L2(Q+), ‖u∗‖H1(Q) ≤ 2‖u‖H1(Q+). The ge-
neral result follows by a specific argument involving partition of unity (see, e.g.,
Brezis [7] or Barbu [5]).
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Now, we mention without proof an important property of the space H1(Ω)
known as the Sobolev embedding theorem.

Theorem 1.4. Let Ω be an open subset of RN of class C1 with compact boundary
∂Ω , or Ω = RN

+, or Ω = RN. Then, if N > 2,

H1(Ω)⊂ Lp∗(Ω) for
1
p∗

=
1
2
− 1

N
· (1.26)

If N = 2, then H1(Ω)⊂ Lp(Ω) for all p ∈ [2,∞[.

The inclusion relation (1.26) should be considered of course in the algebraic and
topological sense; that is,

‖u‖Lp∗ (Ω) ≤C‖u‖H1(Ω) (1.27)

for some positive constant C independent of u.
Theorem 1.4 has a natural extension to the Sobolev space W m,p(Ω) for any

m > 0. More precisely, we have (see Adams [1], p. 217)

Theorem 1.5. Under the assumptions of Theorem 1.4, we have

W m,p(Ω)⊂ Lp∗(Ω) if 1≤ p <
N
m

,
1
p∗

=
1
p
− m

N
,

W m,p(Ω)⊂ Lq(Ω) for all q≥ p if p =
N
m

,

W m,p(Ω)⊂ L∞(Ω) if p >
N
m

.

Remark 1.1. If Ω is a bounded and open subset of RN of class C1, then the following
norm on W 1,p(Ω),

‖u‖1,p = |∇u|Lp(Ω) + |u|Lq(Ω),

where 1≤ q≤ p∗ if 1≤ p < N, 1≤ q < ∞ if p = N and 1≤ q≤ ∞ if p > N,

1
p∗

=
1
p
− 1

N

is equivalent with the norm (1.22) for m = 1 (see, e.g., Brezis [7], p. 170).

We note also the following compactness embedding result.

Theorem 1.6. Let Ω be an open and bounded subset of RN that is of class C1. Then,
the injection of the space H1(Ω) into L2(Ω) is compact.

The “trace” to ∂Ω of a Function u ∈ H1(Ω)

If Ω is an open C1 subset of RN with the boundary ∂Ω , then each u ∈ C(Ω) is
well defined on ∂Ω . We call the restriction of u to ∂Ω the trace of u to ∂Ω and it
is denoted by γ0(u). If u ∈ L2(Ω), then γ0(u) is no longer well defined. We have,
however, the following.
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Lemma 1.2. Let Ω be an open subset of class C1 with compact boundary ∂Ω or
Ω = RN

+. Then, there is C > 0 such that

‖γ0(u)‖L2(∂Ω) ≤C‖u‖H1(Ω), ∀u ∈C∞
0 (RN). (1.28)

Taking into account that for domains Ω of class C1 the space {u|Ω ; u∈C∞
0 (RN)}

is dense in H1(Ω) (see, e.g., Adams [1], p. 54, or Brezis [7], p. 162), a natural way
to define the trace of a function u ∈ H1(Ω) is the following.

Definition 1.2. Let Ω be of class C1 with compact boundary or Ω = RN
+. Let

u ∈ H1(Ω). Then γ0(u) = lim j→∞ γ0(u j) in L2(∂Ω), where {u j} ⊂C∞
0 (RN) is such

that u j → u in H1(Ω).

It turns out that the definition is consistent; that is, γ0(u) is independent of {u j}.
Indeed, if {u j} and {ū j} are two sequences in C∞

0 (RN) convergent to u in H1(Ω),
then, by (1.28),

‖γ0(u j− ū j)‖L2(∂Ω) ≤C‖u j− ū j‖H1(Ω) → 0 as j → ∞.

Moreover, it follows by Lemma 1.2 that the map γ0 : H1(Ω) → L2(∂Ω) is conti-
nuous. As a matter of fact, it turns out that the trace operator u → γ0(u) is conti-
nuous from H1(Ω) to H1/2(∂Ω) and so it is completely continuous from H1(Ω) to
L2(∂Ω).

In general (see Adams [1], p. 114), we have W m,p(Ω)⊂ Lq(∂Ω) if mp < N and

p≤ q≤ (N−1)p
(N−mp)

·

Definition 1.3. Let Ω be any open subset of RN . The space H1
0 (Ω) is the closure

(the completion) of C1
0(Ω) in the norm of H1(Ω).

It follows that H1
0 (Ω) is a closed subspace of H1(Ω) and in general it is a proper

subspace of H1(Ω). It is clear that H1
0 (Ω) is a Hilbert space with the scalar product

〈u,v〉1 =
N

∑
i=1

∫

Ω

∂u
∂xi

∂v
∂xi

dx+
∫

Ω
uvdx

with the corresponding norm

‖u‖1 =
(∫

Ω
(|∇u(x)|2 +u2(x))dx

)1/2

.

Roughly speaking, H1
0 (Ω) is the subspace of functions u ∈ H1(Ω) that are zero

on ∂Ω . More precisely, we have the following.

Proposition 1.11. Let Ω be an open set of class C1 and let u ∈ H1(Ω). Then, the
following conditions are equivalent.
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(i) u ∈ H1
0 (Ω).

(ii) γ0(u)≡ 0.

Proposition 1.12 below is called the Poincaré inequality.

Proposition 1.12. Let Ω be an open and bounded subset of RN. Then there is C > 0
independent of u such that

‖u‖L2(Ω) ≤C‖∇u‖L2(Ω), ∀u ∈ H1
0 (Ω).

In particular, Proposition 1.12 shows that if Ω is bounded, then the scalar product

((u,v)) =
∫

Ω
∇u(x) ·∇v(x)dx

and the corresponding norm

‖u‖=
(∫

Ω
|∇u(x)|2dx

)1/2

define an equivalent Hilbertian structure on H1
0 (Ω).

We denote by H−1(Ω) the dual space of H1
0 (Ω); that is, the space of all linear

continuous functionals on H1
0 (Ω). Equivalently,

H−1(Ω) = {u ∈D ′(Ω); |u(ϕ)| ≤Cu‖ϕ‖H1(Ω), ∀ϕ ∈C∞
0 (Ω)}.

The space H−1(Ω) is endowed with the dual norm

‖u‖−1 = sup{|u(ϕ)|; ‖ϕ‖ ≤ 1}, ∀u ∈ H−1(Ω).

By Riesz’s theorem, we know that H−1(Ω) is isometric to H1
0 (Ω). Note also that

H1
0 (Ω)⊂ L2(Ω)⊂ H−1(Ω)

in the algebraic and topological sense. In other words, the injections of L2(Ω) into
H−1(Ω) and of H1

0 (Ω) into L2(Ω) are continuous. Note also that the above injec-
tions are dense.

There is an equivalent definition of H−1(Ω) given in Theorem 1.7 below.

Theorem 1.7. The space H−1(Ω) coincides with the set of all distributions
u ∈D ′(Ω) of the form

u = f0 +
N

∑
i=1

∂ fi

∂xi
in D ′(Ω), where fi ∈ L2(Ω), i = 1, ...,N.

The space W 1,p
0 (Ω), p ≥ 1, is similarly defined as the closure of C1

0(Ω) into
W 1,p(Ω) norm. The dual of W 1,p

0 (Ω) is the space
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W−1,q(Ω),
1
p

+
1
q

= 1

defined as in Theorem 1.7 with f0, f1, ..., fN ∈ Lq.

Variational Theory of Elliptic Boundary Value Problems

We begin by recalling an abstract existence result, the Lax–Milgram lemma, which is
the foundation upon which all the results of this section are built. Before presenting
it, we need to clarify certain concepts.

Let V be a real Hilbert space and let V ∗ be the topological dual space of V . For
each v∗ ∈ V ∗ and v ∈ V we denote by (v∗,v) the value v∗(v) of functional v∗ at v.
The functional a : V ×V → R is said to be bilinear if for each u ∈V , v→ a(u,v) is
linear and for each v ∈ V, u → a(u,v) is linear on V . The functional a is said to be
continuous if there exists M > 0 such that

|a(u,v)| ≤M‖u‖V ‖v‖V , ∀u,v ∈V.

The functional a is said to be coercive if

a(u,u)≥ ω‖u‖2
V , ∀u ∈V,

for some ω > 0, and symmetric if

a(u,v) = a(v,u), ∀u,v ∈V.

Lemma 1.3 (Lax–Milgram). Let a : V ×V → R be a bilinear, continuous, and
coercive functional. Then, for each f ∈V ∗, there is a unique u∗ ∈V such that

a(u∗,v) = ( f ,v), ∀v ∈V. (1.29)

Moreover, the map f → u∗ is Lipschitzian from V ∗ to V with Lipschitz constant
≤ ω−1. If a is symmetric, then u∗ minimizes the function u→ (1/2)a(u,u)− ( f ,u)
on V ; that is,

1
2

a(u∗,u∗)− ( f ,u∗) = min
{

1
2

a(u,u)− ( f ,u); u ∈V
}

. (1.30)

If a is symmetric, then the Lax–Milgram lemma is a simple consequence of
Riesz’s representation theorem. Indeed, in this case (u,v) → a(u,v) is an equiva-
lent scalar product on V and so, by the Riesz theorem, the functional v→ ( f ,v) can
be represented as (1.29) for some u∗ ∈V . In the general case we proceed as follows.
For each u ∈ V , the functional v → a(u,v) is linear and continuous on V and we
denote it by Au ∈V ∗. Then, the equation

a(u,v) = ( f ,v), ∀v ∈V
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can be rewritten as Au = f . Then, the conclusion follows because R(A) is simulta-
neously closed and dense in V ∗.

Weak Solutions to the Dirichlet Problem

Consider the Dirichlet problem
{
−∆u+ c(x)u = f in Ω ,

u = 0 on ∂Ω ,
(1.31)

where Ω is an open set of RN , c ∈ L∞(Ω), and f ∈ H−1(Ω) is given.

Definition 1.4. The function u is said to be a weak or variational solution to the
Dirichlet problem (1.31) if u ∈ H1

0 (Ω) and
∫

Ω
∇u(x) ·∇ϕ(x)dx+

∫

Ω
c(x)u(x)ϕ(x)dx = ( f ,ϕ) (1.32)

for all ϕ ∈ H1
0 (Ω) (equivalently, for all ϕ ∈C∞

0 (Ω)).

In (1.32), ∇u is taken in the sense of distributions and ( f ,ϕ) is the value of the
functional f ∈ H−1(Ω) into ϕ ∈ H1

0 (Ω). If f ∈ L2(Ω)⊂ H−1(Ω), then

( f ,ϕ) =
∫

Ω
f (x)ϕ(x)dx.

By the Lax–Milgram lemma, applied to the functional

a(u,v) =
∫

Ω
(∇u(x) ·∇v(x)+ cuv)dx, u,v ∈V = H1

0 (Ω),

we obtain the following.

Theorem 1.8. Let Ω be a bounded open set of RN and let c ∈ L∞(Ω) be such that
c(x)≥ 0, a.e. x ∈Ω . Then, for each f ∈H−1(Ω) the Dirichlet problem (1.31) has a
unique weak solution u∗ ∈H1

0 (Ω). Moreover, u∗ minimizes on H1
0 (Ω) the functional

1
2

∫

Ω
(|∇u(x)|2 + c(x)u2(x))dx− ( f ,u) (1.33)

and the map f → u∗ is Lipschitzian from H−1(Ω) to H1
0 (Ω).

Weak Solutions to the Neumann Problem

Consider the boundary value problem
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


−∆u+ cu = f in Ω ,

∂u
∂ν

= g on ∂Ω ,
(1.34)

where c ∈ L∞(Ω), c(x)≥ ρ > 0, and f ∈ L2(Ω), g ∈ L2(∂Ω).

Definition 1.5. The function u ∈ H1(Ω) is said to be a weak solution to the Neu-
mann problem (1.34) if

∫

Ω
∇u ·∇vdx+

∫

Ω
cuvdx =

∫

Ω
f vdx+

∫

∂Ω
gvdσ , ∀v ∈ H1(Ω). (1.35)

Because for each v ∈H1(Ω) the trace γ0(v) is in L2(∂Ω), the integral
∫

∂Ω gvdσ
is well defined and so (1.35) makes sense.

Theorem 1.9. Let Ω be an open subset of RN. Then, for each f ∈ L2(Ω) and
g ∈ L2(∂Ω), problem (1.34) has a unique weak solution u ∈H1(Ω) that minimizes
the functional

u→ 1
2

∫

Ω
(|∇u(x)|2 + c(x)u2(x))dx−

∫

Ω
f (x)u(x)dx−

∫

∂Ω
gudσ on H1(Ω).

Proof. One applies the Lax–Milgram lemma on the space V = H1(Ω) to the
functional a(u,v) =

∫
Ω (∇u ·∇v + cuv)dx, ∀u,v ∈ H1(Ω), and ( f̃ ,v) =

∫
Ω f vdx

+
∫

∂Ω gvdσ . ¤

Regularity of the Weak Solutions

We briefly recall here the regularity of the weak solutions to the Dirichlet problem
{
−∆u = f in Ω ,

u = 0 on ∂Ω .
(1.36)

By Theorem 1.8 we know that if Ω is a bounded and open subset of RN and
f ∈ L2(Ω), then problem (1.36) has a unique solution u ∈ H1

0 (Ω). It turns out that
if ∂Ω is smooth enough, then this solution is actually in H2(Ω)∩H1

0 (Ω). More
precisely, we have the following theorem.

Theorem 1.10. Let Ω be a bounded and open subset of RN of class C2. Let
f ∈ L2(Ω) and let u ∈ H1

0 (Ω) be the weak solution to (1.36). Then, u ∈ H2(Ω)
and

‖u‖H2(Ω) ≤C‖ f‖L2(Ω), (1.37)

where C is independent of f .

To prove the theorem, one first shows that u ∈ H2(Ω ′) for each open subset
Ω ′ ⊂Ω compactly embedded in Ω (interior regularity). The most delicate part



1.3 Sobolev Spaces and Linear Elliptic Boundary Value Problems 19

(boundary regularity) follows by the method of tangential quotients due to L. Niren-
berg. In short, the idea is to reduce problem (1.36) to an elliptic Dirichlet problem on
RN

+ and to estimate separately the tangential quotients (∇u)h, h = (h1, ...,hN−1,0)
and the normal quotient (∇u)h, h = (0, ...,0,hN) in order to show that v ∈ H2(RN

+).
For details we refer to Brezis’ book [7]. (See also [5].)

In particular, Theorem 1.10 implies that if A : H1
0 (Ω)→ H−1(Ω) is the elliptic

operator A =−∆ in D ′(Ω); that is,

(Au,ϕ) =
∫

Ω
∇u ·∇ϕ dx, ∀ϕ ∈ H1

0 (Ω),

then
{u ∈ H1

0 (Ω); Au ∈ L2(Ω)} ⊂ H2(Ω)

and
‖u‖H2(Ω) ≤C‖Au‖L2(Ω), ∀u ∈ H1

0 (Ω)∩H2(Ω).

Theorem 1.10 remains true if Ω is an open, convex, and bounded subset of RN .
For the proof which uses some specific geometrical properties of Ω we refer the
reader to Grisvard [10]. More generally, we have the following.

Theorem 1.11. If Ω is of class Cm+2 and f ∈ Hm(Ω), then the weak solution u to
problem (1.36) belongs to Hm+2(Ω) and

‖u‖m+2 ≤C‖ f‖m, ∀ f ∈ Hm(Ω).

If m > N/2, then u ∈C2(Ω). In particular, if Ω is of class C∞ and f ∈C∞(Ω), then
u ∈C∞(Ω).

We conclude this section with a regularity result for the weak solution u∈H1(Ω)
to Neumann’s problem 




u−∆u = f in Ω ,

∂u
∂ν

= 0 on ∂Ω .
(1.38)

Theorem 1.12. Under the assumptions of Theorem 1.10 the weak solution
u ∈ H1(Ω) to problem (1.38) belongs to H2(Ω) and

‖u‖H2(Ω) ≤C‖ f‖L2(Ω), ∀ f ∈ L2(Ω). (1.39)

Theorem 1.10 remains true in Lp(Ω) for p > 1. Namely, we have (Agmon,
Douglis and Nirenberg [2])

Theorem 1.13. Let Ω be a bounded open subset of RN with smooth boundary ∂Ω
and let 1 < p < ∞. Then, for each f ∈ Lp(Ω), the boundary value problem

−∆u = f in Ω , u = 0 on ∂Ω

has a unique weak solution u ∈W 1,p
0 (Ω)∩W 2,p(Ω). Moreover, one has
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‖u‖W 2,p(Ω) ≤C‖ f‖Lp(Ω),

where C is independent of f .

The Space BV (Ω)

Let Ω be an open subset of RN with smooth boundary ∂Ω .
A function f ∈ L1(Ω) is said to be of bounded variation on Ω if its gradient D f

in the sense of distributions is an RN-valued measure on Ω ; that is,

‖D f‖ := sup
{∫

Ω
f divψ dξ : ψ ∈C∞

0 (Ω ;RN), |ψ|∞ ≤ 1
}

< +∞,

or, equivalently,

‖D f‖=
∫

Ω
|D f (x)|dx,

where |D f | is the total variation of measure D f .
The space of all functions of bounded variation on Ω is denoted by BV (Ω). It is

a Banach space with the norm

‖ f‖BV (Ω) = | f |L1(Ω) +‖D f‖.

Let f ∈ BV (Ω). Then there is a Radon measure µ f on Ω and a µ f -measurable
function σ f : Ω → RN such that |σ f (x)|= 1, µ f , a.e., and

∫

Ω
f divψ dξ =−

∫

Ω
ψ ·σ f dµ f , ∀ψ ∈C1

0(Ω ;RN). (1.40)

For each f ∈ BV (Ω) there is the trace γ( f ) on ∂Ω (assumed sufficiently smooth)
defined by

∫

Ω
f divψ dξ =−

∫

Ω
ψ ·σ f dµ f +

∫

∂Ω
γ( f )ψ ·ν dHN−1,

∀ψ ∈C1(Ω ;RN),
(1.41)

where ν is the outward normal and dHN−1 is the Hausdorff measure on ∂Ω .
We have that |γ( f )|N ∈ L1(∂Ω ;dHN−1).

We denote by BV 0(Ω) the space of all BV (Ω) functions with vanishing trace
on ∂Ω . By the Poincaré inequality it follows that, on BV 0(Ω), ‖D f‖ is a norm
equivalent with ‖ f‖BV 0(Ω).

Theorem 1.14. Let 1 ≤ p ≤ N/(N−1) and Ω be a bounded open subset. Then,
we have BV (Ω) ⊂ Lp(Ω) with continuous and compact embedding. Moreover, the
function u→‖Du‖ is lower semicontinuous in Lp(Ω).

We refer the reader to Ambrosio, Fusco and Pallara [3] for proofs and other basic
results on functions with bounded variations.
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Weak compactness in L1(Ω)

Let Ω be a measurable subset of RN . Contrary to what happens in Lp(Ω) spaces
with 1 < p < ∞ that are reflexive, a bounded subset M of L1(Ω) is not necessarily
weakly compact. This happens, however, under some additional conditions on M .

Theorem 1.15. (Dunford–Pettis) Let M be a bounded subset of L1(Ω) having the
property that the family of integrals {∫E u(x)dx; E ⊂Ω measurable, u ∈M } is uni-
formly absolutely continuous; that is, for every ε > 0 there is δ (ε) > 0 independent
of u, such that

∫
E |u(x)|dx≤ ε for m(E) < δ (ε) (m is the Lebesgue measure). Then

the set M is weakly sequentially compact in L1(Ω).

For the proof, we refer the reader to Edwards [9], p. 270.
Theorem 1.15 remains true, of course, in (L1(Ω))m, m ∈ N.

1.4 Infinite-Dimensional Sobolev Spaces

Let X be a real (or complex) Banach space and let [a,b] be a fixed interval on the
real axis. A function x : [a,b] → X is said to be finitely valued if it is constant on
each of a finite number of disjoint measurable sets Ak ⊂ [a,b] and equal to zero on
[a,b] \∪kAk. The function x is said to be strongly measurable on [a,b] if there is
a sequence {xn} of finite-valued functions that converges strongly in X and almost
everywhere on [a,b] to x. The function x is said to be Bochner integrable if there
exists a sequence {xn} of finitely valued functions on [a,b] to X that converges
almost everywhere to x such that

lim
n→∞

∫ b

a
‖xn(t)− x(t)‖dt = 0.

A necessary and sufficient condition guaranteeing that x : [a,b] → X is Bochner
integrable is that x is strongly measurable and that

∫ b
a ‖x(t)‖dt < ∞. The space of all

Bochner integrable functions x : [a,b]→ X is a Banach space with the norm

‖x‖1 =
∫ b

a
‖x(t)‖dt,

and is denoted by L1(a,b;X).
More generally, the space of all (classes of) strongly measurable functions x from

[a,b] to X such that

‖x‖p =
(∫ b

a
‖x(t)‖pdt

)1/p

< ∞

for 1≤ p < ∞ and ‖x‖∞ = esssupt∈[a,b] ‖x(t)‖< ∞, is denoted by Lp(a,b;X). This
is a Banach space in the norm ‖ · ‖p.
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If X is reflexive, then the dual of Lp(a,b;X) is the space Lq(a,b;X∗), where
p < ∞, 1/p + 1/q = 1 (see Edward [9]). Recall also that a function x : [a,b]→ X
is said to be weakly measurable if for any x∗ ∈ X∗, the function t → (x∗,x(t)) is
measurable. According to the Pettis theorem, if X is separable then every weakly
measurable function is strongly measurable, and so these two notions coincide.

An X-valued function x defined on [a,b] is said to be absolutely continuous on
[a,b] if for each ε > 0 there exists δ (ε) such that ∑N

n=1 ‖x(tn)−x(sn)‖≤ ε , whenever
∑N

n=1 |tn−sn| ≤ δ (ε) and (tn,sn)∩(tm,sm) = /0 for m 6= n. Here, (tn,sn) is an arbitrary
subinterval of (a,b).

A classical result in real analysis says that any real-valued absolutely continuous
function is almost everywhere differentiable and it is expressed as the indefinite
integral of its derivative. It should be mentioned that this result fails for X-valued
absolutely continuous functions if X is a general Banach space.

However, if the space X is reflexive, we have (see, e.g., Komura [12]):

Theorem 1.16. Let X be a reflexive Banach space. Then every X-valued absolutely
continuous function x on [a,b] is almost everywhere differentiable on [a,b] and

x(t) = x(a)+
∫ t

a

d
ds

x(s)ds, ∀t ∈ [a,b], (1.42)

where (dx/dt) : [a,b]→ X is the derivative of x; that is,

d
dt

x(t) = lim
ε→0

x(t + ε)− x(t)
ε

·

Let us denote, as above, by D(a,b) the space of all infinitely differentiable real-
valued functions on [a,b] with compact support in (a,b), and by D ′(a,b;X) the
space of all continuous operators from D(a,b) to X . An element u of D ′(a,b;X) is
called an X-valued distribution on (a,b). If u∈D ′(a,b;X) and j is a natural number,
then

u( j)(ϕ) = (−1) ju(ϕ( j)), ∀ϕ ∈D(a,b),

defines another distribution u( j), which is called the derivative of order j of u.
We note that every element u ∈ L1(a,b;X) defines uniquely the distribution

(again denoted u)

u(ϕ) =
∫ b

a
u(t)ϕ(t)dt, ∀ϕ ∈D(a,b), (1.43)

and so L1(a,b;X) can be regarded as a subspace of D ′(a,b;X). In all that follows,
we identify a function u ∈ L1(a,b;X) with the distribution u defined by (1.43).

Let k be a natural number and 1≤ p≤∞. We denote by W k,p([a,b];X) the space
of all X-valued distributions u ∈D ′(a,b;X) such that

u( j) ∈ Lp(a,b;X) for j = 0,1, ...,k. (1.44)

Here, u( j) is the derivative of order j of u in the sense of distributions.
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We denote by A1,p([a,b];X), 1 ≤ p ≤ ∞, the space of all absolutely continuous
functions u from [a,b] to X having the property that they are a.e. differentiable on
(a,b) and (du/dt) ∈ Lp(a,b;X). If the space X is reflexive, it follows by Theorem
1.16 that u ∈ A1,p([a,b];X) if and only if u is absolutely continuous on [a,b] and
(du/dt) ∈ Lp(a,b;X).

It turns out that the space W 1,p can be identified with A1,p. More precisely, we
have (see Brezis [7]) the following theorem.

Theorem 1.17. Let X be a Banach space and let u ∈ Lp(a,b;X), 1 ≤ p ≤ ∞. Then
the following conditions are equivalent.

(i) u ∈W 1,p([a,b];X).

(ii) There is u0 ∈ A1,p([a,b];X) such that u(t) = u0(t), a.e., t ∈ (a,b).
Moreover, u′ = du0/dt, a.e. in (a,b).

Proof. For simplicity, we assume that [a,b] = [0,T ].
Let u ∈W 1,p([0,T ];X); that is, u ∈ Lp(0,T ;X) and u′ ∈ Lp(0,T ;X), and define

the regularization un of u,

un(t) = n
∫ T

0
u(s)ρ((t− s)n)ds, ∀t ∈ [0,T ], (1.45)

where ρ ∈ D(R) is such that
∫

ρ(s)ds = 1, ρ(t) = ρ(−t), suppρ ⊂ [−1,1]. It is
well known that un → u in Lp(0,T ;X) for n → ∞. Note also that un is infinitely
differentiable. Let ϕ ∈D(0,T ) be arbitrary but fixed. Then, by (1.45), we see that

∫ T

0

dun

dt
(t)ϕ(t)dt = −

∫ T

0
un(t)

dϕ
dt

(t)dt =−
∫ T

0
u(t)

dϕn

dt
(t)dt

= u′(ϕn) =
∫ T

0
u′nϕ dt if suppϕ ⊂

(
1
n
,T − 1

n

)
.

Hence,
dun

dt
= u′n, a.e. in

(
1
n
,T − 1

n

)
.

On the other hand, letting n tend to ∞ in the equation

un(t)−un(s) =
∫ t

s

dun

dτ
(τ)dτ,

we get

u(t)−u(s) =
∫ t

s
u′(τ)dτ, a.e. t,s ∈ (0,T ),

because (u′)n → u′ in Lp(0,T ;X). The latter equation implies that u admits an ex-
tension to an absolutely continuous function u0 on [0,T ] that satisfies the equation

u0(t)−u0(0) =
∫ t

0
u′(τ)dτ, ∀t ∈ [0,T ].
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Hence, (i) ⇒ (ii).

Conversely, assume now that u ∈ A1,p([0,T ];X). Then,

u′(ϕ) = −
∫ T

0
u(t)ϕ ′(t)dt =− lim

ε→0

∫ T

0
u(t)

ϕ(t)−ϕ(t− ε)
ε

dt

= − lim
ε→0

1
ε

∫ T−ε

0
(u(t)−u(t + ε))ϕ(t)dt− lim

ε→0

1
ε

∫ T

T−ε
u(t)ϕ(t)dt

+ lim
ε→0

1
ε

∫ ε

0
u(t)ϕ(t− ε)dt, ∀ϕ ∈D(0,T ).

Hence

u′(ϕ) =
∫ T

0

du
dt

(t)ϕ(t), ∀ϕ ∈D(0,T ).

This shows that u′ ∈ Lp(0,T ;X) and u′ = du/dt. ¤

Theorem 1.18. Let X be a reflexive Banach space and let u∈ Lp(a,b;X), 1 < p≤∞.
Then the following two conditions are equivalent.

(i) u ∈W 1,p([a,b];X).
(ii) There is C > 0 such that

∫ b−h

a
‖u(t +h)−u(t)‖pdt ≤C|h|p, ∀h ∈ [0,b−a]

with the usual modification in the case p = ∞.

Proof. (i) ⇒ (ii). By Theorem 1.17, we know that

u(t +h)−u(t) =
∫ t+h

t

du0

ds
(s)ds, ∀t, t +h ∈ [a,b],

where u0 ∈ A1,p([a,b];X) that is, (du0/dt) ∈ Lp(a,b;X). This yields via the Hölder
inequality and Fubini theorem

∫ b−h

a
‖u(t +h)−u(t)‖pdt ≤ |h|p−1

∫ b−h

a
dt

∫ t+h

t

∥∥∥∥
du0

ds

∥∥∥∥
p

ds≤ |h|p
∫ b

a

∥∥∥∥
du0

ds

∥∥∥∥
p

ds

and this implies estimate (ii).

(ii)⇒ (i). Let un be the regularization of u. A simple straightforward computation
involving formula (1.45) reveals that {u′n} is bounded in Lp(a,b;X). Because un → u
in Lp(a,b;X), u′n → u′ in D ′(a,b;X), and {u′n} is weakly compact in Lp(a,b;X),
which is reflexive, we infer that u′ ∈ Lp(a,b;X), as claimed. ¤

Remark 1.2. If u ∈W 1,1([a,b];X), then it follows as above that

∫ b−h

a
‖u(t +h)−u(t)‖dt ≤C|h|, ∀h ∈ [0,b−a].
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However, this inequality does not characterize the functions u in W 1,1([a,b];X), but
the functions u with bounded variation on [a,b].

Let V be a reflexive Banach space and H be a real Hilbert space such that
V ⊂ H ⊂V ′ in the algebraic and topological senses. Here, V ′ is the dual space of V
and H is identified with its own dual. Denote by | · | and ‖ · ‖ the norms of H and V ,
respectively, and by (·, ·) the duality between V and V ′. If v1,v2 ∈H, then (v1,v2) is
the scalar product in H of v1 and v2.

Denote by Wp([a,b];V ), 1 < p < ∞, the space

Wp([a,b];V ) = {u ∈ Lp(a,b;V ); u′ ∈ Lq(a,b;V ′)}, 1
p

+
1
q

= 1, (1.46)

where u′ is the derivative of u in the sense of D ′(a,b;V ). By Theorem 1.17, we
know that every u ∈Wp([a,b];V ) can be identified with an absolutely continuous
function u0 : [a,b]→V ′. However, we have a more precise result.

Theorem 1.19. Let u ∈ Wp([a,b];V ). Then there is a continuous function
u0 : [a,b]→H such that u(t) = u0(t), a.e., t ∈ (a,b). Moreover, if u,v∈Wp([a,b];V ),
then the function t → (u(t),v(t)) is absolutely continuous on [a,b] and

d
dt

(u(t),v(t)) = (u′(t),v(t))+(u(t),v′(t)), a.e. t ∈ (a,b). (1.47)

Proof. Let u,v ∈Wp([a,b];V ) and ψ(t) = (u(t),v(t)). As we have seen in Theorem
1.17, we may assume that u,v ∈ AC([a,b];V ′) and

lim
ε↓0

∫ b−ε

a

∥∥∥∥
u(t + ε)−u(t)

ε
−u′(t)

∥∥∥∥
q

V ′
dt = 0,

lim
ε↓0

∫ b−ε

a

∥∥∥∥
v(t + ε)− v(t)

ε
− v′(t)

∥∥∥∥
q

V ′
dt = 0.

Then, we have, by the Hölder inequality,

lim
ε↓0

∫ b−ε

a

∣∣∣∣
ψ(t + ε)−ψ(t)

ε
− (u′(t),v(t))− (u(t),v′(t))

∣∣∣∣dt = 0.

Hence, ψ ∈W 1,1([a,b];R) and (dψ/dt)(t)= (u′(t),v(t))+(u(t),v′(t)), a.e. t ∈ (a,b),
as claimed.

Now, in equation (1.47) we take v = u and integrate from s to t. We get

1
2

(|u(t)|2−|u(s)|2) =
∫ t

s
(u′(τ),u(τ))dτ.

Hence, the function t → |u(t)| is continuous. On the other hand, for every v ∈V the
function t → (u(t),v) is continuous. Because |u(t)| is bounded on [a,b], this implies
that for every v∈H the function t → (u(t),v) is continuous; that is, u(t) is H-weakly
continuous. Then, from the obvious equation
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|u(t)−u(s)|2 = |u(t)|2 + |u(s)|2−2(u(t),u(s)), ∀t,s ∈ [a,b]

it follows that lims→t |u(t)−u(s)|= 0, as claimed. ¤
The spaces W 1,p([a,b];X), as well as Wp([a,b];V ), play an important role in the

theory of differential equations in infinite-dimensional spaces.
The following compactness result, which is a sharpening of the Arzelà–Ascoli

theorem, is particularly useful in this context.

Theorem 1.20 (Aubin). Let X0,X1,X2 be Banach spaces such that X0 ⊂ X1 ⊂ X2,
Xi reflexive for i = 0,1,2, and the injection of X0 into X1 is compact. Let 1 < pi < ∞,
i = 0,1. Then the space

W = Lp0(a,b;X0)∩W 1,p1([a,b];X2)

is compactly embedded in Lp0(a,b;X1).

The proof relies on the following property of the spaces Xi (see Lions [11], p. 58).
For every ε > 0 there exists Cε > 0 such that

‖u‖X1 ≤ ε‖u‖X0 +Cε‖u‖X2 , ∀u ∈ X0.
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Chapter 2
Maximal Monotone Operators in Banach Spaces

Abstract In this chapter we present the basic theory of maximal monotone ope-
rators in reflexive Banach spaces along with its relationship and implications in
convex analysis and existence theory of nonlinear elliptic boundary value problems.
However, the latter field is not treated exhaustively but only from the perspective of
its implications to nonlinear dynamics in Banach spaces.

2.1 Minty–Browder Theory of Maximal Monotone Operators

If X and Y are two linear spaces, we denote by X ×Y their Cartesian product. The
elements of X×Y are written as [x,y], where x ∈ X and y ∈ Y .

If A is a multivalued operator from X to Y , we may identify it with its graph
in X×Y :

{[x,y] ∈ X×Y ; y ∈ Ax}. (2.1)

Conversely, if A⊂ X×Y , then we define

Ax = {y ∈ Y ; [x,y] ∈ A}, D(A) = {x ∈ X ; Ax 6= /0}, (2.2)

R(A) =
⋃

x∈D(A)

Ax, A−1 = {[y,x]; [x,y] ∈ A}. (2.3)

In this way, here and in the following we identify the operators from X to Y with
their graphs in X ×Y and so we equivalently speak of subsets of X ×Y instead of
operators from X to Y .

If A,B⊂ X×Y and λ is a real number, we set:

λA = {[x,λy]; [x,y] ∈ A}; (2.4)

A+B = {[x,y+ z]; [x,y] ∈ A, [x,z] ∈ B}; (2.5)

AB = {[x,z]; [x,y] ∈ B, [y,z] ∈ A for some y ∈ Y}. (2.6)

27V. Barbu, Nonlinear Differential Equations of Monotone Types in Banach Spaces,
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Throughout this chapter, X is a real Banach space with dual X∗. Notations for
norms, convergence, and duality pairings are as introduced in Chapter 1, Section
1.1. In particular, the value of functional x∗ ∈ X∗ at x∈ X is denoted by either (x,x∗)
or (x∗,x). For the sake of simplicity, we denote by the same symbol ‖ · ‖ the norm
of X and of X∗. If X is a Hilbert space unless otherwise stated we implicitly assume
that it is identified with its own dual.

Definition 2.1. The set A ⊂ X ×X∗ (equivalently the operator A : X → X∗) is said
to be monotone if

(x1− x2,y1− y2)≥ 0, ∀[xi,yi] ∈ A, i = 1,2. (2.7)

A monotone set A ⊂ X ×X∗ is said to be maximal monotone if it is not properly
contained in any other monotone subset of X×X∗.

Note that if A is a single-valued operator from X to X∗, then A is monotone if

(x1− x2,Ax1−Ax2)≥ 0, ∀x1,x2 ∈ D(A). (2.8)

A simple example of a monotone subset of X ×X∗ is the duality mapping J of X .
(See Section 1.1.) Indeed, by definition of J,

(x1−x2,y1−y2)=‖x1‖2+‖x2‖2−(x1,y2)−(x2,y1)≥ (‖x1‖−‖x2‖)2, ∀[xi,yi] ∈ J.

As a matter of fact, it turns out that J is maximal monotone in X ×X∗. Indeed, if
[u,v] ∈ X ×X∗ is such that (u− x,v− y) ≥ 0, ∀[x,y] ∈ J, then, because J : X → X∗
is onto, there is [x,y] ∈ J such that

2y = v+w, w ∈ J(u).

This yields
(u− x,w− y)≤ 0

and because [u,w], [x,y] ∈ J we get

‖x‖2 = ‖y‖2 = ‖u‖2 = ‖w‖2, (u,y)+(x,w)≥ 2‖x‖2.

Hence,
(u,y)+(x,w) = 2‖x‖2 = 2‖u‖2

and this, clearly, implies that

(u,y) = (x,w) = (x,v) = ‖u‖2 = ‖x‖2.

Hence,
(u,v)≥ (x,v)+(u,y)− (x,y) = ‖u‖2 = ‖v‖2

and therefore [u,v] ∈ J, as claimed.
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Definition 2.2. Let A be a single-valued operator from X to X∗ with D(A) = X . The
operator A is said to be hemicontinuous if, for all x,y ∈ X ,

w- lim
λ→0

A(x+λy) = Ax.

A is said to be demicontinuous if it is continuous from X to X∗w; that is,

w- lim
xn→x

Axn = Ax.

A is said to be coercive if

lim
n→∞

(xn− x0,yn)‖xn‖−1 = ∞ (2.9)

for some x0 ∈ X and all [xn,yn] ∈ A such that limn→∞ ‖xn‖= ∞.

A is said to be bounded if it is bounded on each bounded subset.

Proposition 2.1. Let A⊂ X×X∗ be maximal monotone. Then:

(i) A is weakly–strongly closed in X ×X∗; that is, if yn = Axn, xn ⇀ x in X, and
yn → y in X∗, then [x,y] ∈ A,

(ii) A−1 is maximal monotone in X∗ ×X,
(iii) For each x ∈ D(A), Ax is a closed convex subset of X∗.

Proof. (i) From the obvious inequality

(xn−u,yn− v)≥ 0, ∀[u,v] ∈ A,

we see that (x− u,y− v) ≥ 0, ∀[u,v] ∈ A, and because A is maximal, this implies
[x,y] ∈ A, as claimed.

(ii) This is obvious.

(iii) By (i) it is clear that Ax is a closed subset of X∗ for each x ∈ D(A). Now, let
y0,y1 ∈ Ax and let yλ = λy0 +(1−λ )y1, where 0 < λ < 1. From the inequalities

(x−u,y0− v)≥ 0, (x−u,y1− v)≥ 0, ∀[u,v] ∈ A,

we see that (x−u,yλ − v)≥ 0, ∀[u,v] ∈ A, which implies that [x,yλ ] ∈ A because A
is maximal. The proof is complete. ¤

It has been shown by G. Minty in the early 1960s that the coercive maximal
monotone operators are surjective. This important result, which implies a charac-
terization of a maximal monotone operator A in terms of the surjectivity of A + J
(J is the duality mapping) is a consequence of the following existence theorem.

Theorem 2.1. Let X be a reflexive Banach space and let A and B be two monotone
sets of X×X∗ such that 0∈D(A), B is single-valued, hemicontinuous, and coercive;
that is,
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lim
‖x‖→∞

(x,Bx)
‖x‖ = +∞. (2.10)

Then there exists x ∈ K = convD(A) such that

(u− x,Bx+ v)≥ 0 ∀[u,v] ∈ A. (2.11)

Here, convD(A) is the convex hull of the set D(A); that is, the set
{

m

∑
i=1

λixi, xi ∈ D(A), 0≤ λi ≤ 1,
m

∑
i=1

λi = 1, m ∈ N

}
.

In particular, if A is maximal monotone, it follows from (2.11) that 0 ∈ Ax+Bx.
We first prove the following lemma.

Lemma 2.1. Let X be a finite-dimensional Banach space and let B be a hemi-
continuous monotone operator from X to X∗. Then B is continuous.

Proof. Let us show first that B is bounded on bounded subsets. Indeed, otherwise
there exists a sequence {xn} ⊂ X such that ‖Bxn‖ → ∞ and xn → x0 as n → ∞. We
have

(xn− x,Bxn−Bx)≥ 0, ∀x ∈ X ,

and therefore (
xn− x,

Bxn

‖Bxn‖ −
Bx

‖Bxn‖
)
≥ 0, ∀x ∈ X .

Without loss of generality, we may assume that Bxn‖Bxn‖−1 → y0 as n → ∞. This
yields

(x0− x,y0)≥ 0, ∀x ∈ X ,

and therefore y0 = 0. The contradiction can be eliminated only if B is bounded.
Now, let {xn} be convergent to x0 and let y0 be a cluster point of {Bxn}. Again by
the monotonicity of B, we have

(x0− x,y0−Bx)≥ 0, ∀x ∈ X .

If in this inequality we take x = tu+(1− t)x0, 0≤ t ≤ 1, u arbitrary in X , we get

(x0−u,y0−B(tu+(1− t)x0))≥ 0, ∀t ∈ [0,1], u ∈ X .

Then, letting t tend to zero and using the hemicontinuity of B, we get

(x0−u,y0−Bx0)≥ 0, ∀u ∈ X ,

which clearly implies that y0 = Bx0, as claimed. ¤

The next step in the proof of Theorem 2.1 is the case where X is finite-
dimensional.
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Lemma 2.2. Let X be a finite-dimensional Banach space and let A and B be two
monotone subsets of X×X∗ such that 0∈D(A), and B is single-valued, continuous,
and satisfies (2.10). Then there exists x ∈ convD(A) such that

(u− x,Bx+ v)≥ 0, ∀[u,v] ∈ A. (2.12)

Proof. Redefining A if necessary, we may assume that the set K = convD(A) is
bounded. Indeed, if Lemma 2.1 is true in this case, then replacing A by
An = {[x,y] ∈ A; ‖x‖ ≤ n}, we infer that for every n there exists xn ∈ Kn =
K∩{x; ‖x‖ ≤ n} such that

(u− xn,Bxn + v)≥ 0, ∀[u,v] ∈ An. (2.13)

This yields
(xn,Bxn)‖xn‖−1 ≤ ‖ξ‖, for some ξ ∈ A0,

and, by the coercivity condition (2.10), we see that there is M > 0 such that ‖xn‖≤M
for all n. Now, on a subsequence, for simplicity again denoted n, we have xn → x.
By (2.13) and the continuity of B, it is clear that x is a solution to (2.12), as claimed.

Let T : K → K be the multivalued operator defined by

T x = {y ∈ K; (u− y,Bx+ v)≥ 0, ∀[u,v] ∈ A}.

Let us show first that T x 6= /0, ∀x ∈ K. To this end, define the sets

Kuv = {y ∈ K; (u− y,Bx+ v)≥ 0},

and notice that
T x =

⋂

[u,v]∈A

Kuv.

Inasmuch as Kuv are closed subsets (if nonempty) of the compact set K, to show that⋂
[u,v]∈A Kuv 6= /0 it suffices to prove that every finite collection {Kui,vi ; i = 1, ...,m}

has a nonempty intersection. Equivalently, it suffices to show that the system

(ui− y,Bx+ vi)≥ 0, i = 1, ...,m, (2.14)

has a solution y ∈ K for any set of pairs [ui,vi] ∈ A, i = 1, ...,m.
Consider the function H : U×U → R,

H(λ ,µ) =
m

∑
i=1

µi

(
m

∑
j=1

λ ju j−ui,Bx+ vi

)
, ∀λ ,µ ∈U, (2.15)

where

U =

{
λ ∈ Rm; λ = (λ1, ...,λm), λi ≥ 0,

m

∑
i=1

λi = 1

}
.
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The function H is continuous, convex in λ , and concave in µ . Then, according
to the classical Von Neumann min–max theorem from game theory, it has a saddle
point (λ0,µ0) ∈U×U ; that is,

H(λ0,µ)≤ H(λ0,µ0)≤ H(λ ,µ0), ∀λ ,µ ∈U. (2.16)

On the other hand, we have

H(λ ,λ ) =
m

∑
i=1

λi

(
m

∑
j=1

λ ju j−ui,Bx+ vi

)

=
m

∑
i=1

m

∑
j=1

λiλ j(vi,u j−ui)+
m

∑
i=1

m

∑
j=1

λiλ j(u j−ui,Bx)≤ 0, ∀λ ∈U,

because, by monotonicity of B, (vi− v j,ui−u j)≥ 0 for all i, j.
Then, by (2.16) we see that

H(λ0,µ)≤ 0, ∀µ ∈U ;

that is, m

∑
i=1

µi

(
m

∑
j=1

(λ0) ju j−ui,Bx+ vi

)
≤ 0, ∀µ ∈U.

In particular, it follows that
(

m

∑
j=1

(λ0) ju j−ui,Bx+ vi

)
≤ 0, ∀i = 1, ...,m.

Hence, y = ∑m
j=1(λ0) ju j ∈ K is a solution to (2.14). We have therefore proved that

T is well defined on K and that T (K)⊂ K. It is also clear that for every x ∈ K, T x is
a closed convex subset of X and T is upper semicontinuous on K. Indeed, because
the range of T belongs to a compact set, to verify that T is upper-semicontinuous it
suffices to show that T is closed in K×K; that is, if [xn,yn] ∈ T, xn → x, and yn → y,
then y ∈ T x. But the last property is obvious if one takes into account the definition
of T . Then, applying the classical Kakutani fixed point theorem (see, e.g., Deimling
[11]), we conclude that there exists x ∈ K such that x ∈ T x, thereby completing the
proof of Lemma 2.2. ¤

Proof of Theorem 2.1. The proof relies on standard finite-dimensional approxima-
tions of equations in Banach spaces (the Galerkin method). Let Λ be the family
of all finite dimensional subspaces Xα of X ordered by the inclusion relation. For
every Xα ∈ Λ , denote by jα : Xα → X the injection mapping of Xα into X and by
j∗α : X∗ → X∗α the dual mapping; that is, the projection of X∗ onto X∗α . The operators
Aα = j∗α A jα and Bα = j∗α B jα map Xα into X∗α and are monotone in Xα ×X∗α . Be-
cause B is hemicontinuous from X to X∗ and the j∗α are continuous from X∗ to X∗α it
follows by Lemma 2.1 that Bα is continuous from Xα to X∗α .
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We may therefore apply Lemma 2.2, where X = Xα , A = Aα , B = Bα , and
K = Kα = convD(Aα). Hence, for each Xα ∈Λ , there exists xα ∈ Kα such that

(u− xα ,Bα xα + v)≥ 0, ∀[u,v] ∈ A,

or, equivalently,
(u− xα ,Bxα + v)≥ 0, ∀[u,v] ∈ Aα . (2.17)

By using the coercivity condition (2.10), we deduce from (2.17) that {xα} remain in
a bounded subset of X . The space X is reflexive, thus every bounded subset of X is
sequentially weakly compact and so there exists a sequence {xαn} ⊂ {xα} such that

xαn ⇀ x in X as n→ ∞. (2.18)

Moreover, because the operator B is bounded on bounded subsets, we may assume
that

Bxαn ⇀ y in X∗ as n→ ∞. (2.19)

Because the closed convex subsets are weakly closed, we infer that x ∈ K. More-
over, by (2.17)–(2.19), we see that

limsup
n→∞

(xαn ,Bxαn)≤ (u− x,v)+(u,y), ∀[u,v] ∈ A. (2.20)

Without loss of generality, we may assume that A is maximal in the class of all
monotone subsets Ã ⊂ X ×X∗ such that D(Ã) ⊂ K = convD(A). (If not, we may
extend A by Zorn’s lemma to a maximal element of this class.) To complete the
proof, let us show first that

limsup
n→∞

(xαn − x,Bxαn)≤ 0. (2.21)

Indeed, if this is not the case, it follows from (2.20) that

(u− x,v+ y)≥ 0, ∀[u,x] ∈ A,

and because x ∈ K and A is maximal in the class of all monotone operators Ã with
domain in K, it follows that [x,−y] ∈ A. Then, putting u = x in (2.20), we obtain
(2.21), which contradicts the working hypothesis.

Now, for u arbitrary but fixed in D(A) consider uλ = λx +(1−λ )u, 0≤ λ ≤ 1,
and notice that, by virtue of the monotonicity of B, we have

(xαn −uλ ,Bxαn)≥ (xαn −uλ ,Buλ ).

This yields

(1−λ )(xαn−u,Bxαn)+λ (xαn−x,Bxαn)≥ (1−λ )(xαn−u,Buλ )+λ (xαn−x,Buλ )

and so, by (2.20) and (2.21),
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(x−u,Buλ )≤ limsup
n→∞

(xαn −u,Bxαn)≤ (u− x,v), ∀[u,v] ∈ A.

Inasmuch as B is hemicontinuous, the latter inequality yields for λ → 1,

(u− x,v+Bx)≥ 0, ∀[u,v] ∈ A,

thereby completing the proof of Theorem 2.1.

We now use Theorem 2.1 to prove a fundamental result in the theory of maximal
monotone operators due to G. Minty [19] and F. Browder [9] and which has opened
the way to applications of the existence theory of nonlinear operatorial equations of
monotone type.

Theorem 2.2. Let X and X∗ be reflexive and strictly convex. Let A ⊂ X ×X∗ be a
monotone subset of X×X∗ and let J : X → X∗ be the duality mapping of X. Then A
is maximal monotone if and only if, for any λ > 0 (equivalently, for some λ > 0),
R(A+λJ) = X∗.

Proof. ”If” part. Assume that R(A+λJ) = X∗ for some λ > 0. We suppose that A
is not maximal monotone, and argue from this to a contradiction. If A is not maximal
monotone, there exists [x0,y0] ∈ X×X∗ such that [x0,y0] /∈ A and

(x− x0,y− y0)≥ 0, ∀[x,y] ∈ A. (2.22)

On the other hand, by hypothesis, there exists [x1,y1] ∈ A such that

λJ(x1)+ y1 = λJ(x0)+ y0.

Substituting [x1,y1] in place of [x,y] in (2.22), this yields

(x1− x0,J(x1)− J(x0))≤ 0.

Taking into account the definition of J, we get

‖x1‖2 +‖x0‖2 ≤ (x1,J(x0))+(x0,J(x1)),

and therefore
(x1,J(x0)) = (x0,J(x1)) = ‖x1‖2 = ‖x0‖2.

Hence
J(x0) = J(x1),

and, because the duality mapping J−1 of X∗ is single-valued (because X is strictly
convex), we infer that x0 = x1. Hence [x0,y0] = [x1,y1] ∈ A, which contradicts the
hypothesis.

”Only if” part. The space X∗ being strictly convex, J is single-valued and
demicontinuous on X (Theorem 1.2). Let y0 be an arbitrary element of X∗ and let
λ > 0. Applying Theorem 2.1, where
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Bu = λJ(u)− y0, ∀u ∈ X ,

we conclude that there is x ∈ X such that

(u− x,λJ(x)− y0 + v)≥ 0, ∀[u,v] ∈ A.

A is maximal monotone, therefore this implies that [x,−λJ(x) + y0] ∈ A; that is,
y0 ∈ λJ(x)+Ax. Applying Theorem 2.1, we have implicitly assumed that 0∈D(A).
If not, we apply this theorem to Bu = λJ(u+u0)− y0 and Au def== A(u+u0), where
u0 ∈ D(A). ¤

We later show that the assumption that X∗ is strictly convex can be dropped in
Theorem 2.2.

Let Φp(x) = J(x)‖x‖p−1, where p > 0. Theorem 2.2 extends to the case where J
is replaced by Φp. We have the following theorem.

Theorem 2.3. Let X and X∗ be reflexive and strictly convex and let A⊂ X×X∗ be a
monotone set. Then A is maximal monotone if and only if, for each λ > 0 and p > 0,
R(A+λΦp) = X∗.

Proof. The proof is exactly the same as that of Theorem 2.2, so it is only outlined.
If R(A+λΦp) = X∗ and if [x0,y0] ∈ X×X∗ is such that

(x− x0,y− y0)≥ 0, ∀[x,y] ∈ A

then, choosing [x1,y1] ∈ A such that

λΦp(x1)+ y1 = λΦp(x0)+ y0

and, substituting into the above inequality, we obtain

(x1− x0,J(x1)‖x1‖p−1− J(x0)‖x0‖p−1)≤ 0

and this yields as above

(x1,J(x0)) = (x0,J(x1)) = ‖x0‖2 = ‖x1‖2;

that is, J(x0) = J(x1) and x0 = x1. Hence

[x0,y0] = [x1,y1].

”The only if part” follows exactly as in the proof of Theorem 2.2. ¤

Now, we use Theorem 2.1 to derive a maximality criterion for the sum A+B.

Corollary 2.1. Let X be reflexive and let B be a hemicontinuous monotone and
bounded operator from X to X∗. Let A⊂ X×X∗ be maximal monotone. Then A+B
is maximal monotone.
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Proof. By Asplund’s theorem (Theorem 1.1 in Chapter 1), we may take an equi-
valent norm in X such that X and X∗ are strictly convex. It is clear that after this
operation the monotonicity properties of A,B,A + B as well as maximality do not
change. Also, without loss of generality, we may assume that 0 ∈ D(A); otherwise,
we replace A by u → A(u + u0), where u0 ∈ D(A) and B by u → B(u + u0). Let y0
be arbitrary but fixed in X∗. Now, applying Theorem 2.1, where B is this time the
operator u→ Bu+ J(u)− y0, we infer that there is an x ∈ convD(A) such that

(u− x,J(x)+Bx− y0 + v)≥, ∀[u,v] ∈ A.

(Because (u,Bu+J(u)−y0)≥ (u,Bu)+‖u‖2−‖y0‖‖u‖≥‖u‖2−‖B0‖‖u‖−‖y0‖‖u‖,
clearly condition (2.10) holds.) As A is maximal monotone, this yields

y0 ∈ Ax+Bx+ J(x),

as claimed. ¤
In particular, it follows by Corollary 2.1 that every monotone, hemicontinuous,

and bounded operator from X to X∗ is maximal monotone. We now prove that the
boundedness assumption is redundant.

Theorem 2.4. Let X be a reflexive Banach space and let B : X → X∗ be a monotone
hemicontinuous operator. Then B is maximal monotone in X×X∗.

Proof. Suppose that B is not maximal monotone. Then, there exists [x0,y0]∈X×X∗
such that y0 6= Bx0 and

(x0−u,y0−Bu)≥ 0, ∀u ∈ X . (2.23)

For any x ∈ X , we set uλ = λx0 +(1−λ )x, 0 ≤ λ ≤ 1, and put u = uλ in (2.23).
We get

(x0− x,y0−Buλ )≥ 0, ∀λ ∈ [0,1], u ∈ X ,

and, letting λ tend to 1,

(x0− x,y0−Bx0)≥ 0, ∀x ∈ X .

Hence y0 = Bx0, which contradicts the hypothesis. ¤
Corollary 2.2. Let X be a reflexive Banach space and let A be a coercive maximal
monotone subset of X×X∗. Then A is surjective; that is, R(A) = X∗.

Proof. Let y0 ∈X∗ be arbitrary but fixed. Without loss of generality, we may assume
that X ,X∗ are strictly convex, so that by Theorem 2.2 for every λ > 0 the equation

λJ(xλ )+Axλ 3 y0 (2.24)

has a (unique) solution xλ ∈ D(A). Now, we multiply (in the sense of the duality
pairing (·, ·)) equation (2.24) by xλ − x0, where x0 is the element arising in the
coercivity condition (2.9). We have
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λ‖xλ‖2 +(xλ − x0,Axλ ) = (xλ − x0,y0)+λ (x0,Jxλ ).

By (2.9), we deduce that {xλ} is bounded in X as λ → 0 and so we may assume
(taking a subsequence if necessary) that ∃x0 ∈ X such that

w- lim
λ↓0

xλ = x0.

Letting λ tend to zero in (2.24), we see that

lim
λ↓0

Ax = y0.

Because, as seen earlier, maximal monotone operators are weakly–strongly closed
in X×X∗, we conclude that y0 ∈ Ax0. Hence R(A) = X∗, as claimed. ¤

In particular, the next corollary follows by Corollary 2.2 and Theorem 2.4.

Corollary 2.3. A monotone, hemicontinuous, and coercive operator B from a refle-
xive Banach space X to its dual X∗ is surjective.

The Sum of Two Maximal Monotone Operators

A problem of great interest because of its implications for the existence theory for
partial differential equations is to know whether the sum of two maximal mono-
tone operators is again maximal monotone. Before answering this question, let us
first establish some facts related to Yosida approximation of the maximal monotone
operators.

Let us assume that X is a reflexive strictly convex Banach space with strictly
convex dual X∗, and let A be maximal monotone in X×X∗.

According to Corollaries 2.1 and 2.2, for every x ∈ X the equation

0 ∈ J(xλ − x)+λAxλ (2.25)

has a solution xλ . Inasmuch as

(x−u,Jx− Ju)≥ (‖x‖−‖u‖)2, ∀x,u ∈ X ,

and J−1 is single-valued (because X is strictly convex), it is readily seen that xλ is
unique. Define

Jλ x = xλ ,

Aλ x = λ−1J(x− xλ ),
(2.26)

for any x ∈ X and λ > 0.
The operator Aλ : X → X∗ is called the Yosida approximation of A and plays

an important role in the smooth approximation of A. We collect in Proposition 2.2
several basic properties of the operators Aλ and Jλ .
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Proposition 2.2. Let X and X∗ be strictly convex and reflexive. Then:

(i) Aλ is single-valued, monotone, bounded, and demicontinuous from X to X∗.
(ii) ‖Aλ x‖ ≤ |Ax|= inf{‖y‖; y ∈ Ax} for every x ∈ D(A), λ > 0.
(iii) Jλ : X → X is bounded on bounded subsets and

lim
λ→0

Jλ x = x, ∀x ∈ convD(A). (2.27)

(iv) If λn → 0, xn → x, Aλn xn ⇀ y and

limsup
n,m→∞

(xn− xm,Aλnxn−Aλmxm)≤ 0, (2.28)

then [x,y] ∈ A and

lim
m,n→∞

(xn− xm,Aλnxn−Aλmxm) = 0.

(v) For λ → 0, Aλ x ⇀ A0x, ∀x ∈ D(A), where A0x is the element of minimum
norm in Ax; that is, ‖A0x‖= |Ax|. If X∗ is uniformly convex, then Aλ x→ A0x,
∀x ∈ D(A).

The main ingredient of the proof is the following lemma which has an intrinsic
interest.

Lemma 2.3. Let X be a reflexive Banach space and let A be a maximal monotone
subset of X×X∗. Let [un,vn] ∈ A be such that un ⇀ u, vn ⇀ v, and either

limsup
n,m→∞

(un−um,vn− vm)≤ 0 (2.29)

or
limsup

n→∞
(un−u,vn− v)≤ 0. (2.29)′

Then [u,v] ∈ A and (un,vn)→ (u,v) as n→ ∞.

Proof. Assume first that condition (2.29) holds. Because A is monotone, we have

lim
n,m→∞

(un−um,vn− vm) = 0.

Let nk → ∞ be such that (unk ,vnk)→ µ . Then, clearly, we have µ ≤ (u,v). Hence

limsup
n→∞

(un,vn)≤ (u,v),

and by monotonicity of A we have

(un− x,vn− y)≥ 0, ∀[x,y] ∈ A,

and therefore
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(u− x,v− y)≥ 0, ∀[x,y] ∈ A,

which implies [u,v] ∈ A because A is maximal monotone. The second part of the
lemma follows by the same argument. ¤

Proof of Proposition 2.2. (i) We have

(x− y,Aλ x−Aλ y) = (Jλ x− Jλ y,Aλ x−Aλ y)+((x− Jλ x)− (y− Jλ y),Aλ x−Aλ y),

and because Aλ x ∈ AJλ x, we infer that

(x− y,Aλ x−Aλ y)≥ 0

because A and J are monotone.
Let [u,v]∈ A be arbitrary but fixed. If we multiply equation (2.25) by Jλ x−u and

use the monotonicity of A, we get

(Jλ x−u,J(Jλ x− x))≤ λ (u− Jλ x,v),

which yields

‖Jλ x− x‖2 ≤ ‖x−u‖‖Jλ x− x‖+λ‖x−u‖‖v‖+λ‖v‖‖Jλ x− x‖.

This implies that Jλ and Aλ are bounded on bounded subsets.
Now, let xn → x0 in X . We set un = Jλ xn and vn = Aλ xn. By the equation

J(un− xn)+λvn = 0,

it follows that

((un− xn) −(um− xm),J(un− xn)− J(um− xm))+λ (un−um,vn− vm)

+λ (xm− xn,vn− vm) = 0.

Because, as seen previously, Jλ is bounded, this yields

lim
n,m→∞

(un−um,vn− vm)≤ 0

and
lim

n,m→∞
((un− xn)− (um− xm),J(un− xn)− J(um− xm)) = 0.

Now, let nk →∞ be such that unk ⇀ u, vnk ⇀ v, and J(unk −xnk) ⇀ w. By Lemma
2.3, it follows that [u,v] ∈ A, [u− x0,w] ∈ J, and therefore

J(u− x0)+λv = 0.

We have therefore proven that u = Jλ x0, v = Aλ x0, and by the uniqueness of the
limit we infer that Jλ xn ⇀ Jλ x0 and Aλ xn ⇀ Aλ x0, as claimed.
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(ii) Let [x,x∗] ∈ A. Again, by the monotonicity of A, we have

0≤ (x− Jλ x,x∗ −Aλ x)≤ ‖x∗‖‖x− xλ‖−λ−1‖x− xλ‖2.

Hence,
λ‖Aλ x‖= ‖x− xλ‖ ≤ λ‖x∗‖, ∀x∗ ∈ Ax,

which implies (ii).

(iii) Let x ∈ convD(A) and [u,u∗] ∈ A. We have

(Jλ x−u,Aλ x−u∗)≥ 0,

and therefore

‖Jλ x− x‖2 ≤ λ (u− Jλ x,u∗)+(u− x,J(Jλ x− x)).

Let λn → 0 be such that J(Jλnx− x) ⇀ y in X∗. This yields

lim
λn→0

‖Jλnx− x‖2 ≤ (u− x,y).

Because u is arbitrary in D(A), the preceding inequality extends to all u∈ convD(A),
and in particular we may take u = x and infer that Jλnx → x for all such sequences
{λn}. This implies (2.27).

(iv) We have

(xn− xm,Aλnxn−Aλmxm)Aλm = (Jλn xn− Jλmxm,Aλn xn−Aλmxm)

+((xn− Jλn xn)− (xm− Jλmxm),Aλnxn−Aλmxm)

≥ ((xn− Jλnxn)− (xm− Jλmxm),Aλnxn−Aλmxm)

= ((xn− Jλn xn)− (xm− Jλmxm),λ−1
n J(xn− Jλnxn)

−λ−1
m J(xm− Jλmxm)).

(Here we have used the monotonicity of A and Aλ x ∈ AJλ x.)
Aλn xn = −λ−1

n (Jλn xn− xn) and xn remain in bounded subsets of X∗ and X , re-
spectively, therefore we infer that

lim
m,n→∞

(xn− xm,Aλnxn−Aλmxm) = 0

and
lim

m,n→∞
(Jλnxn− Jλmxm,Aλnxn−Aλmxm) = 0.

Then, by Lemma 2.3 we conclude that [x,y] ∈ A because

lim
n→∞

(Jλnxn− xn) =− lim
n→∞

λnJ−1(Aλnxn) = 0.
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(v) Because Ax is a closed convex subset of X∗, and X∗ is reflexive and strictly
convex, the projection A0x of 0 into Ax is well defined and unique.

Now, let x ∈ D(A) and let λn → 0 be such that Aλn x ⇀ y in X∗. As seen in the
proof of (iv), y ∈ Ax, and because ‖Aλn x‖ ≤ ‖A0x‖, we infer that y = A0x. Hence,
Aλ x ⇀ A0x for λ → 0. If X∗ is uniformly convex, then, by Lemma 1.1, we conclude
that Aλ x→ Ax (strongly) in X∗ as λ → 0.

In general, a maximal monotone operator A : X → X∗ is not weakly–weakly
closed, that is from xn ⇀ u and vn ⇀ v where [un,vn] ∈ A does not follow that [u,v]
belongs to A. However, by Lemma 2.3 we derive the following result.

Corollary 2.4. Let X be a reflexive Banach space and let A⊂ X×X∗ be a maximal
monotone subset. Let [un,vn] ∈ A be such that un ⇀ u, vn ⇀ v, and

limsup
n→∞

(un,vn)≤ (u,v).

Then, [u,v] ∈ A.

This simple property is, in particular, useful when one passes to the limit in
approximating nonlinear equations involving maximal monotone operators.

We also note also the following consequence of Proposition 2.2.

Proposition 2.3. If X = H is a Hilbert space identified with its own dual, then:

(i) Jλ = (I +λA)−1 is nonexpansive in H (i.e., Lipschitz continuous
with Lipschitz constant not greater than 1),

(ii) ‖Aλ x−Aλ y‖ ≤ λ−1‖x− y‖, ∀x,y ∈ D(A), λ > 0,
(iii) limλ→0 Aλ x = A0x, ∀x ∈ D(A).

Proof. (i) We set xλ = (I +λA)−1x, yλ = (I +λA)−1y (I is the unity operator in H).
We have

xλ − yλ +λ (Axλ −Ayλ ) 3 x− y. (2.30)

Multiplying by xλ − yλ and using the monotonicity of A, we get

‖xλ − yλ‖ ≤ ‖x− y‖, ∀λ > 0.

Now, multiplying (scalarly in H) equation (2.30) by Axλ −Ayλ , we get (ii).
Regarding (iii), it follows by Proposition 2.1(v). ¤

Corollary 2.5. Let X be a reflexive Banach space and let A be maximal monotone
in X×X∗. Then both D(A) and R(A) are convex.

Proof. Without any loss of generality, we may assume that X and X∗ are strictly
convex. Then, as seen in Proposition 2.1, Jλ x→ x for every x ∈ convD(A). Because
Jλ x∈D(A) for all λ > 0 and x∈X , we conclude that convD(A) = D(A), as claimed.
Because R(A) = D(A−1) and A−1 is maximal monotone in X∗×X , we conclude that
R(A) is also convex. ¤
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We now establish an important property of monotone operators with nonempty
interior domain.

Theorem 2.5. Let A be a monotone subset of X ×X∗. Then A is locally bounded at
any interior point of D(A).

Following an idea due to Fitzpatrick [13], we first prove the following technical
lemma.

Lemma 2.4. Let {xn} ⊂ X and {yn} ⊂ X∗ be such that xn → 0 and ‖yn‖ → ∞ as
n→∞. Let B(0,r) be the closed ball {x; ‖x‖ ≤ r}. Then there exist x0 ∈ B(0,r) and
{xnk} ⊂ {xn}, {ynk} ⊂ {yn} such that

lim
k→∞

(xnk − x0,ynk) =−∞. (2.31)

Proof. Suppose that the lemma is false. Then there exists r > 0 such that for every
u ∈ B(0,r) there exists Cu >−∞ such that

(xn−u,yn)≥Cu, ∀n ∈ N.

We may write B(0,r) = ∪k{u ∈ B(0,r); (xn − u,yn) ≥ −k, ∀n}. Then, by the
Hausdorff–Baire theorem we infer that there is k0 such that

int{u ∈ B(0,r); (xn−u,yn) >−k0, ∀n} 6= /0.

In other words, there are ε > 0, k0 ∈ N, and u0 ∈ B(0,r) such that

{u; ‖u−u0‖ ≤ ε} ⊂ {u ∈ B(0,r); (xn−u,yn) >−k0, ∀n}.

Now, we have

(xn−u,yn)≥−k0 and (xn−u0,yn)≥Cu0 .

Summing up, we get

(2xn +u0−u,yn)≥−k0 +C, ∀u ∈ B(u0,ε),

where C =Cu0 . Now, we take u = u0 +2xn +w, where ‖w‖= ε/2. For n sufficiently
large, we therefore have

(w,yn)≤−C + y0, ∀w,‖w‖=
ε
2
,

which clearly contradicts the fact that ‖yn‖→ ∞ as n→ ∞. ¤

Proof of Theorem 2.5. The method of proof is due to Brezis, Crandall and Pazy
[7]. Let x0 ∈ intD(A) be arbitrary. Without loss of generality, we may assume that
x0 = 0. (This can be achieved by shifting the domain of A.) Let us assume that A
is not locally bounded at 0. Then there exist sequences {xn}⊂X , {yn} ⊂ X∗ such
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that [xn,yn] ∈ A, ‖xn‖ → 0, and ‖yn‖ → ∞. According to Lemma 2.4, for every ball
B(0,r), there exists x0 ∈ B(0,r) and {xnk} ⊂ {xn}, {ynk} ⊂ {yn} such that

lim
k→∞

(xnk − x0,ynk) =−∞.

Let r be sufficiently small so that B(0,r)⊂D(A). Then, x0 ∈D(A) and by the mono-
tonicity of A it follows that

(xnk − x0,y)→−∞ as k → ∞,

for some y ∈ Ax0. The contradiction we have arrived at completes the proof. ¤

In particular, Theorem 2.5 implies that every monotone operator A everywhere
defined on X is locally bounded.

Now we are ready to prove the main result of this section, due to Rockafellar [24].

Theorem 2.6. Let X be a reflexive Banach space and let A and B be maximal mono-
tone subsets of X×X∗ such that

(intD(A))∩D(B) 6= /0. (2.32)

Then A+B is maximal monotone in X×X∗.

Proof. As in the previous cases, we may assume without loss of generality that X
and X∗ are strictly convex. Moreover, shifting the domains and ranges of A and B,
if necessary, we may assume that 0 ∈ (intD(A))∩D(B), 0 ∈ A0, 0 ∈ B0. We prove
that R(J +A+B) = X∗. To this aim, consider an arbitrary element y in X∗. Because
the operator Bλ is demicontinuous, bounded, and monotone, and so is J : X → X∗,
by Corollaries 2.1 and 2.2, it follows that, for every λ > 0, the equation

Jxλ +Axλ +Bλ xλ 3 y (2.33)

has a solution xλ ∈D(A). (J and J−1 are single-valued and X ,X∗ are strictly convex,
thus it follows by standard arguments involving the monotonicity of A and B that xλ
is unique.) Multiplying equation (2.33) by xλ and using the obvious inequalities

(xλ ,Axλ )≥ 0, (xλ ,Bλ xλ )≥ 0,

we infer that
‖xλ‖ ≤ ‖y‖, ∀λ > 0.

Moreover, because 0∈ intD(A), it follows by Theorem 2.5 that there exist constants
ρ > 0 and M > 0 such that

‖x∗‖ ≤M, ∀x∗ ∈ Ax, ‖x‖ ≤ ρ . (2.34)

Multiplying equation (2.33) by xλ −ρw and using the monotonicity of A, we get
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(xλ −ρw,Jxλ +Bλ xλ − y)+(xλ −ρw,A(ρw))≤ 0, ∀‖w‖= 1.

By (2.34), we get

‖xλ‖2−ρ(w,Bλ xλ )≤M(ρ +‖xλ‖)+‖xλ‖(ρ +‖y‖).

Hence,

‖xλ‖2 +ρ‖Bλ xλ‖ ≤ ‖xλ‖(ρ +M +‖y‖)+Mρ, ∀λ > 0.

We may, therefore, conclude that {Bλ xλ} and {yλ = y− Jxλ −Bλ xλ} are bounded
in X∗ as λ → 0. Inasmuch as X is reflexive, we may assume that on a subsequence,
again denoted λ ,

xλ ⇀ x0, Bλ xλ ⇀ y1, yλ ∈ Axλ ⇀ y2, Jxλ ⇀ y0.

Inasmuch as A+ J is monotone, we have

(xλ − xµ ,Bλ xλ −Bµ xµ)≤ 0, ∀λ ,µ > 0.

Then, by Proposition 2.2(iv), we have

lim
λ ,µ→0

(xλ − xµ ,Bλ xλ −Bµ xµ) = 0

and [x0,y1] ∈ B. Then, by equation (2.33), we see that

lim
λ ,µ→0

(xλ − xµ ,Jxλ + yλ − Jxλ − yµ) = 0, yλ ∈ Axλ , yµ ∈ Axµ ,

and, because A + J is maximal monotone, it follows by Lemma 2.3 (see Corollary
2.5) that [x0,y0 + y2] ∈ A+ J. Thus, letting λ tend to zero in (2.33), we see that

y ∈ J(x0)+Ax0 +Bx0,

thereby completing the proof. ¤

In particular, Theorems 2.4 and 2.6 lead to the following.

Corollary 2.6. Let X be a reflexive Banach space, A⊂ X×X∗ a maximal monotone
operator, and let B : X → X∗ be a demicontinuous monotone operator. Then A + B
is maximal monotone.

More generally, it follows from Theorem 2.6 that if A,B are two maximal mono-
tone sets of X×X∗, and D(B) = X , then A+B is maximal monotone.

We conclude this section with a result of the same type in Hilbert spaces.

Theorem 2.7. Let X = H be a Hilbert space identified with its own dual and let A,B
be maximal monotone sets in H×H such that D(A)∩D(B) 6= /0 and

(v,Aλ u)≥−C(‖u‖2 +λ‖Aλ u‖2 +‖Aλ u‖+1), ∀[u,v] ∈ B. (2.35)
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Then A+B is maximal monotone.

Proof. We have denoted by Aλ = λ−1(I−(I +λA)−1) the Yosida approximation of
A. For any y ∈ H and λ > 0, consider the equation

xλ +Bxλ +Aλ xλ 3 y, (2.36)

which, by Corollaries 2.5 and 2.6 has a solution (clearly unique) xλ ∈ D(B). Let
x0 ∈ D(A)∩D(B). Taking the scalar product of (2.36) with xλ − x0 and using the
monotonicity of B and Aλ yields

(xλ ,xλ − x0)+(y0,xλ − x0)+(Aλ x0,xλ − x0)≤ (y,xλ − x0).

Because, as seen in Proposition 2.2,

‖Aλ x0‖ ≤ |Ax0|, ∀λ > 0,

this yields
‖xλ‖ ≤M, ∀λ > 0.

Next, we multiply equation (2.36) by Aλ xλ and use inequality (2.35) to get, after
some calculations,

‖Aλ xλ‖ ≤C, ∀λ > 0.

Now, for a sequence λn → 0, we have

xλn ⇀ x, Aλn xλn ⇀ y1, yλn ⇀ y2,

where yλ = y− xλ −Aλ xλ ∈ Bxλ .
Then, arguing as in the proof of Theorem 2.6, it follows by Proposition 2.2 that

[x,y1] ∈ A, [x,y2] ∈ B, and this implies that y ∈ x+Ax+Bx, as claimed. ¤

Proposition 2.4. Let X be the Euclidean space RN and A : RN →RN be a monotone,
everywhere defined, and upper-semicontinuous operator (multivalued) such that the
set Ax is convex for each x ∈ RN . Then A is maximal monotone in RN ×RN.

Proof. We recall that A is said to be upper-semicontinuous if its graph is closed in
RN ×RN . One must prove that there is λ > 0 such that for each f ∈ RN equation
λx+Ax 3 f has solution. We rewrite this equation as

x ∈ 1
λ

f − 1
λ

Ax

and apply the Kakutani fixed point theorem to operator x T−→ (1/λ ) f − (1/λ )Ax
on the closed ball KR = {x ∈ RN ; ‖x‖ ≤ R}. By Theorem 2.5 we know that A(KR)
is bounded for each R > 0. Then, choosing λ sufficiently large, it follows that
T (KR)⊂ KR and so T has a fixed point in KR, as claimed. ¤

Consider now a monotone measurable function ψ : RN → RN ; that is,
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(ψ(x)−ψ(y),x− y)N ≥ 0, ∀x,y ∈ RN .

(Here (·, ·)N is the Euclidean scalar product.) We associate with ψ the following
multivalued graph (the Filipov mapping)

ψ̃(x) =
⋂

δ>0

⋂

m(E)=0

conv ψ (Bδ (x)\E), ∀x ∈ RN ,

where Bδ (x) = {y ∈ RN ; ‖y− x‖N ≤ δ} and m(E) is the Lebesgue measure of the
subset E ⊂RN . In the special case where N = 1, the Filipov mapping ψ̃ is obtained
by “filling the jumps” of ψ in discontinuity points; that is,

ψ̃(x) = [ψ(x−0),ψ(x+0)], ∀x ∈ R.

Proposition 2.5. The operator ψ̃ is maximal monotone in RN ×RN .

Proof. The monotonicity of ψ̃ follows immediately from that of ψ . It is also easily
seen that ψ̃ is upper semicontinuous and has convex values. Then the conclusion
follows by Proposition 2.4. ¤

Monotone Operators in Complex Banach Spaces

Let X̃ be a complex Banach space and let X̃∗ be its dual.
A monotone subset A⊂ X̃× X̃∗ is called monotone if

Re(x− y,x∗ − y∗)≥ 0 for all [x,x∗], [y,y∗] ∈ A.

If we represent X̃ as X + iX , where X is a real Banach space and A1,A2 ⊂ X ×X∗
are defined by

A1(x, x̃)+ iA2(x, x̃) = A(x+ ix̃), ∀x, x̃ ∈ X ,

then the monotonicity condition reduces to

(x− y,A1(x, x̃)−A1(y, ỹ))+(x̃− ỹ,A2(x, x̃)−A2(y, ỹ))≥ 0.

Define the operator A : X×X → X∗ ×X∗ by

A (x, x̃) = {A1(x, x̃),A2(x, x̃)};

that is, A1 = ReA, A2 = ImA. Then A is monotone in X̃ × X̃∗ if and only if A
is monotone in (X ×X)× (X∗ ×X∗). Similarly, A is maximal monotone (i.e., it is
maximal in the class of monotone operators) if and only if A is maximal monotone.

In this way, the whole theory of maximal monotone operators in real Banach
spaces extends mutatis–mutandis to maximal monotone operators in complex Ba-
nach spaces.
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2.2 Maximal Monotone Subpotential Operators

The subdifferential of a lower semicontinuous convex function is an important
example of maximal monotone operator that closes the bridge between the theory
of nonlinear maximal monotone operators and convex analysis. Such an operator is
also called a subpotential maximal monotone operator.

Theorem 2.8. Let X be a real Banach space and let ϕ : X → R be an l.s.c. proper
convex function. Then ∂ϕ is a maximal monotone subset of X×X∗.

Proof. It is readily seen that ∂ϕ is monotone in X ×X∗. To prove that ∂ϕ is maxi-
mal monotone, we assume for simplicity that X is reflexive and refer the reader to
Rockafellar’s work [26] for the proof in the general case.

Continuing, we fix y ∈ X∗ and consider the equation

Jx+∂ϕ(x) 3 y. (2.37)

Let f : X → R be the convex, l.s.c. function defined by

f (x) =
1
2
‖x‖2 +ϕ(x)− (x,y).

By Proposition 1.1, we see that

lim
‖x‖→∞

f (x) = +∞,

and so, by Proposition 1.4, we conclude that there exists x0 ∈ X such that

f (x0) = inf{ f (x); x ∈ X}.

This yields

1
2
‖x0‖2 +ϕ(x0)− (x0,y)≤ 1

2
‖x‖2 +ϕ(x)− (x,y), ∀x ∈ X ;

that is,
ϕ(x0)−ϕ(x) ≤ (x0− x,y)+ 1

2 (‖x‖2−‖x0‖2)

≤ (x0− x,y)+(x− x0,Jx), ∀x ∈ X .

In the latter inequality we take x = tx0 +(1− t)u, 0 < t < 1, where u is an arbitrary
element of X . We get

ϕ(x0)−ϕ(u)≤ (x0−u,y)+(u− x0,wt),

where wt ∈ J(tx0 +(1− t)u).
For t → 1, wt ⇀ w ∈ J(x0) because, as seen earlier, J is strongly–weakly closed

in X×X∗. Hence,

ϕ(x0)−ϕ(u)≤ (x0−u,y−w), ∀u ∈ X ,
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and this inequality shows that y−w ∈ ∂ϕ(x0); that is, x0 is a solution to equation
(2.37). We have therefore proven that R(J +∂ϕ) = X∗. ¤

In particular, this result leads to a simple proof of Proposition 1.6: if ϕ : X → R
is an l.s.c., convex, and proper function, then D(∂ϕ) is a dense subset of D(ϕ).

Proof. Let x be any element of D(ϕ) and let xλ = Jλ x be the solution to the equation
(see (2.25))

J(xλ − x)+λ∂ϕ(xλ ) 3 0.

Multiplying this equation by xλ − x, we get

‖xλ − x‖2 +λ (ϕ(xλ )−ϕ(x))≤ 0, ∀λ > 0.

Because, by Proposition 1.1, ϕ is bounded from below by an affine function and
ϕ(x) < ∞, this yields

lim
λ→0

xλ = x.

As xλ ∈ D(∂ϕ) and x is arbitrary in D(ϕ), we conclude that

D(ϕ) = D(∂ϕ),

as claimed. ¤

For every λ > 0, define the function

ϕλ (x) = inf
{‖x−u‖2

2λ
+ϕ(u); u ∈ X

}
, ∀x ∈ X , (2.38)

where ϕ : X → R is an l.s.c. proper convex function. By Propositions 1.1 and 1.4
it follows that ϕλ (x) is well defined for all x ∈ X and the infimum defining it is
attained (if the space X is reflexive). This implies by a straightforward argument
that ϕλ is convex and l.s.c. on X . (Because ϕλ is everywhere defined, we conclude
by Proposition 1.2, that ϕλ is continuous.)

The function ϕλ is called the Moreau regularization of ϕ (see [21]), for reasons
that become clear in the following theorem.

Theorem 2.9. Let X be a reflexive and strictly convex Banach space with strictly
convex dual. Let ϕ : X → R be an l.s.c. convex, proper function and let A = ∂ϕ ⊂
X ×X∗. Then the function ϕλ is convex, continuous, Gâteaux differentiable, and
∇ϕλ = Aλ for all λ > 0. Moreover:

ϕλ (x) =
‖x− Jλ x‖2

2λ
+ϕ(Jλ x), ∀λ > 0, x ∈ X ; (2.39)

lim
λ→0

ϕλ (x) = ϕ(x), ∀x ∈ X ; (2.40)

ϕ(Jλ x)≤ ϕλ (x)≤ ϕ(x), ∀λ > 0, x ∈ X . (2.41)
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If X is a Hilbert space (not necessarily identified with its dual), then ϕλ is Fréchet
differentiable on X.

Proof. We observe that the subdifferential of the function

u→ ‖x−u‖2

2λ
+ϕ(u)

is just the operator u → λ−1J(u− x)+ ∂ϕ(u) (see Theorem 2.10 below). This im-
plies that every solution xλ of the equation

λ−1J(u− x)+∂ϕ(u) 3 0

is a minimum point of the function

u→ 1
2λ
‖x−u‖2 +ϕ(u).

Recalling that xλ = Jλ x, we obtain (2.39). Regarding inequality (2.41), it is an im-
mediate consequence of (2.38). To prove (2.40), assume first that x∈D(ϕ). Then, as
seen in Proposition 2.3, limλ→0 Jλ x = x, and by (2.41) and the lower semicontinuity
of ϕ , we infer that

ϕ(x)≤ liminf
λ→0

ϕ(Jλ x)≤ liminf
λ→0

ϕλ (x)≤ ϕ(x).

If x /∈D(ϕ) (i.e., ϕ(x) = +∞), then limλ→0 ϕλ (x) = +∞ because otherwise there
would exist {λn}→ 0 and C > 0 such that

ϕλn(x)≤C, ∀n.

Then, by (2.39), we see that limn→∞ Jλn x = x, and again by (2.41) and the lower
semicontinuity of ϕ , we conclude that ϕ(x)≤C, which is absurd.

To conclude the proof, it remains to show that ϕλ is Gâteaux differentiable and
∇ϕλ = Aλ . By (2.39), it follows that

ϕλ (y)−ϕλ (x) ≤ (Jλ (y)− Jλ (x),Aλ y)+
1

2λ
(‖y− Jλ (y)‖2−‖x− Jλ (x)‖2)

= (y− x,Aλ y)+(Jλ (y)− y,Aλ y)+(x− Jλ (x),Aλ y)

+
1

2λ
(‖y− Jλ (y)‖2−‖x− Jλ (x)‖2)≤ (y− x,Aλ y).

Hence,
ϕλ (y)−ϕλ (x)− (y− x,Aλ x)≤ (y− x,Aλ y−Aλ x) (2.42)

for all x,y ∈ X and λ > 0. The latter inequality clearly implies that

lim
t↓0

ϕλ (x+ tu)−ϕλ (x)
t

≤ (u,Aλ x), ∀u,x ∈ X ,
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because, as seen earlier, Aλ is demicontinuous. Hence, ϕλ is Gâteaux differentiable
and ∇ϕλ = (∂ϕ)λ = Aλ .

Now, assume that X is a Hilbert space. Then, as seen earlier in Proposition 2.3,
Aλ : X → X is Lipschitz continuous with the Lipschitz constant not greater than
2/λ . Then, by inequality (2.42), we see that

|ϕλ (x)−ϕλ (y)− (x− y,Aλ x)| ≤ 2
λ
‖x− y‖2, ∀x,y ∈ X ,

and this shows that ϕλ is Fréchet differentiable. ¤
Let us consider the particular case where ϕ = IK (see (1.17)), K is a closed con-

vex subset of X , and X is a Hilbert space Then

(IK)λ (x) =
‖x−PKx‖2

2λ
, ∀x ∈ X , λ > 0, (2.43)

where PKx is the projection of x on K. (Because K is closed and convex, PKx is
uniquely defined.) Moreover, as previously seen, we have

PK = Jλ = (I +λA)−1, ∀λ > 0. (2.44)

It should be said that (2.38) is a convenient way to regularize the convex l.s.c. func-
tions ϕ in infinite dimensions and, in particular, in Hilbert spaces, the main ad-
vantage being that the regularization ϕλ remains convex and is C1 with Lipschitz
differential ∇ϕλ .

A problem of great interest in convex optimization as well as for calculus with
convex functions is to determine whether given two l.s.c., convex, proper functions
f and g on X , ∂ ( f +g) = ∂ f +∂g. The following theorem due to Rockafellar [25]
gives a general answer to this question.

Theorem 2.10. Let X be a Banach space and let f : X → R and g : X → R be two
l.s.c., convex, proper functions such that D( f )∩ intD(g) 6= /0. Then

∂ ( f +g) = ∂ f +∂g. (2.45)

Proof. If the space X is reflexive, (2.45) is an immediate consequence of Theo-
rem 2.6. Indeed, as seen in Proposition 1.7, intD(∂g) = intD(g) and so D(∂ f )∩
intD(∂g) 6= /0. Then, by Theorem 2.6, ∂ f + ∂g is maximal monotone in X ×X∗.
On the other hand, it is readily seen that ∂ f + ∂g ⊂ ∂ ( f + g). Hence, ∂ f + ∂g =
∂ ( f +g).

In the general case, Theorem 2.10 follows by a separation argument we present
subsequently.

Because the relation ∂ f +∂g⊂ ∂ ( f +g) is obvious, let us prove that

∂ ( f +g)⊂ ∂ f +∂g.

To this end, consider x0 ∈D(∂ f )∩D(∂g) and w ∈ ∂ ( f +g)(x0), arbitrary but fixed.
We prove that w = w1 + w2, where w1 ∈ ∂ f (x0) and w1 ∈ ∂g(x0). Replacing the
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functions f and g by x → f (x + x0)− f (x0)− (x,z1) and x → g(x + x0)− g(x0)−
(x,z2), respectively, where w = z1 + z2, we may assume that x0 = 0, w = 0, and
f (0) = g(0) = 0. Hence, we should prove that 0 ∈ ∂ f (0)+∂g(0). Consider the sets
Ei, i = 1,2, defined by

E1 = {(x,λ ) ∈ X×R; f (x)≤ λ},
E2 = {(x,λ ) ∈ X×R; g(x)≤−λ}.

Inasmuch as 0 ∈ ∂ ( f +g)(0), we have

0 = ( f +g)(0) = inf{( f +g)(x); x ∈ X},

and therefore E1∩ intE2 = /0. Then, by the separation theorem there exists a closed
hyperplane that separates the sets E1 and E2. In other words, there are w ∈ X∗ and
α ∈ R such that

(w,x)+αλ ≤ 0, ∀(x,λ ) ∈ E1,

(w,x)+αλ ≥ 0, ∀(x,λ ) ∈ E2.
(2.46)

Let us observe that the hyperplane is not vertical; that is, α 6= 0. Indeed, if α = 0,
then this would imply that the hyperplane (w,x) = 0 separates the sets D( f ) and
D(g) in the space X , which is not possible because D( f )∩ intD(g) 6= /0. Hence,
α 6= 0, and to be more specific we assume that α > 0. Then, by (2.46), we see that

g(x)≤−λ ≤ (w,x)≤−α f (x), ∀x ∈ X ,

and, therefore, (1/α)w ∈ ∂ f (0), −(1/α)w ∈ ∂g(0) (i.e., 0 ∈ ∂ f (0)+ ∂g(0)), as
claimed. ¤

Theorem 2.11. Let X = H be a real Hilbert space (identified with its own dual) and
let A be a maximal monotone subset of H×H. Let ϕ : H → R be an l.s.c., convex,
proper function such that D(A)∩D(∂g) 6= /0 and, for some h ∈ H,

ϕ((I +λA)−1(x+λh))≤ ϕ(x)+Cλ (1+ϕ(x)), ∀x ∈ D(ϕ), λ > 0. (2.47)

Then A+∂ϕ is maximal monotone and D(A+∂ϕ) = D(A)∩D(ϕ).

Proof. We proceed as in the proof of Theorem 2.7. Let y be arbitrary but fixed in H.
Then, for every λ > 0, the equation

xλ +Aλ xλ +∂ϕ(xλ ) 3 y

has a unique solution xλ ∈ D(∂ϕ). We multiply the preceding equation by
x− Jλ (xλ +λh) and use condition (2.47). This yields

‖Aλ xλ‖2 +(Aλ xλ ,Jλ (xλ )− Jλ (xλ +λh))≤Cλ (‖y‖+‖h‖+‖xλ‖+ϕ(xλ )+1),

where Jλ = (I +λA)−1. We get
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‖Aλ xλ‖2 ≤C(‖y‖+‖h‖+‖xλ‖+ϕ(xλ )+1).

On the other hand, multiplying the latter equation by xλ − x0, where x0 ∈ D(A)∩
D(∂ϕ), we get

‖xλ‖2 +ϕ(xλ )≤C(‖Aλ x0‖2 +ϕ(x0)+1).

Hence, {Aλ xλ} and {xλ} are bounded in H. Then, as seen in the proofs of Theorems
2.6 and 2.7, this implies that xλ ⇀ x, where x is the solution to the equation

x+∂ϕ(x)+Ax 3 y.

Now, let us prove that

D(A)∩D(ϕ)⊂ D(A)∩D(ϕ)⊂ D(A)∩D(∂ϕ).

Let u ∈ D(A)∩D(ϕ) be arbitrary but fixed and let h be as in condition (2.47).
Clearly, there is a sequence {uλ} ⊂ D(ϕ) such that uλ + λh ∈ D(ϕ) and uλ → u
as λ → 0. Let vλ = Jλ (uλ +λh) ∈ D(A)∩D(ϕ) (by condition (2.47)). We have

‖vλ −u‖ ≤ ‖Jλ (uλ +λh)− Jλ u‖+‖u− Jλ u‖→ 0 as λ → 0,

because u ∈ D(A) (see Proposition 2.2). Hence,

D(A)∩D(ϕ)⊂ D(A)∩D(ϕ).

Now, let u be arbitrary in D(A)∩D(ϕ) and let xλ ∈D(A)∩D(∂ϕ) be the solution to

xλ +λ (Axλ +∂ϕ(xλ )) 3 u.

By the definition of ∂ϕ , we have

λ (ϕ(xλ )−ϕ(u))≤ (u− xλ −λAxλ ,xλ −u)≤−‖u− xλ‖2 +λ‖A0u‖ ‖u− xλ‖,
∀λ > 0.

Hence, xλ → u for λ → 0, and so D(A)∩D(ϕ)⊂ D(A)∩D(∂ϕ), as claimed. ¤

Remark 2.1. In particular, condition (2.45) holds if

(Aλ (x+λh),y)≥−C(1+ϕ(x)), ∀λ > 0,

for some h ∈ H, and all [x,y] ∈ ∂ϕ.

In fact, condition (2.47) can be seen as an abstract substitute for the maximum
principle because in some specific situations (for instance, if A is an elliptic operator)
it can be checked via maximum principle arguments.

We conclude this section with an explicit formula for ∂ϕ in term of the direc-
tional derivative, ϕ ′.
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Proposition 2.6. Let X be a Banach space and let ϕ : X → R be an l.s.c., convex,
proper function on X. Then, for all x0 ∈ D(∂ϕ),

∂ϕ(x0) = {x∗0 ∈ X∗; ϕ ′(x0,u)≥ (u,x∗0), ∀u ∈ X}. (2.48)

Proof. Let x∗0 ∈ ∂ϕ(x0). Then, by the definition of ∂ϕ ,

ϕ(x0)−ϕ(x0 + tu)≤−t(u,x∗0), ∀u ∈ X , t > 0,

which yields
ϕ ′(x0,u)≥ (u,x∗0), ∀u ∈ X .

Assume now that (u,x∗0) ≤ ϕ ′(x0,u), ∀u ∈ X . Because ϕ is convex, the function
t → (ϕ(x0 + tu)−ϕ(x0)/t) is monotonically increasing and so we have

(u,x∗0)≤ t−1(ϕ(x0 + tu)−ϕ(x0)), ∀u ∈ X , t > 0.

Hence x∗0 ∈ ∂ϕ(x0), and the proof is complete. ¤

Formula (2.48) can be taken as an equivalent definition of the subdifferential ∂ϕ ,
and it may be used to define the generalized gradients of nonconvex functions.

It turns out that, if ϕ is continuous at x, then

ϕ ′(x0,u) = sup{(u,x∗0); x∗0 ∈ ∂ϕ(x0)}, u ∈ X . (2.49)

Examples of Subpotential Operators

There is a general characterization of maximal monotone operators that are subdif-
ferential of l.s.c. convex functions due to Rockafellar [23]. A set A⊂ X×X∗ is said
to be cyclically monotone if

(x0− x1,x∗0)+ · · ·+(xn−1− xn,x∗n−1)+(xn− x0,x∗n)≥ 0, (2.50)

for all [xi,x∗i ] ∈ A, i = 0,1, ...,n. A is said to be maximal cyclically monotone if
it is cyclically monotone and has no cyclically monotone extensions in X ×X∗. It
turns out that the class of subdifferential mappings coincides with that of maximal
cyclically monotone operators. More precisely, one has the following.

Theorem 2.12. Let X be a real Banach space and let A ⊂ X ×X∗. The set A is the
subdifferential of an l.s.c., convex, proper function from X to R if and only if A is
maximal cyclically monotone.

We leave to the reader the proof of this theorem and we concentrate on some
significant examples of subdifferential mappings.

1. Maximal monotone sets (graphs) in R×R. Every maximal monotone set
(graph) of R×R is the subdifferential of an l.s.c., convex, proper function on R.
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Indeed, let β be a maximal monotone set in R×R and let β 0 : R→ R be the func-
tion defined by

β 0(r) = {y ∈ β (r); |y|= inf{|z|; z ∈ β (r)}}, ∀r ∈ R.

We know that D(β ) = [a,b], where −∞≤ a≤ b≤∞. The function β 0 is monotoni-
cally increasing and so the integral

j(r) =
∫ r

r0

β 0(u)du, ∀r ∈ R, (2.51)

where r0 ∈ D(β ), is well defined (unambiguously a real number or +∞). Clearly,
the function j is continuous on (a,b) and convex on R. Moreover,

liminf
r→b

j(r)≥ j(b) and liminf
r→a

j(r)≥ j(a).

Finally,

j(r)− j(t) =
∫ r

t
β 0(u)du≤ v(r− t), ∀[r,v] ∈ β , t ∈ R.

Hence β = ∂ j, where j is the l.s.c. convex function defined by (2.51).
It is easily seen that if β : R → R is a continuous and monotonically increasing

function, then β is a maximal monotone graph in R×R in the sense of general
definition; that is, the range of u→ u+β (u) is all of R. (By a monotonically increa-
sing function we mean, here and everywhere in the following, a monotonically non-
decreasing function.) If β is a monotonically increasing function discontinuous in
{r j}∞

j=1, then as seen earlier one gets from β a maximal monotone graph β̃ ⊂R×R
by “filling” the jumps of β in r j; that is,

β̃ (r) =

{
β (r), for r 6= r j,

[β (r j−0),β (r j +0)], for r = r j.

(See Proposition 2.4.)

2. Self-adjoint operators. Let H be a real Hilbert space (identified with its own
dual) with scalar product (·, ·) and norm | · |, and let A be a linear self-adjoint positive
operator on H. Then, A = ∂ϕ , where

ϕ(x) =





1
2
|A1/2x|2, x ∈ D(A1/2),

+∞, otherwise.
(2.52)

(Here, A1/2 is the square root of the operator A.)
Conversely, any linear, densely defined operator that is the subdifferential of an

l.s.c. convex function on H is self-adjoint.
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To prove these assertions, we note first that any self-adjoint positive operator A
in a Hilbert space is maximal monotone. Indeed, it is readily seen that the range of
the operator I + A is simultaneously closed and dense in H. On the other hand, if
ϕ : H → R is the function defined by (2.52), then clearly it is convex, l.s.c., and

ϕ(x)−ϕ(u) =
1
2

(|A1/2x|2−|A1/2u|2)≤ (Ax,x−u),

∀x ∈ D(A), u ∈ D(A1/2).

Hence A⊂ ∂ϕ , and, because A is maximal monotone, we conclude that A = ∂ϕ.
Now, let A be a linear, densely defined operator on H of the form A = ∂ψ , where

ψ : H → R is an l.s.c. convex function. By Theorem 2.9, we know that Aλ = ∇ψλ ,
where Aλ = λ−1(I−λA)−1. This yields

d
dt

ψλ (tu) = t(Aλ u,u), ∀u ∈ H, t ∈ [0,1],

and therefore ψλ (u) = (Aλ u,u)/2 for all u ∈ H and λ > 0. Calculating the Fréchet
derivative of ψλ , we see that

∇ψλ = Aλ =
1
2

(Aλ +A∗λ ).

Hence Aλ = A∗λ , and letting λ → 0, this implies that A = A∗, as claimed.
More generally, if A is a linear continuous, symmetric operator from a Hilbert

space V to its dual V ∗ (not identified with V ), then A = ∂ϕ , where ϕ : V → R is the
function

ϕ(u) =
1
2

(Au,u), ∀u ∈V.

Conversely, every linear continuous operator A : V → V ′ of the form ∂ϕ is sym-
metric.

In particular, in virtue of Theorem 1.10, if Ω is a bounded and open domain of
RN with sufficiently smooth boundary (of class C2, for instance), then the operator
A : D(A)⊂ L2(Ω)→ L2(Ω) defined by

Ay =−∆y, ∀y ∈ D(A), D(A) = H1
0 (Ω)∩H2(Ω),

is self-adjoint and A = ∂ϕ , where ϕ : L2(Ω)→ R, is given by

ϕ(y) =





1
2

∫

Ω
|∇y|2dx if y ∈ H1

0 (Ω),

+∞ otherwise.

This result remains true for a nonsmooth bounded open domain if it is convex.
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3. Convex integrands. Let Ω be a measurable subset of the Euclidean space RN

and let Lp(Ω), 1 ≤ p < ∞, be the space of all p summable functions on Ω . We set
Lp

m(Ω) = (Lp(Ω))m.
The function g : Ω ×Rm → R is said to be a normal convex integrand if the

following conditions hold.

(i) For almost all x ∈ Ω , the function g(x, ·) : Rm → R is convex, l.s.c., and not
identically +∞.

(ii) g is L ×B measurable on Ω ×Rm; that is, it is measurable with respect
to the σ -algebra of subsets of Ω ×Rm generated by products of Lebesgue
measurable subsets of Ω and Borel subsets of Rm.

We note that if g is convex in y and intD(g(x, ·)) 6= /0 for every x ∈ Ω , then
condition (ii) holds if and only if g = g(x,y) is measurable in x for every y ∈ Rm

(see Rockafellar [27]).
A special case of an L ×B measurable integrand is the Carathéodory integrand.

Namely, one has the following.

Lemma 2.5. Let g = g(x,y) : Ω ×Rm → R be continuous in y for every x ∈Ω and
measurable in x for every y. Then g is L ×B measurable.

Proof. Let {zn
i }∞

i=1 be a dense subset of Rm and let λ ∈ R arbitrary but fixed. Inas-
much as g is continuous in y, it is clear that g(x,y)≤ λ if and only if for every n there
exists zn

i such that ‖zn
i −y‖ ≤ (1/n) and g(x,zn

i )≤ λ +(1/n). Denote by Ωin the set
{x ∈Ω ; g(x,zn

i )≤ λ +(1/n)} and put Yin = {y ∈ Rm; ‖y− zn
i ‖ ≤ 1/n} . Inasmuch

as

{(x,y) ∈Ω ×Rm; g(x,y)≤ λ}=
∞⋂

n=1

∞⋃

i=1

Ωin×Yin,

we infer that g is L ×B measurable, as desired. ¤

Let us assume, in addition to conditions (i) and (ii), the following.

(iii) There are α ∈ Lq
m(Ω), 1/p+1/q = 1, and β ∈ L1(Ω) such that

g(x,y)≥ (α(x),y)+β (x), a.e. x ∈Ω , y ∈ Rm, (2.53)

where (·, ·) is the usual scalar product in Rm.
(iv) There is y0 ∈ Lp

m such that g(x,y0) ∈ L1(Ω).

Let us remark that if g is independent of x, then conditions (iii) and (iv) automa-
tically hold by virtue of Proposition 1.1.

Define on the space X = Lp
m(Ω) the function Ig : X → R,

Ig(y) =





∫

Ω
g(x,y(x))dx if g(x,y) ∈ L1(Ω),

+∞ otherwise.
(2.54)
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Proposition 2.7. Let g satisfy assumptions (i)–(iv). Then the function Ig is convex,
lower semicontinuous, and proper. Moreover,

∂ Ig(y) = {w ∈ Lq
m(Ω); w(x) ∈ ∂g(x,y(x)), a.e. x ∈Ω}. (2.55)

Here, ∂g is the subdifferential of the function y→ g(x,y).

Proof. Let us show that Ig is well defined (unambiguously a real number or +∞) for
every y∈ Lq

m(Ω). Note first that for every Lebesgue measurable function y : Ω →Rm

the function x→ g(x,y(x)) is Lebesgue measurable on Ω . For a fixed λ ∈R, we set

E = {(x,y) ∈Ω ×Rm; g(x,y)≤ λ}.

Let us denote by S the class of all sets S ⊂ Ω ×Rm having the property that the
set {x ∈ Ω ; (x,y(x)) ∈ S} is Lebesgue measurable. Obviously, S contains every set
of the form T ×D, where T is a measurable subset of Ω and D is an open subset of
Rm. Because S is a σ -algebra, it follows that it contains the σ -algebra generated by
the products of Lebesgue measurable subsets of Ω and Borel subsets of Rm. Hence,
E ∈S , and therefore g(x,y(x)) is Lebesgue measurable; that is, Ig is well defined.
By assumption (i), it follows that Ig is convex, whereas by (iv) we see that Ig 6≡+∞.
Let {yn} ⊂ Lp

m(Ω) be strongly convergent to y. Then there is {ynk} ⊂ {yn} such that

ynk(x)→ y(x), a.e. x ∈Ω for nk → ∞.

Then, by assumption (iii) and by Fatou’s lemma, it follows that

liminf
nk→∞

∫

Ω
(g(x,ynk(x))− (α(x),ynk(x))−β (x))dx

≥
∫

Ω
(g(x,y(x))− (α(x),y(x))−β (x))dx,

and therefore
liminf
nk→∞

Ig(ynk)≥ Ig(y).

Clearly, this implies that liminfn→∞ Ig(yn)≥ Ig(y); that is, Ig is l.s.c. on X .
Let us now prove (2.55). It is easily seen that every w ∈ Lq

m(Ω) such that
w(x) ∈ ∂g(x,y(x)) belongs to ∂ Ig(y). Now, let w ∈ ∂ Ig; that is,

∫

Ω
(g(x,y(x))−g(x,u(x)))dx≤

∫

Ω
(w(x),y(x)−u(x))dx, ∀u ∈ Lp

m(Ω).

Let D be an arbitrary measurable subset of Ω and let u ∈ Lp
m(Ω) be defined by

u(x) =

{
y0 for x ∈ D,

y(x) for x ∈Ω \D,

where y0 is arbitrary in Rm. Substituting in the previous inequality, we get
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∫

D
(g(x,y(x))−g(x,y0)− (w(x),y(x)− y0))dx≤ 0.

D is arbitrary, therefore this implies, a.e. x ∈Ω ,

g(x,y(x))≤ g(x,y0)+(w(x),y(x)− y0), ∀y0 ∈ Rm.

Hence, w(x) ∈ ∂g(x,y(x)), a.e. x ∈Ω , as claimed. ¤

The case p = ∞ is more subtle, because the elements of ∂ Ig(y) ⊂ (L∞
m(Ω))∗ are

no longer Lebesgue integrable functions on Ω . It turns out, however, that in this case
∂ Ig(y) is of the form µa +µs, where µa ∈ L1

m(Ω), µa(x)∈ ∂g(y(x)), a.e., x∈Ω , and
µs is a singular element of (L∞

m(Ω)))∗. We refer the reader to Rockafellar [28] for
the complete description of ∂ Ig in this case.

Now, let us consider the special case where

g(x,y) = IK(y) =





0 if y ∈ K,

+∞ if y /∈ K,

K being a closed convex subset of Rm. Then, Ig is the indicator function of the closed
convex subset K of Lp

m(Ω) defined by

K = {y ∈ Lp
m(Ω); y(x) ∈ K, a.e. x ∈Ω},

and so by formula (2.55) we see that the normal cone NK ⊂ Lq
m(Ω) to K is de-

fined by
NK (y) = {w ∈ Lq

m(Ω); w(x) ∈ NK(y(x)), a.e. x ∈Ω}, (2.56)

where NK(y) = {z ∈ Rm; (z,y−u)≥ 0, ∀u ∈ K} is the normal cone at K in y ∈ K.
In particular, if m = 1 and K = [a,b], then

NK (y) = {w ∈ Lq(Ω); w(x) = 0, a.e. in [x ∈Ω ; a < y(x) < b],

w(x)≥ 0, a.e. in [x ∈Ω ; y(x) = b], w(x)≤ 0, a.e. in [x ∈Ω ; y(x) = a]}. (2.57)

Let us take now K = {y ∈ Rm; ‖y‖ ≤ ρ}. Then,

NK(y) =





0 if ‖y‖< ρ ,

⋃

λ>0

λy if ‖y‖= ρ,

and so NK is given by

NK (y) = {w ∈ Lq
m(Ω); w(x) = 0, a.e. in [x ∈Ω ; ‖y(x)‖< ρ ], w(x) = λ (x)y(x),

a.e. in [x ∈Ω ; ‖y(x)‖= ρ], where λ ∈ Lq
m(Ω), λ (x)≥ 0, a.e. x ∈Ω}.
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Elliptic nonlinear operators on bounded open domains of RN with appropriate
boundary value conditions represent another source of maximal monotone opera-
tors and, in particular, of subpotential operators. We give a few examples here.

Corollary 2.7. The mapping φ1 : L1(Ω)→ L∞(Ω) defined by

φ1(u) = {‖u‖L1(Ω)w; w(x) ∈ L∞(Ω), w(x) ∈ signu(x) a.e. x ∈Ω}

is the duality mapping J of the space X = L1(Ω).

Proof. It is easily seen that φ1(u)∈ J(u), ∀u∈ L1(Ω). On the other hand, by Propo-
sition 2.7 we have

∂‖u‖L1(Ω) = {w ∈ L∞(Ω); w(x) ∈ signu(x), a.e. x ∈Ω}.

This implies that

∂
(

1
2
‖u‖2

L1(Ω)

)
= φ1(u), ∀u ∈ L1(Ω)

and, because by Theorem 2.8 the mapping ∂
(

1
2 ‖u‖2

L1(Ω)

)
is maximal monotone

in L1(Ω)×L∞(Ω), we conclude that so is φ1 and, because φ1 ⊂ J, we have φ1 = J
as claimed. ¤

4. Semilinear elliptic operators in L2(Ω). Let Ω be an open bounded subset of
RN , and let g : R→R be a lower semicontinuous, convex, proper function such that
0 ∈ D(∂g).

Define the function ϕ : L2(Ω)→ R by

ϕ(y) =





∫

Ω

(
1
2
|∇y|2 +g(y)

)
dx if y ∈ H1

0 (Ω) and g(y) ∈ L1(Ω),

+∞ otherwise.
(2.58)

Proposition 2.8. The function ϕ is convex, l.s.c., and 6≡+∞. Moreover, if the boun-
dary ∂Ω is sufficiently smooth (for instance, of class C2) or if Ω is convex, then
∂ϕ ⊂ L2(Ω)×L2(Ω) is given by

∂ϕ = { [y,w]; w ∈ L2(Ω); y ∈ H1
0 (Ω)∩H2(Ω),

w(x)+∆y(x) ∈ ∂g(y(x)), a.e. x ∈Ω}. (2.59)

Proof. It is readily seen that ϕ is convex and 6≡+∞. Let {yn} ⊂ L2(Ω) be strongly
convergent to y as n→ ∞. As seen earlier,

liminf
n→∞

∫

Ω
g(yn)dx≥

∫

Ω
g(y)dx,

and it is also clear, by weak lower semicontinuity of the L2(Ω)-norm, that



60 2 Maximal Monotone Operators in Banach Spaces

liminf
n→∞

∫

Ω
|∇yn|2dx≥

∫

Ω
|∇y|2dx.

Hence, liminfn→∞ ϕ(yn)≥ ϕ(y).
Let us denote by Γ ⊂ L2(Ω)×L2(Ω) the operator defined by the second part of

(2.59); that is,

Γ = { [y,w] ∈ (H1
0 (Ω)∩H2(Ω))×L2(Ω);

w(x) ∈ −∆y(x)+∂g(y(x)), a.e. x ∈Ω}.

The inclusion Γ ⊂ ∂ϕ is obvious, thus it suffices to show that Γ is maximal
monotone in L2(Ω). To this end, observe that Γ = A2 + B, where A2y = −∆y,
∀y∈D(A2) = H1

0 (Ω)∩H2(Ω), and By = {v∈ L2(Ω); v(x)∈ ∂g(y(x)), a.e. x∈Ω}.
As seen earlier, the operators A2 and B are maximal monotone in L2(Ω)×L2(Ω).
Replacing B by y→ By−y0, where y0 ∈ B(0), we may assume without loss of gene-
rality that 0 ∈ B(0). On the other hand, it is readily seen that (Bλ u)(x) = βλ (u(x)),
a.e. x ∈Ω for all u ∈ L2(Ω), where β = ∂g, and βλ = λ−1(1− (1 +λβ )−1) is the
Yosida approximation of β . We have

(A2u,Bλ u) =−
∫

Ω
∆uβλ (u)dx≥ 0, ∀u ∈ H1

0 (Ω)∩H2(Ω),

or, equivalently,
∫

Ω
g(1+λA2)−1y(x)dx≤

∫

Ω
g(y(x))dx, ∀y ∈ L2(Ω),

which results from the following simple argument. We set z = (I +λA2)−1y:

z−λ∆z = y in Ω ; z ∈ H1
0 (Ω)∩H2(Ω).

If we multiply the latter by βµ(z) = (1/µ)(z− (1 + µβ )−1z), µ > 0, and integrate
on Ω , we obtain that

∫

Ω
βµ(z)(z− y)≤ 0, ∀µ > 0,

because (inasmuch as β ′µ ≥ 0) we have

∫

Ω
∆zβµ(z)dx =−

∫

Ω
β ′µ(z)|∇z|2dx≤ 0, ∀µ > 0.

This yields ∫

Ω
gµ(z)dx≤

∫

Ω
gµ(y)dx, ∀µ > 0,

where gµ = βµ . Then, letting µ → 0, and recalling Theorem 2.9, we get the desired
inequality. (As a matter of fact, this calculation works if βλ ∈C1(R) but, in a general
situation, we replace βλ by a C1 mollifier regularization (βλ )ε and let ε tend to zero.)
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Then, applying Theorem 2.7 (or Theorem 2.11), we may conclude that
Γ = A2 +B is maximal monotone. ¤

Remark 2.2. Because A2 + B is coercive, it follows from Corollary 2.2 that
R(A2 +B) = L2(Ω). Hence, for every f ∈ L2(Ω), the Dirichlet problem

{
−∆y+β (y) 3 f , a.e. in Ω ,

y = 0, on ∂Ω ,
(2.60)

has a unique solution y ∈ H1
0 (Ω)∩H2(Ω).

In the special case, where β ⊂ R×R is given by

β (r) =

{
0 if r > 0,

R− if r = 0,

problem (2.60) reduces to the celebrated obstacle problem




−∆y = f , a.e. in [y > 0],

−∆y≥ f , y≥ 0, a.e. in Ω ,

y = 0, on ∂Ω .

(2.61)

This is an elliptic variational inequality describing a free boundary problem, which
is discussed in some detail later.

We also note that the solution y to (2.60) is the limit in H1
0 (Ω) of the solutions

yε to the approximating problem
{
−∆y+βε(y) = f , in Ω ,

y = 0, on ∂Ω ,
(2.62)

where βε is the Yosida approximation of β . Indeed, multiplying (2.62) by yε , we get

‖yε‖2
H1

0 (Ω) +‖∆yε‖2
L2(Ω) ≤C, ∀ε > 0,

and therefore {yε} is bounded in H1
0 (Ω)∩H2(Ω). This yields

∫

Ω
|∇(yε − yλ )|2dx+

∫

Ω
(βε(yε)−βλ (yλ ))(yε − yλ )dx = 0,

and, therefore,
∫

Ω
|∇(yε − yλ )|2dx+

∫

Ω
(βε(yε)−βλ (yλ ))(εβε(yε)−λβλ (yλ ))dx≤ 0,

because βε(y) ∈ β ((1 + εβ )−1y) and β is monotone. Hence, {yε} is Cauchy in
H1

0 (Ω), and so y = limε→0 yε exists in H1
0 (Ω). This clearly also implies that
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∆yε → ∆y weakly in L2(Ω),

yε → y weakly in H2(Ω),

βε(yε) → g weakly in L2(Ω).

Now, by Proposition 2.2(iv), we see that g(x) ∈ β (y(x)), a.e. x ∈Ω , and so y is the
solution to problem (2.60).

5. Nonlinear boundary Neumann conditions. Let Ω be a bounded and open sub-
set of RN with the boundary ∂Ω of class C2. Let j : R → R be an l.s.c., proper,
convex function and let β = ∂ j. Define the function ϕ : L2(Ω)→ R by

ϕ(u) =





1
2

∫

Ω
|∇u|2dx+

∫

∂Ω
j(u)dx if u ∈ H1(Ω), j(u) ∈ L1(∂Ω),

+∞ otherwise.
(2.63)

Because for every u ∈ H1(Ω) the trace of u on ∂Ω is well defined and belongs to
L2(∂Ω) (see Definition 1.2), formula (2.63) makes sense. Moreover, arguing as in
the previous example, it follows that ϕ is convex and l.s.c. on L2(Ω). Regarding its
subdifferential ∂ϕ ⊂ L2(Ω)×L2(Ω), it is completely described in Proposition 2.9,
due to Brezis [3].

Proposition 2.9. We have

∂ϕ(u) =−∆u, ∀u ∈ D(∂ϕ), (2.64)

where

D(∂ϕ) =
{

u ∈ H2(Ω); − ∂u
∂ν

∈ β (u), a.e. on ∂Ω
}

and ∂/∂ν is the conormal derivative to ∂Ω . Moreover, there are some positive
constants C1,C2 such that

‖u‖H2(Ω) ≤C1‖u−∆u‖L2(Ω) +C2, ∀u ∈ D(∂ϕ). (2.65)

Proof. Let A : L2(Ω)→ L2(Ω) be the operator defined by

Au = −∆u, u ∈ D(A),

D(A) =
{

u ∈ H2(Ω); − ∂u
∂ν

∈ β (u), a.e. on ∂Ω
}

.

Note that A is well defined because, for every u ∈H2(Ω), (∂u/∂ν) ∈H1/2(∂Ω). It
is easily seen that A⊂ ∂ϕ . Indeed, by Green’s formula,

∫

Ω
Au(u− v)dx =

∫

Ω
∇u(∇u−∇v)dx+

∫

∂Ω
β (u)(u− v)dx

≥ 1
2

∫

Ω
|∇u|2dx+

∫

∂Ω
j(u)dx− 1

2

∫

Ω
|∇v|2dx−

∫

∂Ω
j(v)dx
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for all u ∈ D(A) and v ∈ H1(Ω). Hence,

(Au,u− v)≥ ϕ(u)−ϕ(v), ∀u ∈ D(A), v ∈ L2(Ω).

(Here, (·, ·) is the usual scalar product in L2(Ω).) Thus, to show that A = ∂ϕ , it
suffices to prove that A is maximal monotone in L2(Ω)×L2(Ω); that is, R(I +A) =
L2(Ω). Toward this aim, we fix f ∈ L2(Ω) and consider the equation u+Au = f :

u−∆u = f in Ω ,

∂u
∂ν

+β (u) 3 0 on ∂Ω .
(2.66)

We approximate (2.66) by




u−∆u = f in Ω ,

∂u
∂ν

+βλ (u) = 0 on ∂Ω ,
(2.66)′

where βλ = λ−1(1− (1 + λβ )−1), λ > 0. Recall that βλ is Lipschitz continuous
with Lipschitz constant 1/λ and βλ (u)→ β 0(u), ∀u ∈ D(β ), for λ → 0.

Let us show first that equation (2.66)′ has a unique solution uλ ∈H2(Ω). Indeed,
consider the operator u T−→ v

∣∣
∂Ω from L2(∂Ω) to L2(∂Ω), where v ∈H1(Ω) is the

solution to the linear boundary value problem

v−∆v = f in Ω , v+λ
∂v
∂ν

= (1+λβ )−1u on ∂Ω . (2.67)

(The existence of v is an immediate consequence of the Lax–Milgram lemma.)
Moreover, by Green’s formula we see that

‖v− v̄‖2
L2(Ω) +

∫

Ω
|∇(v− v̄)|2dx+

1
λ

∫

∂Ω
(v− v̄)2dx

≤ 1
λ

∫

∂Ω
((1+λβ )−1u− (1+λβ )−1ū)(v− v̄)dx,

where {v,u} and {v̄, ū} satisfy (2.67). Because

|(1+λβ )−1x− (1+λβ )−1y| ≤ |x− y|, ∀x,y ∈ R, λ > 0,

we infer that

‖v− v̄‖2
H1(Ω) +

1
2λ
‖Tu−T ū‖2

L2(∂Ω) ≤
1
λ
‖u− ū‖2

L2(∂Ω).

Because, by the trace theorem, the map v → v
∣∣
∂Ω is continuous from H1(Ω) into

H1/2(∂Ω)⊂ L2(∂Ω), we have

‖v− v̄‖H1(Ω) ≥C‖Tu−T ū‖L2(∂Ω),
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and so the map T is a contraction of L2(∂Ω). Applying the Banach fixed point
theorem, we therefore conclude that there exists u ∈ L2(∂Ω) such that Tu = u, and
so problem (2.66)′ has a unique solution uλ ∈ H1(Ω). We have





uλ −∆uλ = f in Ω ,

∂uλ
∂ν

=−βλ (uλ ) on ∂Ω .
(2.68)

We note that βλ (uλ ) ∈ H1(Ω) (because βλ is Lipschitz) and so its trace to ∂Ω
belongs to H1/2(∂Ω), we conclude by the classical regularity theory for the linear
Neumann problem (see Theorem 1.12) that uλ ∈ H2(Ω).

Let us postpone for the time being the proof of the following estimate,

‖uλ‖H2(Ω) ≤C(1+‖ f‖L2(Ω)), ∀λ > 0, (2.69)

where C is independent of λ and f .
Now, to obtain existence in problem (2.66), we pass to limit λ → 0 in (2.68).

Inasmuch as the mapping

u→
(

u
∣∣
∂Ω ,

∂u
∂ν

∣∣
∂Ω

)

is continuous from H2(Ω) to H3/2(∂Ω)×H1/2(∂Ω) and the injection of H2(Ω)
into H1(Ω) ⊂ L2(Ω) is compact, we may assume, selecting a subsequence if nec-
essary, that, for λ → 0,

uλ ⇀ u in H2(Ω),

uλ → u in H1(Ω),

uλ
∣∣
∂Ω → u

∣∣
∂Ω in H3/2(∂Ω)⊂ L2(∂Ω),

∂uλ
∂ν

→ ∂u
∂ν

in H1/2(∂Ω)⊂ L2(∂Ω).

(2.70)

Moreover, because by (2.69) {βλ (uλ )} is bounded in L2(∂Ω), we may assume that,
for λ → 0,

βλ (uλ ) ⇀ g in L2(∂Ω). (2.71)

It is clear by (2.68), (2.70), and (2.71) that




u−∆u = f in Ω ,

∂u
∂ν

+g = 0, a.e. on ∂Ω .

Let us show that g(x) ∈ β (u(x)), a.e. x ∈ Ω . Indeed, the operator β̃ ⊂ L2(∂Ω)×
L2(∂Ω) defined by

β̃ = {[u,v] ∈ L2(∂Ω)×L2(∂Ω); v(x) ∈ β (u(x)) a.e. x ∈ ∂Ω}
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is obviously maximal monotone, and

β̃λ (u)(x) = βλ (u(x)), ((I +λβ̃ )−1u)(x) = (1+λβ )−1u(x), a.e. x ∈ ∂Ω .

By (2.71), β̃λ (uλ ) ⇀ g, (I +λβ̃ )−1uλ → u, and β̃λ (uλ ) ∈ β̃ ((I +λβ̃ )−1uλ ), there-
fore we conclude that g∈ β̃ (u) (because β̃ is strongly–weak closed). We have there-
fore proved that u is a solution to equation (2.66), and because f is arbitrary in
L2(Ω), we infer that A = ∂ϕ . Finally, letting λ tend to zero in the estimate (2.69),
we obtain (2.65), as claimed. ¤

Proof of estimate (2.69). Multiplying equation (2.68) by uλ −u0, where u0 ∈ D(β )
is a constant, we get after some calculation involving Green’s lemma that

∫

Ω
(u2

λ + |∇uλ |2)dx≤C
(∫

Ω
f 2dx+1

)
.

(We denote by C several positive constants independent of λ and f .) Hence,

‖uλ‖H1(Ω) ≤C(‖ f‖L2(Ω) +1), ∀λ > 0. (2.72)

If Ω ′ is an open subset of Ω such that Ω ′ ⊂ Ω , then we choose ρ ∈ C∞
0 (Ω) such

that ρ = 1 in Ω ′
. We set v = ρuλ and note that

v−∆v = ρ f −uλ ∆ρ−2∇ρ ·∇uλ in Ω . (2.73)

Because v has compact support in Ω , we may assume that v∈H2(RN), and equation
(2.73) extends to all of RN . Then, taking the Fourier transform and using Parseval’s
formula, we get

‖v‖H2(RN ) ≤C(‖ f‖L2(Ω) +‖uλ‖H1(Ω)),

and, therefore, by (2.72) we get the internal estimate

‖uλ‖H2(Ω ′) ≤C(‖ f‖L2(Ω) +1), ∀λ > 0, (2.74)

where C is dependent of Ω ′ ⊂⊂Ω .
To obtain H2-estimates near the boundary ∂Ω , we use the classical method

of tangential quotients. Namely, let x0 ∈ ∂Ω , U be a neighborhood of x0, and
ϕ : U → Q be such that ϕ ∈ C2(U), ϕ−1 ∈ C2(Q), ϕ−1(Q+) = Ω ∩U , and
ϕ−1(Q0) = ∂Ω ∩U , where Q = {y ∈ RN ; ‖y′‖ < 1, |yN | < 1}, Q+ = {y ∈ Q;
0 < yN < 1}, Q0 = {y ∈ Q; yN = 0}, and y = (y′,yN) ∈ RN . (Because ∂Ω is of
class C2, such a pair (U,ϕ) always exists.) Now, we “transport” equation (2.73)
from U ∩Ω on Q, using the local coordinate ϕ . We set

w(y) = uλ (ψ(y)), ∀y ∈ Q+, ψ = ϕ−1,

and notice that w satisfies on Q+ the boundary value problem
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



w−
N

∑
k, j=1

∂
∂y j

(
ak j(y)

∂w
∂yk

)
+

N

∑
j=1

b j(y)
∂w
∂y j

+ c(y)w = g(y) in Q+,

∂w
∂ν

+βλ (w) = 0 on Q0,

(2.75)

where g(y) = f (ψ(y)),

ak j(y) =
N

∑
1=1

∂ϕk

∂x`

∂ϕ j

∂x`
, ∀y ∈ Q+, ϕ = (ϕ1, ...,ϕN),

and
∂w
∂ν

=
N

∑
i, j=1

∂w
∂y j

∂ϕ j

∂xi
cos(ν ,xi)

(ν is the conormal derivative to ∂Ω ). Because ϕN(x) = 0 is the equation of the
surface ∂Ω ∩U , we may assume that ∂ϕN/∂x j = cos(ν ,x j), and so

∂w
∂ν

=−
N

∑
j=1

∂w
∂y j

a jN on Q0.

Assuming for a while that f ∈ C1(Ω), we see that z = ∂w/∂yi, 1 ≤ i ≤ N − 1,
satisfies the equation





z−
N

∑
k, j=1

∂
∂y j

(
ak j

∂ z
∂yk

)
+

N

∑
j=1

(
b̃ j

∂ z
∂y j

+ c̃ j
∂w
∂y j

)

+c(y)z+ c′(y)w =
∂

∂yi
g(y) in Q+,

∂ z
∂ν

=−β ′λ (uλ )z+
N

∑
j=1

∂w
∂y j

∂aJN

∂yi
on Q0.

(2.76)

Now, let ρ ∈C∞
0 (Q+) be such that ρ(y)=0 for ‖y′‖ ≥ 2

3 , 2
3 < yi < 1, and ρ(y)=1 for

‖y′‖< 1
2 and 0≤ yN ≤ 1

2 . Multiplying (2.76) by ρ2z and integrating on Q+, we get

∫

Q+
ρ2z2dy +

N

∑
k, j=1

∫

Q+
ak j(y)

∂ z
∂yk

∂
∂y j

(ρ2z)dy+
∫

Q0

ρ2β ′λ (uλ )z2dy

=
N

∑
j=1

∫

Q0

ρ2 ∂w
∂y j

∂a jN

∂yi
dy+

∫

Q+

∂
∂yi

g(y)z(y)dy

−
N

∑
j=1

∫

Q+
ρ2

(
b̃ j

∂ z
∂y j

+ c̃ j
∂w
∂y j

)
zdy+

∫

Q+
(cz+ c′w)zρ2dy.

Taking into account that
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N

∑
k, j=1

ak j(y)ξiξ j ≥ ω‖ξ‖2, ∀y ∈ Q+, ξ ∈ RN ,

we find after some calculations that

N

∑
j=1

∫

Q+
ρ2(y)

(
∂ z
∂y j

)2

dy≤C(‖g‖2
L2(Q+) +‖w‖2

H2(Q+) +1).

Hence, ∥∥∥∥ρ
∂ 2w

∂yi∂y j

∥∥∥∥
L2(Q+)

≤C(‖ f‖L2(Ω) +‖uλ‖H1(Ω) +1)

for i = 1,2, ...,N−1, j = 1, ...,N.
Because aNN(y)≥w0 > 0 for all y∈Q+, by equation (2.75) and the last estimate,

we see that ∥∥∥∥
∂ 2w
∂y2

N

∥∥∥∥
L2(Q+)

≤C(‖ f‖L2(Ω) +‖uλ‖H1(Ω) +1).

Hence,
‖ρw‖H2(Q+) ≤C(‖ f‖L2(Ω) +1).

Equivalently,

‖(ρ ·ϕ)uλ‖H2(U∩Ω) ≤C(‖ f‖L2(Ω) +1), ∀λ > 0.

Hence, there is a neighborhood U ′ ⊂U such that

‖uλ‖H2(U ′∩Ω) ≤C(‖ f‖L2(Ω) +1), ∀λ > 0. (2.77)

Now, taking a finite partition of unity subordinated to such a cover {U} of ∂Ω and
using the local estimates (2.74) and (2.77), we get (2.69). This completes the proof
of Proposition 2.9. ¤

We have incidentally proved that, for every f ∈ L2(Ω), the boundary value pro-
blem (2.66) has a unique solution u ∈ H2(Ω). If β ⊂ R×R is the graph

β (0) = R, β (r) = /0 for r 6= 0,

then (2.66) reduces to the classical Dirichlet problem. If

β (r) =

{
0 if r > 0,

(−∞,0] if r = 0,
(2.78)

then problem (2.66) can be equivalently written as




y−∆y = f in Ω ,

y
∂y
∂ν

= 0, y≥ 0,
∂y
∂ν

≥ 0 on ∂Ω .
(2.79)
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This is the celebrated Signorini’s problem, which arises in elasticity in connec-
tion with the mathematical description of friction problems. This is a problem of
unilateral type and the subset Γ0 that separates {x ∈ ∂Ω ; y > 0} from {x ∈ ∂Ω ;
(∂y/∂ν) > 0} is a free boundary and it is one of the unknowns of the problem.

For other unilateral problems of physical significance that can be written in the
form (2.66), we refer to the book of Duvaut and Lions [12].

Remark 2.3. As mentioned earlier, Proposition 2.9 and its corollaries remain valid if
Ω is an open, bounded, and convex subset of RN . The idea is to approximate such a
domain Ω by smooth domain Ωε , to use the estimate (2.69) (which is valid on every
Ωε with a constant C independent of ε), and to pass to the limit. It is useful to note
that the constant C in estimate (2.69) is independent of β .

6. The nonlinear diffusion operator. Let Ω be a bounded and open subset of RN

with a sufficiently smooth boundary ∂Ω . Denote as usual by H1
0 (Ω) the Sobolev

space of all u∈H1(Ω) having null trace on ∂Ω and by H−1(Ω) the dual of H1
0 (Ω).

Note that H−1(Ω) is a Hilbert space with the scalar product

〈u,v〉= (J−1u,v) ∀u,v ∈ H−1(Ω),

where J = −∆ is the canonical isomorphism (duality mapping) of H1
0 (Ω) onto

H−1(Ω) and (·, ·) is the pairing between H1
0 (Ω) and H−1(Ω).

Let j : R → R be an l.s.c., convex, proper function and let β = ∂ j. Define the
function ϕ : H−1(Ω)→ R by

ϕ(u) =





∫

Ω
j(u(x))dx if u ∈ L1(Ω) and j(u) ∈ L1(Ω),

+∞ otherwise.
(2.80)

It turns out (see Proposition 2.10 below) that the subdifferential ∂ϕ : H−1(Ω) →
H−1(Ω) of ϕ is just the operator u →−∆β (u) with appropriate boundary condi-
tions.

The equation λu−∆β (u) = f is known in the literature as the nonlinear diffusion
equation or the porous media equation.

Proposition 2.10. Let us assume that

lim
|r|→∞

j(r)
|r| = +∞. (2.81)

Then the function ϕ is convex and lower semicontinuous on H−1(Ω). Moreover,
∂ϕ ⊂ H−1(Ω)×H−1(Ω) is given by

∂ϕ = {[u,w] ∈ (H−1(Ω)∩L1(Ω))×H−1(Ω); w =−∆v,

v ∈ H1
0 (Ω), v(x) ∈ β (u(x)), a.e. x ∈Ω}. (2.82)

Proof. Obviously, ϕ is convex. To prove that ϕ is l.s.c., consider a sequence
{uλ} ⊂ H−1(Ω)∩ L1(Ω) such that un → u in H−1(Ω) and ϕ(un) ≤ λ ; that is,
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∫
Ω j(un)dx≤ λ , ∀n. We must prove that

∫
Ω j(u)dx≤ λ . We have already seen in the

proof of Proposition 2.7 that the function u → ∫
Ω j(u)dx is lower semicontinuous

on L1(Ω). Because this function is convex, it is weakly lower semicontinuous in
L1(Ω) and so it suffices to show that {un} is weakly compact in L1(Ω). According
to the Dunford–Pettis criterion (see Theorem 1.15), we must prove that the integrals∫ |un|dx are uniformly absolutely continuous; that is, for every ε > 0 there is δ (ε)
such that

∫
E |un(x)|dx≤ ε if m(E)≤ δ (ε) (E is a measurable set of Ω) and m is the

Lebesgue measure. By condition (2.81), for every p > 0 there exists R(p) > 0 such
that j(r)≥ p|r| if |r| ≥ R(p). This clearly implies that

∫
Ω |un(x)|dx≤C.

Moreover, for every measurable subset E of Ω , we have
∫

E
|un(x)|dx ≤

∫

E∩{|un|≥R(p)}
|un(x)|dx+

∫

E∩{|un|<R(p)}
|un(x)|dx

≤ 1
p

∫

Ω
|un(x)|dx+R(p)m(E)≤ ε,

if we choose p > (2ε)−1 sup
∫

Ω |un(x)|dx and m(E)≤ (ε/(2R(p))). Hence, {un} is
weakly compact in L1(Ω).

To prove (2.82), consider the operator A⊂ H−1(Ω)×H−1(Ω) defined by

Au = {−∆v; v ∈ H1
0 (Ω), v(x) ∈ β (u(x)), a.e. x ∈Ω},

where D(A) = {u ∈ H−1(Ω)∩L1(Ω); ∃v ∈ H1
0 (Ω), v(x) ∈ β (u(x)), a.e. x ∈ Ω}.

To prove that A = ∂ϕ , proceeding as in the previous case, we show separately that
A⊂ ∂ϕ and that A is maximal monotone. Let us show first that R(I +A) = H−1(Ω).
Let f be arbitrary but fixed in H−1(Ω). We must show that there exist u∈H−1(Ω)∩
L1(Ω) and v ∈ H1

0 (Ω) such that

u−∆v = f in Ω , v(x) ∈ β (u(x)), a.e. x ∈Ω ;

or equivalently,

u−∆v = f in Ω , u(x) ∈ γ(v(x)), a.e. x ∈Ω ,

u ∈ H−1(Ω)∩L1(Ω), v ∈ H1
0 (Ω),

(2.83)

where γ = β−1.
Consider the approximating equation

γλ (v)−∆v = f in Ω , v = 0 on ∂Ω , (2.84)

where γλ = λ−1(1−λγ)−1, λ > 0. It is readily seen that (2.84) has a unique solution
vλ ∈ H1

0 (Ω). Indeed, because −∆ is maximal monotone from H1
0 (Ω) to H−1(Ω)

and v → γλ (v) is monotone and continuous from H1
0 (Ω) to H−1(Ω) (in fact, from

L2(Ω) to itself), we infer by Corollary 2.1 that v → γλ (v)−∆v is maximal mono-
tone in H1

0 (Ω)×H−1(Ω), and by Corollary 2.2 that it is surjective. Let v0 ∈ D(γ).
Multiplying equation (2.84) by vλ − v0, we get
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∫

Ω
|∇vλ |2dx+

∫

Ω
γ(v0)(vλ − v0)dx≤ (vλ − v0, f ).

Hence, {vλ} is bounded in H1
0 (Ω). Then, on a subsequence, again denoted by λ ,

we have
vλ ⇀ v in H1

0 (Ω), vλ → v in L2(Ω).

Thus, extracting further subsequences, we may assume that

vλ (x)→ v(x), a.e. x ∈Ω ,

(1+λγ)−1vλ (x)→ v(x), a.e. x ∈Ω ,
(2.85)

because, by condition (2.81) and Proposition 1.7, it follows that D(γ) = R(β ) = R
(β is coercive) and so limλ→0(1+λγ)−1r = r for all r ∈ R (Proposition 2.2).

We get gλ = γλ (vλ ). Then, letting λ tend to zero in (2.84), we see that gλ → u
in H−1(Ω) and

u−∆v = f in Ω , v ∈ H1
0 (Ω).

It remains to be shown that u ∈ L1(Ω) and u(x) ∈ γ(v(x)), a.e. x ∈Ω .
Multiplying equation (2.84) by vλ , we see that

∫

Ω
gλ vλ dx≤C, ∀λ > 0.

On the other hand, for some u0 ∈ D( j) we have j(gλ (x)) ≤ j(u0)+ (gλ (x)− u0)v,
∀v ∈ β (gλ (x)). This yields

∫

Ω
j(gλ (x))dx≤C, ∀λ > 0,

because (1+λγ)−1vλ ∈ β (gλ ).
As seen before, this implies that {gλ} is weakly compact in L1(Ω). Hence,

u ∈ L1(Ω) and
gλ ⇀ u in L1(Ω) for λ → 0. (2.86)

On the other hand, by (2.85) it follows by virtue of the Egorov theorem that for
every ε > 0 there exists a measurable subset Eε ⊂ Ω such that m(Ω \ Eε) ≤ ε ,
{(1+λγ)−1vλ} is bounded in L∞(Eε), and

(1+λγ)−1vλ → v uniformly in Eε as λ → 0. (2.87)

Recalling that gλ (x) ∈ γ((1+λγ)−1vλ (x)) and that the operator

γ̃ = {[u,v] ∈ L1(Eε)×L∞(Eε); u(x) ∈ γ(v(x)), a.e. x ∈ Eε},

is maximal monotone in L1(Eε)×L∞(Eε), we infer, by (2.86) and (2.87), that
[u,v]∈γ̃; that is, v(x) ∈ β (u(x)), a.e. x ∈ Eε . Because ε is arbitrary, we infer that
v(x) ∈ β (u(x)), a.e. x ∈Ω , as desired. ¤
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To prove that A ⊂ ∂ϕ , we must use the definition of A. However, in order to
avoid a formal calculus with symbol (w,u), we need the following lemma, which is
a special case of a general result due to Brezis and Browder [8].

Lemma 2.6. Let Ω be an open subset of RN. If w ∈ H−1(Ω)∩ L1(Ω) and u ∈
H1

0 (Ω) are such that

w(x)u(x)≥−|h(x)|, a.e. x ∈Ω , (2.88)

for some h ∈ L1(Ω), then wu ∈ L1(Ω) and

w(u) =
∫

Ω
w(x)u(x)dx. (2.89)

(Here, w(u) is the value of functional w ∈ H−1(Ω) at u ∈ H1
0 (Ω).)

Proof. The exact meaning of Lemma 2.6 is that, for u in H1
0 (Ω), the distribution

w ∈ H−1(Ω) computed at u is represented by the integral (2.89). This is of course
obvious if u ∈C∞

0 (Ω) or u ∈C1
0(Ω) but less obvious if u ∈H1

0 (Ω). The proof relies
on an approximation result for the functions of H1

0 (Ω) due to Hedberg [15].
Let u ∈ H1

0 (Ω). Then there exists a sequence {un} ⊂C1
0(Ω) such that un → u in

H1
0 (Ω) and

|un(x)| ≤ inf(n, |u(x)|), un(x)u(x)≥ 0, a.e. x ∈Ω . (2.90)

(Such a sequence can be chosen by mollifying the function u.) Then, w(un) can be
represented as

w(un) =
∫

Ω
w(x)un(x)dx, ∀n. (2.91)

On the other hand, by (2.88) we have

wun + |h| un

u
= (wu+ |hy|) un

u
≥ 0, a.e. in Ω ,

and so, by the Fatou lemma, wu+ |h| ∈ L1(Ω) and

liminf
n→∞

∫

Ω

(
wu+ |h| un

u

)
dx≥

∫

Ω
(wu+ |h|)dx

because, on a subsequence, un(x)→ u(x), a.e. x ∈Ω .
We have, therefore, proved that wu ∈ L1(Ω) and

liminf
n→∞

∫

Ω
wundx≥

∫

Ω
wudx.

On the other hand, wun → wu, a.e. in Ω , and, by (2.90), |wun| ≤ |wu|, a.e. in Ω .
Then, by the Lebesgue dominated convergence theorem, we infer that wun → wu in
L1(Ω), and letting n→ ∞ in (2.91) we get (2.89), as desired. ¤
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Now, to conclude the proof of Proposition 2.10, consider an arbitrary element
[u,−∆u] ∈ A; that is, u ∈H−1(Ω)∩L1(Ω), v ∈H1

0 (Ω), v(x) ∈ β (u(x)), a.e. x ∈Ω .
We have

〈Au,u− ū〉= (v,u− ū), ∀ū ∈ H−1(Ω)∩L1(Ω).

Because v(x)(u(x)− ū(x))≥ j(u(x))− j(ū(x)), a.e., x∈Ω , it follows by Lemma 2.6
that

〈Au,u− ū〉 = (v,u− ū) =
∫

Ω
v(x)(u(x)− ū(x))dx

≥
∫

Ω
j(u(x))dx−

∫

Ω
j(ū(x))dx, ∀ū ∈ D(ϕ).

Hence,
〈Au,u− ū〉 ≥ ϕ(u)−ϕ(ū), ∀ū ∈ H−1(Ω),

thereby completing the proof.

Remark 2.4. As seen in Proposition 1.7, condition (2.81) is equivalent to R(β )=R
and β−1 is bounded on bounded sets.

2.3 Elliptic Variational Inequalities

Let X be a reflexive Banach space with the dual X∗ and let A : X →X∗ be a monotone
operator (linear or nonlinear). Let ϕ : X → R be a lower semicontinuous convex
function on X , ϕ 6≡ +∞. If f is a given element of X , consider the following pro-
blem.

Find y ∈ X such that

(y− z,Ay)+ϕ(y)−ϕ(z)≤ (y− z, f ), ∀z ∈ X . (2.92)

This is an abstract elliptic variational inequality associated with the operator A
and the convex function ϕ , and it can be equivalently expressed as

Ay+∂ϕ(y) 3 f , (2.93)

where ∂ϕ ⊂ X ×X∗ is the subdifferential of ϕ . In the special case where ϕ = IK is
the indicator function of a closed convex

IK(x) =

{
0 if x ∈ K,

+∞ otherwise,

problem (2.92) becomes:

Find y ∈ K such that
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(y− z,Ay)≤ (y− z, f ), ∀z ∈ K. (2.94)

It is useful to notice that if the operator A is itself a subdifferential ∂ψ of a conti-
nuous convex function ψ : X →R, then the variational inequality (2.92) is equivalent
to the minimization problem (the Dirichlet principle)

min{ψ(z)+ϕ(z)− (z, f ); z ∈ X} (2.95)

or, in the case of problem (2.94),

min{ψ(z)− (z, f ); z ∈ K}. (2.96)

As far as existence in problem (2.92) is concerned, we note first the following result.

Theorem 2.13. Let A : X → X∗ be a monotone demicontinuous operator and let
ϕ : X → R be a lower semicontinuous, proper, convex function. Assume that there
exists y0 ∈ D(ϕ) such that

lim
‖y‖→∞

(y− y0,Ay)+ϕ(y)
‖y‖ = +∞. (2.97)

Then, problem (2.92) has at least one solution. Moreover, the set of solutions is
bounded, convex, and closed in X and if the operator A is strictly monotone (i.e.,
(Au−Av,u− v) = 0⇐⇒ u = v), then the solution is unique.

Proof. By Theorem 2.4, the operator A + ∂ϕ is maximal monotone in X ×X∗. By
condition (2.97) it is also coercive, therefore we conclude (see Corollary 2.2) that it
is surjective. Hence, equation (2.93) (equivalently, (2.92)) has at least one solution.

The set of all solutions y to (2.92) is (A + ∂ϕ)−1( f ), thus we infer that this set
is closed and convex (see Proposition 2.1). By the coercivity condition (2.97), it is
also bounded. Finally, if A (or, more generally, if A+∂ϕ) is strictly monotone, then
(A+∂ϕ)−1 f consists of a single element. ¤

In the special case ϕ = IK , we have the following.

Corollary 2.8. Let A : X → X∗ be a monotone demicontinuous operator and let K
be a closed convex subset of X. Assume either that there is y0 ∈ K such that

lim
‖y‖→∞

(y− y0,Ay)
‖y‖ = +∞, (2.98)

or that K is bounded. Then problem (2.92) has at least one solution. The set of all
solutions is bounded, convex, and closed. If A is strictly monotone, then the solution
to (2.92) is unique.

To be more specific, we assume in the following that X = V is a Hilbert space,
X∗ = V ′, and

V ⊂ H ⊂V ′ (2.99)



74 2 Maximal Monotone Operators in Banach Spaces

algebraically and topologically, where H is a real Hilbert space identified with its
own dual. The norms of V and H are denoted by ‖·‖ and | · |, respectively. For v∈V
and v′ ∈ V ′ we denote by (v,v′) the value of v′ at v; if v,v′ ∈ H, this is the scalar
product in H of v and v′. The norm in V ′ is denoted by ‖ · ‖∗.

Let A ∈ L(V,V ′) be a linear continuous operator from V to V such that, for some
ω > 0,

(v,Av)≥ ω‖v‖2, ∀v ∈V.

Very often, the operator A is defined by the equation

(u,Av) = a(u,v), ∀u,v ∈V, (2.100)

where a : V ×V → R is a bilinear continuous functional on V ×V such that

a(v,v)≥ ω‖v‖2, ∀v ∈V. (2.101)

In terms of a, the variational inequality (2.92) on V becomes

a(y,y− z)+ϕ(y)−ϕ(z)≤ (y− z, f ), ∀z ∈V, (2.102)

and (2.94) reduces to

y ∈ K, a(y,y− z)≤ (y− z, f ), ∀z ∈ K. (2.103)

As we show later in the application, V is usually a Sobolev space on an open
subset Ω of RN , H = L2(Ω) and A is an elliptic differential operator on Ω with ap-
propriate homogeneous boundary value conditions. The set K incorporates various
unilateral conditions on the domain Ω or on its boundary ∂Ω .

By Theorem 2.8, we have the following existence result for problem (2.102).

Corollary 2.9. Let a : V ×V → R be a bilinear continuous functional satisfying
condition (2.101) and let ϕ : V → R be an l.s.c., convex, proper function. Then,
for every f ∈ V ′, problem (2.102) has a unique solution y ∈ V . The map f → y is
Lipschitz from V ′ to V .

Similarly for problem (2.103).

Corollary 2.10. Let a : V ×V → R be a bilinear continuous functional satisfying
condition (2.101) and let K be a closed convex subset of V . Then, for every f ∈V ′,
problem (2.103) has a unique solution y. The map f → y is Lipschitz continuous
from V ′ to V .

A problem of great interest when studying equation (2.102) is whether Ay ∈ H.
To answer this problem, we define the operator AH : H → H,

AHy = Ay for y ∈ D(AH) = {u ∈V ; Au ∈ H}. (2.104)

The operator AH is positive definite on H and R(I +AH) = H (I is the unit operator
in H). (Indeed, by Lemma 1.3, the operator I +A is surjective from V to V ′.) Hence,
AH is maximal monotone in H×H.
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Theorem 2.14. Under the assumptions of Corollary 2.8, suppose in addition that
there exist h ∈ H and C ∈ R such that

ϕ(I +λAH)−1(y+λh)≤ ϕ(y)+Cλ , ∀λ > 0, y ∈V. (2.105)

Then, if f ∈ H, the solution y to (2.102) belongs to D(AH) and

|Ay| ≤C(I + | f |). (2.106)

Proof. Let Aλ ∈ L(H,H) be the Yosida approximation of AH ; that is,

Aλ = λ−1(I− (I +λAH)−1), λ > 0.

Let y ∈ V be the solution to (2.102). If in (2.102) we set z = (I + λAH)−1(y + λh)
and use condition (2.105), we get

(Ay,Aλ y)− (Ay,(I +λAH)−1h)≤ (Aλ y, f )− ((I +λAH)−1h, f ).

Because (Ay,Aλ y)≥ |Aλ y|2 for all λ > 0 and y ∈V , we get

|Aλ y|2 ≤ |Aλ y| |h|+ |Aλ y| | f |+ | f | |h|, ∀λ > 0.

(Here, we have assumed that A is symmetric; the general case follows by Theorem
2.11.) We get the estimate

|Aλ y| ≤C(1+ | f |), ∀λ > 0,

where C is independent of λ and f . This implies that y∈D(AH) and estimate (2.106)
holds. ¤

Corollary 2.11. In Corollary 2.10, assume in addition that f ∈ H and

(I +λAH)−1(y+λh) ∈ K for some h ∈ H and all λ > 0. (2.107)

Then, the solution y to variational inequality (2.94) belongs to D(AH), and the fol-
lowing estimate holds,

|Ay| ≤C(1+ | f |), ∀ f ∈ H. (2.108)

The Obstacle Problem

Throughout this section, Ω is an open and bounded subset of the Euclidean space
RN with a smooth boundary ∂Ω . In fact, we assume that ∂Ω is of class C2. However,
if Ω is convex, this regularity condition on ∂Ω is no longer necessary.

Let V = H1(Ω), H = L2(Ω), and A : V →V ′ be defined by
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(z,Ay) = a(y,z) =
N

∑
i=1

∫

Ω
ai j(x)yxi(x)zx j(x)dx+

∫

Ω
a0(x)y(x)z(x)dx

+
α1

α2

∫

∂Ω
y(x)z(x)dσx, ∀y,z ∈V,

(2.109)

where α1,α2 are two nonnegative constants such that α1 + α2 > 0. If α2 = 0, we
take V = H1

0 (Ω) and A : H1
0 (Ω)→ H−1(Ω) is defined by

(z,Ay) = a(y,z) =
N

∑
i=1

∫

Ω
ai j(x)yxi zx j(x)dx

+
∫

Ω
a0(x)y(x)z(x)dx, ∀y,z ∈ H1

0 (Ω).

(2.110)

Here, a0,ai j ∈ L∞(Ω) for all i, j = 1, ...,N, ai j = a ji, and

a0(x)≥ 0,
N

∑
i, j=1

ai j(x)ξiξ j ≥ ω‖ξ‖2
N , ∀ξ ∈ RN , x ∈Ω , (2.111)

where ω is some positive constant and ‖ · ‖N is the Euclidean norm in RN .
If α1 = 0, we assume that a0(x)≥ ρ > 0, a.e. x ∈Ω .
The reader will recognize, of course, in the operator defined by (2.109) the se-

cond order elliptic operator

A0y =−
N

∑
i, j=1

(ai jyxi)x j +a0y (2.112)

with the boundary value conditions

α1y+α2
∂y
∂ν

= 0 on ∂Ω , (2.113)

where ∂/∂ν is the conormal derivative,

∂y
∂ν

=
N

∑
i, j=1

ai jyx j cos(ν ,ei). (2.114)

Similarly, the operator A defined by (2.110) is the differential operator (2.112) with
the Dirichlet homogeneous conditions: y = 0 on ∂Ω .

Let ψ ∈ H2(Ω) be a given function and let K be the closed convex subset of
V = H1(Ω) defined by

K = {y ∈V ; y(x)≥ ψ(x), a.e. x ∈Ω}. (2.115)

Note that K 6= /0 because ψ+ = max(ψ,0) ∈ K. If V = H1
0 (Ω), we assume that

ψ(x)≤ 0, a.e. x ∈ ∂Ω , which implies as before that K 6= /0.
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Let f ∈V ′. Then, by Corollary 2.10, the variational inequality

a(y,y− z)≤ (y− z, f ), ∀z ∈ K (2.116)

has a unique solution y ∈ K.
Formally, y is the solution to the following boundary value problem known in the

literature as the obstacle problem,




A0y = f in Ω+ = {x ∈Ω ; y(x) > ψ(x)},
A0y≥ f , y≥ ψ in Ω ,

y = ψ in Ω \Ω+,
∂y
∂ µ

=
∂ψ
∂ µ

on ∂Ω+ = S,

(2.117)

α1y+α2
∂y
∂ν

= 0 on ∂Ω , (2.118)

where µ is the conormal to ∂Ω+.
Indeed, if ψ ∈C(Ω) and y is a sufficiently smooth solution, then Ω+ is an open

subset of Ω and so, for every ϕ ∈C∞
0 (Ω+) there is ρ > 0 such that y±ρϕ ≥ ψ on

Ω (i.e., y±ρϕ ∈ K). Then, if we take z = y±ρϕ in (2.116), we see that

N

∑
i, j=1

∫

Ω
ai jyxi ϕx j dx+

∫

Ω
a0yϕ dx = ( f ,ϕ), ∀ϕ ∈C∞

0 (Ω+).

Hence, A0y = f in D ′(Ω+).
Now, if we take z = y+ϕ , where ϕ ∈ H1(Ω) and ϕ ≥ 0, we get

N

∑
i, j=1

∫

Ω
ai jyxi ϕx j dx+

∫

Ω
a0yϕ dx≥ ( f ,ϕ),

and, therefore, A0y≥ f in D ′(Ω).
The boundary conditions (2.118) are obviously incorporated into the definition

of the operator A if α2 = 0. If α2 > 0, then the boundary conditions (2.118) follow
from the inequality (2.116) if α1 +α2(∂ψ/∂ν)≤ 0, a.e. on ∂Ω (see Theorem 2.13
following). As for the equation

∂y
∂ µ

=
∂ψ
∂ µ

on ∂Ω+,

this is a transmission property that is implied by the conditions y ≥ ψ in Ω and
y = ψ in ∂Ω+, if y is smooth enough.

In the problem (2.117) and(2.118), the surface ∂Ω+ = S that separates the do-
mains Ω+ and Ω \Ω+ is not known a priori and is called the free boundary. In
classical terms, this problem can be reformulated as follows. Find the free boundary
S and the function y that satisfy the system
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



A0y = f in Ω+,

y = ψ in Ω \Ω+,

∂y
∂ µ

=
∂ψ
∂ µ

on S,

α1 +α2
∂u
∂ν

= 0 on ∂Ω .

In the variational formulation (2.116), the free boundary S does not appear ex-
plicitly but the unknown function y satisfies a nonlinear equation. Once y is known,
the free boundary S can be found as the boundary of the coincidence set {x ∈ Ω ;
y(x) = ψ(x)}.

There exists an extensive literature on the regularity properties of the solution to
the obstacle problem and of the free boundary. We mention in this context the earlier
work of Brezis and Stampacchia [6], Brezis [3], and the books of Kinderlehrer and
Stampacchia [17] and Friedman [14], which contain complete references on the
subject. Here, we present only a partial result.

Proposition 2.11. Assume that ai j ∈C1(Ω), a0 ∈L∞(Ω), and that conditions (2.111)
hold. Furthermore, assume that ψ ∈ H2(Ω) and

α1ψ +α2
∂ψ
∂ν

≤ 0, a.e. on ∂Ω . (2.119)

Then, for every f ∈ L2(Ω), the solution y to variational inequality (2.116) belongs
to H2(Ω) and satisfies the complementary system

{
(A0y(x)− f (x))(y(x)−ψ(x)) = 0, a.e. x ∈Ω , y(x)≥ ψ(x),

A0y(x)≥ f (x), a.e. x ∈Ω ,
(2.120)

along with the boundary value conditions

α1y+α2
∂y
∂ν

(x) = 0, a.e. x ∈ ∂Ω . (2.121)

Moreover, there exists a positive constant C independent of f such that

‖y‖H2(Ω) ≤C(‖ f‖L2(Ω) +1). (2.122)

Proof. We apply Corollary 2.11, where H = L2(Ω), V = H1(Ω) (respectively,
V = H1

0 (Ω) if α2 = 0), A is defined by (2.109) (respectively, (2.110)), and K is
given by (2.115).

Clearly, the operator AH : L2(Ω)→ L2(Ω) is defined in this case by




(AHy)(x) = (A0y)(x), a.e. x ∈Ω , y ∈ D(AH),

D(AH) =
{

y ∈ H2(Ω); α1y+α2
∂y
∂ν

= 0, a.e. on ∂Ω
}

.
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We shall verify condition (2.107) with h = A0ψ. To this end, consider for λ > 0
the boundary value problem





w+λA0w = y+λA0ψ in Ω ,

α1w+α2
∂w
∂ν

= 0 on ∂Ω ,

which has a unique solution w ∈ D(AH). (See Theorems 1.10 and 1.12.)
Multiplying this equation by (w−ψ)− ∈ H1(Ω) and integrating on Ω , we get,

via Green’s formula,
∫

Ω
|(w−ψ)−|2dx+λa((w−ψ)−,(w−ψ)−)

− λ
α2

∫

∂Ω

(
α1ψ +α2

∂ψ
∂ν

)
(w−ψ)−dσ

=
∫

Ω
(y−ψ)(w−ψ)−dx.

Hence, in virtue of (2.119), (w−ψ)− = 0, a.e. in Ω and so w∈K, as claimed. Then,
by Corollary 2.11, we infer that y ∈ D(AH) and

‖AHy‖L2(Ω) ≤C(‖ f‖L2(Ω) +1),

and, because ∂Ω is sufficiently smooth (or Ω convex), this implies (2.122).
Now, if y ∈ D(AH), we have

a(y,z) =
∫

Ω
A0y(x)z(x)dx, ∀z ∈ H1(Ω),

and so, by (2.116), we see that
∫

Ω
(A0y(x)− f (x))(y(x)− z(x))dx≤ 0, ∀z ∈ K. (2.123)

The last inequality clearly can be extended by density to all z ∈ K0, where

K0 = {u ∈ L2(Ω); u(x)≥ ψ(x), a.e. x ∈Ω}. (2.124)

If in (2.123) we take z = ψ +α , where α is any positive L2(Ω) function, we get

(A0y)(x)− f (x)≥ 0, a.e. x ∈Ω .

Then, for z = ψ , (2.123) yields

(y(x)−ψ(x))(A0y)(x)− f (x) = 0, a.e. x ∈Ω ,

which completes the proof. ¤
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We note that under the assumptions of Theorem 2.14 the obstacle problem can
be equivalently written as

AHy+∂ IK0(y) 3 f , (2.125)

where

∂ IK0(y) =
{

v ∈ L2(Ω);
∫

Ω
v(x)(y(x)− z(x))dx≥ 0, ∀z ∈ K0

}

or, equivalently,

∂ IK0(y) = {v ∈ L2(Ω); v(x) ∈ β (y(x)−ψ(x)), a.e. x ∈Ω},

where β : R→ 2R is the maximal monotone graph,

β (r) =





0 if r > 0,

R− if r = 0,

/0 if r < 0.

(2.126)

Hence, under the conditions of Theorem 2.14, we may equivalently write the varia-
tional inequality (2.116) as





(A0y)(x)+β (y(x)−ψ(x)) 3 f (x), a.e. x ∈Ω ,

α1y+α2
∂y
∂ν

= 0, a.e. on ∂Ω ,
(2.127)

and it is equivalent to the minimization problem

min
{

1
2

a(y,y)+
∫

Ω
j(y(x)−ψ(x))dx−

∫

Ω
f (x)y(x)dx; y ∈ L2(Ω)

}
,

where j : R→ R is defined by

j(r) =

{
0 if r ≥ 0,

+∞ otherwise.
(2.128)

A simple physical model for the obstacle problem is that of an elastic membrane
that occupies a plane domain Ω and is limited from below by a rigid obstacle ψ
while it is under the pressure of a vertical force field of density f . (See, e.g., Barbu
[1].) The mathematical model of the water flow through an isotropic homogeneous
rectangular dam can be described (by a device due to C. Baiocchi) as an obstacle
problem of the above type. We mention in the same context the elastic–plastic pro-
blem (Brezis and Stampacchia [6]) or the mathematical model of oxygen diffusion
in tissue.
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2.4 Nonlinear Elliptic Problems of Divergence Type

We study here the boundary value problem

λy−divxβ (∇y(x)) 3 f (x), x ∈Ω , (2.129)

y = 0 on ∂Ω , (2.130)

where Ω is a bounded and open domain of RN with smooth boundary ∂Ω , the
function f is in L2(Ω), and λ is a nonnegative constant. Here, β : RN → 2RN

is a
maximal monotone graph in RN ×RN such that 0 ∈ β (0).

Equation (2.129) describes the equilibrium state of diffusion-like processes
where the diffusion flux q is a nonlinear function of the gradient ∇y of local density
y. In the special case, where β is a potential function (i.e., β = ∇ j, j : R → R),
then the functional φ(y) =

∫
Ω j(∇y)dx+(λ/2)

∫
Ω y2dx can be viewed as the energy

of the system and equation (2.129) describes the critical points of φ . The elliptic
character of equation (2.129) is given by monotonicity assumption on β .

It should be said that equation (2.129) with boundary condition (2.130) might be
highly nonlinear and so the best one can expect from the existence point of view is
a weak solution.

Definition 2.3. The function y∈ L1(Ω) is said to be a weak solution to the Dirichlet
problem (2.129) and (2.130) if y ∈W 1,1

0 (Ω) and there is η ∈ (Lq(Ω))N , 1 < p < ∞,
such that

η(x) ∈ β (∇y(x)), a.e. x ∈Ω , (2.131)

λ
∫

Ω
yψ dx+

∫

Ω
η(x) ·∇ψ(x)dx =

∫

Ω
f (x)ψ(x)dx,

∀ψ ∈W 1,p
0 (Ω),

1
p

+
1
q

= 1.
(2.132)

Similarly, the function y is said to be a weak solution to equation (2.129) with
the Neumann boundary value condition

β (∇y(x)) ·ν(x) = 0 on ∂Ω (2.133)

if y∈W 1,1(Ω) and there is η ∈ (Lp(Ω))N which satisfies (2.131), and (2.132) holds
for all ψ ∈W 1,q(Ω). (Here ν is the normal to ∂Ω .)

The first existence result for problem (2.129) and (2.130) concerns the case where
β is single-valued.

Theorem 2.15. Assume that β : RN →RN is continuous, monotonically increasing,
and

|β (r)| ≤ C1(1+ |r|p−1), ∀r ∈ RN , (2.134)

β (r) · r ≥ ω|r|p−C2, ∀r ∈ RN , (2.135)
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where ω > 0, p > 1, 2N/(N +2) ≤ p. Then, for each f ∈W−1,q(Ω) and λ > 0,
there is a unique weak solution y ∈W 1,p

0 (Ω) to problem (2.129) and (2.130).

Proof. We apply Corollary 2.3 to the operator T : X → X∗, X = W 1,p
0 (Ω),

X∗ = W−1,q(Ω), defined by

(v,Tu) =
∫

Ω
β (∇u(x)) ·∇v(x)dx+λ

∫

Ω
u(x)v(x)dx,

∀u,v ∈ X = W 1,p
0 (Ω).

(2.136)

It is easily seen that T is monotone and demicontinuous. Indeed, if u j → u strongly
in X = W 1,p

0 (Ω), then ∇u j → ∇u strongly in Lp(Ω) and, by continuity of β , we
have on a subsequence β (∇u j)→ β (∇u), a.e. on Ω . On the other hand, by (2.134)
we have that {β (∇u j)} is bounded in Lq(Ω) and therefore it is weakly sequentially
compact in Lq(Ω). Hence, we also have (eventually, on a subsequence)

β (∇u j) ⇀ β (∇u) in (Lq(Ω))N .

Then, we infer that

lim
j→∞

∫

Ω
β (∇u j) ·∇vdx =

∫

Ω
β (∇u) ·∇vdx, ∀v ∈ X

and also
lim
j→∞

∫

Ω
u jvdx =

∫

Ω
uvdx,

because W 1,p(Ω)⊂ L2(Ω) by Theorem 1.5. Hence,

Tu j ⇀ Tu in X∗ = W−1,q(Ω).

It is also clear by (2.135) that T is coercive; that is,

(u,Tu)≥ ω
∫

Ω
|∇u|pdx−C2, ∀u ∈ X .

This completes the proof. ¤

If λ = 0, we still have a solution y ∈W 1,p
0 (Ω), but in general it is not unique.

A similar existence result follows for problem (2.129) and (2.133), namely, the
following.

Theorem 2.16. Under the assumptions of Theorem 2.15, for each f ∈ (W 1,p(Ω))∗
and λ > 0 there is a unique weak solution y ∈W 1,p(Ω) to problem (2.129) and
(2.133).

Proof. One applies Corollary 2.3 to the operator T : W 1,p(Ω) → (W 1,p(Ω))∗ de-
fined by (2.136) for all v ∈W 1,p(Ω).

It follows as in the previous case that T is monotone and demicontinuous. As
regards the coercivity, we note that by (2.135) and (2.136) we have
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(u,Tu)≥ ω
∫

Ω
|∇u|pdx+λ

∫

Ω
u2dx. (2.137)

Recalling that (see Remark 1.1)

‖u‖W 1,p(Ω) ≤C(‖∇u‖Lp(Ω) +‖u‖Lq(Ω)), ∀u ∈W 1,p(Ω),

for 1≤ q≤ N p/(N− p), N > p and q≥ 1 for N ≥ p, we see, by (2.137), that

(u,Tu)≥ ω‖u‖α
W 1,p(Ω), ∀u ∈W 1,p(Ω),

where α = max{p,2} and therefore T is coercive, as desired. Then Theorem 2.16
follows by Corollary 2.3. ¤

The above existence results extend to general maximal monotone (multivalued)
graphs β ⊂ RN ×RN satisfying assumptions (2.134) and (2.135); that is,

sup{|w|; w ∈ β (r)} ≤C1(1+ |r|p−1), ∀r ∈ RN , (2.138)

w · r ≥ ω|r|p−C2, ∀(w,r) ∈ β . (2.139)

(Here, and everywhere in the following, we denote by |r| the Euclidean norm of
r ∈ RN .)

Theorem 2.17. Let β be a maximal monotone graph in RN ×RN satisfying con-
ditions (2.138) and (2.139) for ω > 0, and p > 1. Then, for each f ∈ L2(Ω) and
λ > 0 there is a unique weak solution y ∈W 1,p

0 (Ω) to problem (2.129) and (2.130)
(respectively a unique weak solution y ∈W 1,p(Ω) to problem (2.129) and (2.133))
in the following sense

λ
∫

Ω
yψ +

∫

Ω
η ·∇ψ dx =

∫

Ω
f ψ dx, ∀ψ ∈W 1,p

0 (Ω)∩L2(Ω)

(respectively, ∀ψ ∈W 1,p(Ω)∩L2(Ω)),
(2.140)

where η ∈ β (∇y), a.e. in Ω .

Of course, if p is such that W 1,p(Ω) ⊂ L2(Ω) (for instance if p ≥ (2N/(N +2)),
then (2.140) coincides with (2.132).

Proof. We prove the existence theorem in the case of problem (2.129) and (2.130)
only, the other case (i.e., the Neumann boundary condition (2.133)) being com-
pletely similar. We first assume that f ∈ W−1,q(Ω) ∩ L2(Ω). We introduce the
Yosida approximation of β

βε(r) =
1
ε

(r− ((1+ εβ )−1r) ∈ β ((1+ εβ )−1)), ∀r ∈ RN , ε > 0, (2.141)

and consider the approximating problem
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{

λyε −div(βε(∇yε)+ ε∇yε) = f in Ω ,

βε(∇yε) = 0 on ∂Ω ,
(2.142)

which, by Theorem 2.15 has a unique solution yε ∈ H1
0 (Ω). Indeed, βε is Lipschitz

and it is readily seen that conditions (2.138) and (2.139) hold with p = 2 (with
constants C independent of ε). On the other hand, by (2.138)and (2.139), we see
that

|βε(r)| < sup{|w|; w ∈ β ((1+ εβ )−1r)} ≤C1(|(1+ εβ )−1r|p−1 +1)

≤ C3(|r|p−1 +1), ∀r ∈ RN , ∀ε > 0,
(2.143)

and
βε(r) · r = βε(r) · (1+ εβ )−1r + ε|βε(r)|2

≥ ε|(1+ εβ )−1r|p +C4(ε|r|p−1 +1)

≥ ω|r|p +C5ε |r|p +C6, ∀r ∈ RN , ε > 0.

(2.144)

(The constants Ci arising in (2.143) and (2.144) are independent of ε.)
We have therefore

λ
∫

Ω
yε ψ dx+

∫

Ω
(βε(∇yε)+ε∇yε) ·∇ψ dx=

∫

Ω
f ψ dx, ∀ψ ∈H1

0 (Ω), (2.145)

and so, for ψ = yε , we obtain that

λ
∫

Ω
y2

ε dx +ε
∫

Ω
|∇yε |2dx+

∫

Ω
βε(∇yε) · (1+ εβ )−1∇yε dx

+ε
∫

Ω
|βε(∇yε)|2dx =

∫

Ω
f yε dx.

(2.146)

Taking into account that βε(∇yε) ∈ β ((1 + εβ )−1∇yε), it follows by (2.144) and
(2.146) that

λ
∫

Ω
y2

ε dx +ε
∫

Ω
|∇yε |2dx+ω

∫

Ω
|(1+ εβ )−1∇yε |pdx

+ε
∫

Ω
|βε(∇yε)|2dx≤C

∫

Ω
| f |2dx, ∀ε > 0.

(2.147)

(Here and everywhere in the sequel, C is a positive constant independent of ε .) In
particular, it follows by (2.147) that

∫

Ω
|(1+ εβ )−1∇yε −∇yε |2dx→ 0 as ε → 0, (2.148)

because ε2|βε(r)|2 = |(1+ εβ )−1r− r|2, ∀r ∈ RN .
Moreover, by (2.141), (2.143) we see that

‖βε(∇yε)‖Lq(Ω) ≤C(‖(1+ εβ )−1∇yε‖p
Lp(Ω) +1).
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Then, on a subsequence again denoted ε , we have by (2.147) and (2.148),

yε → y weakly in L2(Ω)∩W 1,p(Ω), (2.149)

(1+ εβ )−1∇yε → ∇y weakly in (Lp(Ω))N , (2.150)

βε(∇yε) → η weakly in (Lq(Ω))N , (2.151)

as ε → 0. Taking into account (2.145) and (2.150), (2.151), we obtain by the weak
semicontinuity of the Lp-norm that

λ
∫

Ω
|∇y|2dx+

∫

Ω
|∇y|pdx≤C

∫

Ω
f 2dx, and

λ
∫

Ω
yψ dx+

∫

Ω
η ·∇ψ dx =

∫

Ω
f ψ dx, ∀ψ ∈W 1,p

0 (Ω)∩L2(Ω).
(2.152)

Because f ∈W−1,q(Ω)∩L2(Ω), the latter extends to all of ψ ∈W 1,p
0 (Ω). To com-

plete the proof, it suffices to show that

η(x) ∈ β (∇y(x)), a.e. x ∈Ω . (2.153)

To this end, we start with the obvious inequality
∫

Ω
(βε(∇yε)−ζ ) · ((1+ εβ )−1∇yε −u)dx≥ 0, (2.154)

for all u ∈ Lp(Ω) and ζ ∈ (Lq(Ω))N such that ζ (x) ∈ β (u(x)), a.e. x ∈ Ω . (This
is an immediate consequence of monotonicity of β because, by (2.141), βε(y) ∈
β ((1+ εβ )−1y), ∀y ∈ RN , ∀ε > 0.)

Letting ε tend to zero in (2.154), we obtain that
∫

Ω
(η−ζ ) · (y−u)dx≥ 0.

Now, choosing u = (1+β )−1(η + y) and ζ = η− y+u ∈ β (u), we obtain that
∫

Ω
(y−u)2dx = 0.

Hence, y = u and η = ζ ∈ β (u), a.e. in Ω . This completes the proof of existence for
f ∈W−1,q(Ω)∩L2(Ω).

If f ∈ L2(Ω), consider a sequence { fn} ⊂W−1,q(Ω)∩L2(Ω) strongly conver-
gent to f in L2(Ω). If yn are corresponding solutions to problem (2.140), we obtain,
by monotonicity of β ,

λ
∫

Ω
|yn− ym|2dx≤ ‖ fn− fm‖W−1,q(Ω)‖yn− ym‖W 1,p

0 (Ω),
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whereas, by estimate (2.152), we see that {yn} is bounded in W 1,p
0 (Ω). Hence, on a

subsequence, we have

yn → y strongly in L2(Ω) and weakly in W 1,p
0 (Ω)

ηn ∈ β (∇yn) → η weakly in (Lq(Ω))N .

Clearly, (y,η) verify (2.140) and arguing as above it follows also η ∈ β (∇y), a.e.
in Ω . This completes the proof of existence. The uniqueness is immediate by the
monotonicity of β . ¤

We have chosen β multivalued not only for the sake of generality, but because
this case arises naturally in specific problems. For instance, if β is the subdifferential
∂ j of a lower semicontinuous convex function that is not differentiable, then β is
necessarily multivalued and this situation occurs, for instance, in the description of
stationary (equilibrium) states of systems with nondifferentiable energy.

Define the operator A : D(A)⊂ L2(Ω)→ L2(Ω),




D(A) = {y ∈W 1,p
0 (Ω); ∃η ∈ (Lq(Ω))N ; η(x) ∈ β (∇y(x)),

a.e. x ∈Ω , divη ∈ L2(Ω)},
Ay = {−divη}, ∀y ∈ D(A).

(2.155)

If β is single-valued, then A can be simply represented as
{

Ay =−divβ (∇y), ∀y ∈ D(A)

D(A) = {y ∈W 1,p
0 (Ω); divβ (∇y) ∈ L2(Ω)}.

(2.156)

We have the following theorem.

Theorem 2.18. The operator A is maximal monotone in L2(Ω)×L2(Ω). Moreover,
if β = ∂ j, where j : RN → R is a continuous convex function, then A = ∂ϕ , and
ϕ : L2(Ω)→ R (the energy function), is given by

ϕ(y) =





∫

Ω
j(∇y)dx if y ∈W 1,p

0 (Ω) and j(∇y) ∈ L1(Ω)

+∞ otherwise.
(2.157)

Proof. Because (2.156) is taken in the sense of distributions on Ω , we have

(Ay,ψ) =
∫

Ω
β (∇y) ·∇ψ dx, ∀ψ ∈ L2(Ω)∩W 1,p

0 (Ω). (2.158)

(Here (·, ·) is the duality defined by the scalar product of L2(Ω).) This yields, of
course,

(Ay−Az,y− z)≥ 0, ∀y,z ∈W 1,p
0 (Ω)∩L2(Ω)

and, by density, the latter extends to all y,z ∈ D(A). Hence A is monotone.
To prove the maximal monotonicity, consider the equation
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λy+Ay 3 f , (2.159)

where λ > 0 and f ∈ L2(Ω). Taking into account (2.158), we rewrite (2.159) as

λ
∫

Ω
yψ +

∫

Ω
η ·∇ψ dx =

∫

Ω
f ψ dx, ∀ψ ∈W 1,p

0 (Ω)∩L2(Ω), (2.160)

where η ∈ (Lq(Ω))N , η(x) ∈ β (∇y(x)), a.e. x ∈Ω .
On the other hand, by Theorem 2.17, there is a solution y to (2.140) and therefore

to (2.159), because by (2.158) it also follows that

divη(ψ) =−
∫

Ω
f ψ +λ

∫

Ω
f y≤C‖ψ‖L2(Ω), ∀ψ ∈W 1,p

0 (Ω)∩L2(Ω)

and, therefore, divη ∈ L2(Ω). Hence A is maximal monotone.
Now, if β is a subgradient maximal monotone graph of the form ∂ j, it is easily

seen that A⊂ ∂ϕ; that is,

ϕ(y)−ϕ(z)≤
∫

Ω
η(y− z)dx, ∀η ∈ Ay, y,z ∈ L2(Ω).

Because A is maximal in the class of monotone operators, we have therefore A = ∂ϕ ,
as claimed. ¤

It turns out that in the special case, where β = ∂ j, assumptions (2.138) and
(2.139) can be weakened to

(i) j is convex, continuous, inf j = j(0) = 0.

lim
|r|→∞

j(r)
|r| = lim

|p|→∞

j∗(p)
|p| = +∞. (2.161)

lim
|r|→∞

j(−r)
j(r)

< ∞. (2.162)

Here j∗ is the conjugate of j; that is, j∗(p) = sup{(p · u)− j(u); u ∈ RN}. By | · |
we denote here the Euclidean norm in RN .

We come back to boundary value problem (2.129) and (2.133) in the more gene-
ral context (2.161) and (2.162) which assume minimal growth conditions on β or j.

Theorem 2.19. Under assumptions (2.161) and (2.162), problem (2.129) and (2.133)
has, for each λ > 0 and f ∈ L2(Ω), a unique weak solution y∗ ∈W 1,1(Ω) in the
following sense





∫

Ω
(λyv+η ·∇v)dx =

∫

Ω
f vdx, ∀v ∈C1(Ω)

η ∈ (L1(Ω))N , η(x) ∈ β (∇y(x)), a.e. x ∈Ω
j∗(η) ∈ L1(Ω), j(∇y) ∈ L1(Ω).

(2.163)
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Moreover, y∗ is the unique minimizer of problem

min
{

λ
2

∫

Ω
|y(x)− 1

λ
f (x)|2dx+

∫

Ω
j(∇y(x))dx; y ∈W 1,1(Ω)

}
. (2.164)

Proof. We assume for simplicity λ = 1. The existence of a unique minimizer u∗
for problem (2.164) is an immediate consequence of Proposition 1.4 and of the fact
that, under the first of conditions (2.161), the convex function

ϕ : L2(Ω)→ R = (−∞,+∞], ϕ(u) =
∫

Ω
j(∇u(x))dx+

1
2

∫

Ω
(u− f )2dx

is weakly lower semicontinuous in the space L2(Ω). Indeed, by the same argument
as that used in the proof of Proposition 2.11, it follows by (2.161) that the set M =
{y ∈W 1,1(Ω); ϕ(y)≤ λ} is bounded in W 1,1(Ω); that is,

|∇y|(L1(Ω))N ≤C ∀y ∈M

and {∫

E
|∇y(x)|dx; E ⊂Ω , u ∈M

}

is uniformly absolutely continuous and so, by the Dunford–Pettis theorem (Theorem
1.15) M is weakly compact in W 1,1(Ω). Hence, if {yn} ⊂M is weakly convergent
to y in L2(Ω), it follows that ∇yn →∇y weakly in (L1(Ω))N and because the convex
integrand v → ∫

Ω j(v) is weakly lower semicontinuous in (L1(Ω))n (because by
Proposition 2.10 it is lower semicontinuous in (L1(Ω))n), we infer that y ∈ M .
Hence M is closed in L2(Ω) as claimed.

In order to prove that the minimizer y∗ is a solution to (2.163), we start with the
approximating equation

Min
{∫

Ω

(
jε(∇y)+

ε
2
|∇y(x)|2 +

1
2
|y− f |2

)
dx; y ∈ H1(Ω)

}
, (2.165)

where jε ∈C1(RN) is the function (see (2.38)),

jε(p) = inf
{

1
2ε
|v− p|2 + j(v); v ∈ RN

}
.

Problem (2.165) has a unique solution yε ∈ H1(Ω) which, as easily seen, satisfies
the elliptic boundary value problem

yε − ε∆yε −divx(∂ jε(∇yε)) = f in Ω ,

(ε∇yε +∂ jε(∇yε)) · v = 0 on ∂Ω .
(2.166)

Equivalently,
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∫

Ω
((ε∇yε +∂ jε(∇yε)) ·∇v+ yε v)dx =

∫

Ω
f vdx, ∀v ∈ H1(Ω). (2.167)

(The Gâteaux differential of the function arising in (2.165) is just the operator from
the left-hand side of (2.166) or (2.167).) We recall that (see Theorem 2.9)

∂ jε(p) =
1
ε

(p− (1+ εβ )−1 p) ∈ β ((1+ εβ )−1 p), ∀p ∈ RN ,

jε(p) =
1

2ε
|p− (1+ εβ )−1 p|2 + j((1+ εβ )−1 p).

Then, it is readily seen by (2.165) that on a subsequence, again denoted {ε} → 0,
we have

yε → y∗ weakly in L2(Ω),

((1+ εβ )−1∇yε −∇yε) → 0 strongly in L2(Ω ;RN),

(1+ εβ )−1∇yε → ∇y∗ weakly in L1(Ω ;RN).

(2.168)

The latter follows by the obvious inequality

∫

Ω

(
j((1+εβ )−1∇yε)+

1
2ε
|∇yε−(1+εβ )−1∇yε |2+ε

2
|∇yε |2+1

2
|yε− f |2

)
dx

≤
∫

Ω

(
j(∇yε)+

ε
2
|∇yε |2 +

1
2
|yε − f |2

)
dx

≤
∫

Ω

(
jε(∇v)+

ε
2
|∇v|2 +

1
2
|v− f |2

)
dx, ∀v ∈ H1(Ω).

(2.169)

On the other hand, by (2.169) and the first condition in (2.161), it follows via the
Dunford–Pettis theorem (Theorem 1.15) that {(1 + εβ )−1∇yε} is weakly compact
in L1(Ω ;RN) = (L1(Ω))N and so (2.168) follows. Then, taking into account the
weak lower semicontinuity of functional ϕ in L1(Ω ;RN), we see that

∫

Ω

(
j(∇y∗)+

1
2
|y∗ − f |2

)
dx≤

∫

Ω

(
j(∇v)+

1
2
|v− f |2

)
dx, ∀v ∈W 1,1(Ω);

that is, y∗ is optimal in problem (2.164).
Now, we recall the conjugacy inequality (see Proposition 1.5)

j(v)+ j∗(p)≥ v · p, ∀v, p ∈ RN

with equality if and only if p ∈ β (v) = ∂ j(v). This yields
∫

Ω
( j((1+ εβ )−1∇yε)+ j∗(∂ j(∇yε)))dx≥

∫

Ω
(1+ εβ )−1∇yε ·∂ j(∇yε)dx

=
∫

Ω
∇yε ·∂ j(∇yε)dx− 1

ε

∫

Ω
|∂ jε(∇yε)|2dx.
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(Here, ∂ j(∇yε) is any section of ∂ j(∇yε).)
Then, by (2.169), we see that {∫Ω j∗(∂ j(∇yε))dx} is bounded and so, again by

the second condition in (2.161) and by the Dunford–Pettis theorem, we infer that
{∫E ∂ j(yε); E ⊂Ω} is uniformly absolutely continuous and therefore {∂ j(∇yε)}
is weakly compact in (L1(Ω))N . (Here, one uses the same argument as in the proof
of Proposition 2.10; that is, write for each measurable set E ⊂Ω ,

∫

E
|∂ j(∇yε)|dx ≤

∫

E∩[|∂ j(∇yε )|≥R]
|∂ j(∇yε)|dx

+
∫

E∩[|∂ j(∇yε )≤R]
|∂ j(∇yε)|dx≤ η ,

for m(E)≤ δ (η).) Hence, we may assume that for ε → 0,

∂ j(∇yε)→ η weakly in (L1(Ω))N ,

where η satisfies
∫

Ω
(y∗v+∇v ·η)dx =

∫

Ω
f vdx, ∀v ∈C1(Ω). (2.170)

To conclude the proof, it remains to be shown that

η(x) ∈ β (∇y∗(x)), a.e. x ∈Ω . (2.171)

To this aim, we notice that, in virtue of (2.168) and the conjugacy equality, it follows
by the weak lower semicontinuity of the convex integrand in L1(Ω),

∫

Ω
( j(∇y∗)+ j(η))dx ≤ liminf

ε→0

∫

Ω
(1+ εβ )−1∇yε ·∂ j(∇yε)dx

≤ liminf
ε→0

∫

Ω
∇yε ·∂ j(∇yε)dx.

(2.172)

On the other hand, by (2.167) and (2.169), we see that

lim
ε→0

∫

Ω
∇yε ·∂ j(∇yε)dx =−

∫

Ω
(y∗ − f )y∗dx. (2.173)

We have also that

∇y∗ ·η ≤ j(∇y∗)+ j∗(η), a.e. in Ω
−∇y∗ ·η ≤ j(−∇y∗)+ j∗(η)≤C j(∇y∗)+ j(η), a.e. in Ω .

(The second inequality follows by the convexity of j∗.) Hence, ∇y∗ ·η ∈ L1(Ω) and
so, by (2.170), (2.172) and (2.173), we see that

∫

Ω
( j(∇y∗)+ j∗(η)−∇y∗ ·η)dx≤ 0,
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because (2.170) extends by density to all v ∈W 1,1(Ω) such that ∇v ·η ∈ L1(Ω).
Recalling that j∗(∇y∗)+ j(η)−∇y∗ ·η ≥ 0, a.e. in Ω , we infer that

j(∇y∗(x))+ j∗(η(x)) = ∇y∗(x) ·η(x), a.e. x ∈Ω ,

which implies (2.171), as claimed. Hence, y∗ is a weak solution in sense of (2.163).
Conversely, any weak solution y∗ to (2.163) minimizes the functional ϕ . Indeed,

we have

ϕ(y∗)−ϕ(v) ≤
∫

Ω

(
j(∇y∗)− j(v)+

1
2

(|y∗ − f |2−|v− f |2)
)

dx

≤
∫

Ω
(η · (∇y∗ −∇v)+(y∗ − f )(u∗ − v))dx = 0, ∀v ∈C1(Ω).

The latter inequality extends to all v ∈ Dϕ ∈ {z ∈ L2(Ω); ϕ(z) < ∞}. ¤

Remark 2.5. In particular, it follows by Theorem 2.19 that the operator A, defined
by (2.155) in sense of (2.163), is maximal monotone in L2(Ω)×L2(Ω).

Remark 2.6. Theorem 2.15 extends to nonlinear elliptic boundary value problems of
the form

∑
|α|≤m

Dα Aα(x,y,Dβ y) = f (x), x ∈Ω , |β | ≤ m,

Dα y = 0 on ∂Ω , |α |< m,

(2.174)

where Aα : Ω ×RmN → RmN are measurable functions in x continuous in other
variables and satisfy the following conditions.

(i) ∑
|α|≤m

(Aα(x,ξ )−Aα(x,η)) · (ξ −η)≥ 0, ∀ξ ,η ∈ RmN .

(ii) ∑
|α|≤m

Aα(x,ξ ) ·ξ ≥ ω‖ξ‖p−C, ∀ξ ∈ RmN , where ω > 0, p > 1

and ‖ · ‖ is the norm in RmN .
(iii) ‖Aα(x,ξ )‖ ≤C1‖ξ‖p−1 +C2, ∀ξ ∈ RmN , x ∈Ω .

(Here β is the multi-index {D
β j
x j , j = 1, ...,N, β j ≤ m}.)

Indeed, under these assumptions the operator A : X → X ′, X = W m,p
0 (Ω),

X ′ = W−m,q(Ω), defined by

(Ay,z) = ∑
|α|≤m

∫

Ω
Aα(x,y(x),Dβ y(x)) ·Dα z(x)dx, ∀y,z ∈W m,p

0 (Ω)

is monotone, demicontinuous, and coercive. Then, the existence of a generalized
solution y ∈W m,p

0 (Ω) to problem (2.174) for f ∈ L2(Ω) follows by Corollary 2.3.
The details are left to the reader.
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The nonlinear diffusion techniques and PDE-based variational models are very
popular in image denoising and restoring (see, e.g., Rudin, Osher and Fatemi [29]).
A gray value image is defined by a function f from a given domain Ω of Rd , d =
2,3, to R. In each point x ∈ Ω , f (x) is the light intensity of the corrupted image
located in x. Then, a restored (denoised) image u : Ω → R is computed from the
minimization problem (2.165); that is,

Minimize
{

1
2

∫

Ω
(u(x)− f (x))2dx+

∫

Ω
j(∇u(x))dx, u ∈ X(Ω)

}
, (2.175)

where j : Rd → R is a given function and X(Ω) is a space of functions on Ω .
The term j(∇u) arising here is taken in order to smooth (mollify) the observation
u. In order for the minimization problem to be well posed, one must assume that
j is convex and lower semicontinuous and X(Ω) must be taken, in general, as a
distribution space on Ω , for instance, the Sobolev space W 1,p(Ω), where p≥ 1. In
this case, problem (2.175) is equivalent to the nonlinear diffusion equation

{
−divx(β (∇y(x)))+ y = f in Ω ,

β (∇y(x)) · v(x) = 0 on ∂Ω ,

where β : Rd →Rd is the subdifferential of j and v = v(x) is the normal to ∂Ω at x.
The latter equation describes the filtering process of the original corrupted image f .

In the first image processing models, j was taken quadratic and most of the sub-
sequent models have considered functions j of the form

j(∇y)≡ |∇y|p, p > 1,

and X(Ω) was necessarily taken as W 1,p(Ω). As mentioned above, the term j(∇y)
in the above minimization problem has a smoothing effect in restoring the degraded
image f while preserving edges. For the second objective, p = 1 (i.e., j(∇y)≡ |∇y|
and X(Ω) =W 1,1(Ω)) might be apparently the best choice. However, the functional
arising in (2.175) is not lower semicontinuous in this latter case in L2(Ω) because
the functional y→ ∫

Ω |∇y|dx is not lower semicontinuous in L2(Ω). Thus W 1,1(Ω)
must be replaced by the space BV (Ω) of functions u with bounded variations, and
instead of the Sobolev norm

∫
Ω |∇y|dx we should take the total variation functional

of y. (This functional framework is briefly discussed below.) The case treated in
Theorem 2.19 is an intermediate one between Lp(Ω) with p > 1 and BV (Ω).

The BV Approach to the Nonlinear Equations with Singular Diffusivity

As mentioned earlier, the existence theory for equation (2.129) developed above
fails for p = 1, the best example being, perhaps, in the case where β = ∂ j, j(u) = |u|.
In this case, equation (2.171) reduces to the singular diffusion equation
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y−divx(sign(∇y)) 3 f in Ω , (2.176)

with boundary value conditions

y = 0 on ∂Ω , (2.177)

or
sign(∇y) ·ν = 0 on ∂Ω . (2.178)

This equation comes formally from variational problems with nondifferentiable en-
ergy and it is our aim here to give a rigorous meaning to it. As noticed earlier, this
equation is relevant in image restoration as well as in mathematical modeling of
faceted crystal growth (see Kobayashi and Giga [18]). Formally, (2.176) is equiva-
lent with the minimization problem (for Dirichlet null boundary condition)

min
{

1
2

∫

Ω
|y− f |2dx+

∫

Ω
|∇y|dx; y ∈W 1,1

0 (Ω)
}

(2.179)

or

min
{

1
2

∫

Ω
|y− f |2dx+

∫

Ω
|∇y|dx; y ∈W 1,1(Ω)

}
(2.180)

in the case of Neumann boundary conditions. However, as mentioned earlier, prob-
lems (2.179) or (2.180) are not well posed in the W 1,1(Ω)-setting, the main reason
being that the energy functional

y→
∫

Ω
|∇y(x)|dx

is not lower semicontinuous and coercive in an appropriate space of functions on Ω
(for instance in Lp(Ω), p ≥ 1). This fact suggests replacing the space W 1,1(Ω) by
a larger space and more precisely by the space BV (Ω) defined in Section 1.3.

Consider the function ϕ : Lp(Ω)→ (−∞,+∞], p≥ 1, defined by

ϕ(y) =




‖Dy‖ if y ∈ Lp(Ω)∩BV 0(Ω)

+∞ otherwise,
(2.181)

respectively,

ψ(y) =




‖Dy‖ if y ∈ BV (Ω)

+∞ otherwise.
(2.182)

By Theorem 1.14, we know that functions ϕ and ψ are lower semicontinuous
and convex in Lp(Ω) and, in particular, in L2(Ω).

Then the minimization problems
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min
1
2

∫

Ω
|y− f |2dx+‖Dy‖; y ∈ BV 0(Ω), (2.183)

min
1
2

∫

Ω
|y− f |2dx+‖Dy‖; y ∈ BV (Ω), (2.184)

which replace (2.179) and (2.180), respectively, have unique solutions y ∈ BV 0(Ω)
and v ∈ BV (Ω), respectively. If we denote by ∂ϕ,∂ψ : L2(Ω)→ L2(Ω) the subdif-
ferentials of functions ϕ and ψ; that is,

∂ϕ(y) =
{

η ∈ L2(Ω); ϕ(y)−ϕ(z)≤
∫

Ω
η(y− z)dx, ∀y,z ∈ D(ϕ)

}
, (2.185)

respectively,

∂ψ(y) =
{

ξ ∈ L2(Ω); ψ(y)−ψ(z)≤
∫

Ω
ξ (y− z)dx, ∀y,z ∈ D(ψ)

}
, (2.186)

we may write equivalently (2.183) and (2.184) as

y+∂ϕ(y) 3 f (2.187)

v+∂ψ(v) 3 f , (2.188)

respectively. In variational form, equation (2.187) can be rewritten as
∫

Ω
y(x)(y(x)− z(x))dx+‖Dy‖ ≤ ‖Dz‖+

∫

Ω
f (x)(y(x)− z(x))dx,

∀y,z ∈ BV 0(Ω),

with the obvious modification for (2.188). It is also useful to recall that this equation
can be approximated by (see (2.166))

yε − ε∆yε −divxβε(∇yε) = f in Ω ,

yλ = 0 on ∂Ω ,

where βε is the Yosida approximation of β (r) = signr. The solutions y and v to
equations (2.187) (respectively, (2.188)) are to be viewed as variational (genera-
lized) solutions to (2.177) and (2.178) and, respectively, (2.187) and (2.188). Tak-
ing into account that for y ∈W 1,1(Ω)⊂ BV (Ω), we have ‖Dy‖= |∇y|L1(Ω), it fol-

lows that, if y ∈W 1,1
0 (Ω) and η = −div(∇y/|∇y|) ∈ L2(Ω), then η ∈ ∂ϕ(y). Si-

milarly, if y ∈W 1,1(Ω), sign(∇y) ·ν = 0 on ∂Ω and ξ =−div(∇y/|∇y|) ∈ L2(Ω),
then ξ ∈ ∂ψ(y). Of course, in general, one might not expect that y ∈W 1,1(Ω) and
so, the above calculation remains formal. We may conclude, however, that in this
generalized sense these equations have unique solutions u ∈ BV 0(Ω), respectively,
v ∈ BV (Ω).
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Villars, Paris, 1969.
17. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Applica-

tions, Academic Press, New York, 1980.
18. R. Kobayashi, Y. Giga, Equations with singular diffusivity, J. Statistical Physics, 95 (1999),

pp. 1187–1220.
19. G. Minty, Monotone (nonlinear) operators in Hilbert spaces, Duke Math. J., 29 (1962),

pp. 341–346.



96 2 Maximal Monotone Operators in Banach Spaces

20. G. Minty, On the generalization of a direct method of the calculus of variations, Bull. Amer.
Math.Soc., 73 (1967), pp. 315–321.
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Chapter 3
Accretive Nonlinear Operators in Banach Spaces

Abstract This chapter is concerned with the general theory of nonlinear quasi-m-
accretive operators in Banach spaces with applications to the existence theory of
nonlinear elliptic boundary value problems in Lp-spaces and first-order quasilinear
equations. While the monotone operators are defined in a duality pair (X ,X∗) and,
therefore, in a variational framework, the accretive operators are intrinsically related
to geometric properties of the space X and are more suitable for nonvariational and
nonHilbertian existence theory of nonlinear problems. The presentation is confined,
however, to the essential results of this theory necessary to the construction of ac-
cretive dynamics in the next chapter.

3.1 Definition and General Theory

Throughout this chapter, X is a real Banach space with the norm ‖ · ‖, X∗ is its dual
space, and (·, ·) the pairing between X and X∗. We denote as usual by J : X → X∗
the duality mapping of the space X .

Definition 3.1. A subset A of X ×X (equivalently, a multivalued operator from X
to X) is called accretive if for every pair [x1,y1], [x2,y2] ∈ A, there is w ∈ J(x1− x2)
such that

(y1− y2,w)≥ 0. (3.1)

An accretive set is said to be maximal accretive if it is not properly contained in
any accretive subset of X×X .

An accretive set A is said to be m-accretive if

R(I +A) = X . (3.2)

Here we have denoted I the unity operator in X , but when there is no danger of
confusion, we simply write 1 instead of I.
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We denote by D(A) = {x ∈ X ; Ax 6= /0} the domain of A and by R(A) = {y ∈ Ax;
[x,y] ∈ A} the range of A. As in the case of operators from X to X∗, we identify an
operator (eventually multivalued) A : D(A)⊂ X → X with its graph {[x,y]; y ∈ Ax}
and so view A as a subset of X×X .

A subset A is called dissipative (respectively, maximal dissipative, m-dissipative)
if −A is accretive (respectively, maximal, m-accretive).

Finally, A is said to be ω-accretive (ω-m-accretive), where ω ∈ R, if A + ωI is
accretive (respectively, m-accretive). A subset A⊂X×X that is ω-accretive or ω-m-
accretive for some ω ∈ R is called quasi-accretive, respectively, quasi-m-accretive.

As we show below, the accretiveness of A is, in fact, a metric geometric property
that can be equivalently expressed as

‖x1− x2‖ ≤ ‖x1− x2 +λ (y1− y2)‖, ∀λ > 0, [xi,yi] ∈ A, i = 1,2, (3.3)

using the following lemma (Kato’s lemma).

Lemma 3.1. Let x,y ∈ X. Then there exists w ∈ J(x) such that (y,w) ≥ 0 if and
only if

‖x‖ ≤ ‖x+λy‖, ∀λ > 0 (3.4)

holds.

Proof. Let x and y in X be such that (y,w)≥ 0 for some w∈ J(x). Then, by definition
of J, we have

‖x‖2 = (x,w)≤ (x+λy,w)≤ ‖x+λy‖ · ‖w‖= ‖x+λy‖ · ‖x‖, ∀λ > 0,

and (3.4) follows.
Suppose now that (3.4) holds. For λ > 0, let wλ be an arbitrary element of

J(x + λy). Without loss of generality, we may assume that x 6= 0. Then, wλ 6= 0
for λ small. We set fλ = wλ‖wλ‖−1. Because { fλ}λ>0 is weak-star compact in X∗,
there exists a generalized sequence, again denoted λ , such that fλ ⇀ f in X∗. On
the other hand, from the inequality

‖x‖ ≤ ‖x+λy‖= (x+λy, fλ )≤ ‖x‖+λ (y, fλ )

it follows that
(y, fλ )≥ 0, ∀λ > 0.

Hence, (y, f )≥ 0 and ‖x‖ ≤ (x, f ). Because ‖ f‖ ≤ 1, this implies that ‖x‖= (x, f ),
‖ f‖= 1, and therefore w = f‖x‖ ∈ J(x), (y,w)≥ 0, as claimed. ¤

Proposition 3.1. A subset A of X×X is accretive if and only if inequality (3.3) holds
for all λ > 0 (equivalently, for some λ > 0) and all [xi,yi] ∈ A, i = 1,2.

Proposition 3.1 is an immediate consequence of Lemma 3.1. In particular, it fol-
lows that A is ω-accretive iff
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‖x1− x2 +λ (y1− y2)‖ ≥ (1−λω)‖x1− x2‖

for 0 < λ <
1
ω

and [xi,yi] ∈ A, i = 1,2.
(3.5)

Hence, if A is accretive, then the operator (I + λA)−1 is single-valued and nonex-
pansive on R(I +λA); that is,

‖(I +λA)−1x− (I +λA)−1y‖ ≤ ‖x− y‖, ∀λ > 0, x,y ∈ R(I +λA).

If A is ω-accretive, then it follows by (3.5) that (I + λA)−1 is single-valued and
Lipschitzian with Lipschitz constant not greater than 1/(1−λω) on R(I + λA),
0 < λ < 1/ω.

Let us define the operators Jλ and Aλ :

Jλ x = (I +λA)−1x, x ∈ R(I +λA); (3.6)

Aλ x = λ−1(x− Jλ x), x ∈ R(I +λA). (3.7)

As in the case of maximal monotone operators in X ×X∗ (see (2.26)), the operator
Aλ is called the Yosida approximation of A, and, in the special case when X = H is
a Hilbert space, it is just the operator studied in Proposition 2.2.

In Proposition 3.2 below, we collect some elementary properties of Jλ and Aλ .

Proposition 3.2. Let A be ω-accretive in X×X. Then:

(a) ‖Jλ x− Jλ y‖ ≤ (1−λω)−1‖x− y‖, ∀λ ∈ (0,1/ω), ∀x,y ∈ R(I +λA).
(b) Aλ is ω-accretive and Lipschitz continuous with Lipschitz constant not

greater than 2/(1−λω) in R(I +λA), 0 < λ < 1/ω .
(c) Aλ x ∈ AJλ x, ∀x ∈ R(I +λA), 0 < λ < 1/ω .
(d) (1−λω)‖Aλ x‖ ≤ |Ax|= inf{‖y‖; y ∈ Ax};
(e) limλ→0 Jλ x = x, ∀x ∈ D(A)∩0<λ<1/ω R(I +λA).

Proof. (a) and (b) are immediate consequences of inequality (3.5).
(c) Let x ∈ R(I +λA). Then, Aλ x ∈ λ−1((I +λA)Jλ x− Jλ x) ∈ AJλ x.
(d) For x∈D(A)∩R(I+λA), we have Aλ x = λ−1(Jλ (I+λA)x−Jλ x) and, there-

fore, ‖Aλ x‖ ≤ |Ax|(1−λω)−1, ∀x ∈ D(A).
(e) For every x ∈ D(A)∩R(I +λA), we have

‖Jλ x− x‖= λ‖Aλ x‖ ≤ λ
1−λω

|Ax|, ∀λ ∈
(

0,
1
ω

)
.

Hence, limλ→0 Jλ x = x. Clearly, this extends to all of D(A)
⋂

0<λ<1/ω R(I +λA), as
claimed. ¤

In the following we confine ourselves to the study of accretive subsets, the ex-
tensions to the quasi-accretive sets being immediate.

Proposition 3.3. An accretive set A ⊂ X × X is m-accretive if and only if
R(I +λA) = X for all (equivalently, for some) λ > 0.



100 3 Accretive Nonlinear Operators in Banach Spaces

Proof. Let A be m-accretive and let y ∈ X , λ > 0, be arbitrary but fixed. Then, the
equation

x+λAx 3 y (3.8)

may be written as

x = J1

(
y
λ

+
(

1− 1
λ

)
x
)

.

Then, by the contraction principle, we infer that the equation has a solution for
1/2 < λ < +∞.

Now, fix λ0 > 1/2 and write the preceding equation as

x = (I +λ0A)−1
((

1− λ0

λ

)
x+

λ0

λ
y
)

. (3.9)

Because Jλ0 = (I + λ0A)−1 is nonexpansive, this equation has a solution for λ ∈
(λ0/2,∞). Repeating this argument, we conclude that R(I +λA) = X for all λ > 0.
Assume now that R(I + λ0A) = X for some λ0 > 0. Then, if we set equation (3.8)
into the form (3.9), we conclude as before that R(I +λA) = X for all λ ∈ (λ0/2,∞)
and so R(I +λA) = X for all λ > 0, as claimed. ¤

Combining Propositions 3.2 and 3.3, we conclude that A⊂ X ×X is m-accretive
if and only if for all λ > 0 the operator (I +λA)−1 is nonexpansive on all of X .

Similarly, A is ω-m-accretive if and only if, for all 0 < λ < 1/ω,

‖(I +λA)−1x− (I +λA)−1y‖ ≤ 1
1−λω

‖x− y‖, ∀x,y ∈ X . (3.10)

By Theorem 2.2, if X = H is a Hilbert space, then A is m-accretive if and only if it
is maximal accretive.

A subset A ⊂ X ×X is said to be demiclosed if it is closed in X ×Xw; that is,
if xn → x, yn ⇀ y, and [xn,yn] ∈ A, then [x,y] ∈ A (recall that ⇀ denotes weak
convergence). A is said to be closed if xn → x, yn → y, and [xn,yn] ∈ A for all n ∈ N
imply that [x,y] ∈ A.

Proposition 3.4. Let A be an m-accretive set of X × X. Then A is closed and if
λn ∈ R, xn ∈ X are such that λn → 0 and

xn → x, Aλn xn → y for n→ ∞, (3.11)

then [x,y] ∈ A. If X∗ is uniformly convex, then A is demiclosed, and if

xn → x, Aλnx ⇀ y for n→ ∞, (3.12)

then [x,y] ∈ A.

Proof. Let xn → x, yn → y, [xn,yn] ∈ A. Because A is accretive, we have

‖xn−u‖ ≤ ‖xn +λyn− (u+λv)‖, ∀[u,v] ∈ A, λ > 0.
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Hence,
‖x−u‖ ≤ ‖x+λy− (u+λv)‖, ∀[u,v] ∈ A, λ > 0.

Now, A being m-accretive, there is [u,v] ∈ A such that u + λv = x + λy. Substi-
tuting in the latter inequality, we see that x = u and y = v ∈ Ax, as claimed.

Now, if λn,xn satisfy condition (3.11), then {Aλnxn} is bounded and so Jλn xn−
xn → 0. Because Aλn xn ∈ AJλn xn, Jλnxn → x, and A is closed, we have that [x,y] ∈ A.
We assume now that X∗ is uniformly convex. Let xn,yn be such that xn → x, yn ⇀ y,
[xn,yn] ∈ A. Inasmuch as A is accretive, we have

(yn− v,J(xn−u))≥ 0, ∀[u,v] ∈ A, n ∈ N∗.

On the other hand, recalling that J is continuous on X (Theorem 1.2), we may pass
to the limit n→ ∞ to obtain

(y− v,J(x−u))≥ 0, ∀[u,v] ∈ A.

Now, if we take [u,v]∈ A such that u+v = x+y, we see that y = v and x = u. Hence,
[x,y] ∈ A, and so A is demiclosed. The final part of Proposition 3.4 is an immediate
consequence of this property, remembering that Aλnxn ∈ AJλnxn. ¤

Remark 3.1. Note that an m-accretive set of X ×X is maximal accretive. Indeed, if
[x,y] ∈ X×X is such that

‖x−u‖ ≤ ‖x+λy− (u+λv)‖, ∀[u,v] ∈ A, λ > 0,

then, choosing [u,v] ∈ A such that u + λv = x + λy, we see that x = u and so
v = y ∈ Ax. These two properties are equivalent, however, in Hilbert spaces.

If X∗ is uniformly convex, then it follows that, for every x ∈ D(A), we have the
following algebraic description of Ax

Ax = {y ∈ X ; (y− v,J(x−u))≥ 0, ∀[u,v] ∈ A}.

In particular, it follows that Ax is a closed convex subset of X . Denote by A0x the
element of minimum norm on Ax (i.e., the projection of the origin into Ax). Be-
cause the space X is reflexive, by Proposition 1.4 it follows that A0x 6= /0 for every
x ∈D(A). The set A0 ⊂ A is called the minimal section of A. If the space X is strictly
convex, then, as easily seen, A0 is single-valued.

Proposition 3.5. Let X and X∗ be uniformly convex and let A be an m-accretive set
of X×X. Then:

(i) Aλ x→ A0x, ∀x ∈ D(A) for λ → 0.
(ii) D(A) is a convex set of X.

Proof. (i) Let x∈D(A). As seen in Proposition 3.2, ‖Aλ x‖≤ |Ax|= ‖A0x‖, ∀λ > 0.
Now, let λn → 0 be such that Aλnx ⇀ y. By Proposition 3.1, we know that y ∈ Ax,
and thus
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lim
n→∞

‖Aλn x‖= ‖y‖= ‖A0x‖.

The space X is uniformly convex; therefore this implies that Aλnx → y = A0x
(Lemma 1.1). Hence, Aλ x→ A0x for λ → 0.

(ii) Let x1,x2 ∈ D(A), and 0 ≤ α ≤ 1. We set xα = αx1 +(1−α)x2. Then, as it
is readily verified,

‖Jλ (xα)− x1‖ ≤ ‖xα − x1‖+λ |Ax1|, ∀λ > 0,

‖Jλ (xα)− x2‖ ≤ ‖xα − x2‖+λ |Ax2|, ∀λ > 0,

and, because the space X is uniformly convex, these estimates imply, by a standard
geometrical device we omit here, that

‖Jλ (xα)− xα‖ ≤ δ (λ ), ∀λ > 0,

where limλ→0 δ (λ ) = 0. Hence, xα ∈ D(A). ¤

Regarding the single-valued linear m-accretive (equivalently, m-dissipative) ope-
rators, it is useful to note the following density result.

Proposition 3.6. Let X be a Banach space. Then any m-accretive linear operator
A : X → X is densely defined (i.e., D(A) = X).

Proof. Let y∈X be arbitrary but fixed. For every λ > 0, the equation xλ +λAxλ = y
has a unique solution xλ ∈D(A). We know that ‖xλ‖ ≤ ‖y‖ for all λ > 0 and so, on
a subsequence λn → 0,

xλn ⇀ x, λnAxλn ⇀ y− x in X .

Because A is closed, its graph in X ×X is weakly closed (it is a linear subspace of
X×X) and so λnxλn → 0, A(λnxλn) ⇀ y− x imply that y− x = 0. Hence,

(1+λnA)−1y ⇀ y.

We have, therefore, proven that y ∈ D(A) (recall that the weak closure of D(A)
coincides with the strong closure). ¤

We conclude this section by introducing another convenient way to define the
accretiveness. Toward this aim, denote by [·, ·]s the directional derivative of the func-
tion x→‖x‖; that is (see (1.13)),

[x,y]s = lim
λ↓0

‖x+λy‖−‖x‖
λ

, x,y ∈ X . (3.13)

The function λ →‖x+λy‖ is convex, thus we may define, equivalently, [·, ·]s as

[x,y]s = inf
λ>0

‖x+λy‖−‖x‖
λ

, ∀x,y ∈ X . (3.14)
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Roughly speaking, [·, ·]s can be viewed as a “scalar product” on X×X .
Let us now briefly list some properties of the bracket [·, ·]s.

Proposition 3.7. Let X be a Banach space. We have the following.

(i) [·, ·]s : X×X → R is upper semicontinuous.
(ii) [αx,βy]s = β [x,y]s, for all β ≥ 0, α ∈ R, x,y ∈ X .
(iii) [x,αx+ y]s = α‖x‖+[x,y]s if α ∈ R+, x ∈ X .
(iv) |[x,y]s| ≤ ‖y‖, [x,y+ z]s ≤ [x,y]s +[x,z]s, ∀x,y,z ∈ X .
(v) [x,y]s = max{(y,x∗); x∗ ∈Φ(x)}, ∀x,y ∈ X , where

Φ(x) = {x∗ ∈ X∗; (x,x∗) = ‖x‖, ‖x∗‖= 1}, if x 6= 0,

Φ(0) = {x∗ ∈ X∗; ‖x∗‖ ≤ 1}.

Proof. (i) Let xn → x and yn → y as n → ∞. For every n there exist hn ∈ X and
λn ∈ (0,1) such that ‖hn‖+λn ≤ 1/n and

[xn,yn]s ≤ (‖xn +hn +λnyn‖−‖xn + yn‖)λ−1
n +(1/n).

This yields
limsup

n→∞
[xn,yn]s ≤ [x,y]s,

as claimed.
Note that (ii)–(iv) are immediate consequences of the definition. To prove (v),

we note first that
Φ(x) = ∂ (‖x‖), ∀x ∈ X ,

and apply Proposition 2.6. ¤

Now, coming back to the definition of accretiveness, we see that, in virtue of part
(v) of Proposition 3.7, condition (3.3) can be equivalently written as

[x1− x2,y1− y2]s ≥ 0, ∀[xi,yi] ∈ A, i = 1,2. (3.15)

Similarly, condition (3.5) is equivalent to

[x1− x2,y1− y2]s ≥−ω‖x1− x2‖, ∀[xi,yi] ∈ A, i = 1,2. (3.16)

Summarizing, we may see that a subset A of X ×X is ω-accretive if one of the
following equivalent conditions holds.

(i) If [x1,y1], [x2,y2] ∈ A, then there is w ∈ J(x1− x2) such that

(y1− y2,w)≥−ω‖x1− x2‖.

(ii) ‖x1−x2+λ (y1−y2)‖≥ (1−λω)‖x1−x2‖ for 0 < λ < 1/ω and all [xi,yi] ∈ A,
i = 1,2.

(iii) [x1− x2,y1− y2]s ≥−ω‖x1− x2‖, ∀[xi,yi] ∈ A, i = 1,2.
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In applications, however, it is more convenient to use condition (i) to verify the
ω-accretiveness.

We know that, if X is a Hilbert space, then a continuous accretive operator is
m-accretive (see Lemma 1.3). This result was extended by R. Martin [11] to general
Banach spaces. More generally, we have the following result established by the
author in [1]. (See also [2].)

Theorem 3.1. Let X be a real Banach space, A be an m-accretive set of X×X, and
let B : X → X be a continuous, m-accretive operator with D(B) = X. Then A+B is
m-accretive.

This result (which can be compared with Corollary 2.6) is, in particular, use-
ful to treat continuous nonlinear accretive perturbations of equations involving m-
accretive operators.

Other m-accretive criteria for the sum A+B of two m-accretive operators A,B ∈
X×X can be obtained approximating the equation x+Ax+Bx 3 y by

x+Ax+Bλ x 3 y,

where Bλ is the Yosida approximation of B.
We illustrate the method on the following example.

Proposition 3.8. Let X be a Banach space with uniformly convex dual X∗ and let A
and B be two m-accretive sets in X×X such that D(A)∩D(B) 6= /0 and

(Au,J(Bλ u))≥ 0, ∀λ > 0, u ∈ D(A). (3.17)

Then A+B is m-accretive.

Proof. Let f ∈ X and λ > 0 be arbitrary but fixed. We approximate the equation

u+Au+Bu 3 f (3.18)

by
u+Au+Bλ u 3 f , λ > 0, (3.19)

where Bλ is the Yosida approximation B; that is,

Bλ = λ−1(I− (I +λB)−1).

We may write equation (3.19) as

u =
(

1+
λ

1+λ
A
)−1 (

λ f
1+λ

+
(I +λB)−1u

1+λ

)
,

which, by the Banach fixed point theorem, has a unique solution uλ ∈D(A) (because
(I +λB)−1 and (I +λA)−1 are nonexpansive). Now, we multiply the equation

uλ +Auλ +Bλ uλ 3 f (3.20)
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by J(Bλ uλ ) and use condition (3.17) to get that

‖Bλ uλ‖ ≤ ‖ f‖+‖uλ‖, ∀λ > 0.

On the other hand, multiplying (3.20) by J(uλ − u0), where u0 ∈ D(A)∩D(B),
we get

‖uλ−u0‖≤‖u0‖+‖ f‖+‖ξ0‖+‖Bλ u0‖≤‖u0‖+‖ f‖+‖ξ0‖+|Bu0|, ∀λ > 0,

where ξ0 ∈ Au0. Hence,

‖uλ‖+‖Bλ uλ‖ ≤C, ∀λ > 0. (3.21)

Now, multiplying the equation (in the sense of the duality between X and X∗)

uλ −uµ +Auλ −Auµ +Bλ uλ −Bµ uµ 3 0

by J(uλ −uµ). Because A is accretive, we have

‖uλ −uµ‖2 +(Bλ uλ −Bµ uµ ,J(uλ −uµ))≤ 0, ∀λ ,µ > 0. (3.22)

On the other hand,

(Bλ uλ −Bµ uµ ,J(uλ −uµ))

≥ (
Bλ uλ −Bµ uµ ,J(uλ −uµ)− J

(
(I +λB)−1uλ − (I + µB)−1uµ

))

because B is accretive and Bλ u ∈ B((I + λB)−1u). Because J is uniformly conti-
nuous on bounded subsets (Theorem 1.2) and by (3.21) we have

‖uλ − (I +λB)−1uλ‖+‖uµ − (I + µB)−1uµ‖ ≤C(λ + µ),

this implies that {uλ} is a Cauchy sequence and so u = limλ→0 uλ exists. Extracting
further subsequences, we may assume that

Bλ uλ ⇀ y, f −Bλ uλ −uλ ⇀ z.

Then, by Proposition 3.4, we see that y∈Bu, z∈Au, and so u is a solution (obviously
unique) to equation (3.18). ¤

If X is a Hilbert space and A = ∂ϕ , then Proposition 3.8 reduces to Theorem 2.11.
We also note the following perturbation result.

Proposition 3.9. Let X be a Banach space with a uniformly convex dual and let A,B
be two m-accretive sets in X×X such that, for each r > 0,

‖B0x‖ ≤ α‖A0x‖+Cr for ‖x‖ ≤ r, ∀x ∈ D(A), (3.23)

where 0 < α < 1. Then A+B is m-accretive. Here A0 is the minimal section of A.
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Proof. For f ∈ X we approximate, as above, equation (3.18) by (3.19) and denote
by uλ ∈ D(A) the solution to (3.19). We have, of course, that {uλ} is bounded in X
(i.e., ‖uλ‖ ≤ r, ∀λ > 0), and by Proposition 3.2, part (d), and by assumption (3.23)
it follows that

‖Bλ uλ‖ ≤ ‖B0uλ‖ ≤ α‖A0uλ‖+Cr ≤ α(‖Bλ uλ‖+‖ f‖+ r), ∀λ > 0.

This yields ‖Bλ uλ‖ ≤ C, ∀λ > 0, and, arguing as in the proof of Proposition 3.8,
we infer that, for λ → 0,

uλ → u in X ,

Bλ uλ ⇀ η in X ,

wλ = f −uλ −Bλ uλ ⇀ ξ in X ,

where η ∈ Bu and ξ ∈ Ax. Hence, by Proposition 3.4 we have f ∈ R(I +A+B), as
claimed. ¤

Remark 3.2. The accretivity property of an operator A defined in a Banach space X
should not be mixed up with that of monotonicity. The first is defined for operators
A from X to itself and is a metric geometric property, whereas the second is defined
for operators A from X to dual space X∗ and is a variational property. Of course,
as mentioned earlier, these two concepts coincide if the space X is Hilbert and is
identified with its own dual.

3.2 Nonlinear Elliptic Boundary Value Problem in Lp

In most situations, the m-accretive operators arise as partial differential operators
on a domain Ω with appropriate boundary value conditions. These boundary value
problems do not have an appropriate formulation in a variational functional setting
(as in the case with elliptic boundary value problems in Lp(Ω) spaces or that of non-
linear elliptic problems of divergence type treated in Section 2.4) but have, however,
an adequate treatment in the framework of m-accretive operator theory. We treat a
few significant examples below. Throughout this section, Ω is a bounded and open
subset of RN with a smooth boundary, denoted ∂Ω .

Semilinear Elliptic Operators in Lp(Ω)

Let β be a maximal monotone graph in R×R such that 0 ∈ D(β ).
Let β̃ ⊂ Lp(Ω)×Lp(Ω), 1≤ p < ∞, be the operator defined by

β̃ (u(x)) = {v ∈ Lp(Ω); v(x) ∈ β (u(x))), a.e. x ∈Ω},
D(β̃ ) = {u ∈ Lp(Ω); ∃v ∈ Lp(Ω) so that v(x) ∈ β (u(x)), a.e. x ∈Ω}.

(3.24)
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It is easily seen that β̃ is m-accretive in Lp(Ω)×Lp(Ω) and

((I +λβ̃ )−1u) = (1+λβ )−1u(x), a.e. x ∈Ω , λ > 0,

(β̃λ u)(x) = βλ (u(x)), a.e. x ∈Ω , λ > 0, u ∈ Lp(Ω).

Very often, this operator β̃ is called the realization of the graph β ⊂ R×R in the
space Lp(Ω)×Lp(Ω).

Theorem 3.2. Let A : Lp(Ω)→ Lp(Ω) be the operator defined by

Au = −∆u+ β̃ (u), ∀u ∈ D(A),

D(A) = W 1,p
0 (Ω)∩W 2,p(Ω)∩D(β̃ ) if 1 < p < ∞,

D(A) = {u ∈W 1,1
0 (Ω); ∆u ∈ L1(Ω)}∩D(β̃ ) if p = 1.

(3.25)

Then A is m-accretive and surjective in Lp(Ω).

We note that, for p = 2, this result has been proven in Proposition 2.8.

Proof. Let us show first that A is accretive. If u1,u2 ∈D(A) and v1 ∈ Au1, v2 ∈ Au2,
1 < p < ∞, we have, by Green’s formula,

‖u1−u2‖p−2
Lp(Ω)(v1− v2,J(u1−u2)) =−

∫

Ω
∆(u1−u2)|u1−u2|p−2(u1−u2)dx

+
∫

Ω
(β (u1)−β (u2))(u1−u2)|u1−u2|p−2dx≥ 0

because β is monotone (recall that J(u)(x) = |u(x)|p−2u(x)‖u‖2−p
Lp(Ω) is the duality

mapping of the space Lp(Ω)). (In the previous formula and everywhere in the se-
quel, by β (ui), i = 1,2, we mean single-valued sections of β (ui) which arise in the
definition of Aui.) In the case p = 1, consider the function γε : R→ R defined by

γε(r) =





1 for r > ε,

θε(r) for − ε ≤ r ≤ ε,

−1 for r <−ε.

(3.26)

where θε ∈ C2[−ε,ε], θ ′ε > 0 on (−ε,ε), θε(0) = 0, θε(ε) = 1, θε(−ε) = −1,
and θ ′ε(ε) = 0, θ ′ε(−ε) = 0. The function γε is a smooth monotonically increasing
approximation of the signum multivalued function,

signr =





1 for r > 0,

[−1,1] for r = 0,

−1 for r < 0,

we invoke frequently in the following.
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If [ui,vi] ∈ A, i = 1,2, then we have, via Greens’ formula,
∫

Ω
(v1− v2)γε(u1−u2)dx =

∫

Ω
|∇(u1−u2)|2γ ′ε(u1−u2)dx

+
∫

Ω
(β (u1)−β (u2))γε(u1−u2)dx≥ 0, ∀ε > 0.

For ε → 0, γε(u1− u2)→ g in L∞(Ω), where g ∈ J(u)‖u‖−1
L1(Ω), u = u1− u2; that

is, g(x) ∈ signu(x), a.e. x ∈Ω . Hence, A is accretive.
We prove that A is m-accretive, considering separately the cases 1 < p < ∞ and

p = 1.

Case 1. 1 < p < ∞. Let us denote for 1 < p < ∞ by Ap the operator −∆ with the
domain D(Ap) = W 1,p

0 (Ω)∩W 2,p(Ω). We have already seen that Ap is accretive in
Lp(Ω). Moreover, by Theorem 1.14, we have that R(I +Ap) = Lp(Ω) and

‖u‖W 2,p(Ω)∩W 1,p
0 (Ω) ≤C‖Apu‖Lp(Ω), ∀u ∈ D(Ap). (3.27)

Hence, Ap is m-accretive Lp(Ω). Let us prove now that R(I + Ap + β̃ ) = Lp(Ω).
Replacing, if necessary, the graph β by u → β (u)− v0, where v0 ∈ β (0), we may
assume that 0 ∈ β̃ (0) and so β̃λ (0) = 0. Then, by Green’s formula, for all λ > 0,

(Apu,J(β̃λ u)) = −‖β̃λ (u)‖2−p
Lp(Ω)

∫

Ω
∆u|βλ (u)|p−2βλ (u)dx

= ‖β̃ (u)‖2−p
Lp(Ω)

∫

Ω
|∇u|2 d

du
|βλ (u)|p−2βλ (u)dx≥ 0,

(3.28)

and so, by Proposition 3.8, we conclude that R(I +Ap + β̃ ) = Lp(Ω), as claimed.
To prove the surjectivity of Ap + β̃ , consider the equation

εu+Apu+ β̃ (u) 3 f , ε > 0, f ∈ Lp(Ω), (3.29)

which, as seen before, has a unique solution uε , and uε = limλ→0 uε
λ in Lp(Ω),

where uε
λ is the solution to the approximating equation εu + Apu + β̃λ (u) 3 f .

By (3.28), it follows that ‖Apuε
λ‖Lp(Ω) ≤ C, where C is independent of ε and λ .

Hence, letting λ → 0, we get ‖Apuε‖Lp(Ω) ≤C, ∀ε > 0, which, by estimate (3.27)
implies that {uε} is bounded in W 1,p(Ω)∩W 2,p(Ω). Selecting a subsequence, for
simplicity again denoted uε , we may assume that

uε → u weakly in W 2,p(Ω), strongly in Lp(Ω),

Apuε → Apu weakly in Lp(Ω),

β̃ε(uε) → g weakly in Lp(Ω).
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By Proposition 3.4 we know that g ∈ β̃ (u), therefore we infer that u is the solution
to the equation Apu+ β̃ (u) 3 f ; that is, u ∈W 2,p(Ω) and

{
−∆u+β (u) 3 f , a.e. in Ω ,

u = 0 in ∂Ω .
(3.30)

Case 2. p = 1. We prove directly that R(A1 + β̃ ) = L1(Ω) that is, for f ∈ L1(Ω),
equation (3.30) has a solution u ∈ D(A1) = {u ∈W 1,1

0 (Ω); ∆u ∈ L1(Ω)}. (Here,
A1 =−∆ with the domain D(A1).)

We fix f in L1(Ω) and consider { fn} ⊂ L2(Ω) such that fn → f in L1(Ω). As
seen before, the problem

{
−∆un +β (un) 3 fn in Ω ,

un = 0 on ∂Ω ,
(3.31)

has a unique solution un ∈H1
0 (Ω)∩H2(Ω). Let vn(x) = fn(x)+∆un(x)∈ β (un(x)),

a.e. x ∈Ω . By (3.31) we see that
∫

Ω
|vn(x)− vm(x)|dx≤

∫

Ω
| fn(x)− fm(x)|dx,

because β is monotone and −∆ is accretive in L1(Ω); that is,
∫

Ω ∆uθ dx≤ 0, ∀u ∈
D(A1), for some θ ∈ L∞(Ω) such that θ(x) ∈ signu(x), a.e. x ∈ Ω . (It suffices to
check the latter for θ = γε(u) where γε is given by (3.26) because, by density, it
extends to all of D(A1).) Hence,

vn → v strongly in L1(Ω),

∆un → ξ strongly in L1(Ω).
(3.32)

Now, let hi ∈ Lp(Ω), i = 0,1, ...,N, p > N. Then, by a well-known result due to
G. Stampacchia [12] (see also Dautray and Lions [9], p. 462), the boundary value
problem 



−∆ϕ = h0 +

N

∑
i=1

∂hi

∂xi
in Ω ,

ϕ = 0 on ∂Ω ,

(3.33)

has a unique weak solution ϕ ∈ H1
0 (Ω)∩L∞(Ω) and

‖ϕ‖L∞(Ω) ≤C
N

∑
i=0
‖hi‖Lp(Ω), hi ∈ Lp(Ω). (3.34)

This means that
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∫

Ω
∇ϕ ·∇ψ dx =

∫

Ω
h0ψ−

N

∑
i=1

∫

Ω
hi

∂ψ
∂xi

dx, ∀ψ ∈ H1
0 (Ω). (3.35)

Substituting ψ = un in (3.35), we get, via Green’s formula,

−
∫

Ω
ϕ∆undx =

∫

Ω
∇ϕ ·∇undx =

∫

Ω
h0undx−

N

∑
i=1

∫

Ω
hi

∂un

∂xi
dx,

and, therefore, by (3.34),
∣∣∣∣∣
∫

Ω
h0undx−

N

∑
i=1

hi
∂ un

∂xi
dx

∣∣∣∣∣≤C‖∆un‖L1(Ω)

N

∑
i=0
‖hi‖Lp(Ω).

Because {hi}N
i=0 ⊂ (Lp(Ω))N+1 are arbitrary, we conclude that the sequence

{(
un,

∂un

∂x1
, ...,

∂un

∂xN

)}∞

n=1

is bounded in (Lq(Ω))N+1, 1/p+1/q = 1. Hence,

‖un‖W 1,q(Ω) ≤C‖∆un‖L1(Ω), where 1 < q =
p

p−1
<

N
N−1

. (3.36)

Therefore, {un} is bounded in W 1,q(Ω) and, consequently, compact in L1(Ω). Then,
extracting a further subsequence if necessary, we may assume that

un → u weakly in W 1,q
0 (Ω) and strongly in L1(Ω). (3.37)

Then, by (3.32), it follows that ξ = ∆u, and because the operator β̃ is closed in
L1(Ω)×L1(Ω), we see by (3.32) and (3.37) that v(x) ∈ β (u(x)), a.e. x ∈ Ω , and
u ∈W 1,q

0 (Ω). Hence R(A) = L1(Ω) and, in particular, A is m-accretive. ¤

We have proved, therefore, the following existence result for the semilinear ellip-
tic boundary value problem in L1(Ω).

Corollary 3.1. For every f ∈ Lp(Ω), 1 < p < ∞, the boundary value problem
{
−∆u+β (u) 3 f , a.e. in Ω ,

u = 0 on ∂Ω ,
(3.38)

has a unique solution u ∈W 1,p
0 (Ω)∩W 2,p(Ω). If L1(Ω), then u ∈W 1,q

0 (Ω) with
∆u ∈ L1(Ω), where 1≤ q < N/(N−1). Moreover, the following estimate holds:

‖u‖W 1,q
0 (Ω) ≤C‖ f‖L1(Ω), ∀ f ∈ L1(Ω). (3.39)

In particular, A1 is m-accretive in L1(Ω), D(A1)⊂W 1,q
0 (Ω), and
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‖u‖W 1,q
0 (Ω) ≤C‖∆u‖L1(Ω), ∀u ∈ D(A1).

Remark 3.3. It is clear from the previous proof that Theorem 3.2 and Corollary 3.1
remain true for more general linear second-order elliptic operators Ap on Ω .

The Semilinear Elliptic Operator in L1(RN)

The previous results partially extend to unbounded domains Ω . Below we treat the
case Ω = RN .

Let β be a maximal monotone graph in R×R such that 0 ∈ β (0) and let
A : L1(RN)→ L1(RN) be the operator

Au =−∆u+ β̃ (u), ∀u ∈ D(A), in D ′(RN), (3.40)

where

D(A) = {u ∈ L1(RN), ∆u ∈ L1(RN); u ∈ D(β̃ )},
D(β̃ ) = {u ∈ L1(RN); ∃η ∈ L1(RN), η(x) ∈ β (u(x)), a.e. x ∈ RN},
β̃ (u) = {η ∈ L1(RN); η(x) ∈ β (u(x)), a.e. x ∈ RN}.

(3.41)

Here ∆u is taken in the sense of distributions on RN ; that is,

∆u(ϕ) =
∫

Rn
u∆ϕ dx, ∀ϕ ∈C∞

0 (RN),

and the equation Au = f is taken in the following distributional sense
∫

RN
(−u∆ϕ +ηϕ)dx =

∫

Rn
f ϕ dx, ∀ϕ ∈C∞

0 (RN),

where η ∈ L1(RN) is such that η(x) ∈ β (u(x)) a.e. x ∈ RN .

Theorem 3.3. The operator A defined by equations (3.40) and (3.41) is m-accretive
in L1(RN)×L1(RN).

Proof. We fix f ∈ L1(RN) and consider the equation λu+Au 3 f ; that is,

λu−∆u+β (u) 3 f in RN , (3.42)

which is taken in the above distributional sense. We prove that for each λ > 0 there
is a unique solution u = u( f ) and that

‖u( f )−u(g)‖L1(Rn) ≤
1
λ
‖ f −g‖L1(RN ), ∀ f ,g ∈ L1(RN). (3.43)

To this end we consider the approximating equation
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λuε −∆uε +βε(uε) = f in D ′(RN), (3.44)

where βε = (1− (1+ εβ )−1)/ε, ∀ε > 0.
We rewrite (3.44) as

λuε −∆uε +
1
ε

uε = f +
1
ε

(1+ εβ )−1uε .

Equivalently,

uε − ε
1+ ελ

∆uε =
ε

1+ ελ
f +

1
1+ ελ

(1+ εβ )−1uε . (3.45)

On the other hand, it is well known that, for each g ∈ L1(RN) and constant µ > 0,
the equation

v−µ ∆ v = g in D ′(RN)

has a unique solution v ∈ L1(RN) and

‖v‖L1(RN) ≤ ‖g‖L1(RN).

(This means that the operator A1 =−∆ is m-accretive in L1(RN).) If we set v = Tµ g,
we may rewrite (3.45) as

uε = Tε/(1+ελ )

(
ε

1+ ελ
f +

1
1+ ελ

(1+ εβ )−1uε

)
,

and so, by the Banach fixed point theorem, it follows the existence of a unique so-
lution uε ∈ L1(RN) to (3.45). Moreover, as easily seen, we have

‖uε‖L1(RN ) ≤
1
λ
‖ f‖L1(RN ). (3.46)

We have also
‖βε(uε)‖L1(RN ) ≤ ‖ f‖L1(RN), ∀ε > 0. (3.47)

Formally, (3.47) follows by multiplying (3.44) by sign βε(uε) and integrating on RN .
However, in order to prove it rigorously, we assume first that f ∈ L1(RN)∩L2(RN)
and get the desired inequality by density argument. Indeed, in this case the solu-
tion uε to (3.44) belongs to H2(BR)∩H1(RN) on each ball BR ⊂ RN of radius R
and center 0 (see Theorem 1.10). Let ρ ∈C∞

0 (R) be such that ρ > 0, ρ(r) = 1 for
0 ≤ r ≤ 1 and ρ(r) = 0 for r ≥ 2 and let ϕR(x) = ρ

(|x|2/R2
)
. Finally, let χ =

γε be the function (3.26). Then, multiplying equation (3.44) by ϕRχ(βε(uε)) and
integrating on RN (in fact on B2R) we see that

λ
∫

B2R

uε χ(βε(uε))ϕRdx+
∫

B2R

∇uε ·∇(ϕRχ(βε(uε))dx

+
∫

B2R

ϕRβε(uε)χ(βε(uε))dx =
∫

B2R

f ϕR dx, ∀R.
(3.48)
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Keeping in mind that
∫

BR
∇uε ·∇(χ(βε(uε))ϕRdx ≥ 0 and that ϕR = 1 on [|x|< R],

we see by (3.48)

λ
∫

B2R

uε χ(βε(uε))ϕRdx+
∫

B2R\BR

(∇uε ·∇ϕR)χ(βε(uε))dx

+
∫

B2R

ϕRβε(uε)χ(βε(uε))dx≤
∫

B2R

f ϕR dx, ∀R.
(3.49)

On the other hand, multiplying (3.44) by uε and integrating on RN , we see that

λ
∫

RN
|uε |2dx+2

∫

RN
|∇uε |2dx≤

∫

RN
| f |2dx. (3.50)

Then, letting R→ ∞ and χ → sign into (3.49), we obtain (3.47), as claimed.
Note also that assuming f ∈ L1(RN)∩L2(RN) besides (3.50) we have the esti-

mate
2λ

∫

RN
|uε |2dx+

∫

RN
|βε(uε)|2dx≤

∫

RN
| f |2dx. (3.51)

(The latter follows as above multiplying equation (3.44) by ϕNβε(uε) and integra-
ting on RN .)

Moreover, we have by (3.44) for all ε,ε ′ > 0,

λ (uε −uε ′)−∆(uε −uε ′)+βε(uε)−βε ′(uε ′) = 0 in RN

and we get, as above, that

λ
∫

RN
|uε −uε ′ |2dx

≤
∫

RN
(ε|βε(uε)|+ ε ′|βε ′(uε ′)|)(|βε(uε)|+ |βε ′(uε ′)|)dx, ∀ε,ε ′ > 0

because (βε(uε)−βε ′(uε ′))(uε − uε ′) ≥ (βε(uε)−βε ′(uε ′))(εβε(uε)− ε ′βε ′(uε ′)),
∀ε,ε ′ ≥ 0.

By virtue of (3.51), this yields

λ
∫

RN
|uε −uε ′ |2dx≤C(ε + ε ′), ∀ε,ε ′ > 0. (3.52)

Hence, on a subsequence, again denoted {ε}→ 0, we have

uε → u strongly in L2(RN)

βε(uε) ⇀ η in L2(RN)

∆uε ⇀ ∆u in L2(RN).

(3.53)

Because β is maximal monotone, so is its realization β̃ ⊂ L2(RN)×L2(RN); that is,

β̃ = {[u,v] ∈ L2(RN)×L2(RN), v(x) ∈ β (u(x)), a.e. x ∈ RN}.
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Then, by (3.53) it follows that η(x) ∈ β (u(x)), a.e. x ∈ RN . Moreover, by (3.49)
and (3.50) we infer that u,η ∈ L1(RN) and ∆u = f −η ∈ L1(RN). Hence (u,η) is
a solution to (3.42).

If f ,g∈ L1(RN)∩L2(RN) and uε( f ),uε(g) are corresponding solutions to (3.44)
we have

λ
∫

RN
(uε( f )−uε(g))ϕRχ(uε( f )−uε(g))

+
∫

RN
∇(uε( f )−uε(g)) ·∇(ϕRχ(uε( f )−uε(g)))dx

+
∫

RN
(βε(uε( f ))−βε(uε(g)))ϕRχ(uε( f )−uε(g))dx

+
∫

RN
( f −g)ϕRχ(uε( f )−uε(g))dx,

where χ and ϕR are defined as above.
Letting R→ ∞ and χ → sign we obtain that

λ
∫

RN
|uε( f )−uε(g)|dx≤

∫

RN
| f −g|dx

and for ε → 0 we get (3.43); that is, ‖u( f )− u(g)‖L1(RN) ≤ (1/λ )‖ f − g‖L1(RN).

This implies by density that u = u( f ) extends as a solution to equation (3.41) for all
f ∈ L1(RN).

It remains to prove the uniqueness. If u1,u2 are two solutions to (3.42), we have

λ (u1−u2)−∆(u1−u2)+η1−η2 = 0 in D ′(RN), (3.54)

where ui,ηi ∈ L1(RN) and ηi ∈ β (ui), a.e. in RN for i = 1,2.
We set u = u1−u2 and take uδ = u∗ρδ where ρδ is a C∞

0 mollifier and ∗ stands
for convolution product. We have

λuδ −∆uδ +(η1−η2)∗ρδ = 0 in RN . (3.55)

It follows, of course, that uδ ,(η1−η2)∗ρδ ∈ L1(RN) and uδ ∈H1(RN) because, as
easily seen,

‖uδ‖L2(RN) ≤ ‖ρδ‖L2(RN)‖u‖L1(RN),

‖∇uδ‖L2(RN) ≤ ‖∇ρδ‖L2(RN)‖u‖L1(RN ).
(3.56)

Then, multiplying (3.55) by ζ (uδ ), where ζ = γε as above is a smooth approxima-
tion of the signum function (see (3.26)), we obtain

λ
∫

RN
uδ ζ (uδ )dx+

∫

RN
((η1−η2)∗ρδ )ζ (uδ )dx≤ 0

and, letting ζ → sign, we get

λ
∫

RN
|uδ (x)|dx+ liminf

δ→0

∫

RN
((η1−η2)∗ρδ )sgnuδ dx≤ 0, ∀δ > 0.



3.2 Nonlinear Elliptic Boundary Value Problem in Lp 115

Taking into account that by the monotonicity of β , we have that sgn(η1 −η2) =
sgnu, a.e. in RN , this yields

liminf
δ→0

∫

RN
((η1−η2)∗ρδ )(x)sgnuδ (x)dx≥ 0.

Hence, uδ → 0 as δ → 0 and this implies u1 = u2, as claimed. This completes the
proof of Theorem 3.3. ¤

One might expect that for λ → 0 the solution u = yλ to equation (3.42) is con-
vergent (in an appropriate space) to a solution y ∈ L1

loc(R
N) to equation

−∆y+β (y) 3 f in D ′(RN). (3.57)

It turns out that this is indeed the case and that equation (3.57) has a unique solu-
tion. More precisely, one has the following existence result due to Bénilan, Brezis
and Crandall [3].

Theorem 3.4. Assume that f ∈ L1(RN). Then,

(i) If N = 1 and 0 ∈ intR(β ), then equation (3.57) has a unique solution
y ∈W 1,∞(R) with ∆y ∈ L1(R).

(ii) If N = 2 and 0 ∈ intR(β ), then there is a unique solution
y ∈ L1

loc(R
2)∩W 1,1

loc (R2) with ∆y ∈ L1(R2) and ∇y ∈M2(R2).
(iii) If N ≥ 3, then there is a unique solution y ∈MN/(N−2)(RN)∩L1

loc(R
N)

with ∆y ∈ L1(RN).

R(β ) is the range of β and Mp(RN), p ≥ 1, is the Marcinkiewicz class of order p;
that is,

Mp(RN) =
{

u : RN→R measurable,

min
E⊂RN

{
α ∈ R+;

∫

E
|u(x)|dx≤ α(measE)1/q

}
= ‖u‖M < ∞

}
,

where
1
p

+
1
q

= 1.

Proof. (Sketch) We are going to pass to the limit λ → 0 in equation (3.42); that is,

λyλ −∆yλ +β (yλ ) 3 f . (3.42)′

The main problem is, however, the boundedness of {yλ} in L1(RN) or in L1
loc(R

N).
We set wλ = β (yλ ) (or the section of it arising in (3.42)′ if β is multivalued).
We see that

λ
∫

RN
|yλ (x+h)−yλ (x)|dx+

∫

RN
|wλ (x+h)−wλ (x)|dx≤

∫

RN

| f (x+h)− f (x)|dx, ∀h,

and
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∫

RN
|wλ (x)|dx≤

∫

RN
| f (x)|dx. (3.58)

Hence, by the Kolmogorov compactness theorem, {wλ} is compact in L1
loc(R

N)and
so, there is w ∈ L1

loc(R
N) such that, as λ → 0,

wλ → w in L1
loc(R

N). (3.59)

On the other hand, by (3.58) and by Fatou’s lemma, it follows that w ∈ L1(RN).
This implies that ∆yλ = λyλ + wλ − f is bounded in L1(RN) and so, if N ≥ 3,

we have (see [3])

‖yλ‖MN/(N−2)(RN) +‖∇yλ‖MN/(N−1)(RN ) ≤C, ∀λ > 0.

In particular, it follows that {yλ} is bounded in W 1,1
loc (RN) and so {yλ} is compact in

L1
loc(R

N). Then, on a subsequence, yλ → y in L1
loc(R

N) and by (3.59), we infer that
w(x) = β (y(x)), a.e. x ∈ RN . Clearly, y is a solution to (3.57) because ∆yλ → ∆y in
D ′(RN) as λ → 0.

We now consider the following.

The case N = 2. In this case, in order to get the boundedness of {yλ}, one must
assume further that 0 ∈ intR(β ). If we denote by j : R→ R the potential of β (i.e.,
β = ∂ j), we have that j(r)≥ c|r|, for some c > 0 and |r| ≥ R1.

Indeed, as seen earlier (Proposition 1.5), intR(β ) = intD(β−1) = intD( j∗),
where j∗ is the conjugate of j:

j(r) = sup{rp− j∗(p), ∀p ∈ R}.

We have therefore | j∗(p)| ≤ C for all p ∈ R, |p| ≤ r∗, where r∗ > 0 is suitably
chosen. This yields

j(r)≥ ρ |r|− j∗
(

ρ
r
|r|

)
≥ r∗

2
|r| for |r| ≥ 1.

Now, we come back to equation (3.42) and notice that multiplying by signyλ we get
as above ∫

[|yλ |>1]

β (yλ )yλ
|yλ |

dx≤
∫

Ω
| f |dx

and taking into account that β (yλ )yλ ≥ j(yλ )≥ c|yλ | on [|yλ | ≥ 1] we get
∫

RN
|yλ (x)|dx≤ c, ∀λ > 0

and therefore {yλ} is bounded in L1(RN). Then, by the equation ∆yλ = λyλ +
wλ− f and, by Lemma A.14 in [3], we infer that {∇yλ} is bounded in M2(R2).
This implies that y = limλ↓0 yλ exists (on a subsequence) in L1

loc(R
2) and also that

∇y ∈ M2(R2). Then, by (3.59), we see that w(x) ∈ β (y(x)), a.e. x ∈ Ω , and so y is
the desired solution.
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The case N = 1. It follows as above that {yλ} and {βλ (yλ )} are bounded in
L1(RN) and, because {y′′λ} is bounded in L1(R), we also get that {y′λ} is bounded in
L∞(R). In fact, because {y′λ} is bounded in L1(R), then there is at least one x0 ∈ R
such that {y′λ (x0)} is bounded and this, clearly, implies that {y′λ} is bounded in
L∞(R). Then we infer, as in the previous cases, that y = limλ↓0 yλ is the solution to
(3.57) and satisfies the required conditions. The details are omitted. ¤

The Porous Media Equation in L1(Ω)

We have already studied this equation in the H−1(Ω) space framework in Section
2.2. Here, we consider this equation in the L1 space framework.

In the space X = L1(Ω) define the operator
{

Au =−∆β (u), ∀u ∈ D(A),

D(A) = {u ∈ L1(Ω); β (u) ∈W 1,1
0 (Ω), ∆β (u) ∈ L1(Ω)},

(3.60)

where β is a maximal monotone graph in R×R such that 0∈ β (0) and Ω is an open
bounded subset of RN with smooth boundary. More precisely, A⊂ L1(Ω)×L1(Ω)
is defined by

A = {[u,−∆η ], u ∈ L1(Ω), η ∈W 1,1
0 (Ω), ∆η ∈ L1(Ω), η(x) ∈ β (u(x)),

a.e. x ∈Ω}.
(3.61)

We have the following.

Theorem 3.5. The operator A is m-accretive in L1(Ω)×L1(Ω).

Proof. Let u,v ∈ D(A) and let γ be a smooth monotone approximation of the sign
of the form considered earlier. (See (3.26).) Then, we have

∫

Ω
(Au−Av)γ(β (u)−β (v))dx =

∫

Ω
|∇(β (u)−β (v))|2γ ′(β (u)−β (v))dx≥ 0.

Letting γ → sign, we get ∫

Ω
(Au−Av)ξ dx≥ 0,

where ξ (x) ∈ sign(β (u(x))−β (v(x))) = sign(u(x)− v(x)), a.e. x ∈Ω . Hence, A is
accretive.

Let us prove now that R(I +A) = L1(Ω). For f ∈ L1(Ω), the equation

u+Au = f

can be equivalently written as

β−1(v)−∆v = f in Ω , v ∈W 1,1
0 (Ω), ∆v ∈ L1(Ω). (3.62)
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But, according to Corollary 3.1, equation (3.62) has a solution v ∈ W 1,q
0 (Ω),

∆v ∈ L1(Ω), 1 < q < N/(N−1). ¤

The Porous Media Equation in RN

Consider the equation

λy(x)−∆β (y(x)) 3 f (x) in RN , (3.63)

where λ > 0, and β is a maximal monotone graph in R×R such that 0 ∈ β (0).
By solution y to (3.63) we mean a function y ∈ L1(RN) such that ∃η ∈ L1

loc(R
N),

η(x) ∈ β (y(x)), a.e. x ∈ RN , and

λy−∆η = f in D ′(RN). (3.64)

Theorem 3.6. Assume that f ∈ L1(RN). Then,

(i) If N = 1 and 0 ∈ intD(β ), then there is a unique solution y ∈ L1(RN)
with η ∈ L1

loc(R)∩W 1,∞(R).
(ii) If N = 2 and 0 ∈ intD(β ), then there is a unique solution y ∈ L1(RN)

with η ∈W 1,1
loc (R2), |∇η | ∈M2(R2).

(iii) If N ≥ 3, then there is a unique solution y∈ L1(RN), with η ∈MN/(N−2)(RN).

Proof. By substitution, β (y)→ u, equation (3.63) reduces to equation (3.57) with
β−1 in the place of β and so, one can apply Theorem 3.4 to derive (i) ∼ (iii).

In the space L1(RN) consider the operator

Ay =−∆β (y), ∀y ∈ D(A) (3.65)

defined by

D(A) = {y ∈ L1(RN); ∃η ∈ L1
loc(R

N),

η(x) ∈ β (y(x)), a.e. x ∈Ω , ∆η ∈ L1(RN)} (3.66)

Ay = {−∆η ∈ L1(RN); η ∈ β (y), a.e. in RN , η ∈ L1
loc(R

N), y ∈ L1(RN)}. (3.67)

¤

We have the following.

Theorem 3.7. Assume that β is a maximal monotone graph satisfying the conditions
of Theorem 3.6. Then the operator A defined by (3.66) and (3.67) is m-accretive in
L1(RN)×L1(RN).

Proof. There is nothing left to do, except to apply Theorem 3.6 and to notice that
by Theorem 3.3 we have also the accretivity inequality
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‖u− v‖L1(RN ) ≤
1
λ
‖ f −g‖L1(RN)

if u,v are solutions to (3.63) for f and g, respectively. ¤

3.3 Quasilinear Partial Differential Operators of First Order

Here, we study the first-order partial differential operator

(Au)(x) =
N

∑
i=1

∂
∂xi

ai(u(x)), x ∈ RN , (3.68)

in the space X = L1(RN). We use the notations a =(a1,a2, ...,aN), ϕx =(ϕx1 , ...,ϕxN ),
a(u)x = ∑N

i=1(∂/∂xi)ai(u(x)) = diva(u).
The function a : R→ RN is assumed to be continuous.
We define the operator A in L1(RN)× L1(RN) as the closure of the operator

A0 ⊂ L1(Ω)×L1(Ω) defined in the following way.

Definition 3.2. A0 = {[u,v] ∈ L1(RN)×L1(RN); a(u) ∈ (L1(RN))N} and
∫

RN
sign0(u(x)− k)((a(u(x))−a(k)) ·ϕx(x)+ v(x)ϕ(x))dx≥ 0, (3.69)

for all ϕ ∈C0(RN) such that ϕ ≥ 0, and all k ∈ R. Here, sign0r = r/|r| for r 6= 0,
sign00 = 0.

It is readily seen that, if a∈C1(R) and u∈C1
0(RN), then u∈D(A0) and A0u = a(u)x.

Indeed, if ρ is a smooth approximation of r→|r| of the form considered above, then
we have

∫

RN
ρ ′(u(x)− k)a(u)xϕ dx =

∫

RN
dx

(∫ u(x)

k
ρ ′(s− k)a′(s)ds

)

x
ϕ(x)dx

=−
∫

RN
dx

((∫ u(x)

k
ρ ′(s− k)a′(s)dx

))
·ϕx(s),

where a′ = (a′1,a
′
2, ...,a

′
N) is the derivative of a. Now, letting ρ ′ tend to sign0, we get

∫

RN
sign0(u(x)− k)(a(u(x)−a(k)) ·ϕx(x)+a(u(x))xϕ(x))dx = 0

for all ϕ ∈C0(RN). Hence, u ∈ D(A0) and A0u = (a(u))x.
Conversely, if u ∈ D(A0)∩L∞(RN) and v ∈ A0u, then using the inequality (3.69)

with k = ‖u‖L∞(RN) +1 and k =−(‖u‖L∞(RN) +1), we get

∫

RN
((a(u(x))−a(k)) ·ϕx(x)+ v(x)ϕ(x))dx≤ 0, ∀ϕ ∈C∞

0 (RN), ϕ ≥ 0,
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respectively,
∫

RN
((a(u(x))−a(k)) ·ϕx(x)+ v(x)ϕ(x))dx≥ 0, ∀ϕ ∈C∞

0 (RN), ϕ ≥ 0.

Hence, −(a(u))x + v = 0 in D ′(RN).
Let A be the closure of A0 in L1(RN)×L1(RN); that is, A = {[u,v] ∈ L1(RN)×

L1(RN); ∃[un,vn] ∈ A0, un → u, vn → v in L1(RN)}.
Theorem 3.8. Let a : R→RN be continuous and limsupr→0(‖a(r)‖/|r|) < ∞. Then
A is m-accretive.

We prove Theorem 3.8 in several steps but, before proceeding with its proof, we
must emphasize that a function u satisfying (3.69) is not a simple distributional
solution to equation (a(u))x = v. Its precise meaning becomes clear in the context
of the so-called entropy solution to the conservation law equation ut +(a(u))x = v
which is discussed later on in Chapter 5. We shall first prove the following.

Lemma 3.2. A is accretive in L1(RN)×L1(RN).

Proof. Let [u,v] and [ū, v̄] be two arbitrary elements of A0. By Definition 3.2, we
have, for k = ū(y), ϕ(x) = ψ(x,y) (ψ ∈C∞

0 (RN ×RN), ψ ≥ 0),
∫

RN×RN
sign0(u(x) − ū(y))(a(u(x))−a(ū(y)) ·ψx(x,y)

+v(x)ψ(x,y))dxdy≥ 0.
(3.70)

Now, it is clear that we can interchange u and ū, v and v̄, x and y to obtain, by adding
to (3.70) the resulting inequality,

∫

RN×RN
sign0(u(x) − ū(y))((a(u(x))−a(ū(y)) · (ψx(x,y))

+ψy(x,y))+(v(x)− v̄(y))ψ(x,y))dxdy≥ 0,
(3.71)

for all ψ ∈C∞
0 (RN ×RN), ψ ≥ 0. Now, we take

ψ(x,y) =
1
εn ϕ(x+ y)ρ

(
x− y

ε

)
,

where ϕ ∈ C∞
0 (RN), ϕ ≥ 0, and ρ ∈ C0(RN) is such that suppρ ⊂ {y; ‖y‖ ≤ 1},∫

ρ(y)dy = 1, ρ(y) = ρ(−y), ∀y ∈ RN .
Substituting in (3.71), we get after some calculation that
∫

RN×RN
sign0(u(y+ εz)− ū(y))(2(a(u(y+ εz))

−a(ū(y)) ·∇ϕ(y+ εz))+(v(y+ εz)− v̄(y))ϕ(y+ εz))ρ(z)dydz≥ 0.

(3.72)

Now, letting ε tend to zero in (3.72), we get
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∫

RN
θ(y)(v(y) −v̄(y))ϕ(y)dy+2

∫
RN θ(y)(a(u(y))

−a(ū(y)) ·∇ϕ(y))dy≥ 0,
(3.73)

for all θ(y) ∈ sign(u(y)− ū(y)), a.e. y ∈ RN . Hence, for every ϕ ∈C∞
0 (RN), ϕ ≥ 0,

there exists θ ∈ J(u− ū) such that (3.73) holds, where J is the duality mapping of
the space L1(Ω) (see (1.4)). If in (3.73) we take ϕ = α(ε‖y‖2), where α ∈C∞

0 (R),
α ≥ 0, and α(r) = 1 for |r| ≤ 1, and let ε → 0, we get

∫

RN
θ(y)(v(y)− v̄(y))dy≥ 0

for some θ ∈ J(u−ū). Hence, A0 is accretive in L1(RN) and hence so is its clo-
sure A. ¤

In order to prove that A is m-accretive, taking into account that A0 is accretive, it
suffices to show that the range of I +A0 is dense in L1(RN); that is, that the equation
u + a(u)x = f has a solution (in the generalized sense) for a sufficiently large class
of functions f . This means, adopting a terminology used in linear theory, that A0 is
essentially m-accretive. To this end, we approximate this equation by the following
family of elliptic equations

u+a(u)x− ε∆u = f in RN . (3.74)

Lemma 3.3. Let a ∈ C1, a′ bounded, and let ε > 0. Then, for each f ∈ L2(RN),
equation (3.74) has a solution u ∈ H2(RN).

Proof. Denote by Λ the operator defined in L2(RN) by

Λ =−∆ , D(Λ) = H2(RN)

and let Bu = −a(u)x, ∀u ∈ D(B) = H1(RN). The operator T = (I + εΛ)−1B is
continuous and bounded from H1(RN) to H2(RN), and therefore it is compact in
H1(RN). For a given f ∈ L2(RN), equation (3.74) is equivalent to

u = Tu+(I + εΛ)−1 f . (3.75)

Let D = {u ∈ H1(RN); ‖u‖2
L2(RN ) + ε‖∇u‖2

L2(RN) < R2}, where R = ‖ f‖L2(RN) +1.

We note that
(I + εΛ)−1 f /∈ (I− tT )(∂D), 0≤ t ≤ 1. (3.76)

Indeed, otherwise there is u ∈ ∂D and t ∈ [0,1] such that

u− ε∆u+ ta(u)x = f in RN ,

and we argue from this to a contradiction. Multiplying the last equation by u and
integrating on RN , we get
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‖u‖2
L2(RN) + ε‖∇u‖2

L2(RN) + t
∫

RN
a(u)xudx =

∫

RN
f udx.

On the other hand, we have
∫

RN
a(u)xudx =−

∫

RN
a(u) ·ux dx =−

∫

RN
divb(u)dx = 0,

where b(u) =
∫ u

0 a(s)ds. Hence,

‖u‖2
L2(RN) + ε‖∇u‖2

L2(RN) ≤ ‖ f‖L2(RN)‖u‖L2(RN ) ≤ (R−1)R < R2,

and so u /∈ ∂D.
Let us denote by d(I− tT,D,(I + εΛ)−1 f ) the topological degree of the map

I− tT relative to D at the point (I + εΛ)−1 f . By (3.76) and the invariance property
of topological degree, it follows that (see [8] for the definition and basic properties
of topological degree in Banach spaces)

d(I− tT,D,(I + εΛ)−1 f ) = d(I,D,(I + εΛ)−1 f )

for all 0≤ t ≤ 1. Hence,

d(I−T,D,(I + εΛ)−1 f ) = d(I,D,(I + εΛ)−1 f ) = 1

because (I + εΛ)−1 f ∈ D. Hence, equation (3.75) has at least one solution
u ∈ D(Λ) = H2(RN) and so the proof of Lemma 3.3 is complete. ¤
Lemma 3.4. Under the assumptions of Lemma 3.3, if f ∈ Lp(RN) ∩ L2(RN),
1≤ p≤ ∞, then u ∈ Lp(RN) and

‖u‖Lp(RN) ≤ ‖ f‖Lp(RN ). (3.77)

Proof. We first treat the case 1 < p < ∞. Let αn : R→ R be defined by

αn(r) =





|r|p−2r if |r| ≤ n,

np−2r if r > n,

np−2r if r <−n.

If we multiply equation (3.74) by αn(u) ∈ L2(RN) and integrate on RN , we get
∫

RN
αn(u)udx≤

∫

RN
f αn(u)dx (3.78)

because, as previously seen,

∫

RN
a(u)xαn(u)dx =

∫

RN
dx

(∫ u(x)

0
a′(s)αn(s)ds

)

x
dx = 0,

and
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−
∫

RN
∆uαn(u)dx =

∫

RN
α ′

n(u)|∇u|2dx≥ 0,

because αn is monotonically increasing. Note also the inequality

αn(r)r ≥ |αn(r)|q, ∀r ∈ R,
1
p

+
1
q

= 1.

Then, using the Hölder inequality in (3.78), we get

∫

RN
|αn(u)|qdx≤

(∫

RN
| f |pdx

)1/p (∫

RN
|αn(u)|qdx

)1/q

,

whence ∫

[|u(x)|≤n]
|u(x)|pdx≤ ‖ f‖p

Lp(RN ),

which clearly implies that u ∈ Lp(RN) and that (3.77) holds. In the case p = 1, we
multiply equation (3.74) by δn(u), where

δn(r) =





nr if |r| ≤ n−1,

1 if r > n−1,

−1 if r <−n−1.

Note that δn(u) ∈ L2(RN) because m{x ∈ RN ; |u(x)|> n−1} ≤ n2‖u‖2
L2(RN). Then,

arguing as before, we get
∫

[|u(x)|≥n−1]
|u(x)|dx ≤

∫

RN
δn(u)dx≤

∫

RN
| f |δn(u)|dx

≤ n
∫

[|u|≤n−1]
| f | |u|dx+

∫

[|u|>n−1]
| f |dx≤ ‖ f‖L1(RN ).

Then, letting n→ ∞, we get (3.77), as desired.
Finally, in the case p = ∞, we set M = ‖ f‖L∞(RN ). Then, we have

u−M +a(u)x− ε∆(u−M) = f −M ≤ 0, a.e. in RN .

Multiplying this by (u−M))+ (which, as is well known, belongs to H1(RN)), we
get

∫
RN ((u−M)+)2dx≤ 0 because

∫

RN
a(u)x(u−M)+dx = 0,

−
∫

RN
∆(u−M)(u−M)+dx =

∫

RN
|∇(u−M)+|2dx≥ 0.

Hence, u(x)≤M, a.e. x ∈ RN . Now, we multiply the equation

u+M +(a(u))x− ε∆(u+M) = f +M ≥ 0
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by (u + M)− and get as before that (u + M)− = 0, a.e. in RN . Hence, u ∈ L∞(RN)
and

|u(x)| ≤ ‖ f‖L∞(RN), a.e. x ∈ RN ,

as desired. ¤
Lemma 3.5. Under the assumptions of Lemma 3.3, let f ,g ∈ L2(RN)∩L1(RN) and
let u,v ∈H2(RN)∩L1(RN) be the corresponding solutions to equation (3.74). Then
we have

‖(u− v)+‖L1(RN) ≤ ‖( f −g)+‖L1(RN), (3.79)

‖u− v‖L1(RN) ≤ ‖( f −g)‖L1(RN ). (3.80)

Proof. Because (3.80) is an immediate consequence of (3.79) we confine ourselves
to the latter estimate. If we multiply the equation

u− v+(a(u)−a(v))x− ε∆(u− v) = f −g

by ξ ∈ L∞(RN), ξ (x) ∈ sign(u− v)+ (or, more precisely, by ζ (u− v), where ζ is
given by (3.26)) and integrate on RN , we get

∫

RN
(u− v)+dx+

∫

RN
(a(u)−a(v))xξ (x)dx≤

∫

RN
( f −g)+dx.

Now, by the divergence theorem, we have
∫

RN
(a(u)−a(v))xξ (x)dx =

∫

[u(x)>v(x)]
(a(u(x))−a(v(x)))xdx = 0

because
a(u) = a(v) on ∂{x; u(x) > v(x)}.

(Here, ∂ denotes the boundary.) Hence, ‖(u− v)+‖L1(RN) ≤ ‖( f − g)+‖L1(RN), as
claimed. ¤
Proof of Theorem 3.8. Let us show first that L1(RN)∩L∞(RN)⊂ R(I +A0). To this

end, consider a sequence {aε} of C1 functions such that aε(0) = 0 and aε
ε→0−→ a

uniformly on compacta. For f ∈ L1(RN)∩ L∞(RN), let uε ∈ H1(RN)∩ L1(RN)∩
L∞(RN) be the solution to equation (3.74). Note the estimates

‖uε‖L1(RN) ≤ ‖ f‖L1(RN), ‖uε‖L∞(RN) ≤ ‖ f‖L∞(RN), (3.81)

which were proven earlier in Lemma 3.5. Also, multiplying (3.74) by uε and inte-
grating on RN , we get

‖uε‖2
L2(RN) + ε‖∇uε‖2

L2(RN) ≤C‖ f‖2
L2(RN). (3.82)

Moreover, applying Lemma 3.4 to the functions u = uε(x) and v = vε(x+y), we get
the estimate
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∫

RN
|uε(x+ y)−uε(x)|dx≤

∫

RN
| f (x+ y)− f (x)|dx, ∀y ∈ RN .

By the Kolmogorov’s compactness criterion, these estimates imply that {uε} is com-
pact in L1

loc(R
N) and, therefore, there is a subsequence, which for simplicity again

denoted uε , such that

uε → u strongly in every L1(BR), ∀R > 0,

uε(x) → u(x), a.e. x ∈ RN ,
(3.83)

where BR = {x; ‖x‖ ≤ R}. We show that u+A0u = f .
Let ϕ ∈ C∞

0 (RN), ϕ ≥ 0, and let α ∈ C1(R) be such that α ′′ ≥ 0. We multiply
equation (3.74) by α ′(uε)ϕ , and integrate on RN . Then, the integration by parts
yields

∫

RN
α ′(uε)uε ϕ dx −

∫

RN
(α ′(uε)ϕ)x(a(uε)−a(k))dx+ ε

∫

RN
α ′′(uε)(∇uε)2ϕ dx

+ε
∫

RN
(∇uε ·∇ϕ)α ′(uε)dx =

∫

RN
f α ′(uε)ϕ dx.

This yields
∫

RN
(α ′(uε)uε ϕ +εα ′(uε)∇uε ·∇ϕ− (α ′(uε)ϕ)x(a(uε)−a(k)))dx

≤
∫

RN
f α ′(uε)ϕ dx.

Now, letting ε tend to zero, it follows by (3.81)–(3.83) that
∫

RN
(α ′(u)uϕ− (α ′(u)ϕ)x(a(u)−a(k)))dx≤

∫

RN
f α ′(u)ϕ dx.

Next, we take α ′(s) = ζ (s− k), where ζ is of the form (3.26).
Then, letting ζ → sign0, we get the inequality

∫

RN
sign0(u− k)[uϕ− (a(u)−a(k))ϕx− f ϕ]dx≤ 0.

On the other hand, because limsup|r|→0 (‖a(r)‖/|r|) < ∞, we have that a(u) ∈
L1(RN). We have therefore shown that f ∈ u + A0u. Now, let f ∈ L1(RN), and
let fn ∈ L1(RN)∩ L∞(RN) be such that fn → f in L1(RN) for n → ∞. Let un ∈
D(A0) be the solution to the equation u + A0u 3 fn. Because A0 is accretive in
L1(RN)× L1(RN), we see that {un} is convergent in L1(RN). Hence, there is
u ∈ L1(RN) such that

un → u, vn−un → f in L1(RN), vn ∈ A0un.

This implies that f ∈ u+Au. ¤
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In particular, we have proved that for every f ∈ L1(RN) the first-order partial
differential equation

u−
N

∑
i=1

∂
∂xi

ai(u) = f in RN (3.84)

has a unique generalized solution u ∈ L1(RN), and the map f → u is Lipschitz con-
tinuous in L1(RN).

Bibliographical Remarks

The general theory of nonlinear m-accretive operators in Banach spaces has been
developed in the works of Kato [10] and Crandall and Pazy [6, 7] in connection with
the theory of semigroups of nonlinear contractions and nonlinear Cauchy problem
in Banach spaces, which is presented later on. The existence theory of semilinear
elliptic equations in L1 presented here is due to Bénilan, Brezis, and Crandall [3],
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equation which is discussed in Chapter 5.

References

1. V. Barbu, Continuous perturbation of nonlinear m-accretive operators in Banach spaces, Boll.
Unione Mat. Ital., 6 (1972), pp. 270–278.

2. V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff,
Leyden, 1976.

3. Ph. Bénilan, H. Brezis, M.G. Crandall, A semilinear equation in L1(RN), Ann. Scuola Norm.
Sup. Pisa, 2 (1975), pp. 523–555.

4. H. Brezis, W. Strauss, Semilinear elliptic equations in L1, J. Math. Soc. Japan, 25 (1973),
pp. 565–590.

5. M.G. Crandall, The semigroup approach to first-order quasilinear equation in several space
variables, Israel J. Math., 12 (1972), pp. 108–132.

6. M.G. Crandall, A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Funct.
Anal., 3 (1969), pp. 376–418.

7. M.G. Crandall, A. Pazy, On accretive sets in Banach spaces, J. Funct. Anal., 5 (1970),
pp. 204–217.

8. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1975.
9. J. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Tech-

nology, Springer-Verlag, Berlin, 1982.
10. T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear

Functional Analysis, F. Browder (Ed.), American Mathemathical Society, Providence, RI,
1970, pp. 138–161.

11. R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley
and Sons, New York, 1976.

12. G. Stampacchia, Equations Elliptiques du Second Ordre à Coefficients Discontinues, Les
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Chapter 4
The Cauchy Problem in Banach Spaces

Abstract This chapter is devoted to the Cauchy problem associated with nonlinear
quasi-accretive operators in Banach spaces. The main result is concerned with the
convergence of the finite difference scheme associated with the Cauchy problem in
general Banach spaces and in particular to the celebrated Crandall–Liggett exponen-
tial formula for autonomous equations, from which practically all existence results
for the nonlinear accretive Cauchy problem follow in a more or less straightforward
way.

4.1 The Basic Existence Results

Mild Solutions

Let X be a real Banach space with the norm ‖ · ‖ and dual X∗ and let A ⊂ X ×X
be a quasi-accretive set of X ×X , or in other terminology, A : D(A) ⊂ X → X is
an operator (eventually multivalued) such that A+ωI is accretive for some ω ∈ R.
We refer to Section 3.1 for definitions and basic properties of quasi-accretive (or
ω-accretive) operators.

Consider the Cauchy problem




dy
dt

(t)+Ay(t) 3 f (t), t ∈ [0,T ],

y(0) = y0,
(4.1)

where y0 ∈ X and f ∈ L1(0,T ;X).

Definition 4.1. A strong solution to (4.1) is a function y∈W 1,1((0,T ];X)∩C([0,T ];X)
such that

f (t)− dy
dt

(t) ∈ Ay(t), a.e. t ∈ (0,T ), y(0) = y0.

Here, W 1,1((0,T ];X) = {y ∈ L1(0,T ;X); y′ ∈ L1(δ ,T ;X), ∀δ ∈ (0,T )}.
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It is readily seen that any strong solution to (4.1) is unique and is a continuous
function of f and y0. More precisely, we have:

Proposition 4.1. Let A be ω-accretive, fi ∈ L1(0,T ;X), yi
0 ∈ D(A), i = 1,2, and let

yi ∈W 1,1((0,T ];X), i = 1,2, be corresponding strong solutions to problem (4.1).
Then,
‖y1(t)−y2(t)‖ ≤ eωt‖y1

0−y2
0‖+

∫ t

0
eω(t−s)[y1(s)−y2(s), f1(s)− f2(s)]sds

≤ eωt‖y1
0−y2

0‖+
∫ t

0
eω(t−s)‖ f1(s)− f2(s)‖ds, ∀t ∈ [0,T ].

(4.2)

Here (see Proposition 3.7)

[x,y]s = inf
λ>0

λ−1(‖x+λy‖−‖x‖) = max{(y,x∗); x∗ ∈Φ(x)} (4.3)

and ‖x‖Φ(x) = J(x) is the duality mapping of X ; that is, Φ(x) = ∂‖x‖.
The main ingredient of the proof is the following chain differentiation rule

lemma.

Lemma 4.1. Let y = y(t) be an X-valued function on [0,T ]. Assume that y(t) and
‖y(t)‖ are differentiable at t = s. Then,

‖y(s)‖ d
ds
‖y(s)‖=

(
dy
ds

(s),w
)

, ∀w ∈ J(y(s)). (4.4)

Here, J : X → X∗ is the duality mapping of X.

Proof. Let ε > 0. We have

(y(s+ ε)− y(s),w)≤ (‖y(s+ ε)‖−‖y(s)‖)‖w‖, ∀w ∈ J(y(s)),

and this yields (
dy
ds

(s),w
)
≤ d

ds
‖y(s)‖‖y(s)‖.

Similarly, from the inequality

(y(s− ε)− y(s),w)≤ (‖y(s− ε)‖−‖y(s)‖)‖w‖,

we get (
d
ds

y(s),w
)
≥ d

ds
‖y(s)‖‖y(s)‖,

as claimed.
In particular, it follows by (4.4) that

d
ds
‖y(s)‖=

[
y(s),

dy
ds

(s)
]

s
. ¤ (4.5)
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Proof of Proposition 4.1. We have

d
ds

(y1(s)− y2(s))+Ay1(s)−Ay2(s) 3 f1(s)− f2(s), a.e. s ∈ (0,T ). (4.6)

On the other hand, because A is ω-accretive, we have (see (3.16))

[y1(s)− y2(s),Ay1(s)−Ay2(s)]s ≥−ω‖y1(s)− y2(s)‖

and so, by (4.5) and (4.6), we see that

d
ds
‖y1(s)− y2(s)‖ ≤ [y1(s)− y2(s), f1(s)− f2(s)]s +ω‖y1(s)− y2(s)‖,

a.e. s ∈ (0,T ).

Then, integrating on [0, t], we get (4.2), as claimed.

Proposition 4.1 shows that, as far as the uniqueness and continuous dependence
of solution of data are concerned, the class of quasi-accretive operators A offers
a suitable framework for the Cauchy problem. For this reason, such a nonlinear
system is also called quasi-accretive. However, for the existence we must extend
the notion of the solution for the Cauchy problem (4.1) from differentiable to conti-
nuous functions.

Definition 4.2. Let f ∈ L1(0,T ;X) and ε > 0 be given. An ε-discretization on [0,T ]
of the equation y′+ Ay 3 f consists of a partition 0 = t0 ≤ t1 ≤ t2 ≤ ·· · ≤ tN of the
interval [0, tN ] and a finite sequence { fi}N

i=1 ⊂ X such that

ti− ti−1 < ε for i = 1, ...,N, T − ε < tN ≤ T, (4.7)

N

∑
i=1

∫ ti

ti−1

‖ f (s)− fi‖ds < ε. (4.8)

We denote by Dε
A(0 = t0, t1, ..., tN ; f1, ..., fN) this ε-discretization.

A Dε
A(0 = t0, t1, ..., tN ; f1, ..., fN) solution to (4.1) is a piecewise constant function

z : [0, tN ]→ X whose values zi on (ti−1, ti] satisfy the finite difference equation

zi− zi−1

ti− ti−1
+Azi 3 fi, i = 1, ...,N. (4.9)

Such a function z = {zi}N
i=1 is called an ε-approximate solution to the Cauchy pro-

blem (4.1) if it further satisfies

‖z(0)− y0‖ ≤ ε. (4.10)

Definition 4.3. A mild solution of the Cauchy problem (4.1) is a function
y ∈ C([0,T ];X) with the property that for each ε > 0 there is an ε-approximate
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solution z of y′+ Ay 3 f on [0,T ] such that ‖y(t)− z(t)‖ ≤ ε for all t ∈ [0,T ] and
y(0) = x.

Let us note that every strong solution y ∈ C([0,T ];X)∩W 1,1((0,T ];X) to (4.1)
is a mild solution. Indeed, let 0 = t0 ≤ t1 ≤ ·· · ≤ tN be an ε-discretization of [0,T ]
such that

∥∥∥∥
d
dt

y(t)− y(ti)− y(ti−1)
ti− ti−1

∥∥∥∥≤ ε, ti− ti−1 ≤ δ , i = 1,2, ...,N,

and ∫ ti

ti−1

‖ f (t)− f (ti)‖dt ≤ ε(ti−ti−1).

Then, the step function z : [0,T ] → X defined by z = y(ti) on (ti−1, ti] is a solu-
tion to the ε-discretization Dε

A (0 = t0, t1, ..., tn; f1, ..., fn), and, if we choose the dis-
cretization {t j} so that ‖y(t)− y(s)‖ ≤ ε for t,s ∈ (ti−1, ti), we have by (4.2) that
‖y(t)− z(t)‖ ≤ ε for all t ∈ [0,T ], as claimed.

Theorem 4.1 below is the main result of this section.

Theorem 4.1. Let A be ω-accretive, y0 ∈D(A), and f ∈ L1(0,T ;X). For each ε > 0,
let problem (4.1) have an ε-approximate solution. Then, the Cauchy problem (4.1)
has a unique mild solution y. Moreover, there is a continuous function δ = δ (ε)
such that δ (0) = 0 and if z is an ε-approximate solution of (4.1), then

‖y(t)− z(t)‖ ≤ δ (ε) for t ∈ [0,T − ε]. (4.11)

Let f ,g ∈ L1(0,T ;X) and y, ȳ be mild solutions to (4.1) corresponding to f and
g, respectively. Then,

‖y(t) −ȳ(t)‖ ≤ eω(t−s)‖y(s)− ȳ(s)‖

+
∫ t

s
eω(t−τ)[y(τ)− ȳ(τ), f (τ)−g(τ)]sdτ

for 0≤ s < t ≤ T.

(4.12)

This important result, which represents the core of the existence theory of evo-
lution processes governed by accretive operators is proved below in several steps.
It is interesting that, as Theorem 4.1 amounts to saying, the existence of a unique
mild solution for (4.1) is the consequence of two assumptions on A: ω-accretivity
and existence of an ε-approximate solution. The latter is implied by the quasi-m-
accretivity or a weaker condition of this type. Indeed, we have

Theorem 4.2. Let C be a closed convex cone of X and let A be ω-accretive in X×X
such that

D(A)⊂C ⊂
⋂

0<λ<λ0

R(I +λA) for some λ > 0. (4.13)

Let y0 ∈ D(A) and f ∈ L1(0,T ;X) be such that f (t) ∈ C, a.e. t ∈ (0,T ). Then,
problem (4.1) has a unique mild solution y. If y and ȳ are two mild solutions to (4.1)
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corresponding to f and g, respectively, then

‖y(t) −ȳ(t)‖ ≤ eω(t−s)‖y(s)− ȳ(s)‖

+
∫ t

s
eω(t−τ)[y(τ)− ȳ(τ), f (τ)−g(τ)]sdτ for 0≤ s < t ≤ T.

(4.14)

Proof. Let f ∈ L1(0,T ;X) and let fi be the nodal approximation of f ; that is,

fi =
1

ti− ti−1

∫ ti

ti−1

f (s)ds, i = 1,2, ...,N,

where {ti}N
i=1, t0 = 0, is a partition of the interval [0, tN ] such that ti − ti−1 < ε ,

t− ε < tN < T. By assumption (4.13), it follows that, for ε small enough, the func-
tion z = zi on (ti−1, ti], z0 = y0, is well defined by (4.9) and it is an ε-approximate
solution to (4.1). (It is readily seen by assumption (4.2) and the ω-accretivity of A
that equation (4.9) has a unique solution {zi}N

i=0.) Thus, Theorem 4.1 is applicable
and so problem (4.1) has a unique solution satisfying (4.14). ¤

In particular, by Theorem 4.2 we obtain the following.

Corollary 4.1. Let A be quasi-m-accretive. Then, for each y0 ∈ D(A) and f ∈
L1(0,T ;X) there is a unique mild solution y to (4.1).

In the sequel, we frequently refer to the map (y0, f )→ y from D(A)×L1(0,T ;X)
to C([0,T ];X) as the nonlinear evolution associated with A. It should be noted that,
in particular, the range condition (4.13) holds if C = X and A is ω-m-accretive in
X×X .

In the particular case when f ≡ 0, if A is ω-accretive and

R(I +λA)⊃ D(A) for all small λ > 0, (4.15)

then we have, by Theorem 4.1:

Theorem 4.3 (Crandall and Liggett [24]). Let A be ω-accretive, satisfying the
range condition (4.15) and y0 ∈ D(A). Then, the Cauchy problem

dy
dt

+Ay 3 0, t > 0,

y(0) = y0,
(4.16)

has a unique mild solution y. Moreover,

y(t) = lim
n→∞

(
I +

t
n

A
)−n

y0 (4.17)

uniformly in t on compact intervals.

Indeed, in this case, if t0 = 0, ti = iε, i = 1, ...,N, then the solution zε to the
ε-discretization Dε

A(0 = t0, t1, ..., tN) is given by the iterative scheme
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zε(t) = (I + εA)−iy0 for t ∈ ((i−1)ε, iε].

Hence, by (4.11), we have

‖y(t)− (I + εA)−iy0‖ ≤ δ (ε) for (i−1)ε < t ≤ iε,

which implies the exponential formula (4.17) with uniform convergence on compact
intervals. We note that, in particular, the range conditions (4.13) and (4.15) are auto-
matically satisfied if A is quasi-m-accretive; that is, if ωI +A is m-accretive for some
real ω . The solution y to (4.16) given by exponential formula (4.17) is also denoted
by e−Aty0.

Corollary 4.2. Let A be quasi-m-accretive and y0 ∈D(A). Then the Cauchy problem
(4.16) has a unique mild solution y given by the exponential formula (4.17).

We now apply Theorem 4.2 to the mild solutions y = y(t) and ȳ = x to the equa-
tions

y′+Ay 3 f in (0,T ),

and
y′+Ay 3 v in (0,T ), v ∈ Ax,

respectively. We have, by (4.14),

‖y(t)− x‖ ≤ eω(t−s)‖y(s)− x‖+
∫ t

s
[y(τ)− x, f (τ)− v]seω(t−τ)dτ,

∀ 0≤ s < t ≤ T, [x,v] ∈ A.

(4.18)

Such a function y ∈C([0,T ];X) is called an integral solution to equation (4.1).
We may conclude, therefore, that under the assumptions of Theorem 4.2 the

Cauchy problem (4.1) has an integral solution, which coincides with the mild so-
lution of this problem. On the other hand, it turns out that the integral solution is
unique (see Bénilan and Brezis [11]) and under the assumptions of Theorem 4.2 (in
particular, if A is ω-m-accretive) these two notions coincide.

It should be mentioned that in finite-dimensional spaces, Theorem 4.1 reduces to
the classical Peano convergence scheme for solutions to the Cauchy problem which
is valid for any continuous operator A. However, in infinite dimensions there are
classical counterexamples which show that continuity alone is not enough for the
existence of solutions. On the other hand, in most of significant infinite-dimensional
examples the operator A is not continuous. This is the case with nonlinear boundary
value problems of parabolic or hyperbolic type where the domain D(A) of operator
A is a proper subset of X and so A is unbounded. More is said about this in Chapter 5.

If X is the Euclidean space RN and A = ψ : RN →RN is a measurable and mono-
tone function; that is,

(ψ(x)−ψ(y),x− y)N ≥ 0, ∀x,y ∈ RN ,

where (·, ·)N is the scalar product of RN , then the Cauchy problem
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dy
dt

(t)+ψ(y(t)) = 0, t ≥ 0,

y(0) = y0

(4.19)

is not, generally, well posed.
This can be seen from the following elementary example

dy
dt

(t)+ sgn0y(t) = 0, t ≥ 0, y(0) = y0,

where sgn0y = y/|y|. However, if we replace ψ by the Filipov mapping

ψ̃(x) =
⋂

δ>0

⋂

m(E)=0

conv ψ(Bδ (x)\E), ∀x ∈ RN ,

which, as seen in Proposition 2.5, is m-accretive in RN×RN , then the corresponding
Cauchy problem; that is,

dy
dt

(t)+ ψ̃(y(t)) 3 0, t ≥ 0,

y(0) = y0,

has by Theorem 4.1 a unique solution y. This is the so-called Filipov solution to
(4.19) which exists locally even for nonmonotone functions ψ .

Let us now come back to the proof of Theorem 4.1.
Let z be a solution to an ε-discretization Dε

A(0 = t1, t1, ..., tN ; f1, ..., fN) and let
w be a solution to Dε

A(0 = s0,s1, ...,sM;g1, ...,gM) with the nodal values zi and w j,
respectively. We set ai j = ‖zi−w j‖, δi = (ti− ti−1), γ j = (s j− s j−1).

We begin with the following estimate for the solutions to finite difference scheme
(4.7)–(4.9).

Lemma 4.2. For all 1≤ i≤ N, 1≤ j ≤M, we have

ai j ≤
(

1−ω
δiγ j

δi + γ j

)−1 (
γ j

δi + γ j
ai−1, j +

δi

δi + γ j
ai, j−1

+
δiγ j

δi + γ j
[zi−w j, fi−g j]s

)
.

(4.20)

Moreover, for all [x,v] ∈ A we have

ai,0 ≤ αi,1‖z0− x‖+‖w0− x‖+
i

∑
k=1

αi,kδk(‖ fk‖+‖v‖), 0≤ i≤ N, (4.21)

and

a0, j ≤ β j,1‖w0− x‖+‖z0− x‖+
j

∑
k=1

β j,kγk(‖gk +‖v‖), 0≤ j ≤M, (4.22)
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where

αi,k =
i

∏
m=k

(1−ωδm)−1, β j,k =
j

∏
m=k

(1−ωγm)−1. (4.23)

Proof. We have

fi +δ−1
i (zi−1− zi) ∈ Azi, g j + γ−1

j (w j−1−w j) ∈ Aw j, (4.24)

and, because A is ω-accretive, this yields (see (3.16))

[zi−w j, fi +δ−1
i (zi−1− zi)−g j− γ−1

j (w j−1−w j)]s ≥−ω‖zi−w j‖.

Hence,

−ω‖zi−w j‖ ≤ [zi−w j, fi−g j]s +δ−1
i [zi−w j,zi−1− zi]s

+ γ−1
j [zi−w j,w j−w j−1]s

≤ [zi−w j, fi−g j]s−δ−1
i (‖zi−w j‖−‖zi−1−w j‖)

− γ−1
j (‖zi−w j‖−‖zi−w j−1‖),

and rearrranging we obtain (4.20).
To get estimates (4.21), (4.22), we note that, inasmuch as A is ω-accretive, we

have (see (3.3))

‖zi− x‖ ≤ (1−δiω)−1‖zi− x+δi( fi +δ−1
i (zi−1− zi)− v)‖,

respectively,

‖w j− x‖ ≤ (1− γ jω)−1‖w j− x+ γ j(g j + γ−1
j (w j−1−w j)− v)‖,

for all [x,v] ∈ A. Hence,

‖zi− x‖ ≤ (1−δiω)−1‖zi−1− x‖+(1−δiω)−1δi(‖ fi‖+‖v‖)
‖w j− x‖ ≤ (1− γ jω)−1‖w j−1− x‖+(1− γ jω)−1γ j(‖gi‖+‖v‖)

and (4.21), (4.22) follow by a simple calculation. ¤

In order to get, by (4.20), explicit estimates for ai j, we invoke a technique fre-
quently used in stability analysis of finite difference numerical schemes.

Namely, consider the functions ψ and ϕ on [0,T ] that satisfy the linear first order
hyperbolic equation

∂ψ
∂ t

(t,s)+
∂ψ
∂ s

(t,s)−ωψ(t,s) = ϕ(t,s)

for 0≤ t ≤ T, 0≤ s≤ T,
(4.25)

and the boundary conditions
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ψ(t,s) = b(t− s) for t = 0 or s = 0, (4.26)

where b ∈C([−T,T ]) and ϕ is defined later on.
There is a close relationship between equation (4.25) and inequality (4.20). In-

deed, let us define the grid

D = {(ti,s j); 0 = t0 ≤ t1 ≤ ·· · ≤ tN < T, 0 = s0 ≤ s1 ≤ ·· · ≤ sM < T}

and approximate (4.25) by the difference equations

ψi, j−ψi−1, j

δi
+

ψi, j−ψi, j−1

γ j
−ωψi j = ϕi, j

for i = 1, ...,N, j = 1, ...,M,

(4.27)

where δi = ti− ti−1, γ j = s j− s j−1, and ϕi, j is a piecewise constant approximation
of ϕ defined below. After some rearrangement we obtain

ψi, j =
(

1−ω
δiγ j

δi + γ j

)−1 (
γ j

δi+γ j
ψi−1, j + δi

δi+γ j
ψi, j−1 + δiγ j

δi+γ j
ϕi, j

)
,

i = 1, ...,N, j = 1, ...,M.

(4.28)

In the following we take

ϕ(t,s) = ‖ f (t)−g(s)‖, ϕi, j = ‖ fi−g j‖, i = 1, ...,N, j = 1, ...,M,

where fi and g j are the nodal approximations of f ,g ∈ L1(0,T ;X), respectively.
Integrating equations (4.25) and (4.26), via the characteristics method, we get

ψ(t,s) = G(b,ϕ)(t,s)

=





eωsb(t− s)+
∫ s

0
eω(s−τ)ϕ(t− s+ τ,τ)dτ if 0≤ s < t ≤ T,

eωtb(t− s)+
∫ t

0
eω(t−τ)ϕ(τ,s− t + τ)dτ if 0≤ t < s≤ T.

(4.29)

We set Ω = (0,T )× (0,T ), and for every measurable function ϕ : [0,T ]×
[0,T ]→ R we set

‖ϕ‖Ω = inf{‖ f‖L1(0,T ) +‖g‖L1(0,T ); |ϕ(t,s)| ≤ | f (t)|+ |g(s)|,
a.e. (t,s) ∈Ω}. (4.30)

Let Ω(∆) = [0, tN ]× [0,sM] and B : [−sM, tN ]→ R, φ : Ω(∆)→ R be piecewise
constant functions; that is, here are bi, j,φi, j ∈ R such that b(0) = B(0) and

B(r + s) = bi j for ti−1 < r ≤ ri, −s j ≤ s <−s j−1,

φ(t,s) = φi, j for (t,s) ∈ (ti−1, ti]× (s j−1,s j].
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Observe, by (4.29), via the Banach fixed point theorem, that if the mesh m(∆) =
max{(δi,γ j); i, j} of ∆ is sufficiently small, then the system (4.28) with the boun-
dary value conditions

ψi, j = bi, j for i = 0 or j = 0, (4.31)

has a unique solution {ψi j}, i = 1, ...,N, j = 1, ...,M.
Denote by Ψ = H∆ (B,φ) the piecewise constant function on Ω defined by

Ψ = ψi, j on (ti−1, ti]× (s j−1,s j]; (4.32)

that is, the solution to (4.28), (4.31).
Lemma 4.3 below provides the convergence of the finite difference scheme

(4.27), (4.31) as m(∆)→ 0.

Lemma 4.3. Let b ∈C([−T,T ]) and ϕ ∈ L1(Ω) be given. Then,

‖G(b,ϕ)−H∆ (B,φ)‖L∞(Ω(∆)) → 0 (4.33)

as
m(∆)+‖b−B‖L∞(−sM ,tN) +‖ϕ−φ‖Ω(∆) → 0.

Proof. In order to avoid a tedious calculus, we prove (4.33) in the accretive case
only (i.e., ω = 0).

Let us prove first the estimate

‖H∆ (B,φ)‖L∞(Ω(∆)) ≤ ‖B‖L∞(−sM ,tN) +‖φ‖Ω(∆). (4.34)

Indeed, we have H∆ (B,φ) = H∆ (B,0)+H∆ (0,φ), and by (4.30), (4.32) we see that
the values of H∆ (B,0) are convex combinations of the values of B.

Hence,
‖H∆ (B,0)‖L∞(Ω(∆)) ≤ ‖B‖L∞(−sM ,tN ).

It remains to show that

‖H∆ (0,φ)‖L∞(Ω(∆)) ≤ ‖φ‖Ω(∆).

By the definition (4.30) of the ‖ · ‖Ω(∆)-norm, we have

‖φ‖Ω(∆) = inf

{
N

∑
i=1

δiαi +
M

∑
j=1

γ jβ j; αi +β j ≥ |φi, j|, αi,β j ≥ 0

}
.

Now, let gi, j = αi +β j ≥ |φi, j| and set

di, j =
i

∑
k=1

αkδk +
j

∑
k=1

βkγk.
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It is readily seen that ψi, j = di, j satisfy the system (4.28) where φi, j = gi, j. Hence,
d = H∆ (B̃,g) provided di, j = b̃i, j for i = 0 or j = 0, where d = {di, j}, B̃ = {b̃i, j}
and g = {gi, j}. Inasmuch as gi, j ≥ |φi, j|, we have

d = H∆ (B̃,g)≥ H∆ (0,φ)≥ |H∆ (0,φ)

if bi, j ≥ 0. Hence,

‖H∆ (0,φ)‖L∞(Ω(∆)) ≤ ‖d‖L∞(Ω(∆)) ≤ ‖φ‖Ω(∆),

as claimed.
Now, let ψ̃ = G(b̃, ϕ̃) and assume first that ψ̃tt , ψ̃ss ∈ L∞(Ω). Then, by (4.25) we

see that ψ̃i, j = ψ̃(ti,s j) satisfy the system

ψ̃i, j− ψ̃i−1, j

δi
+

ψ̃i, j− ψ̃i, j−1

γ j
= ϕ̃i, j + ei, j, ψ̃i,0 = b̃(ti), ψ̃0, j = b̃(−s j),

i = 0,1, ...,N, j = 0,1, ...,M,

where e = {ei j} satisfies the estimate

|ei j| ≤ γ j‖ψ̃ss‖L∞(Ω) +δi‖ψ̃tt‖L∞(Ω), ∀i, j.

Then, by (4.34), this yields

‖G(b̃, ϕ̃)−H∆ (B,φ)‖L∞(Ω(∆))

≤ ‖B− b̃‖L∞(−sM ,tN) +‖ϕ̃−φ‖Ω(∆) +‖e‖Ω(∆)

≤ ‖B− b̃‖L∞(−sM ,tN) +‖ϕ̃−φ‖Ω(∆)

+Cm(Ω)(‖ψ̃tt‖L∞(Ω) +‖ψ̃ss‖L∞(Ω)).

(4.35)

Now, let ϕ ∈ L1(Ω), b ∈ C([−T,T ]), and b̃ ∈ C2([−T,T ]), ϕ̃ ∈ C2(Ω̃). Then,
ψ̃ = G(b̃, ϕ̃) is smooth, and by (4.35) we have

‖G(b,ϕ)−H∆ (B,φ)‖L∞(Ω(∆))

≤ ‖G(b,ϕ)−G(b̃, ϕ̃)‖L∞(Ω(∆)) +‖G(b̃, ϕ̃)−H∆ (B,φ)‖L∞(Ω(∆))

≤ 2‖b− b̃‖L∞(−sM ,tN ) +C‖ϕ− ϕ̃‖Ω(∆) +‖B−b‖L∞(−sM ,tN )

+‖ϕ̃−φ‖Ω(∆) +Cm(∆)(‖ψ̃tt‖L∞(Ω) +‖ψ̃ss‖L∞(Ω)).

(4.36)

Given η > 0, we may choose b̃ and ϕ̃ such that ‖b− b̃‖L∞(−sM ,tN), ‖ϕ− ϕ̃‖Ω(∆)≤ η .
Then (4.36) implies (4.33), as desired. ¤

Proof of Theorem 4.1 (Continued). We apply Lemma 4.3, where ϕ(t,s) =
‖ f (t)− g(s)‖, φ = {φi, j}, φi, j = ‖ fi − g j‖, 1 ≤ j ≤ M, 1 ≤ i ≤ N, fi and g j are
the nodal values of f and g, respectively, and
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B(t) = bi,0 for ti−1 < t ≤ ti, i = 1, ...,N,

B(s) = b0, j for − s j < s≤−s j−1, j = 1, ...,M.

Here, bi,0 is the right-hand side of (4.21) and b0, j is the right-hand side of (4.22).
It is easily seen that, for ε → 0,

B(t)→ b(t) = eωt‖z0− x‖+‖w0− x‖+
∫ t

0
eω(t−τ)(‖ f (τ)‖+‖v‖)dτ,

∀t ∈ [0,T ],

and

B(s)→ b(−s) = eωs‖w0− x‖+‖z0− x‖+
∫ s

0
eω(s−τ)(‖g(τ)‖+‖v‖)dτ,

∀s ∈ [−T,0].

By (4.8), we have
‖ϕ−φ‖Ω(∆) ≤ 2ε

and, by Lemma 4.2,

ai, j = ‖zi−w j‖ ≤ H∆ (B,φ)i, j, ∀i, j.

Then, by Lemma 4.3, we see that, for every η > 0, we have

‖z(t)−w(s)‖ ≤ G(b,ϕ)(t,s)+η , ∀s, t ∈ [0,T ], (4.37)

as soon as 0 < ε < ν(η).
If f ≡ g and z0 = w0, then G(b,ϕ)(t, t) = eωtb(0) = 2eωt‖z0 − x‖ and so,

by (4.37),

‖z(t)−w(t)‖ ≤ η +2eωt‖z− x‖, ∀x ∈ D(A), t ∈ [0,T ],

for all 0 < ε ≤ ν(η). Because ‖z0− s0‖ ≤ ε , y0 ∈ D(A), and x is arbitrary in D(A),
it follows that the sequence zε of ε-approximate solutions satisfies the Cauchy cri-
terion and so y(t) = limε→0 zε(t) exists uniformly on [0,T ]. Now, we take the limit
as ε → 0 in (4.36) with s = t +h, g≡ f , and z0 = w0 = y0. We get

‖y(t +h)− y(t)‖ ≤ G(b,ϕ)(t +h, t) = eωt(eωh +1)‖y0− x‖
+

∫ h

0
eω(h−τ)(‖ f (τ)‖+‖v‖)dτ +

∫ t

0
eω(t−τ)‖ f (τ +h)− f (τ)‖dτ, ∀[x,v] ∈ A,

and therefore y is continuous on [0,T ]. ¤
Now, by (4.37) we have, for f ≡ g, t = s,

‖z(t)− y(t)‖ ≤ δ (ε), ∀t ∈ [0,T ],
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where z is any ε-approximate solution and δ (ε)→ 0 as ε → 0. Finally, we take t = s
in (4.37) and let ε tend to zero. Then, by (4.29), we get the inequality

‖y(t)− ȳ(t)‖ ≤ eωt‖y(0)− ȳ(0)‖+
∫ t

0
eω(t−τ)‖ f (τ)−g(τ)‖dτ.

To obtain (4.12), we apply inequality (4.37), where

ϕ(t,s) = [y(t)− ȳ(t), f (t)−g(s)]s and t = s.

Then, by (4.29), we see that

G(h,ϕ)(t, t) = eωt‖y(0)− ȳ(0)‖+
∫ t

0
eω(t−s)[y(s)− ȳ(s), f (s)−g(s)]sds,

and so (4.12) follows for s = 0 and, consequently, for all s ∈ (0, t).
Thus, the proof of Theorem 4.1 is complete.

The convergence theorem can be made more precise for the autonomous equation
(4.16); that is, for f ≡ 0.

Corollary 4.3. Let A be ω-accretive and satisfy condition (4.15), and let y0 ∈D(A).
Let y be the mild solution to problem (4.16) and let yε be an ε-approximate solution
to (4.16) with yε(0) = y0. Then,

‖yε(t)− y(t)‖ ≤CT (‖y0− x‖+ |Ax|(ε + t1/2ε1/2)), ∀t ∈ [0,T ], (4.38)

for all x ∈ D(A). In particular, we have
∥∥∥∥y(t)−

(
I +

t
n

A
)−n

y0

∥∥∥∥≤CT (‖y0− x‖+ tn1/2|Ax|) (4.38)′

for all t ∈ [0,T ] and x ∈ D(A). Here, CT is a positive constant independent of x
and y0 and |Ax|= inf{‖z‖; z ∈ Ax}.

Proof. The mappings y0 → y and y0 → yε are Lipschitz continuous with Lipschitz
constant eωT , thus it suffices to prove estimate (4.38) for y0 ∈ D(A).

By estimate (4.36), we have, for all T > 0,

‖G(b,0)−H∆ (B,0)‖L∞(Ω(∆))

≤ ‖b− b̃‖L∞(−T,T ) +‖B− b̃‖L∞(−T,T ) +Cε(‖ψ̃tt‖L∞(Ω) +‖ψ̃ss‖L(Ω)),

where ψ = G(b̃,0), b̃ is a sufficiently smooth function on [−T,T ], Ω = (0,T )×
(0,T ), and C is independent of ε , b, and B. We apply this inequality for B and b as
in the proof of Theorem 4.1; that is,

b(t) = ω−1(eω|t| −1)|Ax|, ∀t ∈ [−T,T ].
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Then, we have
b′(t) = eω |t||Ax|sign t,

and we approximate the signum function sign t by

θ(t) =





t
λ

for |t| ≤ λ ,

t
|t| for |t|> λ ,

and so, we construct a smooth approximation b̃ of b such that

b̃(0) = 0, b̃′(t) = eω|t|Axθ(t),

and
b̃′′(t) = ωθ(t)|Ax|eω |t|+θ ′(t)|Ax|eω|t|.

Hence,
sup{|b̃′′(s)|; 0≤ s≤ t} ≤ eω |t||Ax|(ω +λ−1)

and, therefore,

‖b− b̃‖L∞(−t,t) +Cε(‖ψ̃tt‖L∞((0,t)×(0,t)) +‖ψ̃ss‖L∞((0,t)×(0,t)))

≤Ctε|Ax|(1+λ−1)+Cλ |Ax|, ∀t ∈ [0,T ],

where C depends on T only.
Similarly, we have

‖B− b̃‖L∞(−t,t) ≤C(ε +λ )|Ax|.

Finally,
‖G(b,0)−H∆ (B,0)‖L∞(Ωt (∆)) ≤C(ε +λ + tελ−1)|Ax|,

where Ωt = (0, t)× (0, t). This implies that (see the proof of Theorem 4.1)

‖yε(t)− y(t)‖ ≤ G(b,0)(t, t)+C|Ax|(ε +λ + tελ−1)

for all t ∈ [0,T ] and all λ > 0. For λ = (tε)1/2, this yields

‖yε(t)− y(t)‖ ≤C|Ax|(ε + t1/2ε1/2), ∀t ∈ [0,T ],

which completes the proof. ¤

Regularity of Mild Solutions

A question of great interest is that of circumstances under which the mild solutions
are strong solutions. One may construct simple examples which show that in a ge-
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neral Banach space this might be false. However, if the space is reflexive, then under
natural assumptions on A, f , and yε the answer is positive.

Theorem 4.4. Let X be reflexive and let A be closed and ω-accretive, and let
A satisfy assumption (4.13). Let y0 ∈ D(A) and f ∈ W 1,1([0,T ];X) be such that
f (t) ∈C, ∀t ∈ [0,T ]. Then, problem (4.1) has a unique mild strong solution y which
is strong solution and y ∈W 1,∞([0,T ];X). Moreover, y satisfies the estimate

∥∥∥∥
dy
dt

(t)
∥∥∥∥≤ eωt | f (0)−Ay0|+

∫ t

0
eω(t−s)

∥∥∥∥
d f
ds

(s)
∥∥∥∥ds, a.e. t∈(0,T ), (4.39)

where | f (0)−Ay0|= inf{‖w‖; w ∈ f (0)−Ay0}.
In particular, we have the following theorem.

Theorem 4.5. Let X be a reflexive Banach space and let A be an ω-m-accretive
operator. Then, for each y0 ∈ D(A) and f ∈W 1,1([0,T ];X), problem (4.1) has a
unique strong solution y ∈W 1,∞([0,T ];X) that satisfies estimate (4.39).

Proof of Theorem 4.4. Let y be the mild solution to problem (4.1) provided by Theo-
rem 4.2. We apply estimate (4.14), where y(t) := y(t + h) and g(t) := f (t + h).
We get

‖y(t +h)− y(t)‖ ≤ ‖y(h)− y(0)‖eωt +
∫ t

0
‖ f (s+h)− f (s)‖eω(t−s)ds

≤ Ch+‖y(h)− y(0)‖eωt ,

because f ∈W 1,1([0,T ];X) (see Theorem 1.18 and Remark 1.2). Now, applying the
same estimate (4.14) to y and y0, we get

‖y(h)− y0‖ ≤
∫ h

0
‖ f (s)−ξ‖eω(h−s)ds≤

∫ h

0
|Ay0− f (s)|ds,

∀ξ ∈ Ay0, h ∈ [0,T ].

We may conclude, therefore, that the mild solution y is Lipschitz on [0,T ]. Then,
by Theorem 1.17, it is, a.e., differentiable and belongs to W 1,∞([0,T ];X). Moreover,
we have

∥∥∥∥
dy
dt

(t)
∥∥∥∥ = lim

h→0

‖y(t +h)− y(t)‖
h

≤ eωt |Ay0− f (0)|+
∫ t

0

∥∥∥∥
d f
ds

(s)
∥∥∥∥eω(t−s)ds,

a.e. t ∈ (0,T ).

Now, let t ∈ [0,T ] be such that

dy
dt

(t) = lim
h→0

1
h

(y(t +h)− y(t))

exists. By inequality (4.18), we have
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‖y(t +h)− x‖ ≤ eωh‖y(t)− x‖+
∫ t+h

t
eω(t+h−s)[y(τ)− x, f (τ)−w]sdτ,

∀[x,w] ∈ A.

Noting that

[v− x,u− v]s ≤ ‖u− x‖−‖v− x‖, ∀u,v,x ∈ X ,

we get

[y(t)− x,y(t +h)− y(t)]s

≤ (eωh−1)‖y(t)− x‖+
∫ t+h

t
eω(t+h−τ)[y(τ)− x, f (τ)−w]sdτ.

Because the bracket [u,v]s is upper semicontinuous in (u,v), and positively homo-
geneous and continuous in v (see Proposition 3.7), this yields

[
y(t)− x,

dy
dt

(t)
]

s
−ω‖y(t)− x‖ ≤ [y(t)− x, f (t)−w]s, ∀[x,w] ∈ A.

Taking into account part (v) of Proposition 3.7, this implies that there is ξ∈J(y(t)−x)
such that (J is the duality mapping)

(
dy
dt

(t)−ω(y(t)− x)− f (t)−w,ξ
)
≤ 0. (4.40)

Inasmuch as the function y is differentiable in t, we have

y(t−h) = y(t)−h
d
dt

y(t)+hg(h), (4.41)

where g(h) → 0 for h → 0. On the other hand, by condition (4.13), for every h
sufficiently small and positive, there are [xh,wh] ∈ A such that

y(t−h)+h f (t) = xh +hwh.

Substituting successively in (4.30) and in (4.41) we get

(1−ωh)‖y(t)− xh‖ ≤ h‖g(h)‖, ∀h ∈ (0,λ0).

Hence, xh → y(t) and wh → f (t)− dy(t)/dt as h → 0. Because A is closed, we
conclude that

dy
dt

(t)+Ay(t) 3 f (t),

as claimed.

Remark 4.1. In particular, Theorems 4.1–4.5 remain true for equations of the form
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



dy
dt

(t)+Ay(t)+Fy(t) 3 f (t), t ∈ [0,T ],

y(0) = y0,
(4.42)

where A is m-accretive in X × X and F : X → X is Lipschitzian. Indeed, in this
case, as easily seen, the operator A + F is quasi-m-accretive; that is, A + F + ωI is
m-accretive for ω = ‖F‖Lip.

More can be said about the regularity of a strong solution to problem (4.1) if the
space X is uniformly convex.

Theorem 4.6. Let A be ω-m-accretive, f ∈W 1,1([0,T ];X), y0 ∈ D(A) and let X be
uniformly convex along with the dual X∗. Then, the strong solution to problem (4.1)
is everywhere differentiable from the right, (d+/dt)y is right continuous, and

d+

dt
y(t)+(Ay(t)− f (t))0 = 0, ∀t ∈ [0,T ), (4.43)

∥∥∥∥
d+

dt
y(t)

∥∥∥∥≤ eωt‖(Ay0− f (0))0‖+
∫ t

0
eω(t−s)

∥∥∥∥
d f
ds

(s)
∥∥∥∥ds, ∀t ∈ [0,T ). (4.44)

Here, (Ay− f )0 is the element of minimum norm in the set Ay− f .

Proof. Because X and X∗ are uniformly convex, Ay is a closed convex subset of X
for every x ∈ D(A) (see Section 3.1) and so, (Ay(t)− f (t))0 is well defined.

Let y ∈W 1,∞([0,T ];X) be the strong solution to (4.1). We have

d
dh

(y(t +h)− y(t))+Ay(t +h) 3 f (t +h), a.e. h > 0, t ∈ (0,T ),

and because A is ω-accretive, this yields
(

d
dh

(y(t+h)−y(t)),ξ
)
≤ω‖y(t+h)−y(t)‖2+( f (t+h)−η(t),ξ ),

∀η(t) ∈ Ay(t),

where ξ = J(y(t +h)− y(t)).
Then, by Lemma 4.1, we get

‖y(t +h)− y(t)‖ ≤
∫ h

0
eω(h−s)‖η(t)− f (t + s)‖ds, (4.45)

which yields
∥∥∥∥

dy
dt

(t)
∥∥∥∥≤ ‖ f (t)−η(t)‖, ∀η(t) ∈ Ay(t), a.e. t ∈ (0,T ).

In other words,
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∥∥∥∥

dy
dt

(t)
∥∥∥∥≤ ‖(Ay(t)− f (t))0‖, a.e. t ∈ (0,T ),

and because dy(t)/dt +Ay(t) 3 f (t), a.e. t ∈ (0,T ), we conclude that

dy
dt

(t)+(Ay(t)− f (t))0 = 0, a.e. t ∈ (0,T ). (4.46)

Observe also that, for all h, y satisfies the equation

d
dt

(y(t +h)− y(t))+Ay(t +h)−Ay(t) 3 f (t +h)− f (t), a.e. in (0,T ).

Multiplying this equation by J(y(t +h)− y(t)) and using the ω-accretivity of A, we
see by Lemma 4.1 that

d
dt
‖y(t +h)− y(t)‖ ≤ ω‖y(t +h)− y(t)‖+‖ f (t +h)− f (t)‖,

a.e. t, t +h ∈ (0,T ),

and therefore

‖y(t +h)− y(t)‖

≤ eω(t−s)‖y(s+h)− y(s)‖+
∫ t

s
eω(t−τ)‖ f (τ +h)− f (τ)‖dτ.

(4.47)

Finally, ∥∥∥∥
dy
dt

(t)
∥∥∥∥≤ eω(t−s)

∥∥∥∥
dy
ds

(s)
∥∥∥∥+

∫ t

s
eω(t−τ)

∥∥∥∥
d f
dτ

(τ)
∥∥∥∥dτ,

a.e. 0 < s < t < T.

(4.48)

Similarly, multiplying the equation

d
dt

(y(t)− y0)+Ay(t) 3 f (t), a.e. t ∈ (0,T ),

by J(y(t)− y0) and, integrating on (0, t), we get the estimate

‖y(t)− y0‖ ≤
∫ t

0
eω(t−s)‖(Ay0− f (s))0‖ds, ∀t ∈ [0,T ], (4.49)

and, substituting in (4.47) with s = 0, we get
∥∥∥∥

d
dt

y(t)
∥∥∥∥≤ eωt‖(Ay0− f (0))0‖+

∫ t

0
eω(t−s)

∥∥∥∥
d f
ds

(s)
∥∥∥∥ds,

a.e. t ∈ (0,T ).

(4.50)
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Because A is demiclosed (see Proposition 3.4) and X is reflexive, it follows by (4.46)
and (4.50) that y(t) ∈ D(A), ∀t ∈ [0,T ], and

‖(Ay(t)− f (t))0‖ ≤C, ∀t ∈ [0,T ]. (4.51)

Let us show now that (4.46) extends to all t ∈ [0,T ]. For t arbitrary but fixed in
[0,T ], consider hn → 0 such that hn > 0 for all n and

y(t +hn)− y(t)
hn

⇀ ξ in X as n→ 0.

By (4.46) and the previous estimates, we see that

‖ξ‖ ≤ ‖(Ay(t)− f (t))0‖, ∀t ∈ [0,T ], (4.52)

and ξ ∈ f (t)−Ay(t) because A is demiclosed. Indeed, we have

f (t)−ξ = w− lim
n→∞

1
hn

∫ t+hn

t
η(s)ds,

where η ∈ L∞(0,T ;X) and η(t) ∈ Ay(t), ∀t ∈ [0,T ].
We set ηn(s) = η(t + shn) and yn(s) = y(t + shn). If we denote again by A

the realization of A in L2(0,T ;X)×L2(0,T ;X), we have yn → y(t) in L2(0,T ;X),
ηn → f (t)−ξ weakly in L2(0,T ;X).

Because A is demiclosed in L2(0,T ;X)× L2(0,T ;X) we have that f (t)− ξ ∈
Ay(t), as claimed. Then, by (4.52) we conclude that ξ = (Ay(t)− f (t))0 and, there-
fore,

d+

dt
y(t) = lim

h↓0

y(t +h)− y(t)
h

=−(Ay(t)− f (t))0, ∀t ∈ [0,T ).

Next, we see by (4.47) that
∥∥∥∥

d+

dt
y(t)

∥∥∥∥≤ eω(t−s)
∥∥∥ d+

dt y(s)
∥∥∥+

∫ t
s eω(t−τ)

∥∥∥ d f
dτ (τ)

∥∥∥dτ,

0≤ s≤ t ≤ T.

(4.53)

Let tn → t be such that tn > t for all n. Then, on a subsequence, again denoted by tn,

d+y(tn)
dt

=−(Ay(tn)− f (tn))0 ⇀ ξ ,

where −ξ ∈ Ay(t)− f (t) (because A is demiclosed). On the other hand, it follows
by (4.53) that

‖ξ‖ ≤ limsup
n→∞

‖(Ay(tn)− f (tn))0‖ ≤ ‖(Ay(t(− f (t))0‖.
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Hence, ξ = −(Ay(t)− f (t))0 and (d+/dt)y(tn) → ξ strongly in X (because X is
uniformly convex). We have, therefore, proved that (d+/dt)y(t) is right continuous
on [0,T ), thereby completing the proof. ¤

In particular, it follows by Theorem 4.6 that, if A is quasi-m-accretive, y0 ∈D(A),
and X ,X∗ are uniformly convex, then the solution y to the autonomous problem
(4.16) is everywhere differentiable from the right and

d+

dt
y(t)+A0y(t) = 0, ∀t ≥ 0, (4.54)

where A0 is the minimal section of A. Moreover, the function t → A0y(t) is conti-
nuous from the right on R+.

It turns out that this result remains true under weaker conditions on A. Namely,
one has the following.

Theorem 4.7. Let A be ω-accretive, closed, and satisfy the condition

convD(A)⊂
⋂

0<λ<λ0

R(I +λA) for some λ0 > 0. (4.55)

Let X and X∗ be uniformly convex. Then, for every x ∈D(A) the set Ax has a unique
element of minimum norm A0x, and for every y0 ∈ D(A) the Cauchy problem (4.16)
has a unique strong solution y ∈W 1,∞([0,∞);X), which is everywhere differentiable
from the right and

d+

dt
y(t)+A0y(t) = 0, ∀t ≥ 0. (4.56)

Moreover, the function t → A0y(t) is continuous from the right and
∥∥∥∥

d+

dt
y(t)

∥∥∥∥≤ eωt‖A0y0‖, ∀t ≥ 0. (4.57)

The result extends to nonhomogeneous equation (4.1) with f ∈W 1,∞([0,T ];X).

Proof. We assume first that A is demiclosed in X×X .
Define the set B⊂ X×Y by

Bx = convAx, x ∈ D(B) = D(A).

It is readily seen that B is ω-accretive. Moreover, by (4.55) it follows that

D(A)⊂
⋂

0<λ<λ0

R(I +λB).

Let x∈D(A). Then, xλ = (I+λA)−1x and yλ = Aλ x are well defined for 0 < λ < λ0.
Moreover, ‖Aλ x‖≤ |Ax|= inf{‖w‖; w∈Ax} and xλ → x for λ → 0 (see Proposition
3.2). Let λn → 0 be such that Aλnx ⇀ y. Because Aλn x ∈ Axλn and A is demiclosed,
it follows that y ∈ Ax. On the other hand, we have
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‖Aλ x‖= ‖Bλ x‖ ≤ |Bx|= ‖B0x‖.

(B0x exists and is unique because the set Bx is convex, closed, and X is uniformly
convex.) This implies that y = B0x ∈ Ax. Hence, Ax has a unique element of mini-
mum norm A0x. Then we may apply Theorem 4.6 to deduce that the strong solution
y to problem (4.16) (which exists and is unique by Theorem 4.5) satisfies (4.56) and
(4.57). (In the proof of Theorem 4.6, the quasi-m-accretivity has been used only to
assure the existence of a strong solution, the demiclosedness of A, and the existence
of A0.)

To complete the proof, we turn now to the case where A is only closed. Let Ã be
the closure of A in X ×Xw; that is, the smallest demiclosed extension of A. Clearly,
D(A)⊂D(Ã)⊂D(A) and Ã satisfies condition (4.55). Moreover, because the duality
mapping J is continuous, it is easily seen that Ã is ω-accretive. Then, applying the
first part of the proof, we conclude that problem

d+u
dt

+ Ã0u = 0 in [0,∞),

u(0) = y0,

has a unique solution u satisfying all the conditions of the theorem. To conclude the
proof, it suffices to show that D(Ã) = D(A) and Ã0 = A0.

Let x ∈ D(Ã). Then, for each λ , there is [xλ ,yλ ] ∈ A⊂ Ã such that

x = xλ −λyλ for 0 < λ < λ0.

We have xλ = (I +λA)−1x and yλ = Aλ x = Ãλ x. Because x∈D(Ã), we have that

xλ
λ→0−→ x and ‖yλ‖ ≤ |Ãx|= ‖Ã0x‖. As Ã is demiclosed and X is uniformly convex,

this implies, by a standard device, that yλ → Ã0x as λ → 0. Finally, because A is
closed, this yields Ã0x ∈ Ax and x ∈ D(A). Hence, D(Ã) = D(A) and Ã0x = A0x,
∀x ∈ D(A). The proof of Theorem 4.7 is complete. ¤

Remark 4.2. If the space X∗ is uniformly convex, A is quasi-m-accretive,
f ∈W 1,1([0,T ];X), and y0 ∈ D(A), then the strong solution y ∈W 1,∞([0,T ];X) to
problem (4.1) (see Theorem 4.4) can be obtained as

y(t) = lim
λ→0

yλ (t) in X , uniformly on [0,T ], (4.58)

where yλ ∈C1([0,T ];X) are the solutions to the Yosida approximating equation




dyλ
dt

(t)+Aλ yλ (t) = f (t), t ∈ [0,T ],

yλ (0) = y0,
(4.59)

where Aλ = λ−1(I− (I + λA)−1) for 0 < λ < λ0. Here is the argument that also
provides a simple proof of Theorem 4.4 in this special case. By Lemma 4.2, we
have
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1
2

d
dt
‖yλ (t)− yµ(t)‖2 +(Aλ yλ (t)−Aµ yµ(t),J(yλ (t)− yµ(t))) = 0,

a.e. t ∈ (0,T ), for all λ ,µ ∈ (0,λ0).

Inasmuch as A is ω-accretive and Aλ y ∈ A(I +λA)−1y, we get that

1
2

d
dt
‖yλ (t)− yµ(t)‖2 +(Aλ yλ (t)−Aµ yµ(t),J(yλ (t)− yµ(t))

−J((I +λA)−1yλ (t)− (1+ µA)−1yµ(t)))

≤ ω‖(1+λA)−1yλ (t)− (1+ µA)−1yµ(t)‖2, a.e. t ∈ (0,T ).

(4.60)

On the other hand, multiplying the equation

d2yλ
dt2 +

d
dt

Aλ yλ (t) =
d f
dt

, a.e. t ∈ (0,T ),

by J(dyλ /dt), it yields

1
2

d
dt

∥∥∥∥
dyλ
dt

(t)
∥∥∥∥

2

≤
∥∥∥∥

d f
dt

(t)
∥∥∥∥

∥∥∥∥
dyλ
dt

(t)
∥∥∥∥+ω

∥∥∥∥
dyλ
dt

(t)
∥∥∥∥ , a.e. t ∈ (0,T ),

because Aλ is ω-accretive. This implies that
∥∥∥∥

dyλ
dt

(t)
∥∥∥∥ ≤ eωt

∥∥∥∥
dyλ
dt

(0)
∥∥∥∥+

∫ t

0
eω(t−s)

∥∥∥∥
d f
ds

(s)
∥∥∥∥ds

≤ eωt |Ay0− f (0)|+
∫ t

0
eω(t−s)

∥∥∥∥
d f
ds

(s)
∥∥∥∥ds.

(4.61)

Hence, ‖Aλ yλ (t)‖ ≤ C, ∀λ ∈ (0,λ0), and ‖yλ (t) − (1 + λA)−1yλ (t)‖ ≤ Cλ .
Because J is uniformly continuous on bounded sets, it follows by (4.60) that

1
2

d
dt
‖yλ (t)− yµ(t)‖2 ≤ ω‖(I +λA)−1yλ (t)− (I + µA)−1yµ(t)‖2

+(‖Aλ yλ (t)‖+‖Aµ yµ(t)‖)‖J(yλ (t)−yµ(t))−J((I+λA)−1yλ (t)−(I+µA)−1yµ(t))‖
≤ω‖yλ (t)− yµ(t)‖2 +C(λ + µ)

+‖J(yλ (t)− yµ(t))− J((I +λA)−1yλ (t)− (1+ µA)−1yµ(t))‖,

because ‖(I + λA)−1yλ − yλ‖ = λ‖Aλ yλ‖ ≤Cλ . Then, taking into account that J
is uniformly continuous and that, by (4.59) and (4.61), {‖Aλ yλ‖} is bounded, the
latter implies, via Gronwall’s lemma, that {yλ} is a Cauchy sequence in the space
C([0,T ];X) and y(t) = limλ→0 yλ (t) exists in X uniformly on [0,T ]. Let [x,w] be
arbitrary in A and let xλ = x+λw. Multiplying equation (4.59) by J(yλ (t)−xλ ) and
integrating on [s, t], we get
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1
2
‖yλ (t)− xλ‖2

≤ 1
2
‖yλ (s)− xλ‖2eω(t−s) +

∫ t

s
eω(t−τ)( f (τ)−w,J(yλ (τ)− xλ ))dτ,

and, letting λ → 0,

1
2
‖y(t)− x‖2

≤ 1
2
‖y(s)− x‖2eω(t−s) +

∫ t

s
eω(t−τ)( f (τ)−w,J(yλ (τ)− x))dτ,

because J is continuous. This yields
(

y(t)− y(s)
t− s

,J(y(s)− x)
)
≤ 1

2
‖y(s)− x‖2(eω(t−s)−1)(t− s)−1

+
1

t− s

∫ t

s
eω(t−τ)( f (τ)−w,J(yλ (τ)− x))dτ,

(4.62)

because, as seen earlier,

1
2
‖y(t)− x‖2− 1

2
‖y(s)− x‖2 ≥ (y(t)− x,J(y(s)− x).

By (4.61), we see that y is absolutely continuous on [0,T ] and dy/dt ∈ L∞(0,T ;X).
Hence, y is, a.e., differentiable on (0,T ). If s = t0 is a point where y is differentiable,
by (4.62) we see that

(
f (t0)− dy

dt
(t0)−w+ω(y(t0)− x),J(y(t0)− x)

)
≥ 0, ∀[x,w] ∈ A.

Because A+ωI is m-accretive, this implies that

f (t0)− dy
dt

(t0) ∈ Ay(t0).

Hence, y is the strong solution to problem (4.1).

Local Lipschitzian Perturbations

Consider the Cauchy problem




dy
dt

(t)+Ay(t)+Fy(t) 3 f (t), t ∈ [0,T ],

y(0) = y0,
(4.63)

where A is quasi-m-accretive in X×X and F : X → X is locally Lipschitz; that is,
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‖Fu−Fv‖ ≤ LR‖u− v‖, ∀u,v ∈ BR, ∀R > 0, (4.64)

where BR = {u ∈ X ; ‖u‖ ≤ R}.
We have the following.

Theorem 4.8. Let X be a reflexive Banach space and let A be a quasi-m-accretive
operator in X. Let f ∈W 1,1([0,T ];X) and let F : X → X be locally Lipschitz. Then,
for each y0 ∈ D(A) there is T (y0) ∈ (0,T ) and a function y ∈W 1,∞([0,T (y0)];X)
such that 




dy
dt

(t)+Ay(t)+Fy(t) 3 f (t), a.e. t ∈ (0,T (y0)),

y(0) = y0.
(4.65)

Assume further that

(Fy,w)≥−γ1‖y‖2 + γ2, ∀[y,w] ∈ J. (4.66)

Then, the solution y to (4.65) is global; that is, it exists on all of [0,T ].

Proof. We truncate F on X as follows

FR(y) =





F(y) if ‖y‖ ≤ R

F
(

Ry
‖y‖

)
if ‖y‖> R

(4.67)

and notice that FR is Lipschitz on X :

‖FR(x)−FR(y)‖ ≤ L1
R‖x− y‖, ∀x,y ∈ X , (4.68)

for some L1
R > 0. The latter is obvious if ‖x‖,‖y‖ ≤ R or if ‖x‖,‖y‖> R. If ‖x‖ ≤ R

and ‖y‖> R, we have

‖FR(x)−FR(y)‖=
∥∥∥∥F(x)−F

(
Ry
‖y‖

)∥∥∥∥≤ LR

∥∥∥∥x− Ry
‖y‖

∥∥∥∥
≤ LRR−1 ‖x‖y‖−Ry‖ ≤ LRR−1 ‖R(x− y)+ x(‖y‖−R)‖ ≤ 2LR‖x− y‖.

(4.69)

Then, (4.69) implies that FR is Lipschitz continuous and so A + FR is quasi-m-
accretive. Hence for each R > 0 there is a unique strong solution yR to equation





dyR

dt
(t)+AyR(t)+FR(yR(t)) 3 f (t), a.e. t ∈ (0,T ),

yR(0) = y0.
(4.70)

Multiplying (4.70) by w ∈ J(yR) and using the quasi-accretivity of A, we get
(without any loss of generality we assume that 0 ∈ A0)

d
dt
‖yR(t)‖ ≤ L1

R‖yR(t)‖+‖ f (t)‖, a.e. t ∈ (0,T )
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and therefore

‖yR(t)≤ eL1
Rt‖y0‖+

∫ t

0
eL1

R(t−s)‖ f (s)‖ds≤ eL1
Rt‖y0‖+ M

L1
R

(eL1
Rt−1), ∀t ∈ (0,T ).

This yields
‖yR(t)‖ ≤ R

for 0≤ t ≤ TR and R > 0 sufficiently large if TR > 0 is suitably chosen.
Hence on [0,TR], ‖yR(t)‖ ≤ R and so equation (4.70) reduces on this interval to

(4.63). This means that (4.63) has a unique solution y on [0,TR].
If we assume (4.66), then by (4.70) we see that

1
2

d
dt
‖yR(t)‖2 ≤ γ1‖yR(t)‖2 + γ2, a.e. t ∈ (0,T ).

Hence
‖yR(t)‖2 ≤ e2γ1t‖y0‖2 +

γ2

γ1
(e2γ1T −1)≤ R for t ∈ [0,T ]

if R is sufficiently large. Hence, for such R, yR is the solution to (4.65) on all of
[0,T ]. ¤

The Cauchy Problem Associated with Demicontinuous Monotone Operators

We are given a Hilbert space H and a reflexive Banach space V such that V ⊂ H
continuously and densely. Denote by V ′ the dual space. Then, identifying H with its
own dual, we may write

V ⊂ H ⊂V ′

algebraically and topologically.
The norms of V and H are denoted ‖ · ‖ and | · |, respectively. We denote by

(v1,v2) the pairing between v1 ∈ V ′ and v2 ∈ V ; if v1,v2 ∈ H, this is the ordinary
inner product in H. Finally, we denote by ‖ · ‖∗ the norm of V ′ (which is the dual
norm). In addition to these spaces, we are given a single-valued, monotone operator
A : V →V ′. We assume that A is demicontinuous and coercive from V to V ′.

We begin with the following simple application of Theorem 4.6.

Theorem 4.9. Let f ∈W 1,1([0,T ];H) and y0 ∈V be such that Ay0 ∈H. Then, there
exists one and only one function y : [0,T ]→V that satisfies

y ∈W 1,∞([0,T ];H), Ay ∈ L∞(0,T ;H), (4.71)




dy
dt

(t)+Ay(t) = f (t), a.e. t ∈ (0,T ),

y(0) = y0.
(4.72)

Moreover, y is everywhere differentiable from the right (in H) and
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d+

dt
y(t)+Ay(t) = f (t), ∀t ∈ [0,T ).

Proof. Define the operator AH : H → H,

AHu = Au, ∀u ∈ D(AH) = {u ∈V ; Au ∈ H}. (4.73)

By hypothesis, the operator u → u + Au is monotone, demicontinuous, and coer-
cive from V to V ′. Hence, it is surjective (see, e.g., Corollary 2.1) and so, AH is
m-accretive (maximal monotone) in H ×H. Then, we may apply Theorem 4.6 to
conclude the proof. ¤

Now, we use Theorem 4.9 to derive a classical existence result due to Lions [40].

Theorem 4.10. Let A : V → V ′ be a demicontinuous monotone operator that satis-
fies the conditions

(Au,u) ≥ ω‖u‖p +C1, ∀u ∈V, (4.74)

‖Au‖∗ ≤ C2(1+‖u‖p−1), ∀u ∈V, (4.75)

where ω > 0 and p > 1. Given y0 ∈ H and f ∈ Lq(0,T ;V ′), 1/p + 1/q = 1, there
exists a unique absolutely continuous function y : [0,T ]→V ′ that satisfies

y ∈C([0,T ];H)∩Lp(0,T ;V )∩W 1,q([0,T ];V ′), (4.76)

dy
dt

(t)+Ay(t) = f (t), a.e. t ∈ (0,T ), y(0) = y0, (4.77)

where d/dt is considered in the strong topology of V ′.

Proof. Assume that y0 ∈ D(AH) and f ∈W 1,1([0,T ];H). By Theorem 4.9, there is
y ∈W 1,∞([0,T ];H) with Ay ∈ L∞(0,T ;H) satisfying (4.77). Then, by assumption
(4.74), multiplying equation by y(t) (scalarly in H), we have

1
2

d
dt
|y(t)|2 +ω‖y(t)‖p ≤ ‖ f (t)‖∗‖y(t)‖, a.e. t ∈ (0,T )

(see Theorem 1.18) and, therefore,

|y(t)|2 +
∫ t

0
‖y(s)‖pds≤C

(
|y0|2 +

∫ t

0
‖ f (s)‖q

∗ds
)

, ∀t ∈ [0,T ]. (4.78)

Then, by (4.75), we get

∫ T

0

∥∥∥∥
dy
dt

(t)
∥∥∥∥

q

∗
dt ≤C

(
|y0|2 +

∫ T

0
‖ f (t)‖q

∗dt
)

. (4.79)

(We denote by C several positive constants independent of y0 and f .) Let us show
now that D(AH) is a dense subset of H. Indeed, if x is any element of H, we set x =
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(I +εAH)−1x (I is the unity operator in H). Multiplying the equation xε +εAxε = x
by xε , it follows by (4.74) and (4.75) that

|xε |2 +ωε‖xε‖p ≤ |xε | |x|+Cε, ∀ε > 0,

and
‖xε − x‖∗ ≤ ε‖Ax‖∗ ≤Cε(‖xε‖p−1 +1), ∀ε > 0.

Hence, {xε} is bounded in H and xε → x in V ′ as ε → 0. Therefore, xε ⇀ x in H as
ε → 0, which implies that D(AH) is dense in H.

Now, let y0 ∈H and f ∈Lq(0,T ;V ′). Then, there are the sequences {yn
0} ⊂ D(AH),

{ fn} ⊂W 1,1([0,T ];H) such that

yn
0 → y0 in H, fn → f in Lq(0,T ;V ′),

as n→∞. Let yn ∈W 1,∞([0,T ];H) be the solution to problem (4.77), where y0 = yn
0

and f = fn. Because A is monotone, we have

1
2

d
dt
|yn(t)− ym(t)|2 ≤ ( fn(t)− fm(t),yn(t− ym(t)), a.e. t ∈ (0,T ).

Integrating from 0 to t, we get

|yn(t)− ym(t)|2

≤ |y0
n−y0

m|2+2
(∫ t

0
‖ fn(s)− fm(s)‖q

∗ds
)1/q(∫ t

0
‖ym(s)−ym(s)‖pds

)1/p

.
(4.80)

On the other hand, it follows by estimates (4.78) and (4.79) that {yn} is bounded
in Lp(0,T ;V ) and {dyn/dt} is bounded in Lq(0,T ;V ′). Then, it follows by (4.80)
that y(t) = limn→∞ yn(t) exists in H uniformly in t on [0,T ]. Moreover, extracting a
further subsequence if necessary, we have

yn → y weakly in Lp(0,T ;V ),
yn

dt
→ dy

dt
weakly in Lq(0,T ;V ′),

where dy/dt is considered in the sense of V ′-valued distributions on(0,T ). In parti-
cular, we have proved that y∈C([0,T ];H)∩Lp(0,T ;V )∩W 1,q([0,T ];V ′). It remains
to prove that y satisfies, a.e., on (0,T ) equation (4.77).

Let x ∈V be arbitrary but fixed. Multiplying the equation

dyn

dt
+Ayn = fn, a.e. t ∈ (0,T )

by yn− x and integrating on (s, t), we get

1
2
(|yn(t)− x|2−|yn(s)− x|2)≤

∫ t

s
( fn(τ)−Ax,yn(τ)− x)dτ.
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Letting n→ ∞, it yields

1
2
(|y(t)− x|2−|y(s)− x|2)≤

∫ t

s
( f (τ)−Ax,y(τ)− x)dτ.

Hence, (
y(t)−y(s)

t− s
,y(s)−x

)
≤ 1

t−s

∫ t

s
( f (τ)−Ax,y(τ)−x)dτ. (4.81)

We know that y is, a.e., differentiable from (0,T ) into V ′ and

f (t0) = lim
h↓0

1
h

∫ t0+h

t0
f (s)ds, a.e. t0 ∈ (0,T ).

Let t0 be such a point where y is differentiable. By (4.81), it follows that
(

dy
dt

(t0)− f (t0)+Ax,y(t0)− x
)
≤ 0,

and because x is arbitrary in V and A is maximal monotone in V ×V ′, this implies
that

dy
dt

(t0)+Ay(t0) = f (t0),

as claimed. ¤

It should be noted that compared with Theorem 4.6 and the previous results on
the Cauchy problem (4.1), Theorem 4.10 provides a strong solution (in the V ′-sense)
under quite weak conditions on initial data and the nonhomogeneous term f . How-
ever, this class of problems is confined to those that have a variational formulation
in a dual pairing (V,V ′).

As we show later on in Section 4.3, Theorem 4.10 remains true for time-
dependent operators A(t) : V →V ′ satisfying assumptions (4.74) and (4.75).

Continuous Semigroups of Contractions

Definition 4.4. Let C be a closed subset of a Banach space X . A continuous semi-
group of contractions on C is a family of mappings {S(t); t ≥ 0} that maps C into
itself with the properties:

(i) S(t + s)x = S(t)S(s)x, ∀x ∈C, t,s≥ 0.

(ii) S(0)x = x, ∀x ∈C.

(iii) For every x ∈C, the function t → S(t)x is continuous on [0,∞).
(iv) ‖S(t)x−S(t)y‖ ≤ ‖x− y‖, ∀t ≥ 0, x,y ∈C.

More generally, if instead of (iv) we have

(v) ‖S(t)x−S(t)y‖ ≤ eωt‖x− y‖, ∀t ≥ 0, x,y ∈C,
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we say that S(t) is a continuous ω-quasi-contractive semigroup on C.
The operator A0 : D(A0)⊂C → X , defined by

A0x = lim
t↓0

S(t)x− x
t

, x ∈ D(A0), (4.82)

where D(A0) is the set of all x ∈ C for which the limit (4.82) exists, is called the
infinitesimal generator of the semigroup S(t).

As in the case of strongly continuous semigroups of linear continuous operators,
there is a close relationship between the continuous semigroups of contractions and
accretive operators. Indeed, it is easily seen that −A0 is accretive in X ×X . More
generally, if S(t) is quasi-contractive, then −A0 is ω-accretive. Keeping in mind the
theory of C0-semigroups of contractions, one might suspect that there is a one-to-
one correspondence between the class of continuous semigroups of contractions and
that of m-accretive operators.

As seen in Theorem 4.3, if X is a Banach space and A is an ω-accretive map-
ping satisfying the range condition (4.15) (in particular, if A is ω-m-accretive),
then, for every y0 ∈ D(A), the Cauchy problem (4.16) has a unique mild solution
y(t) = SA(t)y0 = e−Aty0 given by the exponential formula (4.17); that is,

SA(t)y0 = lim
n→∞

(
I +

t
n

A
)−n

y0. (4.83)

(For this reason, SA(t) is, sometimes, denoted by e−At .) We have the following.

Proposition 4.2. SA(t) is a continuous ω-quasi-contractive semigroup on C = D(A).

Proof. It is obvious that conditions (ii)–(iv) are satisfied as a consequence of Theo-
rem 4.3. To prove (i), we note that, for a fixed s > 0, y1(t) = SA(t + s)x and y2(t) =
SA(t)SA(s)x are both mild solutions to the problem





dy
dt

+Ay = 0, t ≥ 0,

y(0) = SA(s)x,

and so, by uniqueness of the solution we have y1 ≡ y2.
Let us assume now that X ,X∗ are uniformly convex Banach spaces and that A is

an ω-accretive set that is closed and satisfies condition (4.55):

convD(A)⊂
⋂

0<λ<λ0

R(I +λA) for some λ0 > 0. (4.84)

Then, by Theorem 4.7, for every x ∈D(A), SA(t)x is differentiable from the right on
[0,+∞) and

−A0x = lim
t↓0

SA(t)x− x
t

, ∀x ∈ D(A).

Hence, −A0 ⊂ A0, where A0 is the infinitesimal generator of SA(t). ¤
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As a matter of fact, we may prove in this case the following partial extension of
Hille–Philips theorem in continuous semigroups of contractions. (See A. Pazy [45].)

Proposition 4.3. Let X and X∗ be uniformly convex and let A be an ω-accretive and
closed set of X×X satisfying condition (4.84). Then, there is a continuous ω-quasi-
contractive semigroup S(t) on D(A), whose generator A0 coincides with −A0.

Proof. For simplicity, we assume that ω = 0. We have already seen that A0 (the mi-
nimal section of A) is single-valued, everywhere defined on D(A), and−A0x = A0x,
∀x ∈ D(A). Here, A0 is the infinitesimal generator of the semigroup SA(t) defined
on D(A) by the exponential formula (4.17). We prove that D(A0) = D(A). Let
x ∈ D(A0). Then

limsup
h↓0

‖SA(t +h)x−SA(t)x‖
h

< ∞, ∀t ≥ 0,

and, by the semigroup property (i), it follows that t → SA(t)x is Lipschitz continuous
on every compact interval [0,T ]. Hence, t → SA(t)x is a.e. differentiable on (0,∞)
and

d
dt

SA(t)x = A0SA(t)x, a.e. t > 0.

Now, because y(t) = SA(t)x is a mild solution to (4.16), that is, a.e. differentiable
and (d/dt)y(0) = A0x, it follows by Theorem 4.5 that SA(t)x is a strong solution to
(4.16):

d
dt

SA(t)x+A0SA(t)x = 0, a.e. t > 0.

Now,

−A0x = lim
h↓0

1
h

∫ h

0
A0SA(t)xdt,

and this implies as in the proof of Theorem 4.6 that x∈D(A) and−A0x∈Ax (as seen
in the proof of Theorem 4.7, we may assume that A is demiclosed). This completes
the proof. ¤

If X is a Hilbert space, it has been proven by Y. Komura [38] that every conti-
nuous semigroup of contractions S(t) on a closed convex set C ⊂ X is generated by
an m-accretive set A; that is, there is an m-accretive set A⊂ X ×X such that −A0 is
an infinitesimal generator of S(t). Moreover, the domain of the infinitesimal gene-
rator of a semigroup of contractions on a closed convex subset C ⊂ X is dense in C.
These remarkable results resemble the classical properties of semigroups of linear
contractions in Banach spaces.

Remark 4.3. There is a simple way due to Dafermos and Slemrod [27] to transform
the nonhomogeneous Cauchy problem (4.1) into a homogeneous problem. Let us
assume that f ∈ L1(0,∞;X) and denote by Y the product space Y = X×L1(0,∞;X)
endowed with the norm

‖{x, f}‖Y = ‖x‖+
∫ ∞

0
‖ f (t)‖dt, (x, f ) ∈ Y.
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Let A : Y → Y be the (multivalued) operator

A (x, f ) = {Ax− f (0),− f ′}, (x, f ) ∈ D(A ),

D(A ) = D(A)×W 1,1([0,∞);X),

where f ′ = d f /dt.
It is readily seen that if y is a solution to problem (4.1), then Y (t) = {y(t), ft(s)},

where ft(s) = f (t + s) is the solution to the homogeneous Cauchy problem

d
dt

Y (t)+A Y (t) 3 0, t ≥ 0,

Y (0) = {y0, f}.

On the other hand, if A is ω-m-accretive in X×X , so is A in Y ×Y .

This result is, in particular, useful because it can lead (see Theorem 4.3) to an
exponential representation formula for solutions to the nonautonomous equation
(4.1) but we omit the details.

Remark 4.4. If A is m-accretive, f ≡ 0, and ye is a stationary (equilibrium) solution
to (4.1) (i.e., 0 ∈ Aye), then we see by estimate (4.14) that the solution y = y(t) to
(4.1) is bounded on [0,∞). More precisely, we have

‖y(t)− ye‖ ≤ ‖y(0)− ye‖, ∀t ≥ 0.

Moreover, if A is strongly accretive (i.e., A− γI is accretive for some γ > 0), then

‖y(t)− ye‖ ≤ e−γt‖y(0)− y0‖, ∀t ≥ 0,

which amounts to saying that the trajectory {y(t), t ≥ 0} approaches as t → ∞ the
equilibrium solution ye of the system. This means that the dynamic system associa-
ted with (4.1) is dissipative and, in this sense, sometimes we refer to equations of
the form (4.1) as dissipative systems.

Nonlinear Evolution Associated with Subgradient Operators

Here, we study problem (4.1) in the case where A is the subdifferential ∂ϕ of a
lower semicontinuous convex function ϕ from a Hilbert space H to R = (−∞,+∞].
In other words, consider the problem





dy
dt

(t)+∂ϕ(y(t)) 3 f (t), in (0,T ),

y(0) = y0,
(4.85)

in a real Hilbert space H with the scalar product (·, ·) and norm | · |. It turns out that
the nonlinear evolution generated by A = ∂ϕ on D(A) has regularity properties that
in the linear case are characteristic of analytic semigroups.



158 4 The Cauchy Problem in Banach Spaces

If ϕ : H →R is a lower semicontinuous, convex function, then its subdifferential
A = ∂ϕ is maximal monotone (equivalently, m-accretive) in H ×H and D(A) =
D(ϕ) (see Theorem 2.8 and Proposition 2.3). Then, by Theorem 4.2, for every y0 ∈
D(A) and f ∈ L1(0,T ;H) the Cauchy problem (4.85) has a unique mild solution
y ∈ C([0,T ];H), which is a strong solution if y0 ∈ D(A) and f ∈W 1,1([0,T ];H)
(Theorem 4.4).

Theorem 4.11 below amounts to saying that y remains a strong solution to (4.85)
on every interval [δ ,T ] even if y0 /∈ D(A) and f is not absolutely continuous. In
other words, the evolution generated by ∂ϕ has a smoothing effect on initial data
and on the right-hand side f of (4.85). (Everywhere in the following, H is identified
with its own dual.)

Theorem 4.11. Let f ∈ L2(0,T ;H) and y0 ∈ D(A). Then the mild solution y to pro-
blem (4.1) belongs to W 1,2([δ ,T ];H) for every 0 < δ < T , and

y(t) ∈ D(A), a.e. t ∈ (0,T ), (4.86)

t1/2 dy
dt
∈ L2(0,T ;H) ϕ(u) ∈ L1(0,T ), (4.87)

dy
dt

(t)+∂ϕ(y(t)) 3 f (t), a.e. t ∈ (0,T ). (4.88)

Moreover, if y0 ∈ D(ϕ), then

dy
dt
∈ L2(0,T ;H), ϕ(y) ∈W 1,1([0,T ]). (4.89)

The main ingredient of the proof is the following chain rule differentiation
lemma.

Lemma 4.4. Let u∈W 1,2([0,T ];H) and g∈L2(0,T ;H) be such that g(t)∈ ∂ϕ(u(t)),
a.e., t ∈ (0,T ). Then, the function t → ϕ(u(t)) is absolutely continuous on [0,T ] and

d
dt

ϕ(u(t)) =
(

g(t),
du
dt

(t)
)

, a.e. t ∈ (0,T ). (4.90)

Proof. Let ϕλ be the regularization of ϕ; that is,

ϕλ (u) = inf
{ |u− v|2

2λ
+ϕ(v); v ∈ H

}
, u ∈ H, λ > 0.

We recall (see Theorem 2.9) that ϕλ is Fréchet differentiable on H and

∇ϕλ = (∂ϕ)λ = λ−1(I− (I +λ∂ϕ)−1), λ > 0.

Obviously, the function t → ϕλ (u(t)) is absolutely continuous (in fact, it belongs to
W 1,2([0,T ];H)) and
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d
dt

ϕλ (u(t)) =
(

(∂ϕ)λ (u(t)),
du
dt

(t)
)

, a.e. t ∈ (0,T ).

Hence,

ϕλ (u(t))−ϕλ (u(s)) =
∫ t

s

(
(∂ϕ)λ (u(τ)),

du
dt

(τ)
)

dτ, ∀s < t,

and, letting λ tend to zero, we obtain that

ϕ(u(t))−ϕ(u(s)) =
∫ t

s

(
(∂ϕ)0(u(τ)),

du
dτ

(τ)
)

dτ, 0≤ s < t.

By the Lebesgue dominated convergence theorem, the function t → (∂ϕ)0(u(t)) is
in L2(0,T ;H) and so t → ϕ(u(t)) is absolutely continuous on [0,T ]. ((∂ϕ)0 = A0

is the minimal section of A.) Let t0 be such that ϕ(u(t)) is differentiable at t = t0.
We have

ϕ(u(t0))≤ ϕ(v)+(g(t0),u(t0)− v), ∀v ∈ H.

This yields, for v = u(t0− ε),

d
dt

ϕ(u(t0))≤
(

g(t0),
du
dt

(t0)
)

.

Now, by taking v = u(t0 +ε) we get the opposite inequality, and so (4.90) follows. ¤

Proof of Theorem 4.11. Let x0 be an element of D(∂ϕ) and y0 ∈ ∂ϕ(x0). If we
replace the function ϕ by ϕ̃(y) = ϕ(y)−ϕ(x0)− (y0,u− x0), equation (4.85) reads

dy
dt

(t)+∂ ϕ̃(y(t)) 3 f (t)− y0.

Hence, without any loss of generality, we may assume that

min{ϕ(u); u ∈ H}= ϕ(x0) = 0.

Let us assume first that y0 ∈ D(∂ϕ) and f ∈ W 1,2([0,T ];H); that is, d f /dt ∈
L2(0,T ;H). Then, by Theorem 4.2, the Cauchy problem in (4.85) has a unique
strong solution y ∈W 1,∞([0,T ];H). The idea of the proof is to obtain a priori es-
timates in W 1,2([δ ,T ];H) for y, and after this to pass to the limit together with the
initial values and forcing term f .

To this end, we multiply equation (4.85) by t(dy/dt). By Lemma 4.4, we have

t
∣∣∣∣
dy
dt

(t)
∣∣∣∣
2

+ t
d
dt

ϕ(y(t)) = t
(

f (t),
dy
dt

(t)
)

, a.e. t ∈ (0,T ).

Hence,
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∫ T

0
t
∣∣∣∣
dy
dt

(t)
∣∣∣∣
2

dt +T ϕ(y(T )) =
∫ T

0
t
(

f (t),
dy
dt

(t)
)

dt +
∫ T

0
ϕ(y(t))dt

and, therefore,

∫ T

0
t
∣∣∣∣
dy
dt

(t)
∣∣∣∣
2

dt ≤
∫ T

0
t| f (t)|2dt +2

∫ T

0
ϕ(y(t))dt (4.91)

because ϕ ≥ 0 in H.
Next, we use the obvious inequality

ϕ(y(t))≤ (w(t),y(t)− x0), ∀w(t) ∈ ∂ϕ(y(t))

to get

ϕ(y(t))≤
(

f (t)− dy
dt

(t),y(t)− x0

)
, a.e. t ∈ (0,T ),

which yields

∫ T

0
ϕ(y(t))dt ≤ 1

2
|y(0)− x0|2 +

∫ T

0
| f (t)| |y(t)− x0|dt.

Now, multiplying equation (4.85) by y(t)− x0 and integrating on [0, t], yields

|y(t)− x0| ≤ |y(0)− x0|+
∫ t

0
| f (s)|ds, ∀t ∈ [0,T ].

Hence,

2
∫ T

0
ϕ(y(t))dt ≤

(
|y(0)− x0|+

∫ T

0
| f (t)|dt

)2

. (4.92)

Now, combining estimates (4.91) and (4.92), we get

∫ T

0
t
∣∣∣∣
dy
dt

(t)
∣∣∣∣
2

dt ≤
∫ T

0
t| f (t)|2dt +2

(
|y0− x0|+

∫ T

0
| f (t)|dt

)2

. (4.93)

Multiplying equation (4.85) by dy/dt, we get

∣∣∣∣
dy
dt

(t)
∣∣∣∣
2

+
d
dt

ϕ(y(t)) =
(

f (t),
dy
dt

(t)
)

, a.e. t ∈ (0,T ).

Hence,
1
2

∫ t

0

∣∣∣∣
dy
dt

(s)
∣∣∣∣
2

ds+ϕ(y(t))≤ 1
2

∫ t

0
| f (s)|2ds+ϕ(y0). (4.94)

Now, let us assume that y0 ∈ D(∂ϕ) and f ∈ L2(0,T ;H). Then, there exist sub-
sequences {yn

0} ⊂ D(∂ϕ) and { fn} ⊂W 1,2([0,T ];H) such that yn
0 → y0 in H and

fn → f in L2(0,T ;H) as n→ ∞. Denote by yn ∈W 1,∞([0,T ];H) the corresponding
solutions to (4.86). Because ∂ϕ is monotone, we have (see Proposition 4.1)
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|yn(t)− ym(t)| ≤ |yn
0− ym

0 |+
∫ t

0
| fn(s)− fm(s)|ds.

Hence, yn → y in C([0,T ];H). On the other hand, this clearly implies that

dyn

dt
→ dy

dt
in D ′(0,T ;H),

(i.e., in the sense of vectorial H-valued distributions on (0, t)), and, by estimate
(4.93), it follows that t1/2(dy/dt) ∈ L2(0,T ;H). Hence, y is absolutely continuous
on every interval [δ ,T ] and y ∈W 1,2([δ ,T ];H) for all 0 < δ < T.

Moreover, by estimate (4.92), written for y = yn, we deduce by virtue of Fatou’s
lemma that ϕ(y) ∈ L1(0,T ) and

∫ T

0
ϕ(y(t))dt ≤ liminf

n→∞

∫ T

0
ϕ(yn(t))dt ≤

(
|y0− x|+

∫ T

0
| f (t)|dt

)2

.

We may infer, therefore, that y satisfies estimates (4.92) and (4.93). Moreover, y sa-
tisfies equation (4.85). Indeed, we have

1
2
|yn(t)− x|2 ≤ 1

2
|yn(s)− x|2 +

∫ t

s
( fn(τ)−w,yn(τ)− x)dτ

for all 0 ≤ x < t ≤ T and all [x,w] ∈ ∂ϕ . This yields for all 0 ≤ s < t ≤ T and all
[x,w] ∈ ∂ϕ ,

1
2

(|y(t)− x|2−|y(s)− x|2)≤
∫ t

s
( f (τ)−w,y(τ)− x)dτ

and, therefore,
(

y(t)− y(s)
t− s

,y(s)− x
)
≤ 1

t− s

∫ t

s
( f (τ)−w,y(τ)− x)dτ.

Letting s→ t, we get, a.e. t ∈ (0,T ),
(

dy
dt

(t),y(t)− x
)
≤ ( f (t)−w,y(t)− x)

for all [x,w] ∈ A, and because A = ∂ϕ is maximal monotone, this implies that y(t) ∈
D(A) and (d/dt)y(t) ∈ f (t)−Ay(t), a.e. t ∈ (0,T ), as desired.

Assume now that y0 ∈ D(ϕ). We choose in this case yn
0 = (I + n−1∂ϕ)−1y0 ∈

D(∂ϕ) and note that yn
0 → y0 as n→ ∞, and

ϕ(yn
0)≤ ϕ(y0)+(∂ϕn(y0),(I +n−1∂ϕ)−1y0− y0)≤ ϕ(y0), ∀n ∈ N∗.

Then, by estimate (4.94), we have
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1
2

∫ t

0

∣∣∣∣
dyn

ds
(s)

∣∣∣∣
2

ds+ϕ(yn(t))≤ 1
2

∫ t

0

∣∣∣∣
d fn

ds
(s)

∣∣∣∣
2

ds+ϕ(y0)

and, letting n→ ∞, we find the estimate

1
2

∫ t

0

∣∣∣∣
dy
dt

(s)
∣∣∣∣
2

ds+ϕ(y(t))≤ 1
2

∫ t

0

∣∣∣∣
d f
ds

(s)
∣∣∣∣
2

ds+ϕ(y0), t ∈ [0,T ], (4.95)

because {dyn/dt} is weakly convergent to dy/dt in L2(0,T ;H) and ϕ is lower
semicontinuous in H. This completes the proof of Theorem 4.11.

In the sequel, we denote by W 1,p((0,T ];H), 1 ≤ p ≤ ∞, the space of all y ∈
Lp(0,T ;H) such that dy/dt ∈ Lp(δ ,T ;H) for every δ ∈ (0,T ).

Theorem 4.12. Assume that y0 ∈ D(A) and f ∈W 1,1([0,T ];H). Then, the solution
y to problem (4.85) satisfies

t
dy
dt
∈ L∞(0,∞;H), y(t) ∈ D(A), ∀t ∈ (0,T ], (4.96)

d+

dt
y(t)+(Ay(t)− f (t))0 = 0, ∀t ∈ (0,T ]. (4.97)

Proof. By equation (4.85), we have

d
dt
|y(t +h)− y(t)| ≤ | f (t +h)− f (t)|, a.e. t, t +h ∈ (0,T ).

Hence, ∣∣∣∣
dy
dt

(t)
∣∣∣∣≤

∣∣∣∣
dy
ds

(s)
∣∣∣∣+

∫ t

s

∣∣∣∣
d f
dt

(τ)
∣∣∣∣dτ, a.e. 0 < s < t < T. (4.98)

This yields

1
2

s
∣∣∣∣
dy
dt

(t)
∣∣∣∣
2

≤ s
∣∣∣∣
dy
ds

(s)
∣∣∣∣
2

+ s
(∫ t

s

∣∣∣∣
d f
dτ

(τ)
∣∣∣∣dτ

)2

, a.e. 0 < s < t < T.

Then, integrating from 0 to t and using estimate (4.93), we get

t
∣∣∣∣
dy
dt

(t)
∣∣∣∣

≤
(∫ t

0
s| f (s)|2ds+2

(
|y(0)−x0|+

∫ t

0
| f (s)|ds

)2

+
t2

2

(∫ t

0

∣∣∣∣
d f
dτ

(τ)
∣∣∣∣dτ

)2
)1/2

,

a.e. t ∈ (0,T ).

(4.99)

In particular, it follows by (4.99) that

limsup
h→0
h>0

∣∣∣∣
y(t +h)− y(t)

h

∣∣∣∣ < ∞, ∀t ∈ [0,T ].
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Hence, the weak closure E of
{

(y(t +h)− y(t))
h

}
for h→ 0

is nonempty for every t ∈ [0,T ). Let η be an element of E. We have proved earlier
the inequality

(
y(t +h)− y(t)

h
,y(t)− x

)
≤ 1

h

∫ t+h

t
( f (τ)−w,y(τ)− x)dτ

for all [x,w] ∈ ∂ϕ and t, t +h ∈ (0,T ). This yields

(η ,y(t)− x)≤ ( f (t)−w,y(t)− x), ∀t ∈ (0,T ),

and, because [x,w] is arbitrary in ∂ϕ , we conclude, by maximal monotonicity of
A, that y(t) ∈ D(A) and f (t)−η ∈ Ay(t). Hence, y(t) ∈ D(A) for every t ∈ (0,T ).
Then, by Theorem 4.6, it follows that

d+

dt
y(t)+(Ay(t)− f (t))0 = 0, ∀t ∈ (0,T ), (4.100)

because, for every ε > 0 sufficiently small, y(ε) ∈D(A) and so (4.100) holds for all
t > ε. ¤

In particular, it follows by Theorem 4.12 that the semigroup S(t) = e−At genera-
ted by A = ∂ϕ on D(A) maps D(A) into D(A) for all t > 0 and

t
∣∣∣∣
d+

dt
S(t)y0

∣∣∣∣≤C, ∀t > 0.

More precisely, we have the following.

Corollary 4.4. Let S(t) = e−At be the continuous semigroup of contractions gene-
rated by A = ∂ϕ on D(A). Then, S(t)D(A)⊂ D(A) for all t > 0, and

∣∣∣∣
d+

dt
S(t)y0

∣∣∣∣ = |A0S(t)y0| ≤ |A0x|+ 1
t
|x− y0|, ∀t > 0, (4.101)

for all y0 ∈ D(A) and x ∈ D(A).

Proof. Multiplying equation (4.85) (where f ≡ 0) by t(dy/dt) and integrating on
(0, t), we get

∫ t

0
s
∣∣∣∣
dy
ds

(s)
∣∣∣∣
2

ds+ tϕ(y(t))≤
∫ T

0
ϕ(y(s))ds, ∀t > 0.

Next, we multiply the same equation by y(t)− x and integrate on (0, t). We get
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1
2
|y(t)− x|2 +

∫ t

0
ϕ(y(s))ds≤ 1

2
|y(0)− x|2 + tϕ(x).

Combining these two inequalities, we obtain

∫ t

0
s
∣∣∣∣
dy
ds

(s)
∣∣∣∣
2

≤ 1
2

(|y(0)− x|2−|y(t)− x|2 + t(ϕ(x)−ϕ(y(t))

≤ 1
2

(|y(0)− x|2−|y(t)− x|2 + t(A0x,x− y(t))

≤ 1
2
|y(0)− x|2 +

t2|A0x|2
2

, ∀t > 0.

Because, by formula (4.98) the function t → |(d/dt)y(t)| (and consequently t →
|(d+/dt)y(t)|) is monotonically decreasing, this implies (4.101). ¤

Remark 4.5. Theorems 4.11 and 4.12 clearly remain true for equations of the form




dy
dt

(t)+∂ϕ(y(t))−ωy(t) 3 f (t), a.e. in (0,T ),

y(0) = y0,

where ω ∈R and also for Lipschitzian perturbations of ∂ϕ . The proof is exactly the
same and so it is omitted.

A nice feature of nonlinear semigroups generated by subdifferential operators in
Hilbert space is their longtime behavior. Namely, one has the following result due
to Bruck [18].

Theorem 4.13. Let A = ∂ϕ , where ϕ : H → (−∞,+∞] is a convex l.s.c. function
such that (∂ϕ)−1(0) 6= /0. Then, for each y0 ∈ D(A) there is ξ ∈ (∂ϕ)−1(0) such
that

ξ = w- lim
t→∞

e−Aty0. (4.102)

Proof. If we multiply the equation

d
dt

y(t)+Ay(t) 3 0, a.e. t > 0,

by y(t)− y0, where x ∈ (∂ϕ)−1(0), we obtain that

1
2

d
dt
|y(t)− x|2 ≤ 0, a.e. t > 0,

because A = ∂ϕ and, therefore, (Ay(t),y(t)− x) ≥ 0, ∀t ≥ 0. This implies that
{y(t)}t≥0 is bounded and we denote by K the so-called weak ω-limit set associated
with the trajectory {y(t)}t≥0; that is,

K =
{

w- lim
tn→∞

y(tn)
}

.
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Let us notice that K ⊂ (∂ϕ)−1(0). Indeed, if y(tn) ⇀ ξ , for some {tn}→∞, then we
see by (4.101) that

lim
n→∞

dy
dt

(tn) = 0

and because A is demiclosed, this implies that 0∈Aξ (i.e., ξ ∈A−1(0)= (∂ϕ)−1(0)).
On the other hand, t → |y(t)−x|2 is decreasing for each x ∈ (∂ϕ)−1(0) and, in par-
ticular, for each x ∈ K.

Let ξ1,ξ2 be two arbitrary elements of K given by

ξ1 = w- lim
n′→∞

y(tn′), ξ2 = w- lim
n′′→∞

y(tn′′),

where tn′ → ∞ and tn′′ → ∞ as n′ → ∞ and n′′ → ∞, respectively.
Because limt→∞ |y(t)− x|2 exists for each x ∈ K ⊂ (∂ϕ)−1(0), we have

lim
n′→∞

|y(tn′)−ξ1|2 = lim
n′′→∞

|y(tn′′)−ξ1|2,

lim
n′′→∞

|y(tn′′)−ξ2|2 = lim
n′→∞

|y(tn′)−ξ2|2.

The latter implies by an elementary calculation that |ξ1−ξ2|2 = 0. Hence, K consists
of a single point and this completes the proof of (4.102). ¤

Remark 4.6. In particular, it follows by Theorem 4.13 that, for each y0 ∈ D(A),
the solution y(t) = e−Aty0, A = ∂ϕ is weakly convergent to an equilibrium point
ξ ∈ arg minu∈H ϕ(u) of system (4.14). There is a discrete version which asserts
that the sequence {yn} defined by

yn+1 = yn−h∂ϕ(yn+1), n = 0,1, ..., h > 0,

is weakly convergent in H to an element ξ ∈ (∂ϕ)−1(0); that is, to a minimum point
for ϕ on H. The proof is completely similar. This discrete version of Theorem 4.13,
known in convex optimization as the steepest descent algorithm is at the origin of a
large category of gradient type algorithms.

Remark 4.7. If, under assumptions of Theorem 4.13, the trajectory {y(t)}t≥0 is re-
latively compact in H (this happens for instance if each level set {x; ϕ(x) ≤ λ} is
compact), then (4.102) is strengthening to

y(t) = e−Aty0 → ξ strongly in H as t → ∞.

The longtime behavior of trajectories {y(t); t > 0} to nonlinear equation (4.1) and
their convergence for t → ∞ to an equilibrium solution ξ ∈ A−1(0) is an important
problem largely studied in the literature by different methods including dynamic
topology (the Lasalle principle) or by accretivity arguments of the type presented
above. Without entering into details we refer to the works of Dafermos and Slemrod
[27], Haraux [31] and also to the book of Moroşanu [42].
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The Reflection Problem on Closed Convex Sets

Let A be a self-adjoint positive operator in Hilbert space H and let K be a closed
convex subset of H. Then, the function ϕ : H → R defined by

ϕ(u) =





1
2

(Au,u)+ IK(u), ∀u ∈ K∩D(A1/2),

+∞, otherwise

(IK indicator function of K) is convex and l.s.c. Moreover, if there is h∈H such that

(I +λA)−1(x+λh) ∈ K, ∀λ > 0, x ∈ K,

then A + ∂ IK is maximal monotone (see Theorem 2.11) and so ∂ϕ = A + ∂ IK with
D(∂ϕ) = D(A)∩K.

For this special form of ϕ , equation (4.85) reduces to the variational inequality




(
dy
dt

(t)+Ay(t)− f (t),y(t)− z
)
≤ 0, ∀z ∈ K, t ∈ (0,T ),

y(0) = y0, y(t) ∈ K, ∀t ∈ [0,T ],
(4.103)

which is similar to that considered in Section 2.3.
A more general situation is discussed in Section 5.2 below. Here, we confine

ourselves to noting that the solution y ∈W 1,2([0,T ];H) to (4.103), which exists and
is unique for y0 ∈ K and f ∈ L2(0,T ;H), satisfies the system





dy
dt

(t)+Ay(t) = f (t) if y(t) ∈ ◦
K,

dy
dt

(t)+Ay(t) =−ηK(t)+ f (t) if y(t) ∈ ∂K,

where ηK(t) ∈ NK(y(t)), the normal cone to K on the boundary ∂K. (Here,
◦
K is the

interior of K if nonempty.) For instance, if K = {u ∈ H; |u| ≤ ρ}, then we have





dy
dt

(t)+Ay(t) = f (t) on {t; |y(t)|< ρ},
dy
dt

(t)+Ay(t) =−λy(t)+ f (t) on {t; |y(t)|= ρ},

for some λ ≥ 0. The parameter λ must be viewed as a Lagrange multiplier that
arises from constraint y(t) ∈ K, ∀t ≥ 0.

For this reason, problem (4.103) is also called the reflection problem on K asso-
ciated with linear equation dy/dt +Ay = 0 and under this interpretation it is relevant
not only in the dynamic theory of free boundary problems, but also in the theory
of stochastic processes with optimal stopping time arising in the theory of financial
markets (see, e.g., Barbu and Marinelli [8]).
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The Brezis–Ekeland Variational Principle

It turns out that the Cauchy problem (4.85) can be equivalently represented as a
minimization problem in the space L2(0,T ;H) or W 1,2([0,T ];H) which is quite
surprising because, in general, the Cauchy problem is not of variational type.

In fact, if ϕ : H → R is convex, l.s.c., and ϕ∗ is its conjugate function we have
by Proposition 1.5 that

ϕ(y)+ϕ∗(p)≥ (y, p), ∀y, p ∈ H,

with equality if and only if p ∈ ∂ϕ(y). Then, we may equivalently write (4.85) as

dy
dt

(t)+ z(t) = f (t), ϕ(y(t))+ϕ∗(z(t)) = (y(t),z(t)), a.e. t ∈ (0,T ),

y(0) = y0.

Hence, if y∈W 1,2([0,T ];H) is the solution to (4.85), where y0 ∈D(ϕ) (see Theorem
4.11), then we have

ϕ(y(t))+ϕ∗
(

f (t)− dy
dt

(t)
)

=
(

y(t), f (t)− dy
dt

(t)
)

, a.e. t ∈ (0,T ),

and the latter is equivalent to (4.85). This yields

∫ T

0

(
ϕ(y(t))+ϕ∗

(
f (t)− dy

dt
(t)

)
− (y(t), f (t))

)
dt +

1
2
|y(T )|2− 1

2
|y0|2 = 0

and we have also that

y = arg min
{∫ T

0

[
ϕ(θ(t))+ϕ∗

(
f (t)− dθ

dt
(t)

)
− (θ(t), f (t))

]
dt

+
1
2
|θ(T )|2− 1

2
|y0|2; θ ∈W 1,2([0,T ];H), θ(0) = y0

}
.

(4.104)

This means that the Cauchy problem (4.85) is equivalent to the minimization pro-
blem (4.104). This is the Brezis–Ekeland principle and it reveals an interesting con-
nection between the subpotential Cauchy problem and convex optimization, which
found many interesting applications in the theory of variational inequalities (see,
e.g., Stefanelli [51], and Visintin [53]).

However, the function Φ : W 1,2([0,T ];H) → R, defined by the right-hand side
of (4.104), is convex and lower semicontinuous but, in general, not coercive (this
happens if D(ϕ) = H only) and so, one cannot derive Theorem 4.11 directly from
the existence of a minimizer y in problem (4.104).
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4.2 Approximation and Structural Stability of Nonlinear
Evolutions

The Trotter–Kato Theorem for Nonlinear Evolutions

One might expect the solution to Cauchy problem (4.1) to be continuous with re-
spect to the operator A, that is, with respect to small structural variations of the
problem. We show below that this indeed happens in a certain precise sense and for
a certain notion of convergence defined in the space of quasi-m-accretive operators.

Consider in a general Banach space X a sequence An of subsets of X ×X . The
subset of X×X , liminfAn is defined as the set of all [x,y]∈ X×X such that there are
sequences xn,yn, yn ∈Anxn, xn → x and yn → y as n→∞. If An are quasi-m-accretive,
there is a simple resolvent characterization of liminfAn. (See Attouch [1, 2].)

Proposition 4.4. Let An + ωI be m-accretive for n = 1,2.... Then A ⊂ liminfAn if
and only if

lim
n→∞

(I +λAn)−1x = (I +λA)−1x, ∀x ∈ X , (4.105)

for 0 < λ < ω−1.

Proof. Assume that (4.105) holds and let [x,y] ∈ A be arbitrary but fixed. Then, we
have

(I +λA)−1(x+λy) = x, ∀λ ∈ (0,ω−1)

and, by (4.105),

(I +λAn)−1(x+λy)→ (I +λA)−1(x+λy) = x.

In other words, xn = (I + λAn)−1(x + λy) → x as n → ∞ and xn + λyn = x + λy,
yn ∈ Axn. Hence, yn → y as n→ ∞, and so [x,y] ∈ liminfAn.

Conversely, let us assume now that A⊂ liminfAn. Let x be arbitrary in X and let
x0 = (I +λA)−1x; that is,

x0 +λy0 = x, where y0 ∈ Ax0.

Then, there are [xn,yn] ∈ An such that xn → x0 and yn → y0 as n→ ∞. We have

xn +λyn = zn → x0 +λy0 = x as n→ ∞.

Hence,
(I +λAn)−1x→ x0 = (I +λA)−1y0 for 0 < λ < ω−1,

as claimed. ¤

In the literature, such a convergence is called convergence in the sense of graphs.
Theorem 4.14 below is the nonlinear version of the Trotter–Kato theorem from

the theory of C0-semigroups and, roughly speaking, it amounts to saying that if An
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is convergent to A in the sense of graphs, then the dynamic (evolution) generated by
An is uniformly convergent to that generated by A (see Pazy [45]).

Theorem 4.14. Let An be ω-m-accretive in X ×X, f n ∈ L1(0,T ;X) for n = 1,2, ...
and let yn be mild solution to

dyn

dt
(t)+Anyn(t) 3 f n(t) in [0,T ], yn(0) = yn

0. (4.106)

Let A⊂ liminfAn and assume that

lim
n→∞

(∫ T

0
‖ f n(t)− f (t)‖dt +‖yn

0− y0‖
)

= 0. (4.107)

Then, yn(t) → y(t) uniformly on [0,T ], where y is the mild solution to problem
(4.106).

Proof. Let Dε
An(0 = t0, t1, ..., tN ; f n

1 , ..., f n
N) be an ε-discretization of problem (4.106)

and let Dε
A(0 = t0, t1, ..., tn; f1, ..., fN) be the corresponding ε-discretization for (4.1).

We take ti = iε for all i. Let yε ,n and yε be the corresponding ε-approximate solu-
tions; that is,

yε ,n(t) = yi
ε,n, yε(t) = yi

ε for t ∈ (ti−1, ti],

where y0
ε,n = yn

0, y0
ε = y0, and

yi
ε,n + εAnyi

ε,n 3 yi−1
ε,n + ε f n

i , i = 1, ...,N, (4.108)

yi
ε + εAyi

ε 3 yi−1
ε + ε fi, i = 1, ...,N. (4.109)

By the definition of liminfAn, for every η > 0 there is [ȳi
ε,n,w

i
ε ,n] ∈ An such that

‖ȳi
ε,n− yi

ε‖+‖wi
ε ,n−wi

ε‖ ≤ η for n≥ δ (η ,ε). (4.110)

Here, wi
ε = (1/ε)(yi−1

ε + ε fi− yi
ε) ∈ Ayi

ε . Then, using the ω-accretivity of An, by
(4.108)–(4.110) it follows that

‖ȳi
ε,n− yi

ε,n‖ ≤ (1− εω)−1‖ȳi−1
ε,n − yi−1

ε,n ‖+ ε(1− εω)−1‖ f n
i − fi‖+Cεη , ∀i,

for n≥ δ (η ,ε). This yields

‖ȳi
ε,n− yi

ε,n‖ ≤Cη +Cε
i

∑
k=1

(1− εω)−k‖ f n
k − fk‖, i = 1, ...,N.

Hence,

‖yi
ε,n− yi

ε‖ ≤Cη +Cε
i

∑
k=1

(1− εω)−k‖ f n
k − fk‖, i = 1, ...,N,

for n≥ δ (ε,η).
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We have shown, therefore, that, for n≥ δ (ε,η),

‖yε,n(t)− yε(t)‖ ≤C
(

η +
∫ T

0
‖ f n(t)− f (t)‖dt

)
, ∀t ∈ [0,T ], (4.111)

where C is independent of n and ε .
Now, we have

‖yn(t)− y(t)‖ ≤ ‖yn(t)− yε,n(t)‖+‖yε,n(t)− yε(t)‖+‖yε(t)− y(t)‖,
∀t ∈ [0,T ).

(4.112)

Let η be arbitrary but fixed. Then, by Theorem 4.1, we have

‖yε(t)− y(t)‖ ≤ η , ∀t ∈ [0,T ], if 0 < ε < ε0(η).

Also, by estimate (4.37) in the proof of Theorem 4.1, we have

‖yε,n(t)− yn(t)‖ ≤ η , ∀t ∈ [0,T ],

for all 0 < ε < ε1(η), where ε1(η) does not depend on n. Thus, by (4.111) and
(4.112), we have

‖yn(t)− y(t)‖ ≤C
(

η +
∫ T

0
‖ f n(t)− f (t)‖dt

)
, ∀t ∈ [0,T ]

for n sufficiently large and any η > 0. ¤

Corollary 4.5. Let A be ω-m-accretive, f ∈ L1(0,T ;X), and y0 ∈ D(A). Let
yλ ∈C1([0,T ];X) be the solution to the approximating Cauchy problem

dy
dt

(t)+Aλ y(t) = f (t) in [0,T ], y(0) = y0, 0 < λ <
1
ω

, (4.113)

where Aλ = λ−1(I−(I +λA)−1). Then, limλ→0 yλ (t) = y(t) uniformly in t on [0,T ],
where y is the mild solution to problem (4.1).

Proof. It is easily seen that A⊂ liminfλ→0 Aλ . Indeed, for α ∈ (0,1/ω) we set

xλ = (I +αAλ )−1x, u = (I +αA)−1x, ∀λ > 0.

After some calculation, we see that

xλ +αA
((

1+
λ
α

)
xλ −

λ
α

x
)
3 x.

Subtracting this equation from u+αAu 3 x and using the ω-accretivity of A, we get

‖xλ −u‖2 ≤ αω
∥∥∥∥
(

1+
λ
α

)
xλ −

λ
α

x−u
∥∥∥∥

2

+
λ
α

(xλ −u,x− xλ ).
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Hence, limλ→0 xλ = u = (I +αA)−1x for 0 < α < 1/λ , and so we may apply Theo-
rem 4.14. ¤

Remark 4.8. If X is a Hilbert space and Sn(t) is the semigroup generated by An
on X , then, according to a result due to H. Brezis, condition (4.105) is equivalent
to the following one. For every x ∈ D(A), ∃{xn} ⊂ D(An) such that xn → x and
Sn(t)xn → S(t)x, ∀t > 0, where S(t) is the semigroup generated by A on D(A).

Theorem 4.14 is useful in proving the stability and convergence of a large class
of approximation schemes for problem (4.1). For instance, if A is a nonlinear partial
differential operator on a certain space of functions defined on a domain Ω ⊂ Rm,
then very often the An arise as finite element approximations of A on a subspace Xn
of X . Another important class of convergence results covered by this theorem is the
homogenization problem (see, e.g., Attouch [2] and references given there).

Nonlinear Chernoff Theorem and Lie–Trotter Products

We prove here the nonlinear version of the famous Chernoff theorem (see Chernoff
[21]), along with some implications for the convergence of the Lie–Trotter product
formula for nonlinear semigroups of contractions.

Theorem 4.15. Let X be a real Banach space, A be an accretive operator satis-
fying the range condition (4.15), and let C = D(A) be convex. For each t > 0, let
F(t) : C →C satisfy:

(i) ‖F(t)x−F(t)u‖ ≤ ‖x−u‖, ∀x,y ∈C and t ∈ [0,T ].

(ii) lim
t↓0

(
I +λ

I−F(t)
t

)−1

x = (I +λA)−1x, ∀x ∈C, λ > 0.

Then, for each x ∈C and t > 0,

lim
n→0

(
F

( t
n

))n
x = SA(t)x, (4.114)

uniformly in t on compact intervals.

Here, SA(t) is the semigroup generated by A on C = D(A). (See (4.82).) It should be
said that in the special case where F(t) = (I + tA)−1, Theorem 4.15 reduces to the
exponential formula (4.17) in Theorem 4.3.

The main ingredient of the proof is the following convergence result.

Proposition 4.5. Let C ⊂ X be nonempty, closed, and convex, let F : C → C be a
nonexpansive operator, and let h > 0. Then, the Cauchy problem

du
dt

+h−1(I−F)u = 0, u(0) = x ∈C, (4.115)

has a unique solution u ∈C1([0,∞);X), such that u(t) ∈C, for all t ≥ 0.



172 4 The Cauchy Problem in Banach Spaces

Moreover, the following estimate holds

‖Fnx−u(t)‖ ≤
((

n− t
h

)2
+n

)1/2

‖x−Fx‖, ∀t ≥ 0, (4.116)

for all n ∈ N. In particular, for t = nh we have

‖Fnx−u(nh)‖ ≤ n1/2‖x−Fx‖, n = 1,2, ..., t ≥ 0. (4.117)

Proof. The initial value problem (4.115) can be written equivalently as

u(t) = e−(t/h)x+
∫ t

0
e−((t−s)/h)Fu(s)ds, ∀t ≥ 0,

and it has a unique solution u(t) ∈ C, ∀t ≥ 0, by the Banach fixed point theorem.
Making the substitution t → t/h, we can reduce the problem to the case h = 1.

Multiplying equation (4.115) by J(u(t)− x), where J : X → X∗ is the duality
mapping, we get

d
dt
‖u(t)− x‖ ≤ ‖Fx− x‖, a.e. t > 0,

because I−F is accretive. Hence,

‖u(t)− x‖ ≤ t‖Fx− x‖, ∀t ≥ 0. (4.118)

On the other hand, we have

u(t)−Fnx = e−t(x−Fnx)+
∫ t

0
es−t(Fu(s)−Fnx)ds

and

‖x−Fnx‖ ≤
n

∑
k=1
‖Fk−1x−Fkx‖ ≤ n‖x−Fx‖, ∀n.

Hence,

‖u(t)−Fnx‖ ≤ ne−t‖x−Fx‖+
∫ t

0
es−t‖u(s)−Fn−1x‖ds.

We set ϕn(t) = ‖u(t)−Fnx‖‖x−Fx‖−1et . Then, we have

ϕn(t)≤ n+
∫ t

0
ϕn−1(x)ds, ∀t ≥ 0, n = 1,2, ..., (4.119)

and, by (4.118), we see that

ϕ0(t)≤ tet , ∀t ≥ 0. (4.120)

Solving iteratively (4.119) and (4.120), we get
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ϕn(t) ≤
n

∑
k=1

ktn−k

(n− k)!
+

1
(n−1)!

∫ t

0
(t− s)n−1ϕ0(s)ds

=
n

∑
k=1

ktn−k

(n− k)!
+

1
(n−1)!

∫ t

0
(t− s)n−1

∞

∑
j=1

s j+1

j!
ds

=
n

∑
k=1

ktn−k

(n− k)!
+

∞

∑
j=0

1
(n−1)! j!

∫ t

0
(t− s)n−1s j+1ds.

Because ∫ t

0
(t− s)n−1s j+1ds =

tn+ j+1( j +1)!(n−1)!
(n+ j +1)!

,

we obtain that

ϕn(t) ≤
n

∑
k=0

(n− k)tk

k!
+

∞

∑
j=0

( j +1)tn+ j+1

(n+ j +1)!
=

∞

∑
k=0

(n− k)tk

k!

=
∞

∑
k=0

tk

k!
|n− k| ≤

(
∞

∑
k=0

(n− k)2tk

k!

)1/2

et/2.

Hence,
ϕn(t)≤ et((n− t)−1 + t)1/2, ∀t ≥ 0,

as claimed. ¤

Proof of Theorem 4.15. We set Ah = h−1(I−F(h)) and denote by Sh(t) the semi-
group generated by Ah on C = D(A) (Theorem 4.3). We also use the standard nota-
tion

Jλ = (I +λA)−1, Jh
λ = (I +λAh)−1.

Because Jh
λ x → Jλ x, ∀x ∈C, as h → 0, it follows by Theorem 4.14 that, for every

x ∈C,

Sh(t)x→ SA(t)x uniformly in t on compact intervals. (4.121)

Next, by Proposition 4.5, we have that

‖Sh(nh)x−Fn(h)x‖ ≤ ‖Sh(nh)Jh
λ x−Fn(h)Jh

λ x‖+2‖x− Jh
λ x‖

≤ ‖x− Jh
λ x‖(2+λ−1hn1/2).

Now, we fix x ∈ D(A) and h = n−1t. Then, the previous inequality yields
∥∥∥St/n(t)x−Fn

( t
n

)
x
∥∥∥≤ (2+λ−1tn−(1/2))(‖x− Jλ x‖+‖J t/n

λ x‖)

≤ (2+λ−1tn−(1/2))(λ |Ax|+‖J t/n
λ x− Jλ x‖), ∀t > 0, λ > 0.
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Finally,
∥∥∥St/n(t)x− Fn

( t
n

)
x
∥∥∥ ≤ 2λ |Ax|+ tn−(1/2)|Ax|

+(2+λ−1tn−(1/2))‖J t/n
λ x− Jλ x‖,

∀t > 0, λ > 0.

(4.122)

Now, fix λ > 0 such that 2λ |Ax| ≤ ε/3. Then, by (ii), we have

(2+λ−1tn−(1/2))‖J t/n
λ x− Jλ x‖ ≤ ε

3
for n > N(ε),

and so, by (4.121) and (4.122), we conclude that, for n→ ∞,

Fn
( t

n

)
x→ SA(t)x uniformly in t on every [0,T ]. (4.123)

Now, because

‖SA(t)x−SA(t)y‖ ≤ |x− y|, ∀t ≥ 0, x,y ∈C,

and ∥∥∥∥Fn
(

1
n

)
x−Fn

( t
n

)
y
∥∥∥∥≤ ‖x− y‖, ∀t ≥ 0, x,y ∈C,

(4.123) extends to all x ∈ D(A) = C. The proof of Theorem 4.15 is complete.

Remark 4.9. The conclusion of Theorem 4.15 remains unchanged if A is ω-accretive,
satisfies the range condition (4.15), and F(t) : C→C are Lipschitzian with Lipschitz
constant L(t) = 1+ωt +o(t) as t → 0. The proof is essentially the same and relies
on an appropriate estimate of the form (4.117) for Lipschitz mappings on C.

Given two m-accretive operators A,B⊂ X×X such that A+B is m-accretive, one
might expect that

SA+B(t)x = lim
n→∞

(
SA

( t
n

)
SB

( t
n

))n
x, ∀t ≥ 0, (4.124)

for all x ∈D(A)∩D(B). This is the Lie–Trotter product formula and one knows that
it is true for C0-semigroups of contractions and in other situations (see Pazy [45],
p. 92). It is readily seen that (4.124) is equivalent to the convergence of the fractional
step method scheme for the Cauchy problem





dy
dt

+Ay+By 3 0 in [0,T ],

y(0) = y0;
(4.125)

that is,
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



dy
dt

+Ay 3 0 in [iε,(i+1)ε], i = 0,1, ...,N−1, T = Nε,

y+(iε) = z(ε), i = 0,1, ...,N−1,

y+(0) = y0,

(4.126)

dz
dt

+Bz 3 0 in [0,ε],

z(0) = y−(iε).
(4.127)

In a general Banach space, the Lie–Trotter formula (4.124) is not convergent even
for regular operators B unless SA(t) admits a graph infinitesimal generator A: for
all [x,y] ∈ A there is xh → x as h→ 0 such that h−1(xh−SA(h)x)→ y (Bénilan and
Ismail [12]). However, there are known several situations in which formula (4.124)
is true and one is described in Theorem 4.16 below.

Theorem 4.16. Let X and X∗ be uniformly convex and let A,B be m-accretive
single-valued operators on X such that A + B is m-accretive and SA(t),SB(t) map
D(A)∩D(B) into itself. Then,

SA+B(t)x = lim
n→∞

(
SA

( t
n

)
SB

( t
n

))n
x, ∀x ∈ D(A)∩D(B), (4.128)

and the limit is uniform in t on compact intervals.

Proof. We verify the hypotheses of Theorem 4.15, where F(t) = SA(t)SB(t) and
C = D(A)∩D(B). To prove (ii), it suffices to show that

lim
t↓0

x−F(t)x
x

= Ax+Bx, ∀x ∈ D(A)∩D(B). (4.129)

Indeed, if

xt =
(

I +λ
I−F(t)

t

)−1

x

and
x0 = (I +λ (A+B))−1x,

then we have

xt +
λ
t

(xt −F(t)xt) = x (4.130)

and, respectively,
x0 +λAx0 +λBx0 = x. (4.131)

Subtracting (4.130) from (4.131), we may write

xt − x0 +
λ
t

((I−F(t))xt − (I +F(t)x0))+λ
(

Ax0 +Bx0− x0−F(t)x0

t

)
= 0.
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Multiplying this by J(xt − x0), where J is the duality mapping of X , and using
(4.129) and the accretiveness of I−F(t), it follows that

lim
t↓0
‖xt − x0‖ ≤ λ lim

t↓0

∥∥∥∥Ax0 +Bx0− x0−F(t)x0

t

∥∥∥∥ = 0.

Hence, limt↓0 xt = x0, which implies (ii).
To prove (4.129), we write t−1(x−F(t)x) as

t−1(x−F(t)x) = t−1(x−SA(t)x)+ t−1(SA(t)x−SA(t)SB(t)x).

Because t−1(x−SA(t)x)→ Ax as t → 0 (Theorem 4.7), it remains to prove that

zt = t−1(SA(t)x−SA(t)SB(t)x)→ Bx as t → 0. (4.132)

Because SA(t) is nonexpansive, we have

‖zt‖ ≤ t−1‖SB(t)x− x‖ ≤ ‖Bx‖, ∀t > 0. (4.133)

On the other hand, inasmuch as I−SA(t) is accretive, we have
(

u−SA(t)u
t

+
SA(t)x−SB(t)x

t
− zt ,J(u−SA(t)x)

)
> 0,

∀u ∈C, t > 0.

(4.134)

Let tn → 0 be such that ztn ⇀ z. Then, by (4.134), we have that

(Au+Bx−Ax− z,J(u− x))≥ 0, ∀u ∈ D(A),

because J : X → X∗ is continuous and

t−1(x−SB(t)x)→ Bx, t−1(x−SA(t)x)→ Ax.

Inasmuch as A is m-accretive, this implies that Ax+z−Bx = Ax (i.e., z = Bx). On the
other hand, by (4.133), recalling that X is uniformly convex, it follows that ztn → Bx
(strongly). Then, (4.132) follows, and the proof of Theorem 4.16 is complete. ¤

Remark 4.10. Theorem 4.16, which is essentially due to Brezis and Pazy [16] was
extended by Kobayashi [35] to multivalued operators A and B in a Hilbert space H.
More precisely, if A,B and A+B are maximal monotone and if there is a nonempty
closed convex set C⊂D(A)∩D(B) such that (I+λA)−1C⊂C and (I+λB)−1C⊂C,
∀λ > 0, then

SA+B(t)x = lim
n→∞

(
SA

( t
n

)
SB

( t
n

))n
x, ∀x ∈C,

uniformly in t on compact intervals. For some extensions to Banach spaces we refer
to Reich [49].
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4.3 Time-Dependent Cauchy Problems

This section is concerned with the evolution problem




dy
dt

(t)+A(t)y(t) 3 f (t), t ∈ [0,T ],

y(0) = y0,
(4.135)

where {A(t)}t∈[0,T ] is a family of quasi-m-accretive operators in X×X .
The existence problem for (4.135) is a difficult one and not completely solved

even for linear operators A(t). In general, one cannot expect a positive and con-
venient answer to the existence problem for (4.135) if one takes into account that
in most applications to partial differential equations the domain D(A(t)) might not
be independent of time. However, we can identify a few classes of time-dependent
problems for which the Cauchy problem (4.135) is well posed.

Nonlinear Demicontinuous Evolutions in Duality Pair of Spaces

Let V be a reflexive Banach space and H be a real Hilbert space identified with its
own dual such that V ⊂H ⊂V ′ algebraically and topologically. The existence result
given below is the time-dependent analogue of Theorem 4.10.

Theorem 4.17. Let {A(t); t ∈ [0,T ]} be a family of nonlinear, monotone, and
demicontinuous operators from V to V ′ satisfying the assumptions:

(i) The function t → A(t)u(t) is measurable from [0,T ] to V ′ for every measu-
rable function u : [0,T ]→V.

(ii) (A(t)u,u)≥ ω‖u‖p +C1, ∀u ∈V, t ∈ [0,T ].
(iii) ‖A(t)u‖V ′ ≤C1(1+‖u‖p−1), ∀u ∈V, t ∈ [0,T ], where ω > 0, p > 1.

Then, for every y0 ∈H and f ∈ Lq(0,T ;V ′), 1/p+1/q = 1, there is a unique abso-
lutely continuous function y ∈W 1,q([0,T ];V ′) that satisfies

y ∈C([0,T ];H) ∩ Lp(0,T ;V ),
dy
dt

(t)+A(t)y(t) = f (t), a.e. t ∈ (0,T ),

y(0) = y0.

(4.136)

Proof. For the sake of simplicity, we assume first that p≥ 2. Consider the spaces

V = Lp(0,T ;V ), H = L2(0,T ;H), V ′ = Lq(0,T ;V ′).

Clearly, we have
V ⊂H ⊂ V ′

algebraically and topologically.
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Let y0 ∈ H be arbitrary and fixed and let B : V → V ′ be the operator

Bu =
du
dt

, u ∈ D(B) =
{

u ∈ V ;
du
dt
∈ V ′, u(0) = y0

}
,

where d/dt is considered in the sense of vectorial distributions on (0,T ). We note
that D(B) ⊂ W 1,q(0,T ;V ′)∩ Lq(0,T ;V ) ⊂ C([0,T ];H), so that y(0) = y0 makes
sense.

Let us check that B is maximal monotone in V ×V ′. Because B is clearly mono-
tone, by virtue of Theorem 2.3, it suffices to show that R(B+Φp) = V ′, where

Φp(u(t)) = F(u(t))‖u(t)‖p−2, u ∈ V ,

and F : V →V ′ is the duality mapping of V . Indeed, for every f ∈ V ′ the equation

Bu+Φp(u) = f ,

or, equivalently,

du
dt

+F(u)‖u‖p−2 = f in [0,T ], u(0) = y0,

has, by virtue of Theorem 4.10, a unique solution

u ∈C([0,T ];H)∩Lp(0,T ;V ),
du
dt
∈ Lq(0,T ;V ′).

(Renorming the spaces V and V ′, we may assume that V and V ′ are strictly convex
and F is demicontinuous and that so is the operator u→ F(u)‖u‖p−2.) Hence, B is
maximal monotone in V ×V ′.

Define the operator A0 : V → V ′ (the realization of A in pair V ,V ′) by

(A0u)(t) = A(t)u(t), a.e. t ∈ (0,T ).

Clearly, A0 is monotone, demicontinuous, and coercive from V to V ′ because so is
A(t) : V →V ′.

Then, by Corollaries 2.2 and 2.6, A0 + B is maximal monotone and surjective.
Hence, R(A0 +B) = V ′, which completes the proof.

The proof in the case 1 < p < 2 is completely similar if we take V = Lp(0,T ;V )∩
L2(0,T ;H) and replace A(t) by A(t)+λ I for some λ > 0. The details are left to the
reader. ¤

Remark 4.11. It should be said that Theorem 4.17 applies neatly to the parabolic
boundary value problem
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∂y
∂ t

(x, t)− ∑
|α |≤m

Dα(Aα(t,x,y,Dβ y)) = f (x, t), (x, t) ∈Ω × (0,T )

y(x,0) = y0(x), x ∈Ω
Dβ y = 0 on ∂Ω for |β |< m,

where Aα : [0,T ]×Ω ×RmN → RmN are measurable in (t,x), continuous in other
variables and satisfy for each t ∈ [0,T ] assumptions (i)–(iii) in Remark 2.6.

Then we apply Theorem 4.17 for V = W m,p
0 (Ω),V ′ = W−m,q(Ω) and

A(t) : V →V ′ defined by

(A(t)y,z) = ∑
|α |≤m

∫

Ω
Aα(t,x,y(x),Dβ y(x)) ·Dα y(x)dx, ∀y,z ∈W m,p

0 (Ω).

Hence, for f ∈ Lq(0,T ;W−m,q(Ω)), y0 ∈ L2(Ω), there is a unique solution

y ∈ Lp(0,T ;W m,p
0 (Ω))∩C([0,T ];L2(Ω))

dy
dt
∈ Lq(0,T ;W−m,q(Ω)).

Subpotential Time-Dependent Evolutions

Let X = H be a real Hilbert space and A(t) = ∂ϕ(t,y), t ∈ [0,T ], where ϕ(t) : H →
R = (−∞,∞] is a family of convex and lower semicontinuous functions satisfying
the following conditions.

(k) For each measurable function y : [0,T ] → H, the function t → ϕ(t,y(t)) is
measurable on (0,T ).

(kk) ϕ(t,y)≤ ϕ(s,y)+α|t−s|(ϕ(s,y)+ |y|2 +1) for all y∈H and 0≤ s≤ t ≤ T.

Here α is a nonnegative constant.
We note that, in particular, assumption (kk) implies that Dϕ(s, ·) ⊂ Dϕ(t, ·) for

all 0≤ s≤ t ≤ T . A standard example of such a family {ϕ(t, ·)}t is

ϕ(t, ·) = IK(t), t ∈ [0,T ],

where {K(t)}t is an increasing family of closed convex subsets such that the func-
tion t → PK(t)y(t) is measurable for each measurable function y : [0,T ]→ H. Here,
PK(t) = (I + λ∂ IK(t))−1 is the projection operator on K(t) and the last assumption
implies of course (k) for ϕ(t) = IK(t).

Theorem 4.18. Assume that ϕ : [0,T ]×H → R = (−∞,∞] satisfies hypotheses (k),
(kk). Then, for each y0 ∈ D(ϕ(0, ·)) and f ∈ L2(0,T ;H), there is a unique pair of
functions y ∈W 1,2([0,T ];H) and η ∈ L2(0,T ;H) such that
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η(t) ∈ ∂ϕ(t,y(t)), a.e. t ∈ (0,T ),
dy
dt

(t)+η(t) = f (t), a.e. t ∈ (0,T ),

y(0) = y0.

(4.137)

This means that y is solution to (4.135), where A(t) = ∂ϕ(t, ·).
Proof. It suffices to prove the existence in the sense of (4.137) for the equation

dy
dt

(t)+∂ϕ(t,y(t))+λ0y(t) 3 f (t), a.e. t ∈ (0,T ),

y(0) = y0,

(4.138)

where λ0 > 0 is arbitrary but fixed. Indeed, by the substitution eλ0t y → y, equation
(4.138) reduces to

dy
dt

(t)+ eλ0t∂ϕ(t,e−λ0t y(t)) 3 eλ0t f (t), t ∈ [0,T );

that is,
dy
dt

+∂ ϕ̃(t,y) 3 eλ0t f , t ∈ (0,T ),

where ϕ̃(t,y) = e2λ0tϕ(t,e−λ0t y) and eλ0t∂ϕ(t,e−λ0t y) = ∂ ϕ̃(t,y).
Clearly, ϕ̃ satisfies assumptions (k), (kk).
Now, we may rewrite equation (4.138) in the space H = L2(0,T ;H) as

By+A y+λ0y 3 f , (4.139)

where

By =
dy
dt

, D(B) = {y ∈W 1,2([0,T ];H) y(0) = y0},

A y = {η ∈ L2(0,T ;H); η(t) ∈ ∂ϕ(t,y(t)), a.e. t ∈ (0,T )},

D(A ) = {y ∈ L2(0,T ;H), ∃η ∈ L2(0,T ;H), η(t) ∈ ∂ϕ(t,y(t)),

a.e. t ∈ (0,T )}.

Because, as easily seen, A is maximal monotone in H ×H and A ⊂ ∂ϕ , we infer
that A = ∂φ , where φ : H → (−∞,+∞] is the convex function

φ(y) =
∫ T

0
ϕ(t,y(t))dt. (4.140)

By assumption (k), it follows via Fatou’s lemma that φ is also lower semiconti-
nuous and nonidentically +∞ on H . (The latter follows by (kk).)
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To prove the existence for equation (4.138) (equivalently (4.139)), we apply Pro-
position 3.9. To this end it suffices to check the inequality

φ((I +λB)−1y)≤ φ(y)+Cλ (φ(y)+ |y|2H +1), ∀y ∈H . (4.141)

We notice that

(I +λB)−1y = e−(t/λ )y0 +
1
λ

∫ t

0
e−(t−s)/λ y(s)ds, ∀λ > 0, t ∈ (0,T ),

and this yields (by convexity of y→ ϕ(t,y) and by (kk))

φ((I +λB)−1y) =
∫ T

0
ϕ

(
t,e−(t/λ )y0 +

1
λ

∫ t

0
e−(t−s)/λ y(s)ds

)
dt

≤
∫ T

0

(
e−(t/λ )ϕ(t,y0)+

1
λ

∫ t

0
e−(t−s)/λ ϕ(t,y(s))ds

)
dt

≤ Cλ (1− e−(T/λ ))ϕ(0,y0)+αT (ϕ(0,y0)+ |y0|2 +1))

+
1
λ

∫ T

0
dt

∫ t

0
e−(t−s)/λ ϕ(s,y(s))ds

+
α
λ

∫ T

0
dt

∫ t

0
e−(t−s)/λ (ϕ(s,y(s))+1+ |y(s)|2)|t− s|ds

≤ 1
λ

∫ T

0
ϕ(s,y(s))ds

∫ T

s
e−(t−s)/λ dt

+
α
λ

∫ T

0
(ϕ(s,y(s))+|y(s)|2)ds

∫ T

s
e−(t−s)/λ |t−s|dt

+ Cλ (ϕ(0,y0)+ |y0|2 +1

≤ φ(y)+Cλ (ϕ(0,y0)+φ(y)+ |y|2H +1). ¤

Time-Dependent m-Accretive Evolution

We consider here equation (4.135) under the following assumptions.

(j) {A(t)}t∈[0,T ] is a family of m-accretive operators in X such that, for all λ > 0,

‖Aλ (t)y−Aλ (s)y‖ ≤C|t− s|(‖Aλ (t)y‖+‖y‖+1),

∀y ∈ X , ∀s, t ∈ [0,T ].
(4.142)

Here, Aλ (t) is the Yosida approximation of y→ A(t,y). (See (3.1).)
Unlike the previous situations considered here, condition (4.142) has the

unpleasant consequence that the domain of A(t) is independent of t; that is,
D(A(t)) ≡ D(A(0)), ∀t ∈ [0,T ]. This assumption is, in particular, too restrictive if
we want to treat partial differential equations with time-dependent boundary value
conditions, but it is, however, satisfied in a few significant cases involving partial
differential equations with smooth time-dependent nonlinearities.
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Theorem 4.19. Assume that X is a reflexive Banach space with uniformly convex
dual X∗. If {A(t)} satisfies assumption (j), then, for each f ∈W 1,1([0,T ];X) and
y0 ∈ D≡ D(A(t)), there is a unique function y ∈W 1,∞([0,T ];X) such that





dy
dt

(t)+A(t)y(t) 3 f (t), a.e. t ∈ (0,T ),

y(0) = y0.
(4.143)

Proof. We start, as usual, with the approximating equation

dyλ
dt

+Aλ (t)yλ (t) = f (t), t ∈ (0,T ),

yλ (0) = y0,
(4.144)

which has a unique solution yλ ∈C1([0,T ];X). By (4.142) and (4.144) and the ac-
cretivity of Aλ (t), we see that

1
2

d
dt
‖yλ (t +h)− yλ (t)‖2

≤ (Aλ (t +h)yλ (t)−Aλ (t)yλ (t),J(yλ (t +h)− yλ (t)))

≤C|h|‖yλ (t +h)− yλ (t)‖(‖Aλ (t)yλ (t)‖+‖yλ (t)‖+1), ∀t, t +h ∈ [0,T ].

This yields

‖yλ (t +h)− yλ (t)‖

≤C
∫ t

0
(‖Aλ (s)yλ (s)‖+‖yλ (s)‖+1)ds+‖yλ (h)− y0‖.

(4.145)

On the other hand, we have

1
2

d
dt
‖yλ (h)− yλ (0)‖2 = −(Aλ (t)yλ (t),J(yλ (t)− y0))

+( f (t),J(yλ (t)− y0)), a.e. t ∈ (0,T ),

and therefore

‖yλ (h)− y0‖ ≤
∫ h

0
‖Aλ (s)y0‖ds+‖ f‖L∞(0,T ;H)h

≤ h(‖Aλ (0)y0‖+‖ f‖L∞(0,T ;H)).

Then, substituting into (4.144) and letting h→ 0, we obtain that
∥∥∥∥

dyλ
dt

(t)
∥∥∥∥ ≤ C

(∫ t

0
(‖Aλ (s)yλ (s)‖+‖yλ (s)‖+1)ds

+‖A0(0)y0‖+‖ f‖L∞(0,T ;H)

)
, ∀λ > 0.

(4.146)
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On the other hand, by (4.144) we also have that

‖yλ (t)‖ ≤C, ∀t ∈ [0,T ], λ > 0.

By (4.144) and (4.146), we get via Gronwall’s lemma that
∥∥∥∥

dyλ
dt

(t)
∥∥∥∥+‖Aλ (t)yλ (t)‖ ≤C, ∀λ > 0, t ∈ [0,T ]. (4.147)

Then, by (4.147) we find as in the proof of Theorem 4.6 that the sequence {yλ}λ is
Cauchy in C([0,T ];X) and y = limλ→0 yλ is the solution to (4.143). The details are
left to the reader. ¤

4.4 Time-Dependent Cauchy Problem Versus Stochastic
Equations

The above methods apply as well to stochastic differential equations in Hilbert
spaces with additive Gaussian noise because, as we show below, these equations
can be reduced to time-dependent deterministic equations depending on a random
parameter. Below we treat only two problems of this type and refer to standard
monographs for complete treatment.

Consider the stochastic differential equation in a separable Hilbert space H,
{

dX(t)+AX(t)dt = BdW (t), t ≥ 0,

X(0) = x.
(4.148)

Here A : D(A) ⊂ H → H is a quasi-m-accretive operator in H, B ∈ L(U,H), where
U is another Hilbert space and W (t) is a cylindrical Wiener process in U defined on
a probability space {Ω ,F ,P}. This means that

W (t) =
∞

∑
k=1

βk(t)ek,

where {ek}k is an orthonormal basis in U and {βk}k is a sequence of mutually in-
dependent Brownian motions on {Ω ,F ,P}. Denote by Ft the σ -algebra generated
by βk(s) for s≤ t, k ∈ N (also called filtration).

By solution to (4.148) we mean a stochastic process X = X(t) on {Ω ,F ,P}
adapted to Ft ; that is, X(t) is measurable with respect to the σ -algebra Ft , and
satisfies equation

X(t) = x−
∫ t

0
AX(s)ds+

∫ t

0
BdW (s)ds, ∀t ≥ 0, P-a.s., (4.149)
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where the integral
∫ t

0 BdW (s) is considered in the sense of Ito (see Da Prato [28],
Da Prato and Zabczyk [29], and Prévot and Roeckner [48]) for the definition and
basic existence results for equation (4.149).

A standard way to study the existence for equation (4.148) is to reduce it via
substitution

y(t) = X(t)−BW (t)

to the random differential equation




d
dt

y(t,ω)+A(y(t,ω)+BW (t,ω)) = 0, t ≥ 0, P-a.s., ω ∈Ω ,

y(0,ω) = x.

(4.150)

For almost all ω ∈Ω (i.e., P-a.s.), (4.150) is a deterministic time-dependent equa-
tion in H of the form (4.135); that is,





dy
dt

(t)+A(t)y(t) = 0, t ≥ 0,

y(0) = x,

where A(t)y = A(y+BW (t)). This fact explains why one cannot expect a complete
theory of existence similar to that from the deterministic case. In fact, because the
Wiener process t →W (t) does not have bounded variation, Theorems 4.18 and 4.19
are inapplicable in the present situation. More appropriate for this scope is, however,
Theorem 4.17 which requires no regularity in t for A(t).

Then, we assume that V is a reflexive Banach space continuously embedded in
H and so we have

V ⊂ H ⊂V ′

algebraically and topologically, where V ′ is the dual space of V .
Let A : V →V ′ satisfy the conditions of Theorem 4.10:

(`) A is a demicontinuous monotone operator and

(Au,u) ≥ γ‖u‖p
V +C1, ∀u ∈V,

‖Au‖V ′ ≤ C2(1+‖u‖p−1
V ), ∀u ∈V,

where γ > 0 and p > 1.

Then, we have the following theorem.

Theorem 4.20. Assume that A satisfies hypothesis (`) and that

BW ∈ Lp(0,T ;V ), P-a.s. (4.151)

Then, for each x∈H, equation (4.150) has a unique adapted solution X = X(t,ω)∈
Lp(0,T ;V )∩C([0,T ];H), a.e. ω ∈Ω .



4.4 Time-Dependent Cauchy Problem Versus Stochastic Equations 185

Proof. One simply applies Theorem 4.17 to the operator A(t)y = A(y+BW (t)) and
check that conditions (i)–(iii) are satisfied under hypotheses (`) and (4.151).

Thus, one finds a solution X = X(t,ω) to (4.150) that satisfies (4.76) for P-almost
all ω ∈Ω . Taking into account that, as seen earlier, such a solution can be obtained
as the limit of solutions yλ to the approximating equations





d
dt

yλ +Aλ (yλ +BW ) = 0, t ∈ (0,T ),

yλ (0) = x,

where Aλ is the Yosida approximation of A
∣∣
H (the restriction of the operator A to H),

we may conclude that X is adapted with respect to the filtration {Ft}. One might
also prove H-continuity of t → X(t,ω) by the methods of Krylov and Rozovski [39]
(see also Prévot and Roeckner [48]), which completes the proof. In particular, Theo-
rem 4.20 applies to parabolic stochastic differential equations of the type mentioned
in Remark 4.11. ¤

It should be said, however, that this variational framework covers only a small
part of stochastic partial differential equations because most of them cannot be writ-
ten in this variational setting and so, in general, other arguments should be involved.
This is the case, for instance, with the reflection problem for stochastic differential
equations in a Hilbert space H. Namely, for the equation

dX(t)+(AX(t)+F(X(t))+∂ IK(X(t)))dt 3 √QdW (t),

X(0) = x ∈ K,
(4.152)

where K is a closed convex subset of H such that 0 ∈ ◦
K and

(j) A : D(A) ⊂ H → H is a linear self-adjoint operator on H such that A−1 is
compact and (Ax,x)≥ δ |x|2, ∀x ∈ D(A), for some δ > 0.

(jj) Q : H →H is a linear, bounded, positive, and self-adjoint operator on H such
that Qe−tA = e−tAQ for all t ≥ 0, Q(H)⊂ D(A) and Tr[AQ] < ∞.

(jjj) F : H → H is a Lipschitzian mapping such that, for some γ > 0, we have

(F(x),x)≥−γ|x|2, ∀x ∈ H.

(jv) W is a cylindrical Wiener process on H of the form

W (t) =
∞

∑
k=1

µkβk(t)ek, t ≥ 0,

where {βk} is a sequence of mutually independent real Brownian motions
on filtered probability spaces (Ω ,F ,{Ft}t≥0,P) (see [28]) and {ek} is an
orthonormal basis in H taken as a system of eigenfunctions for A.

We denote, as usual, by C([0,T ];H) the space of all continuous functions from
[0,T ] to H and by BV ([0,T ];H) the space of all functions with bounded va-
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riation from [0,T ] to H. We set V = D(A1/2) with the norm ‖ · ‖ and denote
by V ′ the dual of V in the pairing induced by the scalar product (·, ·) of H.
By CW ([0,T ];H), L2

W ([0,T ];V ), L2
W ([0,T ];V ′) we denote the standard spaces of

adapted processes on [0,T ] (see [28, 29]).
Denote by WA the stochastic convolution,

WA(t) =
∫ t

0
e−A(t−s)

√
QdW (s)

and note that (4.152) can be rewritten as




d
dt

Y (t)+AY (t)+F(Y (t)+WA(t))+∂ IK(Y (t)+WA(t)) 3 0,

∀t ∈ (0,T ), P-a.s. ω ∈Ω
Y (0) = x,

(4.152)′

where Y (t) = X(t)−WA(t).

Definition 4.5. The adapted process X ∈CW (0,T ];H)∩L2
W (0,T ;V ) is said to be a

solution to (4.152) if there are functions Y ∈ CW ([0,T ];H)∩L2
W (0,T ;V ) and η ∈

BV ([0,T ];H) such that X(t) = Y (t)+WA(t) ∈ K, a.e. in Ω × (0,T ) and

Y (t)+
∫ t

0
(AY (s)+F(X(s)))ds+η(t) = x, ∀t ∈ [0,T ], P-a.s. (4.153)

∫ t

0
(dη(s),X(s)−Z(s))ds≥ 0, ∀Z ∈C([0,T ];K), P-a.s. (4.154)

Here
∫ t

0(dη(s),X(s)−Z(s))ds is the Stieltjes integral with respect to η .

Theorem 4.21 below is an existence result for equation (4.152) (equivalently,
(4.152)′) and is given only to illustrate how the previous methods work in the case
of stochastic infinite-dimensional equations.

Theorem 4.21. Under the above hypotheses there is a unique strong solution to
equation (4.152).

Proof. Existence. We start with the approximating equation
{

dXε +(AXε +F(Xε)+βε(Xε))dt =
√

QdW,

Xε(0) = x,
(4.155)

where βε is the Yosida approximation of ∂ IK ,

βε(x) =
1
ε

(x−ΠK(x)), ∀x ∈ H, ε > 0,

and ΠK is the projection on K.
Equation (4.155) has a unique strong solution Xε ∈ CW ([0,T ];H) such that

Yε := Xε −WA belongs to L2
W (0,T ;H). As seen above, we can rewrite (4.155) as
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



dYε
dt

+AYε +F(Xε)+βε(Xε) = 0,

Yε(0) = x,
(4.156)

which is considered here for a fixed ω ∈Ω . Because 0 ∈ ◦
K, there is ρ > 0 such that

(βε(x),x−ρθ)≥ 0, ∀θ ∈ H, |θ |= 1. This yields ρ|βε(x)| ≤ (βε(x),x), ∀x ∈ H.

Step 1. There exists C = C(ω) > 0 such that

|Yε(t)|2 +
∫ t

0
‖Yε(s)‖2ds+

∫ t

0
|βε(Xε(s))|ds≤C. (4.157)

Indeed, multiplying (4.156) scalarly in H by Yε(s) and integrating over (0, t) yields

1
2
|Yε(t)|2 +

∫ t

0
‖Yε(s)‖2ds+ρ

∫ t

0
|βε(Xε(s))|ds

≤ 1
2
|x|2 + γ

∫ t

0
|Xε(s)|2ds+

∫ t

0
(F(Xε(s))+βε(Xε(s)),WA(s))ds.

(4.158)

In order to estimate the last term in formula (4.158), we choose a decomposition
0 < t1 < · · ·< tN = t of [0, t] such that, for t,s ∈ [ti−1, ti], we have

|WA(t)−WA(s)| ≤ ρ
2

.

This is possible because WA is P-a.s. continuous in H, and so we may assume that

sup
t∈[0,T ]

|WA(t +h)−WA(t)| ≤ δ (h)→ 0 as h→ 0,

because by (jj) it follows that WA is P-a.s. continuous in H (see Da Prato [28]).
Then, we write

∫ t

0
(βε(Xε(s)),WA(s))ds =

N

∑
i=1

∫ ti

ti−1

(βε(Xε(s)),WA(s)−WA(ti))ds

+
N

∑
i=1

(
WA(ti),

∫ ti

ti−1

βε(Xε(s))ds
)

.

Consequently,
∫ t

0
(βε(Xε(s)),WA(s))ds≤ ρ

2

∫ t

0
|βε(Xε(s))|ds

+

∣∣∣∣∣
N

∑
i=1

(
WA(ti),

∫ ti

ti−1

(AYε(s)+F(Xε(s)))ds+Yε(ti)−Yε(ti−1)
)∣∣∣∣∣ .

Now, using the estimate
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(

WA(ti),
∫ ti

ti−1

AYε(s)ds
)
≤C

∫ ti

ti−1

‖Yε(s)‖2ds,

we get (4.157).
We now prove that the sequence {Yε} is equicontinuous in C([0,T ];H). Let h > 0,

then we have

d
dt

(Yε(t +h)−Yε(t))+A(Yε(t +h)−Yε(t))

+F(Xε(t +h))−F(Xε(t))+βε(Xε(t +h))−βε(Xε(t)) = 0.

By the monotonicity of βε and because F is Lipschitz continuous, we have

|Yε(t +h)−Yε(t)| ≤Cδ (h), ∀t ∈ [0,T ], h > 0, ε > 0.

So, {Yε} is equi-continuous. To apply the Ascoli-Arzelà theorem, we have to prove
that, for each t ∈ [0,T ], the set {Yε(t)}ε>0 is pre-compact in H. To prove this, choose
for any ε > 0 a sequence { f ε

n } ⊂ L2(0,T ;V ) such that

| f ε
n −βε(Yε +WA)|L1(0,T ;H) ≤

1
n
, n ∈ N.

On the other hand, for each n ∈ N, the set

Mn :=
{∫ t

0
e−A(t−s) f ε

n ds+ e−Atx : ε > 0
}

is compact in H because { f ε
n } is bounded in L2(0,T ;H) for each n∈N. This implies

that, for any δ > 0, there are N(n) ∈ N and {un
i }i=1,...,N(n) ⊂ H such that

N(n)⋃

i=1

B(un
i ,δ )⊃Mn.

Therefore,

{
Yε(t) :=

∫ t

0
e−A(t−s) f ε

n ds+ e−Atx : ε > 0
}
⊂

N(n)⋃

i=1

B(un
i ,δ +n−1).

Hence, the set {Yε(t)}ε>0 is precompact in H, as claimed. Then, by the Ascoli–
Arzelà theorem we infer that on a subsequence, Yε →Y strongly in C([0,T ];H) and
weakly in L2(0,T ;V ). Moreover, thanks to Helly’s theorem (see [9]), we have that
there is η ∈ BV ([0,T ];H) such that, for ε → 0,

∫ t

0
βε(Xε(s))ds→ η(t) weakly in H, ∀t ∈ [0,T ],

which implies that
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∫ t

0
(βε(Xε(s)),Z(s))ds→

∫ t

0
(dη(s),Z(s))ds, ∀Z ∈C([0,T ];K).

Letting ε → 0 into the identity

Yε(t)+
∫ t

0
(AYε(s+F(Yε(s)))ds+

∫ t

0
βε(Yε(s)+WA(s)))ds = x,

we see that (Y,η) satisfy (4.153).
Finally, by the monotonicity of βε we have (recall that βε(Z(s)) = 0),

(βε(Yε(s)+WA(s)),Yε(s)+WA(s)−Z(s))≥ 0, ∀Z ∈C([0,T ];K),

and so (4.154) holds.

Uniqueness. Assume that (Y1,η1),(Y2,η2) are two solutions. Then, we have
∫ t

0
(d(η1(s)−η2(s)),Y1(s)−Y2(s))ds≥ 0, ∀t ∈ [0,T ].

This yields

∫ t

0

(
d(Y1(s)−Y2(s))+

∫ s

0
(A(Y1(τ)−Y2(τ))

+F(X1(τ)−F(X2(τ)))dτ,Y1(s)−Y2(s))
)
≤ 0

and, by integration, we obtain that

1
2
|Y1(t)−Y2(t)|2 +

∫ t

0
(A(Y1−Y2)+F(X1)−F(X2),Y1−Y2)ds≤ 0,

∀t ∈ [0,T ], which implies via Gronwall’s lemma that Y1 = Y2.
In particular, the latter implies that the sequence {ε} founded before is indepen-

dent of ω and so, there is indeed a unique pair satisfying Definition 4.5. (For proof
details, we refer to Barbu and Da Prato [6].) ¤
Remark 4.12. The above argument can be formalized to treat more general equations
of the form (4.152)′ and, in particular, the so-called variational inequalities with
singular inputs (see Barbu and Răşcanu [7]). In the literature, such a problem is also
called the Skorohod problem (see, e.g., Cépa [20]).

Bibliographical Remarks

The existence theory for the Cauchy problem associated with nonlinear m-accretive
operators in Banach spaces begins with the influential pioneering papers of Komura
[37, 38] and Kato [32] in Hilbert spaces. The theory was subsequently extended in
a more general setting by several authors mentioned below.
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The main result of Section 4.1 is due to Crandall and Evans [23] (see also Cran-
dall [22]), and Theorem 4.3 has been previously proved by Crandall and Liggett
[24]. The existence and uniqueness of integral solutions for problem (4.1) (see Theo-
rem 4.18) is due to Bénilan [10]. Theorems 4.5 and 4.6 were established in a partic-
ular case in Banach space by Komura [37] (see also Kato [32]) and later extended
in Banach spaces with uniformly convex duals by Crandall and Pazy [25, 26]. Note
that the generation theorem, 4.3 remains true for m-accretive operators satisfying
the extended range condition (Kobayashi [35])

liminf
h↓0

1
h

d(x,R(I +λA)) = 0, ∀x ∈ D(A),

d(x,K) is the distance from x to K.
The basic properties of continuous semigroups of contractions have been esta-

blished by Komura [38], Kato [33], and Crandall and Pazy [25, 26]. For other sig-
nificant results of this theory, we refer the reader to the author’s book [5]. (See also
Showalter [50].) The results of Section 4.4 are due to Brezis [13, 14]. Other results
related to the smoothing effect of nonlinear semigroups are given in the book by
Barbu [5].

Convergence results of the type presented in Section 4.2 were obtained by Brezis
and Pazy [16], Kobayashi and Myadera [36], and Goldstein [30].

Time-dependent differential equations of subdifferential type under conditions
given here (Section 4.3) were studied by Moreau [41], Peralba [47], Kenmochi [34],
and Attouch and Damlamian [3].

Other special problems related to evolutions generated by nonlinear accretive
operators are treated in Vrabie’s book [54]. We mention in this context a characte-
rization of compact semigroups of nonlinear contractions and evolutions generated
by operators of the form A + F , where A is m-accretive and F is upper semiconti-
nuous and compact. For other results such as asymptotic behavior and existence of
periodic and almost periodic solutions to problem (4.1), we refer the reader to the
monographs of Haraux [31] and Moroşanu [42].

We have omitted from our presentation the invariance and viability results related
to nonlinear contraction semigroups on closed subsets. We mention in this context
the books of Aubin and Cellina [4], Pavel [43, 44] and the recent monograph of
Cârjă, Necula, and Vrabie [19], which contains detailed results and complete refe-
rences on this subject.
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temps, C.R.A.S. Paris, 275 (1972), pp. 93–96.
48. C. Prévot, M. Roeckner, A Concise Course on Stochastic Partial Differential Equations, Lect.

Notes Math., 1905, Springer, New York, 2007.
49. S. Reich, Product formulas, nonlinear semigroups and accretive operators in Banach spaces,

J. Funct. Anal., 36 (1980), pp. 147–168.
50. R.E. Showalter, Monotone Operators in Banach Spaces and Nonlinear Partial Differential

Equations, American Mathematical Society, Providence, RI, 1977.
51. U. Stefanelli, The Brezis-Ekeland principle for doubly nonlinear equations, SIAM J. Control

Optim., 8 (2008), pp. 1615–1642.
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Chapter 5
Existence Theory of Nonlinear Dissipative
Dynamics

Abstract In this chapter we present several applications of general theory to
nonlinear dynamics governed by partial differential equations of dissipative type
illustrating the ideas and general existence theory developed in the previous sec-
tion. Most of significant dynamics described by partial differential equations can
be written in the abstract form (4.1) with appropriate quasi-m-accretive operator A
and Banach space X . The boundary value conditions are incorporated in the domain
of A. The whole strategy is to find the appropriate operator A and to prove that it is
quasi-m-accretive. The main emphasis here is on parabolic-like boundary value pro-
blems and the nonlinear hyperbolic equations although the area of problems covered
by general theory is much larger.

5.1 Semilinear Parabolic Equations

The classical linear heat (or diffusion) equation perturbed by a nonlinear poten-
tial β = β (y), where y is the state of system, is the simplest form of semilinear
parabolic equation arising in applications and is treated below. The nonlinear poten-
tial β might describe exogeneous driving forces intervening over diffusion process
or might induce unilateral state constraints.

The principal motivation for choosing multivalued functions β in examples be-
low is to treat problems with a free (or moving) boundary as well as problems
with discontinuous monotone nonlinearities. In the latter case, filling the jumps
[β (r0−0),β (r0 +0)] of function β , we get a maximal monotone multivalued graph
β ⊂ R×R for which the general existence theory applies.

To be more specific, assume that β is a maximal monotone graph such that
0 ∈ D(β ), and Ω is an open and bounded subset of RN with a sufficiently smooth
boundary ∂Ω (for instance, of class C2). Consider the parabolic boundary value
problem
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



∂y
∂ t
−∆y+β (y) 3 f in Ω × (0,T ) = Q,

y(x,0) = y0(x) ∀x ∈Ω ,

y = 0 on ∂Ω × (0,T ) = Σ ,

(5.1)

where y0 ∈ L2(Ω) and f ∈ L2(Ω) are given.
We may represent problem (5.1) as a nonlinear differential equation in the space

H = L2(Ω): 



dy
dt

(t)+Ay(t) 3 f (t), t ∈ [0,T ],

y(0) = y0,
(5.2)

where A : L2(Ω)→ L2(Ω) is the operator defined by

Ay = {z ∈ L2(Ω); z =−∆y+w, w(x) ∈ β (y(x)), a.e. x ∈Ω},
D(A) = {y ∈ H1

0 (Ω)∩H2(Ω); ∃w ∈ L2(Ω), w(x) ∈ β (y(x)), a.e. x ∈Ω}. (5.3)

Here, (d/dt)y is the strong derivative of y : [0,T ]→ L2(Ω) and

∆y =
N

∑
i=1

(∂ 2y/∂x2
i )

is considered in the sense of distributions on Ω .
As a matter of fact, it is readily seen that if y is absolutely continuous from [a,b]

to L1(Ω), then dy/dt = ∂y/∂ t in D ′((a,b); L1(Ω)), and so a strong solution to
equation (5.2) satisfies this equation in the sense of distributions in (0,T )×Ω . For
this reason, whenever there is no any danger of confusion we write ∂y/∂ t instead
of dy/dt.

Recall (see Proposition 2.8) that A is maximal monotone (i.e., m-accretive) in
L2(Ω)×L2(Ω) and A = ∂ϕ , where

ϕ(y) =





1
2

∫

Ω
|∇y|2dx+

∫

Ω
g(y)dx, if y ∈ H1

0 (Ω), g(y) ∈ L1(Ω),

+∞, otherwise,

and ∂g = β . Moreover, we have

‖y‖H2(Ω) +‖y‖H1
0 (Ω) ≤C(‖A0y‖L2(Ω) +1), ∀y ∈ D(A). (5.4)

Writing equation (5.1) in the form (5.2), we view its solution y as a function of t
from [0,T ] to L2(Ω). The boundary conditions that appear in (5.1) are implicitly
incorporated into problem (5.2) through the condition y(t) ∈ D(A), ∀t ∈ [0,T ].

The function y : Ω × [0,T ] → R is called a strong solution to problem (5.1) if
y : [0,T ] → L2(Ω) is continuous on [0,T ], absolutely continuous on (0,T ), and
satisfies
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



d
dt

y(x, t)−∆y(x, t)+β (y(x, t)) 3 f (x, t), a.e. t ∈ (0,T ), x ∈Ω ,

y(x,0) = y0(x), a.e. x ∈Ω ,

y(x, t) = 0, a.e. x ∈ ∂Ω , t ∈ (0,T ).

(5.5)

Proposition 5.1. Let y0 ∈ L2(Ω) and f ∈ L2(0,T ;L2(Ω)) = L2(Q) be such that
y0(x) ∈ D(β ), a.e. x ∈Ω . Then, problem (5.1) has a unique strong solution

y ∈C([0,T ];L2(Ω))∩W 1,1((0,T ];L2(Ω))

that satisfies

t1/2y ∈ L2(0,T ;H1
0 (Ω)∩H2(Ω)), t1/2 dy

dt
∈ L2(0,T ;L2(Ω)). (5.6)

If, in addition, f ∈W 1,1([0,T ];L2(Ω)), then y(t) ∈ H1
0 (Ω)∩H2(Ω) for every

t ∈ (0,T ] and

t
dy
dt
∈ L∞(0,T ;L2(Ω)). (5.7)

If y0 ∈ H1
0 (Ω), g(y0) ∈ L1(Ω), and f ∈ L2(0,T ;L2(Ω)), then

dy
dt
∈ L2(0,T ;L2(Ω)), y ∈ L∞(0,T ;H1

0 (Ω))∩L2(0,T ;H2(Ω)). (5.8)

Finally, if y0 ∈ D(A) and f ∈W 1,1([0,T ];L2(Ω)), then

dy
dt
∈ L∞(0,T ;L2(Ω)), y ∈ L∞(0,T ;H2(Ω)∩H1

0 (Ω)) (5.9)

and
d+

dt
y(t)+(−∆y(t)+β (y(t))− f (t))0 = 0, ∀t ∈ [0,T ]. (5.10)

Proof. This is a direct consequence of Theorems 4.11 and 4.12, because, as seen in
Proposition 2.8, we have

D(A) = {u ∈ L2(Ω); u(x) ∈ D(β ), a.e. x ∈Ω}.

In particular, it follows that for y0 ∈H1
0 (Ω), g(y0)∈ L1(Ω), and f ∈ L2(Ω×(0,T )),

the solution y to problem (5.1) belongs to the space

H2,1(Q) =
{

y ∈ L2(0,T ;H2(Ω)),
∂y
∂ t
∈ L2(Q)

}
, Q = Ω × (0,T ).

Problem (5.1) can be studied in the Lp setting, 1≤ p < ∞ as well, if one defines
the operator A : Lp(Ω)→ Lp(Ω) as
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Ay = {z ∈ Lp(Ω); z =−∆y+w, w(x) ∈ β (y)), a.e. x ∈Ω}, (5.11)

D(A) = {y ∈W 1,p
0 (Ω)∩W 2,p(Ω); w ∈ Lp(Ω) such that (5.12)

w(x) ∈ β (y(x)), a.e. x ∈Ω} if p > 1,

D(A) = {y ∈W 1,1
0 (Ω); ∆y ∈ L1(Ω), ∃w ∈ L1(Ω) such that (5.13)

w(x) ∈ β (y(x)), a.e. x ∈Ω} if p = 1.

As seen earlier (Theorem 3.2), the operator A is m-accretive in Lp(Ω)×Lp(Ω)
and so, also in this case, the general existence theory is applicable. ¤

Proposition 5.2. Let y0 ∈ D(A) and f ∈ W 1,1([0,T ];Lp(Ω)), 1 < p < ∞. Then,
problem (5.1) has a unique strong solution

y ∈C([0,T ];Lp(Ω)),

that satisfies

d
dt

y ∈ L∞(0,T ;Lp(Ω)), y ∈ L∞(0,T ;W 1,p
0 (Ω)∩W 2,p(Ω)) (5.14)

d+

dt
y(t)+(−∆y(t)+β (y(t))− f (t))0 = 0, ∀t ∈ [0,T ]. (5.15)

If y0 ∈ D(A) and f ∈ L1(0,T ;Lp(Ω)), then (5.1) has a unique mild solution

y ∈C([0,T ];Lp(Ω)).

Proof. Proposition 5.2 follows by Theorem 4.6 (recall that X = Lp(Ω) is uniformly
convex for 1 < p < ∞). ¤

Next, by Theorem 4.1 we have the following.

Proposition 5.3. Assume p = 1. Then, for each y0 ∈D(A) and f ∈ L1(0,T ;L1(Ω)),
problem (5.1) has a unique mild solution y ∈C([0,T ];L1(Ω)); that is,

y(t) = lim
ε→0

yε(t),

where yε is the solution to the finite difference scheme

yi+1
ε = yi

ε + ε∆yi+1
ε − εβ (yi+1

ε )+
∫ (i+1)ε

iε
f (t)dt in Ω , i = 0,1, ...,m,

m =
[T

ε
]
+1,

yi+1
ε ∈ H1

0 (Ω)

yε(t) = yi
ε for t ∈ (iε,(i+1)ε).
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Because the space X = L1(Ω) is not reflexive, the mild solution to the Cauchy
problem (5.2) in L1(Ω) is only continuous as a function of t, even if y0 and f are
regular. However, also in this case we have a regularity property of mild solutions;
that is, a smoothing effect on initial data, which resembles the case p = 2.

Proposition 5.4. Let β : R → R be a maximal monotone graph, 0 ∈ D(β ), and
β = ∂g. Let f ∈ L2(0,T ;L∞(Ω)) and y0 ∈ L1(Ω) be such that y0(x) ∈ D(β ), a.e.
x ∈Ω . Then, the mild solution y ∈C([0,T ];L1(Ω)) to problem (5.1) satisfies

‖y(t)‖L∞(Ω) ≤C
(

t−(N/2)‖y0‖L1(Ω) +
∫ t

0
‖ f (s)‖L∞(Ω)ds

)
, (5.16)

∫ T

0

∫

Ω
(t(N+4)/2y2

t + t(N+2)/2|∇y|2)dxdt +T (N+4)/2
∫

Ω
|∇y(x,T )|2dx

≤C

((
‖y0‖4/(N+2)

L1(Ω) +
∫ T

0

∫

Ω
| f |dxdt

)(N+2)/2

+T (N+4)/2
∫ T

0

∫

Ω
f 2dxdt

)
.

(5.17)

Proof. Without loss of generality, we may assume that 0∈ β (0). Also, let us assume
first that y0 ∈H1

0 (Ω)∩H2(Ω). Then, as seen in Proposition 5.1, problem (5.1) has a
unique strong solution such that t1/2yt ∈ L2(Q), t1/2y ∈ L2(0,T ;H1

0 (Ω)∩H2(Ω)):




∂y
∂ t

(x, t)−∆y(x, t)+β (y(x, t)) 3 f (x, t), a.e. (x, t) ∈ Q,

y(x,0) = y0(x), x ∈Ω ,

y = 0, on Σ .

(5.18)

Consider the linear problem




∂ z
∂ t
−∆z = ‖ f (t)‖L∞(Ω) in Q,

z(x,0) = |y0(x)|, x ∈Ω ,

z = 0, on Σ .

(5.19)

Subtracting these two equations and multiplying the resulting equation by (y− z)+,
and integrating on Ω we get

1
2

d
dt
‖(y− z)+‖2

L2(Ω) +
∫

Ω
|∇(y− z)+|2dx≤ 0, a.e. t ∈ (0,T ),

(y− z)+(0)≤ 0 in Ω ,

because z ≥ 0 and β is monotonically increasing. Hence, y(x, t) ≤ z(x, t), a.e. in Q
and so |y(x, t)| ≤ z(x, t), a.e. (x, t) ∈ Q. On the other hand, the solution z to problem
(5.19) can be represented as

z(x, t) = S(t)(|y0|)(x)+
∫ t

0
S(t− s)(‖ f (s)‖L∞(Ω))ds, a.e. (x, t) ∈ Q,
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where S(t) is the semigroup generated on L1(Ω) by −∆ with Dirichlet homoge-
neous conditions on ∂Ω . We know, by the regularity theory of S(t) (see also Theo-
rem 5.4 below), that

‖S(t)u0‖L∞(Ω) ≤Ct−(N/2)‖u0‖L1(Ω), ∀u0 ∈ L1(Ω), t > 0.

Hence,

|y(x, t)| ≤Ct−(N/2)‖y0‖L1(Ω) +
∫ t

0
‖ f (s)‖L∞(Ω)ds, (t,x) ∈ Q. (5.20)

Now, for an arbitrary y0 ∈ L1(Ω) such that y0 ∈ D(β ), a.e. in Ω , we choose a se-
quence {yn

0} ⊂ H1
0 (Ω)∩H2(Ω), yn

0 ∈ D(β ), a.e. in Q, such that yn
0 → y0 in L1(Ω)

as n → ∞. (We may take, for instance, yn
0 = S(n−1)(1 + n−1β )−1y0.) If yn is the

corresponding solution to problem (5.1), then we know that yn → y strongly in
C([0,T ];L1(Ω)), where y is the solution with the initial value y0. By (5.20), it fol-
lows that y satisfies estimate (5.16).

Because y(t) ∈ L∞(Ω) ⊂ L2(Ω) for all t > 0, it follows by Proposition 5.1 that
y∈W 1,2([δ ,T ];L2(Ω))∩L2(δ ,T ;H1

0 (Ω)∩H2(Ω)) for all 0 < δ < T and it satisfies
equation (5.18), a.e. in Q = Ω × (0,T ). (Arguing as before, we may assume that
y0 ∈ H1

0 (Ω)∩H2(Ω) and so yt ,y ∈ L2(0,T ;L2(Ω)).) To get the desired estimate
(5.17), we multiply equation (5.18) by yttk+2 and integrate on Q to get

∫ T

0

∫

Ω
tk+2y2

t dxdt +
1
2

∫ T

0

∫

Ω
tk+2|∇y|2t dxdt +

∫ T

0

∫

Ω
tk+2 ∂

∂ t
g(y)dxdt

=
∫ T

0

∫

Ω
tk+2yt f dxdt,

where yt = ∂y/∂ t and ∂g = β . This yields

∫

Q
tk+2y2

t dxdt +
T k+2

2

∫

Ω
|∇y(x,T )|2dx+T k+2

∫

Ω
g(y(x,T ))dx

≤ k +2
2

∫

Q
tk+1|∇y|2dxdt +(k +2)

∫

Q
tk+1g(y)dxdt

+
1
2

∫ T

0
tk+2y2

t dxdt +
1
2

∫

Q
tk+2 f 2dxdt.

Hence,
∫

Q
tk+2y2

t dxdt +T k+2
∫

Ω
|∇y(x,T )|2dx

≤ (k +2)
∫

Q
tk+1|∇y|2dxdt +2(k +2)

∫

Q
tk+1β (y)dx+T k+2

∫

Q
f 2dxdt.

(If β is multivalued, then β (y) is of course the section of β (y) arising in (5.18).)
Finally, writing β (y)y as ( f +∆y− yt)y and using Green’s formula, we get
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∫

Q
tk+2y2

t dxdt +T k+2
∫

Ω
|∇y(x,T )|2dx+

∫

Q
tk+1|∇y|2dxdt

≤ (k +2)(k +1)
∫

Q
y2tkdxdt

+T k+2
∫

Q
f 2dxdt +2(k +2)

∫

Q
tk+1| f | |y|dxdt

≤C
(∫

Q
tky2dxdt +T k+2

∫

Q
f 2dxdt

)
.

(5.21)

Next, we have, by the Hölder inequality
∫

Ω
y2dx≤ ‖y‖(N−2/N+2)

Lp(Ω) ‖y‖4/(N+2)
L1(Ω)

for p = 2N(N−2)−1. Then, by the Sobolev embedding theorem,

∫

Ω
|y(x, t)|2dx≤

(∫

Ω
|∇y(x, t)|2dx

)N/(N+2) (∫

Ω
|y(x, t)|dx

)4/(N+2)

. (5.22)

On the other hand, multiplying equation (5.18) by sign y and integrating on
Ω × (0, t), we get

‖y(t)‖L1(Ω) ≤ ‖y0‖L1(Ω) +
∫ t

0

∫

Ω
| f (x,s)|dxds, t ≥ 0,

because, as seen earlier (Section 3.2),
∫

Ω
∆y signydx≤ 0.

Then, by estimates (5.21) and (5.22), we get
∫

Q
tk+2y2

t dxdt +T k+2
∫

Ω
|∇y(x,T )|2dx+

∫

Q
tk+1|∇y(x, t)|2dxdt

≤C
((
‖y0‖4/(N+2)

L1(Ω) +
∫ T

0

∫

Ω
| f (x, t)|dxdt

)

×
∫ t

0
tk‖∇y(t)‖2N/(N+2)

L2(Ω) dt +T k+2
∫

Q
f 2dxdt

)
.

On the other hand, we have, for k = N/2,

∫ T

0
tk|∇y(t)|2N/(N+2)dt ≤

(∫ T

0
tk+1|∇y(t)|2dt

)N/(N+2)

T 2/(N+2).

Substituting in the latter inequality, we get after some calculation involving the
Hölder inequality
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∫

Q
t(N+4)/2y2

t dxdt +
∫

Q
t(N+2)/2|∇y(x, t)|2dxdt

+ T (N+4)/2
∫

Ω
|∇y(x,T )|2dx

≤C1

(
‖y0‖4/(N+2)

L1(Ω) +
∫

Q
| f (x, t)|dxdt

)(N+2)/2

+ C2T (N+4)/2
∫

Q
f 2(x, t)dxdt,

(5.23)

as claimed. ¤
In particular, it follows by Proposition 5.4 that the semigroup S(t) generated by

A (defined by (5.11) and (5.13) on L1(Ω) has a smoothing effect on initial data; that
is, for all t > 0 it maps L1(Ω) into D(A) and is differentiable on (0,∞).

In the special case where

β (r) =

{
0 if r > 0,

R− if r = 0,

problem (5.1) reduces to the parabolic variational inequality (the obstacle problem)




∂y
∂ t
−∆y = f in {(x, t); y(x, t) > 0},

y≥ 0,
∂y
∂ t
−∆y≥ f in Q,

y(x,0) = y0(x) in Ω , y = 0 on ∂Ω × (0,T ) = Σ .

(5.24)

This is a problem with free (moving) boundary that is discussed in detail in the next
section.

We also point out that Proposition 5.1 remains true for equations of the form




∂y
∂ t
−∆y+β (x,y) 3 f in Q,

y(x,0) = y0(x) in Ω ,

y = 0 on Σ ,

where β : Ω ×R → 2R is of the form β (x,y) = ∂yg(x,y) and g : Ω ×R → R is a
normal convex integrand on Ω ×R sufficiently regular in X and with appropriate
polynomial growth with respect to y. The details are left to the reader.

Now, we consider the equation




∂y
∂ t
−∆y = f in Ω × (0,T ) = Q,

∂
∂ν

y+β (y) 3 0 on Σ ,

y(x,0) = y0(x) in Ω ,

(5.25)
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where β ⊂ R×R is a maximal monotone graph, 0 ∈ D(β ), y0 ∈ L2(Ω), and
f ∈ L2(Q). As seen earlier (Proposition 2.9), we may write (5.25) as





dy
dt

(t)+Ay(t) = f (t) in (0,T ),

y(0) = y0,

where Ay =−∆y, ∀y ∈ D(A) = {y ∈ H2(Ω); 0 ∈ ∂y/∂ν +β (y), a.e. on ∂Ω}.
More precisely, A = ∂ϕ , where ϕ : L2(Ω)→ R is defined by

ϕ(y) =
1
2

∫

Ω
|∇y|2dx+

∫

∂Ω
j(y)dσ , ∀y ∈ L2(Ω),

and ∂ j = β .
Then, applying Theorems 4.11 and 4.12, we get the following.

Proposition 5.5. Let y0 ∈ D(A) and f ∈ L2(Q). Then, problem (5.25) has a unique
strong solution y ∈C([0,T ];L2(Ω)) such that

t1/2 dy
dt
∈ L2(0,T ;L2(Ω)),

t1/2y ∈ L2(0,T ;H2(Ω)).

If y0 ∈ H1(Ω) and j(y0) ∈ L1(Ω), then

dy
dt
∈ L2(0,T ;L2(Ω)),

y ∈ L2(0,T ;H2(Ω))∩L∞(0,T ;H1(Ω)).

Finally, if y0 ∈ D(A) and f ,∂ f /∂ t ∈ L2(Ω), then

dy
dt
∈ L∞(0,T ;L2(Ω)),

y ∈ L∞(0,T ;H2(Ω))

and
d+

dt
y(t)−∆y(t) = f (t), ∀t ∈ [0,T ].

It should be mentioned that one uses here the estimate (see (2.65))

‖u‖H2(Ω) ≤C(‖u−∆u‖L2(Ω) +1), ∀u ∈ D(A).

An important special case is

β (r) =

{
0 if r > 0,

(−∞,0] if r = 0.
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Then, problem (5.25) reads as




∂y
∂ t
−∆y = f in Q,

y
∂y
∂ν

= 0, y≥ 0,
∂y
∂ν

≥ 0 on Σ ,

y(x,0) = y0(x) in Ω .

(5.26)

A problem of this type arises in the control of a heat field. More generally, the
thermostat control process is modeled by equation (5.26), where

β (r) =





a1(r−θ1) if −∞ < r < θ1,

0 if θ1 ≤ r ≤ θ2,

a2(r−θ2) if θ2 < r < ∞,

ai ≥ 0, θ1 ∈ R, i = 1,2. In the limit case, we obtain (5.26).
The black body radiation heat emission on ∂Ω is described by equation (5.26),

where β is given by (the Stefan–Boltzman law)

β (r) =

{
α(r4− y4

1) for r ≥ 0,

−αy4
1 for r < 0,

and, in the case of natural convection heat transfer,

β (r) =

{
ar5/4 for r ≥ 0,

0 for r < 0.

Note, also, that the Michaelis–Menten dynamic model of enzyme diffusion reaction
is described by equation (5.1) (or (5.25)), where

β (r) =





r
λ (r + k)

for r > 0,

(−∞,0] for r = 0,

/0 for r < 0,

where λ ,k are positive constants.
We note that more general boundary value problems of the form





∂ y
∂ t
−∆y+ γ(y) 3 f in Q,

y(x,0) = y0(x) in Ω ,

∂y
∂ν

+β (y) 3 0 on Σ ,
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where β and γ are maximal monotone graphs in R×R such that 0∈D(β ), 0∈D(γ)
can be written in the form (5.2) where A = ∂ϕ and ϕ : L2(Ω)→ R is defined by

ϕ(y) =





1
2

∫

Ω
|∇y|2dx+

∫

Ω
g(y)dx+

∫

∂Ω
j(y)dσ if y ∈ H1(Ω),

+∞ otherwise,

and ∂g = γ, ∂ j = β .
We may conclude, therefore, that for f ∈ L2(Ω) and y0 ∈ H1(Ω) such that

g(y0) ∈ L1(Ω), j(y0) ∈ L1(∂Ω) the preceding problem has a unique solution
y ∈W 1,2([0,T ];L2(Ω))∩L2(0,T ;H2(Ω)).

On the other hand, semilinear parabolic problems of the form (5.1) or (5.25)
arise very often as feedback systems associated with the linear heat equation. For
instance, the feedback relay control

u =−ρ sign y, (5.27)

where

signr =





r
|r| if r 6= 0,

[−1,1] if r = 0,

applied to the controlled heat equation




∂y
∂ t
−∆y = u in Ω ×R+,

y = 0 on ∂Ω ×R+,

y(x,0) = y0(x) in Ω

(5.28)

transforms it into a nonlinear equation of the form (5.1); that is,




∂y
∂ t
−∆y+ρ signy 3 0 in Ω ×R+,

y = 0 on ∂Ω ×R+,

y(x,0) = y0(x) in Ω .

(5.29)

This is the closed-loop system associated with the feedback law (5.27) and, ac-
cording to Proposition 5.4, for every y0 ∈ L1(Ω), it has a unique strong solution
y ∈C(R+;L2(Ω)) satisfying

y(t) ∈ L∞(Ω), ∀t > 0,

t(N+4)/4yt ∈ L2
loc(R

+;L2(Ω)), t(N+2)/4y ∈ L2
loc(R

+;H1(Ω)).

(Of course, if y0 ∈ L2(Ω), then y has sharper properties provided by Proposition
5.1.)
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Let us observe that the feedback control (5.27) belongs to the constraint set
{u ∈ L∞(Ω ×R+);‖u‖L∞(Ω×R+) ≤ ρ} and steers the initial state y0 into the origin
in a finite time T . Here is the argument. We assume first that y0 ∈ L∞(Ω) and consi-
der the function w(x, t) = ‖y0‖L∞(Ω)−ρt. On the domain Ω × (0,ρ−1‖y0‖L∞(Ω)) =
Q0, we have





∂w
∂ t
−∆w+ρ sign w 3 0 in Q0,

w(0) = ‖y0‖L∞(Ω) in Ω ,

w≥ 0 on ∂Ω × (0,ρ−1‖y0‖L∞(Ω)).

(5.30)

Then, subtracting equations (5.29) and (5.30) and multiplying by (y−w)+ (or, sim-
ply, applying the maximum principle), we get

(y−w)+ ≤ 0 in Q0.

Hence, y≤ w in Q0. Similarly, it follows that y≥−w in Q0 and, therefore,

|y(x, t)| ≤ ‖y0‖L∞(Ω)−ρt, ∀(x, t) ∈ Q0.

Hence, y(t) ≡ 0 for all t ≥ T = ρ−1‖y0‖L∞(Ω). Now, if y0 ∈ L1(Ω), then inserting
in system (5.28) the feedback control

u(t) =

{
0 for 0≤ t ≤ ε,

−ρ sign y(t) for t > ε,

we get a trajectory y(t) that steers y0 into the origin in the time

T (y0) < ε +ρ−1‖y(ε)‖L∞(Ω) ≤ ε +C(ρεN/2)−1‖y0‖L1(Ω),

where C is independent of ε and y0 (see estimate (5.16)). If we choose ε > 0 that
minimizes the right-hand side of the latter inequality, then we get

T (y0)≤
(

CN
2ρ

‖y0‖L1(Ω)

)2/(N+2)

+
(

N
2

)−(N/(N+2)) (C
ρ
‖y0‖L1(Ω)

)2/(N+2)

.

We have, therefore, proved the following null controllability result for system (5.28).

Proposition 5.6. For any y0 ∈ L1(Ω) and ρ > 0 there is u ∈ L∞(Ω × R+),
‖u‖L∞(Ω×R+) < ρ , that steers y0 into the origin in a finite time T (y0).

Remark 5.1. Consider the nonlinear parabolic equation




∂y
∂ t
−∆y+ |y|p−1y = 0, in Ω ×R+,

y(x,0) = y0(x), x ∈Ω ,

y = 0, on ∂Ω ×R+,

(5.31)
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where 0 < p < (N +1)/N and y0 ∈ L1(Ω). By Proposition 5.4, we know that the
solution y satisfies the estimates

‖y(t)‖L∞(Ω) ≤ Ct−(N/2)|y0‖L1(Ω),

‖y(t)‖L1(Ω) ≤ C‖y0‖L1(Ω),

for all t > 0.
Now, if y0 is a bounded Radon measure on Ω ; that is, y0 ∈ M(Ω) = (C0(Ω))∗

(C0(Ω) is the space of continuous functions on Ω that vanish on ∂Ω), there is a
sequence {y j

0} ⊂C0(Ω) such that ‖y j
0‖L1(Ω) ≤C and y j

0 → y0 weak-star in M(Ω).
Then, if y j is the corresponding solution to equation (5.31) it follows from the pre-
vious estimates that (see Brezis and Friedman [17])

y j → y in Lq(Q), 1 < q <
N +2

N
,

|y j|p−1y j → |y|p−1y in L1(Q).

This implies that y is a generalized (mild) solution to equation (5.31).
If p > (N +2)/N, there is no solution to (5.31).

Remark 5.2. Consider the semilinear parabolic equation (5.1), where β is a conti-
nuous monotonically increasing function, f ∈Lp(Q), p > 1, and y0 ∈W p,2−(2/p)

0 (Ω),
g(y0)∈ L1(Ω), g(r) =

∫ r
0 |β (s)|p−2β (s)ds. Then, the solution y to problem (5.1) be-

longs to W 2,1
p (Q) and

‖y‖p
W 2,1

p (Q)
≤C

(
‖ f‖p

Lp(Ω) +‖y0‖p

W p,2−(2/p)
0 (Ω)

+
∫

Ω
g(y0)dx

)
.

Here, W 2,1
p (Q) is the space

{
y ∈ Lp(Q);

∂ r+s

∂ tr∂xs y ∈ Lp(Q), 2r + s≤ 2
}

.

For p = 2, W 2,1
2 (Q) = H2,1(Q).

Indeed, if we multiply equation (5.1) by |β (y)|p−2β (y) we get the estimate
(as seen earlier in Proposition 5.1, for f and y0 smooth enough this problem has
a unique solution y ∈W 1,∞([0,T ];Lp(Ω)), y ∈ L∞(0,T ;W 2,p(Ω)))

∫

Ω
g(y(x, t))dx+

∫ t

0

∫

Ω
|β (y(x,s))|pdxds

≤
∫ t

0

∫

Ω
|β (y(x,s))|p−1| f (x,s)|dxds+

∫

Ω
g(y0(x))dx

≤
(∫ t

0

∫

Ω
|β (y(x,s))|pdxds

)1/q (∫ t

0

∫

Ω
| f (x,s)|pdxds

)1/p

,
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where 1/p+1/q = 1. In particular, this implies that

‖β (y)‖Lp(Q) ≤C(‖ f‖Lp(Q) +‖g(y0)‖L1(Ω))

and by the Lp estimates for linear parabolic equations (see, e.g., Ladyzenskaya,
Solonnikov, and Ural’ceva [31] and Friedman [27]) we find the estimate (5.34),
which clearly extends to all f ∈ Lp(Q) and y0 ∈W p,2−(2/p)

0 (Ω), g(y0) ∈ L1(Ω).

Nonlinear Parabolic Equations of Divergence Type

Several physical diffusion processes are described by the continuity equation

∂y
∂ t

+divx q = f ,

where the flux q of the diffusive material is a nonlinear function β of local density
gradient ∇y. Such an equation models nonlinear interaction phenomena in material
science and in particular in mathematical models of crystal growth as well as in
image processing (see Section 2.4). This class of problems can be written as





∂y
∂ t

(x, t)−divx β (∇(y(x, t))) 3 f (x, t), x ∈Ω , t ∈ (0,T ),

y = 0 on ∂Ω × (0,T ),

y(x,0) = y0(x), x ∈Ω ,

(5.32)

where β : RN →RN is a maximal monotone graph satisfying conditions (2.138) and
(2.139) (or, in particular, conditions (2.134) and (2.135) of Theorem 2.15).

In the space X = L2(Ω) consider the operator A defined by (2.155) and thus
represent (5.32) as a Cauchy problem in X ; that is,





dy
dt

(t)+Ay(t) 3 f (t), t ∈ (0,T ),

y(0) = y0.
(5.33)

In Section 2.4, we studied in detail the stationary version of (5.37) (i.e., Ay = f ) and
we have proven (Theorem 2.18) that A is maximal monotone (m-accretive) and so,
by Theorem 4.6, we obtain the following existence result.

Proposition 5.7. Let f ∈W 1,1([0,T ];L2(Ω)), y0 ∈W 1,p
0 (Ω) be such that divη0 ∈

L2(Ω) for some η0 ∈ (Lq(Ω))N, η0 ∈ β (∇y0), a.e. in Ω . Then, there is a unique
strong solution y to (5.32) (equivalently to (5.33)) such that

y ∈ L∞(0,T ;W 1,p
0 (Ω))∩W 1,∞([0,T ];L2(Ω))

d+

dt
y(t)−divx η(t) = f (t), ∀t ∈ [0,T ],
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where η ∈ L∞(0,T ;L2(Ω)), η(t,x) ∈ β (∇y(x, t)), a.e. (x, t) ∈ Ω × (0,T ) = Q.
Moreover, if β = ∂ j, then the strong solution y exists for all y0 ∈ L2(Ω) and
f ∈ L2(Q).

The last part of Proposition 5.7 follows by Theorem 4.11, because, as seen earlier
in Theorem 2.18, in this latter case A = ∂ϕ .

Now, if we refer to Theorem 2.19 and Remark 2.4 we may infer that Proposi-
tion 5.7 remains true under conditions β = ∂ j and (2.161) and (2.162). We have,
therefore, the following.

Proposition 5.8. Let β satisfy conditions (2.161) and (2.162). Then, for each
y0 ∈ L2(Ω) and f ∈ L2(0,T ;L2(Ω)) there is a unique strong solution to (5.32)
or to the equation with Neumann boundary conditions β (∇y(x)) · ν(x) = 0 in the
following weak sense,

d
dt

∫

Ω
y(x, t)v(x)dx+

∫

Ω
η(x, t) ·∇v(x)dx =

∫

Ω
f (x, t)v(x)dx, ∀v ∈C1(Ω),

η(x, t) ∈ β (∇y(x, t)), a.e. (x, t) ∈Ω × (0,T ),

y(x,0) = y0(x).

Now, if we refer to the singular diffusion boundary value problem




∂y
∂ t
−divx (sign (∇y)) 3 f in Ω × (0,T ),

y = 0 on ∂Ω × (0,T ),

y(x,0) = y0(x),

it has for each y0 ∈ BV 0(Ω) a unique strong solution

y ∈W 1,2([0,T ];L2(Ω))∩C([0,T ];L2(Ω))

with ‖Dy(t)‖ ∈W 1,∞([0,T ]) (similarly for the case of Neumann boundary condi-
tions).

Indeed, as seen earlier, it can be written as a first-order equation of subgradient
type in L2(Ω), 




dy
dt

(t)+∂ϕ(y(t)) 3 f (t), t ∈ (0,T ),

y(0) = y0,

where ϕ is given by (2.182). Then, the existence follows by Theorem 4.11.
By (2.149) and the Trotter–Kato theorem (see Theorem 4.14), we know that the

solution y is the limit in C([0,T ];L2(Ω)) of solution yε to the problem




∂yε
∂ t

− ε∆yε −divxβε(∇yε) = f in Ω × (0,T )

yε = 0 on ∂Ω ; yε(x,0) = y0(x),
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where βε is the Yosida approximation of β = sign.
As noticed earlier, this equation is relevant in image restoration techniques and

crystal-faceted growth theory. In particular, for f (t) ≡ fe ∈ L2(Ω) it follows by
Theorem 4.13 that

lim
t→∞

y(t) = ye strongly in L2(Ω),

where ye is an equilibrium solution; that is, ∂ϕ(ye) 3 fe.
In image processing, the solution y = y(·, t) might be seen as a family of restored

images with the scale parameter t. The parabolic equation (5.32) itself acts as a filter
that processes the original corrupted version f = f (x).

Semilinear Parabolic Equation in RN

We consider here equation (5.1) in Ω = RN ; that is,




∂y
∂ t
−∆y+β (y) 3 f in (0,T )×RN ,

y(0,x) = y0(x) x ∈ RN ,

y(t, ·) ∈ L1(RN) ∀t ∈ (0,T ).

(5.34)

With respect to the case of bounded domain Ω previously studied, this problem
presents some peculiarities and the more convenient functional space to study it is
L1(RN).

We write (5.34) as a differential equation in X = L1(RN) of the form




dy
dt

(t)+Ay(t) 3 f (t), t ∈ (0,T ),

y(0) = y0,

where A : D(A)⊂ L1(RN)→ RN is defined by

Ay = {z ∈ L1(RN); z =−∆y+w, w ∈ β (y), a.e. in RN},
D(A) = {y ∈ L1(RN); ∆y ∈ L1(RN), ∃w ∈ L1(RN),

such that w(x) ∈ β (y(x)), a.e. x ∈ RN}.

By Theorem 3.3 we know that, if N = 1,2,3, then A is m-accretive in L1(RN)×
L1(RN).

Then, by Theorem 4.1, which neatly applies to this situation, we get the following
existence result.

Proposition 5.9. Let y0 ∈ L1(RN) and f ∈ L1(0,T ;RN) be such that ∆y0 ∈ L1(RN)
and ∃w ∈ L1(RN), w(x) ∈ β (y0(x)), a.e. x ∈RN. Then, problem (5.34) has a unique
mild solution y ∈C([0,T ];L1(RN)). In other words,
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y(t) = lim
ε→0

yε(t) strongly in L1(Rn) for each t ∈ [0,T ], (5.35)

where yε is the solution to the finite difference scheme

yε(t) = yi
ε for t ∈ (iε,(i+1)ε), i = 0,1, ...,M,

yi+1
ε − yi

ε − ε∆yi+1
ε + εβ (yi+1

ε ) 3
∫ (i+1)ε

iε
f (t)dt in Rn,

yi
ε ∈ L1(RN), i = 0,1, ...,M =

[T
ε
]
.

(5.36)

5.2 Parabolic Variational Inequalities

An important class of multivalued nonlinear parabolic-like boundary value problem
is the so-called parabolic variational inequalities which we briefly present below in
an abstract setting.

Here and throughout in the sequel, V and H are real Hilbert spaces such that V is
dense in H and V ⊂ H ⊂ V ′ algebraically and topologically. We denote by | · | and
‖ ·‖ the norms of H and V , respectively, and by (·, ·) the scalar product in H and the
pairing between V and its dual V ′. The norm of V ′ is denoted ‖ · ‖∗. The space H is
identified with its own dual.

We are given a linear continuous and symmetric operator A from V to V ′ satis-
fying the coercivity condition

(Ay,y)+α|y|2 ≥ ω‖y‖2, ∀y ∈V, (5.37)

for some ω > 0 and α ∈R. We are also given a lower semicontinuous convex func-
tion ϕ : V → R = (−∞,+∞], ϕ 6≡+∞.

For y0 ∈V and f ∈ L2(0,T ;V ′), consider the following problem.

Find y ∈ L2(0,T ;V )∩C([0,T ];H)∩W 1,2([0,T ];V ′) such that




(y′(t)+Ay(t),y(t)− z)+ϕ(y(t))−ϕ(z)≤ ( f (t),y(t)− z),

a.e. t ∈ (0,T ), ∀z ∈V,

y(0) = y0.

(5.38)

Here, y′ = dy/dt is the strong derivative of the function y : [0,T ]→V ′. In terms
of the subgradient mapping ∂ϕ : V →V ′, problem (5.38) can be written as

{
y′(t)+Ay(t)+∂ϕ(y(t)) 3 f (t), a.e. t ∈ (0,T ),

y(0) = y0.
(5.39)

This is an abstract variational inequality of parabolic type. In applications to partial
differential equations, V is a Sobolev subspace of H = L2(Ω) (Ω is an open subset
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of RN), A is an elliptic operator on Ω , and the unknown function y : Ω × [0,T ]→R
is viewed as a function of t from [0,T ] to L2(Ω).

As seen earlier in Section 4.1, in the special case where ϕ = IK is the indicator
function of a closed convex subset K of V ; that is,

ϕ(y) = 0 if y ∈ K, ϕ(y) = +∞ if y /∈ K, (5.40)

the variational inequality (5.38) reduces to the reflection problem




y(t) ∈ K, ∀t ∈ [0,T ],

(y′(t)+Ay(t),y(t)− z)≤ ( f (t),y(t)− z), a.e. t ∈ (0,T ), ∀z ∈ K,

y(0) = y0.

(5.41)

Regarding the existence for problem (5.38), we have the following.

Theorem 5.1. Let f ∈W 1,2([0,T ];V ′) and y0 ∈V be such that

{Ay0 +∂ϕ(y0)− f (0)}∩H 6= /0. (5.42)

Then, problem (5.38) has a unique solution y∈W 1,2([0,T ];V )∩W 1,∞([0,T ];H) and
the map (y0, f )→ y is Lipschitz from H×L2(0,T ;V ′) to C([0,T ];H)∩L2(0,T ;V ).
If f ∈W 1,2([0,T ];V ′) and ϕ(y0) < ∞, then problem (5.38) has a unique solution
y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ). If f ∈ L2(0,T ;H) and ϕ(y0) < ∞, then problem
(5.38) has a unique solution y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ), that satisfies

y′(t) = ( f (t)−Ay(t)−∂ϕ(y(t)))0, a.e. t ∈ (0,T ).

Here Cw([0,T ];V ) is the space of weakly continuous functions from (0,T ) to V ; that
is, from (0,T ) to V endowed with the weak topology.

Proof. Consider the operator L : D(A)⊂ H → H,

Ly = {Ay+∂ϕ(y)}∩H, ∀y ∈ D(L),

D(L) = {y ∈V ; {Ay+∂ϕ(y)}∩H 6= /0}.

Note that αI + L is maximal monotone in H×H (I is the identity operator in H).
Indeed, by hypothesis (5.37), the operator αI +A is continuous and positive definite
from V to V ′. Because ∂ϕ : V →V ′ is maximal monotone we infer by Theorem 2.6
(or by Corollary 2.6) that αI + L is maximal monotone from V to V ′ and, conse-
quently, in H×H.

Then, by Theorem 4.6, for every y0 ∈ D(L) and g ∈W 1,1([0,T ];H) the Cauchy
problem 




dy
dt

(t)+Ly(t) 3 g(t), a.e. in (0,T ),

y(0) = y0,
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has a unique strong solution y ∈W 1,∞([0,T ];H). Let us observe that ∂ϕα = αI +L,
where ϕα : H → R is given by

ϕα(y) =
1
2

(Ay+αy,y)+ϕ(y), ∀y ∈ H. (5.43)

Indeed, ϕα is convex and lower semicontinuous in H because

lim
‖y‖→∞

ϕα(y)
‖y‖ = ∞

and ϕα is lower semicontinuous on V .
On the other hand, it is readily seen that αI + L ⊂ ∂ϕα , and because αI + L

is maximal monotone, we infer that αI + L = ∂ϕα , as claimed. In particular, this
implies that D(L) = D(ϕα) = D(ϕ) (in the topology of H).

Now, let y0 ∈V and f ∈W 1,2([0,T ];V ′), satisfying condition (5.42).
Let {yn

0} ⊂ D(L) and { fn} ⊂W 1,2([0,T ];H) be such that

yn
0 → y0 strongly in H, weakly in V ,

fn → f strongly in L2(0,T ;V ′),
d
dt

fn → d f
dt

strongly in L2(0,T ;V ′).

Let yn ∈W 1,∞([0,T ];H) be the corresponding solution to the Cauchy problem




dyn

dt
(t)+Lyn(t) 3 fn(t), a.e. in (0,T ),

yn(0) = yn
0.

(5.44)

If we multiply (5.44) by yn− y0 and use condition (5.37), we get

1
2

d
dt
|yn(t)− y0|2 +ω‖yn(t)− y0‖2

≤ α|yn(t)− y0|2 +( fn(t)−ξ ,yn(t)− y0), a.e. t ∈ (0,T ),

(5.45)

where ξ ∈ Ay0 +∂ϕ(y0)⊂V ′. After some calculation involving Gronwall’s lemma,
this yields

|yn(t)− y0|2 +
∫ t

0
‖yn(s)− y0‖2ds≤C, ∀n ∈ N, t ∈ [0,T ]. (5.46)

Now, we use the monotonicity of ∂ϕ along with condition (5.37) to get by (5.44)
that
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1
2

d
dt
|yn(t)− ym(t)|2 +ω‖yn(t)− ym(t)‖2

≤ α |yn(t)− ym(t)|2 +‖ fn(t)− fm(t)‖∗‖yn(t)− ym(t)‖, a.e. t ∈ (0,T ).

Integrating on (0, t), and using Gronwall’s lemma, we obtain the inequality

|yn(t)− ym(t)|2 +
∫ T

0
‖yn(t)− ym(t)‖2dt

≤C
(
|yn

0− ym
0 |2 +

∫ t

0
‖ fn(t)− fm(t)‖2dt

)
.

Thus, there is y ∈C([0,T ];H)∩L2(0,T ;V ) such that

yn → y in C([0,T ];H)∩L2(0,T ;V ). (5.47)

Now, again using equation (5.44), we get

1
2

d
dt
|yn(t +h)− yn(t)|2 +ω‖yn(t +h)− yn(t)‖2

≤ α|yn(t +h)− yn(t)|2 +‖ fn(t +h)− fn(t)‖∗‖yn(t +h)− yn(t)‖,

for all t,h ∈ (0,T ) such that t +h ∈ (0,T ). This yields

|yn(t +h)− yn|2 +
∫ T−h

0
‖yn(t +h)− yn(t)‖2dt

≤C
(
|yn(h)− yn

0|2 +
∫ T−h

0
‖ fn(t +h)− fn(t)‖2

∗dt
)

and, letting n tend to +∞,

|y(t +h)− y(t)|2 +
∫ T−h

0
‖y(t +h)− y(t)‖2dt

≤C
(
|y(h)− y0|2 +

∫ T−h

0
‖ f (t +h)− f (t)‖2

∗dt
)

,

∀t ∈ [0,T −h].

(5.48)

Next, by (5.45) we see that, if ξ ∈ Ay0 +∂ϕ(y0) is such that f (0)−ξ ∈ H, then we
have

1
2

d
dt
|yn(t)− y0|2 +ω‖yn(t)− y0‖2

≤ α|yn(t)− y0|2 +‖ fn(t)− fn(0)‖∗‖yn(t)− yn
0‖+ | fn(0)−ξ | |yn(t)− yn

0|.

Integrating and letting n→ ∞, we get by the Gronwall inequality
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|y(t)− y0| ≤C
(∫ t

0
‖ f (s)− f (0)‖∗ds+ | f (0)−ξ |t

)
, ∀t ∈ [0,T ].

This yields, eventually with a new positive constant C,

|y(t)− y0| ≤Ct, ∀t ∈ [0,T ].

Along with (5.48), the latter inequality implies that y is H-valued, absolutely conti-
nuous on [0,T ], and

|y′(t)|2+
∫ t

0
‖y′(t)‖2dt ≤C

(
|y0|2+

∫ T

0
‖ f ′(t)‖2

∗dt +1
)

, a.e. t∈(0,T ),

where y′ = dy/dt, f ′ = d f /dt. Hence, y ∈W 1,∞([0,T ];H)∩W 1,2([0,T ];V ).
Let us show now that y satisfies equation (5.38) (equivalently, (5.39)). By (5.44),

we have

1
2

d
dt
|yn(t)− z|2 ≤ ( fn(t)−αyn(t)−η ,yn(t)− z), a.e. t ∈ (0,T ),

where z ∈ D(L) and η ∈ Lz. This yields

1
2

(|yn(t + ε)− z|2−|yn(t)− z|2 ≤
∫ t+ε

t
( fn(s)+αyn(s)−η ,yn(s)− z))ds

and, letting n→ ∞,

1
2

(|y(t + ε)− z|2−|y(t)− z|2)≤
∫ t+ε

t
( f (s)+αy(s)−η ,y(s)− z)ds.

Finally, this yields

(y(t + ε)− y(t),y(t)− z)≤
∫ t+ε

t
( f (s)+αy(s)−η ,y(s)− z)ds.

Because y is, a.e., H-differentiable on (0,T ), we get

(y′(t)−αy(t)+η− f (t),y(t)− z)≤ 0, a.e. t ∈ (0,T ),

for all [z,η ] ∈ L. Now, because L is maximal monotone in H×H, we conclude that

f (t) ∈ y′(t)+Ly(t), a.e. t ∈ (0,T ),

as desired.
Now, if (yi

0, fi), i = 1,2, satisfy condition (5.42) and the yi are the corresponding
solutions to equation (5.39), by assumption (5.37) it follows that
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|y1(t)− y2(t)|2 +
∫ T

0
‖y1(t)− y2(t)‖2dt

≤C
(
|y1

0− y2
0|2 +

∫ T

0
‖ f1(t)− f2(t)‖2

∗dt
)

, ∀t ∈ [0,T ].

Now, assume that f ∈W 1,2([0,T ];V ′) and y0 ∈D(ϕ). Then, as seen earlier, we may
rewrite equation (5.39) as

{
y′(t)+∂ϕα(y(t))−αy(t) 3 f (t), a.e. t ∈ (0,T ),

y(0) = y0,
(5.49)

where ϕα : H →R is defined by (5.43). For f = fn and y0 = yn
0, y = yn, we have the

estimate

|y′n(t)|2 +
d
dt

ϕα(yn(t))− α
2

d
dt
|yn(t)|2 ≤ ( fn(t),y′n(t)), a.e. t ∈ (0,T ).

This yields

∫ T

0
|y′n(t)|2dt+ϕα(yn(t))≤ ( fn(0),y0

n)+
∫ T

0
‖ f ′n(t)‖∗‖yn(t)‖dt−α

2
|y0

n|2.

Finally,

∫ T

0
|y′n(t)|2dt +‖yn(t)‖2 ≤C(‖ fn‖W 1,2([0,T ];V ′) + |y0

n|2)≤C.

Then, arguing as before, we see that the function y given by (5.47) belongs to
W 1,2([0,T ];H)∩L∞(0,T ;V ) and is a solution to equation (5.38).

Because y ∈ C([0,T ];H)∩L∞(0,T ;V ), it is readily seen that y is weakly conti-
nuous from [0,T ] to V .

If f ∈ L∞(0,T ;H) and y0 ∈D(ϕα), we may apply Theorem 5.1 to equation (5.49)
to arrive at the same result. ¤

Theorem 5.2. Let y0 ∈ K and f ∈W 1,2([0,T ];V ′) be given such that

( f (0)−Ay0−ξ0,y0− v)≥ 0, ∀v ∈ K, (5.50)

for some ξ0 ∈ H.
Then, (5.41) has a unique solution y ∈W 1,∞([0,T ];H)∩W 1,2([0,T ];V ).
If y0 ∈ K and f ∈ W 1,2([0,T ];V ′), then system (5.41) has a unique solution

y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ). If f ∈ L2(0,T ;H) and y0 ∈ K, then (5.41) has
a unique solution y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ). Assume in addition that

(Ay,y)≥ ω‖y‖2, ∀y ∈V, (5.51)

for some ω > 0, and that there is h ∈ H such that
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(I + εAH)−1(y+ εh) ∈ K, ∀ε > 0, ∀y ∈ K. (5.52)

Then, Ay ∈ L2(0,T ;H).

Proof. The first part of the theorem is an immediate consequence of Theorem 5.1.
Now, assume that f ∈ L2(0,T ;H), y0 ∈ K, and conditions (5.51) and (5.52) hold.
Let y ∈W 1,2([0,T ];H)∩Cw([0,T ];V ) be the solution to (5.41). If in (5.41) we take
z = (I + εAH)−1(y+ εh) (we recall that AHy = Ay∩H), we get

(y′(t)+A(t),Aε(t)− (I + εAH)−1h)

≤ ( f (t),Aε y(t)− (I + εAH)−1h), a.e. t ∈ (0,T ),

where Aε = A(I +εAH)−1 = ε−1(I− (I +εAH)−1). Because, by monotonicity of A,

(Ay,Aε y)≥ |Aε y|2, ∀y ∈ D(AH) = {y; Ay ∈ H}

and
1
2

d
dt

(Aε y(t),y(t)) = (y′(t),Aε(t)), a.e. t ∈ (0,T ),

we get

(Aε y(t),y(t))+
∫ t

0
|Aε y(s)|2ds

≤ (Aε y0,y0)+2
∫ t

0
(Aε y(s)− (I + εAH)−1 f (s),h)ds

+
∫ t

0
| f (s)|2ds+2(y(t)− y0,(I + εAH)−1h), a.e. t ∈ (0,T ).

Hence, ∫ T

0
|Aε y(t)|2dt +(Aε(t),y(t))≤C, ∀ε > 0, t ∈ [0,T ],

and, by Proposition 2.3, we conclude that Ay ∈ L2(0,T ;H), as claimed. ¤

Now, we prove a variant of Theorem 5.1 in the case where ϕ : V → R is
lower semicontinuous on H. (It is easily seen that this happens, for instance, if
ϕ(u)/‖u‖→+∞ as ‖u‖→ ∞.

Proposition 5.10. Let A : V →V ′ be a linear, continuous, symmetric operator satis-
fying condition (5.37) and let ϕ : H →R be a lower semicontinuous convex function.
Furthermore, assume that there is C independent of ε such that either

(Ay,∇ϕε(y))≥−C(1+ |∇ϕε(y)|)(1+ |y|), ∀y ∈ D(AH), (5.53)

or
ϕ((I + εAH)−1(y+ εh))≤ ϕ(y)+C, ∀ε > 0, ∀y ∈ H, (5.54)

for some h ∈ H, where Aα = αI +AH .
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Then, for every y0 ∈ D(ϕ)∩V and every f ∈ L2(0,T ;H), problem (5.41) has
a unique solution y ∈W 1,2((0,T ];H)∩C([0,T ];H) such that t1/2y′ ∈ L2(0,T ;H),
t1/2Ay ∈ L2(0,T ;H). If y0 ∈ D(ϕ)∩V , then y ∈W 1,2([0,T ];H)∩C([0,T ];V ). Fi-
nally, if y0 ∈ D(AH)∩D(∂ϕ) and f ∈W 1,1([0,T ];H), then y ∈W 1,∞([0,T ];H).

Here, ϕε is the regularization of ϕ .

Proof. As seen previously, the operator

Aα y = αy+Ay, ∀y ∈ D(Aα) = D(AH),

is maximal monotone in H×H. Then, by Theorem 2.6 (if condition (5.53) holds)
and, respectively, Theorem 2.1 (under assumption (5.54)), Aα + ∂ϕ is maximal
monotone in H×H and

|Aα y| ≤C(|(Aα +∂ϕ)0(y)|+ |y|+1), ∀y ∈ D(AH)∩D(∂ϕ).

Moreover, Aα +∂ϕ = ∂ϕα , where (see (5.43))

ϕα(y) =
1
2

(Ay,y)+ϕ(y)+
α
2
|y|2, ∀y ∈V,

and writing equation (5.39) as

y′+∂ϕα(y)−αy 3 f , a.e. in (0,T ),

y(0) = y0,

it follows by Theorem 4.1 that there is a strong solution y to equation (5.43) satis-
fying the conditions of the theorem. Note, for instance, that if y0 ∈ D(ϕ)∩V , then
y ∈W 1,2([0,T ];H) and ϕα(y) ∈W 1,1([0,T ]). Because y is continuous from [0,T ]
to H and bounded in V , this implies that y is weakly continuous from [0,T ] to V .
Now, because t → ϕα(y(t)) is continuous and ϕ : H → R is lower semicontinuous,
we have

lim
tn→t

(Ay(tn),y(tn))≤ (Ay(t),y(t)), ∀t ∈ [0,T ],

and this implies that y ∈C([0,T ];V ), as claimed. ¤

Corollary 5.1. Let A : V → V ′ be a linear, continuous, and symmetric operator sa-
tisfying condition (5.37) and let K be a closed convex subset of H with

(I + εAα)−1(y+ εh) ∈ K, ∀ε > 0, ∀y ∈ K, (5.55)

for some h ∈H. Then, for every y0 ∈ K and f ∈ L2(0,T ;H), the variational inequa-
lity (5.41) has a unique solution

y ∈W 1,2([0,T ];H)∩C([0,T ];V )∩L2(0,T ;D(AH)).

Moreover, one has
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dy
dt

(t)+(AHy(t)− f (t)−NK(y(t)))0 = 0, a.e. t ∈ (0,T ),

where NK(y)⊂ L2(Ω) is the normal cone at K in y.

The parabolic variational inequalities represent a rigorous and efficient way to
treat dynamic diffusion problems with a free or moving boundary. As an example,
consider the obstacle parabolic problem





∂y
∂ t
−∆y = f in {(x, t) ∈ Q; y(x, t) > ψ(x)},

∂y
∂ t
−∆y≥ f in Q = Ω × (0,T ),

y(x, t)≥ ψ(x) ∀(x, t) ∈ Q,

α1y+α2
∂y
∂ν

= 0 on Σ = ∂Ω × (0,T ),

y(x,0) = y0(x) x ∈Ω ,

(5.56)

where Ω is an open bounded subset of RN with smooth boundary (of class C1,1, for
instance), ψ ∈ H2(Ω), and α1,α2 ≥ 0, α1 +α2 > 0.

This is a problem of the form (5.41), where

H = L2(Ω), V = H1(Ω),

and A ∈ L(V,V ′) is defined by

(Ay,z) =
∫

Ω
∇y ·∇zdx+

α1

α2

∫

∂Ω
yzdσ , ∀y,z ∈ H1(Ω), (5.57)

if α2 6= 0, or

(Ay,z) =
∫

Ω
∇y ·∇z dx, ∀y,z ∈ H1

0 (Ω), (5.58)

if α2 = 0. (In this case, V = H1
0 (Ω), V ′ = H−1(Ω).)

The set K ⊂V is given by

K = {y ∈ H1(Ω); y(x)≥ ψ(x), a.e. x ∈Ω}, (5.59)

and condition (5.55) is satisfied if

α1ψ +α2
∂ψ
∂ν

≤ 0, a.e. on ∂Ω . (5.60)

Note also that AH : D(AH)⊂ L2(Ω)→ L2(Ω) is defined by

AHy = −∆y, a.e. in Ω , ∀y ∈ D(AH),

D(AH) =
{

y ∈ H2(Ω); α1y+α2
∂y
∂ν

= 0, a.e. on ∂Ω
}

,
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and
‖y‖H2(Ω) ≤C(‖AHy‖L2(Ω) +‖y‖L2(Ω)), ∀y ∈ D(AH),

Then, we may apply Corollary 5.1 to get the following.

Corollary 5.2. Let f ∈ L2(Q), y0 ∈ H1(Ω) (y0 ∈ H1
0 (Ω) if α2 = 0) be such that

y0 ≥ ψ , a.e. in Ω . Assume also that ψ ∈ H1(Ω) satisfies condition (5.60). Then,
problem (5.56) has a unique solution

y ∈W 1,2([0,T ];L2(Ω))∩L2(0,T ;H2(Ω))∩C([0,T ];H1
0 (Ω)).

Noting that

NK(y) = {v ∈ L2(Ω); v(x) ∈ β (y(x)−ψ(x)), a.e. x ∈Ω},

where β : R→ 2R is given by

β (r) =





0 r > 0,

R− r = 0,

/0 r < 0,

it follows by Corollary 5.1 that the solution y satisfies the equation

d
dt

y(t)+(−∆y(t)+β (y(t)−ψ)− f (t))0 = 0, a.e. t ∈ (0,T ).

Hence, the solution y to problem (5.56) given by Corollary 5.2 satisfies the system




∂
∂ t

y(x, t)−∆y(x, t)= f (x, t), a.e. in {(x, t) ∈ Q; y(x, t) > ψ(x)},
∂
∂ t

y(x, t)=max{ f (x, t)+∆ψ(x),0}, a.e. in {(x, t); y(x, t)=ψ(x)},
(5.61)

because y(·, t) ∈ H2(Ω) and so ∆y(x, t) = ∆ψ(x), a.e. in {y(x, t) = ψ(x)}.
It follows, also, that the solution y to the obstacle problem (5.56) is given by

y(t) = lim
ε→0

yε(t) in C([0,T ];L2(Ω)),

where yε is the solution to the penalized problem




∂y
∂ t
−∆y− 1

ε
(y−ψ)− = f in Q,

y(x,0) = y0(x) in Ω ,

α1y+α1
∂y
∂ν

= 0 on Σ .

(5.62)

Now, let us consider the obstacle problem (5.56) with nonhomogeneous boun-
dary conditions; that is,
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



∂y
∂ t
−∆y = f in {(x, t) ∈ Q; y(x, t) > ψ(x)},

∂ y
∂ t
−∆y≥ f , y≥ 0 in Q,

αy+
∂y
∂ν

= g on Σ1 = Γ1× (0,T ),

y = 0 on Σ2 = Γ2× (0,T ),

y(x,0) = y0(x) on Ω ,

(5.63)

where ∂Ω = Γ1∪Γ2, Γ1∩Γ2 = /0, and g ∈ L2(Σ1).
If we take

V = {y ∈ H1(Ω); y = 0 on Γ2},
define A : V →V ′ by

(Ay,z) =
∫

Ω
∇y ·∇z dx+α

∫

Γ1

yz dx, ∀y,z ∈V,

and f0 : [0,T ]→V ′ by

( f0(t),z) =
∫

Γ1

g(x, t)z(x)dx, ∀z ∈V,

we may write problem (5.63) as
(

dy
dt

(t)+Ay(t),y(t)− z
)
≤ (F(t),y(t)− z), ∀z ∈ K, a.e. t ∈ (0,T ),

y(0) = y0,

(5.64)

where F = f + f0 ∈ L2(0,T ;V ′) and K is defined by (5.59).
Equivalently,

∫

Ω

∂y
∂ t

(x, t)(y(x, t)− z(x))dx +
∫

Ω
∇y(x, t) ·∇(y(x, t)− z(x))dx

+ α
∫

Γ1

f (x, t)(y(x, t)− z(x))dx

≤
∫

Ω
f (x, t)(y(x, t)− z(x))dx

+
∫

Γ1

g(x, t)(y(x, t)− z(x))dx,

∀z ∈ K, t ∈ [0,T ].

(5.65)

Applying Theorem 5.2, we get the following.

Corollary 5.3. Let f ∈ W 1,2([0,T ];L2(Ω)), g ∈ W 1,2([0,T ];L2(Γ1)), and y0 ∈ K.
Then, problem (5.65) has a unique solution
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y ∈W 1,2([0,T ];V )∩Cw([0,T ];V ).

If, in addition,




∂y0

∂ν
+αy0 = g(x,0), a.e. on {x ∈ Γ1; y0(x) > ψ(x)},

∂ψ
∂ν

+αψ ≤ g(x,0), a.e. on {x ∈ Γ1; y0(x) = ψ(x)},
(5.66)

then y ∈W 1,2([0,T ];V )∩W 1,∞([0,T ];L2(Ω)).

(We note that condition (5.66) implies (5.50).)
It is readily seen that the solution y to (5.65) satisfies (5.63) in a certain genera-

lized sense. Indeed, assuming that the set E = {(x, t); y(x, t) > ψ(x)} is open and
taking z = y(x, t)±ρϕ in (5.65), where ϕ ∈C∞

0 (E) and ρ is sufficiently small, we
see that

∂y
∂ t
−∆y = f in D ′(E). (5.67)

It is also obvious that
∂y
∂ t
−∆y≥ f in D ′(Q). (5.68)

Regarding the boundary conditions, by (5.65), (5.67), and (5.68), it follows that

∂y
∂ν

+αy = g in D ′(E ∩Σ1),

respectively,
∂y
∂ν

+αy≥ g in D ′(Σ1).

In other words,




∂y
∂ν

+αy = g on {(x, t) ∈ Σ1; y(x, t) > ψ(x)},

∂ψ
∂ν

+αψ ≥ g on {(x, t) ∈ Σ1; y(x, t) = ψ(x)}.

Hence, if g satisfies the compatibility condition

∂ψ
∂ν

+αψ ≤ g on Σ1,

then the solution y to problem (5.65) satisfies the required boundary conditions
on Σ1.

Also in this case, the solution y given by Corollary 5.3 can be obtained as the
limit as ε → 0 of the solution yε to the equation
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



∂yε
∂ t

−∆yε +βε(yε −ψ) = f in Ω × (0,T ),

yε(x,0) = y0(x) in Ω ,

∂yε
∂ν

+αyε = g on Σ1, yε = 0 on Σ2,

(5.69)

where

βε(r) =−
(

1
ε

)
r−, ∀r ∈ R.

If Q+ = {(x, t) ∈ Q; y(x, t) > ψ(x)}, we may view y as the solution to the free
boundary problem





∂y
∂ t
−∆y = f in Q+,

y(x,0) = y0(x) in Ω ,

α1y+α2
∂y
∂ν

= 0 on Σ , y = ψ,
∂y
∂ν

=
∂ψ
∂ν

on ∂Q+(t),

(5.70)

where ∂Q+(t) is the boundary of the set Q+(t) = {x ∈Ω ; y(x, t) > ψ(x)}. We call
∂Q+(t) the moving boundary and ∂Q+ the free boundary of problem (5.70).

In problem (5.70), the noncoincidence set Q+ as well as the free boundary ∂Q+

is not known a priori and represents unknowns of the problem. In problem (5.41)
or (5.65), the free boundary does not appear explicitly, but in this formulation the
problem is nonlinear and multivalued.

Perhaps the best-known example of a parabolic free boundary problem is the
classical Stefan problem, which we briefly describe in what follows and which has
provided one of the principal motivations of the theory of parabolic variational in-
equalities.

The Stefan Problem

This problem describes the conduction of heat in a medium involving a phase
charge. To be more specific, consider a unit volume of ice Ω at temperature θ < 0.
If a uniform heat source of intensity F is applied, then the temperature increases at
rate E/C1 until it reaches the melting point θ = 0. Then, the temperature remains
at zero until ρ units of heat have been supplied to transform the ice into water (ρ is
the latent heat). After all the ice has melted the temperature begins to increase at the
rate h/C2 (C1 and C2 are specific heats of ice and water, respectively). During the
process, the variation of the internal energy e(t) is therefore given by

e(t) = C(θ(t))+ρH(θ(t)),

where
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C(θ) =

{
C1θ for θ ≤ 0,

C2θ for θ > 0,

and H is the Heaviside graph

H(θ) =





1 θ > 0,

[0,1] θ = 0,

0 θ < 0.

In other words, we have

e = γ(θ) =





C1θ if θ < 0,

[0,ρ] if θ = 0,

C2θ +ρ if θ > 0.

(5.71)

The function γ is called the enthalpy of the system.
Now, let Q = Ω×(0,∞) and denote by Q−,Q+,Q0 the regions of Q, where θ < 0,

θ > 0, and θ = 0, respectively. We set S+ = ∂Q+, S− = ∂Q−, and S = S+∪S−.
If θ = θ(x, t) is the temperature distribution in Q and q = q(x, t) the heat flux,

then, according to the Fourier law,

q(x, t) =−k∇θ(x, t), (5.72)

where k is the thermal conductivity. Consider the function

K(θ) =

{
k1θ if θ < 0,

k2θ if θ > 0,

where k1,k2 are the thermal conductivity of the ice and water, respectively.
If f is the external heat source, then the conservation law yields

d
dt

∫

Ω∗
e(x, t)dx =−

∫

∂Ω∗
(q(x, t),ν)dσ +

∫

Ω∗
F(x, t)dx

for any subdomain Ω ∗× (t1, t2)⊂Q (ν is the normal to ∂Ω ∗) if e and q are smooth.
Equivalently,

∫

Ω∗
et(x, t)dx+

∫

S∩Ω∗
[|e(t)|]V (t)dt

=−
∫

Ω∗
divq(x, t)dx+

∫

∂Ω∗∩S
[|(q(t),ν)|]dσ +

∫

Ω∗
F(x, t)dx,

where V (t) = −Nt‖Nt‖ is the true velocity of the interface S (N = (N1,N2) is the
unit normal to S) and [| · |] is the jump along S.

The previous inequality yields
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∂
∂ t

e(x, t)+divq(x, t) = F(x, t) in Q\S,

[|e(t)|]Nx +[|(q(t),Nt |] = 0 on S.

(5.73)

Taking into account equations (5.71)–(5.73), we get the system




C1
∂θ
∂ t
− k1∆θ = f in Q−,

C2
∂θ
∂ t
− k2∆θ = f in Q+,

(5.74)

{
(k2∇θ+− k1∇θ−) ·Nx = ρNt on S,

θ+ = θ− = 0 on S.
(5.75)

If we represent the interface S by the equation t = σ(x), then (5.75) reads
{

(k1∇θ+− k2∇θ−) ·∇σ =−ρ in S,

θ+ = θ− = 0.
(5.76)

The usual boundary and initial value conditions can be associated with equations
(5.74) and (5.76), for instance,

θ = 0 in ∂Ω × (0,T ), (5.77)

θ(x,0) = θ0(x) in Ω , (5.78)

or Neumann boundary conditions on ∂Ω .
This is the classical two-phase Stefan problem. Here, we first study with the

methods of variational inequalities a simplified model described by the one-phase
Stefan problem





∂θ
∂ t
−∆θ = 0 in Q+ = {(x, t) ∈ Q; σ(x) < t < T},

θ = 0 in Q− = {(x, t) ∈ Q; 0 < t < σ(x)},
∇x(x, t) ·∇σ(x) =−ρ on S = {(x, t); t = σ(x)},
θ = 0 in S∪Q−,

θ ≥ 0 in Q+.

(5.79)

These equations model the melting of a body of ice Ω ⊂ R3 maintained at θ 0C.
Therefore, assume that ∂Ω = Γ1 ∪Γ2, where Γ1 and Γ2 are disjoint and Γ1 is in
contact with a heating medium with temperature θ1; t = σ(x) is the equation of the
interface (moving boundary) St , which separates the liquid phase (water) and solid
(ice). Thus, to equations (5.79) we must add the boundary conditions
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



∂θ
∂ν

+α(θ −θ1) = 0 on Σ1 = Γ1× (0,T ),

θ = 0 on Σ2 = Γ2× (0,T )
(5.80)

and the initial value conditions

θ(x,0) = θ0(x) > 0, ∀x ∈Ω0, θ(x,0) = 0, ∀x ∈Ω \Ω0. (5.81)

There is a simple device due to G. Duvaut [21] that permits us to reduce problem
(5.79)–(5.81) to a parabolic variational inequality. To this end, consider the function

y(x, t) =





∫ t

σ(x)
θ(x,s)ds if x ∈Ω \Ω0, t > σ(x),

∫ t

0
θ(x,s)ds if x ∈Ω0, t ∈ [0,T ],

0 if (x, t) ∈ Q−,

(5.82)

and let

f0(x, t) =

{
−ρ if x ∈Ω \Ω0, 0 < t < T,

θ0(x) if x ∈Ω0, 0 < t < T.
(5.83)

Lemma 5.1. Let θ ∈ H1(Q) and σ ∈ H1(Ω). Then,

∂y
∂ t
−∆y = f0χ in D ′(Q), (5.84)

where χ is the characteristic function of Q+.

Proof. By (5.82), we have

∂y
∂ t

(ϕ) =
∫

Q+
θ(x, t)ϕ(x, t)dxdt, ∀ϕ ∈C∞

0 (Q).

On the other hand, we have

(yx,ϕ) = −y(ϕx)

= −
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕx(x, t)dt

∫ t

σ(x)
θ(x,s)ds

−
∫

Ω0

dx
∫ T

0
ϕx(x, t)dt

∫ t

0
θ(x,s)ds

= −
∫

Ω\Ω0

dxdiv
(∫ T

σ(x)
ϕ(x, t)dt

∫ t

σ(x)
θ(x,s)ds

)

=
∫

Ω\Ω0

dx
(∫ T

σ(x)
ϕ(x, t)dt

∫ t

σ(x)
θx(x,s)ds

)

−
∫

Ω0

dxdiv
(∫ T

0
ϕ(x, t)dt

∫ t

0
θ(x,s)ds

)
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=
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕ(x, t)dt

∫ t

σ(x)
θx(x,s)s

+
∫

Ω0

dx
∫ T

0
ϕ(x, t)dt

∫ t

σ(x)
θx(x,s)ds.

(Here, yx = ∇xy, ϕx = ∇xϕ.) This yields

∆y(ϕ) =−yx(ϕx) = −
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕx(x, t)dt ·

∫ T

σ(x)
θx(x,s)ds

−
∫

Ω0

dx
∫ T

0
ϕx(x, t)dt ·

∫ t

0
θx(x,s)ds

and, by the divergence formula, we get

∆y(ϕ) =
∫

Ω\Ω0

dx
∫ T

σ(x)
dt

(∫ t

σ(x)
∆θ(x,s)dsϕ(x, t)

)

+
∫

Ω0

ds
∫ T

0
dt

(∫ t

0
∆θ(x,s)dsϕ(x, t)

)
, ∀ϕ ∈C∞

0 (Q),

because ∇xθ(x,σ(x)) ·∇σ(x) = −ρ , ∀x ∈ Ω \Ω0. Then, by equations (5.79), we
see that

(
∂y
∂ t
−∆y

)
(ϕ) = −

∫

Ω\Ω0

dx
∫

σ(x)
dt

(∫ t

σ(x)
θt(x,s)ds−θ(s, t)

)
ϕ(x, t)

−
∫

Ω0

dx
∫ T

0
dt

(∫ t

0
θt(x,s)ds−θ(x, t)

)
ϕ(x, t)

−ρ
∫

Ω\Ω0

dx
∫ T

σ(x)
ϕ(x, t)dt

=
∫

Q+
f0(x, t)ϕ(x, t)dxdt,

as claimed. ¤

By Lemma 5.1 we see that the function y satisfies the obstacle problem




y≥ 0,
∂y
∂ t
−∆y≥ f0 in Q,

∂y
∂ t
−∆y = f0 in {(x, t) ∈ Q; y(x, t) > 0},

y = 0 in {(x, t) ∈ Q; σ(x) > t},

(5.85)

and the boundary value conditions

∂
∂ν

∂y
∂ t

=−α
(

∂y
∂ t
−θ1

)
on Σ1,

∂y
∂ t

= 0 on Σ2, (5.86)
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(see (5.80) and (5.82)). Then, by Corollary 5.2, we have the following.

Corollary 5.4. Let θ1 ∈ L2(Σ1) be given. Then, problem (5.85) and (5.86) has a
unique (generalized) solution y ∈W 1,∞([0,T ];L2(Ω))∩W 1,2([0,T ];H1(Ω)).

Keeping in mind that St = ∂{(x, t); y(x, t) = 0}, we can derive from Corollary
5.4 an existence result for the one-phase Stefan problem (5.79)–(5.81).

Other mathematical models for physical problems involving a free boundary such
as the oxygen diffusion in an absorbing tissue (Elliott and Ockendon [23]) or elec-
trochemical machining processes lead by similar devices to parabolic variational
inequalities of the same type. It should be mentioned also that dynamics of elasto-
plastic materials as well as the phase transition in systems composed of different
metals are better described by parabolic variational inequalities, eventually com-
bined with linear hyperbolic equations. This is the case for instance with Fremond’s
model of thermomechanical dynamics of shape memory delay. The phase transition
often manifests a hysteretic behavior due to irreversible changes in process dyna-
mics and the study of hypothesis models is another source of variational inequalities
although the hysteresis operator, in general, is not monotone in the sense described
above. However, some standard hysteresis equations (stop and play, for instance)
are expressed in terms of variational inequalities. (We refer to Visintin book’s [42]
for a treatment of these problems.)

5.3 The Porous Media Diffusion Equation

The nonlinear diffusion equation models the dynamic of density in a substance un-
dergoing diffusion described by Fick’s first law (or Darcy’s law). It also models
phase transition dynamics (the Stefan problem) or other physical processes that are
of diffusion type (heat propagation, filtration, or dynamics of biological groups).
Such an equation can be schematically written as





∂y
∂ t
−∆β (y) 3 f in Ω × (0,T ) = Q,

β (y) = 0 on ∂Ω × (0,T ) = Σ ,

y(x,0) = y0(x) in Ω ,

(5.87)

where Ω is a bounded and open subset of RN with smooth boundary, and β : R→ 2R

is a maximal monotone graph in R×R such that 0 ∈ D(β ).
The steady-state equation associated with (5.87) is just the stationary porous me-

dia equation studied in Sections 2.2 and 3.2.
The function y ∈ C([0,T ];L1(Ω)) is called a generalized solution to problem

(5.87) if
∫

Q
(yϕt +β (y)∆ϕ)dxdt +

∫

Q
f ϕ dxdt +

∫

Ω
y0ϕ(x,0)dx = 0 (5.88)
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for all ϕ ∈C2,1(Q) such that ϕ(x,T ) = 0 in Ω and ϕ = 0 on Σ .
Let us first briefly describe some specific diffusive-like problems that lead to

equations of this type.

1. The flow of gases in porous media. Let y be the density of a gas that flows
through a porous medium that occupies a domain Ω ⊂ R3 and let v̄ be the pore
velocity. If p denotes the pressure, we have p = p0yα for α ≥ 1. Then, the conser-
vation law equation

k1
∂y
∂ t

+div(y v̄) = 0

combined with Darcy’s law
γ v̄ =−k2∇p

(k1 is the porosity of the medium, k2 the permeability, and γ the viscosity) yields
the porous medium equation

∂y
∂ t
−δ∆yα+1 = 0 in Q, (5.89)

where
δ = k2 p0(k1(α +1)γ)−1.

Equation (5.89) is also relevant in the study of other mathematical models, such
as population dynamics. The case where −1 < α < 0 is that of fast diffusion pro-
cesses arising in physics of plasma. In particular, the case

β (x) =

{
logx for x > 0

−∞ for x≤ 0

emerges from the central limit approximation to Carleman’s model of Boltzman
equations. Nonlinear diffusion equations of the form (5.87) perturbed by a term of
transport; that is,

∂y
∂ t
−∆β (y)+divK(y) 3 f

with appropriate boundary conditions arise in the dynamics of underground water
flows and are known in the literature as the Richards equation. The special case

β (y) =





β0(y) for y < ys,

[β0(ys),+∞) for y = ys,

/0 for y > ys,

where β0 : R → R is a continuous and monotonically increasing function, models
the dynamics of saturated–unsaturated underground water flows. The treatment of
such an equation with methods of nonlinear accretive differential equations is given
in Marinoschi [34, 35].
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2. Two-phase Stefan problem. We come back to the two-phase Stefan problem
(5.74), (5.75), (5.77), (5.78); that is





C1θt − k1∆θ = f in Q−{(x, t); θ(x, t) < 0}
C2θt − k2∆θ = f in Q+ = {(x, t); θ(x, t) > 0},
(k1∇θ+− k2∇θ−) ·∇σ(x) =−ρ on S,

(5.90)

where t = σ(x) is the equation of the interface S.
We may write system (5.90) as

∂
∂ t

γ(θ)−∆K(θ) 3 f in Q, (5.91)

where γ : R→ 2R is given by (5.71). Indeed, for every test function ϕ ∈C∞
0 (Q) we

have
(

∂
∂ t

γ(θ)−∆K(θ)
)

(ϕ)

=−
∫

Q
(γ(θ)ϕt +K(θ)∆ϕ)dxdt

= C1

∫

Q−
θtϕ dxdt +C2

∫

Q+
θt dxdt− k1

∫

Q−
ϕ∆θ dxdt

−k2

∫

Q+
ϕ∆θ dxdt +

∫

S

(
k2

∂θ+

∂ν
− k1

∂θ−

∂ν

)
ϕ ds−ρ

∫

Q+
ϕtdxdt

=
∫

Q−
(C1θt − k1∆θ)ϕ dxdt +

∫

Q+
(C2θt − k2∆θ)ϕ dxdt

+
∫

S
((k2∇θ+− k1∇θ−) ·∇σ +ρ)dx = 0.

(5.92)

If we denote by β the function γ−1K; that is,

β (r) =





k1C−1
1 r for r < 0,

0 for 0≤ r < ρ,

k2C−1
2 (r−ρ) for r ≥ ρ ,

(5.93)

we may write (5.91) in the form (5.87).
Problem (5.87) can be treated as a nonlinear accretive Cauchy problem in two

functional spaces: H−1(Ω) and L1(Ω).

3. The Hilbert space approach. In the space H−1(Ω), consider the operator

A = { [y,w] ∈ (H−1(Ω)∩L1(Ω))×H−1(Ω); w =−∆v,

v ∈ H1
0 (Ω), v(x) ∈ β (y(x)), a.e. x ∈Ω}.

We assume that
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β−1 is everywhere defined and bounded on the bounded subsets of R. (5.94)

Then, by Proposition 2.10, A is maximal monotone in H−1(Ω)×H−1(Ω). More
precisely, A = ∂ϕ , where ϕ : H−1(Ω)→ R is defined by

ϕ(y) =





∫

Ω
j(y(x))dx if y ∈ L1(Ω)∩H−1(Ω), j(y) ∈ L1(Ω),

+∞ otherwise,

where ∂ j = β .

Then, we may write problem (5.87) as

dy
dt

+Ay 3 f in (0,T ),

y(0) = y0,
(5.95)

and so, by Theorem 4.11, we obtain the following existence result.

Theorem 5.3. Let β be a maximal monotone graph in R×R satisfying condition
(5.94). Let f ∈ L1(0,T ;H−1(Ω)) and let y0 ∈H−1(Ω)∩L1(Ω) be such that y0(x)∈
D(β ), a.e. x ∈Ω . Then, there is a unique pair of functions y ∈C([0,T ];H−1(Ω))∩
W 1,2(0,T ;H−1(Ω)) and v : Q→ R, such that v(t) ∈ H1

0 (Ω), ∀t ∈ [0,T ] satisfying




∂y
∂ t
−∆v = f , a.e. in Q = Ω × (0,T ),

v(x, t) ∈ β (y(x, t)), a.e. (x, t) ∈ Q,

y(x,0) = y0(x), a.e. in Ω .

(5.96)

t1/2 ∂y
∂ t
∈ L2(0,T ;H−1(Ω)), t1/2v ∈ L2(0,T ;H1

0 (Ω)). (5.97)

Moreover, if j(y0) ∈ L1(Ω), then

∂y
∂ t
∈ L2(0,T ;H−1(Ω)), v ∈ L2(0,T ;H1

0 (Ω)). (5.98)

If y0 ∈ D(A) and f ∈W 1,1([0,T ];H−1(Ω)), then

∂y
∂ t
∈ L∞(0,T ;H−1(Ω)), v ∈ L∞(0,T ;H1

0 (Ω)). (5.99)

We note that the derivative ∂y/∂ t in (5.96) is the strong derivative dy/dt of the
function t → y(·, t) from [0,T ] into H−1(Ω), and it coincides with the derivative
∂y/∂ t in the sense of distributions on Q. It is readily seen that the solution y (see
Theorem 5.3) is a generalized solution to (5.87) in the sense of definition (5.88).

4. The L1-approach. In the space X = L1(Ω), consider the operator
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A = {[y,w] ∈ L1(Ω)×L1(Ω); w =−∆v,

v ∈ W 1,1
0 (Ω), v(x) ∈ β (y(x)), a.e. x ∈Ω}.

(5.100)

We have seen earlier (Theorem 3.5) that A is m-accretive in L1(Ω)×L1(Ω). Then,
applying the general existence Theorem 4.2, we obtain the following.

Proposition 5.11. Let β be a maximal monotone graph in R×R such that 0∈ β (0).
Then, for every f ∈ L1(0,T ;L1(Ω)) and every y0 ∈ L1(Ω), such that y0(x) ∈ D(β ),
a.e. x ∈Ω , the Cauchy problem





dy
dt

(t)+Ay(t) 3 f (t) in (0,T ),

y(0) = y0,
(5.101)

has a unique mild solution y ∈C([0,T ];L1(Ω)).

We note that D(A) = {y0 ∈ L1(Ω); y0(x) ∈ D(β ), a.e. x ∈Ω}.
Indeed, (1 + εβ )−1y0 → y0 in L1(Ω) as ε → 0, if y0 ∈ D(β ), a.e. x ∈ Ω , and

(I + εA)−1y0 → y0 if j(y0) ∈ L1(Ω).
Proposition 5.11 amounts to saying that

y(t) = lim
ε→0

yε(t) in L1(Ω), uniformly on [0,T ],

where yε is the solution to the difference equations




1
ε

(yε(t)− yε(t− ε))−∆vε(t) = fε(t) in Ω × (0,T ),

vε(x, t) ∈ β (yε(x, t)), a.e. in Ω × (0,T ),

vε = 0 on ∂Ω × (0,T ),

yε(t) = y0 for t ≤ ε, x ∈Ω .

(5.102)

The function t → vε(t) ∈W 1,1
0 (Ω) is piecewise constant on [0,T ] and fε(t) = fi,

∀t ∈ [iε,(i+1)ε] is a piecewise constant approximation of f : [0,T ]→ L1(Ω).
By (5.102), it is readily seen that y is a generalized solution to problem (5.87).

In particular, it follows by Proposition 5.11 that the operator A defined by (5.100)
generates a semigroup of nonlinear contractions S(t) : D(A) → D(A). This semi-
group is not differentiable in L1(Ω), but in some special situations it has regularity
properties comparable with those of the semigroup generated by the Laplace ope-
rator on L2(Ω) under Dirichlet boundary conditions. In fact, we have the following
smoothing effect of nonlinear semigroup S(t) with respect to the initial data.

Theorem 5.4. Let β ∈ C1(R \ {0})∩C(R) be a monotone function satisfying the
conditions

β (0) = 0, β ′(r)≥C|r|α−1, ∀r 6= 0, (5.103)

where α > 0 if N ≤ 2 and α > (N−2)/N if N ≥ 3. Then, S(t)(L1(Ω))⊂ L∞(Ω) for
every t > 0,
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‖S(t)y0‖L∞(Ω) ≤Ct−(N/(Nα+2−N))‖y0‖2/(2+N(α−1))
L1(Ω) , ∀t > 0, (5.104)

and S(t)(Lp(Ω))⊂ Lp(Ω) for all t > 0 and 1≤ p < ∞.

Proof. First, we establish the estimates

‖(I +λA)−1 f‖p
p + Cλ

(∫

Ω
|(I +λA)−1 f |((p+α−1)N)/(N−2)dx

)(N−2)/N

≤ ‖ f‖p
p, ∀ f ∈ Lp(Ω), λ > 0,

(5.105)

for N > 2, and

|(I +λA)−1 f‖p +Cλ
(∫

Ω
|(I +λA)−1 f |(p+1−α)qdx

)1/q

≤
∫

Ω
| f |pdx,

∀q>1,

(5.106)

if N = 2. Here ‖ · ‖p is the Lp norm in Ω , C is independent of p ≥ 1, and A is the
operator defined by (5.100).

We set u = (I +λA)−1 f ; that is,
{

u−λ∆β (u) = f in Ω ,

β (u) = 0 on ∂Ω .
(5.107)

We recall that β (u) ∈W 1,q
0 (Ω), where 1 < q < N/(N−2) (see Corollary 3.1).

Multiplying equation (5.107) by |u|p−1 signu and integrating on Ω , we get
∫

Ω
|u|pdx+λ p(p−1)

∫

Ω
β ′(u)|u|p−2|∇u|2dx≤

∫

Ω
| f |pdx.

Now, using the identity

|u|p+α−3|∇u|2 =
4

(p+α−1)2

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2
, a.e. in Ω

and condition (5.103), we get
∫

Ω
|u|pdx+

4λ p(p−1)
(p+α−1)2

∫

Ω

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2

dx≤C
∫

Ω
| f |pdx. (5.108)

On the other hand, by the Sobolev embedding theorem

∫

Ω

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2

dx≤C
(∫

Ω
|u|(p+α−1)N/(N−2)dx

)(N−2)/N

if N > 2,

and
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∫

Ω

∣∣∣∇|u|(p+α−1)/2
∣∣∣
2

dx≤C
(∫

Ω
|u|(p+α−1)/qdx

)1/q

, ∀q > 1,

for N = 2. Then, substituting these inequalities into (5.108), we get (5.105) and
(5.106), respectively.

We set Jλ = (I +λA)−1 and

ϕ(u) = ‖u‖p
p, ψ(u) = C‖u‖p+α−1

(p+α−1)N/(N−2).

Then, inequality (5.105) can be written as

ϕ(Jλ f )+λψ(Jλ f )≤ ϕ( f ), ∀ f ∈ Lp(Ω).

This yields
ϕ(Jk

λ f )+λψ(Jk
λ f ) = ϕ(Jk−1

λ ), ∀k.

Summing these equations from k = 1 to k = n, and taking λ = t/n, yields

ϕ(Jn
t/n f )+

n

∑
k=1

1
n

ψ(Jk
t/n f ) = ϕ( f ).

Recalling that, by Theorem 4.3, Jn
t/n f → S(t) for n→ ∞, the latter equation implies

that
ϕ(S(t) f )+

∫ t

0
ψ(S(τ) f )dτ = ϕ( f ), ∀t ≥ 0. (5.109)

In particular, it follows that the function t → ϕ(S(t) f ) is decreasing and so is
t → ψ(S(t) f ). Then, by (5.109), we see that ϕ(S(t) f )+ tψ(S(t) f )≤ ϕ( f ), ∀t > 0;
that is,

‖S(t) f‖p
p +Ct‖S(t) f‖p+α−1

(p+α−1)N/(N−2) ≤ ‖ f‖p
p, ∀t > 0, (5.110)

where C is independent of p and f .
Let pn be inductively defined by

pn+1 = (pn +α−1)
N

N−2
.

Then, by (5.110), we see that

‖S(tn+1) f‖(N/(N−2))pn+1
pn+1 ≤ ‖S(tn) f‖pn

pn

C(tn+1− tn)
,

where t0 = 0 and tn+1 > tn. Choosing tn+1− tn = t/(2n+1), we get after some calcu-
lation that

limsup
n→∞

‖S(t) f‖((N−2)/N)npn+1
pn+1 ≤C‖ f‖p0

(
2
t

)µ
, ∀t > 0,
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where µ = N/2, because pn is given by

pn =
(

N
N−2

)n

p0 +
Nα

2(N−2)

((
N

N−2

)n

−1
)

(here, we have used the fact that α > (N−2)/N), we get the final estimate

‖S(t) f‖∞ ≤C‖ f‖2p0/(2p0+N(α−1))
p0 t−(N/(2p0+N(α−1))), ∀p0 ≥ 1,

as claimed.
The case N = 2 follows similarly. Moreover, by inequality (5.105) and the expo-

nential formula defining S(t), it follows that

‖S(t) f‖p ≤ ‖ f‖p, ∀p ∈ Lp(Ω), t ≥ 0.

This completes the proof of Theorem 5.4. ¤

The Porous Media Equation in RN

Consider now equation (5.87) in Ω = RN , for N = 1,2,3 :




∂y
∂ t
−∆β (y) 3 f in RN × (0,T ),

y(0,x) = y0(x), x ∈ RN ,

β (y(t)),y(t) ∈ L1(Rn), ∀t ∈ [0,T ].

(5.111)

where ∂/∂ t and ∆ are taken in the sense of distributions on (0,T )×RN (see (5.88)).
We may rewrite equation (5.111) in the form (5.83) on the space X = L1(RN), where

Ay = {−∆w; w(x) ∈ β (y(x)), a.e. x ∈Ω , w,∆w ∈ L1(RN)}, ∀y ∈ D(A),

D(A) = {y ∈ L1(RN); ∃w ∈ L1(RN), ∆w ∈ L1(RN), w(x) ∈ β (y(x)), a.e. x ∈ RN},

where ∆w is taken in the sense of distributions. Here β is a maximal monotone
graph in R×R such that 0 ∈ β (0) and 0 ∈ intD(β ) if N = 1,2. Then, as shown
earlier in Theorem 3.7, A is m-accretive in L1(RN)×RN and so, by Theorem 4.1,
we obtain the following.

Proposition 5.12. Assume that f ∈ L1(0,T ;L1(RN)) and y0 ∈ L1(RN) is such that
∃w ∈ L1(RN), ∆w ∈ L1(RN), w(x) ∈ β (y0(x)), a.e. x ∈ RN. Then, problem (5.111)
has a unique mild solution y ∈C([0,T ];L1(RN)).

Remark 5.3. The continuity of solutions to (5.111) with respect to ϕ is studied in
the work of Bénilan and Crandall [9]. In this context, we mention also the work of
Brezis and Crandall [16] and Alikakos and Rostamian [1].
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Localization of Solutions to Porous Media Equations

A nice feature of solutions to the porous media equation are finite time extinction
for the fast diffusion equation (i.e., β (y) = yα , 0 < α < 1), and propagation with
finite velocity for the low diffusion equation (i.e., 1 < α < ∞). We refer the reader
to the work of Pazy [36] and to the recent book of Antontsev, Diaz, and Shmarev [2]
for detailed treatment of this phenomena. (See also the Vasquez monograph [40] for
a detailed study of the localization of solutions to a porous media equation.) Here,
we briefly discuss the extinction in finite time.

Proposition 5.13. Let y ∈C([0,∞);L1(Ω)∩H−1(Ω)) be the solution to equation

∂y
∂ t
−µ∆(|y|α signy) = 0 in Ω × (0,∞), (5.112)

where y0 ∈ H−1(Ω)∩ L1(Ω), µ > 0, 0 < α < 1 if N = 1,2 and 1/5 ≤ α < 1 if
N = 3. Then,

y(x, t) = 0 for t ≥ T (y0),

where

T (y0) =
|y0|1−α

−1

µγ1+α ·

If α = 0 and N = 1, then y(x, t) = 0 for t ≥ (|y0|−1)/µγ.

Proof. Assume first that N > 1. As seen earlier, the equation has a unique smooth
solution y ∈W 1,2([0,T ];H−1(Ω)) for each T > 0. Multiplying scalarly in H−1(Ω)
equation (5.112) by y and integrating on (0,T ), we obtain

1
2

d
dt
|y(t)|2−1 + µ

∫

Ω
|y(s,x)|α+1dx = 0, ∀t ≥ 0.

Now, by the Sobolev embedding theorem (see Theorem 1.4), we have

γ|y(s)|−1 ≤ |y(s)|Lα+1(Ω) for all α > 0 if N = 1,2 and for α ≥ N−2
N +2

if N ≥ 3.

(Here, | · |−1 is the H−1(Ω) norm.) This yields

d
dt
|y(t)|2−1 +2µγα+1|y(t)|α+1

−1 ≤ 0, ∀t ≥ 0,

and therefore
d
dt
|y(t)|1−α

−1 + µγ1+α ≤ 0, a.e. t > 0.

Hence,

|y(t)|−1 = 0 for t ≥ |y0|1−α
−1

µγ1+α .

If N = 1, then, multiplying scalarly in H−1(Ω) equation (5.112) by y(t), we get
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1
2

d
dt
|y(t)|2−1 + µ|y(t)|L1(Ω) ≤ 0, a.e. t > 0.

This yields (we have |y|L1(Ω) ≥ γ|y0|−1):

|y(t)|−1 + µγt ≤ |y0|−1, ∀t ≥ 0

and, therefore,

|y(t)|−1 = 0 for t ≥ |y0|−1

µγ
. ¤

Remark 5.4. The extinction in finite time is a significant nonlinear behavior of so-
lutions to fast diffusion porous media equations and this implies that the diffusion
process reaches its critical state (which is zero in this case) in finite time. The case
α = 0 models an important class of diffusion processes with self-organized critica-
lity, the so-called Bak’s sand-pile model.

5.4 The Phase Field System

Consider the parabolic system




∂
∂ t

θ(t,x)+ `
∂ϕ
∂ t

(t,x)− k∆θ(t,x) = f1(t,x), in Q = Ω × (0,T ),

∂
∂ t

ϕ(t,x)−α∆ϕ(t,x)−κ(ϕ(t,x)−ϕ3(t,x))

+δθ(t,x) = f2(t,x), in Q,

θ(0,x) = θ0(x), ϕ(0,x) = ϕ0(x), x ∈Ω ,

θ = 0, ϕ = 0, on ∂Ω × (0,T ),

(5.113)

where `,k,α ,κ ,δ are positive constants. This system, called in the literature the
phase-field system, was introduced as a model of a phase transition process in
physics and, in particular, the melting and solidification phenomena. (See Caginalp
[18].) In this latter case, θ = θ(t,x) is the temperature, whereas ϕ is the phase-field
transition function. The two-phase Stefan problem presented above can be viewed
as a particular limit case of this model. In fact, it can be obtained from the two-phase
Stefan model of phase transition by the following heuristic argument.

As seen earlier, the two-phase Stefan problem (5.74) and (5.75) can be rewrit-
ten as

∂
∂ t

γ(θ)−∆K(θ) = f in D ′(Ω × (0,T )),

where γ is the multivalued graph (5.71); that is, γ = C +ρH. Equivalently,

∂
∂ t

ϕ(θ)θ −∆K(θ) = f in D ′(Ω × (0,T )), (5.114)
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where ϕ : R→ R is given by the graph

ϕ(θ) =





C1 if θ < 0,

C2 +
ρ
θ

if θ > 0.
(5.115)

The idea behind Caginalp’s model of phase transition is to replace the multivalued
graph ϕ by a function ϕ = ϕ(t,x), called the phase function and equation (5.114) by

ϕ
∂θ
∂ t

+θ
∂ϕ
∂ t
−∆K(θ) = f . (5.116)

The phase function ϕ should be interpreted as a measure of phase transition and
more precisely as the proportion related to the first phase and the second one. For
instance, in the case of liquid–solid transition, one has, formally, ϕ ≥ 1 in the liquid
zone {(t,x); u(t,x) > 0} and ϕ < 0 in the solid zone {(t,x); u(t,x) < 0}. In general,
however, ϕ remains in an interval [ϕ∗,ϕ∗] which is determined by the specific phy-
sical model. This is the reason why ϕ is taken as the solution to a parabolic equation
of the Ginzburg–Landau type

∂ϕ
∂ t
−α∆ϕ−κ(ϕ−ϕ3)+δθ = f2, (5.117)

which is the basic mathematical model of phase transition. Equations (5.116) and
(5.117) lead, after further simplifications, to system (5.113).

As regards the existence in problem (5.113), we have the following.

Theorem 5.5. Assume that ϕ0,θ0 ∈ H1
0 (Ω)∩H2(Ω), Ω ⊂ RN , N = 1,2,3, and

that f1, f2 ∈W 1,2([0,T ];L2(Ω)). Then, there is a unique solution (θ ,ϕ) to system
(5.113) satisfying

(θ ,ϕ) ∈ (W 1,∞([0,T ];L2(Ω)))2∩ (L∞(0,T ;H1
0 (Ω)∩H2(Ω)))2. (5.118)

Proof. We set y = θ + `ϕ and reduce system (5.113) to




∂
∂ t

y− k∆y+ k`∆ϕ = f1 in Q,

∂
∂ t

ϕ−α∆ϕ−κ(ϕ−ϕ3)+δ (y− `ϕ) = f2 in Q,

y(0) = y0 = θ0 + `ϕ0, ϕ(0) = ϕ0 in Ω , y = ϕ = 0 on Σ .

(5.119)

In the space X = L2(Ω)×L2(Ω) consider the operator A : X → X ,

A

(
y

ϕ

)
=

(
−k∆y+ k`∆ϕ
−α∆ϕ−κ(ϕ−ϕ3)+δ (y− `ϕ)

)
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with the domain D(A) = {(y,ϕ) ∈ (H2(Ω)∩H1
0 (Ω))2; ϕ ∈ L6(Ω)}. Then, system

(5.119) can be written as




d
dt

(
y

ϕ

)
+A

(
y

ϕ

)
=

(
f1

f2

)
, t ∈ (0,T ),

(
y

ϕ

)
(0) =

(
y0

ϕ0

)
.

(5.120)

In order to apply Theorem 4.4 to (5.120), we check that A is quasi-m-accretive in X .
To this aim we endow the space X = L2(Ω)×L2(Ω) with an equivalent Hilbertian
norm provided by the scalar product

〈(
y

ϕ

)
,

(
ỹ

ϕ̃

)〉
= a(y, ỹ)L2(Ω) +(ϕ , ϕ̃)L2(Ω),

where a = α/k`2. Then, as easily seen, we have
〈

A

(
y

ϕ

)
−A

(
y∗

ϕ∗

)
,

(
y

ϕ

)
−

(
y∗

ϕ∗

)〉

≥ η(‖∇(y− y∗)‖2
L2(Ω) +‖∇(ϕ−ϕ∗)‖2

L2(Ω))−ω(‖y− y∗‖2
L2(Ω) +‖ϕ−ϕ∗‖2

L2(Ω)),

for some ω,η > 0. Clearly, this implies that A is quasi-accretive; that is, A + ωI is
accretive.

Now, consider for g1,g2 ∈ L2(Ω) the equation

λ

(
y

ϕ

)
+A

(
y

ϕ

)
=

(
g1

g2

)
; (5.121)

that is,




λy− k∆y+ k`∆ϕ = g1 in Ω ,

λϕ−α∆ϕ−κ(ϕ−ϕ3)+δ (y− `ϕ) = g2,

y = ϕ = 0 on ∂Ω .

(5.122)

System (5.122) can be equivalently rewritten as
(

λy

(λ −κ− `δ )ϕ +δy

)
+A0

(
y

ϕ

)
+F

(
y

ϕ

)
=

(
q1

q2

)
, (5.123)

where F,A0 : L2(Ω)×L2(Ω)→ L2(Ω)×L2(Ω) are given by
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A0

(
y

ϕ

)
=

(
−k∆y+ k`∆ϕ
−α∆ϕ

)

D(A0) = (H2(Ω)×H1
0 (Ω))2

and

F

(
y

ϕ

)
=

(
0

κϕ3

)

D(F) = L2(Ω)×L6(Ω).

By the Lax–Milgram lemma (Lemma 1.3), it is easily seen that A0 is m-accretive
and coercive in X = L2(Ω)×L2(Ω). On the other hand, F is quasi-m-accretive and

〈
A0

(
y

ϕ

)
,F

(
y

ϕ

)〉
≥ 0, ∀

(
y

ϕ

)
∈ D(A0).

Hence, by Proposition 3.8, A0 +F is quasi-m-accretive and this implies that (5.123)
has a solution for λ sufficiently large. ¤
Remark 5.5. The liquid and solid regions in the case of a melting solidification pro-
blem are those that remain invariant by the flow t → (θ(t),ϕ(t)). This is one way
of determining in specific physical models the range interval [ϕ∗,ϕ∗] of phase-field
function ϕ . A more general nonlinear phase-field model is proposed and studied
by Bonetti, Colli, Fabrizio, and Gilardi [12] in connection with a phase transition
model proposed by Fremond [26]. More precisely, under our notation this system is
of the following form





∂u
∂ t
− ∂

∂ t
(G(ϕ))−λ∆ logu = f ,

µ
∂ϕ
∂ t
−ν∆ϕ +F ′(ϕ)+uG′(ϕ) = 0,

and the above functional treatment applies as well to this general problem.

5.5 The Equation of Conservation Laws

We consider here the Cauchy problem




∂y
∂ t

+
N

∑
i=1

∂
∂xi

ai(y) = 0 in RN ×R+,

y(x,0) = y0(x), x ∈ RN ,

(5.124)

where a = (a1, ...,aN) is a continuous map from R to RN satisfying the condition



5.5 The Equation of Conservation Laws 239

limsup
|r|→0

‖a(r)‖
|r| < ∞,

and y0 ∈ L1(RN).
This equation can be treated as a nonlinear Cauchy problem in the space

X = L1(RN). In fact, we have seen earlier (Theorem 3.8) that the first-order
differential operator y → ∑N

i=1 (∂/∂xi)ai(y) admits an m-accretive extension
A ⊂ L1(RN)×L1(RN) defined as the closure in L1(RN)×L1(RN) of the operator
A0 given by Definition 3.2.

Then, by Theorem, 4.3, the Cauchy problem




dy
dt

+Ay 3 0 in (0,+∞),

y(0) = y0,

has for every y0 ∈ D(A) a unique mild solution y(t) = S(t)y0 given by the exponen-
tial formula (4.17) or, equivalently,

y(t) = lim
ε→0

yε(t) uniformly on compact intervals,

where yε is the solution to difference equation

ε−1(yε(t)− yε(t− ε))+Ayε(t) = 0 for t > ε,

yε(t) = y0 for t < 0.
(5.125)

We call such a function y(t) = S(t)y0 a semigroup solution or mild solution to the
Cauchy problem (5.124).

We see in Theorem 5.6 below that this solution is in fact an entropy solution to
the equation of conservation laws.

Theorem 5.6. Let y = S(t)y0 be the semigroup solution to problem (5.124). Then,

(i) S(t)Lp(RN)⊂ Lp(RN) for all 1≤ p < ∞ and

‖S(t)y0‖Lp(RN) ≤ ‖y0‖Lp(RN ), ∀y0 ∈ D(A)∩Lp(RN). (5.126)

(ii) If y0 ∈ D(A)∩L∞(RN), then

∫ T

0

∫

RN

(|y(x, t)−k|ϕt(x, t)

+sign0(y(x, t)− k)(a(y(x, t))−a(k)) ·ϕx(x, t)
)
dxdt ≥ 0

(5.127)

for every ϕ ∈C∞
0 (RN × (0,T )) such that ϕ ≥ 0, and all k ∈ RN and T > 0.

Here ϕt = ∂ϕ/∂ t and ϕx = ∇xϕ .
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Inequality (5.127) is Kruzkhov’s [30] definition of entropy solution to the Cauchy
problem (5.124) and its exact significance is discussed below.

Proof of Theorem 5.6. Because, as seen in the proof of Theorem 3.8, (I + λA)−1

maps Lp(RN) into itself and

‖(I +λA)−1u‖Lp(RN) ≤ ‖u‖Lp(RN), ∀λ > 0, u ∈ Lp(RN) for 1≤ p≤ ∞,

we deduce (i) by the exponential formula (4.17).
To prove inequality (5.126), consider the solution y to equation (5.125), where

y0 ∈ L1(RN)∩L∞(RN) and A0 = A. (Recall that L1(RN)∩L∞(RN) ⊂ R(I + λA)−1

for all λ > 0.) Then, ‖yε(t)‖Lp(RN ) ≤ ‖y0‖Lp(RN) for p = 1,∞ and so, by Definition
3.2 and by (5.125), we have

∫

RN
(sign0(yε(x, t)− k)(a(yε(x, t))−a(k))) ·ϕx(x, t)

+ε(yε(x, t− ε)− yε(x, t))sign0(yε(x, t)− k)ϕ(x, t))dx≥ 0,

∀k ∈ R, ϕ ∈C∞
0 (RN × (0,T )), ϕ ≥ 0, t ∈ (0,T ).

(5.128)

On the other hand, we have

(yε(x, t− ε)− yε(x, t))sign0(yε(x, t)− k)

= (yε(x, t− ε)− k)sign0(yε(x, t)− k)− (yε(x, t)− k)sign0(yε(x, t)− k)

≤ zε(x, t− ε)− zε(x, t),

where zε(x, t) = |yε(x, t)− k|.
Substituting the latter into (5.128) and integrating on RN × [0,T ], we get

∫ T

0

∫

RN
(sign0(yε(x, t)− k)(a(yε(x, t))−a(k)) ·ϕx(x, t)

+ε−1(zε(x, t− ε)− zε(x, t))ϕ(x, t))dxdt ≥ 0.

This yields

∫ T

0

∫

RN
(sgn0(yε(x, t)− k)(a(ye(x, t))−a(k)) ·ϕx(x, t))dxdt

−ε−1
∫ ε

0

∫

RN
|yε(x, t)− k|ϕ(x, t)dxdt + ε−1

∫ T

0

∫

RN
zε(x, t)ϕ(x, t)dxdt

+ε−1
∫ T

T−ε

∫

RN
zε(x, t)(ϕ(x, t + ε)−ϕ(x, t))dxdt ≥ 0.

Now, letting ε tend to zero, we get (5.127) because yε(t)→ y(t) uniformly on [0,T ]
in L1(RN) and ε−1(zε(x, t− ε)− zε(x, t))→ |y(x, t)− k|. This completes the proof
of Theorem 5.5.
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As mentioned earlier, equation (5.124) is known in the literature as the equation
of conservation laws and has a large spectrum of applications in mechanics and was
extensively studied in recent years. A function η : R → R is called an entropy of
system (5.124) if there is a function q : R → Rn (the entropy flux associated with
entropy η) such that ∇2q≥ 0 and

∇q j(y) = ∇η(y) ·∇a j(y), ∀y ∈ RN , j = 1, ...,N.

(Such a pair (η ,q) is called an entropy pair.)
The bounded measurable function y : [0,T ]×RN → R is called an entropy solu-

tion to (5.124) if, for all convex entropy pairs (η ,q),

∂
∂ t

η(y(t,x))+divx q(y(t,x))≤ 0 in D ′(RN × (0,T ));

that is, ∫ T

0

∫

RN
(η(y(t,x))ϕt(t,x)+q(y(t,x)) ·ϕx(t,x))dtdx≥ 0

for all ϕ ∈C∞
0 ((0,T )×RN), ϕ ≥ 0.

If take η(y)≡ |y−k| and q(y)≡ sign0(y−k)(a(y)−a(k)), we see that y satisfies
equation (5.127). The existence and uniqueness of the entropy solution were proven
by S. Kruzkhov [30]. (See also Bénilan and Kruzkhov [11] for some recent results.)
Recalling that the resolvent (I + λA)−1 of the operator A can be approximated by
the family of approximating equation (3.74), one might deduce via the Trotter–Kato
Theorem 4.14 that the entropy solution y can also be obtained as the limit for ε → 0
to solutions yε to the parabolic nonlinear equation

∂y
∂ t
− ε∆y+(a(y))x = 0,

in RN which is related to Hopf’s viscosity solution approach to nonlinear conserva-
tion laws equations.

5.6 Semilinear Wave Equations

The linear wave equation perturbed by a nonlinear term in speed can be conveniently
written as a first order differential equation in an appropriate Hilbert space defined
below and treated so by the general existence theory developed in Chapter 4.

We are given two real Hilbert spaces V and H such that V ⊂ H ⊂ V ′ and the
inclusion mapping of V into H is continuous and densely defined. We have denoted
by V ′ the dual of V and H is identified with its own dual. As usual, we denote by ‖·‖
and | · | the norms of V and H, respectively, and by (·, ·) the duality pairing between
V and V ′ and the scalar product of H.

We consider the second-order Cauchy problem
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d2y
dt2 +Ay+B

(
dy
dt

)
3 f , y(0) = y0,

dy
dt

(0) = y1, (5.129)

where A is a linear continuous and symmetric operator from V to V ′ and B⊂V ×V ′
is maximal monotone operator. We assume further that

(Ay,y)+α|y|2 ≥ ω‖y‖2, ∀y ∈V, (5.130)

where ω > 0 and α ∈ R.
One principal motivation and model for equation (5.129) is the nonlinear hyper-

bolic boundary value problem




∂ 2y
∂ t2 −∆y+β

(
∂y
∂ t

)
3 f (x, t) in Ω × (0,T ),

y = 0 on ∂Ω × (0,T ),

y(x,0) = y0(x),
dy
dt

(x,0) = y1(x) in Ω ,

(5.131)

where β is a maximal monotone graph in R×R and Ω is a bounded open subset of
RN with a smooth boundary.

As regards problem (5.129), we have the following existence result.

Theorem 5.7. Let f ∈W 1,1([0,T ];H) and y0 ∈V , y1 ∈ D(B) be given such that

{Ay0 +By1}∩H 6= /0. (5.132)

Then, there is a unique function y ∈W 1,∞([0,T ];V )∩W 2,∞([0,T ];H) that satisfies




d+

dt

(
dy
dt

)
(t)+Ay(t)+B

(
d+

dt
y(t)

)
3 f (t), ∀t ∈ [0,T ],

y(0) = y0,
dy
dt

(0) = y1,

(5.133)

where d+/dt(dy/dt) is considered in the topology of H and (d+/dt)y in V .

Proof. Let X = V ×H be the Hilbert space with the scalar product

〈U1,U2〉= (Au1,u2)+α(u1,u2)+(v1,v2),

where U1 = [u1,v1], U2 = [u2,v2].
In the space X , define the operator A : D(A )⊂ X → X by





D(A ) = {[u,v] ∈V ×H;{Au+Bv}∩H 6= /0},

A [u,v] = [−v;{Au+Bv}∩H]+σ [u,v], [u,v] ∈ D(A ),
(5.134)

where
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σ = sup
{

α(u,v)
((Au,u)+α|u|2 + |v|2) ; u ∈V, v ∈ H

}
.

We may write equation (5.129) as a first-order differential system





dy
dt
− z = 0 in (0,T ),

dy
dt

+Ay+Bz 3 f .

Equivalently,




dt
dt

U(t)+A U(t)−σU(t) 3 F(t), t ∈ (0,T ),

U(0) = U0,

(5.135)

where
U(t) = [y(t),z(t)], F(t) = [0, f (t)], U0 = [y0,y1].

It is easily seen that A is monotone in X×X . Let us show that it is maximal mono-
tone; that is, R(I +A ) = V ×H, where I is the unity operator in V ×H. To this end,
let [g,h] ∈ V ×H be arbitrarily given. Then, the equation U +A U 3 [g,h] can be
written as 




y− z+σy = g,

z+Ay+Bz+σz 3 h.

Substituting y = (1+σ)−1(z+g) in the second equation, we obtain

(1+σ)z+(1+σ)−1Az+Bz 3 h− (1+σ)−1Ag.

Under our assumptions, the operator z Γ−→ (1 + σ)z +(1−σ)−1Az is continuous,
positive, and coercive from V to V ′. Then, R(Γ +B) = V ′ (see Corollary 2.6, and so
the previous equation has a solution z ∈ D(B) and a fortiori [g,h] ∈ R(I +A ).

Then, the conclusions of Theorem 5.7 follow by Theorem 4.6 because there is a
unique solution U ∈W 1,∞([0,T ];V ×H) to problem (5.135) satisfying

d+

dt
U(t)+A U(t)−σU(t) 3 F(t), ∀t ∈ [0,T ) :





d+

dt
y(t) = z(t), ∀t ∈ [0,T ),

d+

dt
z(t)+Ay(t)+B(z(t)) 3 f (t), ∀t ∈ [0,T ),

where (d+/dt)y is in the topology of V whereas (d+/dt)z is in the topology of H. ¤
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The operator B that arises in equation (5.129) might be multivalued. Moreover,
if B = ∂ϕ , where ϕ : V → R is a lower semicontinuous convex function, problem
(5.129) reduces to a variational inequality of hyperbolic type.

In order to apply Theorem 5.7 to the hyperbolic problem (5.131), we take V =
H1

0 (Ω), H = L2(Ω), V ′ = H−1(Ω), A =−∆ , and B : H1
0 (Ω)→H−1(Ω) defined by

B = ∂ϕ , where ϕ : H1
0 (Ω)→ R is the function

ϕ(y) =
∫

Ω
j(y(x))dx, ∀y ∈ H1

0 (Ω), β = ∂ j. (5.136)

The operator B is an extension of the operator (B0y)(x) = {w ∈ L2(Ω); w(x) ∈
β (y(x)), a.e. x ∈Ω}, from H1

0 (Ω) to H−1(Ω). It should be said that, in general, the
operator B does not coincide with B0. The simplest example is j(r) = 0 if 0≤ r≤ 1,
j(r) = +∞ otherwise. In this case, ∂ϕ = ∂ IK , where K = {y∈H1

0 (Ω); 0≤ y(x)≤ 1,
a.e., x∈Ω}. Then µ ∈ ∂ϕ(y) satisfies µ(y−z)≥ 0, ∀z∈K and, therefore, µ(ϕ) = 0
for all ϕ ∈C∞

0 (Ω). Hence, µ is a measure with support on ∂Ω . More generally (see
Brezis [13]), if ϕ is defined by (5.136), then µ ∈ ∂ϕ(y) ∈ H−1(Ω), and then µ is
a bounded measure on Ω and µ = µadx + µs where the absolutely continuous part
µa ∈L1(Ω) has the property that µa(x)∈ β (y(x)), a.e. x∈Ω . However, if D(β )= R,
then, by Lemma 2.2, if µ ∈H−1(Ω)∩L1(Ω) is such that µ(x)∈ β (y(x)), a.e. x∈Ω ,
then µ ∈ By.

Then, by Theorem 5.7, we get the following.

Corollary 5.5. Let β be a maximal monotone graph in R×R and let B = ∂ϕ , where
ϕ is defined by (5.136). Let y0 ∈ H1

0 (Ω)∩H2(Ω), y1 ∈ H1
0 (Ω), and f ∈ L2(Q) be

such that ∂ f /∂ t ∈ L2(Q) and

µ0(x) ∈ β (y1(x)), a.e. x ∈Ω for some µ0 ∈ L2(Ω). (5.137)

Then, there is a unique function y ∈C([0,T ];H1
0 (Ω)) such that

∂y
∂ t
∈C([0,T ];L2(Ω))∩C([0,T ];H1

0 (Ω)),
∂ 2y
dt2 ∈ L∞(0,T ;L2(Ω)) (5.138)





d+

dt
∂y
∂ t

(t)−∆y(t)+B
(

∂
∂ t

y(t)
)
3 f (t), ∀t ∈ [0,T ),

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x), in Ω ,

y = 0, on ∂Ω × (0,T ).

(5.139)

Assume further that D(β ) = R. Then, ∆y(t) ∈ L1(Ω) for all t ∈ [0,T ) and

d+

dt
dy
dt

(x, t)−∆y(x, t)+ µ(x, t) = f (x, t), x ∈Ω , t ∈ [0,T ), (5.140)

where µ(x, t) ∈ β ((∂y/∂ t)(x, t)), a.e. x ∈Ω .

(We note that condition (5.139) implies (5.132).)
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Problems of the form (5.131) arise in wave propagation and description of the
dynamics of an elastic solid. For instance, if β (r) = r|r|, this equation models the
behavior of an elastic membrane with the resistance proportional to the velocity.

If j(r) = |r|, then β (r) = sign r and so equation (5.139) is of multivalued type.
As another example, consider the unilateral hyperbolic problem




∂ 2y
∂ t2 = ∆y+ f in

{
(x, t) ∈ Q;

∂y
∂ t

(x, t) > ψ(x)
}

,

∂ 2y
∂ t2 ≥ ∆y+ f ,

∂
∂ t

y≥ ψ in Q,

y = 0 on ∂Ω × [0,T ),

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω ,

(5.141)

where ψ ∈ H2(Ω) is such that ψ ≤ 0, a.e. on ∂Ω . This is a reflection-type pro-
blem for the linear wave equation with constraints on velocity that exhibits a free
boundary type behavior with moving boundary.

Clearly, we may write this variational inequality in the form (5.129), where V =
H1

0 (Ω), H = L2(Ω), A =−∆ , and B⊂ H1
0 (Ω)×H−1(Ω) is defined by

Bu = {w ∈ H−1(Ω); (w,u− v)≥ 0, ∀v ∈ K}

for all u ∈ D(B) = K = {u ∈ H1
0 (Ω); u≥ ψ, a.e. in Ω}.

By Theorem 5.7, we have therefore the following existence result for problem
(5.141).

Corollary 5.6. Let f , ft ∈ L2(Q) and y0 ∈H1
0 (Ω)∩H2(Ω), y1 ∈H1

0 (Ω) be such that
y1(x)≥ ψ(x), a.e. x ∈Ω . Then, there is a unique function y ∈W 1,∞([0,T ];H1

0 (Ω))
with ∂y/∂ t ∈W 1,∞([0,T ];L2(Ω)) satisfying




∫

Ω

(
d+

dt
∂y
∂ t

(x, t)
(

∂y
∂ t

(x, t)−u(x)
)

+∇y(x, t) ·∇
(

∂y
∂ t

(x, t)−u(x)
))

dx

≤
∫

Ω
f (x, t)

(
∂y
∂ t

(x, t)−u(x)
)

dx, ∀u ∈ K, ∀t ∈ [0,T ),

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x), ∀x ∈Ω .

(5.142)

Problem (5.142) is a variational (or weak) formulation of the free boundary problem
(5.141).

The Klein–Gordon Equation

We consider now the hyperbolic boundary value problem
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



∂ 2y
∂ t2 −∆y+g(y) = f in Ω × (0,T ) = Q,

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω ,

y = 0 on ∂Ω × (0,T ) = Σ ,

(5.143)

where Ω is a bounded and open subset of RN , with a sufficiently smooth boundary
(of class C2, for instance), and g ∈W 1,∞(R) satisfies the following conditions.

(i) |g′(r)| ≤ L(1 + |r|p), a.e. r ∈ R, where 0 ≤ p ≤ 2/(N−2) if N > 2, and p is
any positive number if 1≤ N ≤ 2;

(ii) rg(r)≥ 0, ∀r ∈ R.

In the special case where g(y) = µ|y|ρ y, assumptions (i) and (ii) are satisfied
for 0 < ρ ≤ 2/(N−2) if N > 2, and for ρ ≥ 0 if N ≤ 2. For ρ = 2, this is the
classical Klein–Gordon equation, arising in the quantum field theory (see Reed and
Simon [37]).

In the sequel, we denote by ψ the primitive of g, which vanishes at 0: ψ(r) =∫ r
0 g(t)dt, ∀r ∈ R.

Theorem 5.8. Let f ,(∂ f /∂ t) ∈ L2(Q) and y0 ∈ H1
0 (Ω)∩H2(Ω), y1 ∈ H1

0 (Ω) be
such that ψ(y0) ∈ L1(Ω). Then, under assumptions (i) and (ii) there is a unique
function y that satisfies





y ∈ L∞(0,T ;H1
0 (Ω)∩H2(Ω))∩C1([0,T ];H1

0 (Ω)),

∂y
∂ t
∈C([0,T ];H1

0 (Ω)),
∂ 2y
∂ t2 ∈ L∞(0,T ;L2(Ω)),

ψ(y) ∈ L∞(0,T ;L1(Ω)),

(5.144)

and 



∂ 2y
∂ t2 −∆y+g(y) = f , a.e. in Q,

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x), a.e. x ∈Ω .

(5.145)

Proof. As in the previous case, we write equation (5.143) as a first-order differential
equation in X = H1

0 (Ω)×L2(Ω); that is,

∂y
∂ t
− z = 0,

dz
dt
−∆y+g(y) = f in [0,T ]. (5.146)

Equivalently,




d
dt

U(t)+A0U(t)+GU(t) = F(t), t ∈ [0,T ],

U(0) = [y0,y1],
(5.147)

where U(t) = [y(t),z(t)], G(U) = [0,g(y)], A0U = [−z,−∆y], and F(t) = [0, f (t)].
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The space X = H1
0 (Ω)×L2(Ω) is endowed with the usual norm:

‖U‖2
X = ‖y‖2

H1
0 (Ω) +‖z‖2

L2(Ω), U = [y,z].

It should be said that although the operator A0 + G is not quasi-m-accretive in the
space X , the Cauchy problem (5.147) can be treated with the previous method.

We note first that the operator G is locally Lipschitz on X . Indeed, we have

‖G(y1,z1)−G(y2,z2)‖X = ‖g(y1)−g(y2)‖L2(Ω).

On the other hand, we have

|g(y1)−g(y2)| ≤
∣∣∣∣
∫ 1

0
g′(λy1 +(1−λ )y2)dλ (y1− y2)

∣∣∣∣

≤ L|y1− y2|
∫ 1

0
(1+ |λ (y1− y2)+ y2|p)dλ

≤ C|y1− y2|(max(|y1|p, |y2|p)+1), ∀y1,y2 ∈ R.

Hence, for any z ∈ L2(Ω) and yi ∈ H1
0 (Ω), i = 1,2, we have

∫

Ω
z(x)(g(y1(x))−g(y2(x)))dx

≤C
∫

Ω
|z(x)| |y1(x)− y2(x)|(max(|y1(x)|p, |y2(x)|p)+1)dx

and, therefore, by the Hölder inequality,
∫

Ω
z(g(y1)−g(y2))dx ≤C‖z‖L2(Ω)‖y1−y2‖Lβ (Ω) max(‖y1‖p

L2p(Ω),‖y2‖p
L2p(Ω))

+C‖z‖L2(Ω)‖y1−y2‖L2(Ω),

where
1
β

+
1
δ

+
1
2

= 1.

Now, we take in the latter inequality δ = N and β = 2N/(N−2). We get

‖g(y1)−g(y2)‖2

≤C‖y1−y2‖2N/(N−2) max(‖y1‖p
N p,‖y2‖p

N p)+C‖y1−y2‖2, ∀y1,y2 ∈ H1
0 (Ω).

Then, by the Sobolev embedding theorem and assumption (i), we have

‖yi‖N p ≤ Ci‖yi‖H1
0 (Ω), i = 1,2,

‖y1− y2‖2N/(N−2) ≤ C0‖y1− y2‖H1
0 (Ω).

(We have denoted by ‖ · ‖p the Lp norm.) This yields
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‖g(y1)−g(y2)‖2 ≤C‖y1− y2‖H1
0 (Ω)(max(‖y1‖p

H1
0 (Ω)

,‖y2‖p
H1

0 (Ω)
)+1)

and, therefore,

‖G(y1,z1)−G(y2,z2)‖X

≤C‖y1−y2‖H1
0 (Ω)(1+max(‖y1‖p

H1
0 (Ω)

,‖y2‖p
H1

0 (Ω)
)),

∀y1,y2 ∈ H1
0 (Ω),

(5.148)

as claimed. ¤

To prove the existence of a local solution, we use the truncation method presented
in Section 4.1 (see Theorem 4.8).

Let r > 0 be arbitrary but fixed. Define the operator G̃ : X → X ,

G̃(y,z) =





G(y,z) if ‖y‖H1
0 (Ω) ≤ r,

G

(
r

y
‖y‖H1

0 (Ω)
, z

)
if ‖y‖H1

0 (Ω) > r.

By (5.148), we see that the operator G̃ is Lipschitz on X . Hence, A0 + G is ω-m-
accretive on X and, by Theorem 4.6, we conclude that the Cauchy problem





d
dt

U(t)+A0U(t)+ G̃U(t) = F(t), a.e. t ∈ (0,T ),

U(0) = [y0,y1],
(5.149)

has a unique solution U ∈ W 1,∞([0,T ];X). This implies that there is a unique
y ∈W 1,∞([0,T ];H1

0 (Ω)) with dy/dt ∈W 1,∞([0,T ];L2(Ω)) such that




d2y
dt2 (t)−∆y(t)+ g̃(y(t)) = f (t), a.e. t ∈ (0,T ),

y(0) = y0,
dy
dt

(0) = y1 in Ω ,

(5.150)

where g̃ : H1
0 (Ω)→ L2(Ω) is defined by

g̃(y) =





g(y) if ‖y‖H1
0 (Ω) ≤ r,

g

(
r

y
‖y‖H1

0 (Ω)

)
if ‖y‖H1

0 (Ω) > r.

Choose r sufficiently large such that ‖y0‖H1
0 (Ω) < r. Then, there is an interval

[0,Tr] such that ‖y(t)‖H1
0 (Ω) ≤ r for t ∈ [0,Tr] and ‖y(t)‖H1

0 (Ω) > r for t > Tr. We
have therefore

∂ 2y
∂ t2 −∆y+g(y) = f in Ω × (0,Tr),
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and multiplying this by yt and integrating on Ω × (0, t), we get the energy equality

‖yt(t)‖2
2 +‖y(t)‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y(x, t))dx

= ‖y1‖2
2 +‖y0‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y0(x))dx+2

∫ t

0

∫

Ω
f ys dxds.

Because ψ(y)≥ 0 and ψ(y0) ∈ L1(Ω), by Gronwall’s lemma we see that

‖yt(t)‖2 ≤ (‖y1‖2
2 +‖y0‖2

H1
0 (Ω) +2‖ψ(y0)‖L1(Ω))

1/2 +
∫ Tr

0
‖ f (s)‖2ds

and, therefore,

‖yt(t)‖2
2 +‖y(t)‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y(x, t))dx

≤ ‖y1‖2
2 +‖y0‖2

H1
0 (Ω)

+2
∫

Ω
ψ(y0)dx+

(∫ t

0
‖ f (s)‖2

2ds
)1/2

×
(

(‖y1‖2
2 +‖y0‖2

H1
0 (Ω)

+2‖ψ(y0)‖L1(Ω))
1/2 +

∫ Tr

0
‖ f (s)‖2ds

)
.

The latter estimate shows that, given y0 ∈ H1
0 (Ω), y1 ∈ L2(Ω), T > 0, and f ∈

L2(QT ), there is a sufficiently large r such that ‖y(t)‖H1
0 (Ω) ≤ r for t ∈ [0,T ]. We

may infer, therefore, that for r large enough the function y found as the solution
to (5.150) is, in fact, a solution to equation (5.145) satisfying all the conditions of
Theorem 5.8.

The uniqueness of y satisfying (5.144) and (5.145) is the consequence of the
fact that such a function is the solution (along with z = ∂y/∂ t) to the ω-accretive
differential equation (5.149).

By the previous proof, it follows that, if one merely assumes that

y0 ∈ H1
0 (Ω), y1 ∈ L2(Ω), ψ(y0) ∈ L1(Ω),

then there is a unique function y∈C([0,T ];H1
0 (Ω)), ∂y/∂ t ∈C([0,T ];L2(Ω)), that

satisfies equation (5.143) in a mild sense. However, if ψ(y0) /∈ L1(Ω) or, if one
drops assumption (ii), then the solution to (5.143) exists locally in time, only; that
is, in a neighborhood of the origin.

Under appropriate assumptions on g and β , the above existence results extend to
equations of the form





∂ 2y
∂ t2 −∆y+β

(
∂y
∂ t

)
+g(y) = f in Q,

y(x,0) = y0(x),
∂y
∂ t

(x,0) = y1(x) in Ω ,

y = 0 on ∂Ω × (0,T ).
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(See Haraux [28].) In Barbu, Lasiecka and Rammaha [5], the local and global ex-
istence of generalized solutions is studied in the case of more general equations of
the form

∂ 2y
∂ t2 −∆y+ |y|kβ

(
∂ y
∂ t

)
= |y|p−1y in Ω × (0,T ),

where β (r)≤C0rm,
∫ r

0 β (s)ds≥Crm+1, 0≤ k < N/(N +2), 1 < p < ∞.
It turns out that, if 1 < p≤ k+m, then there is a global solution but every solution

is only local and blows up if p is greater than m+ k. For other recent results in this
context we refer also to the work of Serrin, Todorova, and Vitillaro [38].

5.7 Navier–Stokes Equations

The classical Navier–Stokes equations




yt(x, t)−ν0∆y(x, t)+(y ·∇)y(x, t) = f (x, t)+∇p(x, t),

x ∈Ω , t ∈ (0,T )

(∇ · y)(x, t) = 0, ∀(x, t) ∈Ω × (0,T )

y = 0 on ∂Ω × (0,T )

y(x,0) = y0(x), x ∈Ω

(5.151)

describe the non-slip motion of a viscous, incompressible, Newtonian fluid in an
open domain Ω ⊂ RN , N = 2,3. Here y = (y1,y2, ...,yN) is the velocity field, p is
the pressure, f is the density of an external force, and ν0 > 0 is the viscosity of the
fluid.

We have used the following standard notation




∇ · y = divy =
N

∑
i=1

Diyi, Di =
∂

∂xi
, i = 1, ...,N

(y ·∇)y =
N

∑
i=1

yiDiy j, j = 1, ...,N.

By a classical device due to J. Leray, the boundary value problem (5.151) can be
written as an infinite-dimensional Cauchy problem in an appropriate function space
on Ω . To this end we introduce the following spaces

H = {y ∈ (L2(Ω))N ; ∇ · y = 0, y ·ν = 0 on ∂Ω} (5.152)

V = {y ∈ (H1
0 (Ω))N ; ∇ · y = 0}. (5.153)

Here ν is the outward normal to ∂Ω .
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The space H is a closed subspace of (L2(Ω))N and it is a Hilbert space with the
scalar product

(y,z) =
∫

Ω
y · zdx (5.154)

and the corresponding norm |y| =
(∫

Ω |y|2dx
)1/2

. (We denote by the same symbol

| · | the norm in RN , (L2(Ω))N , and H, respectively.) The norm of the space V is
denoted by ‖·‖ :

‖y‖=
(∫

Ω
|∇y(x)|2dx

)1/2

. (5.155)

We denote by P : (L2(Ω))N →H the orthogonal projection of (L2(Ω))N onto H (the
Leray projector) and set

a(y,z) =
∫

Ω
∇y ·∇zdx, ∀y,z ∈V. (5.156)

A = −P∆ , D(A) = (H2(Ω))N ∩V. (5.157)

Equivalently,
(Ay,z) = a(y,z), ∀y,z ∈V. (5.157)′

The Stokes operator A is self-adjoint in H, A ∈ L(V,V ′) (V ′ is the dual of V with the
norm denoted by ‖ · ‖V ′ ) and

(Ay,y) = ‖y‖2, ∀y ∈V. (5.158)

Finally, consider the trilinear functional

b(y,z,w) =
∫

Ω

N

∑
i, j=1

yiDiz jw j dx, ∀y,z,w ∈V (5.159)

and we denote by B : V →V ′ the nonlinear operator defined by

By = P(y ·∇)y (5.160)

or, equivalently,
(By,w) = b(y,y,w), ∀w ∈V. (5.160)′

Let f ∈ L2(0,T ;V ′) and y0 ∈ H. The function y : [0,T ]→ H is said to be a weak
solution to equation (5.151) if

y ∈ L2(0,T ;V ′)∩Cw([0,T ];H)∩W 1,1([0,T ];V ′) (5.161)




d
dt

(y(t),ψ)+ν0a(y(t),ψ)+b(y(t),y(t),ψ)=( f (t),ψ), a.e. t∈(0,T ),

y(0) = y0, ∀ψ∈V.
(5.162)
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(Here (·, ·) is, as usual, the pairing between V,V ′ and the scalar product of H.)
Equation (5.162) can be equivalently written as





dy
dt

(t)+ν0Ay(t)+By(t) = f (t), a.e. t ∈ (0,T )

y(0) = y0

(5.163)

where dy/dt is the strong derivative of function y : [0,T ]→V ′.
The function y is said to be the strong solution to (5.151) if y ∈W 1,1([0,T ];H)∩

L2(0,T ;D(A)) and (5.163) holds with dy/dt ∈ L1(0,T ;H) the strong derivative of
function y : [0,T ]→ H.

There is a standard approach to existence theory for the Navier–Stokes equation
(5.163) based on the Galerkin approximation scheme (see, e.g., Temam [39]). The
method we use here relies on the general results on the nonlinear Cauchy problem
of monotone type developed before and, although it leads to a comparable result, it
provides a new insight into existence theory of this problem.

It should be said that equation (5.163) is not of monotone type in H, but it can be
treated, however, into this framework by an argument described below.

Before proceeding with the existence for problem (1.1), we pause briefly to
present some fundamental properties of the trilinear functional b defining the inertial
operator B (see Constantin and Foias [19], Temam [39]).

Proposition 5.14. Let 1≤ N ≤ 3. Then

b(y,z,w) = −b(y,w,z), ∀y,z,w ∈V (5.164)

|b(y,z,w)| ≤ C‖y‖m1
‖z‖m2+1‖w‖m3

, ∀u ∈Vm1 , v ∈Vm2 , w ∈Vm3 (5.165)

where mi ≥ 0, i = 1,2,3 and

m1 +m2 +m3 ≥ N
2

if mi 6= N
2

, ∀i = 1,2,3,

m1 +m2 +m3 >
N
2

if mi =
N
2

, for some i = 1,2,3.

(5.166)

Here Vmi = V ∩ (Hmi
0 (Ω))N .

Proof. It suffices to prove (5.165) for y,z,w ∈ {y ∈ (C∞
0 (Ω))N ; ∇ · y = 0}. We have

b(y,z,w) =
∫

Ω
yiDiz jw jdx =

∫

Ω
(yiDi(z jw j)− yiDiw jz j)dx

= −
∫

Ω
yiDiw jz jdx =−b(y,z,w)

because ∇ · y = 0. By Hölder’s inequality we have

|b(y,z,w)| ≤ |yi|q1

∣∣Diz j
∣∣
q2

∣∣w j
∣∣
q3

,
1
q1

+
1
q2

+
1
q3
≤ 1. (5.167)
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(Here | · |q is the norm of Lq(Ω).) On the other hand, by the Sobolev embedding
theorem we have (see Theorem 1.5)

Hmi(Ω)⊂ Lqi(Ω) for
1
qi

=
1
2
− mi

N

if mi < N/2. Then, (5.167) yields

|b(y,z,w)| ≤C‖y‖m1
‖z‖m2+1‖w‖m3

if mi < N/2, i = 1,2,3.
If one mi is larger than N/2 the previous inequality still remains true because, in

this case,
Hmi(Ω)⊂ L∞(Ω).

If mi = N/2 then
Hmi(Ω)⊂

⋂

q>2

Lq(Ω)

and so (5.167) holds for 1/q2+1/q3 < 1 and q1 = ε where

1
ε

= 1− 1
q2
− 1

q3
·

Then (5.165) follows for m1 +m2 +m3 > N/2 as claimed.
We have also the interpolation inequality

‖u‖m ≤ c‖u‖1−α
` ‖u‖α

`+1, for α = m− ` ∈ [0,1]. (5.168)

In particular, it follows by Proposition 5.14 that B is continuous from V to V ′.
Indeed, we have

(By−Bz,w) = b(y,y− z,w)+b(y− z,z,w), ∀w ∈V

and this yields (notice that ‖ · ‖= ‖ · ‖1 and |Ay|= |y|2)

|(By−Bz,w)| ≤C(‖y‖‖y− z‖‖w‖+‖y− z‖‖z‖‖w‖).

Hence
‖By−Bz‖V ′ ≤C‖y− z‖(‖y‖+‖z‖), ∀y,z ∈V. (5.169)

We would like to treat (5.163) as a nonlinear Cauchy problem in the space H. How-
ever, because the operator ν0A+B is not quasi-m-accretive in H, we first consider a
quasi-m-accretive approximation of the form taken in the proof of Theorem 4.8.

For each M > 0 define the operator BM : V →V ′ (see (4.67))

BMy =





By if ‖y‖ ≤M,

M2

‖y‖2 By if ‖y‖> M,
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and consider the operator ΓM : D(ΓM)⊂ H → H

ΓM = ν0A+BM, D(ΓM) = D(A). (5.170)

Let us show that ΓM is well defined. Indeed, we have

|ΓMy| ≤ ν0|Ay|+ |BMy|, ∀y ∈ D(A).

On the other hand, by (5.165) for m1 = 1, m2 = 1/2, m3 = 0, we have for ‖y‖ ≤M

|(BMy,w)|= |b(y,y,w)| ≤C‖y‖3/2|Ay|1/2|w|

because ‖y‖3/2 ≤ ‖y‖1/2|Ay|1/2. Hence

|BMy| ≤C|Ay|1/2‖y‖3/2, ∀y ∈ D(A).

Similarly, we get for ‖y‖> M

|BMy| ≤ CM2

‖y‖2 |Ay|1/2‖y‖3/2 ≤C|Ay|1/2‖y‖3/2.

This yields
|ΓMy| ≤ ν0|Ay|+C|Ay|1/2‖y‖3/2, ∀y ∈ D(A) (5.171)

as claimed. ¤

Lemma 5.2. There is αM such that ΓM +αMI is m-accretive in H×H.

Proof. We show first that for each ν > 0

((ΓM +λ )y− (ΓM +λ )z,y− z)≥ ν
2
‖y− z‖2, ∀y,z ∈ D(A), for λ ≥Cν

M.

To this end we prove that

|(BMy−BMz,y− z)| ≤ ν
2
‖y− z‖2 +CM|y− z|2. (5.172)

We treat only the case N = 3 because N = 2 follows in a similar way.
Let ‖y‖,‖z‖ ≤M. Then we have

(BMy−BMz,y− z) = (By−Bz,y− z) = b(y,y,y− z)−b(z,z,y− z)

= b(y− z,y,y− z)+b(z,y− z,y− z) = b(y− z,y,y− z).

Hence, by Proposition 5.14, for m1 = 1, m2 = 0, m3 = 1/2 we have
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|(BMy−BMz,y−z)| = |b(y−z,y,y−z)| ≤C‖y−z‖‖y‖‖y−z‖1/2

≤ C‖y−z‖3/2‖y‖|y−z|1/2

≤ CM‖y−z‖3/2|y−z|1/2

≤ ν
2
‖y−z‖2+CM|y−z|2

as desired.
Now consider the case where ‖y‖> M, ‖z‖> M. We have

(BMy−BMz,y− z)

=
M2

‖y‖2 (b(y,y,y− z)−b(z,z,y− z))+

(
M2

‖y‖2 −
M2

‖z‖2

)
b(z,z,y− z)

=
M2

‖y‖2 b(y− z,y,y− z)+M2

(
‖z‖2−‖y‖2

‖y‖2‖z‖2

)
b(z,z,y− z).

This yields

|(BMy−BMz,y−z)| ≤ CM2

‖y‖ ‖y−z‖3/2|y−z|1/2

+
CM2

‖y‖2‖z‖2

∣∣∣‖z‖2−‖y‖2
∣∣∣‖z‖‖y−z‖1/2

≤ ν
2
‖y−z‖2+C1

M|y−z|2.

Assume now that ‖y‖> M, ‖z‖ ≤M. We have

|(BMy−BMz,y− z)|=
∣∣∣∣∣

M2

‖y‖2 b(y,y,y− z)−b(z,z,y− z)

∣∣∣∣∣

≤
∣∣∣∣∣

M2

‖y‖2 −1

∣∣∣∣∣ |b(z,z,y− z)|+ M2

‖y‖2 |b(y,y,y− z)−b(z,z,y− z)|

≤C
‖y‖2−M2

‖y‖2 ‖z‖2‖y− z‖1/2|y− z|1/2 +
M2

‖y‖2 |b(y− z,y,y− z)|

≤C1
M‖y− z‖3/2|y− z|1/2

which again implies (5.172), as claimed.
We note also that by (5.169) it follows that

‖BMy−BMz‖V ′ ≤C‖y− z‖(‖y‖+‖z‖), ∀y,z ∈V, (5.173)

where C is independent of M.
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Let us now proceed with the proof of αM-m-accretivity of ΓM . Consider the ope-
rator

FMu = ν0Au+BMu+αMu, ∀u ∈ D(FM)

D(FM) = {u ∈V ; ν0Au+BMu ∈ H}. (5.174)

By (5.172) we see that for αM ≥CM the operator u→ ν0Au+BMu+αMu is mono-
tone, coercive, and continuous from V to V ′. Hence its restriction to H; that is, FM
is maximal monotone (m-accretive) in H×H. To complete the proof it suffices to
show that D(FM) = D(A) for αM large enough. (Clearly D(A)⊂ D(FM).)

Note first that by (5.165) we have

|(BMy,w)| ≤C|b(y,y,w)| ≤C‖y‖‖y‖3/2|w|, ∀w ∈ H,

and this yields by interpolation (see (5.168))

|BM(y)| ≤C‖y‖3/2|Ay|1/2 ≤CM|Ay|1/2.

Hence

|Ay| ≤ 1
ν0

(|ΓMy|+ |BMy|)≤ 1
ν0

(|ΓMy|+CM|Ay|1/2), ∀y ∈ D(A);

that is,
|Ay| ≤CM(|ΓMy|+1), ∀y ∈ D(A). (5.175)

Now we consider the operators

F1
M = ν0(1− ε)A, D(F1

M) = D(A)

F2
M = εν0A+BM +αMI, D(F2

M) = {u ∈V ; εν0Au+BMu ∈ H},

where αM is large enough so that F2
M is m-accretive in H×H. (We have seen above

that such an αM exists.)
We have

∣∣F2
M(y)

∣∣ ≤ εν0|Ay|+ |BMy|+αM|y|
≤ εν0|Ay|+CM|Ay|1/2 +αM|y| ≤ ε(1+δ )|Ay|+αM|y|+C1

M

≤ ε(1+δ )
ν0(1− ε)

∣∣F1
M(y)

∣∣+αM|y|+C1
M, ∀y ∈ D(A) = D(F1

M).

Thus for ε small enough it follows by Proposition 3.9 that F1
M +F2

M with the domain
D(A) is m-accretive in H×H. Because FM = F1

M + F2
M on D(A) ⊂ D(FM) we infer

that D(FM) = D(A) as claimed. ¤
For each M > 0 consider the equation





dy
dt

(t)+ν0Ay(t)+BMy(t) = f (t), t ∈ (0,T )

y(0) = y0.
(5.176)
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Proposition 5.15. Let y0 ∈ D(A) and f ∈ W 1,1([0,T ];H) be given. Then there is
a unique solution yM ∈W 1,∞([0,T ];H)∩L∞(0,T ;D(A))∩C([0,T ];V ) to equation
(5.176). Moreover, (d+/dt)yM(t) exists for all t ∈ [0,T ) and

d+

dt
yM(t)+ν0AyM(t)+BMyM(t) = f (t), ∀t ∈ [0,T ). (5.177)

Proof. This follows by Theorem 4.4. Because ΓMyM = ν0AyM +BMyM ∈L∞(0,T ;H),
by (5.175) we infer that AyM ∈ L∞(0,T ;H). As dyM/dt ∈ L∞(0,T ;H), we conclude
also that yM ∈C([0,T ];V )∩L∞(0,T ;D(A)), as claimed. ¤

Now we are ready to formulate the main existence result for the strong solutions
to Navier–Stokes equation (5.151) ((5.151)′).

Theorem 5.9. Let N = 2,3 and f ∈W 1,1([0,T ];H), y0 ∈ D(A) where 0 < T < ∞.
Then there is a unique function y∈W 1,∞([0,T ∗);H)∩L∞(0,T ∗;D(A))∩C([0,T ∗];V )
such that 




dy(t)
dt

+ν0Ay(t)+By(t) = f (t), a.e. t ∈ (0,T ∗),

y(0) = y0,

(5.178)

for some T ∗ = T ∗(‖y0‖) ≤ T. If N = 2 then T ∗ = T. Moreover, y(t) is right diffe-
rentiable and

d+

dt
y(t)+ν0Ay(t)+By(t) = f (t), ∀t ∈ [0,T ∗). (5.179)

Proof. The idea of the proof is to show that for M sufficiently large the flow yM(t),
defined by Proposition 5.15, is independent of M on each interval [0,T ] if N = 2 or
on [0,T (y0)] if N = 3. Let yM be the solution to (5.176); that is,





dyM

dt
(t)+ν0AyM(t)+BMyM(t) = f (t), a.e. t ∈ (0,T ),

y(0) = y0.

(5.180)

If we multiply (5.180) by yM and integrate on (0, t), we get

|yM(t)|2 +ν0

∫ t

0
‖yM(s)‖2ds≤C

(
|y0|2 +

1
ν0

∫ T

0
| f (t)|2dt

)
, ∀M.

Next, we multiply (5.180) (scalarly in H) by AyM(t). We get

1
2

d
dt
‖yM(t)‖2 +ν0|AyM(t)|2 ≤ |(BMyM(t),AyM(t))|+ | f (t)||AyM|,

a.e. t ∈ (0,T ).

This yields
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‖yM(t)‖2 +ν0

∫ t

0
|AyM(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

∫ t

0
|(BMyM,AyM)|ds

)
.

(5.181)

On the other hand, for N = 3, by (5.165) we have (the case N = 2 is treated separately
below)

|(BMyM,AyM)| < |b(yM,yM,AyM)|
≤ C‖yM‖‖yM‖3/2|AyM|
≤ C‖yM‖3/2|AyM|3/2, a.e. t ∈ (0,T ).

(Everywhere in the following C is independent of M,ν0.) Then, by (5.181) we have

‖yM(t)‖2 +ν0

∫ t

0
|AyM(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

∫ t

0
|AyM(s)|3/2‖yM(s)‖3/2ds

)

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

1
ν0

∫ t

0
‖yM(s)‖6ds

)
+

ν
2

∫ t

0
|AyM(s)|2ds,

∀t ∈ [0,T ].

Finally,

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds

≤C0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds+

1
ν0

∫ t

0
‖yM(s)‖6ds

)
.

(5.182)

Next, we consider the integral inequality

‖yM(t)‖2 ≤C0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds+

1
ν0

∫ t

0
‖yM(s)‖6ds

)
. (5.183)

We have
‖yM(t)‖2 ≤ ϕ(t), ∀t ∈ (0,T ),

where
ϕ ′ ≤ C0

ν0
ϕ3, ∀t ∈ (0,T )

ϕ(0) = C0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds

)
.

This yields

ϕ(t)≤
(

ν0ϕ3(0)
ν0−3tϕ3(0)

)1/3

, ∀t ∈
(

0,
ν0

3ϕ3(0)

)
.
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Hence

‖yM(t)‖2 ≤
(

ν0ϕ3(0)
ν0−3tϕ3(0)

)1/3

, ∀t ∈ (0,T ∗), (5.184)

where
T ∗ =

ν0

3C3
0

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds

)3 ·

Then, by (5.182) we get

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds≤C1(δ )

(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt

)
,

0 < t < T ∗ −δ .

(5.185)

For N = 2, we have (see (5.165))

|(BMyM,AyM)| ≤ C|yM|1/2‖yM‖|AyM|3/2

≤ ν0

2
|AyM|2 +

C
ν0
‖yM‖4.

This yields

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt +

1
ν0

∫ t

0
‖yM(s)‖4ds

)
.

Then, by (5.182) and the Gronwall lemma, we obtain

‖yM(t)‖2 +
ν0

2

∫ t

0
|AyM(s)|2ds≤C

(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt

)
,

∀t ∈ (0,T ).
(5.186)

By (5.184), (5.186) we infer that for M large enough, ‖yM(t)‖ ≤ M on (0,T ∗) if
N = 3 or on the whole of (0,T ) if N = 2.

Hence BMyM = ByM on (0,T ∗) (respectively on (0,T )) and so yM = y is a solu-
tion to (5.178). This completes the proof of existence.

Uniqueness. If y1,y2 are two solutions to (5.178), we have

1
2

d
dt
|y1(t)− y2(t)|2 +ν0‖y1(t)− y2(t)‖2

≤ |(B(y)(t)−By2(t),y1(t)− y2(t))|
= |b(y1(t),y1(t),y1(t)− y2(t))−b(y2(t),y2(t),y1(t)− y2(t))|
≤C‖y1(t)− y2(t)‖2(‖y1(t)‖+‖y2(t)‖), a.e. t ∈ (0,T ∗).
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Hence, y1 ≡ y2.
It is useful to note that the solution y to (5.178) satisfies the estimates

|y(t)|2 +ν0

∫ t

0
‖y(s)‖2ds≤C

(
|y0|2 +

1
ν0

∫ T

0
| f (s)|2ds

)
(5.187)

and (for N = 3)

‖y(t)‖2 +ν0

∫ t

0
|Ay(s)|2ds

≤C
(
‖y0‖2 +

1
ν0

∫ T ∗

0
| f (t)|2dt

)(∫ t

0

ds
T ∗ − t

+1
)

, t ∈ (0,T ∗),
(5.188)

whereas, for N = 2,

‖y(t)‖2 +ν0

∫ t

0
|Ay(s)|2ds≤C

(
‖y0‖2 +

1
ν0

∫ T

0
| f (t)|2dt

)
,

∀t ∈ (0,T ),
(5.189)

where C is independent of y0 and f .
If N = 2, we have a sharper estimate for y. Indeed, if we multiply (5.178) by tAy

and integrate on (0, t), we get after integration by parts

t
2
‖y(t)‖2 +ν0

∫ t

0
s|Ay(s)|2ds

=−
∫ t

0
(sb(y(s),y(s),Ay(s))− s( f (s),Ay(s)))ds+

1
2

∫ t

0
‖y(s)‖2ds

≤C
∫ t

0
s|Ay(s)|3/2|y(s)|1/2‖y(s)‖ds+

ν0

2

∫ t

0
s|Ay(s)|2ds

+
1
2

∫ t

0
s| f (s)|2ds+

1
2

∫ t

0
‖y(s)‖2ds.

Then, by (5.188), we get the estimate

t‖y(t)‖2+ν0

∫ t

0
s|Ay(s)|2ds≤C

(
|y0|2+ 1

ν0

∫ T

0
| f (t)|2dt

)
,

∀t∈(0,T ).
(5.190)

Estimates (5.186), (5.188), and (5.190) suggest that equation (5.151) could have a
strong solution y under weaker assumptions on y0 and f . We show below that this is
indeed the case. ¤

Theorem 5.10. Let y0 ∈ H, f ∈ L2(0,T ;H), T > 0, and N = 2. Then there is a
unique solution
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y ∈ C(]0,T ];V )∩Cw([0,T ];H)∩L2(0,T ;V ),

t1/2y ∈ L2(0,T ;D(A))∩L∞(0,T ;V ),

t1/2 dy
dt
∈ L2(0,T ;H),

dy
dt
∈ L2/(1+ε)(0,T ;V ′)

to equation (5.178); that is,




dy
dt

(t)+ν0Ay(t)+By(t) = f (t), a.e. t ∈ (0,T )

y(0) = y0.
(5.191)

If y0 ∈V , then y ∈ L∞(0,T ;V )∩L2(0,T ;D(A)).

Proof. Let {y j
0} ⊂ D(A) and { f j} ⊂W 1,1([0,T ];H) be such that

y j
0 → y0 strongly in H,

f j → f strongly in L2(0,T ;H).

By (5.187), (5.190), we have

∣∣y j(t)
∣∣2 +

∫ T

0

∥∥y j(t)
∥∥2dt + t

∥∥y j(t)
∥∥2 +

∫ T

0
t
∣∣Ay j(t)

∣∣2dt ≤C, t ∈ (0,T ).

Then, by (5.165), we obtain that

∫ T

0

∥∥By j(t)
∥∥2/(1+ε)

V ′ dt +
∫ T

0
t
∣∣By j(t)

∣∣2dt ≤C, ∀ε > 0

because ∣∣(By j,ϕ)
∣∣ =

∣∣b(y j,y j,ϕ)
∣∣≤C

∣∣y j
∣∣1/2∥∥y j

∥∥∣∣Ay j
∣∣1/2|ϕ|

and ∣∣(By j,ϕ)
∣∣≤C

∥∥y j
∥∥

ε

∥∥y j
∥∥‖ϕ‖.

This yields ∣∣By j
∣∣ ≤ C

∣∣y j
∣∣1/2∥∥y j

∥∥∣∣Ay j
∣∣1/2

,
∥∥By j

∥∥
V ′ ≤ C

∥∥y j
∥∥

ε

∥∥y j
∥∥≤C

∥∥y j
∥∥1+ε ∣∣y j

∣∣1−ε
.

Hence ∫ T

0

(∥∥∥∥
dy j(t)

dt

∥∥∥∥
2/(1+ε)

V ′
+ t

∣∣∣∣
dy j(t)

dt

∣∣∣∣
2
)

dt ≤C.

Because the embeddings D(A)⊂V ⊂H ⊂V ′ are compact, it follows by the Ascoli–
Arzelà theorem that on a subsequence, again denoted y j, we have
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y j(t)
j→∞−→ y(t) in C([0,T ];V ′)

y j −→ y weak-star in L∞(0,T ;H),

weakly in L2(0,T ;V ),
√

t
dy j

dt
−→ √

t
dy
dt

weakly in L2(0,T ;H)

Ayj −→ Ay weakly in L2(0,T ;V ′),
√

t y j −→
√

t y weak-star in L∞(0,T ;V ),

weakly in L2(0,T ;D(A)).

Moreover, by the Aubin compactness theorem, we have
√

t y j(t) −→
√

t y(t) uniformly in H on [0,T ]
√

t y j −→
√

t y strongly in L2(0,T ;V ).

Next, we have
∣∣(By j(t)−By(t),ϕ)

∣∣ ≤ ∣∣b(y j(t)− y(t),y j(t),ϕ)
∣∣+ ∣∣b(y(t),y j(t)− y(t),ϕ)

∣∣

≤ C
∣∣y j(t)− y(t)

∣∣1/2∥∥y j(t)− y(t)
∥∥1/2∣∣Ay j(t)

∣∣1/2∥∥y j(t)
∥∥1/2|ϕ |

+ C‖y(t)‖1/2∥∥y j(t)− y(t)
∥∥1/2|y(t)|1/2∣∣A(y j(t)− y(t))

∣∣1/2|ϕ |.

Hence,
∣∣By j(t)−By(t)

∣∣ ≤ C
∥∥y j(t)−y(t)

∥∥1/2(
∣∣Ay j(t)

∣∣1/2∣∣y j(t)− y(t)
∣∣1/2∣∣y j(t)

∣∣1/2

+ ‖y(t)‖1/2∣∣A(y j(t)−y(t))
∣∣1/2∣∣y j(t)

∣∣1/2).

We have, therefore,
∫ T

0
t2∣∣By j(t)−By(t)

∣∣2dt → 0 as j → ∞.

Letting j → ∞, we conclude that y satisfies, a.e. on (0,T ), equation (5.191) and that

t‖y(t)‖2 + |y(t)|2 +
∫ T

0
(‖y(t)‖2 + t|Ay(t)|2)dt ≤C,

∫ T

0

(∥∥∥∥
dy
dt

(t)
∥∥∥∥

2/(1+ε)

V ′
+ t

∣∣∣∣
dy
dt

(t)
∣∣∣∣
2
)

dt ≤C,

where d/dt is considered in the sense of distributions.
If y0 ∈V , then we have

∥∥y j(t)
∥∥2 +ν0

∫ T

0

∣∣Ay j(t)
∣∣2dt ≤C
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and this implies the last part of the theorem. This completes the proof. (The unique-
ness follows as in the proof of Theorem 5.9.) ¤

Theorem 5.11. Let N = 3, y0 ∈V , and f ∈ L2(0,T ;H). Then there is

T ∗0 = T (‖y0‖,‖ f‖L2(0,T ;H))

such that on (0,T ∗0 ) equation (5.151) has a unique solution

y ∈ L∞(0,T ∗0 ;V )∩L2(0,T ∗0 ;D(A))∩C([0,T ∗0 ];H)
dy
dt
∈ L2(0,T ∗0 ;H), By ∈ L2(0,T ∗0 ;H).

Proof. Let {y j
0} and { f j} be as in the proof of Theorem 5.10 (y j

0 → y0 in V this
time.) By the above estimates (see (5.188)), we have

∥∥y j(t)
∥∥2 +ν0

∫ T ∗0

0

∣∣Ay j(t)
∣∣2dt ≤C

(
‖y0‖2 +

1
ν0

∫ T

0
| f (s)|2ds

)
, ∀t ∈ [0,T ∗0 ),

where T ∗0 < T ∗ < T.
We also have (see (5.165))

∣∣By j(t)
∣∣≤C

∥∥y j(t)
∥∥3/2∣∣Ay j(t)

∣∣1/2∣∣y j(t)
∣∣1/2 ≤C1

∣∣Ay j(t)
∣∣1/2

, ∀t ∈ (0,T ∗0 ).

Hence, ∫ T ∗0

0

(
∣∣By j(t)

∣∣2 +
∣∣∣∣
dy j

dt
(t)

∣∣∣∣
2
)

dt ≤C.

Hence, on a subsequence

y j(t) → y(t) strongly in H uniformly on [0,T ]

weak-star in L∞(0,T ;V )
dy j

dt
→ dy

dt
weakly in L2(0,T ;H)

Ayj → Ay weakly in L2(0,T ;H)

By j → η weakly in L2(0,T ;H).

Moreover, by the Aubin compactness theorem we have y j → y strongly in L2(0,T ;V ).
Note also that, by (5.165), we have

∣∣(By j−By,ϕ)
∣∣≤C(

∥∥y j− y
∥∥3/2∣∣A(y j− y)

∣∣1/2 +
∥∥y j− y

∥∥‖y‖3/2)|ϕ|.

Hence,
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∫ T

0

∣∣By j−By
∣∣dt ≤C

(∫ T

0

∥∥y j− y
∥∥2dt

)1/2
((∫ T

0

∥∥y j− y
∥∥∣∣A(y j− y)

∣∣dt
)1/2

+
∫ T

0
|Ay|1/2‖y‖3/2dt

)
≤C

∫ T

0

∥∥y j− y
∥∥2dt → 0 as j → 0

and, therefore,
By j → By strongly in L1(0,T ;H),

which implies that η = By. Hence, y is a strong solution on (0,T ∗0 ). The uniqueness
is immediate. ¤

The main existence result for a weak solution to equation (5.151) ((5.151)′) is
Leray’s theorem below.

Theorem 5.12. Let y0 ∈H, f ∈ L2(0,T ;V ′). Then there is at least one weak solution
y∗ to equation (5.151). Moreover,

dy∗

dt
∈ L4/3(0,T ;V ′) for N = 3. (5.192)

dy∗

dt
∈ L2/(1+ε)(0,T ;V ′) for N = 2. (5.193)

If N = 2, there is a unique weak solution satisfying (5.193).

Proof. We return to approximating equation (5.176) and note the estimates

|yM(t)|2 +
∫ T

0
‖yM(t)‖2dt ≤C

(
|y0|2 +

∫ T

0
| f (t)|2∗dt

)
. (5.194)

(For simplicity, we denote below by | · |∗ the norm ‖ · ‖V ′ of V ′.) We also have by
(5.165)

|(BMyM(t),w)| ≤C‖yM(t)‖1/2‖yM(t)‖‖w‖ ≤C|yM(t)|1/2‖yM(t)‖3/2‖w‖.

Hence, |BMyM|∗ ≤C‖yM‖3/2|yM|1/2 and, therefore,

∫ T

0
|BMyM(t)|4/3

∗ dt ≤C
(
|y0|2 +

∫ T

0
| f (t)|2∗dt

)
(5.195)

∫ T

0

∣∣∣∣
dyM

dt
(t)

∣∣∣∣
4/3

∗
dt ≤C

(
|y0|2 +

∫ T

0
| f (t)|2∗dt

)
. (5.196)

For N = 2 we have (see (5.165)) for m1 = ε, m2 = 0, m3 = 1,

|BMyM(t)|∗ ≤C|yM(t)|1−ε‖yM(t)‖1+ε ≤C1‖yM(t)‖1+ε .

Hence,
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∫ T

0

(∣∣∣∣
dyM

dt

∣∣∣∣
2/(1+ε)

∗
+ |BMyM|2/(1+ε)

∗

)
dt ≤C for N = 2. (5.197)

Assume now that y0 ∈ H and f ∈ L2(0,T ;V ′).
Let y j

0 ∈ D(A) and { f j} ⊂W 1,1([0,T ];H) be such that

y j
0 → y0 in H, f j → f in L2(0,T ;V ′).

Let y j be the corresponding solution to equation (5.151)′. By estimates (5.195)–
(5.197), we have for a constant C independent of M,

∫ T

0

(
∥∥y j

∥∥2 +
∥∥∥∥

dy j

dt

∥∥∥∥
4/3

∗
+

∣∣BMy j
∣∣4/3
∗

)
dt +

∣∣y j(t)
∣∣2 ≤C (5.198)

if N = 3, and

∫ T

0

(
∥∥y j(t)

∥∥2 +
∥∥∥∥

dy j

dt

∥∥∥∥
2/(1+ε)

∗
+

∣∣BMy j
∣∣2/(1+ε)
∗

)
dt +

∣∣y j(t)
∣∣2 ≤C (5.199)

if N = 2.
Hence, on a subsequence we have

y j → yM weakly in L2(0,T ;V )

Ay j → AyM weakly in L2(0,T ;V ′)
dy j

dt
→ dyM

dt
weakly in L4/3(0,T ;V ′) if N = 3

weakly in L2/(1+ε)(0,T ;V ′) if N = 2

BMy j → ηM weakly in L4/3(0,T ;V ′) if N = 3

weakly in L2/(1+ε)(0,T ;V ′) if N = 2.

Moreover, recalling inequality (5.172) we get

1
2

d
dt

∣∣y j(t)− yk(t)
∣∣2 +

ν0

2

∥∥y j(t)− yk(t)
∥∥2

≤ αM
∣∣y j(t)− yk(t)

∣∣2 +
∣∣ f j(t)− fk(t)

∣∣∥∥y j(t)− yk(t)
∥∥
∗ .

By Gronwall’s lemma we have

∣∣y j(t)− yk(t)
∣∣2 ≤

∣∣∣y j
0− yk

0

∣∣∣
2
+C

∫ T

0

∣∣ f j(t)− fk(t)
∣∣2
∗dt

and, therefore,



266 5 Existence Theory of Nonlinear Dissipative Dynamics

∫ T

0

∥∥y j(t)− yk(t)
∥∥2dt ≤C

(∣∣∣y j
0− yk

0

∣∣∣
2
+

∫ T

0

∣∣ f j(t)− fk(t)
∣∣2
∗dt

)
.

Hence,
y j → yM strongly in L2(0,T ;V )∩C([0,T ];H).

Clearly, we have




dyM

dt
(t)+νAyM(t)+ηM(t) = f (t), a.e. t ∈ (0,T )

yM(0) = y0.

On the other hand, by (5.165), where m1 = 1, m2 = 0, m3 = 1, it follows that
∣∣BMy j−BMyM

∣∣
∗ ≤C

∥∥y j− y j
∥∥(

∥∥y j
∥∥+‖yM‖).

Hence,
BMy j → BMyM = ηM strongly in L1(0,T ;V ′).

We have shown therefore that for each y0 ∈ H and f ∈ L2(0,T ;V ′) the equation




dyM

dt
(t)+νAyM(t)+BMyM(t) = f (t), a.e. t ∈ (0,T )

yM(0) = y0

(5.200)

has a solution yM ∈ L2(0,T ;V )∩C([0,T ];H) with dyM/dt ∈ L4/3(0,T ;V ′) if N = 3,
dyM/dt ∈ L2/(1+ε)(0,T ;V ′) if N = 2. Moreover, yM satisfies estimates (5.194)–
(5.196).

Now, we let M → ∞. Then on a subsequence, again denoted M, we have

yM → y∗ weak-star in L∞(0,T ;H)
weakly in L2(0,T ;V )

dyM

dt
→ dy∗

dt
weakly in L4/3(0,T ;V ′) if N = 3

weakly in L2/(1+ε)(0,T ;V ′) if N = 2

AyM → Ay∗ weakly in L2(0,T ;V ′)

BMyM → η weakly in L4/3(0,T ;V ′) if N = 3
weakly in L2/(1+ε)(0,T ;V ′) if N = 2.

We have 



dy∗

dt
(t)+ν0Ay∗(t)+η(t) = f (t), a.e. in (0,T )

y∗(0) = y0.
(5.201)

To conclude the proof it remains to be shown that η(t) = By∗(t), a.e. t ∈ (0,T ).
We note first that, by Aubin’s compactness theorem, for M → ∞,
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yM → y∗ strongly in L2(0,T ;H).

We note also that by (5.194) we have m{t; ‖yM(t)‖> M} ≤C/M2.
Let ϕ ∈ L∞(0,T ;V ). Then, we have

∫ T

0
|(BMyM−By∗,ϕ)|dt

≤
∫

EM

|(ByM−By∗,ϕ)|dt +C
∫

Ec
M

‖ϕ‖(|yM|1/2‖yM‖3/2 + |y∗|1/2‖y∗‖3/2)dt,

where EM = {t; ‖yM(t)‖> M}. Hence, by estimates (5.194) we have

∫ T

0
|(BMyM−By∗,ϕ)|dt

≤
∫ T

0
(|b(yM− y∗,yM,ϕ)|+ |b(y∗,yM− y∗,ϕ)|)dt +CM−2‖ϕ‖L∞(0,T ;V ).

Recalling that yM → y∗ strongly in L2(0,T ;H) and weakly in L2(0,T ;V ), we get

lim
M→∞

∫ T

0
(BMyM−By∗,ϕ)dt = 0, ∀ϕ ∈ L2(0,T ;V ),

where V = {ϕ ∈C∞
0 (Ω); divϕ = 0}. Hence, η = By∗ and this concludes the proof.

If N = 2, the solution is unique. Indeed, for two such solutions y1,y2 we have

1
2

d
dt
|y1− y2|2 +ν0‖y1− y2‖2 +b(y1− y2,y1,y1− y2) = 0, a.e. t ∈ (0,T ).

This yields

1
2

d
dt
|y1− y2|2 +ν0‖y1− y2‖2 ≤ C‖y1− y2‖1/2‖y1‖‖y1− y2‖1/2

≤ C|y1− y2|‖y1− y2‖‖y1‖.

By Gronwall’s lemma, we get y1 = y2. ¤

Remark 5.6. The existence results presented in this section are classic and can be
found in a slightly different form in the monographs of Temam [39], Constantin
and Foias [19]. However, the semigroup approach used here is new and it closely
follows the work of Barbu and Sritharan [6].

Perhaps the main advantage of the semigroup approach is that one can apply the
general theory developed in Chapter 4 to get existence, regularity, and approxima-
tion results for Navier–Stokes equations.

In fact, as shown earlier, the Navier–Stokes flow t → y(t) is the restriction to
[0,T ] of the flow t → yM(t) generated by an equation of quasi-m-accretive type.
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group approach to the nonlinear diffusion equation was initiated by Bénilan [8] (see
also Konishi [29]), and the H−1(Ω) approach is due to Brezis [15]. The smooth-
ing effect of the semigroup generated by the semilinear elliptic operator in L1(Ω)
(Proposition 5.5) is due to Evans [24, 25]. The analogous result for the nonlinear
diffusion operator in L1(Ω) (Theorem 5.4) was first established by Bénilan [8], and
Véron [41], but the proof given here is essentially due to Pazy [36]. For other re-
lated contributions to the existence and regularity of solutions to the porous medium
equation, we refer to Bénilan, Crandall, and Pierre [10], and Brezis and Crandall
[16]. The semigroup approach to the conservation law equation (Theorem 5.6) is
due to Crandall [20]. Theorem 5.7 along with other existence results for abstract hy-
perbolic equations has been established by Brezis [15] (see also Haraux’s book [28]
and Barbu [4]). The semigroup approach to Navier–Stokes equations was developed
in the works of Barbu [3] and Barbu and Sritharan [6] (see also Barbu and Sritharan
[7] and Lefter [32] for other results in this direction).
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ω-m-accretive, 98
ω-accretive, 98
ε-approximate solution, 129
ε-discretization, 129
m-accretive, 97
m-dissipative, 98
continuous semigroup of contractions, 154

abstract elliptic variational inequality, 72
accretive, 97

bilinear, 16
Bochner integrable, 21
Brezis–Ekeland principle, 167

Carathéodory integrand, 56
closed, 100
coercive, 16, 29
conjugate, 6
continuous, 16
convex integrands, 56
cyclically monotone, 53

demiclosed, 100
demicontinuous, 29
directional derivative, 6
dissipative, 98, 157
dissipative system, 157
distribution, 10
duality mapping, 1

elliptic variational inequality, 61
enthalpy, 222
entropy, 241
entropy solution, 241
equation of conservation laws, 241

filtration, 183

Fréchet differentiable, 7
Fréchet differential, 7
free boundary, 68, 77, 221
function

absolutely continuous, 22
finitely valued, 21

Gâteaux differentiable, 6
Gâteaux differential, 6

hemicontinuous, 29

indicator function, 8
infinitesimal generator, 155
integral solution, 132

Lax–Milgram lemma, 16
Lie–Trotter product, 174
lower semicontinuous (l.s.c.), 5

maximal accretive, 97
maximal cyclically monotone, 53
maximal dissipative, 98
maximal monotone, 28
maximal monotone sets, 53
mild solution, 129, 239
minimal section, 101
monotone, 28, 46
Moreau regularization, 48
moving boundary, 221

nonlinear diffusion operator, 68
nonlinear evolution associated, 131
normal convex integrand, 56

obstacle parabolic problem, 217
obstacle problem, 61
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phase function, 236
phase-field system, 235
Poincaré inequality, 15
porous medium equation, 227
proper convex function, 5

quasi-m-accretive, 98
quasi-accretive, 98, 127

reflection problem, 166

self-adjoint operators, 54
semigroup solution, 239
semilinear elliptic operators, 59
Signorini problem, 68
Skorohod problem, 189
Sobolev embedding theorem, 13
Sobolev space, 10, 11
Stokes operator, 251
strictly convex, 2
strong convergence, 1

strong solution, 194, 252
strongly measurable, 21
subdifferential, 7
subgradient, 7
subpotential maximal monotone operator, 47
support, 10
support function, 8

trace, 13

uniformly convex, 2

variational solution, 17

weak, 17
weak convergence, 1
weak solution, 251
weak-star, 1
weakly measurable, 22

Yosida approximation, 37, 99
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