
7

Angular Velocity
Angular velocity of a rotating body B in a global frame G is the instanta-
neous rotation of the body with respect to G. Angular velocity is a vectorial
quantity. Using the analytic description of angular velocity, we introduce
the velocity and time derivative of homogenous transformation matrices.
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FIGURE 7.1. A rotating rigid body B(Oxyz) with a fixed point O in a global
frame G(OXY Z).

7.1 Angular Velocity Vector and Matrix

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 7.1. The motion of the body can be
expressed by a time varying rotation transformation matrix between the
global and body frames. The transformation matrix maps the instantaneous
coordinates of any fixed point in body frame B into their coordinates in
the global frame G.

Gr(t) = GRB(t)
Br (7.1)

The velocity of a body point in the global frame is

Gv(t) = Gṙ(t) = GṘB(t)
Br = Gω̃B

Gr(t) = GωB × Gr(t) (7.2)

where GωB is the angular velocity vector of B with respect to G. It is equal
to a rotation with angular rate φ̇ about an instantaneous axis of rotation
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© Springer Science+Business Media, LLC 2010 
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FIGURE 7.2. A body fixed point P at Br in the rotating body frame B.

û.

ω =

⎡⎣ ω1
ω2
ω3

⎤⎦ = φ̇ û (7.3)

The angular velocity vector is associated with a skew symmetric matrix
Gω̃B called the angular velocity matrix

ω̃ =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ (7.4)

where
Gω̃B =

GṘB
GRT

B = φ̇ ũ. (7.5)

Proof. Consider a rigid body with a fixed point O and an attached frame
B(Oxyz) as shown in Figure 7.2. The body frame B is initially coincident
with the global frame G. Therefore, the position vector of a body point P
is

Gr(t0) =
Br. (7.6)

The global time derivative of Gr is:

Gv = Gṙ =
Gd

dt
Gr(t) =

Gd

dt

£
GRB(t)

Br
¤
=

Gd

dt

£
GRB(t)

Gr(t0)
¤

= GṘB(t)
Br (7.7)

Eliminating Br between (7.1) and (7.7) determines the velocity of the point
in global frame.

Gv = GṘB(t)
GRT

B(t)
Gr(t) (7.8)
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We denote the coefficient of Gr(t) by ω̃

Gω̃B =
GṘB

GRT
B (7.9)

and write the Equation (7.8) as

Gv = Gω̃B
Gr(t) (7.10)

or as
Gv = GωB × Gr(t). (7.11)

The time derivative of the orthogonality condition, GRB
GRT

B = I, in-
troduces an important identity

GṘB
GRT

B +
GRB

GṘT
B = 0 (7.12)

which can be utilized to show that Gω̃B = [GṘB
GRT

B ] is a skew symmetric
matrix, because

GRB
GṘT

B =
h
GṘB

GRT
B

iT
. (7.13)

The vector GGωB is called the instantaneous angular velocity of the body B
relative to the global frame G as seen from the G frame.
Since a vectorial equation can be expressed in any coordinate frame, we

may use any of the following expressions for the velocity of a body point
in body or global frames

G
GvP = G

GωB × GrP (7.14)
B
GvP = B

GωB × BrP (7.15)

where G
GvP is the global velocity of point P expressed in global frame and

B
GvP is the global velocity of point P expressed in body frame.

G
GvP =

GRB
B
GvP =

GRB

¡
B
GωB × BrP

¢
(7.16)

G
GvP and

B
GvP can be converted to each other using a rotation matrix.

B
GvP = GRT

B
G
GvP =

GRT
B Gω̃B

G
GrP =

GRT
B

GṘB
GRT

B
G
GrP

= GRT
B

GṘB
B
GrP (7.17)

showing that
B
Gω̃B =

GRT
B

GṘB (7.18)

which is called the instantaneous angular velocity of B relative to the global
frame G as seen from the B frame. From the definitions of Gω̃B and B

Gω̃B
we are able to transform the two angular velocity matrices by

Gω̃B = GRB
B
Gω̃B

GRT
B (7.19)

B
Gω̃B = GRT

B
G
Gω̃B

GRB (7.20)
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or equivalently
GṘB = Gω̃B

GRB (7.21)
GṘB = GRB

B
Gω̃B (7.22)

Gω̃B
GRB =

GRB
B
Gω̃B. (7.23)

The angular velocity of B in G is negative of the angular velocity of G
in B if both are expressed in the same coordinate frame.

G
Gω̃B = −G

Bω̃G (7.24)
B
Gω̃B = −B

Bω̃G. (7.25)

GωB and can always be expressed in the form

GωB = ωû (7.26)

where û is a unit vector parallel to GωB and indicates the instantaneous
axis of rotation.
Using the Rodriguez rotation formula (3.4) we can show that

Ṙû,φ = φ̇ ũ Rû,φ (7.27)

and therefore
ω̃ = φ̇ ũ (7.28)

or equivalently

Gω̃B = lim
φ→0

Gd

dt
Rû,φ = lim

φ→0

Gd

dt

¡
−ũ2 cosφ+ ũ sinφ+ ũ2 + I

¢
= φ̇ ũ (7.29)

and therefore
ω = φ̇ û. (7.30)

Example 198 Rotation of a body point about a global axis.
The slab shown in Figure 2.5 is turning about the Z-axis with α̇ =

10deg /s. The global velocity of the corner point P (5, 30, 10), when the slab
is at α = 30deg, is:

GvP = GṘB(t)
BrP (7.31)

=
Gd

dt

⎛⎝⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎞⎠⎡⎣ 5
30
10

⎤⎦
= α̇

⎡⎣ − sinα − cosα 0
cosα − sinα 0
0 0 0

⎤⎦⎡⎣ 5
30
10

⎤⎦
=

10π

180

⎡⎣ − sin π
6 − cos π6 0

cos π6 − sin π
6 0

0 0 0

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −4.97−1.86

0

⎤⎦
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at this moment, the point P is at:

GrP = GRB
BrP (7.32)

=

⎡⎣ cos π6 − sin π
6 0

sin π
6 cos π6 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6728.48

10

⎤⎦
Example 199 Rotation of a global point about a global axis.
The corner P of the slab shown in Figure 2.5, is at BrP =

£
5 30 10

¤T
.

When it is turned α = 30deg about the Z-axis, the global position of P is:

GrP = GRB
BrP (7.33)

=

⎡⎣ cos π6 − sin π
6 0

sin π
6 cos π6 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6728.48

10

⎤⎦
If the slab is turning with α̇ = 10deg / s, the global velocity of the point P
would be

GvP = GṘB
GRT

B
GrP (7.34)

=
10π

180

⎡⎣ −sπ6 −cπ6 0
cπ6 −sπ6 0
0 0 0

⎤⎦⎡⎣ cπ6 −sπ6 0
sπ6 cπ6 0
0 0 1

⎤⎦T ⎡⎣ −10.6728.48
10

⎤⎦
=

⎡⎣ −4.97−1.86
0

⎤⎦ .
Example 200 Principal angular velocities.
The principal rotational matrices about the axes X, Y , and Z are:

RX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (7.35)

RY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (7.36)

RZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (7.37)

and hence, their time derivatives are:

ṘX,γ = γ̇

⎡⎣ 0 0 0
0 − sin γ − cos γ
0 cos γ − sin γ

⎤⎦ (7.38)
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ṘY,β = β̇

⎡⎣ − sinβ 0 cosβ
0 0 0

− cosβ 0 − sinβ

⎤⎦ (7.39)

ṘZ,α = α̇

⎡⎣ − sinα − cosα 0
cosα − sinα 0
0 0 0

⎤⎦ (7.40)

Therefore, the principal angular velocity matrices about axes X, Y , and Z
are

Gω̃X = ṘX,γR
T
X,γ = γ̇

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ (7.41)

Gω̃Y = ṘY,βR
T
Y,β = β̇

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ (7.42)

Gω̃Z = ṘZ,αR
T
Z,α = α̇

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ (7.43)

which are equivalent to

Gω̃X = γ̇Ĩ (7.44)

Gω̃Y = β̇J̃ (7.45)

Gω̃Z = α̇K̃ (7.46)

and therefore, the principal angular velocity vectors are

GωX = ωX Î = γ̇Î (7.47)

GωY = ωY Ĵ = β̇Ĵ (7.48)

GωZ = ωZ K̂ = α̇K̂. (7.49)

Utilizing the same technique, we can find the following principal angular
velocity matrices about the local axes.

B
Gω̃x = RT

x,ψ Ṙx,ψ = −ψ̇

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ = −ψ̇ ı̃ (7.50)

B
Gω̃y = RT

y,θṘy,θ = −θ̇

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ = −θ̇ j̃ (7.51)

B
Gω̃z = RT

z,ϕṘz,ϕ = −ϕ̇

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ = −ϕ̇ k̃ (7.52)
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Example 201 Decomposition of an angular velocity vector.
Every angular velocity vector can be decomposed to three principal angu-

lar velocity vectors.

GωB =
³
GωB · Î

´
Î +

³
GωB · Ĵ

´
Ĵ +

³
GωB · K̂

´
K̂

= ωX Î + ωY Ĵ + ωZ K̂ = γ̇Î + β̇Ĵ + α̇K̂

= ωX + ωY + ωZ (7.53)

Example 202 Combination of angular velocities.
Starting from a combination of rotations

0R2 =
0R1

1R2 (7.54)

and taking derivative, we find

0Ṙ2 =
0Ṙ1

1R2 +
0R1

1Ṙ2. (7.55)

Now, substituting the derivative of rotation matrices with

0Ṙ2 = 0ω̃2
0R2 (7.56)

0Ṙ1 = 0ω̃1
0R1 (7.57)

1Ṙ2 = 1ω̃2
1R2 (7.58)

results in

0ω̃2
0R2 = 0ω̃1

0R1
1R2 +

0R1 1ω̃2
1R2

= 0ω̃1
0R2 +

0R1 1ω̃2
0RT

1
0R1

1R2

= 0ω̃1
0R2 +

0
1ω̃2

0R2 (7.59)

where
0R1 1ω̃2

0RT
1 =

0
1ω̃2. (7.60)

Therefore, we find

0ω̃2 = 0ω̃1 +
0
1ω̃2 (7.61)

which indicates that the angular velocities may be added relatively

0ω2 = 0ω1 +
0
1ω2. (7.62)

This result also holds for any number of angular velocities.

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn =
nX
i=1

0
i−1ωi (7.63)
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Example 203 Angular velocity in terms of Euler frequencies.
The angular velocity vector can be expressed by Euler frequencies as de-

scribed in Chapter 2. Therefore,

B
GωB = ωx ı̂+ ωy ĵ+ ωzk̂ = ϕ̇êϕ + θ̇êθ + ψ̇êψ

= ϕ̇

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦+ θ̇

⎡⎣ cosψ
− sinψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (7.64)

and

G
GωB = BR−1G

B
GωB =

BR−1G

⎡⎣ ϕ̇ sin θ sinψ + θ̇ cosψ

ϕ̇ sin θ cosψ − θ̇ sinψ

ϕ̇ cos θ + ψ̇

⎤⎦
=

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (7.65)

where the inverse of the Euler transformation matrix is:

BR−1G =

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ (7.66)

Example 204 Angular velocity in terms of rotation frequencies.
Appendices A and B show the 12 global and 12 local axes’ triple rotations.

Utilizing those equations, we are able to find the angular velocity matrix
and vector of a rigid body in terms of rotation frequencies. As an example,
consider the Euler angles transformation matrix in case 9, of the Appendix
B.

BRG = Rz,ψRx,θRz,ϕ (7.67)

The angular velocity matrix is then equal to

Bω̃G = BṘG
BRT

G

=

µ
ϕ̇ Rz,ψRx,θ

dRz,ϕ

dϕ
+ θ̇ Rz,ψ

dRx,θ

dθ
Rz,ϕ + ψ̇

dRz,ψ

dψ
Rx,θRz,ϕ

¶
× (Rz,ψRx,θRz,ϕ)

T

= ϕ̇Rz,ψRx,θ
dRz,ϕ

dϕ
RT
z,ϕR

T
x,θR

T
z,ψ + θ̇ Rz,ψ

dRx,θ

dθ
RT
x,θR

T
z,ψ

+ψ̇
dRz,ψ

dψ
RT
z,ψ (7.68)
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which, in matrix form, is

Bω̃G = ϕ̇

⎡⎣ 0 cos θ − sin θ cosψ
− cos θ 0 sin θ sinψ
sin θ cosψ − sin θ sinψ 0

⎤⎦
+θ̇

⎡⎣ 0 0 sinψ
0 0 cosψ

− sinψ − cosψ 0

⎤⎦+ ψ̇

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ (7.69)

or

Bω̃G =

⎡⎣ 0 ψ̇ + ϕ̇cθ θ̇sψ − ϕ̇sθcψ

−ψ̇ − ϕ̇cθ 0 θ̇cψ + ϕ̇sθsψ

−θ̇sψ + ϕ̇sθcψ −θ̇cψ − ϕ̇sθsψ 0

⎤⎦ . (7.70)

The corresponding angular velocity vector is

BωG = −

⎡⎣ θ̇cψ + ϕ̇sθsψ

−θ̇sψ + ϕ̇sθcψ

ψ̇ + ϕ̇cθ

⎤⎦
= −

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (7.71)

However,

B
Bω̃G = −B

Gω̃B (7.72)
B
BωG = −B

GωB (7.73)

and therefore,

B
GωB =

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (7.74)

Example 205 F Coordinate transformation of angular velocity.
Angular velocity 1

1ω2 of coordinate frame B2 with respect to B1 and ex-
pressed in B1 can be expressed in base coordinate frame B0 according to

0R1 1ω̃2
0RT

1 =
0
1ω̃2. (7.75)

To show this equation, it is enough to apply both sides on an arbitrary
vector 0r. Therefore, the left-hand side would be

0R1 1ω̃2
0RT

1
0r = 0R1 1ω̃2

1R0
0r = 0R1 1ω̃2

1r

= 0R1
¡
1ω2 × 1r

¢
= 0R1 1ω2 × 0R1

1r

= 0
1ω2 × 0r (7.76)
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which is equal to the right-hand side after applying on the vector 0r.

0
1ω̃2

0r = 0
1ω2 × 0r (7.77)

Example 206 F Time derivative of unit vectors.
Using Equation (7.15) we can define the time derivative of unit vectors

of a body coordinate frame B(̂ı, ĵ, k̂), rotating in the global coordinate frame
G(Î , Ĵ , K̂).

Gdı̂

dt
= B

GωB × ı̂ (7.78)

Gdĵ

dt
= B

GωB × ĵ (7.79)

Gdk̂

dt
= B

GωB × k̂ (7.80)

Example 207 F Angular velocity in terms of quaternion and Euler para-
meters.
The angular velocity vector can also be expressed by Euler parameters.

Starting from the unit quaternion representation of a finite rotation

Gr = e (t) Br e∗ (t) = e (t) Br e−1 (t) (7.81)

where

e = e0 + e (7.82)

e∗ = e−1 = e0 − e (7.83)

we can find

Gṙ = ė Br e∗ + e Br ė∗ = ė e∗ Gr+ Gr e ė∗ = 2ė e∗ Gr (7.84)

and therefore, the angular velocity quaternion is

GωB = 2ė e
∗. (7.85)

We have used the orthogonality property of unit quaternion

e e−1 = e e∗ = 1 (7.86)

which provides

ė e∗ + e ė∗ = 0. (7.87)

The angular velocity quaternion can be expanded using quaternion prod-
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ucts to find the angular velocity components based on Euler parameters.

GωB = 2ė e∗ = 2 (ė0 + ė) (e0 − e)
= 2 (ė0e0 + e0ė− ė0e+ ė · e− ė× e)

= 2

⎡⎢⎢⎣
0

e0ė1 − e1ė0 + e2ė3 − e3ė2
e0ė2 − e2ė0 − e1ė3 + e3ė1
e0ė3 + e1ė2 − e2ė1 − e3ė0

⎤⎥⎥⎦

= 2

⎡⎢⎢⎣
ė0 −ė1 −ė2 −ė3
ė1 ė0 −ė3 ė2
ė2 ė3 ė0 −ė1
ė3 −ė2 ė1 ė0

⎤⎥⎥⎦
⎡⎢⎢⎣

e0
−e1
−e2
−e3

⎤⎥⎥⎦ (7.88)

The scalar component of the angular velocity quaternion is zero because

ė0e0 + ė · e = ė0e0 + e1ė1 + e2ė2 + e3ė3 = 0. (7.89)

The angular velocity vector can also be defined as a quaternion

←−→
GωB = 2

←→̇
e
←→
e∗ (7.90)

to be utilized for definition of the derivative of a rotation quaternion

←→̇
e =

1

2
←−→
GωB

←→e . (7.91)

A coordinate transformation can transform the angular velocity into a body
coordinate frame

B
GωB = e∗ G

GωB e = 2e∗ ė

= 2

⎡⎢⎢⎣
e0 e1 e2 e3
−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 −e2 e1 e0

⎤⎥⎥⎦
⎡⎢⎢⎣

ė0
ė1
ė2
ė3

⎤⎥⎥⎦ (7.92)

and therefore, ←−→
B
GωB = 2

←→
e∗
←→̇
e (7.93)

←→̇
e =

1

2
←→e
←−→
B
GωB. (7.94)

Example 208 F Differential of Euler parameters.
The rotation matrix GRB based on Euler parameters is given in Equation

(3.82)

GRB =

⎡⎣ e20 + e21 − e22 − e23 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)
2 (e0e3 + e1e2) e20 − e21 + e22 − e23 2 (e2e3 − e0e1)
2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e20 − e21 − e22 + e23

⎤⎦
=

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (7.95)
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and the individual parameters can be found from any set of Equations
(3.149) to (3.152). The first set indicates that

e0 = ±1
2

√
1 + r11 + r22 + r33

e1 =
1

4

r32 − r23
e0

e2 =
1

4

r13 − r31
e0

e3 =
1

4

r21 − r12
e0

(7.96)

and therefore,

ė0 =
ṙ11 + ṙ22 + ṙ33

8e0
(7.97)

ė1 =
1

4e20
((ṙ32 − ṙ23) e0 − (r32 − r23) ė0) (7.98)

ė2 =
1

4e20
((ṙ13 − ṙ31) e0 − (r13 − r31) ė0) (7.99)

ė3 =
1

4e20
((ṙ21 − ṙ12) e0 − (r21 − r12) ė0) . (7.100)

We may use the differential of the transformation matrix

GṘB = Gω̃B
GRB

to show that

ė0 =
1

2
(−e1ω1 − e2ω2 − e3ω3) (7.101)

ė1 =
1

2
(e0ω1 + e2ω3 − e3ω2) (7.102)

ė2 =
1

2
(e0ω2 − e1ω3 − e3ω1) (7.103)

ė3 =
1

2
(e0ω3 + e1ω2 − e2ω1) . (7.104)

Similarly we can find ė1, ė2, and ė3, however the final result can be set in
a matrix form⎡⎢⎢⎣

ė0
ė1
ė2
ė3

⎤⎥⎥⎦ = 1

2

⎡⎢⎢⎣
0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

e0
e1
e2
e3

⎤⎥⎥⎦ (7.105)

or ⎡⎢⎢⎣
ė0
ė1
ė2
ė3

⎤⎥⎥⎦ = 1

2

⎡⎢⎢⎣
e0 −e3 −e2 −e1
e1 e0 −e3 e2
e2 e1 e0 −e3
e3 −e2 e1 e0

⎤⎥⎥⎦
⎡⎢⎢⎣
0
ω1
ω2
ω3

⎤⎥⎥⎦ . (7.106)
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Example 209 F Elements of the angular velocity matrix.
Utilizing the permutation symbol introduced in (3.144)

ijk =
1

2
(i− j)(j − k)(k − i) , i, j, k = 1, 2, 3 (7.107)

allows us to find the elements of the angular velocity matrix, ω̃, when the
angular velocity vector, ω =

£
ω1 ω2 ω3

¤T
, is given.

ω̃ij = ijk ωk (7.108)

7.2 F Time Derivative and Coordinate Frames

The time derivative of a vector depends on the coordinate frame in which
we are taking the derivative. The time derivative of a vector r in the global
frame is called G-derivative and is denoted by

Gd

dt
r

while the time derivative of the vector in the body frame is called the
B-derivative and is denoted by

Bd

dt
r.

The left superscript on the derivative symbol indicates the frame in which
the derivative is taken, and hence, its unit vectors are considered constant.
Therefore, the derivative of BrP in B and the derivative of GrP in G are:

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (7.109)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (7.110)

It is also possible to find the G-derivative of BrP and the B-derivative of
GrP . We use Equation (7.15) for the global velocity of a body fixed point P ,
expressed in body frame to define the mixed derivatives. The G-derivative
of a body vector BrP is denoted by

B
GvP =

Gd

dt
BrP (7.111)

and similarly, the B-derivative of a global vector GrP is denoted by

G
BvP =

Bd

dt
GrP . (7.112)
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FIGURE 7.3. A moving body point P at Br(t) in the rotating body frame B.

When point P is moving in frame B while B is rotating in G, the G-
derivative of BrP (t) is defined by

Gd

dt
BrP (t) =

B ṙP +
B
GωB × BrP =

B
GṙP (7.113)

and the B-derivative of GrP is defined by

Bd

dt
GrP (t) =

GṙP − GωB × GrP =
G
B ṙP . (7.114)

Proof. Let G(OXY Z) with unit vectors Î, Ĵ , and K̂ be the global co-
ordinate frame, and let B(Oxyz) with unit vectors ı̂, ĵ, and k̂ be a body
coordinate frame. The position vector of a moving point P , as shown in
Figure 7.3, can be expressed in the body and global frames

BrP (t) = x (t) ı̂+ y (t) ĵ+ z (t) k̂ (7.115)
GrP (t) = X (t) Î + Y (t) Ĵ + Z (t) K̂. (7.116)

The time derivative of BrP in B and GrP in G are

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (7.117)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (7.118)

because the unit vectors of B in Equation (7.115) and the unit vectors of
G in Equation (7.116) are considered constant.
Using the definition (7.111), we can find the G-derivative of the position
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vector BrP as

Gd

dt
BrP =

Gd

dt

³
xı̂+ yĵ+ zk̂

´
= ẋ ı̂+ ẏ ĵ+ ż k̂ + x

Gdı̂

dt
+ y

Gdĵ

dt
+ z

Gdk̂

dt

= B ṙP +
B
GωB ×

³
xı̂+ yĵ+ zk̂

´
= B ṙP +

B
GωB × BrP

=
Bd

dt
BrP +

B
GωB × BrP . (7.119)

We achieved this result because the x, y, and z components of BrP are
scalar. Scalars are invariant with respect to frame transformations. There-
fore, if x is a scalar then,

Gd

dt
x =

Bd

dt
x = ẋ. (7.120)

The B-derivative of GrP is

Bd

dt
GrP =

Bd

dt

³
XÎ + Y Ĵ + ZK̂

´
= Ẋ Î + Ẏ Ĵ + Ż K̂ +X

BdÎ

dt
+ Y

BdĴ

dt
+ Z

BdK̂

dt

= GṙP +
G
BωG × GrP (7.121)

and therefore,
Bd

dt
GrP =

GṙP − GωB × GrP . (7.122)

The angular velocity of B relative to G is a vector quantity and can be
expressed in either frames.

G
GωB = ωX Î + ωY Ĵ + ωZ K̂ (7.123)
B
GωB = ωx ı̂+ ωy ĵ+ ωzk̂. (7.124)

Example 210 Rotation of B about Z-axis.
A body frame B is rotating in G with α̇ about the Z-axis. Therefore, a

point at Br will be seen at

GrP = GRB
Br = RZ,α(t)

Br (7.125)

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ x cosα− y sinα

y cosα+ x sinα
z

⎤⎦
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The angular velocity matrix of B is

Gω̃B =
GṘB

GRT
B = α̇K̃ (7.126)

that gives
GωB = α̇K̂. (7.127)

We can find the body expression of Gω̃B
B
Gω̃B =

GRT
B

G
Gω̃B

GRB = α̇k̃ (7.128)

and therefore,
B
GωB = α̇k̂. (7.129)

Now we can find the following derivatives.
Bd

dt
Br = B ṙ = 0 (7.130)

Gd

dt
Gr = Gṙ =

Gd

dt

⎡⎣ x cosα− y sinα
y cosα+ x sinα

z

⎤⎦ (7.131)

= (−xα̇ sinα− yα̇ cosα) Î + (xα̇ cosα− yα̇ sinα) Ĵ + żK̂

For the mixed derivatives we start with the global velocity expressed in B.
Gd

dt
Br = B

GωB × Br

= α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ x

y
z

⎤⎦ = α̇

⎡⎣ −yx
0

⎤⎦
= −yα̇ı̂+ xα̇ĵ = B

Gṙ (7.132)

We can transform B
Gṙ to the global frame and find the global expression

velocity, Gṙ.
Gṙ = GRB

B
Gṙ

= α̇

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ −yx
0

⎤⎦ = α̇

⎡⎣ −y cosα− x sinα
x cosα− y sinα

0

⎤⎦
= α̇ (−y cosα− x sinα) Î + α̇ (x cosα− y sinα) Ĵ (7.133)

The next derivative is the velocity of body points relative to B and expressed
in G.

Bd

dt
Gr = Gṙ− GωB × Gr (7.134)

= α̇

⎡⎣ −y cosα− x sinα
x cosα− y sinα

0

⎤⎦− α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ x cosα− y sinα

y cosα+ x sinα
z

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦
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Example 211 Time derivative of a moving point in B.
Consider a local frame B, rotating in G by α̇ about the Z-axis, and a

moving point at BrP (t) = t̂ı . Therefore,

GrP = GRB
BrP = RZ,α(t)

BrP (7.135)

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ t
0
0

⎤⎦ = t cosαÎ + t sinαĴ.

The angular velocity matrix is

Gω̃B =
GṘB

GRT
B = α̇K̃ (7.136)

that gives
GωB = α̇K̂. (7.137)

It can also be verified that

B
Gω̃B =

GRT
B

G
Gω̃B

GRB = α̇k̃ (7.138)

and therefore,
B
GωB = α̇k̂. (7.139)

Now we can find the following derivatives

Bd

dt
BrP =

B ṙP = ı̂ (7.140)

Gd

dt
GrP = GṙP

= (cosα− tα̇ sinα) Î + (sinα+ tα̇ cosα) Ĵ . (7.141)

For the mixed derivatives we start with
Gd

dt
BrP =

Bd

dt
BrP +

B
GωB × BrP

=

⎡⎣ 1
0
0

⎤⎦+ α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t
0
0

⎤⎦ =
⎡⎣ 1

tα̇
0

⎤⎦
= ı̂+ tα̇ĵ = B

GṙP (7.142)

which is the global velocity of P expressed in B. We may, however, trans-
form B

GṙP to the global frame and find the global velocity expressed in G.

GṙP = GRB
B
GṙP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ 1
tα̇
0

⎤⎦ =
⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦
= (cosα− tα̇ sinα) Î + (sinα+ tα̇ cosα) Ĵ (7.143)
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The next derivative is
Bd

dt
GrP = GṙP − GωB × GrP

=

⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦− α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t cosα

t sinα
0

⎤⎦
=

⎡⎣ cosα
sinα
0

⎤⎦ = (cosα) Î + (sinα) Ĵ = G
B ṙP (7.144)

which is the velocity of P relative to B and expressed in G. To express this
velocity in B we apply a frame transformation.

B ṙP = GRT
B

G
B ṙP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦T ⎡⎣ cosα
sinα
0

⎤⎦ =
⎡⎣ 1
0
0

⎤⎦ = ı̂ (7.145)

Sometimes it is more applied if we transform the vector to the same frame in
which we are taking the derivative and then apply the differential operator.
Therefore,

Gd

dt
BrP =

Gd

dt

¡
GRB

BrP
¢

=
Gd

dt

⎡⎣ t cosα
t sinα
0

⎤⎦ =
⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦ (7.146)

and
Bd

dt
GrP =

Bd

dt

¡
GRT

B
GrP

¢
=

Bd

dt

⎡⎣ t
0
0

⎤⎦ =
⎡⎣ 1
0
0

⎤⎦ . (7.147)

Example 212 Orthogonality of position and velocity vectors.
If the position vector of a body point in global frame is denoted by r then

dr

dt
· r = 0. (7.148)

To show this property we may take a derivative from

r · r = r2 (7.149)

and find
d

dt
(r · r) = dr

dt
· r+ r · dr

dt
= 2

dr

dt
· r = 0. (7.150)

The Equation (7.148) is correct in every coordinate frame and for every
constant length vector, as long as the vector and the derivative are expressed
in the same coordinate frame.
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Example 213 F Derivative transformation formula.
The global velocity of a fixed point in the body coordinate frame B (Oxyz)

can be found by Equation (7.2). Now consider a point P that can move in
B (Oxyz). In this case, the body position vector BrP is not constant and
therefore, the global velocity of such a point expressed in B is

Gd

dt
BrP =

Bd

dt
BrP +

B
GωB × BrP =

B
GṙP . (7.151)

Sometimes the result of Equation (7.151) is utilized to define transfor-
mation of the differential operator from a body to a global coordinate frame

Gd

dt
¤ =

Bd

dt
¤+ B

GωB × B
G¤ = B

G¤̇ (7.152)

however, special attention must be paid to the coordinate frame in which the
vector ¤ and the final result are expressed. The final result is B

G¤̇ showing
the global (G) time derivative expressed in body frame (B). The vector ¤
might be any vector such as position, velocity, angular velocity, momentum,
angular velocity, or even a time-varying force vector.
The Equation (7.152) is called the derivative transformation for-

mula and relates the time derivative of a vector as it would be seen from
frame G to its derivative as seen in frame B. The derivative transforma-
tion formula (7.152) is more general and can be applied to every vector for
derivative transformation between every two relatively moving coordinate
frames.

Example 214 F Differential equation for rotation matrix.
Equation (7.5) for defining the angular velocity matrix may be written

as a first-order differential equation

d

dt
GRB − GRB Gω̃B = 0. (7.153)

The solution of the equation confirms the exponential definition of the ro-
tation matrix as

GRB = eω̃t (7.154)

or
ω̃t = φ̇ ũ = ln

¡
GRB

¢
. (7.155)

Example 215 F Acceleration of a body point in the global frame.
The angular acceleration vector of a rigid body B(Oxyz) in the global

frame G(OXY Z) is denoted by GαB and is defined as the global time deriv-
ative of GωB.

GαB =
Gd

dt
GωB (7.156)
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FIGURE 7.4. A body coordinate frame moving with a fixed point in the global
coordinate frame.

Using this definition, the acceleration of a fixed body point in the global
frame is

GaP =
Gd

dt

¡
GωB × GrP

¢
= GαB × GrP + GωB × (GωB × GrP ). (7.157)

Example 216 F Alternative definition of angular velocity vector.
The angular velocity vector of a rigid body B(̂ı, ĵ, k̂) in global frame

G(Î , Ĵ , K̂) can also be defined by

B
GωB = ı̂(

Gdĵ

dt
· k̂) + ĵ(

Gdk̂

dt
· ı̂) + k̂(

Gdı̂

dt
· ĵ). (7.158)

Proof. Consider a body coordinate frame B moving with a fixed point in the
global coordinate frame G. The fixed point of the body is taken as the origin
of both coordinate frames, as shown in Figure 7.4. In order to describe the
motion of the body, it is sufficient to describe the motion of the local unit
vectors ı̂, ĵ, k̂ . Let rP be the position vector of a body point P . Then, BrP
is a vector with constant components.

BrP = xı̂+ yĵ+ zk̂ (7.159)

When the body moves, it is only the unit vectors ı̂, ĵ, and k̂ that vary
relative to the global coordinate frame. Therefore, the vector of differential
displacement is

drP = x dı̂+ y dĵ+ z dk̂ (7.160)

which can also be expressed by

drP = (drP · ı̂) ı̂+ (drP · ĵ) ĵ+
³
drP · k̂

´
k̂. (7.161)
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Substituting (7.160) in the right-hand side of (7.161) results in

drP =
³
xı̂ · dı̂+ yı̂ · dĵ+ zı̂ · dk̂

´
ı̂

+
³
xĵ · dı̂+ yĵ · dĵ+ zĵ · dk̂

´
ĵ

+
³
xk̂ · dı̂+ yk̂ · dĵ+ zk̂ · dk̂

´
k̂. (7.162)

Utilizing the unit vectors’ relationships

ĵ · dı̂ = −ı̂ · dĵ (7.163)

k̂ · dĵ = −ĵ · dk̂ (7.164)

ı̂ · dk̂ = −k̂ · dı̂ (7.165)

ı̂ · dı̂ = ĵ · dĵ = k̂ · dk̂ = 0 (7.166)

ı̂ · ĵ = ĵ · k̂ = k̂ · ı̂ = 0 (7.167)

ı̂ · ı̂ = ĵ · ĵ = k̂ · k̂ = 1 (7.168)

the drP reduces to

drP =
³
zı̂ · dk̂ − yĵ · dı̂

´
ı̂

+
³
xĵ · dı̂− zk̂ · dĵ

´
ĵ

+
³
yk̂ · dĵ− xı̂ · dk̂

´
k̂. (7.169)

This equation can be rearranged to be expressed as a vector product

drP =
³
(k̂ · dĵ)̂ı+ (̂ı · dk̂)ĵ+ (ĵ · dı̂)k̂

´
×
³
xı̂+ yĵ+ zk̂

´
(7.170)

or

B
GvP =

Ã
(k̂ ·

Gdĵ

dt
)̂ı+ (̂ı ·

Gdk̂

dt
)ĵ+ (ĵ ·

Gdı̂

dt
)k̂

!
×
³
xı̂+ yĵ+ zk̂

´
. (7.171)

Comparing this result with

ṙP = GωB × rP

shows that

B
GωB = ı̂

µ
Gdĵ

dt
· k̂
¶
+ ĵ

Ã
Gdk̂

dt
· ı̂
!
+ k̂

µ
Gdı̂

dt
· ĵ
¶
. (7.172)
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Example 217 F Alternative proof for angular velocity definition (7.158).
The angular velocity definition presented in Equation (7.158) can also be

shown by direct substitution for GRB in the angular velocity matrix B
Gω̃B

B
Gω̃B =

GRT
B
GṘB . (7.173)

Therefore,

B
Gω̃B =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ · Gd
dt

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
ı̂ ·

Gdı̂

dt
ı̂ ·

Gdĵ

dt
ı̂ ·

Gdk̂

dt

ĵ ·
Gdı̂

dt
ĵ ·

Gdĵ

dt
ĵ ·

Gdk̂

dt

k̂ ·
Gdı̂

dt
k̂ ·

Gdĵ

dt
k̂ ·

Gdk̂

dt

⎤⎥⎥⎥⎥⎥⎥⎦ (7.174)

which shows that

B
GωB =

⎡⎢⎢⎢⎢⎢⎢⎣

Gdĵ

dt
· k̂

Gdk̂

dt
· ı̂

Gdı̂

dt
· ĵ

⎤⎥⎥⎥⎥⎥⎥⎦ . (7.175)

Example 218 F Second derivative.
In general, Gd r/dt is a variable vector in G(OXY Z) and in any other

coordinate frame such as B (oxyz). Therefore, it can be differentiated in
either coordinate frames G or B. However, the order of differentiating is
important. In general,

Bd

dt

Gdr

dt
6=

Gd

dt

Bdr

dt
. (7.176)

As an example, consider a rotating body coordinate frame about the Z-axis,
and a variable vector as

Gr = tÎ. (7.177)

Therefore,
Gdr

dt
= Gṙ = Î (7.178)

and hence,

B

µ
Gdr

dt

¶
= B

Gṙ = RT
Z,ϕ

h
Î
i
=

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦
= cosϕı̂− sinϕĵ (7.179)
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which provides
Bd

dt

Gdr

dt
= −ϕ̇ sinϕı̂− ϕ̇ cosϕĵ (7.180)

and
G

µ
Bd

dt

Gdr

dt

¶
= −ϕ̇Ĵ . (7.181)

Now
Br = RT

Z,ϕ

h
tÎ
i
= t cosϕı̂− t sinϕĵ (7.182)

that provides

Bdr

dt
= (−tϕ̇ sinϕ+ cosϕ) ı̂− (sinϕ+ tϕ̇ cosϕ) ĵ (7.183)

and

G

µ
Bdr

dt

¶
= G

B ṙ = RZ,ϕ ((−tϕ̇ sinϕ+ cosϕ) ı̂− (sinϕ+ tϕ̇ cosϕ) ĵ)

=

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ −tϕ̇ sinϕ+ cosϕ− sinϕ− tϕ̇ cosϕ
0

⎤⎦
= Î − tϕ̇Ĵ (7.184)

which shows
Gd

dt

Bdr

dt
= − (ϕ̇+ tϕ̈) Ĵ 6=

Bd

dt

Gdr

dt
. (7.185)

7.3 Rigid Body Velocity

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z), as shown in
Figure 7.5. The rigid body can rotate in the global frame, while the origin of
the body frame B can translate relative to the origin of G. The coordinates
of a body point P in local and global frames are related by the following
equation:

GrP =
GRB

BrP +
GdB (7.186)

where GdB indicates the position of the moving origin o relative to the
fixed origin O.
The velocity of the point P in G is

GvP = GṙP =
GṘB

BrP + GḋB

= Gω̃B
G
BrP +

GḋB = Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB . (7.187)
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FIGURE 7.5. A rigid body with an attached coordinate frame B (oxyz) moving
freely in a global coordinate frame G(OXY Z).

Proof. Direct differentiating shows

GvP =
Gd

dt
GrP =

GṙP =
Gd

dt

¡
GRB

BrP +
GdB

¢
= GṘB

BrP +
GḋB. (7.188)

The local position vector BrP can be substituted from (7.186) to obtain
GvP = GṘB

GRT
B

¡
GrP − GdB

¢
+ GḋB

= Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB. (7.189)

It may also be written using relative position vector

GvP = GωB × G
BrP +

GḋB . (7.190)

Example 219 Geometric interpretation of rigid body velocity.
Figure 7.6 illustrates a body point P of a moving rigid body. The global

velocity of the point P
GvP = GωB × G

BrP +
GḋB (7.191)

is a vector addition of rotational and translational velocities, both expressed
in the global frame. At the moment, the body frame is assumed to be coin-
cident with the global frame, and the body frame has a velocity GḋB with
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FIGURE 7.6. Geometric interpretation of rigid body velocity.

respect to the global frame. The translational velocity GḋB is a common
property for every point of the body, but the rotational velocity GωB × G

BrP
differs for different points of the body.

Example 220 Velocity of a moving point in a moving body frame.
Assume that point P in Figure 7.5 is moving in the frame B, indicating

by a time varying position vector BrP (t). The global velocity of P is a
composition of the velocity of P in B, rotation of B relative to G, and
velocity of B relative to G.

Gd

dt
GrP =

Gd

dt

¡
GdB + GRB

BrP
¢

=
Gd

dt
GdB +

Gd

dt

¡
GRB

BrP
¢

= GḋB +
G
B ṙP + GωB × G

BrP (7.192)

Example 221 Velocity of a body point in multiple coordinate frames.
Consider three frames, B0, B1 and B2, as shown in Figure 7.7. The

velocity of point P should be measured and expressed in a coordinate frame.
If the point is stationary in a frame, say B2, then the time derivative of
2rP in B2 is zero. If the frame B2 is moving relative to the frame B1, then,
the time derivative of 1rP is a combination of the rotational component
due to rotation of B2 relative to B1 and the velocity of B2 relative to B1.
In forward velocity kinematics of robots, the velocities must be measured in
the base frame B0. Therefore, the velocity of point P in the base frame is
a combination of the velocity of B2 relative to B1 and the velocity of B1
relative to B0.
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FIGURE 7.7. A rigid body coordinate frame B2 is moving in a frame B1 that is
moving in the base coordinate frame B0.

The global coordinate of the body point P is

0rP = 0d1 +
0
1d2 +

0
2rP (7.193)

= 0d1 +
0R1

1d2 +
0R2

2rP . (7.194)

Therefore, the velocity of point P can be found by combining the relative
velocities

0ṙP = 0ḋ1 + (
0Ṙ1

1d2 +
0R1

1ḋ2) +
0Ṙ2

2rP

= 0ḋ1 +
0
0ω1 × 0

1d2 +
0R1

1ḋ2 +
0
0ω2 × 0

2rP (7.195)

Most of the time, it is better to use a relative velocity method and write

0
0vP =

0
0v1 +

0
1v2 +

0
2vP (7.196)

because

0
0v1 = 0

0ḋ1 (7.197)
0
1v2 = 0

0ω1 × 0
1d2 +

0R1
1ḋ2 (7.198)

0
2vP = 0

0ω2 × 0
2rP (7.199)

and therefore,

0vP =
0ḋ1 +

0
0ω1 × 0

1d2 +
0R1

1ḋ2 +
0
0ω2 × 0

2rP . (7.200)
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Example 222 Velocity vectors are free vectors.
Velocity vectors are free, so to express them in different coordinate frames

we need only to premultiply them by a rotation matrix. Hence, considering
k
jvi as the velocity of the origin of the Bi coordinate frame with respect to
the origin of the frame Bj expressed in frame Bk, we can write

k
jvi = − k

i vj (7.201)

and
k
jvi =

kRm
m
j vi (7.202)

and therefore,
id

dt
i
irP =

ivP =
i
jvP +

i
iωj × i

jrP . (7.203)

Example 223 F Zero velocity points.
To answer whether there is a point with zero velocity at each time, we

may utilize Equation (7.187) and write

Gω̃B
¡
Gr0 − GdB

¢
+ GḋB = 0 (7.204)

to search for Gr0 which refers to a point with zero velocity

Gr0 =
GdB − Gω̃

−1
B

GḋB (7.205)

however, the skew symmetric matrix Gω̃B is singular and has no inverse.
In other words, there is no general solution for Equation (7.204).
If we restrict ourselves to planar motions, say XY -plane, then GωB =

ωK̂ and Gω̃
−1
B = 1/ω. Hence, in 2D space there is a point at any time with

zero velocity at position Gr0 given by

Gr0(t) =
GdB(t)−

1

ω
GḋB(t). (7.206)

The zero velocity point is called the pole or instantaneous center of
rotation. The position of the pole is generally a function of time and the
path of its motion is called a centroid.

Example 224 F Eulerian and Lagrangian view points.
When a variable quantity is measured within the stationary global coor-

dinate frame, it is called absolute or the Lagrangian viewpoint. On the
other hand, when the variable is measured within a moving body coordinate
frame, it is called relative or the Eulerian viewpoint.
In 2D planar motion of a rigid body, there is always a pole of zero velocity

at
Gr0 =

GdB −
1

ω
GḋB. (7.207)

The position of the pole in the body coordinate frame can be found by sub-
stituting for Gr from (7.186)

GRB
Br0 +

GdB =
GdB − Gω̃

−1
B

GḋB (7.208)
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and solving for the position of the zero velocity point in the body coordinate
frame Br0.

Br 0 = −GRT
B Gω̃

−1
B

GḋB = −GRT
B

h
GṘB

GRT
B

i−1
GḋB

= −GRT
B

h
GRB

GṘ−1B

i
GḋB = −GṘ−1B

GḋB (7.209)

Therefore, Gr0 indicates the path of motion of the pole in the global frame,
while Br0 indicates the same path in the body frame. The Gr0 refers to
Lagrangian centroid and Br0 refers to Eulerian centroid.

Example 225 F Screw axis and screw motion.
The screw axis may be defined as a line for a moving rigid body B whose

points P have velocity parallel to the angular velocity vector GωB = ωû.
Such points satisfy

GvP = GωB ×
¡
GrP − GdB

¢
+ GḋB = pGωB. (7.210)

where, p is a scalar. Since GωB is perpendicular to GωB ×
¡
Gr− Gd

¢
, a

dot product of Equation (7.210) by GωB yields

p =
1

ω2

³
GωB · GḋB

´
. (7.211)

Introducing a parameter k to indicate different points of the line, the
equation of the screw axis is defined by

GrP =
GdB +

1

ω2

³
GωB × GḋB

´
+ k GωB (7.212)

because if we have a× x = b, and a · b = 0, then x = −a−2(a× b) + ka.
In our case,

GωB ×
¡
GrP − GdB

¢
= pGωB − GḋB (7.213)¡

GrP − GdB
¢
is perpendicular to GωB ×

¡
GrP − GdB

¢
, and hence is per-

pendicular to (pGωB − GḋB) too.
Therefore, there exists at any time a line s in space, parallel to GωB,

which is the locus of points whose velocity is parallel to GωB.
If s is the position vector of a point on s, then

GωB ×
¡
Gs− GdB

¢
= pGωB − GḋB (7.214)

and the velocity of any point out of s is

Gv = GωB ×
¡
Gr− Gs

¢
+ pGωB (7.215)

which expresses that at any time the velocity of a body point can be decom-
posed into perpendicular and parallel components to the angular velocity
vector GωB. Therefore, the motion of any point of a rigid body is a screw.
The parameter p is the ratio of translation velocity to rotation velocity, and
is called pitch. In general, s, GωB, and p may be functions of time.



7. Angular Velocity 409

7.4 F Velocity Transformation Matrix

Consider the motion of a rigid body B in the global coordinate frame G,
as shown in Figure 7.5. Assume the body frame B(oxyz) is coincident at
some initial time t0 with the global frame G(OXY Z). At any time t 6= t0,
B is not necessarily coincident with G and therefore, the homogeneous
transformation matrix GTB(t) is time varying.
The global position vector GrP (t) of a point P of the rigid body is a

function of time, but its local position vector BrP is a constant, which is
equal to GrP (t0).

BrP ≡ GrP (t0) (7.216)

The velocity of point P on the rigid body B as seen in the reference frame
G is obtained by differentiating the position vector Gr(t) in the reference
frame G

GvP =
d

dt
GrP (t) =

GṙP (7.217)

where GṙP denotes the differentiation of the quantity GrP (t) in the refer-
ence frame G.
The velocity of a body point in global coordinate frame can be found by

applying a homogeneous transformation matrix

Gv(t) = GVB
Gr(t) (7.218)

where GVB is the velocity transformation matrix.

GVB = GṪB
GT−1B

=

∙
GṘB

GRT
B

GḋB − GṘB
GRT

B
GdB

0 0

¸
=

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
=

∙
Gω̃B

GvB
0 0

¸
(7.219)

Proof. Based on homogeneous coordinate transformation, we have

GrP (t) =
GTB(t)

BrP =
GTB(t)

GrP (t0) (7.220)

and therefore,

GvP =
Gd

dt

£
GTB

BrP
¤
= GṪB

BrP =

∙ Gd
dt

GRB
Gd
dt

GdB
0 0

¸
BrP

=

∙
GṘB

GḋB
0 0

¸
BrP (7.221)
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Substituting for BrP from Equation (7.220), gives

GvP = GṪB
GT−1B

GrP (t)

=

∙
GṘB

GḋB
0 0

¸ ∙
GRT

B −GRT
B
GdB

0 1

¸
GrP (t)

=

∙
GṘB

GRT
B

GḋB − GṘB
GRT

B
GdB

0 0

¸
GrP (t)

=

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
GrP (t). (7.222)

Thus, the velocity of any point P of the rigid body B in the reference frame
G can be obtained by premultiplying the position vector of the point P in
G with the velocity transformation matrix, GVB,

GvP (t) =
GVB

GrP (t) (7.223)

where,

GVB = GṪB
GT−1B =

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
=

∙
Gω̃B

GvB
0 0

¸
(7.224)

and
Gω̃B =

GṘB
GRT

B (7.225)

GvB = GḋB − GṘB
GRT

B
GdB =

GḋB − Gω̃B
GdB

= GḋB − GωB × GdB. (7.226)

The velocity transformation matrix GVB may be assumed as a matrix
operator that provides the global velocity of any point attached to B(oxyz).
It consists of the angular velocity matrix Gω̃B and the frame velocity GḋB
both described in the global frame G(OXY Z). The matrix GVB depends
on six parameters: the three components of the angular velocity vector
GωB and the three components of the frame velocity GḋB. Sometimes it is
convenient to introduce a 6× 1 vector called velocity transformation vector
to simplify numerical calculations.

GtB =

∙
GvB
GωB

¸
=

∙
GḋB − Gω̃B

GdB
GωB

¸
(7.227)

In analogy to the two representations of the angular velocity, the ve-
locity of body B in reference frame G can be represented either as the
velocity transformation matrix GVB in (7.224) or as the velocity transfor-
mation vector GtB in (7.227). The velocity transformation vector represents
a noncommensurate vector since the dimension of GωB and GvB differ.
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Example 226 F Velocity transformation matrix based on coordinate trans-
formation matrix.
The velocity transformation matrix can be found based on a coordinate

transformation matrix. Starting from

Gr(t) = GTB
Br =

∙
GRB

Gd
0 1

¸
Br (7.228)

and taking the derivative, shows that

Gv =
Gd

dt

£
GTB

Br
¤
= GṪB

Br =

∙
GṘB

Gḋ
0 0

¸
Br (7.229)

however,
Br = GT−1B

Gr (7.230)

and therefore,

Gv =

∙
GṘB

Gḋ
0 0

¸
GT−1B

Gr

=

∙
GṘB

Gḋ
0 0

¸ ∙
GRT

B −GRT
B
Gd

0 1

¸
Gr

=

∙
GṘB

GRT
B

Gḋ− GṘB
GRT

B
Gd

0 0

¸
Gr

= GVB
Gr. (7.231)

Example 227 F Inverse of a velocity transformation matrix.
Transformation from a body frame to the global frame is given by Equa-

tion (4.67)
GT−1B =

∙
GRT

B −GRT
B
Gd

0 1

¸
. (7.232)

Following the same principle, we may introduce the inverse velocity trans-
formation matrix by

BVG = GV −1B

=

" ³
GṘB

GRT
B

´−1
−
³
GṘB

GRT
B

´−1 ³
Gḋ− GṘB

GRT
B
Gd
´

0 0

#

=

"
GRB

GṘ−1B −GRB
GṘ−1B

³
Gḋ− GṘB

GRT
B
Gd
´

0 0

#

=

∙
GRB

GṘ−1B −GRB
GṘ−1B

Gḋ+ Gd
0 0

¸
(7.233)

to have
GVB

GV −1B = I. (7.234)
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Therefore, having the velocity vector of a body point GvP and the velocity
transformation matrix GVB we can find the global position of the point by

GrP =
GV −1B

GvP . (7.235)

Example 228 F Velocity transformation matrix in body frame.
The velocity transformation matrix GVB defined in the global frame G is

described by

GVB =

∙
GṘB

GRT
B

Gḋ− GṘB
GRT

B
Gd

0 0

¸
(7.236)

However, the velocity transformation matrix can be expressed in the body
coordinate frame B as well

B
GVB = GT−1B

GṪB (7.237)

=

∙
GRT

B −GRT
B
Gd

0 1

¸ ∙
GṘB

Gḋ
0 0

¸
=

∙
GRT

B
GṘB

GRT
B
Gḋ

0 0

¸
=

∙
B
GωB

Bḋ
0 0

¸
where B

GωB is the angular velocity vector of B with respect to G expressed
in B, and Bḋ is the velocity of the origin of B in G expressed in B.
It is also possible to use a matrix multiplication to find the velocity trans-

formation matrix in the body coordinate frame.

B
GvP =

GT−1B
GvP =

GT−1B
GṪB

BrP =
B
GVB

BrP (7.238)

Using the definition of (7.219) and (7.237) we are able to transform the
velocity transformation matrices between the B and G frames.

GVB =
GTB

B
GVB

GT−1B . (7.239)

It can also be useful if we define the time derivative of the transformation
matrix by

GṪB =
GVB

GTB (7.240)

or
GṪB =

GTB
B
GVB. (7.241)

Similarly, we may define a velocity transformation matrix from link (i)
to (i− 1) by

i−1Vi =

∙
i−1Ṙi

i−1RT
i

i−1ḋ− i−1Ṙi
i−1RT

i
i−1d

0 0

¸
(7.242)

and
i
i−1Vi =

∙
i−1RT

i
i−1Ṙi

i−1RT
i
i−1ḋ

0 0

¸
. (7.243)
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Example 229 Motion with a fixed point.
When a point of a rigid body is fixed to the global frame, it is convenient

to set the origins of the moving coordinate frame B(Oxyz) and the global
coordinate frame G(OXY Z) on the fixed point. Under these conditions,

GdB = 0 , GḋB = 0 (7.244)

and Equation (7.222) reduces to

GvP = Gω̃B
GrP (t) = GωB × GrP (t). (7.245)

Example 230 Velocity in spherical coordinates.
The homogeneous transformation matrix from the spherical coordinates

S(Orθϕ) to Cartesian coordinates G(OXY Z) is found as

GTS = RZ,ϕRY,θDZ,r =

∙
GRB

Gd
0 1

¸

=

⎡⎢⎢⎣
cos θ cosϕ − sinϕ cosϕ sin θ r cosϕ sin θ
cos θ sinϕ cosϕ sin θ sinϕ r sin θ sinϕ
− sin θ 0 cos θ r cos θ
0 0 0 1

⎤⎥⎥⎦ . (7.246)
Time derivative of GTS shows that

GṪS = GVS
GTS =

∙
Gω̃S

GvS
0 0

¸
GTS (7.247)

=

⎡⎢⎢⎣
0 −ϕ̇ θ̇ cosϕ ṙ cosϕ sin θ

ϕ̇ 0 θ̇ sinϕ ṙ sin θ sinϕ

−θ̇ cosϕ −θ̇ sinϕ 0 ṙ cos θ
0 0 0 0

⎤⎥⎥⎦ GTB.

Example 231 F Velocity analysis of a planar RkR manipulator.
Figure 7.8 illustrates an RkR planar manipulator with joint variables θ1

and θ2. The links (1) and (2) are both RkR(0) and therefore the transfor-
mation matrices 0T1, 1T2, and 0T2 are:

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.248)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.249)
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FIGURE 7.8. An RkR planar manipulator.

0T2 = 0T1
1T2 (7.250)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2) + l1cθ1
s (θ1 + θ2) c (θ1 + θ2) 0 l2s (θ1 + θ2) + l1sθ1

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
The points M1 and M2 are at:

0rM1 =

⎡⎢⎢⎣
l1 cos θ1
l1 sin θ1
0
1

⎤⎥⎥⎦ 1rM2 =

⎡⎢⎢⎣
l2 cos θ2
l2 sin θ2
0
1

⎤⎥⎥⎦ (7.251)

0rM2
= 0T1

1rM2
=

⎡⎢⎢⎣
l2 cos (θ1 + θ2) + l1 cos θ1
l2 sin (θ1 + θ2) + l1 sin θ1

0
1

⎤⎥⎥⎦ (7.252)

To determine the velocity of M2, we calculate 0Ṫ2. However, 0Ṫ2 can be
calculated by direct differentiation of 0T2.

0Ṫ2 =
d

dt
0T2 (7.253)

=

⎡⎢⎢⎣
−θ̇12sθ12 −θ̇12cθ12 0 −l2θ̇12sθ12 − θ̇1l1sθ1
θ̇12cθ12 −θ̇12sθ12 0 l2θ̇12cθ12 + θ̇1l1cθ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
θ12 = θ1 + θ2 θ̇12 = θ̇1 + θ̇2 (7.254)
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We may also use the chain rule to calculate 0Ṫ2

0Ṫ2 =
d

dt

¡
0T1

1T2
¢
= 0Ṫ1

1T2 +
0T1

1Ṫ2 (7.255)

where,

0Ṫ1 = θ̇1

⎡⎢⎢⎣
− sin θ1 − cos θ1 0 −l1 sin θ1
cos θ1 − sin θ1 0 l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.256)

1Ṫ2 = θ̇2

⎡⎢⎢⎣
− sin θ2 − cos θ2 0 −l2 sin θ2
cos θ2 − sin θ2 0 l2 cos θ2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (7.257)

Having 0Ṫ1 and 1Ṫ2, we can find the velocity transformation matrices
0V1 and 1V2 by using 0T

−1
1 and 1T−12 .

0T−11 =

⎡⎢⎢⎣
cos θ1 sin θ1 0 −l1
− sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.258)

1T−12 =

⎡⎢⎢⎣
cos θ2 sin θ2 0 −l2
− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.259)

0V1 =
0Ṫ1

0T−11 = θ̇1

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.260)

1V2 =
1Ṫ2

1T−12 = θ̇2

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.261)

Therefore, the velocity of points M1 and M2 in B0 and B1 are:

0vM1 =
0V1

0rM1 = θ̇1

⎡⎢⎢⎣
−l1 sin θ1
l1 cos θ1
0
0

⎤⎥⎥⎦ (7.262)

1vM2 =
1V2

1rM2 = θ̇2

⎡⎢⎢⎣
−l2 sin θ2
l2 cos θ2
0
0

⎤⎥⎥⎦ (7.263)
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To determine the velocity of the tip point M2 in the base frame, we can use
the velocity vector addition.

0vM2 = 0vM1 +
0
1vM2 =

0vM1 +
0T1

1vM2

=

⎡⎢⎢⎢⎢⎣
−
³
θ̇1 + θ̇2

´
l2 sin (θ1 + θ2)− θ̇1l1 sin θ1³

θ̇1 + θ̇2

´
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

⎤⎥⎥⎥⎥⎦ (7.264)

We can also determine 0vM2
by using the velocity transformation matrix

0V2
0vM2 =

0V2
0rM2 (7.265)

where 0V2 is:

0V2 =
0Ṫ2

0T−12 =

⎡⎢⎢⎣
0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.266)

0T−12 = 2T1
1T0 =

1T−12
0T−11 (7.267)

=

⎡⎢⎢⎣
cos (θ1 + θ2) sin (θ1 + θ2) 0 −l2 − l1 cos θ2
− sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin θ2

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
We can also determine the velocity transformation matrix 0V2 using their
addition rule 0V2 = 0V1 +

0
1V2,

0V2 = 0V1 +
0
1V2

=

⎡⎢⎢⎣
0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.268)

where,

0
1V2 =

0T1
1V2

0T−11 =

⎡⎢⎢⎣
0 −θ̇2 0 θ̇2l1 sin θ1
θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (7.269)
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Therefore, 0vM2 would be:

0vM2
= 0V2

0rM2

=

⎡⎢⎢⎢⎢⎣
−
³
θ̇1 + θ̇2

´
l2 sin (θ1 + θ2)− θ̇1l1 sin θ1³

θ̇1 + θ̇2

´
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

⎤⎥⎥⎥⎥⎦ (7.270)

7.5 Derivative of a Homogeneous Transformation
Matrix

The velocity transformation matrix can be found directly from the homoge-
neous link transformation matrix. According to forward kinematics, there
is a 4× 4 homogeneous transformation matrix to move between every two
coordinate frames.

GTB =

∙
GRB

Gd
0 1

¸
=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (7.271)

When the elements of the transformation matrix are time varying, its deriv-
ative is

GdT

dt
= GṪB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dr11
dt

dr12
dt

dr13
dt

dr14
dt

dr21
dt

dr22
dt

dr23
dt

dr24
dt

dr31
dt

dr32
dt

dr33
dt

dr34
dt

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.272)

The time derivative of the transformation matrix can be arranged to be
proportional to the transformation matrix

GṪB =
GVB

GTB (7.273)

where GVB is a 4 × 4 homogeneous matrix called velocity transformation
matrix or velocity operator matrix and is equal to

GVB = GṪB
GT−1B

=

∙
GṘB

GRT
B

Gḋ− GṘB
GRT

B
Gd

0 1

¸
. (7.274)
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The homogeneous matrix and its derivative based on the velocity transfor-
mation matrix are useful in forward velocity kinematics. The i−1Ṫi for two
links connected by a revolute joint is

i−1Ṫi = θ̇i

⎡⎢⎢⎣
− sin θi − cos θi cosαi cos θi sinαi −ai sin θi
cos θi − sin θi cosαi sin θi sinαi ai cos θi
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.275)

and for two links connected by a prismatic joint is:

i−1Ṫi =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0

0 0 0 ḋi
0 0 0 0

⎤⎥⎥⎦ (7.276)

The associated velocity transformation matrix for a revolute joint is

i−1Vi = θ̇i ∆R = θ̇i

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.277)

and for a prismatic joint is

i−1Vi = ḋi ∆P = ḋi

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ . (7.278)

Proof. Since any transformation matrix can be decomposed into a rotation
and translation

[T ] =

∙
Rû,φ d
0 1

¸
=

∙
I d
0 1

¸ ∙
Rû,φ 0
0 1

¸
= [D] [R] (7.279)

we can find Ṫ as

Ṫ =

∙
Ṙû,φ ḋ
0 0

¸
=

∙
I ḋ
0 1

¸ ∙
Ṙû,φ 0
0 1

¸
− I

=
h
I+ Ḋ

i h
I+ Ṙ

i
− I = [V ] [T ] (7.280)

where [V ] is the velocity transformation matrix described as

[V ] = Ṫ T−1 =

∙
Ṙû,φ ḋ
0 0

¸ ∙
RT
û,φ −RT

û,φ d

0 1

¸
=

∙
Ṙû,φR

T
û,φ ḋ− Ṙû,φR

T
û,φ d

0 1

¸
=

∙
ω̃ ḋ− ω̃ d
0 1

¸
. (7.281)
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The transformation matrix between two neighbor coordinate frames of a
robot is described in Equation (5.11) based on the DH parameters,

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦ . (7.282)

Direct differentiating shows that in case two links are connected via a rev-
olute joint, then θi is the only variable of DH matrix, and therefore,

i−1Ṫi = θ̇i

⎡⎢⎢⎣
− sin θi − cos θi cosαi cos θi sinαi −ai sin θi
cos θi − sin θi cosαi sin θi sinαi ai cos θi
0 0 0 0
0 0 0 0

⎤⎥⎥⎦

= θ̇i

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ i−1Ti = θ̇i ∆R
i−1Ti. (7.283)

which shows that the revolute velocity transformation matrix is

i−1Vi = θ̇i ∆R = θ̇i

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (7.284)

However, if the two links are connected via a prismatic joint, di is the only
variable of the DH matrix, and therefore,

i−1Ṫi = ḋi

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ i−1Ti = ḋi ∆P
i−1Ti (7.285)

which shows that the prismatic velocity transformation matrix is

i−1Vi = ḋi ∆P = ḋi

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ . (7.286)

The ∆R and ∆P are revolute and prismatic velocity coefficient matrices
with some application in velocity analysis of robots.
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Example 232 Differential of a transformation matrix.
Assume a transformation matrix is given as

T =

⎡⎢⎢⎣
0 0 1 4
1 0 0 4
0 1 0 4
0 0 0 1

⎤⎥⎥⎦ (7.287)

subject to a differential rotation and differential translation given by

dφû =
£
0.1 0.2 0.3

¤
(7.288)

dd =
£
0.6 0.4 0.2

¤
. (7.289)

Then, the differential transformation matrix dT is:

dT = [I+ dD] [I+ dR]− I

=

⎡⎢⎢⎣
0 −0.3 0.2 0.6
0.3 0 −0.1 0.4
−0.2 0.1 0 0.2
0 0 0 0

⎤⎥⎥⎦ (7.290)

Example 233 Differential rotation and translation.
Assume the angle of rotation about the axis û is too small and indicated

by dφ, then the differential rotation matrix is

I+ dRû,φ = I+Rû,dφ =

⎡⎢⎢⎣
1 −u3dφ u2dφ 0

u3dφ 1 −u1dφ 0
−u2dφ +u1dφ 1 0
0 0 0 1

⎤⎥⎥⎦ (7.291)

because when φ << 1, then,

sinφ ' dφ (7.292)

cosφ ' 1 (7.293)

versφ ' 0. (7.294)

Differential translation dd = d(dxÎ+dyĴ+dzK̂) is shown by a differential
translation matrix

I+ dD =

⎡⎢⎢⎣
1 0 0 ddx
0 1 0 ddy
0 0 1 ddz
0 0 0 0

⎤⎥⎥⎦ (7.295)

and therefore,

dT = [I+ dD] [I+ dR]− I

=

⎡⎢⎢⎣
0 −dφu3 dφu2 ddx

dφu3 0 −dφu1 ddy
−dφu2 dφu1 0 ddz
0 0 0 0

⎤⎥⎥⎦ . (7.296)
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Example 234 Combination of principal differential rotations.
The differential rotation about X, Y , Z are

RX,dγ =

⎡⎢⎢⎣
1 0 0 0
0 1 −dγ 0
0 dγ 1 0
0 0 0 1

⎤⎥⎥⎦ (7.297)

RY,dβ =

⎡⎢⎢⎣
1 0 dβ 0
0 1 0 0
−dβ 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.298)

RZ,dα =

⎡⎢⎢⎣
1 −dα 0 0
dα 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.299)

therefore, the combination of the principal differential rotation matrices
about axes X, Y , and Z is:

[I+RX,dγ ] [I+RY,dβ] [I+RZ,dα]

=

⎡⎢⎢⎣
1 0 0 0
0 1 −dγ 0
0 dγ 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 dβ 0
0 1 0 0
−dβ 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 −dα 0 0
dα 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 −dα dβ 0
dα 1 −dγ 0
−dβ dγ 1 0
0 0 0 1

⎤⎥⎥⎦
= [I+RZ,dα] [I+RY,dβ] [I+RX,dγ ] (7.300)

The combination of differential rotations is commutative.

Example 235 Derivative of Rodriguez formula.
Based on the Rodriguez formula, the angle-axis rotation matrix is

Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (7.301)

therefore, the time rate of the Rodriguez formula is

Ṙû,φ = −φ̇ sinφ I+ ûûT φ̇ sinφ+ ũφ̇ cosφ = φ̇ũRû,φ. (7.302)

Example 236 F Velocity of frame Bi in B0.
The velocity of the frame Bi attached to the link (i) with respect to the

base coordinate frame B0 can be found by differentiating 0di in the base
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frame.

0vi =
0d

dt
0di =

0d

dt

¡
0Ti

idi
¢

= 0Ṫ1
1T2 · · · i−1Ti idi + 0T1

1Ṫ2
2T3 · · · i−1Ti idi

+ 0T1 · · · i−1Ṫi idi

=

⎡⎣ iX
j=1

∂ 0Ti
∂qj

q̇j

⎤⎦ idi (7.303)

However, the partial derivatives ∂ i−1Ti /∂qi can be found by utilizing the
velocity coefficient matrices ∆i, which is either ∆R or ∆P .

∂ i−1Ti
∂qi

= ∆i
i−1Ti. (7.304)

Hence,

∂ 0Ti
∂qj

=

½
0T1

1T2 · · · j−2Tj−1 ∆j
j−1Tj · · · i−1Ti for j ≤ i

0 for j > i.
(7.305)

Example 237 V reduces to ω̃, and T reduces to R if d = 0.
Consider a B and G coordinate frames with a common origin. In this

cares, d = 0 and (7.279) will be

[T ] =

∙
Rû,φ 0
0 1

¸
=

∙
I 0
0 1

¸ ∙
Rû,φ 0
0 1

¸
= [I] [R] = [R] (7.306)

and, Ṫ is:
Ṫ = Ṙ (7.307)

Therefore, is the velocity transformation matrix [V ] is equivalent to ω̃.

[V ] = Ṫ T−1 = ṘRT = ω̃ (7.308)

Example 238 DH matrix between two co-origin coordinate frames.
If two neighbor coordinate frames have the same origin, then ai and di

of DH transformation matrix (5.11) are zero. It simplifies the DH matrix
to:

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi 0
sin θi cos θi cosαi − cos θi sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦ . (7.309)

We can eliminate the last column and row of this matrix, and show it by a
rotation transformation matrix .

i−1Ri =

⎡⎣ cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi
0 sinαi cosαi

⎤⎦ (7.310)
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When ai and di are zero, the two links are connected by a revolute joint.
So, θi is the only variable of DH matrix, and therefore,

i−1Ṙi = θ̇i

⎡⎣ − sin θi − cos θi cosαi cos θi sinαi
cos θi − sin θi cosαi sin θi sinαi
0 0 0

⎤⎦ = i−1ωi
i−1Ri

= θ̇i

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ i−1Ri = θ̇i
i−1k̃i−1

i−1Ri. (7.311)

which shows that the revolute angular velocity matrix is:

i−1ωi = θ̇i
i−1k̃i−1 = θ̇i

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ (7.312)
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7.6 Summary

The transformation matrix GRB is time dependent if a body coordinate
frame B rotates continuously with respect to frame G with a common
origin.

Gr(t) = GRB(t)
Br (7.313)

Then, the global velocity of a point in B is

Gṙ(t) = Gv(t) = GṘB(t)
Br = Gω̃B

Gr(t) (7.314)

where Gω̃B is the skew symmetric angular velocity matrix

Gω̃B =
GṘB

GRT
B =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ . (7.315)

The matrix Gω̃B is associated with the angular velocity vector GωB = φ̇ û,
which is equal to an angular rate φ̇ about the instantaneous axis of rotation
û. Angular velocities of connected links of a robot may be added relatively
to find the angular velocity of the link (n) in the base frame B0.

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn =
nX
i=1

0
i−1ωi (7.316)

To work with angular velocities of relatively moving links, we need to
follow the rules of relative derivatives in body and global coordinate frames.

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (7.317)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (7.318)

Gd

dt
BrP (t) = B ṙP +

B
GωB × BrP =

B
GṙP (7.319)

Bd

dt
GrP (t) = GṙP − GωB × GrP =

G
B ṙP . (7.320)

The global velocity of a point P in a moving frame B at

GrP =
GRB

BrP +
GdB (7.321)

is

GvP = GṙP = Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB . (7.322)
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The velocity relationship for a body B having a continues rigid motion in
G may also be expressed by a homogeneous velocity transformation matrix
GVB

Gv(t) = GVB
Gr(t) (7.323)

where, GVB includes both, the translational and rotational velocities of B
in G.

GVB =
GṪB

GT−1B =

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
. (7.324)
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7.7 Key Symbols

a turn vector of end-effector frame
B body coordinate frame
c cos
d differential, prismatic joint variable
dx, dy, dz elements of d
d translation vector, displacement vector
D displacement transformation matrix
e rotation quaternion
e0, e1, e2, e3 Euler parameters, components of e
G,B0 global coordinate frame, Base coordinate frame
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
I = [I] identity matrix
J Jacobian
l length
p pitch of a screw
q joint coordinate,
q joints coordinate vector
r position vectors, homogeneous position vector
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
s location vector of a screw
sgn signum function
SSRMS space station remote manipulator system
T homogeneous transformation matrix
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T a set of nonlinear algebraic equations of q
v velocity vector
V velocity transformation matrix
û unit vector along the axis of ω
ũ skew symmetric matrix of the vector û
u1, u2, u3 components of û
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ angles of rotation about the axes of global frame
δ Kronecker function, small increment of a parameter

small test number to terminate a procedure
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θ rotary joint angle
θijk θi + θj + θk
ϕ, θ, ψ angles of rotation about the axes of body frame
φ angle of rotation about û
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω
ω1, ω2, ω3 components of ω

Symbol
[ ]
−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
` orthogonal
(i) link number i
k parallel
⊥ perpendicular
e∗ conjugate of e
∆P prismatic velocity coefficient matrices
∆R revolute velocity coefficient matrices
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Exercises

1. Notation and symbols.

Describe the meaning of

a- GωB b- BωG c- GGωB d- BGωB e- BBωG f- GBωG

g- 02ω1 h- 22ω1 i- 32ω1 j- GṘB k- 02ω̃1 l- kjωi

m- GrP (t) n- G2 vP o- ∆R p- ∆P q-
Gd

dt
r-

Bd

dt

s-
Gd

dt
GrP t-

Gd

dt
BrP u-

Bd

dt
BrP v- GṙP w- GḋP x- GVB

2. Local position, global velocity.

A body is turning about a global principal axis at a constant angular.
Find the global velocity of a point at Br.

Br =
£
5 30 10

¤T
(a) The axis is Z-axis, the angular rate is α̇ = 2 rad/ s when α =

30deg.

(b) The axis is Y -axis, the angular rate is β̇ = 2 rad/ s when β =
30deg.

(c) The axis is X-axis, the angular rate is γ̇ = 2 rad/ s when γ =
30deg.

3. Parametric angular velocity, global principal rotations.

A body B is turning in a global frame G. The rotation transformation
matrix can be decomposed into principal axes. Determine the angular
velocity Gω̃B and GωB .

(a) GRB is the result of a rotation α about Z-axis followed by β
about Y -axis.

(b) GRB is the result of a rotation β about Y -axis followed by α
about Z-axis.

(c) GRB is the result of a rotation α about Z-axis followed by γ
about X-axis.

(d) GRB is the result of a rotation γ about X-axis followed by α
about Z-axis.

(e) GRB is the result of a rotation γ about X-axis followed by β
about Y -axis.
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(f) GRB is the result of a rotation β about Y -axis followed by γ
about X-axis.

4. Numeric angular velocity, global principal rotations.

A body B is turning in a global frame G. The rotation transformation
matrix can be decomposed into principal axes. Determine the angular
velocity Gω̃B and GωB for Exercises 3.(a) − (f) using α̇ = 2 rad/ s,
β̇ = 2 rad/ s, γ̇ = 2 rad/ s and α = 30deg, β = 30deg, γ = 30deg.

5. Global position, constant angular velocity.

A body is turning about the a global principal axis at a constant
angular rate. Find the global position of a point at Br after t = 3 sec
if the body and global coordinate frames were coincident at t = 0 sec.

Br =
£
5 30 10

¤T
(a) The axis is Z-axis, the angular rate is α̇ = 2 rad/ s.

(b) The axis is Y -axis, the angular rate is β̇ = 2 rad/ s.

(c) The axis is X-axis, the angular rate is γ̇ = 2 rad/ s.

6. Turning about x-axis.

Find the angular velocity matrix when the body coordinate frame is
turning about a body axis.

(a) The axis is x-axis, the angular rate is ϕ̇ = 2 rad/ s, and the angle
is ϕ = 45deg.

(b) The axis is x-axis, the angular rate is θ̇ = 2 rad/ s, and the angle
is θ = 45deg.

(c) The axis is x-axis, the angular rate is ψ̇ = 2 rad/ s, and the angle
is ψ = 45deg.

7. Combined rotation and angular velocity.

Find the rotation matrix for a body frame that turns about the global
axes at with given rates, and calculate the angular velocity of B in
G.

(a) The axes are Z, then X, and then Y . The angles are 30 deg
about Z-axis, 30 deg about the X-axis, and 90 deg about the Y -
axis. The angular rates are α̇ = 20deg / sec, β̇ = −40 deg / sec,
and γ̇ = 55deg / sec about the Z, X, and Y axes respectively.

(b) The axes are X, then Y , and then Z. The angles are 30 deg
about X-axis, 30 deg about the Y -axis, and 90 deg about the Z-
axis. The angular rates are α̇ = 20deg / sec, β̇ = −40 deg / sec,
and γ̇ = 55deg / sec about the X, Y , and Z axes respectively.
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(c) The axes are Y , then Z, and then X. The angles are 30 deg
about X-axis, 30 deg about the Y -axis, and 90 deg about the Z-
axis. The angular rates are α̇ = 20deg / sec, β̇ = −40 deg / sec,
and γ̇ = 55deg / sec about the X, Y , and Z axes respectively.

8. F Global triple angular velocity matrix.

Determine the angular velocity Gω̃B and GωB for the global triple
rotations of Appendix A.

9. F Local triple angular velocity matrix.

Determine the angular velocity Gω̃B and GωB for the local triple
rotations of Appendix B.

10. Angular velocity, expressed in body frame.

A point P is at rP = (1, 2, 1) in a body coordinate B(Oxyz).

(a) Find B
Gω̃B when the body frame is turned 30 deg about the X-

axis at a rate γ̇ = 75deg / sec, followed by 45 deg about the
Z-axis at a rate α̇ = 25deg / sec.

(b) Find B
Gω̃B when the body frame is turned 45 deg about the Z-

axis at a rate α̇ = 25deg / sec, followed by 30 deg about the
X-axis at a rate γ̇ = 75deg / sec.

11. Global roll-pitch-yaw angular velocity.

Calculate the angular velocity Gω̃B for a global roll-pitch-yaw rota-
tion of

(a) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = −20 deg / sec, and γ̇ = 20deg / sec.

(b) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 0deg / sec,
β̇ = −20 deg / sec, and γ̇ = 20deg / sec.

(c) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = 0deg / sec, and γ̇ = 20deg / sec.

(d) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = −20 deg / sec, and γ̇ = 0deg / sec.

(e) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 0deg / sec,
β̇ = 0deg / sec, and γ̇ = 20deg / sec.

12. Roll-pitch-yaw angular velocity.

Find B
Gω̃B and Gω̃B for the global role, pitch, and yaw rates equal to

α̇ = 20deg / sec, β̇ = −20 deg / sec, and γ̇ = 20deg / sec respectively,
and having the following rotation matrix:
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FIGURE 7.9. An Eulerian wrist.

(a)

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
(b)

GRB =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
13. Eulerian spherical wrist.

Figure 7.9 illustrates an Eulerian wrist in motion. Assume B3 is a
globally fixed frame at the wrist point. Determine the angular velocity
3ω̃7 of the end-effector frame B7 for the following cases.

(a) Only the first motor is turning with θ̇4 about z3.

(b) Only the second motor is turning with θ̇5 about z4.

(c) Only the third motor is turning with θ̇6 about z5.

(d) The first motor is turning with θ̇4 about z3 and the second motor
is turning with θ̇5 about z4.

(e) The first motor is turning with θ̇4 about z3 and the third motor
is turning with θ̇6 about z5.

(f) The first motor is turning with θ̇4 about z3 and the second motor
is turning with θ̇5 about z4.
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FIGURE 7.10. A slider on a rotating bar.

(g) The first, second, and third motors are turning with θ̇4, θ̇5, θ̇6
about z3, z4, and z5.

14. Angular velocity from Rodriguez formula.

We may find the time derivative of GRB = Rû,φ by

GṘB =
d

dt
GRB = φ̇

d

dφ
GRB.

Use the Rodriguez rotation formula and find Gω̃B and B
Gω̃B.

15. Skew symmetric matrix

Show that any square matrix can be expressed as the sum of a sym-
metric and skew symmetric matrix.

A = B + C

B =
1

2

¡
A+AT

¢
C =

1

2

¡
A−AT

¢
16. F A rotating slider.

Figure 7.10 illustrates a slider link on a rotating arm. Calculate

Gdı̂

dt
,

Gdĵ

dt
,

Gdk̂

dt
Gd2ı̂

dt2
,

Gd2ĵ

dt2
,

Gd2k̂

dt2

and find Bv and Ba of m at mass center C of the slider to find
B
Gam =

Gd
dt

Bvm using the rule of mixed derivative.

Gd

dt

µ
Bd

dt
r

¶
=

Bd

dt

µ
Bd

dt
r

¶
+ B

GωB ×
µ
Bd

dt
r

¶
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FIGURE 7.11. A planar polar manipulator.

17. F Differentiating in local and global frames.

Consider a local point at BrP . The local frame B is rotating in G by
α̇ about the Z-axis. Calculate

Bd
dt

BrP ,
Gd
dt

GrP ,
Bd
dt

GrP , and
Gd
dt

BrP .

(a) BrP = t̂ı+ ĵ

(b) BrP = t̂ı+ tĵ

(c) BrP = t2ı̂+ ĵ

(d) BrP = t̂ı+ t2ĵ

(e) BrP = t̂ı+ tĵ+ tk̂

(f) BrP = t̂ı+ t2ĵ+ tk̂

(g) BrP = ı̂ sin t

(h) BrP = ı̂ sin ı̂+ ĵ cos t+ k̂

18. F Velocity analysis of a polar manipulator.

Figure 7.11 illustrates a planar polar manipulator with joint variables
θ and d.

Determine 0T1, 1T2, 0T2, 0V1, 1V2, 0V2, and velocity of the tip point
of the manipulator.

19. F Skew symmetric identity for angular velocity.

Show that
Rω̃RT = gRω.

20. F Transformation of angular velocity exponents.

Show that
B
Gω̃

n
B =

GRT
B Gω̃

n
B
GRB .



7. Angular Velocity 435
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FIGURE 7.12.

21. F An angular velocity matrix identity.

Show that
ω̃2k+1 = (−1)k ω2k ω̃

and
ω̃2k = (−1)k ω2(k−1)

¡
ω2 I− ωωT

¢
.

22. F Velocity analysis of a spherical manipulator.

Figure 7.12 illustrates a spherical manipulator with joint variables θ1,
θ2, and d.

Determine 0V1, 1V2, 2V3, 0V2, 0V3, and velocity of the tip point of the
manipulator.
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