7
Angular Velocity

Angular velocity of a rotating body B in a global frame G is the instanta-
neous rotation of the body with respect to G. Angular velocity is a vectorial
quantity. Using the analytic description of angular velocity, we introduce
the velocity and time derivative of homogenous transformation matrices.

FIGURE 7.1. A rotating rigid body B(Oxyz) with a fixed point O in a global
frame G(OXY Z).

7.1 Angular Velocity Vector and Matrix

Consider a rotating rigid body B(Ozyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 7.1. The motion of the body can be
expressed by a time varying rotation transformation matrix between the
global and body frames. The transformation matrix maps the instantaneous
coordinates of any fixed point in body frame B into their coordinates in
the global frame G.

Sr(t) = “Rp(t) Br (7.1)

The velocity of a body point in the global frame is
Gy(t) = “k(t) = “Rp(t) Pr = qap Cr(t) = qwp x “r(t) (7.2)

where gwp is the angular velocity vector of B with respect to G. It is equal
to a rotation with angular rate ¢ about an instantaneous axis of rotation
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FIGURE 7.2. A body fixed point P at Pr in the rotating body frame B.

w1 .
w=| wy | =00 (7.3)
w3

The angular velocity vector is associated with a skew symmetric matrix
cwp called the angular velocity matrix

0 —W3 wo
w = ws 0 —Ww1 (74)

—W2 w1 0

where ) '
cop = “Rp“RE = ¢ (7.5)

Proof. Consider a rigid body with a fixed point O and an attached frame
B(Ozyz) as shown in Figure 7.2. The body frame B is initially coincident
with the global frame G. Therefore, the position vector of a body point P
is

Sr(ty) = Pr. (7.6)

The global time derivative of “r is:

Gy _ G-_G_dG(t)—G—d[GR (t)B]—G—d[GR (1) “x(to)]
D 7 R T
— Chp(t)Pr (7.7)

Eliminating Zr between (7.1) and (7.7) determines the velocity of the point
in global frame. .
v = “Rp(t) “RE(t) “r(t) (7.8)
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We denote the coefficient of “r(t) by @
cop = “Rp “R}, (7.9)
and write the Equation (7.8) as
v = qip “r(t) (7.10)
or as
Gy = gwp x %r(t). (7.11)

The time derivative of the orthogonality condition, “Rp GRE =1 in-
troduces an important identity

“Rp °RL+ “Rp “RLE =0 (7.12)

which can be utilized to show that qop = [GRB GR%] is a skew symmetric
matrix, because

. . T
CRp ORY = [GRB GRE} . (7.13)

The vector gw B is called the instantaneous angular velocity of the body B
relative to the global frame G as seen from the G frame.

Since a vectorial equation can be expressed in any coordinate frame, we
may use any of the following expressions for the velocity of a body point
in body or global frames

ng = ng X GI‘p (714)
ng = ng X BI‘p (715)

where gv p is the global velocity of point P expressed in global frame and
gv p is the global velocity of point P expressed in body frame.

G rp) (7.16)

G B G B B
GVp = RB GVpP = RB (GwB X

gv p and gv p can be converted to each other using a rotation matrix.

Bvp = YREL 8vp= YR} qop Grp= “RL °Rp “RE Srp
_ GRE GRB grp (717)
showing that .
Bop = “RL SRp (7.18)

which is called the instantaneous angular velocity of B relative to the global
frame G as seen from the B frame. From the definitions of q&p and g&; B
we are able to transform the two angular velocity matrices by

cop = ©YRpBop “RE (7.19)
Bop = YRE Sop “Rp (7.20)
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or equivalently

GRB = oWB GRB (7.21)
“Rp = C%RpEas (7.22)
cwp “Rp = “Rp ap. (7.23)

The angular velocity of B in G is negative of the angular velocity of G
in B if both are expressed in the same coordinate frame.
Sop = —Swe (7.24)
Bop = —Bag. 7.25)
cwp and can always be expressed in the form
cwp = wi (7.26)

where 4 is a unit vector parallel to qwp and indicates the instantaneous
axis of rotation.
Using the Rodriguez rotation formula (3.4) we can show that

Riy=0duRay (7.27)

and therefore .
w=0¢1u (7.28)

or equivalently
wp = lim G—dR = lim g (0% cos ¢ + using + @ +1I)

G¥B = @0 dt ¢—0 dt

and therefore _
w = ¢. (7.30)

Example 198 Rotation of a body point about a global axis.

The slab shown in Figure 2.5 is turning about the Z-azis with & =
10deg /s. The global velocity of the corner point P(5,30,10), when the slab
s at o = 30deg, is:

GVP = GRB(t) BI‘p (731)
Gy cosa —sina 0 ] 5
= T sinae  cosa 0 30
t 1| 10
—sina —cosa 0 [ 5
= & cosa —sina 0 30
0 | 10
1 —sin§  —cos % 0 5 —4.97
= ﬂ cos E, —sinZ 0 30 | = | —1.86
180 6 6

0 0 0 10 0
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at this moment, the point P is at:

GI‘p — GRB BI'P (7.32)
cosg —sing 0 5 —10.67
= sing cosg 0 30 | = 28.48
0 0 1 10 10

Example 199 Rotation of a global point about a global axis.

The corner P of the slab shown in Figure 2.5, is at Prp = [ 5 30 10
When it is turned o = 30deg about the Z-axis, the global position of P is:

I

GI‘p — GRB BI'P (7.33)
cosg —sing 0 5 —10.67
= sing cosg 0 30 | = 28.48
0 0 1 10 10

If the slab is turning with & = 10deg /s, the global velocity of the point P
would be

GVP = GRBGREGPP (734)
It
= ko] e -
O g o o 0 0 1 10
—4.97
| —1.86
0

Example 200 Principal angular velocities.
The principal rotational matrices about the axes X, Y, and Z are:

10 0
Rx,= 10 cosy —siny (7.35)
0 siny cosvy
cosf 0 sing |
Ryps = 0 1 0 (7.36)
| —sing 0 cosf |
[ cosa —sina 0 ]
Rzo=| sina cosa O (7.37)
0 0 1|

and hence, their time derivatives are:

) [0 0 0
Rx~,=4] 0 —siny —cosvy (7.38)
| 0 cosy —siny
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[ —sinB8 0 cosf

Rys =7 0 0
—cosf 0 —sinf |

o

—sina —cosa 0 ]
Rz o= c cosae —sina 0
0 0 0

(7.39)

(7.40)

Therefore, the principal angular velocity matrices about axes X, Y, and Z

are

) 0 0 O
qwx = RX,7R§W =410 0 -1
0 1 0
. [0 0 1]
Wy = RYﬁR;ﬁ =B 0 00
| -1 0 0 |
' [0 —1 0]
¢z =RzoaRyo=c¢| 1 0 0
|0 0 0]
which are equivalent to
cox = I
cwy = pJ
¢z = aK

and therefore, the principal angular velocity vectors are

GWx = wa:"yf
GWy = wyjzﬁj
GWz = LUZIA(:(‘)[IA(.

(7.41)

(7.42)

(7.43)

(7.44)
(7.45)
(7.46)

(7.47)
(7.48)
(7.49)

Utilizing the same technique, we can find the following principal angular

velocity matrices about the local axes.

00 0

G0y =RI Roy=—0|0 0 -1 |=—i
01 0
[0 0 1]

8oy =RIgR,o=-0| 0 0 0 |=-0j
| -1 0 0|

[0 —1 0] i

8w =RI R.,=—¢| 1 0 0|=-¢k
|0 0 0|

(7.50)

(7.51)

(7.52)
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Example 201 Decomposition of an angular velocity vector.
Every angular velocity vector can be decomposed to three principal angu-
lar velocity vectors.

GwWB = (GWB'j)f+(GWB'j>j+(GwB'K)K
= wxl+wyJ+wz K=41+8J+ak
= wx twy +wz (7.53)

Example 202 Combination of angular velocities.
Starting from a combination of rotations

Ry = "Ri 'Ry (7.54)
and taking derivative, we find
'Ry ="Ri 'Ry + "Ry ' Ry. (7.55)

Now, substituting the derivative of rotation matrices with

Ry = o@2°Ry (7.56)
'R = o01°R; (7.57)
'Ry = 1@2'Ry (7.58)
results in
002 Ry = @01 Ri'Ro+ "Ry 12 'Ry
= o001 Ry + "Ry 1@ "RT°R, 'R,
= o@1"Ro+ (@02 "Ry (7.59)
where
OR1 1@ °RT = %,. (7.60)
Therefore, we find
oW = oW1 + (1]@2 (761)

which indicates that the angular velocities may be added relatively
0wz = owi + Jwa. (7.62)

This result also holds for any number of angular velocities.

own = ow1 + Jwo+ Jws+ -+ 0w, = Z iJwi (7.63)
i=1
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Example 203 Angular velocity in terms of Euler frequencies.
The angular velocity vector can be expressed by Euler frequencies as de-
scribed in Chapter 2. Therefore,

Bwp = wiitwyjtwk=pé,+ 08+ ey
sin 6 sin ¥ ] cos 10
= ¢| sinfcosy | +60| —siny | +¢ | 0
cosf 0 1
sinfsiny cosvy 0 @
= sinfcosy —siny 0 0 (7.64)
cosf 0 1 w

and

@sin@sinw—i—@cosw

Swp = PR Ewp= PR | ¢sinfcostp —Osiny
pcost + ¢
0 cosep sinfsing @
= 0 sing —cospsinf 0 (7.65)
1 0 cos 0

where the inverse of the Euler transformation matriz is:

coch) — clspsty  —cpsih — chepsp  sOsp
BRG = | cvsp+ clepsyy  —spsip + chepep  —cpsh (7.66)
sfsyp sfcy ct

Example 204 Angular velocity in terms of rotation frequencies.
Appendices A and B show the 12 global and 12 local axes’ triple rotations.
Utilizing those equations, we are able to find the angular velocity matriz
and vector of a rigid body in terms of rotation frequencies. As an example,
consider the FEuler angles transformation matriz in case 9, of the Appendiz
B.
BRG =R.yR.9R., (7.67)

The angular velocity matriz is then equal to
poc = PRePRE
. dR, . dR, ¢ - dR, "
= R, R, P 4+ OR, y—"R, ~ R, oR,
<<P wheo =g + W gg Bep T (0 dp Lo ,w)

X (RoyRuoR. )"

. dR., . dRy 0
= SDRZJ/’R%O d(prz¢R§,0R£¢+eRzaw do Riesz
- dR,
+p —2YRT (7.68)

dyp
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which, in matriz form, is

0 cos 6 —sin 6 cos
BWg = ¢ —cosf 0 sin 6 sin v
sinf cosvy —sinfsiny 0
' 0 0 sin ' 0 10
+0 0 0 cosy [+ | -1 0 0 (7.69)
—siny —cosy 0 0 0 0
or
-0 v+ pch @sz/J — pshcy
BOG = =1 — pcb 0 Ocp + psfsp | . (7.70)
—0sy + psbcy  —Oc) — psbhsip 0
The corresponding angular velocity vector is
9_01/1 + ¢pslsy
Bwg = — | —0s¢+ psbcy
L W+ pcd
[ sinfsiny cosy 0 ¢
= — | sinfcosyy —sinyy 0O 0 . (7.71)
| cosd 0 1 "
However,
Boe = —Bap (7.72)
hwe = —fwp (7.73)
and therefore,
sinfsiny cosy 0 @
Bwp = | sinfcosyy —siny 0 6 (7.74)
cos 0 1 1/)

Example 205 % Coordinate transformation of angular velocity.
Angular velocity tws of coordinate frame By with respect to By and ex-
pressed in By can be expressed in base coordinate frame By according to

OR1 102 'RT = %,. (7.75)

To show this equation, it is enough to apply both sides on an arbitrary
vector °r. Therefore, the left-hand side would be
ORl 1(.:)2 ORI{ OI‘ = ORl 1(.:)2 1R0 OI‘ = ORl 1&}2 11‘
= 0R1 (1(.02 X 11‘) = ORl 1Wo X ORl 1I'

= Ywy x Or (7.76)
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which is equal to the right-hand side after applying on the vector °r.

005 %r = %y x Or (7.77)

Example 206 % Time derivative of unit vectors.
Using Equation (7.15) we can define the time derivative of unit vectors

of a body coordinate frame B(i, 3, k), rotating in the global coordinate frame
G(I,J,K).

Gdi A
— = Bwp xi (7.78)
G 3

) .
— = Bwp xj (7.79)
Gdk R
— = Bwp xk (7.80)

Example 207 % Angular velocity in terms of quaternion and Euler para-
meters.

The angular velocity vector can also be expressed by Euler parameters.
Starting from the unit quaternion representation of a finite rotation

Cr=c(t) Bre (t)=e(t) Pre (1) (7.81)
where
e = eyte (7.82)
e el=e¢—e (7.83)
we can find
Ci=¢Pre+ePrer=ce “r4 reé* =26e" “r (7.84)

and therefore, the angular velocity quaternion is
cwp = 2ée*. (7.85)
We have used the orthogonality property of unit quaternion
ecel=cer =1 (7.86)

which provides
e +ee* =0. (7.87)

The angular velocity quaternion can be expanded using quaternion prod-
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ucts to find the angular velocity components based on Euler parameters.
cwp = 26e*=2(é+¢€)(eg—e)

= 2(éoeo+egé—éoe+é~e—éxe)

0
_ 9 €p€1 — e1€g + e2€3 — e3€2
€0é2 — €2é0 — €1é3 + €3é1
L €0é3 + €1é2 — €2é1 — egéo
[ éo —é1 —é2 —é3 €o
€1 € —€3 €2 —e1
— 2| @ C0 -~ : (7.88)
€2 €3 €0 —€1 —€2
€3 —€y €1 € —e3

The scalar component of the angular velocity quaternion is zero because
épeo + €-e = égeg + e161 + eaég + ezé3 = 0. (789)

The angular velocity vector can also be defined as a quaternion

Sop=2% ¢ (7.90)

to be utilized for definition of the derivative of a rotation quaternion

1o,
¢ = 5 Gwn @ (7.91)

A coordinate transformation can transform the angular velocity into a body
coordinate frame

Bwp = e Gwpe=2e"¢
ep €1 ey €3 €o
—e e e3 —e e
= 2 toor e . (7.92)
—€2 —€3 €y €1 €2
—e3 —es €1 e €3
and therefore,
—> —
Bwp=2e" ¢ (7.93)
— 1 «—>
e = 5? Bwp. (7.94)

Example 208 % Differential of Euler parameters.
The rotation matriz © Rp based on Euler parameters is given in Equation
(3.82)

[ e2+e2 —e3—e2  2(erea —epes) 2 (egea + e1€3)
CRp = 2(eges +er1ea) et —et+ed—ed  2(eze3 —eger)
2 (e1e3 — epe2) 2 (ege1 +ege3) et —e —ed+e3

i1 T2 T13
= T2l T22  T23 (7.95)
31 T32 7133
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and the individual parameters can be found from any set of Equations
(8.149) to (3.152). The first set indicates that

€0

€1

1
j25\/1 + 711+ o2 + 733

and therefore,

to show that

173 — 123 1rig —ra lro; — 112
322 =--—2 o 3=-——-= (796
1 ¢ 1 ¢ BEY e (799)
. 711 + 722 + 733
= == = % 7.97
€0 860 ( )
. r . . )
€1 = 12 (32 — 723) €0 — (132 — T23) €0) (7.98)
€0
. r . . )
€2 = 5 ((F13 —7s1) €0 — (113 —731) €o) (7.99)
€0
. r . . )
€3 = 12 ((P21 — 712) €0 — (121 — T12) €0) - (7.100)
€0
We may use the differential of the transformation matriz
“Rp = cwp“Rp
. 1
o = 5 (e —exws —eaws) (7.101)
1
é1 = 3 (eow1 + eaws — e3wa) (7.102)
1
€2 = 5 (eows —erws — ezwi) (7.103)
1
€z = 3 (eows + e1wa — eawy) . (7.104)

Similarly we can find é1,

a matrixz form

or

€0
€1
€2
€3

€o
€1
€2
€3

N =

w2
w3

€0
€1
€2
€3

—W1 —W2
0 w3
—Ws3 0
w2 —Ww1
—€3 —€2
€0 —€3
€1 €0
—€2 €1

—e;
€2
—es
€0

€2, and éz, however the final result can be set in

€0
e (7.105)
€3

(7.106)
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Example 209 % Elements of the angular velocity matriz.
Utilizing the permutation symbol introduced in (3.144)

1

allows us to find the elements of the angular velocity matriz, &, when the
angular velocity vector, w = [ w1 Wa W3 ]T, s given.

Wij = €ijk Wk (7.108)

7.2 Y Time Derivative and Coordinate Frames

The time derivative of a vector depends on the coordinate frame in which
we are taking the derivative. The time derivative of a vector r in the global
frame is called G-derivative and is denoted by

Gd

EI‘
while the time derivative of the vector in the body frame is called the
B-derivative and is denoted by

Bq
—r.
dt

The left superscript on the derivative symbol indicates the frame in which
the derivative is taken, and hence, its unit vectors are considered constant.
Therefore, the derivative of Brp in B and the derivative of “rp in G are:

B
dBr B

—Prp = ip=Cvp=idit+yj+ik (7.109)
G e
d—fGrp = Cip=Cvp=XI+YJ+ZK (7.110)

It is also possible to find the G-derivative of Zrp and the B-derivative of
Grp. We use Equation (7.15) for the global velocity of a body fixed point P,
expressed in body frame to define the mixed derivatives. The G-derivative
of a body vector Prp is denoted by

B “dp
= — 7.111
ovp =" TP ( )

and similarly, the B-derivative of a global vector “rp is denoted by

G BdG
BVP = E rp. (7112)
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FIGURE 7.3. A moving body point P at Zr(t) in the rotating body frame B.

When point P is moving in frame B while B is rotating in G, the G-
derivative of Prp (t) is defined by
“d
E BI’p (t) = Bf‘p + ng X BI’p = gf‘p (7113)

and the B-derivative of “rp is defined by

Pdg
dt

rp (t) = Gf‘p — qgwp X GI‘p = gf‘p (7114)

Proof. Let G(OXY Z) with unit vectors I, J, and K be the global co-
ordinate frame, and let B(Ozyz) with unit vectors 2, j, and k be a body
coordinate frame. The position vector of a moving point P, as shown in
Figure 7.3, can be expressed in the body and global frames

Prp(t) = a@®ity®)j+z(t

t)k (7.115)
“rp(t) = XWI+Y@)J+Z(t

VK. (7.116)

The time derivative of Brp in B and Srp in G are

Bd R

EBrp = Bip=Bvp=iit+yj+ik (7.117)
Gdq Coa Ao

EGrp = %p=CY%p=XI+YJ+ZK (7.118)

because the unit vectors of B in Equation (7.115) and the unit vectors of
G in Equation (7.116) are considered constant.
Using the definition (7.111), we can find the G-derivative of the position
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VectorBrp as
Gd Gq -
E BI‘P E (LU’Z—‘ij"i‘Zk)
= g'ci+”+zl%+x%+ G—derzG—df€
- 47 at " Var dt
B B

= i~p+gw3x(xi—l—yj+zl%>=3i~p+gw3x rp

Bq
= EBrp—i- ng x Brp. (7.119)

We achieved this result because the x, y, and z components of Prp are
scalar. Scalars are invariant with respect to frame transformations. There-
fore, if x is a scalar then,

—r=—x=4%. (7.120)

The B-derivative of Crp is

B B
day, —d(Xf+Yj+Zf()
dt dat

e e By BqJj Bak
= XI+YJ+ZK+X—+Y—J+Z—

dt dt dt
= %p+ Gwg x %rp (7.121)
and therefore,
Bq
EGI‘p = GI"p — aqwp X GI‘p. (7122)

The angular velocity of B relative to G is a vector quantity and can be
expressed in either frames.

ng = wXIAJrLijerZIA( (7.123)

Gwp = wgi+wy)+w.k. (7.124)
|

Example 210 Rotation of B about Z-axis.
A body frame B is rotating in G with & about the Z-axis. Therefore, a
point at Br will be seen at

GI‘p == GRB BI‘ = Rz’a(t) BI’ (7125)
cosa —sina 0 T Tcosa — ysina
= sina  cosa 0 Yy | = | ycosa+xsina

0 0 1 z z
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The angular velocity matrixz of B is

ciop = “Rp“RE = aK (7.126)
that gives .
cwp = aK. (7.127)
We can find the body expression of cp
Bop = °RE Sop “Rp = ok (7.128)
and therefore, .
Swp = ak. (7.129)
Now we can find the following derivatives.
Bd
EBI': Bi=0 (7.130)
Gy Gy rcosa — ysina
Ecr = Gf':% ycosa;rzsinoz (7.131)

= (—zasina—yacosa)l + (zicosa —yasina) J + K
For the mized derivatives we start with the global velocity expressed in B.

Gd

o = ng X BI‘
0 x —y
= a|l 0| x|y |=a|
1 z 0
= —ydi+azaj= oF (7.132)

We can transform gf' to the global frame and find the global expression
velocity, CT.

“ = YRp g
cosa —sina 0 —y —yCcosa — rsina
= &| sina cosa O T =& | xcosa—ysina
0 0 1 0 0
= &(—ycosa—xsina)l 4 a(zcosa—ysina).J (7.133)

The next derivative is the velocity of body points relative to B and expressed
in G.

BdG G G
—%r=%"f— qgwp x “r (7.134)
dt
—ycosa — rsina 0 rcosa — ysino 0
= « TCcosa — ysina —a| 0| x| ycosa+zxsina | = | 0

0 1 z 0
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Example 211 Time derivative of a moving point in B.
Consider a local frame B, rotating in G by & about the Z-axis, and a
moving point at Prp(t) = ti . Therefore,

GI’p = GRB BI’p = Rz’a(ﬂ BI‘p (7135)
cosa —sina 0 t R .
= sinae  cosa 0 0 | =tcosal +tsinal.
0 0 1 0

The angular velocity matriz is

cip = R ®RE = aK (7.136)
that gives R
cwp = aK. (7.137)
It can also be verified that
Bop=YRE Sop “Rp = ak (7.138)
and therefore, .
Bwp = ak. (7.139)
Now we can find the following derivatives
Bq
- Byp = Bip—i (7.140)
G
d GI‘p = Gf‘p

dt
= (cosa—tasina)l + (sino+ticosa)J. (7.141)

For the mized derivatives we start with

GdB _ BdB B B
E rp = E rp+ qwp X "rp
1 0 t 1
= O|+a]|] 0] x| 0|=]ta
0 1 0 0
= i+taj= Sip (7.142)

which is the global velocity of P expressed in B. We may, however, trans-
form Bip to the global frame and find the global velocity expressed in G.

“tp = CYRpBip
cosa —sina 0 1 cosa — tasina
= sinaw cosa O td | = | sina+ tacosa
0 0 1 0 0
= (cosa—tasina)l + (sina + tacosa) J (7.143)
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The next derivative is

BdG _  Gs G
E rp = r'p — gwp X "Irp
[ cosa — tasina 0 tcos o
= sina+tacosa | —a| 0 | x | tsina
i 0 1 0
[ cosa
= sina | = (cosa) I + (sina)J = Gip (7.144)
0

which is the velocity of P relative to B and expressed in G. To express this
velocity in B we apply a frame transformation.

Pip = ©RE Gip
cosae —sina 0 "' T cosa 1
= sina  cosa 0 sina | = | 0 | =i (7.145)
0 0 1 0 0

Sometimes it is more applied if we transform the vector to the same frame in
which we are taking the derivative and then apply the differential operator.
Therefore,

Gd Gd
EBPP = E (GRB BI‘p)
Gy tcosa cosa — tasin o
= — | tsina | = | sina+tacosa (7.146)
dt 0 0
and
Bdo Pdgpre y_Pd| ! ;
E rp = % ( RB I‘P) = E 8 = 8 . (7147)

Example 212 Orthogonality of position and velocity vectors.
If the position vector of a body point in global frame is denoted by r then

dr
= .r=0. 7.148
at " (7.148)
To show this property we may take a derivative from
r-r=r’ (7.149)
and find
d dr dr dr

—(r-r)=—. —=2—r=0. 1
dt(r r) p r+r 7 i 0 (7.150)

The Equation (7.148) is correct in every coordinate frame and for every
constant length vector, as long as the vector and the derivative are expressed
in the same coordinate frame.
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Example 213 % Derivative transformation formula.

The global velocity of a fixed point in the body coordinate frame B (Oxyz)
can be found by Equation (7.2). Now consider a point P that can move in
B (Ozyz). In this case, the body position vector Brp is not constant and
therefore, the global velocity of such a point expressed in B is

G
d—fBI'p:d—fBI‘p—I— ng X BI‘p: gf‘p (7151)

Sometimes the result of Equation (7.151) is utilized to define transfor-

mation of the differential operator from a body to a global coordinate frame

“dn_ BdD 5 5o = EO 7.152

o @ TewsXceH= (7.152)
however, special attention must be paid to the coordinate frame in which the
vector O and the final result are expressed. The final result is gD showing
the global (G) time derivative expressed in body frame (B). The vector O
might be any vector such as position, velocity, angular velocity, momentum,
angular velocity, or even a time-varying force vector.

The Equation (7.152) is called the derivative transformation for-
mula and relates the time derivative of a vector as it would be seen from
frame G to its derivative as seen in frame B. The derivative transforma-
tion formula (7.152) is more general and can be applied to every vector for
derivative transformation between every two relatively moving coordinate
frames.

Example 214 % Differential equation for rotation matriz.
Equation (7.5) for defining the angular velocity matriz may be written
as a first-order differential equation

d

EGRBf “Rpcwp =0. (7.153)
The solution of the equation confirms the exponential definition of the ro-
tation matriz as

“Rp =t (7.154)

or
ot =¢u=1n(°Rg). (7.155)

Example 215 % Acceleration of a body point in the global frame.

The angular acceleration vector of a rigid body B(Oxzyz) in the global
frame G(OXY Z) is denoted by gap and is defined as the global time deriv-
ative of qwpg.

Gd

GOB = - GWB (7.156)
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FIGURE 7.4. A body coordinate frame moving with a fixed point in the global
coordinate frame.

Using this definition, the acceleration of a fized body point in the global
frame is

G Gd G
ap = E(GwBX I‘p)

= gop X GI‘p + gwp X (GwB X GI‘p). (7.157)

Example 216 % Alternative definition of angular velocity vector.

The angular velocity vector of a rigid body B(i,),k) in global frame
G(I,J,K) can also be defined by

L Cdy Gk . Gy

Bwp :z(W k)+g(7~i)+k(ﬁ-j). (7.158)

Proof. Consider a body coordinate frame B moving with a fixed point in the
global coordinate frame G. The fixed point of the body is taken as the origin
of both coordinate frames, as shown in Figure 7.4. In order to describe the
motion of the body, it is sufficient to describe the motion of the local unit
vectors i, j, k . Let rp be the position vector of a body point P. Then, Brp
18 a vector with constant components.

Brp =i +yj+ zk (7.159)

When the body moves, it is only the unit vectors 7, j, and k that vary
relative to the global coordinate frame. Therefore, the vector of differential
displacement s

drp =xdi+ydj+ zdk (7.160)

which can also be expressed by

drp = (drp-i)i+ (drp-j)j+ (drp : k:) k. (7.161)
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Substituting (7.160) in the right-hand side of (7.161) results in
drp = (x@.dz+yz.dj+zi.d1%)z
+ (a;j.di+yj-dj+zj.di%)j
+ (xl%.di+y/%-dj+z1%-dl% i (7.162)

Utilizing the unit vectors’ relationships

jodi = —i-dj (7.163)
k-dj = —j-dk (7.164)
i~ dk —k-di (7.165)
idi = j-dj=k-dk=0 (7.166)
i) = jk=k-i=0 (7.167)
11 o= 7=k k=1 (7.168)
the drp reduces to
drp = (z@.dk—yj-di)@
+ (2 di— 2k dj) j
+ (yfc . dj—xi- dl%) J. (7.169)

This equation can be rearranged to be expressed as a vector product
drp = ((1% -dj)i+ (i - dk)j+ (j-di)fc) X (a:i+yj+ zk:) (7.170)
or

. Ggp G dk Gdi - "
Byp = <(lg-d—tj)i+(i- —)i+ (- —Z)k> x (mi+yj+zk>. (7.171)

Comparing this result with
f‘p = qWp X rp

shows that

Gajg . G dk - (Cdi
B — 7 _'] . a3 - .7 - .3
GwB—z( 7 k)+j< 7 z) +k< pm ]). (7.172)
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Example 217 % Alternative proof for angular velocity definition (7.158).
The angular velocity definition presented in Equation (7.158) can also be
shown by direct substitution for © Rp in the angular velocity matriz Bop

Bop=“RECRp. (7.173)
Therefore,
(i1 i-J i-K Gy Ii I-j 1-k
gos = | J L gd JK || i Jg o dek
| kT k-J kK K K-j K-k
T Gdi . Cdj . Cdk
;.2 ) _ar
a " at U a
G Gd; Gk
= go_w s T4 AR 7.174
TR A T T (7.174)
. Gdp . G45 . Gk
LY de dt dt

which shows that

T

Bwp=| 2. (7.175)

>

dt
Example 218 % Second derivative.
In general, dr/dt is a variable vector in G(OXY Z) and in any other
coordinate frame such as B (oxyz). Therefore, it can be differentiated in

either coordinate frames G or B. However, the order of differentiating is
important. In general,

<>

BagGdr | dBdr

dt dt 7 dt dt
As an example, consider a rotating body coordinate frame about the Z-axis,
and a variable vector as

(7.176)

Cr=tI. (7.177)
Therefore,
Gdr .
G
—_— = =1 7.178
o t (7.178)
and hence,
G R cosp sinp 0 1
B (7) = Bi= R;w [I} = | —sinp cosp 0 0
0 0 1 0

= cosyi—sinpj (7.179)
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which provides

BqGd
%d—: — —(sin @i — (cos j (7.180)
and B
d“dr -
e .
—— | = —pJ. 7.181
<dt dt > 7 (7.181)
Now R
By = RZO [tl] = tcos i — tsin ) (7.182)
that provides
Bdr o R . . N
e (—tpsing + cos )i — (sing + tpcosp) j (7.183)
and
Bdr
¢ (W) = Gi=Ryz, ((—tpsing +cosyp)i— (sing + tpcosp) j)
cosp —sinp 0 —tpsing + cosp
= sing cosp 0 —siny — tpcos
0 0 1 0
= T—tpJ (7.184)
which shows - B
d“dr 4 d“dr
—— =—(p+tp)J # ——. 7.185
T L R (7.185)

7.3 Rigid Body Velocity

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z), as shown in
Figure 7.5. The rigid body can rotate in the global frame, while the origin of
the body frame B can translate relative to the origin of G. The coordinates
of a body point P in local and global frames are related by the following
equation:

GI‘p = GRB BI‘p + GdB (7.186)

where “dp indicates the position of the moving origin o relative to the
fixed origin O.
The velocity of the point P in G is

Svp = Cip=CYRpPrp + %p
e G’ e G G
= qwp gre+ “dp = gwp (“rp— “dp) + “dp

= qwp X (GI'P — GdB) + GaB. (7187)
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FIGURE 7.5. A rigid body with an attached coordinate frame B (oxyz) moving
freely in a global coordinate frame G(OXY 7).

Proof. Direct differentiating shows

“vp = G—d “rp = %p= G—d (“Rp Prp+ “dp)
dt dt
= CSRpPrp+ %dp. (7.188)
The local position vector Prp can be substituted from (7.186) to obtain
Svp = CRpORL (Crp - Ody)+ Ody

= cwp (“rp— %dp) + Ydp

= cwp x (°rp— %dp) + %dp. (7.189)
It may also be written using relative position vector

Gvp = qwp X grp + %dg. (7.190)

Example 219 Geometric interpretation of rigid body velocity.

Figure 7.6 illustrates a body point P of a moving rigid body. The global
velocity of the point P
GVp = qwp X grp + GdB (7191)
is a vector addition of rotational and translational velocities, both expressed
in the global frame. At the moment, the body frame is assumed to be coin-
cident with the global frame, and the body frame has a velocity ©dp with
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X

FIGURE 7.6. Geometric interpretation of rigid body velocity.

respect to the global frame. The translational velocity Gdp is a common
property for every point of the body, but the rotational velocity qwp x Grp
differs for different points of the body.

Example 220 Velocity of a moving point in a moving body frame.

Assume that point P in Figure 7.5 is moving in the frame B, indicating
by a time varying position vector Brp(t). The global velocity of P is a
composition of the wvelocity of P in B, rotation of B relative to G, and
velocity of B relative to G.

G—dGI‘p = % (GdB + GRB Bl‘p)
dt dt
Gy d
_ _%c¢ 4 G¢p B
= 3 4+ 5 (CRsTre)
= Ydp+ Sip+ qwp x Grp (7.192)

Example 221 Velocity of a body point in multiple coordinate frames.

Consider three frames, By, By and Bs, as shown in Figure 7.7. The
velocity of point P should be measured and expressed in a coordinate frame.
If the point is stationary in a frame, say Bs, then the time derivative of
2rp in By is zero. If the frame By is moving relative to the frame B1, then,
the time derivative of 'rp is a combination of the rotational component
due to rotation of Bs relative to By and the velocity of Bo relative to By.
In forward velocity kinematics of robots, the velocities must be measured in
the base frame By. Therefore, the velocity of point P in the base frame is
a combination of the velocity of Bo relative to By and the velocity of B
relative to By.
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FIGURE 7.7. A rigid body coordinate frame B3 is moving in a frame B that is
moving in the base coordinate frame By.

The global coordinate of the body point P is

OI’p = Od1 + (1)d2 + gI'p (7.193)
Od1 + ORl 1d2 + ORQ 2I‘p. (7194)

Therefore, the velocity of point P can be found by combining the relative
velocities

Ody + (°Ry *dy + °Ry 'dy) + "Ry %rp
= 0(;11 + 8(.«)1 X (leQ + 0R1 1C.12 + 8(4.72 X gI‘p (7195)

OI"P

Most of the time, it is better to use a relative velocity method and write

8VP = 8V1 + (1JV2 + SvP (7.196)
because
ovi = 0du (7.197)
Ovo = fJwix fdy+ °Ry'ds (7.198)
Svp = 8w2 x Jrp (7.199)

and therefore,

Ovp = %d; + Jwi x Ydy + "Ry *da + Jws x Srp. (7.200)
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Example 222 Velocity vectors are free vectors.
Velocity vectors are free, so to express them in different coordinate frames

we need only to premultiply them by a rotation matriz. Hence, considering
?vi as the velocity of the origin of the B; coordinate frame with respect to

the origin of the frame B; expressed in frame By, we can write

bvi=—1lv, (7.201)
and
bvi="Rp T'v; (7.202)
and therefore, 4
idg . . . .
%;rp ='vp=ivp + jw; X jTp. (7.203)

Example 223 % Zero velocity points.
To answer whether there is a point with zero wvelocity at each time, we
may utilize Equation (7.187) and write

cop (“ro— “dp) + “dp =0 (7.204)
to search for Cro which refers to a point with zero velocity
“rg = 9dp — qwp! “dp (7.205)

however, the skew symmetric matriz gop is singular and has no inverse.
In other words, there is no general solution for Equation (7.204).

If we restrict ourselves to planar motions, say XY -plane, then qwp =
wK and G(Z)]}l = 1/w. Hence, in 2D space there is a point at any time with
zero velocity at position Crq given by

Gro(t) = Cdp(t) —é i (b). (7.206)

The zero wvelocity point is called the pole or instantaneous center of
rotation. The position of the pole is generally a function of time and the
path of its motion is called a centroid.

Example 224 % Fulerian and Lagrangian view points.

When a vartable quantity is measured within the stationary global coor-
dinate frame, it is called absolute or the Lagrangian viewpoint. On the
other hand, when the variable is measured within a moving body coordinate
frame, it is called relative or the Eulerian viewpoint.

In 2D planar motion of a rigid body, there is always a pole of zero velocity
at

1 .
Cro= %dp — - “dp. (7.207)

The position of the pole in the body coordinate frame can be found by sub-
stituting for Gt from (7.186)

GRB BI‘O + GdB = GdB — Gdjgl G&B (7208)
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and solving for the position of the zero velocity point in the body coordinate

frame Bry.

. . -1 ..
ro = —ORp gop' “dp=-CRE [“RpORp|  Cdp
= —ORE (R ORp| Cdp=-CRy'%dp  (7.209)

Therefore, “ro indicates the path of motion of the pole in the global frame,
while Prq indicates the same path in the body frame. The Crq refers to
Lagrangian centroid and BPry refers to Eulerian centroid.

Example 225 % Screw azis and screw motion.

The screw axis may be defined as a line for a moving rigid body B whose
points P have velocity parallel to the angular velocity vector qwp = wi.
Such points satisfy

“vp = qwp X (Grp - GdB) + Ydp =pows. (7.210)

where, p is a scalar. Since gwp is perpendicular to gwp X (Gr — Gd), a
dot product of Equation (7.210) by qwp yields

p= % (GwB~ G&B). (7.211)

Introducing a parameter k to indicate different points of the line, the
equation of the screw azis is defined by

1 .

GI‘p = GdB + F (GwB X Gdg) + kowp (7.212)
because if we have a x x = b, and a-b = 0, then x = —a~2(a x b) + ka.
In our case, .

agwp X (Gl‘p — GdB) =pGgwWB — GdB (7.213)

(Gl‘p - GdB) s perpendicular to gwp X (Grp — GdB), and hence is per-
pendicular to (p gwp — GélB) too.

Therefore, there exists at any time a line s in space, parallel to qwg,
which is the locus of points whose velocity is parallel to qwg.

If s is the position vector of a point on s, then

agwp X (GS — GdB) =pGgwWB — G&B (7.214)

and the velocity of any point out of s is

v = gwp x (“r— s) +pgwsp (7.215)
which expresses that at any time the velocity of a body point can be decom-
posed into perpendicular and parallel components to the angular velocity
vector qwp. Therefore, the motion of any point of a rigid body is a screw.
The parameter p is the ratio of translation velocity to rotation velocity, and
1s called pitch. In general, s, qwg, and p may be functions of time.



7. Angular Velocity 409

7.4 % Velocity Transformation Matrix

Consider the motion of a rigid body B in the global coordinate frame G,
as shown in Figure 7.5. Assume the body frame B(ozxyz) is coincident at
some initial time to with the global frame G(OXY Z). At any time t # to,
B is not necessarily coincident with G and therefore, the homogeneous
transformation matrix “Tg(t) is time varying.

The global position vector “rp(t) of a point P of the rigid body is a
function of time, but its local position vector Brp is a constant, which is
equal to “rp(tg).

BI‘p = GI‘p(to) (7216)

The velocity of point P on the rigid body B as seen in the reference frame
G is obtained by differentiating the position vector “r(¢) in the reference
frame G

d
GVP = — GI‘p(t) = GI"p (7217)
dt
where “Fp denotes the differentiation of the quantity “rp(t) in the refer-
ence frame G.

The velocity of a body point in global coordinate frame can be found by

applying a homogeneous transformation matrix

Gv(t) = “Vp 9r(t) (7.218)

where ©V3 is the welocity transformation matriz.

GVB _ GTB GTgl
B GRECRL Gdp — CRp9RL Cdy
o 0 0
~ G ~ G -«
_ cwp “dp—qgwp®dp | | gw “VB
= [ ; : } - [ P } (7.219)

Proof. Based on homogeneous coordinate transformation, we have
Crp(t) = “Tp(t) Brp = “Ty(t) “rp(to) (7.220)
and therefore,

Gd
G _
POT Tw

Gr G
_ [ Lip dB}BrP (7.221)

G G
2GR —4£C%p | B

[“T5 Prp] = 9T Prp = [ . 0 rp

0 0
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Substituting for rp from Equation (7.220), gives

GVP = GTB GTglGI‘p(t)
r GR G(.]. GRT _GRTGQq
— 0B 0B :| |: OB f B :| GI‘P(t)
'GR GRT Gd _GR GRTGd
_ B0 B B OB B B Grp(t)
~ Gy. _ .~ G
- GL(L))B ds E“’B ds } Grp(t). (7.222)

Thus, the velocity of any point P of the rigid body B in the reference frame
G can be obtained by premultiplying the position vector of the point P in
G with the wvelocity transformation matriz, Vg,

Cvp(t) = Vg %rp(t) (7.223)
where,
A [ GC(:)JB “dp — %GJB “dp
~. G
_ | ewB “Vp
= { oy } (7.224)
and )
cwp = “Rp°R (7.225)
“vg = Ydp— “Rp“RL%dp = “dp— cwp“dp
= GdB — gwWp X GdB. (7.226)

The velocity transformation matric Vs may be assumed as a matrix
operator that provides the global velocity of any point attached to B(ozyz).
It consists of the angular velocity matrix ¢@p and the frame velocity Gdp
both described in the global frame G(OXY Z). The matrix “Vp depends
on six parameters: the three components of the angular velocity vector
cwp and the three components of the frame velocity ¢4 B. Sometimes it is
convenient to introduce a 6 x 1 vector called velocity transformation vector
to simplify numerical calculations.

e Gy ~_ G
oty = [ v ] _ [ dp — cwp~dp (7.227)
GWBR GWBRB

In analogy to the two representations of the angular velocity, the ve-
locity of body B in reference frame G can be represented either as the
velocity transformation matrix ¢V in (7.224) or as the velocity transfor-
mation vector gt in (7.227). The velocity transformation vector represents
a noncommensurate vector since the dimension of cwpg and “vp differ. m
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Example 226 % Velocity transformation matriz based on coordinate trans-
formation matrix.

The wvelocity transformation matriz can be found based on a coordinate
transformation matriz. Starting from

G G
Cr(t) = 9Ty Pr = [ {)iB 1d } By (7.228)

and taking the derivative, shows that

Gd . GRr, G4
Gy, _ _2 1Gp Bl _ Gj_ B, _ B B
v=— [“Tp Pr] Tp°r [ 0 0 ] r (7.229)
howewver,
By = 71 (7.230)
and therefore,
[ Ghy Gd ) ar
Gy — - OB . ] GTBl Gy
_ [ GRB G('l GRE _GRng Gr
| 0 0 0 1
B GRBGRE Ga—GRBGREGd Gr
| 0 0
= CGyp%r. (7.231)

Example 227 % Inverse of a velocity transformation matriz.
Transformation from a body frame to the global frame is given by Equa-
tion (4.67)

(7.232)

Gpo1_ [ OB, —CR}Cd
B 0 1 '

Following the same principle, we may introduce the inverse velocity trans-
formation matrix by

BVG — GVB—l

_ (GRBGR}Q)_l 7<GRBGR£>_1 (Gdf GRBGRng) ]

GRBGRBI _GRBGRgl (G('l_ GRBGREGd)

0 0
_ [ “RpCRE" -CYRpCRG'Gd+ “d ] (7.233)
0 0 '

to have
Cvplvyt =1 (7.234)
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Therefore, having the velocity vector of a body point “vp and the velocity
transformation matriz Vg we can find the global position of the point by

Crp = “V31 Cvp. (7.235)

Example 228 % Velocity transformation matriz in body frame.
The velocity transformation matriz Vg defined in the global frame G is
described by

GVB:|:GRBGR§ Gd_GRBGREGd:l

) 0 (7.236)

However, the velocity transformation matriz can be expressed in the body
coordinate frame B as well

Bve = CS15'%Ty (7.237)
_ GRg - GRE Gd GRB Gd
0 1 0 0
_ [ ¢RECRp CRLCA| _ [ Bwp Pd
0 0 0 0

where gw B 15 the angular velocity vector of B with respect to G expressed
in B, and Bq is the velocity of the origin of B in G expressed in B.

It is also possible to use a matriz multiplication to find the velocity trans-
formation matrix in the body coordinate frame.

ng = GTgl GVp = GTgl GTB BI’p = gVB BI‘p (7238)

Using the definition of (7.219) and (7.287) we are able to transform the
velocity transformation matrices between the B and G frames.

CVvp = T BVe Ty, . (7.239)

It can also be useful if we define the time derivative of the transformation
matriz by _
CTp = GV 9Tg (7.240)

or
STy = ST Bvp. (7.241)

Similarly, we may define a velocity transformation matrixz from link (i)
to (i—1) by

. i—1p i—1pT i—13_ i-1p. i—1pTi-1
i-1y — [ Ri"R; d Ri*7 Ry *d } (7.242)
0 0
and i—1 T i—1T; i—1 pT i—1 3
i b R’i v Rz v Ri L d
i1Vi= [ 0 0 } . (7.243)
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Example 229 Motion with a fized point.

When a point of a rigid body is fixed to the global frame, it is convenient
to set the origins of the moving coordinate frame B(Oxyz) and the global
coordinate frame G(OXY Z) on the fized point. Under these conditions,

Gdp=0 , C%dp=0 (7.244)

and Equation (7.222) reduces to

GVP = G@B Grp(t) = qwp X GI‘p(t). (7245)
Example 230 Velocity in spherical coordinates.

The homogeneous transformation matriz from the spherical coordinates
S(Orfyp) to Cartesian coordinates G(OXY Z) is found as

“Rp ¢d
“Ts = RyzyRygDyz,= [ 0 B 1 }
cosfcosp —sing cosesinf 7cospsind
_ cosfsing cosy sinfsing rsinfsing
o —sinf 0 cos 6 rcosf - (7.246)
0 0 0 1
Time derivative of “Ts shows that
Grf Gy, G cws %vs |a
Ts = Vs & T = 0 0 Ts (7.247)
0 — Qcosw 7 cos psin f
_ » 0 fsiny rsinfsinp G
—fOcosp —Osingp 0 7 cos 6 B
0 0 0 0

Example 231 % Velocity analysis of a planar R||R manipulator.

Figure 7.8 illustrates an R||R planar manipulator with joint variables 01
and 0. The links (1) and (2) are both R||R(0) and therefore the transfor-
mation matrices Ty, Ty, and °Ty are:

[ cosf; —sinf; 0 Ijcosb;

o | sinfy  cosfy 0 [ysinfy

T=| " PSR (7.248)
0 o 0o 1 |
[ cosfs; —sinfy 0 Ilycosfs ]

17 | sinfa  cosfa 0 Ilysinfy

T =| e L (7.249)
0 o o0 1 |
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FIGURE 7.8. An R||R planar manipulator.

' = ‘Iyim (7.250)
0(91 +92) —S (91 +92) 0 120(91 +92) +l1091
. 5(91 +92) 0(91 +92) 0 Izs (91 +92) + 11564
o 0 0 1 0
0 0 0 1
The points My and M are at:
11 cos b, 9 cos Oy
Opp, = h Slonel e, = l2 SIOHHQ (7.251)
1 1

lo cos (01 + 62) + 11 cos 0y
losin (01 + 02) + 11 sin 64
0
1

0

ra, = T 'rap, = (7.252)

To determine the velocity of Mo, we calculate 07y, However, 07, can be
calculated by direct differentiation of °Ts.

. d
o7, = = oT, (7.253)
f9125912 *6126912 0 *12.9125912 *_9111591
— Or2ch1a —b12s012 0 l2bh12chia + O1l1cO;
0 0 0 0
0 0 0 0

012

01+ 05 912 = 91 + 92 (7254)
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We may also use the chain rule to calculate 07,

0T, = % (T ') = °Ty ' + °Ty T (7.255)
where,
—sinf)y —cosf; 0 —lisinb;
0 g cosfy —sinfy 0 Iycosbq
T1 = 04 0 0 0 0 (7.256)
0 0 0 0
—sinfly —cosfy 0 —lysinfs
i cosfly —sinfly 0 Ilycosfs
Ty = 6y 0 0 0 0 (7.257)
0 0 0 0

Having °Ty and T, we can find the velocity transformation matrices
Vi and 'Va by using OTl_1 and 1Tz_l.

cosf)y sinf; 0 —Iy
0p—1 _ | —sinf; cosfy 0 O
T = 0 01 o (7.258)
i 0 0 0 1 |
cosfy sinfy 0 —ly |
11 —sinfly cosfy 0 O
T, = 0 0 1 0 (7.259)
i 0 0 0 1 |
[0 —1 0 01
01, _ O 01 _ 1 0 0 0
Vi="T"Iy =6, 0 0 0 0 (7.260)
|0 0 0 0|
[0 —1 0 01
. _ . 1 0 0 0
Wo = 11yt =6, 00 00 (7.261)
10 0 0 0|
Therefore, the velocity of points My and My in By and By are:
[ —ll sin 91 i
Ovas = OV Orpy = 0y | 1 C‘Ssel (7.262)
. 0 -
I 7[2 sin 92 i
War = Walras, =05 | 2 Cgs 02 (7.263)
0
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To determine the velocity of the tip point My in the base frame, we can use
the velocity vector addition.

0 0

0
VM, =

v + v, = OV, + 0T 'vag,
- (01 + 92) lQ sin (01 + 92) - élll sin 91

_ (91 + 92) Iy cos (61 + 92) + élll cos 01 (7.264)
0

We can also determine °vyy, by using the velocity transformation matrix
oV
2

Ovar, = V2 'ray, (7.265)
where Vs is:
' 0 ' —91 — 92 0 9211 sin 0
0y, = O, 0T2_1 _ |t —(&)—02 (0) 8 —92110003 01 (7.266)
0 0 0 0
oyt = Ty =Tyt ot (7.267)

Ccos (91 +92) sin (91 +92) 0 —ly —1l1cosfy

_ —sin (01 +02) CcOs (91 + 92) 0 1 sin 04
- 0 0 1 0
0 0 0 1

We can also determine the velocity transformation matriz °Vy using their
addition rule “Vo = Vi + V5,

V = i+
0 —91 - 92 0 92[1 sin 91
91 + 92 0 0 *9211 cos 01
= 7.268
0 0 0 0 ( )
0 0 0 0
where,
0 —ég 0 02[1 sin 01
0y, — O 1y, Op—1 — @ 0 0 —05l1cosby . 9
1V2 1 Vo T 6 0 0 0 (7.269)
0 0 0 0
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Therefore, °vr, would be:

OVM2 — O‘/2 Oer
— (01 + 02) l2 sin (01 + 02) — 91[1 sin 01

— (91 + 92) lg COS (91 + 92) + 9111 COS 91 (7270)
0

0

7.5 Derivative of a Homogeneous Transformation
Matrix

The velocity transformation matrix can be found directly from the homoge-
neous link transformation matrix. According to forward kinematics, there
is a 4 x 4 homogeneous transformation matrix to move between every two
coordinate frames.

a o i1 Ti2 Ti3 Ti4
G Rp d T21 T22 T23 T24
Tr = = 7.271
B [ 0 1 } T3l T32 T3z T34 ( )
0 0 0 1

When the elements of the transformation matrix are time varying, its deriv-
ative is

rdrii drig driz drig
dt dt dt dt
GdT ) d’l“gl d’l“22 d’l“23 d’l“24
— =C%Tg=| d dt dt dt (7.272)
dt d’f’gl d’f’32 dr33 dr34
dt dt dt dt
L O 0 0 0 |

The time derivative of the transformation matrix can be arranged to be
proportional to the transformation matrix

9Ty = “Vp“Tp

(7.273)

where Vg is a 4 x 4 homogeneous matrix called velocity transformation
matrix or velocity operator matriz and is equal to

GVB _

GRBGR%; G(i—GRBGREGd

0

(7.274)
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The homogeneous matrix and its derivative based on the velocity transfor-
mation matrix are useful in forward velocity kinematics. The =17} for two
links connected by a revolute joint is

—sinf; —cosf;cosq; cosb;sina; —a;sinb;
il p cost; —sinf;cosq; sinf;sina; a;cosb;
T, =0, 0 0 0 0 (7.275)
0 0 0 0
and for two links connected by a prismatic joint is:
0 0 0 O
. 0 0 0 O
i—1mn, — X
T; 00 0 d (7.276)
0 0 0 O
The associated velocity transformation matrix for a revolute joint is
0 -1 0 0
; : : 1 0 00
i—1 R . — .
Vi=0;, Ap=10; 0 0 0 0 (7.277)
0 0 00
and for a prismatic joint is
0 0 0O
; : ; 0 0 0O
i—1 Jp— . — .
Vi=d; Ap=d; 00 0 1 (7.278)
0 0 0O
Proof. Since any transformation matrix can be decomposed into a rotation
and translation
_ Ryp d| |1 d Rye O
I A B |
= [D] [R] (7.279)

we can find T as . . . .
S CHRHIEHE
[I+D] [I+R]—I=[V] 7] (7.280)

where [V] is the velocity transformation matrix described as

. o3 I T _RT
V] TTl:[Rw d} {Rw Rwd]

0 0 0 1
{Rm¢R5¢ &——R@¢R5¢d}
1

|

o &

(7.281)

0
d-od
. .
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The transformation matrix between two neighbor coordinate frames of a
robot is described in Equation (5.11) based on the DH parameters,

cosf; —sinf;cosc; sinf;sino;  a;cosb;
i1 sinf; cosf;cosa; —cosb;sinq; a;siné;
T; = . . (7.282)
0 sin a;; COoS o; d;
0 0 0 1

Direct differentiating shows that in case two links are connected via a rev-
olute joint, then #; is the only variable of DH matrix, and therefore,

—sinf; —cosf;cosa; cosb;sina; —a;sinb;
i1 0. cosf; —sinf;cosay; sinf;sinc; a;cosb;
L 0 0 0 0
0 0 0 0
0 -1 0 O
11 0 0 0], : .
=% {9 0 0 0 T =0, Ag T (7.283)
0 0 0 O

which shows that the revolute velocity transformation matriz is

0 -1 0 O
i1, _ j _, 11 0 00
0 0 0 O

However, if the two links are connected via a prismatic joint, d; is the only
variable of the DH matrix, and therefore,

ST =d; ST =d Ap T (7.285)

[ecien e e}
o O oo
o O oo
O = OO

which shows that the prismatic velocity transformation matriz is

000 0
i1, A 5|00 00

Vi=di Ap=di | o o 0 1 (7.286)
000 0

The Ar and Ap are revolute and prismatic velocity coefficient matrices
with some application in velocity analysis of robots. m
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Example 232 Differential of a transformation matriz.
Assume a transformation matriz is given as

0 01 4
T = (1) ; 8 b (7.287)
0 0 01
subject to a differential rotation and differential translation given by
dot = [ 0.1 0.2 0.3 ] (7.288)
dd = [06 04 02]. (7.289)
Then, the differential transformation matriz dT' is:
dI" = [I+4dD][I+dR]-1
0 -03 0.2 0.6
_ 0.3 0 —-0.1 04 (7.200)

-0.2 0.1 0 0.2
0 0 0 0

Example 233 Differential rotation and translation.
Assume the angle of rotation about the axis @ is too small and indicated
by d¢, then the differential rotation matriz is

1 *Ugd(ﬁ U2d¢ 0
o . _ U3d¢) 1 —U1d¢7 0
0 0 0 1
because when ¢ << 1, then,
sing ~ d¢ (7.292)
cos¢p ~ 1 (7.293)
vers¢ =~ 0. (7.294)

Differential translation dd = d(d,I+d,J+d.K) is shown by a differential
translation matrix

1 0 0 dd;

|0 1 0 dd,
I+dD = 00 1 dd. (7.295)

000 O
and therefore,
dT' = [I+dD]I+dR]-1
0 —dpus douy  dd,

_ dous 0 —dour  dd, (7.206)

—d¢UQ dqﬁul 0 ddz
0 0 0 0



7. Angular Velocity 421

Example 234 Combination of principal differential rotations.
The differential rotation about X, Y, Z are

1 0 0 0
0 1 —dy 0
Bxor=10 av 1 o0 (7.297)
00 0 1)
1 0 dB 0]
0 1 0 0
Ry ip = “dB 0 1 0 (7.298)
0 0 0 1]
1 —da 0 0]
d 1 00
Rz.do = g‘ 0 1o (7.299)
0 0 0 1

therefore, the combination of the principal differential rotation matrices
about axes X, Y, and Z is:

[I+RdeY IJrRwa IJrRZda

10 1 0 d3 o 1 —da 0 0
_ 0 1 —d’y 0 0 1 0 O do 1 0 0
- 0 dv —dp 0 1 0 0 0 1 0
i 0 0 0 0 1 0 0 0 1
1 —do dﬁ 0
_ do 1 —dy O
= | 24 & 1 0
o0 0 0 1
= [I+ Rzda][I+ Ry,as) I+ Rx,dvy] (7.300)

The combination of differential rotations is commutative.

Example 235 Derivative of Rodriguez formula.
Based on the Rodriguez formula, the angle-axis rotation matriz is

Ry =1coso+ T vers ¢ + tisin ¢ (7.301)
therefore, the time rate of the Rodriguez formula is
Rap = —¢sin I+t ¢psin + up cos ¢ = ¢piiRy 4. (7.302)

Example 236 % Velocity of frame B; in By.
The velocity of the frame B; attached to the link (i) with respect to the
base coordinate frame By can be found by differentiating °d; in the base
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frame.

Od 0d .
0 0 0 i
vi = dog, = prig)
dt dt
= OTl 1T2 . i_lTZL' idi + 0T1 1T2 21-'3 . i_lTi idi

L0y LI g,

> =4 ‘d; (7.303)

However, the partial derivatives 8°~'T; /Oq; can be found by utilizing the
velocity coefficient matrices A\;, which is either Ag or Ap.

8"*1T» )
= i, (7.304)
Hence,
80’1—;‘ _ OTl 1T2 cee j_QTj_l A] j_lTj cee i_lTi fO’f’j <1 (7 305>
dq; 0 forj >1. ’

Example 237 V reduces to @, and T reduces to R if d = 0.
Consider a B and G coordinate frames with a common origin. In this
cares, d = 0 and (7.279) will be

Riy O I o Rygy O
- [ 232 1
= [ [R] = [R] (7.306)
and, T is: ) _
T=R (7.307)
Therefore, is the velocity transformation matriz [V] is equivalent to &.
V=TT '=RR" =0 (7.308)

Example 238 DH matriz between two co-origin coordinate frames.

If two meighbor coordinate frames have the same origin, then a; and d;
of DH transformation matriz (5.11) are zero. It simplifies the DH matriz
to:

cosf; —sinf;cosa; sinf;sinca; 0

i-17, sinf; cos Qi cosa; —cosb;sina; O (7.309)
0 sin COS «; 0
0 0 0 1

We can eliminate the last column and row of this matrix, and show it by a
rotation transformation matriz .

cosf; —sinf;cosc;  sinb; sinq;

=lR, = | sinf; cosO;cosq; —cosb;sina; (7.310)
0 sin o; COS (;
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When a; and d; are zero, the two links are connected by a revolute joint.
So, 0; is the only variable of DH matrix, and therefore,

—sinf; —cosf;cosq; cosb;sinq;
SR = 6, cosl; —sinf;cosa; sinb;sine; | = ;_1w; R,
0 0 0
0 -1 0 )
= 6; |1 0 0| *Ri=60;"1k, 'R, (7.311)
0 0 0

which shows that the revolute angular velocity matriz is:

. B ~ . 0 _1
iw; =0; Tk =0, | 1

0
0 0 (7.312)
0 0 0
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7.6 Summary

The transformation matrix “Rp is time dependent if a body coordinate
frame B rotates continuously with respect to frame G with a common
origin.

Sr(t) = “Rp(t) Pr (7.313)

Then, the global velocity of a point in B is
Git) = “v(t) = “Rp(t) Pr = qap “r(t) (7.314)

where g is the skew symmetric angular velocity matrix

. 0 —Wws3 w2
cop=“Rp“RL=| ws 0 —wi |. (7.315)
—Ww29 w1 0

The matrix ¢@wp is associated with the angular velocity vector gwp = éa,
which is equal to an angular rate (b about the instantaneous axis of rotation
4. Angular velocities of connected links of a robot may be added relatively
to find the angular velocity of the link (n) in the base frame By.

own = ow1 + Jwa + Jws +-- 4+ 0w = > Y (7.316)
i=1

To work with angular velocities of relatively moving links, we need to
follow the rules of relative derivatives in body and global coordinate frames.

Bd R
%Brp = Bip=Bvp=di+yj+sk (7.317)
G . ~ . A~ . A
d—fGrp = Cip=Cvp=XI+YJ+ZK (7.318)
%Br t) = Pip+ Bwpx Brp=5¢ (7.319)
dt P = P T gW¥WB P = qgrp .
Bq
EGI‘P (t) = Gf'p — gwp X GI‘p = gi‘p (7320)

The global velocity of a point P in a moving frame B at
GI‘p = GRB BI‘p + GdB (7321)
is

vp = Y%p=gop (“rp— “dp)+ “dp
awp X (Grp — GdB) + G&B. (7322)
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The velocity relationship for a body B having a continues rigid motion in
G may also be expressed by a homogeneous velocity transformation matrix
GVB

Sy(t) = Vg %r(t) (7.323)
where, “Vp includes both, the translational and rotational velocities of B

in G.

~ G -~ aq
Gy, _ G Gp—1 _ | cwp “dp— gwp“dp
Vg = OTy OT5" =

0 i (7.324)
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7.7 Key Symbols

turn vector of end-effector frame

body coordinate frame

cos

differential, prismatic joint variable
elements of d

translation vector, displacement vector
displacement transformation matrix
rotation quaternion

1,€39,€3 Euler parameters, components of e

OO RS0 e
a
<
QL
nN

g

0,

G, By global coordinate frame, Base coordinate frame
7, j,]:d local coordinate axes unit vectors

7,7, k skew symmetric matrices of the unit vector 2, j,l%
I , J , K global coordinate axes unit vectors

I=1[] identity matrix

J Jacobian

l length

P pitch of a screw

q joint coordinate,

q joints coordinate vector

r position vectors, homogeneous position vector
T the element ¢ of r

Tij the element of row ¢ and column j of a matrix
R rotation transformation matrix

S sin

S location vector of a screw

sgn signum function

SSRMS space station remote manipulator system

T homogeneous transformation matrix

Torm manipulator transformation matrix

Towrist wrist transformation matrix

T a set of nonlinear algebraic equations of q

v velocity vector

\% velocity transformation matrix

U unit vector along the axis of w

U skew symmetric matrix of the vector @

Uy, Uz, U3 components of 4

T,Y, 2 local coordinate axes

X\ Y. Z global coordinate axes

Greek

a, B,y angles of rotation about the axes of global frame
§ Kronecker function, small increment of a parameter

€ small test number to terminate a procedure
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rotary joint angle

0; +0; + 0

angles of rotation about the axes of body frame
angle of rotation about

angular velocity vector

skew symmetric matrix of the vector w
components of w

inverse of the matrix [ ]

transpose of the matrix [ ]
orthogonal

link number 1

parallel

perpendicular

conjugate of e

prismatic velocity coefficient matrices
revolute velocity coefficient matrices
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Exercises

1. Notation and symbols.

Describe the meaning of

a- qwWpR b- pwa c- ng d- ng e- Bwg ng
g- 8&)1 h- %wl i- %wl j— GRB k- 8(.7)1 1- fw,
a a Gq By
m- “rp(t) n-5v o- A - A - — r- —
p(t) FVp R p-Ap @ 7
Gq Gy Bq .
G B B G G G
s —“r - —"Pr u- — “r v- U1 w- “d x- V]
TP a TP g ‘P P P B

2. Local position, global velocity.

A body is turning about a global principal axis at a constant angular.
Find the global velocity of a point at Pr.

Br—[5 30 10]"

(a) The axis is Z-axis, the angular rate is & = 2rad/s when o =

30deg.

(b) The axis is Y-axis, the angular rate is § = 2rad/s when § =
30deg.

(¢) The axis is X-axis, the angular rate is ¥ = 2rad/s when v =
30deg.

3. Parametric angular velocity, global principal rotations.

A body B is turning in a global frame G. The rotation transformation
matrix can be decomposed into principal axes. Determine the angular
velocity gwp and qwp.

(a) Rp is the result of a rotation o about Z-axis followed by 3
about Y-axis.

(b) “Rp is the result of a rotation 3 about Y-axis followed by «
about Z-axis.

(c) “Rp is the result of a rotation a about Z-axis followed by ~y
about X-axis.

(d) “Rp is the result of a rotation v about X-axis followed by «
about Z-axis.

(e) “Rp is the result of a rotation v about X-axis followed by 3
about Y-axis.
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(f) “Rp is the result of a rotation 3 about Y-axis followed by 7
about X-axis.

. Numeric angular velocity, global principal rotations.

A body B is turning in a global frame G. The rotation transformation
matrix can be decomposed into principal axes. Determine the angular
velocity gwp and gwp for Exercises 3.(a) — (f) using & = 2rad/s,
B =2rad/s, ¥ = 2rad/s and a = 30deg, 5 = 30deg, v = 30 deg.

. Global position, constant angular velocity.

A body is turning about the a global principal axis at a constant
angular rate. Find the global position of a point at Pr after t = 3sec
if the body and global coordinate frames were coincident at ¢ = 0 sec.

Br—[5 30 10]"
(a) The axis is Z-axis, the angular rate is & = 2rad/s.
(b) The axis is Y-axis, the angular rate is 8 = 2rad/s.

(¢) The axis is X-axis, the angular rate is 4 = 2rad/s.

. Turning about z-axis.

Find the angular velocity matrix when the body coordinate frame is
turning about a body axis.

(a) The axis is z-axis, the angular rate is ¢ = 2rad/s, and the angle

is ¢ = 45deg.

(b) The axis is 2-axis, the angular rate is # = 2rad/s, and the angle
is 0 = 45 deg.

(¢) The axis is z-axis, the angular rate is 1/1 = 2rad/s, and the angle
is ¥ = 45 deg.

Combined rotation and angular velocity.

Find the rotation matrix for a body frame that turns about the global
axes at with given rates, and calculate the angular velocity of B in

G.

(a) The axes are Z, then X, and then Y. The angles are 30deg
about Z-axis, 30 deg about the X-axis, and 90 deg about the Y-
axis. The angular rates are & = 20deg /sec, 8 = —40deg / sec,
and 4 = 55deg / sec about the Z, X, and Y axes respectively.

(b) The axes are X, then Y, and then Z. The angles are 30deg
about X-axis, 30 deg about the Y-axis, and 90 deg about the Z-
axis. The angular rates are & = 20deg / sec, 5 = —40deg / sec,
and 4 = 55deg / sec about the X, Y, and Z axes respectively.
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(c) The axes are Y, then Z, and then X. The angles are 30deg
about X-axis, 30 deg about the Y-axis, and 90 deg about the Z-
axis. The angular rates are & = 20deg /sec, 8 = —40deg / sec,
and 4 = 55deg / sec about the X, Y, and Z axes respectively.

8. ¥ Global triple angular velocity matrix.

Determine the angular velocity ¢@p and gwp for the global triple
rotations of Appendix A.

9. % Local triple angular velocity matrix.

Determine the angular velocity qwp and gwp for the local triple
rotations of Appendix B.

10. Angular velocity, expressed in body frame.

A point P is at rp = (1,2,1) in a body coordinate B(Ozyz).

(a) Find 2&p when the body frame is turned 30 deg about the X-
axis at a rate ¥ = 75deg /sec, followed by 45deg about the
Z-axis at a rate & = 25deg / sec.

(b) Find 20p when the body frame is turned 45 deg about the Z-
axis at a rate & = 25deg/sec, followed by 30deg about the
X-axis at a rate ¥ = 75 deg / sec.

11. Global roll-pitch-yaw angular velocity.

Calculate the angular velocity gwp for a global roll-pitch-yaw rota-
tion of

(a) a = 30deg, f = 30deg, and v = 30deg with & = 20deg / sec,
B = —20deg / sec, and v = 20 deg / sec.

(b) a = 30deg, # = 30deg, and v = 30deg with & = 0deg / sec,
8 = —20deg / sec, and ¥ = 20 deg / sec.

(¢) @ = 30deg, 5 = 30deg, and v = 30deg with & = 20deg / sec,

3 = 0deg /sec, and 4 = 20 deg / sec.
(d) a = 30deg, 8 = 30deg, and v = 30deg with & = 20deg /sec,
B = —20deg / sec, and 4 = 0deg / sec.

(e) @ = 30deg, 8 = 30deg, and v = 30deg with & = 0deg/ sec,

B = 0deg /sec, and 4 = 20 deg / sec.

12. Roll-pitch-yaw angular velocity.

Find g@ B and gwp for the global role, pitch, and yaw rates equal to
& = 20deg / sec, § = —20deg / sec, and ¥ = 20 deg / sec respectively,
and having the following rotation matrix:
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FIGURE 7.9. An Eulerian wrist.

0.53 —0.84 0.13 ]
BRe = 0.0 0.15 0.99
| —0.85 —0.52 0.081
(b) i
053 —0.84 0.13
“Rp = 0.0 0.15 0.99
| —0.85 —0.52 0.081 |

13. Eulerian spherical wrist.

Figure 7.9 illustrates an Eulerian wrist in motion. Assume Bj is a
globally fixed frame at the wrist point. Determine the angular velocity
37 of the end-effector frame By for the following cases.

Only the first motor is turning with 94 about z3.

(a)

(b) Only the second motor is turning with 85 about zy.
) Only the third motor is turning with 0 about zs.
)

The first motor is turning with 04 about z3 and the second motor
is turning with 65 about zy4.

(e) The first motor is turning with 04 about z3 and the third motor
is turning with 6g about zs.

(f) The first motor is turning with 04 about z3 and the second motor
is turning with 65 about zy4.
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FIGURE 7.10. A slider on a rotating bar.

(g) The first, second, and third motors are turning with 0,4, 95, 06
about z3, z4, and zs.

14. Angular velocity from Rodriguez formula.

We may find the time derivative of “Rp = Ry, by

. d . d
G e G
Bp=L0R, =L Ry
5= "Bp (bdgb B

Use the Rodriguez rotation formula and find gwp and g(b B-

15. Skew symmetric matrix

Show that any square matrix can be expressed as the sum of a sym-
metric and skew symmetric matrix.

A = B+C
_ 1 T
B = 2(A+A)
_ Lo
C = S(A-47)

16. % A rotating slider.

Figure 7.10 illustrates a slider link on a rotating arm. Calculate

dt ’ dt ’ dt
Gin Gd2j Gd2f€
dt? ’ dt? ’ dt?

and ﬁndG By and Ba of m at mass center C of the slider to find
Ba,, = -2 Bv,, using the rule of mixed derivative.

Gam =
ﬁ ﬁr — ﬁ ﬁr + Bw X ﬁr
dt \dt )~ at \at G¥B dt
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Y2
Z2

X1

X0

FIGURE 7.11. A planar polar manipulator.

17. Y% Differentiating in local and global frames.

Consider a local point at Brp. The local frame B is rotating in G' by

. . B G B G
& about the Z-axis. Calculate d—f Brp, d—f Crp, d—f Grp, and d—f Brp.

(a) Prp=ti+]

(b) Brp =ti+1tj

(c) Brp=t%+3

(d) Brp =ti+t%;

(e) Brp =ti+tj+tk

(f) Brp =ti+ 2] + th

(g) Brp =isint

(h) Brp =isini+ jeost +k

18. % Velocity analysis of a polar manipulator.

Figure 7.11 illustrates a planar polar manipulator with joint variables
0 and d.

Determine °Ty, 15, 9Ty, °V4, Vs, V%, and velocity of the tip point
of the manipulator.
19. % Skew symmetric identity for angular velocity.
Show that -
ROR" = Rw.
20. % Transformation of angular velocity exponents.

Show that
&l = “R o “Ro.
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FIGURE 7.12.

21. % An angular velocity matrix identity.
Show that
&)2]1:—‘,-1 — (_l)k' w2k o

and
0'32]6 — (_l)kt w2(k71) ((JJQI _ wa) .
22. % Velocity analysis of a spherical manipulator.

Figure 7.12 illustrates a spherical manipulator with joint variables 6,
02, and d.

Determine °V7, 'V, 2V3, 914, OV3, and velocity of the tip point of the
manipulator.
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