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Inverse Kinematics

What are the joint variables for a given configuration of a robot? This is
the inverse kinematic problem. The determination of the joint variables
reduces to solving a set of nonlinear coupled algebraic equations. Although
there is no standard and generally applicable method to solve the inverse
kinematic problem, there are a few analytic and numerical methods to
solve the problem. The main difficulty of inverse kinematic is the multiple
solutions such as the one that is shown in Figure 6.1 for a planar 2R
manipulator.

Y2
Vi X1

Yo
AW

FIGURE 6.1. Multiple solution for inverse kinematic problem of a planar 2R
manipulator.

6.1 Decoupling Technique

Determination of joint variables in terms of the end-effector position and

orientation is called inverse kinematics. Mathematically, inverse kinematics
is searching for the elements of vector q

T

a=la @ & - ] (6.1)

when a transformation °7}, is given as a function of the joint variables
41,492,943, "+ * ,dn -

0T, = °T1(q1) "To(qo) *T5(q3) *Tulqs) - "' To(qn) (6.2)
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326 6. Inverse Kinematics

Computer controlled robots are usually actuated in the joint variable
space, however objects to be manipulated are usually expressed in the
global Cartesian coordinate frame. Therefore, carrying kinematic informa-
tion, back and forth, between joint space and Cartesian space, is a need in
robotics. To control the configuration of the end-effector to reach an object,
the inverse kinematics problem must be solved. Hence, we need to know
what the required values of joint variables are, to reach a desired point in
a desired orientation.

The result of forward kinematics of a 6 DOF robot is a 4 x 4 transfor-
mation matrix

T = "IV °Ts°Ty *T5 °Ts
11 Ti2 Ti3 T4
_ To1 T22 T23 T24 (6 3)

731 T32 T33 T34
0 0 O 1

where 12 elements are trigonometric functions of six unknown joint vari-
ables. However, because the upper left 3 x 3 submatrix of (6.3) is a rotation
matrix, only three elements of them are independent. This is because of
the orthogonality condition (2.197). Hence, only six equations out of the
12 equations of (6.3) are independent.

Trigonometric functions inherently provide multiple solutions. Therefore,
multiple configurations of the robot are expected when the six equations
are solved for the unknown joint variables.

It is possible to decouple the inverse kinematics problem into two sub-
problems, known as inverse position and inverse orientation kinematics.
The practical consequence of such a decoupling is the allowance to break
the problem into two independent problems, each with only three unknown
parameters. Following the decoupling principle, the overall transformation
matrix of a robot can be decomposed to a translation and a rotation.

OR Od
OT6 — [ 06 16:|
I °d 'Rs 0
= ODGOR(;:[O 16H 06 1} (6.4)

The translation matrix °Dg indicates the position of the end-effector in By
and involves only the three joint variables of the manipulator. We can solve
9dg for the variables that control the wrist position. The rotation matrix
YRg indicates the orientation of the end-effector in By and involves only
the three joint variables of the wrist. We can solve *Rg for the variables
that control the wrist orientation.

Proof. Most robots have a wrist made of three revolute joints with inter-
secting and orthogonal axes at the wrist point. Taking advantage of having
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a spherical wrist, we can decouple the kinematics of the wrist and manipu-
lator by decomposing the overall forward kinematics transformation matrix
9T% into the wrist orientation and wrist position

OR; 0dj } [3}26 0]

0 _ 0.3 —
To = T?’TG_[O 1 0 1

(6.5)

where the wrist orientation matrix is:

- . 11 Ti2 Ti13

3 0 0 0

RG = R3 R@ = R3 21 To2 T93 (66)
31 T32 T33

and the wrist position vector is:

T14
0d6 = T4 (67)
T34

The wrist position vector °dg = °d3 includes the manipulator joint vari-
ables only. Hence, to solve the inverse kinematics of such a robot, we must
solve %dj for position of the wrist point, and then solve 3 Rg for orientation
of the wrist.

The components of the wrist position vector °dg = °dris¢ provides three
equations for the three unknown manipulator joint variables. Solving dg,
for manipulator joint variables, leads to calculating ®Rg from (6.6). Then,
the wrist orientation matrix 3Rg can be solved for wrist joint variables.

In case we include the tool coordinate frame in forward kinematics, the
decomposition must be done according to the following equation to exclude
the effect of tool distance d; from the robot’s kinematics.

Ty = °T3°Tr = “T3°T, O,
0
Ry dy |[%Re 0] |1 0
_{0 1“0 1] dr (6.8)
0 1

In this case, inverse kinematics starts from determination of Ty, which can
be found by

T = o171 (6.9)
100 071" 100 0
010 0 010 0
_ 0 0
_T7001d7 _T7001—d7
000 1 000 1
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FIGURE 6.2. An RFR||R articulated manipulator.

Example 182 An articulated manipulator.

Consider an articulated manipulator as is shown in Figure 6.2. The links
of the manipulator are R-R(90), R||R(0), RFR(90), and their associated
transformation matrices between coordinate frames are:

cosf; 0 sinfy 0
sinf; 0 —cosf; O

0 _
T, = 0 1 0 I (6.10)
0 0 0 1
cosfly —sinfy 0 Iycosfs
17 | sinfa  cosfa 0 Ilysinfy
=" 01 (6.11)
0 0 0 1
cosfl3 0 sinfl3 O
25 | sinf3 0 —cosfs 0O
T3 = 0 1 0 0 (6.12)
0 0 0 1
The forward kinematics of the manipulator is:
oy O 1T 2Ty (6.13)

6916 (92 + 03) 891 0915 (92 + 03) 12601692

8910 (92 + 93) —091 8918 (92 + 93) l2092891

8(92 +93) 0 —C (92 +93) l1 + 19804
0 0 0 1
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and therefore, the tip point P is at:

OdP — |:

I 13 sin (02 + 03) cos 01 + I cos 01 cos O
= l3sin (02 4 03) sin 61 + o sin 07 cos 02 (6.14)
ll — l3 COS (92 + 03) + l2 sin 92

Point P is supposed to be the point at which we attach a spherical wrist.
Therefore, °dp is the decoupled position vector of the wrist point that will
not be affected by the wrist attachment. °dp provides three equations for
the three joint variables of the manipulator 01, 0o, 03. The first angle can
be found from

dysinfy —dy,cos; =0 (6.15)

that is:
61 = atan2 (d, d,) (6.16)

We combine the first and second elements of °dp to find:
dy cosby + dysinby = l3sin (62 + 03) + l2 cos 02 (6.17)
Now, combining this equation and the third element of °dp provides:
(d, — 13 —lssin 02)2 + (dg cos 61 + dysinf; — Iy cos 02)2 =5 (6.18)
or
—2l5 (dg cos by + dysinby) cos Oy + 215 (11 — d.)sinfy =
12— ((dw cos Oy + dy sin0)% + 12 — 2yd. + 12 + dﬁ) (6.19)

that is a trigonometric equation of the form (6.88).

acosfy +bsinfy = ¢ (6.20)
a = —2ly(dycosbi +dysinb,)
b o= 2 (l—d.)
¢ o= 12 ((dm cos 0y + dy sin 1) + 12 — 20yd, + 12 + dz) (6.21)

We solve this equation for 0. Dividing (6.17) by the third element of °dp
determines 0s.

dy cos 01 + dyysin By — Iy cos 02

= .22
tan (6 +05) I+ lpsin0y —d. (6.22)
dy cosB1 + d, sin @y — I3 cos 02
= 2 L) — 2
by = atan ( I + L sin 0y — d. > b2 (633
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Example 183 Numerical case of an articulated manipulator.
To check the inverse kinematic equations of Example 182, let us examine
an articulated manipulator with the following dimensions

ll = 1m
12 = 1.05m
I3 = 0.89m (6.24)

when its tip point is at:

%dp=[1 11 12]" (6.25)
Equation (6.16) provides 0.
11
61 = atan2(dy,d;) =tan T
= 0.83298rad ~ 47.727 deg (6.26)
To determine 05, we should solve Equation (6.20)
acosby + bsinfs = ¢ (6.27)
where,
a = —2ly(dycosb; +dysinfh;) = —3.941263019 (6.28)
b = 2y (I —d.) = —0.5302360813 (6.29)
c = 22— ((dw cos Oy +dysin07)2 + 12 — 2yd. + 12 + dﬁ)
= —3.232420149, — 5.232420149. (6.30)
We find two values for 65 for ¢ = —3.232
0 = 0.7555416816 rad ~ 43.28934959 deg (6.31)
0 = —0.4880785028 rad ~ —27.96483827 deg (6.32)

and we get no real answer for ¢ = —5.232. 03 comes from (6.23). If 05 =
0.755rad then we have

dycosf1 +d, sinfq — Iy cos Oy
tan2 = -0
atan < I1 + losin0s — d. ) 2
11913201914 tad ~ 11 deg (6.33)

03

and if 02 = —0.488 rad then we have:

03 = —.1913201910rad ~ —11deg (6.34)
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Example 184 [Inverse kinematics for a 2R planar manipulator.

Figure 5.9 illustrates a 2R planar manipulator with two R||R links ac-
cording to the coordinate frames setup shown in the figure. The forward
kinematics of the manipulator was found to be

T = T (6.35)
8(01 +02) —s (604 +92) 0 lichy + lsc (01 +02)
8(91 +92) 6(01 +92) 0 1801 +1os (91 +92)

0 0 1 0

0 0 0 1

The inverse kinematics of planar robots are generally easier to find analyt-
ically. The global position of the tip point of the manipulator is at

X | [ licosbi +lacos (01 + 62) (6.36)
Y - ll sin91 -l—lg sin (91 +92) ’
therefore
X2 +Y? =17 +13 + 2415 cos s (6.37)
and
XP4Y2 -1
cosfly = T (6.38)
2 272 _ 12
0y = cos! Sl el . (6.39)
21415

However, we usually avoid using arcsin and arccos because of the inaccu-
racy. So, we employ the half angle formula

30 1—cosd
tan® - =

= A
2 1+ cosf (6.40)

to find 02 using an atan2 function

2 (y2 2
05 = +2atan2 (htls) = (XE+Y 3 (6.41)
(X24Y2)— (1 —1a)

The * is because of the square root, which generates two solutions. These
two solutions are called elbow up and elbow down, as shown in Figure
6.3(a) and (b) respectively.

The first joint variable 81 of an elbow up configuration can geometrically
be found from

Y 12 sin 02
0, = atan2 — + atan2 ———— 6.42
1 = atan X+aan I 15 cos 0, ( )
and for an elbow down configuration from
Y lQ sin 92
0, = atan2 — — atan2 ————. 6.43
17 atan X atan l1 + Iy cos Oy ( )
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(b)

FIGURE 6.3. Illustration of a 2R planar manipulator in two possible configura-
tions: (a) elbow up and (b) elbow down.

01 can also be found from the following alternative equation.

—XZQ sin 92 + Y (ll + lQ COS 92)
Yliysinfy + X (I3 + Iz cos 62)

6, = atan2 (6.44)

Most of the time, the value of 01 should be corrected by adding or subtracting
7w depending on the sign of X. It is also possible to combine Equations of
(6.36) and determine a trigonometric equation for 0.

2X1; cosfy + 2Vl sinfy = X2 +Y? +13 13 (6.45)
It is also convenient to use the following equation.

X24+Y2 410313
21,

l1 4 I3 cosly = (6.46)
The two different sets of solutions for 81 and 05 correspond to the elbow up
and elbow down configurations.

Example 185 Motion of a 2R manipulator.
Consider a 2R planar manipulator with

that its tip point is moving from Py (1.2,1.5) to P> (—1.2,1.5) on a straight
line. The using the inverse kinematic equations (6.39) and (6.42), we can
determine the configuration of the manipulator at any point of the path.
Figure 6.4 illustrates the manipulator at 42 equally spaced points between
P and Ps. Let us assume that the tip point is moving of the line based on
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P;

FIGURE 6.4. A 2R planar manipulator with [y = 1m, /3 = 1 m moving from P;
to P> on a straight line.

the following time behavior.
X=12-t Y=15 0<t<24 (6.48)
The variation of the angles 61 and 05 are as shown in Figure 6.5.

Example 186 Inverse kinematics of an articulated robot.

The forward kinematics of the articulated robot, illustrated in Figure 6.6,
was found in Example 166, where the overall transformation matrix of the
end-effector was found, based on the wrist and arm transformation matri-
ces.

0117 = TarmTwrist = 0T3 3117

The wrist transformation matric Tyrist 15 described in (5.124) and the ma-
nipulator transformation matriz, Ty s found in (5.74). However, accord-
ing to a new setup coordinate frame, as shown in Figure 6.6, we have a 6R
robot with a six links configuration

RFR(90)
R|[R(0)
RFR(90)
RER(—90)
RFER(90)
R[[R(0)

S| O | W N =

and a displacement Tz q,. Therefore, the individual links’ transformation
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deg

140
120 0,
100
80
60

40

FIGURE 6.5. The variation of the angles 61 and 62 of the 2R planar manipulator
of Figure 6.4.

Elbow Forearm  yyiqy

x4 point

Gripper

Base

FIGURE 6.6. A 6 DOF articulated manipulator.
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matrices are

cosfy 0 sinf; O
o _ | sinf; 0 —cosf; O
T = 0 1 0 0 (6.49)
0 0 0 1
coslly —sinf; 0 Iycosfs
1 sinfly cosfy 0 Ilysinfs
T = 0 0 1 ds (6.50)
0 0 0 1
cosf3 0 sinf3 O
2 sinfl3 0 —cosf3 0
T3 = 0 1 0 0 (6.51)
0 0 0 1
cosy 0 —sinfy O
3 sinfy 0 cosfy O
T, = 0 1 0 ) (6.52)
0 0 0 1
cosfs 0 sinfs 0]
45 _ | sinfs 0 —cosfs O
Ts = 0 1 0 0 (6.53)
| 0 0 0 1|
cosfg —sinfg 0 0 ]
5.~ | sinfg cosfsg 0 O
T = 0 0 10 (6.54)
| 0 0 0 1 ]
10 0 0
01 0 O
671 _
T; = 00 1 d (6.55)
0 0 0 1
and the tool transformation matriz in the base coordinate frame is
T, = O M AT 3T TS ST O Ty (6.56)

= "I3°T°Ty
t11 ti2 t13 t1s4
to1 tao tog T2

t31 32 t33 ts3a
0 0 0 1
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where
[ 0910(92 + 93) s 0918(92 + 93) loclicls + doshy i
o, — 8916(02 + 03) —cf;  s01s(62 + 93) loclas01 — dachy
37 5(92 + 93) 0 76(92 + 93) 1505
i 0 0 0 1 ]
(6.57)
i 094095096 — 894896 —006504 — 094095806 004595 0 i
B _ clsclss04 + cl4s0s  cOiccls — cl5504506  s64505 0
6= —096505 895896 095 13
i 0 0 0 1
(6.58)
and
t11 = 091 (C (92 + 93) (094095096 — 894896) — 0965958 (92 + 93))
+561 (4506 + ch5c05504) (6.59)
top = 801 (C (92 + 93) (7894596 + 694695696) - 6068955 (92 + 93 )
—chq (604896 + 895606894) (660)
t31 = s (92 + 93) (094095096 — 894896) + clgslsc (92 + 93) (6.61)
tis = 091 (8958968 (92 + 03) —C (92 + 93) (096894 + 094095896))
+501 (ch4chs — cl5504506) (6.62)
tos = sb1 (s05s06s (02 +03) — ¢ (92 + 93) (096504 + 604005896)
+cly (—clscls + cO55045606) (6.63)
tso = —sbssbsc (024 03) — s (02 + 03) (0504 + claclss05) (6.64)
tig = s01504505 4 01 (clss (02 + 03) + cls505¢ (02 + 03))  (6.65)
tos = —cb1804505 + s01 (0055 (02 + 03) + cl4805c (02 + 03)) (666)
ts3 = cl4805s (92 + 93) — cOsc (92 + 93) (6.67)
tiy = dG (891894895 + 091 (0948950 (92 + 93) + 0958 (92 + 93)))
+l13ch1s (02 + 03) + dosf1 + lachicls (668)
tou = dg (—091894595 + 801 (cOy805¢ (02 + 93) + cO5s (02 + 93)))
+5918 (92 + 93) lg — d2091 + 12092891 (669)
t34 = d(, (0948958 (92 + 93) — 0956 (92 + 93))
+1505 + I3c (92 + 93) . (670)

Solution of the inverse kinematics problem starts with the wrist position
vector d, which is [ tia tog tsa ]T of T for d7 =0

091 (l38 (92 + 93) + ZQCQQ) + d2891 dI
d= 801 (l38 (02 + 93) + 12002) - d2001 = dy
l3c (92 + 93) + 19504 d,

(6.71)
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Theoretically, we must be able to solve Equation (6.71) for the three joint
variables 01, 0o, and 03. It can be seen that

dysinfy — dy cos 01 = do (6.72)

which provides

01 = 2atan2(d, + /d2 + d2 — d3, dy — d). (6.73)

Equation (6.73) has two solutions for d2 + d§ > d3, one solution for
d2 + d2 = d3, and no real solution for d% + d < d3.
Combining the first two elements of d gives

I3 sin (02+03) = iw/d% —|—d§ —d% — lo cos by (674)

then, the third element of d may be utilized to find

2
2 - (i, [a2 + d2 — d2 — I cos 92) ¥ (ds — Iy sin 6)> (6.75)

which can be rearranged to the following form

acosfy +bsinfy = ¢ (6.76)

a = 2y\/di+d— d3 (6.77)

b = 2d, (6.78)

c = di+d+dl—d3+13-13 (6.79)

with two solutions
c c?
0y = atan2(;, +4/1 - r_z) — atan2(a, b) (6.80)
r? = a4+ b (6.81)

Summing the squares of the elements of d gives
d2 +d2 +d2 = d5 + 15 + 13 + 2lyl3 sin (20 + 603) (6.82)

that provides

A2+ d? 4+ d?—d2— 12— 12
03 = arcsin ( L Y z 2 2 31920, (6.83)

2lol3

Having 61, 03, and 03 means we can find the wrist point in space. How-
ever, because the joint variables in T3 and in 3Ty are independent, we
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should find the orientation of the end-effector by solving 3Ts or 3Rg for 04,

95, and 96'

3R6

694605606 — 894596 7096804 — 604695806 694595
cBs5c06504 + cy805  cOicclg — cl5504806 04505
—696895 895896 695

S11 S12 S13
S21 S22 S23 (6.84)
$31 S32 8533

The angles 04, 05, and Og can be found by examining elements of 3 Ry

04 = atan2 (523, 513) (685)
05 = atan2 (\/5%3 + s, 833> (6.86)
96 = atan2 (8327 —831> . (687)

Example 187 s Solution of trigonometric equation acos + bsinf = c.
The first type of trigonometric equation

acosf +bsinf = ¢ (6.88)

can be solved by introducing two new variables v and ¢ such that

and

a = rsing (6.89)
b = rcos¢ (6.90)

ro= Va?+p? (6.91)

¢ = atan2(a,b). (6.92)

Substituting the new variables show that

sin(¢ + 0)

I
e

(6.93)

I
H-
—
\
|

cos(¢ + 0) (6.94)

Hence, the solutions of the problem are

or

2
- atan2(;, /1 7%) — atan2(a, b) (6.95)

0 = atan2(c, =/ r? — ¢%) — atan2(a, b). (6.96)
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Therefore, the equation acosf + bsind = ¢ has two solutions if r> = a® +
b2 > 2, one solution if r?> = ¢, and no solution if r*> < c2.
As an example, let us solve the following equation.

1.5cos6 + 2.5sin 6 = 2.549 (6.97)

Having a = 1.5 and b = 2.5, we find r and ¢.
r = Va?+b%=2.915475947 (6.98)
¢ = atan2(a,b) = 0.5404195 rad (6.99)
Therefore,
0 = atan2(c,+v/r2? — c2) — atan2(a, b)
atan2(2.549, £v/2) — ¢

= 0.5235718477rad, 1.537181805rad
30deg, 88.07deg (6.100)

Example 188 s Meaning of the function tany * L = atan2(y, ).

In robotic calculation, specially in solving inverse kinematic problems,
we need to find an angle based on the sin and cos functions of the angle.
However, tan™! cannot show the effect of the individual sign for the numer-
ator and demominator. It always represents an angle in the first or fourth
quadrant. To overcome this problem and determine the joint angles in the
correct quadrant, the atan2 function is introduced as:

sgny tan~! ‘%‘ if >0,y#0
T ,
atan2(y,z) = { 2 oY y iFe=0y720 g0
sgny (Wftan_l’ED if x<0,y#0
T — TSgn T if x#0,y=0

The sgn represents the signum function.

1 if 2>0
sgn(z) =4 0 if =0 (6.102)
-1 4if =<0

As an example, let us compare the tan~' and atan2 for four points in four
quadrants.

r=1 y=1 then tan™'1=0.785 atan2(1,1) = 0.785
r=-1,y=1 then tan~!-L = —0.785 atan2(1,—1) = 2.356
r=-1, y=—1 then tan~'= =0.785  atan2(—1,—1)= —2.356
=1, y=-1  then tan~'=L=-0.785 atan2(—1,1)=—0.785

In this text, whether it has been mentioned or not, wherever tan™" 4 s

used, it must be calculated based on atan2(y,x).



340 6. Inverse Kinematics

Example 189 % Fundamental properties of arcsin and arccos.

The general solution of equations

sinp =a cosf =10 tany =c¢
are:
¢ = sinla=(—1)Fsinta+knr
0 = cos 'b=d4cos tb+ 2kn
Y = tan lc=tan lc+krm A2+ -1

Example 190 % General inverse kinematics formulas.

(6.103)

(6.104)
(6.105)
(6.106)

There are some general trigonometric equations that reqularly appear in
inverse kinematics problems. The following indicates the most frequently

equations and solutions.

1. If
sinf = a

then, we have two answers: 6 and ™ — 0.

0 = atan2
1—a?

2. If
cost) = b

then, we have two answers: 6 and —0.

+v1 — b2

0 = atan2

b
3. If
sinf = a cosf =b
then, "
0 = atan2 7
4. 1f

acos +bsinf =0

then, we have two answers: 6 and 6 + .

0 = atan2 % 0 = atan2 :—Z

acosf +bsinf =c
then,

+va? + b2 — 2

0 = atan2 4 + atan2
b c

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)

(6.115)

(6.116)
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6. If
acosf +bsinf = ¢ (6.117)
acosf —bsinf = d (6.118)

then,
a>+ v = A4+d? (6.119)
ac—bd
= 2 . 12

0 atan wd T he (6.120)

7. If
sinfsing = a cosfsing =b (6.121)

then, we have two answers: 6 and 6 + 7.

0 = atan2 % 0 = atan2 :—Z (6.122)

8. If
sinfsinp =a cosfsinp =b cosp =c (6.123)

then, we have two answers for 6 and p: 0 corresponds to @, and 0+
corresponds to —p.

0 = atan2 % 0 = atan2 :—Z (6.124)
JVaZ r 2 Va2
p = atan2 % p = atan2 af—i— (6.125)

6.2 Inverse Transformation Technique

Assume we have the transformation matrix °T§ indicating the global posi-
tion and the orientation of the end-effector of a 6 DOF robot in the base
frame By. Furthermore, assume the geometry and individual transforma-
tion matrices °T1(q1), *To(q2), 2T3(q3), 3Tu(qs), *T5(gs), and ®Ts(gs) are
given as functions of joint variables.

According to forward kinematics,

T = O 1Ty 2Ty 3Ty 415 5T (6.126)

it Ti2 Ti3 Ti4

21 T22 T23 T24

31 T32 T33 T34
0 0 0 1
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We can solve the inverse kinematics problem by solving the following equa-
tions for the unknown joint variables:

s = o717t Oy (6.127)
T = Tt 01t 0T (6.128)
e = 2Tyt 'yt 0Tt O (6.129)
s = STyt ATyt Tyt 0Tt 0T, (6.130)
5Ty = 4T5—1 3T4—1 2T3—1 1T2—1 on1 07y (6.131)

I = 5T6—1 4T5—1 3T4_1 2T3—1 1T2—1 0T1—1 O (6.132)

Proof. We multiply both sides of the transformation matrix Ty by 07, *
to obtain

OTl_l 0T6 — OTl_l (OTl 1T2 2T3 3T4 4T5 5T6)
= 1T, (6.133)

Note that °T; ! is the mathematical inverse of the 4 x 4 matrix %7}, and not
an inverse transformation. So, %7, ! must be calculated by a mathematical
matrix inversion.

The left-hand side of Equation (6.133) is a function of ¢;. However, the
elements of the matrix Ty on the right-hand side are either zero, constant,
or functions of ¢o, ¢3, q4, g5, and gg. The zero or constant elements of the
right-hand side provides the required algebraic equation to be solved for
q1-

Then, we multiply both sides of (6.133) by T, " to obtain

1T51 OTfl OTG — 1T51 OTfl (OTl 1T2 2T3 3T4 4T5 5T6)
= 2Tg. (6.134)

The left-hand side of this equation is a function of g2, while the elements of
the matrix 2T%, on the right hand side, are either zero, constant, or functions
of g3, q4, ¢5, and gg. Equating the associated element, with constant or zero
elements on the right-hand side, provides the required algebraic equation
to be solved for ¢s.

Following this procedure, we can find the joint variables g3, q4, g5, and
gs by using the following equalities respectively.

2T3_1 1T2—1 OTl_l OTG
— zTgl Iy ot (O 1T 2T 3Ty AT 5 T) (6.135)
= 3T,

3T—1 QT—l 1T—1 OT—l (JT

4 3 2 1 6

= 3T, 2Ty AT O (O VT, 2T 3Ty AT P T) (6.136)
4

= *Ts.
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FIGURE 6.7. An articulated manipulator.

4T51 3T471 2T371 1T;1 OTfl OT6

= Aot 3pot el st o=l (O Ay 2 3 AT ST (6.137)
5 4 3 2 1

_ 5T

= 575,

5T6—1 4?5—1 3?4—1 2?3—1 1?2—1 0?1—1 01116
= STt AT 3T 2 Iy O (O VT, 2Ty 3Ty AT O T)
=L
(6.138)
The inverse transformation technique may sometimes be called Pieper
technique. m

Example 191 Articulated manipulator and numerical case.
Consider the articulated manipulator shown in Figure 6.7. The transfor-
mation matrices between its coordinate frames are:

cosf)y 0 sinfy 0
o | sinfy 0 —cosf; O
T = 0 1 0 I (6.139)
0 0 0 1
cosfly —sinfy 0 Iycosfs
1 | sinfa  cosfa 0 Ilysinfy
=" 0 1 (6.140)
0 0 0 1
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cosfl3 0 sinf3 O
25 | sinf3 0 —cosfs 0O
T3 = 0 1 0 0 (6.141)
0 0 0 1
The forward kinematics of the manipulator is:
o, = "7, 2Ty (6.142)

chic(02+03)  s01  ch1s (02 +03) lachichs

sOic (92 + 93) —cf, s0is (02 + 03) lacl5801

8(92 +93) 0 —C (92 +93) ll +12892
0 0 0 1

Point P is supposed to be the point at which we attach a spherical wrist.
Therefore, we attach a takht coordinate frame By at P that is at a constant
distance lg from Bs.

1 0 0 0
01 0 0
3 _
T, = 00 1 I (6.143)
0 00 1
So, the overall forward kinematics of the manipulator is:
0Ty = °T3 3Ty = (6.144)

chrc(02+03) sO1  cOis(02+03) l3s (02 + 03)chy + lachychs
sbic (02 + 03) —cf; sOis (92 + 93) l3s (92 + 93) s01 + lacl3s01
s (02 + 03) 0 —c (02 + 03) li — l3c (02 4 03) + l2s62
0 0 0 1

Using the following dimensions
li=1m I =1.05m I3 =0.89m (6.145)

when its tip point is at:
0 T
dp = [ 1 1.1 1.2 ] (6.146)
the forward kinematics reduces to:

cos (02 +03)cosfy  sinfy  sin (02 + 03)cosfy 1
cos (fs 4+ 03)sinf; —cosfy sin(f2 + 03)sinfh; 1.1
sin (92 +93) 0 — coS (02 +03) 1.2
0 0 0 1
(6.147)

OT4 —

Let us multiply both sides by OTfl to have:

07107, = Ot (O, 1Ty 215 3Ty = 1Ty (6.148)
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where,
cosfy sinf; 0 O
_ 0 0 1 -1
0—10 _ 1y 0
L = = sinf; —cosf; 0 0 T (6.149)
0 0 0 1
cos(fa+63) 0 sin(fy+03) cosf;+ 1.1sin6,
- sin(f2 +63) 0 —cos(fz+0s) 0.2
0 1 0 sinf; — 1.1cos 6,
0 0 0 1
and
Ty 2Ty 3Ty = (6.150)

6(02 +93) 0 5(92+93) 1.2s (92+93)+1.1092
S (92 + 93) 0 —c (92 + 93) 1.1s05, — 1.2¢ (92 + 93)
0 1 0 0
0 0 0 1

The last column of the left hand side of (6.148) is only a function of 6,
while the right hand side is a function of 8 and 03. Equating the element
ro4 of both sides of (6.148) provides an equation to determine 0.

sinf; — 1.1cosf; =0 (6.151)

1.1

01 = atan2(1.1,1) =tan* T
= 0.8329812667 rad ~ 47.72631098 deg (6.152)

Substituting 01 = 0.83298rad in (6.149) provides a matriz 1Ty with a nu-
merical values in the last column.

cos (0 +03) 0 sin(02+63) 1.4866
sin(fa +63) 0 —cos(fy+6;) 0.2

1 _
T, = 0 1 0 0 (6.153)
0 0 0 1
We multiply both sides of (6.153) by *Ty " to have:
Ty = 1y (YT AT P Ty) = 2Ty (6.154)
where,
cosfly sinfly 0 —1.05
_ —sinfy cosfy O 0
i, = 21y = 0 2 0 2 L0 i1y (6.155)
0 0 0 1
cosfl3 0 sinfl3  1.4866cosfy + 0.2sinfy — 1.05
_ sinfl3 0 —cosf; 0.2 cos @y — 1.486 6 sin 65
o 0 1 0 0
0 0 0 1
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and
cosfl3 0 sinfj 0.89 sin 63

sinfs 0 —cosf3 —0.89cosfs
0 1 0 0
0 0 0 1

Squaring the elements r14 and ro4 of the left hand sides of (6.154), provides
an equation to determine 0s.

Ty3T, = (6.156)

(1.486 6 cos B + 0.2sin 05 — 1.05)°
+ (0.2 cos Oy — 1.486 6'sin 05)?

= (0.89sin03)* + (—0.89 cos fs)° (6.157)
3.941 cos 5 + .53 sinfy = 5.232 (6.158)
This equation has the following solutions:
0y = .7555518221rad ~ 43.28993061 deg (6.159)
0y = —.4880908073rad ~ —27.96554327 deg (6.160)

Having 02, we can calculate 05 from the last column of (6.156) and (6.155).

s (L)
If 65 = 755 rad then we have:
03 = atan2 (—0.19437) = —0.19198 rad ~ —11 deg (6.162)
If 5 = —.488rad then we have:
03 = atan2 (0.194 37) = 0.19198 rad ~ 11 deg (6.163)

Example 192 Inverse kinematics for a spherical robot.
Transformation matrices of the spherical robot shown in Figure 6.8 are

091 0 —891 0 602 0 892 0
0 o 591 0 691 0 1 _ 592 0 7602 0
L=\ % 21 0 o =191 o Iy
0 0 0 1 0 0 0 1
1 00 0 by, 0 —s04 0
01 0 0 s@s 0 by O
2 _ 3 4 4
T 0 0 1 ds =% 21 0 o
000 1 0 0 0 1
605 0 895 0 696 7596 0 0
4 895 0 —095 0 5 896 096 0 0
L=1"9 1 0 o Ts=1"9 0o 1 ¢ | (6169
0o 0 0 1 0 0 0 1
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FIGURE 6.8. A spherical robot, made of a spherical manipulator attached to a
spherical wrist.

Therefore, the position and orientation of the end-effector for a set of joint
variables, which solves the forward kinematics problem, can be found by
matriz multiplication

Ty = Ty 'Tp°T5°T, 15 ° T,
11 Ti2 Ti3 T4
_ To1 T22 T23 T24 (6 165)

T31 T32 T33 T34
0 0 0 1

where the elements of °Ts are the same as the elements of the matriz in
Equation (5.159).
Multiplying both sides of the (6.165) by °Ty* provides

cosf; sinf; O T11 Ti2 Ti3 T4

0
OT_l OT _ 0 0 -1 0 721 T22 1923 T924
1 6 —sinf; cosfy 0 O T3l T32 133 T34
i 0 0 0 1 0 0 0 1
[ fir fiz fiz fua
— f21 f22 f23 f24 (6.166)

fa1 fa2 faz fsa
0 0 0 1
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where
fi1i = riicosfy +1ro;sinby (6.167)
foi = —ry; (6.168)
f3i = roicosfy —ry;sinb, (6.169)
i = 1,2,34.

Based on the given transformation matrices, we find that

Ty = 2737, 4T 5T,
fll f12 f13 f14
— f21 f22 f23 f24 (6.170)

fa1 fa2 faz fsa
0 0 0 1

fi1 = —clas04806 + clg (—892595 + 092094005) (6171)
f21 = —802894896 + 096 (092895 + 094095892) (6172)
f31 = cf4806 + cO5clg50, (6173)
f12 = —cbyclgshy — sbg (*802595 + 692694605) (6174)
foo = —cbgshasly — sbg (892895 + 094095892) (6175)
faz = cbsclg — cl550450¢ (6.176)
f13 = 095892 + 092094895 (6177)

f23 =  —cbycls + chy505505 (6178)

fsz3 = sb4s05 (6.179)

fia = dssb (6.180)

foa = —dschy (6.181)

faa = la (6.182)

The only constant element of the matriz (6.170) is fs4 = la, therefore,
794 COS 01 — r148in 07 = ls. (6.183)

This kind of trigonometric equation frequently appears in robotic inverse
kinematics, which has a systematic method of solution. We assume

T4 = TCOSQ (6.184)
7 sin ¢ (6.185)

T24
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FIGURE 6.9. Left shoulder configuration of a spherical robot.

r=/r} +7r (6.186)

where

¢ =tan~! 2 (6.187)
T14
and therefore, Equation (6.183) becomnes
b sin ¢ cos 01 — cos psin by = sin(¢ — 61) (6.188)
”

showing that
+v/1 = (l2/7)% = cos(¢ — 01). (6.189)

Hence, the solution of Equation (6.183) for 0y is
_1 724

la

= —tan ! ————.
T14 +4/r2 — 2

The (=) sign corresponds to a left shoulder configuration of the robots
as shown in Figure 6.9, and the (+) sign corresponds to the right shoulder
configuration.

The elements f14 and foq of matriz (6.170) are functions of 01 and 0
only.

61 = tan (6.190)

fia = dssinfy = ry4cos6y + rogsin by (6191)
Joa = —dscosby = —r3 (6.192)
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Hence, it is possible to use them and find 0

- 714 COS01 + 194 SN O1

0> = ta (6.193)
T34
where 01 must be substituted from (6.190).
In the next step, we find the third joint variable d3 from
o0y = 2T (6.194)
where
cosfly sinfy 0 O
s |0 0 1 —ly
" = sinf; —cosfy 0 0 (6.195)
0 0 0 1
and
—804806 + cO4cl5c0s —clgsOy — chychss0 chys05 0O
2 04506 + cl5c06504 chaclg — clss04506 sf48605 0
6= —096895 895896 895 d3
0 0 0 1
(6.196)

Employing the elements of the matrices on both sides of Equation (6.194)
shows that the element (3,4) can be utilized to find d3.

ds = 134 cos Oy + 114 cos 01 sin Oy + 124 sin 07 sin 04 (6.197)

Since there is no other element in Equation (6.194) to be a function of
another single variable, we move to the next step and evaluate 04 from

Bpoleq LI lop-10g, 4y (6.198)

because 2Ty * 1Ty, 1 0T 1 OTs = 3Ty provides no new equation. Evaluating
AT
6

cosfscosfy —cosfssinfg  sinfs 0
4 _ | coOS Ogsinfs —sinfssinfg —cosls 0
Ts = sin g cos O 0 0 (6.199)
0 0 0 1
and the left-hand side of (6.198) utilizing
100 O
2-1_ | 0 1 0 O
T, = 00 1 —ds (6.200)
0 0 O 1
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shows that
3T4—1 2T3—1
where
g1i
g2i
g3i

i
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cosf, sinfy 0 O
3p—1 _ 0 0 -1 0
4 —sinfys cosfy, 0 O
0 0 0 1
gi11 912 913 914
1T2—1 0T1—1 0T6 _ | 921 922 923 924

931 932 033 g34
0 0 0 1

= —r3ichy80s + 19; (cO1504 + clacly507)
+71; (—801504 + cB1chac04)

= d304; —r31¢09 — 11101509 — 191501504

= 131802804 + 791 (cO1c04 — cO3501504)
+711 (—cb4501 — cb1cb250,)

= 1,2,3,4.

The symbol d4; indicates the Kronecker delta and is:

1=4

_ 1 df
‘5‘“_{0 if i#4
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(6.201)

(6.202)

(6.203)
(6.204)

(6.205)

(6.206)

Therefore, we can find 04 by equating the element (3,3), 05 by equating
the elements (1,3) or (2,3), and 0g by equating the elements (3,1) or (3,2).
Starting from element (3, 3)

713 (—004591 — 091092594) + 793 (091004 — 092591894) + 133809804 = 0

we find 04

04 =tan~!

—r13861 + ro3ch;

092 (7’13091 + T23891) — 7‘33892

which, based on the second value of 01, can also be equal to

04 = il + tan~!

2

77’13891 + 7"23691

chs (7"13091 + 7"23891) — 1335809 '

Now we use elements (1,3) and (2,3),

sinfl; =

+r13 (cos 01 cos O cos By — sin; sin f4)

—cosfs =

—1r33 €08 0o — 113 €os 01 sin O3 — 193 sin 61 sin 05

(6.207)

(6.208)

(6.209)

793 (cos 01 sin 04 + cos O3 cos 04 sin 01) — r33 cos b, sin Oy

(6.210)
(6.211)
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to find 05
_4 sinfs
05 = tan~! ——=. 6.212
5 an cos 05 ( )
Finally, 06 can be found from the elements (3,1) and (3,2)
sinfg = 7r318infssinfy + ro; (cos by cos s — cos Oy sin Oy sin )
+711 (— cos By sin 6y — cos 01 cos O3 sin ) (6.213)
cosflg = r32sinfysinfy + rog (cos by cosfy — cos by sin by sin )
+712 (— cos Oy sin 01 — cos B cos O2 sinb,) (6.214)
s = tan* sinfs (6.215)
6= cosfg '

Example 193 Inverse of parametric Euler angles transformation matrix.
The global rotation matrixz based on Fuler angles has been found in Equa-
tion (2.107).

CRp = [A.yAus AZW}T =Rz, Rxo Rz

[ coc) — clspsty  —cpsih — chcpsp  sOsp
= chsp + clcpsyy  —spsh + cheperp  —cpsh
sOsyp sOcy ct

i1 Ti2 T13
= T2l T22 T23 (6.216)
31 T32 7133

Premultiplying “ Rp by RZP, gives

[ cosgp sing 0

—sing cosp 0 | “Rp
0 0 1

T11CP T T218¢  T12C0 + T228¢  T13CP + 12359
= T21CP — T118Y  T22CP — T128¢Q  T23CY — T'135Y

L r31 32 r33
[ cosy —siny 0
= cosfsinty cosfcosyy —sinf | . (6.217)

sinfsiny sinfcosy  cosl

Equating the elements (1,3) of both sides
713 COS  + ra38in = 0 (6.218)

gives
© = atan2 (ry3, —ra3) . (6.219)
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Having ¢ helps us to find 1 by using elements (1,1) and (1,2)

cosyY = T11C08p+ Toysing (6.220)
—siny = Tr13c08p + rogsinp (6.221)
therefore, )
b = atan2 — 2P T TR ONE (6.222)
711 COS Y + T971 SIN
In the next step, we may postmultiply Rp by Rg’lw, to provide
cosy siny O
CRp | —sinty costyp 0
0 0 1
[ ric —riasY rigc + sy i3
= T21CY — T228Y  To2C +T218Y  Ta3
| T310Y — 1328 T3ac) +r318Y T3
[ cosp —cosfsing  sinfsing
= sing cosfcosy —cospsind | . (6.223)
| 0 sin 0 cos 6
The elements (3,1) on both sides make an equation to find 1.
r31 €08 — 131 siny = 0 (6.224)
Therefore, it is possible to find 1 from the following equation:
1[} = atan2 (’I"'g,l7 7"31) . (6225)
Finally, 6 can be found using elements (3,2) and (3, 3)
r3ac) + 13189 = siné (6.226)
rs3 = cosf (6.227)
which give )
0 = atang T30SV ¥ a1 sing (6.228)

733
Example 194 Inverse of given Euler angles transformation matriz.
Assume the global rotation matrix based on FEuler angles is given as:
“Rp = [AupAvoAsgl’ = RzpRxoRazy

[ cochp — clspsyy  —cpsih — chcpsp  sOsp
= chsp + clcpsyy  —sps) + cheperp  —cpsh

i sOsyp sOcy ct
[ 0.12683 —0.78033 0.61237
= 0.92678 —0.12683 —0.35355 (6.229)

| 0.35355 0.61237  0.70711
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Premultiplying “Rp by Rglgp, gives

cosp sing 0
—singp cosp 0 | “Rp
0 0 1
0.126cp 4+ 0.926s¢ —0.780cp — 0.126s¢  0.612cp — 0.353s¢
= 0.926cp — 0.126s5¢  0.780s¢ — 0.126cp  —0.353cp — 0.612s5¢

i 0.353 55 0.61237 0.70711
[ cosy —sinvy 0
= cosfsiny cosfcosyy —sing | . (6.230)

sinfsiny sinfcosty  cosd

Equating the elements (1,3) of both sides

0.61237 cosp — 0.35355sinp =0 (6.231)
gives
0.61237
=atan2 | ——— | = 1.0472rad = 60deg. 232
= atan (0_35355> 0472rad = 60 deg (6.232)
Having ¢ helps us to find v by using elements (1,1) and (1,2)
costy = 0.126cosp + 0.926sin ¢ (6.233)
—siny = —0.78cos¢ —0.126siny (6.234)
therefore,
Y = atan2 0.78coscp+0.12651.n<p
0.126 cos ¢ + 0.926 sin
0.499 12
atan 0.86104 0.523rad = 30deg (6.235)

Although we can find 0 from elements (2,3) and (3,3), let us postmultiply
GRp by Rg,lw, to follow the inverse transformation technique.

cosy siny 0
“Rp | —siny cosyp 0
0 0 1

[ 0.126ct) +0.78s¢)  0.126st) — 0.78¢yp  0.61237

= | 0.926c) +0.1265¢) 0.926s1) — 0.126ct) —0.353 55
0.353c¢t) — 0.612s¢)  0.612ct) + 0.353s1)  0.707 11

cosp —cosfsing  sinfsing
= sing cosfcosy —cosysinf (6.236)
0 sin 0 cos

The elements (3,1) on both sides make an equation to find 1.
0.353 55 cosp — 0.61237siny =0 (6.237)
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Therefore, it is also possible to find ¢ from the following equation:

0.353 55
1 = atan2 <0 612 37) = 0.523rad = 30deg (6.238)

Finally, 0 can be found using elements (3,2) and (3,3)

0.61237cos® + 0.35355sinyy = sinf (6.239)
0.70711 = cosf (6.240)
which give
0.70711
0 = atan2 00T = 1rad = 45 deg. (6.241)

Example 195 % Inverse kinematics and nonstandard DH frames.
Consider a 3 DOF planar manipulator shown in Figure 5.4. The non-
standard DH transformation matrices of the manipulator are

cosf)y —sinf; 0 O
0o~ _ | sinfy cosf; 0 O
T = 0 0 1 0 (6.242)
0 0 0 1
[ cosfy —sinfs 0 Iy |
17 _ | sinfla  cosfp 0 O
Ty = 0 0 1 0 (6.243)
| 0 0 0 1
[ cosfs —sinf; 0 Iy |
25 | sinfls3  cosfs 0 0
T = 0 0 1 0 (6.244)
| 0 0 0 1
1 0 0 I3
3+ |0 1 0 0
Ty = 00 1 0 (6.245)
0 0 0 1

The solution of the inverse kinematics problem is a mathematical problem
and none of the standard or nonstandard DH methods for defining link
frames provide any simplicity. To calculate the inverse kinematics, we start
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with calculating the forward kinematics transformation matric °T),

o, = "NT2T3Ty (6.246)
[ cos 0123 —sinfia3 0 [y cosBi + Iy cosBis + I3 cosbias
_ sin 9123 COS 9123 0 ll sin 91 + 12 sin 912 + lg sin 0123
o 0 0 1 0
0 0 0 1

11 Ti2 Ti3 Ti4

T21 T22 T23 T24

31 T32 T33 T34
0 0 0 1

where we used the following short notation to simplify the equation.
Oijr. = 0; +0; + 0y, (6.247)

Ezamining the matriz °Ty indicates that

9123 = atan2 (7“217 ’rll) . (6248)
The next equation
T 3T = T ATy (6.249)
rin T2 0 g —l3rog chi23  —sb123 0 licly + lachio
ro1 Toz 0 Tog —l3roy _ stia3  cbiaz 0 lisfy + 128012
0 0 1 0 - 0 0 1 0
0 0 O 1 0 0 0 1
shows that
2 2 12 _ l2
0> = arccos fith—bi-b (6.250)
20119
01 = atan2(fofs — fifa, fifs + fofa) (6.251)
where
fi = ria—l3ri = cby (lachs + 1) — s61 (las62)
091f3 - 801f4 (6252)
fo = roq—l3ror = s01 (lachs + 11) + cb1 (l2s62)
= 891f3 + 691f4. (6.253)

Finally, the angle 03 is

03 = 9123 — 91 — 92. (6.254)
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6.3 Y Iterative Technique

The inverse kinematics problem can be interpreted as searching for the
solution ¢ of a set of nonlinear algebraic equations

07, = T(q) (6.255)
= "Ti(q1) 'Tolge) ®T5(q3) *Tulqs) - " T0(gn)

11 Ti2 Ti3 T4

T21 T22 T23 T24

T31 T32 T33 T34
0 0 0 1

or
rij = Tij (qr) k=1,2-n. (6.256)

where n is the number of DOF. However, maximum m = 6 out of 12
equations of (6.255) are independent and can be utilized to solve for joint
variables gi. The functions T(q) are transcendental, which are given ex-
plicitly based on forward kinematic analysis.

Numerous methods are available to find the zeros of Equation (6.255).
However, the methods are, in general, iterative. The most common method
is known as the Newton-Raphson method.

In the iterative technique, to solve the kinematic equations

T(q)=0 (6.257)
for variables q, we start with an initial guess
q* =q+dq (6.258)

for the joint variables. Using the forward kinematics, we can determine the
configuration of the end-effector frame for the guessed joint variables.

T* = T(q*) (6.259)

The difference between the configuration calculated with the forward kine-
matics and the desired configuration represents an error, called residue,
which must be minimized.

ST=T-T* (6.260)
A first order Taylor expansion of the set of equations is:
T = T(q* +4q)
* oT 2
= T(a™)+ ag’at 0(6q”) (6.261)

Assuming dq << I allows us to work with a set of linear equations

5T = J bq (6.262)
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where J is the Jacobian matrix of the set of equations

oT;
J =
(@ {3%}
that implies
Sq=J"14T.

Therefore, the unknown variables q are:

a=q*+J71T

(6.263)

(6.264)

(6.265)

We may use the values obtained by (6.265) as a new approximation to
repeat the calculations and find newer values. Repeating the methods can
be summarized in the following iterative equation to converge to the exact

value of the variables.

a* =g +37(a") oT(a")

(6.266)

This iteration technique can be set in an algorithm for easier numerical

calculations.

Algorithm 6.1. Inverse kinematics iteration technique.

1. Set the initial counter i = 0.
2. Find or guess an initial estimate q(©).

3. Calculate the residue (5T(q(i)) = J(q(i)) 5q®.

If every element of T(q(i)) or its norm HT(q(i))H 18 less than a tol-

erance, ||T(q)|| < € then terminate the iteration

desired solution.
4. Calculate 1) = q® +J~1(q?) 6T(q(i)),

5. Set i =i+ 1 and return to step 3.

The tolerance € can equivalently be set up on variables

q Y — g < e

or on Jacobian
J-I<e

. The q@ is the

(6.267)

(6.268)
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Example 196 % Inverse kinematics for a 2R planar manipulator.
In Example 184 we have seen that the tip point of a 2R planar manipu-
lator can be described by
X _ l1ch1 + lac (01 +02)
Y l1591 +l28 (91 +92) ’
To solve the inverse kinematics of the manipulator and find the joint coor-
dinates for a known position of the tip point, we define

q= { z; } (6.270)

(6.269)

T = [ X } (6.271)

therefore, the Jacobian of the equations is:

0X 0X
_ [9T] _ | 96, 96,
@ = 5] % o
001 004

_ —lysinf; — I3 sin (91 + 92) —ly sin (91 + 92)

- lycosf1 +lacos (01 +03)  lycos (601 + 62)

(6.272)

The inverse of the Jacobian is

31 -1 |: —lsc (91 +92) —lzs (91 +92) :|

_ 2
l1ls805 | 1101 +1lac (01 4+ 02) 11861 + las (01 + 62) (6.273)

and therefore, the iterative formula (6.266) is set up as

] 18] (F)-[5]7)

Let’s assume

lh=k=1 (6.275)
X 1
T_[Y}__l} (6.276)
and start from a guess value
o r
0 w/3
0) — 1 -

o -[%]72] ] o2

for which

5T = [ sin7/3 + sin (7/3 + —7/3)

|

} B [ cos /3 + cos (7/3 4+ —m/3) }

1
1
-l )] o
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The Jacobian and its inverse for these values are

—1V3 0
J:[ 2%\/_ 1} (6.279)
-2V3 0
,1: 3
J [ Bl } (6.280)
and therefore,
1) r (0)
[z;} = g;} +J716T
[ ) [-3E o] -
| —/3 V3 1| —3V3+1
[ 1.6245
= | Cirmoo ] (6.281)

Based on the iterative technique, we can find the following values and
find the solution in a few iterations.
Iteration 1.

1
J= [ 33 0 } (6.282)

E

1

oT = { 2 } (6.283)

-1V3+1

1.6245

(1) _

Q= { _1.7792 } (6.284)

Tteration 2.

—0.844 0.154
J= { 0.934 0.988 } (6.285)
6.516 x 1072
5T = { 015553 } (6.286)
@ _ [ 1583
q“ = [ 1582 (6.287)
ITteration 3. .
—1.00 —.433 x 10~
J= [ 988 .999 } (6.288)
119 x 1072
0T = [ —.362 x 1073 ] (6.289)
@) _ | 1.570795886
= [ —1.570867014 (6:290)
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Tteration 4.

~1.000 0.0

T = { 0.99850 1.0 } (6:291)
—.438 x 1076

oT = [ 711 x 1074 ] (6.292)
@ _ [ 1.570796329

= [ —1.570796329 (6:293)

The result of the fourth iteration g™ is close enough to the exact value
T
a=[nm/2 —-m/2]".

6.4 Y Comparison of the Inverse Kinematics
Techniques

6.4.1 Y Ezxistence and Uniqueness of Solution

It is clear that when the desired tool frame position °d; is outside the
working space of the robot, there can not be any real solution for the joint
variables of the robot. In this condition, the overall resultant of the terms
under square root signs would be negative. Furthermore, even when the
tool frame position °d; is within the working space, there may be some
tool orientations “Ry7 that are not achievable without breaking joint con-
straints and violating one or more joint variable limits. Therefore, existing
solutions for inverse kinematics problem generally depends on the geomet-
ric configuration of the robot.

The normal case is when the number of joints is six. Then, provided that
no DOF is redundant and the configuration assigned to the end-effectors of
the robot lies within the workspace, the inverse kinematics solution exists in
finite numbers. The different solutions correspond to possible configurations
to reach the same end-effector configuration.

Generally speaking, when the solution of the inverse kinematics of a robot
exists, they are not unique. Multiple solutions appear because a robot can
reach to a point within the working space in different configurations. Every
set of solutions is associated to a particular configuration. The elbow-up
and elbow-down configuration of the 2R manipulator in Example 184 is a
simple example.

The multiplicity of the solution depends on the number of joints of the
manipulator and their type. The fact that a manipulator has multiple so-
lutions may cause problems since the system has to be able to select one
of them. The criteria on which to base a decision may vary, but a very
reasonable choice consists of choosing the closest solution to the current
configuration.
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When the number of joints is less than six, no solution exists unless
freedom is reduced in the same time in the task space, for example, by
constraining the tool orientation to certain directions.

When the number of joints exceeds six, the structure becomes redundant
and an infinite number of solutions exists to reach the same end-effector
configuration within the robot workspace. Redundancy of the robot archi-
tecture is an interesting feature for systems installed in a highly constrained
environment. From the kinematic point of view, the difficulty lies in for-
mulating the environment constraints in mathematical form, to ensure the
uniqueness of the solution to the inverse kinematic problem.

6.4.2 Y Inverse Kinematics Techniques

The inverse kinematics problem of robots can be solved by several meth-
ods, such as decoupling, inverse transformation, iterative, screw algebra,
dual matrices, dual quaternions, and geometric techniques. The decoupling
and inverse transform technique using 4 x 4 homogeneous transformation
matrices suffers from the fact that the solution does not clearly indicate
how to select the appropriate solution from multiple possible solutions for
a particular configuration. Thus, these techniques rely on the skills and in-
tuition of the engineer. The iterative solution method often requires a vast
amount of computation and moreover, it does not guarantee convergence
to the correct solution. It is especially weak when the robot is close to the
singular and degenerate configurations. The iterative solution method also
lacks a method for selecting the appropriate solution from multiple possible
solutions.

Although the set of nonlinear trigonometric equations is typically not
possible to be solved analytically, there are some robot structures that are
solvable analytically. The sufficient condition of solvability is when the 6
DOF robot has three consecutive revolute joints with axes intersecting
in one point. The other property of inverse kinematics is ambiguity of a
solution in singular points. However, when closed-form solutions to the arm
equation can be found, they are seldom unique.

Example 197 s Iteration technique and n-m relationship.

1— Iteration method when n = m.

When the number of joint variables n is equal to the number of indepen-
dent equations generated in forward kinematics m, then provided that the
Jacobian matriz remains non singular, the linearized equation

5T = J6q (6.294)

has a unique set of solutions and therefore, the Newton-Raphson technique
may be utilized to solve the inverse kinematics problem.

The cost of the procedure depends on the number of iterations to be per-
formed, which depends upon different parameters such as the distance be-
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tween the estimated and effective solutions, and the condition number of the
Jacobian matrixz at the solution. Since the solution to the inverse kinematics
problem is not unique, it may generate different configurations according to
the choice of the estimated solution. No convergence may be observed if the
initial estimate of the solution falls outside the convergence domain of the
algorithm.

2— Iteration method when n > m.

When the number of joint variables n is more than the number of inde-
pendent equations m, then the problem is an overdetermined case for which
no solution exists in general because the number of joints is not enough to
generate an arbitrary configuration for the end-effector. A solution can be
generated, which minimizes the position error.

3— Iteration method when n < m.

When the number of joint variables n is less than the number of inde-
pendent equations m, then the problem is a redundant case for which an
infinite number of solutions are generally available.

6.5 - Singular Configuration

Generally speaking, for any robot, redundant or not, it is possible to dis-
cover some configurations, called singular configurations, in which the num-
ber of DOF of the end-effector is inferior to the dimension in which it
generally operates. Singular configurations happen when:

1. Two axes of prismatic joints become parallel

2. Two axes of revolute joints become identical.

At singular positions, the end-effector loses one or more degrees of free-
dom, since the kinematic equations become linearly dependent or certain
solutions become undefined. Singular positions must be avoided as the ve-
locities required to move the end-effector become theoretically infinite.

The singular configurations can be determined from the Jacobian matrix.
The Jacobian matrix J relates the infinitesimal displacements of the end-
effector

§X = [6X1, - 6 Xm] (6.295)

to the infinitesimal joint variables
6q = [0q1, - 6qy] (6.296)

and has thus dimension m X n, where n is the number of joints, and m is
the number of end-effector DOF'.

When n is larger than m and J has full rank, then there are m — n
redundancies in the system to which m —n arbitrary variables correspond.
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The Jacobian matrix J also determines the relationship between end-
effector velocities X and joint velocities ¢

X=17Jq. (6.297)

This equation can be interpreted as a linear mapping from an m-dimensional
vector space X to an n-dimensional vector space q. The subspace R(J) is
the range space of the linear mapping, and represents all the possible end-
effector velocities that can be generated by the m joints in the current
configuration. J has full row-rank, which means that the system does not
present any singularity in that configuration, then the range space R(J)
covers the entire vector space X. Otherwise, there exists at least one direc-
tion in which the end-effector cannot be moved.

The null space N(J) represents the solutions of J§ = 0. Therefore, any
vector q €N(J) does not generate any motion for the end-effector.

If the manipulator has full rank, the dimension of the null space is then
equal to the number m — n of redundant DOF. When J is degenerate, the
dimension of R(J) decreases and the dimension of the null space increases
by the same amount. Therefore,

dimR(J) + dim N(J) = n. (6.298)

Configurations in which the Jacobian no longer has full rank, corresponds
to singularities of the robot, which are generally of two types:

1. Workspace boundary singularities are those occurring when the ma-
nipulator is fully stretched out or folded back on itself. In this case,
the end effector is near or at the workspace boundary.

2. Workspace interior singularities are those occurring away from the
boundary. In this case, generally two or more axes line up.

Mathematically, singularity configurations can be found by calculating
the conditions that make
|J] =0 (6.299)

or
‘JJT’ —0. (6.300)

Identification and avoidance of singularity configurations are very impor-
tant in robotics. Some of the main reasons are:

1. Certain directions of motion may be unattainable.
2. Some of the joint velocities are infinite.

3. Some of the joint torques are infinite.
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4. There will not exist a unique solution to the inverse kinematics prob-
lem.

Detecting the singular configurations using the Jacobian determinant
may be a tedious task for complex robots. However, for robots having a
spherical wrist, it is possible to split the singularity detection problem into
two separate problems:

1. Arm singularities resulting from the motion of the manipulator arms.

2. Wrist singularities resulting from the motion of the wrist.
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6.6 Summary

Inverse kinematics refers to determining the joint variables of a robot for
a given position and orientation of the end-effector frame. The forward
kinematics of a 6 DOF robot generates a 4 x 4 transformation matrix

°Ts = T 'R °T5 Ty T5 T
11 Ti2 Ti3 T4
_ YR¢ Ydg _ | r2r ra2 a3 T2 (6.301)
0 1 T3l T32 T33 T34 '

0 0 0 1

where only six elements out of the 12 elements of °T are independent.
Therefore, the inverse kinematics reduces to finding the six independent
elements for a given °T; matrix.

Decoupling, inverse transformation, and iterative techniques are three
applied methods for solving the inverse kinematics problem. In decoupling
technique, the inverse kinematics of a robot with a spherical wrist can be
decoupled into two subproblems: inverse position and inverse orientation
kinematics. Practically, the tools transformation matrix °T% is decomposed
into three submatrices °T3, 3T, and T%.

T = Ty 3Ty 5T (6.302)

The matrix °T3 positions the wrist point and depends on the three manip-
ulator joints’ variables. The matrix 3Tg is the wrist transformation matrix
and the %T% is the tools transformation matrix.

In inverse transformation technique, we extract equations with only one
unknown from the following matrix equations, step by step.

T = 17! 0T (6.303)
T = 1yt 01t 0T (6.304)
s = 2Tyt Myt 0T O (6.305)
e = 3Tyt iyt 01t 0T (6.306)
Ty = 4T5—1 3T4—1 2T3_1 1T2_1 OTl—l 0% (6.307)

I = 5Tgl 4T571 ST[I 2T§1 1T{1 onl 075 (6.308)

The iterative technique is a numerical method seeking to find the joint
variable vector q for a set of equations T(q) = 0.
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6.7 Key Symbols

S0 me®e o
S
o

[oP=R
Y
<

Qu
I3

wrist

>

DH

QR "I yS 3 Ty
<

“ a3

sgn
SSRMS

Tarm
Twrist

’Z"y7z
XY, Z

null vector

coefficients of trigonometric equation

turn vector of end-effector frame

local rotation transformation matrix

body coordinate frame

cos

joint distance

elements of d

translation vector, displacement vector

wrist position vector

displacement transformation matrix
Denavit-Hartenberg

degree of freedom

the element of row ¢ and column j of a matrix
the element of row ¢ and column j of a matrix
global coordinate frame, Base coordinate frame
identity matrix

Jacobian

length

number of independent equations

number of links of a robot, number of joint variables
point

parameters of trigonometric equation

position vectors, homogeneous position vector
joint variable

joint variables vector

the element i of r

the element of row ¢ and column j of a matrix
rotation transformation matrix

sin

signum function

space station remote manipulator system
homogeneous transformation matrix
manipulator transformation matrix

wrist transformation matrix

a set of nonlinear algebraic equations of q
local coordinate axes, local coordinates

global coordinate axes, global coordinates

369
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Greek

0 Kronecker function, small increment of a parameter
€ small test number to terminate a procedure

0 rotary joint angle

Oijk 0; +0; + 0y

Symbol

[ ]! inverse of the matrix [ ]

[ 1" transpose of the matrix [ ]

= equivalent

F orthogonal

link number 4
parallel sign

— et
.
~—

1 perpendicular

X vector cross product
q* a guess value for q
dim dimension

N null space

R range space
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Exercises

1. Notation and symbols.

Describe the meaning of:

a- atan2 (a,b) b-°7, ¢ T(q) d-q e J

2. 3R planar manipulator inverse kinematics.

Figure 5.21 illustrates an R||R||R planar manipulator. The forward
kinematics of the manipulator generates the following matrices. Solve
the inverse kinematics and find 61, 65, 03 for given coordinates g, yo
of the tip point and a given value of .

cosfs —sinfs 0 I3cosfs |
27, _ sinfl3 cosfs 0 lI3sinfs
5T 0 0 1 0
0 0 0 1 ]
[ cosfy —sinfy 0 Iycosfy ]
17 sinfy cosfly 0 Iysinfy
27 0 0 1 0
| 0 0 0 1 ]
[ cos@; —sinf; 0 Ijcosf; ]
o _ sinfy cosf; 0 Iysinf,
te 0 0 1 0
| 0 0 0 1 ]

3. 2R manipulator tip point on a horizontal path.

Consider an elbow up planar 2R manipulator with I; = ls = 1. The
tip point is moving on a straight line from P; (1,1.5) to Py (—1,1.5).

(a) Divide the Cartesian path in 10 equal sections and determine
the joint variables at the 11 points.

(b) % Calculate the joint variable 6; at P; and at P,. Divide the
range of #; into 10 equal sections and determine the coordinates
of the tip point at the 11 values of ;.

(¢) ¥ Calculate the joint variable 85 at P, and at P,. Divide the
range of #; into 10 equal sections and determine the coordinates
of the tip point at the 11 values of 05.

4. 2R manipulator tip point on a tilted path.

Consider an elbow up planar 2R manipulator with I; = ls = 1. The
tip point is moving on a straight line from P; (1,1.5) to Py (—1,1).
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FIGURE 6.10. A planar manipulator.

(a) Divide the Cartesian path in 10 equal sections and determine
the joint variables at the 11 points.

(b) % Calculate the joint variable 6; at P; and at P,. Divide the
range of #; into 10 equal sections and determine the coordinates
of the tip point at the 11 values of ;.

(¢) ¥ Calculate the joint variable 62 at P, and at P,. Divide the
range of #; into 10 equal sections and determine the coordinates
of the tip point at the 11 values of 5.

5. 2R manipulator motion on a horizontal path.

Consider an elbow up planar 2R manipulator with I; = I = 1. The
tip point is moving on a straight line from P (1,1.5) to Py (-1, 1.5)
according to the following functions of time.

X=1-6"+4t> Y =15
(a) Calculate and plot 61 and 65 as functions of time if the time of
motion is 0 <t < 1.
(b) % Calculate and plot §; and 6, as functions of time.
(c) % Calculate and plot #; and fy as functions of time.

(d) % Calculate and plot # and @5 as functions of time.

6. A planar manipulator.

Figure 6.10 illustrates a three DOF' planar manipulator.

(a) Determine the transformation matrices between coordinate frames.
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(b) Solve the forward kinematics and determine the coordinates X,
Y, and ¢ of the end-effector frame Bs for a given set of joint
variables 01, da, 03.

(¢) Solve the inverse kinematics and determine the joint variables
01, ds, 03 for a given set of end-effector coordinates X, Y, and

®.
7. 2R manipulator motion on a horizontal path.

Consider a planar elbow up 2R manipulator with I; = [; = 1. The
tip point is moving on a straight line from P (1,1.5) to Py (—1, 1.5)
with a constant speed.

X=1—-wvt Y=15

(a) Calculate v and plot 6, and 65 if the time of motion is 0 < ¢ < 1.
(b) Calculate v and plot 8 and 65 if the time of motion is 0 < ¢ < 5.
(c) Calculate v and plot 61 and 65 if the time of motion is 0 < ¢ < 10.
(d) % Plot #; and 03 as functions of v at point (0, 1.5).

8. 2R manipulator motion on a horizontal path.

Consider a planar elbow up 2R manipulator with [y = Iy = 1. The
tip point is moving on a straight line from P; (1,1.5) to Py (—1,1.5)
with a constant acceleration.

1
X:lf§at2 Y=15

(a) Calculate a and plot 67 and 05 if the time of motion is 0 < ¢ < 1.
(b) Calculate a and plot 8; and 65 if the time of motion is 0 < ¢ < 5.
(c) Calculate a and plot 61 and 65 if the time of motion is 0 < ¢ < 10.
(d) % Plot #; and 65 as functions of a at point (0, 1.5).

9. % 2R manipulator kinematics on a tilted path.

Consider a planar elbow up 2R manipulator with I; = I, = 1. The
tip point is moving on a straight line from P; (1,1.5) to Py (—1,1.5)
with a constant speed.

X=1-uvt Y =15

a) Calculate and plot 6; and 65 if the time of motion is 0 <t < 1.

(a)

(b) Calculate and plot #; and 6, as functions of time.

(¢) Calculate and plot 6; and f, as functions of time.
)

(d) Calculate and plot 01 and 92 as functions of time.
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10. Acceptable lengths of a 2R planar manipulator.
The tip point of a 2R planar manipulator is at (1,1.1).

(a) Assume l; = 1. Plot 6; and 0, versus I and determine the range
of possible I5 for elbow up configuration.

(b) Assume Iy = 1. Plot 07 and 5 versus l; and determine the range
of possible [; for elbow up configuration.

(¢) Assume l; = 1. Plot 0, and 65 versus [y and determine the range
of possible ls for elbow down configuration.

(d) Assume [y = 1. Plot 6; and 5 versus [, and determine the range
of possible [; for elbow down configuration.

11. 3R manipulator tip point on a straight path.

Consider a 3R articulated manipulator such as Figure 6.2 with [; =
0.5, I = I3 = 1. The tip point is moving on a straight line from
P (1.5,0,1) to P, (—1,1,1.5).

(a) Divide the Cartesian path into 10 equal sections and determine
the joint variables at the 11 points.

(b) Calculate the joint variable ; at P; and at P». Divide the range
of 07 into 10 equal sections and determine the coordinates of the
tip point at the 11 values of 65 and 63.

(c) Calculate the joint variable 65 at Py and at P. Divide the range
of #5 into 10 equal sections and determine the coordinates of the
tip point at the 11 values of ; and 03.

(d) Calculate the joint variable 3 at P; and at P». Divide the range
of 03 into 10 equal sections and determine the coordinates of the
tip point at the 11 values of #; and 6.

12. 3R manipulator motion on a straight path.

Consider a 3R articulated manipulator such as Figure 6.2 with [; =
0.5, I = I3 = 1. The tip point is moving on a straight line from
Py (1.5,0,1) to P> (—1,1,1.5) according to the following functions of

time.
X = 1.5-0.025¢t +0.00375¢t* — 0.00015¢°
Y = 0.01¢£ — 0.0015¢t* + 0.00006t°
Z = 14 0.005 — 0.00075t* + 0.00003¢>

(a) Calculate and plot 01, 62 and 63 if the time of motion is 0 < ¢ <
1.

(b) % Calculate and plot 01, O and 05 as functions of time.
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Y Y
. /\\ . m
o X o X
(a) (b)

FIGURE 6.11. An elbow up 2R manipulator on a circular path.

(c) % Calculate and plot 6y, f; and 3 as functions of time.

(d) % Calculate and plot 01, 65 and 05 as functions of time.

13. An elbow up 2R manipulator on a circular path.

The 2R manipulator of Figure 6.11 has [, =3 = 1. The tip point of
the manipulator is supposed to move on a circular path with a radius
R = 1/3. Assume the manipulator starts moving when the second
link is horizontal.

(a) Plot 6; and 65 if the tip point is moving counterclockwise as
shown in Figure 6.11(a).

(b) Plot 6 and 05 if the tip point is moving clockwise as shown in
Figure 6.11(b).
14. Acceptable lengths of a 3R manipulator.
The tip point of a 3R articulated manipulator is at (1,1.1,0.5).

(a) Assume [ =13 = 1. Plot 61, 62 and 03 versus [y and determine
the range of possible I5.

(b) Assume ly =I5 = 1. Plot 01, 05 and 03 versus /; and determine
the range of possible [;.

(¢) Assume lp =1y = 1. Plot 01, 02 and 63 versus I3 and determine
the range of possible 3.

15. An elbow down 2R manipulator on a circular path.

The 2R manipulator of Figure 6.12 has I, =3 = 1. The tip point of
the manipulator is supposed to move on a circular path with a radius
R = 1/3. Assume the manipulator starts moving when the first link
is horizontal.
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FIGURE 6.12. An elbow down 2R manipulator on a circular path.

0,

0;

FIGURE 6.13. A 2R manipulator on a circular path.

(a) Plot 6; and 05 if the tip point is moving counterclockwise as
shown in Figure 6.12(a).

(b) Plot 61 and 05 if the tip point is moving clockwise as shown in
Figure 6.12(b).

16. A 2R manipulator on a circular path.

The 2R manipulator of Figure 6.13 has I = I; = 1. The tip point of
the manipulator is supposed to move on a circular path with a radius
R =4 and a center on Y -axis.

(a) Assume the elbow up manipulator starts moving on the upper
circular path when the second link is horizontal. Plot 81 and 65
until the first link becomes horizontal at the end of the path.

(b) Assume the elbow down manipulator starts moving on the upper
circular path when the first link is horizontal. Plot 8, and 65 until
the first link becomes horizontal at the end of the path.
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(c) Assume the elbow up manipulator starts moving on the lower
circular path when the second link is horizontal. Plot #; and 65
until the first link becomes horizontal at the end of the path.

(d) Assume the elbow down manipulator starts moving on the lower
circular path when the first link is horizontal. Plot #; and 65 until
the first link becomes horizontal at the end of the path.

Spherical wrist inverse kinematics.

Figure 5.26 illustrates a spherical wrist with following transformation
matrices. Assume that the frame Bj is the base frame. Solve the
inverse kinematics and find 6,4, 65, ¢ for a given 3Tg.

694 0 *594 0 605 0 895 0
35+ | 804 0 By O 4 | SO05 0 —cf5 O
Li=1"%9 1 0o o =19 1 0 o
0 0 0 1 0o 0 0 1

696 7806 0 0

5 - 896 096 0 0

Ts=1 "9 0 1 0

0 0 0 1

% Roll-Pitch-Yaw spherical wrist kinematics.

Attach the required DH coordinate frames to the Roll-Pitch-Yaw
spherical wrist of Figure 5.30, similar to 5.28, and determine the
forward and inverse kinematics of the wrist.

% Pitch-Yaw-Roll spherical wrist kinematics.

Attach the required coordinate DH frames to the Pitch-Yaw-Roll
spherical wrist of Figure 5.31, similar to 5.28, and determine the
forward and inverse kinematics of the wrist.

SCARA robot inverse kinematics.

Consider the R||R||R||P robot shown in Figure 5.23 with the following
transformation matrices. Solve the inverse kinematics and find 61, 02,
03 and d for a given °T}.

[ cos@; —sinf; 0 Iycosf; ]
o, _ sinf; cos@; 0 Iysinf;
! 0 0 1 0
0 o 0 1 |
[ cosfs; —sinfy 0 Ilycosfs ]
I sinf, cosfly 0 Iysinfy
2= 0 0 1 0
0 o 0 1 |
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cosfl3 —sinfl3 0 O 1 0 0O
25 _ | sinfl3  cosfs 0 0O 3+ |0 1 0 0
Ty = 0 0 10 =100 1 4
0 0 0 1 0 0 0 1

o, = "M 2Ty3Ty

chia3  —sbi23 0 licOr + lachia
stios  cbiaz 0 11501 4 l2s012

- 0 0 1 d
0 0 0 1
0123 = 601 +62+03 012 =01+ 0,

21. RFRJR articulated arm inverse kinematics.

Figure 5.22 illustrates 3 DOF RFR||R manipulator. Use the following
transformation matrices and solve the inverse kinematics for 64, 65,

0s.
cosf; 0 —sinf; O
o, _ sinf; O cos 61 0
= 0 -1 0 dy
0 0 0 1
coslly —sinfy; 0 Iycosbs
1 sinfy cosfly 0 Iysinfy
2= 0 0 1 dy
0 0 0 1
cosfl3 0 sinf3 O
2 sinffs 0 —cosfs O
3 0 1 0 0
0 0 0 1

22. Kinematics of a PRRR manipulator.
A PRRR manipulator is shown in Figure 6.14.

(a) Set up the links’s coordinate frame according to standard DH
rules.

(b) Determine the class of each link.
(¢) Find the links’ transformation matrices.
(d) Calculate the forward kinematics of the manipulator.

(e) Solve the inverse kinematics problem for the manipulator.

23. % Space station remote manipulator system inverse kinematics.

Shuttle remote manipulator system (SSRMS) is shown in Figure
5.24 schematically. The forward kinematics of the robot provides the
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FIGURE 6.14. A PRRR manipulator.

following transformation matrices. Solve the inverse kinematics for
the SSRMS.

I 691 0 —891 0 892 0 —892 0
0 _ 891 0 091 0 1 _ 392 0 692 0
h=1% -1 0o aq =109 1 0 d
| O 0 0 1 0 0 0 1
[ cs —sf3 0 aschs cy —sby 0 aycly
2T o 893 093 0 a3503 3T . 894 094 0 a4394
5710 0 1 ds TLo 0 1 dy
| O 0 0 1 0 0 0 1
605 0 895 0 096 0 —896 0
4 o 895 0 —095 0 5 o 806 0 096 0
=19 1 0o =19 1 0o d
0 0 0 1 0 0 0 1
697 *807 0 0
6 _ 897 607 0 0
=109 0 14
0 0 0 1

Hint: This robot is a one degree redundant robot. It has 7 joints which
is one more than the required 6 DOF' to reach a point at a desired
orientation. To solve the inverse kinematics of this robot, we need to
introduce one extra condition among the joint variables, or assign a
value to one of the joint variables.

(a) Assume 6; = 0 and 7% is given. Determine 05, 03,0y, 05,06, 07.
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(b) Assume 03 = 0 and 'T% is given. Determine 61, 03, 04, 05, g, 07.
(c) Assume 03 = 0 and T is given. Determine 61, 0, 04, 05, 05, 07.
(d) Assume 05 = 0 and T is given. Determine 61, 05, 03,04, 05, 07.
(e) Assume 05 = 0 and T is given. Determine 01, 0, 03,04, 05, 07.
(f) Assume 67 = 0 and 7% is given. Determine 61, 02,603,604, 05, 06.
(g) Determine 61,05,0s5,0y4, 05, 0¢,07 such that f is minimized.

f=01+024+05+04+05+ 0+ 67
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