2

Rotation Kinematics

Consider a rigid body with a fixed point. Rotation about the fixed point
is the only possible motion of the body. We represent the rigid body by
a body coordinate frame B, that rotates in another coordinate frame G,
as is shown in Figure 2.1. We develop a rotation calculus based on trans-
formation matrices to determine the orientation of B in (G, and relate the
coordinates of a body point P in both frames.

FIGURE 2.1. A rotated body frame B in a fixed global frame G, about a fixed
point at O.

2.1 Rotation About Global Cartesian Axes

Consider a rigid body B with a local coordinate frame Oxyz that is origi-
nally coincident with a global coordinate frame OXY Z. Point O of the body
B is fixed to the ground G and is the origin of both coordinate frames. If
the rigid body B rotates a degrees about the Z-axis of the global coordi-
nate frame, then coordinates of any point P of the rigid body in the local
and global coordinate frames are related by the following equation

Cr=QgaPr (2.1)
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where,
X x|
Sr=1|Y Br=1| y (2.2)
Z z |
and
cosa —sina 0 ]
Qza=| siha cosa 0 |. (2.3)
0 0 1|

Similarly, rotation 8 degrees about the Y-axis, and v degrees about the
X-axis of the global frame relate the local and global coordinates of point
P by the following equations

GI‘ = Qyﬁ BI‘ (24)
“r=Qx,Pr (2.5)
where,

cosf 0 sing
Qv = 0 1 0 (2.6)

—sinf 0 cosf

1 0 0

Qx~=| 0 cosy —siny |. (2.7)

0 siny cosvy

Proof. Let (i,7, k) and (I,.J, K) be the unit vectors along the coordinate
axes of Ozyz and OXY Z respectively. The rigid body has a space fixed
point O, that is the common origin of Ozyz and OXY Z. Figure 2.2 illus-
trates the top view of the system.

The initial position of a point P is indicated by P;. The position vector
r; of P; can be expressed in body and global coordinate frames by

Bri = mitypj+ak (2.8)
GI‘1 = X1j+Y1j+ Z1f{ (2.9)
z1 =X
y1=Y (2.10)
z1 = Zl

where Br; refers to the position vector r; expressed in the body coordinate
frame B, and “r; refers to the position vector r; expressed in the global
coordinate frame G.

If the rigid body undergoes a rotation « about the Z-axis then, the
local frame Oxyz, point P, and the position vector r will be seen in a
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FIGURE 2.2. Position vector of point P when local and global frames are coin-
cident.

second position, as shown in Figure 2.3. Now the position vector ro of P
is expressed in both coordinate frames by

Bry = i+ o)+ 2k (2.11)
GI‘Q = ng + }/QJ + ZQK (212)

Using the definition of the inner product and Equation (2.11) we may
write

X2 = fr2:f$2i+fy2j+f22]% (213)
oy = K~I’2=K-.’I?2’Z+K-y2j+K'ZQIA€ (2.15)
or equivalently
X, Iv 1.5 1k T
Yo | = J0 J-§ J-k y2 | - (2.16)
Zy K1 K-j K-k 22

The elements of the Z-rotation matriz, QQz,q, are called the direction
cosines of Pry with respect to OXY Z. Figure 2.4 shows the top view of
the initial and final configurations of r in both coordinate systems Ozxyz
and OXY Z. Analyzing Figure 2.4 indicates that

IA'i:cosa7 foj:fsina, I k=0
J-i=sina, J-j=cosa, J-k=0 (2.17)
K.i=0, K-j=o, K- h=1
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FIGURE 2.3. Position vector of point P when local frames are rotated about the
Z-axis.

Combining Equations (2.16) and (2.17) shows that we can find the com-

ponents of “ry by multiplying the Z-rotation matrix Q 7.« and the vector
B

Iro.
X5 cosa —sina 0 To
Y | = | siha cosa O y2 | - (2.18)
Z2 0 0 1 Z9

It can also be shown in the following short notation

“ry = Qz.a Pra (2.19)
where
cosae —sina 0
Qzao=| sina cosa 0 |. (2.20)
0 0 1

Equation (2.19) says that the vector r at the second position in the
global coordinate frame is equal to Q7 times the position vector in the
local coordinate frame. Hence, we are able to find the global coordinates of
a point of a rigid body after rotation about the Z-axis, if we have its local
coordinates.

Similarly, rotation S about the Y-axis and rotation + about the X-axis
are described by the Y-rotation matriz Qyg and the X-rotation matriz
Qx,y respectively.

cosf 0 sing
Qvp = 0 1 0 (2.21)
—sinf3 0 cospf
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FIGURE 2.4. Position vectors of point P before and after the rotation of the local
frame about the Z-axis of the global frame.

1 0 0

Qx =] 0 cosy —siny (2.22)
0 siny cosvy

The rotation matrices @z, Qv,3, and Qx - are called basic global ro-
tation matrices. We usually refer to the first, second and third rotations
about the axes of the global coordinate frame by «, 3, and y respectively.
]

Example 3 Successive rotation about global axes.

The final position of the corner P(5,30,10) of the slab shown in Figure
2.5 after 30 deg rotation about the Z-axis, followed by 30deg about the X -
axis, and then 90deg about the Y -axis can be found by first multiplying
Qz.30 by [5,30,10]T to get the new global position after first rotation

X9 cos30 —sind0 0 5 —10.68
Yo | = | sin30 cos30 O 30 | = 28.48 (2.23)
Zo 0 0 1 10 10.0

and then multiplying Qx 30 and [—10.68,28.48,10.0]7 to get the position of
P after the second rotation

X3 1 0 0 —10.68 —10.68
Ys | =] 0 cos30 —sin30 28.48 = 19.66
73 0 sin30 cos30 10.0 22.9

(2.24)
and finally multiplying Qy .90 and [—10.68,19.66,22.9]T to get the final posi-

tion of P after the third rotation. The slab and the point P in first, second,
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FIGURE 2.5. Corner P of the slab at first position.

third, and fourth positions are shown in Figure 2.6.

X4 cos90 0 sin90 —10.68 22.90
Y, | = 0 1 0 19.66 = | 19.66 (2.25)
Zy —sin90 0 cos90 22.9 10.68

Example 4 Time dependent global rotation.
Consider a rigid body B that is continuously turning about the Y -axis of
G at a rate of 0.3rad/s. The rotation transformation matriz of the body is:

cos0.3t 0 sin0.3t
“Qp = 0 1 0 (2.26)
—sin0.3t 0 cos0.3t

Any point of B will move on a circle with radius R = VX? + Z2 parallel
to (X, Z)-plane.

8

X [ cos0.3t 0 sin0.3¢
Y = 0 1 0
—sin0.3t 0 cos0.3t z

x cos 0.3t + zsin 0.3t
= y (2.27)
| zcos 0.3t — zsin 0.3t

NS

X2+ 7

(2 c0s 0.3t + zsin 0.3¢) + (2 cos 0.3t — x sin 0.3t)*
2?22 =R? (2.28)
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FIGURE 2.6. Corner P and the slab at first, second, third, and final positions.

Consider a point P at Br = [ 1 00 ]T, After t = 1s, the point will
be seen at:

X cos0.3 0 in0.3 1 0.955
Y | = 0 1 0 0= 0 (2.29)
A4 —sin0.3 0 cos0.3 0 —0.295
and after t = 2s, at:
X cos0.6 —sin0.6 0 1 0.825
Y [ =] sin0.6 cos0.6 0 0= 0564 (2.30)
Z 0 0 1 0 0

We can find the global velocity of the body point P by taking a time deriv-
ative of

“rp = Qyp’rp (2.31)
cos0.3t 0 sin0.3¢
Qv = 0 1 0 : (2.32)

—sin0.3t 0 cos0.3¢t

Therefore, the global expression of its velocity vector is:

) zc0s 0.3t — xsin 0.3t
GVP = QY7B BI‘P = 03 0 (233)
—xcos 0.3t — zsin 0.3t
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FIGURE 2.7. Positions of point P in Example 5 before and after rotation.
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Example 5 Global rotation, local position.
If a point P is moved to “ry = [4,3,2]T after a 60 deg rotation about the
Z-axis, its position in the local coordinate is:

Pry = Qulr2 (2.34)
o cos60 —sin60 0] ' [ 4 4.60
Y = sin60 cos60 O 3| =] —-1.95
29 0 0 1 2 2.0

The local coordinate frame was coincident with the global coordinate frame
before rotation, thus the global coordinates of P before rotation was also
Gry = [4.60,-1.95,2.0]7. Positions of P before and after rotation are
shown in Figure 2.7.

2.2  Successive Rotation About Global Cartesian
Axes

The final global position of a point P in a rigid body B with position vector
r, after a sequence of rotations Q1, Q2, Q3, ..., @, about the global axes

can be found by
Cr=9Qp°r (2.35)

where,

“Qp= Qn- Q302 (2.36)
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and, “r and Pr indicate the position vector r in the global and local coor-
dinate frames. “Qp is called the global rotation matriz. It maps the local
coordinates to their corresponding global coordinates.

Since matrix multiplications do not commute the sequence of performing
rotations is important. A rotation matrix is orthogonal; i.e., its transpose
Q7 is equal to its inverse Q1.

Q" =q (2.37)

Rotation about global coordinate axes is conceptually simple because
the axes of rotations are fixed in space. Assume we have the coordinates
of every point of a rigid body in the global frame that is equal to the local
coordinates initially. The rigid body rotates about a global axis, then the
proper global rotation matrix gives us the new global coordinate of the
points. When we find the coordinates of points of the rigid body after the
first rotation, our situation before the second rotation is similar to what
we had before the first rotation.

Example 6 Successive global rotation matriz.
The global rotation matriz after a rotation Qz.. followed by Qv and
then Qx - 1s:

“Qp = Qx,QvsQza (2.38)

cacf —cfsa sf
= cysa + casfsy  cacy — sasfsy  —cBsy
sasy — cacysf  casy + cysasf  cBcy

Example 7 Successive global rotations, global position.
The end point P of the arm shown in Figure 2.8 is located at:

X1 0 0 0.0
Y1 | = lcosf | = | lcos75 | = | 0.26 (2.39)
Z lsinf 1sin 75 0.97

The rotation matriz to find the new position of the end point after —29 deg
rotation about the X -axis, followed by 30deg about the Z-axis, and again
132 deg about the X -axis is

0.87 —-044 —-0.24

“Qp = Qx132Q230Qx, 20 = | —0.33 —0.15 —0.93 (2.40)
037  0.89 —0.27

and its new position is at:

Xy 087 —0.44 —-0.24 0.0 -0.35
Y, | =] =033 —-0.15 -0.93 026 | = | —0.94
Zs 037 089 —0.27 0.97 —0.031

(2.41)
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z X
FIGURE 2.8. The arm of Example 7.

Example 8 Twelve independent triple global rotations.

Consider a rigid body in the final orientation after a series of rotation
about global axes. We may transform its body coordinate frame B from the
coincident position with a global frame G to any final orientation by only
three rotations about the global axes provided that no two consequence rota-
tions are about the same axis. In general, there are 12 different independent
combinations of triple rotations about the global axes. They are:

1-Qx,QvsQza
2 - QyvQzsQx,a
3-Qz,Qx 0y,
4—-Qz,QyvsQx,a
5 — 81@%}(,582@
6 — Qx~Qzs0v,a
7T-Qx,Qy,sQx,a (242)
8 — Qv,Qz,5Rv,a
9-Qz,Qx,02.a
10 - Qx,Qz,80x,a
11 - Qv Qx,sRv,a
12 - Qz,Qv3Q 7z,

The expanded form of the 12 global axes triple rotations are presented in
Appendiz A.

Example 9 Order of rotation, and order of matriz multiplication.
Changing the order of global rotation matrices is equivalent to changing
the order of rotations. The position of a point P of a rigid body B is located

at Brp = [ 1 2 3 ]T. Its global position after rotation 30 deg about X -
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axis and then 45deg about Y -azis is at

(GFP)1 = Qyu5Qx,30 °rp (2.43)

053 —-0.84 0.13 1 —0.76
= 0.0 0.15  0.99 2 | = 3.27
—-0.85 —0.52 0.081 3 —1.64

and if we change the order of rotations then its position would be at:

(GI‘P)2 = Qx30Qvs rp (2.44)
0.53 0.0 0.85 1 3.08
= —-0.84 0.15 0.52 2 = 1.02
—0.13 —-0.99 0.081 3 —1.86

These two final positions of P are d = |(Grp)1 — (Grp)Ql = 4.456 apart.

Example 10 % Repeated rotation about global azes.
If we turn a body frame B about X -axis yrad, where,

27

o neN (2.45)

n
then we need to repeat the rotation n times to turn the body back to its
original configuration. We can check it by multiplying Qx o by itself until
we achieve an identity matriz. So, any body point of B will be mapped to
the same point in global frame. To show this, we may find that Qx o to the
power m as:

) . 1 0 0 "
1 0 0 27 . 2w
m N . . | 0 cos— —sin—
Q%o = |0 cosy —siny | = n n
i 2 2
[ 0 siny  cosy 0 sin—=  cos—
(1 0 0
0 ) 2 . T
_ CObm; 7Slnm; (246)
. 2m s
0 sinm— cosm—
L n n
If m = n, then we have an identity matriz.
1 0 0
T .27 1 0 0
Q},a _ | 0 cos n7 —sin n? —lo1 o0 (2.47)
2w 0 0 1

0 sinn— cosn—
n n

Repeated rotation about any other global axis provides the same result.
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Let us now rotate B about two global axes repeatedly, such as turning «
about Z-axis followed by a rotation v about X -axis, such that

27 27
= — = — , eN. 2.48
a=- 7= {n1,na} (2.48)
We may guess that repeating the rotations n = ny X ny times will turn B
back to its original configuration.

[Qxn Qz.a]™ "™ =11] (2.49)

As an example consider a = %’r and v = %TW' We need 13 times combined

rotation to achieve the original configuration.

-0.5 —-0.86603 O

“Qp = Qx~Qza= 0 0 ~1.0 | (2.50)
0.86603  —0.5 0
[ 0.9997 —0.01922 —0.01902
GRE = | 001902 099979 —0.0112 | ~1I (2.51)

0.01922  0.01086 0.9998

We may turn B back to its original configuration by lower number of
combined rotations if n1 and ny have a common divisor. For example if
n1 = ny = 4, we only need to apply the combined rotation three times. In
a general case, determination of the required number n to repeat a gen-
eral combined rotation CQp to turn back to the original orientation is an
unsolved question.

Qs = [[@xie =123 (2.52)
j=1
2w

a = = m,n; € N (2.53)
J

Q. = I n=? (2.54)

2.3 Global Roll-Pitch-Yaw Angles

The rotation about the X-axis of the global coordinate frame is called a
roll, the rotation about the Y-axis of the global coordinate frame is called
a pitch, and the rotation about the Z-axis of the global coordinate frame
is called a yaw. The global roll-pitch-yaw rotation matrix is:

“Qp = Qz,QvsQx.a (2.55)
cfey  —casy+ cysasf sasy 4 cacysp
= cBsy cacy+ sasfBsy  —cysa+ casfBsy
—sp cfBsa cacf
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Roll Pitch Yaw

FIGURE 2.9. Global roll, pitch, and yaw rotations.

Figures 2.9 illustrates 45 deg roll, pitch, and yaw rotations about the axes
of a global coordinate frame.

Given the roll, pitch, and yaw angles, we can compute the overall rotation
matrix using Equation (2.55). Also we are able to compute the equivalent
roll, pitch, and yaw angles when a rotation matrix is given. Suppose that r;;
indicates the element of row ¢ and column j of the roll-pitch-yaw rotation
matrix (2.55), then the roll angle is

a=tan? (%) (2.56)

and the pitch angle is
B =—sin"t(rs) (2.57)

and the yaw angle is

7 = tan™! (Tﬂ> (2.58)

T11
provided that cos 8 # 0.

Example 11 Determination of roll-pitch-yaw angles.
Let us determine the required roll-pitch-yaw angles to make the x-axis of
the body coordinate B parallel to u, while y-azis remains in (X,Y )-plane.

u=1+2J+3K (2.59)
Because x-axis must be along u, we have

G u 1 2 . 3 -
1=—= J+ K
uf V4 V4 V14

and because y-azis is in (X,Y )-plane, we have

I+ (2.60)

Gj:(j.j)f+(j~j)j:cos9f+sin0j. (2.61)
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The azes i and ©j must be orthogonal, therefore,
1/4/14 cos 6
2/4/14 | - | sinf = 0 (2.62)
3/V14 0
0 = —26.56deg. (2.63)
We may find Gf; by a cross product.
A 1//14 7 0.894 0.358
Ch=C%x%=|2/VI4 | x| —0447 | = | 0.717 (2.64)
3/V14 | 0 —0.597

Hence, the transformation matriz ©Qp is:

I-i I-7 1-k 1/V/14  0.894  0.358
“Qp=1| J-2 J-j J-k|=|2/V1d —0447 0717 | (2.65)
Ki K7 K-k 3/V/14 0 —0.597

Now it is possible to determine the required roll-pitch-yaw angles to move
the body coordinate frame B from the coincidence orientation with G to the
final orientation.

_1 (732 “1 0
— — — = 2.
! tan <r33) tan (_0.597> 0 (2.66)
B = —sin!(ry) = —sin~! (3/\/14) ~—093rad  (2.67)
2/4/14
v = tan! <rﬂ) = tan~! / ~1.1071rad  (2.68)
r11 1/v14

2.4 Rotation About Local Cartesian Axes

Consider a rigid body B with a space fixed point at O. The local body
coordinate frame B(Ozyz) is coincident with a global coordinate frame
G(OXY Z), where the origin of both frames are on the fixed point O. If the
body undergoes a rotation ¢ about the z-axis of its local coordinate frame,
as can be seen in the top view shown in Figure 2.10, then coordinates of
any point of the rigid body in local and global coordinate frames are related
by the following equation

By=4,,C%r (2.69)

The vectors ©r and Pr are the position vectors of the point in global and
local frames respectively

G

* = [X Y Z (2.70)
By = [z y Z]T (2.71)
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and A, , is the z-rotation matriz.

cosp sinp 0
A, o= | —sing cosp 0 (2.72)
0 0 1

Similarly, rotation # about the y-axis and rotation v about the z-axis
are described by the y-rotation matriz A, ¢ and the z-rotation matriz A,
respectively.

cosf 0 —sinf
Ayo= 0 1 0 (2.73)
sinf 0 cos6

1 0 0
Az py=1|0 cos¢ siny (2.74)
0 —siny cosvy

Proof. Vector r indicates the position of a point P of the rigid body B
where it is initially at P;. Using the unit vectors (%, 7, k) along the axes
of local coordinate frame B(Ozyz), and (f K ) along the axes of global
coordinate frame G(OXY Z), the initial and final position vectors r; and

ro in both coordinate frames can be expressed by

BI‘1 = $1’2+y1j+21f€ (275)
ry, = Xy I+ViJ+7ZK (2.76)
BI‘Q = $2i+y2j+22f€ (277)
Cry = Xol 4+ Yod + ZK. (2.78)

The vectors Bry and Br, are the initial and final positions of the vector

r expressed in body coordinate frame B(Ozyz), and “r; and “ry are the
initial and final positions of the vector r expressed in the global coordinate
frame G(OXY 7).

The components of Zry can be found if we have the components of “r.
Using Equation (2.78) and the definition of the inner product, we may write

Ty = d-rg=1-Xol+i-YoJ +i-ZK (2.79)
Yo = jro=7-Xol+7- Yo+ - ZoK (2.80)
or equivalently
s I i-J i K X,
v | =1 j-J jK || V2. (2.82)
22 k-1 k-J k-K Zo
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FIGURE 2.10. Position vectors of point P before and after rotation of the local
frame about the z-axis of the local frame.

The elements of the z-rotation matrix A, , are the direction cosines of
ro with respect to Oxyz. So, the elements of the matrix in Equation (2.82)
are:

G

-fZCOSgD7 i-JA:singD7 1 K=0
T=—sing, j-J=cosp, j-K=0 (2.83)
I=0, k-J=0, E-K=1

Combining Equations (2.82) and (2.83), we can find the components of
By, by multiplying z-rotation matrix A, , and vector Crs.

>

PO
N

To cosep sing 0 Xy
Yo | = | —sinp cosp 0 Y, (2.84)
V) 0 0 1 ZQ

It can also be shown in the following short form

Br2 = Az,gp GrQ (285)
where,
cosp sing 0
A, ,=| —sinp cosg 0 |. (2.86)
0 0 1

Equation (2.85) says that after rotation about the z-axis of the local
coordinate frame, the position vector in the local frame is equal to A, ,
times the position vector in the global frame. Hence, after rotation about
the z-axis, we are able to find the coordinates of any point of a rigid body
in local coordinate frame, if we have its coordinates in the global frame.

Similarly, rotation 6 about the y-axis and rotation 1 about the z-axis
are described by the y-rotation matrix A, ¢ and the z-rotation matrix A,
respectively.
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cosf 0 —sinf
Ayo= 0 1 0 (2.87)
sinf 0 cos6

1 0 0
Arpy=10 cosy siny (2.88)
0 —siny cos®y

We indicate the first, second, and third rotations about the local axes by
p, 0, and 1 respectively. ®

Example 12 Local rotation, local position.

If a local coordinate frame Oxyz has been rotated 60 deg about the z-
azis and a point P in the global coordinate frame OXY Z is at (4,3,2), its
coordinates in the local coordinate frame Ozyz are:

T cos60 sin60 O 4 4.60
y | = | —sin60 cos60 0 3 =] -197 (2.89)
z 0 0 1 2 2.0

Example 13 Local rotation, global position.

If a local coordinate frame Oxyz has been rotated 60 deg about the z-azis
and a point P in the local coordinate frame Oxzyz is at (4,3,2), its position
in the global coordinate frame OXY Z is at:

T

X cos60 sin60 O 4 —0.60
Y | = | —sin60 cos60 0 3| =] 496 (2.90)
A 0 0 1 2 2.0

Example 14 Successive local rotation, global position.

The arm shown in Figure 2.11 has two actuators. The first actuator
rotates the arm —90deg about y-axis and then the second actuator rotates
the arm 90deg about x-axis. If the end point P is at

Brp=[95 —101 101 ]" (2.91)
then its position in the global coordinate frame is at:
“ry = [AwooAy o] ' Prp=A." g0 A L, Prp
10.1
= A} g9 ALgPrp=| —10.1 (2.92)

9.5
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FIGURE 2.11. Arm of Example 14.

2.5 Successive Rotation About Local Cartesian
Axes

The final global position of a point P in a rigid body B with position

vector r, after some rotations Ay, As, As, ..., A, about the local axes, can
be found by
By = BAgCr (2.93)
where,
BAG= A, AsAsA;. (2.94)

B Aq is called the local rotation matriz and it maps the global coordinates
to their corresponding local coordinates.

Rotation about the local coordinate axis is conceptually interesting be-
cause in a sequence of rotations, each rotation is about one of the axes of
the local coordinate frame, which has been moved to its new global position
during the last rotation.

Assume that we have the coordinates of every point of a rigid body in
a global coordinate frame. The rigid body and its local coordinate frame
rotate about a local axis, then the proper local rotation matrix relates
the new global coordinates of the points to the corresponding local coor-
dinates. If we introduce an intermediate space-fixed frame coincident with
the new position of the body coordinate frame, we may give the rigid body
a second rotation about a local coordinate axis. Now another proper local
rotation matrix relates the coordinates in the intermediate fixed frame to
the corresponding local coordinates. Hence, the final global coordinates of
the points must first be transformed to the intermediate fixed frame and
second transformed to the original global axes.
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Example 15 Successive local rotation, local position.

A local coordinate frame B(Oxyz) that initially is coincident with a global
coordinate frame G(OXY Z) undergoes a rotation ¢ = 30deg about the
z-axis, then 8 = 30deg about the x-axis, and then v = 30deg about the
y-azxis. The local coordinates of a point P located at X =5,Y =30, Z =10
can be found by [ = y = ]T = Ay ypAspA.p [ 5 30 10 ]T. The local
rotation matriz s

0.63  0.65 —0.43
BAG = Ays0As30A.30=| —043 075  0.50 (2.95)
0.65 —0.125 0.75

and coordinates of P in the local frame is:

T 0.63 0.6 —0.43 5 18.35
y | =] —043 0.75 0.50 30 | =1 25.35 (2.96)
z 0.65 —0.125 0.75 10 7.0

Example 16 Successive local rotation.
The rotation matriz for a body point P(x,y,z) after rotation A, , fol-
lowed by Ay and Ay is:

Bag = Ay Az oAz,
coc) — sOspsth cpsp + cpslsy —clsy
= —clsp cOcp s (2.97)
cps + shcpsp  sps — cpsBcy ey

Example 17 Twelve independent triple local rotations.

Euler proved that: Any two independent orthogonal coordinate frames
with a common origin can be related by a sequence of three rotations about
the local coordinate axes, where mo two successive rotations may be about
the same axis. In general, there are 12 different independent combinations
of triple rotation about local axes. They are:

1-As pAyoA. e
2—-AypAs A,
3— A, Az 0Aye
4—A, yAy oAz,
5— Ay pAzoAs o
6 — Ap Az oAy,
T — Az Ay oda,
8—Ay A0y,
9— A, yAz 04,
10 — Az p Az 9Az
11 — Ay pAroAye
12— A, yAyeAs

(2.98)

The expanded form of the 12 local axes’ triple rotation are presented in
Appendiz B.
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FIGURE 2.12. First Euler angle.

2.6 Euler Angles

The rotation about the Z-axis of the global coordinate is called precession,
the rotation about the z-axis of the local coordinate is called nutation, and
the rotation about the z-axis of the local coordinate is called spin. The
precession-nutation-spin rotation angles are also called Fuler angles. Euler
angles rotation matrix has many application in rigid body kinematics. To
find the Euler angles rotation matrix to go from the global frame G(OXY Z)
to the final body frame B(Oxzyz), we employ a body frame B’(Oz'y’z’) as
shown in Figure 2.12 that before the first rotation coincides with the global
frame. Let there be at first a rotation ¢ about the z’-axis. Because Z-axis
and z’-axis are coincident, we have:

By = BA;Cr (2.99)
) cosp sinp 0
BAG = A.,=| —sinp cosp 0 (2.100)
0 0 1

Next we consider the B'(Oxz'y’z’) frame as a new fixed global frame and
introduce a new body frame B”(Oz"y"z""). Before the second rotation, the
two frames coincide. Then, we execute a 6 rotation about z”’-axis as shown
in Figure 2.13. The transformation between B’(Ox'y’z’") and B"”(Ox"y"2")
is:

By = B'Ap Py (2.101)
. 1 0 0

B Ap = Azp=1| 0 cosf sind (2.102)
0 —sinf cosf

Finally we consider the B”(Ox"y"z") frame as a new fixed global frame
and consider the final body frame B (Oxyz) to coincide with B” before the
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!

A
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FIGURE 2.13. Second Euler angle.

third rotation. We now execute a 1 rotation about the z’-axis as shown in
Figure 2.14. The transformation between B”(Oxz"y"2") and B(Ozxyz) is:

By = BAp, B’y (2.103)
costy siny 0

BAgn = A,4p=| —siny cosyp 0 (2.104)
0 0 1

By the rule of composition of rotations, the transformation from G(OXY Z)
to B(Oxyz) is
By = BAgCr (2.105)

where,

BAG = Az,wa,OAz,ga

cpcp — chspsip cpsp + clcpsyp  sOsy
—cpsth — chepsp  —spsp + chepey  sBep | (2.106)
slse —cpst cl

and therefore,

GQB = BA(_;l = BAg - [Az,wAI,9A27CP]T

cpc) — clspsy  —cpsh — clcpsp  sOse
= csp + clepsty  —spsh + chepcy  —cpsh | . (2.107)
sOsy sOcy ct

Given the angles of precession ¢, nutation 6, and spin v, we can com-
pute the overall rotation matrix using Equation (2.106). Also we are able
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FIGURE 2.14. Third Euler angle.

to compute the equivalent precession, nutation, and spin angles when a
rotation matrix is given.

If r;; indicates the element of row ¢ and column j of the precession-
nutation-spin rotation matrix (2.106), then,

0 = cos™* (r33) (2.108)
¢ = —tan~! (:—Z’D (2.109)
W = tan ! (%) (2.110)

provided that sin 6 # 0.

Example 18 Fuler angle rotation matrix.

The Euler or precession-nutation-spin rotation matrix for ¢ = 79.15 deg,
0 = 41.41deg, and v = —40.7deg would be found by substituting ¢, 0, and
¥ in Equation (2.106).

BAg = A, —107Az 10145 7915 (2.111)

0.63 0.65 —0.43
—-043  0.75 0.50
0.66 —0.125 0.75

Example 19 Fuler angles of a local rotation matriz.
The local rotation matrix after rotation 30deg about the z-axis, then
rotation 30 deg about the x-axis, and then 30deg about the y-axis is

BAc = Ay304:30430 (2.112)

0.63 0.65 —0.43
= —-043 0.75 0.50
0.66 —0.125 0.75
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and therefore, the local coordinates of a sample point at X =5, Y = 30,
Z =10 are:

x 0.63 0.65 —0.43 5 18.35
y | =] —043  0.75 0.50 30 | = 25.35 (2.113)
z 0.66 —0.125 0.75 10 7.0

The Euler angles of the corresponding precession-nutation-spin rotation
matriz are:

0 = cos ! (0.75) = 41.41 deg
0.65
a1 _
p = tan (_0.125) 79.15deg
—0.43
= T ——) =-40.7d 2.114
P tan < 050 ) 0.7 deg ( )

Hence, Ay 3042304530 = A, Az A, when o = 79.15deg, 0 = 41.41 deg,
and v = —40.7deg. In other words, the rigid body attached to the local
frame mowves to the final configuration by undergoing either three consecu-
tive rotations ¢ = 79.15deg, 6 = 41.41 deg, and ¥ = —40.7 deg about z, x,
and z azes respectively, or three consecutive rotations 30 deg, 30deg, and
30deg about z, z, and y axes.

Example 20 Relative rotation matrix of two bodies.

Consider a rigid body By with an orientation matriz B+ Ag made by Euler
angles ¢ = 30deg, 0 = —45deg, v = 60deg, and another rigid body Bs
having ¢ = 10deg, 0 = 25deg, ¥ = —15deg, with respect to the global
frame. To find the relative rotation matriz 51 Ap, to map the coordinates
of second body frame By to the first body frame By, we need to find the
individual rotation matrices first.

BrAg = A.goAs—15A: 30 (2.115)

0.127 0.78  —0.612
= —-0.927 -0.127 -0.354
—-0.354 0.612  0.707

BoAc = Aii0As2sAs 15 (2.116)

0.992 —-0.0633 —0.109
= 0.103 0.907 0.408
0.0734 —0.416  0.906

The desired rotation matriz B+ Ap, may be found by

BiAp, = PrAGC Ap, (2.117)
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which is equal to:

PiAg, = PrAgPAL (2.118)

0.992 0.103 0.0734
—0.0633 0.907 —-0.416
—0.109 0.408 0.906

Example 21 FEuler angles rotation matriz for small angles.
The Euler rotation matriz BAg = A, pAz oA, for very small Euler
angles ¢, 0, and ) is approximated by

1 v 0
BAc=| —~ 1 0 (2.119)
0 -0 1
where,
Y=+ (2.120)

Therefore, in case of small angles of rotation, the angles ¢ and ¥ are in-
distinguishable.

Example 22 Small second Euler angle.
If0 — 0 then the Euler rotation matriz BAg = A, Az A, , approaches

to
cpc) — spsip cpsp +cpstyp 0
BaAg = —cpsy —cpsp  —spsy + cpcp 0
i 0 0 1
[ cos(p+v)  sin(p+e) 0
= —sin(p+1) cos(p+1) 0 (2.121)
0 0 1

and therefore, the angles ¢ and v are indistinguishable even if the value
of ¢ and ¥ are finite. Hence, the Fuler set of angles in rotation matrix
(2.106) is not unique when 6 = 0.

Example 23 FEuler angles application in motion of rigid bodies.

The zxz Euler angles are good parameters to describe the configuration of
a rigid body with a fized point. The FEuler angles to show the configuration
of a top are shown in Figure 2.15 as an example.

Example 24 % Angular velocity vector in terms of FEuler frequencies.

A Eulerian local frame E (0, €y, ég,éy) can be introduced by defining unit
vectors €,, €9, and &y as shown in Figure 2.16. Although the Eulerian
frame is not necessarily orthogonal, it is very useful in rigid body kinematic
analysis.
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FIGURE 2.15. Application of Euler angles in describing the configuration of a
top.

The angular velocity vector gwp of the body frame B(Oxyz) with respect
to the global frame G(OXY Z) can be written in Euler angles frame E as
the sum of three Euler angle rate vectors.

Buwp = péy, + 069 + ey (2.122)

where, the rate of Fuler angles, ¢, 0, and 1/1 are called FEuler frequencies.
To find qwp in body frame we must express the unit vectors é,, &g,
and &y shown in Figure 2.16, in the body frame. The unit vector é, =

[ 0 0 1 ]T = K is in the global frame and can be transformed to the
body frame after three rotations.

sin @ sin v
Béw = BAcK = Az,wA%gAz#,f( = | sinfcosy (2.123)
cosf
The unit vector ég = [ 1 0 0 ]T = 7 is in the intermediate frame
Oz'y'z" and needs to get two rotations Ay e and A,y to be transformed
to the body frame.

cos
Bée = BAOQf’y/Z/ ’ZI = Az7¢, Axﬂ ’Zl = — Sin'l/] (2124)
0

The unit vector €y 1s already in the body frame, €, = [ 0 0 1 ]T = k.
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T e(p

FIGURE 2.16. Euler angles frame é,, ég, €.

Therefore, qwp is expressed in body coordinate frame as

sin 6 sin ¢ ) cos 10
Bwp = ¢| sinfcosy | +60| —singy |+ |0
cos 0 1
= (gbsin@sinier@cosdJ)iJr(gbsin&coswfésini/z)j
+ (gbcosﬁ n zl)) 2 (2.125)

and therefore, components of gwp in body frame Oxyz are related to the
Euler angle frame Op0v by the following relationship:

Bwp = BApEwp (2.126)
We sinfsiny cosy 0 ¢
Wy = sinfcosy —siny 0 0 (2.127)
Wy cos 0 1 1/;

Then, gwp can be expressed in the global frame using an inverse transfor-
mation of Euler rotation matriz (2.106)

¢ sinfsiny + 0 cos 1)
bwp = PAG EBwp=PA' | ¢sinfcosty —Osiny
pcosl +

= (9cos<p—|—ilzsin6?sincp) I+ (9sin<p—qlzcoscpsin9> J
+ (gb + 9 cos 9) K (2.128)

and hence, components of gwp in global coordinate frame OXY Z are re-
lated to the FEuler angle coordinate frame OpB by the following relation-
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ship.
dwp = “Qpéwp (2.129)
wx 0 cosp sinfsing @
wy = 0 singp —cosysinf 0 (2.130)
Wy 1 0 cosf "

Example 25 % Fuler frequencies based on a Cartesian angular velocity
vector.

The vector Bwp, that indicates the angular velocity of a rigid body B
with respect to the global frame G written in frame B, is related to the
Euler frequencies by

Bup = PApEwp (2.131)
Wy sinfsinty cosy 0 @

Bwp = wy | = | sinfcosyy —siny 0 0 . (2.132)
W, cosé 0 1 "

The matriz of coefficients is not an orthogonal matriz because,

BAL # Baj (2.133)
sinfsinty sinfcosty cosd
BAL = cos —sin 0 (2.134)
0 0 1
1 sin cos 0
Bab = 7 sinfcosy  —sinfsiny 0 |. (2.135)
sin —cosfsiny —cosfcosy 1

It is because the Euler angles coordinate frame Opbvy is not an orthogonal
frame. For the same reason, the matriz of coefficients that relates the FEuler
frequencies and the components of Gwp

Gwp = “Qplws (2.136)
wx 0 cose sinfsing ®

Swp = wy | =] 0 sing —cosysing 0 (2.137)
wz 1 0 cos ¢

is mot an orthogonal matrix. Therefore, the Fuler frequencies based on local
and global decomposition of the angular velocity vector qwpg must solely be
found by the inverse of coefficient matrices

twp = BA Bwp (2.138)

@ 1 sin ) cos 0 Wy

0 = I3 sinfcosy  —sinfsiny 0 wy | (2.139)
sin

¥ —cosfsiny —cosfcosy 1 W,
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and
ng = GQ;;l ng (2.140)
@ 1 —cosfsing cosfcosp 1 wx
0 = 33 sinfcose  sinfsing 0 wy | . (2.141)
{p s sin ¢ —cosp O Wz

Using (2.138) and (2. 140), it can be verified that the transformation ma-
trir PAq =P Ag GQ would be the same as Euler transformation matriz
(2.106).

The angular velocity vector can thus be expressed as:

. Wy R R . wx
ewp = [1 j k]|w |=[1 J K]| wy
Wy Wz
i e
= [K ¢é k]| 0 (2.142)
(G

Example 26 % Integrability of the angular velocity components.
The integrability condition for an arbitrary total differential of f = f (x,y)

df = fidx + fody = 8fd + gi Y (2.143)
18: of o/
1_2J2

= o (2.144)

The angular velocity components wy, wy, and w, along the body coordi-
nate axes x, y, and z can not be integrated to obtain the associated angles
because

wydt = sin @ sin dp + cosyp df (2.145)
e 9 (sinfsinep) , dcosy
sin 6 sin cos
i A (2.146)

However, the integrability condition (2.144) is satisfied by the Fuler fre-
quencies. From (2.139), we have:

_ siny cos
dp = 0 (wg dt) + pr; (wy dt) (2.147)
df = costp (wydt) —siny (wy dt) (2.148)
_ —cosfsingy —cosfcostp (w, dt)
W = sin 0 (s dt) + sin @ (coy dt) + sin 0 (2.149)
For example, the second equation indicates that
cosp = % —siny = % (2.150)

0 (wy dt) 0 (wy dt)
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and therefore,

SO g I
y

d(—siny) Oy sintcosfcosy

dend) - Vi sin 6 (2.152)

It can be checked that dyp and diy are also integrable.

Example 27 Y Cardan angles and frequencies.

The system of Fuler angles is singular at 6 = 0, and as a consequence,
@ and Y become coplanar and indistinguishable. From 12 angle systems
of Appendix B, each with certain mames, characteristics, advantages, and
disadvantages, the rotations about three different axes such as BAg =
A, Ay eAs., are called Cardan or Bryant angles. The Cardan angle sys-
tem is not singular at @ = 0, and has some application in mechatronics and
attitude analysis of satellites in a central force field.

By cpsp + sbcpsp  sps — cpsbcy)

—cls)  cpch — sOspsy) s 4 cpshsyp
s6 —clsp cep

BAg = (2.153)

The angular velocity w of a rigid body can either be expressed in terms
of the components along the axes of B(Oxyz), or in terms of the Cardan
frequencies along the azes of the non-orthogonal Cardan frame. The angular
velocity in terms of Cardan frequencies is

1 0 0
cwp=¢A 4 Ay | 0 | +0A., | 1 | +9] 0 (2.154)
0 0 1
therefore,
Wy ] cosfcosyy siny 0 ¢ ]
Wy —cosfsiny cosy 0 0 (2.155)
W, i sin 0 0 1 w
» R R
0 sin 1) cos 0 Wy (2.156)
P | —tanfcosty tanfsiny 1 | | w,
In case of small Cardan angles, we have
1 v =0
BAg=| v 1 o (2.157)
0 —p 1
and
Wy 1 ¥ 0 @
wy | =] v 1 0 0 (2.158)
W, g 0 1 zp
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FIGURE 2.17. Local roll-pitch-yaw angles.

2.7 Local Roll-Pitch-Yaw Angles

Rotation about the z-axis of the local frame is called roll or bank, rotation
about y-axis of the local frame is called pitch or attitude, and rotation
about the z-axis of the local frame is called yaw, spin, or heading. The
local roll-pitch-yaw angles are shown in Figure 2.17.

The local roll-pitch-yaw rotation matriz is:

BAG = Az,wAyﬂAw,Lp
chcp  cpsp + sbcpsp  spsh — cpsber)

= —clst)p  cpchp — sOspsy cpsp + cpshsy (2.159)
s6 —clsp chep

Note the difference between roll-pitch-yaw and Euler angles, although we
show both utilizing ¢, 8, and .

Example 28 % Angular velocity and local roll-pitch-yaw rate.
Using the roll-pitch-yaw frequencies, the angular velocity of a body B with
respect to the global reference frame is

gwp = wilt+wy)t+wk
= (e, + 0ég +1béy. (2.160)
Relationships between the components of gwp in body frame and roll-pitch-

yaw components are found when the local roll unit vector é, and pitch
unit vector ég are transformed to the body frame. The roll unit vector

by = [ 1 00 ]T transforms to the body frame after rotation 6 and then
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cosf cosp
= | —cosfsiny (2.161)
sin 6

The pitch unit vector ég = [ 0 1 0 ]T transforms to the body frame after
rotation .

0 sin 1)
Beg=A.p | 1 | =| cost (2.162)
0 0

The yaw unit vector éy = [ 0 0 1 ]T 1s already along the local z-axis.
Hence, gwp can be expressed in body frame Oxyz as

W cos 0 cos sin 1) 0
ng = wy | =¢ | —cosfsiny +0| cosyp |+ | 0
| w: sin 0 ] 0 1
cosfcosy sinyy 0] [ @
= —cosfsinty cosy 0O 0 (2.163)
sin @ 0 I "

and therefore, gwp in global frame OXY Z in terms of local roll-pitch-yaw
frequencies is:

wx Wy ésinw—l—gbcosﬁcosw
Swp = wy | =BA:" | wy | = BAG' | fcostp — pcosfsine
| Wz Wy | 1 + ¢sinf
@+ 1sind i
= 0 cos p — Y cosfsinp
| Osiny + 1pcosfcosp |
(1 0 sin 6 ¢
= 0 cosy —cosfsing 0 (2.164)
| 0 sinp  cosBcosp ¥

2.8 Local Axes Versus Global Axes Rotation

The global rotation matrix “Qp is equal to the inverse of the local rotation
matrix ZAg and vice versa,

“Qp="PAz" |, PAc=°Qp (2.165)
where

“Qp = A7'AJTATY---AT (2.166)

BAq Qr'Q;'Qz Q. (2.167)
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Also, premultiplication of the global rotation matrix is equal to postmulti-
plication of the local rotation matrix.

Proof. Consider a sequence of global rotations and their resultant global
rotation matrix “@Qp to transform a position vector Pr to “r.

r = 9QpPr (2.168)

The global position vector “r can also be transformed to Pr using a local
rotation matrix ZAg.

By = BA;Cr (2.169)
Combining Equations (2.168) and (2.169) leads to
Gr = CQpPBA:Cr (2.170)
By = BAz;9Qp°r (2.171)
and hence,
CQp PAc = BAcCQp =1 (2.172)

Therefore, the global and local rotation matrices are the inverse of each
other.

GQB _ BAE,‘l
“QF = BAg (2.173)

Assume that CQp = Q,, - - Q3Q2Q1 and BAg = A, --- A3 A A; then,

“Qp = BAZ =A7'AYIATY-A? (2.174)
PAc = “Qp' =Qr'Q'Q3" Q" (2.175)

and Equation (2.172) becomes
Qn- QoQiAy - AsA; = Ay AsA1Qy - Q2Q1 =1 (2.176)

and therefore,

QnQ3Q2Q1 = A7'ATATT ALY

Ay A3A AL = Q7'Qy'Q5 Q)" (2.177)
or

Q'R Q5" Q' Q- Q3@ = 1 (2.178)

ATTAGTAS - AGTA, - AgAsA = L (2.179)

Hence, the effect of in order rotations about the global coordinate axes
is equivalent to the effect of the same rotations about the local coordinate
axes performed in the reverse order. m
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Example 29 Global position and postmultiplication of rotation matrix.

The local position of a point P after rotation is at Pr = [ 1 2 3 ]T.
If the local rotation matriz to transform Cr to Br is given as
cosp singp 0 cos30 sin30 O
BA,,=| —sing cosp 0 | =] —sin30 cos30 0 (2.180)
0 0 1 0 0 1

then we may find the global position vector Cr by postmultiplication BAZN,
by the local position vector BrT,

cos30 sin30 O
T = BT B4, ,=[1 2 3]| —sin30 cos30 0
0 0 1

= [ 013 223 3.0 ] (2.181)

instead of premultiplication of BAZ_)L by Br.

r = BA;; By
cos30 —sin30 0 1 —0.13
= sin30 cos30 0 2 | =] 223 (2.182)
0 0 1 3 3

2.9 General Transformation

Consider a general situation in which two coordinate frames, G(OXY Z)
and B(Oxyz) with a common origin O, are employed to express the com-
ponents of a vector r. There is always a transformation matriz “Rp to
map the components of r from the reference frame B(Ozyz) to the other
reference frame G(OXY Z).

Sr = SRy Br (2.183)
In addition, the inverse map, Pr = GREI Gr, can be done by ZRg
By = BRgCr (2.184)

where,
|“Rp| =|PRa| =1 (2.185)

and
BRs = “R5' = “RE. (2.186)
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Proof. Decomposition of the unit vectors of G(OXY Z) along the axes of
B(Ozxyz)

I = (I-i+-)j+T-kk (2.187)
J = (Ji+(J-)i+ (T k)k (2.188)
K = (K-di+ (K -)j+ (K- -kk (2.189)

introduces the transformation matrix “Rp to map the local frame to the
global frame

I Iv 15 Ik P P
J|\=|Ji J-j J-k j|=C%Rs| ] (2.190)
K K-i K-j K-k k k
where,
[ I-i I-7 I-k
“Rp = Ji J-j J-k
[ cos(I,i) cos(1,7) cos(I,k)
= cos(J,2) cos(J,j) cos(J,k) |- (2.191)
| cos(K,i) cos(K,j) cos(K,k)

Each column of Ry is decomposition of a unit vector of the local frame
B(Ozyz) in the global frame G(OXY Z).

|
GCRp=| G G Gk | =ty #y fu (2.192)
|

Similarly, each row of “Rp is decomposition of a unit vector of the global
frame G(OXY Z) in the local frame B(Ozyz).

BjT

A, - f‘Hl N
CRp=| - BJT — |=| - fyg - (2.193)
B BKT _ — fHB —

The elements of “Rp are direction cosines of the axes of G(OXY Z) in
frame B(Ozyz). This set of nine direction cosines then completely specifies
the orientation of the frame B(Oxzyz) in the frame G(OXY Z), and can
be used to map the coordinates of any point (z,y, z) to its corresponding
coordinates (X,Y, 7).
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Alternatively, using the method of unit vector decomposition to develop
the matrix ZR¢g leads to:

By = BR;% =C%R;'Cr (2.194)
(i1 i-J i K
BRe = j-1 j-J j-K
| kT k-J kK
[ cos(i,I)  cos(i,J) cos(i, K)
= cos(3, 1) cos(j,J) cos(j, K) (2.195)
| cos(k,I) cos(k,J) cos(k,K)

and shows that the inverse of a transformation matrix is equal to the trans-
pose of the transformation matrix.

SR = R (2.196)

A matrix with condition (2.196) is called orthogonal. Orthogonality of
R comes from this fact that it maps an orthogonal coordinate frame to
another orthogonal coordinate frame.

The transformation matrix R has only three independent elements. The
constraint equations among the elements of R will be found by applying
the orthogonality condition (2.196).

“Rp-“RL = [I] (2.197)
Tl Ti2 T13 T11 T21 T31 100
T2l T22  T23 T2 T22 T32 = 0 1 0] (2.198)
r31 T32 733 r13 T2z T33 0 0 1

Therefore, the dot product of any two different rows of “Rp is zero, and
the dot product of any row of “ Rp with the same row is one.

i Aty =
5+ T+ 13 =
T3+ T3 T3 =
r11721 + 712722 + 13723 =

711731 + 12732 + 713733 =

O O O = o= =

21731 + 722732 + T'23733 (2.199)

These relations are also true for columns of “Rp, and evidently for rows
and columns of ®Rg. The orthogonality condition can be summarized in
the following equation:

3
Py, fg, =, fu, =Y rirae =06k (L k=1,2,3) (2.200)
=1
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where r;; is the element of row ¢ and column j of the transformation matrix
R, and 0;, is the Kronecker’s delta.

Sp=1ifj=k, and 6, = 0if j #k (2.201)

Equation (2.200) gives six independent relations satisfied by nine direction
cosines. It follows that there are only three independent direction cosines.
The independent elements of the matrix R cannot obviously be in the same
row or column, or any diagonal.

The determinant of a transformation matrix is equal to one,

|“Rp| =1 (2.202)
because of Equation (2.197), and noting that
R “Rp| = |“Rp|-[“Rp|=|“Rs|-|" Ry
— |%Rp|*=1. (2.203)

Using linear algebra and row vectors ty,,fp,, and Ty, of G Rp, we know
that
|“Rp| =], - (Fu, x £11,) (2.204)

and because the coordinate system is right handed, we have g, Xt f, = T,
so |[°Rp| =%}, fy, =1. ®

Example 30 FElements of transformation matriz.

The position vector r of a point P may be expressed in terms of its
components with respect to either G(OXY Z) or B(Oxzyz) frames. Body
and a global coordinate frames are shown in Figure 2.18. If ©r = 1007 —
50J 4+ 150K, and we are looking for components of r in the Oxyz frame,
then we have to find the proper rotation matriz ZRg first.

The row elements of BRq are the direction cosines of the Oxyz azes in
the OXY Z coordinate frame. The x-axis lies in the XZ plane at 40 deg
from the X-azxis, and the angle between y and Y is 60 deg. Therefore,

i1 i-J i K cos40 0 sin40
BRe = | 31 -0 3K |=| 7-1 cos60 j-K
| k-] k-J k-K k- k-J kK
[0.766 0  0.643
= j-I 05 7K (2.205)
k-l k-J kK

and by using PR R = BRg BRE =1

0.766 0 0.643 0.766 21 T31
21 0.5 T23 0 0.5 32 =
31 T32 733 0.643 T23 T33

(2.206)

O O =
o = O
—_= O O
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FIGURE 2.18. Body and global coordinate frames of Example 30.

we obtain a set of equations to find the missing elements.

0.766 o1 + 0.643 ra3
0.766 r31 + 0.643 r33

73, 4+ 735 +0.25

ro1731 + 0.5732 + 723733

2 2 2
r31 + 1732 + 733

I
— O = O O

(2.207)

Solving these equations provides the following transformation matriz:

0.766 0
BRe=1| 0557 05
—0.322 0.866

and then we can find the components of Pr.

0.766 0
By = BR;%=| 0557 05
—0.322  0.866
173.05
= —68.75
—18.05

0.643
—0.663
0.383

0.643
—0.663
0.383

Example 31 Global position, using Pr and ZRg.
The position vector v of a point P may be described in either G (OXY Z)
or B(Oxyz) frames. If Br = 1007 — 507 + 150k, and the following B R¢ is

(2.208)
100
—50
150

(2.209)
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the transformation matriz to map “r to Pr

By _ BRG Gp
0.766 0  0.643
= 0.557 0.5 —0.663 | “r (2.210)

—-0.322 0.866 0.383

then the components of “r in G (OXY Z) would be

GI‘ — GRB BI‘ _ BRE BI'
0.766  0.557 —0.322 100 0.45
= 0 0.5 0.866 =50 | = | 104.9 |. (2.211)
0.643 —0.663 0.383 150 154.9

Example 32 Two points transformation matriz.
The global position vector of two points, P and P, of a rigid body B
are:

1.077 —0.473
Crp, = | 1.365 Srp, = | 2.239 (2.212)
2.666 —0.959

The origin of the body B (Ozyz) is fized on the origin of G(OXY Z), and
the points Py, and Py are lying on the local x-axis and y-axis respectively.
To find ©Rp, we use the local unit vectors ©i and ©j

Gy 0.338
¢ = =1 0429 (2.213)
“rp | 0.838
G —0.191
G A I'p,
|“rp, | —0.387
to obtain Ck
Ck = ixj=1)
0 —0.838  0.429 —0.191
= 0.838 0 —0.338 0.902
| —0.429  0.338 0 —0.387
—0.922
= —0.029 (2.215)
| 0.387

where 1 is the skew-symmetric matriz corresponding to 2, and 7 ) is an
alternative for i x j.
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Hence, the transformation matrixz using the coordinates of two points

Grp, and Crp, would be
CRp = [ Gy G G ]
0.338 —0.191 —0.922
= 0.429 0.902 —0.029 |. (2.216)

0.838 —0.387  0.387

Example 33 Length invariant of a position vector.

Describing a vector in different frames wutilizing rotation matrices does
not affect the length and direction properties of the vector. Therefore, length
of a vector is an invariant

| = [“r|

The length invariant property can be shown by
? = GpfGp— [GRBBI,]T CRpPBr= BT GRLGRy By

= Byl By, (2.218)

v

Example 34 Skew symmetric matrices for i, j, and k.
The definition of skew symmetric matriz a corresponding to a vector a
1s defined by

0 —as a9
a= as 0 —aq . (2219)
—ag ay 0
Hence, ) )
0 0 O
i=[0 0 -1 (2.220)
01 0 |
[ o 0 1]
j=1 0 0 0 (2.221)
| -1 0 0|
o Jo -10
E=|1 0 o0 (2.222)
0 0 0

Example 35 Inverse of Euler angles rotation matriz.
Precession-nutation-spin or Euler angle rotation matriz (2.106)

BRG = Az,wAw,GAz,cp

cpc) — chspsy cpsp + clcpsy  sOsyp
= —cpsih — chcpsp  —sps + clepeyp  sbey | (2.223)
s0sp —cpst ct
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must be inverted to be a transformation matriz to map body coordinates to
global coordinates.

“Rp = PR =AL Al

AT
05029
cpct) — clsps)  —cpsh — clepsp  sOsp
= s+ clepsy)  —spsh+ chepep  —cpsh | (2.224)
s0sy sOcy ch

The transformation matriz (2.223) is called a local Euler rotation matriz,
and (2.224) is called a global Fuler rotation matrix.

Example 36 % Group property of transformations.
A set S together with a binary operation @ defined on elements of S is
called a group (S,®) if it satisfies the following four axioms.

1. Closure: If s1,s2 € S, then s1 ® s3 € S.

2. Identity: There exists an identity element sy such that so ® s =
s®s9g=s forVseS.

3. Inverse: For each s € S, there exists a unique inverse s~' € S such
that s~ 1@ s=s®s 1 = 5.

4. Associativity: If sq, 82,53 € S, then (s1 ® $2) ® 53 = 81 ® (52 ® 53).

Three dimensional coordinate transformations make a group if we
define the set of rotation matrices by

S={ReR*3:RR" =R"R=L|R|=1}. (2.225)

Therefore, the elements of the set S are transformation matrices R;,
the binary operator ® is matriz multiplication, the identity matriz is
I, and the inverse of element R is R~ = RT.

S is also a continuous group because
5. The binary matriz multiplication is a continuous operation, and

6. The inverse of any element in S is a continuous function of that
element.

Therefore, S is a differentiable manifold. A group that is a differen-
tiable manifold is called a Lie group.

Example 37 % Transformation with determinant —1.

An orthogonal matriz with determinant +1 corresponds to a rotation as
described in Equation (2.202). In contrast, an orthogonal matriz with deter-
minant —1 describes a reflection. Moreover it transforms a right-handed
coordinate system into a left-handed, and vice versa. This transformation
does not correspond to any possible physical action on rigid bodies.
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Example 38 Alternative proof for transformation matriz.
Starting with an identity

>

(i 5 k][] ]|=1 (2.226)
k
we may write . .
1 1 i
J | =1J j (2.227)
K K k
Since matriz multiplication can be performed in any order we find
I I-v 15 1k 7 7
Jl=1|Ji J-7 J-k j|=C%Rp| ] (2.228)
K K-i» K- K-k k k
where, R
1
“Rp=|J |[i j k]. (2.229)
K
Following the same method we can show that
i
PRq = I J K. (2.230)

2.10 Active and Passive Transformation

Rotation of a local frame when the position vector “r of a point P is fixed
in global frame and does not rotate with the local frame, is called passive
transformation. Alternatively, rotation of a local frame when the position
vector Br of a point P is fixed in the local frame and rotates with the local
frame, is called active transformation. Surprisingly, the passive and active
transformations are mathematically equivalent. In other words, the rotation
matrix for a rotated frame and rotated vector (active transformation) is the
same as the rotation matrix for a rotated frame and fixed vector (passive
transformation).

Proof. Consider a rotated local frame B(Ozyz) with respect to a fixed
global frame G(OXY Z), as shown in Figure 2.19. P is a fixed point in the
global frame, and so is its global position vector “r. Position vector of P
can be decomposed in either a local or global coordinate frame, denoted by
By and ©r respectively.
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FIGURE 2.19. A position vector r, in a local and a global frame.

The transformation from “r to Pr is equivalent to the required rotation of
the body frame B(Oxyz) to be coincided with the global frame G(OXY 7).
This is a passive transformation because the local frame cannot move the
vector “r. In a passive transformation, we usually have the coordinates of
P in a global frame and we need its coordinates in a local frame; hence, we
use the following equation:

By = BRg Cr. (2.231)

We may alternatively assume that B(Oxyz) was coincident with G(OXY Z)
and the vector r = Pr was fixed in B(Owyz), before B(Oxyz) and Pr
move to the new position in G(OXY Z). This is an active transformation
and there is a rotation matrix to map the coordinates of Pr in the local
frame to the coordinates of “r in global frame. In an active transformation,
we usually have the coordinates of P in the local frame and we need its
coordinates in the global frame; hence, we use the following equation:

Sr = YRy Pr. (2.232)
|

Example 39 Active and passive rotation about X -axis.
Consider a local and global frames B and G that are coincident. A body
point P is at Pr.

Br=12 (2.233)
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A rotation of 45deg about X -axis will move the point to Cr.

“r = RxogoPr (2.234)
1 0 0
T . T 1 1
_ 0 cosz  —sing ol =] -1
0 m s 1 )

sin — Ccos —
2 2

Now assume that P is fized in G. When B rotates 90 deg about X -azxis, the
coordinates of P in the local frame will change such that

By = Rx _¢0r (2.235)
1 0 0
T LT 1 1
_ 0 0057 —smT 9 | = 1

. -7
0 sin— cos —

2 2
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2.11 Summary

The objectives of this chapter are:

1—To learn how to determine the transformation matrix between two
Cartesian coordinate frames B and G with a common origin by applying
rotations about principal axes.

2—To decompose a given transformation matrix to a series of required
principal rotations.

Two Cartesian coordinate frames B and G with a common origin are
related by nine directional cosines of a frame in the other. The conversion
of coordinates in the two frames can be cast in a matrix transformation

% = CYRpPr (2.236)
Ys = J-i J-j J-k Yo (2.237)
Zy K-i K-7 K-k 22

where,
cos(I,2) cos(I,)) cos({,

: )
“Rp = cos(J,1) cos(j,j) cos(j, ) |- (2.238)
cos(K,7) cos(K,j) cos(K,k)

The transformation matrix ¢ Rp is orthogonal; so its determinant is one,
and its inverse is equal to its transpose.

“Rp| = 1 (2.239)
SRyt = YR (2.240)

The orthogonality condition generates six equations between the elements
of “Rp that shows only three elements of “ Rp are independent.

Any relative orientation of B in G can be achieved by three consecutive
principal rotations about the coordinate axes in either the B or G frame.
If B is the body coordinate frame, and G is the globally fixed frame, the
global principal rotation transformation matrices are:

1 0 0
Rx., = “Rp=1| 0 cosy —siny (2.241)
0 siny cosvy

cosB 0 sinfB |

Ryg=%Rp=| 0 1 0 (2.242)
| —sin8 0 cosf |
[ cosae —sina 0 ]

Rzo = “Rp=| sina cosa 0 (2.243)
| 0 0 1]
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and the body principal rotation transformation matrices are:

1 0 0

Rey=5BRa=|0 cosy sing (2.244)
0 —siny cosvy
cos 0 —siné

Ryo=BRg=| 0 1 0 (2.245)

sinf 0 cosf

cosp singp 0
R.,= BRG = | —singp cosp 0 (2.246)
0 0 1

The global and local rotation transformations are inverse of each other.

Rx, = RIL, (2.247)
Rys = Rpg (2.248)

|
v
ﬂ

Rz.a za (2.249)
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2.12 Key Symbols

€9, €y

HO RO by S

fafl:fQ

~y S S Q
el
~ T [ —
= M~

Ovoo=Zs 3~
IS
<

=

<
h
[

z

B <2 e
&

~!
N

b b

Greek
a, B,y
©, 0,1
®,0,v

Wwvaawz

a general vector

skew symmetric matrix of the vector a
transformation matrix of rotation about a local axis
body coordinate frame, local coordinate frame

cos

distance between two points

coordinate axes of F, local roll-pitch-yaw coordinate axes
Eulerian local frame

a function of z and y

global coordinate frame, fixed coordinate frame
identity matrix

local coordinate axes unit vectors

skew symmetric matrices of the unit vector 2, j,l%
global coordinate axes unit vectors

length

number of repeating rotation

fraction of 27, number of repeating rotation

the set of natural numbers

common origin of B and G

Euler angle frame

a body point, a fixed point in B, a partial derivative
transformation matrix of rotation about a global axis,
a partial derivative

position vector

the element of row ¢ and column j of a matrix
rotation transformation matrix, radius of a circle
the set of real numbers

sin, a member of S

a set

time

a general axis

velocity vector

local coordinate axes

global coordinate axes

rotation angles about global axes
Kronecker’s delta

rotation angles about local axes, Euler angles
Euler frequencies

angular velocity components

angular velocity vector
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[ inverse of the matrix [ ]
[ transpose of the matrix [ |
® a binary operation

(S, ®) a group
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Exercises

1. Notation and symbols.

Describe the meaning of these notations.

a- Gr b-C%rp ¢ Brp d-CRp e GRE f- BRe

g PRG' h-Cdp 21 FQx k- Qvs Qv

m- k n- J o- AZ@ p- €y qQ-7 r- I

2. Body point and global rotations.

The point P is at Brp = [1,2,1]" in a body coordinate B(Oxyz).
Find the final global position of P after

(a) A rotation of 30 deg about the X-axis, followed by a 45 deg ro-
tation about the Z-axis

(b) A rotation of 30 deg about the Z-axis, followed by a 45 deg ro-
tation about the X-axis.

(¢) % Point P will move on a sphere. Let us name the initial
global position of P by P, the second position by P, and the
third position by Ps. Determine the angles of /PO Py, /P>,OPs,
LP30P;.

(d) % Determine the area of the triangle made by points “rp =
1,2, I]T, and the global position of P after rotations a and b.
3. % Alternative motions to reach an orientation.

The coordinates of a body point P in B and G frames are:

1.23 4.56
Brp = 4.56 Grp=| 7.89
7.89 1.23
Determine
a) If it is possible to transform Prp to “rp?

(
(b B

)

) rp and “rp.
(c) Euler angles to transform
(d)

)

A transformation matrix between

BI’p to Grp.

d) Global roll-pitch-yaw to transform Prp to “rp.

(e) Body roll-pitch-yaw to transform Zrp to “rp.
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FIGURE 2.20. A cube at its initial position.

4. Body point after global rotation.
Find the position of a point P in the local coordinate, if it is moved
to “rp = [1,3,2]7 after

(a) A rotation of 60deg about Z-axis,

(b) A rotation of 60 deg about X-axis,

(¢) A rotation of 60 deg about Y-axis,
)

(d) Rotations of 60 deg about Z-axis, 60 deg about X-axis and 60 deg
about Y-axis.

5. Invariant of a vector.
A point was at Prp = [1,2,2]7. After a rotation of 60deg about
X-axis, followed by a 30 deg rotation about Z-axis, it is at:
X
GI‘p = Y
2.933

Find 2, X, and Y.

6. Global rotation of a cube.

Figure 2.20 illustrates the original position of a cube with a fixed
point at D and edges of length [ = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about X-axis.

(b) Coordinates of the corners after rotation of 30 deg about Y-axis.
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(¢) Coordinates of the corners after rotation of 30 deg about Z-axis.

(d) Coordinates of the corners after rotation of 30 deg about X-axis,
then 30 deg about Y-axis, and then 30 deg about Z-axis.

Constant length vector.

Show that the length of a vector will not change by rotation.
2] = |9y s

Show that the distance between two body points will not change by
rotation.
‘Bpl - sz‘ = ‘GRB Pp1— “Rp sz‘

. Repeated global rotations.

Rotate Prp = [2,2,3]T, 60deg about X-axis, followed by 30deg
about Z-axis. Then, repeat the sequence of rotations for 60 deg about
X-axis, followed by 30deg about Z-axis. After how many rotations
will point P be back to its initial global position?

. % Repeated global rotations.

How many rotations of @ = 7m/m deg about X-axis, followed by 5 =
m/ndeg about Z-axis are needed to bring a body point to its initial
global position, if m,n € N7

Triple global rotations.
Verify the equations in Appendix A.

% Special triple rotation.

Assume that the first triple rotation in Appendix A brings a body
point back to its initial global position. What are the angles o # 0,

B8 #0, and vy # 07
% Combination of triple rotations.

Any triple rotation in Appendix A can move a body point to its new
global position. Assume a1, 3;, and 7, for the case 1-Qx ,, Qv,5,Q7,a,
are given. What can as, (4, and v, be (in terms of aq, 81, and ;)
to get the same global position using the case 2 — Qy,,,Qz 38,0 x,a."

Global roll-pitch-yaw rotation matrix.

Calculate the global and local roll-pitch-yaw rotation matrices @) and
A for 30 deg rotation about the principal axes. Do the matrices trans-
pose each other? Calculate the local rotation matrix A by rotation
about z then y then z. Is the transpose of the new matrix A transpose
of the global roll-pitch-yaw matrix?
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14. Global roll-pitch-yaw rotation angles.

Calculate the role, pitch, and yaw angles for the following rotation
matrix:
0.53 —-0.84 0.13
BRe=1| 00 015 0.99
—-0.85 —0.52 0.081

15. % Back to the initial orientation and Appendix A.

Assume we turn a rigid body B using the first set of Appendix A.
How can we turn it back to its initial orientation by applying

a) The first set of Appendix A,

(a)
(b) The second set of Appendix A,
(¢) The third set of Appendix A.

)

(d) % Assume that we have turned a rigid body B by a3 = 30deg,
61 = 30deg, v, = 30deg using the first set of Appendix A. We
want to turn B back to its original orientation. Which one of
the second or third set of Appendix A does it faster? Let us
assume that the fastest set is the one with minimum sum of
s=ay+ 62 + Yo-

16. ¥ Back to the original orientation and Appendix B.

Assume we turn a rigid body B using the first set of Appendix A.
How can we turn it back to its initial orientation by applying

a) The first set of Appendix B,

(a)
(b) The second set of Appendix B,
(¢) The third set of Appendix B.

)

(d) ¥ Assume that we have turned a rigid body B by a = 30deg,
6 = 30deg, v = 30deg using the first set of Appendix A. We
want to turn B back to its original orientation. Which one of
the first, second, or third set of Appendix B does it faster? Let
us assume that the fastest set is the one with minimum sum of
s=p+0+1.

17. Two local rotations.
Find the global coordinates of a body point at Prp = [2,2,3]7 after
(a) A rotation of 60deg about z-axis followed by 60deg about z-
axis,
(b) A rotation of 60deg about z-axis followed by 60deg about z-
axis,
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(c) A rotation of 60deg about z-axis followed by 60deg about z-
axis, and a rotation of 60 deg about z-axis.

Local rotation of a cube.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length [ = 1.

Determine,

a) Coordinates of the corners after rotation of 30 deg about x-axis.

(a)

(b) Coordinates of the corners after rotation of 30 deg about y-axis.

(¢) Coordinates of the corners after rotation of 30 deg about z-axis.
)

(d) Coordinates of the corners after rotation of 30 deg about z-axis,
then 30 deg about y-axis, and then 30 deg about z-axis.

Global and local rotation of a cube.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length [ = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about x-axis
followed by rotation of 30 deg about X-axis.

(b) Coordinates of the corners after rotation of 30 deg about y-axis
followed by rotation of 30 deg about X-axis.

(¢) Coordinates of the corners after rotation of 30deg about z-axis
followed by rotation of 30 deg about X-axis.

(d) Coordinates of the corners after rotation of 30 deg about z-axis,
then 30 deg about X-axis, and then 30 deg about z-axis.

(e) Coordinates of the corners after rotation of 30 deg about z-axis,
then 30 deg about Y-axis, and then 30 deg about z-axis.

Body point, local rotation.
What is the global coordinates of a body point at Prp = [2,2,3]7,
after

(a) A rotation of 60 deg about the z-axis,

(b) A rotation of 60deg about the y-axis,

(c) A rotation of 60 deg about the z-axis.

Unknown rotation angle 1.

Transform Prp = [2,2,3]7 to “rp = [2,Yp,0]7 by a rotation about
z-axis and determine Yp and the angle of rotation.
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22. Unknown rotation angle 2.

Consider a point P at Brp = [2, V3, \/§]T Determine

(a) The required principal global rotations in order X, Y, Z, to move
P to GrP = [\/5327\/§]T7

(b) The required principal global rotations in order Z,Y, Z, to move
P to GrP = [\/5327 \/g]T7

(¢) The required principal global rotations in order Z, X, Z, to move

P to Crp = [\/5,2, \/§]T

23. Triple local rotations.

Verify the equations in Appendix B.

24. Combination of local and global rotations.

Find the final global position of a body point at Zrp = [10, 10, —10]7
after

(a) A rotation of 45deg about the z-axis followed by 60 deg about
the Z-axis,

(b) A rotation of 45deg about the z-axis followed by 60 deg about
the Z-axis,

(¢) A rotation of 45 deg about the z-axis followed by 45 deg about
the Z-axis and 60 deg about the X-axis.

25. Combination of global and local rotations.

Find the final global position of a body point at Zrp = [10, 10, —10]7
after

(a) A rotation of 45 deg about the X-axis followed by 60 deg about
the z-axis,

(b) A rotation of 45deg about the Z-axis followed by 60 deg about
the z-axis,

(¢) A rotation of 45 deg about the X-axis followed by 45 deg about
the z-axis and 60 deg about the z-axis.

26. Repeated local rotations.

Rotate Brp = [2,2,3]7, 60deg about the z-axis, followed by 30 deg
about the z-axis. Then repeat the sequence of rotations for 60 deg
about the z-axis, followed by 30 deg about the z-axis. After how many
rotations will point P move back to its initial global position?
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% Repeated local rotations.

How many rotations of & = m/mdeg about the z-axis, followed by
B = w/ndeg about the z-axis are needed to bring a body point to its
initial global position if m,n € N?

% Remaining rotation.

Find the result of the following sequence of rotations:
G T AT 4T
Rp=Ay0A;04y,-6

Angles from rotation matrix.
Find the angles ¢, 6, and v if the rotation transformation matrices
of Appendix B are given.

Euler angles from rotation matrix.
(a) Check if the following matrix “ Rp is a rotation transformation.

0.53 —0.84 0.13
CRp = 0.0 0.15  0.99
—0.85 —0.52 0.081

(b) Find the Euler angles for “Rp.
(c) Find the local roll-pitch-yaw angles for “ Rp.

Equivalent Euler angles to two rotations.

Find the Euler angles corresponding to the rotation matrices

(a) PRe = Ay 1544 30,
(b) BRe = Ay u54, 30,
(c) BRg = Ay a5A. 30

Equivalent Euler angles to three rotations.

Find the Euler angles corresponding to the rotation matrix

(a) BRq = A 60A4y,45A% 30,
(b) BRg = A, 60Ay.454. 30,
(c) BRq = Az 60Ay,45A2 30

% A cube rotation and forbidden space of z < 0.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length [ = 1.

Assume that none of the corners is allowed to have a negative z-
components at any time.



88

34.

35.

36.

37.

38.

39.

2. Rotation Kinematics

(a) Present a series of global principal rotations to make the line
F'H parallel to z-axis.

(b) Present a series of global principal rotations to make the line
DB on the z-axis and point A in (Z,Y)-plane.

(c) Present a series of local principal rotations to make the line F'H
parallel to z-axis.

(d) Present a series of local principal rotations to make the line DB
on the z-axis and point A4 in (Z,Y)-plane.
% Local and global positions, Euler angles.

Find the conditions between the Euler angles
(a) To transform “rp = [1,1,0]7 to Prp = [0,1,1]7,

(b) To transform “rp = [1,1,0]” to Prp =[1,0,1]7.

% Equivalent Euler angles to a triple rotations.

Find the Euler angles for the rotation matrix of the case
4= As Ay o Av g
in Appendix B.

% Integrability of Euler frequencies.
Show that dy and di are integrable, if ¢ and 1 are first and third
Euler angles.

% Cardan angles for Euler angles.

(a) Find the Cardan angles for a given set of Euler angles.

(b) Find the Euler angles for a given set of Cardan angles.
% Cardan frequencies for Euler frequencies.

(a) Find the Euler frequencies in terms of Cardan frequencies.

(b) Find the Cardan frequencies in terms of Euler frequencies.

% Transformation matrix and three rotations.

Figure 2.20 illustrates the original position of a cube with a fixed
point at D and edges of length [ = 1.

Assume a new orientation in which points D and F' are on Z-axis
and point A is in (X, Z)-plane. Determine
(a) Transformation matrix between initial and new orientations.

(b) Euler angles to move the cube to its new orientation.
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(c) Global roll-pitch-yaw angles to move the cube to its new orien-
tation.

(d) Local roll-pitch-yaw angles to move the cube to its new orienta-
tion.

40. % Alternative maneuvers.

41.

42.

43.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length [ = 1.

Assume a new orientation in which points D and F' are on Z-axis
and point A is in (X, Z)-plane. Determine

Angles for maneuver Y — X — Z as first-second-third rotations.
Angles for maneuver Y — Z — X as first-second-third rotations.

Angles for maneuver y — x — z as first-second-third rotations.

)
)
)

d) Angles for maneuver y — z — x as first-second-third rotations.
) Angles for maneuver y — Z — x as first-second-third rotations.
) Angles for maneuver Y — z — X as first-second-third rotations.
)

Angles for maneuver x — X — x as first-second-third rotations.

Elements of rotation matrix.
The elements of rotation matrix “Rp are

cos(1,i) cos(I,7) cos(I, k)
“Rp=| cos(J,?) cos(J,7) cos(J,k)

cos(K,7) cos(K,7) cos(K,k)

Find “Rp if Crp, = [0.7071,—1.2247,1.4142]" is a point on the z-
axis, and “rp, = [2.7803,0.38049, —1.0607]T is a point on the y-axis.
Linearly independent vectors.

A set of vectors ay, as, - -, a, are considered linearly independent if
the equation
kia; +ksas +---+kpa, =0

in which k1, ko, - - -, k,, are unknown coeflicients, has only one solution
ki=ky=---=k,=0.

Verify that the unit vectors of a body frame B(Ozyz), expressed in
the global frame G(OXY Z), are linearly independent.

Product of orthogonal matrices.

A matrix R is called orthogonal if R~! = R” where (RT)Z.]. = Ry
Prove that the product of two orthogonal matrices is also orthogonal.
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44.

45.

46.

47.

48.

2. Rotation Kinematics

Vector identity.

The formula (a + b)? = a® + b% + 2ab for scalars, is equivalent to
(a+b)?=a-a+b-b+2a-b
for vectors. Show that this formula is equal to
(a+b)’=a-a+b-b+2%Rpa-b
if a is a vector in local frame and b is a vector in global frame.

Rotation as a linear operation.
Show that
R(axb)=Rax Rb
where R is a rotation matrix and a and b are two vectors defined in
a coordinate frame.
Scalar triple product.

Show that for three arbitrary vectors a, b, and ¢ we have

a-(bxc)=(axb)-c

% FEuler angles and minimization distances.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length [ = 1.

Assume a new orientation in which points D and F' are on Z-axis
and point A is in (X, Y)-plane. Determine

(a) Transformation matrix between initial and new orientations.
(b) Euler angles to move the cube to its new orientation.

(¢) Choose three non coplanar corners and determine their position
using Euler transformation matrix with unknown Euler angles.
Define the distance between the initial and final positions of the
points as dy, ds and ds3. Is it possible to determine the Euler
angles by minimizing a sum of distances objective function J =
d? +d} + d3?

 Continues rotation.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length [ = 1.

Assume that the cube is turning about z-axis with angular speed of
w1 and at the same time it is turning about Z-axis with angular speed
of wy. Determine the path of motion of point F'. What is the path for
w1 = Wa, W1 = 2w, W1 = 3ws,wi = 4ws?
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