
2

Rotation Kinematics
Consider a rigid body with a fixed point. Rotation about the fixed point
is the only possible motion of the body. We represent the rigid body by
a body coordinate frame B, that rotates in another coordinate frame G,
as is shown in Figure 2.1. We develop a rotation calculus based on trans-
formation matrices to determine the orientation of B in G, and relate the
coordinates of a body point P in both frames.
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FIGURE 2.1. A rotated body frame B in a fixed global frame G, about a fixed
point at O.

2.1 Rotation About Global Cartesian Axes

Consider a rigid body B with a local coordinate frame Oxyz that is origi-
nally coincident with a global coordinate frame OXY Z. PointO of the body
B is fixed to the ground G and is the origin of both coordinate frames. If
the rigid body B rotates α degrees about the Z-axis of the global coordi-
nate frame, then coordinates of any point P of the rigid body in the local
and global coordinate frames are related by the following equation

Gr = QZ,α
Br (2.1)
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where,

Gr =

⎡⎣ X
Y
Z

⎤⎦ Br=

⎡⎣ x
y
z

⎤⎦ (2.2)

and

QZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ . (2.3)

Similarly, rotation β degrees about the Y -axis, and γ degrees about the
X-axis of the global frame relate the local and global coordinates of point
P by the following equations

Gr = QY,β
Br (2.4)

Gr = QX,γ
Br (2.5)

where,

QY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (2.6)

QX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ . (2.7)

Proof. Let (̂ı, ĵ, k̂) and (Î , Ĵ , K̂) be the unit vectors along the coordinate
axes of Oxyz and OXY Z respectively. The rigid body has a space fixed
point O, that is the common origin of Oxyz and OXY Z. Figure 2.2 illus-
trates the top view of the system.
The initial position of a point P is indicated by P1. The position vector

r1 of P1 can be expressed in body and global coordinate frames by

Br1 = x1ı̂+ y1ĵ+ z1k̂ (2.8)
Gr1 = X1Î + Y1Ĵ + Z1K̂ (2.9)

x1 = X1

y1 = Y1
z1 = Z1

(2.10)

where Br1 refers to the position vector r1 expressed in the body coordinate
frame B, and Gr1 refers to the position vector r1 expressed in the global
coordinate frame G.
If the rigid body undergoes a rotation α about the Z-axis then, the

local frame Oxyz, point P , and the position vector r will be seen in a
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FIGURE 2.2. Position vector of point P when local and global frames are coin-
cident.

second position, as shown in Figure 2.3. Now the position vector r2 of P2
is expressed in both coordinate frames by

Br2 = x2ı̂+ y2ĵ+ z2k̂ (2.11)
Gr2 = X2Î + Y2Ĵ + Z2K̂. (2.12)

Using the definition of the inner product and Equation (2.11) we may
write

X2 = Î · r2 = Î · x2ı̂+ Î · y2ĵ+ Î · z2k̂ (2.13)

Y2 = Ĵ · r2 = Ĵ · x2ı̂+ Ĵ · y2ĵ+ Ĵ · z2k̂ (2.14)

Z2 = K̂ · r2 = K̂ · x2 ı̂+ K̂ · y2ĵ+ K̂ · z2k̂ (2.15)

or equivalently⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ . (2.16)

The elements of the Z-rotation matrix, QZ,α, are called the direction
cosines of Br2 with respect to OXY Z. Figure 2.4 shows the top view of
the initial and final configurations of r in both coordinate systems Oxyz
and OXY Z. Analyzing Figure 2.4 indicates that

Î · ı̂ = cosα, Î · ĵ = − sinα, Î · k̂ = 0
Ĵ · ı̂ = sinα, Ĵ · ĵ = cosα, Ĵ · k̂ = 0
K̂ · ı̂ = 0, K̂ · ĵ = 0, K̂ · k̂ = 1.

(2.17)
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FIGURE 2.3. Position vector of point P when local frames are rotated about the
Z-axis.

Combining Equations (2.16) and (2.17) shows that we can find the com-
ponents of Gr2 by multiplying the Z-rotation matrix QZ,α and the vector
Br2. ⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ . (2.18)

It can also be shown in the following short notation

Gr2 = QZ,α
Br2 (2.19)

where

QZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ . (2.20)

Equation (2.19) says that the vector r at the second position in the
global coordinate frame is equal to QZ times the position vector in the
local coordinate frame. Hence, we are able to find the global coordinates of
a point of a rigid body after rotation about the Z-axis, if we have its local
coordinates.
Similarly, rotation β about the Y -axis and rotation γ about the X-axis

are described by the Y -rotation matrix QY,β and the X-rotation matrix
QX,γ respectively.

QY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (2.21)
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FIGURE 2.4. Position vectors of point P before and after the rotation of the local
frame about the Z-axis of the global frame.

QX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (2.22)

The rotation matrices QZ,α, QY,β, and QX,γ are called basic global ro-
tation matrices. We usually refer to the first, second and third rotations
about the axes of the global coordinate frame by α, β, and γ respectively.

Example 3 Successive rotation about global axes.
The final position of the corner P (5, 30, 10) of the slab shown in Figure

2.5 after 30 deg rotation about the Z-axis, followed by 30 deg about the X-
axis, and then 90 deg about the Y -axis can be found by first multiplying
QZ,30 by [5, 30, 10]T to get the new global position after first rotation⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ cos 30 − sin 30 0
sin 30 cos 30 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6828.48

10.0

⎤⎦ (2.23)

and then multiplying QX,30 and [−10.68, 28.48, 10.0]T to get the position of
P after the second rotation⎡⎣ X3

Y3
Z3

⎤⎦ =
⎡⎣ 1 0 0
0 cos 30 − sin 30
0 sin 30 cos 30

⎤⎦⎡⎣ −10.6828.48
10.0

⎤⎦ =
⎡⎣ −10.6819.66

22.9

⎤⎦
(2.24)

and finally multiplying QY,90 and [−10.68, 19.66, 22.9]T to get the final posi-
tion of P after the third rotation. The slab and the point P in first, second,



38 2. Rotation Kinematics

5

10
30X

Y

Z

P1

G

FIGURE 2.5. Corner P of the slab at first position.

third, and fourth positions are shown in Figure 2.6.⎡⎣ X4

Y4
Z4

⎤⎦ =
⎡⎣ cos 90 0 sin 90

0 1 0
− sin 90 0 cos 90

⎤⎦⎡⎣ −10.6819.66
22.9

⎤⎦ =
⎡⎣ 22.90
19.66
10.68

⎤⎦ (2.25)

Example 4 Time dependent global rotation.
Consider a rigid body B that is continuously turning about the Y -axis of

G at a rate of 0.3 rad/ s. The rotation transformation matrix of the body is:

GQB =

⎡⎣ cos 0.3t 0 sin 0.3t
0 1 0

− sin 0.3t 0 cos 0.3t

⎤⎦ (2.26)

Any point of B will move on a circle with radius R =
√
X2 + Z2 parallel

to (X,Z)-plane.⎡⎣ X
Y
Z

⎤⎦ =

⎡⎣ cos 0.3t 0 sin 0.3t
0 1 0

− sin 0.3t 0 cos 0.3t

⎤⎦⎡⎣ x
y
z

⎤⎦
=

⎡⎣ x cos 0.3t+ z sin 0.3t
y

z cos 0.3t− x sin 0.3t

⎤⎦ (2.27)

X2 + Z2 = (x cos 0.3t+ z sin 0.3t)2 + (z cos 0.3t− x sin 0.3t)2

= x2 + z2 = R2 (2.28)
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FIGURE 2.6. Corner P and the slab at first, second, third, and final positions.

Consider a point P at Br =
£
1 0 0

¤T
. After t = 1 s, the point will

be seen at:⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ cos 0.3 0 sin 0.3

0 1 0
− sin 0.3 0 cos 0.3

⎤⎦⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ 0.955

0
−0.295

⎤⎦ (2.29)

and after t = 2 s, at:⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ cos 0.6 − sin 0.6 0
sin 0.6 cos 0.6 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ 0.825
0.564
0

⎤⎦ (2.30)

We can find the global velocity of the body point P by taking a time deriv-
ative of

GrP = QY,β
BrP (2.31)

QY,β =

⎡⎣ cos 0.3t 0 sin 0.3t
0 1 0

− sin 0.3t 0 cos 0.3t

⎤⎦ . (2.32)

Therefore, the global expression of its velocity vector is:

GvP = Q̇Y,β
BrP = 0.3

⎡⎣ z cos 0.3t− x sin 0.3t
0

−x cos 0.3t− z sin 0.3t

⎤⎦ (2.33)
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FIGURE 2.7. Positions of point P in Example 5 before and after rotation.

Example 5 Global rotation, local position.
If a point P is moved to Gr2 = [4, 3, 2]

T after a 60 deg rotation about the
Z-axis, its position in the local coordinate is:

Br2 = Q−1Z,60
Gr2 (2.34)⎡⎣ x2

y2
z2

⎤⎦ =

⎡⎣ cos 60 − sin 60 0
sin 60 cos 60 0
0 0 1

⎤⎦−1 ⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ 4.60
−1.95
2.0

⎤⎦
The local coordinate frame was coincident with the global coordinate frame

before rotation, thus the global coordinates of P before rotation was also
Gr1 = [4.60,−1.95, 2.0]T . Positions of P before and after rotation are
shown in Figure 2.7.

2.2 Successive Rotation About Global Cartesian
Axes

The final global position of a point P in a rigid body B with position vector
r, after a sequence of rotations Q1, Q2, Q3, ..., Qn about the global axes
can be found by

Gr = GQB
Br (2.35)

where,

GQB = Qn · · ·Q3Q2Q1 (2.36)
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and, Gr and Br indicate the position vector r in the global and local coor-
dinate frames. GQB is called the global rotation matrix. It maps the local
coordinates to their corresponding global coordinates.
Since matrix multiplications do not commute the sequence of performing

rotations is important. A rotation matrix is orthogonal; i.e., its transpose
QT is equal to its inverse Q−1.

QT = Q−1 (2.37)

Rotation about global coordinate axes is conceptually simple because
the axes of rotations are fixed in space. Assume we have the coordinates
of every point of a rigid body in the global frame that is equal to the local
coordinates initially. The rigid body rotates about a global axis, then the
proper global rotation matrix gives us the new global coordinate of the
points. When we find the coordinates of points of the rigid body after the
first rotation, our situation before the second rotation is similar to what
we had before the first rotation.

Example 6 Successive global rotation matrix.
The global rotation matrix after a rotation QZ,α followed by QY,β and

then QX,γ is:

GQB = QX,γQY,βQZ,α (2.38)

=

⎡⎣ cαcβ −cβsα sβ
cγsα+ cαsβsγ cαcγ − sαsβsγ −cβsγ
sαsγ − cαcγsβ cαsγ + cγsαsβ cβcγ

⎤⎦
Example 7 Successive global rotations, global position.
The end point P of the arm shown in Figure 2.8 is located at:⎡⎣ X1

Y1
Z1

⎤⎦ =
⎡⎣ 0

l cos θ
l sin θ

⎤⎦ =
⎡⎣ 0
1 cos 75
1 sin 75

⎤⎦ =
⎡⎣ 0.0
0.26
0.97

⎤⎦ (2.39)

The rotation matrix to find the new position of the end point after −29 deg
rotation about the X-axis, followed by 30 deg about the Z-axis, and again
132 deg about the X-axis is

GQB = QX,132QZ,30QX,−29 =

⎡⎣ 0.87 −0.44 −0.24
−0.33 −0.15 −0.93
0.37 0.89 −0.27

⎤⎦ (2.40)

and its new position is at:⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ 0.87 −0.44 −0.24
−0.33 −0.15 −0.93
0.37 0.89 −0.27

⎤⎦⎡⎣ 0.0
0.26
0.97

⎤⎦ =
⎡⎣ −0.35−0.94
−0.031

⎤⎦
(2.41)
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FIGURE 2.8. The arm of Example 7.

Example 8 Twelve independent triple global rotations.
Consider a rigid body in the final orientation after a series of rotation

about global axes. We may transform its body coordinate frame B from the
coincident position with a global frame G to any final orientation by only
three rotations about the global axes provided that no two consequence rota-
tions are about the same axis. In general, there are 12 different independent
combinations of triple rotations about the global axes. They are:

1−QX,γQY,βQZ,α

2−QY,γQZ,βQX,α

3−QZ,γQX,βQY,α

4−QZ,γQY,βQX,α

5−QY,γQX,βQZ,α

6−QX,γQZ,βQY,α

7−QX,γQY,βQX,α

8−QY,γQZ,βQY,α

9−QZ,γQX,βQZ,α

10−QX,γQZ,βQX,α

11−QY,γQX,βQY,α

12−QZ,γQY,βQZ,α

(2.42)

The expanded form of the 12 global axes triple rotations are presented in
Appendix A.

Example 9 Order of rotation, and order of matrix multiplication.
Changing the order of global rotation matrices is equivalent to changing

the order of rotations. The position of a point P of a rigid body B is located
at BrP =

£
1 2 3

¤T
. Its global position after rotation 30 deg about X-
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axis and then 45 deg about Y -axis is at¡
GrP

¢
1
= QY,45QX,30

BrP (2.43)

=

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.763.27
−1.64

⎤⎦
and if we change the order of rotations then its position would be at:¡

GrP
¢
2
= QX,30QY,45

BrP (2.44)

=

⎡⎣ 0.53 0.0 0.85
−0.84 0.15 0.52
−0.13 −0.99 0.081

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 3.08

1.02
−1.86

⎤⎦
These two final positions of P are d =

¯̄¡
GrP

¢
1
−
¡
GrP

¢
2

¯̄
= 4.456 apart.

Example 10 F Repeated rotation about global axes.
If we turn a body frame B about X-axis γ rad, where,

α =
2π

n
n ∈ N (2.45)

then we need to repeat the rotation n times to turn the body back to its
original configuration. We can check it by multiplying QX,α by itself until
we achieve an identity matrix. So, any body point of B will be mapped to
the same point in global frame. To show this, we may find that QX,α to the
power m as:

Qm
X,α =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦m =
⎡⎢⎢⎢⎣
1 0 0

0 cos
2π

n
− sin 2π

n

0 sin
2π

n
cos

2π

n

⎤⎥⎥⎥⎦
m

=

⎡⎢⎢⎢⎣
1 0 0

0 cosm
2π

n
− sinm2π

n

0 sinm
2π

n
cosm

2π

n

⎤⎥⎥⎥⎦ (2.46)

If m = n, then we have an identity matrix.

Qn
X,α =

⎡⎢⎢⎢⎣
1 0 0

0 cosn
2π

n
− sinn2π

n

0 sinn
2π

n
cosn

2π

n

⎤⎥⎥⎥⎦ =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.47)

Repeated rotation about any other global axis provides the same result.
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Let us now rotate B about two global axes repeatedly, such as turning α
about Z-axis followed by a rotation γ about X-axis, such that

α =
2π

n1
γ =

2π

n2
{n1, n2} ∈ N. (2.48)

We may guess that repeating the rotations n = n1 × n2 times will turn B
back to its original configuration.

[QX,γ QZ,α]
n1×n2 = [I] (2.49)

As an example consider α = 2π
3 and γ = 2π

4 . We need 13 times combined
rotation to achieve the original configuration.

GQB = QX,γ QZ,α =

⎡⎣ −0.5 −0.866 03 0
0 0 −1.0

0.866 03 −0.5 0

⎤⎦ (2.50)

GQ13B =

⎡⎣ 0.9997 −0.01922 −0.01902
0.01902 0.99979 −0.0112
0.01922 0.01086 0.9998

⎤⎦ ≈ I (2.51)

We may turn B back to its original configuration by lower number of
combined rotations if n1 and n2 have a common divisor. For example if
n1 = n2 = 4, we only need to apply the combined rotation three times. In
a general case, determination of the required number n to repeat a gen-
eral combined rotation GQB to turn back to the original orientation is an
unsolved question.

GQB =
mY
j=1

QXi,αj i = 1, 2, 3 (2.52)

αj =
2π

nj
m,nj ∈ N (2.53)

GQn
B = [I] n =? (2.54)

2.3 Global Roll-Pitch-Yaw Angles

The rotation about the X-axis of the global coordinate frame is called a
roll, the rotation about the Y -axis of the global coordinate frame is called
a pitch, and the rotation about the Z-axis of the global coordinate frame
is called a yaw. The global roll-pitch-yaw rotation matrix is:

GQB = QZ,γQY,βQX,α (2.55)

=

⎡⎣ cβcγ −cαsγ + cγsαsβ sαsγ + cαcγsβ
cβsγ cαcγ + sαsβsγ −cγsα+ cαsβsγ
−sβ cβsα cαcβ

⎤⎦
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FIGURE 2.9. Global roll, pitch, and yaw rotations.

Figures 2.9 illustrates 45 deg roll, pitch, and yaw rotations about the axes
of a global coordinate frame.
Given the roll, pitch, and yaw angles, we can compute the overall rotation

matrix using Equation (2.55). Also we are able to compute the equivalent
roll, pitch, and yaw angles when a rotation matrix is given. Suppose that rij
indicates the element of row i and column j of the roll-pitch-yaw rotation
matrix (2.55), then the roll angle is

α = tan−1
µ
r32
r33

¶
(2.56)

and the pitch angle is
β = − sin−1 (r31) (2.57)

and the yaw angle is

γ = tan−1
µ
r21
r11

¶
(2.58)

provided that cosβ 6= 0.

Example 11 Determination of roll-pitch-yaw angles.
Let us determine the required roll-pitch-yaw angles to make the x-axis of

the body coordinate B parallel to u, while y-axis remains in (X,Y )-plane.

u = Î + 2Ĵ + 3K̂ (2.59)

Because x-axis must be along u, we have

Gı̂ =
u

|u| =
1√
14

Î +
2√
14

Ĵ +
3√
14

K̂ (2.60)

and because y-axis is in (X,Y )-plane, we have

Gĵ =
³
Î · ĵ

´
Î +

³
Ĵ · ĵ

´
Ĵ = cos θÎ + sin θĴ. (2.61)
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The axes Gı̂ and Gĵ must be orthogonal, therefore,⎡⎣ 1/
√
14

2/
√
14

3/
√
14

⎤⎦ ·
⎡⎣ cos θ
sin θ
0

⎤⎦ = 0 (2.62)

θ = −26.56 deg . (2.63)

We may find Gk̂ by a cross product.

Gk̂ = Gı̂× Gĵ =

⎡⎣ 1/
√
14

2/
√
14

3/
√
14

⎤⎦×
⎡⎣ 0.894
−0.447
0

⎤⎦ =
⎡⎣ 0.358

0.717
−0.597

⎤⎦ (2.64)

Hence, the transformation matrix GQB is:

GQB =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦ =
⎡⎣ 1/

√
14 0.894 0.358

2/
√
14 −0.447 0.717

3/
√
14 0 −0.597

⎤⎦ (2.65)

Now it is possible to determine the required roll-pitch-yaw angles to move
the body coordinate frame B from the coincidence orientation with G to the
final orientation.

α = tan−1
µ
r32
r33

¶
= tan−1

µ
0

−0.597

¶
= 0 (2.66)

β = − sin−1 (r31) = − sin−1
³
3/
√
14
´
≈ −0.93 rad (2.67)

γ = tan−1
µ
r21
r11

¶
= tan−1

Ã
2/
√
14

1/
√
14

!
≈ 1.1071 rad (2.68)

2.4 Rotation About Local Cartesian Axes

Consider a rigid body B with a space fixed point at O. The local body
coordinate frame B(Oxyz) is coincident with a global coordinate frame
G(OXY Z), where the origin of both frames are on the fixed point O. If the
body undergoes a rotation ϕ about the z-axis of its local coordinate frame,
as can be seen in the top view shown in Figure 2.10, then coordinates of
any point of the rigid body in local and global coordinate frames are related
by the following equation

Br = Az,ϕ
Gr. (2.69)

The vectors Gr and Br are the position vectors of the point in global and
local frames respectively

Gr =
£
X Y Z

¤T
(2.70)

Br =
£
x y z

¤T
(2.71)
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and Az,ϕ is the z-rotation matrix.

Az,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ (2.72)

Similarly, rotation θ about the y-axis and rotation ψ about the x-axis
are described by the y-rotation matrix Ay,θ and the x-rotation matrix Ax,ψ

respectively.

Ay,θ =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (2.73)

Ax,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (2.74)

Proof. Vector r indicates the position of a point P of the rigid body B
where it is initially at P1. Using the unit vectors (̂ı, ĵ, k̂) along the axes
of local coordinate frame B(Oxyz), and (Î , Ĵ , K̂) along the axes of global
coordinate frame G(OXY Z), the initial and final position vectors r1 and
r2 in both coordinate frames can be expressed by

Br1 = x1ı̂+ y1ĵ+ z1k̂ (2.75)
Gr1 = X1Î + Y1Ĵ + Z1K̂ (2.76)

Br2 = x2ı̂+ y2ĵ+ z2k̂ (2.77)
Gr2 = X2Î + Y2Ĵ + Z2K̂. (2.78)

The vectors Br1 and Br2 are the initial and final positions of the vector
r expressed in body coordinate frame B(Oxyz), and Gr1 and Gr2 are the
initial and final positions of the vector r expressed in the global coordinate
frame G(OXY Z).
The components of Br2 can be found if we have the components of Gr2.

Using Equation (2.78) and the definition of the inner product, we may write

x2 = ı̂ · r2 = ı̂ ·X2Î + ı̂ · Y2Ĵ + ı̂ · Z2K̂ (2.79)

y2 = ĵ · r2 = ĵ ·X2Î + ĵ · Y2Ĵ + ĵ · Z2K̂ (2.80)

z2 = k̂ · r2 = k̂ ·X2Î + k̂ · Y2Ĵ + k̂ · Z2K̂ (2.81)

or equivalently⎡⎣ x2
y2
z2

⎤⎦ =
⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂

ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦⎡⎣ X2

Y2
Z2

⎤⎦ . (2.82)
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FIGURE 2.10. Position vectors of point P before and after rotation of the local
frame about the z-axis of the local frame.

The elements of the z-rotation matrix Az,ϕ are the direction cosines of
Gr2 with respect to Oxyz. So, the elements of the matrix in Equation (2.82)
are:

ı̂ · Î = cosϕ, ı̂ · Ĵ = sinϕ, ı̂ · K̂ = 0

ĵ · Î = − sinϕ, ĵ · Ĵ = cosϕ, ĵ · K̂ = 0

k̂ · Î = 0, k̂ · Ĵ = 0, k̂ · K̂ = 1

(2.83)

Combining Equations (2.82) and (2.83), we can find the components of
Br2 by multiplying z-rotation matrix Az,ϕ and vector Gr2.⎡⎣ x2

y2
z2

⎤⎦ =
⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ X2

Y2
Z2

⎤⎦ (2.84)

It can also be shown in the following short form

Br2 = Az,ϕ
Gr2 (2.85)

where,

Az,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ . (2.86)

Equation (2.85) says that after rotation about the z-axis of the local
coordinate frame, the position vector in the local frame is equal to Az,ϕ

times the position vector in the global frame. Hence, after rotation about
the z-axis, we are able to find the coordinates of any point of a rigid body
in local coordinate frame, if we have its coordinates in the global frame.
Similarly, rotation θ about the y-axis and rotation ψ about the x-axis

are described by the y-rotation matrix Ay,θ and the x-rotation matrix Ax,ψ

respectively.
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Ay,θ =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (2.87)

Ax,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (2.88)

We indicate the first, second, and third rotations about the local axes by
ϕ, θ, and ψ respectively.

Example 12 Local rotation, local position.
If a local coordinate frame Oxyz has been rotated 60 deg about the z-

axis and a point P in the global coordinate frame OXY Z is at (4, 3, 2), its
coordinates in the local coordinate frame Oxyz are:⎡⎣ x

y
z

⎤⎦ =
⎡⎣ cos 60 sin 60 0
− sin 60 cos 60 0
0 0 1

⎤⎦⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ 4.60
−1.97
2.0

⎤⎦ (2.89)

Example 13 Local rotation, global position.
If a local coordinate frame Oxyz has been rotated 60 deg about the z-axis

and a point P in the local coordinate frame Oxyz is at (4, 3, 2), its position
in the global coordinate frame OXY Z is at:⎡⎣ X

Y
Z

⎤⎦ =
⎡⎣ cos 60 sin 60 0
− sin 60 cos 60 0
0 0 1

⎤⎦T ⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ −0.604.96

2.0

⎤⎦ (2.90)

Example 14 Successive local rotation, global position.
The arm shown in Figure 2.11 has two actuators. The first actuator

rotates the arm −90 deg about y-axis and then the second actuator rotates
the arm 90 deg about x-axis. If the end point P is at

BrP =
£
9.5 −10.1 10.1

¤T
(2.91)

then its position in the global coordinate frame is at:

Gr2 = [Ax,90Ay,−90]
−1 BrP = A−1y,−90A

−1
x,90

BrP

= AT
y,−90A

T
x,90

BrP =

⎡⎣ 10.1
−10.1
9.5

⎤⎦ (2.92)
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FIGURE 2.11. Arm of Example 14.

2.5 Successive Rotation About Local Cartesian
Axes

The final global position of a point P in a rigid body B with position
vector r, after some rotations A1, A2, A3, ..., An about the local axes, can
be found by

Br = BAG
Gr (2.93)

where,

BAG = An · · ·A3A2A1. (2.94)
BAG is called the local rotation matrix and it maps the global coordinates
to their corresponding local coordinates.
Rotation about the local coordinate axis is conceptually interesting be-

cause in a sequence of rotations, each rotation is about one of the axes of
the local coordinate frame, which has been moved to its new global position
during the last rotation.
Assume that we have the coordinates of every point of a rigid body in

a global coordinate frame. The rigid body and its local coordinate frame
rotate about a local axis, then the proper local rotation matrix relates
the new global coordinates of the points to the corresponding local coor-
dinates. If we introduce an intermediate space-fixed frame coincident with
the new position of the body coordinate frame, we may give the rigid body
a second rotation about a local coordinate axis. Now another proper local
rotation matrix relates the coordinates in the intermediate fixed frame to
the corresponding local coordinates. Hence, the final global coordinates of
the points must first be transformed to the intermediate fixed frame and
second transformed to the original global axes.



2. Rotation Kinematics 51

Example 15 Successive local rotation, local position.
A local coordinate frame B(Oxyz) that initially is coincident with a global

coordinate frame G(OXY Z) undergoes a rotation ϕ = 30deg about the
z-axis, then θ = 30deg about the x-axis, and then ψ = 30deg about the
y-axis. The local coordinates of a point P located at X = 5, Y = 30, Z = 10
can be found by

£
x y z

¤T
= Ay,ψAx,θAz,ϕ

£
5 30 10

¤T
. The local

rotation matrix is

BAG = Ay,30Ax,30Az,30 =

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦ (2.95)

and coordinates of P in the local frame is:⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ 18.35
25.35
7.0

⎤⎦ (2.96)

Example 16 Successive local rotation.
The rotation matrix for a body point P (x, y, z) after rotation Az,ϕ fol-

lowed by Ax,θ and Ay,ψ is:
BAG = Ay,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ −cθsψ
−cθsϕ cθcϕ sθ

cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ cθcψ

⎤⎦ (2.97)

Example 17 Twelve independent triple local rotations.
Euler proved that: Any two independent orthogonal coordinate frames

with a common origin can be related by a sequence of three rotations about
the local coordinate axes, where no two successive rotations may be about
the same axis. In general, there are 12 different independent combinations
of triple rotation about local axes. They are:

1−Ax,ψAy,θAz,ϕ

2−Ay,ψAz,θAx,ϕ

3−Az,ψAx,θAy,ϕ

4−Az,ψAy,θAx,ϕ

5−Ay,ψAx,θAz,ϕ

6−Ax,ψAz,θAy,ϕ

7−Ax,ψAy,θAx,ϕ

8−Ay,ψAz,θAy,ϕ

9−Az,ψAx,θAz,ϕ

10−Ax,ψAz,θAx,ϕ

11−Ay,ψAx,θAy,ϕ

12−Az,ψAy,θAz,ϕ

(2.98)

The expanded form of the 12 local axes’ triple rotation are presented in
Appendix B.
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FIGURE 2.12. First Euler angle.

2.6 Euler Angles

The rotation about the Z-axis of the global coordinate is called precession,
the rotation about the x-axis of the local coordinate is called nutation, and
the rotation about the z-axis of the local coordinate is called spin. The
precession-nutation-spin rotation angles are also called Euler angles. Euler
angles rotation matrix has many application in rigid body kinematics. To
find the Euler angles rotation matrix to go from the global frameG(OXY Z)
to the final body frame B(Oxyz), we employ a body frame B0(Ox0y0z0) as
shown in Figure 2.12 that before the first rotation coincides with the global
frame. Let there be at first a rotation ϕ about the z0-axis. Because Z-axis
and z0-axis are coincident, we have:

B0
r = B0

AG
Gr (2.99)

B0
AG = Az,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ (2.100)

Next we consider the B0(Ox0y0z0) frame as a new fixed global frame and
introduce a new body frame B00(Ox00y00z00). Before the second rotation, the
two frames coincide. Then, we execute a θ rotation about x00-axis as shown
in Figure 2.13. The transformation between B0(Ox0y0z0) and B00(Ox00y00z00)
is:

B00
r = B00

AB0 B
0
r (2.101)

B00
AB0 = Ax,θ =

⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦ (2.102)

Finally we consider the B00(Ox00y00z00) frame as a new fixed global frame
and consider the final body frame B(Oxyz) to coincide with B00 before the
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third rotation. We now execute a ψ rotation about the z00-axis as shown in
Figure 2.14. The transformation between B00(Ox00y00z00) and B(Oxyz) is:

Br = BAB00 B
00
r (2.103)

BAB00 = Az,ψ =

⎡⎣ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎤⎦ (2.104)

By the rule of composition of rotations, the transformation fromG(OXY Z)
to B(Oxyz) is

Br = BAG
Gr (2.105)

where,

BAG = Az,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (2.106)

and therefore,

GQB = BA−1G = BAT
G = [Az,ψAx,θAz,ϕ]

T

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ . (2.107)
Given the angles of precession ϕ, nutation θ, and spin ψ, we can com-

pute the overall rotation matrix using Equation (2.106). Also we are able
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FIGURE 2.14. Third Euler angle.

to compute the equivalent precession, nutation, and spin angles when a
rotation matrix is given.
If rij indicates the element of row i and column j of the precession-

nutation-spin rotation matrix (2.106), then,

θ = cos−1 (r33) (2.108)

ϕ = − tan−1
µ
r31
r32

¶
(2.109)

ψ = tan−1
µ
r13
r23

¶
(2.110)

provided that sin θ 6= 0.

Example 18 Euler angle rotation matrix.
The Euler or precession-nutation-spin rotation matrix for ϕ = 79.15 deg,

θ = 41.41 deg, and ψ = −40.7 deg would be found by substituting ϕ, θ, and
ψ in Equation (2.106).

BAG = Az,−40.7Ax,41.41Az,79.15 (2.111)

=

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦
Example 19 Euler angles of a local rotation matrix.
The local rotation matrix after rotation 30 deg about the z-axis, then

rotation 30 deg about the x-axis, and then 30 deg about the y-axis is
BAG = Ay,30Ax,30Az,30 (2.112)

=

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦
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and therefore, the local coordinates of a sample point at X = 5, Y = 30,
Z = 10 are:⎡⎣ x

y
z

⎤⎦ =
⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ 18.35
25.35
7.0

⎤⎦ (2.113)

The Euler angles of the corresponding precession-nutation-spin rotation
matrix are:

θ = cos−1 (0.75) = 41.41 deg

ϕ = − tan−1
µ

0.65

−0.125

¶
= 79.15 deg

ψ = tan−1
µ
−0.43
0.50

¶
= −40.7 deg (2.114)

Hence, Ay,30Ax,30Az,30 = Az,ψAx,θAz,ϕ when ϕ = 79.15 deg, θ = 41.41 deg,
and ψ = −40.7 deg. In other words, the rigid body attached to the local
frame moves to the final configuration by undergoing either three consecu-
tive rotations ϕ = 79.15 deg, θ = 41.41 deg, and ψ = −40.7 deg about z, x,
and z axes respectively, or three consecutive rotations 30 deg, 30 deg, and
30 deg about z, x, and y axes.

Example 20 Relative rotation matrix of two bodies.
Consider a rigid body B1 with an orientation matrix B1AG made by Euler

angles ϕ = 30deg, θ = −45 deg, ψ = 60deg, and another rigid body B2
having ϕ = 10deg, θ = 25deg, ψ = −15 deg, with respect to the global
frame. To find the relative rotation matrix B1AB2

to map the coordinates
of second body frame B2 to the first body frame B1, we need to find the
individual rotation matrices first.

B1AG = Az,60Ax,−45Az,30 (2.115)

=

⎡⎣ 0.127 0.78 −0.612
−0.927 −0.127 −0.354
−0.354 0.612 0.707

⎤⎦
B2AG = Az,10Ax,25Az,−15 (2.116)

=

⎡⎣ 0.992 −0.0633 −0.109
0.103 0.907 0.408
0.0734 −0.416 0.906

⎤⎦
The desired rotation matrix B1AB2 may be found by

B1AB2
= B1AG

GAB2
(2.117)
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which is equal to:

B1AB2 = B1AG
B2AT

G (2.118)

=

⎡⎣ 0.992 0.103 0.0734
−0.0633 0.907 −0.416
−0.109 0.408 0.906

⎤⎦
Example 21 Euler angles rotation matrix for small angles.
The Euler rotation matrix BAG = Az,ψAx,θAz,ϕ for very small Euler

angles ϕ, θ, and ψ is approximated by

BAG =

⎡⎣ 1 γ 0
−γ 1 θ
0 −θ 1

⎤⎦ (2.119)

where,
γ = ϕ+ ψ. (2.120)

Therefore, in case of small angles of rotation, the angles ϕ and ψ are in-
distinguishable.

Example 22 Small second Euler angle.
If θ→ 0 then the Euler rotation matrix BAG = Az,ψAx,θAz,ϕ approaches

to

BAG =

⎡⎣ cϕcψ − sϕsψ cψsϕ+ cϕsψ 0
−cϕsψ − cψsϕ −sϕsψ + cϕcψ 0

0 0 1

⎤⎦
=

⎡⎣ cos (ϕ+ ψ) sin (ϕ+ ψ) 0
− sin (ϕ+ ψ) cos (ϕ+ ψ) 0

0 0 1

⎤⎦ (2.121)

and therefore, the angles ϕ and ψ are indistinguishable even if the value
of ϕ and ψ are finite. Hence, the Euler set of angles in rotation matrix
(2.106) is not unique when θ = 0.

Example 23 Euler angles application in motion of rigid bodies.
The zxz Euler angles are good parameters to describe the configuration of

a rigid body with a fixed point. The Euler angles to show the configuration
of a top are shown in Figure 2.15 as an example.

Example 24 F Angular velocity vector in terms of Euler frequencies.
A Eulerian local frame E (o, êϕ, êθ, êψ) can be introduced by defining unit

vectors êϕ, êθ, and êψ as shown in Figure 2.16. Although the Eulerian
frame is not necessarily orthogonal, it is very useful in rigid body kinematic
analysis.
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FIGURE 2.15. Application of Euler angles in describing the configuration of a
top.

The angular velocity vector GωB of the body frame B(Oxyz) with respect
to the global frame G(OXY Z) can be written in Euler angles frame E as
the sum of three Euler angle rate vectors.

E
GωB = ϕ̇êϕ + θ̇êθ + ψ̇êψ (2.122)

where, the rate of Euler angles, ϕ̇, θ̇, and ψ̇ are called Euler frequencies.
To find GωB in body frame we must express the unit vectors êϕ, êθ,

and êψ shown in Figure 2.16, in the body frame. The unit vector êϕ =£
0 0 1

¤T
= K̂ is in the global frame and can be transformed to the

body frame after three rotations.

B êϕ =
BAG K̂ = Az,ψAx,θAz,ϕK̂ =

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦ (2.123)

The unit vector êθ =
£
1 0 0

¤T
= ı̂0 is in the intermediate frame

Ox0y0z0 and needs to get two rotations Ax,θ and Az,ψ to be transformed
to the body frame.

B êθ =
BAOx0y0z0 ı̂

0 = Az,ψ Ax,θ ı̂
0 =

⎡⎣ cosψ
− sinψ
0

⎤⎦ (2.124)

The unit vector êψ is already in the body frame, êψ =
£
0 0 1

¤T
= k̂.
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FIGURE 2.16. Euler angles frame êϕ, êθ, êψ.

Therefore, GωB is expressed in body coordinate frame as

B
GωB = ϕ̇

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦+ θ̇

⎡⎣ cosψ
− sinψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

³
ϕ̇ sin θ sinψ + θ̇ cosψ

´
ı̂+

³
ϕ̇ sin θ cosψ − θ̇ sinψ

´
ĵ

+
³
ϕ̇ cos θ + ψ̇

´
k̂ (2.125)

and therefore, components of GωB in body frame Oxyz are related to the
Euler angle frame Oϕθψ by the following relationship:

B
GωB = BAE

E
GωB (2.126)⎡⎣ ωx

ωy
ωz

⎤⎦ =

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.127)

Then, GωB can be expressed in the global frame using an inverse transfor-
mation of Euler rotation matrix (2.106)

G
GωB = BA−1G

B
GωB =

BA−1G

⎡⎣ ϕ̇ sin θ sinψ + θ̇ cosψ

ϕ̇ sin θ cosψ − θ̇ sinψ

ϕ̇ cos θ + ψ̇

⎤⎦
=

³
θ̇ cosϕ+ ψ̇ sin θ sinϕ

´
Î +

³
θ̇ sinϕ− ψ̇ cosϕ sin θ

´
Ĵ

+
³
ϕ̇+ ψ̇ cos θ

´
K̂ (2.128)

and hence, components of GωB in global coordinate frame OXY Z are re-
lated to the Euler angle coordinate frame Oϕθψ by the following relation-
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ship.

G
GωB = GQE

E
GωB (2.129)⎡⎣ ωX

ωY
ωZ

⎤⎦ =

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.130)

Example 25 F Euler frequencies based on a Cartesian angular velocity
vector.
The vector B

GωB, that indicates the angular velocity of a rigid body B
with respect to the global frame G written in frame B, is related to the
Euler frequencies by

B
GωB = BAE

E
GωB (2.131)

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦ =
⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (2.132)

The matrix of coefficients is not an orthogonal matrix because,

BAT
E 6= BA−1E (2.133)

BAT
E =

⎡⎣ sin θ sinψ sin θ cosψ cos θ
cosψ − sinψ 0
0 0 1

⎤⎦ (2.134)

BA−1E =
1

sin θ

⎡⎣ sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0
− cos θ sinψ − cos θ cosψ 1

⎤⎦ . (2.135)

It is because the Euler angles coordinate frame Oϕθψ is not an orthogonal
frame. For the same reason, the matrix of coefficients that relates the Euler
frequencies and the components of GGωB

G
GωB = GQE

E
GωB (2.136)

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ =
⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.137)

is not an orthogonal matrix. Therefore, the Euler frequencies based on local
and global decomposition of the angular velocity vector GωB must solely be
found by the inverse of coefficient matrices

E
GωB = BA−1E

B
GωB (2.138)⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
1

sin θ

⎡⎣ sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0
− cos θ sinψ − cos θ cosψ 1

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦(2.139)
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and

E
GωB = GQ−1E

G
GωB (2.140)⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
1

sin θ

⎡⎣ − cos θ sinϕ cos θ cosϕ 1
sin θ cosϕ sin θ sinϕ 0
sinϕ − cosϕ 0

⎤⎦⎡⎣ ωX
ωY
ωZ

⎤⎦ . (2.141)
Using (2.138) and (2.140), it can be verified that the transformation ma-
trix BAG =

BAE
GQ−1E would be the same as Euler transformation matrix

(2.106).
The angular velocity vector can thus be expressed as:

GωB =
£
ı̂ ĵ k̂

¤⎡⎣ ωx
ωy
ωz

⎤⎦ = £ Î Ĵ K̂
¤⎡⎣ ωX

ωY
ωZ

⎤⎦
=

£
K̂ êθ k̂

¤⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.142)

Example 26 F Integrability of the angular velocity components.
The integrability condition for an arbitrary total differential of f = f (x, y)

df = f1dx+ f2dy =
∂f

∂x
dx+

∂f

∂y
dy (2.143)

is:
∂f1
∂y

=
∂f2
∂x

(2.144)

The angular velocity components ωx, ωy, and ωz along the body coordi-
nate axes x, y, and z can not be integrated to obtain the associated angles
because

ωxdt = sin θ sinψ dϕ+ cosψ dθ (2.145)

and
∂ (sin θ sinψ)

∂θ
6= ∂ cosψ

∂ϕ
. (2.146)

However, the integrability condition (2.144) is satisfied by the Euler fre-
quencies. From (2.139), we have:

dϕ =
sinψ

sin θ
(ωx dt) +

cosψ

sin θ
(ωy dt) (2.147)

dθ = cosψ (ωx dt)− sinψ (ωy dt) (2.148)

dψ =
− cos θ sinψ

sin θ
(ωx dt) +

− cos θ cosψ
sin θ

(ωy dt) +
(ωz dt)

sin θ
(2.149)

For example, the second equation indicates that

cosψ =
∂θ

∂ (ωx dt)
− sinψ = ∂θ

∂ (ωy dt)
(2.150)
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and therefore,

∂ (cosψ)

∂ (ωy dt)
= − sinψ ∂ψ

∂ (ωy dt)
=
sinψ cos θ cosψ

sin θ
(2.151)

∂ (− sinψ)
∂ (ωx dt)

= − cosψ ∂ψ

∂ (ωx dt)
=
sinψ cos θ cosψ

sin θ
(2.152)

It can be checked that dϕ and dψ are also integrable.

Example 27 F Cardan angles and frequencies.
The system of Euler angles is singular at θ = 0, and as a consequence,

ϕ and ψ become coplanar and indistinguishable. From 12 angle systems
of Appendix B, each with certain names, characteristics, advantages, and
disadvantages, the rotations about three different axes such as BAG =
Az,ψAy,θAx,ϕ are called Cardan or Bryant angles. The Cardan angle sys-
tem is not singular at θ = 0, and has some application in mechatronics and
attitude analysis of satellites in a central force field.

BAG =

⎡⎣ cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ
sθ −cθsϕ cθcϕ

⎤⎦ (2.153)

The angular velocity ω of a rigid body can either be expressed in terms
of the components along the axes of B(Oxyz), or in terms of the Cardan
frequencies along the axes of the non-orthogonal Cardan frame. The angular
velocity in terms of Cardan frequencies is

GωB = ϕ̇Az,ψAy,θ

⎡⎣ 1
0
0

⎤⎦+ θ̇Az,ψ

⎡⎣ 0
1
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦ (2.154)

therefore,⎡⎣ ωx
ωy
ωz

⎤⎦ =

⎡⎣ cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.155)

⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =

⎡⎣ cosψ
cos θ − sinψcos θ 0
sinψ cosψ 0

− tan θ cosψ tan θ sinψ 1

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦ . (2.156)

In case of small Cardan angles, we have

BAG =

⎡⎣ 1 ψ −θ
−ψ 1 ϕ
θ −ϕ 1

⎤⎦ (2.157)

and ⎡⎣ ωx
ωy
ωz

⎤⎦ =
⎡⎣ 1 ψ 0
−ψ 1 0
θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (2.158)
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FIGURE 2.17. Local roll-pitch-yaw angles.

2.7 Local Roll-Pitch-Yaw Angles

Rotation about the x-axis of the local frame is called roll or bank, rotation
about y-axis of the local frame is called pitch or attitude, and rotation
about the z-axis of the local frame is called yaw, spin, or heading. The
local roll-pitch-yaw angles are shown in Figure 2.17.
The local roll-pitch-yaw rotation matrix is:

BAG = Az,ψAy,θAx,ϕ

=

⎡⎣ cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ
sθ −cθsϕ cθcϕ

⎤⎦ (2.159)

Note the difference between roll-pitch-yaw and Euler angles, although we
show both utilizing ϕ, θ, and ψ.

Example 28 F Angular velocity and local roll-pitch-yaw rate.
Using the roll-pitch-yaw frequencies, the angular velocity of a body B with

respect to the global reference frame is

GωB = ωxı̂+ ωy ĵ+ ωz k̂

= ϕ̇êϕ + θ̇êθ + ψ̇êψ. (2.160)

Relationships between the components of GωB in body frame and roll-pitch-
yaw components are found when the local roll unit vector êϕ and pitch
unit vector êθ are transformed to the body frame. The roll unit vector
êϕ =

£
1 0 0

¤T
transforms to the body frame after rotation θ and then
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rotation ψ.

B êϕ = Az,ψAy,θ

⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ cos θ cosψ
− cos θ sinψ

sin θ

⎤⎦ (2.161)

The pitch unit vector êθ =
£
0 1 0

¤T
transforms to the body frame after

rotation ψ.

B êθ = Az,ψ

⎡⎣ 0
1
0

⎤⎦ =
⎡⎣ sinψ
cosψ
0

⎤⎦ (2.162)

The yaw unit vector êψ =
£
0 0 1

¤T
is already along the local z-axis.

Hence, GωB can be expressed in body frame Oxyz as

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦ = ϕ̇

⎡⎣ cos θ cosψ
− cos θ sinψ

sin θ

⎤⎦+ θ̇

⎡⎣ sinψ
cosψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.163)

and therefore, GωB in global frame OXY Z in terms of local roll-pitch-yaw
frequencies is:

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ = BA−1G

⎡⎣ ωx
ωy
ωz

⎤⎦ = BA−1G

⎡⎣ θ̇ sinψ + ϕ̇ cos θ cosψ

θ̇ cosψ − ϕ̇ cos θ sinψ

ψ̇ + ϕ̇ sin θ

⎤⎦
=

⎡⎣ ϕ̇+ ψ̇ sin θ

θ̇ cosϕ− ψ̇ cos θ sinϕ

θ̇ sinϕ+ ψ̇ cos θ cosϕ

⎤⎦
=

⎡⎣ 1 0 sin θ
0 cosϕ − cos θ sinϕ
0 sinϕ cos θ cosϕ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.164)

2.8 Local Axes Versus Global Axes Rotation

The global rotation matrix GQB is equal to the inverse of the local rotation
matrix BAG and vice versa,

GQB =
BA−1G , BAG =

GQ−1B (2.165)

where
GQB = A−11 A−12 A−13 · · ·A−1n (2.166)
BAG = Q−11 Q−12 Q−13 · · ·Q−1n . (2.167)
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Also, premultiplication of the global rotation matrix is equal to postmulti-
plication of the local rotation matrix.

Proof. Consider a sequence of global rotations and their resultant global
rotation matrix GQB to transform a position vector Br to Gr.

Gr = GQB
Br (2.168)

The global position vector Gr can also be transformed to Br using a local
rotation matrix BAG.

Br = BAG
Gr (2.169)

Combining Equations (2.168) and (2.169) leads to

Gr = GQB
BAG

Gr (2.170)
Br = BAG

GQB
Br (2.171)

and hence,
GQB

BAG =
BAG

GQB = I. (2.172)

Therefore, the global and local rotation matrices are the inverse of each
other.

GQB = BA−1G
GQ−1B = BAG (2.173)

Assume that GQB = Qn · · ·Q3Q2Q1 and BAG = An · · ·A3A2A1 then,
GQB = BA−1G = A−11 A−12 A−13 · · ·A−1n (2.174)
BAG = GQ−1B = Q−11 Q−12 Q−13 · · ·Q−1n (2.175)

and Equation (2.172) becomes

Qn · · ·Q2Q1An · · ·A2A1 = An · · ·A2A1Qn · · ·Q2Q1 = I (2.176)

and therefore,

Qn · · ·Q3Q2Q1 = A−11 A−12 A−13 · · ·A−1n
An · · ·A3A2A1 = Q−11 Q−12 Q−13 · · ·Q−1n (2.177)

or

Q−11 Q−12 Q−13 · · ·Q−1n Qn · · ·Q3Q2Q1 = I (2.178)

A−11 A−12 A−13 · · ·A−1n An · · ·A3A2A1 = I. (2.179)

Hence, the effect of in order rotations about the global coordinate axes
is equivalent to the effect of the same rotations about the local coordinate
axes performed in the reverse order.
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Example 29 Global position and postmultiplication of rotation matrix.
The local position of a point P after rotation is at Br =

£
1 2 3

¤T
.

If the local rotation matrix to transform Gr to Br is given as

BAz,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ =
⎡⎣ cos 30 sin 30 0
− sin 30 cos 30 0
0 0 1

⎤⎦ (2.180)

then we may find the global position vector Gr by postmultiplication BAz,ϕ

by the local position vector BrT ,

GrT = BrT BAz,ϕ =
£
1 2 3

¤⎡⎣ cos 30 sin 30 0
− sin 30 cos 30 0
0 0 1

⎤⎦
=

£
−0.13 2.23 3.0

¤
(2.181)

instead of premultiplication of BA−1z,ϕ by
Br.

Gr = BA−1z,ϕ
Br

=

⎡⎣ cos 30 − sin 30 0
sin 30 cos 30 0
0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.132.23

3

⎤⎦ (2.182)

2.9 General Transformation

Consider a general situation in which two coordinate frames, G(OXY Z)
and B(Oxyz) with a common origin O, are employed to express the com-
ponents of a vector r. There is always a transformation matrix GRB to
map the components of r from the reference frame B(Oxyz) to the other
reference frame G(OXY Z).

Gr = GRB
Br (2.183)

In addition, the inverse map, Br =GR−1B
Gr, can be done by BRG

Br = BRG
Gr (2.184)

where, ¯̄
GRB

¯̄
=
¯̄
BRG

¯̄
= 1 (2.185)

and
BRG =

GR−1B = GRT
B. (2.186)
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Proof. Decomposition of the unit vectors of G(OXY Z) along the axes of
B(Oxyz)

Î = (Î · ı̂)̂ı+ (Î · ĵ)ĵ+ (Î · k̂)k̂ (2.187)

Ĵ = (Ĵ · ı̂)̂ı+ (Ĵ · ĵ)ĵ+ (Ĵ · k̂)k̂ (2.188)

K̂ = (K̂ · ı̂)̂ı+ (K̂ · ĵ)ĵ+ (K̂ · k̂)k̂ (2.189)

introduces the transformation matrix GRB to map the local frame to the
global frame⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ ı̂
ĵ

k̂

⎤⎦ = GRB

⎡⎣ ı̂
ĵ

k̂

⎤⎦ (2.190)

where,

GRB =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦
=

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ . (2.191)

Each column of GRB is decomposition of a unit vector of the local frame
B(Oxyz) in the global frame G(OXY Z).

GRB =

⎡⎣ | | |
Gı̂ Gĵ Gk̂
| | |

⎤⎦ =
⎡⎣ | | |
r̂V1 r̂V2 r̂V3
| | |

⎤⎦ (2.192)

Similarly, each row of GRB is decomposition of a unit vector of the global
frame G(OXY Z) in the local frame B(Oxyz).

GRB =

⎡⎣ − B ÎT −
− BĴT −
− BK̂T −

⎤⎦ =
⎡⎣ − r̂H1 −
− r̂H2 −
− r̂H3

−

⎤⎦ (2.193)

The elements of GRB are direction cosines of the axes of G(OXY Z) in
frame B(Oxyz). This set of nine direction cosines then completely specifies
the orientation of the frame B(Oxyz) in the frame G(OXY Z), and can
be used to map the coordinates of any point (x, y, z) to its corresponding
coordinates (X,Y,Z).
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Alternatively, using the method of unit vector decomposition to develop
the matrix BRG leads to:

Br = BRG
Gr =GR−1B

Gr (2.194)

BRG =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ cos(̂ı, Î) cos(̂ı, Ĵ) cos(̂ı, K̂)

cos(ĵ, Î) cos(ĵ, Ĵ) cos(ĵ, K̂)

cos(k̂, Î) cos(k̂, Ĵ) cos(k̂, K̂)

⎤⎦ (2.195)

and shows that the inverse of a transformation matrix is equal to the trans-
pose of the transformation matrix.

GR−1B = GRT
B (2.196)

A matrix with condition (2.196) is called orthogonal. Orthogonality of
R comes from this fact that it maps an orthogonal coordinate frame to
another orthogonal coordinate frame.
The transformation matrix R has only three independent elements. The

constraint equations among the elements of R will be found by applying
the orthogonality condition (2.196).

GRB · GRT
B = [I] (2.197)⎡⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣ r11 r21 r31
r12 r22 r32
r13 r23 r33

⎤⎦ =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.198)

Therefore, the dot product of any two different rows of GRB is zero, and
the dot product of any row of GRB with the same row is one.

r211 + r212 + r213 = 1

r221 + r222 + r223 = 1

r231 + r232 + r233 = 1

r11r21 + r12r22 + r13r23 = 0

r11r31 + r12r32 + r13r33 = 0

r21r31 + r22r32 + r23r33 = 0 (2.199)

These relations are also true for columns of GRB, and evidently for rows
and columns of BRG. The orthogonality condition can be summarized in
the following equation:

r̂Hi · r̂Hj = r̂
T
Hi
r̂Hj =

3X
i=1

rijrik = δjk (j, k = 1, 2, 3) (2.200)
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where rij is the element of row i and column j of the transformation matrix
R, and δjk is the Kronecker’s delta.

δjk = 1 if j = k, and δjk = 0 if j 6= k (2.201)

Equation (2.200) gives six independent relations satisfied by nine direction
cosines. It follows that there are only three independent direction cosines.
The independent elements of the matrix R cannot obviously be in the same
row or column, or any diagonal.
The determinant of a transformation matrix is equal to one,¯̄

GRB

¯̄
= 1 (2.202)

because of Equation (2.197), and noting that¯̄
GRB · GRT

B

¯̄
=

¯̄
GRB

¯̄
·
¯̄
GRT

B

¯̄
=
¯̄
GRB

¯̄
·
¯̄
GRB

¯̄
=

¯̄
GRB

¯̄2
= 1. (2.203)

Using linear algebra and row vectors r̂H1 , r̂H2 , and r̂H3 of
GRB , we know

that ¯̄
GRB

¯̄
= r̂TH1

· (r̂H2 × r̂H3) (2.204)

and because the coordinate system is right handed, we have r̂H2×r̂H3 = r̂H1

so
¯̄
GRB

¯̄
= r̂TH1

· r̂H1 = 1.

Example 30 Elements of transformation matrix.
The position vector r of a point P may be expressed in terms of its

components with respect to either G (OXY Z) or B (Oxyz) frames. Body
and a global coordinate frames are shown in Figure 2.18. If Gr = 100Î −
50Ĵ + 150K̂, and we are looking for components of r in the Oxyz frame,
then we have to find the proper rotation matrix BRG first.
The row elements of BRG are the direction cosines of the Oxyz axes in

the OXY Z coordinate frame. The x-axis lies in the XZ plane at 40 deg
from the X-axis, and the angle between y and Y is 60 deg. Therefore,

BRG =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ =
⎡⎣ cos 40 0 sin 40

ĵ · Î cos 60 ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ 0.766 0 0.643

ĵ · Î 0.5 ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ (2.205)

and by using BRG
GRB =

BRG
BRT

G = I⎡⎣ 0.766 0 0.643
r21 0.5 r23
r31 r32 r33

⎤⎦⎡⎣ 0.766 r21 r31
0 0.5 r32

0.643 r23 r33

⎤⎦ =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.206)
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FIGURE 2.18. Body and global coordinate frames of Example 30.

we obtain a set of equations to find the missing elements.

0.766 r21 + 0.643 r23 = 0

0.766 r31 + 0.643 r33 = 0

r221 + r223 + 0.25 = 1

r21r31 + 0.5r32 + r23r33 = 0

r231 + r232 + r233 = 1 (2.207)

Solving these equations provides the following transformation matrix:

BRG =

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦ (2.208)

and then we can find the components of Br.

Br = BRG
Gr =

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦⎡⎣ 100
−50
150

⎤⎦
=

⎡⎣ 173.05
−68.75
−18.05

⎤⎦ (2.209)

Example 31 Global position, using Br and BRG.
The position vector r of a point P may be described in either G (OXY Z)

or B (Oxyz) frames. If Br = 100ı̂− 50ĵ+ 150k̂, and the following BRG is
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the transformation matrix to map Gr to Br

Br = BRG
Gr

=

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦ Gr (2.210)

then the components of Gr in G (OXY Z) would be

Gr = GRB
Br = BRT

G
Br

=

⎡⎣ 0.766 0.557 −0.322
0 0.5 0.866

0.643 −0.663 0.383

⎤⎦⎡⎣ 100
−50
150

⎤⎦ =
⎡⎣ 0.45
104.9
154.9

⎤⎦ . (2.211)
Example 32 Two points transformation matrix.
The global position vector of two points, P1 and P2, of a rigid body B

are:

GrP1 =

⎡⎣ 1.077
1.365
2.666

⎤⎦ GrP2 =

⎡⎣ −0.4732.239
−0.959

⎤⎦ (2.212)

The origin of the body B (Oxyz) is fixed on the origin of G (OXY Z), and
the points P1 and P2 are lying on the local x-axis and y-axis respectively.
To find GRB, we use the local unit vectors Gı̂ and Gĵ

Gı̂ =
GrP1
|GrP1 |

=

⎡⎣ 0.338
0.429
0.838

⎤⎦ (2.213)

Gĵ =
GrP2
|GrP2 |

=

⎡⎣ −0.1910.902
−0.387

⎤⎦ (2.214)

to obtain Gk̂

Gk̂ = ı̂× ĵ = ı̃ ĵ

=

⎡⎣ 0 −0.838 0.429
0.838 0 −0.338
−0.429 0.338 0

⎤⎦⎡⎣ −0.1910.902
−0.387

⎤⎦
=

⎡⎣ −0.922−0.029
0.387

⎤⎦ (2.215)

where ı̃ is the skew-symmetric matrix corresponding to ı̂, and ı̃ ĵ is an
alternative for ı̂× ĵ.
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Hence, the transformation matrix using the coordinates of two points
GrP1 and

GrP2 would be

GRB =
£

Gı̂ Gĵ Gk̂
¤

=

⎡⎣ 0.338 −0.191 −0.922
0.429 0.902 −0.029
0.838 −0.387 0.387

⎤⎦ . (2.216)

Example 33 Length invariant of a position vector.
Describing a vector in different frames utilizing rotation matrices does

not affect the length and direction properties of the vector. Therefore, length
of a vector is an invariant

|r| =
¯̄
Gr
¯̄
=
¯̄
Br
¯̄
. (2.217)

The length invariant property can be shown by

|r|2 = GrT Gr =
£
GRB

Br
¤T GRB

Br = BrT GRT
B
GRB

Br

= BrT Br. (2.218)

Example 34 Skew symmetric matrices for ı̂, ĵ, and k̂.
The definition of skew symmetric matrix ã corresponding to a vector a

is defined by

ã =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ . (2.219)

Hence,

ı̃ =

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ (2.220)

j̃ =

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ (2.221)

k̃ =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ . (2.222)

Example 35 Inverse of Euler angles rotation matrix.
Precession-nutation-spin or Euler angle rotation matrix (2.106)

BRG = Az,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (2.223)



72 2. Rotation Kinematics

must be inverted to be a transformation matrix to map body coordinates to
global coordinates.

GRB = BR−1G = AT
z,ϕA

T
x,θA

T
z,ψ

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ (2.224)

The transformation matrix (2.223) is called a local Euler rotation matrix,
and (2.224) is called a global Euler rotation matrix.

Example 36 F Group property of transformations.
A set S together with a binary operation ⊗ defined on elements of S is

called a group (S,⊗) if it satisfies the following four axioms.

1. Closure: If s1, s2 ∈ S, then s1 ⊗ s2 ∈ S.

2. Identity: There exists an identity element s0 such that s0 ⊗ s =
s⊗ s0 = s for ∀s ∈ S.

3. Inverse: For each s ∈ S, there exists a unique inverse s−1 ∈ S such
that s−1 ⊗ s = s⊗ s−1 = s0.

4. Associativity: If s1, s2, s3 ∈ S, then (s1 ⊗ s2)⊗ s3 = s1⊗ (s2 ⊗ s3).

Three dimensional coordinate transformations make a group if we
define the set of rotation matrices by

S =
©
R ∈ R3×3 : RRT = RTR = I, |R| = 1

ª
. (2.225)

Therefore, the elements of the set S are transformation matrices Ri,
the binary operator ⊗ is matrix multiplication, the identity matrix is
I, and the inverse of element R is R−1 = RT .

S is also a continuous group because

5. The binary matrix multiplication is a continuous operation, and

6. The inverse of any element in S is a continuous function of that
element.

Therefore, S is a differentiable manifold. A group that is a differen-
tiable manifold is called a Lie group.

Example 37 F Transformation with determinant −1.
An orthogonal matrix with determinant +1 corresponds to a rotation as

described in Equation (2.202). In contrast, an orthogonal matrix with deter-
minant −1 describes a reflection. Moreover it transforms a right-handed
coordinate system into a left-handed, and vice versa. This transformation
does not correspond to any possible physical action on rigid bodies.
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Example 38 Alternative proof for transformation matrix.
Starting with an identity

£
ı̂ ĵ k̂

¤⎡⎣ ı̂
ĵ

k̂

⎤⎦ = 1 (2.226)

we may write ⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î

Ĵ

K̂

⎤⎦ £ ı̂ ĵ k̂
¤⎡⎣ ı̂

ĵ

k̂

⎤⎦ . (2.227)

Since matrix multiplication can be performed in any order we find⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ ı̂
ĵ

k̂

⎤⎦ = GRB

⎡⎣ ı̂
ĵ

k̂

⎤⎦ (2.228)

where,

GRB =

⎡⎣ Î

Ĵ

K̂

⎤⎦ £ ı̂ ĵ k̂
¤
. (2.229)

Following the same method we can show that

BRG =

⎡⎣ ı̂
ĵ

k̂

⎤⎦ £ Î Ĵ K̂
¤
. (2.230)

2.10 Active and Passive Transformation

Rotation of a local frame when the position vector Gr of a point P is fixed
in global frame and does not rotate with the local frame, is called passive
transformation. Alternatively, rotation of a local frame when the position
vector Br of a point P is fixed in the local frame and rotates with the local
frame, is called active transformation. Surprisingly, the passive and active
transformations are mathematically equivalent. In other words, the rotation
matrix for a rotated frame and rotated vector (active transformation) is the
same as the rotation matrix for a rotated frame and fixed vector (passive
transformation).

Proof. Consider a rotated local frame B(Oxyz) with respect to a fixed
global frame G(OXY Z), as shown in Figure 2.19. P is a fixed point in the
global frame, and so is its global position vector Gr. Position vector of P
can be decomposed in either a local or global coordinate frame, denoted by
Br and Gr respectively.
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FIGURE 2.19. A position vector r, in a local and a global frame.

The transformation from Gr to Br is equivalent to the required rotation of
the body frame B(Oxyz) to be coincided with the global frame G(OXY Z).
This is a passive transformation because the local frame cannot move the
vector Gr. In a passive transformation, we usually have the coordinates of
P in a global frame and we need its coordinates in a local frame; hence, we
use the following equation:

Br = BRG
Gr. (2.231)

We may alternatively assume thatB(Oxyz) was coincident withG(OXY Z)
and the vector r = Br was fixed in B(Oxyz), before B(Oxyz) and Br
move to the new position in G(OXY Z). This is an active transformation
and there is a rotation matrix to map the coordinates of Br in the local
frame to the coordinates of Gr in global frame. In an active transformation,
we usually have the coordinates of P in the local frame and we need its
coordinates in the global frame; hence, we use the following equation:

Gr = GRB
Br. (2.232)

Example 39 Active and passive rotation about X-axis.
Consider a local and global frames B and G that are coincident. A body

point P is at Br.

Br =

⎡⎣ 1
2
1

⎤⎦ (2.233)
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A rotation of 45 deg about X-axis will move the point to Gr.

Gr = RX,90
Br (2.234)

=

⎡⎢⎢⎣
1 0 0

0 cos
π

2
− sin π

2

0 sin
π

2
cos

π

2

⎤⎥⎥⎦
⎡⎣ 1
2
1

⎤⎦ =
⎡⎣ 1
−1
2

⎤⎦
Now assume that P is fixed in G. When B rotates 90 deg about X-axis, the
coordinates of P in the local frame will change such that

Br = RX,−90
Gr (2.235)

=

⎡⎢⎢⎢⎣
1 0 0

0 cos
−π
2

− sin −π
2

0 sin
−π
2

cos
−π
2

⎤⎥⎥⎥⎦
⎡⎣ 1
2
1

⎤⎦ =
⎡⎣ 1

1
−2

⎤⎦ .
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2.11 Summary

The objectives of this chapter are:
1−To learn how to determine the transformation matrix between two

Cartesian coordinate frames B and G with a common origin by applying
rotations about principal axes.
2−To decompose a given transformation matrix to a series of required

principal rotations.
Two Cartesian coordinate frames B and G with a common origin are

related by nine directional cosines of a frame in the other. The conversion
of coordinates in the two frames can be cast in a matrix transformation

Gr = GRB
Br (2.236)⎡⎣ X2

Y2
Z2

⎤⎦ =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ (2.237)

where,

GRB =

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ . (2.238)

The transformation matrix GRB is orthogonal; so its determinant is one,
and its inverse is equal to its transpose.¯̄

GRB

¯̄
= 1 (2.239)

GR−1B = GRT
B (2.240)

The orthogonality condition generates six equations between the elements
of GRB that shows only three elements of GRB are independent.
Any relative orientation of B in G can be achieved by three consecutive

principal rotations about the coordinate axes in either the B or G frame.
If B is the body coordinate frame, and G is the globally fixed frame, the
global principal rotation transformation matrices are:

RX,γ =
GRB =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (2.241)

RY,β =
GRB =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (2.242)

RZ,α =
GRB =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (2.243)
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and the body principal rotation transformation matrices are:

Rx,ψ =
BRG =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (2.244)

Ry,θ =
BRG =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (2.245)

Rz,ϕ =
BRG =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ (2.246)

The global and local rotation transformations are inverse of each other.

RX,γ = RT
x,γ (2.247)

RY,β = RT
y,β (2.248)

RZ,α = RT
z,α (2.249)
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2.12 Key Symbols

a a general vector
ã skew symmetric matrix of the vector a
A transformation matrix of rotation about a local axis
B body coordinate frame, local coordinate frame
c cos
d distance between two points
êϕ, êθ, êψ coordinate axes of E, local roll-pitch-yaw coordinate axes
E Eulerian local frame
f, f1, f2 a function of x and y
G global coordinate frame, fixed coordinate frame
I = [I] identity matrix
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
l length
m number of repeating rotation
n fraction of 2π, number of repeating rotation
N the set of natural numbers
O common origin of B and G
Oϕθψ Euler angle frame
P a body point, a fixed point in B, a partial derivative
Q transformation matrix of rotation about a global axis,

a partial derivative
r position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix, radius of a circle
R the set of real numbers
s sin, a member of S
S a set
t time
u a general axis
v velocity vector
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
δij Kronecker’s delta
ϕ, θ, ψ rotation angles about local axes, Euler angles
ϕ̇, θ̇, ψ̇ Euler frequencies
ωx, ωy, ωz angular velocity components
ω angular velocity vector
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Symbol
[ ]−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
⊗ a binary operation
(S,⊗) a group
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Exercises

1. Notation and symbols.

Describe the meaning of these notations.

a- Gr b- GrP c- BrP d- GRB e- GRT
B f- BRG

g- BR−1G h- GdB i- 2d1 j- QX k- QY,β l- Q−1Y,45

m- k̂ n- Ĵ o- AT
z,ϕ p- êψ q- ı̃ r- I

2. Body point and global rotations.

The point P is at BrP = [1, 2, 1]T in a body coordinate B(Oxyz).
Find the final global position of P after

(a) A rotation of 30 deg about the X-axis, followed by a 45 deg ro-
tation about the Z-axis

(b) A rotation of 30 deg about the Z-axis, followed by a 45 deg ro-
tation about the X-axis.

(c) F Point P will move on a sphere. Let us name the initial
global position of P by P1, the second position by P2, and the
third position by P3. Determine the angles of ∠P1OP2, ∠P2OP3,
∠P3OP1.

(d) F Determine the area of the triangle made by points GrP =

[1, 2, 1]
T , and the global position of P after rotations a and b.

3. F Alternative motions to reach an orientation.

The coordinates of a body point P in B and G frames are:

BrP =

⎡⎣ 1.23
4.56
7.89

⎤⎦ GrP =

⎡⎣ 4.56
7.89
1.23

⎤⎦
Determine

(a) If it is possible to transform BrP to GrP ?

(b) A transformation matrix between BrP and GrP .

(c) Euler angles to transform BrP to GrP .

(d) Global roll-pitch-yaw to transform BrP to GrP .

(e) Body roll-pitch-yaw to transform BrP to GrP .
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FIGURE 2.20. A cube at its initial position.

4. Body point after global rotation.

Find the position of a point P in the local coordinate, if it is moved
to GrP = [1, 3, 2]

T after

(a) A rotation of 60 deg about Z-axis,

(b) A rotation of 60 deg about X-axis,

(c) A rotation of 60 deg about Y -axis,

(d) Rotations of 60 deg about Z-axis, 60 deg aboutX-axis and 60 deg
about Y -axis.

5. Invariant of a vector.

A point was at BrP = [1, 2, z]T . After a rotation of 60 deg about
X-axis, followed by a 30 deg rotation about Z-axis, it is at:

GrP =

⎡⎣ X
Y
2.933

⎤⎦
Find z, X, and Y .

6. Global rotation of a cube.

Figure 2.20 illustrates the original position of a cube with a fixed
point at D and edges of length l = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about X-axis.

(b) Coordinates of the corners after rotation of 30 deg about Y -axis.
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(c) Coordinates of the corners after rotation of 30 deg about Z-axis.

(d) Coordinates of the corners after rotation of 30 deg about X-axis,
then 30 deg about Y -axis, and then 30 deg about Z-axis.

7. Constant length vector.

Show that the length of a vector will not change by rotation.¯̄
Gr
¯̄
=
¯̄
GRB

Br
¯̄

Show that the distance between two body points will not change by
rotation. ¯̄

Bp1 − Bp2
¯̄
=
¯̄
GRB

Bp1 − GRB
Bp2

¯̄
8. Repeated global rotations.

Rotate BrP = [2, 2, 3]T , 60 deg about X-axis, followed by 30 deg
about Z-axis. Then, repeat the sequence of rotations for 60 deg about
X-axis, followed by 30 deg about Z-axis. After how many rotations
will point P be back to its initial global position?

9. F Repeated global rotations.

How many rotations of α = π/mdeg about X-axis, followed by β =
π/ndeg about Z-axis are needed to bring a body point to its initial
global position, if m,n ∈ N?

10. Triple global rotations.

Verify the equations in Appendix A.

11. F Special triple rotation.

Assume that the first triple rotation in Appendix A brings a body
point back to its initial global position. What are the angles α 6= 0,
β 6= 0, and γ 6= 0?

12. F Combination of triple rotations.

Any triple rotation in Appendix A can move a body point to its new
global position. Assume α1, β1, and γ1 for the case 1−QX,γ1QY,β1QZ,α1

are given. What can α2, β2, and γ2 be (in terms of α1, β1, and γ1)
to get the same global position using the case 2−QY,γ2QZ,β2QX,α2?

13. Global roll-pitch-yaw rotation matrix.

Calculate the global and local roll-pitch-yaw rotation matrices Q and
A for 30 deg rotation about the principal axes. Do the matrices trans-
pose each other? Calculate the local rotation matrix A by rotation
about z then y then x. Is the transpose of the new matrix A transpose
of the global roll-pitch-yaw matrix?
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14. Global roll-pitch-yaw rotation angles.

Calculate the role, pitch, and yaw angles for the following rotation
matrix:

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
15. F Back to the initial orientation and Appendix A.

Assume we turn a rigid body B using the first set of Appendix A.
How can we turn it back to its initial orientation by applying

(a) The first set of Appendix A,

(b) The second set of Appendix A,

(c) The third set of Appendix A.

(d) F Assume that we have turned a rigid body B by α1 = 30deg,
β1 = 30deg, γ1 = 30deg using the first set of Appendix A. We
want to turn B back to its original orientation. Which one of
the second or third set of Appendix A does it faster? Let us
assume that the fastest set is the one with minimum sum of
s = α2 + β2 + γ2.

16. F Back to the original orientation and Appendix B.

Assume we turn a rigid body B using the first set of Appendix A.
How can we turn it back to its initial orientation by applying

(a) The first set of Appendix B,

(b) The second set of Appendix B,

(c) The third set of Appendix B.

(d) F Assume that we have turned a rigid body B by α = 30deg,
β = 30deg, γ = 30deg using the first set of Appendix A. We
want to turn B back to its original orientation. Which one of
the first, second, or third set of Appendix B does it faster? Let
us assume that the fastest set is the one with minimum sum of
s = ϕ+ θ + ψ.

17. Two local rotations.

Find the global coordinates of a body point at BrP = [2, 2, 3]T after

(a) A rotation of 60 deg about x-axis followed by 60 deg about z-
axis,

(b) A rotation of 60 deg about z-axis followed by 60 deg about x-
axis,
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(c) A rotation of 60 deg about z-axis followed by 60 deg about x-
axis, and a rotation of 60 deg about z-axis.

18. Local rotation of a cube.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about x-axis.

(b) Coordinates of the corners after rotation of 30 deg about y-axis.

(c) Coordinates of the corners after rotation of 30 deg about z-axis.

(d) Coordinates of the corners after rotation of 30 deg about x-axis,
then 30 deg about y-axis, and then 30 deg about z-axis.

19. Global and local rotation of a cube.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about x-axis
followed by rotation of 30 deg about X-axis.

(b) Coordinates of the corners after rotation of 30 deg about y-axis
followed by rotation of 30 deg about X-axis.

(c) Coordinates of the corners after rotation of 30 deg about z-axis
followed by rotation of 30 deg about X-axis.

(d) Coordinates of the corners after rotation of 30 deg about x-axis,
then 30 deg about X-axis, and then 30 deg about x-axis.

(e) Coordinates of the corners after rotation of 30 deg about x-axis,
then 30 deg about Y -axis, and then 30 deg about z-axis.

20. Body point, local rotation.

What is the global coordinates of a body point at BrP = [2, 2, 3]T ,
after

(a) A rotation of 60 deg about the x-axis,

(b) A rotation of 60 deg about the y-axis,

(c) A rotation of 60 deg about the z-axis.

21. Unknown rotation angle 1.

Transform BrP = [2, 2, 3]
T to GrP = [2, YP , 0]

T by a rotation about
x-axis and determine YP and the angle of rotation.
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22. Unknown rotation angle 2.

Consider a point P at BrP = [2,
√
3,
√
2]T . Determine

(a) The required principal global rotations in order X,Y,Z, to move
P to GrP = [

√
2, 2,
√
3]T ,

(b) The required principal global rotations in order Z, Y, Z, to move
P to GrP = [

√
2, 2,
√
3]T ,

(c) The required principal global rotations in order Z,X,Z, to move
P to GrP = [

√
2, 2,
√
3]T .

23. Triple local rotations.

Verify the equations in Appendix B.

24. Combination of local and global rotations.

Find the final global position of a body point at BrP = [10, 10,−10]T
after

(a) A rotation of 45 deg about the x-axis followed by 60 deg about
the Z-axis,

(b) A rotation of 45 deg about the z-axis followed by 60 deg about
the Z-axis,

(c) A rotation of 45 deg about the x-axis followed by 45 deg about
the Z-axis and 60 deg about the X-axis.

25. Combination of global and local rotations.

Find the final global position of a body point at BrP = [10, 10,−10]T
after

(a) A rotation of 45 deg about the X-axis followed by 60 deg about
the z-axis,

(b) A rotation of 45 deg about the Z-axis followed by 60 deg about
the z-axis,

(c) A rotation of 45 deg about the X-axis followed by 45 deg about
the x-axis and 60 deg about the z-axis.

26. Repeated local rotations.

Rotate BrP = [2, 2, 3]T , 60 deg about the x-axis, followed by 30 deg
about the z-axis. Then repeat the sequence of rotations for 60 deg
about the x-axis, followed by 30 deg about the z-axis. After how many
rotations will point P move back to its initial global position?
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27. F Repeated local rotations.

How many rotations of α = π/mdeg about the x-axis, followed by
β = π/ndeg about the z-axis are needed to bring a body point to its
initial global position if m,n ∈ N?

28. F Remaining rotation.

Find the result of the following sequence of rotations:

GRB = AT
y,θA

T
z,ψA

T
y,−θ

29. Angles from rotation matrix.

Find the angles ϕ, θ, and ψ if the rotation transformation matrices
of Appendix B are given.

30. Euler angles from rotation matrix.

(a) Check if the following matrix GRB is a rotation transformation.

GRB =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
(b) Find the Euler angles for GRB .

(c) Find the local roll-pitch-yaw angles for GRB.

31. Equivalent Euler angles to two rotations.

Find the Euler angles corresponding to the rotation matrices

(a) BRG = Ay,45Ax,30,

(b) BRG = Ax,45Ay,30,

(c) BRG = Ay,45Az,30.

32. Equivalent Euler angles to three rotations.

Find the Euler angles corresponding to the rotation matrix

(a) BRG = Az,60Ay,45Ax,30,

(b) BRG = Az,60Ay,45Az,30,

(c) BRG = Ax,60Ay,45Ax,30.

33. F A cube rotation and forbidden space of z < 0.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume that none of the corners is allowed to have a negative z-
components at any time.
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(a) Present a series of global principal rotations to make the line
FH parallel to z-axis.

(b) Present a series of global principal rotations to make the line
DB on the z-axis and point A in (Z, Y )-plane.

(c) Present a series of local principal rotations to make the line FH
parallel to z-axis.

(d) Present a series of local principal rotations to make the line DB
on the z-axis and point A in (Z, Y )-plane.

34. F Local and global positions, Euler angles.

Find the conditions between the Euler angles

(a) To transform GrP = [1, 1, 0]
T to BrP = [0, 1, 1]

T ,

(b) To transform GrP = [1, 1, 0]
T to BrP = [1, 0, 1]

T .

35. F Equivalent Euler angles to a triple rotations.

Find the Euler angles for the rotation matrix of the case

4−Az,ψ0Ay,θ0Ax,ϕ0

in Appendix B.

36. F Integrability of Euler frequencies.

Show that dϕ and dψ are integrable, if ϕ and ψ are first and third
Euler angles.

37. F Cardan angles for Euler angles.

(a) Find the Cardan angles for a given set of Euler angles.

(b) Find the Euler angles for a given set of Cardan angles.

38. F Cardan frequencies for Euler frequencies.

(a) Find the Euler frequencies in terms of Cardan frequencies.

(b) Find the Cardan frequencies in terms of Euler frequencies.

39. F Transformation matrix and three rotations.

Figure 2.20 illustrates the original position of a cube with a fixed
point at D and edges of length l = 1.

Assume a new orientation in which points D and F are on Z-axis
and point A is in (X,Z)-plane. Determine

(a) Transformation matrix between initial and new orientations.

(b) Euler angles to move the cube to its new orientation.
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(c) Global roll-pitch-yaw angles to move the cube to its new orien-
tation.

(d) Local roll-pitch-yaw angles to move the cube to its new orienta-
tion.

40. F Alternative maneuvers.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume a new orientation in which points D and F are on Z-axis
and point A is in (X,Z)-plane. Determine

(a) Angles for maneuver Y −X −Z as first-second-third rotations.

(b) Angles for maneuver Y −Z −X as first-second-third rotations.

(c) Angles for maneuver y − x− z as first-second-third rotations.

(d) Angles for maneuver y − z − x as first-second-third rotations.

(e) Angles for maneuver y − Z − x as first-second-third rotations.

(f) Angles for maneuver Y − z −X as first-second-third rotations.

(g) Angles for maneuver x−X − x as first-second-third rotations.

41. Elements of rotation matrix.

The elements of rotation matrix GRB are

GRB =

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ .
Find GRB if GrP1 = [0.7071,−1.2247, 1.4142]T is a point on the x-
axis, and GrP2 = [2.7803, 0.38049,−1.0607]

T is a point on the y-axis.

42. Linearly independent vectors.

A set of vectors a1, a2, · · ·, an are considered linearly independent if
the equation

k1a1 + k2a2 + · · ·+ knan = 0

in which k1, k2, · · ·, kn are unknown coefficients, has only one solution

k1 = k2 = · · · = kn = 0.

Verify that the unit vectors of a body frame B(Oxyz), expressed in
the global frame G(OXY Z), are linearly independent.

43. Product of orthogonal matrices.

A matrix R is called orthogonal if R−1 = RT where
¡
RT
¢
ij
= Rji.

Prove that the product of two orthogonal matrices is also orthogonal.
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44. Vector identity.

The formula (a+ b)2 = a2 + b2 + 2ab for scalars, is equivalent to

(a+ b)2 = a · a+ b · b+ 2a · b

for vectors. Show that this formula is equal to

(a+ b)2 = a · a+ b · b+ 2GRB a · b

if a is a vector in local frame and b is a vector in global frame.

45. Rotation as a linear operation.

Show that
R (a× b) = Ra×Rb

where R is a rotation matrix and a and b are two vectors defined in
a coordinate frame.

46. Scalar triple product.

Show that for three arbitrary vectors a, b, and c we have

a· (b× c) = (a× b) · c.

47. F Euler angles and minimization distances.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume a new orientation in which points D and F are on Z-axis
and point A is in (X,Y )-plane. Determine

(a) Transformation matrix between initial and new orientations.

(b) Euler angles to move the cube to its new orientation.

(c) Choose three non coplanar corners and determine their position
using Euler transformation matrix with unknown Euler angles.
Define the distance between the initial and final positions of the
points as d1, d2 and d3. Is it possible to determine the Euler
angles by minimizing a sum of distances objective function J =
d21 + d22 + d23?

48. F Continues rotation.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume that the cube is turning about x-axis with angular speed of
ω1 and at the same time it is turning about Z-axis with angular speed
of ω2. Determine the path of motion of point F . What is the path for
ω1 = ω2, ω1 = 2ω2, ω1 = 3ω2,ω1 = 4ω2?
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