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Control Techniques
Using inverse kinematics, we can calculate the joint kinematics for a desired
geometric path of the end-effector of a robot. Substitution of the joint kine-
matics in equations of motion provides the actuator commands. Applying
the commands will move the end-effector of the robot on the desired path
ideally. However, because of perturbations and non-modeled phenomena,
the robot will not follow the desired path. The techniques that minimize
or remove the difference are called the control techniques.

- Controller Dynamics
qd qe Q

+

Qc

FIGURE 15.1. Illustration of feedback control algorithm.

15.1 Open and Closed-Loop Control

A robot is a mechanism with an actuator at each joint i to apply a force
or torque to derive the link (i). The robot is instrumented with position,
velocity, and possibly acceleration sensors to measure the joint variables’
kinematics. The measured values are usually kinematics information of the
frame Bi, attached to the link (i), relative to the frame Bi−1 or B0.
To cause each joint of the robot to follow a desired motion, we must

provide the required torque command. Assume that the desired path of
joint variables qd = q(t) are given as functions of time. Then, the required
torques that cause the robot to follow the desired motion are calculated by
the equations of motion and are equal to

Qc = D(qd) q̈d +H(qd, q̇d) +G(qd) (15.1)

where the subscripts d and c stand for desired and controlled, respectively.
In an ideal world, the variables can be measured exactly and the robot

can perfectly work based on the equations of motion (15.1). Then, the ac-
tuators’ control command Qc can cause the desired path qd to happen.

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_15,  
© Springer Science+Business Media, LLC 2010 
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This is an open-loop control algorithm, that the control commands are cal-
culated based on a known desired path and the equations of motion. Then,
the control commands are fed to the system to generate the desired path.
Therefore, in an open-loop control algorithm, we expect the robot to fol-
low the designed path, however, there is no mechanism to compensate any
possible error.
Now assume that we are watching the robot during its motion by measur-

ing the joints’ kinematics. At any instant there can be a difference between
the actual joint variables and the desired values. The difference is called
error and is measured by

e = q− qd (15.2)

ė = q̇− q̇d. (15.3)

Let’s define a control law and calculate a new control command vector by

Q = Qc + kDė+ kPe (15.4)

where kP and kD are constant control gains. The control law compares the
actual joint variables (q, q̇) with the desired values (qd, q̇d), and generates
a command proportionally. Applying the new control command changes
the dynamic equations of the robot to produce the actual joint variables q.

Qc + kDė+ kPe = D(q) q̈+H(q, q̇) +G(q) (15.5)

Figure 15.1 illustrates the idea of this control method in a block diagram.
This is a closed-loop control algorithm, in which the control commands are
calculated based on the difference between actual and desired variables.
Reading the actual variables and comparing with the desired values is called
feedback, and because of that, the closed-loop control algorithm is also called
a feedback control algorithm.
The controller provides a signal proportional to the error and its time

rate. This signal is added to the predicted command Qc to compensate the
error.
The principle of feedback control can be expressed as: Increase the control

command when the actual variable is smaller than the desired value and
decrease the control command when the actual variable is larger than the
desired value.

Example 387 Mass-spring-damper oscillator.
Consider a linear oscillator made by a mass-spring-damper system shown

in Figure 15.2. The equation of motion for the oscillator under the effect
of an external force f is

mẍ+ cẋ+ kx = f (15.6)

where, f is the control command, m is the mass of the oscillating object,
c is the viscous damping, and k is the stiffness of the spring. The required
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FIGURE 15.2. A linear mass-spring-damper oscillator.

force to achieve a desired displacement xd = x(t) is calculated from the
equation of motion.

fc = mẍd + cẋd + kxd (15.7)

The open-loop control algorithm is shown in Figure 15.3(a).
To remove any possible error, we may use the difference between the

desired and actual outputs e = x− xd, and define a control law.

f = fc + kD ė+ kP e kD > 0 kP > 0 (15.8)

The new control law uses a feedback command as shown in Figure 15.3(b).
It is also possible to define a new control law only based on the error

signal such as
f = −kDė− kP e. (15.9)

Employing this law, we can define a more compact feedback control algo-
rithm and change the equation of motion to

mẍ+ (c+ kD) ẋ+ (k + kP )x = kDẋd + kPxd. (15.10)

The equation of the system can be summarized in a block diagram as shown
in Figure 15.3(c).
A general scheme of a feedback control system may be explained so that a

signal from the output feeds back to be compared to the input. This feedback
signal closes a loop and makes it reasonable to use the words feedback and
close-loop. The principle of a closed loop control is to detect any error
between the actual output and the desired. As long as the error signal is not
zero, the controller keeps changing the control command so that the error
signal converges to zero.

Example 388 Stability of a controlled system.
Consider a linear mass-spring-damper oscillator as shown in Figure 15.2

with the equation of motion given by

mẍ+ cẋ+ kx = f. (15.11)

We define a control law based on the actual output

f = −kDẋ− kPx kD > 0 kP > 0 (15.12)
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- Controller Dynamics
xd xe f

+

fc

Dynamics xd

(a)

(b)

fc

- Controller Dynamics
xd

x
e f

(c)

FIGURE 15.3. Open-loop and closed-loop control algorithms for a linear oscilla-
tor.

and transform the equation of motion to

mẍ+ (c+ kD) ẋ+ (k + kP )x = 0. (15.13)

By comparison with the open-loop equation (15.11), the closed loop equation
shows that the oscillator acts as a free vibrating system under the action
of new stiffness k + kP and damping c + kD. Hence, the control law has
changed the apparent stiffness and damping of the actual system. This ex-
ample introduces the most basic application of control theory to improve
the characteristics of a system and run the system to behave in a desired
manner.
A control system must be stable when the desired output of the system

changes, and also be able to eliminate the effect of a disturbance. Stability
of a control system is defined as: The output must remain bounded for a
given input or a bounded disturbance function.
To investigate the stability of the system, we must solve the closed loop

differential equation (15.13). The equation is linear and therefore, it has
an exponential solution.

x = eλt (15.14)

Substituting the solution into the equation (15.13) provides the character-
istic equation

mλ2 + (c+ kD)λ+ (k + kP ) = 0 (15.15)
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with two solutions

λ1,2 = −
c+ kD
2m

±

q
(c+ kD)

2 − 4m (k + kP )

2m
. (15.16)

The nature of the solution (15.14) depends on λ1 and λ2, and therefore on
kD and kP . The roots of the characteristic equation are complex

λ = −a± bi (15.17)

a =
c+ kD
2m

(15.18)

b =

q
4m (k + kP )− (c+ kD)

2

2m
(15.19)

provided the gains are such that

(c+ kD)
2
< 4m (k + kP ) . (15.20)

In this case, the solution of the equation of motion is

x = Ce−ξωnt sin

µ
ωn

q
1− ξ2t+ ϕ

¶
(15.21)

where,

ωn =

r
k + kP
m

=
p
a2 + b2 (15.22)

ξ =
c+ kD

2
p
m (k + kP )

=
a√

a2 + b2
. (15.23)

The parameter ωn is called natural frequency, and ξ is the damping
ratio of the system. The damping ratio controls the behavior of the system
according to the following categories:

1. If ξ = 0, then the characteristic values are purely imaginary, λ1,2 =
±bi = ±i 1

2m

p
4m (k + kP ). In this case, the system has no damp-

ing, and therefore, it oscillates with a constant amplitude around the
equilibrium, x = 0, forever.

2. If 0 < ξ < 1, then the system is under-damped and it oscillates
around the equilibrium with a decaying amplitude. The system is as-
ymptotically stable in this case.

3. If ξ = 1, then the system is critically-damped. A critically damped
oscillator has the fastest return to the equilibrium in an unoscillatory
manner.
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4. If ξ > 1, then the system is over-damped and it slowly returns to
the equilibrium in an unoscillatory manner. The characteristic values
are real and the solution of an over-damped oscillator is

x = Aeλ1t +Beλ2t (15.24)

(λ1,2) ∈ R.

5. If ξ < 0, then the system is unstable because the solution is

x = Aeλ1t +Beλ2t (15.25)

Re(λ1,2) > 0

and shows a motion with an increasing amplitude.

Example 389 F Solution of a characteristic equation.
Consider a system with the following characteristic equation:

λ2 + 6λ+ 10 = 0. (15.26)

Solutions of this equation are

λ1,2 = −3± i (15.27)

showing a stable system because Re (λ1,2) = −3 < 0 .
Characteristic equations are linear polynomials. Hence, it is possible to

use numerical methods, such as Newton-Raphson, to find the solution and
determine the stability of the system.

Example 390 F Complex roots.
In case the characteristic equation has complex roots

λ1,2 = a± bi (15.28)

we may employ the Euler formula

eiθ = cos θ + i sin θ (15.29)

and show that the solution can be written in the form

x = C1e
at (cos bt+ i sin bt) + C2e

at (cos bt− i sin bt)

= eat (A cos bt+B sin bt) (15.30)

where, C1 and C2 are complex, and A and B are real numbers according to

A = C1 + C2 (15.31)

B = (C1 − C2) i. (15.32)
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Example 391 Robot Control Algorithms.
Robots are nonlinear dynamical systems, and there is no general method

for designing a nonlinear controller to be suitable for every robot in every
mission. However, there are a variety of alternative and complementary
methods, each best applicable to particular class of robots in a particular
mission. The most important control methods are as follows:
Feedback Linearization or Computed Torque Control Technique.

In feedback linearization technique, we define a control law to obtain a linear
differential equation for error command, and then use the linear control
design techniques. The feedback linearization technique can be applied to
robots successfully, however, it does not guarantee robustness according to
parameter uncertainty or disturbances.
This technique is a model-based control method, because the control law

is designed based on a nominal model of the robot.
Linear Control Technique. The simplest technique for controlling ro-

bots is to design a linear controller based on the linearization of the equa-
tions of motion about an operating point. The linearization technique locally
determines the stability of the robot. Proportional, integral, and derivative,
or any combination of them, are the most practical linear control techniques.
Adaptive Control Technique. Adaptive control is a technique for con-

trolling uncertain or time-varying robots. Adaptive control technique is more
effective for low DOF robots.
Robust and Adaptive Control Technique. In the robust control method,

the controller is designed based on the nominal model plus some uncer-
tainty. Uncertainty can be in any parameter, such as the load carrying by
the end-effector. For example, we develop a control technique to be effective
for loads in a range of 1− 10 kg.
Gain-Scheduling Control Technique. Gain-scheduling is a technique

that tries to apply the linear control techniques to the nonlinear dynamics of
robots. In gain-scheduling, we select a number of control points to cover the
range of robot operation. Then at each control point, we make a linear time-
varying approximation to the robot dynamics and design a linear controller.
The parameters of the controller are then interpolated or scheduled between
control points.

15.2 Computed Torque Control

Dynamics of a robot can be expressed in the form

Q = D(q) q̈+H(q, q̇) +G(q) (15.33)

where q is the vector of joint variables, and Q(q, q̇, t) is the torques ap-
plied at joints. Assume a desired path in joint space is given by a twice
differentiable function q = qd(t) ∈ C2. Hence, the desired time history of
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joints’ position, velocity, and acceleration are known. We can control the
robot to follow the desired path, by introducing a computed torque control
law as below

Q = D(q) (q̈d − kDė− kPe) +H(q, q̇) +G(q) (15.34)

where e is the error vector
e = q− qd (15.35)

and kD and kP are constant gain diagonal matrices. The control law is
stable and applied as long as all the eigenvalues of the following matrix
have negative real part.

[A] =

∙
0 I
−kP −kD

¸
(15.36)

Proof. The requiredQc to track qd(t) can directly be found by substituting
the path function into the equations of motion.

Qc = D(qd) q̈d +H(qd, q̇d) +G(qd) (15.37)

The calculated torques are called control inputs, and the control is based on
the open-loop control law. In an open-loop control, we have the equations
of motion for a robot and we need the required torques to move the robot
on a given path. Open-loop control is a blind control method, since the
current state of the robot is not used for calculating the inputs.
Due to non-modeled parameters and also errors in adjustment, there is

always a difference between the desired and actual paths. To make the
robot’s actual path converge to the desired path, we must introduce a
feedback control. Let us use the feedback signal of the actual path and
apply the computed torque control law (15.34) to the robot. Substituting
the control law in the equations of motion (15.33), gives us

ë+ kDė+ kPe = 0. (15.38)

This is a linear differential equation for the error variable between the actual
and desired outputs. If the n× n gain matrices kD and kP are assumed to
be diagonal, then we may rewrite the error equation in a matrix form.

d

dt

∙
e
ė

¸
=

∙
0 I
−kP −kD

¸ ∙
e
ė

¸
= [A]

∙
e
ė

¸
(15.39)

The linear differential equation (15.39) is asymptotically stable when all
the eigenvalues of [A] have negative real part. The matrix kP has the role
of natural frequency, and kD acts as damping.

kP =

⎡⎢⎢⎣
ω21 0 0 0
0 ω22 0 0
0 0 · · · 0
0 0 0 ω2n

⎤⎥⎥⎦ (15.40)
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kD =

⎡⎢⎢⎣
2ξ1ω1 0 0 0
0 2ξ2ω2 0 0
0 0 · · · 0
0 0 0 2ξnωn

⎤⎥⎥⎦ (15.41)

Since kD and kP are diagonal, we can adjust the gain matrices kD and kP
to control the response speed of the robot at each joint independently. A
simple choice for the matrices is to set ξi = 0, i = 1, 2, · · · , n, and make each
joint response equal to the response of a critically damped linear second
order system with natural frequency ωi.
The computed torque control law (15.34) has two components as shown

below.

Q = D(q)q̈d +H(q, q̇) +G(q)| {z } + D(q) (−kDė− kPe)| {z }
Qff Qfb

(15.42)

The first term, Qff , is the feedforward command, which is the required
torques based on open-loop control law. When there is no error, the control
input Qff makes the robot follow the desired path qd. The second term,
Qfb, is the feedback command, which is the correction torques to reduce
the errors in the path of the robot.
Computed torque control is also called feedback linearization, which is

an applied technique for robots’ nonlinear control design. To apply the
feedback linearization technique, we develop a control law to eliminate all
nonlinearities and reduce the problem to the linear second-order equation
of error signal (15.38)

Example 392 Computed force control for an oscillator.
Figure 15.2 depicts a linear mass-spring-damper oscillator under the ac-

tion of a control force. The equation of motion for the oscillator is

mẍ+ cẋ+ kx = f. (15.43)

Applying a computed force control law

f = m (ẍd − kDė− kP e) + cẋ+ kx (15.44)

e = x− xd (15.45)

reduces the error differential equation to

ë+ kDė+ kP e = 0. (15.46)

The solution of the error equation is

e = Aeλ1t +Beλ2t (15.47)

λ1,2 = −kD ±
q
k2D − 4kP (15.48)
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FIGURE 15.4. A controlled inverted pendulum.

where A and B are functions of initial conditions, and λ1,2 are solutions
of the characteristic equation

mλ2 + kDλ+ kP = 0. (15.49)

The solution (15.47) is stable and e→ 0 exponentially as t→∞ if kD > 0.

Example 393 Inverted pendulum.
Consider an inverted pendulum shown in Figure 15.4. Its equation of

motion is
ml2θ̈ −mgl sin θ = Q. (15.50)

To control the pendulum and bring it from an initial angle θ = θ0 to the
vertical-up position, we may employ a feedback control law as

Q = −kDθ̇ − kP θ −mgl sin θ. (15.51)

The parameters kD and kP are positive gains and are assumed constants.
The control law (15.51) transforms the dynamics of the system to

ml2θ̈ + kDθ̇ + kP θ = 0 (15.52)

showing that the system behaves as a stable mass-spring-damper.
In case the desired position of the pendulum is at a nonzero angle, θ = θd,

we may employ a feedback control law based on the error e = θ−θd as below,

Q = ml2θ̈d − kD ė− kP e−mgl sin θ. (15.53)

Substituting this control law in the equation of motion (15.50) shows that
the dynamic of the controlled system is governed by

ml2ë+ kD ė+ kP e = 0. (15.54)
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FIGURE 15.5. A 2R planar manipulator with massive links.

Example 394 Control of a 2R planar manipulator.
A 2R planar manipulator is shown in Figure 15.5 with dynamic equations

given below. ∙
Q1
Q2

¸
=

∙
D11 D12

D21 D22

¸ ∙
θ̈1
θ̈2

¸
+

∙
C11 C12
C21 C22

¸ ∙
θ̇1
θ̇2

¸
+

∙
G1
G2

¸
(15.55)

where

D11 = m1r
2
1 + I1 +m2

¡
l21 + l1r2 cos θ2 + r22

¢
+ I2 (15.56)

D21 = D12 = m2l1r2 cos θ2 +m2r
2
2 + I2 (15.57)

D22 = m2r22 + I2 (15.58)

C11 = −m2l1r2θ̇2 sin θ2 (15.59)

C21 = −m2l1r2(θ̇1 + θ̇2) sin θ2 (15.60)

C12 = m2l1r2θ̇1 sin θ2 (15.61)

C22 = 0 (15.62)

G1 = m1gr1 cos θ1 +m2g (l1 cos θ1 + r2 cos (θ1 + θ2)) (15.63)

G2 = m2gr2 cos (θ1 + θ2) . (15.64)

Let’s write the equations of motion in the following form:

D(q) q̈+C(q, q̇)q̇+G(q) = Q (15.65)

and multiply both sides by D−1 to transform the equations of motion to

q̈+D−1Cq̇+D−1G = D−1Q. (15.66)
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To control the manipulator to follow a desired path q = qd(t), we apply the
following control law:

Q = D(q)U+C(q, q̇)q̇+G(q) (15.67)

where

U = q̈d − 2kė− k2e (15.68)

e = q− qd. (15.69)

The vector U is the controller input, e is the position error, and k is a pos-
itive constant gain number. Substituting the control law into the equation of
motion shows that the error vector satisfies a linear second-order ordinary
differential equation

ë+ 2kė+ k2e = 0 (15.70)

and therefore, exponentially converges to zero.

15.3 Linear Control Technique

Linearization of a robot’s equations of motion about an operating point
while applying a linear control algorithm is an old practical robot control
method. This technique works well in a vicinity of the operating point.
Hence, it is only a locally stable method. The linear control techniques are
proportional, integral, derivative, and any combination of them.
The idea is to linearize the nonlinear equations of motion about some

reference operating points to make a linear system, design a controller for
the linear system, and then, apply the control to the robot. This technique
will always result in a stable controller in some neighborhood of the op-
erating point. However, the stable neighborhood may be quite small and
hard to be determined.
A proportional-integral-derivative (PID) control algorithm employs a

position error, derivative error, and integral error to develop a control law.
Hence, a PID control law has the following general form for the input
command:

Q = kP e+ kI

Z t

0

e dt+ kD ė (15.71)

where e = q−qd is the error signal, and kP , kI , and kD are positive constant
gains associated to the proportional, integral, and derivative controllers.
The control command Q is thus a sum of three terms: the P -term, which

is proportional to error e, the I-term, which is proportional to the integral
of the error, and the D-term, which is proportional to the derivative of the
error.
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15.3.1 Proportional Control

In the case of proportional control, the PID control law (15.71) reduces to

Q = kP e+Qd. (15.72)

The variable Qd is the desired control command, which is called a bias or
reset factor. When the error signal is zero, the control command is equal
to the desired value. The proportional control has a drawback that results
in a constant error at steady state condition.

15.3.2 Integral Control

The main function of an integral control is to eliminate the steady state
error and make the system follow the set point at steady state conditions.
The integral controller leads to an increasing control command for a positive
error, and a decreasing control command for a negative error. An integral
controller is usually used with a proportional controller. The control law
for a PI controller is

Q = kP e+ kI

Z t

0

e dt. (15.73)

15.3.3 Derivative Control

The purpose of derivative control is to improve the closed-loop stability of a
system. A derivative controller has a predicting action by extrapolating the
error using a tangent to the error curve. A derivative controller is usually
used with a proportional controller. The PD control law is

Q = kP e+ kDė. (15.74)

Proof. Any linear system behaves linearly if it is sufficiently near a refer-
ence operating point. Consider a nonlinear system

q̇ = f(q,Q) (15.75)

where qd is a solution generated by a specific input Qc

q̇d = f(qd,Qc). (15.76)

Assume δq is a small change from the reference point qd because of a small
change δQ from Q.

q = qd + δq (15.77)

Q = Qc + δQ (15.78)
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If the changes δq and δQ are assumed small for all times, then the equation
(15.75) can be approximated by its Taylor expansion and q be the solution
of

q̇ =
∂f

∂qd
q+

∂f

∂Qd
Q. (15.79)

The partial derivative matrices
h
∂f
∂qd

i
and

h
∂f
∂Qd

i
are evaluated at the ref-

erence point (qd,Qd).

Example 395 F Linear control for a pendulum.
Figure 11.12 illustrates a controlled pendulum as a one-arm manipulator.

The equation of motion for the arm is

Q = I θ̈ + cθ̇ +mgl sin θ (15.80)

where I is the arm’s moment of inertia about the pivot joint and m is the
mass of the arm. The joint has a viscous damping c and kinematic length,
the distance between the pivot and C, is l. Introducing a new set of variables

θ = x1 (15.81)

θ̇ = x2 (15.82)

converts the equation of motion to

ẋ1 = x2 (15.83)

ẋ2 =
Q− c x2 −mgl sinx1

I
. (15.84)

The linearized form of these equations is∙
ẋ1
ẋ2

¸
=

∙
0 1

−mgl/I −c

¸ ∙
x1
x2

¸
+

∙
0 0
0 1/I

¸ ∙
0
Q

¸
. (15.85)

Assume that the reference point is

xd =

∙
x1
x2

¸
=

∙
π/2
0

¸
(15.86)

Qc = mgl. (15.87)

The coefficient matrices in Equation (15.85) must then be evaluated at the
reference point. We use a set of sample data

m = 1kg

l = 0.35m

I = 0.07 kg.m2

c = 0.01N s/m (15.88)
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and find
∂f

∂qd
=

∙
0 1

−49.05 −0.01

¸
(15.89)

∂f

∂Qc
=

∙
0 0
0 14.286

¸
. (15.90)

Now we have a linear system and we may apply any control law that applies
to linear systems. For instance, a PID control law

Q = Qc − kDė− kPe+ kI
Z t

0

e dt (15.91)

where

e = q− qd =
∙
x1 − π/2

x2

¸
(15.92)

can control the arm around the reference point.

Example 396 PD control.
Let us define a PD control law as

Q = −kDė− kPe (15.93)

e = q− qd (15.94)

Applying the PD control to a robot with dynamic equations as

Q = D(q) q̈+H(q, q̇) +G(q)

= D(q) q̈+C(q, q̇)q̇+G(q) (15.95)

will produce the following control equation:

D(q) q̈+C(q, q̇)q̇+G(q) + kD (q̇− q̇d)− kP (q− qd) = 0. (15.96)

This control is ideal when qd is a constant vector associated with a spe-
cific configuration of a robot, and therefore q̇d = 0. In this case the PD
controller can make the configuration qd globally stable.
In case of a path given by q = qd(t), we define a modified PD controller

in the form

Q = D(q)q̈d +C(q, q̇)q̇d +G(q)− kDė− kPe (15.97)

and reduce the closed-loop equation to

D(q)ë+ (C(q, q̇) + kD) ė+ kPe = 0. (15.98)

The linearization of this equation about a control point q = qd = const
provides a stable dynamics for the error signal

D(qd)ë+ kDė+ kPe = 0. (15.99)
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FIGURE 15.6. An inverted pendulum.

15.4 Sensing and Control

Position, velocity, acceleration, and force sensors are the most common
sensors used in robotics. Consider the inverted pendulum shown in Figure
15.6 as a one DOF manipulator with the following equation of motion:

ml2θ̈ − cθ̇ −mgl sin θ = Q. (15.100)

From an open-loop control viewpoint, we need to provide a moment Qc(t)
to force the manipulator to follow a desired path of motion θd(t) where

Qc = ml2θ̈d − cθ̇d −mgl sin θd. (15.101)

In robotics, we usually calculate Qc from the dynamics equation and
dictate it to the actuator.
The manipulator will respond to the applied moment and will move. The

equation of motion (15.100) is a model of the actual manipulator. In other
words, we want the manipulator to work based on this equation. However,
there are so many unmodeled phenomena that we cannot include them in
our equation of motion, or we cannot model them. Some are temperature,
air pressure, exact gravitational acceleration, or even the physical parame-
ters such as m and l that we think have good accuracy. So, applying a
control command Qc will move the manipulator and provide a real value
for θ, θ̇, and θ̈, which are not necessarily equal to θd, θ̇d, and θ̈d. Sensing
is now important because we need to measure the actual angle θ, angular
velocity θ̇, and angular acceleration θ̈ to compare them with θd, θ̇d, and θ̈d
and make sure that the manipulator is following the desired path. This is
the reason why the feedback control systems and the error signal e = θ−θd
were introduced.
Robots are supposed to do a job in an environment, so they can inter-

act with the environment. Therefore, a robot needs two types of sensors:
1-sensing the robot’s internal parameters, which are called proprioceptors,
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and 2-sensing the robot’s environmental parameters, which are called ex-
teroceptors. The most important interior parameters are position, velocity,
acceleration, force, torque, and inertia.

15.4.1 Position Sensors

Rotary encoders. In robotics, almost all kinds of actuators provide a
rotary motion. Then we may provide a rotation motion for a revolute joint,
or a translation motion for a prismatic joint, by using gears. So, it is ideally
possible to sense the relative position of the links connected by the joint
based on the angular position of the actuator. The error in this position
sensing is due to non-rigidity and backlash. The most common position
sensor is a rotary encoder that can be optical, magnetic, or electrical. As
an example, when the encoder shaft rotates, a disk counting a pattern of
fine lines interrupts a light beam. A photodetector converts the light pulses
into a countable binary waveform. The shaft angle is then determined by
counting the number of pulses.
Resolvers. We may design an electronic device to provide a mathemat-

ical function of the joint variable. The mathematical function might be
sine, cosine, exponential, or any combination of mathematical functions.
The joint variable is then calculated indirectly by resolving the mathemat-
ical functions. Sine and cosine functions are more common.
Potentiometers. Using an electrical bridge, the potentiometers can pro-

vide an electric voltage proportional to the joint position.
LVDT and RVDT. LVDT/RVDT or a Linear/Rotary Variable Differ-

ential Transformer operates with two transformers sharing the same mag-
netic core. When the core moves, the output of one transformer increases
while the other’s output decreases. The difference of the current is a mea-
sure of the core position.

15.4.2 Speed Sensors

Tachometers. Generally speaking, a tachometer is a name for any velocity
sensor. Tachometers usually provide an analog signal proportional to the
angular velocity of a shaft. There are a vast amount of different designs for
tachometers, using different physical characteristics such as magnetic field.
Rotary encoders. Any rotary sensor can be equipped with a time mea-

suring system and become an angular velocity sensor. The encoder counts
the light pulses of a rotating disk and the angular velocity is then deter-
mined by time between pulses.
Differentiating devices. Any kind of position sensor can be equipped

with a digital differentiating device to become a speed sensor. The digital
or numerical differentiating needs a simple processor. Numerical differenti-
ating is generally an erroneous process.
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Integrating devices. The output signal of an accelerometer can be
numerically integrated to provide a velocity signal. The digital or numer-
ical integrating also needs a simple processor. Numerical differentiating is
generally a smooth and reliable process.

15.4.3 Acceleration Sensors

Acceleration sensors work based on Newton’s second law of motion. They
sense the force that causes an acceleration of a known mass. There are many
types of accelerometers. Stress-strain gage, capacitive, inductive, piezoelec-
tric, and micro-accelerometers are the most common. In any of these types,
force causes a proportional displacement in an elastic material, such as de-
flection in a micro-cantilever beam, and the displacement is proportional
to the acceleration.
Applications of accelerometers include measurement of acceleration, an-

gular acceleration, velocity, position, angular velocity, frequency, impulse,
force, tilt, and orientation.
Force and Torque Sensors. Any concept and method that we use

in sensing acceleration may also be used in force and torque sensing. We
equip the wrists of a robot with at least three force sensors to measure the
contact forces and moments with the environment. The wrist’s force sensors
are important especially when the robot’s job is involved with touching
unknown surfaces and objects.
Proximity Sensors. Proximity sensors are utilized to detect the exis-

tence of an object, field, or special material before interacting with it. In-
ductive, capacitive, Hall effect, sonic, ultrasonic, and optical are the most
common proximity sensors.
The inductive sensors can sense the existence of a metallic object due

to a change in inductance. The capacitive sensors can sense the existence
of gas, liquid, or metals that cause a change in capacitance. Hall effective
sensors work based on the interaction between the voltage in a semiconduc-
tor material and magnetic fields. These sensors can detect the existence of
magnetic fields and materials. Sonic, ultrasonic, and optical sensors work
based on the reflection or modification in an emitted signal by objects.
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15.5 Summary

In an open-loop control algorithm, we calculate the robot’s required torque
commands Qc for a given joint path qd = q(t) based on the equations of
motion

Qc = D(qd) q̈d +H(qd, q̇d) +G(qd). (15.102)

However, there can be a difference between the actual joint variables and
the desired values. The difference is called error e

e = q− qd (15.103)

ė = q̇− q̇d. (15.104)

By measuring the error command, we may define a control law and calculate
a new control command vector

Q = Qc + kDė+ kPe (15.105)

to compensate for the error. The parameters kP and kD are constant gain
diagonal matrices.
The control law compares the actual joint variables (q, q̇) with the de-

sired values (qd, q̇d), and generates a command proportionally. Applying
the new control command changes the dynamic equations of the robot to

Qc + kDė+ kPe = D(q) q̈+H(q, q̇) +G(q). (15.106)

This is a closed-loop control algorithm, in which the control commands are
calculated based on the difference between actual and desired variables.
Computed torque control

Q = D(q) (q̈d − kDė− kPe) +H(q, q̇) +G(q) (15.107)

is an applied closed-loop control law in robotics to make a robot follow a
desired path.
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15.6 Key Symbols

a, b real and imaginary parts of a complex number
A coefficient matrix
A, B real coefficients
B body coordinate frame
c damping
Ci complex coefficients
e error, exponential function
fc, fc actuator force control command
f, f actual force command
g gravitational acceleration
G,B0 global coordinate frame, Base coordinate frame
i imaginary unit number
I = [I] identity matrix, moment of inertia
J Jacobian
k stiffness
kP proportional constant control gain
kD derivative constant control gain
l length
m mass
q actual vector of joint variables
qd desired path of joint
Q actuators’ actual command
Qc actuators’ control command
Qfb feedback command
Qff feedforward command
r position vectors, homogeneous position vector
ri the element i of r
t time
x, y, z local Cartesian coordinates
X,Y,Z global Cartesian coordinates

Greek
δ small increment of a parameter
λ characteristic value, eigenvalue
θ rotary joint angle
ωn natural frequency
ξ damping ratio

Symbol
DOF degree of freedom
R real numbers set
Re real
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Exercises

1. Response of second-order systems.

Solve the characteristic equations and determine the response of the
following second-order systems at x(1), if they start from x(0) = 1,
ẋ(0) = 0.

(a)
ẍ+ 2ẋ+ 5x = 0

(b)
ẍ+ 2ẋ+ x = 0

(c)
ẍ+ 4ẋ+ x = 0

2. Modified PD control.

Apply a modified PD control law

f = −kP e− kdẋ

e = x− xd

to a second-order linear system

mẍ+ cẋ+ kx = f

and reduce the system to a second-order equation in an error signal.

më+ (c+ kD)ė+ (k + kP )e = kxD

Then, calculate the steady state error for a step input

x = xd = const.

3. Modified PID control.

Apply a modified PD control law

f = −kP e− kdẋ− kI

Z t

0

edt

e = x− xd

to a second-order linear system

mẍ+ cẋ+ kx = f
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and reduce the system to a third-order equation in an error signal.

m
...
e + (c+ kD)ë+ (k + kP )ė+ kIe = 0

Then, find the PID gains such that the characteristic equation of the
system simplifies to¡

λ2 + 2ξωnλ+ ω2n
¢
(λ+ β) = 0.

4. Linearization.

Linearize the given equations and determine the stability of the lin-
earized set of equations.

ẋ1 = x22 + x1 cosx2

ẋ2 = x2 + (1 + x1 + x2)x1 + x1 sinx2

5. Expand the control equations for a 2R planar manipulator using the
following control law:

Q = D(q) (q̈d − kDė− kPe) +H(q, q̇) +G(q)

6. One-link manipulator control.

A one-link manipulator is shown in Figure 15.6.

(a) Derive the equation of motion.

(b) Determine a rest-to-rest joint path between θ(0) = 45deg and
θ(0) = −45 deg.

(c) Solve the time optimal control of the manipulator and determine
the torque Qc(t) for

m = 1kg

l = 1m

|Q| ≤ 120Nm.

(d) Now assume the mass is m = 1.01 kg and solve the equation
of motion numerically by feeding the calculated torques Qc(t).
Determine the position and velocity errors at the end of the
motion.

(e) Design a computed torque control law to compensate the error
during the motion.

7. F Mass-spring control.

Solve Exercise 14.10 and calculate the optimal control input. Increase
the stiffness %10, and design a computed torque control law to elim-
inate error during the motion.
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8. F 2R manipulator control.

(a) Solve Exercise 13.20 and calculate the optimal control inputs.

(b) Increase the masses by 10%, and solve the dynamic equations
numerically.

(c) Determine the position and velocity error in Cartesian and joint
spaces by applying the calculated optimal inputs.

(d) Design a computed torque control law to eliminate error during
the motion.

9. F PR planar manipulator control.

(a) Solve Exercise 14.13 and calculate the optimal control inputs.

(b) Increase the gravitational acceleration by 10%, and solve the
dynamic equations numerically.

(c) Determine the position and velocity error in Cartesian and joint
spaces by applying the calculated optimal inputs.

(d) Design a computed torque control law to eliminate error during
the motion.

10. Sensing and measurement.

Consider the oneDOF manipulator in Figure (15.100). To control the
manipulator, we need to sense the actual angle θ, angular velocity θ̇,
and angular acceleration θ̈ and compare them with θd, θ̇d, and θ̈d to
make sure that the manipulator is following the desired path. Can we
measure the actual moment Q, that the actuator is providing, and
compare with the predicted value Qc instead? Does making Q equal
to Qc guarantee that the manipulator does what it is supposed to
do?
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