
14

F Time Optimal Control
The main job of an industrial robot is to move an object on a pre-specified
path, rest to rest, repeatedly. To increase productivity, the robot should do
its job in minimum time. We introduce a numerical method to solve the
time optimal control problem of multi degree of freedom robots.

14.1 F Minimum Time and Bang-Bang Control

The most important job of industrial robots is moving between two points
rest-to-rest. Minimum time control is what we need to increase industrial
robots productivity. The objective of time-optimal control is to transfer the
end-effector of a robot from an initial position to a desired destination in
minimum time. Consider a system with the following equation of motion:

ẋ = f (x(t),Q(t)) (14.1)

where Q is the control input, and x is the state vector of the system.

x =

∙
q
q̇

¸
(14.2)

The minimum time problem is always subject to bounded input such as:

|Q(t)| ≤ QMax (14.3)

The solution of the time-optimal control problem subject to bounded
input is bang-bang control. The control in which the input variable takes
either the maximum or minimum values is called bang-bang control.

Proof. The goal of minimum time control is to find the trajectory x(t)
and input Q(t) starting from an initial state x0(t) and arriving at the final
state xf (t) under the condition that the whole trajectory minimizes the
following time integral.

J =

Z tf

t0

dt (14.4)

The input command vector Q(t) usually has the constraint (14.3).
We define a scalar function H, and a vector p

H(x,Q,p) = pT f (x(t),Q(t)) (14.5)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_14,  
© Springer Science+Business Media, LLC 2010 



792 14. F Time Optimal Control

that provide the following two equations:

ẋ =
∂H

∂p

T

(14.6)

ṗ = −∂H
∂x

T

(14.7)

Based on the Pontryagin principle, the optimal input Q(t) is the one that
minimizes the function H. Such an optimal input is to apply the maximum
effort, QMax or −QMax, over the entire time interval. When the control
command takes a value at the boundary of its admissible region, it is said
to be saturated. The function H is called Hamiltonian, and the vector p is
called a co-state.

Example 371 F A linear dynamic system.
Consider a linear dynamic system given by

Q = ẍ (14.8)

or
ẋ = [A]x+ bQ (14.9)

where

x =

∙
x1
x2

¸
[A] =

∙
0 1
0 0

¸
b =

∙
0
1

¸
(14.10)

along with a constraint on the input variable

Q ≤ 1. (14.11)

By defining a co-state vector

p =

∙
p1
p2

¸
(14.12)

the Hamiltonian (14.5) becomes

H(x,Q,p) = pT ([A]x+ bQ) (14.13)

that provides two first-order differential equations

ẋ =
∂H

∂p

T

= [A]x+ bQ (14.14)

ṗ = −∂H
∂x

T

= − [A]p. (14.15)

Equation (14.15) is ∙
ṗ1
ṗ2

¸
=

∙
0
−p2

¸
(14.16)
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which can be integrated to find p

p =

∙
p1
p2

¸
=

∙
C1

−C1t+ C2

¸
. (14.17)

The Hamiltonian is then equal to:

H = Qp2 + p1x2 = (−C1t+ C2)Q+ p1x2 (14.18)

The control command Q only appears in

pT bQ = (−C1t+ C2)Q (14.19)

which can be maximized by

Q(t) =

½
1 if −C1t+ C2 ≥ 0
−1 if −C1t+ C2 < 0

. (14.20)

This solution implies that Q(t) has a jump point at t = C2
C1
. The jump

point, at which the control command suddenly changes from maximum to
minimum or from minimum to maximum, is called the switching point.
Substituting the control input (14.20) into (14.9) gives us two first-order

differential equations ∙
ẋ1
ẋ2

¸
=

∙
x2
Q

¸
. (14.21)

Equation (14.21) can be integrated to find the path x(t).

∙
x1
x2

¸
=

⎧⎪⎪⎨⎪⎪⎩
∙

1
2 (t+ C3)

2 + C4
t+ C3

¸
if Q = 1∙

−12 (t− C3)
2
+ C4

−t+ C3

¸
if Q = −1

(14.22)

The constants of integration, C1, C2, C3, and C4, must be calculated based
on the following boundary conditions:

x0 = x(t0) xf = x(tf ). (14.23)

Eliminating t between equations in (14.22) provides the relationship be-
tween the state variables x1 and x2.

x1 =

½
1
2x

2
2 + C4 if Q = 1

−12x22 + C4 if Q = −1 (14.24)

These equations show a series of parabolic curves in the x1x2-plane with
C4 as a parameter. The parabolas are shown in Figure 14.1(a) and (b) with
the arrows indicating the direction of motion on the paths. The x1x2-plane
is called the phase plane.
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FIGURE 14.1. Optimal path for Q = ẍ in phase plane and the mesh of optimal
paths in phase plane.
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Considering that there is one switching point in this system, the overall
optimal paths are shown in Figure 14.1(c). As an example, assume the state
of the system at initial and final times are x(t0) and x(tf ) respectively.
The motion starts with Q = 1, which forces the system to move on the
control path x1 =

1
2x

2
2 +

¡
x10 − 1

2x
2
20

¢
up to the intersection point with

x1 = −12x22 +
³
x1f +

1
2x

2
2f

´
. The intersection is the switching point at

which the control input changes to Q = −1. The switching point is at

x1 =
1

4

¡
2x10 + 2xf − x220 + x22f

¢
(14.25)

x2 =

sµ
x1f +

1

2
x22f

¶
−
µ
x10 −

1

2
x220

¶
. (14.26)

Example 372 F Robot equations in state equations.
The vector form of the equations of motion of a robot is

D(q) q̈+H(q, q̇) +G(q) = Q. (14.27)

We can define a state vector

x =

∙
q
q̇

¸
(14.28)

and transform the equations of motion to an equation in state space

ẋ = f (x(t),Q(t)) (14.29)

where

f (x(t),Q(t)) =

∙
q̇

D−1 (Q−H−G)

¸
. (14.30)

Example 373 F Time-optimal control for robots.
Assume that a robot is initially at

x(t0) = x0 =

∙
q0
q̇0

¸
(14.31)

and it is supposed to be finally at

x(tf ) = xf =

∙
qf
q̇f

¸
(14.32)

in the shortest possible time. The torques of the actuators at each joint is
assumed to be bounded

|Qi| ≤ QiMax . (14.33)

The optimal control problem is to minimize the time performance index

J =

Z tf

t0

dt = tf − t0. (14.34)



796 14. F Time Optimal Control

The Hamiltonian H is defined as

H(x,Q,p) = pT f (x(t),Q(t)) (14.35)

which provides the following two sets of equations:

ẋ =
∂H

∂p

T

(14.36)

ṗ = −∂H
∂x

T

. (14.37)

The optimal control input Qt(t) is the one that minimizes the function H.
Hamiltonian minimization reduces the time-optimal control problem to a
two-point boundary value problem. The boundary conditions are the states
of the robot at times t0 and tf . Due to nonlinearity of the robots’ equations
of motion, there is no analytic solution for the boundary value problem.
Hence, a numerical technique must be developed.

Example 374 F Euler-Lagrange equation.
To show that a path x = xF(t) is a minimizing path for the functional J

J(x) =

Z tf

t0

f(x, ẋ, t)dt (14.38)

with boundary conditions x(t0) = x0, x(tf ) = xf , we need to show that

J(x) ≥ J(xF) (14.39)

for all continuous paths x(t) satisfying the boundary conditions. Any path
x(t) satisfying the boundary conditions x(t0) = x0, x(tf ) = xf , is called
admissible. To see that xF(t) is the optimal path, we may examine the
integral J for every admissible path. An admissible path may be defined by

x(t) = xF + y(t) (14.40)

where
y(t0) = y(tf ) = 0 (14.41)

and
¿ 1 (14.42)

is a small number. Substituting x(t) in J and subtracting from (14.38)
provides ∆J

∆J = J
¡
xF + y(t)

¢
− J

¡
xF
¢

(14.43)

=

Z tf

t0

f(xF + y, ẋF + ẏ, t)dt−
Z tf

t0

f(xF, xF, t)dt.
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Let us expand f(xF + y, ẋF + ẏ, t) about (xF, ẋF)

f(xF + y, ẋF + ẏ, t) = f(xF, ẋF, t) +

µ
y
∂f

∂x
+ ẏ

∂f

∂ẋ

¶
+ 2

µ
y2

∂2f

∂x2
+ 2yẏ

∂2f

∂x∂ẋ
+ ẏ2

∂2f

∂ẋ2

¶
dt

+O
¡
3
¢

(14.44)

and find
∆J = V1 +

2V2 +O
¡
3
¢
. (14.45)

where

V1 =

Z tf

t0

µ
y
∂f

∂x
+ ẏ

∂f

∂ẋ

¶
dt (14.46)

V2 =

Z tf

t0

µ
y2

∂2f

∂x2
+ 2yẏ

∂2f

∂x ∂ẋ
+ ẏ2

∂2f

∂ẋ2

¶
(14.47)

The first integral, V1 is called the first variation of J, and the second
integral, V2 is called the second variation of J. All the higher variations
are combined and shown as O

¡
3
¢
. If xF is the minimizing curve, then it is

necessary that ∆J ≥ 0 for every admissible y(t). If we divide ∆J by and
make → 0 then we find a necessary condition for xF to be the optimal
path as V1 = 0. This condition is equivalent toZ tf

t0

µ
y
∂f

∂x
+ ẏ

∂f

∂ẋ

¶
dt = 0. (14.48)

By integrating by parts we may writeZ tf

t0

ẏ
∂f

∂ẋ
dt =

µ
y
∂f

∂ẋ

¶tf
t0

−
Z tf

t0

y
d

dt

µ
∂f

∂ẋ

¶
dt. (14.49)

Since y(t0) = y(tf ) = 0, the first term on the right-hand side is zero.
Therefore, the minimization integral condition (14.48), for every admissible
y(t), reduces to Z tf

t0

y

µ
∂f

∂x
− d

dt

∂f

∂ẋ

¶
dt = 0. (14.50)

The terms in the parentheses are continuous functions of t, evaluated on
the optimal path xF, and they do not involve y(t). So, the only way that the

bounded integral of the parentheses
³
∂f
∂x −

d
dt

∂f
∂ẋ

´
, multiplied by a nonzero

function y(t), from t0 and tf to be zero, is that

∂f

∂x
− d

dt

∂f

∂ẋ
= 0. (14.51)
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y

xP1

P2

FIGURE 14.2. A curve joining points P1 and P2, and a frictionless sliding point.

The Equation (14.51) is a necessary condition for x = xF(t) to be a solution
of the minimization problem (14.38). This differential equation is called
the Euler-Lagrange equation. It is the same Lagrange equation that we
utilized to derive the equations of motion of a robot. The second necessary
condition to have x = xF(t) as a minimizing solution is that the second
variation, evaluated on xF(t), must be negative.

Example 375 F The Lagrange equation for extremizing J =
R 2
1
ẋ2dt.

The Lagrange equation for extremizing the functional

J =

Z 2

1

ẋ2dt (14.52)

is
∂f

∂x
− d

dt

∂f

∂ẋ
= −ẍ = 0 (14.53)

that shows the optimal path is

x = C1t+ C2. (14.54)

Considering the boundary conditions x(1) = 0, x(2) = 3 provides

x = 3t− 3. (14.55)

Example 376 F Brachistochrone problem.
We may utilize the Lagrange equation and find the frictionless curve

joining two points as shown if Figure 14.2, along which a particle falling
from rest due to gravity, travels from the higher to the lower point in the
minimum time. This is the well-known brachistochrone problem.
If v is the velocity of the falling point along the curve, then the time

required to fall an arc length ds is ds/v. Then, the objective function to
find the curve of minimum time is

J =

Z 2

1

ds

v
. (14.56)
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However,
ds =

p
1 + y02dx (14.57)

and according to the conservation of energy

v =
p
2gy. (14.58)

Therefore, the objective function simplifies to

J =

Z 2

1

s
1 + y02

2gy
dx. (14.59)

Applying the Lagrange equations we find

y
¡
1 + y02

¢
= 2r (14.60)

where r is a constant. The optimal curve starting from y(0) = 0 can be
expressed by two parametric equations

x = r (β − sinβ) (14.61)

y = r (1− cosβ) . (14.62)

The optimal curve is a cycloid.
The name of the problem is derived from the Greek word "βραχιστoζ,"

meaning "shortest," and "χρoνoζ," meaning "time." The brachistochrone
problem was originally discussed by Galilei in 1630 and later solved by
Johann and Jacob Bernoulli in 1696.

Example 377 F Lagrange multiplier.
Assume f(x) is defined on an open interval (a, b) and has continuous

first and second order derivatives in some neighborhood of x0 ∈ (a, b). The
point x0 is a local extremum of f(x) if

df(x0)

dx
= 0. (14.63)

Assume f(x) = 0, x ∈ Rn and gi(x) = 0, i = 1, 2, · · · ,m are functions
defined on an open region Rn and have continuous first and second or-
der derivatives in Rn. The necessary condition that x0 be an extremum of
f(x) subject to the constraints gi(x) = 0 is that there exist m Lagrange
multipliers λi, i = 1, 2, · · · ,m such that

∇
³
s+

X
λigi

´
= 0. (14.64)

As an example, we can find the minimum of

f = 1− x21 − x22 (14.65)
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subject to
g = x21 + x2 − 1 = 0 (14.66)

by finding the gradient of f + λg

∇
¡
1− x21 − x22 + λ

¡
x21 + x2 − 1

¢¢
= 0. (14.67)

That leads to
∂f

∂x1
= −2x1 + 2λx1 = 0 (14.68)

∂f

∂x2
= −2x2 + λ = 0. (14.69)

To find the three unknowns, x1, x2, and λ, we employ Equations (14.68),
(14.69), and (14.66). There are two sets of solutions as follows:

x1 = 0 x2 = 1 λ = 2

x1 = ±1/
√
2 x2 = 1/2 λ = 1

(14.70)

Example 378 F Admissible control function.
The components of the control command Q(t) are allowed to be piecewise

continuous and the values they can take may be any number within the
bounded region of the control space. As an example, consider a 2 DOF

system Q(t) =
£
Q1 Q2

¤T
with the restriction |Qi| < 1, i = 1, 2. The

control space is a circle in the plane Q1Q2. The control components may
have any piecewise continuous value within the circle. Such controls are
called admissible.

Example 379 Description of the time optimal control problem.
The aim of minimum time control is to guide the robot on a path in

minimum time to increase the robot’s productivity. Except for low order,
autonomous, and linear problems, there is no general analytic solution for
the time optimal control problems of dynamic systems. The problem of time
optimal control is always a bounded input problem. If there exists an ad-
missible time optimal control for a given initial condition and final target,
then, at any time, at least one of the control variables attains its maxi-
mum or minimum value. Based on Pontryagin’s principle, the solution of
minimum time problems with bounded inputs is a bang-bang control, indi-
cating that at least one of the input actuators must be saturated at any time.
However, finding the switching points at which the saturated input signal
is replaced with another saturated signal is not straightforward, and is the
main concern of numerical solution methods.
In a general case, the problem reduces to a two-points boundary value

problem that is difficult to solve. The corresponding nonsingular, nonlinear
two-point boundary value problem must be solved to determine the switching
times. A successful approach is to assume that the configuration trajectory
of the dynamical system is preplanned, and then reduce the problem to a
minimum time motion along the trajectory.
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xf - x0
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FIGURE 14.3. Rest-to-rest motion of a mass on a straight line time-optimally.

14.2 F Floating Time Method

Consider a particle with mass m, as shown in Figure 14.3, is moving ac-
cording to the following equation of motion:

mẍ = g(x, ẋ) + f(t) (14.71)

where g(x, ẋ) is a general nonlinear external force function, and f(t) is
the unknown input control force function. The control command f(t) is
bounded to

|f(t)| ≤ F. (14.72)

The particle starts from rest at position x(0) = x0 and moves on a straight
line to the destination point x(tf ) = xf at which it stops.
We can solve this rest-to-rest control problem and find the required f(t)

to move m from ẋ0 to ẋf in minimum time utilizing the floating time
algorithm.

Algorithm 14.1. Floating time technique.

1. Divide the preplanned path of motion x(t) into s + 1 intervals and
specify all coordinate values xi, (i = 0, 1, 2, 3, ..., s+ 1)

2. Set f0 = +F and calculate

τ0 =

r
2m (x1 − x0)

F
(14.73)

3. Set fs+1 = −F and calculate

τs =

r
2m (xs − xs−1)

−F (14.74)

4. For i from 1 to s− 1, calculate τ i such that fi = +F and

fi = mẍi − g(xi, ẋi)

=
4m

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 + xi

¶
−g(xi, ẋi) (14.75)
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FIGURE 14.4. Time history of motion for the point mass m.

xs+1x0

t0t-1 t1 t2 tsts-1 ts+1 ts+2

0τ1−τ 1τ s 1−τ sτ s 1+τ

FIGURE 14.5. Introducing two extra points, x−1 and xs+2, before the initial and
after the final points.

5. If |fi| ≤ F , then stop, otherwise set j = s,

6. Calculate τ j−1 such that fj = −F

7. If |fj−1| ≤ F , then stop, otherwise set j = j − 1 and return to step
6

Proof. Assume g(xi, ẋi) = 0 and x(t), as shown in Figure 14.4, is the time
history of motion for the point mass m. We divide the path of motion into
s+1 arbitrary, and not necessarily equal, segments. Hence, the coordinates
xi, (i = 0, 1, 2, ..., s + 1) are known. The floating-time τ i = ti − ti−1 is
defined as the required time to move m from xi to xi+1.
Utilizing the central difference method, we may define the first and sec-

ond derivatives at point i by

ẋi =
xi+1 − xi−1
τ i + τ i−1

(14.76)

ẍi =
4

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 − xi

¶
. (14.77)
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These equations indicate that the velocity and acceleration at point i de-
pend on xi, and two adjacent points xi−1, and xi+1, as well as on the float-
ing times τ i, and τ i−1. Therefore, two extra points, x−1 and xs+2, before
the initial point and after the final point are needed to define velocity and
acceleration at x0 and xs+1. These extra points and their corresponding
floating times are shown in Figure 14.5.
The rest conditions at the beginning and at the end of motion require

x−1 = x1 xs+2 = xs (14.78)

τ0 = τ−1 τ s+1 = τ s. (14.79)

Using Equation (14.77), the equation of motion, fi = mẍi, at the initial
point is

f0 = mẍ0 =
4m

2τ20
(x1 − x0) . (14.80)

The minimum value of the first floating time τ0 is found by setting f0 = F .

τ0 =

r
2m (x1 − x0)

F
(14.81)

It is the minimum value of the first floating time because, if τ0 is less than
the value given by (14.81), then f0 will be greater than F and breaks the
constraint (14.72). On the other hand, if τ0 is greater than the value given
by (14.81), then f0 will be less than F and the input is not saturated yet.
The same conditions exist at the final point where the equation of motion
is

fs+1 = mẍs+1 =
4m

2τ2s
(xs − xs−1) . (14.82)

The minimum value of the final floating-time, τ s, is achieved by setting
fs+1 = −F .

τ s =

r
2m (xs − xs−1)

−F (14.83)

To find the minimum value of τ1, we develop the equation of motion at x1

f1 =
4m

τ21 + τ20

µ
τ0

τ1 + τ0
x2 +

τ1
τ1 + τ0

x0 − x1

¶
(14.84)

which is an equation with two unknowns f1 and τ1. We are able to find
τ1 numerically by adjusting τ1 to provide f1 = F . Applying this proce-
dure we are able to find the minimum floating times τ i+1 by applying the
maximum force constraint fi = F , and solving the equation of motion for
τ i+1 numerically. When τ i is known and the maximum force is applied to
find the next floating-time, τ i+1, we are in the forward path of the floating
time algorithm. In the last step of the forward path, τ s−1 is found at xs−1.
At this step, all the floating-times τ i, (i = 0, 1, 2, ..., s) are known, while
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m

mgμ

FIGURE 14.6. A rectilinear motion of a rigid mass m under the influence of a
control force f(t) and a friction force μmg.

fi = F for i = 0, 1, 2, ..., s− 1, and fi = −F for i = s. Then, the force fs is
the only variable that is not calculated during the forward path by using
the equation of motion at point xs. It is actually dictated by the equation
of motion at point xs, because τ s−1 is known from the forward path pro-
cedure, and τ s is known from Equation (14.83) to satisfy the final point
condition. So, the value of fs can be found from the equation of motion at
i = s and substituting τs, τs−1, xs−1, xs, and xs+1.

fs =
4m

τ2s + τ2s−1

µ
τ s−1

τs + τs−1
xs+1 +

τs
τs + τ s−1

xs−1 − xs

¶
(14.85)

Now, if fs does not break the constraint |f(t)| ≤ F , the problem is solved
and the minimum time motion is determined. The input signals, fi, (i =
0, 1, 2, ..., s+ 1), i 6= s, are always saturated, and also none of the floating-
times τ i can be reduced any more. However, it is expected that fs breaks
the constraint |f(t)| ≤ F because accelerating in s − 1 steps with f = F
produces a large amount of kinetic energy and a huge deceleration is needed
to stop the mass m in the final step.
Now we reverse the procedure, and start a backward path. According to

(14.85), fs can be adjusted to satisfy the constraint fs = −F by tuning
τ s−1. Now fn−1 must be checked for the constraint |f(t)| ≤ F . This is be-
cause τs−2 is already found in the forward path, and τs−1 in the backward
path. Hence, the value of fn−1 is dictated by the equation of motion at
point xs−1. If fs−1 does not break the constraint |f(t)| ≤ F , the problem is
solved and the time-optimal motion is achieved. Otherwise, the backward
path must be continued to a point where the force constraint is satisfied.
The position xk in the backward path, where |fk| ≤ F , is called switching
point because fj = F for j < k , 0 ≤ j < k and fj = −F for j > k,
k < j ≤ s+ 1.

Example 380 F Moving a mass on a rough surface.
Consider a rectilinear motion of a rigid mass m under the influence of a

variable force f(t) and a friction force μmg, as shown in Figure 14.6. The
force is bounded by |f(t)| ≤ F , where ±F is the limit of available force. It is
necessary to find a function f(t) that moves m, from the initial conditions
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x(0) = 0, v(0) = 0 to the final conditions x(tf ) = l > 0, v(tf ) = 0
in minimum total time t = tf . The motion is described by the following
equation of motion and boundary conditions:

f = mẍ− μmg (14.86)

x(0) = 0 v(0) = 0
x(tf ) = l v(tf ) = 0.

(14.87)

Using the theory of optimal control, we know that a time optimal control
solution for μ = 0 is a piecewise constant function where the only discon-
tinuity is at the switching point t = τ = tf/2 and

f(t) =

½
F if t < τ
−F if t > τ.

(14.88)

Therefore, the time optimal control solution for moving a mass m from
x(0) = x0 = 0 to x(tf ) = xf = l on a smooth straight line is a bang-
bang control with only one switching time. The input force f(t) is on its
maximum, f = F , before the switching point x = (xf − x0)/2 at τ = tf/2,
and f = −F after that. Any asymmetric characteristics, such as friction,
will make the problem asymmetric by moving the switching point.
In applying the floating-time algorithm, we assume that a particle of unit

mass, m = 1kg, slides under Coulomb friction on a rough horizontal sur-
face. The magnitude of the friction force is μmg, where μ is the friction
coefficient and g = 9.81m/ s2. We apply the floating-time algorithm using
the following numerical values:

F = 10N l = 10m s+ 1 = 200 (14.89)

Figures 14.7, 14.8, and 14.9 show the results for some different values
of μ. Figure 14.7 illustrates the time history of the optimal input force
for different values of μ. Each curve is indicated by the value of μ and
the corresponding minimum time of motion tf . Time history of the optimal
motions x(t) are shown in Figure 14.8, while the time history of the optimal
inputs f(t) are shown in Figure 14.9. The switching times and positions are
shown in Figures 14.7 and 14.9, respectively.
If μ = 0 then switching occurs at the midpoint of the motion x(τ) =

l/2 and halfway through the time τ = tf/2. Increasing μ delays both the
switching times and the switching positions. The total time of motion also
increases by increasing μ.

Example 381 F First and second derivatives in central difference method.
Using a Taylor series, we expand x at points xi−1 and xi+1 as an ex-

trapolation of point xi

xi+1 = xi + ẋiτ i +
1

2
ẍiτ

2
i + · · · (14.90)

xi−1 = xi − ẋiτ i−1 +
1

2
ẍiτ

2
i−1 − · · · . (14.91)
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FIGURE 14.7. Time history of the optimal input f(t) for different friction coef-
ficients μ.
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FIGURE 14.8. Time history of the optimal motion x(t) for different friction
coefficients μ.
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FIGURE 14.9. Position history of the optimal force f(t) for different friction
coefficients μ.

Accepting the first two terms and calculating xi+1 − xi−1 provides

ẋi =
xi+1 − xi−1
τ i + τ i−1

. (14.92)

Now, accepting the first three terms of the Taylor series and calculating
xi+1 + xi−1 provides

ẍi =
4m

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 − xi

¶
. (14.93)

Example 382 F Convergence.
The floating time algorithm presents an iterative method hence, conver-

gence criteria must be identified. In addition, a condition must be defined
to terminate the iteration. In the forward path, we calculate the floating-
time τ i by adjusting it to a value that provides fi = F . The floating-time
τ i converges to the minimum possible value, as long as ∂ẍi/∂τ i < 0 and
∂ẍi/∂τ i−1 > 0. Figure 14.10 illustrates the behavior of ẍi as a function
of τ i and τ i−1. Using the Equation (14.77), the required conditions are
fulfilled within a basin of convergence,

Z1xs+1 + Z2xs + Z3xs−1 < 0 (14.94)

Z4xs+1 + Z5xs + Z6xs−1 > 0 (14.95)
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FIGURE 14.10. Behavior of ẍi as a function of τ i and τ i−1.

where,

Z1 =
8
¡
6τ4i τ i−1 + 8τ

3
i τ
2
i−1 + 6τ

2
i τ
3
i−1
¢¡

τ2i + τ2i−1
¢3
(τ i + τ i−1)

3
(14.96)

Z2 =
8
¡
τ5i−1 − 3τ5i − 8τ3i τ2i−1 − 9τ4i τ i−1 + 3τ iτ4i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.97)

Z3 =
8
¡
−τ5i−1 + 3τ5i + 3τ4i τ i−1 − 3τ iτ4i−1 − 6τ2i τ3i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.98)

Z4 =
8
¡
3τ5i−1 − τ5i − 6τ3i τ2i−1 − 3τ4i τ i−1 + 3τ iτ4i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.99)

Z5 =
8
¡
−3τ5i−1 + τ5i + 3τ

4
i τ i−1 − 9τ iτ4i−1 − 8τ2i τ3i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.100)

Z6 =
8
¡
6τ3i τ

2
i−1 + 8τ

2
i τ
3
i−1 + 6τ iτ

4
i−1
¢¡

τ2i + τ2i−1
¢3
(τ i + τ i−1)

3
. (14.101)

The convergence conditions guarantee that ẍi decreases with an increase
in τ i, and increases with an increase in τ i−1. Therefore, if either τ i or
τ i−1 is fixed, we are able to find the other floating time by setting fi = F .
Convergence conditions for backward path are changed to

Z1xs+1 + Z2xs + Z3xs−1 > 0 (14.102)

Z4xs+1 + Z5xs + Z6xs−1 < 0. (14.103)

A termination criterion may be defined by

||fi|− F | ≤ . (14.104)
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where is a user-specified number. The termination criterion provides a
good method to make sure that the maximum deviation is within certain
bounds.

Example 383 F Analytic calculating of floating times.
The rest condition at the beginning of the motion of an m on a straight

line requires

x−1 = x1 (14.105)

τ0 = τ−1. (14.106)

The first floating time τ0 is found by setting f0 = F and developing the
equation of motion fi = mẍi at point x0.

τ0 =

r
2m (x1 − x0)

F
(14.107)

Now the equation of motion at point x1 is

f1 =
4m

τ21 + τ20

µ
τ0

τ1 + τ0
x2 +

τ1
τ1 + τ0

x0 + x1

¶
. (14.108)

Substituting τ0 from (14.107) into (14.108) and applying f1 = F provides
the following equation

F =
4mF

2mx1 − 2mx0 + Fτ21

⎛⎝ τ0x2 + τ1x0

τ1 +
q

2m(x1−x0)
F

+ x1

⎞⎠ (14.109)

that must be solved for τ1. Then substituting τ1 from (14.109) into the
equation of motion at x2, and setting f2 = F leads to a new equation to
find τ2. This procedure can similarly be applied to the other steps. However,
calculating the floating times in closed form is not straightforward and get-
ting more complicated step by step, hence, a numerical solution is needed.
The equations for calculating τ i are nonlinear and therefore have multi-
ple solutions. Each positive solution must be examined for the constraint
fi = F . Negative solutions are not acceptable.

Example 384 F Brachistochrone and path planning.
The floating-time method is sometimes applicable for path planning prob-

lems. As an illustrative example, we considered the well-known brachis-
tochrone problem. As Johann Bernoulli says: “A material particle moves
without friction along a curve. This curve connects point A with point B
(point A is placed above point B). No forces affect it, except the gravita-
tional attraction. The time of travel from A to B must be the smallest. This
brings up the question: what is the form of this curve?”
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Y

X

FIGURE 14.11. Time optimal path for a falling unit mass from A(0, 1) to two
different destinations.

The classical solution of the brachistochrone problem is a cycloid and its
parametric equation is

x = r (β − sinβ) (14.110)

y = r (1− cosβ) . (14.111)

where r is the radius of the corresponding cycloid and β is the angle of
rotation of r. When β = 0 the particle is at the beginning point A(0, 0).
The particle is at the second point B when β = βB. The value of βB can
be obtained from

xB = r (βB − sinβB) (14.112)

yB = r (1− cosβB) . (14.113)

The total time of the motion is

tf = βB

r
r

g
(14.114)

In a path-planning problem, except for the boundaries, the path of motion
is not known. Hence, the position of xi in Equations (14.76) and (14.77) are
not given. Knowing the initial and final positions, we fix the xi coordinates
while keeping the yi coordinates free. We will obtain the optimal path of
motion by applying the known input force and searching for the optimum
yi that minimizes the floating times.
Consider the points B1(1, 0) and B2(2, 0) as two different destinations of

motion for a unit mass falling from point A(0, 1). Figure 14.11 illustrates
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the optimal path of motion for the two destinations, obtained by the floating-
time method for s = 100. The total time of motion is tf1 = 0.61084 s, and
tf2 = 0.8057 s respectively. In this calculation, the gravitational acceleration
is assumed g = 10m/ s2 in −Y direction.
An analytic solution shows that βB1

= 1.934563 rad and βB2
= 2.554295 rad.

The corresponding total times are tf1 = 0.6176 s, and tf2 = 0.8077 s respec-
tively. By increasing s, the calculated minimum time would be closer to the
analytical results, and the evaluated path would be closer to a cycloid.
A more interesting and more realistic problem of brachistochrone can be

brachistochrone with friction and brachistochrone with linear drag. Although
there are analytical solutions for these two cases, no analytical solution has
been developed for brachistochrone with nonlinear (say second degree) drag.
Applying the floating-time algorithm for this kind of problem can be an
interesting challenge.

14.3 F Time-Optimal Control for Robots

Robots are multiple DOF dynamical systems. In case of a robot with n
DOF , the control force f and the output position x are vectors.

f =
£
f1 f2 · · · fn

¤T
(14.115)

x =
£
x1 x2 · · · xn

¤T
(14.116)

The constraint on the input force vector can be shown by

|fi| ≤ F (14.117)

where the elements of the limit vector F ∈ Rn may be different. The floating
time algorithm is applied similar to the algorithm 14.2, however, at each
step all the elements of the force vector f must be examined for their
constraints. To attain the time optimal control, at least one element of the
input vector f must be saturated at each step, while all the other elements
are within their limits.

Algorithm 14.2. Floating time technique for the n DOF systems.

1. Divide the preplanned path of motion x(t) into s + 1 intervals and
specify all coordinate vectors xi, (i = 0, 1, 2, 3, ..., s+ 1).

2. Develop the equations of motion at x0 and calculate τ0 for which only
one component of the force vector f0 is saturated on its higher limit,
while all the other components are within their limits.

f0k = Fk , k ∈ {0, 1, 2, · · · , n}
f0r ≤ Fr , r = 0, 1, 2, · · · , n , r 6= k
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3. Develop the equations of motion at xs+1 and calculate τ s for which
only one component of the force vector fs+1 is saturated on its higher
limit, while all the other components are within their limits.

fs+1k = −Fk , k ∈ {0, 1, 2, · · · , n}
fs+1r ≤ Fr , r = 0, 1, 2, · · · , n , r 6= k

4. For i from 1 to s− 1, calculate τ i such that only one component of
the force vector fi is saturated on its higher limit, while all the other
components are within their limits.

fik = −Fk , k ∈ {0, 1, 2, · · · , n}
fir ≤ Fr , r = 0, 1, 2, · · · , n , r 6= k

5. If |fs| ≤ F, then stop, otherwise set j = s.

6. Calculate τ j−1 such that only one component of the force vector fj is
saturated on its lower limit, while all the other components are within
their limits.

7. If |fj−1| ≤ F , then stop, otherwise set j = j − 1 and return to step
6.

Example 385 F 2R manipulator on a straight line.
Consider a 2R planar manipulator that its endpoint moves rest-to-rest

from point (1, 1.5) to point (−1, 1.5) on a straight line Y = 1.5. Figure 14.12
illustrates a 2R planar manipulator with rigid arms. The manipulator has
two rotary joints, whose angular positions are defined by the coordinates θ
and ϕ. The joint axes are both parallel to the Z-axis of the global coordi-
nate frame, and the robot moves in the XY -plane. Gravity acts in the −Y
direction and the lengths of the arms are l1 and l2.
We express the equations of motion for 2R robotic manipulators in the

following form:

P = Aθ̈ +Bϕ̈+ Cθ̇ϕ̇+Dϕ̇2 +M (14.118)

Q = Eθ̈ + Fϕ̈+Gθ̇
2
+N (14.119)
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FIGURE 14.12. A 2R planar manipulator with rigid arms.

where P and Q are the actuator torques and

A = A(ϕ) = m1l
2
1 +m2

¡
l21 + l22 + 2l1l2 cosϕ

¢
B = B(ϕ) = m2

¡
l22 + l1l2 cosϕ

¢
C = C(ϕ) = −2m2l1l2 sinϕ

D = D(ϕ) = m2l1l2 sinϕ

E = E(ϕ) = B

F = m2l
2
2

G = G(ϕ) = −D
M = M(θ, ϕ) = (m1 +m2)gl1 cos θ +m2gl2 cos (θ + ϕ)

N = N(θ, ϕ) = m2gl2 cos (θ + ϕ) . (14.120)

Following Equations (14.76) and (14.77), we define two functions to dis-
cretize the velocity and acceleration.

v(ẋi) =
xi+1 − xi−1
τ i + τ i−1

(14.121)

a(ẍi) =
4

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 − xi

¶
.(14.122)

Then, the equations of motion at each instant may be written as

Pi(t) = Aia(θ̈) +Bia (ϕ̈) + Civ(θ̇)v (ϕ̇) +Div
2 (ϕ̇) +Mi (14.123)

Qi(t) = Eia(θ̈) + Fia (ϕ̈) +Giv
2(θ̇) +Ni (14.124)

where Pi and Qi are the required actuator torques at instant i. Actuators
are assumed to be bounded by

|Pi(t)| ≤ PM |Qi(t)| ≤ QM . (14.125)
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FIGURE 14.13. A 2R planar manipulator, moving from point (1, 1.5) to point
(−1, 1.5) on a straight line Y = 1.5.

To move the manipulator time optimally along a known trajectory, mo-
tors must exert torques with a known time history. Using the floating-time
method, the motion starts at point i = 0 and ends at point i = s + 1. In-
troducing two extra points at i = −1 and i = n + 2, and applying the rest
boundary conditions, we find

τ0 = τ1 θ0 = θ2 ϕ0 = ϕ2
τ s = τs+1 θs = θs+2 ϕs = ϕs+2.

(14.126)

All inputs of the manipulator at instant i are controlled by the common
floating-times τ i and τ i−1. In the forward path, when one of the inputs
saturates at instant i, while the others are less than their limits, the mini-
mum τ i is achieved. Any reduction in τ i increases the saturated input and
breaks one of the constraints (14.125). The same is true in the backward
path when we search for τ i−1.
Consider the following numerical values and the path of motion illustrated

in Figure 14.13.

m1 = m2 = 1kg l1 = l2 = 1m PM = QM = 100Nm (14.127)

To apply the floating time algorithm, the path of motion in Cartesian space
must first be transformed into joint space using inverse kinematics. Then,
the path of motion in joint space must be discretized to an arbitrary interval,
say 200, and the algorithm 14.2 should be applied.
Figure 14.14 depicts the actuators’ torque for minimum time motion after

applying the floating time algorithm. In this maneuver, there exists one
switching point, where the grounded actuator switches from maximum to
minimum. The ungrounded actuator never saturates, but as expected, one
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FIGURE 14.14. Time optimal control inputs for a 2R manipulator moving on
line Y = 1.5, −1 < X < 1.

of the inputs is always saturated. Calculating the floating times allows us to
calculate the kinematics information of motion in joint coordinate space.
Time histories of the joint coordinates can be utilized to determine the
kinematics of the end-effector in Cartesian space.

Example 386 F Multiple switching points.
The 2R manipulator shown in Figure 14.12 is made to follow the path

illustrated in Figure 14.15. The floating time algorithm is run for the fol-
lowing data:

m1 = m2 = 1kg l1 = l2 = 1m PM = QM = 100Nm
X(0) = 1.9m X(tf ) = 0.5m Y = 0

(14.128)

which leads to the solution shown in Figure 14.16. As shown in the Figure,
there are three switching points for this motion. It is seen that the optimal
motion starts while the grounded actuator is saturated and the ungrounded
actuator applies a positive torque within its limits. At the first switching
point, the ungrounded actuator reaches its negative limit. The grounded
actuator shows a change from positive to negative until it reaches its nega-
tive limit when the second switching occurs. Between the second and third
switching points, the grounded actuator is saturated. Finally, when the un-
grounded actuator touches its negative limit for the second time, the third
switching occurs.
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FIGURE 14.15. Illustration of motion of a 2R planar manipulator on line y = 0.
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FIGURE 14.16. Time optimal control inputs for a 2R manipulator moving on
line Y = 0, 0.5 < X < 1.9.
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14.4 Summary

Practically, every actuator can provide only a bounded output. When an
actuator is working on its limit, we call it saturated. Time optimal control
of an n DOF robot has a simple solution: At every instant of time, at least
one actuator must be saturated while the others are within their limits.
Floating-time is an applied method to find the saturated actuator, the
switching points, and the output of the non-saturated actuators. Switching
points are the points that the saturated actuator switches with another
one.
The floating-time method is based on discrete equations of motion, uti-

lizing variable time increments. Then, following a recursive algorithm, it
calculates the required output for the robot’s actuators to follow a given
path of motion.





14. F Time Optimal Control 819

14.5 Key Symbols

A coefficient matrix of variables
b coefficient vector of control commands
B body coordinate frame
c cos, air resistance coefficient
C constant of integral
D,G,H coefficient matrices of robot equation of motion
f function, force, control command
F force, control command
G,B0 global coordinate frame, Base coordinate frame
H Hamiltonian
J objective function
l length
m mass
p momentum vector
P,Q torque, control command
r position vectors, homogeneous position vector
R rotation transformation matrix
s sin, arc length, number of increments
t time
V variation
x, y, z local coordinate axes
x vector of joint states
X,Y,Z global coordinate axes

Greek
β cycloid angular variable
δ Kronecker function, variation of a variable

small number
θ rotary joint angle
λ Lagrange multiplier
μ coefficient of friction
τ floating time increment
4 difference

Symbol
[ ]
−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
qF a guess value for q
R set of real numbers
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Exercises

1. Notation and symbols.

Describe their meaning.

a- τ0 b- τ i c- fi d- xi e- ẍi

f- ẋi g- τ−1 h- τs i- xs+1 j- fs

2. F Time optimal control of a 2 DOF system.

Consider a dynamical system

ẋ1 = −3x1 + 2x2 + 5Q
ẋ2 = 2x1 − 3x2

that must start from an arbitrary initial condition and finish at x1 =
x2 = 0, with a bounded control input |Q| ≤ 1.
Show that the functions

f1 = −3x1 + 2x2 + 5Q
f2 = −2x1 − 3x2
f3 = 1

along with the Hamiltonian function H

H = −1 + p1 (−3x1 + 2x2 + 5Q) + p2 (2x1 − 3x2)

and the co-state variables p1 and p2 can solve the problem.

3. F Nonlinear objective function.

Consider a one-dimensional control problem

ẋ = −x+Q

where Q is the control command. The variable x = x(t) must satisfy
the boundary conditions

x(0) = a

x(tf ) = b

and minimize the objective function J .

J =
1

2

Z tf

0

Q2dt
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Show that the functions

f1 =
1

2
Q2

f2 = −x+Q

f3 = 0

along with the Hamiltonian function H

H =
1

2
p0Q

2 + p1 (−x+Q)

and the co-state variables p0 and p1 can solve the problem.

4. F Time optimal control to origin.

Consider a dynamical system

ẋ1 = x2

ẋ2 = −x1 +Q

that must start from an arbitrary initial condition and finish at the
origin of the phase plane, x1 = x2 = 0, with a bounded control
|Q| ≤ 1. Find the control command to do this motion in minimum
time.

5. F A linear dynamical system.

Consider a linear dynamical system

ẋ = [A]x+ bQ

where

x =

∙
x1
x2

¸
[A] =

∙
0 1
0 0

¸
b =

∙
0
1

¸
subject to a bounded constraint on the control command

Q ≤ 1.

Find the time optimal control command Q to move from the system
from x0 to x1.

(a)

x0 =

∙
−1
−1

¸
x1 =

∙
1
1

¸
(b)

x0 =

∙
−1
−1

¸
x1 =

∙
3
1

¸
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6. F Constraint minimization.

Find the local minima and maxima of

f(x) = x21 + x22 + x23

subject to the constraints

(a)
g1 = x1 + x2 + x3 − 3 = 0

(b)

g1 = x21 + x22 + x23 − 5 = 0
g2 = x21 + x22 + x23 − 2x1 − 3 = 0.

7. F A control command with different limits.

Consider a rectilinear motion of a point mass m = 1kg under the
influence of a control force f(t) on a smooth surface. The force is
bounded to F1 ≤ f(t) ≤ F2. The mass is supposed to move from the
initial conditions x(0) = 0, v(0) = 0 to the final conditions x(tf ) =
10m, v(tf ) = 0 in minimum total time t = tf . Use the floating time
algorithm to find the required control command f(t) = mẍ and the
switching time for

(a)
F1 = 10N F2 = 10N

(b)
F1 = 8N F2 = 10N

(c)
F1 = 10N F2 = 8N.

8. F A control command with different limits.

Find the time optimal control command |f(t)| ≤ 20N to move the
mass m = 2kg from rest at point P1 to P2, and return to stop at
point P3, as shown in Figure 14.17. The value of μ is:

(a)
μ = 0

(b)
μ = 0.2
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FIGURE 14.17. A rectilinear motion of a mass m from rest at point P1 to P2,
and a return to stop at point P3.
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FIGURE 14.18. A rectilinear motion of a massm on a rough surface and attached
to a wall with a spring.

9. F Resistive media.

Consider the mass m = 2kg in Figure 14.17 that is supposed to move
from P1 to P2 rest-to-rest in minimum time. The control command
is limited to |f(t)| ≤ 20N. However, there is an air resistant propor-
tional to the velocity cẋ. Determine the optimal f(t), if

(a)
μ = 0 c = 0.1

(b)
μ = 0.2 c = 0.1

10. F Motion of a mass under friction and spring forces.

Find the optimal control command |f(t)| ≤ 100N to move the mass
m = 1kg rest-to-rest from x(0) = 0 to x(tf ) = 10m. The mass is
moving on a rough surface with coefficient μ and is attached to a
wall by a linear spring with stiffness k, as shown in Figure 14.18. The
value of μ and k are
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FIGURE 14.19. A 2R manipulator moves between two points on a line and a
semi-circle.

(a)
μ = 0.1 k = 2N/m

(b)
μ = 0.5 k = 5N/m.

11. F Convergence conditions.

Verify Equations (14.96) to (14.101) for the convergence condition of
the floating-time algorithm.

12. F 2R manipulator moving on a line and a circle.

Calculate the actuators’ torque for the 2R manipulator, shown in
Figure 14.19, such that the end-point moves time optimally from
P1(1.5m, 0.5m) to P2(0, 0.5m). The manipulator has the following
characteristics:

m1 = m2 = 1kg

l1 = l2 = 1m

|P (t)| ≤ 100Nm

|Q(t)| ≤ 80Nm

The path of motion is:

(a) a straight line

(b) a semi-circle with a center at (0.75m, 0.5m).

13. F Time optimal control for a polar manipulator.

Figure 14.20 illustrates a polar manipulator that is controlled by a
torque Q and a force P . The base actuator rotates the manipulator



826 14. F Time Optimal Control

Y d

X
P

Q

θ

FIGURE 14.20. A polar manipulator, controlled by a torque Q and a force P .

and a force P slides the second link on the first link. Find the optimal
controls to move the endpoint from P1(1.5m, 1m) to P2(−1, 0.5m)
for the following data:

m1 = 5kg m2 = 3kg
|Q(t)| ≤ 100Nm |P (t)| ≤ 80Nm

14. F Control of an articulated manipulator.

Find the time optimal control of an articulated manipulator, shown
in Figure 5.22, to move from P1 = (1.1, 0.8, 0.5) to P2 = (−1, 1, 0.35)
on a straight line. The geometric parameters of the manipulator are
given below. Assume the links are made of uniform bars.

d1 = 1m d2 = 0
l2 = 1m l3 = 1m
m1 = 25 kg m2 = 12 kg m3 = 8kg
|Q1(t)| ≤ 180Nm |Q2(t)| ≤ 100Nm |Q3(t)| ≤ 50Nm
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