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Path Planning
Path planning includes three tasks: 1−Defining a geometric curve for the
end-effector between two points. 2−Defining a rotational motion between
two orientations. 3−Defining a time function for variation of a coordinate
between two given values. All of these three definitions are called path
planning. Figure 13.1 illustrates a path of the tip point of a 2R manipulator
between points P1 and P2 to avoid two obstacles.
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FIGURE 13.1. A path of the tip point of a 2R manipulator to avoid two obstacles.

13.1 Cubic Path

A cubic function is the simplest polynomial to determine the time behavior
of a variable between two given values, rest-to-rest.
A cubic path in joint space for the joint variable q(t), or in Cartesian

space for a Cartesian coordinate q(t), between two points q(t0) and q(tf )
is

q(t) = a0 + a1t+ a2t
2 + a3t

3 (13.1)

where

a0 = −
q1t

2
0 (t0 − 3tf ) + q0t

2
f (3t0 − tf )

(tf − t0)
3 − t0tf

q00tf + q01t0

(tf − t0)
2 (13.2)
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a1 = 6t0tf
q0 − q1

(tf − t0)
3

+
q00tf

³
t2f + t0tf − 2t20

´
+ q01t0

³
2t2f − t20 − t0tf

´
(tf − t0)

3 (13.3)

a2 = −q0 (3t0 + 3tf ) + q1 (−3t0 − 3tf )
(tf − t0)

3

−
q01

³
t0tf − 2t20 + t2f

´
+ q00

³
2t2f − t20 − t0tf

´
(tf − t0)

3 (13.4)

a3 =
2q0 − 2q1 + q00 (tf − t0) + q01 (tf − t0)

(tf − t0)
3 (13.5)

and

q(t0) = q0 q̇(t0) = q00
q(tf ) = qf q̇(tf ) = q0f . (13.6)

Proof. A cubic polynomial has four coefficients. Therefore, it can satisfy
the position and velocity constraints at the initial and final points. For
simplicity, we call the value of the variable, the position, and the rate of the
variable, the velocity. Assume that the position and velocity of a variable
at the initial time t0 and at the final time tf are given as (13.6).
Substituting the boundary conditions in the position and velocity equa-

tions of the joint variable

q(t) = a0 + a1t+ a2t
2 + a3t

3 (13.7)

q̇(t) = a1 + 2a2t+ 3a3t
2 (13.8)

generates four equations for the coefficients of the path.⎡⎢⎢⎣
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

q0
q00
qf
q0f

⎤⎥⎥⎦ (13.9)

Their solutions are given in (13.2) to (13.5).
In case that t0 = 0, the coefficients simplify to

a0 = q0 (13.10)

a1 = q00 (13.11)

a2 =
3 (qf − q0)−

³
2q00 + q0f

´
tf

t2f
(13.12)

a3 =
−2 (qf − q0) +

³
q00 + q0f

´
tf

t3f
. (13.13)
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FIGURE 13.2. Kinematics of a rest-to-rest cubic path.

It is also possible to employ a time shift and search for a cubic polynomial
of the form

q(t) = a0 + a1 (t− t0) + a2t (t− t0)
2
+ a3 (t− t0)

3
. (13.14)

Now, the boundary conditions (13.6) generate a set of equations⎡⎢⎢⎣
1 0 0 0
0 1 0 0

1 (tf − t0) (tf − t0)
2

(tf − t0)
3

0 1 2 (tf − t0) 3 (tf − t0)
2

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

q0
q00
qf
q0f

⎤⎥⎥⎦ (13.15)

with the following solutions:⎡⎢⎢⎣
a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

q0
q00

− (tf − t0)
−2
³
3q0 − 3qf − 2t0q00 − t0q

0
f + 2tfq

0
0 + tfq

0
f

´
(tf − t0)

−3
³
2q0 − 2qf − t0q

0
0 − t0q

0
f + tfq

0
0 + tfq

0
f

´
⎤⎥⎥⎥⎥⎦

(13.16)
A disadvantage of cubic paths is the acceleration jump at boundaries

that introduces infinite jerks.

Example 348 Rest-to-rest cubic path.
Assume q(0) = 10 deg, q(1) = 45 deg, and q̇(0) = q̇(1) = 0. The coeffi-

cients of the cubic path are

a0 = 10 a1 = 0 a2 = 105 a3 = −70 (13.17)

that generate a path for the variable as

q(t) = 10 + 105t2 − 70t3 deg . (13.18)
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FIGURE 13.3. Kinematics of a to-rest cubic path in joint space.

The path information is shown in Figure 13.2.

Example 349 To-rest cubic path.
Assume the angle of a joint starts from θ(0) = 10 deg, θ̇(0) = 12 deg / s

and ends at θ(2) = 45 deg, θ̇(0) = 0. The coefficients of a cubic path for
this motion are:

a0 = 10 a1 = 12 a2 =
81

2
a3 =

−29
2

(13.19)

The kinematics of this path are

θ(t) = 10 + 12t+ 40.5t2 − 14.5t3 deg (13.20)

θ̇(t) = 81t− 43.5t2 + 12 deg / s (13.21)

θ̈(t) = 81− 87t deg / s2 (13.22)

and are shown graphically in Figure 13.3.

Example 350 Rest-to-rest path with a constant velocity in the middle.
Assume we need a rest-to-rest path with a constant given velocity q̇ = q̇c

for t1 < t < t2 where t0 < t1 < t2 < tf . We show the boundary conditions
to be satisfied as

q(t0) = q0 q̇(t0) = q00
q̇(t) = q0c t1 < t < t2

q(tf ) = qf q̇(tf ) = q0f . (13.23)

The path has three parts: rest-to, constant-velocity, and to-rest. We need
an equation for the rest-to part of the motion to achieve the given velocity.
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A quadratic path has three coefficients and can be utilized to satisfy three
conditions.

q1(t) = a0 + a1t+ a2t
2 (13.24)

q̇1(t) = a1 + 2a2t (13.25)

The conditions are the initial position and velocity, and the final constant
velocity. Assuming t0 = 0 the conditions for the rest-to path are

q1(0) = q0 q̇1(0) = 0 q̇1(t1) = q0c (13.26)

that generate the following equations:

q0 = a0 (13.27)

0 = a1 (13.28)

q0c = 2a2t1. (13.29)

Therefore, the rest-to path is:

q1(t) = q0 +
q0c
2t1

t2 0 < t < t1 (13.30)

Given the specific constant velocity q0c shows that the path in the middle
part is:

q̇2(t) = q0c (13.31)

q2(t) = q0ct+ C1 t1 < t < t2 (13.32)

The constant of integration can be found by utilizing the position condition
at t = t1.

q0 +
q0c
2t1

t21 = q0ct1 + C1 (13.33)

C1 = q0 −
1

2
t1q

0
c (13.34)

There are four conditions for the to-rest part of the path. Therefore, it
can be calculated utilizing a cubic equation

q3(t) = b0 + b1t+ b2t
2 + b3t

3 (13.35)

q̇3(t) = b1 + 2b2t+ 3b3t
2 (13.36)

and the following boundary conditions:

q3(tf ) = qf (13.37)

q̇3(tf ) = 0 (13.38)

q3(t2) = q2(t2) = q2 = q0ct2 + q0 −
1

2
t1q

0
c (13.39)

q̇(t2) = q̇2(t2) = q0c (13.40)
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These conditions generate three equations⎡⎢⎢⎣
1 tf t2f t3f
0 1 2tf 3t2f
1 t2 t22 t32
0 1 2t2 3t22

⎤⎥⎥⎦
⎡⎢⎢⎣

b0
b1
b2
b3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

qf
0

q0ct2 + q0 − 1
2 t1q

0
c

q0c

⎤⎥⎥⎦ (13.41)

with the following solutions:

b0 = −t2t2f
q0c

−2t2tf + t22 + t2f
+ q2

t3f − 3t2t2f
−t32 + t3f − 3t2t2f + 3t22tf

+qf
−t32 + 3t22tf

−t32 + t3f − 3t2t2f + 3t22tf
(13.42)

b1 = q0c
2t2tf + t2f

−2t2tf + t22 + t2f
+ 6q2t2

tf
−t32 + t3f − 3t2t2f + 3t22tf

−6t2qf
tf

−t32 + t3f − 3t2t2f + 3t22tf
(13.43)

b2 = q0c
−t2 − 2tf

−2t2tf + t22 + t2f
+ q2

−3t2 − 3tf
−t32 + t3f − 3t2t2f + 3t22tf

+qf
3t2 + 3tf

−t32 + t3f − 3t2t2f + 3t22tf
(13.44)

b3 =
q0c

−2t2tf + t22 + t2f
+ 2

q2
−t32 + t3f − 3t2t2f + 3t22tf

−2 qf
−t32 + t3f − 3t2t2f + 3t22tf

(13.45)

for
t2 < t < tf . (13.46)

A graph of the path for the following values is illustrated in Figure 13.4.

t1 = 0.4 s t2 = 0.7 s tf = 1 s

q0 = 0 qf = 60deg q0c = 50deg / s (13.47)

Example 351 A quadratic path through three points.
A quadratic path passing through three points (q1, t1), (q2, t2), and (q3, t3)

is:

q(t) =
(t− t2) (t− t3)

(t1 − t2) (t1 − t3)
q1 +

(t− t3) (t− t1)

(t2 − t3) (t2 − t1)
q2

+
(t− t1) (t− t2)

(t3 − t1) (t3 − t1)
q3 (13.48)
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FIGURE 13.4. A piecewise rest-to-rest path with a constant velocity in the mid-
dle.

As an example, the path passing through (10 deg, 0), (25 deg, 0.5), and
(45 deg, 1) is:

q(t) =
(t− 0.5) (t− 1)
−0.5 (−1) 10 +

(t− 1) t
(−0.5) (0.5)25 +

t (t− 0.5)
1

45

= −5
2

¡
14.0t2 − 19.0t− 4.0

¢
(13.49)

The velocity of the path at both ends are:

q̇(0) = 47.5 deg / s (13.50)

q̇(1) = −22.5 deg / s (13.51)

13.2 Polynomial Path

The number of required conditions determines the degree of the polynomial
for q = q(t). In general, a polynomial path of degree n,

q(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n (13.52)

needs n + 1 conditions. The conditions may be of two types: positions at
a series of points, so that the trajectory will pass through all specified
points; or position, velocity, acceleration, and jerk at two points, so that
the smoothness of the path can be controlled.
The problem of searching for the coefficients of a polynomial reduces to a

set of linear algebraic equations and may be solved numerically. However,
the path planning can be simplified by splitting the whole path into a
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series of segments and utilizing combinations of lower order polynomials
for different segments of the path. The polynomials must then be joined
together to satisfy all the required boundary conditions.

Example 352 Quintic path.
Forcing a variable to have specific position, velocity, and acceleration at

boundaries introduces six conditions:

q(t0) = q0 q̇(t0) = q00 q̈(t0) = q000
q(tf ) = qf q̇(tf ) = q0f q̈(tf ) = q00f (13.53)

A five degree polynomial can satisfy these conditions

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (13.54)

and generates a set of six equations:⎡⎢⎢⎢⎢⎢⎢⎣
1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

q0
q00
q000
qf
q0f
q00f

⎤⎥⎥⎥⎥⎥⎥⎦ (13.55)

A rest-to-rest path with no acceleration at the rest positions with the
following conditions:

q(0) = 10deg q̇(0) = 0 q̈(0) = 0

q(1) = 45deg q̇(1) = 0 q̈(1) = 0 (13.56)

can be found by solving a set of equations for the coefficients of the polyno-
mial ⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 1 1 1 1 1
0 1 2 3 4 5
0 0 2 6 12 20

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
10
0
0
45
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ (13.57)

which shows ⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

10
0
0
350
−525
210

⎤⎥⎥⎥⎥⎥⎥⎦ . (13.58)

The path equation is then equal to

q(t) = 10 + 350t3 − 525t4 + 210t5. (13.59)

which is shown in Figure 13.5.
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FIGURE 13.5. A quintic rest-to-rest path.

Example 353 A jerk zero at a start-stop path.
To make a path start and stop with zero jerk, a seven degree polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + a7t

7 (13.60)

and eight boundary conditions must be employed.

q(0) = q0 q̇(0) = 0 q̈(0) = 0
...
q (0) = 0

q(1) = qf q̇(1) = 0 q̈(1) = 0
...
q (1) = 0 (13.61)

Such a zero jerk start-stop path for q(0) = 10deg and q(1) = 45 deg,
can be found by solving the following set of equations for the unknown
coefficients a0, a1, · · · , a7⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 6 0 0 0 0
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
0 0 2 6 12 20 30 42
0 0 0 6 24 60 120 210

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
0
0
0
45
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.62)

which provides

q(t) = 10 + 1225t4 − 2940t5 + 2450t6 − 700t7. (13.63)

A graph of this path is illustrated in Figure 13.6.
Figures 13.2, depicts the path of a rest-to-rest motion with no condition

on the acceleration and jerk. Figure 13.5 shows an improvement by forcing
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FIGURE 13.6. A jerk zero at start-stop path.

the motion to have zero accelerations at start and stop. In Figure 13.6,
the motion is forced to have zero acceleration and zero jerk at start and
stop. Hence, it shows the smoothest start and stop. However, increasing the
smoothness of the start and stop increases the peak value of acceleration.

Example 354 Constant acceleration path.
A constant acceleration path has two segments with positive and negative

accelerations. Let’s assume the absolute value of the positive and negative
accelerations are given.

|q̈(t0)| = ac (13.64)

The first half of the motion has a positive acceleration that needs a second
degree polynomial

q̇1(t0) = act (13.65)

q1(t0) =
1

2
act

2 + q0 (13.66)

for

0 < t <
1

2
tf . (13.67)

The constants of integration are found based on the initial conditions.

q1(0) = q0 q̇1(0) = 0 (13.68)

For the second half of the path, we may start with a second degree polynomial

q2(t) = a0 + a1t+ a2t
2 1

2
tf < t < tf (13.69)
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FIGURE 13.7. A constant acceleration path.

and impose the following boundary conditions:

q2(tf ) = qf

q̇2(tf ) = 0

q1(
tf
2
) = q2(

tf
2
) =

1

8
act

2
f + q0 (13.70)

These conditions generate three equations for the unknown coefficients⎡⎣ 1 tf t2f
0 1 2tf
0 1 tf

⎤⎦⎡⎣ a0
a1
a2

⎤⎦ =
⎡⎣ qf

0
1
8act

2
f + q0

⎤⎦ (13.71)

with the following solution:

⎡⎣ a0
a1
a2

⎤⎦ =
⎡⎢⎢⎣

qf − tf

³
q0 +

1
8act

2
f

´
2q0 +

1
4act

2
f

− 1
tf

³
q0 +

1
8act

2
f

´
⎤⎥⎥⎦ (13.72)

A constant acceleration path is shown in Figure 13.7 for the conditions
q0 = 10deg, qf = 45deg, tf = 1, and ac = 200 deg / s

2.

Example 355 Point sequence path.
A path can be assigned via a series of points that the variable must attain

at specific times. The points may also be defined to approximate a trajectory.
Consider an example path specified by four points q0, q1, q2, and q3, such
that the points are reached at times t0, t1, t2, and t3 respectively. In addition
to positions, we usually impose constraint on initial and final velocities and
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accelerations. The conditions for such a sequence of points can be

q(t0) = q0 q̇(t0) = 0 q̈(t0) = 0

q(t1) = q1

q(t2) = q2

q(t3) = q3 q̇(t3) = 0 q̈(t3) = 0. (13.73)

A seven degree polynomial can be utilized to satisfy these eight conditions.

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4

+a5t
5 + a6t

6 + a7t
7 (13.74)

The set of equations for the unknown coefficients is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30 t40 t50 t60 t70
0 1 2t0 3t20 4t30 5t40 6t50 7t60
0 0 2 6t0 12t20 20t30 30t40 42t50
1 t1 t21 t31 t41 t51 t61 t71
1 t2 t22 t32 t42 t52 t62 t72
1 t3 t23 t33 t43 t53 t63 t73
0 1 2t3 3t23 4t33 5t43 6t53 7t63
0 0 2 6t3 12t23 20t33 30t43 42t53

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0
0
0
q1
q2
q3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.75)

that can be simplified to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
1 0.4 0.42 0.43 0.44 0.45 0.46 0.47

1 0.7 0.72 0.73 0.74 0.75 0.76 0.77

1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
0 0 2 6 12 20 30 42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
0
0
20
30
45
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.76)

for the following example data.

q(0) = 10 deg q̇(0) = 0 q̈(0) = 0

q(0.4) = 20 deg

q(0.7) = 30 deg

q(1) = 45 deg q̇(1) = 0 q̈(1) = 0 (13.77)
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FIGURE 13.8. A point sequence path.

The solution for the coefficients is:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
0
0

1500.5
−7053
12891
−10380
3076.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.78)

These coefficients generate a path as shown in Figure 13.8.
This method provides a continuous and differentiable function for the q

variable. Continuity and differentiability of q = q(t) is an advantage that
provides a continuous velocity, acceleration, and jerk. However, the number
of equations increases by increasing the number of points, which needs larger
data storage and increases the calculating time.

Example 356 Splitting a path into a series of segments.
Instead of using a single high degree polynomial for the entire trajectory,

we may prefer to split the trajectory into some segments and use a series
of low degree polynomials.
Consider a path for the following boundary conditions:

q(t0) = q0 q̇(t0) = 0 q̈(t0) = 0

q(t4) = q3 q̇(t4) = 0 q̈(t4) = 0 (13.79)
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which must also pass through three middle points given below.

q(t1) = q1

q(t2) = q2

q(t3) = q3 (13.80)

Let’s split the entire path into four segments, namely q1(t), q2(t), q3(t), and
q4(t).

q1(t) for q(t0) < q1(t) < q(t1) and t0 < t < t1
q2(t) for q(t1) < q2(t) < q(t2) and t1 < t < t2
q3(t) for q(t2) < q3(t) < q(t3) and t2 < t < t3
q4(t) for q(t3) < q4(t) < q(t4) and t3 < t < t4

The boundary conditions for the first segment are

q1(t0) = q0 q̇1(t0) = 0 q̈1(t0) = 0

q1(t1) = q1 (13.81)

which can be satisfied by a cubic function.

q1(t) = a0 + a1 (t− t0) + a2 (t− t0)
2 + a3 (t− t0)

3 (13.82)

The coefficients can be calculated by solving a set of equations⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 2 0

1 (t1 − t0) (t1 − t0)
2
(t1 − t0)

3

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

q0
0
0
q1

⎤⎥⎥⎦ (13.83)

that provides

a0 = q0 a1 = 0 a2 = 0 a3 =
q1 − q0

(t1 − t0)
3 . (13.84)

The path in the second segment must satisfy the following boundary condi-
tions:

q2(t1) = q1

q̇2(t1) = q̇1(t1) = a1 + 2a2 (t1 − t0)
2
+ 3a3 (t1 − t0)

2

= q0 + 3
q1 − q0
t1 − t0

q2(t2) = q2 (13.85)

A quadratic polynomial will satisfy these conditions:

q2(t) = b0 + b1t+ b2t
2 (13.86)
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The coefficients are the solutions of⎡⎣ 1 t1 t21
0 1 2t1
1 t2 t22

⎤⎦⎡⎣ b0
b1
b2

⎤⎦ =
⎡⎣ q1

q0 + 3
q1−q0
t1−t0

q2

⎤⎦ (13.87)

that provide

b0 = q2
t21

−2t1t2 + t21 + t22
+ q1

−2t1t2 + t22
−2t1t2 + t21 + t22

−t1
t2

−t1 + t2

µ
q0 + 3

−q0 + q1
−t0 + t1

¶
(13.88)

b1 = 2q1
t1

−2t1t2 + t21 + t22
− 2q2

t1
−2t1t2 + t21 + t22

+
t1 + t2
−t1 + t2

µ
q0 + 3

−q0 + q1
−t0 + t1

¶
(13.89)

b2 = − q1
−2t1t2 + t21 + t22

+
q2

−2t1t2 + t21 + t22

− 1

−t1 + t2

µ
q0 + 3

−q0 + q1
−t0 + t1

¶
. (13.90)

The boundary conditions in the third segment are:

q3(t2) = q2 q̇3(t2) = q̇2(t2) = b1 + 2b2t2

q3(t3) = q3 (13.91)

We can satisfy these conditions with a quadratic equation

q3(t) = c0 + c1t+ c2t
2 (13.92)

that provides three equations for the unknown coefficients.⎡⎣ 1 t2 t22
0 1 2t2
1 t3 t23

⎤⎦⎡⎣ c0
c1
c2

⎤⎦ =
⎡⎣ q2

b1 + 2b2t2
q3

⎤⎦ (13.93)

The coefficients are:

c0 = −t2
t3

−t2 + t3
(b1 + 2b2t2) + q3

t22
−2t2t3 + t22 + t23

+q2
−2t2t3 + t23

−2t2t3 + t22 + t23
(13.94)
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c1 =
t2 + t3
−t2 + t3

(b1 + 2b2t2) + 2q2
t2

−2t2t3 + t22 + t23

−2q3
t2

−2t2t3 + t22 + t23
(13.95)

c2 = − 1

−t2 + t3
(b1 + 2b2t2)−

q2
−2t2t3 + t22 + t23

+
q3

−2t2t3 + t22 + t23
. (13.96)

The boundary conditions for the fourth segment are

q4(t3) = q3 q̇4(t3) = q̇3(t3) = c1 + 2c2t3

q4(t4) = q4 q̇4(t4) = 0 q̈4(t4) = 0 (13.97)

which needs a fourth degree polynomial to be satisfied.

q4(t) = d0 + d1t+ d2t
2 + d3t

3 + d4t
4 (13.98)

Substituting the boundary conditions generates a set of four equations for
the coefficient.⎡⎢⎢⎢⎢⎣

1 t3 t23 t33 t43
0 1 2t2 3t22 4t32
1 t4 t24 t34 t44
0 1 2t4 3t24 4t34
0 0 2 6t4 12t24

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

d0
d1
d2
d3
d4

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

q3
c1 + 2c2t3

q4
0
0

⎤⎥⎥⎥⎥⎦ (13.99)

As an example, a set of conditions given by

t0 = 0 t1 = 0.4 t2 = 0.7 t3 = 0.9 t4 = 1 (13.100)

q(0) = 10deg q̇(0) = 0 q̈(0) = 0

q(0.4) = 20deg

q(0.7) = 30deg

q(0.9) = 35deg

q(1) = 45deg q̇i(1) = 0 q̈(1) = 0 (13.101)

provides

q1(t) = 10 + 156.25t3 (13.102)

q2(t) = −41.56 + 222.78t− 172.2t2 (13.103)

q3(t) = 148.99− 321.67t+ 216.67t2 (13.104)

q4(t) = 198545− 827166.6672t
+1290500t2 − 893500t3 + 231666.67t4 (13.105)
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t

q

FIGURE 13.9. Spliting a path into a series of segments.

which is shown in Figure 13.9 graphically.
The disadvantage of the segment method is the lack of a smooth overall

path and having a discontinuous acceleration. To increase the smoothness
of the path, we need to use higher degree polynomials and put constraints
on acceleration and possibly jerk.
Equations (13.102)-(13.105) indicate that:

q̈1(t1) = 375 q̈2(t1) = −344.4 (13.106)

q̈2(t2) = −344.4 q̈3(t2) = 433.34 (13.107)

q̈3(t3) = 433.34 q̈4(t3) = 7900 (13.108)

q̈1(t1) 6= q̈2(t1) q̈2(t2) 6= q̈3(t2) q̈3(t3) 6= q̈4(t3) (13.109)

Therefore, the acceleration of the path is not continuos at the connection
points and show a finite jump. A jump in acceleration introduces an in-
finity jerk. Having continuos acceleration is the minimum requirement for
smoothness of a path. A piecewise path with continuous acceleration is called
spline.

Example 357 F Least-squares polynomial.
When the number of points to approximate a trajectory is too large, we

may use a low degree polynomial to pass close to the points. Least-squares
is an applied method to determine the coefficients of a selected polynomial
to approximate the path.
Consider a path with N given points,

pi = p(ti) i = 1, 2, 3, · · · ,N (13.110)

and a polynomial of degree n that is supposed to approximate the path. If
N = n+ 1 then the polynomial passes exactly through all given points. To
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work with low degree polynomials, we choose n < N + 1.

q = a0 + a1t+ a2t
2 + · · ·+ ant

n (13.111)

Having the N points (13.110) and the polynomial (13.111), we define an
error ei at ti.

ei = pi − qi = pi − a0 − a1ti − a2t
2
i − · · ·− ant

n
i (13.112)

Sum of e2i for all points pi is the total error e.

e =
NX
i=1

e2i =
NX
i=1

¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢2
(13.113)

The minimum error e provides the best approximate polynomial (13.111).
At the minimum, all the partial derivatives ∂e/∂a0, ∂e/∂a1, · · · , ∂e/∂an
vanish. These conditions generate n+ 1 equations:

∂e

∂a0
= −2

NX
i=1

¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢
= 0

∂e

∂a1
= −2

NX
i=1

ti
¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢
= 0

· · ·
∂e

∂an
= −2

NX
i=1

tni
¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢
= 0 (13.114)

Dividing each equation by −2 and rearrangement gives n + 1 equations to
be simultaneously solved for the coefficients ai, i = 1, 2, · · · , n.

a0N + a1

NX
i=1

ti + · · ·+ an

NX
i=1

tni =
NX
i=1

pi

a0

NX
i=1

ti + a1

NX
i=1

t2i + · · ·+ an

NX
i=1

tn+1i =
NX
i=1

tipi

· · ·

a0

NX
i=1

tni + a1

NX
i=1

tn+1i + · · ·+ an

NX
i=1

t2ni =
NX
i=1

tni pi (13.115)

Rearrangement makes a set of linear equations to be solved for ai, i =
1, 2, · · · , n

[A]a = b (13.116)
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where,

[A] =

⎡⎢⎢⎢⎣
N

PN
i=1 ti

PN
i=1 t

2
i · · ·

PN
i=1 t

n
iPN

i=1 ti
PN

i=1 t
2
i

PN
i=1 t

3
i · · ·

PN
i=1 t

n+1
i

· · · · · · · · · · · · · · ·PN
i=1 t

n
i

PN
i=1 t

n+1
i

PN
i=1 t

n+2
i · · ·

PN
i=1 t

2n
i

⎤⎥⎥⎥⎦ (13.117)

a =

⎡⎢⎢⎢⎢⎣
a0
a1
a2
· · ·
an

⎤⎥⎥⎥⎥⎦ b =

⎡⎢⎢⎢⎢⎢⎢⎣

PN
i=1 piPN
i=1 tipiPN
i=1 t

2
i pi

· · ·PN
i=1 t

n
i pi

⎤⎥⎥⎥⎥⎥⎥⎦ . (13.118)

13.3 F Non-Polynomial Path Planning

A path of motion in either joint or Cartesian spaces may be defined based
on different mathematical functions. Harmonic and cycloid functions are
the most common paths.

q(t) = a0 + a1 cos a2t+ a3 sin a2t (13.119)

q(t) = a0 + a1t− a2 sina3t (13.120)

However, we may also use other function approximate methods such as
Fourier,

q(t) =
A0
2
+
∞X
n=1

[An cos (nx) +Bn sin (nx)] (13.121)

A0 =
1

π

Z π

−π
q(t)dt (13.122)

An =
1

π

Z π

−π
q(t) cos (nx) dt (13.123)

Bn =
1

π

Z π

−π
q(t) sin (nx) dt (13.124)

Legendre,

qn(t) =
nX
i=0

Li(t)q(ti) (13.125)

Li(t) =
nY

j=0,j 6=i

t− tj
ti − tj

i = 0, 1, 2, · · · , n (13.126)
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FIGURE 13.10. A harmonic path.

Chebyshev.

qn+1(t) = 2tqn(t)− qn−1(t) (13.127)

q0(t) = 1 q1(t) = t (13.128)

Example 358 Harmonic path.
Consider a harmonic path between two points q(t0) and q(tf )

q(t) = a0 + a1 cos a2t+ a3 sina2t (13.129)

with the rest-to-rest boundary conditions.

q(t0) = q0 q̇(t0) = 0

q(tf ) = qf q̇(tf ) = 0 (13.130)

Applying the conditions to the harmonic equation (13.129) provides the
following solution:

q(t) =
1

2

µ
qf + q0 − (qf − q0) cos

π (t− t0)

tf − t0

¶
. (13.131)

A plot of the solution is depicted in Figure 13.10 for the following numerical
values:

t0 = 0 tf = 1

q0 = 10deg q00 = 0

qf = 45deg q0f = 0. (13.132)
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FIGURE 13.11. A cycloid path.

Example 359 A cycloid path.
A cycloid path between two points q(t0) and q(tf ) with rest-to-rest bound-

ary conditions

q(t0) = q0 q̇(t0) = 0

q(tf ) = qf q̇(tf ) = 0 (13.133)

is:

q(t) = q0 +
qf − q0

π

µ
π (t− t0)

tf − t0
− 1
2
sin

2π (t− t0)

tf − t0

¶
(13.134)

A plot of the cycloid path is illustrated in Figure 13.11 for the following
numerical values:

t0 = 0 tf = 1

q0 = 10deg q00 = 0

qf = 45deg q0f = 0. (13.135)

Comparing Figure 13.11 with 13.5 indicates that the main kinematic
characteristics of a cycloid path are similar to quintic rest-to-rest path.

13.4 Manipulator Motion by Joint Path

Having the joint variables as functions of time, and employing the forward
kinematics of manipulators, allows us to calculate the path of motion for
the end-effector.
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Example 360 2R manipulator motion based on joints’ path.
Assume that we have calculated the paths of the two joints of a 2R planar

manipulator according to cubic functions, and they are:

θ1(t) = 10 + 105t2 − 70t3 deg (13.136)

θ2(t) = 10 + 350t3 − 525t4 + 210t5 deg (13.137)

The joints’ paths satisfy the following conditions:

θ1(0) = 10deg θ̇1(0) = 0

θ1(1) = 45deg θ̇1(1) = 0 (13.138)

θ2(0) = 10 deg θ̇2(0) = 0 θ̈2(0) = 0

θ2(1) = 45 deg θ̇2(1) = 0 θ̈2(1) = 0 (13.139)

The forward kinematics of a 2R manipulator are found in Example 141
as below.

0T2 = 0T1
1T2

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .(13.140)
The fourth column of 0T2 indicates the Cartesian position of the tip point
of the manipulator in the base frame. Therefore, the X and Y components
of the tip point are:

X = l1 cos θ1 + l2 cos (θ1 + θ2) (13.141)

Y = l1 sin θ1 + l2 sin (θ1 + θ2) (13.142)

Substituting θ1 and θ2 from (13.136) and (13.137) provides the time vari-
ation of the position of the tip point. These variations, for l1 = l2 = 1m
are shown in Figure 13.12, while the configurations of the manipulator at
initial and final positions are shown in Figure 13.13.
As long as the joint variables are defined and given as functions of time,

it is immaterial which joint turns first. The joint variables are relative
coordinates and the final configuration of the robot would be the same. They
can even turn together.
Moving a robot by applying a set of joint paths is not always a proper

method. In case the joint variables are not monotonic in time and are
fluctuating, defining a joint path is more complicated. Furthermore, it is
not easy to move the end-effector of a robot on a desired geometric path by
defining joint paths.
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FIGURE 13.12. X and Y components of the tip point position of a 2R planar
manipulator.
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FIGURE 13.13. Configuration of a 2R manipulator at initial and final positions.
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FIGURE 13.14. A 2R robot moveing along a given line.

Example 361 A 2R robot moving along a line.
Let us consider a 2R manipulator with

l1 = l2 = 0.25 (13.143)

that its tip point is supposed to move on a given line Y = f(X) as is shown
in Figure 13.14.

Y = −0.25998X + 0.3705 (13.144)

Assume that the first angle is moving between 45 deg and 135 deg in 10 sec

45 deg < θ1 < 135 deg (13.145)

based on a cubic path.

θ1 =
π

4
+
3π

200
t2 − π

1000
t3 0 < t < 10 sec (13.146)

The elbow joint R will move on a circle and at the beginning is at:

XR1 = 0.25 cos
π

4
= 0.176 78 (13.147)

YR1
= 0.25 sin

π

4
= 0.176 78 (13.148)

Point P1 must be on the line (13.144) at a distance d = 0.25 from R1.

d =

q
(X − 0.176 78)2 + (Y − 0.176 78)2

=

q
(X − 0.176 78)2 + (−0.25998X + 0.3705− 0.176 78)2

= 0.25 (13.149)
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Therefore, P1 is at:

XP1 = 0.411 22 YP1 = 0.263 59 (13.150)

and initial values of angles ϕ and θ2 are:

ϕ = arctan
YP1 − YR1

XP1 −XR1

= arctan
0.263 59− 0.176 78
0.411 22− 0.176 78

= 0.354 63 rad ≈ 20.319 deg (13.151)

θ2 = θ1 − ϕ =
π

4
− 0.354 63

= 0.430 77 rad ≈ 24.681 deg (13.152)

The elbow joint R at the final position is at:

XR2 = 0.25 cos
3π

4
= −0.176 78 (13.153)

YR2
= 0.25 sin

3π

4
= 0.176 78 (13.154)

Point P2 must be on the line (13.144) at a distance d = 0.25 from R2.

d =

q
(X + 0.176 78)

2
+ (Y − 0.176 78)2

=

q
(X + 0.176 78)2 + (−0.25998X + 0.3705− 0.176 78)2

= 0.25 (13.155)

Therefore, P2 is at:

XP2 = −2.818 8× 10−2 YP2 = 0.377 83 (13.156)

and final values of angles ϕ and θ2 are:

ϕ = arctan
YP2 − YR2

XP2 −XR2

= arctan
0.377 83− 0.176 78

−2.818 8× 10−2 + 0.176 78
= 0.934 32 rad ≈ 53.533 deg (13.157)

θ2 = θ1 − ϕ =
3π

4
− 0.934 32

= 1.421 9 rad ≈ 81.469 deg (13.158)

To determine θ2 during the motion, we should follow the same procedure.
Let us find the position of the elbow joint R as a function of θ1.

XR = 0.25 cos θ1 YR = 0.25 sin θ1 (13.159)
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The tip point P must be on the line (13.144) at a distance d = 0.25 from
the elbow joint R.

d =

q
(XP − 0.25 cos θ1)2 + (YP − 0.25 sin θ1)2

=

q
(XP − 0.25 cos θ1)2 + (−0.25998XP + 0.3705− 0.25 sin θ1)2

= 0.25 (13.160)

Solution of this equation for XP and substitution in (13.144) provides the
coordinates (XP , YP ) of the tip point P during the motion. Then, the angle
ϕ and θ2 would be:

ϕ = arctan
YP − YR
XP −XR

= arctan
YP − 0.25 sin θ1
XP − 0.25 cos θ1

(13.161)

θ2 = θ1 − ϕ = θ1 − arctan
YP − 0.25 sin θ1
XP − 0.25 cos θ1

(13.162)

Therefore, to make the point P moving along the line (13.144), while θ1 is
varying as (13.146), the angle θ2 must vary according to (13.162).

13.5 Cartesian Path

Cartesian path planning is mathematically similar to joint space path plan-
ning. Having the coordinates of the start and stop point of the end-effector
as

P0 = P0 (X0, Y0, Z0) P1 = P1 (X1, Y1, Z1) (13.163)

we can connect the points by a geometric space curve

Z = Z (X) Y = Y (X) (13.164)

where,

X (t0) = X0 X (tf ) = Xf . (13.165)

Then, we may define a time path for one of the coordinates, say X, between
P0 and Pf to determine the kinematic behavior of the other coordinates on
the geometric path (13.164).
A point-to-point path can also be planned by connecting the points, or

designing a path to pass close to but not necessarily through the points. A
practical method is to design a path utilizing straight lines with constant
velocity, and deform the corners to have a smooth transition.
The path connecting points r0 to r2, and passing close to the corner r1



13. Path Planning 755
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r1

r(t1-t )

r(t1+t )

FIGURE 13.15. Transition parabola between two line segments as a path in
Cartesian space.

on a transition curve, can be designed by a piecewise motion.

r(t) = r1 −
t1 − t

t1 − t0
(r1 − r0) t0 ≤ t ≤ t1 − t0

r(t) = r1 −
(t− t0 − t1)

2

4t0 (t1 − t0)
(r1 − r0)

+
(t+ t0 − t1)

2

4t0 (t2 − t1)
(r2 − r1) t1 − t0 ≤ t ≤ t1 + t0

r(t) = r1 −
t1 − t

t2 − t1
(r2 − r1) t1 + t0 ≤ t ≤ t2

(13.166)

The path starts from r0 at time t0 and moves with constant velocity v1 =
r1−r0
t1−t0 along a line until a point at switching time t1 − t0. At this time, the
path switches to a constant acceleration parabola. At another switching
point at time t1 + t0, the path switches to the second line and moves with
constant velocity v2 = r2−r1

t2−t1 toward the destination at point r2. The time
t1− t0 is the required time to move from r0 to r1 and t2− t1 is the required
time to move from r1 to r2, if there were no transition path. The path is
shown in Figure 13.15 schematically.

Proof. The first line segment starts from a point r0 at time t0 and, without
any deformation, it arrives at point r1 at time t1 via a constant velocity.
The second line ends with a constant velocity at point r2 at time t2 and,
without deformation, it would start from point r1 at time t1.

r(t) =

⎧⎪⎨⎪⎩
r1 −

t1 − t

t1 − t0
(r1 − r0) t0 ≤ t ≤ t1

r1 −
t1 − t

t2 − t1
(r2 − r1) t1 ≤ t ≤ t2

(13.167)
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We introduce an interval time t0 before arriving at r1 to switch from the
line to a transition curve. The transition curve is then between times t1− t0
and t1 + t0. The simplest transition curve is a parabola, which, at the end
points, has the same speed as the lines.
The boundary positions of the transition curve on the first and second

lines are respectively at

r(t1 − t0) = r1 −
t0

t1 − t0
δ1 (13.168)

r(t1 + t0) = r1 +
t0

t2 − t1
δ2 (13.169)

where,

δ1 = r1 − r0 (13.170)

δ2 = r2 − r1. (13.171)

The velocity at the beginning and final points of the transition curve are
respectively equal to:

ṙ(t1 − t0) =
1

t1 − t0
δ1 (13.172)

ṙ(t1 + t0) =
1

t2 − t1
δ2 (13.173)

Assume the acceleration of motion along the transition curve is constant

r̈(t) = r̈c = const (13.174)

and therefore, the transition curve after integration is equal to

r(t) = r(t1 − t0) + (t− t1 + t0)ṙ(t1 − t0) +
1

2
(t− t1 + t0)2r̈c. (13.175)

Substituting (13.168) and (13.172) provides

r(t) = r1 +
t− t1
t1 − t0

δ1 +
1

2
r̈c(t− t1 + t0)2. (13.176)

The transition curve r(t) must be at the end point when t = t1 + t0

r(t1 + t0) = r1 +
t0

t2 − t1
δ2 = r1 +

t0

t1 − t0
δ1 + 2r̈c t

2
1 (13.177)

therefore, the acceleration on the curve must be

r̈c =
1

2t0

µ
δ2

t2 − t1
− δ1

t1 − t0

¶
. (13.178)
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Hence, the curve equation becomes

r(t) = r1 − δ1
(t− t0 − t1)

2

4t0 (t1 − t0)
+ δ2

(t+ t0 − t1)
2

4t0 (t2 − t1)
(13.179)

showing that the path between r0 and r2 has a piecewise character given
in (13.166).
A Cartesian path followed by the manipulator, plus the time profile along

the path, specify the position and orientation of the end frame. Issues in
Cartesian path planning include attaining a specific target from an initial
starting point, avoiding obstacles, and staying within manipulator capa-
bilities. A path is modeled by n points called control points. The control
points are connected via straight lines and the transient parabolas will be
implemented to exclude the sharp corners.
An alternative method is applying an interpolating or approximating

method, such as least-squared, to design a continuous path over the control
points, or close to them.

Example 362 A path in 2D Cartesian space.
Consider a line in the XY plane connecting (1, 0) and (1, 1), and another

line connecting (1, 1) and (0, 1). Assume that the time is zero at (1, 0), is
t = 1 sec at (1, 1), and is t = 2 sec at (0, 1). For an interval time t0 = 0.1 sec,
the position vector at control points are

r0 = ı̂ (13.180)

r1 = ı̂+ ĵ (13.181)

r2 = ĵ (13.182)

r(t1 − t0) = r1 −
t0

t1
δ1 = ı̂+

µ
1− t0

t1

¶
ĵ (13.183)

r(t1 + t0) = r1 +
t0

t2
δ2 =

µ
1− t0

t2

¶
ı̂+ ĵ (13.184)

where

δ1 = r1 − r0 = ĵ (13.185)

δ2 = r2 − r1 = −ı̂. (13.186)

The path of motion is then expressed by the following piecewise function as
shown in Figure 13.16:

r(t) =

⎧⎪⎨⎪⎩
ı̂+ tĵ 0 ≤ t ≤ 0.9³
1− (t−0.9)2

0.4

´
ı̂+

³
1− (t−1.1)2

0.4

´
ĵ 0.9 ≤ t ≤ 1.1

(2− t) ı̂+ ĵ 1.1 ≤ t ≤ 2
(13.187)
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Y

X
0.80.6 1.0

0.8

1.0

0.6

0.4

0.4

FIGURE 13.16. A transition parabola connecting two lines.

The velocity of motion along the path is also a piecewise function given
below.

ṙ(t) =

⎧⎨⎩ ĵ 0 ≤ t ≤ 0.9
t−0.9
0.2 ı̂− t−1.1

0.2 ĵ 0.9 ≤ t ≤ 1.1
−ı̂ 1.1 ≤ t ≤ 2

(13.188)

Example 363 A 2R manipulator following a line.
Assume the 2R manipulator in Figure 13.14 has

l1 = l2 = 0.25 (13.189)

and its tip point is supposed to move on a given line Y = f(X).

Y = −0.25998X + 0.3705 (13.190)

The manipulator moves form P1 to P2 in 10 sec.

XP1 = 0.411 22 YP1 = 0.263 59 (13.191)

XP2 = −2.818 8× 10−2 YP2 = 0.377 83 (13.192)

Let us define a rest-to-rest cubic path for X.

X = 0.41122− 0.01149096t2 + 0.000766064t3 (13.193)

We determine the equation of Y as a function of t by substituting X = X(t)
in the line equation (13.190).

Y = −1.9916× 10−4t3 + 2.9874× 10−3t2 + 0.26359 (13.194)
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13.6 F Rotational Path

Consider an end-effector frame to have a rotation matrix GR0 at an initial
orientation at time t0. The end-effector must be at a final orientation GRf

at time tf . The rotational path is defined by the angle-axis rotation matrix
Rû,φ

R 0û,φ =
0Rf =

GRT
0
GRf (13.195)

that transforms the end-effector frame from the final orientation GRf to the
initial orientation GR0. The axis of rotation 0û is defined by a unit vector
expressed in the initial frame. Therefore, the desired rotation matrix for
going from initial to the final orientation, would be

RT
0û,φ =

GRT
f
GR0. (13.196)

Keeping 0û constant, we can define an angular path for ϕ to vary RT
0û,φ

from GR0 to GRf at tf .
To control a rotation, we may define a series of control orientations GR1,

GR2, · · · , GRn between the initial and final orientations, and rotate the
end-effector frame through the control orientations. When there is a control
orientation GR1 between the initial and final orientations, then the initial
orientation GR0 transforms to the control orientation GR1 using an angle-
axis rotation R 0û,φ0

, and then it transforms from the control orientation
GR1 to the final orientation using a second-angle axis rotation R 1û,φ1

.

R 0û,φ0
= GRT

0
GR1 (13.197)

R 1û,φ1
= GRT

1
GRf (13.198)

Proof. According to the Rodriguez rotation formula (3.4),

0Rf = R 0û,φ = I cosφ+
0û 0ûT versφ+ 0ũ sinφ (13.199)

the angle and axis that transforms a frame Bf to another frame B0 are
found from

cosφ =
1

2

¡
tr
¡
0Rf

¢
− 1
¢

(13.200)

0ũ =
1

2 sinφ

¡
0Rf − 0RT

f

¢
. (13.201)

If GR0 is the rotation matrix from B0 to the global frame G, and GRf is
the rotation matrix from Bf to G, then

GRf =
GR0

0Rf (13.202)

and therefore,
0Rf = R 0û,φ =

GRT
0
GRf . (13.203)
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We define a linearly time dependent rotation matrix by varying the angle
of rotation about the axis of rotation

0Rf (t) = R 0û,(
t−t0
tf−t0

)φ
(13.204)

=

⎡⎣ r11(t) r12(t) r13(t)
r21(t) r22(t) r23(t)
r31(t) r32(t) r33(t)

⎤⎦ t0 ≤ t ≤ tf

where, t0 is the time when the end-effector frame is at orientation GR0 and
tf is the time at which the end-effector frame is at orientation GRf , and

r11(t) = u21 vers

µ
t− t0
tf − t0

¶
φ+ cos

µ
t− t0
tf − t0

¶
φ

r21(t) = u1u2 vers

µ
t− t0
tf − t0

¶
φ+ u3 sin

µ
t− t0
tf − t0

¶
φ

r31(t) = u1u3 vers

µ
t− t0
tf − t0

¶
φ− u2 sin

µ
t− t0
tf − t0

¶
φ (13.205)

r12(t) = u1u2 vers

µ
t− t0
tf − t0

¶
φ− u3 sin

µ
t− t0
tf − t0

¶
φ

r22(t) = u22 vers

µ
t− t0
tf − t0

¶
φ+ cos

µ
t− t0
tf − t0

¶
φ

r32(t) = u2u3 vers

µ
t− t0
tf − t0

¶
φ+ u1 sin

µ
t− t0
tf − t0

¶
φ (13.206)

r13(t) = u1u3 vers

µ
t− t0
tf − t0

¶
φ+ u2 sin

µ
t− t0
tf − t0

¶
φ

r23(t) = u2u3 vers

µ
t− t0
tf − t0

¶
φ− u1 sin

µ
t− t0
tf − t0

¶
φ

r33(t) = u23 vers

µ
t− t0
tf − t0

¶
φ+ cos

µ
t− t0
tf − t0

¶
φ. (13.207)

The matrix 0Rf (t) can turn the final frame about the axis of rotation 0û
onto the initial frame, and therefore,

GRf =
GR0

0Rf (t). (13.208)

If there is a control orientation frame GR1 between the initial and final
orientations, then

GR1 = GR0
0R1 (13.209)

GRf = GR1
1Rf (13.210)
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and therefore,

R 0û,φ0
= 0R1 =

GRT
0
GR1 (13.211)

R 1û,φ1
= 1Rf =

GRT
1
GRf . (13.212)

The rotation matrices 0R1 and 1Rf may be defined as linearly time
varying rotation matrices by

0R1(t) = R 0û,(
t−t0
t1−t0

)φ0
t0 ≤ t ≤ t1

1Rf (t) = R 1û,(
t−t1
tf−t1

)φ1
t1 ≤ t ≤ tf .

(13.213)

Using these variable matrices, we can turn the end-effector frame from the
initial orientation GR0 about 0û to achieve the control orientation GR1, and
then turn the end-effector frame about 1û to achieve the final orientation
GRf .
Following the parabola transition technique of section 13.5, we may define

an orientation path connecting GR0 and GRf , and passing close to the
corner orientation GR1 on a transient rotation path. The path starts from
GR0 at time t0 and turns with constant angular velocity along an axis
until t = t1 − t0. At this time, the path switches to a rotational parabolic
path with constant angular acceleration. At another switching orientation
at time t = t1 + t0, the path switches to the second path and turns with
constant velocity toward the destination orientation GRf . The time t1− t0
is the required time to move from GR0 to GR1, and t2 − t1 is the required
time to move from GR1 to GRf if there were no transition path.
We introduce an interval time t0 before arriving at orientation GR1 to

switch from the first path segment to a transition path. The transition
path is then between times t1 − t0 and t1 + t0. At the second switching
orientation, the transition path ends at the same angular velocity as the
third path segment.
The boundary positions of the transition path between the first and third

segments are respectively
GR1(t1 − t0) = GR0

0R1(t1 − t0)

= GR0 R 0û,(1− t0
t1−t0

)φ0
t = t1 − t0 (13.214)

GRf (t1 + t0) = GR1
1Rf (t1 + t0)

= GR1 R 1û,( t0
tf−t1

)φ1
t = t1 + t0. (13.215)

The transition path is then equal to

Rt(t) = GR0
0R1

µ
t1 − t0 − t

2t0
− (t− t0 − t1)

2

4t0 (t1 − t0)

¶
1Rf

Ã
(t+ t0 − t1)

2

4t0 (tf − t1)

!
= GR0 R 0û,(

t1−t0−t
2t0 − (t−t0−t1)2

4t0(t1−t0)
)φ0

R
1û,(

(t+t0−t1)
2

4t0(tf−t1)
)φ1

(13.216)

t1 − t0 ≤ t ≤ t1 + t0
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and the entire path is:

R(t) = 0R1(t) = R 0û,(
t−t0
t1−t0

)φ0
t0 ≤ t ≤ t1 − t0

R(t) = Rt(t) t1 − t0 ≤ t ≤ t1 + t0

R(t) = 1Rf (t) = R 1û,(
t−t1
tf−t1

)φ1
t1 + t0 ≤ t ≤ t2

(13.217)

Example 364 Rotation about Z-axis.
Consider a body B which is initially coincident with the global coordinate

frame G at t = 0. So, its initial transformation matrix is an identity.

GR1 = I (13.218)

B is suppose to be at GR2 after 10 sec.

GR2 =

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦ (13.219)

The axis of rotation 2R1 is the Z-axis, and the angle of rotation is π. The
transformation matrix between the initial and final orientations of B1 and
B2 is:

2R1 =
GRT

1
GR2 =

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦ (13.220)

Let us define a cubic rest-to-rest path for the angle of rotation α.

α =
3π

100
t2 − π

500
t3 (13.221)

The angular path of B between B1 an B2 is:

2R1 =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (13.222)

=

⎡⎣ cos 3π100 t
2 − π

500 t
3 − sin 3π

100 t
2 − π

500 t
3 0

sin 3π
100 t

2 − π
500 t

3 cos 3π100 t
2 − π

500 t
3 0

0 0 1

⎤⎦
Example 365 Rotation about X-axis.
A body B is initially at

GR1 =

⎡⎢⎢⎣
1 0 0

0 cos
π

10
− sin π

10

0 sin
π

10
cos

π

10

⎤⎥⎥⎦ (13.223)
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The body is supposed to be at GR2 in 10 sec.

GR2 =

⎡⎢⎢⎣
1 0 0

0 cos
π

2
− sin π

2

0 sin
π

2
cos

π

2

⎤⎥⎥⎦ (13.224)

The axis of rotation 2R1 is the X-axis, and the angle of rotation is 2
5π =

π
2 −

π
10 . We define a cubic rest-to-rest path for the angle of rotation γ

γ =
π

10
+
3πt2

250
− πt3

1250
(13.225)

to determine the angular path of B between G an B2 is:

GR2 =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (13.226)

At any time t, the body B with respect to B1 is at 1R2.

1R2 = 1RG
GR2 (13.227)

=

⎡⎣ 1 0 0
0 0.951 cos γ − 0.309 sin γ −0.309 cos γ − 0.951 sin γ
0 0.309 cos γ + 0.951 sin γ 0.951 cos γ − 0.309 sin γ

⎤⎦

13.7 Manipulator Motion by End-Effector Path

Cartesian path planning is the most natural application of path planning.
Considering the pick and place motion as the main job of industrial robot,
we have to determine a desired geometric path for the end-effector in the
3-dimenssional Cartesian space of the base frame. We may then define
a time path for one of the coordinates, say X, and determine the time
history of the other coordinates by using the geometric path. Having the
time functions of the coordinates of the end-effector, we can determine the
velocity, acceleration and jerk behavior of the end-effector.
Inverse kinematics will determine the kinematics of joint variables. Sub-

stituting the joint variables’ position, velocity, and acceleration in the dy-
namic equations of motion provide the required actuators’ torque or force
to move the end-effector on the desired path with the planned kinematics.
The geometric Cartesian path is an applied method of path planning in

robotics, because it can control the level of force and jerk inserted by the
hand of a robot to the carrying object. Path planning in Cartesian space
also determines the geometric constraints of the external world. However,
a Cartesian path needs inverse kinematics to determine the time history of
the joint variables.
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X

Y

FIGURE 13.17. Illustration of a 2R panipulator when the tip point moves on a
straight line y = 1.5.

Example 366 Joint path for a designed Cartesian path.
Consider a rest-to-rest Cartesian path from point (1, 1.5) to point (−1, 1.5)

on a straight line Y = 1.5. A cubic polynomial can satisfy the position and
velocity constraints at initial and final points.

X(0) = X0 = 1 Ẋ(0) = Ẋ0 = 0

X(1) = Xf = −1 Ẋ(1) = Ẋf = 0 (13.228)

The coefficients of the polynomial are

a0 = 1 a1 = 0 a2 = −6 a3 = 4 (13.229)

and the Cartesian path is:

X = 1− 6t2 + 4t3 (13.230)

Y = 1.5 (13.231)

The inverse kinematics of a 2R planar manipulator is calculated in Example
184 as

θ2 = ±2 atan2

s
(l1 + l2)

2 − (X2 + Y 2)

(X2 + Y 2)− (l1 − l2)
2 (13.232)

θ1 = atan2
X (l1 + l2 cos θ2) + Y l2 sin θ2
Y (l1 + l2 cos θ2)−Xl2 sin θ2

(13.233)

where the sign (±) indicates the elbow-up and elbow-down configurations
of the manipulator. Depending on the initial configuration at point (1, 1.5),
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the manipulator is supposed to stay in that configuration. Let’s consider an
elbow-up configuration. Therefore, we accept only those values of the joint
valuables that belong to the elbow-up configuration. Substituting (13.230)
and (13.231) in (13.232) and (13.233) provides the path in joint space.

θ2 = ±2 atan2

s
(l1 + l2)

2 − (4t3 − 6t2 + 2.5)2

(4t3 − 6t2 + 1)2 − (l1 − l2)
2 (13.234)

θ1 = atan2

¡
1− 6t2 + 4t3

¢
(l1 + l2 cos θ2) + 1.5l2 sin θ2

1.5 (l1 + l2 cos θ2)− (1− 6t2 + 4t3) l2 sin θ2
(13.235)

A graphical illustration of the manipulator at every 1/30 th of the total
time is shown in Figure 13.17.

Example 367 A 2R manipulator on a line.
Consider the 2R manipulator of Figure 13.14 with

l1 = l2 = 0.25m (13.236)

that its tip point is supposed to move on a given line

Y = −0.25998X + 0.3705 (13.237)

between P1 and P2 in 10 sec.

XP1 = 0.41122 YP1 = 0.26359 (13.238)

XP2 = −0.0282 YP2 = 0.37783 (13.239)

Defining a rest-to-rest cubic path for X, we determine the Cartesian path
of the tip point.

X = 0.41122− 0.0131826t2 + 0.00087884t3 (13.240)

Y = −0.00022848t3 + 0.003427t2 + 0.26359 (13.241)

The kinematics of the tip point are shown in Figures 13.18 to 13.20.
Employing the inverse kinematics of equations (6.39) and (6.42), we find

the variation of the joint angles as are shown in Figure 13.21.
Let us divide the total time of the motion in n = 40 equal intervals. The

configuration of the manipulator at each time step are shown in Figure
13.22.

Example 368 A 2R manipulator on a line with no end acceleration.
Consider the 2R manipulator of Figure 13.14 with

l1 = l2 = 0.25m (13.242)

that its tip point is supposed to move on a given line

Y = −0.25998X + 0.3705 (13.243)
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FIGURE 13.18. Cartesian coordinates of the tip point versus time.
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FIGURE 13.19. Components of the tip point velocity versus time.
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FIGURE 13.20. Components of the tip point acceleration versus time.
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FIGURE 13.21. The variation of joint angles of the 2R manipulator.
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X

Y

FIGURE 13.22. The configuration of the 2R manipulator at 42 equal time steps.

between P1 and P2 in 10 sec.

XP1 = 0.41122 YP1 = 0.26359 (13.244)

XP2 = −0.0282 YP2 = 0.37783 (13.245)

Let us define a quintic path for X to apply a zero acceleration at both ends.

X = 0.41122− 0.0043942t3 + 0.00065913t4

−0.0000263652t5 (13.246)

Substituting X in the line equation (13.243), we also determine the varia-
tion of Y .

Y = 0.26359 + 0.0011424t3 − 0.00017136t4

+0.0000068544t5 (13.247)

Using the Cartesian components (13.246) and (13.247), we determine the
kinematics of the tip point as are shown in Figures 13.23 to 13.20.
Using Equations (6.39) and (6.42), we find the variation of the joint

angles as are shown in Figure 13.26.

Example 369 A 2R manipulator on a line with no end acceleration.
Consider the 2R manipulator of Figure 13.27 with equal arms’ length.

l1 = l2 = 0.25m (13.248)

The tip point is supposed to move from P1 to P2 in 10 sec.

XP1 = 0.41122 YP1 = 0.26359 (13.249)

XP2 = −0.0282 YP2 = 0.37783 (13.250)
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FIGURE 13.23. Cartesian coordinates of the tip point versus time on a no end
acceleration path.
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FIGURE 13.24. Components of the tip point velocity versus time on a no end
acceleration path.
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FIGURE 13.25. Components of the tip point acceleration versus time on a no
end acceleration path.

t

1θ

2θ

deg

FIGURE 13.26. The variation of joint angles of the 2R manipulator on a no end
acceleration path.



13. Path Planning 771

Y

X

l1

l2

1θ

2θ
ϕ

P1

P2 Forbidden zone

R1
R2

FIGURE 13.27. A few circular paths between P1 and P2 to go around forbidden
zone at P3.

However, there is a circular forbidden zone at point P3, where the tip point
cannot pass.

XP3 = 0.19151 YP3 = 0.32071 (13.251)

(X −XP3)
2
+ (Y − YP3)

2
= 0.0252 (13.252)

To find a path between P1 and P2 to go around P3, let us choose a cir-
cular arc with a center on the bisector of P1P2. Figure 13.27 depicts a few
optional paths. The arc must be in the working space of the manipulator,
which is a circle ring about the base point.

(l1 − l2)
2

< X2 + Y 2 < (l1 + l2)
2 (13.253)

0 < X2 + Y 2 < 0.52 (13.254)

The center of the circular path should be on the following line.

Y − YP3 = 3.8464 (X −XP3) (13.255)

Let us pick a point PC to be the center of the circular path at:

XC = 0.1 YC = −0.06 (13.256)

Therefore, the equation of the path is:

(X −XC)
2 + (Y − YC)

2 = 0.452 (13.257)
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t [s]

X

Y

[m]

FIGURE 13.28. Cartesian coordinates of the tip point versus time on a circular
path.

This path is shown in Figure 13.27 with a dashed line.
We use a quintic time-path for X to apply a zero acceleration at both

ends.

X = 0.41122− 0.0043942t3 + 0.00065913t4

−0.0000263652t5 (13.258)

Substituting X in the path equation (13.257), we determine the time-path
of Y .

Y = YC +

q
0.452 − (X −XC)

2 (13.259)

The kinematics of the tip point are shown in Figures 13.28 to 13.30. Equa-
tions (6.39) and (6.42), provides the joint angles as are shown in Fig-
ure 13.31. The configuration of the manipulator at 42 equal time steps are
shown in Figure 13.32.

Example 370 Articulated manipulator on a line.
Figure 13.33 illustrates an articulated manipulator. Assume that

l1 = 0.5m l2 = 1.0m l3 = 1.0m. (13.260)

The tip point of the manipulator is supposed to move from point P1 to P2
in 10 sec.

rP1 =

⎡⎣ 1.5
0.0
1.0

⎤⎦ rP2 =

⎡⎣ −1.01.0
1.5

⎤⎦ (13.261)

Using a quintic path for X, we find the following function to express the
time variation of X.

X = 1.5− 0.025t3 + 0.00375t4 − 0.00015t5 (13.262)
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FIGURE 13.29. Components of the tip point velocity versus time on a circular
path.
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FIGURE 13.30. Components of the tip point acceleration versus time on a circular
path.
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FIGURE 13.31.
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FIGURE 13.32. The configuration of the 2R manipulator at 42 equal time steps
on a circular path.
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FIGURE 13.33. An articulated manipulator.

Let us connect P1 and P2 by a straight line and determine the time variation
of Y and Z.

Y = YP1 +
YP2 − YP1
XP2 −XP1

(X −XP1)

= 0.010t3 − 0.0015t4 + 0.00006t5 (13.263)

Z = ZP1 +
ZP2 − ZP1
XP2 −XP1

(X −XP1)

= 1 + 0.005t3 − 0.00075t4 + 0.00003t5 (13.264)

Using the inverse kinematic equations, we can determine the time history
of joint variables of the manipulator as are shown in Figure 13.34.

θ3 = arccos

µ
l1 − Z + l2 sin θ2

l3

¶
− θ2 (13.265)

θ2 = 2arctan
−C2 +

p
C22 − C1C3
C1

(13.266)

θ1 =

⎧⎪⎨⎪⎩
arctan

Y

X
X ≥ 0

arctan
Y

X
+ π X < 0

(13.267)
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FIGURE 13.34. The time history of joint variables of an articulated manipulator.

C1 = l21 − 2l1Z + l22 +
2l2X

cos θ1
− l23 +

X2

cos2 θ1
+ Z2 (13.268)

C2 = 2l1l2 − 2l2Z (13.269)

C3 = l21 − 2l1Z + l22 −
2l2X

cos θ1
− l23 +

X2

cos2 θ1
+ Z2 (13.270)
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13.8 Summary

A serial robot may be assumed as a variable geometrical chain of links
that relates the configuration of its end-effector to the Cartesian coordi-
nate frame in which the base frame is attached. Forward kinematics are
mathematical-geometrical relations that provide the end-effector configu-
ration by having the joint coordinates. On the other hand, the inverse
kinematics are mathematical-geometrical relations that provide joint coor-
dinates for a given end-effector configuration.
The Cartesian path of motion for the end-effector must be expressed

as a function of time to find the links’ velocity and acceleration. The first
applied path function that can provide a rest-to-rest motion is a cubic path
for a variable qi(t) between two given points qi(t0) and qi(tf )

qi(t) = a0 + a1t+ a2t
2 + a3t

3. (13.271)

By increasing the requirements, such as zero acceleration or jerk at some
points on the path, we need to employ higher polynomials to satisfy the
conditions. An n degree polynomial can satisfy n+ 1 conditions. It is also
possible to split a multiple conditional path into some intervals with fewer
conditions. The interval paths must then be connected to satisfy their
boundary conditions.
A path of motion may also be defined based on different mathematical

functions. Harmonic and cycloid functions are the most common paths.
Non-polynomial equations introduce some advantages, due to simpler ex-
pression, and some disadvantages due to nonlinearity.
When a path of motion either in joint or Cartesian coordinates space is

defined, forward and inverse kinematics must be utilized to find the path
of motion in the other space.
Rotational maneuver of the end-effector about the wrist point needs a

rotational path. A rotational path may mathematically be defined similar
to a Cartesian path utilizing the Rodriguez formula and rotation matrices.
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13.9 Key Symbols

ac constant acceleration
ai, bi, ci coefficient of path equation
B body coordinate frame
C constant of integral
G,B0 global coordinate frame, Base coordinate frame
l length
q dependent variable coordinate, joint variable

Cartesian variable
r position vectors, homogeneous position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix
t dependent variable, time
t0 initial time
tf final time
û axis of rotation
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
δ difference of position vectors
θ rotary joint angle, joint variable
φ angle of rotation

Symbol
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

≡ equivalent
` orthogonal
(i) link number i
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Exercises

1. Notation and symbols.

Describe their meaning.

a- t0 b- tf c- qi(t) d- t0

2. Rest-to-rest cubic path.

Find a cubic path for a joint coordinate to satisfy the following con-
ditions:

(a)
q(0) = −10 deg, q(1) = 45deg, q̇(0) = q̇(1) = 0

(b)
q(0) = 0deg, q(1) = 50deg, q̇(0) = q̇(1) = 0

(c)
q(0) = 10deg, q(1) = 60deg, q̇(0) = q̇(10) = 0

3. To-rest path.

Find a quadratic path to satisfy the following conditions:

q(0) = −10 deg, q(1) = 45deg, q̇(1) = 0.

Calculate the initial velocity of the path using the quadratic path.
Then, find a cubic path to satisfy the same boundary conditions as
the quadratic path. Compare the maximum accelerations of the two
paths.

4. Constant velocity path.

Calculate a path to satisfy the following conditions:

q(0) = −10 deg, q(10) = 45 deg, q̇(0) = q̇(10) = 0

and move with constant velocity q̇ = 25deg / sec between 12 deg and
35 deg.

5. Constant acceleration path.

Calculate a path with constant acceleration q̈ = 25deg / sec2 between
12 deg and 35 deg, and satisfy the following conditions:

q(0) = −10 deg, q(10) = 45 deg, q̇(0) = q̇(10) = 0.
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6. Zero jerk path.

Find a path to satisfy the following boundary conditions:

q(0) = 0, q(1) = 66 deg, q̇(0) = q̇(1) = 0

and have zero jerk at the beginning, middle, and end points.

7. Control points.

Find a path to satisfy the conditions

q(0) = 10deg, q(1) = 95 deg, q̇(0) = q̇(1) = 0

and pass through the following control points:

q(0.25) = 30 deg, q(0.5) = 65 deg

8. A jerk zero at start-middle-stop path.

To make a path have jerk as close to zero as possible, an eight degree
polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + a7t

7 + a7t
8

and nine boundary conditions can be employed. Find the path.

q(0) = 0 q̇(0) = 0 q̈(0) = 0
...
q (0) = 0...
q (0.5) = 0

q(1) = 120 deg q̇(1) = 0 q̈(1) = 0
...
q (1) = 0

9. Point sequence path.

The conditions for a sequence of points are given here. Find a path
to satisfy the conditions given below.

(a)
q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(0.4) = 35 deg
q(0.75) = 65 deg
q(1) = 100 deg q̇(1) = 0 q̈(1) = 0.

(b)
q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(2) = 15 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(10) = 100 deg q̇(10) = 0 q̈(10) = 0.
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10. Splitting a path into a series of segments.

Using the splitting method, find a path for the following conditions:

q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(2) = 15 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(10) = 100 deg q̇(10) = 0 q̈(10) = 0.

by breaking the entire path into four segments.

q1(t) for q(0) < q1(t) < q(2) and 0 < t < 2
q2(t) for q(2) < q2(t) < q(4) and 2 < t < 4
q3(t) for q(4) < q3(t) < q(7.5) and 4 < t < 7.5
q4(t) for q(7.5) < q4(t) < q(10) and 7.5 < t < 10

11. F Extra conditions.

To have a smooth overall path in the splitting method, we may add
extra conditions to match the segments. Solve Exercise 10 having a
zero jerk transition between segments.

12. F Least-squared path.

Using the least squared method, find the best polynomial path of
degree n to approximate a path given by the following points.

q(0) = 5deg
q(1) = 7deg
q(2) = 15 deg
q(3) = 21 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(9) = 85 deg
q(10) = 100 deg

(a) n = 2.

(b) n = 3.

(c) n = 4.

(d) n = 5.

13. F Least-squared path and boundary conditions.

Using the least squared method, find the best polynomial path of
degree n to approximate a path given by the following points and
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conditions.

q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(2) = 15 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(10) = 100 deg q̇(10) = 0 q̈(10) = 0.

(a) n = 2.

(b) n = 3.

(c) n = 4.

(d) n = 5.

14. 2R manipulator motion to follow a joint path.

Find the path of the endpoint of a 2R manipulator, with l1 = l2 =
1m, if the joint variables follow the given paths:

θ1(t) = 10 + 156.25t3

θ2(t) = −41.56 + 222.78t− 172.2t2

15. 3R planar manipulator motion to follow a joint path.

Find the path of the endpoint of a 3R manipulator, with

l1 = 1m

l2 = 0.65m

l3 = 0.35m

if the joint variables follow these given paths:

θ1(t) = −41.56 + 222.78t− 172.2t2

θ2(t) = 148.99− 321.67t+ 216.67t2

θ3(t) = 198545− 827166.6672t
+1290500t2 − 893500t3 + 231666.67t4

Calculate the maximum acceleration and jerk of the endpoint.

16. R`RkR articulated arm motion.

Find the Cartesian trajectory of the endpoint of an articulated ma-
nipulator, shown in Figure 5.22, if the geometric parameters are

d1 = 1m

d2 = 0

l2 = 1m

l3 = 1m
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and the joints’ paths are:

θ1(t) = −41.56 + 222.78t− 172.2t2

θ2(t) = 148.99− 321.67t+ 216.67t2

θ3(t) = 198545− 827166.6672t
+1290500t2 − 893500t3 + 231666.67t4

17. Cartesian paths.

Connect the following points with a straight line. Determine the
Cartesian coordinates as functions of time for rest-to-rest paths in
t = 1 s.

(a)
P1 = (1.5, 1.5) P2 = (−0.5, 1.5)

(b)
P1 = (0, 0) P2 = (1, 1.5)

(c)
P1 = (−1.5, 1) P2 = (0.5, 1.5)

(d)
P1 = (−1.5, 1, 0) P2 = (0.5, 1.5, 1)

(e)
P1 = (−1, 0,−1) P2 = (−0.5, 1.5.1)

18. Cartesian path for a 2R manipulator.

Consider a 2R planar manipulator.

(a) Calculate a cubic rest-to-rest path in Cartesian space to join the
following points with a straight line.

P1 = (1.5, 1) P2 = (−0.5, 1.5)

(b) Calculate and plot the joint coordinates of the manipulator, with
l1 = l2 = 1m, that follows the Cartesian path.

(c) Calculate the maximum angular acceleration of the joint vari-
ables.

19. Cartesian path for a 3R manipulator.

Consider a 3R articulated manipulator with l1 = l2 = l3 = 1m.

(a) Calculate a cubic rest-to-rest path in Cartesian space to join the
following points with a straight line.

P1 = (−1.5, 1, 0) P2 = (0.5, 1.5, 1)
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FIGURE 13.35. A 2R manipulator moves on a path made of two semi-circles.

(b) Calculate and plot the joint coordinates of the manipulator that
follows the Cartesian path.

(c) Calculate the maximum angular velocity and acceleration of the
joint variables.

20. F Joint path for a given Cartesian path.

Assume that the endpoint of a 2R manipulator moves with constant
speed v = 1m/ sec from P1 to P2, on a path made of two semi-circles,
as shown in Figure 13.35. The center of the circles are at (0.75m,
0.5m) and (−0.75m, 0.5m).

(a) Calculate and plot the joints’ path if l1 = l2 = 1m.

(b) Calculate the value and positions of the maximum angular ve-
locity in joint variables.

(c) Calculate the value and positions of the maximum angular ac-
celeration in joint variables.

(d) Calculate the value and positions of the maximum angular jerk
in joint variables.

21. F Obstacle avoidance and path planning.

Let us determine a path between P1 = (1.5, 1) and P2 = (−1, 1) to
avoid the obstacle shown in Figure 13.36. The path may be made of
two straight lines with a transition circular path in the middle. The
radius of the circle is r = 0.5m and the center of the circle is at the
lower point of the obstacle. The lines connect to the circle smoothly.

The endpoint of the 2Rmanipulator, with l1 = l2 = 1m, starts at rest
from P1 and moves along the first line with constant acceleration. The
endpoint keeps its speed constant v = 1m/ sec on the circular path
and then moves with constant acceleration on the final line segment
to stop at P2.
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FIGURE 13.36. An obstacle in the Cartesian space of motion for a 2R manipu-
lator.

(a) Calculate and plot the joints’ paths.

(b) Find the value and position of the maximum angular velocity
for both joints’ variable.

(c) Find the value and position of the maximum angular accelera-
tion for both joints’ variable.

(d) Find the value and position of the maximum angular jerk for
both joints’ variable.

22. F Joint path for a given Cartesian path.

(a) Connect the points P1 = (1.1, 0.8, 0.5) and P2 = (−1, 1, 0.35)
with a straight line.

(b) Find a rest-to-rest cubic path and plot the Cartesian coordinates
X, Y , and Z as functions of time.

(c) Calculate the joints’ path for an articulated manipulator, shown
in Figure 5.22, if the geometric parameters are:

d1 = 1m

d2 = 0

l2 = 1m

l3 = 1m

(d) Find the value and position of the maximum angular velocity,
acceleration, and jerk for the joints’ variable.

23. F Transition parabola.

In Exercise 21, connect the points P1 = (1.5, 1) and P2 = (−1, 1) with
two straight lines, using P0 = (0, 0.6) as a corner. Design a parabolic
transition path to avoid the corner if the total time of motion is 12 sec
and



788 13. Path Planning

(a) the interval time is t0 = 1 sec.

(b) the interval time is t0 = 2 sec.

(c) the interval time is t0 = 5 sec.

(d) the interval time is t0 = 8 sec.

(e) the interval time is t0 = 10 sec.

24. F Rotational path.

Consider a body frame B that turns 90 deg about Z-axis. Determine
the rotation transformation matrix GRB(t) such that

(a) the rotation takes place in t = 1 s and the angular velocity is
constant.

(b) the rotation takes place in t = 1 s and the rotation is rest-to-rest.

25. F Combined rotational path.

Consider a body frame B that turns 90 deg about Z-axis and 60 deg
about X-axis.

(a) Determine the rotation transformation matrix GRB(t) such that
the body first turns about Z-axis in t1 = 1 s rest-to-rest, and
then turns about X-axis in t2 = 1 s rest-to-rest.

(b) Multiply the rotation matrices of RZ(t) and RX(t). Now GRB(t)
has only one time variable. Where would B be after t = 1 s?

(c) Multiply the rotation matrices of RZ and RX and determine
GRB. Determine the angle and axis of rotation of GRB. Define
a rest-to-rest path for the angle of rotation to move B from
initial to final orientation in t = 1 s.

26. F Euler angles rotational path.

Assume that the spherical wrist of a 6 DOF robot starts from rest
position and turns about the axes of the final coordinate frame B6 in
order z-x-z for ϕ = 15deg, θ = 38deg, and ψ = 77deg. The frame
B6 is installed at the wrist point.

(a) Design a rest-to-rest cubic rotational path for the angles ϕ, θ,
and ψ, if each rotation takes 1 sec.

(b) Find the axis and angle of rotation, (û, φ), that moves the wrist
from the initial to the final orientation.

(c) Design a cubic rotational path for the axis-angle rotation if it
takes 3 sec.

(d) Calculate the Euler angles path ϕ(t), θ(t), and ψ(t) for this
motion.
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(e) Calculate and compare the maximum angular velocity, acceler-
ation, and jerk for ϕ, θ, and ψ in the first and second motions
in part a and c.

(f) Calculate the maximum angular velocity, acceleration, and jerk
of φ in the second motion in part c.
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