12

Robot Dynamics

We find the dynamics equations of motion of robots by two methods:
Newton-FEuler and Lagrange. The Newton-Euler method is more fundamen-
tal and finds the dynamic equations to determine the required actuators’
force and torque to move the robot, as well as the joint forces. Lagrange
method provides only the required differential equations that determines
the actuators’ force and torque.

FIGURE 12.1. A link (¢) and its vectorial kinematic characteristics.

12.1 Rigid Link Newton-Euler Dynamics

Figure 12.1 illustrates a link (¢) of a manipulator and its velocity and accel-
eration vectorial characteristics. Figure 12.2 illustrates free body diagram
of the link (7). The force F;_; and moment M;_; are the resultant force
and moment that link (¢ — 1) applies to link (¢) at joint ¢. Similarly, F; and
M, are the resultant force and moment that link (i) applies to link (i + 1)
at joint ¢ + 1. We measure and show the force systems (F;_; , M;_1) and
(F; , M;) at the origin of the coordinate frames B;_; and B; respectively.
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Joint i
Action joint

Joint i+1
Reaction joint

r;

FIGURE 12.2. Force system on link (7).

The sum of the external loads acting on the link (i) are shown by > F.,
and Y M,,.

The Newton-Euler equations of motion for the link (7) in the global co-
ordinate frame are:

OF,_1 — °F; + Z OF., =m; a; (12.1)

M, — °M; + Z M.,
+ (Odi_l — Ori) X OFi_l — (Odi — Ori) X OFi = OIi 00¢; (122)

Proof. The force system at the distal end of a link (i) is made of a force
F; and a moment M; measured at the origin of B;. The right subscript on
F; and M; is a number indicating the number of coordinate frame B;.

At joint i + 1 there is always an action force F;, that link (¢) applies to
link (i + 1), and a reaction force —F;, that the link (i + 1) applies to the
link (). Therefore, on link (7) there is always an action force F;_; coming
from link (¢ — 1), and a reaction force —F; coming from link (i 4 1). Action
force is called driving force, and reaction force is called driven force.

Similarly, at joint 7 + 1 there is always an action moment M;, that link
() applies to the link (i+1), and a reaction moment —M,;, that link (i41)
applies to the link (7). Hence, on link (¢) there is always an action moment
M, _; coming from link (i — 1), and a reaction moment —M; coming from
link (¢ + 1). The action moment is called the driving moment, and the
reaction moment is called the driven moment.
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Therefore, there is a driving force system (F;_; , M;_1) at the origin
of the coordinate frame B;_1, and a driven force system (F; , M;) at the
origin of the coordinate frame B;. The driving force system (F;_q , M;_1)
gives motion to link (7) and the driven force system (F; , M;) gives motion
to link (i 4 1).

In addition to the action and reaction force systems, there might be some
external forces acting on the link (¢) that their resultant makes a force
system (3" F., , > M,,) at the mass center C;. In robotic application,
weight is usually the only external load on middle links, and reactions from
the environment are extra external force systems on the base and end-
effector links. The force and moment that the base actuator applies to the
first link are Fy and My, and the force and moment that the end-effector
applies to the environment are F,, and M,,. If weight is the only external
load on link (i) and it is in — ko direction, then we have

Z °F., = m; "g=—migo (12.3)
Z ‘M., = °rixm;%g=—-"r;x m; g ko (12.4)

where g is the gravitational acceleration vector.

As shown in Figure 12.2, we indicate the global position of the mass
center of the link by °r;, and the global position of the origin of body
frames B; and B;_; by °d; and °d,;_; respectively. The link’s velocities
Ovi, ow; and accelerations “a;, goy; are measured and shown at C;. The
physical properties of the link (7) are specified by its mass m; and moment
of inertia °I; about the link’s mass center C;.

The Newton’s equation of motion determines that the sum of forces ap-
plied to the link (¢) is equal to the mass of the link times its acceleration
at CZ

OFi_l - OFi + Z OFei =m; Oai (125)

For the Euler equation, in addition to the action and reaction moments,
we must add the moments of the action and reaction forces about C;. The
moment of —F; and F;_; are equal to —m; x F; and n; X F;_; where m;
is the position vector of o; from C; and n; is the position vector of 0;_1
from C;. Therefore, the link’s Euler equation of motion is

M, — °M; + Z ‘M.,

12.6
+ Oni X OFi_l — Omi X OFZ' = OIZ' 00; ( )
however, n; and m; can be expressed by
Ol’li = Odi_l - OI',L' (127)
Omi = Odi — OI'i (128)

i-1di = “m; - ’n (12.9)
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FIGURE 12.3. One link manipulator.

to derive Equation (12.2).

Since there is one translational and one rotational equation of motion
for each link of a robot, there are 2n vectorial equations of motion for an
n link robot. However, there are 2(n + 1) forces and moments involved.
Therefore, one set of force systems (usually F,, and M,,) must be specified
to solve the equations and find the joints’ force and moment.

Example 323 One-link manipulator.

Figure 12.8 depicts a link attached to the ground via a spherical joint
at O. The free body diagram of the link is made of an external force and
moment at the endpoint, gravity, and the driving force and moment at the
joint. The Newton-FEuler equations for the link are:

OFy + F.+mgKk = mPlac (12.10)
Mo+ ‘M. + ‘nx °Fo+ ‘mx °F. = ‘Toay (12.11)
To see the application, let us consider the uniform beam of Figure 12.4(a).

Figure 12.4(b) illustrates the FBD of the beam and its relative position
vectors m and n.

i §c059 0 —5 cos
me= isin& = —isin9 (12.12)
2 2
0 0

The kinematics of the beam are:

¢y = —%n (12.13)
°d;, = —%ny+ 'my (12.14)
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m; g

(a) (b)

FIGURE 12.4. A turning uniform beam.

where, Ory indicates the position of C, and °d; indicates the position of the
tip point, both in By.

wi = 0K (12.15)
oo = o =0K (12.16)
g = —gJ (12.17)
Oac = 01 X 01‘1 — w1 X (0(4.71 X 01‘1)

L. . l.2
—5981110—&—59 (cos9)

éécos@—!— éﬁz sin 6 (12.18)

0

The forces on the beam are:

Fx 0
Fog=| Fy “Fo=1|0 (12.19)
| Fz | 0
[ Qx 0
My = | Qy ‘M,=1| 0 (12.20)
| Qz 0

Let us assume that 11, is the mass moment matriz of the beam about its
mass center.

I. 0
=0 I, (12.21)
0 0
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cosf —sinf 0
ORlzRZﬁ: sinf cosf O (12.22)
0 0 1
I, 0 0
°l = Rzpy'Lh Rzy=°"Ri| 0 I, 0 | °R]
0 0 I
I, cos? 0+ I,sin*0 (I, )COS@Sinﬁ 0
= (I, — I,)cos@sin® I,cos?0+ I,sin®0 0 (12.23)

0 0 I,

Substituting the above information in Equations (12.10) and (12.11) pro-
vides the following equations of motion.

Fo + °F. + mig = m; %ac (12.24)
1 .. ,
Fy —§m1l (9 sin § — 92 Cos 9)
1 . ) .
Fy —mal (0 cosf + 02 sin 0) +mag (12.25)
Fy 2
"My + °M, + °n x °Fg + "m x °F, = I you; (12.26)
l
—F7sin6
2
Qx l
Qy | = ——Fycosf (12.27)
2
Qz

0+ %Fy cos bt — %FX sin 6

Let us substitute the force components from (12.25) to determine the com-
ponents of the driving moment M.

0
Qx ’
Qv | = N (12.28)
Qz (I + 1 )9+§m1glcost9

Example 324 A four-bar linkage dynamics.

Figure 12.5(a) illustrates a closed loop four-bar linkage along with the
free body diagrams of the links, shown in Figure 12.5(b). The position of
the mass centers are given, and therefore the vectors °n; and “m; for each
link are also known. The Newton-Euler equations for the link (i) are

OFi_l — OFi —I—mlgj = my Oai (1229)
OMi,1 - OMi + Ol’li X OFZ‘,1 — Omi X OFZ' = I, goy (1230)
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() F; j&

FIGURE 12.5. A four-bar linkage, and free body diagram of each link.

and therefore, we have three sets of equations.

OFQ - OFl + mlgj = ma 0a1 (1231)
OMO — 0M1 + On1 X OFO — 01’111 X 0F1 = Il 01 (1232)
0F1 — OFQ + mggj = M2 Oa2 (1233)
0M1 — 0M2 + OIIQ X OFl — Omg X 0F2 = IQ 002 (1234)
OFy — F3 +msgJ = msyay (12.35)
0M2 - 0M3 + Ong X OF2 — 0m3 X 0F3 = I3 03 (1236)

Let us assume that there is no friction in joints and the mechanism is
planar. Therefore, the force vectors are in the XY plane, and the moments
are parallel to Z-azxis. So, the equations of motion simplify to

OFO — OFl + mlgj = m Oal (1237)
OMO + 0n1 X OFO — 0m1 X 0F1 = I g1 (12.38)
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OFl - 0F2 + mag j = M2 OaQ (1239)
01’12 X 0F1 — Omg X OF2 = IQ 002 (1240)

0 0 T 0

F2 — F3 + msg J = meo ~Qg (1241)
01’13 X 0F2 — Omg X OFg = 13 003 (1242)

where, °M is the driving torque of the mechanism. The number of equa-
tions reduces to 9 and the unknowns of the mechanism are:

Foz, Foy, Fie, Py, Fog, Foy, F3y, F3yy, My (12.43)

We can rearrange the set of equations in a matriz form

[Alx=Db (12.44)
where,
[ 1 0 -1 0 0 0 0 0 0]
0 1 0 -1 0 0 0 0 0
N1y MNix miy —Mix 0 0 0 0 1
0 0 1 0 -1 0 0 0 0
[A] = 0 0 0 1 0 -1 0 0 0
0 0 —N2y Ny May —Moy 0 0 0
0 0 0 0 1 0 -1 0 0
0 0 0 0 0 1 0 -1 0
L 0 0 0 0 —N3y N3y mszy —M3g 0 i
(12.45)
[ F(]z ] [ miayy ]
Foy miaiy — mig
Fiy Loy
Fyy MGy
X = FQ;C b= maQgy — Mag (1246)
F2y Lao
Fs3, m3ase
F3, maasy — masg
| Mo | i Izas

The matriz [A] describes the geometry of the mechanism, the vector x is
the unknown forces, and the vector b indicates the dynamic terms. To solve
the dynamics of the four-bar mechanism, we must calculate the accelerations
Ya; and gy and then find the required driving moment Mg and the joints’
forces.

The force

F,=F;—Fy (12.47)

1s called the shaking force and shows the reaction of the mechanism on
the ground.
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Example 325 A turning uniform beam with a tip mass.

Let us consider the uniform beam of Figure 12.6(a) with a hanging mass
my at the tip point. Figure 12.6(b) illustrates the FBD of the beam. The
mass center of the beam is at 'ry

/2 l
by = — 1o |42
m1 + mo 0 m1 + mo 0
m1—|—2m2 ,
— 2(7”18””2) -l o (12.48)
0 0

and its relative position vectors m and n are:

'ny, = —'ry=—-r, (12.49)
'my = li—-try=(0-r)i (12.50)
Odl = — 1Ill + 1m1 =i (12.51)
(I —ry)cosd —1r, cos 0
‘m=| (I—r,)sing ‘n=| —p, sin6 (12.52)
0 0

The kinematics of the beam are:

wi = 0K (12.53)
o1 = ow1=0K (12.54)
g = —gJ (12.55)

0 0 0
ac 01 X "ri+ owi X (0(4.71 X I‘1)

—r,0sin6 + 7'9602 (cos )

= TxéCOSQ+T’x92 sin 6 (12.56)
0
The forces on the beam are:
[ Fx ] 0
Fo=| Fy F.=| 0 (12.57)
| Fz | 0
[ Qx ] 0
My = | Qy ‘M,=1| 0 (12.58)
| Qz | 0
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m
m; g 28

(b)
FIGURE 12.6. A uniform beam with a hanging weight mg2 at the tip point.

Let us assume that ‘I, is the mass moment matriz of the beam about its
center,
I, 0 O
=101, 0 (12.59)
0 0 I

then the mass moment matriz of the manipulator about the common mass
center at 'rq is:

I, 0 0
'L = 0 I, 0 (12.60)
0 0 I
A 9
.[3 = IZ+M1 Ty — 5 +M2 (l—’l“m) (1261)

Knowing the transformation matriz °Ry, we can determine °I,.

cos —sinf O
Ri=Rzp=| sinf cosf 0 (12.62)
0 0o 1
I, 0 0
°l = Rgzpy'LhRpy=°"Ri | 0 I, 0 | °R]
0 0 I

I, cos? 0+ I, sin*0 (I, — )cos@sin@ 0
(Ip — Iy)cosOsinf I,c 29—1—] sin0 0 (12.63)
0 0 I3
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Substituting the above information in Equations (12.10) and (12.11) pro-
vides the following equations of motion.

- 1
Fo+ °F. + mig K = mq %ac + mo B Yac (12.64)
Fyx —(m1 +ma) Ty (9 sinf — §” cos 9)
II;Y | (my+ma)rs (9 cosf + 0 sin 9) + (ma+m1)g (12.65)
z 0
My + ‘M. + ‘n x °Fp+ “m x °F. = I g4 (12.66)
QX T:CFZ sin @
Qy | = ) —7r,F7 cos 0 (12.67)
Qz 130 + 1 Fy cos — rpF'x sin 0

Let us substitute the force components from (12.65) to determine the com-
ponents of the driving moment M.

QRx 0
Qv | = 0 (12.68)
Qz (L. + (my 4+ m2) r2) 6 + (my + ma) rg cos b

Substituting r, provides the required torque Q.

1 . /1
Qo=Qz = <Zm112 +mal® + Iz> 0+ <§m1 + m2> glcos® (12.69)

Example 326 2R planar manipulator Newton-Fuler dynamics.

A 2R planar manipulator and its free body diagram are shown in Figure
12.7. The torques of actuators are parallel to the Z-axis and are indicated
by Qo and Q1. The Newton-FEuler equations of motion for the first link are:

OFg— "Fy +migJ = my%a;  (12.70)
°Qp — °Q; + "ny x Fy— ‘m; x °F; = I gy (12.71)

and the equations of motion for the second link are:

OF, +magJ = my lay (12.72)
OQl + 01’12 X OFl = 0[2 002 (1273)

There are four equations for four unknowns Fo, F1, Qq, and Q1. These
equations can be set in a matriz form

A]x=b (12.74)
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FIGURE 12.7. Free body diagram of a 2R palanar manipulator.

where,
1 0 0 -1 0 0
0 1 0 0 -1 0
_ Niy —Nig 1 —Miy mig -1
(4] = 0 0 0 1 0 0 (12.75)
0 0 0 0 1 0
0 0 0 UM —N9y 1
Fo, miaiy
Foy mla&y —mig
Qo Loy
= b= . 12.76
x Fiy m2Q2y ( )
Fly mal2y — Mag
Q1 Lo

Example 327 Equations for joint actuators.

In robot dynamics, we do not need to find joint forces. Actuator torques
are much more important as they are used to control a robot. In Eram-
ple 826 we identified four equations for the joints’ force system of the 2R
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manipulator that is shown in Figure 12.7.

OFO — 0F1 +mig j = ma Oa1 (1277)

0 0 0 0 0 0 _ 0
Qo— "Qi+ m x Fo— "my x "Fr = "lLoa (12.78)
OFl + mggj = M2 03.2 (1279)
°Q; 4+ ‘my x °F; = ‘Lo (12.80)

However, we may eliminate the joint forces Fo, F1, and reduce the number
of equations to two for the two torques Qg and Q1. Eliminating F1 between
(12.79) and (12.80) provides

'Q: = "L gas — “ny x (m2 Yay — mag j) (12.81)
and eliminating Fo and F1 between (12.77) and (12.80) gives:
Qo = Qi+ “Lipor + "my x (mz Oa; — mag j)
— %y x (ml Oa, fmlgj+m2 Oa, ,ngj) (12.82)
The forces Fy and F1, if we are interested, are equal to:
Fi = mylay —mag J (12.83)
Fo = myila; +moay— (my+ma)yg J (12.84)

Example 328 2R planar manipulator with massive arms and joints.

In a real situation for a 2R planar manipulators, we generally have a
massive motor at joint 0 to turn the link (1) and a massive motor at joint
1 to turn the link (2). We may also carry a massive object by the gripper at
the tip point. The motor at joint 0 is siting on the ground and its weight will
not effect the dynamics of the manipulator. The FBD of the manipulator
18 stmilar to Figure 12.8.

The massive joints will displace the position of C; and changes the rela-
tive position vectors m and n. We will have the same equations of motion
(12.70)-(12.72) provided we determine m and n for the new position of C;
as suggested in Figure 12.9.

OFO — 0F1 + (m11 + m12)g J = my 0a1 (12.85)
OQQ — OQ1 + 0111 X OFQ — Om1 X 0F1 = 0[1 001 (1286)
0F1 + (m21 + mgg)gj = (m21 + mgz) Oag (12.87)
0Q1 + Ong X 0F1 = 0[2 002. (1288)
We may show the masses as
mip = Mmi1+ mi2 (1289)
mg = Ma1 + Ma2 (12.90)

and use the same equations (12.79)-(12.80) with asymmetric mass centers.
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FIGURE 12.8. A 2R planar manipulator with massive arms and massive joints.

(mztmy)g

0;

FIGURE 12.9. Determination of the vectors m and n for new positions of mass
center Cj.
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Example 329 2R planar manipulator general equations.

Let us analyze a general 2R manipulator that has massive arms and
carries a payload mg as is shown in Figure 12.10.

The equations of motion are:

OFg— Fi+migJ = m%a;  (12.91)

°Qo — °Q1 + "my x "Fo— "my x °F; = °Loon  (12.92)
OF, + (mo+ma)gJ = mylay  (12.93)

°Q1 + “ny x Fy + “my x mogj = Loy (12.94)

Elimination the joint forces Fo, F1 provides the following equations for the
torques Qo and Q1.

Q1 = Iy g0 — "my x (mz Oay — (mo +my) 9J> — "my xmog J (12.95)

°Q = Qi+ Ligas+ "my x (mz Oay — (mo +m2)gj>
— % x (m1 Oa; +my %ay — (mo +my —i—mg)gj) (12.96)

The forces Fo and F1 are equal to:

Fi, = mplas — (mg+ma)g J (12.97)
Fo = myila; +myay — (mo+mi+ma)g J (12.98)
Opp = —%n (12.99)
9 = —%+ %my — %ny (12.100)
°d; = —n; 4+ "my (12.101)
d, = —ny+ "my (12.102)
°dy = —"ny+ “m; — "ny + "my (12.103)

In a general case, the local position vectors of C; are:

—c1 cos by
0111 = ORl 11’11 = —Rz’gl C1 1’21 = —cy sinfy (12104)
0
‘ng = —"Ry’ny=—-"R; 'Ry’ny
—cocos (01 + 62)
= —Ryzg, Rzp, 2% = | —casin(b1 +05) (12.105)
0
—cg cos 05

11‘12 = — 1R2 21’12 = 7RZ,92 Co Qig = —C2 sin 92 (12106)

0
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FIGURE 12.10. A 2R manipulator that has massive arms and carries a payload

mo.
(Iy — 1) cos 01
01111 = 0R1 III11 = Rz, (lh — 1) lil = (lh —c1)sin 6y
0
011’12 = 0R2 211’12 = ORQ (ZQ — Cg) 2’22
(ZQ — Cg) COS (91 + 92)
= (lg —CQ)SiH (91 +92)
0
where,
[ cosf; —sinh; 0 ]
‘R, = Rzo, = | sinfy cosf; O
| 0 0 1|
[ cosfy —sinfs 0 ]
'R, = Rz, = | sinfy cosfy O
| 0 0 1|
cos (01 +62) —sin(6;+63) 0
0R2 = Rz,91+62 = sin (01 + 92) coS (91 + 92) 0

0 0 1

(12.107)

(12.108)

(12.109)

(12.110)

(12.111)



The position vectors are as follows.

ry

ry

(Jd1

0
1d2

Od2

0

—n; = "Ry 'ry =

"Ry c1iy =

0 0 0
— ngp+ "my — np =

Iy cos by + cocos (01 + 02)
ll sin 91 + co sin (91 + 92)

0

0 0
—m+ my =

0 0
— n2+ ms =

0 0 0 0
—n;+ m; — ng+ "me
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¢y cos
c1 sin 6y
0

9d; + "Ry %ry

[ 11 cos 6,

ll sin 91

0

0

[ 15 cos (61 + 02)
ZQ sin (91 + 92)

Iy cos (01 + 62) + 11 cos 0y

The links’ angular velocity and acceleration are:

04, + 9dy = | lysin (01 4 05) + 1y sin 6,
0
w1 = él [A(
ooy = oun =0 K
w2 = (91 + 92) f(
02 = w2 = (91 + ég) K

The translational acceleration of C; are:

0al

0&1

0 0
= 001 X T3 — w1 X (0w1 X 1‘1)

P .9
70191 S 01 + 6191 COS 91

0

. .2
= ¢101 cos 01 + 107 sin 6,

0 0
= 01 X d; — ow1 X (0w1 X dl)

—llél sin 01 + llef cos 01
1161 cos 01 + lléf sin 64

0

(12.112)

(12.113)

(12.114)

(12.115)

(12.116)

(12.117)
(12.118)

(12.119)

(12.120)

(12.121)

(12.122)
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Ody, = Gd20d2—0& + 0o x 9dy — Jws x (Jwy x {ds)
2 = dt2 - 1 1%2 142 1%2 1%2 142
OC.Z.Qac
— Od'Qy (12.123)
0
Od'zw = —llél sin 01 — lgég sin (91 + 92)
-l-ll@? cos 61 + 52[93 cos (61 + 602) (12.124)
Od'gy = llél cos 0 + lgég coS (01 + 92)
102 sin 6, + 105 sin (61 + 02) (12.125)
Oa2 = 0&2 + gOg X (OI'2 — Odg) — oWwa X (0&)2 X (01‘2 — Odg))

0 0 0
= ‘dy — gaz x "my + gws X (pw2 x "my)
0

a2g
= | Yag (12.126)
0
0(121 = ((ZQ — CQ) (91 + 92) — l2é2> sin (01 =+ 02)
—llél sin 61 + llﬁf cos 6
. . 2 .2
— ((l2 — 62) (91 + 92) — 1292> (¢0)] (91 + 02) (12127)
Yazy = - ((12 —c2) (91 + éz) - l2é2> cos (61 + 62)

+llé1 COS 91 + llei sin 91

- ((lz —c2) (91 + 92)2 - lzé)§> sin (61 +62)  (12.128)

The moment of inertia matrices in the global coordinate frame are:

L, 0 0
°i = Rgp, 'h R,y ="Ri| 0 I, 0 |°R
0 0 I,

Iw10201 + [yl 8201 (le — Iy1) ch1s604 0

(1:1:1 —Iy1)091391 Iy10201 +Ix18291 0 (12129)
0 0 Izl




12. Robot Dynamics 659

L, 0 0
°L = °Ry?L°R; =°Ry | 0 I, 0 |°R}
0 0 I,

Imzczﬁlg =+ Iy252912 (Iwz — [yQ) 125012 0

= (Izz — Iyz) ch125012 Iy262912 + I:r252912 0 (12130)
0 0 I,

b = 01+02 (12.131)

Substituting these results in Equations (12.95) and (12.96), and solving for
Qo and Q1, provides the dynamic equations for the 2R manipulator.

Q1 = %Los— "ny x (mz Yay — (mg +m2)9j) — "my x mog J
0
= 0 (12.132)
Ole
°Q1. = (IZ2 + mgcg — malaco + malycs cos 02) 0,

+ (IZQ + mQCg) éz — m202l19i sin 92

— (mQCQ + molg) g cos (01 + 02) (12133)

°Q = Qi+ °Ligas + "my x (mz Ya; — (mo +m2)gj)

—%ny x (m1 Oa; —mygJ + (mg Oa, — (mo +m2)gj>)

0
= 0 (12.134)
OQOZ
OQOz = (Izl + 1, + mlc% + mo (l% + Cg —lyeo +1g (202 — lg) cos 92)) él

+ (I, + macy (ca + 11 cosB5)) 0y — m2l1l29i sin 04

+m2l16293 sin 0y — 2moly (I — c2) 6105 sin 05

— (mol1 +myc1 + maly) g cos 61

— (mola + maca) g cos (61 + 02) (12.135)

Example 330 % Matrixz form of equations of motion.
Let us rearrange the equations of motion (12.133) and (12.135) in a
matriz form.
D(q)d+ C(q,4)q+ G(q) =Q (12.136)

0
q= [ Z; } Q= { 08; ] (12.137)
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D(q) = [ Z1+ gzlx - gz I 2 C+05206200S 0> Z1+ 531008 0 ] (12.138)
. — 7301 sin 05 0

Cla.d) = (—Z791 — Zgég) sin 0y (Z392 - Z891) sin 0y 1 (12.139)
Gla) = [ —Zy cos%lciséfiigiz cos 01 } (12.140)

Zy = L, +mac (12.141)

Zy = malcy (12.142)

Zs = malic (12.143)

Zy = L, +mcd (12.144)

Zs = molf (12.145)

Zg = maly (2c2 — o) (12.146)

Z7 = mahls (12.147)

Zg = maly(la —c2) (12.148)

Zy = (maca+mpla)g (12.149)

Zvo = (moli +mici +mali)g (12.150)

Example 331 % Joint forces of the general 2R manipulator.

Substituting the vectorial information of (12.104)-(12.130) in (12.97)
and (12.98), we find the joint forces of the general 2R manipulator that
s shown in Figure 12.10. The manipulator has massive arms with mass
center at C; and carries a payload my.

OFlw
OF1 = Mo Oag — (mo + mg)gj = OFly (12151)
0
Ole = (m2 (l2 — 62) sin (91 + 92) — mgll sin 91) él

*mQCQéQ sin (01 + 02) + m2629§ COS (01 + 92)
+ (ma (I — ¢2) cos (01 + 02) + maly cosby) 9?
+2maly (12 — 82) élég COS (91 + 02) (12152)

OF, = (—ma(la —c)cos (61 + 02) +maly cosb) 0
+m20292 Ccos (91 + 02) + m2029§ sin (91 + 92)

+ (*mg (lg — CQ) sin (01 + 02) + moly sin 01) 9?
—2mpsly (12 — 82) élég sin (91 + 92)
—(mo +m2) g (12.153)
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OFO;E
OFO =m 03.1 + mo Oa2 — (mo +my + m2> gj = OFoy (12.154)
0
OFOx = (m2 (l2 - 02) sin (91 + 92) — (mlcl + mgll) Sinel) él

—mQCQéQ sin (91 + 92) — m2C2é§ CcoSs (91 + 92)

+ (—=ma (o — c2) cos (01 + 02) + (maly + mqycy) cosby) 6
—2m2 (12 — 02) 9192 [¢0)] (91 +92) (12155)

Ong = (—ma2(l2 — c2) cos (01 + 02) + (maly + mic1) cosby) 04
+mogcals cos (014 602) + m2029§ sin (01 + 02)
4 (—ma (I — c2) sin (1 + 02) + (maly + mac:)sinéy) 0
—2maly (I2 — ¢2) 0102 sin (61 + 02)
—(mog+m1+ma)g (12.156)

12.2 % Recursive Newton-Euler Dynamics

An advantage of the Newton-Euler equations of motion in robotic applica-
tion is that we can calculate the joint forces of one link at a time. Therefore,
starting from the end-effector link, we can analyze the links one by one and
end up at the base link or vice versa. For such an analysis, we need to re-
form the Newton-Euler equations of motion to work in the interested link’s
frame.

The backward recursive Newton-Euler equations of motion for the link
(1) in its body coordinate frame B; are:

iFi,1 = iFi - Z iFei +m; f]al- (12157)

iMifl = iMi - Z iMei - (idifl - il‘i) X iFifl
+ (*di — 'ri) x "By 4+ 'L oy + bwi x T fw; (12.158)
‘n; = ‘dj_1— 'r; (12.159)
‘m; = ‘d; — ' (12.160)

When the driving force system (‘F;_1, “M;_;) is found in frame B;, we can
transform them to the frame B;_; and apply the Newton-Euler equation
for link (i — 1).

Gt AP CITR, (12.161)
v, = T M (12.162)
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The negative of the converted force system acts as the driven force system
(— i_lFifl, — i_lMifl) for the link (’L — 1)

The forward recursive Newton-Euler equations of motion for the link (7)
in its body coordinate frame B; are:

"Fi="Fi1+ Y 'Fe, —mipa (12.163)

™M, = Mg+ "M, + (dis1 — 1) x 'Fiy
— (’Ldl — iri) X iFi — i[,; 60[, — 6&)1' X ’LIZ 6(4)1 (12164)
‘n, = ‘di_;—"'r; (12.165)
‘m; = ‘d;—'r; (12.166)

When the reaction force system (‘F;, ‘M;) is found in frame B;, we can
transform them to frame B, ;.

HF = T F (12.167)
M o= T M (12.168)

The negative of the converted force system acts as the action force system
(7 i+1Fi7 7i+1Mi) for the link (Z + 1)

Proof. The Euler equation for a rigid link in body coordinate frame is:

G 0
BM = d—fBL: BL + Bwp x PL
= 1]-2 O+ ng X iIi Wi (12169)

where L is the angular momentum of the link.
BL = P1Buwp (12.170)

We may solve the Newton-Euler equations of motion (12.1) and (12.2) for
the action force system

¥,y = OF,— Z OF., +m;a; (12.171)
M,.; = "M; - Z M., — (°di—1 — °r;) x OF;4
0d
+ (Odz — OI‘Z‘) X OFZ‘ + E OLZ‘ (12172)

and then, transform the equations to the coordinate frame B; attached to
the link’s () to make the recursive form of the Newton-Euler equations of
motion.

iFi,1 = OTiil OFZ',1 = iFi — Z Z4Fei —+m; éai (12173)
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iMifl _ 01‘!7;71 01\/‘[1_71
= iMi — Z iMei — (idi,1 — iri) X iFl;l (12174)
0
+ (ZdZ — iI‘i) X iFZ' + d_(ff iLZ'

= iMi — Z iMei — (idi,1 — iri) X iFl;l
+ (zdz — iri) X iFi + i i (i)ai + sz X iIi 6(;}1 (12175)

Starting from link (7) and deriving the equations of motion of the previous
link (i — 1) is called the backward Newton-FEuler equations of motion.

We may also start from link (¢) and derive the equations of motion of the
next link (¢4 1). This method is called the forward Newton-Euler equations
of motion. Employing the Newton-Euler equations of motion (12.157) and
(12.158), we can write them in a forward recursive form in coordinate frame
B, attached to the link (7).

Fi=Fioi+ Y Fe, —my ha (12.176)

‘M; = M+ Z "M, + ("di—1 — '1i) x Fiy
— (ZdZ — iri) X iFi — iIi éai — (i)wi X le Bwl (12177)

‘n; = ‘dj_q— 'ry (12.178)
‘m; = ‘d; - 'r; (12.179)

Using the forward Newton-Euler equations of motion (12.176) and (12.177),
we can calculate the reaction force system (‘F;, “M;) by having the action
force system (‘F;_1, “M;_1). When the reaction force system (‘F;, ‘M) is
found in frame B;, we can transform them to frame B; ;.

HF, = T 'F (12.180)
MG = T MG (12.181)

The negative of the converted force system acts as the action force system
(— HF;, —1ML) for the link (i+ 1) and we can apply the Newton-Euler
equation to the link (i 4 1).

The forward Newton-Euler equations of motion allows us to start from
a known action force system (1F, M), that the base link applies to the
link (1), and calculate the action force of the next link. Therefore, analyzing
the links of a robot, one by one, we end up with the force system that the
end-effector applies to the environment.

Using the forward or backward recursive Newton-Euler equations of mo-
tion depends on the measurement and sensory system of the robot. m
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FIGURE 12.11. A 2R planar manipulator carrying a load at the endpoint.

Example 332 % Recursive dynamics of a 2R planar manipulator.
Consider the 2R planar manipulator shown in Figure 12.11. The manip-
ulator is carrying a force system at the endpoint. We use this manipulator
to show how we can, step by step, develop the dynamic equations for a
robot.
The backward recursive Newton-Euler equations of motion for the first
link are

1F0 = 1F1 — Z lFel + my (1)31
— 1F1 —mq 1g+m1 éal (12182)
1M0 = 1M1 — Z 1M€1 — (1d0 — 11’1) X 1F0

+ (ldl — 11'1) x 'Fy+ ' éal + éwl x ' éwl
= 'M; — 'm; x '"Fo+ 'my x 'Fy
+1I jag + jwi x T wn (12.183)
and the backward recursive equations of motion for the second link are:
Fi1 = Fy— Y Fe,+my jay
= —my’g— ?F.+my 2ay (12.184)
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2M2 — Z 2M62 — (2d1 — 21‘2) X 2F1

+ (*da — *r2) x *Fo+ *Ih jas + qwa x °I qwo

27 2 2 27 2
+ 13 jog + jwa X “I jwe

—2M, — %m, x ?F, — %ny x °F,

(12.185)

The manipulator consists of two R|R(0) links, therefore their transforma-
tion matrices *"T; are of class (5.32). Substituting d; = 0 and a; = I;,
produces the following transformation matrices.

[ cos6;
sin 01

0

| 0
[ cos s
sin 02

0

0

0 Tl

1T2

—sin 01
cos 01
0
0

—sin 02
cos 5
0
0

0

0
1
0
0
0
1
0

Iy cosfy ]
ll sin 91

0

1

5 cos O
l2 sin 92
0
1

(12.186)

(12.187)

The homogeneous moments of inertia matrices are:

0 0 0O
mll%

1 _
hi=—

0 1 0
0 0 1
0 0 0

o O O

2[2:

mQI%

12

O~ O

(12.188)

o o oo
o

o OO
oo oo

The homogeneous moment of inertia matriz is obtained by appending a zero

row and column to the I matriz.

The position vectors involved are:

—11/2 ] ~l2/2
n, = 8 ny = 8 (12.189)
0 0
l1/2 l2/2
'm; = 8 ’m, = 8 (12.190)
0 | 0
ey = =1y 2ro = —2ny + ’my — %ny (12.191)
The angular velocities and accelerations are:
0 0
cw1 901 2wy = b, i% (12.192)
0 0
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0 0
0 0
1 — . 2 — . .
gou = i, e b, + b, (12.193)
0 0
The translational acceleration of Cy is
0a1 = (0q X (— 1m1) + jwi X ((1)w1 X (— 1m1)) + 581
.2
~3hf
— 50161 (12.194)
0
0
because .
'd; =2 'a;. (12.195)
The translational acceleration of Cy is
%ag = Qg X (— 2m2) + %WQ X (3«:2 X (— 2m2)) =+ gdg
—%lg (91 + 92)
- 3l (él + éz) (12.196)
0
0
because .
2dy = 2 2as. (12.197)
The gravitational acceleration vector in the links’ frame are:
—gsinfy
lg = 071 0g — QC%S 2 (12.198)
0
—gsin (61 + 62)
2 — 071 0g — | 9C08 (901 +02) (12.199)
0

The external load is usually given in the global coordinate frame. We must
transform them to the interested link’s frame to apply the recursive equa-
tions of motion. Therefore, the external force system expressed in B is:

Feycos (01 4 02) + Feysin (61 + 62)
Feycos (01 + 02) — Fep sin (61 + 02)
0
0

F, = 'T, 1 OF, = (12.200)
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M, = ', OM, = (12.201)

0
0
M.
0
Now, we start from the final link and calculate its action force system. The

backward Newton equation for link (2) is

*Fig
°F1 = —my’g — *Fe +my jas = 21319 (12.202)
0
’Fi, = *%lzmz (91 + 92)2 — Feycos (01 4 02)
— (Fey — gma) sin (61 + 62) (12.203)
Ry = %l2m2 (01 +82) + Fuasin (61 + 02)
— (Fey + gma) cos (61 + 02) (12.204)
and the backward Euler equation for link (2) is
M; = —°M.- *mgy x *F.— ny x °Fy
+20 2og + 2wo x 21y Rwo
0
= 2]\212 (12.205)
0
where
"My, = —M.+IyFe,sin(6y 4 02) — I3 Fey cos (01 + 02)

—|—§l§m2 (91 + 92) — §glgm2 COSs (91 + 92) . (12206)

Finally the action force on link (1) is

'y = 'Fi-milgdm jay
1F0w
— I 2R, g ! .| ‘Fy
= 2 1—m1 g+my ga; = 0 (12207)
0
where
'Fo. = —F..cosf; — (Fey — gmy)sin 6y

f%lzmz (91 + 92) sin @y — %lzmz (91 + 92)2 cos 03

1 .
- gmesin (20 + 01) — 5llmleﬁ (12.208)
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1F0y = Fepsiny — (Fey + gma) cosby
+%l2m2 (01 + 02) cos O — %lgmg (01 + 92)2 sin 04
—gmg cos (202 + 601) + %hmlél (12.209)
and the action moment on link (1) is

IM() = 1M1 — 1111 X 1F0 + 11’1’11 X 1F1
17 1 1 17 1
+71 o + pwi X I gwi
= 7, °M; — 'n; x 'Fo+ 'm; x 'T; ’F,

1 1 1 1 1
+ Il 001 + w1 X Il oW1

0
0
= | 1, (12.210)
0
where,
1 1 9 . . 1 9 .
M(]z = —Me + glzmg (91 + 92) + gllmlﬁl

1
— <Feyl2 + §glgm2> cos (01 + 02)
1
—§llmlgc0591 + F.plosin (61 +6). (12.211)

Example 333 % Actuator’s force and torque.

Applying a backward recursive force analysis ends up with a set of known
force systems at joints. Each joint is driven by a motor known as an actu-
ator that applies a force in a P joint, or a torque in an R joint. When the
joint i is prismatic, the force of the driving actuator is along the z;_1-axis

F,, = %L | °F; (12.212)

showing that the ki_1 component of the joint force F; is supported by the
actuator. The 1;_1 and j;_1 components of F; must be supported by the
bearings of the joint. Similarly, when the joint i is revolute, the torque of
the driving actuator is along the z;_1-axis

M,, = °kI | oM, (12.213)
showing that the ki1 component of the joint torque M; is supported by the

actuator. The 2;_1 and j;_1 components of M; must be supported by the
bearings of the joint.
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12.3 Robot Lagrange Dynamics

The Lagrange equation of motion provides a systematic approach to ob-
tain the dynamics equations for robots. The Lagrangean is defined as the
difference between the kinetic and potential energies

L=K-V. (12.214)

The Lagrange equation of motion for a robotic system can be found by
applying the Lagrange equation

i(‘%)_‘%:@i i=1,2,---n (12.215)

04¢; 0q;

where g; is the coordinates by which the energies are expressed, and @Q; is
the corresponding generalized nonpotential force that drives g;.

The equations of motion for an n link serial manipulator can be set in a
matrix form

D(q) 4G+ H(q,q) + G(q) = Q (12.216)
or
D(q)d+ C(q,4)q+ G(a) = Q (12.217)
or in a summation form
ZDij(q) qj + Z Z Hipmrgm + Gi = Q. (12.218)
Jj=1 k=1m=1

D;; is an n X n inertial-type symmetric matrix

n

1
Dij = Z (J%k mi Ipk + 5,]?% L JRk) (12.219)
k=1

H;jm is the velocity coupling vector

=3y (%D“ - %%) (12.220)
=1 k=1 dk 4

and G; is the gravitational vector

Gi=> m;g"I%). (12.221)
j=1

Proof. Kinetic energy of link (4) is:

OVT m; OVZ' + = wT i i 0W; (12222)
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where, m; is the mass of the link, *J; is the moment of inertia matrix of the
link in the link’s frame B;, %v; is the global velocity of the link at its mas
center C', and gw; is the global angular velocity of the link.

The translational and angular velocity vectors can be expressed based
on the joint coordinate velocities, utilizing the Jacobian of the link J;

. Oy )

w;

The link’s Jacobian J; is a 6 X n matrix that transforms the instantaneous
joint coordinate velocities into the instantaneous link’s translational and
)
R

angular velocities. The jth column of J; is made of cgg and cy/, where for

J<

o) =) ki x ;O foraR joint (12.224)
Di ki1 for a P joint
and )
G _ ) ki for a R joint
CRri = { 0 for a P joint (12.225)

and ; 9r; is the position of C' of the link (i) in the coordinate frame B;_,

expressed in the base frame. The columns of J; are zero for j > i.
The kinetic energy K of the whole robot is then

n n
1 1
K = ZK" = 52 <0ViTmi OVi + §owiT OIi Owi)

i=1 i=1

. . 1 . .
((JDi %)T m; (Jpi &) + 5 (Jri %)T °L (Jri %))

Il
N —
-
HM:
)

1 " 1
— 5@3“ (Z (Jgi mi Ipi+ 5 JL. L Jm)> Qi (12.226)

i=1

where °I; is the inertia matrix of the link (i) about its C' and expressed in
the base frame.

oI, = °R; 'I; °RT (12.227)
The kinetic energy may be written in a more convenient form as
T.or .
K = 24 Dg; (12.228)

where D is an n X n matrix called the manipulator inertia matrix.

D

n
1
(Jgi m; Jp; + B J% °L Jm) (12.229)
i=1

(2
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The potential energy of the link (i) is due to gravity
V; = -m; g ‘r; (12.230)

and therefore, the total potential energy of the manipulator is:

n

V= ivi =—> mi%g"’r; (12.231)
i=1

where g is the gravitational acceleration vector expressed in the base
frame.
The Lagrangean of the manipulator is:

— _ 1-7’ . = 0,70
L = K_V_§qiDQi+;mi g T
= —ZZD,jqqu Zmz r; (12.232)
=1 5=1

Based on the Lagrangean £ we can find

oL 10 [ o1 0'r;
30 = 35q | 222 Dikdidn ng g
9q; 209 \ ‘== 9q;
1 n o on oD @
- 32> 5 qjqk+zmj g7 I (12.233)
j=1k=1 ¢
oL - )
9 > Dijg (12.234)
) J=1

and

IsH
Q
o
|
ngh
S
2
+
-
&

wog, = DDty
= D D+ > 5 ik (12.235)
- =
Jj=1 j=1k=1

The generalized force of the Lagrange equations are
Qi= M, +I'F, (12.236)

where M; is the ith actuator force at joint 4, and F, = [ -FT  —MT ]T
is the external force system applied on the end-effector.
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q>

my

—
qi

FIGURE 12.12. A prismatic-revolute planar manipulator.

Finally, the Lagrange equations of motion for an n-link manipulator are
> " Dij(q) §j + Hikmndm + Gi = Qi (12.237)
j=1

where

"~ (OD;;  10Dj
Hijk = ZZ( —aa—ql> (12.238)

j=1k=1 Oak
n .

G = Y mig"Iy. (12.239)
j=1

We can show the equations of motion for a manipulator in a more concise
form to simplify matrix calculations.

D(q)d+H(q,dq) + G(a) = Q (12.240)

The term G(q) is called the gravitational force vector and the term H(q, q)
is called the welocity coupling vector. The velocity coupling vector may
sometimes be written in the form

H(q,4) = C(q,4)4. (12.241)
]
Example 334 A prismatic-revolute planar manipulator.

Figure 12.12 illustrates a planar manipulator with massless links and two
massive points my and mo. To determine the equations of motion, we begin
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with calculating the kinetic energy.

1

K, = §m1<ﬁ
1 oo 1 -9
K2 = §m2X2 + §m2}/2

_ 1 i( +1 ) 2_1’_1 i(l ) ’
= 2m2 dt q1 COS g2 2m2 dt SH1 g2

1 ) . 1 .
- §m2 (g1 — lga sin q2)2 + §m2 (Ig2 cos q2)

1 . . L
= gma (¢ + 175 — 2did2sin go)
The potential energy of the manipulator is:

V' =magYs = maglsingo

Therefore, the Lagrangean is:

L = K-V=K+K, -V
1

= —madi + zma (¢ + %63 — 2lgidasingz) — maglsin gy

2 2

Applying the Lagrange equation

d (0L oL .
%(a@)‘a—qr@ =12

provides the following equations of motion.

(m1 + ms) §1 — maldosings — mglqg cosqa = Q1

mal®Gy — maldy sing + maglcosqy = Qo
We can rearrange these equations to the form of (12.217)
D) | I | +c@a)| I |+6@=| &
g2 q2 Q2

where,
D(q) = my +mo  —malsings
D= mol? —malsin ¢a

. 0 —moalgs cos
Clag) = | b |

G = | tvonss |

magl cos g

(12.242)

(12.243)

(12.244)

(12.245)

(12.246)

(12.247)
(12.248)

(12.249)

(12.250)

(12.251)

(12.252)
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Y

qi

J X

FIGURE 12.13.

Example 335 A planar polar manipulator.

Figure 12.13 illustrates a planar polar manipulator with massless link

and a massive point m.
The kinetic energy of the manipulator is:
1

1 .
53
_ Lo(a )2+1 d(_)2
= 2m i 1 COS g2 2m i q1 S1n g

1. .
= 5m(qf +41d3)

The potential energy of the manipulator is:
V' =mgYs = mgq: sin g

and therefore, the Lagrangean of the manipulator is:

1 . . .
L=K-V = 3m (qf + q%qg) — mgq sin go

Applying the Lagrange equation

d (oL oL .
%(8_(11>_8_qz_@z i=1,2

provides the following equations of motion.

mii —mqids +mgsings = Q1

maids + 2mqidide + mggicosqz = Q2

Let us rearrange these equations to the matriz form of (12.217).

a3 can[ 4] o= (]

(12.253)

(12.254)

(12.255)

(12.256)

(12.257)
(12.258)

(12.259)
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FIGURE 12.14. A 2R planar manipulator with massive links.

m 0
D(q) = { 0 mg } (12.260)
. 0 —maqg
C(q,§) = . . 12.261
(a.9) [ mqiq2  Mqiqi } ( )
o mgsin go
G(q) = { Mg 05 g } (12.262)

Example 336 Lagrange equation for 2R manipulators with massive arms.
A 2R planar manipulator is shown in Figure 12.14. Its homogeneous
transformation matrices are given in Equations (5.29) and (5.30).

cosf)y —sinf; O

"Ry =| sinf; cos; O (12.263)
0 0 1
cosfly —sinfy 0

'Ry = | sinfy cosfs O (12.264)
0 0 1

Assuming that the links are made of homogeneous material in a bar shape,
the position vectors of the mass center C; are:

' —1;/2
'y, = 0 1=1,2 (12.265)
0
and the inertia matrices are:
1 0 0 O
= ﬁmilf 01 0 (12.266)
0 0 1
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Therefore,
°r, = R ' °RT
1 sin? 64 —cosfysinf; 0
= Emll% — cos 07 sin 64 cos? 0 0 (12.267)
0 0 1
I, = °Ry %L, °RY
1 sin? 015 —cosfiasinfis 0
Emglg —cos B2 sin 012 cos? 019 0 |. (12.268)
0 0 1
The gravity is assumed to be in —jy direction
0
g=| —g (12.269)
0
and the link Jacobian matrices are
—%ll sin 91 0
JDl == %Zl COSs 91 0 (12270)
0 0
0 0
Jri=10 0 (12.271)
10
—ll sin01 — %lQ sin912 _%ZQ Sin912
JD2 = ll C0891 + %ZQ C05912 %ZQ 005912 (12272)
0 0
0 0
Jro=10 0 |. (12.273)
1 0

We can calculate the manipulator inertia matriz by substituting °I;, Jp;,
and Jg; in Equation (12.229)

2
1
Z (J£i m; Jpi + 5 I%: L JRi) (12.274)

i=1

D

1 1
= ngmlJD1+§J£1011JR1+Jg2’rTL2JD2+§J£QOIQJRQ

_ %mll% + mo (Z% + l1lyclo + %l%) mo (%1112092 + %l%)
mo (%1112092 + %l%) %mglg
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The velocity coupling vector H has two elements that are

1 1
e = ZZ( dgr 2 dq )qj%

Jj=1 k=1

= 7m2l1l2 <01 + 592) 02 sin02 (12275)

Mw

Hy =

22: <3D2j _ laDjk>
1 k=1 Aqu 2 Og2 A

NlHTi

2l1l201 smHQ (12276)
The elements of the gravitational force vector G are:
1 1
G, = §mlgl1 cos 01 + magly cos 1 + §m2912 cos 012 (12.277)
1
G2 = §mggl2 COS 012 (12278)

Now we can assemble the equations of motion for the 2R planar manip-
ulator. Assuming no external force on the end-effector, the equations of
motion are

1 1 ..
Q1 = <§m1l% + ma (l% + lilacts + §l§)> 01

+mols (%llceg + %lg) ég — malyls (91 + %92) 92 sin 04

1 1
+ <§m1 + m2> gly cos 61 + §m2glg cos B2 (12.279)
1 1 . 1 .
Qo = ma | =lilachy + =15 ) 01 + =mal30s,
2 3 3
1 .2 1
—|—§m2l1l291 sin 0y + Emgglg cos 012. (12.280)

Example 337 % Christoffel operator.
The symbol F’ k18 called the Christoffel symbol or Christoffel operator
with the followzng definition:

T, = % (aD“ 4 9D _ aDj’“) (12.281)

ke = Iqx 0q; 0q;
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Vi
Y
l’ (2)
X
19,
mj X

Qo "
FIGURE 12.15. A uniform beam with a hanging weight m2 at the tip point.

The velocity coupling vector Hyjy, is a Christoffel symbol.
- OD;;  10Djj
H = ij _ L9k
7k ]Z::l — ( g, 2 Og; >

I GDU 0Dy ODjy,
= = - 12.282
2 ;kzl < dan dq; 9q; ) (12:282)

Using Christoffel symbol, we can write the equations of motion of a robot
as:

> Dij(@) i+ DY Ty drgm + Gi = Qi (12.283)
Jj=1 j=1k=1

Example 338 % No gravity and no external force.
Assume there is no gravity and there is no external force applied on the
end-effector of a robot. In these conditions, the Lagrangean of the manipu-

lator simplifies to
1 n n .
=3 > > " Dijdid (12.284)

i=1 j=1

and the equations of motion reduce to

d (aﬁ) o ZZD” (d + T i) - (12.285)

=1 j=1

Example 339 Lagrange equation of a one link manipulator.

To show the advantage and simplicity of the Lagrange method when com-
pared to Newton-FEuler method, let us consider derive the equation of motion
of the uniform beam of Figure 12.15 with a mass ma at the tip point. This
is the same system of Figure 12.6(a).
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The beam is uniform with a mass center at °r1 while the tip mass is at
Odl, both in Bo.

I -
O . 3 cos
ry = R1 ry = lsin@ (12286)
2
0 -
lcosB T
°d; = "Ry'dy = | Ising (12.287)
0
cos —sinf O
'R, = Rzg=| sinf cosf O (12.288)
0 0 1
The angular velocity of the beam is:
owr =0K (12.289)
and therefore, the velocity of C and mq are:
0 0 —%ésin@
= = l. 12.2
Vi owi X Iq Y0 cosh ( 90)
2
0
. —10sin6
%d; = gw1 x °dy = | Ifcosh (12.291)
0
The kinetic energy of the manipulator is:
L o5 o L o 0 L 70
Ky = 52 d; - "d; +§m1 Vi Vi +§0w1 I gw1
1.,. 1 .
— 51202 (my + dma) + 51202 (12.292)
I, 0 0
°i = Rzpy'LhRyy="Ri| 0 I, 0 |°R{
0 0 I,

I,cos?0+ I,sin*0 (I, —I,)cosfsind 0

(I, — I,)cosfsin® I,cos®0+ I,sin*0 0 (12.293)
0 0 I,
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The potential energy of the manipulator is:
Vo = migYi +magYe = migry + magdy
l
= gy sin 6 4+ mogl sin 0
and therefore, the Lagrangean of the manipulator is:
1 .. 1 .
L = K-V= §l292 (ml + 4?’TL2) + 5.[292
l
—migg sin @ — mogl sin @
Applying the Lagrange equation
d (0L oL
= (F) -5 =
dt \ 90 00

oL 1

- = Zl2(m1+4m2)9+lzé
%(%) = Gmlzumzz%@)é
oL

l
0 - fmlg§ cos ) — magl cosf

determines the equation of motion.
1 9 9 - 1
Qo = Zmll +molc+1,)60+ §m1—|—m2 glcos@
It is the same equation as (12.69).

Example 340 General model of 2R planar manipulator.

(12.294)

(12.295)

(12.296)

(12.297)
(12.298)

(12.299)

(12.300)

Consider a general 2R manipulator with massive arms and joints while

carrying a payload mg as is shown in Figure 12.16.

The first motor that drives link (1), is on the ground. The second motor
with mass myo drives link (2) and is mounted on link (1). The mass of first

and second links are my1 and mey respectively.

In a general case, the global position vectors of the mass centers C; and

massive joints are:

c1 cos 01
0[‘1 = 0R1 11‘1 = RZ791 C1 1%1 = C1 sin91
0
0 0 0p 2 0 2,
ro = di+ "Roro= "di+Rzg, Rzp,c2 02

Iy cos b1 + cacos (61 + 62)
= l1sin 61 + cosin (61 + 03)
0

(12.301)

(12.302)
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FIGURE 12.16. A 2R manipulator with massive arms and a carrying payload
mo.

1 cos 04
Odl = ORl 11‘1 = RZ791 ll 151 = ll sin 91 (12303)
0
Iy cos (61 + 02) + 11 cos 01
0d2 = Odl + ORQ 2d2 = {5 sin (91 + 92) +1;sin 6, (12304)
0
where,
[ cosf; —sinh; 0 ]
‘R, = Rzo, = | sinfy cosf; O (12.305)
| 0 0 1|
[ cosfs —sinfy 0 ]
'Ry = Rzg,=| sinfy cosfy 0 (12.306)
| 0 0 1|
cos (01 +62) —sin(6;+62) 0
Ry ="Ri'Ry= | sin(0; +602) cos(01+62) O (12.307)
0 0 1
The links’ angular velocity are:
w1 = 0K (12.308)

ows = (91 +92) K (12.309)
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The mass moment matrices in the global coordinate frame are:

L, 0 0
°i = Rgzp,'h R,y =°Ri| 0 I, 0 |°R
0 0 I,
Iw10201 + Iy1 8201 (le — Iy1) ch1s604 0
= (I:rl —Iyl)celsel Iy10201 +Ix18291 0
O O Izl
L, 0 0
Iy = "Ry?’L,°RY =°Ry | O I, 0 |°R}
0 0 I,
Ix202912 + Iy282912 (Im2 - Iyz) 09128912 0
= (1@2 — Iyz) 69128912 Iy262912 + Ix2$2012 0
0 0 IZQ
012 = 01+0

The velocity of C; and the masses are:

Od —Clél Sin91
0 _ 0 _ 0
vi= —°'r; = c101 cos 01
dt
0
Od
0 0
Vg = —'r
2 dt 2

—1107 sin 01 — cs (91 + 92) sin (61 + 6-)
1101 cos 01 + c» (01 + 02) cos (01 + 03)

0
. [ —11.01 sin01
°d, = 1167 cos 0
L 0
[ 7[191 sinf; — Iy (91 +92) sin (91 +92)
0d2 = llél COS 91 + lQ (91 + 92) [€0)] (91 + 92)
0

(12.310)

(12.311)

(12.312)

(12.313)

(12.314)

(12.315)

To calculate Lagrangian L = K — V, we determine the energies of the
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manipulator. The kinetic energy of the manipulator is:

1 . . 1
K = PURE °d, - °d; + 3m1 Ovy - Ovy
+1 0d, + Lo Oy 0
2m 2 2m21 Vo V2
1 1
+§ ow? Iy w1 + 3 ow3 I gws (12.316)

which after substituting (12.305)-(12.815) would be:

1 .2
K = 5 (muc% =+ mul% + Izl) 91

+;m21 ( 116, sin 6, — co (91 + 92) sin (61 + 92)>2

+1m21 (1101 cosf1 + c2 (01 + 02) cos (01 + 0 )2

+—myg (—1191 sinf; — Iy (91 + 92) sin (61 + 0 )2

2
1
2
1 . . . 2
+§m0 (llgl COS 91 + 12 (91 + 92) COS (91 + 92))
1 . LN\ 2

5L (01 +05) (12.317)

The potential energy of the manipulator is:

V= mqigcisinby 4+ myogly sin
+m219 (ll sin 91 + o sin (91 + 92))
+mpg (l1 sin 6, + Iy sin (91 +92)) (12318)

Applying the Lagrange equation

d (oL ocC
E(T)él)__a@l ~ Q (12.319)
d (oL ocC

E(aé_)_—%z Y (12.320)

determines the general equations of motion.

Dyy Do 91 4 Cii Chz él
Doy Doy 0o Ca1 Co 02

Gl Qo
= 12.321
+ [ Go ] [ Q1 ] ( )
Dy1 = 2l (maica +mola) cosby + I, + I,

+maic} +maali +mor (3 +13) +mo (§ +13)  (12.322)
Dy = L1 (m2102 + m012> cos O + IZ2 + molg + mglcg (12323)
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D21 = ll (m2102 + molg) COSs 92 + IZQ + mglcg + molg (12324)
Doy = L, +maics +mol3 (12.325)
Cll = —ll (m2102 + molg) 92 sin 92 (12326)
Cia = -4 (m2102 + molg) (01 + 02) sin 0o (12327)
Cyr = Iy (marca + moly) 01 sin 6, (12.328)
Cy, = 0 (12.329)
G1 = ((ma1 +maz2 +mg)li +myicr)costy
+ (mglcz + molg) cos (01 + 92) (12.330)
Gy = (m2102 + molg> cos (91 + 92) (12.331)

Example 341 Special cases of 2R planar manipulator.

Figure 12.16 illustrates a general 2R manipulator with massive arms and
joints and a carrying payload mgy. The second motor has a mass my2 and
is mounted on link (1). The mass of first and second links are my; and ma;
respectively and their mass centers are at ¢c1 and co. The general equations
of motion for the 2R planar manipulator are given in Equations (12.321).

D11 Dio b1 4| G Cr b1
Dy Dao 62 Can Ca 0>

N { g; ] _ { gl ] (12.332)

In modeling a special 2R planar manipulator, we may use the equations
for simpler models as classified below.

1. Massless arms.

When the mass of the links of the manipulator are much less than the
masses of its motors and the carrying load, we may use a massless
arm model. The equations of motion for a massless arms 2R pla-
nar manipulator are calculated by substituting mi; = 0, moy = 0 in
FEquations (12.821).

D11 = 2mplilascosfsy + Iz1 + Iz2

+maali +mo (13 +13) (12.333)
D12 = m0l1l2 (¢0)] 92 + IZ2 + molg (12334)
Dy = mglilacosly + 1, + molg (12335)
Doy = I, +myl3 (12.336)
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Cll = —molllgég sin 92 (12337)

Cia = —mylils (91 + 92) sin 04 (12338)

C21 = m0111291 sin 92 (12339)

Cyy = 0 (12.340)

G1 = (m12 +m0) ll C0591 -l—molg COs (91 +92) (12341)
Go = mglscos (91 + 92) (12342)

2. Massless joints.

When the mass of the links of the manipulator are much more than
the masses of its motors and the carrying load, we may use a mass-
less joints model. The equations of motion for a massless joints 2R
planar manipulator are calculated by substituting mis = 0, mg = 0
in Equations (12.321).

D11 = 2m211162 COS 92 + IZ1 + 122
+myici +moy (¢34 13) (12.343)
Dis = moics (ll cos 0y + 02) + IZ2 (12344)
Doy = moico (ll cos o + CQ) + Izz (12345)
Dy = IZQ + mglcg (12346)
Cll = *mglllcgég sin 92 (12347)
Cis = —moilics (91 ¥ 92) sin 6, (12.348)
021 = mzlllcgél sin 92 (12349)
Cy, = 0 (12.350)
Gy = (mglll + mncl) cos 01 + majca cos (91 + 92) (12351)
Go = maicocos (91 + 92) (12352)

If the links of the manipulator are uniform and symmetric, then ¢y =
11/2, ca =15/2, and the equations are simplified to:

Dy = m211112c0592+IZ1+IZ2

1 1

1 1
D12 = §m2112 (h + §lz> cos s + I, (12.354)
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1 1
Doy = §m21l1l2 cos 0y + [z2 + ngllg (12355)
1
Doy = I, + ngllg (12.356)
1 -
Cll = *gmzllllgaz S 92 (12357)
1 AN
012 = —§m211112 (91 + 92) sm92 (12358)
1 -
021 = 1m21111291 sm02 (12359)
Cyy = 0 (12.360)
1
G1 = (m21 + §m11> ll COS 91
1
+§TTL21ZQ COS (91 + 92) (12361)
1
G2 = §m2112 [€0)] (91 +92) (12362)

Example 342 % Equations of motion of an articulated manipulator.

Figure 12.17 illustrates an articulated manipulator with massive links
and a massive load at the tip point. Points C;, i = 1,2, 3 indicate the mass
centers of the links with masses m;, i = 1,2,3. The the tip point has a mass
of mg. A top view of the manipulator is shown in Figure 12.18.

The link (1) of the manipulator is an RER(90) with an extra displacement
I along z1. To determine the transformation matriz Ry we can begin
from a coincident configuration of By and By and move By to its current
configuration by a sequence of proper rotations and displacements.

1TO = DZ1,l1 Rxl,ﬂ/Q RZ1,91
cosf)y sinf; 0 O
0 0 1 0
- sinf; —cosf; 0 [ (12.363)
0 0 0 1
cosf)y 0 sinf; —lisinb;
o _ 1m—1 _ | sinfy 0 —cosfy [jcost
T ="1T," = 0 1 0 0 (12.364)
0 0 0 1

The second and third links are R||R(0), RFR(90), and their associated
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FIGURE 12.17. An articulated manipulator with massive links and a massive
load at the tip point.

transformation matrices between coordinate frames are:

coslly —sinf; 0 Iycosfs
1 | sinfy cosfy 0 lysinfs
T, = 0 0 1 0 (12.365)
0 0 0 1
cosf3 0 sinf3 O
25 | sinfl3 0 —cosfz O
15 = 0 1 0 0 (12.366)
0 0 0 1
The global position vectors of the mass centers C; and joints are:
0 —(ll —cl)sinel
01‘1 = 0T1 11‘1 = OTl 0 = (ll B cl) oS 01 (12367)
C1 0
1 1
0 7[1 sin 01
0 0 1 0 0 l1 cos 01
d,="T1'dy="T 0l = 0 (12.368)
1 1
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=211 sin 1 + (ca + l2) cos 61 cos b
21y cosO1 + (o + 13) cos O sin 01

0. _ 0 0 2.,
ro = d1 + T2 ro = (02 + 12) sin92 (12369)
2
2[5 cos 01 cos 05 — 2[4 sin 04
2l cos 01 + 215 cos O sin 6
03 _ 0 0 29 _ 1 1 2 2 1
dy = “dy + "Th*dy = 90, sin 0o (12370)
2
OI‘3 = 0d2 + 0T3 31‘3
c3 cos 6 (sin (02 + 93) + 3l cos 02) — 3l sin 6, i
_ cg sin 01 (sin (02 + 03) + 3l cos 03) + 317 cos by (12.371)
- 3lysinfs — c3 cos (02 + 03) '
3 -
Od; = Ody+ °T33ds
I3 cos 0y (sin (02 + 03) + 3l cos ) — 31y sin 6y |
_ I3 sin 61 (sin (02 + 03) + 3l cos 02) + 311 cos 64 (12 372>
o 3lysin by — I3 cos (0 + 03) ’
3 -
The links’ angular velocity are:
w1 = 91 ]Aﬂo 1Wo = 92 ];’1 2W3g = 93 ]ACQ (12373)
oDz = o@1+ 02 = oW1+ "Ry 1@2 "R
_0 *91 *9.2 COS 91
= 91 0 —92 sin01 (12374)
0 cosfi  05sin b4 0
0Dz = o2+ 303 = o@2 + "Ro2d3 Ry (12.375)
0 —91 — 92 + 93 cos 01
— 91 0 — 92 + 93 sin 04
(92 + 93) COS 91 (02 + 93) sin 91 0
The mass moment matrices in the global coordinate frame are:
I, O 0
=Ry | 0 I, 0 |°Rf (12.376)
0 0 I,

I, cos?0y + I, sin”6, (I, —I.,)cosf;sinf,

= (I, —I.,)cosfysinf; I, cos? 0y + I, sin® 6,
0 0 I,
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FIGURE 12.18. A top view of an articulated manipulator with massive links and
a massive load at the tip point.

I, O 0
0L =Ry 2L, °RY =°Ry | 0 1, O | °RY (12.377)
| O 0 I,
, [ I, O 0 ]
0L = "Ry 33 °RY =°R3 | 0 I,, 0 |°RY (12.378)
| O 0 I
The velocity of C; and the joints are:
Od —(ll—cl)élc0591
0V1 = — 01‘1 = — (ll — Cl) 91 Sin91 (12379)
dt
0
0 Od 0
Vo e E Iro (12380)
0 °d 0
. *119.1 COS 91
°d; = | —1,6,sin6, (12.382)

0
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0 OdO

dy = —'d, (12.383)

0 OdO

d; = --°d 12.384
5 - 'ds (12.384)

The kinetic energy of the manipulator is:

1
K = 5m Ovi - Ovy + 3ma1 Ovy - Ovy + 33 Ovy - Ovsg
1 . . 1
+§m0 Odg . Odg + 5 0&1? 0[1 oW1
1 1
+5 ow3 L5 gws + 50“’? 0I5 w3 (12.385)

The potential energy of the manipulator is:
V' = magra, + magrs. + mogds. (12.386)

Using the Lagrangian of the manipulator L = K — V', and applying the
Lagrange equation

d (LN or
d (LN oC
a (89_2) e = @ (12.388)
d (0C\ oC
a (89_3) - = @ (12.389)

we determines the equations of motion.

D1 D2 Das 01 Cii Ci2 Ciz 0
D21 Daz Das Oy | +| Co1 Coa O 02
D31 D3z Dss 0 C31 Csp Cs3 0
CTYl Qo
+ | Go = Ql (12390)
Gs Q2

12.4 “ Lagrange Equations and Link
Transformation Matrices

The matrix form of the equations of motion for a robot, based on the
Lagrange equations, is

D(q)4+H(q,q) + G(q) = Q (12.391)
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which can also be written in a summation form.
n n n
> Dij(@)di+ Y Hikmrdm + Gi = Q; (12.392)
j=1 j=1k=1
The matrix D(q) is an n X n inertial-type symmetric matrix

z 9°T, - 9°T,"
D, = t T, 12.
i= ) ( e o ) (12.393)

r=max1,j

and H;k,, is the velocity coupling term

- o2oT. _ 9OT,
Hiip = tr T, 12.394
o 2 (3%0% dq; > ( )

r=maxi,j,k

and G; is the gravitational vector.

= 2T,
Gi=-> mg ——"r, (12.395)

Proof. Position vector of a point P of the link (i) at ‘rp in the body
coordinate B;, can be transformed to the base frame by

Oep =T 'rp. (12.396)
Therefore, its velocity and square of velocity in the base frame are
Ofp = z % 4 ‘rp (12.397)
=1 90
and
%%, = %Fp- %p =tr (%p°i})

T
zrp}

, oot 1"
- zz Biwpinp (20 0] 2a)
1 e Oqx

The kinetic energy of point P having a small mass dm is then equal to

LT . < [0°T;
g z—%Z[
j=1 04; Lo

1 [ &S0, 0T
dKp §tr ZZ — Tp rga—qk Gj Gr | dm

1 L0 oy 00T
= St ZZ o (‘rpdm rIT))a—qk g de | (12.399)
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and the kinetic energy of the link () is

K, = / dKp
B;
T

~ 9T, 0T~ .
= 5 (/ irpirh dm) So ik (12.400)
=ik 90 B; dk

The integral in Equation (12.400) is the pseudo inertia matrix (11.143) for
the link (4)

L= / ‘rprh dm. (12.401)
B;
Hence, the kinetic energy of link (7) becomes
BOTZ - 80T
;= = t oL . 12.402

The kinetic energy of a robot having n links is a summation of the kinetic
energies of each link.

n 0 _T
:Z}Q:-trz ZZB T k’ d; dk (12.403)
i=1

i=1 \j=1k=1

We may also add the kinetic energy due to the actuating motors K, that
are installed at the joints of the robot

1
S SLg2  if joint i is R
Ka = : (12.404)

1
S 2mqu if joint 7 is P

where, I; is the moment of inertia of the rotary actuator at joint i, and m;
is the mass of the translatory actuator. However, we may assume that the
motors are concentrated masses at joints and add the mass of the motor
at joint ¢ to the mass of the link (7 — 1) and adjust the inertial parameters
of the link. The motor at joint ¢ will drive the link (7).

For the potential energy we assume the gravity is the only source of
potential energy. Therefore, the potential energy of the link (7) with respect
to the base coordinate frame is

V; = —m; Og . Ori = —-m; OgT O/Ti iI‘Z- (12405)

where g = [ 9o Gy 9. O ]T is the gravitational acceleration usually
in the direction —zp, and °r; is the position vector of C of link (i) in the
base frame. The potential energy of the whole robot is then equal to

V= Xn:Vi =— zn:migT OT; 'r;. (12.406)



12. Robot Dynamics 693

The Lagrangean of a robot is found by substituting (12.403) and (12.406)
in the Lagrange equation (12.214).

. zzztr<a [ 0 )w
i=1 j=1k=1 Qk

+> mi"g” 0T r. (12.407)

=1

The dynamic equations of motion of a robot can now be found by ap-
plying the Lagrange equations (12.215) to Equation (12.407). We develop
the equations of motion term by term. Differentiating the £ with respect
to ¢, is

oL 1 n T, .- a°T, "
- - t [ in vt .
5, ~ 322" ( q. ' Day > o
=1 k=1
R 9T, . 9°T, "
+5 ) ) tr <— . ) i
24 j=1 94 Oy
n [ T
o°T; ,- 0T,
= tr 'I; q; (12.408)
because
OT'
% =0 for r>i (12.409)
and
00T, 00T, 00T, 00T,
t T =tr T . 12.41
r( 8% g ) ( Oqx ! 8% ) ( 0)

Time derivative of 9L/9¢, is:

d oL : 0T, ;- oo
a0, Z;t (aqj Dar )qﬂ‘

76 i Y. .
+ZZZtr<aqaqk g )quk

i=r j=1 k=1

: ;0T
S (S 2 Y i 2y

i=r j=1 k=1
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The last term of the Lagrange equation is:

oL ! 00T, ;- 91"
T 2222tr<3q8q a_qk>qjq’“

i=r j=1 k=1

! O*°T; - 9T
4= ZZZtr(@qkaqr o )CIij

i=r j=1 k=1

+> mig T T (12.412)

which can be simplified to

: ;OO
ZZZ“ <8qr8q] ‘ 3qk >Qij

z'r]lkl

o°T;
7 97T,
+ E:T m;g 90 r;. (12.413)

Interestingly, the third term in Equation (12.411) is equal to the first term
n (12.413). So, substituting these equations in the Lagrange equation can
be simplified to

d (oL L aOTjT i}
5(3_4) dq; Zzt (an i 5 )q’“

Jj=t k=1

' _aomty
+Zzztr (aqkaq jI] aqz >Qka

Jj=t k=1m=1

n OT' )
= m;g" aaq»] Ir;. (12.414)

Finally, the equations of motion for an n link robot are

1=1 k=1
o, o
§ t LI ) g

+ZZ r(aqkaq i g )qwm

j=t k=1m=1
- vagT T i, (12.415)

g .
= Gi

The equations of motion can be written in a more concise form

Z Dijg; + Z Z Hijk; gr + Gi (12.416)

j=1k=1
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X2

X1

FIGURE 12.19. 2R manipulator mounted on a ceiling.

where
" 0T, 9o
D;i = tr . 12.417
’ r:n%):(i,j < 9q; 9qi ( )
" ?or. _ gor. T
Hiip = tr | ——L "], ——" 12.418
" r:m%c:i 7.k anan aql ( )
- o°T,
_ T T or
(?i—-——gégrnrg T (12.419)
||

Example 343 2R manipulator mounted on ceiling.

Figure 12.19 depicts an ideal 2R planar manipulator mounted on a ceil-
ing. Ceiling mounting is an applied method in some robotic operated as-
sembly lines.

The Lagrangean of the manipulator is

1 .
L = K-V= §mlzfef
1 . N2 o
+§m2 <l%9? + l% (91 + 92) + 211150 (91 + 92) COs 92>

+magly cos By + mag (11 cos 61 + I3 cos (61 + 62)) (12.420)
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which leads to the following equations of motion:

Q1 = ((m1 + M) 12 4+ mal2 + 2malyly cos 92) 0,
+mals (Ia 4+ 11 cos f2) 0,
—2mislyls sin 030105 — malily sin 0293
+ (m1 + ma) gly sin 01 + maoglasin (61 + 62)  (12.421)

QQ = molsy (lg + 11 cos 92) él + mzlgég
—2mslqls sin 9291 (91 + 02) — magls sin (91 + 92) . (12422)

The equations of motion can be rearranged to

. . .2 )

Q1 = D101+ D120z + Hi1101 + Hi20,
+D1120102 + D1210201 + G (12.423)

. . .2 )

Q2 = D1201 + Doz + Ha1101 + Hao20,
+D2120102 + Da210201 + Go (12.424)

where,

Dyi = (my4mo) 3+ mal2 + 2malily cos by (12.425)
Do = mals (l2 + 1 cos 92) (12426)
Dy = Dis=mols (lg + 11 cos 92) (12427)
Dy = mpyl? (12.428)
Hii1 = 0 (12.429)
H122 = 777121112 sin 02 (12430)
H211 = —m2l1l2 sin 92 (12431)
Hoso = 0 (12.432)
H112 = H121 == —mglllg sin92 (12433)
H212 = H221 = —m2l1l2 sin 92 (12434)
G1 = (m1 + mg) gll sin 91 + mQQZQ sin (91 + 92) (12435)
G2 = m2g12 sin (01 + 02) . (12436)

Example 344 2R manipulator with massive links.
A 2R planar manipulator with massive links is shown in Figure 12.20.
We assume the mass center C of each link is in the middle of the link and



12. Robot Dynamics 697

FIGURE 12.20. A 2R planar manipulator with massive links.

the motors at each joint is massless. The links’ transformation matrices
are

cosf)y —sinf; 0 [icosb,
o _ | sinfy  cosf; 0 Iysinf,
T 0 01 (12.437)
0 0 0 1
cosfly —sinfy 0 Iycosfs
1 | sinfay cosby 0 Ilysinfs
T = 0 0 1 0 (12.438)
0 0 0 1
', = it (12.439)

6(01 +02) -8 (91 +92) 0 lichy + lac (01 +02)

_ 8(91+92) 0(91 +92) 0 l1$01+l28 (91+92)
o 0 0 1 0
0 0 0 1

Employing the velocity coefficient matriz Ag for revolute joints, we can
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write
RV
= ART 12.440
- RT3 (12.440)
[0 -1 0 0 cost)y —sinf; 0 Ijcosb;
_ 1 0 0 O sinf; cosf; 0 [ysinf;
- 0 0 0 O 0 0 1 0
|0 0 0 0 0 0 0 1
[ —sinf; —cosf; 0 —lisinb;
_ cosfy —sinfy 0 [ycosbq
- 0 0 0 0
i 0 0 0 0
and similarly,
O _ ppor (12.441)
06, — ~° 77 '
[ 0 -1 0 0 0912 —8912 0 l1091 + 126912
o 1 0 0 0 8912 0912 0 l1591 + 128912
o 0O 0 0 O 0 0 1 0
10 0 0 0 0 0 0 1
i —S (91 +92) —0(91 +92) 0 —11891 _ZQS (91 +92)
. 0(91 -‘1-92) —S (91 +92) 0 lict, +lgc(91 +92)
- 0 0 0 0
i 0 0 0 0
0T, o 1
= “T1Agr Ty (12.442)
00,

-8 (91 -‘1-92) —0(91 -‘1-92) 0 —lss (91 +92)

. c(01+6) —s (91 +92) 0 lsc(6y +92)
0 0 0 0
0 0 0 0

Assuming all the product of inertias are zero, we find

%mll% 0 0 —%mlll

v 0 0 0 0

L = 0 0 0 0 (12.443)
—%mlll 0 0 mi
%mﬂ% 0 0 _%m2l2

ar 0 0 0 0

I 0 0 0 0 (12.444)
—%mglg 0 0 mo
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Using inertia and derivative of transformation matrices we can calculate

the inertial-type symmetric matriz D(q).

9Ty . 9Ty " 9T 5 0T
D11 = tf( ! 1_[1 ! + tr 2 2]2 2

Oq oq oq oq

1 1
= gmll% =+ mo (l% + 51%) + malils cos Oy

Dy

99Ty .- 90T,
Dy =t 7
2 r< 391 ? 391

1
= gmglg +TTLQZ% +m2l1l2 00592

99Ty , - 90T, " 1
Doy =t T =202
2= ( g Ogy 32"

The coupling terms H(q, q) are calculated as below

2 2
H = > Y Higmieim

k=1m=1
= Hunugqigr + Hi2qiGe + Hi214261 + Hi22G2¢2

2 2
Hy = Y Hopmdrgm
k=1m=1
= H>11q1G1 + H212G1G2 + H221G2¢1 + H222G2G2

where

" o2or. _ gor. T
H;ip = tr | ——— T —L .
i >, (3%0% dq; >

r=max1i,j,k

These calculations lead to

H= l —%m2l1l2(9§ sin By — maly120105 sin O, ]

.2 .
%mglllgﬁl sin 04

)

(12.445)

(12.446)

(12.447)

(12.448)

(12.449)

(12.450)

(12.451)
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The last terms are the gravitational vector G(q)

o'T 00T,
G = — T 1 o T 2
1 1 s ry —meg g 2
[0 ] T _gin #1 —cosfy 0 —lisinf, —%
_ —g cosfy —sinf; 0 Iycosb; 0
- T 0 0 0 0 0
L 0 | | 0 0 0 0 1
I 0 17T —8012 —0912 0 —11801 — l2$012 —%
—m —g 0912 *5912 0 l1691 + 126912 0
2l o 0 0 0 0 0
L 0 | | © 0 0 0 1
1 1
= §mlgll cosfy + §m2gl1 cos (01 + 62) + magly cos b1 (12.452)
0T
Gy = —mog” 3 2 2r,
q2
0 T *8012 70912 0 *128912 —%
- _m —g 6912 —8912 0 l20912 0
- 2l o0 0 0 0 0 0
0 0 0 0 0 1
1
= §m2gl2 cos (01 + 02) . (12.453)

Finally the equations of motion for the 2R planar manipulator are

&
Q2
%mll% + mo (l% + %l% + 1112602) mo (l% + %l% + lllgceg) 01
(l% + %l%) mo + molilachs %l%mz 04
+ —%mglllgég sin 92 — mglllgélég sin 92
%mﬂllgé? sin 92
1 1
smagli cos 01 + 5magly cos (01 + 02) 4 magly cos 0y
+ [ Cnagla cos (0 + 02) (12.454)

12.5 Robot Statics

At the beginning and at the end of a rest-to-rest mission, a robot must
keep the specified configurations. To hold the position and orientation, the
actuators must apply some required forces to balance the external loads
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Jointi+1
Reaction joint

",

Joint i
Action joint

FIGURE 12.21. Position vectors and force system on link (7).

applied to the robot. Calculating the required actuators’ force to hold a
robot in a specific configuration is called robot statics analysis.

In a static condition, the globally expressed Newton-Euler equations for
the link (7) can be written in a recursive form

°Fin = "Fi-> °F, (12.455)
M,y = "M;-) "M+, {d; x °F; (12.456)

where
. Vd; = d; — °d;_4. (12.457)

Therefore, we are able to calculate the action force system (F;_1 , M;_1)
when the reaction force system (—F; , —M;) is given. The position vectors
and force systems on link (¢) are shown in Figure 12.21.

Proof. In a static condition, the Newton-Euler equations of motion (12.1)
and (12.2) for the link (¢) reduce to force and moment balance equations.

°Fi1— Fi+ ) "F., = 0 (12.458)

OM; 1 — 'Mi+ > M., + %n; x OFi1 — "m; x "F; = 0 (12.459)
These equations can be rearranged into a backward recursive form.

°Fin = "Fi-> °F, (12.460)

OMi,1 OMZ‘ — Z OMei — Ol’li X 0F1;1 + Omi X OFZ' (12461)
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However, we may transform the Euler equation from C; to O;_; and find
the Equation (12.456).

Practically, we measure the position of mass center r; and the relative
position of B; and B;_1 in the coordinate frame B; attached to the link
(i). Hence, we must transform ‘r; and ,_?d; to the base frame.

Op, = 97, (12.462)
ivdi = T _{d, (12.463)

ZOFQ = m; g (12.464)
> M, = ‘r;xm; ‘g (12.465)

Using the DH parameters, we may express the relative position vector
i—1d; by
a;
d; sin oy;
d; cos o
1

(12.466)

iy
—1+ —

The backward recursive equations (12.455) and (12.456) allow us to start
with a known force system (F,, , M,,) at B,,, applied from the end-effector
to the environment, and calculate the force system at B,,_1.

°Fpn = F,-)» °F, (12.467)
‘M, 1 = °M,-> M. +,9d,x °F,  (12468)

Following the same procedure and calculating force system at proximal
end by having the force system at distal end of each link, ends up to the
force system at the base. In this procedure, the force system applied by the
end-effector to the environment is assumed to be known.

It is also possible to rearrange the static Equations (12.458) and (12.459)
into a forward recursive form.

OFi — OFi—l + Z OFei (12469)
‘M; = "M+ Z M., + ’n; x °F;_; — "m; x "F; (12.470)

Transforming the Euler equation from C; to O; simplifies the forward re-
cursive equations into the more practical equations.

B, = B, 1Y, (12.471)
M, = "M+ Z M., — ;_Pd; x "F,_4 (12.472)
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FIGURE 12.22. A 4R planar manipulator.

Using the forward recursive Equations (12.471) and (12.472) we can start
with a known force system (Fy , M) at By, applied from the base to the
link (1), and calculate the force system at Bj.

°F, = "Fo+) F,, (12.473)
M, = Mo+ ) "M, - “dy x °F, (12.474)

Following this procedure and calculating force system at the distal end
by having the force system at the proximal end of each link, ends up at
the force system applied to the environment by the end-effector. In this
procedure, the force system applied by the base actuators to the first link
is assumed to be known. m

Example 345 Statics of a 4R planar manipulator.

Figure 12.22 illustrates a 4R planar manipulator with the DH coordinate
frames set up for each link. Assume the end-effector force system applied
to the environment is measured as

F, 0
‘Fy=| F, ‘My=1| 0 |. (12.475)
0 M,

In addition, we assume that the links are uniform such that their C are
located at the midpoint of each link, and the gravitational acceleration is:

g=-9Jo (12.476)
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The manipulator consists of four R||R(0) links, therefore their transforma-
tion matrices 1T, are of class (5.32) that because d; = 0 and a; = I;,

simplifies to

cost); —sinf; 0 I[;cosb;

i1 _ sinf; cosf; 0 I[;sinf;
! 0 0 1 0
0 0 0 1

(12.477)

The C' position vectors ‘r; and the relative position vectors,_ Pd; are:

l;/2 l;
ri=1| | iidi= | (12.478)
0 0
and therefore,
Oy = T 'ry (12.479)
irdi = Ty, {d (12.480)
where '
o, = 0y .. LT (12.481)
The static force at joints 3, 2, and 1 are
Fy = OF,— Z OF., = "F4 4+ mag’jo (12.482)
F, 0 F,
o Fy 1| | Fy+mag
= Lo [T 0| T 0
0 0 0
0F2 = OF3 — mg3g Oj() (12483)
F, 0 F,
_ Fy+mug 1| | Fy+(ms+ma)g
= 0 tmsg g | = 0
0 0 0
F1 = Fo—mag %o
[ F, 0
_ Fy+ (ms+mq)g + g 1
0 0
I 0 0
- F,
_ | Futg(matms+mi) (12.484)
0 .
i 0
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Fo = "F, —mig%o
i F, 0
- Fy + g (ma +m3 + ma) +mag 1
0 0
i 0 0
- F
B Fy+ g (m1i+mg 4+ msz + my) (12.485)
= 0 . )
i 0

The static moment at joints 3, 2, and 1 are

Mz = "My-) "M, + §ds x °Fy
= "My + ry x mug®jo + 3ds x °Fy
= "My + "ry x mag® + 9dy x OFy
OMy + mag (°Ts*rq x %50) + (°T4 5d4) x °Fy4
0

0
= 12.486
Ms, ( )

0

1
Ms, =M, + Z4Fy cos 01234 — 14 F, sin 01934 + §gl4m4 cos 01234 (12487)

‘M, = "M;+mag (0T3 ’rs x Ojo) + (OT3 §d3) x 'Fy
0

0
= | (12.488)

0

. 1
My, = M, +14F,cos0234 — [4F; sinf934 + §gl4m4 cos 61234

1
+§gl3m3 cos 0123 — I3 F, sin 0123

+l3 (Fy + gma) cos 0123 (12.489)
0M1 = OMQ —+ mag (0T2 21‘2 X Ojo) —+ (OT2 %dg) X 0F2
0
0
= My, (12.490)

0
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. 1
M, = M,+14F,cos6i234 — l4Fysinfi234 + §gl4m4 cos 01234
1 .
+§glgm3 COS 0123 — lng S1n 9123 + 13 COS 0123 (Fy + gm4)
1
+§glgm2 COS 912 — ZQF@ sin 912

+ly cos 019 (Fy + g (ms + my)) (12.491)

‘My = "M; +mg (OTI 'y x Ojo) + (OTl édl) x OF
0
0

= | (12.492)

0
Mo, = M, +14F,cos0i234 — l4F, sinf1934 + %gl4m4 cos 01234
—l—%glgmg €08 0123 — l3F, sin 6123 + I3 cos 0123 (Fyy + gma)
—lyF, sin 015 + %glgmg cos 012 + la cos 012 (Fyy + g (m3 + my))

1
+§gl1m1 cosfi — 1 F, sinfy

411 cos B (Fy +g(m2 + ms +m4)) (12.493)
where
01232 = 01 +02+03+0, (12.494)
Oz = 01+02+03 (12.495)
010 = 01+ 0, (12.496)

Example 346 Recursive force equation in link’s frame.

Practically, it is easier to measure and calculate the force systems in the
kink’s frame. Therefore, we may write the backward recursive Equations
(12.455) and (12.456) in the following form:

F,, = F—ZF (12.497)
M;_, = iMi—ZiMei+i_fdixiFi (12.498)

and calculate the proximal force system from the distal force system in the
link’s frame. The calculated force system, then, may be transformed to the
previous link’s coordinate frame by a transformation

g, = IR, (12.499)
v, = T M (12.500)
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or they may be transformed to any other coordinate frame including the
base frame.

%,y = T F,_, (12.501)
‘M, = T, ‘M, (12.502)

Example 347 Actuator’s force and torque.

Applying a backward or forward recursive static force analysis ends up
with a set of known force systems at joints. Each joint is driven by a motor
or generally an actuator that applies a force in a P joint, or a torque in an
R joint. When the joint i is prismatic, the actuator force is applied along
the axis of the joint i. Therefore, the force of the driving motor is along the
2i—1-QT1S

F,, = %L | °F; (12.503)

showing that the ki1 component of the joint force ¥F; is supported by the
actuator, while the 1,1 and j;_1 components of F; must be supported by
the bearings of the joint.

Similarly, when joint i is revolute, the actuator torque is applied about
the axis of joint i. Therefore, the torque of the driving motor is along the
Zi—1-axtS

M,, = °kI | °M; (12.504)

showing that the ki_1 component of the joint torque M is supported by the
actuator, while the i;_1 and j;—1 components of M; must be supported by
the bearings of the joint.
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12.6 Summary

Dynamics equations of motion for a robot can be found by both Newton-
Euler and Lagrange methods. In the Newton-Euler method, each link ()
is a rigid body and therefore, its translational and rotational equations of
motion in the base coordinate frame are:

m; Oai = OFZ',1 — OFi + Z OFei (12505)
Ligoy = "My —"M;+) "M,
+ (Odi_l — Ori) X OFi_l — (Odi — Ori) X OFi (12506)

The force F;_; and moment M,;_; are the resultant force and moment
that link (¢ — 1) applies to link (¢) at joint ¢. Similarly, F; and M, are the
resultant force and moment that link (z) applies to link (¢ + 1) at joint
i + 1. We measure the force systems (F;,_; , M;_1) and (F; , M;) at the
origin of the coordinate frames B; 1 and B; respectively. The sum of the
external loads acting on the link (i) are Y F,, and Y. M,,. The vector ’r;
is the global position vector of C; and “d; is the global position vector of
the origin of B;. The vector “a; is the angular acceleration and “a; is the
translational acceleration of the link (i) measured at the mass center C;.

Oai = OdZ + oo¢; X (OI‘Z' — OdZ) + ow; X (Owi X (OI‘Z' — Odl)) (12507)

o = { 0@i—1+0; ki1 + owi—1 x 0;°k;_1 %fJ:o%nt Z %S R (12.508)

00i—1 if joint ¢ is P
Weight is usually the only external load on middle links of a robot, and
reactions from the environment are extra external force systems on the
base and end-effector links. The force and moment that the base actuator
applies to the first link are Fo and Mg, and the force and moment that the
end-effector applies to the environment are F,, and M,,. If weight is the

only external load on link () and it is in — 0 direction, then we have
Z OFei = my Og = 7migolzio (12509)
Z OMei = OI‘Z‘ X my Og = 701‘1' X migofco (12510)

where g is the gravitational acceleration vector.

The Newton-Euler equation of motion can also be written in link’s coordi-
nate frame in a forward or backward method. The backward Newton-Euler
equations of motion for link () in the the local coordinate frame B; are

iFi,1 = iFi — Z iFei +m; 6&1' (12511)

M1 = M, - Z iMei - (idifl - il‘i) x 'Fiy
+ (idi — il‘i) X iFi + 1,[1 éai + éwi X ifi éwi (12512)
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where
‘n; = ‘d;_;—'r; (12.513)
‘m; = ‘'d;-— 'r,. (12.514)
and
éai = i(';li + éai X (il‘i — idi) + 6wi X (Ewl X (iI‘i — idi)) (12515)
Ty (1;010%71 +0; i_llzf’iq)
Sai = + in_l (i_olwi_l X 91' ’L'—l]%i_1> if joint 1is R (12516)
i1 o e if joint ¢ is P.

In this method, we search for the driving force system (‘F;_1, ‘M;_;)
by having the driven force system (‘F;, ‘M;) and the resultant external
force system (‘F.,, “M,,). When the driving force system (‘F;_1, ‘M;_ 1)
is found in frame B;, we can transform them to the frame B;_; and apply
the Newton-Euler equation for link (¢ —1).

g, = IR, (12.517)

Mg, = T M (12.518)
The negative of the converted force system acts as the driven force system
(— i_lFifl, — i_lMifl) for the link (’L — 1)

The forward Newton-Euler equations of motion for link (¢) in the the
local coordinate frame B; are

'Fi="Fi1+ Y 'Fe, —mija (12.519)

™M; = M1+ Z "M, + (idifl - il‘i) x "Fiq
— (idi — iI‘Z') X iFi — 1.[z éai — 6wi X iIZ‘ Bwl (12520)

m; = ‘di—'r (12.521)

‘m; = ‘d; — 'r; (12.522)
Using the forward Newton-Euler equations of motion, we can calculate the
reaction force system (‘F;, “M;) by having the action force system (‘F;_1,
‘M;_1). When the reaction force system (‘F;, ‘M) is found in frame B;,
we can transform them to the frame B;4q

HE, = T 'F (12.523)
T M. (12.524)

T

£

=
|
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The negative of the converted force system acts as the action force system
(— H1F;, — H1ML) for the link (i + 1) and we can apply the Newton-Euler
equation to the link (i+1). The forward Newton-Euler equations of motion
allows us to start from a known action force system (1Fg, 'Mj), that the
base link applies to the link (1), and calculate the action force of the next
link. Therefore, analyzing the links of a robot, one by one, we end up with
the force system that the end-effector applies to the environment.
The Lagrange equation of motion

d (LN oL :
o <%> “5. = @ =L (12.525)
L = K-V (12.526)

provides a systematic approach to obtain the dynamics equations for ro-
bots. The variables ¢; are the coordinates by which the energies are ex-
pressed and the Q; is the corresponding generalized nonpotential force.
The equations of motion for an n link serial manipulator, based on
Newton-Euler or Lagrangian, can always be set in a matrix form

D(q)d+H(q,q) + G(a) = Q (12.527)
or
D(q) 4+ C(q,4)a+ G(a) = Q (12.528)
or in a summation form
S Diy(@)d + 3. Hikmdnim + Gi = Qi (12.529)
Jj=1 k=1m=1

where, D(q) is an n X n inertial-type symmetric matrix

- 1
D=>Y" <J£i mi Ipi+ 5 JL L JRi) (12.530)
=1

Hkm is the velocity coupling vector

n

B "\ (0D;; 10Dy
Hyp=> > ( %~ 3 0o ) (12.531)

j=1k=1

G; is the gravitational vector
Z" (i)
T 2
Gi = m;g JDj (12532)
=1

and J;is the Jacobian matrix of the robot

. 0 . .
X; = { o } = [ jg }Q_Ji 4. (12.533)

Wi
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To hold a robot in a stationary configuration, the actuators must apply
some required forces to balance the external loads applied to the robot. In
the static condition, the globally expressed Newton-Euler equations for the
link (7), can be written in a recursive form

°F,n = "F;-> °F, (12.534)
OMZ',1 = OMZ' — Z OMei + i_?di X OFZ'. (12535)

Now we are able to calculate the action force system (F;_; , M;_1) when
the reaction force system (—F; , —M;) is given.
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12.7 Key Symbols

QUZJU'EQJQ

3}
Eh

MEEEgDARSQQ0

) a0
e
&

®

Ll T e Bt m QQUQ
S~ ~
AR SRR
-—-N.':.k‘% e;

EShHNNL‘II

.

@@Q;ZZE

kinematic link length,

acceleration vector

coefficient matrix of a set of linear equations

vector of known values in a set of linear equations
body coordinate frame

cos

position of the mass center of link (¢) in B;
Jacobian generating vector

mass center

damping-type matrix of equation of motion
elements of d

translation vector, joint position vector

position vector of the origin of B;

displacement transformation matrix

inertial-type matrix of equation of motion

external force acting on the link ()

the force that link (i) applies to (i + 1) at joint ¢ + 1
the force that link (¢ — 1) applies to link (¢) at joint ¢
shaking force

gravitational acceleration vector

global coordinate frame, Base coordinate frame
gravitational vector of equation of motion

velocity coupling vector of equation of motion

local coordinate axes unit vectors

global coordinate axes unit vectors

mass moment matrix

pseudo inertia matrix

identity matrix

Jacobian

kinetic energy

length

angular moment vector, moment of moment
Lagrangean

mass

position vector of o; from C;

position vector of 0;_; from C;

external moment acting on the link (7)

the moment that link (¢) applies to (i + 1) at joint ¢ + 1
the moment that link (¢ — 1) applies to link () at joint ¢
generalized coordinate

torque of an actuator, generalized nonpotential force
moment vector at a joint
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<
!

<< 8 3

b MO8
=
IS

~
N

) )

ay, g, 3
0

ik

w1, wW2,wWs

EIE Efbcbm
<O
x>

== T
s E

-3

o

X

BD

-+
=

position vectors, homogeneous position vector,
global position of the mass center of a link
the element 7 of r

the element of row ¢ and column j of a matrix
rotation transformation matrix

sin

homogeneous transformation matrix
translational velocity vector

potential energy

local coordinate axes

vector of unknown values in a set of linear equations
global coordinate axes

short notation of an equation

angular acceleration

angular acceleration vector
components of «

rotary joint angle

0; +0; + 0y

components of w

small test number to terminate a procedure
rotary joint angle

0; + 0]' + 0

angular velocity

angular velocity vector

skew symmetric matrix of the vector w

inverse of the matrix [ ]
transpose of the matrix [ ]
equivalent

orthogonal

link number

parallel sign

perpendicular

vector cross product

free body diagram

trace
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Exercises

1. Notation and symbols.

Describe their meaning.
a- F2 b- OFl C- 1F1 d- 2M1 e- 2M61 f- BM
gmy h-’ny i, 0d; %4 k- Or I- ~ld;

m- 0L2 n- 012 O- 7,'701L’L' pr- K; q- V; I- iilIi

2. % Even order recursive translational velocity.
Find an equation to relate the velocity of link (i) to the velocity of
link (i — 2), and the velocity of link () to the velocity of link (i + 2).
3. % Even order recursive angular velocity.

Find an equation to relate the angular velocity of link (i) to the
angular velocity of link (i — 2), and the angular velocity of link () to
the angular velocity of link (i + 2).

4. ¥ Even order recursive translational acceleration.

Find an equation to relate the acceleration of link (7) to the accelera-
tion of link (i —2), and the acceleration of link () to the acceleration
of link (¢ + 2).

5. % Even order recursive angular acceleration.

Find an equation to relate the angular acceleration of link () to the
angular acceleration of link (i — 2), and the angular acceleration of
link () to the angular acceleration of link (i + 2).

6. % Acceleration in different frames.
For the 2R planar manipulator shown in Figure 12.7, find {a, jas,
gal, 331, %ag, and ‘fal.

7. Slider-crank mechanism dynamics.

A planar slider-crank mechanism is shown in Figure 12.23. Set up
the link coordinate frames, develop the Newton-Euler equations of
motion, and find the driving moment at the base revolute joint.

8. PR manipulator dynamics.

Find the equations of motion for the planar polar manipulator shown
in Figure 5.56. Eliminate the joints’ constraint force and moment to
derive the equations for the actuators’ force or moment.
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FIGURE 12.23. A planar slider-crank machanism.
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FIGURE 12.24. A 2 DOF Cartesian manipulator.

9. A planar Cartesian manipulator.

Determine the equations of motion of the planar Cartesian manip-
ulator shown in Figure 12.24. Hint: The coordinate frames are not
based on DH rules.

10. % Global differential of a link momentum.

In recursive Newton-Euler equations of motion, why we do not use
the following Newton equation?

Gd . Gd . . ) )
F=—m'v=m'Vv+ jw; xm'v

s dt

i

11. 3R planar manipulator dynamics.
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X0

FIGURE 12.25. An articulated manipulator.

A 3R planar manipulator is shown in Figure 12.29. The manipulator
is attached to a wall and therefore, g = g %.

(a) Find the Newton-Euler equations of motion for the manipulator.
Do your calculations in the global frame and derive the dynamic
force and moment at each joint.

(b) Reduce the number of equations to three for moments at joints.

(c) Substitute the vectorial quantities and calculate the moments in
terms of geometry and angular variables of the manipulator.

12. A planar Cartesian manipulator dynamics.
Determine the Newton-Euler equations of motion for the planar Carte-
sian manipulator shown in Figure 5.57.
13. Articulated manipulator.
Figure 12.25 illustrates an articulated manipulator with massless arms
and two massive points mq and mo.
(a) Follow the DH rules and complete the link coordinate frames.
(b) Determine the DH transformation matrices.

(¢) Determine the equations of motion of the manipulator using
Lagrange method.

14. Polar planar manipulator dynamics.

A polar planar manipulator with 2 DOF' is shown in Figure 5.56.

(a) Determine the Newton-Euler equations of motion for the ma-
nipulator.
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FIGURE 12.26. A planar manipulator.

(b) Reduce the number of equations to two, for moments at the base
joint and force at the P joint.

(¢) Substitute the vectorial quantities and calculate the action force
and moment in terms of geometry and angular variables of the
manipulator.

. % Dynamics of a spherical manipulator.

Figure 5.43 illustrates a spherical manipulator attached with a spher-
ical wrist. Analyze the robot and derive the equations of motion for
joints action force and moment. Assume g = —g%kq and the end-
effector is carrying a mass m.

% Dynamics of an articulated manipulator.

Figure 5.22 illustrates an articulated manipulator RFR||R. Use g =
—g % and find the manipulator’s equations of motion.

A planar manipulator.

Figure 12.26 illustrates a three DOF planar manipulator. Determine
the equations of motion of the manipulator if the links are massless
and there are two massive points m; and ms.

% Dynamics of a SCARA robot.

Calculate the dynamic joints’ force system for the SCARA robot
R||R||R||P shown in Figure 5.23 if g = —g k.

% Dynamics of an SRM .S manipulator.
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FIGURE 12.27. A RPR planar redundant manipulator.

Figure 5.24 shows a model of the Shuttle remote manipulator system
(SRMS).

(a) Derive the equations of motion for the SRM .S and calculate the
joints’ force system for g = 0.

(b) Derive the equations of motion for the SRM .S and calculate the
joints’ force system for g = —g k.

(¢) Eliminate the constraint forces and reduce the number of equa-
tions equal to the number of action moments.

(d) Assume the links are made of a uniform cylinder with radius
r = .25m and m = 12kg/ m. Use the characteristics indicated
in Table 5.10 and find the equations of motion when the end-
effector is holding a 24 kg mass.

20. 3R planar manipulator recursive dynamics.

The manipulator shown in Figure 12.29 is a 3R planar manipulator
attached to a wall and therefore, g = —g %i.

(a) Find the equations of motion for the manipulator utilizing the
backward recursive Newton-Euler technique.

(b) % Find the equations of motion for the manipulator utilizing
the forward recursive Newton-Euler technique.

21. A RPR planar redundant manipulator.

(a) Figure 12.27 illustrates a 3 DOF planar manipulator with joint
variables 01, do, and 65. Determine the equations of motion of the
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manipulator if the links are massless and there are two massive
points my and mso.

Polar planar manipulator recursive dynamics.

Figure 5.56 depicts a polar planar manipulator with 2 DOF'.

(a) Find the equations of motion for the manipulator utilizing the
backward recursive Newton-Euler technique.

(b) % Find the equations of motion for the manipulator utilizing
the forward recursive Newton-Euler technique.

% Recursive dynamics of an articulated manipulator.

Figure 5.22 illustrates an articulated manipulator RFR||R. Use g =
—g % and find the manipulator’s equations of motion

(a) utilizing the backward recursive Newton-Euler technique.

(b) utilizing the forward recursive Newton-Euler technique.

% Recursive dynamics of a SCARA robot.

A SCARA robot R||R||R|P is shown in Figure 5.23. If g = —g %k,
determine the dynamic equations of motion by

(a) utilizing the backward recursive Newton-Euler technique.

(b) utilizing the forward recursive Newton-Euler technique.

% Recursive dynamics of an SRM S manipulator.
Figure 5.24 shows a model of the Shuttle remote manipulator system
(SRMS).

(a) Derive the equations of motion for the SRM S utilizing the back-
ward recursive Newton-Euler technique for g = 0.

(b) Derive the equations of motion for the SRM S utilizing the for-
ward recursive Newton-Euler technique for g = 0.

3R planar manipulator Lagrange dynamics.

Find the equations of motion for the 3R planar manipulator shown
in Figure 12.29 utilizing the Lagrange technique. The manipulator is
attached to a wall and therefore, g = —g %4.

Polar planar manipulator Lagrange dynamics.

Find the equations of motion for the polar planar manipulator, shown
in Figure 5.56, utilizing the Lagrange technique.
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% Lagrange dynamics of an articulated manipulator.

Figure 5.22 illustrates an articulated manipulator RFR||R. Use g =
—g %y and find the manipulator’s equations of motion utilizing the
Lagrange technique.

% Lagrange dynamics of a SCARA robot.

A SCARA robot R|[R|R||P is shown in Figure 5.23. If g = —g %%k
determine the dynamic equations of motion by applying the Lagrange
technique.

% Lagrange dynamics of an SRM .S manipulator.

Figure 5.24 shows a model of the Shuttle remote manipulator system
(SRM S). Derive the equations of motion for the SRM S utilizing the
Lagrange technique for

(b) g= *90];?0

% Work done by actuators.

Consider a 2R planar manipulator moving on a given path. Assume
that the endpoint of a 2R manipulator moves with constant speed
v = 1m/sec from P; to P, on a path made of two semi-circles as
shown in Figure 13.35. Calculate the work done by the actuators if
li = ls = 1m and the manipulator is carrying a 12kg mass. The
center of the circles are at (0.75m, 0.5m) and (—0.75m, 0.5m).

Statics of a 2R planar manipulator.

Figure 12.28 illustrates a 2R planar manipulator attached to a ceiling.
The links are uniform with

m; = 24kg my = 18kg
[y, = 1Im lpb=1m
g = —9%o.

There is a load F, = —14¢°jy N at the endpoint. Calculate the static
moments @1 and Q5 for §; = 30deg and 65 = 45 deg.

Statics of a 2R planar manipulator at a different base angle.

In Exercise 32 keep 02 = 45deg and calculate the static moments
@1 and @9 as functions of 8. Plot @)1 and ) versus 6, and find
the configuration that minimizes Q, Q2, @1 + @2, and the potential
energy V.
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FIGURE 12.28. A 2R planar manipulator attached to a ceiling in static condition.

FIGURE 12.29. A 3R planar manipulator attached to a wall.
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Statics of a 3R planar manipulator.

Figure 12.29 illustrates a 3R planar manipulator attached to a wall.
Derive the static force and moment at each joint to keep the config-
uration of the manipulator if g = —g %.

% Statics of an articulated manipulator.

An articulated manipulator RFR||R is shown in Figure 5.22. Find the
static force and moment at joints for g = g%ky. The end-effector is
carrying a 20 kg mass. Calculate the maximum base force moment.

Y Statics of a SCARA robot.

Calculate the static joints’ force system for the SCARA robot R||R||R||P
shown in Figure 5.23 if g = —g %k and the end-effector is carrying a
10kg mass.

% Statics of a spherical manipulator.

Figure 5.43 illustrates a spherical manipulator attached with a spher-
ical wrist. Analyze the robot and calculate the static force system in
joints for g = —g Yk if the end-effector is carrying a 12kg mass.

% Statics of an SRM S manipulator.

A model of the Shuttle remote manipulator system (SRM.S) is shown
in Figure 5.24. Analyze the static configuration of the SRMS and
calculate the joints’ force system for g = —g k.

Assume the links are made of a uniform cylinder with radius r = .25m
and m = 12kg/ m. Use the characteristics indicated in Table 5.10 and
find the maximum value of the base force system for a 24 kg mass held
by the end-effector. The SRM S is supposed to work in a no-gravity
field.
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