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Preface

This book is designed to serve as a text for engineering students. It
introduces the fundamental knowledge used in robotics. This knowledge
can be utilized to develop computer programs for analyzing the kinematics,
dynamics, and control of robotic systems.
The subject of robotics may appear overdosed by the number of available

texts because the field has been growing rapidly since 1970. However, the
topic remains alive with modern developments, which are closely related to
the classical material. It is evident that no single text can cover the vast
scope of classical and modern materials in robotics. Thus the demand for
new books arises because the field continues to progress. Another factor
is the trend toward analytical unification of kinematics, dynamics, and
control.
Classical kinematics and dynamics of robots has its roots in the work of

great scientists of the past four centuries who established the methodology
and understanding of the behavior of dynamic systems. The development
of dynamic science, since the beginning of the twentieth century, has moved
toward analysis of controllable man-made systems. Therefore, merging the
kinematics and dynamics with control theory is the expected development
for robotic analysis.
The other important development is the fast growing capability of ac-

curate and rapid numerical calculations, along with intelligent computer
programming.

Level of the Book
This book has evolved from nearly a decade of research in nonlinear

dynamic systems, and teaching undergraduate-graduate level courses in
robotics. It is addressed primarily to the last year of undergraduate study
and the first year graduate student in engineering. Hence, it is an interme-
diate textbook. This book can even be the first exposure to topics in spa-
tial kinematics and dynamics of mechanical systems. Therefore, it provides
both fundamental and advanced topics on the kinematics and dynamics of
robots. The whole book can be covered in two successive courses however,
it is possible to jump over some sections and cover the book in one course.
The students are required to know the fundamentals of kinematics and
dynamics, as well as a basic knowledge of numerical methods.



The contents of the book have been kept at a fairly theoretical-practical
level. Many concepts are deeply explained and their use emphasized, and
most of the related theory and formal proofs have been explained. Through-
out the book, a strong emphasis is put on the physical meaning of the con-
cepts introduced. Topics that have been selected are of high interest in the
field. An attempt has been made to expose the students to a broad range
of topics and approaches.

Organization of the Book
The text is organized so it can be used for teaching or for self-study.

Chapter 1 “Introduction,” contains general preliminaries with a brief review
of the historical development and classification of robots.
Part I “Kinematics,” presents the forward and inverse kinematics of

robots. Kinematics analysis refers to position, velocity, and acceleration
analysis of robots in both joint and base coordinate spaces. It establishes
kinematic relations among the end-effecter and the joint variables. The
method of Denavit-Hartenberg for representing body coordinate frames is
introduced and utilized for forward kinematics analysis. The concept of
modular treatment of robots is well covered to show how we may combine
simple links to make the forward kinematics of a complex robot. For inverse
kinematics analysis, the idea of decoupling, the inverse matrix method, and
the iterative technique are introduced. It is shown that the presence of a
spherical wrist is what we need to apply analytic methods in inverse kine-
matics.
Part II “Dynamics,” presents a detailed discussion of robot dynamics.

An attempt is made to review the basic approaches and demonstrate how
these can be adapted for the active displacement framework utilized for
robot kinematics in the earlier chapters. The concepts of the recursive
Newton-Euler dynamics, Lagrangian function, manipulator inertia matrix,
and generalized forces are introduced and applied for derivation of dynamic
equations of motion.
Part III “Control,” presents the floating time technique for time-optimal

control of robots. The outcome of the technique is applied for an open-
loop control algorithm. Then, a computed-torque method is introduced, in
which a combination of feedforward and feedback signals are utilized to
render the system error dynamics.

Method of Presentation
The structure of presentation is in a "fact-reason-application" fashion.

The "fact" is the main subject we introduce in each section. Then the
reason is given as a "proof." Finally the application of the fact is examined
in some "examples." The "examples" are a very important part of the book
because they show how to implement the knowledge introduced in "facts."
They also cover some other facts that are needed to expand the subject.
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Prerequisites
Since the book is written for senior undergraduate and first-year graduate

level students of engineering, the assumption is that users are familiar with
matrix algebra as well as basic feedback control. Prerequisites for readers
of this book consist of the fundamentals of kinematics, dynamics, vector
analysis, and matrix theory. These basics are usually taught in the first
three undergraduate years.

Unit System
The system of units adopted in this book is, unless otherwise stated,

the international system of units (SI). The units of degree (deg) or radian
( rad) are utilized for variables representing angular quantities.

Symbols

• Lowercase bold letters indicate a vector. Vectors may be expressed in
an n dimensional Euclidian space. Example:

r , s , d , a , b , c
p , q , v , w , y , z
ω , α , ² , θ , δ , φ

• Uppercase bold letters indicate a dynamic vector or a dynamic ma-
trix. Example:

F , M , J

• Lowercase letters with a hat indicate a unit vector. Unit vectors are
not bolded. Example:

ı̂ , ĵ , k̂ , ê , û , n̂

Î , Ĵ , K̂ , êθ , êϕ , êψ

• Lowercase letters with a tilde indicate a 3×3 skew symmetric matrix
associated to a vector. Example:

ã =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ , a =

⎡⎣ a1
a2
a3

⎤⎦
• An arrow above two uppercase letters indicates the start and end
points of a position vector. Example:

−−→
ON = a position vector from point O to point N

Preface xiii



• A double arrow above a lowercase letter indicates a 4 × 4 matrix
associated to a quaternion. Example:

←→q =

⎡⎢⎢⎣
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎤⎥⎥⎦
q = q0 + q1i+ q2j + q3k

• The length of a vector is indicated by a non-bold lowercase letter.
Example:

r = |r| , a = |a| , b = |b| , s = |s|

• Capital letters A, Q, R, and T indicate rotation or transformation
matrices. Example:

QZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ , GTB =

⎡⎢⎢⎣
cα 0 −sα −1
0 1 0 0.5
sα 0 cα 0.2
0 0 0 1

⎤⎥⎥⎦
• Capital letter B is utilized to denote a body coordinate frame. Ex-
ample:

B(oxyz) , B(Oxyz) , B1(o1x1y1z1)

• Capital letter G is utilized to denote a global, inertial, or fixed coor-
dinate frame. Example:

G , G(XY Z) , G(OXY Z)

• Right subscript on a transformation matrix indicates the departure
frames. Example:

TB = transformation matrix from frame B(oxyz)

• Left superscript on a transformation matrix indicates the destination
frame. Example:

GTB = transformation matrix from frame B(oxyz)

to frame G(OXY Z)

• Whenever there is no sub or superscript, the matrices are shown in a
bracket. Example:

[T ] =

⎡⎢⎢⎣
cα 0 −sα −1
0 1 0 0.5
sα 0 cα 0.2
0 0 0 1

⎤⎥⎥⎦
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• Left superscript on a vector denotes the frame in which the vector
is expressed. That superscript indicates the frame that the vector
belongs to; so the vector is expressed using the unit vectors of that
frame. Example:

Gr = position vector expressed in frame G(OXY Z)

• Right subscript on a vector denotes the tip point that the vector is
referred to. Example:

GrP = position vector of point P

expressed in coordinate frame G(OXY Z)

• Left subscript on a vector indicates the frame that the angular vector
is measured with respect to. Example:

G
BvP = velocity vector of point P in coordinate frame B(oxyz)

expressed in the global coordinate frame G(OXY Z)

We drop the left subscript if it is the same as the left superscript.
Example:

B
BvP ≡ BvP

• Right subscript on an angular velocity vector indicates the frame that
the angular vector is referred to. Example:

ωB = angular velocity of the body coordinate frame B(oxyz)

• Left subscript on an angular velocity vector indicates the frame that
the angular vector is measured with respect to. Example:

GωB = angular velocity of the body coordinate frame B(oxyz)

with respect to the global coordinate frame G(OXY Z)

• Left superscript on an angular velocity vector denotes the frame in
which the angular velocity is expressed. Example:

B2

G ωB1 = angular velocity of the body coordinate frame B1
with respect to the global coordinate frame G,

and expressed in body coordinate frame B2

Whenever the left subscript and superscript of an angular velocity
are the same, we usually drop the left superscript. Example:

GωB ≡ G
GωB
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• If the right subscript on a force vector is a number, it indicates the
number of coordinate frame in a serial robot. Coordinate frame Bi is
set up at joint i+ 1. Example:

Fi = force vector at joint i+ 1

measured at the origin of Bi(oxyz)

At joint i there is always an action force Fi, that link (i) applies on
link (i+1), and a reaction force −Fi, that link (i+1) applies on link
(i). On link (i) there is always an action force Fi−1 coming from link
(i − 1), and a reaction force −Fi coming from link (i + 1). Action
force is called driving force, and reaction force is called driven force.

• If the right subscript on a moment vector is a number, it indicates
the number of coordinate frames in a serial robot. Coordinate frame
Bi is set up at joint i+ 1. Example:

Mi = moment vector at joint i+ 1

measured at the origin of Bi(oxyz)

At joint i there is always an action momentMi, that link (i) applies
on link (i+1), and a reaction moment −Mi, that link (i+1) applies
on link (i). On link (i) there is always an action momentMi−1 coming
from link (i−1), and a reaction moment −Mi coming from link (i+1).
Action moment is called driving moment, and reaction moment is
called driven moment.

• Left superscript on derivative operators indicates the frame in which
the derivative of a variable is taken. Example:

Gd

dt
x ,

Gd

dt
BrP ,

Bd

dt
G
BrP

If the variable is a vector function, and also the frame in which the
vector is defined is the same as the frame in which a time derivative
is taken, we may use the following short notation,

Gd

dt
GrP =

GṙP ,
Bd

dt
B
o rP =

B
o ṙP

and write equations simpler. Example:

Gv =
Gd

dt
Gr(t) = Gṙ

• If followed by angles, lowercase c and s denote cos and sin functions
in mathematical equations. Example:

cα = cosα , sϕ = sinϕ
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• Capital bold letter I indicates a unit matrix, which, depending on
the dimension of the matrix equation, could be a 3 × 3 or a 4 × 4
unit matrix. I3 or I4 are also being used to clarify the dimension of
I. Example:

I = I3 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
• An asterisk F indicates a more advanced subject or example that is
not designed for undergraduate teaching and can be dropped in the
first reading.

• Two parallel joint axes are indicated by a parallel sign, (k).

• Two orthogonal joint axes are indicated by an orthogonal sign, (`).
Two orthogonal joint axes are intersecting at a right angle.

• Two perpendicular joint axes are indicated by a perpendicular sign,
(⊥). Two perpendicular joint axes are at a right angle with respect
to their common normal.
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Introduction
Law Zero: A robot may not injure humanity, or, through inaction, allow
humanity to come to harm.
Law One: A robot may not injure a human being, or, through inaction,

allow a human being to come to harm, unless this would violate a higher
order law.
Law Two: A robot must obey orders given it by human beings, except

where such orders would conflict with a higher order law.
Law Three: A robot must protect its own existence as long as such pro-

tection does not conflict with a higher order law.

FIGURE 1.1. A high performance robot hand.

Isaac Asimov proposed these four refined laws of "robotics" to protect
us from intelligent generations of robots. Although we are not too far from
that time when we really do need to apply Asimov’s rules, there is no
immediate need however, it is good to have a plan.
The term robotics refers to the study and use of robots. The term was

first adopted by Asimov in 1941 through his short science fiction story,
Runaround.
Based on the Robotics Institute of America (RIA) definition: "A robot is

a reprogrammable multifunctional manipulator designed to move material,
parts, tools, or specialized devices through variable programmed motions
for the performance of a variety of tasks."

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_1,  
© Springer Science+Business Media, LLC 2010 
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From the engineering point of view, robots are complex, versatile devices
that contain a mechanical structure, a sensory system, and an automatic
control system. Theoretical fundamentals of robotics rely on the results of
research in mechanics, electric, electronics, automatic control, mathematics,
and computer sciences.

1.1 Historical Development

The first position controlling apparatus was invented around 1938 for spray
painting. However, the first industrial modern robots were the Unimates,
made by J. Engelberger in the early 60s. Unimation was the first to market
robots. Therefore, Engelberger has been called the father of robotics. In
the 80s the robot industry grew very fast primarily because of the huge
investments by the automotive industry.
In the research community the first automata were probably Grey Wal-

ter’s machina (1940s) and the John’s Hopkins beast. The first program-
mable robot was designed by George Devol in 1954. Devol funded Uni-
mation. In 1959 the first commercially available robot appeared on the
market. Robotic manipulators were used in industries after 1960, and saw
sky rocketing growth in the 80s.
Robots appeared as a result of combination two technologies: teleopera-

tors, and computer numerical control (CNC) of milling machines. Teleoper-
ators were developed during World War II to handle radioactive materials,
and CNC was developed to increase the precision required in machining of
new technologic parts. Therefore, the first robots were nothing but numer-
ical control of mechanical linkages that were basically designed to transfer
material from point A to B.
Today, more complicated applications, such as welding, painting, and

assembling, require much more motion capability and sensing. Hence, a
robot is a multi-disciplinary engineering device. Mechanical engineering
deals with the design of mechanical components, arms, end-effectors, and
also is responsible for kinematics, dynamics and control analyses of ro-
bots. Electrical engineering works on robot actuators, sensors, power, and
control systems. System design engineering deals with perception, sensing,
and control methods of robots. Programming, or software engineering, is
responsible for logic, intelligence, communication, and networking.
Today we have more than 1000 robotics-related organizations, associa-

tions, and clubs; more than 500 robotics-related magazines, journals, and
newsletters; more than 100 robotics-related conferences, and competitions
each year; and more than 50 robotics-related courses in colleges. Robots
find a vast amount industrial applications and are used for various tech-
nological operations. Robots enhance labor productivity in industry and
deliver relief from tiresome, monotonous, or hazardous works. Moreover,
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robots perform many operations better than people do, and they provide
higher accuracy and repeatability. In many fields, high technological stan-
dards are hardly attainable without robots. Apart from industry, robots
are used in extreme environments. They can work at low and high temper-
atures; they don’t even need lights, rest, fresh air, a salary, or promotions.
Robots are prospective machines whose application area is widening and
their structures getting more complex. Figure 1.1 illustrates a high perfor-
mance robot hand.
It is claimed that robots appeared to perform in 4A for 4D, or 3D3H

environments. 4A performances are automation, augmentation, assistance,
and autonomous; and 4D environments are dangerous, dirty, dull, and dif-
ficult. 3D3H means dull, dirty, dangerous, hot, heavy, and hazardous.

1.2 Robot Components

Robotic manipulators are kinematically composed of links connected by
joints to form a kinematic chain. However, a robot as a system, consists
of a manipulator or rover, a wrist, an end-effector, actuators, sensors, con-
trollers, processors, and software.

1.2.1 Link

The individual rigid bodies that make up a robot are called links. In robotics
we sometimes use arm to mean link. A robot arm or a robot link is a rigid
member that may have relative motion with respect to all other links. From
the kinematic point of view, two or more members connected together such
that no relative motion can occur among them are considered a single link.

Example 1 Number of links.
Figure 1.2 shows a mechanism with 7 links. There can not be any relative

motion among bars 3, 10, and 11. Hence, they are counted as one link, say
link 3. Bars 6, 12, and 13 have the same situation and are counted as one
link, say link 6. Bars 2 and 8 are rigidly attached, making one link only,
say link 2. Bars 3 and 9 have the same relationship as bars 2 and 8, and
they are also one link, say link 3.

1.2.2 Joint

Two links are connected by contact at a joint where their relative motion
can be expressed by a single coordinate. Joints are typically revolute (ro-
tary) or prismatic (translatory). Figure 1.3 depicts the geometric form of
a revolute and a prismatic joint. A revolute joint (R), is like a hinge and



4 1. Introduction

1

2

3
4

5

6

7

8
9

10 11

1213

FIGURE 1.2. A two-loop planar linkage with 7 links and 8 revolute joints.
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FIGURE 1.3. Illustration of revolute and prismatic joints.

allows relative rotation between two links. A prismatic joint (P), allows a
translation of relative motion between two links.
Relative rotation of connected links by a revolute joint occurs about

a line called axis of joint . Also, translation of two connected links by a
prismatic joint occurs along a line also called axis of joint. The value of
the single coordinate describing the relative position of two connected links
at a joint is called joint coordinate or joint variable. It is an angle for a
revolute joint, and a distance for a prismatic joint.
A symbolic illustration of revolute and prismatic joints in robotics are

shown in Figure 1.4(a)-(c), and 1.5(a)-(c) respectively.
The coordinate of an active joint is controlled by an actuator. A passive

joint does not have any actuator. The coordinate of a passive joint is a
function of the coordinates of active joints and the geometry of the robot
arms. Passive joints are also called inactive or free joints.
Active joints are usually prismatic or revolute, however, passive joints

may be any of the lower pair joints that provide surface contact. There are
six different lower pair joints: revolute, prismatic, cylindrical, screw, spher-
ical, and planar. Revolute and prismatic joints are the most common joints
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(a) (b) (c)

FIGURE 1.4. Symbolic illustration of revolute joints in robotic modeles.

(a) (b) (c)

FIGURE 1.5. Symbolic illustration of prismatic joints in robotic models.

that are utilized in serial robotic manipulators. The other joint types are
merely implementations to achieve the same function or provide additional
degrees of freedom. Prismatic and revolute joints provide one degree of
freedom. Therefore, the number of joints of a manipulator is the degrees-
of-freedom (DOF ) of the manipulator. Typically the manipulator should
possess at least six DOF : three for positioning and three for orientation.
A manipulator having more than six DOF is referred to as a kinematically
redundant manipulator.

1.2.3 Manipulator

The main body of a robot consisting of the links, joints, and other structural
elements, is called the manipulator. A manipulator becomes a robot when
the wrist and gripper are attached, and the control system is implemented.
However, in literature robots and manipulators are utilized equivalently and
both refer to robots. Figure 1.6 schematically illustrates a 3R manipulator.

1.2.4 Wrist

The joints in the kinematic chain of a robot between the forearm and end-
effector are referred to as the wrist. It is common to design manipulators
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FIGURE 1.6. Illustation of a 3R manipulator.

with spherical wrists, by which it means three revolute joint axes intersect
at a common point called the wrist point. Figure 1.7 shows a schematic
illustration of a spherical wrist, which is a R`R`R mechanism.
The spherical wrist greatly simplifies the kinematic analysis effectively,

allowing us to decouple the positioning and orienting of the end effector.
Therefore, the manipulator will possess three degrees-of-freedom for posi-
tion, which are produced by three joints in the arm. The number of DOF
for orientation will then depend on the wrist. We may design a wrist having
one, two, or three DOF depending on the application.

1.2.5 End-effector

The end-effector is the part mounted on the last link to do the required job
of the robot. The simplest end-effector is a gripper, which is usually capable
of only two actions: opening and closing. The arm and wrist assemblies of
a robot are used primarily for positioning the end-effector and any tool it
may carry. It is the end-effector or tool that actually performs the work.
A great deal of research is devoted to the design of special purpose end-
effectors and tools. There is also extensive research on the development of
anthropomorphic hands. Such hands have been developed for prosthetic
use in manufacturing. Hence, a robot is composed of a manipulator or
mainframe and a wrist plus a tool. The wrist and end-effector assembly is
also called a hand.
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FIGURE 1.7. Illustration of a spherical wrist kinematics.

1.2.6 Actuators

Actuators are drivers acting as the muscles of robots to change their con-
figuration. The actuators provide power to act on the mechanical structure
against gravity, inertia, and other external forces to modify the geometric
location of the robot’s hand. The actuators can be of electric, hydraulic, or
pneumatic type and have to be controllable.

1.2.7 Sensors

The elements used for detecting and collecting information about internal
and environmental states are sensors. According to the scope of this book,
joint position, velocity, acceleration, and force are the most important in-
formation to be sensed. Sensors, integrated into the robot, send information
about each link and joint to the control unit, and the control unit deter-
mines the configuration of the robot.

1.2.8 Controller

The controller or control unit has three roles.
1-Information role, which consists of collecting and processing the infor-

mation provided by the robot’s sensors.
2-Decision role, which consists of planning the geometric motion of the

robot structure.
3-Communication role, which consists of organizing the information be-

tween the robot and its environment. The control unit includes the proces-
sor and software.
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1.3 Robot Classifications

The Robotics Institute of America (RIA) considers classes 3-6 of the follow-
ing classification to be robots, and the Association Francaise de Robotique
(AFR) combines classes 2, 3, and 4 as the same type and divides robots in 4
types. However, the Japanese Industrial Robot Association divides robots
in 6 different classes:
Class 1:Manual handling devices: A device with multi degrees of freedom

that is actuated by an operator.
Class 2: Fixed sequence robot : A device that performs the successive

stages of a task according to a predetermined and fixed program.
Class 3: Variable sequence robot : A device that performs the successive

stages of a task according to a predetermined but programmable method.
Class 4: Playback robot : A human operator performs the task manually

by leading the robot, which records the motions for later playback. The
robot repeats the same motions according to the recorded information.
Class 5: Numerical control robot : The operator supplies the robot with

a motion program rather than teaching it the task manually.
Class 6: Intelligent robot : A robot with the ability to understand its

environment and the ability to successfully complete a task despite changes
in the surrounding conditions under which it is to be performed.
Other than these official classifications, robots can be classified by other

criteria such as geometry, workspace, actuation, control, and application.

1.3.1 Geometry

A robot is called a serial or open-loop manipulator if its kinematic structure
does not make a loop chain. It is called a parallel or closed-loop manipulator
if its structure makes a loop chain. A robot is a hybrid manipulator if its
structure consists of both open and closed-loop chains.
As a mechanical system, we may think of a robot as a set of rigid bodies

connected together at some joints. The joints can be either revolute (R)
or prismatic (P ), because any other kind of joint can be modeled as a
combination of these two simple joints.
Most industrial manipulators have six DOF . The open-loop manipula-

tors can be classified based on their first three joints starting from the
grounded joint. Using the two types of joints, there are mathematically 72
different industrial manipulator configurations, simply because each joint
can be P or R, and the axes of two adjacent joints can be parallel (k), or-
thogonal (`), or perpendicular (⊥). Two orthogonal joint axes intersect at
a right angle, however two perpendicular joint axes are in right-angle with
respect to their common normal. Two perpendicular joint axes become par-
allel if one axis turns 90 deg about the common normal. Two perpendicular
joint axes become orthogonal if the length of their common normal tends
to zero.
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FIGURE 1.8. An RkRkP manipulator.

Out of the 72 possible manipulators, the important ones are: RkRkP
(SCARA), R`R⊥R (articulated), R`R⊥P (spherical), RkP`P (cylindri-
cal), and P`P`P (Cartesian).

1. RkRkP
The SCARA arm (Selective Compliant Articulated Robot for As-
sembly) shown in Figure 1.8 is a popular manipulator, which, as its
name suggests, is made for assembly operations.

2. R`R⊥R
The R`R⊥R configuration, illustrated in Figure 1.6, is called elbow,
revolute, articulated, or anthropomorphic. It is a suitable configuration
for industrial robots. Almost 25% of industrial robots, PUMA for
instance, are made of this kind. Because of its importance, a better
illustration of an articulated robot is shown in Figure 1.9 to indicate
the name of different components.

3. R`R⊥P
The spherical configuration is a suitable configuration for small ro-
bots. Almost 15% of industrial robots, Stanford arm for instance, are
made of this configuration. The R`R⊥P configuration is illustrated
in Figure 1.10.

By replacing the third joint of an articulate manipulator with a pris-
matic joint, we obtain the spherical manipulator. The term spherical
manipulator derives from the fact that the spherical coordinates de-
fine the position of the end-effector with respect to its base frame.
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FIGURE 1.9. Structure and terminology of an R`R⊥R elbow manipulator.

Figure 1.11 schematically illustrates the Stanford arm, one of the
most well-known spherical robots.

4. RkP`P

The cylindrical configuration is a suitable configuration for medium
load capacity robots. Almost 45% of industrial robots are made of this
kind. The RkP`P configuration is illustrated in Figure 1.12. The first
joint of a cylindrical manipulator is revolute and produces a rotation
about the base, while the second and third joints are prismatic. As
the name suggests, the joint variables are the cylindrical coordinates
of the end-effector with respect to the base.

5. P`P`P

The Cartesian configuration is a suitable configuration for heavy load
capacity and large robots. Almost 15% of industrial robots are made
of this configuration. The P`P`P configuration is illustrated in Fig-
ure 1.13.

For a Cartesian manipulator, the joint variables are the Cartesian co-
ordinates of the end-effector with respect to the base. As might be ex-
pected, the kinematic description of this manipulator is the simplest
of all manipulators. Cartesian manipulators are useful for table-top
assembly applications and, as gantry robots, for transfer of cargo.
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FIGURE 1.13. The P`P`P Cartesian configuration of robotic manipulators.
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1.3.2 Workspace

The workspace of a manipulator is the total volume of space the end-effector
can reach. The workspace is constrained by the geometry of the manipu-
lator as well as the mechanical constraints on the joints. The workspace is
broken into a reachable workspace and a dexterous workspace. The reach-
able workspace is the volume of space within which every point is reachable
by the end-effector in at least one orientation. The dexterous workspace is
the volume of space within which every point can be reached by the end-
effector in all possible orientations. The dexterous workspace is a subset of
the reachable workspace.
Most of the open-loop chain manipulators are designed with a wrist sub-

assembly attached to the main three links assembly. Therefore, the first
three links are long and are utilized for positioning while the wrist is utilized
for control and orientation of the end-effector. This is why the subassembly
made by the first three links is called the arm, and the subassembly made
by the other links is called the wrist.

1.3.3 Actuation

Actuators translate power into motion. Robots are typically actuated elec-
trically, hydraulically, or pneumatically. Other types of actuation might
be considered as piezoelectric, magnetostriction, shape memory alloy, and
polymeric.
Electrically actuated robots are powered by AC or DC motors and are

considered the most acceptable robots. They are cleaner, quieter, and more
precise compared to the hydraulic and pneumatic actuated. Electric motors
are efficient at high speeds so a high ratio gearbox is needed to reduce the
high speed. Non-backdriveability and self-braking is an advantage of high
ratio gearboxes in case of power loss. However, when high speed or high
load-carrying capabilities are needed, electric drivers are unable to compete
with hydraulic drivers.
Hydraulic actuators are satisfactory because of high speed and high

torque/mass or power/mass ratios. Therefore, hydraulic driven robots are
used primarily for lifting heavy loads. Negative aspects of hydraulics, be-
sides their noisiness and tendency to leak, include a necessary pump and
other hardware.
Pneumatic actuated robots are inexpensive and simple but cannot be

controlled precisely. Besides the lower precise motion, they have almost the
same advantages and disadvantages as hydraulic actuated robots.

1.3.4 Control

Robots can be classified by control method into servo (closed loop control)
and non-servo (open loop control) robots. Servo robots use closed-loop
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computer control to determine their motion and are thus capable of being
truly multifunctional reprogrammable devices. Servo controlled robots are
further classified according to the method that the controller uses to guide
the end-effector.
The simplest type of a servo robot is the point-to-point robot. A point-

to-point robot can be taught a discrete set of points, called control points,
but there is no control on the path of the end-effector in between the
points. On the other hand, in continuous path robots, the entire path of
the end-effector can be controlled. For example, the robot end-effector can
be taught to follow a straight line between two points or even to follow
a contour such as a welding seam. In addition, the velocity and/or ac-
celeration of the end-effector can often be controlled. These are the most
advanced robots and require the most sophisticated computer controllers
and software development.
Non-servo robots are essentially open-loop devices whose movement is

limited to predetermined mechanical stops, and they are primarily used for
materials transfer.

1.3.5 Application

Regardless of size, robots can mainly be classified according to their ap-
plication into assembly and non-assembly robots. However, in the industry
they are classified by the category of application such as machine loading,
pick and place, welding, painting, assembling, inspecting, sampling, manu-
facturing, biomedical, assisting, remote controlled mobile, and telerobot.
According to design characteristics, most industrial robot arms are an-

thropomorphic, in the sense that they have a “shoulder,” (first two joints)
an “elbow,” (third joint) and a “wrist” (last three joints). Therefore, in
total, they usually have six degrees of freedom needed to put an object in
any position and orientation.
Most commercial serial manipulators have only revolute joints. Com-

pared to prismatic joints, revolute joints cost less and provide a larger dex-
trous workspace for the same robot volume. Serial robots are very heavy,
compared to the maximum load they can move without loosing their accu-
racy. Their useful load-to-weight ratio is less than 1/10. The robots are so
heavy because the links must be stiff in order to work rigidly. Simplicity of
the forward and inverse position and velocity kinematics has always been
one of the major design criteria for industrial manipulators. Hence, almost
all of them have a special kinematic structure.
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1.4 Introduction to Robot’s Kinematics,
Dynamics, and Control

The forward kinematics problem is when the kinematical data are known for
the joint coordinates and are utilized to find the data in the base Cartesian
coordinate frame. The inverse kinematics problem is when the kinematics
data are known for the end-effecter in Cartesian space and the kinematic
data are needed in joint space. Inverse kinematics is highly nonlinear and
usually a much more difficult problem than the forward kinematics prob-
lem. The inverse velocity and acceleration problems are linear, and much
simpler, once the inverse position problem has been solved.
Kinematics, which is the English version of the French word cinématique

from the Greek κı́υημα (movement), is a branch of science that analyzes
motion with no attention to what causes the motion. By motion we mean
any type of displacement, which includes changes in position and orienta-
tion. Therefore, displacement, and the successive derivatives with respect
to time, velocity, acceleration, and jerk, all combine into kinematics.
Positioning is to bring the end-effector to an arbitrary point within dex-

trose, while orientation is to move the end-effector to the required orienta-
tion at the position. The positioning is the job of the arm, and orientation
is the job of the wrist. To simplify the kinematic analysis, we may decouple
the positioning and orientation of the end-effector.
In terms of the kinematic formation, a 6 DOF robot comprises six se-

quential moveable links and six joints with at least the last two links having
zero length.
Generally speaking, almost all problems of kinematics can be interpreted

as a vector addition. However, every vector in a vectorial equation must be
transformed and expressed in a common reference frame.
Dynamics is the study of systems that undergo changes of state as time

evolves. In mechanical systems such as robots, the change of states involves
motion. Derivation of the equations of motion for the system is the main
step in dynamic analysis of the system, since equations of motion are es-
sential in the design, analysis, and control of the system. The dynamic
equations of motion describe dynamic behavior. They can be used for com-
puter simulation of the robot’s motion, design of suitable control equations,
and evaluation of the dynamic performance of the design.
Similar to kinematics, the problem of robot dynamics may be considered

as direct and inverse dynamics problems. In direct dynamics, we should
predict the motion of the robot for a given set of initial conditions and
torques at active joints. In the inverse dynamics problem, we should com-
pute the forces and torques necessary to generate the prescribed trajectory
for a given set of positions, velocities, and accelerations.
The robot control problem may be characterized as the desired motion

of the end-effector. Such a desired motion is specified as a trajectory in
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Cartesian coordinates while the control system requires input in joint co-
ordinates.
Sensors generate data to find the actual state of the robot at joint space.

This implies a requirement for expressing the kinematic variables in Carte-
sian space to be transformed into their equivalent joint coordinate space.
These transformations are highly dependent on the kinematic geometry of
the manipulator. Hence, the robot control comprises three computational
problems:

1. Determination of the trajectory in Cartesian coordinate space,

2. Transformation of the Cartesian trajectory into equivalent joint co-
ordinate space, and

3. Generation of the motor torque commands to realize the trajectory.

1.4.1 F Triad

Take any four non-coplanar points O, A, B, C. The triad OABC is defined
as consisting of the three lines OA, OB, OC forming a rigid body. The
position of A on OA is immaterial provided it is maintained on the same
side of O, and similarly B and C. Rotate OB about O in the plane OAB
so that the angle AOB becomes 90 deg, the direction of rotation of OB
being such that OB moves through an angle less than 90 deg. Next, rotate
OC about the line in AOB to which it is perpendicular, until it becomes
perpendicular to the plane AOB, in such a way that OC moves through
an angle less than 90 deg. Calling now the new position of OABC a triad,
we say it is an orthogonal triad derived by continuous deformation. Any
orthogonal triad can be superposed on the OABC.
Given an orthogonal triad OABC, another triad OA0BC may be derived

by moving A to the other side of O to make the opposite triad OA0BC.
All orthogonal triads can be superposed either on a given orthogonal

triad OABC or on its opposite OA0BC. One of the two triads OABC and
OA0BC is defined as being a positive triad and used as a standard. The
other is then defined as negative triad. It is immaterial which one is chosen
as positive, however, usually the right-handed convention is chosen as pos-
itive, the one for which the direction of rotation from OA to OB propels a
right-handed screw in the direction OC. A right-handed (positive) orthog-
onal triad cannot be superposed to a left-handed (negative) triad. Thus
there are just two essentially distinct types of triad. This is an essential
property of three-dimensional space.

1.4.2 Unit Vectors

An orthogonal triad made of unit vectors ı̂, ĵ, k̂ is a set of three unit vectors
whose directions form a positive orthogonal triad. From this definition, we
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have:
ı̂2 = 1 , ĵ2 = 1 , k̂2 = 1 (1.1)

Moreover, since j×k is parallel to and in the same sense as i, by definition
of the vector product we have

ĵ× k̂ = ı̂ (1.2)

and similarly

k̂ × ı̂ = ĵ (1.3)

ı̂× ĵ = k̂. (1.4)

Further

ı̂ · ĵ = 0 (1.5)

ĵ · k̂ = 0 (1.6)

k̂ · ı̂ = 0 (1.7)

and
(ĵ× k̂) · ı̂ = ı̂ · ı̂ = +1. (1.8)

Any vector r may be put in the orthogonality condition of the following
form.

r = (r · ı̂)̂ı+ (r · ĵ)ĵ+ (r · k̂)k̂ (1.9)

Vector addition is the key operation in kinematics. However, special at-
tention must be taken since vectors can be added only when they are ex-
pressed in the same frame. Thus, a vector equation such as

a = b+ c (1.10)

is meaningless without indicating the frame they are expressed in, such
that

Ba = Bb+ Bc. (1.11)

1.4.3 Reference Frame and Coordinate System

In robotics, we assign one or more coordinate frames to each link of the
robot and each object of the robot’s environment. Thus, communication
among the coordinate frames, which is called transformation of frames, is
a fundamental concept in the modeling and programming of a robot.
The angular motion of a rigid body can be described in one of several

ways, the most popular being:

1. A set of rotations about a right-handed globally fixed Cartesian axis,

2. A set of rotations about a right-handed moving Cartesian axis, and
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3. Angular rotation about a fixed axis in space.

Reference frames are a particular perspective employed by the analyst
to describe the motion of links. A fixed frame is a reference frame that is
motionless and attached to the ground. The motion of a robot takes place
in a fixed frame called the global reference frame. A moving frame is a
reference frame that moves with a link. Every moving link has an attached
reference frame that sticks to the link and accepts every motion of the
link. The moving reference frame is called the local reference frame. The
position and orientation of a link with respect to the ground is explained
by the position and orientation of its local reference frame in the global
reference frame. In robotic analysis, we fix a global reference frame to the
ground and attach a local reference frame to every single link.
A coordinate system is slightly different from reference frames. The coor-

dinate system determines the way we describe the motion in each reference
frame. A Cartesian system is the most popular coordinate system used in
robotics, but cylindrical, spherical and other systems may be used as well.
Hereafter, we use "reference frame," "coordinate frame," and "coordinate

system" equivalently, because a Cartesian system is the only system we use.
The position of a point P of a rigid body B is indicated by a vector r.

As shown in Figure 1.14, the position vector of P can be decomposed in
global coordinate frame

Gr = XÎ + Y Ĵ + ZK̂ (1.12)

or in body coordinate frame

Br = xı̂+ yĵ+ zk̂. (1.13)

The coefficients (X,Y,Z) and (x, y, z) are called coordinates or compo-
nents of the point P in global and local coordinate frames respectively. It
is efficient for mathematical calculations to show vectors Gr and Br by a
vertical array made by its components

Gr =

⎡⎣ X
Y
Z

⎤⎦ (1.14)

Br =

⎡⎣ x
y
z

⎤⎦ . (1.15)

Kinematics can be called the study of positions, velocities, and accelera-
tions, without regards to the forces that cause these motions. Vectors and
reference frames are essential tools for analyzing motions of complex sys-
tems, especially when the motion is three dimensional and involves many
parts.
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FIGURE 1.14. Position vector of a point P may be decomposed in body frame
B, or global frame G.

A coordinate frame is defined by a set of basis vectors, such as unit vec-
tors along the three coordinate axes. So, a rotation matrix, as a coordinate
transformation, can also be viewed as defining a change of basis from one
frame to another.
A rotation matrix can be interpreted in three distinct ways:

1. Mapping. It represents a coordinate transformation, mapping and re-
lating the coordinates of a point P in two different frames.

2. Description of a frame. It gives the orientation of a transformed co-
ordinate frame with respect to a fixed coordinate frame.

3. Operator. It is an operator taking a vector and rotating it to a new
vector.

Rotation of a rigid body can be described by rotation matrix R, Euler
angles, angle-axis convention, and quaternion, each with advantages and
disadvantages.
The advantage of R is direct interpretation in change of basis while

its disadvantage is that nine dependent parameters must be stored. The
physical role of individual parameters is lost, and only the matrix as a
whole has meaning.
Euler angles are roughly defined by three successive rotations about three

axes of local (and sometimes global) coordinate frames. The advantage of
using Euler angles is that the rotation is described by three independent
parameters with plain physical interpretations. Their disadvantage is that
their representation is not unique and leads to a problem with singularities.
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There is also no simple way to compute multiple rotations except expansion
into a matrix.
Angle-axis convention is the most intuitive representation of rotation.

However, it requires four parameters to store a single rotation, computa-
tion of combined rotations is not simple, and it is ill-conditioned for small
rotations.
Quaternions are good in preserving most of the intuition of the angle-

axis representation while overcoming the ill conditioning for small rotations
and admitting a group structure that allows computation of combined rota-
tions. The disadvantage of quaternion is that four parameters are needed to
express a rotation. The parameterization is more complicated than angle-
axis and sometimes loses physical meaning. Quaternion multiplication is
not as plain as matrix multiplication.

1.4.4 Vector Function

Vectors serve as the basis of our study of kinematics and dynamics. Posi-
tions, velocities, accelerations, momenta, forces, and moments all are vec-
tors. Vectors locate a point according to a known reference. As such, a
vector consists of a magnitude, a direction, and an origin of a reference
point. We must explicitly denote these elements of the vector.
If either the magnitude of a vector r and/or the direction of r in a

reference frame B depends on a scalar variable, say θ, then r is called a
vector function of θ in B. A vector r may be a function of a variable in one
reference frame, but be independent of this variable in another reference
frame.

Example 2 Reference frame and parameter dependency.
In Figure 1.15, P represents a point that is free to move on and in a

circle, made by three revolute jointed links. θ, ϕ, and ψ are the angles
shown, then r is a vector function of θ, ϕ, and ψ in the reference frame
G(X,Y ). The length and direction of r depend on θ, ϕ, and ψ.
If G(X,Y ), and B(x, y) designate reference frames attached to the ground

and link (2), and P is the tip point of link (3) as shown in Figure 1.16, then
the position vector r of point P in reference frame B is a function of ϕ and
ψ, but is independent of θ.

1.5 Problems of Robot Dynamics

There are three basic and systematic methods to represent the relative po-
sition and orientation of a manipulator link. The first and most popular
method used in robot kinematics is based on the Denavit-Hartenberg no-
tation for definition of spatial mechanisms and on the homogeneous trans-
formation of points. The 4× 4 matrix or the homogeneous transformation
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FIGURE 1.15. A planar 3R manipulator and position vector of the tip point P
in global coordinate G(X, Y).
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FIGURE 1.16. A planar 3R manipulator and position vector of the tip point P
in second link local coordinate B(x, y).
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is utilized to represent spatial transformations of point vectors. In robot-
ics, this matrix is used to describe one coordinate system with respect to
another. The transformation matrix method is the most popular technique
for describing robot motions.
Researchers in robot kinematics tried alternative methods to represent

rigid body transformations based on concepts introduced by mathemati-
cians and physicists such as the screw theory, Lie algebra, and Epsilon
algebra. The transformation of a rigid body or a coordinate frame with
respect to a reference coordinate frame can be expressed by a screw dis-
placement, which is a translation along an axis with a rotation by an angle
about the same axis. Although screw theory and Lie algebra can success-
fully be utilized for robot analysis, their result should finally be expressed
in matrices.

1.6 Preview of Covered Topics

The book is arranged in three parts: I-Kinematics, II-Dynamics, and III-
Control. Part I is the most important part because it defines and describes
the fundamental rules and tools for robot analysis.
Rotational analysis of rigid bodies is a main subject in relative kinematic

analysis of coordinate frames. It is about how we describe the orientation
of a coordinate frame with respect to the others. In Chapters 2 and 3,
we define and describe the rotational kinematics for the coordinate frames
having a common origin. So, Chapters 2 and 3 are about the motion of
two directly connected links via a revolute joint. The origin of coordinate
frames may move with respect to each other, so, Chapter 4 is about the
motion of two indirectly connected links.
In Chapter 5, the position and orientation kinematics of rigid links are

utilized to systematically describe the configuration of the final link of a
robot in a global Cartesian coordinate frame. Such an analysis is called
forward kinematics, in which we are interested to find the end-effector con-
figuration based on measured joint coordinates. The Denavit-Hartenberg
convention is the main tool in forward kinematics. In this Chapter, we
have shown how we may kinematically disassemble a robot to basic mecha-
nisms with 1 or 2 DOF , and how we may kinematically assemble the basic
mechanisms to make an arbitrary robot.
Chapter 6 deals with kinematics of robots from a Cartesian to joint

space viewpoint that is called inverse kinematics. We start with a known
position and orientation of the end-effector and search for a proper set of
joint coordinates.
Velocity relationships between rigid links of a robot is the subject of

Chapters 7 and 8. The definitions of angular velocity vector and angu-
lar velocity matrix are introduced in Chapter 7. The velocity relationship
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between robot links, as well as differential motion in joint and Cartesian
spaces, are covered in Chapter 8. The Jacobian matrix is the main concept
of this Chapter.
Part I is concluded by describing the applied numerical methods in robot

kinematics. In Chapter 9 we introduce efficient and applied methods that
can be used to ease computerized calculations in robotics.
In part II, the techniques needed to develop the equations of robot mo-

tion are explained. This part starts with acceleration analysis of relative
links in Chapter 10. The methods for deriving the robots’ equations of
motion are described in Chapter 11. The Lagrange method is the main
subject of dynamics development. The Newton-Euler method is described
alternatively as tool to find the equations of motion. The Euler-Lagrange
method has a simpler concept, however it provides the unneeded internal
joint forces. On the other hand, the Lagrange method is more systematic
and provides a basis for computer calculation.
In part III, we start with a brief description of path analysis. Then,

the optimal control of robots is described using the floating time method.
The floating time technique provides the required torques to make a robot
follow a prescribed path of motion in an open loop control. To compensate
a possible error between the desired and the actual kinematics, we explain
the computed torque control method and the concept of the closed loop
control algorithm.

1.7 Robots as Multi-disciplinary Machines

Let us note that the mechanical structure of a robot is only the visible
part of the robot. Robotics is an essentially multidisciplinary field in which
engineers from various branches such as mechanical, systems, electrical,
electronics, and computer sciences play equally important roles. Therefore,
it is fundamental for a robotical engineer to attain a sufficient level of under-
standing of the main concepts of the involved disciplines and communicate
with engineers in these disciplines.
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1.8 Summary

There are two kinds of robots: serial and parallel. A serial robot is made
from a series of rigid links, where each pair of links is connected by a
revolute (R) or prismatic (P) joint. An R or P joint provides only one
degree of freedom, which is rotational or translational respectively. The
final link of a robot, also called the end-effector, is the operating member
of a robot that interacts with the environment.
To reach any point in a desired orientation, within a robot’s workspace,

a robot needs at least 6 DOF . Hence, it must have at least 6 links and
6 joints. Most robots use 3 DOF to position the wrist point, and use the
other 3 DOF to orient the end-effector about the wrist point.
We attach a Cartesian coordinate frame to each link of a robot and

determine the position and orientation of each frame with respect to the
others. Therefore, to determine the position and orientation of the end-
effector, we need to find the end-effector frame in the base frame.
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Exercises

1. Meaning of indexes for a position vector.

Explain the meaning of GrP , GBrP , and
G
GrP , if r is a position vector.

2. Meaning of indexes for a velocity vector.

Explain the meaning of GvP , GBvP , and
B
BvP , if v is a velocity vector.

3. Meaning of indexes for an angular velocity vector.

Explain the meaning of B2ωB1 ,
G
B2
ωB1 ,

B
GωB, and

B2

B3
ωB1 , if ω is an

angular velocity vector.

4. Meaning of indexes for a transformation matrix.

Explain the meaning of B2TB1 , and
GTB, if T is a transformation

matrix.

5. Laws of robotics.

What is the difference between law zero and law one of robotics?

6. New law of robotics.

What do you think about adding a fourth law to robotics, such as: A
robot must protect the other robots as long as such protection does
not conflict with a higher order law.

7. The word "robot."

Find the origin and meaning of the word "robot."

8. Robot classification.

Do you consider a crane as a robot?

9. Robot market.

Most small robot manufacturers went out of the market around 1990,
and only a few large companies remained. Why do you think this
happened?

10. Humanoid robots.

The mobile robot industry is trying to make robots as similar to
humans as possible. What do you think is the reason for this: humans
have the best structural design, humans have the simplest design, or
these kinds of robots can be sold in the market better?

11. Robotic person.

Why do you think we call somebody who works or behaves mechan-
ically, showing no emotion and often responding to orders without
question, a robotic person?
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12. Robotic journals.

Find the name of 10 technical journals related to robotics.

13. Number of robots in industrial poles.

Search the robotic literatures and find out, approximately, how many
industrial robots are currently in operation in the United States, Eu-
rope, and Japan.

14. Robotic countries.

Search the robotic literatures and find out what countries are ranked
first, second, and third according to the number of industrial robots
in use?

15. Advantages and disadvantages of robots.

Search the robotic literatures and name 10 advantages and 2 disad-
vantages of robots.

16. Mechanisms and robots.

Why do we not replace every mechanism, in an assembly line for
example, with robots? Are robots substituting mechanisms?

17. Higher pairs and lower pairs.

Joints can be classified as lower pairs and higher pairs. Find the
meaning of "lower pairs" and "higher pairs" in mechanics of machin-
ery.

18. Degrees of freedom (DOF ) elimination.

Joints can be classified by the number of degrees of freedom they
provide, or by the number of degrees of freedom they eliminate. There
are, therefore, 5 classes for joints. Find the name and the number of
joints in each class.

19. Human wrist DOF .

Examine and count the number of DOF of your wrist.

20. Human hand is a redundant manipulator.

An arm (including shoulder, elbow, and wrist) has 7 DOF . What is
the advantage of having one extra DOF (with respect to 6 DOF ) in
our hand?

21. Multiple DOF robot.

Sometimes we do not need a many DOF robot to do specific job that
can be done by a low DOF robot. What do you think about having
a robot with variable DOF?
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22. Usefulness of redundant manipulators.

Discuss possible applications in which the redundant manipulators
would be useful.

23. F Independent Cartesian coordinate systems in Euclidean spaces.

In 3D Euclidean space, we need a triad to locate a point. There are
two independent and non-superposable triads. How many different
non-superposable Cartesian coordinate systems can be imagined in
4D Euclidean space? How many Cartesian coordinate systems do we
have in an nD Euclidean space?

24. F Disadvantages of a non-orthogonal triad.

Why do we use an orthogonal triad to define a Cartesian space? Can
we define a 3D space with non-orthogonal triads?

25. F Usefulness of an orthogonal triad.

Orthogonality is the common property of all useful coordinate sys-
tems such as Cartesian, cylindrical, spherical, parabolical, and ellip-
soidal coordinate systems. Why do we only define and use orthogonal
coordinate systems? Do you think ability to define a vector, based on
inner product and unit vectors of the coordinate system, such as,

r = (r · ı̂)̂ı+ (r · ĵ)ĵ+ (r · k̂)k̂

is the main reason for defining the orthogonal coordinate systems?

26. F Three coplanar vectors.

Show that if a× b · c = 0, then a, b, c are coplanar.

27. F Vector function, vector variable.

A vector function is defined as a dependent vectorial variable that
relates to a scalar independent variable.

r = r(t)

Describe the meaning and define an example for a vector function of
a vector variable,

a = a(b)

and a scalar function of a vector variable

f = f(b).

28. F Frame-dependent and frame-independent.

A vector function of scalar variables is a frame-dependent quantity. Is
a vector function of vector variables frame-dependent? What about
a scalar function of vector variables?
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29. F Coordinate frame and vector function.

Explain the meaning of BvP (GrP ), if r is a position vector, v is a
velocity vector, and v(r) means v is a function of r.



Part I

Kinematics
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Kinematics is the science of geometry in motion. It is restricted to a
pure geometrical description of motion by means of position, orientation,
and their time derivatives. In robotics, the kinematic descriptions of ma-
nipulators and their assigned tasks are utilized to set up the fundamental
equations for dynamics and control.
Because the links and arms in a robotic system are modeled as rigid

bodies, the properties of rigid body displacement takes a central place in
robotics. Vector and matrix algebra are utilized to develop a systematic and
generalized approach to describe and represent the location of the arms of
a robot with respect to a global fixed reference frame G. Since the arms of
a robot may rotate or translate with respect to each other, body-attached
coordinate frames A,B,C, · · · or B1, B2, B3, · · · will be established along
with the joint axis for each link to find their relative configurations, and
within the reference frame G. The position of one link B relative to another
link A is defined kinematically by a coordinate transformation ATB between
reference frames attached to the link.
The direct kinematics problem is reduced to finding a transformation

matrix GTB that relates the body attached local coordinate frame B to
the global reference coordinate frame G. A 3 × 3 rotation matrix is uti-
lized to describe the rotational operations of the local frame with respect
to the global frame. The homogeneous coordinates are then introduced to
represent position vectors and directional vectors in a three dimensional
space. The rotation matrices are expanded to 4× 4 homogeneous transfor-
mation matrices to include both the rotational and translational motions.
Homogeneous matrices that express the relative rigid links of a robot are
made by a special set of rules and are called Denavit-Hartenberg matrices
after Denavit and Hartenberg (1955). The advantage of using the Denavit-
Hartenberg matrix is its algorithmic universality in deriving the kinematic
equation of a robot link.
The analytical description of displacement of a rigid body is based on

the notion that all points in a rigid body must retain their original relative
positions regardless of the new position and orientation of the body. The
total rigid body displacement can always be reduced to the sum of its two
basic components: the translation displacement of an arbitrary reference
point fixed in the rigid body plus the unique rotation of the body about a
line through that point.
Study of displacement motion of rigid bodies leads to the relation be-

tween the time rate of change of a vector in a global frame and the time
rate of change of the same vector in a local frame.
Transformation from a local coordinate frame B to a global coordinate

frame G is expressed by
Gr = GRB

Br+GdB

where Br is the position vector of a point in B, Gr is the position vector
of the same point expressed in G, and d is the position vector of the origin

KinematicsPart I :
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o of the body coordinate frame B(oxyz) with respect to the origin O of
the global coordinate frame G(OXY Z). Therefore, a transformation has
two parts: a translation d that brings the origin o on the origin O, plus a
rotation, GRB that brings the axes of oxyz on the corresponding axes of
OXY Z.
The transformation formula Gr = GRB

Br+GdB , can be expanded to
connect more than two coordinate frames. The combination formula for
a transformation from a local coordinate frame B1 to another coordinate
frame B2 followed by a transformation from B2 to the global coordinate G
is

Gr =
¡
GRB2

B2r+GdB2

¢
+
¡
B2RB1

B1r+B2dB1

¢
= GRB2

B2RB1

B1r+ GdB2 +
B2dB1

= GRB1

B1r+GdB1 .

A robot consists of n rigid links with relative motions. The link attached
to the ground is link (0) and the link attached to the final moving link,
the end-effector, is link (n). There are two important problems in kine-
matic analysis of robots: the forward kinematics problem and the inverse
kinematics problem.
In forward kinematics, the problem is that the position vector of a point

P is in the coordinate frame Bn attached to the end-effector as nrp, and
we are looking for the position of P in the base frame B0 shown by 0rp.
The forward kinematics problem is equivalent to having the values of joints
variable and asking for the position of the end-effector.
In inverse kinematics, the problem is that we have the position vector of

a point P in the base coordinate frame B0 as 0rp, and we are looking for
nrp, the position of P in the base frame B0. This problem is equivalent to
having the position of the end-effector and asking for a set of joint variables
that make the robot reach the point P .
In this part, we develop the transformation formula to move the kine-

matic information back and forth from a coordinate frame to another co-
ordinate frame.

KinematicsPart I :
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Rotation Kinematics
Consider a rigid body with a fixed point. Rotation about the fixed point
is the only possible motion of the body. We represent the rigid body by
a body coordinate frame B, that rotates in another coordinate frame G,
as is shown in Figure 2.1. We develop a rotation calculus based on trans-
formation matrices to determine the orientation of B in G, and relate the
coordinates of a body point P in both frames.

X
Y

Z

x

y

z

P

r

G
B

yP

xP

zP

YPXP

ZP

FIGURE 2.1. A rotated body frame B in a fixed global frame G, about a fixed
point at O.

2.1 Rotation About Global Cartesian Axes

Consider a rigid body B with a local coordinate frame Oxyz that is origi-
nally coincident with a global coordinate frame OXY Z. PointO of the body
B is fixed to the ground G and is the origin of both coordinate frames. If
the rigid body B rotates α degrees about the Z-axis of the global coordi-
nate frame, then coordinates of any point P of the rigid body in the local
and global coordinate frames are related by the following equation

Gr = QZ,α
Br (2.1)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_2,  
© Springer Science+Business Media, LLC 2010 
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where,

Gr =

⎡⎣ X
Y
Z

⎤⎦ Br=

⎡⎣ x
y
z

⎤⎦ (2.2)

and

QZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ . (2.3)

Similarly, rotation β degrees about the Y -axis, and γ degrees about the
X-axis of the global frame relate the local and global coordinates of point
P by the following equations

Gr = QY,β
Br (2.4)

Gr = QX,γ
Br (2.5)

where,

QY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (2.6)

QX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ . (2.7)

Proof. Let (̂ı, ĵ, k̂) and (Î , Ĵ , K̂) be the unit vectors along the coordinate
axes of Oxyz and OXY Z respectively. The rigid body has a space fixed
point O, that is the common origin of Oxyz and OXY Z. Figure 2.2 illus-
trates the top view of the system.
The initial position of a point P is indicated by P1. The position vector

r1 of P1 can be expressed in body and global coordinate frames by

Br1 = x1ı̂+ y1ĵ+ z1k̂ (2.8)
Gr1 = X1Î + Y1Ĵ + Z1K̂ (2.9)

x1 = X1

y1 = Y1
z1 = Z1

(2.10)

where Br1 refers to the position vector r1 expressed in the body coordinate
frame B, and Gr1 refers to the position vector r1 expressed in the global
coordinate frame G.
If the rigid body undergoes a rotation α about the Z-axis then, the

local frame Oxyz, point P , and the position vector r will be seen in a
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FIGURE 2.2. Position vector of point P when local and global frames are coin-
cident.

second position, as shown in Figure 2.3. Now the position vector r2 of P2
is expressed in both coordinate frames by

Br2 = x2ı̂+ y2ĵ+ z2k̂ (2.11)
Gr2 = X2Î + Y2Ĵ + Z2K̂. (2.12)

Using the definition of the inner product and Equation (2.11) we may
write

X2 = Î · r2 = Î · x2ı̂+ Î · y2ĵ+ Î · z2k̂ (2.13)

Y2 = Ĵ · r2 = Ĵ · x2ı̂+ Ĵ · y2ĵ+ Ĵ · z2k̂ (2.14)

Z2 = K̂ · r2 = K̂ · x2 ı̂+ K̂ · y2ĵ+ K̂ · z2k̂ (2.15)

or equivalently⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ . (2.16)

The elements of the Z-rotation matrix, QZ,α, are called the direction
cosines of Br2 with respect to OXY Z. Figure 2.4 shows the top view of
the initial and final configurations of r in both coordinate systems Oxyz
and OXY Z. Analyzing Figure 2.4 indicates that

Î · ı̂ = cosα, Î · ĵ = − sinα, Î · k̂ = 0
Ĵ · ı̂ = sinα, Ĵ · ĵ = cosα, Ĵ · k̂ = 0
K̂ · ı̂ = 0, K̂ · ĵ = 0, K̂ · k̂ = 1.

(2.17)
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FIGURE 2.3. Position vector of point P when local frames are rotated about the
Z-axis.

Combining Equations (2.16) and (2.17) shows that we can find the com-
ponents of Gr2 by multiplying the Z-rotation matrix QZ,α and the vector
Br2. ⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ . (2.18)

It can also be shown in the following short notation

Gr2 = QZ,α
Br2 (2.19)

where

QZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ . (2.20)

Equation (2.19) says that the vector r at the second position in the
global coordinate frame is equal to QZ times the position vector in the
local coordinate frame. Hence, we are able to find the global coordinates of
a point of a rigid body after rotation about the Z-axis, if we have its local
coordinates.
Similarly, rotation β about the Y -axis and rotation γ about the X-axis

are described by the Y -rotation matrix QY,β and the X-rotation matrix
QX,γ respectively.

QY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (2.21)
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FIGURE 2.4. Position vectors of point P before and after the rotation of the local
frame about the Z-axis of the global frame.

QX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (2.22)

The rotation matrices QZ,α, QY,β, and QX,γ are called basic global ro-
tation matrices. We usually refer to the first, second and third rotations
about the axes of the global coordinate frame by α, β, and γ respectively.

Example 3 Successive rotation about global axes.
The final position of the corner P (5, 30, 10) of the slab shown in Figure

2.5 after 30 deg rotation about the Z-axis, followed by 30 deg about the X-
axis, and then 90 deg about the Y -axis can be found by first multiplying
QZ,30 by [5, 30, 10]T to get the new global position after first rotation⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ cos 30 − sin 30 0
sin 30 cos 30 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6828.48

10.0

⎤⎦ (2.23)

and then multiplying QX,30 and [−10.68, 28.48, 10.0]T to get the position of
P after the second rotation⎡⎣ X3

Y3
Z3

⎤⎦ =
⎡⎣ 1 0 0
0 cos 30 − sin 30
0 sin 30 cos 30

⎤⎦⎡⎣ −10.6828.48
10.0

⎤⎦ =
⎡⎣ −10.6819.66

22.9

⎤⎦
(2.24)

and finally multiplying QY,90 and [−10.68, 19.66, 22.9]T to get the final posi-
tion of P after the third rotation. The slab and the point P in first, second,
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FIGURE 2.5. Corner P of the slab at first position.

third, and fourth positions are shown in Figure 2.6.⎡⎣ X4

Y4
Z4

⎤⎦ =
⎡⎣ cos 90 0 sin 90

0 1 0
− sin 90 0 cos 90

⎤⎦⎡⎣ −10.6819.66
22.9

⎤⎦ =
⎡⎣ 22.90
19.66
10.68

⎤⎦ (2.25)

Example 4 Time dependent global rotation.
Consider a rigid body B that is continuously turning about the Y -axis of

G at a rate of 0.3 rad/ s. The rotation transformation matrix of the body is:

GQB =

⎡⎣ cos 0.3t 0 sin 0.3t
0 1 0

− sin 0.3t 0 cos 0.3t

⎤⎦ (2.26)

Any point of B will move on a circle with radius R =
√
X2 + Z2 parallel

to (X,Z)-plane.⎡⎣ X
Y
Z

⎤⎦ =

⎡⎣ cos 0.3t 0 sin 0.3t
0 1 0

− sin 0.3t 0 cos 0.3t

⎤⎦⎡⎣ x
y
z

⎤⎦
=

⎡⎣ x cos 0.3t+ z sin 0.3t
y

z cos 0.3t− x sin 0.3t

⎤⎦ (2.27)

X2 + Z2 = (x cos 0.3t+ z sin 0.3t)2 + (z cos 0.3t− x sin 0.3t)2

= x2 + z2 = R2 (2.28)
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FIGURE 2.6. Corner P and the slab at first, second, third, and final positions.

Consider a point P at Br =
£
1 0 0

¤T
. After t = 1 s, the point will

be seen at:⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ cos 0.3 0 sin 0.3

0 1 0
− sin 0.3 0 cos 0.3

⎤⎦⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ 0.955

0
−0.295

⎤⎦ (2.29)

and after t = 2 s, at:⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ cos 0.6 − sin 0.6 0
sin 0.6 cos 0.6 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ 0.825
0.564
0

⎤⎦ (2.30)

We can find the global velocity of the body point P by taking a time deriv-
ative of

GrP = QY,β
BrP (2.31)

QY,β =

⎡⎣ cos 0.3t 0 sin 0.3t
0 1 0

− sin 0.3t 0 cos 0.3t

⎤⎦ . (2.32)

Therefore, the global expression of its velocity vector is:

GvP = Q̇Y,β
BrP = 0.3

⎡⎣ z cos 0.3t− x sin 0.3t
0

−x cos 0.3t− z sin 0.3t

⎤⎦ (2.33)
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FIGURE 2.7. Positions of point P in Example 5 before and after rotation.

Example 5 Global rotation, local position.
If a point P is moved to Gr2 = [4, 3, 2]

T after a 60 deg rotation about the
Z-axis, its position in the local coordinate is:

Br2 = Q−1Z,60
Gr2 (2.34)⎡⎣ x2

y2
z2

⎤⎦ =

⎡⎣ cos 60 − sin 60 0
sin 60 cos 60 0
0 0 1

⎤⎦−1 ⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ 4.60
−1.95
2.0

⎤⎦
The local coordinate frame was coincident with the global coordinate frame

before rotation, thus the global coordinates of P before rotation was also
Gr1 = [4.60,−1.95, 2.0]T . Positions of P before and after rotation are
shown in Figure 2.7.

2.2 Successive Rotation About Global Cartesian
Axes

The final global position of a point P in a rigid body B with position vector
r, after a sequence of rotations Q1, Q2, Q3, ..., Qn about the global axes
can be found by

Gr = GQB
Br (2.35)

where,

GQB = Qn · · ·Q3Q2Q1 (2.36)
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and, Gr and Br indicate the position vector r in the global and local coor-
dinate frames. GQB is called the global rotation matrix. It maps the local
coordinates to their corresponding global coordinates.
Since matrix multiplications do not commute the sequence of performing

rotations is important. A rotation matrix is orthogonal; i.e., its transpose
QT is equal to its inverse Q−1.

QT = Q−1 (2.37)

Rotation about global coordinate axes is conceptually simple because
the axes of rotations are fixed in space. Assume we have the coordinates
of every point of a rigid body in the global frame that is equal to the local
coordinates initially. The rigid body rotates about a global axis, then the
proper global rotation matrix gives us the new global coordinate of the
points. When we find the coordinates of points of the rigid body after the
first rotation, our situation before the second rotation is similar to what
we had before the first rotation.

Example 6 Successive global rotation matrix.
The global rotation matrix after a rotation QZ,α followed by QY,β and

then QX,γ is:

GQB = QX,γQY,βQZ,α (2.38)

=

⎡⎣ cαcβ −cβsα sβ
cγsα+ cαsβsγ cαcγ − sαsβsγ −cβsγ
sαsγ − cαcγsβ cαsγ + cγsαsβ cβcγ

⎤⎦
Example 7 Successive global rotations, global position.
The end point P of the arm shown in Figure 2.8 is located at:⎡⎣ X1

Y1
Z1

⎤⎦ =
⎡⎣ 0

l cos θ
l sin θ

⎤⎦ =
⎡⎣ 0
1 cos 75
1 sin 75

⎤⎦ =
⎡⎣ 0.0
0.26
0.97

⎤⎦ (2.39)

The rotation matrix to find the new position of the end point after −29 deg
rotation about the X-axis, followed by 30 deg about the Z-axis, and again
132 deg about the X-axis is

GQB = QX,132QZ,30QX,−29 =

⎡⎣ 0.87 −0.44 −0.24
−0.33 −0.15 −0.93
0.37 0.89 −0.27

⎤⎦ (2.40)

and its new position is at:⎡⎣ X2

Y2
Z2

⎤⎦ =
⎡⎣ 0.87 −0.44 −0.24
−0.33 −0.15 −0.93
0.37 0.89 −0.27

⎤⎦⎡⎣ 0.0
0.26
0.97

⎤⎦ =
⎡⎣ −0.35−0.94
−0.031

⎤⎦
(2.41)
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FIGURE 2.8. The arm of Example 7.

Example 8 Twelve independent triple global rotations.
Consider a rigid body in the final orientation after a series of rotation

about global axes. We may transform its body coordinate frame B from the
coincident position with a global frame G to any final orientation by only
three rotations about the global axes provided that no two consequence rota-
tions are about the same axis. In general, there are 12 different independent
combinations of triple rotations about the global axes. They are:

1−QX,γQY,βQZ,α

2−QY,γQZ,βQX,α

3−QZ,γQX,βQY,α

4−QZ,γQY,βQX,α

5−QY,γQX,βQZ,α

6−QX,γQZ,βQY,α

7−QX,γQY,βQX,α

8−QY,γQZ,βQY,α

9−QZ,γQX,βQZ,α

10−QX,γQZ,βQX,α

11−QY,γQX,βQY,α

12−QZ,γQY,βQZ,α

(2.42)

The expanded form of the 12 global axes triple rotations are presented in
Appendix A.

Example 9 Order of rotation, and order of matrix multiplication.
Changing the order of global rotation matrices is equivalent to changing

the order of rotations. The position of a point P of a rigid body B is located
at BrP =

£
1 2 3

¤T
. Its global position after rotation 30 deg about X-
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axis and then 45 deg about Y -axis is at¡
GrP

¢
1
= QY,45QX,30

BrP (2.43)

=

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.763.27
−1.64

⎤⎦
and if we change the order of rotations then its position would be at:¡

GrP
¢
2
= QX,30QY,45

BrP (2.44)

=

⎡⎣ 0.53 0.0 0.85
−0.84 0.15 0.52
−0.13 −0.99 0.081

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ 3.08

1.02
−1.86

⎤⎦
These two final positions of P are d =

¯̄¡
GrP

¢
1
−
¡
GrP

¢
2

¯̄
= 4.456 apart.

Example 10 F Repeated rotation about global axes.
If we turn a body frame B about X-axis γ rad, where,

α =
2π

n
n ∈ N (2.45)

then we need to repeat the rotation n times to turn the body back to its
original configuration. We can check it by multiplying QX,α by itself until
we achieve an identity matrix. So, any body point of B will be mapped to
the same point in global frame. To show this, we may find that QX,α to the
power m as:

Qm
X,α =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦m =
⎡⎢⎢⎢⎣
1 0 0

0 cos
2π

n
− sin 2π

n

0 sin
2π

n
cos

2π

n

⎤⎥⎥⎥⎦
m

=

⎡⎢⎢⎢⎣
1 0 0

0 cosm
2π

n
− sinm2π

n

0 sinm
2π

n
cosm

2π

n

⎤⎥⎥⎥⎦ (2.46)

If m = n, then we have an identity matrix.

Qn
X,α =

⎡⎢⎢⎢⎣
1 0 0

0 cosn
2π

n
− sinn2π

n

0 sinn
2π

n
cosn

2π

n

⎤⎥⎥⎥⎦ =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.47)

Repeated rotation about any other global axis provides the same result.
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Let us now rotate B about two global axes repeatedly, such as turning α
about Z-axis followed by a rotation γ about X-axis, such that

α =
2π

n1
γ =

2π

n2
{n1, n2} ∈ N. (2.48)

We may guess that repeating the rotations n = n1 × n2 times will turn B
back to its original configuration.

[QX,γ QZ,α]
n1×n2 = [I] (2.49)

As an example consider α = 2π
3 and γ = 2π

4 . We need 13 times combined
rotation to achieve the original configuration.

GQB = QX,γ QZ,α =

⎡⎣ −0.5 −0.866 03 0
0 0 −1.0

0.866 03 −0.5 0

⎤⎦ (2.50)

GQ13B =

⎡⎣ 0.9997 −0.01922 −0.01902
0.01902 0.99979 −0.0112
0.01922 0.01086 0.9998

⎤⎦ ≈ I (2.51)

We may turn B back to its original configuration by lower number of
combined rotations if n1 and n2 have a common divisor. For example if
n1 = n2 = 4, we only need to apply the combined rotation three times. In
a general case, determination of the required number n to repeat a gen-
eral combined rotation GQB to turn back to the original orientation is an
unsolved question.

GQB =
mY
j=1

QXi,αj i = 1, 2, 3 (2.52)

αj =
2π

nj
m,nj ∈ N (2.53)

GQn
B = [I] n =? (2.54)

2.3 Global Roll-Pitch-Yaw Angles

The rotation about the X-axis of the global coordinate frame is called a
roll, the rotation about the Y -axis of the global coordinate frame is called
a pitch, and the rotation about the Z-axis of the global coordinate frame
is called a yaw. The global roll-pitch-yaw rotation matrix is:

GQB = QZ,γQY,βQX,α (2.55)

=

⎡⎣ cβcγ −cαsγ + cγsαsβ sαsγ + cαcγsβ
cβsγ cαcγ + sαsβsγ −cγsα+ cαsβsγ
−sβ cβsα cαcβ

⎤⎦
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FIGURE 2.9. Global roll, pitch, and yaw rotations.

Figures 2.9 illustrates 45 deg roll, pitch, and yaw rotations about the axes
of a global coordinate frame.
Given the roll, pitch, and yaw angles, we can compute the overall rotation

matrix using Equation (2.55). Also we are able to compute the equivalent
roll, pitch, and yaw angles when a rotation matrix is given. Suppose that rij
indicates the element of row i and column j of the roll-pitch-yaw rotation
matrix (2.55), then the roll angle is

α = tan−1
µ
r32
r33

¶
(2.56)

and the pitch angle is
β = − sin−1 (r31) (2.57)

and the yaw angle is

γ = tan−1
µ
r21
r11

¶
(2.58)

provided that cosβ 6= 0.

Example 11 Determination of roll-pitch-yaw angles.
Let us determine the required roll-pitch-yaw angles to make the x-axis of

the body coordinate B parallel to u, while y-axis remains in (X,Y )-plane.

u = Î + 2Ĵ + 3K̂ (2.59)

Because x-axis must be along u, we have

Gı̂ =
u

|u| =
1√
14

Î +
2√
14

Ĵ +
3√
14

K̂ (2.60)

and because y-axis is in (X,Y )-plane, we have

Gĵ =
³
Î · ĵ

´
Î +

³
Ĵ · ĵ

´
Ĵ = cos θÎ + sin θĴ. (2.61)
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The axes Gı̂ and Gĵ must be orthogonal, therefore,⎡⎣ 1/
√
14

2/
√
14

3/
√
14

⎤⎦ ·
⎡⎣ cos θ
sin θ
0

⎤⎦ = 0 (2.62)

θ = −26.56 deg . (2.63)

We may find Gk̂ by a cross product.

Gk̂ = Gı̂× Gĵ =

⎡⎣ 1/
√
14

2/
√
14

3/
√
14

⎤⎦×
⎡⎣ 0.894
−0.447
0

⎤⎦ =
⎡⎣ 0.358

0.717
−0.597

⎤⎦ (2.64)

Hence, the transformation matrix GQB is:

GQB =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦ =
⎡⎣ 1/

√
14 0.894 0.358

2/
√
14 −0.447 0.717

3/
√
14 0 −0.597

⎤⎦ (2.65)

Now it is possible to determine the required roll-pitch-yaw angles to move
the body coordinate frame B from the coincidence orientation with G to the
final orientation.

α = tan−1
µ
r32
r33

¶
= tan−1

µ
0

−0.597

¶
= 0 (2.66)

β = − sin−1 (r31) = − sin−1
³
3/
√
14
´
≈ −0.93 rad (2.67)

γ = tan−1
µ
r21
r11

¶
= tan−1

Ã
2/
√
14

1/
√
14

!
≈ 1.1071 rad (2.68)

2.4 Rotation About Local Cartesian Axes

Consider a rigid body B with a space fixed point at O. The local body
coordinate frame B(Oxyz) is coincident with a global coordinate frame
G(OXY Z), where the origin of both frames are on the fixed point O. If the
body undergoes a rotation ϕ about the z-axis of its local coordinate frame,
as can be seen in the top view shown in Figure 2.10, then coordinates of
any point of the rigid body in local and global coordinate frames are related
by the following equation

Br = Az,ϕ
Gr. (2.69)

The vectors Gr and Br are the position vectors of the point in global and
local frames respectively

Gr =
£
X Y Z

¤T
(2.70)

Br =
£
x y z

¤T
(2.71)
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and Az,ϕ is the z-rotation matrix.

Az,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ (2.72)

Similarly, rotation θ about the y-axis and rotation ψ about the x-axis
are described by the y-rotation matrix Ay,θ and the x-rotation matrix Ax,ψ

respectively.

Ay,θ =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (2.73)

Ax,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (2.74)

Proof. Vector r indicates the position of a point P of the rigid body B
where it is initially at P1. Using the unit vectors (̂ı, ĵ, k̂) along the axes
of local coordinate frame B(Oxyz), and (Î , Ĵ , K̂) along the axes of global
coordinate frame G(OXY Z), the initial and final position vectors r1 and
r2 in both coordinate frames can be expressed by

Br1 = x1ı̂+ y1ĵ+ z1k̂ (2.75)
Gr1 = X1Î + Y1Ĵ + Z1K̂ (2.76)

Br2 = x2ı̂+ y2ĵ+ z2k̂ (2.77)
Gr2 = X2Î + Y2Ĵ + Z2K̂. (2.78)

The vectors Br1 and Br2 are the initial and final positions of the vector
r expressed in body coordinate frame B(Oxyz), and Gr1 and Gr2 are the
initial and final positions of the vector r expressed in the global coordinate
frame G(OXY Z).
The components of Br2 can be found if we have the components of Gr2.

Using Equation (2.78) and the definition of the inner product, we may write

x2 = ı̂ · r2 = ı̂ ·X2Î + ı̂ · Y2Ĵ + ı̂ · Z2K̂ (2.79)

y2 = ĵ · r2 = ĵ ·X2Î + ĵ · Y2Ĵ + ĵ · Z2K̂ (2.80)

z2 = k̂ · r2 = k̂ ·X2Î + k̂ · Y2Ĵ + k̂ · Z2K̂ (2.81)

or equivalently⎡⎣ x2
y2
z2

⎤⎦ =
⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂

ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦⎡⎣ X2

Y2
Z2

⎤⎦ . (2.82)
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FIGURE 2.10. Position vectors of point P before and after rotation of the local
frame about the z-axis of the local frame.

The elements of the z-rotation matrix Az,ϕ are the direction cosines of
Gr2 with respect to Oxyz. So, the elements of the matrix in Equation (2.82)
are:

ı̂ · Î = cosϕ, ı̂ · Ĵ = sinϕ, ı̂ · K̂ = 0

ĵ · Î = − sinϕ, ĵ · Ĵ = cosϕ, ĵ · K̂ = 0

k̂ · Î = 0, k̂ · Ĵ = 0, k̂ · K̂ = 1

(2.83)

Combining Equations (2.82) and (2.83), we can find the components of
Br2 by multiplying z-rotation matrix Az,ϕ and vector Gr2.⎡⎣ x2

y2
z2

⎤⎦ =
⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ X2

Y2
Z2

⎤⎦ (2.84)

It can also be shown in the following short form

Br2 = Az,ϕ
Gr2 (2.85)

where,

Az,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ . (2.86)

Equation (2.85) says that after rotation about the z-axis of the local
coordinate frame, the position vector in the local frame is equal to Az,ϕ

times the position vector in the global frame. Hence, after rotation about
the z-axis, we are able to find the coordinates of any point of a rigid body
in local coordinate frame, if we have its coordinates in the global frame.
Similarly, rotation θ about the y-axis and rotation ψ about the x-axis

are described by the y-rotation matrix Ay,θ and the x-rotation matrix Ax,ψ

respectively.
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Ay,θ =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (2.87)

Ax,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (2.88)

We indicate the first, second, and third rotations about the local axes by
ϕ, θ, and ψ respectively.

Example 12 Local rotation, local position.
If a local coordinate frame Oxyz has been rotated 60 deg about the z-

axis and a point P in the global coordinate frame OXY Z is at (4, 3, 2), its
coordinates in the local coordinate frame Oxyz are:⎡⎣ x

y
z

⎤⎦ =
⎡⎣ cos 60 sin 60 0
− sin 60 cos 60 0
0 0 1

⎤⎦⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ 4.60
−1.97
2.0

⎤⎦ (2.89)

Example 13 Local rotation, global position.
If a local coordinate frame Oxyz has been rotated 60 deg about the z-axis

and a point P in the local coordinate frame Oxyz is at (4, 3, 2), its position
in the global coordinate frame OXY Z is at:⎡⎣ X

Y
Z

⎤⎦ =
⎡⎣ cos 60 sin 60 0
− sin 60 cos 60 0
0 0 1

⎤⎦T ⎡⎣ 4
3
2

⎤⎦ =
⎡⎣ −0.604.96

2.0

⎤⎦ (2.90)

Example 14 Successive local rotation, global position.
The arm shown in Figure 2.11 has two actuators. The first actuator

rotates the arm −90 deg about y-axis and then the second actuator rotates
the arm 90 deg about x-axis. If the end point P is at

BrP =
£
9.5 −10.1 10.1

¤T
(2.91)

then its position in the global coordinate frame is at:

Gr2 = [Ax,90Ay,−90]
−1 BrP = A−1y,−90A

−1
x,90

BrP

= AT
y,−90A

T
x,90

BrP =

⎡⎣ 10.1
−10.1
9.5

⎤⎦ (2.92)
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FIGURE 2.11. Arm of Example 14.

2.5 Successive Rotation About Local Cartesian
Axes

The final global position of a point P in a rigid body B with position
vector r, after some rotations A1, A2, A3, ..., An about the local axes, can
be found by

Br = BAG
Gr (2.93)

where,

BAG = An · · ·A3A2A1. (2.94)
BAG is called the local rotation matrix and it maps the global coordinates
to their corresponding local coordinates.
Rotation about the local coordinate axis is conceptually interesting be-

cause in a sequence of rotations, each rotation is about one of the axes of
the local coordinate frame, which has been moved to its new global position
during the last rotation.
Assume that we have the coordinates of every point of a rigid body in

a global coordinate frame. The rigid body and its local coordinate frame
rotate about a local axis, then the proper local rotation matrix relates
the new global coordinates of the points to the corresponding local coor-
dinates. If we introduce an intermediate space-fixed frame coincident with
the new position of the body coordinate frame, we may give the rigid body
a second rotation about a local coordinate axis. Now another proper local
rotation matrix relates the coordinates in the intermediate fixed frame to
the corresponding local coordinates. Hence, the final global coordinates of
the points must first be transformed to the intermediate fixed frame and
second transformed to the original global axes.
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Example 15 Successive local rotation, local position.
A local coordinate frame B(Oxyz) that initially is coincident with a global

coordinate frame G(OXY Z) undergoes a rotation ϕ = 30deg about the
z-axis, then θ = 30deg about the x-axis, and then ψ = 30deg about the
y-axis. The local coordinates of a point P located at X = 5, Y = 30, Z = 10
can be found by

£
x y z

¤T
= Ay,ψAx,θAz,ϕ

£
5 30 10

¤T
. The local

rotation matrix is

BAG = Ay,30Ax,30Az,30 =

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦ (2.95)

and coordinates of P in the local frame is:⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ 18.35
25.35
7.0

⎤⎦ (2.96)

Example 16 Successive local rotation.
The rotation matrix for a body point P (x, y, z) after rotation Az,ϕ fol-

lowed by Ax,θ and Ay,ψ is:
BAG = Ay,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ −cθsψ
−cθsϕ cθcϕ sθ

cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ cθcψ

⎤⎦ (2.97)

Example 17 Twelve independent triple local rotations.
Euler proved that: Any two independent orthogonal coordinate frames

with a common origin can be related by a sequence of three rotations about
the local coordinate axes, where no two successive rotations may be about
the same axis. In general, there are 12 different independent combinations
of triple rotation about local axes. They are:

1−Ax,ψAy,θAz,ϕ

2−Ay,ψAz,θAx,ϕ

3−Az,ψAx,θAy,ϕ

4−Az,ψAy,θAx,ϕ

5−Ay,ψAx,θAz,ϕ

6−Ax,ψAz,θAy,ϕ

7−Ax,ψAy,θAx,ϕ

8−Ay,ψAz,θAy,ϕ

9−Az,ψAx,θAz,ϕ

10−Ax,ψAz,θAx,ϕ

11−Ay,ψAx,θAy,ϕ

12−Az,ψAy,θAz,ϕ

(2.98)

The expanded form of the 12 local axes’ triple rotation are presented in
Appendix B.
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FIGURE 2.12. First Euler angle.

2.6 Euler Angles

The rotation about the Z-axis of the global coordinate is called precession,
the rotation about the x-axis of the local coordinate is called nutation, and
the rotation about the z-axis of the local coordinate is called spin. The
precession-nutation-spin rotation angles are also called Euler angles. Euler
angles rotation matrix has many application in rigid body kinematics. To
find the Euler angles rotation matrix to go from the global frameG(OXY Z)
to the final body frame B(Oxyz), we employ a body frame B0(Ox0y0z0) as
shown in Figure 2.12 that before the first rotation coincides with the global
frame. Let there be at first a rotation ϕ about the z0-axis. Because Z-axis
and z0-axis are coincident, we have:

B0
r = B0

AG
Gr (2.99)

B0
AG = Az,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ (2.100)

Next we consider the B0(Ox0y0z0) frame as a new fixed global frame and
introduce a new body frame B00(Ox00y00z00). Before the second rotation, the
two frames coincide. Then, we execute a θ rotation about x00-axis as shown
in Figure 2.13. The transformation between B0(Ox0y0z0) and B00(Ox00y00z00)
is:

B00
r = B00

AB0 B
0
r (2.101)

B00
AB0 = Ax,θ =

⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦ (2.102)

Finally we consider the B00(Ox00y00z00) frame as a new fixed global frame
and consider the final body frame B(Oxyz) to coincide with B00 before the
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third rotation. We now execute a ψ rotation about the z00-axis as shown in
Figure 2.14. The transformation between B00(Ox00y00z00) and B(Oxyz) is:

Br = BAB00 B
00
r (2.103)

BAB00 = Az,ψ =

⎡⎣ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎤⎦ (2.104)

By the rule of composition of rotations, the transformation fromG(OXY Z)
to B(Oxyz) is

Br = BAG
Gr (2.105)

where,

BAG = Az,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (2.106)

and therefore,

GQB = BA−1G = BAT
G = [Az,ψAx,θAz,ϕ]

T

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ . (2.107)
Given the angles of precession ϕ, nutation θ, and spin ψ, we can com-

pute the overall rotation matrix using Equation (2.106). Also we are able
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FIGURE 2.14. Third Euler angle.

to compute the equivalent precession, nutation, and spin angles when a
rotation matrix is given.
If rij indicates the element of row i and column j of the precession-

nutation-spin rotation matrix (2.106), then,

θ = cos−1 (r33) (2.108)

ϕ = − tan−1
µ
r31
r32

¶
(2.109)

ψ = tan−1
µ
r13
r23

¶
(2.110)

provided that sin θ 6= 0.

Example 18 Euler angle rotation matrix.
The Euler or precession-nutation-spin rotation matrix for ϕ = 79.15 deg,

θ = 41.41 deg, and ψ = −40.7 deg would be found by substituting ϕ, θ, and
ψ in Equation (2.106).

BAG = Az,−40.7Ax,41.41Az,79.15 (2.111)

=

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦
Example 19 Euler angles of a local rotation matrix.
The local rotation matrix after rotation 30 deg about the z-axis, then

rotation 30 deg about the x-axis, and then 30 deg about the y-axis is
BAG = Ay,30Ax,30Az,30 (2.112)

=

⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦
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and therefore, the local coordinates of a sample point at X = 5, Y = 30,
Z = 10 are:⎡⎣ x

y
z

⎤⎦ =
⎡⎣ 0.63 0.65 −0.43
−0.43 0.75 0.50
0.65 −0.125 0.75

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ 18.35
25.35
7.0

⎤⎦ (2.113)

The Euler angles of the corresponding precession-nutation-spin rotation
matrix are:

θ = cos−1 (0.75) = 41.41 deg

ϕ = − tan−1
µ

0.65

−0.125

¶
= 79.15 deg

ψ = tan−1
µ
−0.43
0.50

¶
= −40.7 deg (2.114)

Hence, Ay,30Ax,30Az,30 = Az,ψAx,θAz,ϕ when ϕ = 79.15 deg, θ = 41.41 deg,
and ψ = −40.7 deg. In other words, the rigid body attached to the local
frame moves to the final configuration by undergoing either three consecu-
tive rotations ϕ = 79.15 deg, θ = 41.41 deg, and ψ = −40.7 deg about z, x,
and z axes respectively, or three consecutive rotations 30 deg, 30 deg, and
30 deg about z, x, and y axes.

Example 20 Relative rotation matrix of two bodies.
Consider a rigid body B1 with an orientation matrix B1AG made by Euler

angles ϕ = 30deg, θ = −45 deg, ψ = 60deg, and another rigid body B2
having ϕ = 10deg, θ = 25deg, ψ = −15 deg, with respect to the global
frame. To find the relative rotation matrix B1AB2

to map the coordinates
of second body frame B2 to the first body frame B1, we need to find the
individual rotation matrices first.

B1AG = Az,60Ax,−45Az,30 (2.115)

=

⎡⎣ 0.127 0.78 −0.612
−0.927 −0.127 −0.354
−0.354 0.612 0.707

⎤⎦
B2AG = Az,10Ax,25Az,−15 (2.116)

=

⎡⎣ 0.992 −0.0633 −0.109
0.103 0.907 0.408
0.0734 −0.416 0.906

⎤⎦
The desired rotation matrix B1AB2 may be found by

B1AB2
= B1AG

GAB2
(2.117)
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which is equal to:

B1AB2 = B1AG
B2AT

G (2.118)

=

⎡⎣ 0.992 0.103 0.0734
−0.0633 0.907 −0.416
−0.109 0.408 0.906

⎤⎦
Example 21 Euler angles rotation matrix for small angles.
The Euler rotation matrix BAG = Az,ψAx,θAz,ϕ for very small Euler

angles ϕ, θ, and ψ is approximated by

BAG =

⎡⎣ 1 γ 0
−γ 1 θ
0 −θ 1

⎤⎦ (2.119)

where,
γ = ϕ+ ψ. (2.120)

Therefore, in case of small angles of rotation, the angles ϕ and ψ are in-
distinguishable.

Example 22 Small second Euler angle.
If θ→ 0 then the Euler rotation matrix BAG = Az,ψAx,θAz,ϕ approaches

to

BAG =

⎡⎣ cϕcψ − sϕsψ cψsϕ+ cϕsψ 0
−cϕsψ − cψsϕ −sϕsψ + cϕcψ 0

0 0 1

⎤⎦
=

⎡⎣ cos (ϕ+ ψ) sin (ϕ+ ψ) 0
− sin (ϕ+ ψ) cos (ϕ+ ψ) 0

0 0 1

⎤⎦ (2.121)

and therefore, the angles ϕ and ψ are indistinguishable even if the value
of ϕ and ψ are finite. Hence, the Euler set of angles in rotation matrix
(2.106) is not unique when θ = 0.

Example 23 Euler angles application in motion of rigid bodies.
The zxz Euler angles are good parameters to describe the configuration of

a rigid body with a fixed point. The Euler angles to show the configuration
of a top are shown in Figure 2.15 as an example.

Example 24 F Angular velocity vector in terms of Euler frequencies.
A Eulerian local frame E (o, êϕ, êθ, êψ) can be introduced by defining unit

vectors êϕ, êθ, and êψ as shown in Figure 2.16. Although the Eulerian
frame is not necessarily orthogonal, it is very useful in rigid body kinematic
analysis.
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FIGURE 2.15. Application of Euler angles in describing the configuration of a
top.

The angular velocity vector GωB of the body frame B(Oxyz) with respect
to the global frame G(OXY Z) can be written in Euler angles frame E as
the sum of three Euler angle rate vectors.

E
GωB = ϕ̇êϕ + θ̇êθ + ψ̇êψ (2.122)

where, the rate of Euler angles, ϕ̇, θ̇, and ψ̇ are called Euler frequencies.
To find GωB in body frame we must express the unit vectors êϕ, êθ,

and êψ shown in Figure 2.16, in the body frame. The unit vector êϕ =£
0 0 1

¤T
= K̂ is in the global frame and can be transformed to the

body frame after three rotations.

B êϕ =
BAG K̂ = Az,ψAx,θAz,ϕK̂ =

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦ (2.123)

The unit vector êθ =
£
1 0 0

¤T
= ı̂0 is in the intermediate frame

Ox0y0z0 and needs to get two rotations Ax,θ and Az,ψ to be transformed
to the body frame.

B êθ =
BAOx0y0z0 ı̂

0 = Az,ψ Ax,θ ı̂
0 =

⎡⎣ cosψ
− sinψ
0

⎤⎦ (2.124)

The unit vector êψ is already in the body frame, êψ =
£
0 0 1

¤T
= k̂.
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FIGURE 2.16. Euler angles frame êϕ, êθ, êψ.

Therefore, GωB is expressed in body coordinate frame as

B
GωB = ϕ̇

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦+ θ̇

⎡⎣ cosψ
− sinψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

³
ϕ̇ sin θ sinψ + θ̇ cosψ

´
ı̂+

³
ϕ̇ sin θ cosψ − θ̇ sinψ

´
ĵ

+
³
ϕ̇ cos θ + ψ̇

´
k̂ (2.125)

and therefore, components of GωB in body frame Oxyz are related to the
Euler angle frame Oϕθψ by the following relationship:

B
GωB = BAE

E
GωB (2.126)⎡⎣ ωx

ωy
ωz

⎤⎦ =

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.127)

Then, GωB can be expressed in the global frame using an inverse transfor-
mation of Euler rotation matrix (2.106)

G
GωB = BA−1G

B
GωB =

BA−1G

⎡⎣ ϕ̇ sin θ sinψ + θ̇ cosψ

ϕ̇ sin θ cosψ − θ̇ sinψ

ϕ̇ cos θ + ψ̇

⎤⎦
=

³
θ̇ cosϕ+ ψ̇ sin θ sinϕ

´
Î +

³
θ̇ sinϕ− ψ̇ cosϕ sin θ

´
Ĵ

+
³
ϕ̇+ ψ̇ cos θ

´
K̂ (2.128)

and hence, components of GωB in global coordinate frame OXY Z are re-
lated to the Euler angle coordinate frame Oϕθψ by the following relation-
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ship.

G
GωB = GQE

E
GωB (2.129)⎡⎣ ωX

ωY
ωZ

⎤⎦ =

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.130)

Example 25 F Euler frequencies based on a Cartesian angular velocity
vector.
The vector B

GωB, that indicates the angular velocity of a rigid body B
with respect to the global frame G written in frame B, is related to the
Euler frequencies by

B
GωB = BAE

E
GωB (2.131)

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦ =
⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (2.132)

The matrix of coefficients is not an orthogonal matrix because,

BAT
E 6= BA−1E (2.133)

BAT
E =

⎡⎣ sin θ sinψ sin θ cosψ cos θ
cosψ − sinψ 0
0 0 1

⎤⎦ (2.134)

BA−1E =
1

sin θ

⎡⎣ sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0
− cos θ sinψ − cos θ cosψ 1

⎤⎦ . (2.135)

It is because the Euler angles coordinate frame Oϕθψ is not an orthogonal
frame. For the same reason, the matrix of coefficients that relates the Euler
frequencies and the components of GGωB

G
GωB = GQE

E
GωB (2.136)

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ =
⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.137)

is not an orthogonal matrix. Therefore, the Euler frequencies based on local
and global decomposition of the angular velocity vector GωB must solely be
found by the inverse of coefficient matrices

E
GωB = BA−1E

B
GωB (2.138)⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
1

sin θ

⎡⎣ sinψ cosψ 0
sin θ cosψ − sin θ sinψ 0
− cos θ sinψ − cos θ cosψ 1

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦(2.139)
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and

E
GωB = GQ−1E

G
GωB (2.140)⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =
1

sin θ

⎡⎣ − cos θ sinϕ cos θ cosϕ 1
sin θ cosϕ sin θ sinϕ 0
sinϕ − cosϕ 0

⎤⎦⎡⎣ ωX
ωY
ωZ

⎤⎦ . (2.141)
Using (2.138) and (2.140), it can be verified that the transformation ma-
trix BAG =

BAE
GQ−1E would be the same as Euler transformation matrix

(2.106).
The angular velocity vector can thus be expressed as:

GωB =
£
ı̂ ĵ k̂

¤⎡⎣ ωx
ωy
ωz

⎤⎦ = £ Î Ĵ K̂
¤⎡⎣ ωX

ωY
ωZ

⎤⎦
=

£
K̂ êθ k̂

¤⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.142)

Example 26 F Integrability of the angular velocity components.
The integrability condition for an arbitrary total differential of f = f (x, y)

df = f1dx+ f2dy =
∂f

∂x
dx+

∂f

∂y
dy (2.143)

is:
∂f1
∂y

=
∂f2
∂x

(2.144)

The angular velocity components ωx, ωy, and ωz along the body coordi-
nate axes x, y, and z can not be integrated to obtain the associated angles
because

ωxdt = sin θ sinψ dϕ+ cosψ dθ (2.145)

and
∂ (sin θ sinψ)

∂θ
6= ∂ cosψ

∂ϕ
. (2.146)

However, the integrability condition (2.144) is satisfied by the Euler fre-
quencies. From (2.139), we have:

dϕ =
sinψ

sin θ
(ωx dt) +

cosψ

sin θ
(ωy dt) (2.147)

dθ = cosψ (ωx dt)− sinψ (ωy dt) (2.148)

dψ =
− cos θ sinψ

sin θ
(ωx dt) +

− cos θ cosψ
sin θ

(ωy dt) +
(ωz dt)

sin θ
(2.149)

For example, the second equation indicates that

cosψ =
∂θ

∂ (ωx dt)
− sinψ = ∂θ

∂ (ωy dt)
(2.150)
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and therefore,

∂ (cosψ)

∂ (ωy dt)
= − sinψ ∂ψ

∂ (ωy dt)
=
sinψ cos θ cosψ

sin θ
(2.151)

∂ (− sinψ)
∂ (ωx dt)

= − cosψ ∂ψ

∂ (ωx dt)
=
sinψ cos θ cosψ

sin θ
(2.152)

It can be checked that dϕ and dψ are also integrable.

Example 27 F Cardan angles and frequencies.
The system of Euler angles is singular at θ = 0, and as a consequence,

ϕ and ψ become coplanar and indistinguishable. From 12 angle systems
of Appendix B, each with certain names, characteristics, advantages, and
disadvantages, the rotations about three different axes such as BAG =
Az,ψAy,θAx,ϕ are called Cardan or Bryant angles. The Cardan angle sys-
tem is not singular at θ = 0, and has some application in mechatronics and
attitude analysis of satellites in a central force field.

BAG =

⎡⎣ cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ
sθ −cθsϕ cθcϕ

⎤⎦ (2.153)

The angular velocity ω of a rigid body can either be expressed in terms
of the components along the axes of B(Oxyz), or in terms of the Cardan
frequencies along the axes of the non-orthogonal Cardan frame. The angular
velocity in terms of Cardan frequencies is

GωB = ϕ̇Az,ψAy,θ

⎡⎣ 1
0
0

⎤⎦+ θ̇Az,ψ

⎡⎣ 0
1
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦ (2.154)

therefore,⎡⎣ ωx
ωy
ωz

⎤⎦ =

⎡⎣ cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.155)

⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ =

⎡⎣ cosψ
cos θ − sinψcos θ 0
sinψ cosψ 0

− tan θ cosψ tan θ sinψ 1

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦ . (2.156)

In case of small Cardan angles, we have

BAG =

⎡⎣ 1 ψ −θ
−ψ 1 ϕ
θ −ϕ 1

⎤⎦ (2.157)

and ⎡⎣ ωx
ωy
ωz

⎤⎦ =
⎡⎣ 1 ψ 0
−ψ 1 0
θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (2.158)
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FIGURE 2.17. Local roll-pitch-yaw angles.

2.7 Local Roll-Pitch-Yaw Angles

Rotation about the x-axis of the local frame is called roll or bank, rotation
about y-axis of the local frame is called pitch or attitude, and rotation
about the z-axis of the local frame is called yaw, spin, or heading. The
local roll-pitch-yaw angles are shown in Figure 2.17.
The local roll-pitch-yaw rotation matrix is:

BAG = Az,ψAy,θAx,ϕ

=

⎡⎣ cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ
sθ −cθsϕ cθcϕ

⎤⎦ (2.159)

Note the difference between roll-pitch-yaw and Euler angles, although we
show both utilizing ϕ, θ, and ψ.

Example 28 F Angular velocity and local roll-pitch-yaw rate.
Using the roll-pitch-yaw frequencies, the angular velocity of a body B with

respect to the global reference frame is

GωB = ωxı̂+ ωy ĵ+ ωz k̂

= ϕ̇êϕ + θ̇êθ + ψ̇êψ. (2.160)

Relationships between the components of GωB in body frame and roll-pitch-
yaw components are found when the local roll unit vector êϕ and pitch
unit vector êθ are transformed to the body frame. The roll unit vector
êϕ =

£
1 0 0

¤T
transforms to the body frame after rotation θ and then
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rotation ψ.

B êϕ = Az,ψAy,θ

⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ cos θ cosψ
− cos θ sinψ

sin θ

⎤⎦ (2.161)

The pitch unit vector êθ =
£
0 1 0

¤T
transforms to the body frame after

rotation ψ.

B êθ = Az,ψ

⎡⎣ 0
1
0

⎤⎦ =
⎡⎣ sinψ
cosψ
0

⎤⎦ (2.162)

The yaw unit vector êψ =
£
0 0 1

¤T
is already along the local z-axis.

Hence, GωB can be expressed in body frame Oxyz as

B
GωB =

⎡⎣ ωx
ωy
ωz

⎤⎦ = ϕ̇

⎡⎣ cos θ cosψ
− cos θ sinψ

sin θ

⎤⎦+ θ̇

⎡⎣ sinψ
cosψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ cos θ cosψ sinψ 0
− cos θ sinψ cosψ 0

sin θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.163)

and therefore, GωB in global frame OXY Z in terms of local roll-pitch-yaw
frequencies is:

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ = BA−1G

⎡⎣ ωx
ωy
ωz

⎤⎦ = BA−1G

⎡⎣ θ̇ sinψ + ϕ̇ cos θ cosψ

θ̇ cosψ − ϕ̇ cos θ sinψ

ψ̇ + ϕ̇ sin θ

⎤⎦
=

⎡⎣ ϕ̇+ ψ̇ sin θ

θ̇ cosϕ− ψ̇ cos θ sinϕ

θ̇ sinϕ+ ψ̇ cos θ cosϕ

⎤⎦
=

⎡⎣ 1 0 sin θ
0 cosϕ − cos θ sinϕ
0 sinϕ cos θ cosϕ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (2.164)

2.8 Local Axes Versus Global Axes Rotation

The global rotation matrix GQB is equal to the inverse of the local rotation
matrix BAG and vice versa,

GQB =
BA−1G , BAG =

GQ−1B (2.165)

where
GQB = A−11 A−12 A−13 · · ·A−1n (2.166)
BAG = Q−11 Q−12 Q−13 · · ·Q−1n . (2.167)
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Also, premultiplication of the global rotation matrix is equal to postmulti-
plication of the local rotation matrix.

Proof. Consider a sequence of global rotations and their resultant global
rotation matrix GQB to transform a position vector Br to Gr.

Gr = GQB
Br (2.168)

The global position vector Gr can also be transformed to Br using a local
rotation matrix BAG.

Br = BAG
Gr (2.169)

Combining Equations (2.168) and (2.169) leads to

Gr = GQB
BAG

Gr (2.170)
Br = BAG

GQB
Br (2.171)

and hence,
GQB

BAG =
BAG

GQB = I. (2.172)

Therefore, the global and local rotation matrices are the inverse of each
other.

GQB = BA−1G
GQ−1B = BAG (2.173)

Assume that GQB = Qn · · ·Q3Q2Q1 and BAG = An · · ·A3A2A1 then,
GQB = BA−1G = A−11 A−12 A−13 · · ·A−1n (2.174)
BAG = GQ−1B = Q−11 Q−12 Q−13 · · ·Q−1n (2.175)

and Equation (2.172) becomes

Qn · · ·Q2Q1An · · ·A2A1 = An · · ·A2A1Qn · · ·Q2Q1 = I (2.176)

and therefore,

Qn · · ·Q3Q2Q1 = A−11 A−12 A−13 · · ·A−1n
An · · ·A3A2A1 = Q−11 Q−12 Q−13 · · ·Q−1n (2.177)

or

Q−11 Q−12 Q−13 · · ·Q−1n Qn · · ·Q3Q2Q1 = I (2.178)

A−11 A−12 A−13 · · ·A−1n An · · ·A3A2A1 = I. (2.179)

Hence, the effect of in order rotations about the global coordinate axes
is equivalent to the effect of the same rotations about the local coordinate
axes performed in the reverse order.
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Example 29 Global position and postmultiplication of rotation matrix.
The local position of a point P after rotation is at Br =

£
1 2 3

¤T
.

If the local rotation matrix to transform Gr to Br is given as

BAz,ϕ =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ =
⎡⎣ cos 30 sin 30 0
− sin 30 cos 30 0
0 0 1

⎤⎦ (2.180)

then we may find the global position vector Gr by postmultiplication BAz,ϕ

by the local position vector BrT ,

GrT = BrT BAz,ϕ =
£
1 2 3

¤⎡⎣ cos 30 sin 30 0
− sin 30 cos 30 0
0 0 1

⎤⎦
=

£
−0.13 2.23 3.0

¤
(2.181)

instead of premultiplication of BA−1z,ϕ by
Br.

Gr = BA−1z,ϕ
Br

=

⎡⎣ cos 30 − sin 30 0
sin 30 cos 30 0
0 0 1

⎤⎦⎡⎣ 1
2
3

⎤⎦ =
⎡⎣ −0.132.23

3

⎤⎦ (2.182)

2.9 General Transformation

Consider a general situation in which two coordinate frames, G(OXY Z)
and B(Oxyz) with a common origin O, are employed to express the com-
ponents of a vector r. There is always a transformation matrix GRB to
map the components of r from the reference frame B(Oxyz) to the other
reference frame G(OXY Z).

Gr = GRB
Br (2.183)

In addition, the inverse map, Br =GR−1B
Gr, can be done by BRG

Br = BRG
Gr (2.184)

where, ¯̄
GRB

¯̄
=
¯̄
BRG

¯̄
= 1 (2.185)

and
BRG =

GR−1B = GRT
B. (2.186)
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Proof. Decomposition of the unit vectors of G(OXY Z) along the axes of
B(Oxyz)

Î = (Î · ı̂)̂ı+ (Î · ĵ)ĵ+ (Î · k̂)k̂ (2.187)

Ĵ = (Ĵ · ı̂)̂ı+ (Ĵ · ĵ)ĵ+ (Ĵ · k̂)k̂ (2.188)

K̂ = (K̂ · ı̂)̂ı+ (K̂ · ĵ)ĵ+ (K̂ · k̂)k̂ (2.189)

introduces the transformation matrix GRB to map the local frame to the
global frame⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ ı̂
ĵ

k̂

⎤⎦ = GRB

⎡⎣ ı̂
ĵ

k̂

⎤⎦ (2.190)

where,

GRB =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦
=

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ . (2.191)

Each column of GRB is decomposition of a unit vector of the local frame
B(Oxyz) in the global frame G(OXY Z).

GRB =

⎡⎣ | | |
Gı̂ Gĵ Gk̂
| | |

⎤⎦ =
⎡⎣ | | |
r̂V1 r̂V2 r̂V3
| | |

⎤⎦ (2.192)

Similarly, each row of GRB is decomposition of a unit vector of the global
frame G(OXY Z) in the local frame B(Oxyz).

GRB =

⎡⎣ − B ÎT −
− BĴT −
− BK̂T −

⎤⎦ =
⎡⎣ − r̂H1 −
− r̂H2 −
− r̂H3

−

⎤⎦ (2.193)

The elements of GRB are direction cosines of the axes of G(OXY Z) in
frame B(Oxyz). This set of nine direction cosines then completely specifies
the orientation of the frame B(Oxyz) in the frame G(OXY Z), and can
be used to map the coordinates of any point (x, y, z) to its corresponding
coordinates (X,Y,Z).
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Alternatively, using the method of unit vector decomposition to develop
the matrix BRG leads to:

Br = BRG
Gr =GR−1B

Gr (2.194)

BRG =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ cos(̂ı, Î) cos(̂ı, Ĵ) cos(̂ı, K̂)

cos(ĵ, Î) cos(ĵ, Ĵ) cos(ĵ, K̂)

cos(k̂, Î) cos(k̂, Ĵ) cos(k̂, K̂)

⎤⎦ (2.195)

and shows that the inverse of a transformation matrix is equal to the trans-
pose of the transformation matrix.

GR−1B = GRT
B (2.196)

A matrix with condition (2.196) is called orthogonal. Orthogonality of
R comes from this fact that it maps an orthogonal coordinate frame to
another orthogonal coordinate frame.
The transformation matrix R has only three independent elements. The

constraint equations among the elements of R will be found by applying
the orthogonality condition (2.196).

GRB · GRT
B = [I] (2.197)⎡⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣ r11 r21 r31
r12 r22 r32
r13 r23 r33

⎤⎦ =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.198)

Therefore, the dot product of any two different rows of GRB is zero, and
the dot product of any row of GRB with the same row is one.

r211 + r212 + r213 = 1

r221 + r222 + r223 = 1

r231 + r232 + r233 = 1

r11r21 + r12r22 + r13r23 = 0

r11r31 + r12r32 + r13r33 = 0

r21r31 + r22r32 + r23r33 = 0 (2.199)

These relations are also true for columns of GRB, and evidently for rows
and columns of BRG. The orthogonality condition can be summarized in
the following equation:

r̂Hi · r̂Hj = r̂
T
Hi
r̂Hj =

3X
i=1

rijrik = δjk (j, k = 1, 2, 3) (2.200)
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where rij is the element of row i and column j of the transformation matrix
R, and δjk is the Kronecker’s delta.

δjk = 1 if j = k, and δjk = 0 if j 6= k (2.201)

Equation (2.200) gives six independent relations satisfied by nine direction
cosines. It follows that there are only three independent direction cosines.
The independent elements of the matrix R cannot obviously be in the same
row or column, or any diagonal.
The determinant of a transformation matrix is equal to one,¯̄

GRB

¯̄
= 1 (2.202)

because of Equation (2.197), and noting that¯̄
GRB · GRT

B

¯̄
=

¯̄
GRB

¯̄
·
¯̄
GRT

B

¯̄
=
¯̄
GRB

¯̄
·
¯̄
GRB

¯̄
=

¯̄
GRB

¯̄2
= 1. (2.203)

Using linear algebra and row vectors r̂H1 , r̂H2 , and r̂H3 of
GRB , we know

that ¯̄
GRB

¯̄
= r̂TH1

· (r̂H2 × r̂H3) (2.204)

and because the coordinate system is right handed, we have r̂H2×r̂H3 = r̂H1

so
¯̄
GRB

¯̄
= r̂TH1

· r̂H1 = 1.

Example 30 Elements of transformation matrix.
The position vector r of a point P may be expressed in terms of its

components with respect to either G (OXY Z) or B (Oxyz) frames. Body
and a global coordinate frames are shown in Figure 2.18. If Gr = 100Î −
50Ĵ + 150K̂, and we are looking for components of r in the Oxyz frame,
then we have to find the proper rotation matrix BRG first.
The row elements of BRG are the direction cosines of the Oxyz axes in

the OXY Z coordinate frame. The x-axis lies in the XZ plane at 40 deg
from the X-axis, and the angle between y and Y is 60 deg. Therefore,

BRG =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ =
⎡⎣ cos 40 0 sin 40

ĵ · Î cos 60 ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦
=

⎡⎣ 0.766 0 0.643

ĵ · Î 0.5 ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ (2.205)

and by using BRG
GRB =

BRG
BRT

G = I⎡⎣ 0.766 0 0.643
r21 0.5 r23
r31 r32 r33

⎤⎦⎡⎣ 0.766 r21 r31
0 0.5 r32

0.643 r23 r33

⎤⎦ =
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.206)
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FIGURE 2.18. Body and global coordinate frames of Example 30.

we obtain a set of equations to find the missing elements.

0.766 r21 + 0.643 r23 = 0

0.766 r31 + 0.643 r33 = 0

r221 + r223 + 0.25 = 1

r21r31 + 0.5r32 + r23r33 = 0

r231 + r232 + r233 = 1 (2.207)

Solving these equations provides the following transformation matrix:

BRG =

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦ (2.208)

and then we can find the components of Br.

Br = BRG
Gr =

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦⎡⎣ 100
−50
150

⎤⎦
=

⎡⎣ 173.05
−68.75
−18.05

⎤⎦ (2.209)

Example 31 Global position, using Br and BRG.
The position vector r of a point P may be described in either G (OXY Z)

or B (Oxyz) frames. If Br = 100ı̂− 50ĵ+ 150k̂, and the following BRG is
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the transformation matrix to map Gr to Br

Br = BRG
Gr

=

⎡⎣ 0.766 0 0.643
0.557 0.5 −0.663
−0.322 0.866 0.383

⎤⎦ Gr (2.210)

then the components of Gr in G (OXY Z) would be

Gr = GRB
Br = BRT

G
Br

=

⎡⎣ 0.766 0.557 −0.322
0 0.5 0.866

0.643 −0.663 0.383

⎤⎦⎡⎣ 100
−50
150

⎤⎦ =
⎡⎣ 0.45
104.9
154.9

⎤⎦ . (2.211)
Example 32 Two points transformation matrix.
The global position vector of two points, P1 and P2, of a rigid body B

are:

GrP1 =

⎡⎣ 1.077
1.365
2.666

⎤⎦ GrP2 =

⎡⎣ −0.4732.239
−0.959

⎤⎦ (2.212)

The origin of the body B (Oxyz) is fixed on the origin of G (OXY Z), and
the points P1 and P2 are lying on the local x-axis and y-axis respectively.
To find GRB, we use the local unit vectors Gı̂ and Gĵ

Gı̂ =
GrP1
|GrP1 |

=

⎡⎣ 0.338
0.429
0.838

⎤⎦ (2.213)

Gĵ =
GrP2
|GrP2 |

=

⎡⎣ −0.1910.902
−0.387

⎤⎦ (2.214)

to obtain Gk̂

Gk̂ = ı̂× ĵ = ı̃ ĵ

=

⎡⎣ 0 −0.838 0.429
0.838 0 −0.338
−0.429 0.338 0

⎤⎦⎡⎣ −0.1910.902
−0.387

⎤⎦
=

⎡⎣ −0.922−0.029
0.387

⎤⎦ (2.215)

where ı̃ is the skew-symmetric matrix corresponding to ı̂, and ı̃ ĵ is an
alternative for ı̂× ĵ.
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Hence, the transformation matrix using the coordinates of two points
GrP1 and

GrP2 would be

GRB =
£

Gı̂ Gĵ Gk̂
¤

=

⎡⎣ 0.338 −0.191 −0.922
0.429 0.902 −0.029
0.838 −0.387 0.387

⎤⎦ . (2.216)

Example 33 Length invariant of a position vector.
Describing a vector in different frames utilizing rotation matrices does

not affect the length and direction properties of the vector. Therefore, length
of a vector is an invariant

|r| =
¯̄
Gr
¯̄
=
¯̄
Br
¯̄
. (2.217)

The length invariant property can be shown by

|r|2 = GrT Gr =
£
GRB

Br
¤T GRB

Br = BrT GRT
B
GRB

Br

= BrT Br. (2.218)

Example 34 Skew symmetric matrices for ı̂, ĵ, and k̂.
The definition of skew symmetric matrix ã corresponding to a vector a

is defined by

ã =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦ . (2.219)

Hence,

ı̃ =

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ (2.220)

j̃ =

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ (2.221)

k̃ =

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ . (2.222)

Example 35 Inverse of Euler angles rotation matrix.
Precession-nutation-spin or Euler angle rotation matrix (2.106)

BRG = Az,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (2.223)
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must be inverted to be a transformation matrix to map body coordinates to
global coordinates.

GRB = BR−1G = AT
z,ϕA

T
x,θA

T
z,ψ

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ (2.224)

The transformation matrix (2.223) is called a local Euler rotation matrix,
and (2.224) is called a global Euler rotation matrix.

Example 36 F Group property of transformations.
A set S together with a binary operation ⊗ defined on elements of S is

called a group (S,⊗) if it satisfies the following four axioms.

1. Closure: If s1, s2 ∈ S, then s1 ⊗ s2 ∈ S.

2. Identity: There exists an identity element s0 such that s0 ⊗ s =
s⊗ s0 = s for ∀s ∈ S.

3. Inverse: For each s ∈ S, there exists a unique inverse s−1 ∈ S such
that s−1 ⊗ s = s⊗ s−1 = s0.

4. Associativity: If s1, s2, s3 ∈ S, then (s1 ⊗ s2)⊗ s3 = s1⊗ (s2 ⊗ s3).

Three dimensional coordinate transformations make a group if we
define the set of rotation matrices by

S =
©
R ∈ R3×3 : RRT = RTR = I, |R| = 1

ª
. (2.225)

Therefore, the elements of the set S are transformation matrices Ri,
the binary operator ⊗ is matrix multiplication, the identity matrix is
I, and the inverse of element R is R−1 = RT .

S is also a continuous group because

5. The binary matrix multiplication is a continuous operation, and

6. The inverse of any element in S is a continuous function of that
element.

Therefore, S is a differentiable manifold. A group that is a differen-
tiable manifold is called a Lie group.

Example 37 F Transformation with determinant −1.
An orthogonal matrix with determinant +1 corresponds to a rotation as

described in Equation (2.202). In contrast, an orthogonal matrix with deter-
minant −1 describes a reflection. Moreover it transforms a right-handed
coordinate system into a left-handed, and vice versa. This transformation
does not correspond to any possible physical action on rigid bodies.
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Example 38 Alternative proof for transformation matrix.
Starting with an identity

£
ı̂ ĵ k̂

¤⎡⎣ ı̂
ĵ

k̂

⎤⎦ = 1 (2.226)

we may write ⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î

Ĵ

K̂

⎤⎦ £ ı̂ ĵ k̂
¤⎡⎣ ı̂

ĵ

k̂

⎤⎦ . (2.227)

Since matrix multiplication can be performed in any order we find⎡⎣ Î

Ĵ

K̂

⎤⎦ =
⎡⎣ Î · ı̂ Î · ĵ Î · k̂

Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ ı̂
ĵ

k̂

⎤⎦ = GRB

⎡⎣ ı̂
ĵ

k̂

⎤⎦ (2.228)

where,

GRB =

⎡⎣ Î

Ĵ

K̂

⎤⎦ £ ı̂ ĵ k̂
¤
. (2.229)

Following the same method we can show that

BRG =

⎡⎣ ı̂
ĵ

k̂

⎤⎦ £ Î Ĵ K̂
¤
. (2.230)

2.10 Active and Passive Transformation

Rotation of a local frame when the position vector Gr of a point P is fixed
in global frame and does not rotate with the local frame, is called passive
transformation. Alternatively, rotation of a local frame when the position
vector Br of a point P is fixed in the local frame and rotates with the local
frame, is called active transformation. Surprisingly, the passive and active
transformations are mathematically equivalent. In other words, the rotation
matrix for a rotated frame and rotated vector (active transformation) is the
same as the rotation matrix for a rotated frame and fixed vector (passive
transformation).

Proof. Consider a rotated local frame B(Oxyz) with respect to a fixed
global frame G(OXY Z), as shown in Figure 2.19. P is a fixed point in the
global frame, and so is its global position vector Gr. Position vector of P
can be decomposed in either a local or global coordinate frame, denoted by
Br and Gr respectively.
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FIGURE 2.19. A position vector r, in a local and a global frame.

The transformation from Gr to Br is equivalent to the required rotation of
the body frame B(Oxyz) to be coincided with the global frame G(OXY Z).
This is a passive transformation because the local frame cannot move the
vector Gr. In a passive transformation, we usually have the coordinates of
P in a global frame and we need its coordinates in a local frame; hence, we
use the following equation:

Br = BRG
Gr. (2.231)

We may alternatively assume thatB(Oxyz) was coincident withG(OXY Z)
and the vector r = Br was fixed in B(Oxyz), before B(Oxyz) and Br
move to the new position in G(OXY Z). This is an active transformation
and there is a rotation matrix to map the coordinates of Br in the local
frame to the coordinates of Gr in global frame. In an active transformation,
we usually have the coordinates of P in the local frame and we need its
coordinates in the global frame; hence, we use the following equation:

Gr = GRB
Br. (2.232)

Example 39 Active and passive rotation about X-axis.
Consider a local and global frames B and G that are coincident. A body

point P is at Br.

Br =

⎡⎣ 1
2
1

⎤⎦ (2.233)
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A rotation of 45 deg about X-axis will move the point to Gr.

Gr = RX,90
Br (2.234)

=

⎡⎢⎢⎣
1 0 0

0 cos
π

2
− sin π

2

0 sin
π

2
cos

π

2

⎤⎥⎥⎦
⎡⎣ 1
2
1

⎤⎦ =
⎡⎣ 1
−1
2

⎤⎦
Now assume that P is fixed in G. When B rotates 90 deg about X-axis, the
coordinates of P in the local frame will change such that

Br = RX,−90
Gr (2.235)

=

⎡⎢⎢⎢⎣
1 0 0

0 cos
−π
2

− sin −π
2

0 sin
−π
2

cos
−π
2

⎤⎥⎥⎥⎦
⎡⎣ 1
2
1

⎤⎦ =
⎡⎣ 1

1
−2

⎤⎦ .
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2.11 Summary

The objectives of this chapter are:
1−To learn how to determine the transformation matrix between two

Cartesian coordinate frames B and G with a common origin by applying
rotations about principal axes.
2−To decompose a given transformation matrix to a series of required

principal rotations.
Two Cartesian coordinate frames B and G with a common origin are

related by nine directional cosines of a frame in the other. The conversion
of coordinates in the two frames can be cast in a matrix transformation

Gr = GRB
Br (2.236)⎡⎣ X2

Y2
Z2

⎤⎦ =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦⎡⎣ x2
y2
z2

⎤⎦ (2.237)

where,

GRB =

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ . (2.238)

The transformation matrix GRB is orthogonal; so its determinant is one,
and its inverse is equal to its transpose.¯̄

GRB

¯̄
= 1 (2.239)

GR−1B = GRT
B (2.240)

The orthogonality condition generates six equations between the elements
of GRB that shows only three elements of GRB are independent.
Any relative orientation of B in G can be achieved by three consecutive

principal rotations about the coordinate axes in either the B or G frame.
If B is the body coordinate frame, and G is the globally fixed frame, the
global principal rotation transformation matrices are:

RX,γ =
GRB =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (2.241)

RY,β =
GRB =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (2.242)

RZ,α =
GRB =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (2.243)
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and the body principal rotation transformation matrices are:

Rx,ψ =
BRG =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦ (2.244)

Ry,θ =
BRG =

⎡⎣ cos θ 0 − sin θ
0 1 0
sin θ 0 cos θ

⎤⎦ (2.245)

Rz,ϕ =
BRG =

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦ (2.246)

The global and local rotation transformations are inverse of each other.

RX,γ = RT
x,γ (2.247)

RY,β = RT
y,β (2.248)

RZ,α = RT
z,α (2.249)
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2.12 Key Symbols

a a general vector
ã skew symmetric matrix of the vector a
A transformation matrix of rotation about a local axis
B body coordinate frame, local coordinate frame
c cos
d distance between two points
êϕ, êθ, êψ coordinate axes of E, local roll-pitch-yaw coordinate axes
E Eulerian local frame
f, f1, f2 a function of x and y
G global coordinate frame, fixed coordinate frame
I = [I] identity matrix
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
l length
m number of repeating rotation
n fraction of 2π, number of repeating rotation
N the set of natural numbers
O common origin of B and G
Oϕθψ Euler angle frame
P a body point, a fixed point in B, a partial derivative
Q transformation matrix of rotation about a global axis,

a partial derivative
r position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix, radius of a circle
R the set of real numbers
s sin, a member of S
S a set
t time
u a general axis
v velocity vector
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
δij Kronecker’s delta
ϕ, θ, ψ rotation angles about local axes, Euler angles
ϕ̇, θ̇, ψ̇ Euler frequencies
ωx, ωy, ωz angular velocity components
ω angular velocity vector
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Symbol
[ ]−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
⊗ a binary operation
(S,⊗) a group
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Exercises

1. Notation and symbols.

Describe the meaning of these notations.

a- Gr b- GrP c- BrP d- GRB e- GRT
B f- BRG

g- BR−1G h- GdB i- 2d1 j- QX k- QY,β l- Q−1Y,45

m- k̂ n- Ĵ o- AT
z,ϕ p- êψ q- ı̃ r- I

2. Body point and global rotations.

The point P is at BrP = [1, 2, 1]T in a body coordinate B(Oxyz).
Find the final global position of P after

(a) A rotation of 30 deg about the X-axis, followed by a 45 deg ro-
tation about the Z-axis

(b) A rotation of 30 deg about the Z-axis, followed by a 45 deg ro-
tation about the X-axis.

(c) F Point P will move on a sphere. Let us name the initial
global position of P by P1, the second position by P2, and the
third position by P3. Determine the angles of ∠P1OP2, ∠P2OP3,
∠P3OP1.

(d) F Determine the area of the triangle made by points GrP =

[1, 2, 1]
T , and the global position of P after rotations a and b.

3. F Alternative motions to reach an orientation.

The coordinates of a body point P in B and G frames are:

BrP =

⎡⎣ 1.23
4.56
7.89

⎤⎦ GrP =

⎡⎣ 4.56
7.89
1.23

⎤⎦
Determine

(a) If it is possible to transform BrP to GrP ?

(b) A transformation matrix between BrP and GrP .

(c) Euler angles to transform BrP to GrP .

(d) Global roll-pitch-yaw to transform BrP to GrP .

(e) Body roll-pitch-yaw to transform BrP to GrP .
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FIGURE 2.20. A cube at its initial position.

4. Body point after global rotation.

Find the position of a point P in the local coordinate, if it is moved
to GrP = [1, 3, 2]

T after

(a) A rotation of 60 deg about Z-axis,

(b) A rotation of 60 deg about X-axis,

(c) A rotation of 60 deg about Y -axis,

(d) Rotations of 60 deg about Z-axis, 60 deg aboutX-axis and 60 deg
about Y -axis.

5. Invariant of a vector.

A point was at BrP = [1, 2, z]T . After a rotation of 60 deg about
X-axis, followed by a 30 deg rotation about Z-axis, it is at:

GrP =

⎡⎣ X
Y
2.933

⎤⎦
Find z, X, and Y .

6. Global rotation of a cube.

Figure 2.20 illustrates the original position of a cube with a fixed
point at D and edges of length l = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about X-axis.

(b) Coordinates of the corners after rotation of 30 deg about Y -axis.
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(c) Coordinates of the corners after rotation of 30 deg about Z-axis.

(d) Coordinates of the corners after rotation of 30 deg about X-axis,
then 30 deg about Y -axis, and then 30 deg about Z-axis.

7. Constant length vector.

Show that the length of a vector will not change by rotation.¯̄
Gr
¯̄
=
¯̄
GRB

Br
¯̄

Show that the distance between two body points will not change by
rotation. ¯̄

Bp1 − Bp2
¯̄
=
¯̄
GRB

Bp1 − GRB
Bp2

¯̄
8. Repeated global rotations.

Rotate BrP = [2, 2, 3]T , 60 deg about X-axis, followed by 30 deg
about Z-axis. Then, repeat the sequence of rotations for 60 deg about
X-axis, followed by 30 deg about Z-axis. After how many rotations
will point P be back to its initial global position?

9. F Repeated global rotations.

How many rotations of α = π/mdeg about X-axis, followed by β =
π/ndeg about Z-axis are needed to bring a body point to its initial
global position, if m,n ∈ N?

10. Triple global rotations.

Verify the equations in Appendix A.

11. F Special triple rotation.

Assume that the first triple rotation in Appendix A brings a body
point back to its initial global position. What are the angles α 6= 0,
β 6= 0, and γ 6= 0?

12. F Combination of triple rotations.

Any triple rotation in Appendix A can move a body point to its new
global position. Assume α1, β1, and γ1 for the case 1−QX,γ1QY,β1QZ,α1

are given. What can α2, β2, and γ2 be (in terms of α1, β1, and γ1)
to get the same global position using the case 2−QY,γ2QZ,β2QX,α2?

13. Global roll-pitch-yaw rotation matrix.

Calculate the global and local roll-pitch-yaw rotation matrices Q and
A for 30 deg rotation about the principal axes. Do the matrices trans-
pose each other? Calculate the local rotation matrix A by rotation
about z then y then x. Is the transpose of the new matrix A transpose
of the global roll-pitch-yaw matrix?
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14. Global roll-pitch-yaw rotation angles.

Calculate the role, pitch, and yaw angles for the following rotation
matrix:

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
15. F Back to the initial orientation and Appendix A.

Assume we turn a rigid body B using the first set of Appendix A.
How can we turn it back to its initial orientation by applying

(a) The first set of Appendix A,

(b) The second set of Appendix A,

(c) The third set of Appendix A.

(d) F Assume that we have turned a rigid body B by α1 = 30deg,
β1 = 30deg, γ1 = 30deg using the first set of Appendix A. We
want to turn B back to its original orientation. Which one of
the second or third set of Appendix A does it faster? Let us
assume that the fastest set is the one with minimum sum of
s = α2 + β2 + γ2.

16. F Back to the original orientation and Appendix B.

Assume we turn a rigid body B using the first set of Appendix A.
How can we turn it back to its initial orientation by applying

(a) The first set of Appendix B,

(b) The second set of Appendix B,

(c) The third set of Appendix B.

(d) F Assume that we have turned a rigid body B by α = 30deg,
β = 30deg, γ = 30deg using the first set of Appendix A. We
want to turn B back to its original orientation. Which one of
the first, second, or third set of Appendix B does it faster? Let
us assume that the fastest set is the one with minimum sum of
s = ϕ+ θ + ψ.

17. Two local rotations.

Find the global coordinates of a body point at BrP = [2, 2, 3]T after

(a) A rotation of 60 deg about x-axis followed by 60 deg about z-
axis,

(b) A rotation of 60 deg about z-axis followed by 60 deg about x-
axis,



2. Rotation Kinematics 85

(c) A rotation of 60 deg about z-axis followed by 60 deg about x-
axis, and a rotation of 60 deg about z-axis.

18. Local rotation of a cube.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about x-axis.

(b) Coordinates of the corners after rotation of 30 deg about y-axis.

(c) Coordinates of the corners after rotation of 30 deg about z-axis.

(d) Coordinates of the corners after rotation of 30 deg about x-axis,
then 30 deg about y-axis, and then 30 deg about z-axis.

19. Global and local rotation of a cube.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Determine,

(a) Coordinates of the corners after rotation of 30 deg about x-axis
followed by rotation of 30 deg about X-axis.

(b) Coordinates of the corners after rotation of 30 deg about y-axis
followed by rotation of 30 deg about X-axis.

(c) Coordinates of the corners after rotation of 30 deg about z-axis
followed by rotation of 30 deg about X-axis.

(d) Coordinates of the corners after rotation of 30 deg about x-axis,
then 30 deg about X-axis, and then 30 deg about x-axis.

(e) Coordinates of the corners after rotation of 30 deg about x-axis,
then 30 deg about Y -axis, and then 30 deg about z-axis.

20. Body point, local rotation.

What is the global coordinates of a body point at BrP = [2, 2, 3]T ,
after

(a) A rotation of 60 deg about the x-axis,

(b) A rotation of 60 deg about the y-axis,

(c) A rotation of 60 deg about the z-axis.

21. Unknown rotation angle 1.

Transform BrP = [2, 2, 3]
T to GrP = [2, YP , 0]

T by a rotation about
x-axis and determine YP and the angle of rotation.
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22. Unknown rotation angle 2.

Consider a point P at BrP = [2,
√
3,
√
2]T . Determine

(a) The required principal global rotations in order X,Y,Z, to move
P to GrP = [

√
2, 2,
√
3]T ,

(b) The required principal global rotations in order Z, Y, Z, to move
P to GrP = [

√
2, 2,
√
3]T ,

(c) The required principal global rotations in order Z,X,Z, to move
P to GrP = [

√
2, 2,
√
3]T .

23. Triple local rotations.

Verify the equations in Appendix B.

24. Combination of local and global rotations.

Find the final global position of a body point at BrP = [10, 10,−10]T
after

(a) A rotation of 45 deg about the x-axis followed by 60 deg about
the Z-axis,

(b) A rotation of 45 deg about the z-axis followed by 60 deg about
the Z-axis,

(c) A rotation of 45 deg about the x-axis followed by 45 deg about
the Z-axis and 60 deg about the X-axis.

25. Combination of global and local rotations.

Find the final global position of a body point at BrP = [10, 10,−10]T
after

(a) A rotation of 45 deg about the X-axis followed by 60 deg about
the z-axis,

(b) A rotation of 45 deg about the Z-axis followed by 60 deg about
the z-axis,

(c) A rotation of 45 deg about the X-axis followed by 45 deg about
the x-axis and 60 deg about the z-axis.

26. Repeated local rotations.

Rotate BrP = [2, 2, 3]T , 60 deg about the x-axis, followed by 30 deg
about the z-axis. Then repeat the sequence of rotations for 60 deg
about the x-axis, followed by 30 deg about the z-axis. After how many
rotations will point P move back to its initial global position?
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27. F Repeated local rotations.

How many rotations of α = π/mdeg about the x-axis, followed by
β = π/ndeg about the z-axis are needed to bring a body point to its
initial global position if m,n ∈ N?

28. F Remaining rotation.

Find the result of the following sequence of rotations:

GRB = AT
y,θA

T
z,ψA

T
y,−θ

29. Angles from rotation matrix.

Find the angles ϕ, θ, and ψ if the rotation transformation matrices
of Appendix B are given.

30. Euler angles from rotation matrix.

(a) Check if the following matrix GRB is a rotation transformation.

GRB =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
(b) Find the Euler angles for GRB .

(c) Find the local roll-pitch-yaw angles for GRB.

31. Equivalent Euler angles to two rotations.

Find the Euler angles corresponding to the rotation matrices

(a) BRG = Ay,45Ax,30,

(b) BRG = Ax,45Ay,30,

(c) BRG = Ay,45Az,30.

32. Equivalent Euler angles to three rotations.

Find the Euler angles corresponding to the rotation matrix

(a) BRG = Az,60Ay,45Ax,30,

(b) BRG = Az,60Ay,45Az,30,

(c) BRG = Ax,60Ay,45Ax,30.

33. F A cube rotation and forbidden space of z < 0.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume that none of the corners is allowed to have a negative z-
components at any time.
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(a) Present a series of global principal rotations to make the line
FH parallel to z-axis.

(b) Present a series of global principal rotations to make the line
DB on the z-axis and point A in (Z, Y )-plane.

(c) Present a series of local principal rotations to make the line FH
parallel to z-axis.

(d) Present a series of local principal rotations to make the line DB
on the z-axis and point A in (Z, Y )-plane.

34. F Local and global positions, Euler angles.

Find the conditions between the Euler angles

(a) To transform GrP = [1, 1, 0]
T to BrP = [0, 1, 1]

T ,

(b) To transform GrP = [1, 1, 0]
T to BrP = [1, 0, 1]

T .

35. F Equivalent Euler angles to a triple rotations.

Find the Euler angles for the rotation matrix of the case

4−Az,ψ0Ay,θ0Ax,ϕ0

in Appendix B.

36. F Integrability of Euler frequencies.

Show that dϕ and dψ are integrable, if ϕ and ψ are first and third
Euler angles.

37. F Cardan angles for Euler angles.

(a) Find the Cardan angles for a given set of Euler angles.

(b) Find the Euler angles for a given set of Cardan angles.

38. F Cardan frequencies for Euler frequencies.

(a) Find the Euler frequencies in terms of Cardan frequencies.

(b) Find the Cardan frequencies in terms of Euler frequencies.

39. F Transformation matrix and three rotations.

Figure 2.20 illustrates the original position of a cube with a fixed
point at D and edges of length l = 1.

Assume a new orientation in which points D and F are on Z-axis
and point A is in (X,Z)-plane. Determine

(a) Transformation matrix between initial and new orientations.

(b) Euler angles to move the cube to its new orientation.
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(c) Global roll-pitch-yaw angles to move the cube to its new orien-
tation.

(d) Local roll-pitch-yaw angles to move the cube to its new orienta-
tion.

40. F Alternative maneuvers.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume a new orientation in which points D and F are on Z-axis
and point A is in (X,Z)-plane. Determine

(a) Angles for maneuver Y −X −Z as first-second-third rotations.

(b) Angles for maneuver Y −Z −X as first-second-third rotations.

(c) Angles for maneuver y − x− z as first-second-third rotations.

(d) Angles for maneuver y − z − x as first-second-third rotations.

(e) Angles for maneuver y − Z − x as first-second-third rotations.

(f) Angles for maneuver Y − z −X as first-second-third rotations.

(g) Angles for maneuver x−X − x as first-second-third rotations.

41. Elements of rotation matrix.

The elements of rotation matrix GRB are

GRB =

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ .
Find GRB if GrP1 = [0.7071,−1.2247, 1.4142]T is a point on the x-
axis, and GrP2 = [2.7803, 0.38049,−1.0607]

T is a point on the y-axis.

42. Linearly independent vectors.

A set of vectors a1, a2, · · ·, an are considered linearly independent if
the equation

k1a1 + k2a2 + · · ·+ knan = 0

in which k1, k2, · · ·, kn are unknown coefficients, has only one solution

k1 = k2 = · · · = kn = 0.

Verify that the unit vectors of a body frame B(Oxyz), expressed in
the global frame G(OXY Z), are linearly independent.

43. Product of orthogonal matrices.

A matrix R is called orthogonal if R−1 = RT where
¡
RT
¢
ij
= Rji.

Prove that the product of two orthogonal matrices is also orthogonal.
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44. Vector identity.

The formula (a+ b)2 = a2 + b2 + 2ab for scalars, is equivalent to

(a+ b)2 = a · a+ b · b+ 2a · b

for vectors. Show that this formula is equal to

(a+ b)2 = a · a+ b · b+ 2GRB a · b

if a is a vector in local frame and b is a vector in global frame.

45. Rotation as a linear operation.

Show that
R (a× b) = Ra×Rb

where R is a rotation matrix and a and b are two vectors defined in
a coordinate frame.

46. Scalar triple product.

Show that for three arbitrary vectors a, b, and c we have

a· (b× c) = (a× b) · c.

47. F Euler angles and minimization distances.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume a new orientation in which points D and F are on Z-axis
and point A is in (X,Y )-plane. Determine

(a) Transformation matrix between initial and new orientations.

(b) Euler angles to move the cube to its new orientation.

(c) Choose three non coplanar corners and determine their position
using Euler transformation matrix with unknown Euler angles.
Define the distance between the initial and final positions of the
points as d1, d2 and d3. Is it possible to determine the Euler
angles by minimizing a sum of distances objective function J =
d21 + d22 + d23?

48. F Continues rotation.

Figure 2.20 illustrates the initial position of a cube with a fixed point
at D and edges of length l = 1.

Assume that the cube is turning about x-axis with angular speed of
ω1 and at the same time it is turning about Z-axis with angular speed
of ω2. Determine the path of motion of point F . What is the path for
ω1 = ω2, ω1 = 2ω2, ω1 = 3ω2,ω1 = 4ω2?
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Orientation Kinematics
We can decompose any rotation φ of a rigid body with a fixed point O,
about a globally fixed axis û into three rotations about three given non
coplanar axes. Furthermore, the finial orientation of a rigid body after
a finite number of rotations is equivalent to a unique rotation about a
unique axis. Determination of the angle and axis is called the orientation
kinematics of rigid bodies.

X
Y

Z

O

u

x

y

z

BG

φ

θ

ϕ

FIGURE 3.1. Axis of rotation û when it is coincident with the local z-axis.

3.1 Axis-angle Rotation

Two parameters are necessary to define the direction of a line through O
and one is necessary to define the amount of rotation of a rigid body about
this line. Let the body frame B(Oxyz) rotate φ about a line indicated by
a unit vector û with direction cosines u1, u2, u3.

û = u1Î + u2Ĵ + u3K̂ (3.1)q
u21 + u22 + u23 = 1 (3.2)

This is called axis-angle representation of a rotation.

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_3,  
© Springer Science+Business Media, LLC 2010 
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A transformation matrix GRB that maps the coordinates in the lo-
cal frame B(Oxyz) to the corresponding coordinates in the global frame
G(OXY Z),

Gr = GRB
Br (3.3)

is
GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (3.4)

GRB =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(3.5)

where

versφ = versineφ = 1− cosφ = 2 sin2 φ
2

(3.6)

and ũ is the skew-symmetric matrix corresponding to the vector û.

ũ =

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ (3.7)

A matrix ũ is skew-symmetric if

ũT = −ũ. (3.8)

The transformation matrix (3.5) is the most general rotation matrix for
a local frame rotating with respect to a global frame. If the axis of rotation
(3.1) coincides with a global coordinate axis, then Equations (2.20), (2.21),
or (2.22) will be reproduced.
Given a transformation matrix GRB we can obtain the axis û and angle

φ of the rotation by:

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
(3.9)

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢

(3.10)

Proof. Interestingly, the effect of rotation φ about an axis û is equivalent
to a sequence of rotations about the axes of a local frame in which the
local frame is first rotated to bring one of its axes, say the z-axis, into
coincidence with the rotation axis û, followed by a rotation φ about that
local axis, then the reverse of the first sequence of rotations.
Figure 3.1 illustrates an axis of rotation û = u1Î+u2Ĵ+u3K̂ , the global

frame G (OXY Z), and the rotated local frame B (Oxyz) when the local
z-axis is coincident with û. Based on Figure 3.1, the local frame B (Oxyz)
undergoes a sequence of rotations ϕ about the z-axis and θ about the y-axis
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to bring the local z-axis into coincidence with the rotation axis û, followed
by rotation φ about û, and then perform the sequence backward. Therefore,
using (2.174), the rotation matrix GRB to map coordinates in local frame
to their coordinates in global frame after rotation φ about û is

GRB = BR−1G = BRT
G = Rû,φ

= [Az,−ϕAy,−θAz,φAy,θAz,ϕ]
T

= AT
z,ϕA

T
y,θA

T
z,φA

T
y,−θA

T
z,−ϕ (3.11)

but
sinϕ =

u2p
u21 + u22

cosϕ =
u1p

u21 + u22
sin θ =

p
u21 + u22 cos θ = u3

sin θ sinϕ = u2 sin θ cosϕ = u1

(3.12)

hence,

GRB = Rû,φ = (3.13)⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦ .
The matrix (3.13) can be decomposed to

Rû,φ = cosφ

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦+ (1− cosφ)
⎡⎣ u1

u2
u3

⎤⎦ £ u1 u2 u3
¤

+sinφ

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ (3.14)

to be equal to:

GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (3.15)

Equation (3.4) is called theRodriguez rotation formula (or the Euler-Lexell-
Rodriguez formula).
To show the rules (3.9) and (3.10), we expand GRB− GRT

B to determine
the axis of rotation û

GRB − GRT
B =

⎡⎣ 0 −2 (sinφ)u3 2 (sinφ)u2
2 (sinφ)u3 0 −2 (sinφ)u1
−2 (sinφ)u2 2 (sinφ)u1 0

⎤⎦
= 2 sinφ

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ = 2ũ sinφ (3.16)
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and expand tr
¡
GRB

¢
to provide the angle of rotation φ.

tr
¡
GRB

¢
= r11 + r22 + r33

= 3cosφ+ u21 (1− cosφ) + u22 (1− cosφ) + u23 (1− cosφ)
= 3 cosφ+ u21 + u22 + u23 −

¡
u21 + u22 + u23

¢
cosφ

= 2cosφ+ 1 (3.17)

The Rodriguez rotation formula is sometimes reported in literature as
the following equivalent forms:

Rû,φ = I+ (sinφ) ũ+ (versφ) ũ2 (3.18)

Rû,φ =
£
I−ûûT

¤
cosφ+ ũ sinφ+ ûûT (3.19)

Rû,φ = −ũ2 cosφ+ ũ sinφ+ ũ2 + I (3.20)

The inverse of an angle-axis rotation is:

BRG = GRT
B = Rû,−φ

= I cosφ+ ûûT versφ− ũ sinφ (3.21)

It means orientation of B in G, when B is rotated φ about û, is the same
as the orientation of G in B, when B is rotated −φ about û.
The 3×3 real orthogonal transformation matrix R is also called a rotator

and the skew symmetric matrix ũ is called a spinor. We can verify that

ũû = 0 (3.22)

I−ûûT = ũ2 (3.23)

rT ũr = 0 (3.24)

û× r = ũr = −r̃û = −r× û. (3.25)

Example 40 Axis-angle rotation when û = K̂.
If the local frame B (Oxyz) rotates about the Z-axis, then

û = K̂ (3.26)

and the transformation matrix (3.5) reduces to:

GRB =

⎡⎣ 0 versφ+ cosφ 0 versφ− 1 sinφ 0 versφ+ 0 sinφ
0 versφ+ 1 sinφ 0 versφ+ cosφ 0 versφ− 0 sinφ
0 versφ− 0 sinφ 0 versφ+ 0 sinφ 1 versφ+ cosφ

⎤⎦
=

⎡⎣ cosφ − sinφ 0
sinφ cosφ 0
0 0 1

⎤⎦ (3.27)

which is equivalent to the rotation matrix about the Z-axis of global frame
in (2.20).
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Example 41 Rotation about a rotated local axis.
If the body coordinate frame Oxyz rotates ϕdeg about the global Z-axis,

then the x-axis would be along ûx.

ûx =
GRZ,ϕ ı̂ =

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦ =
⎡⎣ cosϕ
sinϕ
0

⎤⎦ (3.28)

Rotation θ about ûx = (cosϕ) Î + (sinϕ) Ĵ is defined by Rodriguez’s
formula (3.5).

GRûx,θ =

⎡⎣ cos2 ϕ vers θ + cos θ cosϕ sinϕ vers θ sinϕ sin θ
cosϕ sinϕ vers θ sin2 ϕ vers θ + cos θ − cosϕ sin θ
− sinϕ sin θ cosϕ sin θ cos θ

⎤⎦
(3.29)

Now, rotation ϕ about the global Z-axis followed by rotation θ about the
local x-axis is transformed by

GRB = GRûx,θ
GRZ,ϕ

=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦ (3.30)

that must be equal to [Ax,θAz,ϕ]
−1 = AT

z,ϕA
T
x,θ.

Example 42 Axis and angle of rotation.
Consider a cubic rigid body with a fixed point at A and a unit length of

edges as is shown in Figure 3.2. If we turn the cube 45 deg about u

u =
£
1 1 1

¤T
(3.31)

then we can find the global coordinates of its corner using Rodriguez trans-
formation matrix.

φ =
π

4
û =

u√
3
=

⎡⎣ 0.577 35
0.577 35
0.577 35

⎤⎦ (3.32)

Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ

=

⎡⎣ 0.804 74 −0.310 62 0.505 88
0.505 88 0.804 74 −0.310 62
−0.310 62 0.505 88 0.804 74

⎤⎦ (3.33)

The local coordinates of the corners are:
BrB

BrC
BrD

BrE
BrF

BrG
BrH

x 1 1 0 0 1 1 0
y 0 1 1 0 0 1 1
z 0 0 0 1 1 1 1

(3.34)
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FIGURE 3.2. A cube with a fixed point at A.

and therefore, using Gr = Rû,φ
Br the global coordinates of the corners after

the rotation are:

GrB
GrC

GrD
GrE

GrF
GrG

GrH
X 0.804 0.495 −0.31 0.505 1.310 1 0.196
Y 0.505 1.31 0.804 −0.31 0.196 1 0.495
Z −0.31 0.196 0.505 0.804 0.495 1 1.31

(3.35)

Point G is on the axis of rotation, so its coordinate will not change. Points
B, D, F , and H are in a symmetric plane indicated by û. So, they will
move on a circle. To check this fact, we may find the mid point of BH, or
FG and see if it is on the û-axis. Let us call the mid point of the cube by
P .

BrP =
1

2

¡
BrB +

BrH
¢
=
1

2

¡
BrF +

BrD
¢
=

⎡⎣ 0.5
0.5
0.5

⎤⎦ (3.36)

GrP =
1

2

¡
GrB +

GrH
¢
=
1

2

¡
GrF +

GrD
¢
=

⎡⎣ 0.5
0.5
0.5

⎤⎦ (3.37)

Example 43 Axis and angle of a rotation matrix.
A body coordinate frame, B, undergoes three Euler rotations (ϕ, θ, ψ) =

(30, 45, 60) deg with respect to a global frame G. The rotation matrix to
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transform coordinates of B to G is

GRB = BRT
G = [Rz,ψRx,θRz,ϕ]

T
= RT

z,ϕR
T
x,θR

T
z,ψ

=

⎡⎣ 0.126 83 −0.926 78 0.353 55
0.780 33 −0.126 83 −0.612 37
0.612 37 0.353 55 0.707 11

⎤⎦ . (3.38)

The unique angle-axis of rotation for this rotation matrix can then be found
by Equations (3.9) and (3.10).

φ = cos−1
µ
1

2

¡
tr
¡
GRB

¢
− 1
¢¶

= cos−1 (−0.146 45) = 98 deg (3.39)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
=

⎡⎣ 0.0 −0.862 85 −0.130 82
0.862 85 0.0 −0.488 22
0.130 82 0.488 22 0.0

⎤⎦ (3.40)

û =

⎡⎣ 0.488 22
−0.130 82
0.862 85

⎤⎦ (3.41)

As a double check, we may verify the angle-axis rotation formula and derive
the same rotation matrix.

GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ

=

⎡⎣ 0.126 82 −0.926 77 0.353 54
0.780 32 −0.126 83 −0.612 37
0.612 36 0.353 55 0.707 09

⎤⎦ (3.42)

Example 44 Non-uniqueness of angle-axis of rotation.
The angle-axis representation of rotation is not unique. Rotation (θ, û)

is equal to rotation (−θ,−û), and (θ + 2π, û).

Example 45 F Skew-symmetric characteristic of rotation matrix.
Time derivative of the orthogonality condition of rotation matrix (2.197)

d

dt

¡
GRT

B
GRB

¢
= GṘT

B
GRB +

GRT
B
GṘB = 0 (3.43)

leads to h
GRT

B
GṘB

iT
= −GRT

B
GṘB (3.44)

showing that
h
GRT

B
GṘB

i
is a skew-symmetric matrix.

If we show the rotation matrix by its elements, GRB = [rij ], then GṘB =
[ṙij ].
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Example 46 F Angular velocity vector of a rigid body.

We show the skew-symmetric matrix
h
GRT

B
GṘB

i
by

ω̃ = GRT
B
GṘB (3.45)

then, we find the following equation for the time derivative of rotation ma-
trix

GṘB =
GRB ω̃ (3.46)

where ω is the vector of angular velocity of the frame B(Oxyz) with respect
to frame G(OXY Z), and ω̃ is its skew-symmetric matrix.

Example 47 F Differentiating a rotation matrix with respect to a para-
meter.
Suppose that a rotation matrix R is a function of a variable τ ; hence, R =

R(τ). To find the differential of R with respect to τ , we use the orthogonality
characteristic

RRT = I (3.47)

and take derivative of both sides

dR

dτ
RT +R

dRT

dτ
= 0 (3.48)

which can be rewritten in the following form,

dR

dτ
RT +

∙
dR

dτ
RT

¸T
= 0 (3.49)

showing that [dRdτ R
T ] is a skew symmetric matrix.

Example 48 F Eigenvalues and eigenvectors of GRB.
Consider a rotation matrix GRB. Applying the rotation on the axis of

rotation û cannot change its direction

GRB û = λû (3.50)

so, the transformation equation implies that¯̄
GRB − λI

¯̄
= 0. (3.51)

The characteristic equation of this determinant is

−λ3 + tr(GRB)λ
2 − tr(GRB)λ+ 1 = 0. (3.52)

Factoring the left-hand side, gives

(λ− 1)
£
λ2 − λ

¡
tr(GRB)− 1

¢
+ 1
¤
= 0 (3.53)
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and shows that λ1 = 1 is always an eigenvalue of GRB. Hence, there exist
a real vector û, such that every point on the line indicated by vector n1 = û
remains fixed and invariant under transformation GRB.
The rotation angle φ is defined by

cosφ =
1

2

¡
tr(GRB)− 1

¢
=
1

2
(r11 + r22 + r33 − 1) (3.54)

then the remaining eigenvalues are

λ2 = eiφ = cosφ+ i sinφ (3.55)

λ3 = e−iφ = cosφ− i sinφ (3.56)

and their associated eigenvectors are v and v̄, where v̄ is the complex con-
jugate of v. Since GRB is orthogonal, n1,v, and v̄ are also orthogonal. The
eigenvectors v and v̄ span a plane perpendicular to the axis of rotation n1.
A real basis for this plane can be found by using the following vectors:

n2 =
1

2
|v+ v̄| (3.57)

n3 =
i

2
|v− v̄| (3.58)

The basis n2 and n3 transform to

GRB n2 =
1

2
|λ2v+ λ3v̄| =

1

2

¯̄̄
eiφv+ eiφv

¯̄̄
= v cosφ+ v̄ sinφ (3.59)

GRB n3 =
i

2
|λ2v− λ3v̄| =

1

2

¯̄̄
eiφv− eiφv

¯̄̄
= −v cosφ+ v̄ sinφ. (3.60)

Therefore, the effect of the transformation GRB is to rotate vectors in the
plane spanned by n2 and n3 through angle φ about n1, while vectors along
n1 are invariant.

Example 49 F Final rotation formula.
The assumption to apply any rotation of a body B in a fixed frame G is

that the coordinate frames B and G should be coincident before the rotation.
We can imagine a situation in which B and G are not coincident and we
want to rotate B about a globally fixed axis Gû.
Consider a global frame G and a body frame B0 at a non-coincident

configuration. The body frame is supposed to turn φ about an axis Gû from
its current position at B0. Reminding the axis of rotation û is always a
fixed axis in G, we may drop the superscript G from Gû for simplicity.

û = Gû = u1Î + u2Ĵ + u3K̂ (3.61)
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u21 + u22 + u23 = 1 (3.62)

We can always assume that the body B has come to the position B0, from
a coincident configuration with G, by a rotation α about z0 followed by a
rotation β about x0 and then a rotation γ about z0.
Consider the body frame B at the coincident position with B0. When we

apply a sequence of rotations ϕ about the z-axis and θ about the y-axis
on the body frame, the local z-axis will coincide with the rotation axis Gû.
Let us imagine B at this time and indicate it by B1. Then we apply the
rotation φ about z ≡ û, and perform the sequence of rotations −θ about the
y-axis and −ϕ about the z-axis. The resultant of this maneuver would be a
rotation φ of B about û, starting from B0.
The initial relative orientation of the body must be known, therefore, the

transformation GR0 between B0 and G is a given matrix.

GR0 = [bij ] =

⎡⎣ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤⎦ (3.63)

Having GR0, we can determine the angles α, β, and γ.

GR0 = Rz0,γ Rx0,β Rz0,α (3.64)

=

⎡⎣ cαcγ − cβsαsγ cγsα+ cαcβsγ sβsγ
−cαsγ − cβcγsα cαcβcγ − sαsγ cγsβ

sαsβ −cαsβ cβ

⎤⎦

α = − arctan b31
b32

(3.65)

β = arccos b33 (3.66)

γ = arctan
b13
b23

(3.67)

The transformation matrix between B0 and B comes from Rodriguez for-
mula. However, Gû must be expressed in B0 to use the Rodriguez formula.

0û = GRT
0

Gû = GRT
0 û (3.68)

0RB = I cosφ+ 0û 0ûT versφ+ 0ũ sinφ

= I cosφ+
¡
GRT

0 û
¢ ¡

GRT
0 û

¢T
versφ+ GRT

0 ũ GR0 sinφ

= I cosφ+ GRT
0 û ûT GR0 versφ+

GRT
0 ũ GR0 sinφ (3.69)

The transformation matrix GRB between the final position of the body
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and global frame would be:

GRB = GR0
0RB

= GR0
£
I cosφ+ GRT

0 û ûT GR0 versφ+
GRT

0 ũ GR0 sinφ
¤

= GR0 cosφ+
£
û ûT

¤
GR0 versφ+ ũGR0 sinφ

= GRû,φ
GR0 (3.70)

We call this equation the final rotation formula. It determines the trans-
formation matrix between a body frame B and the global frame G after the
rotation φ of B about û = Gû, starting from a position B0 6= G with
transformation matrix GR0.
As an example, consider a body that is rotated 30 deg about the Z axis

and is at B0.

GR0 =

⎡⎢⎢⎣
cos

π

6
− sin π

6
0

sin
π

6
cos

π

6
0

0 0 1

⎤⎥⎥⎦ ≈
⎡⎣ 0.866 −0.5 0

0.5 0.866 0
0 0 1

⎤⎦ (3.71)

The body is then supposed to turn 90 deg about Gû.

φ =
π

2
Gû = Î (3.72)

Therefore,

GRB =

⎛⎝⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ cos π
2
+

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ GR0 sin
π

2

+

⎡⎣ 1 0 0
0 0 0
0 0 0

⎤⎦³1− cos π
2

´⎞⎠⎡⎣ 0.866 −0.5 0
0.5 0.866 0
0 0 1

⎤⎦
=

⎡⎣ 0.866 −0.5 0
0 0 −1
0.5 0.866 0

⎤⎦ (3.73)

A body point at Br = 2ı̂ will be seen at:

Gr = GRB
Br (3.74)

=

⎡⎣ 0.866 −0.5 0
0 0 −1
0.5 0.866 0

⎤⎦⎡⎣ 2
0
0

⎤⎦ =
⎡⎣ 1.732

0
1

⎤⎦
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Example 50 F Rotation of a rotated body.
A rigid body B has already turned 30 deg about Y -axis. We need to turn

the body 45 deg about û.

û = Gû =
1√
3
Î +

1√
3
Ĵ +

1√
3
K̂ (3.75)

Because of the first rotation, we have:

GR0 =

⎡⎢⎢⎣
cos

π

6
0 sin

π

6
0 1 0

− sin π
6

0 cos
π

6

⎤⎥⎥⎦ =
⎡⎣ 0.866 0 0.5

0 1 0
−0.5 0 0.866

⎤⎦ (3.76)

Using the final rotation formula (3.70), we are able to determine the re-
quired rotation transformation matrix.

GRû,φ = I cosφ+
£
û ûT

¤
versφ+ ũ sinφ

=

⎡⎣ 0.804 74 −0.310 62 0.505 88
0.505 88 0.804 74 −0.310 62
−0.310 62 0.505 88 0.804 74

⎤⎦ (3.77)

GRB = GRû,φ
GR0

=

⎡⎣ 0.443 99 −0.310 62 0.840 47
0.593 41 0.804 74 −1. 606 5× 10−2
−0.671 37 0.505 88 0.541 62

⎤⎦ (3.78)

3.2 F Euler Parameters

Assume that φ is the angle of rotation of a local frame B(Oxyz) about
û = u1Î + u2Ĵ + u3K̂ relative to a global frame G(OXY Z). The existence
of such an axis of rotation is the analytical representation of the Euler’s
theorem about rigid body rotation: the most general displacement of a rigid
body with one point fixed is a rotation about some axis.
To find the axis and angle of rotation we introduce the Euler parameters

e0, e1, e2, e3 such that e0 is a scalar and e1, e2, e3 are components of a vector
e,

e0 = cos
φ

2
(3.79)

e = e1Î + e2Ĵ + e3K̂ = û sin
φ

2
(3.80)

and,
e21 + e22 + e23 + e20 = e20 + e

T e = 1. (3.81)
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Then, the transformation matrix GRB to satisfy the equation Gr = GRB
Br,

can be derived utilizing the Euler parameters

GRB = Rû,φ =
¡
e20 − e2

¢
I+ 2e eT + 2e0ẽ (3.82)

=

⎡⎣ e20 + e21 − e22 − e23 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)
2 (e0e3 + e1e2) e20 − e21 + e22 − e23 2 (e2e3 − e0e1)
2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e20 − e21 − e22 + e23

⎤⎦
where ẽ is the skew-symmetric matrix corresponding to e defined below.

ẽ =

⎡⎣ 0 −e3 e2
e3 0 −e1
−e2 e1 0

⎤⎦ (3.83)

Given a transformation matrix GRB we may obtain Euler parameters by:

e20 =
1

4

¡
tr
¡
GRB

¢
+ 1
¢

(3.84)

ẽ =
1

4e0

¡
GRB − GRT

B

¢
(3.85)

and determine the angle of rotation φ and the axis of rotation û.

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢

(3.86)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
(3.87)

Euler parameters provide a well-suited, redundant, and non-singular ro-
tation description for arbitrary and large rotations.

Proof. Figure 3.3 depicts a point P of a rigid body with position vector
r, and the unit vector û along the axis of rotation ON fixed in the global
frame. The point moves to P 0 with position vector r0 after an active rotation
φ about û. To obtain the relationship between r and r0, we express r0 by
the following vector equation:

r0 =
−−→
ON +

−−→
NQ+

−−→
QP 0 (3.88)

By investigating Figure 3.3 we may describe Equation (3.88) utilizing r,
r0, û, and φ.

r0 = (r · û) û+ û× (r× û) cosφ− (r×û) sinφ
= (r · û) û+ [r− (r · û) û] cosφ+ (û× r) sinφ (3.89)

Rearranging Equation (3.89) leads to a new form of the Rodriguez rotation
formula

r0 = r cosφ+ (1− cosφ) (û · r) û+ (û× r) sinφ. (3.90)
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FIGURE 3.3. Axis and angle of rotation.

Using the Euler parameters in (3.79) and (3.80), along with the following
trigonometric relations

cosφ = 2cos2
φ

2
− 1 (3.91)

sinφ = 2 sin
φ

2
cos

φ

2
(3.92)

1− cosφ = 2 sin2
φ

2
(3.93)

converts the Rodriguez formula (3.90) to a more useful form,

r0 = r
¡
2e20 − 1

¢
+ 2e (e · r) + 2e0 (e× r) . (3.94)

Using a more compact form and defining new notations for r0 = Gr and
r = Br

Gr =
¡
e20 − e2

¢
Br+ 2e

¡
eT Br

¢
+ 2e0

¡
ẽBr

¢
(3.95)

allows us to factor out the position vector Br and extract the Euler para-
meter transformation matrix GRB

GRB =
¡
e20 − e2

¢
I+ 2e eT + 2e0ẽ (3.96)

where
Gr =GRB

Br = Rû,φ
Br. (3.97)

To show the equations of the angle of rotation φ and the axis of rotation
û for a given transformation matrix GRB, we calculate the trace of GRB

to find e0 and φ
tr
¡
GRB

¢
= 4e20 − 1 = 2 cosφ+ 1 (3.98)
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and calculate GRB − GRT
B to find e and û.

GRB − GRT
B =

⎡⎣ 0 −4e0e3 4e0e2
4e0e3 0 −4e0e1
−4e0e2 4e0e1 0

⎤⎦
= 2 sinφ

⎡⎣ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎤⎦ (3.99)

ẽ =
1

4e0

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ (3.100)

û =
1

2 sinφ

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ (3.101)

Example 51 F Axis-angle rotation of GRB.
Euler parameters for rotation φ = 30deg about û =

³
Î + Ĵ + K̂

´
/
√
3

are

e0 = cos
30

2
= 0.966 (3.102)

e = û sin
φ

2
= e1Î + e2Ĵ + e3K̂ = 0.149

³
Î + Ĵ + K̂

´
(3.103)

therefore, the corresponding transformation matrix GRB is:

GRB =

⎡⎣ 0.91 −0.244 0.333
0.333 0.91 −0.244
−0.244 0.333 0.91

⎤⎦ (3.104)

Example 52 F Euler parameters and Euler angles relationship.
Comparing the Euler angles rotation matrix (2.106) and the Euler para-

meter transformation matrix (3.82) we can determine the following rela-
tionships between Euler angles and Euler parameters

e0 = cos
θ

2
cos

ψ + ϕ

2
(3.105)

e1 = sin
θ

2
cos

ψ − ϕ

2
(3.106)

e2 = sin
θ

2
sin

ψ − ϕ

2
(3.107)

e3 = cos
θ

2
sin

ψ + ϕ

2
(3.108)
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or

ϕ = cos−1
2 (e2e3 + e0e1)

sin θ
(3.109)

θ = cos−1
£
2
¡
e20 + e23

¢
− 1
¤

(3.110)

ψ = cos−1
−2 (e2e3 − e0e1)

sin θ
. (3.111)

Example 53 F Rotation matrix for angel of rotation φ = kπ.
When the angle of rotation is φ = kπ, k = ±1,±3, ..., then e0 = 0.

Therefore, the Euler parameter transformation matrix (3.82) becomes

GRB = 2

⎡⎣ e21 − 1
2 e1e2 e1e3

e1e2 e22 − 1
2 e2e3

e1e3 e2e3 e23 − 1
2

⎤⎦ (3.112)

which is a symmetric matrix and indicates that rotation φ = kπ, and φ =
−kπ are equivalent.

Example 54 F Vector of infinitesimal rotation.
Consider the Rodriguez rotation formula (3.90) for a differential rotation

dφ
r0 = r+ (û× r) dφ. (3.113)

In this case the difference between r0 and r is also very small,

dr = r0 − r = dφ û× r (3.114)

and hence, a differential rotation dφ about an axis indicated by the unit
vector û is a vector along û with magnitude dφ. Dividing both sides by dt
leads to

ṙ = ω × r (3.115)

which represents the global velocity vector of any point in a rigid body ro-
tating about û.

Example 55 F Exponential form of rotation.
Consider a point P in the body frame B with a position vector r. If the

rigid body has an angular velocity ω, then the velocity of P in the global
coordinate frame is

ṙ = ω × r = ω̃r. (3.116)

This is a first-order linear differential equation that may be integrated to
give

r(t) = eω̃tr(0) (3.117)

where r(0) is the initial position vector of P , and eω̃t is a matrix exponential

eω̃t = I+ ω̃t+
(ω̃t)2

2!
+
(ω̃t)3

3!
+ · · · (3.118)
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The angular velocity ω, has a magnitude ω and direction indicated by a
unit vector û. Therefore,

ω = ωû (3.119)

ω̃ = ωũ (3.120)

ω̃t = ωtũ = φũ (3.121)

and hence

eω̃t = eφũ (3.122)

= I+

µ
φ− φ3

3!
+

φ5

5!
− · · ·

¶
ũ+

µ
φ2

2!
− φ4

4!
+

φ6

6!
· · ·
¶
ũ2

or equivalently
eφũ = I+ ũ sinφ+ ũ2 (1− cosφ) . (3.123)

It is an alternative form of the Rodriguez formula showing that eφũ is the
rotation transformation to map Br = r(0) to Gr = r(t).

Example 56 F Rotational characteristic of eφũ.
To show that eφũ ∈ S, where S is the set of rotation matrices

S =
©
R ∈ R3×3 : RRT = I, |R| = 1

ª
(3.124)

we have to show that R = eφũ has the orthogonality property RTR = I and
its determinant is |R| = 1. The orthogonality can be verified by considering£

eφũ
¤−1

= e−φũ = eφũ
T

=
£
eφũ
¤T

. (3.125)

Thus R−1 = RT and consequently RRT = I. From orthogonality, it follows
that |R| = ±1, and from continuity of exponential function, it follows that¯̄
e0
¯̄
= 1. Therefore, |R| = 1.

Example 57 F eφũ is equivalent to the rotation matrix GRB.
Expanding

eφũ = I+ ũ sinφ+ ũ2 (1− cosφ) (3.126)

gives

eφũ =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(3.127)

which is equal to the axis-angle Equation (3.5), and therefore,

eφũ = Rû,φ =
GRB

= I cosφ+ ûûT versφ+ ũ sinφ. (3.128)
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FIGURE 3.4. Illustration of a rotation of a rigid body to derive a new form of
the Rodriguez rotation formula in Example 58.

Example 58 F New form of Rodriguez rotation formula.
Considering Figure 3.4 we may write

cos
φ

2

¯̄̄−−−→
MP 0

¯̄̄
= sin

φ

2

¯̄̄−−→
NM

¯̄̄
(3.129)¯̄̄−−→

NM
¯̄̄−−−→
MP 0 =

¯̄̄−−−→
MP 0

¯̄̄
û×−−→NM (3.130)

to find µ
cos

φ

2

¶−−−→
MP 0 =

µ
sin

φ

2

¶
û×−−→NM. (3.131)

Now using the following equalities

2
−−−→
MP 0 =

−−→
NP 0 −−−→NP (3.132)

2
−−→
NM =

−−→
NP 0 +

−−→
NP (3.133)

−−→
NP 0 −−−→NP = r0 − r (3.134)

û×
³−−→
NP 0 +

−−→
NP

´
= û× (r0 + r) (3.135)

we can write an alternative form of the Rodriguez rotation formula

cos
φ

2
(r0 − r) = sin φ

2
û× (r0 + r) (3.136)

or

(r0 − r) = tan φ
2
û× (r0 + r) . (3.137)
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Example 59 F Rodriguez vector.
The vector

w = tan
φ

2
û (3.138)

is called the Rodriguez vector. It can be seen that the Euler parameters are
related to this vector according to

w =
e

e0
(3.139)

and

e0 =
1√

1 +wTw
=

1√
1 +w2

(3.140)

ei =
wi√

1 +wTw
=

wi√
1 +w2

i = 1, 2, 3. (3.141)

The Rodriguez formula (3.82) can be converted to a new form based on
Rodriguez vector

GRB = Rû,φ =
¡
e20 − e2

¢
I+ 2e eT + 2e0ẽ

=
1

1 +wTw

¡¡
1−wTw

¢
I+ 2wwT + 2w̃

¢
. (3.142)

The combination of two rotations, w0 and w00, is equivalent to a single
rotation w, where

w =
w00 +w0 −w00 ×w0

1−w00 ·w0 . (3.143)

Example 60 F Elements of GRB.
Introducing Levi-Civita density or permutation symbol

ijk =

⎧⎨⎩ 1 ijk = 123 = 231 = 312
0 i = j, j = k, k = i
−1 ijk = 321 = 213 = 132

(3.144)

=
1

2
(i− j)(j − k)(k − i) i, j, k = 1, 2, 3 (3.145)

and recalling Kronecker delta (2.201)

δij = 1 if i = j, and δij = 0 if i 6= j (3.146)

we can redefine the elements of the Rodriguez rotation matrix by

rij = δij cosφ+ (1− cosφ)uiuj + ijkuk sinφ. (3.147)
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3.3 F Determination of Euler Parameters

Assume a transformation matrix is given.

GRB =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (3.148)

It is then possible to find the Euler parameters e0, e1, e2, e3 and indicate
the axis and angle of rotation by utilizing one of the following four sets of
equations:

e0 = ±1
2

√
1 + r11 + r22 + r33

e1 =
1

4

r32 − r23
e0

e2 =
1

4

r13 − r31
e0

e3 =
1

4

r21 − r12
e0

(3.149)

e1 = ±1
2

√
1 + r11 − r22 − r33

e2 =
1

4

r21 + r12
e1

e3 =
1

4

r31 + r13
e1

e0 =
1

4

r32 + r23
e1

(3.150)

e2 = ±1
2

√
1− r11 + r22 − r33

e3 =
1

4

r32 + r23
e2

e0 =
1

4

r13 − r31
e2

e1 =
1

4

r21 + r12
e2

(3.151)

e3 = ±1
2

√
1− r11 − r22 + r33

e0 =
1

4

r21 − r12
e3

e1 =
1

4

r31 + r13
e3

e2 =
1

4

r32 + r23
e3

(3.152)

Although Equations (3.149)-(3.152) present four different sets of solutions,
their resulting Euler parameters e0, e1, e2, e3 are identical. Therefore, nu-
merical inaccuracies can be minimized by using the set with maximum
divisor.
The plus and minus sign indicates that rotation φ about û is equivalent

to rotation −φ about −û.
Proof. Comparing (3.82) and (3.148) shows that for the first set of Equa-
tions (3.149), e0 can be found by summing the diagonal elements r11, r22,
and r33 to get tr

¡
GRB

¢
= 4e20−1. To find e1, e2, and e3 we need to simplify

r32 − r23, r13 − r31, and r21 − r12, respectively.
The other sets of solutions (3.150)-(3.152) can also be found by compar-

ison.
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Example 61 F Euler parameters from GRB.
A transformation matrix is given.

GRB =

⎡⎣ 0.5449 −0.5549 0.6285
0.3111 0.8299 0.4629
−0.7785 −0.0567 0.6249

⎤⎦ (3.153)

To calculate the corresponding Euler parameters, we use Equation (3.149)
and find

tr
¡
GRB

¢
= r11 + r22 + r33

= 0.5449 + 0.8299 + 0.6249 = 1.9997 (3.154)

therefore,

e0 =
q
(tr (GRB) + 1) /4 = 0.866 (3.155)

and
e1 = −0.15 e2 = 0.406 e3 = 0.25. (3.156)

Example 62 F Euler parameters when we have one of them.
Consider the Euler parameter rotation matrix (3.82) corresponding to

rotation φ about an axis indicated by a unit vector û. The off diagonal
elements of GRB

e0e1 =
1

4
(r32 − r23)

e0e2 =
1

4
(r13 − r31)

e0e3 =
1

4
(r21 − r12)

e1e2 =
1

4
(r12 + r21)

e1e3 =
1

4
(r13 + r31)

e2e3 =
1

4
(r23 + r32) (3.157)

can be utilized to find ei, i = 0, 1, 2, 3 if we have one of them.

Example 63 F Euler parameters by the Stanley method.
Following an effective method developed by Stanley, we may first find the

four e2i

e20 =
1

2

¡
1 + tr

¡
GRB

¢¢
e21 =

1

4

¡
1 + 2r11 − tr

¡
GRB

¢¢
e22 =

1

4

¡
1 + 2r22 − tr

¡
GRB

¢¢
e23 =

1

4

¡
1 + 2r33 − tr

¡
GRB

¢¢
(3.158)
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and take the positive square root of the largest e2i . Then the other ei are
found by dividing the appropriate three of the six equations (3.157) by the
largest ei.

3.4 F Quaternions

A global quaternion q is defined as a quantity

q = q0 + q = q0 + q1Î + q2Ĵ + q3K̂ (3.159)

where q0 is a scalar and q is a vector. A quaternion can also be shown in
a flag form

q = q0 + q1i+ q2j + q3k (3.160)

where, i, j, k are flags and defined as follows

i2 = j2 = k2 = ijk = −1 (3.161)

ij = −ji = k (3.162)

jk = −kj = i (3.163)

ki = −ik = j. (3.164)

Addition of two quaternions is a quaternion

q + p = (q0 + q) + (p0 + p)

= q0 + q1i+ q2j + q3k + p0 + p1i+ p2j + p3k

= (q0 + p0) + (q1 + p1) i+ (q2 + p2) j + (q3 + p3) k (3.165)

and multiplication of two quaternions is a quaternion defined by

qp = (q0 + q) (p0 + p)

= q0p0 + q0p+ p0q+ qp

= q0p0 − q · p+ q0p+ p0q+ q× p
= (q0p0 − q1p1 − q2p2 − q3p3)

+ (p0q1 + p1q0 − p2q3 + p3q2) i

+(p0q2 + q0p2 + p1q3 − q1p3) j

+(p0q3 − p1q2 + q0p3 + p2q1) k (3.166)

where qp is cross product minus dot product of q and p

qp = q× p− q · p. (3.167)

Quaternion addition is associative and commutative. Quaternion multipli-
cation is not commutative, however it is associative, and distributes over
addition.

(pq) r = p (qr) (3.168)

(p+ q) r = pr + qr (3.169)
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A quaternion q has a conjugate q∗.

q∗ = q0 − q = q0 − q1Î − q2Ĵ − q3K̂ (3.170)

Therefore,

qq∗ = (q0 + q) (q0 − q)
= q0q0 + q0q− p0q− qq
= q0q0 + q · q− q× q
= q20 + q21 + q22 + q23 (3.171)

and then,

|q| =
√
qq∗ =

q
q20 + q21 + q22 + q23 (3.172)

q−1 =
1

q
=

q∗

|q|2
. (3.173)

If q is a unit quaternion, |q| = 1, then q−1 = q∗.
Let e (φ, û) be a unit quaternion, |e (φ, û)| = 1,

e (φ, û) = e0 + e = e0 + e1Î + e2Ĵ + e3K̂ (3.174)

= cos
φ

2
+ sin

φ

2
û

and r = 0+r be a quaternion corresponding to a pure vector r. The vector
r after a rotation φ about û would be

r0 = e (φ, û) r e∗ (φ, û) (3.175)

equivalent to
Gr = e (φ, û) Br e∗ (φ, û) . (3.176)

Therefore, a rotation Rû,φ can be defined by a corresponding quaternion
e (φ, û) = cos φ2 +sin

φ
2 û , and consequently, two consecutive rotations R =

R2R1 are defined by e (φ, û) = e2 (φ2, û2) e1 (φ1, û1).
Note that e1 (φ1, û1), e2 (φ2, û2), · · · are quaternion while e0, e1, e2, e3

are Euler parameters.

Proof. Employing the quaternion multiplication (3.166) we can write

re∗ = e0r+ r× e∗ − r · e∗

= e0

⎡⎣ r1
r2
r3

⎤⎦+
⎡⎣ r1

r2
r3

⎤⎦×
⎡⎣ −e1−e2
−e3

⎤⎦+ (e1r1 + e2r2 + e3r3)

= (e1r1 + e2r2 + e3r3) +

⎡⎣ e0r1 + e2r3 − e3r2
e0r2 − e1r3 + e3r1
e0r3 + e1r2 − e2r1

⎤⎦ (3.177)
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and therefore,

ere∗ = e0 (e1r1 + e2r2 + e3r3)−

⎡⎣ e1
e2
e3

⎤⎦ ·
⎡⎣ e0r1 + e2r3 − e3r2

e0r2 − e1r3 + e3r1
e0r3 + e1r2 − e2r1

⎤⎦
+e0

⎡⎣ e0r1 + e2r3 − e3r2
e0r2 − e1r3 + e3r1
e0r3 + e1r2 − e2r1

⎤⎦+ (e1r1 + e2r2 + e3r3)

⎡⎣ e1
e2
e3

⎤⎦
+

⎡⎣ e1
e2
e3

⎤⎦×
⎡⎣ e0r1 + e2r3 − e3r2

e0r2 − e1r3 + e3r1
e0r3 + e1r2 − e2r1

⎤⎦
= GRB

⎡⎣ r1
r2
r3

⎤⎦ (3.178)

which GRB is equivalent to the Euler parameter transformation matrix
(3.82).

GRB =

⎡⎣ e20 + e21 − e22 − e23 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)
2 (e0e3 + e1e2) e20 − e21 + e22 − e23 2 (e2e3 − e0e1)
2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e20 − e21 − e22 + e23

⎤⎦
(3.179)

Using a similar method we can also show that r = e∗ (φ, û) r0 e (φ, û) is
the inverse transformation of r0 = e (φ, û) r e∗ (φ, û), which is equivalent
to:

Br = e∗ (φ, û) Gr e (φ, û) (3.180)

Now assume e1 (φ1, û1) and e2 (φ2, û2) are the quaternions corresponding
to the rotation matrix Rû1,φ1 and Rû2,φ2 respectively. The first rotation
maps B1r to B2r , and the second rotation maps B2r to B3r. Therefore,

B2r = e1 (φ1, û1)
B1r e∗1 (φ1, û1) (3.181)

B3r = e2 (φ2, û2)
B2r e∗2 (φ2, û2) (3.182)

which implies
B3r = e2 (φ2, û2) e1 (φ1, û1)

B1r e∗1 (φ1, û1) e
∗
2 (φ2, û2) (3.183)

showing that
e (φ, û) = e2 (φ2, û2) e1 (φ1, û1) (3.184)

is the quaternion corresponding to R = R2R1.

Example 64 F Rodriguez rotation formula, using quaternion.
We may simplify the Equation (3.178) to have a vectorial form similar

to the Rodriguez formula.

r0 = e (φ, û) r e∗ (φ, û)

=
¡
e20 − e · e

¢
r+ 2e0 (e× r) + 2e (e · r) (3.185)
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Example 65 F Composition of rotations using quaternions.
Using quaternions to represent rotations makes it easy to calculate the

composition of rotations. If the quaternion e1 (φ1, û1) represents the rota-
tion Rû1,φ1 and e2 (φ2, û2) represents Rû2,φ2 , then the product

e2 (φ2, û2) e1 (φ1, û1) (3.186)

represents Rû2,φ2Rû1,φ1 because:

Rû2,φ2Rû1,φ1r = e2 (φ2, û2) (e1 (φ1, û1) r e
∗
1 (φ1, û1)) e

∗
2 (φ2, û2)

= (e2 (φ2, û2) e1 (φ1, û1)) r (e
∗
1 (φ1, û1) e

∗
2 (φ2, û2))

= (e2 (φ2, û2) e1 (φ1, û1)) r (e1 (φ1, û1) e2 (φ2, û2))
∗ (3.187)

Example 66 F Principal global rotation matrices.
The associated quaternion to the principal global rotation matrices RZ,α,

RY,β, and RX,γ are:

e
³
α, K̂

´
=

⎛⎝cos α
2
, sin

α

2

⎡⎣ 0
0
1

⎤⎦⎞⎠ (3.188)

e
³
β, Ĵ

´
=

⎛⎝cos β
2
, sin

β

2

⎡⎣ 0
1
0

⎤⎦⎞⎠ (3.189)

e
³
γ, Î

´
=

⎛⎝cos γ
2
, sin

γ

2

⎡⎣ 1
0
0

⎤⎦⎞⎠ (3.190)

Employing (3.188)-(3.190), we can derive the principal transformation
matrices. As an example, let us find RZ,α.

RZ,α = GRB =
¡
e20 − e2

¢
I+ 2e eT + 2e0ẽ

=
³
cos2

α

2
− sin2 α

2

´
I+ 2K̂K̂T + 2 cos

α

2
sin

α

2
K̃

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (3.191)

Example 67 F Inner automorphism property of e (φ, û).
Since e (φ, û) is a unit quaternion,

e∗ (φ, û) = e−1 (φ, û) (3.192)

we may write
Gr = e (φ, û) Br e−1 (φ, û) . (3.193)

In abstract algebra, a mapping of the form r = q r q−1, computed by multi-
plying on the left by an element and on the right by its inverse, is called an
inner automorphism. Thus, Gr is the inner automorphism of Br based
on the rotation quaternion e (φ, û).
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3.5 F Spinors and Rotators

Finite rotations can be expressed in two general ways: using 3 × 3 real
orthogonal matrices R called rotator, which is an abbreviation for rotation
tensor ; and using 3×3 real skew-symmetric matrices ũ called spinor, which
is an abbreviation for spin tensor.
A rotator is a linear operator that maps Br to Gr when a rotation axis

û and a rotation angle φ, are given.

Gr = GRB
Br (3.194)

The spinor ũ is corresponding to the vector û, which, along with φ, can
be utilized to describe a rotation.

GRB =
¡
I cosφ+ûûT versφ+ ũ sinφ

¢
(3.195)

For the moment let’s forget |û| =
p
u21 + u22 + u23 = 1 and develop the

theory for non-unit vectors indicting the rotation axis. The square of ũ,
computed through direct multiplication, is

ũ2 =

⎡⎣ −u22 − u23 u1u2 u1u3
u1u2 −u21 − u23 u2u3
u1u3 u2u3 −u21 − u22

⎤⎦
= −ũ ũT = −ũT ũ
= ûûT − u2I. (3.196)

This is a symmetric matrix with tr[ũ2] = −2|û|2 = −2u2 = −2(u21+u22+u23)
whose eigenvalues are 0, −u2, −u2. In other words, ũ satisfies its own
characteristic equation

ũ2 = −u2I , ũ3 = −u2ũ , · · · , ũn = −u2ũn−2 , n ≥ 3. (3.197)

The odd powers of ũ are skew symmetric with distinct purely imaginary
eigenvalues, while even powers of ũ are symmetric with repeated real eigen-
values.
Spinors and rotators are functions of each other so R must be expandable

in a Taylor series of ũ.

R = I+ c1ũ+ c2ũ
2 + c3ũ

3 + · · · (3.198)

However, because of (3.197), all powers of order three or higher may be
eliminated. Therefore, R must be a linear function of I, ũ, and ũ2.

R = I+ a(λũ) + b(λũ)2 (3.199)

=

⎡⎣ −bλ2(u22 + u23) + 1 −aλu3 + bλ2u1u2 aλu2 + bλ2u1u3
aλu3 + bλ2u1u2 −bλ2(u21 + u23) + 1 −aλu1 + bλ2u2u3
−aλu2 + bλ2u1u3 aλu1 + bλ2u2u3 −bλ2(u21 + u22) + 1

⎤⎦
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where, λ is the spinor normalization factor, while a = a(φ, u) and b =
b(φ, u) are scalar functions of a rotation angle and an invariant of ũ.
Recalling u =

p
u21 + u22 + u23 = 1, Table 3.1 collects some representa-

tions of rotator R as a function of the coefficients a, b, and the spinor
λũ.

Table 3.1 - Rotator R as a function of spinors
a b λ R

sinφ sin2 φ
2 1 I+ sinφũ+ 2 sin2 φ

2 ũ
2

2 cos2 φ
2 2 cos2 φ

2 tan φ
2

I+ 2 cos2 φ
2 [tan

φ
2 ũ+ tan

2 φ
2 ũ

2]

= [I+tan φ
2 ũ][I− tan

φ
2 ũ]
−1

2 cos φ2 2 sin φ
2 I+ 2 cos φ2 sin

φ
2 ũ+ 2 sin

2 φ
2 ũ

2

1
φ sinφ

2
φ2
sin2 φ

2 φ I+ sinφũ+ 2 sin2 φ
2 ũ

2

Proof. Assuming λ = 1, we may find trR = 1+ 2 cosφ, which, because of
(3.199), is equal to,

trR = 1 + 2 cosφ = 3− 2bu2 (3.200)

and therefore,

b =
1− cosφ

u2
=
2

u2
sin2

φ

2
. (3.201)

Now the orthogonality condition

I = RTR =
¡
I− aũ+ bũ2

¢ ¡
I+ aũ+ bũ2

¢
= I+ (2b− a2)ũ2 + b2ũ4

= I+ (2b− a2 − b2u2)ũ2 (3.202)

leads to
a =

p
2b− b2u2 =

1

u
sinφ (3.203)

and therefore,

R = I+
1

u
sinφũ+

2

u2
sin2

φ

2
ũ2

= I+ sinφũ+ verφũ2. (3.204)

From a numerical viewpoint, the sine-squared form is preferred to avoid
the cancellation in computing 1 − cosφ for small φ. Replacing a and b in
(3.199) provides the explicit rotator in terms of ũ and φ

R =

⎡⎣ u21 +
¡
u22 + u23

¢
cφ 2u1u2s

2 φ
2 − u3sφ 2u1u3s

2 φ
2 + u2sφ

2u1u2s
2 φ
2 + u3sφ u22 +

¡
u23 + u21

¢
cφ 2u2u3s

2 φ
2 − u1sφ

2u1u3s
2 φ
2 − u2sφ 2u2u3s

2 φ
2 + u1sφ u23 +

¡
u21 + u22

¢
cφ

⎤⎦
(3.205)
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which is equivalent to Equation (3.13).
If λ 6= 1 but nonzero, the answers are a = 1

λu sinφ and b = 2
(λu)2 sin

2 φ
2

which do not affect R.

Example 68 F Eigenvalues of a spinor.
Consider the axis of rotation indicated by

u =

⎡⎣ 6
2
3

⎤⎦ , u = 7. (3.206)

The associated spin matrix and its square are

ũ =

⎡⎣ 0 −3 2
3 0 −6
−2 6 0

⎤⎦ (3.207)

ũ2 =

⎡⎣ −13 12 18
12 −45 6
18 6 −40

⎤⎦ (3.208)

where the eigenvalues of ũ are (0, 7i,−7i) while those of of ũ2 are (0,−49,−49).

3.6 F Problems in Representing Rotations

As is evident in this Chapter, there are a number of different methods
for representing rotations, however only a few of them are fundamentally
distinct. The parameters or coordinates required to completely describe the
orientation of a rigid body relative to some reference frames are sometimes
called attitude coordinates. There are two inherent problems in representing
rotations, both related to incontrovertible properties of rotations.

1. Rotations do not commute.

2. Spatial rotations do not topologically allow a smooth mapping in
three dimensional Euclidean space.

The non-commutativity of rotations has been reviewed and showed in
previous sections. Nonetheless, it is important to obey the order of ro-
tations, although sometimes it seems that we may change the order of
rotations and obtain the same result.
The lack of a smooth mapping in three dimensional Euclidean space

means we cannot smoothly represent every kind of rotation using one set of
three numbers. Any set of three rotational coordinates contains at least one
geometrical orientation where the coordinates are singular, and it means at
least two coordinates are undefined or not unique. The problem is similar to
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defining a coordinate system to locate a point on the Earth’s surface. Using
longitude and latitude becomes problematic at the north and south poles,
where a small displacement can produce a radical change in longitude. We
cannot find a superior system because it is not possible to smoothly wrap
a sphere with a plane. Similarly, it is not possible to smoothly wrap the
space of spatial rotations with three dimensional Euclidean space.
This is the reason why we sometimes describe rotations by using four

numbers. We may use only three-number systems and expect to see the
resulting singularities, or use four numbers, and cope with the redundancy.
The choice depends on the application and method of calculation. For com-
puter applications, the redundancy is not a problem, so most algorithms
use representations with extra numbers. However, engineers prefer to work
with the minimum set of numbers. Therefore, there is no unique and supe-
rior method for representing rotations.

3.6.1 F Rotation matrix

Rotation matrix representation, derived by determination of directional
cosines, is (for many purposes) the most useful representation method of
spatial rotations. The two reference frames G and B, having a common
origin, are defined through orthogonal right-handed sets of unit vectors
{G} = {Î , Ĵ , K̂} and {B} = {ı̂, ĵ, k̂}. The rotation or transformation matrix
between the two frames can simply be found by describing the unit vectors
of one of them in the other.

Î = (Î · ı̂)̂ı+ (Î · ĵ)ĵ+ (Î · k̂)k̂
= cos(Î , ı̂)̂ı+ cos(Î , ĵ)ĵ+ cos(Î , k̂)k̂ (3.209)

Ĵ = (Ĵ · ı̂)̂ı+ (Ĵ · ĵ)ĵ+ (Ĵ · k̂)k̂
= cos(Ĵ , ı̂)̂ı+ cos(Ĵ , ĵ)ĵ+ cos(Ĵ , k̂)k̂ (3.210)

K̂ = (K̂ · ı̂)̂ı+ (K̂ · ĵ)ĵ+ (K̂ · k̂)k̂
= cos(K̂, ı̂)̂ı+ cos(K̂, ĵ)ĵ+ cos(K̂, k̂)k̂ (3.211)

Therefore, having the rotation matrix GRB

GRB =

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦
=

⎡⎣ cos(Î , ı̂) cos(Î , ĵ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ĵ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ĵ) cos(K̂, k̂)

⎤⎦ (3.212)

would be enough to find the coordinates of a point in the reference frame
G, when its coordinates are given in the reference frame B.

Gr = GRB
Br (3.213)
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The rotation matrices convert the composition of rotations to matrix mul-
tiplication. It is simple and convenient especially when rotations are about
the global principal axes, or about the local principal axes.
Orthogonality is the most important and useful property of rotation ma-

trices, which shows that the inverse of a rotation matrix is equivalent to its
transpose, GR−1B = GRT

B . The null rotation is represented by the identity
matrix, I.
The primary disadvantage of rotation matrices is that there are so many

numbers, which often make rotation matrices hard to interpret. Numerical
errors may build up until a normalization is necessary.

3.6.2 F Angle-axis

Angle-axis representation, described by the Rodriguez formula, is a direct
result of the Euler rigid body rotation theorem. In this method a rotation
is described by the magnitude of rotation, φ, with the positive right-hand
direction about the axis directed by the unit vector, û.

GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (3.214)

Converting the angle-axis representation to matrix form is simply done by
expanding.

GRB =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(3.215)

Converting the matrix representation to angle-axis form is shown in Ex-
ample 42 using matrix manipulation. However, it is sometimes easier if we
convert the matrix to a quaternion and then convert the quaternion to
angle-axis form.
Angle-axis representation has some problems. First, the rotation axis

is indeterminate when φ = 0. Second, the angle-axis representation is a
two-to-one mapping system because

R−û,−φ = Rû,φ (3.216)

and it is redundant because for any integer k,

Rû,φ+2kπ = Rû,φ. (3.217)

However, both of these problems can be improved to some extent by re-
stricting φ to some suitable range such as [0, π] or [−π

2 ,
π
2 ]. Finally, angle-

axis representation is not efficient to find the composition of two rotations
and determine the equivalent angle-axis of rotations.
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3.6.3 F Euler angles

Euler angles are also employed to describe the rotation matrix of rigid
bodies utilizing only three numbers.

GRB = [Rz,ψRx,θRz,ϕ]
T

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ (3.218)

Euler angles and rotation matrices are not generally one-to-one, and also,
they are not convenient representations of rotations or of constructing com-
posite rotations. The angles ϕ and ψ are not distinguishable when θ → 0.
The equivalent rotation matrix is directly obtained by matrix multipli-

cation, while the inverse conversion, from rotation matrix to a set of Euler
angles, is not straightforward. It is also not applicable when sin θ = 0.
Employing (3.218) we can find the Euler angles as follows.

ϕ = − tan−1
µ
r13
r23

¶
(3.219)

θ = cos−1 (r33) (3.220)

ψ = tan−1
µ
r31
r32

¶
(3.221)

It is possible to use a more efficient method that handles all cases uni-
formly. The main idea is to work with the sum and difference of ϕ and
ψ

σ = ϕ+ ψ (3.222)

υ = ϕ− ψ (3.223)

and then,

ϕ =
σ − υ

2
(3.224)

ψ =
σ + υ

2
. (3.225)

Therefore,

r11 + r22 = cosσ(1 + cos θ) (3.226)

r11 − r22 = cos υ(1− cos θ) (3.227)

r21 − r12 = sinσ(1 + cos θ) (3.228)

r21 + r12 = sin υ(1− cos θ), (3.229)



122 3. Orientation Kinematics

which leads to

σ = tan−1
r21 − r12
r11 + r22

(3.230)

υ = tan−1
r21 + r12
r11 − r22

. (3.231)

This approach resolves the problem at sin θ = 0. At θ = 0, we can find
σ, but υ is undetermined, and at θ = π, we can find υ, but σ is undeter-
mined. The undetermined values are consequence of tan−1 00 . Besides these
singularities, both σ and υ are uniquely determined. The middle rotation
angle, θ, can also be found using tan−1 operator

θ = tan−1
µ
r13 sinϕ− r23 cosϕ

r33

¶
. (3.232)

The main advantage of Euler angles is that they use only three numbers.
They are integrable, and they provide a good visualization of spatial ro-
tation with no redundancy. Euler angles are used in dynamic analysis of
spinning bodies.
The other combinations of Euler angles as well as roll-pitch-yaw angles

have the same kind of problems, and similar advantages.

3.6.4 F Quaternion

Quaternion uses four numbers to represent a rotation according to a special
rule for addition and multiplication. Rotation quaternion is a unit quater-
nion that may be described by Euler parameters, or the axis and angle of
rotation.

e (φ, û) = e0 + e = e0 + e1 ı̂+ e2ĵ+ e3k̂

= cos
φ

2
+ sin

φ

2
û (3.233)

We can also define a 4× 4 matrix to represent a quaternion

←→q =

⎡⎢⎢⎣
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎤⎥⎥⎦ (3.234)

which provides the important orthogonality property

←→q −1 =←→q T . (3.235)

The matrix quaternion (3.234) can also be represented by

←→q =

∙
q0 −qT
q q0I3 − q̃

¸
(3.236)
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where

q̃ =

⎡⎣ 0 −q3 q2
q3 0 −q1
−q2 q1 0

⎤⎦ . (3.237)

Employing the matrix quaternion, ←→q , we can describe the quaternion
multiplication by matrix multiplication.

qp =←→q p =

⎡⎢⎢⎣
q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎤⎥⎥⎦
⎡⎢⎢⎣

p0
p1
p2
p3

⎤⎥⎥⎦ (3.238)

The matrix description of quaternions ties the quaternion manipulations
and matrix manipulations, because if p, q, and v are three quaternions and

qp = v (3.239)

then
←→q ←→p =←→v . (3.240)

Hence, quaternion representation of transformation between coordinate
frames

Gr = e (φ, û) Br e∗ (φ, û) (3.241)

can also be defined by matrix multiplication

←→
Gr =

←−−−→
e (φ, û)

←→
Br
←−−−−→
e∗ (φ, û)

=
←−−−→
e (φ, û)

←→
Br
←−−−→
e (φ, û)T . (3.242)

Proof. We can use the matrix definition of quaternions and see that

←−−−→
e (φ, û) =

⎡⎢⎢⎣
e0 −e1 −e2 −e3
e1 e0 −e3 e2
e2 e3 e0 −e1
e3 −e2 e1 e0

⎤⎥⎥⎦ (3.243)

←→
Br =

⎡⎢⎢⎣
0 −Br1 −Br2 −Br3

Br1 0 −Br3
Br2

Br2
Br3 0 −Br1

Br3 −Br2
Br1 0

⎤⎥⎥⎦ (3.244)

←−−−→
e (φ, û)T =

⎡⎢⎢⎣
e0 e1 e2 e3
−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 e2 −e1 e0

⎤⎥⎥⎦ . (3.245)
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Therefore,

←−−−→
e (φ, û)

←→
Br
←−−−→
e (φ, û)T =

⎡⎢⎢⎣
0 −Gr1 −Gr2 −Gr3

Gr1 0 −Gr3
Gr2

Gr2
Gr3 0 −Gr1

Gr3 −Gr2
Gr1 0

⎤⎥⎥⎦ (3.246)

where,

Gr1 = Br1
¡
e20 + e21 − e22 − e23

¢
+Br2 (2e1e2 − 2e0e3)
+Br3 (2e0e2 + 2e1e3) (3.247)

Gr2 = Br1 (2e0e3 + 2e1e2)

+Br2
¡
e20 − e21 + e22 − e23

¢
+Br3 (2e2e3 − 2e0e1) (3.248)

Gr3 = Br1 (2e1e3 − 2e0e2)
+Br2 (2e0e1 + 2e2e3)

+Br3
¡
e20 − e21 − e22 + e23

¢
(3.249)

which are compatible with Equation (3.178).

3.6.5 F Euler parameters

Euler parameters are the elements of rotation quaternions. Therefore, there
is a direct conversion between rotation quaternion and Euler parameters,
which in turn are related to angle-axis parameters. We can obtain the axis
and angle of rotation (φ, û), from Euler parameters or rotation quaternion
e (φ, û), by

φ = 2 tan−1
|e|
e0

(3.250)

û =
e

|e| . (3.251)

Unit quaternion provides a suitable base for describing spatial rotations,
although it needs normalization due to the error pile-up problem. In gen-
eral, in some applications quaternions offer superior computational effi-
ciency.
It is interesting to know that Euler was the first to derive Rodriguez’s

formula, while Rodriguez was the first to invent Euler parameters. In addi-
tion, Hamilton introduced quaternions, however, Gauss invented them but
never published.
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Example 69 F Taylor expansion of rotation matrix.
Assume the rotation matrix R = R(t) is a time-dependent transformation

between coordinate frames B and G. The body frame B is coincident with
G at t = 0. Therefore, R(0) = I, and we may expand the elements of R in
a Taylor series expansion

R(t) = I+R1t+
1

2!
R2t

2 +
1

3!
R3t

3 + · · · (3.252)

in which Ri, (i = 1, 2, 3, · · · ) is a constant matrix. The rotation matrix R(t)
is orthogonal for all t, hence,

RRT = I (3.253)µ
I+R1t+

1

2!
R2t

2 + · · ·
¶µ

I+RT
1 t+

1

2!
RT
2 t
2 + · · ·

¶
= I. (3.254)

The coefficient of ti, (i = 1, 2, 3, · · · ) must vanish on the left-hand side. This
gives us

R1 +RT
1 = 0 (3.255)

R2 + 2R1R
T
1 +RT

2 = 0 (3.256)

R3 + 3R2R
T
1 + 3R1R

T
2 +RT

3 = 0 (3.257)

or in general
nX
i=0

µ
n

i

¶
Rn−iR

T
i = 0 (3.258)

where
R0 = RT

0 = I. (3.259)

Equation (3.255) shows that R1 is a skew symmetric matrix, and there-
fore, R1RT

1 = −R21 = C1 is symmetric. Now the Equation (3.256)

R2 +RT
2 = −2R1RT

1 = −[R1RT
1 + [R1R

T
1 ]

T ] = 2C1 (3.260)

leads to

R2 = C1 + [C1 −RT
2 ] (3.261)

RT
2 = C1 + [C1 −R2] = C1 + [C1 −RT

2 ]
T (3.262)

that shows [C1 −RT
2 ] is skew symmetric because we must have:

[C1 −RT
2 ] + [C1 −RT

2 ]
T = 0 (3.263)

Therefore, the matrix product

[C1 −RT
2 ][C1 −RT

2 ]
T = −[C1 −RT

2 ]
2 (3.264)
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is symmetric. The next step shows that

R3 +RT
3 = −3[R1RT

2 +R2R
T
1 ] = −3[R1RT

2 + [R1R
T
2 ]

T ]

= 3[R1[R
2
1 −RT

2 ] + [R
2
1 −RT

2 ]R1] = 2C2 (3.265)

leads to

R3 = C2 +
£
C2 −RT

3

¤
(3.266)

RT
3 = C2 + [C2 −R3] = C2 +

£
C2 −RT

3

¤T
(3.267)

that shows
£
C2 −RT

3

¤
is skew symmetric because we must have£
C2 −RT

3

¤
+
£
C2 −RT

3

¤T
= 0. (3.268)

Therefore, the matrix product£
C2 −RT

3

¤ £
C2 −RT

3

¤T
= −

£
C2 −RT

3

¤2
(3.269)

is also symmetric.
Continuing this procedure shows that the expansion of a rotation matrix

R(t) around the unit matrix can be written in the form of

R(t) = I+ C1t+
1

2!

£
C1 + [C1 −RT

2 ]
¤
t2

+
1

3!

£
C2 +

£
C2 −RT

3

¤¤
t3 + · · · (3.270)

where Ci are symmetric and [Ci −RT
i+1] are skew symmetric matrices and

Ci =
1

2

£
Ri−1 +RT

1−1
¤
. (3.271)

Therefore, the expansion of an inverse rotation matrix can be written as

RT (t) = I+ C1t+
1

2!

£
C1 + [C1 −RT

2 ]
¤
t2

+
1

3!

£
C2 +

£
C2 −RT

3

¤¤
t3 + · · · (3.272)

3.7 F Composition and Decomposition of
Rotations

Rotation φ1 about û1 of a rigid body with a fixed point, followed by a
rotation φ2 about û2 can be composed to a unique rotation φ3 about û3.
In other words, when a rigid body rotates from an initial position to a
middle position B2r = B2RB1

B1r, and then rotates to a final position,
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B3r = B3RB2
B2r, the middle position can be skipped to rotate directly to

the final position B3r = B3RB1
B1r.

Proof. To show that two successive rotations of a rigid body with a fixed
point is equivalent to a single rotation, we start with the Rodriguez rotation
formula (3.137) and rewrite it as

(r0 − r) = w × (r0 + r) (3.273)

where

w = tan
φ

2
û (3.274)

is the Rodriguez vector. Rotation w1 followed by rotation w2 are

(r2 − r1) = w1 × (r2 + r1) (3.275)

(r3 − r2) = w2 × (r3 + r2) (3.276)

respectively. The right hand side of the first one is perpendicular to w1 and
the second one is perpendicular to w2. Hence, dot product of the first one
with w1 and the second one with w2 show that

w1 · r2 = w1 · r1 (3.277)

w2 · r3 = w2 · r2 (3.278)

and cross product of the first one with w2 and the second one with w1
show that

w2 × (r2 − r1)−w1 × (r3 − r2) = w1 [w2 · (r2 + r1)]
− (w1 ·w2) (r2 + r1)
−w2 [w1 · (r3 + r2)]
+ (w1 ·w2) (r3 + r2) . (3.279)

Rearranging while using Equations (3.277) and (3.278) gives us

w2 × (r2 − r1)−w1 × (r3 − r2) = (w2 ×w1)× (r1 + r3)
+ (w1 ·w2) (r3 − r1) (3.280)

which can be written as

(w1 +w2)× r2 = w2 × r1 +w1 × r3
+(w2 ×w1)× (r1 + r3)
+ (w1 ·w2) (r3 − r1) . (3.281)

Adding Equations (3.275) and (3.276) to obtain (w1 +w2)× r2 leads to

(w1 +w2)× r2 = r3 − r1 −w1 × r1 −w2 × r3. (3.282)
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Therefore, we obtain the required Rodriguez rotation formula to rotate r1
to r3

r3 − r1 = w3 × (r3 + r1) (3.283)

where
w3 =

w1 +w2 +w2 ×w1
1−w1 ·w2

. (3.284)

Any rotation φ1 of a rigid body with a fixed point about û1 can be
decomposed into three successive rotations about three arbitrary axes â, b̂,
and ĉ through unique angles α, β, and γ.
Let GRâ,α, GRb̂,β, and

GRĉ,γ be any three in order rotation matri-

ces about non-coaxis non-coplanar unit vectors â, b̂, and ĉ, through non-
vanishing values α, β, and γ. Then, any other rotation GRû,φ can be ex-
pressed in terms of GRâ,α, GRb̂,β, and

GRĉ,γ

GRû,φ =
GRĉ,γ

GRb̂,β
GRâ,α (3.285)

if α, β, and γ are properly chosen numbers.

Proof. Using the definition of rotation based on quaternion, we may write
Gr = GRû,φ

Br = e (φ, û) Br e∗ (φ, û) . (3.286)

Let us assume that r1 indicates the position vector r before rotation, and
r2, r3, and r4 indicate the position vector r after rotation Râ,α, Rb̂,β, and
Rĉ,γ respectively. Hence,

r2 = ar1a
∗ (3.287)

r3 = br2b
∗ (3.288)

r4 = cr3c
∗ (3.289)

r4 = er1e
∗ (3.290)

where

a (α, â) = a0 + a =cos
α

2
+ sin

α

2
â (3.291)

b(β, b̂) = b0 + b = cos
β

2
+ sin

β

2
b̂ (3.292)

c (γ, ĉ) = c0 + c = cos
γ

2
+ sin

γ

2
ĉ (3.293)

e (φ, û) = e0 + e = cos
φ

2
+ sin

φ

2
û (3.294)

are quaternions corresponding to (α, â), (β, b̂), (γ, ĉ), and (φ, û) respec-
tively. We define the following scalars to simplify the equations.

cos
α

2
= C1 cos

β

2
= C2 cos

γ

2
= C3 cos

φ

2
= C (3.295)

sin
α

2
= S1 sin

β

2
= S2 sin

γ

2
= S3 sin

φ

2
= S (3.296)
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b2c3 − b3c2
S2S3

= f1
b3c1 − b1c3

S2S3
= f2

b1c2 − b2c1
S2S3

= f3 (3.297)

c2a3 − c3a2
S3S1

= g1
a3c1 − a1c3

S3S1
= g2

a1c2 − a2c1
S3S1

= g3 (3.298)

a2b3 − a3b2
S1S2

= h1
a3b1 − a1b3

S1S2
= h2

a1b2 − a2b1
S1S2

= h3 (3.299)

b · c = n1S2S3 (3.300)

c · a = n2S3S1 (3.301)

a · b = n3S1S2 (3.302)

(a× b) · c = n4S1S2S3 (3.303)

Direct substitution shows that

r4 = er1e
∗ = cbar1a

∗b∗c∗ (3.304)

and therefore,

e = cba = c (b0a0 − b · a+ b0a+ a0b+ b× a)
= c0b0a0 − a0b · c− b0c · a− c0a · b+ (a× b) ·c

+a0b0c+ b0c0a+ c0a0b

+a0 (b× c) + b0 (c× a) + c0 (b× a)
− (a · b) c− (b · c)a+ (c · a)b. (3.305)

Hence,

e0 = c0b0a0 − a0n1S2S3 − b0n2S3S1 − c0n3S1S2 + n4S1S2S3 (3.306)

and

e = a0b0c+ b0c0a+ c0a0b

+a0 (b× c) + b0 (c× a) + c0 (b× a)
−n1S2S3a+ n2S3S1b−n3S1S2c (3.307)

which generate four equations

C1C2C3 − n1C1S2S3 − n2S1C2S3
+ n3S1S2C3 − n4S1S2S3 = C

(3.308)

a1S1C2C3 + b1C1S2C3 + c1C1C2S3
+f1C1S2S3 + g1S1C2S3 + h1S1S2C3

−n1a1S1S2S3 + n2b1S1S2S3−n3c1S1S2S3 = u1S
(3.309)

a2S1C2C3 + b2C1S2C3 + c2C1C2S3
+f2C1S2S3 + g2S1C2S3 + h2S1S2C3

−n1a2S1S2S3 + n2b2S1S2S3−n3c2S1S2S3 = u2S
(3.310)
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a3S1C2C3 + b13C1S2C3 + c3C1C2S3
+f3C1S2S3 + g3S1C2S3 + h3S1S2C3

−n1a3S1S2S3 + n2b3S1S2S3−n3c3S1S2S3 = u3S
(3.311)

Since e20 + e21 + e22 + e23 = 1, only the first equation and two out of the
others along with

C1 =
q
1− S21 C2 =

q
1− S22 C3 =

q
1− S23 (3.312)

must be utilized to determine C1, C2, C3, S1, S2, and S3.

Example 70 F Decomposition of a vector in a non-orthogonal coordinate
frame.
Let a,b,and c be any three non-coplanar, non-vanishing vectors; then

any other vector r can be expressed in terms of a,b,and c

r = ua+ vb+ wc (3.313)

provided u, v, and w are properly chosen numbers. If (a,b, c) coordinate
system is a Cartesian coordinate system (Î , Ĵ , K̂), then

r = (r·Î)Î + (r·Ĵ)Ĵ + (r·K̂)K̂. (3.314)

To show this, we start with finding the dot product of Equation (3.313)
by (b× c)

r· (b× c) = ua· (b× c) + vb· (b× c) + wc· (b× c) (3.315)

and noting that (b× c) is perpendicular to both b and c, consequently

r· (b× c) = ua· (b× c) . (3.316)

Therefore,

u =
[rbc]

[abc]
(3.317)

where

[abc] = a · b× c = a· (b× c) =

¯̄̄̄
¯̄ a1 b1 c1
a2 b2 c2
a3 b3 c3

¯̄̄̄
¯̄ . (3.318)

Similarly v and w would be

v =
[rca]

[abc]
(3.319)

w =
[rab]

[abc]
. (3.320)
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Hence,

r =
[rbc]

[abc]
a+

[rca]

[abc]
b+

[rab]

[abc]
c (3.321)

that can also be written as

r =

µ
r·b× c
[abc]

¶
a+

µ
r·c× a
[abc]

¶
b+

µ
r·a× b
[abc]

¶
c. (3.322)

Multiplying (3.322) by [abc] gives a symmetric equation

[abc] r− [bcr]a+ [cra]b− [rab] c = 0 (3.323)

If the (a,b, c) coordinate system is a Cartesian system (Î , Ĵ , K̂), that is
a mutually orthogonal system of unit vectors, thenh

Î ĴK̂
i
= 1 (3.324)

Î × Ĵ = K̂ (3.325)

Ĵ × K̂ = Î (3.326)

K̂ × Î = Ĵ (3.327)

and Equation (3.322) becomes

r =
³
r·Î
´
Î +

³
r·Ĵ
´
Ĵ +

³
r·K̂

´
K̂. (3.328)
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3.8 Summary

The objective of this chapter are:
1−To determine the transformation matrix between two Cartesian coor-

dinate frames B and G with a common origin when B is turning φ about
an axis Gû =

£
u1 u2 u3

¤T
.

2−To determine the angle φ and axis Gû of rotation for a given trans-
formation matrix.
Consider two Cartesian coordinate frames B and G with a common ori-

gin. We may rotate B for φ rad about a specific axis û to transform B to
G. Having the angle and axis of rotation, the transformation matrix can
be calculated by the Rodriguez rotation formula.

GRB = Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (3.329)

On the other hand, we can find the angle and axis of rotation from a given
transformation matrix GRB,

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢

(3.330)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
. (3.331)

The angle and axis of rotation, as well as Rodriguez rotation formula can
also be defined by Euler parameters e0, e1, e2, e3

e0 = cos
φ

2
(3.332)

e = e1Î + e2Ĵ + e3K̂ = û sin
φ

2
(3.333)

GRB = Rû,φ =
¡
e20 − e2

¢
I+ 2e eT + 2e0ẽ (3.334)

or unit quaternions

e (φ, û) = e0 + e = e0 + e1 ı̂+ e2ĵ+ e3k̂

= cos
φ

2
+ sin

φ

2
û (3.335)

that provide some advantages for orientation analysis.
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3.9 Key Symbols

A transformation matrix of rotation about a local axis
B body coordinate frame, local coordinate frame
C constant value, cosine of half angle
c cos
e unit quaternion, rotation quaternion, exponential
e0, e1, e2, e3 Euler parameters
G global coordinate frame, fixed coordinate frame
i, j, k flags of a quaternion
I = [I] identity matrix
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
n eigenvectors of R
l length
O common origin of B and G
P a body point, a fixed point in B
p, q, r general quaternions
r position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix
R the set of real numbers
s sin
S sine of half angle
t time
û a unit vector on axis of rotation
ũ skew symmetric matrix of the vector û
v velocity vector, eigenvectors of R
w Rodriguez vector
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
ijk permutation symbol
δij Kronecker’s delta
λ eigenvalues of R
φ angle of rotation about û
ϕ, θ, ψ rotation angles about local axes, Euler angles
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω
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Symbol
tr trace operator
vers 1− cos
[ ]
−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

←→q matrix form of a quaternion q
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Exercises

1. Notation and symbols.

Describe the meaning of the following notations.

a- û b- versφ c- ũ d- Rû,φ e- e0 f- e

g- BR−1G h- dφ i- q0 + q j- ij k- q∗ l- e (φ, û)

m- Ĵ n- ←→q o- q̃ p- |q| q- R3×3

2. Invariant axis of rotation.

Determine if the axis of rotation û is fixed in B(Oxyz) or G(OXY Z).

3. z-axis-angle rotation matrix.

Expand

GRB =
BR−1G = BRT

G = Rû,φ

= [Az,−ϕAy,−θAz,φAy,θAz,ϕ]
T

= AT
z,ϕA

T
y,θA

T
z,φA

T
y,−θA

T
z,−ϕ

and verify the axis-angle rotation matrix.

GRB = Rû,φ =⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
4. Axis-angle decomposition.

A body frame B turns 30 deg about X-axis and then 45 deg about
Z-axis.

(a) Determine the rotation transformation matrix GRB.

(b) Determine the angle and axis of rotation to provide the same
GRB.

(c) Determine the Euler angles for GRB.

(d) Determine the Euler parameters for GRB .

5. F x-axis-angle rotation matrix.

Find the axis-angle rotation matrix by transforming the x-axis on the
axis of rotation û.
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6. F y-axis-angle rotation matrix.

Find the axis-angle rotation matrix by transforming the y-axis on the
axis of rotation û.

7. Axis-angle rotation and Euler angles.

(a) Find the Euler angles corresponding to the rotation 45 deg about
u =

£
1 1 1

¤T
.

(b) Determine the axis and angle of rotation for a combined ro-
tations of 45 deg about x-axis, then 45 deg about y-axis, then
45 deg about z-axis.

(c) Find the Euler angles corresponding to the rotations in section
b.

(d) Determine the required angles to turn about x, then y, then z
axes to have the same final orientation as section a.

8. Euler angles between two local frames.

The Euler angles between the coordinate frame B1 and G are 20 deg,
35 deg, and −40 deg. The Euler angles between the coordinate frame
B2 and G are 60 deg, −30 deg, and −10 deg. Find the angle and axis
of rotation that transforms B2 to B1.

9. Global rotation of a cube.

Figure 3.5 illustrates the original position of a cube with a fixed point
at A and edges of length l = 1.

(a) Turn the cube 45 deg about AC and determine the global coor-
dinates of the corners.

(b) Turn the cube 45 deg about AH and determine the global coor-
dinates of the corners.

(c) Turn the cube 45 deg about AG and determine the global coor-
dinates of the corners.

10. Axis-angle of a series of rotation.

The cube in Figure 3.5 with a fixed point at A has an edge length of
l = 1.

(a) Determine the angle and axis of rotation when we turn the cube
45 deg about x-axis followed by a rotation of 45 deg about y-axis.

(b) Determine the angle and axis of rotation when we turn the cube
45 deg about x-axis followed by a rotation of 45 deg about AH.
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G
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Z
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F
G

H

X

B

FIGURE 3.5. A cube with edge length l = 1 at original configuration.

11. Global decomposition of the rotation of a cube.

The cube in Figure 3.5 with a fixed point at A has an edge length of
l = 1.

(a) Decompose a rotation of 45 deg about AG into a rotation about
X-axis, then Y -axis, then Z-axis.

(b) Decompose a rotation of 45 deg about AG into a rotation about
Y -axis, then Z-axis, then X-axis.

(c) Decompose a rotation of 45 deg about AG into a rotation about
Z-axis, then Y -axis, then X-axis.

(d) F Decompose a rotation of 45 deg about AG into a rotation
about AC, then AH.

12. −Z volume in a rotation of a cube.

The cube in Figure 3.5 with a fixed point at A has an edge length of
l = 1.

(a) How much should be the angle of rotation φ for the axis AG to
move AE on X-axis?

(b) F Calculate the volume of the cube that gets a negative Z
coordinate during the rotation φ.

13. Rotation of a cube about a fixed and a body axis.

The cube in Figure 3.5 with a fixed point at A has an edge length of
l = 1.
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(a) Turn the cube 45 deg about AC, then 45 deg about AH. Deter-
mine the global coordinates of the corners after the rotations.

(b) Turn the cube 45 deg about AC, then 45 deg about AG. Deter-
mine the global coordinates of the corners after the rotations.

(c) F Turn the cube 45 deg about AC, then 45 deg about AG, then
45 deg about AH. Determine the global coordinates of the cor-
ners after the rotations.

14. F Angle and axis of rotation based on Euler angles.

Compare the Euler angles rotation matrix with the angle-axis rota-
tion matrix and find the angle and axis of rotation based on Euler
angles.

15. F Euler angles based on angle and axis of rotation.

Compare the Euler angles rotation matrix with the angle-axis rota-
tion matrix and find the Euler angles based on the angle and axis of
rotation.

16. F Repeating global-local rotations.

Rotate BrP = [6, 2,−3]T , 60 deg about the Z-axis, followed by 30 deg
about the x-axis. Then repeat the sequence of rotations for 60 deg
about the Z-axis, followed by 30 deg about the x-axis. After how
many rotations will point P be back to its initial global position?

17. F Repeating global-local rotations.

How many rotations of α = π/mdeg about the X-axis, followed by
β = π/k deg about the z-axis are needed to bring a body point to its
initial global position, if m,k ∈ N?

18. F Small rotation angles.

Show that for very small angles of rotation ϕ, θ, and ψ about the
axes of the local coordinate frame, the first and third rotations are
indistinguishable when they are about the same axis.

19. F Inner automorphism property of ã.

If R is a rotation matrix and a is a vector, show that

RãRT = fRa.
20. F Angle-derivative of principal rotation matrices.
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Show that

dRZ,α

dα
= K̃RZ,α

dRY,β

dβ
= J̃RY,β

dRX,γ

dγ
= ĨRX,γ .

21. F Euler angles, Euler parameters.

Compare the Euler angles rotation matrix and Euler parameter trans-
formation matrix and verify the following relationships between Euler
angles and Euler parameters

e0 = cos
θ

2
cos

ψ + ϕ

2

e1 = sin
θ

2
cos

ψ − ϕ

2

e2 = sin
θ

2
sin

ψ − ϕ

2

e3 = cos
θ

2
sin

ψ + ϕ

2

and

ϕ = cos−1
2 (e2e3 + e0e1)

sin θ

θ = cos−1
£
2
¡
e20 + e23

¢
− 1
¤

ψ = cos−1
−2 (e2e3 − e0e1)

sin θ
.

22. F Quaternion definition.

Find the unit quaternion e (φ, û) associated to

û =

⎡⎣ 1/
√
3

1/
√
3

1/
√
3

⎤⎦ φ =
π

3

and find the result of e (φ, û) ı̂ e∗ (φ, û).

23. F Quaternion product.

Find pq, qp, p∗q, qp∗, p∗p, qq∗, p∗q∗, and p∗rq∗ if

p = 3 + i− 2j + 2k
q = 2− i+ 2j + 4k

r = −1 + i+ j − 3k.
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24. F Quaternion inverse.

Find q−1, p−1, p−1q−1, q−1p∗, p∗p−1, q−1q∗, and p∗
−1
q∗
−1
if

p = 3 + i− 2j + 2k
q = 2− i+ 2j + 4k.

25. F Quaternion and angle-axis rotation.

Find the unit quaternion associated to

p = 3 + i− 2j + 2k
q = 2− i+ 2j + 4k

and find the angle and axis of rotation for each of the unit quaternion.

26. F Unit quaternion and rotation.

Use the unit quaternion p

p =
1 + i− j + k

2

and find the global position of

Br =

⎡⎣ 2
−2
6

⎤⎦ .
27. F Quaternion matrix.

Use the unit quaternion matrices associated to

p = 3 + i− 2j + 2k
q = 2− i+ 2j + 4k

r = −1 + i+ j − 3k.

and find ←→p ←→r ←→q , ←→q ←→p , ←→p∗←→q , ←→q ←→p∗ , ←→p∗←→p , ←→q ←→q∗ , ←→p∗←→q∗ , and←→
p∗←→r ←→q∗ .

28. F Euler angles and quaternion.

Find quaternion components in terms of Euler angles, and Euler an-
gles in terms of quaternion components.

29. Angular velocity vector.

Use the definition GRB = [rij ] and GṘB = [ṙij ], and find the angular
velocity vector ω, where ω̃ = GṘB

GRT
B.
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30. F bac-cab rule.

Use the Levi-Civita density ijk to prove the bac-cab rule.

a× (b× c) = b (a · c)− c (a · b)

31. F bac-cab rule application.

Use the bac-cab rule to show that

a = n̂ (a · n̂) + n̂× (a× n̂)

where n̂ is any unit vector. What is the geometric significance of this
equation?

32. F Two rotations are not enough.

Show that, in general, it is impossible to move a point P (X,Y,Z) from
the initial position P (Xi, Yi, Zi) to the final position P (Xf , Yf , Zf )
only by two rotations about the global axes.

33. F Three rotations are enough.

Show that, in general, it is possible to move a point P (X,Y,Z) from
the initial position P (Xi, Yi, Zi) to the final position P (Xf , Yf , Zf )
by three rotations about different global axes.

34. F Closure property.

Show the closure property of transformation matrices.

35. Sum of two orthogonal matrices.

Show that the sum of two orthogonal matrices is not, in general, an
orthogonal matrix, but their product is.

36. Equivalent cross product.

Show that if a =
£
a1 a2 a3

¤T
and b =

£
b1 b2 b3

¤T
are two

arbitrary vectors, and

ã =

⎡⎣ 0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤⎦
is the skew symmetric matrix corresponding to a, then

ãb = a× b.

37. F Skew symmetric matrices.

Use a =
£
a1 a2 a3

¤T
and b =

£
b1 b2 b3

¤T
to show that:
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a-
ãb = −b̃a

b- ³
â+ b

´
= ã+ b̃

c- ³f̃ab´ = baT − abT
38. F Rotation matrices identity.

Show that if A, B, and C are three rotation matrices then,

a-
(AB)C = A (BC) = ABC

b-
(A+B)T = AT +BT

c-
(AB)T = BTAT

d- ¡
A−1

¢T
=
¡
AT
¢−1

39. F Skew symmetric matrix multiplication.

Verify that

a-
aT ãT = −aT ã = 0

b-
ãb̃ = ba

T − aTb I

40. F Skew symmetric matrix derivative.

Show that
·
ã= ėa.

41. F Time derivative of A = [a, ã].

Assume that a is a time dependent vector and A = [a, ã] is a 3 × 4
matrix. What is the time derivative of C = AAT ?

42. F Combined angle-axis rotations.

The rotation φ1 about û1 followed by rotation φ2 about û2 is equiv-
alent to a rotation φ about û. Find the angle φ and axis û in terms
of φ1, û1, φ2, and û2.
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43. F Rodriguez vector.

Using the Rodriguez rotation formula show that

r0 − r =tan φ
2
û× (r0 + r) .

44. F Equivalent Rodriguez rotation matrices.

Show that the Rodriguez rotation matrix

GRB = I cosφ+ ûûT versφ+ ũ sinφ

can also be written as

GRB = I+ (sinφ) ũ+ (versφ) ũ
2.

45. F Rotation matrix and Rodriguez formula.

Knowing the alternative definition of the Rodriguez formula

GRB = I+ (sinφ) ũ+ (versφ) ũ
2

and

ũ2n−1 = (−1)n−1 ũ
ũ2n = (−1)n−1 ũ2

examine the following equation:

GRT
B
GRB =

GRB
GRT

B

46. F Rodriguez formula application.

Use the alternative definition of the Rodriguez formula

GRB = I+ (sinφ) ũ+ (versφ) ũ
2

and find the global position of a body point at

Br =
£
1 3 4

¤T
after a rotation of 45 deg about the axis indicated by

û =
h

1√
3

1√
3

1√
3

iT
.

47. Axis and angle of rotation.

Find the axis and angle of rotation for the following transformation
matrix:

R =

⎡⎢⎢⎣
3
4

√
6
4

1
4

−
√
6

4
2
4

√
6
4

1
4

−
√
6

4
3
4

⎤⎥⎥⎦
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48. F Axis of rotation multiplication.

Show that
ũ2k+1 = (−1)k ũ

and
ũ2k = (−1)k

¡
I− ûûT

¢
.

49. F Stanley method.

Find the Euler parameters of the following rotation matrix based on
the Stanley method.

GRB =

⎡⎣ 0.5449 −0.5549 0.6285
0.3111 0.8299 0.4629
−0.7785 −0.0567 0.6249

⎤⎦
50. F Stanley method.

The cube in Figure 3.5 with a fixed point at A has an edge length of
l = 1.

(a) Determine the matrix GRB for a rotation of 45 deg about AG.

(b) Determine the Euler angles for GRB of section a.

(c) Determine the Euler parameters for GRB of section a.

(d) Determine the Euler parameters from GRB of section a using
Stanley method.

51. F Rotation for a rotated position.

Consider a rigid body B at a position that is not coincident with the
global coordinate frame G. The directional cosines of ı̂, ĵ are:

ı̂ =

⎡⎣ 0.5
0.25

cos(̂ı, K̂)

⎤⎦ ĵ =

⎡⎣ 0.25

cos(ĵ, Ĵ)

cos(ĵ, K̂)

⎤⎦
Calculate the missing terms, and determine the global coordinates of
a body point P at BrP

BrP =

⎡⎣ 1
2
3

⎤⎦
after rotation of 45 deg about u.

u =

⎡⎣ 1
1
1

⎤⎦
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52. F Rotation from a rotated position.

(a) Calculate the transformation matrix for rotation 30 deg about
z-axis, followed by a rotation 45 deg about x-axis.

(b) Assume the body B is given to us after the first rotation of
30 deg about z-axis in section a. Determine the axis û that at
this time is coincide with x-axis, and turn the body 45 deg about
û.

(c) Calculate the transformation matrix for rotation 30 deg about z-
axis, followed by a rotation 45 deg about x-axis, and then, 60 deg
about z-axis.

(d) Assume the body B is given to us after the second rotation in
section b. Determine the axis û that at this time is coincide with
z-axis, and turn the body 60 deg about û.
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Motion Kinematics
A rotation φ about an axis û and a displacement d is the general motion of
a rigid body B in a global frame G. The rigid body motion can be defined
by a 4 by 4 matrix.

X
Y

Z

O

x

y

z

x

y

z

od
G

Bφ

θ

ϕ

FIGURE 4.1. Rotation and translation of a local frame with respect to a global
frame.

4.1 Rigid Body Motion

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z). The rigid
body can rotate in the global frame, while point o of the body frame B can
translate relative to the origin O of G as shown in Figure 4.1.
If the vector Gd indicates the position of the moving origin o, relative

to the fixed origin O, then the coordinates of a body point P in local and
global frames are related by the following equation:

GrP =
GRB

BrP + Gd (4.1)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_4,  
© Springer Science+Business Media, LLC 2010 
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where,

GrP =

⎡⎣ XP

YP
ZP

⎤⎦ BrP =

⎡⎣ xP
yP
zP

⎤⎦ Gd =

⎡⎣ Xo

Yo
Zo

⎤⎦ . (4.2)

The vector Gd is called the displacement or translation of B with respect
to G, and GRB is the rotation matrix to map Br to Gr when Gd = 0.
Such a combination of a rotation and a translation in Equation (4.1) is
called rigid motion. In other words, the location of a rigid body can be
described by the position of the origin o and the orientation of the body
frame, with respect to the global frame. Decomposition of a rigid motion
into a rotation and a translation is the simplest method for representing
spatial displacement. We show the translation by a vector, and the rotation
by any of the methods described in the previous Chapter.

Proof. Figure 4.1 illustrates a translated and rotated body frame in the
global frame. The most general rotation is represented by the Rodriguez
rotation formula (3.90), which depends on BrP , the position vector of a
point P measured in the body coordinate frame. In the translation Gd, all
points of the body have the same displacement, and therefore, translation
of a rigid body is independent of the local position vector Br. Hence, the
most general displacement of a rigid body is represented by the following
equation, and has two independent parts: a rotation, and a translation.

Gr = Br cosφ+ (1− cosφ)
¡
û · Br

¢
û+

¡
û× Br

¢
sinφ+ Gd

= GRB
Br+ Gd (4.3)

Equation (4.3) shows that the most general displacement of a rigid body
is a rotation about an axis and a translation along an axis. The choice of
the point of reference o is entirely arbitrary, but when this point is chosen
and the body coordinate frame is set up, the rotation and translation are
uniquely determined.
Based on translation and rotation, the position of a body can be uniquely

determined by six independent parameters: three translation components
Xo, Yo, Zo; and three rotational components. If a body moves in such a
way that its rotational components remain constant, the motion is a pure
translation; and if it moves in such a way that Xo, Yo, and Zo remain
constant, the motion is a pure rotation. Therefore, a rigid body has three
translational and three rotational degrees of freedom.

Example 71 Translation and rotation of a body coordinate frame.
A body coordinate frame B(oxyz), that is originally coincident with global

coordinate frame G(OXY Z), rotates 45 deg about the X-axis and translates
to
£
3 5 7

¤T
. Then, the global position of a point at Br =

£
x y z

¤T
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FIGURE 4.2. A translating and rotating body in a global coordinate frame.

is:

Gr = GRB
Br+ Gd

=

⎡⎣ 1 0 0
0 cos 45 − sin 45
0 sin 45 cos 45

⎤⎦⎡⎣ x
y
z

⎤⎦+
⎡⎣ 3
5
7

⎤⎦
= (x+ 3) Î + (0.707y − 0.707z + 5) Ĵ

+(0.707y + 0.707z + 7) K̂ (4.4)

Example 72 Moving body coordinate frame.
Figure 4.2 shows a point P at BrP = 0.1ı̂+ 0.3ĵ+ 0.3k̂ in a body frame

B, which is rotated 50 deg about the Z-axis, and translated −1 along X,
0.5 along Y , and 0.2 along the Z axes.
The position of P in global coordinate frame is:

Gr = GRB
BrP +

Gd

=

⎡⎣ cos 50 − sin 50 0
sin 50 cos 50 0
0 0 1

⎤⎦⎡⎣ 0.1
0.3
0.3

⎤⎦+
⎡⎣ −10.5
0.2

⎤⎦
=

⎡⎣ −1.1660.769
0.5

⎤⎦ (4.5)

Example 73 Rotation of a translated rigid body.
Point P of a rigid body B has an initial position vector BrP .

BrP =
£
1 2 3

¤T
(4.6)

If the body rotates 45 deg about the x-axis, and then translates to Gd =
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FIGURE 4.3. A polar RP arm.

£
4 5 6

¤T
, the final position of P would be

Gr = BRT
x,45

BrP +
Gd

=

⎡⎣ 1 0 0
0 cos 45 − sin 45
0 sin 45 cos 45

⎤⎦⎡⎣ 1
2
3

⎤⎦+
⎡⎣ 4
5
6

⎤⎦
=

⎡⎣ 5.0
4.23
9.53

⎤⎦ . (4.7)

Note that rotation occurs with the assumption that Gd = 0.

Example 74 Arm rotation plus elongation.
Position vector of point P1 at the tip of an arm shown in Figure 4.3(a) is

at GrP1 =
BrP1 =

£
1350 0 900

¤T
mm. The arm rotates 60 deg about

the global Z-axis, and elongates by d = 720.2ı̂mm. The final configuration
of the arm is shown in Figure 4.3(b).
The new position vector of P is

GrP2 =
GRB

BrP1 +
Gd (4.8)

where GRB = RZ,60 is the rotation matrix to transform rP2 to rP1 when
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Gd = 0,

GRB =

⎡⎣ cos 60 − sin 60 0
sin 60 cos 60 0
0 0 1

⎤⎦ (4.9)

and Gd is the translation vector of o with respect to O in the global frame.
The translation vector in the body coordinate frame is Bd =

£
720.2 0 0

¤T
so Gd would be found by a transformation.

Gd = GRB
Bd

=

⎡⎣ cos 60 − sin 60 0
sin 60 cos 60 0
0 0 1

⎤⎦⎡⎣ 720.2
0.0
0.0

⎤⎦
=

⎡⎣ 360.10
623.71
0.0

⎤⎦ (4.10)

Therefore, the final global position of the tip of the arm is at
GrP2 = GRB

BrP1 +
Gd

=

⎡⎣ c60 −s60 0
s60 c60 0
0 0 1

⎤⎦⎡⎣ 1350
0
900

⎤⎦+
⎡⎣ 360.1
623.7
0.0

⎤⎦
=

⎡⎣ 1035.1
1792.8
900.0

⎤⎦ . (4.11)

Example 75 Composition of transformations.
Assume

2r = 2R1
1r+ 2d1 (4.12)

indicates the rigid motion of body B1 with respect to body B2, and
Gr = GR2

2r+ Gd2 (4.13)

indicates the rigid motion of body B2 with respect to frame G. The compo-
sition defines a third rigid motion, which can be described by substituting
the expression for 2r into the equation for Gr.

Gr = GR2
¡
2R1

1r+ 2d1
¢
+ Gd2

= GR2
2R1

1r+GR2
2d1 +

Gd2

= GR1
1r+ Gd1 (4.14)

Therefore,
GR1 = GR2

2R1 (4.15)
Gd1 = GR2

2d1 +
Gd2 (4.16)

which shows that the transformation from frame B1 to frame G can be done
by rotation GR1 and translation Gd1.
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FIGURE 4.4. Representation of a point P in coordinate frames B and G.

4.2 Homogeneous Transformation

As shown in Figure 4.4, an arbitrary point P of a rigid body attached to the
local frame B is denoted by BrP and GrP in different frames. The vector
Gd indicates the position of origin o of the body frame in the global frame.
Therefore, a general motion of a rigid body B (oxyz) in the global frame
G (OXY Z) is a combination of rotation GRB and translation Gd.

Gr = GRB
Br+ Gd (4.17)

Using a rotation matrix plus a vector leads us to the use of homogeneous
coordinates. Introducing a new 4 × 4 homogeneous transformation matrix
GTB, helps us show a rigid motion by a single matrix transformation

Gr = GTB
Br (4.18)

where

GTB =

⎡⎢⎢⎣
r11 r12 r13 Xo

r21 r22 r23 Yo
r31 r32 r33 Zo
0 0 0 1

⎤⎥⎥⎦
≡

∙
GRB

Gd

0 0 0 1

¸
≡
∙

GRB
Gd

0 1

¸
(4.19)

and

Gr =

⎡⎢⎢⎣
XP

YP
ZP
1

⎤⎥⎥⎦ Br =

⎡⎢⎢⎣
xP
yP
zP
1

⎤⎥⎥⎦ Gd =

⎡⎢⎢⎣
Xo

Yo
Zo
1

⎤⎥⎥⎦ . (4.20)
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The homogeneous transformation matrix GTB is a 4×4matrix that maps
a homogeneous position vector from one frame to another. This extension
of matrix representation of rigid motions is just for simplifying numerical
calculations.
Representation of an n-component position vector by an (n+1)-component

vector is called homogeneous coordinate representation. The appended ele-
ment is a scale factor, w; hence, in general, homogeneous representation of
a vector r =

£
x y z

¤T
is

r =

⎡⎢⎢⎣
wx
wy
wz
w

⎤⎥⎥⎦ =
⎡⎢⎢⎣

r1
r2
r3
w

⎤⎥⎥⎦ . (4.21)

Using homogeneous coordinates shows that the absolute values of the four
coordinates are not important. Instead, it is the three ratios, r1/w, r2/w,
and r3/w that are important because,

⎡⎢⎢⎣
wx
wy
wz
w

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦ (4.22)

provided w 6= 0, and w 6=∞. Therefore, the homogeneous vector wr refers
to the same point as r does.
If w = 1, then the homogeneous coordinates of a position vector are the

same as physical coordinates of the vector and the space is the standard
Euclidean space.
Hereafter, if no confusion exists and w = 1, we will use the regular

vectors, and their homogeneous representation equivalently.

Proof.We append a 1 to the coordinates of a point and define homogeneous
position vectors as follows:

GrP =

⎡⎢⎢⎣
XP

YP
ZP
1

⎤⎥⎥⎦ BrP =

⎡⎢⎢⎣
xP
yP
zP
1

⎤⎥⎥⎦ Gd =

⎡⎢⎢⎣
Xo

Yo
Zo
1

⎤⎥⎥⎦ (4.23)
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Using the definitions of homogeneous transformation we will find
GrP = GTB

BrP (4.24)⎡⎢⎢⎣
XP

YP
ZP
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
r11 r12 r13 Xo

r21 r22 r23 Yo
r31 r32 r33 Zo
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

xP
yP
zP
1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
Xo + r11xP + r12yP + r13zP
Yo + r21xP + r22yP + r23zP
Zo + r31xP + r32yP + r33zP

1

⎤⎥⎥⎦ . (4.25)

However, the standard method reduces to:
GrP = GRB

Brp +
Gd (4.26)⎡⎣ XP

YP
ZP

⎤⎦ =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦⎡⎣ xP
yP
zP

⎤⎦+
⎡⎣ Xo

Yo
Zo

⎤⎦
=

⎡⎣ Xo + r11xP + r12yP + r13zP
Yo + r21xP + r22yP + r23zP
Zo + r31xP + r32yP + r33zP

⎤⎦ (4.27)

which is compatible with the definition of homogeneous vector and homo-
geneous transformation.

Example 76 Rotation and translation of a body coordinate frame.
A body coordinate frame B(oxyz), that is originally coincident with global

coordinate frame G(OXY Z), rotates 45 deg about the X-axis and translates
to
£
3 5 7 1

¤T
. Then, the matrix representation of the global posi-

tion of a point at Br =
£
x y z 1

¤T
is:

Gr = GTB
Br

=

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 3
0 cos 45 − sin 45 5
0 sin 45 cos 45 7
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦ (4.28)

Example 77 An axis-angle rotation and a translation.
Consider a cubic rigid body with a unit length of edges at the corner of

the first quadrant as is shown in Figure 4.5.
If we turn the cube 45 deg about u

u =
£
1 1 1

¤T
(4.29)

then

φ =
π

4
û =

u√
3
=

⎡⎣ 0.577 35
0.577 35
0.577 35

⎤⎦ (4.30)
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FIGURE 4.5. A cubic rigid body with a unit length of edges.

and its Rodriguez transformation matrix is:

Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ

=

⎡⎣ 0.804 74 −0.310 62 0.505 88
0.505 88 0.804 74 −0.310 62
−0.310 62 0.505 88 0.804 74

⎤⎦ (4.31)

Translating the cube by Gd

Gd =
£
1 1 1

¤T
(4.32)

generates the following homogeneous transformation matrix GTB.

GTB =

⎡⎢⎢⎣
0.804 74 −0.310 62 0.505 88 1
0.505 88 0.804 74 −0.310 62 1
−0.310 62 0.505 88 0.804 74 1

0 0 0 1

⎤⎥⎥⎦ (4.33)

The local coordinates of the corners of the upper face are:

BrE
BrF

BrG
BrH

x 0 1 1 0
y 0 0 1 1
z 1 1 1 1

(4.34)

and therefore, using Gr = GTB
Br the global coordinates of the corners
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after the motion are:

GrE
GrF

GrG
GrH

X 1.505 2.310 2 1.196
Y 0.689 1.196 2 1.495
Z 1.804 1.495 2 2.31

(4.35)

Example 78 Decomposition of GTB into translation and rotation.
Homogeneous transformation matrix GTB can be decomposed to a matrix

multiplication of a pure rotation matrix GRB, and a pure translation matrix
GDB.

GTB = GDB
GRB (4.36)

=

⎡⎢⎢⎣
1 0 0 Xo

0 1 0 Yo
0 0 1 Zo
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
r11 r12 r13 Xo

r21 r22 r23 Yo
r31 r32 r33 Zo
0 0 0 1

⎤⎥⎥⎦
In other words, a transformation can be achieved by a pure rotation first,
followed by a pure translation.
Note that decomposition of a transformation to translation and rotation

is not interchangeable

GTB = GDB
GRB

6= GRB
GDB. (4.37)

However, according to the definition of GRB and GDB,

GTB = GDB
GRB

= GDB + GRB − I
= GRB + GDB − I. (4.38)

Example 79 Pure translation.
A rigid body with its coordinate frame B(oxyz), that is originally coin-

cident with global coordinate frame G(OXY Z), translates to

Gd =

⎡⎣ dX
dY
dZ

⎤⎦ . (4.39)

Then, the motion of the rigid body is a pure translation and the transfor-
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mation matrix for a point of a rigid body in the global frame is

Gr = GTB
Br = GDB

Br (4.40)

=

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 dX
0 1 0 dY
0 0 1 dZ
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦ .
Example 80 Homogeneous transformation for rotation about global axes.
Using homogeneous representation of rotations about the axes of global

coordinate frame, the rotation α about the Z-axis is

GTB = RZ,α =

⎡⎢⎢⎣
cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (4.41)

Example 81 Rotation about and translation along a global axis.
A point P is located at (0, 0, 200) in a body coordinate frame. If the rigid

body rotates 30 deg about the global X-axis and the origin of the body frame
translates to (X,Y,Z) = (500, 0, 600), then the coordinates of the point in
the global frame are:⎡⎢⎢⎣

1 0 0 500
0 1 0 0
0 0 1 600
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cos 30 − sin 30 0
0 sin 30 cos 30 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0
0
200
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

500
−100
773.2
1

⎤⎥⎥⎦
(4.42)

Example 82 Rotation about and translation along a local axis.
A point P is located at (0, 0, 200) in a body coordinate frame. If the origin

of the body frame translates to (X,Y,Z) = (500, 0, 600) and rotates 30 deg
about the local x-axis, then the coordinates of the point in global frame are:⎡⎢⎢⎣

1 0 0 500
0 1 0 0
0 0 1 600
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cos 30 sin 30 0
0 − sin 30 cos 30 0
0 0 0 1

⎤⎥⎥⎦
T ⎡⎢⎢⎣

0
0
200
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

500
−100
773.2
1

⎤⎥⎥⎦
(4.43)

Example 83 Translation.
If a body point at

Br =
£
−1 0 2 1

¤T
(4.44)

is translated to
Gr =

£
0 10 −5 1

¤T
(4.45)
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then the corresponding transformation can be found by⎡⎢⎢⎣
2
10
−5
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 dX
0 1 0 dY
0 0 1 dZ
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
4
2
1

⎤⎥⎥⎦ . (4.46)

Therefore,

1 + dX = 2 4 + dY = 10 2 + dZ = −5 (4.47)

and
dX = 1 dY = 6 dZ = −7. (4.48)

Example 84 Pure rotation and pure translation.
A set of basic homogeneous transformations for translation along and

rotation about X, Y , and Z axes are given below.

GTB = DX,a =

⎡⎢⎢⎣
1 0 0 a
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.49)

GTB = RX,γ =

⎡⎢⎢⎣
1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

⎤⎥⎥⎦ (4.50)

GTB = DY,b =

⎡⎢⎢⎣
1 0 0 0
0 1 0 b
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.51)

GTB = RY,β =

⎡⎢⎢⎣
cosβ 0 sinβ 0
0 1 0 0

− sinβ 0 cosβ 0
0 0 0 1

⎤⎥⎥⎦ (4.52)

GTB = DZ,c =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 c
0 0 0 1

⎤⎥⎥⎦ (4.53)

GTB = RZ,α =

⎡⎢⎢⎣
cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.54)
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Example 85 Homogeneous transformation as a vector addition.
It is seen in Figure 4.4 that the position of point P can be described by

a vector addition
GrP =

Gd+ BrP . (4.55)

Since a vector equation is meaningful when all the vectors are described in
the same coordinate frame, we need to transform either BrP to G orGd to
B. Therefore, the applied vector equation is

GrP =
GRB

BrP +
Gd (4.56)

or
BRG

GrP =
BRG

Gd+ BrP . (4.57)

The first one defines a homogenous transformation from B to G,

GrP = GTB
BrP (4.58)

GTB =

∙
GRB

Gd
0 1

¸
(4.59)

and the second one defines a transformation from G to B.

BrP = BTG
GrP (4.60)

BTG =

∙
BRG −BRG

Gd
0 1

¸
=

∙
GRT

B −GRT
B
Gd

0 1

¸
(4.61)

Example 86 F Point at infinity.
Points at infinity have a convenient representation with homogeneous

coordinates. Consider the scale factor w as the fourth coordinate of a point,
hence the homogeneous representation of the point is given by⎡⎢⎢⎣

x
y
z
w

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x/w
y/w
z/w
1

⎤⎥⎥⎦ . (4.62)

As w tends to zero, the point goes to infinity, and we may adapt the con-
vention that the homogeneous coordinate⎡⎢⎢⎣

x
y
z
0

⎤⎥⎥⎦ (4.63)

represents a point at infinity. More importantly, a point at infinity indicates
a direction. In this case, it indicates all lines parallel to the vector r =£
x y z

¤T
, which intersect at a point at infinity.
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The homogeneous coordinate transformation of points at infinity intro-
duces a neat decomposition of the homogeneous transformation matrices.

GTB =

⎡⎢⎢⎣
r11 r12 r13 Xo

r21 r22 r23 Yo
r31 r32 r33 Zo
0 0 0 1

⎤⎥⎥⎦ (4.64)

The first three columns have zero as the fourth coordinate. Therefore, they
represent points at infinity, which are the directions corresponding to the
three coordinate axes. The fourth column has one as the fourth coordinate,
and represents the location of the coordinate frame origin.

Example 87 F The most general homogeneous transformation.
The homogeneous transformation (4.19) is a special case of the general

homogeneous transformation. The most general homogeneous transforma-
tion, which has been extensively used in the field of computer graphics, takes
the form

ATB =

∙
ARB (3× 3) Ad (3× 1)
p (1× 3) w (1× 1)

¸
(4.65)

=

∙
rotation translation
perspective scale factor

¸
.

For the purpose of robotics, we always take the last row vector of [T ] to
be (0, 0, 0, 1). However, the more general form of (4.65) could be useful,
for example, when a graphical simulator or a vision system is added to the
overall robotic system.
The upper left 3× 3 submatrix ARB denotes the orientation of a moving

frame B with respect to a reference frame A. The upper right 3×1 submatrix
Ad denotes the position of the origin of the moving frame B relative to the
reference frame A. The lower left 1 × 3 submatrix p denotes a perspective
transformation, and the lower right element w is a scaling factor.

4.3 Inverse Homogeneous Transformation

The advantage of simplicity to work with homogeneous transformation ma-
trices come with the penalty of losing the orthogonality property. If we show
GTB by

GTB =

∙
I Gd
0 1

¸ ∙
GRB 0
0 1

¸
=

∙
GRB

Gd
0 1

¸
(4.66)
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FIGURE 4.6. Illustration of a rotated and translated body frame B(oxyz) with
respect to the global frame G(OXY Z).

then,

BTG = GT−1B =

∙
GRB

Gd
0 1

¸−1
=

∙
GRT

B −GRT
B
Gd

0 1

¸
(4.67)

showing that,
GT−1B

GTB = I4. (4.68)

However, a transformation matrix is not orthogonal and its inverse is not
equal to its transpose

GT−1B 6= GTT
B . (4.69)

Proof. 1. Figure 4.6 depicts a rotated and translated body frame B(oxyz)
with respect to the global frame G(OXY Z). Transformation of the coor-
dinates of a point P from the global frame to the body frame is BTG, that
is the inverse of the transformation GTB.
Let’s start with the expression of Gr and the definition of GTB for map-

ping Br to Gr

Gr = GRB
Br+ Gd (4.70)∙

Gr
1

¸
=

∙
GRB

Gd
0 1

¸ ∙
Br
1

¸
(4.71)

and find
Br = GR−1B (Gr− Gd) = GRT

B
Gr− GRT

B
Gd (4.72)

to express the transformation matrix BTG for mapping Gr to Br

BTG =

∙
GRT

B −GRT
B
Gd

0 1

¸
. (4.73)
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Proof. 2. BTG can also be found by a geometric expression. Using the
inverse of the rotation matrix GRB

GR−1B = GRT
B =

BRG (4.74)

and describing the reverse of Gd in the body coordinate frame to indicate
the origin of the global frame with respect to the origin of the body frame

Bd = BRG
Gd =GRT

B
Gd (4.75)

allows us to define the homogeneous transformation BTG

BTG =

∙
BRG −Bd
0 1

¸
=

∙
GRT

B −GRT
B
Gd

0 1

¸
. (4.76)

We use the notation
BTG =

GT−1B (4.77)

and remember that the inverse of a homogeneous transformation matrix
must be calculated according to Equation (4.67), and not by regular inver-
sion of a 4× 4 matrix. This notation is consistent with the multiplication
of a T matrix by its inverse T−1, because

GT−1B
GTB = I4. (4.78)

Example 88 Inverse of a homogeneous transformation matrix.
Assume that

GTB =

⎡⎢⎢⎣
0.643 −0.766 0 −1
0.766 0.643 0 0.5
0 0 1 0.2
0 0 0 1

⎤⎥⎥⎦ = ∙ GRB
Gd

0 1

¸
(4.79)

then

GRB =

⎡⎣ 0.643 −0.766 0
0.766 0.643 0
0 0 1

⎤⎦ (4.80)

Gd =

⎡⎣ −10.5
0.2

⎤⎦ (4.81)

and therefore,

BTG = GT−1B =

∙
GRT

B −GRT
B
Gd

0 1

¸

=

⎡⎢⎢⎣
0.643 0.766 0 0.26
−0.766 0.643 0 −1.087
0 0 1 −0.2
0 0 0 1

⎤⎥⎥⎦ . (4.82)
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Example 89 Transformation matrix and coordinate of points.
It is possible and sometimes convenient to describe a rigid body motion

in terms of known displacement of specified points fixed in the body.
Assume A, B, C, and D are four points with the following coordinates

at two different positions:

A1(2, 4, 1) B1(2, 6, 1) C1(1, 5, 1) D1(3, 5, 2) (4.83)

A2(5, 1, 1) B2(7, 1, 1) C2(6, 2, 1) D2(6, 2, 3) (4.84)

There must be a transformation matrix T to map the initial positions to
the final,

[T ]

⎡⎢⎢⎣
2 2 1 3
4 6 5 5
1 1 2 2
1 1 1 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
5 7 6 6
1 1 2 2
1 1 1 3
1 1 1 1

⎤⎥⎥⎦ (4.85)

and hence

[T ] =

⎡⎢⎢⎣
5 7 6 6
1 1 2 2
1 1 1 3
1 1 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣
2 2 1 3
4 6 5 5
1 1 2 2
1 1 1 1

⎤⎥⎥⎦
−1

=

⎡⎢⎢⎣
5 7 6 6
1 1 2 2
1 1 1 3
1 1 1 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0 −1/2 −1/2 7/2
0 1/2 −1/2 −3/2
−1/2 0 1/2 1/2
1/2 0 1/2 −3/2

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0 1 0 1
0 0 1 0
1 0 1 −2
0 0 0 1

⎤⎥⎥⎦ . (4.86)

Example 90 Quick inverse transformation.
For numerical calculation, it is more practical to decompose a transfor-

mation matrix into translation times rotation, and take advantage of the
inverse of matrix multiplication.
Consider a transformation matrix

[T ] =

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ = [D] [R] (4.87)

=

⎡⎢⎢⎣
1 0 0 r14
0 1 0 r24
0 0 1 r34
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤⎥⎥⎦
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therefore,

T−1 = [DR]−1 = R−1D−1 = RTD−1 (4.88)

=

⎡⎢⎢⎣
r11 r21 r31 0
r12 r22 r32 0
r13 r23 r33 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 −r14
0 1 0 −r24
0 0 1 −r34
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
r11 r21 r31 −r11r14 − r21r24 − r31r34
r12 r22 r32 −r12r14 − r22r24 − r32r34
r13 r23 r33 −r13r14 − r23r24 − r33r34
0 0 0 1

⎤⎥⎥⎦ .
Example 91 F Inverse of the general homogeneous transformation.
Let [T ] be defined as a general matrix combined by four submatrices [A],

[B], [C], and [D].

[T ] =

∙
A B
C D

¸
(4.89)

Then, the inverse is given by

T−1 =

∙
A−1 +A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

¸
(4.90)

where

[E] = D − CA−1B. (4.91)

In the case of the most general homogeneous transformation,

ATB =

∙
ARB (3× 3) Ad (3× 1)
p (1× 3) w (1× 1)

¸
(4.92)

=

∙
rotation translation
perspective scale factor

¸
we have

[T ] = ATB (4.93)

[A] = ARB (4.94)

[B] = Ad (4.95)

[C] =
£
p1 p2 p3

¤
(4.96)

[D] = [w1×1] = w (4.97)
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and therefore,

[E] = [E1×1] = E

= w −
£
p1 p2 p3

¤
AR−1B

Ad

= w −
£
p1 p2 p3

¤
ART

B
Ad

= 1− p1 (d1r11 + d2r21 + d3r31)

+p2 (d1r12 + d2r22 + d3r32)

+p3 (d1r13 + d2r23 + d3r33) (4.98)

−E−1CA−1 =
1

E

£
g1 g2 g3

¤
(4.99)

g1 = p1r11 + p2r12 + p3r13

g2 = p1r21 + p2r22 + p3r23

g3 = p1r31 + p2r32 + p3r33

−A−1BE−1 = − 1
E

⎡⎣ d1r11 + d2r21 + d3r31
d1r12 + d2r22 + d3r32
d1r13 + d2r23 + d3r33

⎤⎦ (4.100)

A−1 +A−1BE−1CA−1 = [F ] (4.101)

=

⎡⎣ f11 f12 f13
f21 f22 f23
f31 f32 r33

⎤⎦
where

f11 = r11 +
1

E
(p1r11 + p2r12 + p3r13) (d1r11 + d2r21 + d3r31)

f12 = r21 +
1

E
(p1r21 + p2r22 + p3r23) (d1r11 + d1r21 + d1r31)

f13 = r31 +
1

E
(p1r31 + p2r32 + p3r33) (d1r11 + d2r21 + d3r31)

f21 = r12 +
1

E
(p1r11 + p2r12 + p3r13) (d1r12 + d2r22 + d3r32)

f22 = r22 +
1

E
(p1r21 + p2r22 + p3r23) (d1r12 + d2r22 + d3r32)

f23 = r32 +
1

E
(p1r31 + p2r32 + p3r33) (d1r12 + d2r22 + d3r32)

f31 = r13 +
1

E
(p1r11 + p2r12 + p3r13) (d1r13 + d2r23 + d3r33)

f32 = r23 +
1

E
(p1r21 + p2r22 + p3r23) (d1r13 + d2r23 + d3r33)

f33 = r33 +
1

E
(p1r31 + p2r32 + p3r33) (d1r13 + d2r23 + d3r33) .(4.102)
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FIGURE 4.7. Three coordinate frames to analyze compound transformations.

In the case of a coordinate homogeneous transformation

[T ] = ATB (4.103)

[A] = ARB (4.104)

[B] = Ad (4.105)

[C] =
£
0 0 0

¤
(4.106)

[D] = [1] (4.107)

we have
[E] = [1] (4.108)

and therefore,

AT−1B =

∙
ART

B −ART
B
Ad

0 1

¸
. (4.109)

4.4 Compound Homogeneous Transformation

Figure 4.7 shows three reference frames: A,B, and C.
The transformation matrices to transform coordinates from frame B to

A, and from frame C to B are

ATB =

∙
ARB

Ad1
0 1

¸
(4.110)

BTC =

∙
BRC

Bd2
0 1

¸
. (4.111)
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Hence, the transformation matrix from C to A is

ATC = ATB
BTC =

∙
ARB

Ad1
0 1

¸ ∙
BRC

Bd2
0 1

¸
=

∙
ARB

BRC
ARB

Bd2 +
Ad1

0 1

¸
=

∙
ARC

Ad2
0 1

¸
(4.112)

and therefore, the inverse transformation is

CTA =

∙
BRT

C
ART

B −BRT
C

ART
B

£
ARB

Bd2 +
Ad1

¤
0 1

¸
=

∙
BRT

C
ART

B −BRT
C

Bd2 − ART
C

Ad1
0 1

¸
=

∙
ART

C −ART
C
Ad2

0 1

¸
. (4.113)

The value of homogeneous coordinates are better appreciated when sev-
eral displacements occur in succession which, for instance, can be written
as

GT4 =
GT1

1T2
2T3

3T4 (4.114)

rather than

GR4
4rP +

Gd4 =
GR1

¡
1R2

¡
2R3

¡
3R4

4rP +
3d4

¢
+ 2d3

¢
+ 1d2

¢
+Gd1. (4.115)

Example 92 Homogeneous transformation for multiple frames.
Figure 4.8 depicts a point P in a local frame B2 (x2y2z2). The coordinates

of P in the global frame G(OXY Z) can be found by using the homogeneous
transformation matrices.
The position of P in frame B2 (x2y2z2) is indicated by 2rP . Therefore,

its position in frame B1 (x1y1z1) is

⎡⎢⎢⎣
x1
y1
z1
1

⎤⎥⎥⎦ = ∙ 1R2
1d2

0 1

¸⎡⎢⎢⎣
x2
y2
z2
1

⎤⎥⎥⎦ (4.116)
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FIGURE 4.8. Point P in a local frame B2 (x2y2z2).

and therefore, its position in the global frame G(OXY Z) would be

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ =

∙
GR1

Gd1
0 1

¸⎡⎢⎢⎣
x1
y1
z1
1

⎤⎥⎥⎦

=

∙
GR1

Gd1
0 1

¸ ∙
1R2

1d2
0 1

¸⎡⎢⎢⎣
x2
y2
z2
1

⎤⎥⎥⎦

=

∙
GR1

1R2
GR1

1d2 +
Gd1

0 1

¸⎡⎢⎢⎣
x2
y2
z2
1

⎤⎥⎥⎦ . (4.117)

Example 93 F Rotation about an axis not going through origin.
The homogeneous transformation matrix can represent rotations about

an axis going through a point different from the origin. Figure 4.9 indicates
an angle of rotation, φ, around the axis û, passing through a point P apart
from the origin.
We set a local frame B at point P parallel to the global frame G. Then,

a rotation around û can be expressed as a translation along −d, to bring
the body fame B to the global frame G, followed by a rotation about û and



4. Motion Kinematics 171

u

P

G

X Y

Z

Od

B
z

x y

φ

FIGURE 4.9. Rotation about an axis not going through origin.

a reverse translation along d

GTB = Dd̂,dRû,φDd̂,−d

=

∙
I d
0 1

¸ ∙
Rû,φ 0
0 1

¸ ∙
I −d
0 1

¸
=

∙
Rû,φ d−Rû,φd
0 1

¸
(4.118)

where,

Rû,φ =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(4.119)

and

d−Rû,φd =⎡⎣ d1(1− u21) versφ− u1 versφ (d2u2 + d3u3) + sφ (d2u3 − d3u2)
d2(1− u22) versφ− u2 versφ (d3u3 + d1u1) + sφ (d3u1 − d1u3)
d3(1− u23) versφ− u3 versφ (d1u1 + d2u2) + sφ (d1u2 − d2u1)

⎤⎦
(4.120)

Example 94 F A rotating cylinder.
Imagine a cylinder with radius R = 2 that its axis û is at d.

û =

⎡⎣ 0
0
1

⎤⎦ d =

⎡⎣ 2
0
0

⎤⎦ (4.121)

If the cylinder turns 90 deg about its axis then every point on the periphery
of the cylinder will move 90 deg on a circle parallel to (x, y)-plane. The
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transformation of this motion is:

GTB = Dd̂,dRû,φDd̂,−d =

∙
I d
0 1

¸"
RK̂,

π
2

0

0 1

# ∙
I −d
0 1

¸

=

⎡⎢⎢⎣
1 0 0 2
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cπ2 −sπ2 0 0
sπ2 cπ2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 −2
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0 −1 0 2
1 0 0 −2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.122)

Consider a point on the cylinder that was on the origin. After the rotation,
the point would be seen at:

Gr = GTB
Gr

=

⎡⎢⎢⎣
0 −1 0 2
1 0 0 −2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2
−2
0
1

⎤⎥⎥⎦ (4.123)

Example 95 End-effector of an RPR robot in a global frame.
Point P indicates the tip point of the last arm of the robot shown in Figure

4.10. Position vector of P in frame B2 (x2y2z2) is 2rP . Frame B2 (x2y2z2)
can rotate about z2 and slide along y1. Frame B1 (x1y1z1) can rotate about
the Z-axis of the global frame G(OXY Z) while its origin is at Gd1. The
position of P in G(OXY Z) would then be at

Gr = GR1
1R2

2rP +
GR1

1d2 +
Gd1 =

GT1
1T2

2rP

= GT2
2rP (4.124)

where
1T2 =

∙
1R2

1d2
0 1

¸
(4.125)

GT1 =

∙
GR1

Gd1
0 1

¸
(4.126)

and
GT2 =

∙
GR1

1R2
GR1

1d2 +
Gd1

0 1

¸
. (4.127)

Example 96 End-effector of a SCARA robot in a global frame.
Figure 4.11 depicts an RkRkP (SCARA) robot with a global coordinate

frame G(OXY Z) attached to the base link along with the coordinate frames
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FIGURE 4.10. An RPR manipulator robot.

B1(o1x1y1z1) and B2(o2x2y2z2) attached to link (1) and the tip of link (3).

The transformation matrix, which is utilized to map points in frame B1
to the base frame G is

GTB1
=

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.128)

and the transformation matrix that is utilized to map points in frame B2
to the frame B1 is

B1TB2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 −h
0 0 0 1

⎤⎥⎥⎦ . (4.129)

Therefore, the transformation matrix to map points in the end-effector
frame B2 to the base frame G is

GTB2 = GTB1

B1TB2 (4.130)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 −h
0 0 0 1

⎤⎥⎥⎦ .
The origin of the last frame is at B2ro2 =

£
0 0 0 1

¤T
, in its local
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FIGURE 4.11. The SCARA robot of Example 96.

frame. Hence, the position of o2 in the base coordinate frame is at

Gr2 = GTB2

B2ro2

=

⎡⎢⎢⎣
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

−h
1

⎤⎥⎥⎦ . (4.131)

Example 97 Object manipulation.
The geometry of a rigid body may be represented by an array containing

the homogeneous coordinates of some specific points of the body described
in a local coordinate frame. The specific points are usually the corners, if
there are any.
Figure 4.12(a) illustrates the configuration of a wedge. The coordinates

of the corners of the wedge in its body frame B are collected in the matrix
P .

BP =

⎡⎢⎢⎣
1 1 1 0 0 0
0 0 3 3 0 0
4 0 0 0 0 4
1 1 1 1 1 1

⎤⎥⎥⎦ (4.132)

The configuration of the wedge after a rotation of −90 deg about the Z-
axis and a translation of three units along the X-axis is shown in Figure
4.12(b). The new coordinates of its corners in the global frame G are found
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FIGURE 4.12. Describing the motion of a rigid body in terms of some body
points.

by multiplying the corresponding transformation matrix by the P matrix.

GTB = DX,3RZ,90

=

⎡⎢⎢⎣
1 0 0 3
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
cos−90 − sin−90 0 0
sin−90 cos−90 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
0 1 0 3
−1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (4.133)

Therefore, the global coordinates of corners 1 to 6 after motion are

GP = GTB
BP =

⎡⎢⎢⎣
0 1 0 3
−1 0 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 1 0 0 0
0 0 3 3 0 0
4 0 0 0 0 4
1 1 1 1 1 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
3 3 6 6 3 3
−1 −1 −1 0 0 0
4 0 0 0 0 4
1 1 1 1 1 1

⎤⎥⎥⎦ . (4.134)
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FIGURE 4.13. Cylindical coordinates of a point P .

Example 98 Cylindrical coordinates.
There are situation in which we wish to specify the position of a robot

end-effector in cylindrical coordinates. A set of cylindrical coordinates, as
shown in Figure 4.13, can be achieved by a translation r along the X-axis,
followed by a rotation ϕ about the Z-axis, and finally a translation z along
the Z-axis.
Therefore, the homogeneous transformation matrix for going from cylin-

drical coordinates C(Orϕz) to Cartesian coordinates G(OXY Z) is

GTC = DZ,z RZ,ϕDX,r

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 z
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 r
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cosϕ − sinϕ 0 r cosϕ
sinϕ cosϕ 0 r sinϕ
0 0 1 z
0 0 0 1

⎤⎥⎥⎦ . (4.135)

As an example, consider a point P at (1, π3 , 2) in a cylindrical coordinate
frame. Then, the Cartesian coordinates of P would be⎡⎢⎢⎣

cos π3 − sin π
3 0 cos π3

sin π
3 cos π3 0 sin π

3
0 0 1 2
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0.5
0.866
2.0
1.0

⎤⎥⎥⎦ .
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FIGURE 4.14. Spherical coordinates of a point P .

Example 99 Spherical coordinates.
A set of spherical coordinates, as shown in Figure 4.14, can be achieved

by a translation r along the Z-axis, followed by a rotation θ about the Y -
axis, and finally a rotation ϕ about the Z-axis.
Therefore, the homogeneous transformation matrix for going from spher-

ical coordinates S(Orθϕ) to Cartesian coordinates G(OXY Z) is

GTS = RZ,ϕRY,θDZ,r

=

⎡⎢⎢⎣
cos θ cosϕ − sinϕ cosϕ sin θ r cosϕ sin θ
cos θ sinϕ cosϕ sin θ sinϕ r sin θ sinϕ
− sin θ 0 cos θ r cos θ
0 0 0 1

⎤⎥⎥⎦(4.136)
where

RZ,ϕ =

⎡⎢⎢⎣
cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.137)

RY,θ =

⎡⎢⎢⎣
cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

⎤⎥⎥⎦ (4.138)

DZ,r =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 r
0 0 0 1

⎤⎥⎥⎦ . (4.139)
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u

P

FIGURE 4.15. A screw motion is translation along a line combined with a rotation
about the line.

As an example, consider a point P at (2, π3 ,
π
3 ) in a spherical coordinate

frame. Then, the Cartesian coordinates of P would be⎡⎢⎢⎣
cπ3 c

π
3 −sπ3 cπ3 s

π
3 2cπ3 s

π
3

cπ3 s
π
3 cπ3 sπ3 s

π
3 2sπ3 s

π
3

−sπ3 0 cπ3 2cπ3
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0.866
1.5
1.0
1.0

⎤⎥⎥⎦ . (4.140)

4.5 F Screw Coordinates

Any rigid body motion can be produced by a single translation along an
axis combined with a unique rotation about that axis. This is called Chasles
theorem. Such a motion is called screw. Consider the screw motion illus-
trated in Figure 4.15. Point P rotates about the screw axis indicated by û
and simultaneously translates along the same axis. Hence, any point on the
screw axis moves along the axis, while any point off the axis moves along
a helix.
The angular rotation of the rigid body about the screw is called twist.

Pitch of a screw, p, is the ratio of translation, h, to rotation, φ.

p =
h

φ
(4.141)

In other words, the rectilinear distance through which the rigid body trans-
lates parallel to the axis of screw for a unit rotation is called pitch. If p > 0,
then the screw is right-handed, and if p < 0, it is left-handed.
A screw is shown by š(h, φ, û, s) and is indicated by a unit vector û, a

location vector s, a twist angle φ, and a translation h (or pitch p). The
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location vector s indicates the global position of a point on the screw axis.
The twist angle φ, the twist axis û, and the pitch p (or translation h) are
called screw parameters.
Homogeneous matrix representation of a screw transformation is a combi-

nation of rotation and translation about the screw axis. If û passes through
the origin of the coordinate frame, then s = 0 and the screw motion is called
central screw š(h, φ, û).
The screw is basically another transformation method to describe the

motion of a rigid body. A linear displacement Dû,h along an axis combined
with an angular displacement Rû,φ about the same axis arises repeatedly
in robotic application.
For a central screw motion, we have

GšB(h, φ, û) = Dû,h Rû,φ (4.142)

where,

Dû,h =

⎡⎢⎢⎣
1 0 0 hu1
0 1 0 hu2
0 0 1 hu3
0 0 0 1

⎤⎥⎥⎦ (4.143)

Rû,φ =⎡⎢⎢⎣
u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ 0

u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ 0
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ 0

0 0 0 1

⎤⎥⎥⎦
(4.144)

and hence,

GšB(h, φ, û) =⎡⎢⎢⎣
u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ hu1

u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ hu2
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ hu3

0 0 0 1

⎤⎥⎥⎦ .
(4.145)

As a result, a central screw transformation matrix includes the pure
or fundamental translations and rotations as special cases because a pure
translation corresponds to φ = 0, and a pure rotation corresponds to h = 0
(or p =∞). A reverse central screw is defined as š(−h,−φ, û).
For a general screw motion, we have

GTB = GšB(h, φ, û, s) =

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
=

∙
GRB

Gd
0 1

¸
(4.146)
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FIGURE 4.16. Screw motion of a rigid body.

where,

GRB = I cosφ+ ûûT (1− cosφ) + ũ sinφ (4.147)
Gd =

¡¡
I− ûûT

¢
(1− cosφ)− ũ sinφ

¢
Gs+ hû. (4.148)

When the screw is not central and û is not passing through the origin, a
screw motion to move p to p00 is denoted by

p00 = (p− s) cosφ+ (1− cosφ) (û · (p− s)) û
+(û× (p− s)) sinφ+ s+ hû (4.149)

or

p00 = GRB (p− s) + s+ hû

= GRB p+ s− GRB s+ hû (4.150)

and therefore,
p00 = š(h, φ, û, s)p = [T ]p (4.151)

where [T ] is the homogenous transformation matrix of Equation (4.146).
The vector Gs, called location vector, is the global position of the body

frame before screw motion. The vectors p00 and p are global positions of a
point P after and before screw, as shown in Figure 4.16.
The screw axis is indicated by the unit vector û. Now a body point P

moves from its first position to its second position P 0 by a rotation about
û. Then it moves to P 00 by a translation h parallel to û. The initial position
of P is pointed by p and its final position is pointed by p00.
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In some references, screw is defined as a line with a pitch. To indicate a
motion, they need to add the angle of twist. So, screw is the helical path
of motion, and twist is the actual motion. However, in this text we define
a screw as a four variable function š(h, φ, û, s) to indicate the motion. A
screw has a line of action û at Gs, a twist φ, and a translation h.
The instantaneous screw axis was first used by Mozzi (1763) although

Chasles (1830) is credited with this discovery.

Proof. The angle-axis rotation formula (3.4) relates r0 and r, which are
position vectors of P after and before rotation φ about û when s = 0,
h = 0.

r0 = r cosφ+ (1− cosφ) (û · r) û+ (û× r) sinφ (4.152)

However, when the screw axis does not pass through the origin ofG(OXY Z),
then r0 and r must accordingly be substituted with the following equations:

r = p− s (4.153)

r0 = p00 − s− hû (4.154)

where r0 is a vector after rotation and hence in G coordinate frame, and r
is a vector before rotation and hence in B coordinate frame.
Therefore, the relationship between the new and old positions of the

body point P after a screw motion is

p00 = (p− s) cosφ+ (1− cosφ) (û · (p− s)) û
+(û× (p− s)) sinφ+ (s+ hû). (4.155)

Equation (4.155) is the Rodriguez formula for the most general rigid body
motion. Defining new notations Gp = p00 and Bp = p and also noting that
s indicates a point on the rotation axis and therefore rotation does not
affect s, we may factor out Bp and write the Rodriguez formula in the
following form

Gp =
¡
I cosφ+ ûûT (1− cosφ) + ũ sinφ

¢
Bp

−
¡
I cosφ+ ûûT (1− cosφ) + ũ sinφ

¢
Gs+ Gs+ hû (4.156)

which can be rearranged to show that a screw can be represented by a
homogeneous transformation

Gp = GRB
Bp+ Gs− GRB

Gs+ hû = GRB
Bp+ Gd

= GTB
Bp (4.157)

GTB = GšB(h, φ, û, s) (4.158)

=

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
=

∙
GRB

Gd
0 1

¸
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where,

GRB = I cosφ+ ûûT (1− cosφ) + ũ sinφ (4.159)
Gd =

¡¡
I− ûûT

¢
(1− cosφ)− ũ sinφ

¢
Gs+ hû. (4.160)

Direct substitution shows that

GRB =

⎡⎣ u21 versφ+ cφ u1u2 versφ− u3sφ u1u3 versφ+ u2sφ
u1u2 versφ+ u3sφ u22 versφ+ cφ u2u3 versφ− u1sφ
u1u3 versφ− u2sφ u2u3 versφ+ u1sφ u23 versφ+ cφ

⎤⎦
(4.161)

Gd =⎡⎣ hu1 − u1 (s3u3 + s2u2 + s1u1) versφ+ (s2u3 − s3u2) sφ+ s1 versφ
hu2 − u2 (s3u3 + s2u2 + s1u1) versφ+ (s3u1 − s1u3) sφ+ s2 versφ
hu3 − u3 (s3u3 + s2u2 + s1u1) versφ+ (s1u2 − s2u1) sφ+ s3 versφ

⎤⎦
(4.162)

This representation of a rigid motion requires six independent parame-
ters, namely one for rotation angle φ, one for translation h, two for screw
axis û, and two for location vector Gs. It is because three components of û
are related to each other according to

ûT û = 1 (4.163)

and the location vector Gs can locate any arbitrary point on the screw axis.
It is convenient to choose the point where it has the minimum distance from
O to make Gs perpendicular to û. Let’s indicate the shortest location vector
by Gs0, then there is a constraint among the components of the location
vector

GsT0 û = 0. (4.164)

If s = 0 then the screw axis passes through the origin of G and (4.158)
reduces to (4.145).
The screw parameters φ and h, together with the screw axis û and loca-

tion vector Gs, completely define a rigid motion of B(oxyz) in G(OXY Z).
It means, given the screw parameters and screw axis, we can find the ele-
ments of the transformation matrix by Equations (4.161) and (4.162). On
the other hand, given the transformation matrix GTB , we can find the screw
angle and axis by

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢
=
1

2

¡
tr
¡
GTB

¢
− 2
¢

=
1

2
(r11 + r22 + r33 − 1) (4.165)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
(4.166)
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hence,

û =
1

2 sinφ

⎡⎣ r32 − r23
r13 − r31
r21 − r12

⎤⎦ . (4.167)

To find all the required screw parameters, we must also find h and coor-
dinates of one point on the screw axis. Since the points on the screw axis
are invariant under the rotation, we must have⎡⎢⎢⎣

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 hu1
0 1 0 hu2
0 0 1 hu3
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

X
Y
Z
1

⎤⎥⎥⎦ (4.168)

where (X,Y,Z) are coordinates of points on the screw axis.
As a sample point, we may find the intersection point of the screw line

with Y Z-plane, by setting Xs = 0 and searching for s =
£
0 Ys Zs

¤T
.

Therefore,⎡⎢⎢⎣
r11 − 1 r12 r13 r14 − hu1
r21 r22 − 1 r23 r24 − hu2
r31 r32 r33 − 1 r34 − hu3
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
0
Ys
Zs
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0
0

⎤⎥⎥⎦ (4.169)

which generates three equations to be solved for Ys, Zs, and h.⎡⎣ h
Ys
Zs

⎤⎦ =
⎡⎣ u1 −r12 −r13

u2 1− r22 −r23
u3 −r32 1− r33

⎤⎦−1 ⎡⎣ r14
r24
r34

⎤⎦ (4.170)

Now we can find the shortest location vector Gs0 by

Gs0 = s− (s · û)û. (4.171)

Example 100 F Central screw transformation of a base unit vector.
Consider two initially coincident frames G(OXY Z) and B(oxyz). The

body performs a screw motion along the Y -axis for h = 2 and φ = 90deg.
The position of a body point at

£
1 0 0 1

¤T
can be found by applying

the central screw transformation.

š(h, φ, û) = š(2,
π

2
, Ĵ) = D(2Ĵ)R(Ĵ ,

π

2
) (4.172)

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 0 1 0
0 1 0 2
−1 0 0 0
0 0 0 1

⎤⎥⎥⎦
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Therefore,

Gı̂ = š(2,
π

2
, Ĵ)B ı̂ (4.173)

=

⎡⎢⎢⎣
0 0 1 0
0 1 0 2
−1 0 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0
2
−1
1

⎤⎥⎥⎦ .
The pitch of this screw is

p =
h

φ
=
2
π
2

=
4

π
= 1.2732 unit/rad. (4.174)

Example 101 F Screw transformation of a point.
Consider two initially parallel frames G(OXY Z) and B(oxyz). The body

performs a screw motion along X = 2 and parallel to the Y -axis for h = 2
and φ = 90deg. Therefore, the body coordinate frame is at location s =£
2 0 0

¤T
. The position of a body point at Br =

£
3 0 0 1

¤T
can

be found by applying the screw transformation, which is

GTB =

∙
GRB s− GRB s+ hû
0 1

¸
(4.175)

=

⎡⎢⎢⎣
0 0 1 2
0 1 0 2
−1 0 0 2
0 0 0 1

⎤⎥⎥⎦
because,

GRB =

⎡⎣ 0 0 1
0 1 0
−1 0 0

⎤⎦ (4.176)

s =

⎡⎣ 2
0
0

⎤⎦ û =

⎡⎣ 0
1
0

⎤⎦ . (4.177)

Therefore, the position vector of Gr would then be

Gr = GTB
Br (4.178)

=

⎡⎢⎢⎣
0 0 1 2
0 1 0 2
−1 0 0 2
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
3
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

2
2
−1
1

⎤⎥⎥⎦ .
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FIGURE 4.17. A cubic rigid body at the corner of the first quadrant.

Example 102 F The screw motion of a cube.
Consider the cubic rigid body of Figure 4.17 that has a unit length and is

at the corner of the first quadrant. If we turn the cube 45 deg about u and
translating it by Gd = hû

u =
£
1 1 1

¤T
(4.179)

hû =
£
1 1 1

¤T
(4.180)

then the associated central screw motion would be:

GTB = GšB(h, φ, û) (4.181)

=

∙
GRB hû
0 1

¸
=

∙
GRB

Gd
0 1

¸
where, GRB is the Rodriguez transformation matrix.

GRB = I cosφ+ ûûT (1− cosφ) + ũ sinφ

=

⎡⎣ 0.804 74 −0.310 62 0.505 88
0.505 88 0.804 74 −0.310 62
−0.310 62 0.505 88 0.804 74

⎤⎦ (4.182)

φ =
π

4
û =

u√
3
=

⎡⎣ 0.577 35
0.577 35
0.577 35

⎤⎦ (4.183)
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FIGURE 4.18. A unit cube after a central screw GšB(h, φ, û), where, h = 1,
φ =

π

4
, û = 1√

3
1 1 1

T
.

It provides the following central screw transformation.

GTB = GšB(h, φ, û) =

=

⎡⎢⎢⎣
0.804 74 −0.310 62 0.505 88 1
0.505 88 0.804 74 −0.310 62 1
−0.310 62 0.505 88 0.804 74 1

0 0 0 1

⎤⎥⎥⎦ (4.184)

Figure 4.18 depicts the cube after the central screw GšB(h, φ, û).
Now suppose we would like to turn the cube about u and translating it by

hû = u where u is at:
Gs =

£
1 0 0

¤T
(4.185)

The screw of this motion has the same rotation matrix GRB with a new
translation vector Gd.

Gd = Gs− GRB
Gs+ hû

=
¡¡
I− ûûT

¢
(1− cosφ)− ũ sinφ

¢
Gs+ hû

=

⎡⎣ 1.1953
0.49412
1.3106

⎤⎦ (4.186)
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It provides the following central screw transformation.

GTB = GšB(h, φ, û, s) =

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸

=

⎡⎢⎢⎣
0.804 74 −0.310 62 0.505 88 1.1953
0.505 88 0.804 74 −0.310 62 0.49412
−0.310 62 0.505 88 0.804 74 1.3106

0 0 0 1

⎤⎥⎥⎦ (4.187)

The local coordinates of the corners of the upper face are:
BrE

BrF
BrG

BrH
x 0 1 1 0
y 0 0 1 1
z 1 1 1 1

(4.188)

which after the screw motion will be at Gr = GšB(h, φ, û, s)
Br:

GrE
GrF

GrG
GrH

X 1.701 2.506 2.195 1.390
Y 0.183 0.689 1.494 0.988
Z 2.115 1.804 2.311 2.62

(4.189)

Figure 4.19 depicts the cube after the screw motion GšB(h, φ, û, s).

Example 103 F Rotation of a vector.
Transformation equation Gr = GRB

Br and Rodriguez rotation formula
(3.4) describe the rotation of any vector fixed in a rigid body. However, the
vector can conveniently be described in terms of two points fixed in the body
to derive the screw equation.
A reference point P1 with position vector r1 at the tail, and a point P2

with position vector r2 at the head, define a vector in the rigid body. Then
the transformation equation between body and global frames can be written
as

G (r2 − r1) = GRB
B (r2 − r1) . (4.190)

Assume the original and final positions of the reference point P1 are along
the rotation axis. Equation (4.190) can then be rearranged in a form suitable
for calculating coordinates of the new position of point P2 in a transforma-
tion matrix form

Gr2 = GRB
B (r2 − r1) + Gr1 (4.191)

= GRB
Br2 +

Gr1 − GRB
Br1

= GTB
Br2

where
GTB =

∙
GRB

Gr1 − GRB
Br1

0 1

¸
. (4.192)

It is compatible with screw motion (4.158) for h = 0.



188 4. Motion Kinematics

G Z

y

x

z

A

B

C

D

E

F

G

H

X

B

u

FIGURE 4.19. A unit cube after a screw motion GšB(h, φ, û), where, h = 1,
φ =
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Example 104 F Special cases for screw determination.
There are two special cases for screws. The first one occurs when r11 =

r22 = r33 = 1, then, φ = 0 and the motion is a pure translation h parallel
to û, where,

û =
r14 − s1

h
Î +

r24 − s2
h

Ĵ +
r34 − s3

h
K̂. (4.193)

Since there is no unique screw axis in this case, we cannot locate any specific
point on the screw axis.
The second special case occurs when φ = 180 deg. In this case

û =

⎡⎢⎢⎢⎣
q

1
2 (r11 + 1)q
1
2 (r22 + 1)q
1
2 (r33 + 1)

⎤⎥⎥⎥⎦ (4.194)

however, h and (X,Y,Z) can again be calculated from (4.170).

Example 105 F Rotation and translation in a plane.
Assume a plane is displaced from position 1 to position 2 according to

Figure 4.20.
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FIGURE 4.20. Motion in a plane.

New coordinates of Q2 are

rQ2 = 2R1 (rQ1 − rP1) + rP2 (4.195)

=

⎡⎣ cos 58 − sin 58 0
sin 58 cos 58 0
0 0 1

⎤⎦⎛⎝⎡⎣ 3
1
0

⎤⎦−
⎡⎣ 1
1
0

⎤⎦⎞⎠+
⎡⎣ 4
1.5
0

⎤⎦
=

⎡⎣ 1.06
1.696
0

⎤⎦+
⎡⎣ 4
1.5
0

⎤⎦ =
⎡⎣ 5.06
3.196
0.0

⎤⎦
or equivalently

rQ2 = 2T1 rQ1 =

∙
2R1 rP2 − 2R1 rP1
0 1

¸
rQ1 (4.196)

=

⎡⎢⎢⎣
cos 58 − sin 58 0 4.318
sin 58 cos 58 0 0.122
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
3
1
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
5.06
3.196
0
1

⎤⎥⎥⎦ .
Example 106 F Pole of planar motion.
In the planar motion of a rigid body, going from position 1 to position

2, there is always one point in the plane of motion that does not change
its position. Hence, the body can be considered as having rotated about this
point, which is known as the finite rotation pole. The transformation matrix
can be used to locate the pole. Figure 4.20 depicts a planar motion of a
triangle. To locate the pole of motion P0(X0, Y0) we need the transformation
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of the motion. Using the data given in Figure 4.20 we have

2T1 =

∙
2R1 rP2 − 2R1 rP1
0 1

¸
(4.197)

=

⎡⎢⎢⎣
cα −sα 0 −cα+ sα+ 4
sα cα 0 −cα− sα+ 1.5
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .
The pole would be conserved under the transformation. Therefore,

rP0 = 2T1 rP0 (4.198)⎡⎢⎢⎣
X0

Y0
0
1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cosα − sinα 0 − cosα+ sinα+ 4
sinα cosα 0 − cosα− sinα+ 1.5
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

X0

Y0
0
1

⎤⎥⎥⎦
which for α = 58deg provides

X0 = −1.5 sinα+ 1− 4 cosα = 2.049 (4.199)

Y0 = 4 sinα+ 1− 1.5 cosα = 3.956. (4.200)

Example 107 F Determination of screw parameters.
We are able to determine screw parameters when we have the original

and final position of three non-colinear points of a rigid body. Assume p0,
q0, and r0 denote the position of points P , Q, and R before the screw
motion, and p1, q1, and r1 denote their positions after the screw motion.
To determine screw parameters, φ, û, h, and s, we should solve the fol-

lowing three simultaneous Rodriguez equations:

p1 − p0 = tan
φ

2
û× (p1 + p0 − 2s) + hû (4.201)

q1 − q0 = tan
φ

2
û× (q1 + q0 − 2s) + hû (4.202)

r1 − r0 = tan
φ

2
û× (r1 + r0 − 2s) + hû (4.203)

We start with subtracting Equation (4.203) from (4.201) and (4.202).

(p1 − p0)− (r1 − r0) = tan
φ

2
û× [(p1 + p0)− (r1 − r0)] (4.204)

(q1 − q0)− (r1 − r0) = tan
φ

2
û× [(q1 + q0)− (r1 − r0)] (4.205)

Now multiplying both sides of (4.204) by [(q1 − q0)− (r1 − r0)] which is
perpendicular to û

[(q1 − q0)− (r1 − r0)]× [(p1 − p0)− (r1 − r0)]
= tan φ

2 [(q1 − q0)− (r1 − r0)]× {û× [(p1 + p0)− (r1 − r0)]}
(4.206)
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gives us

[(q1 − q0)− (r1 − r0)]× [(p1 + p0)− (r1 − r0)]
= tan φ

2 [(q1 − q0)− (r1 − r0)] · [(p1 + p0)− (r1 − r0)] û
(4.207)

and therefore, the rotation angle can be found by equating tan φ
2 and the

norm of the right-hand side of the following equation:

tan
φ

2
û =

[(q1 − q0)− (r1 − r0)]× [(p1 + p0)− (r1 − r0)]
[(q1 − q0)− (r1 − r0)] · [(p1 + p0)− (r1 − r0)]

(4.208)

To find s, we may start with the cross product of û with Equation (4.201).

û× (p1 − p0) = û×
∙
tan

φ

2
û× (p1 + p0 − 2s) + hû

¸
(4.209)

= tan
φ

2
{[û · (p1 + p0)] û− (p1 + p0) + 2 [s− (û · s) û]}

Note that s − (û · s) û is the component of s perpendicular to û, where s
is a vector from the origin of the global frame G(OXY Z) to an arbitrary
point on the screw axis. This perpendicular component indicates a vector
with the shortest distance between O and û. Let’s assume s0 is the name of
the shortest s. Therefore,

s0 = s− (û · s) û

=
1

2

"
û× p1 − p0
tan φ

2

− [û · (p1 + p0)] û+ p1 + p0

#
. (4.210)

The last parameter of the screw is the pitch h, which can be found from any
one of the Equations (4.201), (4.202), or (4.203).

h = û · (p1 − p0) = û · (q1 − q0) = û · (r1 − r0) (4.211)

Example 108 F Alternative derivation of screw transformation.
Assume the screw axis does not pass through the origin of G. If Gs is the

position vector of some point on the axis û, then we can derive the matrix
representation of screw š(h, φ, û, s) by translating the screw axis back to the
origin, performing the central screw motion, and translating the line back
to its original position.

š(h, φ, û, s) = D(Gs) š(h, φ, û)D(−Gs)

= D(Gs)D(hû)R(û, φ)D(−Gs)

=

∙
I Gs
0 1

¸ ∙
GRB hû
0 1

¸ ∙
I −Gs
0 1

¸
=

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
(4.212)
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Example 109 F Rotation about an off-center axis.
Rotation of a rigid body about an axis indicated by û and passing through

a point at Gs, where Gs×û 6= 0 is a rotation about an off-center axis. The
transformation matrix associated with an off-center rotation can be obtained
from the screw transformation by setting h = 0. Therefore, an off-center
rotation transformation is

GTB =

∙
GRB

Gs− GRB
Gs

0 1

¸
. (4.213)

Example 110 F Principal central screw.
There are three principal central screws, namely the X-screw, Y -screw,

and Z-screw, which are

š(hZ , α, K̂) =

⎡⎢⎢⎣
cosα − sinα 0 0
sinα cosα 0 0
0 0 1 pZ α
0 0 0 1

⎤⎥⎥⎦ (4.214)

š(hY , β, Ĵ) =

⎡⎢⎢⎣
cosβ 0 sinβ 0
0 1 0 pY β

− sinβ 0 cosβ 0
0 0 0 1

⎤⎥⎥⎦ (4.215)

š(hX , γ, Î) =

⎡⎢⎢⎣
1 0 0 pX γ
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

⎤⎥⎥⎦ . (4.216)

Example 111 F Proof of Chasles theorem.
Let [T ] be an arbitrary spatial displacement, and decompose it into a

rotation R about û and a translation D.

[T ] = [D][R] (4.217)

We may also decompose the translation [D] into two components [Dk] and
[D⊥], parallel and perpendicular to û, respectively.

[T ] = [Dk][D⊥][R] (4.218)

Now [D⊥][R] is a planar motion, and is therefore equivalent to some rota-
tion [R0] = [D⊥][R] about an axis parallel to the rotation axis û. This yields
the decomposition [T ] = [Dk][R

0]. This decomposition completes the proof,
since the axis of [Dk] can be taken equal to û.
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Example 112 F Every rigid motion is a screw.
To show that any proper rigid motion can be considered as a screw mo-

tion, we must show that a homogeneous transformation matrix

GTB =

∙
GRB

Gd
0 1

¸
(4.219)

can be written in the form

GTB =

∙
GRB (I− GRB) s+ hû
0 1

¸
. (4.220)

This problem is then equivalent to the following equation to find h and û.

Gd = (I− GRB) s+ hû (4.221)

The matrix [I− GRB] is singular because GRB always has 1 as an eigen-
value. This eigenvalue corresponds to û as eigenvector. Therefore,

[I− GRB]û = [I− GRT
B]û = 0 (4.222)

and an inner product shows that

û · Gd = û ·
£
I− GRB

¤
s+ û · hû

=
£
I− GRB

¤
û · s+ û · hû (4.223)

which leads to
h = û · Gd. (4.224)

Now we may use h to find s

s =
£
I− GRB

¤−1
(Gd− hû). (4.225)

Example 113 F Classification of motions of a rigid body.
Imagine a body coordinate frame B(oxyz) is moving with respect to a

global frame G(OXY Z). Point P with position vector pB=
£
p1 p2 p3

¤T
is an arbitrary point in B(oxyz). The possible motions of B(oxyz) and the
required transformation between frames can be classified as:

1. Rotation φ about an axis passing through the origin and indicating by
the unit vector û =

£
u1 u2 u3

¤T
Gp = GRB

Bp (4.226)

where GRB comes from the Rodriguez’s rotation formula (3.4).

2. Translation by Gd =
£
d1 d2 d3

¤T
plus a rotation GRB.

Gp = GRB
Bp+ Gd (4.227)
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3. Rotation φ about an axis on the unit vector û =
£
u1 u2 u3

¤T
passing through an arbitrary point indicated by Gs =

£
s1 s2 s3

¤T
.

Gp = GRB
Bp+ Gs− GRB

Gs (4.228)

4. Screw motion with angle φ and displacement h, about and along an
axis directed by û =

£
u1 u2 u3

¤T
passing through an arbitrary

point indicated by Gs =
£
s1 s2 s3

¤T
.

Gp = GRB
Bp+ Gs− GRB

Gs+ hû (4.229)

5. Reflection

(a) in the xy-plane;
Gp = GRB

Bp(−z) (4.230)

where

p(−z)=

⎡⎣ p1
p2
−p3

⎤⎦ . (4.231)

(b) in the yz-plane;
Gp = GRB

Bp(−x) (4.232)

where

p(−z)=

⎡⎣ −p1p2
p3

⎤⎦ . (4.233)

(c) in the xz-plane;
Gp = GRB

Bp(−y) (4.234)

where

p(−z)=

⎡⎣ p1
−p2
p3

⎤⎦ . (4.235)

(d) in a plane with equation u1x+ u2y + u3z + h = 0;

Gp =
1

u21 + u22 + u23

¡
GRB

Bp− 2hû
¢

= GRB
Bp− 2hû (4.236)

where

GRB =

⎡⎣ −u21 + u22 + u23 −2u1u2 −2u3u1
−2u2u1 u21 − u22 + u23 −2u2u3
−2u1u3 −2u3u2 u21 + u22 − u23

⎤⎦ .
(4.237)
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(e) in a plane going through point
£
s1 s2 s3

¤T
and normal to

û =
£
u1 u2 u3

¤T
Gp = GRB

Bp+ Gs− GRB
Gs (4.238)

where GRB is as in (4.237).

4.6 F Inverse Screw

Inverse of the screw š(h, φ, û, s) is defined by

Gš−1B (h, φ, û, s) = B šG(h, φ, û, s)

=

∙
GRT

B
Gs− GRT

B
Gs− hû

0 1

¸
(4.239)

where û is a unit vector indicating the axis of screw, s is the location vector
of a point on the axis of screw, φ is the screw angle, and h is the screw
translation. If the screw is central, the axis of screw passes through the
origin and s = 0. Therefore, the inverse of a central screw is

Gš−1B (h, φ, û) =

∙
GRT

B −hû
0 1

¸
. (4.240)

Proof. The homogeneous matrix expression of a screw š(h, φ, û, s) is

GTB = GšB(h, φ, û, s)

=

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
. (4.241)

A homogeneous matrix

GTB =

∙
GRB

Gd
0 1

¸
(4.242)

can be inverted according to

BTG =
GT−1B =

∙
GRT

B −GRT
B
Gd

0 1

¸
. (4.243)

To show the correctness of Equation (4.239), we need to calculate−GRT
B
Gd:

−GRT
B
Gd = −GRT

B

¡
Gs− GRB

Gs+ hû
¢

= −GRT
B
Gs+ GRT

B
GRB

Gs− GRT
B hû

= −GRT
B
Gs+ Gs− GRT

B hû. (4.244)
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Since û is an invariant vector in both coordinate frames B and G, we have

û = GRB û = GRT
B û (4.245)

and therefore,
−GRT

B
Gd = Gs− GRT

B
Gs− hû. (4.246)

This completes the inversion of a general screw:

Gš−1B (h, φ, û, s) =

∙
GRT

B
Gs− GRT

B
Gs− hû

0 1

¸
. (4.247)

If the screw is central, the location vector is zero and the inverse of the
screw simplifies to

Gš−1B (h, φ, û) =

∙
GRT

B −hû
0 1

¸
. (4.248)

Since the inversion of a rotation matrix GRB = Rû,φ can be found by a
rotation −φ about û

GR−1B = GRT
B =

BRG = Rû,−φ (4.249)

the inversion of a screw can also be interpreted as a rotation −φ about û,
plus a translation −h along û.

Gš−1B (h, φ, û, s) = š(−h,−φ, û, s) (4.250)

Example 114 F Checking the screw inversion formula.
Employing the inversion screw formula, we must have

š(h, φ, û, s)Gš−1B (h, φ, û, s) = I4. (4.251)

It can be checked by∙
GRB

Gs− GRB
Gs+ hû

0 1

¸ ∙
GRT

B
Gs− GRT

B
Gs− hû

0 1

¸
=

∙
I3

GRB

¡
Gs− GRT

B
Gs− hû

¢
+
¡
Gs− GRB

Gs+ hû
¢

0 1

¸
=

∙
I3

GRB
Gs− Gs− hGRB û+ Gs− GRB

Gs+ hû
0 1

¸
=

∙
I3 0
0 1

¸
= I4. (4.252)
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Example 115 F Inversion of a central screw.
The unit cubic of Figure 4.17 turns φ = 45deg about u and translate by

Gd = hû.
u =

£
1 1 1

¤T
hû =

£
1 1 1

¤T
(4.253)

The associated central screw motion is:

GTB = GšB(h, φ, û) =

∙
Rû,φ hû
0 1

¸
=

∙
GRB

Gd
0 1

¸

=

⎡⎢⎢⎣
0.804 74 −0.310 62 0.505 88 1
0.505 88 0.804 74 −0.310 62 1
−0.310 62 0.505 88 0.804 74 1

0 0 0 1

⎤⎥⎥⎦ (4.254)

The inverse of this screw is:

Gš−1B (h, φ, û) =

∙
GRT

B −hû
0 1

¸

=

⎡⎢⎢⎣
0.80474 0.50588 −0.31062 −1
−0.31062 0.80474 0.50588 −1
0.50588 −0.31062 0.80474 −1
0 0 0 1

⎤⎥⎥⎦ (4.255)

We may check the inverse screw by a matrix multiplication.
GšB(h, φ, û)

Gš−1B (h, φ, û) = Gš−1B (h, φ, û)GšB(h, φ, û) = I4 (4.256)

Example 116 F Inversion of a general screw.
Figure 4.19 shows the unit cubic of Figure 4.17 after a rotation φ =

45deg about Gu and a translation hû = u where u is at Gs.

Gu =

⎡⎣ 1
1
1

⎤⎦ hû =

⎡⎣ 1
1
1

⎤⎦ Gs =

⎡⎣ 1
0
0

⎤⎦ (4.257)

The screw matrix of this motion is:
GTB = GšB(h, φ, û, s)

=

⎡⎢⎢⎣
0.804 74 −0.310 62 0.505 88 1.1953
0.505 88 0.804 74 −0.310 62 0.49412
−0.310 62 0.505 88 0.804 74 1.3106

0 0 0 1

⎤⎥⎥⎦ (4.258)

The inverse of this screw is:

Gš−1B (h, φ, û, s) =

∙
GRT

B
Gs− GRT

B
Gs− hû

0 1

¸

=

⎡⎢⎢⎣
0.804 74 0.505 88 −0.310 62 −0.80474
−0.310 62 0.804 74 0.505 88 −0.68938
0.505 88 −0.310 62 0.804 74 −1.5059
0 0 0 1

⎤⎥⎥⎦ (4.259)
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We must also be able to turn the cube back to its original position by a
rotation φ = −45 deg about Gu and a translation hû = −u where u is at
Gs. Such a screw motion would be:

GTB =

⎡⎢⎢⎣
0.804 74 0.505 88 −0.310 62 −0.80474
−0.310 62 0.804 74 0.505 88 −0.68938
0.505 88 −0.310 62 0.804 74 −1.5059
0 0 0 1

⎤⎥⎥⎦ (4.260)

because:

GRB = I cosφ+ ûûT (1− cosφ) + ũ sinφ

=

⎡⎣ 0.804 74 0.505 88 −0.310 62
−0.310 62 0.804 74 0.505 88
0.505 88 −0.310 62 0.804 74

⎤⎦ (4.261)

Gs− GRB
Gs+ hû =

⎡⎣ 1
0
0

⎤⎦− GRB

⎡⎣ 1
0
0

⎤⎦+
⎡⎣ −1−1
−1

⎤⎦
=

⎡⎣ −0.80474−0.68938
−1.5059

⎤⎦ (4.262)

The screw (4.260) is the inverse of (4.258), so their multiplication is equal
to I4.

4.7 F Compound Screw Transformation

Assume 1š2(h1, φ1, û1, s1) is a screw motion to move from coordinate frame
B2 to B1 and Gš1(h0, φ0, û0, s0) is a screw motion to move from coordinate
frame B1 to G. Then, the screw motion to move from B2 to G is

Gš2(h, φ, û, s) =
Gš1(h0, φ0, û0, s0)

1š2(h1, φ1, û1, s1) (4.263)

=

∙
GR2

GR1(I− 1R2) s1 + (I− GR1) s0 + h1
GR1û1 + h0û0

0 1

¸
.

Proof. Direct substitution for 1s2(h1, φ1, û1) and Gs1(h0, φ0, û0)

Gš1(h0, φ0, û0, s0) =

∙
GR1 s0 − GR1 s0 + h0û0
0 1

¸
(4.264)

1š2(h1, φ1, û1, s1) =

∙
1R2 s1 − 1R2 s1 + h1û1
0 1

¸
(4.265)
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shows that

Gš2(h, φ, û, s) (4.266)

=

∙
GR1 s0 − GR1 s0 + h0û0
0 1

¸ ∙
1R2 s1 − 1R2 s1 + h1û1
0 1

¸
=

∙
GR2

GR1
¡
s1 − 1R2 s1 + h1û1

¢
+ s0 − GR1 s0 + h0û0

0 1

¸
=

∙
GR2

GR1(I− 1R2) s1 + (I− GR1) s0 + h1
GR1û1 + h0û0

0 1

¸
where

GR2 =
GR1

1R2. (4.267)

To find the screw parameters of the equivalent screw Gš2(h, φ, û, s), we
start obtaining û and φ from GR2 based on (4.167) and (4.165). Then,
utilizing (4.224) and (4.225) we can find h and s

h = û · Gd (4.268)

s =
£
I− GR2

¤−1
(Gd− hû) (4.269)

where

Gd = GR1(I− 1R2) s1 + (I− GR1) s0 + h1
GR1û1 + h0û0

=
¡
GR1 − GR2

¢
s1 +

GR1 (h1û1 − s0) + s0 + h0û0. (4.270)

Example 117 F Exponential representation of a screw.
To compute a rigid body motion associated with a screw, consider the

motion of point P in Figure 4.16. The final position of the point can be
given by

p00 = s+ eφũr+ hû (4.271)

= s+ eφũ(p− s) + hû

= [T ]p

where [T ] is the exponential representation of screw motion

[T ] =

∙
eφũ (I− eφũ) s+ hû
0 1

¸
. (4.272)

The exponential screw transformation matrix (4.272) is based on the expo-
nential form of the Rodriguez formula (3.123)

eφũ = I + ũ sinφ+ ũ2 (1− cosφ) . (4.273)
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Therefore, the combination of two screws can also be found by

[T ] = T1T2

=

∙
eφ1ũ1 (I− eφ1ũ1) s1 + h1û1
0 1

¸ ∙
eφ2ũ2 (I− eφ2ũ2) s2 + h2û2
0 1

¸
=

∙
eφ1ũ1+φ2ũ2 Gd

0 1

¸
(4.274)

where

Gd =
¡
eφ1ũ1 − eφ1ũ1+φ2ũ2

¢
s2 + eφ1ũ1 (h2û2 − s1) + s1 + h1û1. (4.275)

Example 118 F Combination of two principal central screws.
Combination of every two principal central screws can be found by matrix

multiplication. As an example, a screw motion about Y followed by another
screw motion about X is

š(hX , γ, Î) š(hY , β, Ĵ) (4.276)

=

⎡⎢⎢⎣
1 0 0 γ pX
0 cγ −sγ 0
0 sγ cγ 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

cβ 0 sβ 0
0 1 0 β pY
−sβ 0 cβ 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cosβ 0 sinβ γpX

sinβ sin γ cos γ − cosβ sin γ β pY cos γ
− cos γ sinβ sin γ cosβ cos γ β pY sin γ

0 0 0 1

⎤⎥⎥⎦ .
Screw combination is not commutative and therefore,

š(hX , γ, Î) š(hY , β, Ĵ) 6= š(hY , β, Ĵ) š(hX , γ, Î). (4.277)

Example 119 F Decomposition of a screw.
Every general screw can be decomposed to three principal central screws.

GšB(h, φ, û, s) =

∙
GRB s− GRB s+ hû
0 1

¸
= š(hX , γ, Î) š(hY , β, Ĵ) š(hZ , α, K̂) (4.278)

Therefore,

GRB =

⎡⎣ cαcβ −cβsα sβ
cγsα+ cαsβsγ cαcγ − sαsβsγ −cβsγ
sαsγ − cαcγsβ cαsγ + cγsαsβ cβcγ

⎤⎦ (4.279)

and

s− GRB s+ hû =

⎡⎣ γpX + αpZ sinβ
βpY cos γ − αpZ cosβ sin γ
βpY sin γ + αpZ cosβ cos γ

⎤⎦ =
⎡⎣ dX

dY
dZ

⎤⎦ . (4.280)
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The twist angles α, β, γ can be found from GRB, then, the pitches pX , pY ,
pZ can be found as follows

pZ =
dZ cos γ − dY sin γ

α cosβ
(4.281)

pY =
dZ sin γ + dY cos γ

β
(4.282)

pX =
dX
γ
− dZ cos γ − dY sin γ

γ cosβ
sinβ. (4.283)

Example 120 F Decomposition of a screw to principal central screws.
In general, there are six different independent combinations of triple prin-

cipal central screws and therefore, there are six different methods to decom-
pose a general screw into a combination of principal central screws. They
are:

1− š(hX , γ, Î) š(hY , β, Ĵ) š(hZ , α, K̂)

2− š(hY , β, Ĵ) š(hZ , α, K̂) š(hX , γ, Î)

3− š(hZ , α, K̂) š(hX , γ, Î) š(hY , β, Ĵ)

4− š(hZ , α, K̂) š(hY , β, Ĵ) š(hX , γ, Î)

5− š(hY , β, Ĵ) š(hX , γ, Î) š(hZ , α, K̂)

6− š(hX , γ, Î) š(hZ , α, K̂) š(hY , β, Ĵ)

(4.284)

The expanded form of the six combinations of principal central screws are
presented in Appendix C. It indicates that every screw can be decomposed
to three principal central screws.

4.8 F The Plücker Line Coordinate

The most common coordinate set for showing a line is the Plücker coordi-
nates. Analytical representation of a line in space can be found if we have
the position of two different points of that line. Assume P1(X1, Y1, Z1) and
P2(X2, Y2, Z2) at r1 and r2 are two different points on the line l as shown
in Figure 4.21.
Using the position vectors r1 and r2, the equation of line l can be defined

by six elements of two vectors

l =

∙
û
ρ

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
L
M
N
P
Q
R

⎤⎥⎥⎥⎥⎥⎥⎦ (4.285)
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FIGURE 4.21. A line indicated by two points.

referred to as Plücker coordinates of the directed line l, where,

û =
r2 − r1
|r2 − r1|

= LÎ +MĴ +NK̂ (4.286)

is a unit vector along the line referred to as direction vector, and

ρ = r1 × û = P Î +QĴ +RK̂ (4.287)

is the moment vector of û about the origin.
The Plücker method is a canonical representation of line definition and

therefore is more efficient than the other methods such as parametric form
l(t) = r1+ tû, point and direction form (r1, û), or two-point representation
from (r1, r2).

Proof. The unit vector û, whose direction is along the line connecting P1
and P2, is

û =
r2 − r1
|r2 − r1|

= LÎ +MĴ +NK̂

=
X2 −X1

d
Î +

Y2 − Y1
d

Ĵ +
Z2 − Z1

d
K̂ (4.288)

where,
L2 +M2 +N2 = 1 (4.289)

and the distance between P1 and P2 is

d =
p
(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2. (4.290)

If r represents a vector from the origin O to a point on the line l, then
the vector r− r1 is parallel to û and therefore, the equation of the line can
be written as

(r− r1)× û = 0 (4.291)
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or equivalently
r× û = ρ (4.292)

where
ρ = r1 × û

is the moment of the direction vector û about O. Furthermore, because
vectors ρ and û are perpendicular, there is a constraint among their com-
ponents

û · ρ = 0. (4.293)

Expanding (4.287) yields

ρ =

¯̄̄̄
¯̄ Î Ĵ K̂
X1 Y1 Z1
L M N

¯̄̄̄
¯̄=P Î +QĴ +RK̂ (4.294)

where

P = Y1N − Z1M

Q = Z1L−X1N (4.295)

R = X1M − Y1L

and therefore the orthogonality condition (4.293) can be expressed as

LP +MQ+NR = 0. (4.296)

The Plücker coordinates of the line (4.285) have four independent coor-
dinates because of two constraints: (4.289) and (4.296).
Our arrangement of Plücker coordinates in the form of (4.285) is the

line arrangement and is called ray coordinates, however sometimes the
reverse order in axis arrangement l =

£
ρ û

¤T
is also used by some

other textbooks. In either case, a vertical line
£
û ρ

¤T
or a semi-colon£

û ; ρ
¤T
may be utilized to separate the first three elements from the

last three. Both arrangements can be used in kinematics efficiently.
The Plücker line coordinates

£
û ρ

¤T
are homogeneous because Equa-

tion (4.287) shows that the coordinates
£
wû wρ

¤T
, where w ∈ R, de-

termines the same line.
Force - moment, angular velocity - translational velocity, and rigid mo-

tion act like a line vector and can be described in Plücker coordinates.

Example 121 F Plücker coordinates of a line connecting two points.
Plücker line coordinates of the line connecting points P1(1, 0, 0) and

P2(0, 1, 1) are

l =

∙
û
ρ

¸
=
£
−1 1 1 0 −1 1

¤T
(4.297)
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P1

P2

Y

X

Z

Q2

Q1

FIGURE 4.22. A unit cube.

because √
3û =

r2 − r1
|r2 − r1|

= −Î + Ĵ + K̂ (4.298)

and √
3ρ = r1 ×

√
3û = −Ĵ + K̂. (4.299)

Example 122 F Plücker coordinates of diagonals of a cube.
Figure 4.22 depicts a unit cube and two lines on diagonals of two adjacent

faces. Line l1 connecting corners P1(1, 0, 1) and P2(0, 1, 1) is

l1 =

∙
û1
ρ1

¸
=

h
−
√
2
2

√
2
2 0 −

√
2
2 −

√
2
2

√
2
2

iT
(4.300)

because

û1 =
p2 − p1
|p2 − p1|

=
−Î + Ĵ√

2
(4.301)

and

ρ1 = p1 × û1 =
−Î − Ĵ + K̂√

2
. (4.302)

Line l2 connecting corners Q1(1, 0, 0) and Q2(1, 1, 1) is

l2 =

∙
û2
ρ2

¸
=

h
0

√
2
2

√
2
2 0 −

√
2
2

√
2
2

iT
(4.303)
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because

û2 =
q2 − q1
|q2 − q1|

=
Ĵ + K̂√

2
(4.304)

and

ρ2 = q1 × û2 =
−Ĵ + K̂√

2
. (4.305)

Example 123 F Grassmanian matrix to show Plücker coordinates.
It can be verified that the Grassmanian matrix for coordinates of two

points ∙
w1 X1 Y1 Z1
w2 X2 Y2 Z2

¸
(4.306)

is a short notation for the Plücker coordinates if we define

L =

¯̄̄̄
w1 X1

w2 X2

¯̄̄̄
P =

¯̄̄̄
Y1 Z1
Y2 Z2

¯̄̄̄
(4.307)

M =

¯̄̄̄
w1 Y1
w2 Y2

¯̄̄̄
Q =

¯̄̄̄
Z1 X1

Z2 X2

¯̄̄̄
(4.308)

N =

¯̄̄̄
w1 Z1
w2 Z2

¯̄̄̄
R =

¯̄̄̄
X1 Y1
X2 Y2

¯̄̄̄
. (4.309)

Example 124 F Ray-axis arrangement transformation.
It can be verified that the ray arrangement of Plücker coordinates,

lray =

∙
û
ρ

¸
(4.310)

can be transformed to the axis arrangement,

laxis =

∙
ρ
û

¸
(4.311)

and vice versa utilizing the following 6× 6 transformation matrix:∙
ρ
û

¸
= ∆

∙
û
ρ

¸
(4.312)

∆ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ =
∙
0 I3
I3 0

¸
(4.313)

The transformation matrix ∆ is symmetric and satisfies the following equa-
tions:

∆2 = ∆∆ = I (4.314)

∆T = ∆ (4.315)
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0=ρ

FIGURE 4.23. Three cases of Plücker coordinates; (a) general case, (b) line
through origin, (c) line at infinity.

Example 125 F Classification of Plücker coordinates.
There are three cases of Plücker coordinates as shown in Figure 4.23.

They are: general case, line through origin, and line at infinity.
The general case of l =

£
û ρ

¤T
, illustrated in Figure 4.23(a), is when

both û and ρ are non-zero. The direction vector û is parallel to the line, ρ
is normal to the plane including the origin and the line, and |ρ| gives the
distance from the origin to the line.
Line through origin l =

£
û 0

¤T
, illustrated in Figure 4.23(b), is when

the line passes through the origin and ρ is zero.
Line at infinity l =

£
0 ρ

¤T
, illustrated in Figure 4.23(c), is when

the distance of the line from origin tends to infinity. In this case we may
assume û is zero. When the line is at infinity, it is better to redefine the
Plücker coordinates by normalizing the moment vector.

l =

∙
û

|ρ|
ρ

|ρ|

¸T
(4.316)

Therefore, the direction components of the line tends to zero with the dis-
tance, while the moment components remain finite.
By noting that the line at infinity can be assumed as the intersection of

the set of all planes perpendicular to the moment vector, it is evident that
the moment vector completely specifies the line.
No line is defined by the zero Plücker coordinates

£
0 0 0 0 0 0

¤T
.

Example 126 F Transformation of a line vector.
Consider the line Bl in Figure 4.24 that is defined in a local frame

B(oxyz) by
Bl =

∙
Bû
Bρ

¸
=

∙
Bû

BrP × Bû

¸
(4.317)
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FIGURE 4.24. A line vector in B and G frames.

where û is a unit vector parallel to the line l, and P is any point on the
line. The Plücker coordinates of the line in the global frame G(OXY Z) is
expressed by

Gl =

∙
Gû
Gρ

¸
=

∙
Gû

GrP × Gû

¸
(4.318)

where,
Gû = GRB

Bû (4.319)

and Gρ is the moment of Gû about O
Gρ = GrP × Gû = (Gdo +

GRB
BrP )× GRB

Bû

= Gdo × GRB
Bû+ GRB(

BrP × Bû)

= Gdo × GRB
Bû+ GRB

Bρ

= Gd̃o
GRB

Bû+ GRB
Bρ. (4.320)

The 6× 1 Plücker coordinates
£
û ρ

¤T
for a line vector can be trans-

formed from a frame B to another frame G
Gl = GΓB

Bl (4.321)∙
Gû
Gρ

¸
= GΓB

∙
Bû
Bρ

¸
(4.322)

by a 6× 6 transformation matrix defined as

GΓB =

∙
GRB 0

Gd̃o
GRB

GRB

¸
(4.323)

where,

GRB =

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (4.324)
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FIGURE 4.25. Two skew lines.

Gd̃o =

⎡⎣ 0 −d3 d2
d3 0 −d1
−d2 d1 0

⎤⎦ (4.325)

Gd̃o
GRB =

⎡⎣ d2r31 − d3r21 d2r32 − d3r22 d2r33 − d3r23
−d1r31 + d3r11 −d1r32 + d3r12 −d1r33 + d3r13
d1r21 − d2r11 d1r22 − d2r12 d1r23 − d2r13

⎤⎦ .
(4.326)

4.9 F The Geometry of Plane and Line

Plücker coordinates introduces a suitable method to define the moment be-
tween two lines, shortest distance between two lines, and the angle between
two lines.

4.9.1 F Moment

Consider two arbitrary lines l1 =
£
û1 ρ1

¤T
and l2 =

£
û2 ρ2

¤T
as

shown in Figure 4.25. Points P1 and P2 on l1 and l2 are indicated by vectors
r1 and r2 respectively. Direction vectors of the lines are û1 and û2.
The moment of the line l2 about P1 is (r2 − r1)× û2 and we can define

the moment of the line l2 about l1 by

l2 × l1 = û1 · (r2 − r1)× û2 (4.327)

which, because of û1 · r1 × û2 = û2 · û1 × r1, simplifies to

l2 × l1 = û1 · ρ2 + û2 · ρ1. (4.328)
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The reciprocal product or virtual product of two lines described by Plücker
coordinates is defined as

l2 × l1 =

∙
û2
ρ2

¸
⊗
∙
û1
ρ1

¸
= û2 · ρ1 + û1 · ρ2. (4.329)

The reciprocal product is commutative and gives the moment between two
directed lines.

4.9.2 F Angle and Distance

If d is the shortest distance between two lines l1 =
£
û1 ρ1

¤T
and l2 =£

û2 ρ2
¤T
, and α ∈ [0, π] is the angle between l1 and l2, then

sinα = |û2 × û1| (4.330)

and

d =
1

sinα
|û2 · ρ1 + û1 · ρ2| =

1

sinα

¯̄̄̄∙
û2
ρ2

¸
⊗
∙
û1
ρ1

¸¯̄̄̄
=

1

sinα
|l2 × l1| . (4.331)

Therefore, two lines l1 and l2 intersect if and only if their reciprocal product
is zero. Two parallel lines may be assumed to intersect at infinity. The
distance expression does not work for parallel lines.

4.9.3 F Plane and Line

The equation of a plane Gπ having a normal unit vector n̂ = n1Î + n2Ĵ +
n3K̂ is

n1X + n2Y + n3Z = s (4.332)

where s is the minimum distance of the plane to the origin O. We may
indicate a plane using a homogeneous representation,

π =
£
n1 n2 n3 s

¤T
(4.333)

and write the condition πT · r = 0 for a point r =
£
X Y Z w

¤T
to

be in the plane by

πT · r =
£
n1 n2 n3 s

¤⎡⎢⎢⎣
X
Y
Z
w

⎤⎥⎥⎦ = 0. (4.334)

Moreover, the w = 0 indicates all points at infinity, and s = 0 indicates all
planes containing the origin.
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The intersection of π-plane with the X-axis, or the X-intercept, is X =
−s/n1, the Y -intercept is Y = −s/n2, and the Z-intercept is Z = −s/n3.
The plane is perpendicular to XY -plane if n3 = 0. It is perpendicular to
the X-axis if n2 = n3 = 0. There are similar conditions for the other planes
and axes. If (X0, Y0, Z0) is a point in the plane (4.333), then

n1(X −X0) + n2(Y − Y0) + n3(Z − Z0) = s. (4.335)

The distance of a point
£
X Y Z w

¤T
from the origin is

d =

r
X2 + Y 2 + Z2

w2
(4.336)

while the distance of a plane π =
£
m1 m2 m3 s

¤T
from the origin is

s =

s
s2

m2
1 +m2

2 +m2
3

. (4.337)

The equation of a line connecting two points P1(X1, Y1, Z1) and P2(X2,
Y2, Z2) at r1 and r2 can also be expressed by

l = r1 +m(r2 − r1) (4.338)

and the distance of a point P (X,Y,Z) from any point on l is given by

d2 = (X1 +m(X2 −X1)−X)2

+(Y1 +m(Y2 − Y1)− Y )2

+(Z1 +m(Z2 − Z1)− Z)
2 (4.339)

which is minimum for

m = − (X2 −X1)(X1 −X) + (Y2 − Y1)(Y1 − Y ) + (Z2 − Z1)(Z1 − Z)

(X2 −X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2
.

(4.340)
To find the minimum distance of the origin we set X = Y = Z = 0.

Example 127 F Angle and distance between two diagonals of a cube.
The Plücker coordinates of the two diagonals of the unit cube shown in

Figure 4.22 are:

l1 =

∙
û1
ρ1

¸
=
h
−
√
2
2

√
2
2 0 −

√
2
2 −

√
2
2

√
2
2

iT
(4.341)

l2 =

∙
û2
ρ2

¸
=
h
0

√
2
2

√
2
2 0 −

√
2
2

√
2
2

iT
(4.342)
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The angle between l1 and l2 is

α = sin−1 |û2 × û1| = sin−1
√
3

2
= 60 deg (4.343)

and the distance between them is

d =
1

sinα

¯̄̄̄∙
û1
ρ1

¸
⊗
∙
û2
ρ2

¸¯̄̄̄
=

1

sinα
|û1 · ρ2 + û2 · ρ1|

=
2√
3
|−0.5| = 1√

3
. (4.344)

Example 128 Distance of a point from a line.
The equation of the line connecting two points r1 and r2

r1 =
£
−1 2 1 1

¤T
(4.345)

r2 =
£
1 −2 −1 1

¤T
(4.346)

is:

l = r1 +m(r2 − r1) =

⎡⎢⎢⎣
−1 + 2m
2− 4m
1− 2m
1

⎤⎥⎥⎦ (4.347)

Now the distance between point r3 =
£
1 1 0 1

¤T
and l is given by

s2 = (X1 +m(X2 −X1)−X3)
2

+(Y1 +m(Y2 − Y1)− Y3)
2

+(Z1 +m(Z2 − Z1)− Z3)
2

= 24m2 − 20m+ 6 (4.348)

which is minimum for

m =
5

12
. (4.349)

Thus, the point on the line at a minimum distance from r3 is

r =

⎡⎢⎢⎣
−1/6
1/3
1/6
1

⎤⎥⎥⎦ . (4.350)

Example 129 Distance between two lines.
The line connecting

r1 =
£
−1 2 1 1

¤T
(4.351)

r2 =
£
1 −2 −1 1

¤T
(4.352)
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is

l = r1 +m(r2 − r1) =

⎡⎢⎢⎣
−1 + 2m
2− 4m
1− 2m
1

⎤⎥⎥⎦ (4.353)

and the line connecting

r3 =
£
1 1 0 1

¤T
(4.354)

r4 =
£
0 −1 2 1

¤T
(4.355)

is

l = r1 +m(r2 − r1) =

⎡⎢⎢⎣
1− n
1− 2n
2n
1

⎤⎥⎥⎦ . (4.356)

The distance between two arbitrary points on the lines is

s2 =
¡
−1 + 2m− 1 + n2

¢
+(2− 4m− 1 + 2n)2+(1− 2m− 2n)2 . (4.357)

The minimum distance is found by minimizing s2 with respect to m and n.

m = 0.443 , n = 0.321 (4.358)

Thus, the two points on the lines at a minimum distance apart are at

rm =

⎡⎢⎢⎣
−0.114
0.228
0.114
1

⎤⎥⎥⎦ rn =

⎡⎢⎢⎣
0.679
0.358
0.642
1

⎤⎥⎥⎦ . (4.359)

Example 130 F Intersection condition for two lines.
If two lines l1 =

£
û1 ρ1

¤T
and l2 =

£
û2 ρ2

¤T
intersect, and the

position of their common point is at r, then

ρ1 = r× û1 (4.360)

ρ2 = r× û2 (4.361)

and therefore

ρ1 · û2 = (r× û1) · û2 = r· (û1 × û2) (4.362)

ρ2 · û1 = (r× û2) · û1 = r· (û2 × û1) (4.363)

which implies
û1 · ρ2 + û2 · ρ1 = 0 (4.364)

or equivalently ∙
û1
ρ1

¸
⊗
∙
û2
ρ2

¸
= 0. (4.365)
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Example 131 F Plücker coordinates of the axis of rotation.
Consider a homogenous transformation matrix corresponding to a rota-

tion α about Z, along with a translation in XY -plane

GTB =

⎡⎢⎢⎣
r11 r12 0 Xo

r21 r22 0 Y0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (4.366)

which must be equal to

GTB =

⎡⎢⎢⎣
cosα − sinα 0 Xo

sinα cosα 0 Yo
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (4.367)

The angle of rotation can be obtained by comparison

α = tan−1
r21
r11

. (4.368)

The pole of rotation can be found by searching for a point that has the same
coordinates in both frames⎡⎢⎢⎣

r11 r12 0 Xo

r21 r22 0 Yo
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Xp

Yp
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

Xp

Yp
0
1

⎤⎥⎥⎦ (4.369)

that can be written as⎡⎢⎢⎣
r11 − 1 r12 0 Xo

r21 r22 − 1 0 Yo
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

Xp

Yp
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ . (4.370)

The solutions of these equations are

Xp =
1

2
Xo −

1

2

r21
1− r11

Yo =
1

2
Xo −

1

2

sinα

versα
Yo (4.371)

Yp =
1

2
Yo +

1

2

r21
1− r11

Xo =
1

2
Yo +

1

2

sinα

versα
Xo. (4.372)

The Plücker line coordinates l =
£
û ρ

¤T
of the pole axis is then equal

to
l =

£
0 0 1 Yp −Xp 0

¤T
. (4.373)
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4.10 F Screw and Plücker Coordinate

Consider a screw š(h, φ, û, s) whose line of action is given by Plücker coor-
dinates

£
û ρ

¤T
, and whose pitch is p = h

φ . The screw can be defined
by a set of Plücker coordinates

š(h, φ, û, s) =

∙
û
ξ

¸
=

∙
û

ρ+ pû

¸
=

∙
φû

φρ+ hû

¸
. (4.374)

If the pitch is infinite p =∞, then the screw reduces to a pure translation,
or equivalently, a line at infinity

š(h, 0, û, r) =

∙
0
hû

¸
. (4.375)

A zero pitch screw p = 0 corresponds to a pure rotation, then the screw
coordinates are identical to the Plücker coordinates of the screw line.

š(0, φ, û, s) =

∙
φû
φρ

¸
=

∙
û
ρ

¸
(4.376)

A central screw is defined by a line through origin.

š(h, φ, û) = š(h, φ, û, 0) =

∙
û
pû

¸
=

∙
φû
hû

¸
= D(hû)R(û, φ) (4.377)

Screw coordinates for differential screw motion is useful in velocity analy-
sis of robots. Consider a screw axis l, an angular velocity ω = ωû = φ̇û
about l, and a velocity v along l. If the location vector s is the position of
a point on l, then the Plücker coordinates of the line l are

l =

∙
û
ρ

¸
=

∙
û

s× û

¸
. (4.378)

The pitch of screw is

p =
|v|
|ω| (4.379)

and the direction of screw is defined by

û =
ω

|ω| (4.380)
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so the instantaneous screw coordinates v̌(p, ω, û, s) are

v̌(p, ω, û, r) =

∙
ωû

r× ω + |v|ω
|ω|

¸T
=

∙
ωû

s× û+ v

¸
=

∙
ω

s× û+ pω

¸
=

∙
ω

ρ+ pω

¸
. (4.381)

Example 132 F Pitch of an instantaneous screw.
The pitch of an instantaneous screw, defined by Plücker coordinates, can

be found by
p = û · ξ (4.382)

because two Plücker vectors are orthogonal, û · ρ = 0, and therefore,

φû · φξ = φû · (ρ+ φpû) =
¡
φû · ρ+ φ2 p

¢
= φ2 p. (4.383)

Example 133 F Nearest point on a screw axis to the origin.
The point on the instantaneous screw axis, nearest to the origin, is indi-

cated by the following position vector:

s0 = φû× φξ (4.384)
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4.11 Summary

Arbitrary motion of a body B with respect to another body G is called
rigid body motion and can be expressed by

GrP =
GRB

BrP + Gd (4.385)

where,

GrP =
£
XP YP ZP

¤T
(4.386)

BrP =
£
xP yP zP

¤T
(4.387)

Gd =
£
Xo Yo Zo

¤T
. (4.388)

The vector Gd is translation of B with respect to G, and GRB is the
rotation transformation matrix to map Br to Gr when Gd = 0.
By introducing the homogeneous coordinate representation for a point

r =

⎡⎢⎢⎣
wx
wy
wz
w

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x
y
z
1

⎤⎥⎥⎦ (4.389)

we may combine the rotation and translation of a motion in a 4 × 4 ho-
mogeneous transformation matrix and show the coordinate transformation
by

Gr = GTB
Br (4.390)

where,
GTB =

∙
GRB

Gd
0 1

¸
. (4.391)

Since the homogeneous transformation matrix GTB is not orthogonal, its
inverse obeys a specific rule

GT−1B = BTG =

∙
GRT

B −GRT
B
Gd

0 1

¸
(4.392)

to be consistent with
GT−1B

GTB = I4. (4.393)

The rigid motion can also be expressed with screw motion š(h, φ, û, s)
and screw transformation

Gr = GšB(h, φ, û, s)
Br (4.394)

š(h, φ, û, s) =

∙
GRB

Gs− GRB
Gs+ hû

0 1

¸
. (4.395)
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The screw š(h, φ, û, s) is indicated by screw parameters; a unit vector on
the axis of rotation û, a location vector s, a twist angle φ, and a translation
h (or pitch p). The location vector s indicates the global position of a point
on the screw axis. When s = 0, then, û passes through the origin of the
coordinate frame and the screw motion is called a central screw š(h, φ, û).
Every screw can be decomposed into three principal central screws about
the three axes of the coordinate frame G.
A rigid motion can be expressed more effectively by screw and Plücker

coordinates of directed lines.

š(h, φ, û, s) =

∙
û
ξ

¸
=

∙
û

ρ+ pû

¸
=

∙
φû

φρ+ hû

¸
(4.396)

ρ = r× û (4.397)
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4.12 Key Symbols

B body coordinate frame, local coordinate frame
c cos
d translation vector, displacement vector
D displacement matrix
e exponential
G global coordinate frame, fixed coordinate frame
h translation of a screw
I = [I] identity matrix
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
l line, Plücker coordinates, Plücker line
L,M,N components of û
n̂ normal unit vector to a plane
p pitch of a screw
P a body point, a fixed point in B, point matrix
P,Q,R components of ρ
p,q, r position vectors, homogeneous position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
s location vector of a screw
š screw
T homogeneous transformation matrix
û a unit vector on axis of rotation
ũ skew symmetric matrix of the vector û
v velocity vector
w weight factor of a homogeneous vector
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
GΓB transformation matrix for Plücker coordinates
λ eigenvalues of R
ξ moment vector of a Plücker line
π homogeneous expression of a plane
ρ moment vector of û about origin
φ angle of rotation about û, rotation of a screw
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω



220 4. Motion Kinematics

Symbol
tr trace operator
vers 1− cos
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

4 transformation matrix of ray to axis arrangement
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Exercises

1. Notation and symbols.

Describe the meaning of

a- 2d1 b- GT−1B c- BTG d- GDB e- GšB(h, φ, û)

f- Dû,h g- š−1 h- GΓB i-
∙
û
ρ

¸
j- GšB(2, π3 , K̂)

k- p = h
φ l- GsT0 m- š−T n-

∙
û
ξ

¸
o- š(h, φ, û, s).

2. Global position in a rigid body motion.

We move the body coordinate frame B to

Gd =
£
4 −3 7

¤T
.

Find GrP if the local position of a point is

BrP =
£
7 3 2

¤T
and the orientation of B with respect to the global frame G can be
found by a rotation 45 deg about the X-axis, and then 45 deg about
the Y -axis.

3. Global rotation and global translation.

A body frame B turns 90 deg about Z-axis, then 90 deg aboutX-axis.

(a) Determine the transformation matrix GTB.

(b) Determine the global coordinates of BrP =
£
1 1 1

¤T
after

the rotations.

(c) Determine a unique rotation about a unique axis to turn B to
its new position.

(d) If the body is a cube at the positive corner of the global coordi-
nate frame such that P is the furthest corner of the cube from
the origin, then determine the required translation vector Gd to
move the cube back to the corner of the first quadrant.

(e) What are the global coordinates of P after moving the cube back
to the corner of the first quadrant.
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FIGURE 4.26. A cube at the positive corner of the global coordinate frame.

4. F Rotation matrix compatibility.

It is not possible to find GRB from the equation of rigid body motion

GrP =
GRB

BrP +
Gd

if GrP , BrP , and Gd are given. Explain why and find the required
conditions to be able to find GRB.

5. Global position with local rotation in a rigid body motion.

Assume a body coordinate frame B is at

Gd =
£
4 −3 7

¤T
.

Find GrP if the local position of a point is

BrP =
£
7 3 2

¤T
and the orientation of B with respect to the global frame G can be
found by a rotation 45 deg about the x-axis, and then 45 deg about
the y-axis.

6. Local rotation and global translation.

A body frame B turns 90 deg about z-axis, then 90 deg about x-axis.

(a) Determine the transformation matrix GTB.

(b) Determine the global coordinates of BrP =
£
1 1 1

¤T
after

the rotations.

(c) Determine a unique rotation about a unique axis to turn B to
its new configuration.
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7. Repeating global rotation.

A body frame B turns 90 deg about Z-axis, then 90 deg about Y -axis.

(a) Determine the transformation matrix GTB.

(b) Determine the global coordinates of BrP =
£
1 1 1

¤T
after

the rotations.

(c) Determine a unique rotation about a unique axis to turn B to
its new position.

(d) F Assume that the body is a cube at the positive corner of the
global coordinate frame as shown in Figure 4.26. The point P
is the furthest corner of the cube from the origin. Show that if
we repeat the combined rotations of section (a) three times, the
cube will be back to its initial position and orientation.

(e) FAfter rotations 90 deg about Z-axis, then 90 deg about Y -axis,
turn the cube φ about Gu =

£
1 1 1

¤T
. How much should φ

be to turn the cube back to its initial position and orientation?

8. Global and local rotation in a rigid body motion.

A body coordinate frame B is translated to

Gd =
£
4 −3 7

¤T
.

Find GrP if the local position of a point is

BrP =
£
7 3 2

¤T
and the orientation of B with respect to the global frame G can be
found by a rotation 45 deg about the X-axis, then 45 deg about the
y-axis, and finally 45 deg about the z-axis.

9. Combination of rigid motions.

The frame B1 is rotated 35 deg about the z1-axis and translated to

2d =
£
−40 30 20

¤T
with respect to another frame B2. The orientation of the frame B2 in
the global frame G can be found by a rotation of 55 deg about

u =
£
2 −3 4

¤T
.

Calculate Gd1, and GR1.

10. Global rotation and translation.

Determine the transformation matrix for the unit cube of Figure 4.26
after:
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(a) A rotation 90 deg about Z-axis followed by a unit translation
along x-axis.

(b) Determine the global coordinates of point P after the motion
(a).

(c) F Repeat the motion in (a) four times. The cube will be back
to its initial position. Determine the coordinates of P after each
motion.

11. Rotation submatrix in a homogeneous transformation matrix.

Find the missing elements in this homogeneous transformation matrix
[T ].

[T ] =

⎡⎢⎢⎣
? 0 ? 4

0.707 ? ? 3
? ? 0 1
0 0 0 1

⎤⎥⎥⎦
12. Angle and axis of rotation.

Find the angle and axis of rotation for [T ] and T−1.

[T ] =

⎡⎢⎢⎣
0.866 −0.5 0 4
0.5 0.866 0 3
0 0 1 1
0 0 0 1

⎤⎥⎥⎦
13. Combination of homogeneous transformations.

Assume that the origin of the frames B1, and B2 are at:

2d1 =
£
−10 20 −20

¤T
Gd2 =

£
−15 −20 30

¤T
The orientation of B1 in B2 can be found by a rotation of 60 deg
about

2u =
£
1 −2 4

¤T
and the orientation of B2 in the global frame G can be found by a
rotation of 30 deg about

Gu =
£
4 3 −4

¤T
.

Calculate the transformation matrix GT2, GT
−1
2 , GT1, and GT−11 .

14. Rotation about an axis not going through origin.

Find the global position of a body point at

BrP =
£
7 3 2

¤T
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FIGURE 4.27. Two adjacent unit boxes.

after a rotation of 30 deg about an axis parallel to

Gu =
£
4 3 −4

¤T
and passing through a point at (3, 3, 3).

15. F Box arrangement.

Figure 4.27 illustrates two adjacent unit boxes. The vectors Gu1, Gu2,
and Gu3 are globally fixed.

(a) Put the second box on top of the first box by a rotation about
u3. Determine the transformation matrix and the coordinates of
the four top points.

(b) Put the second box on top of the first box by a rotation about
u2, u3, and u2. Determine the transformation matrix and the
coordinates of the four top points.

(c) Put the second box on top of the first box by a rotation about
Z, u3, and a translation along Z-axis. Determine the transfor-
mation matrix and the name of the top points.

(d) Put the first box on top of the second box by a rotation abut
u3. Determine the transformation matrix and the coordinates of
the four top points.

(e) Put the first box on top of the second box by a rotation about
Z, u1, u3, and u2. Determine the transformation matrix and the
coordinates of the four top points.
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(f) Determine one rotation and one translation to put the second
box on top of the first box.

(g) Determine one rotation and one translation to put the first box
on top of the second box.

16. Inversion of a square matrix.

Knowing that the inverse of a 2× 2 matrix

[A] =

∙
a b
c d

¸
is

A−1 =

⎡⎢⎣ − d

−ad+ bc

b

−ad+ bc
c

−ad+ bc
− a

−ad+ bc

⎤⎥⎦ ,
use the inverse method of splitting a matrix [T ] into

[T ] =

∙
A B
C D

¸
and applying the inverse technique (4.90), calculate the inverse of [T ].

[T ] =

⎡⎢⎢⎣
1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7

⎤⎥⎥⎦
17. F Combination of rotations about non-central axes.

Consider a rotation 30 deg about an axis at the global point (3, 0, 0)
followed by another rotation 30 deg about an axis at the global point
(0, 3, 0). Find the possible transformations such that the final global
coordinates of

BrP =
£
1 1 0

¤T
to be

GrP =
£ √

2 0 3
¤T

.

18. Transformation matrix from body points.

Figure 4.28(a) shows a cube at initial configurations. Label the cor-
ners of the cube, at the final configuration shown in Figure 4.28(b),
and find the associated homogeneous transformation matrix. The
length of each side of the cube is 2.

19. Eulerian angles and translations.
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FIGURE 4.28. A cube, before and after a rigid motion.

(a) Determine the homogeneous transformation matrix GTB for a
set of Eulerian rotations ϕ, θ, and ψ, plus a unit translations
along êϕ, êθ, and êψ.

(b) Determine the inverse of the transformation matrix in (a).

(c) Simplify the GTB and GT−1B for ϕ = 45deg, θ = 45deg, and
ψ = 45deg.

20. Euler angles and global translations.

(a) Let us turn a rigid body 45 deg about Gu and translate one unit
along Gu.

Gu =
£
1 2 3

¤T
.

(b) Determine the homogeneous transformation matrix GTB.

(c) What are the Eulerian rotations ϕ, θ, and ψ, and translations
one unit along Gu to have the same GTB?

(d) What are the translations one unit along the Eulerian axes êϕ,
êθ, and êψ to have the same GTB?

(e) What are the Eulerian rotations ϕ, θ, and ψ, and translations
along êϕ, êθ, and êψ to have the same GTB?

21. Wrong order of rotation and translation.

When we split a homogeneous transformation to a rotation and a
translation, we must follow the rule (4.37) and apply the rotation
first.

GTB =
GDB

GRB 6= GRB
GDB
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(a) Apply a rotation GRZ,45 and translation GDX,2 and determine

the global coordinates of a point at Br =
£
1 1 1

¤T
.

(b) Apply the translation GDX,2 on Br, followed by the rotation
GRZ,45 and determine the global coordinates of a point at Br.

(c) Determine the required rigid body motion to move Grb to Gra.

(d) Determine the required rigid body motion to move Gra to Grb.

22. F Change the order of rotation and translation.

When we split a homogeneous transformation to a rotation and a
translation, we must follow the rule (4.37) and apply the rotation
first.

GTB =
GDB

GRB 6= GRB
GDB

(a) Apply a general rotation GRB and translation GDB and deter-
mine the global coordinates of a point at Br =

£
x y z

¤T
.

(b) Apply the translation GDB on Br, followed by the rotation GRB

and determine the global coordinates of a point at Br.

(c) Determine the required rotation and translation to move Grb to
Gra.

(d) Introduce a new equation for splitting a homogeneous transfor-
mation matrix to:

GTB
?
= GD2

GR2
GRB

GDB

(e) Introduce a new equation for splitting a homogeneous transfor-
mation matrix to:

GTB
?
= GR2

GD2
GRB

GDB

23. F Principal central screw.

Find the principal central screw that moves the point

BrP =
£
1 0 0

¤T
to

GrP =
£
0 1 4

¤T
.

24. F Screw motion.

Find the global position of

BrP =
£
1 0 0 1

¤T
after a screw motion GšB(h, φ, û, s) =

GšB(4, 60 deg, û, s) where

Gs =
£
3 0 0

¤T
Gu =

£
1 1 1

¤T
.



4. Motion Kinematics 229

25. F Pole of a planar motion.

(a) Find the pole position of a planar motion if we have the coordi-
nates of two body points, before and after the motion, as given
below.

P1 (1, 1, 1) P2(5, 2, 1)

Q1 (4, 1, 1) Q2(7, 2 +
√
5, 1)

(b) Show that the pole is at the intersection of lines P1P2 and Q1Q2.

26. F Screw parameters

Find the global coordinates of the body points

P1 (5, 0, 0)
Q1 (5, 5, 0)
R1 (0, 5, 0)

after a rotation of 30 deg about the x-axis followed by a rotation of
40 deg about an axis parallel to the vector

Gu =
£
4 3 −4

¤T
and passing through a global point at (0, 3, 0). Use the coordinates of
the points and calculate the screw parameters that are equivalent to
the two rotations.

27. F Non-central rotation.

Find the global coordinates of a point at

BrP =
£
10 20 −10

¤T
when the body frame rotates about

Gu =
£
1 1 1

¤T
which passes through a point at (−1,−4, 2).

28. F Equivalent screw.

Calculate the transformation matrix GTB for a rotation of 30 deg
about the x-axis followed by a translation parallel to

Gd =
£
3 2 −1

¤T
and then a rotation of 40 deg about an axis parallel to the vector

Gu =
£
2 −1 1

¤T
.

Find the screw parameters of GTB .
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29. F Central screw decomposition.

Find a triple central screws for the case 1 in Appendix C

GšB(h, φ, û, s) = š(hX , γ, Î) š(hY , β, Ĵ) š(hZ , α, K̂)

to get the same screw as

GšB(h, φ, û, s) =
GšB(4, 60, û, s)

where

Gs =
£
3 0 0

¤T
Gu =

£
1 1 1

¤T
.

30. F Central screw composition.

What is the final position of a point at

BrP =
£
10 0 0

¤T
after the central screw š(4, 30 deg, Ĵ) followed by š(2, 30 deg, Î) and
š(−6, 120 deg, K̂)?

31. F Screw composition.

Find the final position of a point at

BrP =
£
10 0 0

¤T
after a screw

1š2(h1, φ1, û1, s1) =
1š2

⎛⎝1, 40 deg,
⎡⎣ 1/

√
3

−1/
√
3

1/
√
3

⎤⎦ ,
⎡⎣ 2

3
−1

⎤⎦⎞⎠
followed by

Gš1(h0, φ0, û0, s0) =
Gš1

⎛⎝−1, 45 deg,
⎡⎣ 1/9
4/9
4/9

⎤⎦ ,
⎡⎣ −31

5

⎤⎦⎞⎠ .

32. F Zero translation screw motion.

If the translation h is zero, then the screw motion is a rotation about
a non-central axis. Show that a zero translation screw is equivalent
to Equation (4.118) for rotation about a non-central axis.

33. F Plücker line coordinate.

Find the missing numbers

l =
£
1/3 1/5 ? ? 2 −1

¤T
.
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FIGURE 4.29. A pyramid.

34. F Plücker lines.

Find the Plücker lines for AE, BE, CE, DE in the local coordinate
B, and calculate the angle betweenAE, and the Z-axis in the pyramid
shown in Figure 4.29. The local coordinate of the edges are

A(1, 1, 0)
B(−1, 1, 0)
C(−1,−1, 0)
D(1,−1, 0)
E(0, 0, 3).

Transform the Plücker lines AE, BE, CE, DE to the global coordi-
nate G. The global position of o is at

o(1, 10, 2).

35. F Angle between two lines.

Find the angle between OE, OD, of the pyramid shown in Figure
4.29. The coordinates of the points are

D(1,−1, 0)
E(0, 0, 3).

36. F Distance from the origin.

The equation of a plane is given as

4X − 5Y − 12Z − 1 = 0.

Determine the perpendicular distance of the plane from the origin.



5

Forward Kinematics
Having the joint variables of a robot, we are able to determine the position
and orientation of every link of the robot, for a given set of geometrical
characteristics of the robot. We attach a coordinate frame to every link
and determine its configuration in the neighbor frames using rigid motion
method. Such an analysis is called forward kinematics.

zi

Link (i)

zi-1

Joint i+1
Jo

in
t i

Joint axis

Joint axis

Proximal 
end

Distal end

FIGURE 5.1. Link (i) and its beginning joint i− 1 and its end joint i.

5.1 Denavit-Hartenberg Notation

A series robot with n joints will have n+1 links. Numbering of links starts
from (0) for the immobile grounded base link and increases sequentially
up to (n) for the end-effector link. Numbering of joints starts from 1, for
the joint connecting the first movable link to the base link, and increases
sequentially up to n. Therefore, the link (i) is connected to its lower link
(i − 1) at its proximal end by joint i and is connected to its upper link
(i+ 1) at its distal end by joint i+ 1, as shown in Figure 5.1.
Figure 5.2 shows links (i − 1), (i), and (i + 1) of a serial robot, along

with joints i − 1, i, and i + 1. Every joint is indicated by its axis, which
may be translational or rotational. To relate the kinematic information of
robot components, we rigidly attach a local coordinate frame Bi to each
link (i) at joint i + 1 based on the following standard method, known as
Denavit-Hartenberg (DH) method.

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_5,  
© Springer Science+Business Media, LLC 2010 
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1. The zi-axis is aligned with the i+ 1 joint axis.

All joints, without exception, are represented by a z-axis. We always
start with identifying the zi-axes. The positive direction of the zi-axis
is arbitrary. Identifying the joint axes for revolute joints is obvious,
however, a prismatic joint may pick any axis parallel to the direction
of translation. By assigning the zi-axes, the pairs of links on either
side of each joint, and also two joints on either side of each link are
also identified.

Although the zi-axes of two joints at the ends of a link can be skew,
we make the industrial robots such that the zi-axes are parallel, per-
pendicular, or orthogonal. Two parallel joint axes are indicated by a
parallel sign, (k). Two joint exes are orthogonal if their axes are in-
tersecting at a right angle. Orthogonal joint axes are indicated by an
orthogonal sign, (`). Two joints are perpendicular if their axes are
at a right angle with respect to their common normal. Perpendicular
joint axes are indicated by a perpendicular sign, (⊥).

2. The xi-axis is defined along the common normal between the zi−1
and zi axes, pointing from the zi−1 to the zi-axis.

In general, the z-axes may be skew lines, however there is always one
line mutually perpendicular to any two skew lines, called the common
normal. The common normal has the shortest distance between the
two skew lines.

When the two z-axes are parallel, there are an infinite number of
common normals. In that case, we pick the common normal that is
collinear with the common normal of the previous joints.

When the two z-axes are intersecting, there is no common normal
between them. In that case, we assign the xi-axis perpendicular to
the plane formed by the two z-axes in the direction of zi−1 × zi.

In case the two z-axes are collinear, the only nontrivial arrangement
of joints is either PkR or RkP. Hence, we assign the xi-axis such that
we have the joint variable equal to θi = 0 in the rest position of the
robot.

3. The yi-axis is determined by the right-hand rule, yi = zi × xi.

Generally speaking, we assign reference frames to each link so that
one of the three coordinate axes xi, yi, or zi (usually xi) is aligned
along the axis of the distal joint.

By applying the DH method, the origin oi of the frame Bi(oi, xi, yi, zi),
attached to the link (i), is placed at the intersection of the joint axis i+ 1
with the common normal between the zi−1 and zi axes.
A DH coordinate frame is identified by four parameters: ai, αi, θi, and

di.
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FIGURE 5.2. Links (i− 1), (i), and (i+1) along with coordinate frames Bi and
Bi+1.

1. Link length ai is the distance between zi−1 and zi axes along the
xi-axis. ai is the kinematic length of link (i).

2. Link twist αi is the required rotation of the zi−1-axis about the xi-
axis to become parallel to the zi-axis.

3. Joint distance di is the distance between xi−1 and xi axes along the
zi−1-axis. Joint distance is also called link offset.

4. Joint angle θi is the required rotation of xi−1-axis about the zi−1-axis
to become parallel to the xi-axis.

DH frame parameters of the links in Figure 5.2 are illustrated in Figure
5.3. The parameters θi and di are called joint parameters, since they define
the relative position of two adjacent links connected at joint i. In a given
design for a robot, each joint is revolute or prismatic. Thus, for each joint, it
will always be the case that either θi or di is fixed and the other is variable.
For a revolute joint (R) at joint i, the value of di is fixed, while θi is the
unique joint variable. For a prismatic joint (P), the value of θi is fixed and
di is the only joint variable. The variable parameter either θi or di is called
the joint variable. The joint parameters θi and di define a screw motion
because θi is a rotation about the zi−1-axis, and di is a translation along
the zi−1-axis.
The parameters αi and ai are called link parameters, because they define

relative positions of joints i and i + 1 at two ends of link (i). The link
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FIGURE 5.3. DH parameters ai, αi, di, θi defined for joint i and link (i).

twist αi is the angle of rotation zi−1-axis about xi to become parallel with
the zi-axis. The other link parameter, ai, is the translation along the xi-
axis to bring the zi−1-axis on the zi-axis. The link parameters αi and ai
define a screw motion because αi is a rotation about the xi-axis, and ai is
a translation along the xi-axis.
In other words, we can move the zi−1-axis to the zi-axis by a central

screw š(ai, αi, ı̂), and move the xi−1-axis to the xi-axis by a central screw
š(di, θi, k̂i−1).

Example 134 Simplification comments for the DH method.
There are some comments to simplify the application of the DH frame

method.

1. Showing only z and x axes is sufficient to identify a coordinate frame.
Drawing is made clearer by not showing y axes.

2. If the first and last joints are R, then

a0 = 0 , an = 0 (5.1)

α0 = 0 , αn = 0. (5.2)

In these cases, the zero position for θ1, and θn can be chosen arbi-
trarily, and link offsets can be set to zero.

d1 = 0 , dn = 0 (5.3)
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3. If the first and last joints are P , then

θ1 = 0 , θn = 0 (5.4)

and the zero position for d1, and dn can be chosen arbitrarily, but
generally we choose them to make as many parameters as possible to
zero.

4. If the final joint n is R, we choose xn to align with xn−1 when θn = 0
and the origin of Bn is chosen such that dn = 0. If the final joint n
is P, we choose xn such that θn = 0 and the origin of Bn is chosen
at the intersection of xn−1 and joint axis n that dn = 0.

5. Each link, except the base and the last, is a binary link and is con-
nected to two other links.

6. The parameters ai and αi are determined by the geometric design of
the robot and are always constant. The distance di is the offset of
the frame Bi with respect to Bi−1 along the zi−1-axis. Since ai is a
length, ai ≥ 0.

7. The angles αi and θi are directional. Positive direction is determined
by the right-hand rule according to the direction of xi and zi−1 re-
spectively.

8. For industrial robots, the link twist angle, αi, is usually a multiple of
π/2 radians.

9. The DH coordinate frames are not unique because the direction of
zi-axes are arbitrary.

10. The base frame B0(x0, y0, z0) = G(X,Y,Z) is the global frame for an
immobile robot. It is convenient to choose the Z-axis along the axis
of joint 1, and set the origin O where the axes of the G frame are
colinear or parallel with the axes of the B1 frame at rest position.

11. The configuration of a robot at which all the joint variables are zero
is called the home configuration or rest position, which is the
reference for all motions of a robot. The best rest position is where it
makes as many axes parallel to each other and coplanar as possible.

12. For convenience, we can relax the strict DH definition for the direc-
tion of xi, so that it points from zi to zi−1 and still obtains a valid DH
parameterization. The direction flip of xi is to set a more convenient
reference frame when most of the joint parameters are zero.

13. A DH parameter table helps to establish a systematic link frame. As
shown in Table 5.1, a DH table has five columns for frame index and
four DH parameters. The rows of the four DH parameters for each
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frame will be filled by constant parameters and the joint variable. The
joint variable can be found by considering what frames and links will
move with each varying active joint.

Table 5.1 - DH parameter table for establishment of link frames.
Frame No. ai αi di θi

1 a1 α1 d1 θ1
2 a2 α2 d2 θ2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
j aj αj dj θj

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
n an αn dn θn

Example 135 DH table and coordinate frames for 3R planar manipula-
tor.
R stands for revolute, hence, an RkRkR manipulator is a planar robot

with three parallel revolute joints. Figure 5.4 illustrates a 3R planar ma-
nipulator robot. The DH table can be filled as shown in Table 5.2, and the
link coordinate frames can be set up as shown in the Figure.

Table 5.2 - DH table for the 3R planar manipulator robot of Figure 5.4.
Frame No. ai αi di θi

1 l1 0 0 θ1
2 l2 0 0 θ2
3 l3 0 0 θ3

Example 136 Coordinate frames for a 3R PUMA robot.
A PUMA manipulator shown in Figure 5.5 has R`RkR main revolute

joints, ignoring the structure of the end-effector of the robot. Coordinate
frames attached to the links of the robot are indicated in the Figure and
tabulated in Table 5.3.

Table 5.3 - DH table for the 3R PUMA manipulator shown in Figure 5.5.
Frame No. ai αi di θi

1 0 90 deg 0 θ1
2 l2 0 l1 θ2
3 0 −90 deg 0 θ3

The joint axes of an R⊥RkR manipulator are called waist z0, shoulder
z1, and elbow z2. Typically, the joint axes z1 and z2 are parallel, and per-
pendicular to z0.
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FIGURE 5.4. Illustration of a 3R planar manipulator robot and DH frames of
each link.

Example 137 Stanford arm.
A schematic illustration of the Stanford arm, which is a spherical robot

R`R`P attached to a spherical wrist R`R`R, is shown in Figure 5.6.
The DH parameters of the Stanford arm are tabulated in Table 5.4. This

robot has 6 DOF : θ1, θ2, d3, θ4, θ5, θ6.

Table 5.4 - DH table for Stanford arm shown in Figure 5.6.
Frame No. ai αi di θi

1 0 −90 deg l1 θ1
2 0 90 deg l2 θ2
3 0 0 d3 0
4 0 −90 deg 0 θ4
5 0 90 deg 0 θ5
6 0 0 l6 θ6

Example 138 Special coordinate frames.
In a robotic manipulator, some frames have special names.
The base frame B0 or G is the grounded link on which the robot is

installed. It is in the base frame that every kinematic information must be
calculated because the departure point, path of motion, and the arrival point
of the end effector are defined in this frame. The base frame is illustrated
in Figure 5.7.
The station frame S, also called world frame or universe frame, is
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FIGURE 5.5. 3R PUMA manipulator and links coordinate frame.

the frame in which the kinematics of the robot are calculated. Station frame
is important when several robots are installed in a workshop, or the robot
is mobile.
The wrist frames W are installed on the wrist point where the hand

is attached to the last arm of a robot. The hands of industrial robots are
usually attached to a wrist mechanism with three orthogonal revolute axes.
The tool frame T is attached to the end of any tool the robot is holding.

It may also be called the end-effector frame, or final frame. When the
hand is empty, the tool frame is chosen with its origin between the fingertips
of the robot. The tool frame is illustrated in Figure 5.7.
The goal frame F is the location where the robot is to move the tool.

The goal frame is specified relative to the station frame.

Example 139 Transforming the Bi−1 to Bi.
Two neighbor coordinate frames can be brought into coincidence by sev-

eral sequences of translations and rotations. The following prescribed set of
two rotations and two translations is a straightforward method to move the
frame Bi−1 to coincide with the frame Bi.

1. Translate frame Bi−1 along the zi−1-axis by distance di.

2. Rotate frame Bi−1 through θi around the zi−1-axis.

3. Translate frame Bi−1 along the xi-axis by distance ai.
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FIGURE 5.6. Stanford arm R`R`P:R`R`R.

4. Rotate frame Bi−1 through αi about the xi-axis.

However, to make a transformation matrix we should start from two
coincident coordinate frames Bi and Bi−1 at the current configuration of
Bi−1, then move Bi to come to its present position. Therefore, we must
follow the following sequence of motions:

1. Rotate frame Bi through αi about the xi−1-axis.

2. Translate frame Bi along the xi−1-axis by distance ai.

3. Rotate frame Bi through θi about the zi−1-axis.

4. Translate frame Bi along the zi−1-axis by distance di.

During these maneuvers, Bi−1 acts as the global coordinate frame for the
local coordinate frame Bi, and these motions are about and along the global
axes.

Example 140 Shortcomings of the Denavit-Hartenberg method.
The Denavit-Hartenberg method for describing link coordinate frames is

neither unique nor the best method. The drawbacks of the DH method are
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1. The successive coordinate axes are defined in such a way that the ori-
gin oi and axis xi are defined on the common perpendicular to adja-
cent link axes. This may be a difficult task depending on the geometry
of the links, and may produce singularity.

2. The DH notation cannot be extended to ternary and compound links.

5.2 Transformation Between Two Adjacent
Coordinate Frames

The coordinate frame Bi is fixed to the link (i) and the coordinate frame
Bi−1 is fixed to the link (i− 1). Based on the Denavit-Hartenberg conven-
tion, the transformation matrix i−1Ti to transform coordinate frames Bi

to Bi−1 is represented as a product of four basic transformations using the
parameters of link (i) and joint i.

i−1Ti = Dzi−1,di Rzi−1,θi Dxi−1,ai Rxi−1,αi (5.5)

=

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦

Rxi−1,αi =

⎡⎢⎢⎣
1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦ (5.6)

Dxi−1,ai =

⎡⎢⎢⎣
1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.7)
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Rzi−1,θi =

⎡⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.8)

Dzi−1,di =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎤⎥⎥⎦ . (5.9)

Therefore the transformation equation from coordinate frame Bi(xi, yi,
zi), to its previous coordinate frame Bi−1(xi−1, yi−1, zi−1), is⎡⎢⎢⎣

xi−1
yi−1
zi−1
1

⎤⎥⎥⎦ = i−1Ti

⎡⎢⎢⎣
xi
yi
zi
1

⎤⎥⎥⎦ (5.10)

where,

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦ . (5.11)

This 4×4 matrix may be partitioned into two submatrices, which represent
a unique rotation combined with a unique translation to produce the same
rigid motion required to move from Bi to Bi−1,

i−1Ti =

∙
i−1Ri

i−1di
0 1

¸
(5.12)

where

i−1Ri =

⎡⎣ cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi
0 sinαi cosαi

⎤⎦ (5.13)

and

i−1di =

⎡⎣ ai cos θi
ai sin θi

di

⎤⎦ . (5.14)

The inverse of the homogeneous transformation matrix (5.11) is

iTi−1 = i−1T−1i (5.15)

=

⎡⎢⎢⎣
cos θi sin θi 0 −ai

− sin θi cosαi cos θi cosαi sinαi −di sinαi
sin θi sinαi − cos θi sinαi cosαi −di cosαi

0 0 0 1

⎤⎥⎥⎦ .
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FIGURE 5.8. Two coordinate frames based on Denevit-Hartenberg rules.

Proof. 1
Assume that the coordinate frames B2(x2, y2, z2) and B1(x1, y1, z1) in

Figure 5.8 are set up based on Denavit-Hartenberg rules.
The position vector of point P can be found in frame B1(x1, y1, z1) using

2rP and 1s2
1rP =

1R2
2rP +

1s2 (5.16)

which, in homogeneous coordinate representation, is equal to⎡⎢⎢⎣
x1
y1
z1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos(̂ı2, ı̂1) cos(ĵ2, ı̂1) cos(k̂2, ı̂1) s2x
cos(̂ı2, ĵ1) cos(ĵ2, ĵ1) cos(k̂2, ĵ1) s2y
cos(̂ı2, k̂1) cos(ĵ2, k̂1) cos(k̂2, k̂1) s2z

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x2
y2
z2
1

⎤⎥⎥⎦ . (5.17)
Using the parameters introduced in Figure 5.8, Equation (5.17) becomes⎡⎢⎢⎣

x1
y1
z1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cθ2 −sθ2cα2 sθ2sα2 a2cθ2
sθ2 cθ2cα2 −cθ2sα2 a2sθ2
0 sα2 cα2 d2
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x2
y2
z2
1

⎤⎥⎥⎦ . (5.18)

If we substitute the coordinate frame B1 by Bi−1(xi−1, yi−1, zi−1), and
B2 by Bi(xi, yi, zi), then we may rewrite the above equation in the required
form ⎡⎢⎢⎣

xi−1
yi−1
zi−1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

xi
yi
zi
1

⎤⎥⎥⎦ . (5.19)
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Following the inversion rule of homogeneous transformation matrix

i−1Ti =

∙
GRB

Gs
0 1

¸
(5.20)

i−1T−1i =

∙
GRT

B −GRT
B
Gs

0 1

¸
(5.21)

we also find the required inverse transformation (5.15).⎡⎢⎢⎣
xi
yi
zi
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cθi sθi 0 −ai
−sθicαi cθicαi sαi −disαi
sθisαi −cθisαi cαi −dicαi
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

xi−1
yi−1
zi−1
1

⎤⎥⎥⎦ (5.22)

Proof. 2
An alternative method to find iTi−1 is to follow the sequence of transla-

tions and rotations that brings the frame Bi−1 to the present configuration
starting from a coincident position with the frame Bi. Working with two
frames can also be equivalently described by B ≡ Bi and G ≡ Bi−1, so
all the following rotations and translations are about and along the local
coordinate frame axes. Inspecting Figure 5.8 shows that:

1. Frame Bi−1 is translated along the local zi-axis by distance −di,

2. The displaced frame Bi−1 is rotated through −θi about the local
zi-axis,

3. The displaced frame Bi−1 is translated along the local xi-axis by
distance −ai, and

4. The displaced frame Bi−1 is rotated through −αi about the local
xi-axis.

Following these displacement sequences, the transformation matrix iTi−1
would be

iTi−1 = Rxi,−αi Dxi,−ai Rzi,−θi Dzi,−di (5.23)

=

⎡⎢⎢⎣
cos θi sin θi 0 −ai

− sin θi cosαi cos θi cosαi sinαi −di sinαi
sin θi sinαi − cos θi sinαi cosαi −di cosαi

0 0 0 1

⎤⎥⎥⎦
where

Dzi,−di =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −di
0 0 0 1

⎤⎥⎥⎦ (5.24)
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FIGURE 5.9. Illustration of a 2R planar manipulator robot and DH frames of
each link.

Rzi,−θi =

⎡⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.25)

Dxi,−ai =

⎡⎢⎢⎣
1 0 0 −ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.26)

Rxi,−αi =

⎡⎢⎢⎣
1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦ . (5.27)

Using i−1Ti =
iT−1i−1 we find

i−1Ti = iT−1i−1 (5.28)

=

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦ .

Example 141 DH transformation matrices for a 2R planar manipulator.
Figure 5.9 illustrates an RkR planar manipulator and its DH link coor-

dinate frames.
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Table 5.5 - DH table for 2R planar manipulator
shown in Figure 5.9.

Frame No. ai αi di θi
1 l1 0 0 θ1
2 l2 0 0 θ2

Based on the DH Table 5.5 we can find the transformation matrices
from frame Bi to frame Bi−1 by direct substitution of DH parameters in
Equation 5.11. Therefore,

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.29)

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.30)

and consequently

0T2 = 0T1
1T2

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (5.31)
Example 142 Link with RkR or RkP joints.
When the proximal joint of link (i) is revolute and the distal joint is

either revolute or prismatic, and the joint axes at two ends are parallel as
shown in Figure 5.10, then αi = 0deg (or αi = 180 deg), ai is the distance
between the joint axes, and θi is the only variable parameter. The joint
distance di = const is the distance between the origin of Bi and Bi−1 along
zi however we usually set xiyi and xi−1yi−1 coplanar to have di = 0. The
xi and xi−1 are parallel for an RkR link at rest position.
Therefore, the transformation matrix i−1Ti for a link with αi = 0 and

RkR or RkP joints, known as RkR(0) or RkP(0), is

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi 0 ai cos θi
sin θi cos θi 0 ai sin θi
0 0 1 di
0 0 0 1

⎤⎥⎥⎦ (5.32)

while for a link with αi = 180deg and RkR or RkP joints, known as
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FIGURE 5.10. A parallel RkR(0) link.

RkR(180) or RkP(180), is

i−1Ti =

⎡⎢⎢⎣
cos θi sin θi 0 ai cos θi
sin θi − cos θi 0 ai sin θi
0 0 −1 di
0 0 0 1

⎤⎥⎥⎦ . (5.33)

Example 143 Link with R⊥R or R⊥P joints.
When the proximal joint of link (i) is revolute and the distal joint is either

revolute or prismatic, and the joint axes at two ends are perpendicular as
shown in Figure 5.11, then αi = 90deg (or αi = −90 deg), ai is the distance
between the joint axes on xi, and θi is the only variable parameter. The joint
distance di = const is the distance between the origin of Bi and Bi−1 along
zi. However we usually set xiyi and xi−1yi−1 coplanar to have di = 0.
The R⊥R link is made by twisting the RkR link about its center line

xi−1-axis by 90 deg. The xi and xi−1 are parallel for an R⊥R link at rest
position.
Therefore, the transformation matrix i−1Ti for a link with αi = 90deg

and R⊥R or R⊥P joints, known as R⊥R(90) or R⊥P(90), is

i−1Ti =

⎡⎢⎢⎣
cos θi 0 sin θi ai cos θi
sin θi 0 − cos θi ai sin θi
0 1 0 di
0 0 0 1

⎤⎥⎥⎦ (5.34)
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FIGURE 5.11. A perpendicular R⊥R(90) link.

while for a link with αi = −90 deg and R⊥R or R⊥P joints, known as
R⊥R(−90) or R⊥P(−90), is

i−1Ti =

⎡⎢⎢⎣
cos θi 0 − sin θi ai cos θi
sin θi 0 cos θi ai sin θi
0 −1 0 di
0 0 0 1

⎤⎥⎥⎦ . (5.35)

Example 144 Link with R`R or R`P joints.
When the proximal joint of link (i) is revolute and the distal joint is

either revolute or prismatic, and the joint axes at two ends are intersecting
orthogonal, as shown in Figure 5.12, then αi = 90deg (or αi = −90 deg),
ai = 0, di = const is the distance between the coordinates origin on zi, and
θi is the only variable parameter. Note that it is possible to have or assume
di = 0. The xi and xi−1 of an R`R link at rest position are coincident
(when di = 0) or parallel (when di 6= 0).
Therefore, the transformation matrix i−1Ti for a link with αi = 90deg

and R`R or R`P joints, known as R`R(90) or R`P(90), is

i−1Ti =

⎡⎢⎢⎣
cos θi 0 sin θi 0
sin θi 0 − cos θi 0
0 1 0 di
0 0 0 1

⎤⎥⎥⎦ (5.36)
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FIGURE 5.12. An orthogonal R`R(90) link.

while for a link with αi = −90 deg and R`R or R`P joints, known as
R`R(−90) or R`P(−90), is

i−1Ti =

⎡⎢⎢⎣
cos θi 0 − sin θi 0
sin θi 0 cos θi 0
0 −1 0 di
0 0 0 1

⎤⎥⎥⎦ . (5.37)

Example 145 Link with PkR or PkP joints.
When the proximal joint of link (i) is prismatic and its distal joint is

either revolute or prismatic, and the joint axes at two ends are parallel as
shown in Figure 5.13, then αi = 0deg (or αi = 180deg), θi = 0, ai is the
distance between the joint axes on xi, and di is the only variable parameter.
Note that it is possible to have ai = 0.
Therefore, the transformation matrix i−1Ti for a link with αi = 0 and

PkR or PkP joints, known as PkR(0) or PkP(0), is

i−1Ti =

⎡⎢⎢⎣
1 0 0 ai
0 1 0 0
0 0 1 di
0 0 0 1

⎤⎥⎥⎦ (5.38)

while for a link with αi = 180 deg and PkR or PkP joints, known as
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FIGURE 5.13. A parallel PkR(0) link.

PkR(180) or PkP(180), is

i−1Ti =

⎡⎢⎢⎣
1 0 0 ai
0 −1 0 0
0 0 −1 di
0 0 0 1

⎤⎥⎥⎦ . (5.39)

The origin of the Bi−1 frame can be chosen at any point on the zi−1-axis
or parallel to zi−1-axis arbitrarily. One simple setup is to locate the origin
oi of a prismatic joint at the previous origin oi−1. This sets ai = 0 and
furthermore, sets the initial value of the joint variable di = 0, which will
vary when oi slides up and down parallel to the zi−1-axis.

Example 146 Link with P⊥R or P⊥P joints.
When the proximal joint of link (i) is prismatic and its distal joint is

either revolute or prismatic, with perpendicular axes as shown in Figure
5.14, then αi = 90deg (or αi = −90 deg), θi = 0, ai is the distance
between the joint axes on xi, and di is the only variable parameter.
Therefore, the transformation matrix i−1Ti for a link with αi = 90deg

and P⊥R or P⊥P joints, known as P⊥R(90) or P⊥P(90), is

i−1Ti =

⎡⎢⎢⎣
1 0 0 ai
0 0 −1 0
0 1 0 di
0 0 0 1

⎤⎥⎥⎦ (5.40)
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FIGURE 5.14. A perpendicular P⊥R(90) link.

while for a link with αi = −90 deg and P⊥R or P⊥P joints, known as
P⊥R(−90) or P⊥P(−90), is

i−1Ti =

⎡⎢⎢⎣
1 0 0 ai
0 0 1 0
0 −1 0 di
0 0 0 1

⎤⎥⎥⎦ . (5.41)

Example 147 Link with P`R or P`P joints.
When the proximal joint of link (i) is prismatic and the distal joint is

either revolute or prismatic, and the joint axes at two ends are intersecting
orthogonal as shown in Figure 5.15, then αi = 90deg (or αi = −90 deg),
θi = 0, ai = 0, and di is the only variable parameter. Note that xi must be
perpendicular to the plane of zi−1 and zi, and it is possible to have ai 6= 0.

Therefore, the transformation matrix i−1Ti for a link with αi = 90deg
and P`R or P`P joints, known as P`R(90) or P`P(90), is

i−1Ti =

⎡⎢⎢⎣
1 0 0 0
0 0 −1 0
0 1 0 di
0 0 0 1

⎤⎥⎥⎦ (5.42)

while for a link with αi = −90 deg and P`R or P`P joints, known as
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FIGURE 5.15. An orthogonal P`R(90) link.

P`R(−90) or P`P(−90), is

i−1Ti =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 −1 0 di
0 0 0 1

⎤⎥⎥⎦ . (5.43)

Example 148 Assembling industrial links to make a manipulator.
Industrial manipulators are usually made by connecting the introduced

industrial links in Examples 142-147. A manipulator is a combination of
three links that provide three DOF to a point in a Cartesian space. The
articulated and spherical manipulators are two common and practical ma-
nipulators. Figure 5.16(a) and (b) show how we make these manipulators
by connecting the proper industrial links.

Example 149 Classification of industrial robot links.
A robot link is identified by its joints at both ends, which determines the

transformation matrix to go from the distal joint coordinate frame Bi to
the proximal joint coordinate frame Bi−1. There are 12 types of links to
make an industrial robot. The transformation matrix for each type depends
solely on the proximal joint, and angle between the z-axes. The 12 types of
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(a) (b)

FIGURE 5.16. The articulated and spherical manipulators are two common and
practical manipulators.

transformation matrices are:

1 RkR(0) or RkP(0)
2 RkR(180) or RkP(180)
3 R⊥R(90) or R⊥P(90)
4 R⊥R(−90) or R⊥P(−90)
5 R`R(90) or R`P(90)
6 R`R(−90) or R`P(−90)
7 PkR(0) or PkP(0)
8 PkR(180) or PkP(180)
9 P⊥R(90) or P⊥P(90)
10 P⊥R(−90) or P⊥P(−90)
11 P`R(90) or P`P(90)
12 P`R(−90) or P`P(−90)

Example 150 DH coordinate transformation based on vector addition.
The DH transformation from a coordinate frame to the other can also

be described by a vector addition. The coordinates of a point P in frame
B1, as shown in Figure 5.17, are given by the vector equation

−−→
O1P =

−−→
O2P +

−−−→
O1O2 (5.44)
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FIGURE 5.17. Alternative method to derive the Denavit-Hartenberg coordinate
transformation.

where

B1
−−−→
O1O2 =

£
s1 s2 s3

¤T
(5.45)

B1
−−→
O1P =

£
x1 y1 z1

¤T
(5.46)

B2
−−→
O2P =

£
x2 y2 z2

¤T
. (5.47)

However, they must be expressed in the same coordinate frame, using cosines
of the angles between axes of the two coordinate frames.

x1 = x2 cos(x2, x1) + y2 cos(y2, x1) + z2 cos(z2, x1) + s1

y1 = x2 cos(x2, y1) + y2 cos(y2, y1) + z2 cos(z2, y1) + s2

z1 = x2 cos(x2, z1) + y2 cos(y2, z1) + z2 cos(z2, z1) + s3

1 = x2(0) + y2(0) + z2(0) + 1 (5.48)

The transformation (5.48) can be rearranged to be described with the ho-
mogeneous matrix transformation.⎡⎢⎢⎣

x1
y1
z1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos(x2, x1) cos(y2, x1) cos(z2, x1) s1
cos(x2, y1) cos(y2, y1) cos(z2, y1) s2
cos(x2, z1) cos(y2, z1) cos(z2, z1) s3

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x2
y2
z2
1

⎤⎥⎥⎦ (5.49)

In Figure 5.17 the axis x2 has been selected such that it lies along the
shortest common perpendicular between axes z1 and z2. The axis y2 com-
pletes a right-handed set of coordinate axes. Other parameters are defined
as follows:

1. a is the distance between axes z1 and z2.
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2. α is the twist angle that screws the z1-axis into the z2-axis along a.

3. d is the distance from the x1-axis to the x2-axis.

4. θ is the angle that screws the x1-axis into the x2-axis along d.

Using these definitions, the homogeneous transformation matrix becomes,⎡⎢⎢⎣
x1
y1
z1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos θ − sin θ cosα − sin θ sinα a cos θ
sin θ cos θ cosα cos θ sinα a sin θ
0 − sinα cosα d
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x2
y2
z2
1

⎤⎥⎥⎦ (5.50)

or
1rP =

1T2
2rP (5.51)

where
1T2 = (a, α, d, θ). (5.52)

The parameters a, α, θ, d define the configuration of B2 with respect to B1
and belong to B2. Hence, in general, the parameters ai, αi, θi, di define the
configuration of Bi with respect to Bi−1 and belong to Bi.

i−1Ti = (ai, αi, di, θi). (5.53)

Example 151 The same DH transformation matrix.
Because in DH method of setting coordinate frames, a translation D and

a rotation R are about and along one axis, it is immaterial if we apply the
translation D first and then the rotation R or vice versa. Therefore, we can
change the order of D and R about and along the same axis and obtain the
same DH transformation matrix 5.11. Therefore,

i−1Ti = Dzi,di Rzi,θi Dxi,ai Rxi,αi

= Rzi,θi Dzi,di Dxi,ai Rxi,αi

= Dzi,di Rzi,θi Rxi,αi Dxi,ai

= Rzi,θi Dzi,di Rxi,αi Dxi,ai . (5.54)

Example 152 F DH application for a slider-crank planar linkage.
For a closed loop robot or mechanism there would also be a connection

between the first and last links. So, the DH convention will not be satis-
fied by this connection. Figure 5.18 depicts a planar slider-crank linkage
R⊥P`RkRkR and DH coordinate frames installed on each link.

Table 5.6 - DH table for the slider-crank planar linkage
shown in Figure 5.18.

Frame No. ai αi di θi
1 a2 −90 deg d 180 deg
2 a3 0 0 θ3
3 a4 0 0 θ4
4 0 −90 deg 0 θ1
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FIGURE 5.18. A planar slider-crank linkage, making a closed loop or parallel
mechanism.

Applying a loop transformation leads to

[T ] = 1T2
2T3

3T4
4T1 = I4 (5.55)

where the transformation matrix [T ] contains elements that are functions
of a2, d, a3, θ3, a4, θ4, and θ1. The parameters a2, a3, and a4 are constant
while d, θ3, θ4, and θ1 are variable. Assuming θ1 is input and specified,
we may solve for other unknown variables θ3, θ4, and d by equating corre-
sponding elements of [T ] and I.

Example 153 F Non-standard Denavit-Hartenberg notation.
The Denavit-Hartenberg notation presented in this section is the standard

DH method. However, we may adopt a different set of DH parameters,
simply by setting the link coordinate frame Bi at proximal joint i instead
of the distal joint i + 1 as shown in Figure 5.19. The zi-axis is along the
axis of joint i and the xi-axis is along the common normal of the zi and
zi+1 axes, directed from zi to zi+1 axes. The yi-axis makes the Bi frame a
right-handed coordinate frame.
The parameterization of this shift of coordinate frames are:

1. ai is the distance between the zi and zi+1 axes along the xi-axis.

2. αi is the angle from zi to zi+1 axes about the xi-axis.

3. di is the distance between the xi−1 and xi axes along the zi-axis.
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FIGURE 5.19. Non-standard definition of DH parameters ai, αi, di, θi defined
for joint i and link (i).

4. θi is the angle from the xi−1 and xi axes about the zi-axis.

The transformation matrix from Bi−1 to Bi utilizing the non-standard
DH method, is made of two rotations and two translations about and along
the local coordinate axes of Bi−1. 1-Rotate αi−1 about xi−1. 2-Translate
ai−1 along xi−1. 3-Translate di along zi−1. 4-Rotate θi about zi−1.

iTi−1 = Rzi−1,θi Dzi−1,−di Dxi−1,ai−1 Rxi−1,−αi−1 (5.56)

=

⎡⎢⎢⎣
cos θi sin θi cosαi−1 sin θi sinαi−1 −ai−1 cos θi
− sin θi cos θi cosαi−1 cos θi sinαi−1 ai−1 sin θi
0 − sinαi−1 cosαi−1 −di
0 0 0 1

⎤⎥⎥⎦
Therefore, the transformation matrix from the Bi to Bi−1 for the non-
standard DH method is

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi 0 ai−1

sin θi cosαi−1 cos θi cosαi−1 − sinαi−1 −di sinαi−1
sin θi sinαi−1 cos θi sinαi−1 cosαi−1 di cosαi−1

0 0 0 1

⎤⎥⎥⎦ .
(5.57)

An advantage of the non-standard DH method is that the rotation θi is
around the zi-axis and the joint number is the same as the coordinate num-
ber. Actuation force, which is exerted at joint i, is also at the same place as
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FIGURE 5.20. The position of the final frame in the base frame.

the coordinate frame Bi. Addressing the link’s geometrical characteristics,
such as center of gravity, are more natural in this system.
A disadvantage of the non-standard DH method is that the transforma-

tion matrix is a mix of i− 1 and i indices.
Applying the standard or non-standard notation is a personal preference,

since both can be applied effectively.

5.3 Forward Position Kinematics of Robots

The forward or direct kinematics is the transformation of kinematic in-
formation from the robot joint variable space to the Cartesian coordinate
space. Finding the end-effector position and orientation for a given set of
joint variables is the main problem in forward kinematics. This problem
can be solved by determining transformation matrices 0Ti to describe the
kinematic information of link (i) in the base link coordinate frame. The
traditional way of producing forward kinematic equations for robotic ma-
nipulators is to proceed link by link using the Denavit-Hartenberg nota-
tions and frames. Hence, the forward kinematics is basically transformation
matrix manipulation.
For a six DOF robot, six DH transformation matrices, one for each link,

are required to transform the final coordinates to the base coordinates.
The last frame attached to the final frame is usually set at the center of
the gripper as shown in Figure 5.20. For a given set of joint variables,
the transformation matrices i−1Ti are uniquely determined. Therefore, the
position and orientation of the end-effector is also a unique function of the
joint variables.
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FIGURE 5.21. A RkRkR planar manipulator.

The kinematic information includes: position, velocity, acceleration, and
jerk. However, forward kinematics generally refers to the position analysis.
So the forward position kinematics is equivalent to a determination of a
combined transformation matrix

0Tn =
0T1(q1)

1T2(q2)
2T3(q3)

3T4(q4) · · · n−1Tn(qn) (5.58)

to find the coordinates of a point P in the base coordinate frame, when its
coordinates are given in the final frame.

0rP =
0Tn

nrP (5.59)

Example 154 3R planar manipulator forward kinematics.
Figure 5.21 illustrates an RkRkR planar manipulator. Utilizing the DH

parameters indicated in Example 135 and applying Equation (5.11), we can
find the transformation matrices i−1Ti for i = 3, 2, 1. It is also possible to
use the transformation matrix (5.32) of Example 142, since links (1) and
(2) are both RkR(0).

2T3 =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 l3 cos θ3
sin θ3 cos θ3 0 l3 sin θ3
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.60)
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1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.61)

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.62)

Therefore, the transformation matrix to relate the end-effector frame to the
base frame is:

0T3 = 0T1
1T2

2T3

=

⎡⎢⎢⎣
cos (θ1 + θ2 + θ3) − sin (θ1 + θ2 + θ3) 0 r14
sin (θ1 + θ2 + θ3) cos (θ1 + θ2 + θ3) 0 r24

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.63)

r14 = l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3)

r24 = l1 sin θ1 + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3)

The position of the origin of the frame B3, which is the tip point of the
robot, is at:

0T3

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

l1cθ1 + l2c (θ1 + θ2) + l3c (θ1 + θ2 + θ3)
l1sθ1 + l2s (θ1 + θ2) + l3s (θ1 + θ2 + θ3)

0
1

⎤⎥⎥⎦ (5.64)

It means we can find the coordinate of the tip point in the base Cartesian
coordinate frame if we have the geometry of the robot and all joint variables.

X = l1 cos θ1 + l2 cos (θ1 + θ2) + l3 cos (θ1 + θ2 + θ3) (5.65)

Y = l1 sin θ1 + l2 sin (θ1 + θ2) + l3 sin (θ1 + θ2 + θ3) (5.66)

The rest position of the manipulator is lying on the x0-axis where θ1 = 0,
θ2 = 0, θ3 = 0 because, 0T3 becomes:

0T3 =

⎡⎢⎢⎣
1 0 0 l1 + l2 + l3
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.67)

Having the transformation matrices i−1Ti are enough to determine the
configuration of each link in other links’ frame. The configuration of the
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FIGURE 5.22. R`RkR articulated arm.

link (2) in (0) is:

0T2 = 0T1
1T2

=

⎡⎢⎢⎣
cos (θ1 + θ2) − sin (θ1 + θ2) 0 f14
sin (θ1 + θ2) cos (θ1 + θ2) 0 f24

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.68)

f14 = l1 cos θ1 + l2 cos (θ1 + θ2)

f24 = l1 sin θ1 + l2 sin (θ1 + θ2)

and the configuration of the link (3) in (1) is:

1T3 = 1T2
2T3

=

⎡⎢⎢⎣
cos (θ2 + θ3) − sin (θ2 + θ3) 0 g14
sin (θ2 + θ3) cos (θ2 + θ3) 0 g24

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.69)

g14 = l3 cos (θ2 + θ3) + l2 cos θ2

g24 = l3 sin (θ2 + θ3) + l2 sin θ2

Example 155 R`RkR articulated arm forward kinematics.
Consider an R`RkR arm as shown schematically in Figure 5.22. To

develop the forward kinematics of the robot, the DH parameter table of the
robot at rest position is set up as indicated in Table 5.7. The rest position of
the robot could be set at any configuration where the joint axes z1, z2, z3 are
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coplanar, however two positions are mostly being used. The first position is
where x1 is coplanar with z1, z2, z3 , and the second position is where x0
is coplanar with z1, z2, z3.

Table 5.7 - DH parameter table for setting up the link frames.
Frame No. ai αi di θi

1 0 −90 deg d1 θ1
2 l2 0 d2 θ2
3 0 90 deg l3 θ3

We recommend applying the link-joints classification in Examples 142
to 147. Therefore, we must be able to determine the type of link-joints
combination as shown in Table 5.8.

Table 5.8 - Link classification for set-up of the link frames.
Link No. Type

1 R`R(−90)
2 RkR(0)
3 R`R(90)

Therefore, the successive transformation matrices have the following ex-
pressions:

0T1 =

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 d1
0 0 0 1

⎤⎥⎥⎦ (5.70)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 d2
0 0 0 1

⎤⎥⎥⎦ (5.71)

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ . (5.72)

To express the complete transformation

0T3 =
0T1

1T2
2T3 (5.73)

we only need to find the result of a matrix multiplication. Therefore,

0T3 = 0T1
1T2

2T3

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (5.74)
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where

r11 = cos θ1 cos(θ2 + θ3) (5.75)

r21 = sin θ1 cos(θ2 + θ3) (5.76)

r31 = − sin(θ2 + θ3) (5.77)

r12 = − sin θ1 (5.78)

r22 = cos θ1 (5.79)

r32 = 0 (5.80)

r13 = cos θ1 sin(θ2 + θ3) (5.81)

r23 = sin θ1 sin(θ2 + θ3) (5.82)

r33 = cos(θ2 + θ3) (5.83)

r14 = l2 cos θ1 cos θ2 − d2 sin θ1 (5.84)

r24 = l2 cos θ2 sin θ1 + d2 cos θ1 (5.85)

r34 = d1 − l2 sin θ2. (5.86)

The tip point P of the third arm is at
£
0 0 l3

¤T
in B3. So, its

position in the base frame would be at:

0rP = 0T3
3rP =

0T3

⎡⎢⎢⎣
0
0
l3
1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−d2sθ1 + l2cθ1cθ2 + l3cθ1s (θ2 + θ3)
d2cθ1 + l2cθ2sθ1 + l3sθ1s (θ2 + θ3)

d1 − l2sθ2 + l3c (θ2 + θ3)
1

⎤⎥⎥⎦ (5.87)

The transformation matrix at rest position, where θ1 = 0, θ2 = 0, θ3 = 0,
is:

0T3 =

⎡⎢⎢⎣
1 0 0 l2
0 1 0 d2
0 0 1 d1
0 0 0 1

⎤⎥⎥⎦ (5.88)

This set up of coordinate frames shows that at the rest position, x1, x2, x3
are colinear and parallel to x0, furthermore z1, z3 are colinear, and z1 and
z2 are parallel.
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Example 156 An articulated arm kinematics.
Consider the R`RkR arm of Figure 5.22 with the following dimensions.

l2 = 0.75m l3 = 0.65m

d1 = 0.48m d2 = 0.174m (5.89)

Using the link-joints combination of Table 5.8, we have:

0T1 =

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 0.48
0 0 0 1

⎤⎥⎥⎦ (5.90)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 0.75 cos θ2
sin θ2 cos θ2 0 0.75 sin θ2
0 0 1 0.174
0 0 0 1

⎤⎥⎥⎦ (5.91)

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.92)

Therefore, the transformation matrix of B3 to B0 is:
0T3 = 0T1

1T2
2T3

=

⎡⎢⎢⎣
cθ1c (θ2 + θ3) −sθ1 cθ1s (θ2 + θ3) r11
sθ1c (θ2 + θ3) cθ1 sθ1s (θ2 + θ3) r12
−s (θ2 + θ3) 0 c (θ2 + θ3) r13

0 0 0 1

⎤⎥⎥⎦ (5.93)

r11 = 0.75 cos θ1 cos θ2 − 0.174 sin θ1
r12 = 0.174 cos θ1 + 0.75 cos θ2 sin θ1

r13 = 0.48− 0.75 sin θ2
The tip point P of the third link is at:

0rP = 0T3
3rP =

0T3

⎡⎢⎢⎣
0
0
0.65
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

r1
r1
r1
1

⎤⎥⎥⎦ (5.94)

r1 = 0.75 cos θ1 cos θ2 − 0.174 sin θ1 + 0.65 cos θ1 sin (θ2 + θ3)

r2 = 0.174 cos θ1 + 0.75 cos θ2 sin θ1 + 0.65 sin θ1 sin (θ2 + θ3)

r3 = 0.65 cos (θ2 + θ3)− 0.75 sin θ2 + 0.48
At the rest position, where θ1 = 0, θ2 = 0, θ3 = 0, we have:

0T3 =

⎡⎢⎢⎣
1 0 0 0.75
0 1 0 0.174
0 0 1 0.48
0 0 0 1

⎤⎥⎥⎦ (5.95)
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that shows the tip point is at:

0rP =
0T3

3rP =
0T3

⎡⎢⎢⎣
0
0
0.65
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0.75
0.174
1.13
1

⎤⎥⎥⎦ (5.96)

Example 157 Working space.
Consider the R`RkR arm of Figure 5.22 with the following dimensions.

l2 = 0.75m l3 = 0.65m

d1 = 0.48m d2 = 0.174m (5.97)

Link transformation matrices are given in (5.90)-(5.92). The manipulator’s
transformation matrix 0T3 at the rest position is (5.95) when point P is at
(5.96).
Assume that every joint can turn 360 deg. Theoretically, point P must

be able to reach any point in the sphere S1,³
r− 0d1 − d2

0k̂1

´2
= (l2 + l3)

2 (5.98)

x2 + (y − 0.174 )2 + (z − 0.48)2 = 1.96 (5.99)

0d1 =

⎡⎣ 0
0
d1

⎤⎦ =
⎡⎣ 0

0
0.48

⎤⎦ (5.100)

d2
0k̂1 = 0R1 d2

1k̂1 (5.101)

=

⎡⎣ 1 0 0
0 0 1
0 −1 0

⎤⎦⎡⎣ 0
0

0.174

⎤⎦ =
⎡⎣ 0
0.174
0

⎤⎦
and out of the sphere S2.³

r− 0d1 − d2
0k̂1

´2
= (l2 − l3)

2 (5.102)

x2 + (y − 0.174 )2 + (z − 0.48)2 = 0.01 (5.103)

The reachable space between S1 and S2 is called working space of the ma-
nipulator.

Example 158 SCARA robot forward kinematics.
Consider the RkRkRkP robot shown in Figure 5.23. The forward kine-

matics of the robot can be solved by obtaining individual transformation
matrices i−1Ti. The first link is an RkR(0) link, which has the following
transformation matrix:
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FIGURE 5.23. An RkRkRkP SCARA manipulator robot.

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.104)

The second link is also an RkR(0) link.

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.105)

The third link is an RkR(0) with zero length

2T3 =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 0
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.106)

and finally the fourth link is an RkP(0).

3T4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1

⎤⎥⎥⎦ (5.107)
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Therefore, the configuration of the end-effector in the base coordinate frame
is

0T4 = 0T1
1T2

2T3
3T4 (5.108)

=

⎡⎢⎢⎣
c(θ1 + θ2 + θ3) −s(θ1 + θ2 + θ3) 0 l1cθ1 + l2c(θ1 + θ2)
s(θ1 + θ2 + θ3) c(θ1 + θ2 + θ3) 0 l1sθ1 + l2s(θ1 + θ2)

0 0 1 d
0 0 0 1

⎤⎥⎥⎦
that shows the rest position of the robot θ1 = θ2 = θ3 = d = 0 is at:

0T4 =

⎡⎢⎢⎣
1 0 0 l1 + l2
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.109)

Example 159 Space station remote manipulator system (SSRMS).
Shuttle remote manipulator system (SRMS), also known as (SSRMS),

is an arm and a hand attached to the Shuttle or space station. It is utilized
for several purposes such as: satellite deployment, construction of a space
station, transporting a crew member at the end of the arm, surveying and
inspecting the outside of the station using a camera.
A simplified model of the SRMS, schematically shown in Figure 5.24,

has the characteristics indicated in Table 5.9.

Table 5.9- Space station’s robot arm characteristics.
Length 14.22m
Diameter 38.1cm
Weight 1336kg

Number of joints Seven
Handling capacity 116000kg (in space)

Max velocity of end of arm Carrying nothing : 37cm/s
Full capacity : 1.2cm/s

Max rotational speed Approx. 4 deg /s

Table 5.10 - DH parameters for SRMS.
Frame No. ai αi di θi

1 0 −90 deg 380mm θ1
2 0 −90 deg 1360mm θ2
3 7110mm 0 570mm θ3
4 7110mm 0 475mm θ4
5 0 90 deg 570mm θ5
6 0 −90 deg 635mm θ6
7 0 0 d7 0
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FIGURE 5.24. Illustration of the space station remote manipulator system (not
in scale).

Consider the numerical values of joints offset and links’ length as tabu-
lated in Table 5.10. Utilizing these values and indicating the type of each
link enables us to determine the required transformation matrices to solve
the forward kinematics problem.
Links (1) and (2) are R`R(−90), and therefore,

0T1 =

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 d1
0 0 0 1

⎤⎥⎥⎦ (5.110)

1T2 =

⎡⎢⎢⎣
cos θ2 0 − sin θ2 0
sin θ2 0 cos θ2 0
0 −1 0 d2
0 0 0 1

⎤⎥⎥⎦ . (5.111)

Links (3) and (4) are RkR(0), hence

2T3 =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 a3 cos θ3
sin θ3 cos θ3 0 a3 sin θ3
0 0 1 d3
0 0 0 1

⎤⎥⎥⎦ (5.112)
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3T4 =

⎡⎢⎢⎣
cos θ4 − sin θ4 0 a4 cos θ4
sin θ4 cos θ4 0 a4 sin θ4
0 0 1 d4
0 0 0 1

⎤⎥⎥⎦ . (5.113)

Link (5) is R`R(90), and link (6) is R`R(−90), therefore

4T5 =

⎡⎢⎢⎣
cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0
0 1 0 d5
0 0 0 1

⎤⎥⎥⎦ (5.114)

5T6 =

⎡⎢⎢⎣
cos θ6 0 − sin θ6 0
sin θ6 0 cos θ6 0
0 −1 0 d6
0 0 0 1

⎤⎥⎥⎦ . (5.115)

Finally link (7) is R`R(0) and the coordinate frame attached to the end-
effector has a translation d7 with respect to the coordinate frame B6.

6T7 =

⎡⎢⎢⎣
cos θ7 − sin θ7 0 0
sin θ7 cos θ7 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦ (5.116)

The forward kinematics of SSRMS can be found by direct multiplication
of i−1Ti, (i = 1, 2, · · · , 7).

0T7 =
0T1

1T2
2T3

3T4
4T5

5T6
6T7 (5.117)

5.4 Spherical Wrist

Figure 5.25 illustrates a spherical joint . The spherical joint connects two
links: the forearm and hand. The axis of the forearm and hand are assumed
to be colinear at the rest position. The axis of the hand is called the gripper
axis. A spherical wrist is a combination of links and joints to simulate a
spherical joint and provide three rotational DOF for the gripper link. It
is made by three R`R links with zero lengths and zero offset where their
joint axes are mutually orthogonal and intersecting at a point called the
wrist point . The wrist point is invariant in a robot structure and will not
move by wrist angular coordinates.
At the wrist point, we define two coordinate frames. The first is the wrist

dead frame, attached to the forearm link, and the second frame is the wrist
living frame, attached to the hand link. We also introduce a tool or gripper
frame. The tool frame of the wrist is denoted by three vectors, a ≡ k̂, s ≡ ı̂,
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FIGURE 5.25. A spherical joint provides roll, pitch, and yaw rotations.

n ≡ ĵ. It is set at a symmetric point between the fingers of an empty hand
or at the tip of the holding tools by the fingers.
Figure 5.26 illustrates a schematic of a spherical wrist configuration. It is

made of an R`R(−90) link, attached to another R`R(90) link, that finally
is attached to a spinning gripper link RkR(0). The gripper coordinate frame
B7 is always parallel to B6 and is attached at a distance d7 from the wrist
point.
To classify spherical wrists, we decompose the rotations of an spherical

wrist into three rotations about three orthogonal axes. We call the rota-
tions, Roll, Pitch, and Yaw as are shown in Figure 5.25. The Roll is any
rotation that turns the gripper about its axis when the wrist is at the rest
position. The gripper axis a defines a perpendicular plane s× n to the axis
that is called the gripper wall. The Pitch and Yaw are rotations about two
perpendicular axes in the gripper wall at the wrist point. The Roll, Pitch,
and Yaw rotations are defined at the rest position of the wrist.
There are three types of practical spherical wrists that are classified in

Table 5.11.

Table 5.11 - Spherical wrists classification.
Type Rotation order
1 Roll-Pitch-Roll
2 Roll-Pitch-Yaw
3 Pitch-Yaw-Roll

Figure 5.26 shows a Roll-Pitch-Roll spherical wrist with the following trans-
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FIGURE 5.26. Spherical wrist kinematics.

formation matrix.
3T6 = 3T4

4T5
5T6 (5.118)

=

⎡⎢⎢⎣
cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ4sθ6 + cθ5cθ6sθ4 cθ4cθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 0
0 0 0 1

⎤⎥⎥⎦
Proof. A wrist will be attached to the final link of a manipulator, which
is usually link (3). The coordinate of the final link of the manipulator
should be set up at the wrist point to act as the ground link for the wrist
mechanism. If the manipulator has three links, then the first frame of a
wrist mechanism should be labeled 3 and will have the same orientation
as B3 of the manipulator. Then the z3-axis will point along the first wrist
joint. z3-axis would be along the forearm of the manipulator when the wrist
is as shown in Figure 5.26. We chose x5 = z4×z5 and α = −90 deg because
when θ5 = 0 we wish for the hand to point straight up from the forearm.
Utilizing the transformation matrix (5.37) for link (4), (5.36) for link

(5), RZ,θ6 for link (6), and a DZ,d6 for frame B7, we find the following
transformation matrices:

3T4 =

⎡⎢⎢⎣
cos θ4 0 − sin θ4 0
sin θ4 0 cos θ4 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.119)

4T5 =

⎡⎢⎢⎣
cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.120)
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5T6 =

⎡⎢⎢⎣
cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.121)

6T7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦ . (5.122)

The matrix 3T6 =
3T4

4T5
5T6 provides the wrist’s orientation in the fore-

arm coordinate frame B3

3T6 = 3T4
4T5

5T6 (5.123)

=

⎡⎢⎢⎣
cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ4sθ6 + cθ5cθ6sθ4 cθ4cθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 0
0 0 0 1

⎤⎥⎥⎦
and the following transformation matrix provides the configuration of the
tool frame B7 in the forearm coordinate frame B3.

3T7 =
3T4

4T5
5T6

6T7 (5.124)

=

⎡⎢⎢⎣
cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 d7cθ4sθ5
cθ4sθ6 + cθ5cθ6sθ4 cθ4cθ6 − cθ5sθ4sθ6 sθ4sθ5 d7sθ4sθ5

−cθ6sθ5 sθ5sθ6 cθ5 d7cθ5
0 0 0 1

⎤⎥⎥⎦
It is also possible to define a compact 5T6 to include rotation θ6 and trans-
lation d7 by

5T6 =

⎡⎢⎢⎣
cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦ . (5.125)

Employing a compact 5T6 reduces the number of matrices, and therefore
the number of numerical calculations.
The transformation matrix at rest position, where θ4 = 0, θ5 = 0, θ6 = 0,

is:

3T7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦ (5.126)

To show that there are only three types of spherical wrists, we start
with the first rotation of the wrist that is always about a fixed axis on the
forearm link. It is a Roll if the joint axis is along the forearm axis. This axis
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FIGURE 5.27. Hand of a robot at rest position.

would also be along the gripper axis at the rest position. If the first axis
of rotation is perpendicular to the forearm axis then we consider the first
rotation as Pitch. If the first rotation is a Roll, then the second rotation
is perpendicular to the forearm axis and is a Pitch. There are two possible
situations for the third rotation. It is a Roll, if it is about the gripper axis,
and is a Yaw, if it is perpendicular to the axis of the first two rotations.
Figure 5.27 and 5.28 illustrate a Roll-Pitch-Roll wrist at the rest position

and in motion respectively. This type of wrist is also called Eulerian wrist
just because Roll-Pitch-Roll reminds Z − x− z rotation axes.
If the first rotation is a Pitch, the second rotation can be a Roll or a Yaw.

If it is a Yaw, then the third rotation must be a Roll to have independent
rotations. If it is a Roll, then the third rotation must be a Yaw. The Pitch-
Yaw-Roll and Pitch-Roll-Yaw are not distinguishable, and we may pick
Pitch-Yaw-Roll as the only possible spherical wrist with the first rotation
as a Pitch.
Practically, we provide the Roll, Pitch, and Yaw rotations by introducing

two links and three frames between the dead and living frames. The links
will be connected by three revolute joints. The joint axes intersect at the
wrist point, and are orthogonal when the wrist is at the rest position.
It is simpler if we kinematically analyze a spherical wrist by defining

three non-DH coordinate frames at the wrist point and determine their
relative transformations. Figure 5.29 shows a Roll-Pitch-Roll wrist with
three coordinate frames. The first orthogonal frame B0 (x0, y0, z0) is fixed
to the forearm and acts as the wrist dead frame such that z0 is the joint
axis of the forearm and a rotating link. The rotating link is the first wrist
link and the joint is the first wrist joint. The direction of the axes x0 and
y0 are arbitrary. The second frame B1 (x1, y1, z1) is defined such that z1 is
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along the gripper axis at the rest position and x1 is the axis of the second
joint. B1 always turns ϕ about z0 and θ about x1 relative to B0. The third
frame B2 (x2, y2, z2) is the wrist living frame and is defined such that z2
is always along the gripper axis. If the third joint provides a Roll, then z2
is the joint axis, otherwise the third joint is Yaw and x2 is the joint axis.
Therefore, B2 always turns ψ about z2 or x2, relative to B1. Introducing
the coordinate frames B1 and B2 simplifies the spherical wrist kinematics
by not seeing the interior links of the wrist. Considering the definition and
rotations of B2 relative to B1, and B1 relative to B0, there are only three
types of practical spherical wrists as are classified in Table 7.11. These three
wrists are shown in Figures 5.29-5.31.

Example 160 DH frames and spherical wrist.
Figures 5.27 and 5.28 depict a another illustrations of a spherical wrist of

type 1. The common origin of frames B4, B5, and B6 is at the wrist point.
The final frame, which is called the tool or end-effector frame, is denoted
by three vectors, a, s, n, and is set at a symmetric point between the fingers
of an empty hand or at the tip of the tools hold by the hand. The vector n
is called tilt and is the normal vector perpendicular to the fingers or jaws.
The vector s is called twist and is the slide vector showing the direction
of fingers opening. The vector a is called turn and is the approach vector
perpendicular to the palm of the hand.
The placement of internal links’ coordinate frames are predetermined by

the DH method, however, for the end link the placement of the tool’s frame
Bn is somehow arbitrary and not clear. This arbitrariness may be resolved
through simplifying choices or by placement at a distinguished location in
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FIGURE 5.29. Spherical wrist of the Roll-Pitch-Roll or Eulerian type.

the gripper. It is easier to work with the coordinate system Bn if zn is made
coincident with zn−1. This choice sets an = 0 and αn = 0.

Example 161 Roll-Pitch-Roll or Eulerian wrist.
Figure 5.29 illustrates a spherical wrist of type 1, Roll-Pitch-Yaw. B0

indicates its dead and B2 indicates its living coordinate frames. The trans-
formation matrix 0R1, is a rotation ϕ about the dead axis z0 followed by a
rotation θ about the x1-axis.

0R1 = 1RT
0 =

£
Rx1,θ R

T
z0,ϕ

¤T
=
£
Rx,θ R

T
Z,ϕ

¤T
(5.127)

=

⎡⎢⎣
⎡⎣ 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎤⎦⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦T
⎤⎥⎦
T

=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦
The transformation matrix 1R2, is a rotation ψ about the local axis z2.

1R2 =
2RT

1 = RT
z2,ψ = RT

z,ψ =

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦ (5.128)

Therefore, the transformation matrix between the living and dead wrist
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FIGURE 5.30. Spherical wrist of the Roll-Pitch-Yaw type.

frames is:

0R2 = 0R1
1R2 =

£
Rx1,θ R

T
z0,ϕ

¤T
RT
z2,ψ = Rz0,ϕR

T
x1,θ R

T
z2,ψ

= RZ,ϕR
T
x,θ R

T
z,ψ (5.129)

=

⎡⎣ cψcϕ− cθsψsϕ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ cθcψcϕ− sψsϕ −cϕsθ

sθsψ cψsθ cθ

⎤⎦

Example 162 Roll-Pitch-Yaw spherical wrist.
Figure 5.30 illustrates a spherical wrist of type 2, Roll-Pitch-Yaw. B0

indicates the wrist dead coordinate frame. The main kinematic disadvantage
of this type of spherical wrist is that z1 is not fix to the gripper. However,
we attach a coordinate frame B2 to the gripper as the wrist living frame
such that z2 be on the gripper axis, and x2 be the third joint axis. The
transformation between B2 and B1 is only a rotation ψ about the x2-axis.

1R2 = RT
x2,ψ = RT

x,ψ =

⎡⎣ 1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤⎦T (5.130)

To determine the transformation matrix 0R1, we turn B1 first ϕdeg about
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FIGURE 5.31. Spherical wrist of the Pitch-Yaw-Roll type.

the z0-axis, then θ deg about the x1-axis.

0R1 = 1RT
0 =

£
Rx1,θ R

T
z0,ϕ

¤T
=
£
Rx,θ R

T
Z,ϕ

¤T
(5.131)

=

⎡⎢⎣
⎡⎣ 1 0 0
0 cθ sθ
0 −sθ cθ

⎤⎦⎡⎣ cϕ −sϕ 0
sϕ cϕ 0
0 0 1

⎤⎦T
⎤⎥⎦
T

=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦
Therefore, the transformation matrix between the living and dead wrist
frames is:

0R2 = 0R1
1R2 =

£
Rx1,θ R

T
z0,ϕ

¤T
RT
x2,ψ = Rz0,ϕR

T
x1,θ R

T
x2,ψ

= RZ,ϕR
T
x,θ R

T
x,ψ (5.132)

=

⎡⎣ cϕ sθsψsϕ− cθcψsϕ cθsψsϕ+ cψsθsϕ
sϕ cθcψcϕ− cϕsθsψ −cθcϕsψ − cψcϕsθ
0 cθsψ + cψsθ cθcψ − sθsψ

⎤⎦
Example 163 Pitch-Yaw-Roll spherical wrist.
Figure 5.31 illustrates a spherical wrist of the type 3, Pitch-Yaw-Roll.

B0 indicates its dead and B2 indicates its living coordinate frames. The
transformation matrix 1R2, is a rotation ψ about the local z2-axis.

1R2 =
2RT

1 = RT
z2,ψ = RT

z,ψ =

⎡⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤⎦ (5.133)
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To determine the transformation matrix 0R1, we turn B1 first ϕdeg about
the z0-axis, and then θ deg about the x1-axis.

0R1 = 1RT
0 =

£
Rx1,θ R

T
z0,ϕ

¤T
=
£
Rx,θ R

T
Z,ϕ

¤T
(5.134)

=

⎡⎢⎣
⎡⎣ 1 0 0
0 cθ sθ
0 −sθ cθ

⎤⎦⎡⎣ cϕ −sϕ 0
sϕ cϕ 0
0 0 1

⎤⎦T
⎤⎥⎦
T

=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦
Therefore, the transformation matrix between the living and dead wrist
frames is:

0R2 = 0R1
1R2 =

£
Rx1,θ R

T
z0,ϕ

¤T
RT
z2,ψ = Rz0,ϕR

T
x1,θ R

T
z2,ψ

= RZ,ϕR
T
x,θ R

T
z,ψ (5.135)

=

⎡⎣ cψcϕ− cθsψsϕ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ cθcψcϕ− sψsϕ −cϕsθ

sθsψ cψsθ cθ

⎤⎦
Example 164 Practical design of a spherical wrist.
Figure 5.32 illustrates a practical Eulerian spherical wrist. The three ro-

tations of Roll-Pitch-Roll are controlled by three coaxes shafts. The first
rotation is a Roll of B4 about z4. The second rotation is a Pitch of B5
about z5. The third rotations is a roll of B6 about z6.
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FIGURE 5.33. An articulator manipulator with three DOF .

5.5 Assembling Kinematics

Most modern industrial robots have a main manipulator and a series of
interchangeable wrists. The manipulator is multibody so that it holds the
main power units and provides a powerful motion for the wrist point.
Figure 5.33 illustrates an example of an articulated manipulator with

three DOF . This manipulator can rotate relative to the global frame by a
base motor at M1, and caries the other motors at M2 and M3.
Changeable wrists are complex multibodies that are made to provide

three rotational DOF about the wrist point. The base of the wrist will
be attached to the tip point of the manipulator. The wrist, the actual
operator of the robot may also be called the end-effector, gripper, hand, or
tool. Figure 5.34 illustrates a sample of a spherical wrist that is supposed
to be attached to the manipulator in Figure 5.33.
To solve the kinematics of a modular robot, we consider the manipulator

and the wrist as individual multibodies. However, we attach a temporary
coordinate frame at the tip point of the manipulator, and another tem-
porary frame at the base point of the wrist. The coordinate frame at the
temporary’s tip point is called the takht, and the coordinate frame at the
base of the wrist is called the neshin frame. Mating the neshin and takht
frames assembles the robot kinematically. The kinematic mating of the
wrist and arm is called assembling.
The coordinate frame B8 in Figure 5.33 is the takht frame of the manip-

ulator, and the coordinate frame B9 in Figure 5.34 is the neshin frame of
the wrist. In the assembling process, the neshin coordinate frame B9 sits
on the takht coordinate frame B8 such that z8 be coincident with z9, and
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FIGURE 5.34. A spherical wrist and its kinematics.

x8 be coincident with x9. The articulated robot that is made by assembling
the spherical wrist and articulated manipulator is shown in Figure 5.35.
The assembled multibody will always have some additional coordinate

frames. The extra frames require extra transformation matrices that can
increase the number of required mathematical calculations. It is possible to
make a recommendation to eliminate the neshin coordinate frame and keep
the takht frame at the connection point. However, as long as the transfor-
mation matrices between the frames are known, having extra coordinate
frames is not a significant disadvantage. In Figure 5.35, we may ignore B8
and directly go from B3 to B4 and substitute l8 and l9 with l3 = l8 + l9.
The word "takht" means "chair," and the word "neshin" means "sit",

both from Persian.

Example 165 A planar 2R manipulator assembling.
Figure 5.36 illustrates an example of a single DOF arm as the base for an

RkR planar manipulator. This arm can rotate relative to the global frame
by a motor at M1, and caries another motor at M2. Figure 5.37 illustrates
a sample of a planar wrist that is supposed to be attached to the arm in
Figure 5.36.
The coordinate frame B2 in Figure 5.36 is the takht frame of the arm,

and the coordinate frame B3 in Figure 5.37 is the neshin frame of the wrist.
The RkR planar manipulator that is made by assembling the wrist and arm
is shown in Figure 5.38.

Example 166 Assembling a wrist mechanism to a manipulator.
Consider a robot made by mounting the hand shown in Figure 5.27, to

the tip point of the articulated arm shown in Figure 5.22. The resulting
robot would have six DOF to reach any point within the working space
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FIGURE 5.36. A single DOF arm as the base for a RkR planar manipulator.
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in a desired orientation. The robot’s forward kinematics can be found by
combining the wrist transformation matrix (5.118) and the manipulator
transformation matrix (5.74).

0T7 = Tarm Twrist
6T7 =

0T3
3T6

6T7 (5.136)

The wrist transformation matrix 3T7 has been given in Equation (5.118),
and the arm transformation matrix 0T3 has been found in Example 155.
However, because we are attaching the wrist at point P of the frame B3,
the transformation matrix 3T4 in (5.119) must include this joint distance.
So, we substitute matrix (5.119) with

3T4 =

⎡⎢⎢⎣
cos θ4 0 − sin θ4 0
sin θ4 0 cos θ4 0
0 −1 0 l3
0 0 0 1

⎤⎥⎥⎦ (5.137)

to find

Twrist = 3T6 (5.138)

=

⎡⎢⎢⎣
−sθ4sθ6 + cθ4cθ5cθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ4sθ6 + cθ5cθ6sθ4 cθ4cθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 l3
0 0 0 1

⎤⎥⎥⎦ .
The rest position of the robot can be checked to be at

0T7 =

⎡⎢⎢⎣
1 0 0 l2
0 1 0 d2 + l3
0 0 1 d1 + d7
0 0 0 1

⎤⎥⎥⎦ (5.139)

because

6T7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦ . (5.140)

Example 167 A spherical manipulator.
The spherical manipulator simulates the spherical coordinate for position-

ing a point in a 3D space. Figure 5.39 illustrates a spherical manipulator.
The coordinate frame B0 is the global or base frame of the manipulator.
The link (1) can turn about z0 and the link (2) can turn about z1 that is
perpendicular to z0. These two rotations simulate the two angular motions
of spherical coordinates. The radial coordinate is simulated by link (3) that
has a prismatic joint with link (2). There is also a takht coordinate frame
at the tip point of link (3) at which a wrist can be attached.
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FIGURE 5.39. A spherical arm.

The link (1) in Figure 5.39 is an R`R(90), link (2) is also an R`P(90),
and link (3) is an PkR(0), therefore,

0T1 =

⎡⎢⎢⎣
cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0
0 1 0 d1
0 0 0 1

⎤⎥⎥⎦ (5.141)

1T2 =

⎡⎢⎢⎣
cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.142)

2T3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

⎤⎥⎥⎦ . (5.143)

The transformation matrix from B3 to the takht frame B4 is only a trans-
lation d4.

3T4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d4
0 0 0 1

⎤⎥⎥⎦ (5.144)
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FIGURE 5.40. A spherical arm with the arrangement of coordinate frames such
that the overall transformation matrix reduces to an identity at rest position.

The transformation matrix of the takht frame B4 to the base frame B0 is:

0T4 = 0T1
1T2

2T3
3T4 (5.145)

=

⎡⎢⎢⎣
cθ1cθ2 sθ1 cθ1sθ2 (d3 + d4) (cθ1sθ2)
cθ2sθ1 −cθ1 sθ1sθ2 (d3 + d4) (sθ2sθ1)
sθ2 0 −cθ2 d1 − d3cθ2 − d4cθ2
0 0 0 1

⎤⎥⎥⎦
0T4 at the rest position reduces to:

0T4 =

⎡⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 −1 d1 − d4
0 0 0 1

⎤⎥⎥⎦ (5.146)

As a general recommendation, the set up of the DH coordinate frames
is such that the overall transformation matrix at the rest position becomes
an identity matrix. If we rearrange the coordinate frame of the link (1) to
make it an R`R(−90) then 0T1 becomes:

0T1 =

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 d1
0 0 0 1

⎤⎥⎥⎦ (5.147)
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FIGURE 5.41. Assembling of a spherical hand and arm.

and the overall transformation matrix at the rest position becomes an iden-
tity matrix.
To make link (1) to be R`R(−90), we may reverse the direction of z1

or x1-axis. Figure 5.40 illustrates the new arrangement of the coordinate
frames. Therefore, the transformation matrix of the takht frame B4 to the
base frame B0 at the rest position reduces to:

0T4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d1 + d4
0 0 0 1

⎤⎥⎥⎦ (5.148)

Example 168 F Assembling of a spherical wrist to a spherical manipu-
lator.
To transform the manipulator of Figure 5.40 to a robot, we need to attach

a hand to it. Let us kinematically assemble the Eulerian spherical wrist of
Example 161 to the spherical manipulator. The wrist, manipulator, and
their associated DH coordinate frames are shown in Figures 5.28 and 5.40
respectively.
Assembling of a hand to a manipulator is kinematic surgery in which

during an operation we attach a multibody to the other. In this example
we attach a spherical hand to a spherical manipulator to make a spherical
arm-hand robot.
The takht coordinate frame B4 of the manipulator and the neshin coor-

dinate frame B4 of the wrist are exactly the same. Therefore, we may as-
semble the manipulator and wrist by matching these two frames and make
a combined manipulator-wrist robot as is shown in Figure 5.41. However,
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in general case the takht and neshin coordinate frames may have different
labels and there be a constant transformation matrix between them.
The forward kinematics of the robot for tool frame B9 can be found by a

matrix multiplication.

0T9 =
0T1

1T2
2T3

3T4
4T5

5T6
6T7

7T8
8T9 (5.149)

The matrices i−1Ti are given in Examples 161 and 167.
We can eliminate the coordinate frames B3, and B4 to reduce the total

number of frames, and simplify the matrix calculations. However, we may
prefer to keep them and simplify the assembling process of changing the
wrist with a new one. If this assembled robot is supposed to work for a while,
we may do the elimination and simplify the robot to the one in Figure 5.42.
We should mathematically substitute the eliminated frames B3 and B4 by
a transformation matrix 2T5.

2T5 = 2T3
3T4

4T5 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d6
0 0 0 1

⎤⎥⎥⎦ (5.150)

d6 = d3 + d4 + d5 (5.151)

Now the forward kinematics of the tool frame B9 becomes:

0T9 =
0T1

1T2
2T5

5T6
6T7

7T8
8T9 (5.152)

Example 169 Spherical robot forward kinematics.
Figure 5.43 illustrates a spherical manipulator attached with a spherical

wrist to make an R`R`P robot. The associated DH parameter is shown in
Table 5.12.

Table 5.12 - DH parameter table for Stanford arm.
Frame No. ai αi di θi

1 0 −90 deg 0 θ1
2 0 90 deg l2 θ2
3 0 0 d3 0
4 0 −90 deg 0 θ4
5 0 90 deg 0 θ5
6 0 0 0 θ6

However, we recommend applying the link-joints classification of Exam-



5. Forward Kinematics 289

z6

7θ

z5

x6

z9

x9

6θ

x7

z8

B5

B6

B8

8θ

x8 x5

z7

d6

B7
B9

x0

z0

z1

2θ

x1

1θ

z2
x2

z3

B0
B1

z4B2

d1

d9

FIGURE 5.42. Simplification of the coordinate frames for an assembled of a
spherical hand and arm.

l2

z2

d3

z1

z0

d7

z3

z4

z5z7

x2

x1

x0

x3x4

x5x7z6
x6

Link 1

Link 2

Link 3

2θ

1θ

5θ

4θ 6θ

FIGURE 5.43. A spherical robot made by a spherical manipulator equipped with
a spherical wrist.
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ples 142 to 147. The link-joint combinations are shown in Table 5.13.

Table 5.13 - DH parameter table for setting up the link frames.
Link No. Type

1 R`R(−90)
2 R`P(90)
3 PkR(0)
4 R`R(−90)
5 R`R(90)
6 RkR(0)

Employing the associated transformation matrices for moving from Bi to
Bi−1 shows that

0T1 =

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.153)

1T2 =

⎡⎢⎢⎣
cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0
0 1 0 l2
0 0 0 1

⎤⎥⎥⎦ (5.154)

2T3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

⎤⎥⎥⎦ (5.155)

3T4 =

⎡⎢⎢⎣
cos θ4 0 − sin θ4 0
sin θ4 0 cos θ4 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.156)

4T5 =

⎡⎢⎢⎣
cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (5.157)

5T6 =

⎡⎢⎢⎣
cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (5.158)

Therefore, the configuration of the wrist final coordinate frame B6 in the
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global coordinate frame is

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (5.159)

where,

r11 = sθ6 (−cθ4sθ1 − cθ1cθ2sθ4)

+cθ6 (−cθ1sθ2sθ5 + cθ5 (−sθ1sθ4 + cθ1cθ2cθ4)) (5.160)

r21 = sθ6 (cθ1cθ4 − cθ2sθ1sθ4)

+cθ6 (−sθ1sθ2sθ5 + cθ5 (cθ1sθ4 + cθ2cθ4sθ1)) (5.161)

r31 = sθ2sθ4sθ6 + cθ6 (−cθ2sθ5 − cθ4cθ5sθ2) (5.162)

r12 = cθ6 (−cθ4sθ1 − cθ1cθ2sθ4)

−sθ6 (−cθ1sθ2sθ5 + cθ5 (−sθ1sθ4 + cθ1cθ2cθ4)) (5.163)

r22 = cθ6 (cθ1cθ4 − cθ2sθ1sθ4)

−sθ6 (−sθ1sθ2sθ5 + cθ5 (cθ1sθ4 + cθ2cθ4sθ1)) (5.164)

r32 = cθ6sθ2sθ4 − sθ6 (−cθ2sθ5 − cθ4cθ5sθ2) (5.165)

r13 = cθ1cθ5sθ2 + sθ5 (−sθ1sθ4 + cθ1cθ2cθ4) (5.166)

r23 = cθ5sθ1sθ2 + sθ5 (cθ1sθ4 + cθ2cθ4sθ1) (5.167)

r33 = cθ2cθ5 − cθ4sθ2sθ5 (5.168)

r14 = −l2sθ1 + d3cθ1sθ2 (5.169)

r24 = l2cθ1 + d3sθ1sθ2 (5.170)

r34 = d3cθ2. (5.171)

The end-effector kinematics can be solved by multiplying the position of the
tool frame B7 with respect to the wrist point, by 0T6

0T7 =
0T6

6T7 (5.172)

where,

6T7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦ . (5.173)
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Example 170 Checking the robot transformation matrix.
To check the correctness of the final transformation matrix to map the

coordinates in tool frame into the base frame, we may set the joint variables
at a specific rest position. Let us substitute the joint rotational angles of the
spherical robot analyzed in Example 169 equal to zero.

θ1 = 0, θ2 = 0, θ3 = 0, θ4 = 0, θ5 = 0 (5.174)

Therefore, the transformation matrix (5.159) would be

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 l2
0 0 1 d3
0 0 0 1

⎤⎥⎥⎦ (5.175)

that correctly indicates the origin of the tool frame in robot’s stretched-up
configuration, at

Gro6 =

⎡⎣ 0
l2
d3

⎤⎦ . (5.176)

5.6 F Coordinate Transformation Using Screws

It is possible to use screws to describe a transformation matrix between two
adjacent coordinate frames Bi and Bi−1. We can move Bi to Bi−1 by a
central screw š(ai, αi, ı̂i−1) followed by another central screw š(di, θi, k̂i−1).

i−1Ti = š(di, θi, k̂i−1) š(ai, αi, ı̂i−1) (5.177)

=

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦
Proof. The central screw š(ai, αi, ı̂i−1) is

š(ai, αi, ı̂i−1) = D(ai, ı̂i−1)R(̂ıi−1, αi) = Dxi−1,ai Rxi−1,αi (5.178)

=

⎡⎢⎢⎣
1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 0 ai
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦
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and the central screw š(di, θi, k̂i−1) is

š(di, θi, k̂i−1) = D(di, k̂i−1)R(k̂i−1, θi) = Dzi−1,diRzi−1,θi (5.179)

=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1

⎤⎥⎥⎦ .
Therefore, the transformation matrix i−1Ti made by two screw motions

would be

i−1Ti = š(di, θi, k̂i−1) š(ai, αi, ı̂i−1) (5.180)

=

⎡⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 di
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 ai
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cos θi − cosαi sin θi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦ .
The resultant transformation matrix i−1Ti is equivalent to a general

screw whose parameters can be found based on Equations (4.161) and
(4.162).
The twist of screw, φ, can be computed based on Equation (4.165)

cosφ =
1

2

¡
tr
¡
GRB

¢
− 1
¢

=
1

2
(cos θi + cos θi cosαi + cosαi − 1) (5.181)

and the axis of screw, û, can be found by using Equation (4.167)

ũ =
1

2 sinφ

¡
GRB − GRT

B

¢
=

1

2sφ

⎡⎣ cθi −cαisθi sθisαi
sθi cθicαi −cθisαi
0 sαi cαi

⎤⎦−
⎡⎣ cθi sθi 0
−cαisθi cθicαi sαi
sθisαi −cθisαi cαi

⎤⎦
=

1

2sφ

⎡⎣ 0 −sθi − cαisθi sθisαi
sθi + cαisθi 0 −sαi − cθisαi
−sθisαi sαi + cθisαi 0

⎤⎦ (5.182)
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and therefore,

û =
1

2sφ

⎡⎣ sinαi + cos θi sinαi
sin θi sinαi

sin θi + cosαi sin θi

⎤⎦ . (5.183)

The translation parameter, h, and the position vector of a point on the
screw axis, for instance

£
0 yi−1 zi−1

¤
, can be found based on Equation

(4.170).

⎡⎣ h
yi−1
yi−1

⎤⎦ =

⎡⎣ u1 −r12 −r13
u2 1− r22 −r23
u3 −r32 1− r33

⎤⎦−1 ⎡⎣ r14
r24
r34

⎤⎦ (5.184)

=
1

2sφ

⎡⎣ sαi + cθisαi −sθi cαi sθi sαi
sθisαi 1− cθi cαi −cθi sαi

sθi + cαisθi sαi cαi

⎤⎦−1 ⎡⎣ ai cθi
ai sθi
di

⎤⎦

Example 171 F Classification of industrial robot links by screws.
There are 12 different configurations that are mostly used for industrial

robots. Each type has its own class of geometrical configuration and trans-
formation. Each class is identified by its joints at both ends, and has its
own transformation matrix to go from the distal joint coordinate frame Bi

to the proximal joint coordinate frame Bi−1. The transformation matrix
of each class depends solely on the proximal joint, and the angle between
z-axes. The screw expression for two arbitrary coordinate frames is

i−1Ti = š(di, θi, k̂i−1) š(ai, αi, ı̂i−1) (5.185)

where

š(di, θi, k̂i−1) = D(di, k̂i−1)R(k̂i−1, θi) (5.186)

š(ai, αi, ı̂i−1) = D(ai, ı̂i−1)R(̂ıi−1, αi). (5.187)

The screw expression of the frame transformation can be simplified for each
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class according to Table 5.14.

Table 5.14 - Classification of industrial robot link by screws.
No. Type of Link i−1Ti
1 RkR(0) or RkP(0) š(0, θi, k̂i−1) š(ai, 0, ı̂i−1)

2 RkR(180) or RkP(180) š(0, θi, k̂i−1) š(ai, 2π, ı̂i−1)

3 R⊥R(90) or R⊥P(90) š(0, θi, k̂i−1) š(ai, π, ı̂i−1)

4 R⊥R(−90) or R⊥P(−90) š(0, θi, k̂i−1) š(ai,−π, ı̂i−1)
5 R`R(90) or R`P(90) š(0, θi, k̂i−1) š(0, π, ı̂i−1)

6 R`R(−90) or R`P(−90) š(0, θi, k̂i−1) š(0,−π, ı̂i−1)
7 PkR(0) or PkP(0) š(di, 0, k̂i−1) š(ai, 0, ı̂i−1)

8 PkR(180) or PkP(180) š(di, 0, k̂i−1) š(ai, 2π, ı̂i−1)

9 P⊥R(90) or P⊥P(90) š(di, 0, k̂i−1) š(ai, π, ı̂i−1)

10 P⊥R(−90) or P⊥P(−90) š(di, 0, k̂i−1) š(ai,−π, ı̂i−1)
11 P`R(90) or P`P(90) š(di, 0, k̂i−1) š(0, π, ı̂i−1)

12 P`R(−90) or P`P(−90) š(di, 0, k̂i−1) š(0,−π, ı̂i−1)

As an example, we may examine the first class

i−1Ti = š(0, θi, k̂i−1) š(ai, 0, ı̂i−1)

= D(0, k̂i−1)R(k̂i−1, θi)D(ai, ı̂i−1)R(̂ıi−1, 0)

=

⎡⎢⎢⎣
cos θi − sin θi 0 0
sin θi cos θi 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cos θi − sin θi 0 ai cos θi
sin θi cos θi 0 ai sin θi
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

and find the same result as Equation (5.32).

Example 172 F Spherical robot forward kinematics based on screws.
Application of screws in forward kinematics can be done by determining

the class of each link and applying the associated screws. The class of links
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for the spherical robot shown in Figure 5.43, are indicated in Table 5.15.

Table 5.15 - Screw transformation for the spherical robot
shown in Figure 5.43.

Link No. Class Screw transformation
1 R`R(−90) 0T1 = š(0, θi, k̂i−1) š(0,−π, ı̂i−1)
2 R`P(90) 1T2 = š(0, θi, k̂i−1) š(0, π, ı̂i−1)

3 PkR(0) 2T3 = š(di, 0, k̂i−1) š(ai, 0, ı̂i−1)

4 R`R(−90) 3T4 = š(0, θi, k̂i−1) š(0,−π, ı̂i−1)
5 R`R(90) 4T5 = š(0, θi, k̂i−1) š(0, π, ı̂i−1)

6 RkR(0) 5T6 = š(0, θi, k̂i−1) š(ai, 0, ı̂i−1)

Therefore, the configuration of the end-effector frame of the spherical robot
in the base frame is

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

= š(0, θi, k̂i−1) š(0,−π, ı̂i−1) š(0, θi, k̂i−1) š(0, π, ı̂i−1)
×š(di, 0, k̂i−1) š(ai, 0, ı̂i−1) š(0, θi, k̂i−1) š(0,−π, ı̂i−1)
×š(0, θi, k̂i−1) š(0, π, ı̂i−1) š(0, θi, k̂i−1) š(ai, 0, ı̂i−1). (5.188)

Example 173 F Plücker coordinate of a central screw.
Utilizing Plücker coordinates we can define a central screw

š(h, φ, û) =

∙
φû
hû

¸
(5.189)

which is equal to ∙
φû
hû

¸
= D(hû)R(û, φ). (5.190)

Example 174 F Plücker coordinate for the central screw š(ai, αi, ı̂i−1).
The central screw š(ai, αi, ı̂i−1) can also be describe by a proper Plücker

coordinate.

š(ai, αi, ı̂i−1) =

∙
αi ı̂i−1
ai ı̂i−1

¸
(5.191)

= D(ai, ı̂i−1)R(̂ıi−1, αi)

Similarly, the central screw š(di, θi, k̂i−1) can also be described by a proper
Plücker coordinate.

š(di, θi, k̂i−1) =

∙
θi k̂i−1
di k̂i−1

¸
(5.192)

= D(di, k̂i−1)R(k̂i−1, θi)
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Example 175 F Intersecting two central screws.
Two lines (and therefore two screws) are intersecting if their reciprocal

product is zero. We can check that the reciprocal product of the screws
š(ai, αi, ı̂i−1) and š(di, θi, k̂i−1) is zero.

š(di, θi, k̂i−1)× š(ai, αi, ı̂i−1) =

∙
θi k̂i−1
di k̂i−1

¸
⊗
∙
αi ı̂i−1
ai ı̂i−1

¸
= θi k̂i−1 · ai ı̂i−1 + αi ı̂i−1 · θi k̂i−1
= 0. (5.193)

5.7 F Non Denavit-Hartenberg Methods

The Denavit-Hartenberg (DH) method of assigning relative coordinate
frames of the links of a robot, is the most common method used. How-
ever the DH method is not the only method used, nor necessarily the
best. There are other methods with advantages and disadvantages when
compared to the DH method.
The Sheth method is an alternative method that can overcome the limi-

tations of the DH method for higher order links, by introducing a number
of frames equal to the number of joints on the link. It also provides more
flexibility to specify the link geometry.
In the Sheth method, we define a coordinate frame at each joint of a link,

so an n joint robot would have 2n frames. Figure 5.44 shows the case of a
binary link (i) where a first frame (xi, yi, zi) is attached at the origin of the
link and a second frame (ui, vi, wi) to the end of the link. The assignment
of the origin joint and the end joint are arbitrary, however it is easier if
they are in the direction of base-to-tool frames.
To describe the geometry, first we locate the joint axes by zi and wi, and

then determine the common perpendicular to both joint axes zi and wi.
The common normal is indicated by a unit vector n̂i. Specifying the link
geometry requires six parameters, and are determined as follows:

1. ai is the distance from zi to wi, measured along n̂i. It is the kinematic
distance between zi and wi.

2. bi is the distance from n̂i to ui, measured along wi. It is the elevation
of the wi-axis.

3. ci is the distance from xi to n̂i, measured along zi. It is the elevation
of the zi-axis.

4. αi is the angle made by axes zi and wi, measured positively from zi
to wi about n̂i.
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xi

End Joint
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FIGURE 5.44. Sheth method for defining the origin and end coordinate frames
on a binary link.

5. βi is the angle made by axes n̂i and ui, measured positively from n̂i
to ui about wi.

6. γi is the angle made by axes xi and n̂i, measured positively from xi
to n̂i about zi.

The Sheth parameters generate a homogeneous transformation matrix

oTe =
oTe (ai, bi, ci, αi, βi, γi) (5.194)

to map the end coordinate frame Be to the origin coordinate frame Bo⎡⎢⎢⎣
xi
yi
zi
1

⎤⎥⎥⎦ = oTe =

⎡⎢⎢⎣
ui
vi
wi

1

⎤⎥⎥⎦ (5.195)

where oTe denotes the Sheth transformation matrix

oTe =

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (5.196)
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where,

r11 = cosβi cos γi − cosαi sinβi sin γi (5.197)

r21 = cosβi sin γi + cosαi cos γi sinβi (5.198)

r31 = sinαi sinβi (5.199)

r12 = − cos γi sinβi − cosαi cosβi sin γi (5.200)

r22 = − sinβi sin γi + cosαi cosβi cos γi (5.201)

r32 = cosβi sinαi (5.202)

r13 = sinαi sin γi (5.203)

r23 = − cos γi sinαi (5.204)

r33 = cosαi (5.205)

r14 = ai cos γi + bi sinαi sin γi (5.206)

r24 = ai sin γi − bi cos γi sinαi (5.207)

r34 = ci + bi cosαi. (5.208)

The Sheth transformation matrix for two coordinate frames at a joint is
simplified to a translation for a prismatic joint, and a rotation about the
Z-axis for a revolute joint.

Proof. The homogenous transformation matrix to provide the coordinates
in Bi, when the coordinates in Bj are given, is

oTe = Dzi,ci Rzi,γi Dxi,ai Rxi,αi Dzi,bi Rzi,βi . (5.209)

Employing the associated transformation matrices

Rzi,βi =

⎡⎢⎢⎣
cosβi − sinβi 0 0
sinβi cosβi 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.210)

Dzi,bi =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 bi
0 0 0 1

⎤⎥⎥⎦ (5.211)

Rxi,αi =

⎡⎢⎢⎣
1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦ (5.212)
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xi
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θ

d

FIGURE 5.45. Illustration of (a) a revolute joint and (b) a prosmatic joint to
define Sheth coordinate transformation.

Dxi,ai =

⎡⎢⎢⎣
1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.213)

Rzi,γi =

⎡⎢⎢⎣
cos γi − sin γi 0 0
sin γi cos γi 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.214)

Dzi,ci =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 ci
0 0 0 1

⎤⎥⎥⎦ (5.215)

we can verify that the Sheth transformation matrix is

oTe =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cβicγi −cγisβi aicγi
−cαisβisγi −cαicβisγi sαisγi +bisαisγi

cβisγi −sβisγi aisγi
+cαicγisβi +cαicβicγi −cγisαi −bicγisαi

sαisβi cβisαi cαi ci + bicαi
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.216)

Example 176 F Sheth transformation matrix at revolute and prismatic
joints.
Two links connected by a revolute joint are shown in Figure 5.45(a). The

coordinate frames of the two links at the common joint are set such that
the axes zi and wj coincide with the rotation axis, and both frames have



5. Forward Kinematics 301

wjzi

xi
θ
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FIGURE 5.46. Illustration of a cylindrical joint to define Sheth coordinate trans-
formation.

the same origin. The Sheth parameters are a = 0, b = 0, c = 0, α = 0,
β = 0, γ = θ , and therefore,

iTj =

⎡⎢⎢⎣
cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (5.217)

Two links connected by a prismatic joint are illustrated in Figure 5.45(b).
The Sheth variable at this joint is d along the joint axis. The coordinate
frames of the two links at the common joint are set such that the axes zi
and wj coincide with the translational axis, and axes xi and uj are chosen
parallel in the same direction. The Sheth parameters are a = 0, b = 0,
c = d, α = 0, β = 0, γ = 0 , and therefore,

iTj =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1

⎤⎥⎥⎦ . (5.218)

Example 177 F Sheth transformation matrix at a cylindrical joint.
A cylindrical joint provides two DOF , a rotational and a translational

about the same axis. Two links connected by a cylindrical joint are shown
in Figure 5.46. The transformation matrix for a cylindrical joint can be
described by combining a revolute and a prismatic joint. Therefore, the
Sheth parameters are a = 0, b = 0, c = d, α = 0, β = 0, γ = θ , and

iTj =

⎡⎢⎢⎣
cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 d
0 0 0 1

⎤⎥⎥⎦ . (5.219)
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wjzi
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FIGURE 5.47. Illustration of a screw joint to define Sheth coordinate transfor-
mation.

Example 178 F Sheth transformation matrix at a screw joint.
A screw joint, as shown in Figure 5.47, provides a proportional rota-

tion and translation motion, which has one DOF . The relationship between
translation h and rotation θ is called pitch of screw and is defined by

p =
h

θ
. (5.220)

The transformation for a screw joint may be expressed in terms of the
relative rotation θ

iTj =

⎡⎢⎢⎣
cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 pθ
0 0 0 1

⎤⎥⎥⎦ (5.221)

or displacement h

iTj =

⎡⎢⎢⎣
cos hp − sin h

p 0 0

sin h
p cos hp 0 0

0 0 1 h
0 0 0 1

⎤⎥⎥⎦ . (5.222)

The coordinate frames are installed on the two connected links at the
screw joint such that the axes wj and zi are aligned along the screw axis,
and the axes uj and xi coincide at rest position.

Example 179 F Sheth transformation matrix at a gear joint.
The Sheth method can also be utilized to describe the relative motion of

two links connected by a gear joint. A gear joint, as shown in Figure 5.48,
provides a proportional rotation, which has 1 DOF . The axes of rotations
indicate the axes wj and zi, and their common perpendicular shows the n̂
vector. Then, the Sheth parameters are defined as a = Ri + Rj, b = 0,
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FIGURE 5.48. Illustration of a gear joint to define Sheth coordinate transforma-
tion.

c = 0, α = 0, β = θj, γ = θi , to have

iTj =

⎡⎢⎢⎣
cos (1 + ε) θi − sin (1 + ε) θi 0 Rj (1 + ε) cos θi
sin (1 + ε) θi cos (1 + ε) θi 0 Rj (1 + ε) sin θi

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (5.223)

where

ε =
Ri

Rj
. (5.224)

Example 180 F Hayati-Roberts method and singularity of DH notation.
In DH notation, the common normal is not well defined when the two

joint axes are parallel. In this condition, the DH notation has a singu-
larity, because a small change in the spatial positions of the parallel joint
axes can cause a large change in the DH coordinate representation of their
relative position.
The Hayati-Roberts (HR) notation is another convention to represent

subsequent links. HR avoids the coordinate singularity in the DH method
for the case of parallel lines. In the HR method, the direction of the zi-
axis is defined in the Bi−1 frame using roll and pitch angles αi and βi as
shown in Figure 5.49. The origin of the Bi frame is chosen to lie in the
xi−1yi−1-plane where the distance di is measured between oi−1 and oi.
Similar to DH convention, there is no unique HR convention concerning

the freedom in choosing the angle of rotations. Furthermore, although the
HR method can eliminate the parallel joint axes’ singularity, it has its own
singularities when the zi-axis is parallel to either the xi−1 or yi−1 axes, or
when zi intersects the origin of the Bi−1 frame.

Example 181 F Parametrically Continuous Convention method.
There exists another alternative method for coordinate transformation

called parametrically continuous convention (PC). The PC method repre-
sents the zi-axis by two steps:

1. Direction of the zi-axis is defined by two direction cosines, αi and βi,
with respect to the axes xi−1 and yi−1.
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FIGURE 5.49. Hayati-Roberts (HR) notation to avoid the singularity in the DH
method.

2. Position of the zi-axis is defined by two distance parameters, li and
mi to indicate the xi−1 and yi−1 coordinates of the intersection of zi
in the xi−1yi−1-plane from the origin and perpendicular to the zi-axis.

The PC homogeneous matrix to transform Bi−1 coordinates to Bi is

i−1Ti =

⎡⎢⎢⎢⎢⎣
1− α2i

1+γi
− αiβi
1+γi

αi li

− αiβi
1+γi

1− β2i
1+γi

βi mi

−αi −βi γi 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ (5.225)

where

γi =

q
1− α2i − β2i . (5.226)

The PC notation uses four parameters to indicate the position and ori-
entation of the Bi−1 frame in the Bi frame. Since we need six parameters
in general, there must be two conditions:

1. The origin of the Bi frame must lie on the common normal and be
along the joint axis.

2. The xi-axis must lie along the common normal.
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5.8 Summary

Forward kinematics is determination of the configuration of every link,
specially the end-effector, coordinate frame in the base coordinate frame of
a robot when the joint variables are given.

0rP =
0Tn

nrP (5.227)

For an n-link serial robot, it is equivalent to finding the transformation
matrix 0Tn as a function of joint variables qi.

0Tn =
0T1(q1)

1T2(q2)
2T3(q3)

3T4(q4) · · · n−1Tn(qn) (5.228)

There is a special rule for installing the coordinate frames attached to each
robot’s link called the standard Denavit-Hartenberg convention. Based on
the DH rule, each transformation matrix i−1Ti from the coordinate frame
Bi to Bi−1 can be expressed by four parameters; link length ai, link twist
αi, joint distance di, and joint angle θi.

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦ (5.229)

However, for most industrial robots, the link transformation matrix i−1Ti
can be classified into 12 simple types.

1 RkR(0) or RkP(0)
2 RkR(180) or RkP(180)
3 R⊥R(90) or R⊥P(90)
4 R⊥R(−90) or R⊥P(−90)
5 R`R(90) or R`P(90)
6 R`R(−90) or R`P(−90)
7 PkR(0) or PkP(0)
8 PkR(180) or PkP(180)
9 P⊥R(90) or P⊥P(90)
10 P⊥R(−90) or P⊥P(−90)
11 P`R(90) or P`P(90)
12 P`R(−90) or P`P(−90)

Most industrial robots are made of a 3 DOF manipulator equipped with
a 3 DOF spherical wrist. The transformation matrix 0T7 can be decom-
posed into three submatrices 0T3, 3T6 and 6T7.

0T6 =
0T3

3T6
6T7 (5.230)

The matrix 0T3 positions the wrist point and depends only on the ma-
nipulator joints’ variables. The matrix 3T6 is the wrist transformation and
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depends only on the manipulator wrist’s variables. The constant matrix
6T7 is the tools transformation matrix. Decomposing 0T7 into submatrices
enables us to make the forward kinematics modular.
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5.9 Key Symbols

a kinematic link length,
kinematic distance between z and w

a turn vector of end-effector frame
ai, αi, di, θi DH parameters of link (i)
b elevation of w-axis
B body coordinate frame
HR Hayati-Roberts
c cos, elevation of z-axis
d joint distance
d translation vector, displacement vector
D displacement transformation matrix
DH Denavit-Hartenberg
DOF degree of freedom
F goal frame
G,B0 global coordinate frame, base coordinate frame
h translation of a screw
I = [I] identity matrix
ı̂, ĵ, k̂ coordinate axes unit vectors
l length
n number of links of a robot, number of joints of a robot
n tilt vector of end-effector frame
n̂ common normal of joint axes in Sheth method
p pitch of a screw
P a body point, a fixed point in B,
r position vectors, homogeneous position vector
q joint variable
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
s location vector of a screw,

twist vector of end-effector frame
š screw
S station frame
SSRMS space station remote manipulator system
T homogeneous transformation matrix, tool frame
û unit vector on axis of rotation
ũ skew symmetric matrix of the vector û
W wrist frames
x, y, z local coordinate axes
X,Y,Z global coordinate axes
z and w joint axes of Sheth method
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Greek
α link twist, roll angle of HR frame,

angle from z to w about n̂
β pitch angle of HR frame, angle from n̂i to ui about wi

γ angle from xi to n̂i about zi
θ Joint angle
ξ moment vector of a Plücker line
ρ moment vector of û about origin
φ angle of rotation about û, rotation of a screw

Symbol
vers 1− cos
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

≡ equivalent
` orthogonal
(i) link number i
k parallel sign
⊥ perpendicular
× vector cross product
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Exercises

1. Notation and symbols.

Describe the meaning of

a- θi b- αi c- RkR(180) d- P⊥R(−90) e- R`R(−90)

f- i−1Ti g- ⊗ h- š(ai, αi, ı̂i−1) i- š(h, φ, û) j- š(di, θi, k̂i−1)

k- di l- ai m-
∙
αi ı̂i−1
ai ı̂i−1

¸
n-
∙
φû
hû

¸
o-
∙
θi k̂i−1
di k̂i−1

¸
.

2. A 4R planar manipulator.

For the 4R planar manipulator, shown in Figure 5.50, find the

(a) DH table

(b) Link-type table

(c) Individual frame transformation matrices i−1Ti, i = 1, 2, 3, 4

(d) Global coordinates of the end-effector

(e) Orientation of the end-effector ϕ.

x2
y2

y0

y1

x1

y3

x0

x4
y4

x3

1θ

2θ

l1

l 2

l3

l4

3θ

4θ

ϕ

FIGURE 5.50. A 4R planar manipulator.

3. A one-link R`R(−90) arm.
For the one-link R`R(−90) manipulator shown in Figure 5.51(a) and
(b),
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1θ

l1
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z2x1

x0

Link 1

Link 0

l1

z2

z1

z0

x2x1

x0

x2

d0

(a) (b)

1θ

FIGURE 5.51. A one-link R`R(−90) manipulator.

(a) Find the transformation matrices 0T1, 1T2, and 0T2.

(b) Compare the transformation matrix 1T2 for both frame instal-
lations.

4. A 2R planar manipulator.

Determine the link’s transformation matrices 1T2, 2T3, and 1T3 for
the 2R planar manipulator shown in

(a) Figure 5.52.

(b) Figure 5.53.

5. Ground and end-effector replacement of 2R manipulator.

Determine the transformation matrices transformation matrices 3T2,
2T1, and 3T1 for the manipulator of Figure 5.52.

6. DH coordinate frame set up.

Set up the required link coordinate frames for the manipulators in
Figure 5.16(a) and (b).

7. Set up DH coordinate frame for connected links.

(a) Set up the required link coordinate frames for the manipulators
in Figure 5.54(a) and (b) using l1, l2, l3 for the length of the
links.

(b) Determine the forward kinematics transformation matrix of the
manipulator in 5.54(a) and (b) and find their rest positions.
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FIGURE 5.52. A 2R planar manipulator with DH coordinate frames.
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FIGURE 5.53. A 2R planar manipulator with arbitrary coordinate frames.



312 5. Forward Kinematics

(a) (b)

FIGURE 5.54. Two manipulators that are made by connecting industrial links.

(c) Determine the global coordinates of the tip point of the manip-
ulator in 5.54(a) and (b)at the position shown.

8. Frame at center.

Let us attach the link’s coordinate frame at the geometric center of
the link, ai/2. Using the rigid motion and homogeneous matrices,
develop the transformation matrices 0T1, 1T2, and 0T2 for the manip-
ulator of Figure 5.55.

9. A polar manipulator.

Determine the link’s transformation matrices 1T2, 2T3, and 1T3 for
the polar manipulator shown in Figure 5.56.

10. Ground and end-effector replacement of polar manipulator.

Determine the transformation matrices transformation matrices 3T2,
2T1, and 3T1 for the manipulator of Figure 5.56.

11. A planar Cartesian manipulator.

Determine the link’s transformation matrices 1T2, 2T3, and 1T3 for
the planar Cartesian manipulator shown in Figure 5.57. Hint: The
coordinate frames are not based on DH rules.

12. F Manipulator designing.

Use the industrial robot links and make a manipulator to have
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FIGURE 5.55. A 2R planar manipulator with a coordinate frame at the geometric
center of each link.
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FIGURE 5.56. A 2 DOF polar manipulator.
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FIGURE 5.57. A 2 DOF Cartesian manipulator.

(a) Three prismatic joints and reach every point in a three dimen-
sional Cartesian space.

(b) Two prismatic and one revolute joints and reach every point in
a three dimensional Cartesian space.

(c) One prismatic and two revolute joints and reach every point in
a three dimensional Cartesian space.

(d) Three revolute joints and reach every point in a three dimen-
sional Cartesian space.

13. F Special manipulator design.

Use the industrial robot links and make a manipulator with three
DOF such that

(a) The tip point of the manipulator traces a circular path about a
center point when two joints are lucked.

(b) The tip point of the manipulator traces a circular path about
the origin of global frame when two joints are lucked.

(c) The tip point of the manipulator traces a straight path when
two joints are lucked.

(d) The tip point of the manipulator traces a straight path passing
through the origin of global frame.

14. Coordinate frame assigning.

Figure 5.58 depicts a planar manipulator with 4 DOF .

(a) Follow the DH rules and assign the link coordinate frames.
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z0

P

FIGURE 5.58. A planar manipulator with 4 DOF .

(b) Determine the link-joint table for the manipulator.

(c) Determine the DH transformation matrices.

(d) Determine the coordinates of point P as functions of the joint
coordinates.

(e) Attach a tool coordinate frame at P and solve the forward kine-
matics to determine the orientation of the frame.

(f) Determine the rest configuration and transformation matrix of
the manipulator.

15. Modular articulated manipulators.

Most industrial robots are modular. Some are manufactured by at-
taching a 2 DOF manipulator to a one-link R`R(−90) arm. Articu-
lated manipulators are made by attaching a 2R planar manipulator,
such as the one shown in Figure 5.52, to a one-link R`R(−90) ma-
nipulator shown in Figure 5.51(a). Attach the 2R manipulator to
the one-link R`R(−90) arm and make an articulated manipulator.
Make the required changes into the coordinate frames of Exercises
3 and 4 to find the link’s transformation matrices of the articulated
manipulator. Examine the rest position of the manipulator.

16. Coordinate frame completing.

Figure 5.59 shows a 3 degree of freedom manipulator.

(a) Follow the DH rules and complete the link coordinate frames.

(b) Determine the link-joint table for the manipulator.

(c) Determine the DH transformation matrices.

(d) Determine the coordinates of point P as functions of the joint
coordinates.

(e) Attach a tool coordinate frame at P and solve the forward kine-
matics to determine the orientation of the frame.
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FIGURE 5.59. A 3 degree of freedom manipulator.

(f) Determine the rest configuration and transformation matrix of
the manipulator.

17. Articulated manipulator.

Figure 5.60 illustrates an articulated manipulator.

(a) Follow the DH rules and complete the link coordinate frames.

(b) Determine the link-joint table for the manipulator.

(c) Determine the DH transformation matrices.

(d) Determine the coordinates of point P as functions of the joint
coordinates.

(e) Attach a tool coordinate frame at P and solve the forward kine-
matics to determine the orientation of the frame.

(f) Determine the rest configuration and transformation matrix of
the manipulator.

18. Modular spherical manipulators.

Spherical manipulators are made by attaching a polar manipulator
shown in Figure 5.56, to a one-link R`R(−90) manipulator shown
in Figure 5.51 (b). Attach the polar manipulator to the one-link
R`R(−90) arm and make a spherical manipulator. Make the required
changes to the coordinate frames Exercises 3 and 9 to find the link’s
transformation matrices of the spherical manipulator. Examine the
rest position of the manipulator.

19. F Non-industrial links and DH parameters.

Figure 5.61 illustrates a set of non-industrial connected links. Com-
plete the DH coordinate frames and assign the DH parameters.
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FIGURE 5.60. A design of an articulated manipulator.
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FIGURE 5.61. A set of non-industrial connected links.
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(a)

(b)

(c)

4θ

5θ

6θ

FIGURE 5.62. Disassembled links of a spherical wrist.

20. Modular cylindrical manipulators.

Cylindrical manipulators are made by attaching a 2 DOF Carte-
sian manipulator shown in Figure 5.57, to a one-link R`R(−90) ma-
nipulator shown in Figure 5.51 (a). Attach the 2 DOF Cartesian
manipulator to the one-link R`R(−90) arm and make a cylindrical
manipulator. Make the required changes into the coordinate frames
of Exercises 3 and 11 to find the link’s transformation matrices of the
cylindrical manipulator. Examine the rest position of the manipula-
tor.

21. Disassembled spherical wrist.

A spherical wrist has three revolute joints in such a way that their
joint axes intersect at a common point, called the wrist point. Each
revolute joint of the wrist attaches two links. Disassembled links of
a spherical wrist are shown in Figure 5.62. Define the required DH
coordinate frames to the links in (a), (b), and (c) consistently. Find
the transformation matrices 3T4 for (a), 4T5 for (b), and 5T6 for (c).

22. F Assembled spherical wrist.
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FIGURE 5.63. Assembled spherical wrist.

x0

y0

z0

FIGURE 5.64. A five DOF robot having a spherical wrist.

Label the coordinate frames attached to the spherical wrist in Fig-
ure 5.63 according to the frames that you installed in Exercise 21.
Determine the transformation matrices 3T6 and 3T7 for the wrist.

23. F A 5 DOF robot.

Figure 5.64 illustrates a five DOF robot having a spherical wrist.

(a) Follow the DH rules and complete the link coordinate frames
such that the hand of the robot at the rest position is straight
with the forearm.

(b) Determine the link-joint table for the manipulator.

(c) Determine the DH transformation matrices.
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d
l2

3θ

FIGURE 5.65. A 2 DOF RkP manipulator.

(d) Determine the forward kinematics final transformation matrix.

(e) Determine the rest configuration and transformation matrix of
the manipulator.

24. Articulated robots.

Attach the spherical wrist of Exercise 22 to the articulated manip-
ulator of Exercise 15 and make a 6 DOF articulated robot. Change
your DH coordinate frames in the exercises accordingly and solve the
forward kinematics problem of the robot.

25. Spherical robots.

Attach the spherical wrist of Exercise 22 to the spherical manipulator
of Exercise 18 and make a 6 DOF spherical robot. Change your DH
coordinate frames in the exercises accordingly and solve the forward
kinematics problem of the robot.

26. Cylindrical robots.

Attach the spherical wrist of Exercise 22 to the cylindrical manip-
ulator of Exercise 20 and make a 6 DOF cylindrical robot. Change
your DH coordinate frames in the exercises accordingly and solve the
forward kinematics problem of the robot.

27. An RkP manipulator.
Figure 5.65 shows a 2 DOF RkP manipulator. The end-effector of
the manipulator can slide on a line and rotate about the same line.
Label the coordinate frames installed on the links of the manipulator
and determine the transformation matrix of the end-effector to the
base link.
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FIGURE 5.66. A 2R manipulator, acting in a horizontal plane.

28. Horizontal 2R manipulator

Figure 5.66 illustrates a 2R planar manipulator that acts in a hori-
zontal plane. Label the coordinate frames and determine the trans-
formation matrix of the end-effector in the base frame.

29. SCARA manipulator.

A SCARA robot can be made by attaching a 2 DOF RkP manipula-
tor to a 2R planar manipulator. Attach the 2 DOF RkP manipulator
of Exercise 27 to the 2R horizontal manipulator of Exercise 28 and
make a SCARA manipulator. Solve the forward kinematics problem
for the manipulator.

30. F Roll-Pitch-Yaw spherical wrist kinematics.

Attach the required DH coordinate frames to the Roll-Pitch-Yaw
spherical wrist of Figure 5.30, similar to 5.28, and determine the
forward kinematics of the wrist.

31. F Pitch-Yaw-Roll spherical wrist kinematics.

Attach the required coordinate DH frames to the Pitch-Yaw-Roll
spherical wrist of Figure 5.31, similar to 5.28, and determine the
forward kinematics of the wrist.

32. F Assembling a R-P-Y wrist to a spherical arm.

Assemble the Roll-Pitch-Yaw spherical wrist of Figure 5.30 to the
spherical manipulator of Figure 5.40 and determine the forward kine-
matics of the robot.
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FIGURE 5.67. The space shuttle remote manipulator system (SSRMS) with a
camere attached to the link (4).

33. F Assembling a P-Y-R wrist to a spherical arm.

Assemble the Pitch-Yaw-Roll spherical wrist of Figure 5.31 to the
spherical manipulator of Figure 5.40 and determine the forward kine-
matics of the robot.

34. F SCARA robot with a spherical wrist.

Attach the spherical wrist of Exercise 22 to the SCARA manipulator
of Exercise 29 and make a 7DOF robot. Change yourDH coordinate
frames in the exercises accordingly and solve the forward kinematics
problem of the robot.

35. F Modular articulated manipulators by screws.

Solve Exercise 15 by screws.

36. F Modular spherical manipulators by screws.

Solve Exercise 18 by screws.

37. F Modular cylindrical manipulators by screws.

Solve Exercise 20 by screws.

38. F Spherical wrist kinematics by screws.

Solve Exercise 22 by screws.
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39. F Modular SCARA manipulator by screws.

Solve Exercise 27, 28, and 29 by screws.

40. F Space station remote manipulator system.

Attach a spherical wrist to the SSRMS and make a 10 DOF ro-
bot. Solve the forward kinematics of the robot by matrix and screw
methods.

41. F Camera on a space station remote manipulator.

Assume that we attach an inspection camera to link (4) of the space
station remote manipulator system, as shown in Figure 5.67.

Determine the matrix 8T7 such that x8 points the origin of the gripper
frame B7 and z8 be in (x3, x4)-plane and perpendicular to x4. Then,
determine the matrices 0T8, 4T8, 3T8, 6T8, 1T8.
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Inverse Kinematics
What are the joint variables for a given configuration of a robot? This is
the inverse kinematic problem. The determination of the joint variables
reduces to solving a set of nonlinear coupled algebraic equations. Although
there is no standard and generally applicable method to solve the inverse
kinematic problem, there are a few analytic and numerical methods to
solve the problem. The main difficulty of inverse kinematic is the multiple
solutions such as the one that is shown in Figure 6.1 for a planar 2R
manipulator.

y2

y0

y1 x1

x0

x22θ

1θ
l 1

l2

FIGURE 6.1. Multiple solution for inverse kinematic problem of a planar 2R
manipulator.

6.1 Decoupling Technique

Determination of joint variables in terms of the end-effector position and
orientation is called inverse kinematics. Mathematically, inverse kinematics
is searching for the elements of vector q

q =
£
q1 q2 q3 · · · qn

¤T
(6.1)

when a transformation 0Tn is given as a function of the joint variables
q1, q2, q3, · · · , qn .

0Tn =
0T1(q1)

1T2(q2)
2T3(q3)

3T4(q4) · · · n−1Tn(qn) (6.2)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_6,  
© Springer Science+Business Media, LLC 2010 
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Computer controlled robots are usually actuated in the joint variable
space, however objects to be manipulated are usually expressed in the
global Cartesian coordinate frame. Therefore, carrying kinematic informa-
tion, back and forth, between joint space and Cartesian space, is a need in
robotics. To control the configuration of the end-effector to reach an object,
the inverse kinematics problem must be solved. Hence, we need to know
what the required values of joint variables are, to reach a desired point in
a desired orientation.
The result of forward kinematics of a 6 DOF robot is a 4 × 4 transfor-

mation matrix

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (6.3)

where 12 elements are trigonometric functions of six unknown joint vari-
ables. However, because the upper left 3×3 submatrix of (6.3) is a rotation
matrix, only three elements of them are independent. This is because of
the orthogonality condition (2.197). Hence, only six equations out of the
12 equations of (6.3) are independent.
Trigonometric functions inherently provide multiple solutions. Therefore,

multiple configurations of the robot are expected when the six equations
are solved for the unknown joint variables.
It is possible to decouple the inverse kinematics problem into two sub-

problems, known as inverse position and inverse orientation kinematics.
The practical consequence of such a decoupling is the allowance to break
the problem into two independent problems, each with only three unknown
parameters. Following the decoupling principle, the overall transformation
matrix of a robot can be decomposed to a translation and a rotation.

0T6 =

∙
0R6

0d6
0 1

¸
= 0D6

0R6 =

∙
I 0d6
0 1

¸ ∙
0R6 0
0 1

¸
(6.4)

The translation matrix 0D6 indicates the position of the end-effector in B0
and involves only the three joint variables of the manipulator. We can solve
0d6 for the variables that control the wrist position. The rotation matrix
0R6 indicates the orientation of the end-effector in B0 and involves only
the three joint variables of the wrist. We can solve 0R6 for the variables
that control the wrist orientation.

Proof. Most robots have a wrist made of three revolute joints with inter-
secting and orthogonal axes at the wrist point. Taking advantage of having
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a spherical wrist, we can decouple the kinematics of the wrist and manipu-
lator by decomposing the overall forward kinematics transformation matrix
0T6 into the wrist orientation and wrist position

0T6 =
0T3

3T6 =

∙
0R3

0d3
0 1

¸ ∙
3R6 0
0 1

¸
(6.5)

where the wrist orientation matrix is:

3R6 =
0RT

3
0R6 =

0RT
3

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (6.6)

and the wrist position vector is:

0d6 =

⎡⎣ r14
r24
r34

⎤⎦ (6.7)

The wrist position vector 0d6 ≡ 0d3 includes the manipulator joint vari-
ables only. Hence, to solve the inverse kinematics of such a robot, we must
solve 0d3 for position of the wrist point, and then solve 3R6 for orientation
of the wrist.
The components of the wrist position vector 0d6 = 0dwrist provides three

equations for the three unknown manipulator joint variables. Solving 0d6,
for manipulator joint variables, leads to calculating 3R6 from (6.6). Then,
the wrist orientation matrix 3R6 can be solved for wrist joint variables.
In case we include the tool coordinate frame in forward kinematics, the

decomposition must be done according to the following equation to exclude
the effect of tool distance d7 from the robot’s kinematics.

0T7 = 0T3
3T7 =

0T3
3T6

6T7

=

∙
0R3 dw
0 1

¸ ∙
3R6 0
0 1

¸⎡⎢⎢⎣ I
0
0
d7

0 1

⎤⎥⎥⎦ (6.8)

In this case, inverse kinematics starts from determination of 0T6, which can
be found by

0T6 = 0T7
6T−17 (6.9)

= 0T7

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦
−1

= 0T7

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −d7
0 0 0 1

⎤⎥⎥⎦ .
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FIGURE 6.2. An R`RkR articulated manipulator.

Example 182 An articulated manipulator.
Consider an articulated manipulator as is shown in Figure 6.2. The links

of the manipulator are R`R(90), RkR(0), R`R(90), and their associated
transformation matrices between coordinate frames are:

0T1 =

⎡⎢⎢⎣
cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0
0 1 0 l1
0 0 0 1

⎤⎥⎥⎦ (6.10)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (6.11)

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (6.12)

The forward kinematics of the manipulator is:

0T3 = 0T1
1T2

2T3 (6.13)

=

⎡⎢⎢⎣
cθ1c (θ2 + θ3) sθ1 cθ1s (θ2 + θ3) l2cθ1cθ2
sθ1c (θ2 + θ3) −cθ1 sθ1s (θ2 + θ3) l2cθ2sθ1
s (θ2 + θ3) 0 −c (θ2 + θ3) l1 + l2sθ2

0 0 0 1

⎤⎥⎥⎦
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and therefore, the tip point P is at:

0dP =

⎡⎣ dx
dy
dz

⎤⎦ = 0T3

⎡⎣ 0
0
l3

⎤⎦
=

⎡⎣ l3 sin (θ2 + θ3) cos θ1 + l2 cos θ1 cos θ2
l3 sin (θ2 + θ3) sin θ1 + l2 sin θ1 cos θ2

l1 − l3 cos (θ2 + θ3) + l2 sin θ2

⎤⎦ (6.14)

Point P is supposed to be the point at which we attach a spherical wrist.
Therefore, 0dP is the decoupled position vector of the wrist point that will
not be affected by the wrist attachment. 0dP provides three equations for
the three joint variables of the manipulator θ1, θ2, θ3. The first angle can
be found from

dx sin θ1 − dy cos θ1 = 0 (6.15)

that is:
θ1 = atan2 (dy, dx) (6.16)

We combine the first and second elements of 0dP to find:

dx cos θ1 + dy sin θ1 = l3 sin (θ2 + θ3) + l2 cos θ2 (6.17)

Now, combining this equation and the third element of 0dP provides:

(dz − l1 − l2 sin θ2)
2 + (dx cos θ1 + dy sin θ1 − l2 cos θ2)

2 = l23 (6.18)

or

−2l2 (dx cos θ1 + dy sin θ1) cos θ2 + 2l2 (l1 − dz) sin θ2 =

l23 −
³
(dx cos θ1 + dy sin θ1)

2
+ l21 − 2l1dz + l22 + d2z

´
(6.19)

that is a trigonometric equation of the form (6.88).

a cos θ2 + b sin θ2 = c (6.20)

a = −2l2 (dx cos θ1 + dy sin θ1)

b = 2l2 (l1 − dz)

c = l23 −
³
(dx cos θ1 + dy sin θ1)

2
+ l21 − 2l1dz + l22 + d2z

´
(6.21)

We solve this equation for θ2. Dividing (6.17) by the third element of 0dP
determines θ3.

tan (θ2 + θ3) =
dx cos θ1 + dy sin θ1 − l2 cos θ2

l1 + l2 sin θ2 − dz
(6.22)

θ3 = atan2

µ
dx cos θ1 + dy sin θ1 − l2 cos θ2

l1 + l2 sin θ2 − dz

¶
− θ2 (6.23)
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Example 183 Numerical case of an articulated manipulator.
To check the inverse kinematic equations of Example 182, let us examine

an articulated manipulator with the following dimensions

l1 = 1m

l2 = 1.05m

l3 = 0.89m (6.24)

when its tip point is at:

0dP =
£
1 1.1 1.2

¤T
(6.25)

Equation (6.16) provides θ1.

θ1 = atan2 (dy, dx) = tan
−1 1.1

1
= 0.832 98 rad ≈ 47.727 deg (6.26)

To determine θ2, we should solve Equation (6.20)

a cos θ2 + b sin θ2 = c (6.27)

where,

a = −2l2 (dx cos θ1 + dy sin θ1) = −3.941263019 (6.28)

b = 2l2 (l1 − dz) = −0.5302360813 (6.29)

c = l23 −
³
(dx cos θ1 + dy sin θ1)

2
+ l21 − 2l1dz + l22 + d2z

´
= −3.232420149, − 5.232420149. (6.30)

We find two values for θ2 for c = −3.232

θ2 = 0.7555416816 rad ≈ 43.28934959 deg (6.31)

θ2 = −0.4880785028 rad ≈ −27.96483827 deg (6.32)

and we get no real answer for c = −5.232. θ3 comes from (6.23). If θ2 =
0.755 rad then we have

θ3 = atan2

µ
dx cos θ1 + dy sin θ1 − l2 cos θ2

l1 + l2 sin θ2 − dz

¶
− θ2

= .1913201914 rad ≈ 11 deg (6.33)

and if θ2 = −0.488 rad then we have:

θ3 = −.1913201910 rad ≈ −11 deg (6.34)
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Example 184 Inverse kinematics for a 2R planar manipulator.
Figure 5.9 illustrates a 2R planar manipulator with two RkR links ac-

cording to the coordinate frames setup shown in the figure. The forward
kinematics of the manipulator was found to be

0T2 = 0T1
1T2 (6.35)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .
The inverse kinematics of planar robots are generally easier to find analyt-
ically. The global position of the tip point of the manipulator is at∙

X
Y

¸
=

∙
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

¸
(6.36)

therefore
X2 + Y 2 = l21 + l22 + 2l1l2 cos θ2 (6.37)

and

cos θ2 =
X2 + Y 2 − l21 − l22

2l1l2
(6.38)

θ2 = cos−1
X2 + Y 2 − l21 − l22

2l1l2
. (6.39)

However, we usually avoid using arcsin and arccos because of the inaccu-
racy. So, we employ the half angle formula

tan2
θ

2
=
1− cos θ
1 + cos θ

(6.40)

to find θ2 using an atan2 function

θ2 = ±2 atan2

s
(l1 + l2)

2 − (X2 + Y 2)

(X2 + Y 2)− (l1 − l2)
2 . (6.41)

The ± is because of the square root, which generates two solutions. These
two solutions are called elbow up and elbow down, as shown in Figure
6.3(a) and (b) respectively.
The first joint variable θ1 of an elbow up configuration can geometrically

be found from

θ1 = atan2
Y

X
+ atan2

l2 sin θ2
l1 + l2 cos θ2

(6.42)

and for an elbow down configuration from

θ1 = atan2
Y

X
− atan2 l2 sin θ2

l1 + l2 cos θ2
. (6.43)
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FIGURE 6.3. Illustration of a 2R planar manipulator in two possible configura-
tions: (a) elbow up and (b) elbow down.

θ1 can also be found from the following alternative equation.

θ1 = atan2
−Xl2 sin θ2 + Y (l1 + l2 cos θ2)

Y l2 sin θ2 +X (l1 + l2 cos θ2)
(6.44)

Most of the time, the value of θ1 should be corrected by adding or subtracting
π depending on the sign of X. It is also possible to combine Equations of
(6.36) and determine a trigonometric equation for θ1.

2Xl1 cos θ1 + 2Y l1 sin θ1 = X2 + Y 2 + l21 − l22 (6.45)

It is also convenient to use the following equation.

l1 + l2 cos θ2 =
X2 + Y 2 + l21 − l22

2l1
(6.46)

The two different sets of solutions for θ1 and θ2 correspond to the elbow up
and elbow down configurations.

Example 185 Motion of a 2R manipulator.
Consider a 2R planar manipulator with

l1 = 1m l1 = 1m (6.47)

that its tip point is moving from P1 (1.2, 1.5) to P2 (−1.2, 1.5) on a straight
line. The using the inverse kinematic equations (6.39) and (6.42), we can
determine the configuration of the manipulator at any point of the path.
Figure 6.4 illustrates the manipulator at 42 equally spaced points between
P1 and P2. Let us assume that the tip point is moving of the line based on
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X

Y

P2 P1

FIGURE 6.4. A 2R planar manipulator with l1 = 1m, l1 = 1m moving from P1
to P2 on a straight line.

the following time behavior.

X = 1.2− t Y = 1.5 0 ≤ t ≤ 2.4 (6.48)

The variation of the angles θ1 and θ2 are as shown in Figure 6.5.

Example 186 Inverse kinematics of an articulated robot.
The forward kinematics of the articulated robot, illustrated in Figure 6.6,

was found in Example 166, where the overall transformation matrix of the
end-effector was found, based on the wrist and arm transformation matri-
ces.

0T7 = TarmTwrist =
0T3

3T7

The wrist transformation matrix Twrist is described in (5.124) and the ma-
nipulator transformation matrix, Tarm is found in (5.74). However, accord-
ing to a new setup coordinate frame, as shown in Figure 6.6, we have a 6R
robot with a six links configuration

1 R`R(90)
2 RkR(0)
3 R`R(90)
4 R`R(−90)
5 R`R(90)
6 RkR(0)

and a displacement TZ,d7 . Therefore, the individual links’ transformation
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FIGURE 6.5. The variation of the angles θ1 and θ2 of the 2R planar manipulator
of Figure 6.4.
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FIGURE 6.6. A 6 DOF articulated manipulator.
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matrices are

0T1 =

⎡⎢⎢⎣
cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (6.49)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 d2
0 0 0 1

⎤⎥⎥⎦ (6.50)

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (6.51)

3T4 =

⎡⎢⎢⎣
cos θ4 0 − sin θ4 0
sin θ4 0 cos θ4 0
0 −1 0 l3
0 0 0 1

⎤⎥⎥⎦ (6.52)

4T5 =

⎡⎢⎢⎣
cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (6.53)

5T6 =

⎡⎢⎢⎣
cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (6.54)

6T7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d6
0 0 0 1

⎤⎥⎥⎦ (6.55)

and the tool transformation matrix in the base coordinate frame is

0T7 = 0T1
1T2

2T3
3T4

4T5
5T6

6T7 (6.56)

= 0T3
3T6

6T7

=

⎡⎢⎢⎣
t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 1

⎤⎥⎥⎦
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where

0T3 =

⎡⎢⎢⎣
cθ1c(θ2 + θ3) sθ1 cθ1s(θ2 + θ3) l2cθ1cθ2 + d2sθ1
sθ1c(θ2 + θ3) −cθ1 sθ1s(θ2 + θ3) l2cθ2sθ1 − d2cθ1
s(θ2 + θ3) 0 −c(θ2 + θ3) l2sθ2

0 0 0 1

⎤⎥⎥⎦
(6.57)

3T6 =

⎡⎢⎢⎣
cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ5cθ6sθ4 + cθ4sθ6 cθ4ccθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 l3
0 0 0 1

⎤⎥⎥⎦
(6.58)

and

t11 = cθ1 (c (θ2 + θ3) (cθ4cθ5cθ6 − sθ4sθ6)− cθ6sθ5s (θ2 + θ3))

+sθ1 (cθ4sθ6 + cθ5cθ6sθ4) (6.59)

t21 = sθ1 (c (θ2 + θ3) (−sθ4sθ6 + cθ4cθ5cθ6)− cθ6sθ5s (θ2 + θ3))

−cθ1 (cθ4sθ6 + cθ5cθ6sθ4) (6.60)

t31 = s (θ2 + θ3) (cθ4cθ5cθ6 − sθ4sθ6) + cθ6sθ5c (θ2 + θ3) (6.61)

t12 = cθ1 (sθ5sθ6s (θ2 + θ3)− c (θ2 + θ3) (cθ6sθ4 + cθ4cθ5sθ6))

+sθ1 (cθ4cθ6 − cθ5sθ4sθ6) (6.62)

t22 = sθ1 (sθ5sθ6s (θ2 + θ3)− c (θ2 + θ3) (cθ6sθ4 + cθ4cθ5sθ6))

+cθ1 (−cθ4cθ6 + cθ5sθ4sθ6) (6.63)

t32 = −sθ5sθ6c (θ2 + θ3)− s (θ2 + θ3) (cθ6sθ4 + cθ4cθ5sθ6) (6.64)

t13 = sθ1sθ4sθ5 + cθ1 (cθ5s (θ2 + θ3) + cθ4sθ5c (θ2 + θ3)) (6.65)

t23 = −cθ1sθ4sθ5 + sθ1 (cθ5s (θ2 + θ3) + cθ4sθ5c (θ2 + θ3)) (6.66)

t33 = cθ4sθ5s (θ2 + θ3)− cθ5c (θ2 + θ3) (6.67)

t14 = d6 (sθ1sθ4sθ5 + cθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+l3cθ1s (θ2 + θ3) + d2sθ1 + l2cθ1cθ2 (6.68)

t24 = d6 (−cθ1sθ4sθ5 + sθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+sθ1s (θ2 + θ3) l3 − d2cθ1 + l2cθ2sθ1 (6.69)

t34 = d6 (cθ4sθ5s (θ2 + θ3)− cθ5c (θ2 + θ3))

+l2sθ2 + l3c (θ2 + θ3) . (6.70)

Solution of the inverse kinematics problem starts with the wrist position
vector d, which is

£
t14 t24 t34

¤T
of 0T7 for d7 = 0

d =

⎡⎣ cθ1 (l3s (θ2 + θ3) + l2cθ2) + d2sθ1
sθ1 (l3s (θ2 + θ3) + l2cθ2)− d2cθ1

l3c (θ2 + θ3) + l2sθ2

⎤⎦ =
⎡⎣ dx

dy
dz

⎤⎦ . (6.71)
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Theoretically, we must be able to solve Equation (6.71) for the three joint
variables θ1, θ2, and θ3. It can be seen that

dx sin θ1 − dy cos θ1 = d2 (6.72)

which provides

θ1 = 2atan2(dx ±
q
d2x + d2y − d22, d2 − dy). (6.73)

Equation (6.73) has two solutions for d2x + d2y > d22, one solution for
d2x + d2y = d22 , and no real solution for d

2
x + d2y < d22.

Combining the first two elements of d gives

l3 sin (θ2 + θ3) = ±
q
d2x + d2y − d22 − l2 cos θ2 (6.74)

then, the third element of d may be utilized to find

l23 =
³
±
q
d2x + d2y − d22 − l2 cos θ2

´2
+ (dz − l2 sin θ2)

2 (6.75)

which can be rearranged to the following form

a cos θ2 + b sin θ2 = c (6.76)

a = 2l2

q
d2x + d2y − d22 (6.77)

b = 2l2dz (6.78)

c = d2x + d2y + d2z − d22 + l22 − l23. (6.79)

with two solutions

θ2 = atan2(
c

r
,±
r
1− c2

r2
)− atan2(a, b) (6.80)

r2 = a2 + b2. (6.81)

Summing the squares of the elements of d gives

d2x + d2y + d2z = d22 + l22 + l23 + 2l2l3 sin (2θ2 + θ3) (6.82)

that provides

θ3 = arcsin

Ã
d2x + d2y + d2z − d22 − l22 − l23

2l2l3

!
− 2θ2. (6.83)

Having θ1, θ2, and θ3 means we can find the wrist point in space. How-
ever, because the joint variables in 0T3 and in 3T6 are independent, we
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should find the orientation of the end-effector by solving 3T6 or 3R6 for θ4,
θ5, and θ6.

3R6 =

⎡⎣ cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5
cθ5cθ6sθ4 + cθ4sθ6 cθ4ccθ6 − cθ5sθ4sθ6 sθ4sθ5

−cθ6sθ5 sθ5sθ6 cθ5

⎤⎦
=

⎡⎣ s11 s12 s13
s21 s22 s23
s31 s32 s33

⎤⎦ (6.84)

The angles θ4, θ5, and θ6 can be found by examining elements of 3R6

θ4 = atan2 (s23, s13) (6.85)

θ5 = atan2

µq
s213 + s223, s33

¶
(6.86)

θ6 = atan2 (s32,−s31) . (6.87)

Example 187 F Solution of trigonometric equation a cos θ+ b sin θ = c.
The first type of trigonometric equation

a cos θ + b sin θ = c (6.88)

can be solved by introducing two new variables r and φ such that

a = r sinφ (6.89)

b = r cosφ (6.90)

and

r =
p
a2 + b2 (6.91)

φ = atan2(a, b). (6.92)

Substituting the new variables show that

sin(φ+ θ) =
c

r
(6.93)

cos(φ+ θ) = ±
r
1− c2

r2
. (6.94)

Hence, the solutions of the problem are

θ = atan2(
c

r
,±
r
1− c2

r2
)− atan2(a, b) (6.95)

or
θ = atan2(c,±

p
r2 − c2)− atan2(a, b). (6.96)
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Therefore, the equation a cos θ + b sin θ = c has two solutions if r2 = a2 +
b2 > c2, one solution if r2 = c2, and no solution if r2 < c2.
As an example, let us solve the following equation.

1.5 cos θ + 2.5 sin θ = 2.549 (6.97)

Having a = 1.5 and b = 2.5, we find r and φ.

r =
p
a2 + b2 = 2.915475947 (6.98)

φ = atan2(a, b) = 0.5404195 rad (6.99)

Therefore,

θ = atan2(c,±
p
r2 − c2)− atan2(a, b)

= atan2(2.549,±
√
2)− φ

= 0.5235718477 rad, 1.537181805 rad

≈ 30 deg, 88.07 deg (6.100)

Example 188 F Meaning of the function tan−12
y
x = atan2(y, x).

In robotic calculation, specially in solving inverse kinematic problems,
we need to find an angle based on the sin and cos functions of the angle.
However, tan−1 cannot show the effect of the individual sign for the numer-
ator and denominator. It always represents an angle in the first or fourth
quadrant. To overcome this problem and determine the joint angles in the
correct quadrant, the atan2 function is introduced as:

atan2(y, x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sgn y tan−1

¯̄̄y
x

¯̄̄
if x > 0, y 6= 0

π

2
sgn y if x = 0, y 6= 0

sgn y
³
π − tan−1

¯̄̄y
x

¯̄̄´
if x < 0, y 6= 0

π − π sgnx if x 6= 0, y = 0

(6.101)

The sgn represents the signum function.

sgn(x) =

⎧⎨⎩ 1 if x > 0
0 if x = 0
−1 if x < 0

(6.102)

As an example, let us compare the tan−1 and atan2 for four points in four
quadrants.

x = 1, y = 1 then tan−1 11 = 0.785 atan2(1, 1) = 0.785
x = −1, y = 1 then tan−1 1

−1 = −0.785 atan2(1,−1) = 2.356
x = −1, y = −1 then tan−1 −1−1 = 0.785 atan2(−1,−1) = −2.356
x = 1, y = −1 then tan−1 −11 = −0.785 atan2(−1, 1) = −0.785

In this text, whether it has been mentioned or not, wherever tan−1 y
x is

used, it must be calculated based on atan2(y, x).
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Example 189 F Fundamental properties of arcsin and arccos.
The general solution of equations

sinϕ = a cos θ = b tanψ = c (6.103)

are:

ϕ = sin−1 a = (−1)k sin−1 a+ kπ (6.104)

θ = cos−1 b = ± cos−1 b+ 2kπ (6.105)

ψ = tan−1 c = tan−1 c+ kπ c2 6= −1 (6.106)

Example 190 F General inverse kinematics formulas.
There are some general trigonometric equations that regularly appear in

inverse kinematics problems. The following indicates the most frequently
equations and solutions.

1. If
sin θ = a (6.107)

then, we have two answers: θ and π − θ.

θ = atan2
a

±
√
1− a2

(6.108)

2. If
cos θ = b (6.109)

then, we have two answers: θ and −θ.

θ = atan2
±
√
1− b2

b
(6.110)

3. If
sin θ = a cos θ = b (6.111)

then,
θ = atan2

a

b
. (6.112)

4. If
a cos θ + b sin θ = 0 (6.113)

then, we have two answers: θ and θ + π.

θ = atan2
a

b
θ = atan2

−a
−b (6.114)

5. If
a cos θ + b sin θ = c (6.115)

then,

θ = atan2
a

b
+ atan2

±
√
a2 + b2 − c2

c
. (6.116)
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6. If

a cos θ + b sin θ = c (6.117)

a cos θ − b sin θ = d (6.118)

then,

a2 + b2 = c2 + d2 (6.119)

θ = atan2
ac− bd

ad+ bc
. (6.120)

7. If
sin θ sinϕ = a cos θ sinϕ = b (6.121)

then, we have two answers: θ and θ + π.

θ = atan2
a

b
θ = atan2

−a
−b (6.122)

8. If
sin θ sinϕ = a cos θ sinϕ = b cosϕ = c (6.123)

then, we have two answers for θ and ϕ: θ corresponds to ϕ, and θ+π
corresponds to −ϕ.

θ = atan2
a

b
θ = atan2

−a
−b (6.124)

ϕ = atan2

√
a2 + b2

c
ϕ = atan2

−
√
a2 + b2

c
(6.125)

6.2 Inverse Transformation Technique

Assume we have the transformation matrix 0T6 indicating the global posi-
tion and the orientation of the end-effector of a 6 DOF robot in the base
frame B0. Furthermore, assume the geometry and individual transforma-
tion matrices 0T1(q1), 1T2(q2), 2T3(q3), 3T4(q4), 4T5(q5), and 5T6(q6) are
given as functions of joint variables.
According to forward kinematics,

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 (6.126)

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ .
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We can solve the inverse kinematics problem by solving the following equa-
tions for the unknown joint variables:

1T6 = 0T−11
0T6 (6.127)

2T6 = 1T−12
0T−11

0T6 (6.128)
3T6 = 2T−13

1T−12
0T−11

0T6 (6.129)
4T6 = 3T−14

2T−13
1T−12

0T−11
0T6 (6.130)

5T6 = 4T−15
3T−14

2T−13
1T−12

0T−11
0T6 (6.131)

I = 5T−16
4T−15

3T−14
2T−13

1T−12
0T−11

0T6 (6.132)

Proof. We multiply both sides of the transformation matrix 0T6 by 0T−11
to obtain

0T−11
0T6 = 0T−11

¡
0T1

1T2
2T3

3T4
4T5

5T6
¢

= 1T6. (6.133)

Note that 0T−11 is the mathematical inverse of the 4×4 matrix 0T1, and not
an inverse transformation. So, 0T−11 must be calculated by a mathematical
matrix inversion.
The left-hand side of Equation (6.133) is a function of q1. However, the

elements of the matrix 1T6 on the right-hand side are either zero, constant,
or functions of q2, q3, q4, q5, and q6. The zero or constant elements of the
right-hand side provides the required algebraic equation to be solved for
q1.
Then, we multiply both sides of (6.133) by 1T−12 to obtain

1T−12
0T−11

0T6 = 1T−12
0T−11

¡
0T1

1T2
2T3

3T4
4T5

5T6
¢

= 2T6. (6.134)

The left-hand side of this equation is a function of q2, while the elements of
the matrix 2T6, on the right hand side, are either zero, constant, or functions
of q3, q4, q5, and q6. Equating the associated element, with constant or zero
elements on the right-hand side, provides the required algebraic equation
to be solved for q2.
Following this procedure, we can find the joint variables q3, q4, q5, and

q6 by using the following equalities respectively.

2T−13
1T−12

0T−11
0T6

= 2T−13
1T−12

0T−11
¡
0T1

1T2
2T3

3T4
4T5

5T6
¢

= 3T6.
(6.135)

3T−14
2T−13

1T−12
0T−11

0T6
= 3T−14

2T−13
1T−12

0T−11
¡
0T1

1T2
2T3

3T4
4T5

5T6
¢

= 4T6.
(6.136)
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FIGURE 6.7. An articulated manipulator.

4T−15
3T−14

2T−13
1T−12

0T−11
0T6

= 4T−15
3T−14

2T−13
1T−12

0T−11
¡
0T1

1T2
2T3

3T4
4T5

5T6
¢

= 5T6.
(6.137)

5T−16
4T−15

3T−14
2T−13

1T−12
0T−11

0T6
= 5T−16

4T−15
3T−14

2T−13
1T−12

0T−11
¡
0T1

1T2
2T3

3T4
4T5

5T6
¢

= I.
(6.138)

The inverse transformation technique may sometimes be called Pieper
technique.

Example 191 Articulated manipulator and numerical case.
Consider the articulated manipulator shown in Figure 6.7. The transfor-

mation matrices between its coordinate frames are:

0T1 =

⎡⎢⎢⎣
cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0
0 1 0 l1
0 0 0 1

⎤⎥⎥⎦ (6.139)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (6.140)



344 6. Inverse Kinematics

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (6.141)

The forward kinematics of the manipulator is:

0T3 = 0T1
1T2

2T3 (6.142)

=

⎡⎢⎢⎣
cθ1c (θ2 + θ3) sθ1 cθ1s (θ2 + θ3) l2cθ1cθ2
sθ1c (θ2 + θ3) −cθ1 sθ1s (θ2 + θ3) l2cθ2sθ1
s (θ2 + θ3) 0 −c (θ2 + θ3) l1 + l2sθ2

0 0 0 1

⎤⎥⎥⎦
Point P is supposed to be the point at which we attach a spherical wrist.
Therefore, we attach a takht coordinate frame B4 at P that is at a constant
distance l3 from B3.

3T4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 l3
0 0 0 1

⎤⎥⎥⎦ (6.143)

So, the overall forward kinematics of the manipulator is:

0T4 =
0T3

3T4 = (6.144)⎡⎢⎢⎣
cθ1c (θ2 + θ3) sθ1 cθ1s (θ2 + θ3) l3s (θ2 + θ3) cθ1 + l2cθ1cθ2
sθ1c (θ2 + θ3) −cθ1 sθ1s (θ2 + θ3) l3s (θ2 + θ3) sθ1 + l2cθ2sθ1
s (θ2 + θ3) 0 −c (θ2 + θ3) l1 − l3c (θ2 + θ3) + l2sθ2

0 0 0 1

⎤⎥⎥⎦
Using the following dimensions

l1 = 1m l2 = 1.05m l3 = 0.89m (6.145)

when its tip point is at:

0dP =
£
1 1.1 1.2

¤T
(6.146)

the forward kinematics reduces to:

0T4 =

⎡⎢⎢⎣
cos (θ2 + θ3) cos θ1 sin θ1 sin (θ2 + θ3) cos θ1 1
cos (θ2 + θ3) sin θ1 − cos θ1 sin (θ2 + θ3) sin θ1 1.1
sin (θ2 + θ3) 0 − cos (θ2 + θ3) 1.2

0 0 0 1

⎤⎥⎥⎦
(6.147)

Let us multiply both sides by 0T−11 to have:

0T−11
0T4 =

0T−11
¡
0T1

1T2
2T3

3T4
¢
= 1T4 (6.148)
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where,

0T−11
0T4 = 1T4 =

⎡⎢⎢⎣
cos θ1 sin θ1 0 0
0 0 1 −1

sin θ1 − cos θ1 0 0
0 0 0 1

⎤⎥⎥⎦ 0T4 (6.149)

=

⎡⎢⎢⎣
cos (θ2 + θ3) 0 sin (θ2 + θ3) cos θ1 + 1.1 sin θ1
sin (θ2 + θ3) 0 − cos (θ2 + θ3) 0.2

0 1 0 sin θ1 − 1.1 cos θ1
0 0 0 1

⎤⎥⎥⎦
and

1T2
2T3

3T4 = (6.150)⎡⎢⎢⎣
c (θ2 + θ3) 0 s (θ2 + θ3) 1.2s (θ2 + θ3) + 1.1cθ2
s (θ2 + θ3) 0 −c (θ2 + θ3) 1.1sθ2 − 1.2c (θ2 + θ3)

0 1 0 0
0 0 0 1

⎤⎥⎥⎦ .
The last column of the left hand side of (6.148) is only a function of θ1
while the right hand side is a function of θ2 and θ3. Equating the element
r24 of both sides of (6.148) provides an equation to determine θ1.

sin θ1 − 1.1 cos θ1 = 0 (6.151)

θ1 = atan2 (1.1, 1) = tan−1
1.1

1
= 0.8329812667 rad ≈ 47.72631098 deg (6.152)

Substituting θ1 = 0.832 98 rad in (6.149) provides a matrix 1T4 with a nu-
merical values in the last column.

1T4 =

⎡⎢⎢⎣
cos (θ2 + θ3) 0 sin (θ2 + θ3) 1.486 6
sin (θ2 + θ3) 0 − cos (θ2 + θ3) 0.2

0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (6.153)

We multiply both sides of (6.153) by 1T−12 to have:
1T−12

1T4 =
1T−12

¡
1T2

2T3
3T4
¢
= 2T4 (6.154)

where,

1T−12
1T4 = 2T4 =

⎡⎢⎢⎣
cos θ2 sin θ2 0 −1.05
− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ 1T4 (6.155)

=

⎡⎢⎢⎣
cos θ3 0 sin θ3 1.486 6 cos θ2 + 0.2 sin θ2 − 1.05
sin θ3 0 − cos θ3 0.2 cos θ2 − 1.486 6 sin θ2
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
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and

2T3
3T4 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0.89 sin θ3
sin θ3 0 − cos θ3 −0.89 cos θ3
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ . (6.156)

Squaring the elements r14 and r24 of the left hand sides of (6.154), provides
an equation to determine θ2.

(1.486 6 cos θ2 + 0.2 sin θ2 − 1.05)2

+(0.2 cos θ2 − 1.486 6 sin θ2)2

= (0.89 sin θ3)
2
+ (−0.89 cos θ3)2 (6.157)

3.941 cos θ2 + .53 sin θ2 = 5.232 (6.158)

This equation has the following solutions:

θ2 = .7555518221 rad ≈ 43.28993061 deg (6.159)

θ2 = −.4880908073 rad ≈ −27.96554327 deg (6.160)

Having θ2, we can calculate θ3 from the last column of (6.156) and (6.155).

θ3 = atan2

µ
1.486 6 cos θ2 + 0.2 sin θ2 − 1.05
0.2 cos θ2 − 1.486 6 sin θ2

¶
(6.161)

If θ2 = .755 rad then we have:

θ3 = atan2 (−0.194 37) = −0.19198 rad ≈ −11 deg (6.162)

If θ2 = −.488 rad then we have:

θ3 = atan2 (0.194 37) = 0.19198 rad ≈ 11 deg (6.163)

Example 192 Inverse kinematics for a spherical robot.
Transformation matrices of the spherical robot shown in Figure 6.8 are

0T1 =

⎡⎢⎢⎣
cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ 1T2 =

⎡⎢⎢⎣
cθ2 0 sθ2 0
sθ2 0 −cθ2 0
0 1 0 l2
0 0 0 1

⎤⎥⎥⎦

2T3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d3
0 0 0 1

⎤⎥⎥⎦ 3T4 =

⎡⎢⎢⎣
cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦
4T5 =

⎡⎢⎢⎣
cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ 5T6 =

⎡⎢⎢⎣
cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (6.164)
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FIGURE 6.8. A spherical robot, made of a spherical manipulator attached to a
spherical wrist.

Therefore, the position and orientation of the end-effector for a set of joint
variables, which solves the forward kinematics problem, can be found by
matrix multiplication

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (6.165)

where the elements of 0T6 are the same as the elements of the matrix in
Equation (5.159).
Multiplying both sides of the (6.165) by 0T−11 provides

0T−11
0T6 =

⎡⎢⎢⎣
cos θ1 sin θ1 0 0
0 0 −1 0

− sin θ1 cos θ1 0 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
0 0 0 1

⎤⎥⎥⎦ (6.166)
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where

f1i = r1i cos θ1 + r2i sin θ1 (6.167)

f2i = −r3i (6.168)

f3i = r2i cos θ1 − r1i sin θ1 (6.169)

i = 1, 2, 3, 4.

Based on the given transformation matrices, we find that

1T6 = 1T2
2T3

3T4
4T5

5T6

=

⎡⎢⎢⎣
f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
0 0 0 1

⎤⎥⎥⎦ (6.170)

f11 = −cθ2sθ4sθ6 + cθ6 (−sθ2sθ5 + cθ2cθ4cθ5) (6.171)

f21 = −sθ2sθ4sθ6 + cθ6 (cθ2sθ5 + cθ4cθ5sθ2) (6.172)

f31 = cθ4sθ6 + cθ5cθ6sθ4 (6.173)

f12 = −cθ2cθ6sθ4 − sθ6 (−sθ2sθ5 + cθ2cθ4cθ5) (6.174)

f22 = −cθ6sθ2sθ4 − sθ6 (cθ2sθ5 + cθ4cθ5sθ2) (6.175)

f32 = cθ4cθ6 − cθ5sθ4sθ6 (6.176)

f13 = cθ5sθ2 + cθ2cθ4sθ5 (6.177)

f23 = −cθ2cθ5 + cθ4sθ2sθ5 (6.178)

f33 = sθ4sθ5 (6.179)

f14 = d3sθ2 (6.180)

f24 = −d3cθ2 (6.181)

f34 = l2. (6.182)

The only constant element of the matrix (6.170) is f34 = l2, therefore,

r24 cos θ1 − r14 sin θ1 = l2. (6.183)

This kind of trigonometric equation frequently appears in robotic inverse
kinematics, which has a systematic method of solution. We assume

r14 = r cosφ (6.184)

r24 = r sinφ (6.185)
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FIGURE 6.9. Left shoulder configuration of a spherical robot.

where
r =

q
r214 + r224 (6.186)

φ = tan−1
r24
r14

(6.187)

and therefore, Equation (6.183) becomes

l2
r
= sinφ cos θ1 − cosφ sin θ1 = sin(φ− θ1) (6.188)

showing that
±
p
1− (l2/r)2 = cos(φ− θ1). (6.189)

Hence, the solution of Equation (6.183) for θ1 is

θ1 = tan
−1 r24

r14
− tan−1 l2

±
p
r2 − l22

. (6.190)

The (−) sign corresponds to a left shoulder configuration of the robots
as shown in Figure 6.9, and the (+) sign corresponds to the right shoulder
configuration.
The elements f14 and f24 of matrix (6.170) are functions of θ1 and θ2

only.

f14 = d3 sin θ2 = r14 cos θ1 + r24 sin θ1 (6.191)

f24 = −d3 cos θ2 = −r34 (6.192)
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Hence, it is possible to use them and find θ2

θ2 = tan
−1 r14 cos θ1 + r24 sin θ1

r34
(6.193)

where θ1 must be substituted from (6.190).
In the next step, we find the third joint variable d3 from

1T−12
0T−11

0T6 =
2T6 (6.194)

where

1T−12 =

⎡⎢⎢⎣
cos θ2 sin θ2 0 0
0 0 1 −l2

sin θ2 − cos θ2 0 0
0 0 0 1

⎤⎥⎥⎦ (6.195)

and

2T6 =

⎡⎢⎢⎣
−sθ4sθ6 + cθ4cθ5cθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ4sθ6 + cθ5cθ6sθ4 cθ4cθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 d3
0 0 0 1

⎤⎥⎥⎦ .
(6.196)

Employing the elements of the matrices on both sides of Equation (6.194)
shows that the element (3, 4) can be utilized to find d3.

d3 = r34 cos θ2 + r14 cos θ1 sin θ2 + r24 sin θ1 sin θ2 (6.197)

Since there is no other element in Equation (6.194) to be a function of
another single variable, we move to the next step and evaluate θ4 from

3T−14
2T−13

1T−12
0T−11

0T6 =
4T6 (6.198)

because 2T−13
1T−12

0T−11
0T6 =

3T6 provides no new equation. Evaluating
4T6

4T6 =

⎡⎢⎢⎣
cos θ5 cos θ6 − cos θ5 sin θ6 sin θ5 0
cos θ6 sin θ5 − sin θ5 sin θ6 − cos θ5 0
sin θ6 cos θ6 0 0
0 0 0 1

⎤⎥⎥⎦ (6.199)

and the left-hand side of (6.198) utilizing

2T−13 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 −d3
0 0 0 1

⎤⎥⎥⎦ (6.200)
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and

3T−14 =

⎡⎢⎢⎣
cos θ4 sin θ4 0 0
0 0 −1 0

− sin θ4 cos θ4 0 0
0 0 0 1

⎤⎥⎥⎦ (6.201)

shows that

3T−14
2T−13

1T−12
0T−11

0T6 =

⎡⎢⎢⎣
g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 g34
0 0 0 1

⎤⎥⎥⎦ (6.202)

where

g1i = −r3icθ4sθ2 + r2i (cθ1sθ4 + cθ2cθ4sθ1)

+r1i (−sθ1sθ4 + cθ1cθ2cθ4) (6.203)

g2i = d3δ4i − r31cθ2 − r11cθ1sθ2 − r21sθ1sθ2 (6.204)

g3i = r31sθ2sθ4 + r21 (cθ1cθ4 − cθ2sθ1sθ4)

+r11 (−cθ4sθ1 − cθ1cθ2sθ4) (6.205)

i = 1, 2, 3, 4.

The symbol δ4i indicates the Kronecker delta and is:

δ4i =

½
1 if i = 4
0 if i 6= 4 (6.206)

Therefore, we can find θ4 by equating the element (3, 3), θ5 by equating
the elements (1, 3) or (2, 3), and θ6 by equating the elements (3, 1) or (3, 2).
Starting from element (3, 3)

r13 (−cθ4sθ1 − cθ1cθ2sθ4) + r23 (cθ1cθ4 − cθ2sθ1sθ4) + r33sθ2sθ4 = 0
(6.207)

we find θ4

θ4 = tan
−1 −r13sθ1 + r23cθ1

cθ2 (r13cθ1 + r23sθ1)− r33sθ2
(6.208)

which, based on the second value of θ1, can also be equal to

θ4 =
π

2
+ tan−1

−r13sθ1 + r23cθ1
cθ2 (r13cθ1 + r23sθ1)− r33sθ2

. (6.209)

Now we use elements (1, 3) and (2, 3),

sin θ5 = r23 (cos θ1 sin θ4 + cos θ2 cos θ4 sin θ1)− r33 cos θ4 sin θ2

+r13 (cos θ1 cos θ2 cos θ4 − sin θ1 sin θ4) (6.210)

− cos θ5 = −r33 cos θ2 − r13 cos θ1 sin θ2 − r23 sin θ1 sin θ2 (6.211)
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to find θ5

θ5 = tan
−1 sin θ5
cos θ5

. (6.212)

Finally, θ6 can be found from the elements (3, 1) and (3, 2)

sin θ6 = r31 sin θ2 sin θ4 + r21 (cos θ1 cos θ4 − cos θ2 sin θ1 sin θ4)
+r11 (− cos θ4 sin θ1 − cos θ1 cos θ2 sin θ4) (6.213)

cos θ6 = r32 sin θ2 sin θ4 + r22 (cos θ1 cos θ4 − cos θ2 sin θ1 sin θ4)
+r12 (− cos θ4 sin θ1 − cos θ1 cos θ2 sin θ4) (6.214)

θ6 = tan
−1 sin θ6
cos θ6

. (6.215)

Example 193 Inverse of parametric Euler angles transformation matrix.
The global rotation matrix based on Euler angles has been found in Equa-

tion (2.107).

GRB = [Az,ψ Ax,θ Az,ϕ]
T = RZ,ϕRX,θ RZ,ψ

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦
=

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (6.216)

Premultiplying GRB by R
−1
Z,ϕ, gives⎡⎣ cosϕ sinϕ 0

− sinϕ cosϕ 0
0 0 1

⎤⎦ GRB

=

⎡⎣ r11cϕ+ r21sϕ r12cϕ+ r22sϕ r13cϕ+ r23sϕ
r21cϕ− r11sϕ r22cϕ− r12sϕ r23cϕ− r13sϕ

r31 r32 r33

⎤⎦
=

⎡⎣ cosψ − sinψ 0
cos θ sinψ cos θ cosψ − sin θ
sin θ sinψ sin θ cosψ cos θ

⎤⎦ . (6.217)

Equating the elements (1, 3) of both sides

r13 cosϕ+ r23 sinϕ = 0 (6.218)

gives
ϕ = atan2 (r13,−r23) . (6.219)
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Having ϕ helps us to find ψ by using elements (1, 1) and (1, 2)

cosψ = r11 cosϕ+ r21 sinϕ (6.220)

− sinψ = r12 cosϕ+ r22 sinϕ (6.221)

therefore,

ψ = atan2
−r12 cosϕ− r22 sinϕ

r11 cosϕ+ r21 sinϕ
. (6.222)

In the next step, we may postmultiply GRB by R
−1
Z,ψ, to provide

GRB

⎡⎣ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎤⎦
=

⎡⎣ r11cψ − r12sψ r12cψ + r11sψ r13
r21cψ − r22sψ r22cψ + r21sψ r23
r31cψ − r32sψ r32cψ + r31sψ r33

⎤⎦
=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦ . (6.223)

The elements (3, 1) on both sides make an equation to find ψ.

r31 cosψ − r31 sinψ = 0 (6.224)

Therefore, it is possible to find ψ from the following equation:

ψ = atan2 (r31, r31) . (6.225)

Finally, θ can be found using elements (3, 2) and (3, 3)

r32cψ + r31sψ = sin θ (6.226)

r33 = cos θ (6.227)

which give

θ = atan2
r32 cosψ + r31 sinψ

r33
. (6.228)

Example 194 Inverse of given Euler angles transformation matrix.
Assume the global rotation matrix based on Euler angles is given as:

GRB = [Az,ψ Ax,θ Az,ϕ]
T = RZ,ϕRX,θ RZ,ψ

=

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦
=

⎡⎣ 0.126 83 −0.780 33 0.612 37
0.926 78 −0.126 83 −0.353 55
0.353 55 0.612 37 0.707 11

⎤⎦ (6.229)
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Premultiplying GRB by R
−1
Z,ϕ, gives⎡⎣ cosϕ sinϕ 0

− sinϕ cosϕ 0
0 0 1

⎤⎦ GRB

=

⎡⎣ 0.126cϕ+ 0.926sϕ −0.780cϕ− 0.126sϕ 0.612cϕ− 0.353sϕ
0.926cϕ− 0.126sϕ 0.780sϕ− 0.126cϕ −0.353cϕ− 0.612sϕ

0.353 55 0.612 37 0.707 11

⎤⎦
=

⎡⎣ cosψ − sinψ 0
cos θ sinψ cos θ cosψ − sin θ
sin θ sinψ sin θ cosψ cos θ

⎤⎦ . (6.230)

Equating the elements (1, 3) of both sides

0.612 37 cosϕ− 0.353 55 sinϕ = 0 (6.231)

gives

ϕ = atan2

µ
0.612 37

0.353 55

¶
= 1.0472 rad = 60 deg . (6.232)

Having ϕ helps us to find ψ by using elements (1, 1) and (1, 2)

cosψ = 0.126 cosϕ+ 0.926 sinϕ (6.233)

− sinψ = −0.78 cosϕ− 0.126 sinϕ (6.234)

therefore,

ψ = atan2
0.78 cosϕ+ 0.126 sinϕ

0.126 cosϕ+ 0.926 sinϕ

= atan2
0.499 12

0.864 94
= 0.523 rad = 30deg . (6.235)

Although we can find θ from elements (2, 3) and (3, 3), let us postmultiply
GRB by R

−1
Z,ψ, to follow the inverse transformation technique.

GRB

⎡⎣ cosψ sinψ 0
− sinψ cosψ 0
0 0 1

⎤⎦
=

⎡⎣ 0.126cψ + 0.78sψ 0.126sψ − 0.78cψ 0.612 37
0.926cψ + 0.126sψ 0.926sψ − 0.126cψ −0.353 55
0.353cψ − 0.612sψ 0.612cψ + 0.353sψ 0.707 11

⎤⎦
=

⎡⎣ cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − cosϕ sin θ
0 sin θ cos θ

⎤⎦ (6.236)

The elements (3, 1) on both sides make an equation to find ψ.

0.353 55 cosψ − 0.612 37 sinψ = 0 (6.237)
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Therefore, it is also possible to find ψ from the following equation:

ψ = atan2

µ
0.353 55

0.612 37

¶
= 0.523 rad = 30 deg (6.238)

Finally, θ can be found using elements (3, 2) and (3, 3)

0.612 37 cosψ + 0.353 55 sinψ = sin θ (6.239)

0.707 11 = cos θ (6.240)

which give

θ = atan2
0.707 11

0.707 11
= 1 rad = 45 deg . (6.241)

Example 195 F Inverse kinematics and nonstandard DH frames.
Consider a 3 DOF planar manipulator shown in Figure 5.4. The non-

standard DH transformation matrices of the manipulator are

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (6.242)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l1
sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (6.243)

2T3 =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 l2
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (6.244)

3T4 =

⎡⎢⎢⎣
1 0 0 l3
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (6.245)

The solution of the inverse kinematics problem is a mathematical problem
and none of the standard or nonstandard DH methods for defining link
frames provide any simplicity. To calculate the inverse kinematics, we start
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with calculating the forward kinematics transformation matrix 0T4

0T4 = 0T1
1T2

2T3
3T4 (6.246)

=

⎡⎢⎢⎣
cos θ123 − sin θ123 0 l1 cos θ1 + l2 cos θ12 + l3 cos θ123
sin θ123 cos θ123 0 l1 sin θ1 + l2 sin θ12 + l3 sin θ123
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦
where we used the following short notation to simplify the equation.

θijk = θi + θj + θk (6.247)

Examining the matrix 0T4 indicates that

θ123 = atan2 (r21, r11) . (6.248)

The next equation

0T4
3T−14 = 0T1

1T2
2T3 (6.249)⎡⎢⎢⎣

r11 r12 0 r14 − l3r11
r21 r22 0 r24 − l3r21
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cθ123 −sθ123 0 l1cθ1 + l2cθ12
sθ123 cθ123 0 l1sθ1 + l2sθ12
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
shows that

θ2 = arccos
f21 + f22 − l21 − l22

2l1l2
(6.250)

θ1 = atan2 (f2f3 − f1f4 , f1f3 + f2f4) (6.251)

where

f1 = r14 − l3r11 = cθ1 (l2cθ2 + l1)− sθ1 (l2sθ2)

= cθ1f3 − sθ1f4 (6.252)

f2 = r24 − l3r21 = sθ1 (l2cθ2 + l1) + cθ1 (l2sθ2)

= sθ1f3 + cθ1f4. (6.253)

Finally, the angle θ3 is

θ3 = θ123 − θ1 − θ2. (6.254)
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6.3 F Iterative Technique

The inverse kinematics problem can be interpreted as searching for the
solution qk of a set of nonlinear algebraic equations

0Tn = T(q) (6.255)

= 0T1(q1)
1T2(q2)

2T3(q3)
3T4(q4) · · · n−1Tn(qn)

=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦
or

rij = rij(qk) k = 1, 2, · · ·n. (6.256)

where n is the number of DOF . However, maximum m = 6 out of 12
equations of (6.255) are independent and can be utilized to solve for joint
variables qk. The functions T(q) are transcendental, which are given ex-
plicitly based on forward kinematic analysis.
Numerous methods are available to find the zeros of Equation (6.255).

However, the methods are, in general, iterative. The most common method
is known as the Newton-Raphson method.
In the iterative technique, to solve the kinematic equations

T(q) = 0 (6.257)

for variables q, we start with an initial guess

qF = q+ δq (6.258)

for the joint variables. Using the forward kinematics, we can determine the
configuration of the end-effector frame for the guessed joint variables.

TF = T(qF) (6.259)

The difference between the configuration calculated with the forward kine-
matics and the desired configuration represents an error, called residue,
which must be minimized.

δT = T−TF (6.260)

A first order Taylor expansion of the set of equations is:

T = T(qF + δq)

= T(qF) +
∂T

∂q
δq+O(δq2) (6.261)

Assuming δq << I allows us to work with a set of linear equations

δT = J δq (6.262)
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where J is the Jacobian matrix of the set of equations

J(q) =

∙
∂Ti
∂qj

¸
(6.263)

that implies
δq = J−1 δT. (6.264)

Therefore, the unknown variables q are:

q = qF + J−1 δT (6.265)

We may use the values obtained by (6.265) as a new approximation to
repeat the calculations and find newer values. Repeating the methods can
be summarized in the following iterative equation to converge to the exact
value of the variables.

q(i+1) = q(i) + J−1(q(i)) δT(q(i)) (6.266)

This iteration technique can be set in an algorithm for easier numerical
calculations.

Algorithm 6.1. Inverse kinematics iteration technique.

1. Set the initial counter i = 0.

2. Find or guess an initial estimate q(0).

3. Calculate the residue δT(q(i)) = J(q(i)) δq(i).

If every element of T(q(i)) or its norm
°°T(q(i))°° is less than a tol-

erance,
°°T(q(i))°° < then terminate the iteration. The q(i) is the

desired solution.

4. Calculate q(i+1) = q(i) + J−1(q(i)) δT(q(i)).

5. Set i = i+ 1 and return to step 3 .

The tolerance can equivalently be set up on variables

q(i+1) − q(i) < (6.267)

or on Jacobian
J− I < . (6.268)
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Example 196 F Inverse kinematics for a 2R planar manipulator.
In Example 184 we have seen that the tip point of a 2R planar manipu-

lator can be described by∙
X
Y

¸
=

∙
l1cθ1 + l2c (θ1 + θ2)
l1sθ1 + l2s (θ1 + θ2)

¸
. (6.269)

To solve the inverse kinematics of the manipulator and find the joint coor-
dinates for a known position of the tip point, we define

q =

∙
θ1
θ2

¸
(6.270)

T =

∙
X
Y

¸
(6.271)

therefore, the Jacobian of the equations is:

J(q) =

∙
∂Ti
∂qj

¸
=

⎡⎢⎢⎣
∂X

∂θ1

∂X

∂θ2
∂Y

∂θ1

∂Y

∂θ2

⎤⎥⎥⎦
=

∙
−l1 sin θ1 − l2 sin (θ1 + θ2) −l2 sin (θ1 + θ2)
l1 cos θ1 + l2 cos (θ1 + θ2) l2 cos (θ1 + θ2)

¸
(6.272)

The inverse of the Jacobian is

J−1 =
−1

l1l2sθ2

∙
−l2c (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l1sθ1 + l2s (θ1 + θ2)

¸
(6.273)

and therefore, the iterative formula (6.266) is set up as∙
θ1
θ2

¸(i+1)
=

∙
θ1
θ2

¸(i)
+ J−1

Ã∙
X
Y

¸
−
∙
X
Y

¸(i)!
. (6.274)

Let’s assume
l1 = l2 = 1 (6.275)

T =

∙
X
Y

¸
=

∙
1
1

¸
(6.276)

and start from a guess value

q(0) =

∙
θ1
θ2

¸(0)
=

∙
π/3
−π/3

¸
(6.277)

for which

δT =

∙
1
1

¸
−
∙
cosπ/3 + cos (π/3 +−π/3)
sinπ/3 + sin (π/3 +−π/3)

¸
=

∙
1
1

¸
−
∙

3
2

1
2

√
3

¸
=

∙
−12

−12
√
3 + 1

¸
. (6.278)
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The Jacobian and its inverse for these values are

J =

∙
−12
√
3 0

3
2 1

¸
(6.279)

J−1 =

∙
−23
√
3 0√
3 1

¸
(6.280)

and therefore,∙
θ1
θ2

¸(1)
=

∙
θ1
θ2

¸(0)
+ J−1 δT

=

∙
π/3
−π/3

¸
+

∙
−23
√
3 0√
3 1

¸ ∙
−12

−12
√
3 + 1

¸
=

∙
1.624 5
−1.779 2

¸
. (6.281)

Based on the iterative technique, we can find the following values and
find the solution in a few iterations.
Iteration 1.

J =

∙
−12
√
3 0

3
2 1

¸
(6.282)

δT =

∙
−12

−12
√
3 + 1

¸
(6.283)

q(1) =

∙
1.624 5
−1.779 2

¸
(6.284)

Iteration 2.

J =

∙
−0.844 0.154
0.934 0.988

¸
(6.285)

δT =

∙
6.516× 10−2
0.155 53

¸
(6.286)

q(2) =

∙
1.583
−1.582

¸
(6.287)

Iteration 3.

J =

∙
−1.00 −.433× 10−3
.988 .999

¸
(6.288)

δT =

∙
.119× 10−1
−.362× 10−3

¸
(6.289)

q(3) =

∙
1.570795886
−1.570867014

¸
(6.290)
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Iteration 4.

J =

∙
−1.000 0.0
0.998 50 1.0

¸
(6.291)

δT =

∙
−.438× 10−6
.711× 10−4

¸
(6.292)

q(4) =

∙
1.570796329
−1.570796329

¸
(6.293)

The result of the fourth iteration q(4) is close enough to the exact value
q =

£
π/2 −π/2

¤T
.

6.4 F Comparison of the Inverse Kinematics
Techniques

6.4.1 F Existence and Uniqueness of Solution

It is clear that when the desired tool frame position 0d7 is outside the
working space of the robot, there can not be any real solution for the joint
variables of the robot. In this condition, the overall resultant of the terms
under square root signs would be negative. Furthermore, even when the
tool frame position 0d7 is within the working space, there may be some
tool orientations 0R7 that are not achievable without breaking joint con-
straints and violating one or more joint variable limits. Therefore, existing
solutions for inverse kinematics problem generally depends on the geomet-
ric configuration of the robot.
The normal case is when the number of joints is six. Then, provided that

no DOF is redundant and the configuration assigned to the end-effectors of
the robot lies within the workspace, the inverse kinematics solution exists in
finite numbers. The different solutions correspond to possible configurations
to reach the same end-effector configuration.
Generally speaking, when the solution of the inverse kinematics of a robot

exists, they are not unique. Multiple solutions appear because a robot can
reach to a point within the working space in different configurations. Every
set of solutions is associated to a particular configuration. The elbow-up
and elbow-down configuration of the 2R manipulator in Example 184 is a
simple example.
The multiplicity of the solution depends on the number of joints of the

manipulator and their type. The fact that a manipulator has multiple so-
lutions may cause problems since the system has to be able to select one
of them. The criteria on which to base a decision may vary, but a very
reasonable choice consists of choosing the closest solution to the current
configuration.
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When the number of joints is less than six, no solution exists unless
freedom is reduced in the same time in the task space, for example, by
constraining the tool orientation to certain directions.
When the number of joints exceeds six, the structure becomes redundant

and an infinite number of solutions exists to reach the same end-effector
configuration within the robot workspace. Redundancy of the robot archi-
tecture is an interesting feature for systems installed in a highly constrained
environment. From the kinematic point of view, the difficulty lies in for-
mulating the environment constraints in mathematical form, to ensure the
uniqueness of the solution to the inverse kinematic problem.

6.4.2 F Inverse Kinematics Techniques

The inverse kinematics problem of robots can be solved by several meth-
ods, such as decoupling, inverse transformation, iterative, screw algebra,
dual matrices, dual quaternions, and geometric techniques. The decoupling
and inverse transform technique using 4 × 4 homogeneous transformation
matrices suffers from the fact that the solution does not clearly indicate
how to select the appropriate solution from multiple possible solutions for
a particular configuration. Thus, these techniques rely on the skills and in-
tuition of the engineer. The iterative solution method often requires a vast
amount of computation and moreover, it does not guarantee convergence
to the correct solution. It is especially weak when the robot is close to the
singular and degenerate configurations. The iterative solution method also
lacks a method for selecting the appropriate solution from multiple possible
solutions.
Although the set of nonlinear trigonometric equations is typically not

possible to be solved analytically, there are some robot structures that are
solvable analytically. The sufficient condition of solvability is when the 6
DOF robot has three consecutive revolute joints with axes intersecting
in one point. The other property of inverse kinematics is ambiguity of a
solution in singular points. However, when closed-form solutions to the arm
equation can be found, they are seldom unique.

Example 197 F Iteration technique and n-m relationship.
1− Iteration method when n = m.
When the number of joint variables n is equal to the number of indepen-

dent equations generated in forward kinematics m, then provided that the
Jacobian matrix remains non singular, the linearized equation

δT = J δq (6.294)

has a unique set of solutions and therefore, the Newton-Raphson technique
may be utilized to solve the inverse kinematics problem.
The cost of the procedure depends on the number of iterations to be per-

formed, which depends upon different parameters such as the distance be-
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tween the estimated and effective solutions, and the condition number of the
Jacobian matrix at the solution. Since the solution to the inverse kinematics
problem is not unique, it may generate different configurations according to
the choice of the estimated solution. No convergence may be observed if the
initial estimate of the solution falls outside the convergence domain of the
algorithm.
2− Iteration method when n > m.
When the number of joint variables n is more than the number of inde-

pendent equations m, then the problem is an overdetermined case for which
no solution exists in general because the number of joints is not enough to
generate an arbitrary configuration for the end-effector. A solution can be
generated, which minimizes the position error.
3− Iteration method when n < m.
When the number of joint variables n is less than the number of inde-

pendent equations m, then the problem is a redundant case for which an
infinite number of solutions are generally available.

6.5 F Singular Configuration

Generally speaking, for any robot, redundant or not, it is possible to dis-
cover some configurations, called singular configurations, in which the num-
ber of DOF of the end-effector is inferior to the dimension in which it
generally operates. Singular configurations happen when:

1. Two axes of prismatic joints become parallel

2. Two axes of revolute joints become identical.

At singular positions, the end-effector loses one or more degrees of free-
dom, since the kinematic equations become linearly dependent or certain
solutions become undefined. Singular positions must be avoided as the ve-
locities required to move the end-effector become theoretically infinite.
The singular configurations can be determined from the Jacobian matrix.

The Jacobian matrix J relates the infinitesimal displacements of the end-
effector

δX = [δX1, · · · δXm] (6.295)

to the infinitesimal joint variables

δq = [δq1, · · · δqn] (6.296)

and has thus dimension m× n, where n is the number of joints, and m is
the number of end-effector DOF .
When n is larger than m and J has full rank, then there are m − n

redundancies in the system to which m−n arbitrary variables correspond.
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The Jacobian matrix J also determines the relationship between end-
effector velocities Ẋ and joint velocities q̇

Ẋ = J q̇. (6.297)

This equation can be interpreted as a linear mapping from anm-dimensional
vector space X to an n-dimensional vector space q. The subspace R(J) is
the range space of the linear mapping, and represents all the possible end-
effector velocities that can be generated by the n joints in the current
configuration. J has full row-rank, which means that the system does not
present any singularity in that configuration, then the range space R(J)
covers the entire vector space X. Otherwise, there exists at least one direc-
tion in which the end-effector cannot be moved.
The null space N(J) represents the solutions of J q̇ = 0. Therefore, any

vector q̇ ∈N(J) does not generate any motion for the end-effector.
If the manipulator has full rank, the dimension of the null space is then

equal to the number m−n of redundant DOF . When J is degenerate, the
dimension of R(J) decreases and the dimension of the null space increases
by the same amount. Therefore,

dimR(J) + dimN(J) = n. (6.298)

Configurations in which the Jacobian no longer has full rank, corresponds
to singularities of the robot, which are generally of two types:

1. Workspace boundary singularities are those occurring when the ma-
nipulator is fully stretched out or folded back on itself. In this case,
the end effector is near or at the workspace boundary.

2. Workspace interior singularities are those occurring away from the
boundary. In this case, generally two or more axes line up.

Mathematically, singularity configurations can be found by calculating
the conditions that make

|J| = 0 (6.299)

or ¯̄̄
JJT

¯̄̄
= 0. (6.300)

Identification and avoidance of singularity configurations are very impor-
tant in robotics. Some of the main reasons are:

1. Certain directions of motion may be unattainable.

2. Some of the joint velocities are infinite.

3. Some of the joint torques are infinite.
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4. There will not exist a unique solution to the inverse kinematics prob-
lem.

Detecting the singular configurations using the Jacobian determinant
may be a tedious task for complex robots. However, for robots having a
spherical wrist, it is possible to split the singularity detection problem into
two separate problems:

1. Arm singularities resulting from the motion of the manipulator arms.

2. Wrist singularities resulting from the motion of the wrist.
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6.6 Summary

Inverse kinematics refers to determining the joint variables of a robot for
a given position and orientation of the end-effector frame. The forward
kinematics of a 6 DOF robot generates a 4× 4 transformation matrix

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

∙
0R6

0d6
0 1

¸
=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (6.301)

where only six elements out of the 12 elements of 0T6 are independent.
Therefore, the inverse kinematics reduces to finding the six independent
elements for a given 0T6 matrix.
Decoupling, inverse transformation, and iterative techniques are three

applied methods for solving the inverse kinematics problem. In decoupling
technique, the inverse kinematics of a robot with a spherical wrist can be
decoupled into two subproblems: inverse position and inverse orientation
kinematics. Practically, the tools transformation matrix 0T7 is decomposed
into three submatrices 0T3, 3T6, and 6T7.

0T6 =
0T3

3T6
6T7 (6.302)

The matrix 0T3 positions the wrist point and depends on the three manip-
ulator joints’ variables. The matrix 3T6 is the wrist transformation matrix
and the 6T7 is the tools transformation matrix.
In inverse transformation technique, we extract equations with only one

unknown from the following matrix equations, step by step.

1T6 = 0T−11
0T6 (6.303)

2T6 = 1T−12
0T−11

0T6 (6.304)
3T6 = 2T−13

1T−12
0T−11

0T6 (6.305)
4T6 = 3T−14

2T−13
1T−12

0T−11
0T6 (6.306)

5T6 = 4T−15
3T−14

2T−13
1T−12

0T−11
0T6 (6.307)

I = 5T−16
4T−15

3T−14
2T−13

1T−12
0T−11

0T6 (6.308)

The iterative technique is a numerical method seeking to find the joint
variable vector q for a set of equations T(q) = 0.
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6.7 Key Symbols

0 null vector
a, b, c coefficients of trigonometric equation
a turn vector of end-effector frame
A local rotation transformation matrix
B body coordinate frame
c cos
d joint distance
dx, dy, dz elements of d
d translation vector, displacement vector
dwrist wrist position vector
D displacement transformation matrix
DH Denavit-Hartenberg
DOF degree of freedom
fij the element of row i and column j of a matrix
gij the element of row i and column j of a matrix
G,B0 global coordinate frame, Base coordinate frame
I = [I] identity matrix
J Jacobian
l length
m number of independent equations
n number of links of a robot, number of joint variables
P point
r, φ parameters of trigonometric equation
r position vectors, homogeneous position vector
q joint variable
q joint variables vector
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
sgn signum function
SSRMS space station remote manipulator system
T homogeneous transformation matrix
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T a set of nonlinear algebraic equations of q
x, y, z local coordinate axes, local coordinates
X,Y,Z global coordinate axes, global coordinates
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Greek
δ Kronecker function, small increment of a parameter

small test number to terminate a procedure
θ rotary joint angle
θijk θi + θj + θk

Symbol
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

≡ equivalent
` orthogonal
(i) link number i
k parallel sign
⊥ perpendicular
× vector cross product
qF a guess value for q
dim dimension
N null space
R range space
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Exercises

1. Notation and symbols.

Describe the meaning of:

a- atan2 (a, b) b- 0Tn c- T(q) d- q e- J

2. 3R planar manipulator inverse kinematics.

Figure 5.21 illustrates an RkRkR planar manipulator. The forward
kinematics of the manipulator generates the following matrices. Solve
the inverse kinematics and find θ1, θ2, θ3 for given coordinates x0, y0
of the tip point and a given value of ϕ.

2T3 =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 l3 cos θ3
sin θ3 cos θ3 0 l3 sin θ3
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
3. 2R manipulator tip point on a horizontal path.

Consider an elbow up planar 2R manipulator with l1 = l2 = 1. The
tip point is moving on a straight line from P1 (1, 1.5) to P2 (−1, 1.5).

(a) Divide the Cartesian path in 10 equal sections and determine
the joint variables at the 11 points.

(b) F Calculate the joint variable θ1 at P1 and at P2. Divide the
range of θ1 into 10 equal sections and determine the coordinates
of the tip point at the 11 values of θ1.

(c) F Calculate the joint variable θ2 at P1 and at P2. Divide the
range of θ1 into 10 equal sections and determine the coordinates
of the tip point at the 11 values of θ2.

4. 2R manipulator tip point on a tilted path.

Consider an elbow up planar 2R manipulator with l1 = l2 = 1. The
tip point is moving on a straight line from P1 (1, 1.5) to P2 (−1, 1).
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FIGURE 6.10. A planar manipulator.

(a) Divide the Cartesian path in 10 equal sections and determine
the joint variables at the 11 points.

(b) F Calculate the joint variable θ1 at P1 and at P2. Divide the
range of θ1 into 10 equal sections and determine the coordinates
of the tip point at the 11 values of θ1.

(c) F Calculate the joint variable θ2 at P1 and at P2. Divide the
range of θ1 into 10 equal sections and determine the coordinates
of the tip point at the 11 values of θ2.

5. 2R manipulator motion on a horizontal path.

Consider an elbow up planar 2R manipulator with l1 = l2 = 1. The
tip point is moving on a straight line from P1 (1, 1.5) to P2 (−1, 1.5)
according to the following functions of time.

X = 1− 6t2 + 4t3 Y = 1.5

(a) Calculate and plot θ1 and θ2 as functions of time if the time of
motion is 0 ≤ t ≤ 1.

(b) F Calculate and plot θ̇1 and θ̇2 as functions of time.

(c) F Calculate and plot θ̈1 and θ̈2 as functions of time.

(d) F Calculate and plot
...
θ 1 and

...
θ 2 as functions of time.

6. A planar manipulator.

Figure 6.10 illustrates a three DOF planar manipulator.

(a) Determine the transformation matrices between coordinate frames.
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(b) Solve the forward kinematics and determine the coordinates X,
Y , and ϕ of the end-effector frame B3 for a given set of joint
variables θ1, d2, θ3.

(c) Solve the inverse kinematics and determine the joint variables
θ1, d2, θ3 for a given set of end-effector coordinates X, Y , and
ϕ.

7. 2R manipulator motion on a horizontal path.

Consider a planar elbow up 2R manipulator with l1 = l2 = 1. The
tip point is moving on a straight line from P1 (1, 1.5) to P2 (−1, 1.5)
with a constant speed.

X = 1− vt Y = 1.5

(a) Calculate v and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 1.
(b) Calculate v and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 5.
(c) Calculate v and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 10.
(d) F Plot θ1 and θ2 as functions of v at point (0, 1.5).

8. 2R manipulator motion on a horizontal path.

Consider a planar elbow up 2R manipulator with l1 = l2 = 1. The
tip point is moving on a straight line from P1 (1, 1.5) to P2 (−1, 1.5)
with a constant acceleration.

X = 1− 1
2
at2 Y = 1.5

(a) Calculate a and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 1.
(b) Calculate a and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 5.
(c) Calculate a and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 10.
(d) F Plot θ1 and θ2 as functions of a at point (0, 1.5).

9. F 2R manipulator kinematics on a tilted path.

Consider a planar elbow up 2R manipulator with l1 = l2 = 1. The
tip point is moving on a straight line from P1 (1, 1.5) to P2 (−1, 1.5)
with a constant speed.

X = 1− vt Y = 1.5

(a) Calculate and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 1.
(b) Calculate and plot θ̇1 and θ̇2 as functions of time.

(c) Calculate and plot θ̈1 and θ̈2 as functions of time.

(d) Calculate and plot
...
θ 1 and

...
θ 2 as functions of time.
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10. Acceptable lengths of a 2R planar manipulator.

The tip point of a 2R planar manipulator is at (1, 1.1).

(a) Assume l1 = 1. Plot θ1 and θ2 versus l2 and determine the range
of possible l2 for elbow up configuration.

(b) Assume l2 = 1. Plot θ1 and θ2 versus l1 and determine the range
of possible l1 for elbow up configuration.

(c) Assume l1 = 1. Plot θ1 and θ2 versus l2 and determine the range
of possible l2 for elbow down configuration.

(d) Assume l2 = 1. Plot θ1 and θ2 versus l1 and determine the range
of possible l1 for elbow down configuration.

11. 3R manipulator tip point on a straight path.

Consider a 3R articulated manipulator such as Figure 6.2 with l1 =
0.5, l2 = l3 = 1. The tip point is moving on a straight line from
P1 (1.5, 0, 1) to P2 (−1, 1, 1.5).

(a) Divide the Cartesian path into 10 equal sections and determine
the joint variables at the 11 points.

(b) Calculate the joint variable θ1 at P1 and at P2. Divide the range
of θ1 into 10 equal sections and determine the coordinates of the
tip point at the 11 values of θ2 and θ3.

(c) Calculate the joint variable θ2 at P1 and at P2. Divide the range
of θ2 into 10 equal sections and determine the coordinates of the
tip point at the 11 values of θ1 and θ3.

(d) Calculate the joint variable θ3 at P1 and at P2. Divide the range
of θ3 into 10 equal sections and determine the coordinates of the
tip point at the 11 values of θ1 and θ2.

12. 3R manipulator motion on a straight path.

Consider a 3R articulated manipulator such as Figure 6.2 with l1 =
0.5, l2 = l3 = 1. The tip point is moving on a straight line from
P1 (1.5, 0, 1) to P2 (−1, 1, 1.5) according to the following functions of
time.

X = 1.5− 0.025t3 + 0.00375t4 − 0.00015t5

Y = 0.01t3 − 0.0015t4 + 0.00006t5

Z = 1 + 0.005t3 − 0.00075t4 + 0.00003t5

(a) Calculate and plot θ1, θ2 and θ3 if the time of motion is 0 ≤ t ≤
1.

(b) F Calculate and plot θ̇1, θ̇2 and θ̇3 as functions of time.
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2θ
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2θ

1θ

(a) (b)

FIGURE 6.11. An elbow up 2R manipulator on a circular path.

(c) F Calculate and plot θ̈1, θ̈2 and θ̈3 as functions of time.

(d) F Calculate and plot
...
θ 1,

...
θ 2 and

...
θ 3 as functions of time.

13. An elbow up 2R manipulator on a circular path.

The 2R manipulator of Figure 6.11 has l2 = l1 = 1. The tip point of
the manipulator is supposed to move on a circular path with a radius
R = 1/3. Assume the manipulator starts moving when the second
link is horizontal.

(a) Plot θ1 and θ2 if the tip point is moving counterclockwise as
shown in Figure 6.11(a).

(b) Plot θ1 and θ2 if the tip point is moving clockwise as shown in
Figure 6.11(b).

14. Acceptable lengths of a 3R manipulator.

The tip point of a 3R articulated manipulator is at (1, 1.1, 0.5).

(a) Assume l1 = l3 = 1. Plot θ1, θ2 and θ3 versus l2 and determine
the range of possible l2.

(b) Assume l2 = l3 = 1. Plot θ1, θ2 and θ3 versus l1 and determine
the range of possible l1.

(c) Assume l2 = l1 = 1. Plot θ1, θ2 and θ3 versus l3 and determine
the range of possible l3.

15. An elbow down 2R manipulator on a circular path.

The 2R manipulator of Figure 6.12 has l2 = l1 = 1. The tip point of
the manipulator is supposed to move on a circular path with a radius
R = 1/3. Assume the manipulator starts moving when the first link
is horizontal.
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(a) (b)
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FIGURE 6.12. An elbow down 2R manipulator on a circular path.

X

Y
2θ

1θ

FIGURE 6.13. A 2R manipulator on a circular path.

(a) Plot θ1 and θ2 if the tip point is moving counterclockwise as
shown in Figure 6.12(a).

(b) Plot θ1 and θ2 if the tip point is moving clockwise as shown in
Figure 6.12(b).

16. A 2R manipulator on a circular path.

The 2R manipulator of Figure 6.13 has l2 = l1 = 1. The tip point of
the manipulator is supposed to move on a circular path with a radius
R = 4 and a center on Y -axis.

(a) Assume the elbow up manipulator starts moving on the upper
circular path when the second link is horizontal. Plot θ1 and θ2
until the first link becomes horizontal at the end of the path.

(b) Assume the elbow down manipulator starts moving on the upper
circular path when the first link is horizontal. Plot θ1 and θ2 until
the first link becomes horizontal at the end of the path.
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(c) Assume the elbow up manipulator starts moving on the lower
circular path when the second link is horizontal. Plot θ1 and θ2
until the first link becomes horizontal at the end of the path.

(d) Assume the elbow down manipulator starts moving on the lower
circular path when the first link is horizontal. Plot θ1 and θ2 until
the first link becomes horizontal at the end of the path.

17. Spherical wrist inverse kinematics.

Figure 5.26 illustrates a spherical wrist with following transformation
matrices. Assume that the frame B3 is the base frame. Solve the
inverse kinematics and find θ4, θ5, θ6 for a given 3T6.

3T4 =

⎡⎢⎢⎣
cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ 4T5 =

⎡⎢⎢⎣
cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦

5T6 =

⎡⎢⎢⎣
cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
18. F Roll-Pitch-Yaw spherical wrist kinematics.

Attach the required DH coordinate frames to the Roll-Pitch-Yaw
spherical wrist of Figure 5.30, similar to 5.28, and determine the
forward and inverse kinematics of the wrist.

19. F Pitch-Yaw-Roll spherical wrist kinematics.

Attach the required coordinate DH frames to the Pitch-Yaw-Roll
spherical wrist of Figure 5.31, similar to 5.28, and determine the
forward and inverse kinematics of the wrist.

20. SCARA robot inverse kinematics.

Consider the RkRkRkP robot shown in Figure 5.23 with the following
transformation matrices. Solve the inverse kinematics and find θ1, θ2,
θ3 and d for a given 0T4.

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
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2T3 =

⎡⎢⎢⎣
cos θ3 − sin θ3 0 0
sin θ3 cos θ3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ 3T4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1

⎤⎥⎥⎦
0T4 = 0T1

1T2
2T3

3T4

=

⎡⎢⎢⎣
cθ123 −sθ123 0 l1cθ1 + l2cθ12
sθ123 cθ123 0 l1sθ1 + l2sθ12
0 0 1 d
0 0 0 1

⎤⎥⎥⎦
θ123 = θ1 + θ2 + θ3 θ12 = θ1 + θ2

21. R`RkR articulated arm inverse kinematics.

Figure 5.22 illustrates 3 DOF R`RkR manipulator. Use the following
transformation matrices and solve the inverse kinematics for θ1, θ2,
θ3.

0T1 =

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 d1
0 0 0 1

⎤⎥⎥⎦
1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 d2
0 0 0 1

⎤⎥⎥⎦
2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
22. Kinematics of a PRRR manipulator.

A PRRR manipulator is shown in Figure 6.14.

(a) Set up the links’s coordinate frame according to standard DH
rules.

(b) Determine the class of each link.

(c) Find the links’ transformation matrices.

(d) Calculate the forward kinematics of the manipulator.

(e) Solve the inverse kinematics problem for the manipulator.

23. F Space station remote manipulator system inverse kinematics.

Shuttle remote manipulator system (SSRMS) is shown in Figure
5.24 schematically. The forward kinematics of the robot provides the
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FIGURE 6.14. A PRRR manipulator.

following transformation matrices. Solve the inverse kinematics for
the SSRMS.

0T1 =

⎡⎢⎢⎣
cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 d1
0 0 0 1

⎤⎥⎥⎦ 1T2 =

⎡⎢⎢⎣
cθ2 0 −sθ2 0
sθ2 0 cθ2 0
0 −1 0 d2
0 0 0 1

⎤⎥⎥⎦

2T3 =

⎡⎢⎢⎣
cθ3 −sθ3 0 a3cθ3
sθ3 cθ3 0 a3sθ3
0 0 1 d3
0 0 0 1

⎤⎥⎥⎦ 3T4 =

⎡⎢⎢⎣
cθ4 −sθ4 0 a4cθ4
sθ4 cθ4 0 a4sθ4
0 0 1 d4
0 0 0 1

⎤⎥⎥⎦
4T5 =

⎡⎢⎢⎣
cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 d5
0 0 0 1

⎤⎥⎥⎦ 5T6 =

⎡⎢⎢⎣
cθ6 0 −sθ6 0
sθ6 0 cθ6 0
0 −1 0 d6
0 0 0 1

⎤⎥⎥⎦
6T7 =

⎡⎢⎢⎣
cθ7 −sθ7 0 0
sθ7 cθ7 0 0
0 0 1 d7
0 0 0 1

⎤⎥⎥⎦
Hint: This robot is a one degree redundant robot. It has 7 joints which
is one more than the required 6 DOF to reach a point at a desired
orientation. To solve the inverse kinematics of this robot, we need to
introduce one extra condition among the joint variables, or assign a
value to one of the joint variables.

(a) Assume θ1 = 0 and 1T7 is given. Determine θ2, θ3, θ4, θ5, θ6, θ7.
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(b) Assume θ2 = 0 and 1T7 is given. Determine θ1, θ3, θ4, θ5, θ6, θ7.

(c) Assume θ3 = 0 and 1T7 is given. Determine θ1, θ2, θ4, θ5, θ6, θ7.

(d) Assume θ5 = 0 and 1T7 is given. Determine θ1, θ2, θ3, θ4, θ6, θ7.

(e) Assume θ6 = 0 and 1T7 is given. Determine θ1, θ2, θ3, θ4, θ5, θ7.

(f) Assume θ7 = 0 and 1T7 is given. Determine θ1, θ2, θ3, θ4, θ5, θ6.

(g) Determine θ1, θ2, θ3, θ4, θ5, θ6, θ7 such that f is minimized.

f = θ1 + θ2 + θ3 + θ4 + θ5 + θ6 + θ7
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Angular Velocity
Angular velocity of a rotating body B in a global frame G is the instanta-
neous rotation of the body with respect to G. Angular velocity is a vectorial
quantity. Using the analytic description of angular velocity, we introduce
the velocity and time derivative of homogenous transformation matrices.

X
Y

Z

x

y

G

B
z

rP
P

vP

û
φ&

FIGURE 7.1. A rotating rigid body B(Oxyz) with a fixed point O in a global
frame G(OXY Z).

7.1 Angular Velocity Vector and Matrix

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 7.1. The motion of the body can be
expressed by a time varying rotation transformation matrix between the
global and body frames. The transformation matrix maps the instantaneous
coordinates of any fixed point in body frame B into their coordinates in
the global frame G.

Gr(t) = GRB(t)
Br (7.1)

The velocity of a body point in the global frame is

Gv(t) = Gṙ(t) = GṘB(t)
Br = Gω̃B

Gr(t) = GωB × Gr(t) (7.2)

where GωB is the angular velocity vector of B with respect to G. It is equal
to a rotation with angular rate φ̇ about an instantaneous axis of rotation

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_7,  
© Springer Science+Business Media, LLC 2010 
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FIGURE 7.2. A body fixed point P at Br in the rotating body frame B.

û.

ω =

⎡⎣ ω1
ω2
ω3

⎤⎦ = φ̇ û (7.3)

The angular velocity vector is associated with a skew symmetric matrix
Gω̃B called the angular velocity matrix

ω̃ =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ (7.4)

where
Gω̃B =

GṘB
GRT

B = φ̇ ũ. (7.5)

Proof. Consider a rigid body with a fixed point O and an attached frame
B(Oxyz) as shown in Figure 7.2. The body frame B is initially coincident
with the global frame G. Therefore, the position vector of a body point P
is

Gr(t0) =
Br. (7.6)

The global time derivative of Gr is:

Gv = Gṙ =
Gd

dt
Gr(t) =

Gd

dt

£
GRB(t)

Br
¤
=

Gd

dt

£
GRB(t)

Gr(t0)
¤

= GṘB(t)
Br (7.7)

Eliminating Br between (7.1) and (7.7) determines the velocity of the point
in global frame.

Gv = GṘB(t)
GRT

B(t)
Gr(t) (7.8)
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We denote the coefficient of Gr(t) by ω̃

Gω̃B =
GṘB

GRT
B (7.9)

and write the Equation (7.8) as

Gv = Gω̃B
Gr(t) (7.10)

or as
Gv = GωB × Gr(t). (7.11)

The time derivative of the orthogonality condition, GRB
GRT

B = I, in-
troduces an important identity

GṘB
GRT

B +
GRB

GṘT
B = 0 (7.12)

which can be utilized to show that Gω̃B = [GṘB
GRT

B ] is a skew symmetric
matrix, because

GRB
GṘT

B =
h
GṘB

GRT
B

iT
. (7.13)

The vector GGωB is called the instantaneous angular velocity of the body B
relative to the global frame G as seen from the G frame.
Since a vectorial equation can be expressed in any coordinate frame, we

may use any of the following expressions for the velocity of a body point
in body or global frames

G
GvP = G

GωB × GrP (7.14)
B
GvP = B

GωB × BrP (7.15)

where G
GvP is the global velocity of point P expressed in global frame and

B
GvP is the global velocity of point P expressed in body frame.

G
GvP =

GRB
B
GvP =

GRB

¡
B
GωB × BrP

¢
(7.16)

G
GvP and

B
GvP can be converted to each other using a rotation matrix.

B
GvP = GRT

B
G
GvP =

GRT
B Gω̃B

G
GrP =

GRT
B

GṘB
GRT

B
G
GrP

= GRT
B

GṘB
B
GrP (7.17)

showing that
B
Gω̃B =

GRT
B

GṘB (7.18)

which is called the instantaneous angular velocity of B relative to the global
frame G as seen from the B frame. From the definitions of Gω̃B and B

Gω̃B
we are able to transform the two angular velocity matrices by

Gω̃B = GRB
B
Gω̃B

GRT
B (7.19)

B
Gω̃B = GRT

B
G
Gω̃B

GRB (7.20)
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or equivalently
GṘB = Gω̃B

GRB (7.21)
GṘB = GRB

B
Gω̃B (7.22)

Gω̃B
GRB =

GRB
B
Gω̃B. (7.23)

The angular velocity of B in G is negative of the angular velocity of G
in B if both are expressed in the same coordinate frame.

G
Gω̃B = −G

Bω̃G (7.24)
B
Gω̃B = −B

Bω̃G. (7.25)

GωB and can always be expressed in the form

GωB = ωû (7.26)

where û is a unit vector parallel to GωB and indicates the instantaneous
axis of rotation.
Using the Rodriguez rotation formula (3.4) we can show that

Ṙû,φ = φ̇ ũ Rû,φ (7.27)

and therefore
ω̃ = φ̇ ũ (7.28)

or equivalently

Gω̃B = lim
φ→0

Gd

dt
Rû,φ = lim

φ→0

Gd

dt

¡
−ũ2 cosφ+ ũ sinφ+ ũ2 + I

¢
= φ̇ ũ (7.29)

and therefore
ω = φ̇ û. (7.30)

Example 198 Rotation of a body point about a global axis.
The slab shown in Figure 2.5 is turning about the Z-axis with α̇ =

10deg /s. The global velocity of the corner point P (5, 30, 10), when the slab
is at α = 30deg, is:

GvP = GṘB(t)
BrP (7.31)

=
Gd

dt

⎛⎝⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎞⎠⎡⎣ 5
30
10

⎤⎦
= α̇

⎡⎣ − sinα − cosα 0
cosα − sinα 0
0 0 0

⎤⎦⎡⎣ 5
30
10

⎤⎦
=

10π

180

⎡⎣ − sin π
6 − cos π6 0

cos π6 − sin π
6 0

0 0 0

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −4.97−1.86

0

⎤⎦
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at this moment, the point P is at:

GrP = GRB
BrP (7.32)

=

⎡⎣ cos π6 − sin π
6 0

sin π
6 cos π6 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6728.48

10

⎤⎦
Example 199 Rotation of a global point about a global axis.
The corner P of the slab shown in Figure 2.5, is at BrP =

£
5 30 10

¤T
.

When it is turned α = 30deg about the Z-axis, the global position of P is:

GrP = GRB
BrP (7.33)

=

⎡⎣ cos π6 − sin π
6 0

sin π
6 cos π6 0
0 0 1

⎤⎦⎡⎣ 5
30
10

⎤⎦ =
⎡⎣ −10.6728.48

10

⎤⎦
If the slab is turning with α̇ = 10deg / s, the global velocity of the point P
would be

GvP = GṘB
GRT

B
GrP (7.34)

=
10π

180

⎡⎣ −sπ6 −cπ6 0
cπ6 −sπ6 0
0 0 0

⎤⎦⎡⎣ cπ6 −sπ6 0
sπ6 cπ6 0
0 0 1

⎤⎦T ⎡⎣ −10.6728.48
10

⎤⎦
=

⎡⎣ −4.97−1.86
0

⎤⎦ .
Example 200 Principal angular velocities.
The principal rotational matrices about the axes X, Y , and Z are:

RX,γ =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (7.35)

RY,β =

⎡⎣ cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎦ (7.36)

RZ,α =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (7.37)

and hence, their time derivatives are:

ṘX,γ = γ̇

⎡⎣ 0 0 0
0 − sin γ − cos γ
0 cos γ − sin γ

⎤⎦ (7.38)
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ṘY,β = β̇

⎡⎣ − sinβ 0 cosβ
0 0 0

− cosβ 0 − sinβ

⎤⎦ (7.39)

ṘZ,α = α̇

⎡⎣ − sinα − cosα 0
cosα − sinα 0
0 0 0

⎤⎦ (7.40)

Therefore, the principal angular velocity matrices about axes X, Y , and Z
are

Gω̃X = ṘX,γR
T
X,γ = γ̇

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ (7.41)

Gω̃Y = ṘY,βR
T
Y,β = β̇

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ (7.42)

Gω̃Z = ṘZ,αR
T
Z,α = α̇

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ (7.43)

which are equivalent to

Gω̃X = γ̇Ĩ (7.44)

Gω̃Y = β̇J̃ (7.45)

Gω̃Z = α̇K̃ (7.46)

and therefore, the principal angular velocity vectors are

GωX = ωX Î = γ̇Î (7.47)

GωY = ωY Ĵ = β̇Ĵ (7.48)

GωZ = ωZ K̂ = α̇K̂. (7.49)

Utilizing the same technique, we can find the following principal angular
velocity matrices about the local axes.

B
Gω̃x = RT

x,ψ Ṙx,ψ = −ψ̇

⎡⎣ 0 0 0
0 0 −1
0 1 0

⎤⎦ = −ψ̇ ı̃ (7.50)

B
Gω̃y = RT

y,θṘy,θ = −θ̇

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦ = −θ̇ j̃ (7.51)

B
Gω̃z = RT

z,ϕṘz,ϕ = −ϕ̇

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ = −ϕ̇ k̃ (7.52)
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Example 201 Decomposition of an angular velocity vector.
Every angular velocity vector can be decomposed to three principal angu-

lar velocity vectors.

GωB =
³
GωB · Î

´
Î +

³
GωB · Ĵ

´
Ĵ +

³
GωB · K̂

´
K̂

= ωX Î + ωY Ĵ + ωZ K̂ = γ̇Î + β̇Ĵ + α̇K̂

= ωX + ωY + ωZ (7.53)

Example 202 Combination of angular velocities.
Starting from a combination of rotations

0R2 =
0R1

1R2 (7.54)

and taking derivative, we find

0Ṙ2 =
0Ṙ1

1R2 +
0R1

1Ṙ2. (7.55)

Now, substituting the derivative of rotation matrices with

0Ṙ2 = 0ω̃2
0R2 (7.56)

0Ṙ1 = 0ω̃1
0R1 (7.57)

1Ṙ2 = 1ω̃2
1R2 (7.58)

results in

0ω̃2
0R2 = 0ω̃1

0R1
1R2 +

0R1 1ω̃2
1R2

= 0ω̃1
0R2 +

0R1 1ω̃2
0RT

1
0R1

1R2

= 0ω̃1
0R2 +

0
1ω̃2

0R2 (7.59)

where
0R1 1ω̃2

0RT
1 =

0
1ω̃2. (7.60)

Therefore, we find

0ω̃2 = 0ω̃1 +
0
1ω̃2 (7.61)

which indicates that the angular velocities may be added relatively

0ω2 = 0ω1 +
0
1ω2. (7.62)

This result also holds for any number of angular velocities.

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn =
nX
i=1

0
i−1ωi (7.63)
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Example 203 Angular velocity in terms of Euler frequencies.
The angular velocity vector can be expressed by Euler frequencies as de-

scribed in Chapter 2. Therefore,

B
GωB = ωx ı̂+ ωy ĵ+ ωzk̂ = ϕ̇êϕ + θ̇êθ + ψ̇êψ

= ϕ̇

⎡⎣ sin θ sinψ
sin θ cosψ
cos θ

⎤⎦+ θ̇

⎡⎣ cosψ
− sinψ
0

⎤⎦+ ψ̇

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (7.64)

and

G
GωB = BR−1G

B
GωB =

BR−1G

⎡⎣ ϕ̇ sin θ sinψ + θ̇ cosψ

ϕ̇ sin θ cosψ − θ̇ sinψ

ϕ̇ cos θ + ψ̇

⎤⎦
=

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (7.65)

where the inverse of the Euler transformation matrix is:

BR−1G =

⎡⎣ cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ
cψsϕ+ cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

⎤⎦ (7.66)

Example 204 Angular velocity in terms of rotation frequencies.
Appendices A and B show the 12 global and 12 local axes’ triple rotations.

Utilizing those equations, we are able to find the angular velocity matrix
and vector of a rigid body in terms of rotation frequencies. As an example,
consider the Euler angles transformation matrix in case 9, of the Appendix
B.

BRG = Rz,ψRx,θRz,ϕ (7.67)

The angular velocity matrix is then equal to

Bω̃G = BṘG
BRT

G

=

µ
ϕ̇ Rz,ψRx,θ

dRz,ϕ

dϕ
+ θ̇ Rz,ψ

dRx,θ

dθ
Rz,ϕ + ψ̇

dRz,ψ

dψ
Rx,θRz,ϕ

¶
× (Rz,ψRx,θRz,ϕ)

T

= ϕ̇Rz,ψRx,θ
dRz,ϕ

dϕ
RT
z,ϕR

T
x,θR

T
z,ψ + θ̇ Rz,ψ

dRx,θ

dθ
RT
x,θR

T
z,ψ

+ψ̇
dRz,ψ

dψ
RT
z,ψ (7.68)
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which, in matrix form, is

Bω̃G = ϕ̇

⎡⎣ 0 cos θ − sin θ cosψ
− cos θ 0 sin θ sinψ
sin θ cosψ − sin θ sinψ 0

⎤⎦
+θ̇

⎡⎣ 0 0 sinψ
0 0 cosψ

− sinψ − cosψ 0

⎤⎦+ ψ̇

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ (7.69)

or

Bω̃G =

⎡⎣ 0 ψ̇ + ϕ̇cθ θ̇sψ − ϕ̇sθcψ

−ψ̇ − ϕ̇cθ 0 θ̇cψ + ϕ̇sθsψ

−θ̇sψ + ϕ̇sθcψ −θ̇cψ − ϕ̇sθsψ 0

⎤⎦ . (7.70)

The corresponding angular velocity vector is

BωG = −

⎡⎣ θ̇cψ + ϕ̇sθsψ

−θ̇sψ + ϕ̇sθcψ

ψ̇ + ϕ̇cθ

⎤⎦
= −

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (7.71)

However,

B
Bω̃G = −B

Gω̃B (7.72)
B
BωG = −B

GωB (7.73)

and therefore,

B
GωB =

⎡⎣ sin θ sinψ cosψ 0
sin θ cosψ − sinψ 0
cos θ 0 1

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ . (7.74)

Example 205 F Coordinate transformation of angular velocity.
Angular velocity 1

1ω2 of coordinate frame B2 with respect to B1 and ex-
pressed in B1 can be expressed in base coordinate frame B0 according to

0R1 1ω̃2
0RT

1 =
0
1ω̃2. (7.75)

To show this equation, it is enough to apply both sides on an arbitrary
vector 0r. Therefore, the left-hand side would be

0R1 1ω̃2
0RT

1
0r = 0R1 1ω̃2

1R0
0r = 0R1 1ω̃2

1r

= 0R1
¡
1ω2 × 1r

¢
= 0R1 1ω2 × 0R1

1r

= 0
1ω2 × 0r (7.76)
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which is equal to the right-hand side after applying on the vector 0r.

0
1ω̃2

0r = 0
1ω2 × 0r (7.77)

Example 206 F Time derivative of unit vectors.
Using Equation (7.15) we can define the time derivative of unit vectors

of a body coordinate frame B(̂ı, ĵ, k̂), rotating in the global coordinate frame
G(Î , Ĵ , K̂).

Gdı̂

dt
= B

GωB × ı̂ (7.78)

Gdĵ

dt
= B

GωB × ĵ (7.79)

Gdk̂

dt
= B

GωB × k̂ (7.80)

Example 207 F Angular velocity in terms of quaternion and Euler para-
meters.
The angular velocity vector can also be expressed by Euler parameters.

Starting from the unit quaternion representation of a finite rotation

Gr = e (t) Br e∗ (t) = e (t) Br e−1 (t) (7.81)

where

e = e0 + e (7.82)

e∗ = e−1 = e0 − e (7.83)

we can find

Gṙ = ė Br e∗ + e Br ė∗ = ė e∗ Gr+ Gr e ė∗ = 2ė e∗ Gr (7.84)

and therefore, the angular velocity quaternion is

GωB = 2ė e
∗. (7.85)

We have used the orthogonality property of unit quaternion

e e−1 = e e∗ = 1 (7.86)

which provides

ė e∗ + e ė∗ = 0. (7.87)

The angular velocity quaternion can be expanded using quaternion prod-
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ucts to find the angular velocity components based on Euler parameters.

GωB = 2ė e∗ = 2 (ė0 + ė) (e0 − e)
= 2 (ė0e0 + e0ė− ė0e+ ė · e− ė× e)

= 2

⎡⎢⎢⎣
0

e0ė1 − e1ė0 + e2ė3 − e3ė2
e0ė2 − e2ė0 − e1ė3 + e3ė1
e0ė3 + e1ė2 − e2ė1 − e3ė0

⎤⎥⎥⎦

= 2

⎡⎢⎢⎣
ė0 −ė1 −ė2 −ė3
ė1 ė0 −ė3 ė2
ė2 ė3 ė0 −ė1
ė3 −ė2 ė1 ė0

⎤⎥⎥⎦
⎡⎢⎢⎣

e0
−e1
−e2
−e3

⎤⎥⎥⎦ (7.88)

The scalar component of the angular velocity quaternion is zero because

ė0e0 + ė · e = ė0e0 + e1ė1 + e2ė2 + e3ė3 = 0. (7.89)

The angular velocity vector can also be defined as a quaternion

←−→
GωB = 2

←→̇
e
←→
e∗ (7.90)

to be utilized for definition of the derivative of a rotation quaternion

←→̇
e =

1

2
←−→
GωB

←→e . (7.91)

A coordinate transformation can transform the angular velocity into a body
coordinate frame

B
GωB = e∗ G

GωB e = 2e∗ ė

= 2

⎡⎢⎢⎣
e0 e1 e2 e3
−e1 e0 e3 −e2
−e2 −e3 e0 e1
−e3 −e2 e1 e0

⎤⎥⎥⎦
⎡⎢⎢⎣

ė0
ė1
ė2
ė3

⎤⎥⎥⎦ (7.92)

and therefore, ←−→
B
GωB = 2

←→
e∗
←→̇
e (7.93)

←→̇
e =

1

2
←→e
←−→
B
GωB. (7.94)

Example 208 F Differential of Euler parameters.
The rotation matrix GRB based on Euler parameters is given in Equation

(3.82)

GRB =

⎡⎣ e20 + e21 − e22 − e23 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)
2 (e0e3 + e1e2) e20 − e21 + e22 − e23 2 (e2e3 − e0e1)
2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e20 − e21 − e22 + e23

⎤⎦
=

⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (7.95)
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and the individual parameters can be found from any set of Equations
(3.149) to (3.152). The first set indicates that

e0 = ±1
2

√
1 + r11 + r22 + r33

e1 =
1

4

r32 − r23
e0

e2 =
1

4

r13 − r31
e0

e3 =
1

4

r21 − r12
e0

(7.96)

and therefore,

ė0 =
ṙ11 + ṙ22 + ṙ33

8e0
(7.97)

ė1 =
1

4e20
((ṙ32 − ṙ23) e0 − (r32 − r23) ė0) (7.98)

ė2 =
1

4e20
((ṙ13 − ṙ31) e0 − (r13 − r31) ė0) (7.99)

ė3 =
1

4e20
((ṙ21 − ṙ12) e0 − (r21 − r12) ė0) . (7.100)

We may use the differential of the transformation matrix

GṘB = Gω̃B
GRB

to show that

ė0 =
1

2
(−e1ω1 − e2ω2 − e3ω3) (7.101)

ė1 =
1

2
(e0ω1 + e2ω3 − e3ω2) (7.102)

ė2 =
1

2
(e0ω2 − e1ω3 − e3ω1) (7.103)

ė3 =
1

2
(e0ω3 + e1ω2 − e2ω1) . (7.104)

Similarly we can find ė1, ė2, and ė3, however the final result can be set in
a matrix form⎡⎢⎢⎣

ė0
ė1
ė2
ė3

⎤⎥⎥⎦ = 1

2

⎡⎢⎢⎣
0 −ω1 −ω2 −ω3
ω1 0 ω3 −ω2
ω2 −ω3 0 ω1
ω3 ω2 −ω1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

e0
e1
e2
e3

⎤⎥⎥⎦ (7.105)

or ⎡⎢⎢⎣
ė0
ė1
ė2
ė3

⎤⎥⎥⎦ = 1

2

⎡⎢⎢⎣
e0 −e3 −e2 −e1
e1 e0 −e3 e2
e2 e1 e0 −e3
e3 −e2 e1 e0

⎤⎥⎥⎦
⎡⎢⎢⎣
0
ω1
ω2
ω3

⎤⎥⎥⎦ . (7.106)
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Example 209 F Elements of the angular velocity matrix.
Utilizing the permutation symbol introduced in (3.144)

ijk =
1

2
(i− j)(j − k)(k − i) , i, j, k = 1, 2, 3 (7.107)

allows us to find the elements of the angular velocity matrix, ω̃, when the
angular velocity vector, ω =

£
ω1 ω2 ω3

¤T
, is given.

ω̃ij = ijk ωk (7.108)

7.2 F Time Derivative and Coordinate Frames

The time derivative of a vector depends on the coordinate frame in which
we are taking the derivative. The time derivative of a vector r in the global
frame is called G-derivative and is denoted by

Gd

dt
r

while the time derivative of the vector in the body frame is called the
B-derivative and is denoted by

Bd

dt
r.

The left superscript on the derivative symbol indicates the frame in which
the derivative is taken, and hence, its unit vectors are considered constant.
Therefore, the derivative of BrP in B and the derivative of GrP in G are:

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (7.109)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (7.110)

It is also possible to find the G-derivative of BrP and the B-derivative of
GrP . We use Equation (7.15) for the global velocity of a body fixed point P ,
expressed in body frame to define the mixed derivatives. The G-derivative
of a body vector BrP is denoted by

B
GvP =

Gd

dt
BrP (7.111)

and similarly, the B-derivative of a global vector GrP is denoted by

G
BvP =

Bd

dt
GrP . (7.112)
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FIGURE 7.3. A moving body point P at Br(t) in the rotating body frame B.

When point P is moving in frame B while B is rotating in G, the G-
derivative of BrP (t) is defined by

Gd

dt
BrP (t) =

B ṙP +
B
GωB × BrP =

B
GṙP (7.113)

and the B-derivative of GrP is defined by

Bd

dt
GrP (t) =

GṙP − GωB × GrP =
G
B ṙP . (7.114)

Proof. Let G(OXY Z) with unit vectors Î, Ĵ , and K̂ be the global co-
ordinate frame, and let B(Oxyz) with unit vectors ı̂, ĵ, and k̂ be a body
coordinate frame. The position vector of a moving point P , as shown in
Figure 7.3, can be expressed in the body and global frames

BrP (t) = x (t) ı̂+ y (t) ĵ+ z (t) k̂ (7.115)
GrP (t) = X (t) Î + Y (t) Ĵ + Z (t) K̂. (7.116)

The time derivative of BrP in B and GrP in G are

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (7.117)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (7.118)

because the unit vectors of B in Equation (7.115) and the unit vectors of
G in Equation (7.116) are considered constant.
Using the definition (7.111), we can find the G-derivative of the position
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vector BrP as

Gd

dt
BrP =

Gd

dt

³
xı̂+ yĵ+ zk̂

´
= ẋ ı̂+ ẏ ĵ+ ż k̂ + x

Gdı̂

dt
+ y

Gdĵ

dt
+ z

Gdk̂

dt

= B ṙP +
B
GωB ×

³
xı̂+ yĵ+ zk̂

´
= B ṙP +

B
GωB × BrP

=
Bd

dt
BrP +

B
GωB × BrP . (7.119)

We achieved this result because the x, y, and z components of BrP are
scalar. Scalars are invariant with respect to frame transformations. There-
fore, if x is a scalar then,

Gd

dt
x =

Bd

dt
x = ẋ. (7.120)

The B-derivative of GrP is

Bd

dt
GrP =

Bd

dt

³
XÎ + Y Ĵ + ZK̂

´
= Ẋ Î + Ẏ Ĵ + Ż K̂ +X

BdÎ

dt
+ Y

BdĴ

dt
+ Z

BdK̂

dt

= GṙP +
G
BωG × GrP (7.121)

and therefore,
Bd

dt
GrP =

GṙP − GωB × GrP . (7.122)

The angular velocity of B relative to G is a vector quantity and can be
expressed in either frames.

G
GωB = ωX Î + ωY Ĵ + ωZ K̂ (7.123)
B
GωB = ωx ı̂+ ωy ĵ+ ωzk̂. (7.124)

Example 210 Rotation of B about Z-axis.
A body frame B is rotating in G with α̇ about the Z-axis. Therefore, a

point at Br will be seen at

GrP = GRB
Br = RZ,α(t)

Br (7.125)

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ x cosα− y sinα

y cosα+ x sinα
z

⎤⎦
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The angular velocity matrix of B is

Gω̃B =
GṘB

GRT
B = α̇K̃ (7.126)

that gives
GωB = α̇K̂. (7.127)

We can find the body expression of Gω̃B
B
Gω̃B =

GRT
B

G
Gω̃B

GRB = α̇k̃ (7.128)

and therefore,
B
GωB = α̇k̂. (7.129)

Now we can find the following derivatives.
Bd

dt
Br = B ṙ = 0 (7.130)

Gd

dt
Gr = Gṙ =

Gd

dt

⎡⎣ x cosα− y sinα
y cosα+ x sinα

z

⎤⎦ (7.131)

= (−xα̇ sinα− yα̇ cosα) Î + (xα̇ cosα− yα̇ sinα) Ĵ + żK̂

For the mixed derivatives we start with the global velocity expressed in B.
Gd

dt
Br = B

GωB × Br

= α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ x

y
z

⎤⎦ = α̇

⎡⎣ −yx
0

⎤⎦
= −yα̇ı̂+ xα̇ĵ = B

Gṙ (7.132)

We can transform B
Gṙ to the global frame and find the global expression

velocity, Gṙ.
Gṙ = GRB

B
Gṙ

= α̇

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ −yx
0

⎤⎦ = α̇

⎡⎣ −y cosα− x sinα
x cosα− y sinα

0

⎤⎦
= α̇ (−y cosα− x sinα) Î + α̇ (x cosα− y sinα) Ĵ (7.133)

The next derivative is the velocity of body points relative to B and expressed
in G.

Bd

dt
Gr = Gṙ− GωB × Gr (7.134)

= α̇

⎡⎣ −y cosα− x sinα
x cosα− y sinα

0

⎤⎦− α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ x cosα− y sinα

y cosα+ x sinα
z

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦



7. Angular Velocity 397

Example 211 Time derivative of a moving point in B.
Consider a local frame B, rotating in G by α̇ about the Z-axis, and a

moving point at BrP (t) = t̂ı . Therefore,

GrP = GRB
BrP = RZ,α(t)

BrP (7.135)

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ t
0
0

⎤⎦ = t cosαÎ + t sinαĴ.

The angular velocity matrix is

Gω̃B =
GṘB

GRT
B = α̇K̃ (7.136)

that gives
GωB = α̇K̂. (7.137)

It can also be verified that

B
Gω̃B =

GRT
B

G
Gω̃B

GRB = α̇k̃ (7.138)

and therefore,
B
GωB = α̇k̂. (7.139)

Now we can find the following derivatives

Bd

dt
BrP =

B ṙP = ı̂ (7.140)

Gd

dt
GrP = GṙP

= (cosα− tα̇ sinα) Î + (sinα+ tα̇ cosα) Ĵ . (7.141)

For the mixed derivatives we start with
Gd

dt
BrP =

Bd

dt
BrP +

B
GωB × BrP

=

⎡⎣ 1
0
0

⎤⎦+ α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t
0
0

⎤⎦ =
⎡⎣ 1

tα̇
0

⎤⎦
= ı̂+ tα̇ĵ = B

GṙP (7.142)

which is the global velocity of P expressed in B. We may, however, trans-
form B

GṙP to the global frame and find the global velocity expressed in G.

GṙP = GRB
B
GṙP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦⎡⎣ 1
tα̇
0

⎤⎦ =
⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦
= (cosα− tα̇ sinα) Î + (sinα+ tα̇ cosα) Ĵ (7.143)
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The next derivative is
Bd

dt
GrP = GṙP − GωB × GrP

=

⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦− α̇

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t cosα

t sinα
0

⎤⎦
=

⎡⎣ cosα
sinα
0

⎤⎦ = (cosα) Î + (sinα) Ĵ = G
B ṙP (7.144)

which is the velocity of P relative to B and expressed in G. To express this
velocity in B we apply a frame transformation.

B ṙP = GRT
B

G
B ṙP

=

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦T ⎡⎣ cosα
sinα
0

⎤⎦ =
⎡⎣ 1
0
0

⎤⎦ = ı̂ (7.145)

Sometimes it is more applied if we transform the vector to the same frame in
which we are taking the derivative and then apply the differential operator.
Therefore,

Gd

dt
BrP =

Gd

dt

¡
GRB

BrP
¢

=
Gd

dt

⎡⎣ t cosα
t sinα
0

⎤⎦ =
⎡⎣ cosα− tα̇ sinα
sinα+ tα̇ cosα

0

⎤⎦ (7.146)

and
Bd

dt
GrP =

Bd

dt

¡
GRT

B
GrP

¢
=

Bd

dt

⎡⎣ t
0
0

⎤⎦ =
⎡⎣ 1
0
0

⎤⎦ . (7.147)

Example 212 Orthogonality of position and velocity vectors.
If the position vector of a body point in global frame is denoted by r then

dr

dt
· r = 0. (7.148)

To show this property we may take a derivative from

r · r = r2 (7.149)

and find
d

dt
(r · r) = dr

dt
· r+ r · dr

dt
= 2

dr

dt
· r = 0. (7.150)

The Equation (7.148) is correct in every coordinate frame and for every
constant length vector, as long as the vector and the derivative are expressed
in the same coordinate frame.
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Example 213 F Derivative transformation formula.
The global velocity of a fixed point in the body coordinate frame B (Oxyz)

can be found by Equation (7.2). Now consider a point P that can move in
B (Oxyz). In this case, the body position vector BrP is not constant and
therefore, the global velocity of such a point expressed in B is

Gd

dt
BrP =

Bd

dt
BrP +

B
GωB × BrP =

B
GṙP . (7.151)

Sometimes the result of Equation (7.151) is utilized to define transfor-
mation of the differential operator from a body to a global coordinate frame

Gd

dt
¤ =

Bd

dt
¤+ B

GωB × B
G¤ = B

G¤̇ (7.152)

however, special attention must be paid to the coordinate frame in which the
vector ¤ and the final result are expressed. The final result is B

G¤̇ showing
the global (G) time derivative expressed in body frame (B). The vector ¤
might be any vector such as position, velocity, angular velocity, momentum,
angular velocity, or even a time-varying force vector.
The Equation (7.152) is called the derivative transformation for-

mula and relates the time derivative of a vector as it would be seen from
frame G to its derivative as seen in frame B. The derivative transforma-
tion formula (7.152) is more general and can be applied to every vector for
derivative transformation between every two relatively moving coordinate
frames.

Example 214 F Differential equation for rotation matrix.
Equation (7.5) for defining the angular velocity matrix may be written

as a first-order differential equation

d

dt
GRB − GRB Gω̃B = 0. (7.153)

The solution of the equation confirms the exponential definition of the ro-
tation matrix as

GRB = eω̃t (7.154)

or
ω̃t = φ̇ ũ = ln

¡
GRB

¢
. (7.155)

Example 215 F Acceleration of a body point in the global frame.
The angular acceleration vector of a rigid body B(Oxyz) in the global

frame G(OXY Z) is denoted by GαB and is defined as the global time deriv-
ative of GωB.

GαB =
Gd

dt
GωB (7.156)



400 7. Angular Velocity

X
Y

Z

x

y

G

B

z

rP Pi
j

k

FIGURE 7.4. A body coordinate frame moving with a fixed point in the global
coordinate frame.

Using this definition, the acceleration of a fixed body point in the global
frame is

GaP =
Gd

dt

¡
GωB × GrP

¢
= GαB × GrP + GωB × (GωB × GrP ). (7.157)

Example 216 F Alternative definition of angular velocity vector.
The angular velocity vector of a rigid body B(̂ı, ĵ, k̂) in global frame

G(Î , Ĵ , K̂) can also be defined by

B
GωB = ı̂(

Gdĵ

dt
· k̂) + ĵ(

Gdk̂

dt
· ı̂) + k̂(

Gdı̂

dt
· ĵ). (7.158)

Proof. Consider a body coordinate frame B moving with a fixed point in the
global coordinate frame G. The fixed point of the body is taken as the origin
of both coordinate frames, as shown in Figure 7.4. In order to describe the
motion of the body, it is sufficient to describe the motion of the local unit
vectors ı̂, ĵ, k̂ . Let rP be the position vector of a body point P . Then, BrP
is a vector with constant components.

BrP = xı̂+ yĵ+ zk̂ (7.159)

When the body moves, it is only the unit vectors ı̂, ĵ, and k̂ that vary
relative to the global coordinate frame. Therefore, the vector of differential
displacement is

drP = x dı̂+ y dĵ+ z dk̂ (7.160)

which can also be expressed by

drP = (drP · ı̂) ı̂+ (drP · ĵ) ĵ+
³
drP · k̂

´
k̂. (7.161)
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Substituting (7.160) in the right-hand side of (7.161) results in

drP =
³
xı̂ · dı̂+ yı̂ · dĵ+ zı̂ · dk̂

´
ı̂

+
³
xĵ · dı̂+ yĵ · dĵ+ zĵ · dk̂

´
ĵ

+
³
xk̂ · dı̂+ yk̂ · dĵ+ zk̂ · dk̂

´
k̂. (7.162)

Utilizing the unit vectors’ relationships

ĵ · dı̂ = −ı̂ · dĵ (7.163)

k̂ · dĵ = −ĵ · dk̂ (7.164)

ı̂ · dk̂ = −k̂ · dı̂ (7.165)

ı̂ · dı̂ = ĵ · dĵ = k̂ · dk̂ = 0 (7.166)

ı̂ · ĵ = ĵ · k̂ = k̂ · ı̂ = 0 (7.167)

ı̂ · ı̂ = ĵ · ĵ = k̂ · k̂ = 1 (7.168)

the drP reduces to

drP =
³
zı̂ · dk̂ − yĵ · dı̂

´
ı̂

+
³
xĵ · dı̂− zk̂ · dĵ

´
ĵ

+
³
yk̂ · dĵ− xı̂ · dk̂

´
k̂. (7.169)

This equation can be rearranged to be expressed as a vector product

drP =
³
(k̂ · dĵ)̂ı+ (̂ı · dk̂)ĵ+ (ĵ · dı̂)k̂

´
×
³
xı̂+ yĵ+ zk̂

´
(7.170)

or

B
GvP =

Ã
(k̂ ·

Gdĵ

dt
)̂ı+ (̂ı ·

Gdk̂

dt
)ĵ+ (ĵ ·

Gdı̂

dt
)k̂

!
×
³
xı̂+ yĵ+ zk̂

´
. (7.171)

Comparing this result with

ṙP = GωB × rP

shows that

B
GωB = ı̂

µ
Gdĵ

dt
· k̂
¶
+ ĵ

Ã
Gdk̂

dt
· ı̂
!
+ k̂

µ
Gdı̂

dt
· ĵ
¶
. (7.172)
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Example 217 F Alternative proof for angular velocity definition (7.158).
The angular velocity definition presented in Equation (7.158) can also be

shown by direct substitution for GRB in the angular velocity matrix B
Gω̃B

B
Gω̃B =

GRT
B
GṘB . (7.173)

Therefore,

B
Gω̃B =

⎡⎣ ı̂ · Î ı̂ · Ĵ ı̂ · K̂
ĵ · Î ĵ · Ĵ ĵ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

⎤⎦ · Gd
dt

⎡⎣ Î · ı̂ Î · ĵ Î · k̂
Ĵ · ı̂ Ĵ · ĵ Ĵ · k̂
K̂ · ı̂ K̂ · ĵ K̂ · k̂

⎤⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣
ı̂ ·

Gdı̂

dt
ı̂ ·

Gdĵ

dt
ı̂ ·

Gdk̂

dt

ĵ ·
Gdı̂

dt
ĵ ·

Gdĵ

dt
ĵ ·

Gdk̂

dt

k̂ ·
Gdı̂

dt
k̂ ·

Gdĵ

dt
k̂ ·

Gdk̂

dt

⎤⎥⎥⎥⎥⎥⎥⎦ (7.174)

which shows that

B
GωB =

⎡⎢⎢⎢⎢⎢⎢⎣

Gdĵ

dt
· k̂

Gdk̂

dt
· ı̂

Gdı̂

dt
· ĵ

⎤⎥⎥⎥⎥⎥⎥⎦ . (7.175)

Example 218 F Second derivative.
In general, Gd r/dt is a variable vector in G(OXY Z) and in any other

coordinate frame such as B (oxyz). Therefore, it can be differentiated in
either coordinate frames G or B. However, the order of differentiating is
important. In general,

Bd

dt

Gdr

dt
6=

Gd

dt

Bdr

dt
. (7.176)

As an example, consider a rotating body coordinate frame about the Z-axis,
and a variable vector as

Gr = tÎ. (7.177)

Therefore,
Gdr

dt
= Gṙ = Î (7.178)

and hence,

B

µ
Gdr

dt

¶
= B

Gṙ = RT
Z,ϕ

h
Î
i
=

⎡⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ 1
0
0

⎤⎦
= cosϕı̂− sinϕĵ (7.179)
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which provides
Bd

dt

Gdr

dt
= −ϕ̇ sinϕı̂− ϕ̇ cosϕĵ (7.180)

and
G

µ
Bd

dt

Gdr

dt

¶
= −ϕ̇Ĵ . (7.181)

Now
Br = RT

Z,ϕ

h
tÎ
i
= t cosϕı̂− t sinϕĵ (7.182)

that provides

Bdr

dt
= (−tϕ̇ sinϕ+ cosϕ) ı̂− (sinϕ+ tϕ̇ cosϕ) ĵ (7.183)

and

G

µ
Bdr

dt

¶
= G

B ṙ = RZ,ϕ ((−tϕ̇ sinϕ+ cosϕ) ı̂− (sinϕ+ tϕ̇ cosϕ) ĵ)

=

⎡⎣ cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1

⎤⎦⎡⎣ −tϕ̇ sinϕ+ cosϕ− sinϕ− tϕ̇ cosϕ
0

⎤⎦
= Î − tϕ̇Ĵ (7.184)

which shows
Gd

dt

Bdr

dt
= − (ϕ̇+ tϕ̈) Ĵ 6=

Bd

dt

Gdr

dt
. (7.185)

7.3 Rigid Body Velocity

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z), as shown in
Figure 7.5. The rigid body can rotate in the global frame, while the origin of
the body frame B can translate relative to the origin of G. The coordinates
of a body point P in local and global frames are related by the following
equation:

GrP =
GRB

BrP +
GdB (7.186)

where GdB indicates the position of the moving origin o relative to the
fixed origin O.
The velocity of the point P in G is

GvP = GṙP =
GṘB

BrP + GḋB

= Gω̃B
G
BrP +

GḋB = Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB . (7.187)
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FIGURE 7.5. A rigid body with an attached coordinate frame B (oxyz) moving
freely in a global coordinate frame G(OXY Z).

Proof. Direct differentiating shows

GvP =
Gd

dt
GrP =

GṙP =
Gd

dt

¡
GRB

BrP +
GdB

¢
= GṘB

BrP +
GḋB. (7.188)

The local position vector BrP can be substituted from (7.186) to obtain
GvP = GṘB

GRT
B

¡
GrP − GdB

¢
+ GḋB

= Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB. (7.189)

It may also be written using relative position vector

GvP = GωB × G
BrP +

GḋB . (7.190)

Example 219 Geometric interpretation of rigid body velocity.
Figure 7.6 illustrates a body point P of a moving rigid body. The global

velocity of the point P
GvP = GωB × G

BrP +
GḋB (7.191)

is a vector addition of rotational and translational velocities, both expressed
in the global frame. At the moment, the body frame is assumed to be coin-
cident with the global frame, and the body frame has a velocity GḋB with
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FIGURE 7.6. Geometric interpretation of rigid body velocity.

respect to the global frame. The translational velocity GḋB is a common
property for every point of the body, but the rotational velocity GωB × G

BrP
differs for different points of the body.

Example 220 Velocity of a moving point in a moving body frame.
Assume that point P in Figure 7.5 is moving in the frame B, indicating

by a time varying position vector BrP (t). The global velocity of P is a
composition of the velocity of P in B, rotation of B relative to G, and
velocity of B relative to G.

Gd

dt
GrP =

Gd

dt

¡
GdB + GRB

BrP
¢

=
Gd

dt
GdB +

Gd

dt

¡
GRB

BrP
¢

= GḋB +
G
B ṙP + GωB × G

BrP (7.192)

Example 221 Velocity of a body point in multiple coordinate frames.
Consider three frames, B0, B1 and B2, as shown in Figure 7.7. The

velocity of point P should be measured and expressed in a coordinate frame.
If the point is stationary in a frame, say B2, then the time derivative of
2rP in B2 is zero. If the frame B2 is moving relative to the frame B1, then,
the time derivative of 1rP is a combination of the rotational component
due to rotation of B2 relative to B1 and the velocity of B2 relative to B1.
In forward velocity kinematics of robots, the velocities must be measured in
the base frame B0. Therefore, the velocity of point P in the base frame is
a combination of the velocity of B2 relative to B1 and the velocity of B1
relative to B0.
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FIGURE 7.7. A rigid body coordinate frame B2 is moving in a frame B1 that is
moving in the base coordinate frame B0.

The global coordinate of the body point P is

0rP = 0d1 +
0
1d2 +

0
2rP (7.193)

= 0d1 +
0R1

1d2 +
0R2

2rP . (7.194)

Therefore, the velocity of point P can be found by combining the relative
velocities

0ṙP = 0ḋ1 + (
0Ṙ1

1d2 +
0R1

1ḋ2) +
0Ṙ2

2rP

= 0ḋ1 +
0
0ω1 × 0

1d2 +
0R1

1ḋ2 +
0
0ω2 × 0

2rP (7.195)

Most of the time, it is better to use a relative velocity method and write

0
0vP =

0
0v1 +

0
1v2 +

0
2vP (7.196)

because

0
0v1 = 0

0ḋ1 (7.197)
0
1v2 = 0

0ω1 × 0
1d2 +

0R1
1ḋ2 (7.198)

0
2vP = 0

0ω2 × 0
2rP (7.199)

and therefore,

0vP =
0ḋ1 +

0
0ω1 × 0

1d2 +
0R1

1ḋ2 +
0
0ω2 × 0

2rP . (7.200)
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Example 222 Velocity vectors are free vectors.
Velocity vectors are free, so to express them in different coordinate frames

we need only to premultiply them by a rotation matrix. Hence, considering
k
jvi as the velocity of the origin of the Bi coordinate frame with respect to
the origin of the frame Bj expressed in frame Bk, we can write

k
jvi = − k

i vj (7.201)

and
k
jvi =

kRm
m
j vi (7.202)

and therefore,
id

dt
i
irP =

ivP =
i
jvP +

i
iωj × i

jrP . (7.203)

Example 223 F Zero velocity points.
To answer whether there is a point with zero velocity at each time, we

may utilize Equation (7.187) and write

Gω̃B
¡
Gr0 − GdB

¢
+ GḋB = 0 (7.204)

to search for Gr0 which refers to a point with zero velocity

Gr0 =
GdB − Gω̃

−1
B

GḋB (7.205)

however, the skew symmetric matrix Gω̃B is singular and has no inverse.
In other words, there is no general solution for Equation (7.204).
If we restrict ourselves to planar motions, say XY -plane, then GωB =

ωK̂ and Gω̃
−1
B = 1/ω. Hence, in 2D space there is a point at any time with

zero velocity at position Gr0 given by

Gr0(t) =
GdB(t)−

1

ω
GḋB(t). (7.206)

The zero velocity point is called the pole or instantaneous center of
rotation. The position of the pole is generally a function of time and the
path of its motion is called a centroid.

Example 224 F Eulerian and Lagrangian view points.
When a variable quantity is measured within the stationary global coor-

dinate frame, it is called absolute or the Lagrangian viewpoint. On the
other hand, when the variable is measured within a moving body coordinate
frame, it is called relative or the Eulerian viewpoint.
In 2D planar motion of a rigid body, there is always a pole of zero velocity

at
Gr0 =

GdB −
1

ω
GḋB. (7.207)

The position of the pole in the body coordinate frame can be found by sub-
stituting for Gr from (7.186)

GRB
Br0 +

GdB =
GdB − Gω̃

−1
B

GḋB (7.208)
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and solving for the position of the zero velocity point in the body coordinate
frame Br0.

Br 0 = −GRT
B Gω̃

−1
B

GḋB = −GRT
B

h
GṘB

GRT
B

i−1
GḋB

= −GRT
B

h
GRB

GṘ−1B

i
GḋB = −GṘ−1B

GḋB (7.209)

Therefore, Gr0 indicates the path of motion of the pole in the global frame,
while Br0 indicates the same path in the body frame. The Gr0 refers to
Lagrangian centroid and Br0 refers to Eulerian centroid.

Example 225 F Screw axis and screw motion.
The screw axis may be defined as a line for a moving rigid body B whose

points P have velocity parallel to the angular velocity vector GωB = ωû.
Such points satisfy

GvP = GωB ×
¡
GrP − GdB

¢
+ GḋB = pGωB. (7.210)

where, p is a scalar. Since GωB is perpendicular to GωB ×
¡
Gr− Gd

¢
, a

dot product of Equation (7.210) by GωB yields

p =
1

ω2

³
GωB · GḋB

´
. (7.211)

Introducing a parameter k to indicate different points of the line, the
equation of the screw axis is defined by

GrP =
GdB +

1

ω2

³
GωB × GḋB

´
+ k GωB (7.212)

because if we have a× x = b, and a · b = 0, then x = −a−2(a× b) + ka.
In our case,

GωB ×
¡
GrP − GdB

¢
= pGωB − GḋB (7.213)¡

GrP − GdB
¢
is perpendicular to GωB ×

¡
GrP − GdB

¢
, and hence is per-

pendicular to (pGωB − GḋB) too.
Therefore, there exists at any time a line s in space, parallel to GωB,

which is the locus of points whose velocity is parallel to GωB.
If s is the position vector of a point on s, then

GωB ×
¡
Gs− GdB

¢
= pGωB − GḋB (7.214)

and the velocity of any point out of s is

Gv = GωB ×
¡
Gr− Gs

¢
+ pGωB (7.215)

which expresses that at any time the velocity of a body point can be decom-
posed into perpendicular and parallel components to the angular velocity
vector GωB. Therefore, the motion of any point of a rigid body is a screw.
The parameter p is the ratio of translation velocity to rotation velocity, and
is called pitch. In general, s, GωB, and p may be functions of time.
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7.4 F Velocity Transformation Matrix

Consider the motion of a rigid body B in the global coordinate frame G,
as shown in Figure 7.5. Assume the body frame B(oxyz) is coincident at
some initial time t0 with the global frame G(OXY Z). At any time t 6= t0,
B is not necessarily coincident with G and therefore, the homogeneous
transformation matrix GTB(t) is time varying.
The global position vector GrP (t) of a point P of the rigid body is a

function of time, but its local position vector BrP is a constant, which is
equal to GrP (t0).

BrP ≡ GrP (t0) (7.216)

The velocity of point P on the rigid body B as seen in the reference frame
G is obtained by differentiating the position vector Gr(t) in the reference
frame G

GvP =
d

dt
GrP (t) =

GṙP (7.217)

where GṙP denotes the differentiation of the quantity GrP (t) in the refer-
ence frame G.
The velocity of a body point in global coordinate frame can be found by

applying a homogeneous transformation matrix

Gv(t) = GVB
Gr(t) (7.218)

where GVB is the velocity transformation matrix.

GVB = GṪB
GT−1B

=

∙
GṘB

GRT
B

GḋB − GṘB
GRT

B
GdB

0 0

¸
=

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
=

∙
Gω̃B

GvB
0 0

¸
(7.219)

Proof. Based on homogeneous coordinate transformation, we have

GrP (t) =
GTB(t)

BrP =
GTB(t)

GrP (t0) (7.220)

and therefore,

GvP =
Gd

dt

£
GTB

BrP
¤
= GṪB

BrP =

∙ Gd
dt

GRB
Gd
dt

GdB
0 0

¸
BrP

=

∙
GṘB

GḋB
0 0

¸
BrP (7.221)
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Substituting for BrP from Equation (7.220), gives

GvP = GṪB
GT−1B

GrP (t)

=

∙
GṘB

GḋB
0 0

¸ ∙
GRT

B −GRT
B
GdB

0 1

¸
GrP (t)

=

∙
GṘB

GRT
B

GḋB − GṘB
GRT

B
GdB

0 0

¸
GrP (t)

=

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
GrP (t). (7.222)

Thus, the velocity of any point P of the rigid body B in the reference frame
G can be obtained by premultiplying the position vector of the point P in
G with the velocity transformation matrix, GVB,

GvP (t) =
GVB

GrP (t) (7.223)

where,

GVB = GṪB
GT−1B =

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
=

∙
Gω̃B

GvB
0 0

¸
(7.224)

and
Gω̃B =

GṘB
GRT

B (7.225)

GvB = GḋB − GṘB
GRT

B
GdB =

GḋB − Gω̃B
GdB

= GḋB − GωB × GdB. (7.226)

The velocity transformation matrix GVB may be assumed as a matrix
operator that provides the global velocity of any point attached to B(oxyz).
It consists of the angular velocity matrix Gω̃B and the frame velocity GḋB
both described in the global frame G(OXY Z). The matrix GVB depends
on six parameters: the three components of the angular velocity vector
GωB and the three components of the frame velocity GḋB. Sometimes it is
convenient to introduce a 6× 1 vector called velocity transformation vector
to simplify numerical calculations.

GtB =

∙
GvB
GωB

¸
=

∙
GḋB − Gω̃B

GdB
GωB

¸
(7.227)

In analogy to the two representations of the angular velocity, the ve-
locity of body B in reference frame G can be represented either as the
velocity transformation matrix GVB in (7.224) or as the velocity transfor-
mation vector GtB in (7.227). The velocity transformation vector represents
a noncommensurate vector since the dimension of GωB and GvB differ.
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Example 226 F Velocity transformation matrix based on coordinate trans-
formation matrix.
The velocity transformation matrix can be found based on a coordinate

transformation matrix. Starting from

Gr(t) = GTB
Br =

∙
GRB

Gd
0 1

¸
Br (7.228)

and taking the derivative, shows that

Gv =
Gd

dt

£
GTB

Br
¤
= GṪB

Br =

∙
GṘB

Gḋ
0 0

¸
Br (7.229)

however,
Br = GT−1B

Gr (7.230)

and therefore,

Gv =

∙
GṘB

Gḋ
0 0

¸
GT−1B

Gr

=

∙
GṘB

Gḋ
0 0

¸ ∙
GRT

B −GRT
B
Gd

0 1

¸
Gr

=

∙
GṘB

GRT
B

Gḋ− GṘB
GRT

B
Gd

0 0

¸
Gr

= GVB
Gr. (7.231)

Example 227 F Inverse of a velocity transformation matrix.
Transformation from a body frame to the global frame is given by Equa-

tion (4.67)
GT−1B =

∙
GRT

B −GRT
B
Gd

0 1

¸
. (7.232)

Following the same principle, we may introduce the inverse velocity trans-
formation matrix by

BVG = GV −1B

=

" ³
GṘB

GRT
B

´−1
−
³
GṘB

GRT
B

´−1 ³
Gḋ− GṘB

GRT
B
Gd
´

0 0

#

=

"
GRB

GṘ−1B −GRB
GṘ−1B

³
Gḋ− GṘB

GRT
B
Gd
´

0 0

#

=

∙
GRB

GṘ−1B −GRB
GṘ−1B

Gḋ+ Gd
0 0

¸
(7.233)

to have
GVB

GV −1B = I. (7.234)
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Therefore, having the velocity vector of a body point GvP and the velocity
transformation matrix GVB we can find the global position of the point by

GrP =
GV −1B

GvP . (7.235)

Example 228 F Velocity transformation matrix in body frame.
The velocity transformation matrix GVB defined in the global frame G is

described by

GVB =

∙
GṘB

GRT
B

Gḋ− GṘB
GRT

B
Gd

0 0

¸
(7.236)

However, the velocity transformation matrix can be expressed in the body
coordinate frame B as well

B
GVB = GT−1B

GṪB (7.237)

=

∙
GRT

B −GRT
B
Gd

0 1

¸ ∙
GṘB

Gḋ
0 0

¸
=

∙
GRT

B
GṘB

GRT
B
Gḋ

0 0

¸
=

∙
B
GωB

Bḋ
0 0

¸
where B

GωB is the angular velocity vector of B with respect to G expressed
in B, and Bḋ is the velocity of the origin of B in G expressed in B.
It is also possible to use a matrix multiplication to find the velocity trans-

formation matrix in the body coordinate frame.

B
GvP =

GT−1B
GvP =

GT−1B
GṪB

BrP =
B
GVB

BrP (7.238)

Using the definition of (7.219) and (7.237) we are able to transform the
velocity transformation matrices between the B and G frames.

GVB =
GTB

B
GVB

GT−1B . (7.239)

It can also be useful if we define the time derivative of the transformation
matrix by

GṪB =
GVB

GTB (7.240)

or
GṪB =

GTB
B
GVB. (7.241)

Similarly, we may define a velocity transformation matrix from link (i)
to (i− 1) by

i−1Vi =

∙
i−1Ṙi

i−1RT
i

i−1ḋ− i−1Ṙi
i−1RT

i
i−1d

0 0

¸
(7.242)

and
i
i−1Vi =

∙
i−1RT

i
i−1Ṙi

i−1RT
i
i−1ḋ

0 0

¸
. (7.243)
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Example 229 Motion with a fixed point.
When a point of a rigid body is fixed to the global frame, it is convenient

to set the origins of the moving coordinate frame B(Oxyz) and the global
coordinate frame G(OXY Z) on the fixed point. Under these conditions,

GdB = 0 , GḋB = 0 (7.244)

and Equation (7.222) reduces to

GvP = Gω̃B
GrP (t) = GωB × GrP (t). (7.245)

Example 230 Velocity in spherical coordinates.
The homogeneous transformation matrix from the spherical coordinates

S(Orθϕ) to Cartesian coordinates G(OXY Z) is found as

GTS = RZ,ϕRY,θDZ,r =

∙
GRB

Gd
0 1

¸

=

⎡⎢⎢⎣
cos θ cosϕ − sinϕ cosϕ sin θ r cosϕ sin θ
cos θ sinϕ cosϕ sin θ sinϕ r sin θ sinϕ
− sin θ 0 cos θ r cos θ
0 0 0 1

⎤⎥⎥⎦ . (7.246)
Time derivative of GTS shows that

GṪS = GVS
GTS =

∙
Gω̃S

GvS
0 0

¸
GTS (7.247)

=

⎡⎢⎢⎣
0 −ϕ̇ θ̇ cosϕ ṙ cosϕ sin θ

ϕ̇ 0 θ̇ sinϕ ṙ sin θ sinϕ

−θ̇ cosϕ −θ̇ sinϕ 0 ṙ cos θ
0 0 0 0

⎤⎥⎥⎦ GTB.

Example 231 F Velocity analysis of a planar RkR manipulator.
Figure 7.8 illustrates an RkR planar manipulator with joint variables θ1

and θ2. The links (1) and (2) are both RkR(0) and therefore the transfor-
mation matrices 0T1, 1T2, and 0T2 are:

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.248)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.249)
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FIGURE 7.8. An RkR planar manipulator.

0T2 = 0T1
1T2 (7.250)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2) + l1cθ1
s (θ1 + θ2) c (θ1 + θ2) 0 l2s (θ1 + θ2) + l1sθ1

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
The points M1 and M2 are at:

0rM1 =

⎡⎢⎢⎣
l1 cos θ1
l1 sin θ1
0
1

⎤⎥⎥⎦ 1rM2 =

⎡⎢⎢⎣
l2 cos θ2
l2 sin θ2
0
1

⎤⎥⎥⎦ (7.251)

0rM2
= 0T1

1rM2
=

⎡⎢⎢⎣
l2 cos (θ1 + θ2) + l1 cos θ1
l2 sin (θ1 + θ2) + l1 sin θ1

0
1

⎤⎥⎥⎦ (7.252)

To determine the velocity of M2, we calculate 0Ṫ2. However, 0Ṫ2 can be
calculated by direct differentiation of 0T2.

0Ṫ2 =
d

dt
0T2 (7.253)

=

⎡⎢⎢⎣
−θ̇12sθ12 −θ̇12cθ12 0 −l2θ̇12sθ12 − θ̇1l1sθ1
θ̇12cθ12 −θ̇12sθ12 0 l2θ̇12cθ12 + θ̇1l1cθ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
θ12 = θ1 + θ2 θ̇12 = θ̇1 + θ̇2 (7.254)
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We may also use the chain rule to calculate 0Ṫ2

0Ṫ2 =
d

dt

¡
0T1

1T2
¢
= 0Ṫ1

1T2 +
0T1

1Ṫ2 (7.255)

where,

0Ṫ1 = θ̇1

⎡⎢⎢⎣
− sin θ1 − cos θ1 0 −l1 sin θ1
cos θ1 − sin θ1 0 l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.256)

1Ṫ2 = θ̇2

⎡⎢⎢⎣
− sin θ2 − cos θ2 0 −l2 sin θ2
cos θ2 − sin θ2 0 l2 cos θ2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (7.257)

Having 0Ṫ1 and 1Ṫ2, we can find the velocity transformation matrices
0V1 and 1V2 by using 0T

−1
1 and 1T−12 .

0T−11 =

⎡⎢⎢⎣
cos θ1 sin θ1 0 −l1
− sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.258)

1T−12 =

⎡⎢⎢⎣
cos θ2 sin θ2 0 −l2
− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.259)

0V1 =
0Ṫ1

0T−11 = θ̇1

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.260)

1V2 =
1Ṫ2

1T−12 = θ̇2

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.261)

Therefore, the velocity of points M1 and M2 in B0 and B1 are:

0vM1 =
0V1

0rM1 = θ̇1

⎡⎢⎢⎣
−l1 sin θ1
l1 cos θ1
0
0

⎤⎥⎥⎦ (7.262)

1vM2 =
1V2

1rM2 = θ̇2

⎡⎢⎢⎣
−l2 sin θ2
l2 cos θ2
0
0

⎤⎥⎥⎦ (7.263)
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To determine the velocity of the tip point M2 in the base frame, we can use
the velocity vector addition.

0vM2 = 0vM1 +
0
1vM2 =

0vM1 +
0T1

1vM2

=

⎡⎢⎢⎢⎢⎣
−
³
θ̇1 + θ̇2

´
l2 sin (θ1 + θ2)− θ̇1l1 sin θ1³

θ̇1 + θ̇2

´
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

⎤⎥⎥⎥⎥⎦ (7.264)

We can also determine 0vM2
by using the velocity transformation matrix

0V2
0vM2 =

0V2
0rM2 (7.265)

where 0V2 is:

0V2 =
0Ṫ2

0T−12 =

⎡⎢⎢⎣
0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.266)

0T−12 = 2T1
1T0 =

1T−12
0T−11 (7.267)

=

⎡⎢⎢⎣
cos (θ1 + θ2) sin (θ1 + θ2) 0 −l2 − l1 cos θ2
− sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin θ2

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
We can also determine the velocity transformation matrix 0V2 using their
addition rule 0V2 = 0V1 +

0
1V2,

0V2 = 0V1 +
0
1V2

=

⎡⎢⎢⎣
0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.268)

where,

0
1V2 =

0T1
1V2

0T−11 =

⎡⎢⎢⎣
0 −θ̇2 0 θ̇2l1 sin θ1
θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (7.269)
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Therefore, 0vM2 would be:

0vM2
= 0V2

0rM2

=

⎡⎢⎢⎢⎢⎣
−
³
θ̇1 + θ̇2

´
l2 sin (θ1 + θ2)− θ̇1l1 sin θ1³

θ̇1 + θ̇2

´
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

⎤⎥⎥⎥⎥⎦ (7.270)

7.5 Derivative of a Homogeneous Transformation
Matrix

The velocity transformation matrix can be found directly from the homoge-
neous link transformation matrix. According to forward kinematics, there
is a 4× 4 homogeneous transformation matrix to move between every two
coordinate frames.

GTB =

∙
GRB

Gd
0 1

¸
=

⎡⎢⎢⎣
r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
0 0 0 1

⎤⎥⎥⎦ (7.271)

When the elements of the transformation matrix are time varying, its deriv-
ative is

GdT

dt
= GṪB =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dr11
dt

dr12
dt

dr13
dt

dr14
dt

dr21
dt

dr22
dt

dr23
dt

dr24
dt

dr31
dt

dr32
dt

dr33
dt

dr34
dt

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.272)

The time derivative of the transformation matrix can be arranged to be
proportional to the transformation matrix

GṪB =
GVB

GTB (7.273)

where GVB is a 4 × 4 homogeneous matrix called velocity transformation
matrix or velocity operator matrix and is equal to

GVB = GṪB
GT−1B

=

∙
GṘB

GRT
B

Gḋ− GṘB
GRT

B
Gd

0 1

¸
. (7.274)
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The homogeneous matrix and its derivative based on the velocity transfor-
mation matrix are useful in forward velocity kinematics. The i−1Ṫi for two
links connected by a revolute joint is

i−1Ṫi = θ̇i

⎡⎢⎢⎣
− sin θi − cos θi cosαi cos θi sinαi −ai sin θi
cos θi − sin θi cosαi sin θi sinαi ai cos θi
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.275)

and for two links connected by a prismatic joint is:

i−1Ṫi =

⎡⎢⎢⎣
0 0 0 0
0 0 0 0

0 0 0 ḋi
0 0 0 0

⎤⎥⎥⎦ (7.276)

The associated velocity transformation matrix for a revolute joint is

i−1Vi = θ̇i ∆R = θ̇i

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (7.277)

and for a prismatic joint is

i−1Vi = ḋi ∆P = ḋi

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ . (7.278)

Proof. Since any transformation matrix can be decomposed into a rotation
and translation

[T ] =

∙
Rû,φ d
0 1

¸
=

∙
I d
0 1

¸ ∙
Rû,φ 0
0 1

¸
= [D] [R] (7.279)

we can find Ṫ as

Ṫ =

∙
Ṙû,φ ḋ
0 0

¸
=

∙
I ḋ
0 1

¸ ∙
Ṙû,φ 0
0 1

¸
− I

=
h
I+ Ḋ

i h
I+ Ṙ

i
− I = [V ] [T ] (7.280)

where [V ] is the velocity transformation matrix described as

[V ] = Ṫ T−1 =

∙
Ṙû,φ ḋ
0 0

¸ ∙
RT
û,φ −RT

û,φ d

0 1

¸
=

∙
Ṙû,φR

T
û,φ ḋ− Ṙû,φR

T
û,φ d

0 1

¸
=

∙
ω̃ ḋ− ω̃ d
0 1

¸
. (7.281)
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The transformation matrix between two neighbor coordinate frames of a
robot is described in Equation (5.11) based on the DH parameters,

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦ . (7.282)

Direct differentiating shows that in case two links are connected via a rev-
olute joint, then θi is the only variable of DH matrix, and therefore,

i−1Ṫi = θ̇i

⎡⎢⎢⎣
− sin θi − cos θi cosαi cos θi sinαi −ai sin θi
cos θi − sin θi cosαi sin θi sinαi ai cos θi
0 0 0 0
0 0 0 0

⎤⎥⎥⎦

= θ̇i

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ i−1Ti = θ̇i ∆R
i−1Ti. (7.283)

which shows that the revolute velocity transformation matrix is

i−1Vi = θ̇i ∆R = θ̇i

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (7.284)

However, if the two links are connected via a prismatic joint, di is the only
variable of the DH matrix, and therefore,

i−1Ṫi = ḋi

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ i−1Ti = ḋi ∆P
i−1Ti (7.285)

which shows that the prismatic velocity transformation matrix is

i−1Vi = ḋi ∆P = ḋi

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ . (7.286)

The ∆R and ∆P are revolute and prismatic velocity coefficient matrices
with some application in velocity analysis of robots.
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Example 232 Differential of a transformation matrix.
Assume a transformation matrix is given as

T =

⎡⎢⎢⎣
0 0 1 4
1 0 0 4
0 1 0 4
0 0 0 1

⎤⎥⎥⎦ (7.287)

subject to a differential rotation and differential translation given by

dφû =
£
0.1 0.2 0.3

¤
(7.288)

dd =
£
0.6 0.4 0.2

¤
. (7.289)

Then, the differential transformation matrix dT is:

dT = [I+ dD] [I+ dR]− I

=

⎡⎢⎢⎣
0 −0.3 0.2 0.6
0.3 0 −0.1 0.4
−0.2 0.1 0 0.2
0 0 0 0

⎤⎥⎥⎦ (7.290)

Example 233 Differential rotation and translation.
Assume the angle of rotation about the axis û is too small and indicated

by dφ, then the differential rotation matrix is

I+ dRû,φ = I+Rû,dφ =

⎡⎢⎢⎣
1 −u3dφ u2dφ 0

u3dφ 1 −u1dφ 0
−u2dφ +u1dφ 1 0
0 0 0 1

⎤⎥⎥⎦ (7.291)

because when φ << 1, then,

sinφ ' dφ (7.292)

cosφ ' 1 (7.293)

versφ ' 0. (7.294)

Differential translation dd = d(dxÎ+dyĴ+dzK̂) is shown by a differential
translation matrix

I+ dD =

⎡⎢⎢⎣
1 0 0 ddx
0 1 0 ddy
0 0 1 ddz
0 0 0 0

⎤⎥⎥⎦ (7.295)

and therefore,

dT = [I+ dD] [I+ dR]− I

=

⎡⎢⎢⎣
0 −dφu3 dφu2 ddx

dφu3 0 −dφu1 ddy
−dφu2 dφu1 0 ddz
0 0 0 0

⎤⎥⎥⎦ . (7.296)
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Example 234 Combination of principal differential rotations.
The differential rotation about X, Y , Z are

RX,dγ =

⎡⎢⎢⎣
1 0 0 0
0 1 −dγ 0
0 dγ 1 0
0 0 0 1

⎤⎥⎥⎦ (7.297)

RY,dβ =

⎡⎢⎢⎣
1 0 dβ 0
0 1 0 0
−dβ 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.298)

RZ,dα =

⎡⎢⎢⎣
1 −dα 0 0
dα 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (7.299)

therefore, the combination of the principal differential rotation matrices
about axes X, Y , and Z is:

[I+RX,dγ ] [I+RY,dβ] [I+RZ,dα]

=

⎡⎢⎢⎣
1 0 0 0
0 1 −dγ 0
0 dγ 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 dβ 0
0 1 0 0
−dβ 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 −dα 0 0
dα 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 −dα dβ 0
dα 1 −dγ 0
−dβ dγ 1 0
0 0 0 1

⎤⎥⎥⎦
= [I+RZ,dα] [I+RY,dβ] [I+RX,dγ ] (7.300)

The combination of differential rotations is commutative.

Example 235 Derivative of Rodriguez formula.
Based on the Rodriguez formula, the angle-axis rotation matrix is

Rû,φ = I cosφ+ ûûT versφ+ ũ sinφ (7.301)

therefore, the time rate of the Rodriguez formula is

Ṙû,φ = −φ̇ sinφ I+ ûûT φ̇ sinφ+ ũφ̇ cosφ = φ̇ũRû,φ. (7.302)

Example 236 F Velocity of frame Bi in B0.
The velocity of the frame Bi attached to the link (i) with respect to the

base coordinate frame B0 can be found by differentiating 0di in the base



422 7. Angular Velocity

frame.

0vi =
0d

dt
0di =

0d

dt

¡
0Ti

idi
¢

= 0Ṫ1
1T2 · · · i−1Ti idi + 0T1

1Ṫ2
2T3 · · · i−1Ti idi

+ 0T1 · · · i−1Ṫi idi

=

⎡⎣ iX
j=1

∂ 0Ti
∂qj

q̇j

⎤⎦ idi (7.303)

However, the partial derivatives ∂ i−1Ti /∂qi can be found by utilizing the
velocity coefficient matrices ∆i, which is either ∆R or ∆P .

∂ i−1Ti
∂qi

= ∆i
i−1Ti. (7.304)

Hence,

∂ 0Ti
∂qj

=

½
0T1

1T2 · · · j−2Tj−1 ∆j
j−1Tj · · · i−1Ti for j ≤ i

0 for j > i.
(7.305)

Example 237 V reduces to ω̃, and T reduces to R if d = 0.
Consider a B and G coordinate frames with a common origin. In this

cares, d = 0 and (7.279) will be

[T ] =

∙
Rû,φ 0
0 1

¸
=

∙
I 0
0 1

¸ ∙
Rû,φ 0
0 1

¸
= [I] [R] = [R] (7.306)

and, Ṫ is:
Ṫ = Ṙ (7.307)

Therefore, is the velocity transformation matrix [V ] is equivalent to ω̃.

[V ] = Ṫ T−1 = ṘRT = ω̃ (7.308)

Example 238 DH matrix between two co-origin coordinate frames.
If two neighbor coordinate frames have the same origin, then ai and di

of DH transformation matrix (5.11) are zero. It simplifies the DH matrix
to:

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi 0
sin θi cos θi cosαi − cos θi sinαi 0
0 sinαi cosαi 0
0 0 0 1

⎤⎥⎥⎦ . (7.309)

We can eliminate the last column and row of this matrix, and show it by a
rotation transformation matrix .

i−1Ri =

⎡⎣ cos θi − sin θi cosαi sin θi sinαi
sin θi cos θi cosαi − cos θi sinαi
0 sinαi cosαi

⎤⎦ (7.310)
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When ai and di are zero, the two links are connected by a revolute joint.
So, θi is the only variable of DH matrix, and therefore,

i−1Ṙi = θ̇i

⎡⎣ − sin θi − cos θi cosαi cos θi sinαi
cos θi − sin θi cosαi sin θi sinαi
0 0 0

⎤⎦ = i−1ωi
i−1Ri

= θ̇i

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ i−1Ri = θ̇i
i−1k̃i−1

i−1Ri. (7.311)

which shows that the revolute angular velocity matrix is:

i−1ωi = θ̇i
i−1k̃i−1 = θ̇i

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦ (7.312)
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7.6 Summary

The transformation matrix GRB is time dependent if a body coordinate
frame B rotates continuously with respect to frame G with a common
origin.

Gr(t) = GRB(t)
Br (7.313)

Then, the global velocity of a point in B is

Gṙ(t) = Gv(t) = GṘB(t)
Br = Gω̃B

Gr(t) (7.314)

where Gω̃B is the skew symmetric angular velocity matrix

Gω̃B =
GṘB

GRT
B =

⎡⎣ 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

⎤⎦ . (7.315)

The matrix Gω̃B is associated with the angular velocity vector GωB = φ̇ û,
which is equal to an angular rate φ̇ about the instantaneous axis of rotation
û. Angular velocities of connected links of a robot may be added relatively
to find the angular velocity of the link (n) in the base frame B0.

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn =
nX
i=1

0
i−1ωi (7.316)

To work with angular velocities of relatively moving links, we need to
follow the rules of relative derivatives in body and global coordinate frames.

Bd

dt
BrP = B ṙP =

BvP = ẋ ı̂+ ẏ ĵ+ ż k̂ (7.317)

Gd

dt
GrP = GṙP =

GvP = Ẋ Î + Ẏ Ĵ + Ż K̂ (7.318)

Gd

dt
BrP (t) = B ṙP +

B
GωB × BrP =

B
GṙP (7.319)

Bd

dt
GrP (t) = GṙP − GωB × GrP =

G
B ṙP . (7.320)

The global velocity of a point P in a moving frame B at

GrP =
GRB

BrP +
GdB (7.321)

is

GvP = GṙP = Gω̃B
¡
GrP − GdB

¢
+ GḋB

= GωB ×
¡
GrP − GdB

¢
+ GḋB . (7.322)
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The velocity relationship for a body B having a continues rigid motion in
G may also be expressed by a homogeneous velocity transformation matrix
GVB

Gv(t) = GVB
Gr(t) (7.323)

where, GVB includes both, the translational and rotational velocities of B
in G.

GVB =
GṪB

GT−1B =

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
. (7.324)
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7.7 Key Symbols

a turn vector of end-effector frame
B body coordinate frame
c cos
d differential, prismatic joint variable
dx, dy, dz elements of d
d translation vector, displacement vector
D displacement transformation matrix
e rotation quaternion
e0, e1, e2, e3 Euler parameters, components of e
G,B0 global coordinate frame, Base coordinate frame
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
I = [I] identity matrix
J Jacobian
l length
p pitch of a screw
q joint coordinate,
q joints coordinate vector
r position vectors, homogeneous position vector
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
s location vector of a screw
sgn signum function
SSRMS space station remote manipulator system
T homogeneous transformation matrix
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T a set of nonlinear algebraic equations of q
v velocity vector
V velocity transformation matrix
û unit vector along the axis of ω
ũ skew symmetric matrix of the vector û
u1, u2, u3 components of û
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ angles of rotation about the axes of global frame
δ Kronecker function, small increment of a parameter

small test number to terminate a procedure
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θ rotary joint angle
θijk θi + θj + θk
ϕ, θ, ψ angles of rotation about the axes of body frame
φ angle of rotation about û
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω
ω1, ω2, ω3 components of ω

Symbol
[ ]
−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
` orthogonal
(i) link number i
k parallel
⊥ perpendicular
e∗ conjugate of e
∆P prismatic velocity coefficient matrices
∆R revolute velocity coefficient matrices
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Exercises

1. Notation and symbols.

Describe the meaning of

a- GωB b- BωG c- GGωB d- BGωB e- BBωG f- GBωG

g- 02ω1 h- 22ω1 i- 32ω1 j- GṘB k- 02ω̃1 l- kjωi

m- GrP (t) n- G2 vP o- ∆R p- ∆P q-
Gd

dt
r-

Bd

dt

s-
Gd

dt
GrP t-

Gd

dt
BrP u-

Bd

dt
BrP v- GṙP w- GḋP x- GVB

2. Local position, global velocity.

A body is turning about a global principal axis at a constant angular.
Find the global velocity of a point at Br.

Br =
£
5 30 10

¤T
(a) The axis is Z-axis, the angular rate is α̇ = 2 rad/ s when α =

30deg.

(b) The axis is Y -axis, the angular rate is β̇ = 2 rad/ s when β =
30deg.

(c) The axis is X-axis, the angular rate is γ̇ = 2 rad/ s when γ =
30deg.

3. Parametric angular velocity, global principal rotations.

A body B is turning in a global frame G. The rotation transformation
matrix can be decomposed into principal axes. Determine the angular
velocity Gω̃B and GωB .

(a) GRB is the result of a rotation α about Z-axis followed by β
about Y -axis.

(b) GRB is the result of a rotation β about Y -axis followed by α
about Z-axis.

(c) GRB is the result of a rotation α about Z-axis followed by γ
about X-axis.

(d) GRB is the result of a rotation γ about X-axis followed by α
about Z-axis.

(e) GRB is the result of a rotation γ about X-axis followed by β
about Y -axis.
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(f) GRB is the result of a rotation β about Y -axis followed by γ
about X-axis.

4. Numeric angular velocity, global principal rotations.

A body B is turning in a global frame G. The rotation transformation
matrix can be decomposed into principal axes. Determine the angular
velocity Gω̃B and GωB for Exercises 3.(a) − (f) using α̇ = 2 rad/ s,
β̇ = 2 rad/ s, γ̇ = 2 rad/ s and α = 30deg, β = 30deg, γ = 30deg.

5. Global position, constant angular velocity.

A body is turning about the a global principal axis at a constant
angular rate. Find the global position of a point at Br after t = 3 sec
if the body and global coordinate frames were coincident at t = 0 sec.

Br =
£
5 30 10

¤T
(a) The axis is Z-axis, the angular rate is α̇ = 2 rad/ s.

(b) The axis is Y -axis, the angular rate is β̇ = 2 rad/ s.

(c) The axis is X-axis, the angular rate is γ̇ = 2 rad/ s.

6. Turning about x-axis.

Find the angular velocity matrix when the body coordinate frame is
turning about a body axis.

(a) The axis is x-axis, the angular rate is ϕ̇ = 2 rad/ s, and the angle
is ϕ = 45deg.

(b) The axis is x-axis, the angular rate is θ̇ = 2 rad/ s, and the angle
is θ = 45deg.

(c) The axis is x-axis, the angular rate is ψ̇ = 2 rad/ s, and the angle
is ψ = 45deg.

7. Combined rotation and angular velocity.

Find the rotation matrix for a body frame that turns about the global
axes at with given rates, and calculate the angular velocity of B in
G.

(a) The axes are Z, then X, and then Y . The angles are 30 deg
about Z-axis, 30 deg about the X-axis, and 90 deg about the Y -
axis. The angular rates are α̇ = 20deg / sec, β̇ = −40 deg / sec,
and γ̇ = 55deg / sec about the Z, X, and Y axes respectively.

(b) The axes are X, then Y , and then Z. The angles are 30 deg
about X-axis, 30 deg about the Y -axis, and 90 deg about the Z-
axis. The angular rates are α̇ = 20deg / sec, β̇ = −40 deg / sec,
and γ̇ = 55deg / sec about the X, Y , and Z axes respectively.
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(c) The axes are Y , then Z, and then X. The angles are 30 deg
about X-axis, 30 deg about the Y -axis, and 90 deg about the Z-
axis. The angular rates are α̇ = 20deg / sec, β̇ = −40 deg / sec,
and γ̇ = 55deg / sec about the X, Y , and Z axes respectively.

8. F Global triple angular velocity matrix.

Determine the angular velocity Gω̃B and GωB for the global triple
rotations of Appendix A.

9. F Local triple angular velocity matrix.

Determine the angular velocity Gω̃B and GωB for the local triple
rotations of Appendix B.

10. Angular velocity, expressed in body frame.

A point P is at rP = (1, 2, 1) in a body coordinate B(Oxyz).

(a) Find B
Gω̃B when the body frame is turned 30 deg about the X-

axis at a rate γ̇ = 75deg / sec, followed by 45 deg about the
Z-axis at a rate α̇ = 25deg / sec.

(b) Find B
Gω̃B when the body frame is turned 45 deg about the Z-

axis at a rate α̇ = 25deg / sec, followed by 30 deg about the
X-axis at a rate γ̇ = 75deg / sec.

11. Global roll-pitch-yaw angular velocity.

Calculate the angular velocity Gω̃B for a global roll-pitch-yaw rota-
tion of

(a) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = −20 deg / sec, and γ̇ = 20deg / sec.

(b) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 0deg / sec,
β̇ = −20 deg / sec, and γ̇ = 20deg / sec.

(c) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = 0deg / sec, and γ̇ = 20deg / sec.

(d) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 20deg / sec,
β̇ = −20 deg / sec, and γ̇ = 0deg / sec.

(e) α = 30deg, β = 30deg, and γ = 30deg with α̇ = 0deg / sec,
β̇ = 0deg / sec, and γ̇ = 20deg / sec.

12. Roll-pitch-yaw angular velocity.

Find B
Gω̃B and Gω̃B for the global role, pitch, and yaw rates equal to

α̇ = 20deg / sec, β̇ = −20 deg / sec, and γ̇ = 20deg / sec respectively,
and having the following rotation matrix:
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x7
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4θ
5θ

6θ

FIGURE 7.9. An Eulerian wrist.

(a)

BRG =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
(b)

GRB =

⎡⎣ 0.53 −0.84 0.13
0.0 0.15 0.99
−0.85 −0.52 0.081

⎤⎦
13. Eulerian spherical wrist.

Figure 7.9 illustrates an Eulerian wrist in motion. Assume B3 is a
globally fixed frame at the wrist point. Determine the angular velocity
3ω̃7 of the end-effector frame B7 for the following cases.

(a) Only the first motor is turning with θ̇4 about z3.

(b) Only the second motor is turning with θ̇5 about z4.

(c) Only the third motor is turning with θ̇6 about z5.

(d) The first motor is turning with θ̇4 about z3 and the second motor
is turning with θ̇5 about z4.

(e) The first motor is turning with θ̇4 about z3 and the third motor
is turning with θ̇6 about z5.

(f) The first motor is turning with θ̇4 about z3 and the second motor
is turning with θ̇5 about z4.
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Y
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y2

θ

B1

FIGURE 7.10. A slider on a rotating bar.

(g) The first, second, and third motors are turning with θ̇4, θ̇5, θ̇6
about z3, z4, and z5.

14. Angular velocity from Rodriguez formula.

We may find the time derivative of GRB = Rû,φ by

GṘB =
d

dt
GRB = φ̇

d

dφ
GRB.

Use the Rodriguez rotation formula and find Gω̃B and B
Gω̃B.

15. Skew symmetric matrix

Show that any square matrix can be expressed as the sum of a sym-
metric and skew symmetric matrix.

A = B + C

B =
1

2

¡
A+AT

¢
C =

1

2

¡
A−AT

¢
16. F A rotating slider.

Figure 7.10 illustrates a slider link on a rotating arm. Calculate

Gdı̂

dt
,

Gdĵ

dt
,

Gdk̂

dt
Gd2ı̂

dt2
,

Gd2ĵ

dt2
,

Gd2k̂

dt2

and find Bv and Ba of m at mass center C of the slider to find
B
Gam =

Gd
dt

Bvm using the rule of mixed derivative.

Gd

dt

µ
Bd

dt
r

¶
=

Bd

dt

µ
Bd

dt
r

¶
+ B

GωB ×
µ
Bd

dt
r

¶
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z2
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y1
r

x1

x0

θ

FIGURE 7.11. A planar polar manipulator.

17. F Differentiating in local and global frames.

Consider a local point at BrP . The local frame B is rotating in G by
α̇ about the Z-axis. Calculate

Bd
dt

BrP ,
Gd
dt

GrP ,
Bd
dt

GrP , and
Gd
dt

BrP .

(a) BrP = t̂ı+ ĵ

(b) BrP = t̂ı+ tĵ

(c) BrP = t2ı̂+ ĵ

(d) BrP = t̂ı+ t2ĵ

(e) BrP = t̂ı+ tĵ+ tk̂

(f) BrP = t̂ı+ t2ĵ+ tk̂

(g) BrP = ı̂ sin t

(h) BrP = ı̂ sin ı̂+ ĵ cos t+ k̂

18. F Velocity analysis of a polar manipulator.

Figure 7.11 illustrates a planar polar manipulator with joint variables
θ and d.

Determine 0T1, 1T2, 0T2, 0V1, 1V2, 0V2, and velocity of the tip point
of the manipulator.

19. F Skew symmetric identity for angular velocity.

Show that
Rω̃RT = gRω.

20. F Transformation of angular velocity exponents.

Show that
B
Gω̃

n
B =

GRT
B Gω̃

n
B
GRB .
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z1

z0

z3

x3
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x2

z2

2θ

FIGURE 7.12.

21. F An angular velocity matrix identity.

Show that
ω̃2k+1 = (−1)k ω2k ω̃

and
ω̃2k = (−1)k ω2(k−1)

¡
ω2 I− ωωT

¢
.

22. F Velocity analysis of a spherical manipulator.

Figure 7.12 illustrates a spherical manipulator with joint variables θ1,
θ2, and d.

Determine 0V1, 1V2, 2V3, 0V2, 0V3, and velocity of the tip point of the
manipulator.
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Velocity Kinematics
Velocity analysis of a robot is divided into forward and inverse velocity
kinematics. Having the time rate of joint variables and determination of
the Cartesian velocity of end-effector in the global coordinate frame is the
forward velocity kinematics. Determination of the time rate of joint vari-
ables based on the velocity of end-effector is the inverse velocity kinematics.

zi

Link (i)

Link (i+1)

Joint i-1

zi-2

xi-1

xi
yi

oi

oi-1

Bi

Bi-2

Bi-1

Link (i-1)

Joint i
Joint i+1

zi-1

ai

di

iα

iθ

xi+1

di
.

iθ&

i 1−θ&

FIGURE 8.1. Three connected moving links with their relative velocities.

8.1 F Rigid Link Velocity

Every link of an industrial robot has an angular velocity ω or a translational
velocity ḋ with respect to its neighbor links as shown in Figure 8.1. The
angular velocity of link (i) in the global coordinate frame B0 is a summation
of global angular velocities of the links (j), for j ≤ i

0
0ωi =

iX
j=1

0
j−1ωj (8.1)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_8,  
© Springer Science+Business Media, LLC 2010 
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where
0

j−1ωj =

½
θ̇j

0k̂j−1 if joint i is R
0 if joint i is P.

(8.2)

The velocity of the origin of Bi attached to link (i) in the base coordinate
frame is

0
i−1ḋi =

½
0
0ωi × 0

i−1di if joint i is R
ḋi
0k̂i−1 +

0
0ωi × 0

i−1di if joint i is P
(8.3)

where θ and d are DH parameters, and d is a frame’s origin position vector.
Therefore, if a robot has n links, the global angular velocity of the final

coordinate frame is
0
0ωn =

nX
i=1

0
i−1ωi (8.4)

and the global velocity vector of the last link’s coordinate frame is

0
0ḋn =

nX
i=1

0
i−1ḋi. (8.5)

Proof. According to the DH definition, the position vector of the coordi-
nate frame Bi with respect to Bi−1 is

0
i−1di = di

0k̂i−1 + ai
0 ı̂i (8.6)

which depends on joint variables qj , for j ≤ i, and therefore, 0
i−1ḋi is a

function of joint velocities q̇j , for j ≤ i .
Assume that every joint of a robot except joint i is locked. Then, the

angular velocity of link (i) connecting via a revolute joint to link (i− 1) is:
0

i−1ωi = θ̇i
0k̂i−1 if joint i is R and is the only movable joint (8.7)

However, if the link (i) and (i − 1) are connecting via a prismatic joint
then,

0
i−1ωi = 0 if joint i is P and is the only movable joint. (8.8)

The relative position vector (8.6) shows that the velocity of link (i) con-
necting via a revolute joint to link (i− 1) is

0
i−1ḋi = θ̇i

0k̂i−1 × ai
0 ı̂i =

0
i−1ωi × 0

i−1di

if joint i is R and is the only movable joint. (8.9)

We could substitute ai 0 ı̂i with 0
i−1di because the xi-axis is turning about

the zi−1-axis with angular velocity θ̇i and therefore, θ̇i 0k̂i−1×di
0k̂i−1 = 0.

However, if the link (i) and (i−1) are connecting via a prismatic joint then,
0

i−1ḋi = ḋi
0k̂i−1 if joint i is P and is the only movable joint. (8.10)
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Now assume that all lower joints j ≤ i are moving. Then, the angular
velocity of link (i) in the base coordinate frame is

0
0ωi =

iX
j=1

0
j−1ωj (8.11)

or

0
0ωi =

⎧⎪⎨⎪⎩
iX

j=1

θ̇i
0k̂i−1 if joint j is R

0 if joint j is P

(8.12)

which can be written in a recursive form

0
0ωi =

0
0ωi−1 +

0
i−1ωi (8.13)

or
0
0ωi =

½
0
0ωi−1 + θ̇i

0k̂i−1 if joint i is R
0
0ωi−1 if joint i is P.

(8.14)

The velocity of the origin of the link (i) in the base coordinate frame is

0
i−1ḋi =

½
0
0ωi × 0

i−1di if joint i is R
ḋi
0k̂i−1 +

0
0ωi × 0

i−1di if joint i is P.
(8.15)

The translation and angular velocities of the last link of an n link robot is
then a direct application of these results.

Example 239 F Serial rigid links angular velocity.
Consider a serial manipulator with n links and n revolute joints. The

global angular velocity of link (i) in terms of the angular velocity of its
previous links is

0ωi =
0ωi−1 + θ̇i

0k̂i−1 (8.16)

or in general

0ωi =
iX

j=1

θ̇j
0k̂j−1 (8.17)

because

0
i−1ωi = θ̇i

0k̂i−1 (8.18)
0

i−2ωi−1 = θ̇i−1
0k̂i−2 (8.19)

0
i−2ωi = 0

i−2ωi−1 +
0

i−1ωi =
0

i−2ωi−1 + θ̇i
0k̂i−1

= θ̇i−1
0k̂i−2 + θ̇i

0k̂i−1 (8.20)
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and therefore,

0ωi =
i−1X
j=1

0
j−1ωj + θ̇i

0k̂i−1 =
i−1X
j=1

θ̇j
0k̂j−1 + θ̇i

0k̂i−1

=
iX

j=1

θ̇j
0k̂j−1. (8.21)

Example 240 F Serial rigid links translational velocity.
The global angular velocity of link (i) in a serial manipulator in terms of

the angular velocity of its previous links is

0vi =
0vi−1 +

0
i−1ωi × 0

i−1di (8.22)

where
0vi =

0ḋi (8.23)

or in general

0vi =
iX

j=1

³
0k̂j−1 × 0

i−1di
´
θ̇j (8.24)

because

0
i−1vi = 0ωi × 0

i−1di (8.25)
0

i−2vi−1 = 0ωi−1 × 0
i−2di−1 (8.26)

0
i−2vi = 0

i−2vi−1 +
0

i−1vi =
0

i−2vi−1 + 0ωi × 0
i−1di

= 0ωi−1 × 0
i−2di−1 + 0ωi × 0

i−1di

= θ̇i−1
0k̂i−2 × 0

i−2di−1 + θ̇i
0k̂i−1 × 0

i−1di (8.27)

and therefore,

0vi =
i−1X
j=1

0
j−1vj +

0
i−1vi =

iX
j=1

³
0k̂j−1 × 0

i−1di
´
θ̇j . (8.28)

Example 241 F Recursive velocity in Base frame
The time derivative of a homogeneous transformation matrix [T ] can be

arranged in the form
Ṫ = [V ] [T ] (8.29)

where [T ] may be a link transformation matrix or the result of the forward
kinematics of a robot as

0T6 =
0T1

1T2
2T3

3T4
4T5

5T6. (8.30)
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Therefore, the time derivative of a transformation matrix can be computed
when the velocity transformation matrix [V ] is calculated.
The transformation matrix 0Ti is

0Ti =
0T1

1T2
2T3 · · ·i−1 Ti (8.31)

and the matrices 0Vi and 0Vi+1 are

0Vi =
0Ṫi

0T−1i (8.32)

0Vi+1 = 0Ṫi+1
0T−1i+1 =

d

dt

¡
0Ti

iTi+1
¢
0T−1i+1

=
³
0Ti

iṪi+1 +
0Ṫi

iTi+1

´
0T−1i+1. (8.33)

These two equations can be combined as a recursive formula

0Vi+1 =
0Vi +

0Ṫi
iVi+1

0T−1i . (8.34)

The recursive velocity transformation matrix formula can be simplified
according to the type of joints connecting two links.
For a revolute joint, the velocity transformation matrix is

iVi+1 = q̇i+1∆R = θ̇i+1 ∆R

= θ̇i+1

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ = θ̇i+1

∙
i−1k̃i−1 0
0 0

¸
(8.35)

then we have

0ωi+1 = 0ωi +
0
iωi+1 = 0ωi + θ̇i+1

0
i k̂i+1 (8.36)

which shows that the angular velocity of frame Bi+1 is the angular velocity
of frame Bi plus the relative angular velocity produced by joint variable
qi+1. Furthermore,

0ḋi+1 =
0ḋi +

0
i ḋi+1 =

0ḋi + 0ω̃i+1
¡
0di+1 − 0di

¢
(8.37)

which shows the translational velocity is obtained by adding the translational
velocity of frame Bi to the contribution of rotation of link Bi+1.
For a prismatic joint, the velocity coefficient matrix formula is

iVi+1 = q̇i+1∆P = ḋi+1 ∆R

= ḋi+1

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ = ḋi+1

∙
0 i−1k̂i−1
0 0

¸
(8.38)
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and therefore, we have
ωi+1 = ωi (8.39)

and
0ḋi+1 =

0ḋi + 0ω̃i+1
¡
0di+1 − 0di

¢
+ ḋi+1

0
i k̂i+1 (8.40)

which shows that the angular velocity of frame Bi+1 is the same as the angu-
lar velocity of frame Bi. Furthermore, the translational velocity is obtained
by adding the translational velocity due to ḋi+1 to the relative velocity due
to rotation of link Bi+1.

8.2 Forward Velocity Kinematics

The forward velocity kinematics of a robot solves the problem of relating
joint speeds, q̇, to the end-effector speeds Ẋ. The joint speed vector q̇ of
an n DOF robot is an n× 1 vector

q̇ =
£
q̇n q̇n q̇n · · · q̇n

¤T
(8.41)

and the end-effector speed vector Ẋ, in the most general case, is a 6 × 1
vector.

Ẋ =
£
Ẋn Ẏn Żn ωXn ωY n ωZn

¤T
=

∙
0ḋn
0ωn

¸
=

∙
0vn
0ωn

¸
(8.42)

The elements of end-effector speed vector Ẋ are linearly proportional to
the elements of joint speed vector, q̇,

Ẋ = J q̇ (8.43)

where, the 6× n proportionality matrix J(q) is called the Jacobian matrix
of the robot.
The global-expression of velocity 0vn of the origin of Bn is proportional

to the manipulator joint speeds q̇D.

0vn = JD q̇D, q̇D ∈ q̇ (8.44)

The 3×n proportionality matrix JD(q) is the displacement Jacobian matrix
of the manipulator.

JD =
∂dn (q̇D)

∂q̇D
=

∂T (q)

∂q
(8.45)

The global-expression of angular velocity 0ωn of Bn is proportional to
the rotational components of q̇.

0ωn = JR q̇ (8.46)
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The 3 × n proportionality matrix JR(q) is the rotational Jacobian matrix
of the robot.

JR =
∂ 0ωn

∂q
(8.47)

We may combine Equations (8.44) and (8.46) to show the forward veloc-
ity kinematics of a robot by (8.42).
Proof. The forward velocity kinematics is: determination of the end-effector
translational and angular velocities, 0vn, 0ωn, for a given set of joint speeds
q̇i, i = 1, 2, · · · , n. The components of velocity vectors 0vn and 0ωn are
proportional to the joint speeds q̇i, i = 1, 2, · · · , n.

0vn = JD q̇ (8.48)

0ωn = JR q̇ (8.49)

The proportionality matrices JD and JR are called the displacement and
rotational Jacobians.
We may combine Equations (8.48) and (8.49) as

Ẋ = J q̇ (8.50)

by defining the Jacobian matrix J and the vectors Ẋ and q̇, known as
end-effector speed vector, and joint speed vector, respectively.

J =

∙
JD
JR

¸
(8.51)

Ẋ =

∙
0vn
0ωn

¸
(8.52)

q̇ =
£
q̇n q̇n q̇n · · · q̇n

¤T
(8.53)

We may also show JD by J, whenever we analyze the velocity kinematics
of a manipulator without a wrist.
Consider a robot with 6 DOF that is made of a 3 DOF manipulator to

position the wrist point, and a spherical wrist with 3 DOF to orient the
end-effector. The coordinate transformation of a point in the end-effector
coordinate frame B6 and the base coordinate frame B0 is:

0r = 0T6(q)
6r = 0D6

0R6 =

∙
I 0d6
0 1

¸ ∙
0R6 0
0 1

¸
=

∙
0R6

0d6
0 1

¸
6r (8.54)

where, the transformation matrix 0T6 is a function of 6 joint variables qi,
i = 1, 2, · · · , 6. We can always divide the 6 joint variables into the end-
effector position variables q1, q2, q3 and end-effector orientation variables
q4, q5, q6. The end-effector position variables are the only variables in the
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position vector 0d6, and the end-effector orientation variables are the only
variables in the rotation transformation matrix 0R6.

0d6 = 0d6 (q1, q2, q3) (8.55)
0R6 = 0R6 (q4, q5, q6) (8.56)

The origin of end-effector frame B6 is at 6r = 0 which is globally at:

0r =

∙
0R6

0d6
0 1

¸ ∙
0
1

¸
=

∙
I 0d6
0 1

¸ ∙
0
1

¸
= 0D6

∙
0
1

¸
= 0d6 (8.57)

The components of end-effector displacement vector 0d6 =
£
X Y Z

¤
are functions of manipulator joint variables q1, q2, q3.⎡⎣ X

Y
Z

⎤⎦ =
⎡⎣ d1 (q1, q2, q3)

d2 (q1, q2, q3)
d3 (q1, q2, q3)

⎤⎦ (8.58)

Taking a derivative of both sides indicates that each component of 0v6 = 0ṙ
is a linear combination of q̇1, q̇2, q̇3.

Ẋ =
∂d1
∂q1

q̇1 +
∂d1
∂q2

q̇2 +
∂d1
∂q3

q̇3

Ẏ =
∂d2
∂q1

q̇1 +
∂d2
∂q2

q̇2 +
∂d2
∂q3

q̇3

Ż =
∂d3
∂q1

q̇1 +
∂d3
∂q2

q̇2 +
∂d3
∂q3

q̇3 (8.59)

It indicates that 0v6 is a linear combination of joint speeds q1, q2, q3.

0v6 = JD q̇D = q̇1
∂ 0d6
∂q1

+ q̇2
∂ 0d6
∂q2

+ q̇3
∂ 0d6
∂q3

(8.60)

We may show these relations by vector and matrix expressions.

0v6 =
∂d6
∂q

q̇D = JD q̇D (8.61)

⎡⎣ Ẋ

Ẏ

Ż

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

∂d1
∂q1

∂d1
∂q2

∂d1
∂q3

∂d2
∂q1

∂d2
∂q2

∂d2
∂q3

∂d3
∂q1

∂d3
∂q2

∂d3
∂q3

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣ q̇1

q̇2
q̇3

⎤⎦ (8.62)

The displacement Jacobian JD is equivalent to the derivative of T with
respect to the manipulator joint coordinates.

JD =
∂d6
∂q

=
∂ 0D6

∂q
=

∂ 0T6
∂q

=
∂T (q)

∂q
(8.63)
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The angular velocity of the end-effector is:

0ω6 =
0Ṙ6

0RT
6 (8.64)

However, the time derivative of the rotational transformation matrix is:

0Ṙ6 =
d

dt

£
0R1

1R2
2R3

3R4
4R5

5R6
¤

(8.65)

= q̇1
∂ 0R1
∂q1

1R2
2R3

3R4
4R5

5R6 + q̇2
0R1

∂ 1R2
∂q2

2R3
3R4

4R5
5R6

+q̇3
0R1

1R2
∂ 2R3
∂q3

3R4
4R5

5R6 + q̇4
0R1

1R2
2R3

∂ 3R4
∂q4

4R5
5R6

+q̇5
0R1

1R2
2R3

3R4
∂ 4R5
∂q5

5R6 + q̇6
0R1

1R2
2R3

3R4
4R5

∂ 5R6
∂q6

and the transpose of 0R6 is:

0RT
6 =

£
0R1

1R2
2R3

3R4
4R5

5R6
¤T

= 5RT
6
4RT

5
3RT

4
2RT

3
1RT

2
0RT

1 (8.66)

Therefore, 0ω6 = 0Ṙ6
0RT

6 is:

0ω6 = q̇1
∂ 0R1
∂q1

0RT
1 + q̇2

0R1
∂ 1R2
∂q2

0RT
2

+q̇3
0R2

∂ 2R3
∂q3

0RT
3 + q̇4

0R3
∂ 3R4
∂q4

0RT
4

+q̇5
0R4

∂ 4R5
∂q5

0RT
5 + q̇6

0R5
∂ 5R6
∂q6

0RT
6 (8.67)

= 0ω1 +
0
1ω2 +

0
2ω3 +

0
3ω4 +

0
4ω5 +

0
5ω6 (8.68)

It indicates that 0ω6 is a linear combination of joint speeds qi, i = 1, 2, · · · , 6

0ω6 = JR q̇ = q̇1
∂ 0ω6
∂q1

+ q̇2
∂ 0ω6
∂q2

+ q̇3
∂ 0ω6
∂q3

+q̇4
∂ 0ω6
∂q4

+ q̇5
∂ 0ω6
∂q5

+ q̇6
∂ 0ω6
∂q6

(8.69)

where,

∂ 0ω6
∂q1

=
∂ 0R1
∂q1

0RT
1 (8.70)

∂ 0ω6
∂q2

= 0R1
∂ 1R2
∂q2

0RT
2 (8.71)

∂ 0ω6
∂q3

= 0R2
∂ 2R3
∂q3

0RT
3 (8.72)
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∂ 0ω6
∂q4

= 0R3
∂ 3R4
∂q4

0RT
4 (8.73)

∂ 0ω6
∂q5

= 0R4
∂ 4R5
∂q5

0RT
5 (8.74)

∂ 0ω6
∂q6

= 0R5
∂ 5R6
∂q6

0RT
6 . (8.75)

Combination of the translational and rotational velocities makes the equa-
tion (8.50) for the velocity kinematics of the robot.

Ẋ =

∙
0vn
0ωn

¸
=

∙
JD
JR

¸
q̇ = J q̇ (8.76)

The Jacobian matrix of the robot is:

J =

⎡⎢⎣ ∂ 0d6
∂q1

∂ 0d6
∂q2

∂ 0d6
∂q3

0 0 0

∂ 0ω6
∂q1

∂ 0ω6
∂q2

∂ 0ω6
∂q3

∂ 0ω6
∂q4

∂ 0ω6
∂q5

∂ 0ω6
∂q6

⎤⎥⎦ (8.77)

In case the robot has n links and joints, the above equations go from
1 to n instead of 1 to n. So in general case, the 6 × n Jacobian matrix J
becomes:

J =

⎡⎢⎣ ∂ 0dn
∂q1

∂ 0dn
∂q2

∂ 0dn
∂q3

· · · ∂ 0dn
∂qn

∂ 0ωn

∂q1

∂ 0ωn

∂q2

∂ 0ωn

∂q3
· · · ∂ 0ωn

∂qn

⎤⎥⎦ (8.78)

Example 242 Jacobian matrix for a planar polar manipulator.
Figure 8.2 illustrates a planar polar manipulator with the following for-

ward kinematics.

0T2 = 0T1
1T2

=

⎡⎢⎢⎣
cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 0 0 r
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
cos θ − sin θ 0 r cos θ
sin θ cos θ 0 r sin θ
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (8.79)

The tip point of the manipulator is at∙
X
Y

¸
=

∙
r cos θ
r sin θ

¸
(8.80)
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z2

y2

y0

y1

r

x1

x0

θ

FIGURE 8.2. A planar polar manipulator.

and therefore, its velocity is∙
Ẋ

Ẏ

¸
=

∙
cos θ −r sin θ
sin θ r cos θ

¸ ∙
ṙ

θ̇

¸
(8.81)

which shows that

JD=

⎡⎢⎣ ∂X

∂r

∂X

∂θ
∂Y

∂r

∂Y

∂θ

⎤⎥⎦ = ∙ cos θ −r sin θ
sin θ r cos θ

¸
. (8.82)

There is only one rotational joint coordinate, θ. The rotation matrix 0R2
indicates that:

0ω̃2 =
0Ṙ2

0RT
2 = θ̇k̃ (8.83)

So,

0ω2 =

⎡⎣ ω1
ω2
ω3

⎤⎦ =
⎡⎣ 0
0

θ̇

⎤⎦ (8.84)

and therefore,

ω3 = JR θ̇ (8.85)

JR = 1 (8.86)⎡⎣ Ẋ

Ẏ
ω3

⎤⎦ =
⎡⎣ cos θ −r sin θ
sin θ r cos θ
0 1

⎤⎦∙ ṙ

θ̇

¸
(8.87)
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x2
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y0

y1
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1θ
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l 2

l1

FIGURE 8.3. A 2R planar manipulator.

Example 243 Jacobian matrix for the 2R planar manipulator.
A 2R planar manipulator with two RkR links was illustrated in Figure

5.9 and is shown in Figure 8.3 again. The manipulator has been analyzed
in Example 141 for forward kinematics, and in Example 184 for inverse
kinematics.
The angular velocity of links (1) and (2) are

0ω1 = θ̇1
0k̂0 (8.88)

0
1ω2 = θ̇2

0k̂1 (8.89)

and
0ω2 = 0ω1 +

0
1ω2 =

³
θ̇1 + θ̇2

´
0k̂0 (8.90)

and the global velocity of the tip position of the manipulator is

0ḋ2 = 0ḋ1 +
0
1ḋ2 = 0ω1 × 0d1 + 0ω2 × 0

1d2

= θ̇1
0k̂0 × l1

0 ı̂1 +
³
θ̇1 + θ̇2

´
0k̂0 × l2

0ı̂2

= l1θ̇1
0ĵ1 × l2

³
θ̇1 + θ̇2

´
0ĵ2. (8.91)

The unit vectors 0ĵ1 and 0ĵ2 can be found by using the coordinate transfor-
mation method,

0ĵ1 = RZ,θ1
1ĵ1

=

⎡⎣ cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1

⎤⎦⎡⎣ 0
1
0

⎤⎦ =
⎡⎣ − sin θ1cos θ1

0

⎤⎦ (8.92)
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0ĵ2 = RZ,θ1+θ2
2ĵ2

=

⎡⎣ cos (θ1 + θ2) − sin (θ1 + θ2) 0
sin (θ1 + θ2) cos (θ1 + θ2) 0

0 0 1

⎤⎦⎡⎣ 0
1
0

⎤⎦
=

⎡⎣ − sin (θ1 + θ2)
cos (θ1 + θ2)

0

⎤⎦ . (8.93)

Substituting back shows that

0ḋ2 = l1θ̇1

⎡⎣ − sin θ1cos θ1
0

⎤⎦× l2

³
θ̇1 + θ̇2

´ ⎡⎣ − sin (θ1 + θ2)
cos (θ1 + θ2)

0

⎤⎦ (8.94)

which can be rearranged to have∙
Ẋ

Ẏ

¸
=

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸ ∙
θ̇1
θ̇2

¸
= JD

∙
θ̇1
θ̇2

¸
. (8.95)

Taking advantage of the structural simplicity of the 2R manipulator, we
may find its Jacobian simpler. The forward kinematics of the manipulator
was found as:

0T2 = 0T1
1T2 (8.96)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
which shows the tip position 0

0d2 of the manipulator is at∙
X
Y

¸
=

∙
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

¸
. (8.97)

Direct differentiating gives

∙
Ẋ

Ẏ

¸
=

⎡⎣ −l1θ̇1 sin θ1 − l2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

⎤⎦ (8.98)

which can be rearranged in a matrix form∙
Ẋ

Ẏ

¸
=

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸ ∙
θ̇1
θ̇2

¸
(8.99)



450 8. Velocity Kinematics

or
Ẋ = JD θ̇. (8.100)

JD is the Jacobian of the 2R manipulator.

JD =

⎡⎢⎢⎣
∂X

∂θ1

∂X

∂θ2
∂Y

∂θ1

∂Y

∂θ2

⎤⎥⎥⎦ (8.101)

=

∙
−l1 sin θ1 − l2 sin (θ1 + θ2) −l2 sin (θ1 + θ2)
l1 cos θ1 + l2 cos (θ1 + θ2) l2 cos (θ1 + θ2)

¸
Employing the absolute slope angles of the links, θ1, θ1+ θ2, we can also

write the velocity equation of a 2R manipulator as:∙
Ẋ

Ẏ

¸
=

∙
−l1 sin θ1 −l2 sin (θ1 + θ2)
l1 cos θ1 l2 cos (θ1 + θ2)

¸ ∙
θ̇1

θ̇1 + θ̇2

¸
(8.102)

Example 244 Columns of the Jacobian for the 2R manipulator.
The Jacobian of the 2R planar manipulator can be found systematically

by using the column-by-column method. The global position vector of the
coordinate frames are:

0
1d2 = l2

0ı̂2 (8.103)
0d2 = l1

0ı̂1 + l2
0ı̂2 (8.104)

and therefore,

0ḋ2 = 0ω1 × 0d2 +
0
1ω2 × 0

1d2

= θ̇1
0k̂0 ×

¡
l1
0ı̂1 + l2

0 ı̂2
¢
+ θ̇2

0k̂1 × l2
0 ı̂2

=
£
0k̂0 ×

¡
l1
0 ı̂1 + l2

0ı̂2
¢

0k̂1 × l2
0 ı̂2

¤ ∙ θ̇1
θ̇2

¸
(8.105)

which can be set in the following form.∙
0ḋ2
0ω2

¸
=

∙
0k̂0 × 0d2

0k̂1 × 0
1d2

0k̂0
0k̂1

¸ ∙
θ̇1
θ̇2

¸
= J θ̇ (8.106)

Example 245 An articulated manipulator.
Figure 8.4 illustrates an articulated manipulator. The links of the manip-

ulator are R`R(90), RkR(0), R`R(90), and their associated transformation
matrices between coordinate frames are:

0T1 =

⎡⎢⎢⎣
cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0
0 1 0 l1
0 0 0 1

⎤⎥⎥⎦ (8.107)
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FIGURE 8.4. An R`RkR articulated manipulator.

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (8.108)

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (8.109)

Let us show the tip point of the manipulator by P . The global coordinates
of P is:

0rP =

⎡⎢⎢⎣
XP

YP
ZP
1

⎤⎥⎥⎦ = 0T3

⎡⎢⎢⎣
0
0
l3
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos θ1 (l2 cos θ2 + l3 sin (θ2 + θ3))
sin θ1 (l2 cos θ2 + l3 sin (θ2 + θ3))
l1 − l3 cos (θ2 + θ3) + l2 sin θ2

1

⎤⎥⎥⎦
(8.110)

The coordinates of 0rP must be used to determine the Jacobian of the
manipulator.

J =

⎡⎢⎢⎢⎢⎢⎢⎣

∂XP

∂θ1

∂XP

∂θ2

∂XP

∂θ3
∂YP
∂θ1

∂YP
∂θ2

∂YP
∂θ3

∂ZP
∂θ1

∂ZP
∂θ2

∂ZP
∂θ3

⎤⎥⎥⎥⎥⎥⎥⎦ (8.111)
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∂XP

∂θ1
= − (l3 sin (θ2 + θ3) + l2 cos θ2) sin θ1

∂YP
∂θ1

= (l3 sin (θ2 + θ3) + l2 cos θ2) cos θ1

∂ZP
∂θ1

= 0 (8.112)

∂XP

∂θ2
= (l3 cos (θ2 + θ3)− l2 sin θ2) cos θ1

∂YP
∂θ2

= (l3 cos (θ2 + θ3)− l2 sin θ2) sin θ1

∂ZP
∂θ2

= l3 sin (θ2 + θ3) + l2 cos θ2 (8.113)

∂XP

∂θ3
= l3 cos (θ2 + θ3) cos θ1

∂YP
∂θ3

= l3 cos (θ2 + θ3) sin θ1

∂ZP
∂θ3

= l3 sin (θ2 + θ3) (8.114)

J =

⎡⎣ − (l3sθ23 + l2cθ2) sθ1 (l3cθ23 − l2sθ2) cθ1 l3cθ23cθ1
(l3sθ23 + l2cθ2) cθ1 (l3cθ23 − l2sθ2) sθ1 l3cθ23sθ1

0 l3sθ23 + l2cθ2 l3sθ23

⎤⎦ (8.115)

θ23 = θ2 + θ3 (8.116)

8.3 Jacobian Generating Vectors

The Jacobian matrix is a linear transformation, mapping joint speeds to
Cartesian speeds

Ẋ = J q̇ (8.117)

and is equal to

J =

∙
0k̂0 × 0

0dn
0k̂1 × 0

1dn · · · 0k̂n−1 × 0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸
. (8.118)

J can be calculated column by column. The ith column of J is called
Jacobian generating vector and is denoted by ci(q).

ci(q) =

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
(8.119)
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To calculate the ith column of the Jacobian matrix, we need to find two
vectors 0

i−1dn and
0k̂i−1. These vectors are position of origin and the joint

axis unit vector of the frame attached to link (i− 1), both expressed in the
base frame.
Calculating J, based on the Jacobian generating vectors, shows that for-

ward velocity kinematics is a consequence of the forward kinematics of
robots.

Proof. Let 0di and 0di−1 be the global position vector of the frames Bi

and Bi−1, while i−1di is the position vector of the frame Bi in Bi−1 as
shown in Figure 8.5. These three position vectors are related according to
a vector addition

0di = 0di−1 +
0Ri−1

i−1di

= 0di−1 + di
0k̂i−1 + ai

0ı̂i. (8.120)

in which we have used Equation (8.6). Taking a time derivative,

0ḋi = 0ḋi−1 +
0Ṙi−1

i−1di +
0Ri−1

i−1ḋi

= 0ḋi−1 +
0Ṙi−1

³
di

i−1k̂i−1 + ai
i−1 ı̂i

´
+ 0Ri−1 ḋi

i−1k̂i−1 (8.121)

shows that the global velocity of the origin of Bi is a function of the trans-
lational and angular velocities of link Bi−1. However,

0
i−1ḋi =

0ḋi − 0ḋi−1 (8.122)

0Ṙi−1
i−1di = 0ωi−1 × 0Ri−1

i−1di = 0ωi−1 × 0
i−1di

= θ̇i
0k̂i−1 × 0

i−1di (8.123)

and
0Ri−1 ḋi

i−1k̂i−1 = ḋi
0Ri−1

i−1k̂i−1 = ḋi
0k̂i−1 (8.124)

therefore,
0

i−1ḋi = θ̇i
0k̂i−1 × 0

i−1di + ḋi
0k̂i−1. (8.125)

Since at each joint, either θ or d is variable, we conclude that

0
i−1ḋi =

0
0ωi × 0

i−1di if joint i is R (8.126)

or
0

i−1ḋi = ḋi
0k̂i−1 +

0
0ωi × 0

i−1di if joint i is P. (8.127)
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FIGURE 8.5. Link (i) and associated coordinate frames.

The end-effector velocity is then expressed by

0
0ḋn =

nX
i=1

0
i−1ḋi =

nX
i=1

θ̇i
0k̂i−1 × 0

i−1dn (8.128)

and
0
0ωn =

nX
i=1

0
i−1ωi =

nX
i=1

θ̇i
0k̂i−1. (8.129)

They can be rearranged in a matrix form.∙
0
0ḋn
0
0ωn

¸
=

nX
i=1

θ̇i

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸

=

∙
0k̂0 × 0

0dn
0k̂1 × 0

1dn · · · 0k̂n−1 × 0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸⎡⎢⎢⎢⎣
θ̇1
θ̇2
...
θ̇n

⎤⎥⎥⎥⎦ (8.130)

We usually show this equation by a short notation as Equation (8.117)

Ẋ = J q̇ (8.131)

where, the vector q̇ =
£
q̇1 q̇2 · · · q̇n

¤T
is the joint speeds vector and

J is the Jacobian matrix.

J =

∙
0k̂0 × 0

0dn
0k̂1 × 0

1dn · · · 0k̂n−1 × 0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸
(8.132)
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FIGURE 8.6. A spherical manipulator.

Practically, we find the Jacobian matrix column by column. Each column
is a Jacobian generating vector, ci(q), and is associated to joint i. If joint
i is revolute, then

ci(q) =

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
(8.133)

and if joint i is prismatic then, ci(q) simplifies to

ci(q) =

∙
0k̂i−1
0

¸
. (8.134)

Equation (8.117) provides a set of six equations. The first three equations
relate the translational velocity of the end-effector joint speeds. The rest
of the equations relate the angular velocity of the end-effector frame to the
joint speeds.

Example 246 Jacobian matrix for a spherical manipulator.
Figure 8.6 depicts a spherical manipulator. To find its Jacobian, we start

with determining the 0k̂i−1 axes for i = 1, 2, 3. It would be easier if we use
the homogeneous definitions and write,

0k̂0 =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ (8.135)
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0k̂1 = 0T1
1k̂1 (8.136)

=

⎡⎢⎢⎣
cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 l0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
− sin θ1
cos θ1
0
0

⎤⎥⎥⎦

0k̂2 = 0T2
2k̂2 (8.137)

=

⎡⎢⎢⎣
cθ1cθ2 −sθ1 cθ1sθ2 0
cθ2sθ1 cθ1 sθ1sθ2 0
−sθ2 0 cθ2 l0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos θ1 sin θ2
sin θ1 sin θ2
cos θ2
0

⎤⎥⎥⎦ .
Then, the vectors 0

i−1dn must be evaluated.

0
0d3 = l0

0k̂0 + d3
0k̂2 =

⎡⎢⎢⎣
d3 cos θ1 sin θ2
d3 sin θ1 sin θ2
l0 + d3 cos θ2

0

⎤⎥⎥⎦ (8.138)

0
1d3 = d3

0k̂2 =

⎡⎢⎢⎣
d3 cos θ1 sin θ2
d3 sin θ1 sin θ2

d3 cos θ2
0

⎤⎥⎥⎦ (8.139)

Therefore, the Jacobian of the manipulator is

J =

∙
0k̂0 × 0

0d3
0k̂1 × 0

1d3
0k̂2

0k̂0
0k̂1 0

¸

=

⎡⎢⎢⎢⎢⎢⎢⎣
−d3 sin θ1 sin θ2 d3 cos θ1 cos θ2 cos θ1 sin θ2
d3 cos θ1 sin θ2 d3 cos θ2 sin θ1 sin θ1 sin θ2

0 −d3 sin θ2 cos θ2
0 − sin θ1 0
0 cos θ1 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.140)

Example 247 Jacobian matrix for an articulated robot.
The Jacobian matrix of a 6 DOF articulated robot is a 6 × 6 matrix.

The robot was shown in Figure 6.6 and its transformation matrices are
calculated in Example 186.
The ith column of the Jacobian, ci(q), is

ci(q) =

∙
0k̂i−1 × 0

i−1d6
0k̂i−1

¸
. (8.141)
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For the first column of the Jacobian matrix, we need to find 0k̂0 and 0d6.
The direction of the z0-axis in the base coordinate frame is

0k̂0 =

⎡⎣ 0
0
1

⎤⎦ (8.142)

and the position vector of the end-effector frame B6 is 0d6, which can be
directly determined from the fourth column of the transformation matrix,
0T6,

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

∙
0R6

0d6
0 1

¸
=

⎡⎢⎢⎣
t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 1

⎤⎥⎥⎦ (8.143)

which is

0d6 =

⎡⎣ t14
t24
t34

⎤⎦ (8.144)

where,

t14 = d6 (sθ1sθ4sθ5 + cθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+l3cθ1s (θ2 + θ3) + d2sθ1 + l2cθ1cθ2

t24 = d6 (−cθ1sθ4sθ5 + sθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+sθ1s (θ2 + θ3) l3 − d2cθ1 + l2cθ2sθ1

t34 = d6 (cθ4sθ5s (θ2 + θ3)− cθ5c (θ2 + θ3))

+l2sθ2 + l3c (θ2 + θ3) . (8.145)

Therefore,

0k̂0 × 0d6 =

⎡⎣ 0
0
1

⎤⎦×
⎡⎣ t14

t24
t34

⎤⎦ =
⎡⎣ −t24t14

0

⎤⎦ (8.146)

and the first Jacobian generating vector is:

c1 =

∙
0k̂0 × 0d6

0k̂0

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
−t24
t14
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦ (8.147)
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For the 2nd column we need to find 0k̂1 and 01d6. The z1-axis in the base
frame can be found by

0k̂1 = 0R1
1k̂1 =

0R1

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ cθ1 0 sθ1
sθ1 0 −cθ1
0 1 0

⎤⎦⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ sin θ1
− cos θ1
0

⎤⎦ . (8.148)

The first half of c2 is 0k̂1 × 0
1d6. The vector

0
1d6 is the position of the

end-effector in the coordinate frame B1, however it must be expressed in
the base frame to be able to perform the cross product. An easier method
is to find 1k̂1 × 1d6 and transform the resultant into the base frame. The
vector 1d6 is the fourth column of 1T6 = 1T2

2T3
3T4

4T5
5T6, which, from

Example 186, is equal to

1d6 =

⎡⎣ l2 cos θ2 + l3 sin (θ2 + θ3)
l2 sin θ2 − l3 cos (θ2 + θ3)

d2

⎤⎦ . (8.149)

Therefore, the first half of c2 is

0k̂1 × 0
1d6 = 0R1

³
1k̂1 × 1d6

´
= 0R1

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ l2 cos θ2 + l3 sin (θ2 + θ3)

l2 sin θ2 − l3 cos (θ2 + θ3)
d2

⎤⎦⎞⎠
=

⎡⎣ cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))
sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

l2 cos θ2 + l3 sin (θ2 + θ3)

⎤⎦ (8.150)

and c2 is:

c2 =

∙
0k̂1 × 0

1d6
0k̂1

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))
sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

l2 cos θ2 + l3 sin (θ2 + θ3)
sin θ1
− cos θ1
0

⎤⎥⎥⎥⎥⎥⎥⎦ (8.151)

The 3rd column is made by 0k̂2 and 0
2d6. The vector

0
2d6 is position of

the end-effector in the coordinate frame B2 and is the fourth column of
2T6 =

2T3
3T4

4T5
5T6. The z2-axis in the base frame can be found by

0k̂2 =
0R2

2k̂2 =
0R1

1R2

⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ sin θ1
− cos θ1
0

⎤⎦ (8.152)
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and the cross product 0k̂2× 0
2d6 can be found by transforming the resultant

of 2k̂2 × 2d6 into the base coordinate frame.

2k̂2 × 2d6 =

⎡⎣ l3 cos θ3
l3 sin θ3
0

⎤⎦ (8.153)

0k̂2 × 0
2d6 =

0R2

³
2k̂2 × 2d6

´
=

⎡⎣ l3 cos θ1 sin (θ2 + θ3)
l3 sin θ1 sin (θ2 + θ3)
−l3 cos (θ2 + θ3)

⎤⎦ (8.154)

Therefore, c3 is:

c3 =

∙
0k̂2 × 0

2d6
0k̂2

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
l3 cos θ1 sin (θ2 + θ3)
l3 sin θ1 sin (θ2 + θ3)
−l3 cos (θ2 + θ3)

sin θ1
− cos θ1
0

⎤⎥⎥⎥⎥⎥⎥⎦ (8.155)

The 4th column needs 0k̂3 and 03d6. The vector
0k̂3 can be found by trans-

forming 3k̂3 to the base frame

0k̂3 =
0R1

1R2
2R3

⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)
sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

− cos (θ2 + θ3)

⎤⎦
(8.156)

and the first half of c4 can be found by calculating 3k̂3 × 3d6 and trans-
forming the resultant into the base coordinate frame.

0R3

³
3k̂3 × 3d6

´
= 0R3

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ 0
0
l3

⎤⎦⎞⎠ =

⎡⎣ 0
0
0

⎤⎦ (8.157)

Therefore, c4 is:

c4 =

∙
0k̂3 × 0

3d6
0k̂3

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)
sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

− cos (θ2 + θ3)

⎤⎥⎥⎥⎥⎥⎥⎦ (8.158)

The 5th column needs 0k̂4 and 0
4d6. We can find the vector

0k̂4 by trans-
forming 4k̂4 to the base frame.

0k̂4 =
0R4

⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ cθ4sθ1 − cθ1sθ4c (θ2 + θ3)
−cθ1cθ4 − sθ1sθ4c (θ2 + θ3)

−sθ4s (θ2 + θ3)

⎤⎦ (8.159)



460 8. Velocity Kinematics

The first half of c5 is 4k̂4 × 4d6, expressed in the base coordinate frame.

0R4

³
4k̂4 × 4d6

´
= 0R4

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ 0
0
0

⎤⎦⎞⎠ =

⎡⎣ 0
0
0

⎤⎦ (8.160)

Therefore, c5 is:

c5 =

∙
0k̂4 × 0

4d6
0k̂4

¸
=

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

cos θ4 sin θ1 − cos θ1 sin θ4 cos (θ2 + θ3)
− cos θ1 cos θ4 − sin θ1 sin θ4 cos (θ2 + θ3)

− sin θ4 sin (θ2 + θ3)

⎤⎥⎥⎥⎥⎥⎥⎦
(8.161)

The 6th column is found by calculating 0k̂5 and 0k̂5 × 0
5d6. The vector

0k̂5 is

0k̂5 = 0R5

⎡⎣ 0
0
1

⎤⎦ (8.162)

=

⎡⎣ −cθ1cθ4s (θ2 + θ3)− sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3))
−sθ1cθ4s (θ2 + θ3)− sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3))

cθ4c (θ2 + θ3)− 1
2s (θ2 + θ3) s2θ4

⎤⎦
and the first half of c6 is 5k̂5× 5d6, expressed in the base coordinate frame.

0R5

³
5k̂5 × 5d6

´
= 0R5

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ 0
0
0

⎤⎦⎞⎠ =

⎡⎣ 0
0
0

⎤⎦ (8.163)

Therefore, c6 is

c6 =

∙
0k̂5 × 0

5d6
0k̂5

¸
(8.164)

=

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

−cθ1cθ4s (θ2 + θ3)− sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3))
−sθ1cθ4s (θ2 + θ3)− sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3))

cθ4c (θ2 + θ3)− 1
2s (θ2 + θ3) s2θ4

⎤⎥⎥⎥⎥⎥⎥⎦
and the Jacobian matrix for the articulated robot is calculated.

J =
£
c1 c2 c3 c4 c5 c6

¤
(8.165)
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Example 248 The effect of a spherical wrist on Jacobian matrix.
The Jacobian matrix for a robot having a spherical wrist is always of the

form

J =

∙
0k̂0 × 0

0d6
0k̂1 × 0

1d6
0k̂2 × 0

2d6 0 0 0
0k̂0

0k̂1
0k̂2

0k̂3
0k̂6

0k̂5

¸
(8.166)

which shows the upper 3×3 submatrix is zero. This is because of the spher-
ical wrist structure and having a wrist point as the origin of the wrist co-
ordinate frames B4, B5, and B6.

Example 249 F Jacobian matrix for an articulated manipulator using
the direct differentiating method.
Figure 6.6 illustrates an articulated robot with transformation matrices

given in Example 186. Using the result of the forward kinematics

0T6 =

∙
0R6

0d6
0 1

¸
=

⎡⎢⎢⎣
t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 1

⎤⎥⎥⎦ (8.167)

we know that the position of the end-effector is at

0d6 =

⎡⎣ X6

Y6
Z6

⎤⎦ =
⎡⎣ t14

t24
t34

⎤⎦ (8.168)

where,

t14 = d6 (sθ1sθ4sθ5 + cθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+l3cθ1s (θ2 + θ3) + d2sθ1 + l2cθ1cθ2

t24 = d6 (−cθ1sθ4sθ5 + sθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+sθ1s (θ2 + θ3) l3 − d2cθ1 + l2cθ2sθ1

t34 = d6 (cθ4sθ5s (θ2 + θ3)− cθ5c (θ2 + θ3))

+l2sθ2 + l3c (θ2 + θ3) . (8.169)

Taking the derivative of X6 yields

Ẋ6 =
∂X6

∂θ1
θ̇1 +

∂X6

∂θ2
θ̇2 + · · ·+

∂X6

∂θ6
θ̇6

= J11θ̇1 + J12θ̇2 + · · ·+ J16θ̇6

= −t24θ̇1 + cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3)) θ̇2

+l3 cos θ1 sin (θ2 + θ3) θ̇3 (8.170)
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that shows

J11 = −t24
J12 = cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

J13 = l3 cos θ1 sin (θ2 + θ3)

J14 = 0

J15 = 0

J16 = 0. (8.171)

Similarly, the derivative of Y6 and Z6

Ẏ6 =
∂Y6
∂θ1

θ̇1 +
∂Y6
∂θ2

θ̇2 + · · ·+
∂Y6
∂θ6

θ̇6

= J21θ̇1 + J22θ̇2 + · · ·+ J26θ̇6

= t14θ̇1 + sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3)) θ̇2

+l3 sin θ1 sin (θ2 + θ3) θ̇3 (8.172)

Ż6 =
∂Z6
∂θ1

θ̇1 +
∂Z6
∂θ2

θ̇2 + · · ·+
∂Z6
∂θ6

θ̇6

= J31θ̇1 + J32θ̇2 + · · ·+ J36θ̇6

= (l2 cos θ2 + l3 sin (θ2 + θ3)) θ̇2 − l3 cos (θ2 + θ3) θ̇3 (8.173)

show that

J21 = t14

J22 = sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

J23 = l3 sin θ1 sin (θ2 + θ3)

J24 = 0

J25 = 0

J26 = 0 (8.174)

J31 = 0

J32 = l2 cos θ2 + l3 sin (θ2 + θ3)

J33 = −l3 cos (θ2 + θ3)

J34 = 0

J35 = 0

J36 = 0. (8.175)

There is no explicit equation for describing the rotations of the end-
effector’s frame about the axes. So, there is no equation to find differential
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rotations about the three axes by differentiating. This is a reason for search-
ing indirect or more systematic methods for evaluating the Jacobian matrix.
However, the next three rows of the Jacobian matrix can be found by cal-
culating the angular velocity vector based on the angular velocity matrix

0ω̃6 =
0Ṙ6

0RT
6 =

⎡⎣ 0 −ωZ ωY
ωZ 0 −ωX
−ωY ωX 0

⎤⎦ (8.176)

0ω6 =

⎡⎣ ωX
ωY
ωZ

⎤⎦ (8.177)

and then rearranging the components to show the Jacobian elements.

ωX =
∂ωX
∂θ1

θ̇1 +
∂ωX
∂θ2

θ̇2 + · · ·+
∂ωX
∂θ6

θ̇6 (8.178)

ωY =
∂ωY
∂θ1

θ̇1 +
∂ωY
∂θ2

θ̇2 + · · ·+
∂ωY
∂θ6

θ̇6 (8.179)

ωZ =
∂ωZ
∂θ1

θ̇1 +
∂ωZ
∂θ2

θ̇2 + · · ·+
∂ωZ
∂θ6

θ̇6 (8.180)

Expanding (8.176) for the articulated manipulator shows that the angular
velocity vector of the end-effector frame is:

ωX = sin θ1θ̇2 + sin θ1θ̇3 + cos θ1 sin θ23θ̇4

+(cos θ4 sin θ1 − cos θ1 sin θ4 cos θ23) θ̇5
− (cθ1cθ4sθ23 + sθ4 (sθ1sθ4 + cθ1cθ4cθ23)) θ̇6 (8.181)

ωY = − cos θ1θ̇2 − cos θ1θ̇3 + sin θ1 sin θ23θ̇4
+(− cos θ1 cos θ4 − sin θ1 sin θ4 cos θ23) θ̇5
+(−sθ1cθ4sθ23 − sθ4 (−cθ1sθ4 + sθ1cθ4cθ23)) θ̇6 (8.182)

ωZ = θ̇1 − cos (θ2 + θ3) θ̇4 − sin θ4 sin (θ2 + θ3) θ̇5

+

µ
cos θ4 cos θ23 −

1

2
sin θ23 sin 2θ4

¶
θ̇6 (8.183)

and therefore,

J41 = 0

J42 = sin θ1

J43 = sin θ1

J44 = cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)

J45 = cos θ4 sin θ1 − cos θ1 sin θ4 cos (θ2 + θ3)

J46 = −cθ1cθ4s (θ2 + θ3)

−sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3)) (8.184)
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J51 = 0

J52 = − cos θ1
J53 = − cos θ1
J54 = sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

J55 = − cos θ1 cos θ4 − sin θ1 sin θ4 cos (θ2 + θ3)

J56 = −sθ1cθ4s (θ2 + θ3)

−sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3)) (8.185)

J61 = 1

J62 = 0

J63 = 0

J64 = − cos (θ2 + θ3)

J65 = − sin θ4 sin (θ2 + θ3)

J66 = cos θ4 cos (θ2 + θ3)−
1

2
sin (θ2 + θ3) sin 2θ4. (8.186)

Example 250 F Analytical Jacobian and geometrical Jacobian.
Assume the global position and orientation of the end-effector frames are

specified by a set of six parameters

X =

∙
0rn
0φn

¸
(8.187)

where
0φn =

0φn(q) (8.188)

are three independent rotational parameters such as Euler angles, and

0rn =
0rn(q) (8.189)

is the Cartesian position of the end-effector frame, both functions of the
joint variable vector, q.
The translational velocity of the end-effector frame can be expressed by

0ṙn =
∂r

∂q
q̇ = JD(q) q̇ (8.190)

and the rotational velocity of the end-effector frame can be expressed by

0φ̇n =
∂φ

∂q
q̇ = Jφ(q) q̇. (8.191)

The rotational velocity vector φ̇ in general differs from the angular velocity
vector ω. The combination of the displacement Jacobian matrices JD and
angular Jacobian Jφ in the form of

JA =

∙
JD
Jφ

¸
(8.192)
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is called analytical Jacobian to indicate its difference with geometrical
Jacobian J.
Having a set of orientation angles, φ, it is possible to find the relationship

between the angular velocity ω and the rotational velocity φ̇. As an example,
consider the Euler angles ϕθψ about zxz axes defined in Section 6.3. The
global angular velocity, in terms of Euler frequencies, is found in 2.130⎡⎣ ωX

ωY
ωZ

⎤⎦ =

⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ (8.193)

ω = GRE φ̇. (8.194)

The Eulerian frequencies ϕ̇, θ̇, ψ̇ are functions of joint speeds⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦ = Jφ q̇ (8.195)

and therefore,

JR = GRE Jφ (8.196)

J =

∙
JD
JR

¸
. (8.197)

When the angular velocity of the end-effector is expressed in Cartesian
frequencies as

ω =

⎡⎣ ωX
ωY
ωZ

⎤⎦ (8.198)

then, Jacobian matrix is called geometric (8.197). When the angular ve-
locity of the end-effector is expressed in non-Cartesian frequencies such as
Eulerian, then Jacobian matrix is called analytic (8.192).

8.4 Inverse Velocity Kinematics

The inverse velocity kinematics problem, also known as the resolved rates
problem, is searching for the joint speeds vector q̇ corresponding to the
end-effector speeds vector Ẋ. Six DOF are needed to be able to move the
end-effector in an arbitrary direction with an arbitrary angular velocity.
The speeds vector of the end-effector Ẋ is related to the joint speeds vector
q̇ by the Jacobian matrix J.

Ẋ =

∙
0vn
0ωn

¸
=

∙
JD
JR

¸
q̇ = J q̇ (8.199)
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Consequently, for the inverse velocity kinematics, we require the differential
change in joint coordinates expressed in terms of the Cartesian translation
and angular velocities of the end-effector. If the Jacobian matrix is non-
singular at the moment of calculation, the inverse Jacobian J−1 exists and
we are able to find the required joint speeds vector as:

q̇ = J−1 Ẋ (8.200)

Singular configuration is where the determinant of the Jacobian matrix is
zero and therefore, J−1 is indeterminate. Equation (8.200) determines the
speeds required at the individual joints to produce a desired end-effector
speeds Ẋ.
Since the inverse velocity kinematics is a consequence of the forward

velocity and needs a matrix inversion, the problem is equivalent to the
solution of a set of linear algebraic equations. To find J−1, every matrix
inversion method may be applied.

Example 251 Inverse velocity of a planar polar manipulator.
Figure 8.2 illustrates a planar polar manipulator with the following for-

ward velocity equation.∙
Ẋ

Ẏ

¸
=

∙
cos θ −r sin θ
sin θ r cos θ

¸ ∙
ṙ

θ̇

¸
(8.201)

To determine the inverse velocity, we need to determine the inverse of the
Jacobian matrix J.

J =

⎡⎢⎣ ∂X

∂r

∂X

∂θ
∂Y

∂r

∂Y

∂θ

⎤⎥⎦ = ∙ cos θ −r sin θ
sin θ r cos θ

¸
(8.202)

J−1 =
1

∂X

∂r

∂Y

∂θ
− ∂X

∂θ

∂Y

∂r

⎡⎢⎣ ∂Y

∂θ
−∂X

∂θ

−∂Y
∂r

∂X

∂r

⎤⎥⎦
=

1

r

∙
cos θ sin θ
− sin θ cos θ

¸
(8.203)

Therefore, ∙
ṙ

θ̇

¸
=
1

r

∙
cos θ sin θ
− sin θ cos θ

¸ ∙
Ẋ

Ẏ

¸
(8.204)

Example 252 Inverse velocity of a 2R planar manipulator.
Forward and inverse kinematics of a 2R planar manipulator have been

analyzed in Example 141 and Example 184. Its Jacobian and forward ve-



8. Velocity Kinematics 467

locity kinematics are also found in Example 243 as:

Ẋ = J q̇ (8.205)∙
Ẋ

Ẏ

¸
=

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸ ∙
θ̇1
θ̇2

¸
(8.206)

The inverse velocity kinematics needs to find the inverse of the Jacobian.
Therefore,

q̇ = J−1 Ẋ (8.207)∙
θ̇1
θ̇2

¸
=

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸−1 ∙
Ẋ

Ẏ
(̧8.208)

where,

J−1 =
−1

l1l2sθ2

∙
−l2c (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l1sθ1 + l2s (θ1 + θ2)

¸
(8.209)

and hence,

θ̇1 =
Ẋc (θ1 + θ2) + Ẏ s (θ1 + θ2)

l1sθ2
(8.210)

θ̇2 =
Ẋ (l1cθ1 + l2c (θ1 + θ2)) + Ẏ (l1sθ1 + l2s (θ1 + θ2))

−l1l2sθ2
. (8.211)

Example 253 Singular configuration of a 2R manipulator.
Singularity of a 2R manipulator occurs when determinant of the Jacobian

(8.206) is zero. From Example 252, we have:

J =

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸
(8.212)

The determinant of J is:
|J| = l1l2 sin θ2 (8.213)

Therefore, the singular configurations of the manipulator are

θ2 = 0 θ2 = 180 deg (8.214)

corresponding to the fully extended or fully contracted configurations, as
shown in Figure 8.7(a) and (b) respectively. At the singular configurations,
the value of θ1 is indeterminate and may have any real value. The two
columns of the Jacobian matrix become parallel because Equation (8.206)
becomes ∙

Ẋ

Ẏ

¸
= 2l1

∙
−sθ1
cθ1

¸
θ̇1 + l2

∙
−sθ1
cθ1

¸
θ̇2

=
³
2l1θ̇1 + l2θ̇2

´ ∙ −sθ1
cθ1

¸
. (8.215)

In this situation, the endpoint can only move in the direction perpendicular
to the arm links.
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FIGURE 8.7. Singular configurations of a 2R planar manipulator.

Example 254 Analytic method for inverse velocity kinematics.
Theoretically, we must be able to calculate the joint velocities from the

equations describing the forward velocities, however, such a calculation is
not easy in a general case.
As an example, consider a 2R planar manipulator shown in Figure 8.3.

The endpoint velocity of the 2R manipulator was expressed in Equation
(8.105) as:

0ḋ2 = θ̇1
0k̂0 ×

¡
l1
0 ı̂1 + l2

0 ı̂2
¢
+ θ̇2

0k̂1 × l2
0ı̂2 (8.216)

A dot product of this equation with 0ı̂2, gives

0ḋ2 · 0 ı̂2 = θ̇1

³
0k̂0 × l1

0 ı̂1

´
· 0ı̂2

= l1θ̇1
0k̂0 ·

¡
0ı̂1 × 0ı̂2

¢
= l1θ̇1

0k̂0 · 0ı̂2 sin θ2
= l1θ̇1 sin θ2 (8.217)

and therefore,

θ̇1 =
0ḋ2 · 0ı̂2
l1 sin θ2

. (8.218)

Now a dot product of (8.216) with 0ı̂1 reduces to

0ḋ2 · 0ı̂1 = θ̇1

³
0k̂0 × l2

0 ı̂2

´
· 0ı̂1 + θ̇2

³
0k̂1 × l2

0ı̂2

´
· 0 ı̂1

= l2

³
θ̇1 + θ̇2

´
0k̂0 ·

¡
0 ı̂2 × 0 ı̂1

¢
= −l2

³
θ̇1 + θ̇2

´
sin θ2 (8.219)
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and therefore,

θ̇2 = −θ̇1 −
0ḋ2 · 0 ı̂1
l2 sin θ2

. (8.220)

Therefore, we can determine the joint speeds θ̇1, and θ̇2 when the speeds of
the end point 0ḋ2 =

£
Ẋ Ẏ

¤
is given.

Example 255 F Inverse Jacobian matrix for a robot with spherical wrist.
The Jacobian matrix for an articulated robot with a spherical wrist is

calculated in Example 247.

J =

∙
0k̂0 × 0

0d6
0k̂1 × 0

1d6
0k̂2 × 0

2d6 0 0 0
0k̂0

0k̂1
0k̂2

0k̂3
0k̂4

0k̂5

¸
(8.221)

The upper right 3 × 3 submatrix of J is zero. This is because of spherical
wrist structure and having the last three position vectors as zero.
Let us split the Jacobian matrix into four 3× 3 submatrices and write it

as:

J =

∙
A B
C D

¸
=

∙
A 0
C D

¸
(8.222)

where

[A] =
£
0k̂0 × 0

0d6
0k̂1 × 0

1d6
0k̂2 × 0

2d6
¤

(8.223)

[C] =
£
0k̂0

0k̂1
0k̂2

¤
(8.224)

[D] =
£
0k̂3

0k̂4
0k̂5

¤
. (8.225)

Inversion of such a Jacobian is simpler if we take advantage of B = 0. The
forward velocity kinematics of the robot can be written as:

Ẋ = J q̇ (8.226)

∙
0ḋ2
0ω2

¸
=

∙
A 0
C D

¸
⎡⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8.227)

The upper half of the equation is

0ḋ2 = [A]

⎡⎣ θ̇1
θ̇2
θ̇3

⎤⎦ (8.228)

which can be inverted as: ⎡⎣ θ̇1
θ̇2
θ̇3

⎤⎦ = A−1 0ḋ2 (8.229)
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The lower half of the equation is

0ω2 =
£
C D

¤
⎡⎢⎢⎢⎢⎢⎢⎢⎣

θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [C]

⎡⎣ θ̇1
θ̇2
θ̇3

⎤⎦+ [D]
⎡⎣ θ̇4

θ̇5
θ̇6

⎤⎦ (8.230)

and therefore, ⎡⎣ θ̇4
θ̇5
θ̇6

⎤⎦ = D−1

⎛⎝
0ω2 − [C]

⎡⎣ θ̇1
θ̇2
θ̇3

⎤⎦⎞⎠
= D−1

³
0ω2 − [C]A−1 0ḋ2

´
. (8.231)

Example 256 Inverse velocity of an articulated manipulator.
The end point of the articulated manipulator of Figure 8.4 is found in

Exercise 245 at:

0rP =

⎡⎢⎢⎣
XP

YP
ZP
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos θ1 (l2 cos θ2 + l3 sin (θ2 + θ3))
sin θ1 (l2 cos θ2 + l3 sin (θ2 + θ3))
l1 − l3 cos (θ2 + θ3) + l2 sin θ2

1

⎤⎥⎥⎦ (8.232)

Using the components of 0rP , we calculated the Jacobian matrix of the
manipulator

J =

⎡⎢⎢⎢⎢⎢⎢⎣

∂XP

∂θ1

∂XP

∂θ2

∂XP

∂θ3
∂YP
∂θ1

∂YP
∂θ2

∂YP
∂θ3

∂ZP
∂θ1

∂ZP
∂θ2

∂ZP
∂θ3

⎤⎥⎥⎥⎥⎥⎥⎦ (8.233)

to solve the forward kinematics of the manipulator.⎡⎣ ẊP

ẎP
ŻP

⎤⎦ = J
⎡⎣ θ̇1

θ̇2
θ̇3

⎤⎦ (8.234)

To solve the inverse velocity kinematics of the manipulator, we need to
calculate J−1.

J−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

∂XP

∂θ1

∂XP

∂θ2

∂XP

∂θ3
∂YP
∂θ1

∂YP
∂θ2

∂YP
∂θ3

∂ZP
∂θ1

∂ZP
∂θ2

∂ZP
∂θ3

⎤⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ (8.235)
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a11 = − sin θ1
l3 sin (θ2 + θ3) + l2 cos θ2

a21 = − 1
l2
(sin (θ2 + θ3))

cos θ1
cos θ3

a31 =
1

l2l3

cos θ1
cos θ3

(l3 sin (θ2 + θ3) + l2 cos θ2) (8.236)

a12 =
cos θ1

l3 sin (θ2 + θ3) + l2 cos θ2

a22 = − 1
l2

sin (θ2 + θ3)

cos θ3
sin θ1

a32 =
sin θ1

l2l3 cos θ3
(l3 sin (θ2 + θ3) + l2 cos θ2) (8.237)

a13 = 0

a23 =
1

l2

cos (θ2 + θ3)

cos θ3

a33 = − 1

l2l3 cos θ3
(l3 cos (θ2 + θ3)− l2 sin θ2) (8.238)

Therefore, the joint speeds of the manipulator θ̇1, θ̇2, θ̇3 are:⎡⎣ θ̇1
θ̇2
θ̇3

⎤⎦ = J−1
⎡⎣ ẊP

ẎP
ŻP

⎤⎦ (8.239)
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8.5 Summary

Each link of a serial robot has an angular and a translational velocity. The
angular velocity of link (i) in the global coordinate frame can be found as
a summation of the global angular velocities of its lower links

0
0ωi =

iX
j=1

0
j−1ωj . (8.240)

Using DH parameters, the angular velocity of link (j) with respect to link
(j − 1) is:

0
j−1ωj =

½
θ̇j

0k̂j−1 if joint i is R
0 if joint i is P

(8.241)

The translational velocity of link (i) is the global velocity of the origin of
coordinate frame Bi attached to link (i)

0
i−1ḋi =

½
0
0ωi × 0

i−1di if joint i is R
ḋi
0k̂i−1 +

0
0ωi × 0

i−1di if joint i is P
(8.242)

where θ and d are DH parameters, and d is the frame’s origin position
vector.
The velocity kinematics of a robot is defined by the relationship between

joint speeds q̇
q̇ =

£
q̇n q̇n q̇n · · · q̇n

¤T
(8.243)

and global speeds of the end-effector Ẋ.

Ẋ =
£
Ẋn Ẏn Żn ωXn ωY n ωZn

¤T
(8.244)

Such a relationship introduces Jacobian matrix J.

Ẋ = J q̇ (8.245)

Having J, we are able to find the end-effector speeds for a given set of joint
speeds and vice versa. Jacobian is a function of joint coordinates and is the
main tool in velocity kinematics of robots.
We practically calculate J by Jacobian generating vectors denoted by

ci(q)

ci(q) =

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
(8.246)

where ci(q) makes the column i− 1 of the Jacobian matrix.

J =
£
c0 c1 c2 · · · cn−1

¤
(8.247)
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8.6 Key Symbols

a kinematic length of a link
A,B,C,D submatrices of J
B body coordinate frame
c cos
c Jacobian generating vector
d differential, prismatic joint variable
e rotation quaternion
dx, dy, dz elements of d
d translation vector, displacement vector
D displacement transformation matrix
G,B0 global coordinate frame, Base coordinate frame
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
I = [I] identity matrix
J Jacobian, geometric Jacobian
JD displacement Jacobian
JR rotational Jacobian
Jφ angular Jacobian
JA analytic Jacobian
l length
P prismatic joint, point
q joint coordinate,
q vector joint coordinates
r position vectors, homogeneous position vector
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix, revolute joint
s sin
tij the element of row i and column j of T
T homogeneous transformation matrix
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T a set of nonlinear algebraic equations of q
v velocity vector
V velocity transformation matrix
û unit vector along the axis of ω
ũ skew symmetric matrix of the vector û
u1, u2, u3 components of û
x, y, z local coordinate axes
X,Y,Z global coordinate axes, coordinates of end-effector
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Greek
α, β, γ angles of rotation about the axes of global frame
δ Kronecker function, small increment of a parameter

small test number to terminate a procedure
θ rotary joint angle
θijk θi + θj + θk
ϕ, θ, ψ angles of rotation about the axes of body frame
φ angle of rotation about û
ω angular velocity vector
û unit vector along the axis of ω
ω̃ skew symmetric matrix of the vector ω
ω1, ω2, ω3 components of ω

Symbol
DOF degree of freedom
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

` orthogonal
(i) link number i
k parallel
⊥ perpendicular
e∗ conjugate of e
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Exercises

1. Notation and symbols.

Describe the meaning of

a- i−1di b- 0
i−1di c- i

i−1di d- i−1idi−1 e- i−1i−1di f- i−10di

g- i−1ḋi h- 0
i−1 ḋi i- i

i−1ḋi j- i−1iḋi−1 k- i−1i−1ḋi l- i−10ḋi

m- 0k̂i n- 0k̂i−1 o- 0
i−1 k̂i−2 p- 0

i−1vi q- i
i−1vi r- ivi.

2. 3R planar manipulator velocity kinematics.

Figure 5.21 illustrates an RkRkR planar manipulator. The forward
kinematics of the manipulator provides the following transformation
matrices:

2T3 =

⎡⎢⎢⎣
cθ3 −sθ3 0 l3cθ3
sθ3 cθ3 0 l3sθ3
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ 1T2 =

⎡⎢⎢⎣
cθ2 −sθ2 0 l2cθ2
sθ2 cθ2 0 l2sθ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

0T1 =

⎡⎢⎢⎣
cθ1 −sθ1 0 l1cθ1
sθ1 cθ1 0 l1sθ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
Calculate the Jacobian matrix, J, using direct differentiating, and find
the Cartesian velocity vector of the endpoint for numerical values.

θ1 = 56deg θ2 = −28 deg θ3 = −10 deg

l1 = 100 cm l2 = 55 cm l3 = 30 cm

θ̇1 = 30deg / sec θ̇2 = 10deg / sec θ̇3 = −10 deg / sec

3. Spherical wrist velocity kinematics.

Figure 5.26 illustrates a schematic of a spherical wrist. The associated
transformation matrices are given below. Assume that the frame B3
is the base frame. Find the angular velocity vector of the coordinate
frame B6.

3T4 =

⎡⎢⎢⎣
cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 0
0 0 0 1

⎤⎥⎥⎦ 4T5 =

⎡⎢⎢⎣
cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
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5T6 =

⎡⎢⎢⎣
cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
4. Spherical wrist and tool’s frame velocity kinematics.

Assume that we attach a tools coordinate frame, with the following
transformation matrix, to the last coordinate frame B6 of a spherical
wrist.

6T7 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d6
0 0 0 1

⎤⎥⎥⎦
The wrist transformation matrices are given in Exercise 3. Assume
that the frame B3 is the base frame and find the translational and
angular velocities of the tools coordinate frame B7.

5. SCARA manipulator velocity kinematics.

An RkRkRkP SCARA manipulator is shown in Figure 5.23 with
the following transformation matrices. Calculate the Jacobian matrix
using the Jacobian-generating vector technique.

0T1 =

⎡⎢⎢⎣
cθ1 −sθ1 0 l1cθ1
sθ1 cθ1 0 l1sθ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ 2T3 =

⎡⎢⎢⎣
cθ3 −sθ3 0 0
sθ3 cθ3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

1T2 =

⎡⎢⎢⎣
cθ2 −sθ2 0 l2cθ2
sθ2 cθ2 0 l2sθ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ 3T4 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 d
0 0 0 1

⎤⎥⎥⎦
6. R`RkR articulated arm velocity kinematics.

Figure 5.22 illustrates a 3 DOF R`RkR manipulator with the follow-
ing transformation matrices. Find the Jacobian matrix using direct
differentiating, and Jacobian-generating vector methods.

0T1 =

⎡⎢⎢⎣
cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 d1
0 0 0 1

⎤⎥⎥⎦ 2T3 =

⎡⎢⎢⎣
cθ3 0 sθ3 0
sθ3 0 −cθ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦

1T2 =

⎡⎢⎢⎣
cθ2 −sθ2 0 l2cθ2
sθ2 cθ2 0 l2sθ2
0 0 1 d2
0 0 0 1

⎤⎥⎥⎦ 0rP =
0T3

⎡⎢⎢⎣
0
0
l3
1

⎤⎥⎥⎦
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FIGURE 8.8. A RRP planar redundant manipulator.

7. A RRP planar redundant manipulator.

Figure 8.8 illustrates a 3 DOF planar manipulator with joint vari-
ables θ1, θ2, and d3.

(a) Determine the link transformation matrices and calculate 0T3.

(b) Solve the inverse kinematics of the manipulator for a given values
ofX, Y , ϕ, where,X, Y are global coordinates of the end-effector
frame B3, and ϕ is the angular coordinate of B3.

(c) Show that the following equation can be a set of solution for
inverse kinematic problem.

θ2 = tan
−1 β

±
p
1− β2

β =

√
X2 + Y 2

l1
sin (θ2 − α)

θ1 = tan
−1 Y

X
− (θ2 − α) α = ϕ− tan−1 Y

X

d3 =

q
l21 +X2 + Y 2 − 2l1

p
X2 + Y 2 cos (θ2 − α)

(d) Determine the Jacobian matrix of the manipulator and show
that the following equation solve the forward velocity kinemat-
ics. ⎡⎣ Ẋ

Ẏ
ϕ̇

⎤⎦ = J
⎡⎣ θ̇1

θ̇2
ḋ3

⎤⎦
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FIGURE 8.9. A RPR planar redundant manipulator.

J =

⎡⎣ −l1sθ1 − d3s (θ1 + θ2) −d3s (θ1 + θ2) c (θ1 + θ2)
−l1cθ1 + d3c (θ1 + θ2) d3c (θ1 + θ2) s (θ1 + θ2)

1 1 0

⎤⎦
(e) Determine J−1 and solve the inverse velocity kinematics.

8. A RPR planar redundant manipulator.

(a) Figure 8.9 illustrates a 3 DOF planar manipulator with joint
variables θ1, d2, and θ2.

(b) Determine the link transformation matrices and calculate 0T3.

(c) Solve the inverse kinematics of the manipulator for a given values
ofX, Y , ϕ, where,X, Y are global coordinates of the end-effector
frame B3, and ϕ is the angular coordinate of B3.

(d) Determine the Jacobian matrix of the manipulator to solve the
forward velocity kinematics.⎡⎣ Ẋ

Ẏ
ϕ̇

⎤⎦ = J
⎡⎣ θ̇1

θ̇2
ḋ3

⎤⎦
(e) Determine J−1 and solve the inverse velocity kinematics.

9. An offset articulated manipulator.

Figure 8.10 illustrates an offset articulated manipulator.

(a) Determine the forward kinematics of the manipulator.



8. Velocity Kinematics 481

3θ

2θ

1θ

z2

z3
z0 x2

l3

l1

x0

y0

z1

x1
l 2

P

x3

0dP

d1

FIGURE 8.10. An offset articulated manipulator.

(b) Determine the global coordinates of the tip point P .

(c) Determine the Jacobian of the manipulator, using direct differ-
entiating.

(d) Determine the Jacobian of the manipulator, using generating
vectors.

(e) Determine the inverse Jacobian matrix to solve the inverse ve-
locity kinematics.

10. Articulated robots.

Attach the spherical wrist of Exercise 22 to the articulated manipu-
lator of Figure 8.10 and make a 6 DOF articulated robot. Determine
the Jacobian of the robot, using generating vectors.

11. Spherical robots.

Attach the spherical wrist of Exercise 22 to the spherical manipulator
of Exercise 18 and make a 6 DOF spherical robot. Determine the
Jacobian of the robot, using generating vectors.

12. Cylindrical robots.

Attach the spherical wrist of Exercise 22 to the cylindrical manipu-
lator of Exercise 20 and make a 6 DOF cylindrical robot. Determine
the Jacobian of the robot, using generating vectors.
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FIGURE 8.11. A SCARA robot.

13. SCARA robot inverse velocity kinematics.

Figure 8.11 illustrates a SCARA robot.

(a) Determine the coordinates of the origin of B4 in G ≡ B0.

(b) Determine the Jacobian of the manipulator, using direct differ-
entiating.

(c) Determine the Jacobian of the manipulator, using generating
vectors.

(d) Determine the inverse Jacobian matrix to solve the inverse ve-
locity kinematics.

14. F SCARA robot with B0 on the ground.

Figure 8.12 illustrates a SCARA robot.

(a) Determine the coordinates of the origin of B4 in G ≡ B0.

(b) Determine the Jacobian of the manipulator, using direct differ-
entiating.

(c) Determine the Jacobian of the manipulator, using generating
vectors.

(d) Determine the inverse Jacobian matrix to solve the inverse ve-
locity kinematics.
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FIGURE 8.12. A SCARA robot with B0 on the ground.

15. Rigid link velocity.

Figure 8.13 illustrates the coordinate frames and velocity vectors of
a rigid link (i). Find

(a) velocity 0vi of the link at Ci in terms of ḋi and ḋi−1

(b) angular velocity of the link 0ωi in terms of ḋi and ḋi−1

(c) velocity 0vi of the link at Ci in terms of proximal joint i velocity

(d) velocity 0vi of the link at Ci in terms of distal joint i+1 velocity

(e) velocity of proximal joint i in terms of distal joint i+1 velocity

(f) velocity of distal joint i+1 in terms of proximal joint i velocity

16. F Jacobian of a PRRR manipulator.

Determine the Jacobian matrix for the manipulator shown in Figure
6.14.

17. F Spherical robot velocity kinematics.

A spherical manipulator R`R`P, equipped with a spherical wrist, is
shown in Figure 5.43. The transformation matrices of the robot are
given in Example 169. Find the Jacobian matrix of the robot.

18. F Space station remote manipulator system velocity kinematics.
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FIGURE 8.13. Rigid link velocity vectors.

The transformation matrices for the shuttle remote manipulator sys-
tem (SRMS), shown in Figure 5.24, are given in the Example 159.
Solve the velocity kinematics of the SRMS by calculating the Jaco-
bian matrix.
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Numerical Methods in
Kinematics
By increasing the number of links, the analytic calculation in robotics be-
comes a tedious task and numerical calculations are needed. We review the
most frequent needed numerical analysis in robotics.

9.1 Linear Algebraic Equations

In robotic analysis, there exist problems and situations, such as inverse
kinematics, that we need to solve a set of coupled linear or nonlinear al-
gebraic equations. Every numerical method of solving nonlinear equations
also works by iteratively solving a set of linear equations.
Consider a system of n linear algebraic equations with real constant

coefficients,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · = · · ·
an1x1 + an2x2 + · · ·+ annxn = bn (9.1)

which can also be written in matrix form

[A]x = b. (9.2)

There are numerous methods for solving this set of equations. Among the
most efficient methods is the LU factorization method.
For every nonsingular matrix [A] there exists an upper triangular matrix

[U ] with nonzero diagonal elements and a lower triangular matrix [L] with
unit diagonal elements, such that

[A] = [L] [U ] (9.3)

[A] =

⎡⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

⎤⎥⎥⎦ (9.4)

[L] =

⎡⎢⎢⎣
1 0 · · · 0
l21 1 · · · 0
· · · · · · · · · · · ·
ln1 ln2 · · · 1

⎤⎥⎥⎦ (9.5)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_9,  
© Springer Science+Business Media, LLC 2010 
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[U ] =

⎡⎢⎢⎣
u11 u12 · · · u1n
0 u22 · · · u2n
· · · · · · · · · · · ·
0 0 · · · unn

⎤⎥⎥⎦ . (9.6)

The process of factoring [A] into [L] [U ] is called LU factorization. Once
the [L] and [U ] matrices are obtained, the equation

[L] [U ]x = b (9.7)

can be solved by transforming into

[L]y = b (9.8)

and
[U ]x = y. (9.9)

Equations (9.8) and (9.9) are both a triangular set of equations and their
solutions are easy to obtain by forward and backward substitution.

Proof. To show how [A] can be transformed into [L] [U ], we consider a
4× 4 matrix.⎡⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

⎤⎥⎥⎦
⎡⎢⎢⎣

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

⎤⎥⎥⎦
(9.10)

Employing a dummy matrix [B], we may combine the elements of [L] and
[U ] as

[B] =

⎡⎢⎢⎣
u11 u12 u13 u14
l21 u22 u23 u24
l31 l32 u33 u34
l41 l42 l43 u44

⎤⎥⎥⎦ . (9.11)

The elements of [B] will be calculated one by one, in the following order:

[B] =

⎡⎢⎢⎣
(1) (2) (3) (4)
(5) (8) (9) (10)
(6) (11) (13) (14)
(7) (12) (15) (16)

⎤⎥⎥⎦ (9.12)

The process for generating a matrix [B], associated to an n× n matrix
[A], is performed in n− 1 iterations. After i− 1 iterations, the matrix is in
the following form:

[B] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 · · · u1,i−1 · · · · · · u1,n
l2,1 u2,2 · · · · · · · · · · · · u2,n
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ui−1,n
· · · · · · · · · · · · d e
· · · · · · · · · · · · | Di |
ln,1 ln,2 · · · ln,i−1 b c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.13)



9. Numerical Methods in Kinematics 487

The unprocessed (n− i+1)×(n− i+1) submatrix in the lower right corner
is denoted by [Di] and has the same elements as [A]. In the ith step, the
LU factorization method converts [Di]

[Di] =

∙
dii rTi
si [Hi+1]

¸
(9.14)

to a new form

[Di] =

∙
uii uTi
li [Di+1]

¸
. (9.15)

Direct multiplication shows that

u11 = a11 u12 = a12 u13 = a13 u14 = a14 (9.16)

l21 =
a21
u11

l31 =
a31
u11

l41 =
a41
u11

(9.17)

u22 = a22 − l21u12 u23 = a23 − l21u13 u24 = a24 − l21u14 (9.18)

l32 =
a32 − l31u12

u22
l42 =

a42 − l41u12
u22

(9.19)

u33 = a33 − (l31u13 + l32u23) u34 = a34 − (l31u14 + l32u24) (9.20)

l43 =
a43 − (l41u13 + l42u23)

u33
(9.21)

u44 = a44 − (l41u14 + l42u24 + l43u34) . (9.22)

Therefore, the general formula for getting elements of [L] and [U ] corre-
sponding to an n× n coefficients matrix [A] can be written as

uij = aij −
i−1X
k=1

likukj i ≤ j j = 1, · · ·n (9.23)

lij =

aij −
j−1P
k=1

likukj

ujj
j ≤ i i = 1, · · ·n. (9.24)

For i = 1, the rule for u reduces to

u1j = a1j (9.25)

and for j = 1, the rule for l reduces to

li1 =
ai1
u11

. (9.26)

The calculation of element (k) of the dummy matrix [B], which is an
element of [L] or [U ], involves only the elements of [A] in the same position
and some previously calculated elements of [B].
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The LU factorization technique can be set up in an algorithm for easier
numerical calculations.

Algorithm 9.1. LU factorization technique for an n× n matrix [A].
1- Set the initial counter i = 1.
2 - Set [D1] = [A].
3- Calculate [Di+1] from [Di] according to

uii = dii (9.27)

uTi = rTi (9.28)

li =
1

uii
si (9.29)

[Di+1] = [Hi+1]− li uTi . (9.30)

4- Set i = i+ 1. If i = n then LU factorization is completed. Otherwise
return to step 3.

After decomposing the matrix [A] into the matrices [L] and [U ], the set
of equations can be solved based on the following algorithm.

Algorithm 9.2. LU solution technique.
1- Calculate y from [L]y = b by

y1 = b1

y2 = b2 − y1l21

y3 = b3 − y1l31 − y2l32

· · ·

yi = bi −
i−1X
j=1

yjlij . (9.31)

2- Calculate x from [U ]x = y by

xn =
yn
un,n

xn−1 =
yn−1 − xnun−1,n

un−1,n−1
· · ·

xi =
1

uii

⎛⎝yi −
nX

j=i+1

xjuij

⎞⎠ . (9.32)
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Example 257 Solution of a set of four equations.
Consider a set of four linear algebraic equations

[A]x = b (9.33)

where,

[A] =

⎡⎢⎢⎣
2 1 3 −3
1 0 −1 −2
0 2 2 1
3 1 0 −2

⎤⎥⎥⎦ (9.34)

and

b =

⎡⎢⎢⎣
1
2
0
−2

⎤⎥⎥⎦ . (9.35)

Following the LU factorization algorithm we first set

i = 1 [D1] = [A] (9.36)

to find
d11 = 2 rT1 =

£
1 3 −3

¤
(9.37)

s1 =

⎡⎣ 1
0
3

⎤⎦ [H2] =

⎡⎣ 0 −1 −2
2 2 1
1 0 −2

⎤⎦ (9.38)

and calculate

u11 = d11 = 2 (9.39)

uT1 = rT1 =
£
1 3 −3

¤
l1 =

1

u11
s1 =

⎡⎣ 1
2
0
3
2

⎤⎦ (9.40)

[D2] = [H2]− l1 uT1 =

⎡⎣ −12 −52 −12
2 2 1
−12 −92

5
2

⎤⎦ . (9.41)

In the second step we have
i = 2 (9.42)

and
d22 = −

1

2
rT2 =

£
− 52 −12

¤
(9.43)

s2 =

∙
2
− 12

¸
[H3] =

∙
2 1
−92

5
2

¸
(9.44)

and calculate
u22 = d22 = −

1

2
(9.45)
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uT2 = r
T
2 =

£
−52 −12

¤
l2 =

1

u22
s2 =

∙
−4
1

¸
(9.46)

[D3] = [H3]− l2 uT2 =
∙
−8 −1
−2 3

¸
. (9.47)

In the third step we set
i = 3 (9.48)

and find
d33 = −8 rT3 = [−1] (9.49)

s3 = [−2] [H4] = [3] (9.50)

and therefore,
u33 = d33 = −8 (9.51)

uT3 = r
T
3 = [−1] l3 =

1

u33
s3 =

∙
1

4

¸
(9.52)

[D4] = [H4]− l3 uT3 =
∙
13

4

¸
. (9.53)

After these calculations, the matrix [B], [L], and [U ] become

[B] =

⎡⎢⎢⎣
2 1 3 −3
1
2 −12 −52 −12
0 4 −8 −1
3
2 1 1

4
13
4

⎤⎥⎥⎦ (9.54)

[L] =

⎡⎢⎢⎣
1 0 0 0
1
2 1 0 0
0 −4 1 0
3
2 1 1

4 1

⎤⎥⎥⎦ (9.55)

[U ] =

⎡⎢⎢⎣
2 1 3 −3
0 −12 −52 −12
0 0 −8 −1
0 0 0 13

4

⎤⎥⎥⎦ . (9.56)

Now a vector y can be found to satisfy

[L]y = b (9.57)

y =

⎡⎢⎢⎣
1
3/2
6

−13/2

⎤⎥⎥⎦ (9.58)

and finally the unknown vector x should be found to satisfy

[U ]x = y (9.59)
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x =

⎡⎢⎢⎣
−5/2
3/2
−1/2
−2

⎤⎥⎥⎦ . (9.60)

Example 258 LU factorization with pivoting.
In the process of LU factorization, the situation uii = 0 generates a

division by zero, which must be avoided. In this situation, pivoting must be
applied. By pivoting, we change the order of equations to have a coefficient
matrix with the largest elements, in absolute value, as diagonal elements.
The largest element is called the pivot element.
As an example, consider the following set of equations:

[A]x = b (9.61)⎡⎢⎢⎣
2 1 3 −3
1 0 −1 2
0 2 0 1
3 1 4 −2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2
0
−2

⎤⎥⎥⎦ (9.62)

however, we move the largest element to d11 by interchanging row 1 with
4, and column 1 with 3.⎡⎢⎢⎣

3 1 4 −2
1 0 −1 2
0 2 0 1
2 1 3 −3

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
2
0
1

⎤⎥⎥⎦ (9.63)

⎡⎢⎢⎣
4 1 3 −2
−1 0 1 2
0 2 0 1
3 1 2 −3

⎤⎥⎥⎦
⎡⎢⎢⎣

x3
x2
x1
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
2
0
1

⎤⎥⎥⎦ (9.64)

Then the largest element in the 3 × 3 submatrix in the lower right corner
will move to d22 ⎡⎢⎢⎣

4 −2 3 1
−1 2 1 0
0 1 0 2
3 −3 2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x3
x4
x1
x2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
2
0
1

⎤⎥⎥⎦ (9.65)

⎡⎢⎢⎣
4 −2 3 1
3 −3 2 1
0 1 0 2
−1 2 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

x3
x4
x1
x2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
1
0
2

⎤⎥⎥⎦ (9.66)

and finally the largest element in the 2 × 2 in the lower right corner will
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move to d22. ⎡⎢⎢⎣
4 −2 1 3
3 −3 1 2
0 1 2 0
−1 2 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x3
x4
x2
x1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
1
0
2

⎤⎥⎥⎦ (9.67)

To apply the LU factorization algorithm and LU solution algorithm, we
define a new set of equations.

[A0]x0 = b0 (9.68)⎡⎢⎢⎣
4 −2 1 3
3 −3 1 2
0 1 2 0
−1 2 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

x01
x02
x03
x04

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−2
1
0
2

⎤⎥⎥⎦ (9.69)

Based on the LU factorization algorithm, in the first step we set

i = 1 (9.70)

and find
[D1] = [A

0] d11 = 4 rT1 =
£
−2 1 3

¤
(9.71)

s1 =

⎡⎣ 3
0
−1

⎤⎦ [H2] =

⎡⎣ −3 1 2
1 2 0
2 0 1

⎤⎦ (9.72)

to calculate

u11 = d11 = 4 uT1 = r
T
1 =

£
−2 1 3

¤
(9.73)

l1 =
1

u11
s1 =

⎡⎣ 3
4
0
−14

⎤⎦ (9.74)

[D2] = [H2]− l1 uT1 =

⎡⎣ −32 1
4 −14

1 2 0
3
2

1
4

7
4

⎤⎦ . (9.75)

For the second step, we have

i = 2 (9.76)

and

d22 = −
3

2
rT2 =

£
1
4 −14

¤
(9.77)

s2 =

∙
1
3
2

¸
[H3] =

∙
2 0
1
4

7
4

¸
(9.78)
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and then

u22 = d22 = −
3

2
(9.79)

uT2 = r
T
2 =

£
1
4 −14

¤
l2 =

1

u22
s2 =

∙
−23
−1

¸
(9.80)

[D3] = [H3]− l2 uT2 =
∙

13
6 −16
1
2

3
2

¸
. (9.81)

In the third step, we set
i = 3 (9.82)

and find

d33 =
13

6
rT3 =

∙
−1
6

¸
(9.83)

s3 =

∙
1

2

¸
[H4] =

∙
3

2

¸
(9.84)

and calculate

u33 = d33 =
13

6
(9.85)

uT3 = r
T
3 =

∙
−1
6

¸
l3 =

1

u33
s3 =

∙
3

13

¸
(9.86)

[D4] = [H4]− l3 uT3 =
∙
20

13

¸
. (9.87)

Therefore, the matrices [L] and [U ] are

[L] =

⎡⎢⎢⎣
1 0 0 0
3
4 1 0 0
0 −23 1 0
−14 −1 3

13 1

⎤⎥⎥⎦ (9.88)

[U ] =

⎡⎢⎢⎣
4 −2 1 3
0 −32

1
4 −14

0 0 13
6 −16

0 0 0 20
13

⎤⎥⎥⎦ (9.89)

and now we can find the vector y

[L]y = b0 (9.90)

y =

⎡⎢⎢⎣
−2
5/2
5/3
47/13

⎤⎥⎥⎦ . (9.91)
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The unknown vector x0 can then be calculated,

[U ]x0 = y (9.92)

x0 =

⎡⎢⎢⎣
−69/29
−19/10
19/20
47/20

⎤⎥⎥⎦ =
⎡⎢⎢⎣

x3
x4
x2
x1

⎤⎥⎥⎦ (9.93)

and therefore,

x =

⎡⎢⎢⎣
47/20
19/20
−69/20
−19/10

⎤⎥⎥⎦ . (9.94)

Example 259 F Uniqueness of solution.
Consider a set of n linear equations, [A]x = b. If [A] is square and non-

singular, then there exists a unique solution x = [A]−1 b. However, if the
linear system of equations involves n variables and m equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · = · · ·
am1x1 + am2x2 + · · ·+ amnxn = bm (9.95)

then, three classes of solutions are possible.

1. A unique solution exists and the system is called consistent.

2. No solution exists and the system is called inconsistent.

3. Multiple solutions exist and the system is called undetermined.

Example 260 F Ill conditioned and well conditioned.
A system of equations, [A]x = b, is considered to be well conditioned

if a small change in [A] or b results in a small change in the solution vector
x. A system of equations, [A]x = b, is considered to be ill conditioned if
a small change in [A] or b results in a big change in the solution vector x.
The system of equations is ill conditioned when [A] has rows or columns so
nearly dependent on each other.
Consider the following set of equations:

[A]x = b∙
2 3.99
1 2

¸ ∙
x1
x2

¸
=

∙
1.99
1

¸
(9.96)

The solution of this set of equations is∙
x1
x2

¸
=

∙
−1.0
1.0

¸
. (9.97)
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Let’s make a small change in the b vector∙
2 3.99
1 2

¸ ∙
x1
x2

¸
=

∙
1.98
1.01

¸
(9.98)

and see how the solution will change.∙
x1
x2

¸
=

∙
−6.99
4.0

¸
(9.99)

Now we make a small change in [A] matrix∙
2.01 3.98
0.99 2.01

¸ ∙
x1
x2

¸
=

∙
1.99
1

¸
(9.100)

and solve the equations ∙
x1
x2

¸
=

∙
0.1988
0.3993

¸
. (9.101)

Therefore, the set of equations (9.96) is ill conditioned and is sensitive to
perturbation in [A] and b. However, the set of equations∙

2 3
1 2

¸ ∙
x1
x2

¸
=

∙
1
1

¸
(9.102)

is well conditioned because small changes in [A] or b cannot change the
solution drastically.
The sensitivity of the solution x to small perturbations in [A] and b is

measured in terms of the condition number of [A] by

k4xk
kxk ≤ con (A)

k4Ak
kAk (9.103)

where
con (A) =

°°A−1°° kAk . (9.104)

and kAk is a norm of [A]. If con (A) = 1. Then [A] is called perfectly
conditioned. The matrix [A] is well conditioned if con (A) < 1 and it is ill
conditioned if con (A) > 1. In fact, the relative change in the norm of the
coefficient matrix, [A], can be amplified by con (A) to make the upper limit
of the relative change in the norm of the solution vector x.

Proof. Start with a set of equations

[A]x = b (9.105)

and change the matrix [A] to [A0]. Then the solution x will change to x0

such that
[A0]x0 = b. (9.106)
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Therefore,
[A]x = [A0]x0 = ([A] +4A) (x+4x) (9.107)

where

4A = [A0]− [A] (9.108)

4x = x0 − x. (9.109)

Expanding (9.107)

[A]x = [A]x+ [A]4x+4A (x+4x) (9.110)

and simplifying
4x = −A−14A (x+4x) (9.111)

shows that
k4xk ≤

°°A−1°° k4Ak kx+4xk . (9.112)

Multiplying both sides of (9.112) by the norm kAk leads to Equation (9.103).

Example 261 F Norm of a matrix.
The norm of a matrix is a scalar positive number, and is defined for

every kind of matrices including square, rectangular, invertible, and non-
invertible. There are several definitions for the norm of a matrix. The most
important ones are

kAk1 = Max
1≤j≤n

nX
i=1

|aij | (9.113)

kAk2 = λMax

¡
ATA

¢
(9.114)

kAk∞ = Max
1≤i≤n

nX
j=1

|aij | (9.115)

kAkF =
nX
i=1

nX
j=1

a2ij . (9.116)

The norm-infinity, kAk∞, is the one we accept to calculate the con (A) in
Equation (9.104). The norm-infinity, kAk∞, is also called the row sum
norm and uniform norm. To calculate kAk∞, we find the sum of the
absolute of the elements of each row of the matrix [A] and pick the largest
sum.
As an example, the norm of

[A] =

⎡⎣ 1 3 −3
−1 −1 2
2 4 −2

⎤⎦ (9.117)
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is

kAk∞ = Max
1≤i≤n

nX
j=1

|aij |

= Max {(|1|+ |3|+ |−3|) , (|−1|+ |−1|+ |2|) , (|2|+ |4|+ |−2|)}
= Max {7, 4, 8}
= 8. (9.118)

We may check the following relations between norms of matrices.

k[A] + [B]k ≤ k[A]k+ k[B]k (9.119)

k[A] [B]k ≤ k[A]k k[B]k (9.120)

9.2 Matrix Inversion

There are numerous techniques for matrix inversion. However the method
based on the LU factorization can simplify our numerical calculations since
we have already applied the method for solving a set of linear algebraic
equations.
Assume a matrix [A] could be decomposed into

[A] = [L] [U ] (9.121)

where

[A] =

⎡⎢⎢⎣
a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann

⎤⎥⎥⎦ (9.122)

[L] =

⎡⎢⎢⎣
1 0 · · · 0
l21 1 · · · 0
· · · · · · · · · · · ·
ln1 ln2 · · · 1

⎤⎥⎥⎦ (9.123)

[U ] =

⎡⎢⎢⎣
u11 u12 · · · u1n
0 u22 · · · u2n
· · · · · · · · · · · ·
0 0 · · · unn

⎤⎥⎥⎦ (9.124)

then its inverse would be

[A]−1 = [U ]−1 [L]−1 . (9.125)
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Proof. Because [L] and [U ] are triangular matrices, their inverses are also
triangular. The elements of the matrix [M ]

[M ] = [L]−1 =

⎡⎢⎢⎣
1 0 · · · 0

m21 1 · · · 0
· · · · · · · · · · · ·
mn1 mn2 · · · 1

⎤⎥⎥⎦ (9.126)

are

mij = −lij −
i−1X

k=j+1

likmkj j < i i = 2, 3, · · ·n− 1 (9.127)

and the elements of the matrix [V ]

[V ] = [U ]
−1
=

⎡⎢⎢⎣
v11 v12 v13 v14
0 v22 v23 v24
0 0 v33 v34
0 0 0 v44

⎤⎥⎥⎦ (9.128)

are

vij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

uij
j = i i = n, n− 1, · · · , 1

−1
uii

jX
k=i+1

uikvkj j ≥ i i = n− 1, · · · , 2.
(9.129)

Example 262 Solution of a set of equations by matrix inversion.
Consider a set of four linear algebraic equations.

[A]x = b (9.130)⎡⎢⎢⎣
2 1 3 −3
1 0 −1 −2
0 2 2 1
3 1 0 −2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
2
0
−2

⎤⎥⎥⎦ (9.131)

Following the LU factorization algorithm, we can decompose the coefficient
matrix to

[A] = [L] [U ] (9.132)

where

[L] =

⎡⎢⎢⎣
1 0 0 0
1
2 1 0 0
0 −4 1 0
3
2 1 1

4 1

⎤⎥⎥⎦ [U ] =

⎡⎢⎢⎣
2 1 3 −3
0 −12 −52 −12
0 0 −8 −1
0 0 0 13

4

⎤⎥⎥⎦ . (9.133)
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The inverse of matrices [L] and [U ] are

[L]
−1
=

⎡⎢⎢⎣
1 0 0 0
−12 1 0 0
−2 4 1 0
−12 −2 −14 1

⎤⎥⎥⎦ [U ]
−1
=

⎡⎢⎢⎣
1
2 1 − 18

15
26

0 −2 5
8 − 3

26
0 0 − 18 − 1

26
0 0 0 4

13

⎤⎥⎥⎦
(9.134)

and therefore the solution of the equations is:

x = [U ]
−1
[L]
−1
b =

⎡⎢⎢⎣
−52
3
2
−12
−2

⎤⎥⎥⎦ (9.135)

Example 263 F LU factorization method compared to other methods.
Every nonsingular matrix [A] can be decomposed into lower and upper

triangular matrices [A] = [L] [U ]. Then, the solution of a set of equations
[A]x = b is equivalent to

[L] [U ]x = b. (9.136)

Multiplying both sides by L−1 shows that

[U ]x = [L]
−1
b (9.137)

and the problem is broken into two new sets of equations

[L]y = b (9.138)

and
[U ]x = y. (9.139)

The computational time required to decompose [A] into [L] [U ] is propor-
tional to n3/3, where n is the number of equations. Then, the computational
time for solving each set of [L]y = b and [U ]x = y is proportional to
n2/2. Therefore, the total computational time for solving a set of equations
by the LU factorization method is proportional to n2+ n3/3. However, the
Gaussian elimination method takes a computational time proportional to
n2/2 + n3/3, forward elimination takes a time proportional to n3/3, and
back substitution takes a time proportional to n2/2.
On the other hand, the total computational time required to inverse a ma-

trix using the LU factorization method is proportional to 4n3/3. However,
the Gaussian elimination method needs n4/3 + n3/2, and

n4

3
+

n3

2
>
4n3

3
n > 2. (9.140)

Figure 9.1 depicts a plot of the function G−LU = n4

3 +
n3

2 −
4n3

3 and shows
how fast the number of calculations for the Gaussian elimination, compared
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G
-L

U

n

FIGURE 9.1. The number of calculations for the Gaussian elimination subtracted
by the LU factorization methods, as a function of the size of the matrix.

to the LU factorization methods, increases. As an example, for a 6 × 6
matrix inversion, we need 540 calculations for the Gaussian elimination
method, compared to 288 calculations for the LU factorization method.

Example 264 F Partitioning inverse method.
Assume that a matrix [T ] can be partitioned into

[T ] =

∙
A B
C D

¸
(9.141)

then, T−1 can be calculated by

T−1 =

∙
E F
G H

¸
(9.142)

where

[E] =
£
A−BD−1

¤−1
(9.143)

[H] =
£
D − CA−1B

¤−1
(9.144)

[F ] = −A−1BH (9.145)

[G] = −D−1CE. (9.146)

Sometimes, it is a shortcut inverse method.

Example 265 F Analytic inversion method.
If the n × n matrix [A] = [aij ] is non-singular, that is det(A) 6= 0, we

may compute the inverse, A−1, by dividing the adjoint matrix Aa by the
determinant of [A].

A−1 =
Aa

det(A)
(9.147)



9. Numerical Methods in Kinematics 501

The adjoint or adjugate matrix of the matrix [A], is the transpose of
the cofactor matrix of [A].

Aa = AcT (9.148)

The cofactor matrix, denoted by Ac, for a matrix [A], is made of the
matrix [A] by replacing each of its elements by its cofactor. The cofactor
associated with the element aij is defined by

Ac
ij = (−1)

i+j
Aij (9.149)

where Aij is the ij-minor of [A]. Associated with each element aij of the
matrix T , there exists a minor Aij which is a number equal to the value
of the determinant of the submatrix obtained by deleting row i and column
j of the matrix [A].
The determinant of [A] is calculated by

det (A) =
nX
j=1

aijA
c
ij . (9.150)

Therefore, if

[A] =

⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ (9.151)

then the elements of adjoint matrix Aa are

Aa
11 = Ac

11 = (−1)
2

¯̄̄̄
a22 a23
a32 a33

¯̄̄̄
(9.152)

Aa
21 = Ac

12 = (−1)
3

¯̄̄̄
a21 a23
a31 a33

¯̄̄̄
(9.153)

...

Aa
33 = Ac

33 = (−1)
6

¯̄̄̄
a11 a12
a21 a22

¯̄̄̄
. (9.154)

and the determinant of [A] is

det (A) = a11a22a33 − a11a23a32 − a12a21a33

+a12a31a23 + a21a13a32 − a13a22a31. (9.155)

As an example, consider a 3× 3 matrix as below

[A] =

⎡⎣ 3 4 8
7 2 5
9 6 1

⎤⎦ . (9.156)
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The associated adjoint matrix for [A] is

Aa = AcT =

⎡⎣ −28 38 24
44 −69 18
4 41 −22

⎤⎦T =
⎡⎣ −28 44 4

38 −69 41
24 18 −22

⎤⎦ (9.157)

and the determinant of [A] is

det [A] = 260 (9.158)

and therefore,

[A]
−1
=

Aa

det(A)
=

⎡⎢⎣ −
7
65

11
65

1
65

19
130 − 69

260
41
260

6
65

9
130 − 11

130

⎤⎥⎦ . (9.159)

Example 266 F Cayley-Hamilton matrix inversion.
The Cayley-Hamilton theorem says: Every non-singular matrix satisfies

its own characteristic equation. The characteristic equation of an n × n
matrix [A] = [aij ] is

det (A− λI) = |A− λI|
= P (λ) = λn + an−1λ

n−1 + · · ·+ a1λ+ a0 = 0. (9.160)

Hence, the characteristic equation of an n × n matrix is a polynomial of
degree n. Based on the Cayley-Hamilton theorem, we have

P (A) = An + an−1A
n−1 + · · ·+ a1A+ a0 = 0. (9.161)

Multiplying both sides of this polynomial by A−1 and solving for A−1 pro-
vides

A−1 = − 1
a0

£
An−1 + an−1A

n−2 + · · ·+ a2A+ a1I
¤
. (9.162)

Therefore, if

[A] =

⎡⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎦ (9.163)

and

det (A) =
nX
j=1

aijA
c
ij (9.164)

then the characteristic equation of [A] is

P (λ) = det (A− λI) = λ3 + (−a11 − a22 − a33)λ
2

+(a11a22 − a12a21 + a11a33 − a13a31 + a22a33 − a23a32)λ

+a11a23a32 + a12a21a33 + a13a22a31

−a11a22a33 − a12a31a23 − a21a13a32. (9.165)
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As an example, consider a 3× 3 matrix

[A] =

⎡⎣ 1 2 3
4 6 7
5 8 9

⎤⎦ (9.166)

with following characteristic equation:

λ3 − 16λ2 − 10λ− 2 = 0. (9.167)

Because [A] satisfies its own characteristic equation, we have

A3 − 16A2 − 10A− 2 = 0. (9.168)

Multiplying both sides by A−1

A−1A3 − 16A−1A2 − 10A−1A = 2A−1 (9.169)

provides the inverse matrix.

A−1 =
1

2

¡
A2 − 16A− 10I

¢
=

1

2

⎡⎢⎣
⎡⎣ 1 2 3
4 6 7
5 8 9

⎤⎦2 − 16
⎡⎣ 1 2 3
4 6 7
5 8 9

⎤⎦− 10
⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦
⎤⎥⎦

=

⎡⎣ −1 3 −2
−12 −3 5

2
1 1 −1

⎤⎦ (9.170)

9.3 Nonlinear Algebraic Equations

Inverse kinematic problem ends up to a set of nonlinear coupled algebraic
equations. Consider a set of nonlinear algebraic equations

f(q) = 0 (9.171)

or
f1(q1, q2, · · · , qn) = 0
f2(q1, q2, · · · , qn) = 0

· · ·
fn(q1, q2, · · · , qn) = 0

(9.172)

where the function and variable vectors are:

f =

⎡⎢⎢⎣
f1(q)
f2(q)
· · ·

fn(q)

⎤⎥⎥⎦ q =

⎡⎢⎢⎣
q1
q2
· · ·
qn

⎤⎥⎥⎦ (9.173)
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To solve the set of equations (9.171), we begin with a guess solution vector
q(0), and employ the following iteration formula to search for a better
solution

q(i+1) = q(i) − J−1(q(i)) f(q(i)) (9.174)

where J−1(q(i)) is the Jacobian matrix of the system of equations evaluated
at q = q(i).

[J] =

∙
∂fi
∂qj

¸
(9.175)

Utilizing the iteration formula (9.174), we can approach an exact solution
as desired. The iteration method based on a guess solution is called Newton-
Raphson method, which is the most common method for solving a set of
nonlinear algebraic equations.
A set of nonlinear equations usually has multiple solutions and the main

disadvantage of the Newton-Raphson method for solving a set of nonlinear
equations is that the solution may not be the solution of interest. The solu-
tion that the method will provide depends highly on the initial estimation.
Hence, having a correct estimate helps to detect the proper solution.

Proof. Let us define the increment δ(i) as

δ(i) = q(i+1) − q(i) (9.176)

and expand the set of equations around q(i+1)

f(q(i+1)) = f(q(i)) + J(q(i)) δ(i). (9.177)

Assume that q(i+1) is the exact solution of Equation (9.171). Therefore,
f(q

(i+1)
) = 0 and we may use

J(q(i)) δ(i) = −f(q(i)) (9.178)

to find the increment δ(i)

δ(i) = −J−1(q(i)) f(q(i)) (9.179)

and determine the solution

q(i+1) = q(i) + δ(i)

= q(i) − J−1(q(i)) f(q(i)). (9.180)

The Newton-Raphson iteration method can be set up as an algorithm
for better application.

Algorithm 9.3. Newton-Raphson iteration method for f(q) = 0.

1. Set the initial counter i = 0.
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2. Evaluate an estimate solution q = q(i).

3. Calculate the Jacobian matrix [J] =
h
∂fi
∂qj

i
at q = q(i).

4. Solve for δ(i) from the set of linear equations J(q(i)) δ(i) = −f(q(i)).

5. If
¯̄̄
δ(i)

¯̄̄
< ², where ² is an arbitrary tolerance then, q(i) is the solu-

tion. Otherwise calculate q(i+1) = q(i) + δ(i).

6. Set i = i+ 1 and return to step 3.

Example 267 Inverse kinematics problem for a 2R planar robot.
The endpoint of a 2R planar manipulator can be described by two non-

linear algebraic equations.∙
f1 (θ1, θ2)
f2 (θ1, θ2)

¸
=

∙
l1 cos θ1 + l2 cos (θ1 + θ2)−X
l1 sin θ1 + l2 sin (θ1 + θ2)− Y

¸
= 0 (9.181)

Assuming
l1 = l2 = 1 (9.182)

and the endpoint is at ∙
X
Y

¸
=

∙
1
1

¸
(9.183)

we are looking for the associated variables

θ =

∙
θ1
θ2

¸
(9.184)

that provide the desired position of the endpoint. Due to simplicity of the
system of equations, the Jacobian of the equations and its inverse can be
found in closed form.

J(θ) =

∙
∂fi
∂θj

¸
=

⎡⎢⎢⎣
∂f1
∂θ1

∂f1
∂θ2

∂f2
∂θ1

∂f2
∂θ2

⎤⎥⎥⎦
=

∙
−l1 sin θ1 − l2 sin (θ1 + θ2) −l2 sin (θ1 + θ2)
l1 cos θ1 + l2 cos (θ1 + θ2) l2 cos (θ1 + θ2)

¸
(9.185)

J−1 =
−1

l1l2sθ2

∙
−l2c (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l1sθ1 + l2s (θ1 + θ2)

¸
(9.186)

The Newton-Raphson iteration algorithm may now be started by setting
i = 0 and evaluating an estimate solution.

q(0) =

∙
θ1
θ2

¸(0)
=

∙
π/3
−π/3

¸
(9.187)
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Therefore,

J(
π

3
,
π

3
) =

∙
−
√
3 −12

√
3

0 −12

¸
(9.188)

f(
π

3
,
π

3
) =

∙
−1√
3− 1

¸
(9.189)

δ(0) = −J−1(θ(0)) f(θ(0)) =
∙
−1.3094
1.4641

¸
(9.190)

and a better solution is:∙
θ1
θ2

¸(1)
=

∙
π/3
π/3

¸
+

∙
−1.3094
1.4641

¸
=

∙
−0.2622
2.5113

¸
(9.191)

In the next iterations we find∙
θ1
θ2

¸(2)
=

∙
−0.2622
2.5113

¸
+

∙
−.06952
−.80337

¸
=

∙
−0.3317
1.7079

¸
(9.192)∙

θ1
θ2

¸(3)
=

∙
−0.3317
1.7079

¸
+

∙
.31414
−.068348

¸
=

∙
−0.0176
1.63958

¸
(9.193)

∙
θ1
θ2

¸(4)
=

∙
−0.0176
1.63958

¸
+

∙
.016275
−.06739

¸
=

∙
−.0013
1.5722

¸
(9.194)∙

θ1
θ2

¸(5)
=

∙
−.0013
1.5722

¸
+

∙
.1304
−.139

¸
=

∙
−.295× 10−8

1.571

¸
(9.195)

∙
θ1
θ2

¸(6)
=

∙
−.3× 10−8
1.571

¸
+

∙
.29× 10−8
−.85× 10−6

¸
=

∙
−.49× 10−10

1.571

¸
(9.196)∙

θ1
θ2

¸(7)
=

∙
−.49× 10−10

1.571

¸
+

∙
−.41× 10−19
−.2× 10−9

¸
=

∙
−.49× 10−10

1.571

¸
(9.197)

and this answer is close enough to the exact elbow down answer∙
θ1
θ2

¸
=

∙
0

π/2

¸
. (9.198)

Example 268 F Alternative and expanded proof for Newton-Raphson it-
eration method.
Consider the following set of equations in which we are searching for the

exact solutions qj

yi = fi(qj) (9.199)

i = 1, · · · , n
j = 1, · · · ,m
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where j is the number of unknowns and i is the number of equations.
Assume that, for a given yi an approximate solution qFj is available. The

difference between the exact solution qj and the approximate solution qFj is

δj = qj − qFj (9.200)

where the value of equations for the approximate solution qFj is denoted by

Yi = fi(q
F
j ). (9.201)

The iteration method is based on the minimization of δj to make the
solution of

yi = fi(q
F
j + δj) (9.202)

be as close as possible to the exact solution.
A first-order Taylor expansion of this equation is

yi = fi(q
F
j ) +

mX
i=1

∂fi
∂qj

δj +O(δ2j ). (9.203)

We may define
Yi = fi(q

F
j ) (9.204)

and the residual quantity
ri = yi − Yi (9.205)

to write
r = J δ +O(δ2) (9.206)

where J is the Jacobian matrix of the set of equations

J =

∙
∂fi
∂qj

¸
. (9.207)

The method of solution depends on the relative value of m and n. There-
fore, three cases must be considered.
1- m = n
Provided that the Jacobian matrix remains non-singular, the linearized

equation
r = J δq (9.208)

possesses a unique solution, and the Newton-Raphson technique may then
be utilized to solve equation (9.199). The stepwise procedure is illustrated
in figure 9.2.
The effectiveness of the procedure depends on the number of iterations

to be performed, which depends on the initial estimate of qFj and on the
dimension of the Jacobian matrix. Since the solution to nonlinear equations
is not unique, it may generate different sets of solutions depending on the
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r(k) <  .

q(0) = q*

k = k+1

r(k) = y – f (q(k))

q=q(k)
Y

r(k) = J d(k)

q(k+1) = q(k) +d (k)

N

ε

δ

δ

FIGURE 9.2. Newton-Raphson iteration method for solving a set of nonlinear
algebraic equations.

initial guess. Furthermore, convergence may not occur if the initial estimate
of the solution falls outside the convergence domain of the algorithm. In this
case, much effort is needed to attain a numerical solution.
2- m < n
This is the overdetermined case for which no solution exists in general,

because the number of unknowns (such as the number of joints in robots)
are not sufficient enough to generate a solution (such as an arbitrary con-
figuration of the end-effector). A solution can, however, be generated that
minimizes an error (such as position error).
Consider the problem

min

Ã
F =

1

2

nX
i=1

wi [yi − fi(qj)]
2

!
(9.209)

or, in matrix form,

min

Ã
F =

1

2

nX
i=1

[y − f(q)]T W [y − f(q)]
!

(9.210)

where
W = diag(w1 · · ·wn) (9.211)

is a set of weighting factors giving a relative importance to each of the
kinematic equations.
The error is minimum when

∂F

∂qj
= −

X
i

∂fj
∂qj

wi [yi − fi(qj)] = 0 (9.212)
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or, in matrix form,
JTW [y − f(q)] = 0. (9.213)

A Taylor expansion of the third factor shows that the linear correction to
an estimated solution qF is

JTW
£
y− f(qF)

¤
− J δ = 0. (9.214)

The correction equation is

JTWJ δ = JTWr (9.215)

where r is the residual vector defined by Equation (9.205).
The weighting factorW is a positive definite diagonal matrix, and there-

fore, the matrix JTWJ is always symmetric and invertible. It provides the
generalized inverse to the Jacobian matrix

J−1 =
£
JTWJ

¤−1
JTW (9.216)

which verifies the property
J−1 J = I. (9.217)

When the Jacobian is revertible, the solution for (9.210) is the solution to
the nonlinear system (9.199).
3- m > n
This is the redundant case for which an infinity of solutions is generally

available. Selection of an appropriate solution can be made under the condi-
tion that it is optimal in some sense. For example, let us find a solution for
(9.199) which minimizes the deviation from a given reference configuration
q(0). The problem may then be formulated as that of finding the minimum
of a constrained function

min

µ
F =

1

2

h
q− q(0)

iT
W
h
q− q(0)

i¶
(9.218)

subject to
y− f(q) = 0. (9.219)

Using the technique of Lagrangian multipliers, problem (9.218) and (9.219)
may be replaced by an equivalent problem

∂G

∂q
= 0 (9.220)

∂G

∂λ
= 0 (9.221)

with the definition of the functional

G(q, λ) =
1

2

h
q− q(0)

iT
W
h
q− q(0)

i
+ λT [y− f(q)] . (9.222)
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It leads to a system of m+ n equations with m+ n unknowns

W
h
q− q(0)

i
− JTλ = 0 (9.223)

y− f(q) = 0. (9.224)

Linearization of equations (9.223) provides the system of equations for
the displacement corrections and variations of Lagrangian multipliers

W δ − JT λ0 = 0 (9.225)

W δ = r (9.226)

where λ0 is the increment of λ.
Substitution of the solution δ obtained from the first equation of (9.223)

into the second one yields

JW−1JT δλ = r (9.227)

or, in terms of the displacement correction

δq =W−1JT
¡
JW−1JT

¢
. (9.228)

The matrix
J+ =W−1JT

¡
JW−1JT

¢−1
(9.229)

has the meaning of a pseudo-inverse to the singular Jacobian matrix J. It
verifies the identity

JJ+ = I (9.230)

and, whenever J is invertible,

J+ = J−1. (9.231)

9.4 F Jacobian Matrix From Link Transformation
Matrices

In robot motion, we need to calculate the Jacobian matrix in a very short
time for every configuration of the robot. The Jacobian matrix of a robot
can be found easier and in an algorithmic way by evaluating columns of
the Jacobian

J =
£
c1 c2 · · · cn

¤
=

∙
0k̃0

0
0dn

0k̃1
0
1dn · · · 0k̃n−1

0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸
(9.232)

=

∙
0k̂0 × 0

0dn
0k̂1 × 0

1dn · · · 0k̂n−1 × 0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸
(9.233)
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where ci is called the Jacobian generating vector

ci =

∙
0k̃i−1

0
i−1dn

0k̂i−1

¸
=

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
(9.234)

and 0k̂i−1 is the vector associated to the skew matrix 0k̃i−1. This method
is solely based on link transformation matrices found in forward kinematics
and does not involve differentiation.
The matrix 0k̃i−1 is

0k̃i−1 =
0Ri−1

i−1k̃i−1
0RT

i−1 (9.235)

which means 0k̂i−1 is a unit vector in the direction of joint axis i in the
global coordinate frame. For a revolute joint, we have

ci =

∙
0k̃i−1

0
i−1dn

0k̂i−1

¸
(9.236)

and for a prismatic joint we have

ci =

∙
0k̂i−1
0

¸
. (9.237)

Proof. Transformation between two coordinate frames

Gr = GTB
Br (9.238)

is based on a transformation matrix that is a combination of rotation matrix
R and the position vector d.

T =

∙
R d
0 1

¸
. (9.239)

Introducing the infinitesimal transformation matrix

δT =

∙
δR δd
0 0

¸
(9.240)

leads to

δT T−1 =

∙ eδθ δv
0 0

¸
(9.241)

where

T−1 =

∙
RT −RT d
0 1

¸
(9.242)

and therefore, eδθ is the matrix of infinitesimal rotations,
eδθ = δR RT =

⎡⎣ 0 −δθz δθy
δθz 0 −δθx
−δθy δθx 0

⎤⎦ (9.243)
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and δv is a vector related to infinitesimal displacements,

δv = δd− eδθd. (9.244)

Let’s define a 6×1 coordinate vector describing the rotational and trans-
lational coordinates of the end-effector

X =

∙
d
θ

¸
(9.245)

which its variation is

δX =

∙
δd
δθ

¸
. (9.246)

The Jacobian matrix J is then a matrix that maps differential joint variables
to differential end-effector motion.

δX =
∂T(q)

∂q
δq = J δq (9.247)

The transformation matrix T , generated in forward kinematics, is a func-
tion of joint coordinates

0Tn = T(q) (9.248)

= 0T1(q1)
1T2(q2)

2T3(q3)
3T4(q4) · · · n−1Tn(qn)

therefore, the infinitesimal transformation matrix is

δT =
nX
i=1

0T1(q1)
1T2(q2) · · ·

δ
¡
i−1Ti

¢
δqi

· · · n−1Tn(qn) · δqi. (9.249)

Interestingly, the partial derivative of the transformation matrix can be
arranged in the form

δ
¡
i−1Ti

¢
δqi

= i−1∆i−1
i−1Ti (9.250)

where according to DH transformation matrix (5.11)

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

⎤⎥⎥⎦
=

∙
i−1Ri

i−1di
0 1

¸
(9.251)

we can find the velocity coefficient matrices matrix ∆i for a revolute joint
to be

i−1∆i−1 = ∆R =

∙
i−1k̃i−1 0
0 0

¸
=

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (9.252)
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and for a prismatic joint to be

i−1∆i−1 = ∆P =

∙
0 i−1k̂i−1
0 0

¸
=

⎡⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ . (9.253)

We may now express each term of (9.249) in the form

0T1(q1)
1T2(q2) · · ·

δ
¡
i−1Ti

¢
δqi

· · · n−1Tn(qn) = Ci T (9.254)

where

Ci =
£
0T1

1T2 · · · i−2Ti−1
¤ δ

¡
i−1Ti

¢
δqi

£
0T1

1T2 · · · i−1Ti
¤−1

=
£
0T1

1T2 · · · i−2Ti−1
¤
i−1∆i−1

i−1Ti
£
0T1

1T2 · · · i−1Ti
¤−1

=
£
0T1

1T2 · · · i−2Ti−1
¤
i−1∆i−1

£
0T1

1T2 · · · i−2Ti−1
¤−1

= 0T1
1T2 · · · i−2Ti−1 i−1∆i−1

i−2T−1i−1 · · · 1T−12 0T−11 . (9.255)

The matrix Ci can be rearranged for a revolute joint, in the form

Ci =

∙
0k̂i−1

0k̃i−1
0dn − 0k̃i−1

0di−1
0 0

¸
(9.256)

and for a prismatic joint in the form

Ci =

∙
0k̂i−1 0
0 0

¸
(9.257)

Ci has six independent terms that can be combined in a 6 × 1 vector.
This vector makes the ith column of the Jacobian matrix and is called the
generating vector ci. The Jacobian generating vector for a revolute joint is

ci =

∙
0k̃i−1

0
i−1dn

0k̂i−1

¸
(9.258)

and for a revolute joint is

ci =

∙
0

0k̂i−1

¸
. (9.259)

The position vector 0di indicated the origin of the coordinate frame Bi in
the base frame B0. Hence, 0

i−1dn indicated the origin of the end-effector
coordinate frame Bn with respect to coordinate frame Bi−1 and expressed
in the base frame B0.
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Therefore, the Jacobian matrix describing the instantaneous kinematics
of the robot can be obtained from

J =

∙
0k̃0

0
0dn

0k̃1
0
1dn · · · 0k̃n−1

0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸
. (9.260)

Example 269 Jacobian matrix for articulated robots.
The forward and inverse kinematics of the articulated robot has been ana-

lyzed in Example 186 with the following individual transformation matrices:

0T1 =

⎡⎢⎢⎣
cθ1 0 sθ1 0
sθ1 0 −cθ1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ 1T2 =

⎡⎢⎢⎣
cθ2 −sθ2 0 l2cθ2
sθ2 cθ2 0 l2sθ2
0 0 1 d2
0 0 0 1

⎤⎥⎥⎦

2T3 =

⎡⎢⎢⎣
cθ3 0 sθ3 0
sθ3 0 −cθ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ 3T4 =

⎡⎢⎢⎣
cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 l3
0 0 0 1

⎤⎥⎥⎦

4T5 =

⎡⎢⎢⎣
cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ 5T6 =

⎡⎢⎢⎣
cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (9.261)

The articulated robot has 6 DOF and therefore, its Jacobian matrix is a
6× 6 matrix

J(q) =
£
c1(q) c2(q) · · · c6(q)

¤
(9.262)

that relates the translational and angular velocities of the end-effector to
the joints’ velocities q̇. ∙

v
ω

¸
= J(q) q̇ (9.263)

The ith column vector ci(q) for a revolute joint is given by

ci(q) =

∙
0k̂i−1 × i−1d6

0k̂i−1

¸
(9.264)

and for a prismatic joint is given by

ci(q) =

∙
0k̂i−1
0

¸
. (9.265)

Column 1. The first column of the Jacobian matrix has the simplest
calculation, since it is based on the contribution of the z0-axis and the
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position of the end-effector frame 0d6. The direction of the z0-axis in the
base coordinate frame is

0k̂0 =

⎡⎣ 0
0
1

⎤⎦ (9.266)

and the position vector of the end-effector frame B6 is given by 0d6 directly
determined from 0T6

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=

∙
0R6

0d6
0 1

¸
=

⎡⎢⎢⎣
t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
0 0 0 1

⎤⎥⎥⎦ (9.267)

0d6 =

⎡⎣ t14
t24
t34

⎤⎦ (9.268)

where,

t14 = d6 (sθ1sθ4sθ5 + cθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+l3cθ1s (θ2 + θ3) + d2sθ1 + l2cθ1cθ2 (9.269)

t24 = d6 (−cθ1sθ4sθ5 + sθ1 (cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)))

+sθ1s (θ2 + θ3) l3 − d2cθ1 + l2cθ2sθ1 (9.270)

t34 = d6 (cθ4sθ5s (θ2 + θ3)− cθ5c (θ2 + θ3))

+l2sθ2 + l3c (θ2 + θ3) . (9.271)

Therefore,

0k̂0 × 0d6 = 0k̃0
0d6

=

⎡⎣ 0 −1 0
1 0 0
0 0 0

⎤⎦⎡⎣ t14
t24
t34

⎤⎦ =
⎡⎣ −t24t14

0

⎤⎦ (9.272)

and the first Jacobian generating vector is

c1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−t24
t14
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.273)

Column 2. The z1-axis in the base frame can be found by

0k̂1 =
0R1

⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ cθ1 0 sθ1

sθ1 0 −cθ1
0 1 0

⎤⎦⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ sin θ1
− cos θ1
0

⎤⎦ . (9.274)
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The second half of c2 needs the cross product of 0k̂1 and position vector 1d6.
The vector 1d6 is the position of the end-effector in the coordinate frame
B1, however it must be described in the base frame to be able to perform
the cross product. An easier method is to find 1k̂1× 1d6 and transform the
resultant into the base frame.

0k̂1 × 1d6 = 0R1

³
1k̂1 × 1d6

´
= 0R1

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ l2 cos θ2 + l3 sin (θ2 + θ3)

l2 sin θ2 − l3 cos (θ2 + θ3)
d2

⎤⎦⎞⎠
=

⎡⎣ cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))
sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

l2 cos θ2 + l3 sin (θ2 + θ3)

⎤⎦ (9.275)

Therefore, c2 is found as a 6× 1 vector,

c2 =

⎡⎢⎢⎢⎢⎢⎢⎣
cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))
sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

l2 cos θ2 + l3 sin (θ2 + θ3)
sin θ1
− cos θ1
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.276)

Column 3. The z2-axis in the base frame can be found using the same
method:

0k̂2 =
0R2

2k̂2 =
0R1

1R2

⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ sin θ1
− cos θ1
0

⎤⎦ . (9.277)

The second half of c3 can be found by finding 2k̂2 × 2d6 and transforming
the resultant into the base coordinate frame.

2k̂2 × 2d6 =

⎡⎣ l3 cos θ3
l3 sin θ3
0

⎤⎦ (9.278)

0R2

³
2k̂2 × 2d6

´
=

⎡⎣ l3 cos θ1 sin (θ2 + θ3)
l3 sin θ1 sin (θ2 + θ3)
−l3 cos (θ2 + θ3)

⎤⎦ (9.279)

Therefore, c3 is

c3 =

⎡⎢⎢⎢⎢⎢⎢⎣
l3 cos θ1 sin (θ2 + θ3)
l3 sin θ1 sin (θ2 + θ3)
−l3 cos (θ2 + θ3)

sin θ1
− cos θ1
0

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.280)
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Column 4. The z3-axis in the base frame is

0k̂3 = 0R1
1R2

2R3

⎡⎣ 0
0
1

⎤⎦
=

⎡⎣ cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)
sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

− cos (θ2 + θ3)

⎤⎦ (9.281)

and the second half of c4 can be found by finding 3k̂3× 3d6 and transforming
the resultant into the base coordinate frame.

0R3

³
3k̂3 × 3d6

´
= 0R3

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ 0
0
l3

⎤⎦⎞⎠ =

⎡⎣ 0
0
0

⎤⎦ (9.282)

Therefore, c4 is

c4 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)
sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

− cos (θ2 + θ3)

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.283)

Column 5. The z4-axis in the base frame is

0k̂4 =
0R4

⎡⎣ 0
0
1

⎤⎦ =
⎡⎣ cθ4sθ1 − cθ1sθ4c (θ2 + θ3)
−cθ1cθ4 − sθ1sθ4c (θ2 + θ3)

−sθ4s (θ2 + θ3)

⎤⎦ (9.284)

and the second half of c5 can be found by finding 4k̂4× 4d6 and transforming
the resultant into the base coordinate frame.

0R4

³
4k̂4 × 4d6

´
= 0R4

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ 0
0
0

⎤⎦⎞⎠ =

⎡⎣ 0
0
0

⎤⎦ (9.285)

Therefore, c5 is

c5 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

cos θ4 sin θ1 − cos θ1 sin θ4 cos (θ2 + θ3)
− cos θ1 cos θ4 − sin θ1 sin θ4 cos (θ2 + θ3)

− sin θ4 sin (θ2 + θ3)

⎤⎥⎥⎥⎥⎥⎥⎦ . (9.286)
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Column 6. The z5-axis in the base frame is

0k̂5 = 0R5

⎡⎣ 0
0
1

⎤⎦ (9.287)

=

⎡⎣ −cθ1cθ4s (θ2 + θ3)− sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3))
−sθ1cθ4s (θ2 + θ3)− sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3))

cθ4c (θ2 + θ3)− 1
2s (θ2 + θ3) s2θ4

⎤⎦
and the second half of c6 can be found by finding 5k̂5× 5d6 and transforming
the resultant into the base coordinate frame.

0R5

³
5k̂5 × 5d6

´
= 0R5

⎛⎝⎡⎣ 0
0
1

⎤⎦×
⎡⎣ 0
0
0

⎤⎦⎞⎠ =

⎡⎣ 0
0
0

⎤⎦ (9.288)

Therefore, c6 is

c6 =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
0

−cθ1cθ4s (θ2 + θ3)− sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3))
−sθ1cθ4s (θ2 + θ3)− sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3))

cθ4c (θ2 + θ3)− 1
2s (θ2 + θ3) s2θ4

⎤⎥⎥⎥⎥⎥⎥⎦ .
(9.289)

9.5 Summary

There are some general numerical calculations needed in robot kinematics.
Solutions to a set of linear and nonlinear algebraic equations are the most
important ones for calculating a matrix inversion and a Jacobian matrix.
An applied solution for a set of linear equations is LU factorization, and a
practical method for a set of nonlinear equations is the Newton-Raphson
method. Both of these methods are cast in applied algorithms.
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9.6 Key Symbols

a turn vector of end-effector frame
A coefficient matrix
aij the element of row i and column j of A
b the vector of known values in a set of linear equations
B body coordinate frame,

dummy matrix with upper U and lower L
c cos
c Jacobian generating vector
con condition number
dx, dy, dz elements of d
det determinant
d translation vector, displacement vector
D lower-right submatrix of B
f a set of nonlinear algebraic equations
G,B0 global coordinate frame, Base coordinate frame
H dummy matrix to calculate D
I = [I] identity matrix
J Jacobian
lij the element of row i and column j of L
L lower triangle submatrix of A
m number of independent equations
n number of rows and columns of A
q the vector of unknowns of f , vector of joint variables
r position vectors, homogeneous position vector
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
sT , lT nondiagonal first column of D
sgn signum function
T homogeneous transformation matrix
T a set of nonlinear algebraic equations of q
uij the element of row i and column j of U
U upper triangle submatrix of A
W weight factor matrix
x, y, z local coordinate axes
x vector of unknowns
X,Y,Z global coordinate axes
y dummy vector of unknowns
uT , rT nondiagonal first row of D
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Greek
δ small increment of a parameter
δ difference in q for in two steps of iteration
θ rotary joint angle
θ vector of θi
θijk θi + θj + θk

Symbol
k k norm of the matrix [ ]

[ ]−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]

[ ]+ pseudo-inverse of the matrix [ ]
≡ equivalent
` orthogonal
(i) link number i
k parallel sign
⊥ perpendicular
× vector cross product
qF a guess value for q
4 perturbation in a vector or a matrix
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Exercises

1. Notation and symbols.

Describe the meaning of

a- [L] b- [U ] c- [B] d- [Di] e- uii f- dii

g- con (A) h- kAk∞ i- kAk1 j- kAk2 k- ci l- X

m- J n- q̇ o- i−1∆i−1 p- Ṫ q- V̇ r- θ.

2. LU factorization method.

Use the LU factorization method and find the associated [L] and [U ]
for the following matrices.

(a)

[A] =

⎡⎣ 1 4 8
5 2 7
9 6 3

⎤⎦
(b)

[B] =

⎡⎢⎢⎣
2 −1 3 −3
1 3 −1 −2
0 2 2 4
3 1 5 −2

⎤⎥⎥⎦
(c)

[C] =

⎡⎢⎢⎢⎢⎣
−2 −1 3 −3 6
1 3 −1 −2 0
1 2 2 4 −2
3 1 5 −2 −1
7 −5 2 1 1

⎤⎥⎥⎥⎥⎦
3. LU inversion method.

Use the LU inversion method and find the inverse of the matrices in
Exercises 2.

4. LU calculations.

Use the LU inversion method and calculate the inversion of the fol-
lowing matrices based on the matrices in Exercises 2.

D = AB E = AB−1 F = A−1B G = A−1B−1
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5. A set of liner equations.

Use the LU factorization method and solve the following set of equa-
tions and show that the solutions are: x1 = 4, x2 = 1, x3 = 2.

−3x1 + 8x2 + 5x3 = 6

2x1 − 7x2 + 4x3 = 9

x1 + 9x2 − 6x3 = 1

6. A set of six equations.

Use the LU factorization method and solve the following set of equa-
tions and show that the solutions are: x1 = 75, x2 = 52, x3 = 40,
x4 = 31, x5 = 22, x6 = 10.

11x1 − 5x2 − x6 = 500

−20x1 + 41x2 − 15x3 − 6x5 = 0

−3x2 + 7x3 − 4x4 = 0

−x3 + 2x4 − x5 = 0

−2x1 − 15x5 + 47x6 = 0

−3x2 − 10x4 + 28x5 − 15x6 = 0

7. A set of nonlinear equations.

Solve the following set of equations.

x1x2 − 2x1 − x2 = 0

x21x2 − 2x1x2 + x2 − 2x21 + 4x1 = 2

8. F Gaussian elimination method.

There are two situations where the Gaussian elimination method fails:
division by zero and round-off errors.

Examine the LU factorization method for the possibility of division
by zero.

9. F Number of subtractions as a source of round-off error.

Round-off error is common in numerical techniques, however it in-
creases by increasing the number of subtractions. Apply the Gaussian
elimination and LU factorization methods for solving a set of four
equations ⎡⎢⎢⎣

2 1 3 −3
1 0 −1 −2
0 2 2 1
3 1 0 −2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1
x2
x3
x4

⎤⎥⎥⎦ =
⎡⎢⎢⎣

1
2
0
−2

⎤⎥⎥⎦
and count the number of subtractions in each method.



9. Numerical Methods in Kinematics 523

10. F Jacobian matrix from transformation matrices.

Use the Jacobian matrix technique from links’ transformation matri-
ces and find the Jacobian matrix of the RkRkR planar manipulator
shown in Figure 5.21. Choose a set of sample data for the dimen-
sions and kinematics of the manipulator and find the inverse of the
Jacobian matrix.

11. F Jacobian matrix for a spherical wrist.

Use the Jacobian matrix technique from links’ transformation ma-
trices and find the Jacobian matrix of the spherical wrist shown in
Figure 5.26. Assume that the frame B3 is the base frame.

12. Jacobian matrix for a SCARA manipulator.

Use the Jacobian matrix technique from links’ transformation matri-
ces and find the Jacobian matrix of the RkRkRkP robot shown in
Figure 5.23.

13. Jacobian matrix for an R`RkR articulated manipulator.
Figure 5.22 illustrates a 3 DOF R`RkR manipulator. Use the Jaco-
bian matrix technique from links’ transformation matrices and find
the Jacobian matrix for the manipulator.

14. F Partitioning inverse method.

Calculate the matrix inversion for the matrices in Exercise 2 using
the partitioning inverse method.

15. F Analytic matrix inversion.

Use the analytic and LU factorization methods and find the inverse
of

[A] =

⎡⎣ 1 4 8
5 2 7
9 6 3

⎤⎦
or an arbitrary 3 × 3 matrix. Count and compare the number of
arithmetic operations.

16. F Cayley-Hamilton matrix inversion.

Use the Cayley-Hamilton and LU factorization methods and find the
inverse of

[A] =

⎡⎣ 1 4 8
5 2 7
9 6 3

⎤⎦
or an arbitrary 3 × 3 matrix. Count and compare the number of
arithmetic operations.
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17. F Norms of matrices.

Calculate the following norms of the matrices in Exercise 2.

kAk1 = Max
1≤j≤n

nX
i=1

|aij |

kAk2 = λMax

¡
ATA

¢
kAk∞ = Max

1≤i≤n

nX
j=1

|aij |

kAkF =
nX
i=1

nX
j=1

a2ij



Part II

Dynamics



Dynamics is the science of motion. It describes why and how a motion
occurs when forces and moments are applied on massive bodies. The motion
can be considered as evolution of the position, orientation, and their time
derivatives. In robotics, the dynamic equation of motion for manipulators
is utilized to set up the fundamental equations for control.
The links and arms in a robotic system are modeled as rigid bodies.

Therefore, the dynamic properties of the rigid body takes a central place
in robot dynamics. Since the arms of a robot may rotate or translate
with respect to each other, translational and rotational equations of mo-
tion must be developed and described in body-attached coordinate frames
B1, B2, B3, · · · or in the global reference frame G.
There are basically two problems in robot dynamics.

Problem 1. We want the links of a robot to move in a specified manner.
What forces and moments are required to achieve the motion?
Problem 1 is called direct dynamics and is easier to solve when the equa-

tions of motion are in hand because it needs differentiating of kinematics
equations. The first problem includes robots statics because the specified
motion can be the rest of a robot. In this condition, the problem reduces
to finding forces such that no motion takes place when they act. However,
there are many meaningful problems of the first type that involve robot
motion rather than rest. An important example is that of finding the re-
quired forces that must act on a robot such that its end-effector moves on a
given path and with a prescribed time history from the start configuration
to the final configuration.

Problem 2. The applied forces and moments on a robot are completely
specified. How will the robot move?
The second problem is called inverse dynamics and is more difficult to

solve since it needs integration of equations of motion. However, the variety
of the applied problems of the second type is interesting. Problem 2 is
essentially a prediction since we wish to find the robot motion for all future
times when the initial state of each link is given.
In this Part we develop techniques to derive the equations of motion for

a robot.

275Part II Dynamics:



10

Acceleration Kinematics
Angular acceleration of a rigid body with respect to a global frame is the
time derivative of instantaneous angular velocity of the body. In general, it
is a vectorial quantity that is in a different direction than angular velocity.
We review and develop the acceleration kinematics of robots.

X
Y

Z

x

y

G

B

z

rP
P

×α r

( )× ×ω ω r

FIGURE 10.1. A rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z).

10.1 Angular Acceleration Vector and Matrix

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference
frame G(OXY Z) as shown in Figure 10.1.
Equation (7.2), for the velocity vector of a point in a fixed origin body

frame,
Gṙ(t) = Gv(t) = Gω̃B

Gr(t) = GωB × Gr(t) (10.1)

can be utilized to find the acceleration vector of the body point

Gr̈ =
Gd

dt
Gṙ(t) = GSB

Gr

= GαB × Gr+ GωB ×
¡
GωB × Gr

¢
(10.2)

=
³
φ̈û+ φ̇u̇

´
× Gr+ φ̇

2
û×

¡
û× Gr

¢
. (10.3)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_10,  
© Springer Science+Business Media, LLC 2010 
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GαB is the angular acceleration vector of the body with respect to the G
frame.

GαB =
Gd

dt
GωB (10.4)

Gα̃B =
·

Gω̃B (10.5)

The acceleration Gr̈ can also be defined using the angular acceleration ma-
trix Gα̃B and rotational acceleration transformation GSB

Gr̈ = GSB
Gr (10.6)

where,

Gα̃B =
·

Gω̃B =

∙
φ̈ũ+ φ̇

·
ũ

¸
(10.7)

GSB = GRB
GRB = Gα̃B + Gω̃

2
B =

∙
φ̈ũ+ φ̇

·
ũ+ φ̇

2
ũ2
¸
. (10.8)

Proof. Differentiating Equation (10.1) gives

Gr̈ = Gω̇B × Gr+ GωB × Gṙ

= GαB × Gr+ GωB ×
¡
GωB × Gr

¢
(10.9)

and since

ω = φ̇û =

⎡⎣ φ̇u1
φ̇u2
φ̇u3

⎤⎦ (10.10)

α = φ̈û+ φ̇u̇ =

⎡⎣ ω̇1
ω̇2
ω̇3

⎤⎦ =
⎡⎣ u̇1φ̇+ u1φ̈

u̇2φ̇+ u2φ̈

u̇3φ̇+ u3φ̈

⎤⎦ (10.11)

we derive the Equation (10.3), which can also be written in a matrix form

Gr̈ =

∙
φ̈ũ+ φ̇

·
ũ+ φ̇

2
ũ2
¸
Gr =GSB

Gr (10.12)

and the rotational acceleration transformation GSB can be found.

GSB =
·

Gω̃B + Gω̃
2
B = Gα̃B + Gω̃

2
B = φ̈ũ+ φ̇

·
ũ+ φ̇

2
ũ2 = (10.13)⎡⎣ −ω22 − ω23 ω1ω2 − ω̇3 ω̇2 + ω1ω3

ω̇3 + ω1ω2 −ω21 − ω23 ω2ω3 − ω̇1
ω1ω3 − ω̇2 ω̇1 + ω2ω3 −ω21 − ω22

⎤⎦ =
⎡⎢⎣ −(u21 − 1)φ̇

2
u1u2φ̇

2 − u̇3φ̇− u3φ̈ u1u3φ̇
2
+ u̇2φ̇+ u2φ̈

u1u2φ̇
2
+ u̇3φ̇+ u3φ̈ −(u22 − 1)φ̇

2
u2u3φ̇

2 − u̇1φ̇− u1φ̈

u1u3φ̇
2 − u̇2φ̇− u2φ̈ u2u3φ̇

2 − u̇1φ̇+ u1φ̈ −(u23 − 1)φ̇
2

⎤⎥⎦
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Therefore, the position, velocity, and acceleration vectors of a body point
are

BrP = xı̂+ yĵ+ zk̂ (10.14)

GvP =
GṙP =

Gd

dt
BrP = GωB × Gr (10.15)

GaP = Gv̇P =
Gr̈P =

Gd2

dt2
BrP

= GαB × Gr+ GωB × Gṙ

= GαB × Gr+ GωB × (GωB × Gr). (10.16)

The angular acceleration expressed in the body frame is the body derivative
of the angular velocity vector. To show this, we use the derivative transport
formula (7.152)

B
GαB =

Gd

dt
B
GωB =

Bd

dt
B
GωB +

B
GωB × B

GωB =
Bd

dt
B
GωB

= B
Gω̇B. (10.17)

The angular acceleration of B in G can always be expressed in the form

GαB = GαB ûα (10.18)

where ûα is a unit vector parallel to GαB. The angular velocity and angular
acceleration vectors are not parallel in general, and therefore,

ûα 6= ûω (10.19)

GαB 6= Gω̇B. (10.20)

However, the only special case is when the axis of rotation is fixed in both
G and B frames. In this case

GαB = α û = ω̇ û = φ̈ û. (10.21)

Using the Rodriguez rotation formula, it can also be shown that

Gα̃B =
·

Gω̃B = lim
φ→0

Gd2

dt2
Rû,φ

= lim
φ→0

Gd2

dt2
¡
−ũ2 cosφ+ ũ sinφ+ ũ2 + I

¢
= φ̈ũ+ φ̇

·
ũ+ φ̇

2
ũũ. (10.22)
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Y
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G

B

φ
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FIGURE 10.2. A simple pendulum.

Example 270 Velocity and acceleration of a simple pendulum.
A point mass attached to a massless rod and hanging from a revolute joint

is called a simple pendulum. Figure 10.2 illustrates a simple pendulum. A
local coordinate frame B is attached to the pendulum that rotates in a global
frame G. The position vector of the bob and the angular velocity vector GωB

are

Br = lı̂ (10.23)

Gr = GRB
Br =

⎡⎣ l sinφ
−l cosφ
0

⎤⎦ (10.24)

B
GωB = φ̇k̂ (10.25)

GωB = GRT
B

B
GωB = φ̇ K̂. (10.26)

GRB =

⎡⎣ cos
¡
3
2π + φ

¢
− sin

¡
3
2π + φ

¢
0

sin
¡
3
2π + φ

¢
cos
¡
3
2π + φ

¢
0

0 0 1

⎤⎦
=

⎡⎣ sinφ cosφ 0
− cosφ sinφ 0
0 0 1

⎤⎦ (10.27)

Its velocity is therefore given by

B
Gv = B ṙ+ B

GωB × B
Gr = 0 + φ̇k̂ × lı̂ = l φ̇ĵ (10.28)

Gv = GRB
Bv =

⎡⎣ l φ̇ cosφ

l φ̇ sinφ
0

⎤⎦ . (10.29)
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FIGURE 10.3. Motion of a vehicle at latitude 30deg and heading north on the
Earth.

The acceleration of the bob is then equal to

B
Ga = B

Gv̇+
B
GωB × B

Gv = l φ̈ĵ+ φ̇k̂ × l φ̇ĵ = l φ̈ĵ− l φ̇
2
ı̂ (10.30)

Ga = GRB
Ba =

⎡⎢⎣ l φ̈ cosφ− l φ̇
2
sinφ

l φ̈ sinφ+ l φ̇
2
cosφ

0

⎤⎥⎦ . (10.31)

Example 271 Motion of a vehicle on the Earth.
Consider the motion of a vehicle on the Earth at latitude 30 deg and

heading north, as shown in Figure 10.3. The vehicle has the velocity v =
B
E ṙ = 80 km/h = 22.22m/ s and acceleration a = B

E r̈ = 0.1m/ s2, both
with respect to the road. Radius of the Earth is R, and hence, the vehicle’s
kinematics are

B
Er = Rk̂ m B

E ṙ = 22.22ı̂ m/ s
B
E r̈=0.1ı̂ m/ s

2

θ̇ =
v

R
rad/ s θ̈ =

a

R
rad/ s2. (10.32)

There are three coordinate frames involved. A body coordinate frame B is
attached to the vehicle as shown in the Figure. A global coordinate G is
set up at the center of the Earth. Another local coordinate frame E that is
rigidly attached to the Earth and turns with the Earth. The frames E and
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G are assumed coincident at the moment. The angular velocity of B is

B
GωB = GωE +

G
EωB =

BRG

³
ωE K̂ + θ̇Î

´
= (ωE cos θ) ı̂+ (ωE sin θ) k̂ + θ̇ĵ

= (ωE cos θ) ı̂+ (ωE sin θ) k̂ +
v

R
ĵ. (10.33)

Therefore, the velocity and acceleration of the vehicle are

B
Gv = B ṙ+ B

GωB × B
Gr = 0 +

B
GωB × Rk̂

= vı̂− (RωE cos θ) ĵ (10.34)

B
Ga = B

Gv̇+
B
GωB × B

Gv

= aı̂+
³
RωE θ̇ sin θ

´
ĵ+

⎡⎣ ωE cos θ
v
R

ωE sin θ

⎤⎦×
⎡⎣ v
−RωE cos θ

0

⎤⎦
= aı̂+

³
RωE θ̇ sin θ

´
ĵ+

⎡⎣ Rω2E cos θ sin θ
vωE sin θ

− 1
Rv

2 −Rω2E cos
2 θ

⎤⎦
=

⎡⎣ a+Rω2E cos θ sin θ

2RωE θ̇ sin θ
− 1

Rv
2 −Rω2E cos

2 θ

⎤⎦ . (10.35)

The term aı̂ is the acceleration relative to Earth, (2RωE θ̇ sin θ)ĵ is the
Coriolis acceleration, −v2

R k̂ is the centrifugal acceleration due to traveling,
and −(Rω2E cos2 θ) is the centrifugal acceleration due to Earth’s rotation.
Substituting the numerical values and accepting R = 6.3677× 106m pro-

vide

B
Gv = 22.22ı̂− 6.3677× 106

µ
2π

24× 3600
366.25

365.25

¶
cos

π

6
ĵ

= 22.22ı̂− 402.13ĵ m/ s (10.36)

B
Ga = 1.5662× 10−2ı̂+ 1.6203× 10−3ĵ− 2.5473× 10−2k̂ m/ s2. (10.37)

Example 272 Combination of angular accelerations.
It is shown that the angular velocity of several bodies rotating relative to

each other can be related according to (7.63)

0ωn = 0ω1 +
0
1ω2 +

0
2ω3 + · · ·+ 0

n−1ωn. (10.38)

The angular acceleration of several relatively rotating rigid bodies follow the
same rule.

0αn = 0α1 +
0
1α2 +

0
2α3 + · · ·+ 0

n−1αn (10.39)
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Example 273 F Combination of rotational acceleration transformation.
Let us consider a pair of relatively rotating rigid links in a base coordinate

frame B0 with a fixed point at O. The angular velocities of the links are
related as:

0ω2 = 0ω1 +
0
1ω2 (10.40)

0ω̃2 = 0ω̃1 +
0
1ω̃2 (10.41)

So, their angular accelerations are:

0α1 =
0d

dt
0ω1 (10.42)

0α2 =
0d

dt
0ω2 = 0α1 +

0
1α2 (10.43)

0α̃2 = 0α̃1 +
0
1α̃2 (10.44)

Similarly we have

0S1 = 0α̃1 + 0ω̃
2
1 (10.45)

0S2 = 0α̃2 + 0ω̃
2
2 (10.46)

and therefore,

0S2 = 0α̃2 + 0ω̃
2
2 = 0α̃1 +

0
1α̃2 +

¡
0ω̃1 +

0
1ω̃2

¢2
= 0α̃1 +

0
1α̃2 + 0ω̃

2
1 +

0
1ω̃

2
2 + 2 0ω̃1

0
1ω̃2

= 0S1 +
0
1S2 + 2 0ω̃1

0
1ω̃2 (10.47)

and

0S2 6= 0S1 +
0
1S2. (10.48)

Equation (10.47) is the relative rotational acceleration transformation
equation. It expresses the relative accelerations for a multi-link robot. As
an example, consider a 6R articulated robot with six revolute joints. The
angular acceleration of the end-effector frame in the base frame would be

0α6 = 0α1 +
0
1α2 +

0
2α3 +

0
3α4 +

0
4α5 +

0
5α6 (10.49)

0S6 = 0S1 +
0
1S2 +

0
2S3 +

0
3S4 +

0
4S5 +

0
5S6

+2 0ω̃1
¡
0
1ω̃2 +

0
2ω̃3 +

0
3ω̃4 +

0
4ω̃5 +

0
5ω̃6

¢
+2 01ω̃2

¡
0
2ω̃3 +

0
3ω̃4 +

0
4ω̃5 +

0
5ω̃6

¢
...

+2 04ω̃5
¡
0
5ω̃6

¢
(10.50)
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We can transform the G-expression and B-expression of the global acceler-
ation of a body point P , to each other using a rotation matrix.

B
GaP = BRG

GaP =
BRG GSB

GrP =
BRG GSB

GRB
BrP

= BRG
GR̈B

GRT
B

GRB
BrP =

BRG
GR̈B

BrP

= GRT
B

GR̈B
BrP =

B
GSB

BrP =
¡
B
Gα̃B +

B
Gω̃

2
B

¢
BrP

= B
GαB × Br+ B

GωB ×
¡
B
GωB × Br

¢
(10.51)

GaP = GRB
B
GaP =

GRB
B
GSB

BrP =
GRB

B
GSB

GRT
B
GrP

= GRB
GRT

B
GR̈B

GRT
B
GrP =

GR̈B
GRT

B
GrP

= GSB
GrP =

¡
Gα̃B + Gω̃

2
B

¢
Gr

= GαB × Gr+ GωB ×
¡
GωB × Gr

¢
(10.52)

From the definitions of GSB and B
GSB and comparing with (10.51) and

(10.52), we are can transform the two rotational acceleration transforma-
tions

GSB = GRB
B
GSB

GRT
B (10.53)

B
GSB = GRT

B GSB
GRB (10.54)

and derive the following equations.
GR̈B = GSB

GRB (10.55)
GR̈B = GRB

B
GSB (10.56)

GSB
GRB = GRB

B
GSB. (10.57)

The angular acceleration of B in G is negative of the angular acceleration
of G in B if both are expressed in the same coordinate frame.

Gα̃B = −G
Bα̃G GαB = −G

BαG (10.58)
B
Gα̃B = −Bα̃G

B
GαB = −BαG (10.59)

The term GαB × Gr is called the tangential acceleration which is a
function of the angular acceleration of B in G. The term GωB×

¡
GωB × Gr

¢
in Ga is called the centripetal acceleration that is a function of the an-
gular velocity of B in G.

Example 274 F Angular acceleration and Euler angles.
The angular velocity B

GωB in terms of Euler angles is

G
GωB =

⎡⎣ ωX
ωY
ωZ

⎤⎦ =
⎡⎣ 0 cosϕ sin θ sinϕ
0 sinϕ − cosϕ sin θ
1 0 cos θ

⎤⎦⎡⎣ ϕ̇

θ̇

ψ̇

⎤⎦
=

⎡⎣ θ̇ cosϕ+ ψ̇ sin θ sinϕ

θ̇ sinϕ− ψ̇ cosϕ sin θ

ϕ̇+ ψ̇ cos θ

⎤⎦ . (10.60)
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The angular acceleration is then equal to

G
GαB =

Gd

dt
G
GωB (10.61)

=

⎡⎢⎢⎣
cosϕ

³
θ̈ + ϕ̇ψ̇ sin θ

´
+ sinϕ

³
ψ̈ sin θ + θ̇ψ̇ cos θ − θ̇ϕ̇

´
sinϕ

³
θ̈ + ϕ̇ψ̇ sin θ

´
+ cosϕ

³
θ̇ϕ̇− ψ̈ sin θ − θ̇ψ̇ cos θ

´
ϕ̈+ ψ̈ cos θ − θ̇ψ̇ sin θ

⎤⎥⎥⎦ .
The angular acceleration vector in the body coordinate frame is then equal
to

B
GαB = GRT

B
G
GαB (10.62)

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ G
GαB

=

⎡⎢⎢⎣
cosψ

³
θ̈ + ϕ̇ψ̇ sin θ

´
+ sinψ

³
ϕ̈ sin θ + θ̇ϕ̇ cos θ − θ̇ψ̇

´
cosψ

³
ϕ̈ sin θ + θ̇ϕ̇ cos θ − θ̇ψ̇

´
− sinψ

³
θ̈ + ϕ̇ψ̇ sin θ

´
ϕ̈ cos θ − ψ̈ − θ̇ϕ̇ sin θ

⎤⎥⎥⎦ .
Example 275 F Angular jerk.

Angular second acceleration matrix χ̃ =
·
α̃ =

··eω is a skew symmetric
matrix associated to the angular jerk χ = α̇ = ω̈.

Gχ̃B = G

·
α̃B =

··
Gω̃B =

Gd

dt

³
GR̈B

GRT
B +

GṘB
GṘT

B

´
= G...

RB
GRT

B + 2
GR̈B

GṘT
B + GṘB

GR̈T
B

= GUB + 2GSB Gω̃
T
B + Gω̃B GS

T
B (10.63)

The global jerk, Gj, of a body point P at Gr is:

Gj = G...r =
Gd

dt

¡
GSB

Gr
¢
= G...

RB
GRT

B
Gr

=

∙
φũ+ 2φ̈

·
ũ+ φ̇

··eu+ 3φ̇φ̈ũ2 + 2φ̇2 ·ũũ+ φ̇
2
ũ
·
ũ+ φ̇

3
ũ3
¸
Gr

= GUB
Gr (10.64)

GUB = G
...
RB

GRT
B is the rotational jerk transformation between B

and G. Hence, the angular jerk matrix would be

χ̃ =
·
α̃ =

··eω =
⎡⎣ j11 j12 j13

j21 j22 j23
j31 j32 j33

⎤⎦ (10.65)
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where

j11 = 3u1u̇1φ̇
2
+ 3

¡
u21 − 1

¢
φ̇φ̈

j21 = (2u2u̇1 + u̇2u1) φ̇
2
+ 3u2u1φ̇φ̈+

³
ü3φ̇+ 2u̇3φ̈+ u3

...
φ − u3φ̇

3
´

j31 = (2u3u̇1 + u̇3u1) φ̇
2
+ 3u3u1φ̇φ̈+

³
ü2φ̇+ 2u̇2φ̈+ u2

...
φ − u2φ̇

3
´

j12 = (2u1u̇2 + u̇1u2) φ̇
2
+ 3u1u2φ̇φ̈+

³
ü3φ̇+ 2u̇3φ̈+ u3

...
φ − u3φ̇

3
´

j22 = 3u2u̇2φ̇
2
+ 3

¡
u22 − 1

¢
φ̇φ̈

j32 = (2u3u̇2 + u̇3u2) φ̇
2
+ 3u3u2φ̇φ̈+

³
ü1φ̇+ 2u̇1φ̈+ u1

...
φ − u1φ̇

3
´

j13 = (2u1u̇3 + u̇1u3) φ̇
2
+ 3u1u3φ̇φ̈+

³
ü2φ̇+ 2u̇2φ̈+ u2

...
φ − u2φ̇

3
´

j23 = (2u2u̇3 + u̇2u3) φ̇
2
+ 3u2u3φ̇φ̈+

³
ü1φ̇+ 2u̇1φ̈+ u1

...
φ − u1φ̇

3
´

j33 = 3u3u̇3φ̇
2
+ 3

¡
u23 − 1

¢
φ̇φ̈. (10.66)

Example 276 F Angular acceleration in terms of quaternion and Euler
parameters.
Utilizing the definition of the angular velocity based on rotational quater-

nion
←−→
GωB = 2

←→̇
e
←→
e∗ (10.67)

←−→
B
GωB = 2

←→
e∗
←→̇
e (10.68)

we are able to define the angular acceleration quaternion

←−→
GαB = 2

←→̈
e
←→
e∗ + 2

←→̇
e
←→
ė∗ (10.69)

←−→
B
GαB = 2

←→
e∗
←→̈
e + 2

←→̇
e
←→
ė∗ . (10.70)

10.2 Rigid Body Acceleration

Consider a rigid body with an attached local coordinate frame B (oxyz)
moving freely in a fixed global coordinate frame G(OXY Z). The rigid
body can rotate in the global frame, while the origin of the body frame B
can translate relative to the origin of G. The coordinates of a body point
P in local and global frames, as shown in Figure 10.4, are related by the
following equation

GrP =
GRB

BrP +
GdB (10.71)
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X
Y

Z
x

y

G

B

GrP

z

P

BrP

GdB

( )( )G G
P B× × −ω ω r r

( )G G
P B× −α r r

FIGURE 10.4. A rigid body with coordinate frame B (oxyz) moving freely in a
fixed global coordinate frame G(OXY Z).

where GdB indicates the position of the moving origin o relative to the
fixed origin O.
The acceleration of point P in G is

GaP = Gv̇P =
Gr̈P

= GαB ×
¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
+ Gd̈B . (10.72)

Proof. The acceleration of point P is a consequence of differentiating the
velocity equation (7.189) or (7.190).

GaP =
Gd

dt
GvP = GαB × G

BrP + GωB × G
B ṙP +

Gd̈B

= GαB × G
BrP + GωB ×

¡
GωB × G

BrP
¢
+ Gd̈B

= GαB ×
¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
+ Gd̈B. (10.73)

The term GωB ×
¡
GωB × G

BrP
¢
is called centripetal acceleration and is

independent of the angular acceleration. The term GαB × G
BrP is called

tangential acceleration and is perpendicular to G
BrP .

Example 277 Acceleration of a body point.
Consider a rigid body is moving and rotating in a global frame. The

acceleration of a body point can be found by taking twice the time derivative
of its position vector

GrP =
GRB

BrP +
GdB (10.74)
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GṙP =
GṘB

BrP +
GḋB (10.75)

Gr̈P = GR̈B
BrP +

Gd̈B

= GR̈B
GRT

B

¡
GrP − GdB

¢
+ Gd̈B. (10.76)

Differentiating the angular velocity matrix

Gω̃B =
GṘB

GRT
B (10.77)

shows that

·
Gω̃B =

Gd

dt
Gω̃B =

GR̈B
GRT

B +
GṘB

GṘT
B

= GR̈B
GRT

B + Gω̃B Gω̃
T
B (10.78)

and therefore,
GR̈B

GRT
B =

·
Gω̃B − Gω̃B Gω̃

T
B. (10.79)

Hence, the acceleration vector of the body point becomes

Gr̈P =

µ
·

Gω̃B − Gω̃B Gω̃
T
B

¶¡
GrP − GdB

¢
+ Gd̈B (10.80)

where
·

Gω̃B = Gα̃B =

⎡⎣ 0 −ω̇3 ω̇2
ω̇3 0 −ω̇1
−ω̇2 ω̇1 0

⎤⎦ (10.81)

and

Gω̃B Gω̃
T
B =

⎡⎣ ω22 + ω23 −ω1ω2 −ω1ω3
−ω1ω2 ω21 + ω23 −ω2ω3
−ω1ω3 −ω2ω3 ω21 + ω22

⎤⎦ . (10.82)

Example 278 Acceleration of joint 2 of a 2R planar manipulator.
A 2R planar manipulator is illustrated in Figure 5.9. The elbow joint has

a circular motion about the base joint. Knowing that

0ω1 = θ̇1
0k̂0 (10.83)

we can write

0α1 = 0ω̇1 = θ̈1
0k̂0 (10.84)

0ω̇1 × 0r1 = θ̈1
0k̂0 × 0r1 = θ̈1RZ,θ+90

0r1 (10.85)

0ω1 ×
¡
0ω1 × 0r1

¢
= −θ̇21 0r1 (10.86)

and calculate the acceleration of the elbow joint

0r̈1 = θ̈1RZ,θ+90
0r1 − θ̇

2

1
0r1. (10.87)
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Example 279 Acceleration of a moving point in a moving body frame.
Assume the point P in Figure 10.4 is indicated by a time varying local

position vector BrP (t). Then, the velocity and acceleration of P can be
found by applying the derivative transformation formula (7.152).

GvP = GḋB +
B ṙP +

B
GωB × BrP

= GḋB +
BvP +

B
GωB × BrP (10.88)

GaP = Gd̈B +
B r̈P +

B
GωB × B ṙP +

B
Gω̇B × BrP

+B
GωB ×

¡
B ṙP +

B
GωB × BrP

¢
= Gd̈B +

BaP + 2
B
GωB × BvP +

B
Gω̇B × BrP

+B
GωB ×

¡
B
GωB × BrP

¢
. (10.89)

It is also possible to take the derivative from Equation (7.186) with the
assumption B ṙP 6= 0 and find the acceleration of P .

GrP =
GRB

BrP +
GdB (10.90)

GṙP = GṘB
BrP +

GRB
B ṙP + GḋB

= GωB × GRB
BrP +

GRB
B ṙP +

GḋB (10.91)

Gr̈P = Gω̇B × GRB
BrP + GωB × GṘB

BrP + GωB × GRB
B ṙP

+GṘB
B ṙP + GRB

B r̈P +
Gd̈B

= Gω̇B × G
BrP + GωB ×

¡
GωB × GrP

¢
+ 2GωB × G

B ṙP

+G
B r̈P +

Gd̈B (10.92)

The third term on the right-hand side is called the Coriolis acceleration.
The Coriolis acceleration is perpendicular to both GωB and B ṙP .

10.3 F Acceleration Transformation Matrix

Consider the motion of a rigid body B in the global coordinate frame G, as
shown in Figure 10.4. Assume the body fixed frame B(oxyz) is coincident at
some initial time t0 with the global frame G(OXY Z). At any time t 6= t0,
B is not necessarily coincident with G, and therefore, the homogeneous
transformation matrix GTB(t) is time varying.
The acceleration of a body point in the global coordinate frame can be

found by applying a homogeneous acceleration transformation matrix

GaP (t) =
GAB

GrP (t) (10.93)
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where, hereafter GAB is the acceleration transformation matrix

GAB =

∙
Gα̃B − ω̃ ω̃T Gd̈B −

¡
Gα̃B − ω̃ ω̃T

¢
GdB

0 0

¸
. (10.94)

Proof. Based on homogeneous coordinate transformation we have,

GrP (t) =
GTB

BrP =
GTB

GrP (t0) (10.95)

GvP = GṪB
GT−1B

GrP (t)

=

∙
GṘB

GRT
B

GḋB − GṘB
GRT

B
GdB

0 0

¸
GrP (t)

=

∙
Gω̃B

GḋB − Gω̃B
GdB

0 0

¸
GrP (t)

= GVB
GrP (t). (10.96)

To find the acceleration of a body point in the global frame, we take
twice the time derivative from GrP (t) =

GTB
BrP

GaP (t) =
d2

dt2
GTB

BrP =
GT̈B

BrP (10.97)

and substitute for BrP

GaP (t) =
GT̈B

GT−1B
GrP (t). (10.98)

Substituting for GT̈B and GT−1B provides

GaP (t) =

∙
GR̈B

Gd̈B
0 0

¸ ∙
GRT

B −GRT
B
GdB

0 1

¸
GrP (t)

=

∙
GR̈B

GRT
B

Gd̈B − GR̈B
GRT

B
GdB

0 0

¸
GrP (t)

=

∙
Gα̃B − ω̃ ω̃T Gd̈B −

¡
Gα̃B − ω̃ ω̃T

¢
GdB

0 0

¸
GrP (t)

= GAB
GrP (t) (10.99)

where

GR̈B
GRT

B = GSB =
·

Gω̃B − ω̃ ω̃T = Gα̃B − ω̃ ω̃T . (10.100)
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FIGURE 10.5. An RkR planar manipulator with joint variables θ1 and θ2.

Example 280 F Kinematics of the gripper of a planar RkR manipulator.
Figure 10.5 illustrates an RkR planar manipulator with joint variables

θ1 and θ2. The links (1) and (2) are both RkR(0) and therefore, the trans-
formation matrices 0T1, 1T2, and 0T2 are:

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (10.101)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (10.102)

0T2 = 0T1
1T2 (10.103)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2) + l1cθ1
s (θ1 + θ2) c (θ1 + θ2) 0 l2s (θ1 + θ2) + l1sθ1

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
The points M1 and M2 are at:

0rM1 =

⎡⎢⎢⎣
l1 cos θ1
l1 sin θ1
0
1

⎤⎥⎥⎦ 1rM2 =

⎡⎢⎢⎣
l2 cos θ2
l2 sin θ2
0
1

⎤⎥⎥⎦ (10.104)

0rM2 =
0T1

1rM2 =

⎡⎢⎢⎣
l2 cos (θ1 + θ2) + l1 cos θ1
l2 sin (θ1 + θ2) + l1 sin θ1

0
1

⎤⎥⎥⎦ (10.105)
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To determine the velocity and acceleration of M2, we need to calculate 0Ṫ2
which can be calculated by direct differentiation of 0T2.

0Ṫ2 =
d

dt
0T2 (10.106)

=

⎡⎢⎢⎣
−θ̇12sθ12 −θ̇12cθ12 0 −l2θ̇12sθ12 − θ̇1l1sθ1
θ̇12cθ12 −θ̇12sθ12 0 l2θ̇12cθ12 + θ̇1l1cθ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
θ12 = θ1 + θ2 (10.107)

θ̇12 = θ̇1 + θ̇2 (10.108)

We can also calculate 0Ṫ2 from 0T2 =
0T1

1T2 by chain rule

0Ṫ2 =
d

dt

¡
0T1

1T2
¢
= 0Ṫ1

1T2 +
0T1

1Ṫ2 (10.109)

where,

0Ṫ1 = θ̇1

⎡⎢⎢⎣
− sin θ1 − cos θ1 0 −l1 sin θ1
cos θ1 − sin θ1 0 l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (10.110)

1Ṫ2 = θ̇2

⎡⎢⎢⎣
− sin θ2 − cos θ2 0 −l2 sin θ2
cos θ2 − sin θ2 0 l2 cos θ2
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ . (10.111)

Having 0Ṫ1 and 1Ṫ2, we can find the velocity transformation matrices
0V1 and 1V2 by using 0T

−1
1 and 1T−12 .

0T−11 =

⎡⎢⎢⎣
cos θ1 sin θ1 0 −l1
− sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (10.112)

1T−12 =

⎡⎢⎢⎣
cos θ2 sin θ2 0 −l2
− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (10.113)

0V1 = 0Ṫ1
0T−11 = θ̇1

0
1k̃ (10.114)

1V2 = 1Ṫ2
1T−12 = θ̇2

1
2k̃ (10.115)
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Now, we can determine the velocity of points M1 and M2 in B0 and B1
respectively.

0vM1 =
0V1

0rM1 = θ̇1

⎡⎢⎢⎣
−l1 sin θ1
l1 cos θ1
0
0

⎤⎥⎥⎦ (10.116)

1vM2
= 1V2

1rM2
= θ̇2

⎡⎢⎢⎣
−l2 sin θ2
l2 cos θ2
0
0

⎤⎥⎥⎦ (10.117)

To determine the velocity of the tip point M2 in the base frame, we can use
the velocity vector addition.

0vM2 = 0vM1 +
0
1vM2 =

0vM1 +
0T1

1vM2

=

⎡⎢⎢⎢⎢⎣
−
³
θ̇1 + θ̇2

´
l2 sin (θ1 + θ2)− θ̇1l1 sin θ1³

θ̇1 + θ̇2

´
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

⎤⎥⎥⎥⎥⎦ (10.118)

We can also determine 0vM2
by using the velocity transformation matrix

0V2
0vM2 =

0V2
0rM2 (10.119)

where, the velocity transformation matrix 0V2 is:

0V2 =
0Ṫ2

0T−12 =

⎡⎢⎢⎣
0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (10.120)

0T−12 = 2T1
1T0 =

1T−12
0T−11 (10.121)

=

⎡⎢⎢⎣
cos (θ1 + θ2) sin (θ1 + θ2) 0 −l2 − l1 cos θ2
− sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin θ2

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
Furthermore, we can determine the velocity transformation matrix 0V2 us-
ing their addition rule,

0V2 =
0V1 +

0
1V2 (10.122)

where,

0
1V2 =

0T1
1V2

0T−11 =

⎡⎢⎢⎣
0 −θ̇2 0 θ̇2l1 sin θ1
θ̇2 0 0 −θ̇2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (10.123)
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Therefore, 0vM2 would be:

0vM2 =
0V2

0rM2 (10.124)

To determine the acceleration of M2, we need to calculate 0T̈2 which can
be calculated by direct differentiation of 0Ṫ2.

0T̈2 =
d

dt
0Ṫ2 =

d

dt

d

dt

¡
0T1

1T2
¢
=

d

dt

³
0Ṫ1

1T2 +
0T1

1Ṫ2

´
= 0T̈1

1T2 + 2
0Ṫ1

1Ṫ2 +
0T1

1T̈2 (10.125)

We have,

0T̈1 =
d

dt
0Ṫ1 (10.126)

=

⎡⎢⎢⎢⎣
−θ̇21cθ1 − θ̈1sθ1 θ̇

2

1sθ1 − θ̈1cθ1 0 −θ̈1l1sθ1 − l1θ̇
2

1cθ1

θ̈1cθ1 − θ̇
2

1sθ1 −θ̇21cθ1 − θ̈1sθ1 0 l1θ̈1cθ1 − l1θ̇
2

1sθ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦

1T̈2 =
d

dt
1Ṫ2 (10.127)

=

⎡⎢⎢⎢⎣
−θ̇22cθ2 − θ̈2sθ2 θ̇

2

2sθ2 − θ̈2cθ2 0 −θ̈2l2sθ2 − l2θ̇
2

2cθ2

θ̈2cθ2 − θ̇
2

2sθ2 −θ̇22cθ2 − θ̈2sθ2 0 θ̈2l2cθ2 − θ̇
2

2l2sθ2
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
and therefore,

0T̈2 = 0T̈1
1T2 + 2

0Ṫ1
1Ṫ2 +

0T1
1T̈2

=

⎡⎢⎢⎣
r11 r12 0 r14
r21 r22 0 r24
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (10.128)

r11 = −θ̇212 cos θ12 − θ̈12 sin θ12

r21 = −θ̇212 sin θ12 + θ̈12 cos θ12

r12 = θ̇
2

12 sin θ12 − θ̈12 cos θ12

r22 = −θ̇212 cos θ12 − θ̈12 sin θ12

r14 = −θ̇212l2 cos θ12 − θ̈12l2 sin θ12 − θ̇
2

1l1 cos θ1 − θ̈1l1 sin θ1

r24 = θ̈12l2 cos θ12 − θ̇
2

12l2 sin θ12 − θ̇
2

1l1 sin θ1 + θ̈1l1 cos θ1. (10.129)
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Having 0T̈1, 1T̈2, and 0T̈2, we can find the acceleration transformation ma-
trices 0A1, 1A2, and 0A2 by using 0T

−1
1 , 1T−12 , and 0T−12 .

0A1 =
0T̈1

0T−11 =

⎡⎢⎢⎢⎣
−θ̇21 −θ̈1 0 0

θ̈1 −θ̇21 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ (10.130)

1A2 =
1T̈2

1T−12 =

⎡⎢⎢⎢⎣
−θ̇22 −θ̈2 0 0

θ̈2 −θ̇22 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦ (10.131)

0A2 =
0T̈2

0T−12 (10.132)

=

⎡⎢⎢⎢⎣
−θ̇212 −θ̈12 0 l1θ̇

2

2 cos θ1 + 2θ1θ̇2l1 cos θ1 + θ̈2l1 sin θ1

θ̈12 −θ̇212 0 l1θ̇
2

2 sin θ1 + 2θ1θ̇2l1 sin θ1 − θ̈2l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
Now, we can determine the velocity of points M1 and M2 in B0 and B1
respectively.

0aM1 =
0A1

0rM1 =

⎡⎢⎢⎢⎣
−l1θ̇

2

1 cos θ1 − θ̈1l1 sin θ1

θ̈1l1 cos θ1 − θ̇
2

1l1 sin θ1
0
0

⎤⎥⎥⎥⎦ (10.133)

1aM2
= 1A2

1rM2
=

⎡⎢⎢⎢⎣
−l2θ̇

2

2 cos θ2 − θ̈2l2 sin θ2

θ̈2l2 cos θ2 − θ̇
2

2l2 sin θ2
0
0

⎤⎥⎥⎥⎦ (10.134)

0aM2 =
0A2

0rM2

=

⎡⎢⎢⎢⎣
−θ̈12l2 (cos θ12 + sin θ12)− θ̇

2

1l1 cos θ1 − θ̈1l1 sin θ1

θ̈12l2 (cos θ12 − sin θ12)− θ̇
2

1l1 sin θ1 + θ̈1l1 cos θ1
0
0

⎤⎥⎥⎥⎦ (10.135)
Example 281 F Jerk transformation matrix.
Following the same pattern we may define a jerk transformation as

GjP (t) =
GJB

GrP (t) (10.136)
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where,

GJB =

∙
G
...
RB

G
...
dB

0 0

¸ ∙
GRT

B −GRT
B
GdB

0 1

¸
=

∙
G
...
RB

GRT
B

G
...
dB − G

...
RB

GRT
B
GdB

0 0

¸
(10.137)

and

G...
RB

GRT
B = GUB

=
··

GeωB − 2µ ·
Gω̃B − ω̃ ω̃T

¶
ω̃T − ω̃

µ
·

Gω̃B − ω̃ ω̃T
¶T

= Gχ̃B − 2
¡
Gα̃B − ω̃ ω̃T

¢
ω̃T − ω̃

¡
Gα̃B − ω̃ ω̃T

¢T
. (10.138)

Example 282 Velocity, acceleration, and jerk transformation matrices.
The velocity transformation matrix is a matrix to map a position vector

to its velocity vector. Assume p and q denote the position of two body points
P and Q. Then,

Gq̇− Gṗ = Gω̃B
¡
Gq− Gp

¢
(10.139)

which can be converted to∙
Gq̇
0

¸
=

∙
Gω̃B

Gṗ− Gω̃B
Gp

0 0

¸ ∙
Gq
1

¸
= GVB

∙
Gq
1

¸
(10.140)

and [V ] is the velocity transformation matrix. Similarly, we obtain the ac-
celeration equation

Gq̈− Gp̈ = Gα̃B
¡
Gq− Gp

¢
+ Gω̃B

¡
Gq̇− Gṗ

¢
= Gα̃B

¡
Gq− Gp

¢
+ Gω̃B Gω̃B

¡
Gq− Gp

¢
= Gα̃B

¡
Gq− Gp

¢
− Gω̃B Gω̃

T
B

¡
Gq− Gp

¢
=

¡
Gα̃B − Gω̃B Gω̃

T
B

¢ ¡
Gq− Gp

¢
(10.141)

which can be converted to∙
Gq̈
0

¸
= GAB

∙
Gq
1

¸
(10.142)

[A] =

"
Gα̃B − Gω̃B Gω̃

T
B

Gp̈−
¡
Gα̃B − Gω̃B Gω̃

T
B

¢G
p

0 0

# ∙
Gq
1

¸
(10.143)

where [A] is the acceleration transformation matrix for rigid motion.
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The jerk or second acceleration matrix can be found after another differ-
entiation

G...q − G...p =
·

Gα̃B
¡
Gq− Gp

¢
+ 2Gα̃B

¡
Gq̇− Gṗ

¢
+ Gω̃B

¡
Gq̇− Gṗ

¢
=

·
Gα̃B

¡
Gq− Gp

¢
− (2Gα̃B + Gω̃B) Gω̃

T
B

¡
Gq− Gp

¢
=

µ
·

Gα̃B − (2Gα̃B + Gω̃B) Gω̃
T
B

¶¡
Gq− Gp

¢
(10.144)

which can be converted to∙
G
...
q

0

¸
= GJB

∙
q
1

¸
(10.145)

where [J ] is the second acceleration or jerk transformation matrix.

[J ] =

∙
J11 J12
0 0

¸
(10.146)

J11 =
·

Gα̃B − (2Gα̃B + Gω̃B) Gω̃
T
B (10.147)

J12 = Gp̈−
µ

·
Gα̃B − (2Gα̃B + Gω̃B) Gω̃

T
B

¶
Gp (10.148)

10.4 Forward Acceleration Kinematics

The forward acceleration kinematics problem is the method of relating the
joint accelerations, q̈, to the end-effector accelerations Ẍ. It is

Ẍ = J q̈+ J̇ q̇ (10.149)

where J is the Jacobian matrix, q is the joint variable vector, q̇ is the joint
velocity vector, and q̈ is the joint acceleration vector.

q =
£
q1 q2 q3 · · · qn

¤T
(10.150)

q̇ =
£
q̇1 q̇2 q̇3 · · · q̇n

¤T
(10.151)

q̈ =
£
q̈1 q̈2 q̈3 · · · q̈n

¤T
(10.152)

However, Ẋ and Ẍ are the end-effector configuration velocity and acceler-
ation vectors respectively.

Ẋ =

∙
0vn
0ωn

¸
=

∙
0ḋn
0ωn

¸
(10.153)

=
£
Ẋn Ẏn Żn ωXn ωY n ωZn

¤T
(10.154)
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Ẍ =

∙
0an
0αn

¸
=

∙
0d̈n
0ω̇n

¸
=

£
Ẍn Ÿn Z̈n ω̇Xn ω̇Y n ω̇Zn

¤T
(10.155)

Since calculating the time derivative of the Jacobian matrix,
h
J̇
i
, is not

simple in general, to find the forward acceleration kinematics it is better
to use Equations (8.126) to (8.129)

0
i−1ḋi =

½
0
0ωi × 0

i−1di if joint i is R
ḋi
0k̂i−1 +

0
0ωi × 0

i−1di if joint i is P
(10.156)

0
i−1ωi =

½
θ̇i
0k̂i−1 if joint i is R

0 if joint i is P
(10.157)

and take a derivative to find the acceleration of link (i) with respect to its
previous link (i− 1).

0
i−1d̈i =

⎧⎪⎪⎨⎪⎪⎩
0
0ω̇i × 0

i−1di +
0
0ωi ×

¡
0
0ωi × 0

i−1di
¢
if joint i is R

0
0ω̇i × 0

i−1di +
0
0ωi ×

¡
0
0ωi × 0

i−1di
¢

+d̈i
0k̂i−1 + 2ḋi

0
0ωi−1 × 0k̂i−1 if joint i is P

(10.158)

0
i−1ω̇i =

½
θ̈i
0k̂i−1 + θ̇i

0
0ωi−1 × 0k̂i−1 if joint i is R

0 if joint i is P
(10.159)

Therefore, the acceleration vectors of the end-effector frame are

0
0d̈n =

nX
i=1

0
i−1d̈i (10.160)

and

0
0ω̇n =

nX
i=1

0
i−1ωi. (10.161)

The acceleration relationships can also be rearranged in a recursive form.

0
i−1ω̇i =

½
θ̈i
0k̂i−1 + θ̇i

0
0ωi−1 × 0k̂i−1 if joint i is R

0 if joint i is P
(10.162)

Example 283 Forward acceleration of the 2R planar manipulator.
The forward velocity of the 2R planar manipulator is found as

Ẋ = J q̇ (10.163)∙
Ẋ

Ẏ

¸
=

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸ ∙
θ̇1
θ̇2

¸
.
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The differential of the Jacobian matrix is

J̇ =

∙
J̇11 J̇12
J̇21 J̇22

¸
(10.164)

where

J̇11 = (−l1 cos θ1 − l2 cos (θ1 + θ2)) θ̇1 − l2 cos (θ1 + θ2) θ̇2

J̇12 = −l2 cos (θ1 + θ2) θ̇1 − l2 cos (θ1 + θ2) θ̇2

J̇21 = (−l1 sin θ1 − l2 sin (θ1 + θ2))θ̇1 − l2 sin (θ1 + θ2) θ̇2

J̇22 = −l2 sin (θ1 + θ2) θ̇1 − l2 sin (θ1 + θ2) θ̇2 (10.165)

and therefore, the forward acceleration kinematics of the manipulator can
be rearranged in the form

Ẍ = J q̈+ J̇ q̇. (10.166)

However, for the 2R manipulator it is easier to show the acceleration in
the form∙

Ẍ

Ÿ

¸
=

∙
−l1 sin θ1 −l2 sin (θ1 + θ2)
l1 cos θ1 l2 cos (θ1 + θ2)

¸ ∙
θ̈1

θ̈1 + θ̈2

¸

−
∙
l1 cos θ1 l2 cos (θ1 + θ2)
l1 sin θ1 l2 sin (θ1 + θ2)

¸⎡⎣ θ̇
2

1³
θ̇1 + θ̇2

´2
⎤⎦ . (10.167)

Example 284 F Acceleration based on position vector.
Assume that the position vector r of the end-effector of a manipulator is

given as function of its joint coordinates q.

r =

⎡⎣ r1 (q)
r2 (q)
r3 (q)

⎤⎦ =
⎡⎣ r1 (q1, q2, q3)

r2 (q1, q2, q3)
r3 (q1, q2, q3)

⎤⎦ (10.168)

The velocity of the end-effector is:

ṙ =
∂r

∂q
q̇ = JD q̇ (10.169)

where,

JD =
∂r

∂q
=

⎡⎣ ∂r1/∂q1 ∂r1/∂q2 ∂r1/∂q3
∂r2/∂q1 ∂r2/∂q2 ∂r2/∂q3
∂r3/∂q1 ∂r3/∂q2 ∂r3/∂q3

⎤⎦ (10.170)

The second derivative of r is:

r̈ =
∂r

∂q
q̈+

d

dt

µ
∂r

∂q

¶
q̇ (10.171)
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where,

d

dt

µ
∂r

∂q

¶
=

d

dt
JD =

3X
i=1

dJD
dqi

q̇i

=
dJD
dq1

q̇1 +
dJD
dq2

q̇2 +
dJD
dq3

q̇3. (10.172)

10.5 Inverse Acceleration Kinematics

The forward acceleration kinematics shows that

Ẍ =

∙
0an
0αn

¸
= J q̈+ J̇ q̇. (10.173)

Assuming that the Jacobian matrix, J, is square and nonsingular, the joint
acceleration vector q̈ can be found by matrix inversion.

q̈ = J−1
³
Ẍ− J̇ q̇

´
(10.174)

Proof. As long as the Jacobian matrix J is square and nonsingular, it
has an inverse J−1 that can be used to solve the set of linear algebraic
Equations (10.173) for the joint acceleration vector q̈.
However, calculating J̇ and J−1 becomes more tedious by increasing the

DOF of robots. The alternative technique is to write the equation in a new
form

Ẍ− J̇ q̇ = J q̈ (10.175)

which is similar to Equation (8.222) for a robot with a spherical wrist

Ẍ− J̇ q̇ =
∙
A 0
C D

¸
q̈ (10.176)

or

∙
m
n

¸
=

∙
A 0
C D

¸
⎡⎢⎢⎢⎢⎢⎢⎣

q̈1
q̈2
q̈3
q̈4
q̈5
q̈6

⎤⎥⎥⎥⎥⎥⎥⎦ (10.177)

where ∙
m
n

¸
= Ẍ− J̇ q̇. (10.178)

Therefore, the inverse acceleration kinematics problem can be solved as⎡⎣ θ̈1
θ̈2
θ̈3

⎤⎦ = A−1 [m] (10.179)
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and ⎡⎣ q̈4
q̈5
q̈6

⎤⎦ = D−1

⎛⎝[n]− [C]
⎡⎣ q̈1

q̈2
q̈3

⎤⎦⎞⎠ . (10.180)

The matrix J̇q̇ = Ẍ− J q̈ is called the acceleration bias vector and can
be calculated by differentiating from

0
0ḋ6 =

3X
i=1

0
0ωi × 0

i−1di (10.181)

0
0ω6 =

6X
i=1

θ̇i
0k̂i−1 (10.182)

to find

0
0a6 =

0
0d̈6 =

3X
i=1

¡
0
0ω̇i × 0

i−1di +
0
0ωi ×

¡
0
0ωi × 0

i−1di
¢¢

(10.183)

and

0
0α6 =

0
0ω̇6 =

6X
i=1

³
θ̈i
0k̂i−1 +

0
0ωi × θ̇i

0k̂i−1
´
. (10.184)

The angular acceleration vector 00α6 is the second half of Ẍ. Then, sub-
tracting the second half of J q̈ from 0

0α6 provides the second half of the
bias vector.

6X
i=1

0
0ωi × θ̇i

0k̂i−1 (10.185)

We substitute 00ωi and 0
0ω̇i

0
0ωi =

iX
j=1

θ̇j
0k̂j−1 (10.186)

0
0ω̇i =

iX
j=1

³
θ̈j

0k̂j−1 +
0
0ωj−1 × θ̇j

0k̂j−1
´

(10.187)
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in Equation (10.183)

0
0d̈6 =

3X
i=1

iX
j=1

³
θ̈j

0k̂j−1 +
0
0ωj−1 × θ̇j

0k̂j−1
´
× 0

i−1di

+
3X

i=1

iX
j=1

θ̇j
0k̂j−1 ×

¡
0
0ωi × 0

i−1di
¢

=
3X

i=1

iX
j=1

θ̈j
0k̂j−1 × 0

i−1di +
3X
i=1

iX
j=1

³
0
0ωj−1 × θ̇j

0k̂j−1
´
× 0

i−1di

+
3X

i=1

iX
j=1

θ̇j
0k̂j−1 ×

¡
0
0ωi × 0

i−1di
¢

(10.188)

to find the first half of the bias vector.

3X
i=1

iX
j=1

³
0
0ωj−1 × θ̇j

0k̂j−1
´
× 0

i−1di +
3X
i=1

iX
j=1

θ̇j
0k̂j−1 ×

¡
0
0ωi × 0

i−1di
¢

(10.189)

Example 285 Inverse acceleration of a 2R planar manipulator.
The forward velocity and acceleration of the 2R planar manipulator is

found as

Ẋ = J q̇ (10.190)∙
Ẋ

Ẏ

¸
=

∙
−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)
l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

¸ ∙
θ̇1
θ̇2

¸

Ẍ = J q̈+ J̇ q̇ (10.191)∙
Ẍ

Ÿ

¸
=

∙
−l1 sin θ1 −l2 sin (θ1 + θ2)
l1 cos θ1 l2 cos (θ1 + θ2)

¸ ∙
θ̈1

θ̈1 + θ̈2

¸

−
∙
l1 cos θ1 l2 cos (θ1 + θ2)
l1 sin θ1 l2 sin (θ1 + θ2)

¸⎡⎣ θ̇
2

1³
θ̇1 + θ̇2

´2
⎤⎦

along with the following derivative and inverse Jacobian matrices.

J̇ =

⎡⎣ −l1θ̇1cθ1 − l2

³
θ̇1 + θ̇2

´
c (θ1 + θ2) −l2

³
θ̇1 + θ̇2

´
c (θ1 + θ2)

−l1θ̇1sθ1 − l2

³
θ̇1 + θ̇2

´
s (θ1 + θ2) −l2

³
θ̇1 + θ̇2

´
s (θ1 + θ2)

⎤⎦
(10.192)

J−1 =
−1

l1l2sθ2

∙
−l2c (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l1sθ1 + l2s (θ1 + θ2)

¸
(10.193)
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FIGURE 10.6. A planar polar manipulator.

The inverse acceleration kinematics of the manipulator

q̈ = J−1
³
Ẍ− J̇ q̇

´
(10.194)

can be arranged to∙
θ̈1

θ̈1 + θ̈2

¸
=

1

l1l2sθ2

∙
l2 cos (θ1 + θ2) l2 sin (θ1 + θ2)
−l1 cos θ1 −l1 sin θ1

¸ ∙
Ẍ

Ÿ

¸

+
1

l1l2sθ2

∙
l1l2 cos θ1 l22
−l21 −l1l2 cos θ1

¸⎡⎣ θ̇
2

1³
θ̇1 + θ̇2

´2
⎤⎦ . (10.195)

Example 286 Inverse acceleration of a polar planar manipulator.
Figure 10.6 illustrates a planar polar manipulator with the following for-

ward velocity kinematics.

Ẋ = Jq̇ (10.196)∙
Ẋ

Ẏ

¸
=

∙
cos θ −r sin θ
sin θ r cos θ

¸ ∙
ṙ

θ̇

¸
(10.197)

Ẋ, and Ẏ are the components of the global velocity of the tip point and J
is the displacement Jacobian of the manipulator.

J =

∙
cos θ −r sin θ
sin θ r cos θ

¸
(10.198)
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To determine the acceleration of the end-effector, we take a derivative of
(10.196).

Ẍ = J q̈+ J̇ q̇ (10.199)

The time derivative of Jacobian is:

J̇ =
d

dt

∙
cos θ −r sin θ
sin θ r cos θ

¸
=

∙
−θ̇ sin θ −ṙ sin θ − rθ̇ cos θ

θ̇ cos θ ṙ cos θ − rθ̇ sin θ

¸
(10.200)

and therefore, the forward velocity of the manipulator is:∙
Ẍ

Ÿ

¸
=

∙
cos θ −r sin θ
sin θ r cos θ

¸ ∙
r̈

θ̈

¸
+

∙
−θ̇ sin θ −ṙ sin θ − rθ̇ cos θ

θ̇ cos θ ṙ cos θ − rθ̇ sin θ

¸ ∙
ṙ

θ̇

¸
(10.201)

To determine q̈, we solve Equation (10.201) for
£
r̈ θ̈

¤T
.

q̈ = J−1
³
Ẍ− J̇ q̇

´
(10.202)

The inverse of Jacobian is:

J−1 =

∙
−θ̇ sin θ −ṙ sin θ − rθ̇ cos θ

θ̇ cos θ ṙ cos θ − rθ̇ sin θ

¸−1
=

"
cos θ sin θ

−1
r
sin θ

1

r
cos θ

#
(10.203)

and therefore, the inverse velocity of the manipulator is:

q̈ = J−1 Ẍ−
h
J−1 J̇

i
q̇ (10.204)∙

r̈

θ̈

¸
=

"
cos θ sin θ

−1
r
sin θ

1

r
cos θ

# ∙
Ẍ

Ÿ

¸

−
"
0 −rθ̇
1

r
θ̇

1

r
ṙ

# ∙
ṙ

θ̇

¸
(10.205)

10.6 F Rigid Link Recursive Acceleration

Figure 10.7 illustrates a link (i) of a manipulator and shows its velocity and
acceleration vectorial characteristics. Based on velocity and acceleration
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0 iω

FIGURE 10.7. Illustration of vectorial kinematics information of a link (i).

kinematics of rigid links we can write a set of recursive equations to relate
the kinematics information of each link in the coordinate frame attached
to the previous link. We may then generalize the method of analysis to be
suitable for a robot with any number of links.
Translational acceleration of the link (i) is denoted by 0ai and is mea-

sured at the mass center Ci. Angular acceleration of the link (i) is denoted
by 0αi and is usually shown at the mass center Ci, although 0αi is the same
for all points of a rigid link. We calculate the translational acceleration of
the link (i) at Ci by referring to the acceleration at the distal end of the
link. Hence,

0ai = 0d̈i + 0αi ×
¡
0ri − 0di

¢
+ 0ωi ×

¡
0ωi ×

¡
0ri − 0di

¢¢
(10.206)

which can also be written in the form

i
0ai = id̈i +

i
0αi ×

¡
iri − idi

¢
+ i
0ωi ×

¡
i
0ωi ×

¡
iri − idi

¢¢
. (10.207)

The angular acceleration of the link (i) is

0αi =

½
0αi−1 + θ̈i

0k̂i−1 + 0ωi−1 × θ̇i
0k̂i−1 if joint i is R

0αi−1 if joint i is P
(10.208)
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that can also be written in the the local frame.

i
0αi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
iTi−1

³
i−1
0 αi−1 + θ̈i

i−1k̂i−1
´

+ iTi−1
³
i−1
0 ωi−1 × θ̇i

i−1k̂i−1
´

if joint i is R

iTi−1
i−1
0 αi−1 if joint i is P

(10.209)

Proof. According to rigid body acceleration in Equation (10.72), the ac-
celeration of the point Ci is:

0ai =
0d

dt
0vi (10.210)

= 0αi ×
¡
0ri − 0di

¢
+ 0ωi ×

¡
0ωi ×

¡
0ri − 0di

¢¢
+ 0d̈i

We can transform the acceleration of Ci to the body frame Bi.

iai = 0T−1i
0ai (10.211)

= i
0αi ×

¡
iri − idi

¢
+ i

0ωi ×
¡
i
0ωi ×

¡
iri − idi

¢¢
+ id̈i

Let us introduce the vectors 0ni and 0mi to define the position of oi−1 and
oi with respect to Ci.

0ni = 0di−1 − 0ri (10.212)
0mi = 0di − 0ri (10.213)

The vectors 0ni and 0mi simplify the dynamic equations of robots.
Using Equation (10.47) or (10.49) as a rule for adding relative angular

accelerations, we find

0αi = 0αi−1 +
0

i−1αi + 0ωi−1 × 0
i−1ωi (10.214)

however, the angular velocity 0
i−1ωi and angular acceleration 0

i−1αi are

0
i−1ωi = θ̇i

0k̂i−1 if joint i is R (10.215)
0

i−1αi = θ̈i
0k̂i−1 if joint i is R (10.216)

or

0
i−1ωi = 0 if joint i is P (10.217)
0

i−1αi = 0 if joint i is P. (10.218)

Therefore,

0αi =

½
0αi−1 + θ̈i

0k̂i−1 + 0ωi−1 × θ̇i
0k̂i−1 if joint i is R

0αi−1 if joint i is P
(10.219)
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and it can be transformed to any coordinate frame, including Bi, to find
the Equation (10.209).

i
0αi = 0T−1i 0αi =

i
0αi−1 + θ̈i

i
0k̂i−1 +

i
0ωi−1 × θ̇i

i
0k̂i−1

= iTi−1
³
i−1
0 αi−1 + θ̈i

i−1
0 k̂i−1 +

i−1
0 ωi−1 × θ̇i

i−1
0 k̂i−1

´
(10.220)

Example 287 F Recursive angular velocity equation for link (i).
The recursive global angular velocity equation for a link (i) is

0ωi =

½
0ωi−1 + θ̇i

0k̂i−1 if joint i is R
0ωi−1 if joint i is P.

(10.221)

We may transform this equation to the local frame Bi

i
0ωi = 0T−1i 0ωi =

0T−1i

³
0ωi−1 + θ̇i

0k̂i−1
´
= i

0ωi−1 + θ̇i
ik̂i−1

= iTi−1
³
i−1
0 ωi−1 + θ̇i

i−1k̂i−1
´
. (10.222)

Therefore, we can use a recursive equation to find the locally expressed
angular velocity of link (i) by having the angular velocity of its lower link
(i − 1). In this equation, every vector is expressed in its own coordinate
frame.

i
0ωi =

(
iTi−1

³
i−1
0 ωi−1 + θ̇i

i−1k̂i−1
´

if joint i is R
iTi−1

i−1
0 ωi−1 if joint i is P.

(10.223)

Example 288 F Recursive translational velocity equation for link (i).
The recursive global translational velocity equation for a link (i) is

0ḋi =

½
0ḋi−1 + 0ωi × 0

i−1di if joint i is R
0ḋi−1 + 0ωi × 0

i−1di + ḋi
0k̂i−1 if joint i is P.

(10.224)

We may transform this equation to the local frame Bi

i
0ḋi = 0T−1i 0ḋi =

0T−1i

³
0ḋi−1 + 0ωi × 0

i−1di + ḋi
0k̂i−1

´
= i

0di−1 +
i
0ωi × i

i−1di + ḋi
ik̂i−1

= iTi−1
³
i−1
0 di−1 + ḋi

i−1k̂i−1
´
+ i

0ωi × i
i−1di. (10.225)

Therefore, we may use a recursive equation to find the locally expressed
translational velocity of link (i) by having the translational velocity of its
lower link (i − 1). In this equation, every vector is expressed in its own
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coordinate frame.

iḋi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iTi−1

³
i−1
0 di−1 + ḋi

i−1k̂i−1
´

+ i
0ωi × i

i−1di
if joint i is R

iTi−1
i−1
0 di−1 +

i
0ωi × i

i−1di if joint i is P.

(10.226)

The angular velocity equation is a consequence of the relative velocity equa-
tion (7.62) and the rigid link’s angular velocity based on DH parameters
(8.2). The translational velocity equation also comes from rigid link velocity
analysis (8.3).

Example 289 F Recursive joints’ translational acceleration.
Equations (10.206) and (10.208) determine the translational and angular

accelerations of link (i) in the base coordinate frame B0. We can similarly
determine the recursive translational acceleration for a link (i) at joint i,
using the translational acceleration of link (i−) at joint i− 1 as:

0d̈i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0d̈i−1 + 0ω̇i × 0
i−1di

+ 0ωi ×
¡
0ωi × 0

i−1di
¢

if joint i is R

0d̈i−1 + 0ω̇i × 0
i−1di

+ 0ωi ×
¡
0ωi × 0

i−1di
¢

+d̈i
0k̂i−1 + 2 0ωi × ḋi

0k̂i−1 if joint i is P.

(10.227)

where

0
i−1di =

0di − 0di−1. (10.228)

We may also transform this equation to the local frame Bi

i
0d̈i = 0T−1i

0d̈i

= id̈i−1 +
i
0ω̇i × i

i−1di +
i
0ωi ×

¡
i
0ωi × i

i−1di
¢

+d̈i
ik̂i−1 + 2

i
0ωi × ḋi

ik̂i−1

= iTi−1
³
i−1
0 d̈i−1 + d̈i

i−1k̂i−1
´
+ 2 i

0ωi × ḋi
iTi−1

i−1k̂i−1

+ i
0ωi ×

¡
i
0ωi × i

i−1di
¢
+ i

0ω̇i × i
i−1di. (10.229)

Therefore, we may use a recursive equation to find the locally expressed
translational acceleration of link (i) by having the translational acceleration
of its lower link (i − 1). In this equation, every vector is expressed in its
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own coordinate frame.

i
0d̈i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iTi−1
i−1
0 d̈i−1

+ i
0ωi ×

¡
i
0ωi × i

i−1di
¢

+ i
0ω̇i × i

i−1di if joint i is R

iTi−1
³
i−1
0 d̈i−1 + d̈i

i−1k̂i−1
´

+2 i0ωi × ḋi
iTi−1

i−1k̂i−1
+ i
0ωi ×

¡
i
0ωi × i

i−1di
¢

+ i
0ω̇i × i

i−1di if joint i is P.

(10.230)

Equation (10.227) is the result of differentiating (10.224), and Equation
(10.230) is the result of transforming (10.227) to the local frame Bi.

Example 290 F Recursive accelerations for revolute joints.
If all joints of a robot are revolute, then Equation (10.227) for transla-

tional acceleration of joint i becomes:

0d̈i =
0d̈i−1 + 0αi × 0

i−1di + 0ωi ×
¡
0ωi × 0

i−1di
¢

(10.231)

and the angular acceleration of link (i) becomes:

0αi = 0αi−1 + θ̈i
0k̂i−1 + 0ωi−1 × θ̇i

0k̂i−1 (10.232)

Equation (10.221) also simplifies to the following equation for global angu-
lar velocity of link (i).

0ωi = 0ωi−1 + θ̇i
0k̂i−1 (10.233)

Starting from the first link, we find the angular velocity of the first four
links as:

0ω1 = θ̇1
0k̂0 (10.234)

0ω2 = 0ω1 + θ̇2
0k̂1 = θ̇1

0k̂0 + θ̇2
0k̂1 (10.235)

0ω3 = 0ω2 + θ̇3
0k̂2 = θ̇1

0k̂0 + θ̇2
0k̂1 + θ̇3

0k̂2 (10.236)

0ω4 = 0ω3 + θ̇4
0k̂3 = θ̇1

0k̂0 + θ̇2
0k̂1 + θ̇3

0k̂2 + θ̇4
0k̂3 (10.237)

and the angular velocity of the link (i) as:

0ωi = 0ωi−1 + θ̇i
0k̂i−1 =

iX
j=1

θ̇j
0k̂j−1 (10.238)

The first four angular accelerations are:

0α1 = θ̈1
0k̂0 (10.239)

0α2 = 0α1 + θ̈2
0k̂1 + 0ω1 × θ̇2

0k̂1

= θ̈1
0k̂0 + θ̈2

0k̂1 + θ̇1
0k̂0 × θ̇2

0k̂1 (10.240)
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0α3 = 0α2 + θ̈3
0k̂2 + 0ω2 × θ̇3

0k̂2

= θ̈1
0k̂0 + θ̈2

0k̂1 + θ̇1
0k̂0 × θ̇2

0k̂1

+θ̈3
0k̂2 +

³
θ̇1

0k̂0 + θ̇2
0k̂1

´
× θ̇3

0k̂2

= θ̈1
0k̂0 + θ̈2

0k̂1 + θ̈3
0k̂2

+θ̇1
0k̂0 × θ̇2

0k̂1 +
³
θ̇1

0k̂0 + θ̇2
0k̂1

´
× θ̇3

0k̂2 (10.241)

0α4 = 0α3 + θ̈4
0k̂3 + 0ω3 × θ̇4

0k̂3

= θ̈1
0k̂0 + θ̈2

0k̂1 + θ̈3
0k̂2 + θ̈4

0k̂3

+θ̇1
0k̂0 × θ̇2

0k̂1 +
³
θ̇1

0k̂0 + θ̇2
0k̂1

´
× θ̇3

0k̂2

+
³
θ̇1

0k̂0 + θ̇2
0k̂1 + θ̇3

0k̂2

´
× θ̇4

0k̂3 (10.242)

or

0α4 = θ̇1
0k̂0 ×

³
θ̇2

0k̂1 + θ̇3
0k̂2 + θ̇4

0k̂3

´
+θ̇2

0k̂1 ×
³
θ̇3

0k̂2 + θ̇4
0k̂3

´
+ θ̇3

0k̂2 × θ̇4
0k̂3. (10.243)

So, we can find the angular acceleration of link (i) as:

0αi = 0αi−1 + θ̈i
0k̂i−1 + 0ωi−1 × θ̇i

0k̂i−1

=
iX

j=1

θ̈j
0k̂j−1 +

i−1X
j=1

Ã
jX

k=1

θ̇k
0k̂k−1 × θ̇j+1

0k̂j

!
(10.244)

or

0αi =
iX

j=1

θ̈j
0k̂j−1 +

i−1X
j=1

⎛⎝θ̇j
0k̂j−1 ×

iX
k=j+1

θ̇k
0k̂k−1

⎞⎠ (10.245)

However, because of 0k̂i × 0k̂i = 0, we can rearrange the equation as:

0αi = 0αi−1 + θ̈i
0k̂i−1 + 0ωi−1 × θ̇i

0k̂i−1

=
iX

j=1

θ̈j
0k̂j−1 +

iX
j=1

Ã
jX

k=1

θ̇k
0k̂k−1 × θ̇j

0k̂j−1

!
(10.246)

Using the above equations, we can find the translational acceleration of
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frame Bi.

0d̈i = 0d̈i−1 + 0αi × 0
i−1di + 0ωi ×

¡
0ωi × 0

i−1di
¢

=
iX

j=1

0αj × 0
j−1dj +

iX
j=1

0ωj ×
¡
0ωj × 0

j−1dj
¢

=
iX

j=1

Ã
jX

m=1

θ̈m
0k̂m−1 +

jX
m=1

Ã
mX
k=1

θ̇k
0k̂k−1 × θ̇m

0k̂m−1

!!
× 0

j−1dj

+
iX

j=1

Ã
jX

m=1

θ̇m
0k̂m−1 ×

Ã
jX

m=1

θ̇m
0k̂m−1 × 0

j−1dj

!!
(10.247)

Example 291 F Jacobian rate generating vector.
The forward acceleration kinematic needs differential of Jacobian matrix.∙

0an
0αn

¸
=

∙
0d̈n
0ω̇n

¸
= J q̈+ J̇ q̇ (10.248)

From Equation (8.130) we know that∙
0ḋn
0ωn

¸
=

nX
i=1

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
θ̇i. (10.249)

Taking a derivative, we have∙
0d̈n
0ω̇n

¸
=

∙
0an
0αn

¸
=

nX
i=1

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
θ̈i

+
nX
i=1

⎡⎢⎣ d

dt

³
0k̂i−1 × 0

i−1dn
´

d

dt
0k̂i−1

⎤⎥⎦ θ̇i (10.250)

To expand this equation, let us begin with
d

dt
0k̂i−1.

d

dt
0k̂i−1 = 0ωi−1 × 0k̂i−1 (10.251)

Using (10.238), we have

d

dt
0k̂i−1 =

i−1X
j=1

θ̇j
0k̂j−1 × 0k̂i−1. (10.252)

The first row of (10.250) is:

d

dt

³
0k̂i−1 × 0

i−1dn
´
=

d 0k̂i−1
dt

× 0
i−1dn +

0k̂i−1 ×
d

dt
0

i−1dn (10.253)
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Let us use

0
i−1di = 0di − 0di−1 (10.254)

0
i−1dn =

nX
j=i

0
j−1dj (10.255)

to find the first term as:

d 0k̂i−1
dt

× 0
i−1dn =

⎛⎝i−1X
j=1

θ̇j
0k̂j−1 × 0k̂i−1

⎞⎠× nX
k=i

0
k−1dk

=
i−1X
j=1

nX
k=i

³
0k̂j−1 × 0k̂i−1

´
× 0

k−1dk θ̇j (10.256)

The second term is:

0k̂i−1 ×
d

dt
0

i−1dn = 0k̂i−1 ×
d

dt

nX
k=i

0
k−1dk =

0k̂i−1 ×
nX
k=i

d

dt
0

k−1dk

= 0k̂i−1 ×
nX
k=i

0ωk × 0
k−1dk

=
nX
k=i

0k̂i−1 ×
¡
0ωk × 0

k−1dk
¢

=
nX
k=i

0k̂i−1 ×

⎛⎝ kX
j=1

θ̇j
0k̂j−1 × 0

k−1dk

⎞⎠
=

nX
k=i

kX
j=1

0k̂i−1 ×
³
0k̂j−1 × 0

k−1dk
´
θ̇j (10.257)

Therefore,

d

dt

³
0k̂i−1 × 0

i−1dn
´
=

i−1X
j=1

³
0k̂j−1 × 0k̂i−1

´
× 0

j−1dj θ̇j

+
nX
k=i

kX
j=1

0k̂i−1 ×
³
0k̂j−1 × 0

k−1dk
´
θ̇j (10.258)
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and Equation (10.250) becomes:∙
0v̇n
0ω̇n

¸
=

nX
i=1

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
θ̈i

+
nX
i=1

⎡⎢⎢⎢⎢⎣
Pi−1

j=1

³
0k̂j−1 × 0k̂i−1

´
× 0

j−1dj θ̇j

+
Pn

k=i

Pk
j=1

0k̂i−1 ×
³
0k̂j−1 × 0

k−1dk
´
θ̇j

Pi−1
j=1 θ̇j

0k̂j−1 × 0k̂i−1

⎤⎥⎥⎥⎥⎦ θ̇i (10.259)

The first bracket is the Jacobian matrix

J =
nX
i=1

∙
0k̂i−1 × 0

i−1dn
0k̂i−1

¸
=

∙
0k̂0 × 0

0dn
0k̂1 × 0

1dn · · · 0k̂n−1 × 0
n−1dn

0k̂0
0k̂1 · · · 0k̂n−1

¸
(10.260)

and the second bracket is the rate of Jacobian matrix.

J̇ =
nX
i=1

⎡⎢⎢⎢⎢⎣
Pi−1

j=1

³
0k̂j−1 × 0k̂i−1

´
× 0

j−1dj θ̇j

+
Pn

k=i

Pk
j=1

0k̂i−1 ×
³
0k̂j−1 × 0

k−1dk
´
θ̇j

Pi−1
j=1 θ̇j

0k̂j−1 × 0k̂i−1

⎤⎥⎥⎥⎥⎦ (10.261)

Similar to the Jacobian generating vector ci in (8.119), we can define a
Jacobian rate generating vector ċi

ċi(q) =

⎡⎢⎢⎢⎢⎣
Pi−1

j=1

³
0k̂j−1 × 0k̂i−1

´
× 0

j−1dj θ̇j

+
Pn

k=i

Pk
j=1

0k̂i−1 ×
³
0k̂j−1 × 0

k−1dk
´
θ̇j

Pi−1
j=1

0k̂j−1 × 0k̂i−1 θ̇j

⎤⎥⎥⎥⎥⎦ (10.262)

to determine J̇ column by column.

J̇ =
£
ċ1 ċ2 ċ3 · · · ċn

¤
(10.263)

Example 292 F Recursive acceleration in Base frame
The acceleration of connected links can also be calculated recursively. Let

us start with computing
0V̇i =

0T̈i
0T−1i (10.264)



566 10. Acceleration Kinematics

for the absolute accelerations of link (i), and then calculating the accelera-
tion matrix for link (i+ 1)

0V̇i+1 = 0T̈i+1
0T−1i+1

=
³
0T̈i

iTi+1 + 2
0Ṫi

iṪi+1 +
0Ti

iT̈i+1

´
0T−1i+1

= 0T̈i
0T−1i + 2 0Ṫi

0T−1i
0Ti

iṪi+1
iT−1i+1

0T−1i

+ 0Ti
iT̈i+1

iT−1i+1
0T−1i . (10.265)

These two equations can be put in a recursive form

0V̇i+1 =
0V̇i + 2

0V̇i
0Ti

iVi+1
0T−1i + 0Ti

iV̇i+1
0T−1i . (10.266)

For a revolute joint, we have

iVi+1 = q̇i+1∆R = θ̇i+1 ∆R = θ̇i+1

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ (10.267)

and therefore,

iV̇i+1 = θ̈i+1∆R − θ̇
2

i+1∆R∆
T
R

= θ̈i+1

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦− θ̇
2

i+1

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .(10.268)
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10.7 Summary

When a body coordinate frame B and a global frame G have a common
origin, the global acceleration of a point P in frame B is

Gr̈ =
Gd

dt
GvP = GαB × Gr+ GωB ×

¡
GωB × Gr

¢
(10.269)

where, GαB is the angular acceleration of B with respect to G

GαB =
Gd

dt
GωB . (10.270)

However, when the body coordinate frame B has a rigid motion with re-
spect to G, then

GaP =
Gd

dt
GvP = GαB ×

¡
GrP − GdB

¢
+GωB ×

¡
GωB ×

¡
GrP − GdB

¢¢
+ Gd̈B (10.271)

where GdB indicates the position of the origin of B with respect to the
origin of G.
Angular accelerations of two links are related according to

0α2 = 0α1 +
0
1α2. (10.272)

The acceleration relationship for a body B having a rigid motion in G may
also be expressed by a homogeneous acceleration transformation matrix
GAB

GaP (t) =
GAB

GrP (t) (10.273)

where,

GAB = GT̈B
GT−1B

=

∙
Gα̃B − ω̃ ω̃T Gd̈B −

¡
Gα̃B − ω̃ ω̃T

¢
GdB

0 0

¸
. (10.274)

The forward acceleration kinematics of a robot is defined by

Ẍ = J q̈+ J̇ q̇ (10.275)

that is a relationship between joint coordinate acceleration

q̈ =
£
q̈1 q̈2 q̈3 · · · q̈n

¤T
(10.276)

and global acceleration of the end-effector

Ẍ =
£
Ẍn Ÿn Z̈n ω̇Xn ω̇Y n ω̇Zn

¤T
. (10.277)
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Such a relationship introduces the time derivative of Jacobian matrix
h
J̇
i
.

Having the forward acceleration kinematics of a robot as (10.275), we can
determine the inverse acceleration kinematics of the robot algebraically and
determine the joint accelerations for a given set of end-effector acceleration,
speed, and configuration.

q̈ = J−1
³
Ẍ− J̇ q̇

´
(10.278)
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10.8 Key Symbols

a acceleration vector
A acceleration transformation matrix
B body coordinate frame
c cos
C mass center
dx, dy, dz elements of d
d translation vector, displacement vector
D displacement transformation matrix
e rotation quaternion
G,B0 global coordinate frame, Base coordinate frame
ı̂, ĵ, k̂ local coordinate axes unit vectors
ı̃, j̃, k̃ skew symmetric matrices of the unit vector ı̂, ĵ, k̂
Î, Ĵ , K̂ global coordinate axes unit vectors
I = [I] identity matrix
j jerk vector
jij the element of row i and column j of χ̃
J = [J ] Jacobian
Jij the element of row i and column j of [J ]
l length
m number of independent equations
ni position vector of oi−1 with respect to Ci

mi position vector of oi with respect to Ci

p, q position vectors of P , Q
q joint variable vector
P , Q points
r position vectors, homogeneous position vector
ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix, radius
s sin
S rotational acceleration transformation
T homogeneous transformation matrix
û unit vector along the axis of ω
ũ skew symmetric matrix of the vector û
u1, u2, u3 components of û
U rotational jerk transformation
v velocity
v velocity vector
V velocity transformation matrix
x, y, z local coordinate axes
X,Y,Z global coordinate axes
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Greek
α angular acceleration
α angular acceleration vector

α̃ =
·
ω̃ angular acceleration matrix

α1, α2, α3 components of α
θ rotary joint angle
θijk θi + θj + θk
ϕ, θ, ψ Euler angles
φ angle of rotation about û
ω angular velocity
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω
ω1, ω2, ω3 components of ω

χ̃ =
·
α̃ angular jerk matrix

χ = α̇ angular jerk vector

Symbol
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

≡ equivalent
` orthogonal
(i) link number i
k parallel sign
⊥ perpendicular
× vector cross product
←→e matrix form of a quaternion e
E earth
lim limit function
sgn signum function
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Exercises

1. Notation and symbols.

Describe their meaning.

a- GαB b- BαG c- GGαB d- BGαB e- BBαG f- GBαG

g- 02α1 h- 01α2 i- 12α1 j- 22α1 k- 32α1 l- kjαi

m- 02α̃1 n-
·

2
1ω̃2 o- GAB p- GV̇B q- J̇ r- Ẍ

2. Local position, global acceleration.

A body is turning about a global principal axes at a constant angular
acceleration of 2 rad/ sec2. Find the global velocity and acceleration
of a point P at

Br =

⎡⎣ 5
30
10

⎤⎦
(a) if the axis is the Z-axis, the angular velocity is 2 rad/ sec, and

the angle of rotation is π/3 rad.

(b) if the axis is the X-axis, the angular velocity is 1 rad/ sec, and
the angle of rotation is π/4 rad.

(c) if the axis is the Y -axis, the angular velocity is 3 rad/ sec, and
the angle of rotation is π/6 rad.

3. Global position, constant angular acceleration.

A body is turning about the Z-axis at a constant angular acceleration
α̈ = 0.2 rad/ sec2. Find the global position of a point at

Br =

⎡⎣ 5
30
10

⎤⎦
after t = 3 sec when α̇ = 2 rad/ sec, if the body and global coordinate
frames were coincident at t = 0 sec.

4. F Angular velocity and acceleration matrices.

A body B is turning continuously in the global frame G. The transfor-
mation matrix can be simulated by a rotation α about Z-axis followed
by a rotation β about X-axis.

(a) Determine the axis and angle of rotation û and φ as functions
of α and β.
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(b) Determine if α and β are changing with constant rate, û and φ
also change. Determine the conditions that keep û constant and
the conditions that keep φ constant.

(c) Assume û is constant and φ̇ = 5 rad/ sec. Determine α̇ and β̇
when φ = 30deg.

(d) Determine φ̇ when α = 30deg, β = 45deg, α̇ = 5 rad/ sec, and
β̇ = 5 rad/ sec.

5. Turning about x-axis.

Find the angular acceleration matrix when the body coordinate frame
is turning −5 deg / sec2, 35 deg / sec at 45 deg about the x-axis.

6. Angular acceleration and Euler angles.

Calculate the angular velocity and acceleration vectors in body and
global coordinate frames if the Euler angles and their derivatives are:

ϕ = .25 rad ϕ̇ = 2.5 rad/ sec ϕ̈ = 25 rad/ sec2

θ = −.25 rad θ̇ = −4.5 rad/ sec θ̈ = 35 rad/ sec2

ψ = .5 rad ψ̇ = 3 rad/ sec ψ̈ = 25 rad/ sec2

7. Angular acceleration by Euler angles.

Employing the Euler angles transformation matrix,

(a) determine the linear relations between the Cartesian angular
velocity GωB and ϕ̇, θ̇, and ψ̇.

(b) determine the linear relations between the Cartesian angular
acceleration GαB and ϕ̈, θ̈, and ψ̈.

(c) F determine the linear relations between the Cartesian angular
jerk GjB and

...
ϕ,
...
θ , and

...
ψ .

8. Combined rotation and angular acceleration.

Find the rotation matrix for a body frame after 30 deg rotation about
the Z-axis, followed by 30 deg about the X-axis, and then 90 deg
about the Y -axis. Then calculate the angular velocity of the body
if it is turning with α̇ = 20deg / sec, β̇ = −40 deg / sec, and γ̇ =
55deg / sec about the Z, Y , and X axes respectively. Finally, cal-
culate the angular acceleration of the body if it is turning with
α̈ = 2deg / sec2, β̈ = 4deg / sec2, and γ̈ = −6 deg / sec2 about the
Z, Y , and X axes.



10. Acceleration Kinematics 573

Y

X

P

O

y

x

R
r
o

θ

ϕ

FIGURE 10.8. A roller in a circular path.

9. F Differentiation and coordinate frame.

How can we define these?

Gd

dt

Gd

dt
Gr

Gd

dt

Gd

dt
Br

Gd

dt

Bd

dt
Gr

Bd

dt

Gd

dt
Gr

Gd

dt

Bd

dt
Br

Bd

dt

Bd

dt
Gr

Bd

dt

Gd

dt
Br

Bd

dt

Bd

dt
Br

10. A roller in a circle.

Figure 10.8 shows a roller in a circular path. Find the velocity and
acceleration of a point P on the circumference of the roller.

11. An RPR manipulator.

Label the coordinate frames and find the velocity and acceleration of
point P at the endpoint of the manipulator shown in Figure 10.9.

12. A RRP planar redundant manipulator.

Figure 10.10 illustrates a 3 DOF planar manipulator with joint vari-
ables θ1, θ2, and d3.

(a) Solve the forward kinematics of the manipulator and calculate
the position and orientation of the end-effector X, Y , ϕ for a
given set of joint variables θ1, θ2, and d3, where, X, Y are global
coordinates of the end-effector frame B3, and ϕ is the angular
coordinate of B3.

(b) Solve the inverse kinematics of the manipulator and determine
θ1, θ2, and d3 for a given values of X, Y , ϕ.
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FIGURE 10.10. A RRP planar redundant manipulator.
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FIGURE 10.11. A RPR planar redundant manipulator.

(c) Determine the Jacobian matrix of the manipulator and show
that the following equation solve the forward velocity kinemat-
ics. ⎡⎣ Ẋ

Ẏ
ϕ̇

⎤⎦ = J
⎡⎣ θ̇1

θ̇2
ḋ3

⎤⎦
(d) Determine J−1 and solve the inverse velocity kinematics.

(e) Determine J̇ and solve the forward acceleration kinematics.

(f) Solve the inverse acceleration kinematics.

13. A RPR planar redundant manipulator.

(a) Figure 10.11 illustrates a 3 DOF planar manipulator with joint
variables θ1, d2, and θ2.

(b) Solve the forward kinematics of the manipulator and calculate
the position and orientation of the end-effector X, Y , ϕ for a
given set of joint variables θ1, θ2, and d3, where, X, Y are global
coordinates of the end-effector frame B3, and ϕ is the angular
coordinate of B3.

(c) Solve the inverse kinematics of the manipulator and determine
θ1, θ2, and d3 for a given values of X, Y , ϕ.

(d) Determine the Jacobian matrix of the manipulator and show
that the following equation solve the forward velocity kinemat-
ics. ⎡⎣ Ẋ

Ẏ
ϕ̇

⎤⎦ = J
⎡⎣ θ̇1

θ̇2
ḋ3

⎤⎦
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FIGURE 10.12. An offset articulated manipulator.

(e) Determine J−1 and solve the inverse velocity kinematics.

(f) Determine J̇ and solve the forward acceleration kinematics.

(g) Solve the inverse acceleration kinematics.

14. F An offset articulated manipulator.

Figure 10.12 illustrates an offset articulated manipulator.

(a) Solve the forward kinematics of the manipulator.

(b) Solve the inverse kinematics of the manipulator.

(c) Solve the forward velocity kinematics of the manipulator.

(d) Solve the inverse velocity kinematics of the manipulator.

(e) Solve the forward acceleration kinematics of the manipulator.

(f) Solve the inverse acceleration kinematics of the manipulator.

15. F Project-A modified offset articulated manipulator.

Figure 10.13 illustrates an offset articulated manipulator with a differ-
ent end-effector coordinate frame. Determine the inverse acceleration
kinematics of the robot.

16. F Project-Articulated robots.

Attach the spherical wrist of Exercise 22 to the articulated manipu-
lator of Figure 8.10 and make a 6 DOF articulated robot. Determine
the inverse acceleration kinematics of the robot.
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FIGURE 10.13.

17. F Project-Spherical robots.

Attach the spherical wrist of Exercise 22 to the spherical manipulator
of Exercise 18 and make a 6 DOF spherical robot. Determine the
inverse acceleration kinematics of the robot.

18. F Project-Cylindrical robots.

Attach the spherical wrist of Exercise 22 to the cylindrical manipu-
lator of Exercise 20 and make a 6 DOF cylindrical robot. Determine
the inverse acceleration kinematics of the robot.

19. F Project-SCARA robot inverse acceleration kinematics.

Figure 8.11 illustrates a SCARA robot. Determine the inverse accel-
eration kinematics of the robot.

20. Rigid link acceleration.

Figure 10.16 illustrates the coordinate frames and kinematics of a
rigid link (i). Assume that the angular velocity of the link, as well as
the velocity and acceleration at proximal and distal joints, are given.
Find

(a) velocity and acceleration of the link at Ci in terms of proximal
joint i velocity and acceleration

(b) velocity and acceleration of the link at Ci in terms of distal joint
i+ 1 velocity and acceleration
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FIGURE 10.16. Kinematics of a rigid link.

(c) velocity and acceleration of the of proximal joint i in terms of
distal joint i+ 1 velocity and acceleration

(d) velocity and acceleration of the of distal joint i + 1 in terms of
proximal joint i velocity and acceleration.

21. F Jerk of a point in a roller.

Figure 10.15 shows a rolling disc on an inclined flat surface. Find
the velocity, acceleration, and jerk of point P in local and global
coordinate frames.
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Motion Dynamics
Relation between kinematics and the cause of change of kinematics is called
the equation of motion. Derivation of equation of motion and the expression
of their solution is called dynamics. We review the elements of equations
of motion and methods of their derivation.

11.1 Force and Moment

From a Newtonian viewpoint, the forces acting on a rigid body are divided
into internal and external forces. Internal forces are acting between parti-
cles of the body, and external forces are acting from outside the body. An
external force is either contact force, such as actuating force at a joint of a
robot, or body force, such as gravitational force on the links of a robot. Ex-
ternal forces and moments are called load, and a set of forces and moments
acting on a rigid body is called a force system. The resultant or total force
F is the sum of all the external forces acting on a body, and the resultant
or total moment M is the sum of all the moments of the external forces
about an origin.

F =
X
i

Fi (11.1)

M =
X
i

Mi (11.2)

Consider a force F acting at a point P indicated by position vector rP .
The moment of the force about a directional line l passing through the
origin is

Ml = lû · (rP ×F) (11.3)

where û is a unit vector indicating the direction of l. The moment of a force
may also be called torque or moment.
The moment of a force F, acting at a point P , about a point Q at rQ is

MQ = (rP − rQ)×F (11.4)

and therefore, the moment of F about the origin is

M = rP ×F. (11.5)

The effect of a force system, acting on a rigid body, is equivalent to the
effect of the resultant force and resultant moment of the force system. Any

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_11,  
© Springer Science+Business Media, LLC 2010 
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two force systems are equivalent if their resultant forces and resultant mo-
ments are equal. It is possible that the resultant force of a force system be
zero. In this condition the resultant moment of the force system is inde-
pendent of the origin of the coordinate frame. Such a resultant moment is
called torque.
When a force system is reduced to a resultant FP andMP with respect

to a reference point P , we may change the reference point to another point
Q and find the new resultants as

FQ = FP (11.6)

MQ = MP + (rP − rQ)×FP =MP + QrP ×FP . (11.7)

The momentum of a rigid body is a vector quantity proportional to the
total mass of the body times the translational velocity of the mass center
of the body.

p = mv (11.8)

The momentum is also called linear momentum or translational momentum.
Consider a rigid body with momentum p. The moment of momentum, L,
about a directional line l passing through the origin is

Ll = lû · (rC × p) (11.9)

where û is a unit vector indicating the direction of the line, rC is the
position vector of the mass center (C), and L = rC × p is the moment
of momentum about the origin. The moment of momentum is also called
angular momentum to justify the word linear momentum.
A bounded vector is a vector fixed at a point in space. A sliding or line

vector is a vector free to slide on its line of action. A free vector can move
to any point as long as it keeps its direction. Force is a sliding vector and
torque is a free vector. However, the moment of a force is dependent on the
distance between the origin of the coordinate frame and the line of action.
The application of a force system is emphasized by Newton’s second and

third laws of motion. The second law of motion, also called Newton equa-
tion of motion, says that the global rate of change of linear momentum is
proportional to the global applied force.

GF =
Gd

dt
Gp =

Gd

dt

¡
mGv

¢
(11.10)

The third law of motion says that the action and reaction forces acting
between two bodies are equal and opposite.
The second law of motion can be expanded to include rotational motions.

Hence, the second law of motion also says that the global rate of change of
angular momentum is proportional to the global applied moment.

GM =
Gd

dt
GL (11.11)
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Proof. Differentiating from angular momentum shows that

Gd

dt
GL =

Gd

dt
(rC × p) =

µ
GdrC
dt

× p+ rC ×
Gdp

dt

¶
= GrC ×

Gdp

dt
= GrC × GF = GM. (11.12)

Kinetic energy of a point P from a moving frame B, with mass m at a
position pointed by GrP and having a velocity GvP , is:

K =
1

2
mGv2P =

1

2
m
³
GḋB +

BvP +
B
GωB × BrP

´2
(11.13)

The work done by the applied force GF on m in going from point 1 to point
2 on a path indicated by a vector r is

1W2 =

Z 2

1

GF · dr. (11.14)

However,Z 2

1

GF · dr = m

Z 2

1

Gd

dt
Gv · Gvdt = 1

2
m

Z 2

1

d

dt
v2dt

=
1

2
m
¡
v22 − v21

¢
= K2 −K1 (11.15)

that shows 1W2 is equal to the difference of the kinetic energy between
terminal and initial points.

1W2 = K2 −K1 (11.16)

Example 293 Position of center of mass.
The position of the mass center of a rigid body in a coordinate frame is

indicated by rC and is usually measured in the body coordinate frame.

BrC =
1

m

Z
B

r dm (11.17)⎡⎣ xC
yC
zC

⎤⎦ =

⎡⎢⎣
1
m

R
B
x dm

1
m

R
B
y dm

1
m

R
B
z dm

⎤⎥⎦ (11.18)

Applying the mass center integral on the symmetric L-section rigid body
with ρ = 1 shown in Figure 11.1 provides the C of the section. The x
position of C is

xC =
1

m

Z
B

xdm =
1

A

Z
B

x dA = −b
2 + ab− a2

4ab+ 2a2
(11.19)
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FIGURE 11.1. Principal coordinate frame for a symmetric L-section.

and because of symmetry, we have

yC = −xC =
b2 + ab− a2

4ab+ 2a2
. (11.20)

Example 294 Every force system is equivalent to a wrench.
The Poinsot theorem says: Every force system is equivalent to a single

force, plus a moment parallel to the force. Let F and M be the resultant
force and moment of the force system. We decompose the moment into
parallel and perpendicular components,Mk andM⊥, to the force axis. The
force F and the perpendicular momentM⊥ can be replaced by a single force
F0 parallel to F. Therefore, the force system is reduced to a force F0 and a
moment Mk parallel to each other. A force and a moment about the force
axis is a wrench.
Poinsot theorem is similar to the Chasles theorem that says every rigid

body motion is equivalent to a screw, which is a translation plus a rotation
about the axis of translation.

Example 295 Motion of a moving point in a moving body frame.
The velocity and acceleration of a moving point P as shown in Figure

7.5 are found in Example 279.

GvP =
GḋB +

GRB

¡
BvP +

B
GωB × BrP

¢
(11.21)

GaP = Gd̈B +
GRB

¡
BaP + 2

B
GωB × BvP +

B
Gω̇B × BrP

¢
+GRB

¡
B
GωB ×

¡
B
GωB × BrP

¢¢
(11.22)

Therefore, the equation of motion for the point mass P is

GF = mGaP

= m
³
Gd̈B +

GRB

¡
BaP + 2

B
GωB × BvP +

B
Gω̇B × BrP

¢´
+m GRB

¡
B
GωB ×

¡
B
GωB × BrP

¢¢
. (11.23)
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Example 296 Newton equation in a rotating frame.
Consider a spherical rigid body (such as Earth) with a fixed point that

is rotating with a constant angular velocity. The equation of motion for a
moving point P on the rigid body is found by setting Gd̈B =

B
Gω̇B = 0 in

the equation of motion of a moving point in a moving body frame (11.23)

BF = mBaP +mB
GωB ×

¡
B
GωB × BrP

¢
+ 2mB

GωB × B ṙP (11.24)

6= mBaP

which shows that the Newton equation of motion F = ma is not correct in
a rotating frame.

Example 297 Coriolis force.
The equation of motion of a moving point on the surface of the Earth is

BF = mBaP +mB
GωB ×

¡
B
GωB × BrP

¢
+ 2mB

GωB × BvP (11.25)

which can be rearranged to

BF−mB
GωB ×

¡
B
GωB × BrP

¢
− 2mB

GωB × BvP = mBaP . (11.26)

Equation (11.26) is the equation of motion to an observer in the rotating
frame, which in this case is an observer on the Earth. The left-hand side
of this equation is called the effective force,

Feff =
BF−mB

GωB ×
¡
B
GωB × BrP

¢
− 2mB

GωB × BvP (11.27)

because it seems that the particle is moving under the influence of this force.
The second term is negative of the centrifugal force and pointing outward.

The maximum value of this force on the Earth is on the equator

rω2 = 6378.388× 103 ×
µ

2π

24× 3600
366.25

365.25

¶2
= 3.3917× 10−2m/ s2 (11.28)

which is about 0.3% of the acceleration of gravity. If we add the varia-
tion of the gravitational acceleration because of a change of radius from
R = 6356912m at the pole to R = 6378388m on the equator, then the vari-
ation of the acceleration of gravity becomes 0.53%. So, generally speaking,
a sportsman such as a pole-vaulter practicing in the north pole can show a
better record in a competition held on the equator.
The third term is called the Coriolis effect, FC, which is perpendicular

to both ω and BvP . For a mass m moving on the north hemisphere at a
latitude θ towards the equator, we should provide a lateral eastward force
equal to the Coriolis effect to force the mass, keeping its direction relative
to the ground.

FC = 2m
B
GωB × Bvm = 1.4584× 10−4 Bpm cos θ kgm/ s2 (11.29)
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The Coriolis effect is the reason of wearing the west side of railways, roads,
and rivers. The lack of providing Coriolis force is the reason for turning
the direction of winds, projectiles, and falling objects westward.

Example 298 Work, force, and kinetic energy in a unidirectional motion.
A mass m = 2kg has an initial kinetic energy K = 12 J. The mass

is under a constant force F = F Î = 4Î and moves from X(0) = 1 to
X(tf ) = 22m at a terminal time tf . The work done by the force during
this motion is

W =

Z r(tf )

r(0)

F · dr =
Z 22

1

4 dX = 21Nm = 21 J (11.30)

The kinetic energy at the terminal time is

K(tf ) =W +K(0) = 33 J (11.31)

which shows that the terminal speed of the mass is:

v2 =

r
2K(tf )

m
=
√
33m/ s (11.32)

Example 299 Time varying force.
When the applied force is time varying,

F(t) = m r̈ (11.33)

then there is a general solution for the equation of motion because the char-
acteristic and category of the motion differs for different F(t).

ṙ(t) = ṙ(t0) +
1

m

Z t

t0

F(t)dt (11.34)

r(t) = r(t0) + ṙ(t0)(t− t0) +
1

m

Z t

t0

Z t

t0

F(t)dt dt (11.35)

11.2 Rigid Body Translational Kinetics

Figure 11.2 depicts a moving body B in a global frame G. Assume that
the body frame is attached at the center of mass C of the body. Point P
indicates an infinitesimal sphere of the body which has a very small mass
dm. The point mass dm is acted on by an infinitesimal force df and has a
global velocity GvP .
According to Newton law of motion we have

df = GaP dm (11.36)
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FIGURE 11.2. A body point mass moving with velocity GvP and acted on by
force df .

however, the equation of motion for the whole body in global coordinate
frame is

GF = mGaB (11.37)

which can be expressed in the body coordinate frame as

BF = mB
GaB +m B

GωB × BvB . (11.38)

In these equations, GaB is the acceleration vector of the body C in global
frame,m is the total mass of the body, and F is the resultant of the external
forces acted on the body at C.
Proof. A body coordinate frame at center of mass is called a central frame.
If the frame B is a central frame, then the center of mass, C, is defined
such that Z

B

Brdm dm = 0. (11.39)

The global position vector of dm is related to its local position vector by

Grdm =
GdB +

GRB
Brdm (11.40)

where GdB is the global position vector of the central body frame, and
therefore,Z

B

Grdm dm =

Z
B

GdB dm+ GRB

Z
m

Brdm dm

=

Z
B

GdB dm = GdB

Z
B

dm = mGdB. (11.41)
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The time derivative of both sides shows that

mGḋB = mGvB =

Z
B

Gṙdm dm =

Z
B

Gvdm dm (11.42)

and another derivative is

mGv̇B = mGaB =

Z
B

Gv̇dm dm. (11.43)

However, we have df = Gv̇P dm and,

mGaB =

Z
B

df . (11.44)

The integral on the right-hand side accounts for all the forces acting on
particles of mass in the body. The internal forces cancel one another out,
so the net result is the vector sum of all the externally applied forces, F,
and therefore,

GF = m GaB = m Gv̇B . (11.45)

In the body coordinate frame we have

BF = BRG
GF = m BRG

GaB = m B
GaB

= m BaB +m B
GωB × BvB. (11.46)

11.3 Rigid Body Rotational Kinetics

The rigid body rotational equation of motion is the Euler equation

BM =
Gd

dt
BL = BL̇+B

GωB × BL

= BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
(11.47)

where L is the angular momentum

BL = BI B
GωB (11.48)

and I is the mass moment or moment of inertia of the rigid body.

I =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ (11.49)

The elements of I are only functions of the mass distribution of the rigid
body and may be defined by

Iij =

Z
B

¡
r2i δmn − ximxjn

¢
dm , i, j = 1, 2, 3 (11.50)
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where δij is Kronecker’s delta.
The expanded form of the Euler equation is

Mx = Ixxω̇x + Ixyω̇y + Ixzω̇z − (Iyy − Izz)ωyωz

−Iyz
¡
ω2z − ω2y

¢
− ωx (ωzIxy − ωyIxz) (11.51)

My = Iyxω̇x + Iyyω̇y + Iyzω̇z − (Izz − Ixx)ωzωx

−Ixz
¡
ω2x − ω2z

¢
− ωy (ωxIyz − ωzIxy) (11.52)

Mz = Izxω̇x + Izyω̇y + Izzω̇z − (Ixx − Iyy)ωxωy

−Ixy
¡
ω2y − ω2x

¢
− ωz (ωyIxz − ωxIyz) . (11.53)

which can be reduced to

M1 = I1ω̇1 − (I2 − I2)ω2ω3

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (11.54)

M3 = I3ω̇3 − (I1 − I2)ω1ω2

in a special Cartesian coordinate frame called the principal coordinate
frame. The principal coordinate frame is denoted by numbers 123 to in-
dicate the first, second, and third principal axes. The parameters Iij , i 6= j
are zero in the principal frame. The body and principal coordinate frame
are assumed to sit at C of the body.
Kinetic energy of a rotating rigid body is

K =
1

2

¡
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

¢
− Ixyωxωy − Iyzωyωz − Izxωzωx

=
1

2
ω · L = 1

2
ωT I ω (11.55)

that in the principal coordinate frame reduces to

K =
1

2

¡
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

¢
. (11.56)

Proof. Let mi be the mass of the ith particle of a rigid body B, which
is made of n particles and let ri = Bri =

£
xi yi zi

¤T
be the Carte-

sian position vector of mi in a central body fixed coordinate frame Oxyz.
Assume that ω = B

GωB =
£
ωx ωy ωz

¤T
is the angular velocity of the

rigid body with respect to the ground, expressed in the body coordinate
frame.
The angular momentum of mi is

Li = ri ×miṙi = mi [ri × (ω × ri)] = mi [(ri · ri)ω − (ri · ω) ri]
= mir

2
iω −mi (ri · ω) ri. (11.57)
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Hence, the angular momentum of the rigid body would be

L = ω
nX
i=1

mir
2
i −

nX
i=1

mi (ri · ω) ri. (11.58)

Substitution ri and ω gives us

L =
³
ωx ı̂+ ωy ĵ+ ωz k̂

´ nX
i=1

mi

¡
x2i + y2i + z2i

¢
−

nX
i=1

mi (xiωx + yiωy + ziωz) ·
³
xiı̂+ yiĵ+ zik̂

´
(11.59)

and therefore,

L =
nX
i=1

mi

¡
x2i + y2i + z2i

¢
ωxı̂

+
nX
i=1

mi

¡
x2i + y2i + z2i

¢
ωy ĵ

+
nX
i=1

mi

¡
x2i + y2i + z2i

¢
ωzk̂

−
nX
i=1

mi (xiωx + yiωy + ziωz)xiı̂

−
nX
i=1

mi (xiωx + yiωy + ziωz) yiĵ

−
nX
i=1

mi (xiωx + yiωy + ziωz) zik̂ (11.60)

or

L =
nX
i=1

mi

£¡
x2i + y2i + z2i

¢
ωx − (xiωx + yiωy + ziωz)xi

¤
ı̂

+
nX
i=1

mi

£¡
x2i + y2i + z2i

¢
ωy − (xiωx + yiωy + ziωz) yi

¤
ĵ

+
nX
i=1

mi

£¡
x2i + y2i + z2i

¢
ωz − (xiωx + yiωy + ziωz) zi

¤
k̂ (11.61)
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which can be rearranged as

L =
nX
i=1

£
mi

¡
y2i + z2i

¢¤
ωx ı̂−

Ã
nX
i=1

(mixiyi)ωy +
nX
i=1

(mixizi)ωz

!
ı̂

−
nX
i=1

(miyixi)ωx ĵ+
nX
i=1

£
mi

¡
z2i + x2i

¢¤
ωy ĵ

−
nX
i=1

(miyizi)ωz ĵ−
Ã

nX
i=1

(mizixi)ωx +
nX
i=1

(miziyi)ωy

!
k̂

+
nX
i=1

£
mi

¡
x2i + y2i

¢¤
ωz k̂. (11.62)

The angular momentum can be written in a concise form

Lx = Ixxωx + Ixyωy + Ixzωz (11.63)

Ly = Iyxωx + Iyyωy + Iyzωz (11.64)

Lz = Izxωx + Izyωy + Izzωz (11.65)

or in a matrix form

L = I · ω (11.66)⎡⎣ Lx
Ly
Lz

⎤⎦ =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦⎡⎣ ωx
ωy
ωz

⎤⎦ (11.67)

by introducing the moment of inertia matrix I where

Ixx =
nX
i=1

£
mi

¡
y2i + z2i

¢¤
(11.68)

Iyy =
nX
i=1

£
mi

¡
z2i + x2i

¢¤
(11.69)

Izz =
nX
i=1

£
mi

¡
x2i + y2i

¢¤
(11.70)

Ixy = Iyx = −
nX
i=1

(mixiyi) (11.71)

Iyz = Izy = −
nX
i=1

(miyizi) (11.72)

Izx = Ixz = −
nX
i=1

(mizixi) . (11.73)
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For a rigid body that is a continuous solid, the summations must be re-
placed by integrations over the volume of the body as in Equation (11.50).
The Euler equation of motion for a rigid body is

BM =
Gd

dt
BL (11.74)

where BM is the resultant of the external moments applied on the rigid
body. The angular momentum BL is a vector defined in the body coordinate
frame. Hence, its time derivative in the global coordinate frame is

GdBL

dt
= BL̇+ B

GωB × BL. (11.75)

Therefore,
BM =

dL

dt
= L̇+ ω × L = Iω̇ + ω× (Iω) (11.76)

BM = (Ixxω̇x + Ixyω̇y + Ixzω̇z) ı̂

+(Iyxω̇x + Iyyω̇y + Iyzω̇z) ĵ

+(Izxω̇x + Izyω̇y + Izzω̇z) k̂

+ωy (Ixzωx + Iyzωy + Izzωz) ı̂

−ωz (Ixyωx + Iyyωy + Iyzωz) ı̂

+ωz (Ixxωx + Ixyωy + Ixzωz) ĵ

−ωx (Ixzωx + Iyzωy + Izzωz) ĵ

+ωx (Ixyωx + Iyyωy + Iyzωz) k̂

−ωy (Ixxωx + Ixyωy + Ixzωz) k̂ (11.77)

and the most general form of the Euler equations of motion for a rigid body
in a body frame attached to C of the body are

Mx = Ixxω̇x + Ixyω̇y + Ixzω̇z − (Iyy − Izz)ωyωz

−Iyz
¡
ω2z − ω2y

¢
− ωx (ωzIxy − ωyIxz) (11.78)

My = Iyxω̇x + Iyyω̇y + Iyzω̇z − (Izz − Ixx)ωzωx

−Ixz
¡
ω2x − ω2z

¢
− ωy (ωxIyz − ωzIxy) (11.79)

Mz = Izxω̇x + Izyω̇y + Izzω̇z − (Ixx − Iyy)ωxωy

−Ixy
¡
ω2y − ω2x

¢
− ωz (ωyIxz − ωxIyz) . (11.80)

Assume that we can rotate the body frame about its origin to find an
orientation that makes Iij = 0, for i 6= j. In such a coordinate frame, which
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is called a principal frame, the Euler equations reduce to

M1 = I1ω̇1 − (I2 − I3)ω2ω3 (11.81)

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (11.82)

M3 = I3ω̇3 − (I1 − I2)ω1ω2. (11.83)

The kinetic energy of a rigid body may be found by the integral of the
kinetic energy of a mass element dm, over the whole body.

K =
1

2

Z
B

v̇2dm =
1

2

Z
B

(ω × r) · (ω × r) dm

=
ω2x
2

Z
B

¡
y2 + z2

¢
dm+

ω2y
2

Z
B

¡
z2 + x2

¢
dm+

ω2z
2

Z
B

¡
x2 + y2

¢
dm

−ωxωy
Z
B

xy dm− ωyωz

Z
B

yz dm− ωzωx

Z
B

zx dm

=
1

2

¡
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

¢
−Ixyωxωy − Iyzωyωz − Izxωzωx (11.84)

The kinetic energy can be rearranged to a matrix multiplication form

K =
1

2
ωT I ω =

1

2
ω · L. (11.85)

When the body frame is principal, the kinetic energy will simplify to

K =
1

2

¡
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

¢
. (11.86)

Example 300 Steady rotation of a freely rotating rigid body.
The Newton-Euler equations of motion for a rigid body are

GF = mGv̇ (11.87)
BM = I B

Gω̇B +
B
GωB × BL. (11.88)

Consider a situation where the resultant applied force and moment on the
body are zero.

F = 0 (11.89)

M = 0 (11.90)

Based on the Newton equation, the velocity of the mass center will be con-
stant in the global coordinate frame. However, the Euler equation reduces
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to

ω̇1 =
I2 − I3
I1

ω2ω3 (11.91)

ω̇2 =
I3 − I1
I22

ω3ω1 (11.92)

ω̇3 =
I1 − I2
I3

ω1ω2 (11.93)

showing that the angular velocity can be constant if

I1 = I2 = I3 (11.94)

or if two principal moments of inertia, say I1 and I2, are zero and the third
angular velocity, in this case ω3, is initially zero, or if the angular velocity
vector is initially parallel to a principal axis.

Example 301 Angular momentum of a two-link manipulator.
A two-link manipulator is shown in Figure 11.3. Link A rotates with

angular velocity ϕ̇ about the z-axis of its local coordinate frame. Link B is
attached to link A and has angular velocity ψ̇ with respect to A about the
xA-axis. We assume that A and G were coincident at ϕ = 0, therefore, the
rotation matrix between A and G is

GRA =

⎡⎣ cosϕ(t) − sinϕ(t) 0
sinϕ(t) cosϕ(t) 0
0 0 1

⎤⎦ . (11.95)

The frame B is related to the frame A by Euler angles ϕ = 90deg, θ =
90deg, and ψ = ψ, hence,

ARB =

⎡⎣ cπcψ − cπsπsψ −cπsψ − cπcψsπ sπsπ
cψsπ + cπcπsψ −sπsψ + cπcπcψ −cπsπ

sπsψ sπcψ cπ

⎤⎦
⎡⎣ − cosψ sinψ 0

sinψ cosψ 0
0 0 −1

⎤⎦ (11.96)

and therefore,

GRB = GRA
ARB (11.97)

=

⎡⎣ − cosϕ cosψ − sinϕ sinψ cosϕ sinψ − cosψ sinϕ 0
cosϕ sinψ − cosψ sinϕ cosϕ cosψ + sinϕ sinψ 0

0 0 −1

⎤⎦ .
The angular velocity of A in G, and B in A is

GωA = ϕ̇K̂ (11.98)

AωB = ψ̇ı̂A. (11.99)



11. Motion Dynamics 595

xA

zA

yA

r

A G

B

Z

X

Y
zB

xB

iϕ&

iψ&

FIGURE 11.3. A two-link manipulator.

Moment of inertia matrices for the arms A and B can be defined as

AIA =

⎡⎣ IA1 0 0
0 IA2 0
0 0 IA3

⎤⎦ (11.100)

BIB =

⎡⎣ IB1 0 0
0 IB2 0
0 0 IB3

⎤⎦ . (11.101)

These moments of inertia must be transformed to the global frame

GIA = GRB
AIA

GRT
A (11.102)

GIB = GRB
BIB

GRT
B . (11.103)

The total angular momentum of the manipulator is

GL = GLA +
GLB (11.104)

where

GLA = GIA GωA (11.105)
GLB = GIB GωB =

GIB
¡
G
AωB + GωA

¢
. (11.106)
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Example 302 F Poinsot’s construction.
Consider a freely rotating rigid body with an attached principal coordinate

frame. HavingM = 0 provides a motion under constant angular momentum
and kinetic energy

L = I ω = const (11.107)

K =
1

2
ωT I ω = const. (11.108)

Because the length of the angular momentum L is constant, the equation

L2 = L · L = L2x + L2y + L2z

= I21ω
2
1 + I22ω

2
2 + I23ω

2
3 (11.109)

introduces an ellipsoid in the (ω1, ω2, ω3) coordinate frame, called the mo-
mentum ellipsoid. The tip of all possible angular velocity vectors must
lie on the surface of the momentum ellipsoid. The kinetic energy also de-
fines an energy ellipsoid in the same coordinate frame so that the tip of
angular velocity vectors must also lie on its surface.

K =
1

2

¡
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

¢
(11.110)

In other words, the dynamics of moment-free motion of a rigid body requires
that the corresponding angular velocity ω(t) satisfy both Equations (11.109)
and (11.110) and therefore lie on the intersection of the momentum and
energy ellipsoids.
For a better visualization, we can define the ellipsoids in the (Lx, Ly, Lz)

coordinate system as

L2x + L2y + L2z = L2 (11.111)

L2x
2I1K

+
L2y
2I2K

+
L2z
2I3K

= 1. (11.112)

Equation (11.111) is a sphere and Equation (11.112) defines an ellipsoid
with

√
2IiK as semi-axes. To have a meaningful motion, these two shapes

must intersect. The intersection may form a trajectory, as shown in Figure
11.4.
It can be deduced that for a certain value of angular momentum there are

maximum and minimum limit values for acceptable kinetic energy. Assum-
ing

I1 > I3 > I3 (11.113)

the limits of possible kinetic energy are

Kmin =
L2

2I1
(11.114)

Kmax =
L2

2I3
(11.115)
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FIGURE 11.4. Intersection of the momentum and energy ellipsoids.

and the corresponding motions are turning about the axes I1 and I3 respec-
tively.

Example 303 F Alternative derivation of Euler equations of motion.
The moment of the small force df is dm

dm = Grdm × df

= Grdm × Gv̇dm dm. (11.116)

The inertial angular momentum dl of dm is equal to

dl = Grdm × Gvdm dm (11.117)

and according to (11.11) we have

dm =
Gd

dt
dl (11.118)

Grdm × df =
Gd

dt

¡
Grdm × Gvdm dm

¢
. (11.119)

Integrating over the body isZ
B

Grdm × df =

Z
B

Gd

dt

¡
Grdm × Gvdm dm

¢
=

Gd

dt

Z
B

¡
Grdm × Gvdm dm

¢
. (11.120)

However, utilizing
Grdm =

GdB +
GRB

Brdm (11.121)
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where GdB is the global position vector of the central body frame, may
simplify the left-hand side of the integral toZ

B

Grdm × df =

Z
B

¡
GdB +

GRB
Brdm

¢
× df

=

Z
B

GdB × df +

Z
B

G
Brdm × df

= GdB × GF+ GMC (11.122)

where MC is the resultant external moment about the body mass center C.
The right-hand side of the Equation (11.120) is

Gd

dt

Z
B

¡
Grdm × Gvdm dm

¢
=

Gd

dt

Z
B

¡¡
GdB +

GRB
Brdm

¢
× Gvdm dm

¢
=

Gd

dt

Z
B

¡
GdB × Gvdm

¢
dm+

Gd

dt

Z
B

¡
G
Brdm × Gvdm

¢
dm

=
Gd

dt

µ
GdB ×

Z
B

Gvdmdm

¶
+

Gd

dt
LC

= GḋB ×
Z
B

Gvdmdm+ GdB ×
Z
B

Gv̇dmdm+
d

dt
LC . (11.123)

We use LC for angular momentum about the body mass center. Since the
body frame is at center of mass, we haveZ

B

Grdm dm = mGdB = mGrC (11.124)Z
B

Gvdmdm = mGḋB = mGvC (11.125)Z
B

Gv̇dmdm = mGd̈B = mGaC (11.126)

and therefore,

Gd

dt

Z
B

¡
Grdm × Gvdm dm

¢
= GdB × GF+

Gd

dt
GLC . (11.127)

Substituting (11.122) and (11.127) in (11.120) provides the Euler equation
of motion in the global frame, indicating that the resultant of externally
applied moments about C is equal to the global derivative of angular mo-
mentum about C.

GMC =
Gd

dt
GLC . (11.128)
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The Euler equation in the body coordinate can be found by transforming
(11.128).

BMC = GRT
B
GMC =

GRT
B

Gd

dt
LC =

Gd

dt
GRT

B LC

=
Gd

dt
BLC =

BL̇C +
B
GωB × BLC (11.129)

11.4 Mass Moment of Inertia Matrix

In analyzing the motion of rigid bodies, two types of integrals arise that
belong to the geometry of the body. The first type defines the center of
mass and arises when the translation motion of the body is considered. The
second is the moment of inertia that appears when the rotational motion
of the body is considered. The moment of inertia is also called centrifugal
moments, or deviation moments. Every rigid body has a 3 × 3 moment of
inertia matrix I, which is denoted by

I =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ . (11.130)

The diagonal elements Iij , i = j are called polar moments of inertia

Ixx = Ix =

Z
B

¡
y2 + z2

¢
dm (11.131)

Iyy = Iy =

Z
B

¡
z2 + x2

¢
dm (11.132)

Izz = Iz =

Z
B

¡
x2 + y2

¢
dm (11.133)

and the off-diagonal elements Iij , i 6= j are called products of inertia

Ixy = Iyx = −
Z
B

xy dm (11.134)

Iyz = Izy = −
Z
B

yz dm (11.135)

Izx = Ixz = −
Z
B

zx dm. (11.136)

The elements of I for a rigid body, made of discrete point masses, are
defined in Equation (11.50).
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The elements of I are moments of inertia about a body coordinate frame
attached to the C of the body. Therefore, I is a frame-dependent quantity
and must be written like BI to show the frame it is computed in.

BI =

Z
B

⎡⎣ y2 + z2 −xy −zx
−xy z2 + x2 −yz
−zx −yz x2 + y2

⎤⎦ dm
=

Z
B

¡
r2I− r rT

¢
dm =

Z
B

−r̃ r̃ dm (11.137)

Moments of inertia can be transformed from a coordinate frame B1 to
another coordinate frame B2, both installed at the mass center of the body,
according to the rule of the rotated-axes theorem

B2I = B2RB1

B1I B2RT
B1
. (11.138)

Transformation of the moment of inertia from a central frame B1 located
at B2rC to another frame B2, which is parallel to B1, is, according to the
rule of parallel-axes theorem,

B2I = B1I +mr̃C r̃TC . (11.139)

If the local coordinate frame Oxyz is located such that the products of
inertia vanish, the local coordinate frame is called the principal coordinate
frame and the associated moments of inertia are called principal moments
of inertia. Principal axes and principal moments of inertia can be found by
solving the following equation for I¯̄̄̄

¯̄ Ixx − I Ixy Ixz
Iyx Iyy − I Iyz
Izx Izy Izz − I

¯̄̄̄
¯̄ = 0 (11.140)

det ([Iij ]− I [δij ]) = 0. (11.141)

Since Equation (11.141) is a cubic equation in I, we obtain three eigenvalues

I1 = Ix I2 = Iy I3 = Iz (11.142)

which are the principal moments of inertia.
We may utilize the homogeneous position vectors and define a more

general moment of inertia, called pseudo inertia matrix

B Ī =

Z
B

r rT dm (11.143)

=

⎡⎢⎢⎢⎣
R
B
x2 dm

R
B
xy dm

R
B
xz dm

R
B
xdmR

B
xy dm

R
B
y2 dm

R
B
yz dm

R
B
y dmR

B
xz dm

R
B
yz dm

R
B
z2 dm

R
B
z dmR

B
xdm

R
B
y dm

R
B
z dm

R
B
dm

⎤⎥⎥⎥⎦ .
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FIGURE 11.5. Two coordinate frames with a common origin at mass center of a
rigid body.

This pseudo inertia matrix can be expanded to show that

B Ī =

⎡⎢⎢⎢⎢⎢⎢⎣

−Ixx + Iyy + Izz
2

Ixy Ixz mxC

Iyx
Ixx − Iyy + Izz

2
Iyz myC

Izx Izy
Ixx + Iyy − Izz

2
mzC

mxC myC mzC m

⎤⎥⎥⎥⎥⎥⎥⎦
(11.144)

where,

BrC =

⎡⎣ xC
yC
zC

⎤⎦ =
⎡⎢⎣

1
m

R
B
x dm

1
m

R
B
y dm

1
m

R
B
z dm

⎤⎥⎦ (11.145)

is the position of the mass center in the body frame. This vector is zero if
the body frame is central.

Proof. Two coordinate frames with a common origin at the mass center
of a rigid body are shown in Figure 11.5. The angular velocity and angular
momentum of a rigid body transform from the frame B1 to a the frame B2
by vector transformation rule

B2ω = B2RB1

B1ω (11.146)
B2L = B2RB1

B1L. (11.147)

However, L and ω are related according to Equation (11.48)
B1L = B1I B1ω (11.148)

and therefore,
B2L = B2RB1

B1I B2RT
B1

B2ω = B2I B2ω (11.149)
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FIGURE 11.6. A central coordinate frame B1 and a translated frame B2.

which shows how to transfer the moment of inertia from the coordinate
frame B1 to a rotated frame B2

B2I = B2RB1

B1I B2RT
B1
. (11.150)

Now consider a central frame B1, shown in Figure 11.6, at B2rC , which
rotates about the origin of a fixed frame B2 such that their axes remain
parallel. The angular velocity and angular momentum of the rigid body
transform from the frame B1 to the frame B2 by

B2ω = B1ω (11.151)
B2L = B1L+ (rC ×mvC) . (11.152)

Therefore,

B2L = B1L+mB2rC ×
¡
B2ω×B2rC

¢
= B1L+

¡
m B2 r̃C

B2 r̃TC
¢
B2ω

=
¡
B1I +m B2 r̃C

B2 r̃TC
¢
B2ω (11.153)

which shows how to transfer the moment of inertia from frame B1 to a
parallel frame B2

B2I = B1I +mr̃C r̃TC . (11.154)

The parallel-axes theorem is also called the Huygens-Steiner theorem.
Referring to Equation (11.150) for transformation of the moment of iner-

tia to a rotated frame, we can always find a frame in which B2I is diagonal.
In such a frame, we have

B2RB1

B1I = B2I B2RB1
(11.155)
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or ⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦
=

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎦ (11.156)

which shows that I1, I2, and I3 are eigenvalues of B1I. These eigenvalues
can be found by solving the following equation for λ.¯̄̄̄

¯̄ Ixx − λ Ixy Ixz
Iyx Iyy − λ Iyz
Izx Izy Izz − λ

¯̄̄̄
¯̄ = 0. (11.157)

The eigenvalues I1, I2, and I3 are principal moments of inertia, and their
associated eigenvectors are called principal directions. The coordinate frame
made by the eigenvectors is the principal body coordinate frame. In the
principal coordinate frame, the rigid body angular momentum is⎡⎣ L1

L2
L3

⎤⎦ =
⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦⎡⎣ ω1
ω2
ω3

⎤⎦ . (11.158)

Example 304 Principal moments of inertia.
Consider the inertia matrix

I =

⎡⎣ 20 −2 0
−2 30 0
0 0 40

⎤⎦ (11.159)

we set up the determinant (11.141)¯̄̄̄
¯̄ 20− λ −2 0
−2 30− λ 0
0 0 40− λ

¯̄̄̄
¯̄ = 0 (11.160)

which leads to the characteristic equation

(20− λ) (30− λ) (40− λ)− 4 (40− λ) = 0. (11.161)

Three roots of Equation (11.161) are

I1 = 30.385, I2 = 19.615, I3 = 40 (11.162)

and therefore, the principal moment of inertia matrix is

I =

⎡⎣ 30.385 0 0
0 19.615 0
0 0 40

⎤⎦ . (11.163)
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Example 305 Principal coordinate frame.
Consider the inertia matrix

I =

⎡⎣ 20 −2 0
−2 30 0
0 0 40

⎤⎦ (11.164)

the direction of a principal axis xi is established by solving⎡⎣ Ixx − Ii Ixy Ixz
Iyx Iyy − Ii Iyz
Izx Izy Izz − Ii

⎤⎦⎡⎣ cosαi
cosβi
cos γi

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ (11.165)

for direction cosines, which must also satisfy

cos2 αi + cos
2 βi + cos

2 γi = 1. (11.166)

For the first principal moment of inertia I1 = 30.385 we have⎡⎣ 20− 30.385 −2 0
−2 30− 30.385 0
0 0 40− 30.385

⎤⎦⎡⎣ cosα1
cosβ1
cos γ1

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦
(11.167)

or

−10.385 cosα1 − 2 cosβ1 + 0 = 0 (11.168)

−2 cosα1 − 0.385 cosβ1 + 0 = 0 (11.169)

0 + 0 + 9.615 cos γ1 = 0 (11.170)

and we obtain

α1 = 79.1 deg β1 = 169.1 deg γ1 = 90.0 deg . (11.171)

Using I2 = 19.615 for the second principal axis⎡⎣ 20− 19.62 −2 0
−2 30− 19.62 0
0 0 40− 19.62

⎤⎦⎡⎣ cosα2
cosβ2
cos γ2

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ (11.172)

we obtain

α2 = 10.9 deg β2 = 79.1 deg γ2 = 90.0 deg . (11.173)

The third principal axis is for I3 = 40⎡⎣ 20− 40 −2 0
−2 30− 40 0
0 0 40− 40

⎤⎦⎡⎣ cosα3
cosβ3
cos γ3

⎤⎦ =
⎡⎣ 0
0
0

⎤⎦ (11.174)

which leads to

α3 = 90.0 deg β3 = 90.0 deg γ3 = 0.0 deg . (11.175)
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FIGURE 11.7. A homogeneous rectangular link.

Example 306 Moment of inertia of a rigid rectangular link.
Consider a homogeneous rectangular link with mass m, length l, width

w, and height h, as shown in Figure 11.7.
The local central coordinate frame is attached to the link at its mass

center. The moments of inertia matrix of the link can be found by integral
method. We begin with calculating Ixx

Ixx =

Z
B

¡
y2 + z2

¢
dm =

Z
v

¡
y2 + z2

¢
ρdv =

m

lwh

Z
v

¡
y2 + z2

¢
dv

=
m

lwh

Z h/2

−h/2

Z w/2

−w/2

Z l/2

−l/2

¡
y2 + z2

¢
dx dy dz

=
m

12

¡
w2 + h2

¢
(11.176)

which shows Iyy and Izz can be calculated similarly

Iyy =
m

12

¡
h2 + l2

¢
(11.177)

Izz =
m

12

¡
l2 + w2

¢
. (11.178)

Since the coordinate frame is central, the products of inertia must be zero.
To show this, we examine Ixy.

Ixy = Iyx = −
Z
B

xy dm =

Z
v

xyρdv

=
m

lwh

Z h/2

−h/2

Z w/2

−w/2

Z l/2

−l/2
xy dx dy dz = 0 (11.179)

Therefore, the moment of inertia matrix for the rigid rectangular link in
its central frame is

I =

⎡⎣ m
12

¡
w2 + h2

¢
0 0

0 m
12

¡
h2 + l2

¢
0

0 0 m
12

¡
l2 + w2

¢
⎤⎦ . (11.180)
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FIGURE 11.8. A rigid rectangular link in the principal and non principal frames.

Example 307 Translation of the inertia matrix.
The moment of inertia matrix of the rigid link shown in Figure 11.8, in

the principal frame B(oxyz) is given in Equation (11.180). The moment
of inertia matrix in the non principal frame B0(ox0y0z0) can be found by
applying the parallel-axes transformation formula (11.154).

B0
I = BI +m B0

r̃C
B0
r̃TC (11.181)

The center of mass position vector is

B0
rC =

1

2

⎡⎣ l
w
h

⎤⎦ (11.182)

and therefore,

B0
r̃C =

1

2

⎡⎣ 0 −h w
h 0 −l
−w l 0

⎤⎦ (11.183)

that provides

B0
I =

⎡⎣ 1
3h

2m+ 1
3mw2 −14 lmw −14hlm

−14 lmw 1
3h

2m+ 1
3 l
2m −14hmw

−14hlm −14hmw 1
3 l
2m+ 1

3mw2

⎤⎦ . (11.184)

Example 308 Principal rotation matrix.
Consider a body inertia matrix as

I =

⎡⎣ 2/3 −1/2 −1/2
−1/2 5/3 −1/4
−1/2 −1/4 5/3

⎤⎦ . (11.185)
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The eigenvalues and eigenvectors of I are

I1 = 0.2413 ,

⎡⎣ 2.351
1
1

⎤⎦ (11.186)

I2 = 1.8421 ,

⎡⎣ −0.8511
1

⎤⎦ (11.187)

I3 = 1.9167 ,

⎡⎣ 0
−1
1

⎤⎦ . (11.188)

The normalized eigenvector matrix W is equal to the transpose of the re-
quired transformation matrix to make the inertia matrix diagonal

W =

⎡⎣ | | |
w1 w2 w3

| | |

⎤⎦ = 2RT
1

=

⎡⎣ 0.856 9 −0.515 6 0.0
0.364 48 0.605 88 −0.707 11
0.364 48 0.605 88 0.707 11

⎤⎦ . (11.189)

We may verify that

2I ≈ 2R1
1I 2RT

1 =WT 1I W

=

⎡⎣ 0.2413 −1× 10−4 0.0
−1× 10−4 1.842 1 −1× 10−19

0.0 0.0 1.916 7

⎤⎦ . (11.190)

Example 309 F Relative diagonal moments of inertia.
Using the definitions for moments of inertia (11.131), (11.132), and

(11.133) it is seen that the inertia matrix is symmetric, andZ
B

¡
x2 + y2 + z2

¢
dm =

1

2
(Ixx + Iyy + Izz) (11.191)

and also

Ixx + Iyy ≥ Izz (11.192)

Iyy + Izz ≥ Ixx (11.193)

Izz + Ixx ≥ Iyy. (11.194)

Noting that
(y − z)

2 ≥ 0 (11.195)

it is evident that ¡
y2 + z2

¢
≥ 2yz (11.196)
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and therefore
Ixx ≥ 2Iyz (11.197)

and similarly

Iyy ≥ 2Izx (11.198)

Izz ≥ 2Ixy. (11.199)

Example 310 F Coefficients of the characteristic equation.
The determinant (11.157)¯̄̄̄

¯̄ Ixx − λ Ixy Ixz
Iyx Iyy − λ Iyz
Izx Izy Izz − λ

¯̄̄̄
¯̄ = 0 (11.200)

for calculating the principal moments of inertia, leads to a third degree
equation of λ, called the characteristic equation.

λ3 − a1λ
2 + a2λ− a3 = 0 (11.201)

The coefficients of the characteristic equation are called the principal in-
variants of [I]. The coefficients of the characteristic equation can directly
be found from the following equations:

a1 = Ixx + Iyy + Izz = tr [I] (11.202)

a2 = IxxIyy + IyyIzz + IzzIxx − I2xy − I2yz − I2zx

=

¯̄̄̄
Ixx Ixy
Iyx Iyy

¯̄̄̄
+

¯̄̄̄
Iyy Iyz
Izy Izz

¯̄̄̄
+

¯̄̄̄
Ixx Ixz
Izx Izz

¯̄̄̄
=

1

2

¡
a21 − tr

£
I2
¤¢

(11.203)

a3 = IxxIyyIzz + IxyIyzIzx + IzyIyxIxz

− (IxxIyzIzy + IyyIzxIxz + IzzIxyIyx)

= IxxIyyIzz + 2IxyIyzIzx −
¡
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

¢
= det [I] (11.204)

Example 311 F The principal moments of inertia are coordinate invari-
ants.
The roots of the inertia characteristic equation are the principal moments

of inertia and all real but not necessarily different. The principal moments
of inertia are extreme. That is, the principal moments of inertia determine
the smallest and the largest values of Iii for a rigid body. Since the smallest
and largest values of Iii do not depend on the choice of the body coordinate



11. Motion Dynamics 609

frame, the solution of the characteristic equation is not dependent of the
coordinate frame.
In other words, if I1, I2, and I3 are the principal moments of inertia for

B1I, the principal moments of inertia for B2I are also I1, I2, and I3 when

B2I = B2RB1

B1I B2RT
B1
.

We conclude that I1, I2, and I3 are coordinate invariants of the matrix [I],
and therefore any quantity that depends on I1, I2, and I3 is also coordinate
invariant. The matrix [I] has only three independent invariants and every
other invariant can be expressed in terms of I1, I2, and I3.
Since I1, I2, and I3 are the solutions of the characteristic equation of [I]

given in (11.201), we may write the determinant (11.157) in the form

(λ− I1) (λ− I2) (λ− I3) = 0. (11.205)

Expanded form of this equation is

λ3 − (I1 + I2 + I3)λ
2 + (I1I2 + I2I3 + I3I1)λ− I1I2I3 = 0. (11.206)

By comparing (11.206) and (11.201) we conclude that

a1 = Ixx + Iyy + Izz = I1 + I2 + I3 (11.207)

a2 = IxxIyy + IyyIzz + IzzIxx − I2xy − I2yz − I2zx
= I1I2 + I2I3 + I3I1 (11.208)

a3 = IxxIyyIzz + 2IxyIyzIzx −
¡
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

¢
= I1I2I3. (11.209)

Being able to express the coefficients a1, a2, and a3 as functions of I1, I2,
and I3 determines that the coefficients of the characteristic equation are
coordinate invariant.

Example 312 F Short notation for the elements of inertia matrix.
Taking advantage of the Kronecker’s delta (2.201) we may write the el-

ements of the moment of inertia matrix Iij in short notation forms.

Iij =

Z
B

¡¡
x21 + x22 + x23

¢
δij − xixj

¢
dm (11.210)

Iij =

Z
B

¡
r2δij − xixj

¢
dm (11.211)

Iij =

Z
B

Ã
3X

k=1

xkxkδij − xixj

!
dm (11.212)

where we utilized the following notations:

x1 = x x2 = y x3 = z. (11.213)
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Example 313 F Moment of inertia with respect to a plane, a line, and a
point.
The moment of inertia of a system of particles may be defined with respect

to a plane, a line, or a point as the sum of the products of the mass of the
particles into the square of the perpendicular distance from the particle to
the plane, line, or point. For a continuous body, the sum would be definite
integral over the volume of the body.
The moments of inertia with respect to the xy, yz, and zx-plane are

Iz2 =

Z
B

z2dm (11.214)

Iy2 =

Z
B

y2dm (11.215)

Ix2 =

Z
B

x2dm. (11.216)

The moments of inertia with respect to the x, y, and z-axis are

Ix =

Z
B

¡
y2 + z2

¢
dm (11.217)

Iy =

Z
B

¡
z2 + x2

¢
dm (11.218)

Iz =

Z
B

¡
x2 + y2

¢
dm (11.219)

and therefore,

Ix = Iy2 + Iz2 (11.220)

Iy = Iz2 + Ix2 (11.221)

Iz = Ix2 + Iy2 . (11.222)

The moment of inertia with respect to the origin is

Io =

Z
B

¡
x2 + y2 + z2

¢
dm = Ix2 + Iy2 + Iz2

=
1

2
(Ix + Iy + Iz) . (11.223)

Because the choice of the coordinate frame is arbitrary, we can say that
the moment of inertia with respect to a line is the sum of the moments of
inertia with respect to any two mutually orthogonal planes that pass through
the line. The moment of inertia with respect to a point has similar meaning
for three mutually orthogonal planes intersecting at the point.
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11.5 Lagrange’s Form of Newton’s Equations

Newton’s equation of motion can be transformed to

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr r = 1, 2, · · ·n (11.224)

where

Fr =
nX
i=1

µ
Fix

∂fi
∂q1

+ Fiy
∂gi
∂q2

+ Fiz
∂hi
∂qn

¶
. (11.225)

Equation (11.224) is called the Lagrange equation of motion, whereK is the
kinetic energy of the n DOF system, qr, r = 1, 2, · · · , n are the generalized
coordinates of the system, F =

£
Fix Fiy Fiz

¤T
is the external force

acting on the ith particle of the system, and Fr is the generalized force
associated to qr.

Proof. Let mi be the mass of one of the particles of a system and let
(xi, yi, zi) be its Cartesian coordinates in a globally fixed coordinate frame.
Assume that the coordinates of every individual particle are functions of
another set of coordinates q1, q2, q3, · · · , qn and possibly time t.

xi = fi(q1, q2, q3, · · · , qn, t) (11.226)

yi = gi(q1, q2, q3, · · · , qn, t) (11.227)

zi = hi(q1, q2, q3, · · · , qn, t) (11.228)

If Fxi, Fyi, Fzi are components of the total force acting on the particle
mi then, the Newton equations of motion for the particle would be

Fxi = miẍi (11.229)

Fyi = miÿi (11.230)

Fzi = miz̈i. (11.231)

We multiply both sides of these equations by

∂fi
∂qr

(11.232)

∂gi
∂qr

(11.233)

∂hi
∂qr

(11.234)

respectively, and add them up for all the particles to have

nX
i=1

mi

µ
ẍi
∂fi
∂qr

+ ÿi
∂gi
∂qr

+ z̈i
∂hi
∂qr

¶
=

nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
(11.235)
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where n is the total number of particles.
Taking a time derivative of Equation (11.226),

ẋi =
∂fi
∂q1

q̇1 +
∂fi
∂q2

q̇2 +
∂fi
∂q3

q̇3 + · · ·+
∂fi
∂qn

q̇n +
∂fi
∂t

(11.236)

we find

∂ẋi
∂q̇r

=
∂

∂q̇r

µ
∂fi
∂q1

q̇1 +
∂fi
∂q2

q̇2 + · · ·+
∂fi
∂qn

q̇n +
∂fi
∂t

¶
=

∂fi
∂qr

. (11.237)

and therefore,

ẍi
∂fi
∂qr

= ẍi
∂ẋi
∂q̇r

=
d

dt

µ
ẋi
∂ẋi
∂q̇r

¶
− ẋi

d

dt

µ
∂ẋi
∂q̇r

¶
. (11.238)

However,

ẋi
d

dt

µ
∂ẋi
∂q̇r

¶
= ẋi

d

dt

µ
∂fi
∂qr

¶
= ẋi

µ
∂2fi

∂q1∂qr
q̇1 + · · ·+

∂2fi
∂qn∂qr

q̇n +
∂2fi
∂t∂qr

¶
= ẋi

∂

∂qr

µ
∂fi
∂q1

q̇1 +
∂fi
∂q2

q̇2 + · · ·+
∂fi
∂qn

q̇n +
∂fi
∂t

¶
= ẋi

∂ẋi
∂qr

(11.239)

and we have

ẍi
∂ẋi
∂q̇r

=
d

dt

µ
ẋi
∂ẋi
∂q̇r

¶
− ẋi

∂ẋi
∂qr

(11.240)

which is equal to

ẍi
ẋi
q̇r
=

d

dt

∙
∂

∂q̇r

µ
1

2
ẋ2i

¶¸
− ∂

∂qr

µ
1

2
ẋ2i

¶
. (11.241)

Now substituting (11.238) and (11.241) in the left-hand side of (11.235)
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leads to

nX
i=1

mi

µ
ẍi
∂fi
∂qr

+ ÿi
∂gi
∂qr

+ z̈i
∂hi
∂qr

¶

=
nX
i=1

mi
d

dt

∙
∂

∂q̇r

µ
1

2
ẋ2i +

1

2
ẏ2i +

1

2
ż2i

¶¸

−
nX
i=1

mi
∂

∂qr

µ
1

2
ẋ2i +

1

2
ẏ2i +

1

2
ż2i

¶

=
1

2

nX
i=1

mi
d

dt

∙
∂

∂q̇r

¡
ẋ2i + ẏ2i + ż2i

¢¸

−1
2

nX
i=1

mi
∂

∂qr

¡
ẋ2i + ẏ2i + ż2i

¢
=

d

dt

∂K

∂qr
− ∂K

∂qr
. (11.242)

where
1

2

nX
i=1

mi

¡
ẋ2i + ẏ2i + ż2i

¢
= K (11.243)

is the kinetic energy of the system. Therefore, the Newton equations of
motion (11.229), (11.230), and (11.231) are converted to

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
=

nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
. (11.244)

Because of (11.226), (11.227), and (11.228), the kinetic energy is a func-
tion of q1, q2, q3, · · · , qn and time t. The left-hand side of Equation (11.244)
includes the kinetic energy of the whole system and the right-hand side is
a generalized force and shows the effect of changing coordinates from xi
to qj on the external forces. Let us assume that the coordinate qr alters
to qr+ δqr while the other coordinates q1, q2, q3, · · · , qr−1, qr+1, · · · , qn and
time t are unaltered. So, the coordinates of mi are changed to

xi +
∂fi
∂qr

δqr (11.245)

yi +
∂gi
∂qr

δqr (11.246)

zi +
∂hi
∂qr

δqr (11.247)

and the work done in this virtual displacement by all forces acting on the
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particles of the system is

δW =
nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
δqr. (11.248)

Since the work done by internal forces appears in opposite pairs, only the
work done by external forces remains in Equation (11.248). Let’s denote
the virtual work by

δW = Fr (q1, q2, q3, · · · , qn, t) δqr. (11.249)

Then we have
d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr (11.250)

where

Fr =
nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
. (11.251)

Equation (11.250) is the Lagrange form of equations of motion. This equa-
tion is true for all values of r from 1 to n. We thus have n second order ordi-
nary differential equations in which q1, q2, q3, · · · , qn are the dependent vari-
ables and t is the independent variable. The coordinates q1, q2, q3, · · · , qn
are called generalized coordinates and can be any measurable parameters to
provide the configuration of the system. Since the number of equations and
the number of dependent variables are equal, the equations are theoretically
sufficient to determine the motion of all mi.

Example 314 A simple pendulum.
A pendulum is shown in Figure 11.9. Using x and y for Cartesian posi-

tion of m, and using θ = q as the generalized coordinate, we have

x = f(θ) = l sin θ (11.252)

y = g(θ) = l cos θ (11.253)

K =
1

2
m
¡
ẋ2 + ẏ2

¢
=
1

2
ml2θ̇

2
(11.254)

and therefore,

d

dt

µ
∂K

∂θ̇

¶
− ∂K

∂θ
=

d

dt
(ml2θ̇) = ml2θ̈. (11.255)

The external force components, acting on m, are

Fx = 0 (11.256)

Fy = mg (11.257)
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l

m

pivot x

y

θ

FIGURE 11.9. A simple pendulum.

and therefore,

Fθ = Fx
∂f

∂θ
+ Fy

∂g

∂θ
= −mgl sin θ. (11.258)

Hence, the equation of motion for the pendulum is

ml2θ̈ = −mgl sin θ. (11.259)

Example 315 A pendulum attached to an oscillating mass.
Figure 11.10 illustrates a vibrating mass with a hanging pendulum. The

pendulum can act as a vibration absorber if designed properly.
Starting with coordinate relationships

xM = fM = x (11.260)

yM = gM = 0 (11.261)

xm = fm = x+ l sin θ (11.262)

ym = gm = l cos θ (11.263)

we may find the kinetic energy in terms of the generalized coordinates x
and θ.

K =
1

2
M
¡
ẋ2M + ẏ2M

¢
+
1

2
m
¡
ẋ2m + ẏ2m

¢
=

1

2
Mẋ2 +

1

2
m
³
ẋ2 + l2θ̇

2
+ 2lẋθ̇ cos θ

´
(11.264)

Then, the left-hand side of Lagrange equations are

d

dt

µ
∂K

∂ẋ

¶
− ∂K

∂x
= (M +m)ẍ+mlθ̈ cos θ −mlθ̇

2
sin θ (11.265)

d

dt

µ
∂K

∂θ̇

¶
− ∂K

∂θ
= ml2θ̈ +mlẍ cos θ. (11.266)
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FIGURE 11.10. A vibration absorber.

The external forces acting on M and m are

FxM = −kx (11.267)

FyM = 0 (11.268)

Fxm = 0 (11.269)

Fym = mg. (11.270)

Therefore, the generalized forces are

Fx = FxM
∂fM
∂x

+ FyM
∂gM
∂x

+ Fxm
∂fm
∂x

+ Fym
∂gm
∂x

= −kx (11.271)

Fθ = FxM
∂fM
∂θ

+ FyM
∂gM
∂θ

+ Fxm
∂fm
∂θ

+ Fym
∂gm
∂θ

= −mgl sin θ (11.272)

and finally the Lagrange equations of motion are

(M +m)ẍ+mlθ̈ cos θ −mlθ̇
2
sin θ = −kx (11.273)

ml2θ̈ +mlẍ cos θ = −mgl sin θ. (11.274)

Example 316 F Potential force field.
If a system of masses mi are moving in a potential force field

Fmi = −∇iV (11.275)

their Newton equations of motion will be

mir̈i = −∇iV i = 1, 2, · · ·n. (11.276)



11. Motion Dynamics 617

Inner product of equations of motion with ṙi and adding the equations

nX
i=1

miṙi · r̈i = −
nX
i=1

ṙi ·∇iV (11.277)

and then, integrating over time

1

2

nX
i=1

miṙi · ṙi = −
Z nX

i=1

ri ·∇iV (11.278)

shows that

K = −
Z nX

i=1

µ
∂V

∂xi
xi +

∂V

∂yi
yi +

∂V

∂zi
zi

¶
= −V +E (11.279)

where E is the constant of integration. E is called mechanical energy of
the system and is equal to kinetic plus potential energies.

Example 317 Kinetic energy of the Earth.
Earth is approximately a rotating rigid body about a fixed axis. The two

motions of the Earth are called revolution about the sun, and rotation
about an axis approximately fixed in the Earth. The kinetic energy of the
Earth due to its rotation is

K1 =
1

2
Iω21

=
1

2

2

5

¡
5.9742× 1024

¢µ6356912 + 6378388
2

¶2µ
2π

24× 3600
366.25

365.25

¶2
= 2.5762× 1029 J (11.280)

and the kinetic energy of the Earth due to its revolution is

K2 =
1

2
Mr2ω22

=
1

2

¡
5.9742× 1024

¢ ¡
1.49475× 1011

¢2µ 2π

24× 3600
1

365.25

¶2
= 2.6457× 1033 J (11.281)

where r is the distance from the sun, ω1, is the angular speed about its axis
and ω2 is the angular speed about the sun. The total kinetic energy of the
Earth is K = K1+K2. However, the ratio of the revolutionary to rotational
kinetic energies is

K2

K1
=
2.6457× 1033
2.5762× 1029 ≈ 10000. (11.282)
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Example 318 F Non Cartesian coordinate system.
The parabolic coordinate system and Cartesian coordinate systems are

related according to

x = ηξ cosϕ (11.283)

y = ηξ sinϕ (11.284)

z =

¡
ξ2 − η2

¢
2

(11.285)

ξ2 =
p
x2 + y2 + z2 + z (11.286)

η2 =
p
x2 + y2 + z2 − z (11.287)

ϕ = tan−1
y

x
. (11.288)

An electron in a uniform electric field along the positive z-axis is also under
the action of an attractive central force field due to the nuclei of the atom.

F = − k

r2
êr = −∇

µ
−k
r

¶
. (11.289)

The influence of a uniform electric field on the motion of the electrons in
atoms is called the Stark effect and it is easier to analyze its motion in a
parabolic coordinate system.
The kinetic energy in a parabolic coordinate system is

K =
1

2
m
¡
ẋ2 + ẏ2 + ż2

¢
=

1

2
m
h¡
η2 + ξ2

¢ ³
η̇2 + ξ̇

2
´
+ η2ξ2ϕ̇2

i
(11.290)

and the force acting on the electron is

F = −∇
µ
−k
r
+ eEz

¶
= −∇

µ
− 2k

ξ2 + η2
+

eE

2

¡
ξ2 − η2

¢¶
(11.291)

which leads to the following generalized forces:

Fη = F · bη = −
4kη¡

ξ2 + η2
¢2 + eEη (11.292)

Fξ = F · bξ = −
4kξ¡

ξ2 + η2
¢2 − eEη (11.293)

Fϕ = 0 (11.294)
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where, bξ, bη, and bϕ are base vectors of the coordinate system

bξ =
∂r

∂ξ
= η cosϕı̂+ η sinϕĵ+ ξk̂ (11.295)

bη =
∂r

∂η
= ξ cosϕı̂+ ξ sinϕĵ− ηk̂ (11.296)

bϕ =
∂r

∂ϕ
= −ηξ sinϕı̂+ ηξ cosϕĵ. (11.297)

Therefore, following the Lagrange method, the equations of motion of the
electron are

Fη =
d

dt

£
mη̇

¡
ξ2 + η2

¢¤
−mη

³
η̇2 + ξ̇

2
´
−mηξ2ϕ̇2 (11.298)

Fξ =
d

dt

h
mξ̇

¡
ξ2 + η2

¢i
−mη

³
η̇2 + ξ̇

2
´
−mξη2ϕ̇2 (11.299)

Fϕ =
d

dt

¡
mη2ξ2ϕ̇2

¢
. (11.300)

Example 319 F Explicit form of Lagrange equations.
Assume that the coordinates of every particle are functions of the coordi-

nates q1, q2, q3, · · · , qn but not the time t. The kinetic energy of the system
made of n massive particles can be written as

K =
1

2

nX
i=1

mi

¡
ẋ2i + ẏ2i + ż2i

¢
=
1

2

nX
j=1

nX
k=1

ajkq̇j q̇k (11.301)

where the coefficients ajk are functions of q1, q2, q3, · · · , qn and

ajk = akj . (11.302)

The Lagrange equations of motion

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= Fr r = 1, 2, · · ·n (11.303)

are then equal to

d

dt

nX
m=1

amrq̇m −
1

2

nX
j=1

nX
k=1

ajk
∂qr

q̇j q̇k = Fr (11.304)

or
nX

m=1

amrq̈m +
nX

k=1

nX
n=1

Γrk,nq̇kq̇n = Fr (11.305)

where Γij,k is called the Christoffel operator

Γij,k =
1

2

µ
∂aij
∂qk

+
∂aik
∂qj

− ∂akj
∂qi

¶
. (11.306)
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11.6 Lagrangian Mechanics

Assume for some forces F =
£
Fix Fiy Fiz

¤T
there is a function V ,

called potential energy, such that the force is derivable from V

F = −∇V. (11.307)

Such a force is called potential or conservative force. Then, the Lagrange
equation of motion can be written as

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (11.308)

where
L = K − V (11.309)

is the Lagrangean of the system and Qr is the nonpotential generalized
force.

Proof. Assume the external forces F =
£
Fxi Fyi Fzi

¤T
acting on the

system are conservative.
F = −∇V (11.310)

The work done by these forces in an arbitrary virtual displacement δq1,
δq2, δq3, · · · , δqn is

∂W = −∂V

∂q1
δq1 −

∂V

∂q2
δq2 − · · ·

∂V

∂qn
δqn (11.311)

then the Lagrange equation becomes

d

dt

µ
∂K

∂q̇r

¶
− ∂K

∂qr
= − ∂V

∂q1
r = 1, 2, · · ·n. (11.312)

Introducing the Lagrangean function L = K − V converts the Lagrange
equation to

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= 0 r = 1, 2, · · ·n (11.313)

for a conservative system. The Lagrangean is also called kinetic potential.
If a force is not conservative, then the work done by the force is

δW =
nX
i=1

µ
Fxi

∂fi
∂qr

+ Fyi
∂gi
∂qr

+ Fzi
∂hi
∂qr

¶
δqr

= Qr δqr (11.314)

and the equation of motion would be

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (11.315)

where Qr is the nonpotential generalized force doing work in a virtual
displacement of the rth generalized coordinate qr.
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m

l

X Y

Z

θ

ϕ

FIGURE 11.11. A spherical pendulum.

Example 320 Spherical pendulum.
A pendulum analogy is utilized in modeling of many dynamic problems.

Figure 11.11 illustrates a spherical pendulum with mass m and length l.
The angles ϕ and θ may be used as describing coordinates of the system.
The Cartesian coordinates of the mass as a function of the generalized

coordinates are ⎡⎣ X
Y
Z

⎤⎦ =
⎡⎣ r cosϕ sin θ

r sin θ sinϕ
−r cos θ

⎤⎦ (11.316)

and therefore, the kinetic and potential energies of the pendulum are

K =
1

2
m
³
l2θ̇

2
+ l2ϕ̇2 sin2 θ

´
(11.317)

V = −mgl cos θ. (11.318)

The kinetic potential function of this system is then equal to

L = 1

2
m
³
l2θ̇

2
+ l2ϕ̇2 sin2 θ

´
+mgl cos θ (11.319)

that leads to the following equations of motion:

θ̈ − ϕ̇2 sin θ cos θ +
g

l
sin θ = 0 (11.320)

ϕ̈ sin2 θ + 2ϕ̇θ̇ sin θ cos θ = 0. (11.321)

Example 321 A one-link manipulator.
A one-link manipulator is illustrated in Figure 11.12. Assume that there

is viscous friction in the joint where an ideal motor can apply the torque Q
to move the arm. The rotor of an ideal motor has no moment of inertia by
assumption.
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Y

X

m, I

Q

C

O

θ

l

FIGURE 11.12. A penduluml.

The kinetic and potential energies of the manipulator are

K =
1

2
Iθ̇
2
=
1

2

¡
IC +ml2

¢
θ̇
2

(11.322)

V = −mg cos θ (11.323)

where m is the mass and I is the moment of inertia of the pendulum about
O. The Lagrangean of the manipulator is

L = K − V =
1

2
Iθ̇
2
+mg cos θ (11.324)

and therefore, the equation of motion of the manipulator is

M =
d

dt

µ
∂L
∂θ̇

¶
− ∂L

∂θ
= I θ̈ +mgl sin θ. (11.325)

The generalized force M is the contribution of the motor torque Q and
the viscous friction torque −cθ̇. Hence, the equation of motion of the ma-
nipulator is

Q = I θ̈ + cθ̇ +mgl sin θ. (11.326)

Example 322 The ideal 2R planar manipulator dynamics.
An ideal model of a 2R planar manipulator is illustrated in Figure 11.13.

It is called ideal because we assumed that the links are massless and there
is no friction. The masses m1 and m2 are the mass of the second motor
to run the second link and the load at the endpoint. We take the absolute
angle θ1 and the relative angle θ2 as the generalized coordinates to express
the configuration of the manipulator.
The global position of m1 and m2 are∙

X1

Y2

¸
=

∙
l1 cos θ1
l1 sin θ1

¸
(11.327)
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m2
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Q2

l1

l 2

1θ

2θ

FIGURE 11.13. An ideal model of a 2R planar manipulator.

∙
X2

Y2

¸
=

∙
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

¸
(11.328)

and therefore, the global velocity of the masses are∙
Ẋ1

Ẏ1

¸
=

∙
−l1θ̇1 sin θ1
l1θ̇1 cos θ1

¸
(11.329)

∙
Ẋ2

Ẏ2

¸
=

⎡⎣ −l1θ̇1 sin θ1 − l2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

⎤⎦ . (11.330)

The kinetic energy of this manipulator is made of kinetic energy of the
masses and is equal to:

K = K1 +K2 =
1

2
m1

³
Ẋ2
1 + Ẏ 2

1

´
+
1

2
m2

³
Ẋ2
2 + Ẏ 2

2

´
=

1

2
m1l

2
1θ̇
2

1

+
1

2
m2

µ
l21θ̇

2

1 + l22

³
θ̇1 + θ̇2

´2
+ 2l1l2θ̇1

³
θ̇1 + θ̇2

´
cos θ2

¶
(11.331)

The potential energy of the manipulator is:

V = V1 + V2 = m1gY1 +m2gY2

= m1gl1 sin θ1 +m2g (l1 sin θ1 + l2 sin (θ1 + θ2)) (11.332)
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The Lagrangean is then obtained from Equations (11.331) and (11.332).

L = K − V =
1

2
m1l

2
1θ̇
2

1

+
1

2
m2

µ
l21θ̇

2

1 + l22

³
θ̇1 + θ̇2

´2
+ 2l1l2θ̇1

³
θ̇1 + θ̇2

´
cos θ2

¶
− (m1gl1 sin θ1 +m2g (l1 sin θ1 + l2 sin (θ1 + θ2))) (11.333)

which provides the required partial derivatives as follows:

∂L
∂θ1

= − (m1 +m2) gl1 cos θ1 −m2gl2 cos (θ1 + θ2) (11.334)

∂L
∂θ̇1

= (m1 +m2) l
2
1θ̇1 +m2l

2
2

³
θ̇1 + θ̇2

´
+m2l1l2

³
2θ̇1 + θ̇2

´
cos θ2 (11.335)

d

dt

µ
∂L
∂θ̇1

¶
= (m1 +m2) l

2
1θ̈1 +m2l

2
2

³
θ̈1 + θ̈2

´
+m2l1l2

³
2 θ̈1 + θ̈2

´
cos θ2

−m2l1l2θ̇2

³
2θ̇1 + θ̇2

´
sin θ2 (11.336)

∂L
∂θ2

= −m2l1l2θ̇1

³
θ̇1 + θ̇2

´
sin θ2 −m2gl2 cos (θ1 + θ2) (11.337)

∂L
∂θ̇2

= m2l
2
2

³
θ̇1 + θ̇2

´
+m2l1l2θ̇1 cos θ2 (11.338)

d

dt

µ
∂L
∂θ̇2

¶
= m2l

2
2

³
θ̈1 + θ̈2

´
+m2l1l2θ̈1 cos θ2−m2l1l2θ̇1θ̇2 sin θ2 (11.339)

Therefore, the equations of motion for the 2R manipulator are:

Q1 =
d

dt

µ
∂L
∂θ̇1

¶
− ∂L

∂θ1

= (m1 +m2) l
2
1θ̈1 +m2l

2
2

³
θ̈1 + θ̈2

´
+m2l1l2

³
2 θ̈1 + θ̈2

´
cos θ2 −m2l1l2θ̇2

³
2θ̇1 + θ̇2

´
sin θ2

+(m1 +m2) gl1 cos θ1 +m2gl2 cos (θ1 + θ2) (11.340)

Q2 =
d

dt

µ
∂L
∂θ̇2

¶
− ∂L

∂θ2

= m2l
2
2

³
θ̈1 + θ̈2

´
+m2l1l2θ̈1 cos θ2 −m2l1l2θ̇1θ̇2 sin θ2

+m2l1l2θ̇1

³
θ̇1 + θ̇2

´
sin θ2 +m2gl2 cos (θ1 + θ2) (11.341)
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The generalized forces Q1 and Q2 are the required forces to drive the
generalized coordinates. In this case, Q1 is the torque at the base motor
and Q2 is the torque of the motor at m1.
The equations of motion can be rearranged to have a more systematic

form

Q1 =
¡
(m1 +m2) l

2
1 +m2l2 (l2 + 2l1 cos θ2)

¢
θ̈1

+m2l2 (l2 + l1 cos θ2) θ̈2

−2m2l1l2 sin θ2 θ̇1θ̇2 −m2l1l2 sin θ2 θ̇
2

2

+(m1 +m2) gl1 cos θ1 +m2gl2 cos (θ1 + θ2) (11.342)

Q2 = m2l2 (l2 + l1 cos θ2) θ̈1 +m2l
2
2θ̈2

+m2l1l2 sin θ2 θ̇
2

1 +m2gl2 cos (θ1 + θ2) . (11.343)
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11.7 Summary

The translational and rotational equations of motion for a rigid body, ex-
pressed in the global coordinate frame, are

GF =
Gd

dt
Gp (11.344)

GM =
Gd

dt
GL (11.345)

where GF and GM indicate the resultant of the external forces and mo-
ments applied on the rigid body and measured at C. The vector Gp is the
momentum and GL is the moment of momentum for the rigid body at C

p = mv (11.346)

L = rC × p. (11.347)

The expression of the equations of motion in the body coordinate frame
are

BF = Gṗ+ B
GωB × Bp

= m BaB +m B
GωB × BvB (11.348)

BM = BL̇+B
GωB × BL

= BI B
Gω̇B +

B
GωB ×

¡
BI B

GωB

¢
(11.349)

where I is the moment of inertia for the rigid body.

I =

⎡⎣ Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤⎦ . (11.350)

The elements of I are only functions of the mass distribution of the rigid
body and are defined by

Iij =

Z
B

¡
r2i δmn − ximxjn

¢
dm , i, j = 1, 2, 3 (11.351)

where δij is Kronecker’s delta.
Every rigid body has a principal body coordinate frame in which the

moment of inertia is in the form

BI =

⎡⎣ I1 0 0
0 I2 0
0 0 I3

⎤⎦ . (11.352)
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The rotational equation of motion in the principal coordinate frame sim-
plifies to

M1 = I1ω̇1 − (I2 − I2)ω2ω3

M2 = I2ω̇2 − (I3 − I1)ω3ω1 (11.353)

M3 = I3ω̇3 − (I1 − I2)ω1ω2.

Utilizing homogeneous position vectors we also define pseudo inertia ma-
trix Ī with application in robot dynamics as

B Ī =

Z
B

r rT dm (11.354)

=

⎡⎢⎢⎣
−Ixx+Iyy+Izz

2 Ixy Ixz mxC
Iyx

Ixx−Iyy+Izz
2 Iyz myC

Izx Izy
Ixx+Iyy−Izz

2 mzC
mxC myC mzC m

⎤⎥⎥⎦
where, BrC is the position of the mass center in the body frame.

BrC =

⎡⎣ xC
yC
zC

⎤⎦ =
⎡⎢⎣

1
m

R
B
x dm

1
m

R
B
y dm

1
m

R
B
z dm

⎤⎥⎦ (11.355)

The equations of motion for a mechanical system having n DOF can
also be found by the Lagrange equation

d

dt

µ
∂L
∂q̇r

¶
− ∂L

∂qr
= Qr r = 1, 2, · · ·n (11.356)

L = K − V (11.357)

where L is the Lagrangean of the system, K is the kinetic energy, V is the
potential energy, and Qr is the nonpotential generalized force.

Qr =
nX
i=1

µ
Qix

∂fi
∂q1

+Qiy
∂gi
∂q2

+Qiz
∂hi
∂qn

¶
(11.358)

The parameters qr, r = 1, 2, · · · , n are the generalized coordinates of the
system, Q =

£
Qix Qiy Qiz

¤T
is the external force acting on the ith

particle of the system, and Qr is the generalized force associated to qr.
When (xi, yi, zi) is the Cartesian coordinates in a globally fixed coordinate
frame for the particle mi, then its coordinates may be functions of another
set of coordinates q1, q2, q3, · · · , qn and possibly time t.

xi = fi(q1, q2, q3, · · · , qn, t) (11.359)

yi = gi(q1, q2, q3, · · · , qn, t) (11.360)

zi = hi(q1, q2, q3, · · · , qn, t) (11.361)
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11.8 Key Symbols

a acceleration vector
A acceleration transformation matrix
B body coordinate frame
C mass center
d translation vector, displacement vector
D displacement transformation matrix
e rotation quaternion
f ,F force vector
g gravitational acceleration
G,B0 global coordinate frame, Base coordinate frame
h height
ı̂, ĵ, k̂ local coordinate axes unit vectors
Î , Ĵ , K̂ global coordinate axes unit vectors
I = [I] mass moment matrix
Ī =

£
Ī
¤

pseudo inertia matrix
I = [I] identity matrix
k spring stiffness
K kinetic energy
l length
L angular moment vector, moment of moment
L Lagrangean
m number of independent equations
M moment vector, torque vector
Mi the element i of M
p momentum
p, q position vectors of P , Q
q joint variable vector
P , Q points
r radius
r position vectors, homogeneous position vector
ri the element i of r
R rotation transformation matrix, radius
û unit vector along the axis of ω
u1, u2, u3 components of û
v velocity
v velocity vector
V potential energy
w width
W work, normalized eigenvector matrix
x, y, z local coordinate axes
X,Y,Z global coordinate axes
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Greek
α angular acceleration
α angular acceleration vector
α1, α2, α3 components of α
δ Kronecker delta
θ rotary joint angle
ϕ, θ, ψ Euler angles
φ angle of rotation about û
ω angular velocity
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω
ω1, ω2, ω3 components of ω

Symbol
[ ]
−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
∇ gradient
(i) link number i
k parallel
⊥ perpendicular
× vector cross product
←→e matrix form of a quaternion e
E earth
lim limit function
sgn signum function
tr trace
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Exercises

1. Notation and symbols.

Describe their meaning.

a- GpP b- Ll c- GF d- 1W2 e- K f- V

g- dm h- I i- Iij j- Ī k- GM l- I1

m- 02α̃1 n-
·

2
1ω̃2 o- GAB p- GV̇B q- J̇ r- Ẍ

2. Kinetic energy of a rigid link.

Consider a straight and uniform bar as a rigid link of a manipulator.
The link has a mass m. Show that the kinetic energy of the bar can
be expressed as

K =
1

6
m (v1 · v1 + v1 · v2 + v2 · v2)

where v1 and v2 are the velocity vectors of the endpoints of the link.

3. Discrete particles.

There are three particles m1 = 1kg, m2 = 2kg, m3 = 3kg, at

r1 =

⎡⎣ 1
−1
1

⎤⎦ r2 =

⎡⎣ −1−3
2

⎤⎦ r3 =

⎡⎣ 2
−1
−3

⎤⎦ .
Their velocities are

v1 =

⎡⎣ 2
1
1

⎤⎦ v2 =

⎡⎣ −10
2

⎤⎦ v3 =

⎡⎣ 3
−2
−1

⎤⎦ .
Find the position and velocity of the system at C. Calculate the sys-
tem’s momentum and moment of momentum. Calculate the system’s
kinetic energy and determine the rotational and translational parts
of the kinetic energy.

4. Newton’s equation of motion in the body frame.

Show that Newton’s equation of motion in the body frame is⎡⎣ Fx
Fy
Fz

⎤⎦ = m

⎡⎣ ax
ay
az

⎤⎦+
⎡⎣ 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

⎤⎦⎡⎣ vx
vy
vz

⎤⎦ .
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5. Work on a curved path.

A particle of mass m is moving on a circular path given by

GrP = cos θ Î + sin θ Ĵ + 4 K̂.

Calculate the work done by a force GF when the particle moves from
θ = 0 to θ = π

2 .

(a)
GF =

z2 − y2

(x+ y)
2 Î +

y2 − x2

(x+ y)
2 Ĵ +

x2 − y2

(x+ z)
2 K̂

(b)
GF =

z2 − y2

(x+ y)
2 Î +

2y

x+ y
Ĵ +

x2 − y2

(x+ z)
2 K̂

6. Newton’s equation of motion.

Find the equations of motion for the system shown in Figure 11.10
based on Newton method.

7. Acceleration in the body frame.

Find the acceleration vector for the endpoint of the two-link manip-
ulator shown in Figure 11.3, expressed in frame A.

8. Principal moments of inertia.

Find the principal moments of inertia and directions for the following
inertia matrices:

(a)

[I] =

⎡⎣ 3 2 2
2 2 0
2 0 4

⎤⎦
(b)

[I] =

⎡⎣ 3 2 4
2 0 2
4 2 3

⎤⎦
(c)

[I] =

⎡⎣ 100 20
√
3 0

20
√
3 60 0

0 0 10

⎤⎦
9. Moment of inertia.

Calculate the moment of inertia for the following objects in a principal
Cartesian coordinate frame at C.
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r

h

FIGURE 11.14. A cylinder.

(a) A cylinder similar to a uniform arm with a circular cross section.

(b) A rectangular box similar to a uniform arm with a rectangular
cross section.

h

b

a

FIGURE 11.15. A box.

(c) A house similar to a prismatic bar with a nonsymmetric polygon
cross section.

h

h

b
a

FIGURE 11.16. A solid house.

10. Rotated moment of inertia matrix.

A principal moment of inertia matrix B2I is given as

[I] =

⎡⎣ 3 0 0
0 5 0
0 0 4

⎤⎦ .
The principal frame was achieved by rotating the initial body coor-
dinate frame 30 deg about the x-axis, followed by 45 deg about the
z-axis. Find the initial moment of inertia matrix B1I.
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11. Rotation of moment of inertia matrix.

Find the required rotation matrix that transforms the moment of
inertia matrix [I] to an diagonal matrix.

[I] =

⎡⎣ 3 2 2
2 2 0.1
2 0.1 4

⎤⎦
12. Pseudo inertia matrix.

Calculate the pseudo inertia matrix for the following objects in a
principal Cartesian coordinate frame at C.

(a) A uniform arm with a rectangular cross section.

h

a

b

FIGURE 11.17. A prismatic bar.

(b) A compound shape as a housing for wrist joints.

h

ab

c

FIGURE 11.18. A housing for wrist joints.

(c) F A gripper, which is a compound shape made of some 3D
geometrical shapes.

13. Cubic equations.

The solution of a cubic equation

ax3 + bx2 + cx+ d = 0

where a 6= 0, can be found in a systematic way.
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a

b

h h/3

a/2a

a/2
r a/3

FIGURE 11.19. A gripper.

Transform the equation to a new form with discriminant 4p3 + q2,

y3 + 3py + q = 0

using the transformation x = y − b
3a , where,

p =
3ac− b2

9a2

q =
2b3 − 9abc+ 27a2d

27a3
.

The solutions are then

y1 = 3
√
α− 3

p
β

y2 = e
2πi
3 3
√
α− e

4πi
3

3
p
β

y3 = e
4πi
3 3
√
α− e

2πi
3

3
p
β

where,

α =
−q +

p
q2 + 4p3

2

β =
−q +

p
q2 + 4p3

2
.

For real values of p and q, if the discriminant is positive, then one root
is real, and two roots are complex conjugates. If the discriminant is
zero, then there are three real roots, of which at least two are equal. If
the discriminant is negative, then there are three unequal real roots.

Apply this theory for the characteristic equation of the matrix [I] and
show that the principal moments of inertia are real.

14. Kinematics of a moving car on the Earth.

The location of a vehicle on the Earth is described by its longitude ϕ
from a fixed meridian, say, the Greenwich meridian, and its latitude
θ from the equator, as shown in Figure 11.20. We attach a coordinate
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X

Y

Z

x
y

z r

Z

(a) (b)

G

B
Y

z

x y

E y

zP

P

θ
θ

ϕ

Eω
Eω

FIGURE 11.20. The location on the Earth is defined by longitude ϕ and latitude
θ.

frame B at the center of the Earth with x-axis on the equator’s plane
and y-axis pointing the vehicle. There are also two coordinate frames
E and G where E is attached to the Earth and G is the global co-
ordinate frame. Show that the angular velocity of B and the velocity
of the vehicle are

B
GωB = θ̇ ı̂B + (ωE + ϕ̇) sin θ ĵB + (ωE + ϕ̇) cos θ k̂
B
GvP = −r (ωE + ϕ̇) cos θ ı̂B + rθ̇ k̂.

Calculate the acceleration of the vehicle.

15. Global differentiating of angular momentum.

Convert the moment of inertiaBI and the angular velocity B
GωB to

the global coordinate frame and then find the differential of angular
momentum. It is an alternative method to show that

Gd

dt
BL =

Gd

dt

¡
BI B

GωB

¢
= BL̇+B

GωB × BL

= Iω̇ + ω× (Iω) .

16. Equations of motion for a rotating arm.

Find the equations of motion for the rotating link shown in Figure
11.21 based on the Lagrange method.
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X

Y

Z
z1

z2

A

mg

Fx2

x1

x2

a

l

C

Fy2

Fz2
Mz2

Mx2

θ

Eω

FIGURE 11.21. A rotating link.

17. Lagrange method and nonlinear vibrating system.

Use the Lagrange method and find the equation of motion for the
link shown in Figure 11.22. The stiffness of the linear spring is k.

Y

X

m

O
C

l

k

a
θ

FIGURE 11.22. A compound pendulum attached with a linear spring at the tip
point.

18. Forced vibration of a pendulum.

Figure 11.23 illustrates a simple pendulum having a length l and a
bob with mass m. Find the equation of motion if
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Y

X

m

O l

θ

FIGURE 11.23. A pendulum with a vibrating pivot.

(a) the pivot O has a dictated motion in X direction

XO = a sinωt

(b) the pivot O has a dictated motion in Y direction

YO = b sinωt

(c) the pivot O has a uniform motion on a circle

rO = R cosωt Î +R sinωt Ĵ.

19. Equations of motion from Lagrangean.

Consider a physical system with a Lagrangean as

L = 1

2
m (aẋ+ bẏ)2 − 1

2
k (ax+ by)2 .

The coefficients m, k, a, and b are constant.

20. Lagrangean from equation of motion.

Find the Lagrangean associated to the following equations of motions:

(a)
mr2θ̈ + k1l1θ + k2l2θ +mgl = 0

(b)

r̈ − r θ̇
2
= 0

r2 θ̈ + 2r ṙ θ̇ = 0
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X

Z

θ

ϕ

ω

FIGURE 11.24. A mass on a rotating ring.

21. A mass on a rotating ring.

A particle of mass m is free to slide on a rotating vertical ring as
shown in Figure 11.24. The ring is turning with a constant angular
velocity ω = ϕ̇. Determine the equation of motion of the particle. The
local coordinate frame is set up with the x-axis pointing the particle,
and the z-axis in the plane of the ring and parallel with the tangent
to the ring at the position of the mass.

22. F Particle in electromagnetic field.

Show that equations of motion of a particle with mass m with a
Lagrangian L

L = 1

2
mṙ2 − eΦ+ eṙ ·A

are

mq̈i = e

µ
−∂Φ
∂qi
− ∂Ai

∂t

¶
+ e

3X
j=1

q̇j

µ
∂Aj

∂qi
− ∂Ai

∂qj

¶
where

q =

⎡⎣ q1
q2
q3

⎤⎦ =
⎡⎣ x

y
z

⎤⎦ .
Then convert the equations of motion to a vectorial form

mr̈ = eE (r, t) + eṙ×B (r, t)

where E and B are electric and magnetic fields.

E = −∇Φ− ∂A

∂t
B = ∇×A.



12

Robot Dynamics
We find the dynamics equations of motion of robots by two methods:
Newton-Euler and Lagrange. The Newton-Euler method is more fundamen-
tal and finds the dynamic equations to determine the required actuators’
force and torque to move the robot, as well as the joint forces. Lagrange
method provides only the required differential equations that determines
the actuators’ force and torque.

zi

xi-1

xi

oi

oi-1

BiBi-1

Joint i
Joint i+1

zi-1

X

Z

O

G

ri

Y
0di-1

Gdi

Link (i)

0ai

Ci

di-1

di-1

di

di

..
..

..

0vi

i-1 d i

ni mi

0
iα

0 iω

FIGURE 12.1. A link (i) and its vectorial kinematic characteristics.

12.1 Rigid Link Newton-Euler Dynamics

Figure 12.1 illustrates a link (i) of a manipulator and its velocity and accel-
eration vectorial characteristics. Figure 12.2 illustrates free body diagram
of the link (i). The force Fi−1 and moment Mi−1 are the resultant force
and moment that link (i−1) applies to link (i) at joint i. Similarly, Fi and
Mi are the resultant force and moment that link (i) applies to link (i+ 1)
at joint i+ 1. We measure and show the force systems (Fi−1 , Mi−1) and
(Fi , Mi) at the origin of the coordinate frames Bi−1 and Bi respectively.

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_12,  
© Springer Science+Business Media, LLC 2010 
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zi

xi-1

xi

oi

oi-1

BiBi-1

Joint i
Action joint

Joint i+1
Reaction joint

zi-1

X

Z

O

Gri

Y

mi g
-Fi

-Mi

Fi-1

Mi-1

di-1

di

Link (i)
Ci

ni

mi

FIGURE 12.2. Force system on link (i).

The sum of the external loads acting on the link (i) are shown by
P
Fei

and
P
Mei .

The Newton-Euler equations of motion for the link (i) in the global co-
ordinate frame are:

0Fi−1 − 0Fi +
X

0Fei = mi
0ai (12.1)

0Mi−1 − 0Mi +
X

0Mei

+
¡
0di−1 − 0ri

¢
× 0Fi−1 −

¡
0di − 0ri

¢
× 0Fi =

0Ii 0αi (12.2)

Proof. The force system at the distal end of a link (i) is made of a force
Fi and a momentMi measured at the origin of Bi. The right subscript on
Fi and Mi is a number indicating the number of coordinate frame Bi.
At joint i+ 1 there is always an action force Fi, that link (i) applies to

link (i + 1), and a reaction force −Fi, that the link (i + 1) applies to the
link (i). Therefore, on link (i) there is always an action force Fi−1 coming
from link (i−1), and a reaction force −Fi coming from link (i+1). Action
force is called driving force, and reaction force is called driven force.
Similarly, at joint i+ 1 there is always an action moment Mi, that link

(i) applies to the link (i+1), and a reaction moment −Mi, that link (i+1)
applies to the link (i). Hence, on link (i) there is always an action moment
Mi−1 coming from link (i− 1), and a reaction moment −Mi coming from
link (i + 1). The action moment is called the driving moment, and the
reaction moment is called the driven moment.
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Therefore, there is a driving force system (Fi−1 , Mi−1) at the origin
of the coordinate frame Bi−1, and a driven force system (Fi , Mi) at the
origin of the coordinate frame Bi. The driving force system (Fi−1 ,Mi−1)
gives motion to link (i) and the driven force system (Fi ,Mi) gives motion
to link (i+ 1).
In addition to the action and reaction force systems, there might be some

external forces acting on the link (i) that their resultant makes a force
system (

P
Fei ,

P
Mei) at the mass center Ci. In robotic application,

weight is usually the only external load on middle links, and reactions from
the environment are extra external force systems on the base and end-
effector links. The force and moment that the base actuator applies to the
first link are F0 and M0, and the force and moment that the end-effector
applies to the environment are Fn and Mn. If weight is the only external
load on link (i) and it is in − 0k̂0 direction, then we haveX

0Fei = mi
0g = −mi g

0k̂0 (12.3)X
0Mei = 0ri ×mi

0g = − 0ri ×mi g
0k̂0 (12.4)

where g is the gravitational acceleration vector.
As shown in Figure 12.2, we indicate the global position of the mass

center of the link by 0ri, and the global position of the origin of body
frames Bi and Bi−1 by 0di and 0di−1 respectively. The link’s velocities
0vi, 0ωi and accelerations 0ai, 0αi are measured and shown at Ci. The
physical properties of the link (i) are specified by its mass mi and moment
of inertia 0Ii about the link’s mass center Ci.
The Newton’s equation of motion determines that the sum of forces ap-

plied to the link (i) is equal to the mass of the link times its acceleration
at Ci.

0Fi−1 − 0Fi +
X

0Fei = mi
0ai (12.5)

For the Euler equation, in addition to the action and reaction moments,
we must add the moments of the action and reaction forces about Ci. The
moment of −Fi and Fi−1 are equal to −mi ×Fi and ni ×Fi−1 where mi

is the position vector of oi from Ci and ni is the position vector of oi−1
from Ci. Therefore, the link’s Euler equation of motion is

0Mi−1 − 0Mi +
X

0Mei

+ 0ni × 0Fi−1 − 0mi × 0Fi =
0Ii 0αi

(12.6)

however, ni and mi can be expressed by

0ni = 0di−1 − 0ri (12.7)
0mi = 0di − 0ri (12.8)
0

i−1di = 0mi − 0ni (12.9)
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X
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Y
m g
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Me

x

m
B1

Fe

FIGURE 12.3. One link manipulator.

to derive Equation (12.2).
Since there is one translational and one rotational equation of motion

for each link of a robot, there are 2n vectorial equations of motion for an
n link robot. However, there are 2(n + 1) forces and moments involved.
Therefore, one set of force systems (usually Fn andMn) must be specified
to solve the equations and find the joints’ force and moment.

Example 323 One-link manipulator.
Figure 12.3 depicts a link attached to the ground via a spherical joint

at O. The free body diagram of the link is made of an external force and
moment at the endpoint, gravity, and the driving force and moment at the
joint. The Newton-Euler equations for the link are:

0F0 +
0Fe +mg K̂ = m 0aC (12.10)

0M0 +
0Me +

0n× 0F0 +
0m× 0Fe = 0I 0α1 (12.11)

To see the application, let us consider the uniform beam of Figure 12.4(a).
Figure 12.4(b) illustrates the FBD of the beam and its relative position
vectors m and n.

0m =

⎡⎢⎢⎢⎣
l

2
cos θ

l

2
sin θ

0

⎤⎥⎥⎥⎦ 0n =

⎡⎢⎢⎢⎣
− l

2
cos θ

− l

2
sin θ

0

⎤⎥⎥⎥⎦ (12.12)

The kinematics of the beam are:

0r1 = − 0n1 (12.13)
0d1 = − 0n1 +

0m1 (12.14)
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Y
y1

x1

X
m1Q0

Q0

m1 g

n m

B1

B0

C
θ

l1

(a) (b)

FIGURE 12.4. A turning uniform beam.

where, 0r1 indicates the position of C, and 0d1 indicates the position of the
tip point, both in B0.

0ω1 = θ̇ K̂ (12.15)

0α1 = 0ω̇1 = θ̈ K̂ (12.16)

g = −g Ĵ (12.17)

0aC = 0α1 × 0r1 − 0ω1 ×
¡
0ω1 × 0r1

¢
=

⎡⎢⎢⎢⎣
− l

2
θ̈ sin θ +

l

2
θ̇
2
(cos θ)

l

2
θ̈ cos θ +

l

2
θ̇
2
sin θ

0

⎤⎥⎥⎥⎦ (12.18)

The forces on the beam are:

0F0 =

⎡⎣ FX
FY
FZ

⎤⎦ 0Fe =

⎡⎣ 0
0
0

⎤⎦ (12.19)

0M0 =

⎡⎣ QX

QY

QZ

⎤⎦ 0Me =

⎡⎣ 0
0
0

⎤⎦ (12.20)

Let us assume that 1I1 is the mass moment matrix of the beam about its
mass center.

1I1 =

⎡⎣ Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦ (12.21)
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0R1 = RZ,θ =

⎡⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤⎦ (12.22)

0I1 = RZ,θ
1I1R

T
Z,θ =

0R1

⎡⎣ Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦ 0RT
1

=

⎡⎣ Ix cos
2 θ + Iy sin

2 θ (Ix − Iy) cos θ sin θ 0

(Ix − Iy) cos θ sin θ Iy cos
2 θ + Ix sin

2 θ 0
0 0 Iz

⎤⎦ (12.23)

Substituting the above information in Equations (12.10) and (12.11) pro-
vides the following equations of motion.

0F0 +
0Fe +m1g = m1

0aC (12.24)⎡⎣ FX
FY
FZ

⎤⎦ =
⎡⎢⎢⎢⎣

−1
2
m1l

³
θ̈ sin θ − θ̇

2
cos θ

´
1

2
m1l

³
θ̈ cos θ + θ̇

2
sin θ

´
+m1g

0

⎤⎥⎥⎥⎦ (12.25)

0M0 +
0Me +

0n× 0F0 +
0m× 0Fe = I 0α1 (12.26)

⎡⎣ QX

QY

QZ

⎤⎦ =
⎡⎢⎢⎢⎢⎢⎣

l

2
FZ sin θ

− l

2
FZ cos θ

Iz θ̈ +
l

2
FY cos θ −

l

2
FX sin θ

⎤⎥⎥⎥⎥⎥⎦ (12.27)

Let us substitute the force components from (12.25) to determine the com-
ponents of the driving moment 0M0.⎡⎣ QX

QY

QZ

⎤⎦ =
⎡⎢⎢⎣

0
0µ

Iz +
m1l

2

4

¶
θ̈ +

1

2
m1gl cos θ

⎤⎥⎥⎦ (12.28)

Example 324 A four-bar linkage dynamics.
Figure 12.5(a) illustrates a closed loop four-bar linkage along with the

free body diagrams of the links, shown in Figure 12.5(b). The position of
the mass centers are given, and therefore the vectors 0ni and 0mi for each
link are also known. The Newton-Euler equations for the link (i) are

0Fi−1 − 0Fi +mig Ĵ = mi
0ai (12.29)

0Mi−1 − 0Mi +
0ni × 0Fi−1 − 0mi × 0Fi = Ii 0αi (12.30)
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FIGURE 12.5. A four-bar linkage, and free body diagram of each link.

and therefore, we have three sets of equations.

0F0 − 0F1 +m1g Ĵ = m1
0a1 (12.31)

0M0 − 0M1 +
0n1 × 0F0 − 0m1 × 0F1 = I1 0α1 (12.32)

0F1 − 0F2 +m2g Ĵ = m2
0a2 (12.33)

0M1 − 0M2 +
0n2 × 0F1 − 0m2 × 0F2 = I2 0α2 (12.34)

0F2 − 0F3 +m3g Ĵ = m2
0a2 (12.35)

0M2 − 0M3 +
0n3 × 0F2 − 0m3 × 0F3 = I3 0α3 (12.36)

Let us assume that there is no friction in joints and the mechanism is
planar. Therefore, the force vectors are in the XY plane, and the moments
are parallel to Z-axis. So, the equations of motion simplify to

0F0 − 0F1 +m1g Ĵ = m1
0a1 (12.37)

0M0 +
0n1 × 0F0 − 0m1 × 0F1 = I1 0α1 (12.38)
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0F1 − 0F2 +m2g Ĵ = m2
0a2 (12.39)

0n2 × 0F1 − 0m2 × 0F2 = I2 0α2 (12.40)

0F2 − 0F3 +m3g Ĵ = m2
0a2 (12.41)

0n3 × 0F2 − 0m3 × 0F3 = I3 0α3 (12.42)

where, 0M0 is the driving torque of the mechanism. The number of equa-
tions reduces to 9 and the unknowns of the mechanism are:

F0x, F0y, F1x, F1y, F2x, F2y, F3x, F3y,M0 (12.43)

We can rearrange the set of equations in a matrix form

[A]x = b (12.44)

where,

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −1 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
−n1y n1x m1y −m1x 0 0 0 0 1
0 0 1 0 −1 0 0 0 0
0 0 0 1 0 −1 0 0 0
0 0 −n2y n2x m2y −m2x 0 0 0
0 0 0 0 1 0 −1 0 0
0 0 0 0 0 1 0 −1 0
0 0 0 0 −n3y n3x m3y −m3x 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.45)

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0x
F0y
F1x
F1y
F2x
F2y
F3x
F3y
M0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1a1x
m1a1y −m1g

I1α1
m2a2x

m2a2y −m2g
I2α2
m3a3x

m3a3y −m3g
I3α3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.46)

The matrix [A] describes the geometry of the mechanism, the vector x is
the unknown forces, and the vector b indicates the dynamic terms. To solve
the dynamics of the four-bar mechanism, we must calculate the accelerations
0ai and 0αi and then find the required driving moment 0M0 and the joints’
forces.
The force

Fs = F3 −F0 (12.47)

is called the shaking force and shows the reaction of the mechanism on
the ground.
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Example 325 A turning uniform beam with a tip mass.
Let us consider the uniform beam of Figure 12.6(a) with a hanging mass

m2 at the tip point. Figure 12.6(b) illustrates the FBD of the beam. The
mass center of the beam is at 1r1

1r1 =
m1

m1 +m2

⎡⎣ l/2
0
0

⎤⎦+ m2

m1 +m2

⎡⎣ l
0
0

⎤⎦

=

⎡⎢⎣
m1 + 2m2

2 (m1 +m2)
l

0
0

⎤⎥⎦ =
⎡⎣ rx
0
0

⎤⎦ (12.48)

and its relative position vectors m and n are:

1n1 = − 1r1 = −rx ı̂ (12.49)
1m1 = l̂ı− 1r1 = (l − rx) ı̂ (12.50)
0d1 = − 1n1 +

1m1 = l̂ı (12.51)

0m =

⎡⎣ (l − rx) cos θ

(l − rx) sin θ
0

⎤⎦ 0n =

⎡⎣ −rx cos θ−rx sin θ
0

⎤⎦ (12.52)

The kinematics of the beam are:

0ω1 = θ̇ K̂ (12.53)

0α1 = 0ω̇1 = θ̈ K̂ (12.54)

g = −g Ĵ (12.55)

0aC = 0α1 × 0r1 + 0ω1 ×
¡
0ω1 × 0r1

¢
=

⎡⎢⎣ −rxθ̈ sin θ + rxθ̇
2
(cos θ)

rxθ̈ cos θ + rxθ̇
2
sin θ

0

⎤⎥⎦ (12.56)

The forces on the beam are:

0F0 =

⎡⎣ FX
FY
FZ

⎤⎦ 0Fe =

⎡⎣ 0
0
0

⎤⎦ (12.57)

0M0 =

⎡⎣ QX

QY

QZ

⎤⎦ 0Me =

⎡⎣ 0
0
0

⎤⎦ (12.58)
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FIGURE 12.6. A uniform beam with a hanging weight m2 at the tip point.

Let us assume that 1I1 is the mass moment matrix of the beam about its
center,

1I1 =

⎡⎣ Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦ (12.59)

then the mass moment matrix of the manipulator about the common mass
center at 1r1 is:

1I1 =

⎡⎣ Ix 0 0
0 Iy 0
0 0 I3

⎤⎦ (12.60)

I3 = Iz +M1

µ
rx −

l

2

¶2
+M2 (l − rx)

2 (12.61)

Knowing the transformation matrix 0R1, we can determine 0I1.

0R1 = RZ,θ =

⎡⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤⎦ (12.62)

0I1 = RZ,θ
1I1R

T
Z,θ =

0R1

⎡⎣ Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦ 0RT
1

=

⎡⎣ Ix cos
2 θ + Iy sin

2 θ (Ix − Iy) cos θ sin θ 0
(Ix − Iy) cos θ sin θ Iy cos

2 θ + Ix sin
2 θ 0

0 0 I3

⎤⎦ (12.63)
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Substituting the above information in Equations (12.10) and (12.11) pro-
vides the following equations of motion.

0F0 +
0Fe +m1g K̂ = m1

0aC +m2
1

2
0aC (12.64)

⎡⎣ FX
FY
FZ

⎤⎦ =
⎡⎢⎢⎣

− (m1 +m2) rx

³
θ̈ sin θ − θ̇

2
cos θ

´
(m1 +m2) rx

³
θ̈ cos θ + θ̇

2
sin θ

´
+ (m2 +m1) g

0

⎤⎥⎥⎦ (12.65)

0M0 +
0Me +

0n× 0F0 +
0m× 0Fe = I 0α1 (12.66)⎡⎣ QX

QY

QZ

⎤⎦ =
⎡⎣ rxFZ sin θ

−rxFZ cos θ
I3θ̈ + rxFY cos θ − rxFX sin θ

⎤⎦ (12.67)

Let us substitute the force components from (12.65) to determine the com-
ponents of the driving moment 0M0.⎡⎣ QX

QY

QZ

⎤⎦ =
⎡⎣ 0

0¡
Iz + (m1 +m2) r

2
x

¢
θ̈ + (m1 +m2) rxg cos θ

⎤⎦ (12.68)

Substituting rx provides the required torque Q0.

Q0 = QZ =

µ
1

4
m1l

2 +m2l
2 + Iz

¶
θ̈ +

µ
1

2
m1 +m2

¶
gl cos θ (12.69)

Example 326 2R planar manipulator Newton-Euler dynamics.
A 2R planar manipulator and its free body diagram are shown in Figure

12.7. The torques of actuators are parallel to the Z-axis and are indicated
by Q0 and Q1. The Newton-Euler equations of motion for the first link are:

0F0 − 0F1 +m1g Ĵ = m1
0a1 (12.70)

0Q0 − 0Q1 +
0n1 × 0F0 − 0m1 × 0F1 = 0I1 0α1 (12.71)

and the equations of motion for the second link are:

0F1 +m2g Ĵ = m2
0a2 (12.72)

0Q1 +
0n2 × 0F1 = 0I2 0α2 (12.73)

There are four equations for four unknowns F0, F1, Q0, and Q1. These
equations can be set in a matrix form

[A]x = b (12.74)
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FIGURE 12.7. Free body diagram of a 2R palanar manipulator.

where,

[A] =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −1 0 0
0 1 0 0 −1 0
n1y −n1x 1 −m1y m1x −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 n2y −n2x 1

⎤⎥⎥⎥⎥⎥⎥⎦ (12.75)

x =

⎡⎢⎢⎢⎢⎢⎢⎣
F0x
F0y
Q0
F1x
F1y
Q1

⎤⎥⎥⎥⎥⎥⎥⎦ b =

⎡⎢⎢⎢⎢⎢⎢⎣
m1a1x

m1a1y −m1g
0I1α1
m2a2x

m2a2y −m2g
0I2α2

⎤⎥⎥⎥⎥⎥⎥⎦ . (12.76)

Example 327 Equations for joint actuators.
In robot dynamics, we do not need to find joint forces. Actuator torques

are much more important as they are used to control a robot. In Exam-
ple 326 we identified four equations for the joints’ force system of the 2R
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manipulator that is shown in Figure 12.7.
0F0 − 0F1 +m1g Ĵ = m1

0a1 (12.77)
0Q0 − 0Q1 +

0n1 × 0F0 − 0m1 × 0F1 = 0I1 0α1 (12.78)
0F1 +m2g Ĵ = m2

0a2 (12.79)
0Q1 +

0n2 × 0F1 = 0I2 0α2. (12.80)

However, we may eliminate the joint forces F0, F1, and reduce the number
of equations to two for the two torques Q0 and Q1. Eliminating F1 between
(12.79) and (12.80) provides

0Q1 =
0I2 0α2 − 0n2 ×

³
m2

0a2 −m2g Ĵ
´

(12.81)

and eliminating F0 and F1 between (12.77) and (12.80) gives:

0Q0 = 0Q1 +
0I1 0α1 +

0m1 ×
³
m2

0a2 −m2g Ĵ
´

− 0n1 ×
³
m1

0a1 −m1g Ĵ +m2
0a2 −m2g Ĵ

´
(12.82)

The forces F0 and F1, if we are interested, are equal to:
0F1 = m2

0a2 −m2g Ĵ (12.83)
0F0 = m1

0a1 +m2
0a2 − (m1 +m2) g Ĵ (12.84)

Example 328 2R planar manipulator with massive arms and joints.
In a real situation for a 2R planar manipulators, we generally have a

massive motor at joint 0 to turn the link (1) and a massive motor at joint
1 to turn the link (2). We may also carry a massive object by the gripper at
the tip point. The motor at joint 0 is siting on the ground and its weight will
not effect the dynamics of the manipulator. The FBD of the manipulator
is similar to Figure 12.8.
The massive joints will displace the position of Ci and changes the rela-

tive position vectors m and n. We will have the same equations of motion
(12.70)-(12.72) provided we determine m and n for the new position of Ci

as suggested in Figure 12.9.

0F0 − 0F1 + (m11 +m12) g Ĵ = m1
0a1 (12.85)

0Q0 − 0Q1 +
0n1 × 0F0 − 0m1 × 0F1 = 0I1 0α1 (12.86)

0F1 + (m21 +m22) g Ĵ = (m21 +m22)
0a2 (12.87)

0Q1 +
0n2 × 0F1 = 0I2 0α2. (12.88)

We may show the masses as

m1 = m11 +m12 (12.89)

m2 = m21 +m22 (12.90)

and use the same equations (12.79)-(12.80) with asymmetric mass centers.
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FIGURE 12.8. A 2R planar manipulator with massive arms and massive joints.
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FIGURE 12.9. Determination of the vectors m and n for new positions of mass
center Ci.
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Example 329 2R planar manipulator general equations.
Let us analyze a general 2R manipulator that has massive arms and

carries a payload m0 as is shown in Figure 12.10.
The equations of motion are:

0F0 − 0F1 +m1g Ĵ = m1
0a1 (12.91)

0Q0 − 0Q1 +
0n1 × 0F0 − 0m1 × 0F1 = 0I1 0α1 (12.92)

0F1 + (m0 +m2) g Ĵ = m2
0a2 (12.93)

0Q1 +
0n2 × 0F1 +

0m2 ×m0g Ĵ = 0I2 0α2 (12.94)

Elimination the joint forces F0, F1 provides the following equations for the
torques Q0 and Q1.

0Q1 =
0I2 0α2− 0n2×

³
m2

0a2 − (m0 +m2) g Ĵ
´
− 0m2×m0g Ĵ (12.95)

0Q0 = 0Q1 +
0I1 0α1 +

0m1 ×
³
m2

0a2 − (m0 +m2) g Ĵ
´

− 0n1 ×
³
m1

0a1 +m2
0a2 − (m0 +m1 +m2) g Ĵ

´
(12.96)

The forces F0 and F1 are equal to:

0F1 = m2
0a2 − (m0 +m2) g Ĵ (12.97)

0F0 = m1
0a1 +m2

0a2 − (m0 +m1 +m2) g Ĵ (12.98)

0r1 = − 0n1 (12.99)
0r2 = − 0n1 +

0m1 − 0n2 (12.100)
0d1 = − 0n1 +

0m1 (12.101)
0
1d2 = − 0n2 +

0m2 (12.102)
0d2 = − 0n1 +

0m1 − 0n2 +
0m2 (12.103)

In a general case, the local position vectors of Ci are:

0n1 = 0R1
1n1 = −RZ,θ1 c1

1ı̂1 =

⎡⎣ −c1 cos θ1−c1 sin θ1
0

⎤⎦ (12.104)

0n2 = − 0R2
2n2 = − 0R1

1R2
2n2

= −RZ,θ1 RZ,θ2 c2
2ı̂2 =

⎡⎣ −c2 cos (θ1 + θ2)
−c2 sin (θ1 + θ2)

0

⎤⎦ (12.105)

1n2 = − 1R2
2n2 = −RZ,θ2 c2

2ı̂2 =

⎡⎣ −c2 cos θ2−c2 sin θ2
0

⎤⎦ (12.106)
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FIGURE 12.10. A 2R manipulator that has massive arms and carries a payload
m0.

0m1 =
0R1

1m1 = RZ,θ1 (l1 − c1)
1ı̂1 =

⎡⎣ (l1 − c1) cos θ1
(l1 − c1) sin θ1

0

⎤⎦ (12.107)

0m2 = 0R2
2m2 =

0R2 (l2 − c2)
2ı̂2

=

⎡⎣ (l2 − c2) cos (θ1 + θ2)
(l2 − c2) sin (θ1 + θ2)

0

⎤⎦ (12.108)

where,

0R1 = RZ,θ1 =

⎡⎣ cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1

⎤⎦ (12.109)

1R2 = RZ,θ2 =

⎡⎣ cos θ2 − sin θ2 0
sin θ2 cos θ2 0
0 0 1

⎤⎦ (12.110)

0R2 = Rz,θ1+θ2 =

⎡⎣ cos (θ1 + θ2) − sin (θ1 + θ2) 0
sin (θ1 + θ2) cos (θ1 + θ2) 0

0 0 1

⎤⎦ . (12.111)
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The position vectors are as follows.

0r1 = − 0n1 =
0R1

1r1 =
0R1 c1 ı̂1 =

⎡⎣ c1 cos θ1
c1 sin θ1
0

⎤⎦ (12.112)

0r2 = − 0n1 +
0m1 − 0n2 =

0d1 +
0R2

2r2

=

⎡⎣ l1 cos θ1 + c2 cos (θ1 + θ2)
l1 sin θ1 + c2 sin (θ1 + θ2)

0

⎤⎦ (12.113)

0d1 = − 0n1 +
0m1 =

⎡⎣ l1 cos θ1
l1 sin θ1
0

⎤⎦ (12.114)

0
1d2 = − 0n2 +

0m2 =

⎡⎣ l2 cos (θ1 + θ2)
l2 sin (θ1 + θ2)

0

⎤⎦ (12.115)

0d2 = − 0n1 +
0m1 − 0n2 +

0m2

= 0d1 +
0
1d2 =

⎡⎣ l2 cos (θ1 + θ2) + l1 cos θ1
l2 sin (θ1 + θ2) + l1 sin θ1

0

⎤⎦ (12.116)

The links’ angular velocity and acceleration are:

0ω1 = θ̇1 K̂ (12.117)

0α1 = 0ω̇1 = θ̈1 K̂ (12.118)

0ω2 =
³
θ̇1 + θ̇2

´
K̂ (12.119)

0α2 = 0ω̇2 =
³
θ̈1 + θ̈2

´
K̂ (12.120)

The translational acceleration of Ci are:

0a1 = 0α1 × 0r1 − 0ω1 ×
¡
0ω1 × 0r1

¢
=

⎡⎢⎣ −c1θ̈1 sin θ1 + c1θ̇
2

1 cos θ1

c1θ̈1 cos θ1 + c1θ̇
2

1 sin θ1
0

⎤⎥⎦ (12.121)

0d̈1 = 0α1 × 0d1 − 0ω1 ×
¡
0ω1 × 0d1

¢
=

⎡⎢⎣ −l1θ̈1 sin θ1 + l1θ̇
2

1 cos θ1

l1θ̈1 cos θ1 + l1θ̇
2

1 sin θ1
0

⎤⎥⎦ (12.122)
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0d̈2 =
Gd2 0d2
dt2

= 0d̈1 +
0
1ω̇2 × 0

1d2 − 0
1ω2 ×

¡
0
1ω2 × 0

1d2
¢

=

⎡⎣ 0d̈2x
0d̈2y
0

⎤⎦ (12.123)

0d̈2x = −l1θ̈1 sin θ1 − l2θ̈2 sin (θ1 + θ2)

+l1θ̇
2

1 cos θ1 + l2θ̇
2

2 cos (θ1 + θ2) (12.124)

0d̈2y = l1θ̈1 cos θ1 + l2θ̈2 cos (θ1 + θ2)

+l1θ
2
1 sin θ1 + l2θ̇

2

2 sin (θ1 + θ2) (12.125)

0a2 = 0d̈2 + 0α2 ×
¡
0r2 − 0d2

¢
− 0ω2 ×

¡
0ω2 ×

¡
0r2 − 0d2

¢¢
= 0d̈2 − 0α2 × 0m2 + 0ω2 ×

¡
0ω2 × 0m2

¢
=

⎡⎣ 0a2x
0a2y
0

⎤⎦ (12.126)

0a2x =
³
(l2 − c2)

³
θ̈1 + θ̈2

´
− l2θ̈2

´
sin (θ1 + θ2)

−l1θ̈1 sin θ1 + l1θ̇
2

1 cos θ1

−
µ
(l2 − c2)

³
θ̇1 + θ̇2

´2
− l2θ̇

2

2

¶
cos (θ1 + θ2) (12.127)

0a2y = −
³
(l2 − c2)

³
θ̈1 + θ̈2

´
− l2θ̈2

´
cos (θ1 + θ2)

+l1θ̈1 cos θ1 + l1θ̇
2

1 sin θ1

−
µ
(l2 − c2)

³
θ̇1 + θ̇2

´2
− l2θ̇

2

2

¶
sin (θ1 + θ2) (12.128)

The moment of inertia matrices in the global coordinate frame are:

0I1 = RZ,θ1
1I1R

T
Z,θ1 =

0R1

⎡⎣ Ix1 0 0
0 Iy1 0
0 0 Iz1

⎤⎦ 0RT
1

=

⎡⎣ Ix1c
2θ1 + Iy1s

2θ1 (Ix1 − Iy1) cθ1sθ1 0

(Ix1 − Iy1) cθ1sθ1 Iy1c
2θ1 + Ix1s

2θ1 0
0 0 Iz1

⎤⎦ (12.129)
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0I2 = 0R2
2I2

0RT
2 = 0R2

⎡⎣ Ix2 0 0
0 Iy2 0
0 0 Iz2

⎤⎦ 0RT
2

=

⎡⎣ Ix2c
2θ12 + Iy2s

2θ12 (Ix2 − Iy2) cθ12sθ12 0

(Ix2 − Iy2) cθ12sθ12 Iy2c
2θ12 + Ix2s

2θ12 0
0 0 Iz2

⎤⎦ (12.130)

θ12 = θ1 + θ2 (12.131)

Substituting these results in Equations (12.95) and (12.96), and solving for
Q0 and Q1, provides the dynamic equations for the 2R manipulator.

0Q1 = 0I2 0α2 − 0n2 ×
³
m2

0a2 − (m0 +m2) g Ĵ
´
− 0m2 ×m0g Ĵ

=

⎡⎣ 0
0

0Q1z

⎤⎦ (12.132)

0Q1z =
¡
Iz2 +m2c

2
2 −m2l2c2 +m2l1c2 cos θ2

¢
θ̈1

+
¡
Iz2 +m2c

2
2

¢
θ̈2 −m2c2l1θ̇

2

1 sin θ2

− (m2c2 +m0l2) g cos (θ1 + θ2) (12.133)

0Q0 = 0Q1 +
0I1 0α1 +

0m1 ×
³
m2

0a2 − (m0 +m2) g Ĵ
´

− 0n1 ×
³
m1

0a1 −m1g Ĵ +
³
m2

0a2 − (m0 +m2) g Ĵ
´´

=

⎡⎣ 0
0

0Q0z

⎤⎦ (12.134)

0Q0z =
¡
Iz1 + Iz2 +m1c

2
1 +m2

¡
l21 + c22 − l2c2 + l1 (2c2 − l2) cos θ2

¢¢
θ̈1

+(Iz2 +m2c2 (c2 + l1 cos θ2)) θ̈2 −m2l1l2θ̇
2

1 sin θ2

+m2l1c2θ̇
2

2 sin θ2 − 2m2l1 (l2 − c2) θ̇1θ̇2 sin θ2

− (m0l1 +m1c1 +m2l1) g cos θ1

− (m0l2 +m2c2) g cos (θ1 + θ2) (12.135)

Example 330 F Matrix form of equations of motion.
Let us rearrange the equations of motion (12.133) and (12.135) in a

matrix form.
D(q) q̈+C(q, q̇)q̇+G(q) = Q (12.136)

q =

∙
θ1
θ2

¸
Q =

∙
0Q1z
0Q2z

¸
(12.137)
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D(q) =

∙
Z1 − Z2 + Z3 cos θ2 Z1

Z1 + Z4 − Z2 + Z5 + Z6 cos θ2 Z1 + Z3 cos θ2

¸
(12.138)

C(q, q̇) =

"
−Z3θ̇1 sin θ2 0³

−Z7θ̇1 − Z8θ̇2

´
sin θ2

³
Z3θ̇2 − Z8θ̇1

´
sin θ2

#
(12.139)

G(q) =

∙
−Z9 cos (θ1 + θ2)

−Z9 cos (θ1 + θ2) + Z10 cos θ1

¸
(12.140)

Z1 = Iz2 +m2c
2
2 (12.141)

Z2 = m2l2c2 (12.142)

Z3 = m2l1c2 (12.143)

Z4 = Iz1 +m1c
2
1 (12.144)

Z5 = m2l
2
1 (12.145)

Z6 = m2l1 (2c2 − l2) (12.146)

Z7 = m2l1l2 (12.147)

Z8 = m2l1 (l2 − c2) (12.148)

Z9 = (m2c2 +m0l2) g (12.149)

Z10 = (m0l1 +m1c1 +m2l1) g (12.150)

Example 331 F Joint forces of the general 2R manipulator.
Substituting the vectorial information of (12.104)-(12.130) in (12.97)

and (12.98), we find the joint forces of the general 2R manipulator that
is shown in Figure 12.10. The manipulator has massive arms with mass
center at Ci and carries a payload m0.

0F1 = m2
0a2 − (m0 +m2) g Ĵ =

⎡⎣ 0F1x
0F1y
0

⎤⎦ (12.151)

0F1x = (m2 (l2 − c2) sin (θ1 + θ2)−m2l1 sin θ1) θ̈1

−m2c2θ̈2 sin (θ1 + θ2) +m2c2θ̇
2

2 cos (θ1 + θ2)

+ (m2 (l2 − c2) cos (θ1 + θ2) +m2l1 cos θ1) θ̇
2

1

+2m2l1 (l2 − c2) θ̇1θ̇2 cos (θ1 + θ2) (12.152)

0F1y = (−m2 (l2 − c2) cos (θ1 + θ2) +m2l1 cos θ1) θ̈1

+m2c2θ̈2 cos (θ1 + θ2) +m2c2θ̇
2

2 sin (θ1 + θ2)

+ (−m2 (l2 − c2) sin (θ1 + θ2) +m2l1 sin θ1) θ̇
2

1

−2m2l1 (l2 − c2) θ̇1θ̇2 sin (θ1 + θ2)

− (m0 +m2) g (12.153)
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0F0 = m1
0a1 +m2

0a2 − (m0 +m1 +m2) g Ĵ =

⎡⎣ 0F0x
0F0y
0

⎤⎦ (12.154)

0F0x = (m2 (l2 − c2) sin (θ1 + θ2)− (m1c1 +m2l1) sin θ1) θ̈1

−m2c2θ̈2 sin (θ1 + θ2)−m2c2θ̇
2

2 cos (θ1 + θ2)

+ (−m2 (l2 − c2) cos (θ1 + θ2) + (m2l1 +m1c1) cos θ1) θ̇
2

1

−2m2 (l2 − c2) θ̇1θ̇2 cos (θ1 + θ2) (12.155)

0F0y = (−m2 (l2 − c2) cos (θ1 + θ2) + (m2l1 +m1c1) cos θ1) θ̈1

+m2c2θ̈2 cos (θ1 + θ2) +m2c2θ̇
2

2 sin (θ1 + θ2)

+ (−m2 (l2 − c2) sin (θ1 + θ2) + (m2l1 +m1c1) sin θ1) θ̇
2

1

−2m2l1 (l2 − c2) θ̇1θ̇2 sin (θ1 + θ2)

− (m0 +m1 +m2) g (12.156)

12.2 F Recursive Newton-Euler Dynamics

An advantage of the Newton-Euler equations of motion in robotic applica-
tion is that we can calculate the joint forces of one link at a time. Therefore,
starting from the end-effector link, we can analyze the links one by one and
end up at the base link or vice versa. For such an analysis, we need to re-
form the Newton-Euler equations of motion to work in the interested link’s
frame.
The backward recursive Newton-Euler equations of motion for the link

(i) in its body coordinate frame Bi are:

iFi−1 =
iFi −

X
iFei +mi

i
0ai (12.157)

iMi−1 = iMi −
X

iMei −
¡
idi−1 − iri

¢
× iFi−1

+
¡
idi − iri

¢
× iFi +

iIi
i
0αi +

i
0ωi × iIi

i
0ωi (12.158)

ini = idi−1 − iri (12.159)
imi = idi − iri (12.160)

When the driving force system (iFi−1, iMi−1) is found in frame Bi, we can
transform them to the frame Bi−1 and apply the Newton-Euler equation
for link (i− 1).

i−1Fi−1 = i−1Ti
iFi−1 (12.161)

i−1Mi−1 = i−1Ti
iMi−1 (12.162)
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The negative of the converted force system acts as the driven force system
(− i−1Fi−1, − i−1Mi−1) for the link (i− 1).
The forward recursive Newton-Euler equations of motion for the link (i)

in its body coordinate frame Bi are:

iFi =
iFi−1 +

X
iFei −mi

i
0ai (12.163)

iMi = iMi−1 +
X

iMei +
¡
idi−1 − iri

¢
× iFi−1

−
¡
idi − iri

¢
× iFi − iIi

i
0αi − i

0ωi × iIi
i
0ωi. (12.164)

ini = idi−1 − iri (12.165)
imi = idi − iri (12.166)

When the reaction force system (iFi, iMi) is found in frame Bi, we can
transform them to frame Bi+1.

i+1Fi = iT−1i+1
iFi (12.167)

i+1Mi = iT−1i+1
iMi (12.168)

The negative of the converted force system acts as the action force system
(− i+1Fi, − i+1Mi) for the link (i+ 1).

Proof. The Euler equation for a rigid link in body coordinate frame is:

BM =
Gd

dt
BL = BL̇+ B

GωB × BL

= iIi iαi +
B
GωB × iIi iωi (12.169)

where L is the angular momentum of the link.

BL = BI B
GωB (12.170)

We may solve the Newton-Euler equations of motion (12.1) and (12.2) for
the action force system

0Fi−1 = 0Fi −
X

0Fei +mi
0ai (12.171)

0Mi−1 = 0Mi −
X

0Mei −
¡
0di−1 − 0ri

¢
× 0Fi−1

+
¡
0di − 0ri

¢
× 0Fi +

0d

dt
0Li (12.172)

and then, transform the equations to the coordinate frame Bi attached to
the link’s (i) to make the recursive form of the Newton-Euler equations of
motion.

iFi−1 =
0T−1i

0Fi−1 =
iFi −

X
iFei +mi

i
0ai (12.173)
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iMi−1 = 0T−1i
0Mi−1

= iMi −
X

iMei −
¡
idi−1 − iri

¢
× iFi−1 (12.174)

+
¡
idi − iri

¢
× iFi +

0d

dt
iLi

= iMi −
X

iMei −
¡
idi−1 − iri

¢
× iFi−1

+
¡
idi − iri

¢
× iFi +

iIi
i
0αi +

i
0ωi × iIi

i
0ωi. (12.175)

Starting from link (i) and deriving the equations of motion of the previous
link (i− 1) is called the backward Newton-Euler equations of motion.
We may also start from link (i) and derive the equations of motion of the

next link (i+1). This method is called the forward Newton-Euler equations
of motion. Employing the Newton-Euler equations of motion (12.157) and
(12.158), we can write them in a forward recursive form in coordinate frame
Bi attached to the link (i).

iFi =
iFi−1 +

X
iFei −mi

i
0ai (12.176)

iMi = iMi−1 +
X

iMei +
¡
idi−1 − iri

¢
× iFi−1

−
¡
idi − iri

¢
× iFi − iIi

i
0αi − i

0ωi × iIi
i
0ωi. (12.177)

ini = idi−1 − iri (12.178)
imi = idi − iri (12.179)

Using the forward Newton-Euler equations of motion (12.176) and (12.177),
we can calculate the reaction force system (iFi, iMi) by having the action
force system (iFi−1, iMi−1). When the reaction force system (iFi, iMi) is
found in frame Bi, we can transform them to frame Bi+1.

i+1Fi = iT−1i+1
iFi (12.180)

i+1Mi = iT−1i+1
iMi (12.181)

The negative of the converted force system acts as the action force system
(− i+1Fi, − i+1Mi) for the link (i+1) and we can apply the Newton-Euler
equation to the link (i+ 1).
The forward Newton-Euler equations of motion allows us to start from

a known action force system (1F0, 1M0), that the base link applies to the
link (1), and calculate the action force of the next link. Therefore, analyzing
the links of a robot, one by one, we end up with the force system that the
end-effector applies to the environment.
Using the forward or backward recursive Newton-Euler equations of mo-

tion depends on the measurement and sensory system of the robot.
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FIGURE 12.11. A 2R planar manipulator carrying a load at the endpoint.

Example 332 F Recursive dynamics of a 2R planar manipulator.
Consider the 2R planar manipulator shown in Figure 12.11. The manip-

ulator is carrying a force system at the endpoint. We use this manipulator
to show how we can, step by step, develop the dynamic equations for a
robot.
The backward recursive Newton-Euler equations of motion for the first

link are
1F0 = 1F1 −

X
1Fe1 +m1

1
0a1

= 1F1 −m1
1g+m1

1
0a1 (12.182)

1M0 = 1M1 −
X

1Me1 −
¡
1d0 − 1r1

¢
× 1F0

+
¡
1d1 − 1r1

¢
× 1F1 +

1I1
1
0α1 +

1
0ω1 × 1I1

1
0ω1

= 1M1 − 1n1 × 1F0 +
1m1 × 1F1

+ 1I1
1
0α1 +

1
0ω1 × 1I1

1
0ω1 (12.183)

and the backward recursive equations of motion for the second link are:

2F1 = 2F2 −
X

2Fe2 +m2
2
0a2

= −m2
2g− 2Fe +m2

2
0a2 (12.184)
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2M1 = 2M2 −
X

2Me2 −
¡
2d1 − 2r2

¢
× 2F1

+
¡
2d2 − 2r2

¢
× 2F2 +

2I2
2
0α2 +

2
0ω2 × 2I2

2
0ω2

= − 2Me − 2m2 × 2Fe − 2n2 × 2F1

+ 2I2
2
0α2 +

2
0ω2 × 2I2

2
0ω2 (12.185)

The manipulator consists of two RkR(0) links, therefore their transforma-
tion matrices i−1Ti are of class (5.32). Substituting di = 0 and ai = li,
produces the following transformation matrices.

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (12.186)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (12.187)

The homogeneous moments of inertia matrices are:

1I1 =
m1l

2
1

12

⎡⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ 2I2 =
m2l

2
2

12

⎡⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤⎥⎥⎦ (12.188)

The homogeneous moment of inertia matrix is obtained by appending a zero
row and column to the I matrix.
The position vectors involved are:

1n1 =

⎡⎢⎢⎣
−l1/2
0
0
0

⎤⎥⎥⎦ 2n2 =

⎡⎢⎢⎣
−l2/2
0
0
0

⎤⎥⎥⎦ (12.189)

1m1 =

⎡⎢⎢⎣
l1/2
0
0
0

⎤⎥⎥⎦ 2m2 =

⎡⎢⎢⎣
l2/2
0
0
0

⎤⎥⎥⎦ (12.190)

1r1 = − 1n1
2r2 = − 2n1 +

2m2 − 2n2 (12.191)

The angular velocities and accelerations are:

1
0ω1 =

⎡⎢⎢⎣
0
0

θ̇1
0

⎤⎥⎥⎦ 2
0ω2 =

⎡⎢⎢⎣
0
0

θ̇1 + θ̇2
0

⎤⎥⎥⎦ (12.192)
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1
0α1 =

⎡⎢⎢⎣
0
0

θ̈1
0

⎤⎥⎥⎦ 2
0α2 =

⎡⎢⎢⎣
0
0

θ̈1 + θ̈2
0

⎤⎥⎥⎦ (12.193)

The translational acceleration of C1 is

1
0a1 = 1

0α1 ×
¡
− 1m1

¢
+ 1

0ω1 ×
¡
1
0ω1 ×

¡
− 1m1

¢¢
+ 1

0d̈1

=

⎡⎢⎢⎣
−12 l1θ̇

2

1
1
2 l1θ̈1
0
0

⎤⎥⎥⎦ (12.194)

because
1d̈1 = 2

1a1. (12.195)

The translational acceleration of C2 is

2
0a2 = 2

0α2 ×
¡
− 2m2

¢
+ 2

0ω2 ×
¡
2
0ω2 ×

¡
− 2m2

¢¢
+ 2

0d̈2

=

⎡⎢⎢⎢⎢⎣
−12 l2

³
θ̇1 + θ̇2

´2
1
2 l2

³
θ̈1 + θ̈2

´
0
0

⎤⎥⎥⎥⎥⎦ (12.196)

because
2d̈2 = 2

2a2. (12.197)

The gravitational acceleration vector in the links’ frame are:

1g = 0T−11
0g =

⎡⎢⎢⎣
−g sin θ2
g cos θ2
0
0

⎤⎥⎥⎦ (12.198)

2g = 0T−12
0g =

⎡⎢⎢⎣
−g sin (θ1 + θ2)
g cos (θ1 + θ2)

0
0

⎤⎥⎥⎦ (12.199)

The external load is usually given in the global coordinate frame. We must
transform them to the interested link’s frame to apply the recursive equa-
tions of motion. Therefore, the external force system expressed in B2 is:

2Fe =
0T−12

0Fe =

⎡⎢⎢⎣
Fex cos (θ1 + θ2) + Fey sin (θ1 + θ2)
Fey cos (θ1 + θ2)− Fex sin (θ1 + θ2)

0
0

⎤⎥⎥⎦ (12.200)
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2Me =
0T−12

0Me =

⎡⎢⎢⎣
0
0
Me

0

⎤⎥⎥⎦ (12.201)

Now, we start from the final link and calculate its action force system. The
backward Newton equation for link (2) is

2F1 = −m2
2g− 2Fe +m2

2
0a2 =

⎡⎢⎢⎣
2F1x
2F1y
0
0

⎤⎥⎥⎦ (12.202)

2F1x = −1
2
l2m2

³
θ̇1 + θ̇2

´2
− Fex cos (θ1 + θ2)

− (Fey − gm2) sin (θ1 + θ2) (12.203)

2F1y =
1

2
l2m2

³
θ̈1 + θ̈2

´
+ Fex sin (θ1 + θ2)

− (Fey + gm2) cos (θ1 + θ2) (12.204)

and the backward Euler equation for link (2) is
2M1 = − 2Me − 2m2 × 2Fe − 2n2 × 2F1

+ 2I2
2
0α2 +

2
0ω2 × 2I2

2
0ω2

=

⎡⎢⎢⎣
0
0

2M1z

0

⎤⎥⎥⎦ (12.205)

where
2M1z = −Me + l2Fex sin (θ1 + θ2)− l2Fey cos (θ1 + θ2)

+
1

3
l22m2

³
θ̈1 + θ̈2

´
− 1
2
gl2m2 cos (θ1 + θ2) . (12.206)

Finally the action force on link (1) is
1F0 = 1F1 −m1

1g +m1
1
0a1

= 1T2
2F1 −m1

1g +m1
1
0a1 =

⎡⎢⎢⎣
1F0x
1F0y
0
0

⎤⎥⎥⎦ (12.207)

where
1F0x = −Fex cos θ1 − (Fey − gm1) sin θ1

−1
2
l2m2

³
θ̈1 + θ̈2

´
sin θ2 −

1

2
l2m2

³
θ̇1 + θ̇2

´2
cos θ2

+gm2 sin (2θ2 + θ1)−
1

2
l1m1θ̇

2

1 (12.208)
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1F0y = Fex sin θ1 − (Fey + gm1) cos θ1

+
1

2
l2m2

³
θ̈1 + θ̈2

´
cos θ2 −

1

2
l2m2

³
θ̇1 + θ̇2

´2
sin θ2

−gm2 cos (2θ2 + θ1) +
1

2
l1m1θ̈1 (12.209)

and the action moment on link (1) is

1M0 = 1M1 − 1n1 × 1F0 +
1m1 × 1F1

+ 1I1
1
0α1 +

1
0ω1 × 1I1

1
0ω1

= 1T2
2M1 − 1n1 × 1F0 +

1m1 × 1T2
2F1

+ 1I1
1
0α1 +

1
0ω1 × 1I1

1
0ω1

=

⎡⎢⎢⎣
0
0

1M0z

0

⎤⎥⎥⎦ (12.210)

where,

1M0z = −Me +
1

3
l22m2

³
θ̈1 + θ̈2

´
+
1

3
l21m1θ̈1

−
µ
Feyl2 +

1

2
gl2m2

¶
cos (θ1 + θ2)

−1
2
l1m1g cos θ1 + Fexl2 sin (θ1 + θ2) . (12.211)

Example 333 F Actuator’s force and torque.
Applying a backward recursive force analysis ends up with a set of known

force systems at joints. Each joint is driven by a motor known as an actu-
ator that applies a force in a P joint, or a torque in an R joint. When the
joint i is prismatic, the force of the driving actuator is along the zi−1-axis

Fm =
0k̂Ti−1

0Fi (12.212)

showing that the k̂i−1 component of the joint force Fi is supported by the
actuator. The ı̂i−1 and ĵi−1 components of Fi must be supported by the
bearings of the joint. Similarly, when the joint i is revolute, the torque of
the driving actuator is along the zi−1-axis

Mm =
0k̂Ti−1

0Mi (12.213)

showing that the k̂i−1 component of the joint torqueMi is supported by the
actuator. The ı̂i−1 and ĵi−1 components of Mi must be supported by the
bearings of the joint.
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12.3 Robot Lagrange Dynamics

The Lagrange equation of motion provides a systematic approach to ob-
tain the dynamics equations for robots. The Lagrangean is defined as the
difference between the kinetic and potential energies

L = K − V. (12.214)

The Lagrange equation of motion for a robotic system can be found by
applying the Lagrange equation

d

dt

µ
∂L
∂q̇i

¶
− ∂L

∂qi
= Qi i = 1, 2, · · ·n (12.215)

where qi is the coordinates by which the energies are expressed, and Qi is
the corresponding generalized nonpotential force that drives qi.
The equations of motion for an n link serial manipulator can be set in a

matrix form
D(q) q̈+H(q, q̇) +G(q) = Q (12.216)

or
D(q) q̈+C(q, q̇)q̇+G(q) = Q (12.217)

or in a summation form
nX
j=1

Dij(q) q̈j +
nX

k=1

nX
m=1

Hikmq̇kq̇m +Gi = Qi. (12.218)

Dij is an n× n inertial-type symmetric matrix

Dij =
nX

k=1

µ
JTDk mk JDk +

1

2
JTRk

0Ik JRk

¶
(12.219)

Hikm is the velocity coupling vector

Hijk =
nX
j=1

nX
k=1

µ
∂Dij

∂qk
− 1
2

∂Djk

∂qi

¶
(12.220)

and Gi is the gravitational vector

Gi =
nX
j=1

mjg
T J

(i)
Dj . (12.221)

Proof. Kinetic energy of link (i) is:

Ki =
1

2
0vTi mi

0vi +
1

2
0ω

T
i

iIi 0ωi (12.222)
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where, mi is the mass of the link, iIi is the moment of inertia matrix of the
link in the link’s frame Bi, 0vi is the global velocity of the link at its mas
center C, and 0ωi is the global angular velocity of the link.
The translational and angular velocity vectors can be expressed based

on the joint coordinate velocities, utilizing the Jacobian of the link Ji

Ẋi =

∙
0vi
0ωi

¸
=

∙
JDi

JRi

¸
q̇ = Ji q̇. (12.223)

The link’s Jacobian Ji is a 6×n matrix that transforms the instantaneous
joint coordinate velocities into the instantaneous link’s translational and
angular velocities. The jth column of Ji is made of c

(j)
Di and c

(j)
Ri , where for

j ≤ i

c
(j)
Di =

(
k̂j−1 × 0

j−1ri for a R joint
k̂j−1 for a P joint

(12.224)

and

c
(j)
Ri =

½
k̂j−1 for a R joint
0 for a P joint

(12.225)

and 0
j−1ri is the position of C of the link (i) in the coordinate frame Bj−1

expressed in the base frame. The columns of Ji are zero for j > i.
The kinetic energy K of the whole robot is then

K =
nX
i=1

Ki =
1

2

nX
i=1

µ
0vTi mi

0vi +
1

2
0ω

T
i
0Ii 0ωi

¶

=
1

2

nX
i=1

µ
(JDi q̇i)

T mi (JDi q̇i) +
1

2
(JRi q̇i)

T 0Ii (JRi q̇i)

¶

=
1

2
q̇Ti

Ã
nX
i=1

µ
JTDi mi JDi +

1

2
JTRi

0Ii JRi

¶!
q̇i (12.226)

where 0Ii is the inertia matrix of the link (i) about its C and expressed in
the base frame.

0Ii =
0Ri

iIi
0RT

i (12.227)

The kinetic energy may be written in a more convenient form as

K =
1

2
q̇Ti D q̇i (12.228)

where D is an n× n matrix called the manipulator inertia matrix.

D =
nX
i=1

µ
JTDi mi JDi +

1

2
JTRi

0Ii JRi

¶
(12.229)
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The potential energy of the link (i) is due to gravity

Vi = −mi
0g · 0ri (12.230)

and therefore, the total potential energy of the manipulator is:

V =
nX
i=1

Vi = −
nX
i=1

mi
0gT 0ri (12.231)

where 0g is the gravitational acceleration vector expressed in the base
frame.
The Lagrangean of the manipulator is:

L = K − V =
1

2
q̇Ti D q̇i +

nX
i=1

mi
0gT 0ri

=
1

2

nX
i=1

nX
j=1

Dij q̇iq̇j +
nX
i=1

mi
0gT 0ri (12.232)

Based on the Lagrangean L we can find

∂L
∂qi

=
1

2

∂

∂qi

⎛⎝ nX
j=1

nX
k=1

Djk q̇j q̇k

⎞⎠+ nX
j=1

mj
0gT

∂ 0rj
∂qi

=
1

2

nX
j=1

nX
k=1

∂Djk

∂qi
q̇j q̇k +

nX
j=1

mj
0gT J

(i)
Dj (12.233)

∂L
∂q̇i

=
nX
j=1

Dij q̇j (12.234)

and

d

dt

∂L
∂q̇i

=
nX
j=1

Dij q̈j +
nX
j=1

dDij

dt
q̇j

=
nX
j=1

Dij q̈j +
nX
j=1

nX
k=1

∂Dij

∂qk
q̇k q̇j. (12.235)

The generalized force of the Lagrange equations are

Qi =Mi + J
T Fe (12.236)

whereMi is the ith actuator force at joint i, and Fe =
£
−FTen −MT

en

¤T
is the external force system applied on the end-effector.
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FIGURE 12.12. A prismatic-revolute planar manipulator.

Finally, the Lagrange equations of motion for an n-link manipulator are

nX
j=1

Dij(q) q̈j +Hikmq̇kq̇m +Gi = Qi (12.237)

where

Hijk =
nX
j=1

nX
k=1

µ
∂Dij

∂qk
− 1
2

∂Djk

∂qi

¶
(12.238)

Gi =
nX
j=1

mjg
T J

(i)
Dj. (12.239)

We can show the equations of motion for a manipulator in a more concise
form to simplify matrix calculations.

D(q) q̈+H(q, q̇) +G(q) = Q (12.240)

The termG(q) is called the gravitational force vector and the termH(q, q̇)
is called the velocity coupling vector . The velocity coupling vector may
sometimes be written in the form

H(q, q̇) = C(q, q̇)q̇. (12.241)

Example 334 A prismatic-revolute planar manipulator.
Figure 12.12 illustrates a planar manipulator with massless links and two

massive points m1 and m2. To determine the equations of motion, we begin
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with calculating the kinetic energy.

K1 =
1

2
m1q̇

2
1 (12.242)

K2 =
1

2
m2Ẋ

2
2 +

1

2
m2Ẏ

2
2

=
1

2
m2

µ
d

dt
(q1 + l cos q2)

¶2
+
1

2
m2

µ
d

dt
(l sin q2)

¶2
=

1

2
m2 (q̇1 − lq̇2 sin q2)

2
+
1

2
m2 (lq̇2 cos q2)

=
1

2
m2

¡
q̇21 + l2q̇22 − 2lq̇1q̇2 sin q2

¢
(12.243)

The potential energy of the manipulator is:

V = m2gY2 = m2gl sin q2 (12.244)

Therefore, the Lagrangean is:

L = K − V = K1 +K2 − V

=
1

2
m1q̇

2
1 +

1

2
m2

¡
q̇21 + l2q̇22 − 2lq̇1q̇2 sin q2

¢
−m2gl sin q2 (12.245)

Applying the Lagrange equation

d

dt

µ
∂L
∂q̇i

¶
− ∂L

∂qi
= Qi i = 1, 2 (12.246)

provides the following equations of motion.

(m1 +m2) q̈1 −m2lq̈2 sin q2 −m2lq̇
2
2 cos q2 = Q1 (12.247)

m2l
2q̈1 −m2lq̈1 sin q2 +m2gl cos q2 = Q2 (12.248)

We can rearrange these equations to the form of (12.217)

D(q)

∙
q̈1
q̈2

¸
+C(q, q̇)

∙
q̇1
q̇2

¸
+G(q) =

∙
Q1
Q2

¸
(12.249)

where,

D(q) =

∙
m1 +m2 −m2l sin q2
m2l

2 −m2l sin q2

¸
(12.250)

C(q, q̇) =

∙
0 −m2lq̇2 cos q2
0 0

¸
(12.251)

G(q) =

∙
0

m2gl cos q2

¸
. (12.252)
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Example 335 A planar polar manipulator.
Figure 12.13 illustrates a planar polar manipulator with massless link

and a massive point m.
The kinetic energy of the manipulator is:

K =
1

2
m2Ẋ

2
2 +

1

2
m2Ẏ

2
2

=
1

2
m

µ
d

dt
(q1 cos q2)

¶2
+
1

2
m

µ
d

dt
(q1 sin q2)

¶2
=

1

2
m
¡
q̇21 + q21 q̇

2
2

¢
(12.253)

The potential energy of the manipulator is:

V = mgY2 = mgq1 sin q2 (12.254)

and therefore, the Lagrangean of the manipulator is:

L = K − V =
1

2
m
¡
q̇21 + q21 q̇

2
2

¢
−mgq1 sin q2 (12.255)

Applying the Lagrange equation

d

dt

µ
∂L
∂q̇i

¶
− ∂L

∂qi
= Qi i = 1, 2 (12.256)

provides the following equations of motion.

mq̈1 −mq1q̇
2
2 +mg sin q2 = Q1 (12.257)

mq21 q̈2 + 2mq1q̇1q̇2 +mgq1 cos q2 = Q2 (12.258)

Let us rearrange these equations to the matrix form of (12.217).

D(q)

∙
q̈1
q̈2

¸
+C(q, q̇)

∙
q̇1
q̇2

¸
+G(q) =

∙
Q1
Q2

¸
(12.259)
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FIGURE 12.14. A 2R planar manipulator with massive links.

D(q) =

∙
m 0
0 mq21

¸
(12.260)

C(q, q̇) =

∙
0 −mq1q̇2

mq1q̇2 mq1q̇1

¸
(12.261)

G(q) =

∙
mg sin q2
mgq1 cos q2

¸
(12.262)

Example 336 Lagrange equation for 2R manipulators with massive arms.
A 2R planar manipulator is shown in Figure 12.14. Its homogeneous

transformation matrices are given in Equations (5.29) and (5.30).

0R1 =

⎡⎣ cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1

⎤⎦ (12.263)

1R2 =

⎡⎣ cos θ2 − sin θ2 0
sin θ2 cos θ2 0
0 0 1

⎤⎦ (12.264)

Assuming that the links are made of homogeneous material in a bar shape,
the position vectors of the mass center Ci are:

iri =

⎡⎣ −li/20
0

⎤⎦ i = 1, 2 (12.265)

and the inertia matrices are:

iIi =
1

12
mil

2
i

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦ (12.266)
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Therefore,

0I1 = 0R1
1I1

0RT
1

=
1

12
m1l

2
1

⎡⎣ sin2 θ1 − cos θ1 sin θ1 0
− cos θ1 sin θ1 cos2 θ1 0

0 0 1

⎤⎦ (12.267)

0I2 = 0R2
2I2

0RT
2

=
1

12
m2l

2
2

⎡⎣ sin2 θ12 − cos θ12 sin θ12 0
− cos θ12 sin θ12 cos2 θ12 0

0 0 1

⎤⎦ . (12.268)
The gravity is assumed to be in −ĵ0 direction

g =

⎡⎣ 0
−g
0

⎤⎦ (12.269)

and the link Jacobian matrices are

JD1 =

⎡⎣ − 12 l1 sin θ1 0
1
2 l1 cos θ1 0

0 0

⎤⎦ (12.270)

JR1 =

⎡⎣ 0 0
0 0
1 0

⎤⎦ (12.271)

JD2 =

⎡⎣ −l1 sin θ1 − 1
2 l2 sin θ12 −12 l2 sin θ12

l1 cos θ1 +
1
2 l2 cos θ12

1
2 l2 cos θ12

0 0

⎤⎦ (12.272)

JR2 =

⎡⎣ 0 0
0 0
1 0

⎤⎦ . (12.273)

We can calculate the manipulator inertia matrix by substituting 0Ii, JDi,
and JRi in Equation (12.229)

D =
2X
i=1

µ
JTDi mi JDi +

1

2
JTRi

0Ii JRi

¶
(12.274)

= JTD1 m1 JD1 +
1

2
JTR1

0I1 JR1 + J
T
D2 m2 JD2 +

1

2
JTR2

0I2 JR2

=

∙
1
3m1l

2
1 +m2

¡
l21 + l1l2cθ2 +

1
3 l
2
2

¢
m2

¡
1
2 l1l2cθ2 +

1
3 l
2
2

¢
m2

¡
1
2 l1l2cθ2 +

1
3 l
2
2

¢
1
3m2l

2
2

¸
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The velocity coupling vector H has two elements that are

H1 =
1X

j=1

1X
k=1

µ
∂D1j

∂qk
− 1
2

∂Djk

∂q1

¶
q̇j q̇k

= −m2l1l2

µ
θ̇1 +

1

2
θ̇2

¶
θ̇2 sin θ2 (12.275)

H2 =
2X

j=1

2X
k=1

µ
∂D2j

∂qk
− 1
2

∂Djk

∂q2

¶
q̇j q̇k

=
1

2
m2l1l2θ̇

2

1 sin θ2. (12.276)

The elements of the gravitational force vector G are:

G1 =
1

2
m1gl1 cos θ1 +m2gl1 cos θ1 +

1

2
m2gl2 cos θ12 (12.277)

G2 =
1

2
m2gl2 cos θ12 (12.278)

Now we can assemble the equations of motion for the 2R planar manip-
ulator. Assuming no external force on the end-effector, the equations of
motion are

Q1 =

µ
1

3
m1l

2
1 +m2

µ
l21 + l1l2cθ2 +

1

3
l22

¶¶
θ̈1

+m2l2

µ
1

2
l1cθ2 +

1

3
l2

¶
θ̈2 −m2l1l2

µ
θ̇1 +

1

2
θ̇2

¶
θ̇2 sin θ2

+

µ
1

2
m1 +m2

¶
gl1 cos θ1 +

1

2
m2gl2 cos θ12 (12.279)

Q2 = m2

µ
1

2
l1l2cθ2 +

1

3
l22

¶
θ̈1 +

1

3
m2l

2
2θ̈2

+
1

2
m2l1l2θ̇

2

1 sin θ2 +
1

2
m2gl2 cos θ12. (12.280)

Example 337 F Christoffel operator.
The symbol Γij,k is called the Christoffel symbol or Christoffel operator

with the following definition:

Γij,k =
1

2

µ
∂Dij

∂qk
+

∂Dik

∂qj
− ∂Djk

∂qi

¶
(12.281)
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FIGURE 12.15. A uniform beam with a hanging weight m2 at the tip point.

The velocity coupling vector Hijk is a Christoffel symbol.

Hijk =
nX
j=1

nX
k=1

µ
∂Dij

∂qk
− 1
2

∂Djk

∂qi

¶

=
1

2

nX
j=1

nX
k=1

µ
∂Dij

∂qk
+

∂Dik

∂qj
− ∂Djk

∂qi

¶
(12.282)

Using Christoffel symbol, we can write the equations of motion of a robot
as:

nX
j=1

Dij(q) q̈j +
nX
j=1

nX
k=1

Γij,k q̇kq̇m +Gi = Qi (12.283)

Example 338 F No gravity and no external force.
Assume there is no gravity and there is no external force applied on the

end-effector of a robot. In these conditions, the Lagrangean of the manipu-
lator simplifies to

L = 1

2

nX
i=1

nX
j=1

Dij q̇iq̇j (12.284)

and the equations of motion reduce to

d

dt

µ
∂L
∂q̇i

¶
− ∂L

∂qi
=

nX
i=1

nX
j=1

Dij

³
q̈i + Γ

j
l,mq̇lq̇m

´
. (12.285)

Example 339 Lagrange equation of a one link manipulator.
To show the advantage and simplicity of the Lagrange method when com-

pared to Newton-Euler method, let us consider derive the equation of motion
of the uniform beam of Figure 12.15 with a mass m2 at the tip point. This
is the same system of Figure 12.6(a).
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The beam is uniform with a mass center at 0r1 while the tip mass is at
0d1, both in B0.

0r1 =
0R1

1r1 =

⎡⎢⎢⎢⎣
l

2
cos θ

l

2
sin θ

0

⎤⎥⎥⎥⎦ (12.286)

0d1 =
0R1

1d1 =

⎡⎣ l cos θ

l sin θ
0

⎤⎦ (12.287)

0R1 = RZ,θ =

⎡⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤⎦ (12.288)

The angular velocity of the beam is:

0ω1 = θ̇ K̂ (12.289)

and therefore, the velocity of C and m2 are:

0v1 = 0ω1 × 0r1 =

⎡⎢⎢⎢⎣
− l

2
θ̇ sin θ

l

2
θ̇ cos θ

0

⎤⎥⎥⎥⎦ (12.290)

0ḋ1 = 0ω1 × 0d1 =

⎡⎣ −lθ̇ sin θlθ̇ cos θ
0

⎤⎦ (12.291)

The kinetic energy of the manipulator is:

K2 =
1

2
m2

0ḋ1 · 0ḋ1 +
1

2
m1

0v1 · 0v1 +
1

2
0ω

T
1
0I1 0ω1

=
1

8
l2θ̇

2
(m1 + 4m2) +

1

2
Iz θ̇

2
(12.292)

0I1 = RZ,θ
1I1R

T
Z,θ =

0R1

⎡⎣ Ix 0 0
0 Iy 0
0 0 Iz

⎤⎦ 0RT
1

=

⎡⎣ Ix cos
2 θ + Iy sin

2 θ (Ix − Iy) cos θ sin θ 0

(Ix − Iy) cos θ sin θ Iy cos
2 θ + Ix sin

2 θ 0
0 0 Iz

⎤⎦ (12.293)
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The potential energy of the manipulator is:

V = m1gY1 +m2gY2 = m1grY +m2gdY

= m1g
l

2
sin θ +m2gl sin θ (12.294)

and therefore, the Lagrangean of the manipulator is:

L = K − V =
1

8
l2θ̇

2
(m1 + 4m2) +

1

2
Iz θ̇

2

−m1g
l

2
sin θ −m2gl sin θ (12.295)

Applying the Lagrange equation

d

dt

µ
∂L
∂θ̇

¶
− ∂L

∂θ
= Q0 (12.296)

∂L
∂θ̇

=
1

4
l2 (m1 + 4m2) θ̇ + Iz θ̇ (12.297)

d

dt

µ
∂L
∂θ̇

¶
=

µ
1

4
m1l

2 +m2l
2 + Iz

¶
θ̈ (12.298)

∂L
∂θ

= −m1g
l

2
cos θ −m2gl cos θ (12.299)

determines the equation of motion.

Q0 =

µ
1

4
m1l

2 +m2l
2 + Iz

¶
θ̈ +

µ
1

2
m1 +m2

¶
gl cos θ (12.300)

It is the same equation as (12.69).

Example 340 General model of 2R planar manipulator.
Consider a general 2R manipulator with massive arms and joints while

carrying a payload m0 as is shown in Figure 12.16.
The first motor that drives link (1), is on the ground. The second motor

with mass m12 drives link (2) and is mounted on link (1). The mass of first
and second links are m11 and m21 respectively.
In a general case, the global position vectors of the mass centers Ci and

massive joints are:

0r1 =
0R1

1r1 = RZ,θ1 c1
1ı̂1 =

⎡⎣ c1 cos θ1
c1 sin θ1
0

⎤⎦ (12.301)

0r2 = 0d1 +
0R2

2r2 =
0d1 +RZ,θ1 RZ,θ2 c2

2ı̂2

=

⎡⎣ l1 cos θ1 + c2 cos (θ1 + θ2)
l1 sin θ1 + c2 sin (θ1 + θ2)

0

⎤⎦ (12.302)
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FIGURE 12.16. A 2R manipulator with massive arms and a carrying payload
m0.

0d1 = 0R1
1r1 = RZ,θ1 l1

1ı̂1 =

⎡⎣ l1 cos θ1
l1 sin θ1
0

⎤⎦ (12.303)

0d2 = 0d1 +
0R2

2d2 =

⎡⎣ l2 cos (θ1 + θ2) + l1 cos θ1
l2 sin (θ1 + θ2) + l1 sin θ1

0

⎤⎦ (12.304)

where,

0R1 = RZ,θ1 =

⎡⎣ cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1

⎤⎦ (12.305)

1R2 = RZ,θ2 =

⎡⎣ cos θ2 − sin θ2 0
sin θ2 cos θ2 0
0 0 1

⎤⎦ (12.306)

0R2 =
0R1

1R2 =

⎡⎣ cos (θ1 + θ2) − sin (θ1 + θ2) 0
sin (θ1 + θ2) cos (θ1 + θ2) 0

0 0 1

⎤⎦ . (12.307)

The links’ angular velocity are:

0ω1 = θ̇1 K̂ (12.308)

0ω2 =
³
θ̇1 + θ̇2

´
K̂ (12.309)
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The mass moment matrices in the global coordinate frame are:

0I1 = RZ,θ1
1I1R

T
Z,θ1 =

0R1

⎡⎣ Ix1 0 0
0 Iy1 0
0 0 Iz1

⎤⎦ 0RT
1

=

⎡⎣ Ix1c
2θ1 + Iy1s

2θ1 (Ix1 − Iy1) cθ1sθ1 0

(Ix1 − Iy1) cθ1sθ1 Iy1c
2θ1 + Ix1s

2θ1 0
0 0 Iz1

⎤⎦ (12.310)

0I2 = 0R2
2I2

0RT
2 = 0R2

⎡⎣ Ix2 0 0
0 Iy2 0
0 0 Iz2

⎤⎦ 0RT
2

=

⎡⎣ Ix2c
2θ12 + Iy2s

2θ12 (Ix2 − Iy2) cθ12sθ12 0

(Ix2 − Iy2) cθ12sθ12 Iy2c
2θ12 + Ix2s

2θ12 0
0 0 Iz2

⎤⎦ (12.311)

θ12 = θ1 + θ2 (12.312)

The velocity of Ci and the masses are:

0v1 =
0d

dt
0r1 =

⎡⎣ −c1θ̇1 sin θ1c1θ̇1 cos θ1
0

⎤⎦

0v2 =
0d

dt
0r2

=

⎡⎢⎢⎣
−l1θ̇1 sin θ1 − c2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

l1θ̇1 cos θ1 + c2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

0

⎤⎥⎥⎦ (12.313)

0ḋ1 =

⎡⎣ −l1θ̇1 sin θ1l1θ̇1 cos θ1
0

⎤⎦ (12.314)

0ḋ2 =

⎡⎢⎢⎣
−l1θ̇1 sin θ1 − l2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

0

⎤⎥⎥⎦ (12.315)

To calculate Lagrangian L = K − V , we determine the energies of the
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manipulator. The kinetic energy of the manipulator is:

K =
1

2
m12

0ḋ1 · 0ḋ1 +
1

2
m11

0v1 · 0v1

+
1

2
m0

0ḋ2 · 0ḋ2 +
1

2
m21

0v2 · 0v2

+
1

2
0ω

T
1
0I1 0ω1 +

1

2
0ω

T
2
0I2 0ω2 (12.316)

which after substituting (12.305)-(12.315) would be:

K =
1

2

¡
m11c

2
1 +m12l

2
1 + Iz1

¢
θ̇
2

1

+
1

2
m21

³
−l1θ̇1 sin θ1 − c2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

´2
+
1

2
m21

³
l1θ̇1 cos θ1 + c2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

´2
+
1

2
m0

³
−l1θ̇1 sin θ1 − l2

³
θ̇1 + θ̇2

´
sin (θ1 + θ2)

´2
+
1

2
m0

³
l1θ̇1 cos θ1 + l2

³
θ̇1 + θ̇2

´
cos (θ1 + θ2)

´2
+
1

2
Iz2

³
θ̇1 + θ̇2

´2
(12.317)

The potential energy of the manipulator is:

V = m11gc1 sin θ1 +m12gl1 sin θ1

+m21g (l1 sin θ1 + c2 sin (θ1 + θ2))

+m0g (l1 sin θ1 + l2 sin (θ1 + θ2)) (12.318)

Applying the Lagrange equation

d

dt

µ
∂L
∂θ̇1

¶
− ∂L

∂θ1
= Q0 (12.319)

d

dt

µ
∂L
∂θ̇2

¶
− ∂L

∂θ2
= Q1 (12.320)

determines the general equations of motion.∙
D11 D12

D21 D22

¸ ∙
θ̈1
θ̈2

¸
+

∙
C11 C12
C21 C22

¸ ∙
θ̇1
θ̇2

¸
+

∙
G1
G2

¸
=

∙
Qo

Q1

¸
(12.321)

D11 = 2l1 (m21c2 +m0l2) cos θ2 + Iz1 + Iz2
+m11c

2
1 +m12l

2
1 +m21

¡
c22 + l21

¢
+m0

¡
l21 + l22

¢
(12.322)

D12 = l1 (m21c2 +m0l2) cos θ2 + Iz2 +m0l
2
2 +m21c

2
2 (12.323)
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D21 = l1 (m21c2 +m0l2) cos θ2 + Iz2 +m21c
2
2 +m0l

2
2 (12.324)

D22 = Iz2 +m21c
2
2 +m0l

2
2 (12.325)

C11 = −l1 (m21c2 +m0l2) θ̇2 sin θ2 (12.326)

C12 = −l1 (m21c2 +m0l2)
³
θ̇1 + θ̇2

´
sin θ2 (12.327)

C21 = l1 (m21c2 +m0l2) θ̇1 sin θ2 (12.328)

C22 = 0 (12.329)

G1 = ((m21 +m12 +m0) l1 +m11c1) cos θ1

+(m21c2 +m0l2) cos (θ1 + θ2) (12.330)

G2 = (m21c2 +m0l2) cos (θ1 + θ2) (12.331)

Example 341 Special cases of 2R planar manipulator.
Figure 12.16 illustrates a general 2R manipulator with massive arms and

joints and a carrying payload m0. The second motor has a mass m12 and
is mounted on link (1). The mass of first and second links are m11 and m21

respectively and their mass centers are at c1 and c2. The general equations
of motion for the 2R planar manipulator are given in Equations (12.321).∙

D11 D12

D21 D22

¸ ∙
θ̈1
θ̈2

¸
+

∙
C11 C12
C21 C22

¸ ∙
θ̇1
θ̇2

¸
+

∙
G1
G2

¸
=

∙
Qo

Q1

¸
(12.332)

In modeling a special 2R planar manipulator, we may use the equations
for simpler models as classified below.

1. Massless arms.

When the mass of the links of the manipulator are much less than the
masses of its motors and the carrying load, we may use a massless
arm model. The equations of motion for a massless arms 2R pla-
nar manipulator are calculated by substituting m11 = 0, m21 = 0 in
Equations (12.321).

D11 = 2m0l1l2 cos θ2 + Iz1 + Iz2
+m12l

2
1 +m0

¡
l21 + l22

¢
(12.333)

D12 = m0l1l2 cos θ2 + Iz2 +m0l
2
2 (12.334)

D21 = m0l1l2 cos θ2 + Iz2 +m0l
2
2 (12.335)

D22 = Iz2 +m0l
2
2 (12.336)
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C11 = −m0l1l2θ̇2 sin θ2 (12.337)

C12 = −m0l1l2

³
θ̇1 + θ̇2

´
sin θ2 (12.338)

C21 = m0l1l2θ̇1 sin θ2 (12.339)

C22 = 0 (12.340)

G1 = (m12 +m0) l1 cos θ1 +m0l2 cos (θ1 + θ2) (12.341)

G2 = m0l2 cos (θ1 + θ2) (12.342)

2. Massless joints.

When the mass of the links of the manipulator are much more than
the masses of its motors and the carrying load, we may use a mass-
less joints model. The equations of motion for a massless joints 2R
planar manipulator are calculated by substituting m12 = 0, m0 = 0
in Equations (12.321).

D11 = 2m21l1c2 cos θ2 + Iz1 + Iz2
+m11c

2
1 +m21

¡
c22 + l21

¢
(12.343)

D12 = m21c2 (l1 cos θ2 + c2) + Iz2 (12.344)

D21 = m21c2 (l1 cos θ2 + c2) + Iz2 (12.345)

D22 = Iz2 +m21c
2
2 (12.346)

C11 = −m21l1c2θ̇2 sin θ2 (12.347)

C12 = −m21l1c2

³
θ̇1 + θ̇2

´
sin θ2 (12.348)

C21 = m21l1c2θ̇1 sin θ2 (12.349)

C22 = 0 (12.350)

G1 = (m21l1 +m11c1) cos θ1 +m21c2 cos (θ1 + θ2) (12.351)

G2 = m21c2 cos (θ1 + θ2) (12.352)

If the links of the manipulator are uniform and symmetric, then c1 =
l1/2, c2 = l2/2, and the equations are simplified to:

D11 = m21l1l2 cos θ2 + Iz1 + Iz2

+
1

4
m11l

2
1 +m21

µ
1

4
l22 + l21

¶
(12.353)

D12 =
1

2
m21l2

µ
l1 +

1

2
l2

¶
cos θ2 + Iz2 (12.354)
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D21 =
1

2
m21l1l2 cos θ2 + Iz2 +

1

4
m21l

2
2 (12.355)

D22 = Iz2 +
1

4
m21l

2
2 (12.356)

C11 = −1
2
m21l1l2θ̇2 sin θ2 (12.357)

C12 = −1
2
m21l1l2

³
θ̇1 + θ̇2

´
sin θ2 (12.358)

C21 =
1

4
m21l1l2θ̇1 sin θ2 (12.359)

C22 = 0 (12.360)

G1 =

µ
m21 +

1

2
m11

¶
l1 cos θ1

+
1

2
m21l2 cos (θ1 + θ2) (12.361)

G2 =
1

2
m21l2 cos (θ1 + θ2) (12.362)

Example 342 F Equations of motion of an articulated manipulator.
Figure 12.17 illustrates an articulated manipulator with massive links

and a massive load at the tip point. Points Ci, i = 1, 2, 3 indicate the mass
centers of the links with masses mi, i = 1, 2, 3. The the tip point has a mass
of m0. A top view of the manipulator is shown in Figure 12.18.
The link (1) of the manipulator is an R`R(90) with an extra displacement

l1 along z1. To determine the transformation matrix 0R1 we can begin
from a coincident configuration of B1 and B0 and move B1 to its current
configuration by a sequence of proper rotations and displacements.

1T0 = Dz1,l1 Rx1,π/2Rz1,θ1

=

⎡⎢⎢⎣
cos θ1 sin θ1 0 0
0 0 1 0

sin θ1 − cos θ1 0 l1
0 0 0 1

⎤⎥⎥⎦ (12.363)

0T1 =
1T−10 =

⎡⎢⎢⎣
cos θ1 0 sin θ1 −l1 sin θ1
sin θ1 0 − cos θ1 l1 cos θ1
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (12.364)

The second and third links are RkR(0), R`R(90), and their associated
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FIGURE 12.17. An articulated manipulator with massive links and a massive
load at the tip point.

transformation matrices between coordinate frames are:

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (12.365)

2T3 =

⎡⎢⎢⎣
cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦ (12.366)

The global position vectors of the mass centers Ci and joints are:

0r1 =
0T1

1r1 =
0T1

⎡⎢⎢⎣
0
0
c1
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
− (l1 − c1) sin θ1
(l1 − c1) cos θ1

0
1

⎤⎥⎥⎦ (12.367)

0d1 =
0T1

1d1 =
0T1

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−l1 sin θ1
l1 cos θ1
0
1

⎤⎥⎥⎦ (12.368)
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0r2 =
0d1 +

0T2
2r2 =

⎡⎢⎢⎣
−2l1 sin θ1 + (c2 + l2) cos θ1 cos θ2
2l1 cos θ1 + (c2 + l2) cos θ2 sin θ1

(c2 + l2) sin θ2
2

⎤⎥⎥⎦ (12.369)

0d2 =
0d1 +

0T2
2d2 =

⎡⎢⎢⎣
2l2 cos θ1 cos θ2 − 2l1 sin θ1
2l1 cos θ1 + 2l2 cos θ2 sin θ1

2l2 sin θ2
2

⎤⎥⎥⎦ (12.370)

0r3 = 0d2 +
0T3

3r3

=

⎡⎢⎢⎣
c3 cos θ1 (sin (θ2 + θ3) + 3l2 cos θ2)− 3l1 sin θ1
c3 sin θ1 (sin (θ2 + θ3) + 3l2 cos θ2) + 3l1 cos θ1

3l2 sin θ2 − c3 cos (θ2 + θ3)
3

⎤⎥⎥⎦ (12.371)

0d3 = 0d2 +
0T3

3d3

=

⎡⎢⎢⎣
l3 cos θ1 (sin (θ2 + θ3) + 3l2 cos θ2)− 3l1 sin θ1
l3 sin θ1 (sin (θ2 + θ3) + 3l2 cos θ2) + 3l1 cos θ1

3l2 sin θ2 − l3 cos (θ2 + θ3)
3

⎤⎥⎥⎦ (12.372)

The links’ angular velocity are:

0ω1 = θ̇1 k̂0 1ω2 = θ̇2 k̂1 2ω3 = θ̇3 k̂2 (12.373)

0ω̃2 = 0ω̃1 +
0
1ω̃2 = 0ω̃1 +

0R1 1ω̃2
0RT

1

=

⎡⎣ 0 −θ̇1 −θ̇2 cos θ1
θ̇1 0 −θ̇2 sin θ1

θ̇2 cos θ1 θ̇2 sin θ1 0

⎤⎦ (12.374)

0ω̃3 = 0ω̃2 +
0
2ω̃3 = 0ω̃2 +

0R2 2ω̃3
0RT

2 (12.375)

=

⎡⎢⎢⎢⎣
0 −θ̇1 −

³
θ̇2 + θ̇3

´
cos θ1

θ̇1 0 −
³
θ̇2 + θ̇3

´
sin θ1³

θ̇2 + θ̇3

´
cos θ1

³
θ̇2 + θ̇3

´
sin θ1 0

⎤⎥⎥⎥⎦
The mass moment matrices in the global coordinate frame are:

0I1 =
0R1

⎡⎣ Ix1 0 0
0 Iy1 0
0 0 Iz1

⎤⎦ 0RT
1 (12.376)

=

⎡⎣ Ix1 cos
2 θ1 + Iz1 sin

2 θ1 (Ix1 − Iz1) cos θ1 sin θ1 0

(Ix1 − Iz1) cos θ1 sin θ1 Iz1 cos
2 θ1 + Ix1 sin

2 θ1 0
0 0 Iy1

⎤⎦
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FIGURE 12.18. A top view of an articulated manipulator with massive links and
a massive load at the tip point.

0I2 =
0R2

2I2
0RT

2 = 0R2

⎡⎣ Ix2 0 0
0 Iy2 0
0 0 Iz2

⎤⎦ 0RT
2 (12.377)

0I3 =
0R3

3I3
0RT

3 = 0R3

⎡⎣ Ix3 0 0
0 Iy3 0
0 0 Iz3

⎤⎦ 0RT
3 (12.378)

The velocity of Ci and the joints are:

0v1 =
0d

dt
0r1 =

⎡⎣ − (l1 − c1) θ̇1 cos θ1
− (l1 − c1) θ̇1 sin θ1

0

⎤⎦ (12.379)

0v2 =
0d

dt
0r2 (12.380)

0v3 =
0d

dt
0r3 (12.381)

0ḋ1 =

⎡⎣ −l1θ̇1 cos θ1−l1θ̇1 sin θ1
0

⎤⎦ (12.382)
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0ḋ2 =
0d

dt
0d2 (12.383)

0ḋ3 =
0d

dt
0d3 (12.384)

The kinetic energy of the manipulator is:

K =
1

2
m1

0v1 · 0v1 +
1

2
m21

0v2 · 0v2 +
1

2
m3

0v3 · 0v3

+
1

2
m0

0ḋ3 · 0ḋ3 +
1

2
0ω

T
1
0I1 0ω1

+
1

2
0ω

T
2
0I2 0ω2 +

1

2
0ω

T
3
0I3 0ω3 (12.385)

The potential energy of the manipulator is:

V = m2gr2z +m3gr3z +m0gd3z (12.386)

Using the Lagrangian of the manipulator L = K − V , and applying the
Lagrange equation

d

dt

µ
∂L
∂θ̇1

¶
− ∂L

∂θ1
= Q0 (12.387)

d

dt

µ
∂L
∂θ̇2

¶
− ∂L

∂θ2
= Q1 (12.388)

d

dt

µ
∂L
∂θ̇3

¶
− ∂L

∂θ3
= Q2 (12.389)

we determines the equations of motion.⎡⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤⎦⎡⎣ θ̈1
θ̈2
θ̈3

⎤⎦+
⎡⎣ C11 C12 C13

C21 C22 C23
C31 C32 C33

⎤⎦⎡⎣ θ̇1
θ̇2
θ̇3

⎤⎦
+

⎡⎣ G1
G2
G3

⎤⎦ =
⎡⎣ Qo

Q1
Q2

⎤⎦ (12.390)

12.4 F Lagrange Equations and Link
Transformation Matrices

The matrix form of the equations of motion for a robot, based on the
Lagrange equations, is

D(q) q̈+H(q, q̇) +G(q) = Q (12.391)
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which can also be written in a summation form.
nX
j=1

Dij(q) q̈j +
nX
j=1

nX
k=1

Hikmq̇kq̇m +Gi = Qi (12.392)

The matrix D(q) is an n× n inertial-type symmetric matrix

Dij =
nX

r=max i,j

tr

Ã
∂ 0Tr
∂qi

rĪr
∂ 0Tr
∂qj

T
!

(12.393)

and Hikm is the velocity coupling term

Hijk =
nX

r=max i,j,k

tr

Ã
∂2 0Tr
∂qj∂qk

r Īr
∂ 0Tr
∂qi

T
!

(12.394)

and Gi is the gravitational vector.

Gi = −
nX
r=i

mrg
T ∂ 0Tr

∂qi
rrr (12.395)

Proof. Position vector of a point P of the link (i) at irP in the body
coordinate Bi, can be transformed to the base frame by

0rP =
0Ti

irP . (12.396)

Therefore, its velocity and square of velocity in the base frame are

0ṙP =
iX

j=1

∂ 0Ti
∂qj

q̇j
irP (12.397)

and
0ṙ2P = 0ṙP · 0ṙP = tr

¡
0ṙP

0ṙTP
¢

= tr

⎛⎝ iX
j=1

∂ 0Ti
∂qj

q̇j
irP

iX
k=1

∙
∂ 0Ti
∂qk

q̇k
irP

¸T⎞⎠
= tr

⎛⎝ iX
j=1

iX
k=1

∂ 0Ti
∂qj

irP
irTP

∙
∂ 0Ti
∂qk

¸T
q̇j q̇k

⎞⎠ . (12.398)

The kinetic energy of point P having a small mass dm is then equal to

dKP =
1

2
tr

⎛⎝ iX
j=1

iX
k=1

∂ 0Ti
∂qj

irP
irTP

∂ 0Ti
∂qk

T

q̇j q̇k

⎞⎠ dm

=
1

2
tr

⎛⎝ iX
j=1

iX
k=1

∂ 0Ti
∂qj

¡
irP dm irTP

¢ ∂ 0Ti
∂qk

T

q̇j q̇k

⎞⎠ (12.399)
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and the kinetic energy of the link (i) is:

Ki =

Z
Bi

dKP

=
1

2
tr

⎛⎝ iX
j=1

iX
k=1

∂ 0Ti
∂qj

µZ
Bi

irP
irTP dm

¶
∂ 0Ti
∂qk

T

q̇j q̇k

⎞⎠ (12.400)

The integral in Equation (12.400) is the pseudo inertia matrix (11.143) for
the link (i)

iĪi =

Z
Bi

irP
irTP dm. (12.401)

Hence, the kinetic energy of link (i) becomes

Ki =
1

2
tr

⎛⎝ iX
j=1

iX
k=1

∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qk

T

q̇j q̇k

⎞⎠ . (12.402)

The kinetic energy of a robot having n links is a summation of the kinetic
energies of each link.

K =
nX
i=1

Ki =
1

2
tr

nX
i=1

⎛⎝ iX
j=1

iX
k=1

∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qk

T

q̇j q̇k

⎞⎠ (12.403)

We may also add the kinetic energy due to the actuating motors Ka that
are installed at the joints of the robot

Ka =

⎧⎪⎨⎪⎩
Pn

i=1

1

2
Iiq̇

2
i if joint i is RPn

i=1

1

2
miq̇

2
i if joint i is P

(12.404)

where, Ii is the moment of inertia of the rotary actuator at joint i, and mi

is the mass of the translatory actuator. However, we may assume that the
motors are concentrated masses at joints and add the mass of the motor
at joint i to the mass of the link (i− 1) and adjust the inertial parameters
of the link. The motor at joint i will drive the link (i).
For the potential energy we assume the gravity is the only source of

potential energy. Therefore, the potential energy of the link (i) with respect
to the base coordinate frame is

Vi = −mi
0g · 0ri = −mi

0gT 0Ti
iri (12.405)

where 0g =
£
gx gy gz 0

¤T
is the gravitational acceleration usually

in the direction −z0, and 0ri is the position vector of C of link (i) in the
base frame. The potential energy of the whole robot is then equal to

V =
nX
i=1

Vi = −
nX
i=1

mig
T 0Ti

iri. (12.406)
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The Lagrangean of a robot is found by substituting (12.403) and (12.406)
in the Lagrange equation (12.214).

L = K − V =
1

2

nX
i=1

iX
j=1

iX
k=1

tr

Ã
∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qk

T
!
q̇j q̇k

+
nX
i=1

mi
0gT 0Ti

iri. (12.407)

The dynamic equations of motion of a robot can now be found by ap-
plying the Lagrange equations (12.215) to Equation (12.407). We develop
the equations of motion term by term. Differentiating the L with respect
to q̇r is

∂L
∂q̇r

=
1

2

nX
i=1

iX
k=1

tr

Ã
∂ 0Ti
∂qr

iĪi
∂ 0Ti
∂qk

T
!
q̇k

+
1

2

nX
i=1

iX
j=1

tr

Ã
∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qr

T
!
q̇j

=
nX
i=r

iX
j=1

tr

Ã
∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qr

T
!
q̇j (12.408)

because

∂ 0Ti
∂qr

= 0 for r > i (12.409)

and

tr

Ã
∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qk

T
!
= tr

Ã
∂ 0Ti
∂qk

iĪi
∂ 0Ti
∂qj

T
!
. (12.410)

Time derivative of ∂L/∂q̇r is:

d

dt

∂L
∂q̇r

=
nX
i=r

iX
j=1

tr

Ã
∂ 0Ti
∂qj

iĪi
∂ 0Ti
∂qr

T
!
q̈j

+
nX
i=r

iX
j=1

iX
k=1

tr

Ã
∂2 0Ti
∂qj∂qk

iĪi
∂ 0Ti
∂qr

T
!
q̇j q̇k

+
nX
i=r

iX
j=1

iX
k=1

tr

Ã
∂2 0Ti
∂qr∂qk

iĪi
∂ 0Ti
∂qj

T
!
q̇j q̇k (12.411)
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The last term of the Lagrange equation is:

∂L
∂qr

=
1

2

nX
i=r

iX
j=1

iX
k=1

tr

Ã
∂2 0Ti
∂qj∂qr

iĪi
∂ 0Ti
∂qk

T
!
q̇j q̇k

+
1

2

nX
i=r

iX
j=1

iX
k=1

tr

Ã
∂2 0Ti
∂qk∂qr

iĪi
∂ 0Ti
∂qj

T
!
q̇j q̇k

+
nX
i=r

mig
T ∂ 0Ti

∂qr
iri (12.412)

which can be simplified to

∂L
∂qr

=
nX
i=r

iX
j=1

iX
k=1

tr

Ã
∂2 0Ti
∂qr∂qj

iĪi
∂ 0Ti
∂qk

T
!
q̇j q̇k

+
nX
i=r

mig
T ∂ 0Ti

∂qr
iri. (12.413)

Interestingly, the third term in Equation (12.411) is equal to the first term
in (12.413). So, substituting these equations in the Lagrange equation can
be simplified to

d

dt

µ
∂L
∂q̇i

¶
− ∂L

∂qi
=

nX
j=i

jX
k=1

tr

Ã
∂ 0Tj
∂qk

j Īj
∂ 0Tj
∂qi

T
!
q̈k

+
nX
j=i

jX
k=1

jX
m=1

tr

Ã
∂2 0Tj
∂qk∂qm

j Īj
∂ 0Tj
∂qi

T
!
q̇kq̇m

−
nX
j=i

mjg
T ∂ 0Tj

∂qi
jrj . (12.414)

Finally, the equations of motion for an n link robot are

Qi =
nX
i=i

jX
k=1

tr

Ã
∂ 0Tj
∂qk

j Īj
∂ 0Tj
∂qi

T
!
q̈k

+
nX
j=i

jX
k=1

jX
m=1

tr

Ã
∂2 0Tj
∂qk∂qm

j Īj
∂ 0Tj
∂qi

T
!
q̇kq̇m

−
nX
j=i

mjg
T ∂ 0Tj

∂qi
jrj . (12.415)

The equations of motion can be written in a more concise form

Qi =
nX
j=1

Dij q̈j +
nX
j=1

nX
k=1

Hijkq̇j q̇k +Gi (12.416)
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FIGURE 12.19. 2R manipulator mounted on a ceiling.

where

Dij =
nX

r=max i,j

tr

Ã
∂ 0Tr
∂qj

rĪr
∂ 0Tr
∂qi

T
!

(12.417)

Hijk =
nX

r=max i,j,k

tr

Ã
∂2 0Tr
∂qj∂qk

r Īr
∂ 0Tr
∂qi

T
!

(12.418)

Gi = −
nX
r=i

mrg
T ∂ 0Tr

∂qi
rrr. (12.419)

Example 343 2R manipulator mounted on ceiling.
Figure 12.19 depicts an ideal 2R planar manipulator mounted on a ceil-

ing. Ceiling mounting is an applied method in some robotic operated as-
sembly lines.
The Lagrangean of the manipulator is

L = K − V =
1

2
m1l

2
1θ̇
2

1

+
1

2
m2

µ
l21θ̇

2

1 + l22

³
θ̇1 + θ̇2

´2
+ 2l1l2θ̇1

³
θ̇1 + θ̇2

´
cos θ2

¶
+m1gl1 cos θ1 +m2g (l1 cos θ1 + l2 cos (θ1 + θ2)) (12.420)
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which leads to the following equations of motion:

Q1 =
¡
(m1 +m2) l

2
1 +m2l

2
2 + 2m2l1l2 cos θ2

¢
θ̈1

+m2l2 (l2 + l1 cos θ2) θ̈2

−2m2l1l2 sin θ2θ̇1θ̇2 −m2l1l2 sin θ2θ̇
2

2

+(m1 +m2) gl1 sin θ1 +m2gl2 sin (θ1 + θ2) (12.421)

Q2 = m2l2 (l2 + l1 cos θ2) θ̈1 +m2l
2
2θ̈2

−2m2l1l2 sin θ2θ̇1

³
θ̇1 + θ̇2

´
−m2gl2 sin (θ1 + θ2) . (12.422)

The equations of motion can be rearranged to

Q1 = D11θ̈1 +D12θ̈2 +H111θ̇
2

1 +H122θ̇
2

2

+D112θ̇1θ̇2 +D121θ̇2θ̇1 +G1 (12.423)

Q2 = D12θ̈1 +D22θ̈2 +H211θ̇
2

1 +H222θ̇
2

2

+D212θ̇1θ̇2 +D221θ̇2θ̇1 +G2 (12.424)

where,

D11 = (m1 +m2) l
2
1 +m2l

2
2 + 2m2l1l2 cos θ2 (12.425)

D12 = m2l2 (l2 + l1 cos θ2) (12.426)

D21 = D12 = m2l2 (l2 + l1 cos θ2) (12.427)

D22 = m2l
2
2 (12.428)

H111 = 0 (12.429)

H122 = −m2l1l2 sin θ2 (12.430)

H211 = −m2l1l2 sin θ2 (12.431)

H222 = 0 (12.432)

H112 = H121 = −m2l1l2 sin θ2 (12.433)

H212 = H221 = −m2l1l2 sin θ2 (12.434)

G1 = (m1 +m2) gl1 sin θ1 +m2gl2 sin (θ1 + θ2) (12.435)

G2 = m2gl2 sin (θ1 + θ2) . (12.436)

Example 344 2R manipulator with massive links.
A 2R planar manipulator with massive links is shown in Figure 12.20.

We assume the mass center C of each link is in the middle of the link and
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FIGURE 12.20. A 2R planar manipulator with massive links.

the motors at each joint is massless. The links’ transformation matrices
are

0T1 =

⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (12.437)

1T2 =

⎡⎢⎢⎣
cos θ2 − sin θ2 0 l2 cos θ2
sin θ2 cos θ2 0 l2 sin θ2
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (12.438)

0T2 = 0T1
1T2 (12.439)

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .

Employing the velocity coefficient matrix ∆R for revolute joints, we can
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write

∂ 0T1
∂θ1

= ∆R
0T1 (12.440)

=

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
cos θ1 − sin θ1 0 l1 cos θ1
sin θ1 cos θ1 0 l1 sin θ1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
− sin θ1 − cos θ1 0 −l1 sin θ1
cos θ1 − sin θ1 0 l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
and similarly,

∂ 0T2
∂θ1

= ∆R
0T2 (12.441)

=

⎡⎢⎢⎣
0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

cθ12 −sθ12 0 l1cθ1 + l2cθ12
sθ12 cθ12 0 l1sθ1 + l2sθ12
0 0 1 0
0 0 0 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−s (θ1 + θ2) −c (θ1 + θ2) 0 −l1sθ1 − l2s (θ1 + θ2)
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)

0 0 0 0
0 0 0 0

⎤⎥⎥⎦

∂ 0T2
∂θ2

= 0T1∆R
1T2 (12.442)

=

⎡⎢⎢⎣
−s (θ1 + θ2) −c (θ1 + θ2) 0 −l2s (θ1 + θ2)
c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2)

0 0 0 0
0 0 0 0

⎤⎥⎥⎦ .
Assuming all the product of inertias are zero, we find

1Ī1 =

⎡⎢⎢⎣
1
3m1l

2
1 0 0 −12m1l1

0 0 0 0
0 0 0 0

− 12m1l1 0 0 m1

⎤⎥⎥⎦ (12.443)

2Ī2 =

⎡⎢⎢⎣
1
3m2l

2
2 0 0 −12m2l2

0 0 0 0
0 0 0 0

−12m2l2 0 0 m2

⎤⎥⎥⎦ . (12.444)
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Using inertia and derivative of transformation matrices we can calculate
the inertial-type symmetric matrix D(q).

D11 = tr

Ã
∂ 0T1
∂q1

1Ī1
∂ 0T1
∂q1

T
!
+ tr

Ã
∂ 0T2
∂q1

2Ī2
∂ 0T2
∂q1

T
!

=
1

3
m1l

2
1 +m2

µ
l21 +

1

3
l22

¶
+m2l1l2 cos θ2 (12.445)

D12 = D21 = tr

Ã
∂ 0T2
∂q1

2Ī2
∂ 0T2
∂q1

T
!

=
1

3
m2l

2
2 +m2l

2
1 +m2l1l2 cos θ2 (12.446)

D22 = tr

Ã
∂ 0T2
∂q2

2Ī2
∂ 0T2
∂q2

T
!
=
1

3
l22m2 (12.447)

The coupling terms H(q, q̇) are calculated as below

H1 =
2X

k=1

2X
m=1

H1kmq̇kq̇m

= H111q̇1q̇1 +H112q̇1q̇2 +H121q̇2q̇1 +H122q̇2q̇2 (12.448)

H2 =
2X

k=1

2X
m=1

H2kmq̇kq̇m

= H211q̇1q̇1 +H212q̇1q̇2 +H221q̇2q̇1 +H222q̇2q̇2 (12.449)

where

Hijk =
nX

r=max i,j,k

tr

Ã
∂2 0Tr
∂qj∂qk

r Īr
∂ 0Tr
∂qi

T
!
. (12.450)

These calculations lead to

H =

"
−12m2l1l2θ̇

2

2 sin θ2 −m2l1l2θ̇1θ̇2 sin θ2
1
2m2l1l2θ̇

2

1 sin θ2

#
. (12.451)
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The last terms are the gravitational vector G(q)

G1 = −m1g
T ∂ 0T1

∂q1
1r1 −m2g

T ∂ 0T2
∂q1

2r2

= −m1

⎡⎢⎢⎣
0
−g
0
0

⎤⎥⎥⎦
T ⎡⎢⎢⎣
− sin θ1 − cos θ1 0 −l1 sin θ1
cos θ1 − sin θ1 0 l1 cos θ1
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
− l1
2
0
0
1

⎤⎥⎥⎦

−m2

⎡⎢⎢⎣
0
−g
0
0

⎤⎥⎥⎦
T ⎡⎢⎢⎣
−sθ12 −cθ12 0 −l1sθ1 − l2sθ12
cθ12 −sθ12 0 l1cθ1 + l2cθ12
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
− l1
2
0
0
1

⎤⎥⎥⎦
=

1

2
m1gl1 cos θ1 +

1

2
m2gl1 cos (θ1 + θ2) +m2gl1 cos θ1 (12.452)

G2 = −m2g
T ∂ 0T2

∂q2
2r2

= −m2

⎡⎢⎢⎣
0
−g
0
0

⎤⎥⎥⎦
T ⎡⎢⎢⎣
−sθ12 −cθ12 0 −l2sθ12
cθ12 −sθ12 0 l2cθ12
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
− l1
2
0
0
1

⎤⎥⎥⎦
=

1

2
m2gl2 cos (θ1 + θ2) . (12.453)

Finally the equations of motion for the 2R planar manipulator are∙
Q1
Q2

¸
=∙

1
3m1l

2
1 +m2

¡
l21 +

1
3 l
2
2 + l1l2cθ2

¢
m2

¡
l21 +

1
3 l
2
2 + l1l2cθ2

¢¡
l21 +

1
3 l
2
2

¢
m2 +m2l1l2cθ2

1
3 l
2
2m2

¸ ∙
θ̈1
θ̈2

¸
+

"
−12m2l1l2θ̇

2

2 sin θ2 −m2l1l2θ̇1θ̇2 sin θ2
1
2m2l1l2θ̇

2

1 sin θ2

#

+

∙
1
2m1gl1 cos θ1 +

1
2m2gl1 cos (θ1 + θ2) +m2gl1 cos θ1
1
2m2gl2 cos (θ1 + θ2)

¸
(12.454)

12.5 Robot Statics

At the beginning and at the end of a rest-to-rest mission, a robot must
keep the specified configurations. To hold the position and orientation, the
actuators must apply some required forces to balance the external loads
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FIGURE 12.21. Position vectors and force system on link (i).

applied to the robot. Calculating the required actuators’ force to hold a
robot in a specific configuration is called robot statics analysis.
In a static condition, the globally expressed Newton-Euler equations for

the link (i) can be written in a recursive form

0Fi−1 = 0Fi −
X

0Fei (12.455)

0Mi−1 = 0Mi −
X

0Mei +
0

i−1di × 0Fi (12.456)

where
0

i−1di =
0di − 0di−1. (12.457)

Therefore, we are able to calculate the action force system (Fi−1 , Mi−1)
when the reaction force system (−Fi , −Mi) is given. The position vectors
and force systems on link (i) are shown in Figure 12.21.

Proof. In a static condition, the Newton-Euler equations of motion (12.1)
and (12.2) for the link (i) reduce to force and moment balance equations.

0Fi−1 − 0Fi +
X

0Fei = 0 (12.458)

0Mi−1 − 0Mi +
X

0Mei +
0ni × 0Fi−1 − 0mi × 0Fi = 0 (12.459)

These equations can be rearranged into a backward recursive form.

0Fi−1 = 0Fi −
X

0Fei (12.460)

0Mi−1 = 0Mi −
X

0Mei − 0ni × 0Fi−1 +
0mi × 0Fi (12.461)
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However, we may transform the Euler equation from Ci to Oi−1 and find
the Equation (12.456).
Practically, we measure the position of mass center ri and the relative

position of Bi and Bi−1 in the coordinate frame Bi attached to the link
(i). Hence, we must transform iri and i

i−1di to the base frame.

0ri = 0Ti
iri (12.462)

0
i−1di = 0Ti

i
i−1di (12.463)

The external load is usually the gravitational force mig and hence,X
0Fei = mi

0g (12.464)X
0Mei = 0ri ×mi

0g. (12.465)

Using the DH parameters, we may express the relative position vector
i

i−1di by

i
i−1di =

⎡⎢⎢⎣
ai

di sinαi
di cosαi
1

⎤⎥⎥⎦ . (12.466)

The backward recursive equations (12.455) and (12.456) allow us to start
with a known force system (Fn ,Mn) at Bn, applied from the end-effector
to the environment, and calculate the force system at Bn−1.

0Fn−1 = 0Fn −
X

0Fen (12.467)

0Mn−1 = 0Mn −
X

0Men +
0

n−1dn × 0Fn (12.468)

Following the same procedure and calculating force system at proximal
end by having the force system at distal end of each link, ends up to the
force system at the base. In this procedure, the force system applied by the
end-effector to the environment is assumed to be known.
It is also possible to rearrange the static Equations (12.458) and (12.459)

into a forward recursive form.

0Fi = 0Fi−1 +
X

0Fei (12.469)

0Mi = 0Mi−1 +
X

0Mei +
0ni × 0Fi−1 − 0mi × 0Fi (12.470)

Transforming the Euler equation from Ci to Oi simplifies the forward re-
cursive equations into the more practical equations.

0Fi = 0Fi−1 +
X

0Fei (12.471)

0Mi = 0Mi−1 +
X

0Mei − 0
i−1di × 0Fi−1 (12.472)
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FIGURE 12.22. A 4R planar manipulator.

Using the forward recursive Equations (12.471) and (12.472) we can start
with a known force system (F0 , M0) at B0, applied from the base to the
link (1), and calculate the force system at B1.

0F1 = 0F0 +
X

0Fe1 (12.473)

0M1 = 0M0 +
X

0Me1 − 0d1 × 0F0 (12.474)

Following this procedure and calculating force system at the distal end
by having the force system at the proximal end of each link, ends up at
the force system applied to the environment by the end-effector. In this
procedure, the force system applied by the base actuators to the first link
is assumed to be known.

Example 345 Statics of a 4R planar manipulator.
Figure 12.22 illustrates a 4R planar manipulator with the DH coordinate

frames set up for each link. Assume the end-effector force system applied
to the environment is measured as

4F4 =

⎡⎣ Fx
Fy
0

⎤⎦ 4M4 =

⎡⎣ 0
0
Mz

⎤⎦ . (12.475)

In addition, we assume that the links are uniform such that their C are
located at the midpoint of each link, and the gravitational acceleration is:

g = −g ĵ0 (12.476)
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The manipulator consists of four RkR(0) links, therefore their transforma-
tion matrices i−1Ti are of class (5.32) that because di = 0 and ai = li,
simplifies to

i−1Ti =

⎡⎢⎢⎣
cos θi − sin θi 0 li cos θi
sin θi cos θi 0 li sin θi
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (12.477)

The C position vectors iri and the relative position vectors 0
i−1di are:

iri =

⎡⎢⎢⎣
li/2
0
0
0

⎤⎥⎥⎦ i
i−1di =

⎡⎢⎢⎣
li
0
0
0

⎤⎥⎥⎦ (12.478)

and therefore,
0ri = 0Ti

iri (12.479)
0

i−1di = 0Ti
i

i−1di (12.480)

where
0Ti =

0T1 · · · i−1Ti. (12.481)

The static force at joints 3, 2, and 1 are

0F3 = 0F4 −
X

0Fe4 =
0F4 +m4g

0ĵ0 (12.482)

=

⎡⎢⎢⎣
Fx
Fy
0
0

⎤⎥⎥⎦+m4g

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

Fx
Fy +m4g

0
0

⎤⎥⎥⎦
0F2 = 0F3 −m3g

0ĵ0 (12.483)

=

⎡⎢⎢⎣
Fx

Fy +m4g
0
0

⎤⎥⎥⎦+m3g

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

Fx
Fy + (m3 +m4) g

0
0

⎤⎥⎥⎦
0F1 = 0F2 −m2g

0ĵ0

=

⎡⎢⎢⎣
Fx

Fy + (m3 +m4) g
0
0

⎤⎥⎥⎦+m2g

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
Fx

Fy + g (m2 +m3 +m4)
0
0

⎤⎥⎥⎦ (12.484)
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0F0 = 0F1 −m1g
0ĵ0

=

⎡⎢⎢⎣
Fx

Fy + g (m2 +m3 +m4)
0
0

⎤⎥⎥⎦+m1g

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦

=

⎡⎢⎢⎣
Fx

Fy + g (m1 +m2 +m3 +m4)
0
0

⎤⎥⎥⎦ . (12.485)

The static moment at joints 3, 2, and 1 are

0M3 = 0M4 −
X

0Mei +
0
3d4 × 0F4

= 0M4 +
0r4 ×m4g

0ĵ0 +
0
3d4 × 0F4

= 0M4 +
0r4 ×m4g

0ĵ0 +
0
3d4 × 0F4

= 0M4 +m4g
¡
0T4

4r4 × 0ĵ0
¢
+
¡
0T4

4
3d4

¢
× 0F4

=

⎡⎢⎢⎣
0
0

M3z

0

⎤⎥⎥⎦ (12.486)

M3z =Mz + l4Fy cos θ1234 − l4Fx sin θ1234 +
1

2
gl4m4 cos θ1234 (12.487)

0M2 = 0M3 +m3g
¡
0T3

3r3 × 0ĵ0
¢
+
¡
0T3

3
2d3

¢
× 0F3

=

⎡⎢⎢⎣
0
0

M2z

0

⎤⎥⎥⎦ (12.488)

M2z = Mz + l4Fy cos θ1234 − l4Fx sin θ1234 +
1

2
gl4m4 cos θ1234

+
1

2
gl3m3 cos θ123 − l3Fx sin θ123

+l3 (Fy + gm4) cos θ123 (12.489)

0M1 = 0M2 +m2g
¡
0T2

2r2 × 0ĵ0
¢
+
¡
0T2

2
1d2

¢
× 0F2

=

⎡⎢⎢⎣
0
0

M1z

0

⎤⎥⎥⎦ (12.490)
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M1z = Mz + l4Fy cos θ1234 − l4Fx sin θ1234 +
1

2
gl4m4 cos θ1234

+
1

2
gl3m3 cos θ123 − l3Fx sin θ123 + l3 cos θ123 (Fy + gm4)

+
1

2
gl2m2 cos θ12 − l2Fx sin θ12

+l2 cos θ12 (Fy + g (m3 +m4)) (12.491)

0M0 = 0M1 +m1g
¡
0T1

1r1 × 0ĵ0
¢
+
¡
0T1

1
0d1

¢
× 0F1

=

⎡⎢⎢⎣
0
0

M0z

0

⎤⎥⎥⎦ (12.492)

M0z = Mz + l4Fy cos θ1234 − l4Fx sin θ1234 +
1

2
gl4m4 cos θ1234

+
1

2
gl3m3 cos θ123 − l3Fx sin θ123 + l3 cos θ123 (Fy + gm4)

−l2Fx sin θ12 +
1

2
gl2m2 cos θ12 + l2 cos θ12 (Fy + g (m3 +m4))

+
1

2
gl1m1 cos θ1 − l1Fx sin θ1

+l1 cos θ1 (Fy + g (m2 +m3 +m4)) (12.493)

where

θ1234 = θ1 + θ2 + θ3 + θ4 (12.494)

θ123 = θ1 + θ2 + θ3 (12.495)

θ12 = θ1 + θ2. (12.496)

Example 346 Recursive force equation in link’s frame.
Practically, it is easier to measure and calculate the force systems in the

kink’s frame. Therefore, we may write the backward recursive Equations
(12.455) and (12.456) in the following form:

iFi−1 = iFi −
X

iFei (12.497)

iMi−1 = iMi −
X

iMei +
i

i−1di × iFi (12.498)

and calculate the proximal force system from the distal force system in the
link’s frame. The calculated force system, then, may be transformed to the
previous link’s coordinate frame by a transformation

i−1Fi−1 = i−1Ti
iFi−1 (12.499)

i−1Mi−1 = i−1Ti
iMi−1 (12.500)
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or they may be transformed to any other coordinate frame including the
base frame.

0Fi−1 = 0Ti
iFi−1 (12.501)

0Mi−1 = 0Ti
iMi−1 (12.502)

Example 347 Actuator’s force and torque.
Applying a backward or forward recursive static force analysis ends up

with a set of known force systems at joints. Each joint is driven by a motor
or generally an actuator that applies a force in a P joint, or a torque in an
R joint. When the joint i is prismatic, the actuator force is applied along
the axis of the joint i. Therefore, the force of the driving motor is along the
zi−1-axis

Fm =
0k̂Ti−1

0Fi (12.503)

showing that the k̂i−1 component of the joint force Fi is supported by the
actuator, while the ı̂i−1 and ĵi−1 components of Fi must be supported by
the bearings of the joint.
Similarly, when joint i is revolute, the actuator torque is applied about

the axis of joint i. Therefore, the torque of the driving motor is along the
zi−1-axis

Mm =
0k̂Ti−1

0Mi (12.504)

showing that the k̂i−1 component of the joint torqueMi is supported by the
actuator, while the ı̂i−1 and ĵi−1 components of Mi must be supported by
the bearings of the joint.
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12.6 Summary

Dynamics equations of motion for a robot can be found by both Newton-
Euler and Lagrange methods. In the Newton-Euler method, each link (i)
is a rigid body and therefore, its translational and rotational equations of
motion in the base coordinate frame are:

mi
0ai = 0Fi−1 − 0Fi +

X
0Fei (12.505)

0Ii 0αi = 0Mi−1 − 0Mi +
X

0Mei

+
¡
0di−1 − 0ri

¢
× 0Fi−1 −

¡
0di − 0ri

¢
× 0Fi (12.506)

The force Fi−1 and moment Mi−1 are the resultant force and moment
that link (i− 1) applies to link (i) at joint i. Similarly, Fi and Mi are the
resultant force and moment that link (i) applies to link (i + 1) at joint
i + 1. We measure the force systems (Fi−1 , Mi−1) and (Fi , Mi) at the
origin of the coordinate frames Bi−1 and Bi respectively. The sum of the
external loads acting on the link (i) are

P
Fei and

P
Mei . The vector

0ri
is the global position vector of Ci and 0di is the global position vector of
the origin of Bi. The vector 0αi is the angular acceleration and 0ai is the
translational acceleration of the link (i) measured at the mass center Ci.

0ai =
0d̈i + 0αi ×

¡
0ri − 0di

¢
+ 0ωi ×

¡
0ωi ×

¡
0ri − 0di

¢¢
(12.507)

0αi =

½
0αi−1 + θ̈i

0k̂i−1 + 0ωi−1 × θ̇i
0k̂i−1 if joint i is R

0αi−1 if joint i is P
(12.508)

Weight is usually the only external load on middle links of a robot, and
reactions from the environment are extra external force systems on the
base and end-effector links. The force and moment that the base actuator
applies to the first link are F0 andM0, and the force and moment that the
end-effector applies to the environment are Fn and Mn. If weight is the
only external load on link (i) and it is in − 0k̂0 direction, then we haveX

0Fei = mi
0g = −mi g

0k̂0 (12.509)X
0Mei = 0ri ×mi

0g = − 0ri ×mi g
0k̂0 (12.510)

where g is the gravitational acceleration vector.
The Newton-Euler equation of motion can also be written in link’s coordi-

nate frame in a forward or backward method. The backward Newton-Euler
equations of motion for link (i) in the the local coordinate frame Bi are

iFi−1 =
iFi −

X
iFei +mi

i
0ai (12.511)

iMi−1 = iMi −
X

iMei −
¡
idi−1 − iri

¢
× iFi−1

+
¡
idi − iri

¢
× iFi +

iIi
i
0αi +

i
0ωi × iIi

i
0ωi (12.512)
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where

ini = idi−1 − iri (12.513)
imi = idi − iri. (12.514)

and

i
0ai = id̈i +

i
0αi ×

¡
iri − idi

¢
+ i

0ωi ×
¡
i
0ωi ×

¡
iri − idi

¢¢
(12.515)

i
0αi =

⎧⎪⎪⎨⎪⎪⎩
iTi−1

³
i−1
0 αi−1 + θ̈i

i−1k̂i−1
´

+ iTi−1
³
i−1
0 ωi−1 × θ̇i

i−1k̂i−1
´

if joint i is R
iTi−1

i−1
0 αi−1 if joint i is P.

(12.516)

In this method, we search for the driving force system (iFi−1, iMi−1)
by having the driven force system (iFi, iMi) and the resultant external
force system (iFei ,

iMei). When the driving force system (iFi−1, iMi−1)
is found in frame Bi, we can transform them to the frame Bi−1 and apply
the Newton-Euler equation for link (i− 1).

i−1Fi−1 = i−1Ti
iFi−1 (12.517)

i−1Mi−1 = i−1Ti
iMi−1 (12.518)

The negative of the converted force system acts as the driven force system
(− i−1Fi−1, − i−1Mi−1) for the link (i− 1).
The forward Newton-Euler equations of motion for link (i) in the the

local coordinate frame Bi are

iFi =
iFi−1 +

X
iFei −mi

i
0ai (12.519)

iMi = iMi−1 +
X

iMei +
¡
idi−1 − iri

¢
× iFi−1

−
¡
idi − iri

¢
× iFi − iIi

i
0αi − i

0ωi × iIi
i
0ωi. (12.520)

ini = idi−1 − iri (12.521)
imi = idi − iri (12.522)

Using the forward Newton-Euler equations of motion, we can calculate the
reaction force system (iFi, iMi) by having the action force system (iFi−1,
iMi−1). When the reaction force system (iFi, iMi) is found in frame Bi,
we can transform them to the frame Bi+1

i+1Fi = iT−1i+1
iFi (12.523)

i+1Mi = iT−1i+1
iMi. (12.524)
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The negative of the converted force system acts as the action force system
(− i+1Fi, − i+1Mi) for the link (i+1) and we can apply the Newton-Euler
equation to the link (i+1). The forward Newton-Euler equations of motion
allows us to start from a known action force system (1F0, 1M0), that the
base link applies to the link (1), and calculate the action force of the next
link. Therefore, analyzing the links of a robot, one by one, we end up with
the force system that the end-effector applies to the environment.
The Lagrange equation of motion

d

dt

µ
∂L
∂q̇i

¶
− ∂L

∂qi
= Qi i = 1, 2, · · ·n (12.525)

L = K − V (12.526)

provides a systematic approach to obtain the dynamics equations for ro-
bots. The variables qi are the coordinates by which the energies are ex-
pressed and the Qi is the corresponding generalized nonpotential force.
The equations of motion for an n link serial manipulator, based on

Newton-Euler or Lagrangian, can always be set in a matrix form

D(q) q̈+H(q, q̇) +G(q) = Q (12.527)

or
D(q) q̈+C(q, q̇)q̇+G(q) = Q (12.528)

or in a summation form
nX
j=1

Dij(q) q̈j +
nX

k=1

nX
m=1

Hikmq̇kq̇m +Gi = Qi (12.529)

where, D(q) is an n× n inertial-type symmetric matrix

D =
nX
i=1

µ
JTDi mi JDi +

1

2
JTRi

0Ii JRi

¶
(12.530)

Hikm is the velocity coupling vector

Hijk =
nX
j=1

nX
k=1

µ
∂Dij

∂qk
− 1
2

∂Djk

∂qi

¶
(12.531)

Gi is the gravitational vector

Gi =
nX
j=1

mjg
T J

(i)
Dj (12.532)

and Ji is the Jacobian matrix of the robot

Ẋi =

∙
0vi
0ωi

¸
=

∙
JDi

JRi

¸
q̇ = Ji q̇. (12.533)
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To hold a robot in a stationary configuration, the actuators must apply
some required forces to balance the external loads applied to the robot. In
the static condition, the globally expressed Newton-Euler equations for the
link (i), can be written in a recursive form

0Fi−1 = 0Fi −
X

0Fei (12.534)

0Mi−1 = 0Mi −
X

0Mei +
0

i−1di × 0Fi. (12.535)

Now we are able to calculate the action force system (Fi−1 , Mi−1) when
the reaction force system (−Fi , −Mi) is given.
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12.7 Key Symbols

a kinematic link length,
a acceleration vector
[A] coefficient matrix of a set of linear equations
b vector of known values in a set of linear equations
B body coordinate frame
c cos
ci position of the mass center of link (i) in Bi

c Jacobian generating vector
C mass center
C(q, q̇) damping-type matrix of equation of motion
dx, dy, dz elements of d
d translation vector, joint position vector
di position vector of the origin of Bi

D displacement transformation matrix
D(q) inertial-type matrix of equation of motion
Fei external force acting on the link (i)
Fi the force that link (i) applies to (i+ 1) at joint i+ 1
Fi−1 the force that link (i− 1) applies to link (i) at joint i
Fs shaking force
g gravitational acceleration vector
G,B0 global coordinate frame, Base coordinate frame
G(q) gravitational vector of equation of motion
H(q, q̇) velocity coupling vector of equation of motion
ı̂, ĵ, k̂ local coordinate axes unit vectors
Î , Ĵ , K̂ global coordinate axes unit vectors
I = [I] mass moment matrix
Ī =

£
Ī
¤

pseudo inertia matrix
I = [I] identity matrix
J Jacobian
K kinetic energy
l length
L angular moment vector, moment of moment
L Lagrangean
m mass
mi position vector of oi from Ci

ni position vector of oi−1 from Ci

Mei external moment acting on the link (i)
Mi the moment that link (i) applies to (i+ 1) at joint i+ 1
Mi−1 the moment that link (i− 1) applies to link (i) at joint i
q generalized coordinate
Q torque of an actuator, generalized nonpotential force
Q moment vector at a joint
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r position vectors, homogeneous position vector,
global position of the mass center of a link

ri the element i of r
rij the element of row i and column j of a matrix
R rotation transformation matrix
s sin
T homogeneous transformation matrix
v translational velocity vector
V potential energy
x, y, z local coordinate axes
x vector of unknown values in a set of linear equations
X,Y,Z global coordinate axes
Zi short notation of an equation

Greek
α angular acceleration
α angular acceleration vector
α1, α2, α3 components of α
θ rotary joint angle
θijk θi + θj + θk
ω1, ω2, ω3 components of ω

small test number to terminate a procedure
θ rotary joint angle
θijk θi + θj + θk
ω angular velocity
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω

Symbol
[ ]
−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
≡ equivalent
` orthogonal
(i) link number i
k parallel sign
⊥ perpendicular
× vector cross product
FBD free body diagram
tr trace
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Exercises

1. Notation and symbols.

Describe their meaning.

a- F2 b- 0F1 c- 1F1 d- 2M1 e- 2Me1 f- BM

g- m2 h- 0n2 i- 0
i−1di j- 0di k- 0ri l- i−1di

m- 0L2 n- 0I2 o- 0
i−1Li p- Ki q- Vi r- i−1Ii

2. F Even order recursive translational velocity.

Find an equation to relate the velocity of link (i) to the velocity of
link (i− 2), and the velocity of link (i) to the velocity of link (i+2).

3. F Even order recursive angular velocity.

Find an equation to relate the angular velocity of link (i) to the
angular velocity of link (i− 2), and the angular velocity of link (i) to
the angular velocity of link (i+ 2).

4. F Even order recursive translational acceleration.

Find an equation to relate the acceleration of link (i) to the accelera-
tion of link (i−2), and the acceleration of link (i) to the acceleration
of link (i+ 2).

5. F Even order recursive angular acceleration.

Find an equation to relate the angular acceleration of link (i) to the
angular acceleration of link (i − 2), and the angular acceleration of
link (i) to the angular acceleration of link (i+ 2).

6. F Acceleration in different frames.

For the 2R planar manipulator shown in Figure 12.7, find 0
1a2,

1
0a2,

0
2a1,

2
0a1,

2
0a2, and

0
1a1.

7. Slider-crank mechanism dynamics.

A planar slider-crank mechanism is shown in Figure 12.23. Set up
the link coordinate frames, develop the Newton-Euler equations of
motion, and find the driving moment at the base revolute joint.

8. PR manipulator dynamics.

Find the equations of motion for the planar polar manipulator shown
in Figure 5.56. Eliminate the joints’ constraint force and moment to
derive the equations for the actuators’ force or moment.
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y0

x0

a1
a3

a2

d

2θ

1θ

FIGURE 12.23. A planar slider-crank machanism.

z2

x3

x1

x2

z3

z1

d2

d3

m1

m2

C1

C2

m0

c2

FIGURE 12.24. A 2 DOF Cartesian manipulator.

9. A planar Cartesian manipulator.

Determine the equations of motion of the planar Cartesian manip-
ulator shown in Figure 12.24. Hint : The coordinate frames are not
based on DH rules.

10. F Global differential of a link momentum.

In recursive Newton-Euler equations of motion, why we do not use
the following Newton equation?

iF =
Gd

dt
iF =

Gd

dt
m iv = m iv̇ + i

0ωi ×m iv

11. 3R planar manipulator dynamics.
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x0

y0

x1

z0
m1

m2

l1 l2

l3

FIGURE 12.25. An articulated manipulator.

A 3R planar manipulator is shown in Figure 12.29. The manipulator
is attached to a wall and therefore, g = g 0ı̂0.

(a) Find the Newton-Euler equations of motion for the manipulator.
Do your calculations in the global frame and derive the dynamic
force and moment at each joint.

(b) Reduce the number of equations to three for moments at joints.

(c) Substitute the vectorial quantities and calculate the moments in
terms of geometry and angular variables of the manipulator.

12. A planar Cartesian manipulator dynamics.

Determine the Newton-Euler equations of motion for the planar Carte-
sian manipulator shown in Figure 5.57.

13. Articulated manipulator.

Figure 12.25 illustrates an articulated manipulator with massless arms
and two massive points m1 and m2.

(a) Follow the DH rules and complete the link coordinate frames.

(b) Determine the DH transformation matrices.

(c) Determine the equations of motion of the manipulator using
Lagrange method.

14. Polar planar manipulator dynamics.

A polar planar manipulator with 2 DOF is shown in Figure 5.56.

(a) Determine the Newton-Euler equations of motion for the ma-
nipulator.
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y3y0

y1

x1

x0
1θ

3θ

d2

l1

z2x3

l2

x2ϕ m1

m2

FIGURE 12.26. A planar manipulator.

(b) Reduce the number of equations to two, for moments at the base
joint and force at the P joint.

(c) Substitute the vectorial quantities and calculate the action force
and moment in terms of geometry and angular variables of the
manipulator.

15. F Dynamics of a spherical manipulator.

Figure 5.43 illustrates a spherical manipulator attached with a spher-
ical wrist. Analyze the robot and derive the equations of motion for
joints action force and moment. Assume g = −g 0k̂0 and the end-
effector is carrying a mass m.

16. F Dynamics of an articulated manipulator.

Figure 5.22 illustrates an articulated manipulator R`RkR. Use g =
−g 0k̂0 and find the manipulator’s equations of motion.

17. A planar manipulator.

Figure 12.26 illustrates a three DOF planar manipulator. Determine
the equations of motion of the manipulator if the links are massless
and there are two massive points m1 and m2.

18. F Dynamics of a SCARA robot.

Calculate the dynamic joints’ force system for the SCARA robot
RkRkRkP shown in Figure 5.23 if g = −g 0k̂0.

19. F Dynamics of an SRMS manipulator.
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y0

y1

x1

x0

1θ

2θ

l 3

d2

x2

y2

x3

ϕ

m1

m2

FIGURE 12.27. A RPR planar redundant manipulator.

Figure 5.24 shows a model of the Shuttle remote manipulator system
(SRMS).

(a) Derive the equations of motion for the SRMS and calculate the
joints’ force system for g = 0.

(b) Derive the equations of motion for the SRMS and calculate the
joints’ force system for g = −g 0k̂0.

(c) Eliminate the constraint forces and reduce the number of equa-
tions equal to the number of action moments.

(d) Assume the links are made of a uniform cylinder with radius
r = .25m and m = 12 kg/m. Use the characteristics indicated
in Table 5.10 and find the equations of motion when the end-
effector is holding a 24 kg mass.

20. 3R planar manipulator recursive dynamics.

The manipulator shown in Figure 12.29 is a 3R planar manipulator
attached to a wall and therefore, g = −g 0 ı̂0.

(a) Find the equations of motion for the manipulator utilizing the
backward recursive Newton-Euler technique.

(b) F Find the equations of motion for the manipulator utilizing
the forward recursive Newton-Euler technique.

21. A RPR planar redundant manipulator.

(a) Figure 12.27 illustrates a 3 DOF planar manipulator with joint
variables θ1, d2, and θ2. Determine the equations of motion of the
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manipulator if the links are massless and there are two massive
points m1 and m2.

22. Polar planar manipulator recursive dynamics.

Figure 5.56 depicts a polar planar manipulator with 2 DOF .

(a) Find the equations of motion for the manipulator utilizing the
backward recursive Newton-Euler technique.

(b) F Find the equations of motion for the manipulator utilizing
the forward recursive Newton-Euler technique.

23. F Recursive dynamics of an articulated manipulator.

Figure 5.22 illustrates an articulated manipulator R`RkR. Use g =
−g 0k̂0 and find the manipulator’s equations of motion

(a) utilizing the backward recursive Newton-Euler technique.

(b) utilizing the forward recursive Newton-Euler technique.

24. F Recursive dynamics of a SCARA robot.

A SCARA robot RkRkRkP is shown in Figure 5.23. If g = −g 0k̂0
determine the dynamic equations of motion by

(a) utilizing the backward recursive Newton-Euler technique.

(b) utilizing the forward recursive Newton-Euler technique.

25. F Recursive dynamics of an SRMS manipulator.

Figure 5.24 shows a model of the Shuttle remote manipulator system
(SRMS).

(a) Derive the equations of motion for the SRMS utilizing the back-
ward recursive Newton-Euler technique for g = 0.

(b) Derive the equations of motion for the SRMS utilizing the for-
ward recursive Newton-Euler technique for g = 0.

26. 3R planar manipulator Lagrange dynamics.

Find the equations of motion for the 3R planar manipulator shown
in Figure 12.29 utilizing the Lagrange technique. The manipulator is
attached to a wall and therefore, g = −g 0 ı̂0.

27. Polar planar manipulator Lagrange dynamics.

Find the equations of motion for the polar planar manipulator, shown
in Figure 5.56, utilizing the Lagrange technique.
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28. F Lagrange dynamics of an articulated manipulator.

Figure 5.22 illustrates an articulated manipulator R`RkR. Use g =
−g 0k̂0 and find the manipulator’s equations of motion utilizing the
Lagrange technique.

29. F Lagrange dynamics of a SCARA robot.

A SCARA robot RkRkRkP is shown in Figure 5.23. If g = −g 0k̂0
determine the dynamic equations of motion by applying the Lagrange
technique.

30. F Lagrange dynamics of an SRMS manipulator.

Figure 5.24 shows a model of the Shuttle remote manipulator system
(SRMS). Derive the equations of motion for the SRMS utilizing the
Lagrange technique for

(a) g = 0

(b) g = −g 0k̂0.

31. F Work done by actuators.

Consider a 2R planar manipulator moving on a given path. Assume
that the endpoint of a 2R manipulator moves with constant speed
v = 1m/ sec from P1 to P2, on a path made of two semi-circles as
shown in Figure 13.35. Calculate the work done by the actuators if
l1 = l2 = 1m and the manipulator is carrying a 12 kg mass. The
center of the circles are at (0.75m, 0.5m) and (−0.75m, 0.5m).

32. Statics of a 2R planar manipulator.

Figure 12.28 illustrates a 2R planar manipulator attached to a ceiling.
The links are uniform with

m1 = 24 kg m2 = 18kg

l1 = 1m l2 = 1m

g = −g 0ĵ0.

There is a load Fe = −14g 0ĵ0N at the endpoint. Calculate the static
moments Q1 and Q2 for θ1 = 30deg and θ2 = 45deg.

33. Statics of a 2R planar manipulator at a different base angle.

In Exercise 32 keep θ2 = 45deg and calculate the static moments
Q1 and Q2 as functions of θ1. Plot Q1 and Q2 versus θ1 and find
the configuration that minimizes Q1, Q2, Q1+Q2, and the potential
energy V .
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FIGURE 12.28. A 2R planar manipulator attached to a ceiling in static condition.
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FIGURE 12.29. A 3R planar manipulator attached to a wall.
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34. Statics of a 3R planar manipulator.

Figure 12.29 illustrates a 3R planar manipulator attached to a wall.
Derive the static force and moment at each joint to keep the config-
uration of the manipulator if g = −g 0ı̂0.

35. F Statics of an articulated manipulator.

An articulated manipulator R`RkR is shown in Figure 5.22. Find the
static force and moment at joints for g = g 0k̂0. The end-effector is
carrying a 20 kg mass. Calculate the maximum base force moment.

36. F Statics of a SCARA robot.

Calculate the static joints’ force system for the SCARA robot RkRkRkP
shown in Figure 5.23 if g = −g 0k̂0 and the end-effector is carrying a
10 kg mass.

37. F Statics of a spherical manipulator.

Figure 5.43 illustrates a spherical manipulator attached with a spher-
ical wrist. Analyze the robot and calculate the static force system in
joints for g = −g 0k̂0 if the end-effector is carrying a 12 kg mass.

38. F Statics of an SRMS manipulator.

A model of the Shuttle remote manipulator system (SRMS) is shown
in Figure 5.24. Analyze the static configuration of the SRMS and
calculate the joints’ force system for g = −g 0k̂0.
Assume the links are made of a uniform cylinder with radius r = .25m
andm = 12 kg/m. Use the characteristics indicated in Table 5.10 and
find the maximum value of the base force system for a 24 kg mass held
by the end-effector. The SRMS is supposed to work in a no-gravity
field.



Part III

Control
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Control is the science of desired motion. It relates the dynamics and kine-
matics of a robot to a prescribed motion. It includes optimization problems
to determine forces so that the system will behave optimally. A typical ex-
ample is the situation in which the initial and terminal configurations of
the robot are given and the forces acting on the robot must be found to
have the motion in minimum time.
Path or trajectory planning is a part of control, in which we plan a

path followed by the manipulator in a planned time profile. Paths can be
planned in joint or Cartesian space. Joint path planning directly specifies
the time evolution of the joint variables. However, Cartesian path specifies
the position and orientation of the end frame. So, path includes attain-
ing a desired target from an initial configuration. It may include avoiding
obstacles. Joint path planning is simple because it does not involve in-
verse kinematics, but it is hard to digest the motion of the manipulator
in Cartesian space. However, Cartesian coordinates make sense but need
inverse kinematics calculation.
In this Part, we develop techniques to derive the required commands to

control the robot’s task.

 Part III Control:



13

Path Planning
Path planning includes three tasks: 1−Defining a geometric curve for the
end-effector between two points. 2−Defining a rotational motion between
two orientations. 3−Defining a time function for variation of a coordinate
between two given values. All of these three definitions are called path
planning. Figure 13.1 illustrates a path of the tip point of a 2R manipulator
between points P1 and P2 to avoid two obstacles.

Y

X

P1P2

1θ

2θ

FIGURE 13.1. A path of the tip point of a 2R manipulator to avoid two obstacles.

13.1 Cubic Path

A cubic function is the simplest polynomial to determine the time behavior
of a variable between two given values, rest-to-rest.
A cubic path in joint space for the joint variable q(t), or in Cartesian

space for a Cartesian coordinate q(t), between two points q(t0) and q(tf )
is

q(t) = a0 + a1t+ a2t
2 + a3t

3 (13.1)

where

a0 = −
q1t

2
0 (t0 − 3tf ) + q0t

2
f (3t0 − tf )

(tf − t0)
3 − t0tf

q00tf + q01t0

(tf − t0)
2 (13.2)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_13,  
© Springer Science+Business Media, LLC 2010 
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a1 = 6t0tf
q0 − q1

(tf − t0)
3

+
q00tf

³
t2f + t0tf − 2t20

´
+ q01t0

³
2t2f − t20 − t0tf

´
(tf − t0)

3 (13.3)

a2 = −q0 (3t0 + 3tf ) + q1 (−3t0 − 3tf )
(tf − t0)

3

−
q01

³
t0tf − 2t20 + t2f

´
+ q00

³
2t2f − t20 − t0tf

´
(tf − t0)

3 (13.4)

a3 =
2q0 − 2q1 + q00 (tf − t0) + q01 (tf − t0)

(tf − t0)
3 (13.5)

and

q(t0) = q0 q̇(t0) = q00
q(tf ) = qf q̇(tf ) = q0f . (13.6)

Proof. A cubic polynomial has four coefficients. Therefore, it can satisfy
the position and velocity constraints at the initial and final points. For
simplicity, we call the value of the variable, the position, and the rate of the
variable, the velocity. Assume that the position and velocity of a variable
at the initial time t0 and at the final time tf are given as (13.6).
Substituting the boundary conditions in the position and velocity equa-

tions of the joint variable

q(t) = a0 + a1t+ a2t
2 + a3t

3 (13.7)

q̇(t) = a1 + 2a2t+ 3a3t
2 (13.8)

generates four equations for the coefficients of the path.⎡⎢⎢⎣
1 t0 t20 t30
0 1 2t0 3t20
1 tf t2f t3f
0 1 2tf 3t2f

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

q0
q00
qf
q0f

⎤⎥⎥⎦ (13.9)

Their solutions are given in (13.2) to (13.5).
In case that t0 = 0, the coefficients simplify to

a0 = q0 (13.10)

a1 = q00 (13.11)

a2 =
3 (qf − q0)−

³
2q00 + q0f

´
tf

t2f
(13.12)

a3 =
−2 (qf − q0) +

³
q00 + q0f

´
tf

t3f
. (13.13)
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FIGURE 13.2. Kinematics of a rest-to-rest cubic path.

It is also possible to employ a time shift and search for a cubic polynomial
of the form

q(t) = a0 + a1 (t− t0) + a2t (t− t0)
2
+ a3 (t− t0)

3
. (13.14)

Now, the boundary conditions (13.6) generate a set of equations⎡⎢⎢⎣
1 0 0 0
0 1 0 0

1 (tf − t0) (tf − t0)
2

(tf − t0)
3

0 1 2 (tf − t0) 3 (tf − t0)
2

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

q0
q00
qf
q0f

⎤⎥⎥⎦ (13.15)

with the following solutions:⎡⎢⎢⎣
a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

q0
q00

− (tf − t0)
−2
³
3q0 − 3qf − 2t0q00 − t0q

0
f + 2tfq

0
0 + tfq

0
f

´
(tf − t0)

−3
³
2q0 − 2qf − t0q

0
0 − t0q

0
f + tfq

0
0 + tfq

0
f

´
⎤⎥⎥⎥⎥⎦

(13.16)
A disadvantage of cubic paths is the acceleration jump at boundaries

that introduces infinite jerks.

Example 348 Rest-to-rest cubic path.
Assume q(0) = 10 deg, q(1) = 45 deg, and q̇(0) = q̇(1) = 0. The coeffi-

cients of the cubic path are

a0 = 10 a1 = 0 a2 = 105 a3 = −70 (13.17)

that generate a path for the variable as

q(t) = 10 + 105t2 − 70t3 deg . (13.18)
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FIGURE 13.3. Kinematics of a to-rest cubic path in joint space.

The path information is shown in Figure 13.2.

Example 349 To-rest cubic path.
Assume the angle of a joint starts from θ(0) = 10 deg, θ̇(0) = 12 deg / s

and ends at θ(2) = 45 deg, θ̇(0) = 0. The coefficients of a cubic path for
this motion are:

a0 = 10 a1 = 12 a2 =
81

2
a3 =

−29
2

(13.19)

The kinematics of this path are

θ(t) = 10 + 12t+ 40.5t2 − 14.5t3 deg (13.20)

θ̇(t) = 81t− 43.5t2 + 12 deg / s (13.21)

θ̈(t) = 81− 87t deg / s2 (13.22)

and are shown graphically in Figure 13.3.

Example 350 Rest-to-rest path with a constant velocity in the middle.
Assume we need a rest-to-rest path with a constant given velocity q̇ = q̇c

for t1 < t < t2 where t0 < t1 < t2 < tf . We show the boundary conditions
to be satisfied as

q(t0) = q0 q̇(t0) = q00
q̇(t) = q0c t1 < t < t2

q(tf ) = qf q̇(tf ) = q0f . (13.23)

The path has three parts: rest-to, constant-velocity, and to-rest. We need
an equation for the rest-to part of the motion to achieve the given velocity.
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A quadratic path has three coefficients and can be utilized to satisfy three
conditions.

q1(t) = a0 + a1t+ a2t
2 (13.24)

q̇1(t) = a1 + 2a2t (13.25)

The conditions are the initial position and velocity, and the final constant
velocity. Assuming t0 = 0 the conditions for the rest-to path are

q1(0) = q0 q̇1(0) = 0 q̇1(t1) = q0c (13.26)

that generate the following equations:

q0 = a0 (13.27)

0 = a1 (13.28)

q0c = 2a2t1. (13.29)

Therefore, the rest-to path is:

q1(t) = q0 +
q0c
2t1

t2 0 < t < t1 (13.30)

Given the specific constant velocity q0c shows that the path in the middle
part is:

q̇2(t) = q0c (13.31)

q2(t) = q0ct+ C1 t1 < t < t2 (13.32)

The constant of integration can be found by utilizing the position condition
at t = t1.

q0 +
q0c
2t1

t21 = q0ct1 + C1 (13.33)

C1 = q0 −
1

2
t1q

0
c (13.34)

There are four conditions for the to-rest part of the path. Therefore, it
can be calculated utilizing a cubic equation

q3(t) = b0 + b1t+ b2t
2 + b3t

3 (13.35)

q̇3(t) = b1 + 2b2t+ 3b3t
2 (13.36)

and the following boundary conditions:

q3(tf ) = qf (13.37)

q̇3(tf ) = 0 (13.38)

q3(t2) = q2(t2) = q2 = q0ct2 + q0 −
1

2
t1q

0
c (13.39)

q̇(t2) = q̇2(t2) = q0c (13.40)
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These conditions generate three equations⎡⎢⎢⎣
1 tf t2f t3f
0 1 2tf 3t2f
1 t2 t22 t32
0 1 2t2 3t22

⎤⎥⎥⎦
⎡⎢⎢⎣

b0
b1
b2
b3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

qf
0

q0ct2 + q0 − 1
2 t1q

0
c

q0c

⎤⎥⎥⎦ (13.41)

with the following solutions:

b0 = −t2t2f
q0c

−2t2tf + t22 + t2f
+ q2

t3f − 3t2t2f
−t32 + t3f − 3t2t2f + 3t22tf

+qf
−t32 + 3t22tf

−t32 + t3f − 3t2t2f + 3t22tf
(13.42)

b1 = q0c
2t2tf + t2f

−2t2tf + t22 + t2f
+ 6q2t2

tf
−t32 + t3f − 3t2t2f + 3t22tf

−6t2qf
tf

−t32 + t3f − 3t2t2f + 3t22tf
(13.43)

b2 = q0c
−t2 − 2tf

−2t2tf + t22 + t2f
+ q2

−3t2 − 3tf
−t32 + t3f − 3t2t2f + 3t22tf

+qf
3t2 + 3tf

−t32 + t3f − 3t2t2f + 3t22tf
(13.44)

b3 =
q0c

−2t2tf + t22 + t2f
+ 2

q2
−t32 + t3f − 3t2t2f + 3t22tf

−2 qf
−t32 + t3f − 3t2t2f + 3t22tf

(13.45)

for
t2 < t < tf . (13.46)

A graph of the path for the following values is illustrated in Figure 13.4.

t1 = 0.4 s t2 = 0.7 s tf = 1 s

q0 = 0 qf = 60deg q0c = 50deg / s (13.47)

Example 351 A quadratic path through three points.
A quadratic path passing through three points (q1, t1), (q2, t2), and (q3, t3)

is:

q(t) =
(t− t2) (t− t3)

(t1 − t2) (t1 − t3)
q1 +

(t− t3) (t− t1)

(t2 − t3) (t2 − t1)
q2

+
(t− t1) (t− t2)

(t3 − t1) (t3 − t1)
q3 (13.48)
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FIGURE 13.4. A piecewise rest-to-rest path with a constant velocity in the mid-
dle.

As an example, the path passing through (10 deg, 0), (25 deg, 0.5), and
(45 deg, 1) is:

q(t) =
(t− 0.5) (t− 1)
−0.5 (−1) 10 +

(t− 1) t
(−0.5) (0.5)25 +

t (t− 0.5)
1

45

= −5
2

¡
14.0t2 − 19.0t− 4.0

¢
(13.49)

The velocity of the path at both ends are:

q̇(0) = 47.5 deg / s (13.50)

q̇(1) = −22.5 deg / s (13.51)

13.2 Polynomial Path

The number of required conditions determines the degree of the polynomial
for q = q(t). In general, a polynomial path of degree n,

q(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n (13.52)

needs n + 1 conditions. The conditions may be of two types: positions at
a series of points, so that the trajectory will pass through all specified
points; or position, velocity, acceleration, and jerk at two points, so that
the smoothness of the path can be controlled.
The problem of searching for the coefficients of a polynomial reduces to a

set of linear algebraic equations and may be solved numerically. However,
the path planning can be simplified by splitting the whole path into a
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series of segments and utilizing combinations of lower order polynomials
for different segments of the path. The polynomials must then be joined
together to satisfy all the required boundary conditions.

Example 352 Quintic path.
Forcing a variable to have specific position, velocity, and acceleration at

boundaries introduces six conditions:

q(t0) = q0 q̇(t0) = q00 q̈(t0) = q000
q(tf ) = qf q̇(tf ) = q0f q̈(tf ) = q00f (13.53)

A five degree polynomial can satisfy these conditions

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (13.54)

and generates a set of six equations:⎡⎢⎢⎢⎢⎢⎢⎣
1 t0 t20 t30 t40 t50
0 1 2t0 3t20 4t30 5t40
0 0 2 6t0 12t20 20t30
1 tf t2f t3f t4f t5f
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6tf 12t2f 20t3f

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

q0
q00
q000
qf
q0f
q00f

⎤⎥⎥⎥⎥⎥⎥⎦ (13.55)

A rest-to-rest path with no acceleration at the rest positions with the
following conditions:

q(0) = 10deg q̇(0) = 0 q̈(0) = 0

q(1) = 45deg q̇(1) = 0 q̈(1) = 0 (13.56)

can be found by solving a set of equations for the coefficients of the polyno-
mial ⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
1 1 1 1 1 1
0 1 2 3 4 5
0 0 2 6 12 20

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
10
0
0
45
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ (13.57)

which shows ⎡⎢⎢⎢⎢⎢⎢⎣
a0
a1
a2
a3
a4
a5

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

10
0
0
350
−525
210

⎤⎥⎥⎥⎥⎥⎥⎦ . (13.58)

The path equation is then equal to

q(t) = 10 + 350t3 − 525t4 + 210t5. (13.59)

which is shown in Figure 13.5.
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FIGURE 13.5. A quintic rest-to-rest path.

Example 353 A jerk zero at a start-stop path.
To make a path start and stop with zero jerk, a seven degree polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + a7t

7 (13.60)

and eight boundary conditions must be employed.

q(0) = q0 q̇(0) = 0 q̈(0) = 0
...
q (0) = 0

q(1) = qf q̇(1) = 0 q̈(1) = 0
...
q (1) = 0 (13.61)

Such a zero jerk start-stop path for q(0) = 10deg and q(1) = 45 deg,
can be found by solving the following set of equations for the unknown
coefficients a0, a1, · · · , a7⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 6 0 0 0 0
1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
0 0 2 6 12 20 30 42
0 0 0 6 24 60 120 210

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
0
0
0
45
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.62)

which provides

q(t) = 10 + 1225t4 − 2940t5 + 2450t6 − 700t7. (13.63)

A graph of this path is illustrated in Figure 13.6.
Figures 13.2, depicts the path of a rest-to-rest motion with no condition

on the acceleration and jerk. Figure 13.5 shows an improvement by forcing
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FIGURE 13.6. A jerk zero at start-stop path.

the motion to have zero accelerations at start and stop. In Figure 13.6,
the motion is forced to have zero acceleration and zero jerk at start and
stop. Hence, it shows the smoothest start and stop. However, increasing the
smoothness of the start and stop increases the peak value of acceleration.

Example 354 Constant acceleration path.
A constant acceleration path has two segments with positive and negative

accelerations. Let’s assume the absolute value of the positive and negative
accelerations are given.

|q̈(t0)| = ac (13.64)

The first half of the motion has a positive acceleration that needs a second
degree polynomial

q̇1(t0) = act (13.65)

q1(t0) =
1

2
act

2 + q0 (13.66)

for

0 < t <
1

2
tf . (13.67)

The constants of integration are found based on the initial conditions.

q1(0) = q0 q̇1(0) = 0 (13.68)

For the second half of the path, we may start with a second degree polynomial

q2(t) = a0 + a1t+ a2t
2 1

2
tf < t < tf (13.69)
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FIGURE 13.7. A constant acceleration path.

and impose the following boundary conditions:

q2(tf ) = qf

q̇2(tf ) = 0

q1(
tf
2
) = q2(

tf
2
) =

1

8
act

2
f + q0 (13.70)

These conditions generate three equations for the unknown coefficients⎡⎣ 1 tf t2f
0 1 2tf
0 1 tf

⎤⎦⎡⎣ a0
a1
a2

⎤⎦ =
⎡⎣ qf

0
1
8act

2
f + q0

⎤⎦ (13.71)

with the following solution:

⎡⎣ a0
a1
a2

⎤⎦ =
⎡⎢⎢⎣

qf − tf

³
q0 +

1
8act

2
f

´
2q0 +

1
4act

2
f

− 1
tf

³
q0 +

1
8act

2
f

´
⎤⎥⎥⎦ (13.72)

A constant acceleration path is shown in Figure 13.7 for the conditions
q0 = 10deg, qf = 45deg, tf = 1, and ac = 200 deg / s

2.

Example 355 Point sequence path.
A path can be assigned via a series of points that the variable must attain

at specific times. The points may also be defined to approximate a trajectory.
Consider an example path specified by four points q0, q1, q2, and q3, such
that the points are reached at times t0, t1, t2, and t3 respectively. In addition
to positions, we usually impose constraint on initial and final velocities and
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accelerations. The conditions for such a sequence of points can be

q(t0) = q0 q̇(t0) = 0 q̈(t0) = 0

q(t1) = q1

q(t2) = q2

q(t3) = q3 q̇(t3) = 0 q̈(t3) = 0. (13.73)

A seven degree polynomial can be utilized to satisfy these eight conditions.

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4

+a5t
5 + a6t

6 + a7t
7 (13.74)

The set of equations for the unknown coefficients is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30 t40 t50 t60 t70
0 1 2t0 3t20 4t30 5t40 6t50 7t60
0 0 2 6t0 12t20 20t30 30t40 42t50
1 t1 t21 t31 t41 t51 t61 t71
1 t2 t22 t32 t42 t52 t62 t72
1 t3 t23 t33 t43 t53 t63 t73
0 1 2t3 3t23 4t33 5t43 6t53 7t63
0 0 2 6t3 12t23 20t33 30t43 42t53

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0
0
0
q1
q2
q3
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.75)

that can be simplified to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
1 0.4 0.42 0.43 0.44 0.45 0.46 0.47

1 0.7 0.72 0.73 0.74 0.75 0.76 0.77

1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7
0 0 2 6 12 20 30 42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
0
0
20
30
45
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.76)

for the following example data.

q(0) = 10 deg q̇(0) = 0 q̈(0) = 0

q(0.4) = 20 deg

q(0.7) = 30 deg

q(1) = 45 deg q̇(1) = 0 q̈(1) = 0 (13.77)
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FIGURE 13.8. A point sequence path.

The solution for the coefficients is:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
0
0

1500.5
−7053
12891
−10380
3076.9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13.78)

These coefficients generate a path as shown in Figure 13.8.
This method provides a continuous and differentiable function for the q

variable. Continuity and differentiability of q = q(t) is an advantage that
provides a continuous velocity, acceleration, and jerk. However, the number
of equations increases by increasing the number of points, which needs larger
data storage and increases the calculating time.

Example 356 Splitting a path into a series of segments.
Instead of using a single high degree polynomial for the entire trajectory,

we may prefer to split the trajectory into some segments and use a series
of low degree polynomials.
Consider a path for the following boundary conditions:

q(t0) = q0 q̇(t0) = 0 q̈(t0) = 0

q(t4) = q3 q̇(t4) = 0 q̈(t4) = 0 (13.79)
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which must also pass through three middle points given below.

q(t1) = q1

q(t2) = q2

q(t3) = q3 (13.80)

Let’s split the entire path into four segments, namely q1(t), q2(t), q3(t), and
q4(t).

q1(t) for q(t0) < q1(t) < q(t1) and t0 < t < t1
q2(t) for q(t1) < q2(t) < q(t2) and t1 < t < t2
q3(t) for q(t2) < q3(t) < q(t3) and t2 < t < t3
q4(t) for q(t3) < q4(t) < q(t4) and t3 < t < t4

The boundary conditions for the first segment are

q1(t0) = q0 q̇1(t0) = 0 q̈1(t0) = 0

q1(t1) = q1 (13.81)

which can be satisfied by a cubic function.

q1(t) = a0 + a1 (t− t0) + a2 (t− t0)
2 + a3 (t− t0)

3 (13.82)

The coefficients can be calculated by solving a set of equations⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 2 0

1 (t1 − t0) (t1 − t0)
2
(t1 − t0)

3

⎤⎥⎥⎦
⎡⎢⎢⎣

a0
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

q0
0
0
q1

⎤⎥⎥⎦ (13.83)

that provides

a0 = q0 a1 = 0 a2 = 0 a3 =
q1 − q0

(t1 − t0)
3 . (13.84)

The path in the second segment must satisfy the following boundary condi-
tions:

q2(t1) = q1

q̇2(t1) = q̇1(t1) = a1 + 2a2 (t1 − t0)
2
+ 3a3 (t1 − t0)

2

= q0 + 3
q1 − q0
t1 − t0

q2(t2) = q2 (13.85)

A quadratic polynomial will satisfy these conditions:

q2(t) = b0 + b1t+ b2t
2 (13.86)
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The coefficients are the solutions of⎡⎣ 1 t1 t21
0 1 2t1
1 t2 t22

⎤⎦⎡⎣ b0
b1
b2

⎤⎦ =
⎡⎣ q1

q0 + 3
q1−q0
t1−t0

q2

⎤⎦ (13.87)

that provide

b0 = q2
t21

−2t1t2 + t21 + t22
+ q1

−2t1t2 + t22
−2t1t2 + t21 + t22

−t1
t2

−t1 + t2

µ
q0 + 3

−q0 + q1
−t0 + t1

¶
(13.88)

b1 = 2q1
t1

−2t1t2 + t21 + t22
− 2q2

t1
−2t1t2 + t21 + t22

+
t1 + t2
−t1 + t2

µ
q0 + 3

−q0 + q1
−t0 + t1

¶
(13.89)

b2 = − q1
−2t1t2 + t21 + t22

+
q2

−2t1t2 + t21 + t22

− 1

−t1 + t2

µ
q0 + 3

−q0 + q1
−t0 + t1

¶
. (13.90)

The boundary conditions in the third segment are:

q3(t2) = q2 q̇3(t2) = q̇2(t2) = b1 + 2b2t2

q3(t3) = q3 (13.91)

We can satisfy these conditions with a quadratic equation

q3(t) = c0 + c1t+ c2t
2 (13.92)

that provides three equations for the unknown coefficients.⎡⎣ 1 t2 t22
0 1 2t2
1 t3 t23

⎤⎦⎡⎣ c0
c1
c2

⎤⎦ =
⎡⎣ q2

b1 + 2b2t2
q3

⎤⎦ (13.93)

The coefficients are:

c0 = −t2
t3

−t2 + t3
(b1 + 2b2t2) + q3

t22
−2t2t3 + t22 + t23

+q2
−2t2t3 + t23

−2t2t3 + t22 + t23
(13.94)
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c1 =
t2 + t3
−t2 + t3

(b1 + 2b2t2) + 2q2
t2

−2t2t3 + t22 + t23

−2q3
t2

−2t2t3 + t22 + t23
(13.95)

c2 = − 1

−t2 + t3
(b1 + 2b2t2)−

q2
−2t2t3 + t22 + t23

+
q3

−2t2t3 + t22 + t23
. (13.96)

The boundary conditions for the fourth segment are

q4(t3) = q3 q̇4(t3) = q̇3(t3) = c1 + 2c2t3

q4(t4) = q4 q̇4(t4) = 0 q̈4(t4) = 0 (13.97)

which needs a fourth degree polynomial to be satisfied.

q4(t) = d0 + d1t+ d2t
2 + d3t

3 + d4t
4 (13.98)

Substituting the boundary conditions generates a set of four equations for
the coefficient.⎡⎢⎢⎢⎢⎣

1 t3 t23 t33 t43
0 1 2t2 3t22 4t32
1 t4 t24 t34 t44
0 1 2t4 3t24 4t34
0 0 2 6t4 12t24

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

d0
d1
d2
d3
d4

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

q3
c1 + 2c2t3

q4
0
0

⎤⎥⎥⎥⎥⎦ (13.99)

As an example, a set of conditions given by

t0 = 0 t1 = 0.4 t2 = 0.7 t3 = 0.9 t4 = 1 (13.100)

q(0) = 10deg q̇(0) = 0 q̈(0) = 0

q(0.4) = 20deg

q(0.7) = 30deg

q(0.9) = 35deg

q(1) = 45deg q̇i(1) = 0 q̈(1) = 0 (13.101)

provides

q1(t) = 10 + 156.25t3 (13.102)

q2(t) = −41.56 + 222.78t− 172.2t2 (13.103)

q3(t) = 148.99− 321.67t+ 216.67t2 (13.104)

q4(t) = 198545− 827166.6672t
+1290500t2 − 893500t3 + 231666.67t4 (13.105)
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t

q

FIGURE 13.9. Spliting a path into a series of segments.

which is shown in Figure 13.9 graphically.
The disadvantage of the segment method is the lack of a smooth overall

path and having a discontinuous acceleration. To increase the smoothness
of the path, we need to use higher degree polynomials and put constraints
on acceleration and possibly jerk.
Equations (13.102)-(13.105) indicate that:

q̈1(t1) = 375 q̈2(t1) = −344.4 (13.106)

q̈2(t2) = −344.4 q̈3(t2) = 433.34 (13.107)

q̈3(t3) = 433.34 q̈4(t3) = 7900 (13.108)

q̈1(t1) 6= q̈2(t1) q̈2(t2) 6= q̈3(t2) q̈3(t3) 6= q̈4(t3) (13.109)

Therefore, the acceleration of the path is not continuos at the connection
points and show a finite jump. A jump in acceleration introduces an in-
finity jerk. Having continuos acceleration is the minimum requirement for
smoothness of a path. A piecewise path with continuous acceleration is called
spline.

Example 357 F Least-squares polynomial.
When the number of points to approximate a trajectory is too large, we

may use a low degree polynomial to pass close to the points. Least-squares
is an applied method to determine the coefficients of a selected polynomial
to approximate the path.
Consider a path with N given points,

pi = p(ti) i = 1, 2, 3, · · · ,N (13.110)

and a polynomial of degree n that is supposed to approximate the path. If
N = n+ 1 then the polynomial passes exactly through all given points. To
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work with low degree polynomials, we choose n < N + 1.

q = a0 + a1t+ a2t
2 + · · ·+ ant

n (13.111)

Having the N points (13.110) and the polynomial (13.111), we define an
error ei at ti.

ei = pi − qi = pi − a0 − a1ti − a2t
2
i − · · ·− ant

n
i (13.112)

Sum of e2i for all points pi is the total error e.

e =
NX
i=1

e2i =
NX
i=1

¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢2
(13.113)

The minimum error e provides the best approximate polynomial (13.111).
At the minimum, all the partial derivatives ∂e/∂a0, ∂e/∂a1, · · · , ∂e/∂an
vanish. These conditions generate n+ 1 equations:

∂e

∂a0
= −2

NX
i=1

¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢
= 0

∂e

∂a1
= −2

NX
i=1

ti
¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢
= 0

· · ·
∂e

∂an
= −2

NX
i=1

tni
¡
pi − a0 − a1ti − a2t

2
i − · · ·− ant

n
i

¢
= 0 (13.114)

Dividing each equation by −2 and rearrangement gives n + 1 equations to
be simultaneously solved for the coefficients ai, i = 1, 2, · · · , n.

a0N + a1

NX
i=1

ti + · · ·+ an

NX
i=1

tni =
NX
i=1

pi

a0

NX
i=1

ti + a1

NX
i=1

t2i + · · ·+ an

NX
i=1

tn+1i =
NX
i=1

tipi

· · ·

a0

NX
i=1

tni + a1

NX
i=1

tn+1i + · · ·+ an

NX
i=1

t2ni =
NX
i=1

tni pi (13.115)

Rearrangement makes a set of linear equations to be solved for ai, i =
1, 2, · · · , n

[A]a = b (13.116)
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where,

[A] =

⎡⎢⎢⎢⎣
N

PN
i=1 ti

PN
i=1 t

2
i · · ·

PN
i=1 t

n
iPN

i=1 ti
PN

i=1 t
2
i

PN
i=1 t

3
i · · ·

PN
i=1 t

n+1
i

· · · · · · · · · · · · · · ·PN
i=1 t

n
i

PN
i=1 t

n+1
i

PN
i=1 t

n+2
i · · ·

PN
i=1 t

2n
i

⎤⎥⎥⎥⎦ (13.117)

a =

⎡⎢⎢⎢⎢⎣
a0
a1
a2
· · ·
an

⎤⎥⎥⎥⎥⎦ b =

⎡⎢⎢⎢⎢⎢⎢⎣

PN
i=1 piPN
i=1 tipiPN
i=1 t

2
i pi

· · ·PN
i=1 t

n
i pi

⎤⎥⎥⎥⎥⎥⎥⎦ . (13.118)

13.3 F Non-Polynomial Path Planning

A path of motion in either joint or Cartesian spaces may be defined based
on different mathematical functions. Harmonic and cycloid functions are
the most common paths.

q(t) = a0 + a1 cos a2t+ a3 sin a2t (13.119)

q(t) = a0 + a1t− a2 sina3t (13.120)

However, we may also use other function approximate methods such as
Fourier,

q(t) =
A0
2
+
∞X
n=1

[An cos (nx) +Bn sin (nx)] (13.121)

A0 =
1

π

Z π

−π
q(t)dt (13.122)

An =
1

π

Z π

−π
q(t) cos (nx) dt (13.123)

Bn =
1

π

Z π

−π
q(t) sin (nx) dt (13.124)

Legendre,

qn(t) =
nX
i=0

Li(t)q(ti) (13.125)

Li(t) =
nY

j=0,j 6=i

t− tj
ti − tj

i = 0, 1, 2, · · · , n (13.126)
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FIGURE 13.10. A harmonic path.

Chebyshev.

qn+1(t) = 2tqn(t)− qn−1(t) (13.127)

q0(t) = 1 q1(t) = t (13.128)

Example 358 Harmonic path.
Consider a harmonic path between two points q(t0) and q(tf )

q(t) = a0 + a1 cos a2t+ a3 sina2t (13.129)

with the rest-to-rest boundary conditions.

q(t0) = q0 q̇(t0) = 0

q(tf ) = qf q̇(tf ) = 0 (13.130)

Applying the conditions to the harmonic equation (13.129) provides the
following solution:

q(t) =
1

2

µ
qf + q0 − (qf − q0) cos

π (t− t0)

tf − t0

¶
. (13.131)

A plot of the solution is depicted in Figure 13.10 for the following numerical
values:

t0 = 0 tf = 1

q0 = 10deg q00 = 0

qf = 45deg q0f = 0. (13.132)
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FIGURE 13.11. A cycloid path.

Example 359 A cycloid path.
A cycloid path between two points q(t0) and q(tf ) with rest-to-rest bound-

ary conditions

q(t0) = q0 q̇(t0) = 0

q(tf ) = qf q̇(tf ) = 0 (13.133)

is:

q(t) = q0 +
qf − q0

π

µ
π (t− t0)

tf − t0
− 1
2
sin

2π (t− t0)

tf − t0

¶
(13.134)

A plot of the cycloid path is illustrated in Figure 13.11 for the following
numerical values:

t0 = 0 tf = 1

q0 = 10deg q00 = 0

qf = 45deg q0f = 0. (13.135)

Comparing Figure 13.11 with 13.5 indicates that the main kinematic
characteristics of a cycloid path are similar to quintic rest-to-rest path.

13.4 Manipulator Motion by Joint Path

Having the joint variables as functions of time, and employing the forward
kinematics of manipulators, allows us to calculate the path of motion for
the end-effector.
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Example 360 2R manipulator motion based on joints’ path.
Assume that we have calculated the paths of the two joints of a 2R planar

manipulator according to cubic functions, and they are:

θ1(t) = 10 + 105t2 − 70t3 deg (13.136)

θ2(t) = 10 + 350t3 − 525t4 + 210t5 deg (13.137)

The joints’ paths satisfy the following conditions:

θ1(0) = 10deg θ̇1(0) = 0

θ1(1) = 45deg θ̇1(1) = 0 (13.138)

θ2(0) = 10 deg θ̇2(0) = 0 θ̈2(0) = 0

θ2(1) = 45 deg θ̇2(1) = 0 θ̈2(1) = 0 (13.139)

The forward kinematics of a 2R manipulator are found in Example 141
as below.

0T2 = 0T1
1T2

=

⎡⎢⎢⎣
c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)
s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ .(13.140)
The fourth column of 0T2 indicates the Cartesian position of the tip point
of the manipulator in the base frame. Therefore, the X and Y components
of the tip point are:

X = l1 cos θ1 + l2 cos (θ1 + θ2) (13.141)

Y = l1 sin θ1 + l2 sin (θ1 + θ2) (13.142)

Substituting θ1 and θ2 from (13.136) and (13.137) provides the time vari-
ation of the position of the tip point. These variations, for l1 = l2 = 1m
are shown in Figure 13.12, while the configurations of the manipulator at
initial and final positions are shown in Figure 13.13.
As long as the joint variables are defined and given as functions of time,

it is immaterial which joint turns first. The joint variables are relative
coordinates and the final configuration of the robot would be the same. They
can even turn together.
Moving a robot by applying a set of joint paths is not always a proper

method. In case the joint variables are not monotonic in time and are
fluctuating, defining a joint path is more complicated. Furthermore, it is
not easy to move the end-effector of a robot on a desired geometric path by
defining joint paths.
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FIGURE 13.12. X and Y components of the tip point position of a 2R planar
manipulator.
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FIGURE 13.13. Configuration of a 2R manipulator at initial and final positions.
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FIGURE 13.14. A 2R robot moveing along a given line.

Example 361 A 2R robot moving along a line.
Let us consider a 2R manipulator with

l1 = l2 = 0.25 (13.143)

that its tip point is supposed to move on a given line Y = f(X) as is shown
in Figure 13.14.

Y = −0.25998X + 0.3705 (13.144)

Assume that the first angle is moving between 45 deg and 135 deg in 10 sec

45 deg < θ1 < 135 deg (13.145)

based on a cubic path.

θ1 =
π

4
+
3π

200
t2 − π

1000
t3 0 < t < 10 sec (13.146)

The elbow joint R will move on a circle and at the beginning is at:

XR1 = 0.25 cos
π

4
= 0.176 78 (13.147)

YR1
= 0.25 sin

π

4
= 0.176 78 (13.148)

Point P1 must be on the line (13.144) at a distance d = 0.25 from R1.

d =

q
(X − 0.176 78)2 + (Y − 0.176 78)2

=

q
(X − 0.176 78)2 + (−0.25998X + 0.3705− 0.176 78)2

= 0.25 (13.149)
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Therefore, P1 is at:

XP1 = 0.411 22 YP1 = 0.263 59 (13.150)

and initial values of angles ϕ and θ2 are:

ϕ = arctan
YP1 − YR1

XP1 −XR1

= arctan
0.263 59− 0.176 78
0.411 22− 0.176 78

= 0.354 63 rad ≈ 20.319 deg (13.151)

θ2 = θ1 − ϕ =
π

4
− 0.354 63

= 0.430 77 rad ≈ 24.681 deg (13.152)

The elbow joint R at the final position is at:

XR2 = 0.25 cos
3π

4
= −0.176 78 (13.153)

YR2
= 0.25 sin

3π

4
= 0.176 78 (13.154)

Point P2 must be on the line (13.144) at a distance d = 0.25 from R2.

d =

q
(X + 0.176 78)

2
+ (Y − 0.176 78)2

=

q
(X + 0.176 78)2 + (−0.25998X + 0.3705− 0.176 78)2

= 0.25 (13.155)

Therefore, P2 is at:

XP2 = −2.818 8× 10−2 YP2 = 0.377 83 (13.156)

and final values of angles ϕ and θ2 are:

ϕ = arctan
YP2 − YR2

XP2 −XR2

= arctan
0.377 83− 0.176 78

−2.818 8× 10−2 + 0.176 78
= 0.934 32 rad ≈ 53.533 deg (13.157)

θ2 = θ1 − ϕ =
3π

4
− 0.934 32

= 1.421 9 rad ≈ 81.469 deg (13.158)

To determine θ2 during the motion, we should follow the same procedure.
Let us find the position of the elbow joint R as a function of θ1.

XR = 0.25 cos θ1 YR = 0.25 sin θ1 (13.159)
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The tip point P must be on the line (13.144) at a distance d = 0.25 from
the elbow joint R.

d =

q
(XP − 0.25 cos θ1)2 + (YP − 0.25 sin θ1)2

=

q
(XP − 0.25 cos θ1)2 + (−0.25998XP + 0.3705− 0.25 sin θ1)2

= 0.25 (13.160)

Solution of this equation for XP and substitution in (13.144) provides the
coordinates (XP , YP ) of the tip point P during the motion. Then, the angle
ϕ and θ2 would be:

ϕ = arctan
YP − YR
XP −XR

= arctan
YP − 0.25 sin θ1
XP − 0.25 cos θ1

(13.161)

θ2 = θ1 − ϕ = θ1 − arctan
YP − 0.25 sin θ1
XP − 0.25 cos θ1

(13.162)

Therefore, to make the point P moving along the line (13.144), while θ1 is
varying as (13.146), the angle θ2 must vary according to (13.162).

13.5 Cartesian Path

Cartesian path planning is mathematically similar to joint space path plan-
ning. Having the coordinates of the start and stop point of the end-effector
as

P0 = P0 (X0, Y0, Z0) P1 = P1 (X1, Y1, Z1) (13.163)

we can connect the points by a geometric space curve

Z = Z (X) Y = Y (X) (13.164)

where,

X (t0) = X0 X (tf ) = Xf . (13.165)

Then, we may define a time path for one of the coordinates, say X, between
P0 and Pf to determine the kinematic behavior of the other coordinates on
the geometric path (13.164).
A point-to-point path can also be planned by connecting the points, or

designing a path to pass close to but not necessarily through the points. A
practical method is to design a path utilizing straight lines with constant
velocity, and deform the corners to have a smooth transition.
The path connecting points r0 to r2, and passing close to the corner r1
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r0

r2

r1

r(t1-t )

r(t1+t )

FIGURE 13.15. Transition parabola between two line segments as a path in
Cartesian space.

on a transition curve, can be designed by a piecewise motion.

r(t) = r1 −
t1 − t

t1 − t0
(r1 − r0) t0 ≤ t ≤ t1 − t0

r(t) = r1 −
(t− t0 − t1)

2

4t0 (t1 − t0)
(r1 − r0)

+
(t+ t0 − t1)

2

4t0 (t2 − t1)
(r2 − r1) t1 − t0 ≤ t ≤ t1 + t0

r(t) = r1 −
t1 − t

t2 − t1
(r2 − r1) t1 + t0 ≤ t ≤ t2

(13.166)

The path starts from r0 at time t0 and moves with constant velocity v1 =
r1−r0
t1−t0 along a line until a point at switching time t1 − t0. At this time, the
path switches to a constant acceleration parabola. At another switching
point at time t1 + t0, the path switches to the second line and moves with
constant velocity v2 = r2−r1

t2−t1 toward the destination at point r2. The time
t1− t0 is the required time to move from r0 to r1 and t2− t1 is the required
time to move from r1 to r2, if there were no transition path. The path is
shown in Figure 13.15 schematically.

Proof. The first line segment starts from a point r0 at time t0 and, without
any deformation, it arrives at point r1 at time t1 via a constant velocity.
The second line ends with a constant velocity at point r2 at time t2 and,
without deformation, it would start from point r1 at time t1.

r(t) =

⎧⎪⎨⎪⎩
r1 −

t1 − t

t1 − t0
(r1 − r0) t0 ≤ t ≤ t1

r1 −
t1 − t

t2 − t1
(r2 − r1) t1 ≤ t ≤ t2

(13.167)
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We introduce an interval time t0 before arriving at r1 to switch from the
line to a transition curve. The transition curve is then between times t1− t0
and t1 + t0. The simplest transition curve is a parabola, which, at the end
points, has the same speed as the lines.
The boundary positions of the transition curve on the first and second

lines are respectively at

r(t1 − t0) = r1 −
t0

t1 − t0
δ1 (13.168)

r(t1 + t0) = r1 +
t0

t2 − t1
δ2 (13.169)

where,

δ1 = r1 − r0 (13.170)

δ2 = r2 − r1. (13.171)

The velocity at the beginning and final points of the transition curve are
respectively equal to:

ṙ(t1 − t0) =
1

t1 − t0
δ1 (13.172)

ṙ(t1 + t0) =
1

t2 − t1
δ2 (13.173)

Assume the acceleration of motion along the transition curve is constant

r̈(t) = r̈c = const (13.174)

and therefore, the transition curve after integration is equal to

r(t) = r(t1 − t0) + (t− t1 + t0)ṙ(t1 − t0) +
1

2
(t− t1 + t0)2r̈c. (13.175)

Substituting (13.168) and (13.172) provides

r(t) = r1 +
t− t1
t1 − t0

δ1 +
1

2
r̈c(t− t1 + t0)2. (13.176)

The transition curve r(t) must be at the end point when t = t1 + t0

r(t1 + t0) = r1 +
t0

t2 − t1
δ2 = r1 +

t0

t1 − t0
δ1 + 2r̈c t

2
1 (13.177)

therefore, the acceleration on the curve must be

r̈c =
1

2t0

µ
δ2

t2 − t1
− δ1

t1 − t0

¶
. (13.178)
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Hence, the curve equation becomes

r(t) = r1 − δ1
(t− t0 − t1)

2

4t0 (t1 − t0)
+ δ2

(t+ t0 − t1)
2

4t0 (t2 − t1)
(13.179)

showing that the path between r0 and r2 has a piecewise character given
in (13.166).
A Cartesian path followed by the manipulator, plus the time profile along

the path, specify the position and orientation of the end frame. Issues in
Cartesian path planning include attaining a specific target from an initial
starting point, avoiding obstacles, and staying within manipulator capa-
bilities. A path is modeled by n points called control points. The control
points are connected via straight lines and the transient parabolas will be
implemented to exclude the sharp corners.
An alternative method is applying an interpolating or approximating

method, such as least-squared, to design a continuous path over the control
points, or close to them.

Example 362 A path in 2D Cartesian space.
Consider a line in the XY plane connecting (1, 0) and (1, 1), and another

line connecting (1, 1) and (0, 1). Assume that the time is zero at (1, 0), is
t = 1 sec at (1, 1), and is t = 2 sec at (0, 1). For an interval time t0 = 0.1 sec,
the position vector at control points are

r0 = ı̂ (13.180)

r1 = ı̂+ ĵ (13.181)

r2 = ĵ (13.182)

r(t1 − t0) = r1 −
t0

t1
δ1 = ı̂+

µ
1− t0

t1

¶
ĵ (13.183)

r(t1 + t0) = r1 +
t0

t2
δ2 =

µ
1− t0

t2

¶
ı̂+ ĵ (13.184)

where

δ1 = r1 − r0 = ĵ (13.185)

δ2 = r2 − r1 = −ı̂. (13.186)

The path of motion is then expressed by the following piecewise function as
shown in Figure 13.16:

r(t) =

⎧⎪⎨⎪⎩
ı̂+ tĵ 0 ≤ t ≤ 0.9³
1− (t−0.9)2

0.4

´
ı̂+

³
1− (t−1.1)2

0.4

´
ĵ 0.9 ≤ t ≤ 1.1

(2− t) ı̂+ ĵ 1.1 ≤ t ≤ 2
(13.187)
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FIGURE 13.16. A transition parabola connecting two lines.

The velocity of motion along the path is also a piecewise function given
below.

ṙ(t) =

⎧⎨⎩ ĵ 0 ≤ t ≤ 0.9
t−0.9
0.2 ı̂− t−1.1

0.2 ĵ 0.9 ≤ t ≤ 1.1
−ı̂ 1.1 ≤ t ≤ 2

(13.188)

Example 363 A 2R manipulator following a line.
Assume the 2R manipulator in Figure 13.14 has

l1 = l2 = 0.25 (13.189)

and its tip point is supposed to move on a given line Y = f(X).

Y = −0.25998X + 0.3705 (13.190)

The manipulator moves form P1 to P2 in 10 sec.

XP1 = 0.411 22 YP1 = 0.263 59 (13.191)

XP2 = −2.818 8× 10−2 YP2 = 0.377 83 (13.192)

Let us define a rest-to-rest cubic path for X.

X = 0.41122− 0.01149096t2 + 0.000766064t3 (13.193)

We determine the equation of Y as a function of t by substituting X = X(t)
in the line equation (13.190).

Y = −1.9916× 10−4t3 + 2.9874× 10−3t2 + 0.26359 (13.194)
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13.6 F Rotational Path

Consider an end-effector frame to have a rotation matrix GR0 at an initial
orientation at time t0. The end-effector must be at a final orientation GRf

at time tf . The rotational path is defined by the angle-axis rotation matrix
Rû,φ

R 0û,φ =
0Rf =

GRT
0
GRf (13.195)

that transforms the end-effector frame from the final orientation GRf to the
initial orientation GR0. The axis of rotation 0û is defined by a unit vector
expressed in the initial frame. Therefore, the desired rotation matrix for
going from initial to the final orientation, would be

RT
0û,φ =

GRT
f
GR0. (13.196)

Keeping 0û constant, we can define an angular path for ϕ to vary RT
0û,φ

from GR0 to GRf at tf .
To control a rotation, we may define a series of control orientations GR1,

GR2, · · · , GRn between the initial and final orientations, and rotate the
end-effector frame through the control orientations. When there is a control
orientation GR1 between the initial and final orientations, then the initial
orientation GR0 transforms to the control orientation GR1 using an angle-
axis rotation R 0û,φ0

, and then it transforms from the control orientation
GR1 to the final orientation using a second-angle axis rotation R 1û,φ1

.

R 0û,φ0
= GRT

0
GR1 (13.197)

R 1û,φ1
= GRT

1
GRf (13.198)

Proof. According to the Rodriguez rotation formula (3.4),

0Rf = R 0û,φ = I cosφ+
0û 0ûT versφ+ 0ũ sinφ (13.199)

the angle and axis that transforms a frame Bf to another frame B0 are
found from

cosφ =
1

2

¡
tr
¡
0Rf

¢
− 1
¢

(13.200)

0ũ =
1

2 sinφ

¡
0Rf − 0RT

f

¢
. (13.201)

If GR0 is the rotation matrix from B0 to the global frame G, and GRf is
the rotation matrix from Bf to G, then

GRf =
GR0

0Rf (13.202)

and therefore,
0Rf = R 0û,φ =

GRT
0
GRf . (13.203)
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We define a linearly time dependent rotation matrix by varying the angle
of rotation about the axis of rotation

0Rf (t) = R 0û,(
t−t0
tf−t0

)φ
(13.204)

=

⎡⎣ r11(t) r12(t) r13(t)
r21(t) r22(t) r23(t)
r31(t) r32(t) r33(t)

⎤⎦ t0 ≤ t ≤ tf

where, t0 is the time when the end-effector frame is at orientation GR0 and
tf is the time at which the end-effector frame is at orientation GRf , and

r11(t) = u21 vers

µ
t− t0
tf − t0

¶
φ+ cos

µ
t− t0
tf − t0

¶
φ

r21(t) = u1u2 vers

µ
t− t0
tf − t0

¶
φ+ u3 sin

µ
t− t0
tf − t0

¶
φ

r31(t) = u1u3 vers

µ
t− t0
tf − t0

¶
φ− u2 sin

µ
t− t0
tf − t0

¶
φ (13.205)

r12(t) = u1u2 vers

µ
t− t0
tf − t0

¶
φ− u3 sin

µ
t− t0
tf − t0

¶
φ

r22(t) = u22 vers

µ
t− t0
tf − t0

¶
φ+ cos

µ
t− t0
tf − t0

¶
φ

r32(t) = u2u3 vers

µ
t− t0
tf − t0

¶
φ+ u1 sin

µ
t− t0
tf − t0

¶
φ (13.206)

r13(t) = u1u3 vers

µ
t− t0
tf − t0

¶
φ+ u2 sin

µ
t− t0
tf − t0

¶
φ

r23(t) = u2u3 vers

µ
t− t0
tf − t0

¶
φ− u1 sin

µ
t− t0
tf − t0

¶
φ

r33(t) = u23 vers

µ
t− t0
tf − t0

¶
φ+ cos

µ
t− t0
tf − t0

¶
φ. (13.207)

The matrix 0Rf (t) can turn the final frame about the axis of rotation 0û
onto the initial frame, and therefore,

GRf =
GR0

0Rf (t). (13.208)

If there is a control orientation frame GR1 between the initial and final
orientations, then

GR1 = GR0
0R1 (13.209)

GRf = GR1
1Rf (13.210)



13. Path Planning 761

and therefore,

R 0û,φ0
= 0R1 =

GRT
0
GR1 (13.211)

R 1û,φ1
= 1Rf =

GRT
1
GRf . (13.212)

The rotation matrices 0R1 and 1Rf may be defined as linearly time
varying rotation matrices by

0R1(t) = R 0û,(
t−t0
t1−t0

)φ0
t0 ≤ t ≤ t1

1Rf (t) = R 1û,(
t−t1
tf−t1

)φ1
t1 ≤ t ≤ tf .

(13.213)

Using these variable matrices, we can turn the end-effector frame from the
initial orientation GR0 about 0û to achieve the control orientation GR1, and
then turn the end-effector frame about 1û to achieve the final orientation
GRf .
Following the parabola transition technique of section 13.5, we may define

an orientation path connecting GR0 and GRf , and passing close to the
corner orientation GR1 on a transient rotation path. The path starts from
GR0 at time t0 and turns with constant angular velocity along an axis
until t = t1 − t0. At this time, the path switches to a rotational parabolic
path with constant angular acceleration. At another switching orientation
at time t = t1 + t0, the path switches to the second path and turns with
constant velocity toward the destination orientation GRf . The time t1− t0
is the required time to move from GR0 to GR1, and t2 − t1 is the required
time to move from GR1 to GRf if there were no transition path.
We introduce an interval time t0 before arriving at orientation GR1 to

switch from the first path segment to a transition path. The transition
path is then between times t1 − t0 and t1 + t0. At the second switching
orientation, the transition path ends at the same angular velocity as the
third path segment.
The boundary positions of the transition path between the first and third

segments are respectively
GR1(t1 − t0) = GR0

0R1(t1 − t0)

= GR0 R 0û,(1− t0
t1−t0

)φ0
t = t1 − t0 (13.214)

GRf (t1 + t0) = GR1
1Rf (t1 + t0)

= GR1 R 1û,( t0
tf−t1

)φ1
t = t1 + t0. (13.215)

The transition path is then equal to

Rt(t) = GR0
0R1

µ
t1 − t0 − t

2t0
− (t− t0 − t1)

2

4t0 (t1 − t0)

¶
1Rf

Ã
(t+ t0 − t1)

2

4t0 (tf − t1)

!
= GR0 R 0û,(

t1−t0−t
2t0 − (t−t0−t1)2

4t0(t1−t0)
)φ0

R
1û,(

(t+t0−t1)
2

4t0(tf−t1)
)φ1

(13.216)

t1 − t0 ≤ t ≤ t1 + t0
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and the entire path is:

R(t) = 0R1(t) = R 0û,(
t−t0
t1−t0

)φ0
t0 ≤ t ≤ t1 − t0

R(t) = Rt(t) t1 − t0 ≤ t ≤ t1 + t0

R(t) = 1Rf (t) = R 1û,(
t−t1
tf−t1

)φ1
t1 + t0 ≤ t ≤ t2

(13.217)

Example 364 Rotation about Z-axis.
Consider a body B which is initially coincident with the global coordinate

frame G at t = 0. So, its initial transformation matrix is an identity.

GR1 = I (13.218)

B is suppose to be at GR2 after 10 sec.

GR2 =

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦ (13.219)

The axis of rotation 2R1 is the Z-axis, and the angle of rotation is π. The
transformation matrix between the initial and final orientations of B1 and
B2 is:

2R1 =
GRT

1
GR2 =

⎡⎣ −1 0 0
0 −1 0
0 0 1

⎤⎦ (13.220)

Let us define a cubic rest-to-rest path for the angle of rotation α.

α =
3π

100
t2 − π

500
t3 (13.221)

The angular path of B between B1 an B2 is:

2R1 =

⎡⎣ cosα − sinα 0
sinα cosα 0
0 0 1

⎤⎦ (13.222)

=

⎡⎣ cos 3π100 t
2 − π

500 t
3 − sin 3π

100 t
2 − π

500 t
3 0

sin 3π
100 t

2 − π
500 t

3 cos 3π100 t
2 − π

500 t
3 0

0 0 1

⎤⎦
Example 365 Rotation about X-axis.
A body B is initially at

GR1 =

⎡⎢⎢⎣
1 0 0

0 cos
π

10
− sin π

10

0 sin
π

10
cos

π

10

⎤⎥⎥⎦ (13.223)
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The body is supposed to be at GR2 in 10 sec.

GR2 =

⎡⎢⎢⎣
1 0 0

0 cos
π

2
− sin π

2

0 sin
π

2
cos

π

2

⎤⎥⎥⎦ (13.224)

The axis of rotation 2R1 is the X-axis, and the angle of rotation is 2
5π =

π
2 −

π
10 . We define a cubic rest-to-rest path for the angle of rotation γ

γ =
π

10
+
3πt2

250
− πt3

1250
(13.225)

to determine the angular path of B between G an B2 is:

GR2 =

⎡⎣ 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎦ (13.226)

At any time t, the body B with respect to B1 is at 1R2.

1R2 = 1RG
GR2 (13.227)

=

⎡⎣ 1 0 0
0 0.951 cos γ − 0.309 sin γ −0.309 cos γ − 0.951 sin γ
0 0.309 cos γ + 0.951 sin γ 0.951 cos γ − 0.309 sin γ

⎤⎦

13.7 Manipulator Motion by End-Effector Path

Cartesian path planning is the most natural application of path planning.
Considering the pick and place motion as the main job of industrial robot,
we have to determine a desired geometric path for the end-effector in the
3-dimenssional Cartesian space of the base frame. We may then define
a time path for one of the coordinates, say X, and determine the time
history of the other coordinates by using the geometric path. Having the
time functions of the coordinates of the end-effector, we can determine the
velocity, acceleration and jerk behavior of the end-effector.
Inverse kinematics will determine the kinematics of joint variables. Sub-

stituting the joint variables’ position, velocity, and acceleration in the dy-
namic equations of motion provide the required actuators’ torque or force
to move the end-effector on the desired path with the planned kinematics.
The geometric Cartesian path is an applied method of path planning in

robotics, because it can control the level of force and jerk inserted by the
hand of a robot to the carrying object. Path planning in Cartesian space
also determines the geometric constraints of the external world. However,
a Cartesian path needs inverse kinematics to determine the time history of
the joint variables.
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X

Y

FIGURE 13.17. Illustration of a 2R panipulator when the tip point moves on a
straight line y = 1.5.

Example 366 Joint path for a designed Cartesian path.
Consider a rest-to-rest Cartesian path from point (1, 1.5) to point (−1, 1.5)

on a straight line Y = 1.5. A cubic polynomial can satisfy the position and
velocity constraints at initial and final points.

X(0) = X0 = 1 Ẋ(0) = Ẋ0 = 0

X(1) = Xf = −1 Ẋ(1) = Ẋf = 0 (13.228)

The coefficients of the polynomial are

a0 = 1 a1 = 0 a2 = −6 a3 = 4 (13.229)

and the Cartesian path is:

X = 1− 6t2 + 4t3 (13.230)

Y = 1.5 (13.231)

The inverse kinematics of a 2R planar manipulator is calculated in Example
184 as

θ2 = ±2 atan2

s
(l1 + l2)

2 − (X2 + Y 2)

(X2 + Y 2)− (l1 − l2)
2 (13.232)

θ1 = atan2
X (l1 + l2 cos θ2) + Y l2 sin θ2
Y (l1 + l2 cos θ2)−Xl2 sin θ2

(13.233)

where the sign (±) indicates the elbow-up and elbow-down configurations
of the manipulator. Depending on the initial configuration at point (1, 1.5),
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the manipulator is supposed to stay in that configuration. Let’s consider an
elbow-up configuration. Therefore, we accept only those values of the joint
valuables that belong to the elbow-up configuration. Substituting (13.230)
and (13.231) in (13.232) and (13.233) provides the path in joint space.

θ2 = ±2 atan2

s
(l1 + l2)

2 − (4t3 − 6t2 + 2.5)2

(4t3 − 6t2 + 1)2 − (l1 − l2)
2 (13.234)

θ1 = atan2

¡
1− 6t2 + 4t3

¢
(l1 + l2 cos θ2) + 1.5l2 sin θ2

1.5 (l1 + l2 cos θ2)− (1− 6t2 + 4t3) l2 sin θ2
(13.235)

A graphical illustration of the manipulator at every 1/30 th of the total
time is shown in Figure 13.17.

Example 367 A 2R manipulator on a line.
Consider the 2R manipulator of Figure 13.14 with

l1 = l2 = 0.25m (13.236)

that its tip point is supposed to move on a given line

Y = −0.25998X + 0.3705 (13.237)

between P1 and P2 in 10 sec.

XP1 = 0.41122 YP1 = 0.26359 (13.238)

XP2 = −0.0282 YP2 = 0.37783 (13.239)

Defining a rest-to-rest cubic path for X, we determine the Cartesian path
of the tip point.

X = 0.41122− 0.0131826t2 + 0.00087884t3 (13.240)

Y = −0.00022848t3 + 0.003427t2 + 0.26359 (13.241)

The kinematics of the tip point are shown in Figures 13.18 to 13.20.
Employing the inverse kinematics of equations (6.39) and (6.42), we find

the variation of the joint angles as are shown in Figure 13.21.
Let us divide the total time of the motion in n = 40 equal intervals. The

configuration of the manipulator at each time step are shown in Figure
13.22.

Example 368 A 2R manipulator on a line with no end acceleration.
Consider the 2R manipulator of Figure 13.14 with

l1 = l2 = 0.25m (13.242)

that its tip point is supposed to move on a given line

Y = −0.25998X + 0.3705 (13.243)
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t [s]

X

Y

[m]

FIGURE 13.18. Cartesian coordinates of the tip point versus time.

t [s]

[m/s]
Y
.

X
.

FIGURE 13.19. Components of the tip point velocity versus time.
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t [s]

[m/s2]

Y
..

X
..

FIGURE 13.20. Components of the tip point acceleration versus time.

t

1θ

2θ

deg

FIGURE 13.21. The variation of joint angles of the 2R manipulator.
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X

Y

FIGURE 13.22. The configuration of the 2R manipulator at 42 equal time steps.

between P1 and P2 in 10 sec.

XP1 = 0.41122 YP1 = 0.26359 (13.244)

XP2 = −0.0282 YP2 = 0.37783 (13.245)

Let us define a quintic path for X to apply a zero acceleration at both ends.

X = 0.41122− 0.0043942t3 + 0.00065913t4

−0.0000263652t5 (13.246)

Substituting X in the line equation (13.243), we also determine the varia-
tion of Y .

Y = 0.26359 + 0.0011424t3 − 0.00017136t4

+0.0000068544t5 (13.247)

Using the Cartesian components (13.246) and (13.247), we determine the
kinematics of the tip point as are shown in Figures 13.23 to 13.20.
Using Equations (6.39) and (6.42), we find the variation of the joint

angles as are shown in Figure 13.26.

Example 369 A 2R manipulator on a line with no end acceleration.
Consider the 2R manipulator of Figure 13.27 with equal arms’ length.

l1 = l2 = 0.25m (13.248)

The tip point is supposed to move from P1 to P2 in 10 sec.

XP1 = 0.41122 YP1 = 0.26359 (13.249)

XP2 = −0.0282 YP2 = 0.37783 (13.250)
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t [s]

X

Y

[m]

FIGURE 13.23. Cartesian coordinates of the tip point versus time on a no end
acceleration path.

t [s]

[m/s]
Y
.

X
.

FIGURE 13.24. Components of the tip point velocity versus time on a no end
acceleration path.
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t [s]

[m/s2]

Y
..

X
..

FIGURE 13.25. Components of the tip point acceleration versus time on a no
end acceleration path.

t

1θ

2θ

deg

FIGURE 13.26. The variation of joint angles of the 2R manipulator on a no end
acceleration path.
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Y

X

l1

l2

1θ

2θ
ϕ

P1

P2 Forbidden zone

R1
R2

FIGURE 13.27. A few circular paths between P1 and P2 to go around forbidden
zone at P3.

However, there is a circular forbidden zone at point P3, where the tip point
cannot pass.

XP3 = 0.19151 YP3 = 0.32071 (13.251)

(X −XP3)
2
+ (Y − YP3)

2
= 0.0252 (13.252)

To find a path between P1 and P2 to go around P3, let us choose a cir-
cular arc with a center on the bisector of P1P2. Figure 13.27 depicts a few
optional paths. The arc must be in the working space of the manipulator,
which is a circle ring about the base point.

(l1 − l2)
2

< X2 + Y 2 < (l1 + l2)
2 (13.253)

0 < X2 + Y 2 < 0.52 (13.254)

The center of the circular path should be on the following line.

Y − YP3 = 3.8464 (X −XP3) (13.255)

Let us pick a point PC to be the center of the circular path at:

XC = 0.1 YC = −0.06 (13.256)

Therefore, the equation of the path is:

(X −XC)
2 + (Y − YC)

2 = 0.452 (13.257)
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t [s]

X

Y

[m]

FIGURE 13.28. Cartesian coordinates of the tip point versus time on a circular
path.

This path is shown in Figure 13.27 with a dashed line.
We use a quintic time-path for X to apply a zero acceleration at both

ends.

X = 0.41122− 0.0043942t3 + 0.00065913t4

−0.0000263652t5 (13.258)

Substituting X in the path equation (13.257), we determine the time-path
of Y .

Y = YC +

q
0.452 − (X −XC)

2 (13.259)

The kinematics of the tip point are shown in Figures 13.28 to 13.30. Equa-
tions (6.39) and (6.42), provides the joint angles as are shown in Fig-
ure 13.31. The configuration of the manipulator at 42 equal time steps are
shown in Figure 13.32.

Example 370 Articulated manipulator on a line.
Figure 13.33 illustrates an articulated manipulator. Assume that

l1 = 0.5m l2 = 1.0m l3 = 1.0m. (13.260)

The tip point of the manipulator is supposed to move from point P1 to P2
in 10 sec.

rP1 =

⎡⎣ 1.5
0.0
1.0

⎤⎦ rP2 =

⎡⎣ −1.01.0
1.5

⎤⎦ (13.261)

Using a quintic path for X, we find the following function to express the
time variation of X.

X = 1.5− 0.025t3 + 0.00375t4 − 0.00015t5 (13.262)
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FIGURE 13.29. Components of the tip point velocity versus time on a circular
path.
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FIGURE 13.30. Components of the tip point acceleration versus time on a circular
path.
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FIGURE 13.31.

X

Y

FIGURE 13.32. The configuration of the 2R manipulator at 42 equal time steps
on a circular path.
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3θ

2θ

1θ

z2

z3z0 x2
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l1

x0
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x1
l 2

P

x3

x4

z4

FIGURE 13.33. An articulated manipulator.

Let us connect P1 and P2 by a straight line and determine the time variation
of Y and Z.

Y = YP1 +
YP2 − YP1
XP2 −XP1

(X −XP1)

= 0.010t3 − 0.0015t4 + 0.00006t5 (13.263)

Z = ZP1 +
ZP2 − ZP1
XP2 −XP1

(X −XP1)

= 1 + 0.005t3 − 0.00075t4 + 0.00003t5 (13.264)

Using the inverse kinematic equations, we can determine the time history
of joint variables of the manipulator as are shown in Figure 13.34.

θ3 = arccos

µ
l1 − Z + l2 sin θ2

l3

¶
− θ2 (13.265)

θ2 = 2arctan
−C2 +

p
C22 − C1C3
C1

(13.266)

θ1 =

⎧⎪⎨⎪⎩
arctan

Y

X
X ≥ 0

arctan
Y

X
+ π X < 0

(13.267)
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t

1θ

2θ

deg

3θ

FIGURE 13.34. The time history of joint variables of an articulated manipulator.

C1 = l21 − 2l1Z + l22 +
2l2X

cos θ1
− l23 +

X2

cos2 θ1
+ Z2 (13.268)

C2 = 2l1l2 − 2l2Z (13.269)

C3 = l21 − 2l1Z + l22 −
2l2X

cos θ1
− l23 +

X2

cos2 θ1
+ Z2 (13.270)
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13.8 Summary

A serial robot may be assumed as a variable geometrical chain of links
that relates the configuration of its end-effector to the Cartesian coordi-
nate frame in which the base frame is attached. Forward kinematics are
mathematical-geometrical relations that provide the end-effector configu-
ration by having the joint coordinates. On the other hand, the inverse
kinematics are mathematical-geometrical relations that provide joint coor-
dinates for a given end-effector configuration.
The Cartesian path of motion for the end-effector must be expressed

as a function of time to find the links’ velocity and acceleration. The first
applied path function that can provide a rest-to-rest motion is a cubic path
for a variable qi(t) between two given points qi(t0) and qi(tf )

qi(t) = a0 + a1t+ a2t
2 + a3t

3. (13.271)

By increasing the requirements, such as zero acceleration or jerk at some
points on the path, we need to employ higher polynomials to satisfy the
conditions. An n degree polynomial can satisfy n+ 1 conditions. It is also
possible to split a multiple conditional path into some intervals with fewer
conditions. The interval paths must then be connected to satisfy their
boundary conditions.
A path of motion may also be defined based on different mathematical

functions. Harmonic and cycloid functions are the most common paths.
Non-polynomial equations introduce some advantages, due to simpler ex-
pression, and some disadvantages due to nonlinearity.
When a path of motion either in joint or Cartesian coordinates space is

defined, forward and inverse kinematics must be utilized to find the path
of motion in the other space.
Rotational maneuver of the end-effector about the wrist point needs a

rotational path. A rotational path may mathematically be defined similar
to a Cartesian path utilizing the Rodriguez formula and rotation matrices.
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13.9 Key Symbols

ac constant acceleration
ai, bi, ci coefficient of path equation
B body coordinate frame
C constant of integral
G,B0 global coordinate frame, Base coordinate frame
l length
q dependent variable coordinate, joint variable

Cartesian variable
r position vectors, homogeneous position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix
t dependent variable, time
t0 initial time
tf final time
û axis of rotation
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
δ difference of position vectors
θ rotary joint angle, joint variable
φ angle of rotation

Symbol
[ ]−1 inverse of the matrix [ ]

[ ]
T transpose of the matrix [ ]

≡ equivalent
` orthogonal
(i) link number i
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Exercises

1. Notation and symbols.

Describe their meaning.

a- t0 b- tf c- qi(t) d- t0

2. Rest-to-rest cubic path.

Find a cubic path for a joint coordinate to satisfy the following con-
ditions:

(a)
q(0) = −10 deg, q(1) = 45deg, q̇(0) = q̇(1) = 0

(b)
q(0) = 0deg, q(1) = 50deg, q̇(0) = q̇(1) = 0

(c)
q(0) = 10deg, q(1) = 60deg, q̇(0) = q̇(10) = 0

3. To-rest path.

Find a quadratic path to satisfy the following conditions:

q(0) = −10 deg, q(1) = 45deg, q̇(1) = 0.

Calculate the initial velocity of the path using the quadratic path.
Then, find a cubic path to satisfy the same boundary conditions as
the quadratic path. Compare the maximum accelerations of the two
paths.

4. Constant velocity path.

Calculate a path to satisfy the following conditions:

q(0) = −10 deg, q(10) = 45 deg, q̇(0) = q̇(10) = 0

and move with constant velocity q̇ = 25deg / sec between 12 deg and
35 deg.

5. Constant acceleration path.

Calculate a path with constant acceleration q̈ = 25deg / sec2 between
12 deg and 35 deg, and satisfy the following conditions:

q(0) = −10 deg, q(10) = 45 deg, q̇(0) = q̇(10) = 0.
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6. Zero jerk path.

Find a path to satisfy the following boundary conditions:

q(0) = 0, q(1) = 66 deg, q̇(0) = q̇(1) = 0

and have zero jerk at the beginning, middle, and end points.

7. Control points.

Find a path to satisfy the conditions

q(0) = 10deg, q(1) = 95 deg, q̇(0) = q̇(1) = 0

and pass through the following control points:

q(0.25) = 30 deg, q(0.5) = 65 deg

8. A jerk zero at start-middle-stop path.

To make a path have jerk as close to zero as possible, an eight degree
polynomial

q(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + a7t

7 + a7t
8

and nine boundary conditions can be employed. Find the path.

q(0) = 0 q̇(0) = 0 q̈(0) = 0
...
q (0) = 0...
q (0.5) = 0

q(1) = 120 deg q̇(1) = 0 q̈(1) = 0
...
q (1) = 0

9. Point sequence path.

The conditions for a sequence of points are given here. Find a path
to satisfy the conditions given below.

(a)
q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(0.4) = 35 deg
q(0.75) = 65 deg
q(1) = 100 deg q̇(1) = 0 q̈(1) = 0.

(b)
q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(2) = 15 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(10) = 100 deg q̇(10) = 0 q̈(10) = 0.
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10. Splitting a path into a series of segments.

Using the splitting method, find a path for the following conditions:

q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(2) = 15 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(10) = 100 deg q̇(10) = 0 q̈(10) = 0.

by breaking the entire path into four segments.

q1(t) for q(0) < q1(t) < q(2) and 0 < t < 2
q2(t) for q(2) < q2(t) < q(4) and 2 < t < 4
q3(t) for q(4) < q3(t) < q(7.5) and 4 < t < 7.5
q4(t) for q(7.5) < q4(t) < q(10) and 7.5 < t < 10

11. F Extra conditions.

To have a smooth overall path in the splitting method, we may add
extra conditions to match the segments. Solve Exercise 10 having a
zero jerk transition between segments.

12. F Least-squared path.

Using the least squared method, find the best polynomial path of
degree n to approximate a path given by the following points.

q(0) = 5deg
q(1) = 7deg
q(2) = 15 deg
q(3) = 21 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(9) = 85 deg
q(10) = 100 deg

(a) n = 2.

(b) n = 3.

(c) n = 4.

(d) n = 5.

13. F Least-squared path and boundary conditions.

Using the least squared method, find the best polynomial path of
degree n to approximate a path given by the following points and
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conditions.

q(0) = 5deg q̇(0) = 0 q̈(0) = 0
q(2) = 15 deg
q(4) = 35 deg
q(7.5) = 65 deg
q(10) = 100 deg q̇(10) = 0 q̈(10) = 0.

(a) n = 2.

(b) n = 3.

(c) n = 4.

(d) n = 5.

14. 2R manipulator motion to follow a joint path.

Find the path of the endpoint of a 2R manipulator, with l1 = l2 =
1m, if the joint variables follow the given paths:

θ1(t) = 10 + 156.25t3

θ2(t) = −41.56 + 222.78t− 172.2t2

15. 3R planar manipulator motion to follow a joint path.

Find the path of the endpoint of a 3R manipulator, with

l1 = 1m

l2 = 0.65m

l3 = 0.35m

if the joint variables follow these given paths:

θ1(t) = −41.56 + 222.78t− 172.2t2

θ2(t) = 148.99− 321.67t+ 216.67t2

θ3(t) = 198545− 827166.6672t
+1290500t2 − 893500t3 + 231666.67t4

Calculate the maximum acceleration and jerk of the endpoint.

16. R`RkR articulated arm motion.

Find the Cartesian trajectory of the endpoint of an articulated ma-
nipulator, shown in Figure 5.22, if the geometric parameters are

d1 = 1m

d2 = 0

l2 = 1m

l3 = 1m
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and the joints’ paths are:

θ1(t) = −41.56 + 222.78t− 172.2t2

θ2(t) = 148.99− 321.67t+ 216.67t2

θ3(t) = 198545− 827166.6672t
+1290500t2 − 893500t3 + 231666.67t4

17. Cartesian paths.

Connect the following points with a straight line. Determine the
Cartesian coordinates as functions of time for rest-to-rest paths in
t = 1 s.

(a)
P1 = (1.5, 1.5) P2 = (−0.5, 1.5)

(b)
P1 = (0, 0) P2 = (1, 1.5)

(c)
P1 = (−1.5, 1) P2 = (0.5, 1.5)

(d)
P1 = (−1.5, 1, 0) P2 = (0.5, 1.5, 1)

(e)
P1 = (−1, 0,−1) P2 = (−0.5, 1.5.1)

18. Cartesian path for a 2R manipulator.

Consider a 2R planar manipulator.

(a) Calculate a cubic rest-to-rest path in Cartesian space to join the
following points with a straight line.

P1 = (1.5, 1) P2 = (−0.5, 1.5)

(b) Calculate and plot the joint coordinates of the manipulator, with
l1 = l2 = 1m, that follows the Cartesian path.

(c) Calculate the maximum angular acceleration of the joint vari-
ables.

19. Cartesian path for a 3R manipulator.

Consider a 3R articulated manipulator with l1 = l2 = l3 = 1m.

(a) Calculate a cubic rest-to-rest path in Cartesian space to join the
following points with a straight line.

P1 = (−1.5, 1, 0) P2 = (0.5, 1.5, 1)
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Y

X

P1P2

1θ

2θ

l 1

l2

FIGURE 13.35. A 2R manipulator moves on a path made of two semi-circles.

(b) Calculate and plot the joint coordinates of the manipulator that
follows the Cartesian path.

(c) Calculate the maximum angular velocity and acceleration of the
joint variables.

20. F Joint path for a given Cartesian path.

Assume that the endpoint of a 2R manipulator moves with constant
speed v = 1m/ sec from P1 to P2, on a path made of two semi-circles,
as shown in Figure 13.35. The center of the circles are at (0.75m,
0.5m) and (−0.75m, 0.5m).

(a) Calculate and plot the joints’ path if l1 = l2 = 1m.

(b) Calculate the value and positions of the maximum angular ve-
locity in joint variables.

(c) Calculate the value and positions of the maximum angular ac-
celeration in joint variables.

(d) Calculate the value and positions of the maximum angular jerk
in joint variables.

21. F Obstacle avoidance and path planning.

Let us determine a path between P1 = (1.5, 1) and P2 = (−1, 1) to
avoid the obstacle shown in Figure 13.36. The path may be made of
two straight lines with a transition circular path in the middle. The
radius of the circle is r = 0.5m and the center of the circle is at the
lower point of the obstacle. The lines connect to the circle smoothly.

The endpoint of the 2Rmanipulator, with l1 = l2 = 1m, starts at rest
from P1 and moves along the first line with constant acceleration. The
endpoint keeps its speed constant v = 1m/ sec on the circular path
and then moves with constant acceleration on the final line segment
to stop at P2.



13. Path Planning 787

Y

X

P1

P2

(0.75,0)

(-0.25,1) (0.25,1)

1θ

2θ

FIGURE 13.36. An obstacle in the Cartesian space of motion for a 2R manipu-
lator.

(a) Calculate and plot the joints’ paths.

(b) Find the value and position of the maximum angular velocity
for both joints’ variable.

(c) Find the value and position of the maximum angular accelera-
tion for both joints’ variable.

(d) Find the value and position of the maximum angular jerk for
both joints’ variable.

22. F Joint path for a given Cartesian path.

(a) Connect the points P1 = (1.1, 0.8, 0.5) and P2 = (−1, 1, 0.35)
with a straight line.

(b) Find a rest-to-rest cubic path and plot the Cartesian coordinates
X, Y , and Z as functions of time.

(c) Calculate the joints’ path for an articulated manipulator, shown
in Figure 5.22, if the geometric parameters are:

d1 = 1m

d2 = 0

l2 = 1m

l3 = 1m

(d) Find the value and position of the maximum angular velocity,
acceleration, and jerk for the joints’ variable.

23. F Transition parabola.

In Exercise 21, connect the points P1 = (1.5, 1) and P2 = (−1, 1) with
two straight lines, using P0 = (0, 0.6) as a corner. Design a parabolic
transition path to avoid the corner if the total time of motion is 12 sec
and
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(a) the interval time is t0 = 1 sec.

(b) the interval time is t0 = 2 sec.

(c) the interval time is t0 = 5 sec.

(d) the interval time is t0 = 8 sec.

(e) the interval time is t0 = 10 sec.

24. F Rotational path.

Consider a body frame B that turns 90 deg about Z-axis. Determine
the rotation transformation matrix GRB(t) such that

(a) the rotation takes place in t = 1 s and the angular velocity is
constant.

(b) the rotation takes place in t = 1 s and the rotation is rest-to-rest.

25. F Combined rotational path.

Consider a body frame B that turns 90 deg about Z-axis and 60 deg
about X-axis.

(a) Determine the rotation transformation matrix GRB(t) such that
the body first turns about Z-axis in t1 = 1 s rest-to-rest, and
then turns about X-axis in t2 = 1 s rest-to-rest.

(b) Multiply the rotation matrices of RZ(t) and RX(t). Now GRB(t)
has only one time variable. Where would B be after t = 1 s?

(c) Multiply the rotation matrices of RZ and RX and determine
GRB. Determine the angle and axis of rotation of GRB. Define
a rest-to-rest path for the angle of rotation to move B from
initial to final orientation in t = 1 s.

26. F Euler angles rotational path.

Assume that the spherical wrist of a 6 DOF robot starts from rest
position and turns about the axes of the final coordinate frame B6 in
order z-x-z for ϕ = 15deg, θ = 38deg, and ψ = 77deg. The frame
B6 is installed at the wrist point.

(a) Design a rest-to-rest cubic rotational path for the angles ϕ, θ,
and ψ, if each rotation takes 1 sec.

(b) Find the axis and angle of rotation, (û, φ), that moves the wrist
from the initial to the final orientation.

(c) Design a cubic rotational path for the axis-angle rotation if it
takes 3 sec.

(d) Calculate the Euler angles path ϕ(t), θ(t), and ψ(t) for this
motion.
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(e) Calculate and compare the maximum angular velocity, acceler-
ation, and jerk for ϕ, θ, and ψ in the first and second motions
in part a and c.

(f) Calculate the maximum angular velocity, acceleration, and jerk
of φ in the second motion in part c.
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F Time Optimal Control
The main job of an industrial robot is to move an object on a pre-specified
path, rest to rest, repeatedly. To increase productivity, the robot should do
its job in minimum time. We introduce a numerical method to solve the
time optimal control problem of multi degree of freedom robots.

14.1 F Minimum Time and Bang-Bang Control

The most important job of industrial robots is moving between two points
rest-to-rest. Minimum time control is what we need to increase industrial
robots productivity. The objective of time-optimal control is to transfer the
end-effector of a robot from an initial position to a desired destination in
minimum time. Consider a system with the following equation of motion:

ẋ = f (x(t),Q(t)) (14.1)

where Q is the control input, and x is the state vector of the system.

x =

∙
q
q̇

¸
(14.2)

The minimum time problem is always subject to bounded input such as:

|Q(t)| ≤ QMax (14.3)

The solution of the time-optimal control problem subject to bounded
input is bang-bang control. The control in which the input variable takes
either the maximum or minimum values is called bang-bang control.

Proof. The goal of minimum time control is to find the trajectory x(t)
and input Q(t) starting from an initial state x0(t) and arriving at the final
state xf (t) under the condition that the whole trajectory minimizes the
following time integral.

J =

Z tf

t0

dt (14.4)

The input command vector Q(t) usually has the constraint (14.3).
We define a scalar function H, and a vector p

H(x,Q,p) = pT f (x(t),Q(t)) (14.5)

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_14,  
© Springer Science+Business Media, LLC 2010 
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that provide the following two equations:

ẋ =
∂H

∂p

T

(14.6)

ṗ = −∂H
∂x

T

(14.7)

Based on the Pontryagin principle, the optimal input Q(t) is the one that
minimizes the function H. Such an optimal input is to apply the maximum
effort, QMax or −QMax, over the entire time interval. When the control
command takes a value at the boundary of its admissible region, it is said
to be saturated. The function H is called Hamiltonian, and the vector p is
called a co-state.

Example 371 F A linear dynamic system.
Consider a linear dynamic system given by

Q = ẍ (14.8)

or
ẋ = [A]x+ bQ (14.9)

where

x =

∙
x1
x2

¸
[A] =

∙
0 1
0 0

¸
b =

∙
0
1

¸
(14.10)

along with a constraint on the input variable

Q ≤ 1. (14.11)

By defining a co-state vector

p =

∙
p1
p2

¸
(14.12)

the Hamiltonian (14.5) becomes

H(x,Q,p) = pT ([A]x+ bQ) (14.13)

that provides two first-order differential equations

ẋ =
∂H

∂p

T

= [A]x+ bQ (14.14)

ṗ = −∂H
∂x

T

= − [A]p. (14.15)

Equation (14.15) is ∙
ṗ1
ṗ2

¸
=

∙
0
−p2

¸
(14.16)
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which can be integrated to find p

p =

∙
p1
p2

¸
=

∙
C1

−C1t+ C2

¸
. (14.17)

The Hamiltonian is then equal to:

H = Qp2 + p1x2 = (−C1t+ C2)Q+ p1x2 (14.18)

The control command Q only appears in

pT bQ = (−C1t+ C2)Q (14.19)

which can be maximized by

Q(t) =

½
1 if −C1t+ C2 ≥ 0
−1 if −C1t+ C2 < 0

. (14.20)

This solution implies that Q(t) has a jump point at t = C2
C1
. The jump

point, at which the control command suddenly changes from maximum to
minimum or from minimum to maximum, is called the switching point.
Substituting the control input (14.20) into (14.9) gives us two first-order

differential equations ∙
ẋ1
ẋ2

¸
=

∙
x2
Q

¸
. (14.21)

Equation (14.21) can be integrated to find the path x(t).

∙
x1
x2

¸
=

⎧⎪⎪⎨⎪⎪⎩
∙

1
2 (t+ C3)

2 + C4
t+ C3

¸
if Q = 1∙

−12 (t− C3)
2
+ C4

−t+ C3

¸
if Q = −1

(14.22)

The constants of integration, C1, C2, C3, and C4, must be calculated based
on the following boundary conditions:

x0 = x(t0) xf = x(tf ). (14.23)

Eliminating t between equations in (14.22) provides the relationship be-
tween the state variables x1 and x2.

x1 =

½
1
2x

2
2 + C4 if Q = 1

−12x22 + C4 if Q = −1 (14.24)

These equations show a series of parabolic curves in the x1x2-plane with
C4 as a parameter. The parabolas are shown in Figure 14.1(a) and (b) with
the arrows indicating the direction of motion on the paths. The x1x2-plane
is called the phase plane.
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x1

x2

x1

x2

Q=1

(a)

(b)

x1

x2 Q=1Q=-1

(c)

x(t0)

x(tf )

Q=-1

FIGURE 14.1. Optimal path for Q = ẍ in phase plane and the mesh of optimal
paths in phase plane.
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Considering that there is one switching point in this system, the overall
optimal paths are shown in Figure 14.1(c). As an example, assume the state
of the system at initial and final times are x(t0) and x(tf ) respectively.
The motion starts with Q = 1, which forces the system to move on the
control path x1 =

1
2x

2
2 +

¡
x10 − 1

2x
2
20

¢
up to the intersection point with

x1 = −12x22 +
³
x1f +

1
2x

2
2f

´
. The intersection is the switching point at

which the control input changes to Q = −1. The switching point is at

x1 =
1

4

¡
2x10 + 2xf − x220 + x22f

¢
(14.25)

x2 =

sµ
x1f +

1

2
x22f

¶
−
µ
x10 −

1

2
x220

¶
. (14.26)

Example 372 F Robot equations in state equations.
The vector form of the equations of motion of a robot is

D(q) q̈+H(q, q̇) +G(q) = Q. (14.27)

We can define a state vector

x =

∙
q
q̇

¸
(14.28)

and transform the equations of motion to an equation in state space

ẋ = f (x(t),Q(t)) (14.29)

where

f (x(t),Q(t)) =

∙
q̇

D−1 (Q−H−G)

¸
. (14.30)

Example 373 F Time-optimal control for robots.
Assume that a robot is initially at

x(t0) = x0 =

∙
q0
q̇0

¸
(14.31)

and it is supposed to be finally at

x(tf ) = xf =

∙
qf
q̇f

¸
(14.32)

in the shortest possible time. The torques of the actuators at each joint is
assumed to be bounded

|Qi| ≤ QiMax . (14.33)

The optimal control problem is to minimize the time performance index

J =

Z tf

t0

dt = tf − t0. (14.34)
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The Hamiltonian H is defined as

H(x,Q,p) = pT f (x(t),Q(t)) (14.35)

which provides the following two sets of equations:

ẋ =
∂H

∂p

T

(14.36)

ṗ = −∂H
∂x

T

. (14.37)

The optimal control input Qt(t) is the one that minimizes the function H.
Hamiltonian minimization reduces the time-optimal control problem to a
two-point boundary value problem. The boundary conditions are the states
of the robot at times t0 and tf . Due to nonlinearity of the robots’ equations
of motion, there is no analytic solution for the boundary value problem.
Hence, a numerical technique must be developed.

Example 374 F Euler-Lagrange equation.
To show that a path x = xF(t) is a minimizing path for the functional J

J(x) =

Z tf

t0

f(x, ẋ, t)dt (14.38)

with boundary conditions x(t0) = x0, x(tf ) = xf , we need to show that

J(x) ≥ J(xF) (14.39)

for all continuous paths x(t) satisfying the boundary conditions. Any path
x(t) satisfying the boundary conditions x(t0) = x0, x(tf ) = xf , is called
admissible. To see that xF(t) is the optimal path, we may examine the
integral J for every admissible path. An admissible path may be defined by

x(t) = xF + y(t) (14.40)

where
y(t0) = y(tf ) = 0 (14.41)

and
¿ 1 (14.42)

is a small number. Substituting x(t) in J and subtracting from (14.38)
provides ∆J

∆J = J
¡
xF + y(t)

¢
− J

¡
xF
¢

(14.43)

=

Z tf

t0

f(xF + y, ẋF + ẏ, t)dt−
Z tf

t0

f(xF, xF, t)dt.
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Let us expand f(xF + y, ẋF + ẏ, t) about (xF, ẋF)

f(xF + y, ẋF + ẏ, t) = f(xF, ẋF, t) +

µ
y
∂f

∂x
+ ẏ

∂f

∂ẋ

¶
+ 2

µ
y2

∂2f

∂x2
+ 2yẏ

∂2f

∂x∂ẋ
+ ẏ2

∂2f

∂ẋ2

¶
dt

+O
¡
3
¢

(14.44)

and find
∆J = V1 +

2V2 +O
¡
3
¢
. (14.45)

where

V1 =

Z tf

t0

µ
y
∂f

∂x
+ ẏ

∂f

∂ẋ

¶
dt (14.46)

V2 =

Z tf

t0

µ
y2

∂2f

∂x2
+ 2yẏ

∂2f

∂x ∂ẋ
+ ẏ2

∂2f

∂ẋ2

¶
(14.47)

The first integral, V1 is called the first variation of J, and the second
integral, V2 is called the second variation of J. All the higher variations
are combined and shown as O

¡
3
¢
. If xF is the minimizing curve, then it is

necessary that ∆J ≥ 0 for every admissible y(t). If we divide ∆J by and
make → 0 then we find a necessary condition for xF to be the optimal
path as V1 = 0. This condition is equivalent toZ tf

t0

µ
y
∂f

∂x
+ ẏ

∂f

∂ẋ

¶
dt = 0. (14.48)

By integrating by parts we may writeZ tf

t0

ẏ
∂f

∂ẋ
dt =

µ
y
∂f

∂ẋ

¶tf
t0

−
Z tf

t0

y
d

dt

µ
∂f

∂ẋ

¶
dt. (14.49)

Since y(t0) = y(tf ) = 0, the first term on the right-hand side is zero.
Therefore, the minimization integral condition (14.48), for every admissible
y(t), reduces to Z tf

t0

y

µ
∂f

∂x
− d

dt

∂f

∂ẋ

¶
dt = 0. (14.50)

The terms in the parentheses are continuous functions of t, evaluated on
the optimal path xF, and they do not involve y(t). So, the only way that the

bounded integral of the parentheses
³
∂f
∂x −

d
dt

∂f
∂ẋ

´
, multiplied by a nonzero

function y(t), from t0 and tf to be zero, is that

∂f

∂x
− d

dt

∂f

∂ẋ
= 0. (14.51)
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y

xP1

P2

FIGURE 14.2. A curve joining points P1 and P2, and a frictionless sliding point.

The Equation (14.51) is a necessary condition for x = xF(t) to be a solution
of the minimization problem (14.38). This differential equation is called
the Euler-Lagrange equation. It is the same Lagrange equation that we
utilized to derive the equations of motion of a robot. The second necessary
condition to have x = xF(t) as a minimizing solution is that the second
variation, evaluated on xF(t), must be negative.

Example 375 F The Lagrange equation for extremizing J =
R 2
1
ẋ2dt.

The Lagrange equation for extremizing the functional

J =

Z 2

1

ẋ2dt (14.52)

is
∂f

∂x
− d

dt

∂f

∂ẋ
= −ẍ = 0 (14.53)

that shows the optimal path is

x = C1t+ C2. (14.54)

Considering the boundary conditions x(1) = 0, x(2) = 3 provides

x = 3t− 3. (14.55)

Example 376 F Brachistochrone problem.
We may utilize the Lagrange equation and find the frictionless curve

joining two points as shown if Figure 14.2, along which a particle falling
from rest due to gravity, travels from the higher to the lower point in the
minimum time. This is the well-known brachistochrone problem.
If v is the velocity of the falling point along the curve, then the time

required to fall an arc length ds is ds/v. Then, the objective function to
find the curve of minimum time is

J =

Z 2

1

ds

v
. (14.56)
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However,
ds =

p
1 + y02dx (14.57)

and according to the conservation of energy

v =
p
2gy. (14.58)

Therefore, the objective function simplifies to

J =

Z 2

1

s
1 + y02

2gy
dx. (14.59)

Applying the Lagrange equations we find

y
¡
1 + y02

¢
= 2r (14.60)

where r is a constant. The optimal curve starting from y(0) = 0 can be
expressed by two parametric equations

x = r (β − sinβ) (14.61)

y = r (1− cosβ) . (14.62)

The optimal curve is a cycloid.
The name of the problem is derived from the Greek word "βραχιστoζ,"

meaning "shortest," and "χρoνoζ," meaning "time." The brachistochrone
problem was originally discussed by Galilei in 1630 and later solved by
Johann and Jacob Bernoulli in 1696.

Example 377 F Lagrange multiplier.
Assume f(x) is defined on an open interval (a, b) and has continuous

first and second order derivatives in some neighborhood of x0 ∈ (a, b). The
point x0 is a local extremum of f(x) if

df(x0)

dx
= 0. (14.63)

Assume f(x) = 0, x ∈ Rn and gi(x) = 0, i = 1, 2, · · · ,m are functions
defined on an open region Rn and have continuous first and second or-
der derivatives in Rn. The necessary condition that x0 be an extremum of
f(x) subject to the constraints gi(x) = 0 is that there exist m Lagrange
multipliers λi, i = 1, 2, · · · ,m such that

∇
³
s+

X
λigi

´
= 0. (14.64)

As an example, we can find the minimum of

f = 1− x21 − x22 (14.65)
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subject to
g = x21 + x2 − 1 = 0 (14.66)

by finding the gradient of f + λg

∇
¡
1− x21 − x22 + λ

¡
x21 + x2 − 1

¢¢
= 0. (14.67)

That leads to
∂f

∂x1
= −2x1 + 2λx1 = 0 (14.68)

∂f

∂x2
= −2x2 + λ = 0. (14.69)

To find the three unknowns, x1, x2, and λ, we employ Equations (14.68),
(14.69), and (14.66). There are two sets of solutions as follows:

x1 = 0 x2 = 1 λ = 2

x1 = ±1/
√
2 x2 = 1/2 λ = 1

(14.70)

Example 378 F Admissible control function.
The components of the control command Q(t) are allowed to be piecewise

continuous and the values they can take may be any number within the
bounded region of the control space. As an example, consider a 2 DOF

system Q(t) =
£
Q1 Q2

¤T
with the restriction |Qi| < 1, i = 1, 2. The

control space is a circle in the plane Q1Q2. The control components may
have any piecewise continuous value within the circle. Such controls are
called admissible.

Example 379 Description of the time optimal control problem.
The aim of minimum time control is to guide the robot on a path in

minimum time to increase the robot’s productivity. Except for low order,
autonomous, and linear problems, there is no general analytic solution for
the time optimal control problems of dynamic systems. The problem of time
optimal control is always a bounded input problem. If there exists an ad-
missible time optimal control for a given initial condition and final target,
then, at any time, at least one of the control variables attains its maxi-
mum or minimum value. Based on Pontryagin’s principle, the solution of
minimum time problems with bounded inputs is a bang-bang control, indi-
cating that at least one of the input actuators must be saturated at any time.
However, finding the switching points at which the saturated input signal
is replaced with another saturated signal is not straightforward, and is the
main concern of numerical solution methods.
In a general case, the problem reduces to a two-points boundary value

problem that is difficult to solve. The corresponding nonsingular, nonlinear
two-point boundary value problem must be solved to determine the switching
times. A successful approach is to assume that the configuration trajectory
of the dynamical system is preplanned, and then reduce the problem to a
minimum time motion along the trajectory.
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FIGURE 14.3. Rest-to-rest motion of a mass on a straight line time-optimally.

14.2 F Floating Time Method

Consider a particle with mass m, as shown in Figure 14.3, is moving ac-
cording to the following equation of motion:

mẍ = g(x, ẋ) + f(t) (14.71)

where g(x, ẋ) is a general nonlinear external force function, and f(t) is
the unknown input control force function. The control command f(t) is
bounded to

|f(t)| ≤ F. (14.72)

The particle starts from rest at position x(0) = x0 and moves on a straight
line to the destination point x(tf ) = xf at which it stops.
We can solve this rest-to-rest control problem and find the required f(t)

to move m from ẋ0 to ẋf in minimum time utilizing the floating time
algorithm.

Algorithm 14.1. Floating time technique.

1. Divide the preplanned path of motion x(t) into s + 1 intervals and
specify all coordinate values xi, (i = 0, 1, 2, 3, ..., s+ 1)

2. Set f0 = +F and calculate

τ0 =

r
2m (x1 − x0)

F
(14.73)

3. Set fs+1 = −F and calculate

τs =

r
2m (xs − xs−1)

−F (14.74)

4. For i from 1 to s− 1, calculate τ i such that fi = +F and

fi = mẍi − g(xi, ẋi)

=
4m

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 + xi

¶
−g(xi, ẋi) (14.75)
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FIGURE 14.4. Time history of motion for the point mass m.
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FIGURE 14.5. Introducing two extra points, x−1 and xs+2, before the initial and
after the final points.

5. If |fi| ≤ F , then stop, otherwise set j = s,

6. Calculate τ j−1 such that fj = −F

7. If |fj−1| ≤ F , then stop, otherwise set j = j − 1 and return to step
6

Proof. Assume g(xi, ẋi) = 0 and x(t), as shown in Figure 14.4, is the time
history of motion for the point mass m. We divide the path of motion into
s+1 arbitrary, and not necessarily equal, segments. Hence, the coordinates
xi, (i = 0, 1, 2, ..., s + 1) are known. The floating-time τ i = ti − ti−1 is
defined as the required time to move m from xi to xi+1.
Utilizing the central difference method, we may define the first and sec-

ond derivatives at point i by

ẋi =
xi+1 − xi−1
τ i + τ i−1

(14.76)

ẍi =
4

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 − xi

¶
. (14.77)
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These equations indicate that the velocity and acceleration at point i de-
pend on xi, and two adjacent points xi−1, and xi+1, as well as on the float-
ing times τ i, and τ i−1. Therefore, two extra points, x−1 and xs+2, before
the initial point and after the final point are needed to define velocity and
acceleration at x0 and xs+1. These extra points and their corresponding
floating times are shown in Figure 14.5.
The rest conditions at the beginning and at the end of motion require

x−1 = x1 xs+2 = xs (14.78)

τ0 = τ−1 τ s+1 = τ s. (14.79)

Using Equation (14.77), the equation of motion, fi = mẍi, at the initial
point is

f0 = mẍ0 =
4m

2τ20
(x1 − x0) . (14.80)

The minimum value of the first floating time τ0 is found by setting f0 = F .

τ0 =

r
2m (x1 − x0)

F
(14.81)

It is the minimum value of the first floating time because, if τ0 is less than
the value given by (14.81), then f0 will be greater than F and breaks the
constraint (14.72). On the other hand, if τ0 is greater than the value given
by (14.81), then f0 will be less than F and the input is not saturated yet.
The same conditions exist at the final point where the equation of motion
is

fs+1 = mẍs+1 =
4m

2τ2s
(xs − xs−1) . (14.82)

The minimum value of the final floating-time, τ s, is achieved by setting
fs+1 = −F .

τ s =

r
2m (xs − xs−1)

−F (14.83)

To find the minimum value of τ1, we develop the equation of motion at x1

f1 =
4m

τ21 + τ20

µ
τ0

τ1 + τ0
x2 +

τ1
τ1 + τ0

x0 − x1

¶
(14.84)

which is an equation with two unknowns f1 and τ1. We are able to find
τ1 numerically by adjusting τ1 to provide f1 = F . Applying this proce-
dure we are able to find the minimum floating times τ i+1 by applying the
maximum force constraint fi = F , and solving the equation of motion for
τ i+1 numerically. When τ i is known and the maximum force is applied to
find the next floating-time, τ i+1, we are in the forward path of the floating
time algorithm. In the last step of the forward path, τ s−1 is found at xs−1.
At this step, all the floating-times τ i, (i = 0, 1, 2, ..., s) are known, while
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FIGURE 14.6. A rectilinear motion of a rigid mass m under the influence of a
control force f(t) and a friction force μmg.

fi = F for i = 0, 1, 2, ..., s− 1, and fi = −F for i = s. Then, the force fs is
the only variable that is not calculated during the forward path by using
the equation of motion at point xs. It is actually dictated by the equation
of motion at point xs, because τ s−1 is known from the forward path pro-
cedure, and τ s is known from Equation (14.83) to satisfy the final point
condition. So, the value of fs can be found from the equation of motion at
i = s and substituting τs, τs−1, xs−1, xs, and xs+1.

fs =
4m

τ2s + τ2s−1

µ
τ s−1

τs + τs−1
xs+1 +

τs
τs + τ s−1

xs−1 − xs

¶
(14.85)

Now, if fs does not break the constraint |f(t)| ≤ F , the problem is solved
and the minimum time motion is determined. The input signals, fi, (i =
0, 1, 2, ..., s+ 1), i 6= s, are always saturated, and also none of the floating-
times τ i can be reduced any more. However, it is expected that fs breaks
the constraint |f(t)| ≤ F because accelerating in s − 1 steps with f = F
produces a large amount of kinetic energy and a huge deceleration is needed
to stop the mass m in the final step.
Now we reverse the procedure, and start a backward path. According to

(14.85), fs can be adjusted to satisfy the constraint fs = −F by tuning
τ s−1. Now fn−1 must be checked for the constraint |f(t)| ≤ F . This is be-
cause τs−2 is already found in the forward path, and τs−1 in the backward
path. Hence, the value of fn−1 is dictated by the equation of motion at
point xs−1. If fs−1 does not break the constraint |f(t)| ≤ F , the problem is
solved and the time-optimal motion is achieved. Otherwise, the backward
path must be continued to a point where the force constraint is satisfied.
The position xk in the backward path, where |fk| ≤ F , is called switching
point because fj = F for j < k , 0 ≤ j < k and fj = −F for j > k,
k < j ≤ s+ 1.

Example 380 F Moving a mass on a rough surface.
Consider a rectilinear motion of a rigid mass m under the influence of a

variable force f(t) and a friction force μmg, as shown in Figure 14.6. The
force is bounded by |f(t)| ≤ F , where ±F is the limit of available force. It is
necessary to find a function f(t) that moves m, from the initial conditions



14. F Time Optimal Control 805

x(0) = 0, v(0) = 0 to the final conditions x(tf ) = l > 0, v(tf ) = 0
in minimum total time t = tf . The motion is described by the following
equation of motion and boundary conditions:

f = mẍ− μmg (14.86)

x(0) = 0 v(0) = 0
x(tf ) = l v(tf ) = 0.

(14.87)

Using the theory of optimal control, we know that a time optimal control
solution for μ = 0 is a piecewise constant function where the only discon-
tinuity is at the switching point t = τ = tf/2 and

f(t) =

½
F if t < τ
−F if t > τ.

(14.88)

Therefore, the time optimal control solution for moving a mass m from
x(0) = x0 = 0 to x(tf ) = xf = l on a smooth straight line is a bang-
bang control with only one switching time. The input force f(t) is on its
maximum, f = F , before the switching point x = (xf − x0)/2 at τ = tf/2,
and f = −F after that. Any asymmetric characteristics, such as friction,
will make the problem asymmetric by moving the switching point.
In applying the floating-time algorithm, we assume that a particle of unit

mass, m = 1kg, slides under Coulomb friction on a rough horizontal sur-
face. The magnitude of the friction force is μmg, where μ is the friction
coefficient and g = 9.81m/ s2. We apply the floating-time algorithm using
the following numerical values:

F = 10N l = 10m s+ 1 = 200 (14.89)

Figures 14.7, 14.8, and 14.9 show the results for some different values
of μ. Figure 14.7 illustrates the time history of the optimal input force
for different values of μ. Each curve is indicated by the value of μ and
the corresponding minimum time of motion tf . Time history of the optimal
motions x(t) are shown in Figure 14.8, while the time history of the optimal
inputs f(t) are shown in Figure 14.9. The switching times and positions are
shown in Figures 14.7 and 14.9, respectively.
If μ = 0 then switching occurs at the midpoint of the motion x(τ) =

l/2 and halfway through the time τ = tf/2. Increasing μ delays both the
switching times and the switching positions. The total time of motion also
increases by increasing μ.

Example 381 F First and second derivatives in central difference method.
Using a Taylor series, we expand x at points xi−1 and xi+1 as an ex-

trapolation of point xi

xi+1 = xi + ẋiτ i +
1

2
ẍiτ

2
i + · · · (14.90)

xi−1 = xi − ẋiτ i−1 +
1

2
ẍiτ

2
i−1 − · · · . (14.91)
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FIGURE 14.7. Time history of the optimal input f(t) for different friction coef-
ficients μ.
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FIGURE 14.8. Time history of the optimal motion x(t) for different friction
coefficients μ.
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FIGURE 14.9. Position history of the optimal force f(t) for different friction
coefficients μ.

Accepting the first two terms and calculating xi+1 − xi−1 provides

ẋi =
xi+1 − xi−1
τ i + τ i−1

. (14.92)

Now, accepting the first three terms of the Taylor series and calculating
xi+1 + xi−1 provides

ẍi =
4m

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 − xi

¶
. (14.93)

Example 382 F Convergence.
The floating time algorithm presents an iterative method hence, conver-

gence criteria must be identified. In addition, a condition must be defined
to terminate the iteration. In the forward path, we calculate the floating-
time τ i by adjusting it to a value that provides fi = F . The floating-time
τ i converges to the minimum possible value, as long as ∂ẍi/∂τ i < 0 and
∂ẍi/∂τ i−1 > 0. Figure 14.10 illustrates the behavior of ẍi as a function
of τ i and τ i−1. Using the Equation (14.77), the required conditions are
fulfilled within a basin of convergence,

Z1xs+1 + Z2xs + Z3xs−1 < 0 (14.94)

Z4xs+1 + Z5xs + Z6xs−1 > 0 (14.95)
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FIGURE 14.10. Behavior of ẍi as a function of τ i and τ i−1.

where,

Z1 =
8
¡
6τ4i τ i−1 + 8τ

3
i τ
2
i−1 + 6τ

2
i τ
3
i−1
¢¡

τ2i + τ2i−1
¢3
(τ i + τ i−1)

3
(14.96)

Z2 =
8
¡
τ5i−1 − 3τ5i − 8τ3i τ2i−1 − 9τ4i τ i−1 + 3τ iτ4i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.97)

Z3 =
8
¡
−τ5i−1 + 3τ5i + 3τ4i τ i−1 − 3τ iτ4i−1 − 6τ2i τ3i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.98)

Z4 =
8
¡
3τ5i−1 − τ5i − 6τ3i τ2i−1 − 3τ4i τ i−1 + 3τ iτ4i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.99)

Z5 =
8
¡
−3τ5i−1 + τ5i + 3τ

4
i τ i−1 − 9τ iτ4i−1 − 8τ2i τ3i−1

¢¡
τ2i + τ2i−1

¢3
(τ i + τ i−1)

3
(14.100)

Z6 =
8
¡
6τ3i τ

2
i−1 + 8τ

2
i τ
3
i−1 + 6τ iτ

4
i−1
¢¡

τ2i + τ2i−1
¢3
(τ i + τ i−1)

3
. (14.101)

The convergence conditions guarantee that ẍi decreases with an increase
in τ i, and increases with an increase in τ i−1. Therefore, if either τ i or
τ i−1 is fixed, we are able to find the other floating time by setting fi = F .
Convergence conditions for backward path are changed to

Z1xs+1 + Z2xs + Z3xs−1 > 0 (14.102)

Z4xs+1 + Z5xs + Z6xs−1 < 0. (14.103)

A termination criterion may be defined by

||fi|− F | ≤ . (14.104)
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where is a user-specified number. The termination criterion provides a
good method to make sure that the maximum deviation is within certain
bounds.

Example 383 F Analytic calculating of floating times.
The rest condition at the beginning of the motion of an m on a straight

line requires

x−1 = x1 (14.105)

τ0 = τ−1. (14.106)

The first floating time τ0 is found by setting f0 = F and developing the
equation of motion fi = mẍi at point x0.

τ0 =

r
2m (x1 − x0)

F
(14.107)

Now the equation of motion at point x1 is

f1 =
4m

τ21 + τ20

µ
τ0

τ1 + τ0
x2 +

τ1
τ1 + τ0

x0 + x1

¶
. (14.108)

Substituting τ0 from (14.107) into (14.108) and applying f1 = F provides
the following equation

F =
4mF

2mx1 − 2mx0 + Fτ21

⎛⎝ τ0x2 + τ1x0

τ1 +
q

2m(x1−x0)
F

+ x1

⎞⎠ (14.109)

that must be solved for τ1. Then substituting τ1 from (14.109) into the
equation of motion at x2, and setting f2 = F leads to a new equation to
find τ2. This procedure can similarly be applied to the other steps. However,
calculating the floating times in closed form is not straightforward and get-
ting more complicated step by step, hence, a numerical solution is needed.
The equations for calculating τ i are nonlinear and therefore have multi-
ple solutions. Each positive solution must be examined for the constraint
fi = F . Negative solutions are not acceptable.

Example 384 F Brachistochrone and path planning.
The floating-time method is sometimes applicable for path planning prob-

lems. As an illustrative example, we considered the well-known brachis-
tochrone problem. As Johann Bernoulli says: “A material particle moves
without friction along a curve. This curve connects point A with point B
(point A is placed above point B). No forces affect it, except the gravita-
tional attraction. The time of travel from A to B must be the smallest. This
brings up the question: what is the form of this curve?”
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FIGURE 14.11. Time optimal path for a falling unit mass from A(0, 1) to two
different destinations.

The classical solution of the brachistochrone problem is a cycloid and its
parametric equation is

x = r (β − sinβ) (14.110)

y = r (1− cosβ) . (14.111)

where r is the radius of the corresponding cycloid and β is the angle of
rotation of r. When β = 0 the particle is at the beginning point A(0, 0).
The particle is at the second point B when β = βB. The value of βB can
be obtained from

xB = r (βB − sinβB) (14.112)

yB = r (1− cosβB) . (14.113)

The total time of the motion is

tf = βB

r
r

g
(14.114)

In a path-planning problem, except for the boundaries, the path of motion
is not known. Hence, the position of xi in Equations (14.76) and (14.77) are
not given. Knowing the initial and final positions, we fix the xi coordinates
while keeping the yi coordinates free. We will obtain the optimal path of
motion by applying the known input force and searching for the optimum
yi that minimizes the floating times.
Consider the points B1(1, 0) and B2(2, 0) as two different destinations of

motion for a unit mass falling from point A(0, 1). Figure 14.11 illustrates
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the optimal path of motion for the two destinations, obtained by the floating-
time method for s = 100. The total time of motion is tf1 = 0.61084 s, and
tf2 = 0.8057 s respectively. In this calculation, the gravitational acceleration
is assumed g = 10m/ s2 in −Y direction.
An analytic solution shows that βB1

= 1.934563 rad and βB2
= 2.554295 rad.

The corresponding total times are tf1 = 0.6176 s, and tf2 = 0.8077 s respec-
tively. By increasing s, the calculated minimum time would be closer to the
analytical results, and the evaluated path would be closer to a cycloid.
A more interesting and more realistic problem of brachistochrone can be

brachistochrone with friction and brachistochrone with linear drag. Although
there are analytical solutions for these two cases, no analytical solution has
been developed for brachistochrone with nonlinear (say second degree) drag.
Applying the floating-time algorithm for this kind of problem can be an
interesting challenge.

14.3 F Time-Optimal Control for Robots

Robots are multiple DOF dynamical systems. In case of a robot with n
DOF , the control force f and the output position x are vectors.

f =
£
f1 f2 · · · fn

¤T
(14.115)

x =
£
x1 x2 · · · xn

¤T
(14.116)

The constraint on the input force vector can be shown by

|fi| ≤ F (14.117)

where the elements of the limit vector F ∈ Rn may be different. The floating
time algorithm is applied similar to the algorithm 14.2, however, at each
step all the elements of the force vector f must be examined for their
constraints. To attain the time optimal control, at least one element of the
input vector f must be saturated at each step, while all the other elements
are within their limits.

Algorithm 14.2. Floating time technique for the n DOF systems.

1. Divide the preplanned path of motion x(t) into s + 1 intervals and
specify all coordinate vectors xi, (i = 0, 1, 2, 3, ..., s+ 1).

2. Develop the equations of motion at x0 and calculate τ0 for which only
one component of the force vector f0 is saturated on its higher limit,
while all the other components are within their limits.

f0k = Fk , k ∈ {0, 1, 2, · · · , n}
f0r ≤ Fr , r = 0, 1, 2, · · · , n , r 6= k
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3. Develop the equations of motion at xs+1 and calculate τ s for which
only one component of the force vector fs+1 is saturated on its higher
limit, while all the other components are within their limits.

fs+1k = −Fk , k ∈ {0, 1, 2, · · · , n}
fs+1r ≤ Fr , r = 0, 1, 2, · · · , n , r 6= k

4. For i from 1 to s− 1, calculate τ i such that only one component of
the force vector fi is saturated on its higher limit, while all the other
components are within their limits.

fik = −Fk , k ∈ {0, 1, 2, · · · , n}
fir ≤ Fr , r = 0, 1, 2, · · · , n , r 6= k

5. If |fs| ≤ F, then stop, otherwise set j = s.

6. Calculate τ j−1 such that only one component of the force vector fj is
saturated on its lower limit, while all the other components are within
their limits.

7. If |fj−1| ≤ F , then stop, otherwise set j = j − 1 and return to step
6.

Example 385 F 2R manipulator on a straight line.
Consider a 2R planar manipulator that its endpoint moves rest-to-rest

from point (1, 1.5) to point (−1, 1.5) on a straight line Y = 1.5. Figure 14.12
illustrates a 2R planar manipulator with rigid arms. The manipulator has
two rotary joints, whose angular positions are defined by the coordinates θ
and ϕ. The joint axes are both parallel to the Z-axis of the global coordi-
nate frame, and the robot moves in the XY -plane. Gravity acts in the −Y
direction and the lengths of the arms are l1 and l2.
We express the equations of motion for 2R robotic manipulators in the

following form:

P = Aθ̈ +Bϕ̈+ Cθ̇ϕ̇+Dϕ̇2 +M (14.118)

Q = Eθ̈ + Fϕ̈+Gθ̇
2
+N (14.119)
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FIGURE 14.12. A 2R planar manipulator with rigid arms.

where P and Q are the actuator torques and

A = A(ϕ) = m1l
2
1 +m2

¡
l21 + l22 + 2l1l2 cosϕ

¢
B = B(ϕ) = m2

¡
l22 + l1l2 cosϕ

¢
C = C(ϕ) = −2m2l1l2 sinϕ

D = D(ϕ) = m2l1l2 sinϕ

E = E(ϕ) = B

F = m2l
2
2

G = G(ϕ) = −D
M = M(θ, ϕ) = (m1 +m2)gl1 cos θ +m2gl2 cos (θ + ϕ)

N = N(θ, ϕ) = m2gl2 cos (θ + ϕ) . (14.120)

Following Equations (14.76) and (14.77), we define two functions to dis-
cretize the velocity and acceleration.

v(ẋi) =
xi+1 − xi−1
τ i + τ i−1

(14.121)

a(ẍi) =
4

τ2i + τ2i−1

µ
τ i−1

τ i + τ i−1
xi+1 +

τ i
τ i + τ i−1

xi−1 − xi

¶
.(14.122)

Then, the equations of motion at each instant may be written as

Pi(t) = Aia(θ̈) +Bia (ϕ̈) + Civ(θ̇)v (ϕ̇) +Div
2 (ϕ̇) +Mi (14.123)

Qi(t) = Eia(θ̈) + Fia (ϕ̈) +Giv
2(θ̇) +Ni (14.124)

where Pi and Qi are the required actuator torques at instant i. Actuators
are assumed to be bounded by

|Pi(t)| ≤ PM |Qi(t)| ≤ QM . (14.125)
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FIGURE 14.13. A 2R planar manipulator, moving from point (1, 1.5) to point
(−1, 1.5) on a straight line Y = 1.5.

To move the manipulator time optimally along a known trajectory, mo-
tors must exert torques with a known time history. Using the floating-time
method, the motion starts at point i = 0 and ends at point i = s + 1. In-
troducing two extra points at i = −1 and i = n + 2, and applying the rest
boundary conditions, we find

τ0 = τ1 θ0 = θ2 ϕ0 = ϕ2
τ s = τs+1 θs = θs+2 ϕs = ϕs+2.

(14.126)

All inputs of the manipulator at instant i are controlled by the common
floating-times τ i and τ i−1. In the forward path, when one of the inputs
saturates at instant i, while the others are less than their limits, the mini-
mum τ i is achieved. Any reduction in τ i increases the saturated input and
breaks one of the constraints (14.125). The same is true in the backward
path when we search for τ i−1.
Consider the following numerical values and the path of motion illustrated

in Figure 14.13.

m1 = m2 = 1kg l1 = l2 = 1m PM = QM = 100Nm (14.127)

To apply the floating time algorithm, the path of motion in Cartesian space
must first be transformed into joint space using inverse kinematics. Then,
the path of motion in joint space must be discretized to an arbitrary interval,
say 200, and the algorithm 14.2 should be applied.
Figure 14.14 depicts the actuators’ torque for minimum time motion after

applying the floating time algorithm. In this maneuver, there exists one
switching point, where the grounded actuator switches from maximum to
minimum. The ungrounded actuator never saturates, but as expected, one
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FIGURE 14.14. Time optimal control inputs for a 2R manipulator moving on
line Y = 1.5, −1 < X < 1.

of the inputs is always saturated. Calculating the floating times allows us to
calculate the kinematics information of motion in joint coordinate space.
Time histories of the joint coordinates can be utilized to determine the
kinematics of the end-effector in Cartesian space.

Example 386 F Multiple switching points.
The 2R manipulator shown in Figure 14.12 is made to follow the path

illustrated in Figure 14.15. The floating time algorithm is run for the fol-
lowing data:

m1 = m2 = 1kg l1 = l2 = 1m PM = QM = 100Nm
X(0) = 1.9m X(tf ) = 0.5m Y = 0

(14.128)

which leads to the solution shown in Figure 14.16. As shown in the Figure,
there are three switching points for this motion. It is seen that the optimal
motion starts while the grounded actuator is saturated and the ungrounded
actuator applies a positive torque within its limits. At the first switching
point, the ungrounded actuator reaches its negative limit. The grounded
actuator shows a change from positive to negative until it reaches its nega-
tive limit when the second switching occurs. Between the second and third
switching points, the grounded actuator is saturated. Finally, when the un-
grounded actuator touches its negative limit for the second time, the third
switching occurs.
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FIGURE 14.15. Illustration of motion of a 2R planar manipulator on line y = 0.
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FIGURE 14.16. Time optimal control inputs for a 2R manipulator moving on
line Y = 0, 0.5 < X < 1.9.
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14.4 Summary

Practically, every actuator can provide only a bounded output. When an
actuator is working on its limit, we call it saturated. Time optimal control
of an n DOF robot has a simple solution: At every instant of time, at least
one actuator must be saturated while the others are within their limits.
Floating-time is an applied method to find the saturated actuator, the
switching points, and the output of the non-saturated actuators. Switching
points are the points that the saturated actuator switches with another
one.
The floating-time method is based on discrete equations of motion, uti-

lizing variable time increments. Then, following a recursive algorithm, it
calculates the required output for the robot’s actuators to follow a given
path of motion.
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14.5 Key Symbols

A coefficient matrix of variables
b coefficient vector of control commands
B body coordinate frame
c cos, air resistance coefficient
C constant of integral
D,G,H coefficient matrices of robot equation of motion
f function, force, control command
F force, control command
G,B0 global coordinate frame, Base coordinate frame
H Hamiltonian
J objective function
l length
m mass
p momentum vector
P,Q torque, control command
r position vectors, homogeneous position vector
R rotation transformation matrix
s sin, arc length, number of increments
t time
V variation
x, y, z local coordinate axes
x vector of joint states
X,Y,Z global coordinate axes

Greek
β cycloid angular variable
δ Kronecker function, variation of a variable

small number
θ rotary joint angle
λ Lagrange multiplier
μ coefficient of friction
τ floating time increment
4 difference

Symbol
[ ]
−1 inverse of the matrix [ ]

[ ]T transpose of the matrix [ ]
qF a guess value for q
R set of real numbers
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Exercises

1. Notation and symbols.

Describe their meaning.

a- τ0 b- τ i c- fi d- xi e- ẍi

f- ẋi g- τ−1 h- τs i- xs+1 j- fs

2. F Time optimal control of a 2 DOF system.

Consider a dynamical system

ẋ1 = −3x1 + 2x2 + 5Q
ẋ2 = 2x1 − 3x2

that must start from an arbitrary initial condition and finish at x1 =
x2 = 0, with a bounded control input |Q| ≤ 1.
Show that the functions

f1 = −3x1 + 2x2 + 5Q
f2 = −2x1 − 3x2
f3 = 1

along with the Hamiltonian function H

H = −1 + p1 (−3x1 + 2x2 + 5Q) + p2 (2x1 − 3x2)

and the co-state variables p1 and p2 can solve the problem.

3. F Nonlinear objective function.

Consider a one-dimensional control problem

ẋ = −x+Q

where Q is the control command. The variable x = x(t) must satisfy
the boundary conditions

x(0) = a

x(tf ) = b

and minimize the objective function J .

J =
1

2

Z tf

0

Q2dt
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Show that the functions

f1 =
1

2
Q2

f2 = −x+Q

f3 = 0

along with the Hamiltonian function H

H =
1

2
p0Q

2 + p1 (−x+Q)

and the co-state variables p0 and p1 can solve the problem.

4. F Time optimal control to origin.

Consider a dynamical system

ẋ1 = x2

ẋ2 = −x1 +Q

that must start from an arbitrary initial condition and finish at the
origin of the phase plane, x1 = x2 = 0, with a bounded control
|Q| ≤ 1. Find the control command to do this motion in minimum
time.

5. F A linear dynamical system.

Consider a linear dynamical system

ẋ = [A]x+ bQ

where

x =

∙
x1
x2

¸
[A] =

∙
0 1
0 0

¸
b =

∙
0
1

¸
subject to a bounded constraint on the control command

Q ≤ 1.

Find the time optimal control command Q to move from the system
from x0 to x1.

(a)

x0 =

∙
−1
−1

¸
x1 =

∙
1
1

¸
(b)

x0 =

∙
−1
−1

¸
x1 =

∙
3
1

¸
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6. F Constraint minimization.

Find the local minima and maxima of

f(x) = x21 + x22 + x23

subject to the constraints

(a)
g1 = x1 + x2 + x3 − 3 = 0

(b)

g1 = x21 + x22 + x23 − 5 = 0
g2 = x21 + x22 + x23 − 2x1 − 3 = 0.

7. F A control command with different limits.

Consider a rectilinear motion of a point mass m = 1kg under the
influence of a control force f(t) on a smooth surface. The force is
bounded to F1 ≤ f(t) ≤ F2. The mass is supposed to move from the
initial conditions x(0) = 0, v(0) = 0 to the final conditions x(tf ) =
10m, v(tf ) = 0 in minimum total time t = tf . Use the floating time
algorithm to find the required control command f(t) = mẍ and the
switching time for

(a)
F1 = 10N F2 = 10N

(b)
F1 = 8N F2 = 10N

(c)
F1 = 10N F2 = 8N.

8. F A control command with different limits.

Find the time optimal control command |f(t)| ≤ 20N to move the
mass m = 2kg from rest at point P1 to P2, and return to stop at
point P3, as shown in Figure 14.17. The value of μ is:

(a)
μ = 0

(b)
μ = 0.2
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FIGURE 14.17. A rectilinear motion of a mass m from rest at point P1 to P2,
and a return to stop at point P3.

x

0
10 m

f

mk

mgμ

FIGURE 14.18. A rectilinear motion of a massm on a rough surface and attached
to a wall with a spring.

9. F Resistive media.

Consider the mass m = 2kg in Figure 14.17 that is supposed to move
from P1 to P2 rest-to-rest in minimum time. The control command
is limited to |f(t)| ≤ 20N. However, there is an air resistant propor-
tional to the velocity cẋ. Determine the optimal f(t), if

(a)
μ = 0 c = 0.1

(b)
μ = 0.2 c = 0.1

10. F Motion of a mass under friction and spring forces.

Find the optimal control command |f(t)| ≤ 100N to move the mass
m = 1kg rest-to-rest from x(0) = 0 to x(tf ) = 10m. The mass is
moving on a rough surface with coefficient μ and is attached to a
wall by a linear spring with stiffness k, as shown in Figure 14.18. The
value of μ and k are
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FIGURE 14.19. A 2R manipulator moves between two points on a line and a
semi-circle.

(a)
μ = 0.1 k = 2N/m

(b)
μ = 0.5 k = 5N/m.

11. F Convergence conditions.

Verify Equations (14.96) to (14.101) for the convergence condition of
the floating-time algorithm.

12. F 2R manipulator moving on a line and a circle.

Calculate the actuators’ torque for the 2R manipulator, shown in
Figure 14.19, such that the end-point moves time optimally from
P1(1.5m, 0.5m) to P2(0, 0.5m). The manipulator has the following
characteristics:

m1 = m2 = 1kg

l1 = l2 = 1m

|P (t)| ≤ 100Nm

|Q(t)| ≤ 80Nm

The path of motion is:

(a) a straight line

(b) a semi-circle with a center at (0.75m, 0.5m).

13. F Time optimal control for a polar manipulator.

Figure 14.20 illustrates a polar manipulator that is controlled by a
torque Q and a force P . The base actuator rotates the manipulator
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P

Q

θ

FIGURE 14.20. A polar manipulator, controlled by a torque Q and a force P .

and a force P slides the second link on the first link. Find the optimal
controls to move the endpoint from P1(1.5m, 1m) to P2(−1, 0.5m)
for the following data:

m1 = 5kg m2 = 3kg
|Q(t)| ≤ 100Nm |P (t)| ≤ 80Nm

14. F Control of an articulated manipulator.

Find the time optimal control of an articulated manipulator, shown
in Figure 5.22, to move from P1 = (1.1, 0.8, 0.5) to P2 = (−1, 1, 0.35)
on a straight line. The geometric parameters of the manipulator are
given below. Assume the links are made of uniform bars.

d1 = 1m d2 = 0
l2 = 1m l3 = 1m
m1 = 25 kg m2 = 12 kg m3 = 8kg
|Q1(t)| ≤ 180Nm |Q2(t)| ≤ 100Nm |Q3(t)| ≤ 50Nm
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Control Techniques
Using inverse kinematics, we can calculate the joint kinematics for a desired
geometric path of the end-effector of a robot. Substitution of the joint kine-
matics in equations of motion provides the actuator commands. Applying
the commands will move the end-effector of the robot on the desired path
ideally. However, because of perturbations and non-modeled phenomena,
the robot will not follow the desired path. The techniques that minimize
or remove the difference are called the control techniques.

- Controller Dynamics
qd qe Q

+

Qc

FIGURE 15.1. Illustration of feedback control algorithm.

15.1 Open and Closed-Loop Control

A robot is a mechanism with an actuator at each joint i to apply a force
or torque to derive the link (i). The robot is instrumented with position,
velocity, and possibly acceleration sensors to measure the joint variables’
kinematics. The measured values are usually kinematics information of the
frame Bi, attached to the link (i), relative to the frame Bi−1 or B0.
To cause each joint of the robot to follow a desired motion, we must

provide the required torque command. Assume that the desired path of
joint variables qd = q(t) are given as functions of time. Then, the required
torques that cause the robot to follow the desired motion are calculated by
the equations of motion and are equal to

Qc = D(qd) q̈d +H(qd, q̇d) +G(qd) (15.1)

where the subscripts d and c stand for desired and controlled, respectively.
In an ideal world, the variables can be measured exactly and the robot

can perfectly work based on the equations of motion (15.1). Then, the ac-
tuators’ control command Qc can cause the desired path qd to happen.

R.N. Jazar, Theory of Applied Robotics, 2nd ed., DOI 10.1007/978-1-4419-1750-8_15,  
© Springer Science+Business Media, LLC 2010 
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This is an open-loop control algorithm, that the control commands are cal-
culated based on a known desired path and the equations of motion. Then,
the control commands are fed to the system to generate the desired path.
Therefore, in an open-loop control algorithm, we expect the robot to fol-
low the designed path, however, there is no mechanism to compensate any
possible error.
Now assume that we are watching the robot during its motion by measur-

ing the joints’ kinematics. At any instant there can be a difference between
the actual joint variables and the desired values. The difference is called
error and is measured by

e = q− qd (15.2)

ė = q̇− q̇d. (15.3)

Let’s define a control law and calculate a new control command vector by

Q = Qc + kDė+ kPe (15.4)

where kP and kD are constant control gains. The control law compares the
actual joint variables (q, q̇) with the desired values (qd, q̇d), and generates
a command proportionally. Applying the new control command changes
the dynamic equations of the robot to produce the actual joint variables q.

Qc + kDė+ kPe = D(q) q̈+H(q, q̇) +G(q) (15.5)

Figure 15.1 illustrates the idea of this control method in a block diagram.
This is a closed-loop control algorithm, in which the control commands are
calculated based on the difference between actual and desired variables.
Reading the actual variables and comparing with the desired values is called
feedback, and because of that, the closed-loop control algorithm is also called
a feedback control algorithm.
The controller provides a signal proportional to the error and its time

rate. This signal is added to the predicted command Qc to compensate the
error.
The principle of feedback control can be expressed as: Increase the control

command when the actual variable is smaller than the desired value and
decrease the control command when the actual variable is larger than the
desired value.

Example 387 Mass-spring-damper oscillator.
Consider a linear oscillator made by a mass-spring-damper system shown

in Figure 15.2. The equation of motion for the oscillator under the effect
of an external force f is

mẍ+ cẋ+ kx = f (15.6)

where, f is the control command, m is the mass of the oscillating object,
c is the viscous damping, and k is the stiffness of the spring. The required
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FIGURE 15.2. A linear mass-spring-damper oscillator.

force to achieve a desired displacement xd = x(t) is calculated from the
equation of motion.

fc = mẍd + cẋd + kxd (15.7)

The open-loop control algorithm is shown in Figure 15.3(a).
To remove any possible error, we may use the difference between the

desired and actual outputs e = x− xd, and define a control law.

f = fc + kD ė+ kP e kD > 0 kP > 0 (15.8)

The new control law uses a feedback command as shown in Figure 15.3(b).
It is also possible to define a new control law only based on the error

signal such as
f = −kDė− kP e. (15.9)

Employing this law, we can define a more compact feedback control algo-
rithm and change the equation of motion to

mẍ+ (c+ kD) ẋ+ (k + kP )x = kDẋd + kPxd. (15.10)

The equation of the system can be summarized in a block diagram as shown
in Figure 15.3(c).
A general scheme of a feedback control system may be explained so that a

signal from the output feeds back to be compared to the input. This feedback
signal closes a loop and makes it reasonable to use the words feedback and
close-loop. The principle of a closed loop control is to detect any error
between the actual output and the desired. As long as the error signal is not
zero, the controller keeps changing the control command so that the error
signal converges to zero.

Example 388 Stability of a controlled system.
Consider a linear mass-spring-damper oscillator as shown in Figure 15.2

with the equation of motion given by

mẍ+ cẋ+ kx = f. (15.11)

We define a control law based on the actual output

f = −kDẋ− kPx kD > 0 kP > 0 (15.12)
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- Controller Dynamics
xd xe f

+

fc

Dynamics xd

(a)

(b)
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- Controller Dynamics
xd

x
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FIGURE 15.3. Open-loop and closed-loop control algorithms for a linear oscilla-
tor.

and transform the equation of motion to

mẍ+ (c+ kD) ẋ+ (k + kP )x = 0. (15.13)

By comparison with the open-loop equation (15.11), the closed loop equation
shows that the oscillator acts as a free vibrating system under the action
of new stiffness k + kP and damping c + kD. Hence, the control law has
changed the apparent stiffness and damping of the actual system. This ex-
ample introduces the most basic application of control theory to improve
the characteristics of a system and run the system to behave in a desired
manner.
A control system must be stable when the desired output of the system

changes, and also be able to eliminate the effect of a disturbance. Stability
of a control system is defined as: The output must remain bounded for a
given input or a bounded disturbance function.
To investigate the stability of the system, we must solve the closed loop

differential equation (15.13). The equation is linear and therefore, it has
an exponential solution.

x = eλt (15.14)

Substituting the solution into the equation (15.13) provides the character-
istic equation

mλ2 + (c+ kD)λ+ (k + kP ) = 0 (15.15)
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with two solutions

λ1,2 = −
c+ kD
2m

±

q
(c+ kD)

2 − 4m (k + kP )

2m
. (15.16)

The nature of the solution (15.14) depends on λ1 and λ2, and therefore on
kD and kP . The roots of the characteristic equation are complex

λ = −a± bi (15.17)

a =
c+ kD
2m

(15.18)

b =

q
4m (k + kP )− (c+ kD)

2

2m
(15.19)

provided the gains are such that

(c+ kD)
2
< 4m (k + kP ) . (15.20)

In this case, the solution of the equation of motion is

x = Ce−ξωnt sin

µ
ωn

q
1− ξ2t+ ϕ

¶
(15.21)

where,

ωn =

r
k + kP
m

=
p
a2 + b2 (15.22)

ξ =
c+ kD

2
p
m (k + kP )

=
a√

a2 + b2
. (15.23)

The parameter ωn is called natural frequency, and ξ is the damping
ratio of the system. The damping ratio controls the behavior of the system
according to the following categories:

1. If ξ = 0, then the characteristic values are purely imaginary, λ1,2 =
±bi = ±i 1

2m

p
4m (k + kP ). In this case, the system has no damp-

ing, and therefore, it oscillates with a constant amplitude around the
equilibrium, x = 0, forever.

2. If 0 < ξ < 1, then the system is under-damped and it oscillates
around the equilibrium with a decaying amplitude. The system is as-
ymptotically stable in this case.

3. If ξ = 1, then the system is critically-damped. A critically damped
oscillator has the fastest return to the equilibrium in an unoscillatory
manner.
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4. If ξ > 1, then the system is over-damped and it slowly returns to
the equilibrium in an unoscillatory manner. The characteristic values
are real and the solution of an over-damped oscillator is

x = Aeλ1t +Beλ2t (15.24)

(λ1,2) ∈ R.

5. If ξ < 0, then the system is unstable because the solution is

x = Aeλ1t +Beλ2t (15.25)

Re(λ1,2) > 0

and shows a motion with an increasing amplitude.

Example 389 F Solution of a characteristic equation.
Consider a system with the following characteristic equation:

λ2 + 6λ+ 10 = 0. (15.26)

Solutions of this equation are

λ1,2 = −3± i (15.27)

showing a stable system because Re (λ1,2) = −3 < 0 .
Characteristic equations are linear polynomials. Hence, it is possible to

use numerical methods, such as Newton-Raphson, to find the solution and
determine the stability of the system.

Example 390 F Complex roots.
In case the characteristic equation has complex roots

λ1,2 = a± bi (15.28)

we may employ the Euler formula

eiθ = cos θ + i sin θ (15.29)

and show that the solution can be written in the form

x = C1e
at (cos bt+ i sin bt) + C2e

at (cos bt− i sin bt)

= eat (A cos bt+B sin bt) (15.30)

where, C1 and C2 are complex, and A and B are real numbers according to

A = C1 + C2 (15.31)

B = (C1 − C2) i. (15.32)
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Example 391 Robot Control Algorithms.
Robots are nonlinear dynamical systems, and there is no general method

for designing a nonlinear controller to be suitable for every robot in every
mission. However, there are a variety of alternative and complementary
methods, each best applicable to particular class of robots in a particular
mission. The most important control methods are as follows:
Feedback Linearization or Computed Torque Control Technique.

In feedback linearization technique, we define a control law to obtain a linear
differential equation for error command, and then use the linear control
design techniques. The feedback linearization technique can be applied to
robots successfully, however, it does not guarantee robustness according to
parameter uncertainty or disturbances.
This technique is a model-based control method, because the control law

is designed based on a nominal model of the robot.
Linear Control Technique. The simplest technique for controlling ro-

bots is to design a linear controller based on the linearization of the equa-
tions of motion about an operating point. The linearization technique locally
determines the stability of the robot. Proportional, integral, and derivative,
or any combination of them, are the most practical linear control techniques.
Adaptive Control Technique. Adaptive control is a technique for con-

trolling uncertain or time-varying robots. Adaptive control technique is more
effective for low DOF robots.
Robust and Adaptive Control Technique. In the robust control method,

the controller is designed based on the nominal model plus some uncer-
tainty. Uncertainty can be in any parameter, such as the load carrying by
the end-effector. For example, we develop a control technique to be effective
for loads in a range of 1− 10 kg.
Gain-Scheduling Control Technique. Gain-scheduling is a technique

that tries to apply the linear control techniques to the nonlinear dynamics of
robots. In gain-scheduling, we select a number of control points to cover the
range of robot operation. Then at each control point, we make a linear time-
varying approximation to the robot dynamics and design a linear controller.
The parameters of the controller are then interpolated or scheduled between
control points.

15.2 Computed Torque Control

Dynamics of a robot can be expressed in the form

Q = D(q) q̈+H(q, q̇) +G(q) (15.33)

where q is the vector of joint variables, and Q(q, q̇, t) is the torques ap-
plied at joints. Assume a desired path in joint space is given by a twice
differentiable function q = qd(t) ∈ C2. Hence, the desired time history of
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joints’ position, velocity, and acceleration are known. We can control the
robot to follow the desired path, by introducing a computed torque control
law as below

Q = D(q) (q̈d − kDė− kPe) +H(q, q̇) +G(q) (15.34)

where e is the error vector
e = q− qd (15.35)

and kD and kP are constant gain diagonal matrices. The control law is
stable and applied as long as all the eigenvalues of the following matrix
have negative real part.

[A] =

∙
0 I
−kP −kD

¸
(15.36)

Proof. The requiredQc to track qd(t) can directly be found by substituting
the path function into the equations of motion.

Qc = D(qd) q̈d +H(qd, q̇d) +G(qd) (15.37)

The calculated torques are called control inputs, and the control is based on
the open-loop control law. In an open-loop control, we have the equations
of motion for a robot and we need the required torques to move the robot
on a given path. Open-loop control is a blind control method, since the
current state of the robot is not used for calculating the inputs.
Due to non-modeled parameters and also errors in adjustment, there is

always a difference between the desired and actual paths. To make the
robot’s actual path converge to the desired path, we must introduce a
feedback control. Let us use the feedback signal of the actual path and
apply the computed torque control law (15.34) to the robot. Substituting
the control law in the equations of motion (15.33), gives us

ë+ kDė+ kPe = 0. (15.38)

This is a linear differential equation for the error variable between the actual
and desired outputs. If the n× n gain matrices kD and kP are assumed to
be diagonal, then we may rewrite the error equation in a matrix form.

d

dt

∙
e
ė

¸
=

∙
0 I
−kP −kD

¸ ∙
e
ė

¸
= [A]

∙
e
ė

¸
(15.39)

The linear differential equation (15.39) is asymptotically stable when all
the eigenvalues of [A] have negative real part. The matrix kP has the role
of natural frequency, and kD acts as damping.

kP =

⎡⎢⎢⎣
ω21 0 0 0
0 ω22 0 0
0 0 · · · 0
0 0 0 ω2n

⎤⎥⎥⎦ (15.40)
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kD =

⎡⎢⎢⎣
2ξ1ω1 0 0 0
0 2ξ2ω2 0 0
0 0 · · · 0
0 0 0 2ξnωn

⎤⎥⎥⎦ (15.41)

Since kD and kP are diagonal, we can adjust the gain matrices kD and kP
to control the response speed of the robot at each joint independently. A
simple choice for the matrices is to set ξi = 0, i = 1, 2, · · · , n, and make each
joint response equal to the response of a critically damped linear second
order system with natural frequency ωi.
The computed torque control law (15.34) has two components as shown

below.

Q = D(q)q̈d +H(q, q̇) +G(q)| {z } + D(q) (−kDė− kPe)| {z }
Qff Qfb

(15.42)

The first term, Qff , is the feedforward command, which is the required
torques based on open-loop control law. When there is no error, the control
input Qff makes the robot follow the desired path qd. The second term,
Qfb, is the feedback command, which is the correction torques to reduce
the errors in the path of the robot.
Computed torque control is also called feedback linearization, which is

an applied technique for robots’ nonlinear control design. To apply the
feedback linearization technique, we develop a control law to eliminate all
nonlinearities and reduce the problem to the linear second-order equation
of error signal (15.38)

Example 392 Computed force control for an oscillator.
Figure 15.2 depicts a linear mass-spring-damper oscillator under the ac-

tion of a control force. The equation of motion for the oscillator is

mẍ+ cẋ+ kx = f. (15.43)

Applying a computed force control law

f = m (ẍd − kDė− kP e) + cẋ+ kx (15.44)

e = x− xd (15.45)

reduces the error differential equation to

ë+ kDė+ kP e = 0. (15.46)

The solution of the error equation is

e = Aeλ1t +Beλ2t (15.47)

λ1,2 = −kD ±
q
k2D − 4kP (15.48)
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FIGURE 15.4. A controlled inverted pendulum.

where A and B are functions of initial conditions, and λ1,2 are solutions
of the characteristic equation

mλ2 + kDλ+ kP = 0. (15.49)

The solution (15.47) is stable and e→ 0 exponentially as t→∞ if kD > 0.

Example 393 Inverted pendulum.
Consider an inverted pendulum shown in Figure 15.4. Its equation of

motion is
ml2θ̈ −mgl sin θ = Q. (15.50)

To control the pendulum and bring it from an initial angle θ = θ0 to the
vertical-up position, we may employ a feedback control law as

Q = −kDθ̇ − kP θ −mgl sin θ. (15.51)

The parameters kD and kP are positive gains and are assumed constants.
The control law (15.51) transforms the dynamics of the system to

ml2θ̈ + kDθ̇ + kP θ = 0 (15.52)

showing that the system behaves as a stable mass-spring-damper.
In case the desired position of the pendulum is at a nonzero angle, θ = θd,

we may employ a feedback control law based on the error e = θ−θd as below,

Q = ml2θ̈d − kD ė− kP e−mgl sin θ. (15.53)

Substituting this control law in the equation of motion (15.50) shows that
the dynamic of the controlled system is governed by

ml2ë+ kD ė+ kP e = 0. (15.54)
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FIGURE 15.5. A 2R planar manipulator with massive links.

Example 394 Control of a 2R planar manipulator.
A 2R planar manipulator is shown in Figure 15.5 with dynamic equations

given below. ∙
Q1
Q2

¸
=

∙
D11 D12

D21 D22

¸ ∙
θ̈1
θ̈2

¸
+

∙
C11 C12
C21 C22

¸ ∙
θ̇1
θ̇2

¸
+

∙
G1
G2

¸
(15.55)

where

D11 = m1r
2
1 + I1 +m2

¡
l21 + l1r2 cos θ2 + r22

¢
+ I2 (15.56)

D21 = D12 = m2l1r2 cos θ2 +m2r
2
2 + I2 (15.57)

D22 = m2r22 + I2 (15.58)

C11 = −m2l1r2θ̇2 sin θ2 (15.59)

C21 = −m2l1r2(θ̇1 + θ̇2) sin θ2 (15.60)

C12 = m2l1r2θ̇1 sin θ2 (15.61)

C22 = 0 (15.62)

G1 = m1gr1 cos θ1 +m2g (l1 cos θ1 + r2 cos (θ1 + θ2)) (15.63)

G2 = m2gr2 cos (θ1 + θ2) . (15.64)

Let’s write the equations of motion in the following form:

D(q) q̈+C(q, q̇)q̇+G(q) = Q (15.65)

and multiply both sides by D−1 to transform the equations of motion to

q̈+D−1Cq̇+D−1G = D−1Q. (15.66)
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To control the manipulator to follow a desired path q = qd(t), we apply the
following control law:

Q = D(q)U+C(q, q̇)q̇+G(q) (15.67)

where

U = q̈d − 2kė− k2e (15.68)

e = q− qd. (15.69)

The vector U is the controller input, e is the position error, and k is a pos-
itive constant gain number. Substituting the control law into the equation of
motion shows that the error vector satisfies a linear second-order ordinary
differential equation

ë+ 2kė+ k2e = 0 (15.70)

and therefore, exponentially converges to zero.

15.3 Linear Control Technique

Linearization of a robot’s equations of motion about an operating point
while applying a linear control algorithm is an old practical robot control
method. This technique works well in a vicinity of the operating point.
Hence, it is only a locally stable method. The linear control techniques are
proportional, integral, derivative, and any combination of them.
The idea is to linearize the nonlinear equations of motion about some

reference operating points to make a linear system, design a controller for
the linear system, and then, apply the control to the robot. This technique
will always result in a stable controller in some neighborhood of the op-
erating point. However, the stable neighborhood may be quite small and
hard to be determined.
A proportional-integral-derivative (PID) control algorithm employs a

position error, derivative error, and integral error to develop a control law.
Hence, a PID control law has the following general form for the input
command:

Q = kP e+ kI

Z t

0

e dt+ kD ė (15.71)

where e = q−qd is the error signal, and kP , kI , and kD are positive constant
gains associated to the proportional, integral, and derivative controllers.
The control command Q is thus a sum of three terms: the P -term, which

is proportional to error e, the I-term, which is proportional to the integral
of the error, and the D-term, which is proportional to the derivative of the
error.
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15.3.1 Proportional Control

In the case of proportional control, the PID control law (15.71) reduces to

Q = kP e+Qd. (15.72)

The variable Qd is the desired control command, which is called a bias or
reset factor. When the error signal is zero, the control command is equal
to the desired value. The proportional control has a drawback that results
in a constant error at steady state condition.

15.3.2 Integral Control

The main function of an integral control is to eliminate the steady state
error and make the system follow the set point at steady state conditions.
The integral controller leads to an increasing control command for a positive
error, and a decreasing control command for a negative error. An integral
controller is usually used with a proportional controller. The control law
for a PI controller is

Q = kP e+ kI

Z t

0

e dt. (15.73)

15.3.3 Derivative Control

The purpose of derivative control is to improve the closed-loop stability of a
system. A derivative controller has a predicting action by extrapolating the
error using a tangent to the error curve. A derivative controller is usually
used with a proportional controller. The PD control law is

Q = kP e+ kDė. (15.74)

Proof. Any linear system behaves linearly if it is sufficiently near a refer-
ence operating point. Consider a nonlinear system

q̇ = f(q,Q) (15.75)

where qd is a solution generated by a specific input Qc

q̇d = f(qd,Qc). (15.76)

Assume δq is a small change from the reference point qd because of a small
change δQ from Q.

q = qd + δq (15.77)

Q = Qc + δQ (15.78)
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If the changes δq and δQ are assumed small for all times, then the equation
(15.75) can be approximated by its Taylor expansion and q be the solution
of

q̇ =
∂f

∂qd
q+

∂f

∂Qd
Q. (15.79)

The partial derivative matrices
h
∂f
∂qd

i
and

h
∂f
∂Qd

i
are evaluated at the ref-

erence point (qd,Qd).

Example 395 F Linear control for a pendulum.
Figure 11.12 illustrates a controlled pendulum as a one-arm manipulator.

The equation of motion for the arm is

Q = I θ̈ + cθ̇ +mgl sin θ (15.80)

where I is the arm’s moment of inertia about the pivot joint and m is the
mass of the arm. The joint has a viscous damping c and kinematic length,
the distance between the pivot and C, is l. Introducing a new set of variables

θ = x1 (15.81)

θ̇ = x2 (15.82)

converts the equation of motion to

ẋ1 = x2 (15.83)

ẋ2 =
Q− c x2 −mgl sinx1

I
. (15.84)

The linearized form of these equations is∙
ẋ1
ẋ2

¸
=

∙
0 1

−mgl/I −c

¸ ∙
x1
x2

¸
+

∙
0 0
0 1/I

¸ ∙
0
Q

¸
. (15.85)

Assume that the reference point is

xd =

∙
x1
x2

¸
=

∙
π/2
0

¸
(15.86)

Qc = mgl. (15.87)

The coefficient matrices in Equation (15.85) must then be evaluated at the
reference point. We use a set of sample data

m = 1kg

l = 0.35m

I = 0.07 kg.m2

c = 0.01N s/m (15.88)
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and find
∂f

∂qd
=

∙
0 1

−49.05 −0.01

¸
(15.89)

∂f

∂Qc
=

∙
0 0
0 14.286

¸
. (15.90)

Now we have a linear system and we may apply any control law that applies
to linear systems. For instance, a PID control law

Q = Qc − kDė− kPe+ kI
Z t

0

e dt (15.91)

where

e = q− qd =
∙
x1 − π/2

x2

¸
(15.92)

can control the arm around the reference point.

Example 396 PD control.
Let us define a PD control law as

Q = −kDė− kPe (15.93)

e = q− qd (15.94)

Applying the PD control to a robot with dynamic equations as

Q = D(q) q̈+H(q, q̇) +G(q)

= D(q) q̈+C(q, q̇)q̇+G(q) (15.95)

will produce the following control equation:

D(q) q̈+C(q, q̇)q̇+G(q) + kD (q̇− q̇d)− kP (q− qd) = 0. (15.96)

This control is ideal when qd is a constant vector associated with a spe-
cific configuration of a robot, and therefore q̇d = 0. In this case the PD
controller can make the configuration qd globally stable.
In case of a path given by q = qd(t), we define a modified PD controller

in the form

Q = D(q)q̈d +C(q, q̇)q̇d +G(q)− kDė− kPe (15.97)

and reduce the closed-loop equation to

D(q)ë+ (C(q, q̇) + kD) ė+ kPe = 0. (15.98)

The linearization of this equation about a control point q = qd = const
provides a stable dynamics for the error signal

D(qd)ë+ kDė+ kPe = 0. (15.99)
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FIGURE 15.6. An inverted pendulum.

15.4 Sensing and Control

Position, velocity, acceleration, and force sensors are the most common
sensors used in robotics. Consider the inverted pendulum shown in Figure
15.6 as a one DOF manipulator with the following equation of motion:

ml2θ̈ − cθ̇ −mgl sin θ = Q. (15.100)

From an open-loop control viewpoint, we need to provide a moment Qc(t)
to force the manipulator to follow a desired path of motion θd(t) where

Qc = ml2θ̈d − cθ̇d −mgl sin θd. (15.101)

In robotics, we usually calculate Qc from the dynamics equation and
dictate it to the actuator.
The manipulator will respond to the applied moment and will move. The

equation of motion (15.100) is a model of the actual manipulator. In other
words, we want the manipulator to work based on this equation. However,
there are so many unmodeled phenomena that we cannot include them in
our equation of motion, or we cannot model them. Some are temperature,
air pressure, exact gravitational acceleration, or even the physical parame-
ters such as m and l that we think have good accuracy. So, applying a
control command Qc will move the manipulator and provide a real value
for θ, θ̇, and θ̈, which are not necessarily equal to θd, θ̇d, and θ̈d. Sensing
is now important because we need to measure the actual angle θ, angular
velocity θ̇, and angular acceleration θ̈ to compare them with θd, θ̇d, and θ̈d
and make sure that the manipulator is following the desired path. This is
the reason why the feedback control systems and the error signal e = θ−θd
were introduced.
Robots are supposed to do a job in an environment, so they can inter-

act with the environment. Therefore, a robot needs two types of sensors:
1-sensing the robot’s internal parameters, which are called proprioceptors,
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and 2-sensing the robot’s environmental parameters, which are called ex-
teroceptors. The most important interior parameters are position, velocity,
acceleration, force, torque, and inertia.

15.4.1 Position Sensors

Rotary encoders. In robotics, almost all kinds of actuators provide a
rotary motion. Then we may provide a rotation motion for a revolute joint,
or a translation motion for a prismatic joint, by using gears. So, it is ideally
possible to sense the relative position of the links connected by the joint
based on the angular position of the actuator. The error in this position
sensing is due to non-rigidity and backlash. The most common position
sensor is a rotary encoder that can be optical, magnetic, or electrical. As
an example, when the encoder shaft rotates, a disk counting a pattern of
fine lines interrupts a light beam. A photodetector converts the light pulses
into a countable binary waveform. The shaft angle is then determined by
counting the number of pulses.
Resolvers. We may design an electronic device to provide a mathemat-

ical function of the joint variable. The mathematical function might be
sine, cosine, exponential, or any combination of mathematical functions.
The joint variable is then calculated indirectly by resolving the mathemat-
ical functions. Sine and cosine functions are more common.
Potentiometers. Using an electrical bridge, the potentiometers can pro-

vide an electric voltage proportional to the joint position.
LVDT and RVDT. LVDT/RVDT or a Linear/Rotary Variable Differ-

ential Transformer operates with two transformers sharing the same mag-
netic core. When the core moves, the output of one transformer increases
while the other’s output decreases. The difference of the current is a mea-
sure of the core position.

15.4.2 Speed Sensors

Tachometers. Generally speaking, a tachometer is a name for any velocity
sensor. Tachometers usually provide an analog signal proportional to the
angular velocity of a shaft. There are a vast amount of different designs for
tachometers, using different physical characteristics such as magnetic field.
Rotary encoders. Any rotary sensor can be equipped with a time mea-

suring system and become an angular velocity sensor. The encoder counts
the light pulses of a rotating disk and the angular velocity is then deter-
mined by time between pulses.
Differentiating devices. Any kind of position sensor can be equipped

with a digital differentiating device to become a speed sensor. The digital
or numerical differentiating needs a simple processor. Numerical differenti-
ating is generally an erroneous process.
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Integrating devices. The output signal of an accelerometer can be
numerically integrated to provide a velocity signal. The digital or numer-
ical integrating also needs a simple processor. Numerical differentiating is
generally a smooth and reliable process.

15.4.3 Acceleration Sensors

Acceleration sensors work based on Newton’s second law of motion. They
sense the force that causes an acceleration of a known mass. There are many
types of accelerometers. Stress-strain gage, capacitive, inductive, piezoelec-
tric, and micro-accelerometers are the most common. In any of these types,
force causes a proportional displacement in an elastic material, such as de-
flection in a micro-cantilever beam, and the displacement is proportional
to the acceleration.
Applications of accelerometers include measurement of acceleration, an-

gular acceleration, velocity, position, angular velocity, frequency, impulse,
force, tilt, and orientation.
Force and Torque Sensors. Any concept and method that we use

in sensing acceleration may also be used in force and torque sensing. We
equip the wrists of a robot with at least three force sensors to measure the
contact forces and moments with the environment. The wrist’s force sensors
are important especially when the robot’s job is involved with touching
unknown surfaces and objects.
Proximity Sensors. Proximity sensors are utilized to detect the exis-

tence of an object, field, or special material before interacting with it. In-
ductive, capacitive, Hall effect, sonic, ultrasonic, and optical are the most
common proximity sensors.
The inductive sensors can sense the existence of a metallic object due

to a change in inductance. The capacitive sensors can sense the existence
of gas, liquid, or metals that cause a change in capacitance. Hall effective
sensors work based on the interaction between the voltage in a semiconduc-
tor material and magnetic fields. These sensors can detect the existence of
magnetic fields and materials. Sonic, ultrasonic, and optical sensors work
based on the reflection or modification in an emitted signal by objects.
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15.5 Summary

In an open-loop control algorithm, we calculate the robot’s required torque
commands Qc for a given joint path qd = q(t) based on the equations of
motion

Qc = D(qd) q̈d +H(qd, q̇d) +G(qd). (15.102)

However, there can be a difference between the actual joint variables and
the desired values. The difference is called error e

e = q− qd (15.103)

ė = q̇− q̇d. (15.104)

By measuring the error command, we may define a control law and calculate
a new control command vector

Q = Qc + kDė+ kPe (15.105)

to compensate for the error. The parameters kP and kD are constant gain
diagonal matrices.
The control law compares the actual joint variables (q, q̇) with the de-

sired values (qd, q̇d), and generates a command proportionally. Applying
the new control command changes the dynamic equations of the robot to

Qc + kDė+ kPe = D(q) q̈+H(q, q̇) +G(q). (15.106)

This is a closed-loop control algorithm, in which the control commands are
calculated based on the difference between actual and desired variables.
Computed torque control

Q = D(q) (q̈d − kDė− kPe) +H(q, q̇) +G(q) (15.107)

is an applied closed-loop control law in robotics to make a robot follow a
desired path.
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15.6 Key Symbols

a, b real and imaginary parts of a complex number
A coefficient matrix
A, B real coefficients
B body coordinate frame
c damping
Ci complex coefficients
e error, exponential function
fc, fc actuator force control command
f, f actual force command
g gravitational acceleration
G,B0 global coordinate frame, Base coordinate frame
i imaginary unit number
I = [I] identity matrix, moment of inertia
J Jacobian
k stiffness
kP proportional constant control gain
kD derivative constant control gain
l length
m mass
q actual vector of joint variables
qd desired path of joint
Q actuators’ actual command
Qc actuators’ control command
Qfb feedback command
Qff feedforward command
r position vectors, homogeneous position vector
ri the element i of r
t time
x, y, z local Cartesian coordinates
X,Y,Z global Cartesian coordinates

Greek
δ small increment of a parameter
λ characteristic value, eigenvalue
θ rotary joint angle
ωn natural frequency
ξ damping ratio

Symbol
DOF degree of freedom
R real numbers set
Re real
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Exercises

1. Response of second-order systems.

Solve the characteristic equations and determine the response of the
following second-order systems at x(1), if they start from x(0) = 1,
ẋ(0) = 0.

(a)
ẍ+ 2ẋ+ 5x = 0

(b)
ẍ+ 2ẋ+ x = 0

(c)
ẍ+ 4ẋ+ x = 0

2. Modified PD control.

Apply a modified PD control law

f = −kP e− kdẋ

e = x− xd

to a second-order linear system

mẍ+ cẋ+ kx = f

and reduce the system to a second-order equation in an error signal.

më+ (c+ kD)ė+ (k + kP )e = kxD

Then, calculate the steady state error for a step input

x = xd = const.

3. Modified PID control.

Apply a modified PD control law

f = −kP e− kdẋ− kI

Z t

0

edt

e = x− xd

to a second-order linear system

mẍ+ cẋ+ kx = f
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and reduce the system to a third-order equation in an error signal.

m
...
e + (c+ kD)ë+ (k + kP )ė+ kIe = 0

Then, find the PID gains such that the characteristic equation of the
system simplifies to¡

λ2 + 2ξωnλ+ ω2n
¢
(λ+ β) = 0.

4. Linearization.

Linearize the given equations and determine the stability of the lin-
earized set of equations.

ẋ1 = x22 + x1 cosx2

ẋ2 = x2 + (1 + x1 + x2)x1 + x1 sinx2

5. Expand the control equations for a 2R planar manipulator using the
following control law:

Q = D(q) (q̈d − kDė− kPe) +H(q, q̇) +G(q)

6. One-link manipulator control.

A one-link manipulator is shown in Figure 15.6.

(a) Derive the equation of motion.

(b) Determine a rest-to-rest joint path between θ(0) = 45deg and
θ(0) = −45 deg.

(c) Solve the time optimal control of the manipulator and determine
the torque Qc(t) for

m = 1kg

l = 1m

|Q| ≤ 120Nm.

(d) Now assume the mass is m = 1.01 kg and solve the equation
of motion numerically by feeding the calculated torques Qc(t).
Determine the position and velocity errors at the end of the
motion.

(e) Design a computed torque control law to compensate the error
during the motion.

7. F Mass-spring control.

Solve Exercise 14.10 and calculate the optimal control input. Increase
the stiffness %10, and design a computed torque control law to elim-
inate error during the motion.
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8. F 2R manipulator control.

(a) Solve Exercise 13.20 and calculate the optimal control inputs.

(b) Increase the masses by 10%, and solve the dynamic equations
numerically.

(c) Determine the position and velocity error in Cartesian and joint
spaces by applying the calculated optimal inputs.

(d) Design a computed torque control law to eliminate error during
the motion.

9. F PR planar manipulator control.

(a) Solve Exercise 14.13 and calculate the optimal control inputs.

(b) Increase the gravitational acceleration by 10%, and solve the
dynamic equations numerically.

(c) Determine the position and velocity error in Cartesian and joint
spaces by applying the calculated optimal inputs.

(d) Design a computed torque control law to eliminate error during
the motion.

10. Sensing and measurement.

Consider the oneDOF manipulator in Figure (15.100). To control the
manipulator, we need to sense the actual angle θ, angular velocity θ̇,
and angular acceleration θ̈ and compare them with θd, θ̇d, and θ̈d to
make sure that the manipulator is following the desired path. Can we
measure the actual moment Q, that the actuator is providing, and
compare with the predicted value Qc instead? Does making Q equal
to Qc guarantee that the manipulator does what it is supposed to
do?
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Appendix A

Global Frame Triple Rotation
In this appendix, the 12 combinations of triple rotation about global fixed
axes are presented.

1-QX,γQY,βQZ,α

=

⎡⎣ cαcβ −cβsα sβ
cγsα+ cαsβsγ cαcγ − sαsβsγ −cβsγ
sαsγ − cαcγsβ cαsγ + cγsαsβ cβcγ

⎤⎦ (A.1)

2-QY,γQZ,βQX,α

=

⎡⎣ cβcγ sαsγ − cαcγsβ cαsγ + cγsαsβ
sβ cαcβ −cβsα
−cβsγ cγsα+ cαsβsγ cαcγ − sαsβsγ

⎤⎦ (A.2)

3-QZ,γQX,βQY,α

=

⎡⎣ cαcγ − sαsβsγ −cβsγ cγsα+ cαsβsγ
cαsγ + cγsαsβ cβcγ sαsγ − cαcγsβ
−cβsα sβ cαcβ

⎤⎦ (A.3)

4-QZ,γQY,βQX,α

=

⎡⎣ cβcγ −cαsγ + cγsαsβ sαsγ + cαcγsβ
cβsγ cαcγ + sαsβsγ −cγsα+ cαsβsγ
−sβ cβsα cαcβ

⎤⎦ (A.4)

5-QY,γQX,βQZ,α

=

⎡⎣ cαcγ + sαsβsγ −cγsα+ cαsβsγ cβsγ
cβsα cαcβ −sβ

−cαsγ + cγsαsβ sαsγ + cαcγsβ cβcγ

⎤⎦ (A.5)

6-QX,γQZ,βQY,α

=

⎡⎣ cαcβ −sβ cβsα
sαsγ + cαcγsβ cβcγ −cαsγ + cγsαsβ
−cγsα+ cαsβsγ cβsγ cαcγ + sαsβsγ

⎤⎦ (A.6)

7-QX,γQY,βQX,α

=

⎡⎣ cβ sαsβ cαsβ
sβsγ cαcγ − cβsαsγ −cγsα− cαcβsγ
−cγsβ cαsγ + cβcγsα −sαsγ + cαcβcγ

⎤⎦ (A.7)
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8-QY,γQZ,βQY,α

=

⎡⎣ −sαsγ + cαcβcγ −cγsβ cαsγ + cβcγsα
cαsβ cβ sαsβ

−cγsα− cαcβsγ sβsγ cαcγ − cβsαsγ

⎤⎦ (A.8)

9-QZ,γQX,βQZ,α

=

⎡⎣ cαcγ − cβsαsγ −cγsα− cαcβsγ sβsγ
cαsγ + cβcγsα −sαsγ + cαcβcγ −cγsβ

sαsβ cαsβ cβ

⎤⎦ (A.9)

10-QX,γQZ,βQX,α

=

⎡⎣ cβ −cαsβ sαsβ
cγsβ −sαsγ + cαcβcγ −cαsγ − cβcγsα
sβsγ cγsα+ cαcβsγ cαcγ − cβsαsγ

⎤⎦ (A.10)

11-QY,γQX,βQY,α

=

⎡⎣ cαcγ − cβsαsγ sβsγ cγsα+ cαcβsγ
sαsβ cβ −cαsβ

−cαsγ − cβcγsα cγsβ −sαsγ + cαcβcγ

⎤⎦ (A.11)

12-QZ,γQY,βQZ,α

=

⎡⎣ −sαsγ + cαcβcγ −cαsγ − cβcγsα cγsβ
cγsα+ cαcβsγ cαcγ − cβsαsγ sβsγ
−cαsβ sαsβ cβ

⎤⎦ (A.12)



Appendix B

Local Frame Triple Rotation
In this appendix, the 12 combinations of triple rotation about local axes
are presented.

1-Ax,ψAy,θAz,ϕ

=

⎡⎣ cθcϕ cθsϕ −sθ
−cψsϕ+ cϕsθsψ cϕcψ + sθsϕsψ cθsψ
sϕsψ + cϕsθcψ −cϕsψ + sθcψsϕ cθcψ

⎤⎦ (B.1)

2-Ay,ψAz,θAx,ϕ

=

⎡⎣ cθcψ sϕsψ + cϕsθcψ −cϕsψ + sθcψsϕ
−sθ cθcϕ cθsϕ
cθsψ −cψsϕ+ cϕsθsψ cϕcψ + sθsϕsψ

⎤⎦ (B.2)

3-Az,ψAx,θAy,ϕ

=

⎡⎣ cϕcψ + sθsϕsψ cθsψ −cψsϕ+ cϕsθsψ
−cϕsψ + sθcψsϕ cθcψ sϕsψ + cϕsθcψ

cθsϕ −sθ cθcϕ

⎤⎦ (B.3)

4-Az,ψAy,θAx,ϕ

=

⎡⎣ cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ
−cθsψ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ
sθ −cθsϕ cθcϕ

⎤⎦ (B.4)

5-Ay,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − sθsϕsψ cψsϕ+ cϕsθsψ −cθsψ
−cθsϕ cθcϕ sθ

cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ cθcψ

⎤⎦ (B.5)

6-Ax,ψAz,θAy,ϕ

=

⎡⎣ cθcϕ sθ −cθsϕ
sϕsψ − cϕsθcψ cθcψ cϕsψ + sθcψsϕ
cψsϕ+ cϕsθsψ −cθsψ cϕcψ − sθsϕsψ

⎤⎦ (B.6)

7-Ax,ψAy,θAx,ϕ

=

⎡⎣ cθ sθsϕ −cϕsθ
sθsψ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ
sθcψ −cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ

⎤⎦ (B.7)



866 Appendix B. Local Frame Triple Rotation

8-Ay,ψAz,θAy,ϕ

=

⎡⎣ −sϕsψ + cθcϕcψ sθcψ −cϕsψ − cθcψsϕ
−cϕsθ cθ sθsϕ

cψsϕ+ cθcϕsψ sθsψ cϕcψ − cθsϕsψ

⎤⎦ (B.8)

9-Az,ψAx,θAz,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ cψsϕ+ cθcϕsψ sθsψ
−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

⎤⎦ (B.9)

10-Ax,ψAz,θAx,ϕ

=

⎡⎣ cθ cϕsθ sθsϕ
−sθcψ −sϕsψ + cθcϕcψ cϕsψ + cθcψsϕ
sθsψ −cψsϕ− cθcϕsψ cϕcψ − cθsϕsψ

⎤⎦ (B.10)

11-Ay,ψAx,θAy,ϕ

=

⎡⎣ cϕcψ − cθsϕsψ sθsψ −cψsϕ− cθcϕsψ
sθsϕ cθ cϕsθ

cϕsψ + cθcψsϕ −sθcψ −sϕsψ + cθcϕcψ

⎤⎦ (B.11)

12-Az,ψAy,θAz,ϕ

=

⎡⎣ −sϕsψ + cθcϕcψ cϕsψ + cθcψsϕ −sθcψ
−cψsϕ− cθcϕsψ cϕcψ − cθsϕsψ sθsψ

cϕsθ sθsϕ cθ

⎤⎦ (B.12)



Appendix C

Principal Central Screws Triple
Combination
In this appendix, the six combinations of triple principal central screws are
presented.

1-š(hX , γ, Î) š(hY , β, Ĵ) š(hZ , α, K̂)

=

⎡⎢⎢⎣
cαcβ −cβsα sβ γpX + αpZsβ

cγsα+ cαsβsγ cαcγ − sαsβsγ −cβsγ βpY cγ − αpZcβsγ
sαsγ − cαcγsβ cαsγ + cγsαsβ cβcγ βpY sγ + αpZcβcγ

0 0 0 1

⎤⎥⎥⎦
(C.1)

2-š(hY , β, Ĵ) š(hZ , α, K̂) š(hX , γ, Î)

=

⎡⎢⎢⎣
cαcβ sβsγ − cβcγsα cγsβ + cβsαsγ αpZsβ + γpXcαcβ
sα cαcγ −cαsγ βpY + γpXsα
−cαsβ cβsγ + cγsαsβ cβcγ − sαsβsγ αpZcβ − γpXcαsβ
0 0 0 1

⎤⎥⎥⎦
(C.2)

3-š(hZ , α, K̂) š(hX , γ, Î) š(hY , β, Ĵ)

=

⎡⎢⎢⎣
cαcβ − sαsβsγ −cγsα cαsβ + cβsαsγ γpXcα− βpY cγsα
cβsα+ cαsβsγ cαcγ sαsβ − cαcβsγ γpXsα+ βpY cαcγ
−cγsβ sγ cβcγ αpZ + βpY sγ
0 0 0 1

⎤⎥⎥⎦
(C.3)

4-š(hZ , α, K̂) š(hY , β, Ĵ) š(hX , γ, Î)

=

⎡⎢⎢⎣
cαcβ cαsβsγ − cγsα sαsγ + cαcγsβ γpXcαcβ − βpY sα
cβsα cαcγ + sαsβsγ cγsαsβ − cαsγ βpY cα+ γpXcβsα
−sβ cβsγ cβcγ αpZ − γpXsβ
0 0 0 1

⎤⎥⎥⎦
(C.4)

5-š(hY , β, Ĵ) š(hX , γ, Î) š(hZ , α, K̂)

=

⎡⎢⎢⎣
cαcβ + sαsβsγ cαsβsγ − cβsα cγsβ γpXcβ + αpZcγsβ

cγsα cαcγ −sγ βpY − αpZsγ
cβsαsγ − cαsβ sαsβ + cαcβsγ cβcγ αpZcβcγ − γpXsβ

0 0 0 1

⎤⎥⎥⎦
(C.5)
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6-š(hX , γ, Î) š(hZ , α, K̂) š(hY , β, Ĵ)

=

⎡⎢⎢⎣
cαcβ −sα cαsβ γpX − βpY sα

sβsγ + cβcγsα cαcγ cγsαsβ − cβsγ βpY cαcγ − αpZsγ
cβsαsγ − cγsβ cαsγ cβcγ + sαsβsγ αpZcγ + βpY cαsγ

0 0 0 1

⎤⎥⎥⎦
(C.6)



Appendix D

Trigonometric Formula
Definitions in terms of exponentials.

cos z =
eiz + e−iz

2
(D.1)

sin z =
eiz − e−iz

2i
(D.2)

tan z =
eiz − e−iz

i (eiz + e−iz)
(D.3)

eiz = cos z + i sin z (D.4)

e−iz = cos z − i sin z (D.5)

Angle sum and difference.

sin(α± β) = sinα cosβ ± cosα sinβ (D.6)

cos(α± β) = cosα cosβ ∓ sinα sinβ (D.7)

tan(α± β) =
tanα± tanβ
1∓ tanα tanβ (D.8)

cot(α± β) =
cotα cotβ ∓ 1
cotβ ± cotα (D.9)

Symmetry.

sin(−α) = − sinα (D.10)

cos(−α) = cosα (D.11)

tan(−α) = − tanα (D.12)

Multiple angle.

sin(2α) = 2 sinα cosα =
2 tanα

1 + tan2 α
(D.13)

cos(2α) = 2 cos2 α− 1 = 1− 2 sin2 α = cos2 α− sin2 α (D.14)

tan(2α) =
2 tanα

1− tan2 α (D.15)

cot(2α) =
cot2 α− 1
2 cotα

(D.16)
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sin(3α) = −4 sin3 α+ 3 sinα (D.17)

cos(3α) = 4 cos3 α− 3 cosα (D.18)

tan(3α) =
− tan3 α+ 3 tanα
−3 tan2 α+ 1 (D.19)

sin(4α) = −8 sin3 α cosα+ 4 sinα cosα (D.20)

cos(4α) = 8 cos4 α− 8 cos2 α+ 1 (D.21)

tan(4α) =
−4 tan3 α+ 4 tanα
tan4 α− 6 tan2 α+ 1 (D.22)

sin(5α) = 16 sin5 α− 20 sin3 α+ 5 sinα (D.23)

cos(5α) = 16 cos5 α− 20 cos3 α+ 5 cosα (D.24)

sin(nα) = 2 sin((n− 1)α) cosα− sin((n− 2)α) (D.25)

cos(nα) = 2 cos((n− 1)α) cosα− cos((n− 2)α) (D.26)

tan(nα) =
tan((n− 1)α) + tanα
1− tan((n− 1)α) tanα (D.27)

Half angle.

cos
³α
2

´
= ±

r
1 + cosα

2
(D.28)

sin
³α
2

´
= ±

r
1− cosα

2
(D.29)

tan
³α
2

´
=
1− cosα
sinα

=
sinα

1 + cosα
= ±

r
1− cosα
1 + cosα

(D.30)

sinα =
2 tan α

2

1 + tan2 α
2

(D.31)

cosα =
1− tan2 α

2

1 + tan2 α
2

(D.32)

Powers of functions.

sin2 α =
1

2
(1− cos(2α)) (D.33)

sinα cosα =
1

2
sin(2α) (D.34)

cos2 α =
1

2
(1 + cos(2α)) (D.35)

sin3 α =
1

4
(3 sin(α)− sin(3α)) (D.36)
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sin2 α cosα =
1

4
(cosα− 3 cos(3α)) (D.37)

sinα cos2 α =
1

4
(sinα+ sin(3α)) (D.38)

cos3 α =
1

4
(cos(3α) + 3 cosα)) (D.39)

sin4 α =
1

8
(3− 4 cos(2α) + cos(4α)) (D.40)

sin3 α cosα =
1

8
(2 sin(2α)− sin(4α)) (D.41)

sin2 α cos2 α =
1

8
(1− cos(4α)) (D.42)

sinα cos3 α =
1

8
(2 sin(2α) + sin(4α)) (D.43)

cos4 α =
1

8
(3 + 4 cos(2α) + cos(4α)) (D.44)

sin5 α =
1

16
(10 sinα− 5 sin(3α) + sin(5α)) (D.45)

sin4 α cosα =
1

16
(2 cosα− 3 cos(3α) + cos(5α)) (D.46)

sin3 α cos2 α =
1

16
(2 sinα+ sin(3α)− sin(5α)) (D.47)

sin2 α cos3 α =
1

16
(2 cosα− 3 cos(3α)− 5 cos(5α)) (D.48)

sinα cos4 α =
1

16
(2 sinα+ 3 sin(3α) + sin(5α)) (D.49)

cos5 α =
1

16
(10 cosα+ 5 cos(3α) + cos(5α)) (D.50)

tan2 α =
1− cos(2α)
1 + cos(2α)

(D.51)

Products of sin and cos.

cosα cosβ =
1

2
cos(α− β) +

1

2
cos(α+ β) (D.52)

sinα sinβ =
1

2
cos(α− β)− 1

2
cos(α+ β) (D.53)

sinα cosβ =
1

2
sin(α− β) +

1

2
sin(α+ β) (D.54)

cosα sinβ =
1

2
sin(α+ β)− 1

2
sin(α− β) (D.55)

sin(α+ β) sin(α− β) = cos2 β − cos2 α = sin2 α− sin2 β (D.56)
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cos(α+ β) cos(α− β) = cos2 β + sin2 α (D.57)

Sum of functions.

sinα± sinβ = 2 sin α± β

2
cos

α± β

2
(D.58)

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β

2
(D.59)

cosα− cosβ = −2 sin α+ β

2
sin

α− β

2
(D.60)

tanα± tanβ = sin(α± β)

cosα cosβ
(D.61)

cotα± cotβ = sin(β ± α)

sinα sinβ
(D.62)

sinα+ sinβ

sinα− sinβ =
tan α+β

2

tan α−+β
2

(D.63)

sinα+ sinβ

cosα− cosβ = cot
−α+ β

2
(D.64)

sinα+ sinβ

cosα+ cosβ
= tan

α+ β

2
(D.65)

sinα− sinβ
cosα+ cosβ

= tan
α− β

2
(D.66)

Trigonometric relations.

sin2 α− sin2 β = sin(α+ β) sin(α− β) (D.67)

cos2 α− cos2 β = − sin(α+ β) sin(α− β) (D.68)
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2R planar manipulator
acceleration analysis, 543
assembling, 281
control, 837
DH transformation matrix, 246
dynamics, 622, 695
elbow down, 331
elbow up, 331
equations of motion, 625
forward acceleration, 550
ideal, 622
inverse acceleration, 554
inverse kinematics, 331, 359,

505
inverse velocity, 466, 468
Jacobian matrix, 448, 450
joint 2 acceleration, 540
joint forces, 660
joint path, 750
kinematic motion, 332
kinetic energy, 623
Lagrange dynamics, 675, 696
Lagrangean, 624
line path, 752
Newton-Euler dynamics, 651,

653, 655, 680
potential energy, 623
recursive dynamics, 664
time-optimal control, 812
velocity analysis, 413
with massive joints, 653, 655,

680
with massive links, 696

3R planar manipulator
DH transformation matrix, 238
forward kinematics, 260

4R planar manipulator
statics, 703

Acceleration
angular, 529, 534, 536, 538,

539
bias vector, 553
body point, 399, 539, 541, 584
centripetal, 536, 539
constant parabola, 755
constant path, 738
Coriolis, 585
discontinuous path, 745
discrete equation, 803, 813
end-effector, 535
forward kinematics, 549, 550
gravitational, 671, 692, 703
inverse kinematics, 552
jump, 731
matrix, 530, 541, 548, 566
recursive, 557, 560, 641
rotational transformation, 530,

535
sensors, 844
tangential, 536, 539
transformation matrix, 541,

542
Active transformation, 73
Actuator, 7, 13

force and torque, 643, 668,
707

optimal torque, 814, 815
torque equation, 652, 812

Algorithm
floating-time, 801, 811
inverse kinematics, 358
LU factorization, 488
LU solution, 488
Newton-Raphson, 504

Angular acceleration, 529, 538, 539
combination, 534
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end-effector, 535
Euler parameters, 536, 538
matrix, 530
quaternions, 538
recursive, 565
vector, 530

Angular momentum
2 link manipulator, 594

Angular velocity, 56, 59, 60, 98,
381

alternative definition, 400
combination, 387
coordinate transformation, 389
decomposition, 387
elements of matrix, 393
Euler frequencies, 388
Euler parameters, 391
instantaneous, 383
instantaneous axis, 382, 384
matrix, 382
principal matrix, 385
quaternions, 390
rate, 382
recursive, 440, 559
rotation matrix, 388
vector, 382

Articulated
arm, 9, 262, 265
manipulator, 9, 262, 265, 333,

456
Articulated manipulator

equations of motion, 686
inverse kinematics, 328, 330,

343
inverse velocity, 470
Jacobian matrix, 450, 514
left shoulder configuration, 349
right shoulder configuration,

349
Atan2 function, 339
Automorphism, 115
Axis-angle rotation, 91, 94—96, 103—

105, 107, 120

bac-cab rule, 143

Block diagram, 828
Brachistochrone, 798, 809
Bryant angles, 61

Cardan
angles, 61
frequencies, 61

Cartesian
angular velocity, 59
end-effector position, 464
end-effector velocity, 466
manipulator, 9, 10
path, 754

Central difference, 805
Centroid, 407
Chasles theorem, 178, 192
Christoffel operator, 619, 677
Christoffel symbol, 677
Co-state variable, 792
Control

adaptive, 833
admissible, 800
bang-bang, 791, 792
characteristic equation, 830
closed-loop, 827
command, 827
computed force, 835
computed torque, 833
derivative, 839
desired path, 827
error, 828
feedback, 828
feedback command, 835
feedback linearization, 833, 835
feedforward command, 835
gain, 828
gain-scheduling, 833
input, 834
integral, 839
linear, 833, 838
minimum time, 791
modified PD, 841
open-loop, 827, 834
path points, 757
PD, 841

Index
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proportional, 839
robots, 13
sensing, 842
stability of linear, 829
time-optimal, 801, 804, 811,

812, 815
time-optimal description, 800
time-optimal path, 809

Controller, 7
Coordinate

cylindrical, 176
frame, 18
non-Cartesian, 618
non-orthogonal, 130
parabolic, 618
spherical, 177, 413
system, 18

Coriolis
acceleration, 534, 541
effect, 585
force, 585

Cycloid, 799

Denavit-Hartenberg, 31
method, 233, 236, 297
nonstandard method, 257, 355
notation, 233
parameters, 233, 419, 422, 438,

560, 702
transformation, 242, 246—252,

254, 256, 292
Derivative

coordinate frames, 393
transformation formula, 399

Differential
transformation matrix, 420

Differential manifold, 72
Differentiating

B-derivative, 393, 395, 397
coordinate frame, 393
G-derivative, 393, 399
second, 402
transformation formula, 399

Direction cosines, 48
Distal end, 233, 702

Dynamics, 527, 556, 641
2R planar manipulator, 651,

653, 655, 664, 680
4 bar linkage, 646
actuator’s force and torque,

668
backward Newton-Euler, 661
forward Newton-Euler, 663
global Newton-Euler, 642
Lagrange, 669
motion, 581
Newton-Euler, 641
one-link manipulator, 644
recursive Newton-Euler, 642,

661
robots, 641

Earth
effect of rotation, 585
kinetic energy, 617
revolution, 617
rotation, 617
rotation effect, 534

Eigenvalue
rotation matrix, 98

Eigenvector
rotation matrix, 98

Ellipsoid
energy, 596
momentum, 596

End-effector, 6
acceleration, 549
angular acceleration, 535
angular velocity, 463
articulated robot, 333
configuration vector, 512, 549
configuration velocity, 549
force, 663
frame, 240
inverse kinematics, 325
kinematics, 291
link, 233
orientation, 338, 464
path, 749, 763
position kinematics, 259

Index
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position vector, 458
rotation, 759
SCARA position, 172
SCARA robot, 268
space station manipulator, 270
speed vector, 442, 443
spherical robot, 296
time optimal control, 791
velocity, 454, 465

Energy
Earth kinetic, 617
kinetic rigid body, 593
kinetic rotational, 589
link’s kinetic, 669, 692
link’s potential, 671
mechanical, 617
point kinetic, 583
potential, 620
robot kinetic, 670, 692
robot potential, 671, 692

Euler
-Lexell-Rodriguez formula, 93
angles, 19, 54, 56, 120
integrability, 60

coordinate frame, 59
equation of motion, 588, 592,

597, 599, 643, 662
frequencies, 56, 59, 388
inverse matrix, 71
parameters, 102, 103, 105, 110,

111, 113, 124, 391
rotation matrix, 54, 71
theorem, 51, 102

Euler angles, 52
Euler equation

body frame, 592, 599
Euler-Lagrange

equation of motion, 796, 798
Eulerian viewpoint, 407

Final rotation formula, 101
Floating time, 802

1 DOF algorithm, 801
analytic calculation, 809
backward path, 804

convergence, 807
forward path, 803
method, 801
multi DOF algorithm, 811
multiple switching, 815
path planning, 809
robot control, 811

Force, 581
action, 642
actuator, 668
conservative, 620
Coriolis, 585
driven, 642
driving, 642
generalized, 614, 671
gravitational vector, 672
potential, 620
potential field, 616
reaction, 642
sensors, 844
shaking, 648
time varying, 586

Forward kinematics, 32
Frame

base, 239
central, 587
final, 240
goal, 240
neshin, 280
principal, 589
reference, 17
special, 239
station, 239
takht, 280
tool, 240
world, 239
wrist, 240

Generalized
coordinate, 611, 614, 615, 621
force, 613, 614, 616, 618, 620,

622, 625, 669
inverse Jacobian, 509

Grassmanian, 205
Group properties, 72

Index



877

Hamiltonian, 792
Hayati-Roberts method, 303
Helix, 178
Homogeneous

compound transformation, 168
coordinate, 155, 161
direction, 161
general transformation, 162,

166
inverse transformation, 162,

164, 165, 169
position vector, 155
scale factor, 155
transformation, 154, 156, 158—

162, 165

Integrability, 60
Inverse Kinematics

comparison of techniques, 361
techniques, 362

Inverse kinematics, 32, 325
articulated manipulator, 343
decoupling technique, 325
Euler angles matrix, 352, 353
general formulas, 340
inverse transformation tech-

nique, 341
iterative algorithm, 358
iterative technique, 357
nonstandard DH, 355
Pieper technique, 343
spherical robot, 346

Inverted pendulum, 836

Jacobian
analytical, 464, 465
angular, 464
displacement matrix, 442
elements, 463
generating vector, 452, 455,

511
geometrical, 464, 465
inverse, 359, 509
matrix, 358, 359, 362, 364,

442, 443, 450, 454, 456,

460, 461, 465, 469, 504,
507, 510, 514, 549, 551,
554, 676

of link, 670
polar manipulator, 446, 555
rotational matrix, 443
spherical wrist, 469

Jerk
angular, 537
matrix, 548
rotational transformation, 537
transformation, 547, 549
transformation matrix, 547
zero path, 737

Joint, 3
acceleration vector, 549
active, 4
angle, 235
axis, 4
coordinate, 4
cylindrical, 301
distance, 235
free, 4
inactive, 4
orthogonal, 8
parallel, 8
parameters, 235
passive, 4
path, 749
perpendicular, 8
prismatic, 3
revolute, 3
rotary, 3
screw, 4
speed vector, 442, 454
spherical, 270
translatory, 3
variable, 4

Kinematic length, 235
Kinematics, 31

acceleration, 529
assembling, 280
direct, 259
forward, 32, 233, 259

Index
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forward acceleration, 549
forward velocity, 442
inverse, 32, 325, 341
inverse acceleration, 552
inverse velocity, 465
motion, 149
numerical methods, 485
orientation, 91
rigid body, 149
rotation, 33
surgery, 287
velocity, 437

Kinetic energy, 583
Earth, 617
link, 692
parabolic coordinate, 618
rigid body, 593
robot, 670, 692
rotational body, 589

Kronecker delta, 109
Kronecker’s delta, 68, 589, 609

Lagrange
dynamics, 669
equation, 690
equation of motion, 611, 620
mechanics, 620
multiplier, 799

Lagrange equation
explicit form, 619

Lagrangean, 620, 693
robot, 693

Lagrangean viewpoint, 407
Law

motion, 582
motion second, 582, 586
motion third, 582
robotics, 1

Levi-Civita density, 109
Lie group, 72
Link, 3

angular velocity, 439
class 1 and 2, 247
class 11 and 12, 252
class 3 and 4, 248

class 5 and 6, 249
class 7 and 8, 250
class 9 and 10, 251
classification, 253
end-effector, 233
Euler equation, 662
kinetic energy, 669
length, 235
Newton-Euler dynamics, 642
offset, 235
parameters, 235
recursive acceleration, 556, 560
recursive Newton-Euler dynam-

ics, 661
recursive velocity, 559
rotational acceleration, 557
translational acceleration, 557
translational velocity, 440
twist, 235
velocity, 437

Location vector, 180, 182
LU factorization method, 485, 499

Manipulator
2R planar, 622, 675
3R planar, 260
articulated, 9, 238
Cartesian, 9
cylindrical, 9
definition, 5
inertia matrix, 670
one-link, 621
one-link control, 840
one-link dynamics, 644
planar polar, 674
PUMA, 238
SCARA, 9
space station, 268, 270
spherical, 9
transformation matrix, 333

Mass center, 582, 583, 587
Matrix

skew symmetric, 70, 71, 92,
103

Method

Index
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Hayati-Roberts, 303
non Denavit-Hartenberg, 297
parametrically continuous con-

vention, 303
Moment, 581

action, 642
driven, 642
driving, 642
reaction, 642

Moment of inertia
about a line, 610
about a plane, 610
about a point, 610
characteristic equation, 608
diagonal elements, 607
Huygens-Steiner theorem, 602
matrix, 599
parallel-axes theorem, 600
polar, 599
principal, 600
principal axes, 589
principal invariants, 608
product, 599
pseudo matrix, 600
rigid body, 588
rotated-axes theorem, 600

Moment of momentum, 582
Momentum, 582

angular, 582
ellipsoid, 596
translational, 582

Motion, 15

Newton
equation of motion, 611

Newton equation
body frame, 588
global frame, 587
Lagrange form, 613
rotating frame, 585

Newton-Euler
backward equations, 661
equation of motion, 662
equations of motion, 642
forward equations, 662, 663

global equations, 641
recursive equations, 661

Non Denavit-Hartenberg
methods, 297

Non-standard
Denavit-Hartenberg method,

257
Numerical methods, 485

analytic inversion, 500
Cayley-Hamilton inversion, 502
condition number, 495
ill-conditioned, 494
Jacobian matrix, 510
LU factorization, 485
LU factorization with pivot-

ing, 491
matrix inversion, 497
Newton-Raphson, 504, 506
nonlinear equations, 503
norm of a matrix, 496
partitioning inversion, 500
pivot element, 491
uniqueness of solution, 494
well-conditioned, 494

Nutation, 52

Object manipulation, 174
Optimal control, 791

a linear system, 792
description, 800
first variation, 797
Hamiltonian, 792, 796
Lagrange equation, 796
objective function, 791, 795
performance index, 795
second variation, 797
switching point, 793

Orthogonality condition, 67

Passive transformation, 73
Path

Brachistochrone, 809
Cartesian, 754
constant acceleration, 738

Index
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constant angular acceleration,
761

control points, 757
cubic, 729
cycloid, 749
harmonic, 748
higher polynomial, 735
jerk zero, 737
joint space, 749
non-polynomial, 747
planning, 729, 754
point sequence, 739
quadratic, 734
quintic, 736
rest-to-rest, 731, 732
rotational, 759
splitting, 741
to-rest, 732

Pendulum
control, 836
inverted, 836, 842
linear control, 840
oscillating, 615
simple, 532, 614
spherical, 621

Permutation symbol, 109
Phase plane, 793
Pieper technique, 343
Plücker

angle, 209
axis coordinate, 205
classification coordinate, 206
distance, 209
line coordinate, 201—205, 209,

213—215, 296, 297
moment, 208
ray coordinate, 203, 205
reciprocal product, 209
screw, 214
virtual product, 209

Poinsot’s construction, 596
Point at infinity, 161
Polar manipulator

inverse acceleration, 555
Pole, 189

Position sensors, 843
Positioning, 15
Potential

force, 620
Potential energy

robot, 671, 692
Precession, 52
Proximal end, 233, 702

Quaternions, 112, 122
addition, 112
composition rotation, 115
flag form, 112
inverse rotation, 114
matrix, 123
multiplication, 112
rotation, 113
unit, 124

Rigid body
acceleration, 538, 558
angular momentum, 590
angular velocity, 98
Euler equation of motion, 592,

597
kinematics, 149
kinetic energy, 593
moment of inertia, 588
motion, 149
motion classification, 193
motion composition, 153
principal rotation matrix, 606
rotational kinetics, 588
steady rotation, 593
translational kinetics, 586
velocity, 403, 404

Robot
application, 14
articulated, 9, 262, 265, 281,

333, 456, 461
Cartesian, 10
classification, 8
control, 13, 15
control algorithms, 833
cylindrical, 10, 318
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dynamics, 15, 20, 556, 641,
672, 675

end-effector path, 763
equation of motion, 694
forward kinematics, 259, 295
gravitational vector, 672
inertia matrix, 670
kinematics, 15
kinetic energy, 670, 692
Lagrange dynamics, 669, 690
Lagrange equation, 672
Lagrangean, 671, 678
link classification, 294
modified PD control, 841
Newton-Euler dynamics, 641
PD control, 841
potential energy, 671, 692
recursive Newton-Euler dynam-

ics, 661
rest position, 234, 237, 263,

264, 284
SCARA, 172, 266
spherical, 9, 239, 288, 295, 346,

455
state equation, 795
statics, 701
time-optimal control, 795, 811
velocity coupling vector, 672

Robotic
geometry, 8
history, 2
laws, 1

Rodriguez
rotation formula, 93, 95, 103,

104, 106—108, 114, 120,
150, 181, 187, 193, 199,
384, 421, 759

vector, 109, 127
Rodriguez rotation matrix, 109
Roll-pitch-yaw

frequency, 62
global angles, 44, 62
global rotation matrix, 44, 62

Rotation, 32
about global axes, 33, 40, 42

about local axes, 46, 50, 51
axis-angle, 91, 94—96, 103—105,

107, 120
composition, 126
decomposition, 126
eigenvalue, 98
eigenvector, 98
exponential form, 106
final formula, 101
general, 65
infinitesimal, 106
instantaneous center, 407
local versus global, 63
matrix, 19, 119
pole, 407
quaternion, 113
Rodriguez formula, 94
Rodriguez matrix, 109
stanley method, 111
Taylor expansion, 124
triple global axes, 42
X-matrix, 34
x-matrix, 47
Y-matrix, 34
y-matrix, 47
Z-matrix, 34
z-matrix, 47

Rotational path, 759
Rotations

problems, 118
Rotator, 94, 116

SCARA
manipulator, 9
robot, 172, 266

Screw, 178, 181, 193
axis, 178, 408
central, 179, 182, 183, 201,

214, 236, 292, 294, 296
combination, 198, 200
coordinate, 178
decomposition, 200, 201
exponential, 199
forward kinematics, 292
instantaneous, 215
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intersection, 297
inverse, 195, 196, 200
left-handed, 178
link classification, 294
location vector, 180
motion, 185, 235, 408
parameters, 179, 190
pitch, 178
Plücker coordinate, 214
principal, 192, 200, 201
reverse central, 179
right-handed, 16, 178
special case, 188
transformation, 181, 191
twist, 178

Second derivative, 402
Sensor

acceleration, 844
position, 843
rotary, 843
velocity, 843

Sheth notation, 297
Singular configuration, 363
Singularity, 303
Spherical coordinate, 177
Spin, 52
Spinor, 94, 116
Spline, 745
Stanley method, 111
Stark effect, 618
Symbols,

Tilt vector, 275
Time derivative, 393
Top, 56
Torque, 582
Transformation, 31

active and passive, 73
general, 65
homogeneous, 154

Transformation matrix
derivative, 417
differential, 420, 421
elements, 68
velocity, 409

Translation, 32
Triad, 16
Trigonometric equation, 338
Turn vector, 275
Twist vector, 275

Unit system,
Unit vectors, 16

Vector
decomposition, 130
gravitational force, 672, 691
tilt, 275
turn, 275
twist, 275
velocity coupling, 672, 691

Velocity
body point, 584
coefficient matrix, 419
discrete equation, 803, 813
inverse transformation, 411
matrix, 548
multiple frames, 405
operator matrix, 417
prismatic transformation, 419
revolute angular matrix, 423
revolute transformation, 419
rigid body, 403
sensors, 843
transformation matrix, 409—

412, 417

Work, 583, 586
virtual, 614

Work-energy principle, 583
Working space, 266
Workspace, 13
Wrench, 584
Wrist, 13—15, 273

classification, 271
dead frame, 270
decoupling kinematics, 326
design, 279
Eulerian, 276
forward kinematics, 270
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frame, 240
kinematics assembly, 281
living frame, 270
Pitch-Yaw-Roll, 278
point, 6, 270, 271, 337
position vector, 336
Roll-Pitch-Roll, 276
Roll-Pitch-Yaw, 277
spherical, 6, 239, 270, 271, 274,

275, 288, 461
transformation matrix, 273,

333

Zero velocity point, 407
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