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Preface

A lattice-ordered ring is a ring that is also a lattice in which each additive translation
is order preserving and the product of two positive elements is positive. Many ring
constructions produce a ring that can be lattice-ordered in more than one way. This
text is an account of the algebraic aspects of the theories of lattice-ordered rings
and of those lattice-ordered modules which can be embedded in a product of totally
ordered modules—the f -modules. It is written at a level which is suitable for a
second-year graduate student in mathematics, and it can serve either as a text for
a course in lattice-ordered rings or as a monograph for a researcher who wishes to
learn about the subject; there are over 800 exercises of various degrees of difficulty
which appear at the ends of the sections. Included in the text is all of the relevant
background information that is needed in order to to make the theories that are
developed and the results that are presented comprehensible to readers with various
backgrounds.

In order to make this book as self-contained as possible it was necessary to in-
clude a large amount of background material. Thus, in the first chapter we have con-
structed the Dedekind and MacNeille completions of a partially ordered set (poset)
and developed enough of universal algebra so that we can present Birkhoff’s char-
acterization of a variety and so that we can also verify the existence of free objects
in a variety of algebras. Much of the material on lattice-ordered groups (`-groups)
in the second chapter appears in those books devoted to the subject. What is new in
this book is the emphasis on `-groups with operators. This allows for the common
development of basic results about `-groups, f -rings, and f -modules. The Amitsur-
Kurosh theory of radicals is developed for the class of `-rings in the second section
of Chapter 2 . Still more background material is given in the first two sections of
Chapter 4 where the injective hull of a module, the Utumi maximal right quotient
ring, and the ring of quotients and the module of quotients with respect to a hered-
itary torsion theory are constructed and studied for a ring which is not necessarily
unital. Also, the Artin–Schrier theory of totally ordered fields is given in the first
section of Chapter 5, and enough of the theory of valuations on a field is presented
in the second section so that a complete proof of the Hahn embedding theorem for
a well-conditioned commutative lattice-ordered domain can be given.

vii



viii Preface

Chapters 3, 4, 5, and 6 constitute the heart of the book. While not every known
result on the topics included is presented, enough is presented so as to make the text,
by which I mean the exercises also, reasonably complete. The first section of Chap-
ter 3 develops the basic theory of `-rings including the fact that canonically ordered
matrix rings have no unital f -modules. Section 4 shows that the fundamental process
of embedding an f -algebra in a unital f -algebra is more complicated than the anal-
ogous embedding for algebras and cannot always be carried out. The fifth section
shows how to construct power series type examples of `-rings and `-modules using
a poset which is a partial semigroup and which is rooted in the sense that the set
of upper bounds of each element is a chain. The basic structure of f -rings is given
in the third section of Chapter 3 and some of the richer structure of archimedean
f -rings is given in the sixth section. In the last two sections the structure of `-rings
in other varieties is examined. The seventh section studies those `-rings that have
squares positive and gives conditions on a partially ordered generalized semigroup
for the lexicographically ordered semigroup ring to have this property. The last sec-
tion considers those `-rings which satisfy polynomial constraints more general than
that of squares being positive. One effect of these constraints is to coalesce the set
of nilpotent elements into a subring or an ideal and to force an `-semiprime ring to
lack nilpotent elements. Also included in this section is a proof of the commutativity
of an archimedean almost f -ring.

Chapter 4 concentrates on the category of f -modules. The most conclusive re-
sults occur for a semiprime f -ring whose maximal right quotient ring is an f -ring
extension and whose Boolean algebra of annihilators is atomic. In the third section
necessary and sufficient conditions for the module (or ring) of quotients to be an
f -module (or an f -ring) extension are given, and the structure of right self-injective
f -rings is given. The unique totally ordered right self-injective ring that does not
have an identity element is exhibited. The module and order theoretic properties
that determine when a nonsingular f -module is relatively injective are given in the
fourth section—there are no injectives in this category of f -modules. A useful rep-
resentation of the free nonsingular f -module is given in the last section and the size
of a disjoint set in a free f -module is determined.

In a totally ordered field the set of values—those convex subgroups which are
maximal with respect to not containing a given nonzero element—becomes a to-
tally ordered group under the operation induced on it by multiplication in the field.
A proof of the Hahn Embedding Theorem for totally ordered fields is given in the
second section of Chapter 5; namely, a totally ordered field is embedded in a power
series field where the exponents belong to this value group of the field and the co-
efficients are real numbers. Also, a totally ordered division ring is embedded in a
totally ordered division algebra over the reals. In the third section of Chapter 5 the
Hahn Embedding Theorem is given for a lattice-ordered commutative domain which
satisfies a finiteness condition, and another embedding theorem for a suitably con-
ditioned `-field into a formal power series crossed product `-ring is given. Also, the
theory of archimedean `-fields is presented and lattice orders other than the usual
total order are constructed for the field of real numbers.
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Chapter 6 begins with a characterization of the canonically ordered real semi-
group `-algebra over a locally finite left cancellative semigroup, and semigroup `-
rings in which squares are positive are studied in more detail. In the second section it
is shown that in an `-algebra in which the nonzero f -elements are not zero-divisors
each algebraic f -element is central. A complete description is also given of those
rings which have the property that each partial order is contained in a total order.
In the third section more commutativity theorems are presented. It is shown that a
totally ordered domain which is co-`-simple and which has a positive semidefinite
form with a nontrivial solution must be commutative. A similar conclusion giving
the centrality of f -elements appears for an `-ring in which the commutators are suit-
ably bounded. A proof of Artin’s solution to Hilbert’s 17th problem which is mainly
dependent on the variety of f -rings generated by the real numbers is also included
in this section. Lattice orders on the n×n matrix algebra over a totally ordered field
are considered in the last section. When the field is archimedean or when n = 2 all
of the lattice orders are described, and it is shown that in these cases the usual order
is the only lattice order in which the identity element is positive.

A few words about the method of referencing are in order. An exercise is ref-
erenced by its number alone when the exercise occurs in the section in which it is
referenced, and, otherwise, it is referenced by its number preceded by the chapter
and section numbers in which it occurs. A reference to a theorem or a numbered
line uses all three of its numbers.

Paul Taylor’s package was used in preparing the diagrams in the text. I wish to
thank Joanne Guttman and Shirley Michel for their splendid job of typing and prepa-
ration of the manuscript. I would also like to thank my colleague Charles Odenthal
for making the diagrams fit.

Toledo, Ohio Stuart Steinberg
August 17, 2009
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Chapter 1
Partially Ordered Sets and Lattices

In this chapter we present some basic facts about partially ordered sets and lattices
which are fundamental for our study of lattice-ordered groups, rings, and modules.
The material presented includes Zorn’s Lemma and some of its equivalences in Sec-
tion 1.1, standard characterizations of distributive lattices and Boolean algebras in
Section 1.2, and the construction of the MacNeille and Dedekind completions of a
partially ordered set in Section 1.3. We also introduce some of the basic language
of category theory and present enough of the subject of universal algebra so that we
can establish the existence of free algebras in varieties.

The symbols “ ⊆ ” and “ ⊇ ” will be used for set inclusion and “ ⊂ ” and “ ⊃ ”
will be used for proper inclusion. The letters N, Z, Q, R, and C denote the sets of
natural numbers (excluding 0), integers, rational numbers, real numbers, and com-
plex numbers, respectively. The symbols “|X |” or “card (X)” denote the cardinal
number of the set X .

1.1 Partially Ordered Sets

A relation from the set X to the set Y is a subset α of the Cartesian product X ×Y .
We will usually denote the fact that (x,y) ∈ α by writing xαy. If X = Y , then α is
called a relation on X . A relation ≤ on the set P is called a partial order of P if it is
reflexive, antisymmetric, and transitive; that is, for all x,y,z ∈ P,

(P1) x≤ x;

(P2) if x≤ y and y≤ x, then x = y;

(P3) if x≤ y and y≤ z, then x≤ z.

The pair (P,≤) is called a poset (partially ordered set), and it will usually be denoted
by P alone. Frequently, a≤ b will also be written as b≥ a. Also, a < b (respectively,
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2 1 Partially Ordered Sets and Lattices

b > a) means that a ≤ b (respectively, b ≥ a) and a 6= b. A poset P is called a
totally ordered set or a simply ordered set or a chain if any two of its elements are
comparable : x ≤ y or y ≤ x for all x,y ∈ P. In this case ≤ is called a total order of
P. If two elements a and b of a poset are incomparable we will write a||b. Clearly,
each subset X of a poset P is itself a poset with the partial order ≤ ∩(X ×X). An
upper bound of the subset X of P is an element u ∈ P such that x ≤ u for each x
in X . This will sometimes be written as X ≤ u; more generally, for subsets X and
Y of P, X ≤ Y means that x ≤ y for each x ∈ X and for each y ∈ Y . P itself can
have at most one upper bound, and an upper bound for P, if it exists, is called the
greatest element of P. Analogous definitions can be given for a lower bound of X
and for the least element of P. The least (respectively, greatest) element of P will
sometimes be denoted by 0 (respectively, 1). Note that each element in P is an upper
bound and also a lower bound of the empty set. Let U(X) = UP(X) (respectively,
L(X) = LP(X)) denote the set of upper bounds (respectively, lower bounds) of X .
If U(X) has a least element s, then s is called the least upper bound of X or the
supremum of X and is denoted by s = lubX = lubPX or s = supX = supP X . Also, if
the subset X is indexed by the set I, X = {xi : i∈ I}, then s will frequently be written
as

s =
∨

i∈I

xi,

or if I = {1,2, . . . ,n} is finite or X = {a,b}, then

s = x1∨ x2∨·· ·∨ xn or s = a∨b.

Analogously, the greatest element ` in L(X), if it exists, is the greatest lower bound
or infimum of X and is denoted by

` = glbX = glbPX = infX = infPX =
∧

i∈I

xi,

or
` = x1∧ x2∧·· ·∧ xn or ` = a∧b

if I = {1,2, . . . ,n}, or X = {a,b}. Note that each of the equations

infX ∧ infY = inf(X ∪Y ) , supX ∨ supY = sup(X ∪Y ) (1.1.1)

holds exactly when, in the first equation, for example, infX and infY both exist and
either side exists.

A minimal (respectively, maximal) element in P is an element p ∈ P which ex-
ceeds (respectively, is exceeded by) no other element of P : q ≤ p (respectively,
p≤ q) implies that p = q. If each nonempty subset of P has a minimal (respectively,
maximal) element, then P is said to satisfy the minimum (respectively, maximum)
condition. A well-ordered set is a totally ordered set which satisfies the minimum
condition. We will find it essential to be able to determine that certain posets that
arise do indeed have maximal elements. The most important tool to be used in this
regard is the well-known set-theoretic axiom known as Zorn’s Lemma. In the first
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theorem we state this axiom together with some of the better known and most useful
statements to which it is equivalent. A few definitions are needed first. The power
set of the set X is the collection P(X) of all subsets of X . It becomes a poset when
it is supplied with the inclusion relation ⊆. A choice function for X is a function
c : P(X)\{φ} −→ X with the property that c(A) ∈ A for each nonempty subset A
of X . The cartesian product of the indexed family of sets {Xi : i ∈ I} is the set

∏
i∈I

Xi =

{
I

f−→
⋃

i∈I

Xi : ∀i ∈ I, f (i) ∈ Xi

}
.

As is customary, a function f ∈ΠXi will frequently be denoted by indexing its range
as the I-tuple (xi)i∈I where f (i) = xi. If each Xi = X then ΠXi will be denoted by
XI . In particular, if n ∈ N then Xn will denote the Cartesian product of n copies of
X . The projections πi : ΠXi −→ Xi are given by πi( f ) = f (i) or πi((xi)i) = xi. A
maximal chain in a poset P is a totally ordered subset of P that is not a proper subset
of any totally ordered subset of P.

Theorem 1.1.1. The following statements are equivalent.

(a) (Axiom of Choice) Each nonempty set has a choice function.
(b) The cartesian product of a nonempty family of nonempty sets is nonempty.
(c) (Zorn’s Lemma, first form) Each chain in a poset is contained in a maximal

chain.
(d) (Zorn’s Lemma, second form) If each chain in a nonempty poset has an

upper bound, then the poset has a maximal element.
(e) (Zorn’s Lemma, third form) If each nonempty chain in a nonempty poset

has a least upper bound, then the poset has a maximal element.
(f) Each set can be well-ordered.

Proof. To see the equivalence of (a) and (b) let {Xi : i ∈ I} be a nonempty family
of nonempty sets, and let X = ∪Xi be the union of this family. If c is a choice
function for X , then the composite of the indexing function I −→ {Xi : i ∈ I} and
the restriction of c to {Xi : i ∈ I} is an element of the cartesian product of the family.
Conversely, let X be a nonempty set and index the collection of its nonempty subsets
by the collection itself: P(X) \ {φ} = {AA : AA = A}. Then each element in the
cartesian product of this family is a choice function for X .

(a) implies (c). This implication is a consequence of the following theorem.

Let P be a nonempty poset in which each nonempty chain has a least upper bound. Suppose
that f : P −→ P is a function such that f (x) ≥ x for each x in P, and if x ≤ y ≤ f (x) then
y = x or y = f (x). Then f (x) = x for some x in P.

To prove this let us fix an element x0 in P. A subset Q of P is called a B-set if it
has the following three properties:

(i) x0 is the least element of Q;
(ii) f (Q)⊆ Q;

(iii) if S is a nonempty chain in Q then supPS ∈ Q.
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For example, {x ∈ P : x ≥ x0} is a B-set. Let B0 be the intersection of all of the
B-sets in P. Clearly, B0 is the smallest B-set in P. Our goal is to show that B0 is a
chain. Toward this end let x be an element of B0 which is comparable to every other
element of B0, and let B1 = B1(x) = {y ∈ B0 : y ≤ x or f (x) ≤ y}. We claim that
B1 = B0; to show this it suffices to verify that B1 is a B-set. Note that x, f (x) and
x0 are all elements of B1, and, in particular, B1 satisfies (i). Suppose that y ∈ B1. If
f (x) ≤ y, then f (x) ≤ y ≤ f (y) shows that f (y) ∈ B1. On the other hand, suppose
that y≤ x. Since x is comparable to f (y) we either have y≤ x≤ f (y), in which case
y = x or x = f (y), and in both of these cases f (y) ∈ B1, or f (y) ≤ x and again
f (y) ∈ B1. Thus B1 satisfies (ii). As for (iii) let S be a chain in B1. If s ≥ f (x) for
some s in S, then supP S≥ s≥ f (x) and supP S ∈ B1. Otherwise, x is an upper bound
of S, supP S≤ x, and supP S ∈ B1.

We show next that the set B2 of all those elements of B0 which are comparable
to each element of B0 is a B-set. Certainly x0 ∈ B2; and if x ∈ B2 then, for any
y∈ B0, y≤ x≤ f (x) or f (x)≤ y since B0 = B1(x). In either case f (x) is comparable
to y, whence f (x) ∈ B2. Finally, let S be a chain in B2 and take x ∈ B0. If s ≥ x for
some s in S, then supP S≥ x, and otherwise, x is an upper bound of S and supP S≤ x.
In either case supP S is comparable to x and hence B2 satisfies (iii). Thus, B0 = B2
and B0 is a chain. Now, s = supP B0 ∈ B0 and hence s≥ f (s)≥ s; so f (s) = s. This
proves the theorem.

Now let Q be a chain in the poset P and let T be the collection of all those chains
in P which contain Q. T is a subposet of P(P). If A ∈ T is not a maximal chain
let A∗ = {x ∈ P\A : A∪{x} is a chain }, and let c be a choice function for P. Define
the function f : T −→T by

f (A) =
{

A if A is a maximal chain,
A∪{c(A∗)} if A is not maximal.

Then T and f satisfy the hypotheses of the theorem. So f has a fixed point A, and
A is a maximal chain that contains Q.

(c) implies (d). Suppose that P is a nonempty poset in which each nonempty
chain has an upper bound. If Q is a maximal chain in P and x ∈UP(Q), then x is a
maximal element in P.

(d) implies (e). This is trivial.
(e) implies (f). The subset S of the well-ordered set T is called an initial segment

of T if there is an element t in T such that S = {s ∈ T : s < t}. Now let X be a set
and let

T = {(Y,≤) : Y ⊆ X and ≤ is a well-ordering of Y}.
We make T into a poset by defining the relation σ on T by (Y,≤)σ (Z,≤′) if
(Y,≤) is a subposet of (Z,≤′) and either Y = Z or Y is an initial segment of Z.
Using the facts that a well-ordered set T is not an initial segment of itself and that
an initial segment of an initial segment of T is an initial segment of T , it is easily
verified that σ is a partial order of T . Suppose that {(Yi,≤i) : i∈ I} is a chain in T .
Let Y = ∪Yi and let ≤= ∪ ≤i. Then (Y,≤) is a totally ordered set and each (Yi,≤i)
is a subposet of (Y,≤). We claim that (Y,≤) is the least upper bound of the chain



1.1 Partially Ordered Sets 5

{(Yi,≤i)} in T . First, we will check that ≤ well-orders Y . Suppose that A⊆ Y and
A∩Yi 6= φ . Let m be the minimal element of A∩Yi. If a ∈ A then a,m ∈ Yj for some
j ∈ I. If a ∈ Yi then m≤ a; if a 6∈ Yi then Yi = {y ∈ Yj : y < x} for some x in Yj, and
hence m < x≤ a. Thus, m is the least element of A; so (Y,≤) ∈T .

Next, we check that (Y,≤) is an upper bound of {(Yi,≤i) : i ∈ I} in T . To see
this first note that if a ∈ Y and b ∈ Yi with a < b, then a ∈ Yi. For, a is in some Yj,
and either a∈Yj ⊆Yi, or Yi = {c∈Yj : c < d} for some d in Yj, in which case, again,
a ∈Yi. Now, if some Yi ⊂Y let x be the least element in Y \Yi. Then it easily follows
that Yi = {y ∈ Y : y < x}.

Finally, (Y,≤) is the least upper bound of {(Yi,≤i)}. For, suppose that (Yi,≤i)
σ (Z,≤′) for each i∈ I. If a∈ Z, b∈Y and a <′ b, then a∈Y since b∈Yi for some
i and Yi is an initial segment of Z, or Yi = Z. So, again, if Y ⊂ Z then Y = {y ∈ Z :
y <′ z} where z is the least element of Z \Y .

Now, by (e) T has a maximal element (Y0,≤). If Y0 ⊂ X take x ∈ X \Y0 and
partial order Y = Y0 ∪ {x} with ≤′=≤ ∪{(y,x) : y ∈ Y}. Then (Y,≤′) ∈ T and
(Y0,≤)σ(Y,≤′) which contradicts the maximality of (Y0,≤). So Y0 = X and X can
be well-ordered.

(f) implies (a). Let X be a nonempty set and let ≤ be a well- ordering of X . Then
the function which picks out the least element of each nonempty subset of X is a
choice function for X . ut

A poset P is said to satisfy the ascending (respectively, descending) chain con-
dition, or to have a.c.c. (respectively, d.c.c.), or to be noetherian (respectively,
artinian) if for each increasing (respectively, decreasing) sequence a1 ≤ a2 ≤ ·· ·
(respectively, a1 ≥ a2 ≥ ·· · ) in P there is an integer n such that am = an whenever
m≥ n. One consequence of the Axiom of Choice is that this condition is equivalent
to the maximum (respectively, minimum) condition.

The following important combinatorial result is useful in the proof of one in-
teresting characterization of a noetherian poset that has no infinite trivially ordered
subsets; see Exercise 11. This type of poset will come up in our study of power
series rings in Section 3.5.

For the set X let 2-X denote the collection of all those subsets of X whose cardi-
nality is 2.

Theorem 1.1.2. Suppose that 2-N = A1 ∪ ·· · ∪Ap is a partition of 2-N. Then there
is an infinite subset X of N and an integer i with 1≤ i≤ p such that 2-X ⊆ Ai.

Proof. We will recursively define distinct elements x1, . . . ,xn of N, infinite subsets
Y1 ⊇Y2 ⊇ ·· · ⊇Yn of N and integers i1, . . . , in in {1, . . . , p} with the following prop-
erties:

(i) 1≤ j < n⇒ x j+1 ∈ Yj;
(ii) 1≤ j ≤ n⇒{x,x j} ∈ Ai j for each x ∈ Yn.

Let x1 = 1 and choose i1 ∈{1, . . . , p} such that Y1 = {x∈N : {x1,x}∈Ai1} is infinite.
Now suppose that we have constructed x1, . . . ,xn,Y1, . . . ,Yn and i1, . . . , in with the
stated properties. Let xn+1 be the least element of Yn. Then there is a choice of
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in+1 ∈ {1, . . . , p} such that Yn+1 = {x ∈ Yn : {x,xn+1} ∈ Ain+1} is infinite, and hence
x1, . . . ,xn+1,Y1, . . . ,Yn+1, and i1, . . . , in+1 satisfy (i) and (ii). For some i0 ∈ {1, . . . , p}
the set {n ∈N : in = i0} is infinite. Thus, X = {xn : in = i0} is infinite and 2-X ⊆ Ai0 .
For if xn,xm are two elements of X with n 6= m, then m≥ n+1 or n≥m+1. Hence,
either xm ∈ Ym−1 ⊆ Yn and {xm,xn} ∈ Ain = Ai0 or {xn,xm} ∈ Aim = Ai0 . ut

We next present a few examples of posets. If P is any set, then (P,=) is a poset
which is said to be trivially ordered. The set of real numbers R with its usual or-
dering is a totally ordered set. So, of course, are its subsets N, Z and Q. The direct
product of the family of posets {(Pi,≤i)}i∈I is the poset (P = ΠPi,≤) where ≤ is
the coordinatewise partial order of P : (xi)≤ (yi) if and only if xi ≤i yi for each i∈ I.
If I is a poset with the maximum condition then another reasonable partial order ≤
can be given to the cartesian product P by defining (xi) ≤ (yi) if x j ≤ y j for each
maximal element j in the set {i∈ I : xi 6= yi}. This poset is called the ordinal product
of the family {Pi : i ∈ I} (see Exercise 1). The ordinal product of two posets P and
Q will be denoted by P ×←Q. It has the antilexicographical order: (p1,q1)≤ (p2,q2)
if q1 < q2, or q1 = q2 and p1 ≤ p2. The lexicographical order is denoted by P ×→Q
and is defined by : (p1,q1)≤ (p2,q2) if p1 < p2, or p1 = p2 and q1 ≤ q2. Either of
these orderings of P×Q has a convenient picture. For example, for P ×←Q the partial
order in the PQ-plane is upward along vertical lines and from left to right; that is,
if a and b are two points in this plane, then a < b if either a and b lie on the same
vertical line and b is higher than a, or if the vertical line through b is to the right of
the vertical line through a.

Again, if I is a poset, then the ordinal sum of the family of posets {Pi : i ∈ I} is
the disjoint union P = ∪̇Pi of the Pi supplied with the following partial order : if
x, y ∈ P and x ∈ Pi and y ∈ Pj, then x≤ y if i = j and x≤ y in Pi, or if i < j.
If I is trivially ordered, then the ordinal sum is called the cardinal sum .

The subset S of the poset P is called cofinal (respectively, coinitial) in P if for
every p ∈ P there is some s ∈ S with s≥ p (respectively, s≤ p). If S is both coinitial
and cofinal in P it is called coterminal in P. These concepts are used in Exercise 8
and also arise in later sections.

It will occasionally be useful to use the language of category theory, and so we
present the basic definitions here. A category C consists of a pair of classes, Ob(C ),
the objects of the category, and M or(C ), the morphisms of the category, which
satisfy certain conditions that we now elucidate. With each pair of objects A and B
in C there is associated a set C [A,B] of morphisms. If f ∈ C [A,B] then f is called a
morphism from A to B and we write f : A−→ B. Moreover, for each triple of objects
A,B,C in C there is a function, called composition,

C [B,C]×C [A,B]−→ C [A,C], ( f ,g) 7−→ f g,

such that for all objects A,B,C,D in C :

(i) If (A,B) 6= (C,D), then C [A,B]∩C [C,D] = φ ;

(ii) If f ∈ C [A,B], g ∈ C [B,C] and h ∈ C [C,D], then h(g f ) = (hg) f ;
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(iii) There is a morphism 1A ∈ C [A,A] such that if f ∈ C [A,B] and g ∈ C [C,A],
then f 1A = f and 1Ag = g.

The category D is a subcategory of the category C if Ob(D) ⊆ Ob(C ) and for
all A, B ∈ Ob(D), D [A,B] ⊆ C [A,B], composition in D is the same as in C , and
1A ∈ D [A,A]. If D [A,B] = C [A,B] for all objects A, B ∈ D , then D is called a full
subcategory of C . For example, the category of groups is not a full subcategory of
the category of sets and has the category of abelian groups as a full subcategory.

The morphism 1A, which is necessarily unique, is called the identity morphism
for A. A morphism f ∈C [A,B] is an isomorphism if there is a morphism g∈C [B,A]
such that g f = 1A and f g = 1B. As is usual we denote g by f−1 and call f−1 the
inverse of f . The morphism f is called monic or is a monomorphism if g = h when-
ever g and h are morphisms with f g = f h; dually, f is epic or is an epimorphism if
g = h whenever g f = h f . We will frequently call a function in a particular category
an epimorphism when we mean that it has the possibly stronger property of being a
surjection; that is, it is an epimorphism in the category of sets.

A covariant functor from the category C to the category D is a pair of functions
Ob(C ) −→ Ob(D) and M or(C ) −→ M or(D), each of which is denoted by F ,
such that for objects A and B in C

F : C [A,B]−→D [F(A),F(B)],

F( f g) = F( f )F(g) provided that the composite f g is defined, and F(1A) = 1F(A).
A contravariant functor from C to D is a function F such that

F : C [A,B]−→D [F(B),F(A)],

F( f g) = F(g)F( f ), and F(1A) = 1F(A). We will denote the identity functor on C
by 1e. If F : C −→D and G : D −→ E are functors, then it should be clear what is
meant by the composite functor GF : C −→ E .

If F,G : C −→D are two covariant functors, then a natural transformation from
F to G is a function α : Ob(C )−→M or(D) which satisfies the conditions that for
each object A ∈ C , α(A) ∈ D [F(A),G(A)], and for each f ∈ C [A,B] the diagram

is commutative; that is, G( f )α(A) = α(B)F( f ). If each α(A) is an isomorphism,
then α is called a natural equivalence. If F and G are both contravariant, then, of
course, the above diagram has to be replaced by
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Let {Ai : i ∈ I} be an indexed family of objects in the category C . A product of
this family is a pair (A,{pi}i∈I) where A is an object in C and each pi : A −→ Ai
is a morphism in C such that for any family { fi : B −→ Ai}i∈I of morphisms in
C there is a unique morphism f : B −→ A such that pi f = fi for each i ∈ I. A
product, like its dual notion of coproduct, is determined up to an isomorphism in C
(Exercise 5). A coproduct of the family {Ai : i ∈ I} is a pair (C,{κi}i∈I) where C is
an object in C and each κi : Ai −→C is a morphism in C such that for any family
{gi : Ai −→ B}i∈I of morphisms in C there is a unique morphism g : C −→ B such
that gκi = gi for each i ∈ I. For example, in the category Set, whose objects are sets
and whose morphisms are functions, the product of {Ai}i∈I is the cartesian product
ΠAi and the coproduct is the disjoint union ∪̇Ai where

⋃̇

i∈I

Ai =
⋃

i∈I

Ai×{i}

and the function κi : Ai −→ ∪̇Ai is given by κi(a) = (a, i).

Exercises.

1. Prove that the ordinal product of a family of posets is a poset.

2. (a) Show that each countable totally ordered set P can be embedded in Q.
(Hint: If P = {pn : n ∈ N} and Q = {rn : n ∈ N} define a sequence
{b1,b2, . . .} in Q and an isomorphism f : P −→ {b1,b2, . . .}, recursively,
by f (pn) = bn = rs where s is minimal such that f : {p1, . . . , pn} −→
{b1, . . . ,bn} is an isomorphism.)

(b) Suppose that P is a countable totally ordered set in which for all x < y in
P there exists z in P with x < z < y, and that, additionally, P has neither
a first nor a last element. Show that P is isomorphic to Q. (Hint: Construct
sequences {a1,a2, . . .} in P and {b1,b2, . . .} in Q and an isomorphism f :
{a1,a2, . . .} −→ {b1,b2, . . .} by : if n is even let an be the first pt not in
{a1, . . . ,an−1} and choose bn as in (a); if n is odd reverse the order of the
choices for an and bn – choose bn first and then an.)

3. (a) If ≤ is a partial order of the set P and x, y ∈ P with x 6≤ y show that

α = ≤ ∪ {(a,b) ∈ P×P : a≤ y and x≤ b}
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is a partial order of P that contains ≤ and (y,x).
(b) Show that each partial order is the intersection of total orders.

4. Let P be a poset. Then P determines a category, also called P, whose objects
are the elements of P, and for all x,y ∈ P, P[x,y] is the singleton set {(x,y)}
if x ≤ y, and P[x,y] = φ if x 6≤ y. Composition is given by (y,z)(x,y) = (x,z)
provided, of course, that x≤ y and y≤ z.

5. (a) Suppose that (A,{pi}i∈I) and (B,{qi}i∈I) are both products of the family
{Ai}i∈I in the category C . Show that there is a unique isomorphism α :
A−→ B such that qiα = pi for each i ∈ I.

(b) State and prove an analogous result for coproducts.

6. Let C be a category and let I be a poset. An inverse system over I in C is a pair
({Ai}i∈I , {ψi j}i≥ j) where Ai is an object in C and ψi j : Ai −→ A j (for i ≥ j)
is a morphism in C such that ψii = 1Ai and if i ≥ j ≥ k then ψ jkψi j = ψik. An
inverse limit of this system is a pair (P,{pi}i∈I) where each pi : P −→ Ai is a
morphism in C subject to the following two conditions:

(i) for i≥ j, ψi j pi = p j;
(ii) if (H,{hi : H −→ Ai}i∈I) is another pair that satisfies (i), that is, ψi jhi = h j

if i ≥ j, then there is a unique morphism h : H −→ P such that pih = hi
for each i ∈ I.

Show that if (P,{pi}i∈I) and (Q,{qi}i∈I) are two inverse limits of ({Ai}, {ψi j}),
then there is a unique isomorphism α : P −→ Q such that qiα = pi for each
i ∈ I. The inverse limit is denoted by lim←−Ai.

7. A direct system over the poset I in the category C is a pair ({Ai}i∈I , {ϕi j}i≤ j)
where ϕi j : Ai −→ A j (for i ≤ j) is a morphism in C such that ϕii = 1Ai and if
i ≤ j ≤ k, then ϕ jkϕi j = ϕik. A direct limit of this system is a pair (S,{αi}i∈I)
where αi : Ai −→ S is a morphism in C such that

(i) for i≤ j, αi = α jϕi j;
(ii) if (H,{hi : Ai −→ H}i) is another pair that satisfies (i), that is, hi = h jϕi j

if i ≤ j, then there is a unique morphism h : A −→ H such that hαi = hi
for each i ∈ I.

Show that if (S,{αi}i∈I) and (T,{βi}i∈I) are both direct limits of (Ai, {ϕi j}),
then there is a unique isomorphism α : S −→ T such that ααi = βi for each i.
The direct limit is denoted by lim−→Ai.

8. Show that each totally ordered set contains a cofinal well-ordered subset. (Hint:
Partially order the collection of well-ordered subsets using initial segments.)

9. Show that the range of a sequence (xn)n∈N in a poset P has a.c.c. iff (xn)n∈N has
no strictly increasing subsequence.

10. Show that the following statements are equivalent for the poset P.
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(a) P has a.c.c. and each trivially ordered subset of P is finite.
(b) Each sequence in P has a decreasing subsequence.
(c) P has a.c.c. on ideals. (An ideal of P is a subset I such that if x ≤ y with

x ∈ P and y ∈ I, then x ∈ I.)
(d) For each subset X of P there is a finite subset Y of X with I(X) = I(Y )

where I(X) is the ideal of P generated by X .
(e) Each ideal of P is finitely generated.
(f) The set of maximal elements of each nonempty subset of P is a nonempty

finite set.

11. Use Theorem 1.1.2 to prove that the following statement is equivalent to (a) of
Exercise 10. If (xn)n∈N is a sequence in P, then xn ≥ xm for some indices n < m.

1.2 Lattices

A lattice is a poset L in which a∧b and a∨b exist for any two elements a and b in
L. In conjunction with the equations (1.1.1) a simple use of mathematical induction
shows that L is a lattice exactly when each nonempty finite subset of L has a sup
and an inf. A subset M of the poset L is a sublattice provided that infL{a,b} and
supL{a,b} exist and are in M whenever a,b ∈ M. The next theorem shows that a
lattice may be viewed as an abstract algebra with two operations that satisfies six
identities (see Section 1.4).

Theorem 1.2.1. For all elements a,b,c in a lattice L,

(L1) a∧ (b∧ c) = (a∧b)∧ c , a∨ (b∨ c) = (a∨b)∨ c (associative law);

(L2) a∧b = b∧a , a∨b = b∨a (commutative law);

(L3) a∧ (a∨b) = a = a∨ (a∧b) (absorption law).

Conversely, if L is a set with two binary operations ∧ and ∨ which satisfy (L1), (L2),
and (L3), then the relation≤ defined on L by a≤ b if and only if a = a∧b is a partial
order on L; moreover L is a lattice with sup{a,b}= a∨b and inf{a,b}= a∧b.

Proof. In a lattice L (L1) is a special case of equations (1.1.1), and (L2) and (L3) are
obviously true. Conversely, suppose that (L,∧) and (L,∨) are commutative semi-
groups whose operations are entwined by the absorption laws (L3). Consider the
relation ≤ defined on L by a≤ b⇔ a = a∧b. To check that ≤ is antisymmetric, let
a ≤ b and b ≤ a. Then a = a∧ b = b∧ a = b. For transitivity, if a ≤ b and b ≤ c,
then, a = a∧ b = a∧ b∧ c = a∧ c, so a ≤ c. Finally, notice that reflexivity of ≤ is
equivalent to the condition that each element of the semigroup (L,∧) is idempotent.
But a∧ a = a∧ [a∨ (a∧ a)] = a by two uses of (L3); so a ≤ a. Let x = a∧ b; we
claim that x = inf{a,b}. Since x∧ a = a∧ b∧ a = a∧ b = x, x ≤ a, and, similarly,
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x≤ b. If y≤ {a,b}, then y = y∧a = y∧b; so y∧x = y∧a∧b = y∧b = y, and hence
y ≤ x. Now, by this same argument the relation ≤′ given by a ≤′ b ⇔ b = a∨ b is
a partial order of L and a∨ b = sup{a,b} in (L,≤′). Hence, to finish the proof it
suffices to show that a ≤ b ⇔ b = a∨b. But if a ≤ b, then a∨b = (a∧b)∨b = b,
and if b = a∨b, then a∧b = a∧ (a∨b) = a, so a≤ b. ut

Each of the axioms (L1), (L2), and (L3) is recovered when ∧ and ∨ are inter-
changed. This implies the principle of duality, namely, if this interchange is per-
formed in any theorem about lattices, together with the interchange of ≤ and ≥,
another (not necessarily different) theorem is obtained.

The lattices that occur in this book will usually have the property that each of
the operations ∧ and ∨ is distributive over the other, and we now briefly examine
these kinds of lattices. First note that in any lattice L the following dual distributive
inequalities are valid: For all a,b,c ∈ L,

(D1) a∧ (b∨ c) ≥ (a∧b)∨ (a∧ c),

(D2) a∨ (b∧ c) ≤ (a∨b)∧ (a∨ c).

If equality holds in (D1) (or, as we will see, in (D2)) the lattice is called distributive.
More generally, each of these inequalities implies the self-dual implication

(M) a≥ b⇒ a∧ (b∨ c)≥ b∨ (a∧ c) ∀a,b,c ∈ L.

If the inequality is replaced by equality in the conclusion of the implication in (M)
the lattice is called modular. Clearly, each distributive lattice is modular. Now, we
have the following characterization of a distributive lattice.

Theorem 1.2.2. The following conditions are equivalent in a lattice L.

(D) a∧ (b∨ c)= (a∧b)∨ (a∧ c) ∀a,b,c ∈ L

(D′) a∨ (b∧ c)= (a∨b)∧ (a∨ c) ∀a,b,c ∈ L

(D′′) a∧ (b∨ c) ≤ b∨ (a∧ c) ∀a,b,c ∈ L

Proof. Since (D) is the dual of (D′) and since (D′′) is self-dual it suffices to verify
the equivalence of (D) and (D′′). Since a∧ b ≤ b it is clear that (D) implies (D′′).
Assume that (D′′) holds; to verify (D), by (D1), it suffices to show that

a∧ (b∨ c) ≤ (a∧b)∨ (a∧ c).

But,

a∧ (b∨ c) = a∧a∧ (b∨ c)≤ a∧ [b∨ (a∧ c)] = a∧ [(a∧ c)∨b]≤ (a∧ c)∨ (a∧b)

by two uses of (D′′). ut
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In a distributive lattice the following generalized distributive identities hold for
any finite sets I and J:

∧

i∈I

∨

j∈J

ai j =
∨

f∈JI

∧

i∈I

ai f (i) ,
∨

i∈I

∧

j∈J

ai j =
∧

f∈JI

∨

i∈I

ai f (i) (1.2.1)

The proof is left to the reader (see Exercise 2).
Let L be a lattice with a least element 0 and a greatest element 1. A complement

of the element a ∈ L is an element b ∈ L such that a∧ b = 0 and a∨ b = 1. In a
distributive lattice complements are unique. For if b and c are both complements of
a, then

b = b∧1 = b∧ (a∨ c) = (b∧a)∨ (b∧ c) = 0∨ (b∧ c) = b∧ c.

So b ≤ c, c ≤ b and hence b = c. If each element in a lattice L has a complement,
then L is said to be complemented. A Boolean algebra is defined to be a comple-
mented distributive lattice. So in a Boolean algebra complements are unique, and if
a′ denotes the complement of a, then a = a′′. The lattice of all subsets of a given
set (ordered by inclusion) is a Boolean algebra. The following characterization of a
Boolean algebra is quite useful.

Theorem 1.2.3. Let B be a Boolean algebra with least element 0, and denote the
complement of an element a in B by a′. Then for all a,b ∈ B,

(B) a∧b′ = 0 ⇔ a∧b = a.

Conversely, let B be a set which contains a distinguished element 0 and which has
a binary operation ∧ and a unary operation ′. Suppose that (B,∧) is a commutative
semigroup in which each element is idempotent and which satisfies (B). Then B is
a Boolean algebra with inf{a,b} = a∧ b, 0 is the least element of B, and a′ is the
complement of a in B.

Proof. We first show that a Boolean algebra B satisfies (B). Suppose that a∧b′ = 0.
Then

a = a∧1 = a∧ (b∨b′) = (a∧b)∨ (a∧b′) = (a∧b)∨0 = a∧b;

and if a≤ b, then 0≤ a∧b′ ≤ b∧b′ = 0. So a∧b′ = 0 and (B) holds. For the con-
verse, first note that the proof of Theorem 1.2.1 yields that the relation defined by
a≤ b if and only if a = a∧b is a partial order of B in which a∧b = inf{a,b} for all
a,b ∈ B. Thus (B) translates to

(B′) a≤ b ⇔ a∧b′ = 0 ∀a,b ∈ B.

Next, we verify that for all a,b ∈ B,

a = a′′ (1.2.2)
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and
a≤ b ⇔ b′ ≤ a′. (1.2.3)

Since a′ ≤ a′, a′′ ∧a′ = 0 and we have that a′′ ≤ a, by (B′); also, 0 is the least
element of B since 0 = a∧a′ ≤ a. If a is replaced by a′ in the inequality a′′ ≤ a we get
that a′′′ ≤ a′; hence, 0≤ a′′′ ∧a≤ a′ ∧a = 0, a′′′ ∧a = 0, a≤ a′′, and, consequently,
a = a′′. If a≤ b, then 0 = a∧b′ = a′′ ∧b′ gives that b′ ≤ a′ and this proves (1.2.3).
Now define a binary operation on B by, for all a,b ∈ B,

a∨b = (a′ ∧b′)′.

Then x ≥ a,b ⇔ x′ ≤ a′,b′ ⇔ x′ ≤ a′ ∧ b′ ⇔ x ≥ a∨ b; so a∨ b = sup{a,b}, and
hence B is a complemented lattice. However,

a∧ (b∨ c)≤ x ⇔ a∧ (b∨ c)∧ x′ = 0

⇔ a∧ x′ ≤ (b∨ c)′ = b′ ∧ c′

⇔ a∧ x′ ≤ b′,c′

⇔ a∧ x′ ∧b = 0 = a∧ x′ ∧ c

⇔ a∧b,a∧ c≤ x

⇔ (a∧b)∨ (a∧ c)≤ x,

and so B is a distributive lattice. ut
If P and Q are posets a function f : P −→ Q is isotone or order preserving (re-

spectively, antitone or order reversing) if x≤ y implies that f (x)≤ f (y)(respectively,
f (x)≥ f (y)) for all x,y ∈ P. If, also, f (x)≤ f (y) implies that x≤ y, then f is called
an embedding or a monomorphism . This terminology does not agree with the cat-
egorical terminology. A morphism in the category of posets and isotone maps is
monic if and only if it is one-to-one, and it need not be a monomorphism as just de-
fined. Nevertheless, in all subcategories of the category of posets with which we will
be concerned, our use of the word monomorphism (or even monic) will entail this
stronger meaning. If f is an onto monomorphism it is called an isomorphism ; P and
Q are then said to be order isomorphic . As usual, an isomorphism between P and
itself is an automorphism . A function f : P−→ Q is called complete if it preserves
all infs and sups that exist in P; that is, if whenever X is a subset of P such that either
p = supP X or q = infP X exists, then f (p) = supQ f (X) or f (q) = infQ f (X). A
lattice homomorphism is a function f : P−→ Q between lattices P and Q such that
f (x∨ y) = f (x)∨ f (y) and f (x∧ y) = f (x)∧ f (y) for all x and y in P. Each lattice
homomorphism is isotone and an isomorphism between posets is complete, but a
poset monomorphism between lattices need not be a lattice homomorphism. How-
ever, a lattice homomorphism that is one-to-one is a monomorphism and a bijection
f between posets is an isomorphism if and only if f and f−1 are both isotone.
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Exercises.

1. Find two distinct lattice polynomials p(x,y,z) and q(x,y,z) such that a lattice L
is modular iff it satisfies the identity p(x,y,z) = q(x,y,z).

2. (a) Prove the generalized distributive equations (1.2.1).
(b) Show that in a lattice L the equation

∧

i∈I

∨

j∈J

ai j =
∨

f∈JI

∧

i∈I

ai f (i)

holds whenever both sides exist if and only if the equation
∧

i∈I

∨

j∈Ji

ai j =
∨

f∈ΠJi

∧

i∈I

ai f (i)

holds whenever both sides exist, and dually (for arbitrary sets I,J, and Ji).
(c) A lattice L is infinitely distributive if whenever ∨xi exists, then, for each

y in L, ∨(y∧ xi) exists and y∧ (∨xi) = ∨(y∧ xi), and the dual also holds.
Show that each Boolean algebra is infinitely distributive. (If u≥ y∧xi, then
xi ≤ u∨ y′.)

3. Prove the equivalence of the following statements in the lattice L.

(a) L is modular.
(b) If two of the three elements a,b,c are comparable, then a∧ (b∨ c) = (a∧

b)∨ (a∧ c).
(c) If two of the three elements a,b,c are comparable, then a∨ (b∧ c) = (a∨

b)∧ (a∨ c).

4. The element a in the poset P is said to have a successor if the set {p ∈ P :
a < p} has a least element, and this least element is called the successor of a;
it is denoted by a+. P is a poset with successors if each of its elements has a
successor. The predecessor of a, denoted by a−, and a poset with predecessors
are defined dually.

(a) If P has predecessors (respectively, successors) and Q is any poset, then the
ordinal product P ×←Q has predecessors (respectively, successors).

(b) The ordinal sum of a family of posets, each of which has successors
(respectively, predecessors) also has successors (respectively, predeces-
sors).

(c) If P has predecessors and successors, then a = a+− = a−+ for each a in P.
(d) If P is a lattice with successors (respectively, predecessors), then P is totally

ordered.

5. Let P and Q be nonempty posets. Show that the ordinal product P ×←Q is a lattice
if and only if the following conditions are satisfied by P and Q.

(a) Q is a lattice;
(b) if Q is not totally ordered, then 0,1 ∈ P;
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(c) ∀x,y ∈ P, x∨ y exists if and only if x and y have a common upper bound,
and dually;

(d) if x∨ y does not exist for some x,y ∈ P, then 0 ∈ P and Q is a poset with
successors, and dually.

6. Let f : L−→M be a function between lattices.

a. If L is a chain show that f is a lattice homomorphism iff it is isotone.
b. Find an example where f is a monomorphism of posets but it is not a lattice

homomorphism.
c. Suppose that f is a bijection. Show that f is a lattice homomorphism iff

f−1 is a lattice homomorphism iff f and f−1 are both isotone.

7. Let R be a ring with no nonzero nilpotent ideals (equivalently, no nonzero nilpo-
tent one-sided ideals). For each ideal A of R let A′ = {x ∈ R : xA = 0} = {x ∈
R : Ax = 0} be its annihilator, and let Ann(R) be the set of annihilator ideals of
R. Show that (Ann(R),⊆, ′) is a complete Boolean algebra (see Section 1.3).

8. A Boolean ring is a ring B such that x2 = x for each x in B.

(a) Show that each Boolean algebra B becomes a unital Boolean ring when it
is given the operations: ab = a∧b and a+b = (a′ ∧b)∨ (a∧b′).

(b) Show that each unital Boolean ring becomes a Boolean algebra when it is
given the operations: a∧b = ab, a′ = 1−a and a∨b = a+b−ab.

(c) Let B− denote the Boolean algebra (respectively, unital Boolean ring) asso-
ciated with the unital Boolean ring (respectively, Boolean algebra) B. Show
that B−− = B.

(d) Let B be the set of central idempotents of the unital ring R. Show that B
becomes a Boolean algebra when it is given the operations defined in (b).
What is addition in B−? If e, f ∈ B and n ∈ N when is e+ f −ne f ∈ B?

(e) A generalized Boolean algebra is a distributive lattice L with least element
0 which is relatively complemented ; this means that complements exist
in each closed interval [a,b] = {x ∈ L : a ≤ x ≤ b}. Formulate and prove
(a), (b), (c), and (d) for a generalized Boolean algebra. Show that such an
algebra is infinitely distributive (Exercise 2).

9. An ideal of a lattice L is a nonempty subset I such that if a,b ∈ I and c ∈ L with
c ≤ a, then a∨b ∈ I and c ∈ I. I is a prime ideal of L if I is a proper ideal and
whenever a,b ∈ L with a∧ b ∈ I, then a ∈ I or b ∈ I. Let I be a subset of the
generalized Boolean algebra B. Show that I is an ideal of B if and only if I is an
ideal of the ring B (see Exercise 8). Moreover, the following are equivalent for
the proper ideal I.

(a) I is a prime ideal.
(b) I is a maximal ideal.
(c) If x ∈ B and y is its complement in some interval [a,b], then x ∈ I or y ∈ I.
(d) card (B/I) = 2.
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10. (a) If I is an ideal of the lattice L and a∈ L then {x∈ L : x≤ y∨a for some y∈ I}
is the ideal of L generated by I and a (that is, it is the intersection of all the
ideals of L which contain I∪{a}).

(b) If L is distributive and I is an ideal maximal with respect to not containing
some element a ∈ L, then I is prime (see Exercise 9).

(c) Each proper ideal in a distributive lattice is the intersecion of prime ideals.
(d) Let Spec(L) be the set of prime ideals of the distributive lattice L. Then the

mapping f : L−→P (Spec(L)) given by f (a) = {I ∈ Spec(L) : a 6∈ I} is
a lattice monomorphism.

11. Let P = ΠPi be the product of the family of posets {Pi}i∈I , and let a = (ai) ∈ P.
Let πi : P −→ Pi be the projection onto Pi and let αi : Pi −→ P be defined by
πiαi = 1Pi and π jαi(Pi) = a j if j 6= i.

(a) Show that αi and πi are complete.
(b) Let Pa = {p ∈ P : πi(p) = ai except for a finite subset of I}. Show that Pa

is closed under any finite sups or infs that exist in P, and πi : Pa −→ Pi is
complete.

12. In a lattice L the medians of three elements x,y,z are defined by (x,y,z) =
(x∧ y)∨ (y∧ z)∨ (z∧ x) and [x,y,z] = (x∨ y)∧ (y∨ z)∧ (z∨ x).

(a) Both medians are symmetric in x,y, and z.
(b) If x≤ y≤ z then (x,y,z) = [x,y,z] = y.
(c) If z≥ x,y then (x,y,z) = [x,y,z] = x∨ y, and dually.
(d) L is distributive if and only if it satisfies the identity (x,y,z) = [x,y,z]. (First

show that L is modular and then compute x∧ (x,y,z).)
(e) Let f : L −→ M be an isotone map between lattices. The following state-

ments are equivalent.
(i) f is a lattice homomorphism.

(ii) f ((x,y,z)) = ( f (x), f (y), f (z)) ∀x,y,z ∈ L.
(iii) f ([x,y,z]) = [ f (x), f (y), f (z)] ∀x,y,z ∈ L.

1.3 Completion

If each subset of the poset P has both an inf and a sup in P, then P is said to be com-
plete. Clearly, a complete poset is a lattice. Complete lattices are of course densely
packed, at least intuitively, and arise naturally as subsets of power sets; for example,
the lattice of subgroups of a group. The real numbers are essentially complete and,
in fact, become complete when a largest and a smallest element are adjoined. In
this short section we construct the completion of a poset and show that some posets
also have a smaller completion in which, like the real numbers, every bounded sub-
set has an inf and a sup. This type of lattice arises forcefully in Section 2.3 where
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archimedean lattice-ordered groups are studied. It is easy to see that in order for P
to be complete it suffices that each of its subsets has an inf in P. In particular, any
subset of a complete lattice which contains the inf of each of its subsets is itself a
complete lattice, though not necessarily a sublattice.

A closure operator on a poset P is an isotone function c : P −→ P such that for
all x ∈ P,

(C1) x≤ c(x);

(C2) c(c(x)) = c(x).

An element x ∈ P is called closed if it is a fixed point of c : c(x) = x. If X is a set of
closed elements and y = infX , then y is closed. For, y≤ c(y)≤ c(x) = x, for each x
in X , and hence y = c(y). This proves

Theorem 1.3.1. Let c be a closure operator on a complete lattice L. The subset C of
all closed elements in L is itself a complete lattice, and the inf operator in C is the
restriction to C of the inf operator in L. ¤

This result will now be applied to a closure operator on the power set P(P) of the
poset P which is, of course, a complete Boolean algebra. In fact, the construction to
be given is just the familiar cut construction of the reals from the rationals, applied
to an arbitrary poset. First note that the upper bound and lower bound functions on
P(P) are inclusion reversing : if X ⊆ Y ⊆ P, then LP(Y ) ⊆ LP(X) and UP(Y ) ⊆
UP(X). A subset S of the poset T is said to be dense (or order dense) in T if, for
each t in T , t = supT LS(t) and t = infT US(t), where LS(t) = LT (t)∩S and US(t) =
UT (t)∩ S. It is easy to see that S is dense in T exactly when each element of T is
the sup and the inf of some subsets of S. A completion of the poset P is a pair (C,ϕ)
where C is a complete lattice and ϕ : P −→ C is an embedding of P onto a dense
subset of C.

Theorem 1.3.2. (a) Each poset P has a completion.
(b) If (C,ϕ) is a completion of P, then ϕ is a complete monomorphism.
(c) If (C,ϕ) and (C1,ϕ1) are two completions of P, then there is a unique iso-

morphism ψ : C −→C1 such that the following diagram is commutative.



18 1 Partially Ordered Sets and Lattices

Proof. Consider the operator LU : P(P) −→P(P), LU(X) = L(U(X)). Since L
and U each reverses inclusion LU is isotone, and clearly X ⊆ LU(X); so LU sat-
isfies (C1). Thus, to show that LU is a closure operator it suffices to show that
LULU(X) = LU(X). But this will follow once the equation ULU(X) = U(X) is
verified. However, X ⊆ LUX and Y ⊆ ULY yields that ULUX ⊆ UX , and UX ⊆
UL(UX). Let

M(P) = {X ⊆ P : LU(X) = X}.

According to Theorem 1.3.1 M(P) is a complete lattice in which inf{Xi : i∈ I}=
∩{Xi : i ∈ I}. Define ϕ : P −→ M(P) by ϕ(p) = L(p). Since LUL = L, ϕ(p) ∈
M(P), and since p ≤ q ⇔ L(p) ⊆ L(q), ϕ is an embedding. That ϕ(P) is dense in
M(P) follows from the fact that if LU(X) = X , then

∪{L(x) : x ∈ X}= X = ∩{L(p) : p ∈U(X)}. (1.3.1)

The first equality arises from: a≤ x ∈ X ⇒ a ∈ LU(a)⊆ LU(x)⊆ LU(X) = X ; and
the second from: a ≤ p for each p ∈U(X)⇒ a ∈ LU(X) = X . This completes the
proof of the first statement. For the second statement it suffices to show that if P is a
dense subset of the poset C and if X ⊆ P has the inf (respectively, sup) a in P, then
a is the inf (respectively, sup) of X in C. We will only do the inf case, since the sup
case will follow dually. Suppose, then, that c ∈C and c≤ X . Then LP(c)⊆ LP(X).
So if p ∈ LP(c), then p≤ a; that is, LP(c)≤ a. But c = supC LP(c), so c≤ a.

The last statement is a consequence of the next theorem. ut
The completion M(P) constructed above, together with the canonical embedding

ϕ = ϕP : P −→ M(P), is called the MacNeille completion of P. The poset P is
usually identified with its canonical image in M(P).

Theorem 1.3.3. Let ϕ : P −→ M(P) be the MacNeille completion of the poset P,
and let f : P−→C be a function into the complete lattice C.

(a) There is an isotone function f∗ : M(P)−→C such that the diagram below

is commutative exactly when f is isotone.
(b) If f is an embedding then so is f∗.
(c) If f is an embedding onto a dense subset of C, then f∗ is an isomorphism

and it is the unique embedding that makes the diagram commutative.
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Proof. (a) Let X ∈ M(P) and define f∗(X) = supC f (X). Then for X ⊆ Y ∈ M(P)
we have f∗(X)≤ f∗(Y ), and hence f∗ is isotone. If f is isotone and p∈ P, then f (p)
is the largest element in f (L(p)); consequently, f∗(ϕ(p)) = supC f (L(p)) = f (p).

(b) Suppose that X , Y ∈ M(P) with f∗(X) ≤ f∗(Y ). We claim that UP(Y ) ⊆
UP(X), and hence that X = LU(X)⊆ LU(Y ) = Y . For if q ∈ X and p ∈UP(Y ), then,
since L(q) ⊆ X (by (1.3.1)), we have f (q) = f∗(L(q)) ≤ f∗(X) ≤ f∗(Y ) ≤ f (p).
Thus, q≤ p since f is an embedding.

(c) Suppose now that f is an embedding and f (P) is dense in C. It remains
to show that f∗ is onto. Let c ∈ C, and let X = {p ∈ P : f (p) ≤ c} and Y = {p ∈
P : c ≤ f (p)}. Then c = supC f (X) = infC f (Y ). But X = LU(X) ∈ M(P); for if
p∈ LU(X), then p≤Y since Y ⊆U(X). So f (p)≤ f (Y ), f (p)≤ c and hence p∈X .
Thus, f∗(X) = c and f∗ is an isomorphism. If g : M(P)−→C is an embedding with
g◦ϕ = f , then for X ∈M(P) we have

g(X) = g

(
⋃

p∈X

L(p)

)
=

∨

p∈X

g(L(p)) = supC f (X) = f∗(X)

since g(M(P)) is dense in C and hence g preserves sups by Theorem 1.3.2. ut
For some purposes a completion of P that is slightly smaller than M(P) is more

useful than M(P) (for example, when P is a group). A subset X of P is said to be
bounded above (respectively, below) if it has an upper (respectively, lower) bound,
and it is called bounded if it is bounded both above and below. The poset P is
conditionally complete if each nonempty bounded subset of P has an inf and a sup
in P; P is directed (respectively, directed up, directed down) if each two element
subset of P is bounded (respectively, bounded above, bounded below).

Theorem 1.3.4. Let P be a directed poset, and let D(P) = P ∪ (M(P)\{0,1}).
(a) D(P) is a conditionally complete lattice.
(b) P is dense in D(P).
(c) If P has neither a first nor a last element, then Theorem 1.3.3 holds if M(P)

is replaced by D(P), provided C is a conditionally complete lattice with no
first or last element.

Proof. If a,b ∈ D(P), then the closed interval [a,b] = {x ∈ M(P) : a ≤ x ≤ b} is
contained in D(P). So if X is a nonempty bounded subset of D(P), say a ≤ X ≤ b,
then infM(P) X , supM(P) X ∈ [a,b]⊆D(P), and hence D(P) is conditionally complete.
Now, if a ∈D(P), then there exists p ∈ P with p≤ a. For, a = supM(P) LP(a), and if
LP(a) = φ , then 0 = a ∈ D(P); consequently, 0 ∈ LP(a) which is impossible. Simi-
larly, a≤ q for some q∈P. So if a, b∈D(P) then we can find p, p1, p2, q, q1, q2 ∈P
with p1 ≤ a≤ q1, p2 ≤ b≤ q2, p≤ p1, p2 and q1, q2 ≤ q. So {a,b} is bounded,
and hence D(P) is a conditionally complete sublattice of M(P). If S is a dense sub-
set of the poset T and S ⊆W ⊆ T , then S is dense in W . So P is dense in D(P).
Suppose that neither P nor C has a 0 or 1, C is a conditionally complete lattice and
f : P−→C is isotone. Since it is easily verified that M(C) = C ∪ {0,1} we have the
following diagram
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where f∗ is defined by f∗(X) = supM(C) f (X) for X ∈M(P) just as in the previous
theorem. If X ∈ D(P), then U(X) 6= φ ; so X ≤ p for some p ∈ P. But then 0 <
f (X) ≤ f (p) and f∗(X) ∈C. Then the restriction of f∗ to D(P) has its image in C,
is an embedding if f is an embedding, and is an isomorphism if also f (P) is dense
in C, since then f (P) is dense in M(C). ut

The completion D(P) is called the Dedekind completion of P.

Exercises.

1. (See Exercise 1.2.5.) Let P and Q be nonempty posets.

(a) Find an example where P ×←Q is a lattice, Q is totally ordered, but P is not
a lattice.

(b) If P and Q are lattices and 0,1 ∈ P show that P ×←Q is a lattice.
(c) If Q has maximal as well as minimal elements, show that P ×←Q is a lattice

if and only if P and Q are lattices, and 0,1 ∈ P in case Q is not a chain.
(d) If P and Q are complete lattices, show that P ×←Q is a complete lattice.
(e) Show that there is no Q for which P ×←Q is a lattice for every P.
(f) Find Q for which P ×←Q is a lattice for every P that contains 0 and 1.
(g) Show that there is a poset P with more than one element for which P ×←Q is

a lattice for every lattice Q.

2. Prove that the MacNeille completion of a totally ordered set is totally ordered.

3. Find the MacNeille completion of the poset P in each of the following cases: P
is trivially ordered, or, P is Z, Q, R orQ ×←Q. Find the Dedekind completion in
all of these cases. In the last case identify the completion inside of C ×←C where
C is the MacNeille completion of Q.

4. Prove that the following statements are equivalent for the lattice L.

(a) L is conditionally complete.
(b) Each nonempty bounded subset of L has an inf in L.
(c) Each nonempty subset of L that is bounded below has an inf in L.
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(d) The dual of (b).
(e) The dual of (c).

5. (a) Prove that the MacNeille completion of a Boolean algebra B is a Boolean
algebra and B is a subalgebra of M(B).

(b) Show that (a) holds for a generalized Boolean algebra (Exercise 1.2.8). (A is
a subalgebra of the generalized Boolean algebra B if 0 ∈ A, A is a sublattice
of B, and A is a generalized Boolean algebra; equivalently, A is a subring of
the ring B.)

6. An atom in a poset P with 0 is an element x ∈ P with 0 < x and such that
0 < y≤ x implies that y = x. P is called atomic if for each 0 < z ∈ P there is an
atom x with x≤ z. Show that the Boolean algebra B is isomorphic to the power
set of some set X if and only if B is complete and atomic. (Hint: Let X be the
set of atoms of B.)

7. Let X be a topological space. A subset U of X is called clopen if it is both open
and closed. Show that the set of all of the clopen subsets of X is a Boolean
subalgebra of the power set of X .

8. Let X be a topological space. Denote the interior, complement, and closure of
the subset A of X by A◦,A′, and A−, respectively. A is called regular if A = A−◦.
Let A∗ = A−′. Show that

(a) A◦ = A′−′;
(b) A is regular iff A = A∗∗;
(c) the set B of all of the regular open subsets of X is a complete Boolean

algebra with the operations: for A,B ∈ B, A∗, as defined above, is the
complement of A in B, A∧B = A∩B and A∨B = (A∪B)∗∗.

1.4 Universal Algebra

Our main concern in this book is with rings and groups that are also lattices. These
structures are given as sets upon which certain operations are defined. Since the ba-
sic consequences of these operations are assumed to be familiar to the reader it is not
particularly useful to consider these structures as special cases of a more general ab-
stract structure. However, we will have some interest in free objects in varieties, and
the existence of these free objects in general may not be so familiar. Consequently,
we will develop enough of the basic ingredients of universal algebra so as to make
these concepts meaningful. Specifically, we will construct free algebras of arbitrary
rank in any nontrivial variety and give an internal characterization of a variety as a
class of algebras closed under subalgebras, homomorphic images, and products.

An operator domain is a set Ω together with a function a : Ω −→N0 =N∪{0};
the elements of Ω are called operators, and if ω ∈ Ω with a(ω) = n, then we
will say that the arity of ω is n or that ω is an n-ary operator. The set of all n-ary
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operators in Ω will be denoted by Ω(n). An Ω -algebra is a set A together with a
sequence of functions

Ω(n)−→ A(An).

When no confusion is likely an Ω -algebra A will be referred to as just an algebra.
Each ω ∈Ω(n) determines an n-ary operation on A, and the value of this operation
at (a1, . . . ,an)∈An will be denoted by ω(a1, . . . ,an). If ω is a 0-ary operator, then by
definition A0 = A /0 = { /0}, and ω determines some distinguished element or constant
ωA of A. For this reason a 0-ary operator is frequently called a constant operator.
For example, the identity element in a group is the result of a constant operator.

A subset B of the algebra A is a subalgebra of A if ω(b1, . . . ,bn) ∈ B for each
n ∈ N0, for each ω ∈Ω(n), and for any b1, . . . ,bn ∈ B. Each subalgebra B contains
the set of constants {ωA : ω ∈ Ω(0)}. An algebra is said to be trivial if it has just
one element. If X is a subset of A there is a smallest subalgebra of A that contains X ,
namely the intersection of all of those subalgebras that contain X . This subalgebra,
which we denote by SΩ (X), is called the subalgebra generated by X . A description
of the elements of SΩ (X) is given inductively as follows. Let





X0 = X ∪{ωA : ω ∈Ω(0)} and

Xk+1 = Xk ∪{a ∈ A : a = ω(y1, . . . ,yn)
where n ∈ N,ω ∈Ω and (y1, . . . ,yn) ∈ Xn

k }.
(1.4.1)

Then (see Exercise 1)

SΩ (X) =
∞⋃

k=0

Xk . (1.4.2)

If A and B are Ω -algebras the function f : A−→ B is called an Ω -homomorphism
(or just a homomorphism or morphism) if f (ω(a1, . . . ,an)) = ω( f (a1), . . . , f (an))
for each ω ∈ Ω and each n-tuple (a1, . . . ,an) ∈ An, where n ∈ N0 . The familiar
terminology associated with homomorphisms will be used. So, an injective (respec-
tively, surjective) morphism is a monomorphism (respectively, an epimorphism), and
a bijective morphism is an isomorphism. An endomorphism is a morphism from an
algebra to itself, and an endomorphism that is an isomorphism is an automorphism.
If there is an epimorphism from A to B, then B is called a homomorphic image of
A. The class of all Ω -algebras A (Ω) together with all homomorphisms between
Ω -algebras is a category which will also be denoted by A (Ω). Likewise, we will
not distinguish between a subclass C of A (Ω) and the subcategory of A (Ω) that
it determines.

The cartesian product ΠAi of a family of Ω -algebras {Ai}i∈I becomes an Ω -
algebra in the following natural way. If a1, . . . ,an ∈ ΠAi and ω ∈ Ω(n), then
ω(a1, . . . ,an) is defined by πi(ω(a1, . . . ,an)) = ω(πi(a1), . . . ,πi(an)), for each i∈ I,
where πi : ΠAi −→ Ai is the ith projection. This Ω -algebra is called the direct prod-
uct of the family {Ai}i∈I . Of course, this is the only Ω -algebra structure on the carte-
sian product for which each projection is an Ω -homomorphism. The direct product
ΠAi is a categorical product in the category of Ω -algebras (see Exercise 3).
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An equivalence relation ∼ on a set A induces an equivalence relation ∼n on
An which is defined by (a1, . . . ,an) ∼n (b1, . . . ,bn) if ai ∼ bi for each i = 1, . . . ,n.
The equivalence relation ∼ on the Ω -algebra A is called a congruence on A
if for each n ∈ N and each ω ∈ Ω(n), ω(a1, . . . ,an) ∼ ω(b1, . . . ,bn) whenever
(a1, . . . ,an) ∼n (b1, . . . ,bn). Since the intersection of a set of congruences on A is
a congruence, the collection of congruences on A is a complete lattice with least
element the diagonal ∆ = {(a,a) : a ∈ A} and greatest element A2. The diagonal
is called the trivial congruence on A and any congruence other than A2 is called
proper. If ∼ is an equivalence relation on A and a ∈ A, then ā, or [a], will denote
the equivalence class of A determined by a. The set of all of the equivalence classes
will be denoted by A/∼ and is called the quotient of A determined by ∼, and the
function η : A−→ A/∼ which is given by η(a) = ā is the natural mapping associ-
ated with ∼. If f : A−→ B is any function, then the kernel of f (abbreviated ker f )
is the equivalence relation on A determined by the partition { f−1(b) : b ∈ B} of A.
If ∼ is a congruence relation on an algebra A, then the quotient A/∼ becomes an
Ω -algebra in a natural way and is called the quotient algebra of A determined by∼.
The Ω -algebra structure of A/∼ is given in the following theorem whose proof is
left to the reader.

Theorem 1.4.1. Let∼ be a congruence relation on the Ω -algebra A. For ω ∈Ω(n)
and a1, . . . ,an ∈ A define ω(ā1, . . . , ān) by ω(ā1, . . . , ān) = [ω(a1, . . . ,an)].

(a) The quotient A/ ∼ is an Ω -algebra, and η : A −→ A/∼ is a morphism of
Ω -algebras.

(b) If f : A −→ B is a morphism of Ω -algebras, then ker f is a congruence
on A, f (A) is a subalgebra of B, and f = jη where j : A/ker f −→ B is
the morphism j(ā) = f (a); j induces an isomorphism between the quotient
algebra A/ker f and the image of f .

(c) If f : A−→ B is a morphism, then there is a (unique) morphism g : A/∼−→
B with gη = f if and only if ∼⊆ ker f . ¤

If C is a class of Ω -algebras and F is an algebra in C , then F is called a free C -
algebra on the set X if there is an injective function i : X −→ F (which will usually
be an inclusion function) such that the image of X generates F and each function
f : X −→ A into an Ω -algebra A in C can be extended to a morphism f̄ : F −→ A
in the sense that f = f̄ i. Since i(X) generates F there is at most one such extension
(Exercise 4). In order to prove the existence of free algebras, with some degree of
generality, we will first construct free algebras in the class A (Ω) of all Ω -algebras.

Let X be a set which we will assume to be disjoint from the operator domain Ω ;
otherwise, take the disjoint union of X and Ω . The Ω -row algebra on X is defined
to be the set

W (Ω ,X) =
∞⋃

m=1

(Ω ∪X)m

together with the Ω -algebra structure defined by juxtaposition: if a1, . . . ,an ∈
W (Ω ,X) and ω ∈Ω(n), then
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ω(a1, . . . ,an) = (ω,a1, . . . ,an).

More explicitly, if ai = (ai1, . . . ,aimi) for 1≤ i≤ n, where ai j ∈Ω ∪X , then

ω(a1, . . . ,an) = (ω,a11, . . . ,a1m1 ,a21, . . . ,anmn).

An element of the algebra W (Ω ,X) will be called an Ω -row in X . The subalgebra of
W (Ω ,X) generated by X , which is denoted by FΩ (X) or F(X), is called the Ω -word
algebra on X , and its elements will be called Ω -words in the alphabet X . According
to (1.4.2) the elements of FΩ (X) are either in X0 = X ∪Ω(0) or are in Xk for some
k ≥ 1. The elements in X1\X0 are of the form ω(a1, . . . ,an) = (ω,a1, . . . ,an) where
n ∈ N, ω ∈Ω(n) and each ai is either an element of X or is a constant operator.

As expected, the Ω -word algebra FΩ (X) is a free algebra in A (Ω). In order to
verify this and to also show the uniqueness of the spelling of an Ω -word we will
introduce two integer-valued functions on W (Ω ,X). These functions will make the
required bookkeeping easier.

An Ω -row w = (y1, . . . ,ym) ∈ (Ω ∪X)m is said to have length m : `(w) = m; and
its valence v(w) is defined by

v(w) =
m

∑
i=1

v(yi),

where v(y) = 1 if y ∈ X and v(y) = 1− n if y ∈ Ω(n). A segment of w =
(y1, . . . ,ym) is an Ω -row of the form u = (yi,yi+1, . . . ,y j) where 1 ≤ i ≤ j ≤ m.
The segment u is an initial segment of w if i = 1 and is a tail of w if j = m.
If w = (u1, . . . ,uk), where each u` is a segment of w, then the k Ω -rows u1, . . . ,uk
form a partition of w.

Theorem 1.4.2. Let w ∈W (Ω ,X).

(a) The necessary and sufficient conditions for w to have a partition into r Ω -
words, with r ≥ 1, is that v(w) = r and each tail of w has positive valence.

(b) w ∈ FΩ (X) if and only if v(w) = 1 and each tail of w has positive valence.
(c) Suppose that w ∈ FΩ (X). Then `(w) = 1 if and only if w ∈ X ∪Ω(0); if

`(w) ≥ 2, then w has a unique partition of the form w = (ω,w1, . . . ,wn)
where n≥ 1, ω ∈Ω(n) and each wi ∈ FΩ (X).

Proof. If `(w) = 1, then, according to (1.4.1) and (1.4.2), w ∈ FΩ (X) if and only if
w ∈ X ∪Ω(0). Consequently, the theorem holds for words of length 1, and, except
for the hidden beginning of an inductive argument, we will assume that `(w) ≥ 2.
Note also that (b) is a special case of (a).

(a) We use induction on `(w). Suppose that w = (w1, . . . ,wr) where each wi is an
Ω -word. By (1.4.1) and (1.4.2) wi ∈ X∪Ω(0) and v(wi) = 1, or wi = (ω,a1, . . . ,an)
where n ≥ 1, ω ∈ Ω(n) and a j ∈ FΩ (X). Then v(a j) = 1 and each tail of a j has
positive valence for 1≤ j ≤ n since `(a j) < `(w), and hence v(wi) = 1−n+n = 1
and v(w) = r. Also, if u is a proper tail of w, then u = (t,wi+1, . . . ,wr) where either
t is a proper tail of wi, or t = wi and i≥ 2. In the second case v(u) = r− i+1≥ 1. In
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the first case t = (s,a j+1, . . . ,an) where s is a tail of a j and v(t) = v(s)+n− j > 0,
and hence v(u) = v(t)+v(wi+1)+ · · ·+v(wr) > 0. Conversely, suppose that w is an
Ω -row with v(w) = r ≥ 1 and each tail of w has positive valence. Then w = (y,w1),
where y ∈ X ∪ Ω and v(w1) = s ≥ 1. Since `(w1) < `(w), w1 = (u1, . . . ,us) where
u j ∈ FΩ (X). If y ∈ X ∪ Ω(0), then w = (y,u1, . . . ,us) is a partition of w into 1 + s
Ω -words and 1 + s = v(y)+ v(w1) = r. If y ∈ Ω(n) with n ≥ 1, then r = 1− n + s
gives that n = s− (r−1)≤ s. So w = (y,u1, . . . ,un,un+1, . . . ,us) = (a,un+1, . . . ,us)
is a partition of w into s−n+1 = r words where a = (y,u1, . . . ,un) ∈ FΩ (X).

(c) By (1.4.2) w = (ω,w1, . . . ,wn) where ω ∈ Ω(n), n ≥ 1 and wi ∈ FΩ (X). To
prove the uniqueness of this partition write w = (ω,y1, . . . ,ym) where y j ∈ X ∪Ω .
We will first show that if w′ = (yi, . . . ,y j) is a proper segment of w that is it-
self a word, and yi occurs in wp, then w′ is a segment of wp. Otherwise, w′ =
(z,wp+1, . . . ,w`−1,u) where z is a tail of wp, u is an initial segment of w`, and
` ≥ p + 1 ≥ 2. From (b) we have that both u and z have strictly positive valence
since each is the tail of an Ω -word. This gives the contradiction

1 = v(w′) = v(z)+ `−1− p+ v(u)≥ 2.

Now if w = (ω,w1, . . . ,wn) = (ω̄, w̄1, . . . , w̄m) with w̄i ∈ FΩ (X), then clearly ω =
ω̄ and n = m, and by the previous discussion, first, w1 = w̄1, and then w2 =
w̄2, . . . ,wn = w̄n. ut

We can now prove

Theorem 1.4.3. For each set X the Ω -word algebra FΩ (X) is a free A (Ω)-algebra
on X.

Proof. Let f : X −→ A be a function into the Ω -algebra A. Since, by (1.4.2),

FΩ (X) =
∞⋃

k=0

Xk

we can construct the morphism f̄ : FΩ (X) −→ A which extends f by defining
it inductively on each Xk, as follows. If ω ∈ Ω(0) let f̄ (ω) = ωA. Now let w
be an Ω -word with `(w) ≥ 2, and let k ≥ 1 be minimal with w ∈ Xk. Then by
(c) of Theorem 1.4.2 w can be written uniquely as w = ω(w1, . . . ,wn) where
n ≥ 1, ω ∈ Ω(n), and wi ∈ Xk−1. Assuming that f̄ (wi) is defined for 1 ≤ i ≤ n,
let f̄ (w) = ω( f̄ (w1), . . . , f̄ (wn)). This defines f̄ on FΩ (X), and clearly f̄ is a mor-
phism of Ω -algebras. ut

Suppose that w = (y1, . . . ,ym) is an Ω -word where yi ∈Ω ∪ X . If {y1, . . . ,ym}
∩X ⊆ {x1, . . . ,xn} we will write w = w(x1, . . . ,xn) to indicate that x1, . . . ,xn are the
only possible elements of X that occur in w. Now suppose that a1, . . . ,an are ele-
ments of an Ω -algebra A and f : X −→ A is a function with f (xi) = ai for 1≤ i≤ n.
We will denote by w(a1, . . . ,an) the image of w(x1, . . . ,xn) under the unique mor-
phism FΩ (X)−→ A induced by f . Thus, w(a1, . . . ,an) is the element of A obtained
from w(x1, . . . ,xn) by substituting ai for xi.
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The algebras that we are interested in (rings, groups, and lattices) are all algebras
that satisfy certain identities. We will soon make this statement more precise, but we
first introduce a related useful concept. A Galois connection between two partially
ordered classes P and Q is a pair of antitone mappings ∗ : P−→ Q and ∗ : Q−→ P
such that x≤ x∗∗ for each x in P∪Q. The mappings P−→ P and Q−→ Q, given
by x 7→ x∗∗, which are induced by the Galois connection, are closure operators. For,
x∗ ≤ (x∗)∗∗, and x≤ x∗∗ implies that x∗∗∗ ≤ x∗; so x∗ = x∗∗∗ and hence x∗∗ = x∗∗∗∗
for each x in P∪Q. The elements of P or of Q that are closed are those elements
that are in the images of ∗, and the mappings ∗ : P∗ −→ Q∗ and ∗ : Q∗ −→ P∗ are
inverse antitone bijections between the classes of closed elements in Q and P. We
will now examine a particular Galois connection. An element (w1,w2) of the carte-
sian product FΩ (X)2 is called an identity (or a law) in the alphabet X . The identity
(w1,w2) will frequently be written as w1 = w2. The algebra A is said to satisfy
the identity w1 = w2 if ϕ(w1) = ϕ(w2) for each morphism ϕ : FΩ (X) −→ A. If
wi = wi(x1, . . . ,xn) for i = 1,2 this just means that w1(a1, . . . ,an) = w2(a1, . . . ,an)
for all a1, . . . ,an ∈ A. For example, a semigroup is abelian if it satisfies the identity
x1x2 = x2x1. Now if S is any set of identities in X let S∗ = VΩ (S,X) be the class of
all Ω -algebras which satisfy each identity in S;VΩ (S,X) is called the variety deter-
mined by S. If C is any class of Ω -algebras let C ∗ denote the set of all identities
in FΩ (X)2 which are satisfied by each algebra in C . It is easy to see that these two
mappings form a Galois connection between the power set P of FΩ (X)2 and the
power class Q of A (Ω).

Let us note that the varieties VΩ (S,Y ) that are obtained using various alphabets
Y can all be obtained from a fixed infinite alphabet (Exercise 10). One important
consequence of this observation and the previous remarks about Galois connections
is that the class of varieties in A (Ω) is a set. Another consequence is the following.
If C is any class of Ω -algebras the variety generated by C ,V (C ), is, by definition,
the intersection of all those varieties of Ω -algebras that contain C . If X is an infinite
set and ∗ is the Galois connection relative to the alphabet X , then it is easily seen
that V (C ) = C ∗∗.

A class C of Ω -algebras is called hereditary if each subalgebra of an algebra
A in C is also in C ; it is called homomorphically closed if for each epimorphism
A−→ B, if A ∈ C , then B ∈ C (isomorphically closed is defined analogously). The
class C is productive if the direct product ΠAi is in C for each subset {Ai}i∈I of C .
Each variety of Ω -algebras has these three properties (Exercise 13) and we will soon
see that these properties actually characterize varieties. But first we will establish the
existence of free algebras in varieties.

An Ω -algebra A is said to be a subdirect product of the family of Ω -algebras
{Ai}i∈I if there is an injective morphism f : A−→ΠAi such that, for each i∈ I, πi f :
A −→ Ai is an epimorphism. A congruence ∼ on an Ω -algebra A is called fully
invariant if a∼ b implies that ϕ(a)∼ ϕ(b) for each endomorphism ϕ of A.

Theorem 1.4.4. Let C be a class of Ω -algebras, and let S = C ∗ ⊆ FΩ (X)2 be the
set of those identities in the alphabet X which are satisfied by all of the algebras in
the class C .
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(a) S is a fully invariant congruence on FΩ (X).
(b) Let i : X −→ FΩ (X)/S be the restriction to X of the natural map FΩ (X)−→

FΩ (X)/S, and denote FΩ (X)/S by FΩ (C ,X). If A ∈ C and if f : X −→ A is
any function, then there is a unique morphism g : FΩ (C ,X)−→ A such that
the following diagram is commutative:

In particular, each algebra A in C is a homomorphic image of FΩ (C ,X) for
some X.

(c) If C is hereditary and is closed under the formation of subdirect products,
then FΩ (C ,X) ∈ C , and if, also, some nontrivial algebra is in C , then
FΩ (C ,X) is a free C -algebra on X.

Proof. (a) Let {∼ j} j∈J be the set of those congruences on FΩ (X) such that
FΩ (X)/∼ j is isomorphic to a subalgebra of an algebra in C . Then

S =
⋂

j∈J

∼ j . (1.4.3)

For if (w1,w2) ∈ S and if η j : FΩ (X) −→ FΩ (X)/∼ j is the natural map, then
η j(w1) = η j(w2); that is, w1 ∼ j w2. On the other hand, if w1 ∼ j w2 for each j ∈ J
and if ϕ : FΩ (X) −→ A is a morphism into an algebra A in C , then ker ϕ =∼ j
for some j ∈ J (Theorem 1.4.1); so ϕ(w1) = ϕ(w2) and (w1,w2) ∈ S. Thus, S is a
congruence on FΩ (X). Furthermore, if (w1,w2) ∈ S and if ψ is any endomorphism
of FΩ (X), then for any morphism ϕ : FΩ (X)−→ A into an algebra A in C we have
ϕψ(w1) = ϕψ(w2). Hence (ψ(w1),ψ(w2)) ∈ S and thus S is fully invariant.

(b) Let f̄ : FΩ (X) −→ A be the morphism that extends the function f : X −→
A. Then f̄ (w1) = f̄ (w2) for each (w1,w2) ∈ S. So f̄ induces a morphism g :
FΩ (X)/S −→ A (Theorem 1.4.1), and gi(x) = f̄ (x) = f (x). The uniqueness of g
follows from the fact that X generates FΩ (X). The last statement follows by taking
f : X −→ A to be the inclusion map where X is a generating set for A.

(c) By (1.4.3) and Exercise 11, FΩ (X)/S is a subdirect product of algebras in C
and hence is in C . Also, if A ∈ C is nontrivial and if x 6= y in X, then x = y is not an
identity in A; so i(x) 6= i(y) and i is injective. ut

The converse of part (a) of Theorem 1.4.4 is also true; that is, a fully invariant
congruence of FΩ (X) is closed in the Galois correspondence (Exercise 15). Note
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also that if C is hereditary, then it is closed under subdirect products if and only if
it is productive and isomorphically closed.

We now have the promised internal characterization of varieties.

Theorem 1.4.5. A class V of Ω -algebras is a variety if and only if it is hereditary,
homomorphically closed and productive.

Proof. We have already noted that each variety has these properties. Suppose that
V has these three closure properties, and let X be an infinite set. We claim that V =
V ∗∗ where ∗ denotes the Galois connection relative to the alphabet X . If each algebra
in V is trivial, then, in fact, V = {(x1,x2)}∗; that is, V is the variety determined by
the identity x1 = x2. Now, assume that V contains a nontrivial algebra and let A ∈
V ∗∗. We can find a set Y and an epimorphism ϕ : FΩ (Y )−→ A. Let S = S(V ,Y ) be
the set of all those identities in FΩ (Y )2 that are satisfied by each algebra in V . By the
previous theorem FΩ (V ,Y ) = FΩ (Y )/S is in V . If (w1(y1, . . . ,yn),w2(y1, . . . ,yn))∈
S, then, for all a1, . . . ,an ∈ A, w1(a1, . . . ,an) = w2(a1, . . . ,an) since (w1(x1, . . . ,xn),
w2(x2, . . .xn)) ∈ V ∗. So ϕ induces an epimorphism ψ : FΩ (V ,Y )−→ A, and hence
A is in V . ut

Exercises.

1. Verify equation (1.4.2).

2. (a) Show that the function f : A−→B between Ω -algebras is a homomorphism
if and only if f is a subalgebra of the direct product A×B.

(b) Show that an equivalence relation ∼ on the Ω -algebra A is a congruence if
and only if ∼ is a subalgebra of A2.

3. Show that the direct product of a family of Ω -algebras is a product in the cate-
gory A (Ω).

4. Show that two homomorphisms f ,g : A−→ B between the Ω -algebras A and B
are identical if and only if they agree on a generating set for A.

5. Let ∼ be a congruence on A. Show that there is a lattice isomorphism between
the lattice of congruences on A/∼ and the sublattice of the congruence lattice
of A that consists of those congruences on A which contain ∼.

6. Let ∼ be a congruence relation on A and let A1 be a subalgebra of A.

(a) ∼1 =∼ ∩A2
1 is a congruence on A1.

(b) A2 = {b ∈ A : ∃a ∈ A1 with ā = b̄} is a subalgebra of A.
(c) A1/∼1 is isomorphic to A2/∼2.

7. If ∼⊆≈ are congruences on A, then the function f : A/∼−→ A/≈ given by
ā 7→ ā is an epimorphism. If ker f is denoted by ≈/∼, then (A/∼)/(≈/∼) is
isomorphic to A/≈.

8. Let G be a group. If ∼ is a congruence on G, then 1̄ is a normal subgroup, and,
conversely, each normal subgroup determines a congruence on G.



1.4 Universal Algebra 29

9. (a) Let ∼ be the relation defined on the Ω -algebra A by a ∼ b if a = b or
a = ω(a1, . . . ,an) and b = ω1(b1, . . . ,bm) for some ω, ω1 ∈ Ω and some
ai,b j ∈ A. Show that ∼ is a congruence on A.

(b) Prove that FΩ (X) is isomorphic to FΩ (Y ) if and only if card (X) = card (Y ).

10. Let V = V (S,Y ) be the variety determined by the set of words S ⊆ FΩ (Y )2 in
the alphabet Y . If X is infinite show that there is a subset T ⊆ FΩ (X)2 such that
V = V (T,X).

11. (a) If∼ is the intersection of a family of congruences {∼i}i∈I of the Ω -algebra
A, then A/∼ is a subdirect product of the set of Ω -algebras {A/∼i}i∈I .
Conversely, if A is a subdirect product of {Ai}i∈I , then there is a family
of congruences {∼i}i∈I on A such that each Ai is isomorphic to A/∼i and
∩ ∼i = ∆ (the diagonal of A).

(b) Show that each free V -algebra in the variety V is a subdirect product of
finitely generated free V -algebras.

12. The Ω -algebra A is called subdirectly irreducible if whenever A is a subdirect
product of a family {Ai}i∈I there exists some j ∈ I such that the morphism

A−→ΠAi
π j−→ A j is an isomorphism.

(a) Show that A is subdirectly irreducible if and only if the poset of nontrivial
congruences on A has a least element.

(b) Show that each Ω -algebra A is a subdirect product of a family of subdirectly
irreducible Ω -algebras. (If a 6= b in A let ∼ be a congruence on A that is
maximal with respect to (a,b) 6∈ ∼).

13. Show that each variety in A (Ω) is hereditary, homomorphically closed and
productive.

14. Show that each free C -algebra F is projective; that is, if A,B∈C , where C is a
class of Ω -algebras, and h : A−→ B is an epimorphism, then for each morphism
f : F −→ B there is a morphism g : F −→ A with hg = f :

15. Show that each fully invariant congruence S on FΩ (X) is the set of identities of
some variety of Ω -algebras; that is, S = S∗∗. (First use Exercise 14 to verify
that FΩ (X)/S ∈ S∗.)
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16. Let V be the variety of Ω -algebras generated by the class C ⊆ A (Ω). Show
that the algebra A is in V iff A is a homomorphic image of a subalgebra of a
direct product of a family of algebras in C .

17. Show that an Ω -algebra A is in a variety V iff each finitely generated subalgebra
of A is in V .

18. An algebra A is called a generic algebra in the variety V if V is the variety
generated by {A}. Show that each variety has generic algebras. Specifically, a
free V -algebra on an infinite alphabet is generic in the nontrivial variety V .

19. (a) Let V be the variety generated by the class C ⊆ A (Ω), and let F ∈ V
be generated by X . Then F is V -free on X if and only if each function
ϕ : X −→ A from X into an algebra A in C can be extended to a morphism
ψ : F −→ A. (Use Exercise 16.)

(b) Suppose that the Ω -algebra A is generated by X . Show that A is V -free
on X , for some variety V , if and only if each function ϕ : X −→ A can be
extended to an endomorphism ψ : A−→ A.

20. Let V be the variety generated by the Ω -algebra A, let X be a set, let P =
A(AX ) be the direct product of AX copies of A, and let F = SΩ ({πx}x∈X ) be the
subalgebra of P generated by the projections πx : AX −→ A. Show that F is
V -free on X (or {πx}x∈X ). (Use Exercise 19(a).)

21. Let {Aα}α∈Λ be a family of Ω -algebras in the variety V . For each α ∈ Λ
let Fα = F(V ,Xα) be a V -free algebra on Xα and let pα : Fα −→ Aα be an
epimorphism. Let X be the disjoint union of the Xα and let iα : Fα −→ F be
the monomorphism induced by the injection Xα −→ X where F = F(V ,X) is
V -free on X . Let ∼ be the congruence on F generated by

⋃

α
(iα × iα)(ker pα),

let A = F/∼ and let κα : Aα −→ A be the unique morphism that makes the
diagram

commutative, where η : F −→ A is the natural map.

(a) Show that (A,{κα}α∈Λ ) is a coproduct of {Aα} in V .
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(b) The coproduct A of {Aα} is called a free product if the canonical morphisms
κα are monomorphisms. Show that a coproduct is a free product if for each
α 6= β there is a morphism Aα −→ Aβ .

(c) If each Aα contains a trivial subalgebra, then the coproduct is a free product,
and, also, κα(Aα)∩ κβ (Aβ ) is contained in a trivial subalgebra of A, for
each α 6= β .

(d) Suppose that Mα is the smallest subalgebra of Aα and that Mα and Mβ are
isomorphic for each α,β ∈ Λ . If, for each α , there is a morphism Aα −→
Mα whose restriction to Mα is the identity, then the coproduct A of the
{Aα} is a free product. Show, also, that κα(Aα)∩ κβ (Aβ ) is the smallest
subalgebra of A, for each α 6= β .

22. Show that each nontrivial variety contains a minimal nontrivial variety. (If S is
a fully invariant congruence on FΩ (X) and x 6= y in X consider a fully invariant
congruence that contains S and is maximal with respect to excluding (x,y).)

23. Let ({Ai}i∈I ,{ψi j}i≤ j) be a direct system of Ω -algebras and suppose that I is
directed up (see Exercise 1.1.7). Let ∼ be the relation on the disjoint union ∪̇Ai
defined by ai ∼ a j, for ai ∈Ai and a j ∈A j, if ψik(ai) = ψ jk(a j) for some k≥ i, j.

(a) Show that ∼ is an equivalence relation on ∪̇Ai and that ∼ induces a con-
gruence relation on each Ai.

(b) Let A = (∪̇Ai)/∼ be the quotient determined by ∼. For ω ∈ Ω(n) and
[ai1 ], . . . , [ain ]∈ A, where aiν ∈ Aiν for 1≤ ν ≤ n, define ω([ai1 ], . . . , [ain ]) =
[ω(ψi1i(ai1), . . .ψini(ain))], where iν ≤ i for each ν = 1, . . . ,n. Let αi :
Ai −→ A be given by αi(ai) = [ai]. Then lim−→Ai = (A,{αi}i∈I).

(c) If each Ai is in the variety V show that lim−→Ai ∈ V .

24. Let R⊆ X ×Y be a relation from the set X to the set Y . If A⊆ X and B⊆ Y let
A∗ = {y ∈ Y : A×{y} ⊆ R} and B∗ = {x ∈ X : {x}×B ⊆ R}. Show that these
mappings give a Galois connection between the power sets of X and Y .

Notes. Good references for the material in the first three sections are the notes by
Weinberg [WE6] and the books by Birkhoff [BIR3], Kelley [KEL], Lambek [LA],
and Rosenstein [ROS]. The results on universal algebra given in the fourth section
appear in the book by Cohn [C1] and our presentation is based on that of his.



Chapter 2
Lattice-ordered Groups

In this chapter we present the most basic parts of the theory of lattice-ordered
groups. Though our main concern will eventually be with abelian groups it is not
appreciably harder to develop this material within the class of all groups. Moreover,
the additional generality allows us to digress somewhat (if it is possible to digress
before one begins) and to present some of the classical theorems in the subject.
The fundamental interactions between the lattice structure and the group structure
of a lattice-ordered group are dealt with first. Included are the characterization of
the lattice structure in terms of the subsemigroup of positive elements as well as
the elementary identities which result from the two structures. We then examine the
morphisms in the category of lattice-ordered groups and the various kinds of subob-
jects. What is significant here is that the lattice of kernels in a lattice-ordered group
is a distributive lattice and so is the corresponding lattice of subobjects that arises by
dropping the normality requirement. These latter subobjects are precisely those for
which the corresponding partition of cosets of the group is a lattice homomorphic
image of the underlying lattice of the lattice-ordered group.

Those lattice-ordered groups that lack bounded subgroups are those that admit a
completion, and they will be represented as extended real-valued continuous func-
tions on a compact topological space. This representation bears fruit not only in the
study of these kinds of lattice-ordered groups but also in the study of those lattice-
ordered fields of which they are the underlying group.

In order to represent other lattice-ordered groups as lattice-ordered groups of
functions it is essential to find totally ordered sets that arise naturally from the group.
This is accomplished by taking the partition of cosets determined by a not necessar-
ily normal kernel that is maximal with respect to excluding a given element. These
totally ordered sets can be joined together and used to represent a lattice-ordered
group as a subobject of the lattice-ordered group of all automorphisms of a totally
ordered set. They will also be used to represent an abelian lattice-ordered group as
a subobject of an antilexicographically ordered lattice-ordered group of real-valued
functions.

S.A. Steinberg, Lattice-ordered Rings and Modules,
DOI 10.1007/978-1-4419-1721-8_2, © Springer Science + Business Media, LLC 2010
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2.1 Basic Identities and Examples

Numerous identities and inequalities arise from the coexistence of the group and
lattice structures. The two that will become most prominent are the unique decom-
position of an element as the difference of two disjoint centralizing elements and
a modified triangle inequality that can be replaced by the usual triangle inequality
exactly when the group is abelian. Before this is established we will see that the lat-
tice makes the group torsion-free and the group makes the lattice distributive. Let G
be a group which is also a partially ordered set. We will denote the group operation
in G additively even if G is not assumed to be abelian. G is called a po-group if
translations in G are order preserving:

x≤ y⇒ a+ x+b≤ a+ y+b ∀x, y, a, b ∈ G. (2.1.1)

If only the right (respectively, left) translations are isotone, then G is a right (re-
spectively, left) po-group. In a right po-group each right translation is, in fact, an
automorphism of the underlying poset since the inverse of a right translation is a
right translation. One consequence of this fact is that in a po-group G, if

∨
xi (or∧

xi) exists and each xi commutes with x, then
∨

xi (or
∧

xi) commutes with x – that
is, each centralizer in G contains the sup or inf of any of its subsets that exist in G.
For, x+(

∨
xi) =

∨
(x+xi) =

∨
(xi +x) = (

∨
xi)+x, and dually. Also, in a po-group

G, inversion is an anti-automorphism of the underlying poset since

x≤ y⇒−y =−y+ x− x≤−y+ y− x =−x.

The po-group G is called a totally ordered group, a lattice-ordered group (`-
group) or a directed group, accordingly, as its underlying poset is totally ordered, a
lattice, or is directed. The positive cone of G is

G+ = {g ∈ G : 0≤ g}

and the elements of G+ are called positive. As the following theorem demonstrates
the partial orders of the group G that make it into a po-group are in one-to-one
correspondence with the positive cones of G. For this reason we will frequently
refer to G+ as a partial order (or a total order or a lattice-order) of G.

Theorem 2.1.1. If G is a po-group with positive cone P = G+, then

(a) P+P⊆ P (P is a subsemigroup of G);
(b) −g+P+g⊆ P ∀g ∈ G (P is normal in G);
(c) P ∩−P = 0;
(d) x≤ y ⇔ y− x ∈ P ∀x,y ∈ G.

Conversely, if G is a group and P is a normal subsemigroup of G that satisfies (c),
then the relation defined in (d) is a partial order of G which makes G into a po-group
with positive cone P.
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Proof. That (a) is true follows from the more general observation that if a ≤ b and
c ≤ d in the po-group G, then a + c ≤ b + d; for, a + c ≤ b + c ≤ b + d. As for
(b), if 0 ≤ x then 0 ≤ −g + x + g. If x ∈ P∩−P, then 0 ≤ x and x = −y for some
y ≥ 0. So x ≤ 0 and hence x = 0. This proves (c), and (d) is a consequence of the
fact that right translation by either x or −x is order preserving. Conversely, given a
normal subsemigroup P that satisfies (c), the relation ≤ defined in (d) is reflexive
since 0 ∈ P. Also, if x ≤ y and y ≤ x, then y− x, x− y ∈ P; so x− y = 0 by (c). If
x≤ y and y≤ z, then z− x = (z− y)+(y− x) ∈ P by (a); so x≤ z and ≤ is a partial
order of G. Finally, (2.1.1) is satisfied since, by (b), (a + y + b)− (a + x + b) =
a + (y − x) − a ∈ P, if y − x ∈ P; and G+ = P by (d). ut

Since two elements in the po-group G are comparable precisely when their dif-
ference is comparable to 0, G is totally ordered if and only if G = G+∪−G+. Also,
since inversion is an order anti-automorphism, G is directed exactly when it is di-
rected down (or up). Moreover, for a,b ∈ G

−(a∧b) =−a∨−b = [0∨ (−b+a)]−a

provided any one of the three expressions exists. So G is an `-group if and only if
x∨0 exists for each x in G. This proves the more transparent parts of

Theorem 2.1.2. Let G be a po-group.

(a) G is totally ordered iff G = G+∪−G+.
(b) G is directed iff G is directed up (down).
(c) G is directed iff G+ generates G. Moreover, if G+ generates G, then G =

G+−G+ = {a−b : a,b ∈ G+}.
(d) G is an `-group iff x∨0 (respectively, x∧0) exists for each x ∈ G.
(e) G is an `-group iff G+ is a lattice and generates G.

Proof. By the previous remarks we only have to prove (c) and (e). If G is directed let
g ∈G and take x ∈G with x≤ 0, g. Then g = g−x− (−x) ∈G+−G+. Conversely,
if G+ generates G, then for a,b ∈ G there exists g1, . . . ,gn ∈ G+ such that a− b =
g1±g2±·· ·±gn ≤ g1 +g2 + · · ·+gn = x, and then a−b, 0≤ x. So, a, b≤ x +b.
Certainly G+ is a sublattice of G and G+ generates G (by (c)) provided that G is an
`-group. On the other hand, suppose that G+ is a lattice and generates G. If a,b∈G+

and g = supG+{a,b}, then g = supG{a,b}. For if h ≥ a,b, then h ∈ G+; so h ≥ g.
But then if x∈G, x = a−b with a,b∈G+, and (a∨b)−b = (a−b)∨0 = x∨0. ut

The proof of (e) in the previous theorem shows that G is an `-group provided that
it is directed and each pair of elements in G+ has a sup in G+. The dual is also true
(Exercise 9).

Let us give some examples of po-groups and `-groups.
(i) Each group is a po-group with positive cone P = {0}.

(ii) The group and poset direct product G = ∏Gi of a family of po-groups {Gi :
i ∈ I} is a po-group that is called the direct product of the family. Recall that the
group operation in G is (xi)+(yi) = (xi +yi) and the partial order is given by (xi)≤
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(yi) if xi ≤ yi for each i ∈ I. G is an `-group if each Gi is an `-group. Also, the
group direct sum of the Gi, denoted by ¢i∈IGi, is a po-subgroup of G which is
an `-subgroup if each Gi is an `-group; it is called the direct sum of the family of
po-groups {Gi : i ∈ I}. It will be denoted by

⊕

i∈I

Gi

or by G1
⊕ · · ·⊕Gn if I = {1, . . . ,n}. Of course, the I-tuple (xi) ∈

⊕
Gi iff {i ∈ I :

xi 6= 0} is finite. If each Gi = H then the direct sum will be denoted by H(I).
(iii) Let A and B be nonzero po-groups and let ϕ : B −→ Aut(A) be a group

homomorphism into the group of automorphisms of the po-group A. Then the
ordinal semidirect product A×ϕ←B is a po-group. Here, (a,b) ≤ (c,d) if b < d, or

b = d and a≤ c ; and the group operation is (a,b)+(c,d) = (a+ bc,b+d) where
bc = ϕ(b)(c). A×ϕ←B is an `-group exactly when B is totally ordered and A is an
`-group (Exercise 10). If ϕ is the trivial homomorphism, then we get the ordinary
ordinal product A ×←B.

(iv) If {Gi : i ∈ I} is a family of totally ordered groups and I is a totally ordered
set which satisfies the maximum condition, then the ordinal product V (I,Gi) of the
Gi is a totally ordered group which is called a Hahn product. Here, the underlying
group of V is the direct product of the Gi, and v ∈ V + provided that v(i) > 0 if i is
maximal with v(i) 6= 0. In particular, each torsion-free abelian group can be made
into a totally ordered group. For each such group is embedded in a rational vector
space (Exercise 2) and hence in the direct product QI for some set I (Exercise 1).
According to Theorem 1.1.1 I can be totally ordered in such a way that it has the
maximum condition; hence QI = V (I, Q) is a totally ordered group.

(v) If P is a poset then its automorphism group Aut(P) becomes a po-group when
it is given the pointwise partial order : f ≤ g if and only if f (p) ≤ g(p) for each p
in P; so it is a subposet of the direct product PP. If P is totally ordered, then Aut(P)
is an `-group (Exercise 5).

(vi) Let G be a topological `-group. This means that G is a topological space and
an `-group for which the inversion function − : G −→ G is continuous, and also
the functions +,∨,∧ : G×G −→ G are continuous if G×G is given the product

topology. If X is a topological space, then C(X ,G) = {X
f−→G : f is continuous} is

an `-subgroup of the direct product GX . In particular, if G is the additive group of R
we get that C(X), the set of all continuous real-valued functions on X , is an `-group.

(vii) Let G be the group of real 3×3 matrices of the form

A =




1 a c
0 1 b
0 0 1


 .

Then G is a totally ordered group if A is defined to be positive if a > 0, or a = 0 and
b > 0, or a = b = 0 and c≥ 0. This also works for n×n matrices.
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(viii) Various other examples can be found in analysis. For instance, the set of
measurable functions on a measure space is an `-group.

Two of the most important consequences of the interaction of the lattice and
group structures in an `-group are that the underlying group is torsion-free and the
underlying lattice is distributive. Moreover, there are several basic identities and
inequalities that hold in any `-group. We present these facts next but first we need
to give some definitions. The po-group G is said to be semiclosed if nx≥ 0 implies
that x ≥ 0 for any x in G and any integer n≥ 1. Recall from Exercise 1.2.2 that the
lattice L is infinitely distributive if whenever {xi} is a subset of L for which

∨
xi

exists, then, for each y in L,
∨

(y∧ xi) exists and y∧∨
xi =

∨
(y∧ xi), and the dual

also holds.

Theorem 2.1.3. Let G be an `-group.

(a) G is infinitely distributive and hence is distributive.
(b) G is semiclosed and hence it has no nonzero elements of finite order.

Proof. (a) Suppose that x =
∨

xi exists in G. Then, for y ∈ G,

y∧ x≤ [(x− xi)+ y]∧ x = (x− xi)+(y∧ xi).

So
0≤ (y∧ x)− (y∧ xi)≤ x− xi.

But
0 = x− x = x+

∧
−xi =

∧
(x− xi);

so

∧
[(y∧ x)− (y∧ xi)] = 0,

(y∧ x)+
∧
−(y∧ xi) = 0,

and y∧ x =
∨

(y∧ xi). The dual follows by inversion.
(b) To see that G is semiclosed we show by induction that

n(x∧0) = nx∧ (n−1)x∧·· ·∧ x∧0

for any x ∈ G and each integer n≥ 1. If this equation holds for some n, then

(n+1)(x∧0) = x∧0+[nx∧·· ·∧ x∧0]
= [x+(nx∧·· ·∧ x∧0)]∧nx∧·· ·∧ x∧0
= (n+1)x∧·· ·∧2x∧ x∧nx∧·· ·∧ x∧0
= (n+1)x∧nx∧·· ·∧ x∧0.

So if kx≥ 0 for some k, then k(x∧0) = (k−1)(x∧0); and hence x∧0 = 0. ut
Let x be an element of the `-group G. The positive part, negative part, and abso-

lute value of x are defined by
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x+ = x∨0,

x− = (−x)∨0,

and
|x|= x∨ (−x),

respectively. Since each centralizer in an `-group is a sublattice any pair of elements
in {x, x+, x−, |x|} commute. If x,y ∈ G, then x and y are said to be disjoint if

|x|∧ |y|= 0.

The subset X of G is called disjoint if any two distinct elements in X are disjoint.

Theorem 2.1.4. Let G be an `-group. The following hold for all x, y, z ∈ G.

(a) x− (x∧ y)+ y = x∨ y.
(b) (x− x∧ y)∧ (y− x∧ y) = 0 = (−(x∧ y)+ x)∧ (−(x∧ y)+ y).
(c) |x| ≤ y⇔−y≤ x≤ y.
(d) |x|= |− x| ≥ 0.
(e) |x− y|= (x∨ y)− (x∧ y).
(f) x = x+− x−.
(g) |x|= x+ + x−.
(h) |x|= 0⇔ x = 0.
(i) x+∧ x− = 0; consequently, disjoint elements commute.
(j) The following are equivalent:

(∗) x∧ y = 0;
(∗∗) x+ y = x∨ y;
(∗∗∗) x = (x− y)+ and y = (x− y)−.

(k) (Riesz decomposition property) If x, y, z∈G+ and x≤ y+z, then x = y1 +z1
where 0≤ y1 ≤ y and 0≤ z1 ≤ z.

(l) If x, y, z ∈ G+, then x∧ (y+ z)≤ (x∧ y)+(x∧ z).
(m) x∧ y = x∧ z = 0⇒ x∧ (y+ z) = 0.
(n) n(x∨ y) = nx∨ny and n(x∧ y) = nx∧ny if n ∈ N and x and y commute.
(o) |x+ y| ≤ (|x|+ |y|+ |x|)∧ (|y|+ |x|+ |y|).
(p) G is abelian if and only if |x+ y| ≤ |x|+ |y| for all x and y in G.

Proof. (a) x− (x∧ y)+ y = x+(−x∨−y)+ y = y∨ x.
(b) (x− x∧ y)∧ (y− x∧ y) = x∧ y− x∧ y = 0.
(c) |x|= x∨ (−x)≤ y⇔ x,−x≤ y⇔−y≤ x≤ y.
(d) By (c), −|x| ≤ x≤ |x|; so 2|x| ≥ 0 and hence |x| ≥ 0 since G is semiclosed.
(e) (x∨y)− (x∧y) = [x+(−x∨−y)]∨ [y+(−x∨−y)] = 0∨ (x−y)∨ (y−x)∨

0 = |x− y|.
(f) x+ x− = x+(−x∨0) = 0∨ x = x+.
(g) Put y = 0 in (e).
(h) 0≤ x+, x− ≤ |x| by (g). So if |x|= 0, then x = 0 by (f).
(i) x+ ∧ x− = (x∨ 0)∧ (−x∨ 0) = (x∧−x)∨ 0 = −|x| ∨ 0 = 0 by (d) and the
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fact that G is a distributive lattice. If |x| ∧ |y|= 0, then any two distinct elements in
{x+,x−,y+,y−} are disjoint and hence commute by (a). So x and y commute by (f).

(j) The equivalence of (∗) and (∗∗) is an easy consequence of (a), and that
(∗ ∗ ∗) implies (∗) follows from (i). Also, (∗) implies (∗ ∗ ∗) since x = x + 0 =
x+(−x∨−y) = (x− y)+ and y = (y− x)+ = (x− y)−.

(k) Let y1 = x∧ y and z1 = −y1 + x. Then 0 ≤ y1 ≤ y, z1 = (−x∨−y) + x =
0∨ (−y+ x)≤ z, z1 ≥ 0, and x = y1 + z1.

(l) By (k) x∧ (y+ z) = y1 + z1 with 0≤ y1 ≤ y and 0≤ z1 ≤ z; but also, y1, z1 ≤
y1 + z1 ≤ x; so x∧ (y+ z)≤ (x∧ y)+(x∧ z).

(m) This is an immediate consequence of (l).
(n) First, let y = 0. Since nx+∧nx− = 0 by (i) and (m), (nx)+ = (nx+−nx−)+ =

nx+ by (f) and (j). In general, n(x∨y) = n[(x−y)+ +y] = (nx−ny)+ +ny = nx∨ny.
That n(x∧ y) = nx∧ny follows by the inversion anti-automorphism (or use (a)).

(o) and (p). −|x|−|y|−|x| ≤ −|x|−|y| ≤ x+y≤ |x|+ |y| ≤ |x|+ |y|+ |x|. So, by
(c), |x + y| ≤ |x|+ |y|+ |x| and |x + y| ≤ |x|+ |y| if x and y commute. If the triangle
inequality holds and x, y∈G+, then x + y = |x + y|= |−y−x| ≤ |−y| + |−x|=
y + x. Interchanging x and y we get that x + y ≥ y + x; so x + y = y + x, G+ is
abelian, and hence so is G since it is generated by G+. ut

The statements in the preceding theorem will frequently be used without an ex-
plicit reference.

Exercises.

1. Use Zorn’s Lemma to show that each vector space has a basis.

2. The group D is said to be divisible if nD = D for each n ∈ N where nD = {nd :
d ∈ D}. A subgroup G of the group D is called essential in D if G∩A 6= 0 for
each nonzero subgroup A of D. If G is an essential subgroup of the divisible
abelian group D, then D is called a divisible hull of G.

(a) Show that a torsion-free abelian group is divisible if and only if it is a vector
space over the rationals.

(b) Show that any two divisible hulls of G are isomorphic.
(c) Show that each torsion-free abelian group G has a divisible hull d(G).

(Hint: Imitate the construction of the rationals from the integers.)

3. Let d(G) be the divisible hull of the torsion-free abelian po-group G (Exercise
2), and let

P = {x ∈ d(G) : ∃n ∈ N with nx ∈ G+}.
(a) Show that P is a positive cone for d(G) and (d(G),P) is semiclosed.
(b) Show that G is semiclosed iff G+ = P∩G.
(c) If G is an `-group (or is directed or is totally ordered), show that d(G) is an

`-group (or is directed or is totally ordered) and G is a sublattice of d(G).

4. Suppose that each element g of the po-group G has a decomposition g = x− y
where x∧ y = 0. Show that G is an `-group.
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5. If T is a totally ordered set show that the group Aut(T ) of all order automor-
phisms of T is a sublattice of the direct product T T and hence is an `-group.
Show that each disjoint set of positive elements in Aut(T ) has a least upper
bound in Aut(T ). An `-group with this property is called laterally complete.

6. Let G be a group. Show that there is a bijection between the set of partial orders
of G that make G into a right po-group and the set of subsemigroups P of G
with the property that P∩−P = 0. In this correspondence (G,≤) is a totally
ordered right po-group iff P∪−P = G, and then P is called a right order of G
and G is called a right O-group.

7. In a torsion-free abelian group show that each partial order is contained in a
total order.

8. Prove that an abelian po-group G is semiclosed if and only if G+ is the inter-
section of total orders of G.

9. Let G be a po-group.

(a) Suppose that a,b,c,d,e∈G+ and c = infG+{a,b} and e = infG+{a+d, b+
d}. Show that e = c+d.

(b) Show that G is an `-group if and only if G is directed and any two elements
of G+ have an inf in G+.

10. Prove that A×ϕ←B is an `-group iff B is a totally ordered group and A is an
`-group.

11. Let G = (Z⊕Z) ×ϕ← Z where ϕ : Z−→Aut(Z⊕Z) is given by ϕ(1) = τ
where τ(x,y) = (y,x). Then G is an `-group but the subgroup H of G generated
by a = (1,−1,0) and b = (0,0,1) cannot be made into an `-group. (Hint: −b+
a+b =−a; show that a+ cannot exist in H.)

12. Let R be a commutative integral domain with identity element, and let F be its
field of quotients. If a,b ∈ F, then a divides b relative to R (notation : a |b)
if b = ar for some r ∈ R. Let F∗ denote the multiplicative group of nonzero
elements of F , and let U be the group of invertible elements in R. Define a
relation ≤ in the quotient group F∗/U by aU ≤ bU if a |b. Verify each of the
following.

(a) F∗/U is a directed po-group. (It is called the group of divisibility of R.)
(b) F∗/U is an `-group iff any two elements in R have a greatest common

divisor. (R is called a GCD domain.)
(c) F∗/U is totally ordered iff R is a valuation domain—that is, the lattice of

ideals of R is a chain.

13. Prove that the following hold in any `-group G.

(a) If
∨

i xi and
∨

j y j exist, then (
∨

i xi)+(
∨

j y j) =
∨

i, j(xi + y j), and dually.
(b) a≥ 0 iff 2a∨a≥ 0.
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(c) x∧y = 0 iff x∈G+ and x+y = |x−y|. (See Exercise 11 for an example
where this equation holds with 0 6< x < y.)

(d) If x and y commute or if G can be embedded into a product of totally ordered
groups, and x+ y = |x− y|, then x∧ y = 0.

(e) |(x∧ y)− (x∧ z)| ≤ |y− z|.
(f) x+∧ y+ ≤ (x+ y)+.
(g) |(x∨ z)− (y∨ z)|+ |(x∧ z)− (y∧ z)|= |x− y|. (Hint: Let s = |x− y| and

t = x∧ y and, using (e) of Theorem 2.1.4, express x∨ y and each of the
absolute values in terms of s, t and z.)

(h) |x+− y+| ≤ |x− y|.
(i) |x−− y−| ≤ |x− y| if x and y commute. Give an example of an `-group in

which this inequality fails.
(j) (x+y)+ = x+− (x−∧y+)− (x+∧y−)+y+ (Hint: (x+y)+ = (x∨−y)+y;

compute (x∨−y)+ and (x∨−y)− in terms of x+,x−,y+ and y−.) Also,
(u+ v)+ = u+ + v+ if and only if (u+ v)+ ≥ u∨ v.

(k) If A = {a1, . . . ,an} is a finite subset of G+, then infA = 0 if and only if,
for each 0 < x ∈ G, there exists y ∈ G and ai ∈ A such that 0 < y ≤ x and
y∧ai = 0.

14. This exercise shows that each abelian `-group is a group of divisibility (see Ex-
ercise 12). If F is a ring and G is a semigroup the semigroup ring of G over F,
denoted by F [G], is defined as the ring with G as an F-basis and with multipli-
cation induced by the semigroup operation in G. More specifically, the elements
of F [G] are functions from G into F which are written as

α = ∑
g∈G

agxg

where ag ∈ F and ag = 0 except for finitely many g ∈ G. If β = ∑bgxg ∈ F [G],
then α +β = ∑(ag +bg)xg and

αβ = ∑
g

(
∑

h+k=g
ahbk

)
xg.

The support of α is defined to be supp α = {g ∈ G : ag 6= 0}.

(a) If F is a domain (that is, ab 6= 0 if a 6= 0 and b 6= 0) and G is a right O-group
(Exercise 6), then F [G] is a domain.

(b) Let F be a domain and let G be an `-group. (G is a right O-group by Exercise
2.4.2(c).) Define the function v : F [G]−→G∪{∞} by v(α) = inf(supp α).
Show that v(α +β )≥ v(α)∧v(β ) and v(αβ ) = v(α)+v(β ). (Hint: For the
latter, reduce to the case that v(α) = v(β ) = 0 and use Exercise 13(k) three
times. Use it twice to show that if 0 < x ∈ G, then there exists 0 < z ≤ x
such that A = z⊥∩ supp α 6= φ and B = z⊥∩ supp β 6= φ , where z⊥ = {g∈
G : |g| ∧ z = 0}. Let α∗ ∈ F [G] have supp α∗ = A and agree with α on A
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and similarly for β ∗. Then αβ = α∗β ∗+ γ with supp α∗β ∗ ∩ supp γ = φ .
Use it again to show that v(αβ ) = 0.)

(c) Let Q be the field of quotients of F [G] where F is a field and G is an abelian
`-group. Show that there is a unique function v : Q−→G∪{∞} that extends
v on F [G] and has the two properties in (b).

(d) Let R = {γ ∈Q : v(γ)≥ 0}. Show that R is a subring of Q, and Q is the field
of quotients of R.

(e) Show that the group of divisibility of R is isomorphic to G.
(f) Show that each finitely generated ideal of R is principal; that is, R is a Bezout

domain.

15. Let x and y be elements of the po-group G.

(a) If x+ y≤ y+ x, then nx+ny≤ n(x+ y) ∀n ∈ N.
(b) If y+ x≤ x+ y, then ny+nx≤ n(x+ y) ∀n ∈ N.

16. Show that a group homomorphism ϕ : H −→D between two po-groups is com-
plete if and only if 0 = ∧ϕ(ai) in D whenever 0 = ∧ai in H.

17. The po-group G is called n-semiclosed (n ∈ N) if nx≥ 0 implies that x≥ 0.

(a) If G is abelian and n-semiclosed then it satisfies the condition:

(∗) If z∈G, X ⊆G and z≥ nX , then z≥ x1 +· · ·+xn for all x1, . . . ,xn ∈X .

(b) If G satisfies (∗) then multiplication by n, G n·−→ G, is a complete map.
(c) If X is an upward directed subset of G and a = supX , then na = supnX .
(d) If G is abelian and semiclosed and d(G) is the divisible hull of G, then the

inclusion map G−→ d(G) is complete.

18. The po-group G is called a Riesz group if it has the following property: For all
subsets X = {x1,x2} and Y = {y1,y2} of G

(*) X ≤ Y ⇒∃z ∈ G with X ≤ z≤ Y.

Show that the following are equivalent for the po-group G.

(a) G is a Riesz group.
(b) (*) holds if 0 ∈ X .
(c) (*) holds for all finite nonempty subsets X and Y of G.
(d) The set U(X) of upper bounds of a finite nonempty subset X of G is down-

ward directed.
(e) If X and Y are finite and nonempty, then U(X)+U(Y ) = U(X +Y ).
(f) For all x, y ∈ G+, [0,x]+ [0,y] = [0,x+ y].
(g) If x,y1, . . . ,ym ∈G+ with x≤ y1 + · · ·+ym, then there exist x1, . . . ,xm ∈G+

with x j ≤ y j for each j, and x = x1 + · · ·+ xm.

If G is abelian show that the following may be added to the previous list.
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(h) If x1,x2,y1,y2 ∈G+ with x1 +x2 = y1 +y2, then there is a 2×2 matrix (xi j)
with entries in G+ such that xi is the sum of the entries in the ith row of
(xi j) and y j is the jth column sum of (xi j).

(i) If x1, . . . ,xn,y1, . . . ,ym ∈G+ with x1 + · · ·+xn = y1 + · · ·+ym, then there is
an n×m matrix (xi j) with entries in G+ such that xi (respectively, y j) is the
ith row sum (respectively, jth column sum) of (xi j).

(Show the equivalence of (a) with each of (b), (c), (d), and (e), the implications
(a) ⇒ (f) ⇒ (g) ⇒ (b), and the equivalence of (f) with (h).)

2.2 Subobjects and Homomorphisms

In this section we examine homomorphisms between two `-groups as well as those
subobjects of an `-group that arise from various order-theoretic conditions. It is
shown that those subgroups of an `-group modulo which the lattice structure is
sustained constitute a complete and distributive sublattice of the subgroup lattice
which satisfies one of the infinitely distributive equations but not the other. Among
these subgroups are the polars, which arise as the closed elements of the Galois
connection associated with disjointness. The lattice of polars is a complete Boolean
algebra, and in the exercises an investigation is undertaken of when the Boolean
algebra of polars of a subobject is naturally isomorphic to that of the full group. In
subsequent sections we will see that this occurs under different guises when we are
able to form a “completion.”

Let C be a subgroup of the po-group G, and let G/C denote the set of all of the
left cosets of C in G. The relation defined on G/C by

x+C ≤ y+C if x≤ y+ c for some c ∈C (2.2.1)

is independent of the coset representatives; for, if x ≤ y + c, x = x1 + d and y =
y1 + e where c, d, e ∈C, then x1 +d ≤ y1 + e+ c yields that x1 ≤ y1 + e+ c−d.
This relation is reflexive and transitive but not necessarily antisymmetric. We are,
of course, interested in the situation when it is a partial order of G/C. The subset
X of the poset P is called convex if x ≤ p ≤ y with x,y ∈ X implies that p ∈ X .
It is easily seen that a subgroup C of the po-group G is convex precisely when it
contains the closed interval [0,c] whenever c ∈ C. The subgroup C of a po-group
is called an `-subgroup if it is also a sublattice. Since x∨ y = (x− y)+ + y and
x∧ y = −(−x∨−y), C is an `-subgroup exactly when x ∈ C implies that x+ ∈ C
(whenever x+ exists in the larger group).

Theorem 2.2.1. Let C be a subgroup of the po-group G.

(a) The relation defined by (2.2.1) is a partial order of G/C if and only if C is
convex. If C is convex then the natural map G −→ G/C is isotone, and the
map G −→ Aut(G/C) induced by the left translations in G is a po-group
homomorphism into the po-group of automorphisms of the poset G/C.
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(b) Suppose that G is an `-group and that C is a convex subgroup of G. Then
the following statements are equivalent.

(i) G/C is a (distributive) lattice and the natural map G −→ G/C is a
lattice homomorphism.

(ii) C is an `-subgroup of G.
(c) If C is normal and convex, then G/C is a po-group.
(d) If G is an `-group and C is a normal convex `-subgroup, then G/C is an

`-group.

Proof. (a) If C is convex and x +C ≤ y +C and y +C ≤ x +C, then x ≤ y + c and
y≤ x+d for some c, d ∈C. But then −d ≤−y+x≤ c, so −y+x ∈C and G/C is
a poset. Conversely, suppose that (2.2.1) defines a partial order of G/C. If c≤ x≤ d
with c, d ∈C, then C = c+C ≤ x+C ≤ d +C = C; so x ∈C and C is convex. The
last statement is easily verified.

(b) Let C be a convex `-subgroup of the `-group G. If z +C ≥ x +C, y +C,
then z + c ≥ x and z + d ≥ y for some c,d ∈C. So z + (c∨d) ≥ x∨ y, and hence
z+C ≥ x∨ y+C. Thus x∨ y+C = supG/C{x+C, y+C}, and dually. Conversely,
let G−→G/C be a lattice homomorphism. Then if x∈C, C = (x+C)∨C = x+ +C;
so x+ ∈C and C is an `-subgroup.

(c) If C is a normal convex subgroup of G, then (a) implies that each translation
in G/C is isotone, so G/C is a po-group.

(d) This is a consequence of (b) and (c). ut
If G and H are `-groups (respectively, po-groups) then a group homomorphism

f : G −→ H which is also a lattice homomorphism (respectively, isotone) is called
an `-homomorphism (respectively, a po-homomorphism). So a group homomor-
phism f is a po-homomorphism exactly when f (G+) ⊆ H+. If the context is clear
an `-homomorphism or po-homomorphism will just be called a homomorphism.
If there is an `-homomorphism (respectively, a po-homomorphism) from G to H
which is an order isomorphism we say that G and H are isomorphic and we write
G ∼= H. It is easily verified that the kernel of an `-homomorphism (respectively, a
po-homomorphism) is a convex `-subgroup (respectively, convex subgroup) of its
domain. The usual isomorphism theorems hold in the variety of `-groups, but be-
fore we state them we give some useful criteria for a group homomorphism to be an
`-homomorphism.

For the rest of this chapter, unless stated otherwise, all groups will be `-groups.

Theorem 2.2.2. Let f : G −→ H be a group homomorphism between the `-groups
G and H. Then the following statements are equivalent.

(a) f is an `-homomorphism.
(b) f (x+) = f (x)+ for each x in G.
(c) x∧ y = 0⇒ f (x)∧ f (y) = 0 for all x,y in G.
(d) f (|x|) = | f (x)| for each x in G.
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Proof. It is clear that (a) implies (c), and (a) also implies (d) since f (|x|) = f (x∨
−x) = f (x)∨− f (x) = | f (x)|.

(c) implies (b). Since f (x+)∧ f (x−) = 0, f (x)+ = [ f (x+)− f (x−)]+ = f (x+)
by (j) of Theorem 2.1.4.

(b) implies (a). f (x ∨ y) = f ((x− y)+ + y) = f ((x− y)+) + f (y) = [ f (x)−
f (y)]+ + f (y) = f (x)∨ f (y), and f (x∧ y) =− f (−x∨−y) =−( f (−x)∨ f (−y)) =
f (x)∧ f (y).

(d) implies (b). Since 2 f (x+) = f (2x+) = f (x+ |x|) = f (x)+ | f (x)|= 2 f (x)+,
and f (x+) and f (x)+ commute, and H is torsion-free, we have f (x+) = f (x)+. ut
Theorem 2.2.3. Let N be a normal convex `-subgroup of the `-group G.

(a) If f : G −→ H is an `-homomorphism with kernel N, then f (G) is an `-
subgroup of H and G/N ∼= f (G).

(b) The mapping A 7−→ A/N is a lattice isomorphism between the lattice of
convex subgroups (respectively, `-subgroups) of G that contain N and the
lattice of convex subgroups (respectively, `-subgroups) of G/N.

(c) If A is an `-subgroup of G, then A+N is an `-subgroup of G and
(A+N)/N ∼= A/A∩N.

(d) If K is a normal convex `-subgroup of G with N ⊆ K, then
(G/N)/(K/N)∼= G/K.

Proof. We will leave it to the reader to check that the lattice isomorphism in (b) be-
tween the subgroup lattices restricts to an isomorphism on the indicated sublattices.
Each of the isomorphisms in (a), (c), and (d) is the well-known group isomorphism,
so it suffices to verify that each is an `-isomorphism. For (d) this follows from
(a) (for example). As for (a), if f∗ denotes this isomorphism, then f∗((x + N)+) =
f∗(x+ +N) = f (x+) = f (x)+ = f∗(x+N)+; so f∗ is an `-isomorphism by the previ-
ous theorem. Finally, (c) follows from (a) provided that A+N is an `-subgroup. But,
in fact, if A is just a sublattice of G, then A + N is also a sublattice. For if a,b ∈ A
and n,m ∈ N, then (a + n)∨ (b + m) + N = (a + N)∨ (b + N) = a∨ b + N in the
lattice G/N; so (a+n)∨ (b+m) ∈ A+N, and dually. ut

In the next two results we give some fundamental properties of the subobjects
of an `-group. If X is a subset of the `-group G, then C(X) = CG(X) will denote
the convex `-subgroup of G generated by X , and [X ] will denote the `-subgroup
generated by X . The polar of X is defined by

X⊥ = {a ∈ G : |a|∧ |x|= 0 ∀x ∈ X}.

Note that X ⊆ X⊥⊥, ⊥ reverses inclusion and X⊥ = X⊥⊥⊥. Let C (G) denote the set
of all convex `-subgroups of G, and let B(G) denote the set of polars of G. Since
C (G) is closed under intersections it is a complete lattice.

Theorem 2.2.4. Let G be an `-group.

(a) A subgroup C of G is a convex `-subgroup if and only if |x| ≤ |c| with x∈G
and c ∈C implies that x ∈C.
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(b) If X ⊆ G, then

C(X) = {g ∈ G : |g| ≤ |x1|+ · · ·+ |xn| for some x1, . . . ,xn ∈ X}.

(c) The subgroup of G generated by a family of convex `-subgroups is a convex
`-subgroup, and its positive cone is the subsemigroup of G+ generated by
the corresponding family of positive cones.

(d) If X , Y ⊆ G, and D, E ∈ C (G) and a,b ∈ G, then
(i) C(X)∨C(Y ) = C(X ∪Y ) = C({|x|∨ |y| : x ∈ X , y ∈ Y});

(ii) C(X)∩C(Y ) = C({|x|∧ |y| : x ∈ X , y ∈ Y});
(iii) C(D,a)∩C(D,b) = D∨C(|a|∧ |b|);
(iv) D∩E = 0 iff D⊆ E⊥.

(e) If X ⊆ G, then X⊥ ∈ C (G).
(f) The sublattice of G generated by a subgroup S is an `-subgroup and, in fact,

[S] =

{
∧

i

∨

j

si j : si j ∈ S, 1≤ i≤ n, 1≤ j ≤ m

}

=

{
∨

i

∧

j

si j : si j ∈ S, 1≤ i≤ n, 1≤ j ≤ m

}
.

Proof. (a) If C is a convex `-subgroup of G and |x| ≤ |c| with c ∈ C, then 0 ≤
x+, x− ≤ |x| ≤ |c| gives that x = x+−x− ∈C. Conversely, if the subgroup C has this
property, then it is certainly convex, and it is also an `-subgroup since 0≤ c+ ≤ |c|.

(b) Since any convex `-subgroup which contains X must contain g if |g| ≤
|x1|+ · · ·+ |xn| with xi ∈ X , it suffices to show that the set C of all such g is a convex
`-subgroup. But if also |h| ≤ |y1|+ · · ·+ |ym| with y j ∈ X , then by (o) of Theorem
2.1.4

|g−h| ≤ |g|+ |h|+ |g| ≤ |x1|+ · · ·+ |xn|+ |y1|+ · · ·+ |ym|+ |x1|+ · · ·+ |xn|.

So C is a subgroup which is a convex `-subgroup, by (a).
(c) Let {Ci : i ∈ I} be a family of convex `-subgroups of G, and let C be the

subgroup of G generated by the Ci. If x = c1 + · · ·+cn ∈C where each c j is in some
Ci, then |x| ≤ d1 + · · ·+ dm with each d j in some C+

i , by Theorem 2.1.4 (o). So if
|y| ≤ |x|, then y+ = e1 + · · ·+ em and y− = f1 + · · ·+ fm where 0 ≤ e j, f j ≤ d j, by
Theorem 2.1.4 (k). Hence y = y+−y− ∈C and C is a convex `-subgroup by (a). The
last statement follows by specializing to x = |x|= y.

(d) The equalities in (i) are clear and, since |x| ∧ |y| ∈C(X)∩C(Y ) if x ∈ X
and y ∈ Y, C({|x| ∧ |y| : x ∈ X ,y ∈ Y}) ⊆C(X)∩C(Y ). But if g ∈C(X)∩C(Y ),
then

|g| ≤ (|x1|+ · · ·+ |xn|)∧ (|y1|+ · · ·+ |ym|)≤ |x1|∧ |y1|+ · · ·+ |xn|∧ |ym|

for some xi ∈ X , y j ∈ Y . This proves (ii) which, together with (i), readily gives (iii)
and (iv).
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(e) If a, b ∈ X⊥ and x ∈ X , then by (o) and (m) of Theorem 2.1.4, 0≤ |a−b|∧
|x| ≤ (|a|+ |b|+ |a|)∧|x|= 0. So a−b ∈ X⊥, and hence X⊥ is a convex `-subgroup
by (a).

(f) It clearly suffices to show that the set

H =

{
∧

I

∨

J

si j : si j ∈ S, I and J finite

}

is an `-subgroup of G, and this follows readily from the general distributivity equa-
tions (1.2.1) which hold in any distributive lattice. For,

−
(

∧

I

∨

J

si j

)
=

∨

I

∧

J

(− si j) =
∧

JI

∨

I

(− si f (i))

and
(

∧

I

∨

J

si j

)
+

(
∧

K

∨

L

tkl

)
=

∧

I

∨

J

∧

K

∨

L

(si j + tkl) =
∧

I

(
∧

KJ

∨

J

)
∨

L

(si j + t f ( j)l)

=
∧

I×KJ

∨

J×L

(si j + t f ( j)l).

Thus, H is a subgroup; it is an `-subgroup since
(

∧

I

∨

J

si j

)+

=
∧

I

∨

J

(si j ∨0) ∈ H.

ut
Theorem 2.2.5. Let G be an `-group.

(a) C (G) is a complete distributive sublattice of the lattice of subgroups of G,
and, in fact, it satisfies the infinite distributive law

A∩
(

∨

i

Bi

)
=

∨

i

(A∩Bi).

(b) The mapping C 7→C+ is a lattice isomorphism between C (G) and the lattice
of convex `-subsemigroups of G+ which contain 0.

(c) B(G) is a complete Boolean algebra.

Proof. (a) That C (G) is a sublattice of the subgroup lattice of G follows from part
(c) of the previous theorem. If 0≤ x ∈ A∩(∨Bi), then x = b1 + · · ·+bn with each b j
in some B+

i (again, by (c) of Theorem 2.2.4). But then each b j ∈ A since 0≤ b j ≤ x;
so x ∈∨

(A∩Bi). The other inclusion is obvious.
(b) Since C+ generates C it suffices to verify that the mapping is onto. So, let
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S be a convex `-subsemigroup of G+ with 0 ∈ S, and let C be the subgroup that it
generates. We claim that C = {a−b : a, b ∈ S} ∈ C (G) and C+ = S. Let a, b, c, d ∈
S. Then 0≤−(b ∧ c) + b = b1 ≤ b and 0≤−(b ∧ c) + c = c1 ≤ c; so b1 and c1 ∈ S.
Also, b1 and c1 are disjoint and so commute. But then c + b1 − c1 = c − c1 + b1 =
b ∧ c + b1 = b. Thus (a− b) + (c− d) = a + c1 − b1 − d = (a + c1)−(d + b1).
So {a− b : a, b ∈ S} is a subgroup which must be C. If |x| ≤ |a− b| ≤ a + b + a,
where a, b ∈ S, then x+ and x− ∈ S and so x = x+− x− ∈ C. So C is a convex `-
subgroup. If a, b ∈ S, then 0 ≤ a∨ b − b = (a− b)+ ≤ a∨ b; so (a− b)+ ∈ S and
C+ = {x+ : x ∈C}= S.

(c) B(G) is a complete lattice since

⋂

i

X⊥i =

(
⋃

i

Xi

)⊥
.

To show that B(G) is a Boolean algebra it suffices, by Theorem 1.2.3, to verify that
for polars A and B, A⊆ B if and only if A∩B⊥ = 0. But this follows from Theorem
2.2.4(d)(iv). ut

An example of an `-group G in which the other infinite distributive equation fails
is obtained by letting G be the `-group of all real-valued continuous functions on
the closed interval [0,1]. If Ba is the set of those functions in G which vanish at
a ∈ [0,1], then Ba is a maximal ideal of the ring G and

B0∨
(

∧

a6=0

Ba

)
= B0 ⊂ G =

∧

a 6=0

(B0∨Ba).

As we indicate below, the fact that C (G) is half infinitely distributive has an effect
on the direct sum decompositions of G. The `-group G is the direct sum of its convex
`-subgroups {Ci : i ∈ I} if the map (ci) 7→ Σci is an isomorphism of the `-group⊕

Ci onto G. In this case we write

G =
⊕

i∈I

Ci.

The conditions for this to hold are the familiar group theoretic ones: G must be
generated by the Ci, each Ci must be normal in G, and, for each i,

Ci∩
(

∨

j 6=i

Cj

)
= 0.

Under these condition the mapping is certainly a group isomorphism; but it is also
an `-isomorphism. For if c1 + · · ·+ cn ≥ 0 where ck ∈Cik and i1, · · · , in are distinct
indices, then −ck ≤ c1 + · · ·+ ck−1 + ck+1 + · · ·+ cn = dk; so c−k ≤ d+

k and
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c−k ∈Cik ∩

 ∨

j 6=ik

Cj


 = 0.

Thus, each ck ≥ 0 and the mapping is an order isomorphism.
These conditions can be weakened slightly.

Theorem 2.2.6. Let G be an `-group.

(a) Suppose that {Ci : i ∈ I} is a family of convex `-subgroups of G that gener-
ates G. Then the following statements are equivalent.

(i) G =
⊕

Ci.
(ii) Ci∩Cj = 0 if i 6= j.

(iii) If x1 + · · ·+ xn ≥ 0 where x j ∈ Ci j and i1, . . . , in are distinct indices,
then each x j ≥ 0.

(b) If Ci, D j ∈ C (G) and
G =

⊕

i∈I

Ci =
⊕

j∈J

D j,

then
G =

⊕

i, j

Ci∩D j.

(c) If A, B ∈ C (G) and G = A⊕B, then B = A⊥.

Proof. (a) Certainly, (i) implies (iii) and (iii) implies (ii). If (ii) holds, then, as we
have seen, the elements in Ci are disjoint from those in Cj and hence commute with
those in Cj. So each Ci is normal and

Ci∩
∨

j 6=i

Cj =
∨

j 6=i

(Ci∩Cj) = 0;

thus (ii) implies (i).
As for (b),

Ci = Ci∩G =
∨

j

(Ci∩D j) =
⊕

j

(Ci∩D j);

so
G =

⊕

i

⊕

j

(Ci∩D j).

For the proof of (c) just note that A⊥ = A⊥ ∩ (A ⊕ B) = A⊥ ∩ B yields that
A⊥ ⊆ B⊆ A⊥. ut

Given two decompositions G = ⊕Ci = ⊕D j of G, {D j} is a refinement of {Ci}
if for each j there is an i with D j ⊆ Ci. An easy induction using (b) of the previ-
ous theorem gives that any finite number of decompositions of G have a common
refinement.

Recall that an `-group G is a subdirect product of the family {Gi : i ∈ I} of `-
groups if there is a monomorphism f : G−→ΠGi such that each composite πi f is
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an epimorphism, and G is subdirectly irreducible if, in any such representation of G
there is an index i such that πi f is an isomorphism. Now, a function f : G−→ΠGi
on an `-group G is uniquely determined by the family {πi f : i ∈ I}, and f is an `-
homomorphism if and only if each πi f is an `-homomorphism. In this case ker f =
∩i ker(πi f ) and G/ker(πi f )∼= image of πi f . Consequently, each family {Ni : i ∈
I} of normal convex `-subgroups of the `-group G determines a homomorphism
G−→ΠG/Ni with kernel N =∩i∈INi, and G/N is a subdirect product of the family
{G/Ni : i ∈ I}; and all subdirect product representations of G/N essentially arise in
this way. Clearly, a nonzero `-group G is subdirectly irreducible if and only if it has
a smallest nonzero normal convex `-subgroup. As a specific instance of Birkhoff’s
theorem for abstract algebras (see Exercise 1.4.12) we have

Theorem 2.2.7. Each `-group is a subdirect product of a family of subdirectly irre-
ducible `-groups.

Proof. Let G be an `-group. If 0 6= a ∈ G let Na be a normal convex `-group of
G which is maximal with respect to excluding a. The existence of Na is given by
Zorn’s Lemma. Since each normal convex `-subgroup of G that properly contains
Na must contain a, G/Na is subdirectly irreducible. But

⋂

a6=0

Na = 0,

so G is isomorphic to a subdirect product of the G/Na. ut

Exercises.

1. The following statements are equivalent for the `-group G.

(a) G is totally ordered.
(b) Each subset of G is a sublattice.
(c) Each convex subset is a sublattice.
(d) Each convex subgroup is a sublattice.

(The first three are equivalent in any poset G.)

2. In an `-group G a minimal element in G+ \{0} is called an atom. Prove:

(a) The subgroup of G generated by the atoms is a normal, abelian, convex
l-subgroup.

(b) The following statements are equivalent:
(i) G is generated by its atoms.

(ii) G+ has the minimum condition.
(iii) G is isomorphic to a direct sum of copies of Z.

(c) If R is a commutative unital domain with quotient field F , then R is a unique
factorization domain if and only if its group of divisibility F∗/U is an `-
group which is generated by its atoms (see Exercise 2.1.12).
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3. The following statements are equivalent for the subgroup C of the `-group G.

(a) C is a convex `-subgroup.
(b) C is a convex directed subgroup.
(c) If a, b ∈ G and a∧b = 0, then a∧ (b+ c) ∈C for each c ∈C.
(d) If a, b ∈ G and a∧b ∈C, then a∧ (b+ c) ∈C for each c ∈C.

4. Let A and B be `-groups and let Aut(A)(respectively, `-Aut(A)) be the group of
automorphisms of the group (respectively, `-group) A. Suppose that ϕ : B −→
Aut(A) is a group homomorphism and let G = A×ϕ B be the semidirect product
of A by B supplied with the partial order of the direct product: (a,b)≤ (c,d) if
a≤ c and b≤ d. Show that the following statements are equivalent.

(a) G is an `-group.
(b) ϕ(B) = 1.
(c) ϕ is isotone and its image is contained in `-Aut(A), where the partial order

of `-Aut(A) is coordinatewise: f ≤ g if f (x)≤ g(x) for each x in A.

5. Let C ∈ C (G). Prove:

(a) If C is finitely generated as a convex `-subgroup, then C has a single gener-
ator.

(b) If C is finitely generated as an `-subgroup, then it need not have a single
generator.

6. (a) Show that each convex `-subgroup of a divisible `-group is divisible (see
Exercises 2.1.2 and 2.1.3).

(b) If d(G) is the divisible hull of the abelian `-group G, show that the map
C 7→ d(C) is a lattice isomorphism from C (G) onto C (d(G)).

(c) Show that the isomorphism in (b) restricts to an isomorphism between the
Boolean algebras B(G) and B(d(G)).

7. Let P be the MacNeille completion of the poset P. Show that there is an embed-
ding of po-groups ϕ : Aut(P) −→ Aut(P) that preserves any infs or sups that
exist. In particular, if P is totally ordered, then ϕ is an embedding of `-groups
(Exercise 2.1.5).

8. Let X be a poset, H a po-group and P the set of isotone maps from X into H.
Then the subset P of the po-group HX (the direct product of X copies of H) has
the following properties.

(a) P+P⊆ P.
(b) P∩−P = { f ∈ HX : x≤ y implies f (x) = f (y)}.
(c) If H is abelian and X is a directed po-group and HomZ(X ,H) is the group of

homomorphisms from X to H, then, P ∩ HomZ(X ,H), the set of po-group
homomorphisms from X to H, is a positive cone for the group HomZ(X ,H).

9. The category whose objects are po-groups (respectively, abelian po-groups)
and whose morphisms are po-group homomorphisms will be called Pog (re-
spectively, Poag), while the category whose objects are `-groups (respectively,
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abelian `-groups) and whose morphisms are `-homomorphisms will be called
Log (respectively, Loag).

(a) The direct product is a product in each of the categories Pog, Poag, Log,
and Loag.

(b) Let ({Gi}i∈I , {ψi j}i≥ j) be an inverse system in any one of these four cat-
egories, and let G = {(gi) ∈ ΠGi : ψi j(gi) = g j if i ≥ j}. Then lim←−Gi =

(G,{pi}) where pi is the restriction of the projection πi (see Exercise 1.1.6).

10. (a) The direct sum is a free product in Poag (see Exercise 1.4.21).
(b) If Gi 6= 0 for two indices, then ⊕Gi is not a coproduct of {Gi}i∈I in Loag.

(If Gi 6= 0, then Gi has a nonzero totally ordered homomorphic image by
Theorem 2.4.4.)

(c) Show that the direct limit construction that is given in Exercise 1.4.23,
which is valid in the varieties Log and Loag, also gives the direct limit
in the categories Pog and Poag.

11. Let Sgp (respectively, L ) denote the category whose objects are semigroups
(respectively, lattices) and whose morphisms are semigroup (respectively, lat-
tice) homomorphisms. Suppose that G,H ∈ Pog with G directed.

(a) Show that the restriction map Pog[G,H] −→ Sgp[(G+,+),(H+,+)] is a
bijection.

(b) If G,H ∈ Log, then the image of Log[G,H] under this bijection is Sgp
[(G+,+), (H+,+)] ∩L [G+,H+]= Sgp[(G+,+), (H+,+)] ∩ Sgp[(G+,∨),
(H+,∨)] = Sgp[(G+,+), (H+,+)] ∩Sgp[(G+,∧), (H+,∧)].

12. Let N be a normal subgroup of the group G, and suppose that N and G/N are
po-groups. Let P = N+ ∪{x ∈ G : 0 6= x + N ∈ (G/N)+}. Then P is a positive
cone for G iff N+ is normal in G. Assume that P is a positive cone.

(a) The subgroup (N,N+) is a convex subgroup of (G,P) and (G/N)+ = P/N.
(b) If g ∈ P\N, then g > N.
(c) The group (G,P) is totally ordered iff (N,N+) and (G/N,(G/N)+) are

totally ordered.
(d) If N 6= 0, then (G,P) is an `-group iff (N,N+) is an `-group and (G/N,

(G/N)+) is totally ordered.
(e) If (G,P) is an `-group, then the inclusion map N −→ G is complete.

13. (a) Let X be a subset of the `-group G. Then X⊥ = 〈X〉⊥ = [X ]⊥ = C(X)⊥,
where 〈X〉 is the subgroup generated by X .

(b) If {Bi : i ∈ I} ⊆B(G), then
∨

i Bi = (
⋃

i Bi)⊥⊥.
(c) If B ∈B(G), then B =

∨
b∈B b⊥⊥ (where b⊥ = {b}⊥).

(d) For each n ∈ N and a ∈ G, a⊥ = |a|⊥ = (na)⊥.
(e) The function a 7→ a⊥⊥ is a lattice homomorphism from G+ to B(G) which

preserves all sups that exist in G+.
(f) If a,b ∈ G+, then (a+b)⊥⊥ = (a∨b)⊥⊥.
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14. Let H be a subset of the `-group D which contains 0. If X ⊆D, then X⊥D = X⊥
and X⊥H = X⊥ ∩H. Let B(H) = {A ⊆ H : A = A⊥H⊥H}. Let C (H) denote
the collection of all those convex subsets of H which contain 0, and define the
functions ϕ : B(H)−→B(D) and ψ : B(D)−→C (H) by ϕ(A) = A⊥H⊥D and
ψ(B) = B∩H. B(H) and B(D) are called canonically isomorphic if ϕ and
ψ are inverse isomorphisms between B(H) and B(D); that is, if ψ(B(D) ⊆
B(H) and ϕψ = 1B(D) and ψϕ = 1B(H). Verify each of the following.

(a) B(H) is a complete lattice. If |x| ∧ |y| ∈ H whenever x,y ∈ H, then B(H)
is a Boolean algebra.

(b) ψϕ = 1B(H).
(c) ψ(B(D))⊆B(H) iff ψ(B(D)) = B(H).
(d) If X ⊆ D, then X⊥D⊥H ⊆ X⊥H⊥H and X⊥D⊥D ⊆ X⊥H⊥D .
(e) The following statements are equivalent.

(i) B(H) and B(D) are canonically isomorphic.
(ii) ϕ is surjective.

(iii) ψ(B(D))⊆B(H) and ψ is injective.
(iv) If X ⊆ D, then X⊥H⊥D = X⊥D⊥D

(f) If B(H) and B(D) are canonically isomorphic, then X⊥D⊥H = X⊥H⊥H for
each subset X of D. An example which shows that the converse fails is given
by the direct sum D = H⊕K where H and K are nonzero `-groups. In this
example ψ(B(D))⊆B(H).

(g) Suppose that Ω is a set of operators on D+; so, each w ∈ Ω induces a
function w : D+ −→ D+. Assume:

(i) each w ∈Ω is isotone;
(ii) a∧b = 0 =⇒ aw∧b = 0, for all a,b ∈ D and every w ∈Ω ;

(iii) if 0 < a ∈ D, then 0 < aw ∈ H for some w ∈Ω .
Then B(H) and B(D) are canonically isomorphic. (Show that (iv) of (e)
holds.)

(h) H is called a c`-essential subset of D if H+∩C 6= 0 for each nonzero convex
`-subgroup C of D. If H is a c`-essential subset of D, then B(H) and B(D)
are canonically isomorphic. (Let Ω = {n(·)∧ d : n ∈ N,d ∈ D+}, where
a(n(·)∧d) = na∧d and use (g).)

15. A monomorphism ϕ : H −→ D of `-groups is called c`-essential if ϕ(H) is
a c`-essential `-subgroup of D (Exercise 14). Show that if ϕ is a c`-essential
monomorphism, then ϕ is complete if either D is abelian or, for each 0 < d ∈D,
there exists h ∈ H with 0 < ϕ(h)≤ d (use Exercises 2.1.16 and 2.1.17).

16. Show that the `-subgroup G of the `-group H is c`-essential in H if and only if,
for each convex subgroup C of H, G∩C 6= 0 or C is trivially ordered.

17. Let G be a po-group, let S be a convex subset of G+ with 0 ∈ S and let H be the
subgroup of G that is generated by S.

(a) The following conditions are equivalent.
(i) S is the positive cone for some po-subgroup of G.
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(ii) S +S⊆ S.
(iii) S is directed up, and if a ∈ S then 2a ∈ S.
(iv) H+ = S.
(v) H = {a−b : a,b ∈ S}.

(b) If the conditions in (a) hold or if G has the Riesz decomposition property
(that is, G satisfies the condition in Theorem 2.1.4(k)), then H is convex.

(c) If H is convex, then H is closed under any finite sups and infs that exist in
the po-group G.

(d) If G is an `-group, then H is a convex `-subgroup of G, and the conditions
in (a) are equivalent to
(vi) H = {a ∈ G : |a| ∈ S}.

18. Let G and A be `-subgroups of the `-group H, and suppose that G + A is a
subgroup of H.

(a) Show that (g+a)+ ∈G+A whenever g∈G, a∈ A and one of them is com-
parable to 0 iff g∧a ∈ G+A for every g ∈ G+ and a ∈ A+. (Assuming the
meet condition show that (g + a)∧ 0 ∈ G + A by considering the elements
g−+(g+a)∧0 if a≥ 0 and (g+a)∧0−a+g− if a < 0.)

(b) If A is totally ordered show that G+A is an `-subgroup of H iff g∧a∈G+A
for every pair (g,a) ∈ G+×A+.

(c) If g∧a ∈ G for every (g,a) ∈ G+×A+ show that G is convex in G+A+.
(d) If A is totally ordered show that G is a convex `-subgroup of the `-group

G+A iff g∧a ∈ G for every pair of elements (g,a) ∈ G+×A+.

19. Let C be a convex directed normal subgroup of the Riesz group G (see Exercise
2.1.18). Show that if S = {x1 +C,x2 +C, . . .} is a countable subset of G/C, then
there exists a subset T = {t1, t2, . . .} of G such that tn +C = xn +C for each n and
T −→ S is an order isomorphism. (Given t1, . . . , tn−1 let X = {ti : ti +C < xn +C}
and Y = {ti : xn +C < ti +C}. Take x,y ∈ G with X < x, y < Y and x +C =
xn +C = y +C. Then X ∪{x− c2} ≤ tn ≤ Y ∪{x + c1} where y = x + c1− c2
with c1,c2 ∈C+.)

20. Let f : L −→ M be a lattice homomorphism from the lattice L onto the lattice
M. Suppose S = { f (x1), f (x2), . . .} is a countable subset of M. Show that there
is a subset T = {t1, t2, . . .} of L with f (tn) = f (xn) for each n and f : T −→ S
is an order isomorphism. (In the previous exercise let x = lub X , y = glb Y and
tn = (x∨ xn)∧ y.)

2.3 Archimedean `-groups

In this section we are concerned with those `-groups which, like the additive group
of the reals, have the property that they do not have any nonzero bounded subgroups.
As we will see, each such `-group is abelian, and its completion is also an `-group.
Also, a representation theorem for these `-groups as extended real-valued continu-
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ous functions on a topological space will be given. The target of this representation
is rather complete and has the property that it is a summand of each `-group in
the current category in which it is embedded as a convex `-subgroup. This latter
property is also investigated here and other `-groups which have it are identified.
In preparation for the representation theorem we will establish various topological
results. One of these is the duality between the category of Boolean algebras and the
category of those compact Hausdorff spaces in which each open subset is a union
of sets which are both open and closed. The topological space on which the repre-
senting functions are defined is obtained from the Boolean algebra of polars through
this duality.

A po-group G is called integrally closed if, for all a,b ∈ G, Na≤ b implies that
a ≤ 0; and it is called archimedean if Za ≤ b implies that a = 0. An `-group G is
complete if its underlying lattice is conditionally complete. Recall that this means
that each nonempty bounded subset of G has an inf and a sup. It is σ -complete
if each nonempty bounded countable subset has an inf and a sup. While this ter-
minology is different than that for posets no confusion should arise since the only
complete (in the sense of posets) po-group is 0. The basic connections between these
concepts are given in

Theorem 2.3.1. (a) An integrally closed po-group is archimedean.
(b) An archimedean po-group need not be integrally closed.
(c) An `-group is archimedean iff it is integrally closed.
(d) Each σ -complete `-group is integrally closed.

Proof. Certainly, (a) is clear, and an example of an archimedean po-group that is not
integrally closed is given in Exercise 5. Suppose that the `-group G is archimedean
and na≤ b for each n ∈ N. Then na+ ≤ b+ for each n ∈ Z; so a+ = 0 and a≤ 0. If
G is σ -complete and na≤ b for each n ∈ N, then c = supNa ∈ G. Since c−a≥ na
for each n ∈ N, c−a≥ c and a≤ 0. So G is integrally closed. ut

Let G be a directed po-group, and let D(G) be its Dedekind completion. Recall
from Section 1.3 that

D(G) = {X ⊆ G : X = LUX , φ ⊂ X ⊂ G}

= {LUX : X ⊆ G, X 6= φ and UX 6= φ}.
We wish to extend the group operation from G to D(G). It will be convenient to
denote LUX by X∗, for X ⊆ G. Since ∗ is a closure operator on the power set of G

X∗ = ∩{A⊆ G : X ⊆ A and A = A∗}. (2.3.1)

A partially ordered semigroup is a semigroup S which is also a poset in which
each left and each right translation is order preserving:

∀x,y,z ∈ S x≤ y ⇒ z+ x≤ z+ y and x+ z≤ y+ z.

A monoid is a semigroup with identity.
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If X and Y are subsets of the group G, then, as usual, X +Y = {x + y : x ∈
X and y ∈ Y} and X−Y = {x− y : x ∈ X and y ∈ Y}.
Theorem 2.3.2. Let G be a directed po-group. If X ,Y ∈ D(G) define X ⊕Y = (X +
Y )∗. Then D(G) is a partially ordered monoid with zero element 0∗, and G is a
po-subgroup of the po-group of units of D(G).

Proof. It suffices to verify the following four statements, for X ,Y,Z ∈ D(G) and
g,h ∈ G, since, clearly, X⊕Y ∈ D(G) :

(a) [(X +Y )∗+Z]∗ = (X +Y +Z)∗ = [X +(Y +Z)∗]∗;
(b) [X +L(0)]∗ = X = [L(0)+X ]∗;
(c) X ⊆ Y ⇒ (X +Z)∗ ⊆ (Y +Z)∗ and (Z +X)∗ ⊆ (Z +Y )∗;
(d) L(g)+L(h) = L(g+h).

To verify the first equation in (a) it suffices, by equation (2.3.1), to check that if A =
A∗, then (X +Y )∗+Z⊆A if and only if X +Y +Z⊆A. “Only if” is a consequence of
the inclusion X +Y ⊆ (X +Y )∗; as for “if”, for each z ∈ Z, X +Y ⊆ A− z = LUA−
z = LU(A− z) implies that (X +Y )∗ ⊆ (A− z)∗ = A− z. So (X +Y )∗+Z ⊆ A. The
second equation in (a) follows in a similar way. For (b), if x ∈ X and y ∈ L(0), then
x+y≤ x; so x+y∈ L(x)⊆X and X +L(0)⊆X ⊆X +L(0). Similarly, X = L(0)+X .
Also, (c) is obviously true; and as for (d), L(g) + L(h) ⊆ L(g + h) = L(g) + h ⊆
L(g)+L(h). ut

In the next result we determine when D(G) is an `-group.

Theorem 2.3.3. A directed po-group can be embedded into a complete `-group if
and only if it is integrally closed. In particular, each archimedean `-group can be
embedded into a complete `-group.

Proof. By Theorem 2.3.1(d) each subgroup of a complete `-group is integrally
closed. Suppose that G is integrally closed. We claim that D(G) is a group and
hence it is a complete `-group. It suffices to show that if X ∈ D(G), then Y =
−U(X) = L(−X) is a right inverse for X in (D(G),⊕); and for this we need
that LU(X + L(−X)) = L(0). If x ∈ X and y ≤ −X then x + y ≤ 0; that is,
LU(X + L(−X)) ⊆ L(0). For the reverse inclusion we merely need to verify that
0 ∈ LU [X + L(−X)], or, if a ∈ U [X + L(−X)], then 0 ≤ a. We will show below,
by induction on n, that na ∈ U [X + L(−X)] for each n ∈ N. Assuming this, then
na ≥ x + y for x ∈ X and y ∈ L(−X). So n(−a) ≤ −(x + y), −a ≤ 0 and a ≥ 0.
Suppose then, by induction, that ka ∈ U [X + L(−X)]. If x ∈ X and y ≤ −X , then
ka≥ X +y, ka−y∈U(X), y−ka∈ L(−X), and a≥ x+y−ka. So (k+1)a≥ x+y
and the induction is complete. ut

A completion of the `-group G is a pair (H,ϕ) where H is a complete `-group
and ϕ : G−→H is a monomorphism whose image is dense in H. Each archimedean
`-group has a unique completion.

Theorem 2.3.4. An `-group has a completion if and only if it is archimedean. If
(A,α) and (B,β ) are two completions of the `-group G, then there is a unique iso-
morphism ρ : A−→ B such that the diagram
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is commutative.

Proof. The first statement is a consequence of Theorems 2.3.1 and 2.3.3. According
to Theorem 1.3.4 there is a unique lattice isomorphism ρ that makes the diagram
commutative. If a∈ A and g∈G, then α(g)≤ a iff β (g)≤ ρ(a); so if a,b∈ A, then

ρ(a+b) = ρ


 ∨

α(g)≤a

α(g)+
∨

α(h)≤b

α(h)


 = ρ

(
∨

α(g)≤a
α(h)≤b

α(g+h)

)

=
∨

β (g)≤ρ(a)
β (h)≤ρ(b)

(β (g)+β (h)) =
∨

β (g)≤ρ(a)

β (g)+
∨

β (h)≤ρ(b)

β (h)

= ρ(a)+ρ(b).

Thus, ρ is an isomorphism of `-groups. ut
We give next a useful characterization of the completion that does not explicitly

mention sups or infs; but first we present the following preliminary result. The subset
G of the `-group H is called le f t dense in H if G+\{0} is coinitial in H+\{0}, and
G is called right dense in H if G+ is cofinal in H+. If G is a convex subset of H+

and 0∈G, then G is left dense in G⊥⊥, as is easily verified, and each abelian `-group
is right dense in its divisible hull.

Theorem 2.3.5. Let G be a subset of the archimedean `-group H. Assume that g∈G
implies that Ng+ ⊆ G. Then the following statements are equivalent.

(a) G is left dense in H.
(b) If 0 < h ∈ H, then h = lubHLG(h).

Proof. If (a) holds and h > 0, then each upper bound in H of LG(h) is strictly posi-
tive. Suppose that h 6= lubHLG(h). Then there is an x∈H with x≥ LG(h) and h 6≤ x.
So LG(h) ≤ h∧ x = y < h. Let g ∈ G with 0 < g ≤ h− y. Then g ∈ LG(h), and,
inductively, if ng ∈ LG(h), then (1 + n)g ≤ g + y ≤ h. Since H is archimedean this
gives that g≤ 0 which contradicts that g > 0. Conversely, if (b) holds, then for each
0 < h ∈ H there exists g ∈ LG(h) with g 6≤ 0. So h≥ g+ > 0. ut
Theorem 2.3.6. Let G be an `-subgroup of the complete `-group H. Then the fol-
lowing statements are equivalent.
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(a) H is the completion of G.
(b) If 0 < h ∈ H, then there exists elements a,b ∈ G with 0 < a≤ h≤ b.
(c) G is left dense in H, and if A is an `-subgroup of H that is complete and

contains G, then A = H.

Proof. (a) ⇒ (b). This follows from the fact that each element of H is the sup and
the inf of subsets of G.

(b)⇒ (c). Let A be an `-subgroup of H which contains G and which is complete.
To show that A = H it suffices to show that A is a convex subgroup of H. Suppose
that 0 < h < x with h ∈H and x ∈ A. Since A is complete lubALG(h) exists. But A is
a c`-essential `-subgroup of H, so lubALG(h) = lubHLG(h) = h by Exercise 2.2.15
and Theorem 2.3.5; thus, h ∈ A.

(c) ⇒ (a). Since CH(G) is complete, H = CH(G). If h ∈ H, then h≤ g for some
g ∈ G, and hence g−h = lubHX for some subset X of G, by Theorem 2.3.5. Thus,
h = infH(−X + g), and, if h is replaced by −h, we get that h = lubHY for some
subset Y of G. ut

Suppose that G is a left dense `-subgroup of the complete `-group H. An imme-
diate consequence of the previous result is that if A is a convex `-subgroup of G,
then the completion of A is the convex `-subgroup of H generated by A.

Our next goal is to show that an archimedean `-group is abelian. We will accom-
plish this by showing that a complete `-group is abelian. Another proof is given in
Exercise 2.4.14. We first need two results, each of which is interesting in its own
right. The subset T of the poset P is called completely closed in P provided that
T contains the least upper bound or greatest lower bound of any of its nonempty
subsets, if either exists in P.

Theorem 2.3.7. Consider the following conditions on the convex `-subgroup A of
the `-group G:

(a) A is a summand of G.
(b) A is a polar.
(c) A is completely closed in G.

Then (a) implies (b), (b) implies (c), and, if G is complete, (c) implies (a).

Proof. That (a) implies (b) is given in Theorem 2.2.6 (c). Suppose that A =
A⊥⊥, {ai} ⊆ A and a =

∨
ai ∈ G. According to Theorem 2.1.3 G is infinitely

distributive; so if 0 ≤ b ∈ A⊥, then b ∧ a+ = b ∧∨
a+

i =
∨

(b ∧ a+
i ) = 0, and

b∧a− = b∧∧
a−i =

∧
(b∧a−i ) = 0 since a− = (

∧−ai)∨0 =
∧

a−i . Thus, b∧|a|=
b∧ (a+ + a−) = 0 and a ∈ A⊥⊥ = A; so A is completely closed. Assume that G is
complete and that A is completely closed. For any g ∈ G+, g≥ {a∧g : a ∈ A+}, so

g≥
∨

a∈A+

(a∧g) = b ∈ A+.

Let c = g−b. Then for a ∈ A+, 0≤ a ∧ c = a∧ (g−b) = (a+b)∧g−b≤ 0 since
a+b ∈ A+. Thus c ∈ A⊥ and G = A⊕A⊥. ut
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For elements a and b of the group G recall that the b-conjugate of a is denoted by
ab =−b + a + b, and denote the commutator of a and b by [a,b] =−a− b + a +b .
Note that [a,b] =−[b,a].

Theorem 2.3.8. The following identities hold in the group G, for each n≥ 1.

(a) [a,nb] =
n−1

∑
i=0

[a,b]ib.

(b) [−nb,a] =
1

∑
i=n

[a,b]−ib.

Proof. We use induction on n to prove (a), the case n = 1 being trivial. Suppose that

[a,(n−1)b] =
n−2

∑
i=0

[a,b]ib.

Then,

[a,nb] = −a−nb+a+nb

= −a−b+a+b−b−a− (n−1)b+a+(n−1)b+b

= [a,b]−b+[a,(n−1)b]+b

= [a,b]+

(
n−2

∑
i=0

[a,b]ib
)b

=
n−1

∑
i=0

[a,b]ib.

As for (b),

[−nb,a] = −[a,−nb] =−
n−1

∑
i=0

[a,−b]−ib

=
0

∑
i=n−1

−[a,−b]−ib =
0

∑
i=n−1

[−b,a]−ib

=
0

∑
i=n−1

ib+b−a−b+a− ib

=
0

∑
i=n−1

(i+1)b−a−b+a+b− (i+1)b

=
1

∑
i=n

[a,b]−ib.

ut
We are now able to prove
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Theorem 2.3.9. A directed integrally closed po-group is abelian.

Proof. By Theorem 2.3.3 we may assume that the group is a complete `-group G.
If x ∈ G, then G = (x+)⊥⊕ (x+)⊥⊥ by Theorem 2.3.7; and the components of x in
this decomposition (namely,−x− and x+) are comparable to 0. By the remarks after
Theorem 2.2.6 this means that for each finite subset X of G there is a decomposition
G = C1⊕·· ·⊕Cn of G for which the components of each element of X are compa-
rable to 0. Now, let a,b∈G+. By taking the aforementioned decomposition we may
assume that b−a and [a,b] are comparable to 0. Since the case a≤ b and 0≤ [a,b]
is identical to the case b ≤ a and [a,b] ≤ 0, and the case a ≤ b and [a,b] ≤ 0 is
identical to the case b ≤ a and 0 ≤ [a,b], the four cases reduce to two. By taking a
further refinement we may assume that [[a,b],b] is also comparable to 0. Thus, there
are four possibilities:

(i) a≤ b, 0≤ [a,b], 0≤ [[a,b],b];
(ii) a≤ b, 0≤ [a,b], [[a,b],b]≤ 0;
(iii) a≤ b, [a,b]≤ 0, 0≤ [[a,b],b];
(iv) a≤ b, [a,b]≤ 0, [[a,b],b]≤ 0.

We will show that [a,b] = 0 in each of the first two cases and leave the second
two for the reader. In case (i) we have that 0 ≤ −[a,b]− b +[a,b]+ b, or [a,b] ≤
[a,b]b. So [a,b] ≤ [a,b]ib for each i ≥ 0, and hence n[a,b] ≤ [a,nb] for each n ≥ 1
by (a) of Theorem 2.3.8. But [a,nb] =−a−nb+a+nb =−a+anb ≤−a+b since
anb ≤ bnb = b. So n[a,b] ≤ −a + b and [a,b] = 0. For (ii), we have that −[a,b]−
b + [a,b] + b ≤ 0; so [a,b] ≤ [a,b]−ib for i ≥ 1, and, by (b) of Theorem 2.3.8,
n[a,b] ≤ [−nb,a] = nb− a− nb + a ≤ a, for each n ≥ 1, since −a−nb ≤ 0. Thus,
[a,b] = 0. ut

An `-group is called `-simple if it has exactly two normal convex `-subgroups.
The next theorem establishes the fact that the only abelian `-simple `-groups are

those that can be embedded in the additive group of the reals.

Theorem 2.3.10. (Hölder) The following statements are equivalent for the `-group
G.

(a) The only convex `-subgroups of G are 0 and G.
(b) G is totally ordered and archimedean.
(c) G can be embedded in R.

Proof. (a) implies (b). If a∧b = 0, then C(a)∩C(b) = 0. Hence a = 0 or b = 0 and
G is totally ordered. If Za ≤ b and a 6= 0, then since b ∈ C(a), Za ≤ ka for some
k ∈ Z; but then Za≤ 0 which is impossible. Thus a = 0 and G is also archimedean.

(b) implies (c). By Theorem 2.3.9 G is abelian. By passing to the divisible hull
d(G) of G we may assume that G is divisible (Exercise 2.1.3) since d(G) is also
archimedean. So G is a vector space overQ andQ+G+ ⊆G+. Suppose that 0 6= A is
a subspace of G and α : A−→R is an `-group embedding. If A is a proper subspace
take x∈G+\A and let A− = {a∈A : a < x} and A+ = {a∈A : x < a}. Then α(A−) <
α(A+) so α(A−)≤ r≤α(A+) for some r∈R. Now we can extend α to the subspace
A + Qx by defining β : A + Qx−→R by β (a + px) = α(a) + pr. This is clearly a
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Q-linear transformation, and we check that it is isotone. Suppose that a+ px≥ 0. If
p > 0, then x≥− 1

p a and r≥− 1
p α(a); that is β (a+ px) = α(a)+ pr≥ 0. If p < 0,

then − 1
p a ≥ x; so − 1

p α(a) ≥ r and β (a + px) = α(a) + pr ≥ 0. If p = 0, then
β (a) = α(a) ≥ 0. Thus, β is isotone, and, since A +Qx does not have a nontrivial
convex subgroup, β is an embedding. Now, consider the set {(A,α) : A is a subspace
of G and α : A −→ R is an embedding}, supplied with the partial order given by :
(A,α) ≤ (B,β ) if A ⊆ B and β (a) = α(a) for each a in A. By Zorn’s Lemma this
poset has a maximal element (A,α), and the preceding argument implies that A = G.

ut
We next wish to extend Theorem 2.3.10 to archimedean `-groups. More specifi-

cally, we wish to represent the elements in such an `-group by extended real-valued
continuous functions on a topological space. The topological space will arise from
the Boolean algebra of polars of the `-group. We turn now to some topological con-
siderations and to the construction of this space.

If A is a subset of the topological space X , then the closure of A in X will be
denoted by A−, and its interior will be denoted by A◦. The subset A is dense in X
if A− = X . This is easily seen to be equivalent to the condition that A∩U 6= /0 for
each nonempty open subset U of X . The subset B of X is nowhere dense in X if each
nonempty open set U in X contains a nonempty open subset V such that V ∩B = /0.
Clearly, if B is nowhere dense, then so is B−. Also, it is straightforward to verify
that B− is nowhere dense exactly when its complement B−′ is dense, or, equiva-
lently, B−◦ is empty. One example of a nowhere dense set is obtained by taking the
boundary V− ∩V ′− of an open set V , as can readily be verified. A subset of X is
said to be of the first category if it is a union of a countable number of nowhere
dense subsets of X . Recall that X is compact if each of its open covers has a finite
subcover, and is Hausdorff if distinct elements of X have disjoint neighborhoods.
For later use we record the following result; the one after it will be put to immediate
use.

Theorem 2.3.11. (Baire category theorem.) If X is a compact Hausdorff space,
then each subset of X of the first category has an empty interior. Equivalently, a
countable intersection of dense open sets is dense.

Proof. We will first show that if x ∈U is open, then there exists V open with x ∈V
and V− ⊆U . For each y ∈U ′ there are disjoint open sets Vy and Wy with x ∈Vy and
y∈Wy. Since U ′ is compact a finite number of the Wy, say, W1, . . . ,Wn, cover U ′. Let
V1, . . . ,Vn be the corresponding Vy’s. If

W =
n⋃

i=1

Wi and V =
n⋂

i=1

Vi,

then x ∈ V, U ′ ⊆W and V ∩W = /0. So V− ∩W = /0 and x ∈ V ⊆ V− ⊆U . Now,
suppose that

B =
∞⋃

n=1

Bn
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where each Bn is nowhere dense. To show that B◦ = /0 it suffices to show that if U
is a nonempty open subset of X , then U\B 6= /0. Take V1 open and nonempty with
V−

1 ⊆ U , and let U1 ⊆ V1 be a nonempty open set with U1 ∩B1 = /0. Inductively,
given the decreasing chain

U ⊇U−
1 ⊇U1 ⊇U−

2 ⊇ ·· · ⊇U−
n−1 ⊇Un−1 ⊇U−

n ⊇Un

of nonempty open subsets U1, . . . ,Un with Uk ∩Bk = /0 for 1 ≤ k ≤ n, let Un+1 and
Vn+1 be nonempty open subsets with V−

n+1 ⊆Un, Un+1 ⊆Vn+1 and Un+1∩Bn+1 =
/0. Then C = ∩Un = ∩U−

n is not empty since X is compact, and C∩B = /0 since
C∩Bn = /0 for each n. The verification of the last statement is left to the reader. ut

A subset of X which is both open and closed will be called clopen. The collection
of all clopen subsets of X is a Boolean subalgebra of the Boolean algebra of all
subsets of X ; it is called the dual algebra of X. Recall that a collection B of open
sets is a base for the topology of X if each open set in X is a union of some of
the sets in B, and B is a subbase if the collection of all intersections of finitely
many members of B is a base. A compact Hausdorff space whose clopen sets form
a base is called a Boolean space. If F is a closed subset of the Boolean space
X and U is open in F , then there is a family {Pi} of clopen sets in X such that
U = F∩(∪Pi) =∪(Pi∩F). Thus, F is also a Boolean space. Moreover, if U is clopen
in F , then a finite number of the Pi, say P1, . . . ,Pn, cover U . But then U = P∩F where
P = P1∪·· ·∪Pn; that is, each clopen set in F is the intersection with F of a clopen
set in X .

Theorem 2.3.12. Let X be a compact Hausdorff space. Suppose that A is a sub-
algebra of the dual algebra B of X, and A has the property that for each pair of
distinct elements x,y in X there is a P in A such that x ∈ P and y ∈ P′. Then X is a
Boolean space and A = B.

Proof. We first show that if x is not in the closed set F , then there exists a clopen
set P ∈A with F ⊆ P and x 6∈ P. For each y ∈ F there is a set Py ∈A with y ∈ Py
and x ∈ P′y. Since F is compact a finite number of the Py, say, P1, . . . ,Pn, cover F .
Let P = P1∪·· ·∪Pn. Then F ⊆ P ∈A and x ∈ P′. Thus, each open set is a union of
sets from A , and hence X is a Boolean space. Also, each clopen set is a finite union
of sets from A , and hence is in A ; so A = B. ut

A Boolean homomorphism between two Boolean algebras is a lattice homomor-
phism that preserves complements (equivalently, it is an identity preserving ring
homomorphism between the corresponding Boolean rings (Exericse 1.2.8)). The set
2 = {0,1} is the totally ordered Boolean algebra; we will also consider 2 as a topo-
logical space, giving it the discrete topology. Given the Boolean algebra B, the set
X = Bool[B,2] of all 2-valued homomorphisms on B is a subspace of the product
space 2B. X is called the dual space of B.

Theorem 2.3.13. The dual space X = Bool[B,2] of the Boolean algebra B is a
Boolean space. Moreover, if B is the dual algebra of X, then the function α : B−→
B given by
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α(b) = { f ∈ X : f (b) = 1}
is an algebra isomorphism.

Proof. By Tychonoff’s theorem the product space 2B is compact, and it is also
Hausdorff. Recall that a base for 2B consists of all those sets of the following form.
Given a finite subset {b1, . . . ,bn} of B and elements ε1, . . . ,εn ∈ 2, let

V (b1, . . . ,bn; ε1, . . . ,εn) = { f ∈ 2B : f (bi) = εi for i = 1, . . . ,n}.

Since V (b;ε)′ = V (b;ε ′) and since

V (b1, . . . ,bn;ε1, . . . ,εn) =
n⋂

i=1

V (bi;εi),

each basic open set is clopen. So 2B is a Boolean space. We claim that X is a closed
subset of 2B. Toward this end let b,c ∈ B, and let Yb,c = { f ∈ 2B : f (b∨ c) = f (b)∨
f (c)}. If πb : 2B −→ 2 denotes the projection (or evaluation) at b, given by πb( f ) =
f (b), then πb is continuous. Moreover, the function πb∨πc : 2B −→ 2 given by (πb∨
πc)( f ) = πb( f )∨ πc( f ) is continuous since it is the composite of the continuous
functions

2B 4−→ 2B×2B πb×πc−→ 2×2 ∨−→ 2,

where ∆ is the diagonal map given by ∆( f ) = ( f , f ). Since Yb,c = { f ∈ 2B :
(πb ∨πc)( f ) = πb∨c( f )} is the set at which two continuous functions into a Haus-
dorff space agree, Yb,c is closed. Hence so is the intersection Y = { f ∈ 2B : ∀b,c ∈
B, f (b)∨ f (c) = f (b∨ c)} of all of the Yb,c. Similarly, Zb = { f ∈ 2B : πb′( f ) =
πb( f )′ = (′◦πb)( f )} is closed, and so is the intersection Z = { f ∈ 2B : ∀b ∈
B, f (b′) = f (b)′} of all of the Zb. Also, X = Y ∩Z is closed.

We now show that α is an isomorphism. First, α(b) = π−1
b (1)∩X ∈ B. Next,

α(b∨c) = { f ∈ X : f (b)∨ f (c) = 1}= α(b)∪α(c), and α(b′) = { f ∈ X : f (b)′ =
1} = α(b)′. So α is a homomorphism. If M is a maximal ideal of B that excludes
b , then B/M is a two element Boolean algebra (Exercises 1.2.8 and 1.2.9), and
hence M gives rise to a homomorphism f ∈ X with f (b) = 1; that is, if b 6= 0 then
α(b) 6= /0. So α is a monomorphism and α(B) is a subalgebra of B. If f and g are
distinct elements of X , then, for some b ∈ B, f (b) = 1 and g(b) = 0. So f ∈ α(b)
and g 6∈ α(b); thus α(B) = B by Theorem 2.3.12. ut

A 2-valued homomorphism of the Boolean algebra B is completely determined
by its kernel which is a maximal ideal of B. Thus, the dual space X = Bool[B,2]
may be replaced by the set Spec(B) which consists of all of the maximal ideals of
B, and we will make this replacement whenever it is convenient to do so. The basic
clopen sets of Spec(B) are of the form V (b) = {M ∈ Spec(B) : b 6∈M}, where b∈ B,
and, according to Theorem 2.3.13, V is an isomorphism between B and the algebra
of clopen sets in Spec(B). This topology on Spec(B) is called the Zariski topology
or the hull-kernel topology of Spec(B).
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The previous theorem asserts that each Boolean algebra is isomorphic to its sec-
ond dual. It is also true that each Boolean space is isomorphic to its second dual.

Theorem 2.3.14. Let X be a Boolean space, let A be the dual algebra of X, and
let Y = Bool[A,2] be the dual space of A. Then the function β : X −→ Y given by
β (x)(P) = 1 if x ∈ P and β (x)(P) = 0 if x 6∈ P is a homeomorphism.

Proof. If P and Q are clopen sets in X , then it is clear that β (x)(P′) = [β (x)(P)]′;
also, β (x)(P∪Q) = β (x)(P)∨β (x)(Q) since β (x)(P)∨β (x)(Q) = 1 exactly when
x ∈ P∪Q. Thus β (x) ∈ Y for each x in X . To see that β is continuous let U be a
clopen set in Y . Then, by Theorem 2.3.13, U = α(P) = { f ∈Y : f (P) = 1} for some
(unique) clopen set P in X . But then β−1(U) = {x ∈ X : β (x)(P) = 1} = P. Since
the clopen sets in Y form a base β is continuous. This also shows that β is onto. For
if U 6= /0, then β (X)∩U 6= /0; so β (X) is dense and closed in Y (β (X) is compact),
and hence β (X) = Y . If x 6= y in X , then there is a clopen set P in X with x ∈ P
and y ∈ P′. So β (x)(P) 6= β (y)(P), β (x) 6= β (y), and β is one-to-one. Since β takes
closed sets to closed sets it is a homeomorphism. ut

We now wish to examine the duality that connects homomorphisms between
Boolean algebras with continuous functions between Boolean spaces. This is most
conveniently expressed using the language of category theory. A contravariant (re-
spectively, covariant) functor F : C −→D is called a duality (respectively, an equiv-
alence) if there is a contravariant (respectively, covariant) functor G : D −→ C and
two natural equivalences α : 1C −→ GF and β : 1D −→ FG. Of course, G is also a
duality (respectively, an equivalence), and we say that the categories C and D are
dual (respectively, equivalent). The basic fact that we need is

Theorem 2.3.15. If F : C −→ D is a duality, then for all objects A and B in C the
function F : C [A,B]−→D [FB,FA] is a bijection.

Proof. Let G : D −→ C , α : 1C −→ GF and β : 1D −→ FG be a functor and
natural equivalences associated with F . Define the function H : D [FB,FA] −→
C [A,B] to be the composite H(g) = α−1

B G(g)αA : A
αA−→ GFA

G(g)−→ GFB
α−1

B−→ B. If
f ∈ C [A,B] then the commutativity of the diagram

gives that HF( f ) = f ; so F is one-to-one and H is onto. Similarly, G is one-to-one,
and therefore H is a bijection. Thus H is the inverse of F and F is a bijection. ut
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Now let Bool denote the category of Boolean algebras and Boolean algebra ho-
momorphisms, and let J denote the category of Boolean spaces and continuous
functions. Then Theorems 2.3.13 and 2.3.14 give a duality between Bool and J .
More precisely, we have

Theorem 2.3.16. Let Bool and J be the categories of Boolean algebras and
Boolean spaces, respectively. Then F : Bool−→J and G : J −→Bool are paired
dualities where F(B) is the dual space of B and G(X) is the dual algebra of X.

Proof. Let α : 1Bool−→GF and β : 1J −→FG be the functions given in Theorems
2.3.13 and 2.3.14. To complete the definition of F we must define the morphism

F( f ) : F(B) = Bool[B,2]−→ Bool[A,2] = F(A)

in J for each morphism f : A −→ B in Bool. Let F( f ) be right multiplication by
f : (F( f ))(g) = g f . The function F( f ) is continuous because if U is clopen in F(A),
then, according to Theorem 2.3.13, U = α(A)(a) = { f ∈ Bool[A,2] : f (a) = 1} for
some a in A. So (F( f ))−1(U) = {g ∈ Bool[B,2] : (g f )(a) = 1} = α(B)( f (a)) is
clopen in F(B).

To complete the definition of G we must define the morphism G( f ) : G(Y ) −→
G(X) in Bool for any morphism f : X −→ Y in J . Let G( f ) be the inverse image
map induced by f restricted to the dual algebra of Y : (G( f ))(Q) = f−1(Q).

To complete the proof we merely must check that α and β are natural trans-
formations since Theorems 2.3.13 and 2.3.14 will then give that they are natural
equivalences. Let f ∈ Bool[A,B]. We must verify the commutativity of the diagram

But (GF( f ))(α(A)(a)) = F( f )−1(α(A)(a)) = α(B)( f (a)), as we have seen in the
first paragraph above. Now, let g ∈J [X ,Y ], and consider the diagram



66 2 Lattice-ordered Groups

We have FG(g)(β (X)(x) = β (X)(x)G(g) : G(Y ) −→ G(X) −→ 2; so if P is a
clopen set in Y , then [FG(g)(β (X)(x))](P) = β (X)(x)(g−1(P)) = 1 if and only if
g(x) ∈ P. But [β (Y )(g(x))](P) = 1 if and only if g(x) ∈ P. So this diagram is also
commutative. ut

The Boolean algebra of polars of an `-group is complete, and this property is
reflected in its dual space and is an essential ingredient for the representation of an
archimedean `-group. We will now consider the topological anologue of complete-
ness. A topological space is called extremally disconnected if the closure of each of
its open sets is open. A Stone space is an extremally disconnected Boolean space.

Theorem 2.3.17. Let B be the dual algebra of the topological space X.

(a) If {Pi : i ∈ I} is a subset of B and W = ∪{Pi : i ∈ I}, then W− is open if and
only if W− =

∨{Pi : i ∈ I} in B.
(b) Suppose that each nonempty open subset of X contains a nonempty element

of B, and let Pi and W be as in (a). If P =
∨{Pi : i ∈ I} exists in B, then

P = W−.
(c) If X is extremally disconnected, then B is a complete Boolean algebra.
(d) If B is a base for the topology of X, then X is extremally disconnected if

and only if B is complete.
(e) If X is a Boolean space, then X is a Stone space if and only if B is complete.

Proof. (a) If W− is open then W− ∈B, and if P ∈B with Pi ⊆ P for each i, then
W− ⊆ P. So W− =

∨
Pi. The converse is trivial.

(b) Clearly W− ⊆ P; and if Q is clopen with Q⊆ P\W−, then P\Q is clopen
and Pi ⊆ P\Q for each i ∈ I. Thus P⊆ P\Q, Q = φ , and hence P = W−.

Now (c) follows from (a), (d) is a consequence of (c) and (b), and (e) is a special
case of (d). ut

We now need to investigate some fundamental properties of an extremely discon-
nected space. In particular, we wish to establish the fact that continuous functions
defined on subspaces can sometimes be lifted to the entire space.

As is usual, we will denote the `-group of all real-valued continuous functions
defined on the topological space X by C(X). C(X) is an `-subgroup of the product
RX ; that is, the partial order in C(X) is pointwise: f ≤ g if f (x)≤ g(x) for each x in
X . The `-subgroup of C(X) which consists of the bounded functions will be denoted
by C∗(X). A subset A of X is said to be C-embedded (respectively, C∗-embedded)
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if each f ∈C(A) (respectively, f ∈C∗(A)) can be extended to an element of C(X).
Note that if f ∈ C∗(A) is bounded by r ∈ R+ (that is −r ≤ f ≤ r) and has the
extension g ∈C(X), then it has the extension (−r∨ g)∧ r) in C∗(X) which also is
bounded by r. Two subsets A and B of X are said to be completely separated in X if
there is a function f in C(X) such that f (A) = 0 and f (B) = 1. By replacing f by
0 ∨( f ∧1) we may assume that 0≤ f ≤ 1. Also, any numbers r < s may replace 0
and 1 in this definition.

Theorem 2.3.18. Let Y be a subset of the topological space X. Then Y is C∗-
embedded in X if and only if each pair of sets that is completely separated in Y
is also completely separated in X.

Proof. Suppose that Y is C∗-embedded in X and that A and B are completely sepa-
rated in Y . If f ∈C∗(Y ) with f (A) = 0 and f (B) = 1 and g ∈C(X) is an extension
of f , then certainly g(A) = 0 and g(B) = 1.

Conversely, suppose that the property of being completely separated lifts from
Y to X , and that f ∈ C∗(Y ). Then | f | ≤ m for some m ∈ N. Define the sequence
(rn) of real numbers by rn = m

2

( 2
3

)n
. We claim that there are sequences of functions

( fn) in C∗(Y ) and (gn) in C∗(X) with f1 = f , | fn| ≤ 3rn, |gn| ≤ rn and fn+1 = fn−
gn on Y . Assume that f1, . . . , fn and g1, . . . ,gn−1 have been constructed. Let An =
f−1
n ((−∞,−rn]) and Bn = f−1

n ([rn,∞)). Then An and Bn are completely separated in
Y by (−rn∨ fn)∧ rn; so there exists gn ∈C∗(X) such that |gn| ≤ rn, gn(An) =−rn
and gn(Bn) = rn. Now let fn+1 = fn−gn ∈C∗(Y ). On An we have that −3rn ≤ fn ≤
−rn = gn; on Bn we have that gn = rn ≤ fn ≤ 3rn; and on Y\(An∪Bn) we have that
−rn ≤ fn, gn ≤ rn. Thus, | fn+1| ≤ 2rn = 3rn+1. Define the function g on X by

g(x) =
∞

∑
n=1

gn(x).

Since the series converges uniformly, g ∈C(X). Also, on Y, g1 + · · ·+ gn = ( f1−
f2) + · · ·+ ( fn − fn+1) = f1 − fn+1. So g is an extension of f since the sequence
( fn(y)) converges to 0 for each y in Y . ut

We now return to extremally disconnected spaces.

Theorem 2.3.19. The following statements are equivalent for the topological
space X.

(a) X is extremally disconnected.
(b) The interior of each closed subset of X is closed.
(c) If U and V are open then (U ∩V )− = U− ∩V−.
(d) Any two disjoint open sets have disjoint closures.
(e) Each open subset of X is C∗-embedded in X.
(f) If U is open, then each pair of completely separated sets in U is completely

separated in X.
(g) Any two disjoint open sets are completely separated in X.
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Proof. Recall that A◦ = A′−′ for each subset A of X . If U is open and F = U ′, then
F◦ = F ′−′ =U−′ is closed if and only if U− is open. Thus (a) and (b) are equivalent;
also, the equivalence of (e) and (f) is a consequence of Theorem 2.3.18.

(a)⇒ (c). In any space X , if P is clopen and A⊆ X , then (P∩A)− = P∩A−. For,
(P∩A)− ⊆ P∩A− since P∩A− is closed and contains P∩A. On the other hand,
if x ∈ P∩A− and W is open with x ∈W , then W ∩P∩A 6= φ ; so x ∈ (P∩A)−.
Since, clearly, (U ∩V )− ⊆U−∩V−, we only need to establish the reverse inclusion
or, equivalently, that P = (U ∩V )−′ ⊆ (U− ∩V−)′. But P∩U ∩V = φ yields that
P∩U ∩V− = φ , since P∩U is open, and consequently that P∩ (U ∩V−)− = φ .
However, P∩ (U ∩V−)− = P∩U− ∩V− since V− is clopen.

(c) ⇒ (d). This is trivial.
(d)⇒ (a). If U is open, then U ∩U−′ = φ gives that U−∩U−′− = φ . So U−′− ⊆

U−′ and U−′ is closed; that is, U− is open.
(a) ⇒ (f). Suppose that A,B ⊆U and f ∈C∗(U) with f (A) = 0 and f (B) = 1.

Then there exist disjoint open sets V and W in U which contain A and B, respectively.
By (d), V− ∩W− = φ and V− and W− are both clopen. Hence, the characteristic
function of W− is in C(X) and separates A and B.

(f) ⇒ (g). If U and V are disjoint open sets, then U and V are completely sepa-
rated in U ∪V , and hence are completely separated in X .

(g) ⇒ (d). This is obvious. ut
From the definition of an extremally disconnected space it is easily seen that

each open subset of such a space is also extremally disconnected. This is also true
for a dense subset. Before we verify this we state some definitions. Let R− = R∪
{∞,−∞}= [−∞,∞] denote the two-point compactification of the reals R. The set of
all extended real-valued continuous functions on the space X will be denoted by

E(X) = { f : X −→ R− : f is continuous}.

Clearly, E(X) is a poset with respect to the coordinatewise partial order: f ≤ g if
f (x)≤ g(x) for each x in X , and, in fact, E(X) is a sublattice of the product (R−)X

(Exercise 1 (c)). Note that f ≤ g provided that f (x)≤ g(x) for each x in some dense
subset of X (Exercise 1 (d)). Also, let

D(X) = { f ∈ E(X) : f−1(R) is dense in X}

be the set of those continuous functions which are real-valued on a dense (and open)
subset of X . The subset D(X) is a sublattice of E(X) since the intersection of two
dense open subsets is dense. A subset A of X is said to be E-embedded (respectively,
D-embedded) in X if each f ∈ E(A) (respectively, f ∈ D(A)) is the restriction of
some g ∈ E(X) (respectively, g ∈ D(X)).

Theorem 2.3.20. Let A be a dense subset of the extremally disconnected space X.
Then:

(a) A is extremally disconnected; and
(b) A is C∗-embedded, E-embedded, and D-embedded in X.
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Proof. If U and V are disjoint open sets in A, then U =U1∩A and V =V1∩A where
U1 and V1 are open in X . But then U1∩V1∩A = φ and hence U1∩V1 = φ . By (d) of
Theorem 2.3.19 U−

1 ∩V−
1 = φ and, consequently, U−

A ∩V−
A = U− ∩A∩V− ∩A ⊆

U−
1 ∩V−

1 = φ , where U−
A is the closure of U in A. Thus, A also satisfies condition (d)

of Theorem 2.3.19, and hence it is extremally disconnected. This argument, together
with Theorem 2.3.18 and (g) of Theorem 2.3.19, also gives that A is C∗-embedded
in X . Let f ∈ E(A) and let ϕ : R− −→ [0,1] be a homeomorphism. Then ϕ f has an
extension g ∈C∗(X) such that 0 ≤ g ≤ 1; so ϕ−1g ∈ E(X) is then an extension of
f . If, in fact, f ∈ D(A), then also g ∈ D(X), since f−1(R)⊆ g−1(R) and density is
a transitive property. ut

In order to examine the structure of D(X) we first prove

Theorem 2.3.21. Suppose that X is a set and {Ut : t ∈R−} is a collection of subsets
of X such that Ut ⊆Us whenever t > s. Define the function f : X −→ R− by

f (x) = ∨{t ∈ R− : x ∈Ut}.

Then for each s ∈ R−,

(a) f−1((s,∞]) = ∪{Ut : t > s};
(b) f−1([s,∞]) = ∩{Ut : t < s}.

Proof. (a) If f (x) > s, then there exists t > s with x ∈Ut . Conversely, if x ∈Ut

with t > s, then f (x)≥ t > s.
(b) If f (x) ≥ s and t < s, then there is an r > t with x ∈Ur. So x ∈Ur ⊆Ut .

Conversely, if x ∈ ∩{Ut : t < s}, then f (x)≥ t for each t < s; so f (x)≥ s. ut
Theorem 2.3.22. Let X be an extremally disconnected space. Then E(X) is a com-
plete lattice, and D(X) is an `-group and is a conditionally complete sublattice of
E(X). Also, D(X) is a commutative ring in which the product of two positive ele-
ments is positive.

Proof. We have already noted that E(X) is a sublattice of (R−)X . Given a family
{ fi : i ∈ I} ⊆ E(X) and r ∈ R− define

Ur =

[
⋃

i∈I

{x : fi(x) > r}
]−

,

and
f (x) = ∨{r : x ∈Ur}.

If i ∈ I and fi(x) > r, then x ∈Ur and f (x) ≥ r. So f (x) ≥ fi(x) for each i ∈ I and
each x in X . If s < t and some fi(x) > t, then fi(x) > s; hence Ut ⊆Us. Now, each
Ur is clopen; so for each s ∈ R−, f−1((s,∞]) is open and f−1([s,∞]) is closed, by
the previous theorem. Thus, f ∈ E(X). Suppose that g ∈ E(X) and g ≥ fi for each
i ∈ I. If x ∈Ur and V = g−1([−∞,r)), then V is open and
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V ∩
⋃

i

{y : fi(y) > r}= φ

since g ≥ fi for each i. Thus, V ∩Ur = φ , g(x) ≥ r and hence g(x) ≥ f (x). So
f = supE(X){ fi : i ∈ I} and E(X) is complete.

Since f−1(R)∩g−1(R)⊆ ( f ∨g)−1(R)∩( f ∧g)−1(R) for all f ,g∈ E(X), D(X)
is a sublattice of E(X). If { fi} ⊆ D(X), g ∈ D(X) and fi ≤ g for each i, then fi ≤
f =∨ fi ≤ g. But then f−1

i (R)∩g−1(R)⊆ f−1(R); so f ∈D(X), and hence D(X) is
conditionally complete (Exercise 1.3.4). If f ,g ∈ D(X) then the function h defined
by h(x) = f (x)+g(x) for x ∈ A = f−1(R)∩g−1(R) is in D(A), and it has a unique
extension, also called h, in D(X). This defines addition in D(X) as f + g = h. If
f ≤ g and k ∈ D(X) then f (x)+ k(x)≤ g(x)+ k(x) for each x in some dense subset
of X . So f + k ≤ g+ k and D(X) is an `-group. The product f g is defined similarly
and makes D(X) into a commutative ring in which the product of any two positive
elements is positive. ut

Note that if f ,g ∈ D(X), then ( f + g)(x) = f (x)+ g(x) and ( f g)(x) = f (x)g(x)
whenever the right sides of these equations are defined (Exercise 7(a)).

Let X = Spec(B(H)) be the Stone space of the Boolean algebra B(H) of polars
of the `-group H. Recall that X is the set of maximal ideals of B(H) supplied with
the Zariski topology. According to Theorem 2.3.13 and the remarks after it each
clopen set in X is of the form

V (A) = {m ∈ X : A 6∈ m} (2.3.2)

for some unique polar A ∈B(H), and V is an isomorphism between B(H) and the
dual algebra of X . If a ∈H we write V (a) = V (a⊥⊥). As a consequence of Exercise
2.2.13 we have that the mapping

V : H+ −→ dual algebra of X (2.3.3)

is a lattice homomorphism which preserves all sups that exist in H+. Moreover,
V (a) =V (|a|) =V (na) if a∈H and 0 6= n∈Z, and V (a+b) =V (a∨b) if a,b∈H+.
Also, by Theorem 2.3.17, since

A =
∨

a∈A

a⊥⊥,

V (A) =
∨

a∈A

V (a) =

[
⋃

a∈A

V (a)

]−
. (2.3.4)

Recall from Exercises 2.2.14 and 2.2.15 that an `-subgroup H of an `-group D is
a c`-essential `-subgroup if H ∩C 6= 0 for each nonzero convex `-subgroup C of D,
and a monomorphism of `-groups is a c`-essential monomorphism if its image is a
c`-essential `-subgroup.
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Theorem 2.3.23. Let H be an archimedean `-group, and let X = Spec(B(H)) be the
Stone space of the Boolean algebra B(H) of polars of H. Then there is a (complete)
c`-essential monomorphism from H into D(X).

Proof. No harm is done if H is replaced by its divisible hull d(H) since d(H)
is certainly archimedean and B(H) ∼= B(d(H)) (Exercise 2.2.6). Thus, we will
assume that H is a vector space over the rationals. Also, since a⊥ = (pa)⊥ for each
0 6= p ∈ Q, V (a) = V (pa). Let {ei : i ∈ I} be a maximal disjoint set of nonzero
elements in H+. For a ∈ H+ and q ∈Q let

W (q,a) =
⋃

i∈I

V ((qei−a)+),

and define the function fa : X −→ R− by, if m ∈ X ,

fa(m) = ∧{q ∈Q : m ∈W (q,a)−}.

Since (qei−a)+ = 0 if q≤ 0, we have that 0 < {q∈Q : m∈W (q,a)−}; so fa(m)≥
0, and in the definition of fa(m) we may replace “q ∈ Q” by either “q ∈ Q+” or
“0 < q ∈ Q.” Note that W is isotone in its first variable and antitone in its second
variable (as a mapping into the open subsets of X). Also note that since {ei} is a
maximal disjoint set in H, W (q,0) is dense in X for each q > 0, and hence f0 = 0.

Now, if p > fa(m), then m ∈W (p,a)− since there is a q ∈Q with fa(m)≤ q < p
such that m ∈W (q,a)− ⊆W (p,a)−, while if p < fa(m), then m 6∈W (p,a)−. The
proof will proceed by a sequence of steps.

(i) fa is continuous. Let r ∈ R−. Then

{m ∈ X : fa(m) < r}=
⋃

p<r
W (p,a)−

is open since X is extremally disconnected, and

{m ∈ X : fa(m)≤ r}=
⋂

r<p
W (p,a)−

is closed. Thus fa ∈ E(X).
(ii) fa ∈ D(X). We will first verify that for a,e ∈ H+

e⊥⊥ =
∨

p>0

((pe−a)+)⊥⊥

where the sup taken here is in B(H). Since (pe− a)+ ≤ pe, we have that ((pe−
a)+)⊥⊥ ⊆ e⊥⊥ and hence

∨

p>0

((pe−a)+)⊥⊥ ⊆ e⊥⊥.

For the other inclusion it suffices to verify that
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⋂

p>0

((pe−a)+)⊥ ⊆ e⊥.

But if b∧(pe−a)+ = 0, then p(b∧e)−a = (pb−a)∧(pe−a)≤ pb∧(pe−a)+ =
0; so p(b∧ e) ≤ a, and if this holds for each p > 0, then b∧ e = 0 since H is
archimedean. In terms of X we have, by Theorem 2.3.17, that

V (e) =

[
⋃

p>0

V ((pe−a)+)

]−

since V is an isomorphism of Boolean algebras.
To see that fa ∈ D(X) suppose that f−1

a (R)∩V (C) = φ for some basic clopen
set V (C). Then f−1

a (R)∩V (b) = φ for each b ∈C and hence fa(V (b)) = ∞. Thus
V (b)∩W (p,a) = φ for each 0 < p ∈ Q. Consequently, V (b)∩V ((pei− a)+) = φ
for each i ∈ I and each p > 0; so b∧ ei = 0 for each i, and b = 0 since {ei} is a
maximal disjoint subset. Thus C = 0 and V (C) = φ .

(iii) fa+b = fa + fb. We will show first that if m ∈ X , then fa+b(m) ≤
fa(m) + fb(m). Suppose, then, that fa(m) < p and fb(m) < q with p,q ∈ Q.
Then m ∈W (p,a)− ∩W (q,b)− = [W (p,a)∩W (q,b)]− by Theorem 2.3.19. Since
(pei−a)+∧ (qe j−b)+ = 0 if i 6= j, and u+∧ v+ ≤ (u+ v)+ (Exercise 2.1.13 (f)),

W (p,a)∩W (q,b) =
⋃

i, j

[V ((pei−a)+)∩V ((qe j−b)+)]

=
⋃

i

V ((pei−a)+∧ (qei−b)+) ⊆
⋃

i

V ((p+q)ei− (a+b))+).

So m ∈W (p+q,a+b)− and fa+b(m)≤ p+q. Thus

fa(m)+ fb(m) = ∧{p : fa(m) < p}+∧{q : fb(m) < q}

= ∧{p+q : fa(m) < p and fb(m) < q}

≥ fa+b(m).

For the reverse inequality let p,q ∈ Q+ with p < fa(m) and q < fb(m). Then m 6∈
W (p,a)− ∪W (q,b)− = [W (p,a)∪W (q,b)]−. Now,

W (p,a)∪W (q,b) =
⋃

i

V ((pei−a)+)∪V ((qei−b)+)

=
⋃

i

V ((pei−a)+ +(qei−b)+),

and V ([(p+q)ei− (a+b)]+)⊆V ((pei−a)+ +(qei−b)+), since (u+v)+ ≤ u+ +
v+. So m 6∈W (p+q,a+b)− and fa+b(m)≥ p+q. Thus,



2.3 Archimedean `-groups 73

fa(m)+ fb(m) = ∨{p ∈Q+ : p < fa(m)}+∨{q ∈Q+ : q < fb(m)}

= ∨{p+q : p < fa(m), q < fb(m)}

≤ fa+b(m),

and hence fa+b = fa + fb.
(iv) fa(m) = 0 if m 6∈V (a). If 0 < p∈Q, then V (ei)=V (pei−a+a)⊆V ((pei−

a)+ +a) =V ((pei−a)+)∪V (a). Since ∪V (ei) is dense in X , X =V (a)∪W (p,a)−.
So if m 6∈V (a), then m ∈W (p,a)− and fa(m)≤ p for each p > 0; thus fa(m) = 0.

(v) fa∨b = fa∨ fb and fa∧b = fa∧ fb. If a∧b = 0, then V (a)∩V (b) = φ , and
hence by (iv), fa∧ fb = 0 = fa∧b. In general, by (iii), fa∧ fb = ( fa−a∧b∧ fb−a∧b) +
fa∧b = fa∧b; and fa∨b + fa∧b = fa + fb = fa∨ fb + fa∧ fb. So fa∨b = fa∨ fb.

(vi) For each i, fei is the characteristic function of V (ei). If q ∈ Q+, then
V ((qei− ei)+) = V ((q−1)+ei) and V ((qe j− ei)+) = V (qe j) if j 6= i. So

W (q,ei) =
⋃

j 6=i

V (qe j) if 0≤ q≤ 1,

and W (q,ei)− = X if q > 1. Let m ∈V (ei). Then m ∈W (q,ei)− if and only if 1 < q;
so fei(m) = 1, and we are done by (iv).

Define the function ϕ : H −→ D(X) by ϕ(a) = fa = fa+ − fa− .
(vii) ϕ is an `-homomorphism. Since fa+ = ( fa)+, by (v), we only have to

check that fa+b = fa + fb. But (a + b)+ + a− + b− = (a + b)− + a+ + b+ gives
that f(a+b)+ + fa− + fb− = f(a+b)− + fa+ + fb+ , by (iii), and hence fa+b = fa + fb.
Alternatively, we may use Exercise 2.2.11.

(viii) ϕ is a monomorphism. Assume that ϕ(a) = 0 and that a≥ 0. Let 0 < p ∈
Q and i ∈ I, and suppose that m ∈V ([ei− p(a∧ei)]−). Since V ([ei− p(a∧ei)]−)⊆
V (a∧ ei)⊆V (ei),

1 = fei(m) = fei−p(a∧ei)(m) =− f[ei−p(a∧ei)]−(m)≤ 0.

Thus, V ([ei− p(a∧ei)]−) = φ and p(a∧ei)≤ ei for each p ∈Q+. So a∧ei = 0 for
each i and hence a = 0.

(ix) ϕ is a complete monomorphism. This follows from (x) and Exercise 2.2.15.
However, we give another proof and show, additionally, that infs and sups are com-
puted pointwise outside of a set of the first category. By Exercise 2.1.16 it suffices
to show that if

∧

α
aα = 0,

then

∧

α
faα = 0.
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If 0 < p ∈Q, then

pei = pei +
∨

α
−aα =

∨

α
(pei−aα)+.

So

V (ei) =

[
⋃

α
V ((pei−aα)+)

]−
,

and hence

X =

[
⋃

i

V (ei)

]−
=

[
⋃

i

[
⋃

α
V ((pei−aα)+)

]−]−

=

[
⋃

α

⋃

i

V ((pei−aα)+)

]−

=

[
⋃

α
W (p,aα)−

]−
.

Thus,

Ap =

[
⋃

α
W (p,aα)−

]′

is nowhere dense in X . Suppose that m ∈ X and

0 <
∧

α
faα (m).

Then for each p with
0 < p <

∧

α
faα (m)

we have that m ∈ Ap. Let A be the union of those Ap for which p ∈ Q satisfies the
previous inequality for some m ∈ X . Then A is a set of the first category, and if
m 6∈ A, then ∧

α
faα (m) = 0.

Now, suppose that f ∈ D(X) and that f ≤ faα for each α . We claim that f ≤ 0. If
not, there exists an open set U 6= φ such that f (m) > 0 for each m ∈U . But then
U ⊆ A◦, yet A◦ = φ by Theorem 2.3.11.

(x) ϕ is a c`-essential monomorphism of H into D(X). Suppose that 0 < f ∈
D(X). Then there exists a nonempty clopen set U in X and an n ∈ N such that
f (m) ≥ 1

n for each m in U . Hence, for some 0 < b ∈ H, f (m) ≥ 1
n for each m ∈

V (b)⊆U . For some i ∈ I, a = b∧ ei > 0, and then fa ≤ n f by (iv) and (vi). ut
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If f is a positive unit in the ring D(X), then the representation ϕ of H given in
Theorem 2.3.23 followed by multiplication by f is another similar representation of
H since f−1 is also positive. The following result shows that these are essentially
the only such representations of H, and it also shows that any Stone space used to
represent H is uniquely determined by H.

The support of a function f ∈D(X) is defined to be the clopen subset S( f ) = {x∈
X : f (x) 6= 0}− of X . According to Exercise 15, V (a) = S(ϕ(a)) for each a ∈ H.

Theorem 2.3.24. Let H be an archimedean `-group, let Y be a Stone space, and
let ϕ1 : H −→ D(Y ) be a c`-essential monomorphism. If ϕ : H −→ D(X) is the
representation given in Theorem 2.3.23, then there is a homeomorphism τ : X −→Y
and a positive unit f in D(Y ) such that for each a ∈ H and each m ∈ X,

ϕ1(a)(τ(m)) = f (τ(m))ϕ(a)(m), (2.3.5)

whenever the right side of this equation is defined. That is, the diagram

is commutative where τ∗ is the isomorphism that is induced by τ (τ∗(g) = g◦τ) and
µτ∗( f ) is multiplication by the unit τ∗( f ).

Proof. Again, we will assume that H is divisible. Let G(X) be the dual algebra of
X . As we have previously seen in Theorem 2.3.13 and the remarks following it, and
in (2.3.2) and (2.3.4), the mapping V : B(H)−→ G(X) given by

V (A) =
∨

a∈A

V (a) =

[
⋃

a∈A

S(ϕ(a))

]−

is an isomorphism of Boolean algebras. By Exercise 16(e) the function ψ1 : B(H)−→
G(Y ) defined by

ψ1(A) =

[
⋃

a∈A

S(ϕ1(a))

]−

is also an isomorphism. Let δ = V ψ−1
1 : G(Y )−→ G(X). By Theorems 2.3.15 and

2.3.16 there is a unique homeomorphism τ : X −→ Y such that G(τ) = δ ; that is,
δ (P) = τ−1(P) for each clopen set P in Y . So τ−1ψ1(A) = V ψ−1

1 ψ1(A) = V (A),
and hence τV (A) = ψ1(A) for each polar A ∈B(H). In particular, since V (a⊥⊥) =
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S(ϕ(a)) and ψ1(a⊥⊥) = S(ϕ1(a)) (Exercise 16), for each a ∈ H, we have that
τ(S(ϕ(a))) = S(ϕ1(a)).

Since ϕ1(H) is a c`-essential `-subgroup of D(Y ), {ϕ1(ei) : i ∈ I} is a maximal
disjoint subset of D(Y ). Thus, by Exercises 12 and 13, {S(ϕ1(ei)}i∈I is a family of
pairwise disjoint clopen sets in Y whose union Z is dense in Y .

Define the function f on Z by stipulating that, for each i ∈ I, f agrees with
ϕ1(ei) on S(ϕ1(ei)). This defines f as a continuous extended real-valued function
on the dense subset Z of Y , and since each ϕ1(ei) ∈ D(Y ), f ∈ D(Z). Since Z is
D-embedded in Y (by Theorem 2.3.20) f has a unique extension to an element in
D(Y ) which is also called f . Since {y ∈ Y : f (y) > 0} contains the union ∪{y ∈ Y :
ϕ1(ei)(y) > 0} and the latter is dense in Y , f is a positive unit of D(Y ) (Exercise
13).

To verify (2.3.5) we may assume that a∈H+, and we may restrict m to the dense
subset

T = ( f τ)−1(R)∩ϕ(a)−1(R)∩
[
⋃

i

S(ϕ(ei))

]

of X . Suppose, then, that m ∈ S(ϕ(e j)) for some j, and that f (τ(m)) and ϕ(a)(m)
are both real. Let p ∈ Q with p > ϕ(a)(m). Since ϕ(e j) is the characteristic
function of S(ϕ(e j)), ϕ(pe j − a)(m) > 0. Thus, m ∈ S(ϕ(pe j − a)+) and τ(m) ∈
S(ϕ1(pe j−a)+)⊆ S(ϕ1(e j)). Since f agrees with ϕ1(e j) on S(ϕ1(e j)), p f (τ(m))≥
ϕ1(a)(τ(m)). So

f (τ(m))ϕ(a)(m) = f (τ(m))(∧{p ∈Q : p > ϕ(a)(m)})
= ∧{ f (τ(m))p : p > ϕ(a)(m)}
≥ ϕ1(a)(τ(m)).

Similarly, if p < ϕ(a)(m), then p f (τ(m)) ≤ ϕ1(a)(τ(m)), and hence f (τ(m))
ϕ(a)(m)≤ ϕ1(a)τ(m). So ϕ1(a)(τ(m)) = f (τ(m))ϕ(a)(m). ut

Recall that an `-group is laterally complete if each disjoint subset of its positive
cone has a sup in the `-group. As an application of Theorem 2.3.23 we have

Theorem 2.3.25. Let G be an `-group.

(a) G is divisible and complete if and only if there is a Stone space X such that
G is isomorphic to a convex `-subgroup of D(X).

(b) G is divisible, complete and laterally complete if and only if there is a Stone
space X such that G is isomorphic to D(X).

Proof. Suppose that G is divisible and let ϕ : G −→ D(X) be the representation
given in Theorem 2.3.23. For simplicity we will identify G with its image ϕ(G).
If H is the convex `-subgroup of D(X) that is generated by G, then, since G is a
c`-essential divisible `-subgroup of H, H is the completion of G, by Theorem 2.3.6.
Thus, if G is complete, then G = H. Suppose that G is also laterally complete. If
{ei} is the maximal disjoint subset of G+ used in the proof of Theorem 2.3.23, then
ei is the characteristic function of S(ei) and
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1 =
∨

i

ei.

Since G is laterally complete, and sups in G are also sups in D(X), 1 ∈ G. Thus,
C(X)⊆G. Suppose that 1≤ f ∈D(X). Let {gλ} be a disjoint subset of G+ maximal
with respect to the property that for each λ , gλ = f on S(gλ ). Then

g =
∨

λ
gλ ∈ G

and g agrees with f on
U =

⋃

λ
S(gλ ).

If U is not dense in X then there exists a nonempty clopen subset V ⊆ f−1(R) with
U ∩V = φ . Let h ∈C(X) be defined by h = f on V and h = 0 on V ′. Then 0 < h ∈G
and gλ ∧h = 0 for each λ . Thus, by the maximality of the family {gλ}, U is dense
and f = g ∈ G. Now, if f ∈ D(X)+, then f ∨1 ∈ G, and also f ∈ G; so G = D(X).
Both converses have already been mentioned (see Exercise 13). ut

If G is a nonzero `-group, then the lexicographic extension G ×←Z is a proper
c`-essential extension of G. The next result, which is basically a rephrasing of
Theorem 2.3.25(b), characterizes those `-groups in the category of archimedean
`-groups which do not have any proper c`-essential extensions in this category. An
archimedean `-group G is c`-essentially closed if each c`-essential monomorphism
from G into an archimedean `-group is an isomorphism. A c`-essential closure of G
is an archimedean `-group that is c`-essentially closed and is a c`-essential extension
of G.

Theorem 2.3.26. The following statements are equivalent for the archimedean `-
group G.

(a) G is c`-essentially closed.
(b) G is divisible, complete, and laterally complete.
(c) The representation ϕ : G−→ D(X) of Theorem 2.3.23 is an isomorphism.
(d) There is a Stone space Y such that G∼= D(Y ).

Proof. We only need to verify the implication (d)⇒ (a). Suppose that Y is a Stone
space and α : D(Y ) −→ H is a c`-essential monomorphism into the archimedean
`-group H. Let X be the Stone space of B(H). By Theorem 2.3.23 there is a c`-
essential monomorphism ϕ : H −→ D(X) with ϕ(α(1)) = 1 since {α(1)} is a
maximal disjoint subset of H (see Exercise 17). By the proof of Theorem 2.3.25
ϕα(D(Y )) = D(X). Thus, ϕα is an isomorphism and hence so are ϕ and α . ut

An immediate consequence of Theorems 2.3.23 and 2.3.26 is that each archimedean
`-group has a c`-essential closure which is unique up to an isomorphism, by The-
orem 2.3.24. A little more is true. The c`-essential closure of G will henceforth be
denoted by Ge.
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Theorem 2.3.27. For i = 1,2 let ϕi : G −→ Di be a c`-essential monomorphism of
the `-group G into the c`-essentially closed archimedean `-group Di. Then there is
a unique isomorphism ψ : D1 −→ D2 such that ϕ2 = ψϕ1.

Proof. If XG is the Stone space of B(G), then from Exercise 23 we obtain the
commutative diagram

where ρi and ϕDi
are isomorphisms. Thus, ψ = ϕ−1

D2
ρ1ρ−1

2 ϕD1
is the desired isomor-

phism. The uniqueness of ψ is a consequence of the fact that, by Theorem 2.3.5,
each element of D+

1 is the sup of elements in the divisible closure of ϕ1(G); also see
Exercise 30. ut

Using the analogy of injective modules in a module category one would expect a
c`-essentially closed archimedean `-group to be a summand of every archimedean
`-group in which it is embedded as a convex `-subgroup. This turns out to be true,
but this property is not a characterization of c`-essentially closed `-groups. An
archimedean `-group is said to have the splitting property if it is a summand of
each archimedean `-group in which it is a convex `-subgroup.

Theorem 2.3.28. The following statements are equivalent for the archimedean `-
group G.

(a) G has the splitting property.
(b) If H is a c`-essential archimedean extension of G and G is convex in H, then

G = H.
(c) If G is a convex `-subgroup of the `-subgroup H of Ge, then G = H.
(d) If G is a convex `-subgroup of the archimedean `-group H, then H = G⊥⊕

G⊥⊥.
(e) For each 0 < a ∈Ge\D(d(G)) there are elements 0 < g ∈G and n ∈N such

that g∧na /∈ G.

Proof. The implications (a) ⇒ (b) ⇒ (c) ⇒ (b) and (a) ⇒ (d) are obvious.
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(b)⇒ (a). Suppose that G∈C (H). Since G is c`-essential in G⊥⊥ we have that G
is a polar of H. Since G−→ H/G⊥ is a c`-essential monomorphism, H = G⊕G⊥.

(d)⇒ (b). Suppose that G∈C (H) and G is a c`-essential `-subgroup of H. Then
G⊥H = 0. If 0 < h ∈H\G let K = G1⊕G2 +Z(h,h)⊆H⊕H, where G1 = G2 = G.
Since G1⊕G2 is a convex `-subgroup of H⊕H and Z(h,h) is an `-subgroup, K is
an `-subgroup of H⊕H. We claim that G⊥K

1 = G2. For if 0≤ (g,a)+n(h,h)∈G⊥K
1 ,

then (g+nh,a+nh)∧ (b,0) = 0 for each b ∈G+. So nh =−g ∈G and hence h ∈G
unless n = 0, in which case g = 0, also. Similarly, G⊥K

2 = G1 and G⊥K
1 ⊕G⊥K⊥K

1 =
G2⊕G1 ⊂ K. Thus, H = G.

(e) ⇒ (c). Suppose that G ⊆ H ⊆ Ge,G is convex in H and 0 < a ∈ H\G. Note
that CGe

((d(G)) = D(d(G)) by Theorem 2.3.6. If a ∈ CGe
(d(G)), then 0 < a <

g/n ≤ g for some g ∈ G and n ∈ N. But then we have the contradiction that a ∈ G.
Thus, a /∈ D(d(G)), but g∧na ∈ G for each g ∈ G+ and each n ∈ N.

(c) ⇒ (e). If g∧ na ∈ G for each g ∈ G+ and n ∈ N, then H = G +Za is an `-
subgroup of Ge and G is convex in H by Exercise 2.2.19. ut

Our next goal is to show that each laterally complete archimedean `-group has
the splitting property. The first essential ingredient of the proof is the following
technical result.

Theorem 2.3.29. Let G be an abelian `-group and let x,y ∈ G+. For each n ∈ Z+

let
wn = ((n+2)x− y)+∧ (y−nx)+.

Suppose u is an upper bound for the disjoint set {(2n + 1)w2n : n ∈ Z+} and v is
an upper bound for the disjoint set {(2n + 2)w2n+1 : n ∈ Z+}. Then 2y is an upper
bound for the subgroup generated by x∧ (y− y∧ (u+ v)).

Proof. Note that if m≥ n+2, then wn∧wm = 0 since

0≤ wn∧wm ≤ ((n+2)x− y)+∧ (mx− y)− ≤ (mx− y)+∧ (mx− y)− = 0.

We will show by induction on n ∈ Z+ that

n

∑
k=0

(k +1)wk ≥ [(n+1)((n+2)x− y)+]∧ y≥ (nx− y)+∧ y.

Of course, it is the first inequality that needs to be established since the second is
obvious. For n = 0 this inequality is w0 ≥ w0. The inductive step requires that we
verify the inequality

([(n+1)((n+2)x− y)+]∧ y)+(n+2)wn+1 ≥ [(n+2)((n+3)x− y)+]∧ y.

But,
[(n+2)((n+3)x− y)+]∧ y =

[(n+2)((n+3)x− y)+]∧ [((n+1)((n+2)x− y))+((n+2)(y− (n+1)x))]∧ y≤
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[((n+2)((n+3)x− y)+∧ (n+1)((n+2)x− y)+)

+((n+2)((n+3)x− y)+∧ ((n+2)(y− (n+1)x)+)]∧ y≤
[((n+1)((n+2)x− y)+)+(n+2)(((n+3)x− y)+∧ (y− (n+1)x)+)]∧ y≤

[((n+1)((n+2)x− y)+)+(n+2)wn+1]∧ y≤
[(n+1)((n+2)x− y)+]∧ y+(n+2)wn+1.

Note that for each n ∈ Z+

n

∑
k=0

(k +1)wk =
∨

k even

(k +1)wk +
∨

k odd

(k +1)wk ≤ u+ v.

Hence,

x ∧ [y− (y∧ (u+ v))]≤ x∧
[

y−
(

y∧
n

∑
k=0

(k +1

)
wk

]

≤ x∧ [y− (y∧ (nx− y)+)]

= x∧ (2y−nx)+

≤ (2y−nx)+∧ [((n+1)x−2y)∨ x]

= [2y+(−2y∨−nx)]∧ [(n+1)x+(−2y∨−nx)]

= (2y∧ (n+1)x)− (2y∧nx).

Thus, for k ∈ N,

k(x∧ [y− (y∧ (u+ v))])≤
k−1

∑
n=0

[(2y∧ (n+1)x)− (2y∧nx)]

= (2y∧ kx)− (2y∧0)≤ 2y.

ut
An `-group is called projectable if each principal polar is a direct summand. The

previous result gives the following.

Theorem 2.3.30. Let G be an archimedean `-group. Suppose that each positive dis-
joint subset of every principal bipolar x⊥⊥ is bounded in x⊥⊥. Then G is projectable.
In particular, a laterally complete archimedean `-group is projectable.

Proof. Continuing with the notation of Theorem 2.3.29 we have y−y∧(u+v)∈ x⊥.
Since wn ≤ (n + 2)x, the elements u and v may be chosen in x⊥⊥. So y = (y− y∧
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(u + v))+ y∧ (u + v) ∈ x⊥+ x⊥⊥. The second statement follows immediately from
the fact that each polar is a completely closed convex `-subgroup. ut

The second essential ingredient needed to show that a laterally complete archi-
medean `-group has the splitting property is the following.

Theorem 2.3.31. Let G be an archimedean `-group, and let H be the `-subgroup of
Ge generated by the least upper bounds of disjoint subsets of G+. Then CGe

(H) =
Ge.

Proof. Let X be the Stone space of the Boolean algebra of polars of G. From
Theorem 2.3.23 and its proof we may assume G ⊆ D(X) = Ge, {eλ : λ ∈ Λ} is
a maximal disjoint subset of G+, eλ is the characteristic function of the set Xλ ,
and {Xλ : λ ∈ Λ} is a family of disjoint clopen sets whose union is dense in X .
Let 0 < h ∈ D(X). For each n ∈ Z+ and each λ ∈ Λ , let Un = h−1((n− 1,n))−,
Vn = h−1(n)◦−, Un,λ = Un ∩Xλ , and Vn,λ = Vn ∩Xλ . Now, {Un,Vn : n ∈ Z+} is a
family of disjoint clopen sets, h−1(R)∩ (

⋃
λ Xλ ) is a dense open subset of X , and

h−1(R)∩
(

⋃

λ
Xλ

)
=

⋃

(n,λ )∈Z+×Λ
(Un,λ ∪Vn,λ ) (2.3.6)

For (n,λ ) ∈ Z+×Λ let {gα : α ∈ Γn,λ} and {hβ : β ∈ ∑n,λ} be maximal disjoint
subsets of G+ with S(gα) ⊆ Un,λ and S(hβ ) ⊆ Vn,λ , respectively. For n,m ∈ Z+,
λ ∈Λ , α ∈ Γn,λ and β ∈ ∑n,λ define

wn,λ ,α,m = ((m+2)gα −neλ )+∧ (neλ −mgα)+,

vn,λ ,β ,m = ((m+2)hβ −neλ )+∧ (neλ −mhβ )+.

Each of the sets

A = {(2m+1)wn,λ ,α ,2m : (λ ,α,n,m) ∈Λ ×Γn,λ × Z+× Z+}
⋃{(2m+1)vn,λ ,β ,2m : (λ ,β ,n,m) ∈Λ ×∑n,λ ×Z+× Z+}

and
B = {(2m+2)wn,λ ,α ,2m+1 : (λ ,α,n,m) ∈Λ ×Γn,λ ×Z+×Z+}

⋃{(2m+2)vn,λ ,β ,2m+1 : (λ ,α,n,m) ∈Λ ×∑n,λ ×Z+×Z+} is
a disjoint subset of G+.

Let u = lubGeA and v = lubGeB. We will show u+ v≥ h, and to do so it suffices
to verify that (u+ v)(x)≥ h(x) for each x in the dense subset given in (2.3.6). Now,
there exists (n,λ ) ∈ Z+×Λ with x ∈Un,λ ∪Vn,λ ; so h(x)≤ n. By Theorem 2.3.29,
for each α ∈ Γn,λ and each β ∈ ∑n,λ , we have

neλ − (neλ ∧ (u+ v)) ∈ g⊥H
α ∩h⊥H

β .
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Since

⋃

α∈Γn,α

S(gα)∪
⋃

β∈∑n,β

S(hβ )

is dense in Un,λ ∪Vn,λ , for each y ∈Un,λ ∪Vn,λ ,neλ (y) = neλ (y)∧ (u + v)(y); that
is, n≤ (u+ v)(y). In particular, (u+ v)(x)≥ n≥ h(x). Thus, h ∈CGe

(H). ut
Theorem 2.3.32. Let H be an archimedean `-group that is a c`-essential extension
of the laterally complete `-group G. Then H is projectable and it has the splitting
property.

Proof. Since G⊆H ⊆Ge = He and CHe
(H) = He by the previous result, H has the

splitting property by Exercise 25(a). Let 0 < x,y ∈ H and take g ∈ G with g > y.
Suppose {xλ : λ ∈Λ} is a maximal disjoint subset of (x⊥H⊥G)+, and let z =∨λ xλ ∈
G. Then {xλ} is a maximal disjoint subset of x⊥H⊥H and x⊥H = z⊥H . For, if 0 < h ∈
x⊥H⊥H and 0 < a≤ nh with a ∈ G, then a ∈ x⊥H⊥G and a∧ xλ > 0 for some λ ∈Λ ;
so h∧ xλ > 0. Also, if 0 < h ∈ x⊥H , then h∧ xλ = 0 for each λ ∈ Λ ; so h∧ z = 0.
Conversely, if h∧ z = 0, then h∧ x ∈ x⊥H⊥H and h∧ x∧ xλ = 0 for each λ ∈ Λ ;
so h∧ x = 0. By Theorem 2.3.30 G is projectable and so there exist g1 ∈ z⊥G and
g2 ∈ z⊥G⊥G with g = g1 +g2. But then

y = y∧g = (y∧g1)+(y∧g2) ∈ z⊥H + z⊥H⊥H = x⊥H + x⊥H⊥H

since g2 ∈ z⊥G⊥G = z⊥H⊥G ⊆ z⊥H⊥H by Exercise 2.2.14. Thus, H = x⊥H ⊕ x⊥H⊥H

and H is projectable. ut

Exercises.

1. Let T be a totally ordered set which is topologized by the interval topology;
that is, the topology has as a subbase all intervals of the form {x ∈ T : x < a}
or {x ∈ T : x > a}, where a ∈ T . Hence the collection of finite intersections of
these intervals is a base for the interval topology.

(a) If S is an order dense subset of T , then S is a topologically dense subset of
T and the interval topology of S coincides with the subspace topology of S.

(b) If for each pair of elements a,b ∈ T with a < b, there exists c ∈ T with
a < c < b, then each topologically dense subset of T is order dense in T .

(c) If T ×T has the product topology, then the inf and sup functions inf, sup :
T ×T −→ T are both continuous.

(d) Let X be a topological space and let f ,g be two continuous functions from X
into T . If f (x)≤ g(x) for each x in a dense subset of X show that f (x)≤ g(x)
for each x in X .

2. Show that a subgroup of R is either cyclic or is topologically dense in R, and a
subring of R is either contained in Z or is dense.
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3. Prove that a nonzero totally ordered group is complete if and only if it is iso-
morphic to Z or to R.

4. This proof of Hölder’s theorem does not use Theorem 2.3.3 or Theorem 2.3.9.
Let e be a strictly positive element of the totally ordered archimedean group G.
If a∈G let `(a) = {m

n ∈Q : me≤ na} and u(a) = {m
n ∈Q : me≥ na} (n∈N).

Define ϕ : G−→R by ϕ(a) = lubR`(a). Then ϕ is an embedding. (Hint: Use
Exercise 2.1.15 to show that `(a)+`(b)⊆ `(a+b) and u(a)+u(b)⊆ u(a+b).)

5. (a) Let the group G =Z×Z have the positive cone G+ = {(a,b) : a > 0 and b >
0}∪{(0,0)}. Then G is a directed archimedean po-group that is not inte-
grally closed.

(b) If G is a directed integrally closed po-group show that (EndZ(G), EndZ(G)+)
is integrally closed where EndZ(G)+ is the set of isotone endomorphisms
of G.

6. Show that an `-group can be embedded in a product RI , for some set I, if and
only if it has a collection of normal maximal convex `-subgroups whose inter-
section is 0.

7. Let A be a dense subset of the topological space Y , and suppose that f ,g,h ∈
E(Y ).

(a) If h(y) = f (y)+g(y) (respectively, h(y) = f (y)g(y)) whenever y ∈ A show
that h(y) = f (y) + g(y) (respectively, h(y) = f (y)g(y)) whenever f (y) +
g(y) (respectively, f (y)g(y)) is defined. (a + b is defined unless {a,b} =
{∞,−∞} and ab is defined unless {a,b}= {0,∞} or {a,b}= {0,−∞}.)

(b) If f ,g,h ∈ D(Y ) and h(y) = f (y)+ g(y) for each y ∈ A, then we write h =
f + g. This defines a partial addition in D(Y ). A nonempty sublattice of
D(Y ) that is closed under addition and negation is called an `-subgroup
of D(Y ). Show that each element of D(Y ) is contained in an `-subgroup
of D(Y ). In fact, it is contained in a real `-subspace of D(Y ) that contains
C(Y ). (If f ∈ D(Y ) and g ∈C(Y ) consider f+, f− and f ∨g.)

8. Let I = [0,1] be the closed unit interval in R, and let G = { f ∈ D(I) : f (x) =
g(x)+∑n

i=1
bi

(x−ai)2 , where ai ∈ I, bi ∈ R and g ∈C(I)}. Then:

(a) G is an archimedean `-group. (First, assume g = 0 and construct f + by
considering the partition of I determined by the zeros of f ; show that
f +(x) = ∑bi>0

bi
(x−ai)2 +h(x) where h is continuous.)

(b) Each maximal convex `-subgroup of G contains C(I). (Show that if the
maximal convex `-subgroup M of G does not contain C(I), then its inter-
section with C(I) is a maximal ring ideal of C(I).)

(c) G cannot be embedded in a product of copies of R.

9. Let F be the field of quotients of the commutative unital domain R. The element
q ∈ F is almost integral over R if there exists a nonzero element r in R such that
rqn ∈ R for each n ∈ N. R is called completely integrally closed if each element
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of F that is almost integral over R is in R. Show that R is completely inte-
grally closed if and only if its group of divisibility is integrally closed (Exercise
2.1.12).

10. Show that if I is an infinite set, then ZI/Z(I) is not archimedean.

11. The Hausdorff space X is completely regular if for each closed set F and each
x 6∈ F there exists f ∈C(X) such that f (x) = 1 and f (F) = 0. Show that the
following statements are equivalent for the completely regular space X .

(a) X is extremally disconnected.
(b) D(X) is a conditionally complete lattice.
(c) C(X) is a complete `-group.

(For (c)⇒ (a), if U is an open subset of X , use the set { f ∈C(X) : f ≤ 1 and
f (U ′) = 0} to construct a function which separates U and U−′ and then use (g)
of Theorem 2.3.19.)

12. Let X be an extremally disconnected space and let f ,g ∈ D(X).

(a) S(| f |∧ |g|) = S( f )∩S(g).
(b) S(| f |+ |g|) = S(| f |∨ |g|) = S( f )∪S(g).
(c) | f |∧ |g|= 0 iff S( f )∩S(g) = φ .
(d) f⊥⊥ = {h ∈ D(X) : S(h)⊆ S( f )}.

13. Let Y be an extremally disconnected space.

(a) Show that each nonempty disjoint subset of D(Y ) has its sup and inf in
D(Y ); hence, D(Y ) is laterally complete.

(b) A disjoint subset { fi : i ∈ I} of D(Y ) is a maximal disjoint subset if and
only if ∪S( fi) is dense in Y .

(c) An element f ∈ D(Y ) is a unit iff S( f ) = Y iff f⊥ = 0.
(d) There is a Stone space X such that D(Y ) is isomorphic to D(X).

14. Let {Gi : i ∈ I} be a collection of nonzero `-groups.

(a) ΠGi is laterally complete if and only if each Gi is laterally complete.
(b) ⊕Gi is laterally complete if and only if I is finite and each Gi is laterally

complete.
(c) If I is infinite then the divisible hull of ZI is not laterally complete.

15. Let X be the Stone space of the Boolean algebra of polars of the archimedean
`-group H. Show that V (a) = S( fa) for each a ∈ H. (Use step (iv) in the proof
of Theorem 2.3.23 and Exercise 12(c).)

16. Let G(Y ) be the dual algebra of the extremally disconnected space Y , let H be a
c`-essential `-subgroup of D(Y ), and let B(D(Y )) (respectively, B(H)) be the
Boolean algebra of polars of D(Y ) (respectively, H).

(a) If f ,g ∈ D(Y ), then f g = 0 if and only if | f |∧ |g|= 0.
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(b) A subset of D(Y ) is a polar if and only if it is an annihilator ideal of D(Y )
(see Exercise 1.2.7).

(c) B(D(Y )) is isomorphic to the Boolean algebra of idempotents of D(Y ) (see
Exercise 1.2.11).

(d) The mapping ρ : B(D(Y ))−→ G(Y ) given by

ρ(B) =

[
⋃

f∈B

S( f )

]−

is an isomorphism of Boolean algebras. (Use (c) and Exercise 12).
(e) If ψ1 : B(H)−→ G(Y ) is the isomorphism

ψ1(A) =


 ⋃

a∈A⊥H⊥D

S(a)



−

given by (d) and Exercise 2.2.14, then ψ1(a⊥H⊥H ) = S(a) for each a ∈ H
and

ψ1(A) =

[
⋃

a∈A

S(a)

]−

for each A ∈B(H).
(f) Suppose that Y is a Stone space and XD is the Stone space of B(D(Y )).

Give an explicit homeomorphism from Y onto XD.

17. A weak order unit in the `-group H is an element e ∈ H+ with e⊥ = 0. Let
H be archimedean and let ϕ : H −→D(X) be the embedding given in Theorem
2.3.23.

(a) H has a weak order unit if and only if ϕ(H) contains a unit of D(X).
(b) If H has a weak order unit e, then there is an embedding ϕ with ϕ(e) = 1.

18. (a) Let G be an `-group and let U = U (D(G)) be the group of units of the
po-monoid D(G). Show that G is an `-subgroup of U .

(b) If G is the `-group Q ×←Q determine U (D(G)).

19. Let H be an archimedean `-group, and let ϕ : H −→ D(X) be the embedding
given in Theorem 2.3.23. Suppose that F is a subring ofR and H is an F-module
such that F+H+ ⊆ H+ and rx = 0 implies that r = 0 or x = 0 (r ∈ F, x ∈ H).
Show that ϕ is an F-module homomorphism.

20. Suppose that H is an archimedean `-group and, for i = 1,2,Yi is a Stone space
and ϕi : H −→ D(Yi) is a c`-essential monomorphism. Show that there is a
homeomorphism τ : Y1 −→ Y2 and a positive unit f ∈ D(Y2) such that, for
all a ∈ H and every y1 ∈ Y1, ϕ1(a)(y1) = ϕ2(a)(τy1) f (τ(y1)) whenever the
right side is defined. That is, ϕ1 = τ∗ ◦ ` f ◦ ϕ2 where τ∗ : D(Y2) −→ D(Y1)
is the isomorphism induced by τ,τ∗(g) = g ◦ τ , and ` f : D(Y2) −→ D(Y2) is
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the isomorphism induced by f , ` f (g) = f g. Show that f and τ are unique. (If
ϕ1 = σ∗ ◦ `g ◦ϕ2 use Theorem 2.3.16 to show that τ∗ ◦ ` f = σ∗ ◦ `g.)

21. The following statements are equivalent for the convex `-subgroup C of the
`-group G.

(a) C is completely closed in G.
(b) If {ci}i∈I ⊆C and c = ∨ci exists in G, then c ∈C.
(c) If {ci}i∈I ⊆C and c = ∧ci exists in G, then c ∈C.
(d) If {ci}i∈I ⊆C+ and c = ∨ci exists in G, then c ∈C.
(e) The natural map G−→ G/C is complete.

22. (a) Show that if A is a polar in the archimedean `-group G, then G/A is
archimedean. (Give an elementary proof.)

(b) Show that if A is a completely closed convex `-subgroup of the archimedean
`-group G, then A is a polar. (Use Theorem 2.3.5.)

23. Let α : G −→ D be a monomorphism of the `-group G into the archimedean
`-group D, and suppose that B(α(G)) and B(D) are canonically isomorphic
(see Exercise 2.2.14).

(a) Show that α preserves maximal disjoint subsets. (Here, D need not be
archimedean.)

(b) Let {ei : i∈ I} be a maximal disjoint set in G, and let XG and XD be the Stone
spaces of B(G) and B(D), respectively. Show that the following diagram
commutes.

Here, ϕG and ϕD are the embeddings given in Theorem 2.3.23 that are based
on {ei} and {α(ei)}, respectively, and ρ is the isomorphism induced by
the canonical isomorphism B(G) −→ B(D); that is, ρ is induced by the
homeomorphism XD −→ XG given by m 7−→ {α−1(B∩α(G)) : B ∈ m}. In
particular, if G and α(G) are identified and XG and XD are identified, then
ϕD is an extension of ϕG.

(c) Show that α is a c`-essential monomorphism.

24. Let H be an `-subgroup of the archimedean `-group D, and assume that B∩H 6=
0 for each nonzero polar B in D. Show that D is a c`-essential extension of H.
(Assume that D = D(Y ) for some Stone space Y . Use Exercise 16(c) to verify
(iv) of Exercise 2.2.14 (e), and then apply Exercise 23(c).)
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25. Let G be an archimedean `-group.

(a) If Ge = CGe
(G), show that G has the splitting property.

(b) Suppose that G is an `-subgroup of ∏i Ti = T which contains ⊕iTi, where
{Ti : i ∈ I} is a collection of nonzero subgroups of R. If T = CT (G), show
that G has the splitting property. In particular, if some Ti ⊂ R, then T has
the splitting property, but T ⊂ T e = RI .

26. (a) Show that an `-group G is complete iff G+ is conditionally complete (see
Exercise 1.3.4).

(b) If G = lim←−Gi is an inverse limit in the category of `-groups and each Gi is
complete show that G is complete (see Exercise 2.2.9).

(c) Suppose that G = lim−→Gi is a direct limit in the category of `-groups where
the index set I is directed up. Assume that each map ψi j : Gi −→ G j is a
monomorphism and its image is convex. If each Gi is complete show that
G is complete (see Exercise 1.4.22).

(d) If {Gi : i ∈ I} is a family of archimedean `-groups show that D(⊕Gi) =
⊕D(Gi) and D(∏ Gi) = ∏ D(Gi).

27. (a) Suppose that {Ai : i ∈ I} is a family of nonzero `-subgroups of R, and G is
an `-subgroup of ∏ Ai that contains ⊕Ai (that is, G is archimedean and has
a basis - see Exercise 2.5.27). Show that D(G) is the convex `-subgroup of
∏ D(Ai) generated by G (see Exercise 2).

(b) Let A be the `-group of all convergent real-valued sequences and let B be
its `-subgroup of eventually constant sequences. Find D(A) and D(B).

(c) Show that an embedding of `-groups α : G −→ RI can be extended to an
embedding β : D(G)−→ RI . (Assume that, for each i ∈ I,Ai = kerαi ⊂ G
where αi = πiα and πi : RI −→ R is the ith projection. For each i ∈ I, let
gi ∈ G+\Ai, and let Bi be a convex `-subgroup of D(G) that contains Ai
and is maximal with respect to excluding gi. Then Bi ∩G = Ai and Bi is a
maximal convex `-subgroup of D(G). Use Theorem 3.3.1 (a).)

28. (a) If H is archimedean show that its `-subgroup G is dense in H iff it is left
and right dense in H.

(b) Suppose that G ⊆ D are `-subgroups of H = RI . Show that the follow-
ing statements are equivalent: (i) D is a completion of G. (ii) D is max-
imal among those `-subgroups of CH(G) in which G is left dense. (iii)
D = CT (G) where T is an `-subgroup of H maximal with respect to con-
taining G as a left dense `-subgroup.

29. Let G be an archimedean `-group.

(a) If a ∈G show that CG(a) is a subdirect product of a family of subgroups of
R (Use Exercises 6 and 2.5.32 (a)).

(b) If 0 ≤ a ≤ b show that CG(a) has a unique completion in D(CG(b)); let
ψab : D(CG(a))−→ D(CG(b)) be the unique embedding.

(c) Show that ({D(CG(a)) : a ∈ G+}, {ψab : a ≤ b}) is a direct system of `-
groups and D(G) = lim−→D(CG(a)) (see Exercise 26(c)).
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30. Let G be a left dense convex `-subgroup of D(X), where X is a Stone space.

(a) Show that each element of D(X)+ is the sup of a disjoint subset of C(X)+.
(Use the argument in the proof of Theorem 2.3.25.)

(b) Show that 1 is the sup of a disjoint set of idempotents from G. (Each
nonempty clopen subset of X contains a nonempty clopen subset whose
characteristic function is in G.)

(c) Show that each element in D(X)+ is the sup of a disjoint subset of G+.
(d) If H is a c`-essential `-subgroup of D(X) show that each element of D(X)+

is the sup of a disjoint subset of D(d(H)).

2.4 Prime Subgroups, Representability, and Operator Sets

The lattices in which it is easiest to compute are the totally ordered sets. Thus, to
study an `-group it would be useful to have enough totally ordered sets (or groups)
arising from the `-group to represent it. We show here that this is the case, and verify
that the class of `-groups which can be embedded into a product of totally ordered
groups is a variety determined by a two variable identity. With an eye toward rings
and modules we introduce `-groups with operators and several results are expressed
in this format. The basic theory concerning the totally ordered convex subgroups of
an `-group is presented in the exercises and it will be used in subsequent sections.
A convex `-subgroup C of the `-group G is called a prime subgroup if whenever
a, b ∈ G with a ∧ b ∈C, then a ∈C or b ∈C.

Theorem 2.4.1. The following statements are equivalent for the convex `-subgroup
C of G.

(a) C is a prime subgroup.
(b) If a,b ∈ G with a∧b = 0, then a ∈C or b ∈C.
(c) The lattice of left cosets G/C is totally ordered.
(d) The lattice of convex `-subgroups of G that contain C is totally ordered.

Proof. Obviously, (a) implies (b). To see that (b) implies (a) and (c), let a,b ∈ G;
then [−(a∧b)+a]∧ [−(a∧b)+b] = 0 implies that −(a∧b)+a ∈C or −(a∧b)+
b ∈ C. So, if a∧ b ∈ C, then a ∈ C or b ∈ C and hence C is prime. Also, a +C =
a∧b+C = (a+C)∧ (b+C) or b+C = a∧b+C = (a+C)∧ (b+C); thus G/C is
totally ordered.

(c) implies (d). Let A and B be convex `-subgroups of G that contain C. If a ∈
A+\B and b ∈ B+, then, since G/C is totally ordered, there exists c ∈C+ such that
0≤ a≤ b+ c ∈ B or 0≤ b≤ a+ c ∈ A. Thus b ∈ A, and hence B⊆ A.

(d) implies (b). Let a∧b = 0 and let A (respectively, B) be the convex `-subgroup
generated by a (respectively, b) and C. Then A ⊆ B or B ⊆ A; but A∩B = C by
Theorem 2.2.4(d). So either a ∈C or b ∈C. ut

Each subgroup C that contains a prime subgroup is an `-subgroup, and hence is
itself prime if it is convex. For, if x ∈C, then, since x+∧ x− = 0, x+ = x + x− ∈C.
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Also, it is easy to see that the intersection of any chain of prime subgroups is prime.
In particular, if P is a prime subgroup and {P} is enlarged to a maximal chain
{Pi : i ∈ I} of prime subgroups, then ∩Pi is a minimal prime contained in P. We will
give a useful characterization of minimal primes which is modelled after the theory
of prime ideals in a commutative ring. But first we construct some primes and show
that the primes are plentiful.

A subset S of G is meet closed if a,b∈ S implies that a∧b∈ S. Note that a convex
`-subgroup P is prime iff G+ \P (or G\P) is meet closed.

Theorem 2.4.2. Let G be an `-group.

(a) If S is a meet closed subset of G+ and P is a convex `-subgroup maximal
with respect to P∩S = φ , then P is prime.

(b) If P is a minimal prime, then G+ \P is a meet closed subset of G+ maximal
with respect to excluding 0.

(c) Each convex `-subgroup is the intersection of prime subgroups.

Proof. (a) Suppose that a∧ b = 0 and let A (respectively, B) be the convex `-
subgroup generated by P and a (respectively, P and b). Then A∩B = P by Theorem
2.2.4 (d). If a,b 6∈ P, then there exist s ∈ A∩S and t ∈ B∩S; so s∧ t ∈ P∩S, which
is impossible.

(b) Suppose that T is meet closed, 0 6∈ T and G+ \P ⊆ T ⊆ G+. Let Q be a
convex `-subgroup that is maximal with respect to Q∩T = φ . Then Q is prime, and
Q+ ⊆G+ \T ⊆ P+; so Q = P by the minimality of P, and Q+ = G+ \T = P+. Thus
T = G+ \P.

(c) Let C be a convex `-subgroup of G, and for each a ∈ G+ \C let Pa be a con-
vex `-subgroup that contains C and is maximal with respect to excluding a. Then
C = ∩{Pa : a ∈ G+ \C} ; for if 0 ≤ b ∈ (∩Pa) \C, then b ∈ Pb. Also, each Pa is
prime by (a). ut

A convex `-subgroup that is maximal with respect to excluding some element is
called a regular subgroup. The proof of (c) in the previous theorem shows that each
C ∈ C (G) is the intersection of regular subgroups. It is easy to see that a convex
`-subgroup C is regular if and only if there is a least element D in the poset of all
convex `-subgroups that properly contain C. We then say that D covers C. We will
have more to say about these covering pairs later.

Theorem 2.4.3. A prime subgroup P of the nonzero `-group G is a minimal prime if
and only if, for each x ∈ P, x⊥ 6⊆ P.

Proof. Suppose that P has this property and that Q is a convex `-subgroup properly
contained in P. If x ∈ P\Q and y ∈ x⊥ \P, then |x|∧ |y|= 0 but neither x nor y is in
Q. So Q is not prime and P is a minimal prime. For the converse, suppose that P is
a minimal prime and let S = G+ \P. If 0 < x ∈ P let T = S∪{x∧ s : s ∈ S}. Then T
is meet closed and contains S properly since x∧ s ∈ P. By Theorem 2.4.2, part (b),
0 ∈ T ; that is, x∧ s = 0 for some s 6∈ P. ut
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An `-group is called representable if it can be embedded into a product of a
family of totally ordered groups. This condition is clearly equivalent to the require-
ment that the `-group is a subdirect product of a family of totally ordered groups.
Since 0 is an intersection of primes (Theorem 2.4.2 (c)) each abelian `-group is
representable. The next result shows that an `-group is representable if and only
if it satisfies certain identities. Recall that if a and g are elements of a group then
the conjugate of a determined by g is denoted by ag = −g + a + g. Note that in an
`-group conjugation by g is an `-automorphism.

Theorem 2.4.4. The following statements are equivalent for the `-group G.

(a) G is representable.
(b) Each subdirectly irreducible homomorphic image of G is totally ordered.
(c) Each minimal prime subgroup is normal.
(d) The largest normal subgroup of G contained in a prime subgroup is itself

prime.
(e) Each polar is normal.
(f) If a∧b = 0 then ay∧b = 0 for each y in G.
(g) (x+)y∧ x− = 0 for all x,y ∈ G.
(h) 2(x∧ y) = 2x∧2y (equivalently, 2(x∨ y) = 2x∨2y) for all x,y ∈ G.
(i) n(x∧ y) = nx∧ny (equivalently, n(x∨ y) = nx∨ny) for all x,y ∈ G and for

all n ∈ N.
(j) If a and x are elements of G and a∧ax = 0, then a = 0.

Proof. Since (i) holds in any totally ordered group it holds in any product of totally
ordered groups. So (a) implies (i) and the latter implies (h).

(h) implies (g). 2x∧2y = (x∧y)+(x∧y) = 2x∧2y∧ (x+y)∧ (y+x) yields that
2x∧2y≤ x+y. Replacing x by y+x gives that (y+x+y+x)∧(y+y)≤ y+x+y, or
x∧(−y−x+y)≤ 0. So 0 = [x∧(−y−x+y)]+ = x+∧ [(−x)y]+ and (x+)−y∧x− = 0.

(g) implies ( f ). This follows since a = x+ and b = x− for x = a−b.
( f ) implies (e). According to ( f ) each polar of the form b⊥ is normal; but,

clearly, each polar is an intersection of such polars.
(e) implies (d). Let

K =
⋂

g∈G

Pg

be the largest normal subgroup of G that is contained in the prime subgroup P. If
a∧b = 0 and b 6∈ K, then bh 6∈ P for some h. But ag∧bh = 0 for each g ∈G, so each
ag ∈ P; that is, a ∈ K.

(d) implies (c). This is obvious.
(c) implies (a). Since the intersection of all of the primes is 0 and since each

prime contains a minimal prime, G is a subdirect product of the family of totally
ordered groups {G/P : P a minimal prime}.

(b) implies (a). This follows from Theorem 2.2.7.
(a) implies (b). Let G be a subdirectly irreducible homomorphic image of G.

Because of the equivalence of (a) and (g) G is representable and hence is totally
ordered.
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(a) implies ( j). Since ( j) holds in any totally ordered group, and hence in any
product of totally ordered groups, it hold in a representable `-group.

( j) implies ( f ). If a∧ b = 0, then, for each y ∈ G,(ay ∧ b)∧ (ay ∧ b)−y = 0. So
ay∧b = 0. ut

As a consequence of the previous theorem we see that the class of representable
`-groups is a variety of `-groups.

We next consider operators on an `-group. A function ω : G −→ G on the `-
group G is called a d-map (respectively, an f-map) if x∧y = 0 implies that ωx∧ωy =
0 (respectively, ωx∧ y = 0). If ω is a group homomorphism as well as an f -map
it is called an f-homomorphism. The basic properties of these maps are given in the
following result.

Theorem 2.4.5. Let ω and λ be functions from the `-group G to itself.

(a) If ω is an f -map, then it is a d-map.
(b) If ω is a d-map, then ω0 = 0 and ωG+ ⊆ G+. If G is totally ordered, then

any function ω with these two properties is an f -map.
(c) If ω and λ are f -maps then so is ω +λ , where (ω +λ )(x) = ω(x)+λ (x).
(d) ω is an f -map iff ωG+ ⊆ G+ and ω +1 is a d-map.
(e) If ω and λ are d-maps (respectively, f -maps, f -homomorphisms), then so

is the composite ωλ .
(f) If ω and λ are f -homomorphisms and |x| ∧ |y| = 0, then (ω + λ )(x + y) =

(ω +λ )x+(ω +λ )y.
(g) If ω is a d-map (respectively, an f -map) and λ (x)≤ ω(x) for each x ∈ G+,

then λ is a d-map (respectively, an f -map) iff λG+ ⊆ G+.

Proof. (a) is obvious, (b) follows from ω0 = ω0 ∧ ω0 = 0 and ωx∧0 = 0 if x∈G+,
and (c) follows from the fact that if x ∧ y = 0, then (ω + λ )x∧y = (ωx + λx)∧ y =
0. If ωG+ ⊆ G+ and ω + 1 is a d-map, then x ∧ y = 0 implies that 0 ≤ ωx∧ y ≤
(ωx + x)∧ (ωy + y) = (ω + 1)x∧ (ω + 1)y = 0. This, together with (c), proves
(d). (e) is obvious, and as for (f), if |x|∧ |y|= 0, then 0 = λ |x|∧ω|y|= |λx|∧ |ωy|
if ω and λ are f -homomorphisms (Theorem 2.2.2); hence λx and ωy commute
and (ω +λ )(x+y) = ωx+ωy+λx+λy = (ω +λ )x+(ω +λ )y. For (g), suppose
that λ (x)≤ ω(x) for each x ∈ G+, λG+ ⊆ G+ and ω is a d-map. If x∧ y = 0, then
since 0 ≤ λx∧λy ≤ ωx∧ωy = 0, λ is a d-map. Similarly, if ω is an f -map then
so is λ . ut

Let Ω be a set and let G be an `-group. Suppose that ϕ : Ω −→ Set[G,G] is a
function from Ω to the set of set maps on G. If ω ∈ Ω and g ∈ G, then, as usual,
we write ωg = ϕ(ω)g. G is called an Ω -group if ω0 = 0 and ωG+ ⊆ G+ for each
ω ∈ Ω . G is called a weak Ω -d-group if the image of ϕ is contained in the set of
d-maps of G, and G is an Ω -d-group if the image of ϕ is contained in the set of
`-endomorphisms of G. Similarly, G is called a weak Ω - f -group or an Ω - f -group
depending on whether the image of ϕ is contained in the set of f -maps or the set
of f -endomorphisms of G. An Ω -subgroup of G is a subgroup A with ωA+ ⊆ A+

for each ω ∈Ω . In this generality an Ω -subgroup A may not be an Ω -group (in the
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group sense) since we may not have ωA ⊆ A for ω ∈ Ω . But if ω induces a group
homomorphism and if A is a directed subgroup, then ωA ⊆ A. If G and H are Ω -
groups, then an `-homomorphism f : G−→ H is an Ω -homomorphism if f (ωx) =
ω f (x) for each ω ∈Ω and each x ∈ G. It is easily seen that if A is a normal convex
`-Ω -subgroup of the Ω -d-group G, then G/A is an Ω -d-group and the natural map
G −→ G/A is an Ω -homomorphism. As a consequence of Theorem 2.1.4(m) each
`-group is a weak N- f -group. Also, if Ω is the group of inner automorphisms of G
then, by Theorem 2.4.4, G is representable if and only if G is an Ω - f -group. The
direct product ∏Gi of a family of Ω -groups is an Ω -group with Ω -action given
by ω((xi)) = (ωxi). In general, an Ω -group is said to be representable if it can be
embedded into a product of a family of totally ordered Ω -groups. The next two
results are companions to Theorem 2.4.4.

Theorem 2.4.6. The following statements are equivalent for the Ω -group G.

(a) G is a weak Ω - f -group.
(b) Each minimal prime subgroup is an Ω -subgroup.
(c) Each polar is an Ω -subgroup.

Proof. (a)⇒ (b). Let P be a minimal prime subgroup, and let x∈P+, 0≤ y∈ x⊥\P
(Theorem 2.4.3) and ω ∈Ω . Then ωx∧ y = 0 yields that ωx ∈ P+.

(b)⇒ (c). This is a conseqeuence of the fact that each polar A is an intersection of
a family of minimal primes. For, if K is the intersection of all those minimal primes
that do not contain A⊥ and L is the intersection of the remaining minimal primes,
then K∩L = 0. So A⊆K ⊆ L⊥ and A⊥ ⊆ L, and, therefore, A⊆K ⊆ L⊥ ⊆ A⊥⊥ = A.

(c) ⇒ (a). If ω ∈Ω and x∧ y = 0, then ωx ∈ (y⊥)+; so ωx∧ y = 0. ut
Theorem 2.4.7. Let G be an Ω -group.

(a) If G is a representable Ω -group, then G is a weak Ω - f -group.
(b) If G is a representable `-group and is also an Ω - f -group, then G is a repre-

sentable Ω - f -group.
(c) G is a representable Ω - f -group if and only if each Ω -subdirectly irreducible

homomorphic image of G is a totally ordered Ω - f -group.

Proof. Since any product of a family of totally ordered Ω -groups is a weak Ω - f -
group, by (b) of Theorem 2.4.5, each representable Ω -group is a weak Ω - f -group.
Conversely, suppose that G is representable and is an Ω - f -group, and let P be a
minimal prime subgroup of G. Then P is a normal Ω -subgroup, and G/P is a totally
ordered Ω -group. Thus, G is a subdirect product of the family of totally ordered Ω -
f -groups {G/P : P a minimal prime}, and hence it is a representable Ω - f -group.
This proves (a) and (b) and, consequently, each homomorphic image H of a repre-
sentable Ω - f -group is a representable Ω - f -group. So if H is subdirectly irreducible
it must be totally ordered. The other implication in (c) follows from Exercise 1.4.12
(or, more explicitly, the proof of Theorem 2.2.7 works if we assume that each ω ∈Ω
induces a group endomorphism of G). ut

We also give the following condition for an Ω -group to be a weak Ω - f -group. If
x ∈ G, then Ωx = {ωx : ω ∈Ω}.



2.4 Prime Subgroups, Representability, and Operator Sets 93

Theorem 2.4.8. Suppose that G is an `-group and Ω −→GG is a function such that:

(i) Each ω ∈Ω induces an isotone function on G and ω0≥ 0.
(ii) If ω, λ ∈Ω , then there is a d-map α with ωλx, ωx≤ αx for each x in G+.

Then, for any x ∈ G and any λ ∈Ω , Ω(λx+∧ x−) = 0. Consequently, G is a weak
Ω - f -group if, for each 0 < x ∈ G, ωx 6= 0 for some ω ∈Ω .

Proof. Suppose that a∧b = 0, λ , ω ∈Ω , and let α be a d-map which satisfies the
second condition. Then

0≤ ω(λa∧b)≤ ωλa∧ωb≤ αa∧αb = 0,

and hence ω(λa∧b) = 0. ut

Exercises.

1. Prove that each `-group G can be embedded into an `-group Aut(T ) (see Ex-
ercise 2.1.5) for some totally ordered set T . (Hint: If {Pi : i ∈ I} is a family of
prime subgroups of G with ∩Pi = 0 totally order I and give ∪(G/Pi) the ordinal
sum order.)

2. Let (T,≤) be a totally ordered set and let Aut(T ) be the `-group of all automor-
phisms of T . If α is a well-ordering of T let

Pα = { f ∈ Aut(T ) : f (t0) > t0 where t0 is the first element in
({t ∈ T : f (t) 6= t},α)}.

Prove each of the following statements.

(a) Pα is a right order of Aut(T ).
(b) Aut(T )+ = ∩Pα where α runs over all of the well-orderings of T .
(c) The positive cone of each `-group is an intersection of right orders.

3. Show that the positive cone of a representable `-group is an intersection of total
orders. (Hint: Reduce to the case that the `-group is a product of totally ordered
groups and use Hahn products.)

4. Let C, C1, . . . ,Cn ∈ C (G). Show that the following statements are equivalent.

(a) C is prime.
(b) C is finitely meet irreducible in C (G): C = C1 ∩ ·· · ∩Cn ⇒ C = Ci for

some i.
(c) If C1∩·· ·∩Cn ⊆C then, for some i, Ci ⊆C.

5. Show that C ∈ C (G) is regular iff it is meet irreducible in C (C) :

C =
⋂

i∈I

Ci

with Ci ∈ C (G)⇒C = Ci for some i.
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6. Prove that the following statements are equivalent for an `-group G.

(a) G is representable.
(b) If P is a prime subgroup, then P is comparable to each of its conjugates

Pg =−g+P+g.
(c) If C is a regular subgroup, then C is comparable to each of its conjugates.

7. Show that the following `-groups are not representable.

(a) The `-group in Exercise 2.1.11.
(b) Aut(R).

8. Show that if ≤ is a partial order of the free group F and (F,≤) is an `-group,
then ≤ is a total order. (Hint: This follows from the two facts: (i) F is an in-
decomposable group (easy), and (ii) each subgroup of F is free (hard).) It is
known that a free group can be made into a totally ordered group (see Theorem
3.5.10).

9. If P is a minimal prime subgroup of the `-group G, show that P = ∪{a⊥ : a ∈
G+\P}. (So each minimal prime is a (directed) union of polars, and in the
proof of Theorem 2.4.6 it was seen that each polar is an intersection of min-
imal primes.)

10. Let A and B be totally ordered convex subgroups of the `-group G. Then A
contains B, or is contained in B, or A∩B = 0.

11. Let 0 6= a ∈ G, where G is an `-group. If a > 0 and [0,a] = {x ∈ G : 0≤ x≤ a}
is totally ordered, then a is called a basic element of G.

(a) If |a| is basic, then a ∈ G+∪−G+.
(b) The following statements are equivalent.

(i) |a| is basic.
(ii) C(a) is totally ordered.

(iii) a⊥⊥ is totally ordered.
(iv) b⊥ = a⊥ for each 0 6= b ∈ a⊥⊥.

(c) If a is basic, then a⊥⊥ is maximal among those convex subgroups of G that
are totally ordered.

(d) Show that the subgroup of G generated by its set of basic elements is a
convex `-subgroup and is a direct sum of totally ordered groups.

12. Show that the following statements are equivalent for the element 0 < a in the
`-group G.

(a) a is basic.
(b) a⊥ is a prime subgroup.
(c) a⊥ is a minimal prime subgroup.
(d) a⊥⊥ is totally ordered.
(e) a⊥⊥ is a minimal polar (minimal among the nonzero polars).
(f) a⊥ is a maximal polar (maximal among the proper polars).
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13. A subset S of basic elements in the `-group G is called a basis of G if S is a
maximal disjoint subset of G.

(a) Show that the following statements are equivalent.
(i) G has a basis.

(ii) If 0 < g ∈ G, then there is a basic element b with b≤ g.
(iii) The Boolean algebra B(G) of polars of G is atomic (see Exercise

1.3.6).
(b) Show that any two bases of G have the same cardinality.

14. Here is a proof of the fact that an archimedean `-group is abelian that doesn’t
use the Dedekind completion. Let G be an `-group.

(a) If a,x,y ∈ G+, then ax∧ay ≥ [−(x+ y)+a]+.
(b) If b,c ∈ G and b∧ bc = 0, then ∀n ∈ N, nb ≤ |c|. (Apply (a) with a =

nb,x = c− and y = c+.)
(c) If G is totally ordered and a,b ∈ G+, then n[a,b] ≤ a∨ b for each n ∈ N.

(Hint: If A is the convex subgroup maximal with respect to excluding [a,b]
and A∗ is its cover, then ACA∗ and A∗/A is abelian (Exercise 2.3.4).

(d) If G is archimedean, then G is abelian.

15. (a) The following statements are equivalent for the `-group G.
(i) Each homomorphic image of G is archimedean (G is then called

hyper-archimedean).
(ii) Each proper prime subgroup of G is a maximal prime.

(iii) Each proper prime subgroup is a minimal prime.
(iv) For each x ∈ G, G = C(x)⊕ x⊥.
(v) If x,y ∈ G+, then for some n ∈ N, [y− (nx∧ y)]∧ x = 0.

(vi) There is an embedding ϕ : G−→ RI with the property : For each x,y
in G+ there exists n ∈ N such that if ϕ(x)(i) > 0, then nϕ(x)(i) >
ϕ(y)(i).

(vii) If x,y ∈ G+, then there is an n ∈ N such that y∧nx = y∧ (n+1)x.
(First, give a cyclic proof of (i) through (v).)

(b) For any set I, G = { f ∈RI : f (I) is finite} is a hyper-archimedean `-group.

16. Let G be a representable `-group. Suppose that a,b∈G and n and m are nonzero
integers such that na and mb commute. Show that a and b commute (use Theo-
rem 2.3.8).

17. Let G be an `-group and let H = {g ∈ G : x∧ y = 0⇒ xg∧ y = 0}. Then H is a
normal `-subgroup of G which contains the center of G. Also, G is representable
iff G = H.

18. Give an example of an abelian, Ω -simple (and hence Ω -subdirectly irreducible)
weak Ω - f -group that is not totally ordered. (Ω -simple means there is no proper
nonzero normal convex `-Ω -subgroup.)

19. Let f (M) be the set of f -maps of the `-group M, and let f h(M) be the set of
f -endomorphisms of M.
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(a) Show that there are surjections f (⊕λ Mλ )−→Π f (Mλ ) and f (Πλ Mλ )−→
Πλ f (Mλ ) that preserve addition.

(b) Show that there are bijections f h(⊕Mλ )−→Π f h(Mλ ) and f h(ΠMλ )−→
Π f h(Mλ ).

(c) Show that the bijections in (b) preserve addition if each Mλ is abelian.

20. Suppose that α is an f -map of the `-group G and, for all x ∈ G+,αx = 0 iff
x = 0. Show that if β is a d-map of G that is comparable to α (β ≤ α if βx≤ αx
for each x ∈ G+), then β is an f -map.

21. Suppose that Ω G and GΛ are f -groups. Show that |ωg|, |gλ | ≤ |ωg + gλ | for
any ω ∈ Ω ,g ∈ G and λ ∈ Λ ; and |ωg|+ |gλ | = |ωg + gλ | iff ωg− and |g|λ
commute iff ωg− and g−λ commute.

22. Let G and K be Ω -d-groups and suppose f : S−→ K is an Ω -group homomor-
phism where S is an Ω -subgroup of G. Show that there is an (unique) Ω -`-group
homomorphism g : [S]−→ K which extends f if and only if

∨
I
∧

J f (si j) = 0 in
K whenever

∨
I
∧

J si j = 0 in [S]. (Use Theorem 2.2.4.)

23. Let G be an Ω -`-subgroup of the Ω - f -group H and let P be a prime Ω -subgroup
of G. Suppose Q is a convex Ω -`-subgroup of H which is maximal with respect
to Q∩G = P. Show that Q is a prime Ω -subgroup of H.

24. Suppose G is a representable Ω - f -group and let CΩ = {g ∈ G : the convex `-
Ω -subgroup generated by g is bounded}; see Section 2.5. Verify each of the
following:

(a) CΩ is a convex `-Ω -subgroup of G.
(b) If α is an Ω -`-endomorphism of G, then α(CΩ )⊆CΩ .
(c) If −g + ωx + g = ω(−g + x + g) for all g,x ∈ G and ω ∈ Ω , then CΩ is a

normal subgroup.
(d) If for all ω ∈ Ω and g ∈ G there is an integer n ∈ N with ωg ≤ ng, then

CΩ contains the derived subgroup G′. (Use the argument in the verification
of (i)–(iv) in the proof of Theorem 2.3.9, or use Exercise 14(c), and the
equation [−b,a] = [a,b]−b.)

(e) If G is finitely generated as an Ω -group or, more generally, as a convex
`-Ω -subgroup, then CΩ ⊂ G.

(f) Give an example of a countable abelian `-group with CΩ = G.

2.5 Values

Throughout this section we assume that G is an Ω - f -group. This includes the case
that G is just an `-group if we set Ω = {1} ⊆ N. Most of the results of Sections 2.2
and 2.4 hold for an Ω - f -group. In particular, the collection CΩ (G) of all convex
`-Ω -subgroups of G is a complete sublattice of C (G), and Theorem 2.2.4 holds
for Ω -subgroups, with some modifications. If ω1, . . . ,ωn ∈ Ω and x ∈ G we will
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abbreviate ω1 · · ·ωnx by Wx (n could be 0, in which case Wx = x) and we will
abuse notation by writing W = ω1 · · ·ωn ∈ Ω ∞. The first thing to note is that the
convex `-Ω -subgroup generated by X ⊆ G is given by

CΩ (X) = {g ∈ G : |g| ≤W1|x1|+ · · ·+Wn|xn|, where xi ∈ X and Wi ∈Ω ∞}.

The other changes in Theorem 2.2.4 are then:

CΩ (X)∩CΩ (Y ) = CΩ ({W |x|∧V |y| : x ∈ X , y ∈ Y,

and W,V ∈Ω ∞}); (2.5.1)

CΩ (D,a)∩CΩ (D,b) = D∨CΩ ({W |a|∧V |b| : W, V ∈Ω ∞})
if D ∈CΩ (G) and a,b ∈ G; (2.5.2)

if S is a subgroup with ΩS⊆ S, then Ω [S]⊆ [S]. (2.5.3)

Also, Theorems 2.2.5 and 2.4.2 hold for convex `-Ω -subgroups.
Those convex `-Ω -subgroups with a successor in CΩ (G) (the values) are studied

for their elucidation of the structure of the Ω - f -group. A tight relation between the
values in CΩ (G) and the values in C (G) is established. By imposing a finite condi-
tion on the values of an element a sharp local structure theorem is obtained which
survives in an infinite form when the condition is relaxed. A related relation between
two convex `-Ω -subgroups is introduced and is used in an exercise to establish how
a finitely conditioned Ω - f -group can be put together by means of totally ordered
groups. Also, this relation is used to describe when some convex `-Ω -subgroups
are summands, and this description will be used heavily in later sections. The set of
values will be used in the next section to get a deep embedding theorem.

If a ∈G and P is a convex `-Ω -subgroup maximal with respect to not containing
a, then P is called an Ω -value of a and also an Ω -regular Ω -subgroup. By Theorem
2.4.2 and the remarks following it each Ω -regular Ω -subgroup is prime, and P ∈
CΩ (G) is Ω -regular if and only if it is covered by some M ∈ CΩ (G). Also, if M
covers P, then P is an Ω -value of a precisely when a∈M \P. Let ΓΩ (a) = ΓΩ (a,G)
denote the trivially ordered subset of CΩ (G) which consists of the Ω -values of a. If
Ω = {1}, then an Ω -value will be called a value of a and ΓΩ (a) will be denoted by
Γ (a).

A poset P is called rooted if for each p in P the set U(p) = {x ∈ P : x ≥ p} is
a chain; equivalently, if no two incomparable elements of P have a common lower
bound. Clearly, the collection of all of the prime Ω -subgroups of the Ω - f -group G
is a rooted subset of CΩ (G), and so is its subset ΓΩ (G) which consists of all of the
Ω -regular Ω -subgroups of G. If Ω = {1}, then ΓΩ (G) will be denoted by Γ (G).
The rooted poset ΓΩ (G) = ΓΩ (respectively, Γ (G) = Γ ) is called the Ω -value set
(respectively, value set) of G. We have seen in Theorem 2.4.2 that each convex `-
Ω -subgroup is an intersection of Ω -regular Ω -subgroups. As another indication of
the importance of Ω -values we have
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Theorem 2.5.1. (a) ΓΩ (a) = ΓΩ (|a|) = ΓΩ (a+) ∪ ΓΩ (a−) and ΓΩ (a+) ∩ ΓΩ (a−)
= φ .
(b) a≥ 0 iff a+P≥ P in G/P for each P ∈ ΓΩ (a).
(c) |a|∧ |b|= 0 iff ΓΩ (a)∪ΓΩ (b) is a disjoint union and is trivially ordered.

Proof. That ΓΩ (a) = ΓΩ (|a|) is clear. Suppose that P ⊂ M is a covering pair in
CΩ (G). Since P is prime, a+ ∈ P or a− ∈ P. Consequently, a = a+−a− ∈M \P
iff a− ∈M \P or a+ ∈M \P; thus, (a) is proven. Suppose that a+P > P for each
P ∈ ΓΩ (a). If a− > 0 and P ∈ ΓΩ (a−) ⊆ ΓΩ (a), then a+ ∈ P, and P = a+ + P =
(a + P)∨P = a + P > P. Thus, a− = 0 and a ≥ 0. This proves (b) since the other
implication is trivial. Suppose that ΓΩ (a) ∪ ΓΩ (b) is a disjoint union and is trivially
ordered. If |a| ∧ |b| > 0 let P be one of its Ω -values. Then |a| (respectively, |b|)
has an Ω -value Q1 (respectively, Q2) containing P. But then Q1 and Q2 are
comparable which is impossible. Hence |a| ∧ |b| = 0. This finishes the proof of (c)
since the converse follows from (a). ut

We next wish to compare the Ω -values of a ∈ G with its Ω -values in a convex
`-Ω -subgroup. Toward this end we have the basic

Theorem 2.5.2. Let A∈CΩ (G) and let PΩ (G) be the poset consisting of the prime
Ω -subgroups of G. Then we have the isotone mappings

PΩ (G)−→PΩ (A), P 7−→ P∩A = Pc

PΩ (A)−→PΩ (G), Q 7−→ Qe = {x ∈ G : CΩ (x)∩A⊆ Q}.

Furthermore, these mappings are inverse order isomorphisms when restricted to the
following subsets:

{P ∈PΩ (G) : A 6⊆ P} ←→ PΩ (A)\{A}.

Proof. If P ∈ PΩ (G), then it is clear that Pc ∈ PΩ (A) and also that A 6⊆ P iff
Pc 6= A. If Q∈PΩ (A), then Qe is a convex `-Ω -subgroup of G. For, if x, y∈Qe and
z ∈ G with |z| ≤ |x|, and ω ∈Ω , then CΩ (ω|x|)∩A, CΩ (z)∩A, CΩ (x− y)∩A⊆
CΩ (x,y)∩A = [CΩ (x)∨CΩ (y)]∩A = [CΩ (x)∩A]∨ [CΩ (y)∩A] ⊆ Q. Also, Qe is
prime since if x∧ y = 0 in G, then CΩ (x)∩CΩ (y)∩A = 0, and hence CΩ (x)∩A ⊆
Q or CΩ (y)∩ A ⊆ Q by Exercise 2.4.4. To see that the restrictions are inverse
isomorphisms first note that if Q is a proper prime Ω -subgroup of A, then A 6⊆ Qe

and
Qec = Qe∩A = {x ∈ A : CΩ (x)∩A⊆ Q}= Q.

Secondly, if P is a prime Ω -subgroup that does not contain A, then

Pce = {x ∈ G : CΩ (x)∩A⊆ P∩A}

= {x ∈ G : CΩ (x)∩A⊆ P}

= {x ∈ G : CΩ (x)⊆ P}= P.
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ut
As a consequence of this result we have

Theorem 2.5.3. If a ∈ A ∈ CΩ (G), then the mapping

ΓΩ (a,G)−→ ΓΩ (a,A), P 7−→ P∩A

is a bijection, and its globalization

{P ∈ ΓΩ (G) : A 6⊆ P} −→ ΓΩ (A), P 7−→ P∩A

is an isomorphism.

Proof. If P∈ΓΩ (a,G), then a 6∈ P∩A. Suppose that A⊇ B⊃ P∩A with B∈CΩ (A).
If A ⊃ B, then Be ⊃ P and a ∈ Bec = B by the previous theorem. Thus P∩A is an
Ω -value of a in A. Now let Q ∈ ΓΩ (a,A). Then a 6∈ Qe, and if C is a convex `-Ω -
subgroup of G which properly contains Qe, then C∩A ⊃ Qe∩A = Q, again by the
previous theorem. So a ∈C and Qe is an Ω -value of a in G.

For the second part take P ∈ ΓΩ (G) with its cover K, and suppose that A 6⊆ P.
Then Pc = P∩A⊆ K∩A = Kc ⊆ A. By Theorem 2.5.2, if A 6⊆ K then Pc is covered
by Kc. But also, if A ⊆ K then Pc is covered by A; for if Pc ⊂ Qc ⊂ A then P ⊂ Q,
and hence A ⊆ K ⊆ Q and Qc = A. In both cases Pc ∈ ΓΩ (A). On the other hand,
take Q∈ΓΩ (A). If Q is covered by A and a∈ A\Q, then Qe is an Ω -value of a. For
if Qe ⊂C and a 6∈C, then Q⊂Cc ⊂ A gives a contradiction. The other possibility
is that Q is covered by K ⊂ A, but then Qe is covered by Ke. ut

We consider next the relationship between the regular subgroups and the Ω -
regular Ω -subgroups of G.

Theorem 2.5.4. For P ∈ C (G) let PΩ be the largest convex `-Ω -subgroup of G
which is contained in P.

(a) P is prime if and only if PΩ is prime.
(b) For each a ∈ G the mapping

Γ (a)−→ ΓΩ (a) , P 7−→ PΩ

is a bijection.
(c) There is a natural embedding of posets ΓΩ −→ Γ .

Proof. Suppose that P is prime and that a∧ b = 0. Then CΩ (a)∩CΩ (b) = 0; so
CΩ (a)⊆ P or CΩ (b)⊆ P. Thus a ∈ PΩ or b ∈ PΩ , and PΩ is prime. Conversely,
if PΩ is prime then so is P since PΩ ⊆ P. This proves (a). Now suppose that P is a
value of a, and let C be a convex `-Ω -subgroup which properly contains PΩ . Then
P and C are comparable but C is not contained in P. Hence P⊂C and a ∈C. This
proves that PΩ is an Ω -value of a. If PΩ = QΩ where Q is also a value of a, then P
and Q are comparable and hence P = Q. So the mapping P 7→ PΩ is one-to-one. It
is also onto; for, suppose that Q is an Ω -value of a. Then there is a unique value P
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of a which contains Q. If C is any convex `-Ω -subgroup of G which is contained in
P, then Q⊆ Q∨C ⊆ P and a 6∈ Q∨C. Hence C ⊆ Q and Q = PΩ . This proves (b).

In order to prove (c) note that, by (b), the mapping K 7−→ KΩ , when restricted
to Γ , maps Γ onto ΓΩ , and it is order preserving. But then each right inverse of this
function is an embedding of ΓΩ into Γ , as the following result shows.

Let X and Y be rooted subsets of some poset, and let ρ : X −→ Y be an order preserving
onto mapping such that ρ(x)≤ x for each x in X . Then each of the right inverses of ρ is an
embedding of Y into X .

For if ρ(x1) < ρ(x2), then, since ρ(xi) ≤ xi, x1 and x2 are comparable. But
then x1 < x2 since ρ is isotone. Thus, each right inverse ϕ of ρ is isotone. Also, if
ϕ(y1) < ϕ(y2), then y1 = ρϕ(y1) < ρϕ(y2) = y2; so ϕ is an embedding. ut

Since each C ∈ CΩ (G) is the intersection of a set of Ω -values it is clear that
Γ (G) = ΓΩ (G) if and only if C (G) = CΩ (G). In fact, these equalities hold provided
the embedding given in Theorem 2.5.4(c) is an isomorphism.

Theorem 2.5.5. Let G be an Ω - f -group. If K is an Ω -value (or a value) in G let K∗
denote its cover in the lattice CΩ (G) (or C (G)). Then the following statements are
equivalent.

(a) The mapping Γ (G)−→ ΓΩ (G) given by K 7−→ KΩ is an isomorphism.
(b) K∗ \K = (KΩ )∗ \KΩ for each K in Γ (G).
(c) Γ (G) = ΓΩ (G).
(d) (KΩ )∗ = (K∗)Ω for each K in Γ (G).

Proof. (a) ⇒ (b). If K ∈ Γ (G), then K∗ \K ⊆ (KΩ )∗ \KΩ by Theorem 2.5.4. Let
x ∈ (KΩ )∗ \KΩ . Then x has a value L which contains KΩ . Since LΩ ⊇ KΩ and
x 6∈ LΩ , necessarily LΩ = KΩ . Thus L = K and x ∈ K∗ \K.

(b) ⇒ (c). Suppose that K ∈ Γ and x ∈ K \KΩ . Then x has an Ω -value L
that contains KΩ . Since L and K are comparable L ⊂ K, and hence L = KΩ . So
x ∈ (KΩ )∗ \ KΩ = K∗ \ K. This contradiction gives that K = KΩ .

(d)⇒ (b). We need to verify that (KΩ )∗\KΩ ⊆ K∗\K. If x ∈ (KΩ )∗\KΩ then x ∈
(KΩ )∗ = (K∗)Ω ⊆ K∗. According to Theorem 2.5.4, x has a value L with LΩ = KΩ .
Then L and K are comparable, and if K ⊆ L then x ∈ K∗\K. Suppose that L ⊂ K.
Then L∗ ⊆ K and hence (LΩ )∗ = (L∗)Ω ⊆ KΩ = LΩ , which is nonsense.

Since (c) obviously implies (a) and (d) the proof is complete. ut
Let A ⊆B be convex `-Ω -subgroups of G. B is called a lexicographic extension

of A, and we write B = lex A, if A is a prime Ω -subgroup of B and b > A for each
b ∈ B+ \A. Note that if A 6= 0, then this latter condition implies that A is prime in
B; in fact, it implies that both elements of each pair of nonzero disjoint elements of
B are in A. Note also that if A ⊆ B ⊆ G and if G = lex B and B = lex A, then G =
lex A; the converse is a consequence of Theorem 2.5.6. A totally ordered group is
a lexicographic extension of each of its convex subgroups. Also, if G = A×ϕ←B is the
ordinal semidirect product of the `-group A by the totally ordered group B, then G
= lex A.
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A maximal chain in a rooted poset P is called a root, and the intersection of
all of its roots is defined to be the trunk of P. This intersection will be denoted by
trunk (P). Clearly, if p ∈ P, then p ∈ trunk(P) if and only if p is comparable to each
element of P. The Ω -trunk of the Ω - f -group G is defined to be the intersection of
all of the Ω -regular Ω -subgroups in the trunk of its Ω -value set:

trunkΩ (G) = ∩{A : A ∈ trunk(ΓΩ (G))}.

If G is just an `-group (that is, Ω = {1}), then trunkΩ (G) will be denoted by
trunk(G). Since trunkΩ (G) is the intersection of a chain of prime Ω -subgroups it
is a prime Ω -subgroup. The relationship between the Ω -trunk of G and those con-
vex `-Ω -subgroups of G of which G is a lexicographic extension is very tight.

Theorem 2.5.6. The following statements are equivalent for C ∈ CΩ (G).

(a) G = lex C.
(b) G\C ⊆ G+∪−G+.
(c) If a ∈ G\C, then a+C ⊆ G+ or a+C ⊆−G+.
(d) C is the intersection of some subset of the trunk of ΓΩ (G).
(e) C ⊇ trunkΩ (G).

Proof. (a)⇒ (b). Let a ∈G\C. Then, either a+ ∈G\C and a− ∈C, or a− ∈G\C
and a+ ∈C. Thus, a+ > a− or a− > a+, and hence a ∈ G+∪−G+.

(b) ⇒ (c). This follows from the fact that G/C is a poset, and hence the coset
a+C cannot contain both positive and negative elements.

(c) ⇒ (a). If C = 0 then G is totally ordered; and if C 6= 0 and a ∈ G+ \C, then
a > C.

(a) ⇒ (d). By Theorem 2.4.2(c) for Ω - f -groups, C = ∩A j for some chain
{A j} j∈J in ΓΩ . We claim that each A j ∈ trunk(ΓΩ ). For if B ∈ ΓΩ , then either
B⊆C, or there is an element b ∈ B+ \C. In the latter case b > C and so C⊆ B. In
either case the set {A j,B} j∈J is a chain and hence {A j} j∈J ⊆ trunk(ΓΩ ).

(d) ⇒ (e). This is obvious.
(e)⇒ (b). We may assume that C = trunkΩ (G). First note that trunkΩ (G) is com-

parable to each A ∈ ΓΩ . For, either A ∈ trunk(ΓΩ ), in which case A ⊇ trunkΩ (G),
or A ⊂ B for each B ∈ trunk(ΓΩ ) and A ⊆ trunkΩ (G). Now, suppose that
a ∈ G \ trunkΩ (G), and let A be an Ω -value of a which contains trunkΩ (G). Then
A∈ΓΩ (a+) or A∈ΓΩ (a−) by Theorem 2.5.1. If A∈ΓΩ (a+) and B∈ΓΩ (a−), then
B⊆ trunkΩ (G) or trunkΩ (G)⊆ B. In either case A and B are comparable which is
impossible by Theorem 2.5.1. Thus a− = 0 and a ∈ G+. Similarly, if A ∈ ΓΩ (a−),
then a ∈ −G+. ut

The next result gives, among other things, another description of trunkΩ (G).

Theorem 2.5.7. (a) If G = lex A, then ΓΩ (a,A) = ΓΩ (a,G) for each a ∈ A. So
ΓΩ (A)⊆ ΓΩ (G).
(b) The trunk of the poset ΓΩ (trunkΩ (G)) is empty; that is, trunkΩ (trunkΩ (G))

= trunkΩ (G).
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(c) If N is the subgroup of G generated by {a∈G : a⊥ 6= 0}, then N = trunkΩ (G).
(d) trunkΩ (G) = trunk(G) is a normal subgroup of G which is independent of

the operator set Ω .

Proof. (a) Let a ∈ A. Since A is comparable to each P ∈ ΓΩ (Theorem 2.5.6), if
P ∈ ΓΩ (a,G), then P⊂ A. Thus ΓΩ (a,A) = ΓΩ (a,G) by Theorem 2.5.3.

(b) Let A = trunkΩ (G) and B = trunkΩ (A). By the previous theorem, G = lex
A, A = lex B, G = lex B, and A⊆ B. So A = B and the trunk of ΓΩ (G) is empty.

(c) N is a convex `-Ω -subgroup of G. For if |y| ≤ |x| with x ∈ N, then |y| ≤
|a1|+ · · ·+ |an| with a⊥i 6= 0. So y+ = b1 + · · ·+ bn and y− = c1 + · · ·+ cn with
0 ≤ bi,ci ≤ |ai|. Thus bi,ci ∈ N and y = y+ − y− ∈ N. If ω ∈ Ω and y ∈ N+,
then y = b1 + · · ·+ bn with bi ∈ N+ and b⊥i 6= 0. Then ωy = ωb1 + · · ·+ ωbn and
(ωbi)⊥ 6= 0. Thus ωy∈N. It is clear that N ⊆ trunkΩ (G) since each of its generators
lies in trunkΩ (G). Now, G = lex N; for if a ∈ G\N, then either a+ = 0 or a− = 0.
Thus, G\N ⊆ G+∪−G+, G = lex N, and N ⊇ trunkΩ (G).

(d) trunkΩ (G) = N = trunk(G) is normal since N is generated by a normal subset
(or, since trunk Γ (G) is invariant under each `-automorphism of G). ut

The element a ∈ G is called Ω -special if it has a unique Ω -value. As a conse-
quence of Theorem 2.5.4, a is Ω -special if and only if it is {1}-special in G. Conse-
quently, an Ω -special element will frequently just be called a special element. If G
= lex A and a∈G\A, then a is special. For a has a value N such that N ⊇ trunk(G).
But any value of a is comparable to trunk(G) and hence is comparable to N; so N is
the only value of a. These remarks are summarized in

Theorem 2.5.8. The following statements are equivalent for a ∈ G.

(a) a is Ω -special in G.
(b) a is Ω -special in CΩ (a).
(c) If A ∈ CΩ (G) and a ∈ A, then a is Ω -special in A.
(d) a is special in G.
(e) CΩ (a) = lex B for some proper convex `-Ω -subgroup of CΩ (a).
(f) CΩ (a) = lex B for some proper convex `-subgroup of CΩ (a).

Proof. The preceding remarks show that (a) and (d) are equivalent and that (e) im-
plies (b). Conversely, suppose that B is the unique Ω -value of a in CΩ (a). Then B is
the unique maximal convex `-Ω -subgroup of CΩ (a). So B ∈ trunk ΓΩ (CΩ (a)), and
hence CΩ (a) = lex B by Theorem 2.5.6. The equivalence of (a), (b) and (c) is given
by Theorem 2.5.3, and the equivalence of (e) and (f) is given by Theorem 2.5.6. ut

In order to further examine special elements we need a technical result which is
of interest in its own right and which will also be useful later.

Theorem 2.5.9. Suppose that B ∈ CΩ (G), A is a proper convex `-Ω -subgroup of B
and B = lex A. Then

(B⊕B⊥)+ = {x ∈ G+ : x 6> B}.
Consequently, if B is unbounded then it is a summand of G.
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Proof. Let x ∈ G+ with x 6> B. Then x 6> b for some b ∈ B+ \A. To see that x ∈
(B⊕B⊥)+ let y = −(x∧ 2b)+ x and c = −(x∧ 2b)+ 2b, and note that y∧ c = 0.
Then x = (x∧ 2b) + y and x∧ 2b ∈ B; so it suffices to show that y ∈ B⊥. First
note that c ∈ B+ \A; for if c ∈ A, then x + c ≥ x∧2b + c = 2b > b + c yields the
contradiction x > b. Now, if d ∈ B+ then d ∧ y∧ c = 0 gives that d ∧ y ∈ A. So
c > d∧ y and hence d∧ y = 0. The other inclusion is obvious. ut
Theorem 2.5.10. Suppose that a is a special element of G, and let M be its value in
G and N its value in C(a). For A∈C (G) let AΩ be the largest convex `-Ω -subgroup
of G that is contained in A. Then:

(a) NΩ = MΩ ∩CΩ (a) is the Ω -value of a in CΩ (a), and CΩ (a) = lex NΩ .
(b) MΩ = NΩ ⊕a⊥.
(c) N = M∩CΩ (a) is the value of a in CΩ (a).
(d) M/N ∼= MΩ /NΩ as `-groups.
(e) CΩ (a) = lex C(a).
(f) If C(a) is not totally ordered, then C(a) contains a nonzero convex `-Ω -

subgroup of G.

Proof. By Theorems 2.5.3 and 2.5.4, A = MΩ ∩CΩ (a) is the unique maximal con-
vex `-Ω -subgroup of CΩ (a). By Theorems 2.5.6 and 2.5.8, CΩ (a) = lex A, and since
CΩ (a)⊥ = a⊥,

(CΩ (a)⊕a⊥)+ = {x ∈ G+ : x 6> CΩ (a)} ⊇M+
Ω

by Theorem 2.5.9. Thus,

MΩ = [MΩ ∩CΩ (a)]⊕a⊥ (2.5.4)

since a⊥ ⊆MΩ . In particular, using Ω = {1} and taking CΩ (a) for G, we get from
(2.5.4) that M ∩CΩ (a) = N ⊕ (a⊥ ∩CΩ (a)) = N. But (X ∩Y )Ω = XΩ ∩YΩ for
X ,Y ∈ C (G), so NΩ = MΩ ∩CΩ (a) = A. This proves (a), (b) and (c). Now, (d)
follows from (b), and (e) and (f) are consequences of (a) since C(a)⊇ N ⊇ NΩ . ut

We consider next those elements in the Ω - f -group G that have only a finite num-
ber of values, and we give the important local structure theorem for such elements.
If a ∈ G has only a finite number of Ω -values, then a is called finite valued. If
M ∈ ΓΩ (G) (respectively, M ∈ Γ (G)) is the unique Ω -value (respectively, value)
of some special element, then M is also called Ω -special (respectively, special).
Clearly, if M ∈ C (G) is a special subgroup, then MΩ is an Ω -special Ω -subgroup;
but the converse is not true.

Theorem 2.5.11. The following statements are equivalent for 0 6= a ∈ G.

(a) a is finite valued.
(b) Each Ω -value of a is Ω -special.
(c) a = a1 + · · ·+an where each ai is special and |ai|∧ |a j|= 0 if i 6= j.



104 2 Lattice-ordered Groups

Moreover, the decomposition of a as a sum of pairwise disjoint special elements is
unique and gives the unique indecomposable decomposition of CΩ (a) = CΩ (a1)⊕
·· ·⊕CΩ (an).

Proof. We first note that if M ∈ΓΩ (a), then M is Ω -special if and only if M∩CΩ (a)
is Ω -special in CΩ (a). For, if M is the unique Ω -value of b ∈G, then, since ΓΩ (x)∩
ΓΩ (y)⊆ΓΩ (|x|∧|y|), we have that M is an Ω -value of |a|∧|b|. But each Ω -value of
|a|∧ |b| is contained in an Ω -value of b; so |a|∧ |b| is special with M as its unique
Ω -value. Thus, by Theorem 2.5.3, M∩CΩ (a) is Ω -special in CΩ (a). Conversely, if
M∩CΩ (a) is the only Ω -value of b in CΩ (a), where 0≤ b≤ |a|, then M is the only
Ω -value of b. For, if M ⊂ L where L ∈ CΩ (G), then a ∈ L, and hence b ∈ L (or we
can use Theorem 2.5.3). So we may assume that G = CΩ (a).

(a)⇒ (b). Suppose that A1, . . . ,An are all of the maximal convex `-Ω -subgroups
of G and assume that n > 1. For each i = 2, . . . ,n choose 0 < bi ∈ A1 \Ai and
0 < ci ∈ Ai \A1. Then for

b =
∨

i≥2

bi ∈ A1 \
⋃

i≥2

Ai and c =
∧

i≥2

ci ∈
(

⋂

i≥2

Ai

)
\A1,

we have that d = b−b∧ c and e = c−b∧ c are strictly positive disjoint elements.
Furthermore, A2, . . . ,An are Ω -values of d and A1 is an Ω -value of e. Let N be
another Ω -value of e. Then N ⊆ Ai for some i ≥ 2; but d ∧ e = 0 gives the con-
tradiction that d ∈ N or e ∈ N. Thus, A1 is Ω -special and similarly, each Ai is
Ω -special.

(b)⇒ (c). Let ΓΩ (a) = {Ai : i ∈ I} be the set of maximal convex `-Ω -subgroups
of G, and suppose that Ai is the only Ω -value of bi. Then {bi : i ∈ I} is a pairwise
disjoint subset of G (Theorem 2.5.1), and hence

⊕

i∈I

CΩ (bi)⊆ G.

Since this containment cannot be proper G = ⊕i∈ICΩ (bi) and I is finite; say, I =
{1,2, . . . ,n}. Then a = a1 + · · ·+ an with ai ∈ CΩ (bi) = CΩ (ai), and each ai is
special by Theorem 2.5.8.

(c) ⇒ (a). This is a consequence of Theorem 2.5.1.
The uniqueness statements follow from the fact that CΩ (G) is a distributive lat-

tice (Theorems 2.2.5 and 2.2.6). ut
The Ω - f -group G is called finite valued if each of its elements has only a finite

number of values. According to the previous theorem G is finite valued precisely
when each Ω -regular Ω -subgroup is Ω -special. It is even possible to determine
whether or not G is finite valued by examining its lattice of convex `-Ω -subgroups,
as we will now show.

A complete lattice L is called completely distributive if for every doubly indexed
subset {ai j : i ∈ I, j ∈ J} the following equation and its dual hold in L:
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∧

i∈I

∨

j∈J

ai j =
∨

f∈JI

∧

i∈I

ai f (i).

The power set of any set is completely distributive, as is easily checked. A dual
ideal of a poset P is a subset D of P such that if d < p with d ∈D, then p ∈D. The
set P′ of all of the dual ideals of P is a complete sublattice of the power set of P and
hence is completely distributive. Each element A in CΩ (G) is the intersection of a
dual ideal of ΓΩ , by Theorem 2.4.2(c). If each element in CΩ (G) is the intersection
of a unique dual ideal of ΓΩ , then CΩ (G) is said to be freely generated by ΓΩ .

Theorem 2.5.12. The following statements are equivalent for G.

(a) CΩ (G) is freely generated by ΓΩ (G).
(b) CΩ (G) is completely distributive.
(c) C (G) is completely distributive.
(d) B∨ (

∧
i∈I Ai) =

∧
i∈I(B∨Ai) for each subset {Ai : i ∈ I}∪{B} of ΓΩ (G).

(e) G is finite valued.

Proof. If A ∈ CΩ (G) let A′ = {N ∈ΓΩ : A⊆ N}. Then A′ is a dual ideal of ΓΩ , and
under the assumption of (a), the mapping A 7−→ A′ is a lattice anti-isomorphism of
CΩ (G) onto the completely distributive lattice Γ ′

Ω . Thus, (a) implies (b), and clearly
(b) implies (d). Suppose that (d) holds, and let {B j : j ∈ J} and {Ai : i ∈ I} be dual
ideals of ΓΩ with ∩B j = ∩Ai. Then for each j ∈ J,

B j = B j ∨
(

⋂

k

Bk

)
= B j ∨

(
⋂

i

Ai

)
=

⋂

i

(B j ∨Ai).

So B j ⊇ Ai for some i∈ I, by Exercise 2.4.5 for CΩ (G), and hence B j ∈ {Ai : i∈ I}.
By symmetry {B j}= {Ai}, and thus (d) implies (a).

We will show that (a) is equivalent to the condition that each Ω -regular Ω -
subgroup is Ω -special. It will then follow from Theorem 2.5.11 that (a) is equivalent
to (e). Toward this end, if M ∈ ΓΩ (G) let δ (M) = {N ∈ ΓΩ (G) : N 6⊆ M}, and let
M∗ = ∩{N : N ∈ δ (M)}. Then δ (M) is a dual ideal of ΓΩ (G), and it can readily be
seen that

M∗ = {a ∈ G : each Ω -value of a is contained in M}. (2.5.5)

Now suppose that M is not Ω -special. Then M∗ ⊆ M. For if a ∈ M∗ and A is an
Ω -value of a, then A is properly contained in M, and hence a ∈ M. If ρ(M) =
δ (M)∪M′, then ρ(M) is a dual ideal distinct from δ (M), yet

∩N∈δ (M)N = M∗ = ∩N∈ρ(M) N.

Thus, CΩ (G) is not freely generated by ΓΩ (G). Conversely, if CΩ (G) is not freely
generated by ΓΩ (G), then there is a dual ideal δ of ΓΩ and M ∈ ΓΩ \δ such that

∩N∈δ N ⊆M.

But then δ ⊆ δ (M) and hence M∗ ⊆ M. If M is Ω -special and a ∈ G has M as its
unique Ω -value, then a∈M∗ ⊆M by (2.5.5). This contradiction shows that M is not
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Ω -special. To complete the proof it is only necessary to note that the equivalence of
(b) with (e) also gives the equivalence of (c) with (e). ut

An Ω - f -group is finite valued if and only if each positive element is the sup of a
finite set of positive disjoint special elements. A description of the infinite analogue
of this property is given next. A subset ∆ of ΓΩ (G) is called plenary if ΓΩ (g)∩∆ 6= /0
for each 0 6= g ∈ G, and whenever g 6∈ N ∈ ∆ , then there exists M ∈ ∆ ∩ΓΩ (g) with
M ⊇ N. Another description of a plenary subset is given in Exercise 33.

Theorem 2.5.13. Suppose ∆ is a plenary subset of ΓΩ (G). If g ∈ G and ΓΩ (g)∩∆
is finite, then ΓΩ (g)⊆ ∆ .

Proof. By Exercise 34 ∆ c = {N ∩ CΩ (g) : N ∈ ∆ and g 6∈ N} is a plenary subset of
ΓΩ (CΩ (g)), and by Theorem 2.5.3 we may assume G = CΩ (g). Let ΓΩ (g) ∩ ∆ =
{P1, . . . ,Pn}. Suppose P∈ΓΩ (g)\∆ . For i = 1, . . . ,n take ai ∈ P+\Pi and bi ∈ P+

i \P,
and let a = a1∨·· ·∨an and b = b1∧·· ·∧bn. Then a ∈ P\Pi and b ∈ Pi\P for each i;
so 0 < c = a−a∧b, d = b−a∧b and c∧d = 0. Let Q∈ ∆ ∩ΓΩ (d). Since g 6∈Q we
have Q⊆Pi for some i; but now we have the contradiction a = c+a∧b∈Q+Pi ⊆Pi.

ut
An Ω -`-subgroup H of G is laterally completely closed if for each disjoint subset

{hi : i∈ I} of H+,
∨

i hi ∈H whenever
∨

i hi ∈G. Each Ω -special Ω -value is laterally
completely closed; see Exercise 36. In one case these are the only Ω -values with this
property. The element 0 < g∈G is special valued if g =

∨
i∈I gi for some disjoint set

of positive special elements {gi : i ∈ I}, and G is special valued if each 0 < g ∈ G
has this property. According to Exercise 37 any such representation of g is unique.

Theorem 2.5.14. Let ∆ be the set of Ω -special Ω -values of G. If G is special valued,
then ∆ is a plenary subset of ΓΩ (G). Conversely, if ∆ is plenary and each N ∈ ∆
is normal in its cover N∗, then G is special valued. Moreover, if 0 < g ∈ G, then
ΓΩ (g)∩∆ =

⋃
i∈I ΓΩ (gi) where {gi : i ∈ I} is the disjoint set of special elements

with g =
∨

i∈I gi.

Proof. Assume first that G is special valued. Suppose 0 < g =
∨

i gi where {gi : i∈ I}
is a disjoint set of special elements in G. Then

⋃
i ΓΩ (gi) ⊆ ΓΩ (g) by Exercise 37,

and if g 6∈ N ∈ ∆ , then gi 6∈ N for some i ∈ I by Exercise 36. Consequently the Ω -
value Ni of gi contains N and is an Ω -value of g; so ∆ is plenary. Assume now that
∆ is plenary and N is normal in N∗ for each N ∈ ∆ . Suppose 0 < g∈G, ΓΩ (g)∩∆ =
{Ni : i ∈ I}, and 0 < xi ∈ G is special with Ω -value Ni. Now, N∗

i = CΩ (xi)+Ni and
g = yi +ai < xi +yi +ai with yi ∈CΩ (xi)+ and ai ∈N+

i . Since CΩ (xi) =CΩ (xi +yi),
zi = xi + yi is special with Ni as its Ω -value. Also, zi +Ni > g+Ni since g < zi +ai
and−g+ zi =−ai−yi +xi +yi 6∈ Ni. Let gi = g∧zi. We claim that gi is special with
Ni as its Ω -value. Clearly, gi ∈N∗

i \Ni and by Theorem 2.5.13 it suffices to show that
Ni is the only Ω -special Ω -value of gi. Suppose N ∈ ∆ . If N ⊆ Ni, then N 6∈ ΓΩ (gi)
unless N = Ni. If N 6⊆ Ni, then zi ∈ N and hence gi ∈ N. Thus, ΓΩ (gi) = {Ni}. By (c)
of Theorem 2.5.1, gi∧g j = 0 if i 6= j. To see that g =

∨
i∈I gi take h ∈G with h≥ gi

for each i∈ I, and let N ∈ΓΩ (h−g)∩∆ . If g∈N, then h−g+N = h+N > N. If g 6∈
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N, then N ⊆Ni for some i∈ I. Since−g+Ni >−zi +Ni we have−g+N >−zi +N,
and hence−gi +N =−g∨−zi +N =−g+N; so h−g+N = h−gi +N ≥N. Since
the proof of (b) of Theorem 2.5.1 shows, in fact, that (b) holds when the Ω -values
come from a given plenary subset of ΓΩ (G), we have h≥ g. ut

Exercises.

Unless stated otherwise G is an Ω -f-group in the following exercises.

1. Let G be a weak Ω - f -group and let

Ω f = {ω ∈Ω : ω induces an f -endomorphism of G}.

G is called a pseudo Ω - f -group if it satisfies the condition

(∗) ∀ω ∈Ω , ∀x ∈ G+, ∃λ ∈Ω f , ∃n ∈ N such that ωx≤ nλx.

(a) Show that each of the theorems in this section holds for a pseudo Ω - f -
group.

(b) Give an example of a pseudo Ω - f -group that is not an Ω - f -group.

2. Suppose that P ∈ Γ (G) is covered by P∗, Q ∈ ΓΩ (G) is covered by Q∗ and
α : G−→ G is an Ω - f -endomorphism of G.

(a) Show that either (P∗)Ω = PΩ or (P∗)Ω is the cover of PΩ in CΩ (G).
(b) Show that αQ∗ 6⊆ Q∗ iff α(Q∗\Q)∩Q∗ = φ . In particular, P∗ is an Ω -

subgroup of G iff Ωa⊆ P∗ for some a ∈ P∗\P.
(c) Suppose that Q is normal in Q∗. Show that if αQ∗ ⊆ Q∗, then αQ ⊆ Q.

(If N is a minimal prime subgroup of G contained in Q, then α induces an
isotone map on G/N; and Q∗/N −→ Q∗/Q is also isotone.)

(d) If G is normal-valued, show that either P and P∗ are Ω -subgroups, or for
some ω ∈Ω ,ω(P∗\P)∩P∗ = φ (see Exercise 18).

3. Suppose that x is a special element of G with Ω -value P and that {Q ∈ ΓΩ (G) :
Q⊆ P} is a chain. Show that x is basic (Exercise 2.4.11).

4. Let H be an `-Ω -subgroup of G.

(a) If a ∈ H is special in G, then a is special in H.
(b) If 0 6= a∈G, then a is special in some `-subgroup of G iff a∈G+∪−G+.
(c) If a ∈ H, then |ΓΩ (a,H)| ≤ |ΓΩ (a,G)|.

5. If P is a rooted poset, then trunk(P) is a dual ideal of P.

6. Show that trunk(G) = 0 iff G is totally ordered.

7. Suppose that A ∈ CΩ (G).

(a) If A⊇ trunk(G), then each convex `-Ω -subgroup of G is comparable to A.
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(b) If A is comparable to each convex `-Ω -subgroup of G, then A = 0 or A ⊇
trunk(G).

8. Verify that each of the following subsets of G is equal to trunk (G):

(a) the subgroup generated by {a ∈ G+ : a⊥ 6= 0};
(b) lubC (G){P : P is a minimal prime subgroup of G};
(c) the subgroup generated by {a ∈ G : a||0};
(d) {a ∈ G : for some n ≥ 0 there exist a1, . . . ,an ∈ G with a||a1|| · · · ||an||0};

show it is a subgroup.

9. (a) G\ trunk(G) = {a ∈ G : a is special and a⊥ = 0}.
(b) If a is special in G then a⊥⊥ has a proper trunk.

10. Let PΩ (G) be the rooted poset consisting of all of the prime Ω -subgroups of
G, and let P0 be the set of minimal prime subgroups. Then |set of roots of
ΓΩ |= |set of roots of PΩ (G)|= |P0|= |set of roots of Γ |.

11. (a) ΓΩ (G) has precisely n roots (n∈N) iff G has a subset of n pairwise disjoint
nonzero elements but no such subset with n +1 elements. In this case G is
called finitely rooted.

(b) If ΓΩ (G) has at most n roots and H is an `-Ω -subgroup of G, then ΓΩ (H)
has at most n roots.

(c) If G is finitely rooted, then G is a direct sum of a finite number of indecom-
posable Ω - f -groups.

12. Let N be a normal convex `-Ω -subgroup of G and set Ḡ = G/N. For an element
a ∈ G denote its image in Ḡ by ā.

(a) |Γ (ā, Ḡ)| ≤ |Γ (a,G)|.
(b) If G is finite valued so is Ḡ.
(c) If G is finitely rooted so is Ḡ.

13. If G =
⊕

i∈I

Gi is a direct sum, then ΓΩ (G) =
⋃

i∈I

ΓΩ (Gi) is a cardinal sum.

14. Let P be a rooted poset. Define a relation ∼ on P by: p ∼ q if p and q have a
common upper bound. Show that ∼ is an equivalence relation on P and that P
is the cardinal sum of its equivalence classes.

15. Suppose that G is finite valued.

(a) If ΓΩ (G) = Γ1∪·· ·∪Γk is a cardinal sum show that G = G1⊕·· ·⊕Gk with
ΓΩ (Gi)∼= Γi.

(b) If G is indecomposable and finitely rooted show that G has a proper trunk
(use Exercise 14).

16. Let A be a class of totally ordered Ω - f -groups which contains 0, and let L =
L (A ) be the smallest class of Ω - f -groups which contains A and which is
closed under isomophism, finite direct sums, and lexicographic extensions. So
if A,B ∈L and G is an Ω - f -group, then
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(i) G∼= A⇒ G ∈L ;

(ii) A⊕B ∈L ;

(iii) G = lex A, ACG and G/A∼= B⇒ G ∈L .

(a) Show that if G∈L (A ), then G can be obtained from A in a finite number
of steps by using (i), (ii) or (iii).

(b) If G is a finitely rooted Ω - f -group, show that there is a finite set {T1, . . . ,Tk}
of totally ordered Ω - f -groups such that G ∈L ({T1, . . . ,Tk}) (use Exercise
15).

17. Let G = A ×ϕ←B be an ordinal semidirect product of the `-group A by the totally
ordered group B. Suppose that A and B are Ω -groups, and let Ω operate on G
coordinatewise.

(a) Show that G is an Ω -group if and only if the following condition is
satisfied:

If ω ∈Ω and 0 < b ∈ B with ωb = 0, then ωA⊆ A+.

In (b), (c) and (d) it is assumed that G is an Ω -group.

(b) If A is an Ω - f -group, then so is G.
(c) G is an Ω -d-group (respectively, an Ω - f -group) iff A and B are Ω -d-

groups (respectively, Ω - f -groups) and ω(ba) = ωbωa for each ω ∈Ω and
each (a,b) ∈ G.

(d) If G is an Ω - f -group, then CΩ (G) ∼= CΩ (A) ×←CΩ (B) and ΓΩ (G) ∼=
ΓΩ (A) ×←ΓΩ (B).

18. The normalizer of the subset X of G is NG(X) = {g ∈ G : Xg =−g+X +g =
X}. Using the notation of Theorem 2.5.2 with Ω = {1}, let P ∈ P(G) with
A 6⊆ P. Then

(a) NG(P)∩A = NA(P∩A).
(b) A⊆ NG(P) iff P∩ACA.
(c) If a ∈ A and P ∈ Γ (a,G) is covered by P∗ ∈ C (G), then the following

statements are equivalent.
(i) PCP∗.

(ii) P∩AC (P∩A)∗ where (P∩A)∗ is the cover of P∩A in A.
(iii) P∩C(a)CC(a).

In this case P is called a normal value of a. If each P ∈ Γ (a,G) is normal in
its cover P∗, then a is said to be normal valued; and if each a ∈ G is normal
valued, then G is called a normal valued `-group.

(d) If a is finite valued, then a is normal valued.
(e) If G is representable, then G is normal valued.
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19. (a) Suppose that G is representable or is finite valued. If Γ (G) satisfies the
ascending chain condition show that C (G) = CΩ (G). (Use (e) of Theorem
2.5.10 to first show that C(a) = CΩ (a) if a is special.)

(b) Give an example of a totally ordered abelian Ω - f -group G for which Γ (G)
satisfies the descending chain condition but in which CΩ (G)⊂ C (G).

20. If G = lex A where A∈C (G) and A is a group summand of G with a complement
B, then G = A ×←B.

21. This exercise gives an example of a totally ordered abelian group G with a
convex subgroup A that is not a group summand of G. In fact, G = lex A does
not imply that G ∼= A ×←B. Let {pn : n ∈ N} be the increasing sequence of
primes, and let G be the subgroup ofQ ×←Q generated by the set {(n/pn, 1/pn) :
n ∈ N}. Let A = Z×{0} ⊆Q ×←Q.

(a) G∩ (Q ×{0}) = A.
(b) A is the only nonzero proper convex subgroup of G.
(c) A is not a group summand of G.

22. Show that G is isomorphic to a direct sum of a family of totally ordered Ω - f -
groups iff G is representable, finite valued and each special element is basic
(use Exercises 2.4.10, 2.4.11, and 2.4.12).

23. Let A1,A2 ∈ CΩ (G) and suppose that Ai = lex Bi for some Bi ⊂ Ai. Show that
A1 and A2 are comparable, or A1∩ A2 = 0. Consequently, {A ∈ CΩ (G) : A has
a proper trunk} is a rooted subset of CΩ (G).

24. Show that G is isomorphic to a direct product of a family of totally ordered
Ω - f -groups if and only if G is laterally complete, has a basis (Exercise 2.4.13)
and is projectable (that is, each polar a⊥⊥ is a direct summand of G).

25. A representation
ϕ : G−→∏

i∈I
Gi

of G as a subdirect product of the family {Gi : i ∈ I} of Ω - f -groups is called
irredundant if ϕ(G)∩Gi 6= 0 for each i ∈ I. (Equivalently, each induced map

ϕi : G−→∏
j 6=i

G j

has a nonzero kernel.)

(a) Show that G is an irredundant subdirect product of a family of totally or-
dered Ω - f -groups if and only if G is representable and B(G) is atomic
(see Exercise 2.4.13).

(b) Suppose that ϕ : G−→∏ Gi is an irredundant subdirect product represen-
tation of G where each Gi is totally ordered. Show that there is a bijection
between I and the set of maximal polars of G such that for each maximal
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polar Ai, i ∈ I, Gi ∼= G/Ai. Furthermore, the diagram

commutes (see Exercise 2.4.12). Show that B(G)∼= B(ΠiGi)∼= P(I) (see
Exercise 2.2.14(e)).

26. (a) Show that the following statements are equivalent for G.
(i) G contains a maximal disjoint subset {ai : i ∈ I} such that each ai is

special and a⊥⊥i is unbounded in G.
(ii) There is a family {Gi : i ∈ I} of Ω - f -groups such that each Gi has a

proper trunk, and there is an embedding of G into the direct product
ΠGi such that the image of G contains the direct sum ⊕Gi. (For (i)
⇒ (ii) use Theorem 2.5.9 and Exercise 9.)

(b) If G is special valued and each special element is basic show that G has the
properties given in (a).

(c) Give an example of a special valued `-group with a basis which does not
satisfy the conditions in (a).

27. Show that the following statements are equivalent for G.

(a) G is archimedean and has a basis.
(b) There is a family {Gi : i ∈ I} where each Gi is an Ω -subgroup of the reals,

and there is an embedding of G into the direct product ΠGi such that the
image of G contains the direct sum ⊕Gi (see Exercises 26, 2.4.12, and
2.4.13).

28. If G = lex A, show that A is completely closed in G and the inclusion map
A−→ G is complete (see Exercise 2.3.21).

29. Let A,B ∈ CΩ (G) with A = lex B and B⊂ A. Show that G = lex A iff A⊥ = 0.

30. Let G be a po-Ω -Λ -`-group; that is, G has two operator sets Ω and Λ with
associated functions Ω −→ End(G)+ and Λ −→ End(G)+ such that (ωx)λ =
ω(xλ ) for all ω ∈Ω , λ ∈Λ , and x ∈ G.

(a) If X is a subset of G give a description of the elements in CΩ-Λ (X), the con-
vex `-Ω -Λ -subgroup of G that is generated by X , in terms of the elements
in X ,Ω and Λ .

(b) Describe the elements in C(G)
Ω-Λ (X), the normal convex `-Ω -Λ -subgroup that

is generated by X .
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(c) Suppose that G is an Ω -Λ -f-group and a∧ b = 0. If D is a convex `-Ω -
Λ -subgroup, show that CΩ-Λ (D,a)∩CΩ-Λ (D,b) = D. If G is also repre-
sentable and D is normal, show that C(G)

Ω-Λ (D,a) ∩C(G)
Ω-Λ (D,b) = D.

(d) Let S be a meet closed subset of G+ where G is an Ω -Λ - f -group. If P is
a convex `-Ω -Λ -subgroup that is maximal with respect to P∩S = φ , show
that P is prime.

(e) In (d), if G is also representable and P is maximal among the normal convex
`-Ω -Λ -subgroups of G that are disjoint from S, show that P is prime.

31. For the po-Ω -Λ -`-group G (see the previous exercise) let

ρ(G) = {x ∈ G : for each sequence (ωn) in Ω there exists an n ∈ N such that
ωnωn−1 · · ·ω1|x|= 0}.

(a) Show that ρ(G) is a normal convex `-Ω -Λ -subgroup of G.
(b) Show that ρ(G/ρ(G)) = 0; that is, G/ρ(G) is ρ-semisimple.
(c) If N is a normal convex `-Ω -Λ -subgroup of G, show that ρ(G)+ N/N ⊆

ρ(G/N).
(d) Show that ρ(G) = 0 iff r(Ω ;G) = 0 where r(Ω ;G) = {x ∈ G; ωx = 0 for

each ω ∈Ω}.
(e) Assume that G is a representable Ω -Λ - f -group. Let {Pi : i ∈ I} be the col-

lection of normal prime Ω -Λ -subgroups of G, and let ρ(G/Pi) = Ki/Pi.
Show that ρ(G) = ∩iKi. (If x 6∈ ρ(G) because of the sequence (ωn), let S
be the meet closed subset of G+generated by the elements ωn · · ·ω1|x| and
use Exercise 30.)

(f) If G is a representable Ω -Λ - f -group, show that G is ρ-semisimple if and
only if G is a subdirect product of totally ordered ρ-semisimple Ω -Λ - f -
groups.

32. Let G be an Ω - f -group and for x ∈ G let Ωx = {ωx : ω ∈ Ω}. G is called
Ω -archimedean if for all x,y ∈ G,Ωx≤ y implies that x≤ 0.

(a) If G is Ω -archimedean and x ∈ M, show that x⊥ = ∩{N : N ∈ ΓΩ (x)}.
(If y 6∈ x⊥, 0 < z = x∧ y and ω ∈ Ω with ωz 6≤ x, consider the elements
g = ωz− x ∧ ωz and h = x− x ∧ ωz and take P ∈ ΓΩ (g).)

(b) Conversely, suppose that x,y ∈ G with x⊥ = ∩{N : N ∈ ΓΩ (x)}, and N is
normal in its cover N∗ for each N ∈ ΓΩ (x). Show that if CΩ (y) ≤ x, then
y = 0.

(c) Suppose that x⊥ = ∩{N : N ∈ ΓΩ (x)} for each x ∈ G. Show that if x,y ∈ G,
then x⊥ = ∩{N : N ∈ΓΩ (x) and y ∈ N∗}. (Assume that x,y ∈G+ and x≤ y.
If 0 < z 6∈ x⊥, then x∧ z 6∈ y⊥.)

33. For ∆ ⊆ ΓΩ (G) and Λ ⊆ Γ (G) let ∆ ′ = {A ∈ Γ (G) : AΩ ∈ ∆} and ΛΩ = {AΩ :
A ∈Λ}.

(a) Show that ∆ is a plenary subset of ΓΩ (G) iff ∆ is a dual ideal of ΓΩ (G) and
∩N∈∆ N = 0.

(b) Verify that (∆ ′)Ω = ∆ .
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(c) Show that ∆ is a plenary subset of ΓΩ (G) iff ∆ ′ is a plenary subset of Γ (G).
(d) If Λ is a plenary subset of ΓΩ (G) show that ΛΩ is a plenary subset of ΓΩ (G).
(e) Give an example to show that ΛΩ can be a plenary subset of ΓΩ (G) without

Λ being a plenary subset of Γ (G).

34. Suppose ∆ is a plenary subset of ΓΩ (G) and A ∈ CΩ (G). Show that ∆ c = {N∩
A : N ∈ ∆ and A 6⊆ N} = {N ∩A : N ∈ ∆ ∩ΓΩ (a) for some a ∈ A} is a plenary
subset of ΓΩ (A).

35. Suppose g =
∨

i∈I ai where {ai : i ∈ I} is a disjoint subset of G+.

(a) Show that for each j ∈ I, g = a j +
∨

i 6= j ai =
∨

i 6= j ai +a j.
(b) Show that ng =

∨
i∈I nai for every n ∈ N.

36. (a) If N ∈ΓΩ (G) is Ω -special show that N is laterally completely closed. (Sup-
pose ΓΩ (h) = {N}, {gi : i ∈ I} ⊆ N is a disjoint set of positive elements
with g =

∨
i gi 6∈ N. If x = g∧h show that ΓΩ (x) = {N}, and use Theorems

2.6.8 and 2.6.10 together with Exercise 35 (b) to show that x≥ 2x).
(b) If g is a special valued element of G and N ∈ ΓΩ (g) is not Ω -special show

that N is not laterally completely closed.

37. The element a∈G is called indecomposable if |a|= b+c with b∧c = 0 implies
b = 0 or c = 0. Equivalently, CΩ (a) is an indecomposable Ω - f -group.

(a) Show that each special element of G is indecomposable.
(b) Suppose g =

∨
i ai =

∨
j b j where {ai : i ∈ I} and {b j : j ∈ J} are each

disjoint sets of positive indecomposable elements. Show that {ai : i ∈ I}=
{b j : j ∈ J} and

⋃
i ΓΩ (ai)⊆ ΓΩ (g). (Use Exercise 35.)

2.6 Hahn Products and the Embedding Theorem

Representing an abstract algebra as an algebra of functions is always satisfying.
Here, a lexicographically inspired partial order is constructed on a subgroup of a
group direct product of a family of po-groups indexed by a poset, and the conditions
for the resulting po-group to be an `-group are determined. The value set of an
abelian `-group together with this construction is used to represent the `-group as
an `-group of real-valued functions.

Let G be a po-group and let End(G)+ denote the set of po-group endomorphisms
of G. If Ω is a set which operates on G, then G is called an Ω -po-group if the
associated function maps Ω to End(G)+. Clearly, each Ω -d-group is an Ω -po-group
and each po-group is an φ -po-group as well as an {1}-po-group, but a pseudo Ω - f -
group as defined in Exercise 2.5.1 need not be an Ω -po-group. An element ω ∈ Ω
is strict on G if ωx > 0 for each 0 < x ∈ G. If each ω ∈ Ω is strict on G, then G is
called a strict Ω -po-group.

Suppose that Γ is a poset and for each γ ∈ Γ let Gγ be an Ω -po-group. Note
that the group direct product ∏Gγ admits Ω as an operator set : (ωv)(γ) = ωv(γ)
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for v ∈ ∏Gγ , ω ∈ Ω and γ ∈ Γ . Whenever we refer to a subgroup of the direct
product ∏Gγ as an Ω -group we mean, as usual, that it is an Ω -subgroup of the
product with this Ω -action. We intend to generalize the Hahn product construction
given in Example (iv) of Section 2.1. Specifically, for each element v ∈ ∏Gγ the
support of v (abbreviated supp v) is defined by

supp v = {γ ∈ Γ : v(γ) 6= 0},

and the maximal elements in supp v will be denoted by maxsupp v. Let

V = V (Γ ,Gγ) = {v ∈∏
γ

Gγ : supp v has the maximum condition},

and set
V + = {v ∈V : v(γ) > 0 for each γ ∈maxsupp v}.

If each Gγ = G we will denote V (Γ , Gγ) by V (Γ , G). For each γ ∈ Γ and xγ ∈ Gγ
the natural group embedding Gγ −→V will be indicated by xγ 7−→ xγ .

Theorem 2.6.1. Let Gγ be an Ω -po-group for each element γ in the poset Γ . Then
V (Γ ,Gγ) is an Ω -subgroup of ∏Gγ , and V + is a positive cone for V (Γ ,Gγ). More-
over, V is an Ω -po-group if and only if whenever ω ∈ Ω is not strict on some Gγ ,
then ωGδ = 0 for each δ < γ .

Proof. V is an Ω -subgroup of the product ∏Gγ since if u,v ∈ V , and ω ∈ Ω , then
supp ωv∪ supp (u− v) ⊆ supp u∪ supp v, and the union of two subsets of Γ , each
of which satisfies the maximum condition, also satisfies the maximum condition. To
see that V + +V + ⊆V + let u,v ∈V +. We claim that

γ ∈ maxsupp (u+ v)⇒ γ ∈ maxsupp u or u(γ) = 0. (2.6.1)

For if u(γ) 6= 0, take δ ∈maxsupp u with δ ≥ γ . If δ > γ , then v(δ ) =−u(δ ) < 0; so
there exists α > δ with α ∈ maxsupp v. But then 0 = (u+v)(α) = v(α) > 0. Thus,
γ = δ ∈maxsupp u. Similarly, either γ ∈maxsupp v or v(γ) = 0. So, in each of the
three possible cases, (u + v)(γ) > 0 and hence u + v ∈V +. Clearly, V +∩−V + = 0
and V + is normal in V since supp (−u+ v+u) = supp v.

Suppose that V is an Ω -po-group. Let δ < γ in Γ and let ω be an element of Ω
which is not strict on Gγ . Take 0 < xγ ∈ Gγ with ωxγ = 0, and let xδ ∈ Gδ . Then
xγ + xδ ∈ V +, so ωxδ ≥ 0. Thus ωGδ = 0. Conversely, suppose that this condition
is satisfied, and let ω ∈Ω . We need to verify that the homomorphism of V induced
by ω is isotone. Suppose that v ∈ V + and let δ ∈ maxsupp ωv. Then there exists
γ ∈ maxsupp v with γ ≥ δ . If γ > δ , then ωv(γ) = 0 and hence ωGδ = 0 since ω
is not strict on Gγ . But this contradicts that δ ∈ maxsupp ωv; so γ = δ and hence
ωv(δ ) > 0. Thus ωv ∈V +. ut

An Ω -po-group of the form (V (Γ ,Gγ),V +) will be called a Hahn product. We
next determine when a Hahn product is an `-group as well as when it is an Ω -d-
group or an Ω - f -group. The conditions on the Gγ for V to be an `-group arise from
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the lexicographic conditions in Exercise 2.1.10. For convenience we will always
assume that each Gγ 6= 0 in the Hahn product construction. Note that the map Gγ −→
V, xγ 7−→ xγ , is an embedding of po-groups.

Theorem 2.6.2. The Hahn product V (Γ ,Gγ) is an `-group if and only if the follow-
ing conditions are satisfied.

(a) Each Gγ is an `-group.
(b) Gγ is totally ordered if γ is not a minimal element of Γ .
(c) Γ is a rooted poset.

Moreover, if V (Γ ,Gγ) is an `-group and an Ω -po-group, then it is an Ω -d-group
(respectively, an Ω - f -group) if and only if each Gγ is an Ω -d-group (respectively,
an Ω - f -group).

Proof. Suppose that V is an `-group. We will first verify (a). Let aγ ∈Gγ and assume
that aγ is not comparable to 0. Then a+

γ > 0, aγ . We claim that if α ∈ maxsupp
a+

γ , then γ 6< α . For, if γ < α , then, since supp a+
γ \ {γ} = supp (aγ + a+

γ )\{γ},
α ∈ maxsupp (aγ + a+

γ ), and, in fact, maxsupp a+
γ = maxsupp (aγ + a+

γ ); so if
β ∈ maxsupp a+

γ , then (aγ +a+
γ )(β ) = a+

γ (β ) > 0. Thus, aγ +a+
γ > 0, a−γ = 0 and

aγ ≥ 0, contrary to our assumption. Now, γ ∈ supp a+
γ (and, hence, γ ∈maxsupp a+

γ ).
For, otherwise, there exists α ∈ maxsupp (a+

γ −aγ) with α ≥ γ , and, in fact, α > γ
since −aγ 6> 0. But since α ∈ maxsupp a+

γ we have a contradiction. So a+
γ (γ) > 0,

γ ∈ maxsupp (a+
γ − aγ), and a+

γ (γ) > aγ . We now claim that a+
γ (γ) = a+

γ . For,
suppose that bγ ∈ Gγ with bγ > 0, aγ and bγ 6= a+

γ (γ). Then bγ ≥ a+
γ and there

exists α ∈ maxsupp (bγ −a+
γ ) with α ≥ γ . If α > γ , then α ∈ maxsupp a+

γ gives a
contradiction. So α = γ and bγ > a+

γ (γ). Thus Gγ is an `-group and a+
γ = a+

γ (γ).
In order to prove (b) we first note that the map aγ 7−→ aγ is an `-group embedding

of Gγ into V . For, if a+
γ > a+

γ and β ∈ maxsupp (a+
γ − ā+

γ ), then, since a+
γ (γ) =

a+
γ , γ 6= β ∈ maxsupp ā+

γ and ā+
γ (β ) < 0. This contradiction gives that a+

γ = a+
γ .

Now, if δ < γ and if aγ ∈ Gγ is not comparable to 0, then 0, aγ < aδ +a+
γ for each

aδ ∈Gδ . But then a+
γ ≤ aδ +a+

γ and hence Gδ = 0. Thus, aγ is comparable to 0 and
Gγ is totally ordered.

Now suppose that α and β are incomparable elements of Γ with a common lower
bound γ . Let 0 < aα ∈ Gα , 0 < aβ ∈ Gβ and v ∈ V +. We claim that v ≤ aα ,aβ
if and only if maxsupp v < α,β . For, suppose that v ≤ aα ,aβ and δ ∈ maxsupp
v with δ 6≤ α . Then δ ∈ maxsupp (aα − v) and v(δ ) < 0, a contradiction. Thus
maxsupp v≤ α,β , and hence maxsupp v < α,β . The converse is obvious. But now
if 0 ≤ v ≤ aα , aβ and 0 < aγ ∈ Gγ , then v < v + aγ < aα ,aβ . Thus aα ∧aβ cannot
exist. This proves that Γ is rooted.

Conversely, assume that conditions (a), (b), and (c) are satisfied, and first consider
the case in which Γ is totally ordered. If Γ does not have a least element, then
V (Γ ,Gγ) is totally ordered, and if Γ does have a least element α , then V (Γ ,Gγ) =
Gα ×←V (Γ \ {α},Gγ) is an ordinal product and hence is an `-group by Exercise
2.1.10. Next, suppose that Γ is an arbitrary rooted poset and let M be a root of Γ .
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Then VM = {v ∈ V : supp v ⊆ M} is a subgroup of V , and VM is an `-group since
VM ∼= V (M,Gγ). The projection V −→ VM which sends v to vM , where vM is given
by vM(γ) = v(γ) if γ ∈ M and vM(γ) = 0 if γ 6∈ M, is a group homomorphism.
Moreover, since Γ is rooted if and only if each root is a dual ideal, maxsupp vM ⊆
maxsupp v and

maxsupp v =
⋃

M

maxsupp vM;

so v≥ 0 if and only if vM ≥ 0 for each root M. Now, for v ∈V define w by w(γ) =
v+

M(γ) if γ is in the root M of Γ . To see that w is well-defined, suppose that γ is
in the distinct roots M and N of Γ . Then γ is not a minimal element of Γ . Since
supp v+

P ⊆ supp vP ⊆ supp v for any root P, if v(γ) = 0, then v+
M(γ) = v+

N (γ) = 0.
On the other hand, if v(γ) 6= 0 and β ≥ γ with β ∈ maxsupp v, then β ∈ M ∩N,
and v+

M(γ) = v(γ) = v+
N (γ) or v+

M(γ) = 0 = v+
N (γ) depending on whether v(β ) > 0

or v(β ) < 0. Since supp w ⊆ ∪M supp v+
M ⊆ supp v we have that w ∈ V . Finally,

if u ∈ V with u ≥ 0,v, then uM ≥ v+
M = wM ≥ 0,vM for each root M; so u ≥ w and

w = v+.
Now suppose that V (Γ ,Gγ) is an `-group and an Ω -po-group. Then for any root

M of Γ ,VM is an `-subgroup of V since supp v+ ⊆ supp v; and, by Theorem 2.6.1,
VM is an Ω -po-group. Also, each projection V −→VM is an `-homomorphism since,
using the notation of the previous paragraph, (v+)M = wM = (vM)+, as well as an
Ω -homomorphism. Consequently, V is isomorphic to a subdirect product of the
family {VM : M is a root of Γ } as an Ω -po-group and as an `-group. So, to prove
the last statement of the theorem, we may assume that Γ is totally ordered. If V is
an Ω -d-group and γ ∈ Γ , then, since the embedding Gγ −→ V, aγ 7→ aγ is one of
`-groups and Ω -po-groups, Gγ is an Ω -d-group (of course, Gγ is a totally ordered
Ω - f -group if γ is not minimal). Conversely, suppose that Gγ is an Ω -d-group where
γ is the minimal element of Γ . If u∧ v = 0 in V and 0 < u,v, then {γ} = maxsupp
u = maxsupp v (since V = Gγ ×←V (Γ \ {γ},Gα)). So u = aγ and v = bγ for some
aγ ,bγ ∈ Gγ , and hence ωu∧ωv = 0 for each ω ∈Ω . The same argument works for
the Ω - f -group case. ut

One reason for the importance of Hahn products is that each abelian `-group can
be embedded in V (Γ ,R) for an appropriate rooted poset Γ . Before we prove this we
first need a definition and an interesting fact about vector spaces.

Let LΩ (G) denote the lattice of Ω -subgroups of the Ω -group G, and let S
be a nonempty subset of LΩ (G). A partial complementation for G with respect
to S is an antitone function f : S −→LΩ (G) such that, for each X in S , G is
the direct sum of its Ω -subgroups X and f (X). If S = LΩ (G), then f is called a
complementation for G.

Theorem 2.6.3. Let V be a left vector space over a division ring D. Suppose that
f : S −→LD(H) is a partial complementation for the subspace H of V . Let S =
{X ∈ LD(V ) : X ∩H ∈ S }. Then there is a partial complementation f : S −→
LD(V ) for V such that f (X ∩H) ⊆ f (X) for each X ∈S . In particular, V has a
complementation.
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Proof. The last statement follows by setting H = 0. Let S W = S ∩LD(W ) for the
subspace W of V , and set

P = {(W,α) : H ⊆W, S W
α−→LD(W ) is a partial complementation for W,

and f (X ∩H)⊆ α(X) for each X ∈S W}.

The relation defined on P by (W,α)≤ (U,β ) if W ⊆U and α(X ∩W )⊆ β (X) for
each X ∈S U is easily seen to be a partial order of P . If {(Wi,αi)} is a chain in P
let W =

⋃
i Wi, and define α : S W −→LD(W ) by

α(X) =
⋃

i

αi(X ∩Wi).

Then (W,α) ∈P. For, α is antitone since each αi is antitone. If X ∈S W , then

X ∩α(X) =
⋃

i, j

(X ∩Wi)∩α j(X ∩Wj),

and, for each i and j, either Wi ⊆Wj and X ∩Wi ∩ α j(X ∩Wj)⊆ X ∩Wj ∩ α j(X ∩
Wj) = 0, or Wj ⊆Wi and X ∩Wi ∩ α j(X ∩Wj) ⊆ X ∩Wi ∩ αi(X ∩Wi) = 0. So
X ∩ α(X) = 0 and, also,

W =
⋃

i

[(X ∩Wi)+αi(X ∩Wi)]⊆
⋃

i

(X ∩Wi)+
⋃

i

αi(X ∩Wi) = X +α(X).

Clearly, (W,α) is an upper bound for the set {(Wi,αi)}. By Zorn’s Lemma P has
a maximal element (A,β ). If A ⊂ V and v ∈ V \ A, let U = A + Dv, and define
γ : S U −→LD(U) by γ(X) = β (X)+Dv if X ⊆ A and γ(X) = β (X ∩A) if X 6⊆ A.
If X ⊆A, then X +γ(X) = X +β (X)+Dv = A+Dv =U and X∩γ(X)= X∩ [β (X)+
Dv] = 0. On the other hand, if X 6⊆ A, then U = A+X = X ∩ A+β (X ∩ A)+X =
X + γ(X) and X ∩ γ(X) = X ∩ A ∩ β (X ∩ A) = 0. So in both cases U is the direct
sum of X and γ(X). It is easy to see that γ is antitone and that (A,β ) < (U,γ). This
contradiction gives that A = V and that β is a partial complementation for V with
respect to S . ut

Let ΓΩ = {Gγ} be the rooted poset of Ω -values of the Ω - f -group G. We will
find it useful to identify γ with Gγ , that is, to index ΓΩ with itself. If Gγ denotes the
cover of Gγ in CΩ (G) and α,β ∈ΓΩ , then we have that α ≤ β (respectively, α < β )
precisely when Gα ⊆ Gβ (respectively, Gα ⊆ Gβ ).

We present next the promised embedding theorem.

Theorem 2.6.4. Let G be an abelian Ω - f -group with Ω -value set ΓΩ , and let S
be the set of all those convex `-Ω -subgroups of G which are unions of countable
chains from {Gγ : γ ∈ ΓΩ}. Suppose that G has a partial complementation with
respect to S and that V (ΓΩ ,Gγ/Gγ) is an Ω -po-group. Then there is an Ω - f -group
embedding ϕ : G −→ V (ΓΩ ,Gγ/Gγ) such that, for each g ∈ G,ΓΩ (g) = maxsupp
ϕ(g).
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Proof. Let f : S −→LΩ (G) be a partial complementation for G. For each γ ∈ ΓΩ
we have the Ω -group direct sum G = Gγ + f (Gγ). Let ϕγ : G −→ Gγ/Gγ be the
composite G −→ Gγ −→ Gγ/Gγ of the projection onto Gγ followed by the natural
homomorphism onto Gγ/Gγ . Explicitly, if g ∈G, then g = gγ +aγ with gγ ∈Gγ and
aγ ∈ f (Gγ), and ϕγ(g) = gγ +Gγ ; so ϕγ(g) = g+Gγ if g ∈ Gγ , and ker ϕγ = Gγ +
f (Gγ). Now, the family {ϕγ : γ ∈ΓΩ} determines a unique Ω -group monomorphism

ϕ : G−→ ∏
γ∈ΓΩ

Gγ/Gγ

given by ϕ(g)(γ) = ϕγ(g) = gγ +Gγ . Note that supp ϕ(g) = {γ ∈ ΓΩ : gγ 6∈ Gγ}=
{γ ∈ ΓΩ : g 6∈Gγ + f (Gγ)}. We claim that ϕ(G)⊆V (ΓΩ ,Gγ/Gγ). For, suppose that
γ1 ≤ γ2 ≤ ·· · is an increasing sequence in supp ϕ(g). If

A =
⋃

k

Gγk ,

then G = A + f (A), g = a + b with a ∈ A and b ∈ f (A), and a ∈ Gγn for some γn.
But then γn = γn+1 = · · · ; if not, γn < γm for some m and consequently Gγn ⊆Gγm .
So a ∈ Gγm ; but also b ∈ f (A) ⊆ f (Gγm), and hence g ∈ Gγm + f (Gγm) = kerϕγm .
This contradicts the assumption that γm ∈ supp ϕ(g).

To see that ΓΩ (g) = maxsupp ϕ(g), let γ ∈ ΓΩ (g). Then ϕ(g)(γ) = ϕγ(g) = g+
Gγ , so γ ∈ supp ϕ(g). Also, if δ > γ , then g ∈ Gγ ⊆ Gδ and ϕ(g)(δ ) = ϕδ (g) = 0.
Thus γ ∈ maxsupp ϕ(g). Conversely, if γ ∈ maxsupp ϕ(g), then g 6∈ Gγ . If also g 6∈
Gγ , then g has an Ω -value Gδ which contains Gγ . But then δ > γ and δ ∈ maxsupp
ϕ(g), a contradiction. It is now easy to see that ϕ is an `-homomorphism. For if
g∧h = 0, then ΓΩ (g)∩ΓΩ (h) = φ and ΓΩ (g)∪ΓΩ (h) is trivially ordered (Theorem
2.5.1), and therefore no element in maxsupp ϕ(g) is comparable to any element
in maxsupp ϕ(h). However, this last statement is equivalent to ϕ(g)∧ ϕ(h) = 0
(Exercise 1). ut

The most important case of this theorem is given in

Theorem 2.6.5. Let G be an abelian `-group with value set Γ . Then there is an
embedding ϕ : G−→V (Γ ,R) such that, for each g ∈ G, Γ (g) = maxsupp ϕ(g).

Proof. The divisible closure d(G) of G is a rational vector space and so Theroem
2.6.3 guarantees that it has a complementation. Also, the mapping Gγ −→ d(Gγ)
is an isomorphism between Γ (G) and Γ (d(G)) and d(Gγ/Gγ) ∼= d(Gγ)/d(Gγ)
(Exercise 2.2.6); so ΓG(g) = Γd(G)(g). By Hölder’s theorem (Thereom 2.3.10)
d(Gγ/Gγ) is isomorphic to a Q-subspace of R. Thus, the embedding ϕ : d(G) −→
V (Γ ,d(Gγ/Gγ)) given by Theorem 2.6.4, when restricted to G, embeds G into
V (Γ ,d(Gγ/Gγ)) and hence into V (Γ ,R). ut

An example of a totally ordered abelian group G with a finite value set Γ which
cannot be embedded in V (Γ ,Gγ/Gγ) is given in Exercise 8.

A totally ordered division ring is a division ring D whose additive group is a
totally ordered group and whose positive cone is closed under multiplication. A left
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vector space E over D which is also an `-group is called a vector lattice over D if
D+E+ ⊆ E+. If 0 < d ∈D, then d−1 = dd−2 ∈D+. Consequently, multiplication by
d is an order automorphism of E, and hence it is an f -map by Theorem 2.4.8 (or The-
orem 2.4.5). Thus, each vector lattice E over D is a D+- f -group, and by Theorems
2.6.2, 2.6.3, and 2.6.4, E can be embedded in the vector lattice V (ΓD(E),Eγ/Eγ).
If E is finite valued, then it is possible to arrange this embedding so that its range
contains each Eγ/Eγ .

Theorem 2.6.6. Let E be a finite valued vector lattice over the totally ordered di-
vision ring D. Then there is an embedding ϕ : E −→ V (ΓD(E),Eγ/Eγ) such that
ϕ(E)⊇ Σ(ΓD(E),Eγ/Eγ) = {v ∈V (ΓD(E),Eγ/Eγ) : supp v is finite}.

Proof. For each γ ∈ ΓD(E) take 0 < aγ ∈ E with Eγ as its only D-value (Theorem
2.5.11). Then CD(aγ) = lex (Eγ ∩CD(aγ)) and Eγ ∩CD(aγ) is the maximal convex
`-subspace of CD(aγ) (Theorems 2.5.3 and 2.5.8). Let Aγ be a subspace of CD(aγ)
such that CD(aγ) = (Eγ ∩CD(aγ))+ Aγ is a D-direct sum. Then Aγ is an `-simple
(necessarily, totally ordered) vector lattice. Now, each nonzero element of Aγ has
Eγ ∩CD(aγ) as its only D-value in CD(aγ), and hence it has Eγ as its only D-value
in E, by Theorem 2.5.3. Since Eγ = Eγ +CD(aγ) = Eγ + Aγ and Eγ ∩Aγ = Eγ ∩
CD(aγ)∩ Aγ = 0, Eγ is the D-direct sum of Eγ and Aγ . Also, A = ∑γ Aγ is a D-
direct sum. For suppose that b1 + · · ·+bn = 0 with 0 6= bi ∈ Aγi , where γ1, . . . ,γn are
distinct and γ1 is a maximal element of {γ1, . . . ,γn}; then bi ∈ Eγ1

for each i≥ 2. But
now we have the contradiction that b1 ∈ Eγ1

. We next show that if C ∈ CD(E), then
C∩A = Σ{Aγ : Aγ ⊆C}. If 0 6= x ∈C∩A, then x = x1 + · · ·+ xn where 0 6= xi ∈ Aγi

and γ1, . . . ,γn are distinct. By induction on n, if some Aγi ⊆ C, then each Aγi ⊆ C.
So, assume that Aγi 6⊆C for each i. Since Aγi is `-simple, Aγi ∩C = 0. Thus xi 6∈C
and C ⊆ Eγi ; so, x ∈ Eγi for each i. If γ j is a maximal element of {γ1, . . . ,γn}, then
xi ∈ Eγ j for each i 6= j. But this gives the contradiction that x j = x− (x1 + · · ·+
x j−1 + x j+1 + · · ·+ xn) ∈ Eγ j .

Now, let S = {C∩A : C ∈ CD(E)}, and define f : S −→LD(A) by

f (C∩A) = Σ{Aγ : Aγ 6⊆C}= Σ{Aγ : Aγ ∩C = 0}.

Then, by the previous paragraph, A = (C∩A)+ f (C∩A) is a D-direct sum, and f
is a partial complementation for A with respect to S . By Theorem 2.6.3 there is
a partial complementation f : CD(E) −→LD(E) of E with respect to CD(E) such
that f (C∩A) ⊆ f̄ (C) for each C ∈ CD(E). Let ϕ : E −→ V (ΓD(E),Eγ/Eγ) be the
corresponding embedding given by Theorem 2.6.4. So if 0 6= b+Eγ ∈ Eγ/Eγ , then
ϕ(b)(γ) = b + Eγ . Since Eγ = Eγ + Aγ we can assume that b ∈ Aγ , and we claim
that supp ϕ(b) = {γ}; that is ϕ(b) = b+Eγ . For, take α ∈ ΓD with α 6= γ , and write
b = x+y with x∈ Eα and y∈ f (Eα). Then ϕ(b)(α) = x+Eα . If α 6< γ , then b∈ Eα
since Eγ is the only D-value of b, and b = x; so ϕ(b)(α) = 0. If α < γ , then Eα ⊆Eγ ;
so Aγ 6⊆ Eα and Aγ ⊆ f (Eα ∩A)⊆ f (Eα). Thus x = 0 and, again, ϕ(b)(α) = 0. ut

Exercises.
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1. Let V = V (Γ ,Gγ) be an `-group. Recall that α||β means that the elements α
and β of Γ are not comparable.

(a) For u,v ∈ V +, then u∧ v = 0 if and only if whenever α ∈ supp u and
β ∈ supp v are comparable, then α = β is a minimal element of Γ and
u(α)∧ v(α) = 0.

(b) If u,v ∈ V give a description of the functions u+, u∨ v, and u ∧ v, and
show that supp (u∨ v)∪ supp (u∧ v)⊆ supp u∪ supp v.

(c) If u ∈V , then supp |u|= supp u.
(d) If u∈V , then |u|(β ) = |u(β )| for each β ∈Γ if and only if whenever ρ,δ ∈

supp u and u(ρ) and u(δ ) have opposite sign, then ρ||δ .
(e) Suppose that each Gγ is totally ordered and let u,v ∈ V +. Show that the

following are equivalent statements.
(i) u∧ v = 0.

(ii) If α ∈ supp u and β ∈ supp v, then α||β .
(iii) If α ∈ maxsupp u and β ∈ maxsupp v, then α||β .

2. (a) Let V = V (Γ ,Gγ) be a Hahn product of po-groups and let ∑ = ∑(Γ ,Gγ) =
{v ∈V : supp v is finite} and W = W (Γ ,Gγ) = {v ∈V : supp v is a union of
a finite number of chains }. Show that V is an `-group iff W is an `-group,
iff ∑ is an `-group.

(b) If each Gγ is an Ω - f -group and V is an Ω - f -group show that ∑, W and
T (Γ ,Gγ) = {v ∈ V : maxsupp v is finite} are Ω - f -subgroups of V . More
generally, for each infinite cardinal ℵ,Vℵ = {v ∈ V : card (supp v) < ℵ}
and Tℵ = {v ∈V : card (maxsupp v) < ℵ} are Ω - f -subgroups of V .

3. Let G be an abelian Ω - f -group and suppose that V (ΓΩ (G),Gγ/Gγ) is an Ω -
f -group. An Ω -group homomorphism ϕ : G −→ V (ΓΩ (G),Gγ/Gγ) is value-
preserving or an Ω -v-homomorphism if for each g∈G,ΓΩ (g)= maxsupp ϕ(g),
and ϕ(g)(γ) = g+Gγ if γ ∈ ΓΩ (g).

(a) Each Ω -v-homomorphism is an embedding of Ω - f -groups.
(b) If there is an Ω -v-homomorphism whose image contains Σ = Σ(ΓΩ (G),

Gγ/Gγ), then G is finite valued.
(c) Suppose that ϕ is an Ω -v-homomorphism and ϕ(G) ⊇ Σ . If g ∈ G show

that the set of maximal elements in supp ϕ(g)\ maxsupp ϕ(g) is finite.
(d) Suppose that G is a vector lattice over the totally ordered division ring

D and that ΓD(G) satisfies the minimum condition. Then there is a D-v-
homomorphism ϕ : G−→V (ΓD(G),Gγ/Gγ) with ϕ(G)= Σ(ΓD(G),Gγ/Gγ)
if and only if G is finite valued.

4. Suppose that V (Γ ,Gγ) is an `-group. Show that if α is a minimal element of Γ ,
then Gα is completely closed in V (Γ ,Gγ).

5. If V (Γ ,Gγ) is an `-group show that V (Γ ,Gγ) is laterally complete iff each Gγ
is laterally complete.
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6. Let V (Γ ,Gγ) be an `-group. Suppose that {Γi}i∈I is the set of equivalence
classes determined by the equivalence relation that is given in Exercise 2.5.14.
Show that

V (Γ ,Gγ)∼= ∏
i

V (Γi,Gγ)

and that each V (Γi,Gγ) is an indecomposable `-group.

7. Suppose that each Gγ is a nonzero subgroup of R and that V = V (Γ ,Gγ) is an
`-group. For γ ∈ Γ let Vγ = {v ∈ V : v(α) = 0 if α ≥ γ} and let V γ = {v ∈ V :
v(α) = 0 if α > γ}.

(a) Show that V γ covers Vγ in C (V ) and that Vγ is special.
(b) Show that Γ can be embedded in Γ (V ).
(c) If Γ is finite, show that the embedding in (b) is an isomorphism.
(d) Find an example where this embedding is not onto.
(e) Suppose Γ is a chain and for ∆ ⊆ Γ let V (∆ ,Gγ) = {v ∈ V : supp v ⊆

∆}. Show that the mapping ∆ 7→V (∆ ,Gγ) is an isomorphism between the
posets of ideals of Γ and convex subgroups of V .

8. Let G be the `-group of Exercise 2.5.21. Show that G cannot be embedded in
V (Γ (G),Gγ/Gγ).

9. A right module M over the ring R is called semisimple if it is the sum of simple
submodules. (M is simple if M 6= 0 and 0 and M are the only submodules of M).

(a) If 0 6= M = xR+Zx is cyclic show that M has a maximal submodule.
(b) Suppose that

M = ∑
i∈I

Ni

where each Ni is a simple submodule, and let A be a submodule of M. Show
that I has a subset J such that

M = A¢¢i∈J Ni.

(c) Show that the following statements are equivalent.
(i) M is semisimple.

(ii) M is the direct sum of a family of simple submodules.
(iii) Each submodule of M is a direct summand of M.
(iv) M has a complementation.
(v) If N is a submodule of M and f : S −→L (N) is a partial comple-

mentation for N, then there is a partial complementation f : S −→
L (M) of M such that f (A ∩ N) ⊆ f (A) for each A ∈ S = {A ∈
L (M) : A∩N ∈S }.

(d) Let L be a lattice with 0 and 1. A partial complementation for k ∈ L is an
antitone function f : S−→ [0,k] such that f (x) is a complement of x in [0,k],
for each x ∈ S, where φ 6= S ⊆ [0,k] = {x ∈ L : x ≤ k}. If k = 1 and S = L
then f is a complementation of L. A lifting of f is a partial complementation



122 2 Lattice-ordered Groups

f̄ : S̄−→ L where S̄ = {x∈ L : x∧k ∈ S} and f (x∧k)≤ f̄ (x) for each x∈ S̄.
Suppose that L is modular and

(i) each chain in L has a sup;
(ii) a∧ (∨ici) = ∨i(a∧ ci) for each a ∈ L and each chain {ci};

(iii) if x∧b = p∧ (x∨b) = 0, then x∧ (b∨ p) = 0 where x,b, p ∈ L and p
is an atom;

(iv) 1 is the join of atoms.
Show that each partial complementation of each element of L has a lifting,
and hence L has a complementation.

10. This exercise gives a proof of the embedding theorem that does not use a com-
plementation. Let G be an abelian `-group and assume that Gγ/Gγ is divisible
for each γ ∈Γ = Γ (G). Let pγ : Gγ −→Gγ/Gγ be the natural map, and let H be
a subgroup of G. Let ϕ : H −→ V = V (Γ ,Gγ/Gγ) be a group homomorphism
with the property that if g ∈ H ∩Gγ , then ϕ(g)(γ) = pγ(g). A homomorphism
ϕ with this property is called a p-mapping.

(a) Each p-mapping ϕ is monic, and if a,b ∈ H with a∧ b = 0, then ϕ(a)∧
ϕ(b) = 0.

(b) If a ∈ H, then Γ (a) = maxsupp ϕ(a).
(c) If x ∈ G \H then ϕ can be extended to a p-mapping ψ : H +Zx −→ V .

(Define ψ by ψ(h + nx) = ϕ(h)+ nv where v ∈ V is defined by v(γ) = 0
if (H + Gγ)∩Zx = 0 and v(γ) = 1

n [ϕ(h)(γ)+ pγ(a)] if 0 6= nx = h + a ∈
(H +Gγ)∩Zx, with h ∈ H and a ∈ Gγ .)

(d) There exists a p-mapping from G into V .

11. Let Γ = P ×←Q be the ordinal product of the nonempty posets P and Q. Show
that Γ is rooted iff P and Q are rooted and P is totally ordered or Q is trivially
ordered.

12. Suppose V (Γ ,Gγ) is an `-group and G is an `-subgroup of V (Γ ,Gγ) which
contains Σ(Γ ,Gγ). For X ⊆Γ let 8X = {γ ∈Γ : γ is comparable to some element
of X}. Show that the following statements are equivalent for v ∈ G.

(a) v is basic in G.
(b) v is basic in V (Γ ,Gγ).
(c) 8(supp v) is totally ordered and Gγ is totally ordered if γ ∈8(supp v).
(d) There is a unique root M of Γ with supp v⊆M, the set of lower bounds of

maxsupp v is totally ordered, and Gγ is totally ordered for γ ∈M.

Notes. The abstract theory of `-groups began with Birkhoff’s paper [BIR1].
Much of the basic theory presented here appears in the notes by Weinberg [WE6]
and Conrad [CON10]. Other references are the books by Bigard, Keimel, and
Wolfenstein [BKW], Darnel [D], Glass [GL1] and [GL2], Anderson and Feil [AF],
Birkhoff [BIR3], and Fuchs [F]. The exposition given in Exercise 2.1.14 of Jaffard’s
Theorem [JA] that each abelian `-group is a group of divisibility follows Gilmer
[GIL, p. 215].
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Good references for the toplogical results presented in section seven are the
books by Kelley [KEL] and Gillman and Jerison [GJ]. The characterization of the
completion given in Theorem 2.3.6 is due to Conrad and McAlister [CM]. The proof
that an archimedean `-group is abelian given in Theorem 2.3.10 is due to Birkhoff
[BIR3, p. 317]; the proof outlined in Exercise 2.4.14 is due to Wolfenstein; see
p. 1.24 of Conrad’s notes [CON10]. A good source for the Stone Representa-
tion Theorem, that is, the duality between the categories of Boolean algebras
and Boolean spaces, is Halmos’ book [HA]. The representation theorem for an
archimedean `-group given in Theorems 2.3.23, 2.3.24, and 2.3.25 is due to Bernau
[BER1] while the concepts of the cl-essential closure and the splitting property
as well as Theorem 2.3.26 is due to Conrad [CON7]. Theorems 2.3.28 through
2.3.32 come from Anderson, Conrad, and Kenny [ACK], while the proof of The-
orem 2.3.29 as well as the special case of Theorem 2.3.32 when H is projectable is
due to Bernau [BER3]. Exercise 2.3.8 is attributed to Kaplansky in Conrad, Harvey
and Holland [CHH, p. 166], Exercise 2.3.21 is due to Weinberg [WE1], Exercises
2.3.22, 2.3.25, and 2.3.30 come from Conrad [CON8], and Exercises 2.3.26–2.3.29
are due to Conrad and McAlister [CM].

The use of operator sets in Section 2.4 originated in Steinberg [ST1] and al-
lows for a uniform treatment of basic properties of `-groups, `-modules and `-rings.
Most of the `-group results in Sections 2.4 and 2.5 are due to Conrad and appear
in [CON10]. Theorem 2.4.3 for real vector lattices is in Johnson and Kist [JK].
Attributions for the various parts of Theorem 2.4.4 are given in Conrad [CON10,
p. 1.21], Exercises 2.4.1 and 2.4.2 are due to Holland [HO], and Exercises 2.4.10
through 2.4.13 come from Conrad [CON6]. Hyper-archimedean `-groups appear in
Bigard [BI1, Chapter 6] and Exercise 2.4.15 appears in Conrad [CON10, p. 2.17].
Most of the material on values in section 2.5 occurs in Conrad [CON10] and orig-
inated in Conrad’s papers [CON4], [CON6], and [CON7]; the translation to Ω -
values and the relations between values and Ω -values comes from Steinberg [ST1]
and [ST21]. What we have called the trunk of an `-group is called the lex-kernel
in Conrad [CON10, p. 2.25]; we have followed Weinberg’s terminology [WE6, p.
II–71]. Exercises 2.5.21 and 2.5.26 come from Conrad [CON10], p. 4.9 and p. 2.35,
respectively; Exercise 2.5.31 comes from Steinberg [ST23] and is a generalization
of the corresponding result for f -rings given by Pierce [PI1], and Exercise 2.5.32
is a result of Bigard [BI, Theorem 5.1] and Bigard and Keimel [BK, Lemma 4], in
a more general setting. The Hahn embedding theorem for totally ordered abelian
groups originated in Hahn [H], and for abelian `-groups it is due to Conrad, Harvey,
and Holland [CHH]. Theorem 2.5.3 about complementations for vector spaces is
due to Banaschewski [BA] who has also noted the characterization of semisimple
modules using complementations that is given in Exercise 2.6.9.



Chapter 3
Lattice-ordered Rings

Lattice-ordered rings occur as polynomial rings, power series rings, and semigroup
rings, as do the perhaps more familiar totally ordered rings, but they also occur as
matrix rings and endomorphism rings. We are concerned with the theory and struc-
ture of lattice-ordered rings and lattice-ordered modules and consequently a diverse
number of topics appears. After initially supplying examples and identifying inter-
esting classes of these objects we present the theory of radicals in the variety of
lattice-ordered rings. Additional examples are provided when generalized power se-
ries rings are studied.

As in ring theory radicals are connected with the structure of a lattice-ordered
ring by means of the intent to factor out a bad radical and end up with a good quo-
tient. The most useful radical comes from the class of nilpotent lattice-ordered rings.
For this radical the good quotient has no nilpotent kernels and in the right situation
it even lacks positive nilpotent elements. By concentrating on the variety of f -rings,
which is the variety generated by the class of totally ordered rings, we are able to ob-
tain more fruitful structural results. For example, in this variety the building blocks
for the `-ring analogue of the Jacobson semisimple rings are the `-simple totally
ordered domains with an identity element. This is also true for some varieties larger
than the f -ring variety, but no such definitive identification is likely in general.

Because of the complications inherent in the interaction between the lattice struc-
ture with the ring multiplication the question of unitability, that is, of when an iden-
tity element can be adjoined to a lattice-ordered ring so that membership in a variety
is preserved, is quite daunting. For the variety of f -rings and, more generally for f -
algebras, answers to this question are provided. The natural questions concerning
the uniqueness of this adjunction as well as when the f -algebra is convex in its en-
largement are also considered.

As might be expected, archimedean f -rings are extremely well behaved. In par-
ticular, the previous embedding theorem for an archimedean `-group is shown to
be an embedding theorem for an archimedean f -ring modulo its nilpotent radical.
Thus, an archimedean f -ring with zero nilpotent radical is a ring of almost real-
valued continuous functions on a compact Hausdorff space. This representation will
allow us to obtain definitive answers to several interesting questions, examples of
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which are: (i) Can an archimedean `-group be the additive `-group of distinct f -
rings with identity elements? (ii) Under what circumstances is an archimedean `-
group the additive `-group of an f -ring with identity?

If we make the reasonable assumption that the variety of f -rings is, in many
ways, the most desirable variety of f -rings, then it becomes intriguing to investigate
which structural properties are preserved in larger varieties; for example, the vari-
ety in which squares are positive or a variety determined by some other polynomial
constraint. This is done in the latter part of this chapter and in the exercises.

3.1 Basics, Examples, and Nonexamples

Each ring will be associative but need not have an identity element. A ring which
has an identity will be called unital, as will a module M if x1 = x for each x in M.

A partially ordered ring (po-ring) is a ring R whose additive group is a po-group
and in which the product of positive elements is positive; that is, if a≥ 0 and b≥ 0
then ab ≥ 0. If (R,+,≤) is directed, or is an `-group or is totally ordered, then R
is called a directed po-ring, or a lattice-ordered ring (`-ring) or a totally ordered
ring, respectively. If R is unital and 1 > 0 then R will be called po-unital (or `-
unital if R is an `-ring). In addition to collecting some basic facts about `-rings and
lattice-ordered modules we present some examples and identify several types of `-
rings which will be studied in later sections. Also, a useful f -subring of an `-ring is
identified.

The ring analogue of Theorem 2.1.1, whose proof is left to the reader, states that
there is a bijection between the set of partial orders of the ring R which make it into
a po-ring and the set of those subsets P of R with the properties:

P+P⊆ P (P is a subsemigroup of (R,+));
PP⊆ P (P is a subsemigroup of (R, ·));
P∩−P = 0.

A subset of a ring R that satisfies the first two of these three properties is called a
subsemiring of R. As is the case for groups, we will frequently identify the partial
order of a po-ring with its positive cone.

Each ring with its trivial partial order is a po-ring, and each abelian po-group with
trivial multiplication is a po-ring; equally obvious is the fact that each subring of the
reals with the usual order is a totally ordered ring. Most ring theoretic constructions
will produce a po-ring if they start with ordered objects. So, for example, the direct
product or the direct sum of a family of po-rings becomes a po-ring if either is
ordered coordinatewise, and each will be directed or be an `-ring if each member
of the family is directed or is an `-ring. Similarly, Rn, the n× n matrix ring over
the po-ring R, together with the canonical positive cone (R+)n, is a po-ring which is
directed or is an `-ring if R has either of these properties. An identical statement can
be made for the polynomial ring R[x] with positive cone R+[x]. Whenever a matrix
ring is considered as a po-ring it will be assumed that it has its canonical partial
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order, unless indicated otherwise. The po-ring (respectively, `-ring) R is called a po-
domain (respectively, an `-domain) if a > 0 and b > 0 imply that ab > 0. Recall
that the ring R is a domain if a 6= 0 and b 6= 0 imply that ab 6= 0. When R is a po-
domain other partial orders on R[x] are possible. In particular, R[x] can be ordered
lexicographically or antilexicographically; let us write a nonzero polynomial p(x)∈
R[x] with increasing exponents:

p(x) = akxk +ak+1xk+1 + · · ·+anxn, 0≤ k ≤ n, ak,an 6= 0.

In the antilexicographic ordering p(x) > 0 if and only if ak > 0, whereas in the
lexicographic ordering p(x) > 0 if and only if an > 0. In both cases R[x] is a po-
domain and is directed if R is directed. If R is not trivially ordered, then R[x] is
always directed in the lexicographic ordering since p(x),0 < p(x) + axn+1 if 0 <
a ∈ R. Of course, if R is a totally ordered domain, then so is R[x] in either of these
two orderings. If A and B are po-rings then the ring direct product supplied with the
lexicographic ordering, R = A ×←B, is a po-group as we have already seen; but it is
not always a po-ring. The conditions for it to be a po-ring are given in Exercise 1.
Here we just note that if A2 = 0, then A ×←B is a po-ring; and it is an `-ring exactly
when A is an `-group and B is totally ordered (see Exercise 2.1.10).

The material in Section 2.2 on subobjects and factor groups of a po-group or an
`-group and on morphisms between two ordered groups carries over to po-rings and
`-rings in the standard way. In particular, if I is a convex ideal of the po-ring R, then
R/I is a po-ring with positive cone (R/I)+ = {a + I : a ∈ R+}. An `-ideal of an
`-ring R is a convex `-subgroup I of R that is also an ideal of R; if I is only a right
(respectively, left) ideal then it is called a right (respectively, left) `-ideal of R. If X is
a subset of R, then 〈X〉r,〈X〉`, and 〈X〉 will denote the right, left or two-sided `-ideal
of R generated by X , respectively. The `-ideal I is called irreducible if R/I is totally
ordered; that is, if I is an ideal and a prime subgroup of R. A homomorphism from
one `-ring (respectively, po-ring) to another is a ring homomorphism that is also a
lattice homomorphism (respectively, isotone); sometimes this will be called an `-
homomorphism. Conditions for a ring homomorphism to be an `-homomorphism
are given in Theorem 2.2.2. The class of `-rings is a variety within the class of all
Ω -algebras, where Ω = {+, ·,∨,∧,−,0}, since the condition that the product of
positive elements is positive can be expressed as the identity (x+y+)− = 0. Thus, all
of the properties attached to a variety hold in the class of `-rings. We also note that
the kernel of a morphism in the category of `-rings is an `-ideal, and each `-ideal is
the kernel of a morphism. It is also clear that the set of `-ideals of the `-ring R is a
complete sublattice of the lattice of convex `-subgroups of R. If this sublattice has
exactly two elements and R2 6= 0, then R is called `-simple.

If R is a po-ring and M is a po-group that is also a right R-module, then M is called
a (right) po-module over R if xa ∈M+ whenever x ∈M+ and a ∈ R+; a left po-R-
module is defined analogously. Note that the module MR is a po-module if and only
if it is an R+-po-group (see Section 2.6). The concept of a po-module is equivalent to
that of a po-representation of R. If M is considered as a right EndZ(M)-module and
ϕ : R −→ EndZ(M) is the representation corresponding to the R-module structure
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of M, then the po-group M is a po-R-module if and only if ϕ is relation preserving;
that is, ϕ(R+) is contained in the set of po-group endomorphisms of M (see Exercise
2.2.8). If M is an `-group as well as a po-R-module it is called an `-module over R.
Some immediate examples of po-modules include each right ideal I of the po-ring R
as well as the factor module R/I if I is also convex; similar `-examples arise using
the appropriate `-subobjects of the `-ring R. Without further elaboration we note
that the remarks that were made in the previous paragraph about the morphisms and
their kernels in the category of `-rings also hold for the category of `-modules over
the po-ring R. An `-submodule of an `-module is, of course, a submodule that is also
a sublattice. Note that if R is not directed then an R+-`-subgroup of M need not be
an `-submodule of MR, though it will be an `-submodule of MS where S = R+−R+

is the subring of R generated by R+.
Let MR be an `-module over the po-ring R. The element a ∈ R+ is called a dis-

tributive element or a d-element on M if

∀x,y ∈M, x∧ y = 0 implies xa∧ ya = 0;

a is called an f -element on M if

∀x,y ∈M, x∧ y = 0 implies xa∧ y = 0.

Each f -element on M is a d-element on M. Analogously, if MR is a po-module over
the `-ring R, then x ∈M+ is called a d-element on R if

∀a,b ∈ R, a∧b = 0 implies xa∧ xb = 0.

The `-module M is called a d-module (respectively, an f -module) if each element
of R+ is a d-element (respectively, an f -element) on M. So, a d-module is just an
R-module which is an R+-d-group, and an f -module is an R-module which is an
R+- f -group. If each positive element of the po-module M is a d-element on R, then
M is called strong. For example, each po-module over a totally ordered ring is
strong. In particular, each abelian `-group is a unital strong f -module over Z. Note
also that submodules and products of strong po-modules are strong. Moreover, if
N is a convex directed submodule of the strong po-module M, then M/N is strong
since disjoint elements in M map to disjoint elements in M/N.

We will denote the set of d-elements on M by d(MR) = d(M), the set of f -
elements on M by f (MR) = f (M), and the additive subgroups that they generate by
D(MR) = D(M) and F(M) = F(MR), respectively.

If R is an `-ring, then an f -element or a d-element on the right `-module RR
is called a right f -element or a right d-element of R, respectively. If the `-module
RR is an f -module or a d-module then R is called a right f -ring or a right d-ring,
respectively. Similar definitions apply on the left. An f-ring is an `-ring that is both
a left f -ring and a right f -ring, and a d-ring is an `-ring that is both a left d-ring
and a right d-ring. Also, an f-element or a d-element of R is an element that is an
f -element or a d-element on both sides.

If M is a right R-module and X ⊆M and A⊆ R, then
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XA =

{
n

∑
i=1

mixiai : xi ∈ X ,ai ∈ A,mi ∈ Z
}

will denote the subgroup of M generated by {xa : x ∈ X , a ∈ A}. Occasionally, XA
will denote the additive subsemigroup generated by this set but the context will
always make this clear. The right annihilator of X in R and the left annihilator of A
in M are defined by

r(X) = r(X ;R) = {a ∈ R : Xa = 0}= {a ∈ R : xa = 0 ∀x ∈ X}

and
`(A) = `(A;M) = {x ∈M : xA = 0}= {x ∈M : xa = 0 ∀a ∈ A}.

In general, r(X) is a right ideal of R which is an ideal if X is a submodule, and `(A)
is a subgroup of M which is a submodule if A is a left ideal. If M is an `-module
over the `-ring R, then the `-annihilators are given by

r`(X) = r`(X ;R) = {a ∈ R : |x||a|= 0 ∀x ∈ X}

and
``(A) = ``(A;M) = {x ∈M : |x||a|= 0 ∀a ∈ A}.

The verification that r`(X) is a right `-ideal of R that is contained in r(X) and ``(A)
is a convex `-subgroup of M that is contained in `(A), as well as other facts about
annihilators, is left as an exercise (Exercises 16 and 17). We do note here that, for
any po-module MR, each annihilator of a positive subset is convex. If X consists
of a single element x, then we write r(x) for r({x}), and, similarly, for the other
annihilators. The element a in the ring R is called right (respectively, left) regular
if r(a) = r(a;R) = 0 (respectively, `(a) = 0). If r(a) = `(a) = 0, then a is called
regular. If r(M) = 0, then M is a faithful R-module, and if r`(M) = 0, then M is
called `-faithful.

The theory of Ω - f -groups developed in the last three sections applies directly to
the categories of R- f -modules and of f -rings. Though it is not necessary to restate
this theory in the present context in order to use it, we will, nevertheless, restate and
slightly embellish Theorems 2.4.7 and 2.4.8.

If R and S are rings and SM and MR are modules, then SMR is called a (left S-
right R-) bimodule if s(xr) = (sx)r for each x∈M,s∈ S and r ∈ R. If SM and MR are
f -modules (respectively, `-modules, po-modules), then M is called an f-bimodule
(respectively, `-bimodule, po-bimodule).

Theorem 3.1.1. Let MR be an `-module over the po-ring R, let f (M) be the set of
f -elements on M, and let F(M) be the additive subgroup of R that is generated by
f (M).

(a) f (M) is a convex subsemiring of R+ that is closed under any finite sups and
infs that exist in R.

(b) F(M) is a convex directed subring of R that is closed under any finite sups
and infs that exist in R.
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(c) F(M)+ = f (M) and F(M) is the largest directed subring of R over which
M is an f -module.

(d) If R is an `-ring, then F(M) is a convex `-subring of R, and

F(M) = {a ∈ R : |a| ∈ f (M)}.

(e) If M is a d-module and N = `(R+;M), then M/N is an f -module over the
directed po-ring S = R+−R+.

(f) If R is an `-ring, then, for each x ∈M and each a ∈ R, |xa| ≤ |x||a|.
(g) If R is an `-ring, then M satisfies the identities |xa| = |x||a| if and only if it

is a strong d-module.
(h) If R is an `-ring, then F(R) = F(RR)∩F(RR) is an f -ring, and it is the

largest directed subring of R over which R is an f -bimodule.

Proof. Since 0 ≤ ∧ai,∨ai ≤ Σai if {a1, . . . ,an} ⊆ R+ and either ∨ai or ∧ai exists,
(a) is a consequence of Theorem 2.4.5. Also, (b), (c), and (d) are consequences of
Exercise 2.2.18, (e) follows from Theorem 2.4.8 since N is a convex `-S-submodule
of M by Exercise 17(d), and (h) is a specialization of (c) and (d). If R is an `-ring,
then

|xa| = |x+a+ + x−a−− x+a−− x−a+|
≤ x+a+ + x−a−+ x+a−+ x−a+

= |x||a|;

so ( f ) is proven. As for (g), if M satisfies the identity |xa| = |x||a|, then for any
x ∈M+ and any a ∈ R+ the group homomorphisms x· : R−→M and ·a : M −→M
induced by x and a are both lattice homomorphisms, by Theorem 2.2.2; that is, M
is a strong d-module. Conversely, if these maps are lattice homomorphisms, then,
for all x ∈M and all a ∈ R, xa+ and xa− are disjoint, since

|xa+|∧ |xa−|= |x|a+∧|x|a− = |x|(a+∧a−) = 0.

So

|x||a| = |x|a+ + |x|a− = |xa+|+ |xa−|
= |xa+− xa−|= |xa|.

ut
From Theorems 2.4.6 and 2.4.7 we immediately get

Theorem 3.1.2. Let MR be an `-module over the po-ring R, and let S = R+−R+ be
the largest directed subring of R. The following statements are equivalent.

(a) MR is an f -module.
(b) Each minimal prime subgroup of M is an S-submodule.
(c) Each polar of M is an S-submodule.
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(d) The `-module MS can be embedded into a direct product of a family of totally
ordered S-modules.

(e) Each subdirectly irreducible homomorphic image of the `-module MS is to-
tally ordered. ¤

The class of `-modules over the po-ring R is a variety since, just as for an `-ring,
the identities (x+a)− = 0, for x∈M and a∈R+, express the condition M+R+⊆M+.
The subclasses of d-modules and f -modules are also varieties which are determined
by the respective identities |xa|= |x|a and x+a∧ x− = 0, where x ∈M and a ∈ R+;
also, the identities |x+a| = x+|a|, where x ∈ M and a ∈ R, determine the variety of
strong `-modules over the `-ring R.

The preceding two results can be applied to an `-ring R since R is an R-R-`-
bimodule, and R is also an `-module over the directed po-ring S that is generated by
the left and right multiplication maps in EndZ(R). In particular, a d-ring, being just
an `-ring that is a strong right d-module over itself, is characterized by the identity
|xy|= |x||y|, and a unital d-ring is an f -ring. An f -ring is characterized as an `-ring
that can be embedded in a product of totally ordered rings since R is an f -ring if
and only if R is an f -module over S and the S-submodules are just the ideals of R;
that is, the class of f -rings is the variety of `-rings generated by the class of totally
ordered rings. Another identity that describes a d-ring is

(x+y+∧ x−y+)∨ (y+x+∧ y+x−) = 0,

and an identity that describes an f -ring is

(x+y+∧ x−)∨ (y+x+∧ x−) = 0.

A po-ring (respectively, an `-ring) is said to have squares positive or to be an sp-ring
or an sp-po-ring (respectively, an sp-`-ring) if it satisfies the inequality x2 ≥ 0, or,
equivalently if it satisfies the identity (x2)− = 0. An `-ring is called an almost f-ring
if it satisfies the identity x+x− = 0; this is equivalent to the condition: a∧ b = 0
implies ab = 0. Since both of these identities hold in a totally ordered ring they
hold in any f -ring. Alternatively, in an f -ring, if a∧ b = 0, then ab∧ b = 0 and
ab = ab∧ab = 0; and in an almost f -ring x2 = (x+−x−)2 = (x+)2 +(x−)2 ≥ 0. So
an almost f -ring is an sp-`-ring.

An example of a right f -ring which is a d-ring but is not an f -ring is given by

the `-subring R =
(
Q 0
Q 0

)
of the canonically ordered matrix ring Q2. An example

of a unital right f -ring (which, as we will see in Theorem 3.8.10, is necessarily an
almost f -ring) that is not an f -ring is given in Exercise 3.8.13; and an example of
a unital sp-`-ring that is not an almost f -ring is given in Exercise 3.7.9; also see
Exercise 3.8.7.

We exhibit next two diametrically opposite types of po-rings: one for which each
unital `-module is an f -module and one which has no nontrivial f -modules. Interest-
ingly, totally ordered division rings are of the first type whereas their lattice-ordered
matrix rings are of the second type, even though the two unital module categories
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they determine are indistinguishable. Recall that a subset X of the poset P is cofinal
in P if for each p in P there is some x in X with x≥ p. We will denote the group of
units of the unital ring or monoid R by U (R). If R is a directed po-ring and R+ is a
monoid, then R is po-unital.

Theorem 3.1.3. Let MR be a unital po-module over the po-ring R and let u be a unit
of R.

(a) If u ∈ U (R+), then multiplication by u is an automorphism of the
po-group M.

(b) Suppose that R is an `-ring. Then u ∈U (R+) if and only if u is a right (left)
d-element of R.

(c) Suppose that 1 ∈ R+ and U (R+) is cofinal in R+. If M is an `-module, then
it is an f -module.

(d) If R is a totally ordered division ring and M is an `-module, then M is an
f -module.

Proof. (a) is obvious and gives one implication of (b). For the other implication, if
u is a right d-element then 1−u = u− = 0 gives that 1 > 0. Again, (u−1)−u = 1− = 0
yields that u−1 ∈ R+. If u,u−1 ∈ R+ then, according to (a), u is a d-element on the
`-module M; hence (c) follows from Theorem 2.4.8. Clearly, (d) is a special case
of (c). ut

The class of po-rings determined by the condition in (c) of the preceding result
is homomorphically closed and productive and includes the f -rings C(X) where X
is a topological space (Exercise 11). A unital f -module over a division ring will be
called a vector lattice.

If I is a set, then a set {ei j : i, j ∈ I} of nonzero elements of the ring R is called a
set of matrix units of degree card (I ) if ei jek` = δ jkei`, for all i, j,k, ` ∈ I, where δ jk
is the Kronecker delta : δ jk = 1 if j = k and δ jk = 0 if j 6= k.

Theorem 3.1.4. Let {ei j : i, j ∈ I} ⊆ R+ be a set of matrix units and let M be a
po-module over R.

(a) If x ∈M, then for each i ∈ I the set {xei j : j ∈ I} is trivially ordered.
(b) If M is a d-module over R and card (I)≥ 2, then Mei j = 0 for all i, j.
(c) If R = Tn is the canonically ordered matrix ring of degree n ≥ 2 over the

po-unital po-ring T , then R has no nontrivial d-modules.

Proof. (a) Let xi j = xei j. If some xi j 6= 0, then xik 6= 0 for each k since xikek j = xi j;
also, xi j 6= xik if j 6= k since 0 = xi jek j, whereas xikek j = xi j. If xi j > xik, then

xim = xi je jm ≥ xike jm = 0

for each m ∈ I. But then

0 = xi jekm ≥ xikekm = xim > 0.
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(b) Let S = ΣZei j be the subgroup of R generated by the ei j. Then S is a subring
of R with positive cone S+ = S∩R+ = ΣZ+ei j. For if s = Σni jei j ∈ S∩R+, then
0≤ ekksemm = nkmekm for each k,m ∈ I. But then nkm ∈ Z+. Let N = `(S;M). Since
S is directed N = `(S+;M), and since M is a d-module M̄ = M/N is an f -module
over S by (e) of Theorem 3.1.1. Since M̄ is a subdirect product of totally ordered
S-modules we may assume that M̄ is totally ordered. But then x̄ei j = 0 for each
x ∈M and each i, j ∈ I, by (a). Thus xS = xS2 = 0 and M = N. This proves (b) and
also (c). ut

The ring R is called a C-algebra over the unital commutative ring C if R is a
unital C-module and α(xy) = (αx)y = x(αy) for all x,y ∈ R and α ∈ C. If R is a
C-algebra and a po-module over C, then R is called a po-algebra over C. If the po-
algebra R is an `-ring, then it is called a C-`-algebra provided that R is an f -module
over C. Unless stated otherwise, when considering po-algebras over C it will be
assumed that 1 ∈ C+. Each `-ring is an `-algebra over Z, and each `-ring that is
a po-algebra over a totally ordered field C is an `-algebra. A module M over the
C-algebra R is called an R-algebra module if it is also a unital C-module such that
(xα)r = x(rα) = (xr)α for all x ∈ M, α ∈ C and r ∈ R. An R-algebra po-module
over R is defined to be an R-algebra module that is a po-module over R and over C,
and an R-algebra `-module is an R-algebra po-module that is an f -module over C.

More generally, suppose that R and T are rings and R is a T -T bimodule. Then R
is called a T -ring if multiplication in R∪T is associative; if all the actions are unital
this just means that there is a ring homomorphism T −→ R which preserves the
identity. If T and R are po-rings, then R is a po-T -ring if it is a T -ring and R+∪T +

is closed under multiplication and R is an `-T -ring if R is also an `-ring.
A po-module MR is said to have a canonical basis if M is isomorphic to a direct

sum of copies of RR : M ∼= R(I). So,

M =
⊕

i∈I

eiR, M+ = ∑
i∈I

eiR+ and eia≥ 0 iff a ∈ R+.

If R is not unital the ei may not be in M but can be assumed to lie in a po-module
extension of M (Exercise 2). Of course, M is an `-module exactly when R is an `-
ring. Suppose that R is a T -ring over the po-unital ring T , R is a unital T -bimodule
and T R is a po-module with a canonical basis {ei}i∈I . Then R is a po-ring if and
only if aeibe j ∈ R+ for any indexes i and j and all a,b ∈ T +. This condition can be
expressed by asserting that the structural constants lie in T +:

eib = ∑
k

aikek, eie j = ∑
k

ai jkek where b, aik,ai jk ∈ T +.

By taking a subring of T the assumption that T is unital may be dropped. For exam-
ple, R could be a matrix ring or a semigroup ring over T .

Exercises.
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1. Let A and B be po-rings and let A ×←B be the ring direct product supplied with
the lexicographic partial order.

(a) Show that A ×←B is a po-ring if and only if
(i) B+ = 0, or

(ii) A2 = 0, or
(iii) B+ 6= 0, B is a po-domain and A+ ⊆ `(A)∩ r(A).

(b) Let B be a nonzero totally ordered domain and suppose that A+ = 0. Show
that (A ×←B)+ is a maximal partial order of the ring A×B if and only if
`(A)∩ r(A)⊆ t(A), where t(A) is the torsion ideal of A.

2. Let R be a C-algebra and let R1 be the C-algebra obtained by freely adjoining
C to R. So R1 = R×C as C-modules and the multiplication in R1 is given by
(r,α)(s,β ) = (rβ + sα + rs,αβ ) for r,s ∈ R and α,β ∈C.

(a) Show that R1 is a unital C-algebra and R is an ideal of R1.
(b) If M is an R-algebra module, then the scalar multiplication x(r,α) = xr+xα

makes M into a unital R1-algebra module, and the R1-submodules of M are
precisely the R-algebra submodules.

(c) If R is a po-algebra, then so is R1 if it is ordered coordinatewise. If R is an
`-algebra, then R1 is an `-algebra if and only if C is an f -ring.

(d) If S = R +C · 1 is a unital C-algebra (po-algebra) which contains R, show
that there is a unique algebra (po-algebra) homomorphism from R1 onto S.

(e) If M is an R-algebra po-module or an `-module, then M is a po-module or
an `-module over R1. Moreover, the following statements are equivalent.

(i) M is an f -module over R.
(ii) M is an f -module over R1.

(iii) M is a d-module over R1.
(f) Show that R1 is a po-domain if and only if R and C are po-domains and RC

is strict.

3. (a) The following statements are equivalent for the `-module MR.
(i) M is an f -module.

(ii) x⊥ ⊆ (xa)⊥ if x ∈M and a ∈ S = R+−R+.
(iii) X⊥ ⊆ (XA)⊥ if X ⊆M and A⊆ S.

(b) The following statements are equivalent for the `-ring R.
(i) R is an f -ring.

(ii) (ab)⊥⊥ ⊆ a⊥⊥ ∩b⊥⊥ for all a,b ∈ R (or R+).
(iii) (AB)⊥⊥ ⊆ A⊥⊥ ∩B⊥⊥ for all subsets A and B of R (or R+).

4. In each of the cases (a), (b), and (c) prove that the statements are equivalent for
the `-module MR.

(a) (i) M is a d-module.
(ii) |x|∧ |y|= 0 =⇒ |xa|∧ |ya|= 0 for x,y ∈M and a ∈ S = R+−R+.

(iii) x⊥a⊆ (xa)⊥ if x ∈M and a ∈ S.
(iv) X⊥a⊆ (Xa)⊥ if X ⊆M and a ∈ S.
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(b) First, formulate the analogues of the last three statements in (a) if the first
is replaced by “MR is a strong po-module over the `-ring R.”

(c) (i) MR is a strong d-module over the `-ring R.
(ii) (xa)+ = x+a+ + x−a− if x ∈M and a ∈ R.

(iii) (xa)− = x+a−+ x−a+ if x ∈M and a ∈ R.

5. Show that an `-ring is an almost f -ring if and only if it satisfies the identity
x2 = |x|2.

6. Let MR be an `-module.

(a) Show that d(M) is a convex multiplicatively closed subset of R, and D(M)
is a directed subring of R.

(b) The following statements are equivalent (see Exercise 2.2.17).
(i) d(M) is additively closed.

(ii) d(M) is directed up.
(iii) D(M)+ = d(M).
(iv) D(M) = {a−b : a,b ∈ d(M)}.
(v) M is a d-module over D(M).

(c) If the conditions in (b) hold, then
(i) D(M) is convex (D(M) is also convex if R has the Riesz decomposi-

tion property; see Theorem 2.1.4(k));
(ii) d(M) and D(M) are closed under any finite sups and infs that exist in

the po-ring R;
(iii) D(M) is the largest directed subring of R over which M is a d-module.

(d) d(M) = f (M) if and only if D(M) = F(M).
(e) If `(d(M);M)+ = 0, then each of the conditions in (b) is equivalent to

d(M) = f (M).
(f) If R is an `-ring, then D(M) is a convex `-subring of R, and the conditions

in (b) are equivalent to D(M) = {a ∈ R : |a| ∈ d(M)}.
(g) Let N be a D(M)-submodule of M. Show that the sublattice of M generated

by N is a D(M)-`-submodule of M (use Theorem 2.2.4(f)).
(h) Let RMR be an `-bimodule and put d(RMR) = d(MR)∩ d(RM), D̄(RMR) =

D(MR)∩D(RM), and let D(RMR) be the additive subgroup of R generated
by d(RMR). If R has the Riesz decomposition property, show that D(RMR) =
D̄(RMR).

(i) Let RMR be an `-bimodule. Show that M is a D(RMR)-d-bimodule iff M is
a D̄(RMR)-d-bimoldule, iff D(M)+ = d(M), iff D̄(M)+ = d(M).

(j) If RMR is an `-bimodule and A ⊆ R the centralizer of A in M is CM(A) =
{x ∈ M : ∀a ∈ A, xa = ax}. If A ⊆ d(RMR), show that CM(A) is an `-
subgroup of M. Also, show that CM(D(RMR)) is an `-subgroup.

(k) If R is an `-ring we will denote d(RRR) and D(RRR) by d(R) and D(R),
respectively. Show that the center of D(R) is an `-subring of R.

7. Let M be an `-module over the `-ring R, let dM(R) be the set of those elements
in M that are d-elements on R, and let DM(R) be the subgroup of M generated
by dM(R).
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(a) State and prove the analogues of (a), (b) and (f) in Exercise 6.
(b) Show that DM(R) is a right `-module over D(RR).
(c) If DM(R)+ = dM(R) and D(RR)+ = d(RR), then DM(R) is a strong d-

module over D(RR).

8. (a) Let ϕ : R −→ S be a po-ring homomorphism and let MS be a po-module.
Then ϕ induces a po-R-module structure on M given by xr = xϕ(r).

(b) Let MR be an `-module and let f̄ (M) = {a ∈ R : x∧ y = 0 =⇒ xa∧ y =
0, ∀x,y ∈M}. Use (a) to show that f̄ (M) is a convex subsemiring of R and
that the subgroup F̄(M) of (R,+) generated by f̄ (M) is a convex subring of
R. Also, verify that F̄(M)+ = f (M) (and hence F̄(M) = F(M)) if and only
if F̄(M) is directed.

(c) If M is a strong `-module show that a ∈ f̄ (M) if and only if a+ ∈ f (M) and
a− ∈ r(M); hence F̄(M) = F(M).

9. Show that each of the following conditions implies that the po-ring S is directed.

(a) S is an sp-ring and for each x ∈ S there is an e ∈ S such that x≤ ex+ xe or
x≤−(ex+ xe).

(b) S is an sp-subring of an `-ring and for each x ∈ S there is an e ∈ S with
x≤ |ex+ xe|.

(c) S is a unital sp-ring which is 2-semiclosed (see Exercise 2.1.16).
(d) S is a po-subring of an almost f -ring, and for each x ∈ S there is an e ∈ S

with |x| ≤ |x|e or |x| ≤ e|x|.
10. Let u be a unit in the po-ring R. Show that the following statements are

equivalent.

(a) u ∈U (R+).
(b) u ∈ R+ and multiplication by u is a po-group automorphism of each unital

po-module over R.
(c) u ∈ R+ and left multiplication by u is an automorphism of the right

po-module RR.
(d) 1 ∈ R+ and uR+ = R+.

If R is an `-ring the following statements may be added to this list.

(e) There is a unital `-module MR such that u is a d-element on M, and M
contains an element x which is a d-element on R and r(x) = 0.

(f) u is a d-element on each unital `-module.

11. Let R be a unital po-ring with the property that for each a ∈ R there is an n ∈ N
with an ∈ R+. Show that U (R+) is cofinal in R+ if R satisfies any one of the
following conditions.

(a) U (R) is cofinal in R.
(b) R has bounded inversion; that is, if a≥ 1 then a ∈U (R). (The rings C(X),

where X is a topological space, and D(X), where X is extremely discon-
nected, both have bounded inversion.)
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(c) R is local; that is, R/J is a division ring where J is the Jacobson radical of
R, or, equivalently, the set of nonunits is an ideal.

12. Let D be an `-unital `-ring.

(a) U (D)∩F(D) = U (F(D)).
(b) If R is a local sp-subring with the same identity as D, then R ⊆ F(D) (use

Exercises 9, 10, and 11).
(c) If D is local, then F(D) is the largest local sp-subring of D and also the

largest directed local subring in which some power of each unit is positive.
(d) If D is an `-domain, then F(D) is a totally ordered domain even when D is

not unital.
(e) If D is a division ring, then F(D) is a totally ordered subdivision ring which

contains each totally ordered subdivision ring of D. Also,

F(D) = {d ∈ D : (1+ |d|)−1 ∈ D+}.

(f) Give an example of po-rings R and D as in (b) except that the identity of R
is not the identity of D and R is not contained in F(D).

13. Let F be the `-field given by F =Q(
√

2) and F+ =Q+(1+
√

2)+Q+(2+
√

2).
Then 1 6∈ F+. If R = Z[

√
2] = Z+Z

√
2 is the ring of integers in F , then R is an

`-subring of F and U (R)+ is cofinal in R.

14. Let T be an `-ring and let R be one of the following canonically ordered `-rings
(that is, each has the obvious canonical basis).

T|I| = the ring of I× I column finite matrices over T
(the elements of T|I| are matrices A = (ai j)(i, j)∈I×I
such that each column of A has only a finite number
of nonzero entries);

u4(T|I|) = the subring of T|I| of upper triangular matrices
(here, the set I comes with a total order);

T [x;σ ] = the skew polynomial ring with coefficients on the left;
here σ : T −→ T is an `-ring endomorphism
and the multiplication is given by

(
∑

i
aixi

)(
∑

j
b jx j

)
= ∑

k

(
∑

i+ j=k
aiσ i(b j)

)
xk;

T [[x;σ ]] = the skew formal power series ring with multiplication
given above.

In each case determine f (RR), F(RR), f (RR), F(RR), F(R), d(RR), D(RR),
d(RR), D(RR), and D(R) = D(RR)∩D(RR). For the matrix rings show that
f (RR) = f (RT (I)), etc. Some answers are given below.
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(a) If R = Tn, then

d(RR) =



(ai j) ∈ d(T T )n : for each i and j,ai jT ⊆

(
∑
k 6= j

aikT

)⊥

 ,

D(RR) = D(T T )n, and F(RR) consists of all those matrices with diagonal
entries from F(T T ) and off diagonal entries from ``(T ).

(b) If R = T [x], then D(RR) = D(T T )[x] and F(RR) = F(T T )+ x``(T )[x].
(c) If R = T [[x]], then F(RR) = F(T T )+ x``(T )[[x]]; and if T is finitely rooted

then D(RR) = ``(T )[[x]]+D(T T )[x].
(d) If R = T [x;σ ] then D(RR) = S[x;σ ] where S is a σ -invariant convex `-

subring of D(TT ).

15. (a) Show that for each module MR the annihilator maps r( ) : P(M) −→P(R)
and `( ) : P(R) −→P(M) constitute the Galois connection between the
power sets of M and R that is determined by the relation xa = 0 if (x,a) ∈
M×R (see Exercise 1.4.24).

(b) Similarly, if M is an `-module over the `-ring R, then r`( ) and ``( ) con-
stitute the Galois connection that is determined by the relation |x||a|= 0 if
(x,a) ∈M×R.

16. Let M be an `-module over the `-ring R, and let X ⊆M.

(a) r`(X) = r`(X p)∩ r`(X−) = r`(|X |) is a right `-ideal of R contained in r(X),
where X p = {x+ : x ∈ X}, X− = {x− : x ∈ X} and |X |= {|x| : x ∈ X}.

(b) r`(X) is the largest directed subgroup (right ideal) of R that is contained in
r(X) iff r(X)+ ⊆ r(|X |), iff r`(X) = r(X)+− r(X)+.

(c) Each of the following conditions implies that r`(X) is the largest con-
vex `-subgroup (right `-ideal) of R that is contained in the convex right
ideal r(X).

(i) X is contained in the subgroup of M that is generated by X+.
(ii) r(X)+ ⊆ d(M).

(iii) If x ∈ X , then X ∩{x+,x−, |x|} 6= φ .
(d) Formulate analogous statements for `(A;M) and ``(A;M) if A⊆ R.

17. Suppose that M is a d-module over the directed ring R and X ⊆M.

(a) r(X) = r(X p)∩ r(X−) = r(|X |) (see Exercise 16).
(b) If R is an `-ring and |X | ⊆ dM(R) (Exercise 7), then r(X) = r`(X).
(c) Suppose that R is an `-ring and x ∈ M+. Then x ∈ dM(R) and xR is totally

ordered if and only if r(x) is a prime subgroup of R. (Here, M is just an
`-module over R.)

(d) If A⊆ R, show that `(A) is an `-subgroup of M.

18. (a) If the `-module M is a subdirect product of the family of `-modules {Mi}i∈I ,
then f (M) = ∩ f (Mi).
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(b) If the `-ring R is a subdirect product of the family of `-rings {Ri}i∈I , then
F(RR)⊆ΠF(RiRi) and equality holds if R is the full product.

19. If R is a right d-ring with a left identity e, then |e| is a left identity. If R is a right
f -ring then e⊥ = 0.

20. Let M be a po-module over the po-ring R, and let e be an idempotent of R
with M+e ⊆ M+. If M is an `-module, let d̄(M) = {a ∈ R : a induces an `-
endomorphism of M}.

(a) Show that eRe∩R+ = eR+e if eR+ +R+e⊆ R+.
(b) If K = `(e;M), then K is a convex subgroup of M and M = Me ¢ K as

groups.
(c) If MR is an `-module and e ∈ d̄(M), then Me and K are `-subgroups of M.

Moreover, MeRe is a d-module if and only if (Me)eRe is a d-module.
(d) Suppose that R is unital and M is an `-module and 1 ∈ d̄(M). Then M is a

d-module if and only if M1 is a d-module.
(e) If M is an `-module, and M = lex K, then MeRe is an f -module.
(f) If M is totally ordered, then M = K ×←Me.

21. Let M be an n-dimensional vector lattice over R.

(a) M is the direct sum of a finite number of indecomposable vector lattices.
(b) If M is indecomposable, then M ∼= N ×←R for an (n−1)-dimensional vector

lattice N (use Theorems 2.5.8 and 2.5.11 and Exercise 2.5.20).
(c) If M is totally ordered, then M ∼= R×···×←−R.
(d) If M is archimedean, then M ∼= Rn.
(e) Suppose M is a subspace (not a po-subspace) of a Euclidean space Rm.

Show that M is totally ordered and M+ is closed in Rm iff n = 1.

22. Let E = EndR(M) be the po-algebra of R-linear transformations of the finite
dimensional real vector lattice M; so E+ = { f ∈ E : f (M+)⊆M+}. Show that
the following statements are equivalent.

(a) M is archimedean.
(b) E is an `-ring (`-algebra).
(c) E is directed.

23. This exercise determines all two-dimensional algebras over R (there are eight),
and the next exercise determines all such `-algebras (up to an isomorphism).
Let R be a two-dimensional real algebra and let N be the largest nilpotent ideal
of R. N is an algebra ideal.

(a) If N = R, then either R2 = 0 (equivalently, R satisfies x2 = 0), or R3 = 0 but
R2 6= 0 (equivalently, R has a basis {a,a2} with a3 = 0).

(b) If N = 0, then R∼= C (complex numbers) or R∼= R×R.
(c) If 0⊂N ⊂ R, then N2 = 0 and R has a nonzero idempotent e. (If a2−a∈N,

then a2 = a3(2−a), a2(2−a)2 = e is idempotent and e−a ∈ N.)
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(i) If e = 1, then R ∼= R0×̇R where R0 is the additive group of the reals
with R2

0 = 0 and R0×̇R is the algebra obtained by freely adjoining R
to R0 (Exercise 2).

(ii) If e 6= 1, then R is isomorphic to one of the algebras R×R0,

(
R R
0 0

)

or
(
R 0
R 0

)
.

24. Let R be a two-dimensional real `-algebra. As a vector space assume that R =
R2 with basis e1,e2, where e1 = (1,0) and e2 = (0,1). As a vector lattice, by
Exercise 21, R = Ru⊕Rv (the archimedean case) or R = Ru ×→Rv (the totally
ordered case) for some vectors u and v in R. Thus, for some angles α and β the
positive cone can be described in one of the following ways.

If R is archimedean: R+ = {w ∈ R : α ≤ argw≤ β , where
0 < β −α < π};

if R is non-archimedean: R+ = {w ∈ R : α < argw≤ α +π} or
R+ = {w ∈ R : α ≤ argw < α +π}.

Use the description of the algebras given in Exercise 23, with e1 and e2 as the
standard basis in each case, to show that the following additional conditions
must be satisfied by the positive cone. In the cases (c), (d), and (e) the algebra
isomorphism e1 7→ e1, e2 7→ −e2 may be used to reduce to the given condi-
tions since the `-algebras that are obtained otherwise are isomorphic to those
described here.

(a) R3 = 0,R2 6= 0 : e2
1 = e2, e1e2 = e2e1 = e2

2 = 0, e2 ∈ R+ and Re2 is
an `-ideal.
archimedean: α = π/2 or β = π/2.
non-archimedean: α =−π/2 and −π/2 < argw≤ π/2.

(b) R = C : R is not an `-algebra.
R = R×R : eie j = δi jei.

archimedean: either α = 0 and β = π/2, or −π/4≤ α ≤ 0
and tan−1(tan2 α)≤ β ≤ π/4.
non-archimedean: there are no non-archimedean `-orderings.

(c) R = R×̇R0 : e1 = 1, e2
2 = 0, Re2 is an `-ideal.

archimedean: 0≤ α < β ≤ π/2.
non-archimedean: same as (a).

(d) R = R×R0 : eie j = δi1δ j1e1.
archimedean: e1 ∈ R+; −π/2≤ α and β ≤ π/2.
non-archimedean: same as (a).

(e) R =
(
R R
0 0

)
: e2

1 = e1, e1e2 = e2, e2
2 = e2e1 = 0.

archimedean: −π/2≤ α < β ≤ π/2.
non-archimedean: same as (a).

These conditions also apply to the opposite algebra of R (the
“transpose” of R).
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25. Let MR be a unital po-module with a canonical basis. If R is a right f -ring show
that EndR(M) is an `-subring of EndZ(M) (that is, EndR(M) is a sublattice of
the po-group EndZ(M)).

26. Let R be an `-ring, T a po-ring, T MR an `-bimodule, and let ϕ : R −→
EndT (M) = H be the corresponding representation. M is called a (right) ``-
module if Rϕ is a lattice in the partial order it inherits from H and ϕ is an
`-homomorphism (this condition is independent of T ). If, additionally, Rϕ is a
sublattice of H, then M is called an ``-T -module.

(a) The following statements are equivalent.
(i) T MR is an ``-module.

(ii) If a∧b = 0 in R, then aϕ ∧bϕ = 0 in the po-subring Rϕ of EndT (M).
(iii) {c ∈ R : ∀x ∈ M, ∀a ∈ R, x+c ≤ x+a+ ∧ x+a−} ⊆ {c ∈ R : M+c ⊆

−M+}.
(iv) {a ∈ R : M+a⊆M+}= {a ∈ R : a− ∈ r(M)}.
(v) r(M) is an `-ideal of R and {a ∈ R : M+a ⊆ M+} ⊆ {a ∈ R : a− ∈

r(M)}.
(b) Give an example of a totally ordered faithful `-bimodule T MR which is not

an ``-module.
(c) If M+ = T +dM(R) + DM(R)+ (see Exercise 7) and N is a convex `-

submodule of T MR, then M/N is an ``-T -module.
(d) Conversely, if 1 ∈ T + and M is an ``-T -module with a canonical T -basis

{ei}i∈I , then {ei}i∈I ⊆ dM(R). (Hint: If a∧ b = 0 in R define f ∈ H by
ei f = eia∧ eib.)

(e) If M = DM(R) and N is a convex `-submodule of T MR, then N and M/N
are ``-Z-modules (and hence ``-T -modules).

27. Let F be a commutative unital totally ordered domain and let δ ∈ F with 0 <
δ < 1. Let R be the following `-algebra over F : R = F×F as an algebra and it
has the canonical basis 1,u = (δ +1,−1) over F (see Exercise 24(b)). Let C be
a commutative totally ordered domain which contains F .

(a) R is an `-domain, and each `-ideal of R is of the form J1 + Ju for some
`-ideal J of F .

(b) If CMR is a unital `-bimodule with αx = xα for x ∈ M and α ∈ F and
CM has a canonical basis, then M is not a right ``-C-module. (Hint: It
suffices to show that there is no row-finite matrix A = (ci j) (of any size)
with entries in C+ such that A2 = δA+(1+δ )I and cii = 0 for each i. If A
is such a matrix, then (i) Σkcikck j = δci j if i 6= j, and (ii) Σkcikcki = 1 + δ
for each i. (I) Use (i) to show that ci jc ji ≤ δ 2 and hence (ci jc ji)2 ≤ ci jc ji
for any i and j; for, ci jc jkc jicik ≤ δ 2cikc jk, and if 0 < ci jc ji, then there
is a k 6= i, j with cikck j > 0 and hence c jk > 0. (II) Now, if i 6= k then
δ 2cikcki = (Σ jci jc jk)(Σmckmcmi)≥ Σ j(ci jc ji)(c jkck j); sum over all k 6= i to
get a contradiction.)
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28. An `-T -ring R is called (right) `-regular if RR is an ``-module (see Exercise
26); additionally, R is called T -regular if T RR is an ``-T -module.

(a) If 1 ∈ R, then R is `-regular iff 1 ∈ R+.
(b) If R+ = T +d(RR)+D(RR)+, then R is T -regular and so is R/A where A is

an `-ideal that is a left T -submodule.
(c) If R = D(RR) and A is a convex `-subring of R, then A is Z-regular.
(d) If 1 ∈ T + and T R has a canonical basis {ei}, then R is T -regular iff {ei} ⊆

d(RR).
(e) Let T be an `-ring for which T + = T +d(T T )+ D(T T )+, and let R be one

of the canonically ordered `-rings T [x;σ ], Tn or the semigroup ring T [G]
where G is a left cancellative semigroup (see Exercise 14). Then R is T -
regular.

(f) The direct sum of a family of T -regular `-rings is T -regular.
(g) Let R = F [G] be the canonically ordered group algebra of the group G over

the totally ordered field F , and let Z be the center of R. Let Cx denote the
conjugacy class of x ∈ G,4 = {x ∈ G : card(Cx) < ∞}, and ex the sum of
the elements in Cx, for x∈4. Then the distinct ex form a canonical basis for
Z. Moreover, exey = Σznxyzez where nxyz = |{(x′,y′) ∈Cx×Cy : x′y′ = z}|.
The following statements are equivalent for the finite group G.

(i) Z is F-regular.
(ii) ∀x,y ∈ G, exey ∈ Nexy.

(iii) G is abelian.
Thus, an `-subalgebra of an F-regular `-algebra need not be F-regular.

29. Show that the following statements are equivalent for the f -module MR over the
`-ring R.

(a) M is strong.
(b) If N is a prime submodule of M, then r(M/N) is an irreducible `-ideal of R.
(c) If N is a prime submodule of M, then r`(M/N) is an irreducible `-ideal.

(Here, of course, r(M/N) = r`(M/N).)

30. Let M be an abelian `-group, E =EndZ(M) and F = F(EM). Show that the
following statements are equivalent. Moreover, if these conditions hold, then F
is an `-subring of E.

(a) F is an `-ring and M is a strong f -module over F .
(b) If α,β ∈ F+ and a,b ∈M+, then α(a+b)∨β (a+b) = (αa∨βa)+(αb∨

βb).
(c) F is an f -ring and M is a strong f -module over F .

31. (a) Let S be the C-subalgebra of the C-algebra R that is generated by the
Boolean algebra B of central idempotents of R. Show that each element
of S is a C-linear combination of a finite orthogonal subset of B. (Reduce to
the case that B is finite and use Exercise 1.2.6.)

(b) If each element of B is an f -element of the `-ring R, show that S is an
`-subring of R.
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32. Let F be a nonzero subring of R and let G and H be F-semiclosed po-modules
over F with G directed and H archimedean. So, if 0 < r ∈ F and x ∈G∪H with
rx ≥ 0, then x ≥ 0. If α : G −→ H is an isotone group homomorphism show
that α is an F-homomorphism. (Show that it may be assumed that F contains
the rationals. For 0 < r ∈ F take p,q ∈Q with 0 < p≤ r ≤ q.)

Notes. The algebraic study of `-rings as well as of the subvarieties of f -rings,
d-rings and sp-`-rings was initiated by Birkhoff and Pierce [BP]. Two other fun-
damental papers on f -rings are those by Johnson [JOH1] and Henriksen and Isbell
[HI]. The study of f -modules has its origins in Bigard [BI1] and Steinberg [ST1]
though vector lattices and totally ordered modules appeared earlier. Most of the re-
sults in this section either appear in or are similar to those that do appear in these
papers. Exercise 21(e) comes from Ma and Wojciechowski [MW3], Exercise 30
comes from Bigard and Keimel [BK], and Exercise 32 comes from Conrad and
Diem [CDI].

3.2 Radical Theory

In this section we present the general theory of radicals for `-rings. Simultaneously,
by dropping all reference to the partial order, the basic ingredients of the theory of
radicals for rings are also obtained. Specific radicals are also considered; in par-
ticular, the nil radicals and Johnson’s radical, the `-ring analogue of the Jacobson
radical, are investigated. Our main concern with radicals is in their application to
the structure of `-rings. However, some aspects of the theory will be presented for
their inherent interest.

Recall from Section 1.4 that a class C of `-rings is homomorphically closed if
each homomorphic image of an `-ring in C is also in C , and C is productive if it is
closed under the formation of direct products. Also, C is hereditary if each `-subring
of each `-ring in C is also in C . The class C will be called i-hereditary (respectively,
left i-hereditary or right i-hereditary) provided that each `-ideal (respectively, left
`-ideal or right `-ideal) of each member of C is also in C . It should be noted that the
general theory, as it is developed here, is valid in any i-hereditary homomorphically
closed class of `-rings C . However, since all of the radicals that are considered can
be constructed in the class of all `-rings we will assume that C is the class of all
`-rings. Each subclass of C that is considered will always be a nonempty subclass.

The class P is called extensionally closed if whenever A is an `-ideal of R with
A and R/A in P , then R ∈P . An `-ring in P will be called a P-`-ring. If A is a
P-`-ring which is an `-ideal of R it will be called a P-`-ideal of R. An `-ring is
called P-semisimple if it has no nonzero P-`-ideals.

A class P is called a radical class or just a radical if it satisfies the following
two conditions.
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P is homomorphically closed. (3.2.1)

If R 6∈P then R has a nonzero P-semisimple
homomorphic image. (3.2.2)

Some useful alternative descriptions of a radical class are given in

Theorem 3.2.1. The following statements are equivalent for the class of `-rings P .

(a) P is a radical class.
(b) P is homomorphically closed, and each `-ring R has a P-`-ideal P such

that R/P is P-semisimple.
(c) R ∈ P iff each of its nonzero homomorphic images has a nonzero P-`-

ideal.
(d) P is homomorphically closed, extensionally closed, and the union of each

chain of P-`-ideals in any `-ring is a P-`-ideal.

Proof. (a) ⇒ (b). Let {Ai}i∈I be the set of all of the P-`-ideals of the `-ring R,
and let P = ΣiAi. If P 6∈P , then P has a nonzero homomorphic image ϕ(P) which
is P-semisimple. But then ϕ(Ai) = 0 for each i ∈ I, and hence ϕ(P) = 0. Thus,
P ∈P . Let A/P be a P-`-ideal of R/P. If A 6∈P , then A has a proper `-ideal K
such that A/K is P-semisimple. Since, for each i ∈ I, Ai + K/K is a P-`-ideal of
A/K, Ai ⊆ K and therefore P ⊆ K. Thus, A/K ∼= (A/P)/(K/P) ∈P , and A = K,
which is contrary to K being a proper `-ideal of A. So A ∈P, A = P, and R/P is
P-semisimple.

(b) ⇒ (c). This is obvious.
(c) ⇒ (d). Since a homomorphic image of a homomorphic image of R is a

homomorphic image of R it is clear that P is homomorphically closed. Suppose that
A is an `-ideal of R and A and R/A are both in P . If 0 6= R/K is P-semisimple, then
A⊆ K and hence R/K ∼= (R/A)/(K/A) ∈P . Thus R has no nonzero homomorphic
image which is P-semisimple, and hence R ∈ P . This shows that P is closed
under extensions. Let {Ai}i∈I be a chain of P-`-ideals of the `-ring R, and put
A = ∪Ai. The argument in the first paragraph of this proof shows that A = ΣAi has
no nonzero P-semisimple homomorphic images; so A is a P-`-ideal of R.

(d) ⇒ (a). Suppose that R 6∈P . By Zorn’s Lemma R has a maximal P-`-ideal
P. If B/P is a P-`-ideal of R/P, then B ∈P since P is extensionally closed, and
hence B = P by maximality of P. So R/P is a nonzero P-semisimple homomorphic
image of R, and P is a radical. ut

If P is a radical, then the `-ideal of the `-ring R given in (b) of the preceding the-
orem is called the P-radical of R and will be denoted by P(R). The `-ideal P(R)
is characterized among the `-ideals of R by any one of the following conditions.

P(R) is the largest P-`-ideal of R. (3.2.3)

P(R) ∈P and R/P(R) is P-semisimple. (3.2.4)
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P(R) is the smallest `-ideal of R such that
R/P(R) is P-semisimple. (3.2.5)

Instead of starting with a radical class we could equally well start with the associated
semisimple class. Before we make this statement more precise we will consider both
classes simultaneously. A radical pair is a pair of classes (P,M ) such that

R ∈P iff R has no nonzero homomorphic image in M . (3.2.6)

R ∈M iff R has no nonzero P-`-ideal. (3.2.7)

P is called the lower class and M is the upper class of the radical pair (P,M ).
The following theorem is an immediate consequence of the definitions and Theorem
3.2.1.

Theorem 3.2.2. (P,M ) is a radical pair if and only if P is a radical class and
M is the associated class of P-semisimple `-rings. Moreover, if M is the class of
semisimple `-rings for each of the radical classes P1 and P2, then P1 = P2.

ut
Now, a semisimple class is a class M that satisfies the following two conditions.

If R ∈M , then each nonzero `-ideal of R has a
nonzero homomorphic image in M . (3.2.8)

If R 6∈M , then R has a nonzero `-ideal which has no
nonzero homomorphic image in M . (3.2.9)

Equivalently, and dual to (c) of Theorem 3.2.1, a semisimple class is easily seen
to be characterized by the following condition.

R ∈M iff each nonzero `-ideal of R has a
nonzero homomorphic image in M . (3.2.10)

For any class P we will denote the class of P-semisimple `-rings by SP . We
have

Theorem 3.2.3. (a) If P is a radical, then SP is a semisimple class.
(b) If M is a semisimple class, then the class RM of all those `-rings which

have no nonzero homomorphic images in M is a radical class, and SRM
= M .

Proof. From the definition of a radical class and from (3.2.10) it is immediate that
S P is a semisimple class if P is a radical class. Let M be a semisimple class
and put P=RM . Then (P,M ) is a radical pair. For, certainly (3.2.6) holds, and
(3.2.7) is just a rewording of (3.2.10). So (b) is a consequence of Theorem 3.2.2. ut
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In each of the next two results we will construct a radical from a given class of
`-rings. The first construction will initially produce a semisimple class whereas the
second will produce a radical class.

Theorem 3.2.4. (The upper radical construction) Let N be a class of `-rings which
satisfies (3.2.8), and let M be the class defined by

M = {R : each nonzero `-ideal of R has a nonzero homomorphic image in N }.

(a) M is the smallest semisimple class that contains N .
(b) The radical class determined by M is given by UN = {R : R has no

nonzero homomorphic image in N }.
(c) UN is the largest radical class for which each `-ring in N is semisimple.

Proof. (a) Clearly N ⊆M , and therefore M satisfies (3.2.8). If R 6∈M , then R
has a nonzero `-ideal A which has no nonzero homomorphic image in N . If ϕA
is a nonzero homomorphic image in M , then ϕA, and hence A also, has a nonzero
homomorphic image in N . Thus, ϕA doesn’t exist and M satisfies (3.2.9). If M1
is any semisimple class containing N , then M ⊆M1 since M1 satisfies (3.2.10).

(b) It suffices to note that if R has no nonzero homomorphic image in N , then
it has no nonzero homomorphic image in M .

(c) Suppose that P is a radical class and N ⊆SP . Then M ⊆SP by (a),
and hence P ⊆UN . ut

The radical U N constructed in the previous theorem is called the upper radical
determined by N .

For the second construction of a radical let A be any class of `-rings and let P0
be the homomorphic closure of A . So R ∈P0 if and only if R is a homomorphic
image of an `-ring in A . Suppose that µ is an ordinal and that the class Pν has
been defined for each ordinal ν < µ . Then Pµ is defined by

Pµ = {R : if ϕ(R) is a nonzero homomorphic image of R, then
∃ ν < µ such that ϕ(R) has a nonzero Pν -`-ideal}.

Clearly, each class Pµ is homomorphically closed, and Pν ⊆Pµ if ν ≤ µ . Let P
be the union of all of the classes Pν .

Theorem 3.2.5. (The lower radical construction) The class P constructed above
is the smallest radical class containing A .

Proof. Suppose that Q is a radical class and A ⊆ Q. Then Po ⊆ Q by (3.2.1).
Assume, by induction, that µ > 0 and Pν ⊆ Q for each ν < µ . Take R ∈ Pµ
and let ϕ(R) be one of its nonzero homomorphic images. Then ϕ(R) has a nonzero
Pν -`-ideal for some ν < µ , and hence ϕ(R) has a nonzero Q-`-ideal. So R ∈ Q
by (3.2.2), Pµ ⊆ Q, and thus Q contains P . To see that P is a radical we will
check that P satisfies condition (c) of Theorem 3.2.1. We have already noted that
each class Pµ is homomorphically closed, and hence so is P . Conversely, suppose



3.2 Radical Theory 147

that each nonzero homomorphic image of the `-ring R has a nonzero P-`-ideal.
Then for each proper `-ideal A of R there is an ordinal νA and an `-ideal AνA of R
which properly contains A such that AνA/A is a PνA-`-ideal of R/A. Let µ be an
ordinal with νA < µ for each A. If ϕ(R) is a nonzero homomorphic image of R, then
ϕ(R) ∼= R/A for some `-ideal A. Since PνA is isomorphically closed ϕ(R) has a
nonzero PνA -`-ideal. Thus R ∈Pµ ⊆P and P is a radical. ut

The radical P constructed in Theorem 3.2.5 is called the lower radical deter-
mined by A and will be denoted by LA .

If R is an `-algebra over a totally ordered field it would be nice to know that each
radical `-ideal of R is a subalgebra. In order to establish a more general fact we first
need a definition.

Let H = EndZ(R) be the endomorphism ring of the additive group of R. The cen-
troid of R is the subring C of H that consists of all those endomorphisms α ∈ H
such that α(xy) = (αx)y = x(αy), for all x,y ∈ R. If E is the subring of H that is
generated by the set of left and right multiplication maps: a 7→ xa, a 7→ ya, where
x,y ∈ R, then C is the centralizer of E in H. Note that if R is a module over the com-
mutative ring D, then R is a D-algebra if and only if the image of the corresponding
representation D−→ H is a subring of C.

Theorem 3.2.6. Suppose that α is an `-endomorphism in the centroid of R and αI
is convex for each `-ideal I of R. If P is any radical, then αP(R) ⊆ P(R). In
particular, if R is an `-algebra over a directed po-field, then P(R) is a subalgebra.

Proof. By our assumptions about α J = P(R)+ αP(R) is an `-ideal of R. Since
J2 ⊆P(R) the map ϕ : P(R) 7→ J/P(R) given by ϕ(x) = αx +P(R) is an epi-
morphism of `-rings. But then J is a P-`-ideal of R since P is extensionally closed;
so αP(R) ⊆ P(R). If R is an `-algebra over the po-field F and 0 < f ∈ F , then
multiplication by f satisfies the conditions on α . So f P(R)⊆P(R) and P(R) is
a subalgebra if F is directed. ut

The lower `-nil radical

If A1, . . . ,An are subsets of the `-ring R, then A1 · · ·An denotes the additive sub-
group of R generated by the set of products {a1 · · ·an : ai ∈ Ai}. This notation agrees
with that of the product XA given in the previous section. As usual, C(A1 · · ·An)
denotes the convex `-subgroup generated by A1 · · ·An (or by the set of products):

C(A1 · · ·An) = {x ∈ R : |x| ≤ ∑
i1,...,in

|ai1 · · ·ain |, where ai j ∈ A j}. (3.2.11)

If each Ai is a directed subgroup of R, then

C(A1 · · ·An) = {x ∈ R : |x| ≤ a1 · · ·an where each a j ∈ A j}
= C(C(A1) · · ·C(An)). (3.2.12)

If, additionally, A1 is a left ideal, then A1 · · ·An is a left ideal, and C(A1 · · ·An) is a
left `-ideal; similarly, A1 · · ·An and C(A1 · · ·An) are right ideals if An is a right ideal.
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If Ai = A for i = 1, . . . ,n, then A1 · · ·An = An, and C(An) will be denoted by A[n]; that
is, A[n] is the convex `-subgroup generated by An. A is said to be nilpotent of index n
if An = 0, or, equivalently, A[n] = 0, but Ak 6= 0 for k < n. If A is a directed subgroup,
then

A[n] = {x ∈ R : |x| ≤ an for some a ∈ A+}, (3.2.13)

C(A[n]A[m]) = A[n+m], (3.2.14)

and
(An)[m] = (A[n])[m] = A[nm]. (3.2.15)

In particular, an `-ring R is nilpotent if and only if it satisfies an identity xn = 0 for
some n. If a ring R is nilpotent of index at most 2 it will be called a zero ring. If
R = R[2] then R is called `-idempotent. If R is `-idempotent, then R = R[n] for each
n ∈ N. For, if R = R[k], then R[k+1] = C(R[k]R) = C(R2) = R[2], by (3.2.14).

Since one important use of radical theory is to get rid of a “bad” property – the
P-radical of an `-ring – by factoring P(R) out of R so that R/P(R) is now a
“good” `-ring, it is natural to first consider the lower radical determined by the class
of zero `-rings. We will call this radical the lower `-nil radical and we denote it by
`-β : `-β = L (zero `-rings). Before we examine this radical in detail we will first
show that its construction stops rather quickly.

Theorem 3.2.7. Let A be an `-ideal of the `-ring R and let B be an `-ideal of A. If
D is the `-ideal of R generated by B, then D[3] ⊆ B. Consequently, if A/B does not
contain any nonzero nilpotent `-ideals, then B is an `-ideal of R.

Proof. D = B+C(RB)+C(BR)+C(RBR)⊆ A and D[3] = C(D3). But

D3 ⊆ A(B+C(RB)+C(BR)+C(RBR))A⊆ B.

The last statement is obvious. ut
Theorem 3.2.8. Let A be a homomorphically closed and i-hereditary class of `-
rings which contains each zero `-ring. Then L A = P1. In particular,

`-β = {R : each nonzero homomorphic image of R has a

nonzero `-ideal whose square is zero}.

Proof. By Exercise 5 it suffices to show that P1 = P2. If 0 6= R ∈P2, then R has
a nonzero `-ideal A with A ∈P1, and A has a nonzero `-ideal B with B ∈P0 = A .
If D is the `-ideal of R generated by B, then D[3] ⊆ B; hence, D[3] is a P0-`-ideal
of R since A is i-hereditary. If D[3] = 0, then (D[2])2 = 0 and D[2] ∈P0. So either
D[3], D[2], or D is a nonzero P0-`-ideal of R. Since P2 is homomorphically closed
each nonzero homomorphic image of R has a nonzero P0-`-ideal; thus, R ∈P1.

ut
Before we identify the `-β -semisimple `-rings we collect some information about

the nilpotent `-ideals of an `-ring.
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Theorem 3.2.9. Let R be an `-ring.

(a) The `-ideal of R generated by a nilpotent one-sided `-ideal is nilpotent.
(b) The sum of a finite number of nilpotent one-sided `-ideals is nilpotent.
(c) If `-N(R) is the sum of all of the nilpotent `-ideals of R, then

`-N(R) = {a ∈ R : |a|R is nilpotent}
= {a ∈ R : (|a|x)n = 0 for some n ∈ N and all x ∈ R}.

Consequently, `-N(R) contains each nilpotent one-sided or two-sided ideal that has
positive generators.

Proof. If I is a nilpotent `-subring and J is a nilpotent `-ideal of R, then I + J is a
nilpotent `-subring since I+J/J∼= I/I∩J is nilpotent. In particular, if I is a nilpotent
right `-ideal let

J = C(RI) = {x ∈ R : |x| ≤ Σiriai for some ri ∈ R and ai ∈ I}
= {x ∈ R : |x| ≤ ra for some r ∈ R and a ∈ I}.

Since (RI)n = R(IR)n−1I ⊆ RIn,RI is a nilpotent ideal, and hence J is a nilpotent
`-ideal. Thus, I + J, the `-ideal generated by I, is nilpotent. This proves (a), and
(b) follows from (a) by induction since the sum of two nilpotent `-ideals has been
shown to be nilpotent. If |a|R is nilpotent, then so is the right `-ideal J = C(|a|R) =
{x ∈ R : |x| ≤ |a|r for some r ∈ R} that is generated by |a|R. The right `-ideal gen-
erated by a is S = J +C(a). Since S2 ⊆ J, S is nilpotent and hence a ∈ `-N(R). This
proves (c). ut

In the presence of chain conditions the `-ideal `-N(R) of Theorem 3.2.9 is nilpo-
tent. In fact, more is true. The subset X of R is nil if each of its elements is nilpotent;
that is, if a ∈ X , then an = 0 for some n ∈ N.

Theorem 3.2.10. If the `-ring R satisfies the ascending chain condition on `-ideals,
then R has a largest nilpotent `-ideal. If R satisfies the descending chain condition
on `-ideals, then each nil `-ideal is nilpotent.

Proof. If R has a maximal nilpotent `-ideal N, then, by (b) of Theorem 3.2.9, N is
the largest nilpotent `-ideal of R. This proves the first statement. Suppose that R has
d.c.c. on `-ideals, and let A be a nil `-ideal of R. Since A⊇ A[2] ⊇ ·· · is a descending
chain of `-ideals, for some integer n,A[n] = A[n+1] = · · · . If B = A[n] 6= 0, then B
is `-idempotent since B[2] = C(A[n]A[n]) = A[2n] = B by (3.2.14); so B contains a
nonzero `-ideal D of R which is minimal with respect to BDB 6= 0. If 0 < d ∈D with
BdB 6= 0, then BC(BdB)B 6= 0 since B = B[2]; so D = C(BdB) by the minimality of
D. But then d ≤ bdb with b ∈ B+ and bm = 0 for some m; so d ≤ bdb ≤ b2db2 ≤
·· · ≤ bmdbm = 0. Thus, B = 0 and A is nilpotent. ut

An `-ring is called `-semiprime if it contains no nonzero nilpotent `-ideals.
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Theorem 3.2.11. The following statements are equivalent for an `-ring R.

(a) R is `-semiprime.
(b) `-β (R) = 0; that is, R is `-β -semisimple.
(c) If A is an `-ideal of R and A2 = 0, then A = 0.
(d) If A is a right (respectively, left) `-ideal of R and A2 = 0, then A = 0.
(e) If a ∈ R+ and aRa = 0 (equivalently, aR+a = 0), then a = 0.

Proof. (a)⇒ (b). If `-β (R) 6= 0, then `-β (R) has a nonzero `-ideal B with B2 = 0,
by Theorem 3.2.8. By Theorem 3.2.7, then, D6 = 0 where D is the `-ideal of R
generated by B. Thus, `-β (R) = 0.

(b)⇒ (c). This is immediate since R contains no nonzero zero `-ideals.
(c) ⇒ (d). If A is any right ideal, then (A+RA)n ⊆ An +RAn for each n ∈ N. So

if A is a right `-ideal with A2 = 0, then A+C(RA) is an `-ideal whose square is zero;
thus A = 0.

(d)⇒ (e). If aRa = 0 with a∈ R+ then (aR)[2] = 0; so aR = 0 and a∈ A = ``(R).
Since A2 = 0, A = 0 and hence a = 0.

(e) ⇒ (a). If A is a nilpotent `-ideal of index n≥ 2 then B = A[n−1] is a nilpotent
`-ideal of index 2 by (3.2.15). But then B = 0 since bRb = 0 for each b ∈ B+. Thus,
R is `-semiprime. ut

The `-ideal P of the `-ring R is an `-prime `-ideal if whenever I and J are `-ideals
of R with IJ ⊆ P, then I ⊆ P or J ⊆ P. If 0 is an `-prime `-ideal of R, then R is called
an `-prime `-ring. Clearly, P is an `-prime `-ideal of R if and only if the factor ring
R/P is an `-prime `-ring. Each `-prime `-ideal contains a minimal `-prime `-ideal
(Exercise 14).

Theorem 3.2.12. The following statements are equivalent for the `-ring R.

(a) R is `-prime.
(b) If I and J are right (respectively, left) `-ideals of R and IJ = 0, then I = 0 or

J = 0.
(c) If I is a nonzero right (respectively, left) `-ideal of R, then r`(I) = 0 (respec-

tively, ``(I) = 0).
(d) If a,b ∈ R+ and aRb = 0 (equivalently, aR+b = 0), then a = 0 or b = 0.

Proof. (a) ⇒ (b). If I1 = I +C(RI) and J1 = J +C(RJ), then I1 and J1 are `-ideals
and I1J1 = 0; so I = 0 or J = 0.

(b) ⇒ (c). This is clear since J = r`(I) is an `-ideal of R and IJ = 0.
(c) ⇒ (d). Since aRb = 0, C(aR)b = 0, and hence aR = 0 or b = 0. If aR = 0,

then a ∈ ``(R) = 0.
(d) ⇒ (a). If I and J are `-ideals with IJ = 0 and if 0 6= a ∈ I+, then, for each

b ∈ J+, aRb⊆ IJ; so aRb = 0, b = 0 and hence J = 0. ut
A commutative `-ring is `-prime if and only if it is an `-domain. Since a commu-

tative `-domain need not be a domain, an `-prime `-ring need not be a prime ring.
An example of a noncommutative prime `-ring is the ring of linear transformations
of a left vector space over a totally ordered division ring (see Exercise 2.4.25).
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We will now investigate the connection between `-semiprime `-rings and `-prime
`-rings, and in the process we will get a description of the elements in `-β (R).

Let R be an `-ring. A nonempty subset S of R+ is called an M+-system if for every
pair a,b ∈ S there exists an x ∈ R+ with axb ∈ S. A sequence (an) in R+ is called
an M+-sequence if for each n ∈ N there is an xn ∈ R+ such that an+1 = anxnan. The
next result connects M+-systems with `-prime `-ideals and the one after it connects
both of these with `-β (R).

Theorem 3.2.13. Let R be an `-ring.

(a) Each M+-sequence in R is an M+-system.
(b) If a∈ S and S is an M+-system, then S contains an M+-sequence that begins

with a.
(c) A proper `-ideal P of R is an `-prime `-ideal iff R+\P is an M+-system.
(d) If S is an M+-system of R and P is an `-ideal of R that is maximal with

respect to P∩S = φ , then P is `-prime.
(e) If a ∈ F(R) and a2 = 0, then aRa = 0.

Proof. The proofs of the first three statements are left for the exercises (Exercise
13). To see that P is `-prime in (d), suppose that I and J are `-ideals of R that
properly contain P and IJ ⊆ P. Then we can find elements s ∈ I ∩ S, t ∈ J ∩ S and
x ∈ R+ with sxt ∈ S. But sxt ∈ IJ ⊆ P gives a contradiction. For (e), suppose first
that a is an f -element and z ∈ R+. Then

aza = aza∧aza = (az− za)+a∧a(az− za)− = 0.

In general, |aza| ≤ |a||z||a|= 0; so aza = 0. ut
Theorem 3.2.14. Let R be an `-ring and let A and B be the subsets of R given by

A = ∩{P : P is an `-prime `-ideal of R}, (3.2.16)

B = {a ∈ R : each M+-system that contains |a| also contains 0}. (3.2.17)

Then `-β (R) = A = B and `-β (R) is a nil `-ideal of R.

Proof. Suppose that a ∈ A and S is an M+-system that contains |a|. If 0 6∈ S, then,
by Zorn’s Lemma and by (d) of Theorem 3.2.13, R has an `-prime `-ideal P that
is disjoint from S; but then |a| ∈ P∩ S. So S must contain 0 and hence A ⊆ B. On
the other hand, if a 6∈ A and P is an `-prime `-ideal of R with a 6∈ P, then R+\P is
an M+-system that contains |a| but not 0. So a 6∈ B, B ⊆ A, and A = B. Since an
`-prime `-ring is `-semiprime, `-β (R) is contained in each `-prime `-ideal of R, by
Theorem 3.2.11; hence `-β (R) ⊆ A. Since A = B each M+-system in A contains 0.
Let 0 < a1 ∈ A+. If a1Aa1 6= 0 let 0 < a2 ∈ a1Aa1. Given the elements a1, . . . ,an in
A+\{0}with ak+1 ∈ akAak, either anAan = 0 or there exists 0 < an+1 ∈ anAan. Since
this construction must stop, bAb = 0 for some b∈ A+\{0} and A is not `-semiprime.
If Ā is a nonzero homomorphic image of A, then Ā does not have a proper `-prime
`-ideal since A has no such `-ideal. Hence, as we have just seen, Ā has a nonzero
nilpotent `-ideal. Thus, A is an `-β -`-ideal of R by Theorem 3.2.8; so A⊆ `-β (R).



152 3 Lattice-ordered Rings

Finally, if a ∈ `-β (R), then {|a|n : n ∈ N} is an M+-system that contains |a|; so
|a|n = 0 for some n and an = 0 since |an| ≤ |a|n. ut

It is now easy to get some interesting properties of `-β .

Theorem 3.2.15. (a) `-β is hereditary.
(b) For each `-ring R, `-β (R) contains every one-sided `-β -`-ideal of R.
(c) Let β be the lower radical of rings determined by the class of all zero rings.

If R is an `-ring, then `-β (F(R))⊆ `-β (R)⊆ β (R).

Proof. (a) By Theorem 3.2.14 each M+-system of a subring of an `-β -`-ring con-
tains 0, and hence each `-subring of an `-β -`-ring is an `-β -`-ring.

(b) Suppose that A is a left `-β -`-ideal of R and A 6⊆ `-β (R). By passing to
R/`-β (R) we may assume that R is `-semiprime and A 6= 0. Then A2 6= 0 so Aa1 6= 0
for some a1 in A+. But then C(Aa1)2 6= 0 and hence uv 6= 0 for some 0≤ u≤ ba1 and
0≤ v≤ ca1 with b,c ∈ A+. Consequently 0 < ba1ca1 and Aa2 6= 0 with a2 = a1ca1.
Continuing, we get an M+-sequence (an) in A which excludes 0. This is impossible
by Theorem 3.2.14.

(c) Let a ∈ `-β (R) and let (an) be an M-sequence in R beginning with a; so
a1 = a and there is a sequence (xn) in R with an+1 = anxnan for each n ∈ N. Let
b1 = |a1| and bn+1 = bn|xn|bn. Then (bn) is an M+-sequence in R and |an| ≤ bn for
each n. By Theorem 3.2.14 bn = 0 for some n; so an = 0 and hence a ∈ β (R) by the
ring analogue of Exercise 15. To see that `-β (F(R)) ⊆ `-β (R) take a ∈ F(R) with
0 = an = |a|n. If n = 2, then |a|R|a|= 0 by Theorem 3.2.13(e) and a ∈ `-N(R)⊆ `-
β (R) by Theorem 3.2.9. Since (a2)n−1 = 0, a2 ∈ `-β (R) by induction on n. Thus,
again, |a|R|a| ⊆ `-β (R) and a ∈ `-β (R). ut

In contrast to the situation for f -elements there are nilpotent d-elements that are
not in `-β (R). For an example just take a canonically ordered matrix ring over an
f -ring.

Special Radicals

Since the class of `-prime `-rings is i-hereditary, it follows from Theorem 3.2.14
that `-β is the upper radical determined by the class of `-prime `-rings. We wish to
now consider upper radicals determined by other classes of `-prime `-rings. We first
note the following.

Theorem 3.2.16. Let P be a radical and let A be an `-ideal of the `-ring R.

(a) P is i-hereditary if and only if for each R and A,P(R)∩A⊆P(A).
(b) SP is i-hereditary if and only if for each R and A,P(A)⊆P(R)∩A.
(c) If for each R and A, P(A) is an `-ideal of R, then SP is i-hereditary.
(d) If `-β ⊆P , then P(A) is an `-ideal of R; so SP is i-hereditary.
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Proof. If P is i-hereditary, then P(R)∩A is a P-`-ideal of A, so P(R)∩A ⊆
P(A). For the converse in (a), if R = P(R), then A = P(R)∩A ⊆ P(A), and
hence A = P(A). If S P is i-hereditary, then (A+P(R))/P(R) is P-semisimple
and contains the P-`-ideal (P(A) + P(R))/P(R); so P(A) ⊆ P(R). For the
converse in (b), if P(R) = 0, then certainly P(A) = 0. Now, (c) is obvious, and (d)
is a consequence of Theorem 3.2.7 since A/P(A) is `-semiprime. ut

Each semisimple class of rings is i-hereditary (see Exercise 24). It is not known
if this is true for `-rings. If there is a semisimple class SP of `-rings which is not
i-hereditary, then, by (d) of the previous theorem, SP must contain a nonzero zero
`-ring. However, if P is the upper radical determined by the class of all zero `-rings,
then SP is i-hereditary (see Exercise 25).

A radical which is i-hereditary and which contains the class of zero `-rings is
called supernilpotent. We will now construct supernilpotent radicals. If A is an `-
ideal of the `-ring R let A∗ = ``(A;R)∩ r`(A;R); so

A∗ = {x ∈ R : |x|A = 0 = A|x|}. (3.2.18)

Note that ``(A;R) ⊆ r`(A;R) if ``(A;A) = 0 and equality holds if also r`(A;A) = 0
An i-hereditary class M of `-prime `-rings is called a special class if it satisfies the
condition:

if A ∈M and A is an `-ideal of R, then R/A∗ ∈M . (3.2.19)

Since a special class satisfies (3.2.8) it determines an upper radical which is called
a special radical.

Theorem 3.2.17. Let PM be the special radical determined by the special class M .
Then PM is supernilpotent. For each `-ring R

PM (R) = ∩{A : A is an `-ideal of R and R/A ∈M }. (3.2.20)

Thus, R ∈SPM iff R is a subdirect product of a subset of M .

Proof. Since M ⊆S `-β , SPM ⊆S `-β and `-β ⊆PM , by Theorem 3.2.4. To
see that PM is i-hereditary take R ∈PM and let A be an `-ideal of R. Suppose that
B is an `-ideal of A and A/B ∈M . Then B is an `-ideal of R (Theorem 3.2.7) and
R/B/(A/B)∗ ∈M . But R has no nonzero homomorphic images in M ; so (A/B)∗ =
R/B. Thus, AR⊆B, A2 ⊆B and therefore A = B. So A has no nonzero homomorphic
images in M and A ∈PM .

Let C be the right-side of (3.2.20). If R/A∈M , then R/A∈SPM and PM (R)⊆
A; so PM (R)⊆C. If C is a PM -`-ring, then C ⊆PM (R) and hence C = PM (R). If
C is not a PM -`-ring, then C contains a proper `-ideal D with C/D ∈M . Then D
is an `-ideal of R and (R/D)/(C/D)∗ ∈M by (3.2.19). Now, (C/D)∗ = B/D where
B = {x ∈ R : |x|C ⊆ D and C|x| ⊆ D}. So R/B ∈M and hence C ⊆ B. But then we
have the contradiction that (C/D)2 = 0.

The last statement is a consequence of (3.2.20). ut
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The class of all `-prime `-rings is special (Exercise 18); so `-β is the smallest
special radical.

The Upper `-nil Radical

Let `-Nil be the class of nil `-rings. It is easily seen that `-Nil satisfies the condi-
tions in (d) of Theorem 3.2.1, and hence it is a radical that is called the upper `-nil
radical. A ring is locally nilpotent if each of its finitely generated subrings is nilpo-
tent, and an `-ring is `-locally nilpotent if each of its `-subrings which is finitely
generated (as an `-ring) is nilpotent. The radical class of nil rings properly contains
the radical class of locally nilpotent rings. However, as we will now show, these
radicals coincide for `-rings.

Theorem 3.2.18. Suppose that the subset X = {x1, . . . ,xn} generates the `-ring R.
Then the following statements are equivalent.

(a) R is nilpotent.

(b)
n∨

i=1

|xi| is nilpotent.

(c) There is an integer N such that |xi1 | · · · |xiN |= 0 for all xi1 , . . . ,xiN ∈ X.

Proof. Clearly, (a) implies (b), and if xN = 0 where x =∨|xi|, then 0≤ |xi1 | · · · |xiN | ≤
xN = 0; so (b) implies (c).

(c) implies (a). Let Z[Y ] denote the subring of R generated by the subset Y , and
let L(Y ) denote the sublattice generated by Y . Now put R1 = Z[X ], L1 = L(R1)
and, inductively, let Rk+1 = Z[Lk] and Lk+1 = L(Rk+1). Then R is the union of
the ascending chain of subrings R1 ⊆ R2 ⊆ ·· · . We claim that |t1| · · · |tN | = 0 if
t1, . . . , tN ∈ Rk, and hence RN = 0. By assumption, any monomial in |x1|, . . . , |xn|
of length N is 0; so |t1| · · · |tN |= 0 if t1, . . . , tN ∈ R1. Assume the claim is true for Rk
and let t1, . . . , tN ∈ Lk = L(Rk). Then, by (f) of Theorem 2.2.4, for some finite sets I
and J,

tν =
∧

i∈I

∨

j∈J

a(ν)
i j

where a(ν)
i j ∈ Rk. Now, for each ν ,

|tν | ≤∑
i, j
|a(ν)

i j |

since this inequality holds in each of the totally ordered homomorphic images
of the additive group of R, and R is an f -module over Z. But then |t1| · · · |tN | ≤
Σm|bm1| · · · |bmN |where each bmν ∈ Rk; so |t1| · · · |tN |= 0. Now, if p1, . . . , pN ∈ Rk+1,
then |p1| · · · |pN | is dominated by a sum of terms of the form |t1| · · · |ts| where s≥ N
and each tm ∈ Lk; so |p1| · · · |pN |= 0. ut

An immediate consequence of Theorem 3.2.18 is

Theorem 3.2.19. The following statements are equivalent for the `-ring R.
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(a) R is nil.
(b) R is `-locally nilpotent.
(c) R is locally nilpotent. ¤

In spite of Theorem 3.2.19 it is possible to have `-β (R) = `-Nil(R) ⊂ Nil(R) =
β (R) for an `-ring R; see Exercise 30.

We will show next that the upper `-nil radical has some of the good properties of
the lower `-nil radical.

Theorem 3.2.20. (a) The upper `-nil radical is a special radical.
(b) If R is an `-ring, then `-Nil(R) contains each one-sided nil `-ideal of R.

Proof. (a) Let M be the class of `-prime `-nil-semisimple `-rings. By Exercise
18 and (d) of Theorem 3.2.16 M is i-hereditary, and hence M is a special class
provided it satisfies (3.2.19). Suppose that A is an `-ideal of R and A ∈M . If B/A∗
is a nil `-ideal of R/A∗ and b ∈ A∩B, then, for some n ∈ N,bn ∈ A∩A∗ = 0. Thus,
A∩B is nil, A∩B = 0, and B = A∗. Consequently, R/A∗ ∈M by Exercise 18, and
M does satisfy (3.2.19).

To show that `-Nil is the upper radical determined by M it suffices to verify that
if R is an `-ring and

B =
⋂

i

{Bi : Bi is an `-ideal of R and R/Bi ∈M },

then `-Nil(R) = B. Certainly `-Nil(R) ⊆ B. If B is not nil, then B has a positive
element b that is not nilpotent and `-Nil(R)∩{bn}= φ . Let P be an `-ideal of R that
contains `-Nil(R) and is maximal with respect to P∩{bn}= φ . By (d) of Theorem
3.2.13 P is an `-prime `-ideal of R. If A/P is a nonzero `-ideal of R/P, then bn ∈ A
for some n, and hence A/P is not nil. So R/P ∈M ,P = Bi for some i, and b ∈ P.
This contradiction proves that B is nil, and so B = `-Nil(R).

(b) Let A be a nil right `-ideal of R. If x ∈ A +C(RA), the `-ideal generated by
A, then |x| ≤ a+ ra = (1+ r)a for some a ∈ A+ and r ∈ R+. Since ((1+ r)a)n+1 =
(1 + r)(a(1 + r))na for each n and a(1 + r) is nilpotent, (1 + r)a is nilpotent. So
A+C(RA) is a nil `-ideal and A⊆ `-Nil (R). ut

It is an open question in the theory of rings (the Koethe conjecture) whether or
not a one-sided nil ideal generates a two-sided nil ideal.

The Generalized `-Nil Radical

Let M be the class of `-domains. Since M is hereditary it determines an upper
radical `-Ng which is called the generalized `-nil radical. Since M ⊆S `-Nil, nec-
essarily `-Nil ⊆ `-Ng, and the latter inclusion is proper because, for example, the
matrix ring Rn is an `-Ng-`-ring which is `-Nil-semisimple.

A ring is reduced if it has no nonzero nilpotent elements; similarly, a po-ring is
po-reduced if it has no nonzero positive nilpotent elements, and a po-reduced `-ring
is called `-reduced. Note that if R is po-reduced and if a,b,x∈ R+ with ab = 0, then
axb = 0. For, (ba)2 = 0, ba = 0, and hence (axb)2 = 0 and axb = 0. In particular,
an `-reduced `-prime `-ring is an `-domain.
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Theorem 3.2.21. (a) The class of `-domains is special, and hence the generalized
`-nil radical is a special radical.
(b) The following statements are equivalent for the `-ring R.

(i) R is `-reduced.
(ii) `-Ng(R) = 0.

(iii) R is a subdirect product of `-domains.

Proof. (a) Let A be an `-domain and suppose that A is an `-ideal of R. If x ∈ R+,
then xA = 0 iff AxA = 0 iff Ax = 0. Now, if a,b ∈ R+ with abA = 0, then either
Aa = 0 or bA = 0. Hence, a ∈ A∗ or b ∈ A∗ and R/A∗ is an `-domain.

(b) The equivalence of (ii) and (iii) follows from (a) and Theorem 3.2.17. Clearly,
(iii) implies (i); so it remains to verify that (iii) is a consequence of (i). Suppose that
R is `-reduced. Let P be a minimal `-prime `-ideal of R and let S = {a1 · · ·an :
ai ∈ R+\P} be the multiplicative subsemigroup of R+ that is generated by the M+-
system R+\P. If R+\P = S, then R/P is an `-domain. If R+\P⊂ S, then, since R+\P
is an M+-system which is maximal with respect to excluding 0 (Exercise 14 ), there
exist a1, . . . ,an ∈ R+\P with a1 · · ·an = 0. Now, we can find x1, . . . ,xn−1 ∈ R+ such
that a1x1a2 ∈ R+\P, . . . ,a1x1a2x2a3 · · ·an−1xn−1an ∈ R+\P. But then we have the
contradiction that 0 = a1x1a2 · · ·an−1xn−1an ∈ R+\P. Since the intersection of all
of the minimal `-prime `-ideals of R is 0 (Exercise 15) R is a subdirect product of
`-domains. ut

An `-ideal (respectively, ideal) P of R is completely `-prime (respectively, com-
pletely prime) if R/P is an `-domain (respectively, a domain). We have just seen
that a minimal `-prime `-ideal in an `-reduced `-ring is completely `-prime and,
of course, the analogous ring theoretic statement is also true. A characterization of
these `-ideals (ideals) is given next (see Theorem 2.4.3).

Theorem 3.2.22. An `-prime `-ideal P of the nonzero `-reduced `-ring R is a mini-
mal `-prime `-ideal if and only if a∗(= ``(a)) 6⊆ P for each a ∈ P+.

Proof. Suppose that P is a minimal `-prime `-ideal and let a ∈ P+. Let S be the
multiplicatively closed subset of R+ given by

S = R+\P∪{a1aa2 · · ·anaan+1 : ai ∈ R+\P and n≥ 1}.

Then 0 ∈ S, by Exercise 14(c), since R+\P ⊂ S; so 0 = a1aa2 · · ·anaan+1 =
a1 · · ·an+1an = a1 · · ·an+1a for some a1, · · · ,an+1 ∈ R+\P, since R is embeddable
in a product of `-domains (or use Exercise 26). Thus a1 · · ·an+1 ∈ ``(a)\P. Con-
versely, suppose that the condition holds and let Q be a minimal `-prime `-ideal that
is contained in P. If Q⊂ P and a ∈ P+\Q, then ba = 0 for some 0 < b 6∈ P. But Q is
a completely `-prime `-ideal; so b ∈ Q⊆ P. Consequently, P = Q is minimal. ut

We immediately use this result to show

Theorem 3.2.23. The following statements are equivalent for the reduced `-ring R.

(a) The set of minimal prime ideals of R is equal to the set of minimal `-prime
`-ideals of R.
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(b) Each minimal `-prime `-ideal is completely prime.
(c) Each minimal `-prime `-ideal contains a prime ideal, and ab = 0 if and only

if |a||b|= 0.

Proof. (a) ⇒ (b). This is a consequence of the remark preceding Theorem 3.2.22
that a minimal prime ideal in a reduced ring is completely prime.

(b) ⇒ (c). If {Pi}i∈I is the set of minimal `-prime `-ideals, then R is a subdirect
product of the family {R/Pi}i∈I and each R/Pi is a domain. So if ab = 0, then |a||b|=
0; and, of course, the converse always holds since |ab| ≤ |a||b|.

(c)⇒ (a). Let Q be a minimal prime ideal and let |x| ≤ |b|with b∈Q. By the ring
analogue of Theorem 3.2.22 there is an element a ∈ R\Q with ab = 0, and therefore
|a||x| = 0. So ax = 0 and hence x ∈ Q since Q is completely prime. Now, let P be
a minimal `-prime `-ideal. Then P contains a minimal prime ideal Q which is an
`-prime `-ideal. So P = Q is a minimal prime. Also, each minimal prime ideal Q
contains a minimal `-prime `-ideal P which is a minimal prime; so Q = P. ut

It is interesting and worthwhile to determine when an `-prime `-ideal is com-
pletely `-prime.

Theorem 3.2.24. Let P be an `-ideal of the `-ring R. Then P is completely `-prime
if and only if it satisfies the following conditions.

(a) P is `-prime.
(b) If a∧b = 0 and ab ∈ P, then ba ∈ P.
(c) If a,b ∈ R+ with a2 +b2 ∈ P, then ab ∈ P.

Moreover, P is completely prime if and only if it satisfies (a), (b), (c) and

(d) If ab ∈ P then |a||b| ∈ P.

Proof. Suppose that the first three conditions are satisfied. By passing to R/P we
may assume that P = 0 and that R is `-prime. Since an `-reduced `-prime `-ring is an
`-domain it suffices to show that R does not have a nonzero positive element whose
square is 0. Suppose, then, that a ∈ R+ with a2 = 0. We will show that aR+a = 0
and hence a = 0. Let z ∈ R+. If az≤ za or za≤ az, then aza = 0. Otherwise, (za−
az)− > 0 and (za−az)+ > 0. Now, 0≤ (za−az)+(za−az)− ≤ zaaz = 0; so, by (b),
(za−az)−(za−az)+ = 0. If y ∈ R+, then [(za−az)+y(za−az)−]2 = 0; so, by (c),
a(za−az)+y(za−az)− = 0. Thus, a(za−az)+ = 0 and similarly, a(za−az)− = 0.
So 0 = a[(za−az)+− (za−az)−] = a(za−az) = aza.

If the fourth condition also holds then clearly R is a domain. The converses are
trivial. ut

The Johnson Radical

The Johnson radical of an `-ring is the `-ring analogue of the Jacobson radical
of a ring. The basic ingredients for a structure theory using the Johnson radical are
the (right) `-primitive `-rings. However, except in special cases, for example, the
variety of f -rings, these building blocks are not very well understood.
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The right ideal I of the ring R is modular if there is an element e ∈ R, called a
left identity modulo I, such that ex− x ∈ I for each x ∈ R. If I is modular and I is
contained in the right ideal J, then J is also modular with e as a left identity modulo
J. Equally clear is that I = R exactly when e ∈ I. If e is a left identity modulo the
proper right `-ideal I of the `-ring R and J is a right `-ideal of R that contains I and is
maximal with respect to not containing e, then J is a maximal modular right `-ideal.
Equivalently, J is a modular maximal right `-ideal.

An element a in the ring R is right quasi-regular (abbreviated right QR) if a ∈
(1− a)R. The element a in the `-ring R is right `-quasi-regular in R (abbreviated
right `-QR) if a is in the right `-ideal generated by (1−a)R. So a is right `-QR in R
if and only if there are elements x1, . . . ,xn,y1, . . . ,ym,z in R with

|a| ≤
n

∑
i=1
|xi−axi|+

m

∑
j=1
|y j−ay j|z.

Since

|x−ax|= |(x+−ax+)− (x−−ax−)| ≤ |x+−ax+|+ |x−−ax−|

we may take xi,y j,z in R+. Each right QR element is right `-QR; in particular, if a
is nilpotent of index n, then a is right `-QR since a = (1−a)(a+a2 + · · ·+an−1).

The circle operation is defined in R by a ◦ b = a + b− ab. In any unital ring
containing R we have that 1− (a◦b) = (1−a)(1−b). This implies that (R,◦) is a
monoid with identity element 0 which is isomorphic to the multiplicative submonoid
1−R of the ring. It also implies the equivalence of the following statements: (i) a is
right QR; (ii) a has a right inverse in (R,◦); (iii) 1−a has a right inverse in 1−R.

The element a in the `-ring R is called n-right `-QR if there are elements x1, . . . ,xn
in R such that |a| ≤ |x1 − ax1|+ · · ·+ |xn − axn|. If a ≤ 0, then a is 1-right `-QR
since |a|=−a≤ (−a)−a(−a). This inequality is equivalent to 0≤ a◦ (−a). Some
relations between the element a being right `-QR and the comparability to 0 of
elements in a◦R are given in Exercises 3.3.13.

The right `-ideal A is a right `-QR right `-ideal of R if each of its elements is right
`-QR in R. If each element of R is right `-QR then R is called a right `-QR `-ring.

An `-ideal P of R is a right `-primitive `-ideal of R if there is a modular maximal
right `-ideal I of R with P = r`(R/I). Since I is modular it is easy to see that P is the
largest `-ideal of R that is contained in I. The `-ring R is called (right) `-primitive if
0 is a right `-primitive `-ideal of R. Clearly, R/P is an `-primitve `-ring if and only
if P is a right `-primitive `-ideal of R.

Let

R(R) = ∩{I : I is a modular maximal right `-ideal of R}, (3.2.21)

O(R) = ∩{P : P is a right `-primitive `-ideal of R}. (3.2.22)

Theorem 3.2.25. (a) For each `-ring R,O(R) ⊆ R(R) and the inclusion could be
proper.
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(b) R(R) is the largest right `-QR right `-ideal of R, and O(R) is the largest
right `-QR `-ideal of R.

(c) R(R/O(R)) = R(R)/O(R) and O(R/O(R)) = 0.

Proof. The inclusion in (a) and the equations in (c) are obvious. An example where
O(R) ⊂R(R) is given in Exercise 28(b). As for (b), suppose that a ∈R(R). If the
right `-ideal generated by (1−a)R is proper, then there is a maximal modular right
`-ideal K of R modulo which a is a left identity. Since a∈K we get the contradiction
that I = R. So a is right `-QR and R(R) is a right `-QR right `-ideal of R. Suppose
that J is a right `-QR right `-ideal of R, and I is a modular maximal right `-ideal of
R with e as a left identity modulo I. If J 6⊆ I, then R = I +J and e = a+b with a ∈ I
and b ∈ J. Then

|b| ≤ ∑
i
|xi−bxi|+∑

j
|y j−by j|r

= ∑
i
|(xi− exi)+axi|+∑

j
|(y j− ey j)+ay j|r

and {xi − exi,axi,y j − ey j,ay j} ⊆ I. So b ∈ I and hence e ∈ I. This contradiction
gives that J ⊆ I; so J ⊆R(R) and R(R) is the largest right `-QR right `-ideal of R.
If A is a right `-QR `-ideal of R then A ⊆R(R), and hence A is contained in each
right `-primitive `-ideal; so A ⊆ O(R) and O(R) is the largest right `-QR `-ideal
of R. ut

It is now easy to see that the class J , which is defined as the class of all of the
right `-QR `-rings, is a radical class which contains `-Nil. For it is clearly homomor-
phically closed, and it satisfies (3.2.2) since R/O(R) is J -semisimple by Theorem
3.2.25. Note that J (R) is the largest `-ideal of R which is a right `-QR `-ring, and
J (R) ⊆ O(R). However, since O(R) need not be an `-QR `-ring it is possible to
have J (R) ⊂ O(R) (see Exercise 28(a)). But, of course, if one of J (R),O(R) or
R(R) is all of R so are the other two.

J is the upper radical determined by the class of right `-primitve `-rings. To see
this first note that if A is a nonzero `-ideal of a right `-primitive `-ring R, then A is
not a right `-QR `-ring, (otherwise, A ⊆ O(R) = 0); so J (A) ⊂ A and A has right
`-primitive `-ideals. Hence, the class of right `-primitive `-rings satisfies (3.2.8) and
determines an upper radical P . According to Theorem 3.2.4, R ∈P if and only if
R has no right `-primitive homomorphic image, and this condition is equivalent to
having O(R) = R and hence J (R) = R, as we have previously noted. We summa-
rize this discussion in

Theorem 3.2.26. The class J of right `-QR `-rings is the upper radical determined
by the class of right `-primitive `-rings. ¤

J is not i-hereditary (Exercise 30), and so it is neither special nor supernilpotent.
However, we do have

Theorem 3.2.27. The class of right `-primitive `-rings is an i-hereditary class of
`-prime `-rings.



160 3 Lattice-ordered Rings

Proof. Suppose that R is a right `-primitive `-ring, and let I be a modular maximal
right `-ideal of R with r`(R/I) = 0. Let A be a nonzero `-ideal of R. Then R = I +A.
If B is an `-ideal of R with AB = 0, then RB = IB⊆ I and B⊆ r`(R/I) = 0. So R is
`-prime.

To see that A is also a right `-primitive `-ring we will first show that A∩ I is a
modular maximal right `-ideal of A. If e∈R is a left identity modulo I, then e = i+ f
where i ∈ I and f ∈ A\I. So for any a ∈ A, f a− a = (e− i)a− a = (ea− a)− ia ∈
A∩ I, and A∩ I is a proper modular right `-ideal of A. To see that A∩ I is maximal let
a∈ A+\A∩ I. Then aA 6⊆ I since R/I =CR(a+ I) is an `-faithful `-simple `-module.
So R = I +C(aA) and A = A∩ I +C(aA). In particular, if J is a right `-ideal of A
which properly contains A∩ I and a ∈ J+\A∩ I, then A = A∩ I +C(aA) ⊆ J; so
J = A.

To finish the proof it suffices to show that A∩ I contains no nonzero `-ideals of
A. Let B be an `-ideal of A with B ⊆ A∩ I, and let D be the `-ideal of R generated
by B. Then D3 ⊆ B⊆ I (Theorem 3.2.7); so D3 = 0, D = 0 since R is `-prime, and
hence B = 0. ut

General conditions on a radical P are given in Exercise 21 that ensure that the
equation P(Rn) = P(R)n holds for each `-ring R and each n ∈ N. The radical J
does not satisfy these conditions. Nevertheless, the equation J (Rn) = J (R)n is
still valid.

If I is a right ideal of R and 1≤ i≤ n, then I(i) = e11Rn⊕·· ·⊕eiiIn⊕·· ·⊕ennRn
will denote the right ideal of Rn which consists of all those matrices whose ith row
has entries from I. Here, the ei j are the usual matrix units and are not elements of
Rn if R is not unital.

Theorem 3.2.28. (a) Let J be a right `-ideal of the matrix `-ring Rn. Then J is a
maximal right `-ideal of Rn and R2

n 6⊆ J if and only if there is a maximal right
`-ideal I of R with R2 6⊆ I and an integer i, 1≤ i≤ n, such that J = I(i).
(b) Moreover, J is modular if and only if I is modular.
(c) The mapping P 7→ Pn is a bijection between the set of right `-primitive `-

ideals of R and the set of right `-primitive `-ideals of Rn.

Proof. (a) Let J be a maximal right `-ideal of Rn with R2
n 6⊆ J. Then J = (J ∩

e11Rn)⊕ ·· · ⊕ (J ∩ ennRn) and J ∩ eiiRn ⊂ eiiRn for some i. Suppose that 0 ≤ v ∈
eiiRn\J. Then C(vRn) 6⊆ J since ``(Rn;Rn/J) = 0; so Rn = J +C(vRn). If x ∈ R+,
then, for every p and q, xepq = (yk`)+(zk`) where (yk`) ∈ J+ and (zk`) = Σ` zi`ei` ∈
C(vRn)+⊆ eiiRn. If p 6= i, then x = ypq and 0≤ xepq ≤ (yk`); so xepq ∈ J and eppRn ⊆
J. Let

I =

{
a ∈ R :

n

∑
j=1

aei j ∈ J

}
.

Then I is a right `-ideal of R and we will show that J∩eiiRn = eiiIn. If 0≤ Σ` x`ei` ∈
eiiIn, then x = ∨` x` ∈ I and Σ` x`ei` ≤ Σ` xei` ∈ J; so Σ` x`ei` ∈ J∩ eiiRn. Now, let
0≤ Σ` x`ei` ∈ J∩ eiiRn. Then, for any (ypq) ∈ Rn, and each j,



3.2 Radical Theory 161
(

∑̀ x jei`

)
(
∑ypqepq

)
= ∑̀ x jy`ei` =

(
∑̀ x`ei`

)(
∑̀ y`e j`

)
∈ J,

where y` = Σp yp` is the `th column sum of (ypq). So Σ` x jei` ∈ J,x j ∈ I, and
Σ` x`ei` ∈ eiiIn. Thus, J = I(i). If I1 is a right `-ideal of R with I ⊆ I1, then J ⊆ I1(i)
and hence I1(i) = J or Rn; so I1 = I or R and I is maximal. Also, R2 * I since
(R2)n = R2

n * J = I(i).
Conversely, let J = I(i) where I is a maximal right `-ideal of R with R2 * I. If

0 ≤ u = Σ` a`ei` ∈ eiiRn\J, then a j ∈ R+\I for some j, and, putting a = a j and
v = aei j,

vRn =

{
∑̀ ax`ei` : x` ∈ R

}
* J

since aR * I. Since 0 ≤ v ≤ u, uRn * J. If b1, . . . ,bn are any elements of R+, then
0≤ b j ≤ c+ar for some c ∈ I+ and r ∈ R+ since R = I +C(aR). But then

0≤ ∑̀ b`ei` ≤ ∑̀ cei` +∑̀ arei` ∈ J +C(vRn).

Thus, Rn = J +C(uRn) and J is a maximal right `-ideal of Rn.
(b) If e ∈ R is a left identity modulo I, then eeii ∈ Rn is a left identity modulo

J = I(i) since the ith row of eeii(xk`)− (xk`) is (exi1−xi1 · · ·exin−xin). On the other
hand if f = ( fk`) is a left identity modulo J = I(i), then the ith diagonal element of
f (xeii)− xeii, which is in I, is fiix− x. So fii is a left identity modulo I.

(c) This follows because each right `-primitive `-ideal is an `-prime `-ideal (The-
orem 3.2.27) and Q is an `-prime `-ideal of Rn exactly when Q = Pn for some `-
prime `-ideal P of R (see Exercise 22(d)). Hence, P is the largest `-ideal of R that is
contained in the modular maximal right `-ideal I of R if and only if Pn is the largest
`-ideal of Rn that is contained in the modular maximal right `-ideal J = I(i) of Rn.

ut
This result gives

Theorem 3.2.29. For each `-ring R,R(Rn)=R(R)n, O(Rn)=O(R)n and J (Rn)=
J (R)n.

Proof. Let I be a variable for the maximal modular right `-ideals of R, and let P be
a variable for the right `-primitive `-ideals of R. Then from (3.2.21), (3.2.22), and
the previous result,

R(Rn) =
⋂

I

n⋂

i=1

I(i) =
⋂

I

In =

(
⋂

I

I

)

n

= R(R)n

and

O(Rn) =
⋂

P

Pn =

(
⋂

P

P

)

n

= O(R)n.
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Since Rn/J (Rn) is `-semiprime J (Rn) = Tn for some `-ideal T of R (Exercise
22(d)). Since Tn has no proper modular right `-ideals, neither does T by the previous
result. Hence T is a J -`-ideal of R and J (Rn) = Tn ⊆ J (R)n. For the same
reasons J (R)n is a J -`-ideal of Rn; so J (R)n ⊆J (Rn) and we have the equality
J (Rn) = J (R)n. ut

One can, of course, construct Jleft, the left Johnson radical, using left `-quasi-
regularity, maximal modular left `-ideals, and left `-primitivity. In general, the rad-
icals J and Jleft are distinct (see Exercise 29).

Exercises.

P denotes a radical class of `-rings.

1. Verify the characterizations of P(R) given in (3.2.3), (3.2.4), and (3.2.5).

2. (a) If ϕ(R) is a homomorphic image of R, then ϕ(P(R))⊆P(ϕ(R)). Give an
example where the inclusion is proper.

(b) If A is an `-ideal of R with A⊆P(R), then P(R/A) = P(R)/A.

3. (a) If {Ai}i is a family of P-`-ideals of R, then ΣAi is a P-`-ideal of R.
(b) P(⊕iRi) =⊕iP(Ri) for any family {Ri} of `-rings.
(c) P(ΠiRi)⊆ΠiP(Ri) and the inclusion could be proper.

4. The class S P is extensionally closed and is also closed with respect to the
formation of subdirect products.

5. In the lower radical construction, if Pν = Pν+1, then P = Pν .

6. Let Z0 be the additive group of the integers with zero multiplication, and let N
be the class of nilpotent `-rings. Then `-β = L (Z0) = L (N ).

7. Let `-N1(R) = `-N(R) be the `-ideal of Theorem 3.2.9. For a limit ordinal ν let
`-Nν(R) =

⋃
µ<ν `-Nµ(R), and, for each ordinal ν , let `-Nν+1(R)/`-Nν(R) = `-

N(R/`-Nν(R)). If `-Nν(R) = `-Nν+1(R), show that `-β (R) = `-Nν(R). If A is
an `-ideal of R show that, for each ordinal ν , `-Nν(A) = `-Nν(R)∩A. Show that
`-N(Rn) = [`-N(R)]n.

8. Let F be a totally ordered field and let S = F2. Let R be the `-F-algebra of
all N×N strictly upper triangular row finite matrices over S with only finitely
many entries not in Fe12 (e12 =

(
0 1
0 0

)
). Show that `-N(R) consists of all those

matrices in R which have only a finite number of nonzero entries, and R2 ⊆ `-
N(R). Hence R = `-β (R) = `-N2(R)⊃ `-N1(R) (see Exercise 7).

9. Let C be the centroid of the ring R; see the discussion prior to Theorem 3.2.6.

(a) If 1 ∈ R, then C ∼= Z(R) (Z(R) is the center of R).
(b) If α ,β ∈C, then (αβ −βα)(R2) = 0.
(c) If R2 = R, or `(R) = 0, or r(R) = 0, then C is commutative.
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(d) If `(R) = r(R) = 0 and α ∈ EndZ(R) with α(xzy) = x(αz)y for all x, y, z in
R, then α ∈C.

(e) If R is semiprime (respectively, prime), then C is reduced (respectively, a
domain).

(f) If R is simple, then C is a field.
(g) If R is an `-semiprime (respectively, `-prime) `-ring, then C is po-reduced

(respectively, a po-domain).

10. Suppose that `-β ⊆P and R is an `-ring.

(a) If C is the centroid of R and α ∈C+, then αP(R)⊆P(R).
(b) If R is a po-algebra over D and D is directed, then P(R) is a subalgebra.

11. If `-β ⊆ P and A is an ideal and a sublattice of the `-ring R, then P(A) ⊆
P(R).

12. Let the polynomial rings F =Z[x] and R = F [y] each be totally ordered with the
antilexicographic order. Let P be the ideal of R generated by x2 + y2. Show that
P is a prime ideal of R but the convex ideal C(P) that is generated by P is not
prime.

13. Prove (a), (b), and (c) of Theorem 3.2.13.

14. (a) The intersection of a chain of `-prime `-ideals in an `-ring R is an `-prime
`-ideal.

(b) Each `-prime `-ideal of R contains a minimal `-prime `-ideal.
(c) The `-ideal P is a minimal `-prime `-ideal of R if and only if R+\P is an

M+-system that is maximal with respect to excluding 0.

15. Show that `-β (R) = ∩{P : P is a minimal `-prime `-ideal of R}= {a ∈ R : each
M+-sequence in R that begins with |a| contains 0}.

16. (a) Show that the `-ring R is `-semiprime if and only if it has no nonzero di-
rected nilpotent ideals (or no nonzero directed nilpotent right ideals).

(b) Show that R is `-prime if and only if IJ 6= 0 for any nonzero directed ideals
I and J.

17. An `-ideal A of the `-ring R is an `-essential `-ideal of R if A∩B 6= 0 for each
nonzero `-ideal B of R.

(a) If A∩A∗ = 0, then A is `-essential in R/A∗.
(b) Suppose that A 6= 0. Show that R is `-prime if and only if A is an `-prime

`-ring and A is `-essential in R.
(c) If P is a special radical and P(A) = 0, show that P(R/A∗) = 0.

18. Show that the class of all `-prime `-rings is a special class.

19. Let A be the class of all archimedean `-rings. Show that A satisfies the con-
dition in (3.2.19). Consequently, if M is a special class of `-rings, then so is
M ∩A .
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20. For the `-ring R let N = {a ∈ R : a is nilpotent} and let M = {a ∈ R : |a| is
nilpotent}.

(a) Show that `-β (R) = Ng(R) iff `-β (R) = N.
(b) Show that `-β (R) = `-Ng(R) iff `-β (R) = M.
(c) Suppose that `-β (R) = Ng(R). In Theorem 3.2.23 replace the last phrase

in (c) by “ab is nilpotent if and only if |a||b| is nilpotent,” and prove the
theorem for this R.

21. A class of `-rings is matrix-closed if whenever R is in the class so is the canon-
ically ordered n×n matrix ring Rn, for each n ∈ N.

(a) Show that P and S P are both matrix-closed if and only if P(Rn) =
P(R)n for each `-ring R and each n ∈ N.

(b) Suppose that P is left i-hereditary, `-β ⊆ P , and P(R) contains each
left P-`-ideal of R (for any R). Then P(Rn) = P(R)n. (Hint: If R ∈P,
show that each of the columns Rneii of Rn is in P . On the other hand, if
A is a nonzero P-`-ideal of Rn, then B = C(RnARn) ∈ P , and B = Dn
where D = C(ΣRaR) and a varies over the entries of the matrices in A; by
considering the first column Be11 of B, show that D ∈P.)

(c) The upper and lower `-nil radicals satisfy the conditions in (b).
(d) S `-Ng is not matrix-closed. Show that `-Ng fails to satisfy just one of the

conditions in (b).

22. (a) For each `-ring R and each n ∈N the mapping I 7→ In is a lattice monomor-
phism between the lattice of `-ideals of R and the lattice of `-ideals of the
matrix ring Rn.

(b) If a ∈C(RaR) for each a ∈ R+, show that this mapping is an isomorphism.
(c) Let J be an `-ideal of Rn and let I be the additive subgroup of R that is

generated by all of the entries of the matrices in J+. Show that I is an `-
ideal of R,J ⊆ In, and I3

n ⊆ J.
(d) Show that the mapping in (a) restricts to a bijection between the set of

`-prime (respectively, `-semiprime) `-ideals of R and the set of `-prime (re-
spectively, `-semiprime) `-ideals of Rn. (Here, A is an `-semiprime `-ideal
of R if R/A is an `-semiprime `-ring.)

23. Let RΓ be the `-ring of Γ ×Γ row finite matrices over the `-ring R. If I is a right
`-ideal of R and λ0 ∈ Γ , let I(λ0) = {(aλ µ) ∈ RΓ : aλ0µ ∈ I, ∀µ ∈ Γ }. Prove
each of the following.

(a) I(λ0) is a right `-ideal of R.
(b) I(λ0) is modular if and only if I is modular.
(c) R2

Γ 6⊆ I(λ0) if and only if R2 6⊆ I.
(d) A right `-ideal J of RΓ is maximal, has R2

Γ 6⊆ J, and ⊕λ eλλ RΓ 6⊆ J if and
only if J = I(λ0) for some λ0 ∈ Γ and some maximal right `-ideal I of R
with R2 6⊆ I.

(e) If P is a right `-primitive `-ideal of R, then PΓ is a right `-primitive `-ideal
of RΓ , but not every right `-primitive `-ideal of RΓ is of this form. (If F is
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a totally ordered field consider the `-ideal Q of FN consisting of all of the
matrices of finite rank : (ai j) ∈Q iff ∃n ∈N such that ∀i, ∀m≥ n, aim = 0.)

24. Let R be a radical class of rings. If A is an ideal of the ring R show that R(A) is
an ideal of R; hence S R is i-hereditary. (If x ∈ R show that the map R(A)−→
(xR(A)+R(A))/R(A) given by left multiplication by x is a homomorphism).

25. Let Z be the class of zero `-rings and let N be the class of nilpotent `-rings.
Show that U Z = U N = {R : R = R[2]}, that S U Z = {R : R has no nonzero
`-idempotent `-ideals}, and that S U Z is i-hereditary.

26. Let G be a multiplicative semigroup with 0 which has no nonzero nilpotent
elements. Suppose that a1, . . . ,an ∈ G and bi = aτ(i) for i = 1, . . . ,n, where τ is
a permutation. If a1 · · ·an = 0 show that b1 · · ·bn = 0. (Show that ab = 0⇒ ba =
bxa = 0, and abc = 0⇒ bac = 0.)

27. (a) Let e be a positive nonzero idempotent of R, and suppose that e is a left
d-element of R. Then e is not right `-QR. However, e may be right `-QR
even if R = D(R). (Try 2×2 matrices.)

(b) If an is right `-QR for some n ∈ N, then a is right `-QR.

28. (a) Let the `-ring R be given by R =Qa⊕Q1 as an `-group with a2 = a. Show
that J (R)⊂O(R).

(b) Let F = R[y] be the lexicographically ordered polynomial ring over the
reals, and let α(k) be the kth derivative of α ∈ F . Let R = F [x; ′] be the Ore
extension determined by ′. So the elements of R are polynomials Σixiαi,
addition is as usual and multiplication is given by αx = xα +α ′ for α ∈ F ;
more generally,

αxn =
n

∑
k=0

(
n
k

)
xn−kα(k).

Then R is an `-ring if its positive cone is given by ΣixiF+. Show that R is
`-simple (in fact, R is simple), O(R) = 0 and R(R) = xR.

29. Let R = Qe⊕Qa be the `-algebra with the canonical basis {e,a} and with
multiplication given by e2 = e, ea = e, ae = a, a2 = a. Show that R is an `-
simple right f -ring which is left `-primitive and right `-QR.

30. Let R = Qa⊕Qb be the `-algebra with the canonical basis {a,b} and with
multiplication given by a2 = ab = ba = b2 = a. Show that R is a J -`-ring with
a nonzero J -semisimple `-ideal.

31. Let J + be the class given by : R ∈ J + if and only if each element of
R+ is right `-QR. Show that J + is a radical class and J ⊂ J +. (Call
a right `-ideal I of R po-modular if R has a positive left identity modulo
I, and call it right po-`-QR if each element of I+ is right `-QR in R. Then
J (R) ⊆ J +(R), O(R) ⊆ O+(R), and R(R) ⊆ R+(R), where O+ and R+

have the obvious meaning.) Show that J +(Rn) = (J +(R))n for each `-ring
R and each n ∈ N. If each maximal modular right `-ideal of R is po-modular,
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show that J (Rn) = J +(Rn). Show that R has this property if R̄ = D(R̄R̄)
where R̄ = R/O(R).

32. (a) Show that a minimal `-ideal in an `-ring is either `-simple or is a zero `-ring.
(b) The minimal `-ideal in a subdirectly irreducible `-ring is called its heart. Let

N be an isomorphically closed class of `-simple `-rings and let M = {R : R
is subdirectly irreducible and its heart is in N }. Show that M is a special
class.

(c) Let M be the class of all subdirectly irreducible `-rings with an `-idempotent
heart; so N is the class of all `-simple `-rings. The upper radical deter-
mined by M is called the antisimple radical and will be denoted by `-A .
Show that R ∈ `-A iff R has no `-prime subdirectly irreducible homomor-
phic image.

(d) Prove that `-Nil ⊆ `-A .
(e) Assume that for each a ∈ R the chain 〈a〉 ⊇ 〈a2〉 ⊇ · · · is finite. Show that

`-Nil(R) = `-A (R). (If 〈an〉 = 〈an+1〉 and C is an `-ideal of 〈an〉 which is
maximal with respect to not containing an, show that C is a maximal `-ideal
of 〈an〉.)

(f) If R has d.c.c. on `-ideals, show that `-A (R) is nilpotent.

33. Show that the following statements are equivalent for an `-ring R. The class of
`-rings that satisfy these conditions will be denoted by `-I .

(a) Each subdirectly irreducible homomorphic image of R is `-prime.
(b) Each nonzero homomorphic image of R is a subdirect product of a family

of subdirectly irreducible `-prime `-rings.
(c) If A is an `-ideal of R, then A = ∩{P : P is an `-ideal of R,A ⊆ P and R/P

is subdirectly irreducible with an `-idempotent heart}.
(d) Each `-ideal of R is `-idempotent.
(e) Each principal `-ideal of R is `-idempotent.
(f) Each homomorphic image of R is `-semiprime.

34. (a) Show that the class `-I that is defined in the previous exercise is an i-
hereditary radical.

(b) Prove that a subdirectly irreducible `-ring with a nilpotent heart is `-I -
semisimple.

(c) Let A be an `-ideal of R. Show that A⊆ `-I (R) iff each (principal) `-ideal
of R that is contained in A is `-idempotent.

(d) Show that `-I (R) = ∩{M : R/M is subdirectly irreducible with a nilpotent
heart}. (If a 6∈ `-I (R), let b∈ 〈a〉 with 〈b〉 6= 〈b〉[2], and let M be an `-ideal
of R containing 〈b〉[2] which is maximal with respect to not containing b.)

35. (a) Show that `-I ⊆S `-A , `-A ⊆S `-I and `-I ∩ `-A = 0.
(b) Show that `-I is the largest radical P with P ∩ `-A = 0.
(c) Show that `-A is the largest radical P with P ∩ `-I = 0.

36. Let R be an `-semiprime `-ring. Show that `(F(R);R)+ r(F(R);R)⊆ F⊥.
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37. Let V be a vector lattice over the totally ordered field F . An element u∈V + is an
F-strong order unit of V if it generates V as a convex `-subspace: V = CF(u).
The i-radical of V is defined by

i(V ) = {x ∈V : F |x| ≤ u for every F-strong order unit u of V}.

Verify each of the following.

(a) i(V ) = 0 iff V has an F-strong order unit and is F-archimedean (that is, V
has no nonzero bounded subspaces).

(b) If u is an F-strong order unit of V , then i(V ) = {x∈V : F |x| ≤ u} is a proper
subset of V .

(c) i(V ) is a convex `-subspace of V and i(V/i(V )) = 0.
(d) No element of i(V ) is an F-strong order unit of V .
(e) If R is an `-algebra over F , then i(R) is an `-ideal of R.
(f) If R is an `-algebra over F and I = i(R) has an F-strong order unit, then

i(I[n])⊇ I[n+1].
(g) If R is an F-`-algebra and i(R) is finite dimensional over F , then i(R) is

nilpotent.

Notes. The general theory of radicals in rings began with the papers by Amitsur
[AM1], [AM2], [AM3], and the paper by Kurosh [KU]; Amitsur considers radicals
in the more general setting of a complete lattice. The books by Divinsky [DIV],
Gardner and Wiegandt [GW] and Szász [SZ] are good references. The translation of
the general theory to `-radicals for `-rings occurs in the papers by Shatalova [SH1]
and [SH2] and later, independently, by Steinberg [ST7]. Earlier, Birkhoff and Pierce
[BP] considered some aspects of the lower `-nil radical and Johnson [JOH1] defined
and studied the analogue for f -rings of the Jacobson radical of a ring. Other papers
that are concerned with specific `-radicals and the structure of `-rings are Pierce
[PI1], Diem [DI], Keimel [KE4], Ma [M2], Shyr [SHY], Shyr and Viswanathan
[SV], and Steinberg [ST23]. The fact that an `-ring is nil if and only if it is locally
nilpotent (Theorem 3.2.19), which is not true for rings, is due to Shatalova [SH2],
and the characterization of a completely `-prime `-ideal given in Theorem 3.2.24
was given by Diem [DI] for an sp-`-ring, and it was noted by Steinberg [ST8] that
it holds in any `-ring. Exercises 32 through 35 come from Shatalova [SH1] and
Exercise 37 is due to Birkhoff and Pierce [BP].

3.3 f -Rings

Because of the relative ease with which one can compute in a totally ordered ring the
structure of an f -ring is easier to determine than the structure of an arbitrary `-ring.
Moreover, the answers to many questions about `-rings are frequently more readily
available in the variety of f -rings. Here, we present the basic theory of f -rings. We



168 3 Lattice-ordered Rings

will see that the set of nilpotent elements is an ideal and the `-primitive f -rings are
all unital and `-simple. We start with a characterization of subrings of the reals R
that is analogous to the characterization of its additive subgroups given in Theorem
2.3.10.

If A and B are subgroups of the additive group of a ring R let

I(A,B) = {r ∈ R : rA⊆ B}. (3.3.1)

Then I(A,B) is a subgroup of R, I(A) = I(A,A) is a subring of R, and I(A,B) is a
left-I(B)-right-I(A)-bimodule.

Recall from Exercise 2.2.8 that HomZ(A,B)+, the set of isotone group homomor-
phisms from the directed abelian po-group A to the abelian po-group B, is a partial
order of the group HomZ(A,B). Let F(A,B) be the subgroup of HomZ(A,B) that is
generated by HomZ(A,B)+, and put F(A) = F(A,A) and F(B) = F(B,B).

Theorem 3.3.1. Let A and B be nonzero subgroups of R.

(a) If f : A −→ B is an isotone group homomorphism, then there is a unique
element t ∈ R+ such that f (a) = ta for each a ∈ A.

(b) The map ψA : F(A)−→ I(A) that arises from (a) is an isomorphism of totally
ordered rings, and the map ψA,B : F(B)F(A,B)F(A) −→ I(B)I(A,B)I(A) is an
isomorphism of totally ordered bimodules.

Proof. (a) If ker f = A let t = 0; otherwise, ker f = 0. Let 0 < a1,a2 ∈ A. If
f (a1)/ f (a2) < a1/a2, then f (a1)/ f (a2) < m

n < a1/a2 for some m/n∈Qwith n > 0.
Then f (na1) < f (ma2), but ma2 < na1. Similarly, f (a1)/ f (a2)) > a1/a2 is impos-
sible. Thus, f (a1)/ f (a2) = a1/a2 and f (a1)/a1 = f (a2)/a2 = t; hence, f (a) = ta
for each a ∈ A. The uniqueness of t is clear.

(b) If f ,g ∈HomZ(A,B)+ and f (a) = sa, g(a) = ta and s≥ t, then f (a)≥ g(a)
for each a ∈ A+. Thus, f ≥ g, and F(A,B) = { f − g : f ,g ∈ HomZ(A,B)+} is a
totally ordered group. The map ψA,B : F(A,B)−→ I(A,B) is given by ψA,B(h) = u,
where h(a) = ua for each a ∈ A. The rest of the proof is left to the reader. ut
Theorem 3.3.2. Let R be a totally ordered archimedean `-ring. Then, either R2 = 0
and (R,+) is isomorphic to a subgroup of R, or there is a unique embedding of R
into R.

Proof. By Theorem 2.3.10 the additive group of R can be embedded in R. Let f :
R −→ A = f (R) ⊆ R be an isomorphism of `-groups. If R is not a domain, then
ab = 0 for some 0 < a,b∈R. If c,d ∈R+, then c≤ na and d≤mb for some n,m∈N.
So cd = 0 and hence R2 = 0. Suppose that R is a domain. Let E be the subring of
EndZ(R) consisting of the left multiplication maps. Then the composite ψAϕρ ,

R
ρ−→ E

ϕ−→ F(A)
ψA−→ I(A),

is an embedding of R into R. Here, ρ(x) is left multiplication by x,ϕ(ρ(x)) =
f ρ(x) f−1, and ψA is the isomorphism given in Theorem 3.3.1. So (ψAϕρ)(x) = tx
where tx f (u) = f (xu) for each u ∈ R. To show the uniqueness of this embedding it
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suffices to show that if γ : A −→ B is an isomorphism between subrings of R, then
γ = 1. By (a) of Theorem 3.3.1 γ is multiplication by some t ∈ R+. If 0 6= a ∈ A,
then ta2 = γ(a2) = t2a2 gives that t = 1. ut

The theory of radicals in the variety of f -rings is much nicer than it is in the
variety of all `-rings. In order to investigate the nil radical of an f -ring we first note
the following.

Theorem 3.3.3. Let a and b be elements of the po-ring R with ab≤ ba and let n∈N.

(a) If aR+ +R+a⊆ R+, then anb≤ ban.
(b) If bR+ +R+b⊆ R+, then abn ≤ bna.
(c) If aR+ +bR+ +R+a+R+b⊆ R+, then anbn ≤ (ab)n ≤ (ba)n ≤ bnan.

Proof. The conclusions all follow by induction. For (a), if anb≤ ban, then an+1b≤
aban ≤ ban+1, and similarly for (b). For (c), if anbn ≤ (ab)n ≤ (ba)n ≤ bnan, then
an+1bn+1 = a(anbn)b ≤ a(ba)nb = (ab)n+1 ≤ (ba)n+1 = b(ab)na ≤ b(ba)na ≤
bn+1an+1. ut

For the ring R let
Nn = {a ∈ R : an = 0}. (3.3.2)

If V is a variety of `-rings, then S (V ) will denote the class of all `-rings R for
which R/`-β (R) is in V . We will refer to those `-rings in S (V ) as extended V -`-
rings. The class of extended f -rings will be denoted by S ( f ). Among the `-rings
in S ( f ) are the triangular matrix rings over f -rings, as well as each almost f -ring
(Theorem 3.2.24) and each unital one-sided f -ring (Theorem 3.8.10).

Theorem 3.3.4. If R is an f -ring, then Nn is a nilpotent `-ideal of R of index at most
n and

`-β (R) =
∞⋃

n=1

Nn =
∞

∑
n=1

Nn.

Consequently, if R is an extended f -ring, then `-β (R) = β (R) = `-Ng(R) = Ng(R).

Proof. First, assume that R is totally ordered. If a,b ∈ Nn and |a| ≤ |b|, then

|(a−b)n|= |a−b|n ≤ (|a|+ |b|)n ≤ 2n|b|n = 0;

so a−b ∈ Nn. Also, if x ∈ R, then |a||x|= |ax| and |x||a|= |xa| are comparable; so
ax and xa ∈ Nn by Theorem 3.3.3(c). Now let R be an f -ring. If a,b ∈ Nn and x ∈ R,
then (a−b)n = (ax)n = (xa)n = 0 in any totally ordered homomorphic image R of
R. Thus, a−b,ax and xa are in Nn since R is a subdirect product of totally ordered
rings. Also, if |a| ≤ |b| with b ∈ Nn, then |an| ≤ |b|n = |bn|= 0; so a ∈ Nn. Clearly,
Nn

n = 0 (see (3.2.13)). For the second statement, since R/`-β (R) is a reduced f -ring,
`-Ng(R)⊆ `-β (R),β (R)⊆ `-β (R), and Ng(R)⊆ `-β (R). Thus, the four radicals are
equal since the reverse inclusions hold in any `-ring. ut
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Note that the second statement in Theorem 3.3.4 applies to any d-ring since
``(R) = r`(R) = 0 in an `-semiprime `-ring, and a d-ring in which these annihi-
lators vanish is an f -ring. It also applies to an `-ring R for which R/A is an f -ring
for some `-ideal A of R that is contained in `-β (R). However, we may still have that
`-N(R)⊂ `-β (R) in an `-ring for which R/`-N(R) is an f -ring (see Exercise 3.2.8).

Theorem 3.3.4 gives some information about the `-prime `-ideals in an f -ring.

Theorem 3.3.5. Let R be an extended f -ring.

(a) Each `-prime `-ideal of R is irreducible and is a completely prime ideal.
(b) The set of minimal prime ideals of R is equal to the set of minimal `-prime

`-ideals of R.
(c) The following statements are equivalent.

(i) R is `-semiprime.
(ii) For a,b ∈ R, ab = 0 iff |a|∧ |b|= 0.

(iii) X⊥ = `(X) for each subset X of R.
(iv) The set of minimal prime ideals of R is equal to the set of minimal prime

subgroups of R.

Proof. (a) is a consequence of Theorem 3.2.24. However, we will give a slightly
more direct proof. We may assume that R is an `-prime f -ring. If a∧ b = 0, then
〈a〉∩〈b〉 = 0 (see 2.5.2), and hence 〈a〉〈b〉 = 0. Thus a = 0 or b = 0 and R is totally
ordered. If ab = 0 and |a| ≤ |b|, then a2 = |a|2 ≤ |a||b|= 0. But R is reduced by the
previous result; so R is a domain.

(b) This follows from (a) and Theorems 3.3.4 and 3.2.23 since each prime ideal
and each `-prime `-ideal contains `-β (R).

(c) If R is `-semiprime and ab = 0, then (|a| ∧ |b|)2 ≤ |ab| = 0. Since R is re-
duced, |a|∧ |b|= 0. On the other hand, if (ii) holds and a2 = 0, then |a|= |a|∧ |a|=
0; so R is reduced. Thus, (i) and (ii) are equivalent, and clearly (ii) and (iii) are
equivalent. To see that (i) implies (iv) let R be a semiprime f -ring and let P be a
minimal prime subgroup of R. Then P is an `-ideal by Theorem 3.1.2. If a2 ∈ P,
then a2∧b = 0 for some b 6∈ P by Theorem 2.4.3. But then (|a|∧b)3 ≤ a2b = 0; so
|a|∧b = 0, a ∈ P, and P is a prime `-ideal of R. If Q is a prime `-ideal with Q⊆ P,
then Q is a prime subgroup by (a). So Q = P and P is a minimal prime ideal by (b).
On the other hand, each minimal prime ideal P contains a minimal prime subgroup
which necessarily must be equal to P. Thus, (i) implies (iv). Now, if (iv) holds, then
it follows from (b) and Exercise 3.2.15 (or Theorem 2.4.2) that `-β (R) = 0. This
completes the proof. ut

We turn now to the Johnson radical, and we first examine the maximal modular
right `-ideals and the right `-primitive `-ideals in an f -ring.

Theorem 3.3.6. Let R be an f -ring.

(a) If I is a maximal modular right `-ideal of R, then I is a maximal `-ideal.
(b) The `-ideal P of R is right `-primitive if and only if R/P is an `-simple unital

totally ordered domain.
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Proof. Let P be the largest `-ideal of R that is contained in the maximal modular
right `-ideal I. Since P is an `-prime `-ideal (Theorem 3.2.27), R/P is a totally
ordered domain (Theorem 3.3.5). By passing to R/P we may assume that P = 0.
Let a ∈ R+\I. If aI 6⊆ I, then I ⊂ C(aI) = R. If e is a left identity modulo I, then
ae≤ ai for some i ∈ I; so e≤ i and e ∈ I. Thus, aI ⊆ I, I = P is an `-ideal, and R/P
is unital and `-simple. This proves (a) and one implication of (b). Conversely, any
`-simple unital `-ring is certainly right `-primitive. ut

We can now see that the Johnson radical is a good radical in the variety of f -rings.

Theorem 3.3.7. The Johnson radical J is a special radical in S ( f ), the class of
extended f -rings. If R ∈S ( f ), then, for each n ∈ N, J (Rn) = O(Rn) = R(Rn) =
Jleft(Rn) is the largest right (respectively, left) `-QR right (respectively, left) `-ideal
of Rn.

Proof. According to Exercise 7 the class S ( f ) is hereditary and homomorphi-
cally closed. Let M be the class of `-simple unital totally ordered domains. If
A ∈ M ,R ∈ S ( f ), and A is an `-ideal of R, then R/A∗ is an `-prime `-ring (Ex-
ercise 3.2.18). So `-β (R) ⊆ A∗, R/A∗ is an f -ring, and hence R/A∗ is a totally
ordered domain. But then the embedding A−→ R/A∗ is an isomorphism. Thus, M
satisfies the condition (3.2.19), and so it is a special class in S ( f ). Since J is
the upper radical determined by M (Theorems 3.3.6 and 3.2.26), J is a special
radical in S ( f ). Also, by Theorems 3.3.6 and 3.2.17, J (R) = O(R) = R(R) and
J (R) = Jleft(R); and the same equations hold for Rn, by Theorem 3.2.29. ut

One consequence of Theorem 3.3.6 is that a unital `-simple f -ring does not have
any nonzero proper one-sided `-ideals. In fact, this is true for any `-simple f -ring,
and this leads to the general result that the sets of maximal `-ideals and maximal
one-sided `-ideals coincide in any f -ring; see Exercise 25. In order to see this in the
`-simple case, as well as for other purposes, it is convenient to give the following
definition. The element e in the po-ring R is a left superunit if ex≥ x for each x∈R+.
A right superunit is defined analogously, and a superunit is an element that is both
a left and a right superunit. The `-ring R is called superunital if it has a superunit.
As we will now show, each `-simple f -ring is superunital.

Theorem 3.3.8. The following statements are equivalent for the f -algebra R over
the directed po-ring C.

(a) R is `-simple.
(b) For all 0 6= c,d ∈ R there exists x ∈ R with |d|< |cx|.
(c) For all 0 6= c,d ∈ R there exists x ∈ R with |d|< |xcx|.
(d) For all 0 6= c,d ∈ R there exists x ∈ R with |d|< |xc|.
(e) R2 6= 0 and R has no nonzero proper one-sided `-ideals.
(f) R is subdirectly irreducible with an `-idempotent heart.
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Proof. We first show that (c) implies (b). Under the assumption of (c) R must be
totally ordered since if c and d are disjoint so are xcx and d. Also, R is a domain
since it is, in fact, an `-simple f -ring. If |ab| ≤ |a| ∧ |b| holds identically in R, then
we get the contradiction |c| < |xcx| ≤ |x| ∧ |c| ≤ |c|. We claim that, in any totally
ordered domain, if a,b ∈ R+ and ab > a or ba > a, then b is a superunit. For, if
ab > a, then abr > ar and br > r for each r > 0. So b2 > b and hence rb > r for
each r > 0. Let e be any superunit of R. If ab > e, then ba is a superunit since
(ba)2 = baba > bea≥ ba. Now, e < x|c|x implies that |c|x2 is a superunit; so |d|<
2|c|x2|d| = |c|y. Since (a) implies (c) and also (b) implies (a), by symmetry we
now have that the first five statements are equivalent. To finish the proof we will
show that a subdirectly irreducible f -algebra R with an `-idempotent heart H is `-
simple. It is easy to see that R is a subdirectly irreducible `-ring with heart H. Recall
from Exercise 3.2.32 that H is the minimal `-ideal of R. Now, R is a totally ordered
domain, H is `-simple, and, as we have just seen, H contains an element e with
e2 > e > 0, and e is a superunit of R. Thus, R = H. ut

An example of a “minimal” totally ordered domain that has a right `-ideal that
is not an `-ideal is given in Exercise 3.4.35 and Theorem 3.4.17. An `-unital `-
ring that is a simple domain can have nonzero proper right `-ideals; see Exercise
3.2.28(b). However, in a class of `-rings that contains all `-unital `-rings that are
either `-reduced or satisfy an identity of the form p(x) ≥ 0 with 0 6= p(x) ∈ Z+[x],
the number of maximal `-ideals is the same as the number of maximal right `-ideals;
see Exercise 26 and Theorem 3.8.4.

The f -ring analogue of the Wedderburn-Artin theorem is presented next.

Theorem 3.3.9. Let R be an extended f -ring with d.c.c. on `-ideals. Then `-β (R) is
nilpotent and R/`-β (R) is a direct sum of `-simple totally ordered domains.

Proof. We have already seen that `-β (R) is nilpotent (Theorem 3.2.10) and we may
assume that R is an `-semiprime f -ring. By Theorem 3.3.8 each `-prime `-ideal
of R is a maximal `-ideal. If P1,P2, . . . ,Pn, . . . are countably many distinct `-prime
`-ideals, then the descending chain P1 ⊇ P1 ∩ P2 ⊇ ·· · gives that P1 ∩ ·· · ∩ Pn =
P1∩·· ·∩Pn∩Pn+1 for some n. But then we have the contradiction that Pi ⊆ Pn+1 for
some i≤ n. Suppose that P1, . . . ,Pn are all of the proper `-prime `-ideals of R. Then,
for each i,

Pi +
⋂

j 6=i

Pj =
⋂

j 6=i

(Pi +Pj) = R,

and hence the canonical embedding R−→R/P1⊕·· ·⊕R/Pn is onto. For, if a1, . . . ,an ∈
R, then ai = bi +ci with bi ∈ Pi and ci ∈ Pj for each j 6= i. Let x = c1 + · · ·+cn. Then
x+Pi = ci +Pi = ai +Pi for each i. ut

Note that the ring of even integers is an example of an `-simple f -ring with
J (R) not nilpotent. However, if R is an extended f -ring with d.c.c. on `-ideals and
a one-sided identity element, then J (R) is nilpotent. For, J (R/`-β (R)) = 0 by
Theorem 3.3.9 and therefore J (R) ⊆ `-β (R). Analogous results for `-rings more
general than f -rings are given in Exercises 27 and 28; also, see Exercises 29, 30,
and 3.6.26.
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Exercises.

1. This is a strict version of Theorem 3.3.3.

(a) Let G and H be po-groups and let ϕ : G−→H be a group homomorphism.
Show that ϕ is isotone and kerϕ is trivially ordered iff ϕ(x) < ϕ(y) when-
ever x < y.

(b) Suppose that R is a po-ring, a,b ∈ R, aR+ + R+a ⊆ R+ and ab < ba. If
r(a)+ = 0 or `(a)+ = 0, show that anb < ban if n≥ 1.

(c) If ab < ba, bR+ +R+b⊆ R+, and r(b)+ = 0 or `(b)+ = 0, show that abn <
bna if n≥ 1.

(d) Suppose that ab < ba and aR+ + R+a + bR+ + R+b ⊆ R+. If n ≥ 2 and
r(a)+ = `(b)+ = 0, show that anbn < (ab)n; if r(b)+ = `(a)+ = 0, show
that (ba)n < bnan.

2. Let e be a left superunit of the po-ring R.

(a) If f ≥ e, show that f is a left superunit.
(b) If R is directed, prove that R has a positive left superunit.
(c) If R is an `-ring, show that e− ∈ ``(D(RR)).
(d) If R is an `-ring and e ∈ F(RR), show that e≥ 0.
(e) Find an example of a left f -ring that is also a d-ring which has a nonpositive

left identity element.
(f) Show that a directed po-ring has a superunit if and only if it has a left

superunit and a right superunit.
(g) Suppose that R is directed and assume that for each x ∈ R+ there is an

element f ∈ R with f x≥ x. If X is a finite subset of R show that there is an
element f in R+ with f x≥ x for every x ∈ X .

3. Let d be an element of the f -ring R and let 2≤ n ∈ N.

(a) If dn ≥ d, show that d2 ≥ d.
(b) If dn ≤ d, show that d3 ≤ d; and d2 ≤ d iff d ≥ 0.
(c) If dn = d, show that |d|= d2 and d3 = d.

4. Suppose that R is a po-ring and 0 < y ∈ R. Assume that, for any a ∈ R, if ay > 0
(respectively, ya > 0), then a > 0. If xy > y (respectively, yx > y), show that
(2x)2 > 2x. If F [x] is the canonically ordered polynomial ring over the po-
domain F , find elements y ∈ F [x] such that ya > 0 iff a > 0.

5. Let a,b, and e be elements of the po-ring R. Suppose that `(a)+ = r(a)+ = 0
and aR+ +R+a⊆ R+. If each of the products ab and ba is comparable to e and
ae = ea = a, show that the order relation between ab and e is the same as that
between ba and e.

6. Let R be a po-reduced po-ring. Show that R is an f -ring iff each x ∈ R can be
written as x = x1− x2 with xi ∈ R+ and x1x2 = x2x1 = 0. (Hint: If a,b ∈ R+,
show that ab = 0 iff a∧b = 0.)
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7. Let V be a variety of `-rings, let P be a radical, and let SP(V ) be the class
of all `-rings R such that R/P(R) ∈ V .

(a) Show that SP(V ) is homomorphically closed.
(b) If P is hereditary, i-hereditary, or left i-hereditary, show that SP(V ) has

the corresponding property.
(c) If P is a special radical determined by the special class M , show that

R ∈SP(V ) iff R/P ∈ V whenever P is an `-ideal of R with R/P ∈M .

8. (a) If the `-ring R has an `-faithful `-simple `-module MR (that is, r`(M) = 0
and 0 and M are the only convex `-submodules), show that R is an `-prime
`-ring.

(b) Prove that an `-ring R is a right `-primitive f -ring iff it has an `-faithful
`-simple right f -module M which is cyclic (M = m0R) with a generator m0
that is a d-element on R and such that m0 = m0e with |e| ≥ r`(m0). (Show
that r`(x) = r`(m0) for each 0 < x ∈M).

(c) Prove that an extended f -ring is a right `-primitive f -ring iff it has an
`-faithful `-simple `-module which is a cyclic module with a positive
generator.

9. (a) Let {Ai : i ∈ I} be a family of independent right `-ideals of the `-ring R. If
each Ai is a right `-QR `-ring, show that A =⊕iAi ⊆R is a right `-QR `-ring.

(b) If R is an extended f -ring and I is a right `-QR right `-ideal of Rn, show that
I is a right `-QR right `-ring. (Use (a) to reduce to the case that n = 1.)

(c) If R/J (R) is an f -ring, show that J (Rn) is the largest right `-ideal of
Rn with the property that each of its elements is right or left `-QR in Rn.
(Use Theorem 3.2.28(c) to show that a right `-ideal with this property is
contained in each right `-primitive `-ideal of Rn.)

10. If A is a right `-ideal of the extended f -ring R, show that J (A) = A∩J (R).

11. Let a be an element of the `-ring R and let R = R/B where B is a right `-QR
`-ideal of R.

(a) Show that a is right `-QR in R iff a is right `-QR in R.
(b) Assume that R = D(RR). If |a| is right `-QR, show that a is right `-QR.
(c) If R is a right f -ring, show that a is right `-QR iff a+ is right `-QR.
(d) For each element x in {a,−a,a+,a−, |a|} find an `-ring in which x is right

`-QR and the other four elements are not right `-QR. What if R is required
to be an f -ring, or to be totally ordered?

12. Let R be a po-ring. Recall that if x,y ∈ R, then x◦ y = x+ y− xy.

(a) Show that if x,y,z ∈ R, then x◦ z≤ y◦ z iff (y− x)(1− z) ∈ R+.
(b) Let a∈R and define the maps f ,g : R−→R by f (x) = ax and g(x) = a◦x. If

f (x∨y) = f (x)∨ f (y) whenever x∨y ∈ R, show that g−1(−R+) = {x ∈ R :
a◦x≤ 0} and g−1(R+) = {x ∈ R : a◦x≥ 0} are sublattices of R. If a ∈ R+,
show that g−1(−R+) is closed under addition. If a > 1 (respectively, a < 1)
in some unital po-ring extension of R, show that g−1(−R+) is a dual ideal
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(respectively, an ideal) and g−1(R+) is an ideal (respectively, a dual ideal)
of the po-set R.

(c) If x,y ∈ R and x ◦ y ≤ p for some positive nilpotent element p, show that
x◦ z≤ 0 for some z in R.

13. Let a be an element of the `-ring R and let R = R/`-Nil(R).

(a) Show that a is 1-right `-QR iff there exists y ∈ R with (a ◦ y)∧ (a ◦−y) ≤
0≤ (a◦ y)∨ (a◦−y).

(b) Suppose that R is an `-subring of a unital right d-ring. Show that a is right
`-QR in R iff a is 1-right `-QR in R.

(c) Assume that R is an f -ring. Show that a is right `-QR iff there exist elements
p,y∈R, with p nilpotent, such that [(a+◦y)∧(a+◦−y)]◦ p≤ 0. (R satisfies
the hypothesis of (b) by Theorem 3.4.3.)

(d) If there are elements x,y in R with a ◦ x ≤ 0 ≤ a ◦ y, show that a is 2-right
`-QR.

(e) If a2 ≥ 0 and there exists x ∈ R with a◦ x≤ 0, show that a is 2-right `-QR.
(f) Show that R satisfies (∗) iff R satisfies (∗).

(∗) a is right `-QR iff a◦ x≤ 0 for some x in R.

Show that the class of `-rings that satisfy (∗) is finitely productive, is pro-
ductive for sp-`-rings, and contains lim−→Ri if each Ri satisfies (∗) and the
index set I is directed up (see Exercise 1.4.23).

(g) Show that R satisfies (∗) provided that R is either a unital f -ring or is totally
ordered. If R is a unital almost f -ring, show that each right `-QR element
of R is 2-right `-QR.

(h) If R is an f -ring, show that a2 is right `-QR iff a2 ◦ x ≤ 0 for some x in R
(see (c)).

(i) Suppose that R is an `-subring of a unital `-ring and a is comparable to 1.
If a is right and left `-QR, show that there is an element x in R such that
a◦ x≤ 0 and x◦a≤ 0.

(j) Let R be an f -ring. Show that a is right `-QR iff there are elements y1, . . . ,yn
in an f -ring extension of R such that |y1|, . . . , |yn| ∈ R and a ◦ (y1 + · · ·+
yn)≤ 0.

(k) Find an example of an element a ∈J (R) such that for any r ∈ R, a◦ r||0.
(Try a polynomial ring.)

14. Let R be an `-subalgebra of the `-algebra V , and let P be an `-ideal of R that is an
ideal of V . Show that C(P) is an `-ideal of V , and if Q = {v∈V : |v|∧|r| ∈C(P)
for each r ∈ R}, then Q is a convex `-subgroup of V, P = C(P)∩R = Q∩R, and
(R/P)⊥V/Q = 0.

15. Suppose that T RR is an `-bimodule where R is an `-semiprime f -ring and T is
a po-ring. Show that T R is an f -module.
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16. Let R be an f -ring with `(R) = 0, and let K be the centroid of R. Show that K is
an f -ring and R is a strong f -algebra over K. (See Exercises 2.2.11 and 3.2.9.)

17. Let C be a commutative domain with field of quotients Q, and let CM be a C-
module. The torsion submodule of M is defined by t(M) = {x ∈ M : αx = 0
for some 0 6= α ∈ C}, and M is torsion-free if t(M) = 0. The closure of the
submodule N of M is defined by clN/N = t(M/N), and N is closed if clN = N.

(a) Show that M/t(M) is torsion-free and clN is closed.
(b) Define a module of quotients Q(M) of M by imitating the construction of Q

from C. So the elements of Q(M) are equivalence classes [(x,α)] = α−1x
with x ∈M and 0 6= α ∈C. Show that Q(M) is a vector space over Q.

(c) Show that the mapping M −→ Q(M) given by x 7→ α−1(αx) is a C-
homomorphism whose kernel is t(M).

(d) Show that Q(M) is contained in each Q-vector space that contains M/t(M).
(e) Show that Q(M)∼= M⊗C Q∼= M/t(M)⊗C Q.
(f) If R is an algebra over C, show that t(R) is an ideal of R and Q(R) is an

algebra over Q.

18. We continue with the notation from the previous exercise, but now assume
that C is totally ordered, Q is the totally ordered field extension of C(α−1β ∈
Q+ iff αβ ≥ 0) and M is a d-module over C.

(a) Show that the closure of a convex submodule or of an `-submodule is con-
vex or is an `-submodule, respectively. In particular, t(M) is a convex `-
submodule.

(b) Prove the equivalence of the following statements.
(i) M is torsion-free.

(ii) Each polar of M is a closed submodule.
(iii) Each minimal prime subgroup is a closed submodule.
(iv) M is a subdirect product of totally ordered torsion-free modules.

(c) Show that Q(M) can be made into a vector lattice over Q such that M/t(M)
is an f -C-submodule of Q(M) in one and only one way.

(d) If R is an f -algebra over C, show that Q(R) is an f -algebra over Q.

19. This exercise is an application of Exercise 2.5.31. Let R be a directed po-ring,
C a commutative totally ordered domain, and RMC an f -bimodule.

a. Show that r(R;M) = 0 and MC is torsion-free iff M is a subdirect product of
totally ordered C-torsion-free f -bimodules {Mλ} with r(R;Mλ ) = 0. (Hint:
Modify the definition of S in the proof of Exercise 2.5.31.)

b. Suppose that R is a torsion-free f -algebra over C. Show that r(R) = 0 (re-
spectively, `(R) = 0) iff R is a subdirect product of totally ordered torsion-
free C-algebras Rλ with r(Rλ ) = 0 (respectively, `(Rλ ) = 0).

c. Let R be as in (b). Show that `(R)∩ r(R) = 0 iff R is a subdirect product of
totally ordered torsion-free C-algebras Rλ with `(Rλ ) = 0 or r(Rλ ) = 0.
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d. Let R be a torsion-free `-algebra over C which satisfies the identity y+x+y+∧
x− = 0. Show that `(R) = r(R) = 0 iff R is a subdirect product of totally
ordered torsion-free C-algebras Rλ with `(Rλ ) = r(Rλ ) = 0.

20. As in Exercise 17, a module MR over the domain R is torsion-free if 0 6= xr
whenever 0 6= x ∈ M and 0 6= r ∈ R. Show that the following statements are
equivalent for the totally ordered domain R.

(a) R is `-simple.
(b) If MR is a d-module, then M/`(R;M) is a torsion-free f -module.
(c) If N is a convex `-submodule of the torsion-free f -module M, then M/N is

torsion-free.

21. Prove that an ultraproduct of `-primitive f -rings is `-primitive.

22. Show that a totally ordered domain can be embedded in an `-primitive f -ring.

23. Suppose that R is an `-ring such that R/`-Nil(R) is an f -ring; see Exercise 7.
Recall from Exercise 3.2.32 that `-A denotes the antisimple radical.

(a) Show that `-A (Rn)⊆J (Rn) for each n ∈ N.
(b) If R is unital show that equality holds in (a).
(c) If R has d.c.c. on principal `-ideals show that `-A (Rn) = `-β (Rn) is a nilpo-

tent `-ideal.

24. Show that the `-ring R with center Z(R) is a commutative semiprime f -ring
iff F(R)∩Z(R) is semiprime and each closed interval of R+ with distinct end
points contains an element of F(R)∩Z(R).

25. (a) If R is an f -ring, show that A is a maximal one-sided `-ideal of R iff A is a
maximal `-ideal.

(b) If R/`-Nil(R) is an f -ring, show that each maximal `-ideal of R is a maximal
one-sided `-ideal.

(c) If R/O(R)∩Oleft(R) is an f -ring, show that a maximal modular one-sided
`-ideal of R is a maximal `-ideal.

26. Let P be an `-prime `-ideal of the `-ring R in which `-β (R) = `-Ng(R) and put
R = R/P. Suppose S is an `-subring of R and `(F(S); S)∩ r(F(S); S) = 0.

(a) Show that S is an almost f -ring iff S is totally ordered. (If a∧b = 0 in S and
x,y ∈ f (S), then [(a∧ x)R(b∧ y)]2 = 0.)

(b) If `(F(R);F(R))∩ r(F(R);F(R)) = 0 show that F(R) is a totally ordered
domain (use Theorem 3.2.13(e)).

(c) Suppose F(R)*P. Show that F(R) is totally ordered iff `(F(R); F(R)) = 0,
iff r(F(R); F(R)) = 0, iff `(F(R); F(R))∩ r(F(R); F(R)) = 0.

27. Let R be an `-ring in which `-β (R) = `-Ng(R) and which has a left f -superunit.

(a) Show that there is a bijection between the set of maximal `-ideals of R and
the set of maximal `-ideals of F(R). (If P is a maximal `-ideal of R let Pf be
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the maximal `-ideal of F(R) which contains P∩F(R); see Exercise 26. If
Q is a maximal `-ideal of F(R) apply (d) of Theorem 3.2.13 to F(R)+\Q.)

(b) Show that each `-prime `-ideal of R is contained in a unique maximal `-
ideal and a unique maximal right `-ideal of R.

(c) Show that each maximal right `-ideal of R contains a maximal `-ideal of
R and there is a bijection between the sets of maximal right `-ideals and
maximal `-ideals of R.

28. Let R be an `-reduced `-ring whose Boolean algebra `-Ann(R) of `-annihilator
`-ideals is atomic.

(a) Show that R is an irredundant subdirect product of `-domains (See Exer-
cises 1.3.6 and 4.1.33 and Theorem 4.1.14.)

(b) Suppose `-Ann(R) has a.c.c. and F(R) contains a left superunit of R. Show
that R/O(R) is isomorphic to a direct product of `-simple right `-primitive
`-rings.

29. (a) Let S be a collection of convex `-subgroups of the `-group G with the
property that any two distinct maximal elements of S generate G. Suppose
0 6= S is a totally ordered convex subgroup of G which is not contained in
any maximal element of S . Show that S has at most one maximal element.

(b) Suppose R is an `-ring which has a left identity element that is basic. Show
that R is `-simple iff it is right `-primitive.

(c) Suppose that F(R) contains a left identity element of the `-ring R and `-
β (R) = `-Ng(R). Show that the `-ideal P of R is right `-primitive iff it is a
maximal `-ideal. (Use Exercise 26.)

(d) If the `-ring R in (c) has d.c.c. on `-ideals show that R/O(R) is isomorphic
to the direct product of `-simple `-rings.

30. Let R be an `-ring in which f (R)∗ is not empty and consists of regular elements
of R. Show that R is `-simple iff (i) R has d.c.c. on `-ideals or R is subdirectly
irreducible; (ii) the `-ideal of R generated by F is R; (iii) F⊥ does not contain
a nonzero `-ideal of R; (iv) for each proper minimal `-ideal A of R, and a ∈
A∩ f (R) and 0≤ b ∈ A∩F⊥, there exist c ∈ A∩ f (R) and d ∈ F⊥ with bab≤
ac∨ca+d. (Use Theorem 2.5.9. If 0 6= x, y∈ A∩F , where A is a proper `-ideal,
then Z|x||y|< |x|∧ |y|.)

31. Let R be an `-ring and let S be a subset of f`(R)∗. Show that S 6= /0, R2 6= 0
and RR is an `-simple right R-`-module iff r(a;R) = 0 for every a ∈ f`(R)∗, S⊥
contains no nonzero right `-ideals of R, and R has a minimal right `-ideal.

Notes. Theorem 3.3.2 is due to Hion [HIO], Theorems 3.3.4 and 3.3.9 come from
Birkhoff and Pierce [BP], and the rest is mostly due to Johnson [JOH1]. Exercise 4
comes from Henriksen and Isbell [HI], Exercise 6 is due to Hayes [HAY], Exercise
16 is due to Keimel [KE2], and Exercises 11 through 13 and 19 come from Steinberg
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[ST23]. Exercise 27 comes from Ma and Wojciechowski [MW2] and Exercises 26
and 28 through 31 come from Ma [M4].

3.4 Embedding in a Unital f -Algebra

According to Exercise 3.1.2 each `-ring can be embedded in a po-unital `-ring. An
f -ring is called unitable if it can be embedded in a unital f -ring. More generally,
an f -ring that is a po-algebra over the po-ring C is called C-unitable if it can be
embedded in a unital f -ring that is a po-algebra over C. Since a C-unitable f -ring is
clearly an `-algebra over C we will assume in this section that each po-algebra- f -
ring is an `-algebra. Also, in addition to 1 ∈C+, we will assume, for convenience,
that C is directed. The C-unitable f -algebras form a variety of f -algebras which, for
certain base rings C, is determined by a single identity. In this case each f -algebra R
in this variety has a unique unital cover, and the conditions for R to be convex in its
cover will be found. Order idempotency will play a prominent role in the ensuing
development.

As a consequence of Theorem 2.4.2(a) (for representable Ω - f -groups) we know
that a totally ordered `-algebra is C-unitable if and only if it can be embedded in a
totally ordered unital `-algebra. There exist f -rings that are not unitable. To see this,
first recall that two idempotents e and f in a ring are orthogonal if e f = f e = 0.
Clearly, a totally ordered ring does not contain a pair of nonzero orthogonal idem-
potents. So, in fact, in any f -ring, two idempotents are orthogonal if and only if
they are disjoint. Since e = e2 and 1− e are orthogonal the only idempotents in a
totally ordered unital ring are 0 and 1. Thus, the idempotents in a direct product
of unital totally ordered rings are central, and so the idempotents in any unitable
f -ring are central. If R is any row or column of an n×n matrix ring (n≥ 2) over a
totally ordered field, ordered lexicographically with the diagonal term dominating,
then R is a totally ordered algebra which has noncentral idempotents. An example
of a commutative totally ordered ring that is not unitable and has no nonzero idem-
potents is given in Exercise 22(d). However, from Exercise 3.3.16 we get that each
commutative f -algebra over C whose annihilator vanishes is C-unitable.

The class of C-unitable f -algebras is clearly hereditary and productive. Before
we see that it is homomorphically closed, and hence a variety, we will prove the
following fundamental fact which will be useful later and which is itself interesting.

Theorem 3.4.1. In any f -ring the sublattice that is generated by a subring is an
`-subring.

Proof. We first show that the following identities hold in any f -ring R; we may
assume that R is totally ordered.

[x2y+− xy+ + y+]− = 0. (3.4.1)

xy+ = [xy∧ (x2y+ y)]∨ [0∧ (−x2y− y)]. (3.4.2)
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For (3.4.1), if y > 0, then since x2y− xy + y = (x2 − x)y + y, either of the cases
y ≥ xy or x2 ≥ x is obvious. The remaining case has xy > y and x > x2. But then
x2y ≥ xy ≥ x2y, and we are done. In order to establish (3.4.2) we first take y ≥ 0.
Then ±xy ≤ x2y + y by (3.4.1), and hence (3.4.2) reduces to xy = xy∨ (−x2y− y),
which is correct. Now, if y < 0, then the left side of (3.4.2) is 0 and the right side
becomes [xy∧ (x2y+ y)]∨0 = (xy)+∧ (x2y+ y)+ = (xy)+∧0 = 0.

Let S be a subring of the f -ring R, and let L(S) = LR(S) be the sublattice of R
generated by S. According to Theorem 2.2.4(f), L(S) is an additive subgroup of R,
and if u and v are in L(S), then there exist elements si j and tpq in S such that

u =
n∨

i=1

m∧

j=1

si j and v =
N∨

p=1

M∧

q=1

tpq.

So if u,v ∈ L(S)+, then

uv = uv+ =
∨

p

∧

q
ut+pq and ut+pq =

∨

i

∧

j

si jt+pq.

But si jt+pq ∈ L(S) by (3.4.2), and hence uv ∈ L(S). Thus L(S) is a subring. ut
Theorem 3.4.2. The class of C-unitable f -algebras is a variety of `-algebras.

Proof. As we have indicated prior to Theorem 3.4.1 it suffices to show that a homo-
morphic image of a C-unitable f -algebra is C-unitable. Suppose that P is an algebra
`-ideal of the C-unitable f -algebra R, and let S be a unital f -algebra that contains
R. We may assume that S is the convex `-subgroup of S generated by the subalgebra
R+C ·1. If s∈ S, then |s| ≤Σi, j|ri j +αi j ·1| ≤ r+α ·1 where r∈R+ and α ∈C+. Let
Q =C(P) be the convex `-subgroup of S that is generated by P. Then Q is an algebra
`-ideal of S. For, if q,s ∈ S with |s| ≤ r +α ·1 and |q| ≤ p ∈ P, then |sq| ≤ rp+α p
and |qs| ≤ pr + α p; so sq and qs ∈ Q. Since Q∩R = P,R/P is embedded in the
unital f -algebra S/Q and R/P is C-unitable. ut

Let V be a class of `-algebras over C. An `-algebra is called V -`-unitable (re-
spectively, V -unitable) if it can be embedded into an `-unital (respectively, a unital)
`-algebra that belongs to V . The preceding argument shows that the class of V -
`-unitable `-algebras is homomorphically closed provided V is homomorphically
closed and hereditary. In particular, it is a variety when V is a variety.

The unitable f -rings form a variety that is determined by a single identity. This
identity actually arises from the inequalities that arose in the proof of Theorem 3.3.8.
We begin, therefore, by examining these inequalities.

It will be convenient to have a name for a positive element that is comparable with
its powers (see Exercise 3.3.3). The element d in the po-ring R is called upperpotent
if d2 ≥ d≥ 0, and it is called lowerpotent if 0≤ d2 ≤ d. If d is a lowerpotent element
in a unital f -ring, then d ≤ 1 since this is certainly true in each totally ordered
homomorphic image. If ab ≤ a,b for all a,b ∈ R+, then R is called infinitesimal.
An `-ring is infinitesimal if and only if it satisfies the inequality |xy| ≤ |x| ∧ |y|. An
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infinitesimal `-ring is an f -ring since if a∧b = 0 and c≥ 0, then 0≤ ca∧b,ac∧b≤
a∧b = 0. Since any identical inequality in `-rings is equivalent to some identity, the
infinitesimal `-rings form a variety of f -rings. This is a good time to recall that,
in general, an f -ring satisfies an identity if and only if each of its totally ordered
homomorphic images satisfies the identity. Each nil f -ring is infinitesimal since
if an = 0 = bn, then ab > |a| ∧ |b| is impossible in a totally ordered ring. For, if
ab > a > 0, then 0 = abn ≥ ab > a > 0. In a unital f -ring any subring that has
1 as an upper bound is infinitesimal, and we will soon see that, conversely, each
infinitesimal f -ring is bounded by 1 in an f -ring extension.

It is convenient to replace the two variable identity that defines an infinitesimal
f -ring by a single variable identity.

Theorem 3.4.3. The following statements are equivalent for the f -ring R.

(a) R is infinitesimal.
(b) For each a ∈ R,a2 ≤ |a|; that is, each positive element is lowerpotent.
(c) If a,b ∈ R, then Z|ab| ≤ |a|∧ |b|.
(d) If a,b ∈ R, then the right (respectively, left, two-sided) ideal generated by

|ab| is bounded above by |a|∧ |b|.
Proof. The implications (a) ⇒ (b) and (d) ⇒ (a) are obvious. If (c) holds and
a,b,x ∈ R and n ∈ N, then |abx|+ n|ab| ≤ (n + 1)|ab| ≤ |a| ∧ |b|. So (c) ⇒ (d),
and we only need to verify that (b) implies (c). We may assume that R is totally or-
dered and 0 < b≤ a. If nab > b, then we have the contradiction that (2na)2 > 2na,
by Exercise 3.3.4. ut

The next result will be used repeatedly in the sequel, and it also is of interest in
its own right.

Theorem 3.4.4. Let A be the principal `-ideal generated by the element a in the C-
f -algebra R. If A is `-idempotent, then A = a⊥⊥ = C(RaR) = C(aR) = C(Ra), and
R = A⊕a⊥.

Proof. Assume that a 6= 0. Let R1 be the directed po-algebra obtained by freely ad-
joining C to R (Exercise 3.1.2). Then R is an f -bimodule over R1 and A =C(R1aR1).
Since A = A[3] there exists r1 ∈ R+

1 such that |a| ≤ (r1|a|r1)3 = r1|a|r2
1|a|r2

1|a|r1 ∈
R|a|R; so A = C(RaR). Let R̄ = R/a⊥. If C(āR1) is a proper right `-ideal of R̄, then
C(āR1) is contained in a regular algebra right `-ideal Q̄ of R̄ (Theorem 2.4.2(c) and
Section 2.5). Let P̄ be a minimal prime subgroup of R̄ with P̄ ⊆ Q̄. Then ā 6∈ P̄
since ā⊥ = 0 (Theorem 2.4.3). If P̄1 is the R1-R-value of ā in the f -bimodule R1 R̄R
with P̄ ⊆ P̄1, then R̄/P̄1 is a subdirectly irreducible f -algebra with `-idempotent
heart C(R̄āR̄) + P̄1/P̄1. So R̄/P̄1 has no nonzero proper right `-ideals by Theo-
rem 3.3.8. Now, P̄1 and Q̄ are comparable since they both contain P̄, and since
ā ∈ Q̄\P̄1 we have the contradiction 0 6= Q̄/P̄1 ⊂ R̄/P̄1. Thus, C(āR1) = R̄ and, in
fact, C(āR1) = C(āR). For, |ā| ≤ x̄|ā|x̄ with x ∈ R+, and x̄ ≤ |ā|r1 with r1 ∈ R1; so
|ā| ≤ |ā|r1|ā||x̄| ∈ |ā|R̄ = |ā|R. Hence, R = C(aR)⊕a⊥. Similarly, R = C(Ra)⊕a⊥,
and it follows that A = C(aR) = C(Ra) = a⊥⊥. ut
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Note that each `-ideal that is generated by an upperpotent element is `-idempotent.
See Exercise 15 for a partial converse. In the case that a is an idempotent in a
unitable f -ring R it is rather easy to see that R = Ra⊕ a⊥. Each finitely generated
`-idempotent `-ideal in an f -algebra is a summand since it is principal. But not ev-
ery `-idempotent `-ideal is a summand. For example, the direct sum Z(I), which
is idempotent and countably generated if I is countable, is not a summand of the
product ZI if I is infinite.

The first and most basic unitability result is given next. A related result about
extending a total order to an overring is given in Exercise 2.

Theorem 3.4.5. (a) If R is an infinitesimal f -algebra over the `-simple f -ring C,
then the lexicographically ordered algebra obtained by freely adjoining C to
R, S = R ×←C, is a unital f -algebra that contains R.
(b) Suppose that R is an f -algebra over C and `(R) = r(R) = 0. Let

S = { f ∈ EndR(RR) : R f ⊆ R}.

Then S is a unital f -subalgebra of the po-endomorphism algebra EndR(RR)
that contains R. If R is totally ordered, then S is totally ordered. If R is a
domain or is reduced, then S is a domain or is reduced, respectively (inde-
pendent of any order).

Proof. (a) The `-group S = R ×←C is certainly a C- f -module extension of R (Exercise
2.1.10) as well as a unital ring extension, where R is embedded in S in the obvious
way. Suppose that (a + α)∧ (b + β ) = 0 and c + γ ∈ S+. We will check that if
u = (a+α)(c+ γ)∧ (b+β ), then u = 0. Since (a+α)∧ (b+β ) = 0, either α > 0
and b+β = 0, or β > 0 and a+α = 0, or α = β = 0 and a∧b = 0. In the first case, if
γ > 0, then (a+α)(c+γ) = ac+αc+γa+αγ > 0, and u = 0. On the other hand, if
γ = 0, then c≥ 0. Take δ ∈C with δα ≥ 1. Then δαc≥ c≥ |δac| ≥ −δac, δ (ac+
αc)≥ 0, ac+αc≥ 0, and u = 0. In the second case, u = 0∧ (b+β ) = 0. In the last
case, u = (ac+ γa)∧b and ac+ γa ∈ b⊥. If γ = 0, then ac≥ 0 and u = 0. If γ > 0,
take δ ∈C with δγ ≥ 1. Then δγa≥ a≥ |δac| ≥ −δac, δ (ac+γa)≥ 0, ac+γa≥
0, and u = 0. Thus, S is a right f -ring and, similarly, S is a left f -ring.

(b) The mapping a 7→ `a, where `a(x) = ax, is clearly an embedding of the po-
algebra R into the po-algebra EndR(RR). If f ∈ EndR(RR)+ and f ≥ a, then f x ≥
(ax)+ = a+x for each x ∈ R+. So f ≥ a+ and R is an `-subalgebra of EndR(RR) (see
Exercise 3.1.26(a)). Now, S is a subalgebra of EndR(RR) since it is the idealizer of
R in EndR(RR); that is, S is the largest subring of EndR(RR) in which R is an ideal.
Note that r(R;EndR(RR)) = 0 since if R f = 0, then R f R = 0, f R = 0, and f = 0. If
s ∈ S define f : R+ −→ R+ by f (x) = (sx)+. Then for any a,x,y ∈ R+,

a f (x+ y) = a[s(x+ y)]+ = (as)+(x+ y) = a[(sx)+ +(sy)+] = a[ f (x)+ f (y)].

So f (x + y) = f (x)+ f (y) and f extends uniquely to a group homomorphism of R,
which is also called f , by Exercise 2.2.11. Also,

f (xa) = (sxa)+ = (sx)+a = f (x)a
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and
(a f )x = a(sx)+ = (as)+x;

so f ∈ S+. If t ∈ EndR(RR)+ and t ≥ s, then tx ≥ (sx)+ = f x; so t ≥ f , f = s+

in EndR(RR), and S is an `-subring of EndR(RR). Note that s+x = (sx)+ for each
x ∈ R+. If s and t are in S with s≥ 0 and a,x ∈ R+, then

a(st+)x = as(tx)+ = (astx)+ = a(st)+x

and
t+sx = (tsx)+ = (ts)+x.

So st+ = (st)+ and t+s = (ts)+. Thus, S is a unital d-ring and hence is an f -ring.
Suppose that R is totally ordered and s∧ t = 0 in S. If t > 0, there exists x ∈ R+

with tx > 0. Then, for any y ∈ R+,sy∧ tx = 0; so sy = 0 and s = 0.
The last statement follows from the ring analogues of Theorem 3.2.21(a) and

Exercise 3.2.17(c), but a direct proof can also easily be given. ut
As one consequence of this result we have

Theorem 3.4.6. The following statements are equivalent for the totally ordered `-
algebra R over the `-simple f -ring C.

(a) R can be embedded in a unital totally ordered C-algebra.
(b) R is C-unitable.
(c) R is unitable.
(d) R is infinitesimal or has a superunit.
(e) Each nonzero upperpotent element of R is a superunit.

Proof. The implications (a)⇒ (b)⇒ (c) are obvious. To see that (c)⇒ (d), assume
that R is contained in the unital f -ring S. We may assume that S is totally ordered.
If R is not infinitesimal, then it contains an overpotent element x with x2 > x > 0.
But then x > 1 and x is a superunit of R. If (d) holds, then R is contained in a totally
ordered unital ring by the previous result, and hence (e) holds. Similarly, (a) is a
consequence of (e). ut

An example of an infinitesimal totally ordered torsion-free `-algebra over a to-
tally ordered domain C that is not C-unitable is given in Theorem 3.4.9.

We present next the identity that characterizes unitability.

Theorem 3.4.7. An f -ring is unitable if and only if it satisfies the identities

[x∧ y∧ (x2− x)∧ (y− xy)]+ = 0, (3.4.3)

[x∧ y∧ (x2− x)∧ (y− yx)]+ = 0. (3.4.4)

Proof. First, assume that R is a unitable f -ring. To show that R satisfies these identi-
ties we may assume that R is unital and totally ordered, and since (u∧v)+ = u+∧v+

we may take x > 0, y > 0 and x2−x > 0. But then x > 1 and (y−xy)+ = (y−yx)+ =
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0. Conversely, suppose that R satisfies these identities, and again reduce to the case
that R is totally ordered. If R is not infinitesimal, then it contains an element x with
x2 > x > 0; so y≤ xy,yx for each y ∈ R+. Thus, R is unitable by Theorem 3.4.5(b).

ut
Note that the two identities in Theorem 3.4.7 can be replaced by the single iden-

tity
[x∧ y∧ (x2− x)∧ ((y− xy)∨ (y− yx))]+ = 0.

The analogous identities for C-unitability are given in

Theorem 3.4.8. Let C be a totally ordered domain with totally ordered field of quo-
tients F, and let R by a torsion-free f -algebra over C. The following statements are
equivalent.

(a) R is C-unitable.
(b) Q = R⊗C F is unitable.
(c) R satisfies the identities (here, α ∈C)

[αx∧αy∧ (x2−αx)∧ (αy− xy)]+ = 0, (3.4.5)

[αx∧αy∧ (x2−αx)∧ (αy− yx)]+ = 0. (3.4.6)

Proof. (a)⇒ (b). Let T be a unital C- f -algebra that contains R. By factoring out the
torsion ideal of T we may assume that T is torsion-free (Exercise 3.3.18). Then Q
is unitable since Q = R⊗C F ⊆ T ⊗C F .

(b)⇔ (c). If α = 0, then the left sides of (3.4.5) and (3.4.6) are both 0. According
to the previous result Q is unitable if and only if, for all x,y ∈ R and 0 6= α ∈C,

[x/α ∧ y/α ∧ (x2/α2− x/α)∧ (y/α− xy/α2)]+ = 0 (3.4.7)

and
[x/α ∧ y/α ∧ (x2/α2− x/α)∧ (y/α− yx/α2)]+ = 0. (3.4.8)

But (3.4.5) and (3.4.6) are obtained from (3.4.7) and (3.4.8) by multiplying by α2.
So (3.4.5) and (3.4.6) are identities for R exactly when (3.4.7) and (3.4.8) are iden-
tities for Q.

(b) ⇒ (a). Let Q̄ be a totally ordered homomorphic image of the F-algebra Q.
By Theorem 3.4.6 Q̄ is infinitesimal or superunital, and by Theorem 3.4.5 Q̄ is
F-unitable. Since Q is a subdirect product of its totally ordered F-algebra homo-
morphic images, Q is F-unitable and R is C-unitable. ut

If C is an `-simple f -ring, then, as a consequence of Theorem 3.4.6, one gets
that each unitable C- f -algebra is C-unitable. This is true for a larger class of base
f -rings C, as we will now show.

An f -ring R is called pseudo-regular if it is `-idempotent and each of its proper
irreducible `-ideals is a maximal `-ideal. An equivalent condition is that each totally
ordered homomorphic image of R is `-simple. In terms of the radicals `-I and `-A
that are given in Exercises 3.2.32 through 3.2.35, an f -ring is pseudo-regular if and
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only if each of its homomorphic images is `-A -semisimple, or each is `-I -radical,
or each (principal) `-ideal is `-idempotent. Also, see Exercises 15(c) and 33(d) for
other characterizations of a pseudo-regular f -ring.

Recall that the `-algebra R over the `-ring C is strong if it satisfies α+x+ =
(αx+)+ for α ∈ C and x ∈ R, or if it satisfies |αx| = |α||x| (Theorem 3.1.1(g)). A
unital right f -algebra R is strong iff α+ · 1 = (α · 1)+ for each α ∈ C; that is, if
the ring homomorphism C −→ R is an `-homomorphism. For, 1 ∈ R+ since 1+ =
1+(1+−1−) = 1++−1−+ = 1; and if x ∈ R+, then α+x = (α+ ·1)x = (α ·1)+x =
(αx)+.

Theorem 3.4.9. If C is an `-semiprime f -ring and each strong unitable f -algebra
over C is C-unitable, then C is pseudo-regular. Conversely, if each proper irreducible
`-ideal of the `-ring C is a maximal `-ideal, then each strong unitable f -algebra is
C-unitable. In particular, an `-semiprime f -ring C is pseudo-regular if and only if
each of its unitable f -algebras is C-unitable.

Proof. Assume the unitability condition and let P be a minimal prime subgroup of
the `-semiprime f -ring C. Then P is a minimal `-prime `-ideal and C̄ = C/P is a
totally ordered domain (Theorem 3.3.5). If P is not maximal, let A be an `-ideal of
C with P⊂ A⊂C. Then Ā is a proper `-ideal of C̄, and hence Ā is infinitesimal. Let

R be the C-algebra given by R =
(

Ā Ā
0 0

)
and give R the lexicographic order:

R+ =
{(

ā b̄
0 0

)
: ā > 0 or ā = 0 and b̄≥ 0

}
.

Then
(

ā b̄
0 0

)2

=
(

ā2 āb̄
0 0

)
≤

∣∣∣∣
(

ā b̄
0 0

)∣∣∣∣ and R is an infinitesimal totally ordered

strong f -algebra over C. By assumption, R is contained in a unital C- f -algebra S,
and we may assume that S = R+C ·1 is totally ordered. Since r(R) = 0 we may also
assume that S is strong, by Exercise 3. Let B = `(S;C). If α ∈ B and 0 6= ā ∈ Ā, then

0 = α
(

ā 0
0 0

)
=

(
ᾱ ā 0
0 0

)
implies that α ∈ P; so B ⊆ P. But B is an irreducible `-

ideal of C by Exercise 3.1.29, and hence B = P. Thus, S = R+C̄ ·1, R is a torsion-free
C̄-unitable f -algebra, and Q(R) is unitable by Theorem 3.4.8. But if F is the totally

ordered field of quotients of C̄, then Q(R) =
(

F F
0 0

)
is not unitable. Consequently,

P is a maximal `-ideal of C.
For the converse, let R be a totally ordered unitable strong f -algebra over the

`-ring C. Then P = `(R;C) is an irreducible `-ideal of C and C̄ = C/P is `-simple.
Thus, R is C̄-unitable by Theorem 3.4.6, R ⊆ R + C̄ · 1 = R +C · 1, and R is C-
unitable. It follows that each unitable strong C- f -algebra is C-unitable. The last
statement follows from the fact that each `-algebra over a pseudo-regular f -ring is
strong (Exercise 4). ut

Let R be an `-subalgebra of the unital C- f -algebra T . If T is the only `-subalgebra
of T that contains R and has an identity element, then T is called a C-unital cover
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of R. If, also, R⊥T = 0, then T is called a tight C-unital cover of R. A Z-unital cover
will be called a unital cover. The C-unital covers that are obtained in Theorem 3.4.5
are tight. It may be that each C-unital cover is tight. In any case, we show next
that some are tight. Note that R⊥T is central in T since T/R⊥T⊥T is commutative
when T is a strong C-unital cover of R. It is also not known whether or not a C-
unital cover T of the totally ordered `-algebra R is totally ordered. However, T has
no nontrivial idempotents (for any indecomposable R). For, if e ∈ T is idempotent,
then Re and R(1− e) are `-ideals of R and R = Re⊕R(1− e). So R = Re ⊆ Te or
R = R(1− e)⊆ T (1− e), and hence e = 1 or 0.

Theorem 3.4.10. Let R be a C-unitable f -algebra.

(a) R has a tight C-unital cover. Moreover, if V is a unital f -algebra generated
by R+C ·1, then V is a tight C-unital cover of R iff R⊥V = 0.

(b) If R = 〈e〉 = R[2] for some e∈R or C is a direct sum of `-simple f -rings, then
each C-unital cover of R is tight and each unital f -algebra that contains R
contains a C-unital cover of R.

Proof. Let U be an f -algebra that contains R and has the identity element 1, and
let V = L(R+C ·1) be the sublattice of U that is generated by R+C ·1. According
to Theorem 3.4.1 V is an `-subalgebra of U . Suppose that R ⊆W ⊆ V and W is
an `-subalgebra with the identity element e. Then R ⊆ `(1− e)∩V = (1− e)⊥V

(Exercise 14) and 1− e ∈ R⊥V . If R⊥V = 0, then V is a tight C-unital cover of R.
If R⊥V 6= 0, then R is embedded in V1 = V/R⊥V = L(R +C · 1) and R⊥V1 = 0. So
V1 is a tight C-unital cover of R. This proves (a). Suppose that R = 〈e〉 = R[2].
Then V = C(eV )⊕e⊥V by Theorem 3.4.4, and W = C(eV ) is unital and contains R.
But then W is a tight C-unital cover of R since R⊥W = e⊥W = 0 and W = L(R+C f ),
where f is the identity of W . Now, suppose that C is a direct sum of `-simple f -rings
and R⊥V 6= 0. Then R⊥V is isomorphic to an `-ideal of V/R⊥V⊥V ∼=C ·1. Hence, R⊥V

has an identity e, R⊥V = Ve, and R⊆ R⊥V⊥V = V (1−e)⊂V . So, V is not a C-unital
cover of R, and, by (a), V (1− e) = L(R+C · (1− e)) is a tight C-unital cover of the
`-algebra R. ut

The following two theorems give the main results on the uniqueness of C-unital
covers. A C-unital cover S of R, of a particular type, is called unique if any other
C-unital cover of R of that type is isomorphic to S via an isomorphism that is the
identity on R. An example of a tight C-unital cover that is not unique is given in
Exercise 18; also, see Exercise 17.

Theorem 3.4.11. Let R be a (strong) C-unitable f -algebra. If each totally ordered
homomorphic image of R has a unique tight (and strong) C-unital cover, then so
does R.

Proof. We will first construct a tight C-unital cover of R. Let {Pλ}λ∈Λ be the col-
lection of all of the proper irreducible algebra `-ideals of R, and let Sλ be the tight
C-unital cover of Tλ = R/Pλ . Then R⊆ T = Πλ Tλ ⊆Πλ Sλ = U . Let 1 be the iden-
tity of U and let S = LU (R +C · 1). Then S is a tight C-unital cover of R. For, if
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R⊆W ⊆ S and e is the identity of the `-subalgebra W , then eλ = 1 for each λ ∈Λ
since eλ is a nonzero idempotent in Sλ ; so e = 1 and W = S. S is a tight cover of R
since R⊥U = 0; and S is a strong `-algebra over C if each Sλ is strong.

Suppose that V is a tight C-unital cover of R. Since V = L(R +C · 1) there is at
most one R-isomorphism of the `-algebra V onto another C-unital cover of R. To
show the existence of one such isomorphism it suffices to show that S and V are
R-isomorphic `-algebras. For each λ ∈Λ let

Qλ = {u ∈V : |u|∧ |r| ∈C(Pλ ) for every r ∈ R}.
Then Qλ is an `-ideal of V, Pλ = C(Pλ )∩R = Qλ ∩R, and (R/Pλ )⊥ = 0 in V/Qλ ,
by Exercise 3.3.14. We will show that ∩λ Qλ = 0, and to do so it suffices to verify
that ∩λC(Pλ ) = 0. For, if 0≤ v ∈ ∩λ Qλ , then for each r ∈ R+,v∧ r ∈ ∩λC(Pλ ) = 0
and v∈ R⊥V = 0. Let 0 < w∈∩λC(Pλ ); then w≤ r for some r ∈ R. If Q is a minimal
prime subgroup of V with w 6∈ Q, then Q∩R is a proper irreducible algebra `-ideal
of R since r 6∈Q∩R; so Q∩R = Pλ for some λ ∈Λ . But then w ∈C(Pλ )⊆Q gives
a contradiction.

We will identify V with its image in ΠλV/Qλ = W . Now, V/Qλ is a tight C-
unital cover of Tλ by Theorem 3.4.10(a); so there is an isomorphism hλ : Sλ −→
V/Qλ which is the identity on Tλ . Consequently, there is an isomorphism h : U =
Πλ Sλ −→ΠλV/Qλ = W which is the identity on T = Πλ Tλ . Since S = LU (R+C ·
1) and V = LW (R+C ·1) the restriction of h to S gives an isomorphism of S onto V
which is the identity on R. ut
Theorem 3.4.12. Each unitable f -algebra over a pseudo-regular f -ring C has a
unique tight C-unital cover.

Proof. Let R be a unitable f -algebra over C. By Theorem 3.4.9 R is C-unitable.
Let V be a C-unital cover of R. We will first show that `(R;C) = `(V ;C). Since V
is a strong f -algebra (Exercise 4) `(R;C) = ``(R;C), and it suffices to show that
`(R;C)+ ⊆ `(V ;C). Suppose that α ∈ `(R;C)+. Then C = 〈α 〉 ⊕α⊥ = Cβ ⊕Cγ
(Theorem 3.4.4) where β ∈ 〈α 〉 and γ ∈ α⊥ are orthogonal idempotents of C. So
βR = 0, R ⊆ γV ⊆ V , and V = γV . Thus, αV = αγV = 0. We may assume that R
is totally ordered (Theorem 3.4.11), and hence C̄ = C/`(V ;C) is `-simple (Exercise
3.1.29). If R is infinitesimal, then, for each ᾱ > 0 in C̄, ᾱ ·1 is an upper bound of R in
V , by Exercise 6. So the mapping from the f -algebra S = R ×←C̄ of Theorem 3.4.5(a)
into V , given by (x, ᾱ) 7→ x + α · 1, is an isomorphism of S onto R +C · 1 ⊆ V . In
particular, R +C · 1 is totally ordered and hence V = L(R +C · 1) = R +C · 1. If R
has a superunit e, then V = C(Ve) by Theorem 3.4.10, and e is a regular element
of V . Thus V ∼= Ve ⊆ R as `-modules over V . So, again, V is totally ordered and
V = R+C ·1. Let S = R+C ·1⊆ EndR(RR) be the totally ordered `-algebra given
in Theorem 3.4.5(b). Now, the mapping S−→V given by r +α ·1 7→ r +α ·1 is an
isomorphism of totally ordered groups since S ∼= Se = Ve ∼= V , and hence it is an
isomorphism of `-algebras. ut
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The verification that C-unital covers are unique in the torsion-free case is left as
Exercise 16. We will denote the unital cover of the unitable f -ring R by Ru, and RC-u
will denote a C-unital cover of the C-unitable f -algebra R.

If R is an infinitesimal f -algebra over the `-simple f -ring C, then, as we saw in
Theorem 3.4.5, R is an `-ideal of RC-u = R+C ·1; and the converse certainly holds
if R is totally ordered and is not unital. We will now describe when an f -algebra can
be embedded as an `-ideal into a unital f -algebra. Since R is an ideal of RC-u it is
clear that such an embedding is possible if and only if R is a convex `-subalgebra of
RC-u, or of some unital f -algebra.

Theorem 3.4.13. Suppose that RC-u is a tight C-unital cover of the f -algebra R over
the pseudo-regular f -ring C. The following statements are equivalent.

(a) R is a convex `-subalgebra of RC-u.
(b) Each superunital homomorphic image of the f -algebra R is unital.
(c) If a ∈ R, then a∧1 ∈ R.
(d) If a ∈ R and α ∈C+, then a∧α ·1 ∈ R.
(e) RC-u = R+C ·1 and each superunital direct summand of R (of the form γR

with γ2 = γ ∈C) is unital.

Proof. (a) ⇒ (b). Suppose that R/A = R̄ has a superunit ē. Then R̄ = C(R̄C-uē) is a
summand of R̄C-u = RC-u/A, by Theorem 3.4.4, and hence R̄ has an identity element.

(b) ⇒ (c). Let a ∈ R and let A be the `-ideal of R generated by the set {(ax−
x)−, (xa− x)− : x ∈ R+}; so A is the smallest `-ideal of R modulo which a is a
superunit. Clearly, A is an algebra ideal, and, for each x ∈ R+,(ax− x)+ and (xa−
x)+ are both in A⊥R . Thus, ax−x = (ax−x)+−(ax−x)− ∈ A⊥R⊕A, and, similarly,
xa− x ∈ A⊥R ⊕A, for each x ∈ R. Let e be an element in R which is the identity
element modulo A. Since each of e and a is the identity modulo A⊕A⊥R we have
that e− a = b + c where b ∈ A and c ∈ A⊥R . We claim that 1∧ a = a + c. To see
this, let R̄C-u = RC-u/P be a nonzero totally ordered homomorphic image of the `-
algebra RC-u. If ā≥ 1̄, then A⊆ P, ē 6= 0, and 1̄∧ ā = 1̄ = ē = ē− b̄ = ā+ c̄. On the
other hand, suppose that ā < 1̄. If A⊥R ⊆ P, then 1̄∧ ā = ā = ā+ c̄. If A⊥R 6⊆ P, then
A ⊆ P, R̄ is a nonzero homomorphic image of R/A, and we have the contradiction
that ā≥ ē = 1̄.

(c)⇒ (d). If α ∈C+, then C = 〈α〉⊕α⊥ and 〈α〉=Cβ with β = β 2. Let γ ∈C+β
with β ≤ αγ . We claim that a∧α ·1 = a∧α(γ|a|∧1) ∈ R. To verify this equality it
suffices to show that, a∧α ·1 ≤ αγ |a|. But, β (a∧α ·1) = βa∧α ·1 ≤ αγ|a|, and
(1−β )(a∧α ·1) = (1−β )a∧0≤ 0; so a∧α ·1 = β (a∧α ·1)+(1−β )(a∧α ·1)≤
αγ |a|, and a∧α ·1 ∈ R.

(d) ⇒ (e). We first show that RC-u = R+C ·1. If a ∈ R and α ∈C+, then (a+α ·
1)∧0 = a +(−a∧α ·1) ∈ R, while if α ≤ 0, then (a + α · 1)∧0 = (a∧−α · 1)+
α ·1 ∈ R+C ·1. In either case, (a+α ·1)+ ∈ R+C ·1. Suppose that α ∧β = 0 in C.
Then there exist orthogonal idempotents γ and δ in C with 〈α〉 =Cγ and 〈β 〉 =Cδ .
So,

γ [(a+α ·1)∨β ·1] = (γa+α ·1)+ ∈ R+C ·1
and
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δ [(a+α ·1)∨β ·1] = δa∨β ·1 = δa+(−δa+β ·1)+ ∈ R+C ·1.

Also, if ρ = 1− (γ +δ ), then ρ [(a+α ·1) ∨ β ·1] = (ρa)+ ∈ R. Thus, (a+α ·1)∨
β ·1 ∈ R+C ·1. Now, for any α ∈C,(a+α ·1)+ = [(a+α+ ·1)∨α− ·1]−α− ·1 ∈
R+C ·1.

Now, suppose that R = S⊕T as `-algebras and S has a superunit e. Then RC-u =
C(RC-ue)⊕ e

⊥RC-u by Theorem 3.4.4, C(RC-ue) = RC-u f for some idempotent f ∈
RC-u, and e ≥ f since e is a superunit of RC-u f . Hence, f = e∧ f = (e∧ 1 · 1) f ∈
R f = S.

(e) ⇒ (a). It suffices to show that if α ∈C+,a ∈ R, and α ·1≤ a, then α ·1 ∈ R.
For, 0 ≤ b + β ·1 ≤ c gives that β± · 1 ≤ |β | ·1 = |β · 1| ≤ |b|+ c. Now, 〈α〉 = Cγ
for some idempotent γ,γ ≤ δα with 0≤ δ ∈Cγ , and γ ·1≤ δα ·1≤ δa. So δa is a
superunit of γR. Since R = γR⊕ (1− γ)R there is an idempotent e ∈ γR with γR =
eR = eRC-u. So γRC-u = γR⊕A,RC-u = γR⊕ (1− γ)RC-u⊕A, and A⊆ R

⊥RC-u = 0.
Whence, γRC-u = eR,γ ·1 = e, and α ·1 = γα ·1 = αe ∈ R. (This is the only place
that the tightness of RC-u is used.) ut

It is easy to see that a C-unitable f -algebra is a subdirect product of an in-
finitesimal f -algebra and an f -algebra which is a subdirect product of superunital
f -algebras. The second factor is unique. This will follow from a more general de-
composition theorem that holds for any f -algebra. An upperpotent element a in an
f -ring R which generates R as an `-ideal is called a dominant element. According
to Theorem 3.4.4 a dominant element is an upperpotent element with a⊥ = 0. Of
course, each totally ordered ring is either infinitesimal or it has a dominant element.
An `-ideal A of the f -ring R is called dominated if R/A has a dominant element. The
f -algebra R is said to be locally dominated if it is a subdirect product of f -algebras
that have dominant elements.

Theorem 3.4.14. Let R be an f -algebra and let K be the intersection of all of the
dominated ring `-ideals of R. Then K is the intersection of dominated polars, and R
is a subdirect product of the infinitesimal f -algebra R/K⊥ and the locally dominated
f -algebra R/K. If R is the subdirect product of an infinitesimal f -algebra S and
a locally dominated f -algebra T , then R/K⊥ is a homomorphic image of S and
T ∼= R/K.

Proof. Let A be a proper dominated `-ideal of the f -ring R, let e ∈ R be such that
ē is a dominant element in R̄ = R/A, and let f = (2e2 − e)+. Then f̄ > 0 since
2ē2 > ē2 ≥ ē > 0. Suppose that P is an irreducible `-ideal of R and f 6∈ P. Then
f̃ > 0 in R̃ = R/P; so 2ẽ is a dominant element in R̃. Now (see the proof of Theorem
2.4.6),

f⊥ = ∩{P : P is a minimal prime and f 6∈ P}
= ∩{Pi : Pi is an irreducible `-ideal and f 6∈ Pi},

and 2e is upperpotent modulo f⊥ since it is upperpotent modulo each Pi. If x∧2e ∈
f⊥, then x ∈ Pi, for each i; so 2e is a dominant element modulo f⊥. Also, f⊥ ⊆ A.
For, if P is an irreducible `-ideal that contains A, then e + P is dominant in R/P.
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Hence, f 6∈ P and f⊥ ⊆ P. Since A is the intersection of irreducible `-ideals, f⊥ ⊆ A.
This shows that each dominated `-ideal contains a dominated polar. Hence, K, being
an intersection of polars, is itself a polar, and K is also the intersection of all of the
dominated algebra `-ideals of R. If R/K⊥ is not infinitesimal, then K⊥ is contained
in a proper dominated `-ideal A. But then, as above, f 6∈ A, f⊥ ⊆ A, K ⊆ f⊥, and,
finally, f ∈ K⊥ ⊆ A.

Suppose that B∩D = 0 where B and D are algebra `-ideals of R such that R/B
is locally dominated and R/D is infinitesimal. Then K ⊆ B. If K ⊂ B, then there
is an irreducible dominated algebra `-ideal P with B 6⊆ P. Thus, D ⊆ P and R/P is
infinitesimal and has a dominant element. This is absurd, and hence K = B, D⊆K⊥
and R/K⊥ is a homomorphic image of R/D. ut

We turn our attention now to those special upperpotent elements that are idem-
potent. Let N be an ideal of the ring R and let ā be an idempotent in R̄ = R/N. We
say that ā can be lifted modulo N if there exists an idempotent e in R with ē = ā.
The next result concerns the lifting of idempotents, and it will be used on several
occasions. Recall that a set S of idempotents in R is called orthogonal if the product
of each pair of distinct elements in S is zero.

Theorem 3.4.15. Let N be an ideal contained in the Jacobson radical of R and let
R̄ = R/N.

(a) If N is nil and a∈R with ā idempotent, then there exists a polynomial p(x)∈
xZ[x] such that e = p(a) is idempotent and ē = ā.

(b) If idempotents can be lifted modulo N, then each countable set of orthogonal
idempotents in R̄ can be lifted to a set of orthogonal idempotents of R.

Proof. (a) We will assume that R is an ideal in a unital ring. Since N is nil and
a− a2 ∈ N there exists n ∈ N with (a− a2)n = 0. Since (1− a)n = 1− a f (a)
with f (x) ∈ Z[x], 0 = an(1− a)n = an(1− a f (a)). So an = an(a f (a)) and hence
an = an(a f (a))n = a2n f (a)n. Let e = (a f (a))n. Then e2 = a2n f (a)2n = an f (a)n = e.
Since 1−a = (1−a)n = 1−a f (a) we have that ā = a f (a), and ē = ā.

(b) We will show first that a pair of orthogonal idempotents ē and f̄ of R̄ can
be lifted to a pair of orthogonal idempotents of R. We may assume that e and f
are idempotent, and we will construct an idempotent of R which is orthogonal to
e and which lifts f̄ . Since f e ∈ N, (1− f e)−1 exists, g = (1− f e)−1 f (1− f e) is
idempotent, ge = 0, and ḡ = f̄ . Let h = (1−e)g. Then he = eh = 0, h̄ = ḡ = f̄ , and
h2 = (1− e)g(1− e)g = (1− e)g2 = h. Now, suppose that I is an ideal of the poset
N, {āi : i∈ I} is a set of orthogonal idempotents of R̄, and ā1, . . . , āk have been lifted
to the orthogonal idempotents e1, . . . ,ek of R. Let e = e1 + · · ·+ ek and let ek+1 be
an idempotent of R that is orthogonal to e and ēk+1 = āk+1. Then {e1, . . . ,ek+1} is
an orthogonal set of idempotents that lifts {ā1, . . . , āk+1}. Thus, by induction , the
set {āi : i ∈ I} can be lifted. ut

Our next goal is to describe all totally ordered rings with a nonzero idempotent.
Let S and T be rings and let SMT be an S-T -bimodule. Then 4 = 4(S,M,T ) =
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(

S M
0 T

)
will denote the set of all matrices

(
s m
0 t

)
with s ∈ S, m ∈M and t ∈ T . If

4 is supplied with the usual operations of matrix addition and multiplication, then
4 becomes a ring, called the formal triangular matrix ring constructed from S,T
and M. It will also be convenient to denote the analogous formal triangular matrix

ring
(

T 0
M S

)
by 5(T,M,S). If T and S are po-rings and M is a po-bimodule, then

4=
(

S M
0 T

)
will be given the lexicographic partial order T⊕M⊕←−S and5=

(
T 0
M S

)

will be given the lexicographic partial order S⊕M⊕←−T . So
(

s m
0 t

)
∈4+ if s > 0, or

s = 0 and m > 0, or s = 0, m = 0 and t ≥ 0.

Theorem 3.4.16. (a) Let S be a unital totally ordered ring, T a totally ordered
zero ring (T 2 = 0), and SMT a totally ordered S-T -bimodule such that SM

is unital and MT = 0. Then 4(S,M,T ) =
(

S M
0 T

)
is a totally ordered ring

with a nonzero idempotent e =
(

1 0
0 0

)
and with r(4)⊆ `(4) iff `(s)M = 0

for each nonzero element s in S. If instead of SMT we have T MS with T M =

0 and MS is unital, then 5 =
(

S 0
M T

)
is a totally ordered ring with the

idempotent e and with `(5)⊆ r(5) iff Mr(s) = 0 for each nonzero element
s in S.

(b) Suppose that R is a totally ordered ring with a nonzero idempotent e.

Then R∼=
(

eRe eR(1− e)
0 (1− e)R(1− e)

)
=4(eRe, eR(1−e), (1−e)R(1−e)) if

r(R) ⊆ `(R), and R ∼=
(

eRe 0
(1− e)Re (1− e)R(1− e)

)
= 5(eRe, (1− e)Re,

(1− e)R(1− e)) if `(R)⊆ r(R).

Proof. (a) Assume that `(s)M = 0 for any 0 6= s ∈ S. Since r(4) =
(

0 0
0 T

)
⊆

(
0 M
0 T

)
= `(4) it suffices to show that the product of two positive elements is

positive. If ui =
(

si mi
0 ti

)
∈ ∆+ for i = 1,2, then u1u2 =

(
s1s2 s1m2

0 0

)
. If s1s2 > 0,

then u1u2 ∈ ∆+. If s1s2 = 0 with s2 = 0, then m2 ≥ 0 and u1u2 ∈ ∆+; and if s2 > 0,
then u1u2 = 0 since s1M = 0. Conversely, suppose that ∆ is a totally ordered ring,
and take 0 < s1, s2 ∈ S with s1s2 = 0. Then for any m2 ∈ M, using the previous
notation but with ti = 0, we have u1u2 ∈ ∆+, and hence s1m2 ≥ 0. Thus, s1M ⊆M+

and consequently s1M = 0. Clearly, the second statement is the dual of the first.
(b) Since R is totally ordered the `-ideals `(R) and r(R) are comparable, and

`(e) = `(R) and r(e) = r(R) by Theorem 3.4.4. Assume that r(R) ⊆ `(R). Since
r(e) = (1−e)R = (1−e)Re+(1−e)R(1−e) and `(e) = R(1−e) = eR(1−e)+(1−
e)R(1− e), necessarily (1− e)Re = 0. Also, if x ∈ R+\`(R), then x > `(R), and if
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y ∈ `(R)+\r(R), then y > r(R); that is, R = lex `(R) and `(R) = lex r(R). Thus, R∼=(
eRe eR(1− e)

0 (1− e)R(1− e)

)
= 4(eRe,eR(1− e),(1− e)R(1− e)) by Exercise 2.5.20.

Similarly, if `(R) ⊆ r(R), then R ∼=
(

eRe 0
(1− e)Re (1− e)R(1− e)

)
= 5(eRe,(1−

e)Re, (1− e)R(1− e)). ut
We close this section by showing that a totally ordered domain which has a one-

sided `-ideal that is not an ideal contains a free ring on two generators with a specific
total order that has this same property. Let MR be a po-module over the po-ring R,
and let A⊆ R. If x,y ∈M, then x is called infinitely smaller than y with respect to A,
and we write x¿A y, if xA≤ y. If X ⊆M, then X is called A-archimedean if x,y∈ X
and x¿A y implies that x = 0. When A =Z= R, then x¿A y will be written as x¿ y
and, of course, to say that M is Z-archimedean just means that it is archimedean.

Theorem 3.4.17. Let R be a totally ordered (unital) domain that contains a right `-
ideal that is not an ideal. Then R contains an isomorphic copy of the totally ordered
free (unital) ring that is given in Exercise 35.

Proof. Take y∈ R+ such that K = 〈y〉r is not an `-ideal of R and let J = 〈y〉. Since R
is not infinitesimal it has a superunit e. Thus, J = C(RyR). If J = R, then e≤ ryr for
some r≥ 0, yr2 = (yr)r is a superunit, and K = R. Thus, J⊂R and J is infinitesimal.
If r ∈ R+, then ryrryr ≤ ryr2 ∧ yr ∈ K; hence J2 ⊆ K. Let x ∈ R+ with xy 6∈ K and
let I be the largest `-ideal of R contained in K. Then

1 << x << x2 << · · · (in Ru), (3.4.9)

y << yxk << xky if k ≥ 1, (3.4.10)
J < x, (3.4.11)

J[2] ⊆ I ⊂ K ⊂ J. (3.4.12)

Let T be the multiplicative subsemigroup of R that is generated by x and y. We
will express z ∈ T as

z = yn1xk1 · · ·ynr xkr

with ni,ki ∈ N, except that n1 or kr could be 0, and n1 + k1 ≥ 1. Let N(z) = n1 +
· · ·+ nr be the number of times that y appears as a factor in this factorization of z.
We will see that N(z) is uniquely determined by z. If N(z) = 0, then z = xk1 is the
only word in x and y which equals z by (3.4.9) and (3.4.11). Let z′ = yn′1 xk′1 · · ·yn′sxk′s

be another element of T . If N(z) = N(z′) = 0, then z = xk1 , z′ = xk′1 , and z′ < z iff
z′ ¿ z, iff k1 < k′1. If N(z) = 0 and N(z′)≥ 1, then z′ ¿ z since xk1 > J. From now
on all z ∈ T will have N(z)≥ 1. We proceed in a sequence of steps.

(a) If 1 ≤ N(z) < N(z′) we claim that z′ ¿ z; if so, then N(z) is well defined.
We use induction on N(z). If N(z) = 1, then z = xkyx`; thus, y ≤ z and z 6∈ I. Since
z′ ∈ J[2] ⊆ I we have z′ ¿ z. Now assume that the assertion is true if N(z) < t, and
suppose that 1 < N(z) = t < N(z′). Suppose, first, that k′s ≤ kr. If n ∈ N, then, by
induction and (3.4.9),
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z−nz′ = (yn1 xk1 · · ·ynr xkr−k′s −nyn′1xk′1 · · ·yn′s)xk′s

≥ (yn1 xk1 · · ·ynr−1−nyn′1xk′1 · · ·yn′s−1)yxk′s ≥ 0.

If, on the other hand, k′s > kr, then, by induction and (3.4.10),

z−nz′ = (yn1 xk1 · · ·ynr −nyn′1xk′1 · · ·yn′sxk′s−kr)xkr

> (yn1 xk1 · · ·ynr−1−nyn′1xk′1 · · ·yn′s−1xk′s−kr)yxkr ≥ 0.

(b) Suppose that N(z) = N(z′) and the first place that the spellings of z and z′
differ is in a power of y. So, for some m we have n1 = n′1,k1 = k′1, · · · ,km−1 =
k′m−1, and nm < n′m. We claim that z′ << z. Again, we induct on N(z). Suppose that
N(z) = 1. Then z = yn1xk1yn2xk2 and z′ = yn′1 xk′1 yn′2 xk′2 . If m = 2, then n2 = n′2 since
n1 + n2 = 1 = n′1 + n′2. Hence, m = 1 and z = xk1 yxk2 ≥ xy 6∈ K since k1 ≥ 1, and
z′ = yxk1 ∈K; so z >> z′. Assume, now, that the claim is true if N(z) < t and suppose
that 1 < N(z) = t. We will consider four cases. Let n ∈ N.

(i) If m≥ 2, then, by induction,

z−nz′ = yn1xk1 y(yn2−1xk2 · · ·xkr −nyn′2−1xk′2 · · ·xk′s)≥ 0.

(ii) If m = 1 and n1 ≥ 1, then, by induction,

z−nz′ = y(yn1−1xk1 · · ·xkr −nyn′1−1xk′1 · · ·xk′s)≥ 0.

(iii) If m = 1,n1 = 0, and n′1 ≥ 2, then, by induction and (3.4.10),

z−nz′ = xk1 yn2 · · ·xkr −nyn′1xk′1 · · ·xk′s

≥ y(xk1yn2−1 · · ·xkr −nyn′1−1 · · ·xk′s).

(iv) Suppose that m = 1,n1 = 0 and n′1 = 1. If kr ≥ k′s then by induction and (3.4.9),

z−nz′ = (xk1yn2 · · ·yn−rxkr−k′s −nyxk1 · · ·yn′s)xk′s

≥ (xk1yn2 · · ·ynr−1−nyxk′1 · · ·yn′s−1)yxk′s ≥ 0,

while if kr < k′s, then by induction and (3.4.10),

z−nz′ = (xk1 yn2 · · ·ynr −nyxk′1 · · ·yn′sxk′s−kr)xkr

≥ (xk1 yn2 · · ·ynr−1−nyxk′1 · · ·yn′s−1xk′s−kr)yxkr ≥ 0.

(c) Suppose that N(z) = N(z′), and the spellings of z and z′ first differ in a power
of x. So n1 = n′1, . . . ,nm = n′m and km > k′m. Again, we will show by induction on N(z)
that z′ ¿ z. If N(z) = 1, then z = xkyx` and z′ = xk′yx`′ with k > k′ or ` > `′. Let n∈N.
If k > k′, then z−nz′ = xk′(xk−k′yx`−nyx`) > 0 since yx` ∈K and xk−kyx` ≥ xy 6∈K.
If ` > `′, then k = k′ and z−nz′ = xky(x`−nx`′)≥ 0.
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Assume that z′ ¿ z if N(z) < t, and suppose that N(z) = t. Let n ∈ N. If n1 ≥ 1,
then

z−nz′ = y(yn1−1xk1 · · ·xkr −nyn1−1xk′1 · · ·xk′s)≥ 0,

by induction. Finally, if n1 = 0, then

z−nz′ = xk1y(yn2−1 · · ·xkr − yn′2−1 · · ·xk′s)≥ 0

if k1 = k′1, that is, when m≥ 2, while

z−nz′ = xk′1(xk1−k′1yn2 · · ·xkr −nyn′2 · · ·xk′s)≥ xk′1y(yn2−1 · · ·xkr −nyn′2−1 · · ·xk′s)≥ 0

if k1 > k′1, that is, when m = 1.
This completes the proof that Z[T ] ∼= Z[S] where S is the totally ordered free

semigroup of Exercise 35.
If 1 ∈ R, then we leave as an exercise the verification that the totally ordered free

unital ring Z[S1] that is given in Exercise 35 is isomorphic to Z[1,x,y]. ut

Exercises.

1. Let R1 = R×Z be the ring obtained by freely adjoining Z to R (Exercise 3.1.2).
If a ∈ R and n ∈ Z, then a is called an n-fier of R if (a,−n) ∈ `(R)∩ r(R).

(a) Show that I = {n ∈ Z : there is an n-fier in R} is an ideal of Z. The positive
generator of I is called the mode of R. If it is not zero, the mode of the
torsion-free po-ring R will be denoted by k, and x will be a k-fier in R.

(b) Show that x is central in R and `(x;R) = 0.
(c) Show that a is an n-fier iff a = n

k x.
(d) If R is an almost f -ring, show that x > 0.
(e) Let J = Z(x,−k) if R has nonzero mode and, otherwise, let J = 0. Let

P = {(a,n) ∈ R1 : (a,n)R+ + R+(a,n) ⊆ R+ and n 6= 0}∪R+. Show that
J is an ideal of R1,P∩−P = J, and PP ⊆ P. If R is an f -ring or, for each
a ∈ R,a ∈ R+ iff aR+ +R+a⊆ R+, show that P+P⊆ P.

(f) Let S = R1/J and let P̄ be the image of P in S under the natural map.
Show that if R is an f -ring or satisfies the other condition in (e), then R
is embedded in S, P̄∩R = R+, and P̄ is the largest partial order of S that
contains R+.

(g) If R is an infinitesimal `-ring or a totally ordered superunital ring, show that
S = Ru.

2. Let R be a totally ordered ring which is a subring of the ring S. Suppose that
for each s ∈ S\R there exists a,b ∈ R with `(b;S) = r(a;S) = 0 and as,sb ∈ R.
Show that S has a unique total order which extends the order on R.

3. Let V be a unital f -algebra over the `-ring C and let A be the `-ideal of V
generated by {α+ ·1− (α ·1)+ : α ∈C}. If R is a strong `-subalgebra of V and
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either R is an ideal of V or V = C(R+C ·1), show that A⊆ `(R)∩ r(R). Hence,
if `(R)∩ r(R) = 0, then R is embedded in the strong f -algebra V/A.

4. Let RM be an `-module.

(a) If a,b ∈ R+ with ab = ba = 0 and a + b ∈ d(RM), show that, for each x ∈
M+, (a+b)(ax∧bx) = 0.

(b) If R is a pseudo-regular f -ring and M is a d-module, show that M is strong.

5. Let R be an `-semiprime `-ring that is a po-algebra over the po-ring C. If α,β ∈
C+ with αβ = 0 and x ∈ R+, show that αx∧βx = 0. Consequently, if C is an
almost f -ring, then R is a strong `-algebra over C.

6. Show that the following statements are equivalent for the f -algebra R over the
`-simple f -ring C.

(a) R is infinitesimal.
(b) Q = R⊗C F is infinitesimal.
(c) βx2 ≤ α|x| if β ∈C, 0 < α ∈C and x ∈ R.
(d) R is unitable, and if 0 < α ∈ C, then α · 1 is an upper bound of R in any

unital f -algebra that contains R.

7. Show that the following statements are equivalent for the f -algebra R over the
pseudo-regular f -ring C.

(a) R is infinitesimal.
(b) R satisfies the identities [αx∧ (x2−αx)]+ = 0.
(c) If 0≤ β ≤ α in C, then βx2 ≤ α|x| for each x ∈ R.
(d) R is unitable, and if α ∈C, then α2 · 1 is an upper bound of |α|R, in each

unital f -algebra that contains R.

8. (a) Show that the `-idempotent f -algebra R = 〈a〉 is unitable iff it is C-unitable.
If R is unitable, show that R has a unique C-unital cover. (See Exercise
14(b).)

(b) If `(R) = r(R) = 0, show that the f -algebra R has a unique C-unital cover
V with `(R;V ) = 0.

(c) If `(R) = r(R) = 0 and R is a convex `-subalgebra of a unital f -algebra
show that R has a unique tight C-unital cover.

9. (a) Show that an f -algebra is `-simple iff it is C-unitable and has a (tight) C-
unital cover that is `-simple. Show that an `-simple f -algebra has a unique
C-unital cover.

(b) Show that an f -algebra over the pseudo-regular f -ring C is pseudo-regular
iff it is C-unitable and has a pseudo-regular (tight) C-unital cover.

10. Show that each C-unitable f -algebra satisfies (3.4.5) and (3.4.6).

11. Let R be either a torsion-free f -algebra over the totally ordered domain C or an
f -algebra over the pseudo-regular f -ring C. Show that R satisfies the following
identities:
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z[αx∧αy∧ (x2−αx)∧ (αy− xy)]+ = 0, (3.4.13)

[αx∧αy∧ (x2−αx)∧ (αy− yx)]+z = 0. (3.4.14)

Consequently, in the first case, each torsion-free homomorphic image of
R/(`(R) + r(R)) is C-unitable and, in the second case, R/(`(R) + r(R)) is C-
unitable.

12. Let R be a totally ordered ring. Let A = 0 if R is infinitesimal and, otherwise, let
A = r(R). Show that A = {±[x∧ y∧ (x2− x)∧ (y− xy)]+ : x,y ∈ R}.

13. Show that an f -ring is unitable if and only if it satisfies either of the following
identities:

(ax+− x+)+∧ (ay+− y+)− = (ax+− x+)+∧ (y+a− y+)− = 0 (3.4.15)

(x+a− x+)+∧ (ay+− y+)− = (x+a− x+)+∧ (y+a− y+)− = 0. (3.4.16)

14. Let a be an element of the f -ring R.

(a) Show that 〈a〉 is `-idempotent iff 〈a〉r is `-idempotent.
(b) If R is unitable and 〈a〉 is `-idempotent, show that a⊥ = `(a) = r(a).
(c) If a⊥ = `(a) = r(a), show that R/a⊥ is unitable.
(d) Let I be a minimal `-ideal or a minimal one-sided `-ideal of R. If I is `-

idempotent, show that I is a minimal `-ideal and a minimal one-sided `-
ideal of R.

15. (a) Suppose that A = 〈a〉 is an `-idempotent `-ideal in the f -ring R. If a is finite
valued, show that A is generated by an upperpotent element.

(b) Let C be the class of f -rings with the property that each principal `-
idempotent `-ideal is generated by an upperpotent element. Show that C
is productive, left and right i-hereditary, is closed under direct limits (with
an index set that is directed up), and contains each finite valued f -ring and
each unitable f -ring.

(c) Show that an f -ring is pseudo-regular iff each of its principal `-ideals is
generated by an upperpotent element.

(d) Show that each one-sided `-ideal in a pseudo-regular f -ring is an `-ideal.

16. Let R be a torsion-free C-unitable f -algebra over the totally ordered domain C.
Show that R has a unique tight torsion-free C-unital cover.

17. Let C be a totally ordered domain with totally ordered quotient field F , and let
R be an `-subalgebra of the unital torsion-free C- f -algebra T .

(a) If Q(R) = R⊗C F is infinitesimal, show that T contains a C-unital cover of
R, any one of which is tight, and if U and V are C-unital covers of R in T ,
then U ∩V = R.

(b) If R is as in (a) and u is a cardinal number, construct an f -algebra T that
contains R and 2u distinct C-unital covers of R.
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(c) If R∩C 6= 0 in its C-unital cover, show that T contains a unique C-unital
cover of R.

18. Let C be a totally ordered ring in which N2 = {α ∈C : α2 = 0} 6= 0 and C\N2
consists of regular elements. Show that R = N2 has two nonisomorphic totally
ordered C-unital covers. Give an example of such a totally ordered ring C.

19. Let RC-u be a C-unital cover of the f -algebra R over the directed po-ring C.
Show that the following implications in Theorem 3.4.13 hold.

(a) (a) ⇒ (b) ⇔ (c), (a) ⇒ (d) and (d) ⇒ (c).
(b) If C is an `-ring and RC-u is strong, then (a) ⇒ (e), and the first part of (e)

together with (d) imply (a).
(c) If C ·1⊆ RC-u is a totally ordered homomorphic image of the `-ring C, then

(d) ⇒ (a) and (e).

20. Give an example of a totally ordered torsion-free C-unitable f -algebra over the
totally ordered domain C for which (b) and (e) of Theorem 3.4.13 hold, but (a)
does not hold.

21. (a) Show that an idempotent in a ring is central iff it commutes with every
idempotent.

(b) Let R be a torsion-free ring with only a finite number of idempotents. Show
that each idempotent is central.

(c) Show that each idempotent in a unital sp-`-ring is central.

22. Let E be the set of nonzero idempotents of the totally ordered ring R.

(a) If r(R) ⊆ `(R) (respectively, `(R) ⊆ r(R)), show that multiplication in E
satisfies the identity xy = y (respectively, xy = x).

(b) If r(R) ⊆ `(R), show that R has a left identity element iff r(R) = 0 and
E 6= /0.

(c) Show that the following are equivalent when E 6= /0.
(i) E contains a central element;

(ii) E is a singleton;
(iii) `(R) = r(R);
(iv) R = S ×→T (ring direct product) where S and T are totally ordered rings

with S unital and T 2 = 0.
(d) Let Z0 be the totally ordered group Z with trivial multiplication and let

the polynomial ring xZ[x] have the lexicographic order: x ¿ x2 ¿ ·· · . If
R = xZ[x] ¢→Z0 (ring direct product) show that R is not unitable.

23. (a) Show that in a right f -ring two positive orthogonal idempotents are disjoint.
(b) Let e and f be idempotents of the f -ring R. Show that the following are

equivalent:
(i) e f = 0;

(ii) e and f are orthogonal;
(iii) e and f are disjoint.
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24. Let S be a finite nonempty chain in a partially ordered semigroup. If a2 ∈ S
whenever a ∈ S, show that S contains an idempotent element.

25. Let R be an `-ring such that R/`-Nil(R) is an f -ring. Show that R has a nonzero
idempotent iff there exist a ∈ R and n 6= m in N with an = am 6= 0.

26. (a) Let R be a unital `-ring. Show that the following are equivalent:
(i) R has no nonzero proper right `-ideals;

(ii) Every element in R except 1 is right `-QR;
(iii) All but a finite number of elements of R are right `-QR.

(b) Let R be an `-ring that is not right `-QR and suppose that R/J (R) is an
f -ring. Show that R is an `-primitive f -ring iff all but a finite number of
elements of R are right `-QR. (If e = e2 6= 0 and be = 0, then e + b is not
right `-QR.)

27. Show that an `-ring satisfies the inequality |xy| ≤ |x| iff it satisfies |x||y| ≤ |x|.
Show that an `-ring that satisfies this inequality is a right f -ring. Give an exam-
ple of an `-ring that satisfies this inequality but which is not an f -ring.

28. (a) Show that an `-ring is infinitesimal iff it satisfies the identity (|x|◦|y|)− = 0.
(b) Show that an f -ring is infinitesimal if and only if it satisfies [|x| ◦ (−n|x|)]+

= 0 for some (or all) 2≤ n ∈ N.

29. If R is an infinitesimal `-ring, show that R = J (R); in fact, if a ∈ R, then there
exists x≤ 0 with a◦ x≤ 0 (see Exercise 3.3.13).

30. Let MR be a po-module over the po-ring R.

(a) Show that if R is directed and x,y ∈M with 0≤ x, then x¿R y iff x¿R+ y.
(b) If M+ is R-archimedean (respectively, R+-archimedean), show that

`(R;M+) = 0 (respectively, `(R+;M+) = 0) and each bounded submod-
ule is trivially ordered. If R is directed and `(R;M+) = 0 and each bounded
submodule is trivially ordered, show that M+ is R-archimedean.

(c) Show that M is R-archimedean iff `(R;M) = 0 and M has no nonzero
bounded submodules.

31. Suppose that R is directed and MR is an `-module.

(a) Show that if M is a d-module and x,y ∈M, then x¿R y iff |x| ¿R y.
(b) If |xi| ¿R y for i = 1, . . . ,n and r1, . . . ,rn ∈ R, show that |x1r1 + · · ·+

xnrn| ¿R y.
(c) Show that if M is a d-module, then M has no nonzero bounded submodules

iff it has no nonzero bounded convex `-submodules.

32. Let MR be an f -module over the directed po-ring R.

(a) Show that M has no nonzero bounded submodules if and only if, for each
polar N, M/N has no nonzero bounded submodules. (If K/N ≤ y+N, then
K∩N⊥ ≤ y.)
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(b) Show that M is R-archimedean if and only if, for each polar N, M/N is
R-archimedean. (Use Exercise 30(b).)

33. (a) Show that the class P of infinitesimal `-rings is a radical class of f -rings.
(b) Show that P = V ( f )∩ `-A where V ( f ) is the variety of f -rings and `-A

is the antisimple radical (see Exercise 3.2.32).
(c) Show that the following are equivalent for the f -ring R:

(i) `-A (R) = 0;
(ii) R has no nonzero infinitesimal `-ideals;

(iii) R has no nonzero infinitesimal one-sided `-ideals;
(iv) R is a subdirect product of `-simple f -rings;
(v) RR is R-archimedean.

(vi) R is locally dominated and has no nonzero bounded right `-ideals.
(For (v)⇒ (vi) and (vi)⇒ (i) use Theorem 3.4.14, Exercise 32 and the fact
that `-A (R) is bounded by each dominant element of R.)

(d) Prove that the f -ring R is pseudo-regular iff R/A is an R-archimedean right
f -module for each (right) `-ideal A of R.

34. Let S be a C-unital cover of the f -algebra R.

(a) If M is a maximal `-ideal of R with R2 * M, show that there is a unique
maximal `-ideal K of S with K∩R = M. (Use Exercises 9 and 3.3.14.)

(b) If C is `-simple, show that R is contained in at most one proper `-ideal of S
which, if it exists, is maximal.

(c) If K is a maximal `-ideal of S, show that either K ∩R is a maximal `-ideal
of R or R⊆ K.

(d) Show that R is infinitesimal if and only if it is contained in each maximal
`-ideal of S.

(e) Show that R is contained in a proper `-ideal of S if and only if R does not
have a superunit.

35. (a) Show that the semigroup ring F [S] of the totally ordered cancellative semi-
group S over the totally ordered domain F (Exercise 2.1.14) is a totally or-
dered domain if it is given the Hahn product total order: α1s1 + · · ·+αnsn >
0 if 0 < α1 ∈ F where s1 > · · ·> sn in S.

(b) Let Z{x,y} be the free ring on two generators, without an identity element.
If S is the free semigroup on {x,y}, then Z{x,y} = Z[S]. Show that the
following total order of S makes it into a totally ordered semigroup. The
elements in S will be written as z = yn1 xk1 · · ·ynr xkr with ni,ki ∈ N for i≥ 2
and n1,k1 ∈Z+. Let N(z) = n1 + · · ·+nr. If z′ = yn′1xk′1 · · ·yn′sxk′s define z′ < z
if N(z) < N(z′), or if N(z) = N(z′) and, for some m, either n1 = n′1, k1 =
k′1, . . . ,km−1 = k′m−1 and nm < n′m, or n1 = n′1, k1 = k′1, . . . , nm = n′m and
k′m < km.

(c) Show that z′ < z in S iff z′ ¿ z in Z{x,y}.
(d) Show that the right `-ideal 〈y〉r of Z{x,y} is not an `-ideal.



200 3 Lattice-ordered Rings

(e) Let S1 be the free monoid on x,y. Totally order S1 so that it is a totally
ordered monoid with S as a totally ordered subsemigroup. Show that Z[S1]
has a right `-ideal that is not an `-ideal.

(f) Does Z{x,y} have a left `-ideal that is not an `-ideal?

36. Let R be a unital ring in which all idempotents are central. Suppose that P
is an ideal of R such that R/P has no nontrivial idempotents. If I is the ideal
of R generated by the idempotents in P, show that R/I contains no nontrivial
idempotents. (Suppose that u ∈ R maps to an idempotent in R/I. Assume u ∈ P
and, from Exercise 1.2.8 (d), find f 2 = f ∈ I with f (u2 − u) = u2 − u. Then
(1− f )u is an idempotent in P.)

37. Suppose R is an `-subalgebra of the unital C- f -algebra V and T is the `-
subalgebra of V generated by R+C ·1. If ϕ : R−→ S is a homomorphism onto
the unital f -algebra S, show that ϕ can be extended to a homomorphism of T
onto S. (Use Theorem 2.4.2.)

Notes. Johnson [JOH1] showed that the class of unitable f -rings is a variety,
established the uniqueness of a unital cover of a totally ordered unitable f -ring,
and investigated when an f -ring can be embedded into a unital f -ring as an `-ideal.
These results were refined and extended by Henriksen and Isbell [HI] who pro-
duced the single unitability identity of Theorem 3.5.7, showed that each unitable
f -ring had a unique unital cover,and established most of Theorem 3.5.13 for a
unitable f -ring. The fundamental Theorem 3.5.1 comes from this paper and supe-
runital and infinitesimal f -rings were introduced here, though these types of f -rings
appeared in Johnson’s paper. Exercise 22 on idempotents in totally ordered rings
also appears here, and a version of Theorem 3.5.16 is given; see Bigard, Keimel,
and Wolfenstein [BKW, p. 184]. Steinberg [ST22] extended Henriksen and Isbell’s
unitability theorems to f -algebras over a po-ring C. Pseudo-regular f -rings were in-
troduced and studied by Keimel in [KE1] and [KE3]. He called them quasi-regular
f -rings; we have changed their name to avoid confusion with the radical class of
`-quasi-regular `-rings. Theorem 3.5.17 as well as the accompanying Exercise 35
is due to Johnson [JOH1], as is the order part of Exercise 1. Exercise 2 is due to
Fuchs [F, p. 168] and Exercises 11 and 12 come from Henriksen and Isbell [HI].

3.5 Generalized Power Series Rings

The Hahn `-groups V (∆ ,Gγ) give nice examples of `-groups, and equally impor-
tant is the fact that each abelian `-group G can be embedded in the Hahn group
V (Γ (G),R). While no analogue of the latter is available for `-rings in general, Hahn
`-groups supplied with a semigroup ring multiplication nevertheless provide a rich
source of examples of `-rings. These `-rings will be constructed using a rooted poset
with a partial addition that preserves strict inequalities. We will determine when the
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full Hahn product is an f -ring, and also give conditions for it to be a lattice-ordered
division ring whose lattice order extends to a total order. In the exercises the same
considerations are given to crossed products. A subring of the Hahn product is iden-
tified which contains the subring of elements of finite support and which is always
an `-subring whether or not the full Hahn product is a ring.

Let ∆ be a poset with a partial binary operation which we will usually write
additively. So, for some α,β ∈ ∆ ,α +β ∈ ∆ . If A is a ring, we will write an element
u = (uα)α∈∆ in the group direct product A∆ as a power series

u = ∑
α∈∆

uα xα . (3.5.1)

If v = ∑vα xα is another element of A∆ , then the product uv is “defined” by

uv = ∑
γ∈∆

(
∑

α+β=γ
uα vβ

)
xγ . (3.5.2)

So
(uv)γ = ∑

α+β=γ
uα vβ , (3.5.3)

where this sum is over all pairs (α,β ) ∈ supp u× supp v with α + β = γ , and the
empty sum is defined to be 0. Thus, if uv∈A∆ , then, clearly, supp uv⊆ supp u + supp
v where, for subsets X and Y of ∆ , X +Y = {α + β : α ∈ X ,β ∈ Y}. The obvious
problem with the definition of uv is that the sum in (3.5.3) might not be finite. In
order to insure that it is finite and to produce `-rings we will need to impose some
conditions on ∆ and A. Of course, if u and v have finite support then so does uv.
Here are some of the conditions that we will want ∆ to satisfy.

If α ≤ β and γ ≤ δ and α + γ and β +δ are defined, then
α + γ < β +δ unless α = β and γ = δ . (3.5.4)

If α < β and γ +α (respectively, α + γ) is defined, then
γ +β (respectively, β + γ) is defined and γ +α < γ +β

(respectively, α + γ < β + γ). (3.5.5)

For all α,β ,γ ∈ ∆ ,(α +β )+ γ = α +(β + γ) if either
side of the equation is defined. (3.5.6)

Note that (3.5.4) is a consequence of (3.5.5). ∆ is called associative if it satisfies
(3.5.6), and if it also satisfies (3.5.5) it is called a pops (partially ordered partial
semigroup).
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A poset is called narrow if each of its trivially ordered subsets is finite, and it
is called a W-set if it has a.c.c. and is a union of a finite number of totally ordered
subsets.

Theorem 3.5.1. Suppose that ∆ satisfies (3.5.4) and let X and Y be W-sets in ∆ .

(a) For each γ ∈ ∆ the set Z = {(α,β ) ∈ X×Y : α +β = γ} is finite.
(b) X +Y has a.c.c.
(c) If the intersection of each closed interval in ∆ with X +Y is a chain, then

X +Y is a W-set.

Proof. It clearly suffices to prove the theorem under the assumption that X and Y are
totally ordered. If (α,β ) and (ρ,δ ) are distinct elements of Z, then α +β = ρ +δ ,
and hence, by (3.5.4), α 6= ρ and β 6= δ ; also, α < ρ iff β > δ . Thus, the projections
Z −→ X and Z −→ Y are both injective and induce dual total orders of Z, in both
of which Z has a.c.c. That is, Z has a total order in which it satisfies both a.c.c. and
d.c.c.; so Z is finite. To see that X +Y has a.c.c. suppose that α1 +β1 < α2 +β2 < · · ·
is a strictly increasing sequence in X +Y . According to Exercise 1.1.9, by taking a
subsequence of (αn), we may assume that (αn) is a decreasing sequence and that
(βnk) is a decreasing subsequence of (βn). But then we have the contradiction that
(αnk +βnk) is a decreasing subsequence of (αn +βn).

To show that X +Y is a W-set if the condition on intervals that is given in (c)
holds we will first assume that X +Y has an upper bound in ∆ . If each pair of
elements in X +Y has a lower bound, then X +Y is totally ordered and hence is a
W-set. Suppose that the elements α + β and γ + δ , with α,γ ∈ X and β ,δ ∈ Y , do
not have a lower bound in ∆ . Let X×Y have the product order, and let

T = {(ρ,σ) ∈ X×Y : (τ,ν)≤ (ρ,σ) in X×Y =⇒ τ +ν is not defined}.

If α1 = α∧γ and β1 = β ∧δ , then (α1,β1)∈ T ; for, if (τ,ν)≤ (α1,β1) and τ +ν ∈
∆ , then τ +ν is a lower bound for {α +β ,γ +δ}. Let β0 be the largest element of
Y such that (ρ,β0) ∈ T for some ρ ∈ X , and let α0 be the largest element of X with
(α0,β0) ∈ T . Let X1 = {α ∈ X : α > α0},Y1 = {β ∈Y : β ≤ β0} and Z1 = {α +β :
α ∈ X ,β ∈ Y and β > β0}. We claim that X +Y = Z1 ∪ (X1 +Y1) and Z1 is totally
ordered. For the latter, suppose that α1 + β1,α2 + β2 ∈ Z1 and let α = α1∧α2 and
β = β1∧β2. Since β > β0,(α,β ) 6∈ T ; so for some (τ,ν)≤ (α ,β ),τ +ν ∈ X +Y .
But then τ ≤ αi,ν ≤ βi,τ +ν is a lower bound for {α1 +β1,α2 +β2}, and hence Z1
is totally ordered. To see that X +Y is the given union suppose that α +β ∈ X +Y
with β ≤ β0. If also α ≤ α0 we have a contradiction since (α,β ) ≤ (α0,β0) ∈
T . Thus, α > α0 and α + β ∈ X1 +Y1. If X1 +Y1 is totally ordered we are done.
Otherwise, we can repeat this argument to get (α1,β1) ∈ X1 ×Y1 and X1 +Y1 =
Z2∪(X2 +Y2) where Z2 is totally ordered and X2 = {α ∈X1 : α > α1}. Since α1 > α0
and X has a.c.c., after n steps, say, we obtain X +Y = Z1∪Z2∪·· ·∪Zn where each
Zi is totally ordered.

Now assume that X +Y does not have an upper bound in ∆ . Let β0 be the largest
element of Y such that α + β0 ∈ X +Y for some α ∈ X , and let α0 be the largest
element of X with α0 +β0 ∈ X +Y . Let X1 = {α ∈ X : α > α0},Y1 = {β ∈ Y : β <
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β0},X ′ = X \X1 and Y ′ = Y1∪{β0}. Then X +Y = (X ′+Y ′)∪(X1 +Y1) and X ′+Y ′
is totally ordered by the previous case since α0 + β0 is an upper bound for X ′+Y ′.
If X1 +Y1 does not have an upper bound we may repeat this construction to get an
element α1 ∈ X1 and a decomposition X1 +Y1 = (X ′1 +Y ′1)∪ (X2 +Y2) with X ′1 +Y ′1
totally ordered. Again, the process terminates after a finite number of steps since X
has a.c.c. and α0 < α1 < · · · . ut

Let A be a ring. We can now show that certain additive subgroups of A∆ are
rings with respect to the power series multiplication given by (3.5.2). If α ∈ ∆ , let
S(α) be the set of summands of α . If ∆ is associative, then S(α) = {β ∈ ∆ : α ∈
(β +∆)∪ (∆ +β )∪ (∆ +β +∆)}. Also, let

∑ = ∑(∆ ,A) = {u ∈ A∆ : supp u is finite},

W = W (∆ ,A) = {u ∈ A∆ : supp u is a W-set},
S = S(∆ ,A) = {u ∈ A∆ : ∀α ∈ ∆ ,supp u∩S(α) is a W-set}.

Theorem 3.5.2. Suppose that ∆ is associative and satisfies (3.5.4), and each closed
interval in ∆ is a chain. Then ∑⊆W ⊆ S are rings.

Proof. We will merely show that these subsets are closed under multiplication and
leave the rest of the proof as an exercise. For ∑ this is obvious. Suppose that u,v ∈ S
and γ ∈ ∆ . Then the sum in (3.5.3) is finite by (a) of Theorem 3.5.1, and hence
uv ∈ A∆ . For, if Z = {(α,β ) ∈ supp u× supp v : α +β = γ}, then Z is finite since

Z ⊆ [supp u∩S(γ)]× [supp v∩S(γ)]

and supp u∩S(γ) and supp v∩S(γ) are W-sets. Also, if σ ∈ ∆ , then

supp uv∩S(σ)⊆ supp u∩S(σ)+ supp v∩S(σ)

and hence uv∈ S by Theorem 3.5.1(c). For, if γ ∈ supp uv ∩ S(σ), then γ = α +β ∈
supp u + supp v, and for some τ, δ ∈ ∆ ,σ = τ + γ or σ = γ + τ or σ = τ + γ + δ .
So, σ = τ +α +β ,σ = α +β +τ , or σ = τ +α +β +δ , and α,β ∈ S(σ). Thus, S
is closed under multiplication. But W is a subring of S since if u,v ∈W , then supp
uv⊆ supp u + supp v is a W-set. ut

If A is a po-ring, then ∑(∆ ,A) and W (∆ ,A) are certainly po-subgroups of the
Hahn product V (∆ ,A). Sufficient conditions for these subgroups to be `-rings are
given in the following result.

Theorem 3.5.3. Suppose that ∆ is a pops and A is a po-domain. Then ∑ is a po-ring,
and for u,v ∈W+∪−W+,

maxsupp uv = max (maxsupp u+ maxsupp v). (3.5.7)

Moreover, ∑ (respectively, W) is an `-ring if and only if ∆ is rooted and either A is
totally ordered, or A is an `-ring and ∆ is trivially ordered.
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Proof. First note that if u,v ∈W , then supp u + supp v has a.c.c. and uv ∈ V (∆ ,A)
according to Theorem 3.5.1. Since supp u = supp −u it suffices to verify (3.5.7)
for u, v ∈W+. If 0 < u,v and γ ∈ max (maxsupp u + maxsupp v), then γ = α + β
with α ∈ maxsupp u and β ∈ maxsupp v; so uα vβ > 0. If γ 6∈ supp uv, then, by
(3.5.3), γ = α1 +β1 ∈ supp u + supp v with 0 6= uα1vβ1 6> 0. Thus, for some α2 and
β2, α1 ≤ α2 ∈ maxsupp u and β1 ≤ β2 ∈ maxsupp v with α1 < α2 or β1 < β2. But
then we have the contradiction that γ = α1 +β1 < α2 +β2 ≤ γ1 for some γ1 ∈ max
(maxsupp u + maxsupp v). So γ ∈ supp uv and

max (maxsupp u + maxsupp v) ⊆ supp uv. (3.5.8)

On the other hand, suppose that γ = α +β ∈ maxsupp uv with α ∈ supp u and β ∈
supp v. Then α ≤ α1 ∈ maxsupp u, β ≤ β1 ∈ maxsupp v, and γ ≤ α1 + β1 ≤ γ1 ∈
max (maxsupp u + maxsupp v). By (3.5.8), γ = γ1 and hence α = α1 and β = β1;
so we have

maxsupp uv ⊆ max (maxsupp u + maxsupp v) (3.5.9)

and

if γ = α +β ∈ maxsupp uv with α ∈ supp u and β ∈ supp v,
then α ∈ maxsupp u and β ∈ maxsupp v. (3.5.10)

Now, (3.5.7) follows from (3.5.8) and (3.5.9). Also, if u,v ∈ ∑+ and γ ∈ maxsupp
uv, then by (3.5.10) the sum in (3.5.3) is over some subset of maxsupp u×maxsupp
v. So (uv)γ > 0, and ∑ is a po-ring.

For the last statement, if ∑ (or W ) is an `-ring, then A and ∆ satisfy the given
conditions by Theorem 2.6.2 and Exercise 2.6.2. Conversely, if A and ∆ satisfy these
conditions, then W is a ring by Theorem 3.5.2, it is an `-group by the aforementioned
results from Section 2.6, and it is an `-ring by (3.5.10). ut

If W (∆ ,A) is an `-ring, then the conditions that ∆ must satisfy in order for W
to be a (left) d-ring or an almost f -ring are given in Exercises 15, 16, and 22. The
conditions for it to be an sp-`-ring are examined in Section 3.7.

The next result shows that the conditions that make ∑ into an f -ring are strong
enough to also force V to be an f -ring. A pops that satisfies these conditions, given
in (3.5.11) and (3.5.12) below, is called an f -pops. More generally, let f`(∆) (re-
spectively, fr(∆)) be the set of all those elements γ in the pops ∆ which satisfy
(3.5.11) (respectively, (3.5.12)); ∆ is a le f t f -pops if ∆ = f`(∆) and it is a right
f -pops if ∆ = fr(∆).

Theorem 3.5.4. Suppose that A is a totally ordered domain and ∆ is a rooted pops.
The following statements are equivalent.

(a) V (∆ ,A) is an f -ring.
(b) W (∆ ,A) is an f -ring.
(c) ∑(∆ ,A) is an f -ring.
(d) ∆ satisfies the following conditions:
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if α||β and γ +α is defined, then γ +α||β ; (3.5.11)

if α||β and α + γ is defined, then α + γ||β . (3.5.12)

Proof. The implications (a) ⇒ (b) ⇒ (c) follow from Theorems 3.5.2 and 3.5.3.
(c) ⇒ (d). If 0 < a ∈ A, α||β and γ + α exists, then axα ∧ axβ = 0 by Exercise

2.6.1(c). So a2xγ+α ∧axβ = 0 and γ +α||β .
(d) ⇒ (a). We first need to verify that V = V (∆ ,A) is a ring. If γ ∈ ∆ let γ ′′ be

the set of all those elements of ∆ that are comparable with each element of ∆ that is
comparable to γ . Suppose that u,v ∈V . According to Exercises 3(b) and 4(a), γ ′′ is
totally ordered and

{(α ,β ) ∈ supp u × supp v : α +β = γ} ⊆ supp u∩ S(γ)×
supp v∩ S(γ)⊆ supp u∩ γ ′′ × supp v∩ γ ′′; (3.5.13)

so the sum in (3.5.3) is finite by Theorem 3.5.1(a) and uv∈A∆ . Also, if γ1 ≤ γ2 ≤ ·· ·
is a chain in supp u + supp v⊇ supp uv, then, since γ ′′n ⊆ γ ′′1 for every n by Exercise
3(c), γn = αn +βn ∈ supp u∩ γ ′′1 + supp v∩ γ ′′1 . But the latter has a.c.c. by Theorem
3.5.1(b), and hence γn = γn+1 = · · · for some n. Thus, uv ∈V . Also, if 0 < u,v, then
the argument that gives (3.5.7) and (3.5.10) in the proof if Theorem 3.5.3 is still
valid and uv ≥ 0. So V is an `-ring. Suppose that u,v,w ∈ V + with u∧w = 0, and
γ ∈ maxsupp uv and δ ∈ maxsupp w. Then γ = α +β ∈ supp u + supp v and α||δ ;
so γ||δ and uv∧w = 0. Similarly, vu∧w = 0 and V is an f -ring. ut

The only way that V could be an f -ring without A being totally ordered is if
V 2 = 0 (see Exercise 18e). It is certainly possible for V to be an `-ring without it
being an f -ring. For example, if ∆ is finite or has only a finite number of roots then
V = W . As a consequence of the next result we will see that V = W also whenever
∆ is narrow.

Theorem 3.5.5. Let Γ be a poset in which each closed interval is a chain. Then Γ
is a W-set if and only if it is noetherian and narrow.

Proof. Suppose that Γ is noetherian and narrow but it is not a W-set. Let us call the
subsets X and Y of Γ incomparable if no element of X is comparable to any element
of Y . Under the assumption that Γ has a largest element we claim that there is a
chain M in Γ that is maximal with respect to Γ \M < M (that is, α < β if α ∈ Γ \M
and β ∈ M), and Γ \M is the finite union of at least two pairwise incomparable
subsets each of which has a largest element. To see this let

S = {X ⊆ Γ : X is a chain and Γ \X < X}.

S is not empty since if α0 is the largest element of Γ then {α0} ∈ S . Also, if
{Xi} is a chain in S then ∪ Xi is in S . So S has a maximal element M and
Γ \M is not a W-set. Let {α1, . . . ,αm} be the maximal elements of Γ \M. If m = 1,
then Γ \ (M∪{α1}) < M∪{α1} and M∪{α1} ∈S , which contradicts the choice
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of M. Let Xi = {β ∈ Γ \M : β ≤ αi}. Then Γ \M is the union of the Xi and the
latter are pairwise incomparable. For, if i 6= j and βi ∈ Xi and β j ∈ Xj with βi ≤ β j,
then βi ≤ αi ≤ α0 and βi ≤ β j ≤ α j ≤ α0. But the interval [βi,α0] is a chain, and
hence we have the contradiction that αi and α j are comparable. Thus, the claim
has been established. Now, let {α1, . . . ,αn} be the set of maximal elements in Γ .
Then Γ = ∪iL(αi) where L(αi) = {α ∈Γ : α ≤ αi}, and some L(αi) is not a W-set.
Replacing Γ by this L(αi) and applying the claim we have a chain M in Γ such that
Γ \M = Γ1 ∪Γ11 ∪ ·· · where Γ1 is not a W-set. Repeatedly applying the claim we
get

Γ1 \M1 = Γ2∪Γ21∪·· ·
and

Γ2 \M2 = Γ3∪Γ31∪·· ·
· · ·

where no Γi is a W-set. If β j ∈ Γj1, then {β j : 1 ≤ j} is an infinite trivially ordered
subset of Γ since βk ∈ Γk1 ⊆ Γj if k > j. ut
Theorem 3.5.6. Suppose that each closed interval in the poset Γ is a chain, and let
A be a nonzero ring. If Γ is narrow, then W (Γ ,A) = V (Γ ,A). If Γ has a partial
addition, then W (Γ ,A) = S(Γ ,A) if and only if for each subset Λ of Γ that is not a
W-set, Λ ∩S(γ) is infinite for some γ ∈ Γ .

Proof. If Γ is narrow and v ∈ V = V (Γ ,A), then supp v is a W-set by the previous
result; so v ∈W = W (Γ ,A). Assume that W = S = S(Γ ,A), and let Λ be a subset
of Γ that is not a W-set. For 0 6= a ∈ A let v = ∑α∈Λ axα . Then supp v = Λ and
v 6∈ S; so Λ ∩ S(γ) is infinite for some γ ∈ Γ . Conversely, suppose that v ∈ S\W ,
and assume that Γ has the stated property. Since supp v is not a W-set, by Theorem
3.5.5 it contains a sequence (αn)n∈N of distinct elements that is either increasing
or its range is trivially ordered. If Λ is the range of this sequence, then no infinite
subset of Λ is a W-set. But for some γ ∈ Γ we have that Λ ∩ S(γ) ⊆ supp v∩S(γ)
is an infinite W-set. This contradiction gives that W = S. ut

We now turn our attention to finding units in W (∆ ,A). In particular, we will
establish and generalize the equation (1− x−1)−1 = ∑−∞

n=0 xn in V (Z,Z).
The pops ∆ is called a mopops if it contains an element 0 such that α + 0 =

0+α = α for each α ∈ ∆ . If α +β < α,β (respectively, α,β < α +β ) whenever
α + β is defined, then ∆ is called a negative (respectively, positive) pops. In any
mopops the set L(0)∗ of nonzero lower bounds of 0 is a negative pops, whereas the
set U(0)∗ of nonzero upper bounds of 0 is a positive semigroup. A negative pops
can be embedded in a mopops (Exercise 7). We also note that a rooted negative
semigroup is totally ordered whereas a rooted positive semigroup need not be totally
ordered. For example, consider the multiplicative subsemigroup ∆ = N\{1} of N
with the order given by 2||3 and 2,3 < 4 < 5 < · · · .

Suppose that ∆ is a totally ordered negative semigroup. It will be useful to mimic
the definition of the infinitely large relation for elements in the negative cone of a
po-group. Let α,β ∈ ∆ . If nβ ≥ α for each n ∈N, then β is called in f initely larger
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than α and we write β À α . The elements α and β are called a-equivalent and we
write α ∼ β , if

{γ ∈ ∆ : γ À α}= {γ ∈ ∆ : γ À β}. (3.5.14)

We will state the main properties of these relations but we leave their verifi-
cation to Exercise 9. First, α ∼ β iff for some n,m ∈ N,α ≥ nβ and β ≥ mα .
The equivalence class of α will be denoted by v(α) and is called the value of
α . The value set v(∆) of ∆ is a totally ordered set with respect to the rela-
tion v(β ) > v(α) if β À α , and the map v : ∆ −→ v(∆) is isotone. Moreover,
v(α1 + · · ·+αn) = v(α1)∧·· ·∧ v(αn).

By a subpops of the pops ∆ we mean a subset X of ∆ such that α + β ∈ X
whenever α,β ∈ X and α +β is defined. If Γ is a subset of ∆ , then for n ∈N,nΓ =
{α1 + · · ·+αn : αi ∈ Γ } and ωΓ =

⋃∞
n=1 nΓ is the subpops of ∆ generated by Γ .

Theorem 3.5.7. Let ∆ be a rooted negative pops. Suppose that Γ is a subset of
∆ with the property that each of its roots generates a subsemigroup of ∆ . If Γ is
noetherian, then so is ωΓ and each element of ωΓ is in only finitely many of the
nΓ . If Γ is narrow or is a W-set, then ωΓ is narrow or is a W-set, respectively.

Proof. Suppose that Γ is noetherian and, by way of contradiction, let α1 < α2 <
· · · be a chain in ωΓ . Let αi = γi1 + · · ·+ γini with γi j ∈ Γ . Since ∆ is an f -pops
by Exercise 1, the set {γi j : 1 ≤ i,1 ≤ j ≤ ni} is a chain in Γ by Exercise 4, and
it generates a totally ordered subsemigroup of ∆ which, for convenience, we will
assume is ∆ . Now, for each i,v(αi) = ∧ j v(γi j) = v(γ∗i ) where γ∗i = ∧ jγi j ∈Γ . Since
v(∆) = v(Γ ) is noetherian the increasing sequence v(α1)≤ v(α2)≤ ·· · is eventually
constant; say v(αi) = w if i ≥ n. We may assume that this w is the largest value of
any of the terms in a strictly increasing sequence in ∆ . By deleting the first few terms
of such a sequence we will only consider strictly increasing sequences in ωΓ which
are constant-valued. Let α be the largest element of w∩Γ ; note that γ∗i ∈ w∩Γ and
αi≤ γ∗i ≤α for each i. Since α ∼α1 there is an integer p∈Nwith α1≥ pα . We may
assume that this p is minimal for all sequences considered. If p = 1, then for every
i≥ 1,α ≤ α1 ≤ αi ≤ γ∗i ≤ α; thus, p > 1 and (p−1)α > α1 ≥ pα . Also, for every
i, (p−1)α > αi since otherwise αi < αi+1 < · · · is a sequence with αi ≥ (p−1)α ,
contrary to the choice of p. So, for each i, (p−1)α > αi≥ pα . Now, for every i, αi =
γ∗i or αi = α ′

i +γ∗i or αi = γ∗i +α ′′
i or αi = α ′

i +γ∗i +α ′′
i , and we cannot have αi = γ∗i

for infinitely many i. Thus, one of the three other forms for αi must occur infinitely
often. We will rule out the last form from such an occurrence, and in a similar
manner the other two may be ruled out. By taking a subsequence of the sequence
(αi)i we may assume that αi = α ′

i + γ∗i +α ′′
i for every i. If neither of the sequences

(α ′
i )i or (α ′′

i )i had a strictly increasing subsequence, then their ranges would have
a.c.c. (Exercise 1.1.9). Hence, the set {α ′

i : 1≤ i}+{γ∗i : 1≤ i}+{α ′′
i : 1≤ i}would

also have a.c.c. by Theorem 3.5.1, contrary to our assumption. By again taking a
subsequence of (αi)i we may assume that α ′

1 < α ′
2 < · · · . Since αi < α ′

i ,w = v(α ′
i )

by the maximality of w; and α ′
i ≤ α since α ′

i = γi1 + · · ·+ γ∗∗i + · · · ≤ γ∗∗i with
v(α ′

i ) = v(γ∗∗i ) and γ∗∗i ≤ α . If (p−1)α > α ′
1, then pα = (p−1)α +α > α ′

1 +γ∗1 >
α ′

1 + γ∗1 + α ′′
1 = α1 ≥ pα . So α ′

1 ≥ (p−1)α and this contradicts the minimality of
p. Hence, ωΓ is noetherian.
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Let α be maximal among those elements of ωΓ that are in infinitely many of the
nΓ . Then α = γi +βi ∈ niΓ with 1 < n1 < n2 < · · · ,γi ∈Γ and βi ∈ (ni−1)Γ . Now,
(γi)i has a decreasing subsequence, and the corresponding subsequence of (βi)i is
increasing and therefore it is eventually constant. But then α < β = βi for infinitely
many i and this contradicts the maximality of α .

Assume now that Γ is narrow but ωΓ is not. Let {αi : i∈N} be a trivially ordered
subset of ωΓ . Using the previous notation, suppose that for some i 6= j,γ∗i ≤ γ∗j .
Then for any 1 ≤ k ≤ ni and 1 ≤ ` ≤ n j,γ∗i ≤ γik and γ∗i ≤ γ∗j ≤ γ j`, and hence
{γik : 1≤ k ≤ ni}∪{γ j` : 1≤ `≤ n j} is contained in a root of Γ . Thus, αi +α j ∈ ∆
and αi is comparable to α j. This contradiction shows that ωΓ must be narrow. That
ωΓ is a W-set if Γ is a W-set now follows from Theorem 3.5.5. ut

We are now ready to find inverses in formal power series rings.

Theorem 3.5.8. Let ∆ be a totally ordered cancellative monoid and let A a be unital
ring. Suppose that v ∈V (∆ ,A).

(a) If supp v < 0 and (an)n≥0 is a sequence in A, then vω = ∑n≥0 anvn is an
element of V (∆ ,A) where vω is defined by (vω)α = ∑n≥0 an(vn)α for each
α ∈ ∆ .

(b) If w = 1− v with supp v < 0 then w−1 = ∑n≥0 vn.
(c) Assume that A is a domain and let α = maxsupp v. Then v is a unit of

V (∆ ,A) iff vα is a unit of A and α is a unit of ∆ .
(d) V (∆ ,A) is a division ring iff ∆ is a group and A is a division ring.

Proof. By Theorem 3.5.7 the sum ∑n≥0 an(vn)α is finite since supp vn ⊆ n supp v
(here, 0 supp v = 0), and supp vω has a.c.c. since supp vω ⊆ ω supp v∪{0}. So
vω ∈V (∆ ,A). To show (b), we will first verify that v∑n vn = ∑n vn+1. If γ ∈ ∆ , then

(
v∑

n
vn

)

γ
= ∑

α+β=γ
vα ∑

n
(vn)β

= ∑
n

∑
α+β=γ

vα(vn)β

=
(

∑
n

vn+1
)

γ
.

So (1−v)∑n vn = ∑n vn−∑n vn+1 = 1. Similarly, (∑vn)(1−v) = 1. For (c), if u∈V
and β = maxsupp u, then (vu)α+β = vα uβ 6= 0 and α + β = maxsupp vu since if
(α1,β1) ∈ supp v× supp u with (α,β ) 6= (α1,β1), then α1 + β1 < α + β . Thus,
if vu = 1 then α + β = 0 and vα uβ = 1. Conversely, suppose that α + β = 0 and
vα b = 1. Then

vbxβ = (vα xα +∑ρ<α vρ xρ)bxβ = 1+ ∑
ρ+β<0

vβ bxρ+β

and hence v is a unit of V by (b). Since (d) is an immediate consequence of (c) the
proof is complete. ut
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Hamilton produced the first noncommutative division ring when he constructed
the ring of real quaternions. The second division ring to appear was the totally or-
dered twisted power series ring V (Q(y)∗Z) that was constructed by Hilbert. Here,
Q(y) is the totally ordered field of quotients of the lexicographically ordered poly-
nomial ring Q[y] and V (Q(y) ∗ Z) = V (Z,Q(y)) as totally ordered groups. Let
σ be the `-automorphism of Q(y) that is induced by y 7→ 2y. If the elements of
V (Q(y) ∗Z) are represented as formal power series u = ∑xnαn with the coeffi-
cients αn ∈ Q(y) on the right, then multiplication in V (Q(y)∗Z) is induced by the
equations xnαxmβ = xn+mσm(α)β . A generalization of this construction is given in
Exercises 13, 14, 17, and 20.

Let R be a po-unital po-ring and let U (R+) be the po-group of units of the mul-
tiplicative po-monoid R+. If G is a subgroup of U (R+) and a sublattice of R, then
G is called an `-subgroup o f positive units o f R. Note that if R is an f -ring, then
U (R+) is a sublattice of R. For, if w∈U (R+), then w∨w−1 ≥ 1 since this inequal-
ity holds in each totally ordered homomorphic image of R. So, if u,v∈U (R+), then
(u∨ v)−1 = u−1∧ v−1 since (u∨ v)(u−1∧ v−1) = 1∧ (uv−1∨ vu−1) = 1. If x−1 ∈ R
whenever x≥ 1, then R is said to have bounded inversion.

Theorem 3.5.9. The following statements are equivalent for the `-group G.

(a) G is representable.
(b) G is isomorphic to an `-subgroup of positive units of a direct product of

totally ordered division rings.
(c) G is isomorphic to an `-subgroup of the `-group of positive units of an f -

ring which has bounded inversion.
(d) G is isomorphic to an `-subgroup of positive units of an f -ring.

Proof. To see that (a) implies (b) suppose that G is embedded in the product of
totally ordered groups ΠiGi. If Ai is a totally ordered division ring, then clearly
Gi is embedded in the group of positive units of the totally ordered division ring
V (Gi,Ai). So G is embedded in ΠiU (V (Gi,Ai)+) = U ((ΠiV (Gi,Ai))+).

Since the implications (b) ⇒ (c) ⇒ (d) ⇒ (a) are obvious the proof is complete.
ut

Another application of Theorem 3.5.8 concerns free groups; see Exercise 2.4.8.

Theorem 3.5.10. Each free group can be totally ordered.

Proof. Let S be the free semigroup on the set Y . We can extend a given total order
of Y to a total order of S in the following way. If u = z1 · · ·zn and v = y1 · · ·ym are
two words of S in the alphabet Y , then u < v iff n > m, or n = m and for some k
with 1 ≤ k ≤ n,z1 = y1, . . . ,zk−1 = yk−1 and zk < yk. With this order S is a totally
ordered negative semigroup, and T = S∪{e}, with S < e, is the (totally ordered) free
monoid on Y . Let A be a totally ordered division ring. By Theorem 3.5.8, for each
y ∈ Y,1 + y is a positive unit of the totally ordered domain V (T,A). We claim that
the multiplicative subgroup F of V (T,A) that is generated by the set {1+ y : y ∈ Y}
is a free group on this set. Note that if 0 6= g ∈ Z, then (1+ y)g = 1+gy+w where
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w = 0 or supp w⊆ {yk : k ≥ 2}. This is clear if g > 0 and it follows from Theorem
3.5.8 if f =−g > 0 since

(1+ y)g = (1+ f y+ · · ·+ y f )−1 = 1− ( f y+ · · ·+ y f )+( f y+ · · ·y f )2−·· · .

Now, suppose that u = (1+y1)g1 · · ·(1+yn)gn where yi ∈Y,yi 6= yi+1 and gi 6= 0 for
each i. Then u = (1 + g1y1 + w1) · · ·(1 + gnyn + wn) = 1 + g1 · · ·gny1 · · ·yn + ∑ j v j
and clearly supp v j < y1 · · ·yn for each j. Thus, u 6= 1 and F is free on {1+y : y∈Y}.

ut
Another proof of this result using polynomials and 2× 2 matrices is given in

Exercises 24, 25, and 26.
We conclude this section with an example of a lattice-ordered power series divi-

sion ring that is not totally ordered. Of course, one such example comes from the
division ring V (∆ ,A) in Theorem 3.5.8 by taking A to be totally ordered and weak-
ening the total order of V (∆ ,A) to the lattice order P = {v ∈ V (∆ ,A) : vα ≥ 0 for
each α ∈ ∆}. In a loose sense the partial order of ∆ has been replaced by the trivial
order—loose, because with ∆ trivially ordered V (∆ ,A) is the full product A∆ . This
process can sometimes be reversed. Specifically, if the partial order of ∆ can be ex-
tended to a total order, then the lattice order of V (∆ ,A) may also be extendable to a
total order. We first need some preparation.

Theorem 3.5.11. Let H be a subgroup of finite index in the group G.

(a) If G is finitely generated, then H is finitely generated.
(b) If H is contained in the center of G, then G′, the commutator subgroup of

G, is finite.

Proof. (a) Let x1, . . . ,xm be generators for G and let 1 = y1, y2, . . . ,yn be repre-
sentatives of the n = [G : H] distinct left cosets of H in G. Since left addition by x j
permutes these left cosets, for 1≤ j≤m and 1≤ i≤ n there is an i j ∈ {1, . . . ,n}with
x j +yi +H = yi j +H and i j 6= k j if i 6= k. Let h ji ∈H be defined by x j +yi = yi j +h ji,
and let A be the subgroup of H generated by {h ji : 1 ≤ j ≤ m, 1 ≤ i ≤ n}. We will
show A = H. Let B =

⋃
i yi +A. Then for fixed j,

x j +B =
n⋃

i=1

x j + yi +A =
n⋃

i=1

yi j +h ji +A =
n⋃

i=1

yi j +A = B,

and hence G+B = B and G = B. But then H = H ∩B = H ∩ (y1 +A) = A.
(b) Using the yi again, if u,v ∈ G, then u = h+ yi, v = k + y j with h,k ∈ H, and

hence the commutator [u,v] = [h+ yi,k +y j] = [yi,y j] = ai j. So there are at most n2

commutators. Since n[u,v] ∈ H,
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(n+1)[u,v] =−u− v+u+ v+n[u,v]
=−u− v+u+n[u,v]+ v

=−u− v+u+(−u− v+u+ v)+(n−1)[u,v]+ v

=−u−2v+u+2v− v+(n−1)[u,v]+ v

= [u,2v]+ (n−1)[−v+u+ v,v].

We will use this to show that each element of G′ is a sum of at most n3 commutators.
Suppose w∈G′ and w = c1 + · · ·+cp with p > n3 and each ck is a commutator. Then
some ai j is equal to at least n+1 of these ck’s; say c = [x,y] is this ai j. Since

[u,v]+ [x,y] = [x,y]− c+[u,v]+ c

= [x,y]+ [−c+u+ c,−c+ v+ c]

we can shift n+1 of the c’s to the left and w = (n+1)[x,y]+dn+2 + · · ·+dp where
each d j is a commutator. Since (n + 1)[x,y] is a sum of n commutators w is a sum
of p−1 commutators and an easy induction reduces the number of commutators to
n3. Thus, |G′| ≤ n2n3

. ut
We can now lift a total order of a subgroup to the whole group provided we

impose a finiteness condition. A group is locally finite if each of its finitely generated
subgroups is finite. If G is a rooted po-group, then according to Exercise 5 its normal
subgroup H = G+−G+ is totally ordered and the roots of G are just the cosets of
H in G.

Theorem 3.5.12. Let H be the maximal totally ordered subgroup of the torsion-free
rooted po-group G. If G/H is locally finite, then there is a unique total order of G
containing H+.

Proof. Let
P = {g ∈ G : kg ∈ G+ for some k ∈ N}.

If T is any total order of G which contains G+ and g ∈ T , then kg ∈ H for some
k ∈ N and hence kg ∈ G+; otherwise, kg ∈ −G+ ∩ T ⊆ −T ∩ T = 0 and g = 0.
Thus, if P is a total order, then T = P. To show that P is a total order we need
only verify that P + P ⊆ P since P clearly has the other required properties of a
total order. Let a,b ∈ P, let A be the subgroup of G generated by {a,b} and let
B = A∩H. Then A/B∼= A + H/H ⊆ G/H, A is rooted and B is its maximal totally
ordered subgroup. So we may assume that G is generated by the two elements a
and b from P and G/H is finite of order n ≥ 2. Let C = {h ∈ H : h ¿ x for some
x ∈ H}. By Exercise 2.4.24 C is a convex normal subgroup of H which contains
the derived group H ′ of H, and C is a proper subgroup of H since H is finitely
generated by Theorem 3.5.11. We claim that G′ ∩H ⊆ C. First we will verify that
the subgroup [G,H] of G generated by the commutators [g,h], with g∈G and h∈H,
is contained in C. Suppose−g+h+g < h. Then−ng+h+ng <−g+h+g < h and
0 <−g−h+g+h <−ng−h+ng+h; that is, 0 < [g,h] < [ng,h]. Since ng ∈H we
have [g,h] ∈C. On the other hand, if h <−g+h+g, then −g−h+g <−h and the
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preceding gives [g,−h]∈C and, again, [g,h] =−h− [g,−h]+h∈C. Since H/[G,H]
is central and of finite index in G/[G,H] the derived group (G/[G,H])′ = G′/[G,H]
is finite by Theorem 3.5.11. Let g ∈G′ ∩H. Then for some m ∈N, mg ∈ [G,H]⊆C
and hence g ∈C. In order to show that n(a + b) > 0 and hence a + b ∈ P consider
the element c = −na− nb + n(a + b) which lies in G′ ∩H and hence also in C.
If n(a + b) < 0, then c < −na,−nb < 0 and both na and nb belong to C. But if
h ∈H\C, then h = pa+qb+x and nh = pna+qnb+y with x,y ∈G′ and y ∈H; so
nh ∈C and we have the contradiction h ∈C. Thus, n(a+b) > 0 and P+P⊆ P. ut

The preceding result can be used to lift the lattice order of a power series `-ring
to a total order.

Theorem 3.5.13. Suppose A is a totally ordered domain and ∆ is a torsion-free
rooted po-group which is locally finite modulo its maximal totally ordered subgroup
Γ . Then W (∆ ,A) is a domain and a finite valued `-ring whose lattice order can
be extended to a total order. If A is a division ring, then the set of basic elements
in W (∆ ,A) is the multiplicative group of units in W (∆ ,A)+. If, in addition, Γ has
finite index in ∆ , then W (∆ ,A) = V (∆ ,A) is a division ring.

Proof. By Theorem 3.5.12 the partial order of ∆ can be extended to a total or-
der. Let ∆1 be this totally ordered group. Then W (∆ ,A) is an `-ring by Theorem
3.5.3 and W (∆ ,A) ⊆W (∆1,A) = V (∆1,A) as rings. For, if u ∈W (∆ ,A), then supp
u is contained in the union of finitely many cosets of Γ and hence u ∈ V (∆1,A).
Also, W (∆ ,A)+ ⊆V (∆1,A)+ by Exercise 27. If Γ has finite index in ∆ , then clearly
W (∆ ,A) = V (∆ ,A) = V (∆1,A) and hence W (∆ ,A) is a division ring by Theorem
3.5.8, provided A is a division ring. Let {Γj : j ∈ J} be the set of roots of ∆ . Each
Γj = Γ + γ j is a coset of ∆ , and V (∆ ,A) = Π jV (Γj,A) and W (∆ ,A) = ⊕ jV (Γj,A)
as A- f -bimodules (see Exercise 2.6.6). The basic elements of W (∆ ,A) are the
strictly positive elements that lie in one of the summands. Suppose u ∈ V (Γj,A)
and v ∈ V (Γk,A) are basic elements. Then supp uv ⊆ Γ + γ j + γk and uv is basic.
Also, if A is a division ring, then ux−γ j ∈ V (Γ ,A) has its inverse v ∈ V (Γ ,A),
and x−γ j v ∈ V (Γ − γ j,A) ⊆W (∆ ,A) is the inverse of u. Thus, the basic elements
of W (∆ ,A) constitute a multiplicative subgroup of W (∆ ,A)+. But each unit of
W (∆ ,A)+ is basic by Theorem 3.1.3. ut

Exercises.

1. Let ∆ be a rooted poset with a partial addition. If α +β ≤ α,β whenever α +β
exists show that ∆ satisfies (3.5.11) and (3.5.12).

2. Let A be a po-domain with A+ 6= 0 and let ∆ be a poset with a partial addition.

(a) Show that ∑(∆ ,A) is a po-ring iff ∆ is a pops.
(b) Show that ∑(∆ ,A) is a po-domain iff ∆ is a pops and a semigroup.
(c) Show that W (∆ ,A) is an `-domain iff ∆ is a rooted pops and a semigroup,

A is an `-domain, and A is totally ordered or ∆ is trivially ordered.
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3. For each subset X of the poset ∆ let X ′ be the set of all those elements in ∆ that
are comparable to each element of X . Verify the following.

(a) ′ is a Galois connection on the power set of ∆ .
(b) If X is a chain, then so is X ′′.
(c) If the set U(X) of upper bounds of X is a chain, then U(X)⊆ X ′′.

4. Suppose that the poset ∆ has a partial addition and it satisfies (3.5.11) and
(3.5.12). For β ∈ ∆ let S(β ) be the set of summands of β .

(a) If β ∈ X ′′ show that S(β )⊆ X ′′ (see Exercise 3).
(b) If α ≤ β show that S(α)∪S(β )∪{α,β} is a chain.

5. Let Γ be the subgroup generated by the positive cone ∆+ of the po-group ∆ .
Show that the following statements are equivalent.

(a) ∆ is rooted.
(b) Γ is rooted.
(c) ∆+ is a chain.
(d) Γ is totally ordered.
(e) Some coset of Γ is a chain.
(f) Each coset of Γ is a chain.
(g) Each maximal chain in ∆ is a coset of Γ .
(h) Some maximal chain in ∆ is a coset of Γ .

6. Let ∆ be a rooted po-group with Γ as its largest totally ordered subgroup, and
let Λ be a subgroup of ∆ .

(a) Show that ∆/Λ is a rooted quasi-ordered set (see (2.2.1)).
(b) Show that ∆/Λ is a trivially ordered poset iff Γ ⊆Λ .
(c) Show that Γ = f`(∆) = fr(∆) = f (∆).

7. Show that a pops is negative iff it is the set of nonzero lower bounds of the
identity of some mopops.

8. Show that an f -pops is negative iff 2α < α for each α ∈ ∆ for which 2α is
defined.

9. Let ∆ be a totally ordered negative pops. For α,β ∈ ∆ define β À α iff ∀n∈N,
if nβ ∈ ∆ , then nβ ≥ α . Also, define the relation ∼ by α ∼ β iff ∃n ∈ N such
that nα 6∈ ∆ and nβ 6∈ ∆ , or {γ : γ À α}= {γ : γ À β}. Verify the following.

(a) ∼ is an equivalence relation on ∆ .
(b) α ∼ β iff ∃m,n ∈ N such that either nα 6∈ ∆ and mβ 6∈ ∆ , or α ≥ nβ and

β ≥ mα .
(c) β À α and β ∼ α iff ∃n ∈ N with nβ ∈ ∆ ,(n+1)β 6∈ ∆ and nβ ≥ α .
(d) The relation defined on the set of equivalence classes v(∆) by v(β )≥ v(α)

iff β À α or β ∼ α is a total order of v(∆).
(e) The natural map v : ∆ −→ v(∆) is isotone.
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(f) If α1, . . . ,αn ∈ ∆ , then v(α1 + · · ·+αn) = v(α1)∧·· ·∧ v(αn).

10. A groupoid is a set with a binary operation.

(a) Suppose that ∆ is a rooted poset with a partial addition that satisfies (3.5.11)
and (3.5.12). Let Γ be a subset of ∆ with the property that each of its roots
generates a subgroupoid of ∆ . Show that the mapping X 7−→ ωX induces
a bijection between the roots of Γ and the roots of ωΓ . Also, show that
ω(trunk Γ ) = trunk (ωΓ ). (Use Exercise 3.)

(b) Suppose that ∆ is a poset with a partial addition that satisfies (3.5.5) in
the weak sense (replace “<” by “≤” in (3.5.5)), and assume that, for each
γ ∈ ∆ , γ satisfies (3.5.11) and 2γ ∈ ∆ . Show that each maximal chain of ∆
is a totally ordered groupoid.

11. (a) Let Λ be a totally ordered negative semigroup and let γ0 ∈ Λ . Suppose
that {Λi : i ∈ I} is a disjoint family of pops such that each Λi is disjoint
from Λ and {γ ∈ Λ : γ < γ0}is isomorphic to Λi via the map γ 7−→ γ(i).
Let ∆ = Λ ∪⋃

i∈I Λi have the cardinal order supplemented by α(i) < γ
for each α(i) ∈ Λi and each γ ∈ Λ with γ0 ≤ γ . Also, let ∆ have the partial
addition obtained by supplementing each component addition by α(i) +γ =
(α + γ)(i) and γ + α(i) = (γ + α)(i) if γ0 ≤ γ ∈ Λ . Show that ∆ is a rooted
negative pops and each root generates a totally ordered subsemigroup.

(b) Give an example of a subset Γ of a rooted negative pops ∆ such that nΓ is a
totally ordered subsemigroup of ∆ for each 2≤ n, but ωΓ is neither totally
ordered nor a subsemigroup of ∆ .

12. Let v ∈ V (∆ ,A) or v ∈W (∆ ,A) where ∆ is a rooted mopops and A is a unital
ring. Suppose that supp v < 0 and each root of supp v generates a subsemigroup
of ∆ . Show that (a) and (b) of Theorem 3.5.8 hold.

13. Suppose that A is a unital ring, U (A) is its group of units, and End1(A) is its
semigroup of 1-preserving ring endomorphisms, acting on the right of A. Let
∆ be a partial semigroup and let ∆+ = {(α,β ) ∈ ∆ ×∆ : α + β ∈ ∆} be the
domain of +. Assume that σ : ∆ −→ End1(A) and τ : ∆+ −→ A are functions
and that τ(β ,γ) ∈U (A) if there is an α ∈ ∆ with α +β + γ ∈ ∆ . Let ∑(A∗∆)
be a free right A-module with the basis {xα : α ∈ ∆}. For α,β ∈ ∆ and a,b ∈ A
define

(xα a)(xβ b) =
{

xα+β τ(α ,β )aσ(β )b if α +β ∈ ∆
0 if α +β 6∈ ∆

and extend this multiplication to all of ∑(A ∗∆) using distributivity. So if u =
∑xα uα and v = ∑xα vα , then

uv = ∑
γ∈∆

xγ

(
∑

α+β=γ
τ(α,β )uσ(β )

α vβ

)
. (3.5.15)

When ∑(A∗∆) is a ring it is called a crossed product of ∆ over A. If a ∈U (A)
let η(a) = a−1( )a denote the automorphism of A given by conjugation by a;
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and let η(α,β ) = η(τ(α,β )) if τ(α,β ) ∈ U (A). If A is a po-ring we will
assume that for all (α,β ) ∈ ∆+,τ(α,β ) > 0,τ(α,β )−1 > 0 if τ(α,β ) ∈U (A)
and 0 < aσ(α) if 0 < a ∈ A and α ∈ ∆ .

(a) Show that ∑(A∗∆) is a ring if and only if for all α,β ,γ ∈ ∆ with α +β +
γ ∈ ∆

τ(α +β ,γ)τ(α,β )σ(γ) = τ(α,β + γ)τ(β ,γ), (3.5.16)

σ(β )σ(γ) = σ(β + γ)n(β ,γ). (3.5.17)

For the remainder of these exercises, unless stated otherwise, ∑(A∗∆) is a
ring.

(b) Suppose that dα ∈U (A) for each α ∈ ∆ . Show that ∑(A∗∆) is a crossed
product with respect to the basis {yα = xα dα : α ∈ ∆}, and determine the
new twist τ1 and the new action σ1 in terms of τ and σ . This change of
basis is called a diagonal change o f basis.

(c) Suppose that ∆ has an identity element 0. Show that the following are equiv-
alent.

(i) ∑(A∗∆) has an identity element of the form xβ a.
(ii) σ(0) is an automorphism.

(iii) σ(0) = n(b) for some b ∈U (A).
(d) If 1 = x0 show that τ(α,0) = τ(0,α) = 1 for each α ∈ ∆ , and σ(0) = 1.

Also, show that if ∆ is a partial monoid, then it can be assumed that 1 = x0.
(e) Show that Theorem 3.5.2 holds for W (A∗∆) and S(A∗∆) where, as additive

groups, W (A∗∆) = W (∆ ,A) and S(A∗∆) = S(∆ ,A) and multiplication is
defined by (3.5.15).

For convenience, the rings ∑(∆ ,A),W (∆ ,A),V (∆ ,A) and S(∆ ,A), when they
exist, will be considered power series crossed products with trivial action and
twisting even though A is not assumed to be unital.

14. Suppose that ∆ is a pops and A is a po-domain. Show that Theorem 3.5.3 holds
for ∑(A∗∆) and W (A∗∆). Moreover, if u1, . . . ,un ∈W (A∗∆)+∪−W (A∗∆)+

show that

maxsupp u1 · · ·un = max (maxsupp u1 + · · ·+ maxsupp un).

15. Let ∆ be a pops, let d`(∆) = {γ ∈ ∆ : ∀α ,β ∈ ∆ , if α‖β and γ + α and γ + β
are defined, then γ + α‖γ + β} and let dr(∆) denote the right-sided version
of d`(∆). A subset Λ of d`(∆) (respectively, dr(∆)) is said to have property
(d`) (respectively, property (dr)) if whenever γ,δ ∈Λ and α,β ∈ ∆ with α‖β
and γ‖δ , then γ + α‖δ + β provided these elements are defined. Let A be a
totally ordered domain. Verify the following.

(a) d`(∆) is a subpops of ∆ .
(b) If ∆ is rooted, then d`(∆) is an ideal of the poset ∆ .
(c) Suppose that ∆ is rooted and let w ∈W (A∗∆)+ (respectively, ∑(A∗∆)+).

Then w ∈ d`(W (A ∗∆)) (respectively, d`(∑(A ∗∆)) if and only if supp w
has property (d`).
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(d) The crossed product power series po-ring W (A∗∆) (respectively, ∑(A∗∆))
is a left d-ring iff ∆ is rooted, ∆ = d`(∆), and ∆ has property (d`).

(e) State the analogous characterization of the right d-elements of W (A ∗∆)
and ∑(A∗∆).

(f) W (A ∗∆) (respectively, ∑(A ∗∆ )) is a d-ring iff ∆ = d`(∆) = dr(∆), ∆ is
rooted, and ∆ has property (d`).

(g) If ∆ is a group show that ∆ = d`(∆) = dr(∆) and a subset Λ has property
(d`) iff Λ is totally ordered.

16. Suppose that ∆ is a trivially ordered pops and A is an `-domain. Let w be an
element of ∑(A∗∆)+.

(a) Show that w ∈ d`(∑(A∗∆)) iff for all γ,δ ∈ supp w and for all α,β ∈ ∆ , if
γ +α = δ +β , then

(i) α 6= β =⇒ τ(γ,α)wσ(α)
γ A⊆ (τ(δ ,β )wσ(β )

δ A)⊥, and

(ii) α = β =⇒ τ(γ,α)wσ(α)
γ + τ(δ ,α)wσ(α)

δ ∈ d`(A).
(a) If A is totally ordered, show that w ∈ d`(∑(A∗∆)) iff for all γ,δ ∈ supp w

and for all α,β ∈ ∆ ,γ +α = δ +β =⇒ α = β .
(b) If A is totally ordered, show that ∑(A∗∆) is a d-ring iff γ +α = δ +β =⇒

γ = δ and α = β , for all α,β ,γ,δ ∈ ∆ .
(c) Describe the right d-elements of ∑(A∗∆) and determine when ∑(A∗∆) is

a right d-ring.

17. Let ∆ be a pops.

(a) Show that f`(∆) is a subpops of ∆ .
(b) If ∆ is rooted, show that f`(∆) is an ideal of the poset ∆ .
(c) If ∆ is rooted and A is totally ordered show that f`(W (A ∗∆)) = W (A ∗

f`(∆)) and f`(∑(A∗∆)) = ∑(A∗ f`(∆)) and that similar equations hold for
the right f -elements.

(d) With the conditions in (c), let R be an `-subgroup of V (A ∗ ∆) which
contains Σ(A ∗ ∆) and which is an `-ring with multiplication given by
(3.5.15). Show that F̀ (R) = R ∩ V (A ∗ f`(∆)), Fr(R) = R ∩ V (A ∗ fr(∆))
and F(R) = R∩V (A∗ f (∆)).

(e) Show that Theorem 3.5.4 holds for crossed products.

18. Suppose that ∆ is a trivially ordered pops and A is an `-domain. Let 0 ≤ w ∈
∑(A∗∆).

(a) Show that w ∈ f`(∑(A ∗ ∆)) iff ∀(γ,α) ∈ supp w × ∆ , γ + α ∈ ∆ =⇒
γ +α = α and τ(γ,α)wσ(α)

γ ∈ f`(A).
(b) Show that w ∈ fr(∑(A ∗ ∆)) iff ∀(γ,α) ∈ supp w × ∆ , α + γ ∈ ∆ =⇒

α + γ = α , and ∀b ∈ A, τ(α,γ)(b⊥)σ(γ)wγ ⊆ b⊥.
(c) Show that ∑(A ∗∆) is a left f -ring iff ∆ + ∆ = /0, or, if γ + α ∈ ∆ , then

γ +α = α and τ(γ,α)Aσ(α) ⊆ F̀ (A).
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(d) Show that ∑(A ∗∆) is a right f -ring iff ∆ + ∆ = /0, or, if α + γ ∈ ∆ , then
α + γ = α and τ(α,γ)Cσ(γ)A⊆C for each polar C of A.

(e) Show that each of the statements in Theorem 3.5.4 (see Exercise 14) is
equivalent to the following: ∆ +∆ = /0, or if α +β ∈∆ , then α +β = α = β
and A is totally ordered.

(f) Let e(∆) = {γ ∈ ∆ : ∀α ∈ ∆ , γ + α (respectively, α + γ) ∈ ∆ ⇒ γ + α =
α (respectively,α + γ = α)}. Show that e(∆) is a subpops of ∆ and
F(∑(∆ ,A)) = ∑(e(∆),F(A)).

19. Let ∆ be a pops and let MA be a strict po-module over the po-domain A. For
u ∈ M∆ and v ∈ A∆ “define” uv ∈ M∆ by means of the equations (3.5.2) and
(3.5.3).

(a) State and prove the analogue of Theorem 3.5.3 and the equations (3.5.7)
through (3.5.10) for the appropriate modules.

(b) Suppose that ∆ is rooted and M and A are totally ordered. Show that if N =
W (∆ ,M) and R = W (∆ ,A), then f (NR) = W ( fr(∆),A),d(NR) = {w ∈ R :
supp w has property (dr)} (see Exercise 15), and dN(R) = {u ∈ N : supp u
has property (d`)} (see Exercise 3.1.7).

(c) If ∆ is also an f -pops in (b), show that V (∆ ,M) is an f -module over the
f -ring V (∆ ,A).

20. Let ∆ be a totally ordered monoid. Assuming that 1 = x0 (see Exercise 13 (c)
and (d)) show that Theorem 3.5.8 holds for V (A∗∆).

21. Let ∆ be a rooted f -pops and let A be a totally ordered domain. Show that the
`-group isomorphism V (A ∗∆) −→ ΠiV (A ∗∆i) that is given in Exercise 2.6.6
is an isomorphism of f -rings.

22. Let ∆ be a rooted pops and let A be an `-domain. Show that W (A ∗∆) is an
almost f -ring iff W (A ∗ ∆)2 = 0, or A is totally ordered and ∆ satisfies the
condition: α +β ∈ ∆ =⇒ α and β are comparable.

23. Find an example of an `-unital `-ring R which is generated by its d-elements
and which contains an element u ∈U (R+) such that u∨1 is not a unit of R and
u,u−1 ∈ 1⊥. So U (R+) is not a sublattice of R and u∨u−1 6≥ 1.

24. In this and the following two exercises the group operation will be written mul-
tiplicatively. Let (G,P) be a po-group. If {a1, . . . ,an} ⊆ G let S(a1, . . . ,an) de-
note the normal subsemigroup of G generated by {a1, . . . ,an} and let M(a1, . . . ,
an) = S(a1, . . . ,an)∪{1}. Verify each of the following.

(a) If a∈ P, then M(a)⊆ P; if 1 6= a∈ P, then P∩S(a−1) = /0; M(a1, . . . ,an) =
M(a1) · · ·M(an); S(a1, . . . ,an)−1 = S(a−1

1 , . . . ,a−1
n ).

(b) P can be extended to a total order of G iff the following condition is satis-
fied:

∀a1, . . . ,an ∈ G\{1}, ∃ signs ε1, . . . ,εn ∈ {±1}
such that
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P∩S(aε1
1 , . . . ,aεn

n ) = /0. (3.5.18)

(Show that if a∈G, then for some ε ∈ {±1} the normal submonoid PM(aε)
satisfies (3.5.18).)

(c) Show that a group can be totally ordered iff each of its finitely generated
subgroups can be totally ordered.

25. (a) Let F be the free group on the set {x,y} and let X = {y−nxyn : n ∈ Z+}.
Show that the subgroup of F generated by X is free on X .

(b) Show that the free product of the family of groups {Zi : i ∈ I} is the free
group of rank card (I) (see Exercise 1.4.21).

26. Let R be a unital ring and let U2(R) donote the group of invertible 2×2 matrices
over R. We will identify the matrix ring R[t]2 with the polynomial ring R2[t]. Let

F and G be subsets of U2(R[t]) with the following property. If
(

f1 f2
f3 f4

)
∈F\G,

then deg f2, the degree of f2, is larger than the degree of the other three el-
ements, and the highest coefficient of f2 is not a zero divisor of R; and if(

g1 g2
g3 g4

)
∈ G\F , then deg g3 is larger than the degree of the other three el-

ements, and the highest coefficient of g3 is not a zero divisor of R. Suppose that
h1 · · ·hn is a nonempty product whose factors alternately come from the sets
F\G and G\F , and let (

a
b

)
= h1 · · ·hn

(
1
1

)
.

(a) If h1 ∈ F show that deg a > deg b and if h1 ∈ G show that deg b > deg a.
(b) If F and G are subgroups of U2(R[t]) such that F ∩G = 1 show that the

subgroup generated by F and G is their free product.
(c) Suppose that R has characteristic 0 (that is, 1 has infinite order). Show that

the subgroup of U2(R[t]) generated by
(

1 t
0 1

)
and

(
1 0
t 1

)
is free on these

generators.
(d) Suppose that R is a totally ordered domain and R[[t]] = V (Z+,R) is the

formal power series ring constructed by using d.c.c. instead of a.c.c.; that
is, the supports of the power series have d.c.c.. Let U be the subgroup of
U2(R[[t]]) consisting of those formal power series of the form

(
α 0
0 β

)
+A1t +A2t2 + · · ·

with α > 0 and β > 0 units in R (again, R2[[t]] and R[[t]]2 have been identi-
fied). Make R(4) into a totally ordered R-module by giving it a lexicographic
order and transfer this order to R2 via an R-module-isomorphism R(4) ∼= R2.
For a,b ∈U define a > b if

a−b = Antn +An+1tn+1 + · · ·
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and An > 0. Show that (U,≥) is a totally ordered group.
(e) Show that a free group can be totally ordered.
(f) Show that the free product of a set of orderable groups is orderable. (Let

F and G be orderable groups which are subgroups of the group of positive
units of a totally ordered domain R (see Exercise 2.1.14) and consider their

representations in U2(R[t]) given by f 7−→
(

f 0
0 1

)
followed by conjuga-

tion by
(

1 t
0 1

)
if f ∈ F , and g 7−→

(
1 0
0 g

)
followed by conjugation by

(
1 0
t 1

)
if g ∈ G.)

27. Suppose (∆ ,+,≤) is a pops and ≤1 is a partial order of ∆ which contains ≤
such that (∆ ,+,≤1) is also a pops; call it ∆1. If A is a po-ring show that:

(a) ∑(∆ ,A) = ∑(∆1,A), W (∆ ,A) ⊆ W (∆1,A), S(∆ ,A) ⊆ S(∆1,A), and
V (∆1,A)⊆V (∆ ,A);

(b) ∑(∆ ,A)+ ⊆ ∑(∆1,A)+, W (∆ ,A)+ ⊆ W (∆+
1 ,A), V (∆ ,A)+ ∩V (∆1,A) ⊆

V (∆1,A)+.
(c) If ∆ is the union of a finite number of chains, show that the inclusions in

(a) may be replaced by equalities.
(d) Give an example to show that the inclusions in (a) can be proper.

28. Let G be the group of basic elements of the division ring V (∆ ,A) given in
Theorem 3.5.13. Show that G is a finitely rooted po-group and there are po-
group homomorphisms π : G−→ ∆ and ϕ : ∆ −→ G such that πϕ = 1.

Notes. Generalized power series `-rings over a pops first appeared in Conrad
and McCarthy [CMC] and Theorems 3.5.3 and 3.5.4 come from this paper; gener-
alized power series rings are studied by Conrad in [CON2] and this is the source of
Theorems 3.5.1, 3.5.2, 3.5.5, and 3.5.6. Theorem 3.5.7 for a totally ordered negative
semigroup and Theorem 3.5.8 come from Neumann [N]. Theorem 3.5.11 is taken
from Passman [P1], Theorem 3.5.12 comes from Neumann and Sheppard [NS], and
Theorem 3.5.13 is due to Conrad and Dauns [CD]. Exercise 24 gives Fuch’s criteria
for extending a partial order of a group to a total order [F, p. 56] and Exercise 26
gives Bergman’s method of ordering a free group and the free product of orderable
groups. [BER3].

3.6 Archimedean f -Rings

The `-ring analogue of Theorem 2.3.9 is the false statement that each archimedean
`-ring is commutative. The canonically ordered n× n matrix ring over the reals
is an example of a noncommutative complete `-ring. However, the story is differ-
ent for f -rings, as Theorem 3.3.2 suggests. Moreover, a not necessarily associative



220 3 Lattice-ordered Rings

archimedean f -ring must be associative. To clarify this we need to point out that the
definitions of a po-ring, `-ring and f -ring apply to any not necessarily associative
ring and Theorem 3.1.2 is still valid in this generalized setting. In this section we
present these commutative and associative results, and we also consider the comple-
tion of an archimedean f -ring as well as the representation theorem for an archimd-
edean semiprime f -ring that is the analogue of the `-group representation theorem
given in Section 2.3. In addition, we will show that the ring generated by the semir-
ing of f -endomorphisms of an archimedean `-group is an f -ring and in the exercises
we will determine when this f -ring has the same Stone space as the `-group.

Theorem 3.6.1. Let R be a not necessarily associative f -ring. Then for all x,y,z∈ R
we have

(a) |xy− yx| ¿ x2 + y2 and
(b) |(xy)z− x(yz)| ¿ (x2 + y2 + z2)+ ((x2)2 +(y2)2 +(z2)2 + 2(|x2x| ∨ |xx2|+

|y2y|∨ |yy2|+ |z2z|∨ |zz2|).
In particular, a not necessarily associative archimedean f -ring is a commutative
f -ring.

Proof. We may assume that R is totally ordered, and we also suppose that 0 < z ≤
x≤ y. Let n ∈ N. If k ∈ Z and ky≤ nx, then k ≤ n since n < k gives that nx≤ ny <
ky≤ nx. If m is the largest integer with my≤ nx, then my≤ nx < (m+1)y gives that
nx = my + y1 with 0 ≤ y1 < y. Since the commutator [x,y] = xy− yx is additive in
each variable we have

n|[x,y]|= |[my+ y1,y]|= |[y1,y]| ≤ y1y∨ yy1 ≤ y2 ≤ x2 + y2.

This completes the proof of (a) since [y,x] = −[x,y]. Now, with m as above, mz =
ky+ y2 with k ∈ Z+ and 0≤ y2 < y. So

n|(xy)z− x(yz)|= |((my+ y1)y)z− (my+ y1)(yz)|

= |y2(ky+ y2)+(y1y)z− y(y(ky+ y2))− y1(yz)|
= |k(y2y− yy2)+(y2y2− y(yy2))+((y1y)z− y1(yz))|
≤ k|[y2,y]|+ |y2y2− y(yy2)|+ |(y1y)z− y1(yz)|
≤ (y2)2 + y2 + y2y2∨ y(yy2)+(y1y)z∨ y1(yz)

≤ (y2)2 + y2 +2(y2y∨ yy2)

≤ (x2 + y2 + z2)+((x2)2 +(y2)2 +(z2)2)+2(x2x∨ xx2 + y2y∨ yy2 + z2z∨ zz2).

The five other cases that arise from a different order of {x,y,z} are handled in the
same way, and the cases that arise if one or more of x,y, or z are negative clearly
follow from the positive case. ut

Since the nil radical of an f -ring is infinitesimal we expect the nilpotent elements
in an archimedean f -ring to be small and to have a small index of nilpotency. In fact,
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this is the case in any sp-`-ring. It is, of course, not true in an arbitrary archimedean
`-ring as one can easily verify by considering an infinite row-finite matrix ring over
the reals.

Recall (from Section 3.4) that if M is a po-module over the po-ring C, then M+

is C+-archimedean if C+x ≤ y implies that x = 0, for any x, y ∈M+ (see Exercises
3.4.30 and 3.4.31).

Theorem 3.6.2. Let R be an sp-`-ring that is a po-algebra over the po-ring C, and
suppose that R+ is C+-archimedean. Then the following hold.

(a) ``(R) = r`(R) = {x ∈ R : |x|2 = 0}, and (R/``(R))+ is C+-archimedean.
(b) ``(R2) = r`(R2) = {x ∈ R : |x|3 = 0}= `-β (R) = `-Ng(R), and R/`-β (R) is

`-reduced and its positive cone is C+-archimedean.
(c) If R is an f -ring then `-β (R) = `(R). If R is an f -algebra over C, then

`-β (R)∩R[2] = 0; consequently, R is a subdirect product of a semiprime f -
algebra whose positive cone is C+-archimedean and a zero f -ring on which
C+ acts as f -endomorphisms.

Proof. Let x,y,z ∈ R with |x| nilpotent of index m. Then, for each α ∈ C+, the
inequality α(|x||y|+ |y||x|) ≤ α2|x|2 + |y|2 is a consequence of the inequality 0 ≤
(α|x|− |y|)2. If m≤ 2, then |x||y|= |y||x|= 0 and the first part of (a) follows. Now,
C+ operates on R/``(R) since C+``(R)⊆ ``(R) and the fact that (R/``(R))+ is C+-
archimedean has already been noted in Exercise 3.2.19, at least for C = Z; but the
same straighforward proof that works for Z also works for a general po-ring C.
If m ≥ 4, then from (|x|m−2)2 = 0 and (a) we get the contradiction that |x|m−1 =
0. Thus, m ≤ 3 and |x|2R = R|x|2 = 0. If the first inequality in this paragraph is
multiplied on the right by |z|we get α|x||y||z| ≤α(|x||y|+|y||x|)|z| ≤ |y|2z and hence
|x| ∈ ``(R2); similarly, |x| ∈ r`(R2). This proves all of (b) except for (R/`-β (R))+

being C+-archimedean. But if z+`-β (R)¿C+ y+`-β (R) in (R/`-β (R))+, then for
each α ∈ C+ there is an element zα ∈ `-β (R)+ such that α|z| ≤ |y|+ zα . Hence
α |z||t|2 ≤ |y||t|2 for each t ∈ R; so z ∈ `-β (R) and (R/`-β (R))+ is C+-archimedean.
Suppose that R is an f -ring. If α ∈C+, then α|x|2 ≤ |x|. For, if α|x|2 > |x| in a totally
ordered (ring) homomomorphic image R of R, then 0 = α2|x|3 ≥ α|x|2 > 0. So
|x|2 = 0 and `-β (R) = `(R). Now assume that R is a C- f -algebra. If x∈ `-β (R)∩R[2],
then |x| ≤ y2 for some y ∈ R+. Suppose that α|x̄| > ȳ for some α ∈ C+ and some
totally ordered homomorphic image R̄ of R. Then ȳ2 = 0 and hence we have the
contradiction that x̄ = 0. So, C+|x| ≤ y and x = 0. ut

An example of a nilpotent archimedean sp-`-ring (even an almost f -ring that is a
d-ring) of index of nilpotency 3 is given in Exercise 1. Also, see Exercise 3.7.25. An
example of an archimedean f -ring for which the subdirect product representation in
(c) above cannot be replaced by a direct product representation is given in Exercise
25.

The representation theorem for an archimedean `-group that is given in Theo-
rem 2.3.23 certainly holds for the additive `-group of an archimedean `-ring R, but
it cannot be a ring representation unless R is a semiprime f -ring. These are the
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only requirements on R as we will now show. Recall that D(X) denotes the lattice
of extended real valued continuous functions on a topological space X which are
real valued on a dense subset of X and that D(X) is a complete f -ring when X is
extremely disconnected (Theorem 2.3.22).

Theorem 3.6.3. Let R be a semiprime archimedean f -ring and let X be the Stone
space of the Boolean algebra of polars of R.

(a) There is a c`-essential `-ring monomorphism from R into D(X).
(b) Suppose that Yi, i = 1,2, are Stone spaces and ϕi : R −→ D(Yi) are c`-

essential `-ring monomorphisms. Then there is a homeomorphism τ : Y1 −→
Y2 such that ϕ1(a)(y1) = ϕ2(a)(τ(y1)) for each a ∈ R and each y1 ∈ Y1.

Proof. As in the proof of Theorem 2.3.23 we may assume that R is divisible. Let S
be the unital Q- f -algebra extension of R that is given in (b) of Theorem 3.4.5. S is
archimedean since if 0 ≤ s ¿ t in S and a ∈ R+, then 0 ≤ sa ¿ ta in R; so sR = 0
and s = 0. If Ta : S −→ S denotes right multiplication by a ∈ S and Ω = {Ta : a ∈
R+}, then the triple (R,S,Ω) satisfies the conditions in Exercise 2.2.14(g). Thus, the
Boolean algebras of polars of R and S, B(R) and B(S), respectively, are canonically
isomorphic, and X is also the Stone space of B(S). Moreover, according to Exercise
2.3.23, S is a c`-essential extension of R. Thus, for the proof of (a) we may assume
that R is unital.

Let ϕ : R −→ D(X) be the `-group representation of Theorem 2.3.23 that is as-
sociated with the maximal disjoint set {1} of R. We will use the notation from the
proof of this theorem; so ϕ(a) = fa. According to step (vi) in the proof of Theorem
2.3.23 ϕ(1) is the characteristic function of V (1) = X ; that is, ϕ(p) = p for each
p ∈ Q. To show that ϕ is a ring homomorphism it suffices to show that fa fb = fab
if a,b ∈ R+. Suppose that fa(m) < p and fb(m) < q where p,q ∈Q and m ∈ X with
fa(m), fb(m) and fab(m)∈R. Since ((p−a)(q+b))+ = (p−a)+(q+b)≥ q(p−a)
and

f(p−a)+(m) = (p− fa(m))∨0 = p− fa(m) > 0

we have that f((p−a)(q+b))−(m) = 0 and

f(p−a)(q+b)(m) = f((p−a)(q+b))+(m)≥ q(p− fa(m)).

Since pq−ab = (p−a)(q+b)+qa− pb we have that

pq− fab(m)≥ pq−q fa(m)+q fa(m)− p fb(m) = p(q− fb(m)) > 0.

But then

fa(m) fb(m) =


 ∧

fa(m)<p

p





 ∧

fb(m)<q

q


 =

∧

p,q
pq≥ fab(m).

The reverse inequality will follow from a dual computation. If 0 ≤ p < fa(m) and
0 ≤ q < fb(m) with p,q ∈ Q, then from the equation ab− pq = (a− p)(q + b)+
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pb−qa we get that

fab(m)− pq≥ q( fa(m)− p)+ p fb(m)−q fa(m) = p( fb(m)−q) > 0.

So

fa(m) fb(m) =


 ∨

0≤p< fa(m)

p





 ∨

0≤q< fb(m)

q


 =

∨

p,q
pq≤ fab(m).

Thus, fa fb and fab agree on a dense subset of X and hence fa fb = fab.
Now, (b) also follows from the analogous result for archimedean `-groups. By

Exercise 2.3.20 there is a homeomorphism Y1
τ−→ Y2 and a positive unit f in D(Y2)

such that ϕ1(a)(y1) = f (τ(y1))ϕ2(a)(τ(y1)) for each a ∈ R and for each y1 ∈ Y1.
Let

W = f−1((0,∞))∩
⋃

a∈R

ϕ2(a)−1((0,∞)).

Then W is a dense open subset of Y2. For, if χU is the characteristic function of the
nonempty clopen subset U of Y2, then 0 < ϕ2(a)≤ nχU for some a ∈ R+ and some
n ∈ N, and hence U ∩W 6= /0. If y1 ∈ τ−1(W ), then for some a ∈ R, 0 < f (τ(y1)),
ϕ2(a)(τ(y1)) < ∞, and since

f (τ(y1))2ϕ2(a2)(τ(y1)) = f (τ(y1))2(ϕ2(a)(τ(y1)))2 = ϕ1(a2)(y1)

= f (τ(y1))ϕ2(a2)(τ(y1)),

we have that f (τ(y1)) = 1 and hence f = 1. ut
One consequence of Theorem 3.6.3 is that the Dedekind completion of a

semiprime archimedean Q- f -algebra R is an f -algebra extension of R since it is
just the convex `-subgroup of D(X) generated by the image of R. In fact, as we will
soon see, this result holds for any archimedean f -ring. An `-ring will be called an
infinite d-ring if it satisfies the following condition:

if
∧

i∈I

xi = 0 and a≥ 0, then
∧

i∈I

axi =
∧

i∈I

xia = 0. (3.6.1)

In other words, an infinite d-ring is an `-ring in which the multiplication maps in-
duced by positive elements are all complete. As a prelude to the aforementioned
result about the completion of an archimedean f -ring we present a result about the
completeness of certain homomorphisms.

Theorem 3.6.4. Suppose that
∧

α∈A xα = 0 in the `-group G. Fix β ∈ A and let
uα = (−xβ + ϕ(xα))+ and T = ∩{[0,ψ(xα)] : α ∈ A} where ϕ,ψ : G+ −→ G+

are functions which satisfy the following conditions:

(i) ϕ and ψ are isotone;
(ii) ∧ϕ(xα) = 0;

(iii) for each α ∈ A, ψ(xβ +uα)≤ ψ(xβ )+ψ(uα);
(iv) for each α ∈ A, ϕψ(xα)≤ ψϕ(xα);
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(v) if xα ∈ z⊥ for some α , then ϕ(xα) ∈ z⊥;
(vi) if uα ∈ z⊥ for some α , then ψ(uα) ∈ z⊥.

Then ϕ(T ) ⊆ [0,ψ(xβ )]. In particular, each f -endomorphism of an archimedean
`-group is complete and hence an archimedean f -ring is an infinite d-ring.

Proof. We will first show that ∩u⊥⊥α = 0. Suppose that 0 ≤ z ∈ ∩u⊥⊥α . Then for
each α ∈ A, z∧ xβ ≤ xβ ∨ϕ(xα) = ϕ(xα)+ (−xβ + ϕ(xα))− yields that z∧ xβ ≤
ϕ(xα) since (−xβ + ϕ(xα))− ∈ u⊥α , and so z∧ (−xβ + ϕ(xα))− = 0. But then z∧
xβ = 0 by (ii) and z ∈ u⊥β by (v); so z = 0. Now, suppose that 0 ≤ t ≤ ψ(xα) for
each α ∈ A. Then ϕ(t)≤ ψϕ(xα)≤ ψ(xβ +uα)≤ ψ(xβ )+ψ(uα) by (iv) and (iii).
But ∧ψ(uα) = 0 and hence ϕ(t) ≤ ψ(xβ ). For, if 0 ≤ v ≤ ψ(uα) for each α ∈ A,
then v ∈ (ψ(uα))⊥⊥ ⊆ u⊥⊥α by (vi) and hence v = 0. If G is archimedean and ϕ is
multiplication by n ∈ N and ψ is an f -endomorphism of G we get that nt ≤ ψ(xβ ).
So t = 0 and ∧ψ(xα) = 0. ut

A complete infinite d-ring need not be an f -ring as is illustrated by the top row
of the cannonically ordered matrix ring R2. Also, an infinite d-ring that is an f -ring
need not be archimedean as is illustrated by any non-archimedean totally ordered
division ring, or by the antilexicographically ordered polynomial ring R[x]. On the
other hand, the lexicographically ordered polynomial ring R[x] is not an infinite
d-ring.

We turn next to the completion of an `-ring.

Theorem 3.6.5. The Dedekind completion D(R) of an archimedean infinite d-ring
R is an `-ring extension of R and is itself an infinite d-ring. If R is a one-sided f -ring
or an almost f -ring, then so is D(R).

Proof. By Theorem 2.3.3 D(R) is an `-group extension of the additive `-group of R.
For x ∈ D(R) let L(x) = {a ∈ R : a≤ x}. If x,y ∈ D(R)+, then we define xy by xy =
lubD(R)L(x)+L(y)+. Suppose that x,y,z ∈ D(R)+ and let a,b, and c be variables for
the elements in L(x)+, L(y)+ and L(z)+, respectively. We first show that if {aα} ⊆
L(x)+ and {bβ} ⊆ L(y)+, then

x =
∨

α
aα and y =

∨

β
bβ ⇒ xy =

∨

α,β
aα bβ .

Clearly, xy≥∨
aα bβ . On the other hand, by Theorem 2.1.3,

ab = a


b∧

∨

β
bβ


 = a


∨

β
b∧bβ


 =

∨

β
(ab∧abβ ) = ab∧

∨

β
abβ

and

abβ =

(
a∧

∨

α
aα

)
bβ =

(
∨

α
a∧aα

)
bβ = abβ ∧

∨

α
aα bβ .

So
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ab≤
∨

β
abβ ≤

∨

α ,β
aα bβ

and xy ≤ ∨
aα bβ . Now we can easily check that multiplication in D(R)+ is asso-

ciative and distributive. For, (xy)z =
∨

(ab)c =
∨

a(bc) = x(yz). Also, x(y + z) =∨
a(b+ c) and xy+ xz =

∨
(ab+a′c) where a′ is also a variable for the elements in

L(x)+. But ab + a′c ≤ (a∨ a′)(b + c) and a∨ a′ ∈ L(x); so x(y + z) = xy + xz and,
similarly, (y+ z)x = yx+ zx.

In exactly the same way we have that

x(y∨ z) =
∨

a(b∨ c) =
∨

(ab∨ac) =
∨

(ab∨a′c) = xy∨ xz,

and, similarly, (x∨ y)z = xz∨ yz. Let `x,ry : D(R)+ −→ D(R)+ be the maps defined
by `x(y) = xy = ry(x). By Exercise 2.2.11 (b) `x and ry extend uniquely to `-group
endomorphisms of D(R) which we will also denote by `x and ry. Now, for u,v ∈
D(R) let `u and rv be the group endomorphisms of D(R) defined by `u = `u+ − `u−
and rv = rv+ − rv− . Then `u(v) = (u+v+ + u−v−)− (u+v− + u−v+) = rv(u) and
hence D(R) is a d-ring with multiplication given by uv = `u(v) = rv(u). We will now
check that D(R) is an infinite d-ring. Suppose that

∧
xα = 0 in D(R) and y∈D(R)+.

Since R is dense in D(R) there exists an element b∈ R with y≤ b. Now, xα =
∧

j xα j
with xα j ∈ R. So

0≤
∧

α
yxα ≤

∧

α
bxα ≤

∧

α

∧

j

bxα j = 0

since
∧

α, j xα j = 0. Similarly, right multiplication by y is complete.
Now, suppose that x,y,z ∈ D(R)+ with y∧ z = 0. If R is a left f -ring, then, using

the previous notation, we have that

xy∧ z =

(
∨

a,b

ab

)
∧

∨

c
c =

∨

a,b,c

(ab∧ c) = 0

since ab∧ c = 0 for every a,b and c. If R is an almost f -ring, then yz =
∨

bc = 0
since bc = 0 for every pair (b,c) ∈ L(y)+×L(z)+. ut

It is not hard to show directly that if an archimedean infinite d-ring R is an sp-
ring, then so is its completion D(R) (see Exercise 4). However, an archimedean
d-ring that has all its squares positive must be an almost f -ring (Exercise 3.8.22).

Each left (right) annihilator A in an infinite d-ring R is completely closed in R.
Hence, if R is archimedean, then A is a polar by Exercise 2.3.22 (b). In particular, if
R is an archimedean f -ring, then D(R) = T ⊕ S where T 2 = 0 and S is semiprime,
and the lower `-radical `-β (R) is a polar of R. Note that S[2] could be a proper `-ideal
of S but (S[2])⊥S⊥S = S (in any semiprime f -ring S).

We will now use the representation theorem for an archimedean `-group to give a
useful representation of the ring generated by the f -endomorphisms of the `-group.
Since an abelian `-group M is a left `-module over its po-endomorphism ring E =
EndZ(M) we will, as usual, let F(M) = F(EM) denote the subring of E generated
by the set f (M) of f -endomorphisms of M (see Theorem 3.1.1).
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Theorem 3.6.6. Let X be the Stone space of the Boolean algebra of polars of
the archimedean `-group M, and let ϕ : M −→ D(X) be the representation given
in Theorem 2.3.23. Then there is a po-ring isomorphism σ : F(M) −→ {h ∈
D(X) : hϕ(M) ⊆ ϕ(M)}, with σ(1) = 1, such that for every g ∈ M and every
α ∈ F(M), ϕ(αg) = σ(α)ϕ(g). In particular, F(M) is an archimedean f -ring and
M is a strong f -module over F(M).

Proof. Let {eλ : λ ∈Λ} be the maximal disjoint subset of M that is used to construct
ϕ . To simplify the notation we will identify M with ϕ(M). So M ⊆D(X), each eλ is
the characteristic function of the clopen subset Xλ of X (see step (vi) in the proof of
Theorem 2.3.23), ∪λ Xλ is dense in X , and Xλ ∩Xµ = /0 if µ 6= λ . For each x ∈ X let
Mx = {g ∈ M : g(x) = 0} and Mx = {g ∈ M : g(x) ∈ R}. Then Mx ⊆ Mx are prime
subgroups of M, and if x ∈ Xλ , then the evaluation map ρ : Mx/Mx −→ R given
by ρ(g +Mx) = g(x) is an embedding of the nonzero totally ordered group Mx/Mx
into R. Now, let α ∈ f (M) = F(M)+. Then Yλ = Xλ ∩ (αeλ )−1(R) is a dense open
subset of Xλ , and if x∈Yλ , then αeλ ∈Mx. Since eλ ∈Mx\Mx, we have, by Exercise
2.5.2, that αMx ⊆Mx and αMx ⊆Mx. Consequently, for each x ∈ Yλ ,α induces an
endomorphism α : Mx/Mx −→Mx/Mx defined by α(g + Mx) = αg + Mx; but then
we have the (isotone) endomorphism ραρ−1 : ρ(Mx/Mx) −→ ρ(Mx/Mx), and by
Theorem 3.3.1 there is a unique real number αx ∈ R+ such that (ραρ−1)(ρ(g +
Mx)) = αxρ(g+Mx) for each g ∈Mx. Thus,

(αg)(x) = αxg(x) (3.6.2)

for each λ ∈ Λ and each x ∈ Yλ and each g ∈ Mx. Let Y = ∪λYλ and define ᾱ :
Y −→ R by ᾱ(x) = αx = αxeλ (x) = (αeλ )(x) if x ∈ Yλ ; that is, ᾱ agrees with αeλ
on Yλ and hence ᾱ is continuous. But then ᾱ is the restriction to Y of a unique
element of D(X) which we will also call ᾱ , by Theorem 2.3.20. Now define σ :
f (M) −→ D(X)+ by σ(α) = ᾱ . If g ∈ M and x ∈ g−1(R)∩Y , then (αg)(x) =
αxg(x) = ᾱ(x)g(x) by (3.6.2). Thus, αg = σ(α)g since g−1(R)∩Y is dense in X .
If β ∈ f (M), then σ(α + β )g = (α + β )g = (σ(α)+ σ(β ))g. Thus, σ(α + β )−
(σ(α)+σ(β )) ∈ `(M;D(X)) = M⊥D(X) = 0, and hence σ(α +β ) = σ(α)+σ(β );
similarly, σ(αβ ) = σ(α)σ(β ). Clearly, the unique po-group homomorphism σ :
F(M)−→{h ∈D(X) : hM ⊆M} that extends σ , and whose existence is guaranteed
by Exercise 2.2.11, is a po-ring homomorphism, and γg = σ(γ)g for every g ∈ M
and every γ = α−β ∈ F(M). Moreover, σ is an isomorphism. For if h ∈D(X) and
hM ⊆ M, then, denoting multiplication by h by h·, we have that h· = h+ ·− h−· ∈
F(M) and σ(h·) = h since σ(h·)g = hg for every g ∈ M; also, since h ∈ D(X)+

iff hM+ ⊆M+ we have that γ ∈ f (M) = F(M)+ iff σ(γ) ∈ D(X)+. Since F(M) is
isomorphic to the archimedean f -ring σ(F(M)) it is an archimedean f -ring itself.
Note that the lattice operations in F(M) are pointwise and hence M is a strong
F(M)- f -module. That is, if γ ∈ F(M) and g ∈M+, then

γ+(g) = σ(γ+)g = σ(γ)+g = (σ(γ)g)+ = (γ(g))+.

ut
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Several interesting properties of F(M) and of its elements follow quickly from
this representation theorem. For example, if M has a weak order unit e, then there is
a representation ϕ with ϕ(e) = 1. Consequently σ(F(M))⊆ϕ(M) and any property
of `-groups that is inherited by `-subgroups is passed from M to F(M). In particular,
if M is hyper-archimedean, then so is F(M) (see Exercise 2.4.15). Also, if M is finite
valued, then so is F(M). In this case, by Exercises 2.5.22 and 13, M = ⊕i∈IMi and
F(M) =⊕F(Mi) for some finite set I and some family {Mi}i∈I of subgroups ofR. If
M does not have a weak order unit, then neither of these two properties is inherited
by F(M) as the previous example with I infinite illustrates. Also, see Exercises 8,
9, 12, and 16. Another proof that F(M) is an f -ring which does not make use of the
representation of M in D(X) is outlined in Exercise 22. We show next that F(M) is
the largest almost f -subring of EndZ(M) which contains 1.

Theorem 3.6.7. Let M be an archimedean `-group, and suppose that R is a po-
subring of EndZ(M) which contains a monomorphism of M that belongs to F(M).
If R is an `-ring and either R is an almost f -ring or M is a strong `-module over R,
then R is an `-subring of F(M).

Proof. We will assume that M ⊆ D(X). It suffices to show that if α ∈ R+ and
a ∈ M+, then α a ∈ a⊥⊥. Let 0 < γ ∈ R ∩ F(M) be a monomorphism. From
Theorem 3.6.6 we have that γa = σ(γ)a and σ(γ) is an invertible element of
D(X) (see Exercises 9 and 12). Since a⊥⊥ = {b ∈ D(X) : S(b) ⊆ S(a)} (Exercise
2.3.12), where S(a) denotes the support of a, we need to verify that S(α a)⊆ S(a).
If (α a)−1((0,∞])∩ (X\S(a)) = /0, then S(α a)∩ (X\S(a)) = ((αa)−1((0,∞]))− ∩
(X\S(a)) = /0 since S(a) is closed, and we’re done. Otherwise, there is some
element x ∈ X such that a(x) = 0, 0 < (α a)(x) < ∞, 0 ≤ (α2a)(x) < ∞, and
0 < σ(γ)(x) < ∞ since (α a)−1(R) ∩ (α2a)−1(R) ∩ σ(γ)−1((0,∞)) is dense in
X . Take n ∈ N such that n(σ(γ)(x))(αa)(x) > (α2a)(x). By replacing γ by nγ
we may assume that (σ(γ)(αa))(x) = (γαa)(x) > (α2a)(x). Note that (γa)(x) =
σ(γ)(x)a(x) = 0. Let β = α ∧ γ ∈ R. Then (γ − β )∧ (α − β ) = 0. We will now
show that (γ − β )(α − β )a > 0. Let b = (α − β )a. Then b(x) = (α a)(x) since
0≤ (βa)(x)≤ (γa)(x) = 0. Now β ≤ α and b≤ αa give that (β b)(x)≤ (α b)(x)≤
(α2a)(x) < σ(γ)(x)(αa)(x) = σ(γ)(x)b(x) = γ(b)(x). So ((γ−β )(α−β )a)(x) =
((γ − β )b)(x) > 0. If R is an almost f -ring, then we have a contradiction to
the equation (γ − β )(α − β ) = 0. Suppose that RM is a strong `-module. Then
((γ−β )c)(x)∧ ((α−β )c)(x) = 0 where c = αa+a. However, we will now check
that ((γ−β )c)(x) > 0 and ((α−β )c)(x) > 0. For, (βc)(x) = (βα a)(x) = (α2a∧
γαa)(x) = (α2a)(x) < (γα a)(x) = (γc)(x), and hence ((γ − β )c)(x) > 0; also
(α c)(x) = (α2a)(x)+(α a)(x) > (α2a)(x) = (βc)(x), and ((α−β )(c))(x) > 0.

ut
The condition that R is an almost f -ring in Theorem 3.6.7 can be weakened to

just requiring that it have squares positive if we also assume that R∩Z 6= 0; see
Exercise 24. However, some condition on R∩F(M) is necessary. For example, if M
is divisible and 0 < α ∈ EndQ(M) is an idempotent not in F(M), then M is a strong
`-module over the totally ordered subfield Qα of EndQ(M), yet Qα ∩F(M) = 0.
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Let {gλ : λ ∈Λ} be a maximal disjoint subset of M+∗ in the archimedean `-group
M, and let C be an `-subring of F(M) which contains 1. A C-unital cover of the pair
(CM,{gλ}λ∈Λ ) is a pair (R,ψ) where R is a unital f -algebra over C, ψ : M −→ R is
a c`-essential C-monomorphism, 1 = ∨λ ψ(gλ ), and R is generated as an `-algebra
by ϕ(M)∪{1}. According to Theorem 3.6.6, if D(X) is considered a C-algebra via
the homomorphism σ : C −→ D(X), then the `-subalgebra of D(X) generated by
ϕ(M)∪{1} is a C-unital cover of (M, {gλ}). This definition could be phrased more
generally by just assuming that C is an `-ring and CM is a strong f -module over C.
In view of Exercise 6, however, this more general cover reduces to the previous one.
The interesting fact about these covers is that they are unique.

Theorem 3.6.8. Suppose that (R1,ψ1) and (R2,ψ2) are both C-unital covers of the
archimedean f -module (CM,{gλ}λ∈Λ ). Then there is a unique C-`-algebra isomor-
phism ρ : R1 −→ R2 with ψ2 = ρψ1.

Proof. Let R = R1 and, for the moment, identify M with ψ1(M). We first note that
R is semiprime. For, if there is an element 0 < a ∈ R with a2 = 0, then we may
assume that a ∈ M and a ≤ gλ for some λ ∈ Λ . But this is impossible since gλ is
idempotent and henceNa≤ gλ . We show next that if T is the convex `-C-subalgebra
of R generated by M, then T is archimedean. Toward this end suppose that Ns ≤ t
with 0 < s, t ∈ T . Again, we may assume that s ∈ M and s ≤ gλ ≤ 1 for some
λ ∈Λ . Now choose a ∈M+ with t ≤ an1 + · · ·+ank . Since Ns 6≤ a, for some m ∈N,
b = (ms− a)+ > 0, and hence b̄ > 0 in R̄ = R/b⊥. But then s̄ > 0, ā ≤ ms̄, and
ā k ≤ (ms̄)k ≤ mk s̄ for each k ∈ N; so Ns̄ ≤ ps̄ for some p ∈ N and we have the
contradiction that s̄ = 0. By Exercise 3.4.5 (or otherwise) R is a strong `-algebra
over C, and hence R = T +C · 1 since T +C · 1 is an `-subalgebra of R. Thus, T is
an ideal of R and if Nu≤ v with u,v ∈ R+, then u ∈ T⊥R = 0; so R is archimedean.
Let X be the Stone space of the Boolean algebra of polars of M. By Exercise 2.3.23
the following diagram is commutative

where ϕ and ρ1 are the c`-essential monomorphisms attached to the disjoint set
{gλ}. If α ∈C+, then ρ1(α ·1) = ρ1(α ·

∨
ψ1(gλ )) =

∨
ρ1ψ1(αgλ ) =

∨
ϕ(αgλ ) =

α ·∨ϕ(gλ ) = α · 1 = σ(α) by Theorems 3.6.4 and 3.6.6. In particular, ρ1(1) = 1
and ρ1 is a ring homomorphism by Exercise 2. Also, ρ1 is a C-homomorphism on
both C ·1 and on the subring S of R1 generated by ψ1(M) (which is a C-subalgebra).
But then ρ1 is a C-homomorphism since, by Theorem 3.4.1, R1 is the sublattice
generated by S+C ·1. Note that ρ1(R1) is the C-`-subalgebra of D(X) generated by



3.6 Archimedean f -Rings 229

ϕ(M)∪{1}. Similarly, there is a C-`-algebra embedding ρ2 : R2 −→D(X) with ϕ =
ρ2ψ2 and ρ2(R2) = ρ1(R1). Thus ρ = ρ−1

2 ρ1 : R1 −→R2 is the desired isomorphism.
If n : R1 −→ R2 is another, then n−1ρ fixes ψ1(M) and C ·1 and hence ρ = n. ut

Exercises.

1. Let T be an `-ring and let R be the `-subring of the canonically ordered matrix
ring T3 given by

R =








0 a b
0 0 a
0 0 0


 : a,b ∈ T





(see Exercise 3.1.24(a)). Show that R is nilpotent and is an sp-`-ring, an almost
f -ring, a left d-ring, or a right d-ring iff T has the corresponding property. If
T 3 6= 0 show that R is not an f -ring.

2. Let R be a unital semiprime archimedean f -ring. Suppose that Y is a Stone
space and ψ : R −→ D(Y ) is a c`-essential monomorphism of `-groups. Show
that ψ is a ring homomorphism if and only if ψ(1) = 1. (Use Theorem 2.3.24.)

3. Suppose that RMS is an f -bimodule and that M is T -archimedean for the subset
T of R+. Show that if multiplication by t, t· : M −→ M, is complete for each
t ∈ T , then multiplication by s, ·s : M −→M, is complete for each s ∈ S+.

4. If the archimedean infinite d-ring R is an sp-ring, show directly that its comple-
tion D(R) is also an sp-ring.

5. If M = Z ×←Q show that F(M) is an archimedean f -subring of EndZ(M) and M
is not a strong F-module. (If A and B are R-modules,

EndR(A¢B)∼=
(

EndR(A) HomR(B,A)
HomR(A,B) EndR(B)

)
.)

6. Suppose that M is an archimedean `-group and RM is a strong f -module over
the `-ring R. Show that R/`(M) is a semiprime archimedean f -ring.

7. (a) Show that an archimedean f -ring is unitable.
(b) Suppose that R is a strong f -algebra over the `-ring C. If R is archimedean

and has a basis, show that R is C-unitable. (Use Exercise 2.5.27 and Theo-
rems 3.3.1 and 3.4.5.)

8. Suppose that Y is a Stone space and ϕ1 : M−→D(Y ) is a c`-essential monomor-
phism of `-groups. Show that there is a unique `-ring monomorphism σ1 :
F(M) −→ D(Y ) such that ϕ1(α a) = σ1(α)ϕ1(a) for α ∈ F(M) and a ∈ M.
Show that σ1(F(M)) = {h ∈ D(Y ) : hϕ1(M)⊆ ϕ1(M)}.

9. If α,β ∈ F(M), where M is an archimedean `-group, show that:

(a) kerα = (αM)⊥ = (αM+)⊥ = ker |α| = ϕ−1(σ(α)⊥ϕ(M) ) (see Theorem
3.6.6);
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(b) ker(|α |∨ |β |) = kerα ∩kerβ ⊆ ker(α ∨β );
(c) kerαβ = ker(|α|∧ |β |) = kerα ∨kerβ (the sup is in B(M)).

((b) and (c) can be verified directly; but the last equality in (a) shows, with
the help of Exercises 2.2.14 (h), (e) and (f), that they are instances of Exer-
cise 2.2.13 (e).)

10. Let R be an archimedean f -ring. Verify each of the following.

(a) F(R) ⊆ EndR(RR) (that is, R is an f -algebra over F(R)) and if n : R −→
F(R) is the regular representation of R, then n is an F(R)-homomorphism
and kern = `-β (R).

(b) If ρ : F(R) −→ F(R/`-β (R)) is the natural homomorphism, then kerρ =
{α ∈ F(R) : R2 ⊆ kerα}= n(R)⊥.

(c) If Ai ⊆ R for 1 ≤ i ≤ n and A1 is F(R)-invariant, then C(A1 · · ·An) is an
F(R)-submodule of R; in particular, R[2] is an F(R)-submodule and the sub-
direct product representation in Theorem 3.6.2 is an F(R)-representation.

(d) If R is semiprime, then F(R) =EndR(RR).
(e) If R is semiprime and ϕ1 : R −→ D(Y ) is a c`-essential `-ring monomor-

phism, then the map σ1 in Exercise 8 is the unique ring homomorphism
that extends ϕ1.

11. Show that two unital archimedean f -rings are isomorphic as `-groups iff they
are isomorphic f -rings.

12. Let Me be the c`-essential closure of the archimedean `-group M.

(a) If α ∈ F(M) show that there is a unique extension of α to ᾱ ∈ F(Me), and
that the mapping α 7→ ᾱ is an embedding of f -rings.

(b) Let N be an F(M)-`-submodule of Me which contains M, and for α ∈F(M)
let ¯̄α be the restriction of ᾱ to N; so α 7−→ ¯̄α is an embedding of F(M)
into F(N). Show that α is monic iff ᾱ is epic, iff ¯̄α is monic, and that if α
is epic then ¯̄α is an automorphism.

(c) Show that the divisible closure d(M) and the completion D(M) are both
F(M)-`-submodules of Me. In each case give an example of an α ∈ F(M)
which is not epic but ¯̄α is an automorphism.

13. If {Mλ}λ∈Λ is a family of archimedean `-groups show that F(⊕Mλ )∼= Π F(Mλ )
∼= F(Π Mλ ) (see Exercise 2.4.19).

14. (a) If the archimedean `-group M is complete or laterally complete show that
F(M) is complete or laterally complete, respectively.

(b) In general, F(D(M)) is not the completion of F(M). For an example, let
M be the subgroup of Q consisting of all those rationals with square free
denominator.

15. Let {Mλ : λ ∈ Λ} be a family of subgroups of R. If M is a subdirect product
of {Mλ} show that F(M) is a subdirect product of {Tλ : λ ∈ Λ} where Tλ is a
subring of F(Mλ ). (Assume that Mλ = M/Aλ ; by Exercise 2.5.2 (c) each Aλ is
a convex `-F(M)- submodule of M.)
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16. Show that the following statements are equivalent for the archimedean
`-group M.

(a) The embedding σ : F(M)−→D(X) given in Theorem 3.6.6 (or Exercise 8)
is a c`-essential monomorphism.

(b) For each 0 6= a ∈M there is an element 0 6= α ∈ F(M) with αM ⊆ a⊥⊥.
(c) If A is a nonzero polar of M, then αM ⊆ A for some nonzero α ∈ F(M).

17. Recall from Section 2.3 that an `-group is projectable if each principal polar is
a summand. Let M be a projectable archimedean `-group.

(a) Show that σ : F(M) −→ D(X) is a c`-essential monomorphism (see Exer-
cise 16).

(b) Show that F(M) is projectable. (If α ∈ F(M) and a ∈ M first show that
a ∈ (αM)⊥⊥ ⊕ (αM)⊥ by considering the projection of M onto (αa)⊥⊥,
and then show that α⊥ = f⊥ where f is the projection of M onto (αM)⊥⊥.)

18. If M is an archimedean `-group with a basis show that σ : F(M)−→ D(X) is a
c`-essential monomorphism and hence F(M) has a basis.

19. Let G be the group of `-automorphisms of the `-group M and let K be the
subgroup of G consisting of the f -automorphisms of M.

(a) Show that G is a po-group with the partial order that it inherits from
EndZ(M) (namely, α ≥ β if αa ≥ βa for each a ∈ M+) and K is a con-
vex normal subgroup of G.

(b) If M is archimedean show that K is an `-subgroup of G.
(c) If M = R is a unital archimedean f -ring and H is the group of `-ring auto-

morphisms of R show that G is the semidirect product of K by H. (Assume
that R⊆D(X) and use Exercise 2.3.20. Each α ∈G has a unique factoriza-
tion α = ` f ◦ τ∗ ◦ i , and a unique extension to D(X), where f is a positive
unit of D(X), τ is a homeomorphism of X , and i is the inclusion map.)

(d) Let M = R be a semiprime archimedean f -ring and let α ∈ G. Show that α
extends to an `-automorphism of its unital closure Ru iff α(1) and α−1(1)
are both in Ru.

20. Show that the archimedean `-group M is the additive `-group of a unital f -ring
if and only if it is a cyclic F(M)-module.

21. Let R be a unital archimedean f -ring.

(a) Show that (R,+,∗) is an f -ring, where ∗ is a binary operation on R, iff there
is an element p ∈ R+ such that a∗b = abp for every a,b ∈ R.

(b) Let α ∈G (see Exercise 19). Show that α is a ring homomorphism for each
(unital) f -ring multiplication of R iff α = 1 (α fixes the positive units of R).

(c) Suppose that (R,+,∗) and (R,+,∗∗) are f -rings with associated elements
p and q, respectively. Show that the following statements are equivalent.

(i) The f -rings (R,+,∗) and (R,+,∗∗) are isomorphic.
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(ii) There exists an `-ring automorphism α of R and a positive unit u of R
such that α(p) = qu.

(iii) There exists an `-group automorphism β of R such that β (p) = q.

22. Let M be an archimedean `-group. Here is a proof of the fact that F(M) is an
f -ring and M is a strong F(M)- f -module that uses Exercise 3.1.30 instead of
the representation of M in D(X). Let α,β ∈ f (M) and a,b ∈M+.

(a) Suppose that Q is a value of a such that αa∨βa∨ b is an element of the
cover Q∗ of Q. Use Exercise 2.5.2 to show that the identity in Exercise
3.1.30 (b) holds modulo Q.

(b) Show that this identity holds modulo a⊥⊥.
(c) Use Exercise 2.5.32 to show that the identity holds in M.

23. Show that the totally ordered free ring Z{x,y} that is given in Exercise 3.4.35
is an infinite d-ring.

24. Let R be an sp-po-subring of EndZ(M) where M is an archimedean `-group.

(a) Suppose R is an sp-`-ring and assume there is an element γ ∈ R∩F(M)
which is a right (or left) superunit in R and is an f -element of R. If
r`(R;M) = 0, show that R⊆ F(M). (Use Theorem 3.8.12.)

(b) If R contains a monomorphism of M show R is reduced. (Use Exercise
3.7.25.)

(c) Suppose γ ∈ R∩F(M) is a monomorphism, γ is central in R, and R = Rγ
(or R+ ⊆ R+γ). Show that R is directed.

25. Let A be the `-subring of the ring of real-valued continuous functions on [0,1],
C([0,1]), generated by the ring of polynomials with zero constant term, and
let A0 be the underlying `-group of A with A2

0 = 0. Let R = {( f ,g) ∈ A⊕A0 :
f ′(0) = g′(0)}.

(a) Show that A = { f ∈C[0,1] : f is piecewise polynomial and f (0) = 0}.
(b) Show that R is an archimedean f -ring that is not the direct product of a

nilpotent f -ring and a semiprime f -ring. (Consider (x,x) ∈ R.)

26. Suppose R is an `-reduced `-algebra over the directed po-ring C and R is C+-
archimedean and C+-strict.

(a) If 0 < a ∈ F(R) show that there exist 0 < α ∈ C and a minimal `-prime
`-ideal P of R such that αa+P is a superunit of R/P.

(b) If F(R) 6= 0 and it is a strong `-algebra over the `-ring C show that C is an
`-simple f -ring.

Assume now that F(R)⊥ does not contain any nonzero `-ideals of R.
(c) Show that R is a subdirect product of a family of C+-strict `-algebras each

of which is an `-domain with an f -superunit.
(d) Show that R is a subdirect product of a family of `-simple `-algebras each

of which has an f -superunit. (Use Exercise 3.3.27(b).)
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(e) If R has a.c.c. on `-annihilator `-ideals show that R has an f -superunit and is
isomorphic to a direct product of `-simple `-algebras. (See Exercise 3.3.22.)

Notes. Archimedean f -rings have been studied by many authors. Birkhoff and
Pierce [BP] established Theorem 3.6.1, Henriksen and Isbell [HI] gave the f -
ring version of Theorem 3.6.2, Theorem 3.6.3 is Bernaus’ representation theorem
[BERN1] and Theorem 3.6.4 is an altered version of a result from this paper. The-
orem 3.6.5 comes from Johnson [JOH2], and Theorem 3.6.6 is due independently
to Conrad and Diem [CDI], where a weaker form of Theorem 3.6.7 appears, and
to Bigard and Keimel [BK] (see Exercise 22). Theorem 3.6.8 comes from Conrad
[CON13]—also, see Hager and Robertson [HR]—as do most of Exercises 19–21.
Most of Exercises 5, 8, 9, and 11 - 15 come from [CDI] and [BK], and Exercises
17 and 18 come from[BK]. Exercise 25 comes from Henriksen and Isbell [HI] and
Exercise 26 for `-rings comes from Ma [M4].

3.7 Squares Positive

We have already seen some instances in which an sp-`-ring R exhibits behaviour
similar to that of an f -ring. For instance, if R is a local ring, then it is necessarily
an f -ring (Exercise 3.1.12 (a)), and if R is archimedean, then its generalized `-nil
radical coincides with its lower `-nil radical and this radical is nilpotent of index at
most three (Theorem 3.6.2). In this section we will examine the structure of an sp-
`-ring in more detail. It is shown that if R is `-prime and has a nonzero f -element,
then it is a domain, and if it does not have any nonzero right `-quasi-regular right
`-ideals, then it is an `-domain. As a consequence of this, in an sp-`-ring the two
radicals mentioned above frequently coincide with a union of nilpotent `-ideals. It
is also shown that an `-prime sp-`-algebra with an f -superunit can be embedded
in a unital sp-`-algebra. The conditions that a pops must satisfy in order for the
generalized power series ring over it to be an sp-`-ring are determined; and this sp-
`-ring turns out to always be an `-domain when it is `-prime and to be embeddable
in a unital sp-`-domain if it also has a nonzero f -element.

Our first two results examine elements that are nilpotent modulo certain subrings.

Theorem 3.7.1. Let S be a convex `-subring of the subring F of f -elements of the
sp-`-ring R.

(a) Suppose that k, m, n, p∈Z+ with 1≤ p≤m+k+2. If a∈R with S[k]a2n
S[m]

⊆ S[p], then S[k]aS[n+m] +S[k+n]aS[m] ⊆ S[p].
(b) If a ∈ R and a2n ∈ S for some n ∈ Z+, then for each x ∈ R, |a|x+ ∧ x− ∈

r(Sn; R) and x+|a|∧ x− ∈ `(Sn; R).

Proof. (a) We proceed by induction on n. If n = 0 the implication is trivial. Sup-
pose that it holds for some integer n and S[k] a2n+1

S[m] ⊆ S[p]. Then S[k] a2 S[n+m] +
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S[k+n] a2 S[m] ⊆ S[p]. If t ∈ S+, then 0 ≤ (a + t)2, (a− t)2 yields that - (t2 + a2) ≤
ta+at ≤ t2 +a2; so |ta+at| ≤ t2 +a2. But, by Exercise 2.4.21,

|a|t + t|a|= |at + ta| ≤ a2 + t2 if t ∈ S+ ⊆ F and a ∈ R. (3.7.1)

Thus,
|tkatn+m+1|= tk|at|tn+m ≤ tk+n+m+2 + tka2tn+m ∈ S[p]

and S[k] aS[n+m+1] ⊆ S[p]; similarly, S[k+n+1] aS[m] ⊆ S[p].
(b) By (a), with k = m = 0 and p = 1 (and So = Z) we have that aSn +Sna⊆ S.

Since the result is trivial if n = 0 we assume that n ≥ 1. If 0 ≤ s ∈ S[n], then s ≤ tn

for some t ∈ S+. So s(|a|x+∧x−)≤ |tna|x+∧ tnx− = 0. Thus, |a|x+∧x− ∈ r(S[n]) =
r(Sn) and similarly x+|a|∧ x− ∈ `(Sn). ut
Theorem 3.7.2. Let I be a maximal right `-ideal of the sp-`-ring R and suppose that
R2 * I. If a ∈ R+ and an ∈ I for some n ∈ N, then a ∈ I.

Proof. First assume that n = 2. If x ∈ I+, then ax ≤ x2 + a2 gives that ax ∈ I, and
hence aI ⊆ I. If a /∈ I, then R = I + C(aR + Za) and so aR⊆ I. Now, J = {x ∈ R :
|x|R⊆ I} is a proper right `-ideal of R that contains I, and hence J = I. But then we
have the contradiction that a ∈ I. So in this case a is an element of I. Now assume
that 1≤ n is minimal with an ∈ I. If n≥ 2, then (an−1)2 = anan−2 ∈ I; so an−1 ∈ I.
Thus n = 1 and a ∈ I. ut

It will be convenient, as in (3.3.2), to denote the set of nilpotent elements of R of
index at most n by Nn (or Nn(R)) and to denote the set of all nilpotent elements of
R by N = N(R). Also, Mn = Mn(R) = {x ∈ R : |x| ∈ Nn} and M = M(R) = {x ∈ R :
|x| ∈ N}.

Theorem 3.7.3. Let R be an sp-`-ring.

(a) If R(R)∩Rle f t(R) = 0 and R is `-semiprime (`-prime), then R is `-reduced
(an `-domain).

(b) If R is `-semiprime and F(R) is not contained in any minimal `-prime `-
ideal of R, then R is reduced. In particular, R is a domain provided it is
`-prime and has a nonzero f -element.

Proof. (a) According to Theorem 3.7.2 we have that N+ ⊆ R(R)∩Rle f t(R), and
so R is `-reduced. In the remarks preceding Theorem 3.2.21 we have noted that an
`-reduced `-prime `-ring is an `-domain.

(b) We will first show that FM2 = M2F = 0 in any sp-`-ring in which F is
semiprime. For, (N+

2 )2 = 0 in any sp-`-ring and N2F + FN2 ⊆ F by (a) of Theo-
rem 3.7.1 (with n = p = 1 and m = k = 0). Thus, N+

2 F+N+
2 ⊆ N+

2 ∩F+ = 0, and,
again, N+

2 F+ +F+N+
2 ⊆N+

2 ∩F+; so N+
2 ⊆ `(F)∩r(F) and M2F = FM2 = 0 since

N+
2 = M+

2 and M2 = M+
2 −M+

2 (see Exercise 1). Since F+R+`(F)+ ⊆ N+
2 we get

that F2R`(F) = 0. Now, if R is `-prime, then F is semiprime by (e) of Theorem
3.2.13; and if F 6= 0, then `(F) = 0. Similarly, r(F) = 0. Thus, R is reduced since
N2 = N2 ∩F = 0 by (b) of Theorem 3.7.1; but then R is a domain since it is an
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`-domain and from ab = 0 we get that a2b2 = 0 and hence a = 0 or b = 0. Now
assume that R is `-semiprime and P is a minimal `-prime `-ideal of R with F * P.
Then F(R/P) 6= 0 and hence R/P is a domain. So R is reduced by Exercise 3.2.15.

ut
If R is an `-prime sp-`-algebra, then F(R) is a totally ordered domain and hence

it is infinitesimal or has a superunit. If F(R) has a superunit which is also a superunit
of R, then R is sp-unitable in the sense that it can be embedded in a unital (`-prime)
sp-`-ring. This is the content of the next theorem which is given for an `-algebra
over the directed po-ring C.

Theorem 3.7.4. Suppose that the C-`-algebra R has a superunit which is a basic
f -element. Then S = R +C · 1 ⊆ EndR(RR) is an `-subalgebra of EndR(RR), R is
an `-subalgebra of S, and F(S) = F(R) +C · 1 is totally ordered. Moreover, R is
an sp-`-algebra, is semiprime, `-semiprime, reduced, `-reduced, prime, `-prime, an
`-domain, or a domain iff S has the corresponding property.

Proof. Let e be a basic f -superunit of R. From Exercise 4 we obtain that F = F(R)
is totally ordered, and from Theorem 2.5.9 we have that R = U ∪ (F ⊕F⊥) where
U = U(F ; R) = {a ∈ R : |a| ≥ F}. If s ∈ S, then according to Exercise 7, s ∈ S+ iff
se ∈ R+, iff es ∈ R+; also, R is an `-subalgebra of S and F +C ·1 is totally ordered.
Note that if a ∈U , then |a| ≥ C · 1 since |a|e ≥ |a| ≥ Ce. To show that S is an `-
algebra we will check that if a+α ·1 ∈ S, then

(a+α ·1)+ =





a+ +α ·1 if a+ ∈U
a+ if a− ∈U
(a1 +α ·1)+ +a+

2 if a = a1 +a2 ∈ F⊕F⊥.
(3.7.2)

The first case will follow from the equation

(ae+αe)+ = a+e+αe if a+ ∈U. (3.7.3)

For, if (3.7.3) holds and if b+β ·1≥ 0, a+α ·1, then (b+β ·1)e≥ (ae+αe)+ =
a+e+αe, and b+β ·1≥ a+ +α ·1≥ 0, a+α ·1. Thus, (a+α ·1)+ = a+ +α ·1.
To establish (3.7.3) note that a+e + αe ≥ ae + αe, 0, and if r ∈ R with r ≥ ae +
αe, 0, then r−αe ≥ ae∨−αe. But ae∨−αe ≥ 0 since if ae ∨−αe < 0 in some
totally ordered homomorphic image R of the f -bi-module CRF , then āe = ae < 0 and
−α ē =−αe < 0. Therefore, ā < 0 and we have the contradiction 0 < ē ≤ a+ = 0.
Consequently, r−αe≥ (ae)+ = a+e and (3.7.3) has been established.

The second case follows from the first since (a + α · 1)+ = (a + α · 1)+ (−a−
α ·1)+ = a+α ·1+a−−α ·1 = a+.

For the last case, clearly (a1 +α ·1)+ +a+
2 ≥ a+α ·1, 0 if a1 ∈ F and a2 ∈ F⊥

with a = a1 +a2. Also,

[(a+α ·1)e]+ = (a1 +α ·1)+e+a+
2 e. (3.7.4)

So if b+β ·1≥ a+α ·1, 0, then b+β ·1≥ (a1 +α ·1)+ +a+
2 since (b+β ·1)e≥

[(a+α ·1)e]+ = [(a1 +α ·1)+ +a+
2 ]e.
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If u and v are elements of any `-ring, then u+v = (uv)+ iff u−v = (uv)−. It follows
from (3.7.2), (3.7.3), and (3.7.4) that e is a right d-element of S. If u∧v = 0 in S, then
0≤ (ue∧v)e = ue2∧ve≤ ue2∧ve2 ≤ (u∧v)e2 = 0 shows that e is a right f -element
of S. Similarly, e is a left f -element of S and thus F ⊆ F(S). Also, S is an `-algebra
over C since if u∧v = 0, then (αu∧v)e = αue∧ve = 0. Thus, F +C ·1⊆ F(S) and
if a+α ·1 ∈ F(S), then a ∈ F(S)∩R⊆ F(R); so F(S) = F +C ·1.

Now suppose that R is an sp-`-algebra. If a∈U and t ∈ F+, then from (3.7.1) we
have that |a|t + t|a| ≤ a2 + t2 ≤ a2 + t|a|, a2 + |a|t. So |a|t, t|a| ≤ a2. Also, if α =
α1−α2 ∈C with αi ∈C+ and β = α1 + α2, then αa ≤ |αa| ≤ β |a| ≤ βe|a| ≤ a2.
Thus, (a+α ·1)2 = a2 +2αa+α2 ·1≥ 0 since (α2 ·1)e2 = (αe)2 ≥ 0. If a ∈ F⊥,
then we again obtain from (3.7.1) that |a|t, t|a|, αa ≤ a2 since |a|t, t|a| ∈ F⊥ and
t2 ∈ F ; so the previous calculation again gives (a + α · 1)2 ≥ 0. If a = a1 + a2 ∈
F⊕F⊥, then (a+α ·1)2 = (a1 +α ·1)2 +a2

2 +a1a2 +a2a1 +2αa2 ≥ 0 since a2
2 ≥

Fa2 + a2F +Ca2 by Exercise 3.4.31 (b). The verification of the other statements is
straightforward and is left to the reader. ut

Unlike the situation for f -rings an `-prime sp-`-ring with an f -superunit can
be embedded in nonisomorphic minimal unital sp-`-rings; see Exercise 9. How-
ever, there is a unique sp-unital cover among those sp-unital covers for which an
f -superunit is preserved; see Exercise 10.

We will now consider the question of when an `-prime sp-`-algebra with F 6=
0 can be embedded into a unital sp-`-algebra as an `-ideal, or, equivalently, as a
convex `-subalgebra since then its image is an `-ideal of the unital `-subalgebra
that it generates (see the proof of Theorem 3.2.18). Recall that when this question
is restricted to f -algebras the requirement is that the f -algebra be infinitesimal or
unital. Those `-algebras that are dual to infinitesimal `-algebras will come into play
for sp-`-algebras. An `-algebra R is called C-supertesimal if C|a| ≤ a2 for each
a ∈ R.

Theorem 3.7.5. Let R be an `-prime sp-`-algebra which has a nonzero f -element
and which is not unital. If R is a convex `-subalgebra of a unital sp-`-algebra, then
either (i) R is C-supertesimal, or (ii) R = F ⊕F⊥ as C- f -modules, F is a convex
`-subalgebra of its tight C-unital cover and C|a| ≤ a2 for each a ∈ F⊥. Conversely,
if R is a C-supertesimal strong `-algebra or it satisfies the conditions in (ii), then R
can be embedded in a unital sp-`-algebra as an `-ideal.

Proof. We first note again the following easy consequence of (3.7.1) for an sp-`-ring
R:

if t ∈ F(R)+ and a ∈ F⊥, then t|a| ≤ a2 and |a|t ≤ a2. (3.7.5)

Suppose that R is an `-ideal of the unital sp-`-algebra T . By taking an `-ideal P of
T that is maximal with respect to being disjoint from R+\{0} and by replacing T
with T/P we may, by (d) of Theorem 3.2.13 and Theorem 3.7.3, assume that T is
a domain. Now R = U ∪ (F ⊕F⊥R) and T = V ∪ (E⊕E⊥T ) where E = F(T ) and
V = {t ∈ T : |t| ≥ E}. Since 1 /∈ R we have that V ∩R = /0 and R = (R∩E)⊕ (R∩
E⊥T ) = (F ∩E)⊕E⊥R as C- f -modules. Also, F⊥R ⊆ E⊥R since if 0≤ a ∈ F⊥R and
0 ≤ x ∈ E, then a∧ x ∈ E ∩R∩F⊥R ⊆ F ∩F⊥R = 0. If F ∩E = 0, then R ⊆ E⊥T
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and R is C-supertesimal by (3.7.5). Otherwise, according to Exercise 2.4.10, F and
E are comparable and hence F ⊂ E and R = F ⊕F⊥R . In this case F is a convex
`-subalgebra of its unique tight C-unital cover F +C · 1 ⊆ E (see Exercise 3.4.8),
and C|a| ≤ a2 for each a ∈ F⊥R ⊆ E⊥T by (3.7.5).

For the converse, first note that if R is strong, then it is a torsion-free `-algebra
over the totally ordered domain C1 =C/A, by Exercise 3.1.29, where A = `(R; C) =
`(x; C) for each 0 6= x ∈ R. If R is supertesimal, then the `-algebra T = R×C1
obtained by freely adjoining C1 to R, with the coordinatewise order, is easily seen
to be an sp-`-algebra over C which contains R as an `-ideal. In the other case let
T = R +C · 1 ⊆ EndR(RR) be the po-subalgebra of EndR(RR) generated by R and
C · 1. Then, according to Exercise 7, T = (F +C · 1)⊕ F⊥ as C- f -modules and
F +C ·1 is totally ordered. Since T is a domain F +C ·1 is the tight C-unital cover
of F and F is a convex `-subalgebra of F +C · 1; hence R = F ⊕F⊥ is a convex
`-subalgebra of T . If a ∈ F, b ∈ F⊥, and α ∈ C, then [(a + α · 1)+ b]2 = (a + α ·
1)2 +(b2 +2αb+ab+ba)≥ 0. For, b2 ≥ Fb and b2 ≥ bF by (3.7.5), and b2 ≥Cb
by assumption; so b2 ≥Cb+Fb+bF by (b) of Exercise 3.4.31. Thus, T is an sp-`-
algebra. ut

If A is a totally ordered domain and ∆ is a pops the conditions that ∆ must satisfy
in order for the formal power series ring W (∆ , A) to be an f -ring were given in
Theorem 3.5.4. Also, the conditions on ∆ for W (∆ , A) to be an almost f -ring or
a (left) d-ring were given in Exercises 3.5.22 and 3.5.15. We will now determine
when W (∆ , A) is an sp-`-ring. To avoid some trivialities we will tacitly assume that
α +β ∈ ∆ for at least one pair of elements α, β ∈ ∆ . The results will be stated for
W (∆ , A) but they could just as well be stated for the generalized semigroup `-ring
∑(∆ , A). So, for example, W (∆ , A) may be replaced by ∑(∆ ,A) in Theorem 3.7.6.
Moreover, these results generally also hold for V (∆ , A) when it is an `-ring.

Consider the following conditions on ∆ and ∑.

If α +β is defined, then α +β < 2α or α +β < 2β
or α +β = 2α = 2β . (3.7.6)

If 2γ = α +β with α 6= β , then 2γ < 2α or 2γ < 2β . (3.7.7)

If α +β ∈ ∆ with α 6= β , then α +β < 2α or α +β < 2β . (3.7.8)

If α 6= β with α +β = 2α = 2β , then either 2α + f (∆) 6= /0
or f (∆)+2α 6= /0. (3.7.9)

(a1xα1 + · · ·+anxαn)2 ≥ 0 for all a1, . . . ,an ∈ A

and α1, . . . ,αn ∈ ∆ . (3.7.10)



238 3 Lattice-ordered Rings

Clearly, (3.7.6) and (3.7.7) together are equivalent to (3.7.8), and, as we will soon
see, the latter is the essential condition that ∆ must satisfy in order for W to be an
sp-ring. A pops is called an sp-pops if it satisfies (3.7.8) and an almost sp-pops if
it satisfies (3.7.6).

Theorem 3.7.6. Suppose that A is a domain and the generalized power series ring
W (∆ , A) is an `-ring.

(a) W (∆ , A) satisfies (3.7.10) for n = 2 iff ∆ satisfies (3.7.6), A is an sp-`-ring,
and either ∆ has the property that α +β ∈ ∆ iff β +α ∈ ∆ or A satisfies the
identity ab≤ a2 +b2.

(b) The following statements are equivalent when A is an sp-`-ring.
(i) ∆ satisfies (3.7.8).

(ii) W (∆ , A) is an sp-`-ring and ∆ satisfies (3.7.9).
(iii) W (∆ , A) satisfies (3.7.10) for n = 3 and ∆ satisfies (3.7.9).
(iv) W (∆ , A) satisfies (3.7.10) for n = 2, N2(W (∆ ,A)) is a sublattice of

W (∆ ,A) and ∆ satisfies (3.7.9).

Proof. (a) Suppose that 0 ≤ u2 = a2xα xα + b2xβ xβ + abxα xβ + baxβ xα for every
u = axα + bxβ in W = W (∆ ,A). Take α and β in ∆ such that α + β is defined. If
α + β 6≤ 2α and α + β 6≤ 2β , then the choice of coefficients b = −a < 0 gives the
contradiction 0 6≤ a2xα xα +a2xβ xβ −a2xα+β −a2xβ xα irrespective of the ordering
in {α + β , β + α, 2α, 2β}. Now, if (3.7.6) doesn’t hold for the pair α, β , then
α + β = 2α 6≤ 2β or α + β = 2β 6≤ 2α . In the first case we get the contradiction
0 6≤ −a2x2α + 4a2xβ xβ − 2a2xβ xα by choosing b = −2a < 0, and in the second
case we obtain a similar contradiction by choosing a = −2b < 0. Thus, ∆ satisfies
(3.7.6). Since ∆ + ∆ 6= /0 there is an α ∈ ∆ such that 2α is defined. So if a ∈ A,
then a2 ≥ 0 since 0≤ a2x2α in W . Suppose that a, b ∈ A with ab 6≤ a2 +b2. Then A
is not totally ordered and ∆ is trivially ordered according to Theorem 3.5.3. Thus,
if α 6= β and α + β ∈ ∆ , then α + β = 2α = 2β and 0 ≤ (axα − bxβ )2 = (a2 +
b2− ab)x2α − baxβ xα forces β + α to be defined (and to be equal to α + β ). For
the converse let u = axα + bxβ ∈W with α 6= β and u2 6= 0. Then maxsupp u2 ⊆
{2α, 2β} by (3.7.6). For, assume that α +β ∈ maxsupp u2\{2α, 2β} and α +β <
2α (the case α +β < 2β is similar). Since 2α /∈ supp u2 either 2α = 2β 6= β +α or
2α = β +α < 2β or 2α = 2β = β + α . In the first case we have the contradiction
a2 + b2 = 0. In the second case we have the contradiction that 2β /∈ supp u2 yet
2β /∈ {2α, β + α, α + β}. In the last case we have that a2 + b2 + ab = 0 which is
impossible in the totally ordered domain A. If 2α ∈maxsupp u2, then the coefficient
of x2α in u2 is one of the elements: a2, a2 +b2, a2 +b2 +ab, a2 +b2 +ba, (a+b)2.
Thus u2 ≥ 0 and W satisfies (3.7.10) for n = 2.

(b) In order to show that (i) implies (ii) take u = ∑uα xα ∈W with u2 6= 0. We
claim that

maxsupp u2 = max (2 maxsupp u). (3.7.11)

To see this let Y = max (2 maxsupp u) and note first that if α, β ∈ supp u with α +β
defined, then α + β ≤ γ for some γ ∈ Y . For, α ≤ α1 and β ≤ β1 with α1, β1 ∈
maxsupp u; so α +β ≤ α1 +β1 and α1 +β1 ≤ 2α1 or α1 +β1 ≤ 2β1 by (3.7.8). In
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either case we get the desired γ ∈Y . But this implies that if γ ∈Y , then the coefficient
of xγ in u2 is ∑u2

β > 0 where this sum is over all β ∈ maxsupp u with 2β = γ . For,
if γ = α +β with α, β ∈ supp u and α 6= β , then, since γ < 2α or γ < 2β , we have
the contradiction that γ < γ1 for some γ1 ∈ Y . So α = β ≤ α1 ∈ maxsupp u, and
γ = 2α ≤ 2α1 ≤ γ1 with γ1 ∈Y shows that α = α1; thus, γ = 2β with β ∈ maxsupp
u and Σu2

β is the coefficient of xγ . Now, if γ1 ∈ maxsupp u2, then γ1 ≤ γ ∈ Y and
(u2)γ > 0; so γ1 = γ . But if γ ∈Y , then γ ≤ γ1 for some γ1 in maxsupp u2 and γ1 ≤ γ2
for some γ2 ∈ Y ; so again γ = γ1. Thus, the claim, as well as the assertion that (i)
implies (ii), has been established.

Certainly (iii) is a consequence of (ii), and we now show that (iii) implies (i).
Assume that W satisfies (3.7.10) for n = 3 and ∆ satisfies (3.7.9). From (a) we get
that ∆ satisfies (3.7.6) and so we only have to establish that (3.7.7) also holds in
∆ . If (3.7.7) does not hold, then we can find α, β ∈ ∆ with α||β and α + β =
2α = 2β . Since ∆ satisfies (3.7.9) we may assume that ρ + 2α ∈ ∆ for some ρ ∈
f (∆). Now ρ +α is comparable to α since ρ +α||α would give that ρ +α||ρ +α .
Also, ρ + α < 2α since otherwise we have ρ + α ≤ 2ρ which gives the following
contradictions: if ρ||α then 2ρ||ρ + α ; if ρ < α then 2ρ < ρ + α; if α ≤ ρ then
α ∈ f (∆). So α is comparable to 2α since α is comparable to ρ +α and ∆ is rooted.
Similarly, β is comparable to 2β . If 2α = 2β ≤ α , then we have the contradiction
that α is comparable to β . Thus, α < 2α < · · · and also β < 2β < · · · . In particular,
since 3α = α + β + α we have that β + α is defined and, in fact, β + α = α + β
since, otherwise, β +α < 2α and hence 3α < 3α . Now take 0 < a ∈ A and put u =
axα −axβ ∈W . Then u2 = 0 and 0≤ (u−axρ)2 = a2xρ xρ − (a2xρ+α +a2xα xρ)+
(a2xρ+β + a2xβ xρ). Since ρ + α||ρ + β and ρ + α||β + ρ if β + ρ is defined we
must have that ρ + α ≤ 2ρ . Thus, ρ + α ∈ f (∆) and hence ρ + 2α||ρ + α + β ,
which is absurd. Thus, no such α and β exist and ∆ does satisfy (3.7.7).

The proof that (iv) implies (i) is similar to the proof that (iii) implies (i). We
only have to establish that ∆ satisfies (3.7.7), and, again, if it does not, we can
produce 0 6= u = axα − axβ ∈W with α||β and α + β = β + α = 2α = 2β . But
then u+ = axα ∈ N2(W ), yet (u+)2 6= 0.

To complete the proof we will show that (i) implies (iv), and to do this we only
have to verify that N2(W ) is a sublattice of W . Let

N2(∆) = {α ∈ ∆ : 2α is not defined}.

If ∆ is trivially ordered and α +β is defined, then α = β . So if u∈W , then the coef-
ficient of γ = 2α in u2 is ∑u2

β where this sum is over all β ∈ supp u with 2β = 2α .
In particular, if u2 = 0, then supp u ⊆ N2(∆) and hence (u+)2 = 0 also. Now as-
sume that A is totally ordered, and suppose, to the contrary, that u ∈ N2(W ) but
(u+)2 +(u−)2 = u+u−+ u−u+ > 0. Take γ ∈ maxsupp ((u+)2 +(u−)2). Then γ ∈
maxsupp (u+)2 ∪ maxsupp (u−)2) by (2.6.1). Assume that γ ∈ maxsupp (u+)2 =
max (2 maxsupp u+) (from (3.7.10)). Then γ = 2ρ where ρ ∈maxsupp u+. Also, as-
suming that γ ∈maxsupp u+u− = max (maxsupp u++ maxsupp u−) (from (3.5.7)),
we have that γ = α + β where α ∈ maxsupp u+ and β ∈ maxsupp u−. Since
2ρ = γ ∈ max (2 maxsupp u+) the inequality 2ρ < 2α is impossible, and hence



240 3 Lattice-ordered Rings

2ρ < 2β . Thus, (u−)2 > 0 (see Exercise 14) and γ < 2β ≤ 2β1 ∈ max (2 maxsupp
u−) = maxsupp (u−)2 for some β1 ∈ maxsupp u−. But then we have the contradic-
tion 0 = (u+)2 (2β1) =−(u−)2 (2β1) < 0. Thus, N2(W ) is a sublattice. ut

The `-ring that appears in Exercise 3.2.30 is an example of an sp-`-domain
W (∆ , A) that is not sp-unitable and the almost sp-semigroup ∆ is not an sp-
semigroup. An example of an almost sp-monoid that is not an sp-monoid is given
in Exercise 15. Nevertheless, Theorem 3.7.4 can be improved for power series rings
by relaxing the f -superunit assumption to merely requiring the existence of nonzero
f -elements. Recall that the element u in a po-ring is lowerpotent if 0≤ u2 ≤ u. Ac-
cording to Exercise 3.3.3 a positive f -element is lowerpotent provided it is an upper
bound for one of its higher powers.

Theorem 3.7.7. Let ∆ be a rooted pops with f (∆) 6= /0. For each totally ordered
domain A the `-ring W (∆ , A) can be embedded in a unital `-prime sp-`-ring in
which each lowerpotent element is an f -element if and only if ∆ is a semigroup and
an sp-pops.

Proof. If W (∆ , A) is contained in a unital `-prime sp-`-ring, then W (∆ , A) is a do-
main by Theorem 3.7.3. Thus, ∆ is a semigroup and ∆ is an sp-pops by Theorem
3.7.6. Conversely, suppose that ∆ is a semigroup and an sp-pops. Then W (∆ , A) is a
domain and by replacing A by its unital cover we may assume that A is unital. Also,
f (∆) is a totally ordered ideal of the poset ∆ . If ∆ is a monoid, then W = W (∆ ,A)
is itself unital. Under the assumption that ∆ is not a monoid we will show that the
monoid ∆1 = ∆ ∪{0} can be made into a rooted sp-pops that is an extension of ∆ .
Then W (∆1, A) is the desired extension of W .

We will proceed in a sequence of steps. The order relation on ∆1 that will be
shown to extend that of ∆ is defined by: for β ∈ ∆ , β < 0 iff 2β < β , and β > 0 iff
2β > β > α > 2α for some α ∈ ∆ . Let

Γ = {α ∈ ∆ : ∀β ∈ f (∆), α||β}

and
U = {α ∈ ∆ : α > f (∆)}.

Note that these subsets of ∆ arise naturally from the totally ordered convex sub-
ring F(W ) of W by means of Theorem 2.5.9.

(i) If α ∈ ∆ and α||γ for some γ ∈ f (∆), then α ∈ Γ . For, if β ∈ f (∆) and
α ≤ β , then α ∈ f (∆) and hence α is comparable to γ; and if β < α , then since γ is
comparable to β and ∆ is rooted we again get the contradiction that α is comparable
to γ . Thus, α||β and α ∈ Γ .

(ii) ∆ = f (∆)∪Γ ∪U is a disjoint union of sets. For, if α 6∈ f (∆)∪Γ , then since
α is comparable to each element of f (∆), we necessarily have that α ∈U .

(iii) If α ∈ Γ , then α < 2α . For any γ ∈ f (∆) we have that α + γ||2γ since
α||γ . So α + γ ∈ Γ and α + γ < 2α by (3.7.6). Now, α and α + γ are comparable,
and if α ≤ α + γ , then α < 2α as desired. If α + γ < α , however, then α and
2α are still comparable. If we replace α by α + γ in the second inequality of this
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paragraph we obtain that (α + γ) + γ < 2(α + γ), and hence α + γ < α + γ + α .
Thus, α + γ +α < α + γ +2α and α < 2α .

(iv) If 2β < β , then β ∈ f (∆). From (ii) and (iii) we know that β ∈ f (∆)∪U .
Assume that β ∈ U and let γ ∈ f (∆). Then β + γ > 2γ shows that β + γ 6∈ Γ .
Also, β + γ 6∈ U since otherwise β + γ > γ and 2β + γ > β + γ > 2β + γ . Thus,
β + γ ∈ f (∆), and either γ ≤ β + γ and hence β + γ ≤ 2β + γ < β + γ , or β + γ < γ
and hence γ +β + γ < 2γ and γ +β < γ . But in this latter case β + γ and γ +β are
both elements of f (∆), and hence β ∈ f (∆). For, σ ||τ yields that γ +β +σ ||γ + τ ,
which implies that β + σ ||τ . Similarly, σ + β ||τ . Since this is impossible we have
that β ∈ f (∆).

(v) If α ∈ ∆ , then α < 2α or α > 2α . Since ∆ has no idempotent elements it
suffices to show that α and 2α are comparable, and we already know this if α ∈
Γ ∪ f (∆). But if α ∈U and γ ∈ f (∆), then α||2α is impossible since α + γ < 2α .

(vi) If 2α < α , then, for each γ ∈ ∆ , α + γ < γ and γ + α < γ . From (iv) we
know that α + γ is comparable to γ , and hence α + γ < γ since γ ≤ α + γ gives that
2α + γ < α + γ ≤ 2α + γ . Similarly, γ +α < γ .

(vii) If 2β > β > α > 2α , then β + γ > γ and γ + β > γ for each γ ∈ ∆ . For,
α + γ < β + γ and α + γ < γ yield that γ and β + γ are comparable and hence
γ < β + γ . Similarly, γ < γ +β .

(viii) If 2β1 > β1 > α1 > 2α1 and 2β2 > β2 > α2 > 2α2, then β1 and β2 are
comparable. This follows from (iv), the fact that ∆ is rooted and f (∆) is totally
ordered, and the inequalities β1, β2 ≥ α1∧α2.

(ix) ∆1 is a poset. Let α, β , γ ∈ ∆1. Clearly, ≤ is an antisymmetric relation on
∆1. Suppose that α < β and β < γ . If α = 0, then β , γ ∈ ∆ and 2α1 < α1 < β < 2β
for some α1 ∈ ∆ . Now, γ < 2γ and hence 2α1 < α1 < β < γ < 2γ shows that α < γ ,
since otherwise, 2γ < γ and we have the contradiction 2γ < β + 2γ < β + γ < 2γ
by (vii). If β = 0, then α, γ ∈ ∆ and α < γ since α < α + γ < γ by (vii) and (vi). If
γ = 0, then α < β in ∆ and 2β < β . But then 2α < α + β < α by (vi) and hence
α < γ . Thus < is transitive and ∆1 is a poset.

(x) ∆1 is rooted. Let δ ∈ ∆1 and put X = {β ∈ ∆1 : β ≥ δ}. If δ = 0 then X is a
chain by (viii), and if δ 6= 0 and 0 /∈ X , then clearly X is a chain. Suppose that δ 6= 0
and 0 ∈ X , and let β ∈ X\{0, δ}. So β > δ and 0 > δ , and thus β > δ > 2δ . By
(v), either 2β > β and β > 0, or 2β < β and β < 0. Thus, X is totally ordered.

(xi) ∆1 is an sp-pops. Let α, β ∈ ∆1 with α < β and let γ ∈ ∆ . If α = 0, then
γ + α < γ + β and α + γ < β + γ by (vii), and if β = 0, then γ + α < γ + β and
α + γ < β + γ by (vi). Thus, ∆1 is a pops. That ∆1 satisfies (3.7.8) is an immediate
consequence of (v).

(xii) If u∈W (∆1, A) and u2 ≤ u, then supp u≤ 0. If so, then u∈ f (W ) by (iv) and
Exercise 3.5.17. Suppose that γ ∈ supp u and γ 6≤ 0. Then γ < 2γ since ∆1 satisfies
(3.7.6), and there is an element α ∈maxsupp u with 2γ ≤ 2α ∈max (2 maxsupp u).
But then 2α ∈ maxsupp u2 by (3.7.10). Since 0 ≤ u2 ≤ u there is an element β ∈
maxsupp u with 2α ≤ β . If α < 2α , then we have the contradiction that α < β ;
thus, α ≤ 0 and we have the contradiction that γ < 0. ut
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Note that as a consequence of Theorem 3.7.3 or, more basically, of Exercise 14
(c), the assumption in Theorem 3.7.7 that ∆ is a semigroup can be replaced by the
assumption that W (∆ , A) is an `-prime `-ring.

A (rooted) pops is called sp-unitable or almost sp-unitable if it is contained in
an (rooted) sp-mopops or an almost sp-mopops, respectively. When ∆ is a semi-
group the sp-unitability of the `-ring W (∆ , A) in Theorem 3.7.7 was shown to be
equivalent to the sp-unitability of the rooted sp-pops ∆ . The two are not equivalent
in general, however, even for an f -pops. An example of a rooted f -pops with two
roots that is not sp-unitable but for which W (∆ , A) is a semiprime f -ring is given in
Exercise 21. The two are equivalent for a totally ordered pops. We will obtain this
result by establishing general unitability criteria for a rooted almost sp-pops.

For the pops ∆ let
L2(∆) = {β ∈ ∆ : 2β < β},
U2(∆) = {β ∈ ∆ : β < 2β},
Nn(∆) = {β ∈ ∆ : nβ 6∈ ∆}

and
V2(∆) = {β ∈U2(∆) : ∃α ∈ L2(∆)∪N2(∆) with β > α}.

These subsets of a rooted sp-pops are useful in determining whether or not it is sp-
unital. The element α ∈ ∆ is a le f t superunit o f ∆ if, for each β ∈ ∆ , α +β ≥ β ;
if equality always holds, then α is a left identity element of ∆ . A right superunit or a
right identity element is defined analogously and a superunit of ∆ is an element that
is both a right and left superunit. A subset Γ of ∆ is a right ideal of (∆ , +) if for all
α ∈ Γ and β ∈ ∆ , if α + β ∈ ∆ , then α + β ∈ Γ . It is a right ideal of the pops ∆
if it is both an ideal of the poset (∆ ,≤) and a right ideal of (∆ , +). Left ideals and
ideals of ∆ are defined analogously. Note that Nn(∆) is an ideal of the poset ∆ .

Theorem 3.7.8. Let ∆ be a rooted pops.

(a) N2(∆) ∪ L2(∆) ⊆ f (∆) iff for each β ∈ N2(∆) ∪ L2(∆) and each γ ∈
∆ , β + γ < γ (respectively, γ +β < γ) whenever β + γ (respectively, γ +β )
is defined.

(b) Suppose that ∆ is an (almost) sp-pops. Then ∆ can be embedded in a rooted
(almost) sp-mopops iff ∆\{0}= N2(∆)∪L2(∆)∪U2(∆), N2(∆)∪L2(∆)⊆
f (∆), and V2(∆) is a totally ordered set of superunits of ∆ .

(c) Suppose that ∆ is an (almost) sp-pops and, for each β ∈ ∆ , β + f (∆) 6= /0
and f (∆)+β 6= /0. Then ∆ can be embedded in a rooted (almost) sp-mopops
iff ∆\{0} has no idempotents, L2(∆)⊆ f (∆), and V2(∆) has the description
given in (b).

Proof. (a) If N2∪L2 ⊆ f (∆), then, as in step (vi) in the proof of Theorem 3.7.7, the
addition of β ∈N2∪L2 to γ ∈ ∆ decreases γ . Conversely, if γ||δ and β +γ and δ are
comparable, then β + γ ≤ δ yields that γ and δ are comparable since ∆ is rooted,
and δ < β + γ < γ is also impossible; so β + γ||δ and hence β ∈ f (∆).

(b) Suppose that ∆ is contained in the rooted almost sp-mopops ∆1. If β ∈
∆1\{0}, then since β < 2β or β < 0, and since f (∆1) is an order ideal of ∆1,
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we have that β ∈ N2(∆1) ∪ L2(∆1) ∪U2(∆1) and N2(∆1) ∪ L2(∆1)⊆ f (∆1). Also,
if β1, β2 ∈ V2(∆1), then βi > αi with αi < 0; so βi > 0, β1 and β2 are compara-
ble, and βi is a superunit. Conversely, suppose that ∆ has these three properties
and 0 /∈ ∆ . Note that if β ∈ V2(∆) and α ∈ N2(∆) ∪ L2(∆), then α ≤ α + β < β
by (a). Let ∆1 = ∆ ∪ {0} and extend the order relation of ∆ to ∆1 by defining
N2(∆)∪L2(∆) < 0 < V2(∆). To verify that this relation is a partial order of ∆1 it
suffices to show that it is transitive. Suppose that α < β and β < γ with α, β , γ ∈∆1.
If α = 0 or β = 0, then γ ∈ V2(∆) and α < γ . If γ = 0, then β ∈ N2(∆) ∪ L2(∆);
hence, if 2α ∈ ∆ , then 2α < α +β < α by (a). That ∆1 is a rooted pops which satis-
fies (3.7.6) (or (3.7.8)) if ∆ satisfies (3.7.6) (or (3.7.8)) follows from the arguments
in steps (x) and (xi) in the proof of Theorem 3.7.7.

(c) One implication is an immediate consequence of (b). Suppose that the almost
sp-pops ∆ has the three given properties. We will show that ∆ has the first two
properties of (b). Suppose that β ∈ ∆ and γ ∈ f (∆) with β + γ ∈ ∆ . If 2β /∈ ∆ , then
β +γ < 2γ and hence β < γ since β and γ must be comparable. Thus, N2(∆)⊆ f (∆).
Suppose tht 2β ∈ ∆ and assume that β ||2β . Since β + γ||2β we again have that
β + γ < 2γ and β < γ; but then β ∈ f (∆) and 2β ||2β . Thus β is comparable to 2β
and ∆\{0}= N2∪L2∪U2. ut

The sp-unitability of a totally ordered pops is equivalent to it being embeddable
in a totally ordered mopops, and, in fact, there is a pops analogue of the unitability
theorem for a totally ordered ring (Theorem 3.4.6). The pops ∆ is called infinitesimal
if ∆ = N2(∆)∪L2(∆). We will start with the infinitesimal case, and here the totally
ordered assumption can be relaxed.

Theorem 3.7.9. The following statements are equivalent for the rooted infinitesimal
pops ∆ .

(a) ∆ can be embedded in an almost sp-mopops.
(b) ∆ can be embedded in a rooted almost sp-mopops.
(c) ∆ is an f -pops.
(d) ∆ can be embedded in a rooted f -mopops.
(e) For each totally ordered domain A, V (∆ , A) is an infinitesimal f -ring.
(f) For each totally ordered domain A, ∑(∆ , A) is an infinitesimal f -ring.

Proof. If ∆ can be embedded in an almost sp-mopops, then ∆ < 0 and ∆ is an f -
pops by (a) of Theorem 3.7.8. Thus, (a) ⇒ (c), and clearly (c) ⇒ (b) ⇒ (a) follows
from (b) of Theorem 3.7.8. If ∆ is an f -pops, then ∆1 = ∆ ∪{0} with ∆ < 0 is cer-
tainly a rooted f -mopops. Let A be a totally ordered domain, which we may assume
is unital. Then V (∆1, A) is a unital f -ring (Theorem 3.5.4), and if u ∈ V (∆ , A)+,
then supp u < 0. So u < x0 = 1 and V (∆ , A) is infinitesimal. Thus, (d) ⇔ (c) ⇒ (e),
and also, (e) ⇒ (f) ⇒ (c). ut

We are now ready for the unitability theorem for a totally ordered pops.

Theorem 3.7.10. The following statements are equivalent for the totally ordered
pops ∆ .
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(a) ∆ can be embedded in a totally ordered mopops.
(b) ∆ is sp-unitable.
(c) ∆ is almost sp-unitable.
(d) ∆ is infinitesimal or has a superunit.
(e) For each totally ordered domain A, V (∆ , A) is a unitable f -ring.
(f) For each totally ordered domain A, ∑(∆ , A) is a unitable f -ring.

Proof. The implications (a) ⇒ (b) ⇒ (c) are trivial.
(c) ⇒ (d). Assume that 0 /∈ ∆ . By (b) of Theorem 3.7.8 we have that ∆ = N2 ∪

L2 ∪U2 and V2 is a set of superunits. Suppose ∆ is not infinitesimal and does not
possess a superunit. Then there is an element β ∈ ∆ with β < 2β . Now, for each
α ∈ ∆ , α + β , β + α and 2α are all defined. If α ≥ β this is clear and if α < β it
follows from the assumption that V2 = /0. If β + α ≤ α we have the contradiction
2β +α ≤ β +α < 2β +α . Thus, α < α +β and similarly, α < β +α , and we have
the contradiction that β is a superunit.

(d) ⇒ (a) and (e). If ∆ is infinitesimal this follows from Theorem 3.7.9. Suppose
that β is a superunit of ∆ and ∆ is not a mopops. Let A be a unital totally ordered
domain, and let 0 < u ∈ V (∆ , A) with γ = maxsupp u. Then γ < β + γ, γ + β by
Exercise 19(b). But then u < xβ u, uxβ since maxsupp xβ u = β + γ and maxsupp
uxβ = γ + β . Thus, V (∆ , A) has the superunit xβ and V (∆ , A) is unitable. If α ∈
U2(∆), then (xα)2 > xα , and hence xα is a superunit of V (∆ , A) and α is a superunit
of ∆ . Moreover, if ρ ∈ N2(∆)∪ L2(∆) and γ ∈ U2(∆), then (xρ)2 < xρ and xγ <
(xγ)2; so xρ < xγ and ρ < γ . Thus, if ∆1 = ∆ ∪{0}with the relation N2(∆)∪L2(∆) <
0 < U2(∆), then ∆1 is totally ordered. It also is a pops. For, suppose that α, ρ ∈ ∆1
and γ ∈ ∆ with α < ρ and γ + α ∈ ∆1. If α = 0, then ρ ∈ U2(∆) and γ + α <
γ + ρ since ρ is a superunit. If ρ = 0, then γ + α < γ + ρ by (a) of Theorem 3.7.8.
Similarly, α + γ < ρ + γ if α + γ is defined.

(f) ⇒ (d). Let A be a unital totally ordered domain. If ∑(∆ , A) is infinitesimal,
then certainly ∆ is infinitesimal. Suppose that ∑(∆ , A) has a superunit. By Exercise
17 ∆ is a union of a finite number of ideals (actually, only one), each of which has a
superunit, and the largest of these local superunits is a superunit of ∆ .

Since (e) ⇒ (f) is trivial the proof is complete ut
We will now give an `-semiprime version of Theorem 3.7.7.

Theorem 3.7.11. Suppose that A is a totally ordered domain and W (∆ , A) is an
sp-`-ring such that F(W (∆ , A)) is not contained in any minimal `-prime `-ideal of
W (∆ , A). Then W (∆ , A)/`-β (W (∆ , A)) is sp-unitable.

Proof. By Exercise 14(d) we have that B = `-β (W (∆ , A)) = `-Ng(W (∆ , A)) is an
A-A-subbimodule of W (∆ , A) = W since B is the union of the `-ideals N2n(W ) =
W (N2n(∆), A). Let J be a minimal `-prime `-ideal of W . Then J̄ = J/B is a minimal
`-prime `-ideal of the reduced `-ring W = W/B. If 0 ≤ ū ∈ J̄, then by Theorem
3.2.22 there is an element 0≤ v̄ ∈W\J̄ with ūv̄ = v̄ū = 0. Then au v̄ = v̄ ua = 0 for
each a ∈ A+, and hence aū, ūa ∈ J̄ since J̄ is a completely `-prime `-ideal of W (see
Theorems 3.2.21 and 3.2.23 and Exercise 3.2.15). Thus, J is an A-A subbimodule of
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W (∆ , A). From Exercise 18(c) we have that ∆\∆(J) is a subsemigroup of ∆ , where
∆(J) is the union of the supports of the elements in J. We assume temporarily that
A is an `-primitive f -ring. Then J = W (∆(J), A) and W (∆ , A)/J ∼= W (∆\∆(J), A)
by Exercises 11, 12, and 18. According to Theorem 3.7.7 W/J is sp-unitable, and
hence so is W/B since B is the intersection of the minimal `-prime `-ideals of W .
In general, let A1 be an `-primitive f -ring that contains A; the existence of A1 is
guaranteed by Exercise 3.3.22. If K is a minimal `-prime `-ideal of W (∆ , A1) = W1,
then K = W (∆(K), A1), and we will use Theorem 3.2.22 to show that J = K∩W is
a minimal `-prime `-ideal of W . It is certainly a completely `-prime `-ideal of W .
Let B1 = `-β (W1), W 1 = W1/B1 and K = K/B1. If 0≤ ū ∈ J̄ let 0≤ v ∈W1\K with
ūv̄ = 0, and let α ∈maxsupp v with α /∈ ∆(K). Take 0 < a∈ A1 with 1 < vα a where
vα is the coefficient of α in v. Then xα < va and if 0 < c∈A we have that 0≤ ūcxα ≤
ūv̄ac = 0. Since cxα ∈W\J̄ we have established the minimality of J̄ and also of
J. Since W ( f (∆), A) = F(W ) 6⊆ J = W (∆(K), A1)∩W (∆ , A), necessarily f (∆) 6⊆
∆(K) and F(W1) = W ( f (∆), A1) 6⊆ K. So W/B⊆W1/B1 are both sp-unitable. ut

Exercises.

1. Show that the following statements are equivalent in the `-ring R, and if Mn
is replaced by M, then the first four statements are equivalent. (Use Exercise
2.2.17. The definitions of Mn and M are given after Theorem 4.7.2)

(a) Mn is an additive subgroup of R.
(b) Mn is a convex `-subring of R.
(c) M+

n +M+
n ⊆M+

n .
(d) M+

n −M+
n ⊆M+

n .
(e) (M+

n )n = 0.

2. The C-`-algebra R is called square-archimedean if for each pair of elements
x, y ∈ R+ there is an element α ∈C+ such that xy+yx≤ α(x2 +y2). Show that
the following hold in a square-archimedean `-algebra. Recall that `-N(R) is the
sum of the nilpotent `-ideals of the `-ring R and `-Ng(R) is the generalized `-nil
radical of R.

(a) For each x, y ∈ R+ and n ∈ N, there exists β ∈ C+ such that (x + y)2n ≤
β (x2n

+ y2n
) and (xy)2n ≤ β (x2n+1

+ y2n+1
).

(b) M2n is a nilpotent convex `-subalgebra of R for each n ∈ N.
(c) If R is nil, then M2n is an `-ideal of R. (Show that xax = 0 if x ∈ M+

2 and
a ∈ R+.)

(d) `-N(R) = `-β (R) = `-Nil(R). (Apply (c) and Theorem 3.2.7 to `-Nil(R).)
(e) If disjoint elements commute, then `-β (R) = `-Ng(R).
(f) The archimedean `-algebra in Exercise 3.1.24 (c) is square-archimedean

but is not an sp-`-algebra.

3. Let R be an `-ring.
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(a) Show that `-β (R) = M(R) iff for a ∈M(R)+ and x ∈ R, ax+∧ x− ∈ `-β (R)
and x+a∧ x− ∈ `-β (R). (See Theorem 3.2.13 (e) and Exercise 3.2.20.)

(b) If M(R)⊆ F(R) show that `-N(R) = `-Ng(R) = `-β (F(R)) and M2n(R) is a
nilpotent `-ideal of R for each n ∈ N.

(c) Show that `-β (R) = N(R) iff for a ∈ N(R) and x ∈ R, |a|x+∧ x− ∈ `-β (R)
and x+|a|∧ x− ∈ `-β (R).

(d) If N(R)⊆ F(R) show that `-N(R) = Ng(R) and N2n(R) is a nilpotent `-ideal
of R for each n ∈ N.

4. Let e be a left d-element in the `-ring R.

(a) Show that e is a left superunit of R iff e2 ≥ e and r(e; R) = 0.
(b) If e is a left superunit of R, show that e ∈ F̀ (R).
(c) Suppose that e is a left superunit of R and e ∈ F(R). Show that e is basic iff

F is totally ordered.

5. Let S be a convex `-subring of the sp-`-ring R and suppose that S contains the
left superunit e of R. Let x be an element of R with x2n ∈ S for some n ∈ N.

(a) Show that x2 ∈ S, and if x≥ 0, then x ∈ S.
(b) If S⊆ F(R) show that x ∈ S.
(c) If e is a left identity element of R and RS is a d-module show that x ∈ S.
(d) If e is a superunit of R show that S contains each lowerpotent element of S.
(e) If e⊥ = (e2)⊥ and y ∈ e⊥, then y¿ y2.
(f) If RS is a d-module and e⊥ = (e2)⊥, then e is a weak order unit of R iff e2

is a weak order unit of Re.

6. Let R be an sp-`-ring.

(a) If `(F(R); R) = r(F(R); R) = 0 or F(R) contains a left superunit of R, show
that N(R)⊆ F(R).

(b) If F(R) is not contained in any minimal `-prime `-ideal of R, show that the
set of minimal `-prime `-ideals of R coincides with the set of minimal prime
ideals of R. (See Theorem 3.2.23.)

7. Let R be an `-algebra over C and suppose that `(F(R); R) = r(F(R); R) = 0.
Let T = {t ∈ EndR(RR) : Rt ⊆ R}. Show each of the following.

(a) If t ∈ T , then t ∈ T + iff tF+ ⊆ R+, iff F+t ⊆ R+, where F = F(R).
(b) R is an `-subalgebra of T .
(c) If there are elements a, b∈ F with `(b; R) = r(a; R) = 0, then for any t ∈ T ,

t ∈ T + iff t|b| ∈R+, iff |a|t ∈R+. Moreover, F is totally ordered iff F +C ·1,
the unital subalgebra of T generated by F , is totally ordered.

8. Show that the `-ring R is totally ordered with `(R) = r(R) = 0 iff it is an al-
most f -ring and F(R) has a convex totally ordered subring E with `(E; R) =
r(E; R) = 0.

9. Let T = Z[x] and let R = T x be totally ordered lexicographically: x¿ x2 ¿ ··· .
Let P0, P1, and P2 be the partial orders of the `-groups Z⊕R, (Z⊕Zx) ¢←−Rx,
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and Z ¢←−R, respectively. Show that each (T, Pi) is an sp-unital cover of R, and

each satisfies the identity ab≤ a2 +b2. (See Theorem 3.7.6.)

10. Let ϕ : R −→ V be an embedding of `-algebras where V is unital, and assume
that ϕ(e) is a basic f -superunit of V . Let S = R +C · 1 be the unital `-algebra
given in Theorem 3.7.4 (also see Exercise 7). Show that ϕ has a unique exten-
sion ψ : S−→V and ψ is also an embedding.

11. Suppose that Γ is an ideal of the pops ∆ . If α, β ∈ ∆\Γ define α +Γ β = α +β
iff α +β ∈ ∆\Γ . Let ∆/Γ = (∆\Γ ,≤, +Γ ).

(a) Show that ∆/Γ is a pops that inherits each of the following properties from
∆ : almost sp-pops, sp-pops, f-pops, ∆ = d`(∆), property (d`) (see Exer-
cise 3.5.15), α||β ⇒ α +β is not defined (see Exercise 3.5.22).

(b) Show that Nn(∆/Γ ) = Nn(∆)∩ (∆\Γ )∪{β ∈ ∆\Γ : nβ ∈ Γ }.

12. Suppose that A is a domain and W (∆ , A) is an `-ring.

(a) Let Γ be a subset of ∆ . Show that W (Γ , A) is a right (left) `-ideal of
W (∆ , A) iff Γ is a right (left) ideal of the pops ∆ .

(b) If Γ is an ideal of the pops ∆ show that W (∆ , A)/W (Γ , A) ∼= W (∆/Γ , A)
(see Exercise 11); in particular, W (Γ , A) is a completely `-prime `-ideal iff
∆\Γ is a subsemigroup of ∆ .

(c) If Γ is a right ideal of ∆ define an action of ∆ on ∆\Γ as in Exercise 11,
and show that (b) still holds with the isomorphism now being one of right
W (∆ , A)-`-modules.

(d) These results hold for ∑(∆ , A) and also for V (∆ , A) if it is an `-ring.

13. Suppose that ∆ is an almost sp-pops.

(a) If X ⊆ ∆ show that X +X = /0 iff X ⊆ N2(∆).
(b) If ∆ is rooted show that N2(∆) is an ideal of the pops ∆ . (If α ∈ ∆ , β ∈

N2(∆) and α +β /∈ N2(∆), show that β +α +β < β +2α, 2α +β .)

14. Let A be a po-domain and let ∆ be an almost sp-pops. Suppose that u∈V (∆ , A)
and u2 ∈V (∆ , A).

(a) If u ∈V +, show that u2 > 0 iff supp u 6⊆ N2(∆).
(b) If A is a domain and an sp-po-ring and ∆ is an sp-pops show that u2 > 0 if

and only if supp u 6⊆ N2(∆).
(c) Assume that A is a domain and W (∆ , A) is an `-ring. Show that

M2n(W (∆ ,A)) = W (N2n(∆), A) is a nilpotent `-ideal of W (∆ , A) for each
n ∈N. Consequently, W (∆ , A) is `-semiprime iff it is `-reduced, iff 2β ∈ ∆
for each β ∈ ∆ , and W (∆ , A) is `-prime iff it is an `-domain, iff ∆ is a
semigroup. (Use induction on n and apply Exercise 12(b) to Γ = N2n(∆) in
order to show that M2n+1(W (∆ , A)) is an `-ideal of W (∆ , A). Use Exercise
11(b) to show that N2n+1(∆) = N2n(∆)∪N2(∆/Γ ) (or show this directly)
and conclude that M2n+1(W (∆ , A)) = W (N2n+1(∆), A).)



248 3 Lattice-ordered Rings

(d) If ∆ is an sp-pops in (c) show that M2n(W (∆ , A)) = N2n(W (∆ , A)) for each
n ∈ N.

15. (a) Let ∆ = {0, β , nγ (n ∈N)} with β + γ = γ +β = 2β and nβ = nγ if n≥ 2.
The partial order of ∆ is given by: 0 < β < 2γ < · · ·< nγ < · · · and γ < 2γ .
Show that ∆ is a rooted almost sp-monoid that is not an sp-monoid.

(b) Show that a po-group is an almost sp-pops iff it is totally ordered.
(c) Show that a rooted po-group ∆ satisfies (3.7.7) iff it contains a totally or-

dered normal po-subgroup Γ such that every element of the factor group
∆/Γ has order at most two (see Exercise 3.5.5).

16. Suppose that A is a po-domain and ∆ is a pops.

(a) If ∆ is an almost sp-pops and ∑(∆ , A) is reduced show that ∆ is an sp-pops.
(b) Let A be a domain and suppose that W (∆ , A) is an `-ring and (β + f (∆))∪

( f (∆)+β ) 6= /0 for each β ∈ ∆ . Show that W (∆ , A) is a reduced sp-`-ring
iff ∆ is an sp-pops and 2β ∈ ∆ for each β ∈ ∆ .

17. Let A be a unital totally ordered domain and let ∆ be a rooted pops.

(a) Show that W ( f (∆), A) contains a left superunit (left identity element) of
W (∆ , A) iff ∆ = ∆1∪·· ·∪∆n is the cardinal sum of a finite number of right
ideals ∆1, . . . , ∆n of ∆ such that, for 1≤ i≤ n, ∆i∩ f (∆) has a left superunit
(left identity element) of ∆i. (Take a left f -superunit in W whose support is
the union of a minimal number of disjoint totally ordered subsets.)

(b) If ∆ is an almost sp-pops, or 2β ∈ ∆ for each β ∈ ∆ , show that W ( f (∆), A)
contains a superunit of W (∆ , A) iff ∆ is the cardinal sum of a finite number
of ideals of ∆ each of which contains a superunit which is an element of
f (∆).

(c) Show that 1 ∈W (∆ , A)+ iff ∆ = ∆1∪·· ·∪∆n = Γ1∪·· ·∪Γn has two cardi-
nal sum decompositions where ∆i (respectively, Γi) is a right (respectively,
left) ideal of ∆ and ∆i∩Γi∩ f (∆) contains an element that is a left identity
of ∆i and a right identity of Γi.

(d) Show that (c) holds for ∑(∆ , A), and that if 1 ∈∑(∆ , A)+ and T is any ring
between ∑(∆ , A) and V (∆ , A), then 1 ∈ T .

(e) Show that (a) and (b) hold for ∑(∆ , A) when ∆ is any pops (not necessarily
rooted).

(f) Let ∆ = {α, β , γ} be trivially ordered with 2α = α, 2β = β and γ = γ +
α = β + γ = β +α . Show that ∑(∆ , A) is unital but not `-unital.

(g) Give an example of a unital f -ring V (∆ , A) for which ∑(∆ , A) is not unital.

18. Let A be a totally ordered domain and let ∆ be a rooted pops. For the subset J
of W = W (∆ , A) let ∆(J) be the union of the supports of the elements of J.

(a) If J is a convex `-subgroup of W show that ∆(J) = {α ∈ ∆ : ∃ 0 < a ∈ A
with axα ∈ J}, and J = W (∆(J), A) iff ∆(J) = {α ∈ ∆ : Axα ⊆ J}.
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(b) Show that the mapping J 7→ ∆(J) is a lattice homomorphism from C (W )
onto the lattice of ideals of the poset ∆ , and if J is a right (left) `-ideal of
W , then ∆(J) is a right (left) ideal of the pops ∆ .

(c) If J is a completely `-prime `-ideal of W , show that ∆\∆(J) is a subsemi-
group of (∆ , +) and W (∆(J), A) is a completely `-prime `-ideal of W . Give
an example to show that W (∆(J), A) may properly contain J, and give an
example to show that ∆\∆(J) could be a subsemigroup even though J is
not an `-prime `-ideal.

(d) If A is `-simple show that ∆(J) = {α ∈ ∆ : Axα ⊆ J} whenever J is a
convex `-submodule of WA or of AW . Consequently, C (WA) = C (AW ) and
the mapping in (b) is a lattice isomorphism when restricted to C (WA).

(e) Suppose that for each α ∈ ∆ there is some γ ∈ ∆ with α < α +γ . Show that
∆(J) = {α ∈ ∆ : Axα ⊆ J} for each (right) `-ideal J of W and J 7→ ∆(J)
is a lattice isomorphism between the lattice of (right) `-ideals of W and the
lattice of (right) ideals of the pops ∆ .

(f) Let J be an `-ideal of W . Assume that either A is `-simple and J is an
A-submodule of W , or ∆ satisfies the condition in (e). Show that J is a
completely `-prime `-ideal of W iff ∆\∆(J) is a subsemigroup of ∆ .

19. Let ∆ be a pops and let γ ∈ f (∆).

(a) If γ = 2γ show that, for any β ∈ ∆ , γ +β = β (β +γ = β ) if the sum exists.
(b) If γ is a superunit of ∆ show that either γ = 0, or β < γ +β , β + γ for each

β ∈ ∆ .
(c) Suppose that 0 /∈ ∆ and ∆ has a superunit. Show that f (∆) does not have

an idempotent element.

20. Let ∆ be an (almost) sp-pops. Show that ∆ is contained in an (almost) sp-
mopops iff ∆\{0}= N2(∆)∪L2(∆)∪U2(∆), and, for each β ∈ N2(∆)∪L2(∆)
and γ ∈ ∆ , if β + γ ∈ ∆ (respectively, γ +β ∈ ∆), then β + γ < γ (respectively,
γ +β < γ).

21. This is an example of a commutative rooted f -pops ∆ with two roots, which
has a superunit, with N2(∆) = /0, and which is sp-unitable as a pops but not as a
rooted pops. Let ∆1 be the free commutative semigroup on the set {s, β1, α1}.
Totally order ∆1 by (here, i, j, k, m, n, p ∈ Z+):

siα j
1 β k

1 < spαm
1 β n

1 if
{

j > m, or
j = m and siβ k

1 < spβ n
1

and

siβ k
1 < spβ n

1 if





k < n and i≤ p, or
k > n and p≥ 1, or
k = n and i < p.

Similarly, let ∆2 be the free commutative semigroup on the set {s, β2, α2}, or-
dered in the same way as ∆1. Let ∆ be the pops generated by {s, α1, β1, α2, β2}
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such that ∆1 and ∆2 are subpops of ∆ , and if ρ, δ ∈ ∆ , then ρ ≤ δ and ρ δ is
defined if and only if ρ, δ ∈ ∆1 or ρ , δ ∈ ∆2. Show that ∆ has the desired prop-
erties. (A picture of ∆ is useful—s is a root point; use Exercise 20 and Theorem
3.7.8.)

22. Suppose that A is a unital totally ordered domain and ∆ is a rooted f -pops.
Show that ∑(∆ , A) is unitable iff V (∆ , A) is unitable. (Use Exercise 12.)

23. Assume that A is a totally ordered domain and ∆ is a rooted almost sp-pops.
State and prove the corresponding version of Theorem 3.7.11 for W (∆ , A).

24. Suppose that A is a po-domain with A+ 6= 0 and ∆ is a pops. If W (∆ , A) is
reduced show that ∆ is an sp-pops iff it is an almost sp-pops.

25. Let R be an archimedean sp-po-ring, let t(R) = {a ∈ R : na = 0 for some n ∈
N}, t2(R) = {a∈ R : 2a = 0} and let a, b, c, d ∈ R. Verify each of the following.

(a) t(R)⊆ N2(R).
(b) a ∈ N2(R) iff ab+ba = 0.
(c) If a ∈ N2(R), then, abc = bac = bca ∈ t2(R).
(d) N(R) = N4(R) = {a ∈ R : a3 ∈ t2(R)}. (If a2m = 0 consider a + nak with

k = 2m−3 and k = 2.)
(e) If a ∈ N(R), then ab, ba ∈ N2(R). Consequently, β (R) = N(R) where β (R)

is the lower nil radical of R. (First show that (aba)2 = 0.)
(f) N2(R) is a convex ideal of R.
(g) If a ∈ N(R), then abc =−cab = bca.
(h) If a ∈ N2(R), then all six products obtained by permuting the factors in abc

are equal.
(i) If a∈N(R), then abcd = bacd = bcad ∈ t2(R) and all twenty-four products

obtained by permuting the factors in abcd are equal.
(j) `(R) = r(R) and hence `(Rm) = r(Rm) for each m ∈ N.
(k)

N(R) = {a ∈ R : abc+ cab = 0}
= {a ∈ R : bca+ cab = 0}
= {a ∈ R : 2a ∈ `(R3)}

is a convex ideal of R, and R/N(R) is a torsion-free archimedean sp-po-ring.
(l) N(R)2R = N(R)RN(R) = RN(R)2 ⊆ t2(R).

(m) If R is directed, then it is torsion-free.
(n) R is semiprime iff R is reduced iff `(R) = t2(R) = 0.

26. Show that a unital sp-`-ring in which a∈ Ra2 whenever 0≤ a¿ a2 is an almost
f -ring.

Notes. Birkhoff and Pierce [BP] showed that both a d-ring in which squares
are positive and a unital `-ring in which 1 is a weak order unit are almost f -rings.
They asked whether or not a unital `-semiprime `-ring in which 1 is a weak order
unit must be an f -ring. Diem [DI] answered this question by showing that an `-
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semiprime almost f -ring is an f -ring. He also showed that an `-prime sp-`-ring
which is archimedean or in which disjoint elements commute is an `-domain, and
asked whether or not an `-prime sp-`-ring is an `-domain. Steinberg [ST12] gave
a partial answer by showing it is a domain provided the subring of f -elements has
no nonzero left or right annihilator, and Ma [M2] strengthened this result by merely
requiring the existence of a nonzero f -element. Earlier, Steinberg [ST7] showed that
an `-semiprime sp-`-ring with no nonzero right `-QR right `-ideal is an `-domain.
Theorems 3.7.4 and 3.7.5 on the sp-unitability of an `-prime `-ring are due to Ma
[M3], as is Exercise 10. Most of the results connected with W (∆ ,A) being an sp-
`-ring come from Steinberg [ST11] and [ST15]. Exercise 2 for an `-ring is due to
Shyr and Viswanathan [SV] and Exercise 25 is due to Lavric [LAV]. Other papers
dealing with sp-`-rings are Steinberg [ST6] and [ST8] and Ma and Steinberg [MS].

3.8 Polynomial Constraints

We have seen that the constraint x2 ≥ 0 imposes restrictions on the nilpotent
and idempotent elements of an `-ring and forces some `-prime `-rings to be `-
domains. The question arises as to whether or not these results also hold for `-
rings that satisfy an identity of the form (x6)− = 0, or (3x + 2x2 + 5x3)− = 0 or
(−2xy2− yxy+ y3− x2y2)− = 0. The answer is that they generally do hold for uni-
tal `-rings. In fact, the polynomials can frequently be allowed to vary from element
to element, or from pairs of elements to pairs of elements; so an `-algebra with
these constraints is analogous to an algebraic algebra as well as to an algebra with a
polynomial identity. However, `-algebras that are algebraic or satisfy a polynomial
identity may not satisfy the constraints which generalize x2 ≥ 0 since the coefficients
of our polynomials will have to be suitably conditioned. A simple counterexample
is provided by the canonically ordered matrix algebras over a totally ordered field.
Other commutative properties of these constrained `-algebras are that the products
of two positive disjoint elements generate the same `-ideal, and the `-algebra is an
f -algebra if it is archimedean over the base ring. The identity x+x− = 0 that de-
termines the variety of almost f -rings is a polynomial constraint. Surprisingly, an
`-ring with an f -superunit is an almost f -ring if and only if the f -superunit is a
weak order unit, and an archimedean almost f -ring is commutative. An almost f -
ring, as well as a d-ring, possesses a nilpotent `-ideal modulo which it is an f -ring.
An example is given in the exercises to show that a unital one-sided f -ring, though
an almost f -ring, need not be an f -ring.

Throughout this section R will be a torsion-free `-algebra over the commutative
unital totally ordered domain C. Let C[x1, . . . ,xn] be the free unital C-algebra in
the indeterminates x1, . . . ,xn. When n = 2 we will usually let x = x1 and y = x2. A
polynomial f (x, y) ∈C[x, y] is nice if it has at least one monomial of degree 1 in x
and each such monomial has a negative coefficient. Thus, a nice polynomial f (x, y)
has the form

f (x, y) =−g(x, y)+ p(y)+h(x, y)
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where g(x, y) is nonzero and each of its monomials is of degree 1 in x and has
a positive coefficient, and h(x, y) = 0 or each of its monomials is of degree at
least 2 in x. If g(x, y) has a monomial ending (beginning) in x, then f (x, y) is
called right (left) nice, and if h(x, y) ∈ C[xk, y], then f (x, y) is k-nice. For exam-
ple, f (x, y) =−(xy+ yx)+α(x2 + y2) is left and right 2-nice for each α ∈C; also,
(y−x)n and modifications of it obtained by inserting appropriate coefficients in front
of its monomials are nice polynomials. If f (x, y) is nice, then f (x, 1)′(0) < 0 where
p′(x) denotes the derivative of p(x) ∈C[x].

If (a1, . . . ,an) is an n-tuple of elements from R let P((a1, . . . ,an)) = { f (x1,
. . . ,xn) ∈C[x1, . . . ,xn] : f (a1, . . . ,an) ∈ R+} and P∗((a1, . . . ,an)) = P((a1, . . . ,an))
\C. The set P((a1, . . . ,an)) is a subsemiring of C[x1, . . . ,xn] and P((a1, . . . ,an))∩
−P((a1, . . . ,an)) is the ideal of polynomials which are 0 at (a1, . . . ,an). If R is not
known to be unital, then P((a1, . . . ,an)) will necessarily consist of polynomials with
zero constant term. The n-tuple (a1, . . . ,an) is called p-algebraic if f (a1, . . . ,an)≥ 0
for some f (x1, . . . ,xn)∈P∗((a1, . . . ,an)). The pair (a, b)∈R2 will be called a (right,
left, k-)nice p-algebraic pair if P((a, b)) contains a (right, left, k-) nice polynomial,
and if each element of X ⊆ R2 has this property, then X is called a (right, left, k-)
nice p-algebraic set. Note that if (a, b) is a nice p-algebraic pair, then in a general
sense “a ≤ sums of higher powers of a.” Similarly, a subset X of R will be called
p-algebraic if each of its elements is p-algebraic; also, X is weakly p-positive if
for each a ∈ X there exists p(x) ∈ P∗(a) with p′(1) > 0 in C, and X is p-positive
if P∗(a)∩C+[x] is not empty for each a in X . If the polynomials that make X p-
algebraic of a particular type can be chosen so that their degrees are no larger than
a fixed integer, then X is said to be of bounded degree.

We will first examine those nilpotent elements which produce p-algebraic units
when added to ±1. This, of course, gives a local generalization to the squares posi-
tive inequality.

Theorem 3.8.1. Let R be a unital torsion-free C-`-algebra and let a be a nilpotent
element in R. The following statements are equivalent.

(a) |a|< 1.
(b) There is a polynomial p(x) in C[x2] with p(an±1)≥ 0 for each n ∈ N, and

0 6= p′(1) ·1 ∈ R+.
(c) For each n ∈ N there are polynomials p1(x) and q1(x) in C[x] with p1(an +

1)≥ 0, q1((an−1)2)≥ 0 and p′1(1)q′1(1) ·1 > 0 in R.
(d) For each n ∈ N there are polynomials p2(x) and q2(x) in C[x] with p2(an +

1)≥ 0, q2(an−1)≥ 0 and p′2(1)q′2(−1) ·1 < 0 in R.
(e) 1 ∈ R+ and for each b in {±an : n ∈ N} there is a polynomial f (x, y) ∈

C[x, y] such that f (b, 1)≥ 0 and f (x, 1)′ (0) < 0.
(f) 1 ∈ R+, |a| is nilpotent and if u∧ v = 0 with u ≤ |a|m for some m ∈ Z+

and some unit v ≤ 1, then there is a nice polynomial f (x, y) ∈C[x, y] with
f (u, v)≥ 0.

(g) For each n∈N there are polynomials p3(x) and q3(x) in C[x], with only odd
terms, such that p3(b)+ p3(b)− = 0 if b =±(an +1), and q3(c)+q3(c)− = 0
if c =±(an−1), and p3(1)p′3(1)q3(1)q′3(1) ·1 > 0 in R+.
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Proof. We assume at the outset that 1 ∈ R+ since this is implied by each of these
statements. Note that each statement is a consequence of (a).
(b)⇒ (c). If p(x) = h(x2) is the polynomial given in (b) let p1(x) = p(x) and q1(x) =
h(x).
(c) ⇒ (d). Let q2(x) = q1(x2) and p2(x) = p1(x).
(d)⇒ (e). Let b = an and take p2(x), q2(x)∈C[x] with p2(an +1)≥ 0, q2(an−1)≥ 0
and p′2(1)q′2(−1) ·1 < 0. Now, if q2(x) = α0 + · · ·+αmxm, then

0≤ q2(b−1) = α0 +α1(b−1)+α2(b−1)2 + · · ·+αm(b−1)m

= (α1−2α2 + · · ·+(−1)m−1mαm)b+β0 +h(b)

= q′2(−1)b+β0 +h(b)

where h(x) ∈ x2F [x] and β0 = q2(−1). Similarly, there exists h1(x) ∈ x2F [x] with
γ0 = p2(1) and

0≤ p2(b+1) = p′2(1)b+ γ0 +h1(b).

If q′2(−1) < 0, then f+(x, y) = q′2(−1)x + β0 + h(x) is a nice polynomial with
f+(b, 1) ≥ 0. Also, p′2(1) > 0 since p′2(1)q′2(−1) < 0, and f−(x, y) = −p′2(1)x +
γ0 + h2(x) is a nice polynomial with f−(−b, 1) ≥ 0; here, if h1(x) = ∑γixi, then
h2(x) = ∑(−1)iγixi.

If q′2(−1) > 0, then again we get two nice polynomials f±(x, y) with f+(b, 1)≥ 0
and f−(−b, 1)≥ 0.

(e) ⇒ (a). By induction on the index of nilpotency of a we may assume that
ak ∈ F = F(R) if k ≥ 2. Let f (x, y) = g(x, y)+ p(y)+h(x, y) be a polynomial with
f (x, 1)′(0) < 0 and f (a, 1) = g(a, 1) + p(1) + h(a, 1) ≥ 0, where the monomials
of g(x, y) (respectively, h(x, y)) are of degree 1 (respectively, at least 2) in x. Then,
since g(a, 1) =−βa where β =− f (x, 1)′(0) > 0 and h(a, 1)∈ a2C[a]⊆F , we have
βa ≤ s for some s ∈ F . By using a similar polynomial for −a, we get −γa ≤ t for
some t ∈ F and 0 < γ ∈C. So −β t ≤ γβa≤ γs and a ∈ F .

(f) ⇒ (a). By induction on the index of nilpotency of b = |a|, we may assume
that bn = 0, n≥ 2, and bk ∈ F if k≥ 2. Let c = b∧1, and let u = b−c and v = 1−c.
Then c, v∈ F , v is a unit since c is nilpotent, and u∧v = 0. Let f (x, y) =−g(x, y) +
p(y) + h(x, y) be a nice polynomial with f (u, v) ≥ 0. Then 0 ≤ g(u, v) ≤ p(v) +
h(u, v). Each term of h(u, v) is of the form αw = αun1vm1 un2 vm2 · · ·unt vmt with N =
∑ni ≥ 2. Since v≤ 1, 0≤ w≤ uN ≤ bN ∈ F ; so αw ∈ F, h(u, v) ∈ F , and g(u, v) ∈
F since p(v) ∈ F . Now g(u, v) contains a term of the form αu, αuvm, αvmu or
αvmuvk, where α > 0 and m, k ≥ 0. Since g(x, y) has positive coefficients, if d is
this term, then 0≤ d ≤ g(u, v) and hence u, uvm, vmu or vmuvk ∈ F . But then u ∈ F
and so b = u+ c ∈ F .

(g)⇒ (d). Since p3(x) has only odd terms p3(−b)=−p3(b); and hence p3(−b)+

= p3(b)− and p3(−b)− = p3(b)+. So if b = an + 1, then p3(b)+ p3(b)− = 0 and
p3(b)−p3(b)+ = 0, and hence

p3(b)2 = [p3(b)+− p3(b)−]2 = [p3(b)+]2 +[p3(b)−]2 ≥ 0.
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Similarly, q3(b)2 ≥ 0 if b = an− 1. Let p2(x) = p3(x)2 and q2(x) = q3(x)2. Then
p2(an +1)≥ 0, q2(an−1)≥ 0 and p′2(1)q′2(−1) ·1 < 0 in R.

The proof is now complete. ut
We also have the following two-variable generalization of Theorem 3.7.1 and

Exercises 3.7.2 and 3.7.5.

Theorem 3.8.2. Suppose that a ∈ R, k ∈ N and akn ∈ S for some n ∈ Z+ where S
is a convex `-subalgebra of F(R). Assume that for each m ∈ Z+ and each t ∈ S+

there are two k-nice polynomials fi(x, y) = −gi(x, y) + pi(y) + hi(x, y), i = 1,2,
with f1(x, y) ∈ P((akm

, t)) and f2(x, y) ∈ P((−akm
, t)), at least one of which is right

nice, such that g2(akm
, t)≤ g1(akm

, t). Then for each s ∈ S∪{1} and for each t ∈ S
there is an integer N ≥ 0 with tNsa ∈ S.

Proof. Let t ∈ S and s ∈ S ∪ {1}. We may assume that s ≥ 0 and t ≥ 0. For if
|t|N |s|a ∈ S, then

|tNsa| ≤ |t|N |s||a|= ||t|N |s|a| ∈ S

and so tNsa ∈ S. Let t1 = t ∨ s if s 6= 1 and let t1 = t if s = 1. We argue by induction
on n. If n = 0, then a ∈ S and we can let N = 0. Assume the result is true for the
integer n and suppose that akn+1 ∈ S. Let b = ak. Then bkn ∈ S and hence for each
s1 ∈ S∪{1} there is an integer N1 with tN

1 s1b ∈ S. Now for each integer r ≥ 1 there
is an integer Nr with tNr

1 s1br ∈ S. For, if tNr
1 s1br ∈ S, then there exists an integer M

with tM
1 (tNr

1 s1br)b ∈ S, and hence we may take Nr+1 = M +Nr.
Let f1(x, y)∈P((a, t1)) and f2(x, y)∈P((−a, t1)) be the two k-nice polynomials

which satisfy the given conditions. If u is a term of h1(a, t1) = q1(ak, t1) = q1(b, t1),
then

u = αti1
1 b j1 ti2

1 b j2 · · · til
1 b jl

with 0 6= α ∈ C, l ≥ 1, i1 ≥ 0, jl ≥ 0 and j1 ≥ 1. We claim that tL
1 u ∈ S for

some L. If l = 1 this follows from the previous paragraph. Assume that l ≥ 2 and
tL1
1 (αti1

1 b j1 · · · til−1
1 b jl−1) = s2 ∈ S. Then, again, there is an integer L2 with

tL1+L2
1 u = tL2

1 (s2til
1 )b jl ∈ S,

and so L = L1 + L2 works. Thus, there exists an integer L3 with tL3
1 h1(a, t1) ∈ S;

similarly, there is an integer, which we may assume to be L3, with tL3
1 h2(−a, t1)∈ S.

Now, tL3
1 gi(a, t1) ∈ S. For, g1(a, t1) ≤ p1(t1)+ h1(a, t1) and g2(−a, t1) ≤ p2(t1)+

h2(−a, t1). But g2(−a, t1) =−g2(a, t1); so

−(p2(t1)+h2(−a, t1))≤ g2(a, t1)≤ g1(a, t1)≤ p1(t1)+h1(a, t1).

Thus,

−tL3
1 (p2(t1)+h2(−a, t1))≤ tL3

1 g2(a, t1)≤ tL3
1 g1(a, t1)

≤ tL3
1 (p1(t1)+h1(a, t1))
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and tL3
1 gi(a, t1) ∈ S.

Now suppose that g1(a, t1) has a term of the form β tL4
1 a. But t1 ≥ 0 and all the

coefficients of g1(x, y) are in C+; so |β tL4
1 a| ≤ |g1(a, t1)|, since this inequality holds

in any totally ordered C-F(R)-F(R) bimodule which is a homomorphic image of R,
and R is a subdirect product of these modules. Thus, β |tL3

1 tL4
1 a| ≤ tL3

1 |g1(a, t1)| =
|tL3

1 g1(a, t1)|, and if N = L3 +L4 then tN
1 a ∈ S. We are done if s = 1.

If N = 0, then a ∈ S and tNsa ∈ S. If N ≥ 1 and s 6= 1, then 0 ≤ tN−1s ≤ tN
1 and

hence |tN−1sa|= tN−1s|a| ≤ tN
1 |a|= |tN

1 a|; so tN−1sa ∈ S. ut
We can use the previous two results to show that in an `-ring which satisfies these

polynomial constraints each (positive) nilpotent element is usually an f -element,
and hence the `-ring is reduced (`-reduced) modulo its lower `-nil radical. So, in fact,
in many cases these general constraints reduce to the specific constraint (x−y)2 ≥ 0
with x nilpotent and y an f -element.

Theorem 3.8.3. Each of the following conditions implies that `-β (R) = M(R) ⊆
F(R).

(a) F(R) contains a left superunit e of R, and if S is the convex `-subalgebra
generated by e, then for some k ≥ 2 the set M(R)+× S+ is a right k-nice
p-algebraic set.

(b) F(R) contains a convex `-subring S with `(S; R) = r(S; R) = 0, and, for
some integers k,k1 ≥ 2, M(R)+ × S+ is a left k-nice p-algebraic set of
bounded degree and a right k1-nice p-algebraic set of bounded degree.

(c) R is `-unital and the set {(u, v) ∈ R2 : u∧ v = 0, u ∈M(R), v ≤ 1 and v is
a unit} is a nice p-algebraic set.

Proof. For (a), if (a, t) ∈ M(R)+ × S+ and f1(x, y) is a right k-nice polynomial
with f1(a, t) ≥ 0, let f2(x, y) = −g1(x, y). Then f2(−a, t) = g1(a, t) ≥ 0, and, by
Theorem 3.8.2, a≤ eNa ∈ S for some integer N. Thus, `-β (R) = M(R) by Exercise
3.7.3. For (b), according to Exercise 4, there is an integer N with tNa, atN ∈ S for
every a∈M(R)+ and every t ∈ S+. But then, if u∧v = 0 in R we get that tN(au∧v) =
tNau∧ tNv = 0; so au∧ v ∈ r(Fn) = 0. Similarly, ua∧ v = 0 and a ∈ F(R). The
equivalence of (a) and (f) in Theorem 3.8.1 gives (c). ut

We also have the following result whose proof is similar to that of Theorem 3.7.3.

Theorem 3.8.4. Suppose that the `-algebra R either contains a convex `-subalgebra
S of f -elements with vanishing left and right annihilator ideals in R such that
N(R)×S+ is a left k-nice and a right k1-nice p-algebraic set of bounded degree for
some integers k,k1 ≥ 2, or it is `-unital and its group of units is weakly p-positive.
Then `-β (R) = N(R)⊆ F(R). ¤

In any `-group or, trivially, in any almost f -ring two disjoint elements commute.
This property does not hold in an arbitrary unital sp-`-ring; see Exercise 6. How-
ever, in such an `-ring the `-ideals generated by the products of two positive dis-
joint elements are identical, and this is still the case in more generally constrained
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`-algebras. Note that Theorem 3.2.24 indicates the importance of knowing when
disjoint elements do commute.

Theorem 3.8.5. Suppose that R is a torsion-free C-`-algebra with N2(R)+ ⊆ F(R).
Assume that if u∧ v = 0, where u is a zero divisor in R+ and v ∈ F(R), then either
v−u is p-positive or (u, v) is a right nice p-algebraic pair. Then for any a, b∈R with
a∧b = ab = 0 and any e ∈ F(R)+, there exists an integer N ∈ Z+ with ebeNae = 0.
Moreover, if ea≥ a and eb≥ b and `(F(R); F(R)) = 0, then ba = 0.

Proof. Let a,b ∈ R with a∧ b = ab = 0 and take e ∈ F+ = F(R)+. Set a1 = a∧ e
and b1 = b∧e. We first show that bema1e = 0 for each m ∈ Z+. Let b2 = b−b1 and
e2 = e−b1; and let a2 = a−a1 and f2 = e−a1. Then

b2∧ e2 = 0 (3.8.1)

and
a2∧ f2 = 0. (3.8.2)

Let b0 = b and a0 = a; then since a1bi = 0 we have

f2bi = ebi for 0≤ i≤ 2. (3.8.3)

Also, since aib1 = 0 we get

aie2 = aie for 0≤ i≤ 2. (3.8.4)

Now a1 ∧ b1em = 0 in F ; so b1ema1 = 0. Also, (3.8.1) implies b2emal
1∧ e2 = 0, for

any l,m ∈ Z+. But e2 ∈ F , and (b2emal
1)

2 = 0 (if l ≥ 1) implies b2emal
1 ∈ N+

2 ⊆ F ;
so

b2emal
1e = 0 for all m ∈ Z+ and l ≥ 1 (3.8.5)

since b2emal
1e = b2emal

1e2 = 0 by (3.8.4). But then,

bema1e = (b2 +b1)ema1e = b2ema1e+b1ema1e = 0.

By (3.8.2) b1ema2∧ f2 = 0, and therefore by (3.8.3) eb1ema2 = f2b1ema2 = 0. So

ebemae = eb2ema2e for all m ∈ Z+ (3.8.6)

since eb1ema2 = bema1e = 0, and

eb2ema2e = e(b−b1)em(a−a1)e = ebemae− ebema1e− eb1ema2e.

Since (b2( f2e)ma2)( f2e)s ∈ F+ we get from (3.8.2) that

b2( f2e)ma2( f2e)sa2∧ f2 = 0,

and hence (3.8.3) implies

eb2( f2e)ma2( f2e)sa2 = 0 for all m, s ∈ Z+. (3.8.7)
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Let p(x) be a polynomial in C[x] of degree ≥ 1 and with positive coefficients
such that p( f2e−a2)≥ 0. Then (α0 = 0 if 1 /∈ R)

0≤ α0 +α1( f2e−a2)+ · · ·+αn( f2e−a2)n = p( f2e−a2), (3.8.8)

and so
0≤ g(a2, f2e)≤ α0 + ∑

k≥1
αk( f2e)k +h(a2, f2e) (3.8.9)

where −g(a2 f2e) is the sum of all those monomials in a2 and f2e in (3.8.8)
which contain exactly one a2, and h(a2, f2e) is the sum of all those monomi-
als which contain more than one a2. A typical term in h(a2, f2e) is of the form
αw = α( f2e)m1a2( f2e)m2a2 · · ·( f2e)mt with mi ∈ Z+, t ≥ 3 and α ∈ C. By (3.8.7)
eb2w = 0 and hence eb2h(a2, f2e) = 0. From (3.8.9) we get that

0≤ eb2g(a2, f2e)≤∑αkeb2( f2e)k. (3.8.10)

A typical term in g(a2, f2e) is α( f2e)ma2( f2e)s. But

b2( f2e)ma2( f2e)se∧b2 = 0 for all m, s ∈ Z+ (3.8.11)

since f2 ≤ e, and

0≤ b2( f2e)ma2( f2e)se∧b2 ≤ b2( f2e)ma2(e2)se∧b2

= b2( f2e)ma2e2e2s∧b2 = 0,

by (3.8.4) and (3.8.1); and (3.8.11) implies

eb2( f2e)ma2( f2e)se∧ eb2( f2e)ke = 0 for all m, s, k ∈ Z+. (3.8.12)

Now, (3.8.10) and (3.8.12) imply that

0≤ eb2g(a2, f2e)e = eb2g(a2, f2e)e∧∑αkeb2( f2e)ke = 0,

and hence
eb2g(a2, f2e)e = 0. (3.8.13)

However, one term in g(a2, f2e) is α( f2e)ma2 with 0 < α ∈ C and m ≥ 0 (m is
minimal with αm+1 6= 0); since g(x, y) ∈C+[x, y], (3.8.13) implies

eb2( f2e)ma2e = 0. (3.8.14)

Now, for any k ∈ Z+

b2( f2e)ka2 = b2(e−a1)e(e−a1)e · · ·(e−a1)ea2 = b2e2ka2 (3.8.15)

since all other terms contain a factor b2eral
1e with l ≥ 1, and b2eral

1e = 0 by (3.8.5).
Thus,

ebe2mae = eb2e2ma2e = eb2( f2e)ma2e = 0 (3.8.16)
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by (3.8.6), (3.8.15), and (3.8.14).
If there is a nice polynomial f (x, y) =−g(x, y)+ p(y)+h(x, y) with f (a2, f2e)≥

0, then we again get (3.8.9) (some αk may be negative); and if g(x, y) has a mono-
mial which ends in x, the calculation from (3.8.9) through (3.8.16) is still valid.

Now suppose that ea ≥ a and eb ≥ b; then 0 ≤ bae ≤ ebe2mae = 0. If t ∈ F+,
then e+ t may replace e; so ba(e+ t) = 0 and hence bat = 0. Consequently ba = 0
when `(F(R); F(R)) = 0. ut

Recall from Exercise 3.3.17 that the submodule A of the C-module B is closed if
B/A is torsion-free; and the closure of A in B is the submodule Â = {b ∈ B : αb ∈ A
for some 0 6= α ∈ C}. When C is `-simple each convex `-submodule of a C- f -
module is closed.

Theorem 3.8.6. Suppose that the f -subalgebra F(R) contains a superunit of R. In
each of the following cases the closed `-ideals of R generated by u+u− and u−u+

are identical, for each u in R.

(a) R is an sp-`-algebra.
(b) For some k ≥ 2, R+×R+ is a right k-nice p-algebraic set.
(c) R is unital and p-positive.
(d) R is unital and {(u, v) ∈ R2 : u∧ v = 0} is a right nice p-algebraic set.

Proof. First note that in each case the hypotheses are preserved in every homomor-
phic image of R. Also, each `-ideal I of R is a C-submodule since if a∈ I+ and e∈ R
with a ≤ ea, then 0 ≤ αa ≤ (αe)a ∈ I for every α ∈ C+. In (d) note that 1 ∈ R+

since 0≤ 1− ≤ e1− = e− = 0 if e is a left f -superunit of R. Suppose that u ∈ R and
let I be the closed `-ideal of R generated by u+u−. By Theorems 3.8.3 and 3.8.4
we have that N2(R/I)+ ⊆ F(R/I), and by Theorem 3.8.5 we obtain that u−u+ ∈ I.
Similarly, u+u− is in the closed `-ideal generated by u−u+. ut

We turn our attention next to the subvariety of sp-`-rings consisting of the almost
f -rings. An immediate consequence of Theorem 3.2.24 is that an `-prime almost
f -ring is a totally ordered domain, and hence an almost f -ring modulo its lower
`-nil radical is an f -ring. This fact will be strengthened later when it is shown that
an almost f -ring modulo a nilpotent `-ideal is an f -ring. In a unital almost f -ring,
the identity element is a weak order unit; that is, 1⊥ = 0. It is surprising that the
converse holds in an `-unital `-ring R, and, in fact, we can relax the assumption that
R is unital. Before we present this result in Theorems 3.8.9 and 3.8.10, we will again
examine nilpotent elements and investigate their role in showing that the product of
disjoint elements is zero.

Theorem 3.8.7. Suppose that the convex `-subring S of the `-ring R contains a pos-
itive weak order unit e of R. Assume that either e ∈ Fr(S) and e is a left superunit in
S, or ex≥ 0 implies that x≥ 0 for x ∈ S, and for every x, y ∈ S+, xy≤ x2 +y2. Then
a≤ e if a ∈ R+ and a∧ e is nilpotent.
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Proof. For the first case suppose that a ∧ 2e 6≤ e. Then, since SG is a right f -
module over G = Fr(S), there is a nonzero totally ordered homomorphic image
SG of SG in which a∧2e > e. So a∧ e = a∧2e∧ e = a∧2e∧ e = e 6= 0. Since
a∧ e is nilpotent, there is a smallest integer n with (a∧ e)n = 0 and n≥ 2. But then
0 = (a∧ e)n = a∧ e(a∧e)n−1 = e(a∧ e)n−1 = e(a∧ e)n−1 ≥ (a∧ e)n−1 ≥ 0 contra-
dicts the minimality of n. Thus a∧2e≤ e, and so (a− e)+∧ e = 0; whence a≤ e.

In the second case suppose that (a∧ e)n = 0 and 2 ≤ n ≤ 2m. Let b = ma∧
(m+1)e. Since 0≤ b≤ (m+1)(a∧e) we have that e2m−1

b2m−1 ≤ e2m
and therefore

b2m−1 ≤ e2m−1
. Again, e2m−2

b2m−2 ≤ e2m−1
+ b2m−1 ≤ 2e2m−1

and therefore b2m−2 ≤
2e2m−2

. Continuing we eventually get that ma∧ (m + 1)e ≤ me and hence m(a−
e)+∧ e = 0. Thus, a≤ e. ut
Theorem 3.8.8. Suppose that the convex `-subring S of R is an almost f -ring, e∈ S+

is a right f -element of R, and for any c∈ R+, if (c∧e)2 = 0, then c∈ S. Assume that
a ∈ R and b ∈ S with a∧b = 0.

(a) If e is a left superunit in S, then ab = 0.
(b) If S⊆ F̀ (R) and r(e; S) = 0, then ba = 0.

Proof. Let a1 = a−a∧e and e1 = e−a∧e. Since (a∧e)∧b = 0 in S and S satisfies
x+x− = 0, (a∧e)b = b(a∧e) = 0. Since a = a1 +a∧e, to show that ab = 0 or ba = 0
it suffices to show that a1b = 0 or ba1 = 0, respectively. Since a1∧ e1 = 0 and e1 is
a right f -element we have a1e1∧ e1 = 0 = (a1e1∧ e)∧ e1. But e1, a1e1∧ e ∈ S and
hence e1(a1e1∧e) = 0. So 0≤ (a1e1∧e)2 ≤ a1e1(a1e1∧e) = 0 and hence a1e1 ∈ S.
Now, 0 = a1e1b = a1(e− a∧ e)b = a1eb since a1e1 and b are disjoint elements of
S. But 0 ≤ a1b ≤ a1(eb) = 0 if e is a left superunit of S. This completes the proof
of (a). To complete the proof of (b) we first note that eba1 ∈ S since (eba1)2 = 0;
hence eba1 and e1 are disjoint elements of S since eb is a left f -element of R. Thus,
e2ba1 = (e1 + a∧ e)eba1 = e1eba1 = 0 since a∧ e and eb are disjoint elements
of S, and hence ba1 ∈ r(e2; R) = r(e2; S) = 0. For, e2x = 0 with x in R gives that
(e|x|∧ e)2 = 0, e|x| ∈ S, e|x|= 0, (e∧|x|)2 = 0, and x ∈ S. ut

We can now show that the cyclic right ideal that is generated by a “good” weak
order unit in an `-ring is an almost f -ring, and if the weak order unit is “better”,
then the `-ring itself is an almost f -ring.

Theorem 3.8.9. Suppose that T is an almost f -ring that is a convex `-subring of
F̀ (R) and e is an f -element of R belonging to T with r(e; R) = 0. The following
statements are equivalent.

(a) eR is an almost f -ring.
(b) e is a weak order unit of R.
(c) If a ∈ R+ and a∧ e is nilpotent, then a ∈ T .
(d) If a ∈ R+ and (a∧ e)2 = 0, then a ∈ T .
(e) eR is an sp-`-ring, and if a ∈ R+ with (a∧ e)2 = 0, then (ea)2 = 0.



260 3 Lattice-ordered Rings

Proof. (a) ⇒ (b). From e∧a = 0 it follows that e2∧ ea = 0, e3a = 0 and a = 0.
(b) ⇒ (c). This is a consequence of Theorem 3.8.7.
(c) ⇒ (d). This is trivial.
(d) ⇒ (a). Suppose that a, b ∈ R with a∧ b = 0. Let a1 = a− a∧ e and e1 =

e−a∧ e. From (b) of Theorem 3.8.8 we have e1a1 = 0, (a1e1)2 = 0, a1e1 ∈ T and
a1e1b = 0. Also,

aeb = (a1 +a∧ e)eb = a1eb = a1(e1 +a∧ e)b = a1e1b = 0.

In particular, if ea∧ eb = 0, then a∧b = 0 and eaeb = 0.
(a) ⇒ (e). Suppose that a ∈ R+ with (a∧ e)2 = 0. Then a≤ e by Theorem 3.8.7

and a2 = 0 = (ea)2 by Theorem 3.3.4.
(e)⇒ (d). If (a∧e)2 = 0, then aea = 0 and 0≤ (a−e)e(a−e) =−ae2−e2a+e3;

so e2a≤ e3 and a≤ e. ut
Theorem 3.8.10. Let T be an almost f -ring that is a convex `-subring of the `-ring
R, and suppose that e is an f -element of R belonging to T . Assume that either T is
a right f -ring and e is a left superunit of R, or T ⊆ F̀ (R) and r(e; R) = `(e; R) = 0.
Then the following statements are equivalent.

(a) R is an almost f -ring.
(b) e is a weak order unit of R.
(c) If a ∈ R+ and a∧ e is nilpotent, then a ∈ T .
(d) If a ∈ R+ and (a∧ e)2 = 0, then a ∈ T .
(e) N2(R)+ ⊆ T , and R satisfies

if a ∈ R+ with a∧ e ∈ N2(R), then a ∈ N2(R). (3.8.17)

(f) R is an sp-`-ring that satisfies (3.8.17).

If e = 1 and T is a C-subalgebra of R, then each of these statements is equivalent
to the following statement.

(g) R satisfies (3.8.17) and for each a∈N2(R)+ there are polynomials p(x), q(x)
∈C[x] with p(a+1)≥ 0, q(a−1)≥ 0, and p′(1)q′(−1) < 0.

Proof. (a) ⇒ (b). If a∧ e = 0, then ea = 0 implies that a = 0 since r(e; R) = 0.
(b) ⇒ (c). This is Theorem 3.8.7.
(c) ⇒ (d). This is trivial.
(d) ⇒ (a). Suppose that a∧b = 0. Let

a1 = a−a∧ e , b1 = b−b∧ e

e1 = e−a∧ e , e2 = e−b∧ e.

Under the assumption that e is a left superunit we have, by (a) of Theorem 3.8.8,

0≤ ba = b(a1 +a∧ e) = ba1 ≤ bea1 = be1a1 = 0.



3.8 Polynomial Constraints 261

The last equality arises from the fact that e1a1 ∈ b⊥T since a1e1 = 0 and conse-
quently (e1a1)2 = 0.

Now assume that T ⊆ F̀ (R) and r(e; R) = `(e; R) = 0. Note that since e is a
weak order unit of T it follows from Theorem 3.8.7 that a ≤ e whenever a ∈ R+

with (a∧ e)2 = 0. Consequently, by letting the `-ring S in Theorm 3.8.8 (b) be the
convex `-subring generated by e we can conclude that the product of two positive
disjoint elements in R is 0 provided that one of them belongs to S. In particular, we
have that e1a1 = b1e2 = 0 and ab = a1b = ab1. From Theorem 3.8.9 we know that
bea = aeb = 0. Thus, (eab)2 = 0, eab ≤ e, e2eab ≤ e4 +(eab)2 = e4 and ab ≤ e.
So,

0≤ eab2 = (e1 +a∧ e)a1b2 = (a2b∧ eab)b≤ a2b2 ≤ aeb = 0

and ab2 = 0. Hence,

abe = ab1(e2 +b∧ e) = ab2∧abe = 0

and ab = 0.
(a)⇒ (e) and (f). This follows from (b) and an application of Theorem 3.8.7 with

S being the convex `-subring generated by e.
(f) ⇒ (d). If a ∈ R+ and (a∧ e)2 = 0, then ea≤ e2 +a2 = e2; so a≤ e.
Since (e) ⇒ (d) and (f) ⇒ (g) are trivial and (g) ⇒ (e) is a consequence of

Theorem 3.8.1, the proof is complete. ut
Even though the previous two results can be stated more simply by taking the

`-subring T to be F(R), or even the smaller convex `-subring generated by e, the
apparently larger T that is used could make it easier to verify that (c), (d), or the
second (e) is satisfied in a particular `-ring. Other polynomial constraints that yield
that N2(R)+ ⊆ T can, of course, also be substituted for the identity (x2)− = 0 in
(f). Some examples of almost f -rings with a good weak order unit are given in
Exercises 13, 14, 15, and 16. In particular, there is a right f -ring with an identity
element that is not an f -ring. Also, in contrast to Theorem 3.8.10, it is possible for
F(R) to contain a weak order unit of R without the identity x+x− = 0 lifting from
F(R) to R.

Theorem 3.8.10 can be used to show that an archimedean `-algebra which satis-
fies a polynomial identity and which has a good superunit must be an f -algebra. The
essential computations are given in the next result. Note that the free algebra C[x, y]
is an `-algebra with positive cone C+[x, y], and the positive part, negative part and
absolute value of f (x, y) in this `-algebra will be denoted by f +(x, y) f−(x, y) and
| f |(x, y), respectively.

Theorem 3.8.11. Let R be a torsion-free `-algebra over C, let G be a cofinal subset
of C+, and let a, e ∈ R+.

(a) Suppose that p(x) = α0 +α1x+ · · ·+αnxn ∈C[x] has degree n≥ 2, αn > 0
and p(αe−a)≥ 0 for each α ∈ G. Assume that a∧ en = 0, a∧ en−1 = 0 if
αn−1 > 0, and for some 0 < δ1, δ2 ∈C,
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δ1a≤ δ2 ∑
i+ j=n−1

eiae j. (3.8.18)

Then there are 0 < ρ ∈C and q(x, y) ∈C+[x, y] with ρa¿C q(a, e).
(b) Suppose that f (x, y) = −ρm(x, y)+ u(x, y) ∈C[x, y] where 0 < ρ ∈C and

m(x, y) is a monomial of degree n ≥ 1 in x whose y-degree exceeds the y-
degree of u+(x, y). Assume that a ≤ ea and f (a, αe) ≥ 0 for each α ∈ G.
Then there are q(x, y) ∈C+[x, y] and t ∈ Z+ with ρanet ¿C q(a, e).

Proof. (a) For each k ≥ 1 the coefficient of αk in p(αe− a) comes from αk(αe−
a)k +αk+1(αe−a)k+1 + · · ·+αn(αe−a)n and is

αkek + ∑
m≥k+1

(−1)m−kαm ∑
i1+···+it=k

j1+···+ jt=m−k

ei1 a j1 · · ·eit a jt = αkek +Ok(a, e).

So

0≤ p(αe−a) = p(−a)+
n

∑
k=1

[αkek +Ok(a, e)]αk

gives that

0≤ p(−a)+ [p(αe)− p(0)]+

[
n−2

∑
k=1

Ok(a, e)αk

]
−αnαn−1 ∑

i+ j=n−1
eiae j. (3.8.19)

Thus, by bringing the last sum in (3.8.19) to the left side, and by multiplying (3.8.18)
by αnαn−1, and by dropping the negative terms that remain on the right side of
(3.8.19) we get

0≤ αnδ1αn−1a

≤ δ2

[
u+(a)+

n−2

∑
k=1

(α+
k ek +O+

k (a, e))αk +α+
n−1αn−1en−1 +α+

n αnen

]
,

where u(x) = p(−x). So, if α ≥ 1, then

0≤ α(δ1αna)

≤ δ2

[
u+(a)+

n−2

∑
k=1

(α+
k ek +O+

k (a, e))+α+
n−1αen−1 +αnα2en

]
, (3.8.20)

and since a is disjoint from the last two terms in (3.8.20) we obtain 0 ≤ αρa ≤
q(a, e) with ρ = αnδ1 and

q(x, y) = δ2

[
u+(x)+

n−2

∑
k=1

α+
k yk +O+

k (x, y)

]
.

(b) Let m(x, y) = xi1 y j1xi2y j2 · · ·xir yt . Since ai ≤ ekai if i ≥ 1 and k ≥ 0, anet ≤
m(a, e). If m(x, y) has degree s in y, then f (a,αe)≥ 0 implies
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0≤ ραsanet ≤ ρm(a, αe)≤ u(a, αe)≤ u+(a, αe).

If α ≥ 1, then

ραanet ≤ α1−su+(a, αe)≤ u+(a, e) = q(a, e),

since s > degree of y in u+(x, y); so q(x, y) = u+(x, y). ut
Let us call a nice polynomial f (x, y) =−g(x, y)+ p(y)+h(x, y) y-special if the

y-degree of g(x, y) exceeds the y-degree of h+(x, y).

Theorem 3.8.12. Let R be a torsion-free C-archimedean `-algebra, and suppose
that R has a left superunit which is an f -element. The following statements are
equivalent.

(a) R is an f -algebra.
(b) R satisfies the identity p(x)− = 0 for some p(x) ∈C[x]\C.
(c) R satisfies the identity f (x, y)− = 0 where f (x, y) ∈ C[x, y] is a y-special

right k-nice polynomial with k ≥ 2.

Proof. Since (a) implies (b) and (c) it suffices to show that the converse implications
are valid. Let e be an f -element of R which is a left superunit of R.

(b) ⇒ (a). As a consequence of Theorem 3.8.11 (a) we have that e is a weak
order unit of R, and hence R is an almost f -algebra by Theorem 3.8.10. By Exercise
3.7.5 each nilpotent element of R is contained in F(R), and by Theorem 3.8.7 (or
Exercise 3.7.5), if a is nilpotent, then a¿C e. Thus, R is reduced and hence it is an
f -algebra.

(c)⇒ (a). Again, we only have to show that e is a weak order unit of R. If a∧e = 0
and α ∈C+, then

0≤ g(a,αe)≤ p(αe)+h(a, αe)≤ |p|(αe)+h+(a, αe).

Since g(a, αe)∧ |p|(αe) = 0 we have that g(a, αe) ≤ h+(a, αe) and so aet = 0
for some t ∈ Z+ by Theorem 3.8.11(b). But then 0 ≤ a2 ≤ aeta = 0. By Theorem
3.8.2, eNa ∈ F(R) for some integer N and hence a ∈ F(R). But a ∈ F(R)⊥ since if
b ∈ F(R)+, then a∧b≤ a∧ eb = 0. So a = 0 and e is a weak order unit. ut

We will now show, as previously promised, that both a d-ring and an almost f -
ring share the property of being an f -ring modulo a nilpotent `-ideal. This is, of
course, a stronger property than that of being an extended f -ring; see Theorems
3.3.4 and 3.3.5 and Exercises 3.3.9 through 3.3.13.

Theorem 3.8.13. Let R be an `-ring that is an almost f -ring or satisfies one of the
identities: y+|x|y+ = |y+xy+|, y+x+y+x−y+ = 0. Then R has a nilpotent `-ideal A
such that R/A is an f -ring, and N(R) is a sum of nilpotent `-ideals of R.

Proof. The last statement is a consequence of the equations `-N(R)/A = `-N(R/A)=
N(R/A) = N(R)/A where, as usual, `-N(R) denotes the sum of the nilpotent `-ideals
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of R. In any `-ring the middle annihilator A = {x ∈ R : RxR = 0} is an ideal whose
cube is 0 and the middle `-annihilator B = {x ∈ R : R|x|R = 0} is the largest `-ideal
of R contained in A. Now, R satisfies the identity y|x|y = |yxy| for y ∈ R+ and x ∈ R
iff the maps x 7→ yxy are `-homomorphisms of the additive `-group of R; and in this
case A = B. So if a∧b = 0 in such an `-ring and c, d ∈ R+, then

0≤ d(ca∧b)d = dcad∧dbd ≤ (dc∨d)(a∧b)(dc∨d) = 0.

Thus, ca∧b ∈ A and, similarly, ac∧b ∈ A; so R/A is an f -ring.
Suppose that R satisfies the identity y+x+y+x−y+ = 0. Then Rx+Rx−R = 0 for

each x ∈ R, and

(ba)2b = b(a+−a−)b(a+−a−)b = (ba+)2b+(ba−)2b≥ 0

if a ∈ R and b ∈ R+. Let

A = {a ∈ R : (b|a|)2b = 0, ∀b ∈ R+}. (3.8.21)

If a1, a2 ∈ A and b ∈ R+, then

0≤ (b|a1 +a2|)2b≤ (b|a1|+b|a2|)2b = b|a1|b|a2|b+b|a2|b|a1|b.

But
0≤ (b(|a1|− |a2|))2b =−(b|a1|b|a2|b+b|a2|b|a1|b)≤ 0,

and hence A is a convex `-subgroup of R. Also, if r ∈ R, then (b|a1r|)2b ≤
b|a1||r|b|a1||r|b = 0 since R|a1|R|a1|R = 0; similarly, ra1 ∈ A. It follows that A
is a nilpotent `-ideal of R whose index of nilpotency is at most five. If c∧ d = 0
and u ∈ R+, then (b(uc∧ d))2b ≤ bucbdb = 0 and (b(cu∧ d))2b ≤ bcubdb = 0;
consequently, R/A is an f -ring.

Now assume that R is an almost f -ring. Then N(R) is an `-ideal of R and, as
in the previous paragraph, the set A that is defined in (3.8.21) is a nilpotent `-
ideal of R. Let B/A be the `-ideal of R/A defined by (3.8.21). Note that a ∈ B+

iff y(xaxax)y(xaxax)y = 0 for every x, y ∈ R+. If a, x, y ∈ R+ with a2 = 0, then
axaya = 0 since c = xay is nilpotent and aca≤ (ac)2 +a2 = (aca)c≤ (aca)c2 ≤ ·· · ;
so a ∈ B. In particular, if c∧d = 0 and u ∈ R+, then uc∧d and cu∧d ∈ B. Thus, B
is the desired nilpotent `-ideal of R. ut

When R is an archimedean almost f -ring a stronger version of Theorem 3.8.13
is a consequence of Theorems 3.2.24 and 3.6.2 since N(R) is an `-ideal whose cube
is 0 and R/N(R) is an archimedean f -ring. Thus, R is close to being commutative.
In fact, it is commutative as we will now show. Just as in Theorem 3.6.1 associa-
tivity is not used in the proof and this allows for a more general statement of this
commutative result.

Let A and D be abelian groups and let n ∈ N. Recall that the mapping ϕ :
An −→ D is n-multilinear if it is additive in each variable, and it is symmetric if
ϕ(a1, . . . , an) = ϕ(aσ(1), . . . , aσ(n)) for each permutation σ of {1, . . . , n}. If A and



3.8 Polynomial Constraints 265

D are `-groups ϕ is called positive if ϕ((A+)n) ⊆ D+, and ϕ is an almost f -map,
abbreviated as a f -map, when it satisfies the following condition:

ifai∧a j = 0 for some i and j, then ϕ(a1, . . . , an) = 0. (3.8.22)

Theorem 3.8.14. Let A and D be abelian `-groups with D archimedean. If ϕ :
A2 −→ D is a bilinear positive a f -map, then ϕ is symmetric. In particular, a not
necessarily associative almost f -ring is commutative.

Proof. By replacing A and D by their divisible closures we may assume that A and D
are vector lattices overQ. For a, b∈ A we will write ab = ϕ(a, b), and, as usual, the
commutator of a and b is written as ab−ba = [a, b]. Since the elements a−a∧b and
b−a∧b are disjoint we have that (a−a∧b)(b−a∧b) = (b−a∧b)(a−a∧b) = 0.
Consequently,

ab = (a−a∧b+a∧b)(b−a∧b+a∧b)

= (a−a∧b)(a∧b)+(a∧b)(b−a∧b)+(a∧b)2

and
ba = (b−a∧b)(a∧b)+(a∧b)(a−a∧b)+(a∧b)2.

Thus,
[a, b] = [a−a∧b, a∧b]+ [a∧b, b−a∧b] =

[a∧b, b−a∧b]− [a∧b, a−a∧b], (3.8.23)

and we must show that commutators of the latter type vanish for positive a and b.
Since the argument is rather complicated we will proceed by a sequence of steps.
Let a, b ∈ A+ and 0 < p ∈Q. We first show that

a∧b−a∧b∧ p−1(a−a∧b) ∈ (a−a∧ (p+1)b)⊥. (3.8.24)

For,

0≤ a∧b− (a∧b∧ p−1(a−a∧b)) = p−1[p(a∧b)− (p(a∧b)∧ (a−a∧b))]

= p−1[p(a∧b)− (((p+1)(a∧b)∧a)−a∧b)]

= p−1((p+1)(a∧b)− (p+1)(a∧b)∧a)

= p−1((p+1)(a∧b)−a∧ (p+1)b)

≤ p−1((p+1)b−a∧ (p+1)b)

and (p+1)b−a∧ (p+1)b ∈ (a−a∧ (p+1)b)⊥.

Now, the inequality

a−a∧b− (a−a∧ (p+1)b) = a∧ (p+1)b−a∧b



266 3 Lattice-ordered Rings

≤ a∧ pb+a∧b−a∧b≤ pb

gives that

0≤ ((a−a∧b)− (a−a∧ (p+1)b))(a∧b)≤ pb(a∧b)≤ pb2. (3.8.25)

From (3.8.24) we get that

(a−a∧ (p+1)b)(a∧b) = (a−a∧ (p+1)b)(a∧b∧ p−1(a−a∧b)),

and substituting this in (3.8.25) gives

0≤ (a−a∧b)(a∧b)−((a−a∧(p+1)b)(a∧b∧ p−1(a−a∧b)))≤ pb2. (3.8.26)

The inequality

0≤ (a∧b)(a−a∧b)−((a∧b∧ p−1(a−a∧b))(a−a∧(p+1)b))≤ pb2 (3.8.27)

is obtained in the same way.
We will use (3.8.23), (3.8.26) and (3.8.27) to approximate the commutator [a, b],

and it is desirable to single out certain expressions that appear in (3.8.26) and
(3.8.27). We define the functions f0 and f1 with domain A+×A+× (Q+\{0}) and
values in A+, by

f0(a, b, p) = a∧b∧ p−1(a−a∧b), f1(a, b, p) = a−a∧ (p+1)b.

Note that 0≤ f0(a, b, p)≤ a∧b, 0≤ f1(a, b, p)≤ a−a∧b and

0≤ f0(a, b, p)+ f1(a, b, p)≤ a. (3.8.28)

Using these functions the inequalities (3.8.26) and (3.8.27) become

0≤ (a−a∧b)(a∧b)− f1(a, b, p) f0(a, b, p)≤ pb2 (3.8.29)

and
0≤ (a∧b)(a−a∧b)− f0(a, b, p) f1(a, b, p)≤ pb2, (3.8.30)

and we will use these inequalities to show

|[a, b]+ [ f0(a, b, p), f1(a, b, p)]− [ f0(b, a, p), f1(b, a, p)]|
≤ 2p(a2 +b2). (3.8.31)

For simplicity let x = a− a∧ b, y = a∧ b, f0 = f0(a, b, p), f1 = f1(a, b, p), g0 =
f0(b, a, p), g1 = f1(b, a, p) and z = b− a∧ b. Then (3.8.29) and (3.8.30) become
0≤ xy− f1 f0, yx− f0 f1 ≤ pb2, and [a, b] = [y, z]− [y, x] by (3.8.23). Now,

|[y, x]− [ f0, f1]|= |(yx− f0 f1)− (xy− f1 f0)| ≤ 2pb2,

and, similarly, |[y, z]− [g0, g1]| ≤ 2pa2. So
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|[a, b]+ [ f0, f1]− [g0, g1]|= |[y, z]− [y, x]+ [ f0, f1]− [g0, g1]|

= |[y, z]− [g0, g1]− ([y, x]− [ f0, f1])| ≤ 2p(a2 +b2),

and (3.8.31) has been established.
We will now recursively define new elements in A+, two at a time, for the pur-

pose of approximating the commutator [a, b] with a sum of commutators of these
elements, as in (3.8.31). Let D = {0, 1} ⊆ Q. If ε = (ε1, . . . , εk) ∈ Dk and i ∈ D,
then by (ε, i) we mean the k +1 - tuple (ε, i) = (ε1, . . . , εk, i) ∈ Dk+1. Let (pn)n be
a sequence of strictly positive rational numbers. For k ∈ N and ε ∈ Dk we define
elements a(ε) = a((pn), a, b, ε) in A+ by a(0) = a, a(1) = b and for ε ∈ Dk and
i ∈ D,

a((ε, i)) = fi(a(ε), a((ε1, . . . , εk−1, 1− εk)), pk). (3.8.32)

The first property of these elements that we need is

a((ε1, . . . , εk))≤ a((ε1, . . . , εr)) if 1≤ r ≤ k. (3.8.33)

For, if 2 ≤ k, then by (3.8.32) and (3.8.28) a((ε1, . . . , εk))≤ a((ε1, . . . , εk−1)). The
next property that we need to establish is that any two of the elments which are de-
fined by (3.8.32) at the same level using different preceding sequences are disjoint.
More specifically,

a((ε, i))∧a((ε ′, j)) = 0 if ε, ε ′ ∈ Dk with ε 6= ε ′. (3.8.34)

To see this suppose that ε = (ε1, . . . , εr−1, εr, . . . , εk) and ε ′ = (ε1, . . . , εr−1, ε ′r,
. . . , ε ′k) with εr 6= ε ′r. If ε = (ε1, . . . , εr−1), then, by (3.8.33),

a((ε, i))∧a((ε ′, j)) = a((ε1, . . . , εr−1, εr, . . . ,εk, i))
∧a((ε1, . . . , εr−1, ε ′r, . . . , ε ′k, j)) (3.8.35)

≤ a((ε1, . . . , εr−1,εr, εr+1))∧a((ε1, . . . , εr−1, ε ′r, ε ′r+1))

= a((ε, 0, ī))∧a((ε, 1, j̄))

for some ī, j̄ ∈ D. But if c = a((ε, 0)) and d = a((ε, 1)), then from the definitions
of fi we obtain

a((ε, 0, 0)) = f0(c, d, pr)≤ p−1
r (c− c∧d) = p−1

r (c−d)+,

a((ε, 0, 1)) = f1(c, d, pr)≤ (c−d)+,

a((ε, 1, 0)) = f0(d, c, pr)≤ p−1
r (c−d)−,

and
a((ε, 1, 1)) = f1(d, c, pr)≤ (c−d)−.

So (3.8.34) is a consequence of (3.8.35) and the preceding inequalities.
Note that as a consequence of (3.8.33) we have that
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a((ε, 1))≤ a(ε1)≤ a+b for any ε ∈ Dk. (3.8.36)

Our next goal is to establish the similar inequality

a((ε, 0))≤ 1
k +1

(a+b) if ε ∈ Dk (3.8.37)

using induction on k. If k = 1, then the definitions of f0 and a((ε, i)) give

a((0, 0)), a((1, 0))≤ a∧b≤ 1
2 (a+b).

Assume that (3.8.37) holds for some k ≥ 1 and all a, b and (pn). Before we show
that it also holds for k + 1 we need to do some shifting. For ε = (ε1, . . . , εm+1) ∈
Dm+1 let a∗ = a((pn), a, b, (ε1, ε2)), b∗ = a((pn), a, b, (ε1, 1− ε2)) and ε∗ =
(0, ε3, . . . , εm, εm+1) ∈ Dm. We claim that

a((pn), a, b, (ε, i)) = a∗((pn+1), a∗, b∗, (ε∗, i)). (3.8.38)

By a∗((ε1, . . . , εm)) we mean a∗((pn+1), a∗, b∗, (ε1, . . . , εm)) for any m ∈N and
any εi ∈ D. For m = 1, we have that ε = (ε1, ε2), ε∗ = (0) and

a((ε, i)) = fi(a((ε1, ε2)), a((ε1, 1− ε2)), p2) = fi(a∗(0), a∗(1), p2)

= a∗((ε∗, i)).

Suppose that (3.8.38) holds for some m and let ε = (ε1, . . . , εm+2) ∈ Dm+2 and set
ε = (ε1, . . . , εm+1). Then

a((ε, i)) = fi(a((ε, εm+2)), a((ε, 1− εm+2)), pm+2)

= fi(a∗((ε∗, εm+2)), a∗((ε∗, 1− εm+2)), pm+2)

= a∗((ε∗, i))

and (3.8.38) has been established. Now, if ε ∈ Dk+1, then ε∗ ∈ Dk and by (3.8.38)
and (3.8.28) we have that

a((ε, 0)) = a∗((ε∗, 0))≤ 1
k +1

(a∗(0)+a∗(1)) (3.8.39)

= 1
k+1 (a((ε1, ε2))+a((ε1, 1− ε2))≤ 1

k+1 a(ε1).

Also,
a((ε, 0)) = f0(a(ε), a((ε1, . . . , εk, 1− εk+1)), pk+1)

≤ a((ε1, . . . , εk, εk+1))∧a((ε1, . . . , εk, 1− εk+1))≤ a((ε1, . . . εk,), 0),

and continuing we get that a((ε, 0)) ≤ a((ε1, 0)) ≤ a(1− ε1). But then (k +
2)a((ε, 0)) ≤ a(ε1) + a(1− ε1) = a + b by (3.8.39), and the proof of (3.8.37) is
complete.

For ε = (ε1, . . . , εk) ∈ Dk let |ε|= ε1 + · · ·+ εk. For each k ∈ N let
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Ck = ∑
ε∈Dk

(−1)|ε|+k [a((ε, 0), a((ε, 1))],

and let C0 = [a, b]. We claim that for each k ∈ Z+

|Ck−Ck+1| ≤ 2pk+1(a2 +b2). (3.8.40)

Since
C1 =−[a((0, 0)), a((0, 1))]+ [a((1, 0)), a((1, 1))]

=−[ f0(a, b, p1), f1(a, b, p1)]+ [ f0(b, a, p1), f1(b, a, p1)]

we have that |C0−C1| ≤ 2p1(a2 + b2) by (3.8.31); and this is (3.8.40) for k = 0.

For k ≥ 1 we have that

Ck+1 = ∑
ε∈Dk

(−1)|ε |+k+1[a((ε, 0, 0)), a((ε, 0, 1))]

+ ∑
ε∈Dk

(−1)|ε |+k[a((ε, 1, 0), a((ε, 1, 1))]

and hence

Ck−Ck+1 = ∑
ε∈Dk

(−1)|ε |+k([a((ε, 0)), a((ε, 1))]+ [a((ε, 0, 0)), a((ε, 0, 1))]

−[a((ε, 1, 0), a(ε, 1, 1)]).

This gives that

|Ck−Ck+1| ≤ ∑
ε∈Dk

2pk+1(a((ε, 0))2 +a((ε, 1))2)

≤ 2pk+1 ∑
ε∈Dk

(a((ε, 0))+a((ε, 1)))2

≤ 2pk+1 ∑
ε∈Dk

a(ε)2 = 2pk+1 ∑
ε∈Dk−1

(a((ε, 0))2 +a((ε, 1))2),

where the first inequality comes from (3.8.31) and the last inequality comes from
(3.8.28). Repeated uses of (3.8.28), starting with this last sum, eventually gives
(3.8.40).

Now let 0 < q ∈ Q and choose the sequence (pn) such that ∑∞
k=1 pk < q/2. It

follows from (3.8.40) that

|[a, b]−Cn|=
∣∣∣∣∣

n

∑
k=1

Ck−1−Ck

∣∣∣∣∣≤
n

∑
k=1

2pk(a2 +b2) < q(a2 +b2).

According to (3.8.34) and (3.8.36)
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∑
ε∈Dk

a((ε, 1)) =
∨

ε∈Dk

a((ε, 1))≤ a+b,

and hence using (3.8.37) we obtain that

|Ck| ≤ ∑
ε∈Dk

a((ε, 0))a((ε, 1))+a((ε, 1))a((ε,0))

≤ 1
k+1 ∑

ε∈Dk

(a+b)a((ε, 1))+ 1
k+1 ∑

ε∈Dk

a((ε, 1))(a+b)

≤ 2
k+1 (a+b)2.

Thus, for each 0 < q ∈Q and each k ∈ N,

|[a, b]| ≤ q(a2 +b2)+ 2
k+1 (a+b)2.

Letting q = 1
k+1 we get that (k +1)|[a, b]| ≤ 3(a+b)2 and hence [a, b] = 0 since

D is archimedean. ut

Exercises.

1. Show that the following statements are equivalent for the unital torsion-free
C-`-algebra R.

(a) The idempotents of R are contained in the interval [0, 1] and are central.
(b) Each idempotent e is p-algebraic and [p(1)− p(0)] · 1 > 0 in R for some

p(x) ∈ P∗(e).
(c) Each idempotent e is p-algebraic and (p(1)− p(0))(q(1)−q(0)) ·1 > 0 in

R for some p(x) ∈ P∗(e) and some q(x) ∈ P∗(1− e).
(d) For each idempotent e in R there are polynomials p(x), q(x) ∈C[x]x such

that p(e)+ p(e)− = q(e)−q(e)+ = 0 and p(1)q(1) > 0.

2. Suppose that the `-algebra R in Exercise 1 is also a reduced `-domain in which
each zero divisor a is p-algebraic with P∗(a)∩C[x]x not empty. Let Q be the
totally ordered field of quotients of C. Show that the following statements are
equivalent.

(a) R is an `-unital domain.
(b) If a ∈ R and 0 < α ∈ C with a2 = αa, then [p(α)− p(0)] · 1 > 0 in R for

some p(x) ∈ P∗(a).
(c) Each idempotent in R⊗C Q, the C-divisible closure of R, is positive.
(d) R is `-unital and if a is a zero divisor of R⊗C Q, then there exists p(x) ∈

P∗(a)∩Q[x]x with p(1) 6= 0.

(For (c) ⇒ (a) show that if a is an algebraic element of R⊗C Q, then Q[a] is a
direct sum of fields and a ∈ Q[a]a2.)

3. Let R be an `-prime p-algebraic `-unital torsion-free C-`-algebra.
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(a) Suppose that for each zero divisor a of R there exists p(x) ∈ P∗(a) with
zero constant term and p(1) 6= 0, and the group of units of R is weakly
p-positive. Show that R is a domain provided that C is a field.

(b) Suppose that R is p-positive and P∗(a)∩C[x]x 6= /0 for each zero divisor a
in R. Show that R is a domain.

(c) Let the ring T = Q×Q be given the positive cone T + = {(u, v) : 0 ≤
v ≤ u}. (see Exercise 3.1.24 (b)). Show that T is an `-domain and R =
(2Z×2Z)+Z(1, 1) is a weakly p-positive `-subring of T that satisifies the
conditions in (a) with C = Z. (If a = (u, v) ∈ T , then p(a)≥ 0 or p(a)≤ 0
where p(x) = vx−x2. If u, v∈Z, then, for example, p(x) = vx2−x3 ∈ P(a)
if u < 0 and v ≥ 2, and p(x) = v3x− x4 ∈ P(a) if u > 0 and v > u; find
polynomials for the other cases.)

4. Assume that the k-nice polynomials f (x, y) =−g(x, y)+ p(y)+q(xk, y) in The-
orem 3.8.2 satisfy the conditions: the y-degree of each monomial of g(x, y)
which ends in x is bounded by M1 and the x-degree of q(x, y) is bounded
by M2. Show that the integer N in Theorem 3.8.2 can be chosen to satisfy
N ≤M1(Mn

2 +Mn−1
2 + · · ·+1).

5. (a) Suppose that 2≤ n ∈ N and the pops ∆ satisfies the following condition.

If α1, . . . ,αn ∈ ∆ are not all equal
and α1 + · · ·+αn ∈ ∆ , then α1 + · · ·+αn < nαi

for some i, 1≤ i≤ n. (3.8.41)

Let A be a domain and a po-ring which satisfies the inequality an ≥ 0. If
u ∈W (∆ , A) and un ∈W (∆ , A) show that un ≥ 0. (Imitate part of the proof
of Theorem 3.7.6.)

(b) Show that each sp-pops satisfies (3.8.41).

6. Let ∆ be the free monoid generated by the set Y . If y1, . . . ,yp ∈ Y , then the
element s = y1 · · ·yp ∈ ∆ has length p : `(s) = p. Given a total order of Y
define the relation < in ∆ by: s < t if either (i) 1 ≤ `(s) < `(t), or (ii) for
some m ≥ 0, s = y1 · · ·ym+1 · · ·yp, t = y1 · · ·ymzm+1 · · ·zp, yi, zi ∈ Y, p ≥ 2 and
ym+1 < zm+1.

(a) Show that ∆ is a rooted sp-pops.
(b) If Y has at least two elements and A is a unital totally ordered domain show

that ∑(∆ , A) is an sp-`-ring in which disjoint elements do not commute.
(c) Let e denote the identity element of ∆ . Suppose that the partial order of ∆

is strengthened by adding: (iii) e < t if t ∈ ∆ and `(t) ≥ 2. Show that (a)
and (b) still hold.

(d) Suppose that the partial order of ∆ is changed in the following way. Let
n ∈ N. In (i) and (iii) we require that `(t)≥ 2n while in (ii) we require that
p ≥ 2n. Let ∆n denote the monoid ∆ with this relation. Show that ∆n is a
rooted pops that satisfies the condition (3.8.41) given in Exercise 5; hence
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W (∆n, A) is an `-ring that satisfies x2n ≥ 0 but not xm ≥ 0 if m < 2n, and
disjoint elements in W (∆n, A) do not commute.

7. (a) Let σ be an order preserving automorphism of the unital totally ordered
domain A, and let A[y; σ ] be the twisted polynomial ring determined by σ
(see Exercises 3.1.14 and 3.5.13). Define p(y) = a0 + a1y + · · ·+ anyn ≥ 0
if n ≥ 2 and an > 0 or p(x) = a0 + a1y and a0 ≥ 0 and a1 ≥ 0. Show that
this defines a positive cone for A[y; σ ] which makes it into an sp-`-ring, and
if σ 6= 1, then there are disjoint elements in A[y; σ ] which do not commute.

(b) Let n ∈ N and modify the positive cone given in (a) so that A[y; σ ] satisfies
x2n ≥ 0 but not xm ≥ 0 if m < 2n (see Exercise 6). Show that A[y;σ ] still
has disjoint elements that do not commute.

8. Suppose that R is an `-unital torsion-free C-`-algebra. Assume that for each
u ∈ R there is a polynomial p(x) ∈ C+[x]\C with p(u)+ p(u)− = 0. Show that
p(u)−p(u)+ = 0 for each u ∈ R iff p(u)2 ≥ 0 for each u ∈ R.

9. Let G be a (multiplicative) po-group and set K = {g ∈ G : g has infinite
order}∪{1}.

(a) Show that K = G+ ∪ (G+)−1 iff for each a ∈ G with a||1 there is a poly-
nomial f (x, y) ∈C[x, y] with f (a, 1)≥ 0 in the group algebra ∑(G, C) and
f (x, 1)′(0) < 0.

(b) Suppose G has an element of infinite order and either G is rooted or K is a
subgroup of G. Show that the following statements are equivalent.

(i) G is totally ordered.
(ii) There is a polynomial p(x) ∈C+[x]\C such that p(u) ≥ 0 for each u

in ∑(G, C).
(iii) ∑(G, C) is weakly p-positive.
(iv) If u and v are two incomparable elements of ∑(G, C), then there exists

f (x, y) ∈ P((u, v)) with f (x, 1)′(0) < 0.
(v) If g and h are incomparable elements of G, then there exists f (x, y) ∈

P((g, h)) with f (x, 1)′(0) < 0.

10. Give an example of an `-field which is not totally ordered but in which 1⊥ = 0.

11. Let S be an `-subring of the `-ring R. Suppose that S is a right f -ring and F(S)
has an element e with r(e; S) = 0. Let n∈N; show that the following statements
are equivalent.

(a) Nn(R)+ ⊆ S and if a ∈ R+ with a∧|e| ∈ Nn(R), then a ∈ Nn(R).
(b) If a ∈ R+ and a∧|e| ∈ Nn(R), then a ∈ S.
(c) [0, |e|]∩Nn(R)⊆ S and if a ∈ R+ with a∧|e| ∈ Nn(R), then a≤ |e|.
(For (b) ⇒ (c) use Exercise 2.5.31 with G = Λ = S and Ω = {|e|}.)

12. Show that each of the following statements is equivalent to each statement in
Theorem 3.8.9 (or Theorem 3.8.10).
(c′) If a ∈ R+ and ea∧ e is nilpotent, then a ∈ T .
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(d′) If a ∈ R+ and (ea∧ e)2 = 0, then a ∈ T .
(c′′) If a ∈ R+ and ea∧ e is nilpotent, then ea ∈ T .
(d′′) If a ∈ R+ and (ea∧ e)2 = 0, then ea ∈ T .

13. Here is an example of a generalized semigroup `-ring ∑(∆ , A) that is a unital
right f -ring but it is not a left f -ring. Let ∆ be the multiplicative partial monoid
that is generated by α ,β , and γ and which has the relations

γα = γβ ,
γ0 = e,
ρσ is defined if and only if ρ or σ ∈ {γn : n≥ 0}.

So
∆ = {γn : n ∈ Z+}∪{γnαγm : n, m ∈ Z+}∪{βγm : m ∈ Z+}.

The partial order on ∆ is given by (see the diagram below): for all n, m ∈ Z+,

e < γ < γ2 < · · ·
αγn||βγm

βγn < γα
βγn < βγm if n < m
γnαγm < e
γnαγm < γ pαγq if n < p, or n = p and m < q.
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...

|
γ2

|
γ
|
e

|
...

|
γn+1αγq+1

|
γn+1αγq

|
...

|
γnαγm

|
...

|
γα = γβ

� �

. .
. . . .

� �
αγ2 βγ2

� �
αγ βγ

� �
α β

Let A be a unital totally ordered domain.

(a) Show that ∆ is a right f -pops and that ∑(∆ , A) = W (∆ , A) = V (∆ , A) is
a unital right f -ring that is not a left f -ring (see condition (3.5.12) and
Exercise 3.5.17).

(b) Show that F(∑(∆ , A)) = CA(1).
(c) Let RJR be a unital `-bimodule over the unital totally ordered domain R, and

give the ring

T =
{(

r j
0 r

)
: r ∈ R and j ∈ J

}

the positive cone

T + =
{(

r j
0 r

)
: r > 0, or r = 0 and j ≥ 0

}
.
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Show that T is an almost f -ring, and T is a right (left) f -ring if and only if
J is a right (left) f -module over R.

(d) Let R = A[γ] be the lexicographically ordered polynomial ring in the in-
determinate γ over A : a0 + a1γ + · · ·+ anγn > 0 if an > 0. Let J be the
R-R-bimodule described as follows: JR is free with the basis {b}∪ {cn :
n ∈ Z+}; ab = ba and acn = cna for each a ∈ A and n ∈ Z+; γb = c1 and
γcn = cn+1 for each n. Suppose that the positive cone of J is defined by

J+ = {bp(γ)+
n

∑
k=0

ck pk(γ) : n≥ 1 and pn(γ) > 0,

or n = 0 and p(γ), p0(γ) ∈ R+}.

Show that the `-ring T given in (c) using this R and J is isomorphic to
∑(∆ , A).

(e) Assume now and in (f) and (g) that A is `-simple. Show that J is the only
proper nonzero left `-ideal of ∑(∆ , A).

(f) Determine the right `-ideals of ∑(∆ , A) and show that, except for J, each is
a finitely generated right ideal.

(g) Show that N2(∑) = J = J (∑) and if A is a division ring, then J is the
Jacobson radical of ∑ = ∑(∆ ,A).

14. Let R = ∑(∆ , A) where A is a unital totally ordered domain and ∆ = {α, β , γ, ρ}
is the rooted pops with partial addition defined by 2γ = γ, α +γ = ρ, ρ +γ = ρ ,
and partial order given by ρ, β < γ . Let e = xα +xβ +xρ . Show that R is an sp-
`-ring that is a left f -ring but not an almost f -ring, e ∈ F(R) = N(R), and R
satisfies (a), (b) and (e) of Theorem 3.8.9 but not (d).

15. Let A be a unital totally ordered domain and let T = A[x, y] be the free A-ring
in two variables, totally ordered so that x > 1 and y > 1. Let R be the ideal of
polynomials in T with zero constant term and with the positive cone xT++yT +.
Show that R is a right f -domain which has a superunit which is a weak order
unit, F(R) = 0, and R is not an almost f -ring.

16. Let A and P be totally ordered domains with P an `-A-ring (see the end of
Section 3.1), and let Q be a left and a right `-module over each of the rings A
and P. Assume that multiplication in M = A∪P∪Q is associative whenever it
is defined, and that pp′ ≥ α p′ ∨ pα > 0 and pq ≥ αq > 0 for all 0 < p, p′ ∈
P, 0 < α ∈ A and 0 < q ∈ Q. Let 2≤ n ∈ N and let R = P ×→[A ×→(Q⊕·· ·⊕Q)]
as an `-group where the direct sum is of n copies of Q.

(a) Suppose that qp≥ qα > 0 for 0 < p ∈ P, 0 < q ∈Q and 0 < α ∈ A. Define
a product in R by

(p, α, q1, . . . , qn)(p′, α ′, q′1, . . . , q′n) = (npp′+α p′+ pα ′, αα ′, ps′n+

sn p′+αq′1 +q1α ′, ps′n + sn p′+αq′2 +q2α ′, . . . , ps′n + sn p′+αq′n +qnα ′)
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where sn = q1 + · · ·+qn and s′n = q′1 + · · ·+q′n.

Show that R is an almost f -ring that is not an f -ring, and if A is superuni-
tal or is unital, then R is superunital or is unital, respectively. [Determine
F̀ (R) and Fr(R)]. Show that R is commutative if the multiplication in M is
commutative.

(b) Define another multiplication in R by (assuming qp≥ qα > 0)

(p,α,q1, . . . ,qn)(p′,α ′,q′1, . . . ,q
′
n)

= (npp′+α p′+ pα ′,αα ′, ps′n +αq′1, . . . , ps′n +αq′n).

Show that R is an almost f -ring and a right f -ring that is not an f -ring. If
A has a superunit or an identity element show that R has a left superunit
or a left identity element, respectively. Show that R does not have a right
superunit. Determine F̀ (R).

(c) Find an example of A, P and Q that satisfies all the conditions.

17. Suppose that the sp-`-ring R has a left superunit e with r(e; R) = 0. Let S be
the convex `-subring of R generated by e. Show that R is unital iff S is right
unital and `(R; R) is directed, iff S is right unital and e is a superunit of R. (Use
Exercise 3.7.5.)

18. Let R be an `-unital `-algebra over the totally ordered field Q. Show that R
is isomorphic to the canonically ordered `-algebra of upper triangular 2× 2
matrices over Q iff R is a 3-dimensional noncommutative algebra, N(R) is a
1-dimensional `-ideal, and R satisfies the identity ((x2)−)2 = 0. (Use Theorem
3.4.15.)

19. Show that a C-archimedean torsion-free `-algebra R is an f -algebra if it has
an f -superunit and it satisfies the identity f (x+, x−)− = 0 where f (x, y) is a
y-special right k-nice polynomial with k ≥ 2.

20. (a) Let R be an `-ring that is a local ring. Show that R is an f -ring iff the inverse
of each positive invertible element is positive.

(b) Let R be a unital `-ring such that for each a ∈ R there is an integer n ∈ N
with an ≥ 0. Show that R is an f -ring if it is either semiperfect, π-regular,
left π-regular, or an algebraic algebra over a field. (R is semiperfect if R/J
is left artinian where J is the Jacobson radical of R and idempotents can be
lifted through J; use Theorem 3.4.15. R is π-regular if for each a ∈ R there
are m ∈N and x ∈ R with am = amxam; assume R is subdirectly irreducible.
R is left π-regular if for each a ∈ R the chain Ra⊇ Ra2 ⊇ ·· · is finite.)

21. Let R be an `-ring and let n ∈ N (see Theorem 3.8.13).

(a) If R satisfies the identity y+|x|y+ = |y+xy+| show that Bn = {x∈R : RxnR =
0} is an `-ideal of R with Bn+2

n = 0. If a, b ∈ B2 show that ab ∈ N2(R) and
RabR = 0. Find an example with B2

1 6= 0.
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(b) If R satisfies the identity y+x+y+x−y+ = 0 show that Cn = {x ∈ R :
R|xn|R|xn|R = 0} is an `-ideal of R with Cn+3

n = 0. Find an example with
C3

1 6= 0.
(c) If R is an almost f -ring show that Dn = {x∈R : R2|xn|R|xn|R3|xn|R|xn|R2 =

0} is an `-ideal of R with Dn+9
n = 0. Find an example with D9

1 6= 0.

22. Let R be a right d-ring.

(a) Suppose that R is a square-archimedean `-algebra over C (see Exercise
3.7.2). Show that if a∧b = 0, then ab≤ αa2 for some α ∈C+

(b) Show that a square-archimedean d-algebra is an almost f -algebra.
(c) Show that R is an almost f -ring iff any two positive disjoint elements in R

commute.
(d) If R is a square-archimedean C-archimedean `-algebra over C, show that R

is an almost f -algebra.

23. Show that an archimedean right f -ring with zero right annihilator is an f -ring.

24. Show that the following statements are equivalent for the `-ring R.

(a) ab = (a∨b)(a∧b) for all a, b ∈ R.
(b) ab = (a∨b)(a∧b) for all a, b ∈ R+.
(c) R is a commutative almost f -ring.
(d) R is an almost f -ring and the interval [0, b] is contained in the centralizer

of b, for each b in R+.

25. Let R be an `-ring which satisfies the identity x+|y|x+ = |x+yx+|. Show that
Rx+x−R = 0 and (x+x−)2 = 0 for each x ∈ R.

26. Let R be an `-ring which is a po-algebra over the po-ring C and which satisfies
the identity x+|y|x+ = |x+yx+|. Assume further that R+ is C+-archimedean. Let
A = {a ∈ R : RaR = 0} be the middle annihilator of R.

(a) Show that R/A is a C- f -algebra whose positive cone is C+-archimedean.
(b) If R is a d-ring show that R/A is semiprime and N(R) = N3(R) = A = {a ∈

R : a2R = 0} = {a ∈ R : Ra2 = 0}. (If a, b ∈ R+ with R2aR = 0 use the
elements b(ab−b)+ and ba(ab−b)− to show that bab≤ b2.)

27. Let R be a po-algebra over the po-unital po-ring C and let M be a left algebra
`-module over R which is a d-module over C such that M+ is C+-archimedean.
Suppose that a, b ∈ R+ such that b+ba is a d-element on M and bakM = 0 for
some k ∈ N. Apply the hint in Exercise 26 (b) to the positive and negative parts
of ak−1x−ak−2x, where x ∈M+, to show that baM = 0.

28. Let R be the canonically ordered R-`-algebra

R =



R R 0
0 0 0
R R 0


 .
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Show that R is a complete infinite d-algebra in which N2(R) is neither convex
nor an additive subgroup of R. Determine F̀ (R), Fr(R) and F(R), and find an
element a ∈ N(R)+ with aR2 6= 0.

29. Let M and B be abelian `-groups with B archimedean, and let θ : Mn −→ B be
a positive multilinear almost f -map, with n≥ 2.

(a) Show that θ is symmetric.
(b) If ω ∈ F(M) show that for all i < j, θ(a1, . . . ,ωai, . . . ,a j, . . . ,an) = θ (a1,

. . . , ai, . . . , ωa j, . . . , an). (Recall that F(M) is the subring of EndZ(M)
generated by the f -endomorphisms of M).

(c) Suppose that ω1, . . . ,ωn are commuting elements of F(M). Show that
θ(ω1a1, . . . , ωnan) = θ(ωσ(1)aτ(1), . . . , ωσ(n)aτ(n) for all a1, . . . , an in M
and any two permutations σ and τ of {1, . . . ,n}.

30. Let R be a complete almost f -algebra over R and let a1, . . . , an, a, b ∈ R+.
Show that there are elements u, v ∈ R+ with un = a1 · · ·an and vn = an + bn.
(Use Theorems 2.3.25 and 3.6.3 to first show that if 1 ∈ R, then each element
of R+ has a unique nth root; the identity in Exercise 24 reduces this verification
to elements that are comparable to 1. Next, let M be the convex `-subgroup of
R generated by e = a1 + · · ·+an, and apply Theorems 2.3.25 and 3.6.6 and the
previous exercise to M.)

31. Let f (x1, . . . , xn) ∈ R+[x1, . . . , xn] be a homogeneous polynomial of degree m.
Use the previous exercise to show that if R is a complete almost f -algebra over
R and a1, . . . , an ∈ R+, then f (a1, . . . , an) = am for some a ∈ R+.

32. Let R be a complete almost f -algebra over R and for n ∈ N let Pn = {an : a ∈
R+}.

(a) Show that (Rn, Pn) is a directed integrally closed po-R-algebra and each
element of Rn is of the form a1 · · ·an with ai ∈ R.

(b) If n ≥ 3 show that (Rn, Pn) is an `-algebra with an ∨n bn = (a∨ b)n and
an ∧n bn = (a ∧ b)n for all a, b ∈ R+, where an ∨n bn = supRn{an, bn}
and an ∧n bn = infRn{an, bn}. (If c ∈ R+ with cn ≥ an, bn pass to the
semiprime archimedean f -ring R/N(R) (see the remarks after Theorem
3.8.13) to show that (c− (a∨b))− ∈ N(R), and use Exercise 30 to see that
cn ≥n (a∨b)n.)

(c) If n≥ 3 show that (Rn, Pn) is a semiprime f -algebra; and show that it is an
`-subalgebra of R provided R is a d-ring.

(d) If n≥ 2 and a, b, u, v∈ R+ with u∧v = 0 show that anu∧n+1 bnv = 0. (Pass
to R/N.)

(e) If n ≥ 3 and w = a1 · · ·an ∈ Rn show that |w|n = |a1| · · · |an|. (Use (d) and
Exercise 30.)

33. Let A be an `-ring and ∆ a set with a distinguished element α . Define a partial
addition in ∆ by: for every β ∈ ∆\{α}, 2β = α .

(a) Show that ∆ , with the trivial order, is a pops.
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(b) Show that W (∆ , A) is an `-ring that is an almost f -ring or an sp-`-ring iff A
is an almost f -ring or an sp-`-ring, respectively (see Exercise 3.5.22).

(c) Show that if A2 6= 0, then V (∆ , A) is an `-ring iff ∆ is finite.

34. Let A be a totally ordered `-simple `-ring and let ∆ be a rooted pops.

(a) Show that W (∆ , A) is an A-archimedean almost f -ring iff ∆ is trivially
ordered and is the disjoint union of a family of subpops {∆λ : λ ∈Λ} such
that ∆λ + ∆µ = /0 if λ 6= µ and for each λ ∈ Λ , either ∆λ + ∆λ = /0; or for
α , β ∈ ∆λ , α + β ∈ ∆λ and α + β = 2α iff α = β ; or ∆λ has the form
described in the previous exercise.

(b) Show that V (∆ , A) is an A-archimedean almost f -ring iff ∆ has the proper-
ties given in (a) and for each α ∈ ∆ the set {β ∈ ∆ : 2β = α} is finite.

35. Suppose R is an almost f -ring and a ∈ F = F(R) is not a zero divisor in F .
Show that `(a;R) = r(a;R) = a⊥ = F⊥ = `(F ;R) = r(F ;R).

36. Suppose I is a right ideal of the `-ring R with I ⊆ F(R) and r`(I;R) = 0, and let
K be the right `-ideal of R generated by I+.

(a) Show that r(K) = r(I) = 0. (Use Theorem 4.3.4.)
(b) Show that R is a left f -ring.
(c) If I is semiprime and F(R) contains a left superunit of R, show that R is an

f -ring.

Notes. Perhaps the first appearance of a polynomial constraint which general-
izes the sp-`-ring identity (x2)− = 0 occurs in Shyr and Viswanathan [SV] where
the square-archimedean constraints of Exercise 3.7.2 appear; Theorem 3.8.13 also
comes from this paper. Birkhoff and Pierce [BP] showed that a unital `-ring is an
almost f -ring precisely when the identity element is a weak order unit and gave an
example of a unital almost f -ring which is not an f -ring; the examples in Exercise
16 are based on their example. This result together with Diem’s [DI] structural re-
sults for an sp-`-ring motivated the study of the connection between constraints of
the form f (x1, . . . ,xn)− = 0 and the identity x+x− = 0 and the influence of these
constraints on the structure of an `-ring in Steinberg [ST7], [ST8], [ST12], [ST13],
[ST14], and Ma [M1]. Theorem 3.8.14 comes from Bernau and Huijsmans [BH]
who showed that an archimedean almost f -ring is commutative; Boulabiar [BO]
observed that their proof did not require the ring to be associative. Exercises 29
through 32 also come from Boulabiar’s paper. Exercises 33 and 34 are based on
Wojciechowski [WO].



Chapter 4
The Category of f -Modules

In order to gain information about the category of f -modules it is useful to un-
derstand the free f -modules as well as the injective f -modules. Because there are
generally no injectives in this category our efforts will be spent on studying those
relative injectives that arise by bounding the cardinality of the f -module to which
a given morphism is to be extended. Sophisticated techniques will be required to
characterize these f -modules. One of the characterizing properties they have, not
surprisingly, is that of being an injective module; the other properties are all order
theoretic. These order properties can also be used to characterize the relative injec-
tives in other categories of ordered structures.

We will first construct the injective hull of a module and the analogous maximal
right quotient ring of a ring. With an eye toward our applications we investigate the
maximal right quotient ring of a semiprime ring whose Boolean algebra of annihila-
tor ideals is atomic and certain torsion-free modules over this ring. One fundamental
question that arises is to determine when the injective hull of an f -module is an f -
module extension and when the maximal right quotient ring of an f -ring is an f -ring
extension. The answer is given in the more general context of rings and modules of
quotients with respect to a hereditary torsion theory. Large classes of po-rings are
identified over which all torsion-free f -modules have this property.

Free R- f -modules are constructed and represented in the more general context of
a free f -module over a partially ordered module. We will investigate their embed-
dability into a product of copies of RR, their indecomposability and the size of their
disjoint subsets. Three related ordered tensor products will be constructed using free
abelian `-groups.

4.1 Rings of Quotients and Essential Extensions

In this section the maximal (right) quotient ring of a ring is constructed and those
aspects of this construction which are pertinent to f -rings and f -modules will be
considered. The maximal quotient ring is a generalization of the field of quotients of
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a commutative domain and, more generally, the division ring of quotients of an Öre
domain. In the place of fractions one has module homomorphisms defined on large
submodules of the ring. For example, 1/2 is the homomorphism whose domain is
2Z and which halves each even integer. Analogously, the injective hull of a module
is the generalization of the divisible closure of an abelian group. It will also be
considered here and dealt with for f -modules later. In many instances the maximal
right quotient ring is identical to the injective hull of the ring considered as a right
module over itself.

The submodule N of the right R-module M is essential in M, and M is an es-
sential extension of N, provided N ∩K 6= 0 for each nonzero submodule K of M.
Equivalently, N is essential in M if for each 0 6= x ∈ M, 0 6= xr + nx ∈ N for some
r ∈ R and some n ∈ Z. The set E (MR) of essential submodules of M is easily
seen to be a dual ideal of the lattice L (MR) of submodules of M. If X , Y ⊆ M
let (Y : X) = {r ∈ R : Xr ⊆ Y}; when Y is a submodule of M it is clear that
(Y : X) = r({x +Y : x ∈ X}; R) is the annihilator of the image of X in M/Y . More-
over, if N ∈ E (M), then for each x ∈ M, (N : x) ∈ E (R) since xI ∩N 6= 0 if I is a
right ideal of R with xI 6= 0. More generally, a quite similar argument shows that if
α : M −→ N is any R-homomorphism, then α−1(E (N))⊆ E (M). One way to man-
ufacture essential submodules is as follows. The submodule B of M is called a com-
plement in M of the submodule A if B is maximal among those submodules K of M
with K∩A = 0. If B is a complement of A, then A¢B∈ E (M) since (C+B)∩A = 0
whenever C is a submodule of M with C∩(A+B) = 0. Recall that A¢B denotes the
group (or module) direct sum. This implies that if D is a complement of B in M that
contains A, where B is a complement of A, then A is essential in D. Consequently,
a submodule B of M is a complement in M (of some submodule) iff it is essentially
closed in M in the sense that the only essential extension of B in M is B itself.

We mention two other useful facts that are easily verified. Suppose that B, C and
D are submodules of M with B⊆C. If B is essential in C, then B∩D is essential in
C∩D. If B is essentially closed in M and C is essential in M, then C/B is essential
in M/B. For, if 0 6= K/B⊆M/B, then L∩B = 0 for some nonzero submodule L of
K. Hence 0 6= (L∩C)+B/B⊆ K/B∩C/B.

The module E is injective if each R-homomorphism f : A−→ E from a submod-
ule A of a module B can be extended to an R-homomorphism g : B −→ E; that is,
there is some g which makes the following diagram commutative.

Note that the inclusion A ⊆ B in the previous diagram can be replaced by any
monomorphism A −→ B of any modules. If R is unital, E is unital, and f can be
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extended to B whenever B is also unital, then E is called u-injective. With the aid of
Exercise 3.1.20 it is easy to see that a unital module is u-injective iff it is injective.
It is also clear that if R1 is the ring obtained by freely adjoining Z to R (see Exercise
3.1.2), then the R-module E is injective iff the R1-module E is u-injective. This fact
affords us the opportunity to obtain injective modules from u-injective modules and
this is advantageous since u-injective modules are a little bit nicer. For example, a
u-injective module E is characterized by the following condition which is known as
Baer’s Criterion: Each homomorphism from a right ideal I of R into E is of the
form r 7→ er for some e ∈ E; that is, it is extendible to R. For, given the homomor-
phism f : A −→ E with A ⊆ B, and given some x ∈ B, then since x(A : x) ⊆ A we
have a homomorphism (A : x)−→ E given by r 7→ f (xr) = er for some e ∈ E. But
then the map A+ xR−→ E given by a+ xr 7→ f (a)+ er is a well-defined extension
of f . In particular, if f has no proper extension, which can always be arranged by
an application of Zorn’s Lemma, then A = B and hence E is injective.

A module MR over any ring is called a Baer module if each R-homomorphism
from a right ideal of R into M is induced by left multiplication by some element of
M. For some other connetions between Baer modules and injectivity see Exercises
45 and 46.

The module MR is called divisible if M = Ma for each a∈R which is right regular
(that is, r(a;R) = 0). If M is a u-injective module over the unital ring R it is easy to
see that M is divisible. In particular, if R is a unital domain in which each right ideal
is principal, then by Baer’s Criterion M is u-injective iff M is divisible.

The essential extension B of the module A is called a maximal essential extension
of A provided that B = C whenever B is an essential submodule of C. An injective
module E that contains A is called a minimal injective extension of A provided
C = E whenever A⊆C⊆ E and C is injective. We will now see that these two kinds
of extensions are identical.

Theorem 4.1.1. The following statements are equivalent for the extension M ⊆ E of
R-modules.

(a) E is a maximal essential extension of M.
(b) E is a minimal injective extension of M.
(c) E is injective and M is an essential submodule of E.

Moreover, each module M has an extension E with these properties, and any two
such extensions of M are isomorphic via an isomorphism that is the identity on M.

Proof. We may assume that R is unital and that all modules considered are unital.
For if R1 = R+Z is the unital ring obtained by freely adjoining Z to R, then each of
these three conditions for the pair of R-modules M⊆E in the category of R-modules
is equivalent to the corresponding condition for the same pair in the category of
unital R1-modules.

We first give a brief proof, leaving many details to the reader, of the fact that each
module M can be embedded in an injective (actually, u-injective) module. If D is an
abelian group, then H = HomZ(R, D) is a right R-module due to the fact that R is a
left R-module: (αr)(s) = α(rs) for α ∈ H and r, s ∈ R. Moreover, if M ⊆ D, then
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MR is embedded in HR via left multiplication by the elements of M. Since M is a ho-
momorphic image of a free abelian group and the latter is a subgroup of a Q-vector
space, M is embeddable in a divisible abelian group. Now, if D is a divisible abelian
group (hence Z-injective), then HR is injective. For an R-diagram on the left can be
completed to the R-diagram on the far right

where e is the evaluation map at 1 defined by e(α) = α(1), h is a group homomor-
phism extending e f and g is the R-homomorphism given by g(b)(r) = h(br).

Since the direct product of modules is injective iff each factor is injective, one
consequence of the previous embedding is that a module is injective iff it is a direct
summand of each module which contains it.

To show that (a) implies (c) it suffices to show that E is injective. Let F be an
injective module that contains E and let B be a complement of E in F . Then B is
essentially closed in F and B ¢ E is essential in F ; so E ∼= B ¢ E/B is essential in
F/B. Thus, E is an essential submodule of G = (F/B\(B + E/B))∪E, and hence
F = B¢E and E is injective. Note that G has the unique module operations induced
by the obvious bijection between F/B and G.

That (c) implies (b) is a consequence of the fact that an injective module F with
M ⊆ F ⊆ E is a summand of E. To see that (b) implies (a) note that if A is an
essentially closed submodule of an injective module L, then A is a maximal essential
extension of itself since any essential extension of A is isomorphic to an essential
extension of A within L; hence A is injective by the previous paragraph. Thus, if
M ⊆ A⊆ E with M ∈ E (A) and A is essentially closed in E, then A = E, and E is a
maximal essential extension of M since E has no proper essential extensions. This
completes the proof of the equivalence of these three kinds of extensions of M and
also shows the existence of such an extension of M: take an essential extension of
M which is essentially closed in an injective module that contains M. Uniqueness
follows from the fact that an essential extension of M can be M-embedded in any
injective module that contains M. ut
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A maximal essential extension of the module M is called an (the) injective hull
of M and will be denoted by E(M). Note that any complement which contains M
of a complement of M within an injective module is equal to E(M). Note also that
a submodule N of M is essentially closed in M if and only if N = F ∩M for some
injective submodule of E(M). For if N is essentially closed and F ⊆ E(M) is an
injective hull of N, then N is essential in F∩M. Conversely, suppose that N = F∩M
where E(M) = F ¢G. Let N⊆K⊆M with K an essential extension of N. If k∈K\N
and k = f + g ∈ F ¢ G, then there is some a1 ∈ R1 with 0 6= ga1 ∈ M. But then
ga1 = ka1− f a1 ∈ G∩K = 0; so N = K and N is essentially closed in M.

We turn now to the Utumi maximal right quotient ring of a ring. For this purpose
we need a relation between rings that is stronger than the essential relation. We will
first consider it for rings and later for modules in the broader context of torsion
theories.

The overring S of the ring R is called a right quotient ring of R, or a ring of right
quotients of R, if for every pair of elements x, y∈ S with x 6= 0 there is an a∈ R with
xa 6= 0 and ya ∈ R. A right ideal D of R is called dense if R is a right quotient ring
of D. The collection of all the dense right ideals of R will be denoted by D(R) or by
just D if R is understood. Clearly, an ideal of R is a dense right ideal exactly when
its left annihilator in R is zero. The following two results collect some elementary
facts about rings of quotients.

Theorem 4.1.2. Let R be a subring of S.

(a) R has a right quotient ring iff `(R;R) = 0, iff R is a right quotient ring of R.
(b) If S is a right quotient ring of R, then SR is an essential extension of RR.
(c) S is a right quotient ring of R iff for each n ∈ N and all x1, . . . ,xn in S with

x1 6= 0 there is an element a ∈ R with x1a 6= 0 and xia ∈ R for 1≤ i≤ n.
(d) If S is a subring of T , then T is a right quotient ring of R iff S is a right

quotient ring of R and T is a right quotient ring of S.
(e) The right ideal D of R is dense iff for x,y ∈ R with x 6= 0 there is some a ∈ R

with xa 6= 0 and ya ∈ D.

Proof. We will only prove (c) and (e) and leave the verification of the other parts to
the reader. For (c), suppose that S is a right quotient ring of R. Assume, by induction,
that the condition holds for some n and let x1, . . . , xn, xn+1 be elements of S with
x1 6= 0. Then for some a ∈ R, x1a, x2a, . . . ,xna are elements in R and x1a 6= 0. Now
take b ∈ R with x1ab 6= 0 and xn+1ab ∈ R. Then xiab ∈ R for 1 ≤ i ≤ n + 1 and
the proof of (c) is complete. Assume the condition in (e) holds and take b ∈ R with
xab 6= 0 and ab ∈ D. Then yab ∈ D and hence R is a right quotient ring of D. It is
obvious that conversely, each dense right ideal satisfies this condition. ut
Theorem 4.1.3. Suppose that S is a right quotient ring of each of its subrings R and
T .

(a) If U is the subring of S generated by T R, then S is a right quotient ring
of U.

(b) If T is an R-submodule of SR and α : R−→ S is an R-homomorphism, then
α−1(T ) is a dense right ideal of R.
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(c) If T is an R-submodule of SR, then S is a right quotient ring of T ∩R.
(d) If s ∈ S and Ds = (R : s), then Ds ∈ D(R).
(e) D(R) is a dual ideal of the lattice of right ideals of R.
(f) Suppose that J ∈ D(R) and for each a ∈ J, Ia ∈ D(R). Then D = ∑a∈J aIa ∈
D(R).

Proof. (a) Let x,y ∈ S with x 6= 0, and take t ∈ T with 0 6= xt and yt ∈ T . Now take
r ∈ R with xtr 6= 0 and tr ∈ R. Since tr ∈U and ytr ∈U , S is a right quotient ring
of U .

(b) Let x,y ∈ R with x 6= 0. Then for some t ∈ T we have xt 6= 0 and (αy)t ∈ T .
Also, xta 6= 0 and ta ∈ R for some a ∈ R. Thus, α(yta) = (αy)ta ∈ T and α−1(T )
is dense by (e) of Theorem 4.1.2.

(c) This follows from (b) since T ∩R = α−1(T ) where α : R−→ S is inclusion.
(d) Let µs : R −→ S be left multiplication by s ∈ S. Then Ds = µ−1

s (R) is dense
by (b).

(e) Suppose that I, J, K are right ideals of R with I and J dense and I ⊆ K. Then
I∩ J is dense by (c) and K is dense by (d) of Theorem 4.1.2.

(f) Let 0 6= x, y ∈ R. Then xr 6= 0 and a = yr ∈ J for some r ∈ J. Let s ∈ Ia with
xrs 6= 0. Then yrs = as ∈ aIa ⊆ D, and D is dense by (e) of Theorem 4.1.2. ut

In the next result we present several characterizations of a dense right ideal in
addition to that given in (e) of Theorem 4.1.2.

Theorem 4.1.4. The following statements are equivalent for the right ideal D of the
ring R.

(a) D is a dense right ideal of R.
(b) If x1, . . . ,xn ∈ R with x1 6= 0, then for some a ∈ R, x1a 6= 0 and xia ∈ D for

1≤ i≤ n.
(c) Each α ∈ HomR(D, R) has a unique extension to an element of HomR(R,

E(R)); and `(R;R) = 0.
(d) If α ∈ EndR(E(R)) and α(D) = 0, then α(R) = 0; and `(R;R) = 0.
(e) HomR(R/D, E(R)) = 0 and `(R;R) = 0.
(f) `(D; E(R)) = 0.
(g) For each a ∈ R, (D : a) is a dense right ideal of R.
(h) There is a dense right ideal J such that (D : a) is dense for each a ∈ J.
(i) `((D : a); R) = 0 for each a ∈ R.

Proof. (a) ⇔ (b). This is a consequence of (c) (and its proof) and (e) of Theorem
4.1.2.

(a) ⇒ (c). Suppose that β , γ ∈ HomR(R, E(R)) both extend α . If βx 6= γx for
some x ∈ R, then βxa1 6= γxa1 ∈ R for some a1 ∈ R1. Now take b ∈ R with βxa1b 6=
γxa1b and xa1b ∈ D to get a contradiction.

(c)⇒ (d). If α ∈ EndR(E(R)) with α(D) = 0, then α(R) = 0 since the restriction
of α to R is an extension of 0 ∈ HomR(D, R).

(d) ⇒ (f). Suppose that x ∈ E(R) and xD = 0. Let α ∈ EndR(E(R)) be an
extension of µx ∈ HomR(R, E(R)) where µx(r) = xr. Then 0 = α(R) = xR. But
`(R;E(R)) = 0 since otherwise `(R;R) = `(R;E(R))∩R 6= 0. So x = 0.
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(f)⇒ (a). If D is not dense, then there exist elements x, y∈ R with x 6= 0 such that
x(D : y)= 0. Then α : (y+D)R−→E(R) defined by α((y+D)a)= xa for each a∈R
is a well-defined R-homomorphism and has an extension β ∈ HomR(R1/D, E(R)).
Since β (1 + D)D = 0 we have that β (1 + D) = 0 and hence β = 0. Thus, xR = 0
and we have the contradiction that x = 0.

Since the equivalence of (d) and (e) is apparent, statements (a) through (f) have
been shown to be equivalent.

(d) ⇒ (g). Suppose that α ∈ EndR(E(R)) with α((D : a)) = 0. As above, define
β : (a + D)R −→ E(R) by β ((a + D)r) = α(r) and extend β to γ ∈ HomR(R/D,
E(R)). Then γ = 0 (by (e)) and hence α(R) = γ(R) = 0. Thus (d) holds for (D : a)
and hence (D : a) is dense.

(g) ⇒ (h). This is trivial.
(h) ⇒ (a). This is a consequence of (e) and (f) of Theorem 4.1.3 since ∑a(D :

a)⊆ D.
Since (i) is just a reformulation of (e) in Theorem 4.1.2 the proof is complete. ut
We will now construct the maximal right quotient ring of R. We assume that

`(R;R) = 0. If M and N are R-modules it will be convenient to denote the abelian
group HomR(M, N) by [M, N] or by R[M, N] if necessary. The partial order on D
which is dual to inclusion makes D into a poset that is directed up, and the set of
abelian groups (actually, left R-modules) {[D, R] : D ∈ D} is a direct system where,
for D1 ⊆ D2, the homomorphism [D2, R] −→ [D1, R] is the restriction map. Let
Q(R) = lim−→[D, R] be the direct limit of this system (see Exercises 1.1.7 and 1.4.23).

Q(R) is called the (Utumi) maximal right quotient ring of R. More concretely,

Q(R) =
⋃

D∈D
[D, R]/∼

where∼ is the equivalence relation defined on the union by: if α : D1 −→ R and β :
D2 −→ R, then α ∼ β iff there is a dense right ideal D⊆ D1∩D2 such that α(d) =
β (d) for each d ∈ D. Q(R) is a left R-module and the map R −→ Q(R) defined by
x 7→ [µx] is a left R-monomorphism where µx : R −→ R is left multiplication by x
and [µx] denotes the equivalence class of µx. In fact, this map is an embedding of
rings. To see this take [α], [β ] ∈ Q(R) with α : D1 −→ R and β : D2 −→ R and let
D = β−1(D1). Then D ∈D by (b) of Theorem 4.1.3, and hence αβ : D−→R given
by (αβ )(d) = α(βd) gives rise to an element of Q(R). Thus [α][β ] = [αβ ]. This is
a well-defined product since if α and α1 agree on D3 ∈ D and β and β1 agree on
D4 ∈ D, then αβ and α1β1 agree on β−1(D3)∩D4 and the latter is a dense right
ideal of R. It is now easily seen that Q(R) is a unital ring and R is embedded in Q(R)
as a subring. We will identify R with its image in Q(R). Moveover, if [α] ∈ Q(R),
α : D −→ R, and x ∈ D, then αµx = µαx. In particular, if [α] 6= 0 and [β ] ∈ Q(R),
β : D1 −→ R, and x ∈ D∩D1 with αx 6= 0, then [α][µx] = [µαx] 6= 0 and [β ][µx] =
[µβx] ∈ R; so Q(R) is a right quotient ring of R.

If S and T are ring extensions of R, then a ring monomorphism from S into T
which is the identity on R is called an R-embedding of S into T .
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Theorem 4.1.5. The following statements are equivalent for the right quotient ring
T of R.

(a) T is R-isomorphic to Q(R).
(b) Each right quotient ring of R can be R-embedded in T .
(c) If D ∈ D(R) and α : D −→ R is an R-homomorphism, then there is an ele-

ment t ∈ T such that αd = td for each d ∈ D.
(d) If U is a right quotient ring of T , then U = T .

Proof. (a)⇒ (b). It suffices to show that if S is a right quotient ring of R, then S can
be R-embedded in Q(R). If s ∈ S and µs : R −→ S is left multiplication by s, then
Ds = (R : s) = µ−1

s (R) is a dense right ideal of R according to (d) of Theorem 4.1.3.
Thus, s determines the element [µs] of Q(R) where µs now has Ds as its domain.
Since µs + µt = µs+t on Ds ∩Dt and µsµt = µst on (Ds : t)∩Dt = µ−1

t (Ds), the
mapping s 7→ [µs] is a ring homomorphism. It is monic since if D is dense and
D ⊆ Ds with s 6= 0, then sD 6= 0 since S is a right quotient ring of D. Clearly, this
map is an R-embedding.

(b) ⇒ (c). Let ϕ : Q(R)−→ T be an R-embedding and put t = ϕ([α]). Then for
each d ∈ D, td = ϕ([α][µd ]) = ϕ([µαd ]) = αd.

(c)⇒ (a). From the fact that (a) implies (b) (for Q(R)) we obtain an R-embedding
ϕ : T −→ Q(R). If [α] ∈ Q(R) is represented by α : D−→ R, let t ∈ T be such that
αd = td for each d ∈ D. Hence ϕ(t)[µd ] = ϕ(td) = ϕ(αd) = [µαd ] = [α][µd ] and
(ϕ(t)− [α])D = 0; consequently, ϕ(t) = [α] and ϕ is an isomorphism.

(a)⇒ (d). It suffices to show that (d) holds for Q(R). Using (d) of Theorem 4.1.2
and (b) we obtain an R-embedding ϕ : U −→ Q(R). If s ∈U and d ∈ (R : s), then
sd = ϕ(sd) = ϕ(s)d; thus, s = ϕ(s) and U = Q(R) since (R : s) is a dense right ideal
of R.

(d) ⇒ (a). Since (b) holds for Q(R) there is an R-embedding ϕ : T −→ Q(R).
By replacing ϕ(T ) by T (that is, replace Q(R) by (Q(R)\ϕ(T ))∪T ) we get a right
quotient ring of T . Hence, ϕ is an isomorphism. ut

The singular submodule of the module M is defined by Z(M) = {x ∈M : r(x) ∈
E (R)}. It is a submodule since r(x− y) ⊇ r(x)∩ r(y) and r(xa) = (r(x) : a) if x,
y ∈ M and a ∈ R. If α ∈ [M, N], then clearly α(Z(M)) ⊆ Z(N). In particular, the
right singular ideal Z(R) of R is an ideal of R which we will sometimes denote by
Zr(R) to distinguish it from its left counterpart Z`(R) = Z(RR). M is called singular
if M = Z(M) and it is nonsingular if Z(M) = 0. The class of nonsingular modules
is hereditary and contains the injective hull of each of its members, and the class of
singular modules is also hereditary. However, the injective hull of a singular module
need not be singular. For an example let R = F [x]/x2F [x] where F is a field and let y
be the image of x in R. Then R is an injective R-module, Z(R) = yR and E(yR) = R
is not singular. However, if we enlarge the class of singular modules slightly, then
this new class will be closed under injective hulls.

For a module M let Z1(M) = Z(M) and for n ∈ N define Zn+1(M) by
Zn+1(M)/Zn(M) = Z(M/Zn(M)).
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Theorem 4.1.6. For each module M, Z2(M) = Zn(M) if n ≥ 2. Consequently, if
Z2(M) = M, then Z2(E(M)) = E(M).

Proof. It suffices to show that Z(M) is essential in Z3(M). For then (Z(M) : x) ∈
E (R) for each x ∈ Z3(M), and so Z3(M) ⊆ Z2(M). Suppose that L ⊆ Z3(M) with
L∩Z(M) = 0. If x ∈ L, then xD⊆ Z2(M) for some essential right ideal D of R. For
each d ∈ D there is an essential right ideal Dd of R with xdDd ⊆ Z(M)∩ L = 0.
Thus, xd ∈ Z(M)∩ L = 0, x ∈ Z(M)∩ L = 0 and L = 0. Now, if Z2(M) = M and
x ∈ E(M), then xD ⊆ M = Z2(M) ⊆ Z2(E(M)) for some essential right ideal D;
hence x ∈ Z3(E(M)) = Z2(E(M)). ut

If N is a submodule of M, then the closure of N in M, c`N, is defined by
c`N/N = Z(M/N). So c`N = {x ∈ M : xD ⊆ N for some D ∈ E (R)}. The sub-
module N is closed in M if c`N = N. As a consequence of the preceding theorem
we have Z(M/N) = c`N/N ⊆ c`c`N/N = Z2(M/N) = Z3(M/N) = c`c`c`N/N,
and hence c`c`N is the smallest closed submodule of M that contains N. For, if
Z2(M/N) = K/N, then

c`c`N/c`N = Z(M/c`N)∼= Z(M/N /c`N/N) = Z2(M/N)/c`N/N

= K/N /c`N/N ∼= K/c`N

and K = c`c`N. Similarly, Z3(M/N) = c`c`c`N/N. Also, c`N is essential in c`c`N
since c`N/N is essential in c`c`N/N. If N is closed in M, then N is essentially
closed in M, and the converse holds if M is nonsingular since N is then an essential
submodule of c`N.

If R is a right nonsingular ring, then, as we will soon see, Q(R) is all of the
injective hull of RR. It also has the following property. The element a in the ring R
is von Neumann regular or just regular if a = axa for some x ∈ R, and R is a regular
ring if each of its elements is regular.

Theorem 4.1.7. The following statements are equivalent for the ring R.

(a) R is regular.
(b) Each right ideal of R with one generator is generated by an idempotent.
(c) Each finitely generated right ideal of R is generated by an idempotent.

Moreover, the class of regular rings is an i-hereditary radical.

Proof. (a) ⇒ (b). If a, x ∈ R with a = axa, then e = ax is idempotent with a = ea;
so aR = eR = aR+Za.

(b) ⇒ (c). By induction on the number of generators of the right ideal it suffices
to show that if e and f are idempotent, then eR + f R = hR for some idempotent h.
Now, eR+ f R = eR+(1−e) f R since f = e f +(1−e) f and (1−e) f = f −e f , and
(1−e) f R = f1R with f 2

1 = f1 and e f1 = 0. But then g = f1(1− e) is an idempotent
orthogonal to e with f1g = g and g f1 = f1. So eR + f R = eR + f1R = eR + gR =
(e+g)R.

(c)⇒ (a). If a∈R, then aR+Za = eR with e = e2 ∈ (aR+Za)e⊆ aR; so aR = eR,
e = ax, and a = ea = axa.
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Let P be the class of regular rings. By the ring analogue of Theorem 3.2.1,
in order to show that P is an i-hereditary radical it suffices to verify that P is
extensionally closed. Toward this end let I be an ideal of R such that I and R/I are
both regular. If a ∈ R there exists some elment x ∈ R with a− axa ∈ I, and also
a−axa ∈ (a−axa)I(a−axa). Thus, a ∈ aRa and a is regular. ut

A ring R is called right self-injective if the right R-module RR is injective. Some
examples of such rings are given in Exercises 2, 12, and 25. Here are some more
examples.

Theorem 4.1.8. The following statements are equivalent for the ring R.

(a) R is right nonsingular.
(b) Each essential right ideal of R is dense.
(c) R has a regular right quotient ring.
(d) Q(R) is a regular right self-injective ring and Q(R) is an injective right

R-module.

Proof. (a) ⇔ (b) If Zr(R) = 0 and D ∈ E (RR), then `(D;E(R)) = 0 since E(RR)
is nonsingular. So D ∈ D(R) by Theorem 4.1.4. Conversely, if E (R) ⊆ D(R), then
trivially, Zr(R) = 0.

(a) ⇒ (d). Q = Q(R) is right nonsingular by Exercise 3. Let I be a right ideal
of Q and let α : I −→ Q be a Q-homomorphism. If J is a complement of I in QQ,
then I ¢ J ∈ D(Q) and α can be extended to I ¢ J; so we may assume that I is a
dense right ideal of Q. According to Theorem 4.1.5 there exists q ∈Q with αa = qa
for each a ∈ I and hence QQ is injective by Baer’s Criterion. If x ∈ E(RR) take
D ∈ E (RR) = D(R) with xD ⊆ R. Again, by Theorem 4.1.5, there is some element
q ∈ Q ⊆ E(R) such that xd = qd for each d ∈ D. But then x− q ∈ `(D;E(R)) = 0
by Theorem 4.1.4 and x ∈ Q. To see that Q is regular let p ∈ Q and let LQ be a
complement of r(p;Q) in QQ. The previous argument shows that the map pL−→ L
given by px 7→ x is given by left multiplication by some q ∈ Q; that is x = qpx for
each x ∈ L. So if x + a ∈ L + r(p;Q) = D, then p(x + a) = px = pqp(x + a) and
hence p = pqp since D is dense.

Since (d) ⇒ (c) is trivial and (c) ⇒ (a) is a consequence of Exercise 3 the proof
is complete. ut

The kind of information displayed in Theorem 4.1.8 can also be obtained from
certain “complete” modules. A module MR is quasi-injective if each R-homo-
morphism α : N −→ M whose domain N is a submodule of M can be extended
to an R-endomorphism of M. Every semisimple module (Exercise 2.6.9) as well as
every injective module is quasi-injective. Other examples, as well as some useful
properties of quasi-injective modules, are given in Exercises 6, 7, and 8. Recall that
J(R) denotes the Jacobson radical of the ring R.

Theorem 4.1.9. Let MR be quasi-injective, let S =EndR(M), and let J = {α ∈ S :
kerα ∈ E (M)}. Then the following hold.

(a) J = J(S) and if M is nonsingular, then J = 0.
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(b) S/J is a regular right self-injective ring.
(c) Idempotents can be lifted modulo J.
(d) If T = EndR(E(M)), then T/J(T )∼= S/J(S).

Proof. If α , β ∈ J and γ ∈ S, then ker(α −β ) ⊇ kerα ∩ kerβ and kerγα ⊇ kerα
imply that J is a left ideal of S; also, γ−1 kerα ⊆ kerαγ and γ−1 kerα ∈ E (M) imply
that J is a right ideal. Since kerα ∩ker(1−α) = 0, necessarily ker(1−α) = 0, and
the map (1−α)M −→M defined by (1−α)x 7→ x is the restriction of some γ ∈ S.
Thus γ(1−α) = 1 and J is a left quasi-regular ideal of S; so J is contained in J(S).

The argument used in the previous result to show that Q(R) is regular can be
adapted to show that S̄ = S/J is regular. If α ∈ S and L is a complement of kerα in
M, then there exists γ ∈ S such that γαx = x for each x ∈ L. Since L+kerα ∈ E (M)
and L+kerα ⊆ ker(α−αγα) we have ᾱ = ᾱ γ̄ᾱ . Thus, S̄ is regular and J(S) = J.
If α ∈ J and x ∈ M, then D = (kerα : x) ∈ E (R) and α(x)D = 0; so αM ⊆ Z(M)
and α = 0 if M is nonsingular.

To prove (c) note that for any α ∈ S, ker(α2−α) ⊆ kerα ¢ ker(1−α). So if
α2 −α ∈ J, then kerα ¢ ker(1−α) is essential in MR and E(M) = E(kerα) ¢
E(ker(1−α)) by Exercise 5. Let β ∈ EndR(E(M)) be the projection of E(M) onto
E(ker(1−α)). Then βM ⊆M by Exercise 7 and β and α agree on kerα ¢ker(1−
α). If γ is the restriction of β to M, then γ2 = γ and γ lifts the idempotent ᾱ ∈ S̄.

Let ϕ : T −→ S/J(S) be the ring epimorphism defined by ϕ(α) = α∗ + J(S)
where α∗ denotes the restriction of α to M. Then ϕ(α) = 0 iff kerα ∩M ∈ E (M),
iff kerα ∈ E (E(M)); so kerϕ = J(T ).

The only thing left to prove is that S̄ is right self-injective. Let f : Ī −→ S̄ be an
S̄-homomorphism where Ī is a right ideal of S̄, and let {ᾱλ S̄ : λ ∈Λ} be a maximal
independent family of principal right ideals of S̄ contained in Ī. Since S̄ is regular we
may assume, using (c), that each αλ is idempotent. For each λ ∈ Λ choose βλ ∈ S
with f (ᾱλ ) = β̄λ . Assume, for the moment, that the sum N = ∑λ αλ M is a direct
sum in M. Then the restrictions of βλ to αλ M define an element in HomR(N,M),
and hence there is an element γ ∈ S such that γαλ x = βλ αλ x for each λ ∈ Λ and
each x ∈M; that is, γαλ = βλ αλ for each λ . But then

f (ᾱλ ) = f (ᾱλ )ᾱλ = β̄λ ᾱλ = γ̄ ᾱλ

for each λ . Since ¢ᾱλ S̄ is essential in Ī and S̄ is nonsingular, f (ρ̄) = ᾱρ̄ for each
ρ̄ ∈ Ī. Thus, S̄ is right self-injective by Baer’s Criterion. It remains to prove that
the sum ∑αλ M is direct, and for this purpose we may assume that Λ is finite and
{αλ} = {α1, . . . ,αn}. Since S̄ is regular ᾱ1S̄ ¢ · · ·¢ ᾱnS̄ is a direct summand of
S̄S̄ and hence there exist orthogonal idempotents β̄1, . . . , β̄n in S̄ with β̄iS̄ = ᾱiS̄ for
each i. By Theorem 3.4.15 we may assume that {β1, . . . ,βn} is a set of orthogonal
idempotents in S. Since αi− βiαi ∈ J, Ki = ker(αi− βiαi) ∈ E (M) and Ki ∩αiM
is essential in αiM. But x ∈ Ki ∩αiM iff x = αix and αix = βiαix, iff x = αix =
βix. Thus, αiM ∩ βiM = Ki ∩αiM is essential in αiM and, similarly, αiM ∩ βiM
is essential in βiM. Since the sum ∑βiM is direct the sum ∑αiM is also direct
(Exercise 5). ut
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There are regular right self-injective rings that are not left self-injective (see Ex-
ercise 12). So the maximal right quotient ring of R need not be equal to its maximal
left quotient ring. But there is a maximal two-sided quotient ring of R. If S is a
right quotient ring of R as well as a left quotient ring of R, then S is called a two-
sided quotient ring of R. The collection of dense left ideals of R will be denoted by
Dleft(R). Suppose that `(R) = r(R) = 0. Let

Q2(R) = {p ∈ Q(R) : Dp⊆ R for some D ∈ Dleft(R)}.

Then Q2(R) is the unique (up to an R-isomorphism) maximal two-sided quotient
ring of R. We will leave the verification of this to Exercise 13. If R is reduced,
then so is Q2(R) (Exercise 14) but Q(R) need not be reduced. In fact, when R is a
domain Q(R) is reduced precisely when it is a division ring (Exercise 26). In order to
determine when Q(R) is reduced we will first define a stronger version of regularity.
The element a in R is strongly regular if a ∈ a2R, and R is a strongly regular ring
if each of its elements is strongly regular. A strongly regular ring is just a reduced
regular ring; see Exercise 22. Since the class of regular rings is a radical class and
since the class of reduced rings is extensionally closed, the class of strongly regular
rings is also a radical class (Theorem 3.2.1).

In a reduced ring there is no distinction between left and right annihilators, and
we will denote the annihilator of the subset X in the reduced ring R by X∗. Recall
also that in a semiprime ring the left and right annihilators of an ideal coincide.
Since x∗ ∩ xR = 0 = x∗ ∩Rx for each x ∈ R both singular ideals vanish in a reduced
ring; for a generalization see Exercise 20.

Theorem 4.1.10. The following statements are equivalent for the right nonsingular
ring R.

(a) If a,b ∈ R with aR∩bR = 0, then ab = 0.
(b) Q(R) is reduced.
(c) R has a strongly regular right quotient ring.
(d) Each essentially closed right ideal of R is the right annihilator of an ideal

of R.
(e) Each essentially closed right ideal of R is an ideal.

If R is reduced, then each of the following is equivalent to (a).

(f) If I is a right ideal of R, then I is essential in I∗∗ (and I∗∗ is the maximal
essential extension of I in R).

(g) If I is a right ideal of R, then I∗ is a right complement of I (and is the unique
right complement of I).

Proof. (a) ⇒ (b). Let I be a right ideal of R. Since J ⊆ r(I) if J is a right ideal with
I∩J = 0, the right ideal I+r(I) is essential in R. So if I2 = 0, then I = 0, and hence R
is semiprime. Let a∈R. From (r(aR)∩aR)2 = 0 we obtain r(aR)∩aR = 0 and hence
r(aR)aR = 0, (ar(aR))2 = 0, and ar(aR) = 0. If a2 = 0, then a(aR + r(aR)) = 0
yields that a = 0; so R is reduced. Suppose that q ∈Q = Q(R) and D is a dense right
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ideal of R with qD⊆ R. Then J = qD¢ ((qD)∗ ∩D) is essential in qD¢ (qD)∗ and
hence is also essential in R. If x ∈ (qD)∗ ∩D, then xq = 0, (qx)2 = 0, and qx = 0; so
if q2 = 0, then qJ = 0 and q = 0.

(c) ⇒ (a). Since the idempotents in a reduced ring are central, if T is a strongly
regular right quotient ring of R, then T satisfies the condition in (a) and hence so
does R. For if a, b ∈ R with aR ∩ bR = 0 and 0 6= as = bt ∈ aT ∩ bT , then for some
D ∈ D(R), sD, tD⊆ R. So 0 6= asD⊆ aR ∩ bR. Thus, aT ∩ bT = 0 and ab = 0.

(b)⇒ (d). Let I be an essentially closed right ideal of R and let J be a complement
of I in R. Then I = E(I)∩R and J = E(J)∩R and Q = E(R) = E(I)¢ E(J). Now
E(I) and E(J) are ideals of Q (by Exercise 22); so I and J are ideals of R. Also,
IJ ⊆ E(I)E(J) = 0 gives that I ⊆ J∗ and hence I = J∗ since I is a complement of J.

The implications (b) ⇒ (c) and (d) ⇒ (e) are trivial, and as for (e) ⇒ (a), if
I∩ J = 0, then c`I∩ c`J = 0 and IJ ⊆ c`Ic`J = 0.

If R is now reduced, then it is easy to establish the implications (a) ⇒ (f) ⇒ (g)
⇒ (d). We will check the second implication in this chain and leave the rest to the
reader. If I∩J = 0, then I∗∗ ∩J = 0 and J ⊆ I∗∗∗ = I∗; so I∗ is the right complement
of I in R. ut

One consequence of the previous result is that the property of Q(R) being
strongly regular is inherited by right ideals of R (Exercise 34). Another consequence
is that the left and right maximal quotient rings of R coincide provided R has strongly
regular quotient rings on each side.

Theorem 4.1.11. The following statements are equivalent for the ring R.

(a) R has a strongly regular right quotient ring and a strongly regular left quo-
tient ring.

(b) Q2(R) is strongly regular.
(c) Q(R) = Q2(R) is strongly regular.

Proof. Since the implications (c) ⇒ (b) ⇒ (a) are trivial we only need to show
that (c) is a consequence of of (a). Since Q = Q(R) is a strongly regular right self-
injective ring it is also left self-injective. To see this let T be the maximal left quo-
tient ring of Q and note that T is left self-injective. If 0 6= t ∈ T let D be a dense left
ideal of Q with Dt ⊆ Q. Take d ∈ D with dt 6= 0. Then dQ = eQ with e = e2 and
0 6= et = te ∈ tQ∩Q, that is, QQ is essential in TQ and hence Q = T . To show that
Q = Q2(R) it suffices to verify that RR is essential in RQ. Let 0 6= q ∈ Q and take
d ∈ R with 0 6= qd ∈ R. Since qd2 6= 0, Rqd ∩Rd 6= 0 by the left-sided version of
Theorem 4.1.10. Take a, b ∈ R with aqd = bd 6= 0 and let y ∈Q with dyd = d. Then
dy = yd is idempotent and

daq = dydaq = daqdy = dbdy = dydb = db 6= 0;

hence Rq∩R 6= 0. ut
In a reduced ring one can weaken the hypothesis that each finitely generated right

ideal is generated by an idempotent and still obtain the conclusion that the maximal
right quotient ring is strongly regular.
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Theorem 4.1.12. If R is a reduced ring in which each finitely generated right ideal
is principal, then Q(R) is reduced.

Proof. Let S = R +Z1 ⊆ Q2(R), and suppose q ∈ Q(R) with q2 = 0. If d ∈ R with
qd ∈ R, then qdS +dS = cS for some c ∈ R. Take x, y, a, b ∈ S with

qdx+dy = c,

d = ca,

qd = cb.

Then
cbyb = qdyb = q(c−qdx)b = qcb = q2d = 0.

Since S is reduced 0 = cby = qdy, and hence qc = 0 and qd = 0. Thus, q(R : q) = 0
and hence q = 0. ut

If R is a semiprime ring then, in general, there is no relationship between Q(R)
and the maximal right quotient rings of the prime homomorphic images of R. How-
ever, if R is a large subdirect product of prime rings, then the expected satisfactory
relationship does hold.

Suppose that f : R −→ Πλ∈Λ Rλ is a subdirect product of the family of rings
{Rλ : λ ∈ Λ}. This subdirect product representation of R is called irredundant if
for each µ ∈Λ the homomorphism

R
f−→ ∏

λ∈Λ
Rλ −→ ∏

λ 6=µ
Rλ

has a nonzero kernel; here, the second map is the projection onto the indicated factor
of the full product. Clearly, an equivalent condition is that f (R)∩Rµ 6= 0 for each
µ ∈ Λ . Note that R is an irredundant subdirect product of the family {Rλ : λ ∈ Λ}
iff R has a family of ideals {Pλ : λ ∈Λ} with zero intersection and, for each µ ∈Λ ,
Rµ ∼= R/Pµ and

⋂
λ 6=µ Pλ 6= 0.

The concept of an irredundant subdirect product is, of course, meaningful for
groups and `-groups with operators as well as other algebraic structures. In fact it
has already come up in Exercises 2.5.25, 2.5.26, and 2.5.27.

We first present a ring theory analogue of Exercise 2.2.14(h). If R is a subring of
S and A and B are ideals of R and S, respectively, then we will write A′R = `(A;R)
and B′ = `(B;S) for the (left) annihilators of A and of B. Recall from Exercise 1.2.7
that when R is semiprime the set Ann(R) of annihilator ideals of R is a complete
Boolean algebra with respect to inclusion and the operator ′R and `(A;R) = r(A;R)
for any ideal A of R.

Theorem 4.1.13. Let S be a two-sided quotient ring of the semiprime ring R. Then
the mappings

ϕ : Ann(R)−→ Ann(S), ϕ(A) = (SA′RS)′
and

ψ : Ann(S)−→ Ann(R), ψ(B) = B ∩R
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are inverse Boolean algebra isomorphisms.

Proof. We will first show that if B = B′′ ∈ Ann(S), then B∩ R = (B′ ∩ R)′R ; so
ψ(B) is an element of Ann(R). Clearly B ∩R⊆ (B′ ∩R)′R . For the reverse inclusion
suppose a ∈ R and a(B′ ∩R) = 0. If s ∈ B′, then since (R : s) is a dense right ideal
of R and as(R : s)⊆ a(B′ ∩R) = 0, necessarily as = 0; so aB′ = 0 and a ∈ B′′ = B.
Now,

ϕψ(B) = (S(B′ ∩R)′R′RS)′ = (S(B′ ∩R)S)′

= B′′ = B

because S(B′ ∩ R)S is essential in B′ by Exercise 30 and hence the next to last
equality is a consequence of Exercise 29.

To see that A is contained in ψϕ(A) = (SA′RS)′ ∩R take s = ∑i sixiti ∈ SA′RS with
si, ti ∈ S and xi ∈ A′R . Let D be a dense right ideal of R and F a dense left ideal of
R with tiD + sD ⊆ R and Fsi + Fs ⊆ R. Then FsD ⊆ A′R ; so AFsD = 0, AFs = 0,
FsA = 0, sA = 0, and A⊆ (SA′RS)′. To see the reverse inclusion note that

ψϕ(A) = (SA′RS)′ ∩R = ((SA′RS)′′ ∩R)′R .

By Exercise 30
(SA′RS)′ = (SA′R +A′RS +SA′RS +A′R)′,

and hence A′R(SA′RS)′ = 0 and A′R ⊆ (SA′RS)′′ ∩R. Thus,

((SA′RS)′′ ∩R)′R ⊆ A′R′R = A

and ψϕ(A) = A. ut
A (semiprime) ring is called irredundant if it is an irredundant subdirect product

of a family of prime rings.

Theorem 4.1.14. (a) A semiprime ring R is irredundant if and only if its Boolean
algebra of annihilator ideals, Ann(R), is atomic.
(b) If R is irredundant and {Pλ : λ ∈ Λ} is the set of maximal elements in

Ann(R), then each Pλ is a minimal prime ideal of R, and R is an irredun-
dant subdirect product of the prime rings {R/Pλ : λ ∈Λ}.

(c) If R is an irredundant subdirect product of the prime rings {Rλ ′ : λ ′ ∈ Λ ′},
then the set of kernels of the projections R−→ Rλ ′ coincides with {Pλ : λ ∈
Λ}. In particular, R has a unique irredundant decomposition.

(d) If R is irredundant, then Q2(R) = Πλ Q2(R/Pλ ) and Q(R) = Πλ Q(R/Pλ ).

Proof. Suppose that R is an irredundant subdirect product of the prime rings {Rλ :
λ ∈Λ} and identify R with its image in S = Πλ Rλ . Since R∩Rλ is a nonzero ideal
of Rλ the latter is a two-sided quotient ring of the former (Exercise 15). Thus, since
∑λ (R∩Rλ )⊆ R⊆ S, Q(R) = Πλ Q(Rλ ) and Q2(R) = Πλ Q2(Rλ ) by Exercise 17.

According to Theorem 4.1.13 and Exercise 32, Ann(R) ∼= Ann(S) ∼= P(Λ) via
the isomorphisms A 7→Π{Rλ : A∩Rλ 6= 0} 7→ {λ : A∩Rλ 6= 0}, and hence Ann(R)
is atomic. Thus, A is a maximal annihilator of R iff there is some µ ∈ Λ such that
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A = Pµ = (Πλ 6=µ Rλ )∩R = (Rµ ∩R)′R ; that is, iff A is the kernel of the projection
R −→ Rµ . By Exercise 33 each Pµ is a minimal prime of R. Conversely, if Ann(R)
is atomic, then R is irredundant by Exercise 33 since in a complete atomic Boolean
algebra the inf of the set of maximal elements is 0 but the inf of all the maximal
elements but one is nonzero. ut

We will show next that “torsion-free” modules over an irredundant ring also have
unique irredundant subdirect product representations. The notation given in Theo-
rem 4.1.14 will be fixed for the irredundant ring R, and we will consider R to be a
subring of the direct product Πλ Rλ . The rings Rλ will be called the components of
R. If X ⊆ R, then Xλ denotes the projection of X into Rλ . Each Rλ -module will be
considered an R-module via the projection R−→ Rλ .

The R-module MR is called I-torsion-free if for each ideal J of R, `(J;R) = 0
implies `(J;M) = 0, or, equivalently, if NJ = 0 for some nonzero submodule N
of M, then KJ = 0 for some nonzero ideal K of R. Each nonsingular module is I-
torsion-free and the converse holds when R is commutative. However, this is not the
case generally; see Exercise 38.

Theorem 4.1.15. Let R be an irredundant ring.

(a) If J is an ideal of R, then J′ = 0 iff Jλ 6= 0 for each λ ∈Λ .
(b) The Rλ -module M is I-torsion-free iff it is an I-torsion-free R-module.
(c) If M is an I-torsion-free Rλ -module, then its R-injective hull coincides with

its Rλ -injective hull.

Proof. (a) If J′ = 0, then Jλ (R∩Rλ ) = J(R∩Rλ ) 6= 0. Conversely, if each Jλ 6= 0
and a ∈ R with aJ = 0, then a = 0 since aλ Jλ = 0 for each λ .

(b) Suppose that M is I-torsion-free as an R-module, and J is an ideal of R which
properly contains Pλ . If N is a submodule of M with NJ = 0, then N(J(R∩Rλ )+
Pλ ) = 0. But (J(R∩Rλ ) + Pλ )′ = 0 by (a); so N = 0 and M is Rλ -I-torsion-free.
Conversely, suppose M is Rλ -I-torsion-free, and let J be an ideal of R with J′ = 0.
If N is a submodule of M with NJ = 0, then NJλ = 0 and hence N = 0.

(c) Let E = E(MR). Since (EPλ ∩M)(R∩Rλ ) = 0, necessarily EPλ = 0 and E is
an Rλ -module. Clearly, E is an Rλ -essential extension of M. If E is a submodule of
the Rλ -module L, then E is an R-summand and hence an Rλ -summand of L. Thus,
E is the Rλ -injective hull of M. ut

Before we give the irredundant decomposition of an I-torsion-free module we
present an analogue of Theorem 4.1.13 which will be useful in showing the unique-
ness of the decomposition.

Theorem 4.1.16. Suppose R is an irredundant subdirect product of the prime rings
{Rλ : λ ∈Λ}, and, for each λ ∈Λ , let Mλ be an I-torsion-free Rλ -module. Assume
MR is a subdirect product of {Mλ : λ ∈Λ} and let Γ = {λ ∈Λ : Mλ 6= 0}.

(a) M is I-torsion-free and is an irredundant subdirect product of {Mλ : λ ∈Γ }.
(b) If J is an ideal of R, then `(J;M) = {x ∈M : xλ = 0 whenever Jλ 6= 0}.
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(c) If N is an R-submodule of M, then r(N;R) = {a ∈ R : aλ = 0 whenever
Nλ 6= 0}.

(d) Let I (R) be the lattice of ideals of R and let Ann(I (R);M) be the lattice
of annihilator submodules in M of the ideals of R. Then the mapping ρ :
P(Γ )−→ Ann(I (R);M) defined by

ρ(Ω) = {x ∈M : xλ = 0 for each λ ∈ Γ \Ω}

is a lattice isomorphism.

Proof. The subdirect product is irredundant since if λ ∈ Γ , then 0 6= M(R∩Rλ )⊆
M∩Mλ . Moreover, M is I-torsion-free by (b) of Theorem 4.1.15 and Exercise 35.
For (b), xJ = 0(x ∈ M) iff xλ Jλ = 0 for each λ ∈ Γ , iff either xλ = 0 or Jλ = 0
for each λ ∈ Γ . Similarly, if a ∈ R, then Na = 0 iff aλ = 0 or Nλ = 0 for each
λ ∈ Γ , and this proves (c). By (b), ρ(Ω) = `(∑λ∈Γ \Ω Rλ ∩R;M) is an annhilator
submodule of M. Also, if J is an ideal of R and Ω = {λ ∈Γ : Jλ = 0}, then ρ(Ω) =
`(J;M); so ρ is onto. To see that ρ is 1-1 suppose µ ∈ Ω\∆ where Ω and ∆ are
subsets of Γ . Then M∩Mµ ⊆ ρ(Ω)\ρ(∆) since (M∩Mµ)(∑λ /∈∆ R∩Rλ ) 6= 0 but
(M∩Mµ)(∑λ /∈Ω R∩Rλ ) = 0. Since ρ is clearly isotone this also shows that it is a
lattice isomorphism. ut
Theorem 4.1.17. Let MR be a module over the irredundant ring R. Then M is I-
torsion-free iff there is a subset Γ of ∆ and a family of modules {Mλ : λ ∈ Γ }
such that Mλ is an Rλ -I-torsion-free module and M is an irredundant subdirect
product of {Mλ : λ ∈ Γ }. This representation of M is unique (up to isomorphisms
of the factors), and the set of kernels of the projections M −→ Mλ coincides with
the maximal annihilators in Ann(I (R);M). Moreover, E(MR) = Πλ∈Γ E((Mλ )Rλ )
if and only if M∩Mλ is essential in Mλ for each λ ∈ Γ .

Proof. Suppose M is I-torsion-free. Let Nλ = `(Rλ ∩R;M) for each λ ∈ Λ , and
set Γ = {λ : Nλ 6= M}. Then

⋂
Nλ = 0 since (∑λ R∩Rλ )′ = 0 and (

⋂
Nλ )(∑R∩

Rλ ) = 0. Thus, M is a subdirect product of {M/Nλ : λ ∈ Γ } and each M/Nλ is
an Rλ ∼= R/Pλ -module since MPλ = M(Rλ ∩R)′ ⊆ Nλ . To see that M/Nλ is an I-
torsion-free R-module take an ideal J of R with J′ = 0 and suppose x ∈ M with
xJ ⊆ Nλ . Then x(R∩Rλ )J ⊆ Nλ and if µ 6= λ we have x(R∩Rλ )J ⊆ Nµ . So x(R∩
Rλ )J = 0, x(R∩Rλ ) = 0 and x ∈ Nλ . By (b) of Theorem 4.1.15 M/Nλ is also an I-
torsion-free Rλ -module. By the previous result the subdirect product is irredundant,
and N is a maximal annihilator in Ann(I (R);M) iff there is an element µ ∈ Γ
with N = ρ(Γ \{µ}) = `(Rµ ∩R;M) = Nµ . Suppose M ⊆ ΠΓ ′Mλ ′ is another such
decomposition of M. Then, as we have just noted, Γ = {λ ∈ Λ : `(Rλ ∩R;M} 6=
M}= Γ ′ and, for each λ ∈ Γ , Nλ = `(R∩Rλ ;M) = {x ∈M : xλ = 0} is the kernel
of the projection M −→Mλ . Let Eλ be the Rλ -injective hull of Mλ ∼= M/Nλ . Then
Eλ is the R-injective hull of Mλ by Theorem 4.1.15 and E = Πλ Eλ is R-injective.
Suppose each M∩Mλ is essential in Mλ . By Exercises 35 and 37 Eλ is I-torsion-
free and M is essential in Πλ Mλ . Let 0 6= e = (eλ ) ∈ E. Then for some µ ∈ Γ ,
e(R∩Rµ) = eµ(R∩Rµ) 6= 0 and e(R∩Rµ)∩Mµ 6= 0. Thus, ΠMλ is essential in E
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and hence M is essential in E. Conversely, if E(M) = E, then M∩Mλ is essential in
Mλ since M is essential in E. ut

The modules Mλ will be called the components of the I-torsion-free R-module M.
Occasionally, even those Mλ = 0 will be considered components of M. If each Mj

is I-torsion-free the preceding theorem (and Exercise 35) easily give that (¢Mj)λ =
¢(Mj)λ and (ΠMj)λ = Π(Mj)λ for each λ . Also, the module M will be called
essential if M∩Mλ is essential in Mλ for each λ ∈ Λ . Note that each summand of
an essential I-torsion-free R-module is also essential. If each independent family of
nonzero submodules of M is finite, then it has only finitely many components. A
module, over any ring, which lacks infinite direct sums is called finite dimensional,
and a nonzero module which contains no direct sums at all is called uniform. For
some properties of finite dimensional rings and modules see Exercises 26, 43, and
44.

Exercises.

1. A pair of maps

A α−→B
β−→C

in a module category is exact if the image of α is equal to the kernel of β . A
sequence

· · · −→ An−1 −→ An −→ An+1 −→ ·· ·
is exact if each consecutive pair of maps is exact; and an exact sequence of the
form

0−→ A−→ B−→C −→ 0 (4.1.1)

is called a short exact sequence. A covariant functor F : C −→D between two
module categories is left (right) exact if

0−→ F(A)−→ F(B)−→ F(C)

(F(A)−→ F(B)−→ F(C)−→ 0)

is exact for each short exact sequence (4.1.1). Here, we are assuming that F is
additive; that is, F(α +β ) = F(α)+ F(β ) whenever α +β is defined. Analo-
gous definitions can be given for contravariant functors; note that left exactness
of the contravariant functor F means exactness of

0−→ F(C)−→ F(B)−→ F(A).

The functor F is exact if it is both left and right exact.

(a) Show that the covariant functor [M, · ] and the contravariant functor [ ·,M]
are left exact for each module M.

(b) Show that M is injective iff the functor [ ·,M] is exact.
(c) Show that M⊗R · is right exact, and it is exact if M is projective. Here and

in (d) modules are unital.
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(d) Show that [M, · ] is exact iff M is projective.
(e) Let HMR be a bimodule. Show that the functors HomH( · , HomR(HMR,NR))

and HomR( · ⊗H M,NR) are naturally equivalent for each module NR.

2. Let R be a commutative principal ideal domain. If I is a nonzero ideal of R show
that R/I is self-injective. (Reduce to the case that I is a power of a prime ideal
and use the composition series of R/I.)

3. Suppose that R is a subring of S and RR is essential in SR.

(a) If Zr(R) = 0 show that S is a right quotient ring of R.
(b) Show that R is right nonsingular iff S is right nonsingular.
(c) Show that Zr(R) does not contain a nonzero idempotent element.
(d) If R has a regular right quotient ring show that R is right nonsingular.

4. Let S be a right quotient ring of R.

(a) If AR is an R-submodule of SR, show that AR is essential in A+AS.
(b) If AR is an R-submodule of SR, show that AR is essential in SR iff AS is

essential in SS.
(c) Show that Zr(R) = R∩Zr(S).
(d) Show that D ∈ D(R) iff DS ∈ D(S).

5. (a) Suppose that, for each λ in Λ ,Aλ is an essential submodule of Bλ and Bλ
is a submodule of M. If ∑Aλ is direct show that ∑Bλ is direct and is an
essential extension of ∑Aλ .

(b) Show that E(A1 ¢ · · ·¢An) = E(A1)¢ · · ·¢E(An).

6. Let Q be the field of quotients of the commutative principal ideal domain R, and
let p be a prime element of R.

(a) If Qp = {u ∈Q/R : pnu = 0 for some n ∈N} is the pth-primary component
of Q/R show that Qp is an injective R-module.

(b) Show that, for each n∈N, An = R( 1
pn +R) is a quasi-injective R-submodule

of Q/R and E(An) = Qp.

7. Let E = E(MR) and H =EndR(E).

(a) Show that MR is quasi-injective iff M is a left H-submodule of E. (If α, γ ∈
H and M∩α−1(M)⊆ ker(γ−α) show that (γ−α)M∩M = 0.)

(b) Show that HM is the smallest quasi-injective submodule of ER that
contains M.

(c) Show that each monomorphism of MR into a quasi-injective module L can
be extended to a monomorphism of HM into L.

8. Suppose that M is quasi-injective.

(a) If E(M) = ¢λ Eλ , show that M = ¢λ (Eλ ∩M).
(b) Let N be a submodule of M. Show that N is essentially closed in M iff N is

a summand of M.
(c) Show that each summand of M is quasi-injective.
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9. If R is a unital right self-injective ring show that J(R) = Zr(R) and R/J(R) is a
regular right self-injective ring.

10. Show that a unital right artinian ring R is right noetherian. (Use the nilpotency
of J(R) and Theorem 4.2.13 to show that RR has a composition series.)

11. Show that the following are equivalent for the ring R.

(a) R is right noetherian.
(b) The direct sum of any family of injective right R-modules is injective.
(c) The direct sum of any countable family of injective right R-modules is

injective.

(Assume R and all modules considered are unital. For (c)⇒ (a), if I1 ⊆ I2 ⊆ ·· ·
is a countable chain of right ideals of R let I be their union. Let En be an injective
R-module containing I/In. Define f : I −→¢nEn by f (x) = (x+ In)n.)

12. Let H = EndR(M) be the endomorphism ring of the module MR.

(a) If M = ¢λ∈Λ Mλ with Λ infinite and each Mλ 6= 0 show that HM is not
injective. (Let ελ ∈ H be the projection onto Mλ and take 0 6= xλ ∈ Mλ
for each λ ∈ Λ . Consider the H-endomorphism ∑λ Hελ −→ M given by
∑αλ ελ 7→ ∑αλ xλ .)

(b) If HM is not injective but it is a finitely generated projective module, show
that H is not left self-injective.

(c) If MR is unital and RR is isomorphic to a direct summand of a direct sum
of copies of MR, show that HM is a finitely generated projective H-module.
(Show that RR is isomorphic to a direct summand of Mn

R for some n∈N and
apply HomR( ·,M).)

(d) The unital ring R is called quasi-Frobenius if it is right self-injective and
right artinian. If R is quasi-Frobenius and MR is free and not finitely gen-
erated show that H is right self-injective but not left self-injective. (Use
Exercise 1 with NR = MR and Exercises 10 and 11 to show HomH( ·,HH) is
exact.)

13. If `(R) = r(R) = 0 show that Q2(R) is the unique maximal two-sided quotient
ring of R.

14. If R is reduced show that Q2(R) is reduced. If R is a domain show that Q2(R) is
a domain.

15. Let L be a left ideal of R. Show that R is a right quotient ring of L iff `(L;R) = 0.

16. Give an example of a ring R which is not prime, Zr(R) = Z`(R) = 0 and Q(R) =
Qleft(R) is prime.

17. Let {Rλ : λ ∈ Λ} be a collection of rings. Suppose that Rλ is a subring of Sλ
for each λ ∈Λ .

(a) Show that Sλ is a right quotient ring of Rλ , for each λ ∈ Λ , iff Πλ Sλ is a
right quotient ring of the ring direct sum ¢λ Rλ .
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(b) Show that Q(¢λ Rλ ) = Πλ Q(Rλ ) = Q(Πλ Rλ ).
(c) Show that Q2(¢λ Rλ ) = Πλ Q2(Rλ ) = Q2(Πλ Rλ ).
(d) Show that ¢λ Rλ is right nonsingular iff Πλ Rλ is right nonsingular, iff Rλ

is right nonsingular for each λ ∈Λ .
(e) Suppose Πλ Rλ is a right quotient ring of R and T is a subring of R. Show

that R is a right quotient ring of T iff Rλ is a right quotient ring of Rλ ∩T
for each λ ∈Λ .

18. (a) Let R be a subring of S and let n ∈N. Show that S is a right quotient ring of
R iff the matrix ring Sn is a right quotient ring of Rn.

(b) Show that Q(Rn) = Q(R)n and Q2(Rn) = Q2(R)n. (First asume that R is
unital and consider the centralizer of the usual matrix units.)

(c) Let J be a dense right ideal of Rn and for 1≤ k ≤ n let

J(k) = {a ∈ R : a is an entry of a matrix in J∩ ekkRn}.

Show that J(k) is a dense right ideal of R.
(d) Let J be a right ideal of Rn. Show that J is a dense right ideal of Rn iff there

is a dense right ideal D of R with Dn ⊆ J.
(e) Show that Zr(Rn) = Zr(R)n.

19. Let F [x] be the polynomial ring over the field F and let y be the image of x in
S = F [x]/(x4). Let R be the F-subalgebra of S generated by {1,y2,y3}. Show
that RR is essential in SR and each is its own maximal quotient ring.

20. Let E be the injective hull of MR. Show that the following are equivalent state-
ments and each one holds whenever M is nonsingular.

(a) Each submodule of E has a unique injective hull in E.
(b) Each submodule of M has a unique injective hull in E.
(c) The intersection of two injective submodules of E is injective.

21. Let R be a subring of the reduced ring S. Show that Z(RS) = Z(SR).

22. Show that a ring is strongly regular iff it is regular and reduced.

23. Show that each one-sided ideal is an ideal in a strongly regular ring.

24. (a) If R is a regular ring and e = e2 ∈ R show that eRe is regular.
(b) Show that R is regular iff Rn is regular for each n ∈ N. (For A ∈ R2 find a

strictly lower triangular matrix X with A1 = A−AXA lower triangular. Use
the regularity of the diagonal entries of A1 to find X1 such that A1−A1X1A1
is strictly lower triangular and hence regular.)

(c) If M is a finitely generated projective unital module over the regular ring R,
show that EndR(M) is regular.

25. In this exercise all modules are unital. The module HM is flat if the functor
·⊗H M is exact.
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(a) Suppose that HMR is a bimodule with HM flat, and NR is an injective mod-
ule. Show that HomR(M,N) is an injective right H-module (Use Exercise
1; see Exercise 12.)

(b) If R is right self-injective show that Rn is right self-injective.

26. Show that the following are equivalent for the domain R.

(a) Q(R) is reduced.
(b) Q(R) is a division ring.
(c) aR∩ bR = 0 ⇒ a = 0 or b = 0, for every a,b ∈ R. (A domain with this

property is called a right Öre domain.)
(d) Each nonzero element of R is invertible in Q(R); and if p ∈ Q(R), then

p = ab−1 for some a,b ∈ R.
(e) R contains no infinite direct sums of right ideals. (aR∩ bR = 0 ⇒ bR +

abR+a2bR+ · · · is direct.)

27. (a) Let I be a minimal right ideal of R. Show that I2 = 0, or I = eR for some
idempotent e, and then eRe is a division ring.

(b) Give an example of a (unital) ring R for which eRe is a division ring yet eR
is not minimal.

(c) If R is semiprime and 0 6= e2 = e ∈ R show that eR (respectively, Re) is a
minimal right (respectively, left) ideal of R iff eRe is a division ring.

28. Suppose R is a semiprime subring of T and RR is essential in TR. Let e = e2 ∈ T
and suppose eT is a minimal right ideal of T . If K = eTe∩R 6= 0 show that K
is a right Öre domain with Q(K) = eTe. (By Exercises 26 and 27 it suffices to
show KK is essential in (eTe)K . If 0 6= d ∈ eTe take a,b ∈ R with 0 6= da ∈ R
and 0 6= eab ∈ R; show eabRK 6= 0.)

29. Let A⊆ B be ideals of the semiprime ring R and let A′ denote the annihilator of
A. Show that the following are equivalent.

(a) A′ = B′.
(b) AR is essential in BR.
(c) RA is essential in RB.
(d) If C is a nonzero ideal of R contained in B, then C∩A 6= 0.
(e) AB is essential in BB.
(f) AA is essential in BA.
(g) B is a two-sided quotient ring of A.

30. (a) If X is a subset of the semiprime ring R show that (RXR)′ = (RX + XR +
RXR)′ = (RX +XR+RXR+ZX)′.

(b) Let S be a right quotient ring of the semiprime ring R, and let B be an ideal
of S. Show that S(B∩R)S is essential in B.

31. Let A and B be ideals of the semiprime ring R. Show that the following are
equivalent.

(a) A′ = B′.
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(b) A∩B is essential in A and in B.
(c) AB is essential in A and in B.

32. Let S = Πλ∈Λ Rλ be the direct product of the prime rings Rλ . Show that the
mapping σ : P(Λ) −→ Ann(S), σ(Γ ) = Πλ∈Γ Rλ , is a Boolean isomorphism
between the power set of Λ and the Boolean algebra of annihilator ideals of S.

33. Let A be an annihilator ideal of the semiprime ring R. Show that the following
are equivalent (see Exercise 2.4.12).

(a) A is a maximal annihilator.
(b) A′ is a minimal annihilator.
(c) A is a prime ideal.
(d) A is a minimal prime ideal.
(e) A′ is a prime ring.

34. Suppose Q(R) is strongly regular.

(a) If I is a right ideal of R show that Q(I) is strongly regular and Q(I)⊆Q(R).
(b) If P is a prime ideal of R show that Q(P) = Q(R), or P∗ and R/P are right

Öre domains with Q(P∗) = Q(R/P).

35. Let F (I) be the class of I-torsion-free right R-modules over the ring R. Show
that F (I) is hereditary, productive, extensionally closed (the middle term of a
short exact sequence is in F (I) if the end terms are in F (I)), and is closed
under essential extensions.

36. Let MR be an I-torsion-free module over the irredundant ring R, and let J and K
be ideals of R.

(a) Show that `(J;M) = `(J′′;M).
(b) Show that the following diagram is commutative

where α is the composite of the isomorphisms given in Exercise 32 and
Theorem 4.1.13, ρ is the isomorphism given in Theorem 4.1.16, γ is the nat-
ural Boolean homomorphism (γ(∆) = ∆ ∩Γ ), and β (L) = `(L′;M). Con-
sequently, Ann(I (R);M) is a homomorphic image of the Boolean algebra
Ann(R) and its complements are given by `(J;M)′ = `(J′;M).

(c) Let A be an ideal of R that is essential in R∩Πλ /∈Γ Rλ . Show that `(J;M) =
`(K;M) iff (J +A)′ = (K +A)′.
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37. Let MR be an I-torsion-free module over the irredundant ring R. Suppose that Lλ
is an Rλ -module for each λ ∈Λ and M is a subdirect product of {Lλ : λ ∈Λ}.
Show that (a) is equivalent to (b) and it implies (c).

(a) For each λ ∈Λ , Lλ ∩M is essential in Lλ .
(b) M is essential in Πλ Lλ .
(c) ∑M∩Lλ is essential in M.

In particular, if N is a submodule of the essential module M and {Mλ} are the
components of M, then N ∈ E (M) iff N∩Mλ ∈ E (Mλ ) for each λ ∈Λ . In this
case, N is also an essential module.

38. Let M be a right R-module.

(a) If M is nonsingular show that M is I-torsion-free.
(b) Suppose that R is irredundant and M is an Rλ -module for the component

Rλ of R. Show that M is a nonsingular R-module iff it is a nonsingular
Rλ -module.

(c) Suppose R is irredundant and M is I-torsion-free. Show that M is nonsingu-
lar iff each of its components is nonsingular.

(d) Give an example of a prime ring which has a singular I-torsion-free module
(Let R be a simple right Öre domain; see Exercises 26 and 3.2.28).

39. Let Q be the maximal right quotient ring of R.

(a) Show that the center of Q is the centralizer of R in Q.
(b) If R is commutative show that Q is commutative.
(c) If R is semiprime show that the centers of Q, Q2(R) and of the maximal left

quotient ring of R are all equal.

40. Let B be a generalized Boolean algebra (see Exercises 1.2.2, 1.2.8, and 1.3.5).

(a) If B is a subalgebra of the generalized Boolean algebra C and B is order
dense in C show that C is a quotient ring of B. (The converse is a conse-
quence of (c).)

(b) If B is a Boolean algebra and X ⊆ B show that LU(X) = X∗∗ (see Theorem
1.3.2). Here, X∗∗ denotes the double annihilator of X in the reduced ring B.

(c) Show that the MacNeille completion of B coincides with its maximal quo-
tient ring. (Use Theorem 4.1.13.)

41. If Zr(R) = 0 show that Z2(M) = Z(M) for each right R-module M. (Use Theo-
rem 4.1.8.)

42. Let C be the center of R.

(a) If a ∈C is a von Neumann regular element of R show that a is a von Neu-
mann regular element of C. (If a = axa and b = xax show br = xarx for
each r ∈ R.)

(b) If R is regular and right self-injective show that C is regular and self-
injective and R is an injective C-module.
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43. Assume 0 6= MR is finite dimensional.

(a) Show that M contains a uniform submodule. (If not, M ⊇ A1 ¢ B1, A1 ⊇
A2 ¢B2, . . . , and ∑Bi is direct.)

(b) Show that M contains an independent family of uniform submodules {U1,
. . . , Un} with U1 ¢ · · ·¢Un essential in M; and if 0 6= Vi is a submodule of
Ui, then V1 ¢ · · ·¢Vn is essential in M.

(c) Show that E (MR) = {N ∈L (MR) : N∩Ui 6= 0 for each i = 1, . . . ,n}.
(d) Suppose V1 ¢ · · ·¢Vm ∈ E (MR) and each Vj is uniform. Show that each Ui

may be replaced by some Vj. (Let Ni = U1 ¢ · · ·¢Ui−1 ¢Ui+1 ¢ · · ·¢Un;
then Ni∩Vj = 0 for some j, and Ni ¢Vj ∈ E (M).)

(e) Show that m = n in (b) and (d). The number n is called the Goldie dimension
of M and we write dimM = n.

(f) Show that N ∈ E (M) iff N contains a direct sum of n uniform submodules.
(g) If N is a complement in M, show that dimM/N = dimM−dimN.
(h) Give an example of a uniform module M and a submodule N ⊆ M with

M/N not finite dimensional.

44. Show that MR is finite dimensional iff E(MR) is a direct sum of a finite number
of indecomposable modules.

45. Let MR be an R-module.

(a) Use the proof of Baer’s Criterion to show that M is a Baer module iff each
diagram in MR on the left can be completed to a diagram in MR on the
right.

(b) If M is a Baer module show that E(M)R⊆M.
(c) Suppose that R has a left identity e. Show that M is injective iff M is a Baer

module and M(1− e) is a divisible group.
(d) Show that if M is a Baer module and M = MR, then M is quasi-injective

(use Exercise 4.1.7).

46. (a) Show that the following are equivalent for the ring R.
(i) R is right self-injective.

(ii) RR is quasi-injective, R has a left identity element and `(R;R) is a
divisible group.

(iii) RR is a Baer module and `(R;R) is divisible.
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(b) Suppose the additive group of R has no nonzero elements of finite order.
Show that the following are equivalent.

(i) R is right self-injective.
(ii) RR is quasi-injective and has a left identity.

(iii) RR is a Baer module.

47. Let P be a nonzero ring and put S = EndP(PP). Then we have the bimodules
P,SPP and P,SSP,S.

(a) Show that the group direct sum R = S ¢ P becomes a ring with the multi-
plication: (α , p)(β ,q) = (αβ + pβ ,αq+ pq).

(b) Show that R is not unital but it has a left identity element e, and the rings P
and S are embedded in R with P embedded as a left ideal and S∼= eRe.

(c) If P2 = 0 show that R ∼=
(

S P
0 0

)
, P = `(P;R), and I is a right ideal of R

iff I =
(

K J
0 0

)
where K = Ie is a right ideal of S, J is a subgroup of P and

KP⊆ J.
(d) Assume P2 = 0. Show that RR is quasi-injective iff P is a quasi-injective

Z-module. (If f ∈ HomR(I,R), I a right ideal of R, and α ∈ S agrees with f

on J, then ( f −h)J = 0 where h is left multiplication by
(

α 0
0 0

)
.)

(e) If P2 = 0 show that R is right self-injective iff P is divisible.

(f) Show that the ring
(
Q Q
0 0

)
is right self-injective.

48. Let Mλ be an Rλ -module for each λ ∈ Λ and put M = Πλ Mλ and R = ΠΛ RΛ .
Then M is an R-module : (xλ )λ (rλ )λ = (xλ rλ )λ , and M is an Rµ -module for
each µ ∈Λ : (xλ )λ rµ = xµ rµ .

(a) Show that, for all µ,λ ∈ Λ ,Mλ is an R-submodule of M and Mλ is an Rµ -
submodule of M.

(b) Show that M is the direct product of the family {Mλ : λ ∈Λ} as R-modules
and as Rµ -modules, for each µ ∈Λ .

(c) If M is R-injective show that M is Rµ -injective, for each µ ∈Λ , and hence
each Mλ is R-injective as well as Rµ -injective.

49. (a) Let S and T be rings and suppose that R = S×T is right self-injective. Show
that S is right self-injective.

(b) Suppose that the ring R is a direct product of a family of unital rings. Show
that R is right self-injective iff each of its factors is right self-injective.

(c) If S is unital and S and T are right self-injective show that R = S×T is right
self-injective.

(d) Show that the ring R =
(
Q Q
0 0

)
×

(
Q Q
0 0

)
is not right self-injective even

though each factor is right self-injective (see Exercise 47).
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50. Let R be a ring and let ϕ : R−→ S = EndR(RR) be the canonical ring homomo-
prhism (ϕ(a) is left multiplication of a).

(a) Show that ϕ(R) is a left ideal of S.
(b) If RR is quasi-injective show that Zr(R) = ϕ−1(J(S)) where J(S) is the

Jacobson radical of S.
(c) Let S̄ = S/J(S) and R̄ = R/Zr(R). Suppose RR is quasi-injective. Show that

S̄ = Q(R̄) iff Zr(R) contains no nonzero direct summand of RR. If R has a
left identity, then S̄ = Q(R̄).

Notes. The maximal right quotient ring of a ring was constructed by Utumi in
[U1]; the nonsingular case appeared earlier in Johnson [JO1] where the singular
submodule of a module is also defined. Additional references for rings of quotients
include Findlay and Lambek [FL], Faith [F3], [F4], and [F5], Goodearl [GOO2],
Lambek [LA], Stenström [STE2], and Lam [L1]. Irredundant semiprime rings are
studied and I-torsion-free modules first appeared in Levy [LEV1]. The determina-
tion of when Q(R) is reduced first appeared in Anderson [AN1] but in the context
of unital f -rings. Renault [RE] gave the theorem for unital reduced rings and Stein-
berg [ST5] noted that Anderson’s techniques work for any right nonsingular ring.
Theorem 4.1.6 is due to Goldie [GO4]. The history of Theorem 4.1.9 is given in
Faith [F5, p. 76]. Exercise 12 is due to Sandomierski [SA], Exercise 40 is due to
Brainerd and Lambek [BL] and the injectivity part of Exercise 42 is in Armendariz
and Steinberg [AS]; the fact that the center of a regular right self-injective ring is
self-injective appeared earlier in Miyashita [MI, Theorem 5.12].

4.2 Torsion Theories and Rings of Quotients

In this section we will examine the connection between certain “radicals” in the
category MR of right R-modules over a ring R and collections of right ideals that
resemble the dual ideal of dense right ideals of R. This will lead to more rings of
quotients of R and of homomorphic images of R, and to modules of quotients. In
particular, the classical right quotient ring of a ring will be constructed and seen
to be a closer analogue of the field of quotients of a commutative domain than the
maximal right quotient ring.

We will again abbreviate HomR(A,B) by [A,B] or by R[A,B] if necessary. If A
and B are classes of (right) R-modules, then [A ,B] = 0 means [A,B] = 0 for all
A ∈ A and B ∈B. This relation defines a Galois connection in the power class of
MR. For the class A let

r(A ;MR) = r(A ) = {B : [A,B] = 0 for every A in A }, and

`(A ;MR) = `(A ) = {B : [B,A] = 0 for every A in A }
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The pair of classes of R-modules (T ,F ) is a torsion theory for MR if T = `(F )
and F = r(T ). Two other equivalent formulations of this are:

T and F are each maximal with respect to [T ,F ] = 0;

T = `r(T ) and F = r`(F ).

T is called a torsion class and F is called a torsion-free class in MR. The modules
in T are torsion modules and those in F are torsion-free modules. A given class of
modules C generates the torsion theory (`r(C ), r(C )) and cogenerates the torsion
theory (`(C ), r`(C )). Clearly, `r(C ) is the smallest torsion class containing C
and r`(C ) is the smallest torsion-free class containing C . Just as for the category
of rings the class C will be called extensionally closed if each module M is in C
whenever it is the middle of a short exact sequence

0−→ N
f−→M

g−→ P−→ 0 (4.2.1)

whose ends N and P are in C .

Theorem 4.2.1. A class of modules is a torsion class in MR iff it is homomor-
phically closed, extensionally closed, and is closed under direct sums. A class of
modules is a torsion-free class in MR iff it hereditary, extensionally closed, and is
productive.

Proof. We will only prove the first statement and leave the proof of the sec-
ond for the reader. Suppose that (T ,F ) is a torsion theory. Clearly, T is ho-
momorphically closed and if {Mλ : λ ∈ Λ} is a subset of T and F ∈ F , then
[¢λ Mλ ,F ] ∼= Πλ [Mλ ,F ] = 0. Also, given the exact sequence (4.2.1) with N and P
torsion, if α ∈ [M,F ] where F is torsion-free, then α = 0 on the image of N; so α
factors through P and hence α = 0.

Conversely, suppose that the class T has these three properties. Let M ∈MR and
let N be the sum of the T -submodules of M. Then N ∈T since it is a homomorphic
image of a direct sum of T -modules. If T ∈T and α ∈ [T,M/N], then α(T ) = K/N
is a T -module and therefore so is K. Hence, K = N, α = 0, and M/N ∈ r(T ). Now,
if M ∈ `r(T ), then also M/N ∈ `r(T ); so M = N ∈T and T = `r(T ). ut

The analogy between torsion theories in MR and radical pairs in the category
of rings, as indicated by Theorem 4.2.1 and its proof, is quite good. As is to be
expected, however, torsion theories do have their own flavor since the category of
rings and the category of R-modules are considerably different.

The class of nonsingular right R-modules is always a torsion-free class. The
corresponding torsion class may be larger than the class of singular modules. For
example, if F is a field and R = F [x]/(x2), then R is torsion but not singular
since Z(R)(= xR) and R/Z(R) are both singular. In general, the associated torsion
class consists of all modules M with Z2(M) = M (see Theorem 4.1.6 and Exercise
4.1.38). Another torsion-free class is the class of I-torsion-free modules (see Exer-
cise 4.1.32).
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A torsion theory is called hereditary if its torsion class is a hereditary class of
modules. Given a torsion theory (T ,F ) and a module M let tT (M) denote the
sum of those submodules of M which belong to T . The submodule tT (M) is, of
course, the “T -radical” of M. Instead of starting with a torsion theory we could
start with a radical functor.

A functor t : MR −→MR is called a radical of MR if t(M)⊆M and t(M/t(M))
= 0 for each module M, and t(α) is the restriction of α to t(M) for every α ∈
[M,N]; that is α(t(M)) ⊆ t(N). It is easy to see that the radical t is left exact iff
t(N) = N ∩ t(M) whenever N is a submodule of M (see Exercise 4.1.1). The class
of radicals of MR is partially ordered by the relation: t1 ≤ t2 iff t1(M)⊆ t2(M) for
each module M. In fact, if {tλ : λ ∈ Λ} is a set of radicals, then so is the functor t
defined by t(M) =

⋂
λ tλ (M); and t = inf{tλ : λ ∈ Λ}. If each tλ is left exact then

so is t. So both the class of radicals and the class of left exact radicals are complete
lattices. In the same vein, it is clear from Theorem 4.2.1 that the classes of torsion
classes and hereditary torsion classes are also complete lattices.

For the radical t let Tt = {M ∈MR : t(M) = M} and Ft = {M ∈MR : t(M) = 0}.

Theorem 4.2.2. The correspondence t 7→ (Tt ,Ft) is a lattice isomorphism between
the lattice of left exact radicals of MR and the lattice of hereditary torsion theories
for MR. The inverse correspondence is (T ,F ) 7→ tT .

Proof. Let t be a left exact radical. Suppose that A is a submodule of B. If t(B) = B,
then t(A) = A∩ t(B) = A and B/A = p(t(B)) ⊆ t(B/A) where p : B −→ B/A is
the natural map; so Tt is hereditary and homomorphically closed. If {Aλ}λ ⊆ Tt ,
then, for each λ , Aλ = t(Aλ )⊆ t(¢λ Aλ ); so Tt is closed under direct sums. Clearly,
for any module B, t(B) is characterized as that submodule C such that t(C) = C and
t(B/C) = 0. In particular, if A⊆ t(B), then t(B/A) = t(B)/A. Consequently, if A and
B/A are both in Tt so is B. Since [Tt ,F ] = 0 iff t(F) = 0, (Tt ,Ft) is a hereditary
torsion theory by Theorem 4.2.1. Conversely, suppose that (T ,F ) is a hereditary
torsion theory. The proof of Theorem 4.2.1 shows that tT is a radical and tT (N)⊆
tT (M) for each submodule N of M. Since T is hereditary N ∩ tT (M)⊆ tT (N); so
tT is left exact.

Given the left exact radical t, for any module M, t(M) is the largest submodule N
of M with t(N) = N, and tT (M) is the largest submodule of M which is in Tt ; so t =
tTt

. On the other hand, given the torsion theory (T ,F ), M ∈ Tt T
iff M = tT (M),

iff M ∈T . Since both correpondences are isotone they are lattice isomorphisms.
ut

From now on (T ,F ) will be the hereditary torsion theory associated with the
left exact radical t. Since M is torsion iff each of its 1-generated submodules is
torsion it is not surprising that T is frequently determined by a collection of right
ideals. The nonempty collection F of right ideals of R is called a (right) topology of
R if the following hold. Recall that L (MR) denotes the lattice of submodules of M.

T1 D ∈ F and a ∈ R⇒ (D : a) ∈ F.
T2 J ∈ F and D ∈L (RR) and (D : a) ∈ F for each a ∈ J ⇒ D ∈ F.
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According to Theorem 4.1.4 the set D(R) of dense right ideals of R is a topology of
R. If F is a topology of R, then F determines a topology for R which makes it into
a topological ring: F is a basis for the neighborhood system of 0 for this topology.
This connection to toplogical spaces will not be used explicitly, and we leave its
verification to the interested reader (Exercise 12). The set Top(R) of all toplogies of
R is certainly closed under intersection and hence it is a complete lattice. We show
next that each topology F resembles D.

Theorem 4.2.3. Let F be a topology of R.

(a) F is a dual ideal of L (RR).
(b) Suppose that J ∈ F and, for each a ∈ J, Da ∈ F. Then ∑a∈J aDa ∈ F.
(c) If I,J ∈ F, then IJ ∈ F.
(d) If M ∈MR let tF(M) = {x ∈ M : r(x) ∈ F}. Then tF is a left exact radical

of MR.
(e) The correspondence F 7→ tF between Top(R) and the class of left exact rad-

icals on MR is one-to-one and preserves all meets.

Proof. (a) Suppose that D ⊆ F are right ideals of R with D ∈ F. If a ∈ D, then
R = (D : a)∈ F by T1. But then (F : a) ∈ F for each a ∈D; so F ∈ F by T2. Now let
D,F ∈ F. For any a ∈D, (D∩F : a) = (D : a)∩ (F : a) = (F : a) ∈ F; so D∩F ∈ F.

(b) Let D = ∑aDa. Since Da ⊆ (D : a) for each a∈ J, (D : a)∈ F and necessarily
D ∈ F.

(c) For each a ∈ I, J ⊆ (IJ : a); so IJ ∈ F.
(d) Let x,y ∈ tF(M) and a ∈ R. Then r(x−y)⊇ r(x)∩ r(y) and r(xa) = (r(x) : a).

Thus, tF(M) is a submodule of M by (a). Suppose x ∈ M, D ∈ F and xD ⊆ tF(M).
Then, for each a∈D there exists Da ∈ F with xaDa = 0. So ∑aDa ⊆ r(x), x∈ tF(M)
by (b), and tF(M/tF(M)) = 0. Since r(αx)⊇ r(x) for each α ∈ [M,N], tF is a radical
which is clearly left exact.

(e) From the definitions, I ∈ F iff (I : a) ∈ F for each a ∈ R, iff tF(R/I) = R/I.
Thus, the correspondence F 7→ tF is one-to-one. Moreover, t∩Fλ (M) =

⋂
tFλ (M) for

each module M. ut
It is useful to extend a given topology to a unital overring.

Theorem 4.2.4. Let S be a unital overring of R generated by R∪{1} and let F be a
topology of R.

(a) F(S) = {J ∈L (SS) : J∩R ∈ F} is a topology of S and F⊆ F(S).
(b) The correspondence F 7→ F(S) is a lattice isomorphism between Top(R) and

the lattice of those topologies of S which contain R.
(c) If M is an S-module, then tF(M) = tF(S)(M).

Proof. (a) We first note that a right ideal J of S is in F(S) iff S/J ∈ TtF . This is a
consequence of the fact that S/J is generated by 1 + J as an R-module and r(1 +
J;R) = J ∩ R. We write (J : a)S = {s ∈ S : as ∈ J}. If J ∈ F(S) and a ∈ S, then
(J : a)S∩R = (J : a)∈F; so (J : a)S ∈F(S) and T1 holds for F(S). Suppose J ∈F(S),
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I ∈L (SS) and (I : a)S ∈ F(S) for each a ∈ J. Then for each a ∈ J∩R, (I∩R : a) =
(I : a) = (I : a)S∩R ∈ F. So I∩R ∈ F, I ∈ F(S) and T2 also holds for F(S).

(b) Let K be a topology of S with R ∈ K. We claim that F = K∩L (RR) is a
topology of R. Let I ∈ F and a ∈ R. Then (I : a) = (I : a)S ∩R ∈ F. Suppose J ∈ F,
D ∈ L (RR) and (D : a) ∈ F for each a ∈ J. Then J ∈ K and (D : a)S ∈ K since
(D : a) ⊆ (D : a)S. So D ∈ F and F is a topology. Clearly, F = F(S)∩L (RR) for
any topology F of R. On the other hand, if K is a topology of S with R ∈ K, then
(K∩L (RR)(S) = {J ∈L (SS) : J∩R ∈K}=K. So the correspondence F 7→ F(S)
is a bijection and hence a lattice isomorphism since it and its inverse are isotone.

(c) Since r(x;S)∩R = r(x;R) for each x ∈M it is obvious that tF(M) = tF(S)(M).
ut

When R is a unital ring the definitions of a (hereditary) torsion theory and a (left
exact) radical are meaningful for the category of unital right R-modules u-MR, and
the previous results all hold in u-MR. Moreover, as shown below the mapping in
(e) of Theorem 4.2.3 will now be a lattice isomorphism; so the connection between
hereditary torsion theories and topologies for R is much stronger. It is also true that
other parts of the theory of torsion which are presented here for MR also hold for u-
MR, with identical or simpler proofs. We will frequently use these analogous unital
results without an explicit warning. However, we will occasionally point out the
stronger version that holds in u-MR.

Theorem 4.2.5. Let t be a left exact radical for MR with associated torsion theory
(T ,F ), and let Ft = {I ∈L (RR) : R/I ∈T }.

(a) Ft is a dual ideal of L (RR) which satisfies T1.
(b) If t(M) = M whenever MR = 0, then Ft is a topology of R.
(c) The mapping F 7→ tF is a lattice isomorphism between the lattice of toplogies

of R and the lattice of those left exact radicals t for MR with the property
that t(M) = M whenever MR = 0.

(d) If R is unital the mapping in (c) is an isomorphism between Top(R) and the
lattice of left exact radicals of u-MR.

Proof. If I, J ∈ Ft and K ∈ L (RR) with I ⊆ K, then R/K ∈ T since it is a
homomomorphic image of R/I, and R/I ∩ J ∈ T because of the exactness of
0−→ R/I∩J−→ R/I ¢R/J. If a∈ R and α : R−→ R/I is defined by α(x) = ax+ I,
then ker(α) = (I : a); so (I : a)∈Ft . This proves (a). Now suppose J ∈Ft , I ∈L (RR)
and (I : a)∈ Ft for each a∈ J. Then (a+ I)R⊆ t(J + I/I) since (a+ I)R∼= R/(I : a);
so JR+ I/I ⊆ t(J + I/I). The exactness of

0−→ JR+ I/I −→ J + I/I −→ J + I/JR+ I −→ 0

shows that J + I/I ∈ T provided J + I/JR + I ∈ T , and the latter holds under the
condition in (b). The exactness of

0−→ J + I/I −→ R/I −→ R/J + I −→ 0 (4.2.2)
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now gives that R/I ∈ T and hence Ft is a topology. This proves (b). As for (c), we
already know that the mapping F 7→ tF is one-to-one, and clearly tF(M) = M if MR =
0. To show it is onto it suffices to verify that tFt = t. Now, for any module M, x ∈
tFt (M) iff xR∈T . Thus, t(M)⊆ tFt (M) and equality holds since (tFt (M)/t(M))R =
0. When R is unital (a simpler version of) the proof of (b) shows that Ft is a topology
and (a simpler version of ) the proof of (c) gives tFt = t. ut

We have already noted that the class of nonsingular modules is the torsion-free
part of a hereditary torsion theory whose torsion class is the class of all modules
M with Z2(M) = M. This is called the Goldie torsion theory. Of course, Z2 is the
corresponding left exact radical. The associated topology is

G= {J ∈L (RR) : R/J = Z2(R/J) = c`c`J/J}

= {J : J ⊆ K ⊂ R⇒∃a /∈ K with (K : a) ∈ E (R)}
= {J : ∃ I ∈ E (R) with J ⊆ I and (J : a) ∈ E (R) for each a ∈ I}.

The last equality is a consequence of c`J being essential in c`c`J (see the remarks
after Theorem 4.1.6).

We can connect those left exact radicals for which every module with trivial
action is torsion with those topologies of a unital overring which arose in (b) of
Theorem 4.2.4.

Theorem 4.2.6. Let S be a unital overring of R generated by R∪{1} and let t be a
left exact radical of MR.

(a) t induces a left exact radical tS of u-MS.
(b) The following statements are equivalent.

(i) t(S/R) = S/R.
(ii) t(M) = M if M ∈ u-MS and MR = 0.

(iii) Ft = L (RR)∩FtS .
(c) If t(S/R) = S/R, then Ft is a topology of R.

Proof. Since u-MS ⊆ MR is invariant under t, tS, the restriction of t to u-MS, is
clearly a left exact radical on u-MS.

(i) ⇒ (iii). The inclusion L (RR)∩FtS ⊆ Ft always holds since R/J ⊆ S/J ∈ Tt
for each J ∈L (RR)∩FtS . But the exactness of

0−→ R/J −→ S/J −→ S/R−→ 0. (4.2.3)

shows that each J ∈ Ft is an element of L (RR)∩FtS .
(iii) ⇒ (ii). Let M be a unital S-module with trivial R-action. If x ∈M, then xS is

a homomorphic image of S/R and R ∈ FtS . So xS ∈Tt and hence t(M) = M.
(ii) ⇒ (i). This is obvious.
Suppose that S/R is torsion. Since we have already seen in Theorem 4.2.5 that Ft

satisfies T1 we only need to verify that it satisfies T2. Suppose J ∈ Ft , I ∈L (RR)
and (I : a)∈ Ft for each a∈ J. From (4.2.3) we see that S/J ∈T . So S/(I : a)S ∈T
for each a ∈ J, J + I/I ∈T , and hence I ∈ Ft is a consequence of (4.2.2). ut
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There are instances where Ft is a topology even though S/R is not torsion; see Ex-
ercise 16. It is possible to weaken the torsion definitions and still retain much of the
preceding theory, with the same proofs. We will present these weaker concepts next
but we note that they will not be utilized very much in the sequel. A class of modules
is called a pretorsion class (pretorsion-free class) if it has the properties of a torsion
class (torsion-free class) enunciated in Theorm 4.2.1 except for being extensionally
closed. A functor t : MR −→ MR is a preradical if it has the defining properties
of a radical except for t(M/t(M)) = 0. A dual ideal of L (RR) is a pretopology if
it satisfies T1. The most prominent example of these concepts where “pre” cannot
be dropped consists of the class of singular modules, the singular functor, and the
dual ideal E (R) of essential right ideals. The left exactness of a preradical t has the
same characterization as a radical, but it is also characterized by : t is idempotent
(t(t(M)) = t(M)) and Tt is hereditary. The isomorphism of Theorem 4.2.2 holds for
left exact preradicals and hereditary pretorsion classes. Also, (d) and (e) of Theorem
4.2.3, all of Theorem 4.2.4, and (c) and (d) of Theorem 4.2.5 all hold. Moreover, (a)
and the implications (iii) ⇒ (ii) ⇒ (i) of Theorem 4.2.6 hold, but (i) ⇒ (iii) need
not hold for the singular preradical.

We will now imitate the construction of the maximal right quotient ring to pro-
duce a ring of quotients of R and a module of quotients of MR. For the sequel we
will fix our notation and summarize the preceding results. Starting with the topology
F of R we have the associated left exact radical t and the hereditary torsion theory
(T ,F ) where t(MR) = {x ∈ M : r(x) ∈ F} and T = {M ∈ MR : t(M) = M}. We
also note:

if D⊆ F ⊆ R with D ∈L (RR) and F ∈ F,
then D ∈ F iff F/D ∈T , (4.2.4)

if α ∈ [M,N] and K ∈L (N), then M/α−1(K)
is torsion (respectively, torsion-free)

provided N/K is torsion (respectively, torsion-free). (4.2.5)

As in the previous section, left multiplication by x (on the appropriate set ) will be
denoted by µx. If α ∈ [D,M] it will be convenient to write D = Dα .

If M is a right R-module, then the family of abelian groups {[D,M] : D ∈ F} is a
directed direct system in u-MZ. The module of quotients of M is defined by

MF = lim−→[D,M/t(M)].

More explicitly,
MF =

⋃

D∈F
[D,M/t(M)]/∼

where, as usual, α ∼ β iff α and β agree on Dα ∩Dβ ; equivalently, α and β agree on
some D∈Fwith D⊆Dα ∩Dβ . If [α] denotes the class of α , then [α]+[β ] = [α +β ]
with Dα+β = Dα ∩Dβ . Note that each map [D,M/t(M)] −→ MF is monic. For if
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α(J) = 0 with J ⊆ Dα and J ∈ F, then (αa)(J : a) = 0 for every a ∈ Dα ; so α = 0.
We have the map ψM : M −→ MF given by ψM(x) = [µx̄] which is the following
composite:

M −→M/t(M)
µ−−→ [R,M/t(M)]

ρR−−→MF. (4.2.6)

Since the last two maps are monomorphisms kerψM = t(M). In fact, MF has a nat-
ural structure as an R-module and ψM is an R-homomorphism: for [α] ∈ MF and
a ∈ R, [α]a = [αµa] where

(Dα : a)
µa−→ Dα

α−→ M/t(M).

Note that if a ∈ Dα , then

[α]a = [µαa] ∈ ψM(M). (4.2.7)

This action is well-defined since if α = β on D, then αµa = β µa on (D : a). There
is a similar action of RF on MF. If [α] ∈MF and [β ] ∈ RF, then β : Dβ −→ R/t(R)
and α : Dα −→ M/t(M). Now [α][β ] is defined by [α][β ] = [ᾱβ ] where Dᾱβ =
β−1(Dα + t(R)/t(R)). Here, ᾱ is the map ᾱ : Dα + t(R)/t(R) ∼= Dα/t(Dα) −→
M/t(M) induced by α , and β is restricted to β−1(Dᾱ) ⊆ Dβ . From (4.2.5) and
(4.2.4) we obtain that β−1(Dᾱ) ∈ F; so [ᾱβ ] ∈MF. If α ∼ α1 and β ∼ β1, then by
restricting to domains on which each equivalent pair agree it is clear that ᾱβ ∼ ᾱ1β1.
So this multiplication is well-defined. Moreover, if e : R −→ R/t(R) is the natural
map, then [e] is the identity element for this multiplication. We summarize this dis-
cussion in the following theorem. Let A be a submodule of BR. If F is a pretopology
of R the F-closure of A in B, denoted by c`F(A), or c`F(A;B) if necessary, is defined
by c`F(A)/A = t(B/A). A is said to be F-dense in B if c`F(A) = B and F-closed in
B if c`F(A) = A.

Theorem 4.2.7. Let F be a topology for the ring R. Then there are a (unital) ring
of quotients RF of R, a left exact functor QF = Q : MR −→ u-MRF and a natural
transformation ψ : 1MR −→ HQ where H : u-MRF −→MR is the forgetful functor
and Q(M) = MF. Moreover, kerψM = t(M) for each M, and the action of R on Q(M)
is induced by the ring homomorphism ψR : R−→ RF.

Proof. We will check that Q is left exact and leave the verification of the re-
maining details to the reader. We need to verify that Q transforms the short exact
sequence (4.2.1) into the exact sequence

0−→ NF
Q( f )−−−→MF

Q(g)−−→ PF.

Suppose α : D −→ N/t(N) is an R-homomorphism and Q( f )([α]) = [ f̄ α] = 0
where f̄ : N/t(N) −→ M/t(M) is induced by f . Then f̄ α(D1) = 0 for some
D1 ∈ F with D1 ⊆ D. Since f̄ is monic, α(D) = 0 and so [α ] = 0. Now sup-
pose β : D −→ M/t(M) is an R-homomorphism and [ḡβ ] = 0; we may assume
ḡβ (D) = 0. But x + t(M) ∈ ker ḡ iff g(x) ∈ t(P), iff g(xD1) = 0 for some D1 ∈ F,
iff x ∈ c`F f (N). So β (D) ⊆ c`F f (N)/t(M). Since f (N) + t(M)/t(M) is F-dense
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in c`F f (N)/t(M), D2 = β−1( f (N) + t(M)/t(M)) ∈ F by (4.2.5) and (4.2.4). Let
α : D2 −→ N/t(N) be defined by α(d) = x̄+ t(N) where x̄ ∈ N/t(N) is determined
by β (d) = f (x)+ t(M). Then Q( f )[α] = [ f̄ α] = [β ] and hence kerQ(g) is equal to
the image of Q( f ). ¤

The ring RF is, in fact, a Utumi right quotient ring of R/t(R) (Exercise 11); so it
is not surprising that MF can be characterized as an essential extension of M/t(M)
that is relatively injective. The module MR is called F-injective if for each D∈ F and
each α ∈ [D,M] there is some x ∈ M such that α = µx; that is, α(a) = xa for each
a ∈ D.

Theorem 4.2.8. Let M and E be R-modules. Then E is R-isomorphic to MF iff E is
an F-injective essential extension of ψ(M)R with E/ψ(M) ∈ T . In this case there
is a unique way to make E into an RF-module so that the R-action is induced via the
homomorphism ψR : R −→ RF. Moreover, each R-isomorphism between E and MF
is an RF-isomorphism.

Proof. We will first check that MF satisfies these conditions. If 0 6= q = [α] ∈ MF
and d ∈ Dα with αd 6= 0, then qd = [α]d = [µαd ] 6= 0 and qd ∈ ψ(M); so MF is
an essential extension of ψ(M)R. Also, MF/ψ(M) ∈ T since qD ⊆ ψ(M). To see
that MF is F-injective, let α ∈ [D,MF] where D ∈ F. Then D1 = α−1(ψ(M)) ∈ F by
(4.2.4) and (4.2.5). Let q = [ϕ−1α1] ∈MF where α1 is the restriction of α to D1 and
ϕ : M/t(M)−→ ψ(M) is the isomorphism determined by the composite of the last
two maps in (4.2.6). Now, by (4.2.7),

qd = [ϕ−1α1]d = [µ(ϕ−1α1)d ] = [µϕ−1(α(d))] ∈ ψ(M)

for each d ∈ D1. Thus, ϕ−1(qd) = ϕ−1(α(d)) and hence qd = α(d). Since MF is
torsion-free and (α(d)− qd)(D1 : d) = 0 for each d ∈ D, α(d) = qd and MF is
F-injective.

Now let E be an F-injective essential extension of ψ(M) with E/ψ(M) a torsion
module. Define σ : MF−→E by σ([α]) = u where u is the unique element of E with
(ϕα)(d) = ud for each d ∈Dα . If u∈ E, then µu : (ψ(M) : u)−→ψ(M) determines
the element [ϕ−1µu] in MF and σ [ϕ−1µu] = u. It is now easy to check that σ is an
R-isomorphism. The rest follows from Exercises 8 and 9. ut

A module EF(M) is an F-injective hull of M if EF(M) is an F-injective essential
extension of M and EF(M)/M is a torsion module. The preceding result shows that
MF is the unique F-injective hull of M/t(M); in fact, each module has an F-injective
hull (Exercise 7). Note that for the Goldie topology G, EG(M) = E(M) and MG =
E(M/Z2(M)).

We wish to now construct a ring of quotients by inverting certain elements. This
brings the subject closer to the classical case of inverting elements of a commutative
ring (see Exercise 17) or, more generally, of forming the division ring of quotients
of a right Öre domain (Exercise 4.1.26).

A basis for the topology F is a subset B of F with the property that each right
ideal in F contains some right ideal from B. F is called a 1-topology if F∩{sR :
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s ∈ R} is a basis for F. Let Σ(F) = {s ∈ R : sR ∈ F}. The nonempty multiplicatively
closed subset Σ of R is called a right Öre set if R has the common right multiple
property with respect to Σ :

∀(a,s) ∈ R×Σ , ∃(b,u) ∈ R×Σ with au = sb.

Σ is said to be saturated if sR∩Σ 6= φ implies s ∈ Σ .

Theorem 4.2.9. If F is a 1-topology, then Σ(F) is a saturated right Öre set. If Σ is a
right Öre set, then F(Σ) = {J ∈L (RR) : J∩Σ 6= φ} is a 1-topology. The mapping
F 7→ Σ(F) is a bijection between the set of 1-topologies of R and the set of saturated
right Öre sets in R.

Proof. Assume F is a 1-topology. Suppose s,u ∈ Σ(F). Then su ∈ Σ(F) since (uR :
a) ⊆ (suR : sa) for each sa ∈ sR. If (a,s) ∈ R× Σ , then uR ⊆ (sR : a) for some
u ∈ Σ(F); so Σ(F) is a right Öre set. It is saturated since if sa = u ∈ Σ(F), then
uR⊆ sR and hence s ∈ Σ(F). Conversely, suppose Σ is a right Öre set. If J ∈ F(Σ),
a ∈ R and s ∈ J∩Σ , then sb = au for some (b,u) ∈ R×Σ ; so u ∈ (J : a)∩Σ and(J :
a) ∈ F(Σ). Also, if I ∈ L (RR), J ∈ F(Σ) and (I : a) ∈ F(Σ) for each a ∈ J, then
there are elements s,u ∈ Σ with s ∈ J and u ∈ (I : s); so I ∩Σ 6= φ and I ∈ F(Σ).
Suppose Σ is saturated. Then s ∈ Σ(F(Σ)) iff sR ∈ F(Σ), iff sR∩Σ 6= φ , iff s ∈ Σ ;
so Σ = Σ(F(Σ)). On the other hand, if F is a 1-topology, then J ∈ F(Σ(F)) iff
J∩Σ(F) 6= φ , iff sR ∈ F for some s ∈ J, iff J ∈ F; so F= F(Σ(F)). ut

A classical right quotient ring of R with respect to the multiplicatively closed
subset Σ is a pair (T,ψ) where T is a unital ring, ψ : R −→ T is a ring homomor-
phism, and

ψ(Σ) is contained in the units of T ; (4.2.8)

T = {ψ(a)ψ(s)−1 : (a,s) ∈ R×Σ}; (4.2.9)
kerψ = {a ∈ R : r(a)∩Σ 6= φ}. (4.2.10)

One condition that Σ must satisfy when T exists is:

if `(a)∩Σ 6= φ , then r(a)∩Σ 6= φ . (4.2.11)

A multiplicatively closed set with this property is called right reversible. If Σ con-
sists of right regular elements, that is r(s) = 0 for each s ∈ Σ , then Σ is right re-
versible. A weaker condition for Σ to be right reversible is given in Exercise 18.

Theorem 4.2.10. (a) A classical right quotient ring of R with respect to Σ exists iff
Σ is a right reversible right Öre set.
(b) If (T,ψ) is a classical right quotient ring of R with respect to Σ and ϕ :

R −→ S is a ring homomorphism such that each element of ϕ(Σ) is a unit
of S, then there is a unique ring homomorphism σ : T −→ S such that the
diagram
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is commutative.
(c) The classical right quotient ring of R with respect to Σ is unique up to iso-

morphism.
(d) If the classical right and left quotient rings of R with respect to Σ both exist,

then they are isomorphic.

Proof. (a) Suppose (T,ψ) is a classical right quotient ring of R with respect to Σ .
If (a,s) ∈ R×Σ , then for some (b, t) ∈ R×Σ we have ψ(s)−1ψ(a) = ψ(b)ψ(t)−1

and ψ(at) = ψ(sb); so atu = sbu for some u ∈ Σ and Σ is right Öre. It is also right
reversible since if sa = 0 with s ∈ Σ , then ψ(a) = 0 and hence at = 0 for some
t ∈ Σ . Conversely, suppose Σ is a right reversible right Öre set. Then F = F(Σ)
is a 1-topology and we will show (RF,ψ) has the desired properties. If s ∈ Σ let
αs : sR−→R/t(R) = R be defined by αs(sa) = ā; αs is an R-homomorphism since Σ
is right reversible. Now, [µs][αs] = [µ̄sαs] where µ̄s = µs̄ and µ̄sαs(sa) = sa = e(sa):

sR αs−→ R/t(R)
µ̄s−→ R/t(R);

so [µs][αs] = [e] = 1. Also, [αs][µs] = [ᾱsµs] where

µ−1
s (sR/t(sR))

µs−→ sR/t(sR) ᾱs−→ R/t(R),

and ᾱsµs(a) = ᾱs(sa) = ā = e(a); so [αs][µs] = 1 and ψ(s) is invertible. Moreover, if
[β ]∈RF and s∈Dβ ∩Σ , then [β ][µs] = [µβ (s)] by (4.2.7), and [β ] = ψ(β (s))ψ(s)−1.
Since (4.2.10) is obvious RF is a classical right quotient ring of R.

(b) Clearly, σ must be given by σ(ψ(a)ψ(s)−1) = ϕ(a)ϕ(s)−1. Suppose x =
ψ(a)ψ(s)−1 and y = ψ(b)ψ(u)−1 ∈ RF. Take (c,v) ∈ R× Σ with sc = uv. If
ψ(a)ψ(s)−1 = ψ(b)ψ(u)−1, then ψ(b) = ψ(a)ψ(s)−1ψ(u) = ψ(ac)ψ(v)−1 and
acw = bvw for some w ∈ Σ . So ϕ(a)ϕ(c) = ϕ(b)ϕ(v) and

ϕ(a)ϕ(s)−1 = ϕ(b)ϕ(v)ϕ(c)−1ϕ(s)−1 = ϕ(b)ϕ(v)ϕ(v)−1ϕ(u)−1 = ϕ(b)ϕ(u)−1.

Thus, σ is well-defined. Also, ψ(a)ψ(s)−1 = ψ(ac)ψ(uv)−1 and ψ(b)ψ(u)−1 =
ψ(bv)ψ(uv)−1. So

σ(x+ y) = (ϕ(ac)+ϕ(bv))ϕ(uv)−1 = ϕ(a)ϕ(s)−1 +ϕ(b)ϕ(u)−1 = σ(x)+σ(y).

To see that σ preserves products take (d,w) ∈ R×Σ with bw = sd. Then

σ(xy) = σ(ψ(ad)ϕ(uw)−1) = ϕ(ad)ϕ(uw)−1 = ϕ(a)ϕ(d)ϕ(w)−1ϕ(u)−1
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= ϕ(a)ϕ(s)−1ϕ(b)ϕ(u)−1 = σ(x)σ(y).

Both (c) and (d) are immediate consequences of (b). ut
The classical right (respectively, left) quotient ring of R with respect to Σ will be

denoted by RΣ (respectively, Σ R). Note that Σ , the image of Σ in R = R/t(R), is a
right Öre set of regular elements in R and RΣ = RΣ . The element ās̄−1 of RΣ will be
denoted by as−1 where a ∈ R and s ∈ Σ . The elements of the module of quotients
MΣ of M have a similar description.

Theorem 4.2.11. If M is an R-module and Σ is a right reversible right Öre set of R,
then MΣ ∼= M⊗R RΣ as right RΣ -modules.

Proof. Define τ : MΣ −→M⊗R RΣ by τ([α]) = x⊗s−1 where s∈Dα ∩Σ and x∈M
with α(s) = x̄ ∈M = M/t(M). Suppose u ∈Dα ∩Σ and y ∈M with α(u) = ȳ. Take
(a,v) ∈ R×Σ with uv = sa. Then xa = yv; so xa = yv + z with z ∈ t(M). If zw = 0
with w ∈ Σ , then z⊗1 = zw⊗w−1 = 0. So

x⊗ s−1 = xa⊗ (sa)−1 = (yv+ z)⊗ (uv)−1 = y⊗u−1

and τ is well-defined. Let σ : M⊗R RΣ −→ MΣ be the multiplication map σ(x⊗
s−1) = [µx̄αs] where, as in Theorem 4.2.10, αs : sR−→ R, αs(sa) = ā and µx̄ : R−→
M, µx̄(b̄) = x̄b̄. Now, στ([α]) = [µx̄αs] = [α] since α(sa) = x̄a = x̄ā = µx̄αs(sa).
Also, τσ(x⊗ s−1) = τ([µx̄αs]) = xs⊗ s−2 = x⊗ s−1 since s2 ∈ Dµx̄αs ∩ Σ and
µx̄αs(s2) = x̄s̄. Thus, σ and τ are inverse group isomorphisms. We will now show
that σ is an R-homomorphism. If a ∈ R, then x⊗ s−1 · a = x⊗ s−1a = x⊗ bu−1 =
xb⊗ u−1 where sb = au in R; so σ(x⊗ s−1 · a) = [µxbαu]. Also, σ(x⊗ s−1)a =
[µx̄αs]a = [µx̄αsµa] where µa : (sR : a) −→ sR. If d ∈ (sR : a)∩ uR, then ad = sr
and d = ur1. Thus, µxbαu(d) = x̄br1 and µx̄αsµa(d) = x̄r̄. But s̄r̄ = āūr̄1 = sbr̄1 and
hence r̄ = br1. By Exercise 8 σ is an RΣ -homomorphism. ut

The maps τ in Theorm 4.2.11 give a natural equivalence between the quotient
functor QΣ and the tensor functor ·⊗R RΣ . For, if f ∈ [M,N] and f̄ ∈ [M,N] is the
induced map, then the diagram

is commutative since ( f ⊗1)τM([α ]) = f̄ (x̄)⊗ s−1 = τN([ f̄ ,α]) = τN µ f̄ ([α]) where
α(s) = x̄. One consequence of this is that both of these functors are exact.
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When Σ is a right reversible right Öre set in R the classical ring of quotients, and
the module of quotients of MR, can be constructed directly from ordered pairs with-
out the use of topologies or the general theory of quotients. This is suggested by the
arguments in the two previous proofs. The disadvantage of this approach is due to
the calculations required to show that a ring and a module have been constructed. We
will merely give the definitions and leave the verifications to the interested reader.
Let ∼ be the relation on R×Σ defined by

(a,s)∼ (b,u) if there exist c,d ∈ R

with ac = bd and sc = ud ∈ Σ . (4.2.12)

Then ∼ is an equivalence relation. The operations on R×Σ/∼ are given by

[(a,s)] + [(b,u)] = [(ac+bd,v)] where sc = ud = v ∈ Σ (4.2.13)

and
[(a,s)][(b,u)] = [(ac,uv)] where v ∈ Σ and sc = bv. (4.2.14)

Similar definitions on M× Σ yield a module. On the other hand, having already
constructed RΣ and MΣ it is less tedious to show that these definitions lead to a
ring isomorphic to RΣ and a module isomorphic to MΣ . In fact, this works for any
1-topology; that is, for any right Öre set; see Exercise 19.

If the set of regular elements of R is a right Öre set, then R is called a right Öre
ring. The corresponding quotient ring is denoted by Qc(R) and is called the classical
right quotient ring of R. We wish to determine when Qc(R) is semiprime and right
artinian. But first we will prove the density theorem, which represents a primitive
ring as a large ring of linear transformations, and the Wedderburn-Artin theorem.

Let M be a left vector space over the division ring D. A subring R of EndD(M) is
called n-transitive, where n ∈ N, if for each n-dimensional D-subspace N of M and
each a ∈ EndD(M) there is some b ∈ R with N(a−b) = 0. This is clearly equivalent
to the condition: if X = {x1, . . . ,xn} is a D-independent subset of M and y1, . . . ,yn are
any elements of M, then there is some b ∈ R with xib = yi for 1≤ i≤ n. Assuming
R is 1-transitive, another equivalent condition is : for each n-element independent
subset X , r(X\{xi};R) 6⊆ r(xi;R) for 1 ≤ i ≤ n. For, if this condition is satisfied,
then for each i, xir(X\{xi}) = M by 1-transitivity; so there is an element bi ∈ R with
xibi = yi and (X\{xi})bi = 0. But then xi(b1 + · · ·+bn) = yi for each 1≤ i≤ n. If R
is n-transitive for each n ∈ N, then R is called a dense subring of EndD(M). For the
topological explanation of this terminology see Exercise 20.

Recall that a ring is (right) primitive if it has a modular maximal right ideal which
contains no nonzero ideal; equivalently, if it has a simple faithful right module.(For
the `-ring analogues see the “Johnson radical” in Section 3.2 and Exercise 3.3.8.).

Theorem 4.2.12. The ring R is primitive if and only if it is isomorphic to a dense
ring of linear transformations on a left vector space.

Proof. If R is dense in EndD(DM), then clearly MR is simple and faithful. Con-
versely, suppose MR is a faithful simple R-module. Then D = EndR(M) is a divsion
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ring since kerα = 0 and αM = M for each 0 6= α ∈ D. Moreover, R embeds in
EndD(M) and we will identify R with its image in EndD(M). Since xR = M for
each 0 6= x ∈ M, R is 1-transitive. Assume, inductively, that R is n-transitive and
suppose by way of contradiction that it is not (n + 1)-transitive. Then there is a
D-independent subset X = {x1, . . . ,xn+1} of M with r({x1, . . . ,xn}) ⊆ r(xn+1). Let
I = r({x1, . . . ,xn−1}). Then xnI = M and α : M −→M defined by α(xna) = xn+1a,
a ∈ I, is an element of D. But {x1, . . . ,xn−1,αxn− xn+1} is a D-independent subset
of M and I ⊆ r(αxn− xn+1). This contradiction shows R is (n+1)-transitive. ut

For generalizations of this result see Exercises 22 and 23.

Theorem 4.2.13. The ring R is semiprime and right artinian iff R is isomorphic to
the direct product of a finite number of matrix rings over division rings. If R ∼=
(D1)n1

×·· ·× (Dk)nk
, then the integers k,n1, . . . ,nk are uniquely determined by R,

and the division rings D1, . . . ,Dk are determined up to isomorphisms.

Proof. If D is a division ring the ith row eiiDn of Dn is a minimal right ideal of Dn
since deik = ei jd jd−1

j de jk if 0 6= ei jd j ∈ ei jDn and d ∈ D. So Dn is a (simple) right
artinian ring and (D1)n1 ×·· ·× (Dk)nk is semiprime and right artinian. Conversely,
suppose R is semiprime and right artinian. If P is a proper prime ideal of R, then R/P
is right primitive since a minimal right ideal of R/P is a faithful irreducible R/P-
module. So R/P is isomorphic to a dense subring of End(DM). If {xn : n ∈N} were
an infinite D-independent subset of M, then r(x1;R/P) ⊃ r({x1,x2};R/P) ⊃ ·· ·
would be a strictly decreasing chain of right ideals of R/P. Thus, DM is finite
dimensional and R/P ∼= Dm for some m. By Theorem 4.1.14. R ∼= ϕ(R) where
ϕ(R)⊆ (D1)n1 ×·· ·× (Dk)nk and ϕ(R)∩ (D j)n j is a nonzero ideal of (D j)n j . Thus,
R ∼= (D1)n1 ×·· ·× (Dk)nk = S. To see the uniqueness suppose G1, . . . ,Gt are divi-
sion rings and R∼= (G1)m1 ×·· ·× (Gt)mt . Since each ideal of S is a product of some
of the (D j)n j , k = t and (after relabling) (D j)n j

∼= (G j)m j . But then n j = m j since
the right (D j)n j -module (D j)n j has composition series of lengths n j and m j (or its
Goldie dimension is both n j and m j - see Exercise 4.1.38). Let D = D j, G = G j,
n = n j and let e = e11 and f = f11 be the left corner matrix units of Dn and Gn, re-
spectively. If M is a simple faithful right Gn-module and 0 6= x ∈M with x f Gn 6= 0,
then M = x f Gn ∼= f Gn. Let h ∈ Gn correspond to e via the isomorphism Dn ∼= Gn.
Then

D∼= eDne∼= EndDn(eDn)∼= EndGn(hGn)∼= EndGn( f Gn)∼= G.

ut
A semiprime right artinian ring will be called a semisimple ring. For some ho-

mological characterizations of a semisimple ring see Exercise 24. It is easier to
determine when Q(R) is semisimple than it is to determine when Qc(R) exists and
is semisimple. For the module MR let C (M) = {N ∈L (M) : M/N is nonsingular}.
C (M) is a complete lattice and each submodule in C (M) is a complement in M.
When M is nonsingular C (M) contains every complement in M. In the notation of
Exercise 10 C (M) = CG(M) where G is the Goldie topology of R. We will denote
C (RR) by Cr(R).
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Theorem 4.2.14. The following are equivalent for the right nonsingular ring R.

(a) Q(R) is a semisimple ring.
(b) RR is finite dimensional.
(c) Cr(R) has the ascending chain condition.
(d) Cr(R) has the descending chain condition.

Proof. From Exercise 10 (or the discussion after Theorem 4.1.1) the lattice Cr(R)
is isomorphic to the lattice Cr(Q(R)) = C (E(RR)). Thus, each of these statements
is a consequence of (a). Note that Cr(Q) consists of the principal right ideals of Q.

(b) ⇒ (a). By Exercise 4.1.44 QQ is a direct sum of a finite number of inde-
compsable right ideals. If 0 6= aQ ⊆ eQ where e = e2 and eQ is indecomposable,
then aQ is a summand of QQ since Q is regular. Hence, aQ is a summand of eQ,
aQ = eQ, and eQ is a minimal right ideal of Q. So Q is semisimple.

(c)⇒ (a). Let I be a right ideal of Q and let eQ be a maximal principal right ideal
of I. If a ∈ I, then aQ + eQ is also principal by Theorem 4.1.7. So I = eQ and Q is
semisimple by Exercise 24.

(d) ⇒ (a). If e = e2 ∈Q, then r(Qe) = (1−e)Q and `(eQ) = Q(1−e). Thus, the
lattice anti-isomorphism between the lattice of right and left annihilators induces an
anti-isomorphism between the posets of principal right and left ideals (in any regular
ring). So Q has the ascending chain condition on principal left ideals and, as in the
previous paragraph, Q is semisimple. ut

The problem with strengthening Theorem 4.2.14 to obtain that Qc(R) is semisim-
ple is that not only must regular elements be produced but it must be shown that R
is a right Öre ring. In one case no other conditions on R are required.

Theorem 4.2.15. The following statements are equivalent for the reduced ring R.

(a) Q(R) is a semisimple ring.
(b) Q(R) is a direct product of a finite number of division rings.
(c) Q(R) is reduced and Ann(R) has the ascending chain condition.
(d) R is a right Öre ring and Ann(R) has the ascending chain condition.

Proof. In all cases Ann(R) is finite, and by Theorem 4.1.14 there are ideals R1, . . . ,Rn
of R with R1 ¢ · · ·¢ Rn ⊆ R ⊆ Q1 ¢ · · ·¢ Qn = Q where each R j is a domain,
A = R1 + · · ·+Rn is essential in R, Q j = Q(R j), and Q = Q(R). If Q is semisimple,
then R, and hence each R j, is right finite dimensional by the preceding result. By
Exercise 4.1.26 each R j is a right Öre domain and Q j = Qc(R j) is a division ring. By
Exercise 26 Q = Qc(R). Thus, (a) is equivalent to (b) and it implies (c) and (d). If Q
is reduced, then Cr(R) = Ann(R) by Theorem 4.1.10; so (c) implies (a) by Theorem
4.2.14. If R is a right Öre ring, then so is its ideal A. For, each regular element of A
is a regular element of R. So if a,s ∈ A with s a regular element of A, and at = sb
with b, t ∈ R and t is regular in R, then ats = sbs with ts, bs ∈ A, and ts is regular.
By Exercise 26 each Rj is a right Öre domain and hence Q j = Qc(R j) is a division
ring. We have shown that (d) implies (a). ut
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The ring R in Theorem 4.2.15 has the property that a right ideal is essential if
and only if it contains a regular element of R. In general, this is a characterizing
property of those rings which have a semisimple classical right quotient ring. R is
called a right Goldie ring if its lattice of right annihilators has a.c.c. and RR is finite
dimensional. If RR is finite dimensional and for each M-sequence (an)n∈N in R the
chain of right annihilators r(a1)⊆ r(a2)⊆ ·· · is finite, then R is called a weak right
Goldie ring.

Theorem 4.2.16. The following statements are equivalent for the ring R.

(a) R is a right Öre ring and Qc(R) is semisimple (simple and right artinian).
(b) R is a semiprime (prime) right Goldie ring.
(c) R is a semiprime (prime) weak right Goldie ring.
(d) A right ideal of R is essential iff it contains a regular element (and each

nonzero ideal is an essential right ideal).
(e) R is a semiprime (prime) right nonsingular ring and Cr(R) has a.c.c..

Proof. (a) ⇒ (b). RR is finite dimensional by Theorem 4.2.14, and since a.c.c. on
right annihilators is inherited by subrings, R is a right Goldie ring. Suppose A is a
nonzero ideal of R. Then QcAQc = Qce for some nonzero central idempotent e in
Qc. Now, e = ∑i piaibis−1 with pi ∈ Qc, ai ∈ A and bi,s ∈ R. So es ∈ QcA, sA =
esA⊆QcA2, and A2 6= 0. If Qc is simple, then e = 1 and sr(A) = 0. So r(A) = 0 and
R is a prime ring.

(b) ⇒ (c). This is trivial.
(c) ⇒ (d). We will first show that each nonzero right or left ideal contains an

element whose square is not zero. For, suppose A is a right ideal and a2 = 0 for each
a ∈ A. Then for any a,b,c ∈ A, 0 = (a+b)2 = ab+ba yields abac =−a2bc = 0. So
(aA)2 = 0, aA = 0, A2 = 0, and hence A = 0. We claim next that R has no nonzero
nil one-sided ideals. For, if 0 6= a1 ∈ R take 0 6= a2 ∈ a1Ra1 with r(a1) ⊂ r(a2), if
this is possible; and then take 0 6= a3 ∈ a2Ra2 with r(a2)⊂ r(a3). This process must
terminate and it produces nonzero elements a1,a2, . . . ,an with ak ∈ ak−1Rak−1 and
r(an) = r(anxan) whenever 0 6= anxan ∈ anRan. Take a = uan ∈ Ran with a2 6= 0.
Then r(an) ⊆ r(a) ⊆ r(ya) for each y ∈ R. But if ya 6= 0, then for some z ∈ R, 0 6=
yazya = yuanzya and r(ya)⊆ r(anzya) = r(anzyuan) = r(an). Thus, r(a) = r(ya) if
ya 6= 0. Now, if am = 0 and am−1 6= 0, then m≥ 3 and a∈ r(am−1) = r(am−2a) = r(a)
which contradicts a2 6= 0. This shows that a is an element of Ra1 that is not nilpotent.
It also shows that Zr(R) = 0. For if a1 ∈ Zr(R), then a ∈ Zr(R) and r(a)∩ aR = 0.
Since a1R is nil iff Ra1 is nil, a1R is not a nil right ideal. For any b ∈ R there is
an n ∈ N with r(bn) = r(bn+1) = r(bn+2) = · · · since (b3k

) is an M-sequence. We
claim that bnR + r(bn) is an essential right ideal of R. For, suppose J is a right
ideal with J ∩ (bnR + r(bn)) = 0. By Exercise 27 the sum J + bnJ + b2nJ + · · · is
direct. Thus, J ⊆ r(bkn) = r(bn) for some k and J = 0. In particular, if r(b) = 0,
then bR is essential. We show next that each right ideal J contains some element
a with r(a)∩ J = 0. Assume J 6= 0 and take a non-nilpotent element b ∈ J. Since
r(bn) = r(bn+1) = · · · for some n, r(bn) = r(b2n); let a1 = bn. If r(a1)∩ J 6= 0 take
0 6= a2 ∈ r(a1)∩ J with r(a2) = r(a2

2). This process produces elements a1, . . . ,ak



4.2 Torsion Theories and Rings of Quotients 323

with 0 6= a j ∈ r(a1)∩ ·· · ∩ r(a j−1)∩ J. The sum a1R + · · ·+ akR is direct. For if
a jb j + · · ·+akbk = 0 with j ≤ k, then a2

jb j = 0 and hence a jb j = 0. Thus, for some
m, we have r(a1)∩ ·· ·∩ r(am)∩ J = 0 and a = a1 + · · ·+am ∈ J with r(a)∩ J = 0.
If J is essential, then r(a) = 0. We have now verified that a right ideal is essential iff
it contains a right regular element. But if r(b) = 0, then `(b)bR = 0 shows `(b) ⊆
Zr(R) = 0.

(d) ⇒ (a). R is certainly a right nonsingular ring and hence D(R) = E (RR) by
Theorem 4.1.8. By Theorem 4.2.9, R is a right Öre ring. Since the only essential
right ideal of Qc is Qc itself and since each right ideal is a summand of an essential
right ideal, Qc must be semisimple. If each nonzero ideal of R is essential, then each
nonzero ideal of Qc contains an invertible element; so Qc is simple.

(a) ⇒ (e). In the first paragraph above we have seen that R is semiprime (prime).
Its right singular ideal vanishes since it has a regular right quotient ring, and, by
Theorem 4.2.14, Cr(R) has a.c.c.

(e) ⇒ (b). This is an immediate consequence of Theorem 4.2.14. ut
If F is a right Öre domain with division ring of right quotients D and R is a

subring of Dn which contains Fn, then R is a prime right Goldie ring and Qc(R) = Dn
is obtained from R by inverting “scalars.” In fact, this is the norm.

Theorem 4.2.17. The ring R is a semiprime right Goldie ring if and only if it is a
right quotient ring of a direct product of a finite number of rings each of which is
isomorphic to a matrix ring over a right Öre domain.

Proof. One implication is clear. For the other we assume R is a prime right Goldie
ring. The case where R is semiprime then follows since, by Theorem 4.1.14 and
Exercise 4.1.33, R contains an essential ideal which is a direct product of a finite
number of ideals of R each of which is a prime right Goldie ring. Let {gi j} be
the usual matrix units of Q = Qc(R) = Gn, where G is a division ring. There is
a regular element s of R with {gi j}s ⊆ R. Let ei j = s−1gi js. Then X = {ei j} is
a set of matrix units of Q with sX ⊆ R. Let D = s−1Gs be the centralizer of X
in Q. Then D is a division ring and Q = ∑i j Dei j. Let A = {r ∈ R : rX ⊆ R} and
B = (R : X) = {r ∈ R : Xr ⊆ R}. Then B contains a regular element u since it is
an essential right ideal of R, and uRs ⊆ BA ⊆ R. If q ∈ Q there are elements c,w
in R with u−1qu = cw−1. So q = (ucs)(uws)−1 with ucs, uws ∈ BA, and Q is the
classical right quotient ring of BA since each regular element of BA is right regular
in Q and hence a unit of Q. We show next that BA = ∑Fei j where F = BA∩D.
Note that XB ⊆ B since X(XB) ⊆ X2B ⊆ XB∪ {0} ⊆ R, and similarly AX ⊆ A;
so XBAX ⊆ BA. If z ∈ BA, then z = ∑zi jei j with zi j = ∑k ekize jk ∈ BA∩D. Since
Fei j ⊆ BAei j ⊆ BA we do have BA = ∑Fei j. Now FF is finite dimensional since a
direct sum of right ideals in F produces a direct sum of right ideals in Fn. Thus, F
is a right Öre domain by Exercise 4.1.26. Since ∑Dei j = Qc(∑Fei j) = ∑Qc(F)ei j
we have D = Qc(F). ut

If R is a prime right Goldie ring and F is a right Öre domain with Fn ⊆ R, then F
cannot be unital unless R is unital. Even when R is unital F need not be unital. One
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such example is the ring R = (2Z)2 +Z ·1 which has no nontrivial idempotents. For
a condition which insures R = Fn see Exercise 28.

We now turn our attention to some basic properties of simple algebras over a
field. These results will be used in Section 6.4 to determine the algebraic division
algebras over the reals and other similar maximal totally ordered fields. Recall that
the centroid of the ring R is the subring K = EndR(RR)∩EndR(RR) of EndZ(R).
For x ∈ R let µx and ρx denote the left, respectively, right multiplication map on R
determined by x, and let T by the subring of EndZ(R) generated by {µx,ρx : x ∈
R} : T = {µx + ρy + Σiµxi ρyi}. Then K is the centralizer of T in H = EndZ(R).
Let T be the subring of T defined by T = {Σiµxi ρyi}. If R is a simple ring, then
K is the largest field over which R is an algebra and K is also the centralizer of
T in H by Exercise 3.2.9. Moreover, RT and RT are both simple modules and as a
consequence of Theorem 4.2.12 we know that T and T are both dense K-subalgebras
of EndK(KR). An algebra R over the field K will be called central simple if R is a
simple ring and K is its centroid.

Theorem 4.2.18. Suppose R and S are algebras over the field K. If R is central
simple and S is simple, then R⊗K S is simple. If R and S are both unital and central
simple, then R⊗K S is central simple. Moreover, if R⊗K S is simple or central simple,
then so are R and S.

Proof. Assume R is central simple and S is simple and let X be a K-basis of R and
I a nonzero ideal of R⊗K S. Take 0 6= Σ n

i=1ai⊗bi ∈ I with ai ∈ X , each ai⊗bi 6= 0
and let a ∈ R. Since RT is a faithful simple T -module (notation as above) with
K = EndT (RT ) we get from the density theorem, Theorem 4.2.12, that there exist
c1, . . . ,cm,d1, . . . ,dm in R with Σ jc ja1d j = a and Σ jc jaid j = 0 for i ≥ 2. Then for
any e, f ∈ S

a⊗ eb1 f = Σ jc ja1d j⊗ eb1 f = Σi(Σ jc jaid j)⊗ ebi f

= Σ jΣic jaid j⊗ ebi f

= Σ j(c j⊗ e)(Σiai⊗bi)(d j⊗ f ) ∈ I.

If b ∈ S, then b = Σkekb1 fk with ek and fk ∈ S since S = Sb1S; so a⊗ b = Σka⊗
ekb1 fk ∈ I and hence I = R⊗K S. Suppose now that R and S are both unital and
central simple, and let u = Σiai⊗ bi be in the center of R⊗K S with ai ∈ X . Then
for any b ∈ S, (1⊗b)Σiai⊗bi = (Σiai⊗bi)1⊗b and hence Σiai⊗ (bbi−bib) = 0.
So bbi = bib, each bi ∈ K and u = (Σiaibi)⊗ 1 = c⊗ 1. From (a⊗ 1)(c⊗ 1) =
(c⊗1)(a⊗1) for each a∈R we get ac = ca and so c∈K and also u∈K. Conversely
suppose R⊗K S is simple. Then R must be simple since if I is a nonzero proper ideal
of R, then I⊗K S is a nonzero proper ideal of R⊗K S. Also, if R⊗K S is central
simple over K and L is the centroid of R, then L⊆ K since R⊗K S is an algebra over
L. Thus, L = K. ut

We wish to investigate the primitivity of some tensor products but first we note
the following consequence of Theorem 4.2.18. Suppose A and B are simple K-
subalgebras of a K-algebra with A central simple and suppose A centralizes B. Then
either AB = 0 or the multiplication map A⊗K B−→ AB is an isomorphism.



4.2 Torsion Theories and Rings of Quotients 325

Theorem 4.2.19. Let R be a central simple K-algebra and let R◦ be the opposite
algebra of R.

(a) R⊗K R◦ is isomorphic to a dense K-subalgebra of EndK(KR).
(b) If R is a division ring and E is a maximal subfield of R, then R⊗K E is

isomorphic to a dense E-subalgebra of EndE(ER).

Proof. Let A = {ρx : x ∈ R} and B = {µx : x ∈ R} be the images of R in EndK(KR)
under the right and left regular representations, respectively. Since R is a right
EndK(KR)-module A is isomorphic to R and B is isomorphic to R◦, and hence
R⊗K R◦ is isomorphic to AB. We have previously noted that AB = T is dense in
EndK(KR).

Now let E be a maximal subfield of the division ring R and let C = {µx : x ∈
E}. Then C is isomorphic to E◦ = E, R⊗K E is isomorphic to AC, and RAC is a
simple module. But C is the centralizer of AC in EndK(KR). For, suppose S is this
centralizer and f ∈ S. Then f = µa where a = 1 f ∈ R since f ∈ EndR(RR); so
S⊆ B∼= R◦. Since C centralizes A∪C we have C ⊆ S⊆ B. If a ∈ R and µa ∈ S, then
a commutes with the elements of E since µa commutes with the elements of C. So
a ∈ E since E(a) is a subfield of R. Thus C = S and AC is dense in EndE(ER) by
Theorem 4.2.12. ut

A finite dimensional central simple algebra is isomorphic to a matrix algebra Dm
where D is a division ring which is finite dimensional over its center. This dimension
is in fact a square.

Theorem 4.2.20. Let K be the center of the division ring D and let E be a maximal
subfield of D. If [D : K] < ∞, then [D : K] = n2 for some n and [D : E] = [E : K] = n.
Moreover, [D : K] < ∞ if and only if [E : K] < ∞.

Proof. Suppose [D : K] < ∞ and let L be the algebraic closure of K. Then D⊗K L
is a simple L-algebra by Theorem 4.2.18 and [D⊗K L : L] = [D : K]. Since L is the
only algebraic division algebra over L necessarily D⊗K L∼= Ln for some n and hence
[D : K] = n2. Let m = [ED : E]. Then D⊗K E is isomorphic to EndE(ED)∼= Em by
Theorem 4.2.19. So n2 = [D : K] = [D⊗K E : E] = m2 and n = m. Since [D : K] =
[D : E][E : K] we also have [E : K] = n. Now assume that [E : K] < ∞. Then D⊗K E
is a finite dimensional left vector space over D and hence D⊗K E is left artinian.
By Theorems 4.2.18 and 4.2.19 D⊗K E is a simple E-algebra which is isomorphic
to a dense subalgebra of EndE(ED). By Theorem 4.2.13 and its proof ED is finite
dimensional and hence [D : K] < ∞. ut

According to Exercise 37 the only K-automorphisms, K a field, of the matrix
algebra Kn are the inner automorphisms. Our final result on central simple algebras
(until Theorem 6.4.10) is a generalization of this fact.

Theorem 4.2.21. Let D be a division ring with center K and let V be a left vector
space over D. Suppose A and B are finite dimensional simple K-subalgebras of R =
EndD(DV ) each of which contains the identity element of R. Then any K-algebra
isomorphism of A onto B is the restriction of an inner automorphism of R.
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Proof. V is a right EndK(KV )-module and D◦ is isomorphic to the subalgebra C of
EndK(KV ) consisting of the maps v 7→ dv, v ∈ V and d ∈ D. By Theorem 4.2.19
AC ∼= A⊗K C is simple. Since A is finite dimensional over K the ring A⊗K C is a
finite dimensional right vector space over C and hence AC is right artinian. Let I be
a minimal right ideal of AC. By Exercise 32 each faithful simple right AC-module is
isomorphic to I, and since each unital right AC-module is certainly semisimple, VAC
is isomorphic to I(m), a direct sum of m copies of I, for some cardinal m (see Exercise
2.6.9). Suppose IC is q-dimensional. Then [DV : D] = mq. Now let f : A −→ B be
a K-algebra isomorphism. Then the induced map Σiaici 7→ Σi f (ai)ci is a K-algebra
isomorphism of AC onto BC and since V is a unital right BC-module it is also an
AC-module with respect to the action v · ac = v f (a)c. Since q is finite V·AC is also
isomorphic to I(m). Let u : VAC −→ V·AC be an isomorphism of these two right AC-
modules. Then u ∈ R and vau = vu · a = vu f (a) for v ∈ V and a ∈ A. Thus, au =
u f (a) and f (a) = u−1au. ut

Exercises.

Unless otherwise specified F is a topology of R.

1. Let (T ,F ) be a torsion theory for MR. Show that T is hereditary iff F is
closed under essential extensions.

2. Let T ⊆MR.

(a) Show that T is a hereditary torsion class iff there is an injective module ER
such that T = `(E;MR).

(b) Show that T is a hereditary torsion class arising from a topology of R iff
there is an injective module ER such that `(R;E) = 0 and T = `(E;MR).

(c) If R is unital and T ⊆ u-MR show that T is a hereditary torsion class for
u-MR iff T = `(E;u-MR) for some u-injective module E.

(d) Show that if `(R;R) = 0, thenD is the topology corresponding to the torsion
theory cogenerated by E(RR).

3. Let (T ,F ) be the torsion theory cogenerated by the injective module E. Show
that M ∈F iff it can be embedded in a direct product of copies of E.

4. Show that there is a bijection between the class of torsion theories for MR and
the class of idempotent radicals of MR.

5. (a) Suppose C ⊆ MR is homomorphically closed. Show that M ∈ `r(C ) iff
each nonzero homomorphic image of M contains a nonzero C -submodule.

(b) If C is hereditary and homomorphically closed show that the torsion theory
generated by C is hereditary.

6. (a) Suppose that [B,M] −→ [A,M] −→ 0 is exact whenever A is a submodule
of B with B/A ∈T . Show that M is F-injective.
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(b) If M is F-injective and `(R;M) = 0 show that M satisfies the condition in
(a).

7. (a) Show that each module has an F-injective hull.
(b) If `(R;M) = 0 show that any two F-injective hulls of M are isomorphic

over M.

8. Let M and N be RF-modules with N torsion-free.

(a) Show that [M,N]R = [M,N]RF .
(b) Show that N is an injective R-module iff it is an injective RF-module.

9. Let E be a torsion-free F-injective R-module. Show that there is a unique way to
make E into an RF-module so that the R-action is induced from the RF-action.

10. Let CF(M) = {N ∈L (MR) : M/N is torsion-free}.

(a) Show that CF(M) is a complete modular lattice. (A 7→ {x ∈M : (A : x) ∈ F
is a closure operator on L (MR).)

(b) If M is torsion-free and F-injective, and N ∈L (MR), show that N ∈CF(M)
iff N is F-injective.

(c) Show that the mapping CF(M) −→ CF(MF) given by N 7→ NF is a lattice
isomorphism.

11. Let e : R −→ R/t(R) be the natural map. Show that RF is a right quotient ring
of R/t(R) and e(F) is a topology of R/t(R) contained in D(R/t(R)). If F is a
pretopology show that e(F) is a pretoplogy of R/t(R).

12. If R is a ring the topological space (R,V ) is called a topological ring pro-
vided the negation map a 7→ −a is continuous and addition and multiplication
+, · : R×R −→ R are both continuous when R×R has the product topology.
Similarly, if MR is an R-module and R is a topological ring, then the topological
space (M,W ) is a topological R-module if negation, addition and scalar multi-
plication are all continuous maps (in the appropriate product topologies). The
topological ring (R,V ) (respectively, topological module (M,W )) is called a
(right) linear topological ring (respectively, linear topological module) if the
neighborhood system of 0 has a base consisting of right ideals (submodules).

(a) Show that the topological ring (R,V ) is a linear topological ring iff the set
F of all open right ideals is a pretopology of R.

(b) Suppose (R,V ) is a linear topological ring. Show that there is a unique
largest topology V (M) of the module MR such that (M,V (M)) is a linear
topological module. (The set of open submodules of M is {N ∈L (MR) :
M/N ∈T }).

(c) Show that (M,V (M)) is discrete iff M ∈T .

13. Let J be a right ideal of R and letK be the closed interval [J,R] in L (RR). Show
thatK is a topology iff J is an idempotent ideal. Show that F is a closed interval
of L (RR) iff its associated torsion class is productive.
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14. Let S = R +Z · 1 be a unital overring of R. Show that tF(M) = 0 iff tF(M) is a
unital S-module and [S/I,M] = 0 for each I ∈ F.

15. If R2 = R show that A b is a torsion class and a torsion-free class in MR (A b =
{M ∈MR : MR = 0}).

16. Let t be the radical defined by t(M) = 0 for each module M. Show that Ft is a
topology iff R2 = R.

17. Let Spec(R) be the set of proper prime ideals of the commutative ring R. If P ∈
Spec(R) and M ∈ MR let tP(M) = {x ∈ M : r(x) 6⊆ P}. tP is the classical left
exact radical corresponding to P and FP = {J ∈ L (R) : J 6⊆ P} is the corre-
sponding topology. If X ⊆ Spec(R) let X∗ =

⋂
P∈X FP, and if F ∈ Top(R) let

F∗ = Spec(R)\F.

(a) Show that the pair of mappings ∗ : P(Spec(R))−→ Top(R) and ∗ : Top(R)
−→P (spec(R)) forms a Galois connection, and

F∗∗ = {J ∈L (R) : J 6⊆ P for each P ∈ F∗}

and
X∗∗ =

⋃

P∈X

LSpec(R)(P),

where LSpec(R)(P) is the set of lower bounds of P in Spec(R).
(b) Show that the following are equivalent for F.

(i) F= X∗ for some X ⊆ Spec(R).
(ii) F= F∗∗.

(iii) If J ∈L (R)\F, then there is some P ∈ F∗ with J ⊆ P.
(c) If P is an ideal maximal with respect to P /∈ F show that P is a prime ideal.
(d) Suppose F has a basis of finitely generated ideals. If J ∈L (R)\F show that

J ⊆ P for some P ∈ F∗. Consequently, F= F∗∗.

18. Suppose that Σ is a right Öre set in R and for each s ∈ Σ the chain of right
annihilators {r(sn) : n ∈ N} is finite. Show that Σ is right reversible.

19. Let Σ be a right Öre set in R and let M be a right R-module. Use RΣ and MΣ to
show that the relations defined on R×Σ and M×Σ in (4.2.12) are equivalence
relations and the operations given in (4.2.13) and (4.2.14) make R×Σ/∼ into
a ring isomorphic to RΣ and make M×Σ/ ∼ into an RΣ -module isomorphic
to MΣ .

20. Let DM be a vector space over the division ring D and let H = EndD(M)⊆MM .
Give M the discrete topology and MM the product topology - here called the
finite topology of MM . If X is a finite subset of M and f ∈ MM let B(X ; f ) =
{g ∈MM : xg = x f ∀x ∈ X}.

(a) Show that the sets B(X ; f ) form a basis for the finite topology of MM .
(b) Show that H is closed in MM and H is a topological ring.
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(c) Let R be a subring of H. Show that R is a dense subring of H iff R is
topologically dense in H.

21. Suppose MR is a right R-module and let D = EndR(MR) and H = EndD(DM).

(a) Show that EndR(Mn) ∼= Dn. (If f ∈ EndR(Mn
R)), then f = ∑i, j κ jπ j f κiπi

where κi : M −→ Mn is the ith injection and πi : Mn −→ M is the ith pro-
jection.)

(b) Show that EndDn(DnMn)∼= H and the action of H on Mn is coordinatewise:
(x1, . . . ,xn)a = (x1a, . . . ,xna). (If a ∈ EndDn(M

n), then Mκ ja ⊆ Mκ j and
κ1aπ1 = κ jaπ j ∈ H for 1≤ j ≤ n, where now κ j and π j act on the right of
M and Mn, respectively.)

(c) Show that MR is faithful iff Mn
Rn

is faithful.
(d) Show that MR is simple iff Mn

Rn
is simple.

22. Let MR be semisimple. Recall from Exercise 2.6.9 that each R-submodule of M
is a summand of M. We contine the notation from Exercise 21.

(a) Show that `(R;M) = 0 iff x ∈ xR for each x ∈M.
(b) Show that each R-submodule of M is an H-submodule.
(c) Suppose `(R;M) = 0. If x1, . . . ,xn ∈ M and a ∈ H show that there is some

b ∈ R with xia = xib for 1≤ i≤ n. (The case n = 1 is a consequence of (a)
and (b) and the general case is then a consequence of Exercise 21.)

23. Let MR be quasi-injective and let D = EndR(MR).

(a) If N ⊆M is a left annihilator of a subset of R and x∈M show that N +Dx is
also a left annihilator. (If I = r(N;R) and y ∈ `r(N +Dx) consider the map
xI −→ yI.)

(b) If `(R;M) = 0 show that each finitely generated left D-submodule of M is
a left annihilator.

(c) Suppose `(R;M) = 0 and x1, . . . ,xn are elements of M such that xi /∈ Ni for
1≤ i≤ n where Ni = ∑ j 6=i Dx j. If yi ∈ xir(Ni) show that there is some a∈ R
with xia = yi for 1≤ i≤ n.

24. Show that the following are equivalent for the unital ring R.

(a) R is a semisimple ring.
(b) RR is a semisimple module.
(c) Each module in u-MR is semisimple.
(d) Each module in u-MR is injective.
(e) Each module in u-MR is projective in u-MR.
(f) Each short exact sequence in u-MR splits. (The sequence (4.2.1) splits if

there is an h ∈ [M,N] with h f = 1N ; equivalently, there is a k ∈ [P,M] with
(gk = 1P.)

25. Let a be an element in a unital ring R and suppose the chain of right ideals
{anR} is finite. Show that a is invertible iff r(a) = 0.
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26. Let R = R1×·· ·×Rn. Show that R is a right Öre ring iff each R j is a right Öre
ring. If R is a right Öre ring show that Qc(R) = Qc(R1)×·· ·×Qc(Rn).

27. Let a ∈ R with r(a) = r(a2). If J is a right ideal with J∩ (aR+ r(a)) = 0 show
that the sum J + aJ + a2J + · · · is direct. (This is a generalization of Exercise
4.1.26).

28. Let B be the right ideal of R defined in the proof of Theorem 4.2.17. Suppose
that B is a principal right ideal of R; that is, B = uR +Zu for some u ∈ R. Let
T = R+Z ·1⊆ Q. Show that T contains a set of matrix units { fi j} such that if
L is the centralizer of { fi j} in R, then L is a right Öre domain, L +Z · 1 is the
centralizer of { fi j} in T , and ∑L fi j ⊆ R⊆ (∑L fi j)+Z ·1. If B = uR show that
R = T = ∑L fi j.

29. If R is reduced or is a domain, show that R/t(R) is reduced or is a domain,
respectively.

30. If G is the Goldie topology of R show that I ∈ G iff Z(K) is essential in K for
each complement K of I.

31. Let MR be a simple module with MR 6= 0. If R is an algebra over the field K
show that there is one and only one way to make M into a vector space over K
such that α(xa) = x(αa) for all α ∈ K, a ∈ R and x ∈M.

32. Let R be a prime ring which has minimal right ideals (see Exercise 4.1.27).
Show that any two faithful simple right (left) R-modules are isomorphic, and if
R is an algebra over the field K, then any R-isomorphism between two faithful
simple R-modules is also a K-isomorphism (see Exercise 31).

33. Let K be a field and let R be a subalgebra of Kn such that Kn is a simple right
R-module. Show that Kn is also a simple right Rt -module where Rt is the sub-
algebra of Kn whose elements are the transposes of the elements in R. (Use
Exercises 32 and 2.6.9 and the K-dimensions of the modules.)

34. An idempotent e ∈ Dn, D a division ring, is called primitive if eDn is a min-
imal right ideal of Dn. Let Y = {e1, . . . ,em} be a set of primitive orthogonal
idempotents in Dn. Show that:

(a) e = e2 is primitive iff eDne∼= D;
(b) Each nonzero idempotent is a sum of primitive orthogonal idempotents;
(c) m≤ n;
(d) 1 = e1 + · · ·+ em iff m = n;
(e) Y is contained in a set of n primitive orthogonal idempotents.

(See Exercises 2.6.9 and 4.1.27.)

35. Let e and f be idempotents in the ring R.

(a) Show that HomR(eR, f R)∼= f Re as groups, and also as rings if e = f .
(b) Show that eR∼= f R iff there exist elements a∈ eR f and b∈ f Re with ab = e

and ba = f .



4.2 Torsion Theories and Rings of Quotients 331

(c) Suppose R is unital. Show that R ∼= Kn for some ring K and some n ∈ N
iff R contains a set of orthogonal idempotents {e1, . . . ,en} such that 1 =
e1 + · · ·+ en and e1R∼= e jR for j = 1, . . . ,n.

36. Let K be a subfield of the field L and let V = Ln. Suppose A is a K-subalgebra
of Kn and B = LA is the L-subalgebra of Ln generated by A.

(a) Show that AVL is a simple bimodule iff BV is a simple B-module, iff AV is a
simple A-module.

(b) Suppose AV is simple, P is a generating set for the algebra A, and 0 6= Q is
a nonempty subset of V which is P-invariant. Show that Q spans LV .

37. Let V be a vector space over the field K and suppose R is a dense K-subalgebra
of S = EndK(V ) which contains minimal left ideals (see Exercise 4.1.27).

(a) If ϕ : R −→ R is a K-algebra automorphism show that there exists a unit
u in S such that ϕ(r) = uru−1 for every r ∈ R. (If I is a minimal left ideal
take v ∈ V with Iv = V and let ρv : I −→ V be given by ρv(a) = av; for
r ∈ R let µ I

r : I −→ I be given by µ I
r (a) = ra. Then µ I

r = ρ−1
v rρv. Similarly,

if J = ϕ(I), then µJ
r = ρ−1

w rρw and µJ
ϕ(r) = ϕµ I

r ϕ−1. Let u = ρwϕρ−1
v and

use Exercise 31.)
(b) Let K be a central subfield of the division ring D and let V be a right vec-

tor space over D. Show that each K-automorphism of S is inner and each
K-automorphism of EndD(V ) is the restriction of an inner automorphism
of S.

Notes. Good references for torsion theories are Stenstrom’s books [STE1] and
[STE2] in which the theory is developed for the category of unital modules. How-
ever, not too much is lost when it is developed for the category of modules as is
done here and in Dauns [DA6]. This is perhaps a consequence of the fact that a
torsion theory can be thought of as a radical of a complete lattice in the sense of
Amitsur [AM1]. Theorem 4.2.12 is the classical density theorem of Chevalley and
Jacobson and Theorem 4.2.13 is the even more classical Wedderburn-Artin Theo-
rem. Theorem 4.2.15, which was first noticed for f -rings by Anderson [AN1], is a
special case of Theorem 4.2.16, and Theorem 4.2.16 is Goldie’s Theorem [GO1] and
[GO2]. The proof given follows Goldie [GO5]; another proof is in Goldie [GO3].
Theorem 4.2.17 is the Faith-Utumi Theorem [UF2] and the proof follows Faith [F5,
p. 407]. Good references for Theorems 4.2.17, 4.2.18, 4.2.19, 4.2.20, and 4.2.21 are
Herstein [HER3] and Kaplansky [K2]. The exercises mostly come from Stenstom
[STE2], Kaplansky [K2], and Faith [F3] and [F5].
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4.3 Lattice-ordered Rings and Modules of Quotients

Let F be a topology of the `-ring R. We are interested in determining when RF is an
`-ring extension of ψR(R). This occurs, for example, when R = (An,A+

n ) where A
is a totally ordered right Öre domain and F= D(R). Moreover, if M is an `-module
with A+ ⊆ d(MR), that is, each element of A+ is a d-element on M, then MF is an
RF-`-module and an R-`-module extension of ψM(M). On the other hand, it does not
seem possible to lattice order the fieldQ(x) so that it becomes an `-ring extension of
(Q[x],Q+[x]). For the most part the extension question for `-rings will be restricted
to f -rings, and the analogous question for `-modules will be restricted to f -modules.
The topologies that will be useful for answering the extension question are those
which have as a base the set of right ideals in the topology which are generated
by their positive cones. This is always the case for the dense right ideals of an
f -ring and is frequently the case for a topology on an sp-po-ring. The maximal
right quotient ring of a right nonsingular totally ordered ring is an f -ring extension
precisely when the ring is a right Öre domain. In the same spirit whether or not
every nonsingular right f -module over a nonsingular f -ring R can be embedded in
a product of totally ordered nonsingular f -modules reduces to the same question
for the f -module RR. Somewhat surprising is that the argument that shows each f -
module over a commutative po-ring has the extension property also shows the same
to be true for an f -ring in which every right ideal is convex. Another surprising
result is that there is a unique totally ordered right self-injective ring which isn’t
unital and it is a summand of every other such f -ring. The completeness properties
of a right self-injective f -ring are also investigated.

To answer the extension question for a classical right quotient ring RΣ we can get
by with the elements of Σ being d-elements instead of requiring R to be an f -ring.
Recall that d(R) denotes the set of d-elements of the `-ring R, and U (G) denotes
the group of units of the monoid G.

Theorem 4.3.1. Let RΣ be a classical right quotient ring of the `-ring R. There
is a (unique) lattice order of RΣ such that RΣ is an `-ring, ψR : R −→ RΣ is an
`-homomorphism and ψR(Σ) ⊆ U (R+

Σ ) iff t(R) is an `-ideal of R and ψR(Σ) ⊆
d(ψR(R)). These latter conditions are satisfied if Σ ⊆ d(R). Moreover, if these con-
ditions hold and R is a d-ring or an almost f -ring, then RΣ is an f -ring or an almost
f -ring, respectively.

Proof. Suppose ψ = ψR is an `-homorphism and ψ(Σ) ⊆ U (R+
Σ ). Then t(R) =

kerψ is an `-ideal of R, and ψ(Σ)⊆ d(ψ(R)) by Theorem 3.1.3. Assume Σ ⊆ d(R)
and suppose |a| ≤ |b| with b ∈ t(R). Let s ∈ Σ ∩ r(b). Then |as| ≤ |bs| = 0 gives
a∈ t(R), and since ψ(R)∼= R/t(R), ψ(Σ)⊆ d(ψ(R)). Now assume t(R) is an `-ideal
and ψ(Σ)⊆ d(ψ(R)). By replacing R with ψ(R) we may also assume that Σ consists
of regular elements of R. Let (RΣ )+ = {as−1 : a ∈ R+}. Note that if as−1 = bu−1

with a ∈ R+ and s,u ∈ Σ , then b ∈ R+. For, sc = uv for some (c,v) ∈ R×Σ , and
ac = bu−1sc = bu−1uv = bv. Since 0 = (uv)− = (sc)− = sc−, c≥ 0; consequently,
0 = (ac)− = b−v and b ≥ 0. In particular, (RΣ )+ ∩−(RΣ )+ = 0, and to see that
(RΣ )+ is a positive cone of RΣ it suffices to verify that it is closed under addition and
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multiplication. Let as−1, bs−1 ∈ (RΣ )+. Then as−1 +bs−1 = (a+b)s−1 ∈ (RΣ )+. If
s−1b = cu−1, then, as previously shown, c ∈ R+; so as−1bs−1 = ac(su)−1 ∈ (RΣ )+.
Now, R is an `-subring of RΣ . For, if a ∈ R and s ∈ Σ , then a ∈ R+ iff as ∈ R+, iff
a∈ (RΣ )+. Moreover, if as−1 ≥ c, 0 with c∈R, then a≥ (cs)+ = c+s and as−1 ≥ c+.
Since right multiplication by s−1 is an order automomorphism of RΣ , for each a∈ R,
a+s−1 = (as−1)+ and therefore RΣ is an `-ring.

To see the uniqueness of the positive cone (RΣ )+, suppose P is a lattice order
of RΣ with the stated properties. Then as−1 ∈ P iff ψ(a) ∈ Pψ(s) = P, iff ψ(a) ∈
P∩ψ(R) = ψ(R)+.

Since RΣ is unital, to show it is an f -ring when R is a d-ring it suffices to verify
that it is a d-ring. Let b∈ R+ and as−1 ∈ RΣ . Then sc = bu for some (c,u)∈ R+×Σ .
Thus,

b(as−1)+ = ba+s−1 = (ba)+s−1 = (bas−1)+

and
(as−1)+b = a+cu−1 = (acu−1)+ = (as−1b)+.

So (RΣ )+ ⊆ d(RΣ ) and RΣ is a d-ring. Now assume R is an almost f -ring. If 1∧
as−1 = 0, then s∧ a = 0 and as = 0; so as−1 = 0 and RΣ is an almost f -ring by
Theorem 3.8.10. ut

The module analogue of Theorem 4.3.1 is given next.

Theorem 4.3.2. Let M be an `-module over the po-ring R. Suppose RΣ is a classical
right quotient ring of R and Σ ⊆ R+. Then t(M) and t(R) are convex. There is a
(unique) lattice order of MΣ such that MΣ is an R-`-module, ψM : M −→MΣ is an
`-homomorphism and ψR(Σ) ⊆ d(MΣ ) if and only if t(M) is an `-submodule of M
and whenever (s,c) ∈ Σ ×R with sc ∈ Σ (respectively, sc ∈ R+), then multiplication
by c is a d-map of ψM(M) (respectively, ψ(M)+c⊆ψ(M)+). Moreover, when these
conditions hold and M is an f -module, then MΣ is an R- f -module if and only if
multiplication by c is an f -map of ψ(M) whenever sc ∈ R+.

Proof. Suppose (MΣ ,P) is an `-module extension of ψ(M) and ψ(Σ) ⊆ d(MΣ ).
If y ∈ P and s ∈ Σ , then (ys−1)+s = (ys−1s)+ = y; so Ps−1 ⊆ P ⊆ Ps−1, P =
{xs−1 : ψ(x) ∈ M+, s ∈ Σ}, and (xs−1)+ = x+s−1 for each x ∈ M. If sc ∈ Σ and
x ∈M, then ψ(x)+c = (xs−1)+sc = ψ(xc)+; similarly, if sc ∈ R+ and x ∈M+ then
ψ(x)c ∈ ψ(M)+. For the converse, let (MΣ )+ = {xs−1 ∈ MΣ : ψ(x) ∈ ψ(M)+}.
Then the proof of Theorem 4.3.1 shows that (MΣ ,(MΣ )+) is an `-module with the
desired properties and, in fact, the elements of ψ(Σ)∪ψ(Σ)−1 induce d-maps on
MΣ . Assume M is an f -module. If MΣ is an f -module, then ψ(Σ)∪ψ(Σ)−1 in-
duce f -maps on MΣ . For, if p∧ q = 0 in MΣ , then (ps−1 ∧ q)s = p∧ qs = 0. In
particular, if sc = a ∈ R+ and x∧ y = 0 in ψ(M), then xc∧ y = xs−1a∧ y = 0. On
the other hand, suppose this latter condition holds and xs−1 ∧ ys−1 = 0. If a ∈ R+,
then s−1a = cu−1, sc = au ∈ R+ and xc∧ y = 0. Also, ub = sv for some v ∈ Σ . So
(xs−1a∧ ys−1)uv = xcv∧ yb = 0 and xs−1a∧ ys−1 = 0. ut

There is a natural partial order of RΣ over which the R-`-module (respectively,
R- f -module) MΣ in Theorem 4.3.2 is an RΣ -`-module (respectively, RΣ - f -module).
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We will present it for the more general quotient ring RF. A collection D of right
ideals of the po-ring R is called positive if the right ideal of R generated by D+

belongs to D for each D ∈ D ; that is, D+R1 = D+R + D+−D+ ∈ D . If F = F(Σ)
and for each s∈ Σ , sn ∈ R+ for some n∈N, then F is positive since sn+1 ∈D+R∩Σ
provided s ∈ D∩Σ . The po-ring R is called essentially positive if E (R) is positive.
The Goldie topology of an essentially positive po-ring is positive (Exercise 3). A
topology F is positive if and only if D+R ∈ F for each D ∈ F since (D+R : a) = R
for each a ∈ D+R1.

Let F be a pretopology of the po-ring R. For any R+-group M the subset

t+(M) = {x ∈M : xD+ = 0 for some D ∈ F}

is easily seen to be an R+-subgroup of M which contains t(M) whenever M is an R-
module. If M is an R+-po-group, then t+(M) is convex; and if M is an R+-d-group,
then t+(M) is a convex `-R+-subgroup of M. R is called F-directed if R+R1 ∈ F.

Theorem 4.3.3. The following statements are equivalent for the topology F of the
po-ring R. If F is a pretopology, then the implications (a) ⇔ (b) ⇒ (c) hold.

(a) F is positive.
(b) R is F-directed and, for each R-module M, t(M) = t+(M).
(c) R is F-directed and if N is a submodule of the po-module M with M/N ∈Tt ,

then M+R1/N+R1 ∈Tt .

Proof. (a) ⇒ (b). If x ∈ t+(M), then xD+ = 0 for some D ∈ F; so xD+R1 = 0 and
x ∈ t(M).

(b) ⇒ (c). First note that F is positive since if D ∈ F, then t(R1/D+R1) =
t+(R1/D+R1) = R1/D+R1. Let x ∈M+ and a ∈ R. Take D1,D2 ∈ F with xD1 ⊆ N
and aD2 ⊆D+

1 R1. Then xD+
1 ⊆ N+ and xaD2 ⊆ N+R1; so M+R1/N+R1 is a torsion

module.
(c) ⇒ (a). If D ∈ F, then D+R1 ∈ F since the ends of the short exact sequence

0−→ R+R1/D+R1 −→ R1/D+R1 −→ R1/R+R1 −→ 0

are both torsion modules. ut
If R is totally ordered or, more generally, F has a basis of directed right ideals,

then F is positive. In an sp-po-ring a topology is frequently positive as the next two
results show.

Theorem 4.3.4. Let G be a subring of the ring R, and let A be the additive subgroup
of R generated by the set {g2 : g ∈ G}. If a,b,c ∈ G, then 2abc ∈ (A + Aa + Ab +
Ac)∩ (A+aA+bA+ cA). If B is the right ideal of R generated by A, then 2G3 ⊆ B.

Proof. Since ab + ba = (a + b)2−a2−b2 ∈ A, there exist elements s,s1,s2,s3 ∈ A
such that
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2abc = abc−bca+ s

= abc− (−cb+ s1)a+ s = abc+ cba− s1a+ s

= abc− (ac+ ca)b+ cba+(ac+ ca)b− s1a+ s

= abc+(bac+ s2)+(bca+ s3)+ cba+(ac+ ca)b− s1a+ s

= (ab+ba)c+(bc+ cb)a+(ac+ ca)b+ s2 + s3− s1a+ s.

So 2abc ∈ A+Aa+Ab+Ac, and hence 2G3 ⊆ B. ut
Theorem 4.3.5. Let F be a topology of the sp-po-ring R. If 2R∈F, then F is positive.

Proof. If D∈ F, then 2D3 ⊆∑d∈D d2R1 ⊆D+R1 by the previous result. By Exercise
1 and (c) of Theorem 4.2.3, 2D3 ∈ F; so D+R1 ∈ F and F is positive. ut

The condition 2R ∈ F is by no means necessary for F to be positive as is shown
by the example F= {R} where R is unital and 2 is not a unit of R.

Let F be a pretopology of the po-ring R, and let A⊆ B be R+-groups. In analogy
to the F-closure we define the F+-closure of A in B by c`F+(A;B)/A = t+F (B/A). A
is called F+-dense in B if c`F+(A;B) = B, and A is F+-closed in B if c`F+(A;B) = A.
The next result investigates the order preserving properties of the closure operators;
also see Exercise 5.

Theorem 4.3.6. Let F be a pretopology of the po-ring R and let M be an F+-dense
R+-subgroup of the R+-po-group K.

(a) If N is a convex R+-subgroup of M, then c`F+(N;K) is convex in K.
(b) If M is an R+-d-group and N is an `-R+-subgroup of M, then c`F+(N;M) is

an `-R+-subgroup of M.
(c) Suppose K is an R+-d-group and M is an `-R+-subgroup of K. If N is a

prime R+-subgroup of M, then c`F+(N;K) is a prime R+-subgroup of K.
(d) Suppose M is an `-R+-subgroup of the f -module K and t+(K) = 0. Assume

that for each D ∈ F there is some J ∈ F such that J ⊆ D and J+R1 is a
finitely generated right ideal. If N is a minimal prime subgroup of M, then
c`F+(N;K) is a minimal prime subgroup of K and N is F+-closed in M.

Proof. (a) Suppose 0 ≤ x ≤ y with y ∈ c`F+(N;K) and x ∈ K. Take D ∈ F with
yD+ ⊆ N and xD+ ⊆M. Since 0≤ xd ≤ yd for each d ∈D+ we have xD+ ⊆ N, and
hence x ∈ c`F+(N;K).

(b) If x ∈M and xD+ ⊆ N with D ∈ F, then x+d = (xd)+ ∈ N for each d ∈ D+;
so x+ ∈ c`F+(N;M).

(c) By (a) and (b) c`F+(N;K) is a convex `-R+-subgroup of K. Suppose x∧y = 0
in K with x /∈ c`F+(N;K). There exists D ∈ F with xD+ ⊆M,xD+ 6⊆ N, and yD+ ⊆
M. For any d, e ∈ D+, xd∧ ye = 0; so yD+ ⊆ N and y ∈ c`F+(N;K).

(d) Since N is a minimal prime N =∪{x⊥ : x /∈N} is a directed union by Theorem
2.4.3. Let y∈ c`F+(N;K). There is some D∈Fwith D+R1 = d1R1 + · · ·+dnR1, each
di ∈ D+, and yD+ ⊆ N. So, for some x /∈ N, ydi ∈ x⊥ for every i, (|x| ∧ |y|)D+ = 0,
and x ∈ y⊥. Now, if y ∈ M, then y ∈ N and hence N is F+-closed in M. Thus, in
general, y⊥ 6⊆ c`F+(N;K) and c`F+(N;K) is a minimal prime of K. ut
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If F is a positive topology which has a basis consisting of finitely generated right
ideals and R is directed, then (d) of the preceding result shows that each torsion-free
R- f -module is a subdirect product of totally ordered torsion-free modules. Another
condition for this to hold is given in Exercise 6. However, not every torsion-free f -
module is a subdirect product of totally ordered torsion-free f -modules, as we will
see in Theorem 14 below.

Let F be a topology of the po-ring R and let MR be a po-module. Then ψ(M) ∼=
M/t(M) is a po-module over the po-ring ψ(R)∼= R/t(R). Let

(MF)+ = {x ∈MF : ∃ D ∈ F with xD+ ⊆ ψ(M)+}.

Then (MF)+ is closed under addition, ψ(M)+ ⊆ (MF)+, and (MF)+ ∩−(MF)+ =
t+(MF). Moreover, if x ∈ (MF)+ and p ∈ (RF)+, then xpA ⊆ ψ(M) and xpA+ ⊆
(MF)+ for some A ∈ F. To see this take D, A ∈ F with xD⊆ ψ(M), xD+ ⊆ ψ(M)+,
pA ⊆ ψ(D) and pA+ ⊆ ψ(R)+; A exists since ψ(D) is F-dense in RF. In the spe-
cial case where p = ψ(a) ∈ ψ(R)+ we may assume a ∈ R+ and aA ⊆ D, and then
xpA+ = xaA+ ⊆ xD+ ⊆ ψ(M)+ and xp ∈ (MF)+. In general, xpA+ ⊆ xψ(R)+ ⊆
(MF)+ and xpA⊆ ψ(M).

The subset X of the po-module MR is said to be F+-semiclosed if x ∈M+ when-
ever x ∈ X and xD+ ⊆ M+ for some D ∈ F. If M is F+-semiclosed, then clearly
t+(M) = 0. We summarize the preceding in the next result.

Theorem 4.3.7. Suppose MR is a po-module and F is a topology of R.

(a) Let K be an R-submodule of MF which contains ψ(M). If ψ(M) is F+-
semiclosed and t+(MF) is an R-submodule, then K ∩ (MF)+ is the unique
F+-semiclosed partial order of K with K+ ∩ ψ(M) = ψ(M)+. Also,
(MF)+(RF)+ ⊆ (MF)+.

(b) If M is a d-module, then M is F+-semiclosed iff t+(M) = 0.
(c) If t+(M) = 0 for the d-module M, then M is an `-submodule of MF.

Proof. To complete the proof that (MF)+ is a partial order of MF it suffices to note
that t+(MF) = 0 since ψ(M) is an essential submodule of MF and t+(MF)∩ψ(M) =
t+(ψ(M)) = 0. Suppose x ∈ MF and D ∈ F with xD+ ⊆ (MF)+. Take A ∈ F with
xA⊆ψ(M). Then x(A∩D)+ ⊆ψ(M)∩(MF)+ = ψ(M)+; so x∈ (MF)+ and (MF)+

is an F+-semiclosed partial order of MF. If P is another such partial order of MF
extending ψ(M)+ and x ∈MF, then x ∈ P iff x(ψ(M) : x)+ ⊆ P∩ψ(M) = ψ(M)+;
so P = (MF)+. This completes the proof of (a) for MF, and, similarly, also for K.

Suppose M is a d-module with t+(M) = 0 and x∈M. If xD+⊆M+, then x−D+ =
0; so x− = 0 and M is F+-semiclosed. If z ∈ (MF)+ with z≥ x, then zd ≥ (xd)+ =
x+d for d ∈ (M : x)+; so z≥ x+ and M is an `-submodule of MF. ut

If R is an f -ring, then RF need not be an f -ring extension of ψ(R) nor even
an f -ring period. For example, if R is the first column of the 2× 2 matrix algebra
Q2, ordered lexicographically from the top, then RD = Q2. However, if R has the
coordinatewise order, then Q2 is an `-ring extension of R. Another pathological
example is given by the polynomial ring (R,R+) = (Q[x],Q+[x]) with the usual



4.3 Lattice-ordered Rings and Modules of Quotients 337

topologyD. Since ((1−x)R)+ = 0, t+(M) = M for each module M and (MF)+ = MF
for each po-module M.

The f -module M is called a qF f -module if MF is an R- f -module extension of
ψ(M), and the `-ring R is called a qF f -ring if RF is an f -ring extension of ψ(R).
When F = D a qF f -ring will be called a (right) q f -ring; and an f -module M will
be called an i f -module if its injective hull is an f -module extension of M. The
conditions for R to be a qF f -ring and for M to be a qF f -module are given next.

Theorem 4.3.8. Let F be a positive topology of the po-ring R. Suppose MR is an
f -module and ψ(M) can be embedded in a product of totally ordered R-modules.
The following statements are equivalent.

(a) M is a qF f -module (that is, MF is an (RF)+- f -group).
(b) If x ∈MF and d1, d2 ∈ (ψ(M) : x)+, then (xd1)+∧ (xd2)− = 0.
(c) If x∈MF there exists D∈Fwith D⊆ (ψ(M) : x) such that (xd1)+∧(xd2)− =

0 for any d1, d2 ∈ D+.
(d) If ψ(M) is a totally ordered homomorphic image of ψ(M) and x ∈MF, then

x(ψ(M) : x)+ ⊆ ψ(M)+ or x(ψ(M) : x)+ ⊆−ψ(M)+.

Moreover, if M is a qF f -module and R is a right f -ring, then MF is a strong R- f -
module iff for x∈ (MF)+ and d1, d2 ∈ (ψ(M) : x)+, if d1∧d2 = 0, then xd1∧xd2 = 0.
If MF is a strong R- f -module and RF is a right f -ring, then MF is a strong RF- f -
module.

Proof. The implications (a) ⇒ (b) ⇔ (c) and (b) ⇔ (d) are all straightforward.
Assuming (b) let x∈MF and consider the correspondence α : (ψ(M) : x)+R−→MF
given by α(∑diri) = ∑(xdi)+ri. As a consequence of (d) we obtain that if ∑diri =
0, then ∑(xdi)+ri = 0. So α is an R-homomorphism and since MF is F-injective
there exists y ∈ MF such that ydr = (xd)+r for d ∈ (ψ(M) : x)+ and r ∈ R. Thus,
yd = (xd)+≥ xd, 0 and by Theorem 4.3.7, y≥ x+. If z∈MF with z≥ x, 0, then there
exists D∈Fwith zD⊆ψ(M) and D⊆ (ψ(M) : x); so zd≥ yd for each d ∈D+, z≥ y,
y = x+, and x+d = (xd)+ for each d ∈ (ψ(M) : x)+. If a∈ R+ and d ∈ (ψ(M) : xa)+,
then (xa)+d = (xad)+ = x+ad. So MF is a d-module and hence it is an f -module
over R.

To see that MF is an (RF)+- f -group, suppose x∧ y = 0 in MF and p ∈ (RF)+.
Take D ∈ F with pD+ ⊆ ψ(R)+. Then (xp∧ y)D+ = 0 and hence xp∧ y = 0.

Now suppose M is a qF f -module over the right f -ring R and for each x ∈ (MF)+

the homomorphism µx : (ψ(M) : x)−→ ψ(M) preserves disjoint elements. Let x ∈
(MF)+ and a∈R and put D = (ψ(M) : xa+)∩(ψ(M) : xa−). If d ∈D+, then a+d and
a−d are disjoint elements of (ψ(M) : x)+; so (xa+∧ xa−)d = 0 and xa+∧ xa− = 0.
Thus, (xa)+ = (xa+− xa−)+ = xa+ and MF is a strong R- f -module. Assume MF is
a strong R- f -module and RF is a right f -ring. Take x ∈M+

F , p ∈ RF and d ∈ (ψ(R) :
p)+. Then pd = ψ(a) and

xp+d = x(pd)+ = xa+ = (xa)+ = (xp)+d.

Consequently, xp+ = (xp)+ and MF is a strong RF-module. ut
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In the special case that F = G is the Goldie topology and G is positive the con-
ditions in Theorem 4.3.8 determine when the nonsingular f -module M is an i f -
module since E(M) = MG.

Theorem 4.3.9. Let F be a positive topology of the right f -ring R.

(a) RF is a right f -ring extension of ψ(R) iff for q ∈ RF and d1, d2 ∈ (ψ(R) :
q)+, (qd1)+∧ (qd2)− = 0 (iff RR is a qF f -module).

(b) RF is an f -ring if and only if the condition in (a) is satisfied and if q ∈ RF
and d1, d2 ∈ (ψ(R) : q) with d1 ∧ d2 = 0, then (qd1)+ ∧ ψ(d2) = 0.

Proof. Since (a) is an immediate consequence of Theorems 4.3.7 and 4.3.8 it suf-
fices to check that the condition in (b) implies that the right f -ring RF is a left f -ring.
But if s, p, q ∈ (RF)+ with p∧q = 0 and

0≤ d ∈ (ψ(R) : sp)∩ (ψ(R) : sq)∩ (ψ(R) : p)∩ (ψ(R) : q),

then pd = ψ(a) and qd = ψ(b) with a∧b = 0 and a, b ∈ (ψ(R) : s). So

0 = sa∧ψ(b) = spd∧qd = (sp∧q)d,

and sp∧q = 0. ut
We will now apply the preceding two theorems to give some examples of qF f -

modules and qF f -rings.

Theorem 4.3.10. The following statements are equivalent for the right nonsingular
right f -ring R whose maximal right quotient ring is Q.

(a) R is a q f -ring.
(b) RR is an i f -module and R is essentially positive.
(c) Q is reduced.
(d) If aR∩bR = 0, then ab = 0.

Proof. (a) ⇒ (b). This follows from Theorem 4.1.8 and Exercise 2 since QR =
E(RR).

(b) ⇒ (c). Q is an `-ring extension of R by Theorem 4.3.7. If p, q, s ∈ Q+ with
p∧q = 0, then (ps∧q)(R : s)+ = 0. Consequently, Q is a right f -ring and hence it
is a (strongly) regular f -ring by Theorems 3.8.10 and 3.2.24.

(c) ⇒ (a). The equivalence of (c) with (d) is given in Theorem 4.1.10 where it
is also shown that I + I∗ is an essential right ideal of R for each right ideal I of
R. Thus, R is a reduced almost f -ring, and therefore it is an f -ring by Theorem
3.2.24. In particular, polars and annihilators in R are the same: X∗ = X⊥. We will
show that the two conditions given in Theorem 4.3.9 are satisfied. Let q ∈ Q and
d1, d2 ∈ (R : q)+. We claim that (d2R : d1) + (d2R : d1)∗ ⊆ ((qd1)+ ∧ (qd2)−)∗.
Suppose x ∈ (d2R : d1). Then d1x = d2y and (qd1)+|x| = (qd2)+|y| ∈ ((qd2)−)∗;
so (qd1)+|x| ∧ (qd2)−|x| = 0 and x ∈ ((qd1)+ ∧ (qd2)−)∗. Now, suppose 0 ≤ x ∈
(d2R : d1)∗. If 0 < d1x∧ d2x, then d1xu = d2xv 6= 0 for some u1v ∈ R. But then
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xu ∈ (d2R : d1)∩ (d2R : d1)∗ = 0 gives a contradiction; so d1x∧ d2x = 0. Since
qd ∈ d∗∗ for any d ∈ R we have (qd1)+x ∈ (d1x)∗∗ and (qd2)−x ∈ (d2x)∗∗. Thus,
[(qd1)+ ∧ (qd2)−]x ∈ (d1x)∗∗ ∩ (d2x)∗∗ = 0. This shows that (qd1)+ ∧ (qd2)− = 0.
To complete the proof we need to check that if d1 ∧ d2 = 0, then (qd1)+ ∧ d2 = 0.
But this follows from the inequalities 0≤ ((qd1)+∧d2)2 ≤ (qd1)+d2 = 0. ut

The essentially positive condition in (b) is, of course, automatic when R is unital
or it is an f -ring. Here is the specialization to totally ordered rings.

Theorem 4.3.11. The following are equivalent for the totally ordered right nonsin-
gular ring R.

(a) R is a q f -ring.
(b) RR is an i f -module.
(c) R is a right Öre domain.
(d) R is a domain and has a nonzero right i f -module that is not singular.

Proof. The equivalence of (a), (b), and (c) comes from Theorem 4.3.10 and Exercise
4.1.26, and (d) is certainly a consequence of (c).

(d) ⇒ (b). Let M be a nonzero i f -module and take 0 < x ∈M\Z(M). There is a
nonzero right ideal J of R with J∩ r(x) = 0. If 0 < a ∈ J, then the mapping r 7→ xar
embeds the totally ordered module RR into MR. So RR is an i f -module by Exercise
11. ut

If S is a two-sided quotient ring of the f -ring R, then it has two partial orders
extending R+ : (RD)+∩S and (D′R+ ∩S where D′ is the left topology of dense left
ideals of R. However, these partial orders coincide. For, if s ∈ S with s(R : s)+ ⊆ R+

and a∈ R+ with as∈ R, then (as)−(R : s)+ = 0; so as≥ 0 and (RD)+∩S⊆ (D′R)+∩
S. Similarly, (D′R)+∩S⊆ (RD)+∩S.

Theorem 4.3.12. The maximal two-sided quotient ring Q2(R) of the f -ring R with
`(R) = r(R) = 0 is an f -ring extension of R.

Proof. The proof is similar to that of Theorem 4.3.8. Let p ∈ Q2(R) and let D and
A be dense right and left ideals of R, respectively, with pD ⊆ R and Ap ⊆ R. If
d1, d2 ∈ D+, then (pd1)+ ∧ (pd2)− = 0 since A+((pd1)+ ∧ (pd2)−) = 0. As in the
proof of Theorem 4.3.8 this yields the existence of p+ ∈ Q(R) with p+d = (pd)+

for d ∈ D+. But then ap+d = (ap)+d gives ap+ = (ap)+ ∈ R for each a ∈ A+; so
p+ ∈Q2(R). The standard argument now shows that Q2(R) is a d-ring and hence an
f -ring. ut

One consequence of Theorem 4.3.12 is that a commutative f -ring (with zero
annihilator) is a q f -ring. Using Exercise 4.2.11 it is not hard to extend this result to
any ring of quotients of a commutative f -ring. The analogous result also holds for
an f -module over a commutative po-ring. Since the proof of this can be applied to
other rings we will present these results in a more general context.

Let R be a po-algebra over C. The element y ∈ R+ is called
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right po-normal if 0≤ x≤ y⇒ xy ∈ yR+;

right convex if 0≤ x≤ y⇒ x ∈ yR+;

right n-convex if 0≤ x≤ yn ⇒ x ∈ yR+;

right p-convex if 0≤ x≤ y⇒∃0 6= p(λ ) ∈C+[λ ] with xp(y) ∈ yR+.

If each element of R+ is right convex, then R will be called a right convex po-
ring. Similarly, the other definitions will be transferred to R. If R is right p-convex
and the degrees of the polynomials p(λ ) are bounded we will call R a bounded right
p-convex po-algebra. Note the implications: y is right convex⇒ y is right po-normal
⇒ y is right p-convex, and y is right n-convex ⇒ y is right p-convex. Each positive
element with a positive right inverse is right convex and, at the other extreme, each
positive nilpotent element is right p-convex. It is not hard to see that for a topological
space X the real f -algebra C(X) is n-convex for every n > 1 (even if n ∈ R), but,
for example, C([0,1]) is not convex. (If f (x) = 1− 2x, then f /∈ C([0,1])| f |.) An
interesting example of a right convex f -ring is supplied by a unital f -ring that is
left self-injective (Exercise 17). The right p-convexity property allows us to treat
commutative f -rings and right convex f -rings (and direct products of such f -rings)
simultaneously.

The same definition of right convexity can be given for po-modules. However
we will alter the definition slightly. The positive element y in the po-module MR is
convex if x∈ yR whenever 0≤ x≤ y, and M is called a convex module if each element
of M+ is convex. Note that when M is a strong `-module over the `-ring R and
y ∈M+, then (yR)+ = yR+. In particular, an element in an f -ring R is right convex
iff it is a convex element of the f -module RR. Some properties of right convex f -
modules and f -rings are given in Theorem 4.3.15 and Exercises 24 through 36.

Theorem 4.3.13. Let R be a directed right p-convex po-algebra over the domain C
and let F be a positive topology of R.

(a) If R is bounded, then each C-torsion-free f -module MR is a qF f -module.
(b) If R is a C-torsion-free f -algebra which is bounded or semiprime, then R is

a qF f -ring.

Proof. (a) Let x ∈ MF and take d1, d2, a ∈ D+ where xD ⊆ ψ(M), and set d =
d1 +d2 +a. Then di pi(d) = dri for some pi(λ ) ∈C+[λ ] and ri ∈ R+. Thus,

0≤ ((xd1)+∧ (xd2)−)p1(a)p2(a)≤ ((xd1)+∧ (xd2)−)p1(d)p2(d)

= (xd)+r1 p2(d)∧ (xd)−r2 p1(d) = 0.

Since ψ(M) is C-torsion-free ((xd1)+ ∧ (xd2)−)an = 0 for some integer n with
0 ≤ n ≤ deg (p1(λ )p2(λ )). If the degrees of the polynomials are bounded by
m, then for all a1, . . . ,a2m ∈ D+, ((xd1)+ ∧ (xd2)−)a1 · · ·a2m = 0 since (a1 +
· · ·+ a2m)2m = a1 · · ·a2m + b with b ∈ D+. Thus, ((xd1)+ ∧ (xd2)−)(D+R1)2m = 0,
(xd1)+∧ (xd2)− = 0, and hence M is a qF f -module by Theorem 4.3.8.

(b) We continue with the notation of (a) except now x ∈ RF. If R is bounded, then
RF is a right f -ring by (a) and Theorem 4.3.9. Suppose R is semiprime. Then ψ(R)
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is reduced by Exercise 4.2.29, and from ((xd1)+ ∧ (xd2)−)an = 0 we deduce that
((xd1)+∧ (xd2)−)D+ = 0; so, again, RF is a right f -ring. Now suppose d1∧d2 = 0
and x ∈ R+

F . Then

0 ≤ (xd1∧ψ(d2))p1(a)p2(a)≤ ((x∨1)d1∧ (x∨1)d2)p1(d)p2(d)
≤ (x∨1)dr1 p2(d)∨ (x∨1)dr2 p1(d)
≤ (x∨1)(d1 p1(d)p2(d)∧d2 p2(d)p1(d)) = 0.

As we have seen previously this gives xd1 ∧ψ(d2) = 0, and RF is an f -ring by
Theorem 4.3.9. ut

As we have previously noted some torsion-free f -modules are subdirect products
of totally ordered torsion-free f -modules. For example, as a consequence of Theo-
rems 4.2.15 and Theorem 4.3.1 a semiprime right Goldie f -ring is a q f -ring, and,
as a consequence of Theorem 4.2.11 and Theorem 4.3.2, each of its nonsingular
f -modules is an i f -module. Hence, it is a subdirect product of totally ordered non-
singular modules by Exercise 6 since the injective hull of such a module is a direct
sum of vector lattices over totally ordered division rings. On the other hand, a con-
verse of the preceding statement will show that it is just as likely for a nonsingular
f -module over a commutative semiprime f -ring to not have such a representation.

Recall that a (semiprime) ring is irredundant if it is an irredundant subdirect
product of prime rings, and a nonsingular module over an irredundant ring R is an
irredundant subdirect product of nonsingular modules over the components of R
(Exercise 4.1.38). If R is irredundant, then R is reduced iff each of its components
is a domain (Theorem 4.1.14 and the ring analogue of Theorem 3.2.21); and Q(R)
is reduced iff each of the components of R is a right Öre domain (Exercise 4.1.26).

Theorem 4.3.14. The following statements are equivalent for the nonsingular q f -
ring R.

(a) R is irredundant.
(b) Each nonsingular f -module is a subdirect product of totally ordered non-

singular f -modules (and is an i f -module).
(c) RR is a subdirect product of totally ordered nonsingular f -modules.

Proof. (a) ⇒ (b). If Rλ is a component of R, then Rλ ∼= R/Pλ where Pλ is a max-
imal polar; so Rλ is a totally ordered right Öre domain. Let MR be a nonsingular
f -module. If Mλ is a component of M, then Mλ ∼= M/Nλ where Nλ = `(Rλ ∩R;M)
(Theorem 4.1.17). Clearly, Nλ is a convex `-submodule of M, and hence Mλ is a
nonsingular f -module over Rλ and it is an i f -module. As such, as we have pre-
viously noted, it is a subdirect product of totally ordered nonsingular Rλ -modules
which are also nonsingular R-modules. Thus, MR also has such a representation. MR
is an i f -module since it is an `-submodule of the i f -module ΠMλ .

(c) ⇒ (a). Let {Aλ} be a collection of closed prime submodules of RR whose
intersection is zero. By Theorem 4.3.6, for each λ , Eλ = E(Aλ ) = c`(Aλ ;Q(R))
is a closed prime submodule of Q(R). Since Q(R) is strongly regular Eλ is an `-
ideal of Q(R) and Q(R) = Eλ ⊕Fλ is a direct sum of f -rings. Thus, Fλ is a totally
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ordered division ring, and Fλ ⊆ F∗µ = Eµ if µ 6= λ ; so Fλ ∩∑µ 6=λ Fµ = 0. Since
the closure operator gives an isomorphism between the lattices Cr(R) and Cr(Q)
(Exercise 4.2.10),

⋂
λ Eλ = 0. Now, the projections of Q(R) onto the Fλ induce an

embedding of Q(R) into the product Πλ Fλ whose image contains the direct sum
⊕λ Fλ . So Q(R) = Πλ Fλ , and since the Boolean algebras of polars of R and Q are
isomorphic (Exercise 5), B(R) is atomic and R is irredundant. ut

A right convex f -ring has some interesting localization properties in addition to
those given in Theorem 4.3.13. Recall that a unital f -ring R has bounded inversion
if each element that exceeds 1 is a unit of R. Clearly, each unital right convex f -ring
has bounded inversion. Moreover, each ring of quotients of a right convex f -ring
has bounded inversion (Exercise 25), and a unital f -ring with bounded inversion
is a classical right and left quotient ring of its subring C(1) of bounded elements.
(Exercise 26). Note that the subring of bounded elements in any unitable f -ring R is
well-defined since the unital cover Ru of R is embedded in any unital overring of R
(Theorem 3.4.10). This subring will be denoted by CR(1) whenever more than one
ring is nearby. Some of the elementary properties of a right convex f -ring are given
next, and, in fact, these properties hold for modules. As a consequence of Theorem
4.3.15 and of Theorem 3.4.13, a right convex f -ring is an `-ideal of its unital cover.

Theorem 4.3.15. Let MR be a convex f -module over the directed po-ring R.

(a) M is a divisible group.
(b) x ∈ xR for each x ∈M.
(c) If M = R is a totally ordered ring, then R is unital.
(d) If M = R is an f -ring, then R is unitable, and it is unital provided R contains

a right regular element.

Proof. If n ∈ N, then M/nM is both a torsion-free and a torsion abelian group; so
M = nM and M is divisible. If x∈M, then xR and CR(x) areQ-subspaces of M. So if
x /∈ xR, then xR∩Qx = 0 and we have the contradiction, CR(x) = xR+Qx = xR+Zx.
Now suppose that R is a right convex f -ring. If a ∈ R with r(a) = 0 and a = ae, then
e is a left identity element of R. If R is totally ordered, then R/`-β (R) is a nonzero
totally ordered domain since R is not nil by (b). So R/`-β (R) has an identity element
which can be lifted to an idempotent f of R (Theorem 3.4.15), and since RR is
indecomposable R = f R. But then f is the identity element of R since `(R) = 0. In
general, then, a right convex f -ring is unitable and hence e = 1. ut

We have seen that in any f -ring the maximal one-sided `-ideals are indistinguish-
able from the maximal `-ideals (Exercise 3.4.29) and the minimal `-prime `-ideals
are indistinguishable from the minimal prime ideals (Exercise 3.2.20). An f -ring
with bounded inversion has a characterization which borrows from both of these
facts.

Theorem 4.3.16. Let R be a unital f -ring, and denote the set of maximal ideals of R
by Max(R), the set of maximal right ideals of R by Max(RR), and the set of maximal
convex right ideals of R by c-Max(RR). The following statements are equivalent.
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(a) R has bounded inversion.
(b) Max(R) = Max(RR) = c-Max(RR).
(c) Max(R)⊆ Max(RR)⊆ c-Max (RR).
(d) Each maximal right ideal of R is an `-ideal.
(e) Each simple unital R-module is an f -module.
(f) Each totally ordered homomorphic image of R is local and its Jacobson

radical is a convex ideal.
(g) The Jacobson radical J of R is convex and R/J has bounded inversion.

Proof. We first note that any subgroup G of the additive group of R that contains
a minimal prime ideal P of R is a sublattice. For, P is an `-ideal of R and hence
contains x+ or x− for each x in R. So if x ∈ G, then x+ ∈ G. Any maximal ideal or
maximal right ideal is such a subgroup.

(a)⇒ (b). Suppose that R has bounded inversion and let M be a maximal ideal of
R. If 0≤ a≤ b with b ∈M and a /∈M, then R = M +RaR yields that 1 = x+∑riasi
for some x∈M; so 1≤ x+rar≤ x+rbr for some r ∈ R+, and hence the unit x+rbr
is in M. This contradiction shows that M is convex, and hence it is an `-ideal. A
similar argument gives that each maximal right ideal is a right `-ideal. Since M is
a maximal right `-ideal of R, hence a maximal right ideal, R/M is a totally ordered
division ring and we have Max(R)⊆Max(RR) = c-Max(RR). Since a maximal right
`-ideal contains a minimal prime ideal which is contained in a unique maximal ideal,
c-Max(RR)⊆ Max(R).

For the remainder of the proof let P be a minimal prime ideal contained in a given
maximal right ideal I.

(c) ⇒ (d). If I is a maximal right ideal and M is a maximal ideal containing P,
then M and I are both maximal right `-ideals containing P; so M = I since M and I
are comparable.

(d) ⇒ (f). Suppose that A is an `-ideal of R for which R/A is totally ordered,
and let I/A and K/A be maximal right ideals of R/A. Then, again, I and K are
comparable; so I = K, R/A is local and its Jacobson radical I/A is convex.

(f) ⇒ (g). Let I be a maximal right ideal of R. Since R/P is local I is an `-ideal
of R, and hence J, being the intersection of all such I, is convex. If a+ J ≥ 1+ J in
R/J, then a+ J is not in any maximal right ideal of R/J, so a+ J is a unit.

(e) ⇒ (d). Since S = R/I is a totally ordered right R-module I is the annihilator
of a positive element of S. Thus, I is a right `-ideal of R. This yields that R/P is local
and hence I is an `-ideal.

Now, (g)⇒ (a) since the units of R/J are images of units of R. Since, clearly, (b)
⇒ (c) and (d) ⇒ (e), the proof is complete. ut

According to Exercise 24 an f -ring is right convex precisely when each of its
right ideals is a right `-ideal. Recall that a right valuation ring is a ring whose lattice
of right ideals is a chain. Clearly, each totally ordered right convex f -ring is a right
valuation ring. The localization of the integers at a prime gives an example of a
totally ordered commutative valuation ring that does not have bounded inversion
and neither does any (valuation) subring of the reals that is not a field. An example
of a commutative totally ordered domain with bounded inversion that is not convex
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is obtained by localizing the anti-lexicographically ordered polynomial ring F [x]
over the totally ordered field F at the convex ideal (x). An example of a totally
ordered right convex f -ring that is not left convex is given in Exercise 31. The
first column of the 2×2 matrix ring over Q, ordered lexicographically with the left
corner dominating, is an example of a totally ordered ring which is neither right nor
left convex but in which each ideal is an `-ideal.

Some additional localization properties which are forced by the convexity condi-
tions and which further illustrate their commutative character are given in the next
result.

Theorem 4.3.17. Suppose the unital f -ring R is right convex, or it has bounded
inversion and is a right p-convex C-torsion-free-algebra over the directed po-ring
C. Then R is a right Öre ring and for each `-prime `-ideal P of R the multiplicatively
closed subset Σ = R\P is a right Öre set in R. If P is also a minimal prime subgroup,
then the classical right quotient ring RP of R with respect to Σ exists.

Proof. Let C = Z if R is right convex, and let

S = {a ∈ R : |a| ≤ α ·1 for some α in C}

be the subalgebra of C-bounded elements of R. Since R has bounded inversion R is a
classical left and right quotient ring of S (Exercise 26). So if Γ = {a∈ S+ : a−1 ∈R},
then R = SΓ = Γ S. Also, S inherits right convexity, or right p-convexity and the
bounded inversion property from R. For if 0 ≤ x ≤ y in S, then xp(y) = yr and
0≤ p(y)≤ α ·1 for some α ∈C. So xp(y)≤ αy and hence

y(r∧α) = yr∧αy = xp(y)∧αy = xp(y).

Now, Q = S∩P is a prime `-ideal of S and P = QΓ = Γ Q. Let a ∈ R, s ∈ Σ . Then
a = u−1b and s = u−1v with u ∈ Γ , b ∈ S, and v ∈ S\Q. Since |b| ≤ α ·1 for some
α ∈C, b+v2 p(αv2) = αv2x and b−v2q(αv2) = αv2y for some x, y ∈ S+ and some
polynomials p and q. But then bh(v) = vz with h(v) = v2 p(αv2)q(αv2) ∈ S\Q and
z ∈ S; so ah(v) = sz and Σ is a right Öre set in R. A similar computation shows that
R is a right Öre ring. To show that RP exists when P is a minimal prime subgroup we
need to verify that Σ is right reversible. But if sa = 0, then a ∈ P and hence aw = 0
for some w ∈ Σ by Theorem 2.4.3. ut

The f -ring R is said to have localizations if each maximal ideal P of R is com-
pletely prime and the classical right quotient ring RP exists. Included in this class are
those f -rings in Theorem 4.3.17 which are semiprime and have bounded inversion
as well as all commutative unital f -rings.

Theorem 4.3.18. Let R be a unital f -ring that has bounded inversion and localiza-
tions. The following statements are equivalent for the strong R- f -module M.

(a) M is convex.
(b) For each maximal ideal P of R, MP is a convex RP- f -module.
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(c) For each maximal ideal P of R, the lattice of RP-submodules of MP is a
chain.

(d) Each finitely generated submodule of M is cyclic.

Proof. In view of Exercises 24 and 40 it suffices to show that (d) implies (c) and (c)
implies (a).

(c)⇒ (a). Suppose that 0≤ x≤ y in M. If P is a maximal ideal of R and y ∈ xRP,
then y = xp with p ∈ R+

P . Since x(p∨1) = xp∨ x = y∨ x = y and p∨1 is a unit of
RP, x ∈ yRP. Thus xRP ⊆ yRP for each maximal ideal P of R and hence xR⊆ yR by
Exercise 39.

(d)⇒ (c). Suppose that x, y ∈M. Since xR+yR = zR we have x = zu, y = zv and
z = xr + ys for u, v, r, s ∈ R; so z(1− ur− vs) = 0. Let P be a maximal ideal of R.
If ur + vs ∈ P, then z = 0 in MP and xRP = 0 = yRP. If ur + vs /∈ P, then ur /∈ P or
vs /∈ P; so u or v is a unit in RP. If u is a unit, then yRP ⊆ zRP = xRP and if v is a
unit, then xRP ⊆ yRP. ut

If only some finitely generated submodules are cyclic, then some elements of M
are convex (and conversely). To be more precise call a subset X of the f -module M
over the f -ring R a Prüfer set if it is a dual ideal of the poset M+ and if each x∈ X is
regular in the sense that r(x;R) = 0. For some examples note that the set of regular
elements of R+ and the set of right regular elements of R+ are both Prüfer sets,
and so is the set of units in R+. Also, if R is semiprime or M is a strong f -module,
then the dual ideal of M+ generated by a set of regular elements of M+ is a Prüfer
set. A submodule of M is called an X-submodule, where X is a subset of M, if its
intersection with X is not empty.

Theorem 4.3.19. Let R be a unital f -ring which has bounded inversion and local-
izations. Suppose that X is a Prüfer set in the unital strong right R- f -module M.
Then the following statements are equivalent.

(a) Each finitely generated X-submodule of M is cyclic.
(b) Each element of X is convex.
(c) Each X-submodule of M is a convex submodule.
(d) Each X-submodule of M is a convex `-submodule.
(e) If x,y ∈M+ and x+ y ∈ X, then xR+ yR = (x+ y)R.

Proof. (a) ⇒ (b). Suppose that 0 ≤ x ≤ y in M with y ∈ X . Then the arguments in
the proofs of (d) ⇒ (c) and (c) ⇒ (a) of Theorem 4.3.18 give that x ∈ yR.

(b)⇒ (c). Suppose that B is an X-submodule of M, 0≤ a≤ b ∈ B and x ∈ B∩X .
Then b+ x ∈ X and 0≤ a+ x≤ b+ x; so a+ x ∈ (b+ x)R yields that a ∈ B.

(c)⇒ (d). It suffices to show that if a, x ∈M with x ∈ X , then a+ ∈ aR+xR = B.
Since a+ +x and a−+x are both in X , a+ = (a+ +x)r and a− = (a−+x)s for some
r, s ∈ R+. So a+(1− r) = xr and a−(1− s) = xs. Now r∧ s = 0 since A is a strong
f -module and x is a regular element of A; so if P is a maximal ideal of R, then r or s
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is in P. If s ∈ P, then a− ∈ xRP ⊆ BP, so a+ ∈ BP; and if r ∈ P, then, also a+ ∈ BP.
Thus a+ ∈ B.

(d) ⇒ (a). Let B = a1R + · · ·+ anR with an ∈ X , and set a = |a1|+ · · ·+ |an| ≥
an. Then a ∈ X , and B and aR are X-submodules of M. Hence both are convex
`-submodules, and B = aR.

Now, (e) is certainly a consequence of (d) and it implies (b). For, if 0≤ x≤ y∈X ,
then xR+(y− x)R = yR shows that x ∈ yR. ut

For the ideal I of the commutative unital ring R let I−1 = {p ∈ Qc(R) : I p⊆ R}.
I is invertible if II−1 = R. It is easily seen that I is invertible iff IK = R for some
R-submodule K of Qc(R); and then K = I−1. If X is a subset of R, then R will be
called X-Prüfer if each of its finitely generated X-ideals is invertible; R is a Prüfer
ring if it is X-Prüfer when X is the set of all regular elements of R.

Theorem 4.3.20. Let R be a commutative f -ring with bounded inversion and let X
be a Prüfer subset of R. Then R is X-Prüfer iff each element of X is convex. If RP is
XP-Prüfer for each maximal ideal P of R, then each element of X is convex.

Proof. If each element of X is convex and J is a finitely generated X-ideal of R,
then J = aR by Theorem 4.3.19. Since J contains a regular element a−1 ∈ Qc(R)
and JRa−1 = R. Conversely, suppose that either R is X-Prüfer or RP is XP-Prüfer
for each maximal ideal P. If 0 ≤ x ≤ y with x ∈ R and y ∈ X let J = xR + yR. In
either case JP is invertible in RP. For, if JK = R with K an R-submodule of Qc(R),
then JPKP = RP and KP ⊆ Qc(RP) since the homomorphism R −→ RP extends to
a homomorphism Qc(R) −→ Qc(RP). Since RP is local and 1 = xu + yv with u,
v ∈ KP either xu or yv is a unit of RP. If xu is a unit, then w = yu(xu)−1 ∈ RP and
y = xw = x(w∨ 1). Thus, x ∈ yRP since RP has bounded inversion. On the other
hand, if yv is a unit, then again, x = yxv(yv)−1 ∈ yRP. So x ∈ yR by Exercise 39. ut

It is possible to characterize rings which are right convex left Öre f -rings or are
commutative Prüfer f -rings with bounded inversion without assuming that the rings
are even `-rings! A ring is called a quotient ring if each of its regular elements is a
unit.

Theorem 4.3.21. Let R be a ring which has regular elements.

(a) R is a right convex left Öre f -ring if and only if there is a right convex
quotient f -ring Q with CQ(1)⊆ R⊆ Q.

(b) Suppose R is commutative and unital. R is a Prüfer f -ring with bounded
inversion if and only if there is a quotient f -ring Q with CQ(1)⊆ R⊆ Q.

Proof. (a) One implication is given in Exercise 36 with Q = Qc(R). Conversely,
suppose Q is a right convex quotient f -ring and S = CQ(1) ⊆ R ⊆ Q. Then R is a
right convex f -ring by Exercise 30 and R is left Öre by Exercise 26.

(b) Let p∈Q with |p| ≤ n∈N where R is a Prüfer f -ring with bounded inversion
and Q = Qc(R). Then p = as−1 with a ∈ R and s ∈ R+; so a+, a− ≤ |a| ≤ ns,
a+, a− ∈ sR by Theorem 4.3.20, and p = a+s−1−a−s−1 ∈ R. Conversely, suppose
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CQ(1) ⊆ R ⊆ Q where Q is a quotient f -ring. Then Q has bounded inversion; so
R has bounded inversion and Q = Qc(R) since Q is a classical quotient ring of
S = CQ(1) by Exercise 26. We will now check that R is an `-subring of Q. If a ∈ R,
then a+ +1 and a−+1 are units of Q and hence a+ = (a+ +1)r and a− = (a−+1)s
with 0 ≤ r, s ≤ 1. So a+(1− r) = r and a−(1− s) = s. By repeating the argument
in the proof of (c) ⇒ (d) of Theorem 4.3.19 we get that a+ ∈ RP for each maximal
ideal P of S, and hence a+ ∈ R by Exercise 39. But then R is a Prüfer f -ring by
Theorem 4.3.20 since each regular element of R is convex in R. ut

We now return to self-injective f -rings and give the following decomposition
theorem.

Theorem 4.3.22. The f -ring R is right self-injective if and only if R ∼= S× T or
R ∼= S×T ×U where S is a regular right self-injective f -ring, T is a unital right
self-injective f -ring whose lower radical is an essential right ideal and an essential

left ideal, and U is the ring
(
Q Q
0 0

)
supplied with the lexicographic total order:

(
p q
0 0

)
≥ 0 iff p > 0, or p = 0 and q ≥ 0. Moreover, B(R) is the lattice of right

complements (summands) of R, and it is the lattice of left complements of R precisely
when R is unital.

Proof. If R has one of these decompositions, then it is right self-injective by Ex-
ercises 4.1.47 (f) and 4.1.49. Conversely, suppose R is right self-injective and as-
sume first that it is unital. Then R is left convex (Exercise 18) and B(R) is the
lattice of complements of the module RR and of the module RR (Exercise 15). Re-
call that each summand of R is a right self-injective ring (Exercise 4.1.49). Let
T = Z2(R). Then TR is essentially closed in RR (Theorem 4.1.6) and hence it is a
summand of R : R = S⊕T with S = T⊥. Since Zr(R) = Zr(S)⊕Zr(T )⊆ T we have
Zr(S) = 0. Thus, S is a regular ring (Theorem 4.1.8). Now, T has no nonzero reg-
ular ideals; that is, S is the regular radical of R. For, suppose A is a regular ideal
of T . Since A is an f -ring it is strongly regular and each of its ideals is an ideal of
T : IT = IAT ⊆ IA⊆ I for each ideal I of A. If x ∈ A, then xD⊆ Zr(R) = Zr(T ) for
some essential right ideal D of T . For each d ∈ D there is an essential right ideal
Dd of T with xd(Dd ∩A)⊆ xdDd = 0. Since Dd ∩A is an essential right ideal of A,
xd = 0; thus, x(D∩A)⊆ xD = 0, and x ∈ Zr(A) = 0. Suppose that β (T )∩B = 0 for
some right ideal B of T . Then T = E(BT )⊕F where F ⊇ β (T ) and hence E(B) = 0
since it is a regular ideal of T . If 0 6= C is a left ideal of T , then TC is essential in
TC⊥T⊥T (Exercise 15) and hence C∩β (T ) 6= 0.

Now assume that R is not unital and let e be a left identity of R. Then A = `(R) =
`(e) = R(1− e) is a one-dimensional Q-subalgebra of R. For, the ring homomor-
phism Re −→ EndZ(A) = EndQ(A) = EndR(AR) given by a 7→ µa, where µa de-
notes left multiplication by a, is surjective, and hence EndQ(A)∼= Re/B is an f -ring
since B = `(A;Re) is an `-ideal of Re. Since RR = Re¢A and AB = BA = 0, B is an
ideal of R. The projection of B ¢ A onto B is given by left multiplication by some
element f +u ∈ Re+A. Clearly, f is a left identity of B, and since Re is unital f is
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the identity element of B. Let g = e− f . Since f is central in Re and f A = A f = 0, f
is central in R. Suppose y∈ R and x∈ R f = B with 0≤ y≤ x. Then 0≤ gy≤ gx = 0.
So, y = ey = f y∈ B and B is an `-ideal of R. Let C = Rg = `( f ;Re) = `(B;Re). Then
C+A = `( f ;R). For, (C+A) f = 0 and if x = xe+a∈ R with a∈ A and x f = 0, then
xe f = 0 and xe ∈C. Hence B and V = C +A are `-ideals of R and R = B⊕ (C +A).
Since C ∼= Re/B is one-dimensional over Q, C = Qg and A = Qa for 0 < a ∈ A.
Since ga = (e− f )a = ea = a, V ∼= U . That U has the specified order is left for
Exercise 43. Since B is a unital right self-injective f -ring the previous case applies
to B. Suppose R = I ¢ J as right R-modules. Since R has a left identity element
I = aR and J = bR for a pair of orthogonal idempotents a and b. So I and J are right
`-ideals and hence I is a polar of R; that is, each complement right ideal of R is a
polar. Conversely, if I is a polar of R, then I = J⊕K where J is a polar of B and
K = 0 or V . Since J is a summand of BB it is clear that I is a summand of RR. On

the other hand, B¢Q
(

1 1
0 0

)
is a summand of RR that is not a polar. ut

Recall that a unital ring is quasi-Frobenius if it is right artinian and right self-
injective. In order to characterize a quasi-Frobenius f -ring in terms of convexity
we will first exhibit the right-left symmetry of quasi-Frobenius rings, and to do this
requires some preparation. In the next three results J = J(R) denotes the Jacobson
radical of the ring R.

Theorem 4.3.23. (Nakayama’s Lemma). The following statements are equivalent
for the right ideal A of R.

(a) A⊆ J.
(b) If MR is a finitely generated module with M = MA, then M = 0.
(c) If NR is a submodule of MR such that M = N + MA and M/N is finitely

generated, then M = N.

Proof. By replacing R with R1 = R +Z we may assume that R is unital and all
modules are unital since J(R) = J(R1).

(a) ⇒ (b). Let {x1, . . . ,xn} be a minimal generating set for M. Since M = x1R +
· · ·+ xnR = x1RA + · · ·+ xnRA, x1 = x1a1 + · · ·+ xnan with a j ∈ RA ⊆ J. So (1−
a1)−1 ∈ R, x1 ∈ x2R+ · · ·+ xnR and hence M = 0.

(b) ⇒ (c). This is obvious since M/N ·A = MA+N/N = M/N.
(c) ⇒ (a). If A 6⊆ J, then A 6⊆ B for some maximal right ideal B of R. So R =

B+A = B+RA and we have the contradiction R = B. ut
Theorem 4.3.24. Let M and K be finitely generated unital modules over the unital
ring R and assume K is projective. Let A⊆ J be a right ideal of R.

(a) If α : M −→ K is an R-homomorphism and ᾱ : M/MA −→ K/KA is an
isomorphism, then α is an isomorphism.

(b) Assume M is projective. Then M ∼= K iff M/MA∼= K/KA.

Proof. (a) Since ᾱ is onto K/KA = α(M)+KA/KA, K = α(M)+KA and K = αM
by Theorem 4.3.23. Since K is projective and α is onto, α splits; that is, there is an
R-homomorphism β such that the diagram
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commutes. So M = kerα ¢ N with N ∼= K. Since kerα + MA/MA ⊆ ker ᾱ = 0,
necessarily kerα ⊆ MA = (kerα)A ¢ NA; so kerα = (kerα)A and kerα = 0 by
Theorem 4.3.23.

(b) Let γ : M/MA −→ K/KA be an isomorphism. Since M is projective there is
an R-homomorphism α such that the following diagram commutes.

Then ᾱ = γ and hence α is an isomorphism by (a). ut
Theorem 4.3.25. Let R be a unital right artinian ring and let R = A1 ¢ · · ·¢ An be
a decomposition of RR into indecomposable right ideals. Then the following hold.

(a) AiJ is the unique largest proper submodule of (Ai)R.
(b) Ai/AiJ ∼= Ak/AkJ iff Ai ∼= Ak.
(c) If LR is a simple unital R-module, then L∼= Ai/AiJ for some i.

Proof. (a) Ai = eiR for an idempotent ei and AiJ = eiJ = eiR∩ J. Suppose I is a
proper submodule of Ai and assume, by way of contradiction, that I 6⊆ AiJ. Since J
is the largest nilpotent ideal of R (Theorem 3.2.10) I is not nilpotent; so I contains
an idempotent f with f 6= 0 and f 6= ei. Now, eiR = f eiR ¢ (ei − f )eiR and f =
f ei f ∈ f eiR; so (ei− f )ei = 0 since eiR is indecomposable. Thus, ei = f ei ∈ I and
Ai = I.

(b) Since each Ai is projective this follows from Theorem 4.3.24.
(c) Let R = R/J and Ai = Ai/AiJ. Then R = A1 ¢ · · ·¢ An and since LJ = 0,

L = LA1 + · · ·+LAn. For some i and some x ∈ L, xAi 6= 0. So Ai ∼= xAi = L. ut
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We next investigate some annihilator conditions that hold in a unital right self-
injective ring. This gives another explanation for why such an f -ring is left convex
(see Exercise 18).

Theorem 4.3.26. Let R be a unital ring.

(a) If R is right self-injective, then `(A∩B) = `(A) + `(B) for any two right
ideals A and B, and each finitely generated left ideal is a left annihilator.

(b) Conversely, if the second annihilator condition in (a) holds and the first
holds for finitely generated right ideals, then each R-homomorphism D−→
R, where D is a finitely generated right ideal, can be extended to R.

Proof. (a) Let u ∈ `(A∩B) and define α : A + B −→ A +(1 + u)B by α(a + b) =
a+(1+u)b. Then α = µc for some c ∈ R; that is, a+(1+u)b = ca+ cb for a ∈ A
and b ∈ B. Consequently, ca = a, cb = (1 + u)b and u = (c− 1)+ (u− (c− 1)) ∈
`(A)+ `(B). So `(A∩B)⊆ `(A)+ `(B) and the reverse inclusion always holds.

Let I = Ra1 + · · ·+Ran be a finitely generated left ideal of R. We use induction on
n to show that `r(I) = I. If a ∈ `r(Ra1), then r(a)⊇ r(a1) and the map a1R−→ aR
given by a1x 7→ ax is induced by left multiplication µb for some b∈ R. So ax = ba1x
for each x ∈ R and a = ba1 ∈ Ra1. Thus `r(Ra1) ⊆ Ra1 ⊆ `r(Ra1). Let K = Ra1 +
· · ·+Ran−1. Then I = K +Ran and, by the previous paragraph and induction,

`r(I) = `(r(K)∩ r(an)) = `r(K)+ `r(Ran) = K +Ran = I.

(b) Let D = a1R+ · · ·+anR and let α : D−→R be an R-homomorphism. If n = 1,
then Rα(a1) = `r(α(a1)) ⊆ `r(a1) = Ra1 since r(a1) ⊆ r(α(a1)). So α(a1) = xa1
and α = µx. For n > 1, let A = a1R + · · ·+an−1R and B = anR. By induction on n,
there exist elements x,y ∈ R such that α(a) = xa for a ∈ A and α(b) = yb for b ∈ B.
So x− y ∈ `(A∩B) = `(A)+ `(B) and x− y = u− v with uan = 0 and vA = 0. Let
z = x+ v = y+u. Then for a ∈ A and b ∈ B,

z(a+b) = (x+ v)a+(y+u)b = xa+ yb = α(a)+α(b) = α(a+b).

ut
We now return to the symmetry of quasi-Frobenius rings.

Theorem 4.3.27. The following statements are equivalent for the unital ring R.

(a) R is quasi-Frobenius.
(b) R is right artinian and each right ideal is a right annihilator and each left

ideal is a left annihilator.
(c) R is left artinian and left self-injective.

Proof. (a) ⇒ (b). Since R is right artinian it has the minimum condition for right
annihilators and hence it has the maximum condition for left annihilators. But then
R has the maximum condition on finitely generated left ideals by Theorem 4.3.26
(a), and hence R is left noetherian. For, if A1 ⊂ A2 ⊂ ·· · is a strictly increasing



4.3 Lattice-ordered Rings and Modules of Quotients 351

chain of left ideals and a1 ∈ A1 and an ∈ An\An−1, then Ra1 ⊂ Ra1 + Ra2 ⊂ ·· · is
a strictly increasing chain of finitely generated left ideals. Note that we now know
that each left ideal is a left annihilator. Let A be a right ideal of R. If A⊂ r`(A), then
there is a right ideal B with A⊂ B⊆ r`(A) such that B/A is simple. As in Theorem
4.3.25 we have a decomposition of RR into indecomposable modules: R = A1 ¢ · · ·¢
An. Since A j is an indecomposable injective module it contains a unique minimal
right ideal S j. Moreover, if [A1], . . . , [Am] are the distinct isomorphism classes of
A1, . . . ,An, then [S1], . . . , [Sm] are distinct isomorphism classes of simple modules.
But by Theorem 4.3.25 there are precisely m isomorphism classes of simples; so
[S1], . . . , [Sm] are all of them. In particular, for some j, B/A ∼= S j, and so there is a
nonzero homomorphism α : B −→ R with α(A) = 0. Since α = µx for some x ∈ R
we have xA = 0 and the contradiction 0 6= α(B) = xB⊆ `(A)r`(A) = 0. Thus, each
right ideal is a right annihilator.

(b) ⇒ (a). If A and B are right ideals of R, then

A∩B = r`(A)∩ r`(B) = r(`(A)+ `(B)).

So
`(A∩B) = `r(`(A)+ `(B)) = `(A)+ `(B),

and R is right self-injective by Theorem 4.3.26 (b).
(b) ⇒ (c). Since R is right noetherian (Exercise 4.1.10) R has the minimum con-

dition on left annihilators; that is, R is left artinian. So the left-right dual of the
preceding paragraph completes the proof.

(c) ⇒ (b). Again, the left-right dual of the first paragraph gives that each right
(left) ideal is a right (left) annihilator and R is right artinian. ut

We will now give a characterization of quasi-Frobenius f -rings in which injec-
tivity is replaced by convexity.

Theorem 4.3.28. The following statements are equivalent for the f -ring R.

(a) R is quasi-Frobenius.
(b) R is the direct sum of a finite number of totally ordered quasi-Frobenius

rings.
(c) R is left and right convex and left artinian.
(d) R is left and right convex, left noetherian, and each prime ideal is maximal.

Proof. The equivalence of (a) with (b) is implied by Exercise 29, and that (b) implies
(c) follows from Theorem 4.3.27 and Exercise 15 (or Theorem 4.3.26). Moreover,
(d) is clearly a consequence of (c) since R is unital by Theorem 4.3.15 (and Exercise
29).

(d)⇒ (b). We may assume that R is totally ordered. Let J be the Jacobson radical
of R. Since J = β (R) is nilpotent and R is a left noetherian local ring, the series
J ⊇ J2 ⊇ ·· · can be refined to a composition series for RJ. So R is left artinian.
Now, each right ideal is an ideal. For, suppose a ∈ R and xa /∈ aR for some x ∈ R.
Then aR ⊆ xaR and a = xay for some y ∈ R. If y /∈ J, then xa = ay−1 ∈ aR. If
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y ∈ J, then yn = 0 for some n ∈ N and a = xnayn = 0. Thus Ra⊆ aR for each a ∈ R
and aR = Ra by Exercise 33. Suppose α : aR −→ R is an R-homomorphism. Then
α(aR) ⊆ aR since RR has a unique composition series and α(aR) does not have a
larger composition series than aR. So α(a) = xa and α = µx for some x ∈ R. ut

Note that both left and right convexity are needed in the previous result since
there are right convex right artinian f -rings that are not quasi-Frobenius (see Exer-
cise 31).

A totally ordered unital right self-injective ring is a left valuation ring and each
principal left ideal is a left annihilator. These conditions are close to characterizing
right injectivity among totally ordered rings, as we will show below. A ring is called
left (respectively, right) duo if each of its left (respectively, right) ideals is an ideal,
and R is a duo ring if it is left and right duo. As we saw in the previous result a quasi-
Frobenius f -ring is duo, and, more generally, each right convex right noetherian f -
ring is right duo (Exercise 33), but it need not be left duo (Exercise 31). The next
result is preparatory for the theorem that follows it.

Theorem 4.3.29. Let R be a unital left valuation ring with maximal ideal J. Con-
sider the following conditions on R.

(a) J is the only prime ideal of R and RR is uniform.
(b) Ra = `r(Ra) for each a ∈ R.
(c) If A is a left ideal that is not a left annihilator, then there is a smallest

principal left ideal Rb containing A. Moreover, Rb = `r(A) and A = Jb.
(d) If A⊂ B are left ideals, then `r(A)⊆ B.

Then (a) implies (b), (b) implies (c), and (c) implies (d).

Proof. (a) ⇒ (b). If b ∈ `r(Ra)\Ra, then Ra ⊂ Rb and a = xb with x ∈ J. Since
r(Ra) = r`r(Ra)⊆ r(Rb) we have r(x)∩bR = 0. For, if br ∈ r(x), then 0 = xbr = ar
and hence br = 0. Thus, r(x) = 0 yet J is a nil ideal.

(b)⇒ (c). Let b ∈ `r(A)\A. Then A⊆ Rb⊆ `r(A) gives `r(A)⊆ Rb⊆ `r(A). Let
α : R−→ Rb be right multiplication by b. Then the simple left R-module R/J maps
onto Rb/Jb. So R/J ∼= Rb/Jb, Jb is the maximal submodule of Rb, and A ⊆ Jb.
Suppose Jb 6⊆ A, and take x ∈ J with xb /∈ A. Since xb ∈ `r(A)\A we again have
Rxb = `r(A) = Rb, and b = cxb; so b = 0 since 1− cx is a unit of R. Thus, Jb = A.
Now, if A⊆ Rd ⊆ Rb, then Rb = `r(A)⊆ Rd ⊆ Rb and hence Rb = Rd.

(c) ⇒ (d). If A ⊂ `r(A), then A = Jb and `r(A) = Rb. But then b ∈ B since
otherwise Jb = A⊂ B⊂ Rb and Jb is not a maximal submodule of Rb. ut

A ring R is called left maximal if whenever {Jλ : λ ∈Λ} is a set of left ideals of
R and {xλ : λ ∈ Λ} is a subset of R such that the congruences x ≡ xλ (mod Jλ ) are
pairwise solvable, then these congruences are simultaneously solvable.

Theorem 4.3.30. Let R be a unital left valuation ring or a totally ordered ring. If
R is right self-injective, then R is left maximal and Ra = `r(Ra) for each a ∈ R.
Conversely, if R satisfies these two conditions and it is right duo, then it is right
self-injective.
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Proof. We will assume R is a left valuation ring since a totally ordered ring which
is either unital and right self-injective or in which each principal left ideal is a left
annihilator must be a left convex left valuation ring. Suppose first that R is right
self-injective. Then finitely generated left ideals are left annihilators by Theorem
4.3.26. Suppose x ≡ xλ (mod Aλ ) is a pairwise solvable system of congruences in
RR. Note that the assumption that the congruences are pairwise solvable is equivalent
to the condition: xλ − xρ ∈ Aλ + Aρ = Aλ ∨Aρ for all λ ,ρ ∈ Λ . In particular, if
{Aλ : λ ∈Λ} has a smallest member Aλ0 , then xλ0 is a simultaneous solution since
xλ0 − xλ ∈ Aλ for every λ ∈Λ . Now assume there is no smallest left ideal in {Aλ}.
Let Kλ = r(Aλ ) and let µλ : Kλ −→ RR be left multiplication by xλ . If b ∈ Kλ ∩Kρ ,
then µλ (b) = µρ(b) since Aλ ⊆Aρ , say, and therefore xλ −xρ ∈Aρ and (xλ −xρ)b =
0. So these mappings are compatible and hence the homomorphism α : ∪Kλ −→ R
given by α(b) = xλ b if b∈Kλ is induced by left multiplication by x∈R : xb = xλ b if
b ∈ Kλ . So x−xλ ∈ `(Kλ ) = `r(Aλ ) for each λ ∈Λ . If Aλ = `r(Aλ ), then certainly
x− xλ ∈ Aλ . Suppose Aλ ⊂ `r(Aλ ), and take Aρ ⊂ Aλ . By (d) of Theorem 4.3.29
x− xρ ∈ `r(Aρ)⊆ Aλ , and hence x− xλ = x− xρ + xρ − xλ ∈ Aλ . So x is a solution
to the system of congruences.

For the converse first note that R is a duo ring since, for each a ∈ R, r(Ra) is an
ideal and hence so is Ra = `r(Ra). Let A be a right ideal of R and suppose f : A−→R
is an R-homomorphism. If a∈ A, then f (a)r(a) = 0; that is, f (a)∈ `r(Ra) = Ra. So
f (a) = xaa. We claim that the system of congruences x ≡ xa(mod `(a)) is pairwise
solvable. For, suppose a,b∈A. Then, assuming aR = Ra⊆Rb = bR, we have `(b)⊆
`(a) and a = br for some r ∈ R. Hence, (xb−xa)a = xbbr−xaa = f (b)r− f (a) = 0,
and xb− xa ∈ `(a). Since R is left maximal we can find x ∈ R such that xa = xaa =
f (a) for each a ∈ A. Therefore, R is right self-injective. ut

A ring R is called right pre-self-injective if R/A is right self-injective for each
nonzero ideal A of R. It is called almost left maximal if each proper homomorphic
image R/A(A 6= 0) is left maximal. Since the conditions in the previous result are
frequently preserved under homomorphic images they can be used to describe left
convex totally ordered right pre-self-injective rings. The precise statement is given
in Exercise 50. Note, however, that the totally ordered pre-self-injective ring Z is far
from being convex. We will now give an example.

Theorem 4.3.31. Let A be a division ring, ∆ =−R+, and let R = V (A∗∆)⊆V (A∗
R) be a crossed product formal power series ring of ∆ over A with 1 = x0 and
σ : R −→ Aut(A) (see Exercises 3.5.13 and 3.5.20). Then R is a pre-self-injective
duo valuation domain and the Jacobson radical of each proper homomorphic image
of R is nil. If A is totally ordered, then R is the subring of bounded elements of the
totally ordered division ring V (A∗R).

Proof. By Theorem 3.5.8 and Exercise 3.5.20 each nonzero element of R is of the
form xα u = u1xα where u and u1 are units of R and α ≤ 0. Also, xα xγ = xα+γ w
for some unit w. So each principal one-sided ideal is an ideal and R is a duo ring.
Let I be a nonzero ideal of R and let β = lub {γ ∈ ∆ : xγ ∈ I}. If xβ ∈ I, then
xα u = xβ xα−β u1 ∈ xβ R for every xα u ∈ I; so I = xβ R = (xβ ). If xβ /∈ I, then I =
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{xγ u : γ < β}∪{0}= (x<β ). For, clearly, I ⊆ (x<β ), and if γ < β , then γ ≤ α < β
for some α with xα ∈ I; so xγ = xγ−α xα u ∈ I.

Let S = R/I where I 6= 0 and put y = x + I. We will consider S to be a formal
power series ring in y. The elements of S will be denoted by v = ∑γ≤0 yγ aγ with
v(γ) = aγ and

(I) yγ = 0 ∀γ ≤ β if I = (xβ ),
(II) yγ = 0 ∀γ < β if I = (x<β );

so each nonzero element of S is of the form yγ u = u1yγ with u and u1 units of S, and
γ > β in case (I), and γ ≥ β in case (II). Note that `(v) = r(v) for each v ∈ S. In case
(I), `(yγ) = (yβ−γ) and `((y<γ)) = (yβ−γ) if γ ≥ β , and in case (II), `(yγ) = (y<β−γ)
and `(y<γ) = (yβ−γ). In both cases ``(yγ) = (yγ).

We will check that S is right self-injective. Let K be an ideal of S and let
f : KS −→ SS be a homomorphism. If K = (yγ), then since f (K)`(K) = 0, f (K) ⊆
``(K) = K; so f (yγ) = vyγ for some v∈ S. Therefore, f is induced by left multiplica-
tion by v. Suppose that K = (y<γ). Choose a strictly increasing sequence (αn)n∈N of
real numbers with γ = lub {αn}. Then K = ∪n(yαn). For each n we can find vn ∈ S
with f (yαn) = vnyαn . If m ≥ n, then vnyαn = f (yαm)yαn−αm w = vmyαmyαn−αmw =
vmyαn and vm− vn ∈ `(yαn). In case (I) vm− vn ∈ (yβ−αn); that is vm(δ ) = vn(δ ) if
δ > β −αn. Note that β −α1 > β −α2 > · · · ≥ 0 and define v by

v(δ ) =





v1(δ ) if β −α1 < δ ≤ 0
v2(δ ) if β −α2 < δ ≤ β −α1

· · ·
vn(δ ) if β −αn < δ ≤ β −αn−1

· · ·
Then v ∈ S. For, if δ1 ≤ δ2 ≤ ·· · is an increasing sequence in supp v, then δ1 ∈
(β −αn,β −αn−1] for some n; consequently {δv} ⊆ ∪n

i=1 supp vi and the latter
has a.c.c. Now, v− vm ∈ `(yαm) = (yβ−αm) for each m. For, if δ > β −αm, then
β −αn < δ ≤ β −αn−1 for some n≤m (α0 = β ), and v(δ ) = vn(δ ) = vm(δ ). So if
w ∈ K, then w = yαms for some m and f (w) = vmyαms = vyαms = vw.

A similar computation in case (II) shows that f is induced by left multiplication
by some element of S. The only change is that the intervals used in the definition of
v are [β −αn,β −αn−1) instead of (β −αn,β −αn−1].

Since J(R) = (x<0) and J(S) = (y<0), if yα ∈ J(S) and n ∈ N with nα < β , then
(yα)n = 0. So J(S) is nil. To see that R = C(1) when A is totally ordered just note
that if 0 < v ∈ V (A ∗R) and γ = maxsupp v, then v ≤ n = nx0 for some n ∈ N iff
γ ≤ 0. ut

The property of being left maximal is a form of completeness that is shared by all
totally ordered unital right self-injective rings. Another form of completeness that is
shared by all right self-injective f -rings is lateral completeness.

Theorem 4.3.32. A right self-injective f -ring is laterally complete. A regular f -ring
is right self-injective iff it is laterally complete.
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Proof. Let R be a right self-injective f -ring. By Theorem 4.3.22 we may assume that
R is unital. Also, for each a ∈ R there is a unique idempotent ea in R with a⊥⊥ =
eaR = E(aR), and a⊥ = (eaR)⊥ = e⊥a = `(ea) (see Exercise 3.4.14); in particular,
|a| ∧ |b| = 0 iff ea ∧ eb = 0. Let A be a pairwise disjoint set in R+ and put I = AR.
Then I⊥ = A⊥ since x ∈ A⊥ iff A ⊆ x⊥, iff I = AR ⊆ x⊥, iff x ∈ I⊥. Moreover, the
sum ∑a∈A eaR is direct. Define α : ∑a∈A eaR−→R by α(∑eara) = ∑ara. α is a well-
defined R-homomorphism since ∑eara = 0 yields eara = 0 and so ara = aeara = 0.
Thus, there exists some x ∈ R with xea = a for each a ∈ A, and we may assume
0 ≤ x ∈ I⊥⊥ since R = I⊥⊥ ⊕ I⊥. We will show that x = lubRA. If R is a totally
ordered homomorphic image of R, then ēa = 0 or 1; consequently, x̄ ≥ ā for each
a ∈ A, and x is an upper bound of A. Suppose y is an upper bound of A and write
y = z + u where z ∈ I⊥⊥ and u ∈ I⊥. For each a ∈ A, zea = yea ≥ aea = xea; that
is (z− x)ea ≥ 0. Thus, (z− x)− ∈ `(ea) = a⊥ and (z− x)− ∈ I⊥ ∩ I⊥⊥ = 0; that is,
y≥ z≥ x.

Now assume R is a regular f -ring which is laterally complete, and let α : IR −→
RR be an R-homomorphism where I is an ideal of R. Let {eλ : λ ∈Λ} be a maximal
set of orthogonal (equivalently, disjoint) idempotents in I. Note that α(I)⊆ I since if
a ∈ I, then a = ea with e2 = e ∈ I and α(a) = α(a)e ∈ I. Let α(eλ ) = xλ ∈ I. Now,
{x+

λ ,x−λ : λ ∈ Λ} is a pairwise disjoint set in I since if ρ 6= λ , then |xλ | ∧ |xρ | =
|xλ |eλ ∧|xρ |eρ = 0. Let

y =
∨

λ∈Λ
x+

λ , yρ =
∨

λ 6=ρ
x+

λ , z =
∨

λ∈Λ
x−λ .

Since R is completely distributive (Theorem 2.1.3) y∧ z = 0, y = yρ ∨ x+
ρ = yρ +

x+
ρ , and yρ ∈ e⊥ρ = `(eρ). So yeρ = (yρ + x+

ρ )eρ = x+
ρ eρ = (xρ eρ)+ = x+

ρ for each
ρ ∈ Λ . Similarly zeρ = x−ρ . Let x = y− z; then, for each ρ ∈ Λ , xeρ = xρ and, for
any idempotent e ∈ I, (α(e)− xe)eρ = α(eρ)e− xρ e = 0. Now, the sum ∑λ eλ R is
essential in I. So {eλ}⊥ = (∑eλ R)⊥ = I⊥ and α(e)−xe ∈ I⊥∩ I = 0. If a ∈ I, then
a = ea and α(a) = α(e)a = xea = xa. Thus, RR is a Baer module; so R is unital and
hence it is right self-injective. ut

Exercises.

1. Let C be a class of R-modules which is homomorphically and extensionally
closed, and let α ∈ HomR(M,N). Show that N/αM ∈ C iff N/αK ∈ C when-
ever M/K ∈ C . In particular, if F is a topology of R and α ∈ EndR(RR), then
αR ∈ F iff αF⊆ F.

2. Let MR be a module over the sp-po-ring R and let F be a topology of R.

(a) Show that 2t+(M)⊆ t(M).
(b) If M has no elements of order 2 show that t+(M) = t(M).
(c) Suppose M has no elements of order 2 and `(R;M) = 0. Show that the

torsion theory cogenerated by E(M) is obtained from a positive topology
of R. (Use Exercise 4.2.2.)
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(d) If R has no elements of order 2 show that its topology D of dense right
ideals is positive.

3. If R is an essentially positive po-ring show that the Goldie topology G is posi-
tive.

4. Suppose F is a pretopology for the po-ring R and MR is a d-module. Show that
t+(M) = 0 iff t+(M/A) = 0 for every polar A which is an R+-subgroup of M. In
particular, if R is directed, F is a positive topology and M is an f -module, then
M is torsion-free if B(M)⊆ CF(M). (See Exercise 4.2.10.)

5. Suppose F is a positive topology of the po-ring R and MR is a d-module.

(a) Show that the family of F-closed convex `-submodules of M is a complete
distributive sublattice of CF(M) which satisfies the infinite distributive law
A∩∨λ Bλ = ∨λ A∩Bλ .

(b) Suppose M is an F-dense `-submodule of the torsion-free f -module K.
Show that B(M) and B(K) are canonically isomorphic (see Exercise
2.2.14). In particular, B(R) ∼= B(S) if the f -ring S is a right quotient ring
of its `-subring R.

(c) Suppose R is directed and M and K are as in (b). If N is a convex-`-
submodule of M (respectively, K) show that c`F(N⊥M ;K) = (c`F(N;K))⊥K

(respectively, N⊥K ∩M = (N ∩M)⊥M ). In particular, if A ∈ B(M), then
c`F(A;K) = A⊥M⊥K .

6. Let F be a positive topology of the directed po-ring R and let MR be an
f -module.

(a) If M is a torsion-free qF f -module show that M is a subdirect product of
totally ordered torsion-free modules iff MF is a subdirect product of totally
ordered torsion-free RF-modules.

(b) Suppose MR is an irredundant f -module. Show that M is torsion-free iff it
is a subdirect product of totally ordered torsion-free modules

7. Let A be a subring of the totally ordered division ring K, and suppose A is not a
right Öre domain. For the infinite set Λ let R = {(xλ ) ∈ DΛ : xλ ∈ A except for
finitely many λ}. Show that R is a q f -ring that is not a right Öre ring.

8. Let R be a unital regular `-ring in which some power of each element is positive.
Show that R is an f -ring.

9. Show that each one-sided ideal of a regular f -ring is an `-ideal.

10. Let F ⊆ H be positive topologies of the directed po-ring R. Suppose M is an
R-module with tH(M) = 0.

(a) If M is a qH f -module show that M is a qF f -module and MF is an `-R-
submodule of MH.

(b) If R is a qH f -ring with tH(R) = 0 show that R is a qF f -ring and RF is an
`-subring of RH.
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11. Let F be a positive topology of the directed po-ring R, and let C be the class of
torsion-free qF f -modules.

(a) Show that C is hereditary and is closed under direct products, directed di-
rect limits, and inverse limits.

(b) Suppose Mγ is an f -module in C for each γ in the poset Γ . Assume
r(Mγ ;R)+ = 0 for each γ ∈ Γ , and V (Γ ,(Mγ)F) is an R- f -module (see
Theorems 2.6.1 and 2.6.2). Show that V (Γ ,(Mγ)F) is F-injective and V (Γ ,Mγ)
belongs to C .

(c) Suppose F is the Goldie topology and M is a module in C . If N is a closed
convex `-submodule of M show that M/N belongs to C .

12. Let F be a pretopology of the po-ring R. Suppose M is an F+-dense R+-`-
subgroup of the R+- f -group K and t+(K) = 0. Let A be a convex `-R+-subgroup
of M, and let B = c`F+(A;K).

(a) If M = lex A show that K = lex B (see Theorem 2.5.6 and Exercise 2.5.8).
(b) If K = lex B show that M = lex (B∩M).
(c) Suppose F is the Goldie topology and it is positive. Assume MR is an f -

module and K = E(MR). If K = lex B and L is a complement of B in K
show that L is totally ordered and K = B ¢← L.

(d) Assume the conditions in (c) except for K = lex B. Let P be the partial order
of L that it inherits from K/B. Show that L∩K+ ⊆ P and use the example
R = Z, M = R⊕R to show that the containment can be proper.

13. Let F be a positive topology and suppose α : M−→N is an R-`-homomorphism
between qF f -modules. Show that Q(α) : MF −→ NF is an `-homomorphism.

14. Suppose F is a positive topology and MR is a torsion-free f -module. Let K =
{x ∈MF : ∀d1,d2 ∈ (M : x)+, (xd1)+∧ (xd2)− = 0}.

(a) Show x ∈ K iff x+ ∈MF and x+d = (xd)+ for each d ∈ (M : x)+.
(b) Show that M∪M+

F ⊆ K ⊆M+
F −M+

F , −K ⊆ K and KR+
F ⊆ K.

(c) Show that K is a subgroup of MF iff K is an f -module extension of M, iff
M+
F −M+

F is an f -module extension of M. If K is a subgroup, then K =
M+
F −M+

F .

(d) Let R =
(
Q 0
Q Q

)
have the coordinatewise order, let F be the Goldie topol-

ogy, and let M be the `-ideal of R given by M =
(

0 0
Q 0

)
. Show that F is

positive, E = E(M) is an `-module extension of M and K = M∪E+∪−E+

(see Exercise 4.2.13).

15. Let MR be an f -module with `(R;M) = 0. Show that the following are
equivalent.

(a) If x,y ∈M with xR∩ yR = 0, then |x|∧ |y|= 0.
(b) Each submodule A has A⊥ as its unique complement.
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(c) If A is a submodule of M, then A⊥⊥ is the unique largest essential extension
of A.

(d) B(M) is the set of complements in M.
(e) Each complement in M is a convex `-submodule.

16. Let F be a topology of the po-ring R. Suppose M is an F+-dense `-submodule of
the f -module K and t+(K) = 0. Show that M satisfies the conditions in Exercise
15 iff K satisfies these conditions.

17. Suppose F is a positive topology of the directed po-ring R and MR is an
f -module. For each D ∈ F let [D+R1,M/t(M)] have the usual partial or-
der: α ∈ [D+R1,M/t(M)]+ iff α(D+) ⊆ (M/t(M))+. Show that M is a qF f -
module iff each [D+R1,M(t(M)] is an `-group and α+d = (αd)+ for each
α ∈ [D+R1,M/t(M)] and d ∈ D+.

18. Let R be a left self-injective ring. Suppose R is a left d-ring and if 0 ≤ x ≤ y,
then `(y)⊆ `(x). Show that R/r(R) is right convex.

19. Give an example of a po-ring R that is not an `-ring but for which Q(R) is an
f -ring extension of R.

20. Let F be a positive topology of the right f -ring R, and let MR be an f -module.

(a) Suppose MF is a strong f -module. Show that for each x ∈ MF there is an
F-dense `-submodule D of RR with xD⊆ ψ(M).

(b) Suppose R is an f -ring and D is an `-submodule of RR. Show that the poset
{dR : d ∈ D} is directed up iff the poset {dR+ : d ∈ D+} is directed up.

(c) Suppose R is an f -ring and for each q ∈ RF the poset {dR : d ∈ (ψ(R) : q)}
is directed up. Show that R is a qF f -ring iff each (ψ(R) : q) contains an
F-dense `-submodule of RR.

(d) Suppose R is an f -ring in which each finitely generated right ideal is princi-
pal. Show that R is a qF f -ring iff RR is a qF f -module, iff (ψ(R) : q) contains
an F-dense `-submodule of RR for each q ∈ RF.

21. Let C be a commutative irredundant f -ring, and let R be an f -algebra over C
which is C-nonsingular.

(a) Show that E(CR) is an f -algebra extension of R.
(b) Show that R is C-unitable iff E(CR) is unitable, iff R satisfies the identities

(3.4.5) and (3.4.6) of Section 3.4 (see Theorem 3.4.8).
(c) Show that the components of C are all `-simple iff E(CR) is infinitesimal

whenever R is infinitesimal (see Theorem 3.4.9.)

22. Suppose that the nonsingular f -ring R is an irredundant subdirect product of
totally ordered rings. Show that R is a q f -ring iff R/A is a right Öre domain for
each maximal polar A of R.

23. Let R be a reduced f -ring. Show that R is a q f -ring iff aR∩ bR 6= 0 for all
a,b ∈ R with 0 < a≤ b.
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24. Let MR be an f -module over the directed po-ring R. Show that M is convex iff
each of its submodules is a convex submodule, iff each of its submodules is a
convex `-submodule, iff for all x,y ∈M, if |x| ≤ |y|, then x ∈ yR.

25. Let F be a topology of the right convex f -ring R. Show that RF has bounded
inversion. (For any ring R, if p ∈ RF, then p−1 ∈ RF iff r(p;ψ(R)) = 0 and pD
is F-dense in RF for some D ∈ F.)

26. Let R be a unital f -ring with bounded inversion. Show that R is a classical
left and right quotient ring of C(1) = {a ∈ R : |a| ≤ n}. (If r ∈ R+, then r =
r∨1+(r∧1−1).)

27. Show that the following statements are equivalent for the f -ring R with bounded
inversion.

(a) R is a direct sum of local f -rings.
(b) 1 is finite valued.
(c) C(1) is a direct sum of local f -rings.

Moreover, the number of summands is equal to the number of values of 1.

28. (a) Let T be a convex `-subring of the right convex f -ring R. Show that T is
right po-normal; and T is right convex iff a ∈ aT for each a ∈ T .

(b) Let V be the variety of `-rings generated by the class of right convex f -
rings. Show that R ∈ V iff R is an `-subring of a right convex f -ring (see
Exercise 1.4.16).

(c) Let V be the variety of C-`-algebras generated by the unital right convex
C- f -algebra K. Show that R ∈ V iff R is an `-subalgebra of a unital right
convex member of V which can be taken to be a K- f -ring provided C ·1⊆K
is cofinal in K.

29. Show that the following statements are equivalent for the right convex f -ring R.

(a) R has the maximum condition on polars.
(b) RR is a finite dimensional module.
(c) R contains a finite valued regular element.
(d) R is the direct sum of a finite number of totally ordered rings.
(e) R is the direct sum of a finite number of local rings.

Moreover, other statements which are equivalent to (a) are obtained by replacing
R in each of these statements by Q(R), CR(1) or CQ(R)(1). (Use Exercises 25,
26, 27, and 28.)

30. Let R be a right convex f -ring and let T be a subring of R which contains
S = CR(1).

(a) Show that RT is a convex f -module.
(b) Show that T is a convex `-subring of R.
(c) Suppose each element of T is bounded by a central element of T . Show that

each multiplicatively closed subset of T is a right Öre set in T .
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31. Let σ : F −→ F be an order preserving monomorphism of the totally ordered
field F , and let R = F [[x;σ ]] be the totally ordered twisted formal power series
ring with exponents from N and coefficients from F . The elements of R are
represented by ∑n≥0 xnan and ax = xaσ - see Exercise 3.5.13 but note that a.c.c.
has been replaced by d.c.c.

(a) Show that each nonzero element of R is of the form xnu where u is a unit
of R.

(b) Show that R is right convex.
(c) Show that R is left convex iff σ is an automorphism. (Consider x2 < xa.)
(d) Show that R/xnR is right artinian, and it is left artinian if and only if σ is an

automorphism.

32. Let R be the 2×2 upper triangular matrix ring over Q, ordered coordinatewise.
Show that R is left and right convex and R has a left (right) ideal that is not an
ideal.

33. Suppose R is a right convex f -ring.

(a) If R has a.c.c. or d.c.c. on principal right ideals show that each right ideal
of R is an ideal.

(b) If R has a.c.c. on principal right ideals show that R is right noetherian.
(c) If R is right noetherian show that Qc(R) = Q(R) (use Exercise 29).
(d) If CR(1) is right noetherian show that R is right noetherian, and give an

example to show that the converse does not hold.

34. Let I and J be `-subgroups of the right convex `-ring R. If J is a right ideal show
that IJ = {ab : a ∈ I,b ∈ J}.

35. Give an example of an `-field that is not right convex.

36. Suppose R is a unital right convex f -ring. Show that the following conditions
are equivalent, and they hold provided a−1Ra = R for each regular element
a of R.

(a) R is a left Öre ring.
(b) Qc(R) is a convex right f -module over R.
(c) R is a convex `-subgroup of Qc(R).
(d) CQc(R)(1)⊆ R.

37. Suppose Σ is a right Öre set of regular elements in the f -ring R which has
bounded inversion. Assume that |s| ∈ Σ whenever s ∈ Σ . Show that the follow-
ing are equivalent.

(a) s−1Rs = R for each s ∈ Σ .
(b) s−1Rs = R for each s ∈ Σ+.
(c) U (R) E U (RΣ ).
(d) U (R)∩CR(1) E U (R)Σ ).
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38. Let RΣ be a classical right quotient ring of the f -ring R and let MR be an f -
module.

(a) If M is a strong f -module show that MΣ is a strong RΣ - f -module.
(b) If M is convex show that MΣ is a convex RΣ - f -module.

39. Let R be a unital f -ring that has bounded inversion and localizations and let MR
be a unital R-module.

(a) If 0 6= x ∈M show that x 6= 0 in MP for some maximal ideal P of R.
(b) Let B and C be submodules of M. Show that B ⊆ C iff BP ⊆ CP for each

maximal ideal of P of R. (See the remarks after Theorem 4.2.11.)
(c) Show that for each maximal ideal P, RP is a local f -ring with bounded

inversion and maximal ideal PP.

40. Let M be a unital f -module over the f -ring R that has bounded inversion and
localizations.

(a) Show that M is a strong R- f -module iff MP is a strong RP- f -module for
each maximal ideal P of R.

(b) Show that M is a convex R- f -module iff each MP is a convex RP- f -module.
(c) If M is convex show that, for each P∈Max (R), the lattice of RP-submodules

of MP is a chain.

41. Let R be a unital f -ring with center C and let M be a unital `-module over R.
Show that M is an f -module or a strong f -module or a convex f -module over
R iff MP is an f -module or a strong f -module or a convex f -module over RP,
respectively, for each maximal ideal P of C.

42. Let R be a right convex semiprime f -ring with center C. Show that if A is an
ideal of C such that C/A is semiprime, then A is an `-ideal of C.

43. Let
((

Q Q
0 0

)
,P

)
be an f -ring. Show that either

P =
{(

p q
0 0

)
: p > 0, or p = 0 and q≥ 0

}

or

P =
{(

p q
0 0

)
: p > 0, or p = 0 and q≤ 0

}
.

So, up to an isomorphism, U =
(
Q Q
0 0

)
has a unique lattice order with respect

to which it is an f -ring.

44. Let J be the Jacobson radical of the `-ring R. Suppose A is an `-ideal of R
such that A ⊆ J and R/A is an f -ring. Show that J is an `-ideal iff it is convex.
(0≤ (a+x)2 ≤ (ax)2 in any f -ring.)
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45. Let R be a unital `-ring in which some power of each element is positive, and
suppose R is right self-injective. Show that the following statements are equiv-
alent.

(a) R is an f -ring.
(b) R has bounded inversion.
(c) The Jacobson radical of R is convex.
(d) If A is a nonzero right annihilator, then A+ 6= 0.

(Show that each statement implies (b). For (c) ⇒ (b) use Exercise 4.1.9 and
Theorem 4.1.9.)

46. Let F be a positive topology of the right f -ring R and suppose that RF is a right
self-injective ring. Show that R is a qF f -ring iff RR is a qF f -module and the
Jacobson radical of RF is a convex ideal.

47. Let F be a positive topology of the f -ring R. If RR is a qF f -module show that RF
is a right quotient ring of its subring F(RF) of f -elements (see Exercise 4.2.11).
Show that this may not be true if R is only a right f -ring.

48. Show that a right self-injective f -ring is a direct product of totally ordered right
self-injective rings iff its Boolean algebra of polars is atomic.

49. (a) Let R be a unital right self-injective right duo left valuation ring. Show that
R is left self-injective iff `r(a) = r`(a) for each a ∈ R.

(b) Let R be a totally ordered ring which is right duo and has only one proper
prime ideal. Show that R is left and right self-injective iff R is left maximal,
left convex, and `r(a) = r`(a) for each a ∈ R.

50. Let R be a right duo unital left valuation ring with Jacobson radical J. Show that
the following statements are equivalent.

(a) R is right pre-self-injective.
(b) For each 0 6= x ∈ R, R/xR is right self-injective, and either J is nil or 0⊂ J

are all of the prime ideals of R.
(c) R is almost left maximal, and either J is nil or R is a domain with a unique

nonzero prime ideal.

51. Let M be a nonsingular f -module over the irredundant semiprime right q f -ring
R, and let {Rλ : λ ∈ Λ} and {Mλ : λ ∈ Λ} be the components of R and M,
respectively. Let Qλ = Q(Rλ ), let Γλ be the Qλ -value set of Eλ = E(Mλ ), let
Vλ = V (Γλ ,(Eλ )α/(Eλ )α) be the Hahn product, and let Γ be the cardinal sum
of the Γλ .

(a) Show that the Hahn product V (Γ ,(Eλ )α/(Eλ )α) is a Q(R)- f -module iso-
morphic to ΠλVλ and MR is embedded in V (Γ ,(Eλ )α/(Eλ )α).

(b) If M is essential and has only a finite number of nonzero components, show
that Γ is the Q(R)-value set of E(M).
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52. Let Ru be the unital cover of the right convex f -ring R. Show that the following
are equivalent.

(a) R = Ru.
(b) Ru is right convex.
(c) Ru has bounded inversion.
(d) Ru/J(Ru) has bounded inversion.

53. If X is a Stone space show that D(X) is a regular self-injective f -ring.

54. Let R be a semiprime archimedean f -ring and let X be the Stone space of the
Boolean algebra of polars of R.

(a) Show that Q(R)⊆ D(X). (See Exercise 2.3.24.)
(b) If R is complete and divisible, show that Q(R) = D(X).
(c) If R is self-injective show that the completion of R is D(X). (See Theorem

2.3.31.)
(d) If R is unital and divisible show that its completion is a convex f -ring.

55. Let MR be an f -module over the unital f -ring R.

(a) Suppose Rλ is an `-primitive f -ring for each λ ∈Λ and ⊕Rλ ⊆ R⊆ΠRλ .
If the multiplication maps x· : R−→M are complete for each x∈M+, show
that MR is unital iff it is nonsingular.

(b) Suppose M and R are archimedean and R is irredundant. Assume R −→
F(M) is a complete embedding and σ : F(M) −→ D(X) is a c`-essential
monomorphism where X is the Stone space of M (see Exercises 3.6.16
through 3.6.18). Show that MR is unital iff it is nonsingular.

56. Let X be the Stone space of the archimedean `-group M.

(a) Show that σ : F(M)−→ D(X) is a c`-essential monomorphism iff D(X) is
the completion of the maximal quotient ring of F(M).

(b) If σ(F(M)) is c`-essential in D(X) show that M is a nonsingular F(M)-
module.

57. Let MR be a free unital right R-module over the totally ordered domain R, and
give MR the coordinatewise lattice order. Let F = F(EndR(M)M) be the subring
of EndR(M) generated by the f -endomorphisms of MR.

(a) Show that F M is an injective module iff R is a division ring.
(b) Show that F M is an i f -module iff R is a left Öre domain.

Notes. Anderson [AN2] examined the maximal right quotient ring of a unital
f -ring and gave necessary and sufficient conditions for it to be an f -ring extension.
He also showed that the classical right quotient ring of an f -ring, when it exists,
is an f -ring extension. Steinberg [ST3] applied Anderson’s technique to identify
when the injective hull of a nonsingular f -module is an f -module extension. Geor-
goudis [G] extended this to the module of quotients of an f -module with respect
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to a positive topology and Bigard gave a considerable expanded version of Geor-
goudis’ results in [BI2]. The material on convex f -rings and f -modules comes from
Steinberg [ST4], [ST9], and [ST18]. Sources for quasi-Frobenius rings are Curtis
and Reiner [CR] and Faith [F5]. Commutative semiprime unital Prüfer f -rings are
considered in Martinez and Woodward [MAW]. Theorems 4.3.29 and 4.3.30 and
Exercise 50 on self-injective valuation rings are due to Klatt and Levy [KL] in the
commutative case. The example of the pre-self-injective valuation domain given in
Theorem 4.3.31 is due to Levy [LEV3].

4.4 Injective f -Modules

Let C be a subcategory of the category Poset. Recall that the objects of Poset are
posets and the morphisms are the isotone maps. An object E in C is injective if each
diagram in C of the form

whose row is a monomorphism in Poset can be completed to a commutative diagram
in C by means of a morphism B−→ E. The usual definition of an injective requires
the row in (4.4.1) to be monic. However, in the category Log of `-groups and `-
homomorphisms the monics are precisely the monomorphisms and the same is true
of the subcategories of Log with which we will mainly be concerned. Since, in fact,
injectives in these categories will be scarce we will consider a restricted form of
injectivity. Let ℵα be an infinite cardinal number. The object E in C is called ℵα -
injective if diagrams of the form (4.4.1) can be completed whenever card(B) < ℵα .
We will see that an ℵα -injective nonsingular essential right f -module over an ir-
redundant semiprime right q f -ring is characterized as being an injective module
which has three order complete properties which, in fact, describe ℵα -injective ra-
tional vector lattices. A similar but easier characterization holds for an ℵα -injective
po-module and also for an ℵα -injective poset and these results appear in the exer-
cises. Each nonsingular f -module can be embedded in an ℵα -injective f -module.
An example of a totally ordered ℵα -injective abelian `-group is obtained by form-
ing a restricted Hahn product using an ℵα -injective totally ordered set and with all
real components. Another relative injective f -module is obtained as follows. Over
a countable totally ordered right Öre domain the direct product of countably many
nonsingular totally ordered right modules, modulo their direct sum, is ℵ1-injective.
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Suppose R is a po-ring and C is a subcategory of the category po-MR of right
po-modules over R. If M is a nonzero po-module in C and for some po-module N
with N+ 6= 0 the natural embedding M −→ M ×←N is a monomorphism in C , then
M is not injective in C . For, if the diagram

is commutative with f isotone, then f (0,x) ≥ M for each 0 < x ∈ N. In particu-
lar, if R is a po-domain, then the category po-MR has no nontrivial injectives since
R, or, if necessary, the po-module obtained by freely adjoining Z to R, with the
coordinatewise order, is such a po-module N. The same is true of the category
of R-`-modules (or R- f -modules) provided R has a nonzero totally ordered strict
po-module.

Theorem 4.4.1. For any po-ring R the category of right po-modules over R has no
nonzero injectives.

Proof. Let M and N be right po-modules and let h ∈ HomR(M,N). Define

Ph = {(m,n) ∈M ¢N : m ∈M+ and h(m)+n ∈ N+}

and P(M,N) = ∑h Ph. It is easily verified that (M ¢ N,Ph) and (M ¢ N,P(M,N))
are po-modules over R. Note that P0 = (M⊕N)+ and both of the injections κ1 :
M −→ (M ¢ N,P(M,N)) and κ2 : N −→ (M ¢ N,P(M,N)) are monomorphisms.
For, suppose (x,0) ∈ P(M,N). Then (x,0) = ∑i(xi,yi) with xi ∈M+; so x = ∑i xi ∈
M+. Also, if (0,y) ∈ P(M,N), then (0,y) = ∑i(xi,yi) yields xi = 0 for each i; so
yi ∈ N+ and y = ∑i yi ∈ N+. Suppose ER is a po-module which is injective in the
category of po-modules. Then there is a po-homomorphism h : (E ¢E,P(E,E))−→
E with hκ2 = 1E ; that is, h(0,x) = x for each x ∈ E. Let g = hκ1 : E −→ E; that is,
g(x) = h(x,0). If x ∈ E+, then (x,−2g(x)) ∈ P2g ⊆ P(E,E); so

−g(x) = g(x)−2g(x) = h(x,0)−h(0,2g(x)) = h(x,−2g(x)) ∈ E+,

and g(E+) = 0 since g is isotone. Since (x,−x) ∈ P1 ⊆ P(E,E) and h(x,−x) =
g(x)−h(0,x) = −x ∈ E+ we obtain that E is trivially ordered. By freely adjoining
Z to R (with the product partial order) we may assume that 1 ∈ R+ and ER is unital.
Now, there is a po-homomorphism f : (R ¢ E,P(R,E)) −→ E with f κ2 = 1E . Let
µ : R−→ E be left multiplication by x ∈ E. Then (1,−x) ∈ Pµ ⊆ P(R,E) and

−x = f (0,−x) = f (1,0)+ f (0,−x) = f (1,−x) = 0;
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so E = 0. ut
Since injectives in C are scarce we now turn our attention to an examination

of some relative injectives. We will denote the subcategory of Log consisting of
the right f -modules (respectively, `-modules) over the po-ring R by f -MR (respec-
tively, `-MR), and ns f -MR is the subcategory of nonsingular f -modules. Our goal
is to identify many of the ℵα -injectives in ns f -MR when R is an irredundant right
q f -ring.

Theorem 4.4.2. Let MR be a nonsingular f -module which is ℵα -injective in
ns f -MR.

(a) If R is essentially positive, then M is ℵα -injective in f -MR.
(b) If M is an essential `-submodule of the f -module KR, then K is ℵα -injective

in ns f -MR.
(c) Suppose ℵα > card (R) and M and K are as in (b). Then M = K.
(d) If R has a nonzero totally ordered strict nonsingular f -module whose cardi-

nality is exceeded by ℵα , then card (M)≥ℵα unless M = 0.

Proof. (a) Suppose M is ℵα -injective in ns f -MR and

is a diagram in f -MR with card(B) < ℵα . Then we get the commutative diagram

where the composite on the left is f , and hence M is ℵα -injective in f -MR.
(b) Consider a diagram
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in ns f -MR with card (B) < ℵα . We claim that f (A) ⊆ M. For, there is an `-
homomorphism g : B −→ M which agrees with f on f−1(M). If x ∈ A, then
xD ⊆ f−1(M) for some essential right ideal D since f−1(M) is essential in A. So
( f (x)−g(x))D = 0 and f (x) = g(x) ∈M. Thus f−1(M) = A and g extends f .

(c) Let x ∈ K and let A be the `-submodule of K generated by x. Since A is the
union of the chain of its submodules A0,A1, . . . where A0 = xR +Zx and An+1 is
the submodule generated by the sublattice generated by An (see Theorem 2.2.4 ( f )),
necessarily card (A) < ℵα . From the previous paragraph, with A = B and f : A−→K
the inclusion map, we get x ∈M.

(d) Suppose 0 6= N is a totally ordered nonsingular strict f -module with card (N)<
ℵα . Then M ×←N is a nonsingular f -module. If card (M) < ℵα , then card (M ×←N) <
ℵα and it follows from (4.4.2) that M has an upper bound in M. Thus, M = 0, or
else card (M)≥ℵα . ut

There are three order theoretic properties that are needed to characterize the ℵα -
injective f -modules. The first involves pairs of elements. Let u and v be elements of
the `-group M. The element y ∈M splits v from u if

y≥ u+, y∧u− = 0, and (v− y)+∧ y = 0.

M is called self -splitting if for every u,v∈M there is some y∈M which splits v from
u. The class of self-splitting `-groups is clearly productive and homomorphically
closed. Note that 0 splits v from u iff u ≤ 0, and y = u∨ v splits v from u if u ≥ 0.
Hence every representable `-group ( f -module) is embeddable in a self-splitting `-
group ( f -module). Here is a stronger such embedding. Let us call the pair of subsets
A and B of M pairwise disjoint if A⊆B⊥. M is called pairwise almost-ℵα -complete
if every pair of pairwise disjoint subsets of M+ of cardinality less than ℵα have
disjoint upper bounds.

Theorem 4.4.3. Let R be a po-domain which has a nonzero strict totally ordered
right R-module, and let MR be a representable f -module over R.

(a) M can be embedded in an f -module L with the following property:

∀u ∈M, ∃y(u) ∈ L such that ∀v ∈M, y(u) splits v from u.

(b) If ℵα > card (R) and M is ℵα -injective in f -MR, then M is self-splitting
and is pairwise almost-ℵα -complete.
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Proof. (a) Let K be a strict totally ordered right R-module and take 0 < k ∈ K.
Embed M in a product of totally ordered R-modules: M⊆Πλ∈Λ Mλ . For each λ ∈Λ
let Nλ = Mλ ×← K, and define y(u) ∈Πλ Nλ = L by

y(u)λ =
{

0 if uλ ≤ 0
(0,k) if uλ > 0.

Then, clearly, y(u)≥ u+ and y(u)∧u− = 0. Moreover, if y(u)λ > 0, then vλ < y(u)λ
and hence [(v− y(u))+∧ y(u)]λ = 0. Thus, (v− y(u))+∧ y(u) = 0 and y(u) splits v
from u.

(b) Let u,v ∈ M and let N be an f -module extension of M which contains an
element y that splits v from u. Let A (respectively, B) be the `-submodule generated
by u and v (respectively, u,v,y). Then card(B) < ℵα and the injection of A into M
can be extended to an `-homomorphism f of B into M. But then f (y) splits v from u.

Now, let A1 and A2 be pairwise disjoint subsets of M+ with card(A1∪A2) < ℵα .
For j = 1,2 let t j be defined in L, the f -module given in (a), by:

πλ (t j) =
{

0 if πλ (A j) = 0
(0,k) if πλ (A j) 6= 0

where πλ denotes the projection of L onto Nλ . Then t1 ∧ t2 = 0 and t j ≥ A j for
j = 1,2. Let A be the `-submodule generated by A1∪A2 and let B be the `-submodule
generated by A∪{t1, t2}. Then, again, card(B) < ℵα and if f : B−→M extends the
injection of A into M we have f (t j)≥ A j and f (t1)∧ f (t2) = 0. ut

Note that an ℵα -injective f -module over any po-ring whose cardinality is smaller
than ℵα is self-splitting iff it can be embedded in a self-splitting f -module. In par-
ticular, a representable ℵα -injective f -module over such a po-ring is self-splitting.
The third order theoretic property that is needed also involves pairs of small subsets.
The poset P is called an ηα -set (respectively, an almost-ηα -set) if whenever X and
Y are subsets of P with X < Y (X or Y could be empty) and card(X ∪Y ) < ℵα , then
there exits an element p in P such that X < p < Y (respectively, X ≤ p ≤ Y ). For
example, each lattice is an almost-η0-set but it need not be an η0-set. Also, a po-
group is an almost η0-group exactly when it is a directed Riesz group (see Exercise
2.1.18).

The infinite cardinal number ℵα is called regular provided card(∪λ∈Λ Xλ ) < ℵα
whenever {Xλ : λ ∈Λ} is a family of sets with card(Λ) < ℵα and card(Xλ ) < ℵα
for each λ ∈ Λ . If ℵα is not regular it is called singular. For example, ℵ0 is
regular and ℵω0 is singular. Since ℵα+1 is regular each cardinal is exceeded by a
regular cardinal (Exercise 29). For the ordinal α , W (α) = {β : 0≤ β < α} denotes
the initial segment of the ordinals determined by α and ωα denotes the first ordinal
number whose cardinality is ℵα . Also, ord (T ) stands for the ordinal number of the
well-ordered set T .

Theorem 4.4.4. A totally ordered module MR can be embedded in a totally ordered
module LR with the property that whenever X < Y for subsets X and Y of M, there



4.4 Injective f -Modules 369

is an element z in L with X < z < Y . Consequently, M can be embedded in a totally
ordered ηα -module for any ordinal α . Moreover, if M is F-torsion-free for some
pretopology F of R and F has a basis of finitely generated right ideals, then L and
the ηα -module may be chosen to be F-torsion-free.

Proof. By replacing M, if necessary, by its divisible closure, we may assume that if
x < y in M, then x < z < y for some z ∈ M. Suppose X < Y in M and no element
of M is between X and Y . Then either X is nonempty and has no last element or Y
is nonempty and has no first element. We assume the former but note that a similar
construction works for the latter. For each x ∈ X let Ux = {z ∈ X : z > x}. Then Ux
is nonempty and A = {Ux : x ∈ X} is a chain of subsets of X . The dual ideal (or
filter) of the power set P(X) of X generated by A is proper, and hence, by Zorn’s
Lemma, A is contained in a maximal dual ideal (or ultrafilter) U of P(X). Let
K = { f ∈ MX : f−1(0) ∈ U }. Then K is a prime submodule of the f -module MX .
For, suppose h,k ∈ K, f ,g ∈MX and a ∈ R. Then (h− k)−1(0) ⊇ h−1(0)∩ k−1(0),
(ha)−1(0) ⊇ h−1(0), and (h+)−1(0) ⊇ h−1(0); also, if 0 ≤ f ≤ h, then f−1(0) ⊇
h−1(0). So K is a convex `-submodule of MX . If f ∧ g = 0 and f−1(0) /∈ U , then
g−1(0) ⊇ X\ f−1(0) and hence g−1(0) ∈ U since X\ f−1(0) ∈ U by Exercise 3.
Note that 0 ≤ f + K in N = MX/K iff Pos( f ) = {x ∈ X : f (x) ≥ 0} ∈U . For, 0 ≤
f +K iff f− ∈ K and Pos( f ) = ( f−)−1(0). Now, M can be diagonally embedded in
MX and in N : m 7→ fm ∈MX where fm(x) = m for each x∈X . Let ϕ : M−→N be the
composite of the diagonal embedding followed by the natural map: ϕ(m) = fm +K.
If e : X −→M is the inclusion map, then ϕ(X) < e+K < ϕ(Y ). For, if m ∈ X , then
Pos(e− fm) =Um∪{m} ∈U and hence e+K ≥ fm +K; but (e− fm)−1(0) = {m} /∈
U and hence e + K > fm + K. On the other hand, if m ∈ Y , then Pos( fm− e) = X
and ( fm− e)−1(0) = /0; so e + K < fm + K. Suppose M is F-torsion-free, f ∈ MX ,
and f D ⊆ K for some D ∈ F which is generated by d1, . . . ,dn ∈ R. Then f−1(0) =⋂n

i=1( f di)−1(0) ∈U and hence f ∈ K. So N is F-torsion-free.
We can now proceed by transfinite induction. Let {(Xβ ,Yβ )}β<α0 be the col-

lection of pairs of subsets of M with Xβ < Yβ , indexed by the initial segment of
ordinals W (α0). For each β < α0 we will find a totally ordered module Mβ such
that M ⊆ Mγ ⊆ Mβ if γ ≤ β and Mβ contains an element zβ with Xβ < zβ < Yβ .
Let M0 = N be the totally ordered module constructed above for the pair X0 < Y0.
If β = γ + 1, let Mβ = (Mγ)0 be the module constructed from Mγ for the pair
Xβ < Yβ , and if β is a limit ordinal let Mβ = (

⋃
γ<β Mγ)0 be constructed similarly

from
⋃

γ<β Mγ . Then clearly L = lim−→Mβ has the desired betweeness property. Below

we will denote L by L(M).
To embed M in an ηα -module we will again use transfinite induction. Note that

there is no harm in assuming that ℵα is a regular cardinal. Let T0 = M and, for
1 ≤ β < ωα , let Tβ = L(Mγ) if β = γ + 1, and otherwise let Tβ = lim−→

γ <β
Tγ . Now let

T = lim−→ Tβ . If Z ⊆ T with card (Z) < ℵα , then Z ⊆ Tβ for some β < ωα since each

z ∈ Z is in some Tβz and β =
∨

zβz < ωα by the regularity of ℵα (see Exercise
31(a)). In particular, if X < Y in T with card (X ∪Y ) < ℵα , then X ∪Y ⊆ Tβ for
some β < ωα . Hence, X < z < Y for some z ∈ Tβ+1 ⊆ T . ut
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Following the pattern given in Theorem 4.4.3, the previous result can be used to
show that an ℵα -injective f -module which is representable is an almost ηα -module.
The details are left for Exercise 9. The following result is useful for extending ho-
momorphisms into totally ordered modules. It is a refinement of the easier Exercise
2.4.23.

Theorem 4.4.5. Let G be an Ω -`-subgroup of the representable Ω - f -group H. Sup-
pose x ∈ H and x∧ (g− x)+ = 0 for each g ∈ G. Suppose also that P is a prime
Ω -subgroup of G such that x⊥G ⊆ P and x is not an element of CH

Ω (P), the convex
`-Ω -subgroup of H generated by P. Then there is a prime Ω -subgroup Q of H with
Q∩G = P and x /∈ Q.

Proof. Let

S = {A ∈ CΩ (H) : x /∈ A,A∩G = P, and x∧g ∈ A with g ∈ G+ implies g ∈ P}.

We will show that CH
Ω (P) ∈S . Clearly CH

Ω (P)∩G = P. Suppose 0≤ x∧g≤ u with
u ∈ P and g ∈ G. Then (x− u)+ ∧ (g− u)+ = 0. We claim that x∧ (g− u)+ = 0.
Suppose H is a totally ordered homomorphic image of H with x > 0. Then (u−
x)+ = 0; that is, u ≤ x. If u = x, then 0 = x∧ (2u− x)+ = x. Thus, u < x and (g−
u)+ = 0. Now, (g−u)+ ∈ x⊥G ⊆P, and so g∈P since 0≤ g≤ g∨u = (g−u)++u∈
P. By Zorn’s Lemma, S has a maximal element Q. To see that Q is prime, suppose
h1 h2 ∈ H\Q with h1∧h2 = 0. Then CH

Ω (Q,hi) properly contains Q and, for each i,
one of the following holds:

x≤ q+W1hi + · · ·+q+Wnhi

0≤ gi ≤ q+W1hi + · · ·+q+Wnhi

0≤ x∧gi ≤ q+W1hi + · · ·+q+Wnhi

where gi ∈ G+\P, q ∈ Q+ and Wj ∈ Ω ∞. Since the second inequality implies the
third, and because of the symmetry of these inequalities with respect to the indices
1 and 2, the nine possible cases reduce to three. Suppose the third inequality holds
for both h1 and h2. So for some q ∈Q, gi ∈G+\P, and W1, . . . ,Wn,V1, . . . ,Vm ∈Ω ∞,

x∧g1∧g2 ≤ (q+W1h1 + · · ·+q+Wnh1)∧ (q+V1h2 + · · ·+q+Vmh2)

≤ q+ · · ·+q∧Vjh2 + · · ·+Wkh1∧q+ · · · ∈ Q.

Thus g1 ∧ g2 ∈ P and we have the contradiction g1 ∈ P or g2 ∈ P. The other two
cases are quite similar. ut

We can now give a characterization of ℵα -injective f -modules.

Theorem 4.4.6. Let R be an irredundant semiprime right q f -ring and suppose ℵα
is a regular cardinal number with ℵα > card (R). The following statements are
equivalent for the nonsingular essential R- f -module M.

(a) M is an ℵα -injective f -module.
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(b) M is an injective R-module and an ℵα -injective `-group.
(c) M is an R-injective, self-splitting, almost-ηα - f -module and is pairwise

almost-ℵα -complete.

Proof. (a) ⇒ (c). Since MR is an i f -module by Theorem 4.3.14 we have that M
is R-injective by Theorem 4.4.2, and it is an almost ηα -module by Exercise 9. By
the remark after Theorem 4.4.3 we have that M is self-splitting. Let {Rλ : λ ∈ Λ}
and {Mλ : λ ∈Λ} be the components of R and M, respectively. By Theorem 4.3.14
each Rλ is a totally ordered right Öre domain, and, by Exercise 11, M = Πλ Mλ and
each Mλ is an ℵα -injective f -module over Rλ . By Theorem 4.4.3 any two pairwise
disjoint subsets of cardinality less than ℵα in each M+

λ have disjoint upper bounds,
and hence the same is true of M+.

(c) ⇒ (a). Since M = Πλ Mλ and each of the four conditions on the R- f -module
M is equivalent to the same condition on each Rλ - f -module Mλ , we may assume M
is a vector lattice over the totally ordered division ring D. Consider a diagram

in the category f -MD with card (H) < ℵα . Let x ∈ H. By Theorem 4.4.3 there is a
vector lattice K generated by H and some element k such that k splits each element
of G from x; so

(i) k∧ x− = 0,
(ii) k ≥ x+, and
(iii) (g− k)+∧ k = 0 for each g ∈ G.

Let L be the `-subspace of KD generated by G and k. We will first extend ϕ to L. As-
sume k /∈G. Let X = (k⊥G)+ and Y = CK

D(k)∩G+ where CK
D(Z) denotes the convex

`-subspace of K generated by Z. Note that Y = {g∈G : 0≤ g < k}. For, if g∈Y and
g > k in some totally ordered homomorphic image of K, then k = 0 by (iii) and hence
also g = 0. Since card (ϕ(X)∪ϕ(Y )) < ℵα and ϕ(X) ⊆ ϕ(Y )⊥ there are disjoint
elements z1 and z2 in M+, with z1 ≥ ϕ(Y ) and z2 ≥ ϕ(X). Since card (ϕ(G)) < ℵα
there exists w ∈M with w≥ ϕ(G). Let y ∈M split w from z = z1− z2. So

(iv) y≥ z1,
(v) y∧ z2 = 0, and
(vi) (w− y)+∧ y = 0.
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The goal is to extend ϕ to L by mapping k to y. We will accomplish this by con-
sidering the totally ordered homomomorphic images of M. Let ψ : M −→ M be a
homomorphism onto the totally ordered vector lattice M. We will consider the two
cases ψ(y) = 0 and ψ(y) > 0. Suppose first that ψ(y) = 0. Now, CL

D(k)∩G = Y −Y ,
and since y ≥ z1 ≥ ϕ(Y ), ψϕ(CL

D(k)∩G) = 0. In fact, kerψϕ = W ∩G where
W = CL

D(k)+CL
D(kerψϕ). For, if g ∈ G+ ∩W , then 0 ≤ g ≤ kd + u with 0 ≤ u ∈

kerψϕ and 0≤ d ∈D. But then (g−u)+ ∈Y ⊆ kerψϕ , and hence g∈ kerψϕ since
0 ≤ g ≤ g∨u = (g−u)+ + u ∈ kerψϕ . Since L/W = G +W/W ∼= G/kerψϕ it is
clear that ψϕ can be extended to L by sending k to 0.

Suppose now that ψ(y) > 0. Then ψ(z2) = 0 by (v), and k⊥G = X−X ⊆ kerψϕ
since z2 ≥ ϕ(X). Also, k /∈CL

D(kerψϕ) since, otherwise, for some g ∈ G, k ≤ g =
(2g−k)− (g−k) ∈ k⊥ by (iii). Thus, by Theorem 4.4.5 we have an epimorphism ρ
onto a totally ordered vector space S such that the diagram

is commutative and ρ(k) > 0. From (iii) we see that ρ(k) ≥ ψϕ(G), and, in fact,
ρ(kd) ≥ ψϕ(G) for each 0 < d ∈ D; that is, S = ψϕ(G) ×← ρ(k)D. From (vi) we
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see that ψ(w) ≤ ψ(y) and hence ψϕ(G) ×← ψ(y)D = ψϕ(G)+ ψ(y)D ⊆ M. Thus,
S embeds in M via a monomorphism σ that fixes ψϕ(G) and sends ρ(k) to ψ(y):

Now represent M as a subdirect product of totally ordered vector lattices ψ : M −→
Π j∈JMj. For each j ∈ J we have a commutative diagram

with ϕ∗j (k) = ψ j(y). The ϕ∗j induce a homomorphism ϕ∗ : L−→ΠMj with ϕ∗(k) =
ψ(y) and whose restriction to G is ψϕ . Since ϕ∗(L) is generated by ϕ∗(G) = ψϕ(G)
and ϕ∗(k) = ψ(y) we have ϕ∗(L) ⊆ ψ(M), and hence we obtain the commutative
diagram

Now apply the preceding to x = u−v where u and v are disjoint elements of H+.
We obtain a vector lattice K generated by H and k such that k splits each g∈G from
x, and we get a homomorphism ϕ∗ from L to M which extends ϕ where L is the
`-subspace generated by G and k. Note that k ≥ u and k∧ v = 0. Repeat, to get a
vector lattice K′ generated by K and k′ such that k′ splits each w ∈ L from v−k, and
to get a homomorphism ϕ ′ : L′ −→M which extends ϕ∗ where L′ is the `-subspace
generated by L and k′. Note that card(L′) = card(G), card(K′) = card(H), k∧k′ = 0,
and k′ ≥ v.
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Let {{uβ ,vβ} : β < α0} be the collection of all disjoint pairs of elements of H+

indexed by the set of ordinals W (α0). Note that card (W (α0)) < ℵα . By transfinite
induction we will show that for each β < α0 there are vector lattices Gβ and Hβ
with the following properties.

(vii) G⊆ Gβ ⊆ Hβ and H ⊆ Hβ .
(viii) If γ ≤ β , then Gγ ⊆ Gβ and Hγ ⊆ Hβ .

(ix) card (Hβ ) < ℵα .
(x) There are elements zβ ,wβ ∈ Gβ with zβ ∧wβ = 0 such that zβ ≥ uβ and

wβ ≥ vβ .
(xi) There is a commutative diagram, and if γ ≤ β , then ϕβ is an extension

of ϕγ .

For β = 0 let G0 = L′, H0 = K′, z0 = k, w0 = k′ and ϕ0 = ϕ ′ in the preceding
paragraph with u = u0 and v = v0. Suppose that β < α0 and Gγ and Hγ have been
constructed with these properties for each γ < β . If β = γ + 1 apply the preceding
construction with G = Gγ , H = Hγ , u = uβ , and v = vβ to get Gβ , Hβ , zβ , wβ , and
ϕβ , while if β is a limit ordinal apply it to G′ = lim−→

γ<β
Gγ =

⋃
γ<β

Gγ and H ′ = lim−→
γ<β

Hγ =

⋃
γ<β

Hγ with u = uβ and v = vβ . Note that card (H ′) < ℵα since ℵα is regular.

Now let G∗ = lim−→
β<α0

Gβ and H∗ = lim−→
β<α0

Hβ . Then G ⊆ G∗ ⊆ H∗, H ⊆ H∗,

card (H∗) < ℵα and we have a commutative diagram

Moreover, if u,v ∈ H with u∧ v = 0, then there exist z,w ∈ G∗ with z ≥ u, w ≥ v
and z∧w = 0. It is desirable to extend this last statement by replacing H by H∗. For
this purpose we need to enlarge G∗ and H∗ by iterating their construction. That is,
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by induction there are vector lattices G∗∗ and H∗∗ with G∗ ⊆G∗∗ ⊆H∗∗, H∗ ⊆H∗∗,
card (H∗∗) < ℵα , together with a commutative diagram

such that each pair of positive disjoint elements in H∗∗ have disjoint upper bounds
in G∗∗. Explicitely, let G∗

0 = G, H∗
0 = H, G∗

n+1 = (G∗
n)
∗, H∗

n+1 = (H∗
n )∗, and G∗∗ =

lim−→G∗
n and H∗∗ = lim−→H∗

n .
By Zorn’s Lemma we may assume that ϕ∗∗ cannot be extended to any `-subspace

of H∗∗ which properly contains G∗∗. Assuming G∗∗ ⊂ H∗∗, and changing notation,
we may start over with a diagram (4.4.3), but now H is generated by G and some
element x ∈ H+\G, ϕ cannot be extended to H and any two disjoint elements in
H+ have disjoint upper bounds in G. Note that the latter property implies that the
convex `-subspace of H generated by a prime subspace of G is a prime subspace of
H. Let V = {g∈G : g < x} and U = {g∈G : x < g}. Since M is an almost ηα -space
there is an element y ∈M with ϕ(V )≤ y≤ ϕ(U). Again, consider a representation
ψ : M −→Π j∈JMj of M as a subdirect product of totally ordered vector lattices Mj
with projections ψ j, and let Pj = kerψ jϕ and let Q j be the convex `-subspace of H
generated by Pj. Then we have the commutative diagrams

where ρ j maps H onto the totally ordered vector lattice Hj = H/Q j which is gen-
erated by ψ jϕ(G) and ρ j(x). We claim that for g ∈ G, ψ jϕ(g) = ρ j(g) ≤ ρ j(x)
iff ψ jϕ(g) ≤ ψ j(y). For, if ρ j(g) ≤ ρ j(x), then g ≤ x + p for some 0 ≤ p ∈ Pj.
Thus, g− p ∈V , ϕ(g− p)≤ y, (ϕ(g)−y)+ ≤ ϕ(p), and (ϕ(g)−y)+ ∈ kerψ j; that
is, ψ jϕ(g) ≤ ψ j(y). Similarly, if ρ j(x) ≤ ρ j(g), then ψ j(y) ≤ ψ jϕ(g). Thus, the
mapping θ j : Hj −→Mj defined by ψ jϕ(g)+ρ j(x)d 7→ ψ jϕ(g)+ψ j(y)d is an em-
bedding of Hj into Mj. These θ j induce a homomorphism θ of H into Π jMj which
extends ψϕ and sends x to ψ(y). Since θ(H) ⊆ ψ(M) we obtain the contradiction
that ϕ can be extended to H.
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(a)⇔ (b). This is a consequence of the equivalence of (a) with (c) since (c) gives
that M is a divisible group. ut

Now that we have a description of ℵα -injectives we can use it to show that there
are enough of them for embedding purposes.

Theorem 4.4.7. A nonsingular right f -module over an irredundant semiprime right
q f -ring R can be embedded in a nonsingular ℵα -injective f -module.

Proof. We may assume that ℵα is regular and card (R) < ℵα . By Theorem 4.3.14
a nonsingular f -module over R is a subdirect product of totally ordered nonsingular
f -modules each of which is a nonsingular f -module over a totally ordered right
Öre domain. Thus, utilizing Theorem 4.4.6 and Exercise 11, it suffices to note that
according to Theorem 4.4.4 a totally ordered vector lattice can be embedded in a
totally ordered ηα -vector lattice. ut

When the f -module M in Theorem 4.4.6 is totally ordered the order require-
ments for it to be ℵα -injective reduce to it being an almost-ηα -module. For other
categories in which being an (almost-)ηα -set is the main order requirement for ℵα -
injectivity see Exercises 11–20. In particular, according to Exercise 23, the module
M in Theorem 4.4.6 is ℵα -injective in po-MR whenever it is ℵα -injective in f -MR,
and the converse holds if M is totally ordered.

There are examples of ℵα -injectives other than those constructed in Theorem
4.4.7. One such example is given in Exercise 25 for po-modules. Another construc-
tion of totally ordered ηα -groups uses Hahn products.

Theorem 4.4.8. Suppose ℵα is a regular cardinal and ∆ is a totally ordered ηα -
set. For each δ ∈ ∆ let Gδ be equal to R or to Z. Then the subgroup Vα = {v ∈
V : card (supp v) < ℵα} of the Hahn product V = V (∆ ,Gδ ) is a totally ordered
ηα -group.

Proof. Let A and B be subsets of Vα such that A < B and card (A∪B) < ℵα , and
let A∗ (respectively, B∗) be the ideal (respectively, dual ideal) of the poset Vα gen-
erated by A (respectively, B). If v ∈Vα\(A∗ ∪B∗), then A∗ < v < B∗. Assume then,
by way of contradiction, that Vα = A∗ ∪B∗. We may also assume that 0 ∈ A∗ since,
otherwise, 0 ∈ −B∗ = (−B)∗ and we may replace A and B by −B and −A, re-
spectively. For 0 6= v ∈ V let m(v) = maxsupp v and let m(0) = −∞ < ∆ . Clearly,
m(v+w)≤m(v)∨m(w) with equality if m(v) 6= m(w). If B = /0, then A is cofinal in
Vα . In this case take δ ∈ ∆ with m(A+) < δ . Then we have the contradiction A < xδ

where, for r ∈ Gδ ,rxδ denotes the function in Vα whose value at δ is r and whose
value is 0 elsewhere. Thus, B 6= /0. Note that A � 0 since, otherwise, A < xδ < B
where δ < m(B).

We will establish the following by transfinite induction on σ < ωα . There is a
strictly decreasing sequence (δ σ

ρ )ρ<σ in ∆ and a sequence (rσ
ρ )ρ<σ in Πρ<σ Gδ σ

ρ

with each rσ
ρ > 0 such that if vσ = Σρ<σ rσ

ρ xδ σ
ρ , then Aσ 6= /0 and Bσ 6= /0 where Aσ

and Bσ are given by
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Aσ = {a ∈ A : ∀ρ < σ , m(a− vσ ) < δ σ
ρ },

Bσ = {b ∈ B : ∀ρ < σ , m(b− vσ ) < δ σ
ρ }.

Suppose that τ < ωα and the assertion is true for each σ < τ . Note that an element
c∈A∪B belongs to Aσ ∪Bσ if and only if c(δ σ

ρ ) = rσ
ρ = vσ (δ σ

ρ ) for each ρ < σ , and
c(δ ) = 0 if δ 6∈ {δ σ

ρ : ρ < σ} and δ > δ σ
ρ for some ρ < σ . In particular, m(c) = δ σ

0
for such an element c. The sequences (δ σ

ρ )ρ<σ and (rσ
ρ )ρ<σ are independent of σ .

To see this take π < ρ , σ < τ and let aσ ∈ Aσ , aρ ∈ Aρ , bσ ∈ Bσ and bρ ∈ Bρ . If
δ σ

0 > δ ρ
0 , then (aσ − bρ)(δ σ

0 ) = rσ
0 > 0 and (aσ − bρ)(δ ) = 0 for δ > δ σ

0 ; so we
have the contradiction aσ > bρ . Thus, δ σ

0 = δ ρ
0 . If rσ

0 > rρ
0 , then, again, aσ > bρ

since (aσ −bρ)(δ σ
0 ) = rσ

0 −rρ
0 > 0 and (aσ −bρ)(δ ) = 0 for δ > δ σ

0 . Now, suppose
δ ρ

µ = δ σ
µ and rρ

µ = rσ
µ for all µ < π . If δ σ

π > δ ρ
π , then δ σ

π 6∈ {δ ρ
ν : ν < ρ} and, again,

aσ −bρ > 0 since (aσ −bρ)(δ σ
π ) = rσ

π > 0 and m(aσ −bρ) = δ σ
π . So δ σ

π = δ ρ
π and

also rσ
π = rρ

π . Otherwise rσ
π > rρ

π and again aσ > bρ . Thus the definitions δρ = δ σ
ρ

and rρ = rσ
ρ , for ρ < σ , are well-defined. Note that Aσ ⊇ Aπ and Bσ ⊇ Bπ if π ≥ σ .

First, suppose τ is a successor ordinal; so τ = σ + 1 and we need to construct
δσ ∈ ∆ and 0 < rσ ∈Gδσ so that Aτ 6= /0 and Bτ 6= /0. Now, Aσ is cofinal in A. If not,
Aσ < a for some a ∈ A and with δ = m(a− vσ ) we have δ ≥ δρ for some ρ < σ .
But then for aσ ∈ Aσ and bσ ∈ Bσ we have aσ (γ) = bσ (γ) = vσ (γ) for each γ ≥ δ ,
and hence δ = m(a− aσ ) = m(a− bσ ) and 0 < (a− aσ )(δ ) = (a− bσ )(δ ) < 0.
Similarly, Bσ is coinitial in B. Let A′σ = Aσ − vσ and B′σ = Bσ − vσ . Since A′σ 6< 0
or 0 6< B′σ , either A

′+
σ 6= /0 or B′σ ∩−V +

α 6= /0, and by symmetry we may assume the
former; so A

′+
σ < B′σ and 0 < B′σ . Let Γ1 = m(A

′+
σ ) and Γ2 = m(B′σ ) and note that

Γ1 ≤ Γ2. If Γ1 < Γ2, then there exists δ ∈ ∆ with Γ1 < δ < Γ2. But then A
′+
σ < xδ <

B′σ , A′σ < xδ < B′σ , and hence A < vσ + xδ < B. Thus, Γ1 ∩Γ2 = {δ} with δ ∈ ∆
and δ < {δρ : ρ < σ} since δ = m(bσ − vσ ) for some bσ ∈ Bσ . So the decreasing
sequence (δρ)ρ<σ is extended by letting δσ = δ . Now let

D1 = {r ∈ Gδσ : ∃a′ ∈ A
′+
σ with m(a) = δσ and r ≤ a′(δσ )}

and
D2 = {r ∈ Gδσ : ∃b′ ∈ B′σ with m(b′) = δσ and b′(δσ )≤ r}.

Since 0 ≤ A
′+
σ < B′σ we have D1 ≤ D2, and clearly D1 is an ideal and D2 is a dual

ideal of the poset Gδσ . If D1 < r < D2 for some r ∈ Gδσ , then A < vσ + rxδσ < B.
For, let a− vσ ∈ A

′+
σ and b− vσ ∈ B′σ with m(a− vσ ) = m(b− vσ ) = δσ . Then

a− vσ < rxδσ < b− vσ since (a− vσ )(δσ ) ∈ D1 and (b− vσ )(δσ ) ∈ D2. Now if
a1−vσ ∈ A

′+
σ and b1−vσ ∈ B′σ , then m(a1−vσ )≤ δσ ≤m(b1−vσ ), and if we have

the strict inequalities in both cases, then a1−vσ < a−vσ < rxδσ < b−vσ < b1−vσ .
So we do have A < vσ + rxδσ < B if such an r exists; hence, Gδσ = D1 ∪D2. Let
r = lubD1. Then r > 0 since 0 < (a− vσ )(δσ ) ∈ D1 where a− vσ is, as above, an
element in A

′+
σ with m(a− vσ ) = δσ . Suppose D1∩D2 = /0. If r ∈ D1, then A′′σ 6= /0

where
A′′σ = {a′ ∈ A

′+
σ : m(a′) = δσ and a′(δσ ) = r},
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and there exists some γ ∈ ∆ with

{m(a′′ − rxδσ ) : a′′ ∈ A′′σ}< γ < δσ .

But now A
′+
σ < rxδσ + xγ < B′σ contrary to our original assumption. For, if a′ ∈ A

′+
σ

then either m(a′) < δσ , in which case a′ < rxδσ , or m(a′) = δσ and a′(δσ ) < r, in
which case a′ < rxδσ , or a′ ∈ A′′σ in which case a′ − rxδσ < xγ and a′ < rxδσ + xγ .
Also, if b′ ∈ B′σ then either m(b′) > δσ , in which case b′ > rxδσ +xγ , or m(b′) = δσ
and then b′(δσ ) > r and b′ > rxδσ + xγ . If r ∈ D2 we get an element between A

′+
σ

and B′σ in a similar manner. Thus, D1 ∩D2 6= /0 and, of course, D1 ∩D2 = {r}. So
the sequence (rρ)ρ<σ is extended by letting rσ = r. Since rσ is the largest element
in D1 and the smallest in D2 there exist elements a−vσ ∈ A

′+
σ and b−vσ ∈ B′σ with

m(a−vσ ) = m(b−vσ ) = δσ and (a−vσ )(δσ ) = (b−vσ )(δσ ) = rσ . So m(a−vτ) =
m(a− vσ − rσ xδσ ) < δσ , and m(b− vτ) = m(b− vσ − rσ xδσ ) < δσ , and a ∈ Aτ and
b ∈ Bτ .

Now suppose τ is a limit ordinal. For the sequences (δρ)ρ<τ and (rρ)ρ<τ we
need to check that Aτ 6= /0 and Bτ 6= /0. We first note that A < vτ or Aτ is cofinal in
A depending upon whether Aτ = /0 or Aτ 6= /0, respectively. If Aτ = /0 and A ≮ vτ ,
then a > vτ for some a ∈ A, and m(a− vτ)≥ δσ for some σ < τ . As we saw in the
previous paragraph Aσ+1 is cofinal in A; so we can find aσ+1 ∈ Aσ+1 with vσ+1 <
vτ < a ≤ aσ+1, and hence δσ ≤ m(a− vτ) ≤ m(aσ+1− vσ+1) < δσ . On the other
hand, if Aτ 6= /0 and Aτ < a for some a∈A, then δ = m(a−vτ)≥ δρ > δρ+1 for some
ρ < τ . Take aτ ∈ Aτ and bρ+1 ∈ Bρ+1. Then aτ(γ) = vτ(γ) = vρ+1(γ) = bρ+1(γ)
for γ ≥ δ . So δ = m(a− aτ) = m(a− bρ+1) and we have the contradiction 0 <
(a−aτ)(δ ) = (a−bρ+1)(δ ) < 0. Similarly, vτ < B or Bτ is coinitial in B depending
upon whether Bτ = /0 or Bτ 6= /0. In particular, at least one of Aτ and Bτ is nonempty.
Suppose Aτ = /0 and Bτ 6= /0. Take δ ∈ ∆ with m(Bτ − vτ) < δ < {δρ : ρ < τ}.
Then A < vτ − xδ < B. For, if a ∈ A, then m(a− vτ) ≥ δρ > δ for some ρ < τ and
vτ−a > xδ . Also, for bτ ∈Bτ we have vτ−bτ < xδ and vτ−xδ < bτ ; so vτ−xδ < B.

The induction is now complete and we have the sequences (δτ)τ<ωα and (rτ)τ<ωα
with Aτ 6= /0 and Bτ 6= /0 for each τ . If a belonged to every Aτ , then card (supp
a) ≥ ℵα since {δτ : τ < ωα} ⊆ supp a. So the intersection of the Aτ is empty and
for each a ∈ A there is a minimal ordinal τ(a) < ωα with a 6∈ Aτ(a). If a ∈ Aτ , then
τ(a) > τ; consequently, τ(A) is cofinal in [0,ωα). But now ℵα = card (τ(A)) < ℵα
by the regularity of ℵα ; see Exercise 31. ut

A construction similar to that given in Theorem 4.4.4 can be used to construct
totally ordered (almost-)ηα -sets, or we can just quote Theorem 4.4.4 since a totally
ordered set can be embedded in a totally ordered Z-module; also see Exercises 13–
18. Another construction uses lexicographic products. Recall that 2 denotes the 2-
element Boolean algebra. The product 2W (β ) supplied with the lexicographic order
is totally ordered: (aγ)γ<β < (bγ)γ<β if aγ < bγ where γ is the first ordinal with
aγ 6= bγ . Let

Tα = {(aγ)γ<ωα ∈ 2W (ωα ) : ∃β < ωα with aβ = 1 and aγ = 0 if β < γ}.
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The cardinal ℵα is admissible if 2ℵβ ≤ℵα for each β < α . Note that ℵβ+1 is
admissible if and only if 2ℵβ = ℵβ+1.

Theorem 4.4.9. (a) If ℵα is regular, then Tα is a totally ordered ηα -set.
(b) For any ordinal α , Tα+1 is a totally ordered ηα+1-set of cardinality 2ℵα .
(c) If ℵα is regular and admissible, then Tα has cardinality ℵα .

Proof. (a) Let A and B be subsets of Tα with A < B and card(A∪B) < ℵα . For
a = (aγ)γ<ωα ∈ Tα let f (a) be the ordinal with a f (a) = 1 and aβ = 0 if β > f (a). The
regularity of ℵα implies the existence of the ordinal γA < ωα with ∪a∈AW ( f (a)+
1) = W (γA). So γA is the least ordinal such that aβ = 0 whenever β ≥ γA and (aβ ) ∈
A. We now inductively define the terms of a sequence x = (xγ)γ<ωα ∈ Tα with A <
x < B. If a0 = 1 for some a ∈ A, then x0 = 1, and otherwise x0 = 0. Suppose ρ < ωα
and xγ has been defined for all γ < ρ . Define

xρ =





1 if ∃a ∈ A with aρ = 1 and aβ = xβ for each β < ρ ,
1 if ρ = γA∨ γB,
0 otherwise.

Clearly x = (xγ)γ<ωα ∈ Tα and A < x. Suppose there is some b = (bγ)γ<ωα in B with
b≤ x. Then b < x since bγA∨γB = 0 while xγA∨γB = 1. Let γ0 be the first ordinal with
bγ0 6= xγ0 ; so bγ0 = 0 and xγ0 = 1. If γ0 < γA, then A contains an element a = (aγ)γ<ωα
such that aγ0 = 1 and aγ = xγ if γ ≤ γ0. Then aγ = bγ if γ < γ0 and bγ0 < aγ0 ; so
b < a, which is impossible. Thus, γ0 ≥ γA and bγ = xγ if γ < γA. Suppose f (b) < γA.
Then x f (b) = 1 and A contains an element a = (aγ)γ<ωα such that aγ = xγ = bγ
for all γ ≤ f (b). Thus, either a = b, or if β is the first ordinal where they differ,
then β > f (b), bβ = 0, and b < a. So we must have γA ≤ f (b) < γB. Since γ0 ≥ γA
and xγ0 = 1 the definition of x yields that γ0 = γA ∨ γB and also x f (b) = 0 since
γA ≤ f (b) < γB = γA ∨ γB; but this contradicts the minimality of γ0 since b f (b) = 1
and f (b) < γ0.

(b) and (c). It is easy to see that card(T0) = ℵ0 and, in fact, T0 is isomorphic toQ
by Exercise 1.1.2. We will check that the cardinality of Tα is ∑β<α 2ℵβ if 0 < α . To
see this consider the partition { f−1(γ) : γ < ωα} of Tα determined by the function
f : Tα −→W (ωα) given in (a). Note that f−1(γ) = {a = (aβ )β<ωα : aγ = 1 and

aβ = 0 if β > γ} and card( f−1(γ)) = card(2W (γ)) = 2card(γ). Thus, if card(γ) = ℵβ ,
then β < α and card( f−1(γ)) = 2ℵβ . Since

card{γ : card(γ) = ℵβ}= card(W (ωβ+1)−W (ωβ )) = ℵβ+1, (4.4.4)

we have

card(Tα) = ∑
γ<ωα

card( f−1(γ)) = ℵ0 + ∑
ω0≤γ<ωα

card( f−1(γ))

= ∑
β<α

∑
card(γ)=ℵβ

2ℵβ = ∑
β<α

2ℵβ ℵβ+1 = ∑
β<α

2ℵβ . (4.4.5)
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In particular, since ℵα+1 is regular, Tα+1 is a totally ordered ηα+1-set of cardinality
2ℵα because α ≤ ωα (Exercise 33) and

2ℵα ≤ ∑
β≤α

2ℵβ ≤ 2ℵα ℵα = 2ℵα .

Also, if ℵα is regular and admissible, then

∑
β<α

2ℵβ ≤ ∑
β<α

ℵα ≤ card(α)ℵα = ℵα . (4.4.6)

But we always have ℵα ≤∑β<α 2ℵβ . For if α = γ +1, then ℵα ≤ 2ℵγ ≤∑β≤γ 2ℵβ ,
and if α is a limit ordinal, then

ℵα =
∨

β<α
ℵβ ≤ ∑

β<α
2ℵβ .

ut
According to Exercise 32 a totally ordered set of cardinality at most ℵα can

be embedded in any totally ordered ηα -set, and hence a totally ordered ηα -set of
cardinality ℵα is minimal among totally ordered ηα -sets; moreover, any two are
isomorphic. If the restricted Hahn product Vα of Theorem 4.4.8 is constructed using
a totally ordered ηα -set of cardinality ℵα , then it too will have cardinality ℵα . Be-
fore verifying this we will first show the necessity of the regularity and admissibility
of ℵα for the existence of a totally ordered ηα -set of cardinality ℵα .

A partially ordered set is called ℵα -free if each of its subsets contains a coter-
minal subset whose cardinality is smaller than ℵα . This concept will be used in the
next result. It is connected to ℵα -injectivity in the category Poset; see Exercise 14.

Theorem 4.4.10. There exists a totally ordered ηα -set whose cardinality is ℵα if
and only if ℵα is regular and admissible.

Proof. One direction is given by Theorem 4.4.9. Suppose that ∆ is a totally or-
dered ηα -set with card(∆) = ℵα . That ℵα must be regular follows from Exer-
cise 31. As an aid in showing that ℵα must be admissible we will first estab-
lish that 2W (ωα ) (for any α) does not contain any subsets isomorphic to W (ωα+1)
or to its dual W (ωα+1)0. Suppose, to the contrary, that f : W (ωα+1) −→ 2W (ωα )

is an embedding with image { fβ : β < ωα+1}. For each β < ωα+1 let ϕ(β ) ∈
W (ωα) be minimal with respect to fβ (ϕ(β )) 6= fβ+1(ϕ(β )); so fβ (ϕ(β )) = 0 and
fβ+1(ϕ(β )) = 1. Since W (ωα+1) =

⋃
λ<wα ϕ−1(λ ) there is some λ < ωα with

card(ϕ−1(λ )) = ℵα+1, and we may assume that this λ is minimal for all such
embeddings f . Clearly, W (ωα+1) is isomorphic to its well-ordered subset ϕ−1(λ );
let s : W (ωα+1)−→ ϕ−1(λ ) be an isomorphism. Then f ◦s is another embedding of
W (ωα+1) into 2W (ωα ) with image { fs(β )}. For each β , since fs(β )+1 ≤ fs(β+1) while
fs(β )+1(λ ) = 1 and fs(β+1)(λ ) = 0, we have fs(β )+1 < fs(β+1), and if ψ(β ) is the
first ordinal where fs(β )+1 and fs(β+1) differ, then ψ(β ) < λ . Thus, as above, there is
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some µ < λ such that card(ψ−1(µ)) = ℵα+1. Consider the sequence obtained from
( fs(β ))β<ωα+1 by placing fs(β )+1 after fs(β ); that is, define h : W (ωα+1)−→ 2W (ωα )

by (see Exercise 30) h(β ) = fs(β ) if β is even and h(β ) = fs(β−1)+1 if β is odd. Then
for this embedding card(ϕ−1(µ)) = ℵα+1 and this contradicts the minimality of λ .
Similarly, W (ωα+1)0 cannot be embedded in 2W (ωα ). As a consequence we see that
2W (ωα ) is ℵα+1-free since each subset X of 2W (ωα ) has a well-ordered cofinal sub-
set Y by Exercise 1.1.8, and the ordinal number of Y is smaller than ωα+1. Hence
card(Y ) is no bigger than ℵα . Dually, X has a coinitial subset whose cardinality
is not bigger than ℵα . Now, if α = δ + 1, then 2W (ωδ ) can be embedded in ∆ by
Exercise 15, and hence 2ℵδ ≤ card(∆) = ℵδ+1 ≤ 2ℵδ . If α is a limit ordinal and
β < α , then β +1 < α , ∆ is an ηβ+1-set, 2W (ωβ ) can be embedded in ∆ and 2ℵβ ≤
card(∆) = ℵα . So in both cases ℵα is admissible. ut

The preceding argument implies that any totally ordered ηα+1-set T has cardi-
nality at least 2ℵα . For, 2W (ωα ) is ℵα+1-free and hence it can be embedded in T
(Exercise 15). In particular, this applies to a totally ordered ηα -set when ℵα is sin-
gular since it then must be an ηα+1-set (Exercise 31(d)).

Returning to groups we have

Theorem 4.4.11. Let α > 0 and let ∆ be a totally ordered ηα -set of cardinality
ℵα . Then the Hahn group Vα of Theorem 4.4.8 is a totally ordered ηα -group of
cardinality ℵα .

Proof. Since Vα ⊆ Vα(∆ ,R) and ℵα ≤ card(Vα) because Vα contains the charac-
teristic functions of points, we only need to verify that card(Vα) ≤ℵα when Vα =
Vα(∆ ,R). Let ϕ : W (ωα)−→ ∆ be a bijection of sets. If v∈Vα , then by the regular-
ity of ℵα (see Exercise 31(a)) there is some ordinal γ < ωα with ϕ−1(supp v) <
γ . Thus Vα is the union of the Wγ where Wγ = {v ∈ Vα : ϕ−1(supp v) < γ}.
Since card(Wγ) = card(Vα(ϕ(W (γ)),R)) we have card(Wγ)≤ 2ℵ0card(γ), and, using
(4.4.4) and (4.4.6) we have, as in (4.4.5),

card(Vα)≤ ∑
γ<ωα

2ℵ0card(γ) = ∑
β<α

ℵβ+12ℵβ ≤ℵα . (4.4.7)

ut
In addition to large products of ultraproducts, and of Hahn products, there are

other examples of ℵα -injective f -modules. The next result is crucial to our presen-
tation of these examples.

Theorem 4.4.12. Let {Mn : n ∈ N} be a sequence of nonzero Riesz groups and let
M = ΠMn/⊕Mn. Then M is an almost η1-group. If each Mn is an `-group, then M is
pairwise almost ℵ1-complete. Both statements also hold for homomorphic images
of M.

Proof. Let A and B be countable subsets of M with A < B. By Exercise 2.2.19
there are subsets A and B of ΠMn such that A < B and A −→ A and B −→ B are
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order isomorphisms. Suppose A = {an : n ∈ N},B = {bn : n ∈ N}, A = {an : n ∈
N}, B = {bn : n ∈ N}, an 7→ an and bn 7→ bn. For each n ∈ N take gn ∈ Mn with
{a1(n), . . . ,an(n)} ≤ gn ≤ {b1(n), . . . ,bn(n)} and define g ∈ΠMn by g(n) = gn. We
claim that A ≤ g ≤ B. To see this note that if ak(n) 6≤ g(n) = gn for some k and n,
then k > n; that is, {n : ak(n) 6≤ g(n)} ⊆ {1, . . . ,k− 1}. So if hk ∈ ΠMn is defined
by hk(n) = 0 if n ≥ k and hk(n) = −g(n) + ak(n) if n < k, then hk ∈ ⊕Mn and
ak ≤ g+hk. Thus, A≤ g and, similarly, g≤ B. This same argument works even if B
(or A) is the empty set; so M is an almost η1-group.

Suppose each Mn is an `-group and let A = {an} and B = {bn} be two countable
subsets of M with an∧bm = 0 for each n,m∈N. By replacing an by a1∨·· ·∨an and
bn by b1∨·· ·∨bn we may assume that A and B are increasing sequences. By lifting
A∪B∪{0} to an isomorphic copy in ΠMn we obtain increasing sequence A = {an}
and B = {bn} in ΠMn and an element z ∈ ⊕Mn with an ∧ bm = z for every n and
m. By replacing A by A− z and B by B− z we may assume z = 0. Define c ∈ΠMn
by c(n) = an(n). Now, for each n, {m ∈N : c(m) 6≥ an(m)} ⊆ {1, . . . ,n−1} since if
m≥ n then c(m) = am(m)≥ an(m). Also, c∈ B⊥ since (c∧bm)(n) = (an∧bm)(n) =
0 for every n and m. Thus, c ∈ B⊥ is an upper bound of A. Now replace A by B and
B by {c} to get an upper bound d of B with d∧ c = 0.

Homomorphic images of M also have these properties since countable subsets
can be lifted isomorphically to M. ut

We now introduce a class of po-rings for which Theorem 4.4.12 can be used to
produce ℵ1-injective f -modules. A function θ : R −→ T from the domain R into
the well-ordered set T is called a left division algorithm for R if for all a, b ∈ R with
b 6= 0, there exist q, r ∈ R such that

a = qb+ r and θ(r) < θ(b). (4.4.8)

The domain R is called a left Euclidean domain if it has a left division algorithm.
If R is a po-ring and θ is isotone on R+, then θ is called a left po-division algo-
rithm and R is called a left po-Euclidean domain. A right (po)-Euclidean domain
is defined analogously. Just as in the commutative case a left Euclidean domain is
a principal left ideal domain and is unital. Other properties are given in Exercises
36–39. Examples of left po-Euclidean domains include Z, any po-division ring D
with trivial θ : θ(0) = 0 and θ(R\{0}) = 1, as well as the polynomial ring D[x]
supplied with either the coordinatewise order or the lexicographic order and with
θ being the degree function. This last example can be generalized to the left skew
polynomial ring D[x;σ ,δ ] with coefficients written on the left of the powers of
x. Here, σ is an injective po-endomorphism of D and δ is a left σ -derivation of
D : δ ∈ EndZ(D) and for all a,b∈D, (ab)δ = aδ b+aσ bδ (δ is a right σ -derivation
if (ab)δ = aδ bσ + abδ ). The multiplication in D[x;σ ,δ ] is induced by the rule:
xa = aσ x + aδ for a ∈ D. With this data D[x;σ ,δ ] is a left po-Euclidean domain in
the lexicographic order, and it is left po-Euclidean in the coordinatewise order pro-
vided δ is also isotone. In the antilexicographic order D[x;σ ,δ ] is a totally ordered
left Euclidean domain when D is totally ordered and σ and δ are isotone, but it is not
po-Euclidean. When δ is a right σ -derivation the right skew polynomial ring with
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coefficients on the right will be denoted by D[δ ,σ ;x]. If σ is an automorphism of D,
then D[x;σ ,δ ] = D[−σ−1δ ,σ−1;x] is also right po-Euclidean in the lexicographic
order (see Exercises 41–45).

Theorem 4.4.13. Let R be a totally ordered countable right Öre domain with totally
ordered division ring of right quotients D.

(a) If {Mn : n ∈ N} is a sequence of self-splitting vector lattices over D,
then ΠMn/⊕Mn and all of its homomomorphic images are ℵ1-injective
R- f -modules.

(b) Suppose, additionally, that R is an `-simple left po-Euclidean domain and
has a left division algorithm θ with θ(a) = θ(−a) for each a in R. Then
RN/CR(1) and all of its homomorphic images are ℵ1-injective right
R- f -modules.

Proof. That (a) holds is an immediate consequence of Theorems 4.4.6 and 4.4.12.
As for (b), we have by Theorem 4.4.12 that RN/CR(1) is a pairwise almost ℵ1-
complete almost η1-`-group since R(N)⊆CR(1) = { f ∈RN : | f | ≤ a for some a∈R}.
Suppose f ∈ RN and 0 < a, b ∈ R with | f a| ≤ b. Then b ≤ ca for some c ∈ R; so
| f | ≤ c and RN/CR(1) is a nonsingular right R-module. To see that it is R-divisible
take f ∈ RN and 0 < a ∈ R. Then f (n) = q(n)a + r(n) with θ(r(n)) < θ(a) for
each n. Thus, |r|< a, f +CR(1) = (q+CR(1))a, and RN/CR(1) is an injective right
R-module. ut

Exercises.

1. Let y,u,v be elements of the `-group M.

(a) Show that y splits v from u iff y splits v+ from u.
(b) If v+ ≥ u+ and y splits v from u show that y∧ v+ splits v from u.
(c) Show that y splits v from u iff y ∈ M+ and ωy splits v from u for every

f -map ω of M with ωy≥ y.
(d) Suppose M is a subdirect product of the family of totally ordered groups

{Mj : j ∈ J}. Show that the following are equivalent.
(i) y splits v from u.

(ii) y ∈M+ and for each j ∈ J,
y j > 0⇒ y j ≥ u j ≥ 0 and y j ≥ v j,
y j = 0⇒ u j ≤ 0.

(iii) y ∈M+ and for each j ∈ J,
u j < 0⇒ y j = 0,
u j > 0⇒ y j ≥ u j ∨ v j,
u j = 0⇒ y j = 0 or y j ≥ v+

j .
(e) If M is representable and y and z split v from u show that y + z, y∨ z, and

y∧ z all split v from u.

2. Let u be an element of the `-group M and suppose (u−)⊥ is a summand of
M. Show that if v ∈ M, then M contains an element that splits v from u. In
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particular, a projectable `-group is self-splitting. (If v+ = x + z with x ∈ (u−)⊥
and z ∈ (u−)⊥⊥ let y = x∨u+ and use Exercise 1(a).)

3. Let u be an element of the `-group M. Show that the following statements are
equivalent.

(a) For every v ∈M there is an element y ∈M such that y splits v from u.
(b) If v≥ u+, then there are elements v1,v2 ∈M with v = v1 + v2, v1∧ v2 = 0,

u− ∧ v2 = 0 and v2 ≥ u+.
(c) M =

⋃
w∈M+[w⊥⊥ ∩ (u+)⊥⊕w⊥ ∩ (u−)⊥].

((a)⇒ (b). Using Exercise 1(b) assume y splits v from u and y≤ v and let v2 = y.
(b) ⇒ (c). Let z ∈ M, let v = |z| ∨ u and let w = v1 ∧ |z|. (c) ⇒ (a). For v ∈ M
write v∨u+ = v1 + v2 and let y = v2.)

4. Let MR be a nonsingular f -module over the irredundant semiprime right
q f -ring R.

(a) If M is self-splitting show that its injective hull is self-splitting.
(b) Show that the converse of (a) holds when R is pseudo-regular. (Use Exercise

1(d) and the fact that each component of R is `-simple.)

5. Let ∆ be the rooted po-set of proper prime subgroups of the self-splitting `-
group M. Show that distinct roots of ∆ are disjoint. (Let ∆1, ∆2 be distinct roots,
P ∈ ∆1 ∩ ∆2, P1 ∈ ∆1\∆2, P2 ∈ ∆2\∆1, x1 ∈ P+

2 \P1, x2 ∈ P+
1 \P2, x ∈ G+\P,

v = x∨ x1 ∨ x2, u = x1 − x2 and apply Exercise 3(b). Let Q be a value of v2
containing P1. Show that P2 6⊆ Q, Q⊂ P, and v1,v2 ∈ P.)

6. (a) Show that an `-group which has a proper trunk is self-splitting iff it is totally
ordered.

(b) Show that the `-group M ×←T is not self-splitting if T 6= 0 and M is not
totally ordered.

(c) Suppose the Hahn group V (Γ ,Gγ) is an `-group. Show that V is self-
splitting iff each Gγ is self-splitting, Γ is a cardinal sum of chains and each
minimal element of Γ is a root.

7. Let A be a proper dual ideal of the power set P(X) of the set X . Show that
A is a maximal dual ideal if and only if, for each A ∈P(X), either A ∈A or
X\A ∈A .

8. Let M be a totally ordered nonsingular module over the essentially positive
po-ring R. If X < Y in M show that M can be embedded in a totally ordered
nonsingular module N which contains an element u with X ≤ u≤ Y .

9. Show that an ℵα -injective representable f -module over a po-ring whose cardi-
nality is exceeded by ℵα is an almost-ηα -module. (Use Theorem 4.4.4.)

10. Show that the direct product M = Πλ Mλ of f -modules is ℵα -injective iff each
Mλ is ℵα -injective.
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11. Let {Rλ : λ ∈Λ} be the components of the irredundant semiprime right q f -ring
R and let {Mλ : λ ∈Λ} be the components (including 0) of the nonsingular right
f -module MR. Assume ℵα > card (R). Prove the equivalence of the following
statements.

(a) MR is ℵα -injective and essential.
(b) M = Πλ Mλ and Mλ is ℵα -injective in f -MR for each λ ∈Λ .
(c) M = Πλ Mλ and Mλ is ℵα -injective in f -MRλ for each λ ∈Λ .

12. Let {E j : j ∈ J} be a family of nonsingular ℵα -injective right f -modules over
the irredundant semiprime right q f -ring R with card (R) < ℵα . Show that E =
{u ∈Π jE j : card (supp u) < ℵα} is an ℵα -injective f -module over R.

13. The triple (A,B,C) of subsets of the poset P is called a formation in P if A <
B and for all (a,b,c) ∈ A× B×C, c 6≤ a and b 6≤ c. It is an ℵα -formation
if card (A∪B∪C) < ℵα . The element p ∈ P splits the formation (A,B,C) if
A < p < B and p is not comparable to any element in C. Show that each poset
P can be embedded in a poset P1 in which each formation in P is split. (Let
P1 = P∪{(A,B) : A (respectively, B) is an ideal (respectively, dual ideal) of P
and A < B}, partially ordered by adding the following relations to the relations
on P : p ≤ (A,B) if p ∈ A,(A,B) ≤ p if p ∈ B and (A,B) ≤ (C,D) if A ⊆ C
and D ⊆ B. The formation (A,B,C) in P is split by (A∗,B∗) in P1 where A∗
(respectively, B∗) is the ideal (respectively, dual ideal) of P generated by A
(respectively, B).)

14. An object E in a subcategory of Poset is called coterminally ℵα -injective if each
diagram of the form (4.4.1) in the category can be completed to a commutative
diagram whenever B is ℵα -free. Show that the following are equivalent for the
poset E.

(a) E is ℵα -injective in the category Poset.
(b) E is coterminally ℵα -injective in Poset.
(c) E is an almost ηα -set.

(For (a) ⇒ (c) use Exercise 13. For (c) ⇒ (b) assume B = A∪{x} with x /∈ A
and consider the sets LA(x) and UA(x) consisting of the lower and upper bounds,
respectively, of x in A.)

15. Let C be the subcategory of Poset whose morphisms are the 1-1 isotone maps.
Show that Exercise 14 holds for C provided “almost” is deleted from (c).
(UA(x)—or, alternatively, LA(x)—needs to be slightly enlarged. Replace UA(x)
by ϕ−1(VE(ϕ(LA(x)))) where ϕ is the vertical map in (4.4.1) and VE(ϕ(LA(x)))
denotes the set of strict upper bounds of ϕ(LA(x)).

16. Let D be the subcategory of Poset whose morphisms are the monomorphisms
of Poset. Show that Exercise 14 holds for D provided (c) is changed to : Every
ℵα -formation in E is split in E (see Exercise 13).
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17. Show that the poset E is injective in the category Poset iff E is complete (com-
pare Exercise 4.1.40).

18. Show that each poset can be embedded in a poset that is ℵα -injective in the
category given in Exercise 15.

19. Let E be a totally ordered set and let A be one of the categories: Poset, C
(in Exercise 15), D (in Exercise 16). Show that E is ℵα -injective in A iff E
is ℵα -injective in the subcategory of A whose objects are the totally ordered
sets.

20. Let R be a po-ring and let MR be ℵα -injective in the category po-MR of po-
modules. Suppose ℵα > card (R), ℵ0.

(a) Show that M is an injective R-module.
(b) Let x ∈M. Show that x is in the largest directed submodule of M iff the po-

submodule generated by x can be embedded in a po-module which contains
an upper bound for {−x,0}. In particular, if R is a po-domain show that M
is directed.

(c) Suppose x ∈ M, D is a right ideal of R with `(D;M) = 0 and xD+ ⊆ M+.
Show that x ∈ M+. In particular, if F is a pretopology of R, then M is F-
torsion-free iff M is F+-semiclosed.

21. Suppose F is a positive pretopology of the po-ring R and MR is an F-torsion-free
po-module. Show that M is ℵα -injective in the category of po-R-modules iff it
is ℵα -injective in the category of F-torsion-free po-R-modules.

22. Let R be a po-domain with R+ 6= 0 and assume that aR+∩bR+ 6= 0 if 0 < a,b ∈
R. Let MR be a po-module.

(a) If xa 6= 0 whenever 0 6= x ∈M and 0 < a ∈ R show that M+ is contained in
a (strict) total order of MR.

(b) Show that M+ is the intersection of strict total orders of MR iff M is R+-
semiclosed; that is, x∈M+ whenever there is some 0 < a∈ R with xa∈M+

(see Exercises 2.1.7 and 2.1.8).
(c) Suppose M is R+-semiclosed. Show that Theorem 4.4.4 holds for M. More

explicitly, show that M can be embedded in an R+-semiclosed f -module in
which each formation (X ,Y, /0) of M splits (see Exercise 13), and M can be
embedded in an R+-semiclosed ηα - f -module; and these modules may be
chosen to be F-torsion-free if M is F-torsion-free and F has a basis consist-
ing of finitely generated right ideals.

(d) Show that R+\{0} is a right Öre set in S = R+−R+.

23. Let R be an irredundant semiprime right q f -ring and let MR be an essential
nonsingular po-module. Assume ℵα is regular and card (R) < ℵα . Show that
the following are equivalent.

(a) M is ℵα -injective in po-MR.
(b) M is coterminally ℵα -injective in po-MR.
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(c) MR is injective, D(R)+-semiclosed, and is an almost-ηα -module.
(d) MR is injective and M is ℵα -injective in po-MZ. (Use Exercises 20–22 to

mimic the proof of Theorem 4.4.6; it is easier here.)

24. Show that the previous exercise holds when the category is changed by requiring
all morphisms to be 1-1 and “almost” is deleted from (c) (see Exercise 15).

25. (a) Let R be a directed po-unital po-ring. If G is an ℵα -injective abelian po-
group show that HomZ(R,G) is an ℵα -injective right R-po-module.

(b) Suppose R is directed and MR is a po-module whose underlying po-group is
semiclosed. Show that M can be embedded in an ℵα -injective po-module.
(Use Exercises 21 and 22.)

26. Let G be a totally ordered abelian (almost-)ηα -group. Show that its value set
Γ (G) is an (almost-)ηα -set.

27. Let G be an abelian almost-ηα -`-group where α > 0. If γ is a value of G show
that Gγ/Gγ is isomorphic to Z or to R. (Use Exercise 2.2.19 or 2.2.20.)

28. Let R be a semiprime right q f -ring. Verify that the following are equivalent.
The object E in the category C is called quasi-injective if the diagram in (4.4.1)
can be completed when B = E.

(a) R = Q(R).
(b) RR is quasi-injective in MR.
(c) RR is quasi-injective in po-MR.
(d) RR is quasi-injective in f -MR.

29. Show that ℵα+1 is a regular cardinal for any ordinal α .

30. Show that each ordinal number is uniquely of the form τ +n where τ is a limit
ordinal and n is a finite ordinal. τ +n is called even (odd) if n is even (odd).

31. (a) Show that ℵα is regular iff each subset of W (ωα) with fewer than ℵα
elements has an upper bound in W (ωα), iff W (ωα) is an almost-ηα -set.

(b) Let T be a totally ordered set with card (T )≤ℵα . Show that T has a cofinal
well-ordered subset S with ord (S)≤ωα . (If T = {tβ : β < ωα} let S = {tβ :
γ < β ⇒ tγ < tβ}.)

(c) If ℵα is singular show that the set T in (b) has a coterminal subset whose
cardinality is less than ℵα .

(d) If ℵα is singular show that each totally ordered ηα -set is an ηα+1-set.

32. Let Q be an ηα -set.

(a) If P is a totally ordered set with card (P)≤ℵα show that P can be embed-
ded in Q. (If P = {bβ : β < ωα} use Exercise 15 and transfinite induction
to construct an embedding.)

(b) If P and Q are totally ordered ηα -sets of cardinality ℵα show that P and Q
are isomorphic. (Use Exercise 30 and the technique of Exercise 1.1.2.)

33. Show that α ≤ ωα for each ordinal α .
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34. (a) Let x, y ∈ 2W (ωα ). Show that y is the successor of x(y = x+) iff there is an
ordinal τ < ωα such that xβ = yβ for β < τ , xτ = 0 and yτ = 1, and, for
σ > τ , xσ = 1 and yσ = 0.

(b) Show that x ∈ Tα iff x is the successor of some element of 2W (ωα )

(c) Show that 2W (ωα ) is complete. (To construct the sup of a subset A, assume
the components of x = (xβ )β<ωα have been defined for β < γ , and let xγ = 1
if, for some a ∈ A, aβ = xβ for β < γ and aγ = 1; otherwise, let xγ = 0.)

(d) If x < y in 2W (ωα ) and y 6= x+ show that x < u < y for some u ∈ Tα .
(e) Let Y be the subset of 2W (ωα ) consisting of all those elements that do not

have a successor in 2W (ωα ). Show that Y is the completion of Tα .

35. If T is a totally ordered set with card (T ) ≤ ℵα show that T can be embedded
in Tα . (If T = {tβ : β < ωα} define ϕ : T −→ Tα by (ϕ(tβ ))(γ) = 1 iff γ ≤ β
and tγ ≤ tβ .)

36. Let θ be a left division algorithm for the domain R and let R∗ = R\{0}. Show
that θ(0)≤ θ(R), and if u 6= 0 with θ(u)≤ θ(R∗), then u is a unit of R.

37. Let θ : R −→ T be a function from the domain R into the well-ordered set T .
Show that θ is a left division algorithm iff for every a,b ∈ R with b 6= 0 and
θ(b)≤ θ(a), there exists some q ∈ R with θ(a−qb) < θ(a).

38. Let θ be a left division algorithm for R. Show that the remainder r in (4.4.7) is
unique (and hence so is q) iff for every a,b ∈ R, θ(a−b)≤ θ(a)∨θ(b) and for
every a,b ∈ R∗, θ(b)≤ θ(ab). (For only if: a = 0(a−b)+a = 1(a−b)+b and
0 =−ab+ab = 0 ·b+0.)

39. For the subset X of the domain R let X ′ = {b ∈ R : Rb+X = R}. Let R0 = {0},
and for the ordinal α > 0 let Rα = Rβ ∪R′β if α = β +1 and let Rα =

⋃
β<α Rβ

if α is a limit ordinal. If Rτ = R for some ordinal τ , then R is called transfinitely
left Euclidean; and if τ = ω0, then R is called left Euclidean. For b ∈ R let ψ(b)
denote the least ordinal α with b ∈ Rα , provided such an ordinal exists.

(a) Show that ψ(b) is not a limit ordinal if b 6= 0.
(b) If Rβ = Rβ+1 for some β show that Rβ = Rγ for every γ ≥ β .
(c) If R is transfinitely left Euclidean show that ψ is a left division algorithm

for R and ψ(b)≤ ψ(ab) for all a,b ∈ R∗.
(d) If θ is an ordinal-valued or a Z+-valued left division algorithm for R and

θ(b) is not a limit ordinal for b 6= 0, show that R is transfinitely left Eu-
clidean or left Euclidean, respectively, and ψ(b) ≤ θ(b) for every b ∈ R.
(Show that θ−1([0,α])⊆ Rα .)

40. Let R = D[x;σ ,δ ] be a skew polynomial ring with coefficients in the division
ring D. Use Exercise 37 to show that the degree function is a left division algo-
rithm.

41. A degree function for the domain R is a function d : R−→Z+∪{−∞} such that
for all a,b ∈ R

d(0) =−∞ and d(R∗)⊆ Z+,
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d(a−b)≤ d(a)∨d(b),

d(ab) = d(a)+d(b).

If d is a degree function show that d(1) = 0 (if 1 ∈ R), d(a) = d(−a), and
d(a+b) = d(a)∨d(b) if d(a) 6= d(b).

42. Suppose that the domain R is generated by its unital subring A and an element
x such that R = ¢∞

i=0Axi, and the function d given by d(∑aixi) = largest i with
ai 6= 0 is a degree function. Show that R = A[x;σ ,δ ] where σ is a monic endo-
morphism of A and δ is a left σ -derivation of A.

43. Let d be a degree function for the domain R. Show that d is a left division
algorithm iff there is a division ring D such that R = D, or R = D[x;σ ,δ ] with
d(x) > 0. In the first case d(R∗) = {0} and in the second case d( f ) = d(x)deg f .
(Let D = {a ∈ R : d(a) ≤ 0}; if 0 < d(x) is minimal show that R = ¢iDxi and
use Exercises 41 and 42).

44. Show that the following are equivalent for the skew polynomial ring R =
D[x;σ ,δ ] over the division ring D.

(a) σ is an automorphism.
(b) R = D[−σ−1δ , σ−1; x].
(c) Every right ideal of R is principal.
(d) R is a right Öre ring.

(For (c) ⇒ (d) use Exercise 4.1.26 and for (d) ⇒ (a) consider xR∩ axR where
a ∈ D.)

45. Let R be a totally ordered domain. Show that R = D[x;σ ,δ ] is a lexicographi-
cally ordered skew polynomial ring over a totally ordered division ring D with
σ isotone iff R has a degree function which is a left po-division algorithm and
R has elements of positive degree.

46. Show that if E is injective in a subcategory A of the category of `-groups,
then E is c`-essentially closed in A ; that is, each c`-essential monomorphism
E −→ A in A is an isomorphism.

47. Let Z be a subring of the unital f -ring R with the same identity as R. Suppose
Z contains an increasing sequence T = {a1 < a2 < · · ·} which is cofinal in R,
each an is a unit of R and 1 ≤ a1. Let A be the convex `-submodule of (RN)R
generated by (a−1

n )n = s and let B be the convex `-submodule generated by 1.

(a) Show that each unital R-`-module is an f -module.
(b) If MR is an `-module show that CZ(M) = CR(M).
(c) Show that R(N) ⊂ A⊂ B⊂ RN.
(d) Suppose MZ is a unital `-module and there is a nonzero Z-`-homomorphism

α : A−→M with R(N)⊆ kerα . If there is a Z-`-homomorphism β : B−→M
extending α show that α(s)Z ≤ β (1).
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(e) Suppose R is archimedean and has a finite basis. Show that there are no
nonzero injectives in each of the following full subcategories of u- f -MZ :
all archimedean Z- f -modules, all archimedean Z- f -modules which are
finitely generated as a convex `-submodule, all archimedean Z- f -modules
with a basis, all Z- f -modules which are complete `-groups. (Reduce to the
case that R is totally ordered and use the previous exercise to show that a
nonzero injective in one of these categories containsR and hence it contains
each `-simple Z- f -module.)

(f) Suppose R is archimedean and has a basis. (Z may not exist.) Show that
there are no nonzero essential injectives in each of the subcategories of the
category of archimedean nonsingular R- f -modules corresponding to those
categories (of Z- f -modules) listed in (e).

(g) Give examples of pairs (R,Z) for which R is neither archimedean, commu-
tative, nor has a basis.

(h) Suppose R is an `-primitive f -ring. Show that there are no nonzero injec-
tives in any of the first three categories of unital Z-archimedean
Z- f -modules listed in (e).

48. Let R be a countable irredundant semiprime right q f -ring, and suppose MR
is a nonsingular essential ℵ1-injective f -module. If N is a closed convex `-
submodule of M show that M/N is ℵ1-injective.

Notes. Ribenboim introduced the concept of an ℵα -injective po-module in [RI2]
and showed that po-MR has no injectives when R is directed. Shatalova [SH3] re-
moved this restriction by means of Theorem 4.4.1. The definition of a self-splitting
`-group, the characterization of an ℵα -injective abelian `-group given in Theorems
4.4.2–4.4.6, the embedding given in Theorem 4.4.7, the examples given in Theo-
rems 4.4.12 and 4.4.13 for Z-modules, and Exercises 2, 6, 13–16, and 18 and 19
come from Weinberg [WE7]; also see [WE8]. The generalization of these results
to f -modules appears in Steinberg [ST3]. The definition of a totally ordered ηα -set
comes from Hausdorff who also established several properties of these sets [HAU].
Theorem 4.4.9 is due to Sierpinski [SI] and the converse to (c) of Theorem 4.4.9,
which is given in Theorem 4.4.10, is due to Gillman [GI]. Our presentation of this
material is dependent on Rosenstein [RO, p. 163] where additional material and ref-
erences may be found. Theorem 4.4.8 is due to Alling [AL2] and the proof given
is due to Schwartz [SCH1]. Another proof is given in Ribenboim [RI1]. Exercises
1, 2, and 5, for the most part, come from Powell [PO2], Exercise 25 comes from
Ribenboim [RI2] and Exercise 34 is in Gillman and Jerison [GJ, p. 189]. Exercises
36–44 are in Cohn [C2, p. 87] and Exercises 46 and 47 for the pair Z and R come
from Conrad [CON8].
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4.5 Free f -Modules

In contrast to the lack of injectives the category f -MR (or u- f -MR of unital f -
modules) has an ample supply of projectives since it is a variety of Ω -algebras and
hence has free objects; see Exercise 1.4.14. We wish to give a useful representa-
tion of a free f -module. More generally, we will construct free f -modules over po-
modules. The free f -module will occur when the po-module is a trivially ordered
free module. For modules over a totally ordered domain the situation is similar in
quality to that of the preceding section in the sense that there always exists a free
t-torsion-free f -module over a t-torsion-free po-module precisely when the ring is
a right Öre domain. Also of interest is the fact that when the domain is archimedean
each disjoint subset of a free f -module is countable, whereas an example using
group rings or power series will show that this is not the case in general. For many
f -rings R it will be seen that the free nonsingular f -modules are `-submodules of
the product of copies of R. By using free abelian `-groups two lattice-ordered tensor
products will be constructed.

Let MR be a po-module over the po-ring R, and let ϕ : M −→ F be a one-to-one
po-homomorphism into the f -module FR. The pair (F,ϕ) is called a free f -module
over M if ϕ(M) generates F as an f -module, and for each po-homomorphism
ψ : M −→ K into an f -module K there is an `-homomorphism σ : F −→ K with
σϕ = ψ .

Since ϕ(M) generates F the homomorphism σ is uniquely determined by ϕ and ψ .
Moreover, if (F1,ϕ1) is another free f -module over M, then it is easily seen that there
is a unique isomorphism σ : F −→ F1 with σϕ = ϕ1. If ϕ is an embedding, then F
is called the free f -module extension of M. If C is a subcategory of f -MR, then the
definitions of a C -free f -module over M and of a C -free f -module extension of M
are obtained by stipulating that the morphism σ in (4.5.1) lies in C . These free f -
modules will also be called free C - f -modules over M or extending M, respectively.
In particular, suppose F is a positive topology of R and M is F-torsion-free. If F is
the free f -module over M or the free f -module extension of M, then F/tF(F) is the
F-free f -module over M or the F-free f -module extension of M, respectively, in the
category of F-torsion-free f -modules.

Let MR be a submodule of the f -module VR. Recall that the `-submodule U
of V generated by M is the union of a chain of submodules and a chain of R+-`-
subgroups. Specifically, let M0 = M and let L0 = L(M) be the sublattice of V gener-
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ated by M. Then U =
⋃

n Mn =
⋃

n Ln where, inductively, Mn+1 is the R-submodule
generated by Ln and Ln+1 = L(Mn+1).

Throughout, we will assume that C is a full subcategory of f -MR and that the
class of objects in C is productive, hereditary and contains each f -module that is
isomorphic to a member of C . An f -module in C is C -representable if it is a subdi-
rect product of a family of totally ordered modules each of which belongs to C . The
category of C -representable f -modules inherits the previously mentioned proper-
ties of C . For the most part C will be the category of all (unital) f -modules or the
category of nonsingular f -modules.

Theorem 4.5.1. Let MR be a po-module over the po-ring R and let C be a subcate-
gory of f -MR. Let

S = {(M/N,P) ∈ C : N is a convex submodule of M and

P is a total order of the module M/N with (M/N)+ ⊆ P}.
Let ϕ : M −→ΠS (M/N,P) be the po-homomorphism induced by the natural maps
M −→ (M/N,P), and let FM be the `-submodule of the f -module ΠS (M/N,P)
generated by its submodule ϕ(M). The following statements are equivalent.

(a) There is a free C -representable f -module over M.
(b) (FM,ϕ) is the free C -representable f -module over M.
(c)

⋂
S N = 0.

Proof. Suppose (F ,ϕ) is the free C -representable f -module over M and represent
F as a subdirect product of totally ordered f -modules: F −→ΠiFi; we will identify
F with its image in ΠiFi. If Ni = kerπiϕ , where πi is the ith projection, then

⋂
i Ni = 0

and (M/Ni,Pi)∈S where Pi is the total order of M/Ni induced by the isomorphism
M/Ni ∼= πiϕ(M). This shows that (a) implies (c), and we will complete the proof
by showing that (c) implies (b). Suppose

⋂
S N = 0; then ϕ is a one-to-one po-

homomorphism. Let ψ : M −→ K be a po-homomorphism into the C -representable
f -module K. We may assume that K is totally ordered. For, K is a subdirect product
of totally ordered R-modules: K ⊆ ΠKi. Let pi denote the projection of ΠKi onto
Ki, and suppose, for each i,σi : FM −→ Ki is an `-homomorphism with σiϕ = piψ .
Then the induced `-homomorphism σ : FM −→ΠiKi has its image in K and σϕ = ψ
since, first, σ(L0) = σ(L(ϕ(M))) = L(σϕ(M)) = L(ψ(M)) ⊆ K, and, second, if
σ(Ln)⊆ K, then σ(Ln+1) = σ(L(Ln +LnR)) = L(σ(Ln +LnR))⊆ K. Now, assum-
ing that K is totally ordered, let Pψ be the total order of M/kerψ induced by the
module isomorphism ψ∗ : M/kerψ ∼= ψ(M). Then (M/kerψ,Pψ) ∈S and ψ∗ is
an isomorphism of totally ordered modules. Define σ : FM −→ K to be the compos-
ite of the projection of FM onto (M/kerψ,Pψ) followed by ψ∗; so σ(u) = ψ∗(uPψ ).
Clearly, σ is an `-homomorphism with σϕ = ψ . ut

Note that for any po-module M, the f -module FM given in Theorem 4.5.1 is the
free C -representable f -module over M/kerϕ , and if M is trivially ordered it is the
free C -representable f -module extension of M/kerϕ . We will now utilize Theorem
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4.5.1 to construct some free f -modules. If F is the free C - f -module on the set X
and M is the R-submodule generated by X it is easy to see that F is the free C -
f -module extending (M,M+), and it is also the free C - f -module over the trivially
ordered module M.

Theorem 4.5.2. Let MR be the trivially ordered free (unital) R-module with basis X
over the (unital) po-ring R. Then the C -free (unital) f -module over M, if it exists,
is a C -free (unital) f -module on X. In particular, if R is unital and it has a partial
order for which it is a C -representable f -module over R, and M is unital, then the
f -module FM that is constructed in Theorem 4.5.1 is the free unital C -representable
f -module on X.

Proof. Given a function f : X −→ K into the (unital) C - f -module K we obtain the
commutative diagram

Here, ψ is the R-homomorphism extending f , which certainly is isotone, and σ
is the `-homomorphism extending ψ . Now suppose R is unital and (R,T ) is a C -
representable R- f -module. Then the free unital module M ∼= ¢X xR can be made
into a C -representable f -module, and hence FM is the free unital C -representable
f -module with basis X since the condition (c) in Theorem 4.5.1 is satisfied. ut

We note that if the right R- f -module S = (R,T ), which is assumed to exist in
Theorem 4.5.2, is a right f -ring, then the free unital S- f -module on X is an R- f -
module homomorphic image of the free unital representable R- f -module on X .

In many cases the free nonsingular f -module over a nonsingular po-module M
can be constructed from the total orders of M instead of from the total orders of the
homomorphic images of M. The module MR over the domain R is called t-torsion-
free if xa = 0 implies x = 0 or a = 0 for x ∈ M and a ∈ R. Because a torsion-free
module is now associated with a topology F we have introduced this new terminol-
ogy for a module which previously was just called torsion-free; see Exercises 3.3.17
and 3.3.20. Recall that M is R+-semiclosed if x ∈M+ whenever xa ∈M+ for some
0 < a ∈ R.

Theorem 4.5.3. Let R be a domain which is a po-ring with R+ 6= 0. The following
statements are equivalent.

(a) If 0 < a,b, then aR+∩bR+ 6= 0.
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(b) The positive cone of each t-torsion-free po-module can be extended to a
total order of the module.

(c) The positive cone of each t-torsion-free po-module is contained in an R+-
semiclosed partial order of the module.

(d) If M is a t-torsion-free po-module, then there is a free t-torsion-free
f -module over M.

Proof. The implication (a)⇒ (b) is given in Exercise 4.4.22 (a) and the implication
(b) ⇒ (c) is trivial.

(c) ⇒ (a). Suppose a and b are nonzero elements of R+ with aR+ ∩ bR+ = 0.
Let S = R+Z1⊆ EndR(RR). Then S is a domain and S+ = {s ∈ S : sR+ ⊆ R+} is a
partial order for the ring S with R+ ⊆ S+ (see Theorem 3.4.5). Since aS+∩bS+ = 0
it is clear that aS+−bS+ is a partial order for SR. Hence aS+−bS+ ⊆ P where P is
an R+-semiclosed partial of S. But then we have the contradiction 1 ∈ P∩−P since
1a ∈ P and (−1)b ∈ P.

(d) ⇒ (c). This is a consequence of the fact that a t-torsion-free f -module is
R+-semiclosed.

(a) ⇒ (d). Let U be the set of total orders of MR which contain M+, and let
ϕ : M −→ΠU (M,P) be the diagonal embedding of the module M into the product.
Clearly ϕ is isotone. Let F be the `-submodule of the product generated by ϕ(M).
We will show F is the free t-torsion-free f -module over M. Suppose ψ : M −→ K
is a po-homomorphism into the t-torsion-free f -module K. By Exercise 4.4.22(b)
K is a subdirect product of totally ordered t-torsion-free modules. As in the proof
of Theorem 4.5.1 we may assume K itself is totally ordered. By (b) there is a total
order T of kerψ which contains (kerψ)+. Let P = {x ∈ M : ψ(x) > 0}∪T . Then
P ∈U and we have the commutative diagram

where the projection π and the bottom map ψ are `-homomorphisms. ut
Note that the free t-torsion-free f -module over M constructed in Theorem 4.5.3

is the free t-torsion-free f -module extension of M if and only if M is R+-semiclosed
since, according to Exercise 4.4.22(b), the latter holds exactly when M+ is the in-
tersection of total orders of MR.

The previous theorem can be extended to po-modules over an irredundant semi-
prime right q f -ring. An I-torsion-free module over a reduced irredundant semiprime
ring is called reduced if each of its components is a t-torsion-free module over the
corresponding component ring. When the maximal right quotient ring is reduced
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each nonsingular module is a reduced module since its components are nonsingular
modules over right Öre domains.

Theorem 4.5.4. Let R be an irredundant semiprime f -ring. Then R is a right q f -
ring if and only if, for each reduced po-module MR, there is a free reduced f -module
over M.

Proof. Let {Rλ} be the components of R and let {Mλ} be the components of the
nonsingular po-module MR. Recall from Theorem 4.1.17 and Exercise 4.1.38 that
Mλ = M/Nλ is a nonsingular Rλ -module where Nλ = `(R∩Rλ : M) is a convex
submodule of M. Suppose R is a right q f -ring. As noted prior to Theorem 4.3.14
each Rλ is a totally ordered right Öre domain. Let

V = {(M/N,P) : N is a closed convex submodule of M and P is a

total order of the module M/N with (M/N)+ ⊆ P}.
Let ϕ : M −→ ΠV (M/N,P) be defined by ϕ(x) = (x + N)P and let GM be the `-
submodule of the product generated by ϕ(M). By Exercise 4.4.22(a) each M/Nλ
has a total order Pλ with (M/Nλ ,Pλ ) ∈ V . Thus,

⋂
V N ⊆ ⋂

λ Nλ = 0 and ϕ is one-
to-one. Since each nonsingular f -module is a subdirect product of totally ordered
nonsingular f -modules (Theorem 4.3.14) Theorem 4.5.1 gives that (GM,ϕ) is the
free nonsingular f -module over M.

For the converse, let M be a t-torsion-free po-module over the component Rλ of
R, and let (F,ϕ) be the free reduced R- f -module over M. Since F is generated by
ϕ(M),F(R∩Rµ) = 0 and Fµ = 0 for each µ 6= λ . Thus, F is a free t-torsion-free
Rλ - f -module over M, Rλ is a right Öre domain by Theorem 4.5.3, and R is a right
q f -ring by the remarks preceeding Theorem 4.3.14. ut

From Theorem 4.5.2 we know that the free nonsingular f -module of a given
rank over an irredundant semiprime right q f -ring is the free nonsingular f -module
over the trivially ordered free module of the same rank. It is also the free f -module
modulo its singular submodule.

Let R be a directed po-ring which is a unital right Öre domain with right quotient
division ring Q, and suppose aR+∩bR+ 6= 0 if 0 < a,b∈ R. For the cardinal number
n let Fn be the free nonsingular R- f -module of rank n. Note that Fn is the free unital
R- f -module of rank n. If n < m, then Fm cannot be embedded in Fn and hence each
free generating set for Fn must have cardinality n. To see this let P be a total order of
R(m) and let A be the kernel of an `-epimorphism Fm −→ (R(m),P). Suppose Fm ⊆Fn.
Let B be a convex `-submodule of Fn maximal with respect to B∩Fm = A. Then B is
a prime submodule of Fn (see Exercise 2.4.23). Now, R(m)∼= Fm/A⊆Fn/B =V as R-
modules, and also R(m) can be embedded in the nonsingular R-module U =V/Z(V ).
This is impossible since Q(m) = Q(R(m)) has Q-dimension m whereas, Q(U) has Q-
dimension at most n. The same thing is true if R is an irredundant semiprime right
q f -ring since, if Rλ is a component of R, then (R(n))λ = R(n)

λ and (Fn)λ = (Fλ )n by
Exercise 1, where (Fλ )n denotes the free nonsingular Rλ - f -module of rank n. We
record this in the following result.
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Theorem 4.5.5. Let Fn be the free unital f -module of rank n over a unital irredun-
dant semiprime right q f -ring. If m and n are cardinals with n < m, then Fm cannot
be embedded in Fn. ¤

Let R be a unital directed po-ring and assume that the free unital f -module F of
rank one is given as in Theorem 4.5.2 (or Theorem 4.5.3) and is not trivial. So F is
the free unital f -module over the trivially ordered module M = RR. Suppose J is a
right ideal of R and (R/J,P) is a totally ordered right R-module. Then 1+ J ∈ P or
−1+J ∈ P and both (R/J,P) and (R/J,−P) are in S . Let S1 = {(R/J,P) : 1+J ∈
P} and S2 = {(R/J,P) : −1 + J ∈ P}. Then the map (R/J,P) 7→ (R/J,−P) is a
bijection from S1 onto S2 and we have the decomposition

ϕ : M −→ΠS (R/J,P) = ΠS1(R/J,P)⊕ΠS2(R/J,P).

Now, for each a ∈ R+ we have ϕ(a)+ = ((a + J)S1 , (a + J)S2)
+ = ((a + J)S1 ,0)

and ϕ(a)− = (0,(a + J)S2); so ϕ(a)+ ∧ ϕ(b)− = 0 for a,b ∈ R+. Let F1 be the
convex `-submodule of F generated by {ϕ(a)+ : a∈ R+} and let F2 be the convex `-
submodule generated by {ϕ(a)− : a∈R+}. Then F = F1⊕F2 since ϕ(M)⊆F1⊕F2,
and Fi 6= 0 for i = 1,2 since R+ 6⊆ J. Now suppose R is an f -ring. Then G = R⊕R is
the free strong unital f -module of rank one. To see this take G = (R,R+)⊕(R,−R+)
and let ϕ : M −→ G be the diagonal map. Note that ϕ(M) generates G as a lattice
since (0,1) = (2,2)− (2,1) = (2,2)− (2,2)∨ (1,1). Suppose ψ : M −→ K is an
R-homomorphism into a unital totally ordered strong f -module. If ψ(1) > 0 define
σ : G −→ K by σ((a,b)) = ψ(a). Then σ is an R-`-homomorphism with σϕ = ψ
since

σ((a,b)+) = ψ(a+) = ψ(1)a+ = ψ(a)+ = σ((a,b))+.

Similarly, if ψ(1) < 0, then the map σ defined by σ((a,b)) = ψ(b) is an `-
homomorphism with σϕ = ψ .

Since the free f -module of any rank is the free product of rank one free f -
modules (see Exercise 1.4.21) the previous paragraph suggests that free f -modules
have nontrivial summands. We will see later that this is not always the case.

An R-module is torsionless if it can be embedded in a direct product of copies of
the module RR, and an `-module over the `-ring R is called `-torsionless if it can be
embedded in a direct product of copies of the `-module RR. We have just seen that
the free strong unital f -module of rank 1 over an f -ring is `-torsionless. Other free
f -modules are also `-torsionless.

Theorem 4.5.6. Let R be a countable `-simple totally ordered domain that is left
po-Euclidean and right Öre. Then every free unital right f -module over R is
`-torsionless.

Proof. Each unital f -module M over R is t-torsion-free since if xa = 0 with x ∈M
and 0 < a ∈ R, then 1 ≤ ab for some b ∈ R and |x| ≤ |xa|b = 0. Let F be a free
unital right f -module over R. To show that F is `-torsionless we may assume that it
has finite rank since F is a subdirect product of free f -modules of finite rank (see
Exercise 1.4.11). Since F is the lattice generated by a finitely generated free module



4.5 Free f -Modules 397

it is countable. If E is any nonzero unital ℵ1-injective right f -module and MR is
a countable totally ordered unital module, then M can be embedded in E since R
can be embedded in E and hence the morphism g in the following diagram must be
injective.

Take E = RN/CR(1), which is ℵ1-injective by Theorem 4.4.13. Represent F as a
subdirect product of totally ordered modules Ti : F ⊆ΠTi. Then Ti can be embedded
in E and thus there is an `-submodule Ai of RN together with a homomorphism of
Ai onto Ti. But then ΠAi maps onto ΠTi and hence F is a homomorphic image of
some `-submodule A of ΠiAi ⊆ ΠiRN = RJ . Since F is a projective f -module it is
embeddable in A and hence in RJ :

ut

Another more direct approach allows a considerable improvement of the preced-
ing result. It holds for any irredundant semiprime two-sided q f -ring. We start with
a technical result.

Theorem 4.5.7. Let MR be a nonsingular f -module over the irredundant semiprime
right q f -ring R. Suppose X is a finite subset of M and infX 6≤ 0. Then there is an
element g ∈ HomR(MR,Q(R)R) with infg(X) > 0.

Proof. As usual, we may assume that R is a totally ordered right Öre domain and M
is totally ordered. Let Q = Q(RR). Since E(MR) = XQ ¢ G as Q-modules we may
also assume that M = XQ. We argue by induction on dimMQ. If dimM = 1, then
M = xQ for a fixed x∈ X and for each y∈ X there is an element 0 < py ∈Q with y =
xpy. In this case define g : M −→Q by g(xp) = p. Suppose dimM ≥ 2 and let k ∈N
be minimal such that there is a subset {x1, . . . ,xk} of X with X ⊆ x1Q+ + · · ·+xkQ+.
Note that k ≥ 2, and we suppose x1 > x2. We claim that

x1Q+ + · · ·+ xkQ+∩ (x1− x2)Q = 0. (4.5.2)
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If not, take 0 6= (x1− x2)p = x1 p1 + · · ·+ xk pk with each pi ∈ Q+. Then p > 0 and
x1− x2 = x1q1 + · · ·+ xkqk with each qi ∈ Q+. So, x1(1 − q1) = x2(1 + q2)+ · · ·+
xkqk > 0 and this gives the contradiction X ⊆ x2Q++ · · ·+xkQ+. Let C = (x1−x2)Q,
and let P = ∑(xi +C)Q+⊆M/C. As a consequence of (4.5.2) we have that P∩−P =
0, and hence P is a positive cone of the Q-module M/C with x +C ∈ P\{0} for
each x ∈ X . By Exercise 4.4.22(a) P is contained in a total order of M/C. Since
dimM/C = dimM−1, there exists h ∈ HomR(M/C,Q) with

∧
x h(x +C) > 0; thus

the composition M −→M/C −→ Q is the desired map. ut
Here is an embedding theorem which is a consequence of the previous result.

Theorem 4.5.8. Let R be an irredundant semiprime right q f -ring and let F be the
free nonsingular f -module extension of the trivially ordered module M. Then F can
be embedded in a product of copies of Q(R)R.

Proof. If 0 < x ∈ F , then x =
∨

i
∧

j xi j with xi j ∈ M and for some i,
∧

j xi j 6≤ 0.
By Theorem 4.5.7 there is an R-homomorphism ρ : F −→ Q with

∧
j ρ(xi j) > 0,

and ρ must be an `-homomorphism since the restriction of ρ to M extends to an
`-homomorphism of F . So ρ(x) > 0 and hence F can be embedded in QI where
I = F+\{0}. ut

We will show that a free nonsingular f -module over R of finite rank is `-
torsionless by producing a free set of generators within some power of R. Let
2 ≤ n ∈ N and let τ be an ordinal with Rn\{0} = {(a1α , . . . ,anα) : α < τ}. Con-
sider the array:

a10 a20 · · ·an0

a11 a21 · · ·an1

...

a1α a2α · · ·anα

...

Let z1, . . . ,zn ∈ RW (τ) be defined by using the columns of this array. So, (z j)α = a jα :

z1 = (a10,a11, . . . ,a1α , . . .)

z2 = (a20,a21, . . . ,a2α , . . .)

...

zn = (an0,an1, . . . ,anα , . . .).

For the po-ring R and (r1, . . . ,rn) ∈ Rn define the right open half -plane

H(r1, . . . ,rn) = {(s1, . . . ,sn) ∈ Rn : s1r1 + · · ·+ snrn > 0}.
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Theorem 4.5.9. Let R be a reduced sp-po-ring. With the notation above let A =
z1R+ · · ·+ znR⊆ RW (τ).

(a) {z1, . . . ,zn} is an R-independent subset of RW (τ).
(b) Suppose R is a totally ordered domain. Let x1, . . . ,xk be elements of A : xi =

∑n
j=1 z jri j. The following are equivalent.
(i)

∧
xi ≤ 0.

(ii)
∨

xi ≥ 0.
(iii)

⋂k
i=1 H(ri1, . . . ,rin) = /0.

(iv)
⋂k

i=1 H(−ri1, . . . ,−rin) = /0.
(c) Let R be a unital totally ordered two-sided Öre domain. If g : A−→ N is an

R-homomorphism into the nonsingular f -module N, then
∧

xi ≤ 0 implies∧
g(xi)≤ 0 and

∨
xi ≥ 0 implies

∨
g(xi)≥ 0.

Proof. (a) If ∑n
j=1 z ja jα = 0 for some α < τ , then 0 = (∑ j z ja jα)α = ∑ j a2

jα and we
have the contradiction a1α = · · ·= anα = 0.

(b) (i) ⇒ (iii). If (a1α , . . . ,anα) ∈⋂k
i=1 H(ri1, · · · ,rin) for some α < τ , then

0≥
∧

i

(xi)α =
∧

i
∑

j
a jα ri j > 0.

(iii) ⇒ (i). For each α < τ there is some m, 1≤ m≤ k, with ∑n
j=1 a jα rm j ≤ 0. So

(
∧

i

xi

)

α

≤ (xm)α =
n

∑
j=1

a jα rm j ≤ 0.

Similarly, (ii) is equivalent to (iv), and clearly (iii) and (iv) are equivalent.
(c) Suppose

∧
xi ≤ 0 but

∧
g(xi) 6≤ 0. By Theorem 4.5.7 we may assume that

N is the totally ordered division ring of quotients of R and
∧

g(xi) > 0. Take 0 <
a ∈ R with ag(z j) ∈ R for j = 1, . . . ,n. Then 0 < ag(xi) = ∑n

j=1 ag(z j)ri j for each
i = 1, . . . ,k; but this is impossible by (b). If

∨
xi ≥ 0, then

∧−xi ≤ 0 and hence∨
g(xi)≥ 0. ut

Theorem 4.5.10. Let R be a unital irredundant semiprime two-sided q f -ring. Each
free nonsingular R- f -module is `-torsionless.

Proof. As noted previously, it suffices to prove the theorem for the case in which R
is totally ordered and the free f -module has finite rank. Let B be the `-submodule
of RW (τ) generated by the R-module A of Theorem 4.5.9. We claim that B is a free
nonsingular f -module on the set {z1, . . . ,zn}. For, by (a) of Theorem 4.5.9 a function
{z1, . . . ,zn}−→N into the nonsingular f -module N extends to an R-homomorphism
g : A−→ N. Define h : B−→ N by

h

(
∨

i∈I

∧

j∈J

xi j

)
=

∨

i

∧

j

g(xi j), xi j ∈ A.

To see that h is well-defined, suppose
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0 =
∨

i∈I

∧

j∈J

xi j =
∧

f∈JI

∨

i∈I

xi f (i).

Then for each i ∈ I,
∧

j xi j ≤ 0, and for each f ∈ JI ,
∨

i xi f (i) ≥ 0. By (c) of Theorem
4.5.9 we have

∧
j g(xi j)≤ 0 and

∨
i g(xi f (i))≥ 0. So

0≤
∧

f∈JI

∨

i∈I

g(xi f (i)) =
∨

i∈I

∧

j∈J

g(xi j)≤ 0.

Thus, h is an R-`-homomorphism by Exercise 2.2.19 and B is free on {z1, . . . ,zn}.
ut

If R is the direct product of two copies of R, then the free unital R- f -module of
rank 2 is the direct sum of two copies of the free unital R- f -module of rank 2 (see
Exercise 2). Consequently, to show that free f -modules are indecomposable it is
reasonable to assume that R is an indecomposable po-ring. We will further restrict
R to a subring of R. The next result is clearly related to indecomposability and so is
the one that follows.

Theorem 4.5.11. Let R be a subring ofR and let F be the free nonsingular f -module
extension of the trivially ordered R-module M. Suppose that u,v ∈ F and x1, . . . ,xn
are elements of M such that u∧v = 0 and u+v = x+

1 ∧·· ·∧x+
n . Then u = 0 or v = 0.

Proof. By Theorem 4.5.8 we may assume that F is contained in a product of copies
of RR. Thus, it suffices to show that Tu = 0 or T v = 0 where T is the set of R-`-
homomorphisms from F into R. If ψ ∈ T and

∧
i ψ(xi) ≤ 0 then ψ(u) = ψ(v) =

0; so we only need to consider those ψ with
∧

i ψ(xi) > 0. Now suppose that ψ
and θ are two such homomomorphisms and ψ(u) = 0. For t ∈ [0,1] let ϕt be that
element of T that lifts the R-homomomorphism tψ +(1− t)θ ∈ HomR(M,R). Let
s =

∧
i ψ(xi)∧

∧
i θ(xi). Then s > 0 and since z∧w≤ tz+(1− t)w for t ∈ [0,1] and

w,z ∈ R+, we have
∧

i

ϕt(xi) =
∧

i

(tψ(xi)+(1− t)θ (xi))≥
∧

i

ψ(xi)∧
∧

i

θ (xi) = s.

Note that ϕ1(u) = ψ(u) = 0, and if ϕt(u) > 0 then ϕt(u) =
∧

i ϕt(xi) ≥ s. Now,
u =

∨
i
∧

j mi j where mi j ∈ M. Define the functions fi j : [0,1] −→ R by fi j(t) =
tψ(mi j)+(1− t)θ (mi j). Then each fi j is continuous and hence so is f =

∨
i
∧

j fi j.
Also,

f (t) =
∨

i

∧

j

ϕt(mi j) = ϕt(u)

for each t ∈ [0,1]. Since f (1) = 0 and f (t) ≥ s whenever f (t) > 0, we must have
f = 0 by the continuity of f . Thus, θ(u) = ϕ0(u) = f (0) = 0. ut
Theorem 4.5.12. Let M be a nonsingular po-module over the totally ordered right
Öre domain R, and let (F0,ϕ0) be the free nonsingular f -module extension of the
trivially ordered module M0 = M. If C is the convex `-subgroup of F0 generated by
the set {ϕ0(x)− : x ∈M+}, then F0/c`C is the free nonsingular f -module over M.
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Proof. Clearly, C is a submodule of F0 and the composite ϕ : M−→F0/c`C given by
ϕ(x) = ϕ0(x)+c`C is isotone. We will show that it is injective. Suppose ϕ0(x)a∈C
with 0 < a ∈ R. Then there exist nonzero elements x1, . . . ,xn in M+ with

|ϕ0(xa)| ≤ ϕ0(x1)−+ · · ·+ϕ0(xn)−

and hence

ϕ0(xa)+∧
∧

j

ϕ0(x j)+ ≤∑
j

ϕ0(x j)− ∧
∧

j

ϕ0(x j)+ = 0.

By Exercise 4.4.22(a) there is a total order P of MR which contains M+. By re-
placing x by −x if necessary, we can assume that x ∈ P. But from the construc-
tion of F0 in Theorem 4.5.3 we see that if xa 6= 0, then 0 < ϕ0(xa)+ ∧∧

j ϕ0(x j)+.
Thus, xa = 0 and hence x = 0. Now, suppose ψ : M −→ K is a po-homomorphism
into the nonsingular f -module K. Since ψ : M0 −→ K is also a po-homomorphism
it has a lifting to σ : F0 −→ K, a homomorphism of f -modules. If x ∈ M+, then
σϕ0(x)− = ψ(x)− = 0 since ψ(x) ∈ K+. Thus c`C ⊆ kerσ since K is nonsingu-
lar, and σ induces an f -module homomorphism on F0/c`C which extends ψ . This
shows that (F0/c`C,ϕ) is the free nonsingular f -module over M. ut

We will now use the previous two results to show the indecomposability of some
free f -modules.

Theorem 4.5.13. Let R be a subring ofR and let F be the free nonsingular f -module
over the nonsingular po-module MR. Then F is decomposable if and only if MR is
uniform and trivially ordered.

Proof. If MR is uniform and trivially ordered, then F is decomposable by Exercise
3. Conversely, suppose that F is decomposable and assume first that M is trivially
ordered. Let F = F1⊕F2 be a decomposition of F with each Fi 6= 0. We will use
the construction of F that is given in Theorem 4.5.3. If 0 6= x ∈ M, then ϕ(x) is a
weak order unit of F since all of its components in ΠS (M,P) are nonzero. Hence,
ϕ(x) 6∈ F1∪F2, or else ϕ(x)∈ F2, say, and F1 ⊆ F⊥2 ⊆ ϕ(x)⊥ = 0. Now, ϕ(x) = u+v
with u∈F1 and v∈F2. By Theorem 4.5.11 ϕ(x)+ ∈{u+,v+} and ϕ(x)− ∈ {u−,v−}.
So, either ϕ(x)+ ∈ F1 and ϕ(x)− ∈ F2, or ϕ(x)− ∈ F1 and ϕ(x)+ ∈ F2. Suppose x
and y are nonzero elements of M with X ∩Y = 0 where X (respectively, Y ) is the
submodule of M generated by x (respectively, y). We may assume ϕ(x)+ ∈ F1 and
ϕ(y)− ∈ F2; the other three cases can be dealt with in an analogous way. Since
(xR+ +Z+x)− (yR+ +Z+y) is a partial order of MR it is contained in some total
order P by Exercise 4.4.22(a). But now we have the contradiction ϕ(x)+∧ϕ(y)− =
0, yet

(ϕ(x)+)P∧ (ϕ(y)−)P = x∧−y > 0

in (M,P). So MR is uniform.
Now assume that M+ 6= 0. Using the notation of Theorem 4.5.12 we have F =

F0/c`C = F1/c`C ⊕ F2/c`C where each Fj is a convex `-submodule of F0 which
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properly contains c`C and F1∩F2 = c`C. If 0 6= x ∈M+, then ϕ0(x) = u1 +u2 with
u j ∈ Fj. Take 0 < a ∈ R and x1, . . . ,xn ∈M+\{0} with

(|u1|∧ |u2|)a≤ ϕ0(x1)−+ · · ·+ϕ0(xn)−.

Since M+ is contained in a total order of MR, if w is defined by

w = ϕ0(x)+∧ϕ0(x1)+∧·· ·∧ϕ0(xn)+,

then 0 < w≤ u+
1 +u+

2 . So w = v1 + v2 where 0≤ v j ≤ u+
j and hence

(v1∧ v2)a≤
[∧

ϕ0(xi)+∧∑ϕ0(xi)−
]

a = 0.

Thus, v1 ∧ v2 = 0 and either v1 = 0 or v2 = 0 by Theorem 4.5.11. Assume that
v2 = 0; so w = v1 ∈ F1 and w∧|v| ∈ c`C for each v ∈ F2. From the construction of F
in Theorem 4.5.3 we know that the image of each 0 6= y ∈M+ is a weak order unit
of F . Thus, the image of w is a weak order unit in F and we have that F2 ⊆ c`C. This
contradiction gives that F is indecomposable when M is not trivially ordered. ut

We wish to examine the size of disjoint sets in free f -modules, and for our first
result we will utilize some topological considerations. Recall that the topological
space X is separable if it has a countable dense subset. Recall also that if {Xj : j ∈ J}
is a family of topological spaces, then the product topology on X = Π j∈JXj has as a
base the family of all subsets of X of the form

U(Vj : j ∈ K) = { f ∈ X : f ( j) ∈Vj for every j ∈ K},

where K is a finite subset of J and each Vj is an open subset of Xj. So the open
sets in X are unions of these basic open subsets. Now a separable space clearly
has the property that every family of pairwise disjoint open sets is countable. More
generally, this latter property holds in any space in which every family U of open
sets with card (U ) = ℵ1 has a subfamily V with card (V ) = ℵ1 and

⋂
V∈V V 6= /0;

a space with this property is said to have caliber ℵ1. Of course, a separable space
has caliber ℵ1.

Theorem 4.5.14. Let X = Π j∈JXj be a product space.

(a) If each Xj is separable and card (J)≤ card (R), then X is separable.
(b) If each Xj is separable, then X has caliber ℵ1, and hence each family of

pairwise disjoint open sets is countable.

Proof. (a) Since this is obvious if J is finite we will assume J is infinite and is a
subset of R. For each j ∈ J, let D j = {x jm : m ∈ N} be a dense subset of Xj. Define
the countable set D by

D = {s = (p1, . . . , pn−1;m1, . . . ,mn) : 2≤ n ∈ N, pi ∈Q, mi ∈ N
and p1 < · · ·< pn−1}.
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For s ∈ D let fs ∈ X be defined by

fs( j) =





x jm1 if j ≤ p1
x jmi if pi−1 < j ≤ pi
x jmn if pn−1 < j.

Now, { fs : s ∈ D} is dense in X . For, if U = U(Vj : j ∈ K) is a nonempty basic
open set with K = { j1 < · · · < jn} and n ≥ 2 take {p1, . . . , pn−1} ⊆ Q with j1 <
p1 < j2 < p2 < · · ·< jn−1 < pn−1 < jn, and take mi ∈ N such that x jimi ∈Vji . Then
s = (p1, . . . , pn−1;m1, . . . ,mn) ∈ D and fs ∈U .

(b) Let U = {Uγ : γ ∈ Γ } be a collection of nonempty open subsets of X with
card (U ) = ℵ1. For each γ ∈ Γ let Wγ = U(Vj : j ∈ Kγ) be a nonempty basic open
set with Wγ ⊆Uγ . If W = {Wγ : γ ∈ Γ } is countable, then for some γ ∈ Γ the set
∆ = {δ ∈ Γ : Wγ ⊆Uδ} has cardinality ℵ1 and

⋂
δ∈∆ Uδ 6= /0. Now, suppose card

(W ) = ℵ1 and let A =
⋃

γ∈Γ Kγ , Y = Π j∈AXj and Z = Π j 6∈AXj. Then X = Y ×Z and
Y is separable by (a). For each γ ∈Γ we have Wγ = Wγ(Y )×Z where Wγ(Y ) = { f ∈
Y : f ( j)∈Vj for each j ∈Kγ} is a basic open set in Y . But then {Wγ(Y ) : γ ∈Γ } has a
subfamily {Wδ (Y ) : δ ∈ ∆} whose cardinality is ℵ1 and such that

⋂
δ∈∆ Wδ (Y ) 6= /0.

Let V = {U ∈ U : Wδ (Y )× Z ⊆ U for some δ ∈ ∆}. Then card (V ) = ℵ1 and⋂
U∈V U 6= /0. ut
The last result will now be applied to show that disjoint subsets of some free

f -modules over some archimedean f -rings must be countable.

Theorem 4.5.15. Let R be a unital archimedean f -ring.

(a) If R has a finite basis, then each disjoint subset of a free unital f -module is
countable.

(b) If R has a countable basis, then each disjoint subset of a free nonsingular
f -module is countable.

Proof. (a) By Theorems 3.6.2 and 4.1.14 and Exercises 2.4.13 and 2.5.27 R = R1⊕
·· ·⊕Rn where each Ri is a subring of R. The `-simplicity of Ri gives that each unital
Ri- f -module is nonsingular and hence the same is true for unital R- f -modules. By
Theorem 4.5.10 the variety of unital R- f -modules is generated by RR. Let F be a free
unital f -module of rank m and let J be a set with card(J) = m. By Exercise 4 we may
take F to be the R-`-submodule of R(RJ) generated by the projections {π j : j ∈ J}.
Now, any product S of copies of R is a topological f -ring in the product topology.
This is most easily seen as a consequence of the commutativity of the diagrams



404 4 The Category of f -Modules

Here, p denotes one of the projections, σ is inversion and ρ is any one of the op-
erations +, ·,∧,∨. Since R is a subring of a finite product of copies of R it is a
separable topological f -ring. Because each π j is continuous when RJ is given the
product topology, F is an f -submodule of the R- f -module of continuous functions
from RJ into R. Suppose u,v ∈ F with u∧ v = 0. For i = 1, . . . ,n let pi : R−→ Ri be
the projections. Then for each i,(piu)−1(Ri\{0}) and (piv)−1(Ri\{0}) are disjoint
open subsets of RJ . Suppose that {uα : α < ω1} is a set of disjoint nonzero elements
in F+. For some i, the set {α : piuα 6= 0} is uncountable, and hence we may assume
p1uα 6= 0 for every α < ω1. But then {(p1uα)−1(R1\{0}) : α < ω1} is a collection
of nonempty pairwise disjoint open subsets of RJ and this is impossible by Theorem
4.5.14. Thus, each disjoint subset of F must be countable.

(b) There is a countable family of subrings Rn of R with ⊕Rn ⊆ R⊆ΠRn. As in
(a) R is a separable topological f -ring. According to Exercise 4 a free nonsingular
f -module F may be described as in (a) and hence the previous argument completes
the proof. ut

The preceding result depends mainly on the fact that the ring is archimedean. It
is surprising that it holds without any restriction on the rank of the free f -module.
Equally surprising is that when it fails the rank of the free f -module is again irrele-
vant. We will present an example to illustrate this. The ring will be a totally ordered
group ring or power series ring. In order to prepare for this example we will consider
partial orders on the free module of rank 2.

Theorem 4.5.16. Let V = V (G,A) be the totally ordered formal power series ring
where A is a totally ordered domain and G is a totally ordered cancellative semi-
group. For k ∈ G define Pk ⊆ V ¢V by Pk = (V + ×V +)∪Qk where (u,v) ∈ Qk
provided: u 6= 0, v 6= 0,

u = ugxg + · · ·
v = vhxh + · · · (4.5.3)

g = maxsupp u, h = maxsupp v, and

ug > 0 if g > h+ k,
vh > 0 if g < h+ k,
ug + vh > 0 if g = h+ k.
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Then Pk is a partial order for the module (V ¢V )V (C(k),A) where C(k) is the central-
izer of k in G.

Proof. Since V is a totally ordered domain and clearly PkV (C(k),A)+ ⊆ Pk and
Pk∩−Pk = 0 we only need to show that Pk +Pk ⊆ Pk. There are, of course, numerous
cases to check. If (u,v),(u′,v′) ∈ Pk we will write (u,v) as in (4.5.3) and (u,v) +
(u′,v′) = (u′′,v′′) where

u′ = u′g′x
g′ + · · ·

v′ = v′h′x
h′ + · · ·

u′′ = u′′g′′x
g′′ + · · ·

v′′ = v′′h′′x
h′′ + · · ·

If any one of these elements is zero, then the corresponding sum is, of course, only
formal. We proceed with the various cases, starting with (u,v),(u′,v′) ∈ Qk.

(i) g > h + k and g′ > h′ + k. Then ug > 0,u′g′ > 0 and g′′ = g∨ g′ > (h + k)∨
(h′+ k)≥ h′′+ k; so u′′g′′ > 0.

(ii) g > h + k and g′ < h′+ k. Then ug > 0 and v′h′ > 0. There are three cases to
consider. If g > h′+ k, then g′′ = g > h′′+ k and u′′g′′ = ug > 0. If g < h′+ k, then
g′′ < h′ + k = h′′ + k and v′′h′′ = v′h′ > 0. If g = h′ + k, then g′′ = g = h′′ + k since
h′+ k > h+ k and therefore h′′ = h′. But u′′g′′ + v′′h′′ = ug + v′h′ > 0.

(iii) g > h + k and g′ = h′ + k. Again, we consider three cases. If g > g′, then
g = g′′, u′′g′′ = ug > 0 and g > h′′ + k. If g < g′, then g′′ = g′, u′′g′′ = u′g′ , h′′ = h′

and v′′h′′ = v′h′ ; so g′′ = h′′+ k and u′′g′′ + v′′h′′ = u′g′ + v′h′ > 0. If g = g′, then ug > 0,
h′′ = h′ and v′′h′′ = v′h′ . If u+u′ = 0, then since u′g′ +v′h′ > 0, ug +u′g′ = 0 and ug > 0,
we have u′g′ < 0 and v′h′ > 0; so (u′′,v′′) = (0,v′′) ∈ V +×V +. On the other hand,
if u′′ 6= 0, then either u′′g′′ = ug + u′g 6= 0, g′′ = g = h′+ k = h′′+ k, and u′′g′′ + v′′h′′ =
ug +u′g′ +v′h′ > 0, or ug +u′g = 0, g′′ < g < h′′+k, and v′′h′′ = v′h′ > 0 since u′g +v′h′ > 0
and u′g =−ug < 0 forces v′h′ > 0.

(iv) g < h+ k and g′ > h′+ k. This is case (ii).
(v) g < h + k and g′ < h′ + k. Here, the leading term of v′′ is vhxh or v′h′x

h′ or
(vh + v′h)x

h and in all cases v′′h′′ > 0, and g′′ < h′′+ k or u′′ = 0.
(vi) g < h+ k and g′ = h′+ k. If h < h′, then g < g′, g′′ = h′′+ k and u′′g′′ + v′′h′′ =

u′g′ + v′h′ > 0. If h > h′, then v′′h′′ = vh > 0 and u + u′ = 0 or g′′ ≤ g∨ g′ < h + k =

h′′+ k. Suppose h = h′. Then g < g′ = g′′ and u′′ = u′g′x
g′ + · · · . If vh + v′h = 0, then

u′g′ > 0 since u′g′ + v′h > 0 and v′h = −vh < 0. Thus, whether v′′ = 0 or v′′ 6= 0, in
which case h′′+ k < h+ k = g′′, we have (u′′,v′′) ∈ Pk.

(vii) If g = h+ k and g′ > h′+ k or g′ < h′+ k we have case (iii) or (vi), respec-
tively.

(viii) g = h + k and g′ = h′+ k. Two cases arise depending upon whether g and
g′ are equal or unequal. If g < g′, then h < h′ and g′′ = g′, h′′ = h′ and u′′g′′ + v′′h′′ ,
u′g′ +v′h′ > 0. Suppose g = g′ and h = h′. If ug +u′g = 0, then vh +v′h = vh +v′h +ug +



406 4 The Category of f -Modules

u′g > 0, and whether u′′ = 0 or u′′ 6= 0 and hence g′′ < g < h′′+k, we have (u′′,v′′) ∈
Pk. Similarly, if vh + v′h = 0, then ug +u′g > 0 and either g′′ = g = h+ k > h′′+ k or
v′′ = 0; hence (u′′,v′′) ∈ Pk. If ug +u′g 6= 0 and vh + v′h 6= 0, then g′′ = g, h′′ = h and
u′′g + v′′h = ug + vh +u′g + v′h > 0.

This completes the proof of Qk + Qk ⊆ Qk. Now, suppose (u,v) ∈ Qk and 0 6=
(u′,v′) ∈V +×V +.

(ix) Suppose u′ = 0. Then u′′ = ugxg + · · · and v′h′ > 0. If h′ < h, then v′′ = vhxh +
· · · and clearly (u′′,v′′)∈Pk irrespective of the relation between g and h+k. Suppose
h′ = h. Then g > h + k implies ug > 0 and (u′′,v′′) ∈ Pk since h′′ ≤ h. If g = h + k,
then either vh +v′h 6= 0, g′′ = h′′+k and u′′g′′ +v′′h′′ = ug +vh +v′h > 0, or vh +v′h = 0
and hence ug > 0 since ug + vh > 0. If g < h + k, then vh > 0 and g′′ < h′′+ k with
v′′h′′ = vh + v′h > 0. Suppose, finally, that h′ > h. Then either g > h′+ k and ug > 0,
or g < h′+ k and v′h′ > 0, or g = h′+ k and ug + v′h′ > 0 since ug > 0.

(x) Suppose v′ = 0. If g > g′, then u′′g′′ = ug and v′′h′′ = vh and (u′′,v′′) ∈ Pk since
(u,v)∈Qk. If g < g′, then g′′ = g′ and u′′g′′ = u′g′ . Now, either g′ > h+k and (u′′,v′′)∈
Pk since u′g′ > 0, or g′ = h + k > g and u′′g′′ + v′′h′′ = u′g′ + vh > 0, or g′ < h + k and
v′′h′′ = vh > 0 since h+ k > g. If g = g′, then either g > h+ k, u′′g′′ = ug +u′g > 0 and
g′′ = g, or g < h+k, g′′ ≤ g < h+k and v′′h′′ = vh > 0, or g = h+k, ug +vh > 0. In the
latter case, either ug +u′g 6= 0, g′′ = g = h′′+ k and u′′g′′ + v′′h′′ = ug +u′g + vh > 0, or
ug +u′g = 0, vh >−ug = u′g > 0 and (u′′,v)∈Pk since either u′′ = 0 or g′′ < g = h+k.

In the remaining cases we have u′ > 0 and v′ > 0; so u′g′ > 0 and v′h′ > 0. We
assume u′′ < 0 or v′′ < 0 since otherwise (u′′,v′′) ∈ Pk.

(xi) Suppose u′′ < 0. Then u <−u′ < 0 and g≤ h+k since (u,v)∈Qk. If g < h+k
then vh > 0, and if g = h + k then ug + vh > 0 and vh > −ug > 0; so in either case
v > 0. Note that g′,g′′ ≤ g since, otherwise, g′′ = g′ > g, u′′g′′ = u′g′ > 0, and u′′ > 0.
If g′′ < h′′+ k, then (u′′,v′′) ∈ Qk since v′′ > 0. On the other hand, if g′′ ≥ h′′+ k,
then g≤ h+k ≤ h′′+k ≤ g′′ ≤ g; so g = h+ k, g′′ = h′′+k, and h = h′′ ≥ h′. Thus,
we have, since g > g′ or g = g′ = g′′

u′′g′′ =

{
ug if g > g′

ug +u′g′ if g = g′ and ug +u′g 6= 0,

v′′h′′ =

{
vh if h′ < h
vh + v′h′ if h = h′,

and in all cases u′′g′′ + v′′h′′ > 0. So (u′′,v′′) ∈ Qk.
(xii) Suppose v′′ < 0. Then v < 0 and h+ k ≤ g. By (xi) we may assume u′′ ≥ 0.

If u′′ = 0, then as in (xi) we would have v > 0; so u′′ > 0. If h + k = g, then ug >
−vh > 0, and if h + k < g, then ug > 0; so u > 0, and therefore g′′ = g∨ g′. Now,
h′′ ∨h′ ≤ h since otherwise h′′ = h′ > h and v′′ > 0. If h′′+ k < g′′, and this occurs
when h′′ < h, then (u′′v′′) ∈ Qk. Suppose, then, that h = h′′ and g′′ ≤ h′′ + k. So,
g′′ ≤ h′′+ k = h+ k ≤ g≤ g′′, and g = g′′, h = h′′, g = h+ k and g′′ = h′′+ k. Then
v′′h′′ is given as in (xi) and
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u′′g′′ =
{

ug if g′ < g
ug +u′g′ if g = g′.

Consequently, u′′g′′ + v′′h′′ > 0 and (u′′,v′′) ∈ Qk. ut
We will now apply this construction to produce large disjoint sets in free

f -modules.

Theorem 4.5.17. Let A be a unital totally ordered domain and let G be an abelian
totally ordered group. Let R be a subring of the power series ring V (G,A) which
contains the group ring ∑(G,A) and assume R is a right Öre domain. Then each
free unital R- f -module whose rank is at least 2 has a disjoint set of cardinality
equal to that of G.

Proof. Let F be a free unital R- f -module of rank 2. Since a free unital f -module
of larger rank contains an isomorphic copy of F it suffices to construct the desired
disjoint set in F . Since R is `-simple each unital R- f -module is nonsingular and
we may use the representation of F given in Theorem 4.5.3. So ϕ : M −→ F ⊆
ΠU (M,P) where M = R ¢ R is trivially ordered and U is the set of total orders of
M. For g ∈ G let gy ∈ F be defined by

gy = [ϕ((−xg,2x−g))∧ϕ((2xg,−x−g))]+.

To see that gy > 0 let k = 2g and let Pk be the partial order of MR given in Theorem
4.5.16 (technically, this Pk is Pk ∩M). Clearly, (−xg,2x−g), (2xg,−x−g) ∈ Pk. By
Exercise 4.4.22(a) there is a total order P of MR which contains Pk. Since (gy)P > 0,
we have that gy > 0. To show that {gy : g ∈ G} is a disjoint subset of F we need to
verify that for any two elements g < h in G and any total order P of MR the set

{(−xg,2x−g),(2xg,−x−g),(−xh,2x−h),(2xh,−x−h)}

is not a subset of P. Suppose that it is contained in P. Now, (1,0),(0,1) ∈ P, and
hence R+×R+ ⊆ P since

(3,0) = [(−xg,2x−g)+2(2xg,−x−g)]x−g ∈ P

and
(0,3) = [2(−xg,2x−g)+(2xg,−x−g)]xg ∈ P.

Also, a = xh−2xg ∈ R+ and b = x−g−2x−h ∈ R+, but

−(a,b) = (2xg− xh,2x−h− x−g) = (2xg,−x−g)+(−xh,2x−h) ∈ P.

This contradiction gives that {gy : g ∈ G} is a disjoint set. ut
If the ring A in Theorem 4.5.17 is a right Öre domain, then so is the group ring

∑(G,A); see Exercise 36. To complete the picture we show next that the cardinality
of disjoint sets in free f -modules is bounded by the cardinality of the ring. The proof
is quite general and works for categories of lattice-ordered Ω -algebras.
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Theorem 4.5.18. Let C be a subcategory of the category of f -modules over the po-
ring R, and let F be a C -free f -module. If ℵα is a regular cardinal number with
card(R) < ℵα , then the cardinality of a disjoint subset of F is less than ℵα unless
α = 0 in which case it is bounded by ℵ0.

Proof. We assume that R is infinite and leave the other case to Exercise 5. Let F =
F(X) be C -free on X . Since C is hereditary the `-submodule F(Y ) of F generated
by Y ⊆ X is C -free on Y . Suppose U = {uλ}λ∈Λ is a disjoint subset of F+\{0}
whose cardinality is ℵα . For each λ ∈ Λ let Tλ be a finite subset of X with uλ ∈
F(Tλ ). From the remarks preceeding Theorem 4.5.1 an easy induction gives such a
subset Tλ and also that card(F(Tλ )) ≤ card(R). For each n ∈ N let Λn = {λ ∈ Λ :
card(Tλ ) = n}. Since Λ is the union of the Λn the regularity of ℵα forces some Λn
to have card(Λn) = ℵα . We will assume that Λ = Λn. Now the set {Tλ : λ ∈Λ} has
cardinality ℵα . For, if not, then {Tλ}= {Tρ : ρ < τ} for some ordinal τ < ωα . Let
Uρ = {uλ : Tλ = Tρ}. Then U =

⋃
ρ<τ Uρ and card(Uρ) = ℵα for some ρ < τ , yet

card(Uρ)≤ card(F(Tρ))≤ card(R) < ℵα .
Let k ∈ Z+ be maximal such that there is a subset Y of X with k elements and Y

is contained in ℵα many Tλ . Note that 0≤ k < n; otherwise, there exist Tλ 6= Tµ yet
Tλ =Y = Tµ . For each Tλ with Y ⊆ Tλ let Yλ = Tλ −Y , and note that card(Y ) = ℵα
where Y = {Yλ} is the collection of these Yλ . By Zorn’s Lemma we can find a subset
Γ of Λ such that Y = {Yλ : λ ∈ Γ } is maximal with respect to Yλ ∩Yµ = /0 for
each λ 6= µ in Γ . Suppose that card(Γ ) < ℵα . Then W =

⋃
λ∈Γ Yλ has cardinality

< ℵα and by the maximality of Y , Yλ ∩W 6= /0 for each Yλ ∈ Y . For w ∈W let
Yw = {Yλ ∈Y : w ∈Yλ}. Then Y =

⋃
w∈W Yw and hence card(Yw) = ℵα for some

w∈W . But this contradicts the maximality of k since w 6∈Y and Y ∪{w} is contained
in ℵα many Tλ . Thus, card(Γ ) = ℵα .

Let Z be a set with n− k elements which is disjoint from Y , and for each λ ∈ Γ
let

gλ : Tλ = Y ∪Yλ −→ Y ∪Z

be a bijection which is the identity on Y . Then gλ extends to an isomorphism

hλ : F(Tλ )−→ F(Y ∪Z).

For λ ,µ ∈ Γ there is a morphism

f : F(Tλ ∪Tµ)−→ F(Y ∪Z)

in C determined by

f (y) =





y if y ∈ Y
gλ (y) if y ∈ Yλ
gµ(y) if y ∈ Yµ

.

If λ 6= µ , then since f extends both hλ and hµ we have

hλ (uλ )∧hµ(uµ) = f (uλ )∧ f (uµ) = 0.
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Thus { f (uλ ) : λ ∈ Γ } is a disjoint subset of F(Y ∪Z)+\{0} whose cardinality is
ℵα but card(F(Y ∪Z)) < ℵα . ut

We can imitate the construction of the tensor product of two modules to construct
two different ordered tensor products of po-modules, a po-group tensor product and
an `-group tensor product. For the latter we will utilize the existence of free abelian
`-groups over po-groups.

Let MR be a right po-module and RN a left po-module over the po-ring R. Recall
that a mapping f : M×N −→G into the abelian group G is balanced if it is additive
in each variable and f (xa,y) = f (x,ay) for all x ∈ M, y ∈ N and a ∈ R. If G is a
po-group and f (M+×N+) ⊆ G+, then f will be called po-balanced. A po-tensor
product of M and N is a pair (T, t) where T is an abelian po-group, t : M×N −→ T
is po-balanced, and for any po-balanced map f : M×N −→ G there is a unique
po-homomorphism g which makes the following diagram commutative

An `-tensor product of M and N is defined analogously by stipulating that T and G
are `-groups and requiring g to be an `-homomorphism. Clearly, if (T, t) and (T ′, t ′)
are two po-tensor products (`-tensor products) of M and N, then there is a unique
isomorphism α : T −→ T ′ with αt = t ′. The po-tensor product and `-tensor product
will be denoted by M⊗po

R N or M⊗po N and M⊗`
R N or M⊗` N, respectively.

In the following, by the free Z- f -module over the abelian po-group M we mean,
as usual, the free unital Z- f -module over M (see Exercises 9–11). We will also refer
to it as the free (abelian) `-group over M.

Theorem 4.5.19. If MR and RN are po-modules, then M⊗po
R N and M⊗`

R N exist.

Proof. Let A be the free abelian group on the set M×N and let A+ be the free
abelian submonoid of A generated by M+×N+ :

A = ¢
(x,y)∈M×N

Z(x,y), A+ = ∑
(x,y)∈M+×N+

Z+(x,y) .

Then (A,A+) is a semiclosed po-group. Let K be the subgroup of A generated by
the elements of the form

(x1 + x2,y1)− (x1,y1)− (x2,y1)
(x1,y1 + y2)− (x1,y1)− (x1,y2) (4.5.4)

(x1a,y1)− (x1,ay1)
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where x1, x2 ∈ M, y1, y2 ∈ N and a ∈ R. The tensor product M⊗R N is, of course,
the group A/K. Let L be the convex subgroup of A generated by K. Then A/L is
a po-group, t : M×N −→ A/L given by t(x,y) = (x,y) + L is po-balanced, and
(A/L, t) is a po-tensor product of M and N since a po-balanced map f produces the
commutative diagram

Here, the top composite is t, h is the group homomorphism which extends f , and g is
the po-homomorphism induced by h since h is isotone and h(L) = 0. The uniqueness
of g follows from the fact that A/L is generated by the image of t.

To obtain the `-tensor product of M and N let F(A) be the free Z- f -module
extension of (A,A+), let C be the convex `-subgroup of F(A) generated by K, and
let t : M×N −→ F(A)/C be given by t(x,y) = (x,y)+C. Then t is po-balanced and
(F(A)/C, t) is an `-tensor product of M and N since a po-balanced map f into an
abelian `-group produces the commutative diagram

Here, the top composite is t, h′ is the `-homomorphism induced by h and g is the
`-homomorphism which is induced by h′ since h′(C) = 0. Again, this g is unique
since F(A)/C is generated by t(M×N). ut

If we denote the canonical images of (x,y) in M⊗po N and M⊗` N by x⊗po y
and x⊗` y, respectively, then

M⊗po N =

{
∑

i
xi⊗po yi : xi ∈M,yi ∈ N

}
,

(M⊗po N)+ =

{
∑

i
xi⊗po yi : xi ∈M+,yi ∈ N+

}
,



4.5 Free f -Modules 411

(M⊗` N) =

{
∨

i

∧

j
∑
k

xi jk⊗` yi jk : xi jk ∈M,yi jk ∈ N

}
,

M+⊗` N+ ⊆ (M⊗` N)+.

We have canonical group homomorphisms

M⊗R N −→M⊗po
R N −→M⊗`

R N (4.5.5)

with the first being surjective and the second being isotone.
A third tensor product of MR and RN can be given when they are both `-modules.

A balanced map f : M×N −→ G into the abelian `-group G is called `-balanced if
f (x, ) and f ( ,y) are `-homomorphisms whenever x∈M+ and y∈N+. Let F0(M,N)
be the free abelian `-group on the set M×N and let U be the convex `-subgroup of
F0(M,N) generated by the elements in (4.5.4) together with the elements

(x1∨ x2,y)− (x1,y)∨ (x2,y)
(x,y1∨ y2)− (x,y1)∨ (x,y2) (4.5.6)

where x1,x2 ∈ M, y1,y2 ∈ N, y ∈ N+ and x ∈ M+. Then the abelian `-group
F0(M,N)/U , which will be denoted by M ⊗``

R N, is universal with respect to `-
balanced maps in the sense that each `-balanced map f determines a unique `-
homomorphism g which makes the diagram

commutative. The top map is, of course, t(x,y) = (x,y)+U . As usual, this universal
property of M⊗``

R N determines it up to isomorphism. Note that in M⊗``
R N we have

for all x≥ 0 and y≥ 0

x⊗`` (y1∨ y2) = (x⊗`` y1)∨ (x⊗`` y2),

x⊗`` (y1∧ y2) = (x⊗`` y1)∧ (x⊗`` y2), (4.5.7)

(x1∨ x2)⊗`` y = (x1⊗`` y)∨ (x2⊗`` y),

(x1∧ x2)⊗`` y = (x1⊗`` y)∧ (x2⊗`` y).

Since t is `-balanced it is po-balanced and hence the sequence (4.5.5) can be ex-
tended for `-modules to

M⊗R N −→M⊗po
R N −→M⊗`

R N −→M⊗``
R N (4.5.8)
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where the last map is a surjective `-homomorphism.
These ordered tensor products have some of the properties of the ordinary tensor

product. For example, M
·⊗R is a functor which takes surjections to surjections. On

the other hand, M⊗`
R does not preserve direct sums whereas the other two do. The

verification of these and other properties are left for the exercises. Here, we will be
content with providing sufficient conditions for the first map in (4.5.8) to be a group
isomorphism.

Theorem 4.5.20. Let MR and RN be nonsingular po-modules over the totally or-
dered Öre domain R. Then M⊗R N = M⊗po

R N as groups.

Proof. Using the notation from Theorem 4.5.19 it suffices to show that the sub-
group K is convex in (A,A+). If 0 < u ≤ v = ∑i ai(xi,yi) in (A,A+) with ai ∈ N
and (xi,yi) ∈ M+×N+, then u = ∑i bi(xi,yi) with 0 ≤ bi ≤ ai for each i. Thus, it
suffices to show that if 0 < v ∈ K, then each (xi,yi) ∈ K; in fact, we claim that for
each i, xi = 0 or yi = 0. If not, then since ({0}×N+)∪ (M+×{0}) ⊆ K we may
assume xi > 0 and yi > 0 for each i. By Exercise 4.3.22(a) there are total orders PM
and PN of MR and RN with M+ ⊆ PM and N+ ⊆ PN , and by Theorem 4.5.7 there are
R-homomorphisms α : MR −→ Q(R)R and β : RN −→ RQ(R) with α(xi) > 0 and
β (yi) > 0 for every i. Then the function f : M×N −→ Q(R) defined by f (x,y) =
α(x)β (y) is balanced and induces the homomorphism g : M⊗R N −→ Q(R). But
now we have the contradiction

0 = ∑i aig(xi⊗ yi) = ∑i aiα(xi)β (yi) > 0. ut

Exercises.

1. Let {Mλ}λ∈Λ be the components of the nonsingular po-module M over the
semiprime irredundant right q f -ring R. For each λ ∈Λ , let Fλ be the free non-
singular Rλ - f -module over Mλ , and let F be the R-`-submodule of the product
Πλ Fλ generated by the canonical image of M. Show that F is the free nonsin-
gular R- f -module over M and {Fλ}λ∈Λ is the set of components of F .

2. If R is the direct product of two copies ofR show that the free unital R- f -module
of rank two is the direct sum of two copies of the free unitalR- f -module of rank
two.

3. Let R and M be as in Exercise 1 and suppose M is trivially ordered and uniform.
Show that if F is the free nonsingular f -module over M, then F = A⊕A where
AR ∼= MR as modules and AR can be embedded in a component of Q(R) as
f -modules.

4. Let R be a unital right nonsingular right f -ring and let F be a free nonsingular
f -module of rank u. If F is R-`-torsionless and J is a set of cardinality u show
that F is isomorphic to the `-submodule of R(RJ) generated by the projections.

5. If F is a C -free R- f -module and FR = 0 show that each disjoint subset of F is
countable.
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6. If R is a unital f -ring show that RR is projective in u- f -MR but is not free.

7. Let D be a nontrivial subcategory of po-MR where R is a po-ring. Suppose
M ∈D and (M,M+)⊕ (M,−M+) ∈D . If M is generated by X and X ∩ (M+∪
−M+) 6= /0 show that M is not D-free on X . In particular, if M is a totally ordered
nonzero module, then M is not free in D .

8. (a) Let MR be a nonsingular f -module over the totally ordered right Öre domain
R and let (F,ϕ) be the free f -module over M. Show that the following are
equivalent.

(i) ϕ(M) = F .
(ii) M is totally ordered.

(iii) po-MR[M,K] = f -MR[M,K] for every nonsingular f -module K.
(iv) po-MR[M,K] = f -MR[M,K] for every f -module K.

(b) Let R be a semiprime irredundant right q f -ring. Show that R is totally
ordered iff each nonsingular f -module which is free over itself is totally
ordered.

9. (a) Show that each free R-module is a direct sum of free R-modules of rank
one.

(b) If R is unital show that the R-module direct sum R¢Z, with ZR = 0, is the
free R-module of rank one.

(c) If R is not unital show that as a right R-module the ring R1 = R+Z obtained
by freely adjoining Z to R is the free R-module of rank one.

10. Let MR be the trivially ordered free R-module of rank one over the unital
po-ring R.

(a) Show that N is a submodule of M for which, for some P, (M/N,P) is an
element of the set S given in Theorem 4.5.1 iff N = J or N = J ¢Z where
J is a convex right ideal of R with the property that the partial order of R/J
can be extended to a total order of (R/J)R (see Exercise 3.1.20(f)).

(b) Suppose R is an `-ring. Show that (M/N,P) ∈S and 1+ J is a d-element
on R iff J is a prime submodule of RR.

(c) Suppose R is an `-primitive f -ring. Determine the free R- f -module of rank
one.

11. Let R be an f -ring with a left identity element. Show that R⊕R is the free strong
right f -module over the trivially ordered module RR.

12. Let R be a directed po-ring, C a subcategory of f -MR and A the subcategory
of po-MR consisting of those po-modules M for which the free C -representable
f -module over M, FM , exists.

(a) Show that F : A −→ C is a functor and the function ϕ : 1 −→ F that is
given in Theorem 4.5.1 is a natural transformation.

(b) If f : M −→ N is a surjection in A show that F( f ) is a surjection.
(c) Suppose that either R is a domain satisfying the conditions in Theorem 4.5.3

and C is the category of t-torsion-free f -modules, or R is an irredundant
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semiprime right q f -ring and C = ns f -MR. If f : M −→ N is an injection in
A show that F( f ) is an embedding. (In the first case show that each total
order of f (M) which contains f (M+) can be extended to a total order of N
which contains N+.

13. Let R = Z[x]/(2x2) be the homomorphic image of the polynomial ring Z[x]
supplied with the partial order R+ = Z+. Let M = N = R as R-modules with
M+ = N+ = Z+ +Z+x. Show that M⊗R N 6= M⊗po

R N.

14. Let MR and RN be po-modules and suppose (M,PM) and (N,PN) are also
po-modules with PM ⊆ M+ and PN ⊆ N+. If M⊗po

R N = M⊗R N show that
(M,PM)⊗po

R (N,PN) = M⊗R N.

15. (a) If MR is trivially ordered show that for any po-module RN, M ⊗po
R N ∼=

M⊗po
R (N,0) is trivially ordered.

(b) If M⊗R N is also a torsion-free group, show that M⊗po
R N = M⊗R N and

the free abelian `-group extension of the trivially ordered po-group M⊗R N
is (M⊗`

R N,ϕ ′) where ϕ ′ : M⊗R N −→M⊗`
R N is the map in (4.5.5).

16. Suppose RNS is a po-bimodule and S is directed.

(a) Show that for every po-module MR, M⊗po
R N is a right po-S-module and

M⊗`
R N is a right `-module over S.

(b) If MR and RNS are `-modules and NS is a d-module show that M⊗``
R N is a

right d-module over S.
(c) If R, MR and SU are directed show that (M⊗po

R N)⊗po
S U ∼= M⊗po

R (N⊗po
S U)

and (M⊗`
R N)⊗`

S U ∼= M⊗`
R (N⊗`

S U).

17. (a) Let MR and RN be nonsingular po-modules over the totally ordered Öre
domain R. If M⊗R N is a torsion-free group show that the free abelian `-
group over the po-group M⊗R N = M⊗po

R N coincides with M⊗`
R N.

(b) If Q is the totally ordered division ring of quotients of R show that M⊗R Q =
M⊗`

R Q iff M is totally ordered (see Exercise 8).

18. Let α : M′
R −→ MR and β : RN′ −→ RN be po-R-homomorphisms. Show that

there is a unique po-homomorphism α ⊗po β : M′ ⊗po
R N′ −→ M⊗po

R N and a

unique `-homomorphism α ⊗` β : M′ ⊗`
R N′ −→ M⊗`

R N given by x′
·⊗ y′ 7→

α(x′)
·⊗β (y′). If the modules are `-modules and α and β are `-homomorphisms

show that α⊗`` β : M′ ⊗``
R N′ −→M⊗``

R N is an `-homomorphism.

19. Show that M⊗po
R · , M⊗`

R · , and M⊗``
R · are functors, the first and third of which

preserve direct sums. Give an example to show that M⊗`
R · need not preserve

direct sums (see Exercise 15).

20. (a) Let MR be a po-module and let G = M+R + M+−M+ be the submodule
of M generated by M+. For N ∈ po-MR, let [M,N] = HomR(M,N) and
[M,N]+ = po-MR[M,N]. Show that the following are equivalent.

(i) For every N ∈ po-MR, [M,N]+ is a partial order of [M,N].
(ii) [M,M/G]+ is a partial order of [M,M/G].
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(iii) M = G.
(b) Let R be a unital po-ring. Show that ([R,R], [R,R]+) ∼= RR as po-modules

iff 1 ∈ R+, iff ([R,N], [R,N]+)∼= NR for every unital po-module NR.

21. Let R and S be po-rings with S directed, let SMR be a po-bimodule, and let RN
and SL be po-modules. Assume M = M+R + M+−M+ and N = RN+ + N+−
N+ (see Exercise 20).

(a) Show that HomS(M⊗po
R N,L)+∼= HomR(N, HomS(M,L))+ as po-monoids.

(b) Show that there is a natural bijection between `-SM [M ⊗`
R N,L] and

HomR(N, HomS(M,L))+ whenever L is an `-module.

22. Let MR be a unital po-module over the po-unital po-ring R. Show that M⊗po
R R∼=

M and if R is an `-ring and M is a strong d-module, then M⊗``
R R∼= M.

23. Let R and S be po-rings with S po-unital and directed, and suppose MR and RS
are po-modules. Assume that `-MS = f -MS (see Theorem 3.1.3 and Exercise
3.1.11).

(a) Show that the map ϕ : M −→ M⊗`
R S given by ϕ(x) = x⊗ 1 is an isotone

group homomorphism which is an R-homomorphism if R is directed, RSR
is a po-bimodule and 1 · r = r ·1 for each r ∈ R.

(b) Suppose R is directed and R −→ S is a po-ring homomorphism which
induces the actions of R on S. Show that if ψ : M −→ KS is an R-po-
homomorphism into the unital f -module KS, then there is a unique S-`-
homomorphism σ : M⊗`

R S−→ K with σϕ = ψ .
(c) Suppose R = S and the homomorphism R −→ S in (b) is the identity map.

Show that the free unital f -module over M exists iff ϕ is one-to-one, iff
(M⊗`

R R,ϕ) is the free unital f -module over M.

24. Let MR be a unital po-module over the po-unital po-ring R and assume M is a
torsion-free group.

(a) If R is directed and the functor M⊗`
R · : u-po-RM −→ `-MZ preserves

monics show that M is trivially ordered, and if M is also a divisible group
show that MR is a flat module.

(b) If MR is flat and M is divisible and trivially ordered show that M⊗`
R · pre-

serves monics.

(Use Exercises 15, 23, and 12.)

25. If R is a commutative po-ring show that M
¦⊗R N ∼= N

¦⊗R M for each of the three
ordered tensor products.

26. Suppose R and S are directed po-algebras over the directed po-ring C. Show that
R⊗po

C S is a directed po-algebra and R⊗`
C S is an `-algebra.

27. Let MR and RN be `-modules and let x ∈M, y ∈ N. Verify the following:

(a) (x⊗`` y)+ = x+⊗`` y+ + x−⊗`` y−.
(b) |x⊗`` y|= |x|⊗`` |y|.
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(c) If u ∈ (M⊗`` N)+, then u≤ x⊗`` y for some x ∈M+ and some y ∈ N+.

28. Give the definitions of a free representable `-group over or extending the po-
group M and prove the analogues of Theorems 4.5.1–4.5.3 in this context (see
Exercise 2.4.3).

29. Suppose
∨

i∈I
∧

j∈J xi j 6= 0 in the `-group G where I and J are finite. Show that
there is a left order P of G extending G+ such that

∨
i
∧

j xi j 6= 0 in (G,P). (Use
Exercises 2.4.1 and 2.4.2 and consider the two cases that arise depending on
whether or not

∧
j xi j 6≤ 0 for some i ∈ I.)

30. Assume that
∨

i∈I
∧

j∈J xi j 6= 0 (I and J finite) in the left O-group G. If ρ : G−→
Aut(G) is the left regular representation of G ((ρ(g))(x) = g + x) show that∨

i
∧

j ρ(xi j) 6= 1.

31. Let ψ : M−→G be an isotone homomorphism between left po-groups. Suppose
T is a left order of G containing G+ and S is a left order of K = kerψ containing
K+. Show that P = {x ∈M : 0 6= ψ(x) ∈ T}∪S is a left order of M containing
M+ and ψ : (M,P)−→ (G,T ) is isotone.

32. Suppose M is a po-group, ψ : M −→G is a po-homomorphism into the `-group
G, and kerψ has a left order containing (kerψ)+. If

∨
i
∧

j ψ(xi j) 6= 0 where
{xi j : i ∈ I, j ∈ J} ⊆M and I and J are finite, show there is a left order P of M
such that

∨
i
∧

j ρ(xi j) 6= 1 in Aut(G,P) where ρ : (M,P) −→ Aut(M,P) is the
left regular representation of (M,P). (Use Exercises 28–30.)

33. Let M be a po-group such that M+ =
⋂

λ Pλ where {Pλ : λ ∈ Λ} is the set
of left orders of M containing M+. Let ϕ : M −→ Πλ Aut(M,Pλ ) = H be the
embedding induced by the left regular representations ρλ : M −→ Aut(M,Pλ )
of M on the totally ordered sets (M,Pλ ). If F is the `-subgroup of H generated
by ϕ(M) show that (F,ϕ) is the free `-group extension of M. (Use Exercises 31
and 2.4.22.)

34. Show that there is a free `-group extension of the po-group M iff M can be
embedded in an `-group, iff M+ is the intersection of left orders. If M is trivially
ordered these conditions reduce to M being left orderable.

35. Show that Exercise 8(a) holds for the category of `-groups.

36. Let X be a free generating set for the free group M.

(a) Show that the free `-group F over the trivially ordered po-group M is the
free `-group on X .

(b) If K is the convex `-subgroup of F generated by the derived subgroup F ′ of
F show that F/K is the free abelian `-group on the set {x+K : x ∈ X}.

(c) If Y is a set of free generators for the `-group F show that card(Y ) =
card(X). Thus, the rank of a free `-group is well-defined.

(d) Show that a free `-group of rank 2 contains a free `-group of countable rank.
(Consider the commutator subgroup M′.)
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37. Let A be a right Öre domain.

(a) Show that the polynomial ring A[x1, . . . ,xn] in the commuting indetermi-
nates x1, . . . ,xn is a right Öre domain.

(b) If G is a torsion-free abelian group show that the group ring A[G] is a right
Öre domain. (Reduce to the case G is finitely generated and use (a).)

38. Show that there are exactly four varieties of right f -modules over a unital `-
simple totally ordered left and right Öre domain. If R is the direct product of n
such totally ordered rings determine all the varieties of right R- f -modules.

Notes. In [WE2] and [WE3] Weinberg gave the representations of and initiated
the study of free abelian `-group extensions of abelian po-groups and of free abelian
`-groups. He showed that the variety of abelian `-groups is generated by Z. Bigard
[BI3] showed that Weinberg’s construction holds for all t-torsion-free po-modules
over a totally ordered domain if and only if the domain is a right Öre domain. Pow-
ell [PO1] modified the construction by making use of total orders of homomorphic
images to obtain free unital f -modules and free f -module extensions of unital po-
modules over right f -rings. The other results on free f -modules are mainly general-
izations to f -modules of results about abelian `-groups (or real vector lattices) from
Baker [B], Bernau [BERN2], Bleier [BL], and Conrad [CON11]. Theorem 4.5.14
comes from Ross and Stone [RS] and Theorems 4.5.16 and 4.5.17 are due to Powell
and Tsinakis [PT]. The po-tensor product comes from Viswanathan [V3] and the
`-tensor product (for `-groups) comes from Martinez [MART]. The representation
of free `-groups given in Exercises 29–36 is due to Conrad [CON9].



Chapter 5
Lattice-ordered Fields

In this chapter we will concentrate on lattice-ordered fields. Since more is known
about totally ordered fields than about `-fields in general most of this chapter will be
concerned with totally ordered fields. Examples of `-fields come from power series
`-rings and from constructing lattice orders on the reals and other similar totally
ordered fields. We will develop the algebraic properties of totally ordered fields,
including the existence and uniqueness of its real closure, which culminates in a
description of those fields whose algebraic closure is a finite extension. In order
to show that some commutative `-domains can be embedded in power series `-
fields with real coefficients and with exponents in the associated value po-group—
the Hahn Embedding Theorem—we will need to develop enough valuation theory
to first carry out the embedding for totally ordered fields. We will also see that a
totally ordered division ring can be enlarged to one whose center contains the reals.

5.1 Totally Ordered Extensions of Totally Ordered Fields

It is not surprising that the totally ordered fields are the most studied and best under-
stood `-rings and the easiest in which to compute. In this section we will present the
algebraic condition which determines whether or not a field can be totally ordered
and we will see that each totally ordered field has a unique largest totally ordered al-
gebraic extension. These are the fields of codimension 2 in their algebraic closures.
Another property they share with the real numbers is that each positive element
is a square. Any such field which is also an ηα -set for the regular cardinal ℵα is
quite large in the sense that it contains each totally ordered field whose cardinality
is bounded by ℵα .

A field can be totally ordered exactly when it has a partial order with respect to
which it is an sp-po-ring. More generally, we can determine when a partial order of
a field can be extended to a total order of an extension field. If P is a nonzero partial
order of a commutative domain R, then PP∗ is a partial order of the ring of quotients
RP∗ which contains P and which will be denoted by Q(P).

S.A. Steinberg, Lattice-ordered Rings and Modules,
DOI 10.1007/978-1-4419-1721-8_5, © Springer Science + Business Media, LLC 2010
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Theorem 5.1.1. Let F be a field which contains the partially ordered field K with
K+ 6= 0. The following statements are equivalent.

(a) K+ is contained in a total order of F.
(b) −1 is not a linear combination of squares in F with coefficients from Q(K+).
(c) If k1 f 2

1 + · · ·+ kn f 2
n = 0 with ki ∈ Q(K+) and fi ∈ F, then ki fi = 0 for i =

1, . . . ,n.

Proof. Since the implications (a) ⇒ (b) ⇒ (c) are clear we need only show that (a)
is a consequence of (c). Let

P = {k1 f 2
1 + · · ·+ kn f 2

n : ki ∈ Q(K+), fi ∈ F}.

Then P is a subsemiring of F which contains K+. If u = ∑ki f 2
i ∈ P ∩ −P, then

0 = u + (−u) = ∑ki f 2
i + ∑k j f 2

j and, as a consequence of (c), each ki fi = 0 and
hence u = 0. Thus P is an sp-partial order of F . By Zorn’s lemma there is a maximal
partial order F+ of F which contains P. If x ∈ F\F+, then F+−F+x is easily seen
to be a partial order of F (or use Exercise 1); hence F+−F+x = F+, −x ∈ F+ and
F+ is a total order of F . ut

We record an easy consequence of Theorem 5.1.1.

Theorem 5.1.2. The following are equivalent for the field F.

(a) F has a total order.
(b) −1 is not a sum of squares in F.
(c) If f 2

1 + · · ·+ f 2
n = 0, then f1 = · · ·= fn = 0.

Proof. Under the assumption of (c) the characteristic of F is 0 and hence the previ-
ous result can be applied with K =Q. Specifically, if m,mi ∈ Z+, fi ∈ F and

m1

m
f 2
1 + · · ·+ mn

m
f 2
n = 0,

then each fi = 0. Consequently, F has a total order. Since the other implications are
trivial the proof is complete. ut

With some more work this theorem can be given for a division ring or even for a
domain; see Exercises 2, 3, and 4. We will now apply Theorem 5.1.1 to the situation
where F is a finite extension of K. The polynomial f (x) ∈ K[x], K a totally ordered
field, is said to change signs in K if there are elements a, b ∈ K with f (a) f (b) < 0.

Theorem 5.1.3. Let K be a totally ordered field and suppose f (x) ∈ K[x] is irre-
ducible and changes signs in K. Then the field K[x]/( f (x)) has a total order con-
taining K+.

Proof. We induct on n = deg f (x), the case n = 1 being trivial. Suppose n > 1 and
the conclusion is true for all irreducible polynomials of degree < n. If it is not
true for f (x), then there are nonzero elements a1, . . . ,am ∈ K+ and nonzero polyno-
mials f1(x), . . . , fm(x), g(x) ∈ K[x] with 1 + a1 f1(x)2 + · · ·+ am fm(x)2 = f (x)g(x)
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and deg fi(x) ≤ n−1; hence degg(x) ≤ n−2. If a,b ∈ K with f (a) f (b) < 0, then,
since f (c)g(c) > 0 for every c ∈ K, necessarily, g(a)g(b) < 0. But then g(x) has
an irreducible factor h(x) with h(a)h(b) < 0. This gives the contradiction that
K[x] = K[x]/(h(x)) has a total order containing K+ yet −1 = a1 f 2

1 + · · ·+ am f 2
m

in K[x]. ut
Theorem 5.1.4. Suppose F = K(a) is a simple extension of the totally ordered field
K. If a2 ∈ K+ or [F : K] is odd, then F has a total order containing K+.

Proof. Assume F 6= K and let f (x) be the irreducible polynomial of a over K. Then
f (x) changes signs in K. For if f (x) = x2−a2, then f (0) =−a2 < 0 < a4 +a2 +1 =
f (a2 + 1). On the other hand, suppose f (x) = a0 + a1x + · · ·+ xn with n odd. Take
a ∈ K with 1∨ (|a0|+ · · ·+ |an−1|) < |a|. Then |a−k|< 1 if k ≥ 1,

|a0a1−n +a1a2−n + · · ·+an−1| ≤ |a0|+ · · ·+ |an−1|< |a|,

and |a0a−n + a1a1−n + · · ·+ an−1a−1| < 1. So the sign of f (a) = an(a0a−n + · · ·+
an−1a−1 + 1) is the same as the sign of a. The conclusion is now a consequence of
Theorem 5.1.3. ut

A field is called real closed if it has a total order for which no proper algebraic
extension is a totally ordered extension. We will see that any real closed field, like
R, has a unique total order. A real closure of a totally ordered field F is a real closed
algebraic extension F of F whose total order extends that of F . It is easy to see that
each totally ordered field F has a real closure. Just take, by Zorn’s lemma, a maximal
totally ordered extension of F within its algebraic closure. The uniqueness of the
real closure will require more of an effort. For now, we will give a characterization
of a real closed field in terms of the familiar relationship between R and the field of
complex numbers.

We will generically denote a root of the polynomial x2 +1 by i, and
√

a denotes
a positive element whose square is a.

Theorem 5.1.5. Let F be a totally ordered field.

(a) If F is real closed, then F+ = {a2 : a ∈ F}.
(b) If every element of F+ is a square, then every element of F(i) is a square.

Proof. If F is real closed, b∈F+, and a is root of x2−b, then F = F(a) by Theorem
5.1.4 and b = a2. For (b), suppose a + bi ∈ F(i). We need to find x,y ∈ F with
(x+ yi)2 = a+bi; equivalently, x2− y2 = a and 2xy = b. Now, a2 +b2 = (x2 + y2)2

and x2 + y2 =
√

a2 +b2. Since |a| ≤
√

a2 +b2 the right sides of the equations

x2 =
a+

√
a2 +b2

2
, y2 =

−a+
√

a2 +b2

2

are in F+; so |x| and |y| are determined and we need only choose x and y so that the
equation 2xy = b is satisfied. ut
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Theorem 5.1.6. The following statements are equivalent for the totally ordered
field F.

(a) F(i) is algebraically closed.
(b) F is real closed.
(c) Every positive element of F is a square in F and each polynomial in F [x] of

odd degree has a root in F.

Proof. That (a) implies (b) follows from the fact that F(i) is the only proper alge-
braic extension of F , and that (b) implies (c) follows from Theorems 5.1.4 and 5.1.5
since a polynomial of odd degree has an irreducible factor of odd degree.

(c) implies (a). Let L be a finite extension of F(i). We may assume that L is a
Galois extension of F . Let G be the Galois group of L over F and let H be a Sylow
2-subgroup of G. If H ′ denotes the fixed field of H, then [H ′ : F ] = [G : H] is odd.
So, if a∈H ′ and if f (x) is the irreducible polynomial of a over F , then deg f (x) = 1.
Thus, H ′ = F and G = H is a 2-group. If L 6= F(i), then F(i)′, the Galois group of L
over F(i), has a subgroup H of index 2. But then H ′ is an extension of F(i) of degree
2. Consequently H ′ = F(i)(a) with a2 ∈ F(i), and this is impossible according to
Theorem 5.1.5. Thus L = F(i) and F(i) is algebraically closed. ut

Interestingly, Theorem 5.1.6 can be considerably improved and put in a com-
pletely algebraic setting by dropping the order hypothesis and replacing F(i) by a
finite proper extension of F .

Theorem 5.1.7. The field K is real closed if and only if it is not algebraically closed
but it has an extension of finite degree that is algebraically closed.

Proof. Let L be an algebraically closed extension of K of finite degree. We claim L
is a Galois extension of K. If not, since L is a splitting extension of K it cannot be
separable over K. But then there is an element a in K which is not a pth power in
K where p is the characteristic of K. Let u ∈ L with up = a. The polynomial xp−a
is irreducible over K. For, the roots of xp − a are all of the form tu with t p = 1,
and if f (x) is an irreducible factor of xp − a of degree m ≤ p− 1, then ± f (0) =
t1u · · · tmu = sum with sp = 1. There exist integers q and k with 1 = qm+ kp; so u =
umqupk = (± f (0)s−1)qak, usq = (± f (0)qak ∈ K and (usq)p = a. This contradiction
shows that xp− a is irreducible. Now, u is not a pth power in K(u) since the pth
powers of elements of K(u) are in K : (∑a ju j)p = ∑aj

pa j ∈ K. If u1 ∈ L is a root
of xp−u, then we have K ⊂ K(u)⊂ K(u,u1) and we could continue this process to
get an extension of K inside L of degree pn > [L : K]. Thus, L is a Galois extension
of K.

Let q be a prime divisor of the Galois group G of L over K, let H be a subgroup
of G of order q and let E be the fixed field of H. So [L : E] = q. We claim that q is
not the characteristic of K. Otherwise, by Exercise 5(d), L = E(u) where u is a root
of the irreducible polynomial xq− x− a in E[x]. In this case let ψ : L −→ L be the
function given by ψ(b) = bq−b and let ϕ : E −→ E be the restriction of ψ . Clearly,
ψ is onto and ϕ is not since a 6∈ ϕ(E). Let T : L −→ E be the trace function (see
Exercise 5). If σ is a generator for H, then for b ∈ L
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(T ◦ψ)(b) = T (bq−b) =
q−1

∑
j=0

(σ j(b)q−σ j(b))

= T (b)q−T (b) = (ϕ ◦T )(b)

and ϕ ◦T = T ◦ψ is onto. This contradiction shows that q is not the characteristic of
K. Let t ∈ L be a primitive qth root of unity. Since t is a root of 1+x+ · · ·+xq−1 and
[L : E] = q we have t ∈ E, and hence L = E(b) where b is a root of the polynomial
xq−a ∈ E[x] (Exercise 5(e)). Now,

xq−a = (x−b1) · · ·(x−bq) = (−1)qb1 · · ·bq + · · ·+ xq

and b1 · · ·bq = (−1)q+1a. Take c ∈ L with cq = b and let N : L −→ E be the norm
function (Exercise 5). Then N(c)q = N(b) = b1 · · ·bq = (−1)q+1a. Since a is not a
qth power in E we get that q = 2. If i were in E, then a would be a square in E since
a = (iN(c))2. So i 6∈ K. If K(i) 6= L, then by replacing K by K(i) we would have
i 6∈ K(i). So L = K(i), and hence by the computation in the proof of Theorem 5.1.5
the sum of two squares in K is also a square in K. An application of Theorems 5.1.2
and 5.1.6 completes the proof. ut

We now turn our attention to showing the uniqueness of the real closure. An
essential ingredient for this purpose is the fact that if a polynomial has a root in one
real closure, then it has a root in every real closure. In order to establish this we will
develop a procedure that allows us to count the number of roots of the polynomial
in a closed interval.

A finite sequence of polynomials f0(x), f1(x), . . . , fm(x) in F [x], F a totally or-
dered field, is called a Sturm sequence for f (x) = f0(x) on the interval [a,b] if it
satisfies the following four conditions.

(i) f (a) f (b) 6= 0.
(ii) fm(x) has no roots in [a,b].

(iii) If c ∈ [a,b] is a root of f j(x), 1≤ j ≤ m−1, then f j−1(c) f j+1(c) < 0.
(iv) If c ∈ [a,b] is a root of f (x), then there exist c1,c2 ∈ [a,b] with c1 < c < c2

such that f (t) f1(t) < 0 if t ∈ (c1,c) and f (t) f1(t) > 0 if t ∈ (c,c2).

We hasten to construct such a sequence using the usual algorithm for finding the
greatest common divisor of f (x) and f ′(x) except that the remainders, but not the
divisors, are replaced by their negatives. The standard sequence for f (x) ∈ F [x]\F
is the sequence f0(x), f1(x), . . . , fm(x) defined by
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f0(x) = f (x) and f1(x) = f ′(x)
f0(x) = q1(x) f1(x)− f2(x), deg f2(x) < deg f1(x)

... (5.1.1)
f j−1(x) = q j(x) f j(x)− f j+1(x), deg f j+1(x) < deg f j(x)

...

fm−2(x) = qm−1(x) fm−1(x)− fm(x), deg fm(x) < deg fm−1(x)
fm−1(x) = qm(x) fm(x).

Clearly, fm(x) is the greatest common divisor of f j−1(x) and f j(x) for j = 1, . . . ,m.
In particular, 0 6= fm(x)∈F if f (x) has no multiple roots. Let g j(x)= f j(x) fm(x)−1 ∈
F [x] for j = 0, . . . ,m. Then gm(x) = 1, f (x) and g0(x) have the same distinct roots,
and g0(x) has no multiple roots. The sequence g0(x), . . . ,gm(x) is called the modified
standard sequence for f (x).

Theorem 5.1.8. Let F be a real closed field, and let f (x) be a polynomial of positive
degree in F[x]. Suppose f (a) f (b) 6= 0 where a < b in F.

(a) If f (x) has no multiple roots, then its standard sequence is a Sturm sequence
for f (x) on [a,b].

(b) The modified standard sequence for f (x) is a Sturm sequence on [a,b].

Proof. Since a Sturm sequence remains a Sturm sequence if all of its elements are
multiplied by the same nonzero element of F we only need to establish (b). As
above, let g0(x), . . . ,gm(x) be the modified standard sequence for f (x). We obtain
the equations

g j−1(x) = q j(x)g j(x)−g j+1(x), 1≤ j ≤ m−1 (5.1.2)

by dividing the equations in (5.1.1) by fm(x). Clearly, the conditions (i) and (ii) in
the definition of a Sturm sequence hold for this sequence. Suppose c ∈ [a,b] and
gk(c) = 0 for some k ≥ 1. Then from (5.1.2) we have gk−1(c) = −gk+1(c) and if
gk−1(c) = 0, then 0 = gk+1(c) = · · ·= gm(c) = 1; so gk−1(c)gk+1(c) =−gk+1(c)2 <
0. Thus (iii) also holds. As for (iv), suppose g0(c) = 0 with c ∈ [a,b]. Then f (x) =
(x− c)n p(x) with n≥ 1 and p(c) 6= 0. Also,

fm(x) = (x− c)n−1h(x) with p(x) = h(x)r(x)

and
f ′(x) = (x− c)n p′(x)+n(x− c)n−1 p(x).

Now, p′(x) = h(x)s(x) since h(x) is a divisor of both p(x) and f ′(x) and h(c) 6= 0.
Thus, we have

g0(x) = (x− c)r(x)

and
g1(x) = (x− c)s(x)+nr(x).
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Since g1(c)r(c) = nr(c)2 > 0 there exists an interval [c1,c2]⊆ [a,b] with c∈ (c1,c2)
and g1(t)r(t) > 0 for t ∈ [c1,c2]: just exclude the roots of g1(x)r(x) from [c1,c2]
and then g1(x)r(x) has constant sign in [c1,c2] (Exercise 6(a)). Then g0(t)g1(t) =
(t− c)g1(t)r(t) < 0 if t ∈ (c1,c) and g0(t)g1(t) > 0 if t ∈ (c,c2). ut

The number of variations in sign of the sequence of nonzero elements a1,
a2, . . . ,am in the totally ordered field F is the number of j with a ja j+1 < 0, and
the number of variations in sign of an arbitrary sequence of elements in F is the
number of variations in sign of the sequence obtained by omitting all zero terms.

Theorem 5.1.9. Let f0(x), f1(x), . . . , fm(x) be a sequence of polynomials in F [x]
where F is a real closed field, and suppose V (c) = Vf0(c) denotes the number of
variations in sign of the sequence f0(c), f1(c), . . . , fm(c). If the sequence is a Sturm
sequence for f (x) on [a,b] or is the standard sequence for f (x) and f (a) f (b) 6= 0,
then the number of distinct roots of f (x) in the interval [a,b] is V (a)−V (b).

Proof. The fact that a polynomial which has no roots in an interval must have
constant sign in that interval will be used repeatedly (Exercise 6). Suppose that
f0(x), . . . , fm(x) is a Sturm sequence for f (x) on [a,b] and let h(x) = f0(x) · · · fm(x)
be the product of these polynomials. We will initially assume that there is an el-
ement c ∈ [a,b] which is the only possible root of h(x) in [a,b]. If h(c) 6= 0 then
V (a)−V (b) = 0. Suppose f j(c) = 0 with 1≤ j ≤ m−1. Then f j−1(c) f j+1(c) < 0
by (iii), and hence both f j−1(x) and f j+1(x) have constant sign in [a,b]. Hence, each
of the subsequences

f j−1(a), f j(a), f j+1(a)

f j−1(c), f j(c) = 0, f j+1(c)

f j−1(b), f j(b), f j+1(b)

has one variation in sign. Now suppose f (c) = 0. Then a < c < b and, by (iv),
f0(t) f1(t) < 0 if t ∈ [a,c) and f0(t) f1(t) > 0 if t ∈ (c,b]. Since f0(x) and f1(x) have
constant signs in each of the intervals [a,c) and (c,b] the subsequence f0(a), f1(a)
has a variation in sign whereas the subsequence f0(b), f1(b) does not. So V (a)−
V (b) = 0 if f (c) 6= 0, V (a)−V (b) = 1 if f (c) = 0, and the assertion is proven in
this special case.

In general, let c1 < c2 < · · ·< ck be all the roots of h(x) in [a,b] and put c0 = a.
For each j = 1, . . . ,k choose a j ∈ F with c j−1 < a j < c j except choose a1 = a if
c1 = a. Then

c0 = a≤ a1 ≤ c1 < a2 < c2 < · · ·< a j < c j < a j+1 < · · ·< ak < ck ≤ b = ak+1

and

V (a)−V (b) = V (a)−V (a1)+ · · ·+V (a j)−V (a j+1)+ · · ·+V (ak)−V (b).

The previous paragraph gives that V (a)−V (a1) = 0 and, for j = 1, . . . ,k, V (a j)−
V (a j+1) = 1 or 0 depending on whether c j is or is not a root of f (x). Thus, V (a)−
V (b) is the number of different roots of f (x) in [a,b].



426 5 Lattice-ordered Fields

Now, let f0(x), . . . , fm(x) be the standard sequence for f (x) and let g0(x), . . . ,gm(x)
be the modified standard sequence for f (x). According to Theorem 5.1.8 the latter is
a Sturm sequence for g0(x) on [a,b] and hence the number of roots of g0(x) in [a,b]
is equal to V (a)−V (b) where V (c) denotes the number of variations in sign of the
sequence g0(c), . . . ,gm(c). Since f (x) has the same roots as g0(x), f (a) f (b) 6= 0,
and

( f0(c), f1(c), . . . , fm(c)) = fm(c)(g0(c),g1(c), . . . ,gm(c)),

it is clear that V (a) = V (a),V (b) = V (b) and V (a)−V (b) is the number of distinct
roots of f (x) in [a,b]. ut

We can now verify the uniqueness of real closures. We do a little more.

Theorem 5.1.10. Let F be a real closure of the totally ordered field K and suppose
σ : K−→ L is an embedding of K into the real closed field L. Then σ can be extended
to an embedding of F into L. If L is a real closure of σ(K), then this extension is an
isomorphism and is the unique field monomorphism which extends σ . In particular,
two real closures of K are K-isomorphic.

Proof. We will first show that if E is a finite dimensional extension of K within F ,
K ⊆ E ⊆ F , then σ can be extended to an embedding of the totally ordered field
E into L. The extension of σ to K[x] will also be denoted by σ and we will write
σ( f (x)) = f σ (x). For some c ∈ E we have E = K(c). Let f (x) = a0 +a1x+ · · ·+xn

be the irreducible polynomial of c over K. If a ∈ K with a > 1∨ (|a0|+ · · ·+ |an−1|)
then the computation in Theorem 5.1.4 shows that f (a) > 0 and all of the roots of
f (x) in F lie in the F-interval (−a,a). Let f0(x), f1(x), . . . , fm(x) be the standard
sequence for f (x). Since σ commutes with differentiation it is clear from (5.1.1)
that f σ

0 (x), . . . , f σ
m (x) is the standard sequence for f σ (x). Also, σ takes each of the

two sequences (all +’s or all –’s) f0(±a), f1(±a), . . . , fm(±a) into the corresponding
sequence of the pair f σ

0 (±σ(a)), f σ
1 (±σ(a)), . . . , f σ

m (±σ(a)). So by the previous
theorem 1≤Vf (−a)−Vf (a) = Vf σ (−σ(a))−Vf σ (σ(a)) = k and f σ (x) has k ≥ 1
roots in L. Corresponding to these k roots are k field embeddings σ1, . . . ,σk of E into
L, each of which extends σ . If none of them were isotone we could find elements
b1, . . . ,bk ∈ E+ with σ j(b j) not a square in L. Take d j ∈ F+ with b j = d2

j . Then, as
we have just shown, σ extends to a field embedding τ : E(d1, . . . ,dk) −→ L. Since
τ is an extension of some σ j we have the contradiction σ j(b j) 6∈ L+ yet σ j(b j) =
τ(d j)2 ∈ L+.

By Zorn’s lemma there is an intermediate field K ⊆ M ⊆ F and an embedding
ρ : M −→ L of totally ordered fields which extends σ and which cannot be extended
to any subfield of F which properly contains M. But then M = F by the preceding
paragraph and ρ is the desired extension of σ . Now assume that L is a real closure of
σ(K); then ρ(F) = L since σ(K)⊆ ρ(F)⊆ L and ρ(F) is real closed by Theorem
5.1.6. Suppose τ : F −→ L is a field monomorphism that extends σ . Since each
positive element in F is a square τ is isotone and, again, τ(F) = L. Suppose a ∈ F
and f (x) is its irreducible polynomial over K. If a1 < · · ·< ar are all of the roots of
f (x) in F , then τ(a1) < · · ·< τ(ar) are all of the roots of its mate f σ (x) in L. Thus,
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ρ(a j) = τ(a j) for each j and ρ(a) = τ(a). The last statement follows from taking
σ to be inclusion. ut

If G is a totally ordered ηα -group, then the formal power series ring Vα(G,R)
is a totally ordered ηα -division ring according to Theorems 3.5.3, 3.5.8, and 4.4.8.
In view of the Hahn embedding theorem for totally ordered abelian groups and the
ℵα -injectivity of totally ordered divisible abelian ηα -groups it seems reasonable to
expect that a totally ordered field can be embedded in a formal power series field
(ηα -)field with real coefficients. This is almost a consequence of the next result.

Theorem 5.1.11. Suppose ℵα is a regular cardinal with α ≥ 1 and F is a real
closed ηα -field. Then each totally ordered field whose cardinality is bounded by ℵα
can be embedded in F.

Proof. Let L be a totally ordered field with card(L) ≤ ℵα . Suppose, first, that L =
K(x) where K is real closed, x is transcendental over K, card(K) < ℵα , and σ :
K −→F is an embedding. We claim that σ can be extended to L. Let A (respectively,
B) be the set of lower (respectively, upper) bounds of x in K. Then there exists an
element y ∈ F with σ(A) < y < σ(B). Since σ(K) = σ(A)∪σ(B) is real closed
y must be transcendental over σ(K). Let τ : L −→ σ(K)(y) be the unique field
isomorphism which extends σ and sends x to y. If c ∈ K, then x > c iff c ∈ A, iff
y > σ(c); that is, x−c > 0 iff τ(x−c) > 0. This shows that τ is isotone on K[x] and
hence on L since if 0 6= f (x) ∈ K[x], then f (x) has the factorization

f (x) = a(x−a1) · · ·(x−an)[(x+b1)2 + c2
1] · · · [(x+bm)2 + c2

m]

with c1 · · ·cm 6= 0 (Exercise 8).
In the general case we may assume by Theorem 5.1.10 that L is real closed since

the real closure of L has the same cardinality as L. For convenience we also will
assume that card(L) = ℵα ; this can be accomplished by adjoining indeterminates
to L. Let X = {xβ : β < ωα} be a transcendence base of L over Q and set Xβ =
{xγ : γ < β}. Let Lβ be the real closure of Q(Xβ ) in L; that is, Lβ is the set of those
elements in L that are algebraic over Q(Xβ ) (Exercise 9). Then {Lβ} is a chain of
subfields of L and for each β < ωα we have: (i) xβ is transcendental over Lβ ; (ii)
Lβ+1 is the real closure of Lβ (xβ ) in L; (iii)

⋃
γ<β Lγ = Lβ if β is a limit ordinal.

That (i) holds is a consequence of the fact that xβ is transcendental over Q(Xβ )
and hence is transcendental over the algebraic extension Lβ of Q(Xβ ); as for (ii),
Q(Xβ ) ⊆ Q(Xβ+1) ⊆ Lβ (xβ ) ⊆ Lβ+1 and Lβ+1 is algebraic over Q(Xβ+1), and for
(iii), by Theorem 5.1.6 the union is a real closed subfield of Lβ which contains
Q(Xβ ). Note that by (ii) and (iii) and the regularity of ℵα we have, by induction,
that card (Lβ ) < ℵα for each β < ωα . Using transfinite induction we will construct
monomorphisms σβ : Lβ −→F , for each β < ωα , such that if γ < β , then σβ extends
σγ . Let σ0 be the isomorphism between the real closures of Q in L and F . Suppose
σγ has been constructed for all γ < β . If β = δ +1, then by the previous paragraph
σδ can be extended to Lδ (xδ ) and then to the real closure Lβ of Lδ (xδ ) by the
previous theorem. If β is a limit ordinal, then by (iii) there is a unique σβ which
extends each σγ with γ < β . Since Q(X)⊆ ⋃

β<ωα Lβ ⊆ L and the latter two fields
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are both real closed and algebraic over Q(X), necessarily L =
⋃

β<ωα Lβ . So there
is a unique embedding σ : L−→ F which extends each σβ . ut

Let K be a totally ordered field and suppose ℵα is a regular cardinal with
card (K) ≤ ℵα and α ≥ 1. Returning to the discussion prior to Theorem 5.1.11,
if we knew that Vα(G,R) were real closed (where G is a divisible totally ordered
abelian ηα -group), then we would have the desired embedding of K into Vα(G,R).
This is indeed the case, but to show it and to also show that K can be embedded in
V (Γ (K),R) we need to develop some valuation theory. We will do this in the next
section.

Exercises.

1. Let x be an element of the po-ring R.

(a) If x2 ∈ R+, pxq = pqx for all p,q ∈ R+, `(x)+ = 0 and R+∩R+x = 0, show
that R+−R+x is a partial order of R.

(b) If 1 ∈ R, x is in the center of R,x2 ∈ R+ and each nonzero positive element
has a positive inverse, show that R+−R+x is a partial order of R iff R+ ∩
R+x = 0.

(c) Suppose R is an sp-po-division ring and x is a central element. Show that
R+−R+x is a partial order of R iff R+∩R+x = 0.

(d) Show that an sp-po-field R is totally ordered iff R+ is a maximal partial
order of R.

2. If X is a subset of a ring R, then a product of elements from X is called a
monomial on X . If a1, . . . ,an ∈ R let S(X ;a1, . . . ,an) denote the set of sums of
monomials on X ∪{a1, . . . ,an,0}; this set is the subsemiring of R generated by
X ∪{a1, . . . ,an,0}. Show that the following statements are equivalent for the
po-ring R.

(a) R+ is contained in a total order of R.
(b) For any finite number of elements a1, . . . ,an in R there exist ε1, . . . ,εn in

{1,−1} such that S(R+;ε1a1, . . . ,εnan) is a partial order of R.
(c) For each x ∈ R one can choose ε ∈ {1,−1} such that S(R+;εx) is a partial

order of R which satisfies (b).

(For (c) ⇒ (a) use Zorn’s lemma on the set of partial orders of R which contain
R+ and satisfy (b).)

3. Let P be a partial order of the domain R. If a1, . . . ,an ∈ R∗, a monomial µ on
P∗ ∪ {a1, . . . ,an} is even with respect to a1, . . . ,an if each ai not in P∗ occurs
an even number of times in µ . Let [P∗;a1, . . . ,an] denote the set of sums of the
even monomials on P∗ ∪{a1, . . . ,an}; [P∗;a1, . . . ,an] is a subsemiring of R. The
partial order P is even if [P∗;a1, . . . ,an] ⊆ P∗ whenever a1, . . . ,an ∈ R∗. Show
the equivalence of the following statements.

(a) P is contained in a total order of R.
(b) P is contained in an even partial order of R.



5.1 Totally Ordered Extensions of Ordered Fields 429

(c) If a1, . . . ,an ∈ R∗, then 0 6∈ [P∗;a1, . . . ,an].

(For (c) ⇒ (a) show: (i) the union of [P∗;a1, . . . ,an] over all a1, . . . ,an in R∗
together with 0 is an even partial order of R; (ii) if T is even, a∈ R∗ and Q is the
subsemiring generated by T ∗ ∪{a}, then Q is contained in an even partial order
iff 0 6∈ T ∗+aT ∗ (each element of Q is of the form q0 +q1 where q0,aq1 ∈ T ∗,
and 0 6∈ [Q;a1, . . . ,an]); (iii) a maximal even partial order containing P is a total
order.)

4. (a) Let P be a partial order of the division ring R. Show that P is con-
tained in a total order of R iff 0 is not a sum of terms of the form
pa2

1 · · ·a2
n where p ∈ P∗ ∪ {1} and ai ∈ R∗. (Use Exercise 3 and the equa-

tions aba = b(b−1)2(ba)2, ab = ba[a,b] where [a,b] = a−1b−1ab, and
[a,b] = a−2(ab−1)2b2.)

(b) Show that R can be totally ordered iff −1 is not a sum of products of the
form a2

1 · · ·a2
n.

5. Let F/K be a finite Galois extension of fields with Galois group G = {1 =
σ1,σ2, . . . ,σn}. The trace and norm functions T and N, respectively, are defined
from F to K by: T (a) = ∑i σi(a) and N(a) = Πiσi(a).

(a) Show that T is a K-linear transformation that is onto.
(b) Suppose G is cyclic with generator σ . Show that T (a) = 0 iff a = b−σ(b)

for some b ∈ F . (If T (c) = 1 and T (a) = 0 let d j = σ j(c)(a+σ(a)+ · · ·+
σ j(a)) for j = 0, . . . ,n−2, and b = d0 + · · ·+dn−2; compute d j+1−σ(d j)
for 0≤ j ≤ n−3 and σ(dn−2).)

(c) With the same hypothesis as (b) show that N(a) = 1 iff a = bσ(b)−1 for
some b ∈ F . (If N(a) = 1, and a j = aσ(a) · · ·σ j(a) the independence of G
gives c ∈ F with b = a0c+a1σ(c)+ · · ·+an−1σn−1(c) 6= 0.)

(d) If n = p is the characteristic of K show that F = K(u) where u is a root
of an irreducible polynomial over K of the form xp− x− a. (Use (b) with
1 =−u−σ(−u)).

(e) With the same hypothesis as (b) assume that the characteristic of K is 0 or
is relatively prime to n and that xn− 1 splits in K[x]. Show that F = K(u)
where u is a root of a polynomial xn−a ∈ K[x]. (If t is a primitive nth root
of unity, use (c) with t = σ(u)u−1.)

6. Let a and b be elements in the real closed field F and let f (x) ∈ F [x].

(a) If f (a) < 0 < f (b) show that f (c) = 0 for some c between a and b.
(b) If f (a) < y < f (b) show that f (c) = y for some c between a and b.
(c) If a < b show that there exists an element c ∈ (a,b) with f ′(c)(b− a) =

f (b)− f (a). (Reduce to the case a and b are the only roots of f (x) in [a,b].)
(d) If f (x) has only simple roots in F and c∈ F is a root of f (x) show that f (x)

is strictly increasing or strictly decreasing in some interval about c.

7. Show that a totally ordered field which satisfies the condition in Exercise 6(a)
must be real closed.
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8. If F is a real closed field show that f (x) ∈ F [x] is monic and irreducible iff it
is of the form x− a or (x− a)2 + b2 with b 6= 0. Conversely, show that if the
irreducible polynomials over the field F have this characterization, then F is
real closed.

9. Let K be a subfield of the real closed field L and let F be the algebraic closure
of K in L; so a∈ F iff a∈ L and it is algebraic over K. Show that F is the unique
real closure of K in L.

10. Let K be a subfield of the algebraically closed field C and suppose K is totally
ordered. Show that there is a real closed field F with K ⊆ F ⊆ C such that
K+ ⊆ F+ and C = F(i).

11. Let R be a unital convex subring of the totally ordered field F and let J be the
Jacobson radical of R.

(a) If F is real closed show that R/J is real closed.
(b) Give an example to show that R/J could be real closed without F being real

closed.

12. Show that a totally ordered division ring is an ηα -set iff it is an almost ηα -set.
(If 0 < X has no least element, then X−1 has no largest element.)

13. (a) Show that an ultraproduct of real closed fields is a real closed field. (Recall
that if {Fλ : λ ∈ Λ} is a set of fields and F is an ultrafilter of Λ , then
Πλ Fλ /F = Πλ Fλ /I is an ultraproduct where I = { f ∈Πλ Fλ : Z( f ) = {λ :
f (λ ) = 0} ∈F}.)

(b) Let F be an ultrafilter on N which contains the complement of each finite
subset of N. If K is a totally ordered field show that KN/F is an η1-field
which contains K and which is real closed provided K is real closed. (Use
Theorem 4.4.12 and Exercise 12.)

14. Let F(x) be the rational function field in one variable over the real closed
field F .

(a) If (F(x),P) is a totally ordered field show it is an `-algebra over F .
(b) Suppose (F(x),≤1) and F(x),≤2) are totally ordered fields and the restric-

tions of these total orders to F ∪{x} are identical. Show that ≤1 =≤2.
(c) Show that each total order of R(x) arises from the lexicographic or an-

tilexicographic order of R[y] where y = x− c or y = −(x− c) with c ∈ R.
(Consider {a ∈ R : a < x} and {b ∈ R : x < b}.)

15. Suppose F is a totally ordered field and there is a polynomial of odd degree over
F with no root in F . Let L be the real closure of F and let M be the subfield of
L consisting of all elements a for which there is a tower F = F0 ⊆ F1 ⊆ ·· · ⊆
Fn ⊆ L with a ∈ Fn and Fi = Fi−1(ai) with a2

i ∈ Fi−1 for i = 1, . . . ,n. Show that
M has a unique total order and M is not real closed.

16. Suppose K is a totally ordered field, L is its real closure and F is a finite ex-
tension of K. Show that F has exactly m distinct total orders which extend K+
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where m is the number of field K-monomorphisms of F into L. (F is a simple
extension of K.)

17. Let F be a field of characteristic 6= 2, and let S(F) be the set of sums of squares
in F . Suppose the po-field K is a subfield of F and put Q = Q(K+) if K+ 6= 0
and Q = Z+ if K+ = 0.

(a) Show that F has a total order which contains K+ iff QS(F)⊂ F . (Use The-
orems 5.1.1 and 5.1.2 and 4a = (1+a)2− (1−a)2.)

(b) Suppose a ∈ F and L is an algebraic extension of F maximal with respect
to a 6∈ QS(L). Show that L has a total order which contains K+ and −a is a
square in L. (If not, L⊂ L(ci) with c2 = a.)

(c) Show that QS(F) is the intersection of the family of total orders of F which
contain K+.

(d) In particular, S(F) is the intersection of all the total orders of F .

18. Find a subfield of C distinct from R and isomorphic to R.

19. Suppose ℵα is regular with α > 0, F is a real closed ηα -field, and K is a subfield
of the totally ordered field L with |K| < ℵα and |L| ≤ ℵα . Show that each
embedding of K into F can be extended to an embedding of L into F .

Notes. The concept and properties of the real closure of a totally ordered field
as well as most of the theory of totally ordered fields presented here is due to Artin
and Schreier [AS]; also see Lang and Tate [LT]. Theorems 5.1.1 and 5.1.3 are due
to Serre [SE], and our proof of Sturm’s Theorem, Theorems 5.1.8 and 5.1.9, follows
Jacobson [J4]. The embedding of a totally ordered field into a real closed ηα -field
that is given in Theorem 5.1.11 comes from Alling [AL2] and Erdos, Gillman, and
Henriksen [EGH]; also, see Gillman and Jerison [GJ, p. 193] and Prestel and Delzell
[PD, p. 95]. The proof of Theorem 5.1.7 that is given is due to Leicht [LEI]; also see
Kaplansky [K2, p. 66] and Prieß-Crampe [PC2, p. 27]. Exercises 2 and 3 are due
to Fuchs and Exercise 4 is due independently to Johnson [JO2] and Podderjugin –
see Fuchs [F, Chapter VII]. The proof outlined in Exercise 13 of the fact that the
ultraproduct is a totally ordered η1-field is due to Weinberg [W6, p. III-41].

5.2 Valuations and the Hahn Embedding Theorem for Totally
Ordered Fields

In this section enough of the valuation theory of fields will be developed so that a
totally ordered field can be embedded into the field of formal power series with real
coefficients and exponents from the value group of the field. The key to this embed-
ding will be to show the existence of a unique totally ordered field extension which
is maximal with respect to having the same value group and residue class field as
the original field, and the characterization of such fields as those which are complete
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in the sense that certain transfinite sequences have a limit. As a consequence of this,
or of even a simpler embedding, each totally ordered field is a subfield of a totally
ordered field which contains the reals. A similar statement can be made for a totally
ordered division ring and the intricate and complicated verification of this involves
the adjunction of those missing real numbers in the correct order.

Suppose D is a division ring and Γ is a totally ordered group. Let −∞ be an
element with −∞ < Γ . A function v : D−→ Γ ∪{−∞} is called a valuation on D if
for all a,b ∈ D

v(D) = Γ ∪{−∞}, (5.2.1)
v(a) =−∞ iff a = 0, (5.2.2)
v(ab) = v(a)+ v(b), (5.2.3)

v(a+b)≤ v(a)∨ v(b). (5.2.4)

The pair (D,v) is called a valued division ring. The valuation is trivial or non-trivial
as Γ is zero or nonzero, respectively. Recall that a unital domain is a valuation
domain if the lattices of left ideals and of right ideals are both chains. Such a ring
is characterized as a subring R of a division ring D with the property that a ∈ R
or a−1 ∈ R for each a in D. R is a normal valuation ring if a−1Ra = R for each
nonzero element a in D. We collect some simple consequences of the definition of
a valuation. R∗, as usual, denotes the set of nonzero elements in the monoid R.

Theorem 5.2.1. Let (D,v) be a valued division ring.

v(1) = v(−1) = 0; (5.2.5)
v(−a) = v(a); (5.2.6)

v(a1 + · · ·+an)≤ v(a1)∨·· ·∨ v(an); (5.2.7)
v(a1 + · · ·+an) = v(a1)∨·· ·∨ v(an) if v(ai) 6= v(a j) for i 6= j; (5.2.8)

v−1(0) is a normal subgroup of the multiplicative group of D; (5.2.9)
R = {a ∈ D : v(a)≤ 0} is a normal valuation ring in D

with unique maximal ideal J = {a ∈ D : v(a) < 0}; (5.2.10)
each one-sided R-submodule of D is an R -R-bimodule; (5.2.11)

the lattice of R-submodules of D is totally ordered. (5.2.12)

Proof. Since 2v(−1) = v(1) = 2v(1) we obtain v(±1) = 0 and v(−a) = v(−1)+
v(a) = v(a). An easy induction gives (5.2.7). Suppose v(a1) < v(a2). If also, v(a1 +
a2) < v(a2), then v(a2) = v(a1 + a2− a1) ≤ v(a1 + a2)∨ v(a1) < v(a2); so v(a1 +
a2) = v(a1)∨ v(a2) and another easy induction gives (5.2.8). It is clear that R is a
valuation ring whose group of units is v−1(0) and consequently J is the maximal
ideal of R. If x ∈ R, then v(a−1xa) =−v(a)+ v(x)+ v(a)≤ 0 with equality holding
if v(x) = 0. This verifies (5.2.9) and (5.2.10) and (5.2.11) follows easily from the
normality of R. For any nonzero elements a,b ∈ D, ab−1 ∈ R or ba−1 ∈ R. So aR⊆
bR or bR⊆ aR and (5.2.12) follows. ut
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The totally ordered group Γ is called the value group of the valuation, the divi-
sion ring R/J is called the residue class division ring of the valuation, and v−1(0)
is called the group of units of the valuation. Both the value group and the valuation
can be recaptured from R. For suppose R is a normal valuation ring with group of
units U and maximal ideal J. Then U is a normal subgroup of D∗ since x,x−1 ∈ R
implies a−1xa, a−1x−1a ∈ R for any a ∈ R∗; also, a−1Ja = J since J = R\U . We
define a relation on D∗/U by

aU ≤ bU iff b−1a ∈ R (iff aR⊆ bR). (5.2.13)

Since aU = bU iff aR = bR this relation is a total order of D∗/U which makes it into
a totally ordered group. Also, the extended natural homomorphism
w : D−→ D∗/U ∪{−∞} is a valuation which has R as its valuation ring. If R were
originally the valuation ring of a valuation v : D −→ Γ ∪{−∞}, then the mapping
h : Γ −→D∗/U given by h(v(a)) = aU is an isomorphism of totally ordered groups
and w = hv.

The data associated to the valued division ring (D,v) will frequently be denoted
by ΓD, RD, JD and UD. For our purposes the most important example of a valuation
ring arises from a totally ordered division ring D. Here, we take R =C(1), the convex
subgroup of D generated by 1; R is, of course, a left and right convex totally ordered
domain and the residue class field R/J is isomorphic to a totally ordered subfield
of the reals. The associated valuation will be called the natural valuation of D.
This valuation w : D −→ D∗/U ∪{−∞} is isotone when it is restricted to D+. Any
valuation on a totally ordered division ring which is isotone on the positive cone will
be called an isotone valuation. The valuation ring of an isotone valuation always
contains C(1). Note also that C(a) = aC(1), and w(a) = w(b) precisely when C(a) =
C(b), where w is the natural valuation. A related example arises from the formal
power series ring V = V (Γ ,D). Here, Γ is a totally ordered group and D is a division
ring. The valuation π : V −→ Γ ∪{−∞} is given by π( f ) = maxsupp f . The value
group of π is Γ and the residue class division ring is D (by Theorem 3.5.8). If D is
totally ordered, then the valuation ring of π is CD(1) = { f ∈ V : | f | ≤ d for some
d ∈ D}. If D is not archimedean, then C(1) ⊂CD(1) and the isotone valuation π is
not the natural valuation of V (Γ ,D). The same remarks apply to the crossed product
formal power series division ring V (D∗Γ ); see Exercise 3.5.20.

The valued division ring (E,w) is an extension of the valued division ring (D,v)
if there is a commutative diagram
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whose top row is a ring monomorphism and whose bottom row is an extended
monomorphism of totally ordered groups. If (E,w) is an extension of (D,v) and
the top row of (5.2.14) is the inclusion map, then RD = D∩RE , JD = D∩ JE and
UD = D∩UE . If the rows are isomorphisms, then the top row is a value preserving
isomorphism.

We now turn our attention back to fields and we show first that a valuation on a
field can always be extended to a larger field.

Theorem 5.2.2. Let K be a subfield of the field F. Then each valuation on K can be
extended to F.

Proof. Suppose S is a unital subring of F and I is a proper ideal of S. We will find a
valuation ring R in F with I ⊆ J(R). To do this, apply Zorn’s lemma to the poset

S = {(T,A) : T is a subring of F containing S and A is a
proper ideal of T containing I}.

The partial order in S is given by (T,A)≤ (T1,A1) if T ⊆ T1 and A⊆ A1. Let (R,J)
be a maximal element in S . If R is not a valuation ring of F , then there is an element
u in F with neither u nor u−1 in R. We claim that J[u]⊂ R[u] or J[u−1]⊂ R[u−1] and
this will contradict the maximality of (R,J). Suppose to the contrary that R[u] = J[u]
and R[u−1] = J[u−1]. Then there are elements ai, b j ∈ J with

a0 +a1u+ · · ·+anun = 1, (5.2.15)

b0 +b1u−1 + · · ·+bmu−m = 1. (5.2.16)

We may assume that n≥ m and n is minimal among all equations expressing 1 as a
polynomial in J[u]. If we multiply (5.2.16) by un and (5.2.15) by 1−b0 we get

(1−b0)un = bmun−m + · · ·+b1un−1, (5.2.17)
(1−b0) = (1−b0)a0 + · · ·+an(1−b0)un (5.2.18)

= (1−b0)a0 + · · ·+an−1(1−b0)un−1

+an(bmun−m + · · ·+b1un−1).

Since (5.2.18) has the form of (5.2.15) we have a contradiction to the minimality of
n. So R is a valuation ring of F and J = J(R).

Now suppose v : K −→ Γ ∪{−∞} is a valuation on K with valuation ring RK ,
maximal ideal JK and group of units UK . We assume that Γ = K∗/UK . Let RF be
a valuation ring in F with data JF and UF and with RK ⊆ RF and JK ⊆ JF . Since
RK = JK ∪UK and RF = JF ∪UF are disjoint unions we have JK = JF ∩K and UK =
UF ∩K. The latter equation implies that the map K∗/UK −→ F∗/UF which sends
aUK to aUF is an embedding of groups. Since RK ⊆ RF this map is isotone. Thus,
w : F −→ F∗/UF ∪{−∞} is a valuation which extends v. ut

Let (F,v) be a valued field. For an infinite limit ordinal α a sequence of elements
(aρ)ρ<α in F is called pseudo-convergent if
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v(aσ −aρ) > v(aτ −aσ ) for all ρ < σ < τ. (5.2.19)

If (aρ)p<α is pseudo-convergent, then so is (c(aρ −d))ρ<α for c, d ∈ F with c 6= 0.
Also, for a given sequence (aρ)ρ<α , if there is some µ such that (5.2.19) holds for
all µ < ρ < σ < α , then we will call this sequence eventually pseudo-convergent.

Note that if (aρ)ρ<α is a sequence in F and (v(aρ))ρ<α is a strictly decreasing
sequence in Γ , then (aρ)ρ<α is pseudo-convergent. Otherwise, we could find ρ <
σ < τ with v(aσ −aρ)≤ v(aτ −aσ ) and hence, by (5.2.8),

v(aρ) = v(aσ −aρ)≤ v(aτ −aσ ) = v(aσ ) < v(aρ).

Here is a partial converse.

Theorem 5.2.3. Let (aρ)ρ<α be a pseudo-convergent sequence in the valued field
(F,v). Then the sequence of values (v(aρ))ρ<α in Γ is either strictly decreasing or is
constant from some point on. Moreover, if γρ = v(aρ+1−aρ), then v(aσ −aρ) = γρ
for all ρ < σ , and (γρ)ρ<α is a strictly decreasing sequence.

Proof. Suppose (v(aρ))ρ is not strictly decreasing; so there exists ρ < σ with
v(aρ)≤ v(aσ ). Then v(aτ) = v(aσ ) for every τ > σ . Otherwise,

v(aτ −aσ ) = v(aτ)∨ v(aσ )≥ v(aσ ) = v(aρ)∨ v(aσ )

≥ v(aσ −aρ) > v(aτ −aσ ).

For the second part take ρ < ρ +1 < σ . Then

v(aσ −aρ) = v((aσ −aρ+1)+(aρ+1−aρ)) = v(aρ+1−aρ) = γρ

since v(aρ+1−aρ) > v(aσ−aρ+1). Also, if ρ < σ , then γρ = v(aσ−aρ) > v(aσ+1−
aσ ) = γσ . ut

The next result is quite technical but it will be used several times.

Theorem 5.2.4. Suppose α > 0 is a limit ordinal and (γρ)ρ<α is a strictly decreas-
ing sequence in the totally ordered abelian group Γ . Let t1, . . . , tn be distinct integers
in N and let β1, . . . ,βn be elements in Γ . Then there exists an ordinal µ < α and an
integer k such that βi + tiγρ < βk + tkγρ whenever ρ > µ and i 6= k.

Proof. In the divisible hull d(Γ ) of Γ the desired inequalities amount to

γρ >
βi−βk

tk− ti
if tk− ti > 0 (5.2.20)

and

γρ <
βi−βk

tk− ti
if tk− ti < 0. (5.2.21)

Let X =
{

βi−β j
t j−ti

: i 6= j
}

= {x1 < x2 < · · ·< xm}. We will consider three cases.
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Suppose first that γµ ≤ x1 for some µ . Let

βk + tkγµ+1 =
n∨

i=1

βi + tiγµ+1. (5.2.22)

Then

βk + tkγµ+1 > βi + tiγµ+1 for i 6= k, (5.2.23)

βk−βi > (ti−tk)γµ+1 and tk−ti < 0 since γµ+1 < X . So (5.2.21) holds for all ρ > µ
and all i 6= k.

Suppose next that γρ > xm for all ρ < α . Then from (5.2.22) we again get
(5.2.23). This time tk − ti > 0 since X < γρ , and (5.2.20) holds for all ρ and all
i 6= k.

The conditions for the third case are that x1 < γρ for all ρ and γρ ≤ xm for some
ρ . Let j be maximal with x j < γρ for all ρ ; then 1 ≤ j < m and for some µ , x j <
γρ < γµ ≤ x j+1 for every ρ > µ . Again, (5.2.22) leads to (5.2.23). Now, if tk−ti > 0,
then γµ+1 > βi−βk

tk−ti
and βi−βk

tk−ti
≤ x j < γρ for ρ > µ; so (5.2.20) holds. But if tk−ti < 0,

then γρ ≤ γµ+1 < βi−βk
tk−ti

for ρ > µ; so (5.2.21) holds. ut
For the remainder of this section we will assume that all residue class fields are

of characteristic 0. For much of the theory this is not necessary but it is certainly
true for an isotone valuation on a totally ordered field. Any unnamed valuation on a
totally ordered field will always be the natural valuation.

Let F be a field of characteristic 0, let f (x) be a polynomial over F of degree
n≥ 1 and let f (k)(x) denote its kth derivative. We will develop the Taylor expansion
of f (x) for later use.

f (x) =
n

∑
i=0

aixi (5.2.24)

f (k)(x) =
n

∑
i=k

i(i−1) · · · [i− (k−1)]aixi−k =
n

∑
i=k

(
i
k

)
k!aixi−k

Let

fk(x) =
n

∑
i=k

(
i
k

)
aixi−k =

f (k)(x)
k!

, 0≤ k ≤ n. (5.2.25)

Then deg fk(x) = n− k. Now, for a ∈ F

xm = (a+(x−a))m =
m

∑
k=0

(
m
k

)
am−k(x−a)k

=
m

∑
k=0

(xm)(k)

k!
|x=a(x−a)k.
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So,

f (x) =
n

∑
i=0

ai

i

∑
k=0

(xi)(k)

k!
|x=a(x−a)k

=
n

∑
k=0

n

∑
i=k

ai
(xi)(k)

k!
|x=a(x−a)k

=
n

∑
k=0

f (k)(a)
k!

(x−a)k.

Thus,

f (x) =
n

∑
k=0

fk(a)(x−a)k (5.2.26)

and we have

f (x)− f (a) =
n

∑
k=1

fk(a)(x−a)k, (5.2.27)

f (x+a) =
n

∑
k=0

fk(a)xk. (5.2.28)

Theorem 5.2.5. Suppose (aρ)ρ<α is a pseudo-convergent sequence in the valued
field (F,v) and f (x) is a polynomial in F [x] of positive degree. Then ( f (aρ))ρ<α is
eventually pseudo-convergent.

Proof. Let n = deg f (x). Since the case n = 1 has already been noted we assume
n ≥ 2. Suppose first that (F,v) has an algebraic extension (L,w) in which there
is some element a with w(aσ − a) < w(aρ − a) for all ρ < σ . Let bρ = aρ − a
and let h(x) = f (x + a)− f (a). Clearly, h(bσ )− h(bρ) = f (aσ )− f (aρ) and it
suffices to show that (w(h(bρ)))ρ<α is eventually strictly decreasing. For then
(h(bρ))ρ is eventually pseudo-convergent and, for some µ , v( f (aσ )− f (aρ)) =
w(h(bσ )−h(bρ)) > w(h(aτ)−h(aσ )) = v( f (aτ)− f (aσ )) for all µ < ρ < σ < τ .
Since h(bρ) = f (aρ)− f (a) we have, by (5.2.27),

h(bρ) =
n

∑
j=1

f j(a)b j
ρ , (5.2.29)

and by Theorem 5.2.4 we can find an integer k and an ordinal µ such that for all
ρ > µ and for j 6= k,

w( fk(a))+ kw(bρ) > w( f j(a))+ jw(bρ).

From (5.2.29) we then have that w(h(bρ)) = w( fk(a)bk
p), and for µ < ρ < σ ,
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w(h(bρ)) = w( fk(a))+ kw(bρ)
> w( fk(a))+ kw(bσ )
= w(h(bσ )).

Now assume there is no such extension of (F,v). Let L be a splitting field of
g(x) = f0(x) f1(x) · · · fn(x) over F . By Theorem 5.2.2 there is a valuation w on L
that extends v. For each a ∈ L the sequence (aρ −a)ρ<α is pseudo-convergent, and
by Theorem 5.2.3 and our assumption there is an ordinal λ = λ (a) with

w(aρ −a) = w(aσ −a) for all λ ≤ ρ ,σ . (5.2.30)

By taking λ large enough we may assume that (5.2.30) holds for each root a of g(x)
and also that g(aρ) 6= 0 (for ρ ≥ λ ). Since f j(x) = c j(x− d1) · · ·(x− dr) we then
have that w( f j(aρ)) = w( f j(aσ )) for λ ≤ ρ , σ and 0 ≤ j ≤ n. From (5.2.27) with
a = aρ and x = aσ we obtain

f (aσ )− f (aρ) =
n

∑
j=1

f j(aρ)(aσ −aρ) j. (5.2.31)

From Theorem 5.2.4 we get an ordinal µ with µ ≥ λ and an integer k with 0≤ k≤ n
such that

v( fk(aρ))+ kv(aσ −aρ) > v( f j(aρ))+ jv(aσ −aρ)

for all j 6= k and for all µ < ρ < σ . From (5.2.31)

v( f (aσ )− f (aρ)) = v( fk(aρ)(aσ −aρ)k) > v( fk(aρ)(aτ −aσ )k)

= v( f (aτ)− f (aσ ))

if µ < ρ < σ < τ . ut
Given a pseudo-convergent sequence (aρ)ρ<α in (F,v), according to the pre-

vious result and Theorem 5.2.3, either there is a polynomial f (x) ∈ F [x] such that
(v( f (aρ)))ρ<α is eventually strictly decreasing, in which case the sequence (aρ)ρ<α
is called algebraic, or for every polynomial f (x) the sequence (v( f (aρ)))ρ<α is
eventually constant, in which case (aρ)ρ<α is called transcendental. We wish to
find limits for pseudo-convergent sequences and to do so we will consider the tran-
scendental and algebraic sequences separately. First, we need some definitions.

The element a in F is called a pseudo-limit of the pseudo-convergent sequence
(aρ)ρ<α if v(a−aρ) = γρ(= v(aρ+1−aρ)) for every ρ , and the breadth of (aρ)ρ<α
is defined to be

B = B((aρ)ρ) = {b ∈ F : v(b) < γρ for every ρ < α}.

If a is a pseudo-limit of (aρ)ρ , then a+B consists of all the pseudo-limits of (aρ)ρ
in F ; the easy verification is left for Exercise 1.
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The extension (L,w) of (F,v) is called an immediate extension of (F,v) if L and
F have the same value group and the same residue class field. The valued field (F,v)
is maximally complete if its only immediate extension is itself. Our goal is to relate
maximal completeness to the existence of pseudo-limits.

Theorem 5.2.6. Let (L,v) be an immediate extension of (F,v). If t ∈ L\F, then t is
a pseudo-limit of a pseudo-convergent sequence in F that has no pseudo-limit in F.

Proof. If a ∈ F , then v(t − a) = v(b) for some b ∈ F . Then (t − a)b−1 ∈ RL and
(t−a)b−1 +JL = c+JL for some c∈F . So t−a = cb+db with d ∈ JL and v(t−(a+
cb)) < v(b). This shows that v(t−F) has no smallest element. Consequently, if α is
an ordinal for which there is a coinitial strictly decreasing sequence (v(t−aρ))ρ<α
in v(t−F) (see Exercise 1.1.8), then α is a limit ordinal. Now, (aρ)ρ<α is a pseudo-
convergent sequence in F which has t as a pseudo-limit. For if ρ < σ < τ , then

v(aσ −aρ) = v((t−aρ)− (t−aσ )) = v(t−aρ)∨ v(t−aσ ) = v(t−aρ)

> v(t−aσ ) = v(aτ −aσ ).

Suppose y ∈ F is also a pseudo-limit of (aρ)ρ<α . Then t − y is an element of the
breadth of (aρ)ρ<α and by Exercise 1, for all ρ < σ , we have v(t−y)< v(aσ−aρ)=
v(t−aρ). This is impossible since {v(t−aρ) : ρ < α} is coinitial in v(t−F). ut

We will now construct pseudo-limits of pseudo-convergent sequences.

Theorem 5.2.7. Let (aρ)ρ<α be a transcendental pseudo-convergent sequence in
the valued field (F,v) and suppose (aρ)ρ<α has no pseudo-limit in F. There is
a unique valuation w on the rational function field F(x) which extends v and for
which x is a pseudo-limit of (aρ)ρ<α . The valued field (F(x),w) is an immediate
extension of (F,v). Moreover, any pseudo-limit of (aρ)ρ<α in an extension of (F,v)
is transcendental over F.

Proof. By Exercise 3 it suffices to define w on F [x]. For 0 6= f (x) ∈ F [x] there is
some λ < α such that v( f (aρ)) = v( f (aσ )) for all λ < ρ ,σ ; define w( f (x)) by
w( f (x)) = v( f (aρ)). Clearly, w( f (x)) 6=−∞. For 0 6= g(x) ∈ F [x] and a sufficiently
large λ , v(g(aρ)) is also constant for ρ > λ and w( f (x)g(x)) = v( f (aρ)g(aρ)) =
v( f (aρ))+v(g(aρ)) = w( f (x))+w(g(x)). Also, w( f (x)+g(x)) = v( f (aρ)+g(aρ))
≤ v( f (aρ))∨ v(g(aρ)) = w( f (x))∨w(g(x)). Thus, w is a valuation which extends
v and the two value groups are the same. To see that the residue class fields are the
same take r(x) = h(x)g(x)−1 ∈ F(x) with w(h(x)) = w(g(x)). By multiplying the
numerator and denominator of r(x) by c ∈ F with v(c) =−w(h(x)) we may assume
w(h(x)) = 0. Since (h(aρ))ρ and (g(aρ))ρ are eventually pseudo-convergent there
exists a λ < α such that if λ < ρ < σ < τ , then w(h(x)) = v(h(aρ)), w(g(x)) =
v(g(aρ)), v(h(aσ )− h(aρ)) > v(h(aτ)− h(aσ )) and v(g(aσ )− g(aρ)) > v(g(aτ)−
g(aσ )). Fix σ > ρ (with ρ > λ ). For some λ1 > σ we have v(h(aτ)− h(aσ )) =
v(h(aµ)−h(aσ )) for all τ > µ > λ1. Consequently,

w(h(x)−h(aσ )) = v(h(aτ)−h(aσ )) < v(h(aσ )−h(aρ))≤ 0
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and h(x) + JF(x) = h(aρ) + JF(x). Similarly, w(g(x)− g(aρ)) < 0, g(x) + JF(x) =
g(aρ)+ JF(x) and

h(x)g(x)−1 + JF(x) = h(aρ)g(aρ)−1 + JF(x).

To see that x is a pseudo-limit of (aρ)ρ<α , for a fixed ρ take λ > ρ such that v(aτ −
aρ) = v(aσ −aρ) for all τ , σ > λ . Then w(x−aρ) = v(aτ −aρ) = γρ .

Now suppose that w′ is a valuation on F(x) which extends v and x is a pseudo-
limit of (aρ)ρ<α in (F(x),w′). So w′(x−aρ) = γρ for every ρ < α . Let f (x) ∈ F [x]
be of positive degree n. Choose λ such that for all λ ≤ ρ , σ we have v( f j(aρ)) =
v( f j(aσ )) for 0≤ j ≤ n (see (5.2.25)). By (5.2.27)

f (x)− f (aρ) =
n

∑
j=1

f j(aρ)(x−aρ) j (5.2.32)

and by Theorem 5.2.4 there is some µ ≥ λ and some k ≥ 1 with v( f j(aρ))+ jγρ <
v( fk(aρ))+ kγρ for each 1 ≤ j 6= k and each ρ > µ . So for σ > ρ > µ , we have
γρ > γσ and

w′( f (x)− f (aρ)) = v( fk(aρ))+ kγρ = w( f (x)− f (aρ)) >

v( fk(aσ ))+ kγσ = w( f (x)− f (aσ )) = w′( f (x)− f (aσ )).

If w′( f (x)) > w′( f (aρ)), then

w′( f (x)) = w′( f (x)− f (aρ)) > w′( f (x)− f (aσ )) = w′( f (x)),

and if w′( f (x)) < w′( f (aρ)), then

w′( f (aρ)) = w′( f (x)− f (aρ)) > w′( f (x)− f (aσ )) = w′( f (aρ)).

So w′( f (x)) = v( f (aρ)) = w( f (x)).
Suppose a is a pseudo-limit of (aρ)ρ<α in some extension of F . If a is algebraic

over F let f (x) be its irreducible polynomial over F . Then from (5.2.27) we get, for
large ρ ,

− f (aρ) =
n

∑
j=1

f j(aρ)(a−aρ) j,

and, by Theorem 5.2.4, for some k ≥ 1, v( f (aρ)) = v( fk(aρ))+ kγρ . This is impos-
sible since, for large ρ , v( f (aρ)) and v( fk(aρ)) are independent of ρ but (γρ)ρ<α is
strictly decreasing. ut

We need a similar result for algebraic pseudo-convergent sequences.

Theorem 5.2.8. Let (aρ)ρ<α be an algebraic pseudo-convergent sequence in the
valued field (F,v). Suppose f (x) is a polynomial of least degree in F [x] such that the
sequence (v( f (aρ)))ρ<α is eventually strictly decreasing. Then

(a) f (x) is irreducible.
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(b) If a is a root of f (x), then there is a unique valuation w on F(a) which
extends v and such that a is a pseudo-limit of (aρ)ρ .

(c) (F(a),w) is an immediate extension of (F,v).

Proof. If f (x) = c(x−a), then, since (aρ−a)ρ<α is pseudo-convergent and (v(aρ−
a))ρ is eventually decreasing, v(aρ − a) > v(aσ − a) for all ρ < σ by Theorem
5.2.3. But then v(aρ −a) = v((aσ −a)− (aρ −a)) = v(aσ −aρ) = γρ for all ρ < σ ,
and a is a pseudo-limit of (aρ)ρ . Thus, we will assume that deg f (x) = n ≥ 2. If
f (x) = g1(x)g2(x) with gi(x) ∈ F [x] and 1≤ deg gi(x) < n, then for some λ and for
all λ < ρ < σ , v(gi(aρ)) = v(gi(aσ )). This gives a contradiction since

v( f (aρ)) = v(g1(aρ))+ v(g2(aρ)) = v( f (aσ )) < v( f (aρ))

for large ρ and σ . Now, for g(a)∈F(a) with deg g(x)< n, the sequence v(g(aρ))ρ<α
is eventually constant and we define w(g(a)) to be this constant. Suppose g1(x),
g2(x) ∈ F [x] and both have degree smaller than n. Then for large ρ ,

w(g1(a)+g2(a)) = v(g1(aρ))+g2(aρ))≤ v(g1(aρ))∨ v(g2(aρ))
= w(g1(a))∨w(g2(a)).

Also, g1(x)g2(x) = f (x)q(x)+ r(x) with r(x) 6= 0 and deg r(x) < n. Now, for large
ρ , v(g1(aρ)), v(g2(aρ)), v(q(aρ)) and v(r(aρ)) are each independent of ρ and
v( f (aρ)q(aρ)) is strictly decreasing. By Exercise 4 we then have v(g1(aρ)g2(aρ)) =
v(r(aρ)) and

w(g1(a)g2(a)) = v(r(aρ)) = v(g1(aρ))+ v(g2(aρ)) = w(g1(a))+w(g2(a)).

Thus, w is a valuation on F(a) that extends v and these valuations have the same
value group. Since each element g(a) ∈ F(a) comes from a polynomial g(x) ∈ F [x]
for which the sequence (g(aρ)) is eventually constant valued the remaining verifi-
cations are the same as for the transcendental case given in the previous result. ut

We can now give the tight connection between maximal completeness and
pseudo-limits.

Theorem 5.2.9. A valued field (F,v) is maximally complete if and only if every
pseudo-convergent sequence in F has a pseudo-limit in F.

Proof. Let (aρ)ρ<α be a pseudo-convergent sequence in F . By Theorems 5.2.7 and
5.2.8, (aρ)ρ has a pseudo-limit t in an immediate extension of F . If F is maximally
complete, then t ∈ F . The converse is a consequence of Theorem 5.2.6. ut

Criteria will now be given for a maximally complete field to be algebraically
closed and then it will be applied to fields of formal power series.

Theorem 5.2.10. Suppose (F,v) is a valued field. If F is algebraically closed, then
its value group is divisible and its residue class field is algebraically closed. Con-
versely, these two conditions imply that each algebraic extension of F is an imme-
diate extension.
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Proof. Suppose F is algebraically closed. For n ∈ N and a ∈ F take b ∈ F with
bn = a. Then v(a) = nv(b) and v(F∗) is divisible. Let f (x) ∈ (R/J)[x] be a monic
polynomial of positive degree and let f (x)∈R[x] be a monic lifting of f (x) such that
each of its nonzero coefficients is a unit of R. If f (x) = ∑aixi and 0 6= a∈ F is a root
of f (x), then from ∑aiai = 0 we have that for some i < j, −∞ 6= v(aiai) = v(a ja j);
that is, ( j− i)v(a) = v(aia−1

j ) = 0. So a∈ R and f (x) = (x−a)g(x) with g(x)∈ R[x]
and g(x) monic. Therefore, f (x) has the root a in R/J. Conversely, suppose the two
conditions hold and L is an algebraic extension of F . Let w be a valuation on L
that extends v. If a ∈ L, then there exists f (x) ∈ RF [x]\JF [x] with f (a) = 0. Just
as above, ( j− i)w(a) ∈ v(F) and hence w(a) ∈ v(F) by the divisibility of v(F∗).
Suppose a ∈ RL\JL. Then f (a) = 0 shows that a = a + JL is algebraic over RF/JF .
Thus, a ∈ RF/JF and L is an immediate extension of F . ut

If G is a group and Γ is a totally ordered set, then a mapping v : G−→Γ ∪{−∞}
is a valuation provided (5.2.1), (5.2.2) and (5.2.4) hold. Then (5.2.6), (5.2.7), and
(5.2.8) also hold and so does Theorem 5.2.3 since the concepts of pseudo-convergent
sequences and of pseudo-limits still makes sense in this more general setting.

Theorem 5.2.11. Suppose Gγ is a group for each γ in the totally ordered set Γ . Then
every pseudo-convergent sequence in the Hahn product V (Γ ,Gγ) has a pseudo-
limit.

Proof. Recall that the valuation here is given by π( f ) = maxsupp f . Suppose
( fρ)ρ<α is pseudo-convergent in V . Let γρ = π( fρ+1− fρ). By Theorem 5.2.3 we
have γρ = π( fσ − fρ) and γσ < γρ if ρ < σ ; so fρ(γ) = fσ (γ) if γρ < γ and the
definition

f (γ) =
{

fρ(γ) if γρ < γ for some ρ < α
0 if γ ≤ γρ for all ρ < α (5.2.33)

gives an element of the product Πγ Gγ . If δ1 ≤ δ2 ≤ ·· · in supp f , then γρ < δ1, for
some ρ and {δn} ⊆ supp fρ . So δn = δn+1 = · · · for some n and f ∈V (Γ ,Gγ). Now,
π( f − fρ)≤ γρ since f and fρ agree on {γ ∈ Γ : γρ < γ}; but f (γρ) = fρ+1(γρ) 6=
fρ(γρ) by (5.2.33) since γρ+1 < γρ . Thus, π( f − fρ) = γρ for each ρ < α and f is a
psuedo-limit of ( fρ)ρ<α . ut

We can now apply the previous results to get an embedding theorem for totally
ordered fields.

If V (K ∗Γ ) is the formal power series crossed product division ring given in
Exercise 3.5.20, then V (K ∗Γ ) will be a field exactly when Γ is abelian, K is a field,
the action is trivial and the twist satisfies τ(γ,δ ) = τ(δ ,γ) for all γ , δ ∈ Γ . It also
follows from this exercise and the proof of Theorem 3.5.8 that for an ordinal number
α > 0 the subring Vα(K ∗Γ ) = {v ∈V : |suppv|< ℵα} of V (K ∗Γ ) is a subfield.

Theorem 5.2.12. Let V (K ∗Γ ) be a formal power series crossed product field and
for the ordinal α > 0 let Vα(K ∗Γ ) = {v∈V (K ∗Γ ) : |suppv|< ℵα}. The following
statements are equivalent.



5.2 Valuations and the Hahn Embedding Theorem 443

(a) V (K ∗Γ ) is algebraically (real) closed.
(b) K is algebraically (real) closed and Γ is divisible.
(c) Vα(K ∗Γ ) is algebraically (real) closed.

Proof. By Theorems 5.2.9 and 5.2.11 (V (K ∗Γ ),π) is maximally complete. Since
K is the residue class field and Γ is the value group of both fields the equivalence of
(a) with (b) for the algebraically closed case and the fact that (c) implies (b) for this
case is a consequence of Theorem 5.2.10. The same equivalence and implication
for the real closed case now follows from Theorem 5.1.6 and the isomorphisms
V (K ∗Γ )(i) ∼= V (K(i) ∗Γ ) and Vα(K ∗Γ )(i) ∼= Vα(K(i) ∗Γ ) given in Exercise 5.
To finish the proof it suffices to show that (a) implies (c). Suppose f (y) = v0 +
v1y + · · ·+ vnyn ∈ Vα(K ∗Γ )[y]. Let ∆ be the Q-subspace of Γ spanned by X =⋃n

j=0 suppv j. Then |∆ | < ℵα since |X | < ℵα . From the equivalence of (a) with
(b) we know that V (K ∗∆) is algebraically closed or real closed. Suppose f (y) has
positive degree in the first case and has odd degree or f (y) = y2− v0 with v0 > 0 in
the second case. By identifying f (y) with the polynomial in V (K ∗∆)[y] obtained
by restricting each v j to ∆ we see that f (y) has a root in the subfield V (K ∗∆) of
Vα(K ∗Γ ). Thus, by Theorem 5.1.6, Vα(K ∗Γ ) has the same closure property as
V (K ∗Γ ). ut
Theorem 5.2.13. Let K be a totally ordered field and let Γ be a totally ordered
divisible abelian ηα -group where ℵα is a regular cardinal with card (K)≤ℵα and
α > 0. Then K can be embedded in Vα(Γ ,R).

Proof. By Theorem 4.4.8 Vα(Γ ,R) is a totally ordered ηα -field which is real closed
by the previous result. Thus, K can be embedded in Vα(Γ ,R) by Theorem 5.1.11.

ut
In order to replace Γ in Theorem 5.2.13 by the smaller value group of K with

respect to its natural valuation we require two more properties of maximally com-
plete fields. A valued field (F,v) is henselian if whenever f (x) ∈ RF [x] is a monic
polynomial and a is an element of RF with the property that a ∈ RF = RF/JF is a
simple root of f (x) ∈ RF [x], then f (b) = 0 for some b ∈ RF with b = a.

Theorem 5.2.14. A maximally complete valued field (F,v) is henselian.

Proof. Suppose f (x) and a are as above and f (a) 6= 0. Let 0 < α be a limit ordi-
nal. By transfinite induction we will construct a sequence (aρ)ρ<α in RF with the
following properties for all ρ < σ < α:

(i) f ′(aρ) ∈UF ;
(ii) v(aρ −aσ ) = v( f (aρ));

(iii) if f (aρ) 6= 0, then v( f (aσ )) < v( f (aρ)).

Let a0 = a. Suppose µ < α and the sequence (aρ)ρ<µ has been constructed with
these three properties. If f (aρ) = 0 for some ρ let aµ = aρ . Suppose each f (aρ) 6= 0.
Note that by (ii) and (iii) both aρ−a0 and f (aρ) are elements of JF since f (a0)∈ JF .
Assume first that µ is a limit ordinal. Then (aρ)ρ<µ is pseudo-convergent since for
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ρ < σ < τ < µ we have v(aσ−aρ) = v( f (aρ)) > v( f (aσ )) = v(aτ−aσ ). According
to Theorem 5.2.9 the sequence (aρ)ρ<µ has a pseudo-limit aµ ∈ F . Now, (ii) is
satisfied by aµ , and aµ ∈ RF since v(aρ −aµ) = v(aρ+1−aρ) = v( f (aρ)) ≤ 0 and
aµ = (aµ −aρ)+aρ . To verify (iii) for ρ < µ we use (5.2.26) with base point aρ+1.
Then, since f0(x) = f (x),

v( f (aµ)) = v

(
n

∑
k=0

fk(aρ+1)(aµ −aρ+1)k

)

≤
n∨

k=0

v( fk(aρ+1) f (aρ+1)k)

= v( f (aρ+1)) < v( f (aρ)).

In order to show that f ′(aµ) ∈UF we again use (5.2.26) but now take the base point
to be aµ . Since f1(x) = f ′(x) we have

f (x)− f (aµ) = f ′(aµ)(x−aµ)+
n

∑
k=2

fk(aµ)(x−aµ)k

and

f ′(aµ) =
f (a)− f (aµ)

a−aµ
−

n

∑
k=2

fk(aµ)(a−aµ)k−1. (5.2.34)

From (ii) and (iii) for a0 and aµ we have

v
(

f (a)− f (aµ)
a−aµ

)
= v( f (a))− v( f (a)) = 0,

and fk(a)(a−aµ)k−1 ∈ JF for k ≥ 2. So v( f ′(aµ)) = 0.
Now suppose µ = λ +1, and use (5.2.26) with base point aλ . Then

f (x) = f (aλ )+ f ′(aλ )(x−aλ )+
n

∑
k=2

fk(aλ )(x−aλ )k. (5.2.35)

Let c = f (aλ ), d = − f ′(aλ )−1 and aµ = aλ + cd; c ∈ JF , d ∈ UF , and aµ ∈ RF .
From (5.2.35) with x = aµ ,

f (aµ) = f (aλ )− f ′(aλ ) f (aλ ) f ′(aλ )−1 +
n

∑
k=2

fk(aλ )ckdk

=
n

∑
k=2

fk(aλ )ckdk;

so f (aµ)c−1 ∈ JF and v( f (aµ)) < v( f (aλ )). Thus (iii) is satisfied. For (ii), v(aλ −
aµ) = v(cd) = v(c) = v( f (aλ )), and if ρ < λ , then v(aρ − aµ) = v((aρ − aλ ) +
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(aλ − aµ)) = v( f (aρ))∨ v( f (aλ )) = v( f (aρ)) by the induction hypothesis. From
(5.2.26) we have, as in (5.2.34) but using aλ in place of a,

f ′(aµ) =
f (aλ )− f (aµ)

aλ −aµ
−

∞

∑
k=2

fk(aµ)(aλ −aµ)k−1.

But the sum on the right is in JF and we have just shown that v( f (aλ )− f (aµ)) =
v( f (aλ )) = v(aλ − aµ); so f ′(aµ) ∈ UF and the new sequence has the desired
properties.

Now, if ℵα > card (F), then the terms of the sequence (aρ)ρ<ωα cannot be dis-
tinct. So f (aρ) = 0 for some ρ < ωα , and aρ = a by (ii) since a0 = a. ut

An interesting property of henselian fields that we will make use of is that they
have intermediate fields with specified data.

Theorem 5.2.15. Let K be a subfield of the henselian field (M,v) and suppose that
the residue class field of M has characteristic 0. Then there is an intermediate field
F, K ⊆ F ⊆ M, such that K and F have the same value group and F and M have
the same residue class field.

Proof. Apply Zorn’s lemma to the set of all intermediate fields E of the extension
K ⊆ M with the property that ΓK = ΓE to get a maximal such intermediate field F .
Suppose a + JM ∈ (RM/JM)\(RF/JF). Then v(a) = 0. If a + JM is transcendental
over RF/JF , then a is transcendental over F . Otherwise, it would satisfy a polyno-
mial in RF [x]\JF [x] and hence a+JM would be algebraic over RF/JF . If a+JM is al-
gebraic over RF/JF , then by lifting its irreducible polynomial to a monic polynomial
g(x) ∈ RF [x] we get an element b ∈ RM with b−a ∈ JM and g(b) = 0. Let b = a if
a+JM is transcendental over RF/JF . We claim that F(b) and F have the same value
group. Suppose 0 6= f (b) ∈ F [b] and assume that f (x) = f0 + f1x + · · ·+ fmxm has
smaller degree than g(x) if b is algebraic over F . Take c∈ F with v(c) =

∨m
j=0 v( f j).

Then c−1 f (x) ∈ RF [x]\JF [x]. If v( f (b)) < v(c), then c−1 f (b) ∈ JM and we have the
contradiction that a+ JM satisfies a nonzero polynomial over RF/JF , of smaller de-
gree than that of g(x) if a+JM is algebraic over RF/JF . Thus, v( f (b)) = v(c)∈ v(F)
and v(F(b)) = v(F). By the maximality of F we must have RM/JM = RF/JF . ut

The next two theorems will be used to show that a totally ordered field has a
unique largest immediate extension.

Theorem 5.2.16. Let (aρ)ρ<α be an algebraic pseudo-convergent sequence in the
valued field (F,v). Suppose f (x) is a polynomial in F [x] of least degree n such that
v( f (aρ)) is eventually strictly decreasing and let f j(x) be the polynomial given by
(5.2.25). Then, with γρ = v(aρ+1−aρ), there is an ordinal τ0 < α such that for all
σ , ρ > τ0 and for 1≤ j ≤ n−1

(a) v( f j(aρ)) = v( f j(aσ )) = β j (this defines β j),
(b) β j + jγρ < β1 + γρ if 2≤ j,
(c) v( f (aρ)) = β1 + γρ .
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Moreover, if a is a pseudo-limit of (aρ)ρ<α , then

(d) v( f (a)) < β1 + γρ for all ρ ,
(e) v( f j(a)) = β j for j = 1,2, . . . ,n.

Proof. We assume n ≥ 2 since for n = 1 this is trivial and almost vacuous. As we
have previously noted, the existence of an ordinal τ1 for which (a) holds for ρ > τ1
is just a consequence of the minimality of n. By differentiating equation (5.2.27)
with a = aρ we obtain

f ′(x)− f ′(aρ) =
n

∑
j=2

f j(aρ) j(x−aρ) j−1

and

f1(aσ )− f1(aρ) =
n

∑
j=2

f j(aρ) j(aσ −aρ) j−1.

By Theorem 5.2.4 there is some k, 2≤ k ≤ n, and some µ ≥ τ1 such that if 2≤ j 6=
k ≤ n, then β j +( j−1)γρ < βk +(k−1)γρ for ρ > µ . So, for σ > ρ > µ ,

β1 = v( f1(aσ ))∨v( f1(aρ))≥ v( f1(aσ )− f1(aρ)) = βk +(k−1)γρ ≥ β j +( j−1)γρ ,

and the last inequality is strict for j 6= k. If β1 > βk + (k− 1)γρ for all ρ > µ ,
then (a) and (b) hold with τ0 = µ . If β1 = βk + (k− 1)γτ for some τ > µ , then
β1 > βk + (k− 1)γρ if ρ > τ and hence (a) and (b) hold for τ0 = τ + 1. We may
assume that (v( f (aρ)))τ0<ρ is strictly decreasing. Since for σ > ρ > τ0 we have,
from (5.2.27),

f (aσ ) = f (aρ)+
n

∑
j=1

f j(aρ)(aσ −aρ) j

and since the value of the large sum on the right, which we will call uσ , is β1 + γρ
(by (b)), we must have v( f (aρ)) = β1 + γρ , also. If not, for τ > σ

v( f (aσ )) = v( f (aρ))∨ v(uσ ) = v( f (aρ))∨ v( f (aτ)) = v( f (aτ)) < v( f (aσ )).

This proves (c).
For (d), from (5.2.26),

f (a) = f (aρ)+ f1(aρ)(a−aρ)+
n

∑
j=2

f j(aρ)(a−aρ) j

and for ρ > τ0 each of the first two terms have the largest value, β1 + γρ , of all
the terms on the right. So v( f (a)) ≤ β1 + γρ . If the inequality is not strict, then
v( f (a)) = β1 +γρ > β1 +γσ ≥ v( f (a)) for ρ < σ . Since (γρ)ρ is strictly decreasing
(d) holds for every ρ .

By differentiating

f (x) =
n

∑
j=0

f j(aρ)(x−aρ) j
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i times and using (5.2.25) we get

fi(a)− fi(aρ) =
n

∑
j=i+1

(
j
i

)
f j(aρ)(a−aρ) j−i. (5.2.36)

By Theorem 5.2.4 there is some k, i+1≤ k≤ n, and some λ ≥ τ0 such that if i+1≤
j ≤ n and j 6= k, then ( j− i)γρ + β j < (k− i)γρ + βk for all ρ > λ . If v( fi(a)) 6=
v( fi(aρ)) for some ρ > λ , then, for all σ > ρ , either v( fi(a)) = (k− i)γσ + βk or
v( fi(aρ)) = v( fi(aσ )) = (k− i)γσ +βk. Since (γρ) is a strictly decreasing sequence
this is impossible and hence v( fi(a)) = v( fi(aρ)) = βi for all ρ > λ . ut

We have seen in Theorem 5.2.8 that (aρ)ρ<α has a pseudo-limit which is a root
of f (x) in some immediate extension of F . We show next that this is always the case
in any immediate extension that is maximally complete.

Theorem 5.2.17. With the same setup as in Theorem 5.2.16, suppose a is a pseudo-
limit of (aρ)ρ<α in some immediate extension M of F and f (a) 6= 0.

(a) M contains a pseudo-limit b of (aρ)ρ<α such that v( f (b)) < v( f (a)) and
v(b−a) = v( f (a))−β1.

(b) If M is maximally complete, then f (x) has a root in M that is a pseudo-limit
of (aρ)ρ<α .

Proof. (a) Let v( f (a)) = γ and put δ = γ−β1. By (d) of Theorem 5.2.16, γ < β1 +γρ
for each ρ < α; i.e. δ < γρ . Take d ∈M with v(d) = δ . From (5.2.26), for any c∈M
we have

f (a+dc) f (a)−1 =
n

∑
j=0

f j(a) f (a)−1d jc j

= 1+( f1(a) f (a)−1d)c+
n

∑
j=2

( f j(a) f (a)−1d j)c j. (5.2.37)

If j ≥ 2 the coefficient of c j in (5.2.37) is in JM . For, by (e), (d), and (b) of the
previous theorem v( f j(a) f (a)−1d j) = β j− γ + jδ and

β j +( j−1)(γ−β1) < β j +( j−1)γρ < β1.

So
β j− γ + jδ = β j− γ + j(γ−β1) = β j +( j−1)γ− jβ1 < 0.

The coefficient of c in (5.2.37) is a unit since its value is 0. Now let c =
− f1(a)−1d−1 f (a) and b = a + dc. Then (5.2.37) gives that f (b) f (a)−1 ∈ JM and
hence v( f (b)) < v( f (a)). Also, v(b− a) = v(cd) = v( f1(a)−1 f (a)) = γ −β1 < γρ
for all ρ < α . So b−a is in the breadth of the sequence, and, by Exercise 1, b is a
pseudo-limit with the desired properties.

(b) Suppose M does not contain a pseudo-limit of (aρ)ρ<α which is a root of
f (x). Let α0 be a limit ordinal. We will construct a sequence (xµ)µ<α0 of pseudo-
limits of (aρ)ρ in M such that (v( f (xµ)))µ<α0 is strictly decreasing and v(xν −
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xµ) = v( f (xµ))−β1 for all µ < ν . Of course this is impossible if card (α0) > card
(M); so some pseudo-limit must be a root of f (x). Let x0 ∈M be a pseudo-limit of
(aρ)ρ<α . The existence of x0 is given by Theorem 5.2.9. Suppose for some ordinal
λ < α0 the sequence (xµ)µ<λ has been constructed with the desired properties.
We will first consider the case where λ is a limit ordinal. Let δµ = v( f (xµ)). If
µ < ν < σ < λ , then v(xν − xµ) = δµ − β1 > δν − β1 = v(xσ − xν) and hence
(xµ)µ<λ is pseudo-convergent. Let xλ ∈ M be a pseudo-limit of (xµ)µ<λ . Then
v(xλ − xµ) = v(xµ+1− xµ) = δµ −β1 < γρ for all λ < µ and all ρ < α , by (d) of
Theorem 5.2.16. So xλ − xµ is in the breadth of (aρ)ρ<α and xλ is a pseudo-limit
of this sequence. We still need to check that v( f (xλ )) < v( f (xµ)) for µ < λ . From
(5.2.26)

f (xλ ) =
n

∑
j=0

f j(xµ)(xλ − xµ) j.

Now, by (e) of Theorem 5.2.16, v( f1(xµ)(xλ − xµ)) = β1 +(δµ −β1) = δµ and, for
j ≥ 2,

v( f j(xµ)(xλ − xµ) j) = β j + j(δµ −β1) < β j + jγρ < β1 + γρ = δµ

by (d), (b), and (c) of Theorem 5.2.16. So, v( f (xλ ))≤ δµ and v( f (xλ ))≤ δµ+1 < δµ .
Suppose now that λ = σ + 1. By (a) there is a pseudo-limit xλ of (aρ)ρ<α such

that v( f (xλ )) < δσ and v(xλ − xσ ) = δσ −β1. If µ < σ , then v(xλ − xµ) = v(xλ −
xσ )∨ v(xσ − xµ) = δµ −β1 since δσ < δµ . This completes the construction and the
proof. ut

We can now show that a totally ordered field has a unique maximally complete
immediate extension. This is true for any valued field whose residue class field has
characteristic 0. The only missing ingredient for the proof of this more general result
is the set theoretic fact that the cardinality of a valued field (F,v) is bounded by a
function of |Γ | and |R/J|.

We first extend the total order to an immediate extension.

Theorem 5.2.18. Let v be the natural valuation of the totally ordered field F. If
(L,v) is an immediate extension of (F,v), then there is a unique total order of L
extending that of F and for which v is the natural valuation of L.

Proof. Let

L+ = {0 6= a ∈ L : ∃b ∈ F+ with v(a) = v(b) and ab−1 + JL > 0}∪{0}.

Clearly, L+∪−L+ = L. Suppose 0 6= a ∈ L and b, c ∈ F+ with v(a) = v(b) = v(c).
Then bc−1 ∈U+

F and (ab−1 + JL)bc−1 = ac−1 + JL; so ab−1 + JL > 0 if and only if
ac−1 + JL > 0, and L+∩−L+ = 0. Now take a, a1 ∈ L+ and assume −∞ < v(a1)≤
v(a). Then (a + a1)b−1 ∈ RL and (a + a1)b−1 + JL = ab−1 + JL + a1b−1 + JL > 0;
so a + a1 ∈ L+. If b1 ∈ F+ with a1b−1

1 + JL > 0, then aa1(bb1)−1 + JL = (ab−1 +
JL)(a1b−1

1 + JL) > 0, and aa1 ∈ L+. Thus, L+ is a total order of L.
Now, the homomorphism RL −→ RL/JL is isotone since if a ∈ R+

L \JL, then a +
JL = (ab−1 +JL)b > 0. If a∈ R+

L ; then a+JL < n+JL for some n∈N since RL/JL is
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archimedean; so 0≤ a < n and a∈C(1). On the other hand, if 0 < a < n and a 6∈ RL,
then a−1 ∈ JL, and we have the contradiction 1 ∈ JL since 0 < 1 < na−1 and JL is
convex in RL. Thus RL = C(1). Moreover, for a,b ∈ L, v(a) = v(b) is equivalent
to C(a) = RL|a| = RL|b| = C(b). This shows that v is the natural valuation of the
totally ordered field L. If P is another total order of L extending F+ and for which v
is the natural valuation, then (RL,P∩RL)−→ RL/JL is isotone. So if 0 6= a ∈ P and
b ∈ F+ with v(a) = v(b), then ab−1 + JL > 0, a ∈ L+ and P = L+. ut

Different total orders of a field can give the same natural valuation. In fact, all
archimedean total orders of a field produce the same valuation. The construction of
a non-archimedean example is left for Exercise 2.

Theorem 5.2.19. Each totally ordered field has a maximally complete immediate
extension. Suppose σ : F −→ F1 is an isomorphism of totally ordered fields and M
(respectively, M1) is a maximally complete immediate extension of F (respectively,
F1). Then σ can be extended to an isomorphism between the totally ordered fields
M and M1.

Proof. If Γ is the value group of the totally ordered field F , then the additive
group of F can be embedded in V (Γ ,R) by Theorem 2.6.5. So the cardinality of
F , and also of any immediate extension of F , is bounded by 2|Γ |ℵ0 by the previ-
ous theorem. We can now apply Zorn’s Lemma in the usual manner. Let S be a
set with card(S) > 2|Γ |ℵ0 and which contains F , and let S be the set of all im-
mediate extensions (L,w) of (F,v) with L ⊆ S. The partial order of S is given
by: (L1,w1) ≤ (L2,w2) if (L2,w2) is an immediate extension of (L1,w1). Since the
union of a chain of immediate extensions of F is easily seen to be an immediate
extension of F , S has a maximal element (M,w). Suppose (K,w1) is an immediate
extension of (M,w). Since |K\M| ≤ |K| < |S| = |S\M| there is a bijection f from
K = M∪K\M to M∪S\M which is the identity on M. If the data for K is transferred
to f (K) via f , then f (K) ∈S and M ≤ f (K). So f (M) = M = f (K), M = K, and
M is a maximal immediate extension of F .

In order to extend σ to M we apply Zorn’s Lemma to the set T which con-
sists of all triples (N,N1,ϕ) where F ⊆ N ⊆ M, F1 ⊆ N1 ⊆ M1 and ϕ : N −→ N1
is a value preserving F-isomorphism of fields which extends σ . The partial or-
der in T is: (N,N1,ϕ) ≤ (K,K1,ψ) if N ⊆ K, N1 ⊆ K1 and ϕ is the restriction
of ψ to N. If {(Nj,Nj1,ϕ j) : j ∈ ∆} is a chain in T , then (∪Nj,∪Nj1,∪ϕ j) is
clearly the least upper bound of the chain in T . Let (N,N1,ϕ) be a maximal el-
ement in T . We of course need to verify that N = M and N1 = M1. Suppose
a ∈ M\N. By Theorem 5.2.6 a is a pseudo-limit of a pseudo-convergent sequence
(aρ)ρ<α in N which has no pseudo-limit in N. If (aρ)ρ<α is transcendental, then a
is transcendental over N by Theorem 5.2.7, (ϕ(aρ))ρ<α is a transcendental pseudo-
convergent sequence in N1 and it has a pseudo-limit a1 in M1 by Theorem 5.2.9.
But according to the uniqueness part of Theorem 5.2.7, ϕ can be extended to
ψ : N(a) −→ N1(a) and (N,N1,ϕ) < (N(a),N1(a),ψ). Suppose now that (aρ)ρ<α
is algebraic and let f (x) ∈ N[x] be a monic polynomial of least degree such that
(v( f (aρ)))ρ is eventually strictly decreasing. From Theorem 5.2.17 we get that
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(aρ)ρ<α has a pseudo-limit a in M which is a root of f (x), and (ϕ(aρ))ρ<α has
a pseudo-limit a1 in M1 which is a root of f1(x) where f1(x) = ϕ( f (x)) ∈ N1[x].
Since f (x) is irreducible the uniqueness part of Theorem 5.2.8 shows that the iso-
morphism ψ : N(a)−→ N1(a1) which extends ϕ and takes a to a1 is value preserv-
ing: v(g(a)) = v(g(aρ)) = v1(g1(ϕ(aρ))) = v1(g1(a1)) = v1(ψ(g(a))) for large ρ
where deg g(x) < deg f (x) and g1(x) = ϕ(g(x)). Thus, M = N and also ϕ(M) = M1
since ϕ(M) is maximally complete. That ϕ is isotone follows from Exercise 22. ut

We now have all the tools needed to prove the Hahn embedding theorem for
totally ordered fields.

Theorem 5.2.20. Let A be a maximal archimedean subfield of the totally ordered
field F and let B be the real closure of the residue class field RF/JF . Suppose ∆ is a
Z-independent subset of the value group ΓF and, for each δ in ∆ , let tδ be a strictly
positive element of F with value δ . Then there is an embedding ϕ : F −→V (ΓF ,B)
of totally ordered fields such that ϕ(atδ ) = axδ for a ∈ A and δ ∈ ∆ .

Proof. Let L be a maximally complete immediate extension of the real closure K of
F . By Theorems 5.2.14 and 5.2.15 there is a subfield E of L which contains F such
that ΓE = ΓF and RE/JE = RL/JL. Let M be a maximally complete immediate exten-
sion of E. According to Theorem 5.2.18 L and M are totally ordered field extensions
of K and E, respectively, and by Exercise 5.1.11, RM/JM is the real closure of RF/JF
since RM/JM = RK/JK is algebraic over RF/JF ; that is, RM/JM = B since RF/JF is
algebraic over A+JF/JF by Exercise 9(a). The subgroup G = UM ∩M+ of the mul-
tiplicative group M+∗ of positive elements of M is divisible. For, suppose d ∈ G
and n ∈ N. Then the polynomial xn− (d + JM) has a root in RM/JM and hence the
polynomial xn−d has a root in RM since M is henselian. Let H be the subgroup of
M+∗ generated by {tδ : δ ∈ ∆}. If δ1, . . . ,δn are distinct elements of ∆ and k1, . . . ,kn

are nonzero integers, then v(tk1
δ1
· · · tkn

δn
) = k1δ1 + · · ·+knδn 6= 0; so G∩H = 1. Let T

be a subgroup of M+∗ which contains H and is maximal with respect to G∩T = 1;
that is, T is a complement of G in M+∗. Then M+∗ = GT is a direct product since
G is Z-injective. Now, let C be a maximal subfield of RM which contains A. By
Exercise 9 the map C −→ RM/JM is an isomorphism and hence C is naturally iso-
morphic to B. We claim that T is a C-independent set; that is, the subring C[T ] of
RM is the lexicographically ordered group algebra of T over C. For, if t1 and t2 are
distinct elements of T , then v(t1) 6= v(t2) since, otherwise, t1t−1

2 ∈ T ∩G = 1. But
then if c1, . . . ,cn are nonzero elements of C and t1, . . . , tn are distinct elements of T
we have v(∑n

i=1 citi) =
∨n

i=1 v(ti). Also, if t1 < t2, then Ct1 < t2 since t2 ≤ ct1 gives
v(t1) < v(t2)≤ v(ct1) = v(t1). Thus, if t1 < · · ·< tn then ∑n

i=1 citi > 0 exactly when
cn > 0.

Define ϕ : C[T ]−→V (ΓF ,C) by

ϕ
(
∑citi

)
= ∑cixv(ti).

Then ϕ is an isomorphism between the totally ordered rings C[T ] and ∑(ΓF ,C) ⊆
V (ΓF ,C), and ϕ(atδ ) = axδ for a ∈ A and δ ∈ ∆ . Of course, ϕ can be extended to



5.2 Valuations and the Hahn Embedding Theorem 451

the field of quotients C(T ) of C[T ] in M. Now, M is an immediate extension of C(T )
since ΓF = v(M) = v(GT ) = v(T ) ⊆ v(C(T )) ⊆ v(M) and C −→ RC(T )/JC(T ) −→
RM/JM is an isomorphism. By Theorems 5.2.9, 5.2.11 and 5.2.19 ϕ extends to an
isomorphism of M onto V (ΓF ,C). ut

According to Theorem 5.2.20, or Theorem 5.2.13, a totally ordered field can
be embedded in a totally ordered field which contains the real numbers. We will
establish the analogue of this for a totally ordered division ring D by embedding it
into a division ring whose center contains a field isomorphic to R. A perhaps shorter
proof of this compatibility of the reals with a totally ordered field can be given with
the aid of Theorem 6.3.13; see Exercise 4.3.28(c). By contrast, there is no known
short proof of its compatibility with a totally ordered division ring. We first construct
the topological completion of a totally ordered field in a more general setting.

Let D be a totally ordered division ring. Recall that the interval topology for D
has as a subbase the sets of the form {x : x < a} and {x : x > a} for a ∈ D, and the
open intervals (a,b) form a base for this topology. For 0 < ε ∈D and x∈D the open
interval (x− ε,x+ ε) will be denoted by Nε(x).

Theorem 5.2.21. The totally ordered division ring D is a Hausdorff topological ring
in its interval topology.

Proof. Let g,h : D×D −→ D be the addition and multiplication functions, re-
spectively. Suppose (a,b) ∈ g−1(Nε(u)); that is, |a + b− u| < ε . Take 0 < 2δ <
ε−|a+b−u|. Then if (x,y) ∈ Nδ (a)×Nδ (b) we have

|x+ y−u|= |x−a+ y−b+a+b−u|
≤ |x−a|+ |y−b|+ |a+b−u|
< 2δ + |a+b−u|< ε,

and Nδ (a)×Nδ (b)⊆ g−1(Nε(u)). Now suppose (a,b) ∈ h−1(Nε(u)); that is, |ab−
u|< ε . Take

0 < δ < 1∧ (2(|a|+ |b|+1))−1(ε−|ab−u|)∧ (ε−|ab−u|)(2(|a|+ |b|+1))−1.

Then if (x,y) ∈ Nδ (a)×Nδ (b) we have

|xy−u|= |(x−a+a)(y−b+b)−u|
≤ |x−a||b|+ |a||y−b|+ |x−a||y−b|+ |ab−u|
≤ δ |b|+ |a|δ +δ 2 + |ab−u|
≤ δ (|a|+ |b|+1)+(|a|+ |b|+1)δ + |ab−u|

<
ε−|ab−u|

2
+

ε−|ab−u|
2

+ |ab−u|
= ε,

and Nδ (a)×Nδ (b)⊆ h−1(Nε(u)). ut
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Let I be a poset which is directed up. A function from I to the set X is called a net
in X and it will be denoted by (xn)n∈I . The net (xn)n∈I in the totally ordered division
ring D converges to the element x in D if for each 0 < ε ∈D there is some n∈ I such
that |x j − x| < ε for all j ≥ n. Since D is Hausdorff the net (xn)n∈I converges to at
most one point and we will write limxn = x if (xn)n∈I converges to x. The net (xn)n∈I
is a Cauchy net if for every 0 < ε ∈ D there exists an n ∈ I such that |x j − xk| < ε
for all j, k ≥ n. Each convergent net is certainly Cauchy. If each Cauchy net in D
converges, then D is called Cauchy complete. Suppose X is a coinitial subset of D∗+
which has a.c.c. Then there is an ordinal ξ > 0 such that X is the range of the strictly
decreasing net (ερ)ρ<ξ in D which converges to 0. The ordinal ξ is a limit ordinal
since if ξ = µ +1, then εµ would be the smallest strictly positive element of D. For
any limit ordinal ξ a net (xρ)ρ<ξ in D is called an ξ -net and D is called ξ -Cauchy
complete if each Cauchy ξ -net in D converges.

Theorem 5.2.22. Let D be a totally ordered division ring and let (ερ)ρ<ξ be a
strictly decreasing ξ -net in D∗+ which converges to 0. Then D is Cauchy complete
if and only if it is ξ -Cauchy complete.

Proof. Suppose D is ξ -Cauchy complete and let (xn)n∈I be a Cauchy net in D. For
each ρ < ξ there exists nρ ∈ I such that |xn − xm| < ερ

2 if n,m ≥ nρ . The ξ -net
(xnρ )ρ<ξ is Cauchy. For, if 0 < ε ∈ D take ελ < ε

2 ; then for ρ ≥ σ ≥ λ and n≥ nρ ,
nσ we have

|xnρ − xnσ | ≤ |xnρ − xn|+ |xn− xnσ |< ερ + εσ ≤ 2ελ < ε.

Let limxnρ = x. Then limxn = x. For, if 0 < ε ∈ D, again take ελ < ε
2 . There exists

a ρ ≥ λ such that for any σ ≥ ρ we have |xnσ − x|< ελ . So if n≥ nρ , then

|xn− x| ≤ |xn− xnρ |+ |xnρ − x|< ερ

2
+ ελ < 2ελ < ε.

ut
Suppose F ⊆ E are totally ordered division rings. According to Exercise 2.3.1 F is
order dense in E if and only if it is topologically dense in E; so the assertion that F is
dense in E is unambiguous. E is a Cauchy completion of D if E is Cauchy complete
and D is isomorphic to a dense subring of E.

Theorem 5.2.23. Suppose f : D −→ E and g : D −→ K are embeddings of totally
ordered division rings and f (D) and g(D) are dense in E and K, respectively. Sup-
pose also that K is Cauchy complete. Then there is a unique embedding h : E −→ K
such that h f = g :
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Moreover, if E is Cauchy complete, then h is an isomorphism.

Proof. Let (I,≤′) be the dual of the totally ordered set D+∗ and let x ∈ E. For
ε ∈ I choose xε ∈ D with f (xε) ∈ f (D)∩Nf (ε)(x). Then ( f (xε))ε∈I is a net in f (D)
which converges to x. For, if 0 < a∈ E, 0 < f (ε) < a, and η ≥′ ε , then | f (xη)−x|<
f (η)≤ f (ε) < a. Thus, each element of E is the limit of some Cauchy net in f (D).
Now, suppose (xn)n∈J and (tp)p∈P are Cauchy nets in D with lim f (xn) = lim f (tp) =
x. Then (g(xn))n∈J and (g(tp))p∈P are Cauchy nets in K since g(D) is dense in K,
and hence they have limits x′ and x′′, respectively. Let 0 < ε ∈ D. There exist n ∈ J
and p ∈ P such that 4|g(xm)− x′| < g(ε) and 4| f (xm)− x| < f (ε) if m ≥ n, and
4|g(tq)− x′′|< g(ε) and 4| f (tq)− x|< f (ε) if q≥ p. Now,

| f (xn)− f (tp)| ≤ | f (xn)− x|+ |x− f (tp)|< f (ε)
2

and hence 2|xn− tp|< ε . So,

|x′ − x′′| ≤ |x′ −g(xn)|+ |g(xn)−g(tp)|+ |g(tp)− x′′|

<
g(ε)

4
+

g(ε)
2

+
g(ε)

4
= g(ε)

and hence x′ = x′′ since g(D) is dense in K. Thus, the function h defined by h(x) =
x′ whenever (xn)n∈J is a Cauchy net in D with lim f (xn) = x and limg(xn) = x′
is well defined. Note that h(lim f (xn)) = limg(xn) for any Cauchy net (xn)n∈J in
D. For x,y ∈ E let (xε)ε∈I and (yε)ε∈I be the Cauchy nets in D given above with
lim f (xε) = x and lim f (yε) = y. An easy consequence of Theorem 5.2.21 is that h
is a ring homomorphism: lim f (xε + yε) = x+ y, lim f (xε yε) = xy, (xε + yε)ε∈I and
(xε yε)ε∈I are Cauchy, and limg(xε + yε) = limg(xε)+ limg(yε), and limg(xε yε) =
limg(xε) limg(yε). Suppose h′ : E −→ K is another embedding with h′ f = g. Then
h′(E) is dense in K since g(D) ⊆ h′(E) and hence h′ preserves limits (that is, h′ is
continuous). For, if limxn = x in E and 0 < a ∈ K take ε ∈ E with 0 < h′(ε) < a.
Then for some n and all m ≥ n, |xm − x| < ε and |h′(xm)− h′(x)| < h′(ε) < a. In
particular, with x = lim f (xn) we have h′(x) = limh′ f (xn) = limg(xn) = h(x). If E
is also Cauchy complete, then there is a unique embedding h1 of K into E with
h1g = f . Then hh1g = h f = 1Kg and h1h f = h1g = 1E f and hence hh1 = 1K and
h1h = 1E by the uniqueness of the embeddings 1K and 1E in the diagrams
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ut
Let F be a central subfield of the totally ordered division ring D and let ξ be the

smallest ordinal for which there is a strictly decreasing net (ερ)ρ<ξ in F∗+ converg-
ing to 0. An ξ -net (xρ)ρ<ξ in D is called F-Cauchy if for every 0 < ε ∈ F there is
some λ < ξ such that |xρ − xσ |< ε for all ρ , σ ≥ λ . Let R = CF(1) be the convex
F-subspace of D generated by 1. R is a valuation ring of D which contains F and
we will construct a Cauchy completion of F by considering the F-Cauchy ξ -nets in
R. Let

R = {(xρ)ρ<ξ ∈ RW (ξ ) : (xρ)ρ<ξ is F-Cauchy}.
Let us check that R is an F-subalgebra of RW (ξ ). Suppose (xρ)ρ<ξ and (yρ)ρ<ξ are
elements of R. For any 0 < ε ∈ F there is some λ < ξ such that if ρ , σ ≥ λ , then
2|xσ − xρ | < ε and 2|yσ − yρ | < ε . So |(xσ − yσ )− (xρ − yρ)| ≤ |xσ − xρ |+ |yσ −
yρ |< ε for ρ , σ ≥ λ ; and also |xρ |−|xλ+1| ≤ |xρ−xλ+1|< ε or |xρ |< |xλ+1|+ε ≤
a ∈ F for all ρ ≥ λ . We may also assume that |yρ | < a for all ρ ≥ λ . Now choose
µ ≥ λ such that |xσ −xρ |< (2a)−1ε and |yσ −yρ |< (2a)−1ε for all σ , ρ ≥ µ . Then

|xσ yσ − xρ yρ | ≤ |xσ − xρ ||yσ |+ |xρ ||yσ − yρ |
< (2a)−1εa+a(2a)−1ε = ε

whenever σ , ρ ≥ µ . Note that R contains each F-Cauchy ξ -net in F . The ξ -net
(xρ)ρ<ξ in D is F-convergent to x in D if for every 0 < ε ∈F there exists λ < ξ such
that |xρ −x|< ε for every ρ ≥ λ ; we write F-limxρ = x. Note that an F-convergent
ξ -net is F-Cauchy. Let

N = {(xρ)ρ<ξ ∈R : (xρ)ρ<ξ F-converges to 0}.

Then N is an ideal of R. For suppose (xρ)ρ<ξ ∈ N and (yρ)ρ<ξ ∈ R. For any
0 < ε ∈ F we can find 0 < a ∈ F and λ < ξ such that if ρ ≥ λ , then |yρ | < a and
|xρ | < a−1ε; so |xρ yρ | < ε and |yρ xρ | < ε . This information is summarized in the
next theorem. Recall that Z(U) denotes the center of the ring U .

Theorem 5.2.24. Let F be a central subfield of the totally ordered division ring D
and let ξ be the smallest ordinal for which there is a strictly decreasing net (ερ)ρ<ξ
in F∗+ with F-limερ = 0. Let R = CF(1)⊆ D, J = J(R) the maximal ideal of R,
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R = {(xρ)ρ<ξ ∈ RW (ξ ) : (xρ)ρ<ξ is F-Cauchy},
N = {(xρ)ρ<ξ ∈R : F- limxρ = 0}

and

P = {(xρ)ρ<ξ ∈R : for some 0 < ε ∈ F and some λ < ξ , xρ > ε
for all ρ ≥ λ}∪{0}. (5.2.38)

Then (R,P) is a po-unital po-algebra over F, N is a convex ideal of R and R =
R/N is a totally ordered division algebra over F. Moreover, if ψ : R −→R is the
natural map, i : R−→R is the map that sends a ∈ R to the constant ξ -net (aρ)ρ<ξ
with aρ = a for each ρ , and ϕ : R−→R is the composite ϕ = ψi, then ϕ is isotone,

F ∼= F ⊆ F̂ = ψ(FW (ξ )∩R)⊆ Z(R),

Z(R)⊆ Z(R) and F̂ is a Cauchy completion of F. Also, F∗+ is coinitial in R ∗+.

Proof. We will first check that R/N is a division ring. Suppose (xρ)ρ<ξ ∈ R\N.
Then for some 0 < a ∈ F there exists λ < ξ with |xρ | > a for all ρ ≥ λ . If not,
for 0 < ε ∈ F take λ < ξ with |xρ − xσ |< ε

2 for ρ , σ ≥ λ . Then, for some σ ≥ λ ,
|xσ | ≤ ε

2 and hence |xρ | ≤ |xρ − xσ |+ |xσ |< ε for any ρ ≥ λ ; that is (xρ)ρ<ξ is in
N contrary to our assumption. Let yρ = 1 if ρ < λ and let yρ = x−1

ρ if ρ ≥ λ where
|xρ |> a > 0 for all ρ ≥ λ . We claim that (yρ)ρ<ξ ∈R. Since |x−1

ρ |< a−1 for ρ ≥ λ
we certainly have yρ ∈ R for each ρ < ξ . For 0 < ε ∈ F choose µ ≥ λ such that
|xρ − xσ |< εa2 for all ρ , σ ≥ µ . Then

|x−1
ρ − x−1

σ |= |xρ |−1|xρ − xσ ||xσ |−1 < a−2εa2 = ε,

and (yρ)ρ<ξ ∈R. Moreover, for ρ ≥ λ we have |yρ xρ − 1| = |xρ yρ − 1| = 0 < ε;
so (yρ)ρ<ξ +N = ((xρ)ρ<ξ +N)−1 and R/N is a division ring.

Clearly, P + P ⊆ P, PP ⊆ P and P∩−P = 0. Suppose (xρ)ρ<ξ , (yρ)ρ<ξ ∈ R
and 0 < (yρ)ρ<ξ < (xρ)ρ<ξ ∈ N. There exist λ < ξ and 0 < ε1, ε2 ∈ F such that
xρ − yρ > ε1 and yρ > ε2 for all ρ ≥ λ . Given 0 < ε ∈ F there exists µ ≥ λ such
that |xρ |< ε for all ρ ≥ µ . Thus, for ρ ≥ µ we have ε > xρ > yρ + ε1 > yρ = |yρ |
and (yρ)ρ<ξ ∈ N. To see that R/N is totally ordered take (xρ)ρ<ξ ∈ R\P∪−P.
Given 0 < ε ∈ F take λ < ξ such that 2|xρ − xσ |< ε for all ρ , σ ≥ λ . There exist
σ1, σ2 ≥ λ such that 2xσ1 ≤ ε and −2xσ2 ≤ ε . So, for ρ ≥ λ we have

xρ = xρ − xσ1 + xσ1 <
ε
2

+
ε
2

= ε

and
−xρ = xσ2 − xρ − xσ2 <

ε
2

+
ε
2

= ε.

So |xρ |< ε and (xρ)ρ<ξ ∈ N.
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Now, ϕ : R−→R/N is an isotone F-algebra homomorphism whose kernel is the
maximal ideal J of R since

J = {x ∈ D : Fx≤ 1}= {x ∈ D : |x| ≤ F∗+}

and i(x) ∈ N if and only if |x| < ε for all 0 < ε ∈ F . Let R(F) = R ∩FW (ξ ) and
N(F) = N ∩FW (ξ ). Then ϕ(F) ⊆R(F)/N(F) and R(F)/N(F) is the field exten-
sion of ϕ(F) obtained by replacing D by F in the construction of R/N . It is,
of course, a central subfield of R/N. Note that ϕ(F∗+) is coinitial in (R/N)∗+
and hence also in R(F)/N(F). For if (bρ)ρ<ξ + N > 0 in R/N, then there exist
λ < ξ and 0 < ε ∈ F such that bρ > 2ε for all ρ ≥ λ ; that is, (bρ)ρ<ξ + N >
i(ε)+ N > 0 since bρ − ε > ε if ρ ≥ λ . Thus, in order to see that ϕ(F) is dense in
R(F)/N(F) it suffices to show that (aρ)ρ<ξ + N = F-limϕ(aρ) for each Cauchy
net (aρ)ρ<ξ in R(F). Now, given 0 < ε ∈ F there exists λ < ξ such that if σ ,
µ ≥ λ , then 2|aσ − aµ | < ε; so 0 < ε

2 < ε − |aσ − aµ |, and for σ ≥ λ we have
0 < ϕ(ε)− |i(aσ )− (aρ)ρ<ξ |+ N and |ϕ(aρ)− (aρ)ρ<ξ + N| < ϕ(ε). We show
next that R(F)/N(F) is ξ -Cauchy complete and hence Cauchy complete by The-
orem 5.2.22. Suppose (αρ)ρ<ξ is a Cauchy net in R(F)/N(F). For each ρ < ξ
there exists aρ ∈ F with |ϕ(aρ)−αρ | < ϕ(ερ). The net (aρ)ρ<ξ is Cauchy. For,
given 0 < ε ∈ F there exists λ < ξ such that for any σ , ρ ≥ λ we have 3ερ < ε and
3|αρ −ασ |< ϕ(ε), and hence

|ϕ(aρ)−ϕ(aσ )| ≤ |ϕ(aρ)−αρ |+ |αρ −ασ |+ |ασ −ϕ(aσ )|< ϕ(ε).

Let α = limϕ(aρ) in R(F)/N(F). By choosing λ in the previous sentence so that
we also have 3|α−ϕ(aρ)|< 2ϕ(ε) for any ρ ≥ λ we obtain

|α−αρ | ≤ |α−ϕ(aρ)|+ |ϕ(aρ)−αρ |< ϕ(ε)

and hence limαρ = α .
If a ∈ R with a ∈ Z(R), then |ab−ba|< ε for every b ∈ R and every 0 < ε ∈ F .

So (abρ −bρ a)ρ<ξ ∈ N for every (bρ)ρ<ξ ∈R and a ∈ Z(R). ut
With very little changes in their proofs Theorems 5.2.21, 5.2.22, 5.2.23, and

5.2.24 give Cauchy completions of division rings, which again are division rings,
and of abelian groups D in which the set of strictly positive elements has no least
element. In the latter case the Cauchy completion is an abelian group. The main
change is to take F = D.

We wish to find a totally ordered division ring which contains D and whose
center contains R. If F is archimedean and J = 0, or equivalently, R = D, then R
will do. So we will assume J 6= 0; equivalently, F∗+ is bounded in D∗+. Let K be a
maximal subfield of Z(R). For θ ∈ F̂\K we will construct a totally ordered simple
extension D(θ) of D. Then an application of Zorn’s Lemma will produce the desired
extension of D. For much of the work the requirement that F is archimedean is not
necessary and will be dropped since no additional complications arise. The main
problem that arises in the construction of D(θ) comes from the verification that it
has an appropriate total order, especially when θ is algebraic over R. In addition to
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the notation given in Theorem 5.2.24 we will let S = ϕ−1(F̂) and Z = ϕ−1(Z(R)).
Note that J ⊆ S ⊆Z ⊆ R, S and Z are local rings with common maximal ideal J,
and Z(J)⊆ Z(S)⊆ Z(Z )⊆ Z(R)⊆ Z(D) since D is the classical quotient ring of J.
Also, via conjugation, the group D∗ acts on the po-ring R, and N is a D∗-invariant
ideal. This action of s ∈ D∗ on some element w on which it acts will be denoted by
ws; so as = s−1as if a ∈ D and u s = us if u ∈ R. In particular, S and Z are also
D∗-invariant. S = R exactly when R ⊆ F̂ and this is the case if F is archimedean.
For then R is archimedean since J is the maximal convex subgroup of R, and each
element of R is the limit of a Cauchy sequence in F and hence is in F̂ ∼= R. If K
is a subfield of Z(R) and f (x) ∈ K[x], then f (x) will denote the polynomial in K[x]
whose image in R[x] is f (x).

We collect some useful facts below. Note that just as for fields if D ⊆ E are
division rings and a ∈ Z(E) is a root of 0 6= g(x) ∈ D[x], then g(x) is irreducible in
D[x] (that is, if g(x) = u(x)v(x) in D[x], then u(x) or v(x) is a unit of D[x]) if and
only if deg g(x)≤ deg h(x) for any 0 6= h(x) ∈ D[x] with h(a) = 0.

Theorem 5.2.25. Suppose s ∈ D∗, g(x) ∈ R[x] and θ ∈ F̂ .

(a) θ is fixed by s; in particular, g(x) = gs(x) if g(x) ∈ S[x].
(b) g(θ) > 0 if and only if gs(θ) > 0.
(c) If g(x) is monic and irreducible in R[x] and g(θ) = 0, then g(x) = gs(x).
(d) If g(x) = gs(x) for each s ∈ D∗, then g(x) ∈Z [x].

Proof. (a) θ = (αρ)ρ<ξ + N where (αρ)ρ<ξ is an F-Cauchy net in F . So θ s =
(αs

ρ)ρ<ξ +N = θ .
(b) It suffices to show that gs(θ) > 0 provided g(θ) > 0. Again, θ = (αρ)ρ<ξ +

N, and since R is an R-po-bimodule and a(αρ)ρ<ξ = (αρ)ρ<ξ a for each a ∈ R
we have g((αρ)ρ<ξ ) = (g(αρ))ρ<ξ ∈ P∗. Thus, there exist 0 < ε ∈ F and λ < ξ
such that g(αρ) > ε for all ρ ≥ λ ; so gs(αρ) > ε , gs((αρ)ρ<ξ ) ∈ P∗ and gs(θ) =
gs((αρ)ρ<ξ )+N > 0.

(c) From (b) we deduce that gs(θ) = 0, and since g(x)−gs(x) has smaller degree
than g(x) if it is not 0, necessarily g(x) = gs(x).

(d) If s ∈ R∗, then sg(x) = sgs(x) = sgs(x) = g(x)s = g(x)s and g(x) ∈ Z(R)[x].
ut

For θ ∈ F̂\K there are three separate cases we will deal with in constructing
D(θ) and supplying it with a total order. The case we deal with below arises when
θ is transcendental over K. The other two cases evolve from θ being algebraic
over K.

Theorem 5.2.26. Suppose K is a subfield of Z(R) and θ ∈ F̂\F is transcendental
over K. Let θ be an indeterminate over D. If θ is algebraic over R let g(x) ∈ R[x]
be its monic irreducible polynomial and if θ is transcendental over R let g(x) = 1.
For 0 6= P(θ) = Σ js jθ j ∈ D[θ ] let b = ∨ j|s j| and let p(θ) ∈ R[θ ]\J[θ ] be defined
by P(θ) = bp(θ). Factor p(x) in R[x] as p(x) = g(x)mq(x) with q(θ) 6= 0. Then
T = {P(θ) : q(θ) > 0}∪{0} is a total order of D[θ ] which extends that of D, and
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α < θ or θ < β ⇒ α < θ or θ < β , for all α,β ∈ F. (5.2.39)

Proof. Since g(x) ∈ Z(R)[x] by Theorem 5.2.25, the factorization of p(x) given
above is always possible. First note that for any 0 < s ∈D and P(θ) ∈D[θ ], P(θ) ∈
T iff sP(θ) ∈ T . To show that T is a total order of D[θ ] it suffices to verify that
it is a subsemiring since clearly T ∩−T = 0 and T ∪−T = D[θ ]. Suppose P1(θ),
P2(θ) ∈ T ∗ and as above write Pi(θ) = bi pi(θ) and pi(x) = gi(x)mi qi(x) for i = 1,2.
Without loss of generality we may assume s = b−1

1 b2 ≤ 1. Then P1(θ)+ P2(θ) =
b1(p1(θ)+ sp2(θ)) = b1bp(θ) is in T provided bp(θ) is in T . Now

bp(x) =





g(x)m2(g(x)m1−m2 q1(x)+ sq2(x)) if m1 > m2

g(x)m1(q1(x)+ sg(x)m2−m1 q2(x)) if m2 > m1

g(x)m1(q1(x)+ sq2(x)) if m1 = m2.

In each case the polynomial on the right, when evaluated at θ , is > 0, and hence
bp(θ) ∈ T except in the first case when s = 0. But then b p(x) = p1(x) 6= 0,
p(x) = g1(x)m1b−1q1(x) (in fact, b = 1) and b−1q1(θ) > 0; so again bp(θ) ∈
T . Also, P1(θ)P2(θ) ∈ T since P1(θ)P2(θ) = b1b2 pb2

1 (θ)p2(θ), pb2
1 (x)p2(x) =

g(x)m1+m2 qb2
1 (x)q2(x) and qb2

1 (θ)q2(θ) > 0 by Theorem 5.2.25. Clearly, D+ ⊆ T
and (5.2.38) holds since g(x), if of degree 1, is not in F [x]. ut

Now suppose θ ∈ F̂\F is algebraic over K and let f (x) be the monic irreducible
polynomial in K[x] with f (θ) = 0. If f (x) is irreducible in D[x], then, just as for
fields, f (x)D[x] is a completely prime ideal which is a maximal one-sided ideal of
D[x] and D[x]/ f (x)D[x] = D(θ) is a division ring with the central root θ = x +
f (x)D[x]. To see that f (x) is irreducible under the right circumstances will require
some preparation.

Let A be a subring of B which has the same identity as B. We will make use of
the following and its dual obtained by interchanging g(x) and h(x) (usually with
r(x) = 0). If f (x) = g(x)h(x)+ r(x) is an equation in B[x] with f (x), g(x) ∈ A[x],
the leading coefficient of g(x) is a unit of A and r(x) = 0 or degr(x) < degg(x),
then h(x) and r(x) are in A[x]. This is, of course, an immediate consequence of the
division algorithms in A[x] and B[x].

As usual, the nonzero polynomial f (x) ∈ R[x] is irreducible if g(x) or h(x) is a
unit of R whenever g(x), h(x)∈ R[x] with f (x) = g(x)h(x). The factorization f (x) =
f1(x) · · · fm(x) in D[x] (or R[x]) is called a monic factorization if each f j(x) is monic,
and u(x) is a monic factor of f (x) if it is one of the factors in a monic factorization
of f (x). Note that a monic polynomial f (x) ∈ R[x] (or D[x]) is irreducible in R[x]
(or D[x]) precisely when g(x) = 1 or h(x) = 1 whenever f (x) = g(x)h(x) is a monic
factorization in R[x] (or D[x]).

Theorem 5.2.27. Suppose f (x) is a monic polynomial in R[x].

(a) Each monic factor of f (x) in D[x] belongs to R[x].
(b) f (x) is irreducible in R[x] if and only if it is irreducible in D[x].
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(c) If a ∈ D is a root of f (x), then a ∈ R. Moreover, if f (x) ∈ Z(R)[x], then
a ∈ Z(R).

(d) Suppose f (x) ∈Z [x], f (x) has only simple roots (in its splitting field over
Z(R)[x]) and f (x) = g(x)h(x) = g1(x)h1(x) are monic factorizations in D[x]
with g(x)−g1(x) ∈ J[x] and f (x) = f s(x) and g(x) = gs(x) for each s ∈D∗.
Then g(x) = g1(x) and h(x) = h1(x).

(e) Assume f (x) ∈ Z(R)[x] and f (x) has only simple roots. If f (x) = g1(x) · · ·
gt(x) is a monic factorization in D[x] and g j(x) = gs

j(x) for each j and each
s ∈ D∗, then g j(x) ∈ Z(R)[x] for j = 1, . . . , t.

Proof. (a) It suffices to show that if f (x) = g(x)h(x) is a monic factorization in
D[x], then g(x), h(x) ∈ R[x]. Let

f (x) = a0 +a1x+ · · ·+an−1xn−1 + xn,

g(x) = b0 +b1x+ · · ·+bm−1xm−1 + xm,

h(x) = c0 + c1x+ · · ·+ cr−1xr−1 + xr.

Assume g(x) 6∈ R[x] and let k be maximal with bk 6∈ R. Then ak+r = bk +bk+1cr−1 +
· · · and since ak+r and bk+ j( j ≥ 1) ∈ R, some cr− j 6∈ R. Let b = ∨m−1

j=0 |b j|, c =
∨r−1

j=0|c j|, and put g1(x) = c−1b−1g(x)c and h1(x) = c−1h(x). Then b, c∈D\R, g1(x),
h1(x) ∈C(1)[x]\J[x] and f (x) = bcg1(x)h1(x). But bc 6∈ R since bc≥ FF = F , and
g1(x)h1(x) has a coefficient d in R\J since J[x] is a completely prime ideal of R[x].
This gives the contradiction a j = (bc)d ∈ D\R for some j. So g(x) ∈ R[x] and also
h(x) ∈ R[x].

(b) This is a consequence of (a).
(c) Since f (x) = (x−a)h(x) in D[x] we get a ∈ R from (a). Also, a ∈ Z(D) by

Theorem 6.2.2 provided f (x) ∈ Z(R)[x]. Note that if a ∈ S and f (x) ∈ K[x] where
K is a subfield of Z(R), then the centrality of a can also be obtained from (a) of
Theorem 5.2.25 and (d).

(d) By (a) we have g(x), g1(x), h(x), h1(x) ∈ R[x] and since g(x)h(x) =
gs(x)hs(x) = g(x)hs(x), h(x) = hs(x) for each s ∈ D∗; and g(x), h(x) ∈ Z(R)[x] by
(d) of Theorem 5.2.25. Let g(x) be as above and let g1(x) = d0 + d1x + · · ·+ xm. If
g(x) 6= g1(x), then b = ∨m−1

j=0 |b j−d j|> 0. Let g2(x) = (g(x)−g1(x))b−1 ∈C(1)[x],

h2(x) = hb−1
(x) ∈ R[x] and h3(x) = (h(x)−h1(x))b−1. Note that g2(x) 6= 0. By mul-

tiplying the equation

(g(x)−g1(x))h(x)+g1(x)(h(x)−h1(x)) = 0

on the right by b−1 we get g2(x)h2(x)+g1(x)h3(x) = 0 and hence h3(x)∈R[x[. Now,
g2(x)h(x) = g2(x)h2(x) = −g(x)h3(x) and if g(x) and h(x) were relatively prime
in Z(R)[x], then g2(x) ∈ R[x]g(x). Thus, g(x) and h(x) have a common divisor of
positive degree in Z(R)[x] and this contradicts the assumption that f (x) = g(x)h(x)
has simple roots. So, g(x) = g1(x) and h(x) = h1(x).

(e) Let g(x) = g1(x) and h(x) = g2(x) · · ·gt(x). For s ∈ D∗, f (x) = g(x)h(x) =
gs(x)hs(x), and therefore from (d) we have g(x) = gs(x) ∈ Z(R)[x] and h(x) ∈
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Z(R)[x]. Since h(x) = g2(x) · · ·gt(x) has simple roots we get g j(x) ∈ Z(R)[x] for
j = 2, . . . , t, by induction on t. ut

We can now give conditions which will guarantee that a central element associ-
ated to an element θ ∈ F̂\F which is algebraic over Z(R) can be adjoined to D.

Theorem 5.2.28. Suppose K is a maximal subfield of Z(R), θ ∈ F̂\F is algebraic
over K and f (x) = Irr(θ ,K). The following statements are equivalent.

(a) f (x) is irreducible in D[x].
(b) If g(x) is a monic divisor of f (x) in D[x], then gs(x) = g(x) for each s ∈ D∗.
(c) If g(x) is a monic irreducible divisor of f (x) in D[x], then gs(x) = g(x) for

each s ∈ D∗.

Proof. The implications (a) ⇒ (b) ⇒ (c) are trivial. We use the previous result to
show that (c) ⇒ (a). Suppose f (x) = g(x)h(x) is a monic factorization of f (x) in
R[x] with g(θ) = 0. Then g(x) and h(x) are in Z(R)[x] since each monic irreducible
factor of g(x) is fixed by D∗ and hence so is g(x). Each coefficient a of g(x) is an
elementary symmetric function of the roots of f (x) and hence is algebraic over K.
So K ⊆ K(a)⊆ Z(R) and hence K = K(a) and g(x) = f (x). ut

We now deal with the easier of the two algebraic cases.

Theorem 5.2.29. Suppose K is a subfield of Z(R) with K = R and θ ∈ F̂\R is al-
gebraic over K of degree n. Let f (x) = Irr(θ ,K). Then f (x) is irreducible in D[x],
D(θ) = D[x]/D[x] f (x) is a division ring, and

T = {P(θ) ∈ D(θ) : degP(x) < n, P(x) = bp(x) with 0 < b ∈ D, p(x) ∈

R[x]\J[x] and p(θ) > 0}∪{0}
is a total order of D(θ) which contains D+ and for which (5.2.38) holds.

Proof. K is certainly a maximal subfield of Z(R) and if f (x) = g(x)h(x) is a monic
factorization in D[x], then g(x), h(x) ∈ R[x] by Theorem 5.2.27, and we may assume
h(x) = 1. So gs(x) = f s(x) = f (x) = g(x) and f (x) is irreducible in D[x] by Theorem
5.2.28. Suppose 0 6= P(θ) ∈ D(θ) with degP(x) < n and write P(x) = bp(x) with
b ∈D+ and p(x) ∈ R[x]\J[x]. If p(θ) = 0, then p(x) = f (x)g(x) for some g(x), and,
necessarily, p(x) = 0. So p(θ) > 0 or p(θ) < 0 and P(θ) ∈ T ∪−T . We claim that
T ∩−T = 0. If not, take P(θ) ∈ T ∗ ∩−T ∗ with degP(x) < n. Then P(x) = bp(x) =
b1 p1(x) with 0 < b,b1 and p1(θ) < 0 < p(θ). But p1(x) = b−1

1 bp(x) with b−1
1 b ∈

R+\J and hence 0 < b−1
1 bp(θ) = p1(θ) < 0. To see that T + T ⊆ T and T T ⊆ T

take Pi(θ) ∈ T ∗ with canonical expressions Pi(x) = bi pi(x) for i = 1,2 and assume
b1 ≥ b2. Then P1(x)+P2(x) = b1(p1(x)+bp2(x)) with b = b−1

1 b2 ∈ R and P1(θ)+
P2(θ)∈ T ∗ since p1(θ)+bp2(θ)≥ p1(θ) > 0. Also, P1(x)P2(x) = b1b2 pb2

1 (x)p2(x)
and pb2

1 (θ)∈ T ∗ by (b) of Theorem 5.2.25. By the division algorithm pb2
1 (x)p2(x) =

q(x) f (x)+ r(x) and r(θ) = pb2
1 (θ)p2(θ) > 0. So
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P1(θ)P2(θ) = b1b2 pb2
1 (θ)p2(θ) = b1b2r(θ) ∈ T ∗

since clearly D+T ⊆ T . As for (5.2.38), if α < θ , then p(θ)∈ T ∗ with p(x) = x−α .
ut

In order to totally order D(θ) when θ is algebraic over K but without assuming
K = R it is necessary to examine commutators in S and to give a detailed analysis
of the evaluation of polynomials at elements of S.

Theorem 5.2.30. Let a, b ∈ S and m ∈ N.

(a) [a,b] ∈ bJ (here b need only be in R).
(b) am−bm = (Σ m−1

k=0 am−(k+1)bk(a−b))+ c(a−b) for some c ∈ J.
(c) If b−a ∈ Ja, then am−bm = mam−1(a−b)+ c(a−b) for some c ∈ J.
(d) If ab = ba, then

am−bm = mam−1(a−b)+ c(a−b)2 for some c ∈ S.

Proof. (a) Assuming b 6= 0 we have b−1ab−a = c∈ J; so [a,b] = ab−ba = bc∈ bJ.

(b) am−bm =
m−1

∑
k=0

(am−kbk−am−(k+1)bk+1)

=
m−1

∑
k=0

am−(k+1)(a−b)bk

=
m−1

∑
k=0

am−(k+1)(bk(a−b)+ [a−b,bk])

= (
m−1

∑
k=0

am−(k+1)bk(a−b))+ c(a−b)

where c ∈ J, by (a).
(c) Since b = a(1+d) with d ∈ J, for each k ≥ 0,

bk = ak(a−(k−1)(1+d)ak−1)(a−(k−2)(1+d)ak−2) · · ·(a−1(1+d)a)(1+d)

= ak(1+dk)

with dk ∈ J. From (b) we have

am−bm =
m−1

∑
k=0

am−(k+1)ak(1+dk)(a−b)+ c(a−b)

=
m−1

∑
k=0

am−1(a−b)+
m−1

∑
k=0

am−1dk(a−b)+ c(a−b)

= mam−1(a−b)+d(a−b)

with d ∈ J.
(d) If 0 ≤ k ≤ m− 2, then akbm−(k+1) − am−1 = ak(bm−(k+1) − am−(k+1)) =



462 5 Lattice-ordered Fields

akck(b−a) with ck ∈ Z[a,b]⊆ S. So

am−bm =
m−1

∑
k=0

akbm−(k+1)(a−b)

=

(
m−2

∑
k=0

am−1 +akck(b−a)+am−1

)
(a−b)

= mam−1(a−b)+ c(a−b)2

with c ∈ S. ut
Applying these approximations to polynomials gives the following facts.

Theorem 5.2.31. Let a, b ∈ S and p(x) ∈ R[x].

(a) p(a)− p(b) ∈ R(a−b).
(b) If b−a∈ Ja, then p(a)− p(b) = p′(a)(a−b)+c(a−b) for some c∈ J. Also,

if p′(a) 6∈ J, then R(a− b) = R(p(a)− p(b)) and p(a)− p(b) = p′(a)(a−
b)(1+d) with d ∈ J.

(c) If ab = ba, then p(a)− p(b) = p′(a)(a−b)+ c(a−b)2 for some c ∈ S.

Proof. Let p(x) = Σidixi. Then p(a)− p(b) = Σidi(ai − bi) ∈ R(a− b) by (b) of
Theorem 5.2.30, and

p(a)− p(b) = ∑
i

di[iai−1(a−b)+ ci(a−b)]

= p′(a)(a−b)+ c(a−b)

with c ∈ J by (c) of Theorem 5.2.30. If p′(a) is a unit of R, then so is p′(a)+ c and
p(a)− p(b) = (p′(a)+ c)(a−b). Moreover,

p(a)− p(b) = p′(a)((a−b)+ p′(a)−1c(a−b))
= p′(a)((a−b)+(a−b)d)
= p′(a)(a−b)(1+d)

with d ∈ J. This proves (a) and (b), and (c) follows from (d) of Theorem 5.2.30. ut
Theorem 5.2.32. Suppose p(x) ∈ R[x], a ∈ S\J, p(a) ∈ J and p′(a) 6∈ J.

(a) There exists b ∈ a+ Ja such that p(b) ∈ Jp(a) and p′(b) 6∈ J.
(b) If p(x) ∈ Z(R)[x] then b can be chosen so that p(b) ∈ Rp(a)2.

Proof. Let b = a− p′(a)−1 p(a). Then b− a = −p′(a)−1 p(a) ∈ J = Ja and by (b)
of Theorem 5.2.31, for some c ∈ J,

p(a)− p(b) = p′(a)(a−b)+ c(a−b)

= p(a)+ cp′(a)−1 p(a).
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So p(b) =−cp′(a)−1 p(a)∈ Jp(a), and, from (a) of Theorem 5.2.31, p′(b)− p′(a)∈
R(b−a)⊆ J and hence p′(b) 6∈ J. If p(x)∈ Z(R)[x], then a commutes with b since it
commutes with p(a) and p′(a). By (c) of Theorem 5.2.31, p(a)− p(b) = p′(a)(a−
b)+d(a−b)2 with d ∈ R, and hence p(b) =−d(a−b)2 =−d p′(a)−2 p(a)2. ut

We can now give a first approximation to how far the evaluation map R[x]−→ R
at a ∈ S is from being a homomorphism. For t ∈ D δt is the left inner derivation
determined by t : δt(s) = [t,s] = ts− st.

Theorem 5.2.33. Suppose p(x), q(x) ∈ R[x] and a ∈ S. Then (pq)(a)− p(a)q(a) ∈
Jq(a), and it is also in Ja provided q(x) ∈ S[x]. If p(a) 6∈ J, then (pq)(a) =
p(a)q(a)(1+ c) for some c ∈ J.

Proof. Let p(x) = Σiaixi and q(x) = Σ jb jx j. Then

p(a)q(a)− (pq)(a) = ∑
i, j

aiaib ja j−∑
i, j

aib jaia j

= ∑
i

ai

(
∑

j
(aib ja j−b ja jai)

)

= ∑
i

ai

(
∑

j
δai(b ja j)

)

= ∑
i

aiδai(q(a)). (5.2.40)

However, this last sum is in Jq(a) by (a) of Theorem 5.2.30 which also gives
that it is in Ja whenever q(a) ∈ S. If p(a) 6∈ J, then J = Jp(a) and Jq(a) =
Jp(a)q(a) = p(a)q(a)J. So (pq)(a)− p(a)q(a) = p(a)q(a)c for some c ∈ J and
(pq)(a) = p(a)q(a)(1+ c). ut

We require a better estimate than that given in Theorem 5.2.33.

Theorem 5.2.34. Suppose p(x), q(x) ∈ R[x], f (x) ∈ Z(S)[x] and a, b ∈ S.

(a) If the degree of p(x) is n, then

(pq)(a) = p(a)q(a)+
n

∑
k=1

(−1)k 1
k!

p(k)(a)δ k
a (q(a))

(b) If q(a), p′(a) ∈ S, then (pq)(a) = p(a)q(a)+ cδa(q(a)) with c ∈ S.
(c) δ f (a)(b) = f ′(a)δa(b)+dδ 2

a (b) for some d ∈ S.
(d) If f ′(a) 6∈ J, then δa(b) = eδ f (a)(b) for some e ∈ S\J.
(e) If f ′(a) 6∈ J, q(a), p′(a) ∈ S and f (a) ∈ R(pq)(a), then (pq)(a) =

p(a)q(a)(1+g) for some g ∈ J.

Proof. (a) Let µa and ρa ∈ EndZ(R) denote left and right multiplication by a, re-
spectively. If a and c commute, then δa commutes with µc and ρc. Since ρa = µa−δa
and ρ i

a = ρai and µ i
a = µai , we have
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ρai = (µa−δa)i = µai −
i

∑
k=1

(−1)k−1
(

i
k

)
µai−k δ k

a

and

δai = µai −ρai =
i

∑
k=1

(−1)k−1
(

i
k

)
µai−k δ k

a .

Since
( i

k

)
xi−k = 1

k! (x
i)(k) we get from (5.2.39)

(pq)(a)− p(a)q(a) =
n

∑
i=1

ai

i

∑
k=1

(−1)k
(

i
k

)
ai−kδ k

a (q(a))

=
n

∑
i=1

i

∑
k=1

(−1)k
(

i
k

)
aiai−kδ k

a (q(a))

=
n

∑
k=1

(−1)k

(
n

∑
i=k

1
k!

aiai−k

)
δ k

a (q(a))

=
n

∑
k=1

(−1)k 1
k!

p(k)(a)δ k
a (q(a)).

(b) By (a) of Theorem 5.2.30 δa(b) ∈ Jb, and using induction it is easily seen
that δ k

a (b) ∈ Jk−iδ i
a(b) if 0≤ i≤ k. So if q(a) ∈ S, then

(pq)(a) = p(a)q(a)− p′(a)δa(q(a))+
p(2)(a)

2!
δ 2

a (q(a))− p(3)(a)
3!

δ 3
a (q(a))+ · · ·

= p(a)q(a)− p′(a)δa(q(a))+ sδ 2
a (q(a)) (5.2.41)

with s ∈ R; and if p(2)(a) ∈ S, then s ∈ S. Also, if p′(a) ∈ S, then (pq)(a) =
p(a)q(a)+ cδa(q(a)) with c ∈ S.

(c) If q(a) ∈ S then from (5.2.40) we have

( f q)(a)− f (a)q(a) =− f ′(a)δa(q(a))+ sδ 2
a (q(a))

with s ∈ S, and from (5.2.39) we see that q(a) f (a) = (q f )(a) = ( f q)(a). So

q(a) f (a)− f (a)q(a) =− f ′(a)δa(q(a))+ sδ 2
a (q(a))

and δ f (a)(q(a)) = f ′(a)δa(q(a))+ dδ 2
a (q(a)) with d = −s ∈ S. The result follows

by letting q(x) = b.
(d) Since δ 2

a (b) = zδa(b) with z ∈ J, from (c) we obtain δ f (a)(b) = ( f ′(a) +
dz)δa(b) and hence δa(b) = ( f ′(a)+dz)−1δ f (a)(b) with ( f ′(a)+dz)−1 ∈ S.

(e) From (d), and from (a) of Theorem 5.2.30, we have δa(q(a))= eδ f (a)(q(a))=
ez f (a) = ezr(pq)(a) = (pq)(a)s with e ∈ S, z, s ∈ J and r ∈ R. From (b) we then
have, since cδa(q(a)) = δa(q(a))c1 with c1 ∈ R, (pq)(a) = p(a)q(a)+ (pq)(a)sc1
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and (pq)(a)(1−sc1) = p(a)q(a). Since sc1 ∈ J, (pq)(a) = p(a)q(a)(1+g) for some
g ∈ J. ut

To each element θ in F̂ ∩R which is algebraic over K we can attach a prime
ideal of R which will allow us to specialize to certain θ . Each prime ideal of R is, of
course, completely prime since it is a convex ideal.

Theorem 5.2.35. Suppose K is a subfield of Z(R) and θ ∈ F̂ ∩R is algebraic over
K. Let f (x) = Irr(θ ,K) and let

P(θ) =
⋂
{Rg(a) : a ∈ ϕ−1(θ) and g(x) ∈ K[x]∗}.

Then P(θ) is a completely prime D∗-invariant ideal of R which is properly con-
tained in J. Moreover,

P(θ) =
⋂

a∈ϕ−1(θ)

R f (a)

=
⋂
{Jg(a) : a ∈ ϕ−1(θ) and g(x) ∈ K[x]∗}

=
⋂

a∈ϕ−1(θ)

J f (a).

Proof. If θ ∈ K, then P(θ) = 0 and the rest is trivial. So we will assume θ 6∈ K.
Let A =∩a∈ϕ−1(θ)R f (a). If d ∈ R and d 6∈ A, then R f (a)⊂ Rd for some a∈ ϕ−1(θ)
and f (a) = cd with c ∈ J. From Theorem 5.2.32 we get b = a + ea with e ∈ J and
f (b) = r f (a)2 with r ∈ R. So f (b) = rcdcd = sd2 with s ∈ J and hence d2 6∈ R f (b).
Thus, d2 6∈ A and A is (completely) prime since R/A is reduced and totally ordered.
Clearly, P(θ)⊆ A. For the other inclusion take d ∈ R\P(θ). Then d 6∈ Rg(a) for
some a ∈ ϕ−1(θ) and some 0 6= g(x) ∈ K[x]. So g(a) = cd with c ∈ J. Write g(x) =
f (x)mh(x) in K[x] with h(x) relatively prime to f (x). Then f (a)m = g(a)h(a)−1 =
cdh(a)−1 ∈ Jd. If d were in A then f (a) ∈ A and, since A is a proper ideal, (a) of
Theorem 5.2.32 guarantees the existence of an element b = a + ea with e ∈ J and
such that f (b) = t f (a) with t ∈ J. But f (a) ∈ R f (b) implies t 6∈ J. So d 6∈ A and
A⊆P(θ).

Since ∩a,gJg(a)⊆∩aJ f (a)⊆P(θ) it suffices to verify that P(θ)⊆∩a,gJg(a)
in order to establish the equalities. If 0 6= b∈P(θ), a∈ϕ−1(θ) and 0 6= g(x)∈K[x],
then b = rg(a) with r ∈ R. Assuming r 6∈ J we get g(a) = r−1b = r−1s f (a)g(a) with
s ∈ R, and 1 = r−1s f (a). This is a contradiction since f (a) ∈ J.

P(θ) is properly contained in J since P(θ) ⊆ J f (a) ⊂ J if a ∈ ϕ−1(θ). Also,
as = θ s = θ for any s ∈D∗ by (a) of Theorem 5.2.25. Thus, ϕ−1(θ)s = ϕ−1(θ) and

P(θ)s =
⋂

a∈ϕ−1(θ)

R f (a)s =
⋂

a∈ϕ−1(θ)

R f (as) = P(θ).

ut
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The definition of P(θ) makes sense for any θ ∈ F̂ . The two other cases arise
when either θ ∈ R and is transcendental over K or when θ 6∈ R, and in both these
cases P(θ) = R.

If P is a proper prime ideal of R, then R = R/P = CF(1) in the totally ordered

classical quotient division ring D of R. The mappings R−→ R and R−→ R will be
denoted by a 7→ a and a 7→ a, respectively. The next result determines when f (x)
picks up a root in R.

Theorem 5.2.36. Suppose K is a subfield of Z(R), θ ∈ F̂ ∩R is algebraic over K,
0 6= P is a prime ideal of R, and R = R/P . Then there exists a ∈ R with a = θ and
K(a)⊆ Z(R) if and only if P(θ)⊂P .

Proof. Let f (x) = Irr(θ ,K). P(θ)⊂P iff there exist b ∈P and a ∈ ϕ−1(θ) with
f (a) = cb for some c ∈ J. So if P(θ) ⊂ P , then f (a) = 0 and K(a) ⊆ Z(R) by
(c) of Theorem 5.2.27. On the other hand, given a ∈ ϕ−1(θ) with K(a)⊆ Z(R) we
have f (a) = f (a) = 0 since K(a) ∼= K(θ) and hence f (a) ∈P . If f (a) = 0, then
P(θ)= 0 and we’re done; otherwise f (a) 6∈ P(θ) is a consequence of Theorem
5.2.35 since f (a) 6∈ J f (a). ut

The previous result will now be used to compare the ideals P(θ) for different
values of θ .

Theorem 5.2.37. Suppose K is a subfield of Z(R) and θ , θ 1, θ 2 ∈ F̂ .

(a) If θ 1 ∈ K(θ), then P(θ 1)⊆P(θ).
(b) If K(θ) = K(θ 1,θ 2), then P(θ) = P(θ 1)+P(θ 2).

Proof. If θ 6∈ R or θ is transcendental over K, then P(θ) = R and both (a) and (b)
are obvious. We therefore assume θ ∈ R is algebraic over K. If there is a subfield
L of Z(R) with K(θ) ⊆ L, then there exists an a ∈ ϕ−1(θ) with K(a) ∼= K(θ) and
f (a) = 0, where f (x) = Irr(θ ,K). In this case P(θ 1) = P(θ) = 0 and we are
done. In any case let R = R/P(θ 1). Suppose first that there is a subfield L of Z(R)
with K(θ1)⊆ L and let h(x) = Irr(θ 1,K). Then there exists some a1 ∈ ϕ−1(θ 1) with
K(a1)∼= K(θ 1) and h(a1) = 0. So h(a1)∈P(θ 1)⊆ Jh(a1), h(a1) = 0 and P(θ 1) =
0. Now assume there is no such subfield of Z(R) and P(θ 1) 6= 0. Then there is no
subfield L of Z(R) with K(θ) ⊆ L and hence P(θ 1) ⊆P(θ) by Theorem 5.2.36.
This concludes the proof of (a) and it gives the inclusion P(θ 1)+P(θ 2)⊆P(θ)
of (b). If this inclusion were proper, then again by Theorem 5.2.36 there exist a1 ∈
ϕ−1(θ 1) and a2 ∈ϕ−1(θ 2) such that in R = R/P(θ) we have K(a1), K(a2)⊆ Z(R).
But then K(θ) = K(a1,a2) and for some a∈ϕ−1(θ), K(a) = K(a1,a2)⊆ Z(R). This
produces the contradiction P(θ)⊂P(θ). ut

Let K be a subfield of Z(R). An element θ ∈ S\K is called solid if it is alge-
braic over K and f (x) is irreducible in R[x]∼= R[x]/P(θ)[x] where f (x) = Irr(θ ,K).
This property depends on K but no confusion will result from not using “K” in its
definition.
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Theorem 5.2.38. Suppose R = S and K is a maximal subfield of Z(R). If there is an
algebraic element in R\K, then there is a solid element in R\K.

Proof. Let θ ′ ∈ R\K be algebraic over K with p(x) = Irr(θ ′,K), let L be the
splitting field of p(x) over K(θ ′) and let E = L∩ R. Then K ⊂ K(θ ′) ⊆ E. Let
{K(θ), K(θ 1), . . . ,K(θ t)} be all the subfields of E which properly contain K in-
dexed so that P(θ) ⊆ P(θ 1) ⊆ ·· · ⊆ P(θ t). We will show that θ is solid. Let
f (x) = Irr(θ ,K). If P(θ) = 0, then θ is solid since f (x) is irreducible in R[x]
by Theorem 5.2.28 and (a) of Theorems 5.2.27 and 5.2.25. Suppose P(θ) 6= 0.
Let g(x) = b0 + b1x + · · ·+ bm−1xm−1 + xm and h(x) be monic in R[x] such that
f (x) = g(x)h(x) in R[x] where R = R/P(θ). By (e) of Theorem 5.2.27 the monic
factors of f (x) in R[x] are central and we may assume g(x) is irreducible in R[x]
and g(θ) = 0. Each b j is in E since it is an elementary symmetric function of
some of the roots of f (x), all of which are in L. So K(b j) ⊆ Z(R) and by Theo-
rem 5.2.36 P(b j) ⊂P(θ) for each j. But then from Theorem 5.2.37 we see that
K(b j) 6∈ {K(θ), . . . ,K(θ t)} and hence K(b j) = K. So g(x), h(x) ∈ K[x] and hence
f (x) = g(x) is irreducible. ut

Solid elements will be used to obtain a total order for a simple algebraic extension
of D. To do this we need to connect them to a useful property of polynomials in R[x].

Theorem 5.2.39. Suppose R = S. Let K be a subfield of Z(R), θ ∈ R\K, f (x) =
Irr(θ ,K), and

I(θ) = {q(x) ∈ R[x] : q(a) ∈ R f (a) for each a ∈ ϕ−1(θ)}.

Suppose g(x) and h(x) are monic polynomials in R[x] such that f (x) = h(x)g(x) in
R[x], where R = R/P(θ) and g(x) is irreducible in R[x] with g(θ) = 0. Then:

(a) I(θ) is a completely prime D∗-invariant ideal of R[x];
(b) I(θ) = P(θ)[x]+R[x]g(x);
(c) θ is solid if and only if I(θ) = P(θ)[x]+R[x] f (x).

Proof. I(θ) is D∗-invariant since ϕ−1(θ) is D∗-invariant. From Theorem 5.2.33
we have (pq)(a) = p(a)q(a)+ cq(a) with c ∈ J, for any p(x), q(x) ∈ R[x] and a ∈
R; and also (pq)(a) = p(a)q(a)(1 + d) with d ∈ J provided p(a) 6∈ J. The first
equation shows that I(θ) is a left ideal since it is clearly an additive subgroup of
R[x]. The existence of g(x) and h(x), as well as of the uniqueness of g(x) and h(x)
in Z(R)[x] and the fact that h(θ) 6= 0, is guaranteed by (b) and (e) of Theorem
5.2.27 applied to R. To see that P(θ)[x] + R[x]g(x) ⊆ I(θ) first note that for any
b ∈P(θ), m ∈ Z+ and a ∈ ϕ−1(θ), bam ∈ J f (a)am ⊆ J f (a) and P(θ)[x]⊆ I(θ).
Now f (x) = h(x)g(x)+ r(x) with r(x) ∈P(θ)[x]. So, for a ∈ ϕ−1(θ),

f (a) = (hg)(a)+ r(a) = h(a)g(a)+ cg(a)+d f (a)

with c,d ∈ J, and hence g(a) = (c + h(a))−1(1− d)( f (a) ∈ R f (a). Thus, g(x) ∈
I(θ). For the other inclusion suppose p(x) ∈ R[x] and p(x) 6∈P(θ)[x] + R[x]g(x).
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Then p(x) 6∈ D[x]g(x), D[x]g(x)+ D[x]p(x) = D[x], and 1 = u1(x)p(x)+ v1(x)g(x)
for some u1(x), v1(x) ∈ D[x]. If b is the maximum of the absolute values of the
coefficients of u1(x) and v1(x), then u1(x) = bu(x) and v1(x) = bv(x) with u(x),

v(x) ∈ R[x], u(x)p(x)+ v(x)g(x) = b
−1

= d ∈ R, and

u(x)p(x)+ v(x)g(x) = d + s(x)

with s(x) ∈P(θ)[x]. For each a ∈ ϕ−1(θ) both s(a) and (vg)(a) belong to R f (a).
Since d 6∈ P(θ) there exists some a1 ∈ ϕ−1(θ) with d 6∈ R f (a1), and hence
(up)(a1) 6∈ R f (a1). Since (up)(a1) = u(a1)p(a1) + ep(a1) with e ∈ J, necessar-
ily p(a1) 6∈ R f (a1). So p(x) 6∈ I(θ) and (b) has been established. I(θ) is an ideal
since I(θ)/P(θ)[x] = R[x]g(x) is an ideal of R[x], and I(θ) is completely prime
since R[x]/I(θ) ∼= R[x]/R[x]g(x) and the latter is embedded in the division ring
D[x]/D[x]g(x). Finally, (c) is just a restatement of the uniqueness of g(x) since
I(θ) = P(θ)[x]+R[x] f (x) iff R[x] f (x) = R[x]g(x), iff f (x) = g(x). ut

The following result, in a sense, will allow us to free θ (actually, θ ) from its
dependence on a particular a ∈ ϕ−1(θ).

Theorem 5.2.40. Suppose K is a subfield of Z(R), θ ∈ S\K is algebraic over K,
f (x) = Irr(θ ,K), p(x), p1(x), p2(x), . . . , pm(x) ∈ R[x] and a1, a2, . . . ,am ∈ ϕ−1(θ).

(a) If θ is solid and p(x) 6∈ P(θ)[x] and has smaller degree than f (x), then
f (a) ∈ Jp(a) for some a ∈ ϕ−1(θ).

(b) If f (a1) ∈ Jp(a1) and f (a2) ∈ R f (a1), then f (a2) ∈ Jp(a2).
(c) If f (a1) ∈ Jp(a1) and f (a2) ∈ Jp(a2), then p(a2) = p(a1)(1+d) for some

d ∈ J.
(d) If f (ai) ∈ Jpi(ai) for i = 1, . . . ,m, and f (ak) ∈ R f (ai) for every i, then

f (ak) ∈ ∩m
i=1Jpi(ak).

Proof. (a) The proof of the previous theorem shows that when θ is solid I(θ) =
P(θ)[x]+R[x] f (x) is a completely prime ideal of R[x] (without R = S). Since 0 6=
p(x) 6∈ R[x] f (x), where R = R/P(θ), p(x) 6∈ I(θ) and hence p(a) 6∈ R f (a) for some
a ∈ ϕ−1(θ). So f (a) ∈ Jp(a).

(b) Ra1 = Ra2 since if a1 = ra2, then r 6∈ J as θ 6= 0; also, a2−a1 ∈ Ja1 since
a2−a1 = sa1 gives 0 = sθ . From (a) and (b) of Theorem 5.2.31 we have

p(a2)− p(a1) ∈ R(a2−a1) = R( f (a2)− f (a1))⊆ R f (a1)⊆ Jp(a1);

so p(a2) = (1+ c)p(a1) with c ∈ J. Thus, f (a2) ∈ R f (a1)⊆ Jp(a1) = Jp(a2).
(c) By symmetry we may assume f (a2) ∈ R f (a1) and as we have just seen

p(a2) = (1+ c)p(a1) = p(a1)(1+d) with d ∈ J since bJ = Jb for any b.
(d) This is an immediate consequence of (b). ut

Now suppose R = S, K is a maximal subfield of Z(R), θ ∈ R\K is a solid element
of degree n over K and f (x) = Irr(θ ,K). By Theorems 5.2.25 (a) and 5.2.28 D(θ) =
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D[x]/D[x] f (x) is a division ring extension of D which has 1, θ , θ 2, . . . ,θ n−1 as a
D-basis, where θ = x + D[x] f (x), f (θ) = 0 and Z(D)(θ) ⊆ Z(D(θ)). We proceed
to define a total order of D(θ). Let 0 6= P(x) ∈ D[x] with deg P(x) < n. A triple
(b, p(x),a) ∈ D× (R[x]\P(θ)[x])×ϕ−1(θ) is called an O-determiner for P(x) if
P(x) = bp(x) and f (a) ∈ Jp(a). In fact, p(x) 6∈ I(θ) since p(a) 6∈ R f (a). An O-
determiner for P(x) exists. For if P(x) = b0 +b1x+ · · ·+bmxm and b = ∨ j|b j|, then
p(x) = b−1P(x) ∈ R[x]\J[x]⊆ R[x]\P(θ)[x], and by (a) of Theorem 5.2.40, f (a) ∈
Jp(a) for some a ∈ ϕ−1(θ). Note that P(a) 6= 0 since otherwise f (a) = 0 and a ∈ K
by (c) of Theorem 5.2.27. Let

T = {P(θ) ∈ D(θ) : deg P(x) < n and P(a) ∈ D+∗ for some O-determiner

(b, p(x),a) for P(x)}∪{0}.
Theorem 5.2.41. Assume the conditions: R = S, K is a maximal subfield of Z(R),
and θ ∈ R\K is solid. Then T is a total order of D(θ) which contains D+ and for
which (5.2.38) is valid.

Proof. We have just seen that T ∪−T = D(θ). We proceed in steps to show that T
is a total order.

(i) If (b1, p1(x),a1) and (b2, p2(x),a2) are O-determiners for P(x), then
P(a1)P(a2) > 0 and hence T ∩ −T = 0. Assume first that p2(x) = p1(x) and
b2 = b1. Then by (c) of Theorem 5.2.40 p1(a2) = p1(a1)(1 + d) with d ∈ J. Since
1+d > 0, P1(a1)P2(a2) = b1 p1(a1)b1 p1(a1)(1+d) > 0. In general, according to (d)
of Theorem 5.2.40 we may assume f (a2) ∈ Jp1(a2); that is, (b1, p1(x),a2) is an O-
determiner for P(x). Thus, we are reduced to the previous case and P(a1)P(a2) > 0.
Since (b, p(x),a) is an O-determiner for P(x) if and only if it is an O-determiner for
−P(x) we do have T ∩−T = 0.

(ii) T + T ⊆ T . Suppose P1(θ), P2(θ) ∈ T ∗ and let (bi, pi(x),ai) be an O-
determiner for Pi(x) for i = 1,2. By (d) of Theorem 5.2.40 we may assume a1 = a2
and certainly (P1 + P2)(a1) = P1(a1)+ P2(a1) > 0. Since (−bi,−pi(x),ai) is an O-
determiner for Pi(x) we may also assume that b1 ≥ b2 > 0. Now,

P1(x)+P2(x) = b1 p1(x)+b2 p2(x) = b1(p1(x)+b−1
1 b2 p2(x)) = b1 p(x),

p(x) ∈ R[x], and p(a1) = p1(a1) + b−1
1 b2 p2(a1) > p1(a1) > 0. Thus, f (a1) ∈

Jp1(a1) ⊆ Jp(a1), p(a1) 6∈ R f (a1) and hence p(x) 6∈P(θ)[x]. So (b1, p(x),a1) is
an O-determiner for P1(x)+P2(x) and we have P1(θ)+P2(θ) ∈ T ∗.

(iii) If P(x) in D[x] is divided by f (x) to give a nonzero remainder H(x),
P(x) = Q(x) f (x)+ H(x), and there exist b ∈ D, p(x) ∈ R[x]\I(θ) and a ∈ ϕ−1(θ)
with P(x) = bp(x) and f (a) ∈ Jp(a), then we claim that H(θ) ∈ T ∗ if and only
if P(a) > 0. We have p(x) = b−1P(x) = q(x) f (x)+ r(x) with q(x) = b−1Q(x) and
r(x) = b−1H(x) both in R[x]. We will show that (b,r(x),a) is an O-determiner for
H(x). First, r(x) 6∈P(θ)[x] since f (x) ∈ I(θ) and P(θ)[x] ⊆ I(θ) by (c) of The-
orem 5.2.39, and r(x) + I(θ) = p(x) + I(θ) 6= 0 in R[x]/I(θ). Also, by Theorem
5.2.33, for some c ∈ J,
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r(a) = p(a)−q(a) f (a)+ c f (a)
= p(a)+d p(a)
= (1+d)p(a) = p(a)(1+ e)

with d,e ∈ J, and hence f (a) ∈ Jr(a). Thus, (b,r(x),a) is an O-determiner for H(x)
and H(θ) ∈ T ∗ iff H(a) > 0. But

H(a) = br(a) = bp(a)(1+ e) = P(a)(1+ e) > 0

iff P(a) > 0.
(iv) T is D∗-invariant. Suppose P(θ) ∈ T ∗, (b, p(x),a) is an O-determiner for

P(x) and s∈D∗. Then (bs, ps(x),as) is an O-determiner for Ps(x) since J and P(θ)
are D∗-invariant. So Ps(θ) ∈ T ∗ since Ps(as) = P(a)s > 0.

(v) T T ⊆ T . Suppose P1(θ), P2(θ) ∈ T ∗ and let P(x) = P1(x)P2(x). Let
(bi, pi(x),ai) be an O-determinator for Pi(x), i = 1,2 with bi > 0. Then P(x) =
b1 p1(x)b2 p2(x)= b1b2 pb2

1 (x)p2(x)= bp(x) with b = b1b2 and p(x)= pb2
1 (x)p2(x)∈

R[x]\I(θ) by (a) of Theorem 5.2.39. Divide P(x) by f (x) to get P(x) = Q(x) f (x)+
H(x). Since 0 6= P1(θ)P2(θ) = P(θ) = H(θ), H(x) 6= 0. Since p(x), pb2

1 (x) 6∈ I(θ),
f (a3) ∈ Jp(a3) and f (a4) ∈ Jpb2

1 (a4) for some a3, a4 ∈ ϕ−1(θ). By (d) of Theo-
rem 5.2.40 we can find a ∈ ϕ−1(θ) with f (a) ∈ Jp(a)∩ Jpb2

1 (a)∩ Jp2(a). From
(iii) we have that P1(θ)P2(θ) = H(θ) ∈ T ∗ iff bp(a) = P(a) > 0. But p(a) =
(pb2

1 p2)(a) = pb2
1 (a)p2(a)(1 + c) for some c ∈ J by (e) of Theorem 5.2.34, and

pb2
1 (θ) ∈ T ∗ by (iv). Since (1, pb2

1 (x),a) and (1, p2(x),a) are O-determiners for
pb2

1 (x) and p2(x), respectively, we have pb2
1 (a) > 0 and p2(a) > 0 by (i). Thus,

p(a) > 0 and P1(θ)P2(θ) ∈ T ∗.
(vi) Finally, D+ ⊆ T , and α < θ or θ < β with α , β ∈ F implies θ −α ∈ T ∗ or

β −θ ∈ T ∗, respectively. To see this take a ∈ ϕ−1(θ). If 0 < s ∈ D, then (s,1,a) is
an O-determiner for s. Therefore s ∈ T . Suppose α < θ . Then α < a+c with c ∈ J,
and (1,x−α,a + c) is an O-determiner for x−α since a + c−α 6∈ R f (a + c); so
θ −α ∈ T ∗. Similarly, θ < β gives β −θ ∈ T ∗. ut

All of the cases of a simple extension have now been considered and the totally
ordered real division algebra extension of D will now be given.

Theorem 5.2.42. Each totally ordered division ring can be embedded into a totally
ordered division algebra over R.

Proof. Let D ⊆ E be totally ordered division rings with Z(D) ⊆ Z(E) and let F be
a subfield of Z(D). Assume the notation given in Theorem 5.2.24 for both D and
E. The various sets determined by E will be distinguished by those determined by
D by using E as a subscript. So RE = CE

F (1), etc. Then R = RE ∩D, J = JE ∩R,
R = RE ∩ RW (ξ ), N = NE ∩R and P = PE ∩R. So the totally ordered division
algebra R (over F) is naturally embedded in the totally ordered division algebra
RE and similarly R is embedded in RE . Of course, F̂ is isomorphic with F̂E via the
embedding R−→ RE .
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Now let K be a maximal subfield of Z(D) with F ⊆ K and let E = D(θ) be
one of the totally ordered division rings given in Theorem 5.2.26, 5.2.29, or 5.2.41.
Then ϕE(θ) = θ ; that is, (θρ)ρ<ξ + NE = θ where θρ = θ for each ρ < ξ . For,
θ = (αρ)ρ<ξ + NE = F-limαρ where (αρ)ρ<ξ is an F-Cauchy net in F . So, for
each 0 < ε ∈ F there exists λ < ξ such that |θ −αρ | < ε and hence |θ −αρ | < ε
(by (5.2.38)) for all ρ ≥ λ . But then |ϕE(θ)−αρ |< ε and ϕE(θ) = F-limαρ = θ
since F+∗ is coinitial in R

∗+
E . Note that θ is the image of θ in RE since θ ∈ RE ; for

|θ | < α for some α ∈ F because |θ | < α for some α ∈ F . In fact, K(θ) ⊆ Z(RE)
and K(θ)−→ K(θ) is an isomorphism. For, K[θ ]⊆ Z(RE) and if P(θ) ∈ K[θ ] with
P(θ) > 0, then P(θ) > 0. So P(θ) > ε > 0 for some ε ∈ F , P(θ) > ε , P(θ)−1 ∈ RE
and K(θ)⊆ Z(RE).

Now let D be a totally ordered division ring and suppose F is archimedean. Then
F̂ = R ∼= R, R = C (1) and R ⊆ F̂ . Let U be a set which contains D and whose
cardinality exceeds |R||D|. Let S be the family of all those subsets E of U such
that E is a totally ordered division ring extension of D, E = D(X) for a set X with
F(X)⊆ Z(RE) and X ⊆ R\F . Partially order S by: E1 ≤ E2 iff E1 = D(X1), E2 =
D(X2), X1 ⊆ X2 and E1 is a totally ordered division subring of E2. Note that if E1 =
D(X1)≤ D(X2) = E2, then Z(E1)⊆ Z(E2). For, E1 is the division ring of quotients
of D[X1] and hence u ∈ Z(E1) iff D is contained in the centralizer of u. In particular,
Z(RE1) = Z(E1)∩RE1 ⊆ Z(E2)∩RE2 = Z1(RE2). Let {Eλ = D(Xλ ) : λ ∈ Λ} be a
chain in S and let X =

⋃
λ Xλ . Then E =

⋃
λ Eλ = D(X) is a totally ordered division

ring extension of D, X ⊆⋃
λ Z(Eλ ) = Z(E), RE =

⋃
λ REλ and

F(X) =
⋃

λ
F(Xλ )⊆

⋃

λ
Z(REλ ) =

⋃

λ
(Z(E)∩Rλ )

= Z(E)∩RE = Z(RE).

Thus, E ∈ S since X =
⋃

λ Xλ ⊆ R\F , and clearly Eλ ≤ E for each λ ∈ Λ . By
Zorn’s Lemma S has a maximal element E = D(X). Let K be a maximal subfield
of Z(RE) with F(X) ⊆ K. If K = R, then E is a division algebra over R. Suppose
K⊂R and take θ ∈R\K. If θ is transcendental over K, then, by Theorem 5.2.26 and
the preceding paragraph, E ⊆ E(θ) with K(θ) ⊆ Z(RE(θ)) and K(θ) = K(θ) ⊆ R.
Since

|E(θ)−E|= |E| ≤ |D||X |< |U |= |U−E|
there is a bijection E(θ) = E ∪ (E(θ)\E) −→ E ∪̇ A ⊆ E ∪ (U −E) = U which is
the identity on E and which becomes an isomorphism of totally ordered division
rings E(θ) ∼= E(θ1) when the structure of E(θ) is transferred to its image. Since
E < E(θ1) we have a contradiction to the maximality of E. Thus, θ is algebraic over
K. If θ ∈ RE , then by Theorem 5.2.38 we may assume θ is solid and by Theorem
5.2.41 we get an extension E(θ) of E which again contradicts the maximality of
E. So K = RE and now Theorem 5.2.29 produces an extension E(θ1) > E. This
contradiction shows K = R. ut
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Exercises.

1. Let B be the breadth of the pseudo-convergent sequence (aρ)ρ<α in the valued
field (F,v) and let a ∈ F be a pseudo-limit of (aρ)ρ<α .

(a) Show that B is an R-submodule of F and c ∈ F is also a pseudo-limit of
(aρ)ρ<α iff c−a ∈ B.

(b) Show that 0 is a pseudo-limit of (aρ)ρ<α iff (v(aρ))ρ<α is strictly decreas-
ing, iff B is the set of pseudo-limits of (aρ)ρ<α in F .

2. Let E = Q(x) have either the lexicographic total order (1 ¿ x ¿ x2 ¿ ···) or
the antilexicographic total order (1À xÀ ·· ·) and let F be the real closure of
E. If v is the natural valuation show that ΓE ∼= Z, v(x) = 1 and ΓF ∼=Q.

3. Show that a valuation on a right Öre domain has a unique extension to its divi-
sion ring of right quotients.

4. Let 0 < α be a limit ordinal and let (aρ)ρ<α , (bρ)ρ<α and (cρ)ρ<α be sequences
in the valued field (F,v) such that for some τ0 < α and for all τ and σ with
τ0 ≤ τ < σ < α we have aτ = bτ +cτ , v(aσ ) = v(aτ), v(cσ ) = v(cτ) and v(bτ) >
v(bσ ). Show that for some τ1≥ τ0 and for all σ ≥ τ1, v(cσ ) > v(bσ ) and v(aσ ) =
v(cσ ).

5. If V (K ∗Γ ) is a formal power series crossed product field show that V (K ∗
Γ )(i)∼= V (K(i)∗Γ ) and Vα(K ∗Γ )(i)∼= Vα(K(i)∗Γ ) for any ordinal α .

6. Show that each field with the trivial valuation is maximally complete.

7. For j = 1,2 let Fj be a subfield of the totally ordered field L j and suppose
that L j is an immediate extension of Fj, where all valuations are natural. Show
that a value preserving isomorphism ψ : L1 −→ L2 which extends an isotone
isomorphism ϕ : F1 −→ F2 is itself isotone.

8. Let E ⊆D be division rings and suppose v is a valuation on D. An element a∈D
is transcendental over E if the elements 1,a,a2, . . . ,an, · · · are independent in the
vector spaces DE and ED. Show that v is trivial iff its restriction to E is trivial
and each transcendental element over E is a unit.

9. Let C be a maximal subfield of the valuation ring R =C(1) of the totally ordered
field F and let J be the maximal ideal of R. Show each of the following:

(a) R = R/J is algebraic over C.
(b) If F is algebraic over its subfield K, then F is K-archimedean.
(c) C is algebraically closed in F ; that is, each element of F that is algebraic

over C is in C.
(d) If F is real closed, then R is real closed and C = R.
(e) If F is henselian and R is real closed, then C = R.

10. Let (aρ)ρ<α be a pseudo-convergent sequence in the valued field (F,v). Show
the equivalence of the following statements.

(a) (aρ)ρ<α is transcendental.
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(b) If (E,w) is an extension of (F,v) and E is algebraic over F , then, for each
a ∈ E, the sequence (w(aρ −a))ρ is eventually constant.

(c) For every f (x) ∈ F [x]\F and each λ < α , if ( f (aρ))λ≤ρ<α is pseudo-
convergent, then it has no pseudo-limit in F .

(d) If a is a pseudo-limit of (aρ)ρ<α in an extension (E,w), then a is transcen-
dental over F .

11. (a) Show that the pseudo-convergent sequence (aρ)ρ<α in (F,v) is algebraic iff
there is a polynomial f (x) ∈ F [x] of positive degree and an ordinal λ < α
such that ( f (aρ))λ≤ρ has a pseudo-limit in F .

(b) Suppose (aρ)ρ<α is algebraic and f (x) ∈ F [x] is a polynomial of least de-
gree such that v( f (aρ))ρ<α is eventually strictly decreasing. Show that n =
deg f (x) iff for each λ < α and each g(x) ∈ F [x]\F , if deg g(x) < n, then
(g(aρ))λ≤ρ<α has no pseudo-limit in F .

12. Here is an example of a totally ordered field F for which there is no field em-
bedding F −→V (ΓF ,RF/JF) (see Theorem 5.2.20). The torsion divisible group
Q/Z has the decomposition Q/Z = ¢pZ(p∞) where the direct sum is over all
primes p and Z(p∞), the subgroup ofQ/Z generated by { 1

pn +Z : n∈N}, is the
set of all elements inQ/Z of pth power order. Each element of Z(p∞) is a coset
s

pn +Z with 0 ≤ s < pn and uniquely so if p doesn’t divide s. Fix the prime p
and for a ∈ Q let a∗ = s

pn ∈ Q ∩ [0,1) where s
pn +Z is the pth component of

a +Z in Q/Z, and let fa = 2a∗xa ∈ V ((Q,+),R). Let R be the Q-subalgebra
of V (Q,R) generated by { fa : a ∈ Q} and let F be its field of quotients within
V (Q,R). Verify each of the following.

(a) If a1,a2 ∈Q, then (a1 +a2)∗ = a∗1 +a∗2 or (a1 +a2)∗ = a∗1 +a∗2−1 depend-
ing on whether a∗1 +a∗2 < 1 or a∗1 +a∗2 ≥ 1.

(b) fa1 fa2 = fa1+a2 or fa1 fa2 = 2 fa1+a2 depending on whether a∗1 + a∗2 < 1 or
a∗1 +a∗2 ≥ 1.

(c) The value group of F with respect to the natural valuation is Q and the
valuation ring of F is the field Q.

(d) ( f 1
p
)p = 2 f1.

(e) If q is a prime different from p and n ∈ N then ( f 1
qn

)qn
= f1.

(f) Show that V (Q,Q) does not contain a nonzero element g which satisfies the
equations in (e) and (d) (that is, an element g which has a qnth root for each
n ∈ N and 2g has a pth root), and hence the field F cannot be embedded in
V (Q,Q). (Consider the leading coefficient of g and of the pth root of 2g.)

13. Here is an example of a commutative totally ordered domain R with value semi-
group ∆ for which there is no value preserving ring monomorphism of R into
V (∆ ,R) (see Theorem 5.2.20.) Let S = R[x] have the antilexicographic order
1À xÀ ·· ·À xn À ·· · and let R be the R-subalgebra of S generated by x4 and
x6 + x7. The valuation v is the natural valuation.

(a) Show that the value group of R(x) is (Z,−Z+).
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(b) Show that if k, n∈Z+ with 0≤ k≤ n and (n,k) 6∈ {(0,0),(1,1)}, then there
are integers p,q,h ∈Z+ with n6+k = p4+q6+h13. (Use induction on n.)

(c) Show that the value semigroup ∆ = v(R) of R is generated by 4,6, and
13 : ∆ = (Z+4+Z+6+Z+13)\{0}.

(d) Show that v((x4)3− (x6 + x7)2) = v(x13) but there are no elements f ,g ∈
V (∆ ,R) = R[[x4,x6,x13]] with v( f ) = 4, v(g) = 6 and v( f 3−g2) = 13. (A
nonzero element of V (∆ ,R) has only even degree terms up to x13.)

14. Suppose K is a subdivision ring of the valued division ring (D,v).

(a) Let {a1 + JD, . . . ,ar + JD} be a left RK/JK-independent subset of RD/JD.
Show that v(Σiαiai) =

∨
i v(αi) for all α1, . . . ,αr ∈ K and {a1, . . . ,ar} is an

independent set in KD. (If v(α1) =
∨

i v(αi) 6=−∞, then Σiα−1
1 αiai is a unit

of RD.)
(b) If ΓK + v(b1), . . . ,ΓK + v(bs) are distinct cosets show that v(Σ jα jb j) =∨

j v(α jb j) provided {v(α1), . . . ,v(αs)} ⊆ ΓK ∪ {−∞} and {b1, . . . ,bs} is
an independent set in KD.

(c) If ai and b j are as in (a) and (b), respectively, show that v(Σi, jαi jaib j) =∨
i, j v(αi jb j) for all αi j ∈ K and [RD/JD : RK/JK ][ΓD : ΓK ] ≤ [D : K] where

the vector spaces are left vector spaces.

15. Let R be a subring of the division ring D.

(a) Show that R is a right Öre domain if and only if {ab−1 : a,b ∈ R,b 6= 0} is
a subring of D.

(b) Suppose R is right Öre. If X ⊆ Z(D) show that R[X ] is right Öre and
Q(R[X ]) = Q(R)(X).

16. Let M be a nonzero totally ordered vector lattice over the totally ordered divi-
sion ring D and let D̂ be the Cauchy completion of D. Show that the following
statements are equivalent.

(a) M can be embedded in D̂.
(b) For each 0 6= x0 ∈M, if x < y in M, then x < αx0 < y for some α ∈ D.
(c) There exists some 0 6= x0 ∈M with the property in (b).

(For (c) ⇒ (a) take ξ and (ερ)ρ<ξ as in Theorem 5.2.24. Show that for
x ∈M there exists an ξ -net (αρ)ρ<ξ in D with |αρ x0− x|< ερ x0 for every
ρ , and if, for some α ∈D and some ξ -net (βρ)ρ<ξ in D, |βρ x0−x|< αερ x0
for every ρ , then (βρ)ρ<ξ is Cauchy.)

17. Let RM be a totally ordered left f -module over the totally ordered left Öre do-
main R. Suppose D̂ is the Cauchy completion of the division ring D of left
quotients of R. Show that RM can be embedded in RD̂ if and only if for any
0 6= x0 in M and any x < y in M, ax < bx0 < ay for some a,b ∈ R with a > 0.

18. Let M = Z[x,y] be the polynomial ring over Z in the commuting indeterminates
x and y and let S = {xiy j} be the free abelian monoid generated by x and y. S is
a totally ordered monoid with the partial order: xiy j < xpyq if i + j < p + q or
i + j = p + q and i < p, and the semigroup ring M = Z[S] is a totally ordered
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ring when it is given the lexicographic Hahn order: α1s1 + · · ·+ αnsn > 0 if
αn > 0 where s1 < s2 · · ·< sn in S and α j ∈ Z. Let F̂ be the Cauchy completion
of the totally ordered quotient field F of the totally ordered subring R = Z[x] of
M. Show that RM cannot be embedded in RF̂ . (y2 < xy and no element of Fx is
between y2 and xy; use Exercise 16.)

19. Let D̂ be the Cauchy completion of the totally ordered division ring D with
center F . Show that a ∈ Z(D̂) if and only if a centralizes D. If F+∗ is coinitial
in D+∗ show that Z(D̂) is Cauchy complete and F̂ ⊆ Z(D̂).

Notes. Most of the general theory of valuations and pseudo-convergence pre-
sented here comes from Kaplansky [K1] as well as from Schilling [SC]; Prieß-
Crampe [PC2] is a very good reference for this section. Original references are Krull
[KR] and Ostrowski [O]. Other sources are MacLane [MAC2] for Theorem 5.2.12,
Alling [AL2] for Theorem 5.2.13, Hartmann [HAR] for the proof of Theorem 5.2.14
and MacLane [MAC1] for Theorem 5.2.15. The Hahn embedding theorem given in
Theorem 5.2.20 originated in Hahn [H]. The first complete proof, with the coef-
ficients of the power series coming from R, appeared in Conrad and Dauns [CD]
but with a weak point. The first fairly elementary proof for a real closed field is
due to Prieß-Crampe [PC1] and the proof given for an arbitrary totally ordered field
comes from Prieß-Crampe [PC2, p. 124]; in both cases no reference is made to a
Z-independent set in the value group. Exercise 12 comes from Prieß-Crampe [PC2,
p. 124] where it is attributed to Panek [P] and Greither [GR] and Exercise 13 is due
to Bergman [BER2]. The embedding of a totally ordered division ring into a totally
ordered division algebra over the reals is due to Neumann [N]; we have used some
of the refinements given by Jaeger [JAE]. The extension of Hölder’s theorem to
modules over a commutative totally ordered domain given in Exercises 16, 17, and
18 is due to Viswanathan [V2]. We have simplified his presentation and extended it
to left Öre domains by using Cauchy nets instead of Cauchy filters to construct the
Cauchy completion.

5.3 Lattice-ordered Fields

Examples of lattice-ordered fields that are not totally ordered have previously ap-
peared in several places in the text. Additional examples will be provided here with
an ingenious construction of archimedean lattice orders on each subfield of R with
the exception of Q. There is an interesting and surprising converse in that each
archimedean `-field has a largest subfield which can be totally ordered and over
which it is an `-algebra, and if it is algebraic over this subfield then it is a subfield
of R. Some topological algebra will be used to verify this converse.

Having successfully embedded a totally ordered field into a closely connected
totally ordered power series field we will first turn our attention to a similar embed-
ding of an `-field into a power series `-field of the type given in Theorem 3.5.13. To
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do this requires that the basic elements form a multiplicatively closed subset of the
field.

Let S(R), or just S, denote the set of positive special elements of the `-ring R (see
Section 2.5) and let B(R), or B, denote its subset of basic elements (see Exercises
2.4.11 – 2.4.13). B is a subset of S by Exercise 2.4.11 and Theorem 2.5.3. Recall
that d(R) denotes the set of d-elements in R and U (X) denotes the group of units
of the monoid X . The `-ring R is called a D-ring if S 6= /0 and S ⊆ d(R). If R is a
unital `-ring, then d(R)∩U (R) = U (R+) by Theorem 3.1.3. Since multiplication
by a ∈ U (R+) is an `-automorphism of the additive `-group of R, U (R+) ⊆ S or
U (R+)⊆ B if and only if 1 is special or basic, respectively, or 1 6≥ 0. So, if /0 6= S⊆
U (R+), then R is a D-ring and necessarily S = U (R+). The generalized semigroup
ring A[G] = ∑(G,A) of the trivially ordered pops G over the totally ordered ring
A is a D-ring and so is the power series division ring given in Theorem 3.5.13.
These examples illustrate the fact, and we will see more of this in the next theorem,
that frequently S is multiplicatively closed in a D-ring. The converse doesn’t hold,
however, as the example in Exercise 2 shows.

Theorem 5.3.1. Let R be an `-domain.

(a) If d(R)∗ is a right Öre set in R, then R is a D-ring if and only if d(R)∗ = S(=
B). In this case the right quotient ring Q = Rd(R)∗ is also a D-`-domain and
S(Q) = {as−1 : a,s ∈ S(R)}= d(Q)∗.

(b) Suppose R is unital, d(R)∗ ⊆ U (R) and R has a special element. Then the
following statements are equivalent.

(i) R is a D-ring.
(ii) S = d(R)∗ = U (R+).

(iii) S is a multiplicative subgroup of R.
(iv) S⊆U (R+).

Proof. (a) Since R is an `-domain and `(a) = ``(a) for a ∈ d(R), d(R)∗ consists of
regular elements of R. By Theorem 4.3.1 Q is an `-ring extension of R and d(R)∗ ⊆
U (Q+)⊆ d(Q). Also, Q is an `-domain since if as−1bt−1 = 0 with a,b ∈ R+, then
s−1b = cu−1, acu−1t−1 = 0, a = 0 or c = 0, and as−1 = 0 or bt−1 = 0. Since 1∈Q+,
C(1) is a totally ordered domain. Thus, if R is a D-ring, then

d(R)∗ ⊆U (Q+)∩R⊆ B(Q)∩R⊆ B(R)⊆ S(R)⊆ d(R)∗ (5.3.1)

and d(R)∗ = S(R) = B(R). The converse is trivial. If R is a D-ring and as−1 ∈ S(Q),
then a = as−1s∈ S(Q) and a∈ S(R) by Exercise 2.5.4; so a∈ d(R), as−1 ∈U (Q+),
and as−1 ∈ d(Q). Thus, Q is a D-ring. Let G = {as−1 : a,s ∈ d(R)∗}. We will verify
the nontrivial inclusions in the sequence

S(Q)⊆ G⊆U (Q+)⊆ d(Q)∗ ⊆ G⊆ S(Q). (5.3.2)

Suppose as−1 ∈ S(Q). Then a ∈ S(Q) and CQ(a) = lexN with N ⊂CQ(a) by The-
orem 2.5..8, where CQ(a) denotes the convex `-subgroup of Q generated by a. But
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then CR(a) = lex(N∩R), a ∈ S(R), as−1 ∈ G, and we have the first inclusion. Sup-
pose as−1 ∈ d(Q)∗. Then sas−1 ∈ d(Q)∗, a ∈ d(Q)∗, a ∈ d(R)∗ and d(Q)∗ ⊆G. The
last inclusion comes from G⊆U (Q+)⊆ B(Q)⊆ S(Q).

(b) That (i) implies (ii) follows from (5.3.1) (or (5.3.2)) since now Q = R, and
the remaining circular implications are obvious. ut

Suppose R is a D-`-domain in which d(R)∗ is a right Öre set. The additive sub-
group of R generated by S = B is the largest convex `-subring of R which is a finite
valued D-domain (Exercise 1). We are interested in the case where this subring is R.
Assume R is finite valued. Then its additive `-group is a direct sum of totally ordered
groups by Exercise 2.4.11 or Exercise 2.5.22. Moreover, if Γ = Γ (R) is the value
set of R, then the mapping v = vR : S −→ Γ which sends a special element to its
value is onto. This follows from Theorem 2.5.11, but it is easier here because of the
direct sum decomposition of R, and it follows from Exercise 2.5.13. The function v
has the following properties.

v(s)≤ v(t) if and only if s ∈C(t). (5.3.3)
v(s) = v(t) if and only if C(s) = C(t). (5.3.4)

v(s) < v(t) if and only if s¿ t. (5.3.5)
If v(s) = v(t) and a ∈ S, then v(as) = v(at) and v(sa) = v(ta). (5.3.6)

Clearly, (5.3.3) is an easy consequence of Exercise 2.5.13 and it implies (5.3.4)
through (5.3.6). These properties allow us to make Γ into a strict rooted partially
ordered semigroup with addition given by v(s)+v(t) = v(st). From Theorem 2.5.11
we may deduce that the right quotient ring Q = Rd(R)∗ of R is also finite valued. For,
if 0 6= as−1 ∈Q, then a = a1 + · · ·+an where each |ai|=±ai is basic and |ai|∧|a j|=
0 for i 6= j. So as−1 = a1s−1 + · · ·+ ans−1, each |ais−1| is a basic element of Q by
the previous theorem, and |ais−1| ∧ (a js−1| = (|ai| ∧ |a j|)s−1 = 0 if i 6= j. Since
S(R)⊆ S(Q) the mapping Γ (R)−→ Γ (Q) given by vR(s) 7→ vQ(s) is an embedding
by (5.3.4); in fact, since S(Q) is the right quotient group of S(R) by (5.3.1) and
(5.3.2), Γ (Q) is the right quotient po-group of the po-semigroup Γ (R). Recall that
R is finite valued whenever it is finitely rooted; that is, the number of roots in Γ (R)
is finite or, equivalently, the Boolean algebra of polars of R is finite (see Exercise
2.5.11)

Theorem 5.3.2. Let R be a finite valued D-`-domain whose set of nonzero d-
elements is a right Öre set in R. If the value group Γ (Q) of the right quotient ring
Q = Rd(R)∗ of R is torsion-free and is locally finite modulo its maximal totally or-
dered subgroup, then R is a domain and the lattice order of R can be extended to a
total order of R.

Proof. Since Q inherits these properties from R we will assume R = Q. By Theorem
3.5.12 the partial order ≤ of Γ = Γ (R) can be extended to a total order ≤1 of
Γ . As an `-group, or even as an F(R)- f -bimodule, R = ⊕ jG j where each G j is
a totally ordered submodule, and if 0 6= a ∈ G j, then its value Rv(|a|) in R is the
convex `-subgroup ⊕k 6= jGk⊕M where M is the maximal convex subgroup of C(a).
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If 0 6= a ∈ R, then a = a1 + · · ·+an where the ai’s come from different components
and v(|a1|) >1 · · ·>1 v(|an|). Let T = {a ∈ R : a1 > 0}. Clearly, R+ ⊆ T ∪{0} and
we claim that T ∪{0} is a total order of R. Take a,b ∈ T with a as previously given
and write b = b1 + · · ·+bm ∈ T with v(|b1|) >1 · · ·>1 v(|bm|), and assume, by way
of symmetry, that v(|a1|) ≥1 v(|b1|). If aλ and bµ come from the same G j, then
aλ +bµ = 0 or v(|aλ +bµ |)≤ v(|aλ |)∨v(|bµ |) <1 v(a1) provided λ > 1 and µ > 1.
These inequalities also hold when λ > 1 and µ = 1. For, if v(|aλ |)∨ v(b1) = v(a1),
then v(b1) = v(a1) and we have the contradiction that a1 and aλ are in the same G j.
So if a + b = c1 + · · ·+ ct with v(|c1|) >1 · · · >1 v(|ct |) and the c’s are in different
components, then c1 = a1 or c1 = a1 +b1 or c1 = a1 +bµ with µ ≥ 2. In this last case
v(a1)≥1 v(b1) >1 v(|bµ |) gives v(a1) > v(|bµ |) and hence c1 = a1 +bµ > 0. So a+
b∈ T in all cases. Also, v(a1b1) = v(a1)+v(b1) >1 v(|aλ |)+v(|bµ |) = v(|aλ bµ |) if
(λ ,µ) 6= (1,1). Consequently, if d1 is the sum of those aλ bµ in the same G j as a1b1,
then d1 = a1b1 +∑aλ bµ with a1b1 À aλ bµ , a1b1 À ∑aλ bµ , and d1 > 0; and if dk
is a nonzero sum of those aλ bµ in another summand, then v(|dk|)≤∨v(|aλ bµ |) <1
v(a1b1) = v(d1). Since ab = d1 +d2 + · · ·+dp is the canonical decomposition of ab,
we have ab ∈ T . Since T ∩−T = /0 and T ∪−T = R∗ are obvious T ∪{0} is a total
order of R. This also shows that if a 6= 0 and b 6= 0, then ab 6= 0. ut

We will now extend the Hahn embedding theorem for totally ordered fields (The-
orem 5.2.20) to a class of `-fields.

Theorem 5.3.3. Let R be a commutative finitely rooted D-`-domain with n roots, Γ
the value group of its quotient `-ring Q = Rd(R)∗ , and C the real closure of a maximal
archimedean subfield A of the subfield F(Q) of f -elements of Q. If Γ is torsion-free,
then Q is an n-dimensional field extension of F(Q) and there is a value preserving
`-monomorphism of R into the power series `-field V (Γ ,C).

Proof. The case n = 1 is Theorem 5.2.20; so assume n ≥ 2. Since Q also has n
roots (see Exercise 2.5.11) and the inclusion R −→ Q is value preserving we may
assume R = Q. Let F = F(Q) be the totally ordered subring of f -elements of Q.
If 0 < a ∈ F , then a−1 ∈ Q+ since a is special (Theorem 5.3.1) and a−1 ∈ F since
multiplication by a−1 is the inverse of the polar preserving map y 7→ ay. As we noted
after Theorem 5.3.1, Q has the decomposition

Q = G1⊕·· ·⊕Gn (5.3.7)

into totally ordered subgroups and, in fact, each G j is a vector lattice over F . Let
1 ∈ G1. Then F = G1. For, if 0 < a ∈ F , then a ∈ G1 since it is a special element
comparable to 1 ∈ G1, and if 0 < a ∈ G1, then a ∈ F since 1 + a is a d-element
and hence a is an f -element. Let H = v(F+∗). Then H = Γ + ∪−Γ + is the largest
totally ordered subgroup of the rooted po-group Γ = v(S). For, by (5.3.3), v(a) is
comparable to v(1) = 0 if and only if a is comparable to 1. So the roots of Γ are the
cosets of H:

Γ = γ1 +H ∪·· ·∪ γn +H

and we will take γ1 = 0. Note that G+∗
j = v−1(γ j +H). Since Γ /H is a finite abelian

group it is the direct sum of nonzero cyclic groups
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Γ /H = Z(δ1 +H)¢ · · ·¢Z(δp +H)

where the order of δi + H is di and di+1 divides di for i = 1, . . . , p− 1. The sum
∑iZδi is a direct sum in Γ . For if ∑i miδi = 0 with m1, . . . ,mp not all zero and
relatively prime, then ∑i mi(δi + H) = 0 and hence we have the contradiction that
dp is a divisor of each mi. Take zi ∈ S with v(zi) = δi. For 1≤ j ≤ n write

γ j +H =
p

∑
i=1

n ji(δi +H), with 0≤ n ji < di. (5.3.8)

Then G j = Fz
n j1
1 · · ·zn jp

p . For, z
n j1
1 · · ·zn jp

p ∈ G j since its value is in γ j + H, and if
0 < b ∈G j, then v(b) = v(z

n j1
1 · · ·zn jp

p )+v(a) = v(az
n j1
1 · · ·zn jp

p ) for some 0 < a ∈ F ;
so b = caz

n j1
1 · · ·zn jp

p for some 0 < c ∈ F . This shows that Q is n-dimensional over F
and hence is a field since it is a domain by Theorem 5.3.2. Since d1δ1, . . . ,dpδp are
independent elements of H = v(F) there is, according to Theorem 5.2.20, a value
preserving isomorphism of totally ordered fields

ϕ : F −→V (H,C)⊆V (Γ ,C)

with ϕ(azdi
i ) = axdiδi for a∈A. By Theorem 3.5.13 V (Γ ,C) is an `-field and, clearly,

V (H,C) is the maximal totally ordered subfield of the `-field V (Γ ,C). Let ρ j =
∑i n jiδi for j = 1, . . . ,n. Then ρi, . . . ,ρn are distinct elements of Γ , and the V (H,C)-
vector lattice decomposition of V (Γ ,C) corresponding to (5.3.7) is

V (Γ ,C) = V (H,C)xρ1 ⊕·· ·⊕V (H,C)xρn

since γ j − ρ j ∈ H and hence V (H,C)xγ j = V (H,C)xρ j for each j. The function
ψ : Q−→V (Γ ,C) induced on the direct sum (5.3.7) by

ψ(az
n j1
1 · · ·zn jp

p ) = ϕ(a)xp j , a ∈ F

is a value preserving `-monomorphism of the F-vector lattice Q into the V (H,C)-
vector lattice V (Γ ,C) which extends ϕ and satisfies ψ(au) = ϕ(a)ψ(u) for a ∈
F and u ∈ Q. To verify that ψ preserves multiplication it suffices to show that it
preserves products of special elements since the special elements span the group Q.

For each j = 1, . . . , p we will write u j = z
n j1
1 · · ·zn jp

p . Take 0 < s ∈ G j and 0 <
t ∈ Gk. Then s = au j and t = buk where 0 < a,b ∈ F . Suppose that st ∈ G`. Then
γ j + γk +H = v(st)+H = γ` +H. So

p

∑
i=1

(n ji +nki)(δi +H) =
p

∑
i=1

n`i(δi +H)

and there are integers qi with n ji +nki = diqi +n`i for 1≤ i≤ p. Thus,

u juk = zd1q1
1 · · ·zdpqp

p u` with zdiqi
i ∈ F
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and
ρ j +ρk = ∑

i
diqiδi +ρ`.

So,

ψ(st) = ψ(abu juk) = ϕ(abzd1q1
1 · · ·zdpδp

p )xρ
`

= ϕ(a)ϕ(b)xd1q1δ1 · · ·xdpqpδp xρ
`

= ϕ(a)ϕ(b)xρ j+ρk = ψ(s)ψ(t). ut
In any finite valued commutative D-`-domain R, d(R) ⊆ f (R)∪ f (R)⊥+ and

equality holds when R has at most two roots. For `-fields in general we will soon
see that this equality actually forces R to be a D-domain.

By relaxing the restrictions on Γ and C in Theorem 5.3.3 one can embed a D-field
with a suitable basis into a commutative crossed product power series `-algebra (see
Exercise 3.5.13). Let ∆ be a rooted pops. A lattice ideal S of the power set P(∆)
of ∆ is called a supporting subset of P(∆) if for all Γ , Γ1, Γ2 in S and γ ∈ ∆ :

(P1) Γ is noetherian;
(P2) {γ} ∈S ;
(P3) Γ1 +Γ2 ∈S ;
(P4) {(α,β ) ∈ Γ1×Γ2 : α +β = γ} is finite.

When ∆ is a group (P4) holds for any γ provided it holds for γ = 0. If S is a sup-
porting subset of P(∆) and A is a totally ordered unital domain, then the restricted
formal power series crossed product

VS (A∗∆) = {v ∈V (A∗∆) : supp v ∈S }

is an `-subring of the Hahn product V (A∗∆) which contains Σ(A∗∆) in the sense
that it is an A-A- f -subbimodule of V (A ∗∆) and it is an `-ring with the crossed
product multiplication. Moreover, Exercises 3.5.13–3.5.21 hold for VS (A∗∆). One
example of a supporting subset arises from a rooted f -pops (∆ ,≤) and a partial
order ≤1 of ∆ such that ∆1 = (∆ ,≤1) is a rooted pops and ≤1⊆≤. Then S =
{Γ ⊆ ∆ : (Γ ,≤) is noetherian} is a supporting subset of P(∆1) and VS (A∗∆1) =
V (A∗∆) as rings.

Let K be an `-unital `-domain. K is f -embeddable if there is an F(K)-embedding
ϕ : K −→ VS (F(K) ∗∆) of K into a formal power series crossed product `-ring
with trivial action for some rooted po-group ∆ and some supporting subset S of
P(∆) such that Σ(F(K)∗∆)⊆ ϕ(K). For a subset B of K+∗ and u ∈ K let B(u) =
{b ∈ B : b∧ |u| > 0}. Since (|b| ∧ |u|)⊥⊥ = b⊥⊥ ∩ u⊥⊥ a basic element b in B is in
B(u) iff b⊥⊥ ⊆ u⊥⊥. B is called enabling if B(uv) ⊆ (B(u)B(v))⊥⊥ and {(a,c) ∈
B(u)×B(v) : ac∧1 > 0} is finite for all u, v ∈ K+∗.

Theorem 5.3.4. Let B(K) be the set of basic elements in the `-unital division `-ring
K and let F = F(K). Then (a) implies (b) and (b) implies (c). If K has a central basis,
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then (c) implies (a) and K is f -embeddable into VS (F ∗B(K)/F+∗); moreover, if
F+∗ is a direct factor of B(K), then K can be f -embedded into VS (B(K)/F+∗,F).

(a) K is f -embeddable.
(b) B(K) ⊆ d(K), K = b⊥ ⊕ b⊥⊥ for each b ∈ B(K) and K has an enabling

basis.
(c) K is a D-ring, the set of special elements in Γ (K) is plenary and K has a

maximal disjoint subset of special elements which is enabling.

Proof. (a) ⇒ (b). Suppose ϕ : K −→VS (F ∗∆) is an F-embedding of `-rings with
Σ(F(K)∗∆)⊆ ϕ(K). Since F = F(ϕ(K)) = ϕ(K)∩VS (F(K)∗ f (∆)) by Exercise
3.5.17, we must have f (∆) = {0} and hence ∆ is trivially ordered since f (∆) is
its maximal totally ordered subgroup by Exercise 3.5.6. So the order in V (F ∗∆)
is coordinatewise. We identify K with ϕ(K). By Exercise 2.6.12 the basic ele-
ments of K are of the form axα with 0 < a ∈ F , and K = (axα)⊥K ⊕ (axα)⊥K⊥K

since (axα)⊥K = {u ∈ K : α 6∈ supp u} and (axα)⊥K⊥K = Fxα . Since (axα)−1 =
τ(α,−α)−1a−1x−α > 0 we have B(K) ⊆ d(K). The subset B = {xα : α ∈ ∆} is
clearly a basis of K. If xα ∈ B(uv), then xα ∧ uv > 0, α ∈ supp uv and α = β + γ
with β ∈ supp u and γ ∈ supp v; so xα = xβ xγ ∈ B(u)B(v) ⊆ (B(u)B(v))⊥⊥. Also,
(xα ,xβ ) ∈ B(u)×B(v) with τ(α,β )xα xβ ∧ 1 > 0 iff (α,β ) ∈ supp u× supp v and
α +β = 0. Thus, B is an enabling basis.

(b) ⇒ (c). Since K has a basis each positive element of K is the sup of a disjoint
set of basic elements by Exercise 2.5.26 and hence the set of special elements in
Γ (K) is plenary by Theorem 2.5.14. By Theorem 2.5.8 and Exercise 2.5.35 each
special element is basic and hence K is a D-ring.

(c) ⇒ (a). B(K) = S(K) by Theorem 5.3.1, and by Theorem 2.5.14 and Exercise
2.5.26 K has a basis B and there is an F-isomorphism of bi-vector lattices F KF ∼= G
where ⊕b∈Bb⊥⊥ ⊆G⊆Πb∈Bb⊥⊥. In particular, if 0≤ u ∈ K, then u =

∨
b ub where

0 ≤ ub ∈ b⊥⊥ and for u ∈ K, ub = (u+)b− (u−)b. By Exercise 8 b⊥⊥ = Fb = bF
for each b ∈ B(K). Note that ub 6= 0 iff b ∈ B(u); also, u⊥ = B(u)⊥. We show next
that each basis B1 of K is enabling. For if B is an enabling basis, then each element
in B1 is uniquely of the form tbb = bsb for some b ∈ B and some 0 < sb, tb ∈ F .
If 0 < s, t ∈ F and x,y ∈ K, then x∧ y = 0 iff txs∧ y = 0. Thus, for u,v ∈ K+,
B1(u) = {tbb : b ∈ B(u)} and (B1(u)B1(v))⊥ = (B(u)B(v))⊥ since x∧ tbbdsd = 0
for all tbb ∈ B1(u) and dsd ∈ B1(v) iff x∧bd = 0 for all b ∈ B(u) and d ∈ B(v). So
B1(uv)⊆ (B1(u)B1(v))⊥⊥ since if tbb ∈ B1(uv), then b ∈ B(uv)⊆ (B(u)B(v))⊥⊥ =
(B1(u)B1(v))⊥⊥ and tbb ∈ (B1(u)B1(v))⊥⊥. Clearly, {(tbb,dsd) ∈ B1(u)×B1(v) :
tbbdsd ∧1 > 0} is finite, and hence B1 is an enabling basis.

We claim that for u, v ∈ K and b ∈ B

(uv)b = ∑
ac∧b>0

uavc. (5.3.9)

To see that this sum is finite consider the function

ψ : {(a,c) ∈ B(u)×B(v) : ac∧b > 0} −→ {(d,e) ∈ B(b−1u)×B(v) : de∧1 > 0}
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given by ψ(a,c) = (d,c) where B ∩ (b−1a)⊥⊥ = {d}. ψ is a bijection since if
ψ(a,c) = ψ(a1,c1), then c = c1, b−1a⊥⊥ = d⊥⊥ = b−1a⊥⊥1 , and a = a1; and if
(d,c)∈ B(b−1u)×B(v) with dc∧1 > 0, then (bd)c∧b > 0, bd∧|u|> 0, a∧|u|> 0
where a ∈ B∩ (bd)⊥⊥, and ψ(a,c) = (d,c). Let {(a1,c1), . . . ,(an,cn)} be the do-
main of ψ and note that ai 6= a j and ci 6= c j if i 6= j. Now,

u = ∑
i

uai +
∨

a
(u+)a−

∨

a
(u−)a = x+∑

i
uai

where a 6∈ {a1, . . . ,an} and, similarly, v = y + Σivci ; so |x| ∧ ai = |y| ∧ ci = 0 for
i = 1, . . . ,n, and b ∈ (B(x)B(y))⊥. Thus,

uv = ∑
i

uai vci + ∑
i 6= j

uai vc j +∑
i

xvci +∑
i

uai y+ xy.

However, uai vc j ∈ Faic jF = b⊥⊥ if i = j, and uai vc j ∈ b⊥ if i 6= j. Moreover, xvci ∈
(aivci)

⊥ = (aici)⊥ = b⊥, uai y∈ b⊥, and xy∈B(xy)⊥⊥ ⊆ (B(x)B(y))⊥⊥ ⊆ b⊥ if x,y∈
K+. Thus, (5.3.9) holds for u,v ∈ K+. The general case follows from the fact that
the domain of ψ is partitioned into four subsets, one for each term in the expression
uv = u+v+ + u−v− − u+v− − u−v+, and (uv)b = (u+v+)b +(u−v−)b− (u+v−)b−
(u−v+)b.

We will now assume 1 ∈ B. Let H = F+∗ = f (B(K)) and let ∆ be the trivially
ordered po-group ∆ = B(K)/H (Exercise 3.5.6). For 0 < u ∈ K let ∆u = {Hb ∈ ∆ :
b∧u > 0}. We claim that the set

S = {Λ ⊆ ∆ : Λ ⊆ ∆u for some 0 < u ∈ K}

is a supporting subset of P(∆). That S is an ideal is a consequence of the equation
∆u∪ ∆v = ∆u+v. (P1) is trivial and (P2) is a consequence of the fact ∆b = {Hb} for
each b∈ B(K). If Ha∈ ∆u and Hb∈ ∆v, then Hab∈ ∆uv since ab∧uv≥ (a∧u)(b∧
v) > 0; thus, using additive notation for ∆ ,∆u + ∆v ⊆ ∆uv and (P3) holds. As for
(P4),

|{(Ha,Hb) ∈ ∆u×∆v : Hab = H}|=
|{(a,b) ∈ B(u)×B(v) : ab∧1 > 0}|

is finite. For each α ∈ ∆ there is a unique bα ∈ B with α = Hbα since B is
a transversal of H in B(K). If α , β ∈ ∆ , then Hbα bβ = α + β = Hbα+β and
τ(α,β ) = bα bβ b−1

α+β ∈ H with τ(α,0) = τ(0,α) = 1. Under the assumption that
any two elements of B commute we have ∆ is abelian and

τ(α +β ,γ)τ(α,β ) = bα+β bγ b−1
α+β+γ bα bβ b−1

α+β = bα bβ bγ b−1
α+β+γ

= bα bβ+γ b−1
α+β+γ bβ bγ b−1

β+γ = τ(α,β + γ)τ(β ,γ)

for all α , β , γ ∈ ∆ ; that is VS (F ∗∆) is an `-ring. Since right multiplication by
b−1

α is an isomorphism of F b⊥⊥α onto F F we can redefine the original vector lattice
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embedding as ϕ : K −→VS (F ∗∆) where

ϕ(u) = ∑
α∈∆

xα ubα b−1
α .

For u,v ∈ K and γ ∈ ∆ ,

(ϕ(uv))γ = (uv)bγ b−1
γ = ∑

βα bβ∧bγ >0
ubα vbβ b−1

γ = ∑
α+β=γ

ubα vbβ b−1
γ

by (5.3.9), and

(ϕ(u)ϕ(v))γ = ∑
α+β=γ

τ(α,β )ubα b−1
α vbβ b−1

β = ∑
α+β=γ

bα bβ b−1
α+β ubα b−1

α vbβ b−1
β

= ∑
α+β=γ

ubα vbβ b−1
γ

provided B is central. Thus, ϕ preserves products.
Suppose H is a direct factor of B(K). Then we can take B to be a subgroup of

B(K) and hence bα+β = bα bβ and τ(α,β ) = 1 for all α , β ∈ ∆ . ut
An example of a division `-ring which satisfies (b) and (c) of Theorem 5.3.4

but which is not f -embeddable is given in Exercise 25, and an example of an f -
embeddable `-field for which the twisting function τ is never trivial is given in
Exercise 26.

Theorem 5.3.5. Let R be a lattice-ordered division ring with 1 > 0 and which is dis-
tinct from its subring F of f -elements. Then the following statements are equivalent.

(a) R = F⊕Fa for some a > 0 with a2 ∈ F.
(b) R = lex (F⊕Fa) for some a > 0 with a2 ∈ F.
(c) d(R) = f (R)∪ f (R)⊥+.
(d) R is a D-`-ring with exactly two roots.

Proof. (b) ⇒ (c). We have a ∈ d(R) since a−1 = a−2a > 0, and aF = Fa since
conjugation by a is an `-ring automorphism of R. If b ∈ F⊥\(F ⊕Fa), then |b| >
F ⊕Fa and 1 = 1∧ |b| = 0. So F⊥ ⊆ F ⊕Fa, F⊥ ⊆ Fa and certainly Fa ⊆ F⊥;
hence f (R)⊥+ = F+a⊆ d(R) and f (R)∪ f (R)⊥+ ⊆ d(R). The reverse inclusion is
given in Exercise 6.

(c)⇒ (b). If 0 < a∈ f (R)⊥+, then a is basic because a∈ d(R) and hence a−1 > 0,
and 1 is basic. If 0 < b∈ f (R)⊥+, also, then 0 < a,b≤ a+b implies that a and b are
comparable. Hence F⊥ is totally ordered, and ab∧a = a(b∧1) = 0 shows that ab ∈
a⊥ = F⊥⊥ (Exercise 2.4.11); thus, ab∈ f (R) since ab∈ d(R). So b = aa−2ab∈ aF ,
F⊥ = aF and, similarly, F⊥ = Fa. Note that F⊥⊥ = (Fa)⊥ = F⊥a = Fa2 = F . By
Theorem 2.5.9

R = {x ∈ R : |x|> F}∪ (F⊕F⊥)
= {x ∈ R : |x|> F⊥}∪ (F⊥⊕F).
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So if x ∈ R+\(F⊕F⊥), then x > F⊕F⊥ and R = lex (F⊕Fa).
(b) ⇒ (a). From the first paragraph above, aF = Fa and (Fa)2 = F . So F ⊕Fa

is a subring of R and it is a division ring. To see this, take 0 6= b+ ca with b,c ∈ F .
If b = 0, then (ca)−1 = (ca)−2ca ∈ Fa. If b 6= 0, then b + ca = b(1 + b−1ca) and
(1 + b−1ca)−1 = (1− b−1ca)[1− (b−1ca)2]−1 ∈ F ⊕Fa; so (b + ca)−1 ∈ F ⊕Fa.
Now, if x > F ⊕Fa, then x−1 cannot be in F ⊕Fa and so x−1 = |x−1| > F ⊕Fa.
This gives the contradiction 1 = xx−1 > 1. So R = F⊕Fa.

Since (a) trivially implies (b) the first three statements are equivalent, and (a)
and (c) together with the fact that Fa is totally ordered clearly imply (d). On the
other hand, if R is a D-`-ring with two roots, then, as in (5.3.7), R = F ⊕F⊥ and
d(R) = S(R)∪{0}= f (R)∪ f (R)⊥+ by Theorem 5.3.1. ut

A version of the preceding theorem holds for `-domains. However, now (b)
doesn’t imply (a); see Exercise 11.

The `-fields in the previous results all have 1 > 0 and consequently they have a
good totally ordered subfield, namely, the subfield of f -elements or, more precisely,
the additive subgroup generated by the f -elements which, according to Exercise
3.1.12, is the largest local sp-`-subring. By considering, more generally, those ele-
ments which induce an f -map under multiplication we will see that there still is a
“largest totally ordered subfield” even if 1 6> 0, provided the `-field is archimedean.

Theorem 5.3.6. Let E be the divisible hull of the archimedean `-group G. If 0 < a∈
E, then

Ea = {x ∈ E :Qa∪{x} is totally ordered}
is a Q-subspace of E and, for a ∈ G, Ea ∩G = Ga is the largest totally ordered
subgroup of G which contains a. Moreover, Ga = Gb if and only if 0 < b ∈ Ea.

Proof. We may assume that G = E since this result for E certainly implies it for
G. Certainly, Qa ∪{x} is a chain exactly when Za ∪ Zx is a chain. Let x,y ∈ Ga
and p ∈ Q. Then px, x + pa ∈ Ga since Qa∪ {px} = p(Qa∪ {x}) if p 6= 0 and
Qa∪{x+ pa}= (Qa∪{x})+ pa. Let Lx = {ra∈Qa : ra < x} and Ux = {ra ∈Qa :
x < ra} be the cut in Qa determined by x. If Lx = Ly, then x = y. For, if m ∈ N,
then since Za∪{mx} is a chain and G is archimedean, there is an integer n ∈ Z with
na < mx≤ (n+1)a. But then na < my≤ (n+1)a also, and−a < m(x−y) < a; that
is, m|x−y|< a. Since m is arbitrary x = y. Suppose, to the contrary, that x+y 6∈Ga.
Then for some p ∈ Q we have pa‖x + y or, pa− x‖y. Since Qa∪ {pa− x} is a
chain and Ly < y < Uy, necessarily, Ly < pa− x < Uy. Consequently, Ly = Lpa−x
and we have the contradiction y = pa−x. So x+y∈Ga and Ga is a subgroup which
contains a. If x 6= y, then Lx ⊂ Ly or Ly ⊂ Lx. Assuming the former there is an r ∈Q
with ra < y and x≤ ra; so x < y and Ga is totally ordered. If H is any totally ordered
subgroup of G with a ∈ H, and x ∈ H, then Za∪Zx is a chain and hence so is
Qa∪{x}; so x ∈ Ga and H ⊆ Ga. If 0 < b ∈ Ga, then Ga ⊆ Gb since Ga is totally
ordered and a ∈ Gb; so Gb ⊆ Ga since Gb is totally ordered. ut

For the archimedean `-domain R define
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L(R) = L = {x ∈ R : xRa ⊆ Ra for each 0 < a ∈ R} (5.3.10)

and, for a > 0,

P(a) = {x ∈ L : xa≥ 0}. (5.3.11)

Clearly, L is a subring of R, P(a) + P(a) ⊆ P(a) and L = P(a)∪−P(a). If R is
commutative, then P(a)∩−P(a) = `(R). For, if x ∈ P(a)∩−P(a) and 0 < b ∈ R,
then xb is comparable to 0 and xa = 0; so xb = 0 or else 0 = xab = xba 6= 0.

Recall from Exercise 3.1.8 that in any `-ring R

f (R) = {x ∈ R : a∧b = 0⇒ xa∧b = ax∧b = 0}

is a convex subsemiring of R and the additive subgroup F(R) it generates is a convex
subring which we will call the subring of f -elements.

Theorem 5.3.7. Let R be a commutative archimedean `-domain with `(R) = 0 and
let L and P = P(a) be given by (5.3.10) and (5.3.11). Then the following hold.

(a) P(a) = P(b) for all 0 < a,b ∈ R.
(b) (L,P) is a totally ordered archimedean domain and if x ∈ L is a unit of R,

then x−1 ∈ L.
(c) P = f (R) and either L is the totally ordered subring of f -elements of R or it

is the trivially ordered subring of f -elements.
(d) L is the largest subring of R which has a directed partial order and over

which R is an `-algebra.

Proof. We saw previously that (L,P(a)) is a totally ordered group. Let 0 < a,b ∈ R.
If x ∈ P(a), then (xa)b ≥ 0 and x ∈ P(ab). But if x ∈ P(ab), then xab ≥ 0 and
hence xa ≥ 0 since xa is comparable to 0. So x ∈ P(a) and P(a) = P(ab) = P(b).
If x,y ∈ P, then xya2 = xaya ≥ 0 and xy ∈ P. So (L,P) is a totally ordered ring
and R is a po-algebra over (L,P). If 0 6= x ∈ P and 0 < a ∈ R, then we saw above
that 0 < xa since `(R) = 0. Consequently, L is a domain and (L,P) is archimedean
since R is archimedean. Suppose x ∈ P. Since Ra is totally ordered and archimedean
0 ≤ xa ≤ na for some n ∈ N. So if a∧ b = 0, then xa∧ b = 0. Thus, x ∈ f (R) and,
if x−1 ∈ R, then multiplication by x−1 is an f -automorphism of the `-group R; that
is, x−1 ∈ f (R). Since xRa ⊆ Ra, we have xRa = Rxa = Ra by Theorem 5.3.6; so
x−1Ra = Ra and x−1 ∈ L. We have just seen that P ⊆ f (R) and now we will show
that f (R) ⊆ P. Let 0 6= x ∈ f (R) and let µx denote multiplication by x. Then µx ∈
F(R,+) = F where F is the subring of EndZ(R) generated by the f -endomorphisms
of R. By Theorem 3.6.6 F is a semiprime f -ring and R is a strong f -module over
F . Let 0 < a ∈ R and put b = (µx− 1)+a and c = (µx− 1)−a. Then (µx− 1)b =
((µx − 1)+)2a ≥ 0 and xb ≥ b ≥ 0. Also, (µx − 1)c = −((µx − 1)−)2a ≤ 0 and
0 ≤ xc ≤ c. Consequently, xbc = bc. Let α = µx− 1. If α 6= 0, then α2d > 0 for
some 0 < d ∈ R and

0≤ (α2d)bc = (x−1)2dbc = (x−1)2bcd = 0.
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So either α = 0 and x = 1, or b = 0 or c = 0. Suppose x 6= 1. Then (xa− a)+ = 0
or (xa− a)− = 0, and hence, either 0 < xa < a or 0 < a < xa. By replacing R by
its divisible hull we may assume that R is a Q-algebra. Replacing x by r−1x where
r is a nonzero positive rational number we obtain r−1x = 1 or 0 < r−1xa < a or
0 < a < r−1xa; that is, x = r or xa < ra or ra < xa. Thus, Qa∪ {xa} is a chain
and xa ∈ Ra. This shows x ∈ P since xa ≥ 0. If R has an f -element a > 0, then
0 = (xa)− = x−a and x− = 0 whenever x ∈ f (R); so f (R) = f (R) and L is the
subring of f -elements. On the other hand, if f (R) = 0, then L = F(R) is trivially
ordered since L∩R+ = ( f (R)∪− f (R))∩R+ = f (R)∪− f (R) = 0.

Now suppose K is a subring of R, (K,T ) is a po-ring and R is an `-algebra over
(K,T ). Then T ⊆ f (R) = P and T −T ⊆ L. ut

We wish to determine the structure of the L-submodule Ra when a is algebraic
over L.

Theorem 5.3.8. Let R be a commutative domain and an archimedean `-ring whose
subring L of f -elements is different from 0. Suppose 0 < a ∈ R is algebraic over L.
Then αRa ⊆ La for some 0 6= α ∈ L. If Q(L) is the totally ordered field of quotients of
L and Q = R⊗L Q(L) is the Q(L)-`-algebra of quotients of R, then Ra = Q(L)a∩R.
In particular, Qa = Q(L)a.

Proof. We have R ⊆ S ⊆ Q where S is the Z-divisible hull of R and Q is the L-
divisible hull of R. Let f (x)∈ L[x] be a polynomial of minimal degree with f (a) = 0.
So f (a) = α0 +α1a+ · · ·+αnan = 0 with αi ∈ L and α0αn 6= 0. We will show that
α0Ra ⊆ La by verifying that for each 0 < b ∈ Ra the element c = α1b + α2ab +
· · ·+ αnan−1b is in L and hence −α0b = ca ∈ La. Let 0 < x ∈ R. In order to show
that cx ∈ Rx we first note the following. Since Sa is totally ordered so is Qaix∪
{ai−1bx} ⊆ Saai−1x for each i ∈ N; and

if r ∈Q and ai−1bx≤ raix for some i ∈ N, then

a j−1bx≤ ra jx for each j ∈ N. (5.3.12)

For, suppose i < j. Then either ai−1bx≤ raix or ai−1bx > raix and since multiplica-
tion by a j−i is strictly isotone, we have a j−1bx≤ ra jx or a j−1bx > ra jx, respectively.
Let

I = {i ∈ {1, . . . ,n} : 0 6= αi ∈ P} and J = {i ∈ {1, . . . ,n} : 0 6= αi ∈ −P},

and put

c1 = ∑
i∈I

αiai−1b , c2 = ∑
i∈J

αiai−1b

e1 = ∑
i∈I

αiai , e2 = ∑
i∈J

αiai.

Then c = c1 + c2, α0 + e1 + e2 = 0, and c1, e1 > 0 and c2, e2 < 0. Of course, we
may assume I 6= /0. If J = /0, then c2 = e2 = 0 and in the following ignore all ref-
erences to c2 and e2. We claim that ckx ∈ R|ekx| for k = 1,2. For, if r ∈ Q, then, by
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(5.3.12), either c1x ≤ re1x and c2x ≥ re2x, or c1x > re1x and c2x < re2x. Conse-
quently, Q|ekx| ∪{ckx} is totally ordered. These inequalities determine a cut (A,B)
in Q where

A = {r ∈Q : re1x < c1x} = {r ∈Q : c2x < re2x},
B = {r ∈Q : c1x≤ re1x} = {r ∈Q : re2x≤ c2x}.

Let X be the Stone space of the Boolean algebra of polars of S. By Theorem 2.3.23
S can be embedded in D(X) as a vector lattice overQ (and as an L(S)- f -module-see
Exercise 2.3.19). Let α be the real number determined by the cut (A,B). So, in R
and in D(X)

α =
∨

r∈A

r =
∧

r∈B

r.

By Theorem 3.6.4 D(X) is an infinite d-ring and hence c1x = αe1x. For, e1x ≥ 0
gives

αe1x =
∨

r∈A

re1x≤ c1x≤
∧

r∈B

re1x = αe1x.

Similarly, c2x = αe2x, and

cx = c1x+ c2x = α(e1x+ e2x) =−α0αx.

Thus, Qx∪{cx} is totally ordered and cx ∈ Rx. Since Q(L) = L(Q) by Exercise 13
and Qa = L(Q)a, as we have just shown, Ra = Qa∩R = Q(L)a∩R. ut

If the commutative domain R in Theorem 5.3.8 is algebraic over its subring L,
then Q is its field of quotients, and we will show that the lattice order of Q can be
extended to a total order. In order to do this we will first develop some topological
and order-theoretic properties of Rn.

A vector space V over R which is also a topological space is called a topological
vector space if addition and scalar multiplication are continuous functions:

V ×V −→V , (v,w) 7→ v+w, is continuous (5.3.13)
R×V −→V , (a,v) 7→ av, is continuous . (5.3.14)

Here, V ×V and R×V have the product topology. From (5.3.14) we see that the
function V −→ V given by v −→ −v is continuous; so V is a topological group
(see Exercise 4.2.12). Also, it is clear that the translations w 7→ v + w and w 7→ aw
are homeomorphisms for each v ∈ V and each 0 6= a ∈ R. If NV (x), or just N (x),
denotes the collection of neighborhoods of x ∈ V , then x +N (0) = N (x). In par-
ticular, a linear transformation between two topological vector spaces is continuous
if and only if it is continuous at 0 (or at some point of its domain).

The subset E of the real vector space V is symmetric if E = −E, balanced if
aE ⊆ E whenever a ∈ R and |a| ≤ 1, and absorbing if for each v ∈ V there is an
0 < ε ∈ R such that bv ∈ E whenever b ∈ R and |b| ≤ ε .
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We collect some information about N (0) below. Recall that a subset of N (x)
which is coinitial in N (x) with respect to inclusion is called a base for the neigh-
borhood system at x.

Theorem 5.3.9. Let V be a topological vector space and let U be a neighborhood
of 0.

(a) There is a neighborhood A of 0 with A+A⊆U.
(b) U contains a symmetric neighborhood of 0.
(c) U contains a closed neighborhood of 0, and hence V is a regular topological

space.
(d) U contains a balanced neighborhood of 0.
(e) U is absorbing.

Proof. (a) By (5.3.13) there are neighborhoods U1 and U2 of 0 such that U1 +U2 ⊆
U . Let A = U1∩U2.

(b) U ∩−U is a symmetric neighborhood of 0 contained in U .
(c) Since the subtraction function V ×V −→ V , (v,w) 7→ v−w, is continuous

there exists A ∈ N (0) such that A−A ⊆U . If x ∈ A−, then there exists y ∈ (x +
A)∩A. So y = x+w with w ∈ A and x = y−w ∈ A−A⊆U . Thus, A− ⊆U .

(d) By (5.3.14) there exists 0 < a ∈ R and A ∈N (0) with bw ∈U if |b| ≤ |a|
and w ∈ A. Let U1 be the set of all these elements bw. Then U1 ∈N (0) since it is
the union of the translates bA with |b| ≤ |a|. If |c| ≤ 1, then |cb| ≤ |a| and cbw ∈U1;
so U1 is balanced and V1 ⊆U .

(e) Since 0v = 0, by (5.3.14), if v ∈V there exists A ∈N (v) and 0 < a ∈R with
U1 = {bw : |b| ≤ |a|, w ∈ A} ⊆U ; so U is absorbing. ut

There is a converse to Theorem 5.3.9 in the sense that a base for the neighborhood
system at 0 determines the topology of V .

Theorem 5.3.10. Let B be a nonempty family of nonempty subsets of the vector
space RV with the following properties:

(a) If B1, B2 ∈B, then there exists B3 ∈B with B3 ⊆ B1∩B2.
(b) For every B ∈B there exists B1 ∈B with B1 +B1 ⊆ B.
(c) Each B ∈B is balanced and absorbing.

Then there is a unique topology T for V such that B is a base for the neighborhood
system at 0 and (V,T ) is a topological vector space, or, equivalently, each additive
translation is continuous.

Proof. Let N0 = {X ⊆V : there exists B ∈B with B⊆ X} and, for x ∈V , let Nx =
x+N0. Since each B∈B is balanced, 0∈ B, and, clearly, Nx satisfies the first three
conditions in Exercise 15. To see that it satisfies the fourth, take A∈B and B,C ∈B
with B + B ⊆ A and C +C ⊆ B. If x ∈ V and y ∈ x + B, then y +C ⊆ x + B ⊆ x + A
and x + B ∈Ny. Thus, by Exercise 15, T = {U ⊆ V : x ∈U implies U ∈Nx} is a
topology for V and N (x) = Nx for each x ∈V . Note that x+B is a base for N (x).
To see that addition is continuous suppose that x,y ∈ V and A ∈ B; so x + y + A
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is a basic neighborhood of x + y. If B ∈ B with B + B ⊆ A, then (x + B) + (y +
B) ⊆ x + y + A, and addition is continuous at (x,y) ∈ V ×V . We will now check
that scaler multiplication is continuous at (a,x) ∈ R×V . It suffices to show that if
A ∈B, then there exist 0 < ε ∈ R and B ∈B with (a− ε,a + ε)(x + B) ⊆ ax + A;
that is, if |b− a| < ε , then b(x + B) ⊆ ax + A or, equivalently, (b− a)x + bB ⊆ A.
There exists C ∈B with C +C ⊆ A. Since C is absorbing there exists ε > 0 such
that |b− a| ≤ ε implies (b− a)x ∈ C. Using induction on n ∈ N it is easy to see
that, for each n, there exists Bn ∈B with 2nBn ⊆ C. Take n with 2n > |a|+ ε and
let B = Bn. Since |b| ≤ |b− a|+ |a| < 2n and B is balanced bB ⊆ 2nB ⊆ C. Thus,
(b−a)x+bB⊆C +C ⊆ A, as desired.

Since a topology is determined by the neighborhood systems of its points the
topology on V is unique. ut

Let W be a vector subspace of the topological vector space V and let ρW = ρ :
V −→V/W be the natural homomorphism. Recall that the quotient topology Q on
V/W is defined by Q = {T ⊆ V/W : ρ−1(T ) is open} and is characterized by the
condition: a function f : V/W −→ Z into a topological space Z is continuous if and
only if the composite f ρ is continuous. Clearly, ρ−1ρ(U) = U +W for each subset
U of V and ρ is a continuous and open mapping.

Theorem 5.3.11. If W is an R-subspace of the topological vector space V , then
V/W, with the quotient topology, is a topological vector space. V/W is Hausdorff
if and only if W is closed.

Proof. By Theorem 5.3.9 the set B of balanced neighborhoods of 0 is a base
for N (0) and B satisfies the conditions in Theorem 5.3.10. Now, N (ρ(0)) =
ρ(N (0)). For, if 0 ∈U ⊆ A⊆V with U open, then ρ(0) ∈ ρ(U)⊆ ρ(A) and ρ(U)
is open; and if ρ(0)∈ ρ(U)⊆ ρ(A) with ρ(U) open, then W ⊆W +U ⊆W +A with
W +U open and ρ(A) = ρ(W +A) ∈ ρ(N (0)). Consequently, we have that ρ(B)
is a base for N (ρ(0)) and since the image of a balanced or absorbing subset is bal-
anced or absorbing, respectively, ρ(B) satisfies the conditions in Theorem 5.3.10.
If τx denotes translation by x, then, clearly, τρ(x)ρ = ρτx and hence τρ(x) is con-
tinuous. Thus, by Theorem 5.3.10, V/W with its quotient topology is a topological
vector space. If V/W is Hausdorff, then {ρ(0)} is closed and so is W = ρ−1(ρ(0)).
On the other hand, if W is closed, then so is {ρ(0)} and hence each point in V/W is
closed. Thus, if ρ(x) 6= ρ(y), then by (c) of Theorem 5.3.10 there exists ρ(U) open
with ρ(x) ∈ ρ(U) ⊆ ρ(U)− ⊆ ρ(V )\{ρ(y)}. But then ρ(U) and ρ(V )\ρ(U)− are
disjoint neighborhoods of ρ(x) and ρ(y). ut

Suppose that W and X are R-subspaces of V and V = W ¢X . Then X is called a
topological complement of W and V is called the topological direct sum of W and
X if the topology of V is the product topology of W ×X where W and X have the
subspace topologies; that is, if the continuous isomorphism q : W ×X −→ V given
by (w,x) 7→ w+ x is a homeomorphism. Note that if p = pW : V −→W denotes the
projection p(w+x) = w onto W , then p is continuous precisely when it is continuous
as a map of V into itself.
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Theorem 5.3.12. Suppose V is a topological vector space and V = W ¢ X. The
following statements are equivalent.

(a) V is the topological direct sum of W and X.
(b) pW : V −→V is continuous.
(c) The isomorphism hX : V/W −→ X is a homeomorphism.

Proof. (a) ⇒ (b). This is a consequence of the equation pW = πW q−1 where πW :
W ×X −→W is the projection.

(b) ⇒ (a). The continuity of 1V and pW gives that pX = 1V − pW is continuous.
But then q−1 is continuous since πW q−1 = pW and πX q−1 = pX are continuous.

(b) ⇔ (c). hX is continuous if and only if hX ρW is continuous. But hX ρW = pX
and pX is continuous if and only if pW = 1V − pX is continuous. ut

We show next that a finite dimensional vector space has a unique Hausdorff topol-
ogy that makes it into a topological vector space. An R-algebra is a topological
algebra if it is a topological vector space and multiplication is continuous.

Theorem 5.3.13. Let (V,T ) be an n-dimensional Hausdorff topological vector
space. Then each R-isomorphism Rn −→ V is a homeomorphism and hence T
is unique. If V is an R-algebra, then it is a topological algebra.

Proof. We proceed by induction on n. For n = 1 let 0 6= v0 ∈ V . The map R −→
V , a 7→ av0, is continuous since it is the composite of the continuous map R −→
R×V , a 7→ (a,v0), followed by scalar multiplication. To see that its inverse ϕ is
continuous at 0 let 0 < ε ∈ R and let B and U be disjoint neighborhoods of 0 and
εv0, respectively, with B balanced. Then ϕ(B)⊆ (−ε,ε). For if av0 ∈ B and |a| ≥ ε ,
then |εa−1| ≤ 1 and we obtain the contradiction εv0 = εa−1av0 ∈ B.

Suppose that V is n-dimensional, n > 1, and the first statement holds for (n−1)-
dimensional Hausdorff spaces. Let ψ :Rn −→V be an R-isomorphism. Since Rn =
Rn−1 ¢R is a topological direct sum and since by induction and the case n = 1
the restrictions of ψ to Rn−1 and to R are homeomorphisms onto their respective
images W = ψ(Rn−1) and ψ(R), it suffices to show that W is closed. For then,
V/W is Hausdorff by Theorem 5.3.10, V/W −→ ψ(R) is a homeomorphism by
the case n = 1, W and ψ(R) are topological complements by Theorem 5.3.12, and
ψ :Rn−1 ¢R−→W ¢ϕ(R) is a homeomorphism. The brief reason why W is closed
is that each Cauchy net in W converges in W and limits in the Hausdorff space V
are unique. We will supply more details.

We first will find a descending sequence of symmetric neighborhoods A1 ⊇ A2 ⊇
·· · in NV (0) such that Am+1 + Am+1 ⊆ Am for each m ∈ N and {Am ∩W : m ∈ N}
is a base for NW (0). Since W is homeomorphic to Rn−1 there is a countable base
B′1 ⊇ B′2 ⊇ ·· · for NW (0) and, for each m, B′m = A′m ∩W with A′m ∈ NV (0). Let
A′1 = A1 and proceed by induction. Given the chain A1 ⊇ ·· · ⊇ Am with each A j
symmetric, A j ⊆ A′j, and A j +A j ⊆ A j−1 for 2≤ j ≤m, we can find Am+1 ∈NV (0)
such that Am+1 is symmetric, Am+1 ∈NV (0), and Am+1 + Am+1 ⊆ A′m+1 ∩Am. Let
Bm = Am∩W . Then {Bm : m ∈ N} is a base for NW (0) since Bm ⊆ B′m for each m.
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Suppose x is in the closure of W . For each A ∈NV (0) choose xA ∈ (x +A)∩W .
Note that the relation A ≥C if A ⊆C is an upward directed partial order of NV (0)
and the net (xA)A converges to x : if U ∈ NV (x), then U = x + A0 for some A0 ∈
NV (0) and A ≥ A0 gives xA ∈ x + A ⊆ x + A0 = U . Let xm = xAm Then (xm)m is a
Cauchy sequence in W ; that is, for each C in NW (0) there exists an integer N such
that if p,m≥ N, then xp−xm ∈C. For, there exists N ∈N with BN ⊆C. So if p,m≥
N + 1, then xp = x + vp, xm = x + vm with vp ∈ Ap ⊆ AN+1 and vm ∈ AM ⊆ AN+1.
Thus, xp−xm = vp−vm ∈AN+1 +AN+1⊆AN and xp−xm ∈AN∩W = BN ⊆C. Since
W is Cauchy-complete the sequence (xm)m converges to some y ∈W ; that is, each
neighborhood of y contains a tail of this sequence. But then (xA)A converges to y.
For if C ∈NW (y), then BN ⊆−y+C for some integer N and there exists N′ ≥N +1
such that if m ≥ N ′, then xm ∈ BN+1 + y. Thus, if A ≥ AN′+1, then xA − xN′+1 ∈
(x+A)− (x+AN′+1)⊆ AN′+1−AN′+1 ⊆ AN′ ⊆ AN+1 and xA− xN′+1 ∈ BN+1; also,
xN′+1−y ∈ BN+1. So xA− y = xA−xN′+1 + xN′+1− y ∈ BN+1 +BN+1 ⊆ BN ; that is,
xA ∈ y+BN ⊆C. Now, if x 6= y, then there exist C0,D0 ∈NV (0) with (y+C0)∩(x+
D0)= /0. But there exists A≥C0, D0 with xA ∈ (y+C0)∩(x+D0). This contradiction
shows that x = y ∈W and W is closed.

Now suppose V is an R-algebra. To show that multiplication in V is continuous
it suffices to verify that each bilinear map f : Rn×Rn −→ Rn is continuous. Since
f is continuous if and only if f followed by each of the n projections is continu-
ous it suffices to verify that any bilinear map g : Rn×Rn −→ R is continuous. Let
{e1, . . . ,en} be the standard basis for Rn and let G = (g(ei,e j)) be the n×n matrix
whose (i, j)th entry is g(ei,e j). Then g(x,y) = xtGy where xt is the transpose of x.
Let π j be the jth coordinate projection in Rn. Since the sequence (xm)m in Rn con-
verges to x if and only if each of the sequences π j(xm) converges to π j(x), and since
a function fromRn toRk is continuous if and only if it preserves limits of sequences,
it is easy to see that multiplication by the matrix G is continuous and that the usual
inner product on Rn is continuous; thus, g is continuous. ut

The next goal is to show that an isotone linear operator on a finite dimensional
partially ordered vector space over R has a positive eigenvector. The next result will
be used for this purpose.

Theorem 5.3.14. Each complex number that is not on the positive real axis is a root
of a nonzero polynomial in R+[x].

Proof. Let z ∈ C\[0,∞). If z = −a ∈ R, then z satisfies a + x. If z = bi, then z
satisfies b2 + b2x + x2 + x3, and using this a simple computation gives that if z =
−1+bi with b 6= 0, then, since z+1 satisfies the previous polynomial, z is a root of
2(b2 +1)+(b2 +5)x+4x2 +x3. We can reduce the verification to the case z = 1+bi
with b > 0. For if z = 1 + bi with b < 0, then z is a root of the same polynomial as
its conjugate z. Now, if z = a+bi with ab 6= 0 and α0 +α1za−1 + · · ·+αnzna−n = 0,
then α0an +(α1an−1)z+ · · ·+αnzn = 0 and we have the reduction if a > 0. If a < 0,
then−za−1 =−1−ba−1i =−1−ci and 2(c2 +1)+(c2 +5)(−za−1)+4(za−1)2−
(za−1)3 = 0, as we have seen, and hence−2a3(c2 +1)+(c2 +5)a2z−4az2 +z3 = 0.

Let z = 1 + bi with b > 0. It is straightforward to check that 1 + i satisfies 10 +
x+ x2 + x3 + x4 +1.25x5. Since
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α0 +α1z+α2z2 +α3z3 =

α0 +α1 +α2(1−b2)+α3(1−3b2)+ [α1 +2α2 +α3(3−b2)]bi,

z is a root of the third degree polynomial with α3 = 3(b2 − 3)−1, α1 = α2 = 1
and α0 = b2−2+3(3b2−1)(b2−3)−1, and if b2 > 3 this polynomial has positive
coefficients. Similarly, when b2 = 3 z is a root of the fourth degree polynomial with
coefficients α0 = 12, α1 = 6, and α2 = α3 = α4 = 1, and if 1 < b2 < 3, then the
coefficients α1 = α2 = α3 = 1, α4 = (6− b2)(4(b2− 1))−1, and α0 = (b6 + 4b4 +
9b2 +6)(4(b2−1))−1 give a polynomial which z satisfies.

We are reduced to the case z = 1+bi with 0 < b < 1; that is, the argument θ of z
is in the interval (0, π

4 ). Since b = tanθ , if we can find a polynomial for zcosθ = eiθ ,
then we will have one for z since cosθ > 0. We will show that z = eiθ has a power z1
in the second quadrant and another power z2 in the third quadrant whose argument
exceeds θ +π . Then 0 is an interior point of the triangle with vertices z,z1 and z2 and
hence 0 = rz+sz1 +tz2 with r,s, t > 0. To find z2 = zn = einθ with π +θ < nθ < 3

2 π ,
that is, with

1+ θ
π

n
<

θ
π

<
3
2n

(5.3.15)

take n ≥ 1 minimal such that the first inequality in (5.3.15) holds. Then n ≥ 2 and
π

n−1 < θ ; so n≥ 6 since θ < π
4 . Now,

θ
π
≤ 1+ θ

π
n−1

(5.3.16)

and the inequality

1+ θ
π

n−1
<

3
2n

(5.3.17)

is equivalent to 3π
π−2θ < n. Since the inequality 3π

π−2θ < 6 is equivalent to θ < π
4 we

do have (5.3.17) and hence the second inequality in (5.3.15) is also valid.
To find z1 = zn = einθ with π

2 < nθ < π , or, equivalently, 1
2n < θ

π < 1
n , take n≥ 1

minimal such that 1
2n < θ

π . Then n≥ 3 and θ
π ≤ 1

2(n−1) . Since 1
2(n−1) < 1

n we do have
θ
π < 1

n . ut
Let A ∈ Rn. The spectral radius ρ(A) of A is defined to be the maximum of the

absolute values of the complex numbers that are eigenvalues of A.

Theorem 5.3.15. Suppose that V = Rn is a directed partially ordered vector space
such that V + is closed and A ∈ Rn with AV + ⊆ V +. Then the spectral radius ρ(A)
of A is an eigenvalue of A and V + contains an eigenvector of A belonging to ρ(A).

Proof. If ρ(A) = 0, then A is nilpotent, and if k is its index of nilpotency, then there
is a vector v ∈ V + with Ak−1v 6= 0; so Ak−1v is an eigenvector of A. Suppose that
ρ = ρ(A) > 0 and let
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J =




J1
. . .

Jk




be the Jordan canonical form of A. So each of the Jordan blocks Ji is an mi×mi
complex matrix, and for some eigenvalue λi,

Ji =




λi 0 · · · 0
1 λi · · · 0
... λi 0
0 · · · 1 λi


 .

Let {vi j : 1≤ i≤ k,1≤ j ≤ mi} be a basis of Cn going with J but in reverse order;
so for every pair i, j, and with vi0 = 0,

Avi j = λivi j + vi, j−1. (5.3.18)

Note that since A is real J = J except for a rearrangement of the blocks, and there is
a permutation i 7→ i of {1,2, . . . ,k} of order 2 such that i = i if λi is real and λi = λ i
for each i; so Ji = Ji. We assume that the Jordan basis is chosen so that vi j = vi j
for each pair i, j. Then an element v in Cn is, in fact, in V precisely when it can be
written as

v =
k

∑
i=1

mi

∑
j=1

ai jvi j, with ai j = ai j . (5.3.19)

The following notation will be used:

ρ = ρ(A) = |λ1|= · · ·= |λν |> |λν+1| ≥ · · · ≥ |λk|,
m = m1 = · · ·= mh > mh+1 ≥ ·· · ≥ mν , (5.3.20)
λi = ρizi where |λi|= ρi for 1≤ i≤ k.

According to Exercise 16 there is an element v∈V and an ε > 0 such that the real
ε-ball Nε(v) is contained in V +. Suppose v is given by (5.3.19) and M = ∑i, j ||vi j||
where ||vi j|| denotes the length of vi j in Cn = R2n, 0 < δ < ε

M , and δ 6∈ {−ai j : 1≤
i≤ k,1≤ j ≤ mi}. Then bi j = ai j +δ 6= 0 for each pair (i, j), and

0 6= w =
k

∑
i=1

mi

∑
j=1

bi jvi j ∈ Nε(v) (5.3.21)

since w ∈V by (5.3.19) and

||w− v||= δ ||∑
i

∑
j

vi j|| ≤ δM < ε.
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We will show that V +∩∑h
i=1Cvi1 6= 0. Toward this goal we first use induction on

r to verify that for each i and j,

Arvi j =
j−1

∑
s=0

(
r
s

)
λ r−s

i vi, j−s. (5.3.22)

If r = 0 this is obvious, and if r = 1 (5.3.22) reduces to (5.3.18). Here, of course, the

binomial coefficient
(

r
s

)
is 0 when s > r. Assuming (5.3.22) for some r we get

Ar+1vi j =
j−1

∑
s=0

(
r
s

)
λ r−s

i Avi, j−s

=
j−1

∑
s=0

(
r
s

)
λ r−s

i (λivi, j−s + vi, j−s−1)

=
j−1

∑
s=0

(
r
s

)
λ r+1−s

i vi, j−s +
j−1

∑
s=0

(
r
s

)
λ r−s

i vi, j−(s+1)

= λ r+1
i vi j +

j−1

∑
s=1

(
r
s

)
λ r+1−s

i vi, j−s +
j−1

∑
s=1

(
r

s−1

)
λ r+1−s

i vi, j−s

+
(

r
j−1

)
λ r+1− j

i vi,0

=
j−1

∑
s=0

(
r +1

s

)
λ (r+1)−s

i vi, j−s .

Applying Ar to the vector w in (5.3.21) gives, for every r ∈ N,

Arw =
k

∑
i=1

mi

∑
j=1

j−1

∑
s=0

(
r
s

)
bi jλ r−s

i vi, j−s . (5.3.23)

We wish to find an estimate of these A-iterates of w for large values of r. Note

that
(

r
s

)
is a polynomial in r of degree s with 0 constant term and s is bounded.

Consider a term in (5.3.23) with i ≤ h and assume first that j− s 6= 1. Then s ≤
j−2≤ m−2 < m−1 and for some γ1, . . . ,γs ∈Q

(
r
s

)
bi jλ r−s

i vi, j−s = (γsrs + γs−1rs−1 + · · ·+ γ1r)bi jρr−szr−s
i vi, j−s

= rm−1ρr−m+1(
γs

rm−s−1 +
γs−1

rm−s + · · ·+ γ1

rm−2 )bi jρm−1−szr−s
i vi, j−s

= rm−1ρr−m+1gs(r)bi jρm−1−szr−s
i vi, j−s

(5.3.24)

where
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gs(r) =
γs

rm−s−1 +
γs−1

rm−s + · · ·+ γ1

rm−2 (5.3.25)

and

lim
r−→∞

gs(r) = 0. (5.3.26)

For terms with j− s = 1 (still i ≤ h) and j < m we again have (5.3.26) since s =
j−1 < m−1; but if j = m, then s = m−1,

gm−1(r) =
1

(m−1)!
+

γm−2

r
+ · · ·+ γ1

rm−2 (5.3.27)

and (5.3.24) becomes
(

r
m−1

)
bimλ r−m+1

i vi1 = rm−1ρr−m+1gm−1(r)bimzr−m+1
i vi1. (5.3.28)

For terms with h < i ≤ ν we have s ≤ j− 1 ≤ mi− 1 < m− 1 and again (5.3.26)
holds.

Now consider a term with ν < i≤ k. Then ρi < ρ and
(

r
s

)
bi jλ r−s

i vi, j−s = rm−1ρr−m+1gs(r)bi j

(
ρi

ρ

)r ρm−1

ρs
i

zr−s
i vi, j−s. (5.3.29)

Since 0 ≤ ρiρ−1 < 1 we have lim
r→∞

rt(ρiρ−1)r = 0 for each integer t and hence, by
(5.3.25)

lim
r→∞

gs(r)(ρiρ−1)r = 0.

To summarize,

Arw = rm−1ρr−m+1

[
h

∑
i=1

bim

(m−1)!
zr−m+1

i vi1 + ∑
i, j,s

fi js(r)vi, j−s

]
(5.3.30)

and lim
r→∞

fi js(r) = 0 for each of the finitely many functions fi js(r). Note that Arw 6= 0
for each r since if Ar0 w = 0, then for all r ≥ r0

b1m

(m−1)!
zr−m+1

1 + ∑
j−s=1

f1 js(r) = 0,

and hence 0 6= |b1m|= lim
r→∞

(m−1)!|∑ f1 js(r)|= 0. Since V + is closed and the (n−
1)-sphere Sn−1 in Rn is compact the sequence (||Arw||−1Arw)r in the compact set
V +∩Sn−1 has a convergent subsequence (||Art w||−1Art w)t . Let ut = ||Art w||−1Art w,
ct = ||Art w||−1rm−1

t ρrt−m+1, dit = ((m− 1)!)−1bimz1−m
i zrt

i and set wt equal to the
second sum in (5.3.30) for Art w. By compactness of the unit circle in C and by
successively taking convergent subsequences of (zrt

1 )t , . . . ,(z
rt
h )t we may assume that
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(zrt
i )t converges for i = 1, . . . ,h, and hence each sequence (dit)t converges to di, say.

Now,

ut = ct

(
h

∑
i=1

ditvi1 +wt

)
, (5.3.31)

and since ||ut ||= 1,

lim
t→∞

|ct |= lim
t→∞

1
||∑h

i=1 ditvi1 +wt ||

=
1

||∑h
i=1 divi1||

.

Thus, (ct)t is bounded and by taking more subsequences we may assume that (ct)t
converges to c. But then

u = lim
t→∞

ut =
h

∑
i=1

cdivi1 (5.3.32)

is an element of V +∩Sn−1.
Now, take 0 < x = ∑h

i=1 fivi1 ∈V with a minimal number of nonzero coefficients
fi. Suppose that λi 6= ρ for some i with fi 6= 0. By Theorem 5.3.14 we can find
a0, . . . ,aq ∈ R+ with a0 > 0 such that ∑q

p=0 apλ p
i = 0. Let y = ∑q

p=0 apApx. Since
apApx≥ 0 for each p and a0x > 0, necessarily y > 0. Now,

y =
q

∑
p=0

ap

h

∑̀
=1

f`λ
p
` v`1

=
h

∑̀
=16̀=i

f`

(
q

∑
p=0

apλ p
`

)
v`1 + fi

(
q

∑
p=0

apλ p
i

)
vi1

= ∑̀
6=i

g`v`1.

Since y has fewer nonzero coefficients than x we have a contradiction. So fi 6= 0
implies that λi = ρ , and 0 < x is an eigenvector of A belonging to the eigen-
value ρ . ut

We can now show that the lattice order of an archimedean `-field which is alge-
braic over its subfield of f -elements can be extended to a total order. We will first
verify this locally.

Theorem 5.3.16. Let R be a commutative domain and an archimedean `-ring. Sup-
pose 0 < a ∈ R is algebraic over the subring L of f -elements. Then the partial order
of the L-subalgebra L[a] +Z[a]a of R generated by a and L can be extended to a
total order of L[a] +Z[a]a which contains the total order of L given in Theorem
5.3.7.
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Proof. By Exercise 13 we may assume L is a field and by Theorems 5.3.7 and 3.3.2
we may also assume that L is a totally ordered subfield of R with (L∩R+)R+ ⊆ R+.
Let S = R⊗L L(a). Then S = R[a] is a finite-dimensional R-algebra. By Theorem
5.3.13 it has a unique Hausdorff topology which makes it into a topological R-
algebra and it is homeomorphic to some Rn as a topological vector space over R.
Let P be the closure of L(a)+ = R+∩L(a) in S. We first note that P is a subsemiring
of S with R+P⊆ P. For, if (xn)n and (yn)n are sequences in L(a)+ converging to the
elements x and y in P, respectively, then x+y, xy∈ P since xn +yn converges to x+y
and xnyn converges to xy. Also, if α ∈R+, then αx∈P since if (αn)n is a sequence in
L∩R+ which converges to α , then (αnxn)n is a sequence in L(a)+ which converges
to αx. Now, (L(a), L(a)+) is directed: if f (a) ∈ L(a), then f (a) = ∑αiai−∑β ja j

where αi, β j ∈ L∩R+. So P−P = S since P−P is an R-subalgebra of S which
contains 1 and a.

Let I = P∩−P. We claim that I is a proper ideal of S and P = P/I is a closed and
directed partial order of the R-algebra S = S/I. Clearly, I is an additive subgroup of
S, and it is an ideal since IP, PI ⊆ I and S = P−P. S has, of course, the quotient
topology, and P is closed since its inverse image P+ I = P is closed. Since P∩−P =
0 and S = P−P, it is clear that (S,P) is a directed po-algebra over R. Suppose that
I = S; then S = P = −P and L(a)+ is dense in S. Let B = {a1, . . . ,an} ⊆ L(a)+ be
an L-basis of L(a) and note that B⊆−P. Because of the linear homeomorphism of
Rn with the product ⊕iRai = S, for each i = 1, . . . ,n,

Ui = ∑
j 6=i

[
− 1

2n
,

1
2n

]
a j +

[
−3

2
,−1

2

]
ai

is a neighborhood of −ai and there exist elements xi ∈ Ui ∩ L(a)+. So there are
elements αi j ∈ L with {αi j : i 6= j} ⊆ [− 1

2n , 1
2n ] and {αi j : i = j} ⊆ [− 3

2 ,− 1
2 ] such

that xi = ∑n
j=1 αi ja j. But then

n

∑
i=1

xi =
n

∑
j=1

(
n

∑
i=1

αi j

)
a j

and, for each j = 1, . . . ,n,

n

∑
i=1

αi j ≤ (n−1)
(

1
2n

)
− 1

2
=− 1

2n
< 0.

Thus, we have the contradiction 0 6= ∑n
i=1 xi ∈ L(a)+∩−L(a)+.

Clearly, since a 6∈ I the field L(a) is embedded in S via the natural homomor-
phism, and, upon identification, we have L(a)+ ⊆ P and S = R[a]. Applying The-
orem 5.3.15 to the linear operator on S given by x 7→ ax we obtain a real num-
ber α0 ∈ R+ and 0 6= x0 ∈ P such that ax0 = α0x0. Then if b ∈ S, necessarily
bx0 = f (α0)x0 for any polynomial f (x) ∈R[x] with b = f (a). The mapping ϕ from
S to R given by b 7→ f (α0) for b = f (a) is clearly an identity preserving algebra
homomorphism. In particular, it embeds the field L(a) in R. To complete the proof
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note that if b ∈ L(a)+ or b ∈ L∩R+ then bP⊆ P; so f (α0)x0 ∈ P, f (α0) ∈R+, and
hence ϕ(L(a)+)⊆ R+ and ϕ(b) = b if b ∈ L. ut

The global extension of the previous result is given next.

Theorem 5.3.17. Suppose R is an archimedean `-ring and a commutative domain
that is algebraic over its subring L of f -elements. Then the lattice order of R can
be extended to an archimedean total order of R which contains the total order f (R)
of L.

Proof. As in the proof of Theorem 5.3.16 we may assume L is a field, and then R is
also a field. We will first show that if a1, . . . ,an ∈ R+, then L(a1, . . . ,an) = L(a) for
some a∈ R+. Again, as in Theorem 5.3.16, S =R⊗L L(a1, . . . ,an) is a finite dimen-
sional Hausdorff topological R-algebra. Since L(a1, . . . ,an) is a directed po-algebra
over the totally ordered field L, L(a1, . . . ,an)+ contains an L-basis {b1, . . . ,bm} of
L(a1, . . . ,an) by Exercise 16. Since ∑m

i=1R+bi is a homeomorphic image of (R+)m it
has a nonempty interior. Let K be one of the finitely many proper intermediate fields
between L and L(a1, . . . ,an). By Exercise 17 R⊗L K is a proper topological direct
summand of S and hence is a closed nowhere dense subset of S. Thus, the union X of
all of these subspaces R⊗L K is nowhere dense in S, and hence there is a nonempty
open subset U of ∑m

i=1R+bi which is disjoint from X . But L(a1, . . . ,an) = ¢iLbi
is dense in S = ¢iRbi by Theorem 5.3.13 since L is dense in R, and hence there
exists some a ∈U ∩L(a1, . . . ,an). Then a ∈ L(a1, . . . ,an)+ and L(a) is not a proper
subfield of L(a1, . . . ,an); so L(a) = L(a1, . . . ,an).

Now, if K is any finitely generated intermediate extension of L ⊆ R, then since
K = L(b) ⊆ L(b+,b−) = L(a) for some a ∈ R+, the partial order of K can be ex-
tended to a total order of K which contains f (R) by Theorem 5.3.16, and hence R+

is contained in a total order of R which contains f (R) by Theorem 5.1.1. ut
If R = L, then R is totally ordered and the total order given in the previous result

is unique. There is also only one total order when R is a finitely generated L-module.

Theorem 5.3.18. Suppose the commutative domain R is an archimedean `-ring that
is a finitely generated module over its subring L of f -elements. Then the lattice order
of R can be extended to a unique total order of R.

Proof. Using Exercise 13 again, without loss of generality, R and L are fields and R
is finite dimensional over L. Since R+ contains a basis of LR the proof of Theorem
5.3.17 gives that R = L(a) for some a ∈ R+. Since R is archimedean and finitely
rooted it is a direct sum of totally ordered L-subspaces (Exercise 2.4.11 or 2.5.22)
each of which is one-dimensional by Theorem 5.3.8. So R = La1⊕ ·· ·⊕Lan with
{a1, . . . ,an} ⊆ R+. Using the notation from the proof of Theorem 5.3.16 we have
S = R⊗L R = ¢iRai and the closure P of R+ = ∑i(L∩R+)ai in S is now given by
P = ∑iR+ai. So P is a lattice order of S and S =⊕n

i=1Rai is an `-ring extension of
R. The eigenvector x0 belonging to a is in S+ and ax0 = α0x0 with α0 > 0. Now

x0 =
n

∑
i=1

αiai (5.3.33)
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with αi ≥ 0 and we claim that αi > 0 for i = 1, . . . ,n. If not we can relabel the ai
so that x0 = ∑m

i=1 αiai with m < n and each αi > 0. Since A = ∑m
i=1 Lai is not an

ideal of R there exist 1 ≤ `, j ≤ n with j ≤ m such that a`a j 6∈ A; assume j = 1. So
a`a1 = ∑n

i=1 βia` and 0 6= βk ∈ L∩R+ for some k > m. Since x0 is also an eigenvector
for a` ∈ R[a],

a`x0 = αx0 =
m

∑
i=1

ααiai (5.3.34)

for some α ∈ R+. Now,

a`x0 =
m

∑
i=1

αia`ai =
m

∑
i=2

αia`ai +
n

∑
i=1

α1βiai. (5.3.35)

From (5.3.34) we have (a`x0)k = 0 and from (5.3.35) we obtain
(

m

∑
i=2

αia`ai

)

k

=−α1βk < 0

where (v)i denotes the ith coordinate of v ∈ S with respect to the basis {a1, . . . ,an}.
This is a contradiction since each αia`ai ∈ S+.

Let ∑ = R+∗. Then (R+)∑ = {uv−1 : u,v ∈ R+ with v 6= 0} is a partial order of R
which contains R+ (see Exercise 18). We will show that (R+)∑ is a total order of R
and hence it is the unique total order of R which contains R+.

Let 0 6= b∈R. Then bx0 = βx0 = ∑n
i=1 βαiai for some β ∈R. If β = 0, then b = 0

since S is a vector space over R. Suppose β > 0. For i = 1, . . . ,n let Ui be an open
interval about βαi which excludes 0. Since multiplication by b is continuous on S
and x0 is in the interior of S+, there exists an open set U contained in the interior of
S+ with x0 ∈U and bU ⊆U1a1 + · · ·+Unan. Since R+ is dense in S+ there exists
x ∈ R+ ∩ U . So bx ∈ R+ and b = bxx−1 ∈ (R+)∑. If β < 0, then −b ∈ (R+)∑ and
thus (R+)∑ is a total order of R. ut

Note that the proof of Theorem 5.3.18 shows, more generally, that if 0 < a ∈ R
is algebraic over L, then there is a unique total order of L[a]+Z[a]a which extends
its partial order provided Q(L)(a)+ contains a Q(L)-basis of Q(L)(a) for which
(5.3.33) holds (that is, each αi > 0) for some eigenvector x0 ∈ P belonging to a
positive eigenvalue α0 of the map given by multiplication by a on S = R[a].

If E is a subfield of R distinct from Q, then E has an archimedean lattice order
that is not a total order. In order to construct such an order we view E as an alge-
braic extension of a proper subfield and successively lattice order a chain of simple
extensions from this subfield to E. The main step in this construction is to extend a
lattice order of a subfield K of E to a lattice order of a finite extension K(b) by find-
ing an element a in K(b) with K(a) = K(b) and such that K+ + K+a + K+a2 + · · ·
is a positive cone. So, if a is of order n over K, then, an needs to be a K+-linear
combination of its lower powers. This means Irr(a,K), the irreducible polynomial
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of a over K, must have the special form xn−αn−1xn−1−·· ·−α0 with α j ∈K+. The
construction will be carried out in a number of steps.

The n elementary symmetric polynomials in the commuting indeterminates
x1, . . . ,xn over a field K will be denoted by σ1, . . . ,σn. Recall that

σk(x1, . . . ,xn) = ∑
1≤ j1<···< jk≤n

x j1 · · ·x jk (5.3.36)

and that (−1)kσk(x1, . . . ,xn) is the coefficient of xn−k in the polynomial (x−
x1) · · ·(x− xn) ∈ K[x1, . . . ,xn][x].

Theorem 5.3.19. Let f (x) = α0 + α1x + · · ·+ αn−1xn−1 + xn ∈ R[x] and suppose
that all of the roots of f (x) in C lie inside the circle of radius ε = 1

(n+1)2 about the

point −r where r = 1
n+1 . Then 0 < α0 < · · ·< αn−1 < 1.

Proof. Let a1,a2, . . . ,a2s−1,a2s,a2s+1, . . . ,an be the roots of f (x) in C where 0 ≤
2s≤ n, a2 j = a2 j−1 is the complex conjugate of a2 j−1, for 1≤ j ≤ s, and a j ∈R for
2s + 1 ≤ j ≤ n. We will use the following inequalities in which Re(z) denotes the
real part of z ∈ C:

r− ε < Re(−a j) for 1≤ j ≤ n (5.3.37)
|a j|< r + ε for 1≤ j ≤ n (5.3.38)(

n
k

)
(r− ε)k >

(
n

k +1

)
(r + ε)k+1 for 0≤ k ≤ n−1. (5.3.39)

The first inequality comes from the inequalities Re(a j)+ r ≤ |Re(a j)+ r| ≤ |a j +
r|< ε and the second from the inequalities |a j|= |r−a j−r| ≤ |r|+ |a j +r|< r+ε .
The third is equivalent to

(
r− ε
r + ε

)k (
k +1
n− k

)
> r + ε

which becomes, after the substitutions r − ε = n(n + 1)−2 and r + ε =
(n+2)(n+1)−2, (

n
n+2

)k (
k +1
n− k

)
>

n+2
(n+1)2 .

For k = 0, 1, 2 this is easy to check. For k ≥ 3 consider the function g(x) =( n
n+2

)x x+1
n−x of the real variable x. It suffices to verify that g(x) is a strictly in-

creasing function of x for 2 ≤ x ≤ n− 1. Note that its logarithmic derivative is
(lng(x))′ = ln

( n
n+2

)
+ 1

x+1 + 1
n−x . Now, 1

x+1 + 1
n−x ≥ 1

n + 1
n = 2

n and we claim that
ln

( n
n+2

)
> − 2

n and hence (lng(x))′ > 0 and g(x) is increasing. To verify the claim
let h(x) = ln x

x+2 + 2
x for x≥ 1. Then h(1) > 0, lim

x→∞
h(x) = 0 and h(x) is a decreasing

function since h′(x) = −4
x2(x+2) < 0. Thus, h(x) > 0.



5.3 Lattice-ordered Fields 501

Now, by Exercise 19, αn−k = (−1)kσk(a1, . . . ,an)≥ σk(Re(−a1), . . . ,Re(−an))
> 0 for 0≤ k ≤ n, and hence by (5.3.37), (5.3.38) and (5.3.39) we have

αn−k ≥ ∑
1≤ j1<···< jk≤n

Re(−a j1) · · ·Re(−a jn) >

(
n
k

)
(r− ε)k

>

(
n

k +1

)
(r + ε)k+1 > ∑

1≤ j1≤···≤ jk≤n
|a j1 · · ·a jk+1 |

≥ |σk+1(a1, . . . ,an)|= αn−(k+1)

for 0≤ k ≤ n−1. ut
We will now apply this result to finite extensions but first we fix some notation.

Let L be a subfield of R and suppose that L is a po-field with partial order ≤ and
positive cone P = P(L). The extended positive cone of L obtained by localizing P at
P+ will be denoted by Q(P) and the associated partial order will be denoted by ≤q.
So Q(P) = PP∗ = {uv−1 : u ∈ P,v ∈ P∗} (see Exercise 18). The usual total order of
R will be denoted by ≤u and L+ = L∩R+. We note that L+ ⊆Q(P) iff L+ = Q(P),
iff Q(P)⊆ R+, and Q(P) is a total order of L iff ≤u =≤q on L.

Theorem 5.3.20. Suppose L⊆K ⊆R where K is a finite dimensional field extension
of L, and (L,P) is a po-field with Q+P⊆ P and such that ≤u =≤q on L. Then there
exists an element a∈K such that K = L(a), a >u 1, and Irr(a,L) = xn−αn−1xn−1−
·· ·−α0 with 0 6= α j ∈ P.

Proof. Since K is a finite separable extension of L, K = L(b) for some b ∈ K. Let
the irreducible polynomial of b over L be f (x) = xn−βn−1xn−1−·· ·−β0, and let
b1 = b,b2, . . . ,bn be all the roots of f (x) in C. By considering several cases, and
reducing each to the previous one, we will first find an element c >u 1 with K = L(c)
such that the nonleading coefficients of Irr(c,L) lie in−L+. Write f (x) = (x−b)g(x)
where g(x) = (x−b2) · · ·(x−bn) = xn−1 +γn−2xn−2 + · · ·+γ0. Let ε = 1

n2 and r = 1
n .

If b >u 1 and, for j ≥ 2, |b j + r|<u ε , let c = b. By Theorem 5.3.19 γn−1 = 1 >u
γn−2 >u · · ·>u γ0 >u 0. Consequently,

f (x) = (x−b)
n

∑
j=1

γn− jxn− j

= xn−
n−1

∑
j=1

(bγn− j− γn−( j+1))x
n− j−bγ0

with β0 = bγ0 >u 0 and βn− j = bγn− j − γn−( j+1) >u γn− j − γn−( j+1) >u 0 for j =
1, . . . ,n− 1. Suppose, next, that b >u 1 + r and, for j ≥ 2, |b j| <u ε . Let c = b− r.
Then L(c) = L(b), Irr(c,L) = f (x + r) has the roots b1 − r, . . . ,bn − r, and |(b j −
r)+ r| = |b j| <u ε if j ≥ 2. So the previous case applies to c. Next, assume 0 <u

b <u
1
2 and |b j| >u

1
ε if j ≥ 2. Let c = b−1. Then Irr (c,L) = −β−1

0 xn f ( 1
x ) = xn +

β1β−1
0 xn−1 + · · ·+ βn−1x− β0 and its roots b−1,b−1

2 , . . . ,b−1
n satisfy the previous
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conditions c = b−1 >u 2 ≥u 1 + r, and |b−1
j | <u ε for j ≥ 2. The last special case

assumes that |b j−b|>u
1
ε + 1

2 for j ≥ 2. Take p ∈Q with p <u b <u p+ 1
2 and let

c j = b j− p for j = 1, . . . ,n. Then L(c1) = L(b), Irr(c1,L) = f (x + p) and its roots
c1, . . . ,cn satisfy the previous conditions: 0 <u c1 <u

1
2 and, for j ≥ 2,

1
ε

+
1
2

<u |b j− p+ p−b| ≤u |c j|+ |c1|= |c j|+ c1 <u |c j|+ 1
2
,

or 1
ε <u |c j|. In the general case, let 0 <u t ∈Q with

t
(

1
ε

+
1
2

)
<u

n∧

j=2

|b−b j|,

and let c = t−1b. Then L(c) = L(b), Irr(c,L) = t−n f (tx) has the roots c j = t−1b j for
j = 1, . . . ,n and, for 2≤ j, |c j−c|= t−1|b j−b|>u

1
ε + 1

2 . Note that since each case
is reduced to the first all the coefficients in Irr(c,L) are nonzero.

Now, given c >u 1 with K = L(c), Irr(c,L) = xn−∑n
j=1 γn− jxn− j, and 0 6= γn− j ∈

L+, write γn− j = βn− jδ−1 with βn− j,δ ∈ P and δ ≥u 1. Then a = δc >u 1 and
Irr(a,L) = xn−∑n

j=1 γn− jδ jxn− j with 0 6= γn− jδ j = βn− jδ j−1 ∈ P. ut
By reading the proof of Theorem 5.3.20 backwards we get formulas for elements

c and a whose irreducible polynomials have the desired form. Suppose [L(b) : L] = n
and b = b1,b2, . . . ,bn are the conjugates of b in C. Let p, t ∈ Q with 0 <u t <u
2(2n2 +1)−1|b−b j| for each j = 2, . . . ,n and pt <u b <u pt + 1

2 t. Then

c =
(p+n)t−b

n(b− pt)
and a = δc (5.3.40)

where 1 ≤u δ ∈ P is a common denominator of the nonleading coefficients of
Irr(c,L) when they are written as elements of Q(P).

One consequence of the previous theorem is that P(K) = P(K;a) = P(L) +
P(L)a+ · · ·+P(L)an−1 and P(K)a are positive cones of K, and clearly, Q(P(K)) =
Q(P(K)a). We will denote the partial order of K corresponding to Q(P(K)) by
≤q(a). Note that the restriction of ≤q(a) to L is ≤q; that is, Q(P(L)) = L∩Q(P(K)).
For, Q(P(L))⊆Q(P(K)) since P(L)⊆ P(K), and, if u = (Σ n−1

i=0 βiai)(Σ n−1
i=0 γiai)−1 ∈

L∩Q(P(K)), then γiu = βi and u = βiγ−1
i ∈ Q(P(L)) for any γi 6= 0. In order to

see that ≤q(a) =≤u we will first relate this equality to the denseness of Q in K with
respect to ≤q(a).

Let (L,≤) be a po-field with L⊆R. The element y ∈ L is calledQ-approximable
with respect to ≤ if for each 0 < ε ∈ Q there exists s ∈ Q such that y− ε < s < y,
or, equivalently, y < t < y+ ε for some t ∈Q, and L is called Q-approximable with
respect to ≤ if each of its elements has this property.

Theorem 5.3.21. Let (L,P) = (L,≥) be a po-field with L a subfield of R and 0 6=
P⊆ R+.
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(a) L is Q-approximable with respect to ≤q if and only if ≤u =≤q on L.
(b) The set A = {y ∈ L : y is Q-approximable with respect to ≤q} is a subring

of L.
(c) Suppose L isQ-approximable with respect to≤q and 1 <u a∈R is algebraic

over L with Irr(a,L) = xn−αn−1xn−1−·· ·−α0 and α j ∈ P. Then L(a) is
Q-approximable with respect to ≤q(a).

Proof. (a) Suppose L is Q-approximable with respect to ≤q. We need to verify that
L+ ⊆ Q(P). Note first that Q+ ⊆ Q(P). For, if n ∈ N and 0 6= b ∈ P, then n =
(nb)b−1 ∈Q(P); but Q(Q(P))= Q(P). Let y∈ L+ and take p,s∈Qwith 0 <u p <u y
and y− p <q s <q y. Then s∈Q+ since Q(P)⊆R+ gives 0 <u y− p <u s, and hence
y = y− s + s >q 0. Conversely, suppose L+ ⊆ Q(P), y ∈ L and 0 <u ε ∈ Q. Then
y− ε <u s <u y for some s ∈Q and hence y− ε <q< s <q y.

(b) As in (a) we have Q+ ⊆ Q(P). Thus, ≤q =≤u on Q and hence Q ⊆ A.
Suppose y1,y2 ∈ A, 0 <u ε ∈Q, and p1, p2 ∈Q with y1− ε

2 <q p1 <q y1 and y2 <q
p2 <q y2 + ε

2 . Then (y1−y2)−ε <q p1− p2 <q y1−y2 shows that y1−y2 ∈ A. The
verification that L+ ⊆Q(P) in (a) shows that A∩R+ ⊆Q(P)∩A and hence≤q =≤u
on A. To see that y1y2 ∈A, we may assume that 0 <u y1,y2. Take t1, t2 ∈Qwith yi <q
ti <q ti +1 and let δ = ε

t1+t2
. We can find si ∈Q such that yi−δ <q si <q yi. We claim

that y1y2− ε <q s1s2 <q y1y2. For, y1y2− s1s2 = y1(y2− s2)+ s2(y1− s1) ∈ Q(P)∗
since each factor of each term is in Q(P)∗; but also

y1(y2− s2)+ s2(y1− s1) <q t1δ + t2δ = ε.

(c) We assume that n ≥ 2. Let B be the set of elements in L(a) which are Q-
approximable with respect to ≤q(a). As we noted after Theorem 5.3.20, ≤q =≤q(a)
on L, and since L ⊆ B by (a) and B is a subring of L(a) by (b) we only need to
verify that a ∈ B. Let 0 <u ε ∈Q. Note that f (x) = Irr(a,L) changes sign at a (with
respect to ≤u) since a is a simple root of f (x). Since 1 <u a there is some s ∈ Q
with 1 <u s and 0 <u f (s) <u ε . So 0 <q(a) f (s) <q(a) ε and we wish to verify that
a <q(a) s <q(a) a+ ε , or, 0 <q(a) s−a <q(a) ε . We will verify that

0 <q(a) (s−a) f (s)−1 <q(a) 1, (5.3.41)

and, thus, 0 <q(a) s−a <q(a) f (s) <q(a) ε , as desired. Let δn = 1 and δ j =−α j for
0≤ j ≤ n−1. Then

f (x)− f (z) =
n

∑
j=1

δ j(xi− z j)

= (x− z)
n

∑
j=1

δ j

j−1

∑
k=0

z j−1−kxk

= (x− z)
n−1

∑
k=0

(
n

∑
j=k+1

δ jz j−(k+1)

)
xk,
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and

f (x) = f (x)− f (a) = (x−a)
n−1

∑
k=0

bkxk (5.3.42)

where, for 0≤ k = n−1, bk = ∑n
j=k+1 δ ja j−(k+1) and bkak+1 = ∑n

j=k+1 δ ja j. If we let
ck = ∑k

j=0 α ja j, then ck ∈ P(L(a)), bkak+1− ck = f (a) = 0 and bk = ck(ak+1)−1 ∈
Q(P(L(a))). From (5.3.42) we have f (s)(s− a)−1 = ∑n−1

k=0 bksk ≥q(a) bn−1sn−1 =
sn−1 >q(a) 1 and (5.3.41) follows. ut

We can now easily lattice order subfields of R.

Theorem 5.3.22. Let L be a proper subfield of the subfield K of R such that K is
algebraic over L. Then K has a partial order for which it is an archimedean `-field
and (L,L∩R+) is its subfield of f -elements, and K also has a partial order for which
it is an archimedean `-field and L is its trivially ordered subfield of f -elements. In
either case, if P(K) is its positive cone, then Q(P(K)) = R+∩K.

Proof. Let L have its usual total order L+ = L∩R+ and let E denote an intermediate
field between L and K. For a subset B of E let PB = ∑b∈B L+b. To produce a lattice
order of the first kind we apply Zorn’s Lemma to the set

S = {(E,B) : B is a basis for LE,1 ∈ B⊆ R+

and (E,PB) is a po-field with Q(PB) = E ∩R+}.

S is not empty since (L,{1}) ∈S . We partially order S by: (E1,B1) ≤ (E2,B2)
if E1 ⊆ E2 and B1 ⊆ B2. Suppose {(Eλ ,Bλ ) : λ ∈ Λ} is a chain in S . Then if
E = ∪λ Eλ and B = ∪λ Bλ it is easy to check that (E,B) ∈ S . Suppose (E0,B0)
is a maximal element in S . If b ∈ K\E0, then by Theorems 5.3.20 and 5.3.21 we
can find a ∈ K such that E0(a) = E0(b) and (E0(a),B0{1,a, . . . ,an−1}) ∈S . Thus
K = E0. Of course, as a vector lattice over L, K =⊕b∈B0Lb is archimedean and the
subring of f -elements is clearly L.

To obtain a lattice order of the second type we consider the set S1 of ordered
pairs (E,B) as in S but change the one condition 1 ∈ B to the condition 1 6∈ PB. To
see that S1 6= /0 we use Theorems 5.3.20 and 5.3.21 to obtain an element a ∈ K\L
and the basis B = {a, . . . ,an} such that (L(a),B) ∈S1. If 1 = ∑n

j=1 β ja j with β j ∈
L+, then an = β−1

n −∑n−1
j=1 β−1

n β ja j and 0 <u −β−1
n βn−1 <u 0 since a is obtained

from Theorem 20; so 1 6∈ PB. The proof that a maximal element (E0,B0) in S1
must have E0 = K is the same as before except B0{1,a, . . . ,an−1} is replaced by
B0{a, . . . ,an}= C0. Again, if 1 were in PC0 , then 1 = ∑k γkck with γk ∈ L+ and ck ∈
C0; so 1 = ∑n

j=1 β ja j with β j ∈ PB0 and we have the contradiction 0 6= β−1
n βn−1 ∈

PB0 ∩−PB0 . Now, if (K,B) ∈S1, then (K,PB) is a vector lattice over (L,L+) and L
is contained in the subfield of f -elements. On the other hand, if u is in this subfield,
then ub ∈ b⊥⊥ = Lb for any b ∈ B; so u ∈ L. ut
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Exercises.

1. Let R be a D-`-domain in which d(R)∗ is a right Öre set. Show that the additive
subgroup of R generated by d(R) is the largest convex `-subring of R that is a
finite valued D-domain.

2. Let A be a totally ordered division ring, R = A[x] and R+ = {a0 + a1x + · · ·+
anxn : a0 ≥ 0 and an ≥ 0}. Show that R is an `-ring with two roots, d(R)∗ =
f (R)∗ is an Öre set, and S(R) is multiplicatively closed, but R is not a D-ring.

3. Let F be a totally ordered field, R = F [x] and R+ = F+[x]. Show that R is a
finite valued D-`-domain, Γ (Rd(R)∗) is a torsion-free rooted po-group that is not
locally finite modulo its maximal totally ordered subgroup, and Rd(R)∗ is not a
field.

4. Let R be a finite valued D-`-domain in which d(R)∗ is a right Öre set. Show that
Rd(R)∗ is an `-simple `-ring.

5. Let ∆ be a finitely rooted torsion-free rooted po-group which is locally finite
modulo its maximal totally ordered subgroup and let ∆1 be the group ∆ with the
total order extending ∆+. If A is a totally ordered domain and T is the convex
subring of V (∆1,A) consisting of those elements f with maxsupp f ≤ 0, show
that R = T ∩W (∆ ,A) is an `-subring of W (∆ ,A) and is a finite valued D-ring
(see Theorems 3.5.12 and 3.5.13).

6. Let RM be an `-module over the `-ring R. Suppose 0 ∈ B ⊆ f (M) and B is
convex. If B∗ consists of regular elements on M, that is, r(b;M) = 0 for 0 < b ∈
B, show that d(M) ⊆ f (M)∪B⊥. (If a ∈ d(M), b ∈ B, c = a∧b and x∧ y = 0,
then ax∧ cy = 0 = c(ax∧ y).)

7. Let R be an `-ring and RM an `-module.

(a) If d1,d2 ∈ R+ with d1d2 ∈ d(M) and r(d1;M)+ = 0, show that d2 ∈ d(M).
(b) Suppose d ∈ d(M) and u ∈ M+ is a d-element on R with `(u;R) = 0. If

{dnu : n ∈ N} ⊆ u⊥ show that di∧d j = 0 for i 6= j.

8. Let R be an `-ring with f (R) 6= 0. Suppose that either f`(R)∗ consists of regular
elements on RR and fr(R)∗ consists of regular elements on RR, or f (R)∗ consists
of regular elements on RR and RR. Show that:

(a) d(R)⊆ f (R)∪ f (R)⊥ (use Exercise 6).
(b) If d ∈ d(R), then either {dn : n ∈N} is a disjoint subset of distinct elements

of f (R)⊥ or dn ∈ f (R) for some n (use Exercise 7 with u ∈ f (R)).
(c) If 0 < d ∈ R is regular, then dn ∈ f (R) for some n ∈ N iff d ∈ d(R) and

there are elements a0,a1, . . . ,am ∈ F(R) not all 0 such that a0 +a1d + · · ·+
amdm = 0 or a0 +da1 + · · ·dmam = 0.

(d) If R is an `-unital `-domain then f (R) = d(R)∩1⊥⊥, and hence F(R) = 1⊥⊥
iff (1⊥⊥)+ ⊆ d(R).

(e) If R is a local `-unital `-domain, then F(R) = 1⊥⊥ iff U (R)∩ (1⊥⊥)+ ⊆
U (R+), iff Fa = a⊥⊥ = aF for each a ∈U (R+).
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9. Let R = A[x] be the polynomial ring over the totally ordered domain A and
suppose R is an `-ring extension of A. Show that A ⊆ F(R) and A+x ⊆ d(R)
iff R is totally ordered, or R+ = A+[x], or, for some k ≥ 2, F(R) = A[xk] and
R = F(R)⊕F(R)x⊕·· ·⊕F(R)xk−1 as an F(R)- f -bimodule. (Use Exercise 8;
either Axn ⊆ f (R)⊥ for all n or Axk 6⊆ f (R)⊥ for some minimal k.)

10. Suppose 0 < u is a d-element of the `-ring R. If the centralizer of u is an `-
domain and contains [0,u] show that u is a basic element. (If a,b ∈ [0,u], then
ab≤ au∧bu.)

11. Let R be an `-unital `-domain in which F = F(R) is a division ring and is a
proper subring of R.

(a) Show that the following are equivalent:
(i) R = lex (F⊕Fa) for some a > 0 with a2 ∈ F .

(ii) d(R) = f (R)∪ f (R)⊥+ and F⊥ is totally ordered.
(iii) d(R) = f (R)∪ f (R)⊥+ and each element of F⊥+ is left (right) alge-

braic over F in the sense of Exercise 8(c).
(b) If R satisfies the conditions in (a) show that F ⊕Fa is a division ring iff R

is a domain, iff b2 6= 1 for every b ∈ F⊥.
(c) Let F be a subfield of the totally ordered field L = F(a) where a > 0, a2 ∈ F

and a2 is not a square in F . Show that L[x] with the positive cone L[x]+ =
{c0 + c1a+d1x+ · · ·+dnxn : c0,c1 ∈ F,d j ∈ L, dn > 0 if n≥ 1, and c0 ≥ 0
and c1 ≥ 0 if n = 0} is an `-ring which satisfies the conditions in (a) and (b)
and R 6= F⊕Fa.

(d) Give an example of an `-unital `-domain that satisfies the conditions in (a)
and is a D-`-ring but which isn’t a domain. (Use diagonal matrices.)

(e) Show that a totally ordered division ring which has a positive central ele-
ment that is not a square admits a division `-ring extension of the type given
in Theorem 5.3.5.

12. This exercise shows that in an archimedean `-field with 1 6> 0 the subfield L
in Theorem 5.3.7 need not be a maximal trivially ordered subfield. Let R =
Q(
√

2,
√

3) =Q(
√

2+
√

3)⊕Q(2+
√

6)⊕Q(3+
√

6)⊕Q(2
√

3+3
√

2) as an
`-group. Show that R is an `-field with L = Q and Q(

√
2)+ = Q(

√
3)+ = 0.

(Note that the basis used for R is (
√

2+
√

3){1,
√

2,
√

3,
√

6}.)

13. Let R be a commutative archimedean `-domain whose subring L of f -elements
is not 0 and let Q(L) be the totally ordered field of quotients of L. Show that
the L-divisible hull Q = R f (R)∗ = Q(L)⊗L R of LR is an archimedean `-domain
extension of R whose subring of f -elements is Q(L).

14. Let R be as in the previous exercise and assume that R is a finitely generated L-
module. Show that Q is the field of quotients of R and there exist 0 < a1, . . . ,an ∈
R and 0 6= α ∈ L such that Q = Q(L)a1⊕·· ·⊕Q(L)an, R = Ra1 ⊕·· ·⊕Ran and
αR⊆ La1⊕·· ·⊕Lan.
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15. Let V be a set and for each x ∈ V let Nx be a family of subsets of V . Consider
the following conditions.

(i) If x ∈V and A ∈Nx, then x ∈ A.
(ii) If A,B ∈Nx, then A∩B ∈Nx.

(iii) If A ∈Nx and A⊆ B⊆V , then B ∈Nx.
(iv) If A ∈Nx there exists B ∈Nx such that B ⊆ A and B ∈Ny for every

y ∈ B.

Show that if (i), (ii) and (iii) hold for each x ∈ V , then T = {U ⊆ V : U ∈Nx
for each x ∈U} is a topology for V and Nx ⊆N (x) for each x ∈ V . If (iv) is
also satisfied for every x ∈V show that Nx = N (x) for each x.

16. (a) Show that a po-vector space V over a directed po-division ring is directed
iff V + contains a basis of V .

(b) Show that if V = RRn is a po-vector space, then V is directed iff V + has
a nonempty interior. (If the ε-ball about v is contained in V + and 0 6= u ∈
V , then ε(2‖u‖)−1u + v ∈ V +. For the converse show that V + contains a
homeomorphic copy of (R+)n.)

17. Let V be a Hausdorff finite dimensional topological vector space over R. Show
that each algebraic complement of a vector subspace W of V is a topological
complement of W .

18. Let R be a po-domain and set ∑ = R+\{0}. Suppose ∑ consists of regular ele-
ments of R, the classical right quotient ring R∑ of R with respect to ∑ exists, and
s∑ ∩ t ∑ 6= /0 for all s, t ∈ ∑. Show that (R+)∑ = {as−1 : a,s ∈ R+ with s 6= 0}
is a partial order of R∑ which contains R+, and (R+)∑ is contained in any total
order of R∑ which contains R+.

19. Let C be the algebraic closure of the real closed field F , and let σk(x1, . . . ,xn)
be the kth elementary symmetric function (see (5.3.36)). Suppose that a1, a1,
. . . , as, as, a2s+1, . . . , an ∈C with a j ∈ F for j > 2s and Re(a j) < 0 for every
a j. Show that for 1≤ k ≤ n, (−1)kσk(a1, a1, . . . , an)≥ σk(Re(−a1), Re(−a1),
. . . , Re(−an)) > 0.

20. Let f (x) = α0 +α1x+ · · ·+αnxn ∈ F [x] where F is a real closed field. For r ∈ F
let f (x+ r) = β0 +β1x+ · · ·+βnxn. Show that there exists 0 < ε ∈ F such that
for all r ∈ F with |r|< ε , if α j 6= 0 then α jβ j > 0.

21. Let L be a subring of the po-ring (R,R+) = (R,≤) and let (L,P) be a po-ring
such that R is a left po-module over (L,P). Put L+ = L∩R+.

(a) If `(R+)∩L+ = 0 and P is a total order of L, show that L+ ⊆ P.
(b) Suppose 1 ∈ R ∩ L, 0 < a ∈ R, and f (x) = α0 + α1x + · · ·+ αn−1xn−1 +

xn ∈ L[x] with f (a) = α0 + α1a + · · ·+ αn−1an−1 + an ≤ 0. If γ ∈ L and
γ +α j−1∈ P∪L+ for j = 0, . . . ,n−1 show that a 6≥ γ . (Otherwise, α ja j ≥
(1−a)a j.)
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(c) Suppose 1 ∈ R ∩ L and a ∈ R+ with Pa≤ b. If (L,P) is directed show that
there do not exist an element c ∈ R+ and a monic polynomial f (x) ∈ L[x]
with 1≤ ac and f (bc)≤ 0.

(d) Suppose the positive elements in the lattice-ordered division ring R are left
algebraic over its subdivision ring L in the sense that each is a root of some
nonzero polynomial over L with coefficients on the left. If (L,P) is a totally
ordered ring and PR+ ⊆ R+ show that LR is archimedean over (L,P).

22. Let L ⊆ K ⊆ R be fields and let tr K/L be the transcendence degree of K
over L.

(a) Show that the number of lattice orders of K which can be constructed using
Theorem 5.3.22 is equal to the number of subfields of K over which K is
algebraic.

(b) Suppose that tr K/Q = ℵα . Show that K has as many lattice orders as it
does archimedean lattice orders and this number is 2ℵα . (If X is a transcen-
dence base of K over Q find subfields of Q(X) over which it is algebraic.)

(c) If tr K/Q= n≥ 1 show that K has at least ℵ0 lattice orders.
(d) If K is a finite proper extension of Q show that K has exactly ℵ0 lattice

orders and each is archimedean; contrast this with Exercise 5.1.16. (Use
Theorem 5.3.20, Exercise 20, and Exercise 21(d) or Exercise 3.2.33.)

(e) Show that the real closure ofQ has exactly 2ℵ0 (archimedean) lattice orders
and its algebraic closure has no lattice orders.

23. Let K be a field with a unique total order K+ and let E be a subfield of K with
K algebraic over E. Let E+ = E ∩K+. Show the equivalence of the following.

(a) K is archimedean.
(b) E is archimedean.
(c) E has a total order P such that (E,P) is archimedean and PK+ ⊆ K+.
(d) K has an archimedean lattice order P1 with E+P1 ⊆ P1.

24. (a) Let b = p+q
√

2 ∈Q(
√

2) with q 6= 0. Show that b2 ∈Q+ +Q+b iff p≥ 0
and 2q2 > p2. Generalize.

(b) Use (5.3.40) to first lattice orderQ(
√

2) and then to extend this lattice order
to a lattice order of Q( 4√2).

25. Let K be an archimedean `-field, L its subfield of f̄ -elements, 0 < a ∈ K alge-
braic over L, S = R⊗L L(a), P the closure of L(a)∩K+ in S, I = P∩−P and
S = S/I. (This is the set-up in the proof of Theorem 5.3.15.) Suppose 0 6= x0 ∈ S
and ax0 = α0x0 with α0 ∈ R. Show that x0 is a unit of S iff S = R.

26. Let σ : F −→ F be an automorphism of the totally ordered field F and let
∆ = Z with the trivial partial order. Show that V (F ∗ ∆) has a commutative
enabling basis, V (F ∗∆) = b⊥⊕b⊥⊥ for each basic element b, and V (F ∗∆) is
f -embeddable iff σ = 1.
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27. Suppose K is an f -embeddable `-field and B(K)/F+∗ is not torsion-free. Show
that there does not exist an f -embedding ϕ : K −→VS (F,∆). Give an explicit
example of such an `-field K.

Notes. The extension of the Hahn embedding theorem for totally ordered fields
to `-fields given in Theorem 5.3.3 as well as the extension of the lattice order to a
total order given in Theorem 5.3.2 is due to Conrad and Dauns [CD]; the generaliza-
tion to D-domains comes from Steinberg [ST2]. The two-root case given in Theorem
5.3.5 is in Ma and Steinberg [MS] and the embedding theorem of Theorem 5.3.4 is
due to Redfield [R4]. The theory of archimedean `-fields is due to Schwartz [SCH2]
and much of the extension of his results to domains is in Ma [M5]. Birkhoff and
Pierce [BP] asked if R had any lattice orders other than the usual one and Wilson
[WI1] and [WI2] answered their question by constructing the lattice orders pre-
sented here. A good source of material on topological vector spaces is Narice and
Beckenstein [NB], and Theorems 5.3.13 and 5.3.14 are due to Birkhoff [BIR4] and
appear in Berman and Plemmons [BPL]. Most of the exercises come from the papers
of Ma and Steinberg [MS], Schwartz, [SCH2] and Wilson [WI2].



Chapter 6
Additional Topics

Two themes that occur in this chapter concern the attempt to describe all lattice or-
ders of a particular type on some familiar rings and the attempt to recognize some
familiar lattice-ordered rings. Thus, a characterization is given of the real group `-
algebra of a locally finite group with the coordinatewise partial order and of the
canonically ordered `-group ring of a finite cyclic group with coefficients in a ma-
trix ring over a totally ordered field. All of the lattice orders of a matrix algebra
over a totally ordered subfield of the reals and of a 2× 2 matrix algebra over any
totally ordered field are determined. Also, for a polynomial ring in one variable over
an `-simple totally ordered Öre domain all nontotal lattice orders which extend the
order of the coefficient ring and in which all squares are positive are described. This
description is a specialization of a description of some lattice orders on a semigroup
ring over a mopops.

Another theme that occurs concerns the centrality of f -elements. Along this vein
it is shown that an algebraic f -element in an `-domain is central and also that the
subalgebra of f -elements is central provided that each commutator in which one fac-
tor is an f -element is bounded by a fixed power of the f -element. Another commuta-
tivity result which is given is that a totally ordered domain in which each nonzero left
ideal contains a strictly positive lower bound of 1 is commutative provided the do-
main has a positive semidefinite form which has a nontrivial solution. Those totally
ordered fields for which all positive semidefinite polynomials are sums of squares
of rational functions will be identified, and so will the rings which have the property
that each of their partial orders is contained in a total order.

6.1 Lattice-ordered Semigroup Rings

Some aspects of lattice-ordered semigroup rings will be developed in more detail in
this section. At the outset we should mention that there is a definite distinction be-
tween the theory of group algebras and the theory of lattice-ordered group algebras.
It is easy to verify that the lattice-ordered group algebra of a finite group determines
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the group (Exercise 1). However, there exist nonisomorphic finite groups whose
group algebras for any field are isomorphic. An abstract description of the semi-
group algebra over R of a locally finite left cancellative semigroup will be given.
The main ingredient in this description is the familiar (in R) expression of the prod-
uct x+y+ as the least upper bound of the smaller products [0,x+]y. Interestingly, an-
other ingredient is the vanishing of the second cohomology group of the semigroup
with coefficients in a totally ordered field in which the group of positive elements is
divisible. Also, the partial order of a mopops which is a monoid will be altered to
produce several new mopops. These alterations will be used to characterize a large
set of lattice orders of a semigroup ring in which all squares are positive. In this
way we will determine the lattice orders of a polynomial ring in one variable over a
totally ordered division ring for which all squares are positive.

Let K[S;τ] be a crossed product semigroup `-algebra of the trivially ordered
multiplicative semigroup S over the totally ordered field K with trivial action. Re-
call from Exercise 3.5.13 this means τ : S× S −→ K+∗ is a 2-cocycle, that is,
τ(st,u)τ(s, t) = τ(s, tu)τ(t,u) for all s, t, u ∈ S, K[S;τ] = ⊕s∈SKs as a vector lat-
tice over K with S−→ {s : s ∈ S} a bijection and each s > 0, and the multiplication
of these basis elements is given by st = τ(s, t)st. K[S;τ] will be referred to as a
twisted semigroup `-algebra. For the purpose of characterizing and studying these
`-algebras we make the following definition. An `-algebra R over K is called basic
if its underlying vector lattice has a canonical basis; that is, R = ⊕bKb. According
to Exercise 2.4.11 (or 2.5.22) an `-algebra is basic if and only if it is finite valued,
K-archimedean, and each basic element is K-convex. When K =R the last condition
can be omitted since a totally ordered archimedean R-vector space is isomorphic to
R (for example, see Exercise 3.1.21). Basic `-fields have already been encountered
in Theorems 5.2.3, 5.2.17, and 5.2.31.

Theorem 6.1.1. An `-algebra over the totally ordered field K is a twisted semigroup
`-algebra if and only if it is basic and the product of basic elements is basic.

Proof. Suppose R is a basic `-algebra in which the product of basic elements is
basic. So R =⊕s∈BKs. Let G be the multiplicative group K+∗ and let S = {Gs : s ∈
B}. If s, t ∈B, then st = τ(Gs,Gt)u for some u∈B and some element τ(Gs,Gt)∈G.
So GsGt = Gst = Gu and associativity of R gives that S is a semigroup and τ is a
2-cocycle. If we put Gs = s for s∈ B, then R = K[S;τ]. The converse is obvious. ut

It will be convenient to express some relations of twisted semigroup `-algebras in
terms of the cohomology of semigroups. For each n∈N the set of functions (K+∗)Sn

is an abelian group denoted by Cn(S,K+∗) and called the group of (positive) n-
cochains of the semigroup S with coefficients in the totally ordered field K. The set of
2-cocycles, Z2(S,K+∗), is easily seen to be a subgroup of C2(S,K+∗). The cobound-
ary map dS = d : C1(S,K+∗)−→C2(S,K+∗), defined by dc(s, t) = c(s)c(t)c(st)−1,
is a homomorphism and its image, B2(S,K+∗), the group of coboundaries, is a
subgroup of Z2(S,K+∗). The factor group H2(S,K+∗) = Z2(S,K+∗)/B2(S,K+∗)
is called the second cohomology group of S with coefficients in K+∗. The as-
signment S 7→ H2(S,K+∗) is a contravariant functor from the category of semi-
groups to the category of abelian groups. To see this note that a homomorphism
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f : S−→ T induces group homomorphisms f̂ : Cn(T,K+∗)−→Cn(S,K+∗) given by
f̂ (g)(s1, . . . ,sn) = g( f (s1), . . . , f (sn)). It is easy to check that f̂ takes a 2-cocycle
to a 2-cocycle and commutes with d : f̂ dT = dS f̂ . So f̂ takes coboundaries to
coboundaries and it induces a homomorphism f ∗ = H2( f ,K+∗) : H2(T,K+∗) −→
H2(S,K+∗). Two twisted semigroup `-algebras over K are isomorphic if and only if
the semigroups are isomorphic by a twist preserving isomorphism. The details are
left for Exercise 4. Note that K[S;σ ] is isomorphic to the semigroup `-algebra K[S]
if and only if σ is a coboundary.

Not unexpectedly more information is obtained when the semigroup is finite and
we now turn our attention to this case. A semigroup is locally finite if each of its
finitely generated subsemigroups is finite, and an algebra over a field is locally finite
if each of its finitely generated subalgebras is finite dimensional. It is clear that a
twisted semigroup `-algebra is locally finite if and only if its base semigroup is
locally finite. A 2-cocycle σ ∈ Z2(S,K+∗) is called a fundamental 2-cocycle if, for
all s, t ∈ S, σ(s, t) = σ(t,s) and σ(s, t) = 1 whenever st = ts. The set of fundamental
2-cocycles is clearly a subgroup of Z2(S,K+∗).

Theorem 6.1.2. Let S be a locally finite semigroup and suppose K is a totally or-
dered field for which K+∗ is a divisible group. Let H be the subgroup of Z2(S,K+∗)
consisting of the fundamental 2-cocycles.

(a) Z2(S,K+∗) is the direct product of B2(S,K+∗) and H.
(b) A 2-cocycle σ is in H if and only if σ(sn,sm) = 1 for every s ∈ S and all m,

n ∈ N.
(c) If S is commutative, then H2(S,K+∗) = 1.

Proof. Let G = K+∗ and fix σ ∈ Z2(S,G); put R = K[S;σ ]. Note that S∼= {Gs : s ∈
S}. We proceed in steps to verify (a).

(i) Suppose u,v ∈ Gs with u j+p = u j and vk+q = avk for some j, k, p, q ∈ N and
a ∈ G. Then uk+q = uk. Since (Gu)k+q = (Gv)k+q = (Gv)k = Guk, uk+q = buk for
some b ∈ G. Then

b j+pu jk = b j+p(u j+p)k = (buk) j+p

= u(k+q)( j+p) = u j(k+q) = b juk j.

So b j+p = b j and hence b = 1.
(ii) For each s ∈ S there is a unique u ∈ Gs with u j+p = u j for some j, p ∈ N.

Since S is locally finite there are integers j, p∈Nwith s j+p = s j. Then Gs j = Gs j+p

and s j+p = as j with a ∈ G. Now,

(
a−

1
p s

) j+p
= a−

(
j+p

p

)
as j = a−

j
p s j =

(
a−

1
p s

) j
;

so u = a−
1
p s is a desired element. If v ∈ Gs with vk+q = vk, then, by (i), uk+q = uk,

and since u = bv, bkvk = uk = uk+q = bk+qvk+q = bk+qvk and b = 1.
(iii) If u,v∈Gs with u j+p = u j and vk+q = avk, then u = a−

1
q v. For, (a−

1
q v)k+q =

a−
(k+q)

q avk = (a−
1
q v)k, and hence u = a−

1
q v by the uniqueness part of (ii).
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(iv) Suppose u ∈Gs, v ∈Gt and u j+p = u j, vk+q = vk, and uv = vu. Then st = ts
and (uv) jk+pq = (uv) jk. Since Gst = Guv = Gvu = Gts, necessarily st = ts. Using
the fact that xmen = xm whenever xe = x we have

(uv) jk+pq = u jkupqv jkvpq = u jkv jk = (uv) jk.

Now, for each s ∈ S let us ∈ Gs be that element with u j+p
s = u j

s for some j, p ∈ N.
Then usut = τ(s, t)ust and τ is a 2-cocyle.

(v) τ is a fundamental 2-cocyle. Take s, t ∈ S. Let j ∈ N be minimal such
that (Gusut) j is equal to a larger power of Gusut and let p ∈ N be minimal
with (Gusut) j+p = (Gusut) j. Similarly, let k and q be minimal with (Gutus)k+q =
(Gutus)k. By Exercise 5(b), p = q and k−1≤ j≤ k+1. Since (usut) j+p = c(usut) j

and (utus)k+p = e(utus)k for some c,e∈G, ust = c−
1
p usut and uts = e−

1
p utus by (iii).

Thus, τ(s, t) = c
1
p and τ(t,s) = e

1
p and we claim that c = e. If j = k +1, then

c(usut) j = (usut)k+1+p = us(utus)k+put = eus(utus)kut

= e(usut) j;

so c = e. By symmetry, c = e if j = k− 1. The third possibility is that j = k, and
then, as above, c(usut) j+1 = e(usut) j+1 and, again, c = e. In fact, when j = k we have
c = e = 1 since e(usut) j+1 is easily seen to be equal to (usut) j+1. So τ(s, t) = τ(t,s).
Suppose, now, that st = ts. Then usut = τ(s, t)ust = τ(t,s)uts = utus and, by (iv) and
(ii), usut = ust since usut ∈ Gst. So τ(s, t) = 1 and τ is a fundamental 2-cocycle.

Now we can give the proof of (a). Since s = c(s)us with c(s) ∈ G for each s ∈ S,
we have

σ(s, t)c(st)ust = σ(s, t)st = st = c(s)c(t)usut = c(s)c(t)τ(s, t)ust ,

and hence σ = (dc)τ ∈ B2H. If σ ∈ B2 ∩H, then σ = dc for some 1-cochain c,
and, for s ∈ S and m,n ∈ N, 1 = σ(sn,sm) = c(sn)c(sm)c(sn+m)−1; so c(snsm) =
c(sn)c(sm) and c restricted to {sn : n ∈ N} is a homomorphism. Since sm = sn for
some m > n we have c(s)m = c(s)n, and hence c(s) = 1 and σ = 1.

A similar argument proves (b). For, σ = (dc)τ for some c and some fundamental
2-cocyle τ , and again c = 1 and hence σ = τ .

Clearly, (c) follows from (a) since if S is commutative, then 1 = H ∼= H2. ut
We next wish to give a condition which will simultaneously force the semigroup

in Theorem 6.1.1 to be a group and the 2-cocycle to be a coboundary. The positive
element x in the `-ring R is called a super left d-element if, for all y ∈ R,

xy+ =
∨
{x1y : 0≤ x1 ≤ x}. (6.1.1)

This condition is easily seen to be equivalent to the condition, for all y,z ∈ R,

x(y∨ z) =
∨
{x1y+ x2z : 0≤ x1,x2 ≤ x, x1 + x2 = x}. (6.1.2)
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The details are left to Exercise 6. A super right d-element is defined analogously,
and a super d-element is an element which satisfies both (6.1.1) and its right-sided
version. The same terminology will be used for the `-ring if each element of R+

satisfies (6.1.1) or its right counterpart, or both. If x is a super left d-element in an
`-algebra over K and x is K-convex, then x is a left d-element. For,

xy+ =
∨
{x1y : 0≤ x1 ≤ x}=

∨
{axy : 0≤ a≤ 1,a ∈ K} ≤ (xy)+ ≤ xy+

since axy≤ a(xy)+ ≤ (xy)+ for each 0≤ a≤ 1. In order to insure that the required
sups exist in the `-algebras under consideration we next let K = R.

Theorem 6.1.3. The following statements are equivalent for the twisted semigroup
`-algebra R = R[S;σ ].

(a) S is left cancellative.
(b) R is a super left d-algebra.
(c) For each s ∈ S, s is a left d-element of R.

Proof. (a) ⇒ (b). Let α , β ∈ R with α ≥ 0. It suffices to verify that

αβ+ ≤
∨
{α1β : 0≤ α1 ≤ α,α1 ∈ R} (6.1.3)

because this sup exists since R is complete and α1β ≤ αβ+ for each 0 ≤ α1 ≤ α .
Write α = Σsass, β = Σsbss. Then

αβ = ∑
s

(
∑

xy=s
axbyσ(x,y)

)
s.

The coefficient of t in αβ+ is Σaxbyσ(x,y) where the sum is over all x,y ∈ S with
xy = t and by ≥ 0. Define γ t = Σscss where

cs =
{

as if, for some r ∈ S, t = sr and br ≥ 0
0 otherwise .

Since S is left cancellative cs and γ t are well-defined. Now 0≤ γ t ≤ α and

γ tβ = ∑
s

(
∑

xy=s
cxbyσ(x,y)

)
s

= ∑
s


 ∑

xy=s, t=xr
br≥0

axbyσ(x,y)


s.

So
(γ tβ )t = ∑

xy=t, by≥0
axbyσ(x,y) = (αβ+)t ,

and, for each t ∈ S,
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(∨

{α1β : 0≤ α1 ≤ α}
)

t
≥ (γ tβ )t = (αβ+)t .

This establishes (6.1.3).
We have previously noted that (b) implies (c).
(c) ⇒ (a). Suppose s, t, w ∈ S with t 6= w and st = sw. Then

σ(s, t)st = st = s(t−w)+ = (st− sw)+ = ((σ(s, t)−σ(s,w))st)+

= (σ(s, t)−σ(s,w))+st,

and hence we have the contradiction σ(s, t) = (σ(s, t)−σ(s,w))+. ut
In a finite dimensional super left d-algebra the basic elements from a multiplica-

tively closed subset.

Theorem 6.1.4. Let R be an `-domain which is a locally finite basic `-algebra over
K in which each basic element is a left d-element. Then the product of basic elements
is basic.

Proof. Suppose first that R is finite dimensional. So R = Ku1⊕·· ·⊕Kun. For each
j, {u ju1, . . . ,u jun} is a set of n nonzero disjoint elements. So 0 6= u jui ∈ Kuk for
some k. In general, R = ⊕λ Kuλ . Let u and v be basic elements and let T be the
K-subalgebra of R generated by u and v. Since T is finite dimensional there exists a
finite subset {u1, . . . ,un} of {uλ} with T ⊆ Ku1⊕·· ·⊕Kun = A and we assume that
n is minimal. For each i, 1≤ i≤ n, there is a monomial mi(u,v) in u and v with

mi(u,v) = a1u1 + · · ·+anun, ai > 0 and each ak ≥ 0.

So if m j(u,v) = b1u1 + · · ·+bnun, then 0 < aib juiu j ≤mi(u,v)m j(u,v)∈ T ⊆ A, and
hence uiu j ∈ A. Thus, A is an `-subalgebra and uv is basic in A and also in R. ut

To get the desired characterization of a semigroup `-algebra we need to see that
the second cohomology group vanishes.

Theorem 6.1.5. Suppose S is a locally finite left cancellative semigroup and K is
a totally ordered field whose group of strictly positive elements is divisible. Then
H2(S,K+∗) = 1.

Proof. Suppose first that S is finite of order n, and let σ be a 2-cocyle. Define c ∈
C1(S,K+∗) by c(s)n = Πu∈Sσ(s,u). Since tS = S,

dcn(s, t) = Πu∈S σ(s,u)σ(t,u)σ(st,u)−1

= σ(s, t)nΠu∈S σ(s,u)σ(t,u)σ(st,u)−1σ(s, t)−1

= σ(s, t)nΠu∈S σ(s,u)σ(t,u)σ(s, tu)−1σ(t,u)−1

= σ(s, t)n.

So σ(s, t) = dc(s, t), σ = dc ∈ B2(S,K+∗) and H2(S,K+∗) = 1. If now S is locally
finite and σ is a fundamental 2-cocyle, then σ is the identity on each finite subsemi-
group of S. Thus, σ = 1 and H2(S,K+∗) = 1 by Theorem 6.1.2. ut
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We now have assembled all the necessary ingredients to get a semigroup
`-algebra.

Theorem 6.1.6. Let R be an `-algebra over R. R is isomorphic to a semigroup
(group) `-algebra over a left cancellative locally finite semigroup (group) if and
only if R is an `-domain which is basic and is a locally finite left (and right) super
d-algebra.

Proof. If R∼= R[S] where S is locally finite and left cancellative (a group), then R is
a left super d-algebra (a super d-algebra) by Theorem 6.1.3. Conversely, suppose R
has the listed left properties. Then, by Theorems 6.1.4, 6.1.1, 6.1.5, and 6.1.3, R is
isomorphic to a semigroup `-algebra over a semigroup S with the desired properties.
If R is also a right super d-algebra, then S is also right cancellative and is a group
since it is locally finite. ut

The polynomial ring A[x] over the totally ordered division ring A has numerous
partial orders in which all squares are positive. We are going to determine all those
sp-partial orders for which A[x] is a nontotally ordered sp-`-ring extension of A and
x is comparable to 0. A description of these lattice orders for x > 0 is given by

A[x] = [A⊕{(Ay ¢←··· ¢←Ayn−1) ¢←A(yn−a)}] ¢←[Ayn+1 ¢←··· ],

where n ∈ N, y = x− c, and a and c are in the center of A+. These orders may be
viewed as arising from perturbations of the total order of the additive monoid Z+.
Thus, we proceed, more generally, to modify the partial order of a given mopops
that is a monoid so that in the new partial order we still have a pops which retains
some of the good properties of the original. We will return to additive notation for
the pops, which now will not be trivially ordered, and to the formal power series
notation for the elements of the semigroup ring.

As usual, X∗ = X\{0} for any subset X of a larger set which may contain 0. The
element n of the pops ∆ is positive if n < 2n. It is strongly right (left) positive if
n < n+ k (n < k +n) for each k ∈ ∆ ∗ and it is strongly positive if it is both strongly
right and strongly left positive. The pops ∆ is weakly positive if each of its nonzero
elements is positive. Recall that ∆ is positive if n,m < n + m whenever n,m ∈ ∆ ∗
and n+m is defined. A positive pops is weakly positive provided 2n exists for every
n ∈ ∆ , but the converse is not true in general; see Exercises 8 and 9. The following
information will be useful.

Theorem 6.1.7. Suppose ∆ is a pops with a strongly right positive element.

(a) ∆ is a semigroup.
(b) ∆ ∗ is a subpops of ∆ .
(c) If ∆ is a mopops, then 0 is a minimal element of ∆ .
(d) Each element of ∆ that is comparable to every element of ∆ ∗ is strongly left

positive.

If ∆ is a weakly positive pops, then (b) and (c) hold and so does (d) with “left”
deleted.
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Proof. Let n be a strongly right positive element of ∆ . Then n < n + k, n + p for
k, p ∈ ∆ ∗; so n < n + p < n + k + p and ∆ ∗ is a subsemigroup of the semigroup ∆ .
Also, 0 must be minimal since if k < 0, then n < n+k < n. Suppose m is comparable
to every element of ∆ ∗. If m = 0 then m is strongly positive. If m 6= 0, the inequality
k +m≤ m produces the contradiction n+m < n+ k +m≤ n+m.

Suppose now that ∆ is weakly positive. If p, n∈ ∆ ∗ with p+n∈ ∆ the inequality
p + n < 2p + 2n shows p + n ∈ ∆ ∗, and clearly 0 is minimal. Suppose m ∈ ∆ ∗ is
comparable to every element of ∆ ∗ and let k ∈ ∆ ∗. Since k≤m or m≤ k, m+k and
k+m are defined since 2m and 2k ∈ ∆ . If m+k≤m, then m+2k≤m+k < m+2k;
so m < m+ k and, similarly, m < k +m. ut

A monoid that is a rooted mopops can be weakly positive without having all of
its elements strongly positive; see Exercise 8.

In all of the perturbations of the mopops that will be given it is only the partial
order that will be changed, not addition. The first modification of the partial order
of a mopops that we need is that obtained by isolating 0. Let ∆ be a mopops and let
∆0 be the poset which is the cardinal sum ∆ ∗ ∪̇{0} of the posets ∆ ∗ and {0}.

Theorem 6.1.8. The following statements are equivalent for the mopops ∆ .

(a) ∆ is an (almost) sp-pops and 0 is a minimal element.
(b) ∆ ∗ is a weakly positive (almost) sp-subpops of ∆ .
(c) ∆0 is an (almost) sp-pops.

Proof. We will only treat the almost sp-pops case; the sp-pops case is quite similar.
(a) ⇒ (b). Suppose m and n are distinct elements of ∆ ∗ with m + n ∈ ∆ . Since

p = p+0 < 2p for each p ∈ ∆ ∗, m+n < 2m+2n and hence m+n ∈ ∆ ∗. So ∆ ∗ is
a weakly positive almost sp-subpops of ∆ .

(b) ⇒ (a). 0 is minimal since if n < 0, then 2n < n < 2n. Also, ∆ is clearly an
almost sp-pops.

(b) ⇒ (c). Since ∆ ∗ is a subpops of ∆ , ∆0 is clearly a pops and ∆ ∗ is a subpops
of ∆0. So ∆0 is an almost sp-pops by the previous implication.

(c) ⇒ (b). This is a consequence of the fact that (a) implies (b). ut
The second modification of the partial order applies to a rooted mopops and

unlike the first may not quite be a weakening of the original order. Suppose ∆ is a
rooted mopops and let ∆ ∗ = Γ1∪Γ2 with Γ1 < Γ2 where Γ2 is contained in the trunk
of ∆ ∗, and assume that m + n and n + m exist for all (m,n) ∈ ∆ ×Γ2. Let ∆Γ1,Γ2 be
the poset which is the ordinal sum of Γ1 ∪̇{0} and Γ2 with Γ2 on top; so m ≤Γ1,Γ2 n
in ∆Γ1,Γ2 if and only if m ≤ n in Γ1 ∪̇{0} or in Γ2, or m ∈ Γ1 ∪̇{0} and n ∈ Γ2. Note
that ≤ and ≤Γ1,Γ2 agree in ∆ ∗.

Theorem 6.1.9. Suppose ∆ is a rooted mopops that is either weakly positive or has
a strongly positive element. Then ∆Γ1,Γ2 is a rooted mopops that is weakly positive
or has a strongly positive element, respectively. Moreover, ∆ is an (almost) sp-pops
if and only if ∆Γ1,Γ2 is an (almost) sp-pops.
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Proof. Certainly ∆Γ1,Γ2 is a rooted poset, and ∆ ∗ is a subpops of ∆ by Theorem 6.1.7.
Suppose that m <Γ1,Γ2 n and p∈∆ ∗ with p+m∈∆ . If m 6= 0, then p+m <Γ1,Γ2 p+n
since this inequality is the inequality p + m < p + n. If m = 0, then n ∈ Γ2 and n is
strongly positive in ∆ by Theorem 6.1.7. So, again, p <Γ1,Γ2 p + n. If ∆ is weakly
positive, then clearly so is ∆Γ1,Γ2 , and if n ∈ ∆ ∗ is a strongly positive element of ∆ ,
then it is strongly positive in ∆Γ1,Γ2 . On the other hand, if 0 is strongly positive in ∆ ,
then 0 < ∆ ∗ and each element of ∆ ∗ is strongly positive in ∆Γ1,Γ2 . The last statement
is a consequence of Theorem 6.1.8. ut

We now rephrase these facts using po-rings. Let A be a po-domain and let ∆ be a
mopops. The partial orders, as an A-A-bimodule, of the ring A[∆ ] = Σ(∆0,A) =
Σ(∆Γ1,Γ2 ,A) induced by ∆0 and ∆Γ1,Γ2 will be denoted by P0(A[∆ ]) = P0 and
PΓ1,Γ2(A[∆ ]) = PΓ1,Γ2 , respectively. These partial orders are also described as follows:

P0 = A[∆ ]+ where A[∆ ] = A⊕Σ(∆ ∗,A), (6.1.4)

PΓ1,Γ2 = A[∆ ]+ where A[∆ ] = [A⊕Σ(Γ1,A)] ¢←Σ(Γ2,A). (6.1.5)

Theorem 6.1.10. Suppose that A is a po-domain and ∆ ∗ is a subpops of the mopops
∆ .

(a) P0 is a partial order of the generalized semigroup ring A[∆ ].
(b) If A is a domain and 0 is a minimal element of ∆ , then (A[∆ ],P0) is an

sp-ring iff A is an sp-ring and ∆ is an sp-pops.
(c) If ∆ is rooted and is either weakly positive or has a strongly positive element,

then PΓ1,Γ2 is a partial order of the ring A[∆ ].
(d) If A is a totally ordered domain and ∆ is a weakly positive rooted po-

monoid, then A is the subring of left (right) f -elements of (A[∆ ],P) for
P = P0 or P = PΓ1,Γ2 , unless Γ1 = /0, in which case Σ(∆Γ1,Γ2 ,A) is totally
ordered. Moreover, if ∆ is an sp-pops then A[∆ ] is a domain and (A[∆ ],P)
is an sp-`-ring.

Proof. Since ∆ ∗ is a subpops of ∆ ∆0 is a pops and (a) follows from Theorem
3.5.3. If A is totally ordered and ∆ is rooted, then (b) is a consequence of Theorems
6.1.8, 3.5.3, and 3.7.6. In general, we need to use Exercise 3.7.14(b) in place of
Theorem 3.7.6. Clearly, (c) is a consequence of Theorems 6.1.9 and 3.5.3. For (d),
each of the po-rings is an `-ring and the first part follows from Exercise 3.7.17 since
f`(∆0) = fr(∆0) = f`(∆Γ1,Γ2) = fr(∆Γ1,Γ2) = 0. The second part is an immediate
consequence of Theorem 3.7.6 since ∆0 and ∆Γ1,Γ2 are rooted sp-pops. ut

We will now construct other partial orders of A[∆ ] which make it into an sp-`-
ring. The initial construction will only be concerned with the additive structure of
A[∆ ] and will be carried out for any poset. Recall that U(X) (respectively, L(X))
denotes the set of upper (respectively, lower) bounds of the subset X of a poset. The
set of strict upper (respectively, lower) bounds of X will be denoted by Us(X) (re-
spectively, Ls(X)) : Us(X) =U(X)\X . Let Γ be a poset with a distinguished element
0, and let n ∈ Γ ∗ = Γ \{0} and V (n) = Γ ∗\U(n). For the subset X of Γ we will use
the previous notation X∗ = X\{0} to exclude 0. Suppose that A is a po-ring with
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A+ 6= 0 and u(A) is a po-unital po-ring which contains A. We assume that the pair
(α,β ) ∈ A+×u(A)+ satisfies the following conditions:

Aβ ⊆ A and if γ ∈ A with γβ ≥ 0 then γ ≥ 0; (6.1.6)

A+α ⊆ A+β ∪U(A+β ). (6.1.7)

One example of a pair that satisfies (6.1.7) is obtained by taking A totally ordered
with Aβ convex and α ∈ A+. Another example is given by taking u(A) totally or-
dered, I a left `-ideal of u(A), J a left ideal of A with I ∩ J = 0, and α ∈ J+ and
β ∈ I+. The canonical totally ordered domain with a left `-ideal that is not an ideal
given in Exercise 3.4.35 and Theorem 3.4.17 is one such example.

Each element f ∈ A[Γ ], the direct sum of Γ copies of the bimodule AAA, can be
written uniquely as

f = α0 + f1 +αnxn + f2

with supp f1 ⊆V (n) and supp f2 ⊆Us(n)∗. (6.1.8)

Here, α0 denotes α0x0. Let Pn,α,β (A[Γ ]) = Pn,α,β be defined by

Pn,α ,β = { f ∈ A[Γ ] : 0 < f2 ∈ Σ(Us(n)∗,A),

or f2 = 0,αn > 0, and α0β +αnα ≥ 0 whenever αnα ∈ A+β ,

or f2 = αn = 0, f1 ∈ (Σ(V (n),A))+, and 0≤ α0}. (6.1.9)

We note that for each 0 < γ ∈ A, γα > A+β iff α0 + f1 + γxn ∈ Pn,α,β for any
f1 ∈ Σ(V,n),A) and any α0 ∈ A. For, if all such elements are in Pn,α ,β , then γα ≥
A+β by the definition of Pn,α,β . But A+β 6= 0 by (6.1.6) and hence γα 6∈ A+β ;
so γα > A+β . If β = 1, then we will denote Pn,α ,β by Pn,α . Since α0 + αnxn =
(α0 +αnα)+αn(xn−α), Pn,α is the positive cone of the po-group

(A[Γ ],Pn,α) = [A⊕ (Σ(V (n),A) ¢←A(xn−α))] ¢←Σ(Us(n)∗,A). (6.1.10)

If γα > A+β for each 0 < γ ∈ A, then Pn,α,β is the positive cone of

[A⊕Σ(V (n),A)] ¢←Σ(U(n)∗,A). (6.1.11)

Note, also, that Pn,α,β = Pn,0 for any β , if A+α = 0.
These positive cones are related to the previous ones. Suppose that Γ = ∆ is a

rooted mopops. If Γ1 is empty, and 0 is the minimal element of ∆ , then ∆Γ1,Γ2 = ∆ ,
and if Γ2 is empty, then ∆Γ1,Γ2 = ∆0. On the other hand, if Γ1 has a largest element
n, then PΓ1,Γ2(A[∆ ]) = Pn,0(A[∆ ]). These are the only possibilities, of course, when
∆ = Z+.

Theorem 6.1.11. Let Γ be a poset, 0,n ∈ Γ with n 6= 0, and let A be a po-subring
of the po-unital po-ring u(A). Suppose α ∈ A+, β ∈ u(A)+, and α and β satisfy
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(6.1.6) and (6.1.7). Let R = (A[Γ ],Pn,α,β ) where Pn,α,β is the subset of A[Γ ] defined
by (6.1.9).

(a) R is a po-group.
(b) If

(i) A is totally ordered,
(ii) Us(n)∗ is totally ordered, and

(iii) V (n) is rooted,

then R is an `-group. Moreover, if f ∈ R and f‖0, then f = α0 + f1 +αnxn,
αnα = δβ for some δ ∈ A, and

f + =




−δ + f1 +αnxn, if αn > 0,
α0 +δ , if αn < 0,
α+

0 + f +
1 , if αn = 0,

(6.1.12)

where f +
1 = f1∨0 in Σ(V (n),A). Conversely, if Γ has at least three elements

and R is an `-group, then (i), (ii) and (iii) hold.
(c) R is totally ordered iff A is totally ordered, Γ ∗ is totally ordered, n is the

least element of Γ ∗, and γα > Aβ for each 0 < γ ∈ A.
(d) Suppose the three conditions in (b) are satisfied and 0 < f ,g.

Then f ∧ g = 0 if and only if (i) or (ii) or the analogue of (i) obtained by
interchanging f and g is satisfied:

(i) f = α0, g = β0 +g1 +βnxn with βn > 0 and βnα =−β0β
(ii) f = α0 + f1, g = β0 +g1 and α0∧β0 = 0 and f1∧g1 = 0.

Proof. Let f = α0 + f1 +αnxn + f2 and g = β0 +g1 +βnxn +g2 be two elements of
R that are decomposed as in (6.1.8).

(a) Suppose that f ,g∈Pn,α ,β . If f2 6= 0 or g2 6= 0, then 0 < f2 +g2 ∈Σ(Us(n)∗,A);
or if f2 = g2 = 0 and, either αnα > A+β or βnα > A+β , or αn = βn = 0, then, either
(αn + βn)α > A+β since αnα ≥ 0 and βnα ≥ 0, or f1 + g1 ∈ (Σ(V (n),A))+ and
α0 +β0 ≥ 0. In these three cases f +g∈ Pn,α,β . The remaining case has f2 = g2 = 0,
0 < αn +βn, and αnα , βnα ∈ A+β . Then

(α0 +β0)β +(αn +βn)α = (α0β +αnα)+(β0β +βnα)≥ 0;

so f +g ∈ Pn,α,β . Since Pn,α,β ∩−Pn,α ,β = 0, Pn,α,β is a partial order of A[Γ ].
(b) Assume these three conditions hold and suppose f‖0 and g ≥ 0, f . Then

f = α0 + f1 + αnxn and |αn|α 6> A+β ; so αnα = δβ for some δ ∈ A. Let h be
the element of R defined by (6.1.12). If g2 > 0, or g2 = 0 and βnα > A+β , then
g > h since, in the latter case, when αn > 0 we have δ ≥ 0 and so (βn−αn)α =
βnα−δβ > (A+ +δ )β −δβ = A+β . Suppose that g2 = 0 and βnα = ρβ . We need
to check that g≥ h in this case and that h≥ 0, f .

If αn > 0, then h =−δ + f1 +αnxn ≥ 0 since −δβ +αnα = 0; and h≥ f since
(α0 +δ )β = α0β +αnα < 0 and h− f =−(δ +α0) > 0 by (6.1.9). Now,
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0≤ g− f = (β0−α0)+(g1− f1)+(βn−αn)xn

forces βn ≥ αn > 0. Since

g−h = (β0 +δ )+(g1− f1)+(βn−αn)xn

and
(β0 +δ )β +(βn−αn)α = β0β +βnα ≥ 0,

if βn > αn then g > h; and if βn = αn, then g1 ≥ f1 and β0 +δ = β0 +ρ ≥ 0, and so
g≥ h. Thus, h = f + when αn > 0.

Assume now that αn < 0. Then

f + = f +(− f )+ = α0 + f1 +αnxn +(δ − f1−αnxn) = α0 +δ

by the previous case.
Finally, suppose that f = α0 + f1 and h = α+

0 + f +
1 . Then h≥ 0, f , and

0≤ g− f = (β0−α0)+(g1− f1)+βnxn

yields that (β0−α0)β +βnα ≥ 0 and β0β +βnα ≥ (α0β )+ = α+
0 β since g≥ 0; so

0≤ g−h = (β0−α+
0 )+(g1− f +

1 )+βnxn,

whether βn > 0 or βn = 0, since

(β0−α+
0 )β +βnα = (β0β +βnα)−α+

0 β ≥ 0.

Thus, h = f +.
Conversely, suppose that R is an `-group. Then Σ(V (n),A) is an `-subgroup of

R. For, if V (n) 6= /0 and f ∈ Σ(V (n),A) is not comparable to 0, then, since

R = [A+Σ(V (n),A)+Axn] ¢←Σ(Us(n)∗,A), (6.1.13)

necessarily f + = γ0 +h1 + γnxn. If 0 < γn and m ∈V (n), then 0, f < k = γ0 +( f1−
γnxm)+γnxn < f +. For, k > 0 and k− f > 0 for the same reasons that make f + > 0,
and f +− k = γnxm > 0. So γn = 0 and hence γ0 = 0, also. Thus, V (n) is rooted. If
Us(n)∗ 6= /0, then Us(n)∗ and A are both totally ordered by (6.1.13). If Us(n)∗ = /0,
then V (n) 6= /0 and A is totally ordered since Σ(V (n),A)+Axn = Σ(V (n),A) ¢←Axn.

(c) Suppose R is totally ordered. If 0 < γ ∈ A with γα = δβ take α0 ∈ A with
α0 <−δ . Then we have the contradiction that f = α0 + γxn ∈ R is not comparable
to 0 since γ > 0 and α0β + γα < 0. Thus, γα > A+β for each 0 < γ ∈ A and, by
(6.1.11), Γ ∗ = U(n)∗ is totally ordered and so is A. Conversely, these conditions
together with (6.1.11) imply that R is totally ordered.

(d) If f and g have the form in (i), then f‖g and by (6.1.12), (g− f )+ = β0 +
g1 + βnxn = g and f ∧ g = 0. If they have the form in (ii), then f ∧ g = 0 since
A⊕Σ(V (n),A) is an `-subgroup of R by (6.1.12). Conversely, suppose that f ∧g = 0.
If g2 > 0 and g2 ≥ f2, then 2g2 > f2 and 2g > f . So g2 = f2 = 0. If βn ≥ αn > 0,
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then 2βn > αn and again by (b), (2βn−αn)α = δβ and

(2g− f )+ =−δ +(2g1− f1)+(2βn−αn)xn 6= 2g,

which is nonsense. If βn = αn = 0, then f and g have the form of (ii). Finally, if βn >
0 = αn, then (g − f )+ = g implies that −δ + (g1 − f1) + βnxn = β0 + g1 + βnxn

with βnα = δβ ; so f1 = 0 and f and g have the form of (i). ut
We will now determine the relations between these partial orders. If X ⊆ A and

ρ ∈ u(A), then (ρ : X) = {γ ∈ A : γρ ∈ X}.

Theorem 6.1.12. Suppose (n,α,β ) and (n′,α ′,β ′) satisfy the conditions in Theo-
rem 6.1.11. Then Pn,α ,β ⊆ Pn′,α ′,β ′ if and only if n and n′ are comparable and one of
the following conditions is satisfied.

(i) n′ < n and Us(n′)∗ = (n′,n)∗ ∪U(n)∗.
(ii) n < n′, A+α = 0, Γ ∗ = L(n)∗ ∪U(n′)∗, and for every 0 < γ ∈ A we have

that γα ′ > A+β ′.
(iii) n = n′, (α ′ : Aβ ′)+ ⊆ (α : Aβ )+, and, if γ ∈ (α ′ : Aβ ′)+ with γα = δβ and

γα ′ = δ ′β ′, then δ ′ ≥ δ .

In case (ii) Pn,α ,β = Pn,0 = Pn′,α ′,β ′ and (n,n′)∗ = /0. In general, Pn,α ,β = Pn,α ′ pre-
cisely when A+(α−α ′β ) = 0.

Proof. Let 0 < γ ∈ A. If n‖n′, then n ∈ V (n′), n′ ∈ V (n), and −γxn′ + γxn ∈
Pn,α,β\Pn′,α ′,β ′ . Assume n and n′ are comparable.

Suppose first that n′ < n. If Pn,α,β ⊆ Pn′,α ′,β ′ , then each upper bound of n′ in
Γ ∗ is comparable to n. For, if m > n′ and m‖n, then −γxm + γxn ∈ Pn,α ,β\Pn′,α ′,β ′ .
Conversely, suppose that Us(n′)∗ = (n′,n)∗∪U(n)∗, and take f ∈Pn,α,β as in (6.1.8).
Then we can decompose f1 as f1 = f3 +αn′xn′ + f4 where supp f3 ⊆V (n′) and supp
f4 ⊆ (n′,n). Now, clearly,

f = α0 + f3 +αn′x
n′ +( f4 +αnxn + f2)

is the decomposition of f that is given in (6.1.8) relative to n′. Let m∈maxsupp( f4 +
αnxn + f2) with coefficient αm. Then m ∈ maxsupp f2, or f2 = 0 and m = n, or
f2 = 0, αn = 0, and m ∈ maxsupp f4. In the latter case m ∈ maxsupp f , and hence
in all these cases αm > 0 and f ∈ Pn′,α ′,β ′ . If, however, f4 + αnxn + f2 = 0, then
αn = 0 and f2 = f4 = 0, and f = α0 + f3 +αn′xn′ with α0 ≥ 0. So, if αn′ 6= 0, then
n′ ∈maxsupp f1, αn′ > 0 and f ∈ Pn′,α ′,β ′ . On the other hand, if αn′ = 0, then f1 = f3
and f = α0 + f1 ∈ Pn′,α ′,β ′ .

Suppose next that n < n′. Assume first that Pn,α,β ⊆ Pn′,α ′,β ′ . If γα > A+β , then
−γ + γxn ∈ Pn,α,β\Pn′,α ′,β ′ since −γ < 0; and if γα = δβ with δ > 0, then −δ +
γxn ∈Pn,α ,β\Pn′,α ′,β ′ since−δ < 0. So A+α = 0 and Pn,α,β = Pn,0 by the remark after
(6.1.11). Suppose, by way of contradiction, that m ∈ Γ ∗\(L(n)∗ ∪U(n′)∗). If m‖n,
then m∈V (n), m,n∈V (n′) and−γxm +γxn ∈ Pn,0\Pn′,α ′,β ′ ; so m > n. Now m‖n′ or
m < n′, and in either case −γ + γxm ∈ Pn,α,β\Pn′,α ′,β ′ . Thus, Γ ∗ = L(n)∗ ∪U(n′)∗,
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and Pn,α,β = Pn′,α ′,β ′ by (i) with the roles of n and n′ reversed since each upper bound
of n in Γ ∗ is comparable to n′. To see that γα ′ > A+β we assume to the contrary that
γα ′ = δ ′β ′ and take α0 <−δ ′. Then α0 +γxn′ ∈ Pn,α,β\Pn′,α ′,β ′ since α0β ′+γα ′ =
(α0 + δ ′)β ′ < 0. Thus, γα ′ > A+β ′. Conversely, if these three conditions hold and
f = α0 + f1 +αnxn + f2 ∈ Pn,0 as in (6.1.8), then the analogous decomposition of f
relative to n′ is given below and shows that Pn,α,β ⊆ Pn′,α ′,β ′ .

f = α0 +( f1 +αnxn)+αn′x
n′ +( f2−αn′x

n′)

For (iii), first assume that Pn,α,β ⊆ Pn,α ′,β ′ . If 0 < γ ∈ (α ′ : Aβ ′)\(α : Aβ ),
then γα ′ = δ ′β ′ with δ ′ ≥ 0 and γα > A+β . So, if α0 < −δ ′, then α0 + γxn ∈
Pn,α,β\Pn,α ′,β ′ since α0β ′+ γα ′ = (α0 +δ ′)β ′ < 0. Thus, (α ′ : Aβ ′)+ ⊆ (α : Aβ )+.
If 0 < γ ∈ (α ′ : Aβ ′) and γα = δβ and γα ′ = δ ′β ′, then−δ +γxn ∈Pn,α,β and hence
−δ + γxn ∈ Pn,α ′,β ′ . Thus, 0≤−δβ ′+ γα ′ = (−δ +δ ′)β ′ and δ ≤ δ ′. Conversely,
assume these two conditions hold, and let f = α0 + f1 + γxn ∈ Pn,α,β with γ > 0.
If γ ∈ (α ′ : Aβ ′), then, using the previous notation, 0 ≤ α0β + γα = (α0 + δ )β
gives that α0 + δ ′ ≥ α0 + δ ≥ 0 and hence α0β ′+ γα ′ ≥ 0. Thus, f ∈ Pn,α ′,β ′ and
Pn,α,β ⊆ Pn,α ′,β ′ since the other types of elements in Pn,α,β are clearly all in Pn,α ′,β ′ .

That Pn,α ,β = Pn,α ′ if and only if A+(α − α ′β ) = 0 follows from (iii). For,
Pn,α,β = Pn,α ′ = Pn,α ′,1 iff (α : Aβ )+ = (α ′ : A)+ = A+ and, for any γ ∈A+, γα = δβ
and γα ′ = δ ′ implies that δ = δ ′. So Pn,α,β = Pn,α ′ precisely when A+(α−α ′β ) = 0.

ut
We will now identify some `-subgroups of (A[Γ ],Pn,α,β ). Recall that C(X) de-

notes the convex `-subgroup generated by X .

Theorem 6.1.13. Suppose A is totally ordered and B is a subgroup of the additive
group of A.

(a) If R = (A[Γ ],Pn,α ,β ) is an `-group and |Γ | ≥ 3, then B[Γ ] is an `-subgroup
of R if and only if (β : Bα)∩C(B)⊆ B.

(b) If Γ is rooted and B is a convex subgroup of A, then B[Γ ] is an `-subgroup
of the `-group (A[Γ ],Pn,α,β ), for any n,α ,β .

(c) If Γ is rooted and B is a right ideal of A, then B[Γ ] is an `-subgroup of each
`-group (A[Γ ],Pn,α).

(d) Assume Γ is rooted and B is a subring of A with the property that α ∈ B
whenever Bα ⊆ B. If B[Γ ] is an `-subgroup of each `-group (A[Γ ],Pn,α),
then B is a convex subring of A.

Proof. For (a), assume B[Γ ] is an `-subgroup, and let 0 < δ ∈ (β : Bα)∩C(B). Then
0 < δβ = γα with γ ∈ B and δ < α0 ∈ B. Now, f = −α0 + γxn ∈ B[Γ ] and f‖0
since γ > 0 and −α0β + γα = (−α0 + δ )β < 0 by (6.1.12); so f + = −δ + γxn ∈
B[Γ ] and δ ∈ B. For the converse, suppose f = α0 + f1 +αnxn ∈ B[Γ ] with αn 6= 0,
f‖0, and αnα = δβ with δ ∈ A. If αn > 0, then (α0 + δ )β = α0β + αnα < 0; so
0 ≤ δ < −α0 and δ ∈ (β : Bα)∩C(B) ⊆ B. If αn < 0, then −δ ∈ B. In both cases
f + ∈ B[Γ ] is a consequence of (6.1.12). Both (b) and (c) are obvious consequences
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of (a), and, as for (d), suppose that 0 ≤ α ≤ γ with γ ∈ B. Then, for each δ ∈ B+,
δα ∈ Bα ∩C(B)⊆ B by (a). So, α ∈ B and B is convex. ut

We now return to the ring A[∆ ] and determine when the partial order Pn,α,β makes
A[∆ ] into an `-ring with squares positive. For γ ∈ A let Dγ denote the right inner
derivation determined by γ; so if δ ∈ A, then Dγ(δ ) = [δ ,γ] = δγ− γδ .

Theorem 6.1.14. Suppose that A is a directed po-domain, ∆ is a rooted mopops,
and n is a strongly positive element in the trunk of ∆ ∗. Let R = (A[∆ ], Pn,α,β ).

(a) R is a po-ring (equivalently, a po-domain) if and only if,

for all (γ0,γ1,γ) ∈ A×A+∗ ×A+, if γ0β + γ1α ≥ 0,

then γ0γβ + γ1γα ≥ 0. (6.1.14)

In particular, suppose β centralizes A. If A+Dα(A+) ⊆ A+, then R is a po-
ring, and the converse holds provided A = βA.

(b) If A is a domain and R is a po-ring, then R is an sp-ring iff ∆ is an sp-pops
and A is an sp-ring.

(c) If R is an `-ring that is not totally ordered, then F̀ (R) = A and

Fr(R) = {γ ∈ A : ∀ρ,δ ∈ A,ρα = δβ ⇒ ργα = δγβ}. (6.1.15)

Moreover, if β centralizes A, then Fr(R) is the centralizer of α in A.

Proof. (a) We first note that the condition in (6.1.14) is precisely what is needed
for RA to be a (strict) po-module. For, suppose RA is a po-module and γ0, γ1, γ ∈ A
with 0 < γ , γ1 and γ0β + γ1α ≥ 0. Then f = γ0 + γ1xn > 0 and hence f γ = γ0γ +
γ1γxn > 0. If γ1γα > A+β then γ1γα > Aβ since A is directed; so γ1γα > −γ0γβ .
Otherwise, γ1γα ∈ A+β and γ0γβ + γ1γα ≥ 0. Conversely, assume that (6.1.14)
holds and let f = α0 + f1 +αnxn + f2 > 0, and take 0 < γ ∈ A. If f2 > 0, then f2γ > 0
and f γ > 0, and if f2 = αn = 0, then f γ = α0γ + f1γ > 0. The remaining case to
be considered has f2 = 0 and αn > 0. Now, whether αnα > Aβ or αnα ∈ A+β we
have α0β + αnα ≥ 0. So α0γβ + αnγα ≥ 0 and f γ ≥ 0. Thus, it suffices to show
that if RA is a po-module, then R is a po-ring. Note that Σ(∆ ∗,A)+ = Pn,α,β ∩A[∆ ∗],
and Σ(∆ ∗,A) is an `-domain by Theorem 3.5.3 and a strict A-A-po-bimodule by
Theorem 2.6.1. Let 0 < f , g ∈ R, and write f = α0 + f ∗ and g = β0 +g∗ where f ∗,
g∗ ∈ A[∆ ∗]. Then f ∗, g∗ ∈ Σ(∆ ∗,A)+, and hence f ∗g∗ ∈ Σ(∆ ∗,A)+. If f ∗ = 0 then
α0 > 0 and f g = α0g > 0, and if g∗ = 0 then β0 > 0 and f g = f β0 > 0. Suppose
that f ∗ > 0 and g∗ > 0; then f ∗g∗ > 0 by Exercise 3.5.2. If there is an element
m ∈ maxsupp f ∗g∗ with m ≥ n, then maxsupp f ∗g∗ = {m} since m is comparable
to each element of supp f ∗g∗. Now, supp f ∗ ∪ supp g∗ < m. For if k ∈ supp f ∗
with m ≤ k, then k is strongly positive by Theorem 6.1.7, and for any ` ∈ supp g∗
we have the contradiction k < k + ` ≤ m ≤ k by Theorem 3.5.3. If m > n, then
f g = α0β0 + α0g∗ + f ∗β0 + f ∗g∗ > 0 since ( f g)2 = ( f ∗g∗)2 > 0. If m = n, then
f = α0 + f1 and g = β0 +g1 with α0, β0 ≥ 0; so, f g > 0. If there is no such m, then
max (maxsupp f ∗+ maxsupp g∗) = maxsupp f ∗g∗ < n and supp f ∗ ∪ supp g∗ < n,
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as above, since any upper bound of n is strongly positive. Then 0≤α0, β0 and hence
0 < f g.

Since γ0γβ + γ1γα = (γ0β + γ1α)γ + γ1[γ,α]+ γ0[γ,β ], if β centralizes A+ and
A+[γ,α] ⊆ A+, then A satisfies (6.1.14). Conversely, suppose R is a po-ring and
A = βA. Take 0 < γ , γ1 ∈ A. Then γ0β + γ1α = 0 for some γ0 ∈ A and therefore
γ1[γ,α] = γ1γα− γ1αγ = γ1γα + γ0γβ ≥ 0.

(b) Let f = α0 + f ∗ where supp f ∗ ⊆ ∆ ∗. If α0 ≥ 0, then f ∈ Pn,α,β iff f ∗ ∈
Σ(∆ ∗,A)+. Thus f 2 ∈ Pn,α ,β iff f ∗α0 + α0 f ∗+ f ∗2 ∈ Σ(∆ ∗,A)+; so R has squares
positive iff Σ(∆0,A) has squares positive. But according to Theorem 6.1.10(b),
Σ(∆0,A) has squares positive iff ∆ is an sp-pops and A is an sp-domain.

(c) Assume R is an `-ring that is not totally ordered. Take γ ∈ A+ and 0 < f ,g∈ R
with f ∧g = 0. By (d) of Theorem 6.1.11, either f = α0 and g = β0 +g1 +βnxn with
βn > 0 and β0β + βnα = 0, or f = α0 + f1 and g = β0 + g1 with α0 ∧β0 = 0 and
f1 ∧ g1 = 0. In either case γ f ∧ g = f ∧ γg = 0, and in the second case f γ ∧ g = 0.
In the first case f γ ∧g = 0, but f ∧gγ = 0 iff βnγα =−β0γβ . Thus, A⊆ F̀ (R) and
the right side of (6.1.15) is Fr(R)∩A. Suppose that h ∈ R+\A. If n is not minimal in
∆ ∗, then there exists m < n and 0 < γ ∈ A with 0 < γxm < 2h. Then γ ∧ γxm = 0 but
(γxm)γ ∧ γxm > 0 and γ(γxm)∧ γxm > 0; so h 6∈ fr(R)∪ f`(R). If n is minimal, then
by (c) of Theorem 6.1.11, there are elements 0 < γ ∈ A and δ ∈ A+ with γα = δβ .
If g =−δ + γxn, then γ ∧g = 0, but γh∧g > 0 and hγ ∧g > 0; so h 6∈ fr(R)∪ f`(R),
and hence F̀ (R) = A and Fr(R) has the description given in (6.1.15). Now suppose β
centralizes A. If γ ∈ Fr(R), then βγα = αγβ gives that γ centralizes α . Conversely,
γα = αγ and ρα = δβ yield ργα = ραγ = δγβ . ut

When β = 1 we have just seen that there are connections between the po-ring
properties of (A[∆ ],Pn,α) and the commutative properties of α . More instances of
this connection appear below and in Exercises 11 and 12, but we do note that Dα
could be isotone without α being central; see Exercise 13.

The extended centroid of the domain A is the center C of its maximal right quo-
tient ring Qr(A). Recall from Exercise 4.1.39 that C is also the center of its maximal
left quotient ring, and hence the central closure T = C +AC of A is a subring of the
maximal two sided quotient ring Q2(A) of A. So T is a domain by Exercise 4.1.14
and each total order of A can be extended to a unique total order of T by Theorem
4.3.12. Since Qr(A) is a regular prime ring it is easy to check that C is a field.

Theorem 6.1.15. Let C be the extended centroid of the domain A, let α,β ∈ A, and
let F be the subring of A defined in (6.1.15).

(a) If αγβ = βγα for all γ ∈ A, then α ∈Cβ .
(b) Suppose Aα ∩Aβ 6= 0. Then β ∈ F if and only if α and β commute, and

A = F if and only if α ∈Cβ .

Proof. (a) Assume β 6= 0 and define ψ : AβA −→ A by ψ(Σiγiβδi) = Σiγiαδi. If
Σiγiβδi = 0, then Σiαγiβδi = 0 yields Σiβγiαδi = 0 and hence Σiγiαδi = 0. So ψ is
a left and right A-homomorphism. Since AβA is a dense right ideal of A there exists
σ ∈ Qr(R) such that σγβδ = γαδ for all γ,δ ∈ A. For any ρ ∈ A,
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(σρ−ρσ)(γβδ ) = ργαδ −ργαδ = 0.

So σρ = ρσ and hence σ ∈C. Since γ(σβ −α)δ = 0 we have α = σβ .
(b) Suppose that 0 6= ρα = δβ . Then ρβα = δβ 2 = ραβ iff βα = αβ and we

have the first part. If ργα = δγβ for any γ ∈ A, then ργβγα = δγβγβ = ργαγβ ;
so βγα = αγβ for each γ ∈ A and hence α = σβ with σ ∈C by (a). Conversely,
if α = σβ and ρα = δβ , then ρσ = δ and ργα = ργσβ = δγβ for any γ ∈ A; so
A = F . ut

We will now show that the lattice orders which have just been constructed can be
identified abstractly. In the next three theorems A is a totally ordered domain and ∆
is a monoid and a rooted weakly positive pops such that ∆ ∗ has a nonempty trunk.
The elements in trunk (∆ ∗) are strongly positive by Theorem 6.1.7.

Theorem 6.1.16. Suppose R = A[∆ ] is an `-ring such that A[∆ ∗] = Σ(∆ ∗,A) is an `-
subring of R, A⊆ F̀ (R) and Axm ⊆A⊥ for each m∈∆ ∗\trunk(∆ ∗). Then A = F̀ (R),
or R = Σ(∆ /0,∆∗ ,A) and ∆ ∗ and R are totally ordered.

Proof. Assume that γxn ∈ F̀ (R) for some n ∈ ∆ ∗ and some γ > 0. If n 6∈ trunk(∆ ∗),
then γ2xn ∧ γ = 0 gives that 0 = γ2xn ∧ γ2xn. Thus, n ∈ trunk(∆ ∗), n is strongly
positive by Theorem 6.1.7, and n+k and n+` are comparable for any two elements
k and ` in ∆ ∗ since n < n + k, n + `. Now, γxn ∈ F̀ (Σ(∆ ∗,A)) = Σ( f`(∆ ∗),A) by
Exercise 3.5.17, and k and ` must be comparable. So ∆ ∗ is totally ordered and hence
R is totally ordered since R ∼= γxnR ⊆ Σ(∆ ∗,A) as right R-`-modules. In fact, R =
Σ(∆ /0,∆∗ ,A) since if 0 < ρxm < δ for some m ∈ ∆ , then ρ2x2m < ρδxm < ρ2x2m

unless m = 0. So A is convex in R and R has the Hahn order determined by the
ordinal sum {0} ∪←∆ ∗. Now, if there exists some element 0 < f = α0 + f ∗ ∈ F̀ (R)
with 0 6= f ∗ ∈A[∆ ∗], then since f ∗, ( f ∗)+, ( f ∗)− ∈ F̀ (R)∩Σ(∆ ∗,A) we may assume
α0 = 0. This gives that 0 < γxn ∈ F̀ (R) for some n ∈ ∆ ∗ and hence R is totally
ordered. ut
Theorem 6.1.17. Let R = A[∆ ] be a po-ring. The following two statements are
equivalent.

(I) (a) There is a partition {Γ1,Γ2} of ∆ ∗ with Γ2 ⊆ trunk (∆ ∗) and Γ1 <
Γ2 such that R = Σ(∆Γ1,Γ2 ,A); or

(b) there is an element 0 < σ in the extended centroid of A with
A+σ ⊆ A∪U(A) and an element n in the trunk of ∆ ∗ such that
R is a po-subring of (T [∆ ],Pn,σ ), where T is the central closure
of A.

(II) R is an `-ring with the following properties.
(i) A[∆ ∗] = Σ(∆ ∗,A) is an `-subring of R;

(ii) A⊆ F(R);
(iii) Axm ⊆ A⊥ for each m ∈ ∆ ∗\trunk(∆ ∗).

Moreover, if the conditions in (II) are satisfied, then A = F(R) = F̀ (R) = Fr(R); and
R is an sp-`-ring if and only if ∆ is an sp-pops.
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Proof. If R = Σ(∆Γ1,Γ2 ,A), then R is an `-ring and the three conditions in (II) hold
by (6.1.5) and Theorem 6.1.10. If R+ = R∩Pn,σ , then (T [∆ ],Pn,σ ) is an `-ring by
Theorems 6.1.11(b) and 6.1.14, and R is an `-subring by Theorem 6.1.13 since (1 :
Aσ)∩C(A) = Aσ ∩C(A) ⊆ A. Also, (i) and (iii) hold for T and (T [∆ ],Pn,σ ) by
(6.1.10) and hence also for R, and, similarly, (ii) holds by Theorem 6.1.14.

For the converse, suppose R is not totally ordered, A⊆ F̀ (R), and both (i) and (iii)
hold. Then A = F̀ (R) by Thoerem 6.1.16 and R+ = U(A)∪ (A⊕A⊥)+ by Theorem
2.5.9. Let

M = {n ∈ trunk(∆ ∗) : γxn 6> A for some 0 < γ ∈ A}
and set N = trunk(∆ ∗)\M and K = ∆ ∗\trunk(∆ ∗); then K < M < N. We first note
that if m < n in ∆ ∗ and γxn 6> A for some γ > 0, then Axm ⊆ A⊥. For, if 0 < ρ ∈ A,
then ρxm < γxn; so ρxm 6> A and ρxm = τ +b with τ ∈ A+ and b ∈ (A⊥)+. If τ > 0,
then for any δ > 0 we have τδ ≤ ρδxm < τγxn and δ < γxn. Thus, τ = 0 and
ρxm ∈ A⊥. So if M is either the empty set or is not empty but does not have a largest
element, then A[M ∪K] ⊆ A⊥. But also A⊥ ⊆ A[M ∪K] since if 0 < f ∈ A⊥ and
n ∈ N∩maxsupp f with coefficient αn, then A < αnxn < 2 f ∈ A⊥. Thus,

R = [A⊕Σ(M∪K,A)] ¢←Σ(N,A);

that is, R+ = PM∪K,N . Suppose that n is the largest element of M. Then there exists
0 < β ∈ A with βxn = α + b ∈ A⊕ A⊥. Now, for each γ > 0, if γxn > A, then
γα +γb = γβxn > Aβ and γα > Aβ . Thus, if γα 6> Aβ , then γxn = α1 +b1 ∈A⊕A⊥,
γβxn = α1β +b1β = γα +αb, and γα = α1β if we now assume that β ∈ Fr(R). So
Pn,α ,β is defined and we will check that R+ = Pn,α,β . Let f = α0 + f1 + αnxn + f2
with supp f1 ⊆ Ls(n)∗ and supp f2 ⊆Us(n) = N. If f2 6= 0 let p = maxsupp f2. Then
f = u+αpxp and because of (i) and the inequality A < |αp|xp we have±u < |αp|xp

by Exercise 3.4.31. So f > 0 iff αp > 0, iff f ∈ Pn,α ,β . If f2 = αn = 0, then since we
have just seen that f1 ∈ A⊥, clearly, 0 < f = α0 + f1 iff f ∈ Pn,α ,β . Suppose, then,
that f2 = 0 and αn 6= 0. Now, f β = (α0β +αnα)+( f1β +αnb) ∈ A⊕A⊥. If f > 0,
then f |αn|xn = α0|αn|xn + f1|αn|xn + |αn|αnx2n > 0 and hence αn > 0. Since f β > 0
we have α0β +αnα ≥ 0 and hence f ∈ Pn,α ,β . On the other hand, if f ∈ Pn,α,β , then
αn > 0 and α0β + αnα ≥ 0. But also αnb ≥ − f1β since αnb + αnα = αnβxn >
Σ(Ls(n)∗,A) and Σ(Ls(n)∗,A)⊆ A⊥. Thus, f > 0 and we have shown R+ = Pn,α,β .
If Aα∩Aβ = 0, then α = 0 or γα > Aβ for each γ > 0; so Pn,α,β = Pn,0 = PL(n)∗,U(n)
or Pn,α,β = PLs(n)∗,U(n). Now, suppose A⊆ F(R). Then A = F̀ (R) = F(R)⊆ Fr(R)⊆
A by (6.1.15). So, assuming that Aα ∩ Aβ 6= 0, we have that α = σβ for some
0 < σ in the extended centroid C of A, by Theorem 6.1.15. Moreover, the condition
A+α ⊆ Aβ ∪U(Aβ ) in A now becomes A+σ ⊆ A∪U(A) in the central closure T of
A. Also, since T α = T β , Pn,α,β (T [∆ ]) is defined and Pn,α,β (T [∆ ]) = Pn,σ (T [∆ ]) by
Theorem 6.1.12. Since the pair (α,β ) satisfies (6.1.6) and (6.1.7) in both A and T , it
is clear that Pn,α ,β (T [∆ ])∩A[∆ ] = Pn,α,β (A[∆ ]). The last statement is a consequence
of Theorems 6.1.9, 6.1.14, and 3.7.6. ut
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When A is `-simple the condition A⊆ F(R) in (II) can be relaxed to A⊆ F̀ (R) -
see Exercise 15. The lattice orders of A[x] in which squares are positive can also be
identified.

Theorem 6.1.18. Let A be a totally ordered domain which has an `-simple classical
one-sided quotient ring L. Suppose the polynomial ring R = A[x] is an sp-`-ring
which is not totally ordered, A ⊆ F(R) and A+x ⊆ R+. Then A = F(R), and there
are central elements σ , γ ∈ L+ with y = x− γ > 0 and an integer n ∈ N such that

R+ = P0(L[y])∩R or R+ = Pn,σ (L([y])∩R.

Proof. Let F = F(R). We will first assume that A = L. Suppose x¿A x2. Since A is
`-simple u ¿A v implies u ¿A ρv for each 0 < ρ ∈ A and hence A[x]x = Σ(N,A).
Thus, by Exercise 15 and Theorem 6.1.17 and its proof, A = F , and R+ = P0(A[x])
or R+ = Pn,α,β (A[x]) = Pn,σ (A[x]) where α = σβ and σ is in the center of A. In this
case γ = 0. Since R+ = U(F)∪ (F ⊕F⊥)+ by Theorem 2.5.9 the other possibility
is that x = γ +y ∈ F⊕F⊥. Note that y and γ are central elements of R since, for any
δ ∈ A, δγ + δy = δx = xδ = γδ + yδ and δγ = γδ and δy = yδ since F and F⊥
are A-A-bimodules. Also, y 6= 0 since otherwise A[x] = F is totally ordered. From
Exercise 14 applied to F [y] = A[x] we have that y¿F δy2 for each 0 < δ ∈ F . Now,
F = A. For, suppose f (x) ∈ F+\A; so f (x) = α0 + α1x + · · ·+ αnxn with α j ∈ A,
n ≥ 1, and αn 6= 0. Then f (x) = f (γ + y) = f (γ)+ β1y + · · ·+ αnyn with β j ∈ F .
If n = 1 we have the contradiction 0 6= α1y = f (x)− f (γ) ∈ F ∩F⊥. If n ≥ 2, then
from 0 < f (x)y = f (γ)y+β1y2 + · · ·+αnyn+1 we get αn > 0 and the contradiction
y∈ F since 0 < y < β1y+ · · ·+αnyn = f (x)− f (γ)∈ F . So R = A[y] and R+ has the
desired form by the previous case. Now suppose that L = AS where S is a right Öre
subset of A+. Then S is a right Öre subset of R and L[x] = RS is an `-ring extension
of A[x] by Exercise 16. Let E = F(L[x]). According to Exercise 16 L is a subring of
E. Now, either x ¿L x2 or x = γ + y ∈ E⊕E⊥. In the first case we have, as above,
that L = E = F̀ (L[x]) = Fr(L[x]) and L[x]+ = P0(L[x]) or L[x]+ = Pn,σ (L[x]) with
σ in the center of L. Also, F ⊆ F̀ (L[x]) since if 0 < τ ∈ F and f ρ−1 ∧ gρ−1 = 0
with f , g ∈ A[x] and ρ ∈ S, then f ∧ g = 0, τ f ∧ g = 0 and τ f ρ−1 ∧ gρ−1 = 0. So
F ⊆ L ∩ A[x] = A and F = A. For the second case, again, as above, it suffices to
show that ρy ≤ δy2 for any 0 < ρ , δ ∈ E. Take τ ∈ S such that ρτ , δτ and yτ
are all in A[x]. Then ρτ , δτ ∈ E ∩A[x] ⊆ F and yτ ∈ E⊥R . But F (respectively, E)
is a totally ordered convex subring of R (respectively, L[x]) and A ⊆ F ∩E; so if
0 6= γ ∈ A, then E⊥R = γ⊥R = F⊥R = µ⊥R for any 0 6= µ ∈ F . Now, by Exercise 14,
(ρτ2)(δτ)(yτ)≤ (δτyτ)(δτyτ); that is ρy≤ δy2. ut

Other perturbations of the partial order of the mopops ∆ which preserve good
properties of ∆ are given in Exercises 22, 23, and 24. In particular, when G is a
totally ordered group and ∆ = (G+)0 these constructions can be used to make the
semigroup ring A[∆ ] into an sp-`-ring in various ways. By taking G to be a free
abelian group or a free group of rank n, with positive generators, sp-lattice orders of
polynomial rings and free rings in n variables are obtained.
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Exercise 5.3.9 shows that it is not always the case that A = F(A[x]) whenever A[x]
is an `-ring extension of the totally ordered domain A with A ⊆ F(A[x]). However,
we do have equality of these subrings if A[x] is an sp-`-ring even when x is not
comparable to 0.

Theorem 6.1.19. Let A be a totally ordered domain and suppose A[x] is an sp-`-
ring extension of A with A ⊆ F(A[x]) ⊂ A[x]. Then A = F(A[x]). If A is `-simple,
then A[ρx2] is an `-subring of A[x] for each positive element ρ in the center of A. If
A is unital there are sp-lattice orders of A[x] with x+ = ρ , for any central element
ρ , but none with x+ of degree one or two.

Proof. We will repeatedly use the following fact and its analogue on the right: if RM
is an `-module and α , αβ ∈ f (RM) with β ∈ R+ and r(α;M)+ = 0, then β ∈ f (RM)
- see the proof of Theorem 2.4.8. We will also use Theorem 2.5.9 for F = F(A[x]):
for u ∈ A[x] either |u| > F or u ∈ F ⊕F⊥. Suppose βx2 ∈ F for some 0 < β ∈ F .
Then for any 0 < γ ∈ F , βγx2 and γx2β are in F ; so Fx2 ⊆ F . From 0 ≤ (γ± γx)2

we obtain
γ2|x| ≤ γ2 + γ2x2. (6.1.16)

So γ2|x| = γ|x|γ ∈ F , γx ∈ F , γm−1γxm = γxmγm−1 ∈ F for m ∈ N, Axm ⊆ F , and
we have the contradiction F = A[x]. Now, suppose f = α0 + α1x + · · ·+ αnxn =
α0 +gx ∈ F with n≥ 1, αi ∈ A and αn 6= 0. Then gx = f −α0 ∈ F . If βx2 ≥ α > 0
for some α , β ∈ F , then 0 < g2α ≤ g2x2β , 0 < αg2 ≤ βx2g2, and hence g2 ∈ F and
βx2 ∈ F . Thus, βx2 6∈U(α) for any 0 < α ∈ A, and Ax2 ⊆ F⊥. By an application of
(6.1.16), for each β ∈ F+, β 2x2 ≤ β 2x4 and βx2 ≤ βx4. Since g2x2β ≤ g2x4β and
g2x4β = (g2x2)(x2β ) ∈ F⊥, g2x2β ∈ F ∩F⊥ = 0. So, A = F .

Suppose A is `-simple. If γx2 > A for some 0 < γ ∈ A, then ρx2 > A for any
0 < ρ ∈ A. In this case A[x2] has the lexicographic total order. The alternative is that
Ax2 ⊆ A⊕A⊥. If 0 < ρ is in the center of A, then ρx2 = α +y ∈ A⊕A⊥ with α and
y central. So A[ρx2] = A[y] is an `-subring of A[x] by Exercise 18, and by Theorem
6.1.18 A[ρx2]+ is either P0(A[y]) or Pn,σ (L[y]) ∩ A[y] for some n ∈N and some σ in
the center of L, the classical totally ordered quotient ring of A obtained by inverting
the powers of ρ . Of course, if A is unital, then σ is in the center of A.

Now assume A is unital and x is not comparable to 0. Since 1∧x+∧x− = 0 either
x+ ∈ A⊥ or x− ∈ A⊥ and we will assume the latter. Suppose n ∈ Z+, αn 6= 0, and

x+ = α0 +α1x+ · · ·+αnxn

and
x− = α0 +(α1−1)x+ · · ·+αnxn.

Since x+ centralizes A each α j is in the center of A. If S is the set of strictly positive
central elements of A, then according to Exercise 16, AS[x] is an sp-`-ring extension
of A[x] and AS = F(AS[x]). If n = 0, then x− = α0 − x, A[x] = A[x−] and again,
by Exercise 18, A[x]+ = P0(A[α0−x]) or A[x]+ = Pm,σ (A[α0−x]) with σ = 0 when
m = 1. Since x = α0−(α0−x)∈A¢A(α0−x) each strictly positive central element
α0 of A does produce these lattice orders of A[x] with x+ = α0. Suppose n = 1. Then
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α1 6= 1 since x− 6∈ A. Because AS[x] = AS[α0 +(α1−1)x] = AS[x−] and

x =−α0(α1−1)−1 +(α1−1)−1(α0 +(α1−1)x)∈AS⊕AS(α0 +(α1−1)x)⊆AS[x]

we have

x+ = (−α0(α1−1)−1)+ +((α1−1)−1)+α0 +((α1−1)−1)+(α1−1)x.

So ((α1−1)−1)+(α1−1) = α1, and α1 = 0 or α1 = 1, neither of which is possible.
Suppose n = 2. We will first show that α1 = 0. Note that x is not comparable to

any element of AS. For, suppose γ ∈ AS. If x ≥ γ , then x ≥ 0 or x− ∈ AS depending
on whether γ ≥ 0 or γ < 0, and if x≤ γ , then, similarly, x≤ 0 or x+ ∈ AS depending
on whether γ ≤ 0 or γ > 0. Now, if α2 < 0, then α0 + α1x = x+−α2x2 ≥ 0; and if
α2 > 0, then from 0≤ (1−α2x)2 we have α2α0 +α2α1x+α2

2 x2 = α2x+ ≤ 1+α2
2 x2

and α2α1x ≤ 1−α2α0. In either case x is comparable to some element of A unless
α1 = 0. If x2 ≥ AS, then, for each α ∈ A+

S , 2α|x| ≤ α2 +x2 ≤ 2x2 and x2 ≥ AS +ASx.
But from α2 > 0 we obtain the contradiction x− = α2x2 +(α0− x) > AS, and from
α2 < 0 we obtain the contradiction α0−x >−α2x2 > AS +ASx. Thus, x2 = α +y ∈
AS⊕A⊥S , and, for any γ ∈ A+

S ,

γ(α0 +α2α)+ γα2y = γx+ ≤ γ|x| ≤ γ2 + x2 = γ2 +α + y.

This implies AS = ASα2 ≤ 1. ut

Exercise.

1. Let D and D1 be totally ordered division rings and suppose G and H are groups
with G periodic. If (D[G],D+[G]) ∼= (D1[H],D+

1 [H]) show that D ∼= D1 and
G∼= H. (Proceed directly or use Exercises 3.5.16(b) and 3.5.18(a).)

2. Suppose R is a finite valued K-archimedean `-algebra over the totally ordered
field K in which the product of special elements is special. Write R = ⊕iRi
where each Ri is a totally ordered vector lattice over K (Exercise 2.5.22). Verify
the following.

(a) R is an `-domain.
(b) For every i, j there exists some k with RiR j ⊆ Rk.
(c) If 1 ∈ R is special and 1 ∈ R0, then R0 is a K-subalgebra and R0Ri = Ri =

RiR0 for every i.
(d) If the special elements form a group, then equality holds in (b).
(e) The special elements form a group and 1 is a convex element of KR iff R is

a twisted group `-algebra over K.

3. If A is a right (respectively, left) algebra `-ideal of the twisted semigroup `-
algebra K[S;τ] show that A = K[S1;τ] where S1 is a right (respectively, left)
ideal of S; that is, S1S⊆ S1 (respectively, SS1 ⊆ S1).
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4. Let f : S−→ T be an injective homomorphism of semigroups and suppose σ ∈
Z2(S,K+∗), τ ∈ Z2(T,K+∗) and f ∗(τ) = σ ; so f̂ (τ) = dS(c)σ for some c in
C1(S,K+∗).

(a) If a ∈ C1(S,K+∗) show that the K-linear transformation ϕ : K[S;σ ] −→
K[T ;τ] induced by ϕ(s) = a(s) f (s) is a monomorphism of `-algebras if
and only if ac is in the kernel of the coboundary map dS.

(b) If f is an isomorphism and d(ac) = 1 show that ϕ is an isomorphism.
(c) Conversely, if ϕ : K[S;σ ]−→K[T ;τ] is an isomorphism of `-algebras show

that there is a semigroup isomorphism f : S −→ T with f ∗(τ) = σ and
which induces ϕ as in (a).

(d) Show that the group of automorphisms of the `-algebra K[S;σ ] is isomor-
phic to the group of automorphisms of the semigroup S.

5. Let S be a finite semigroup.

(a) For s ∈ S let j ∈ N be minimal such that s j = sk for some k > j, and let
p ∈ N be minimal such that s j = s j+p. Show that if k > i ≥ 1, then sk = si

iff i≥ j and k = i+np for some n ∈ N.
(b) Suppose s, t ∈ S and j and p are minimal with (st) j = (st) j+p and k and q

are minimal with (ts)k = (ts)k+q. Show that p = q and k− 1 ≤ j ≤ k + 1.
((st)k+q+1 = s(ts)k+qt.)

6. Let M and N be `-groups with N abelian and, as usual, let the homomorphism
group E = HomZ(M,N) be the abelian po-group whose positive cone consists
of those f ∈ E with f (M+) ⊆ N+. Assume all the necessary sups exist; for
example, N is complete. Let x, y ∈M, f ∈ E+, and A = [0, f ].

(a) Show that f (x∨ y)≥ {g(x)+h(y) : g,h ∈ A, g+h = f}.
(b) Let B be a subset of A such that g ∈ B implies f −g ∈ B. Show that for all

x,y ∈M,
f (x∨ y) =

∨
{g(x)+h(y) : g,h ∈ B, g+h = f}

if and only if, for all x ∈M,
f (x+) =

∨
{g(x) : g ∈ B}.

7. If X is a nonempty set, then S = X × X is a semigroup with product given
by (a,b)(c,d) = (a,d). Let X = {0,1} ⊆ R. For each b ∈ R define the func-
tion σb on S2 by σb((x1,y1),(x2,y2)) = exp(b(x1− x2)(y1− y2)). Show that σb
is a fundamental 2-cocyle, that every fundamental 2-cocyle is some σb, and
H2(S,R+∗)∼= R.

8. (a) Let ∆ be a positive pops which contains 2n for each n ∈ ∆ and which has
a partition {∆i : i ∈ I} with |I| ≥ 2, each ∆i is totally ordered, and, for all i,
j ∈ I, there is a k ∈ I with ∆i + ∆ j ⊆ ∆k. Reorder ∆ so that its new partial
order is that of the cardinal sum of the ∆i. Show that |I| ≥ 3, each ∆i is a
subsemigroup of ∆ , and ∆ , with its new order, is weakly positive but not
positive.
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(b) As an instance of (a) let ∆ = Γ1×Γ2 be the direct product of two totally
ordered positive monoids.

9. Show that a weakly positive f -pops is positive.

10. Suppose A is a directed po-domain, Γ is a poset and R is the po-group R =
(A[Γ ],Pn,α,β ).

(a) Show that AR is a strict po-module.
(b) If the conditions in (b) of Theorem 6.1.11 are satisfied show that F(AR) = A.

11. Let A be a po-unital po-ring and suppose the inner derivation Dα = [ ,α] is
isotone. If u, u−1 ∈ A+ show that uα = αu.

12. Let R = (A[∆ ],Pn,α,β ) be an `-ring where ∆ is a rooted mopops and n is a
strongly positive element in the trunk of ∆ ∗.

(a) If α = α ′β show that the inner derivation Dα ′ is isotone.
(b) If β , β−1 ∈ A+ show that Dαβ−1 is isotone.
(c) If A is a division ring show that αβ−1 is central.
(d) If β centralizes A and A = C(Z(A)) show that α is central.

13. Let R be the totally ordered free unital ring with free generators x and y given
in Exercise 3.4.35. Show that the derivations Dy = [ ,y] and xD = [x, ] are both
isotone.

14. Suppose D is a multiplicatively closed subset of the positive cone of a Riesz
ring R and a ∈ R. If, for every δ ,ρ ∈D, δa∧ρ = 0≤ (ρ−δa)2, show that, for
each δ ∈ D, Dδa≤ (δa)2. (See (3.7.5).)

15. Suppose that A, ∆ and R = A[∆ ] satisfy all the conditions given in (II) of The-
orem 6.1.17 except that now A ⊆ F̀ (R) and F(R) 6= 0, and additionally A is
`-simple. Show that R is totally ordered or R+ = PΓ1,Γ2 or R+ = Pn,α,β for some
element n in the trunk of ∆ ∗ and some elements α , β ∈ A with Aα ⊆ Aβ and
αβ = βα . (In the proof of Theorem 6.1.17 choose β ∈ F(R).)

16. Let S be a right Öre set of positive regular elements in the f -ring A. Suppose
that the polynomial ring R = A[x] is an `-ring extension of A and A+ ⊆ d(R).

(a) Show that S is a right Öre set in R and RS = AS[x] is an `-ring extension of
R.

(b) If A ⊆ F̀ (R) (respectively, Fr(R)), show that AS ⊆ F̀ (RS) (respectively,
Fr(RS)).

(c) If A = F̀ (R), Fr(R), or F(R), show that AS = F̀ (RS), Fr(RS), or F(RS),
respectively.

17. Suppose R is an `-ring and the domain A is a totally ordered `-subring of R with
AA⊥ ⊆ A⊥. Let 0 < a ∈ A⊥ have the following properties: a centralizes A, A[a]
has squares positive, and A[a] is an A-semiclosed left or right po-module. Show
that a is transcendental over A and P0(A[a])⊆ A[a]+ ⊆ P1,0(A[a]).
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18. Let R be an `-ring, A a totally ordered domain that is a convex subring of F̀ (R),
and 0 < a an element of R that centralizes A. Show that (a) and (c) are equiva-
lent, (b) implies (c), and if A⊆ F(A[a]), then (c) implies (b).

(a) A[a] is an sp-subring of R, AA[a] is semiclosed and a ∈ A⊥.
(b) a is transcendental over A and A[a]+ is P0, P1,0, or Pn,α,β for some 2≤ n∈N

and some α , β ∈ A+ such that α = σβ where σ is in the extended centroid
of A and A+σ ⊆ A∪U(A).

(c) A[a] is an sp-`-subring of R, AA[a] is semiclosed and a ∈ A⊥.

19. Let R be a commutative sp-`-ring and suppose that A is a convex subring of
F(R) such that AR is torsion-free. Show that

R0 = {a ∈ R : A[|a|]+ = P0}∪{0}

is a convex `-A-subalgebra of R, and it is the largest subring of R contained in
A⊥ = F(R)⊥.

20. Suppose the commutative unital domain R is an sp-`-algebra over the totally
ordered field B. Let 0 < a∈ 1⊥ and let A be the convex subgroup of R generated
by B. If B[a] is not an `-subalgebra of R show that there are elements 0 < ρ ,
δ < α in R with α ∈ B such that Bρ ∩A 6⊆ δB.

21. Suppose R = (A[∆ ], Pn,α,β ) is an `-ring where ∆ is a rooted weakly positive
mopops and n is an element in the trunk of ∆ ∗. If r ∈ N and n < (2r)∆ ∗ show
that R satisfies the identity y2r ≥ 0.

22. Let ∆ be a monoid and a rooted pops and let m be a strongly positive element
in the trunk of ∆ ∗. Let ∆m be the reordering of ∆ given by the ordinal sum
∆m = ({0}∪̇L(m)t) ∪←Us(m) where L(m)t is the set L(m) with the trivial partial
order. Verify each of the following:

(a) ∆m is a rooted po-monoid whose trunk is Us(m), and m is a strongly positive
element of ∆m .

(b) ∆m is an sp-pops iff ∆ is an sp-pops and m < 2k for each k ∈ Ls(m).
(c) If Γ is a subset of the totally ordered group G with 0 < Γ < m < 2Γ , then

∆ = {0}∪Γ ∪U(m) is an example of an sp-pops which satisfies (b).
(d) For the totally ordered domain A and α , β ∈A satisfying (6.1.6), (6.1.7) and

(6.1.14) and m < n, let Pm,n,α,β be the lattice order Pn,α ,β (A[∆m]) of A[∆ ]. If
2≤ r ∈ N, then (A[x], P2r−2,2r−1,α,β ) is an `-ring satisfying y2r ≥ 0 but not
y2s ≥ 0 if 1≤ s < r.

23. Let m and k be elements of the mopops ∆ such that:

(i) m < k;
(ii) m is strongly irreducible: m = a+b⇒ a = 0 or b = 0;

(iii) if p < 0, then m+ p and p+m are not defined;
(iv) if 0 < q 6= m and q + m (respectively, m + q) is defined, then k ≤ q + m

(respectively, k ≤ m+q).
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Define the relation ≤m,k on ∆ by p <m,k q iff m 6∈ {p,q} and p < q, or p = m
and k≤ q. Let ∆m,k be the generalized monoid ∆ together with the relation≤m,k.
Verify each of the following:

(a) ≤m,k is a weaker partial order than ≤.
(b) ∆m,k = ∆ iff m is a minimal element of ∆ and Us(m) = U(k); ∆0,k = ∆

provided ∆0,k exists.
(c) ∆m,k is a mopops.
(d) ∆ is rooted iff ∆m,k is rooted and Us(m) and Ls(k) are rooted subsets of ∆ .
(e) If m 6= 0, then ∆m,k is weakly positive iff ∆ is weakly positive and k ≤ 2m.
(f) Suppose 0 is a minimal element of ∆ and m 6= 0. Then ∆ is an (almost)

sp-pops and k ≤ 2m iff ∆m,k is an (almost) sp-pops.
(g) (∆0)m,k exists if m is strongly irreducible.

24. Let ∆ = (Z+ ¢←Z+)Γ1,Γ2 be the rooted mopops obtained from the totally ordered
mopops Z+ ¢←Z+ with Γ2 = U((1,1)) and Γ1 = Ls((1,1))∗, and take m = (0,1)
and k = (0,2) in the previous exercise.

(a) Show that ∆m,k is a rooted sp-po-monoid.
(b) Determine the partial order of ∆m,k explicitly.
(c) Let x = x(1,0), y = x(0,1), and A[x,y] = Σ(∆m,k,A) where A is a totally ordered

domain. Give an explicit description of when the polynomial

f = (α0 +α1x+ · · ·+αrxr)+(β0 +β1x+ · · ·+βsxs)y+ · · ·+ fn(x)yn

is in A[x,y]+.
(d) Show that A[x] and A[y] are `-subrings of A[x,y] and identify their lattice

orders.

Notes. The characterization of real group `-algebras and twisted group `-
algebras over finite groups comes from Rieffel [RIE], and the extension of Rieffel’s
results to locally finite `-algebras appears in Steinberg [ST18]. The lattice orders
constructed on semigroup rings over positive rooted monoids comes from Ma and
Steinberg [MS]. The bounds on the partial order of a polynomial subring of an sp-
`-ring that are given in Exercise 17 appear in Steinberg [ST6]. Additional material
on semigroup `-algebras may be found in Ma [M8] and [M10].

6.2 Algebraic f -Elements Are Central

Several aspects of commutativity have arisen in previous sections. For instance, the
smallness of a commutator relative to the squares of its factors in an f -ring (Theo-
rem 3.6.1), the commutativity of an archimedean almost f -ring (Theorem 3.8.14),
and the cohesion of sets of nilpotent elements into an `-ideal in an `-ring which is
polynomial constrained (Theorems 3.8.3 and 3.8.4). The centrality of algebraic ele-
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ments will be discussed here. It will be seen that algebraic f -elements in `-reduced
`-rings are central, and a property of totally ordered domains will be identified which
is dual to `-simplicity and which forces the domain to be commutative provided it is
constrained by a suitable polynomial. Rings with the property that each of its partial
orders is contained in a total order are algebraic over the integers and will be com-
pletely classified. Interestingly, it turns out that the seemingly weaker property that
each partial order can be extended to a lattice order over which the ring is an almost
f -ring is not weaker at all. Initially, the Galois character of a division ring relative
to its center will be established, and this will be used to show that the center of a
totally ordered division ring is relatively algebraically closed.

If G is a set of endomorphisms of the ring R the fixed ring of G is the subring
of R consisting of all a in R such that σ(a) = a for each σ ∈ G. Note that if E
is the centralizer in R of a subset X of units of R, then E is the fixed ring of the
group of inner automorphisms of R associated to X . That is, if G is the group of
inner automorphisms generated by {x( )x−1 : x ∈ X}, then a ∈ E if and only if
xax−1 = a for each x∈X . This remark establishes that Theorem 6.2.1 can be applied
to centralizers and, in particular, to the center of a division ring.

For the ring R, b ∈ R and f (x) = Σiaixi ∈ R[x], let f (b) = Σiaibi.

Theorem 6.2.1. Let G be a group of automorphisms of the division ring D and let
E be its fixed ring. Suppose b ∈ D and f (x) ∈ E[x] is monic of minimal degree
n ≥ 1 with f (b) = 0. Then there exist σ1, . . . ,σn ∈ G, d1, . . . ,dn ∈ D∗, and b j =
d jσ j(b)d−1

j , for j = 1, . . . ,n, with b1 = b, such that

(a) f (x) = (x−bn)(x−bn−1) · · ·(x−b1).
(b) If a ∈ D with f (a) = 0, then a = db jd−1 for some d ∈ D∗ and some b j.
(c) If E is central, then for each j = 1, . . . ,n, f (x) = (x − b j)(x − b j−1) · · ·(x −

b1)(x−bn) · · ·(x − b j+1).

Proof. If n = 1, then f (x) = x−b and the statements hold trivially; so assume n≥ 2.
By Exercise 1 f (x) = g(x)(x−b) with g(x) ∈ D[x] and, for each σ ∈ G,

f (x) = σ(g(x))(x−σ(b)). (6.2.1)

Since b 6∈ E there exists σ ∈ G with c = σ(b) 6= b and f (x) = σ(g(x))(x− c). So,
x− c is a right factor of f (x) but not of (x− b); by Exercise 1 some conjugate of
x− c is a right factor of g(x) : f (x) = g1(x)(x− b2)(x− b1) with b2 a conjugate of
c and b1 = b. This process can be continued until we get m ∈ N with m ≤ n and
p(x) ∈ D[x] and elements b = b1, . . . ,bm of the specified form with

f (x) = p(x)(x−bm) · · ·(x−b1) (6.2.2)

and, for each σ ∈ G, x−σ(b) is a right factor of k(x) = (x− bm) · · ·(x− b1); that
is, k(σ(b)) = 0. In particular, for ρ , τ ∈ G we have k(τ−1ρ(b)) = 0 and hence
τ(k(x))(ρ(b)) = 0. Now, suppose k(x) 6∈ E[x] and take σ ∈ G with σ(k(x)) 6= k(x).
Then k(x)−σ(k(x)) is a nonzero polynomial in D[x] of degree < m which has every
ρ(b) as a root. If k(x)−σ(k(x)) 6∈ E[x] then we continue until we get a nonzero
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polynomial in E[x] of positive degree < m which has b as a root. This contradicts
the minimality of n. So k(x) ∈ E[x], p(x) = 1 and (a) has been established.

For (b), let f0(x) = 1 and fi(x) = (x− bi)(x− bi−1) · · ·(x− b1) for 1 ≤ i ≤ n.
Then for some i, 0≤ i≤ n−1, we have fi(a) 6= 0 and fi+1(a) = 0. Since fi+1(x) =
(x−bi+1) fi(x), by Exercise 1, x− fi(a)a fi(a)−1 is a right factor of x−bi+1; that is,
bi+1 = fi(a)a fi(a)−1.

If E is central, then since x−b is a divisor of f (x) in E(b)[x] we get from (a) that
(x−bn) · · ·(x−b2)∈ E(b)[x], and hence f (x) = (x−b)(x−bn) · · ·(x−b2). Iteration
of this gives (c). ut
Theorem 6.2.2. Let D be a totally ordered division ring with center K. Each element
of D that is algebraic over K must be in K.

Proof. Suppose b ∈D is algebraic over K of degree n≥ 2 and let f (x) = a0 +a1x+
· · ·+ an−1xn−1 + xn be its irreducible polynomial over K. Identify b with the K-
linear transformation on K(b) given by u 7→ bu. From the matrix of b with respect
to the basis 1, b, . . . ,bn−1 we see that tr b = −an−1 where tr b denotes the trace of
b. So, if c = |b + an−1

n |, then tr c = 0 and K(b) = K(c); that is, we may assume tr
b = 0 and b > 0. Since K is its own double centralizer we may apply Theorem 6.2.1
to get f (x) = (x− bn) · · ·(x− b1) with b1 = b and bi = dibd−1

i > 0 for each i. So,
0 = tr b = an−1 =−(b1 + · · ·+bn) < 0. Thus, n = 1 and b ∈ K. ut

In order to generalize the previous result to totally ordered domains and other
`-rings we will use a technique which in its overview is analogous to the one just
employed but which is technically much more complicated. Specifically, we will
obtain a result on higher commutators that holds in any ring and which will force
centrality when applied to ordered rings. The proof of this commutator equation will
be highly combinatorial.

In order to get information about the signs of terms in a commutator sum that
will arise later we need to consider partitions of the sets Nn = {1,2, . . . ,n}. Suppose
b1, . . . ,bn ∈ N and b1 + · · ·+ bn = an. The partition {B1, . . . ,Bn} of Nan is called
(b1, . . . ,bn)-admissible if |Bi|= bi for i = 1, . . . ,n and B1 6> B2 6> · · · 6> Bn if n≥ 2.
Let gn(b1, . . . ,bn) denote the number of (b1, . . . ,bn)-admissible partitions of Nan .

Theorem 6.2.3. (a) g1(b1) = 1.

(b) g2(b1,b2) =
(

b1 +b2
b1

)
−1.

(c) gn(b1, . . . ,bn)≥ gn−1(b1, . . . ,bn−1)≥ 1 for n≥ 2.
(d) Let ak = b1 + · · ·+bk. Then, for each n ∈ N,

gn(b1, . . . ,bn) = (−1)n−1

(
1+

n−1

∑
j=1

(−1) j
(

an
a j

)
g j(b1, . . . ,b j)

)
.

Proof. (a) is trivial, and as for (b), if {B1,B2} is a partition of Nb1+b2 with |B1|= b1
and |B2| = b2 and B1 > B2, then, clearly, B2 = Nb2 . Suppose {B1, . . . ,Bn−1} is a
(b1, . . . ,bn−1)-admissible partition of Nan−1 . Then {B1, . . . ,Bn−1,Bn} is a (b1, . . . ,
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bn)-admissible partition of Nan where Bn = {an−1 + 1, . . . ,an}, and (c) follows. It
remains to verify (d) for n ≥ 2; note that for n = 2 (d) reduces to (b). For each
partition {B1, . . . ,Bn} of Nan with |Bi| = bi there is a unique order isomorphism
between B1∪·· ·∪Bn−1 andNan−1 , and hence there is a unique partition ofNan−1 that

is “order-isomorphic” to {B1, . . . ,Bn−1}. Consequently,
(

an
bn

)
gn−1(b1, . . . ,bn−1)

is the number of partitions {B1, . . . ,Bn−1,Bn} with |Bi| = bi and B1 6> B2 6> · · · 6>
Bn−1. Now, gn−1(b1, . . . ,bn−2,bn−1 + bn) is the number of partitions {B1, . . . ,Bn}
with |Bi| = bi and B1 6> · · · 6> Bn−1 > Bn. For, Bn−2 6> Bn−1 gives Bn−2 6> Bn−1 ∪
Bn and hence {B1, . . . ,Bn−2,Bn−1∪Bn} is (b1, . . . ,bn−2,bn−1 +bn)-admissible; and
if (B1, . . . ,Bn−2,B) is (b1, . . . ,bn−2,bn−1 + bn)-admissible, then there is a unique
partition {Bn−1,Bn} of B with Bn−1 > Bn and |Bn−1|= bn−1. We now have

(
an

an−1

)
gn−1(b1, . . . ,bn−1) = gn−1(b1, . . . ,bn−2,bn−1 +bn)+gn(b1, . . . ,bn)

or

gn(b1, . . . ,bn) =
(

an
an−1

)
gn−1(b1, . . . ,bn−1)−gn−1(b1, . . . ,bn−2,bn−1 +bn).

Now, suppose n > 2 and, by induction, (d) holds for n−1. Then, using the previous
equation and a reversal of terms in (d),

gn(b1, . . . ,bn) =
(

an
an−1

)
gn−1(b1, . . . ,bn−1)

−
(

n−2

∑
j=1

(−1) j−1
(

an
an−1− j

)
gn−1− j(b1, . . . ,bn−1− j)+(−1)n−2

)

=
(

an
an−1

)
gn−1(b1, . . . ,bn−1)

+
n−1

∑
j=2

(−1) j−1
(

an
an− j

)
gn− j(b1, . . . ,bn− j)+(−1)n−1,

and this is (d). ut
We next use this last equation to investigate signs.

Theorem 6.2.4. Let (sn)n be a sequence in {1,−1} ⊆ Z with s1 = 1. Define the
sequence (dn)n in Z recursively by d1 = 1 and for n≥ 2

dn = 1− ∑
1≤ j≤n−1
s js j+1=−1

(
n
j

)
d j.

Then sndn > 0 for each n.
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Proof. We assume n≥ 2. If 1 = s1 = · · ·= sn, then dn = 1 and we are done. Other-
wise, let

{1≤ a1 < a2 < · · ·< ak ≤ n−1}= { j : 1≤ j ≤ n−1 and s js j+1 =−1};

also, put ak+1 = n. Then

da j = 1−
j−1

∑
i=1

(
a j
ai

)
dai for j = 1,2, . . . ,k +1.

Let b1 = a1 and put b j = a j−a j−1 for 2≤ j≤ k+1; so a j = Σ j
i=1bi for j = 2, . . . ,k+

1. Now, define h1(b1) = da1 = 1 and, for 2≤ j≤ k+1, h j(b1, . . . ,b j) = (−1) j−1da j .
Then, for j = 1, . . . ,k +1,

(−1) j−1h j(b1, . . . ,b j) = da j = 1−
j−1

∑
i=1

(−1)i−1
(

a j
ai

)
hi(b1, . . . ,bi),

or

h j(b1, . . . ,b j) = (−1) j−1

(
1+

j−1

∑
i=1

(−1)i
(

a j
ai

)
hi(b1, . . . ,bi)

)
.

Thus, by Theorem 6.2.3, h j(b1, . . . ,b j) = g j(b1, . . . ,b j) ≥ 1, and, in particular,
sndn = sak dak+1 = (−1)k(−1)kgk+1(b1, . . . ,bk+1)≥ 1. ut

We will now determine a relation which holds in any ring and which expresses
a commutator in which one of the factors is a polynomial expression in terms of
higher commutators and derivatives. We will formulate it for a module.

For integers n,k ∈ Z let
(

n
k

)
, as usual, denote the binomial coefficient when

0≤ k ≤ n and let it be 0 otherwise; so
(

n
k

)
= 0 if k < 0 or k > n. We will use the

following relations which hold for all n,k ∈ Z.
(

n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
unless n = k = 0 (6.2.3)

(
n
k

)(
k
r

)
=

(
n
r

)(
n− r
k− r

)
(6.2.4)

(
n
k

)
=

(
n

n− k

)
(6.2.5)

For sequences (pj) j and (q j) j in an abelian group and n ∈ N define, for i =
0,1, . . . ,n,

L(n)
i ((p j),(q j)) = L(n)

i =
n

∑
j=1

[(
n− i
n− j

)
p j +(−1)n− j

(
i

n− j

)
q j

]
. (6.2.6)
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Theorem 6.2.5. For i = 0,1, . . . ,n−1,

L(n)
i+1 = L(n)

i −L(n−1)
i (6.2.7)

and

L(n)
i+1 = L(n)

0 −L(n−1)
0 −

i

∑
k=1

L(n−1)
k . (6.2.8)

Proof. Using (6.2.6) and (6.2.3) we have

L(n)
i =

n−1

∑
j=1

[((
n− i−1
n− j−1

)
+

(
n− i−1

n− j

))
pj +(−1)n− j

((
i+1
n− j

)

−
(

i
n− j−1

))
q j

]
+ pn +qn

=
n−1

∑
j=1

[(
n−1− i
n−1− j

)
p j +(−1)n+1− j

(
i

n−1− j

)
q j

]
+

n−1

∑
j=1

[(
n− (i+1)

n− j

)
p j +(−1)n− j

(
i+1
n− j

)
q j

]
+ pn +qn = L(n−1)

i +L(n)
i+1.

To verify (6.2.8) we use induction on i. For i = 0 this is (6.2.7). Assuming (6.2.8)
holds for i−1 we have

L(n)
i+1 = L(n)

i −L(n−1)
i = L(n)

0 −L(n−1)
0 −

i−1

∑
k=1

L(n−1)
k −L(n−1)

i .

ut
Let R be a unital ring with no 2-torsion. If (r j) j is a sequence in R define the new

sequence (c j) j recursively by c1 = 1 and, for n≥ 2,

cn = 1+ 1
2

n−1

∑
j=1

(r j−1)
(

n
j

)
c j. (6.2.9)

Let M(n)
i = L(n)

i ((p j),(q j)) where p j = 1
2 (1− r j)c j and q j = 1

2 (1+ r j)c j. So

M(n)
i = 1

2

n

∑
j=1

[(
n− i
n− j

)
(1− r j)+(−1)n− j

(
i

n− j

)
(1+ r j)

]
c j. (6.2.10)

Now, we have
M(n)

0 = 1, (6.2.11)

M(n)
n = (−1)n−1, (6.2.12)

and
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M(n)
i = 0 for i = 1,2, . . . ,n−1. (6.2.13)

For,

M(n)
0 =

n−1

∑
j=1

(
n
j

)
1
2 (1− r j)c j + 1

2 (1+ rn)cn + 1
2 (1+ rn)cn

= 1− cn + cn = 1

and
M(1)

1 = 1
2 (1− r1)c1 + 1

2 (1+ r1)c1 = 1.

From (6.2.8), by induction on n≥ 2 and for 1≤ j ≤ n,

M(n)
j = M(n)

0 −M(n−1)
0 −

j−1

∑
k=1

M(n−1)
k = 1−1−0 = 0

if j ≤ n−1, and M(n)
n = 1−1− (−1)n−2 = (−1)n−1.

Suppose R is an algebra over the commutative ring C, and let R1 = R if R has an
identity element and, otherwise, let R1 = R×C be the C-algebra obtained by freely
adjoining C to R. Let t, a ∈ R and let δ be the left inner derivation determined by a:
δ (x) = ax− xa. Let T = C[t,a] be the subalgebra of R generated by t and a, and let
S = C[t0, t1, . . . , tm] be the subalgebra of T generated by t0, . . . , tm where t j = δ j(t).

Let T1 denote the subalgebra of R1 generated by T and C. Suppose that M is a
unital C-module which is a left and a right S-module, and let f0, . . . , fm : T1 −→ M
be left and right S-homomorphisms. Put

f (a) =
m

∑
i=0

fi(ai) (6.2.14)

and for j = 0,1, . . . ,m define

w j =
m

∑
i= j

(
i
j

)
fi(ai− j), (6.2.15)

f ( j)(a) = j !w j, u j = t jw j, v j = w jt j. (6.2.16)

Note that on S each fi is left multiplication by xi = fi(1) ∈ M and, for j =
0,1, . . . ,m, xit j = t jxi; also, if x ∈ M “centralizes” S in this way, then left multi-
plication by x is a left and a right T -homomorphism from T1 to M provided M is a
left S-right T -bimodule.

Theorem 6.2.6. Suppose R is a C-algebra, a, t ∈ R, and let t j, S, T , M and fi be as
given above, and let f , w j, u j and v j be as defined in (6.2.14), (6.2.15), and (6.2.16).
Let (rn)n be a sequence of odd integers and let (cn)n be the sequence in Z defined
by (6.2.9). Then
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f (a)t− t f (a) =
m

∑
j=1

(1+ r j)
2

c ju j +
m

∑
j=1

(1− r j)
2

c jv j

Proof. From (6.2.10), (6.2.4), and (6.2.5) we have
(

n
i

)
M(n)

i = 1
2

n

∑
j=1

[(
n

n− i

)(
n− i
n− j

)
(1− r j)

+ (−1)n− j
(

n
i

)(
i

n− j

)
(1+ r j)

]
c j

= 1
2

n

∑
j=1

[(
n

n− j

)(
j

j− i

)
(1− r j)

+ (−1)n− j
(

n
n− j

)(
j

j−n+ i

)
(1+ r j)

]
c j

= 1
2

n

∑
j=1

(
n
j

)[(
j
i

)
(1− r j)+(−1)n− j

(
j

n− i

)
(1+ r j)

]
c j,

and from (6.2.11), (6.2.12), and (6.2.13) we have

(−1)i
(

n
i

)
M(n)

i =





1 if i = 0
0 if 1≤ i≤ n−1
−1 if i = n.

So,
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ant− tan =
n

∑
i=0

(−1)i
(

n
i

)
M(n)

i an−itai

=
n

∑
i=0

(−1)i( 1
2

n

∑
j=1

(
n
j

)[(
j
i

)
(1− r j)

+(−1)n− j
(

j
n− i

)
(1+ r j)

]
c j)an−itai

= 1
2

n

∑
j=1

(
n
j

)
c j

n

∑
i=0

[
(−1)i

(
j
i

)
(1− r j)an−itai

+(−1)n− j−i
(

j
n− i

)
(1+ r j)an−itai

]

= 1
2

n

∑
j=1

(
n
j

)
c j

[
(1− r j)an− j

j

∑
i=0

(−1)i
(

j
i

)
a j−itai

+ (1+ r j)

(
n

∑
i=n− j

(−1)n− j−i
(

j
n− i

)
an−itai+ j−n

)
an− j

]

= 1
2

n

∑
j=1

(
n
j

)
c j

[
(1− r j)an− jt j +(1+ r j)t jan− j]

by Exercise 2. Applying fn we obtain

fn(ant− tan) = 1
2

n

∑
j=1

(
n
j

)
c j

[
(1− r j) fn(an− j)t j +(1+ r j)t j fn(an− j)

]
.

Now,

f (a)t− t f (a) =
m

∑
i=1

fi(ai)t− t fi(ai) =
m

∑
i=1

fi(ait− tai)

= 1
2

m

∑
i=1

i

∑
j=1

(
i
j

)
c j

[
(1− r j) fi(ai− j)t j +(1+ r j)t j fi(ai− j)

]

= 1
2

m

∑
j=1

(1− r j)c j

m

∑
i= j

(
i
j

)
fi(ai− j)t j + 1

2

m

∑
j=1

(1+ r j)c jt j

m

∑
i= j

(
i
j

)
fi(ai− j)

=
m

∑
j=1

(1+ r j)
2

c ju j +
m

∑
j=1

(1− r j)
2

c jv j.
ut

By using Theorem 6.2.4 we get the following sharpened form of the previous
result.

Theorem 6.2.7. Assume all of the data in the first sentence of Theorem 6.2.6. Then
for any sequence (sn)n in {1,−1} with s1 = 1, there is a sequence (dn)n in Z with



544 6 Additional Topics

d1 = 1 such that sndn > 0 for each n and

f (a)t− t f (a) =
m

∑
j=1

d jz j,

where z j = u j or v j depending on whether s js j+1 = 1 or −1.

Proof. Let r j = s js j+1 for each j ∈ N and let cn ∈ Z be defined as in (6.2.9). Then,
in fact, cn = dn for each n where (dn)n is the sequence defined in Theorem 6.2.4. So
sndn > 0 and, by Theorem 6.2.6,

f (a)t− t f (a) = ∑
1≤ j≤m
s js j+1=1

d ju j + ∑
1≤ j≤m
s js j+1=−1

d jv j. ut

By applying this result to ordered rings and modules, as we will now do, we get
that algebraic elements are central.

Theorem 6.2.8. Suppose M in Theorem 6.2.7 is also a po-group and, for each
j,{u j,v j} ⊆M+ or {u j,v j} ⊆ −M+. If u1 > 0 and v1 > 0, then f (a)t− t f (a) > 0.

Proof. Define a sequence (s j) j by s1 = 1 and for j ≥ 2,

s j =





1 if u j > 0 or v j > 0
−1 if u j < 0 or v j < 0
s j−1 if u j = v j = 0.

Then by Theorem 6.2.7 there is a sequence of integers (d j) j with d1 = 1 and d js j >
0. Suppose z j = u j. If u j > 0, then d j > 0 and if u j < 0, then d j < 0; in either case
d jz j > 0. Similarly, d jz j ≥ 0 if z j = v j. So

f (a)t− t f (a) =
m

∑
j=1

d jz j ≥ z1 > 0. ut

Theorem 6.2.9. Let R be an `-ring and let a, t, x0, . . . ,xm ∈R with a∈F = F(R) and
with t jxi = xit j for 0 ≤ i, j ≤ m, where t j = δ j(t) and δ is the left inner derivation
on R determined by a. Let

f (a) =
m

∑
i=0

xiai.

Assume that each of the derivatives f ( j)(a) lies in F and is comparable to 0 and
f ′(a) is not a zero divisor in R. Then [ f (a), t] 6= 0 provided t1 = [a, t] 6= 0.

Proof. Let P be a minimal prime subgroup of R such that [a, t] 6∈ P. We may assume
[a, t] > 0 in R = R/P, and also that f ′(a) > 0. Since P is an F-F-subbimodule of R,
and since
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u j = 1
j! t j f ( j)(a) and v j = 1

j! f ( j)(a)t j,

u j and v j have the same sign, if both are not zero. Also, u1 > 0 and v1 > 0. For,

u1 = t1 f ′(a) = [a, t] f ′(a)≥ 0;

and if u1 = 0, then [a, t] f ′(a)∈P. So by Theorem 2.4.3, for some y 6∈P, |[a, t]| f ′(a)∧
y = 0, and hence,

0 = |[a, t]| f ′(a)∧ y f ′(a) = (|[a, t]|∧ y) f ′(a).

Thus |[a, t]| ∧ y = 0 and [a, t] ∈ P, which contradicts our assumption that [a, t] 6∈ P.
Similarly, v1 > 0.

Now define the sequence (s j) j as in Theorem 6.2.8, but using u j in place of u j
and v j in place of v j. Then by Theorem 6.2.12

[ f (a), t] =
m

∑
j=1

d jz j ≥ z1 > 0

since d jz j ≥ 0. ut
This, of course, yields that some algebraic elements in F are central in R.

Theorem 6.2.10. Let R be a torsion-free `-algebra over the totally ordered domain
C. If R is also t-torsion-free as both a left and a right F-module, then each element
in F which is algebraic over C is central in R. In particular, if R is an `-reduced
`-algebra, then each algebraic f -element is central.

Proof. Let f (x) ∈ C[x] be a polynomial of minimal degree that 0 6= a ∈ F satis-
fies. If Fu is the C-unital cover of F (Theorem 3.4.5 and Exercise 3.4.16), then
each f ( j)(a) ∈ Fu and f ′(a) 6= 0. Since R is easily seen to be a t-torsion-free Fu-
Fu- f -bimodule the proof of Theorem 6.2.9 is still valid. Hence [a, t] = 0 for each t
in R.

Suppose R is `-reduced and let P be a minimal `-prime `-ideal of R. Then R =
R/P is an `-domain by the proof of Theorem 3.2.21, and the nonzero elements of
the totally ordered domain F(R) are regular elements of R. Moreover, using the
characterization of P given in Theorem 3.2.22 it is easy to see that P is an algebra
ideal and R is torsion-free over C. Since F(R) maps into F(R) an algebraic element
a in F(R) maps into a central element a of R. But according to Theorem 3.2.21 R
is a subdirect product of the set {R/P : P a minimal `-prime `-ideal of R}; so a is
central in R. ut

Note that the two-sided condition in Theorem 6.2.10 is needed. For if R is the
top row of the 2×2 matrix algebra over a totally ordered field, then F R but not RF ,
is t-torsion-free, and R is centerless. Here the lattice-order of R can be either the
canonical order or the lexicographic total order with the left corner dominating.
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By emphasizing the factor t j in u j and v j instead of w j we get module analogues
of Theorems 6.2.9 and 6.2.10. Let M be both a left and a right R-module. The ele-
ment a ∈ R is called algebraic on M if there exist x0,x1, . . . ,xm in M, not all 0, with
x jt = tx j for j = 0, . . . ,m, and every t ∈ R and f (a) = x0a+ · · ·+ xmam = 0.

Theorem 6.2.11. Let R be a po-algebra over the po-ring C, and let M be a left and
right `-module over R. Let F = F(MR)∩F(RM) be the subring of f -elements on M,
and suppose that MF and F M are t-torsion-free modules. Assume that a ∈ F and
that all the commutators [a, t], t ∈ R, are comparable to 0 and lie in F. If a ∈ R is
algebraic on M and satisfies f (a) = 0, while f ′(a) 6= 0, then a is central in R.

Proof. If a is not central, take t ∈ R with t1 = [a, t] 6= 0. Let P be a minimal prime
subgroup of M with f ′(a) 6∈ P. In M = M/P we may assume that f ′(a) > 0. Now,
u1 = t1 f ′(a) = t1 f ′(a). If u1 = 0, then t1 f ′(a) ∈ P and hence |t1|| f ′(a)| ∧ y = 0 for
some y 6∈ P by Theorem 2.4.3. But then t1(| f ′(a)| ∧ y) = 0 implies | f ′(a)| ∧ y = 0.
Thus f ′(a) ∈ P, which is impossible. Thus u1 6= 0 and we may assume u1 > 0.
Similarly, v1 > 0. Also, u j = t jw j and v j = w jt j are both positive or negative. Thus,
as in Theorem 6.2.8 or 6.2.9

0 = f (a)t− t f (a) =
m

∑
j=1

d jz1 ≥ z1 > 0.

This contradiction yields that a is central. ut
The following module-theoretic version of Theorem 6.2.2 is an immediate con-

sequence of Theorem 6.2.11.

Theorem 6.2.12. Let R be a totally ordered domain and suppose a is a nonzero
element of R. The following are equivalent.

(a) a is central.
(b) a is algebraic over the center of R.
(c) There is an abelian `-group M such that RM and MR are both t-torsion-free

f -modules and a is algebraic on M.

¤

If each partial order of the ring R is contained in a total order of R, then R is called
an O∗-ring. Similarly, if A is a class of `-rings, then an A ∗-ring is a ring with the
property that each of its partial orders is contained in a lattice order for which the
resulting `-ring is a member of A . In particular, we will discuss f ∗-ring, almost f ∗-
ring and sp∗-`∗-ring. We will show that an almost f ∗-ring is an O∗-ring and we will
determine all the O∗-rings. As will be seen below, an O∗-ring is algebraic over Z and
is either commutative or is very close to being commutative. Clearly each subring
of an O∗-ring is an O∗-ring. If the po-ring (R,P) is a subring of the torsion-free
ring S, then d(P;S) = {x ∈ S : nx ∈ P for some n ∈ N} is a partial order of S which
contains P. In particular, if P is a partial order of Q and m

n ∈ P with n,−m ∈ N,
then m = (−m)(−1) ∈ P and −1 ∈ d(P;Q). This shows that P ⊆ Q+ and Q is an
O∗-ring.
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Theorem 6.2.13. A ring R is an O∗-ring if and only if there is a rational vector
space N and an embedding of R

(i) into the direct product E×N where E is an O∗-subfield of the reals that is
algebraic over Q and N2 = 0, or

(ii) into the algebra
(
Q N
0 0

)
or its dual

(
Q 0
N 0

)
, the Q-algebras obtained by

freely adjoining a one-sided identity to N, or

(iii) into
{(

a b
0 a

)
: a ∈Q, b ∈ N

}
, theQ-algebra obtained by freely adjoining

an identity to N.

Proof. Suppose R is an O∗-ring and a∈R. If a is not algebraic over Z, then Z+[−a2]
is a partial order of R which is not contained in any total order of R. Thus, R is
algebraic over Z. Suppose a is nilpotent of index n > 2. Let b =−an−2 if n is even
and let b = −an−1 if n is odd. Then b2 = 0 and Z+b is a partial order which is not
contained in any total order. So n ≤ 2 and β (R) = N2(R) = N. If S = d(R) is the
divisible hull of R, then S is also an O∗-ring. For, if P is a partial order of S and Q is
a total order of R which contains P∩R, then clearly d(Q;S) is a total order of S and
P⊆ d(Q;S). So, without loss of generality, we will assume that R is a Q-algebra. If
R = N, then R can be embedded in a ring of the type in (i). Assume R2 6= 0. Then
E = R/N is a domain which is algebraic over Q and hence E is a division ring by
Exercise 5. Since E can be totally ordered it is a field by Theorem 6.2.2, and we
may assume it is a subfield of R since, by Theorem 5.1.10, it can be embedded in
the real closure of Q. So if N = 0, then, again, R can be embedded in a ring of the
type in (i). Assume N 6= 0, and note that N is a vector space over E since N2 = 0.

Suppose R is unital. If E is a proper extension of Q let {ai : i ≥ 1} be a basis of
QE with a1 = 1. Then E = ¢→ i≥1Qai is a totally ordered group with positive cone
E+. Let 0 6= x ∈ N. Then E+x is a partial order of R and hence is contained in a total
order T of R. This total order induces a total order TE of the field E. Since (E,TE) is
archimedean, TE 6⊆ E+. Let a∈ T with a+N 6∈ E+. Then (a+N)x = ax ∈ T ∩Ex =
E+x yields the contradiction that a + N ∈ E+. Thus E = Q and R = Q1 + N is
isomorphic to a ring of the type given in (iii).

Suppose now that R is not unital. By Theorem 3.4.15 R has a nonzero idempotent
e. Since the left and right annihilator ideals of R are convex ideals in any total order
one of them is contained in the other. Suppose the right annihilator r(R) is contained
in the left annihilator `(R). According to Theorem 3.4.16 the Pierce decomposition
of R is R = B ¢C ¢ D where B = eRe, D = r(R) = (1− e)R, C = eR(1− e), and
C ¢D = `(R) = R(1− e). Also, any total order of R is of the form (B ¢→C ¢→D)+. If
C 6= 0 and D 6= 0, then a total order (C ¢←D)+ of C ¢D could be extended to a total
order of R. Thus, one of C or D is zero but the other is nonzero. If C = 0, then B
and D are ideals of R. If B is not a field and 0 6= b ∈ B with b2 = 0, and 0 6= d ∈ D,
then the partial order (Zb ¢←Zd)+ could be extended to a total order of R. Thus B is
a field and R is of the type given (i). Suppose, then, that D = 0. If 0 6= b ∈ B with
b2 = 0, then, since in any total order of R either b ≥ C or −b ≥ C, we must have
bC = 0. But then for 0 6= c ∈C there is a total order of R containing (Zb ¢←Zc)+. So
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B is a field. By an argument similar to the one given in the previous paragraph we
have that B =Q. Thus R is of the type given in (ii).

We show next that each of these rings is an O∗-ring. If R = E ¢ N is of type
(i) and P is a partial order of R, then PE = {α ∈ E : α + x ∈ P for some x ∈ N}
is a partial order of E. For, PE is closed under addition and multiplication, and if
α + x and −α + y are in P then −α2 ∈ P∩E. Thus α = 0 since E is an O∗-field.
Now, if TE is a total order of the field E with TE ⊇ PE and TN is a total order of
the group N with TN ⊇ P∩N, then R+ = [(E,TE) ¢→(N,TN)]+ is a total order of R
which contains P. Suppose R is of the type (iii) and P is a partial order of R. If

x =
(

a b
0 a

)
∈ P with a < 0, then, by passing to d(P;R), we may assume a = −1.

But now −1 = x2 + 2x ∈ P and this is impossible. So if TN is a total order of the

group
(

0 N
0 0

)
which contains

(
0 N
0 0

)
∩P, thenQ

(
1 0
0 1

)
¢→(

(
0 N
0 0

)
,TN) gives a

total order of R which contains P. Similarly, each ring of the type given in (ii) is an
O∗-ring. ut

If E is a subfield of R that is algebraic over Q, then E need not be an O∗-field.
To decide if E is an O∗-field it suffices to assume E is a finite extension of Q.
For, suppose each subfield of E that is finite dimensional over Q is an O∗-field
and let P be a partial order of E. If Σ j

p j
q j

a2
j = 0 with a j ∈ E and p j,q j ∈ P let

K = Q(a j, p j,q j). Since K is an O∗-field and p j,q j ∈ K ∩P we have p ja j = 0 for
all j, and hence E is an O∗-field by Theorem 5.1.1. The next theorem produces
O∗-fields as well as non-O∗-fields.

Theorem 6.2.14. Let e ∈ K and let E = K(
√

e)⊆R be a quadratic extension of the
O∗-field K. The following statements are equivalent.

(a) E is an O∗-field.
(b) e is totally positive in K and for each partial order P of E there is a total

order T of K such that PT is a partial order of E.
(c) Each maximal partial order of E contains e and a total order of K.

Proof. (a)⇒ (b). Each total order T of K is contained in a total order T ′ of E which
must contain e since e is a square in E. So e ∈ T ′ ∩K = T and e is totally positive
in K. If T ′ is a total order of E which contains P, then T = T ′ ∩K is a total order of
K and PT ⊆ T ′ is a partial order of E.

(b) ⇒ (c). Let P be a maximal partial order of E and let T be a total order of K
such that PT is a partial order of E. Then P = PT and e ∈ T ⊆ P.

(c)⇒ (a). Since each total order of K is contained in a maximal partial order of E,
e is totally positive. Let P be a maximal partial order of E. By hypothesis T = P∩K
is a total order of K. By Theorem 5.1.4 there is a total order T1 of E extending T
and we may assume

√
e ∈ T1. Let

T2 = {a+b
√

e ∈ E : a,b ∈ K and a−b
√

e ∈ T1}.

Then T2 is a total order of E and we claim that P ⊆ T1 or P ⊆ T2. All of the in-
equalities that appear below are taken with respect to T1. If x = a + b

√
e ∈ E let
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x = a− b
√

e and note that P∩K = T , T 1 = T2 and T 2 = T1. We show first that if
x = a+b

√
e ∈ P with a < 0, then

xx = a2−b2e < 0, (6.2.17)

b > 0⇔√
e ∈ P⇔ x < 0, (6.2.18)

b < 0⇔−√e ∈ P⇔ x < 0. (6.2.19)

For, b
√

e = x− a ∈ P; so b > 0 (respectively, b < 0)⇔√
e (respectively, −√e) ∈

P. Also, x2 − ax = eb2 + ab
√

e ∈ P; so 1 + a
eb
√

e and −(1 + b
a
√

e) are in P, and

consequently their sum ( a2−b2e
abe )

√
e = ( a

eb − b
a )
√

e is also in P. Thus, a2− b2e < 0
in both cases. If x < 0 and also b > 0, then 0 < b

√
e < −a and b2e < a2; so, in

fact, b < 0. Trivially, b < 0 gives x < 0 and (6.2.19) has been verified. The proof of
(6.2.18) is similar.

Assume to the contrary that P* T1,T2. Then there are x ∈ P\T1 and y ∈ P\T2. So
x = a + b

√
e < 0 and y = c + d

√
e with y < 0; hence a < 0 or b < 0, and c < 0 or

d > 0. We consider each of the four cases separately.
(I) a < 0 and c < 0. This case is impossible since ±√e ∈ P by (6.2.18) and

(6.2.19).
(II) a < 0 and d > 0. By (6.2.19) −√e ∈ P and hence c > 0. But then y1 =

−√ey = −de− c
√

e ∈ P and y1 = −de + c
√

e =
√

ey < 0. This is case I for x
and y1.

(III) b < 0 and c < 0. After passing to P this is case II for y and x.
(IV) b < 0 and d > 0. To avoid the other cases a ≥ 0 and c ≥ 0. If a = 0, then

−√e ∈ P, and hence −√ey = −de− c
√

e ∈ P; so c2e > d2e2 and c2 > d2e by
(6.2.17). But c < d

√
e since y < 0. Thus a > 0. If c = 0, then

√
e ∈ P and

√
ex =

be + a
√

e ∈ P. This is case II for
√

ex and y. Thus, c > 0 and xy = (ac + bde) +
(ad +bd)

√
e ∈ P with ac+bde < 0, since a <−b

√
e and c < d

√
e. By (6.2.18) and

(6.2.19)
√

e ∈ P or −√e ∈ P. If the former holds, then
√

ex = be + a
√

e ∈ P and,
again, this is case II for

√
ex and y. If the latter holds, y1 =−√ey =−de−c

√
e∈ P,

−de < 0, and y1 =
√

ey < 0. This contradicts (6.2.18). ut
An immediate consequence of Theorem 6.2.14 is that each real quadratic exten-

sion of Q is an O∗-field but Q( 4√2) is not.

Theorem 6.2.15. Each almost f ∗-ring is an O∗-ring.

Proof. Let R be an almost f ∗-ring. Just as for an O∗-ring R is algebraic over Z
and N2(R) = N. In fact, these two properties hold in any sp∗-`∗-ring. By Theorems
3.2.14 and 3.2.24 β (R) = N and it is an `-ideal for any almost f -order of R. Also,
it is easily seen that the divisible hull of R is also an almost f ∗-ring; so we can and
will assume R is a Q-algebra. We claim that N is a completely prime ideal of R. To
see this suppose (R,R+) is an almost f -ring and take a,b ∈ R with a∧ b = 0 and
a 6∈ N. Then the positive cone P of ((Z[a],Z+[a]) ¢→(Zb2,{0})) is a partial order of
R and therefore is contained in an almost f -order Q of R. But then a >Q b2 in (R,Q)
and 0 = ab2 ≥Q b4 ≥Q 0. So b ∈ N and the homomorphic image R/N of (R,R+) is
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totally ordered, and consequently it is a domain. As in the proof of Theorem 6.2.13
R/N is a field. In fact, it is an O∗-field since, for each partial order P of R/N, the
lifted partial order P = {x ∈ R\N : x +N ∈ P}∪{0} of R is contained in an almost
f -order P1 of R, and, clearly, P is contained in the total order P1 +N/N of R/N.

We can now show that R is an O∗-ring; of course, we assume 0 6= N ⊂ R. If
N⊂ `(N;R)∩r(N;R), then `(N;R) = r(N;R) = R by the maximality of N, and NR =
RN = 0. Let e be a nonzero idempotent in R, the existence of which is guaranteed
by Theorem 3.4.15. Then R is the direct sum of its ideals N and Re = eR. For,
R = N + Re = N + eR since e maps to the identity of R/N, and x ∈ N ∩Re yields
x = xe = 0. Thus, eR = eRe = Re is an ideal and R = N +Re is a direct product. Since
Re∼= R/N, R is an O∗-ring by Theorem 6.2.13. Now, assume N = `(N;R)∩ r(N;R).
Suppose (R,P) is an almost f -ring and let PN be a total order of the group N with
P∩N ⊆ PN . There exists an almost f -order Q of R with PN ⊆ Q and hence PN =
Q∩N. Now, N⊥ = 0 in (R,Q) since N⊥ ⊆ `(N;R)∩ r(N;R) = N. So (R,Q) = N⊥⊥
is totally ordered since N is totally ordered in (R,Q). We claim P⊆ Q. If x ∈ P\Q,
then since P∩N ⊆ PN ⊆ Q, necessarily x 6∈ N. So xN 6= 0 or Nx 6= 0 and the two
cases are similar. Suppose y ∈ N with yx 6= 0. We may take y ∈ P, since y+x 6= 0
or y−x 6= 0 in (R,P). So y, yx ∈ P∩N ⊆ Q and −x ∈ Q gives the contradiction
0 6=−yx ∈ Q. ut

A module MR over the po-ring R is called an O∗-module (respectively, a strong
O∗-module) if each of its partial orders is contained in a total order (respectively, a
strong total order). Each torsion-free abelian group is an O∗-module over Z (Exer-
cise 2.1.7). A generalization of this fact for po-domains is given in Exercise 4.4.22
and Theorem 4.5.3; for totally ordered domains it is equivalent to the domain having
a division ring of quotients; see Exercise 12.

Theorem 6.2.16. Suppose R is an `-ring and M is a right R-module with `(R;M) =
0. If M is a strong O∗-module, then for each x ∈M:

(a) r(x;R) is a right `-ideal;
(b) xaR+∩ xbR+ 6= 0 whenever a,b ∈ R+\r(x;R).

Conversely, if R is a right f -ring, then these two conditions imply M is a strong
O∗-module.

Proof. Assume M is a strong O∗-module. By Exercise 9 r(x;R) is a prime subgroup
of R. Take a,b ∈ R+ with xa 6= 0 and xb 6= 0. Then (M,xaR+) is a po-module over
R since if xac = −xad with c,d ∈ R+, then 0 ≤ ac ≤ ac + ad ∈ r(x;R) and hence
xac = 0. Suppose xaR+ ∩ xbR+ = 0. Then xaR+ − xbR+ is a partial order of M
and there exists a total order T of M such that (M,T ) is a strong f -module with
xaR+− xbR+ ⊆ T . If 0≤ r ≤ s in R, y ∈M and ys ∈ T , then yr ∈ T since

0≤T (yr)− = y−r ≤T y−s = (ys)− = 0.

Thus, for c, d ∈ R+, x(ac ∧ bd) ∈ T , −x(ac∧bd) ∈ T , ac∧bd ∈ r(x;R), and hence
ac ∈ r(x;R) or bd ∈ r(x;R). This is impossible since there exist elements c, d ∈ R+

with xac 6= 0 and xbd 6= 0. So xaR+∩ xbR+ 6= 0.
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For the converse, suppose T is a partial order of M maximal with respect to
the property (M,T ) is an R-po-module and suppose x ∈ M\(T ∪ −T ). As in the
previous paragraph the convexity of r(x;R) gives that xR+ is a partial order of M.
Since the set P = {y ∈M : yR+ ⊆ T} is a partial order of M which contains T , and
hence is T , if −xR+∩T = 0, then xR+ + T is a partial order of M and we have the
contradiction x ∈ T . Thus, −xR+ ∩ T 6= 0 and similarly xR+ ∩ T 6= 0. Therefore,
there are elements a, b ∈ R+ with 0 6= xa ∈ T and 0 6= −xb ∈ T and we now have
the contradiction 0 6= xaR+∩−xbR+ ⊆ T ∩−T = 0; so (M,T ) is totally ordered. To
see that (M,T ) is a strong f -module it suffices, by Exercise 9, to show that r(x;R)
is prime for each x in M. Suppose a∧ b = 0 in R but neither a nor b annihilates x.
Then 0 6= xac = xbd for some c, d ∈ R+. Then ac−bd ∈ r(x;R) and ac∧bd = 0; so
ac = (ac−bd)+ ∈ r(x;R). ut

Exercises.

1. Let R be a unital ring, f (x), g(x) ∈ R[x], and suppose the leading coefficient of
g(x) is a unit. Verify the following.

(a) There exist unique polynomials q(x) and r(x) with r(x) = 0 or deg r(x) <
deg g(x) such that f (x) = q(x)g(x)+ r(x).

(b) If b ∈ R, then f (x) = q(x)(x−b)+ f (b) for some q(x).
(c) If f (x) = g(x)h(x), x−b is a right factor of f (x) but not of h(x) and h(b) = s

is a unit of R, then x− sbs−1 is a right factor of g(x).

2. Let a ∈ R and let δ be the left inner derivation determined by a;δ (t) = at− ta.
Show that, for 0≤ j ≤ n,

δ j(t) =
j

∑
i=0

(−1)i
(

j
i

)
a j−itai =

n

∑
i=n− j

(−1)n− j−i
(

j
n− i

)
an−itai+ j−n.

3. Let R be a po-unital `-algebra over the totally ordered field C. If K is a totally
ordered subdivision ring of R with the same identity as R show that each element
of K which is algebraic over C is central in R.

4. Let K′ be the centralizer of the subring K of the totally ordered ring R, and let
a1, a2 ∈ K′ and f1(x), f2(x) ∈ K[x].

(a) Suppose f ′1(a1) > 0 and r( f ′1(a1);K′) = `( f ′1(a1);K′) = 0. Show that a1a2 >
a2a1 iff f1(a1)a2 > a2 f1(a1).

(b) Suppose K is commutative, f ′i (ai) > 0 and r( f ′i (ai);K′) = `( f ′i (ai);K′) = 0
for i = 1,2. Show that
a1a2 > a2a1 iff f1(a1) f2(a2) > f2(a2) f1(a1).

(c) Suppose f1(a1) = 0 and r( f ′1(a1);K′) = `( f ′1(a1);K′) = 0. Show that
a1 ∈ K′′.

5. Show that a reduced ring (respectively, a domain) which is algebraic over a field
is regular (respectively, a division ring).
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6. Show that a unital ring is an O∗-ring if and only if it is an sp∗-`∗-ring and its
lower nil radical is a completely prime ideal.

7. Show that the following are equivalent for the O∗-ring R.

(a) R has a one-sided identity element.
(b) If (R,R+) is an sp-`-ring, then (R,R+) is an almost f -ring.

8. (a) Let B be a nonzero domain that can be totally ordered and let A be a nonzero
ring with `(A)∩ r(A) = 0. Show that A×B is not an `∗-ring. (Use Exercise
3.1.1.)

(b) Show that for n≥ 2 the n×n matrix ring Rn over the `-simple totally ordered
domain R is not an `∗-ring. (Let {ei j : 1 ≤ i, j ≤ n} be the usual matrix
units, let ennRnenn have the total order of R and let P be the positive cone
of (e11Rn ¢ · · ·¢ en−1,n−1Rn) ¢←ennRnenn where e11Rn ¢ · · ·¢ en−1,n−1Rn is
trivially ordered. By multiplying on the right by αein + βenn where i =
1, . . . ,n−1 and α , β ∈ R, show that P is a maximal partial order of Rn.)

(c) If R is an sp-po-domain show that R[x] is not an `∗-ring. (Let P consist of
0 and all polynomials f = α0 + · · ·+αnxn of degree n with αn > 0 if n≡ 0
(mod 4) and αn < 0 if n≡ 2 (mod 4). Show that P is a maximal partial order
that is not directed.)

9. (a) Let G and H be `-groups and let ϕ : G −→ H be a homomorphism of po-
groups. Show that ϕ is an `-homomorphism and ϕ(G) is totally ordered iff
kerϕ is a prime subgroup of G.

(b) Let MR be an `-module over the `-ring R and suppose x ∈ M with xR+ ⊆
M+. Show that left multiplication by x,µx : R−→M, is an `-homomorphism
and xR is a totally ordered submodule of M iff r(x;R) is a prime subgroup
of R.

10. Let MR be a module with `(R;M) = 0 and let x ∈M and I = r(x;R). Show the
equivalence of the following.

(a) I is meet-irreducible in the lattice of right ideals of R : if I = J∩K where J
and K are right ideals of R, then I = J or I = K.

(b) R/I is uniform.
(c) If a,b ∈ R\I, then xaR∩ xbR 6= 0.

11. Suppose R is a totally ordered ring and MR is a module with `(R;M) = 0.

(a) If M is an O∗-module show that r(x;R) is meet-irreducible and convex for
each x ∈M.

(b) If R is a right valuation ring and each right annihilator r(x;R), x ∈ M, is
convex show that M is an O∗-module.

12. Show the equivalence of the following statements for the totally ordered domain
R; see Theorem 4.5.3.

(a) R has a nonzero t-torsion-free right O∗-module.
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(b) Each t-torsion-free right R-module is an O∗-module.
(c) R is a right Öre domain.

13. Suppose MR is an O∗-module over the po-ring R with `(R+;M) = 0. If (M,P)
is a po-module show that P is the intersection of total orders iff for all a ∈ R+

and x ∈M, xa ∈ P implies x ∈ P or xa = 0 (xR+ is a partial order of M.)

14. Consider the following conditions for the po-module MR with `(R;M) = 0 over
the `-simple f -ring R.

(a) M+ is the intersection of total orders.
(b) MR can be embedded in a product of totally ordered t-torsion-free po-

modules.
(c) M is R+-semiclosed.

Show that (a) ⇒ (b) ⇒ (c) and if M is an O∗-module, then (c) ⇒ (a).

Notes. Albert [A1] showed that an algebraic element in a totally ordered di-
vision ring is central (Theorem 6.2.2) and we have given his proof which uses
Wedderburn’s Theorem 6.2.1 [W]. Actually, Theorem 6.2.1 with E = Z(D) is due
to Wedderburn and the generalization given is due to Cohn [C3, Prop. 3.3.7].
Tamhankar [T] generalized Albert’s theorem by showing that an algebraic ele-
ment a in a totally ordered ring is central provided f ′(a) is a regular element
where f (x) is a central polynomial with f (a) = 0, and Exercise 4 also comes from
Tamhankar’s paper. Steinberg [ST17] showed that Tamhankar’s method (Theorems
6.2.3–6.2.7) can be applied to `-algebras and `-modules to show that certain alge-
braic f -elements are central. Leung [LE2] is also concerned with Tamhankar’s theo-
rem. The characterization of O∗-rings, which answers a question posed by Fuchs [F,
p. 288], is due to Steinberg [ST19] and the fact that an f ∗-ring is an O∗-ring comes
from Ma and Wojciechowski [MW1]. Kreinovich [KR] noted that an O∗-ring is al-
gebraic over Z and its nilpotent elements have index bounded by 2. The discussion
of O∗-modules comes from Bigard [BI1], and Exercise 8 is based on Wojciechowski
and Kreinovich [WK].

6.3 More Polynomial Constraints on Totally Ordered Domains

Let R[x1, . . . ,xn] be the polynomial ring in the noncommuting indeterminates x1, . . . ,
xn over the ring R. A nonzero homogeneous polynomial f (x1, . . . ,xn)∈ R[x1, . . . ,xn]
will be called a form of degree k if

f (x1, . . . ,xn) = ∑
i1+···+in=k

a(i)x
i1
1 · · ·xin

n .

If R is a po-ring the form f (x1, . . . ,xn) is called positive semidefinite (P.S.D.) if for
any elements y1, . . . ,yn in R, f (y1, . . . ,yn)≥ 0. Using the centrality of algebraic ele-
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ments it will be shown that a totally ordered domain that satisfies a condition dual to
`-simplicity and that has a P.S.D. form which vanishes for some elements y1, . . . ,yn
from R∗ must be commutative. Of course, a commutativity result of this form re-
quires restrictive polynomials since x2

1 + x2
2± (x1x2 + x2x1)≥ 0 are constraints with

nontrivial solutions in any nonzero sp-po-ring. It is also shown that a semiprime
f -ring must be commutative if the polynomial x2n + y2n−2xnyn is P.S.D., and also
that the `-subalgebra of f -elements in an `-algebra is central provided it consists of
regular elements and its commutators are bounded. The variety of `-algebras gen-
erated by a real closed field is shown to be independent of the field and this result
is used to verify that a P.S.D. polynomial for the field in commuting variables is a
sum of squares of rational functions. Moreover, the totally ordered fields which have
this property are determined. In addition, the free f -rings in the variety of `-rings
generated by R are represented in terms of the total orders of the free commutative
rings.

We start by giving a specific construction of the coproduct of two algebras even
though a general construction is given in Exercise 1.4.21. First, we will review the
construction of the tensor algebra obtained from two modules since the coproduct
will be obtained as a homomorphic image of the tensor algebra. In the following
discussion C is a commutative unital ring, all C-modules are unital, αx = xα for
each module element x and each α ∈ C, and tensor products are over C. We will
freely use the identifications C⊗X = X⊗C = X but not X⊗Y = Y ⊗X , in general.
Let V and W be modules over C. For n ∈ Z+, the n-fold tensor product of V and
W is the C-module direct sum Tn of the 2n C-modules X1⊗·· ·⊗Xn where each Xi
is either V or W ; note that T0 = C. The tensor algebra T of V and W over C is the C-
module direct sum T = ¢nTn. Before we give the multiplication in T we recall that
there is a bijection between the C-algebra multiplications of the C-module A and the
C-module maps µ : A⊗A−→ A for which the following diagram commutes:

Moreover, (A,µ) is a unital C-algebra if and only if there is a C-homomorphism
ε : C −→ A such that the diagrams
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both commute.
Since T ⊗T is isomorphic to the direct sum of C and all (X1⊗·· ·⊗Xi)⊗ (Y1⊗

·· · ⊗Yj) with Xr, Ys ∈ {V,W}, the mappings (x1 ⊗ ·· · ⊗ xi)⊗ (y1 ⊗ ·· · ⊗ y j) 7→
x1⊗·· ·⊗ xi⊗ y1⊗·· ·⊗ y j induce a C-homomorphism µ : T ⊗T −→ T for which
(6.3.1) holds. We identify C,V and W with their images in T . T is a unital C-
algebra since the inclusion map C −→ T satisfies (6.3.2). It is easily seen that the
C-algebra T has the following universal mapping property: For any unital C-algebra
B and any C-homomorphisms ϕ : V −→ B and ψ : W −→ B there is a unique al-
gebra homomorphism ρ : T −→ B which extends both ϕ and ψ . ρ is given by
ρ(x1⊗·· ·⊗x j) = τ(x1) · · ·τ(x j) where τ = ϕ or ψ depending on whether xk ∈V or
xk ∈W .

We now recall the definition of the coproduct in the category of unital C-algebras.
Let A1 and A2 be unital C-algebras. A coproduct of A1 and A2 is a triple (A,σ1,σ2)
where A is a unital algebra and σi : Ai −→ A are unital algebra homomorphisms,
such that the following hold:

(i) A is generated as a C-algebra by σ1(A1)∪σ2(A2).
(ii) For any unital C-algebra B and any unital algebra homomorphisms ϕi : Ai −→

B for i = 1,2 there is a unital algebra homomorphism ϕ : A −→ B for which
the following diagram is commutative

Theorem 6.3.1. The coproduct of two unital C-algebras A1 and A2 exists and is
unique up to isomorphism. Moreover, if C is a module direct summand of A1 and of
A2, then σ1(A1)∩σ(A2) = C and σ1 and σ2 are embeddings.

Proof. Uniqueness of the coproduct follows quickly from its definition. For exis-
tence, let I be the ideal of the tensor algebra T over the C-modules A1 and A2 that is
generated by all elements of the form
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a1⊗b1−a1b1, a2⊗b2−a2b2, 1A1 −1A2 ,1A1 −1C,1A2 −1C,

with a1, b1 ∈A1, and a2, b2 ∈A2. Let A = T/I and let σi : Ai −→A be the restrictions
of the natural map T −→ A. Since A1∪A2 generates the algebra T , σ1(A1)∪σ2(A2)
generates A. Now, suppose the algebra homomorphisms ϕ1 and ϕ2 in (6.3.3) are
given. Then there is an algebra homomorphism ρ : T −→ B which extends both
ϕ1 and ϕ2. Since ρ(ai ⊗ bi) = ϕi(ai)ϕi(bi) = ϕi(aibi) = ρ(aibi) for i = 1,2 and
ρ(1Ai) = ϕi(1Ai) = 1B, and ρ(1C) = ρ(1T ) = 1B, we have ρ(I) = 0 and hence ρ
induces an algebra homomorphism ϕ : A −→ B which makes (6.3.3) commutative.
So A is the coproduct of A1 and A2.

Let ϕ1 : A1 −→ A1⊗A2 and ϕ2 : A2 −→ A1⊗A2 be the algebra homomorphisms
given by ϕ1(a1) = a1⊗1 and ϕ2(a2) = 1⊗a2, and let ϕ be the homomorphism given
in (6.3.3) with B = A1⊗A2. Now suppose C is a summand of both A1 and A2. This
means, of course, C∼= C ·1Ai and C ·1Ai is a summand of Ai. Let π : A1 −→C be the
projection. The balanced map A1×A2 −→ A2 given by (a1,a2) 7→ π(a1)a2 induces
a C-homomorphism τ : A1 ⊗ A2 −→ A2. If σ2(a2) = 0, then 1⊗ a2 = ϕ2(a2) =
ϕσ2(a2) = 0, and hence a2 = τ(1⊗a2) = 0. So σ2 is an injection and by symmetry,
so is σ1. In particular, C ⊆ σ1(A1)∩σ2(A2). Suppose σ1(a1) = σ2(a2) for some
ai ∈ Ai. Then, from (6.3.3), a1⊗1 = 1⊗a2,

a2 = π(1)a2 = τ(1⊗a2) = τ(a1⊗1) = π(a1)1,

and σ2(a2) = a2 ∈C. ut
Let R be a domain, C its extended centroid and A = RC+C its central closure. We

will denote the C-algebra coproduct of A and the polynomial ring C[t] by A〈t〉. Since
C is a field the previous theorem tells us that A and C[t] are subalgebras of A〈t〉. Note
that, for each z ∈ A (or z ∈ A〈t〉), there is a unique C-algebra homomorphism from
A〈t〉 to A (or to A〈t〉) which sends t to z and is the identity on A. We will now proceed
to collect some useful information about A〈t〉, mainly when R, and also A, is totally
ordered.

Theorem 6.3.2. Let R, C and A be as above and let {ai : 1 ≤ i ≤ n} and {di : 1 ≤
i ≤ n} be subsets of A with {ai} C-independent and suppose Σ n

i=1aitdi = 0 in A〈t〉.
Then each di = 0.

Proof. If not, let n be minimal for which there exist such sets with Σaitdi = 0 and
di 6= 0 for i = 1, . . . ,n. If n = 1, then a1xd1 = 0 for each x ∈ A so d1 = 0. If n > 1,
then Σaitdixd1 = 0 and Σait(d1x)di = 0 for each x ∈ A. This yields Σ n

i=2ai t(dixd1−
d1xdi) = 0. Thus, for each i ≥ 2, dixd1 = d1xdi and by Theorem 6.1.15 there exist
ci ∈C with di = cid1. But then, with c1 = 1, Σ n

i=1aicitd1 = 0, and hence each ci = 0
because {ai} is an independent set. We again have a contradiction. ut

A totally ordered domain R is called co-`-simple if for all c, d ∈ R∗ there is
an element x ∈ R∗ with |cx| < |d|. This one-sided condition is left-right symmetric
and is dual to the condition for `-simplicity of an f -ring. In particular, there is a
dual of Theorem 3.3.8 which is given in Exercise 1. The duality is not perfect,
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however. For example, the antilexicographically ordered polynomial ring R[x] over
any totally ordered domain R is co-`-simple whereas the `-simplicity of R[x] with
the lexicographic order requires R to be `-simple. If R is unital and the units of R+

are cofinal in R, then R is co-`-simple since |c|< u with u−1 ∈ R gives |cu−1d|< |d|.
So the group ring R[G], where G 6= e is a totally ordered group, is co-`-simple with
either the Hahn order or its dual; it is also `-simple.

Let

A[t] =

{
n

∑
i=0

diti : di ∈ A

}
⊆ A〈t〉,

and let
P = {a1ta2t · · ·antan+1 : n≥ 2,ai ∈ A∗}.

Theorem 6.3.3. Let R be a co-`-simple totally ordered domain and let A be its cen-
tral closure and C its extended centroid.

(a) Suppose f (t) = artr +ar+1tr+1 + · · ·+asts is an element of A[t] with aras 6= 0
and f (x)≥ 0 for each x in R. Then ar > 0 and r is even.

(b) If p1, . . . , pm ∈P and a,c ∈ R∗, then |axc|> Σ m
j=1|p j(x)| for some x ∈ R.

(c) Suppose a1, . . . ,an, b1, . . . ,bn ∈ A∗, p1(t), . . . , pm(t) ∈P , and, for each x in
R, ∣∣∣∣∣

n

∑
i=1

aixbi

∣∣∣∣∣≤
m

∑
j=1
|p j(x)|. (6.3.4)

Then n ≥ 2, Σ n
i=1aitbi = 0 in A〈t〉, and {a1, . . . ,an} and {b1, . . . ,bn} are

C-dependent sets.

Proof. (a) We may assume each ai ∈ R since there exists 0 < d ∈ R with dai ∈
R for i = r,r + 1, . . . ,s. If r = s the assertion is obvious. Suppose r < s and let
b = (s− r)

∨s
i=r+1 |ai|. Since R is co-`-simple there exists x ∈ R∗ with |x| < 1 and

|bx|< |ar|. Then, for i = r +1, . . . ,s,(s− r)|aix| ≤ |bx|< |ar| and

(s− r)|aixi| ≤ |bxi|< |arxi−1| ≤ |arxr|.

So

(s− r)

∣∣∣∣∣
s

∑
i=r+1

aixi

∣∣∣∣∣ <
s

∑
i=r+1

|arxr|= (s− r)|arxr|,
∣∣∣∣∣

s

∑
i=r+1

aixi

∣∣∣∣∣ < |arxr|,

and
−|arxr|<−ar+1xr+1−·· ·−asxs ≤ arxr.

Thus, arxr > 0, and since x can be replaced by −x, necessarily r is even and ar > 0.
(b) Suppose p j(t)= d1td2t · · ·dntdn+1 and x∈A with |x| ≤ 1. Let b j = |d1 · · ·dn−1|

∨|dn|∨ |dn+1|. Then |p j(x)| ≤ |b jxb jxb j| since n≥ 2, and, for d = ∨ jb j and b = md
we have
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m

∑
j=1
|p j(x)| ≤

m

∑
j=1
|dxdxd|= m|dxdxd| ≤ |bxbxb|.

Take y ∈ R∗ with |y|< 1 and |by|∨ |yb|< |a|∧ |c|∧1. Then

|by3by3b|= |byy2byyyb|< |ay3c|,

and x = y3 is the desired element.
(c) By (b) we have n ≥ 2. Suppose Σ n

i=1aitbi 6= 0 and assume n is minimal for
which there exist a1, . . . ,an, b1, . . . ,bn, p1(t), . . . , pm(t) such that (6.3.4) holds but
Σaitbi 6= 0. If a1 = Σ n

i=2ciai with ci ∈C, then

n

∑
i=1

aixbi =
n

∑
i=2

ciaixb1 +
n

∑
i=2

aixbi =
n

∑
i=2

aix(cib1 +bi).

So, the minimality of n requires {a1, . . . ,an} and {b1, . . . ,bn} to be C-independent
sets. Now, by (6.3.4) we get for each x, d ∈ R, |Σ n

i=1aixbidb1| ≤ Σ m
j=1|p j(x)db1| and

|Σ n
i=1aixb1dbi| ≤ Σ m

j=1|p j(xb1d)|. So

∣∣∣∣∣
n

∑
i=2

aix(b1dbi−bidb1)

∣∣∣∣∣ =

∣∣∣∣∣
n

∑
i=1

aixb1dbi−
n

∑
i=1

aixbidb1

∣∣∣∣∣≤
m

∑
j=1

[|p j(xb1d)|+|p j(x)db1|].

Thus, by the minimality of n, in A〈t〉,
n

∑
i=2

ait(b1dbi−bidb1) = 0.

So b1dbi = bidb1 for i = 2, . . . ,n (or ai = 0 for i ≥ 2) by Theorem 6.3.2 and hence
{b1, . . . ,bn} is a C-dependent set by Theorem 6.1.15. This contradiction gives that
Σaitbi = 0 and hence {a1, . . . ,an} and {b1, . . . ,bn} are both C-dependent sets. ut

This last result will be used to produce a central element and then commutativity
will follow.

Theorem 6.3.4. Let R, C and A be as in Theorem 6.3.3 and let 0 6= g(t) ∈ A[t].
Suppose y ∈ A∗ and g(x+ y)≥ 0 for each x ∈ R. If g(y) = 0, then y ∈C.

Proof. Let g(t) = a0 + · · ·+antn with an 6= 0. Then n≥ 2. Otherwise, g(t) = a0 +a1t
and a1x = g(x+ y)≥ 0 for every x ∈ R. For each x ∈ R,

g(y+ x) =
n

∑
i=0

ai(y+ x)i =

g(y)+a1x+
n

∑
i=2

ai(yi−1x+ yi−2xy+ · · ·+ xyi−1)+
m

∑
j=1

p j(x) =
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n−1

∑
i=0

(
n

∑
j=i+1

a jy j−(i+1)

)
xyi +

m

∑
j=1

p j(x)≥ 0,

where p j(t) ∈P and m≥ 1 since n≥ 2. For 0≤ i≤ n−1 let

bi =
n

∑
j=i+1

a jy j−(i+1).

Then, for each x in R,

m

∑
j=1
|p j(x)| ≥

m

∑
j=1

p j(x)≥−
n−1

∑
i=0

bixyi.

Since x may be replaced by −x we get that for each x in R
∣∣∣∣∣
n−1

∑
i=0

bixyi

∣∣∣∣∣≤
m

∑
j=1
|p j(x)|.

But bn−1 = an 6= 0, and hence by Theorem 6.3.3 y is algebraic over C. But then y∈C
by Theorem 6.2.10. ut
Theorem 6.3.5. Let R be a co-`-simple totally ordered domain and let A = RC +C
be its central closure. If there is a form over A which is P.S.D. in R and which has a
solution in R∗, then R is commutative.

Proof. Let
f (x1, . . . ,xn) = ∑

i1+···+in=k
a(i)x

i1
1 · · ·xin

n

be a form with a(i) ∈ A such that f (z1, . . . ,zn) ≥ 0 for all z1, . . . ,zn ∈ R, and let
y1, . . . ,yn ∈ R∗ with f (y1, . . . ,yn) = 0. We first verify the following:

If C∩R 6= 0, then there exist y1, . . . ,yn ∈ (C∩R)∗

with f (y1, . . . ,yn) = 0, whereas if C∩R = 0, (6.3.5)
then f (1,1, . . . ,1) = 0.

To see this, suppose that 1≤ r≤ n and yr+1, . . . ,yn ∈C. Let gr(t) = f (y1, . . . ,yr−1, t,
yr+1, . . . ,yn) ∈ A[t]. Then

gr(t) = ∑
(i)

a(i)y
i1
1 · · ·y

ir−1
r−1tir yir+1

r+1 · · ·yin
n

and gr(yr) = 0. If gr(t) 6= 0, then yr ∈C by Theorem 6.3.4. If gr(t) = 0, then gr(z) =
0 for each z ∈ A. So if C∩R 6= 0, then y1, . . . ,yr−1, yr, yr+1, . . . ,yn is a nontrivial
solution of f (x1, . . . ,xn) with 0 6= yr ∈C∩R. Continuing in this way gives a solution
y1, . . . ,yr, yr+1, . . . ,yn with yi, y j ∈ (C∩R)∗. On the other hand, if C∩R = 0, then
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r = n, gn(t) = 0, and hence y1, . . . ,yn−1,1 is a solution of f (x1, . . . ,xn); continuing
gives f (1,1, . . . ,1) = 0.

We now proceed by induction on n, with n ≥ 2, assuming f (x1, . . . ,xn) has a
central solution y1, . . . ,yn of the type given in (6.3.5). The inductive step and the
case n = 2 will be treated simultaneously. Let gn(t) = f (y1, . . . ,yn−1, t) ∈ A[t].
First suppose that gn(t) 6= 0. Since f is homogeneous and y1, . . . ,yn are cen-
tral, f (y1x, . . . ,ynx) = xk f (y1, . . . ,yn) = 0 for each x ∈ R∗. Fix x and let hn(t) =
f (y1x, . . . ,yn−1x, t). Thus, if gn(t)= Σbiti, then hn(t)= Σbixk−it i 6= 0. Now hn(ynx)=
0 and hn(ynx + u) ≥ 0 for each u in R. Thus ynx ∈ C by Theorem 6.3.4 and
hence x ∈ C. Note that when n = 2, f (x1,x2) = Σ s

i=raixk−i
1 xi

2 with aras 6= 0, and
g2(t) = Σ s

i=raiyk−i
1 ti 6= 0.

On the other hand, suppose gn(t) = 0. Now,

f (x1, . . . ,xn) = ∑a(i)x
i1
1 · · ·xin

n =
s

∑
i=r

fi(x1, . . . ,xn−1)xi
n

where r ≤ s, fi(x1, . . . ,xn−1) is a form of degree k− i, and fr(x1, . . . ,xn−1) and
fs(x1, . . . ,xn−1) are nonzero. If z1, . . . ,zn−1 ∈ R, then g(t) = f (z1, . . . ,zn−1, t) =
Σ s

i=r fi(z1, . . . ,zn−1)ti ∈ A[t], and g(z) ≥ 0 for each z ∈ R. So, by Theorem 6.3.3,
fr(z1, . . . ,zn−1)≥ 0. Since fr(y1, . . . ,yn−1) = 0, fr(x1, . . . ,xn−1) is a P.S.D. form on
R with a solution in R∗ and hence R is commutative by induction. ut

An example of a noncommutative totally ordered domain which has a P.S.D. form
with a nontrivial solution is given in Exercise 2. Nevertheless, specific P.S.D. forms
on totally ordered domains and other `-rings do force commutativity. Since small
commutators play a roll we will first develop some more properties of commutators
in an arbitrary ring.

If X and Y are subsets of the ring R, then [X ,Y ] = {[x,y] : x ∈ X , y ∈ Y}. Here,
[x,y] = xy− yx = δxy. The additive subgroup U of R is a Lie ideal if [U,R]⊆U .

Theorem 6.3.6. Suppose U is both a subring and a Lie ideal of R. If x,y ∈U, then
R[x,y]R ⊆U. If U is commutative, 2-torsion-free, and either R or U is semiprime,
then U is central.

Proof. If z∈ R, then δx(yz) = (δxy)z+y(δxz)∈U and y(δxz)∈U ; so (δxy)R⊆U . If
v∈ R, then ((xy−yx)z)v−v((xy−yx)z)∈U since U is a Lie ideal and (xy−yx)zv∈
U ; so v(xy− yx)z ∈U and hence R[x,y]R⊆U . Now suppose U is commutative and
2-torsion-free. If u ∈U and δ = δu, then δ 2 = 0 since δR⊆U and δ = 0 on U . For
any r, s ∈ R we have δ (rs) = (δ r)s+ r(δ s) and

0 = δ 2(rs) = (δ 2r)s+(δ r)(δ s)+(δ r)(δ s)+ r(δ 2s).

So 2(δ r)(δ s) = 0 and (δ r)(δ s) = 0. Let s = vr where v∈ R. Then 0 = (δ r)((δv)r+
v(δ r)) yields (δ r)v(δ r) = 0; that is, (δ r)R(δ r) = 0. If R is semiprime, then δ r = 0.
If U is semiprime, then δ r = 0 since (δ r)2 = 0. In either case, δ = 0, u is central
and U is contained in the center of R. ut
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Applying this result to an `-prime `-ring gives a dichotomy for the subring of
f -elements.

Theorem 6.3.7. Let R be an `-prime `-ring. Then F(R) is a Lie ideal of R if and
only if R is an f -ring or F(R) is central.

Proof. Suppose F = F(R) is a Lie ideal of R and assume F is not central. By The-
orem 3.2.13 F is semiprime, and by Theorem 6.3.6 F contains a nonzero ideal I of
R. Let

K = C(I+) = {u ∈ R : |u| ≤ a1 + · · ·+an, a j ∈ I+}
be the convex `-subgroup of R generated by I+. Then K ⊆ F is a nonzero `-ideal of
R. If u, v ∈ F+ with uv = 0, then C(uK)C(vK) = 0, uK = 0 or vK = 0, and u = 0
or v = 0 since R is `-prime. So F is a totally ordered domain. If x ∈ R with x+ 6= 0,
then ux+ 6= 0 for some u ∈ K+. But then, for any v ∈ K+, ux+∧ vx− = 0, vx− = 0,
and Kx− = 0. Thus, x− = 0 and R is totally ordered. ut

The previous result fails for an `-semiprime `-ring. As an example take the direct
product of a noncommutative semiprime f -ring with a nonzero `-semiprime `-ring
which does not have any nonzero f -elements.

Suppose R is a torsion-free `-algebra over the totally ordered domain C and let
F = F(R). Assume F is C-unitable with C-unital cover FC-u. Then the following
subsets of R, actually of F , are well-defined:

R(1) = {x ∈ R : |x| ≤ α ·1 for some α ∈C}

M(1) = {x ∈ R : C|x| ≤ 1}.
R(1) will be called the convex-`-subalgebra of R generated by 1 and M(1) is an
algebra `-ideal of R(1). In particular, if RF is a t-torsion-free f -module, then F is
a totally ordered domain and it has a unique totally ordered C-torsion-free C-unital
cover FC-u by Exercise 3.4.16 and Theorem 3.4.5. Moreover, RFC-u is a t-torsion-
free f -module, and M(1) = R(1) or M(1) is the unique maximal one-sided `-ideal
of R(1). For the last part, if x ∈ R(1)+\M(1) and y ∈ R(1)+, then 1 < βx for some
β ∈C+; so, y ≤ βxy ∈C(xR(1)) and C(xR(1)) = R(1). Thus, if I is a right `-ideal
of R(1), then I ⊆M(1) or I = R(1).

If X is a subset of R we say the commutators of X are bounded if, for each x in X
and each y in R there exists α ∈C and 2 ≤ k ∈ N such that |[x,y]| ≤ α|x|k. We say
the commutators of X are of bounded degree n if they are bounded and k ≤ n. By
considering the totally ordered homomorphic images of F it is easy to see that when
X ⊆ F this is equivalent to |[x,y]| ≤ α(x2 ∨ |x|n). If the commutators of M(1) are
bounded, then they are of bounded degree 2 since |x| ≤ β implies |x|k ≤ β k−2|x|2
for each k ≥ 2.

Theorem 6.3.8. Suppose R is a torsion-free `-algebra over the totally ordered do-
main C and RF is a t-torsion-free f -module over F = F(R).

(a) If the commutators of R(1) are bounded and M(1) 6= 0, then R(1) is central.
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(b) If the commutators of F are of bounded degree, then F\R(1) is central.

Proof. (a) We first note that F R is also t-torsion-free. For if sr = 0 with s ∈ F and
r ∈ R, then (rs)2 = 0 and rs = [r,s] ∈CC(s2)⊆ F gives that rs = 0.

Let x ∈ R(1)+, y ∈ R+, and take 0 < a ∈M(1). Since xa and ax are comparable
we may assume xa≤ ax. Then (ax)n ≤ anxn for each n≥ 1. Now,

a[x,y] = [ax,y] + [y,a]x (6.3.6)

implies that for some α , β ,γ ∈ F ,

a|[x,y]|= |a[x,y]| ≤ α(ax)2 +βa2x≤ αa2x2 +βa2x≤ γa2

since x ∈ R(1). Since F R is t-torsion-free we get |[x,y]| ≤ γa and [x,y] ∈ M(1). In
particular, if a = |[x,y]| 6= 0, then

a = |[x,y]| ≤ γa2 < a;

so a = 0. If ax < xa, a similar computation using [x,y]a gives a = 0. Thus, x is in the
center of R.

(b) Let x ∈ F+\R(1), y ∈ R+ and let n be the bound. Then for some α ∈C+

xn+1|[x,y]|= |[x,xn+1y]| ≤ αxn

and
|[x,y]| ≤ x|[x,y]| ≤ α.

But now a = |[x,y]| ∈M(1). For if β ∈C+, then αβa≤ xa≤ α , implies βa≤ 1. So
if a 6= 0, then R(1) is central by (a). Thus, xa and a are both central and hence so is
x. Consequently, a = 0. ut

We can now draw some conclusions about when F(R) is a central subring.

Theorem 6.3.9. Let R be a torsion-free C-`-algebra which is also a t-torsion-free
right module over F = F(R). Assume that the commutators of F are of bounded
degree n≥ 2. So, for each x ∈ F and y ∈ R there exists α = α(x,y) ∈C such that

|[x,y]| ≤ α(x2∨|xn|). (6.3.7)

Then each of the following conditions implies F is central in R.

(a) R(1) is a proper subring of F.
(b) F is not archimedean over C.
(c) F is archimedean.
(d) α is independent of x and y.

Proof. If (a) holds and x ∈ F\R(1) and y ∈ R(1), then x and x + y are central by
Theorem 6.3.8; so y is central also. If (b) holds we may assume F = R(1) by (a), and
then M(1) 6= 0; so F ⊆ Z(R) by Theorem 6.3.8. If F is archimedean then F ⊆ Z(R)
by Theorem 6.3.6.



6.3 More Polynomial Constraints on Totally Ordered Domains 563

(d) By (a) and (b) we may assume F = R(1) is archimedean over C. From (6.3.6),
if 0 6= a, x ∈ F+ with xa≤ ax, then for any y ∈ R

a|[x,y]| ≤ |[ax,y]|+ |[y,a]|x

≤ αamxm +αakx,

with 2≤ k,m≤ n. Now, if 1≤ γ ∈C with x, a≤ γ , then

|[x,y]| ≤ αaγm−2γm +αaγk−2γ

≤ 2αγ2n−2a.

Replacing y by 4αγ2n−2y we get that if [x,y] 6= 0, then

|[x,y]|< 2|[x,y]| ≤ a.

Thus [x,y] = 0 and x ∈ Z(R) since otherwise we can let a = |[x,y]|. A similar argu-
ment using |[x,y]|a gives F ⊆ Z(R) when ax < xa. ut
Theorem 6.3.10. Let R be a torsion-free `-algebra over C and suppose U is a Lie
ideal and a semiprime f -subalgebra of R. If the commutators of U are of bounded
degree n ≥ 2 and either C is archimedean, or, in (6.3.7) α is independent of x ∈U
and y ∈ R, or C is bounded by an element of U, then U ⊆ Z(R).

Proof. Let P be a minimal prime ideal of U . Since P is a minimal prime subgroup
of U , as a consequence of Theorem 2.4.3 U/P is C-torsion-free. By Theorem 6.3.9
U/P is commutative. Therefore, U is commutative and U is central by Theorem
6.3.6. ut

We now show that particular P.S.D. forms force a semiprime f -ring to be
commutative.

Theorem 6.3.11. The following statements are equivalent for the semiprime f -ring
R.

(a) For every x, y ∈ R there is an integer n = n(x,y) ∈ N such that

2xnyn ≤ x2n + y2n.

(b) For every x, y ∈ R there is an integer m = m(x,y) ∈ N such that

|xy− yx| ≤ m(x2∧ y2).

(c) R is commutative.

Proof. (a) implies (b). We will assume R is a totally ordered domain and, without
loss of generality, x > y > 0 and yx < xy. Then

y`xk ≤ xky` for all `,k ≥ 0. (6.3.8)
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Take n ∈ N with x2n +(x + y)2n ≥ 2xn(x + y)n. Expansion of these binomial terms
gives

x2n + x2n +
n

∑
k=1

x2n−kyxk−1 +
n

∑
k=1

xn−kyxn+k−1 +u≥

2xn

(
xn +

n

∑
k=1

xn−kyxk−1 + v

)

where u and v are the sums of the nonlinear terms in y from (x + y)2n and (x + y)n,
respectively. So

u−2xnv≥
n

∑
k=1

(x2n−kyxk−1− xn−kyxn+k−1)≥ 0 (6.3.9)

since x2n−kyxk−1 ≥ xn−kyxnxk−1 = xn−kyxn+k−1, for each k, by (6.3.8). We claim that
the sum in (6.3.9) is no smaller than x2n−1y−x2n−2yx = |x2n−1y−x2n−2yx|. If n = 1
this is clear and for n≥ 2,

n

∑
k=1

(x2n−kyxk−1− xn−kyxn+k−1)≥ x2n−1y− xn−1yxn + x2n−2yx− xn−2yxn+1

≥ x2n−1y− x2n−2yx

where the last inequality comes from (6.3.8) in the form x2n−2yx ≥ xn−1yxn,
xn−2yxn+1. Now, each term in u is bounded above by x2n−2y2. To see this note that
a typical term a in u is of the form

a = xk1y`1xk2y`2 · · ·xkr y`r with ∑
i

`i ≥ 2 and ∑
i

ki +∑
i

`i = 2n.

But by moving each xki to the left and by using (6.3.8) we get xΣki yΣ`i ≥ a; and
x2n−2y2 ≥ xΣki yΣ`i since x > y and 2n−2≥ Σki. Thus, for some m ∈ N,

mx2n−2y2 ≥ u≥ u−2xnv≥ |x2n−1y− x2n−2yx|,

and
|xy− yx| ≤ my2 = m(x2∧ y2).

That (b) implies (c) is a consequence of Theorem 6.3.10 and that (c) implies (a)
follows from the fact that R is an sp-po-ring. ut

An example of a noncommutative totally ordered ring for which f (x,y) =
x2 + y2 − 2xy is a P.S.D. form is given in Exercise 6. On the other hand a unital
`-semiprime `-ring which admits f (x,y) as a P.S.D. form is commutative provided
it satisfies an additional semiclosed condition; see Exercise 7.

We now consider polynomial constraints in totally ordered fields and examine
the variety of f -rings generated by a totally ordered field. A description of the free
objects in this variety will be given.
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Let C be a commutative unital totally ordered ring and let VC(R) denote the
variety of C-`-algebras generated by the C-`-algebra R. An `-algebra in VC(R) will
be called formally R-real. From Section 1.4 we know that a C-`-algebra is formally
R-real exactly when it satisfies all of the identities satisfied by the C-`-algebra R,
and according to Exercise 1.4.20 this is equivalent to it being a C-`-homomorphic
image of an `-subalgebra of some direct product RI of copies of R. When C = Z
references to C will be dropped and an `-ring in V (R) is called a formally R-real
`-ring. An `-ring in V (R) is called formally real. Suppose V is a variety of C-`-
algebras which contains a C-`-algebra (C[X ]0,P) where X is a set of indeterminates
over C and C[X ]0 is the free C-algebra on X without an identity element. Let AV (X)
be the free V -algebra on X . Then the `-algebra (C[X ]0,P) is a homomorphic image
of AV (X) and hence the subalgebra of AV (X) generated by X is the free C-algebra
on X . Of course, AV (X) is generated as an `-algebra by its subalgebra C[X ]0. When
V is a variety of f -algebras each element of AV (X) has the form∨i∧ j pi j(x1, . . . ,xn)
for some finite subset {pi j(x1, . . . ,xn)} of C[X ]0 (Theorem 3.4.1). Similarly, if V is
a variety of commutative `-algebras which contains an `-algebra whose underlying
algebra is a free commutative algebra on the commuting indeterminates X , then the
free V -algebra on X is generated as an `-algebra by the polynomial algebra C[X ]0.

Theorem 6.3.12. Let C be a unital totally ordered subring of the real closed field K.
Then each commutative C-torsion-free f -algebra which is semiprime, has square 0,
or is C-archimedean is formally K-real.

Proof. Let R be a commutative C-torsion-free f -algebra. Assume first that R is
semiprime. Since R can be embedded in a product of totally ordered field extensions
of C it suffices to show that a totally ordered field L which contains C is formally
K-real. Suppose g(x1, . . . ,xn) is a word in the free commutative C- f -algebra that K
satisfies and let α1, . . . ,αm be all the elements of C which occur in g(x1, . . . ,xn). Let
a1, . . . ,an ∈ L and let F be an ultrafilter on N which contains all complements of
finite subsets. By Exercise 5.1.13 the ultraproduct KN/F is a real closed η1-field
and hence by Theorem 5.1.11 (actually, Exercise 5.1.19) Q(α1, . . . ,αm,a1, . . . ,an)
can be embedded in KN/F :

Here, the vertical map is the inclusion Q(α1, . . . ,αm) ⊆ K ⊆ KN/F . Since ψ
(g(a1, . . . ,an) = g(ψ(a1), . . . ,ψ(an)) = 0 we have g(a1, . . . ,an) = 0. So L satis-
fies g(x1, . . . ,xn) = 0 and L is formally K-real. Now suppose R2 = 0. By Theo-
rem 4.5.10 R ∈ VC(C0) where C0 is the `-algebra whose underlying C- f -module is
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C and C2
0 = 0. Thus, in order to show that R is formally K-real it suffices to ver-

ify that C0 is formally K-real. Let τ be an ordinal and a = (aρ)ρ<τ a sequence in
Q(C)W (τ) ⊆ KW (τ) such that {aρ : ρ < τ} ≤ 1 and is coinitial in Q(C)+∗. Let A and
B be the convex `-C-submodules of KW (τ) generated by a and a2, respectively. Since
0 < a < 1, A is a C-`-subalgebra of KW (τ) and B = A[2] is an `-ideal of A. Also, c`B
(in A) is a proper `-ideal since if a ∈ c`B, then αa ≤ βa2 for some 0 < α , β ∈C,
and hence β−1α ≤ aρ for each ρ < τ . But for some ρ , aρ < β−1α . Thus, C0 can
be embedded in the formally K-real C-`-algebra A/c`B and hence C0 is formally
K-real. Lastly, suppose R is C-archimedean. By Theorem 3.6.2 N ∩R[2] = 0 where
N = `-β (R) = `(R;R). Since R is C-torsion-free N = c`N and N ∩ c`R[2] = 0. So R
is formally K-real since it is a subdirect product of two C-torsion-free f -algebras,
one which is semiprime and one whose square is 0. ut

The preceding result shows that the variety of formally K-real C-`-algebras where
K is a real closed field which contains C is quite large and is independent of K.
According to Exercise 4.3.28 each formally K-real `-algebra can be embedded in
a convex formally K-real `-algebra. Note that a non-unitable C- f -algebra is not
formally K-real.

Theorem 6.3.13. The variety of `-rings generated by any totally ordered field or any
subring of R not contained in Z coincides with the variety of formally real `-rings.

Proof. Let K be a totally ordered field. By Theorem 6.3.12 V (Q)⊆V (K)⊆ V (R).
Suppose T is a subring of R with T 6⊆ Z. Then T is dense in R by Exercise 2.3.2
and

R = {(an)n∈N ∈ TN : (an)n∈N is convergent in R}
is an `-subring of TN. The mapping (an)n 7→ liman is an `-homomorphism of R onto
R. So R ∈ V (T ), V (R) =V (T ), and V (Q) =V (K) = V (R). ut

The ring Z is conspicuously absent from Theorem 6.3.13 because V (Z) is a
proper variety of the variety of formally real rings; see Exercise 11.

A polynomial over a totally ordered field which is a sum of squares certainly
gives a polynomial constraint for that field. The converse holds for some totally
ordered fields, including all real closed fields, provided the squares permitted are
enlarged to include all rational functions. The rational function r(x1, . . . ,xn) in the
rational function field K(x1, . . . ,xn), K a totally ordered field, is called positive
semidefinite if r(α1, . . . ,αn)≥ 0 for all α1, . . . ,αn in K for which r(α1, . . . ,αn) is de-
fined. A P.S.D. polynomial in more than one variable need not be a sum of squares of
polynomials (see Exercise 13); hence rational functions are needed for a converse.
One of the main tools that will be used to verify that a P.S.D. rational function is
a sum of squares is given in Exercise 5.1.17. Recall from this exercise that S(K)
denotes the set of sums of squares of elements in the commutative ring K and for
a field K of characteristic 0 S(K) is the intersection of the total orders of K. Also,
for the totally ordered field K, K+S(K(x1, . . . ,xn)) is the intersection of those total
orders of K(x1, . . . ,xn) which make it into an `-algebra over K.
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A totally ordered field K is called a Hilbert field if for each n ≥ 1 every P.S.D.
rational function in K(x1, . . . ,xn) is in S(K(x1, . . . ,xn)). Since K∩S(K(x1, . . . ,xn))⊆
S(K) for any infinite field a Hilbert field K has the unique total order S(K). This is
one of two conditions that characterize a Hilbert field; the other being that K is
dense in its real closure, or, equivalently, its real closure is a subfield of its Cauchy
completion; see Theorems 5.2.23 and 5.2.24 and Exercise 2.3.1 (b). The following
result will be used to show the connection between the Hilbert property of a totally
ordered field and its denseness in its real closure.

Theorem 6.3.14. Let F be the real closure of the totally ordered field K and let L
be the set of limit points of K in F. Then L is a subfield of F which contains K.
Moreover, if b ∈ F is a root of f (x) ∈ L[x] and 0 < ε ∈ K, then there is a polynomial
g(x) ∈ K[x] of the same degree as f (x) such that g(x) has a root in the F-interval
Nε(b) = (b− ε,b+ ε).

Proof. The verification that L is an intermediate field is left for Exercise 16. By
taking a monic irreducible factor of f (x) which has b as a root we may assume
f (x) = a0 +a1x+ · · ·+ xn is monic and irreducible. By Exercise 15 K+∗ is coinitial
in F+∗ and by Exercise 5.1.6 there exists 0 < δ ∈ K, δ < ε , such that f (x) is strictly
monotonic in Nδ (b); so f (b− δ ) f (b + δ ) < 0. Let ρ ∈ K with 0 < ρ < | f (b−
δ )| ∧ | f (b + δ )| and take a ∈ K with ∨n

j=0(|b + δ | j ∨ |b− δ | j) < a. Since a j is a
limit point of K there exists b j ∈ K with |a j − b j| < ρ

na for j = 0, . . . ,n− 1. Let
g(x) = b0 +b1x+ · · ·+bn−1xn−1 + xn. Then

| f (b+δ )−g(b+δ )| ≤
n−1

∑
j=0
|a j−b j||b+δ | j

<
n−1

∑
j=0

ρ
na

a = ρ < | f (b+δ )|,

−| f (b + δ )| < f (b + δ )− g(b + δ ) < | f (b + δ )| and hence f (b + δ )g(b + δ ) > 0.
Similarly, f (b−δ )g(b−δ ) > 0. Consequently, g(b−δ )g(b+δ ) < 0 and g(x) has
a root in Nδ (b) by Exercise 5.1.6. ut
Theorem 6.3.15. The following statements are equivalent for the totally ordered
field K with real closure F.

(a) K is dense in F.
(b) For every n∈N, if r(x1, . . . ,xn)∈K(x1, . . . ,xn) is P.S.D. on K, then r(x1, . . . ,xn)

is P.S.D. on F.
(c) For every n∈N, if r(x1, . . . ,xn)∈K(x1, . . . ,xn) is P.S.D. on K, then r(x1, . . . ,xn)

∈ K+S(K(x1, . . . ,xn)).
(d) If r(x) ∈ K[x] is P.S.D. on K, then r(x) ∈ K+S(K(x)).
(e) If r(x) ∈ K[x] is P.S.D. on K, then r(x) is P.S.D. on F.

Proof. (a) ⇒ (b). By considering h = rg2 = f g where r = f g−1 it suffices to show
that if h(x1, . . . ,xn) ∈ F [x1, . . . ,xn] and h(β1, . . . ,βn) 6= 0 for some β1, . . . ,βn ∈ F ,
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then h(α1, . . . ,αn)h(β1, . . . ,βn) > 0 for some α1, . . . ,αn ∈ K. We use induction on
n and we will assume h(β1, . . . ,βn) > 0. For n = 1 take γ1 ∈ F with γ1 > β1 and
such that h(x1) has no roots in [β1,γ1]. Then h(α) > 0 for each α in [β1,γ1] by
Exercise 5.1.6 and by assumption there is an α1 ∈ K∩ [β1,γ1]. Now apply the case
n = 1 to the polynomial h(x1,β2, . . . ,βn) to get α1 ∈ K with h(α1,β2, . . . ,βn) > 0
and then apply the induction assumption to the polynomial h(α1,x2, . . . ,xn) to get
α2, . . . ,αn ∈ K with h(α1,α2, . . . ,αn) > 0.

(b)⇒ (c). Suppose r(x1, . . . ,xn) = f (x1, . . . ,xn)g(x1, . . . ,xn)−1 ∈K (x1, . . . ,xn) is
P.S.D. on K and let h(x1, . . . ,xn) = f (x1, . . . ,xn)g(x1, . . . ,xn). Then h(α1, . . . ,αn)
≥ 0 for all α1, . . . ,αn ∈ F and hence h(x1, . . . ,xn)− = 0 is an identity for the K-`-
algebra F . Let P be a total order of K(x1, . . . ,xn) which extends K+ and let E be
the real closure of (K(x1, . . . ,xn),P). Then VK(F) = VK(E) by Theorem 6.3.12 and
hence h(x1, . . . ,xn)− = 0 is also an identity for the K-`-algebra E. So h(x1, . . . ,xn) ∈
P and hence r(x1, . . . ,xn) ∈ K+S(K(x1, . . . ,xn)).

(e) ⇒ (a). Suppose K is not dense in F . Then there exists a ∈ F and 0 < ε ∈ K
such that Nε(a) ∩ K = /0 and we may assume that a has the least degree n≥ 2 over
K among all such elements of F . Let f (x) be the irreducible polynomial of a over
K. Then f (x) has no roots in the subfield L of limit points of K. For, if b ∈ L were a
root of f (x), then f (x)(x−b)−1 ∈ L[x] has the root a, and by Theorem 6.3.14 there
would exist g(x)∈K[x] of degree n−1 with a root c in Nε/2(a). This contradicts the
minimality of n. Suppose a1 < a2 < · · ·< ar are all of the roots of f (x) in F . We may
assume Nε(ai)∩K = /0 for every i and also Nε(ai)∩Nε(a j) = /0 for i 6= j. So a1 <
a1 + ε

2 < a1 + ε < a2− ε < · · · < ar < ar + ε
2 < ar + ε . Let g(x) be the irreducible

polynomial of a + ε
2 over K. Then g(x + ε

2 ) = f (x) and a1 + ε
2 < · · · < ar + ε

2 are
the roots of g(x) in F . We claim that f (α)g(α) > 0 for each α ∈ K. Since neither
f (x) nor g(x) has a root < a1 each has constant sign in {b ∈ F : b < a1} equal to the
sign of bn. Similarly, f (b)g(b) > 0 if b > ar. Now, f (x) and g(x) change their signs
once in the intervals (a1− ε,a1 + ε) and (a2− ε,a2 + ε) and have constant sign in
[a1 +ε,a2−ε]. Since no elements of K lie in Nε(a1)∪Nε(a2) we have f (α)g(α) > 0
for all α ∈ K with α < a2 + ε . Continuing we get f (α)g(α) > 0 for all α ∈ K with
α < ar and the claim has been established. Thus, f (x)g(x) is P.S.D. on K but not on
F since f (b)g(b) < 0 for b ∈ (a1,a1 + ε

2 ).
Since the implications (c) ⇒ (d) and (d) ⇒ (e) are trivial the proof is complete.

ut
Before we give the main characterization of Hilbert fields we will show that

polynomials suffice to represent a polynomial in one variable as a sum of squares.

Theorem 6.3.16. If K is a totally ordered field, then K[x]∩S(K(x)) = S(K[x]).

Proof. Suppose f (x)∈K[x] has degree n≥ 1 and is a sum of squares in K(x). By in-
duction we will assume that all polynomials in S(K(x)) of degree < n are in S(K[x]).
If there exists a polynomial g(x) of positive degree with f (x) = g(x)2h(x), then h(x),
and hence also f (x), is a sum of squares in K[x]. Thus, we will assume f (x) is square
free. Among all equations in K[x] of the form g(x)2 f (x) = Σ j f j(x)2 with g(x) 6= 0
take one for which g(x) has minimal degree. Write f j(x) = q j(x) f (x)+ h j(x) with
deg h j(x) < n for each j. Then
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g(x)2 f (x) = ∑
j
(q j(x)2 f (x)2 +2q j(x)h j(x) f (x)+h j(x)2)

= f (x)q(x)+∑
j

h j(x)2.

If every h j(x) = 0, then g(x)2 = f (x)Σ jq j(x)2 and hence f (x) is a factor of g(x)
since it is square free. But the equation (g(x) f (x)−1)2 f (x) = Σ jq j(x)2 gives a con-
tradiction since g(x) f (x)−1 has lower degree than g(x). Thus we have a polynomial
h(x) = g(x)2−q(x) with

h(x) f (x) = ∑
j

h j(x)2 6= 0, deg h j(x)≤ n−1. (6.3.10)

Among all equations of the form (6.3.10) take one in which the degree of h(x)
is minimal. Since deg h(x)≤ n−2 and h(x) = f (x)−1Σ jh j(x)2 ∈ S(K(x)), we have
h(x)∈ S(K[x]). If h(x)∈K we are done; otherwise, deg h(x) = m≥ 1. Write h j(x) =
p j(x)h(x)+ s j(x) with deg s j(x) ≤ m− 1 for each j. If every s j(x) = 0, then from
(6.3.10) we have h(x) f (x) = h(x)2Σ j p j(x)2 and f (x) = h(x)Σ j p j(x)2 ∈ S(K[x]). On
the other hand, if some s j(x) 6= 0, then

∑
j

s j(x)2 = ∑
j
(h j(x)− p j(x)h(x))2 = ∑

j
h j(x)2 +h(x)q(x)

= h(x)( f (x)+q(x))

and
0 6= ∑

j
s j(x)2 = h(x)p(x) with deg p(x)≤ m−1. (6.3.11)

From (6.3.10) and (6.3.11) and the equation

(
t

∑
j=1

u2
j

)(
t

∑
j=1

v2
j

)
=

(
t

∑
j=1

u jv j

)2

+ ∑
1≤ j<k≤t

(u jvk− vku j)2 (6.3.12)

we get

h(x)2 p(x) f (x) =

(
∑

j
h j(x)s j(x)

)2

+ ∑
j<k

(h j(x)sk(x)−hk(x)s j(x))2.

But modulo h(x) we have

∑
j

h j(x)s j(x)≡∑
j

h j(x)2 ≡ 0

and h j(x)sk(x)−hk(x)s j(x)≡ 0; so

h(x)2 p(x) f (x) = h(x)2u(x)2 +∑
i

h(x)2vi(x)2
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and p(x) f (x) = u(x)2 + Σivi(x)2. This equation gives a contradiction since
deg p(x) < deg h(x). ut

Note that (6.3.12) and Exercise 5.1.8 show that a P.S.D. polynomial in one vari-
able over a real closed field is a sum of two squares.

Theorem 6.3.17. The following statements are equivalent for the totally ordered
field K with real closure F.

(a) K is a Hilbert field.
(b) K has a unique total order and K is dense in F.
(c) If r(x) ∈ K[x] is a P.S.D. polynomial on K, then r(x) is a sum of squares of

polynomials in K[x].
(d) If r(x) ∈ K[x] is P.S.D. on K, then r(x) is P.S.D. on F and K has a unique

total order.

Proof. That (a) implies (b) is a consequence of Theorem 6.3.15 and that (b) im-
plies (a) follows from Theorem 6.3.15 and the fact that K+S(K(x1, . . . ,xn)) =
S(K(x1, . . . ,xn)) provided K has a unique total order (Exercise 5.1.17). That (a) im-
plies (c) is a consequence of Theorem 6.3.16, that (c) implies (d) is obvious, and
that (d) implies (b) also follows from Theorem 6.3.15. ut

The two conditions in (b) of the previous theorem are independent. The field
Q(
√

2) is dense in its real closure but has two total orders. An example of a field with
a unique total order which is not dense in its real closure and of a P.S.D. polynomial
that is not a sum of squares is given in Exercise 14.

We conclude this section with a description of the free formally real f -rings
which is analogous to the description of the free f -modules given in Section 4.5.
But first we note the following.

Theorem 6.3.18. Let C be a totally ordered subring of the real closed field K. Sup-
pose A is the free formally K-real C- f -algebra on X and B is the free commutative
C- f -algebra on X. Then A = B/c`(β (B)).

Proof. By Exercise 1.4.20 A is the C-`-subalgebra of K(KX ) generated by the pro-
jections πx : KX −→ K, x ∈ X ; hence A is semiprime and C-torsion-free and if
ϕ : B−→ A is the homomorphism which extends the identity on X , then c`(β (B))⊆
kerϕ . Now, B/c`(β (B)) is semiprime since αb2 ∈ β (B) with 0 6= α ∈ C and
b ∈ B gives (αb)2n = 0 for some n and hence b ∈ c`(β (B)). By Theorem 6.3.12
B/c`(β (B)) is K-formally real and therefore there is a homomorphism ψ deter-
mined by ψ(x) = η(x) and which makes the diagram
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commutative, where η is the natural map; thus, kerϕ ⊆ c`(β (B)) and ψ is an
isomorphism. ut
Theorem 6.3.19. Let C be a subring of R with its usual total order and let X be a
set of commuting indeterminates over C. Let

S = {P : (C[X ]0,P) is a totally ordered C-`-algebra}

and let ϕ : C[X ]0 −→ ΠS (C[X ]0,P) be the diagonal embedding. Then the C-`-
subalgebra A of the product generated by ϕ(C[X ]0) is the free formally R-real C- f -
algebra on X.

Proof. We may assume X is a set of indeterminates overR. Suppose ψ :C[X ]0−→R
is a homomorphism of C-algebras where R is a formally R-real C- f -algebra. We
need to lift ψ to an `-algebra homomorphism of A into R, and as in the proofs of
Theorems 4.5.1 and 4.5.3 we may assume that R is totally ordered. Thus, it suffices
to show that there is a P ∈S with respect to which ψ is isotone. For, given such a
P we have the commutative diagram

where πP is the projection onto (C[X ]0,P). Let

P′ = {Σiαi f 2
i gi1 · · ·gimi : 0 < αi ∈C,mi ∈ Z+, fi,gi j ∈C[X ]∗0

and ψ(gi j) > 0}.

Then P′ is a subsemiring of C[X ]0 with C+∗P′ ⊆ P′, and in order to show that P′ ∪
{0} is a partial order we need to verify that P′ ∩−P′ = /0, or, equivalently, that 0 6∈P′.
Suppose f = Σiαi f 2

i gi1 · · ·gimi is an element of P′ with fi, gi j ∈C[x1, . . . ,xn]0 for all
i and j. Since R is a formally R-real C-`-algebra there is an epimorphism of C-`-
algebras
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Take ak ∈ S with ρ(ak) = ψ(xk) for k = 1, . . . ,n. Then

ρ(
∧

i, j

gi j(a1, . . . ,an)) =
∧

i, j

gi j(ψ(x1), . . . ,ψ(xn))

=
∧

i, j

ψ(gi j(x1, . . . ,xn)) > 0

and hence, for some λ ∈Λ , gi j(a1(λ ), . . . ,an(λ )) > 0 for every i and j. So there is a
nonempty open subset U of Rn such that gi j(γ1, . . . ,γn) > 0 for (γ1, . . . ,γn) ∈U and
for every i and j. Let Z( fi) = {(γ1, . . . ,γn) ∈ Rn : fi(γ1, . . . ,γn) = 0}. By Exercise
10 Z( fi) is a closed nowhere dense subset of Rn and hence W = Rn\⋃

i Z( f 2
i ) is an

open dense subset of Rn. So

f (γ1, . . . ,γn) = Σiαi f 2
i (γ1, . . . ,γn)gi1(γ1, . . . ,γn) · · ·gimi(γ1, . . . ,γn) > 0

for all (γ1, . . . ,γn) ∈U ∩W and 0 6∈ P′. Now, the quotient partial order Q(P′) is an
sp-partial order for the quotient field Q(C[X ]0) of C[X ]0 and hence P′ is contained
in a total order P of C[X ]0 by Theorem 5.1.1. If g ∈ P and ψ(g) < 0, then we have
the contradiction −g3 ∈ P′ ⊆ P. So ψ(g)≥ 0 and ψ is isotone relative to P. ut

Exercises.

1. Let A be the central closure and let Ru be the unital cover of the totally ordered
domain R. Verify the equivalence of the following statements.

(a) R is co-`-simple.
(b) For each c in R∗ there exists x in R∗ with |cx|< 1.
(c) For each c in R∗ there exists x in R∗ with |xc|< 1.
(d) For all c and d in R∗ there exists x in R∗ with |xc|< |d|.
(e) For each c in R∗ there exist x and y in R∗ with |xcy|< 1.
(f) For all c and d in R∗ there exist x and y in R∗ with |xcy|< |d|.
(g) For all p1, . . . , pm ∈P and for all u, v ∈ A∗ there exists x in R∗ with |uxv|>

Σ m
i=1|pi(x)|. (See Theorem 6.3.3.)

(h) For all u, v, b ∈ A∗ there exists x ∈ R∗ with |x|< 1 and |uxv|> |bxbxb|.
(i) For all 0 < a < b in R there exists x ∈ R∗ with 0 < x < 1 and (bx)3 < (ax)2.
(j) Each one-sided ideal of R is co-`-simple.
(k) Ru is co-`-simple.
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(l) For all a and b in R∗, aRb is co-`-simple.
(m) The positive cone of each one-sided ideal of R has no lower bound in R+

except 0.
(n) If S is a right (respectively, left) f -ring extension of R and S is a right (re-

spectively, left) quotient ring of R, then S is co-`-simple.

2. Show that an ultraproduct of a family of co-`-simple totally ordered domains is
co-`-simple.

3. Let f (x1, . . . ,xn) be a P.S.D. form over the semiprime f -ring R. Suppose
f (x1, . . . ,xn) has a regular coefficient and a solution consisting of regular
elements.

(a) If for every a, b ∈ R there exists d ∈ R with |ad| ≤ |b| show that R is
commutative.

(b) If R is infinitesimal show that R is commutative.

4. If the inequality 2xy≤ x2 + y2 holds in the po-ring R show that the inequalities
±[x,y]≤ x2,y2 also hold.

5. Let σ :Q[y]−→Q[y] be the automorphism of K =Q[y] determined by σ(y) =
1
2 y and let R = K[x;σ ] be the skew polynomial ring with the scalars from K
on the left; so xy = 1

2 yx. Give both K and R the lexicographic order; so 1 ¿
y¿ y2 ¿ ··· and 1¿K x ¿K · · · . Show that R is `-simple, f (x1,x2) = y2x2

1−
2yx1x2 + x2

2 is a P.S.D. form over R with a solution in R∗, and R has bounded
commutators.

6. Let C[x,y] be the free unital algebra in two indeterminates over the totally or-
dered domain C, and let R = C[x,y]/I where I is the ideal of C[x,y] generated
by all monomials of degree 3.

(a) Show that R is a free unital C-module with basis e1 = 1, e2 = x, e3 = y,
e4 = x2, e5 = xy, e6 = y2, e7 = xy− yx.

(b) Show that R is a totally ordered ring with the total order Ce1 ¢→··· ¢→Ce7.
(c) Show that for any f , g ∈ R, 2 f g≤ f 2 +g2 and |[ f ,g]| ≤ f 2∧g2.

7. Suppose R is a unital `-semiprime `-ring which satisfies 2xy≤ x2 +y2. Suppose
also that in each `-prime homomorphic image of R, y ≥ 0 whenever x ≥ 1 and
xy ≥ 0. Show that R is commutative. Give an example of such an `-ring which
is not an f -ring. (For x ≥ 1, use x2[x,y] = [x,x2y] to show [x,y] ∈ F , and use
[x2,y] = 2x[x,y] to show x ∈ Z(R).)

8. Let G be a rooted po-group, C a totally ordered domain and C[G] = Σ(G,C) the
group `-algebra with the Hahn product order.

(a) If G is trivially ordered and for all a, b ∈ G there exists p(x) ∈ C[x] with
|[a,b]| ≤ |p(a)| show that G is abelian.

(b) Suppose that for every r, s ∈ C[G]+ there are polynomials p(x), q(x) ∈
C[x]x2 with |[r,s]| ≤ |p(r)|∧ |q(s)|. Show that G is abelian.
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9. (a) In (a) of Theorem 6.3.3 assume R is `-simple instead of co-`-simple. Show
that as > 0 and s is even.

(b) Give examples to show that the conclusions in (a) need not hold when R is
co-`-simple and neither do those in Theorem 6.3.3(a) when R is `-simple.

10. Suppose α j < β j for j = 1, . . . ,n in the totally ordered field K and f (x1, . . . ,xn)∈
K[x1, . . . ,xn] with f ([α1,β1]×·· ·× [αn,βn]) = 0. Show that f (x1, . . . ,xn) = 0.
(Use induction on n.)

11. (a) Show that Z is the largest totally ordered subring of R which satisfies the
identity x2∨ x = x2.

(b) Suppose f (x1, . . . ,xn) ∈ Z[x1, . . . ,xn], and for some m≥ 1, f (α1, . . . ,αn) =
0 implies α1 = · · ·= αm = 0 for all (α1, . . . ,αn) ∈ Zn. Show that

[x1∧ x2∧·· ·∧ xm∧ (z+ f (x1, . . . ,xn)z)∧ (z− f (x1, . . . ,xn)z)]+ = 0

is an identity which holds in Z.
(c) Give some examples of polynomials of this type in two variables which

give an `-ring identity for Z but not for R.

12. Let K = E(x) be the rational function field in one variable over the totally
ordered field E. Show that if K has either the lexicographic or the antilexi-
cographic total order, then (

√
x,2
√

x)∩K = /0 and K is not dense in its real
closure.

13. Let F be a real closed field and let f (x,y) = 1 + x2y4 + x4y2− 3x2y2 ∈ F [x,y].
Show that:

f (x,y) =
(1− x2y2)2 + x2(1− y2)2 + x2(1− x2)2y2

1+ x2

is a sum of six squares in F(x)[y] but is not a sum of squares in F [x,y].

14. Let K =Q(y) have the antilexicographic total order, let F be the real closure of
K and let M be the intermediate field with a unique total order constructed in
Exercise 5.1.15. If v is the natural valuation on F , then v(F) =Q, v(K) =Z and
v(y) = 1 by Exercise 5.2.2. Let f (x) = (x3− y)2− y3 ∈ F [x].

(a) If α ∈ F and f (α) < 0 show that v(α3) = 1. (Rule out all of the other
possibilities.)

(b) If α ∈M show that 2nv(α) ∈ Z for some n ∈ N. (Use Exercise 5.2.14.)
(c) Show that f (x) is P.S.D. on M but is not a sum of squares in F(x). (Verify

f (1) f (y
1
3 ) < 0.)

15. Suppose K⊆D are division rings and D is totally ordered. Show that K is cofinal
in D iff K+∗ is coinitial in D+∗, iff DK is archimedean, iff KD is archimedean.
If D is a field which is algebraic over K show that K is cofinal in D. (See the
proof of Theorem 5.1.4.)
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16. Suppose F is the real closure of the totally ordered field K and L is the set
of limit points of K in F where F has the interval topology. Show that L is a
subfield of F which contains K.

17. Suppose K is a field that can be totally ordered and, for each total order P
of K, (K,P) is dense in its real closure. (For example, K is a real algebraic
number field; see Exercise 5.1.16.) Suppose also that r = f g−1 ∈ K(x1, . . . ,xn)
has the property that for every total order P of K and for all α1, . . . ,αn ∈ K,
f (α1, . . . ,αn)g(α1, . . . ,αn)∈P. Show that r is a sum of squares in K(x1, . . . ,xn).

18. State and prove Theorem 6.3.19 for the category of unital formally R-real
C- f -algebras.

Notes. Leung [LE1] showed that a totally ordered division ring which has a
P.S.D. form with a nontrivial solution is commutative and Steinberg [ST16] used
Leung’s methods to extend this result to a co-`-simple totally ordered domain. The-
orem 6.3.11 and Exercises 5 and 6 also come from Leung [LE1] and the other results
on bounded commutators in an `-ring as well as Theorem 6.3.7 and Exercise 7 come
from Steinberg [ST17]; Exercise 8 is in Steinberg [ST14]. Theorem 6.3.2 is due to
Martindale [MAR] and Theorem 6.3.6 is due to Herstein [HER1] or [HER2]. The
results on formally real f -rings come from Henriksen and Isbell [HI] and our pre-
sentation is based on that given by Weinberg [WE6]. The fact that a real closed
field or an archimedean totally ordered field with a unique total order is a Hilbert
field constitutes Artin’s [AR1] (or [LT]) solution to Hilbert’s 17th problem, and the
generalization to fields with a unique total order which are dense in their real clo-
sure that is given in Theorem 6.3.17 appears in Jacobson [J3]; also see p. 295 of
Jacobson [J2]. The converse and the other equivalences in Theorem 6.3.17 as well
as Theorems 6.3.14 and 6.3.15 are due to McKenna [MC]. The use of f -rings in the
presentation of Artin’s solution, which is motivated by Henriksen and Isbell [HI],
appears to be new; see Jacobson [J3], Pfister [PF], and Prestel and Delzell [PD].
Theorem 6.3.16 comes from Artin [AR1]; Exercise 13 which gives a P.S.D. polyno-
mial that is not a sum of squares of polynomials comes from Motzkin [MO]; other
polynomials of this kind are given in Robinson [RO]. Exercise 14 is due to Dubois
[DU].

6.4 Lattice-ordered Matrix Algebras

The usual lattice order for the matrix algebra Kn over the totally ordered field K is
(K+)n. The first main conjecture for these matrix algebras is that the usual lattice
order is, up to an isomorphism, the only lattice order in which 1 is positive. The ver-
ification of this conjecture when n = 2 or when K is archimedean is given here, and
all of the lattice orders of Kn are determined for these two cases. The second main
conjecture is that the lattice orders that are described for Kn when K is archimedean
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also give all of the lattice orders for any Kn. To establish the first main conjecture for
n≥ 3 we will make use of some of the topological properties of Euclidean space. In
fact, the conjecture will be established more generally for subalgebras of Kn which
are R-irreducible. If such an algebra can be made into an `-algebra it will have to be
all of Kn. As a consequence one gets a uniform verification of the fact that matrix
algebras over the complex numbers and over quaternion algebras are not `-algebras.
The first main conjecture will also be established in several special cases: if F(Kn)
has a set of n disjoint elements, or if it is never one-dimensional, or if a positive
element in Kn is similar to a permutation matrix determined by an n-cycle. The
techniques used for this last case will be embellished so as to describe canonically
ordered matrix algebras over group algebras of a finite cyclic group.

We will repeatedly use Exercises 3.2.37 and 2.5.22. Explicitly, a finite dimen-
sional `-semiprime `-algebra R over a totally ordered field K is a direct sum of
totally ordered `-simple subspaces. Moreover, F(R) is reduced by Theorem 3.2.15
(or Exercise 3.2.37) and it is the direct sum of some of the totally ordered sum-
mands of R. Each of the summands of F(R) is a totally ordered field extension of K
by Theorems 4.2.13 and 6.2.2. When R is the matrix algebra Kn, F(R) has at most n
summands since n is an upper bound for the size of an orthogonal set of idempotents
in R by Exercise 4.2.34; other properties of idempotents in Kn that are given in this
exercise will also be used. Each of the convex `-subalgebras F̀ (R) and Fr(R) is also
a sum of some of the totally ordered summands of R. Since a unital one-sided f -ring
is an almost f -ring by Theorem 3.8.9 and its nilpotent elements are bounded by 1
according to Theorem 3.8.1, it is easy to see that F̀ (R) (respectively, Fr(R)) is an
f -algebra itself precisely when it is unital or reduced.

Theorem 6.4.1. Let K be a totally ordered field.

(a) For each 1 < β ∈K there is a lattice order Pβ of K2 for which R = (K2,Pβ ) is
an `-algebra, and there are four idempotents f1, f2, f3, f4 in Pβ which form
a canonical K-basis for R and such that 1 = (1−β )( f1 + f2)+β ( f3 + f4).

(b) There are idempotents g1, g2 and n in K2 and a nilpotent element g3 such
that 1 = g1 +g2−g3, and if P1 is the positive cone of the vector lattice which
has {g1,g2,g3,n} as a canonical K-basis, then (K2,P1) is an `-algebra
over K.

(c) If R = (K2,P) is an `-algebra over K, then R is isomorphic to (K2,(K+)2) if
1 ∈ P, and, otherwise, R is isomorphic to (K2,Pβ ) for exactly one β ≥ 1.

Proof. For (a), let

f1 =
(

1 0
0 0

)
, f2 =

(
β (β −1)−1 1
−β (β −1)−2 −(β −1)−1

)
,

f3 =
(

1 (β −1)β−1

0 0

)
, f4 =

(
1 0

(1−β )−1 0

)
, (6.4.1)

and note that these idempotents are K-independent and satisfy the following multi-
plication table.
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f1 f2 f3 f4

f1 f1 β (β −1)−1 f3 f3 f1

f2 β (β −1)−1 f4 f2 f2 f4

f3 f1 f3 f3 (β −1)β−1 f1

f4 f4 f2 (β −1)β−1 f2 f4

Let Pβ be the lattice order of K2 which has these idempotents as a canonical K-basis.
For (b), let

g1 =
(

0 −1
0 1

)
, g2 =

(
1 0
0 0

)
,

g3 =
(

0 −1
0 0

)
, n =

(
1 0

−1 0

)
, (6.4.2)

and note that these matrices are K-independent and satisfy the multiplication table
given below.

g1 g2 g3 n
g1 g1 0 0 n
g2 g3 g2 g3 g2
g3 g3 0 0 g2
n g1 n g1 n

Let P1 be the lattice order of K2 which has {g1,g2,g3,n} as a canonical K-basis.
To prove (c) suppose R = (K2,P) is an `-algebra over K. Then R is the vector

lattice direct sum of at most four totally ordered K-archimedean subspaces and cer-
tainly there are at least two such summands. The proof will proceed by considering
the 19 cases that arise depending on the number of summands, the dimensions of
the summands, and the nature of the components of 1 in these summands. Only
three of the cases lead to lattice orders. We first point out a few properties of K2 that
will be used in the proof. According to the Cayley–Hamilton theorem each a ∈ K2
satisfies the equation a2− (tr a)a + deta = 0 where, of course, tr a is the trace of a
and deta is its determinant; in particular, a2 ∈ Ka if a is not a unit. If e and f are
nonzero orthogonal idempotents, then 1 = e + f , eK2e ∼= K and eK2 (respectively,
K2e) is a minimal right (respectively, left) ideal. Each proper nonzero one-sided
ideal is minimal and is a two-dimensional subspace, and a nilpotent subalgebra is
at most one-dimensional. If A and B are totally ordered subspaces of R and C is
a convex subspace, then AB ⊆ C whenever there exist 0 6= a ∈ A and 0 6= b ∈ B
with ab ∈ C. Also, R does not have a totally ordered subalgebra whose dimen-
sion exceeds one and which does not contain 1. For such a subalgebra would be a
finite dimensional domain over K and hence a division ring with an identity element
e 6= 1, and would be contained in the one-dimensional subalgebra eRe. All refer-
ences to summands, idempotents, and the like tacitly assumes they are nonzero.
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Under the assumption 1 > 0, which we now make, three main cases arise de-
pending upon whether R has four, three, or two totally ordered summands. In all of
these cases 1 has at most two nonzero components since the components form an
orthogonal set of idempotents. Let F = F(R).

(I) Suppose R = T1⊕T2⊕T3⊕T4 where each Ti is totally ordered.
(Ia) Assume 1 = g1 + g2 with 0 6= gi ∈ Ti. Then F = T1⊕ T2 as f -rings where

Ti = Fgi = Kgi = giF ∼= K and A = T3⊕ T4 is a unital f -bimodule over F . Now,
Ag1 6= 0 or else Rg2 + A ⊆ `(g1;R); similarly, Ag2 and giA are nonzero and hence
{Ag1,Ag2} = {g1A,g2A} since A = Ag1 ⊕ Ag2 = g1A⊕ g2A. Let Ag1 = Ka and
Ag2 = Kb with 0 < a,b. If Ag1 = g1A, then Ag2 = g2A and a2 ∈ Ka since g2a = 0;
also, ab = ag1b = 0 and hence Ka is a right ideal of R. So, Ag1 = g2A, Ag2 = g1A,
and hence (Agi)2 = 0. If ab = 0, then aR = a(Kg1 +Kg2 +Ka+Kb) = Ka; so ab 6= 0
and ab = αg1 + γg2 + δa + ρb with α , γ , δ , ρ ∈ K+. Now, 0 = a2b = αa + ρab
yields α = ρ = 0, and hence ab = abg2 = γg2 with γ > 0. Similarly, ba = αg1 with
α > 0. By replacing a with γ−1a we have ab = g2 and α = 1 since a = g2a = aba =
αag1 = αa. Let g11 = g1, g22 = g2, g12 = b and g21 = a. Then {gi j : 1≤ i, j ≤ 2} is
a set of matrix units and R = Kg11⊕Kg12⊕Kg21⊕Kg22 ∼= (K2,(K+)2).

(Ib) The other possibility is that 1 ∈ T4 and F = K = T4. Let 0 < xi ∈ Ti for
i = 1,2,3. For 1 ≤ i, j ≤ 3, K + Ti and K + Ti + Tj are convex `-subalgebras since
0≤ xix j ≤ (xi + x j)2 ∈ K +K(xi + x j). We will now consider three subcases which
arise from the possible number of idempotents in T1∪T2∪T3.

(Ib1) Suppose T1∪T2∪T3 contains no idempotents. If x1 is a unit, then x2
1 = α +

γx1 with α > 0, γ ∈K+ and x−1
1 = α−1(x1−γ)∈ T1 +K. Now, x1x2 = ρ +σx1 +τx2

with ρ , σ , τ ∈ K+ and τ > 0 since otherwise x2 = ρx−1
1 +σ ∈ T1 +K. We have

αx2 + γx1x2 = x2
1x2 = ρx1 +σx2

1 + τx1x2 = ρx1 +σ(α + γx1)+ τx1x2

= σα +(ρ +σγ)x1 + τx1x2.

So (γ− τ)x1x2 = σα +(ρ +σγ)x1−αx2 ∈ K⊕T1⊕T2. Since (γ− τ)x1x2 is com-
parable to 0 and −α < 0 we have σα ≤ 0 and ρ + σγ ≤ 0. So σ = 0, ρ = 0 and
hence x1x2 = τx2. From x2

2 = η +λx2 we get

τη + τλx2 = τx2
2 = x1x2

2 = ηx1 +λx1x2 = ηx1 +λτx2.

So η = 0 and also λ = 0 since otherwise λ−1x2 is an idempotent. Thus, x2
2 = 0 and,

similarly, x2
3 = 0. On the other hand, if none of the xi are units, then x2

i ∈Kxi = Ti and
x2

i = 0 for i = 1,2,3. In both cases we have x2
2 = x2

3 = 0. From x2x3 = α +γx2 +δx3
with α , γ , δ ∈ K+ we obtain

0 = x2x2
3 = αx3 + γx2x3 = αx3 + γα + γ2x2 + γδx3

and hence α = γ = 0. Also,

0 = x2
2x3 = δx2x3 = δ 2x3
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gives δ = 0. So x2x3 = 0; by symmetry x3x2 = 0 and we have the contradiction that
T2⊕T3 is a nilpotent subalgebra.

(Ib2) Suppose T1 and T2 both contain idempotents. So Ti = Kgi and gi = g2
i > 0

for i = 1,2. There exist α , γ , δ ∈ K+ with

g1g2 = α + γg1 +δg2 = αg2 +δg2 + γg1g2

= (α +δ )g2 + γα + γ2g1 + γδg2

= γα + γ2g1 +(α +δ + γδ )g2.

So α = γα , γ = γ2, α + γδ = 0, and hence α = γδ = 0 and γ = 0 or 1. Thus,
g1g2 = g1 or g1g2 = δg2, and in the latter case g1g2 = δg1g2 = δ 2g2 and δ = 0
or 1; the possibilities are g1g2 = g1, or g1g2 = g2, or g1g2 = 0. There exist ρ , σ ,
τ ∈ K+ with

g1x3 = ρ +σg1 + τx3 = ρg1 +σg1 + τg1x3.

So τg1x3 = ρ + τx3−ρg1 ≥ 0 implies ρ = 0 and

g1x3 = σg1 + τg1x3 = σg1 + τσg1 + τ2x3 = σ(1+ τ)g1 + τ2x3.

Thus, σ = σ(1 + τ) and τ = 0 or 1. Consequently, g1x3 = σg1 or g1x3 = x3, and
similar equations hold for g2x3, x3g1 and x3g2. Now, assume g1g2 = g1. If g1x3 =
σg1 then g1R = T1; so g1x3 = x3 and x3 is not a unit. If g2x3 = x3, then Rx3 = T3; so
g2x3 = αg2 for some α ∈ K+ and we have the contradiction

αg1 = g1(αg2) = g1g2x3 = g1x3 = x3.

So g1g2 6= g1. Assume g1g2 = g2. If x3g2 = αg2, then Rg2 = T2, and if x3g2 = x3,
then either x3g1 = x3 and x3R = T3, or x3g1 = γg1 and

x3 = x3g2 = x3g1g2 = γg1g2 = γg2.

So we must have g1g2 = 0 and similarly g2g1 = 0. This gives 1 = g1 + g2 ∈ T4 ∩
(T1 +T2) = 0.

(Ib3) Suppose T1 contains the idempotent g1 but T2 ∪ T3 has no idempotents.
There exist α , γ , δ ∈ K+ with

g1x2 = α + γg1 +δx2 = αg1 + γg1 +δg1x2

= αg1 + γg1 +δα +δγg1 +δ 2x2

= δα +(α + γ +δγ)g1 +δ 2x2.

So α = δα , α + δγ = 0 and δ = 0 or 1, and hence α = 0 = δ , or α = 0, δ = 1
and γ = 0. Thus, g1x2 = γg1 or g1x2 = x2. Similarly, g1x3 = ρg1 or g1x3 = x3. If
g1x2 and g1x3 are both in T1, then g1R = T1, and if g1x2 = x2 and g1x3 = x3, then
g1R ⊇ T1 + T2 + T3. The remaining possibilities are g1x2 = γg1 and g1x3 = x3, or
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g1x2 = x2 and g1x3 = ρg1. By symmetry we will assume the latter and now there
are two cases depending upon whether ρ is zero or nonzero.

If ρ = 0 we have g1x2 = x2 and g1x3 = 0. Since T3 has no idempotents x2
3 = 0.

From x2x3 = α + σx2 + τx3 with α , σ , τ ∈ K+ we obtain αx3 + σx2x3 = 0 and
α = σx2x3 = 0. If σ = 0, then x2x3 = τx3 = g1x2x3 = τg1x3 = 0; and if σ 6= 0, then
x2x3 = 0. So Rx3 = Kx3 and the case ρ = 0 is impossible.

If ρ 6= 0, then by replacing x3 by ρ−1x3 we have g1x2 = x2 and g1x3 = g1. Calcu-
lations analogous to those in the first paragraph of this case give x3g1 = x3 or x3g1 ∈
K+g1, and x2g1 = x2 or x2g1 ∈ K+g1. If x3g1 = x3, then x2

3 = x3g1x3 = x3g1 = x3.
Suppose x3g1 = τg1; then g1 = (g1x3)2 = g1τg1x3 = τg1, τ = 1 and g1 commutes
with x3. If x2g1 = x2, then g1 also commutes with x2 and we have the contradiction
g1 ∈ Z(R) = T4. The remaining possibility is that x2g1 ∈ K+g1. But then Rg1 = T1.

(II) Suppose R = T1⊕T2⊕T3 has three totally ordered summands. We assume T1
is the two-dimensional summand.

(IIa) Suppose 1 = g1 +g2 ∈ T1 +T2. Then F = T1⊕T2 is the direct product of the
totally ordered fields T1 and T2 and T3 is a unital F-bimodule. If g2T3 = 0, then T1 +
T3 ⊆ r(g2;R). So g2T3 = T3 and also T3g2 = T3. But now we have the contradiction
T2⊕T3 ⊆ g2Rg2.

(IIb) Suppose 1 = g2 +g3 ∈ T2⊕T3. Then F = T2⊕T3 as f -rings and T1 is a unital
f -bimodule over F . As in the previous case T1 = g2T1 = g3T1 and T1 = g2g3T1 = 0.

(IIc) Suppose 1 ∈ T1. Then T2 is a vector lattice over T1 = F and hence is at least
two-dimensional over K.

(IId) Suppose 1 ∈ T3. Then T3 = K and since T1 is not a subalgebra of R its
nonzero elements are units in R. Take x1, x2 ∈ T +

1 and x ∈ T +
2 with T1 = Kx1 ⊕

Kx2 and T2 = Kx. We will show that T1x ⊆ T2; this is impossible since T1x is two-
dimensional. Note that T1 + K is a subalgebra. For, 0 ≤ x1x2 ≤ (x1 + x2)2 ∈ K +
K(x1 + x2)⊆ T1 +K. Now, x2

1 = α + γx1 with α > 0 and γ ∈ K+ and

0 < x1x = δ +(ρx1 + τx2)+σx

with δ , ρ , τ , σ ∈ K+. So,

αx+ γx1x = x2
1x = δx1 + x1(ρx1 + τx2)+σx1x

and
(γ−σ)x1x = x1(δ +ρx1 + τx2)−αx.

Because (γ − σ)x1x is comparable to 0 and −αx < 0 and x1(δ + ρx1 + τx2) ∈
T +

1 +K+, necessarily, δ +ρx1 + τx2 = 0. So δ = ρ = τ = 0 and x1x = σx ∈ T2, as
desired.

(III) Suppose R = T1⊕T2 has two totally ordered summands. Then 1 ∈ T1 ∪T2
since otherwise R = F(R). Moreover, 1 cannot be in a three-dimensional totally
ordered summand F because then the other summand would be a vector lattice
over F and would also be at least three-dimensional. Suppose 1 ∈ T1. If T2 is three-
dimensional, then T1 = K and since T2 is not an ideal it also is not a subalgebra.
Thus, T ∗2 consists of units. If a ∈ T ∗2 with tr a = 0, then a2 ∈ K and hence aT2 ⊆ K;
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this is impossible since aT2 is three-dimensional. So tr : T2 −→ K is monic and this
is also impossible. On the other hand, suppose T2 is two-dimensional. Since T1 is a
division algebra it is central by Exercise 6.2.3; this is absurd.

We have now considered all the cases for which 1 > 0, and the first part of (c)
has been established. From now on we assume 1 6∈ R+.

(IV) Suppose R = T1⊕T2 and 1 = g1 +g2 with gi ∈ Ti and g1 < 0 < g2. If giTi ⊆ Ti
for i = 1 or 2, then (1− gi)Ti ⊆ Ti and Ti is an ideal. So neither T1 nor T2 is a
subalgebra and the nonzero elements in T1 ∪T2 are units. Suppose 0 6= a ∈ T1 ∪T2
with a2 ∈K. Then a2 = a2g1 +a2g2 ≥ 0 gives a2g1 = 0 and hence a2 = 0. So a2 6∈K
and tr : Ti −→ K is monic for i = 1,2. This is impossible since T1 or T2 is at least
2-dimensional.

(V) Suppose R = T1⊕ T2⊕ T3, T1 is 2-dimensional, and 1 = g1 + g2 + g3 with
gi ∈ Ti. At least two of g1, g2, g3 are nonzero.

(Va) Now, T1 ∼= T1|g2 +g3|= T1(g2 +g3) = A as vector lattices over K since the
nonzero elements of T1 are units. Let p : R−→ T2⊕T3 be the projection. If p(A) 6= 0,
then A∼= p(A) since A is totally ordered and K-archimedean. But now p(A) = T2⊕T3
since they are both two-dimensional. So p(A) = 0, A ⊆ T1 and T1(g2 + g3) = T1.
However, g2

1 = α + γg1 with α 6= 0 and

g1(g2 +g3) = g1−g2
1 = g1−α(g1 +g2 +g3)− γg1

= (1−α− γ)g1−αg2−αg3 6∈ T1.

(Vb) If g1 6= 0 and g2 and g3 have opposite signs, then

g2
1 = α + γg1 = (α + γ)g1 +αg2 +αg3 ≥ 0

gives α = 0. Hence T1 is a two-dimensional subalgebra which doesn’t contain 1.
(Vc) Suppose g1 = 0. Then g2 and g3 have opposite signs and if 0 < a ∈ T1 we

have a2 = α + γa = αg2 +αg3 + γa > 0; but a is invertible yet 0 = α = deta.
(Vd) Suppose g3 = 0 and g1 < 0 < g2; so 1 = g1 +g2. We first note that T1⊕T2 is

a subalgebra. For if ai ∈ Ti, then |a1a2|, |a2a1| ≤ (a1 +a2)2 = α(g1 +g2)+ γ(a1 +
a2) ∈ T1 +T2 and a2

i = ρi(g1 +g2)+σiai ∈ T1 +T2. We show next that T3 is a non-
nilpotent subalgebra. Let 0 < a ∈ T3. Then a2 = αg1 + αg2 + γa ≥ 0 gives α = 0
and a2 = γa. Suppose γ = 0. If g1a = 0, then Ra = Ka. So 0 > g1a = b+ρg2 +σa
with b ∈−T +

1 and ρ , σ ≤ 0; and 0 = g1a2 = ba+ρg2a gives ba = ρg2a = 0. Now,
g2a 6= 0 since otherwise a = g1a and T3 contains the two-dimensional subspace
T1a; also, b = 0 since otherwise T1 +T3 ⊆ `(a;R). So g1a = σa ∈ T3 and, again, T3
contains T1a. Thus, a2 6= 0 and T3 = Ke for some idempotent e. Again,

g1e = b+ρg2 +σe (6.4.3)

with −b ∈ T +
1 and ρ , σ ≤ 0. So

g1e = be+ρg2e+σe = be+ρ(1−g1)e+σe

and g1e+ρg1e−be = (ρ +σ)e; that is,
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((1+ρ)g1−b)e = (ρ +σ)e = 0. (6.4.4)

For if ((1 + ρ)g1 − b)e 6= 0, then T1e ⊆ T3 and Re = T3, which is nonsense. So
ρ = σ = 0 and b = g1; that is, g1e = g1 and g2e = e−g1 ∈ T1 +T3. Since `(e;T1) = 0
or T1 we have `(e;T1) = 0 and T1e = T1. This gives the contradiction

Re = (T1 +T2 +T3)e = T1 +T3 +T2e = T1 +T3.

(Ve) Suppose g3 = 0 and 1 = g1 + g2 with g2 < 0 < g1. Use the same computa-
tions as in (Vd) (with an occasional change of signs) down to (6.4.4); so ρ +σ = 0.
Now, however, b∈ T +

1 , ρ ≤ 0 and σ ≥ 0. Since the nonzero elements in T1 are units,
b = (1+ρ)g1 and 1+ρ ≥ 0. Now, from (6.4.3),

g2e = (1−g1)e = e−g1e = e− (1+ρ)g1−ρg2 +ρe

=−(1+ρ)g1−ρg2 +(1+ρ)e≤ 0;

so 1 + ρ = 0, ρ = −1 and σ = 1. Thus, g1e = −g2 + e and g2e = g2. So T1e =
T2 + T3 = T2e + T3e, T2e = T2 and we have the contradiction Re = T1e is totally
ordered. (VI) Suppose R = T1 ⊕ T2 ⊕ T3 ⊕ T4 and 1 = g1 + g2 + g3 + g4 with
gi ∈ Ti (gi could be 0). If there exist distinct indices i, j, k such that g j and gk have
opposite signs, then from the Cayley–Hamilton equation for gi we get g2

i ∈ Ti.
(VIa) Suppose g1 < 0 < g2, g3, g4. Then g2

i ∈ Ti for i = 2, 3, 4, and, in fact,
A = T2 + T3 + T4 is a subalgebra. To verify this it suffices to show g jgk ∈ A for
2≤ j,k ≤ 4. But, for example, from the inequality,

0≤ (g2 +g3)2 = αg1 +αg2 +αg3 +αg4 + γ(g2 +g3)
= αg1 +(α + γ)g2 +(α + γ)g3 +αg4

we get α = 0 and 0≤ g2g3, g3g2≤ (g2 +g3)2 ∈A. Since Ag1 = A(1−g2−g3−g4)⊆
A we have the contradiction that A is a right ideal.

(VIb) Suppose g1, g2 < 0 < g3, g4. This case will produce the lattice orders Pβ
for β > 1. For each i, g2

i = αigi. Also, from the usual Cayley–Hamilton argument,
when i = 1 or 2 and j = 3 or 4 we have (g j − gi)2 ∈ K+(g j − gi). So Ti + Tj is a
subalgebra for these indices. Write g1g3 = γg1 +δg3. Then

α1γg1 +α1δg3 = α1g1g3 = g2
1g3 = γg2

1 +δg1g3 = γα1g1 +δg1g3 (6.4.5)

and

α3γg1 +α3δg3 = α3g1g3 = g1g2
3 = γg1g3 +δg2

3 = γg1g3 +δα3g3. (6.4.6)

So α1δg3 = δg1g3 and α3δg1 = γg1g3; and either g1g3 = 0, or g1g3 = α1g3, or
g1g3 = α3g1. Analogous computations give similar equations for gig j and g jgi with
1 ≤ i ≤ 2 and 3 ≤ j ≤ 4. We show next that these products are not 0. Suppose, for
example, that g1g3 = 0. Then
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g1 = g1(g1 +g2 +g3 +g4) = α1g1 +g1g2 +g1g4 (6.4.7)

and g1g2 = (1−α1)g1− g1g4. If g1g4 ∈ T1, then g1R = Kg1; so g1g4 = α1g4 and
0 ≤ g1g2 = (1−α1)g1−α1g4. This inequality gives 1 ≤ α1 ≤ 0; so g1g2 6= 0 and,
analogously, gig j 6= 0 and g jgi 6= 0 for i = 1,2 and j = 3,4. We now assume

g1g3 = α1g3, α1 < 0. (6.4.8)

As in (6.4.7) g1 = α1g1 +g1g2 +α1g3 +g1g4 and g1g2 = (1−α1)g1−α1g3−g1g4.
If g1g4 = α1g4, then g1g2 = (1−α1)g1−α1g3−α1g4 yields 1≤ α1 < 0. So

g1g4 = α4g1, α4 > 0 (6.4.9)

and
g1g2 = (1−α1−α4)g1−α1g3. (6.4.10)

From g3 = 1g3 = α1g3 +g2g3 +α3g3 +g4g3 we get g4g3 = (1−α1−α3)g3−g2g3.
If g2g3 ∈ Kg3, then Rg3 = T3; thus, g2g3 6∈ Kg3 and

g2g3 = α3g2, α3 > 0. (6.4.11)

Also, g4g3 = (1−α1−α3)g3−α3g2. We compute g1g2g3 twice using (6.4.11), and
(6.4.10) and (6.4.8).

g1(g2g3) = α3g1g2 = α3(1−α1−α4)g1−α3α1g3,

(g1g2)g3 = (1−α1−α4)α1g3−α1α3g3.

So α1 +α4 = 1 and
g1g2 =−α1g3. (6.4.12)

From g1g2
2 = g1α2g2 =−α1α2g3 and (g1g2)g2 =−α1g3g2 we get

g3g2 = α2g3. (6.4.13)

Now,

g4g2 = (1−g1−g2−g3)g2 = g2 +α1g3−α2g2−α2g3 = (1−α2)g2 +(α1−α2)g3.

Since g4g2 ∈ E2∪E4 we have α1 = α2, and, in fact,

g4g2 = α4g2 (6.4.14)

and α4 = 1−α2; so α1 = α2. Using the expression for g4g3 given after (6.4.10), as
well as (6.4.14) and (6.4.11) we have

g4g1 = g4−g4g2−g4g3−g2
4 = g4− (1−α2)g2− (1−α1−α3)g3 +α3g2−α4g4

= (1−α4)g4 +(α1 +α3−1)g2− (1−α1−α3)g3

= (1−α4)g4 +(α3−α4)g2− (1−α1−α3)g3 < 0.
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So 1≤ α4 and since g4g1 ∈ T1∪T4, α3 = α4, α1 +α3 = 1 and

g4g1 = α1g4 (6.4.15)

Finally, we need to compute g3g4 in two ways. From (6.4.13)

g3g4 = g3(1−g1−g2−g3) = g3−g3g1−α2g3−α3g3 =−g3g1 =

{
−α3g1 or
−α1g3

since α2 +α3 = 1, and from (6.4.9)

g3g4 = (1−g1−g2−g4)g4 = g4−α4g1−g2g4−α4g4

= (1−α4)g4−α4g1−g2g4

=

{
−α4g1 if g2g4 = α2g4

(1−α4)g4−α4g1−α4g2 if g2g4 = α4g2.

So,
g2g4 = α2g4 (6.4.16)

g3g4 =−α4g1. (6.4.17)

All of the twelve products gmgn with m 6= n have now been computed and appear
in (6.4.8), (6.4.9), and (6.4.11)–(6.4.17) with the exception of g2g1, g3g1, and g4g3.
These remaining products are now easily computed to be

g2g1 =−α2g4 (6.4.18)

g3g1 = α3g1 (6.4.19)

g4g3 =−α4g2. (6.4.20)

For example,

g2g1 = g2(1−g2−g3−g4) = g2−α2g2−α3g2−α2g4

= (1−α2−α3)g2−α2g4 =−α2g4.

Let β = α3 = α4 and recall that 1−β = α1 = α2 < 0; so β > 1. Let gi = α−1
i gi for

1≤ i≤ 4. Then each gi is idempotent, 1 = (1−β )(g1 +g2)+β (g3 +g4), and Ti =
Kgi. Moreover, using the equations (6.4.8), (6.4.9), and (6.4.11) through (6.4.20)
it is easy to see that these idempotents satisfy the multiplication table given in the
proof of (a). So this is a lattice order isomorphic to Pβ .

This copy of Pβ arose from our assumption that (6.4.8) holds. Suppose instead of
(6.4.8) we have the alternative

g1g3 = α3g1. (6.4.21)

We compute the other products, as in the just completed calculation. First,
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g1g2 = g1(1−g1−g3−g4) = (1−α1−α3)g1−g1g4. (6.4.22)

So
g1g4 = α1g4, (6.4.23)

or else g1g4 = α4g1 and g1K2 = Kg1. Now, from (6.4.23),

g2g4 +g3g4 = (1−α1−α4)g4,

g3g4 = (1−α1−α4)g4−g2g4,

and
g2g4 = α4g2, (6.4.24)

or else K2g4 = Kg4. From (6.4.22),

g1(g2g4) = α4g1g2 = α4(1−α1−α3)g1−α1α4g4,

(g1g2)g4 = (1−α1−α3)α1g4−α1α4g4,

and hence α1 +α3 = 1 and
g1g2 =−α1g4. (6.4.25)

Also,
g4g2 = α2g4 (6.4.26)

since −α1g4g2 = g1g2
2 = α2g1g2 =−α1α2g4; and α1 = α2 and

g3g2 = α3g2 (6.4.27)

since, from (6.4.25) and (6.4.26),

g3g2 = (1−g1−g2−g4)g2 = (1−α2)g2 +(α1−α2)g4.

By using (6.4.26) to compute g4g3 = (1− α2 − α4)g4 − g4g1 and noting that if
g4g1 ∈ T4, then g4K2 = Kg4, we get

g4g1 = α4g1. (6.4.28)

From (6.4.21) we have

(1−α2−α4)g4−α4g1 = g4g3 = (1−α3)g3−α3g1−g2g3.

So
g2g3 = α2g3 (6.4.29)

and α3 = α4 and
g4g3 =−α4g1. (6.4.30)

From (6.4.24) and (6.4.29) we get g2g1 = (1−α2−α4)g2−α2g3; so

g2g1 =−α2g3. (6.4.31)
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From (6.4.28) and (6.4.31), g3g1 = (1−α1−α4)g1 +α2g3; so

g3g1 = α2g3 (6.4.32)

and hence
g3g4 =−α3g2 (6.4.33)

since g3g4 = (1−α2−α3)g3−α3g2 by (6.4.27) and (6.4.33).
As before, let β = α3 = 1−α1 > 0 and gi = α−1

i gi. From the equations (6.4.21)
and (6.4.23)–(6.4.33) it is easily seen that the idempotents g1, g2, g3, g4 form a
canonical basis for K2 and they satisfy the multiplication table given below.

g1 g2 g3 g4
g1 g1 β (β −1)−1g4 g1 g4
g2 β (β −1)−1g3 g2 g3 g2
g3 g3 g2 g3 β−1(β −1)g2
g4 g1 g4 β−1(β −1)g1 g4

This table is the transpose of the multiplication table for the fi given in the definition
of Pβ . Thus, if Q denotes the lattice order of K2 that has just been constructed and
at denotes the transpose of a, then the mapping gi 7→ f t

i determines an isomorphism
from (K2,Q) onto (K2,Pt

β ). However, it is easy to check that the mapping

f1 7→ f t
2, f2 7→ f t

1, f3 7→ f t
3, f4 7→ f t

4

determines an isomorphism of (K2,Pβ ) with (K2,Pt
β ). So (K2,Q) is also isomorphic

with (K2,Pβ ).
(VIc) Suppose g1, g2, g3 < 0 < g4. This won’t work since just as in (VIa), T1 +

T2 +T3 is a right ideal.
(VId) Suppose 1 = g1 + g2 + g3 and g1 and g2 have the same sign which is

opposite to that of g3. Then g2
1 = α1g1 and g2

2 = α2g2. Take 0 < n ∈ T4. Since
n2 = γg1 +γg2 +γg3 +αn≥ 0, necessarily γ = 0 and n2 = αn. Now, T1 +T4, T2 +T4
and A = T1 +T2 +T3 are all subalgebras. For i = 1,2 we have |gi|n,n|gi| ≤ (|gi|+n)2,
and

(|gi|+n)2 = γ +δ (|gi|+n) = (γ±δ )g1 + γg2 + γg3 +δn

gives γ = 0; so Ti +T4 is a subalgebra. For 1≤ i, j≤ 3 with i 6= j, (gi +g j)2 ∈ K1 +
K(gi + g j)⊆ A; so gig j and g jgi belong to A and so does g2

3 = g3(1 − g1 − g2).
We show next that g2n = 0, or g2n = α2n or g2n = αg2. From g2n = γg2 + δn

we have
γα2g2 +δα2n = α2g2n = g2

2n = γα2g2 +δg2n,

γαg2 +δαn = αg2n = g2n2 = γg2n+δαn.

So δg2n = δα2n and γg2n = γαg2. Similar equations hold for g1n, ng1, and ng2.
Clearly, not both of g2n and g1n can be in Kn since then K2n = Kn. None of the
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products gin or ngi is zero for i = 1,2. Suppose, for example, that g2n = 0. Then
g1n = αg1 6= 0 and g3n = (1−g1−g2)n = n−αg1. From g1g2 = ρg1 +σg2 + τg3
we have

0 = g1g2n = ραg1 + τn− ταg1 = α(ρ− τ)+ τn;

so ρ = τ = 0 and g1g2 = σg2. This implies we cannot have ng2 ∈ T2 and hence
ng2 = α2n 6= 0. But then 0 = ng2n = α2αn 6= 0. Thus, g2n 6= 0 and either γ 6= 0 and
g2n = αg2, or δ 6= 0 and g2n = α2n.

Assume that g2n = αg2. By replacing n by α−1n we have α = 1 and g2n = g2.
Now, g1n 6∈ Kg1 or else K2n = Kg1n+Kg2n+K(1−g1−g2)n+Kn = A. So g1n =
α1n. Again, g1g2 = ρg1 +σg2 + τg3 and

g1g2 = g1g2n = ρα1n+σg2 + τ(1−g1−g2)n
= (ρα1 + τ− τα1)n+(σ − τ)g2.

So ρ = τ = 0 and g1g2 = σg2. Now ng2 = α2n, or else ng2 ∈ Kg2 and K2g2 = Kg2.
Also ng1 = g1, or else ng1 = α1n and nK2 = Kn. But now

σg2 = g1g2 = ng1g2 = σng2 = σα2n.

So σ = 0 and g1g2 = 0. Now g2g1 6∈ Kg1, or else K2g1 = Kg1. So, for some ρ , σ ,
τ ∈ K we have 0 < g2g1 = ρg1 +σg2 + τg3. Since

0 = g2g1g2 = σα2g2 + τ(1−g1−g2)g2 = (σα2 + τ(1−α2))g2

we have σ = τ(α2− 1)α−1
2 . If g3 > 0 > g1, g2, then τ > 0 and σ ≤ 0; but α2 < 0

and hence σ = τ(α2−1)α−1
2 > 0. So we must have g3 < 0 < g1, g2, and therefore

τ < 0, σ ≥ 0, and 0 < α2 ≤ 1. Since

0 = g1g2g1 = ρα1g1 + τg1g3

and 0 ≤ ρα1g1, τg1g3 we have ρ = 0 and g1g3 = 0; so g2
1 = g1(1− g2− g3) = g1

and α1 = 1. From

0≥ g3g2 = (1−g1−g2)g2 = (1−α2)g2 ≥ 0

we get α2 = 1 and g2 is idempotent, g3g2 = 0, σ = 0, and g2g1 = τg3. Now,

g1 = ng1 = (ng2)g1 = τng3 = τn(1−g1−g2) = τ(n−g1−n) =−τg1.

So τ =−1 and g2g1 =−g3. Furthermore, g2g3 = g2(1−g1−g2) = g3 and

g2
3 = ((1−g1)−g2)((1−g1)−g2) = (1−g1)2 +g2

2−g2 +g1g2−g2 +g2g1

= 1−g1−g2−g3 = 0.

So g3g1 = g3(1−g2−g3) = g3 and g3n = (1−g1−g2)n = n−n−g2 =−g2. From
ng1 = g1 and ng2 = n we obtain ng3 =−e1.
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We have now shown that g1, g2, −g3 and n satisfy the multiplication table given
in the proof of (b). So K+e1 +K+e2 +K+(−g3)+K+n is a lattice order isomorphic
to P1.

The other possibility is that g2n = α2n instead of g2n = αg2. In this case g1n =
αg1 since otherwise K2n = Kn. These are the same two equations that appear at
the beginning of the preceding computation two paragraphs ago but with g1 and g2
interchanged. So, g1 = g2, g2 = g1, −g3 = −g3 and n are a canonical basis for a
lattice order of K2 that is isomorphic to P1.

(VIe) Suppose 1 = g1 +g2 with g1 < 0 < g2. Take 0 < x3 ∈ T3 and 0 < x4 ∈ T4.
Since x2

j = αg1 +αg2 +γg j = γg j and, similarly, (x3 +x4)2 ∈K(x3 +x4), each of the
elements x3, x4, x3 + x4 is nilpotent or idempotent and A = T3 + T4 is a subalgebra.
Also, x3 + x4 must be idempotent since otherwise A is nilpotent. We note next that
g1x3 ∈ T1 +T2 +T3 = B. For, g2

1 = (α + γ)g1 +αg2 ∈ B and

0≤−g1x3 ≤−(g1x3 + x3g1) = (−g1 + x3)2−g1− x2
3 ∈ B.

Suppose x2
3 = 0. Since x4x3 = αx3 + γx4 we get γx4x3 = 0 and x4x3 ∈ Kx3. Write

g1x3 = ρg1 +σg2 +τx3 ≤ 0. Then ρg1x3 +σg2x3 = 0 and hence ρg1x3 = σg2x3 = 0
since ρg1x3, σg2x3 ≤ 0. So ρ = 0 and also σ = 0 since otherwise g2x3 = 0 and
0 ≥ g1x3 = (1− g2)x3 = x3 > 0. Therefore g1x3 ∈ T3 and K2x3 = Kx3. So x3 is
idempotent and in the same way x4 is idempotent. But then x3x4 + x4x3 = 0 since
(x3 + x4)2 = x3 + x4 and we have the contradiction 1 = x3 + x4 since x3 and x4 are
orthogonal.

In order to complete the proof of (c) we need to check that if ϕ : (K2,Pβ ) −→
(K2,Pγ) is an isomorphism, then β = γ . Let { f1, f2, f3, f4} and {h1,h2,h3,h4} be the
canonical basis of idempotents for Pβ and Pγ , respectively. There is a permutation σ
such that ϕ( f j) = hσ( j) for 1≤ j ≤ 4. So

hσ(1)hσ(2) = ϕ( f1 f2) =−β (1−β )−1hσ(3) 6= hσ(3)

and therefore −β (1−β )−1 =−γ(1− γ)−1 or −β (1−β )−1 =−γ−1(1− γ). In the
first case we get β = γ and in the second we get 2 < β + γ = 1. ut

K does not have to be a totally ordered field in order for Pβ to be a partial or
lattice order for K2. If K is any unital po-ring, then (K2,P1) is a K-po-ring. If K is
po-unital, β > 1 is central and β and β−1 are units in K+, then (K2,Pβ ) is also a K-
po-ring. Moreover, these partial orders can be obtained from a general construction
of partial orders for Kn which will be given prior to Theorem 6.4.10; see Exercise 6.

Let L be a field and let V = Ln be the L-space of column vectors with n entries. A
subset S of Ln is called L-irreducible or just irreducible if V is a simple left module
over the subalgebra B of Ln generated by S. The set S is not irreducible precisely
when there is an integer m < n and a unit u in Ln such that, for each s ∈ S, u−1su has

the form u−1su =
(

a b
0 c

)
where a is an m×m matrix. The first m columns of u then

form a basis for a proper B-submodule of V since if e1, . . . ,en denote the standard
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basis vectors for V and v j = ue j, then u−1sv j = Σ m
i=1αi jei and sv j = Σ m

i=1αi jvi for
j = 1, . . . ,m.

The context in which irreducibility will be used is the following. Let K be a
subfield of the real field R and let A be a K-subalgebra of Kn which is R-irreducible.
Then A is a simple K-algebra and B =RA is a simple R-algebra by Theorems 4.2.12
and 4.2.13 since V is a simple A-module - see Exercise 4.2.36. If A can be made into
an `-algebra we will see that A = Kn; and A+ ∼= (K+)n provided 1 ∈ A+. Moreover,
all of the lattice orders of Kn will be described.

We first wish to lift a module partial order of Kn to a module partial order of Rn.
Recall that Y− and Y ◦ denotes the closure and the interior, respectively, of the subset
Y of Rn.

Theorem 6.4.2. Let K be a subfield of R and let A be a K-subalgebra of Kn which
is R-irreducible and is generated by its subset P. Suppose Q is a subset of Kn such
that K+Q⊆ Q and PQ⊆ Q. If Q∩−Q = 0, then Q− ∩−Q− = 0.

Proof. Suppose Q−∩−Q− 6= 0. By Exercise 4.2.36 Q−∩−Q− contains a basis X of
Rn. By Theorem 5.3.12 U = (R+X)◦ 6= /0 and certainly 0 6∈U . Since /0 6= U ∩ −Q⊆
Q− ∩ −Q, there is a basis Y of Rn contained in Q− ∩ −Q, again by Exercise 4.2.36.
Let U1 = (R+Y )◦. Then 0 6∈U1 and /0 6= U1∩Q⊆ Q∩−Q. ut

The following result gives some relations between partial orders of Kn and of Rn

and it will be used to get minimal module partial orders for Kn.

Theorem 6.4.3. Suppose K is a subfield of R and Q is a finite spanning subset of
KKn such that (Rn,R+Q) is a po-vector space over R. Then there exists a family of
bases {Qλ : λ ∈Λ} of KKn such that

R+Q =
⋃

λ
R+Qλ , K+Q =

⋃

λ
K+Qλ ,

and R+Q∩Kn = K+Q.

Proof. The last equation is a consequence of the fact that R+Qλ ∩ Kn = K+Qλ for
each λ since Qλ is a basis forRn. For 0 6= v∈R+Q let X = {w1, . . . ,wm} be a subset
of K+Q with m minimal such that v ∈ R+X . We claim that X is a K-independent
set. If not, there exist β1, . . . ,βm ∈ K with β1w1 + · · ·+βmwm = 0 and βiβ j < 0 for
some i and j. By relabeling we have

w = β1w1 + · · ·+βpwp = βp+1wp+1 + · · ·+βmwm

with each βi ≥ 0, and there exist 1≤ i≤ p and p+1≤ j ≤ m such that βi > 0 and
β j > 0. Write v = α1w1 + · · ·+αmwm with αi ∈ R+ and let

αsβ−1
s =

∧
{αiβ−1

i : βi > 0, 1≤ i≤ p},
αtβ−1

t =
∧
{αiβ−1

i : βi > 0, p+1≤ i≤ m}.
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Then for 1 ≤ i ≤ p and p + 1 ≤ j ≤ m, αi − αsβ−1
s βi ≥ 0 and α j − αtβ−1

t β j ≥ 0.
Now,

(αsβ−1
s +αtβ−1

t )w+
p

∑
i=1

(αi−αsβ−1
s βi)wi +

m

∑
i=p+1

(αi−αtβ−1
t βi)wi =

p

∑
i=1

(αsβ−1
s βi +αi−αsβ−1

s βi)wi +
m

∑
i=p+1

(αtβ−1
t wi +αi−αtβ−1

t βi)wi =

m

∑
i=1

αiwi = v,

and the coefficients of ws and wt in the first two sums are both 0. This contradicts
the minimality of m, and hence X is independent. Since Q contains a basis of KKn

the subset X can be enlarged to a basis Xv of Kn with Xv ⊆ K+Q. Clearly, {Xv : 0 6=
v ∈ R+Q} is the desired family of bases. ut
The po-module M over the po-ring R is called minimal if M+ is a minimal module
partial order; that is, M+ 6= 0 and if (M,Q) is an R-po-module with 0 6= Q⊆M+,
then Q = M+. The positive cone M+ is finitely generated over R+ if there exist
x1, . . . ,xn ∈M+ such that M+ = R+x1 +Z+x1 + · · ·+R+xn +Z+xn. In order to see
that an R+-finitely generated partial order of Rn is closed we will make a diversion
into homogeneous linear inequalities in the next three theorems. All inequalities
involving matrices in these theorems will be with respect to the usual coordinatewise
vector lattice partial order.

Theorem 6.4.4. Suppose K is a totally ordered field and a is an m× n matrix over
K with columns v1, . . . ,vn. Then there exist vectors 0≤ x ∈ Kn and z ∈ Km such that
zta≥ 0, ax = 0 and ztv1 +α1 > 0 where xt = (α1, . . . ,αn).

Proof. If a = 0 let x = (1,0, . . . ,0) and z = 0. We now use induction on n. If n =
1 and a 6= 0 let x = 0 and z = v1. Assuming the result for n let a = (avn+1) be
an m× (n + 1) matrix and let x and z be vectors satisfying the conditions relative

to a. If ztvn+1 ≥ 0, let x =
(

x
0

)
and z = z. Then zta = (zta ztvn+1) ≥ 0, ax =

ax = 0 and ztv1 + α1 > 0. Suppose, then, that ztvn+1 < 0. For j = 1, . . . ,n let β j =
−(ztv j)(ztvn+1)−1, and note that β j ≥ 0 since zta = (ztv1 · · ·ztvn) ≥ 0. Let w j =
v j +β jvn+1 for j = 1, . . . ,n and let b = (w1 · · ·wn). Then ztb = 0 since

ztw j = ztv j− (ztv j)(ztvn+1)−1(ztvn+1) = 0

for each j. By induction there are vectors v ∈ Km and 0 ≤ y ∈ Kn with vtb ≥ 0,
by = 0 and vtw + γ1 > 0 where yt = (γ1, . . . ,γn). Let 0 ≤ x ∈ Kn+1 be defined by
xt = (yt Σ n

j=1 β jγ j). Then
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ax = (avn+1)
(

y
Σ jβ jγ j

)
= ay + Σ jβ jγ jvn+1

= (v1 · · ·vn)y+(β1vn+1 · · ·βnvn+1)y
= by = 0.

Let γ =−(vtvn+1)(ztvn+1)−1 and z = v+γz∈Km. Then ztvn+1 = vtvn+1 +γztvn+1 =
0 and zta = (zta 0)≥ 0 since

zta = zt(v1 +β1vn+1 · · ·vn +βnvn+1) = ztb

= (vt + γzt)b = vtb≥ 0.

Also, from zta = vtb we have ztv1 + γ1 = vtw1 + γ1 > 0 and hence x and z are solu-
tions to the linear inequalities determined by a. ut

For the subset A of Kn let

A′ = {x ∈ Kn : vtx≥ 0 for each v ∈ A}.

Suppose A = {v1, . . . ,vp} and let Np = {1, . . . , p}. For a subset J of Np the associ-
ated subset FJ of A′ is defined by FJ = OJ ∩LJ where

OJ = {x ∈ Kn : vt
jx > 0 for each j ∈ J}

and
LJ = {x ∈ Kn : vt

jx = 0 for each j 6∈ J}.
FJ , which could be empty, is called a face of A′. Clearly, the set of faces {FJ : J ⊆
Np} is a partition of A′, F/0 = L /0, and if I ⊆ J ⊆ Np, then OJ ⊆ OI and LI ⊆ LJ . If
FJ 6= /0 let VJ = Σ j 6∈JKv j and let rJ = dimK VJ . Then dJ = n− rJ = dimK LJ and dJ is
called the dimension of FJ . Let r = r /0 and d = d /0; then d ≤ dJ for each subset J of
Np since L /0 ⊆ LJ . If I ⊂ J ⊆ Np and FI and FJ are both nonempty, then FI is called
a boundary face of FJ . In this case dI < dJ . For, let j0 ∈ J\I and take x ∈ FJ ; so
vt

j0 x > 0. If dI = dJ , then VI = VJ since VJ ⊆VI and rJ = rI . But now v j0 = Σ j 6∈Jα jv j

and hence 0 < vt
j0 x = Σ j 6∈Jα jvt

jx = 0.
A subset T of Kn is linearly convex if whenever v, w ∈ T and α , β ∈ K+ with

α + β = 1, then αv + βw ∈ T . For each subset A of Kn certainly A′ is linearly
convex. The intersection of all the linearly convex subsets of Kn which contain the
subset S is called the convex hull of S. It is, of course, the smallest linearly convex
subset of Kn which contains S. For any subset X of Kn, clearly, K+X is linearly
convex, and it is easy to see that the convex hull of ∪iK+Xi is K+(∪iXi) for any
family of subsets {Xi} of Kn.

Theorem 6.4.5. Let K be a totally ordered field and let A = {v1, . . . ,vp} ⊆ Kn.

(a) If FJ is a face of A′ of dimension dJ with d j ≥ d +2 and x0 ∈ FJ, then there
exist boundary faces FJ1 and FJ2 of FJ, each of dimension ≥ d + 1, and
vectors x1 ∈ FJ1 , x2 ∈ FJ2 such that x0 = x1 + x2.
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(b) A′ is the convex hull of ∪{FJ : dJ ≤ d +1}.

Proof. (a) Since L /0 + Kx0 is at most (d + 1)-dimensional and L /0 + Kx0 ⊆ LJ there
exists y ∈ LJ\(L /0 + Kx0), and L = Kx0 + Ky is a two-dimensional subspace of LJ .
Let M = L∩ A′. For any x = tx0 + sy ∈ L we have vt

jx = 0 if j 6∈ J and hence
x ∈ M if and only if vtx = tvt

jx0 + svt
jy ≥ 0 for every j ∈ J; that is, if we let

m j = −(vt
jy)(v

t
jx0)−1, then x ∈ M precisely when t ≥ m js. Moreover, t > m js if

and only if vt
jx > 0. Let m′ = ∨ j∈Jm j and m′′ = ∧ j∈Jm j. Then m′′ < m′. Otherwise,

vt
j(m

′x0 + y) = vt
j(m jx0 + y) = 0 for j ∈ J, m′x0 + y ∈ L /0, and we have the con-

tradiction y ∈ L /0 + Kx0. Let m = m′ −m′′, s1 = m−1, t1 = m′m−1, s2 = −m−1,
t2 =−m′′m−1, x1 = t1x0 + s1x′ and x2 = t2x0 + s2x′; then x0 = x1 +x2. For i = 1,2 let
Ji = { j ∈ J : ti > m jsi} and note that since t1s−1

1 = m′, j ∈ J1 iff m′ > m j or, equiva-
lently, vt

jx1 > 0, and since t2s−1
2 = m′′, j ∈ J2 iff m′′ < m j, or equivalently, vt

jx2 > 0.
In particular, if m′ = m j′ and m′′ = m j′′ , then j′′ ∈ J1\J2, j′ ∈ J2\J1, xi ∈ FJi for
i = 1,2, and FJi is a boundary face of FJ of dimension ≥ d +1 since /0 6= Ji ⊂ J.

(b) If A′ = F/0 we are done. Assume F/0 ⊂ A′. If FJ is a face of A′ with dJ ≥ d +2,
then by repeatedly using (a) we get that any x∈FJ may be written as x = x1 + · · ·+xq
where each xi is in a (d +1)-dimensional face of A′. Since qxi is in the same face as
xi and x = q−1(qx1)+ · · ·+q−1(qxq) is in the convex hull of ∪{FJ : dJ ≥ d +1}, A′
is contained in this convex hull. Since A′ is linearly convex it contains the convex
hull of ∪{FJ : d j ≤ d +1}. ut
Theorem 6.4.6. Suppose K is a totally ordered field and A is a finite subset of Kn.
Then A′′ = K+A. Moreover, there is a finite subset B of Kn such that A′ = K+B and
B′ = K+A.

Proof. Let A = {v1, . . . ,vp} and let d be the dimension of F/0. We claim that for
each face FJ of A′ with dimension dJ ≤ d + 1 there is a finite subset XJ of Kn with
FJ = K+XJ . Consider F/0 first. If d = 0, let X/0 = 0, and if d > 0 let X/0 = Y ∪−Y
where Y is a basis for L /0 = F/0. Now consider a face FJ with dJ = d + 1. If v ∈ FJ ,
then LJ = L /0 + Kv. So if y ∈ FJ , then y = x + γv with x ∈ L /0 and γ ∈ K, and hence
0 < vt

jy = γvt
jv for each j ∈ J. Thus, γ > 0 and we can let XJ = X/0∪{v}. By Theorem

6.4.5 A′ is the convex hull of ∪J{K+XJ : dJ ≤ d + 1} which, as previously noted is
K+B where B = ∪J{XJ : d j ≤ d +1}; so A′ = K+B.

To see that A′′ ⊆K+A let a be the n× p matrix a = (v1 · · ·vp) and take v∈ A′′. By

Theorem 6.4.4 we can find 0 ≤
(

α
x

)
∈ K p+1 and z ∈ Kn such that zt(−v a) ≥ 0,

(−v a)
(

α
x

)
= 0 and −ztv + α > 0. Since vt

jz = ztv j ≥ 0 for j = 1, . . . , p, z ∈ A′

and hence ztv ≥ 0. So α > ztv ≥ 0 and from −αv + ax = 0 we get v = α−1ax =
Σ p

i=1α−1αivi ∈ K+A where xt = (α1, . . . ,αp). For the reverse inclusion K+A ⊆ A′′
take v = Σ jα jv j with α j ∈ K+ and suppose x ∈ A′. Then vtx = Σ jα jvt

jx ≥ 0 and
hence v ∈ A′′. Since (K+B)′ = B′ (for any B) we have K+A = A′′ = (K+B)′ = B′.

ut
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Theorem 6.4.7. Let K be a subfield of R and suppose A is a K-subalgebra of Kn
which is R-irreducible and is an `-algebra.

(a) If v ∈ Kn and A+v is a partial order of Kn, then A+v is finitely generated
over K+.

(b) The module AKn has nonzero partial orders and each nonzero partial order
contains a minimal A-partial order.

Proof. (a) Since A is a prime `-algebra, as a vector lattice A = ⊕m
i=1Ti is the direct

sum of totally ordered K-archimedean subspaces. Clearly, (Tiv,T +
i v) is a totally or-

dered vector lattice over K. But ((Tiv)+)−∩ (−(Tiv)+)− ⊆ (A+v)−∩ (−(A+v))− =
0 by Theorem 6.4.2, and therefore Tiv = Kaiv with ai ∈ T +

i by Exercise 8. So
A+v = Σ m

i=1T +
i v = Σ m

i=1K+aiv.
(b) The existence of a nonzero partial order of AKn follows from Exercise 7. If

(Kn)+ is such a partial order and 0 6= v ∈ (Kn)+ let {A+vλ : λ ∈ Λ} be a maximal
chain in {A+w : w ∈ (Kn)+ and 0 6= A+w ⊆ A+v}. We claim that ∩λ A+vλ 6= 0. To
see this note first that if S is the (n− 1)-sphere in Rn, then S∩ (A+vλ )− 6= /0 for
each λ ∈Λ since (A+vλ )− is closed under scalar multiplication by elements of R+.
Since S is compact S∩ (∩λ A+vλ ) 6= /0. From (a) we have that A+vλ = K+Xλ for
some finite subset Xλ of Kn; consequently, (A+vλ )− = R+Xλ since R+Xλ = X ′λ by
Theorem 6.4.6, and it is easily seen that X ′λ = {v ∈Rn : xtv≥ 0 for every x ∈ Xλ} is
closed in Rn. Since A+R+Xλ ⊆R+Xλ for each λ , ∩λ (A+vλ )− contains a basis X of
RRn by Exercise 4.2.35 and each Xλ also spans Kn. Since (A+vλ )− is a partial order
ofRn by Theorem 6.4.2 we have (A+vλ )−∩Kn = K+Xλ = A+vλ by Theorem 6.4.3,
and hence R+X ∩Kn ⊆ A+vλ for each λ ∈ Λ . Since there is an invertible matrix a
in Rn with a(R+)n =R+X the interior U of R+X is not empty and 0 6∈U . Since Kn

is dense in Rn, /0 6= U ∩ Kn ⊆ ∩λ A+vλ and hence ∩λ A+vλ 6= 0 as claimed. Now,
if 0 6= u ∈ ∩λ A+vλ , then 0 6= A+u is a minimal A-partial order of Kn. For, suppose
(Kn,P) is a po-module over A with 0 6= x ∈ P ⊆ A+u. Then A+x = Avµ for some
µ ∈Λ and hence P = A+u since A+vµ ⊆ P⊆ A+u⊆ A+vµ . ut

We now show that minimal A-partial orders for Kn are lattice orders and then use
this to identify the lattice orders of Kn.

Theorem 6.4.8. Suppose K is a totally ordered field and A is an irreducible K-
subalgebra of Kn which is an `-algebra. Suppose, also, V = Kn is a minimal po-
module over A and V + is finitely generated over K+. Then A = Kn and there exists
h ∈ Kn such that h−1A+h ⊆ (K+)n and h−1V + = (K+)n. If A has a canonical K-
basis and 1 ∈ A+, then h−1A+h = (K+)n.

Proof. According to Exercise 4.2.36 V + contains a basis {v1, . . . ,vn} of V . Let v =
v1 + · · ·+ vn. Then V + = A+v and with the aid of Theorem 6.4.7 we may assume
V + = K+X with X finite and K+Y ⊂ V + if Y ⊂ X . Let x ∈ X . There exists an
a ∈ A+ such that x = av. For each i = 1, . . . ,n, avi ≤ x and hence by Exercise 9
there exists αi ∈ K+ with avi = αix. So the rank of a is 1, and if N = kera, then
V + = `(N;A)+v by Exercise 7. Now, if w ∈ V , then w = bv− cv = dv where b,
c ∈ A+, bN = cN = 0, and d = b−c. We claim that w+ = d+v; that is (dv)+ = d+v.
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Clearly, d+v ≥ 0, w. Suppose u ∈ V and u ≥ 0, w. Then u = f v and u−w = gv
with f , g ∈ A+ and f N = gN = 0. Since dv = w = ( f −g)v, V = N +Kv⊆ ker(d−
f + g), and hence d = f − g. So f = d + g ≥ d+ and u = f v ≥ d+v. Now, X is a
disjoint set of basic elements in KV and it spans KV ; so X is a canonical basis for
the vector lattice KV . Let X = {w1, . . . ,wn} and let h be the matrix with columns
w1, . . . ,wn. Then h−1V + = Σih−1K+wi = (K+)n since h−1wi = ei is the ith standard
basis vector. If a ∈ A+, then h−1ahei ∈ h−1V + and hence h−1ah ∈ (K+)n. Thus, we
may assume A+ ⊆ (K+)n and V + = (K+)n. We will also assume that vi = ei, the
ith standard basis vector of V . Since A+v = (K+)n, for each i = 1, . . . ,n,ei = aiv
with ai ∈ A+; and because ai ∈ (K+)n the jth row of ai is 0 for j 6= i. So at

iNi = 0
where Ni is the K-span of {e1, . . . ,ei−1,ei+1, . . . ,en}. Now, (V, `(Ni;At)+ei) is a po-
module over the `-algebra (At ,(A+)t) by Exercise 7, and At is K-irreducible by
Exercise 4.2.33. So `(Ni;At)+ei contains a basis {bt

i jei : 1 ≤ j ≤ n} of V for each
i = 1, . . . ,n, by Exercise 4.2.36, and the set {bi j : 1≤ i, j ≤ n} must be independent.
For, suppose Σi, jαi jbi j = 0 with αi j ∈ K. Since bt

i jNi = 0, for each k = 1, . . . ,n we
have 0 = Σi, jαi jbt

i jek = Σ jαk jbt
k jek and hence αk j = 0 for every j. Thus, A = Kn.

Now, suppose Z is a canonical basis for A. From the fact that bt
i jNi = 0 we get that

all rows of bi j except the ith row are 0. If g ∈ Z, then for some bi j,

bi j = αg+ ∑
h6=g

αhh

with α > 0 and αh ∈ K+, and hence only the i-th row of g is nonzero since Z ⊆
(K+)n. Suppose 1 ∈ A+. Then there exist g1, . . . ,gm ∈ Z and 0 < α1, . . . ,αm ∈ K
with 1 = α1g1 + · · ·+ αmgm and necessarily gi = α−1

i eii. So m = n and the matrix
unit eii ∈ A+ for each i. Given the pair of indices i, j let g be an element of Z with a
nonzero (i, j)-th entry β . Then 0 < ge j j = βei j ∈ A and ei j ∈ A+. So A+ = (K+)n.

ut
The previous theorem becomes more definitive when the field is archimedean.

Theorem 6.4.9. Let A be an R-irreducible K-subalgebra of Kn where K is a sub-
field of R. If A is an `-algebra over K then A = Kn, and if 1 ∈ A+ then (A,A+) is
isomorphic to (Kn,(K+)n).

Proof. By Theorem 6.4.7 the A-module V = Kn has a partial order V + for which it
is a minimal po-module and such that V + is K+-finitely generated. Thus, A = Kn.
Moreover, A is a direct sum of totally ordered K-subspaces. If T is one of these
subspaces, then, since we may assume A+ ⊆ (K+)n, we have (T +)− ∩ (−T +)− ⊆
(R+)n ∩ (−R+)n = 0. So T is one-dimensional by Exercise 8 and hence A has a
canonical K-basis. So if 1 ∈ A+, then A+ = (K+)n. ut

One consequence of Theorem 6.4.9 is that the field K(i) and the division ring
H(K) of quaternions over K, as well as their matrix algebras, are not `-algebras
over K; see Exercise 16. This is a good place to verify that there are no other finite
dimensional division algebras over R.
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Theorem 6.4.10. The only noncommutative algebraic division algebra over a real
closed field is the quaternion algebra over this field.

Proof. Let K be a real closed field and let D be an algebraic division algebra over
K with a proper center Z. Now [Z : K]≤ 2 by Theorem 5.1.6 and if [Z : K] = 2, then
Z would be algebraically closed and hence D = Z. So Z = K. By Zorn’s Lemma D
has a maximal subfield E and necessarily E = K(i) with i2 =−1; so [D : K] = 4 by
Theorem 4.2.20. By Theorem 4.2.21 there is an element u ∈ D such that u−1iu =
−i; that is, the automorphism a + bi 7→ a− bi of E is the restriction of the inner
automorphism of D determined by u. We must have u2 < 0 in K. First of all u2 is in E
since it commutes with each of the elements in E. Since u 6∈E and K⊆K(u)∩E ⊂E
we have K = K(u)∩E and u2 ∈ K. If u2 > 0, then u2 = y2 with y ∈ K and u is an
element of K; so u2 =−x2 with 0 < x∈K. Let j = ux−1. Then j2 =−1 and j−1i j =
u−1iu =−i; that is, i j =− ji. Let k = i j. Then k2 = i ji j =−i2 j2 =−1 and 1, i, j, k
are K-independent. For if a + bi +(c + di) j = 0 with a, b, c, d ∈ K and c + di 6= 0,
then− j = (c+di)−1(a+bi)∈ E. So c+di = 0 and hence a = b = c = d = 0. Thus,
D = K +Ki+K j +Kk is the division ring of quaternions over K. ut

In order to identify all of the `-algebra lattice orders of Kn, K a subfield of R,
we will first construct a plenary subset of them. Let K be a unital po-ring and let
a = (αi j) ∈ (K+)n be a matrix with the property that at is a unit in Kn. For 1 ≤ i,
j ≤ n let

ai j = ei jat . (6.4.34)

Then, denoting the jth column and the ith row of a matrix u by u( j) and u(i) respec-
tively, (ai j)(i) = (a( j))t and (ai j)(p) = 0 if p 6= i. Also, for all 1 ≤ i, j, p, q ≤ n and
β , γ ∈ K

βai jγapq = βαp jγaiq (6.4.35)

and {ai j : 1≤ i, j ≤ n}= {ei j}at is a K-basis for the left K-module Kn. Let P(a) be
the partial order of Kn which has the set {ai j : 1 ≤ i, j ≤ n} as a canonical left K-
basis. Then (Kn,P(a))=⊕i, jKai j, P(a)= (K+)nat , and as a consequence of (6.4.35)
(Kn,P(a)) is a po-ring and each of the summands Kai j are subrings. Each ai j, being
part of a canonical basis for KKn, is a d-element on K which is a d-element on K
provided K is po-unital; that is, (γ ∨ δ )ai j = γai j ∨ δai j provided γ , δ ∈ K and
γ ∨ δ exists, and, dually. Moreover, (Kn,P(a)) is a left f -module over K precisely
when K is a left f -ring, and it is a strong left `-module over K precisely when
K is a right f -ring. Also, (Kn,P(a)) is a right po-module over K if and only if
atK+(at)−1 ⊆ (K+)n.

Note that if u is any unit of Kn, then the right ideal of K generated by the entries
in a row of u and the left ideal generated by the entries in a column of u are both
equal to K. It is possible to have u but not ut a unit; see Exercise 20.

Theorem 6.4.11. Let K be a totally ordered field and suppose the matrix algebra
R = Kn is a po-algebra over K. Then R is isomorphic to (Kn,P(a)) for some invert-
ible matrix a in (K+)n if and only if R has a canonical K-basis and Kn is a minimal
po-module over R. If K is archimedean and R is an `-algebra, then R is isomorphic
to (Kn,P(a)) for some a.
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Proof. Suppose the po-algebra R is isomorphic to (Kn,P(a)). Then R certainly has
a canonical basis. Moreover, by Exercise 4.2.37 P(a) = b−1R+b for some b ∈ Kn
and (Kn,b(K+)n) is an `-module over R since (Kn,(K+)n) is an `-module over
(Kn,P(a)):

R+b(K+)n = bb−1R+b(K+)n = bP(a)(K+)n ⊆ b(K+)n.

To show that (Kn,b(K+)n) is a minimal R-po-module it suffices to verify that
(Kn,(K+)n) is a minimal (Kn,P(a))-po-module. Let 0 6= v∈ (K+)n and suppose the
qth-component of atv is α > 0. Then, for j = 1, . . . ,n, a jqv = e jqatv = αe j where
e j is the jth standard basis vector of Kn. So (K+)n ⊆ P(a)v and hence (Kn,(K+)n)
is a minimal (Kn,P(a))-po-module.

For the converse we may assume by Theorem 6.4.8 that R+ ⊆ (K+)n. Also, if
Z is a canonical K-basis for Kn, then from the proof of Theorem 6.4.8 we know
that each element of Z has exactly one nonzero row. Let Zi = {b ∈ Z : eiib 6= 0}.
Then Zi ⊆ eiiKn and hence Zi is a basis for eiiKn. If b ∈ Zi, then for any j we have
0 < e jib ∈ K+Z j. Suppose e jib = αu +βv+ · · · with u, v ∈ Z j and α , β > 0. Then
b = ei je jib = αei ju+βei jv+ · · · . But ei ju > 0 and ei jv > 0 since left multiplication
by ei j is an isomorphism between the right ideals e j jKn and eiiKn. Since b is K-
convex we have the contradiction ei ju = γei jv for some 0 < γ ∈ K. So, taking j = 1,
b ∈ K+ei1Z1 and

R+ =
n

∑
i=1

K+ei1Z1 =
n

∑
i,p=1

K+ei1bp

where Z1 = {b1, . . . ,bn}. Let a = bt
1e11 + · · ·+ bt

ne1n. Then a is a unit since, for
p = 1, . . . ,n, the pth column of a is the first column of bp. Now, for 1≤ i, p≤ n,

aip = eipat = eip(e11b1 + · · ·+ ep1bp + · · ·+ en1bn) = ei1bp;

hence, R+ = Σi,pK+aip and R+ = P(a).
If K is archimedean and R is an `-algebra, then Kn is R-minimal by Theorem

6.4.7 and as we have seen in Theorem 6.4.6 R has a canonical K-basis. ut
Some properties of the lattice orders P(a) are given in Exercises 10–14. The

previous theorem leads to the second main conjecture for matrix algebras which we
state again. If K is a totally ordered field, then each `-algebra lattice order of Kn is
isomorphic to P(a) for some unit a in Kn with a ∈ (K+)n. Of course, the second
main conjecture implies the first since if 1 ∈ P(a), then P(a) = (K+)n.

We now determine some relations among the various P(a) which hold for `-rings
more general than totally ordered fields. Let K be a po-unital po-ring and for a fixed
n ∈ N let G be the subgroup of the general linear group GL(n,K) over K generated
by the group of permutation matrices S and the group D of those diagonal matrices
d(δ1, . . . ,δn) whose diagonal entries are in U (K) : that is, each δ j is a unit in K. If
σ is a permutation on n letters and (eσ(1) · · ·eσ(n)) is the corresponding element of S
obtained by permuting the columns of 1, then for any diagonal matrix d(δ1, . . . ,δn),
d(δ1, . . . ,δn)(eσ(1) · · ·eσ(n)) = (eσ(1) · · ·eσ(n)) d(δσ(1), . . . ,δσ(n)) and G = SD is the
semidirect product of D by S. Each element in G is obtained from a permutation
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matrix by replacing each occurrence of 1 by an element from U (K). Let H be the
subgroup of G generated by S and the subgroup of D consisting of all d(δ1, . . . ,δn)
with each δp in the center of K and δpδ−1

q > 0 for 1 ≤ p, q ≤ n, and let G+ be the
subgroup of G generated by S and the subgroup of D consisting of all d(δ1, . . . ,dn)
will δi ∈U (K+).

If Z is the center of K and a ∈ Zn is invertible in Kn, then it is already invertible
in Zn. For if deta is not a unit of Z, then it belongs to some maximal ideal P of K.
But since the domain Z = Z/P∩Z is embeddable in K = K/P and deta = 0 we get
the contradiction that ac = 0 for some nonzero c ∈ Zn.

Theorem 6.4.12. Let K be a po-unital po-ring with center Z and suppose a, b ∈
(K+)n with at , bt ∈ GL(n,K). Let G and H be the subgroups of GL(n,K) defined
above.

(a) If b = ag for some g ∈G+ and at least one of a, b or g is in Zn, then P(a) =
P(b).

(b) If P(a) = P(b), KK is an indecomposable `-module, and a or b ∈ Zn, then
there exists g ∈ G+ such that b = ag.

(c) If b = gah for some g, h ∈ G+ with g ∈ Zn and either a or b or h ∈ Zn, then
P(b) = cP(a)c−1 where c = (g−1)t ∈ G+.

(d) Suppose KK is an indecomposable `-module and P(b) = cP(a)c−1 for some
c∈ Zn. Then there is a permutation σ such that c = Σiδieσ(i)i ∈G, δiδ−1

k a(k)
has all its entries in K+ for all i and k, and there exists d ∈ G+ such that
bt = dcatc−1. Moreover, b = gah with g, h ∈ G if a ∈ Zn or b ∈ Zn.

Proof. (a) By symmetry we may assume a or g is in Zn. Then b is obtained from a
by permuting the columns of a and multiplying each of these columns on the left by
an element of U (K+). So, for i = 1, . . . ,n,

{Kai j : 1≤ j ≤ n}= {Kbi j : 1≤ j ≤ n} (6.4.36)

and P(a) = P(b) since Kai j = Kbiq implies K+ai j = K+biq.
(b) Since ai j, bi j ∈ eiiKn, Kai j = ΣqKai j ∩Kbiq and the indecomposability of

KK gives Kai j ⊆ Kbiq for some q. Similarly, Kbiq ⊆ Kaip for some p and hence
Kai j = Kbiq, (6.4.36) holds, and ai j = γbiq = biqγ with γ ∈ U (K+). In particular,
b1 j = δ ja1σ( j) for j = 1, . . . ,n, where δ j ∈U (K+) and σ is a permutation; that is,
b( j) = a(σ( j))δ j. Let g = δ1eσ(1)1 + · · ·+δneσ(n)n. Then g∈G+ and since (cepq)(k) =
c(p) or 0 depending on whether k = q, or k 6= q, (ag)( j) = a(σ( j))δ j = b( j) for each j
and hence b = ag.

(c) By symmetry we may assume b or h is in Zn. Since ga = bh−1 and P(ga) =
P(bh−1) = P(b) by (a), we may also assume that h = 1 and b = ga. So P(b) =
(K+)nbt = (g−1)t(K+)natgt = cP(a)c−1.

(d) Since conjugation by c is an isomorphism between the `-rings (Kn,P(a))
and (Kn,P(b)) which fixes K elementwise, as in (b) the indecomposability of K
gives that there are permutations i 7→ i′ and j 7→ j′ such that Kcai jc−1 = Kbi′ j′ and
cai jc−1 = γi jbi′ j′ with γi j ∈U (K+). So cei jat = γi jei′ j′btc and
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ae jict = γi jctbe j′i′ . (6.4.37)

Write c = (δi j). Then (e jict)( j) = (c(i))t = (δ1i · · ·δni) and the other rows are 0; hence
ae jict = (δ1ia( j) · · ·δnia( j)). If k 6= i′, then (ctbe j′i′)(k) = 0 and hence (6.4.37) gives
δkia( j) = 0 and δki = 0. Thus, there is a permutation σ with c = Σiδieσ(i)i ∈ G and

cai jc−1 =

(
∑
p

δpeσ(p)p

)(
∑
k

αk jeik

)(
∑
q

δ−1
σ−1(q)eσ−1(q)q

)

= ∑
p,k,q

δpδ−1
σ−1(q)αk jeσ(p)peikeσ−1(q)q

= ∑
k

δiδ−1
k αk jeσ(i)σ(k)

= γi jbi′ j′ .

So, for every i, j, k, σ(i) = i′ and δiδ−1
k αk j = γi jβσ(i) j′ ≥ 0 where b = (βpq). Let

j′ = τ( j). Then at = Σpeppat = Σpapp and

catc−1 = ∑
p

γppbσ(p)τ(p) =

(
∑
p

γppeσ(p)τ(p)

)
bt .

Let d−1 = Σpγppeσ(p)τ(p). Then d ∈ G+, catc−1 = d−1bt , bt = dcatc−1, and b =
(c−1)tactdt if a or b is in Zn. ut

If a and (at)−1 (or b and (bt)−1) and c are in F(K)n or if the entries of c are
comparable to zero, then in (d) above we may replace c by u = Σi|δi|eσ(i)i ∈ G+ to
get bt = duatu−1. For, the inequalities δiδ−1

k αk j ≥ 0 yield δiδ−1
k > 0 since in the first

case F(K) = Σ jF(K)αk j, and hence in each nontrivial totally ordered homomorphic

image F(K) of F(K) some αk j > 0 and consequently δiδ−1
k > 0. In either case

δiδ−1
k = |δiδ−1

k |= |δi||δk|−1 and uai ju−1 = cai jc−1.
Note that as a consequence of (b) P(a) = (K+)n if and only if a ∈ G+, provided

KK is an indecomposable `-module.
We now return to the first main conjecture for an arbitrary totally ordered field.

Theorem 6.4.13. The following statements are equivalent for the `-algebra R = Kn
over the totally ordered field K.

(a) R is isomorphic to Kn with its usual order.
(b) F(R) has an element with n values.
(c) F(R) has an element with at least n values.
(d) 1 > 0 and 1 has at least n values.

Proof. Since F(Kn,(K+)n) is the subalgebra consisting of all of the diagonal matri-
ces (a) implies (b) and, trivially, (b) implies (c).

(c) implies (d). Since F(R) is isomorphic to a direct product of n totally ordered
division rings it contains a set of n orthogonal idempotents whose sum must be 1.
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(d) implies (a). Again, the vector lattice R is the direct sum of totally ordered
`-simple subspaces and F(R) is the sum of exactly n of them. So 1 = g1 + · · ·+ gn
where {g1, . . . ,gn} is a complete set of orthogonal disjoint idempotents. If T is one
of the totally ordered summands of R, then giT and T gi are convex subspaces of
T . Thus, there exist unique i and j such that T = giT = T g j ⊆ giRg j and hence
T = giRg j is one-dimensional and T + = giR+g j. So there are n2 summands which
must be {giRg j : 1 ≤ i, j ≤ n}. For each j ≥ 2 the minimal right ideals g1R and
g jR are isomorphic and hence by Exercise 4.2.35 there exists a set of matrix units
{gi j : 1 ≤ i, j ≤ n} defined as follows. Take g1 j ∈ g1R+g j and g j1 ∈ g jR+g1 with
g1 jg j1 = g1 and g j1g1 j = g j. Let gii = gi and gi j = gi1g1 j. Then {gi j} is a set of
positive disjoint matrix units in R and R =⊕Kgi j ∼= (Kn,(K+)n). ut

The previous result verifies the first main conjecture for those lattice orders of
Kn in which F(Kn) has its maximum possible number of totally ordered summands.
This conjecture is also true provided, for each n≥ 2, Kn has no `-unital lattice order
in which F(Kn) has its minimum possible number of summands.

Theorem 6.4.14. The following statements are equivalent for the totally ordered
field K.

(a) For every n ≥ 1 each `-unital algebra lattice order of Kn is isomorphic to
the usual lattice order of Kn.

(b) For every n≥ 2 Kn has no `-unital algebra lattice order for which F(Kn) is
one-dimensional.

(c) For every n≥ 2 Kn has no `-unital algebra lattice order for which F(Kn) is
totally ordered.

Proof. It suffices to show that (b) implies (a) since, trivially, (a) implies (c) and (c)
implies (b). Suppose Kn is an `-algebra with 1 > 0 and F(Kn) is the direct sum of
m totally ordered division subalgebras. If m = 1, then F(Kn) is central by Exercise
6.2.3 and hence F(Kn) = K1; so m ≥ 2. Write 1 = g1 + · · ·+ gm where g1, . . . ,gm
are the identity elements of the totally ordered summands of F(Kn). For each i,
giKngi is a convex `-subalgebra of Kn which is isomorphic to the algebra Kt for
some 1 ≤ t ≤ n. Suppose t ≥ 2. Then, again, gi = h1 + · · ·+ hs where s ≥ 2 and
h1, . . . ,hs are disjoint idempotents in F(Kn)∩giKngi. This is impossible since the h j
are in a totally ordered summand of F(Kn). Thus, each giKngi is one-dimensional,
m = n by Exercise 4.1.34, and Kn is isomorphic to (Kn,(K+)n) by Theorem 6.4.13.

ut
Another necessary condition for an `-unital matrix `-algebra of size n to have the

usual order that turns out to also be sufficient is the positivity of a permutation matrix
corresponding to an n-cycle. In order to show this we first establish the following
technical result which will be used to produce a matrix `-subalgebra with the usual
order in a suitably conditioned `-algebra.

Theorem 6.4.15. Let R be a unital `-ring and let g, h ∈ G where G is a finite sub-
group of the group of units U (R+) of R+.
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(a) If x and y are comparable elements of R and y = gxh, then y = x.
(b) If A is a totally ordered subset of R and A and gAh are comparable subsets,

then A = gAh.
(c) Suppose A is a totally ordered convex subgroup of the additive group of R

and (A∩F(R))2 6= 0. Then gA = Ah if and only if gA = hA = Ag = Ah.
(d) Suppose A is a subset of R, g is of order n, and m and r ∈ N are minimal

with gmA = A and grA = Agr. Then m and r are divisors of n. If A is a totally
ordered convex subgroup of R and (A∩F(R))2 6= 0, then r is a divisor of m.

Proof. For (a), if x≤ y then y = gxh≤ gyh≤ ·· · ≤ gpyhp = y for some p; so gxh =
gyh and x = y. For (b), if gAh⊆ A and x ∈ A, then y = gxh ∈ A and x = y by (a); so
x = gxh ∈ gAh and A = gAh. For (c), suppose gA = Ah. Since gA and hA are totally
ordered convex subgroups of R they are comparable or disjoint by Exercise 2.4.10,
and if they are comparable they are equal by (b). Suppose gA∩ hA = 0 and take
0 < a ∈ A∩F(R) with a2 > 0. Then ga = ah by (a) and from ga∧ha = 0 we have
0 = ga∧aha = ga∧ga2 = g(a∧a2). So 0 = a∧a2 = a2∧a2 gives the contradiction
a2 = 0. Similarly, Ag = Ah. For (d), let H be the subgroup of G generated by g.
H acts on the subsets of R by left multiplication and the stabilizer of A under this
action, {gp : gpA = A}, is generated by gm with m a divisor of n. Similarly, H acts
on the subsets of R by conjugation and the stabilizer of A under this action, {gp :
gpA = Agp}, is generated by gr with r a divisor of n. If A is a totally ordered convex
subgroup of R with (A∩F(R))2 6= 0, then gm is in this latter stabilizer by (c). So n

m
is a divisor of n

r and hence r is a divisor of m. ut
Theorem 6.4.16. Let R be a unital `-algebra over the totally ordered field K and
let g be a unit of R+ which has finite order n ≥ 2. Suppose A is a totally ordered
convex subspace of R and let B = Σ n

i, j=1giAg j. Let m and r ∈ N be minimal with
gmA = A and grA = Agr. Assume that B∩F(R) contains a nonzero idempotent that
commutes with g. Then B contains an `-subalgebra of R which is isomorphic to the
matrix `-algebra (Kr,(K+)r). If r = 1, then B contains an `-subalgebra of R which
is isomorphic to the group `-algebra (K[W ],K+[W ]) where W is the cyclic group of
order m.

Proof. Let 0 < b ∈ B ∩ F(R) with b2 = b and bg = gb. From (b) of Theorem
6.4.15, giAg j and gpAgq are equal or disjoint and hence B is the direct sum of
the distinct giAg j. So b = a + c with 0 < a ∈ gpAgq ∩ F(R) for some p and q
and some c ∈ B∩F(R) with a∧ c = 0. Then a and c are disjoint idempotents and
since B = Σ n

i, j=1gi(gpAgq)g j we may assume a ∈ A. By (c) and (d) of Theorem
6.4.15, m is also minimal with A = Agm and r is a divisor of m while m is a di-
visor of n. Note that r is minimal such that gr is in the centralizer of A and m
is minimal such that multiplication by gm fixes the elements of A. If r = 1, then
B = A⊕Ag⊕·· ·⊕Agm−1; and ga = ag as well as (ga)m = gma = a by (a) of The-
orem 6.4.15. Let S = Ka⊕Kag⊕·· ·⊕Kagm−1 ⊆ B. Then a is the identity of S and
ag has order m in U (S+).

Suppose r ≥ 2. We first note that B = ⊕r
i=1 ⊕m

j=1 giAg j. To see this, suppose
giAg j = gpAgq with 1≤ i, p≤ r and 1≤ j, q≤ m. Then gi−pA = Agq− j and hence
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Agi−p = gi−pA = Agq− j = gq− jA by (c) of Theorem 6.4.15. Thus, i = p and j = q
and the sum is direct by (b) of Theorem 6.4.15. For 1≤ i, j ≤ n write i = pr + t and
j+ pr = qm+s with 1≤ t ≤ r and 1≤ s≤m. Then giAg j = gtgprAg j = gtAgqmgs =
gtAgs and this sum is all of B. Now, b = Σ r

i=1Σ m
j=1gibi jg j with bi j ∈A+ and {gibi jg j :

1 ≤ i ≤ r,1 ≤ j ≤ m} is a set of disjoint idempotents in F(R). From gb = bg we
have Σ r

i=1 ∑m
j=1 gi+1bi jg j = Σ r

i=1Σ m
j=1gibi jg j+1 and by comparing components we

have gi+1bi jg j = gi+1bi+1, j−1g j for 1 ≤ i ≤ r−1 and 1 ≤ j ≤ m where the second
subscript j is taken modulo m using the representatives 1,2, . . . ,m. So bi j = bi+1, j−1
for 1 ≤ i ≤ r− 1 and 1 ≤ j ≤ m and hence b1 j = bi, j−(i−1) = bi, j+1−i and bi j =
b1, j+i−1 for 1≤ i≤ r and 1≤ j ≤ m. If b1 j ≤ b1q with j 6= q, then b1 j = 0. For,

0≤ gb1 jg jgq = (gb1 jg j)2gq ≤ (gb1 jg j)(gb1qgq)g j = 0

and so b1 j = 0. Thus, since A is totally ordered there is a unique q with 1 ≤ q ≤ m
and b1q > 0, and

b =
r

∑
i=1

m

∑
j=1

gib1, j+i−1g j =
r

∑
i=1

m+i−1

∑
k=i

gib1kgk−i+1

=
m

∑
k=1

r

∑
i=1

gib1kgk+1−i =
r

∑
i=1

gib1qgq+1−i ∈
r⊕

i=1

giAgq+1−i.

So a∈A∩(⊕r
i=1giAgq+1−i) and A = giAgq+1−i for some i. By (c) of Theorem 6.4.15

A = gigq+1−iA = gq+1A. So q = m−1 and b = ∑r
i=1 gib1,m−1g−i. For 1≤ i, j≤ r let

hi j = gib1,m−1g− j. Since the terms in the preceding sum are orthogonal idempotents
b1,m−1 is an idempotent and b1,m−1gp− jb1,m−1 = 0 if 1 ≤ p 6= j ≤ r. Thus, {hi j :
1≤ i, j ≤ r} is a set of positive matrix units and ⊕r

i, j=1Khi j is an `-subalgebra of R
which is contained in B and is isomorphic to (Kr,(K+)r). ut

Recall from Exercise 2.4.11 that the basic subgroup of an `-group is the subgroup
generated by its basic elements and it is a direct sum of its maximal convex totally
ordered subgroups and each of these latter subgroups is a minimal polar.

Theorem 6.4.17. Let R be a unital `-algebra over the totally ordered field K and
suppose 1 is in the basic subgroup B of R. Then B is an `-subalgebra of R which is
isomorphic to (Kn,(K+)n) for some n if and only if there is a unit g in R+ of order
n such that the intersection of the centralizer of B with the multiplicative subgroup
generated by g is {1} and `(g−1;B)∩ r(g−1;B) is one-dimensional.

Proof. Suppose B ∼= (Kn,(K+)n). Since the case n = 1 is trivial we assume n ≥ 2.
Let g be the permutation matrix in B corresponding to an n-cycle. Specifically, let
g = ∑n−1

j=1 e j, j+1 + en1. If u ∈ `(g− 1;B)∩ r(g− 1;B), then all of the columns of u
are the same since ug j = u and all of the rows of u are the same since g ju = u. So
u ∈ K(Σi, jei j) and since Σi, jei, j ∈ `(g − 1;B) ∩ r(g − 1;B) the intersection is one-
dimensional. For the converse we again assume n ≥ 2. Let A be a maximal convex
totally ordered subgroup and put E = Σ n

i, j=1giAg j and t(a) = Σ n
i, j=1giag j for a ∈ A.
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Then gt(a) = t(a)g = t(a) and 1+g+ · · ·+gn−1 ∈ Kt(a) = `(g−1;B)∩ r(g−1;B)
if a 6= 0. So 1 ∈ E and hence B = E. For, if A1 is another maximal convex totally
ordered subgroup, then 1 ∈ E ∩Σ n

i, j=1giA1g j and hence A1 = giAg j ⊆ E for some i
and j. Now, giA 6= Agi for 1 ≤ i ≤ n− 1 since otherwise gi is in the centralizer of
B by (a) of Theorem 6.4.15. So B is the direct sum of the giAg j and B contains an
`-subalgebra isomorphic to (Kn,(K+)n) by Theorem 6.4.16. To show that B is this
subalgebra it suffices to verify that A is one-dimensional. But if a,b ∈ A with b 6= 0,
then t(a−αb) = t(a)−αt(b) = 0 for some α ∈ K and hence a = αb. ut

As an immediate consequence of Theorem 6.4.17 we have the following charac-
terization of the usual matrix `-algebra.

Theorem 6.4.18. Suppose K is a totally ordered field and Kn is an `-algebra over
K. Then Kn is isomorphic to (Kn,(K+)n) if and only if (Kn)+ contains a conjugate
of an n-cycle. ¤

Let K be a unital po-ring and let G be a group. For each p ∈ N the ring Kp[G]∼=
(K[G])p is a po-ring with the canonical K-basis {gei j : g ∈ G, 1 ≤ i, j ≤ p}. The
technique given in Theorems 6.4.16 and 6.4.17 permits a characterization of these
matrix group `-algebras when K is a totally ordered field and G is a finite cyclic
group.

Theorem 6.4.19. Let R be an `-unital finite dimensional `-algebra over the totally
ordered field K. There is an integer r in N and a finite cyclic group G such that R is
isomorphic to the `-algebra Kr[G] if and only if R is `-semiprime and U (R+) has
an element g of finite order such that `(g− 1;R)∩ r(g− 1;R) is one-dimensional.
In this case, G is of order q, g is of order rq, and r is the least positive integer for
which gr is a central element.

Proof. The existence of such a positive unit in Kr[G] is left for Exercise 18. For the
converse, as in the proof of Theorem 6.4.17, we have R = Σ n

i, j=1giAg j where A is
a maximal convex totally ordered subgroup of R and n is the order of g. Since the
case n = 1 is trivial we assume n ≥ 2. Let m and r be the integers that are given in
Theorem 6.4.16: gmA = A and grA = Agr. By (a) of Theorem 6.4.15 gma = a for
a ∈ A and hence gma = a for each a in R. So m = n and from Theorem 6.4.15 we
have that r is a divisor of n = rq and it is the smallest positive integer such that gr

lies in the center of R. Let 1 be the idempotent b in F(R) that is used in the proof
of Theorem 6.4.16. From that proof we have R =⊕r

i=1⊕n
j=1 giAg j, 1 = Σ r

i=1giag−i

for an idempotent a in A and agi− ja = 0 for 1≤ i 6= j ≤ r. From the last part of the
proof of Theorem 6.4.17 we see that A = Ka. Let hi j = g1−iag j−1 for 1≤ i≤ r and
1≤ j ≤ n. Then

R =⊕r
i=1⊕n

j=1 Kgiag j =⊕r
i=1⊕n

j=1 Khi j

since hi j = gr+1−iag j−1−r. Let x be a generator for the cyclic group G of order q
and let ψ : R −→ Kr[G] be the K-vector lattice isomorphism defined by ψ(hi j) =
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eisx` where j = `r + s with 1 ≤ s ≤ r and 0 ≤ ` < q. To see that ψ(hi jhi1 j1) =
ψ(hi j)ψ(hh1 j1) write j1 = `1r + s1 with 1≤ s1 ≤ r and 0≤ `1 < q. Then

hi jhi1 j1 = g1−iag j−1g1−i1ag j1−1 = g1−iag`r+s−i1ag j1−1

= g`r+1−iags−i1 ag j1−1.

If s 6= i1, then hi jhi1 j1 = 0 and also eisx`ei1s1x`1 = 0. Now, suppose that s = i1. Then
hi jhi1 j1 = g`r+1−iag j1−1 = g1−iag`r+ j1−1, and since `r + j1 = `2n + s2 with 0 ≤ `2
and 1≤ s2 ≤ n, hi jhi1 j1 = g1−iags2−1 = his2 . Now, s2 = `3r + s3 with 1≤ s3 ≤ r and
0≤ `3 < q; so ψ(hi jhi1 j1) = eis3x`3 . But s1 = s3 since s3 ≡ s2 ≡ j1 ≡ s1 (mod r), and

(`+ `1)r = `r + j1− s1 = `2n+ s2− s1 = `2n+ `3r.

So `+ `1 = `2q+ `3 and hence

ψ(hi j)ψ(hi1 j1) = eisx`ei1s1x`1 = eis1x`3 .

ut
Exercises.

1. Let K be a totally ordered ring with `(K) = r(K) = 0. For a cardinal n let Kn be
the ring of all column finite n×n matrices over K. Show that (K+)n is maximal
among those partial orders P of Kn with K+P+PK+ ⊆ P.

2. Let K be an `-unital `-ring with no positive idempotents except 0 and 1. Suppose
c ∈ GL(n,K) ∩ (Z(K) ∩ F(K))n. Show that c(K+)nc−1 = (K+)n iff c ∈ H, the
group defined prior to Theorem 6.4.12.

3. Let β ≥ 1 and let R = (K2,Pβ ) be the `-algebra given in Theorem 6.4.1 with K
a totally ordered field.

(a) Show that Pβ 6= Pt
β .

(b) Determine the automorphism group of R.
(c) Show that Pβ ⊆ Pγ iff β = γ .
(d) For 1 < β and β (1−β )−1 ≤ α ≤ (1−β )−1 let aα = e11 + e12 +αe21 and

Qα = aα(K+)2a−1
α . Show that Pβ ⊆ Qα and Qα 6= Qρ unless ρ = α .

(e) Suppose γ < 0 and 0 ≤ α ≤ −γ . Let aα,γ = e11 + αe12 + γe22 and Qα ,γ =
aα,γ(K+)2a−1

α ,γ . Show that P1 ⊆ Qα ,γ .
(f) If α > 0 and γ 6= δ show that Qα,γ 6= Qα,δ . (Use Exercise 2.)

4. Let K be an `-unital `-ring and let R = (K2,Pβ ) where Pβ is the lattice order
given after Theorem 6.4.1.

(a) Determine d`(R), dr(R), f`(R), and fr(R).
(b) Identify the elements in the partial orders P̀ (Pβ ) = {a ∈ R : aPβ ⊆ Pβ} and

Pr(Pβ ) = {a ∈ R : Pβ a⊆ Pβ}.
(c) Identify the elements in d`(R), dr(R), f `(R) and f r(R) where a ∈ d`(R) or

a ∈ f `(R) means left multiplication by a is a lattice homomorphism or is



604 6 Additional Topics

an f -homomorphism, respectively, and, similarly, a ∈ dr(R) or a ∈ f r(R)
means right multiplication by a has the corresponding property.

5. Let K be the totally ordered quotient field of the totally ordered commuta-
tive domain A. Suppose (A2,P) is an `-ring with A+P ⊆ P and let (K2,Pe)
be the `-algebra of quotients of (A2,P). Show that (K2,Pe) ∼= (K2,(K+)2) iff
F((A2,P)) 6= 0.

6. Let K be a po-unital po-ring and let Pβ be the partial order of K2 given after
Theorem 6.4.1.

(a) If a =
(

0 1
1 1

)
∈ K2 find c ∈ GL(2,K) such that P(a) = cP1c−1.

(b) If β > 1 and a =
(

1 1
β β −1

)
find c ∈ GL(2,K) with P(a) = cPβ c−1.

7. Suppose RM is a faithful R-module and R is a po-ring with R+ 6= 0. Let N be
maximal in {r(a;M) : 0 6= a∈R+}, let x∈M\N, and let M+ = `(N;R)+x. Show
that M+ 6= 0 and (M,M+) is a po-module over R.

8. Suppose K is a subfield of R and T is a nonzero subspace of Kn such that
(T,T +) is a totally ordered vector lattice over K. If (T +)−∩ (−T +)− = 0 show
that T is 1-dimensional. (Use Exercise 3.1.21 and Theorem 5.3.12.)

9. Let V be a po-vector space over the totally ordered division ring D and let X be
a subset of V + such that V + = D+X and D+Y ⊂ V + if Y ⊂ X . Show that each
element of X is a D-convex element of V .

10. Let K be a po-unital po-ring, let a = (αi j) ∈ (K+)n with at a unit of Kn and let
ai j be the matrices given in (6.4.34).

(a) If the ideal of K generated by its set of positive nilpotent elements is proper
show that at most n2−n of the ai j are nilpotent.

(b) Show that (Kn,P(a)) is a po-domain iff K is a po-domain and 0 is not an
entry of a.

(c) Suppose K is a totally ordered domain. Show that P(a) = (K+)n iff P(a)
contains a set of n2−n disjoint nilpotent elements.

11. Let K and a be as in Exercise 10 with K an `-ring and let R = (Kn,P(a)),
S = (Kn,(K+)n) and V = (Kn,(K+)n) where the elements of V are n×1 matri-
ces. By Vt we mean the K-`-module direct sum Kn whose elements are 1× n
matrices. Let α ∈ K. Verify each of the following.

(a) Σi, jβi jai j ∈ P̀ (P(a)) iff (βi j)at ∈ (K+)n (see Exercise 4).
(b) Σi, jβi jai j ∈ Pr(P(a)) iff at(βi j) ∈ (K+)n.
(c) αai j ∈ d`(R) iff b∧ c = 0 in S implies α(at)( j)b∧α(at)( j)c = 0 in Vt .
(d) αai j ∈ dr(R) iff b∧ c = 0 in S implies b(at)(i)α ∧ c(at)(i)α = 0 in V .
(e) αai j ∈ f `(R) iff b∧ c = 0 in S implies α(at)( j)b∧ c(i) = 0 in Vt .
(f) αai j ∈ f r(R) iff b∧ c = 0 in S implies b(at)(i)α ∧ c( j) = 0 in V .
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12. Continue with the notation in Exercise 11 but now assume K is an almost f -ring.
For 1≤ i, j ≤ n let Ai j = Bi j ∩Ci j where

Bi j = ``({αp j : p 6= i};K)∩{α ∈ K : |α|αi j ∈ f`(K)}

and
Ci j = r`({αiq : q 6= j};K)∩{α ∈ K : αi j|α | ∈ fr(K)}.

(a) Show that Bi j is a convex `-F̀ (K)-submodule of F̀ (K)K and Ci j is a convex
`-Fr(K)-submodule of KFr(K).

(b) Show that α ∈ Bi j iff αai j = ααi jeii and ααi j ∈ F̀ (K); and α ∈ Ci j iff
(aα)(i) = et

jαi jα and αi jα ∈ Fr(K).
(c) Show that F̀ (R) = Σi, jBi jai j, Fr(R) = Σi, jCi jai j and F(R) = Σi, jAi jai j.
(d) Let Bi = Σ jBi jαi j and Ai = Σ jAi jαi j. Show that F̀ (R) = ΣiBieii and F(R) =

ΣiAieii.
(e) If Ai j contains a regular element show that αi j is a unit and ai j = αi jeii.

13. Continue with the notation in Exercise 12 and suppose the nonzero entries of a
are regular elements of the almost f -ring K. Let

I = {i : for some j, αi j is the only nonzero entry in a( j)},
J = {i : a(i) has a single nonzero entry},

and Y = I∩J. Assume that αi j ∈ f (K) if a( j) = αi jei or a(i) = αi jet
j. Let m` = |I|,

mr = |J| and m = |Y |.
(a) Show that F̀ (R) = Σi∈I F̀ (K)eii, Fr(R) = Σi∈JFr(K)ai j where j is deter-

mined by a(i) = αi jet
j, and F(R) = Σi∈Y F(K)eii.

(b) Show that each summand Fr(K)ai j in Fr(R) is isomorphic to Fr(K).
(c) Show that 0 ≤ m ≤ m`, mr ≤ n; m 6= n− 1; m = n ⇔ m` = n ⇔ mr = n;

m` = n−1⇒mr = m+1 and 0≤m≤ n−2; mr = n−1⇒m` = m+1 and
0≤ m≤ n−2.

(d) Let m, m`, mr ∈Z+ satisfy the conditions in (c). Find an a∈ (Z+)n ⊆ (K+)n
whose associated triple of integers is m, m`, mr; compare with Exercises 4
and 5.

(e) Show that R is isomorphic to (Kn,(K+)n) if and only if F(R) is isomorphic
to the direct product of n copies of F(K).

14. Let a ∈ (K+)n with a, at ∈ GL(n,K) where K is a po-unital po-ring.

(a) Find an example of a symmetric matrix a ∈ K2 such that P(a) is not iso-
morphic to (K+)2.

(b) Suppose 1
2 ∈ K. Find an example of a nonsymmetric matrix a ∈ K3 such

that P(a) = P(at) and P(a) is not isomorphic to (K+)3.

(c) If a =
(

1 1
0 1

)
show that P(a) 6⊆ P(at) and P(at) 6⊆ P(a).



606 6 Additional Topics

(d) Let β ≥ 1 and let a =
(

1 1
β β −1

)
(see Exercise 6). Show that P(at)⊆ P(a)

iff β < 2 and (β −1)2 = 0.
(e) Let a be the matrix in (d). Show that P(a)⊆ P(at) iff P(a) = P(at), iff a is

symmetric.

15. Let K be a po-unital po-ring, 1 ≤ β ∈ K and a =
(

1 1
β β −1

)
. Show that

(K2,P(a)) is a right po-module over K iff β is in the centralizer of K+.

16. Let L be a subfield of R and let H(L) = L + Li + L j + Lk be the subring of the
real quaternionsH with coefficients from L. Show that for each n≥ 1, L(i)n and
H(L)n cannot be made into `-algebras over L. (Embed C in R2 andH in R4 and
use Theorem 6.4.9 and Exercise 4.2.21.)

17. Let R be an n2-dimensional unital K-archimedean `-algebra over the totally
ordered field K.

(a) If n is a prime show that R ∼= (Kn,(K+)n) if and only if U (R+) has an
element of order n which is not in the centralizer of F(R).

(b) Find an example of a 16-dimensional `-algebra that satisfies the condition
in (a) but which is not a matrix algebra.

18. Let K be a po-unital po-ring and let G be a cyclic group of order q. Show that
U ((Kr[G])+) has an element of order rq which satisfies the conditions given in
Theorem 6.4.19 when “one-dimensional” is replaced by “a free left and right
K-module of rank 1.”

19. Let R be an `-unital finite dimensional `-algebra over the totally ordered field
K. Show that R is isomorphic to a direct product of matrix `-algebras (K[G])r
for finite cyclic groups G if and only if R is `-semiprime and U (R+) has an
element g of finite order such that dimK [`(g−1;R)∩ r(g−1;R)] is equal to the
number of indecomposable factors of R.

20. Let α and β be elements of a unital ring K and suppose αβ −βα is a unit in K.

Show that u =
(

1 α
β αβ

)
is invertible in K2 but ut is a left and right zero divisor

of K2 and `(ut ;K2)∩ r(ut ;K2) 6= 0.

21. Let R be a po-unital po-ring. Suppose u ∈ R+ is a unit in R and RM is a uni-
tal R-module and a totally ordered abelian group. Show that R+M+ ⊆ M+ iff
R+uM+ ⊆M+, iff M+ = R+M+ = uM+, iff uR+M+ ⊆M+.

22. The po-ring T lacks right (respectively, left) d-modules if MT = 0 (respectively,
T M = 0) for each right (respectively, left) d-module M over T .

(a) Suppose T is unital and directed. Show that T lacks right d-modules iff
MT = 0 for each totally ordered right T -module M, iff 0 is the only unital
right d-module over T .



6.4 Lattice-ordered Matrix Algebras 607

(b) Let R be a directed po-unital po-ring and suppose u ∈ R+ is a unit of R.
Let S = (R,R+u) be the po-ring with S+ = R+u. Show that R lacks right
(respectively, left) d-modules iff S lacks right (respectively, left) d-modules.

(c) Let K be a directed po-unital po-ring and let S = (Kn,P(a)) with n ≥ 2.
Show that S lacks left and right d-modules.

(d) Suppose S = (Kn,P) is an `-algebra over the totally ordered field K with
n≥ 2 and assume K is archimedean when n≥ 3. Show that S lacks left and
right d-modules.

Notes. The investigation of lattice orders of matrix algebras was initiated by
Weinberg in [WE5] where (a) and (c) of Theorem 6.4.1 are given for the field of
rational numbers for (β > 1) and where it is conjectured that the usual lattice order
for the matrix ring Qn is the only lattice order with 1 > 0. The modifications of
Weinberg’s analysis needed to produce the lattice order P1 that appears in (b) of
Theorem 6.4.1 and to extend the theorem to all totally ordered fields comes from
Steinberg [ST20], and some further modifications are given in the current proof.
The affirmation of Weinberg’s conjecture under either the maximum or minimum
condition on F(Kn) given in Theorems 6.4.13 and 6.4.14 is also in Steinberg [ST20].
The proof of Weinberg’s conjecture for Kn when K is any totally ordered subfield of
the real numbers, given in Theorems 6.4.2, 6.4.3, 6.4.7, 6.4.8, and 6.4.9, is due to Ma
and Wojciechowski [MW3] while the extension to R-irreducible K-subalgebras of
Kn is due to Ma [M7]. Theorems 6.4.4, 6.4.5, and 6.4.6 on linear inequalities come
from Tucker [TU] and Goldman and Tucker [GT], respectively. Theorem 6.4.10 is
the classical theorem of Frobenius. The determination of all of the lattice orders of
the algebra Kn when K is a totally ordered subfield of R that is given in Theorems
6.4.11 and 6.4.12 is due to Ma and Wojciechowski [MW4]. The characterization of
the usual lattice order for Kn, K any totally ordered field, given in Theorems 6.4.15–
6.4.18 appears in Ma [M6], and its extension to a description of the canonically
lattice-ordered cyclic group algebra with coefficients in a matrix algebra comes from
Ma [M8]. The exercises either appear in or are generalizations of results that do
appear in the previously referenced papers: 1–5, Steinberg [ST20]; 6–15, Ma and
Wojciechowski [MW3] and [MW4]; 16, Ma [M7]; 17–18, Ma [M6]; and 19, Ma
[M8].
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1. Does the lower radical construction for `-rings stop at the first infinite ordinal
(Theorems 3.2.5 and 3.2.8)? This is the case for rings; see [ADS].

2. If P is a radical class of `-rings and A is an `-ideal of R, is P(A) an `-ideal of
R (Theorem 3.2.16 and Exercises 3.2.24 and 3.2.25)?

3. (Diem [DI]) Is an sp-`-prime `-ring an `-domain (Theorem 3.7.3)?

4. If R is a torsion-free `-prime `-algebra over the totally ordered domain C and
p(x)∈C[x]\C with p′(1) > 0 in C and p(a)≥ 0 for every a∈R, is R an `-domain
(Theorems 3.8.3 and 3.8.4)?

5. Does each f -algebra over a commutative directed po-unital po-ring C whose left
and right annihilator ideals vanish have a unique tight C-unital cover (Theorems
3.4.5, 3.4.11, and 3.4.12 and Exercises 3.4.16 and 3.4.18)?

6. Can an f -ring contain a principal `-idempotent `-ideal that is not generated by
an upperpotent element (Theorem 3.4.4 and Exercise 3.4.15)?

7. Is each C-unital cover of a C-unitable (totally ordered) f -algebra (totally or-
dered) tight (Theorem 3.4.10)?

8. Is an archimedean `-group a nonsingular module over its f -ring of
f -endomorphisms (Exercise 4.3.56)?

9. If an archimedean `-group is a finitely generated module over its ring of
f -endomorphisms, is it a cyclic module (Exercise 3.6.20)?

10. Is E(F(M)M) ⊆ F(M)D(X) (Exercises 4.3.54 and 4.3.56)? Here, M is an archime-
dean `-group, F(M) is its f -ring of f -endomorphisms, X is the Stone space of
its Boolean algebra of polars, and E(F(M)M) denotes its injective hull as an
F(M)-module.

11. Determine F(M) when M is a free abelian `-group (Theorems 4.5.6 and 4.5.10).
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12. If an f -algebra over C is V -`-unitable for a suitable variety of `-algebras V ,
must it be a C-unitable f -algebra (Theorem 3.4.2 and remarks after it)? For
example, V is the variety of almost f -algebras or the variety of sp-` algebras.

13. Conjecture: A regular sp-`-ring is an f -ring. (True if 1 ∈ R by Theorem 3.7.3).

14. Is a unital right self-injective f -ring necessarily left self-injective (Theorems
4.3.22 and 4.3.30)?

15. Is the maximal right quotient ring Q of the right nonsingular right f -ring R an
`-ring extension of R provided QR is an f -module extension of RR?

16. If an Ω - f -group G has the property that each of its values is normal in its cover
must each of its Ω -values be normal in its cover (Exercises 2.5.2, 2.5.18, and
2.5.19)? See [D] for descriptions of normal valued `-groups.

17. Develop the theory of f -modules over the f -ring C(X) where X is a topological
space and over the f -ring D(X) where X is a Stone space or just an extremally
disconnected space.

18. Is a free nonsingular R- f -module `-torsionless for R =C(X) or R = D(X) where
X is as in the previous problem (Theorems 4.5.6 and 4.5.10)?

19. Determine the nonsingular ℵα -injective right f -modules over a semiprime right
q f -ring (Theorem 4.4.6).

20. Does the category of unital right f -modules over a unital f -ring have nonzero
injectives (Theorem 4.4.1)? The answer is no when the ring is an irredundant
semiprime right q f -ring.

21. Conjecture: The polynomial ring D[x] over the totally ordered division ring
D does not have an sp-lattice order extending that of D in which deg x+ ≥ 3
(Theorem 6.1.19).

22. Identify which fields, necessarily real algebraic extensions of the rationals, are
O∗-fields (Theorems 6.2.13 and 6.2.14).

23. Is a free sp-`-algebra or a free f -algebra or a free `-algebra `-semiprime (The-
orems 6.3.18 and 6.3.19)? The same question for the free unital `-algebras.

24. Is a totally ordered division ring which satisfies the identity |[[x,y],z]| ≤ x2 ∧
y2∧ z2 a field (Theorem 6.3.9 and 6.3.11)?

25. Can a finite valued `-unital lattice-ordered division ring be embedded in a
lattice-ordered division algebra over the reals (Theorem 5.2.42)?

26. Which unital f -rings R have the property that each lattice order of a finite matrix
ring over R which extends the lattice order of R is isomorphic to the usual lattice
order (Theorems 6.4.1 and 6.4.9)?
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27. If K is a totally ordered division ring can each lattice order of the matrix ring
Kn for which K(Kn) and (Kn)K are vector lattices be obtained as in Theorem
6.4.11?
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[H] H. Hahn, Über die nichtarchimedean Grössensysteme, S.-B. Akad. Wiss. Wien. IIa, 116

(1907), 601–655.
[HR] A. W. Hager and L. C. Robertson, Representing and Ringifying a Riesz Space, Symposia

Mathematica, 21 (1977), 411–431.
[HA] P. R. Halmos, Lectures on Boolean Algebras, Springer-Verlag, New York, 1974.
[HAR] P. Hartmann, Ein Beweis des Henselschen Lemmas für maximal bewertete Körper, Arch.

Math., 37 (1981), 163–168.
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splitting property, 78

archimedean relative to
operators, 192, 198,
221, 232, 279, 390

polars and values, 112
arity, 21
artinian poset, 5
ascending chain condition

(a.c.c.), 5, 9
atom, 21, 50
atomic poset, 21

Boolean algebra, 21, 110
automorphism, 13
automorphism group, 36, 40,

51, 93, 231
Axiom of Choice, 3

Baer module, 283, 305
Baer’s Criterion, 283
balanced map, 409
balanced subset of a vector

space, 487
base, 62
basic element, 94
basic `-algebra, 512, 516
basis, 95, 231
basis for F, 315
Bezout domain, 42
bimodule, 129
Boolean algebra, 12

completion, 21, 304
dual space, 62, 65
generalized, 15, 304
of polars, 47

Boolean algebra of polars
canonically isomorphic, 53

Boolean homomorphism, 62
Boolean ring, 15
Boolean space, 62
boundary face, 591
bounded commutator, 561
bounded inversion, 136, 209,

342
bounded right p-convex

po-algebra, 340
bounded subset, 19
breadth, 438

C-algebra, 133
canonical basis, 133
canonical positive cone, 126
canonically isomorphic

Boolean algebras of
polars, 53

cardinal number
admissible, 379
regular, 368
singular, 368

cardinal sum, 108
cardinal sum of posets, 6
cartesian product, 3
categories without injectives,

365, 389
category, 6

duality, 64
morphism, 6
object, 6

Cauchy complete division
ring, 452

Cauchy completion, 452
embedding in, 474

Cauchy net, 452
C-embedded subspace, 66
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central closure, 526
central idempotent, 197, 270
central simple algebra, 324
centroid, 147, 162, 176
C -free f -module extension of

M, 391
C -free f -module over M, 391
chain, 2
choice function, 3
circle operation, 158, 174
C-`-algebra, 133
classical right quotient ring,

316, 319
c`-essential closure, 230
c`-essential monomorphism,

53, 70, 228
c`-essential subset, 53
clopen subset, 21, 62
closed element, 17
closed submodule, 176, 289
closure of a submodule, 176,

289
closure operator, 17, 26
coboundary map, 512
cofinal subset, 6

well-ordered, 9
cogenerateing class for a

torsion theory, 308
cohomology group, 512
cohomology of semigroups,

512
coinitial subset, 6
co-`-simple totally ordered

domain, 556
ultraproduct of, 573

common right multiple
property, 316

commutative diagram, 7
commutator, 220

bounded, 561
bounded of degree n, 561

commutator subgroup, 59
complement, 12
complement submodule, 282,

357
complementation, 116, 121
complemented lattice, 12
complete Boolean algebra, 15
complete function, 13, 16
complete homomorphism, 53,

223
complete lattice, 16
complete `-group, 55, 230
complete morphism, 42

completely closed
convex `-subgroup, 58, 86,

111
in a Hahn product, 120
subset, 58

completely distributive
lattice, 104

completely integrally closed
domain, 84

completely `-prime `-ideal,
156

completely prime ideal, 156
completely separated subsets,

67
completion, 224

Cauchy, 452
Dedekind, 20
MacNeille, 18
of a poset, 17
of an `-group, 56

components of an I-
torsion-free module,
298

components of an irredundant
ring, 296

conditionally complete poset,
19

congruence on an Ω -algebra,
23

conjugate, 59
constant, 22
constant operator, 22
contravariant functor, 7
convergent net, 452
convex hull, 591
convex `-subgroup, 45, 51

covering pair, 89
convex module, 340, 359
convex subset, 43

linearly, 591
coproduct, 8, 9, 52

of C- algebras, 555
coterminal subset, 6
coterminally ℵα -injecective

poset, 385
covariant functor, 7
covering pair of convex `

subgroups, 89
crossed product, 214, 442
C∗-embedded subspace, 67
C-supertesimal `-algebra, 236
C-unitable f -algebra, 179,

358
C-unital cover, 186, 228

tight, 186
unique, 186, 196

Dedekind completion, 20, 55,
223

degree function, 388
d-element, 128

super, 515
D-embedded subspace, 68
dense right ideal, 285
dense subring, 319
dense subset, 17
descending chain condition

(d.c.c.), 5
diagonal congruence, 23
dimension of a face, 591
direct limit, 9
direct product of algebras, 22
direct product of po-groups,

35
direct product of posets, 6
direct system, 9, 31
directed po-group, 34
directed set, 19
disjoint subset, 38
disjoint union, 8
distributive lattice, 11

representation of, 16
divisible group, 39
divisible hull, 39, 57
divisible module, 283
division `-ring, 480
d-map, 91
d-module, 128

none exist, 133, 606
domain, 127
dominant element, 189
dominated `-ideal, 189
D-ring, 476
d-ring, 128, 216
dual algebra, 62, 65
dual categories, 64
dual ideal, 105, 310
dual space of a Boolean

algebra, 62, 65
duo ring, 352

E-embedded subspace, 68
elementary symmetric

polynomials, 500
embedding, 13
enabling basis, 508
enabling subset, 480
epic morphism, 7
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epimorphism, 7
essential extension, 282

maximal, 283
essential module, 298, 370
essential subgroup, 39
essential submodule, 282
essentially closed submodule,

282
essentially positive po-ring,

334, 366
ηα -field, 427
ηα -set, 368, 387
even ordinal, 381, 387
eventually pseudo-convergent

sequence, 435
exact functor, 298
exact sequence, 298
extended centroid, 526
extended f -ring, 169
extended real-valued

functions, 68
extended V -`-ring, 169
extension of a valued division

ring, 433
extensionally closed class,

143, 162, 308

face, 591
boundary, 591

faithful module, 129
f̄ -element, 136, 485
f -bimodule, 129
F-Cauchy net, 454
F-closed submodule, 314
F-closure of a submodule,

314
F-convergent ξ -net, 454
F-dense submodule, 314
F-directed ring, 334
f -element, 128
f -embeddable, 480
f -homomorphism, 91
filter, 369
finite dimensional module,

298, 305
finite topology, 328
finite valued `-group, 227
finite valued Ω - f -group, 104
finite valued element, 103
finitely generated positive

cone, 590
finitely rooted, 108
F-injective hull, 315
F-injective module, 315

flat module, 301
f -map, 91
f -module, 128

ℵα -injective f -module,
370

C -representable, 392
self-splitting, 384
strong, 337

formal triangular matrix ring,
191

formally real ring, 565
formally R-real algebra, 565
formation, 385

splitting element, 385
F+-closed submodule, 335
F+-closure of a submodule,

335
F+-dense submodule, 335
F+-semiclosed module, 336
f -pops, 204
free A (Ω)-algebra, 25
free C -algebra, 23, 27, 30
free abelian `-group over M,

409
free C -representable f -

module extension of M,
392

free C -representable
f -module over M, 392

free f -module extension of
M, 391

free f -module over M, 391
free group, 94, 209, 219
free `-group extension of M,

416
free product, 52
free product of groups, 219
free product of Ω -algebras,

31
freely generated lattice of

convex `-Ω -subgroups,
105

f -ring, 128
archimedean, 220
completion, 363
Dedekind completion, 223
has localizations, 344, 361
infinitesimal, 180
irredundant, 398
laterally complete, 354
`-simple, 171
maximal `-ideal, 170
pseudo-regular, 187
q f -ring, 358

quasi-Frobenius, 351
right self-injective, 347
topological, 403
unique totally ordered

nonunital right
self-injective ring, 347

unitable, 179
F-semiclosed po-module, 143
F-strong order unit, 167
full subcategory, 7
fully invariant congruence, 26
fundamental 2-cocycle, 513

Galois connection, 26, 43,
138, 213, 307, 328

generalized Boolean algebra,
15, 304

completion, 21, 304
generalized `-nil radical, 155
generating class for a torsion

theory, 308
generic algebra, 30
Goldie dimension, 305
Goldie topology, 330, 356
Goldie torsion theory, 312
greatest element, 2
greatest lower bound, 2
group of coboundaries, 512
group of divisibility, 40, 50

Hahn embedding theorem,
117, 450, 478

Hahn product, 36, 114, 200,
362

self-splitting, 384
heart, 166
henselian field, 443
hereditary class, 26, 143
hereditary torsion theory, 309
Hilbert field, 567
Hölder’s theorem, 60, 83
homomorphic image, 22
homomorphically closed

class, 26, 143
homomorphism, 28
hyper-archimedean `-group,

227

ideal of a poset, 10
idealizer, 182
identity for Ω -algebras, 26
i f -module, 337
i-hereditary class, 143



626 Index

immediate extension, 439,
472

indecomposable element, 113
index of nilpotency, 148
infimum, 2
infinite d-ring, 223

completion, 224
infinitely distributive lattice,

14, 37
infinitely larger than, 207
infinitely smaller than, 192
infinitesimal f -ring, 180, 195,

198, 358
infinitesimal pops, 243
initial segment

of a well-ordered set, 4
of an Ω -row, 24

injective hull, 285
injective module, 282
injective object, 364
integrally closed po-group, 55
interval topology, 82, 451
inverse limit, 9
inverse system, 9
invertible ideal, 346
i-radical of a vector lattice,

167
irreducible `-ideal, 127
irreducible subset of a matrix

algebra, 588
irredundant f -ring, 358, 362
irredundant ring, 295, 370

components, 296
irredundant subdirect product,

110, 294
isomorphically closed class,

26
isomorphism, 7, 13
isotone function, 13
isotone valuation, 433
I-torsion-free module, 296,

303, 394
components, 298

I-tuple, 3

Johnson radical, 157, 170,
174

kernel, 23
k-nice p-algebraic set, 252
k-nice polynomial, 252

`-algebra, 133

laterally complete, 40, 76, 84,
120, 230, 354

laterally completely closed,
106, 113

lattice, 10
completely distributive,

104
medians, 16
relatively complemented,

15
lattice homomorphism, 13, 15
lattice ideal, 15

prime, 15
lattice order, 34
lattice-ordered ring, 126
lattice-ordered subfield of R,

504
lattice-ordered group, 34
`-balanced map, 411
`-domain, 127

archimedean, 485
least element, 2
least upper bound, 2
left annihilator, 129
left dense subset of an

`-group, 57
left division algorithm, 382
left Euclidean domain, 382,

388
left exact functor, 298
left exact radical, 309
left f -ring, 216
left identity modulo a right

ideal, 158
left i-hereditary class, 143
left Johnson radical, 162
left `-annihilator, 129
left maximal ring, 352
left π-regular ring, 276
left po-division algorithm,

382
left po-Euclidean domain,

382, 396
left σ -derivation, 382
left superunit, 173
length of an Ω -row, 24
`-essential `-ideal, 163
lexicographic extension, 100
lexicographical order, 6, 127
`-faithful `-module, 129
`-field, 480
`-group, 34

c`-essentially closed, 389
complete, 55, 230

hyper-archimedean, 95
laterally complete, 40
left dense subset, 57
`-simple, 60
pairwise almost-ℵα -

complete, 367
projectable, 384
representable, 90, 94, 209
right dense subset, 57
σ -complete, 55
subdirect product, 50
trunk, 101

`-homomorphism, 44
`-ideal, 127

completely `-prime, 156
dominated, 189
irreducible, 127
`-idempotent, 181, 196
`-prime, 150
maximal, 177
right `-primitive, 158, 170

`-idempotent `-ring, 148
Lie ideal, 561
lifted idempotent, 190
linear topological module,

327
linearly convex subset, 591
``-module, 141
`-locally nilpotent `-ring, 154
`-module, 128

`-faithful, 129
always an f-module, 132

local f -ring, 359
local ring, 137
locally dominated f -algebra,

189
locally finite algebra, 513
locally finite group, 211
locally finite semigroup, 513
locally nilpotent ring, 154
lower bound, 2
lower class, 145
lower `-nil radical, 147
lower radical construction,

147
lowerpotent element, 180
`-prime `-ideal, 150
`-prime `-ring, 150
`-primitive f -ring, 198, 390
`-reduced `-ring, 155, 232
`-regular `-ring, 142
`-ring, 126

`-idempotent, 148
`-prime, 150
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`-reduced, 155
`-semiprime, 149
`-simple, 127
`-unital, 126
right `-primitive, 158
superunital, 171

`-semiprime `-ring, 149
`-simple f -ring, 171, 177

ultraproduct of, 177
`-simple `-group, 60
`-simple `-ring, 127, 178
`-subgroup, 43

convex, 45
`-subgroup of positive units,

209
`-submodule, 128
`-tensor product, 409
`-torsionless `-module, 396,

399
`-T -ring, 133
`-unital `-ring, 126

MacNeille completion, 18, 51
matrix closed class, 164
maximal chain, 3
maximal element, 2
maximal essential extension,

283
maximal right quotient ring,

287
maximally complete valued

field, 439
maximum condition, 2
meet closed subset, 89
minimal element, 2
minimal injective extension,

283
minimal `-prime `-ideal, 156,

163
minimal module partial order,

590
minimal po-module, 590
minimal prime subgroup, 94
minimum condition, 2
modified standard sequence,

424
modular lattice, 11, 14
modular right ideal, 158
module of quotients, 176, 313
monic morphism, 7
monoid, 55
monomorphism, 7
monomorphism of posets, 13
mopops, 206

morphism, 6
of an Ω -algebra, 22

Nakayama’s Lemma, 348
narrow poset, 202
n-ary operator, 21
natural equivalence, 7
natural mapping, 23
natural transformation, 7
natural valuation, 433, 472
negative part, 37
negative pops, 206
net, 452

Cauchy, 452
convergent, 452

n-fier, 194
nice polynomial, 251

y-special, 263, 276
nil, 149
noetherian poset, 5
nonsingular module, 288
normal valuation ring, 432
normal value, 109
normalizer, 109
normal valued `-group, 109
normal-valued `-group, 107
nowhere dense subset, 61
n-right `-QR element, 158
n-transitive subring, 319

odd ordinal, 381, 387
O-determiner, 469
Ω -algebra, 22

satisfies an identity, 26
Ω -d-group, 91
Ω - f -group, 91

Ω -trunk, 101
Ω -group, 91

representable, 92
ρ-semisimple, 112

Ω -homomorphism, 92
Ω -po-group, 113
Ω -regular Ω -subgroup, 97
Ω -row, 24
Ω -row algebra, 23
Ω -special element, 102
Ω -special Ω -subgroup, 103
Ω -subgroup, 91
Ω -trunk, 101
Ω -value, 97
Ω -value set, 97
Ω -word, 24
Ω -word algebra, 24
1-topology, 315

operator, 21
operator domain, 21
operators, 53
order dense subset, 17
order isomorphic, 13
ordinal product, 6, 14
ordinal sum, 14
ordinal sum of posets, 6
Öre domain, 302
orthognal idempotents, 179
O∗-field, 548
O∗-module, 550, 552
O∗-ring, 546, 552

pairwise almost-ℵα -complete
`-group, 367

pairwise disjoint subsets, 367
p-algebraic n-tuple, 252
p-algebraic set, 252

bounded degree, 252
partial complementation, 116,

121
partial order, 1, 34
partially ordered group, 34
partially ordered ring, 126
partially ordered semigroup,

55
partially ordered set, 1

rooted, 97
partition

admissible, 537
partition of an Ω -row, 24
π-regular ring, 276
plenary subset, 106, 112
P-`-ring, 143
p-mapping into a Hahn

product, 122
po-algebra, 133
po-balanced map, 409
po-bimodule, 129
po-domain, 127
po-group, 34

archimedean, 55
direct sum, 36, 48
integrally closed, 55, 84
n-semiclosed, 42
rooted, 213

po-homomorphism, 44
polar, 45, 52
polynomial ring

sp-`-ring, 529
po-module, 127

R+-semiclosed, 386
ℵα -injective, 386
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minimal, 590
strong, 128

pops, 201
ideal, 242
infinitesimal, 243
right ideal, 242
weakly positive, 517

po-reduced po-ring, 155
po-representation, 127
po-ring, 126

essentially positive, 334
lacks d-modules, 133, 606

poset, 1
ℵα -free, 380
ℵα -injective, 385

positive cone, 34
finitely generated, 590

positive element, 34
positive element in a pops,

517
positive n-cochain, 512
positive part, 37
positive pops, 206
positive semidefinite (P.S.D.)

form, 553
positive semidefinite (P.S.D.)

rational function, 566
positive set of right ideals,

334
positive topology, 334, 356
po-tensor product, 409
po-T -ring, 133
po-unital po-ring, 126
power series crossed product,

215
power set, 3
p-positive set, 252
P-radical, 144
predecessor, 14
preradical, 313
pretopology, 313
pretorsion class, 313
pretorsion-free class, 313
prime ideal (lattice), 15
prime subgroup, 88, 93
primitive idempotent, 330
principle of duality, 11
product, 8, 9
productive class, 26, 143
projectable `-group, 384

archimedean, 80, 231
projections, 3
projective algebra, 29
proper congruence, 23

property (d`), 215
property (dr), 215
Prüfer ring, 346
Prüfer set, 345
P-semisimple `-ring, 143
pseudo Ω - f -group, 107
pseudo-convergent sequence,

434
algebraic, 438
breadth, 438
eventually, 435
pseudo-limit, 438
transcendental, 438

pseudo-regular f -ring, 184,
187, 196, 384

qF f -module, 337
qF f -ring, 337, 362
q f -ring, 337
quasi-Frobenius ring, 300,

351
quasi-injective module, 290,

305, 329
quasi-injective object, 387
quaternions, 594
quotient algebra, 23
quotient ring, 346
quotient topology, 489

radical, 143
radical class, 143
radical for a torsion theory,

309
radical pair, 145
R-algebra `-module, 133
R-algebra module, 133
R-algebra po-module, 133
real closed field, 421, 443
real closure, 421
reduced module, 394
reduced ring, 155
refinement of direct

decompositions, 49
regular cardinal, 368
regular element, 129
regular open subset, 21
regular ring, 289

strongly, 292
regular subgroup, 89, 93
relatively complemented

lattice, 15
R-embedding, 287
representable `-group, 90,

209

residue class field, 472
Riesz decomposition

property, 38, 54
Riesz group, 42
right annihilator, 129
right convex f -ring, 359
right convex po-ring, 340
right d-element, 128
right dense subset of an

`-group, 57
right d-ring, 128, 216, 277
right duo ring, 352, 362
right exact functor, 298
right f -element, 128
right f -pops, 204
right f -ring, 128
right Goldie ring, 322
right k-nice polynomial, 276
right `-annihilator, 129
right `-ideal, 127

maximal modular, 170
po-modular, 165
right po-`-QR, 165

right linear topological ring,
327

right `-primitive f -ring, 174
right `-primitive `-ideal, 158
right `-primitive `-ring, 158,

178
right `-QR element, 174
right `-QR `-ring, 158
right `-QR right `-ideal, 158,

171
right `-quasi-regular (`-QR),

158
right n-convex po-ring, 340
right nice p-algebraic set, 252
right nice polynomial, 252
right O-group, 40, 41
right open half-plane, 398
right order, 40, 93
right Öre domain, 302
right Öre ring, 319
right Öre set, 316
right p-convex po-algebra,

340
bounded, 340

right po-group, 34
right po-module, 127
right pre-self-injective ring,

353, 362
right q f -ring, 362, 370
right quasi-regular, 158
right quotient ring, 285
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right regular element, 129
right reversible subset, 316
right self-injective ring, 290,

305, 362
unique totally ordered

nonunital example, 347
right σ -derivation, 382
right singular ideal, 288
right superunit, 171, 242
right topology, 309
right valuation ring, 343
root, 101
rooted po-group, 211–213
rooted poset, 97

trunk, 101
row finite matrix, 164
R+-semiclosed po-module,

386

saturated mutiplicatively
closed subset, 316

segment of an Ω -row, 24
self-splitting f -module, 371,

384
self-splitting `-group, 367
semiclosed po-group, 37, 40
semigroup ring, 41
semiperfect ring, 276
semisimple class, 145
semisimple module, 121
semisimple ring, 320
separable topological space,

402
short exact sequence, 298

splits, 329
sign-changing polynomial,

420
singular cardinal, 368
singular module, 288
singular submodule, 288
skew polynomial ring, 382,

389
solid element, 466
sp-po-ring, 355
special class of `-rings, 153
special element, 102
special radical, 152
special subgroup, 103
special valued Ω - f -group,

106
special valued element, 106
spectral radius, 492
split short exact sequence,

329

splitting element, 367, 383
splitting property of an

archimedean `-group,
78

sp-`-ring, 131
polynomial ring, 529

sp-pops, 238
sp-po-ring, 131, 335
sp-ring, 131, 232
sp∗-`∗-ring, 546, 552
sp-unitable `-ring, 235
sp-unitable pops, 242
square-archimedean

`-algebra, 245
standard sequence, 423
Stone space, 66, 226, 487
strict Ω -po-group, 113
strict operator, 113
strong `-algebra, 185
strong order unit, 167
strong O∗-module, 550
strong po-module, 128

f -module, 142, 229, 337
`-module, 227

strongly irreducible element,
534

strongly positive element, 517
strongly regular ring, 292,

301, 303
strongly right positive

element, 517
Sturm sequence, 423
subalgebra, 22
subalgebra generated by X,

22
subbase, 62
subcategory, 7

full, 7
subdirect product, 26, 29

irredundant, 294
subdirectly irreducible

Ω -algebra, 29
sublattice, 10
subpops, 207, 216
subsemiring, 126
successor, 14, 388
sums of squares, 431
super d-algebra, 515
super d-element, 515
super left d-algebra, 515
super left d-element, 514
supernilpotent radical, 153
superunit, 171, 242
superunital `-ring, 171

support, 41, 75, 114
supporting subset, 480
supremum, 2
symmetric subset of a vector

space, 487

tail of an Ω -row, 24
tensor algebra, 554
topological complement, 489
topological direct sum, 489
topological space

algebra, 490
Boolean space, 62
caliber ℵ1, 402
compact, 61
completely regular, 84
dense subset, 61
dual algebra, 62
extremally disconncted, 66
f -ring, 403
`-group, 36
module, 327
of the first category, 61
ring, 327, 451
separable, 402
Stone space, 66
vector space, 487

topology, 309
positive, 334

torsion class, 308
torsion module, 308
torsion submodule, 176
torsion theory, 308

associated radical, 309
cogenerating class, 308
generating class, 308
Goldie, 312
hereditary, 309
topology, 309

torsion-free class, 308
torsion-free module, 176,

177, 308
torsionless module, 396
totally ordered group, 34
totally ordered set, 2
transcendental pseudo-

convergent sequence,
438, 472

transfinitely left Euclidean
domain, 388

T -regular `-ring, 142
triangular matrix ring, 191
T -ring, 133
trivial congruence, 23
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trivial subalgebra, 22
trivially ordered, 6
t-torsion-free module, 393
2-cocycle, 512
two-sided quotient ring, 292

maximal, 292, 300

u-injective module, 283
ultrafilter, 369
ultraproduct of f -rings, 177,

430, 573
uniform module, 298, 305,

401
unitable f -ring, 179

archimedean, 229
unital cover, 186, 363
unital module, 126
unital ring, 126
upper bound, 2
upper class, 145
upper `-nil radical, 154
upper radical construction,

146
upperpotent element, 180

valence of an Ω -row, 24

valuation, 42, 432
extension, 433
group of units, 433
isotone, 433
natural, 433
non-trivial, 432
residue class ring, 433
trivial, 432
value group, 433

valuation domain, 40
valuation ring

normal, 432
value, 97
value preserving isomor-

phism, 434
value set, 97, 207, 387
value-preserving homomor-

phism, 120
valued division ring, 432
valued field, 434

henselian, 443
maximally complete, 439

variety, 26, 28
variety of V -`-unitable

`-algebras, 180

vector lattice, 119
V -`-unitable `-algebra, 180
von Neumann regular ring,

289

weak Ω -d-group, 91
weak Ω - f -group, 91
weak order unit, 85
weak right Goldie ring, 322
weakly p-positive set, 252
weakly positive pops, 517,

533
well-ordered set, 2
W -set, 202

ξ -Cauchy complete division
ring, 452

ξ -net, 452
X-Prüfer ring, 346
X-submodule, 345

Zariski topology, 63
zero ring, 148
Zorn’s Lemma, 3
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