
A Scalable Grid and Service-Oriented
Middleware for Distributed Heterogeneous
Data and System Integration
in Context-Awareness-Oriented Domains

David Parlanti, Federica Paganelli, Dino Giuli, and Agostino Longo

1 Introduction

Context awareness deals with the capability of applications and services to react to
specific events characterizing a target situation. The picture of such situation may
be built by means of context information provided by sensors, i.e., physical and/or
virtual sensors. Applications may exploit such situation awareness to react conse-
quently, for instance, by enforcing adaptation actions at a logical layer (e.g., by
sending notifications to interested users) and/or at a physical layer (e.g., by recon-
figuring the physical environment by means of actuators).

This vision implies the integration of the physical world with the digital one and
therefore requires proper instruments easing the integration of heterogeneous-
embedded devices in ubiquitous computing environment (local scale) with
enterprise-level services and business processes (global scale).

At present, we are investigating the adoption of an SOA (Service Oriented
Architecture) approach for easing the integration of heterogeneous resources (e.g.,
sensors, actuators, enterprise information systems) for the development of context-
aware applications in enterprise domains. We take as reference the domains of
maritime surveillance and dangerous goods monitoring, where situation awareness
pictures integrating local- and global-scale information resources are needed to de-
velop added-value decision-support enterprise applications.

The SOA approach interprets distributed systems mainly as a problem of ser-
vice specification, implementation, and composition. A “service” may be defined
as a computational entity endowed with an open and addressable specification of

D. Parlanti (�) and F. Paganelli
National Interuniversity Consortium for Telecommunications (CNIT), Italy
e-mail: david.parlanti@gmail.com; federica.paganelli@unifi.it

D. Giuli
Department of Electronics and Telecommunications, University of Florence, Italy
e-mail: dino.giuli@unifi.it

A. Longo
SELEX Sistemi Integrati SpA, Rome, Italy
e-mail: alongo@selex-si.com

D. Giusto et al. (eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital
Communications, DOI 10.1007/978-1-4419-1674-7 11,
c� Springer Science+Business Media, LLC 2010

109

david.parlanti@gmail.com
federica.paganelli@unifi.it
dino.giuli@unifi.it
alongo@selex-si.com


110 D. Parlanti et al.

its expected behavior. We thus extend the definition of the “computation entity”
to include software components encapsulating sensors/actuators functionalities.
Integration of such real-world devices and business systems usually requires de-
coupling between service consumers and providers, thus demanding support also
for one-way, notification response and solicit response interaction patterns. In
order to address such invocation requirements, SOA’s implementation solutions
should be correlated also with “message-oriented” approaches. Message orienta-
tion gives new insights on service provision/consumption as well as on the overall
SOA architectural style. More specifically, services can now be simply defined as
“message-processors,” while a service-oriented system can be consequently inter-
preted as a “network of connected message processors.” Under this perspective, we
present the SAI – Service Application Integration – system as a working example
of a message-oriented SOA solution empowered with GRID scalability for data and
system integration.

2 Related Work

This paragraph presents a few relevant works proposing middleware solutions for
integrating sensor and actuator networks with web and enterprise applications.

Karnouskos et al. [4] propose a web-service device-to-business integration in-
frastructure by applying SOA principles to networked embedded devices. The
solution is based on a web service approach, where each device offers its func-
tionality as a set of services. Devices are attached to the middleware directly as
web services using DPWS (via DPWS-enabled controllers) or by means of legacy
system controllers.

The Global Sensor Network (GSN) middleware [1] is a solution aiming at provid-
ing a uniform interface for easing the integration and deployment of heterogeneous
sensor networks. It is based on the abstraction of “virtual sensor,” representing
real sensors or software components aggregating different sensors in terms of in-
put streams and one output stream. GSN adopts a container-based architecture. The
container provides services for virtual sensors management, including remote ac-
cess, security, persistence, and concurrency.

In [6], RESTful principles have been applied to elaborate a logical architecture
of a middleware for enabling plug and play access to heterogeneous sensor and
actuator networks, including addressing, discovery, and controlling mechanisms.

A proposal for a Service-Oriented Device Architecture (SODA) is presented
in [3]. The objective of SODA is to integrate a wide range of physical devices into
distributed enterprise systems, by providing the capabilities for accessing sensors
and actuators as business services. A SODA implementation includes three main
components: the device adapter, which translates proprietary and industry-based
standard interfaces of devices into the device service abstract model; the bus adapter
which maps the device service abstract model to the enterprise-level SOA binding
mechanism; a device service registry providing discovery capabilities.



A Scalable Grid and Service-Oriented Middleware 111

3 SAI Middleware Overview

The SAI middleware is targeted at enabling information search and data mash-up in
complex, distributed enterprise environments characterized by strong technological
heterogeneity. By “heterogeneity,” we mean here differences in data-representation
formats, data schema structure and semantics, communication protocols, security re-
quirements and security-credentials management, and processing capabilities. The
goal is that of making possible for clients to search data without any knowledge
about its physical location in the distributed environment, while not worrying ei-
ther about the consistency of data, even in case of failure of system components
or of connected legacy information systems, nor about how the system internally
distributes computing power or load-balances service requests.

3.1 SAI Architecture

The SAI architecture accounts for its primary system-level objectives through the
adoption of solid patterns in distributed systems design, including: the “Message
Broker” pattern as regards interaction among the system’s heterogeneous compo-
nents; the “Adaptor” pattern for enabling uniform access to the orchestrated legacy
systems; the “Master/Worker” pattern for enabling distribution and load-balancing
of the system’s computational workload. A snapshot of the currently implemented
SAI architecture is shown in Fig. 1. The logical structure of the architecture and
the functionalities provided by each component will be presented in the following
subsections.

Fig. 1 SAI middleware architecture



112 D. Parlanti et al.

3.1.1 Front-End Portal

The Front-End Portal infrastructure enables the uniform development of SAI
front-end applications. The Portal Framework is a container establishing require-
ments for valid front-end “application modules,” which can be composed at run
time and delivered as a fully integrated web application and accessed via Desktop
PC or mobile phone. At present, the Portal Framework component is powered by
Liferay, an open-source implementation of the Portlet specification.

3.1.2 Grid Infrastructure

It is well-known that context aware applications usually need to process large
amounts of data and that such processing needs parallelization to improve overall
system performance, resilience and throughput. Accordingly, the SAI Grid Infras-
tructure provides workload distribution to applications and system services. SAI’s
Grid has been developed from scratch in the Java Standard Edition for achieving full
control and configurability of load splitting over system nodes. Our implementation
strictly follows the Master/Worker design pattern: at its heart, the grid simply con-
sists of three entities: a master (that is the “client” of the grid), a channel for enabling
master to worker communication and a set of one or more worker instances. Accord-
ing to such pattern, the master starts parallelization by defining a set of “jobs” which
are then distributed (or “mapped”) to worker processes, then waiting for scheduled
task to be completed. The final step then implies the master to organize (or to “re-
duce”) collected results into a “single” meaningful unit which shall be coherent with
the semantics of the distributed work.

The SAI grid also provides capabilities for intelligent and configurable routing
of jobs to workers and dynamic jobs reassignment in case of workers failures. To
provide such capabilities, the “PipesManager” component associates each worker
instance to a unique “pipe” composed of a “pending jobs” and of a “completed
jobs” queue. Being each worker linked to a unique pipe, jobs contention is min-
imized, while masters – which act as the clients of the grid infrastructure – can
exploit pipes information to enable configurable jobs-routing algorithms. Moreover,
the PipesManager monitors the “liveliness” of each enabled worker and reacts to
possible failures by reassigning pending jobs on “live” executors: of course, jobs
dynamic reassignment is transparent both to masters and to live workers.

3.1.3 Basic Back-End Services

This group of components contains services providing cross-cutting capabilities
supporting the functioning of the whole SAI infrastructure.

The Security Manager is the SAI basic back-end service providing mechanisms
for validating the identity of system’s principals, for granting or denying authoriza-
tion for actions performed on SAI-managed resources, for guaranteeing the integrity
and confidentiality of messages, and for supporting the evidence of actions per-
formed by system’s principals.



A Scalable Grid and Service-Oriented Middleware 113

The “Adaptors Registry” component manages the “functional profile” of each
information system which is connected to the SAI system by means of a dedicated
adaptor. A functional profile describes the message-processing capabilities of an
adaptor through ordered input-output pairs of XML message-type identifiers and
“meta properties” (unordered name-value pairs) describing the nonfunctional capa-
bilities of the mediated legacy system. The Adaptors Registry enables querying of
registered functional profiles by authorized clients and monitors the operational sta-
tus of activated adaptors to keep up-to-date the profiles registry status. It also listens
for notifications concerning variations in the adaptors functional profiles.

The Transaction Manager component is charged of coordinating global (dis-
tributed) transactions in the SAI distributed environment to ensure consistency of
data access and manipulation operations. At present, the Transaction Manager com-
ponent is powered by JOTM, which is an open and standalone implementation of
the JTA (Java Transaction API) specification.

3.1.4 Message Bus

The Message Bus is the infrastructure providing application-level messaging capa-
bilities to the SAI system components. The SAI interfaces are completely decoupled
from any concrete messaging broker implementation, in order to enable maximum
flexibility and scalability of the middleware. Indeed, messaging capabilities can
be provided either by a full-fledged Message Oriented Middleware (MOM) or by
lighter solutions based on IP multicast, such as the JGroups library. At present, the
Message Bus component is powered by ActiveMQ, an open-source implementation
of the Java Message Service (JMS) specification.

3.1.5 The Adaptors Framework

The SAI Adaptors Framework enables the interfacing of the SAI with heterogeneous
information systems. Interfacing happens adaptation of the proprietary data format
supported by legacy systems to the shared XML data model possibly used within an
SAI-enabled application domain.

An SAI adaptor should be considered as a lightweight and configurable XML
processor. Indeed, each Adaptor is a microcontainer for a pluggable service imple-
mentation. An adaptor-managed service embeds the integration logic with an exter-
nal information source (e.g., an embedded device or an enterprise-level system). In
this regard, the service is a client of the legacy system, and it is charged of pars-
ing received requests into the proprietary “dialect” spoken by the legacy system
over the supported network communication protocol. Each service can be com-
pletely described through its “functional profile.” The service functional profile
describes the service’s processing capabilities by means of ordered input-output
pairs of XML message types. The microcontainer manages the life cycle of the
service, while being capable to filter both incoming and outgoing XML documents



114 D. Parlanti et al.

through inbound and outbound interceptor chains. By exploiting such “interceptor
pattern,” it is possible to augment the microcontainer capabilities at runtime, simply
by injecting additional interceptors in the inbound/outbound chains through config-
uration. As an example, interceptors have been implemented to enable compression
of network streams, or to provide support for WS-� standards in order to free ser-
vice implementations from unnecessary Web Services plumbing. The Adaptor is
not bound to any specific XML envelope or format (e.g., SOAP), while support
for XML standards can be configured at runtime through dedicated inbound and
outbound interceptors. Special security interceptors can also be developed to con-
dition request processing or messages dispatching to authentication/authorization
policies of legacy security systems. Finally, an Adaptor can be configured to listen
for request messages on a variety of network transport protocols and can support
synchronous request/response, asynchronous one-way, asynchronous notification-
response, solicit-response messaging patterns.

3.2 System Dependability

System dependability can be defined as “the ability to avoid service failures that are
more frequent and more severe than is acceptable” [2]. At present, the SAI frame-
work achieves satisfactory dependability levels by means of its Grid Infrastructure
(which natively handles load-balancing and jobs-failover, as shown in the previous
section), by the clustering of Basic Back-End Services and Adaptors and by the
implementation of some basic autonomic capabilities for preserving the security
state of the whole system. Indeed, the SAI architecture achieves basic support for
autonomicity by exploiting the well-known “heartbeat” technique, since each SAI
component can produce heartbeats that can be audited by other active components.
Heartbeats help monitoring the overall system state and also enable automatic re-
action of adaptors with regard to the state of the Security Manager service cluster.
Hence, when adaptors stop hearing heartbeats from the security cluster, then they
stop accepting requests and dispatching of outgoing messages until security heart-
beats are resumed. This capability, although very simple to implement, allow for
fail-over strategies that are capable to preserve the security state of the system.

3.3 Service Invocation and Composition in the SAI Framework

Each SAI information system adaptor is described by a functional profile that is
stored in the Adaptors Registry cluster. Each adaptor is a message processor: its
functional profile can be completely described by a set of unique XML input and
output message-type pairs. Given such assumptions, Fig. 2a shows that message
“M1” can be transformed into message “M2” through adaptor “A1” and that mes-
sage “M3” can be transformed into message “M4” by means of adaptor “A2.”



A Scalable Grid and Service-Oriented Middleware 115

Fig. 2 Graph-based representation of service invocation and composition: (a) message “M1” can
be transformed into message “M2” through adaptor “A1” and that message “M3” can be trans-
formed into message “M4” by means of adaptor “A2”; (b) the connector “C3” links “M2” to “M3”
through a syntactical transformation and it makes it possible to reach “M4” starting from “M1”

We can equivalently state that there is a “path” from M1 to M2 and another
path from M3 to M4. When considered as a whole, the set of message nodes M1,
M2, M3, and M4 and edges A1 and A2 together define a disconnected and directed
graph “G,” which is just an alternative representation for the information stored in
the Adaptors Registry cluster state. It can be established whether a specific message
can be transformed into another type of message by checking if a path between the
two message types is found to exist in the graph-based representation provided by
the Adaptors Registry. Such a path can be considered as the special “workflow” to
execute in order to provide clients with the requested information.

Of course, situations may also occur where a same type of message can be pro-
duced by multiple adapters. For instance, we can suppose that M2 can be produced
from M1 either by means of the A1, A2, or A3 adapter. SAI clients are then required
to select among the available path from M1 to M2 by maximizing an objective func-
tion “f.” The objective function is specified so as to take into consideration client
preferences, as represented in their issued data-aggregation requests, and quality of
service metrics as collected during repeated interaction with registered adapters.

In the SAI system, a “service invocation” simply consists of two elements: (1)
a “request message,” a message embedding information which is known or can be
arbitrarily specified by a message producer; (2) the specification of a “target” mes-
sage type to be produced by the SAI system, given the “request message” as input.
Hence, the simplest request that clients can make to the system consists of a “target”
message for which a direct path from the provided “request” message is found to
exist in the adaptors registry. A complex request consists of a “target” message for
which no direct path via a single adaptor invocation from the provided “request”
message is found to exist in the adaptors registry. For instance, it turns out that a
request for M4 given M1 is a complex request since there is no direct single con-
nection between M1 and M4. A complex request could thus be handled by a path
composed of multiple adaptors. In case that there are no registered adapters enabling
M4 to be reachable from M1, from a logical point of view, a special entity (“connec-
tor”) needs to be introduced in order to enable the system to respond to these types
of requests.



116 D. Parlanti et al.

A connector is an entity which is specialized in syntactical transformations (e.g.,
message-format adaptations) among message types. It is allowed to link message
nodes with no outgoing links with message nodes with no incoming links. In Fig. 2b,
we can see that connector “C3” transforms “G” into a connected graph, because it
links “M2” to “M3” through a syntactical transformation: thanks to the connector,
it is now possible to reach “M4” starting from “M1.”

The injection of connectors into the SAI system, and the capability of clients
to select one off multiple competing paths by means of special optimization
algorithms, together allow the SAI system to solve complex data-aggregation
scenarios. Moreover, since invocation workflows are created “on-the-fly” through
simple operations on the graph-representation of adaptors profiles, there is no need
for predefined hard-coding of invocation sequences into the system. Hence, as more
connectors can be added progressively during the life-cycle of the system, SAI
information retrieval capabilities can be said to be “evolutionary.”

4 Case Study for Dangerous Goods Monitoring

We are currently performing some experimentation activities for evaluating the use
of the SAI middleware for developing context-aware applications.

A preliminary case study for the SAI middleware has been designed in the frame-
work of a research project in the domain of european maritime surveillance. The
goal of the project is the provision of a secured information exchange platform ca-
pable of bringing together the existing monitoring and tracking systems used for
maritime safety and security, protection of the marine environment, fisheries con-
trol, control of external borders, and other law enforcement activities in order to
satisfy information needs and information production profiles of heterogeneous ac-
tors (such as European Level Agencies Layer, Member State Ministries, Member
State Operating Bodies).

Current research and prototyping activities are focused on a case study for mon-
itoring dangerous goods shipping across intermodal transport routes.

Complexity of this application domain is due to several factors: the kind of trans-
ported goods and related risks for the surrounding physical and social environments;
the heterogeneity of transportation means that are usually required for end-to-end
delivery, the wide range of users which is involved to different extent in the ship-
ping process. Most important user categories include [5]: transporters; final users
(sender and consignee); multimodal operator; administration, authorities, traffic
control services; emergency services. These users may be characterized by different
regulations, specification, and technological infrastructure and pose different infor-
mation needs requirements in terms of content type, information granularity, timing
constraints.

We are currently designing and developing a service platform which, by lever-
aging on the capabilities provided by the SAI middleware, aims at providing
information services to such different user categories. The middleware will support



A Scalable Grid and Service-Oriented Middleware 117

Fig. 3 Architecture of the dangerous goods monitoring case study

interoperability among the involved organizations and public authorities, while also
hiding to clients the heterogeneities of the underlying technological infrastructures
(e.g., sensors and actuators, on-board and mobile devices, enterprise-level and web-
based application, etc.).

The prototype of the service platform has been customized to fit both the mar-
itime transportation of dangerous goods and the interconnection with road transport
segments. The service platform architecture is shown in Fig. 3.

The monitoring and control infrastructure is based on a set of RFIDs, sensors
and actuator networks (SANs) which could be deployed in the container (or other
unit loads) and/or in the ship hold in order to monitor and control the environmental
conditions. The SANs expose their features as services via the SAI Adaptor (encap-
sulating SAN features as services to be exposed in the SAI architecture).

The back-end and front-end application logic which is deployed locally (e.g., on
the ship on a local instance of the SAI node) and/or remotely (on a central SAI node)
receives messages from the SANs. The on-ship monitoring service processes the in-
formation and if required, may trigger alert services to the on-board operators and/or
to the remote monitoring system (e.g., via satellite communication). Analogously,
SANs may receive reconfiguration commands for adapting their behavior according
to a remote or local configuration adaptive logic (e.g., to increase the frequency of
message delivery in case of abnormal conditions).



118 D. Parlanti et al.

5 Conclusions

The SAI middleware shows that also enterprise-class technologies can be exploited
in the development of context-aware applications. The proposed middleware has
been empowered with a Grid infrastructure to offer workload distribution and load-
balancing for the processing of context data, while still preserving the security state
of the system and data consistency. Ongoing activities on the case study for danger-
ous goods monitoring in intermodal transport will help assessing the added value of
the proposed integration system in a Web of Things scenario.

Acknowledgments This work was partially supported by SELEX Sistemi Integrati. Techni-
cal assistance from Luca Capannesi, Department of Electronics and Telecommunications of the
University of Florence, is gratefully acknowledged.

References

1. Aberer K, Hauswirth M, Salehi A (2006) Middleware support for the “Internet of Things”. In:
5th GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze”, Stuttgart, Germany

2. Avizienis A, Laprie J, Randell B, Landwehr C (2004) Basic concepts and taxonomy of depend-
able and secure computing. IEEE Trans Dependable Secure Comput 1(1):11–33

3. de Deugd S, Carroll R, Kelly K, Millett B, Ricker J (2006) SODA: Service Oriented Device
Architecture. IEEE Pervasive Comput 5(3):94–96

4. Karnouskos S, Baecker O, de Souza LMS, Spiess P (2007) Integration of SOA-ready networked
embedded devices in enterprise systems via a cross-layered web service infrastructure. Proceed-
ings of 2007 Emerging Technologies and Factory Automation Conference, pp 293–300

5. Nathanail T (1995) Architectural design for the monitoring of intermodal transportation of haz-
ardous goods. Proceedings of the 1995 TransTech Conference, pp 69–73

6. Stirbu V (2008) Towards a restful plug and play experience in the web of things. Proceedings of
the 2008 International Conference on Semantic Computing, pp 512–517


	The Internet of Things

	Part II The Role of the Middleware
	A Scalable Grid and Service-Oriented Middleware for Distributed Heterogeneous Data and System Integration in Context-Awareness-Oriented Domains
	1 Introduction
	2 Related Work
	3 SAI Middleware Overview
	3.1 SAI Architecture
	3.1.1 Front-End Portal
	3.1.2 Grid Infrastructure
	3.1.3 Basic Back-End Services
	3.1.4 Message Bus
	3.1.5 The Adaptors Framework

	3.2 System Dependability
	3.3 Service Invocation and Composition in the SAI Framework

	4 Case Study for Dangerous Goods Monitoring
	5 Conclusions
	References




