
Chapter 10
Greedy Randomized Adaptive Search
Procedures: Advances, Hybridizations,
and Applications

Mauricio G.C. Resende and Celso C. Ribeiro

Abstract GRASP is a multi-start metaheuristic for combinatorial optimization
problems, in which each iteration consists basically of two phases: construction
and local search. The construction phase builds a feasible solution, whose neighbor-
hood is investigated until a local minimum is found during the local search phase.
The best overall solution is kept as the result. In this chapter, we first describe
the basic components of GRASP. Successful implementation techniques are dis-
cussed and illustrated by numerical results obtained for different applications. En-
hanced or alternative solution construction mechanisms and techniques to speed up
the search are also described: alternative randomized greedy construction schemes,
Reactive GRASP, cost perturbations, bias functions, memory and learning, local
search on partially constructed solutions, hashing, and filtering. We also discuss
implementation strategies of memory-based intensification and post-optimization
techniques using path-relinking. Hybridizations with other metaheuristics, paral-
lelization strategies, and applications are also reviewed.

10.1 Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective
function f : 2E → R. In its minimization version, we search an optimal solution
S∗ ∈ F such that f (S∗) ≤ f (S), ∀S ∈ F . The ground set E, the cost function f , and
the set of feasible solutions F are defined for each specific problem. For instance,
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in the case of the traveling salesman problem, the ground set E is that of all edges
connecting the cities to be visited, f (S) is the sum of the costs of all edges in S, and
F is formed by all edge subsets that determine a Hamiltonian cycle.

GRASP (greedy randomized adaptive search procedure) [68, 69] is a multistart
or iterative metaheuristic, in which each iteration consists of two phases: construc-
tion and local search. The construction phase builds a solution. If this solution is
not feasible, then it is necessary to apply a repair procedure to achieve feasibility.
Once a feasible solution is obtained, its neighborhood is investigated until a local
minimum is found during the local search phase. The best overall solution is kept
as the result. Extensive literature surveys are presented in [78–80, 156, 157, 160].
The pseudo-code in Figure 10.1 illustrates the main blocks of a GRASP procedure
for minimization, in which Max Iterations iterations are performed and Seed
is used as the initial seed for the pseudo-random number generator.

procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1, . . . ,Max Iterations do
3 Solution← Greedy Randomized Construction(Seed);
4 if Solution is not feasible then
5 Solution← Repair(Solution);
6 end;
7 Solution← Local Search(Solution);
8 Update Solution(Solution,Best Solution);
9 end;
10 return Best Solution;
end GRASP.

Fig. 10.1 Pseudo-code of the GRASP metaheuristic.

Figure 10.2 illustrates the construction phase with its pseudo-code. At each
iteration of this phase, let the set of candidate elements be formed by all elements
of the ground set E that can be incorporated into the partial solution being built,
without impeding the construction of a feasible solution with the remaining ground
set elements. The selection of the next element for incorporation is determined by
the evaluation of all candidate elements according to a greedy evaluation function.
This greedy function usually represents the incremental increase in the cost func-
tion due to the incorporation of this element into the solution under construction.
The evaluation of the elements by this function leads to the creation of a restricted
candidate list (RCL) formed by the best elements, i.e., those whose incorporation
to the current partial solution results in the smallest incremental costs (this is the
greedy aspect of the algorithm). The element to be incorporated into the partial so-
lution is randomly selected from those in the RCL (this is the probabilistic aspect
of the heuristic). Once the selected element is incorporated into the partial solution,
the candidate list is updated and the incremental costs are reevaluated (this is the
adaptive aspect of the heuristic). The above steps are repeated while there exists
at least one candidate element. This strategy is similar to the semi-greedy heuristic



10 GRASP: Advances, Hybridizations, and Applications 285

procedure Greedy Randomized Construction(Seed)
1 Solution← /0;
2 Initialize the set of candidate elements;
3 Evaluate the incremental costs of the candidate elements;
4 while there exists at least one candidate element do
5 Build the restricted candidate list (RCL);
6 Select an element s from the RCL at random;
7 Solution← Solution∪{s};
8 Update the set of candidate elements;
9 Reevaluate the incremental costs;
10 end;
11 return Solution;
end Greedy Randomized Construction.

Fig. 10.2 Pseudo-code of the construction phase.

proposed by Hart and Shogan [97], which is also a multi-start approach based on
greedy randomized constructions, but without local search.

Not always is a randomized greedy construction procedure able to produce a
feasible solution. In case this occurs, it may be necessary to apply a repair procedure
to achieve feasibility. Examples of repair procedures can be found in [60, 61, 129].

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usu-
ally improves the constructed solution. A local search algorithm works in an iter-
ative fashion by successively replacing the current solution by a better solution in
its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible by the repair
heuristic) and using a neighborhood N is given in Figure 10.3.

procedure Local Search(Solution)
1 while Solution is not locally optimal do
2 Find s′ ∈ N(Solution) with f (s′) < f (Solution);
3 Solution← s′;
4 end;
5 return Solution;
end Local Search.

Fig. 10.3 Pseudo-code of the local search phase.

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique, the
strategy used for the evaluation of the cost function value at the neighbors, and the
starting solution itself. The construction phase plays a very important role with re-
spect to this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are usually used. The neighborhood search may be imple-
mented using either a best-improving or a first-improving strategy. In the case of the
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best-improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. In practice, we observed on many applications that quite
often both strategies lead to the same final solution, but in smaller computation
times when the first-improving strategy is used. We also observed that premature
convergence to a bad local minimum is more likely to occur with a best-improving
strategy.

10.2 Construction of the Restricted Candidate List

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development
can focus on implementing appropriate data structures for efficient construction and
local search algorithms. GRASP has two main parameters: one related to the stop-
ping criterion and the other to the quality of the elements in the restricted candi-
date list.

The stopping criterion used in the pseudo-code described in Figure 10.1 is
determined by the number Max Iterations of iterations. Although the prob-
ability of finding a new solution improving the incumbent (current best solution)
decreases with the number of iterations, the quality of the incumbent may only im-
prove with the latter. Since the computation time does not vary much from iteration
to iteration, the total computation time is predictable and increases linearly with the
number of iterations. Consequently, the larger the number of iterations, the larger
will be the computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Section 10.1. We
denote by c(e) the incremental cost associated with the incorporation of element
e ∈ E into the solution under construction. At any GRASP iteration, let cmin and
cmax be, the smallest and the largest incremental costs, respectively.

The restricted candidate list RCL is made up of the elements e ∈ E with the best
(i.e., the smallest) incremental costs c(e). This list can be limited either by the num-
ber of elements (cardinality based) or by their quality (value based). In the first case,
it is made up of the p elements with the best incremental costs, where p is a param-
eter. In this chapter, the RCL is associated with a threshold parameter α ∈ [0,1].
The restricted candidate list is formed by all elements e ∈ E which can be inserted
into the partial solution under construction without destroying feasibility and whose
quality is superior to the threshold value, i.e., c(e) ∈ [cmin,cmin + α(cmax − cmin)].
The case α = 0 corresponds to a pure greedy algorithm, while α = 1 is equiva-
lent to a random construction. The pseudo-code in Figure 10.4 is a refinement of
the greedy randomized construction pseudo-code shown in Figure 10.2. It shows
that the parameter α controls the amounts of greediness and randomness in the
algorithm.
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procedure Greedy Randomized Construction(α,Seed)
1 Solution← /0;
2 Initialize the candidate set: C ← E;
3 Evaluate the incremental cost c(e) for all e ∈C;
4 while C �= /0 do
5 cmin ← min{c(e) | e ∈C};
6 cmax ← max{c(e) | e ∈C};
7 RCL ←{e ∈C | c(e)≤ cmin +α(cmax − cmin)};
8 Select an element s from the RCL at random;
9 Solution← Solution∪{s};
10 Update the candidate set C;
11 Reevaluate the incremental cost c(e) for all e ∈C;
12 end;
13 return Solution;
end Greedy Randomized Construction.

Fig. 10.4 Refined pseudo-code of the construction phase.

GRASP may be viewed as a repetitive sampling technique. Each iteration pro-
duces a sample solution from an unknown distribution, whose mean and variance
are functions of the restrictive nature of the RCL. For example, if the RCL is re-
stricted to a single element, then the same solution will be produced at all iterations.
The variance of the distribution will be zero and the mean will be equal to the value
of the greedy solution. If the RCL is allowed to have more elements, then many dif-
ferent solutions will be produced, implying a larger variance. Since greediness plays
a smaller role in this case, the average solution value should be worse than that of
the greedy solution. However, the value of the best solution found outperforms the
average value and very often is optimal. It is unlikely that GRASP will find an opti-
mal solution if the average solution value is high, even if there is a large variance in
the overall solution values. On the other hand, if there is little variance in the overall
solution values, it is also unlikely that GRASP will find an optimal solution, even
if the average solution is low. What often leads to good solutions are relatively low
average solution values in the presence of a relatively large variance, such as is the
case for α = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction phase
moves from more greedy to more random. This causes the average time taken by the
local search to increase. Very often, many GRASP solutions may be generated in the
same amount of time required for the local search procedure to converge from a sin-
gle random start. In these cases, the time saved by starting the local search from
good initial solutions can be used to improve solution quality by performing more
GRASP iterations.

These results are illustrated in Table 10.1 and Figure 10.5, for an instance of
the MAX-SAT problem where 1000 iterations were run. For each value of α rang-
ing from 0 (purely random construction for maximization problems) to 1 (purely
greedy construction for maximization problems), we give in Table 10.1 the average
Hamming distance between each solution built during the construction phase and
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Table 10.1 Average number of moves and local search time as a function of the RCL parameter α
for a maximization problem.

α Average distance Average moves Local search time (s) Total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235
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Fig. 10.5 Total CPU time and local search CPU time as a function of the RCL parameter α for a
maximization problem (1000 repetitions for each value of α).

the corresponding local optimum obtained after local search, the average number
of moves from the first to the latter, the local search time in seconds, and the to-
tal processing time in seconds. Figure 10.5 summarizes the values observed for the
total processing time and the local search time. We notice that both time measures
considerably decrease as α tends to 1, approaching the purely greedy choice. In
particular, we observe that the average local search time taken by α = 0 (purely ran-
dom) is approximately 2.5 times that taken in the case α = 0.9 (almost greedy). In
this example, two to three greedily constructed solutions can be investigated in the
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same time needed to apply local search to one single randomly constructed solution.
The appropriate choice of the value of the RCL parameter α is clearly critical and
relevant to achieve a good balance between computation time and solution quality.

Prais and Ribeiro [142] have shown that using a single fixed value for the value
of the RCL parameter α very often hinders finding a high-quality solution, which
could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they call Reactive GRASP, in which the parameter α is
self-tuned and its value is periodically modified accordingly to the quality of the
solutions obtained along the search. In particular, computational experiments on
the problem of traffic assignment in communication satellites [143] have shown
that Reactive GRASP found better solutions than the basic algorithm for many test
instances. These results motivated the study of the behavior of GRASP for different
strategies for the variation of the value of the RCL parameter α:

(R) α self-tuned according to the Reactive GRASP procedure;
(E) α randomly chosen from a uniform discrete probability distribution;
(H) α randomly chosen from a decreasing non-uniform discrete probability

distribution; and
(F) fixed value of α , close to the purely greedy choice.

We summarize the results obtained by the experiments reported in [141, 142].
These four strategies were incorporated into the GRASP procedures developed
for four different optimization problems: (P-1) matrix decomposition for traf-
fic assignment in communication satellite [143], (P-2) set covering [68], (P-3)
weighted MAX-SAT [153, 154], and (P-4) graph planarization [155, 161]. Let
Ψ = {α1, . . . ,αm} be the set of possible values for the parameter α for the first
three strategies. The strategy for choosing and self-tuning the value of α in the case
of the Reactive GRASP procedure (R) is described in Section 10.3. In the case of the
strategy (E) based on using the discrete uniform distribution, all choice probabilities
are equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors considered p(α = 0.1) = 0.5, p(α = 0.2) = 0.25, p(α = 0.3) = 0.125,
p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03, p(α = 0.7) = 0.01,
p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and p(α = 1.0) = 0.005. Finally, in the last
strategy (F), the value of α is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter was tuned for each problem.
A subset of the literature instances was considered for each class of test problems.
The results reported in [142] are summarized in Table 10.2. For each problem, we
first list the number of instances considered. Next, for each strategy, we give the
number of times it found the best solution (hits), as well as the average CPU time
(in seconds) on an IBM 9672 model R34. The number of iterations was fixed at
10,000.

Strategy (F) presented the shortest average computation times for three out of the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
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Table 10.2 Computational results for different strategies for the variation of parameter α .

R E H F

Problem Instances Hits Time Hits Time Hits Time Hits Time
P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0
Total 124 91 85 78 59

The high number of hits observed by strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

10.3 Alternative Construction Mechanisms

A possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the search history or from
solutions found in previous iterations. This is so because the basic algorithm dis-
cards information about any solution previously encountered that does not improve
the incumbent. Information gathered from good solutions can be used to imple-
ment memory-based procedures to influence the construction phase, by modifying
the selection probabilities associated with each element of the RCL or by enforcing
specific choices. Another possible shortcoming of the greedy randomized construc-
tion is its complexity. At each step of the construction, each yet unselected candidate
element has to be evaluated by the greedy function. In cases where the difference
between the number of elements in the ground set and the number of elements that
appear in a solution large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the
construction phase of GRASP. They include random plus greedy, sampled greedy,
Reactive GRASP, cost perturbations, bias functions, memory and learning, and local
search on partially constructed solutions.

10.3.1 Random Plus Greedy and Sampled Greedy Construction

In Section 10.2, we described the semi-greedy construction scheme used to build
randomized greedy solutions that serve as starting points for local search. Two other
randomized greedy approaches were proposed in [158], with smaller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at each step of the construc-
tion procedure, the random plus greedy scheme applies randomness during the
first p construction steps to produce a random partial solution. Next, the algo-
rithm completes the solution with one or more pure greedy construction steps.
The resulting solution is randomized greedy. One can control the balance between
greediness and randomness in the construction by changing the value of the
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parameter p. Larger values of p are associated with solutions that are more random,
while smaller values result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness but in a different way. This procedure is
also controlled by a parameter p. At each step of the construction process, the pro-
cedure builds a restricted candidate list by sampling min{p, |C|} elements of the
candidate set C. Each element of the RCL is evaluated by the greedy function. The
element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameter p, i.e., the
number of candidate elements that are sampled. Small sample sizes lead to more
random solutions, while large sample sizes lead to greedier solutions.

10.3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism in the memoryless construc-
tion phase of the basic GRASP was the Reactive GRASP procedure introduced in
Section 10.2. In this case, the value of the RCL parameter α is not fixed, but instead
is randomly selected at each iteration from a discrete set of possible values. This
selection is guided by the solution values found along the previous iterations. One
way to accomplish this is to use the rule proposed in [143]. Let Ψ = {α1, . . . ,αm}
be a set of possible values for α . The probabilities associated with the choice of
each value are all initially made equal to pi = 1/m, for i = 1, . . . ,m. Furthermore,
let z∗ be the incumbent solution and let Ai be the average value of all solutions found
using α = αi, for i = 1, . . . ,m. The selection probabilities are periodically reevalu-
ated by taking pi = qi/∑m

j=1 q j, with qi = z∗/Ai for i = 1, . . . ,m. The value of qi

will be larger for values of α = αi leading to the best solutions on average. Larger
values of qi correspond to more suitable values for the parameter α . The probabil-
ities associated with the more appropriate values will then increase when they are
reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [141–143], this approach has
been used in power system transmission network planning [41], job shop schedul-
ing [40], channel assignment in mobile phone networks [93], rural road network
development [171], capacitated location [57], strip-packing [11], and a combined
production–distribution problem [43].

10.3.3 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the
so-called noising method of Charon and Hudry [48, 49]. It adds more flexibility
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into algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the
shortest path heuristic of Takahashi and Matsuyama [175], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [165] for the Steiner problem in graphs. Another situation where
cost perturbations can be very effective appears when no greedy algorithm is avail-
able for straightforward randomization. This happens to be the case of the hybrid
GRASP developed by Canuto et al. [46] for the prize-collecting Steiner tree prob-
lem, which makes use of the primal–dual algorithm of Goemans and Williamson
[92] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [46], a new solution is built at each iteration using node prizes updated by a per-
turbation function, according to the structure of the current solution. Two different
prize perturbation schemes were used. In perturbation by eliminations, the primal–
dual algorithm used in the construction phase is driven to build a new solution with-
out some of the nodes that appeared in the solution constructed in the previous
iteration. In perturbation by prize changes, some noise is introduced into the node
prizes to change the objective function, similarly to what is proposed in [48, 49].

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [165] incorporate learning mechanisms associated with inten-
sification and diversification strategies. Three distinct weight randomization meth-
ods were applied. At a given GRASP iteration, the modified weight of each edge
is randomly selected from a uniform distribution from an interval which depends
on the selected weight randomization method applied at that iteration. The differ-
ent weight randomization methods use frequency information and may be used to
enforce intensification and diversification strategies. The experimental results re-
ported in [165] show that the strategy combining these three perturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The GRASP
heuristic using this cost perturbation strategy is among the most effective heuristics
currently available for the Steiner problem in graphs.

10.3.4 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements of
the RCL are assigned equal probabilities of being chosen. However, any probabil-
ity distribution can be used to bias the selection toward some particular candidates.
Another construction mechanism was proposed by Bresina [44], where a family of
such probability distributions is introduced. They are based on the rank r(σ) as-
signed to each candidate element σ , according to its greedy function value. Several
bias functions were proposed, such as
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• random bias: bias(r) = 1;
• linear bias: bias(r) = 1/r;
• log bias: bias(r) = log−1(r +1);
• exponential bias: bias(r) = e−r; and
• polynomial bias of order n: bias(r) = r−n.

Let r(σ) denote the rank of element σ and let bias(r(σ)) be one of the bias
functions defined above. Once these values have been evaluated for all elements in
the candidate set C, the probability π(σ) of selecting element σ is

π(σ) =
bias(r(σ))

∑σ ′∈C bias(r(σ ′))
. (10.1)

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[40]. The standard GRASP uses a random bias function.

10.3.5 Intelligent Construction: Memory and Learning

Fleurent and Glover [82] observed that the basic GRASP does not use long-term
memory (information gathered in previous iterations) and proposed a long-term
memory scheme to address this issue in multi-start heuristics. Long-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding
the objective or changing significantly other variables. A consistent variable is one
that receives a particular value in a large portion of the elite solution set. Let I(e)
be a measure of the strong determination and consistency features of a solution
element e ∈ E. Then, I(e) becomes larger as e appears more often in the pool of
elite solutions. The intensity function I(e) is used in the construction phase as fol-
lows. Recall that c(e) is the greedy function, i.e., the incremental cost associated
with the incorporation of element e ∈ E into the solution under construction. Let
K(e) = F(c(e), I(e)) be a function of the greedy and the intensification functions.
For example, K(e) = λc(e)+ I(e). The intensification scheme biases selection from
the RCL to those elements e ∈ E with a high value of K(e) by setting its selection
probability to be p(e) = K(e)/∑s∈RCL K(s).

The function K(e) can vary with time by changing the value of λ . For example,
λ may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of λ are given by Fleurent and Glover [82] and
Binato et al. [40].
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10.3.6 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level” [90].
Fleurent and Glover [82] provided a GRASP interpretation of this principle. They
suggested that imperfections introduced during steps of the GRASP construction
can be “ironed out” by applying local search during (and not only at the end of) the
GRASP construction phase.

Because of efficiency considerations, a practical implementation of POP to
GRASP consists in applying local search a few times during the construction phase,
but not at every construction iteration. Local search was applied by Binato et al. [40]
after 40 and 80% of the construction moves have been taken, as well as at the end
of the construction phase.

10.4 Path-Relinking

Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This tech-
nique was originally proposed by Glover [88] as an intensification strategy to ex-
plore trajectories connecting elite solutions obtained by tabu search or scatter search
[89–91].

We consider the undirected graph associated with the solution space G = (S,M),
where the nodes in S correspond to feasible solutions and the edges in M corre-
spond to moves in the neighborhood structure, i.e., (i, j) ∈ M if and only if i ∈ S,
j ∈ S, j ∈ N(i), and i ∈ N( j), where N(s) denotes the neighborhood of a node s ∈ S.
Path-relinking is usually carried out between two solutions: one is called the initial
solution, while the other is the guiding solution. One or more paths in the solution
space graph connecting these solutions are explored in the search for better solu-
tions. Local search is applied to the best solution in each of these paths, since there
is no guarantee that the latter is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding so-
lution g ∈ S. Not all solutions in the neighborhood N(s) are allowed to be the
next on the path from s to g. We restrict the choice only to those solutions that
are more similar to g than s. This is accomplished by selecting moves from s that
introduce attributes contained in the guiding solution g. Therefore, path-relinking
may be viewed as a strategy that seeks to incorporate attributes of high-quality so-
lutions (i.e., the guiding elite solutions), by favoring these attributes in the selected
moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martı́ [106]. It was followed by several extensions, improvements, and successful
applications [6, 7, 18, 46, 75, 130, 146, 156, 158, 159, 163, 165, 171]. A survey of
GRASP with path-relinking can be found in [157].
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Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figure 10.6 shows time-to-target plots for
GRASP and GRASP with path-relinking implementations for four different appli-
cations. These time-to-target plots show the empirical cumulative probability distri-
butions of the time-to-target random variable when using pure GRASP and GRASP
with path-relinking, i.e., the time needed to find a solution at least as good as a
prespecified target value. For all problems, the plots show that GRASP with path-
relinking is able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of an elite set to collect a diverse pool of
high-quality solutions found during the search. This pool is limited in size, i.e., it
can have at most Max Elite solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be applied as

• an intensification strategy, between each local optimum obtained after the local
search phase and one or more elite solutions;

• a post-optimization step, between every pair of elite solutions;
• an intensification strategy, periodically (after a fixed number of GRASP itera-

tions since the last intensification phase) submitting the pool of elite solutions to
an evolutionary process (see Section 10.4.7);

• a post-optimization phase, submitting the pool of elite solutions to an evolution-
ary process; or

• any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locally optimal solution
obtained by local search and each solution resulting from path-relinking is con-
sidered as a candidate to be inserted into the pool. If the pool is not yet full, the can-
didate is simply added to the pool. Otherwise, if the candidate is better than the
incumbent, it replaces an element of the pool. In case the candidate is better than
the worst element of the pool but not better than the best element, then it replaces
some element of the pool if it is sufficiently different from every other solution cur-
rently in the pool. To balance the impact on pool quality and diversity, the element
selected to be replaced is the one that is most similar to the entering solution among
those elite solutions of quality no better than the entering solution [158].

Given a local optimum s1 produced at the end of a GRASP iteration, we need
to select at random from the pool a solution s2 to be path-relinked with s1. In prin-
ciple, any pool solution could be selected. However, we may want to avoid pool
solutions that are too similar to s1, because relinking two solutions that are simi-
lar limits the scope of the path-relinking search. If the solutions are represented by
|E|-dimensional incidence vectors, we should privilege pairs of solutions for which
the Hamming distance (i.e., the number of components that take on different val-
ues in each solution) between them is high. A strategy introduced in [158] is to
select a pool element s2 at random with probability proportional to the Hamming
distance between the pool element and the local optimum s1. Since the number of
paths between two solutions grows exponentially with their Hamming distance, this
strategy favors pool elements that have a large number of paths connecting them to
and from s1.
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Fig. 10.6 Time-to-target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment.
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After determining which solution (s1 or s2) will be designated the initial solution
i and which will be the guiding solution g, the algorithm starts by computing the
set Δ(i,g) of components in which i and g differ. This set corresponds to the moves
which should be applied to i to reach g. Starting from the initial solution, the best
move in Δ(i,g) still not performed is applied to the current solution, until the guid-
ing solution is reached. By best move, we mean the one that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by the
path-relinking algorithm.

Several alternatives have been considered and combined in recent implementa-
tions. These include forward, backward, back and forward, mixed, truncated, greedy
randomized adaptive, and evolutionary path-relinking. All these alternatives involve
trade-offs between computation time and solution quality.

10.4.1 Forward Path-Relinking

In forward path-relinking, the GRASP local optimum is designated as the initial
solution and the pool solution is made the guiding solution. This is the original
scheme proposed by Laguna and Martı́ [106].

10.4.2 Backward Path-Relinking

In backward path-relinking, the pool solution is designated as the initial solution
and the GRASP local optimum is made the guiding one. This scheme was orig-
inally proposed in Aiex et al. [7] and Resende and Ribeiro [156]. The main ad-
vantage of this approach over forward path-relinking comes from the fact that, in
general, there are more high-quality solutions near pool elements than near GRASP
local optima. Backward path-relinking explores more thoroughly the neighborhood
around the pool solution, whereas forward path-relinking explores more the neigh-
borhood around the GRASP local optimum. Experiments in [7, 156] have shown
that backward path-relinking usually outperforms forward path-relinking.

10.4.3 Back and Forward Path-Relinking

Back and forward path-relinking combines forward and backward path-relinking.
As shown in [7, 156], it finds solutions at least as good as forward path-relinking
or backward path-relinking, but at the expense of taking about twice as long to
run. The reason that back and forward path-relinking often finds solutions of better
quality than simple backward or forward path-relinking stems from the fact that it
thoroughly explores the neighborhoods of both solutions s1 and s2.
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10.4.4 Mixed Path-Relinking

Mixed path-relinking shares the benefits of back and forward path-relinking, i.e.,
it thoroughly explores both neighborhoods, but does so in about the same time as
forward or backward path-relinking alone. This is achieved by interchanging the
roles of the initial and guiding solutions at each step of the path-relinking procedure.
Therefore, two paths are generated, one starting at s1 and the other at s2. The paths
evolve and eventually meet at some solution about half way between s1 and s2.
The joined path relinks these two solutions. Mixed path-relinking was suggested
by Glover [88] and was first implemented and tested by Ribeiro and Rosseti [163],
where it was shown to outperform forward, backward, and back and forward path-
relinking. Figure 10.7 shows a comparison of pure GRASP and four variants of
path-relinking: forward, backward, back and forward, and mixed. The time-to-target
plots show that GRASP with mixed path-relinking has the best running time profile
among the variants compared.

10.4.5 Truncated Path-Relinking

Since good-quality solutions tend to be near other good-quality solutions, one would
expect to find the best solutions with path-relinking near the initial or guiding so-
lution. Indeed, Resende et al. [151] showed that this is the case for instances of the
max–min diversity problem, as shown in Figure 10.8. In that experiment, a back
and forward path-relinking scheme was tested. The figure shows the average num-
ber of best solutions found by path-relinking taken over several instances and sev-
eral applications of path-relinking. The 0–10% range in this figure corresponds to
subpaths near the initial solutions for the forward path-relinking phase as well as
the backward phase, while the 90–100% range are subpaths near the guiding so-
lutions. As the figure indicates, exploring the subpaths near the extremities may
produce solutions about as good as those found by exploring the entire path. There
is a higher concentration of better solutions close to the initial solutions explored by
path-relinking.

Truncated path-relinking can be applied to either forward, backward, backward
and forward, or mixed path-relinking. Instead of exploring the entire path, truncated
path-relinking only explores a fraction of the path and, consequently, takes a fraction
of the time to run. Truncated path-relinking has been applied in [18, 151].

10.4.6 Greedy Randomized Adaptive Path-Relinking

In path-relinking, the best not yet performed move in set Δ(i,g) is applied to the
current solution, until the guiding solution is reached. If ties are broken determin-
istically, this strategy will always produce the same path between the initial and
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Fig. 10.7 Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking
(forward, backward, back and forward, and mixed) on an instance of the two-path network design
problem.

guiding solutions. Since the number of paths connecting i and g is exponential in
|Δ(i,g)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptive path-relinking, introduced by Binato et al. [39], is
a semi-greedy version of path-relinking. Instead of taking the best move in Δ(i,g)
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Fig. 10.8 Average number of best solutions found at different depths of the path from the initial
solution to the guiding solution on instances of the max–min diversity problem.

still not performed, a restricted candidate list of good moves still not performed
is set up and a randomly selected move from the latter is applied. By applying
this strategy several times between the initial and guiding solutions, several paths
can be explored. Greedy randomized adaptive path-relinking has been applied in
[18, 63, 151].

10.4.7 Evolutionary Path-Relinking

GRASP with path-relinking maintains a pool of elite solutions. Applying path-
relinking between pairs of pool solutions may result in an even better pool of solu-
tions. Aiex et al. [7] applied path-relinking between all pairs of elite solutions as an
intensification scheme to improve the quality of the pool and as a post-optimization
step. The application of path-relinking was repeated until no further improvement
was possible.

Resende and Werneck [158, 159] described an evolutionary path-relinking
scheme applied to pairs of elite solutions and used as a post-optimization step. The
pool resulting from the GRASP with path-relinking iterations is referred to as pop-
ulation P0. At step k, all pairs of elite set solutions of population Pk are relinked and
the resulting solutions made candidates for inclusion in population Pk+1 of the next
generation. The same rules for acceptance into the pool during GRASP with path-
relinking are used for acceptance into Pk+1. If the best solution in Pk+1 is better than
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the best in Pk, then k is incremented by one and the process is repeated. Resende
et al. [151] describe another way to implement evolutionary path-relinking, where
a single population is maintained. Each pair of elite solutions is relinked and the re-
sulting solution is a candidate to enter the elite set. If accepted, it replaces an existing
elite solution. The process is continued while there are still pairs of elite solutions
that have not yet been relinked.

Andrade and Resende [17] used this evolutionary scheme as an intensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions might
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.

Resende et al. [151] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max–min diversity problem.

10.5 Extensions

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [178]. A similar approach was later explored by
Ribeiro et al. [162] in their tabu search algorithm for query optimization in relational
databases. In the context of GRASP implementations, hashing tables were first used
by Martins et al. [122] in their multi-neighborhood heuristic for the Steiner problem
in graphs, to avoid the application of local search to solutions already visited in
previous iterations.

Filtering strategies have also been used to speed up the iterations of GRASP,
see, e.g., [70, 122, 143]. In these cases, local search is not applied to all solutions
obtained at the end of the construction phase, but instead only to some promising
unvisited solutions, defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (variable neighborhood search), proposed by Hansen and
Mladenović [96, 125], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, GRASP and variable neigh-
borhood strategies may be considered as complementary and potentially capable
of leading to effective hybrid methods. A first attempt in this direction was made
by Martins et al. [122]. The construction phase of their hybrid heuristic for the
Steiner problem in graphs follows the greedy randomized strategy of GRASP, while
the local search phase makes use of two different neighborhood structures as a
VND (variable neighborhood descent) procedure [96, 125]. Their heuristic was later
improved by Ribeiro et al. [165], one of the key components of the new algorithm
being another strategy for the exploration of different neighborhoods. Ribeiro and
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Souza [164] also combined GRASP with VND in a hybrid heuristic for the degree-
constrained minimum spanning tree problem. Festa et al. [81] studied different vari-
ants and combinations of GRASP and VNS for the MAX-CUT problem, finding
and improving the best known solutions for some open instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP heuristic is
applied to generate the initial population for a genetic algorithm. We may cite, e.g.,
the genetic algorithm of Ahuja et al. [5] for the quadratic assignment problem, which
makes use of the GRASP heuristic proposed by Li et al. [108] to create the initial
population of solutions. A similar approach was used by Armony et al. [27], with
the initial population made up of both randomly generated solutions and those built
by a GRASP algorithm.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [105]. Delmaire et al. [57] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reactive
GRASP algorithm presented in Section 10.3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previously
used. Two two-stage heuristics are proposed in [1] for solving the multi-floor facility
layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu
search to refine it.

Iterated local search (ILS) iteratively builds a sequence of solutions generated by
the repeated application of local search and perturbation of the local optima found
by local search [37]. Lourenço et al. [112] point out that ILS has been rediscovered
many times and is also known as iterated descent [35, 36], large step Markov chains
[120], iterated Lin–Kernighan [100], and chained local optimization [119]. ILS can
be hybridized with GRASP by replacing the standard local search. The GRASP
construction produces a solution which is passed to the ILS procedure. Ribeiro and
Urrutia [166] presented a hybrid GRASP with ILS heuristic for the mirrored travel-
ing tournament problem, in which perturbations are achieved by randomly generat-
ing solutions in the game rotation ejection chain [86, 87] neighborhood.

10.6 Parallel GRASP

Cung et al. [55] noted that parallel implementations of metaheuristics not only
appear as quite natural alternatives to speed up the search for good approximate
solutions but also facilitate solving larger problems and finding improved solutions,
with respect to their sequential counterparts. This is due to the partitioning of the
search space and to the increased possibilities for search intensification and diversi-
fication. As a consequence, parallelism can improve the effectiveness and robustness
of metaheuristic-based algorithms. Parallel metaheuristic-based algorithms are less
dependent on time-consuming parameter tuning experiments and their success is not
limited to a few or small classes of problems.
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Recent years have witnessed huge advances in computer technology and
communication networks. The growing computational power requirements of large-
scale applications and the high costs of developing and maintaining supercomput-
ers have fueled the drive for cheaper high-performance computing environments.
With the considerable increase in commodity computers and network performance,
cluster computing, and, more recently, grid computing [83, 84] have emerged as
real alternatives to traditional supercomputing environments for executing parallel
applications that require significant amounts of computing power.

10.6.1 Cluster Computing

A computing cluster generally consists of a fixed number of homogeneous resources,
interconnected on a single administrative network, which together execute one par-
allel application at a time.

Most parallel implementations of GRASP follow the multiple-walk independent
thread strategy, based on the distribution of the iterations over the processors
[12, 13, 70, 108, 121, 123, 128, 134, 135]. In general, each search thread has to
perform Max Iterations/p iterations, where p and Max Iterations are the
number of processors and the total number of iterations, respectively. Each pro-
cessor has a copy of the sequential algorithm, a copy of the problem data, and an
independent seed to generate its own pseudo-random number sequence. A single
global variable is required to store the best solution found over all processors. One
of the processors acts as the master, reading and distributing problem data, gen-
erating the seeds which will be used by the pseudo-random number generators at
each processor, distributing the iterations, and collecting the best solution found by
each processor. Since the iterations are completely independent and very little in-
formation is exchanged, linear speedups are easily obtained provided that no major
load imbalance problems occur. The iterations may be evenly distributed over the
processors or according to their demands, to improve load balancing.

Martins et al. [123] implemented a parallel GRASP for the Steiner problem in
graphs. Parallelization is achieved by the distribution of the iterations over the pro-
cessors, with the value of the RCL parameter α randomly chosen in the interval
[0.0,0.3] at each iteration. Almost-linear speedups were observed on benchmark
problems from the OR-Library [38] for 2, 4, 8, and 16 processors, with respect to the
sequential implementation. Path-relinking may be used in conjunction with parallel
implementations of GRASP. Almost-linear speedups were also obtained with the
multiple-walk independent-thread implementation of Aiex et al. [7] for the 3-index
assignment problem, in which each processor applies path-relinking to pairs of elite
solutions stored in a local pool.

Alvim and Ribeiro [12, 13] have shown that multiple-walk independent-thread
approaches for the parallelization of GRASP may benefit much from load bal-
ancing techniques, whenever heterogeneous processors are used or if the paral-
lel machine is simultaneously shared by several users. In this case, almost-linear
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speedups may be obtained with a heterogeneous distribution of the iterations over
the p processors in q packets, with q > p. Each processor starts performing one
packet of �Max Iterations/q� iterations and informs the master when it fin-
ishes its packet of iterations. The master stops the execution of each worker proces-
sor when there are no more iterations to be performed and collects the best solution
found. Faster or less loaded processors will perform more iterations than the oth-
ers. In the case of the parallel GRASP heuristic implemented for the problem of
traffic assignment described in [143], this dynamic load balancing strategy allowed
reductions in the elapsed times of up to 15% with respect to the times observed
for the static strategy, in which the iterations were uniformly distributed over the
processors.

For a given problem instance and a target value look4, let time-to-target be
a random variable representing the time taken by a GRASP implementation to
find a solution whose cost is at least as good as look4 for this instance. Aiex
et al. [8] have shown experimentally that this random variable fits an exponential
distribution or, in the case where the setup times are not negligible, a shifted (two-
parameter) exponential distribution. The probability density function p(t) of the
random variable time-to-target is given by p(t) = (1/λ ) ·e−t/λ in the first case or by
p(t) = (1/λ ) ·e−(t−μ)/λ in the second, with the parameters λ ∈ IR+ and μ ∈ IR+ be-
ing associated with the shape and the shift of the exponential function, respectively.

Figure 10.9 illustrates this result, depicting the superimposed empirical and the-
oretical distributions observed for one of the cases studied along the computational
experiments reported in [8], which involved 2400 runs of GRASP procedures for
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Fig. 10.9 Superimposed empirical and theoretical distributions (time-to-target solution values
measured in seconds on an SGI Challenge computer with 28 processors).
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each of five different problem types: maximum independent set [70, 150], quadratic
assignment [108, 152], graph planarization [155, 161], maximum weighted satisfia-
bility [154], and maximum covering [148].

We now assume that p identical processors are available and used to search in
parallel for the same target value look4. Let Xi be the time taken by processor
i = 1, . . . , p to find a solution whose cost is at least as good as look4 and consider
the random variable Y = min{X1, . . . ,Xp}. Since all processors are independent and
fit the same exponential distribution with average equal to λ , the random variable
Y fits an exponential distribution whose average is λ/p. Therefore, linear speedups
can be achieved if multiple identical processors are used independently to search in
parallel for the same target value.

However, we notice that if path-relinking is applied as an intensification step
at the end of each GRASP iteration (see, e.g., [46, 157]), then the iterations are
no longer independent and the memoryless characteristic of GRASP may be de-
stroyed. Consequently, the time-to-target random variable may not fit an exponen-
tial distribution. Aiex et al. [7] have shown experimentally that, even in this case,
the time-to-target random variable may be reasonably approximated by a shifted
(two-parameter) exponential distribution in some circumstances.

In the case of multiple-walk cooperative-thread strategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution
but, also, to find better solutions than independent-thread strategies. The most dif-
ficult aspect to be set up is the determination of the nature of the information to
be shared or exchanged to improve the search, without taking too much additional
memory or time to be collected. Cooperative-thread strategies may be implemented
using path-relinking, by combining elite solutions stored in a central pool with the
local optima found by each processor at the end of each GRASP iteration.

Ribeiro and Rosseti [163] applied this scheme to implement a parallel GRASP
heuristic for the two-path network design problem. One of the processors acts as the
master and handles a centralized pool of elite solutions, collecting and distributing
them upon request. The other processors act as workers and exchange the elite so-
lutions found along their search trajectories. Cooperation between the processors is
implemented via path-relinking using the centralized pool of elite solutions. In this
implementation, each worker may send up to three different solutions to the master
at each GRASP iteration: the solution obtained by local search and the solutions
obtained by forward and backward path-relinking. The performance of the parallel
implementation is quite uniform over all problem instances.

Computational results illustrating the behavior of the independent and coopera-
tive parallel implementations for an instance with 100 nodes, 4950 edges, and 1000
origin-destination pairs are presented below. The plots in Figure 10.10 display the
empirical probability distribution of the time-to-target random variable for both the
independent and the cooperative parallel implementations in C and MPI, for 200
runs on 2, 4, 8, and 16 processors of a 32-machine Linux cluster, with the look4
target value set at 683. We notice that the independent strategy performs better when
only two processors are used. This is so because the independent strategy makes use
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Fig. 10.10 Empirical distributions of the time-to-target random variable for the independent and
the cooperative parallelizations on 2, 4, 8, and 16 processors (target value set at 683).
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of the two processors to perform GRASP iterations, while the cooperative strategy
makes use of one processor to perform iterations and the other to handle the pool.
However, as the number of processors increases, the gain obtained through cooper-
ation becomes more important than the loss of one processor to perform iterations.
The cooperative implementation is already faster than the independent one for eight
processors. These plots establish the usefulness and the efficiency of the cooper-
ative implementation. Other implementations of multiple-walk cooperative-thread
GRASP heuristics can be found, e.g., in Aiex et al. [6, 7].

10.6.2 Grid Computing

Grids aim to harness available computing power from a diverse pool of resources
available over the Internet to execute a number of applications simultaneously. Grids
aggregate geographically distributed collections (or sites) of resources which typi-
cally have different owners and thus are shared between multiple users. The fact that
these resources are distributed, heterogeneous, and non-dedicated requires careful
consideration when developing grid-enabled applications and makes writing parallel
grid-aware heuristics very challenging [83].

Araújo et al. [22] described some strategies based on the master–worker paradigm
for the parallelization in grid environments of the hybrid GRASP with ILS heuris-
tic for the mirrored traveling tournament problem proposed in [166]. In the best of
these strategies, PAR-MP, the master is dedicated to managing a centralized pool of
elite solutions, including collecting and distributing them upon request. The workers
start their searches from different initial solutions and exchange elite solutions found
along their trajectories. Although it leads to improvements in the results obtained by
the sequential implementation, it was not able to make full use of the characteristics
of grid environments.

Araújo [21] proposed an autonomic hierarchical distributed strategy for the
implementation of cooperative metaheuristics in grids, in which local pools of elite
solutions internal to each site support intensification strategies, while a global pool
is used to ensure diversification. This autonomic strategy is much more adapted to
grid computations and leads to better results with respect to both the master–worker
PAR-MP parallel strategy for the mirrored traveling tournament problem and the
sequential hybrid heuristic combining GRASP and ILS for the diameter-constrained
minimum spanning tree problem [114].

Table 10.3 displays comparative results reported in [21] for large National
Football League instances of the mirrored traveling tournament problem with the
number of teams ranging from 16 to 32. For each instance, we give the costs of the
solutions obtained by the sequential implementation and by the hierarchical strategy
running on 10 processors. The running times range from approximately 3 to 10 h, as
observed for instances nfl18 and nfl24, respectively. We notice that the hierar-
chical strategy improved the solutions obtained by the sequential heuristic for eight
out of the nine test instances.
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Table 10.3 Solution costs found by the sequential and grid implementations of the hybrid GRASP
with ILS heuristic for the mirrored traveling tournament problem.

Instance Sequential Grid
nfl16 25.1289 24.9806
nfl18 29.9903 29.9112
nfl20 35.9748 35.9748
nfl22 41.8086 41.8022
nfl24 46.7135 46.5491
nfl26 55.4670 54.8643
nfl28 61.8801 60.9788
nfl30 74.0458 73.9697
nfl32 92.4559 91.4620

Figure 10.11 displays time-to-target plots obtained after 100 runs of the hierar-
chical distributed implementation of the GRASP with ILS heuristic for the diameter-
constrained minimum spanning tree on a typical instance with 100 nodes, using 15,
30, and 60 processors. These plots show that the approach scales appropriately when
the number of processors increases. We display in Table 10.4 some results obtained
by the sequential and the hierarchical distributed implementations of the GRASP
with ILS heuristic for this problem. The distributed strategy runs on 10 processors.
The sequential heuristic is allowed to run by as much as 10 times the time taken by
the grid implementation. We give the number of nodes and edges for each instance,
together with the costs of the best solutions found by each implementation and the
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Fig. 10.11 Time-to-target plots for the hierarchical distributed implementation of the GRASP with
ILS heuristic for the diameter-constrained minimum spanning tree on an instance with 100 nodes
running on a grid environment using 15, 30, and 60 processors.
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Table 10.4 Best solutions found by the sequential heuristic and by the grid implementation
running on 10 processors. The sequential heuristic is allowed to run by as much as 10 times the
time taken by the grid implementation.

Nodes Edges Grid Sequential Time (s)
60 600 738.000 740.000 2300.00
60 600 150.000 152.000 400.00
70 2415 6.981 6.983 230.00
70 2415 7.486 7.499 3000.00
70 2415 7.238 7.245 690.00

100 4950 7.757 7.835 1400.00
100 4950 7.930 7.961 5000.00
100 4950 8.176 8.204 3400.00

time given to the sequential heuristic. These results illustrate the robustness of the
hierarchical distributed strategy (due to the effectiveness of the cooperation through
the pools in two different levels), since it was able to systematically find better so-
lutions than those obtained by the sequential strategy in computation times 10 times
larger.

10.7 Applications

The first application of GRASP described in the literature concerned the set covering
problem [68]. Since then, GRASP has been applied to a wide range of problems. The
main applications areas are summarized below with links to specific references:

• routing [25, 29, 34, 45, 47, 53, 103, 110]
• logic [58, 75, 135, 149, 153, 154]
• covering and partitioning [10, 23, 26, 68, 85, 94]
• location [1, 50, 54, 57, 95, 98, 101, 132, 176, 177]
• minimum Steiner tree [46, 121–123, 165]
• optimization in graphs [2–4, 28, 70, 76, 77, 99, 104, 107, 116, 117, 122, 133,

137, 148, 150, 155, 161, 165, 173]
• assignment [5, 7, 67, 82, 108, 111, 113, 124, 127, 128, 130, 134, 136, 139, 143,

144, 152, 169]
• timetabling, scheduling, and manufacturing [6, 9, 11, 16, 18, 20, 31–33, 40, 43,

52, 56, 59, 64–66, 71, 72, 102, 105, 109, 126, 145, 166–168, 170, 179, 180]
• transportation [25, 30, 64, 67, 172]
• power systems [41, 42, 63]
• telecommunications [2, 14–16, 18, 27, 51, 101, 111, 138, 140, 143, 147, 148,

156, 174]
• graph and map drawing [54, 73, 106, 115, 116, 118, 131, 155, 161]
• biology [19, 62, 74]
• VLSI [23, 24]

The reader is referred to Festa and Resende [80] for a complete annotated
bibliography of GRASP applications.
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10.8 Concluding Remarks

The results described in this chapter reflect successful applications of GRASP to
a large number of classical combinatorial optimization problems, as well as to
those that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction procedures and local search methods)
that are often readily available. Contrary to what occurs with other metaheuristics,
such as tabu search or genetic algorithms, which make use of a large number of
parameters in their implementations, the basic version of GRASP requires the ad-
justment of a single parameter.

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; and path-relinking, which beyond allowing the
implementation of intensification strategies based on the memory of elite solutions
opens the way for the development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better quality solutions. To illustrate the effect of additional
extensions on solution quality, Figure 10.12 shows some results obtained for the

Fig. 10.12 Performance of GW approximation algorithm, a single GRASP iteration (GW followed
by local search), 500 iterations of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner tree problems.
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prize-collecting Steiner tree problem, as discussed in [46]. We consider the 40
instances of series C. The figure shows results for 11 different levels of solution
accuracy (varying from optimal to 10% from optimal). For each level of solution
accuracy, the figure shows the number of instances for which each component
found solutions within the accuracy level. The components were the primal–dual
constructive algorithm (GW) of Goemans and Williamson [92], GW followed by
local search (GW+LS), corresponding to the first GRASP iteration, 500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete algorithm, using vari-
able neighborhood search as a post-optimization procedure (GRASP+PR+VNS).
For example, we observe that the number of optimal solutions found goes from 6,
using only the constructive algorithm, to a total of 36, using the complete algorithm
described in [46]. The largest relative deviation with respect to the optimal value
decreases from 36.4% in the first case to only 1.1% for the complete algorithm. It is
easy to notice the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups
both in independent and in cooperative strategies. Cooperative strategies are based
on the collaboration between processors through path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in less
computation time.
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96. Hansen, P., Mladenović, N. Developments of variable neighborhood search. In: Ribeiro,
C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 415–439. Kluwer Norwoll,
MA (2002)

97. Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: An empirical study. Op. Res. Lett. 6,
107–114 (1987)

98. Holmqvist, K., Migdalas, A., Pardalos, P.M.: Greedy randomized adaptive search for a loca-
tion problem with economies of scale. In: Bomze, I.M. et al. (eds.) Developments in Global
Optimization, pp. 301–313. Kluwer, Boston, MA, USA (1997)

99. Holmqvist, K., Migdalas, A., Pardalos, P.M.: A GRASP algorithm for the single source unca-
pacitated minimum concave-cost network flow problem. In: Pardalos, P.M., Du, D.-Z. (eds.)
Network design: Connectivity and Facilities Location, DIMACS Series on Discrete Math-
ematics and Theoretical Computer Science, vol. 40 pp. 131–142. American Mathematical
Society, Providence, Rhode Island, USA (1998)

100. Johnson, D.S.: Local optimization and the traveling salesman problem. In: Proceedings
of the 17th Colloquium on Automata, LNCS, vol. 443 pp. 446–461. Springer, London, UK
(1990)

101. Klincewicz, J.G.: Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Ann. Op. Res. 40, 283–302 (1992)



316 Mauricio G.C. Resende and Celso C. Ribeiro

102. Klincewicz, J.G., Rajan, A.: Using GRASP to solve the component grouping problem. Nav.
Res. Logist. 41:893–912 (1994)

103. Kontoravdis, G., Bard, J.F.: A GRASP for the vehicle routing problem with time windows.
ORSA J. Comput. 7, 10–23 (1995)

104. Laguna, M., Feo, T.A., Elrod, H.C.: A greedy randomized adaptive search procedure for the
two-partition problem. Op. Res. 42, 677–687 (1994)
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