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Montréal, QC H3C 3A7, Canada
michel.gendreau@cirrelt.ca

Jean-Yves Potvin
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Preface

The first edition of the Handbook of Metaheuristics was published in 2003 under
the editorship of Fred Glover and Gary A. Kochenberger. Given the numerous de-
velopments observed in the field of metaheuristics in recent years, it appeared that
the time was ripe for a second edition of the Handbook. For different reasons, Fred
and Gary were unable to accept Springer’s invitation to prepare this second edi-
tion and they suggested that we should take over the editorship responsibility of the
Handbook. We are deeply honored and grateful for their trust.

As stated in the first edition, metaheuristics are “solution methods that orches-
trate an interaction between local improvement procedures and higher level strate-
gies to create a process capable of escaping from local optima and performing a
robust search of a solution space.” Although this broad characterization still holds
today, many new and exciting developments and extensions have been observed in
the last few years. We think in particular to hybrids, which take advantage of the
strengths of each of their individual metaheuristic components to better explore the
solution space. Hybrids of metaheuristics with other optimization techniques, like
branch-and-bound, mathematical programming or constraint programming are also
increasingly popular. On the front of applications, metaheuristics are now used to
find high-quality solutions to an ever-growing number of complex, ill-defined real-
world problems, in particular combinatorial ones.

This second edition of the Handbook of Metaheuristics, through its 21 chapters,
is designed to provide a broad coverage of the concepts, implementations, and ap-
plications in this important field of optimization. We were glad to get a positive re-
sponse from renowned experts for each chapter. They either accepted to revise and
update their chapter from the first edition or to write brand new ones. The Hand-
book now includes updated chapters on the best known metaheuristics, including
simulated annealing, tabu search, variable neighborhood search, scatter search and
path relinking, genetic algorithms, memetic algorithms, genetic programming, ant
colony optimization, multi-start methods, greedy randomized adaptive search proce-
dure, guided local search, hyper-heuristics, and parallel metaheuristics. It also con-
tains three new chapters on large neighborhood search, artificial immune systems,
and hybrid metaheuristics. The last four chapters are devoted to more general issues
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viii Preface

related to the field of metaheuristics, namely reactive search, stochastic search, fit-
ness landscape analysis, and performance comparison. A few chapters from the first
edition were discarded, as they appear to be less relevant.

We think that this Handbook will be a great reference for researchers and grad-
uate students, as well as practitioners. Each presentation, although exhibiting in-
evitable stylistic differences, adheres to some common principles which results in
stand-alone chapters that can be read individually.

We are grateful to all authors for taking the time to write the chapters that ap-
pear in this Handbook. We are also very grateful to Fred Hillier, Neil Levine, and
Matthew Amboy of Springer for their encouragements, support, and patience at the
different stages of production of this book.

Montreal, Canada Michel Gendreau
March 2010 Jean-Yves Potvin



Preface to First Edition

Metaheuristics, in their original definition, are solution methods that orchestrate an
interaction between local improvement procedures and higher level strategies to cre-
ate a process capable of escaping from local optima and performing a robust search
of a solution space. Over time, these methods have also come to include any proce-
dures that employ strategies for overcoming the trap of local optimality in complex
solution spaces, especially those procedures that utilize one or more neighborhood
structures as a means of defining admissible moves to transition from one solution
to another, or to build or destroy solutions in constructive and destructive processes.

The degree to which neighborhoods are exploited varies according to the type
of procedure. In the case of certain population-based procedures, such as genetic
algorithms, neighborhoods are implicitly (and somewhat restrictively) defined by
reference to replacing components of one solution with those of another, by vari-
ously chosen rules of exchange popularly given the name of “crossover.” In other
population-based methods, based on the notion of path relinking, neighborhood
structures are used in their full generality, including constructive and destructive
neighborhoods as well as those for transitioning between (complete) solutions. Cer-
tain hybrids of classical evolutionary approaches, which link them with local search,
also use neighborhood structures more fully, though apart from the combination
process itself. Meanwhile, “single thread” solution approaches, which do not un-
dertake to manipulate multiple solutions simultaneously, run a wide gamut that not
only manipulate diverse neighborhoods but incorporate numerous forms of strate-
gies ranging from thoroughly randomized to thoroughly deterministic, depending on
the elements such as the phase of search or (in the case of memory-based methods)
the history of the solution process.1

1 Methods based on incorporating collections of memory-based strategies, invoking forms of mem-
ory more flexible and varied than those used in approaches such as tree search and branch and
bound, are sometimes grouped under the name Adaptive Memory Programming. This term, which
originated in the tabu search literature where such adaptive memory strategies were first introduced
and continue to be the primary focus, is also sometimes used to encompass other methods that have
more recently adopted memory-based elements.
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x Preface to First Edition

A number of the tools and mechanisms that have emerged from the creation
of metaheuristic methods have proved to be remarkably effective, so much so that
metaheuristics have moved into the spotlight in recent years as the preferred line
of attack for solving many types of complex problems, particularly those of a com-
binatorial nature. While metaheuristics are not able to certify the optimality of the
solutions they find, exact procedures (which theoretically can provide such a cer-
tification, if allowed to run long enough)2 have often proved incapable of finding
solutions whose quality is close to that obtained by the leading metaheuristics—
particularly for real-world problems, which often attain notably high levels of com-
plexity. In addition, some of the more successful applications of exact methods
have come about by incorporating metaheuristic strategies within them. These out-
comes have motivated additional research and application of new and improved
metaheuristic methodologies.

This handbook is designed to provide the reader with a broad coverage of the
concepts, themes, and instrumentalities of this important and evolving area of opti-
mization. In doing so, we hope to encourage an even wider adoption of metaheuristic
methods for assisting in problem solving and to stimulate research that may lead to
additional innovations in metaheuristic procedures.

The handbook consists of 19 chapters. Topics covered include scatter search,
tabu search, genetic algorithms, genetic programming, memetic algorithms, variable
neighborhood search, guided local search, GRASP, ant colony optimization, simu-
lated annealing, iterated local search, multi-start methods, constraint programming,
constraint satisfaction, neural network methods for optimization, hyper-heuristics,
parallel strategies for metaheuristics, metaheuristic class libraries, and A-teams.
This family of metaheuristic chapters, while not exhaustive of the many approaches
that have sprung into existence in recent years, encompasses the critical strategic
elements and their underlying ideas that represent the state of the art of modern
metaheuristics.

This book is intended to provide the communities of both researchers and prac-
titioners with a broadly applicable, up-to-date coverage of metaheuristic method-
ologies that have proven to be successful in a wide variety of problem settings and
that hold particular promise for success in the future. The various chapters serve as
stand-alone presentations giving both the necessary underpinnings as well as prac-
tical guides for implementation. The nature of metaheuristics invites an analyst to
modify basic methods in response to problem characteristics, past experiences, and
personal preferences, and the chapters in this handbook are designed to facilitate
this process as well.

2 Some types of problems seem quite amenable to exact methods, particularly to some of the
methods embodied in the leading commercial software packages for mixed integer programming.
Yet even by these approaches the “length of time” required to solve many problems exactly appears
to exceed all reasonable measure, including in some cases measures of astronomical scale. It has
been conjectured that metaheuristics succeed where exact methods fail because of their ability to
use strategies of greater flexibility than permitted to assure that convergence will inevitably be
obtained.



Preface to First Edition xi

The authors who have contributed to this volume represent leading figures from
the metaheuristic community and are responsible for pioneering contributions to the
fields they write about. Their collective work has significantly enriched the field
of optimization in general and combinatorial optimization in particular. We are es-
pecially grateful to them for agreeing to provide the first-rate chapters that appear
in this handbook. We would also like to thank our graduate students, Gyung Yung
and Rahul Patil, for their assistance. Finally, we would like to thank Gary Folven
and Carolyn Ford of Kluwer Academic Publishers for their unwavering support and
patience throughout this project.

Fred Glover
Gary A. Kochenberger
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Chapter 1
Simulated Annealing

Alexander G. Nikolaev and Sheldon H. Jacobson

Abstract Simulated annealing is a well-studied local search metaheuristic used to
address discrete and, to a lesser extent, continuous optimization problems. The key
feature of simulated annealing is that it provides a mechanism to escape local optima
by allowing hill-climbing moves (i.e., moves which worsen the objective function
value) in hopes of finding a global optimum. A brief history of simulated annealing
is presented, including a review of its application to discrete, continuous, and multi-
objective optimization problems. Asymptotic convergence and finite-time perfor-
mance theory for simulated annealing are reviewed. Other local search algorithms
are discussed in terms of their relationship to simulated annealing. The chapter also
presents practical guidelines for the implementation of simulated annealing in terms
of cooling schedules, neighborhood functions, and appropriate applications.

1.1 Background Survey

Simulated annealing is a local search algorithm (metaheuristic) capable of escap-
ing from local optima. Its ease of implementation and convergence properties and
its use of hill-climbing moves to escape local optima have made it a popular tech-
nique over the past two decades. It is typically used to address discrete and, to a
lesser extent, continuous optimization problems. Survey articles that provide a good
overview of simulated annealing’s theoretical development and domains of appli-
cation include [46, 55, 75, 90, 120, 144]. Aarts and Korst [1] and van Laarhoven

Alexander G. Nikolaev
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e-mail: anikolae@buffalo.edu

Sheldon H. Jacobson
Department of Computer Science, University of Illinois, Urbana, IL, USA 61801-2302
e-mail: shj@illinois.edu

M. Gendreau, J.-Y. Potvin (eds.), Handbook of Metaheuristics, 1
International Series in Operations Research & Management Science 146,
DOI 10.1007/978-1-4419-1665-5 1, c© Springer Science+Business Media, LLC 2010



2 Alexander G. Nikolaev and Sheldon H. Jacobson

and Aarts [155] devote entire books to the subject. Aarts and Lenstra [2] dedicate a
chapter to simulated annealing in their book on local search algorithms for discrete
optimization problems.

1.1.1 History and Motivation

Simulated annealing is so named because of its analogy to the process of physical
annealing with solids, in which a crystalline solid is heated and then allowed to cool
very slowly until it achieves its most regular possible crystal lattice configuration
(i.e., its minimum lattice energy state), and thus is free of crystal defects. If the
cooling schedule is sufficiently slow, the final configuration results in a solid with
such superior structural integrity. Simulated annealing establishes the connection
between this type of thermodynamic behavior and the search for global minima for
a discrete optimization problem. Furthermore, it provides an algorithmic means for
exploiting such a connection.

At each iteration of a simulated annealing algorithm applied to a discrete opti-
mization problem, the values for two solutions (the current solution and a newly
selected solution) are compared. Improving solutions are always accepted, while a
fraction of non-improving (inferior) solutions are accepted in the hope of escaping
local optima in search of global optima. The probability of accepting non-improving
solutions depends on a temperature parameter, which is typically non-increasing
with each iteration of the algorithm.

The key algorithmic feature of simulated annealing is that it provides a means to
escape local optima by allowing hill-climbing moves (i.e., moves which worsen the
objective function value). As the temperature parameter is decreased to zero, hill-
climbing moves occur less frequently, and the solution distribution associated with
the inhomogeneous Markov chain that models the behavior of the algorithm con-
verges to a form in which all the probability is concentrated on the set of globally
optimal solutions (provided that the algorithm is convergent; otherwise the algo-
rithm will converge to a local optimum, which may or may not be globally optimal).

1.1.2 Definition of Terms

To describe the specific features of a simulated annealing algorithm for discrete
optimization problems, several definitions are needed. Let Ω be the solution space
(i.e., the set of all possible solutions). Let f : Ω→ℜ be an objective function defined
on the solution space. The goal is to find a global minimum, ω∗ (i.e., ω∗ ∈ Ω such
that f (ω∗)≤ (ω) for all ω ∈ Ω). The objective function must be bounded to ensure
that ω∗ exists. Define N(ω) to be the neighborhood function for ω ∈ Ω. Therefore,
associated with every solution, ω ∈ Ω, are neighboring solutions, N(ω), that can be
reached in a single iteration of a local search algorithm.



1 Simulated Annealing 3

Simulated annealing starts with an initial solution ω ∈ Ω. A neighboring solu-
tion ω ′ ∈N(ω) is then generated (either randomly or using some pre-specified rule).
Simulated annealing is based on the Metropolis acceptance criterion [101], which
models how a thermodynamic system moves from the current solution (state) ω ∈Ω
to a candidate solution ω ′ ∈ N(ω), in which the energy content is being minimized.
The candidate solution, ω ′, is accepted as the current solution based on the accep-
tance probability

P{Accept ω ′ as next solution}=

{
exp[−( f (ω ′)− f (ω))/tk] if f (ω ′)− f (ω) > 0

1 if f (ω ′)− f (ω)≤ 0.

(1.1)

Define tk as the temperature parameter at (outer loop) iteration k, such that

tk > 0 for all k and lim
k→∞

tk = 0. (1.2)

This acceptance probability is the basic element of the search mechanism in simu-
lated annealing. If the temperature is reduced sufficiently slowly, then the system can
reach an equilibrium (steady state) at each iteration k. Let f (ω) and f (ω ′) denote the
energies (objective function values) associated with solutions ω ∈Ω and ω ′ ∈N(ω),
respectively. This equilibrium follows the Boltzmann distribution, which can be de-
scribed as the probability of the system being in state ω ∈ Ω with energy f (ω) at
temperature T such that

P{System is in state ω at temperature T} =
exp(− f (ω)/tk)

∑ω ′′∈Ω exp(− f (ω ′′)/tk)
. (1.3)

If the probability of generating a candidate solution ω ′ from the neighbors of solu-
tion ω ∈ Ω is gk(ω,ω ′), where

∑
ω ′∈N(ω)

gk(ω,ω ′) = 1, for all ω ∈ Ω, k = 1,2, ..., (1.4)

then a non-negative square stochastic matrix Pk can be defined with transition prob-
abilities

Pk(ω,ω ′) =

⎧⎪⎨
⎪⎩

gk(ω,ω ′)exp(−Δω,ω ′/tk) ω ′ ∈ N(ω), ω ′ �= ω
0 ω ′ /∈ N(ω), ω ′ �= ω

1−∑ω ′′∈N(ω),ω ′′ �=ω Pk(ω,ω ′′) ω ′ = ω
(1.5)

for all solutions ω ∈Ω and all iterations k = 1,2, ... and with Δω,ω ′ ≡ f (ω ′)− f (ω).
These transition probabilities define a sequence of solutions generated from an in-
homogeneous Markov chain [120]. Note that boldface type indicates matrix/vector
notation, and all vectors are row vectors.
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1.1.3 Statement of Algorithm

Simulated annealing is outlined in pseudo-code (see [46]).

Select an initial solution ω ∈ Ω
Select the temperature change counter k = 0
Select a temperature cooling schedule, tk
Select an initial temperature T = t0 ≥ 0
Select a repetition schedule, Mk, that defines the number of iterations executed at
each temperature, tk
Repeat

Set repetition counter m = 0
Repeat

Generate a solution ω ′ ∈ N(ω)
Calculate Δω,ω ′ = f (ω ′)− f (ω)
If Δω,ω ′ ≤ 0, then ω ← ω ′
If Δω,ω ′ > 0, then ω ← ω ′ with probability exp(−Δω,ω ′/tk)
m ← m+1

Until m = Mk

k ← k +1
Until stopping criterion is met

This simulated annealing formulation results in M0 + M1 + · · ·+ Mk total itera-
tions being executed, where k corresponds to the value for tk at which some stopping
criterion is met (for example, a pre-specified total number of iterations has been ex-
ecuted or a solution of a certain quality has been found). In addition, if Mk = 1 for
all k, then the temperature changes at each iteration.

1.1.4 Discrete Versus Continuous Problems

The majority of the theoretical developments and application work with simulated
annealing has been for discrete optimization problems. However, simulated anneal-
ing has also been used as a tool to address problems in the continuous domain. There
is considerable interest in using simulated annealing for global optimization over
regions containing several local and global minima (due to an inherent non-linearity
of objective functions). Fabian [48] studies the performance of simulated annealing
methods for finding a global minimum of a given objective function. Bohachevsky
et al. [15] propose a generalized simulated annealing algorithm for function opti-
mization for use in statistical applications, and Locatelli [96] presents a proof of
convergence for the algorithm. Optimization of continuous functions involves find-
ing a candidate solution by picking a direction from the current (incumbent) so-
lution and a step size to take in this direction and evaluating the function at the
new (candidate) location. If the function value of this candidate location is an im-
provement over the function value of the incumbent location, then the candidate
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becomes the incumbent. This migration through local minima in search of a global
minimum continues until the global minimum is found or some termination criteria
are reached. Belisle [12] presents a special simulated annealing algorithm for global
optimization, which uses a heuristically motivated cooling schedule. This algorithm
is easy to implement and provides a reasonable alternative to existing methods.

Belisle et al. [13] discuss convergence properties of simulated annealing
algorithms applied to continuous functions and apply these results to hit-and-run
algorithms used in global optimization. The presented convergence properties are
consistent with those presented in [72] and provide a good contrast between con-
vergence in probability and (the stronger) almost sure convergence. This work is
further extended in [166] to an improved hit-and-run algorithm used for global
optimization.

Fleischer and Jacobson [57] propose cybernetic optimization by simulated an-
nealing as a method of parallel processing that accelerates the convergence of simu-
lated annealing to the global optima. This theory is extended by Fleischer [56] into
the continuous domain by applying probabilistic feedback control to the genera-
tion of candidate solutions. The probabilistic feedback control method of generating
candidate solutions effectively accelerates convergence to a global optimum using
parallel simulated annealing on continuous variable problems.

Locatelli [94] presents convergence properties for a class of simulated anneal-
ing algorithms for continuous global optimization by removing the restriction that
the next candidate point must be generated according to a probability distribution
whose support is the whole feasible set. A study on simulated annealing algorithms
for globally minimizing functions of multiple continuous variables is conducted by
Siarry et al. [131]. The study focuses on how high dimensionality can be addressed
using variables discretization and addresses the design and implementation issues
for several complementary stopping criteria. Convergence results and criteria for
simulated annealing applied to continuous global optimization problems are also
provided in [163] and [95]. A general-purpose simulated annealing algorithm that
solves mixed integer linear programs is introduced by Kiatsupaibul and Smith [88].
The simulated annealing algorithm is constructed using a Markov chain sampling
algorithm to generate uniformly distributed points on an arbitrary bounded region
of a high-dimensional integer lattice. They show that the algorithm converges in
probability to a global optimum. Romeijn et al. [119] study a simulated anneal-
ing algorithm that uses a reflection generator for mixed integer/continuous global
optimization problems. Locatelli [96] establishes the convergence of simulated an-
nealing algorithms for continuous global optimization and an upper bound for the
expected first hitting time, i.e., the expected number of iterations before reaching
the global optimum value within accuracy ε .

1.1.5 Single-objective Versus Multi-objective Problems

Originally used as an optimization tool for combinatorial optimization problems,
simulated annealing has recently been adapted to address multi-objective problems



6 Alexander G. Nikolaev and Sheldon H. Jacobson

(see [144]). Its framework is easy to implement and simulated annealing-based
algorithms are capable of producing a Pareto set of solutions in a single run with
very little computational cost. Additionally, its performance is not influenced by
the shape of the Pareto set, which is a concern for mathematical programming
techniques.

The first multi-objective version of simulated annealing has been proposed by
Serafini [128, 129]. The method closely follows the guidelines of regular single-
objective simulated annealing and uses a modification of the solution acceptance
criteria in the original algorithm. Various alternative criteria have been investigated,
with the objective to increase the probability of accepting non-dominated solutions.
A special selection rule produced by the combination of several criteria has been
proposed in order to concentrate the search almost exclusively on the non-dominated
solutions. This idea has also been used by Ulungu and Teghem [152] and Serafini
[130], with the latter utilizing a target-vector approach to solve a bi-objective opti-
mization problem. Ulungu et al. [154] propose a complete MOSA algorithm, where
a weighted aggregating function is used to evaluate and compare the obtained solu-
tions. The MOSA algorithm works with only one current solution but keeps a record
of the population of non-dominated solutions found during the search. A further im-
proved, interactive version of MOSA is presented in [153] and is referred to as
the UMOSA method. Suppapitnerm and Parks [145] propose a different simulated
annealing-based approach proposed to tackle multi-objective problems (SMOSA
method). At each iteration, the algorithm does the search based on one solution and
the annealing process adjusts the temperature adaptively, using the objective func-
tion value of the obtained solution in each of the multiple objectives. An archive is
created to store all the non-dominated solutions.

The idea of introducing the “new-acceptance” probability formulation based on
an annealing schedule with multiple temperatures (one for each objective) has also
been proposed. The acceptance probability of a “new solution” depends on whether
or not it is added to the set of potentially Pareto-optimal solutions. If it is added to
the Pareto set, then it is accepted as the current solution with probability equal to 1.
Otherwise, a multi-objective acceptance rule is used. Czyzak et al. [36] and Czyzak
and Jaszkiewicz [37] propose another way to adapt simulated annealing to a multi-
objective context, which combines the ideas of unicriterion simulated annealing and
genetic algorithms to provide efficient solutions for a multi-criteria shortest path
problem. A classical neighborhood search has been used to explore the population
of solutions, with the weight for each objective function adjusted in each iteration.
This technique increases the probability of escaping local optima, in a way similar
to multi-objective tabu search.

Suman [141–143] proposes different simulated annealing-based approaches to
tackle constrained multi-objective optimization problems. In [142], a comparative
analysis of five simulated annealing algorithms is conducted for the system relia-
bility optimization problem. The goal of these methods is to generate a set of solu-
tions that are a good approximation to the entire set of efficient (non-dominated or
Pareto-optimal) solutions over a fixed time period.
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Villalobos-Arias et al. [159, 160] study asymptotic convergence of simulated
annealing algorithms for multi-objective optimization problems in comparison with
other algorithms such as an Artificial Immune System and a General Evolution-
ary Algorithm. Tekinalp and Karsli [146] present a simulated annealing algorithm
for continuous multi-objective optimization that has an adaptive cooling schedule
and uses a population of fitness functions to accurately generate the Pareto front.
Whenever an improvement with a fitness function is encountered, the trial point is
accepted and the temperature parameters associated with the improving fitness func-
tions are cooled down. In addition to well-known linear fitness functions, special
elliptic and ellipsoidal fitness functions, suitable for the generation on non-convex
fronts, are used.

1.2 Convergence Results

1.2.1 Asymptotic Performance

Asymptotic convergence results for simulated annealing have typically taken one
of two directions: the algorithm has been modeled either as a sequence of homoge-
neous Markov chains or as a single inhomogeneous Markov chain.

1.2.1.1 Homogeneous Markov Chain Approach

The homogeneous Markov chain approach [3, 49, 70, 84, 85, 97, 104, 123] as-
sumes that each temperature tk is held constant for a sufficient number of iterations
m such that the stochastic matrix Pk can reach its stationary (steady-state) distribu-
tion πk. Note that in the interest of simplifying notation, the inner loop index m is
suppressed. However, the index k should be interpreted as the double index k,m,
where a sequence of m = 1,2, ...,Mk simulated annealing iterations occur for each
fixed k. The existence of a stationary distribution at each iteration k follows from
Theorem 1. (Note: To ensure that Theorem 1 is consistent with the simulated an-
nealing algorithm depicted in Section 1.1.3, without loss of generality, let tk be a
function only of each outer loop iteration k, and let the respective number of inner
loop iterations Mk and outer loop iterations k each approach infinity).

Theorem 1 Let Pk(ω,ω ′) be the probability of moving from solution ω to solution

ω ′ in one inner iteration at outer loop k, and let P(m)
k (ω,ω ′) be the probability of

going from solution ω to solution ω ′ in m inner loops. If the Markov chain associ-

ated with P(m)
k (ω,ω ′) is irreducible and aperiodic with finitely many solutions, then

limm→∞ P(m)
k (ω,ω ′) = πk(ω ′) exists for all ω,ω ′ ∈Ω and iterations k. Furthermore,

πk(ω ′) is the unique strictly positive solution of
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πk(ω ′) = ∑
ω∈Ω

πk(ω)Pk(ω,ω ′), for all ω ′ ∈ Ω, (1.6)

and

∑
ω∈Ω

πk(ω) = 1. (1.7)

Proof See [33].
The key requirements for the existence of the stationary distributions and for the

convergence of the sequence of πk vectors include the following:

1. transition matrix irreducibility (for every finite outer loop k, the transition matrix
can assign a path of non-zero probability between any two solutions ω,ω ′ ∈ Ω),

2. aperiodicity (starting at solution ω ′ ∈ Ω), it is possible to return to ω,ω ′ with
period 1; see [78],

3. A non-zero stationary probability distribution, as the number of outer loops k
approaches infinity.

Note that all simulated annealing proofs of convergence in the literature based on
homogeneous Markov chain theory, either explicitly or implicitly, use the sufficient
condition of reversibility (also called detailed balance; see [122]) defined as

πk(ω)Pk(ω,ω ′) = πk(ω ′)Pk(ω ′,ω), for all ω,ω ′ ∈ Ω, and all iterations k. (1.8)

Reversibility is a sufficient condition for a unique solution to exist for Equa-
tions (1.6) and (1.7) at each outer loop iteration k. A necessary condition for re-
versibility is multiplicativity. That is, for any three solutions ω,ω ′,ω ′′ ∈ Ω such
that f (ω)≤ f (ω ′)≤ f (ω ′′) and for all iterations k,

κk(Δω,ω ′′) = κk(Δω,ω ′)κk(Δω ′,ω ′′), (1.9)

where κk(Δω,ω ′) is the probability of accepting the transition from solution ω to
solution ω ′ at outer loop iteration k. Reversibility is enforced by assuming condi-
tions of symmetry on the solution generation probabilities gk and either by directly
expressing the acceptance probability using an exponential form or by requiring the
multiplicative condition in Equation (1.9).

The homogeneous Markov chain proofs of convergence in the literature (implic-
itly or explicitly) require the condition in Equation (1.9) to hold for the acceptance
function and then address the sufficient conditions on the solution generation ma-
trix Pk. For example, the original homogeneous proofs of convergence [3, 97] re-
quire the multiplicative condition for the acceptance function, and then assume that
the solution generation matrix is symmetric and constant for all outer loop itera-
tions k. Rossier et al. [123] partition the solution space into blocks composed of
neighboring solutions of equal objective function value and then require that only
the solution generation probabilities be symmetric between these blocks. Rossier
et al. then express the acceptance function as a ratio of the stationary distribu-
tion probabilities. Faigle and Schrader [51] and Faigle and Kern [49] use a graph
theoretic approach to relax the solution generation matrix symmetry condition.
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However, they require that the solution acceptance probability function satisfies
Equation (1.9).

Granville et al. [70] propose a simulated annealing procedure for filtering binary
images, where the acceptance function is based on the probability of the current
solution, instead of the change in objective function value. The probability function
that Granville et al. [70] present for accepting a candidate solution at (outer loop) it-
eration k is based on the ratio of the stationary probability of the incumbent solution
from iteration k−1 versus the stationary probability of an initial solution (which is
based on a maximum likelihood estimate). The acceptance probability is

ξk = qπ0(ω)/πφ(k)
k−1 (ω ′) (1.10)

where q = infω∈Ω π(ω)/supω ′∈Ω π(ω ′) (q must also be estimated), and φ(k) is a
slowly increasing function. Therefore, the probability of a solution transition does
not consider the objective function value of the candidate solution. Granville et al.
[70] provide a proof of asymptotic convergence of this approach, but note that the
proof methodology does not show that the set of globally optimal solutions are
asymptotically uniformly distributed.

Simulated annealing and the homogeneous convergence theory are based on the
work of Metropolis et al. [101], which addresses problems in equilibrium statistical
mechanics [74]. To see this relationship, consider a system in thermal equilibrium
with its surroundings, in solution (state) S with energy F(S). The probability density
in phase space of the point representing S is proportional to

exp(−F(S)/bT ), (1.11)

where b is the Boltzmann constant, and T is the absolute temperature of the sur-
roundings. Therefore the proportion of time that the system spends in solution S is
proportional to Equation (1.11) (see [74]), hence the equilibrium probability density
for all S ∈ Ω is

πs =
exp(−F(S)/bT )∫
exp(−F(S)/bT )dS

. (1.12)

The expectation of any valid solution function f (S) is thus

E[ f ] =
∫

f (S)exp(−F(S)/bT )dS∫
exp(−F(S)/bT )dS

. (1.13)

Unfortunately, for many solution functions, Equation (1.13) cannot be evaluated
analytically. Hammersley and Handscomb [74] note that one could theoretically
use naive Monte Carlo techniques to estimate the value of the two integrals in
Equation (1.13). However, this often fails in practice since the exponential factor
means that a significant portion of the integrals is concentrated in a very small
region of the solution space Ω. This problem can be overcome using importance
sampling (see [18], Chapter 2), by generating solutions with probability density
Equation (1.12). This approach would also seem to fail, because of the integral in
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the denominator of Equation (1.12). However, Metropolis et al. [101] solve this
problem by first discretizing the solution space, such that the integrals in Equa-
tions (1.12) and (1.13) are replaced by summations over the set of discrete solutions
ω ′ ∈ Ω, and then by constructing an irreducible, aperiodic Markov chain with tran-
sition probabilities P(ω,ω ′) such that

π(ω ′) = ∑
ω∈Ω

π(ω)P(ω,ω ′) for all ω ′ ∈ Ω, (1.14)

where

π(ω ′) =
exp(−F(ω ′)/bT )

∑ω∈Ω exp(−F(ω)/bT )dS
for all ω ′ ∈ Ω. (1.15)

Note that to compute the equilibrium distribution π , the denominator of Equa-
tion (1.13) (a normalizing constant) does not need to be calculated. Instead, the
ratios π(ω ′)/π(ω) need only be computed and a transition matrix P defined that
satisfies Equation (1.14). Hammersley and Handscomb [74] show that Metropolis
et al. [101] accomplish this by defining P as the product of symmetric solution gen-
eration probabilities g(ω,ω ′), and the equilibrium ratios π(ω ′)/π(ω),

P(ω,ω ′) =

⎧⎨
⎩

g(ω,ω ′)π(ω ′)/π(ω) if π(ω ′)/π(ω) < 1, ω ′ �= ω
g(ω,ω ′) if π(ω ′)/π(ω)≥ 1, ω ′ �= ω

g(ω,ω ′)+Δ if ω ′ = ω
(1.16)

with Δ = ∑ω ′′∈Ω,π(ω ′′)<π(ω) g(ω,ω ′′)(1− (π(ω ′′)/π(ω))), where

g(ω,ω ′)≥ 0, ∑
ω ′∈Ω

g(ω,ω ′) = 1, and g(ω,ω ′) = g(ω ′,ω) for all ω,ω ′ ∈ Ω.

(1.17)

The use of stationary probability ratios to define the solution acceptance probabili-
ties, combined with symmetric solution generation probabilities, enables Metropolis
et al. [101] to use the reversibility condition in Equation (1.8) to show that
Equations (1.16) and (1.17) satisfy Equation (1.14).

Homogeneous proofs of convergence for simulated annealing become more dif-
ficult to establish when the reversibility condition is not satisfied. Note that the ex-
istence of a unique stationary distribution for each outer loop iteration k is easily
shown by specifying that each transition matrix Pk be irreducible and aperiodic.
On the other hand, it becomes very difficult to derive an explicit closed-form ex-
pression for each stationary distribution πk that remains analytically tractable as the
problem’s solution space becomes large. One can no longer use Equation (1.8) to
describe each stationary distribution, since, in general, the multiplicative condition
is not met. Instead, one must directly solve the system of equations formed with
Equations (1.6) and (1.7). For example, in [38], Davis attempts to obtain a closed-
form expression for πk by using Cramer’s rule and rewriting Equation (1.6) and
(1.7) as
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πk(I−Pk) = 0 (1.18)

and
πkeT = 1, (1.19)

respectively, where boldface type indicates vector/matrix notation, I is the identity
matrix, and eT is a column vector of ones. Note that the card(Ω)× card(Ω) transi-
tion matrix Pk associated with Equation (1.18) is of rank card(Ω)−1 [33]. There-
fore, by deleting any one equation from Equation (1.18) and substituting Equation
(1.19), the result is the set of card(Ω) linearly independent equations

πk(I−Pk)[i] = ei, (1.20)

where the square matrix (I−Pk)[i] is obtained by substituting the ith column of ma-
trix (I−Pk) with a column vector of ones. The vector ei is a row vector of zeroes,
except for a one in the ith position. Since (I−Pk)[i] is of full rank, then its determi-
nant (written as det((I−Pk)[i])) is non-zero. Define (I−Pk)ω to be the same matrix
as (I−Pk) except that the elements of the ωth row of (I−Pk) are replaced by the
vector eω . Therefore, for all iterations k,

πk(ω) =
det((I−Pk)[i]

ω
)

det((I−Pk)[i])
, for all ω ∈ Ω. (1.21)

In [38], an attempt is made to solve Equation (1.21) for each ω ∈Ω via a multivariate
Taylor series expansion of each determinant, but the method failed to produce a
closed-form analytical expression.

Overall, the difficulty of explicitly expressing the stationary distributions for
large solution spaces, combined with bounding the transition matrix condition num-
ber for large k, suggests that it is very difficult to prove asymptotic convergence of
the simulated annealing algorithm by treating Equations (1.5) and (1.6) as a linear
algebra problem.

Lundy and Mees [97] note that for each fixed outer loop iteration k, conver-
gence to the solution equilibrium probability distribution vector πk (in terms of the

Euclidean distance between P(m)
k and πk, as m→+∞) is geometric since the solution

space is finite, and the convergence factor is given by the second largest eigenvalue
of the transition matrix Pk. This result is based on a standard convergence theorem
for irreducible, aperiodic homogeneous Markov chains (see [33]). Note that a large
solution space precludes practical calculation of this eigenvalue. Lundy and Mees
[97] conjecture that when the temperature tk is near zero, the second largest eigen-
value will be close to one for problems with local optima, and thus convergence to
the equilibrium distribution will be very slow (recall that the dominant eigenvalue
for Pk is 1, with algebraic multiplicity 1 [78]). Lundy and Mees [97] use the con-
jecture to justify why simulated annealing should be initiated with a relatively high
temperature. For an overview of current methods for assessing non-asymptotic rates
of convergence for general homogeneous Markov chains, see [121].

The assumption of stationarity for each outer loop iteration k limits practi-
cal application of homogeneous Markov chain theory. Romeo and Sangiovanni-
Vincentelli [120] show that if equilibrium (for a Markov chain that satisfies the



12 Alexander G. Nikolaev and Sheldon H. Jacobson

reversibility condition) is reached in a finite number of steps, then it can be achieved
in one step. Thus, Romeo and Sangiovanni-Vincentelli [120] conjecture that there
is essentially no hope for the most used versions of simulated annealing to reach
equilibrium in a finite number of iterations.

1.2.1.2 Inhomogeneous Markov Chain Approach

The second convergence approach for simulated annealing is based on inhomoge-
neous Markov chain theory [10, 65, 104]. In this approach, the Markov chain need
not reach a stationary distribution (e.g., the simulated annealing inner loop need not
be infinitely long) for each outer loop k. On the other hand, an infinite sequence of
(outer loop) iterations k must still be examined, with the condition that the temper-
ature parameter tk cool sufficiently slowly. The proof given by Mitra et al. [104] is
based on satisfying the inhomogeneous Markov chain conditions of weak and strong
ergodicity [78, 127]. The proof requires four conditions:

1. The inhomogeneous simulated annealing Markov chain must be weakly er-
godic (i.e., dependence on the initial solution vanishes in the limit).

2. An eigenvector πk with eigenvalue 1 must exist such that Equations (1.6) and
(1.7) hold for every iteration k.

3. The Markov chain must be strongly ergodic (i.e., the Markov chain must be
weakly ergodic and the sequence of eigenvectors πk must converge to a limit-
ing form), i.e.,

∞

∑
k=0

‖πk −πk+1‖< +∞. (1.22)

4. The sequence of eigenvectors must converge to a form where all probability
mass is concentrated on the set of globally optimal solutions ω∗. Therefore,

lim
k→∞

πk = πopt, (1.23)

where πopt is the equilibrium distribution with only global optima having prob-
abilities greater than 0. (Note that weak and strong ergodicity are equivalent for
homogeneous Markov chain theory.)

Mitra et al. [104] satisfy condition 1 (weak ergodicity) by first forming a lower
bound on the probability of reaching any solution from any local minimum and
then showing that this bound does not approach zero too quickly. For example,
they define the lower bound for the simulated annealing transition probabilities in
Equation (1.5) as

P(m)(ω,ω ′)≥ wm exp(−mΔL/tkm−1), (1.24)

for any integer k greater than or equal to some fixed integer k0, where m is the num-
ber of transitions needed to reach any solution from any solution of non-maximal
objective function value, w > 0 is a lower bound on the one-step solution genera-
tion probabilities, ΔL is the maximum one-step increase in objective function value
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between any two solutions, and tkm−1 is a temperature at iteration km− 1. Mitra
et al. [104] show that the Markov chain is weakly ergodic if for any fixed integer k0

∞

∑
k=k0

exp(−mΔL/tkm−1) = +∞. (1.25)

Therefore, weak ergodicity is obtained if the temperature tk is reduced sufficiently
slowly to zero such that Equation (1.25) is satisfied. In general, the (infinite) se-
quence of temperatures {tk}, k = 1,2, ..., must satisfy

tk ≥ β
log(k)

, (1.26)

where limk→∞ tk = 0, β is a problem-dependent constant and k is the number of it-
erations. Mitra et al. [104] show that conditions (1.2), (1.3), and (1.4) are satisfied
by using the homogeneous Markov chain theory developed for the transition proba-
bilities Equation (1.5), provided that the solution generation function is symmetric.

Romeo and Sangiovanni-Vincentelli [120] note that while the logarithmic cool-
ing schedule in Equation (1.26) is a sufficient convergence condition, there are only
a few values for β which make the logarithmic rule also necessary. Furthermore,
there exists a unique choice for β which makes the logarithmic rule both neces-
sary and sufficient for the convergence of simulated annealing to the set of global
optima. In [72], Hajek was the first to show that the logarithmic cooling schedule
(Equation (1.26)) is both necessary and sufficient, by developing a tight lower bound
for β , namely the depth of the deepest local minimum which is not a global mini-
mum, under a weak reversibility assumption (note that Hajek requires the depth of
global optima to be infinitely large). Hajek defines a Markov chain to be weakly
reversible if, for any pair of solutions ω,ω ′ ∈ Ω and for any non-negative real num-
ber h, ω is reachable at height h from ω ′ if and only if ω ′ is reachable at height h
from ω . Note that Hajek [72] does not attempt to satisfy the conditions of weak and
strong ergodicity, but rather uses a more general probabilistic approach to develop
a lower bound on the probability of escaping local, but not global, optima. Connors
and Kumar [35] substantiate the necessary and sufficient conditions in Hajek [72]
using the orders of recurrence,

Bi ≡ sup

{
x ≥ 0:

∞

∑
k=0

exp(−x/tk)πk(ω) = +∞

}
for all i ∈ Ω. (1.27)

Connors and Kumar [35] show that these orders of recurrence quantify the asymp-
totic behavior of each solution’s probability in the solution distribution. The key
result is that the simulated annealing inhomogeneous Markov chain converges in
a Cesaro sense to the set of solutions having the largest recurrence orders. Borkar
[16] improves this convergence result by using a convergence/oscillation dichotomy
result for martingales. Tsitsiklis [150] uses bounds and estimates for singularly per-
turbed, approximately stationary Markov chains to develop a convergence theory
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that subsumes the condition of weak reversibility in [72]. Note that Tsitsiklis [150]
defines N(h) ⊂ Ω as the set of all local minima (in terms of objective function
value) of depth h + 1 or more. Therefore β is the smallest h such that all local (but
not global) minima have depth h or less. Tsitsiklis conjectures that without some
form of reversibility, there does not exist any h such that the global optima are
contained in the set of local optima. Note that in [16, 28, 30, 35, 72, 104], the multi-
plicative condition (1.9) is required (either explicitly or implicitly) for the proofs of
convergence.

Anily and Federgruen [10] use perturbation analysis techniques (e.g., see [102])
to prove convergence of a particular stochastic hill-climbing algorithm by bounding
the deviations of the sequence of stationary distributions of the particular hill-
climbing algorithm against the sequence of known stationary distributions corre-
sponding to a simulated annealing algorithm. In general, this convergence proof
approach is only useful for a restrictive class of simulated annealing algorithms,
since the transition matrix condition number grows exponentially as the number of
iterations k becomes large.

Anily and Federgruen [10] also present a proof of convergence for simulated
annealing with general acceptance probability functions. Using inhomogeneous
Markov chain theory, they prove convergence under the following necessary and
sufficient conditions:

1. The acceptance probability function must, for any iteration k, allow any hill-
climbing transition to occur with positive probability.

2. The acceptance probability function must be bounded and asymptotically mono-
tone, with limit zero for hill-climbing solution transitions.

3. In the limit, the stationary probability distribution must have 0 probability mass
for every non-globally optimal solution.

4. The probability of escaping from any locally (but not globally) optimal solution
must not approach 0 too quickly.

Anily and Federgruen [10] use condition (3) to relax the acceptance function mul-
tiplicative condition (1.9). However, in practice, condition (3) would be very dif-
ficult to check without assuming that Equation (1.9) holds. Condition (4) provides
the necessary condition for the rate that the probability of hill-climbing transitions
approaches 0. Condition (4) is expressed quantitatively as follows: let tk be defined
by Equation (1.2) and define the minimum one-step acceptance probability as

ak = minω∈Ω,ω ′∈N(ω) atk(ω,ω ′). (1.28)

Define the set of local optima L ⊂ Ω such that ω ∈ L implies that f (ω)≤ f (ω ′) for
all ω ′ ∈ N(ω), and let

ak = minω∈L,ω ′∈N(ω)\L atk(ω,ω ′). (1.29)

Finally, let any solution ω ′ ∈Ω be reachable from any solution ω ∈Ω in q transitions
or less. If (non-globally) locally optimal solutions exist,
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∞

∑
k=1

(ak)
q = +∞, (1.30)

and conditions (1), (2), and (3) hold, then the simulated annealing algorithm will
asymptotically converge to the set of global optima with probability 1. However, if
(non-globally) locally optimal solutions exist and

∞

∑
k=1

ak < +∞, (1.31)

then the simulated annealing algorithm will not always converge to the set of global
optima with probability 1. Johnson and Jacobson [85] relax the sufficient conditions
found in [10] by using a path argument between global optima and local (but not
global) optima.

Yao and Li [165] and Yao [164] also discuss simulated annealing algorithms with
general acceptance probabilities, though their primary contribution is with respect to
general neighborhood generation distributions. In [126], Schuur provides a descrip-
tion of acceptance functions ensuring the convergence of the associated simulated
annealing algorithm to the set of global optima.

The inhomogeneous proof concept is stronger than the homogeneous approach
in that it provides necessary conditions for the rate of convergence, but its asymp-
totic nature suggests that practical implementation may not be feasible. Romeo and
Sangiovanni-Vincentelli [120] note that “there is no reason to believe that truncating
the logarithmic temperature sequence would yield a good configuration, since the
tail of the sequence is the essential ingredient in the proof.” In addition, the loga-
rithmic cooling schedule dictates a very slow rate of convergence. Therefore, most
recent work has focused on methods of improving simulated annealing’s finite-time
behavior and modifying or blending the algorithm with other search methods such
as genetic algorithms [92], tabu search [66], or both [59].

1.2.2 Finite-Time Performance

Over the past decade, a growing body of work has been devoted to finite-time behav-
ior of simulated annealing. Jacobson and Yucesan [82] present necessary and suffi-
cient (asymptotic) convergence conditions for generalized hill climbing algorithms
that include simulated annealing as a special case. They also introduce new perfor-
mance measures that can be used to evaluate and compare both convergent and non-
convergent generalized hill-climbing algorithms with random restart local search
[79]. Such a comparison provides insights into both asymptotic and finite-time per-
formance of discrete optimization algorithms. For example, they use the global visit
probability to evaluate the performance of simulated annealing using random restart
local search as a benchmark. These results suggest that random restart local search
may outperform simulated annealing provided that a sufficiently large number of
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restarts are executed. In [60], Fox notes that a similar result that compares random
restart local search with simulated annealing can be true but only if both the num-
ber of accepted and rejected moves are counted. A clever example is also provided
in [60] to illustrate this point, which illustrates that comparing random restart local
search and simulating annealing may not be prudent. In [59] and [61], Fox presents
modifications of simulated annealing that circumvent the counting issue described
in [60], hence yielding superior performing simulated annealing algorithm imple-
mentations. The primary value of using simulated annealing may therefore be for
finite-time executions that obtain near-optimal solutions reasonably quickly. This,
in turn, suggests that studying the finite-time behavior of simulated annealing is
equally important as its asymptotic convergence.

Chiang and Chow [29] and Mazza [100] investigate the statistical properties of
the first visit time to a global optimum, which provides insight into asymptotic prop-
erties of the algorithm as the outer loop counter k→+∞. In [20], Catoni investigates
optimizing a finite-horizon cooling schedule to maximize the number of visits to a
global optimum after a finite number of iterations. In [44], Desai focuses on finite-
time performance by incorporating size-asymptotic information supplied by certain
eigenvalues associated with the transition matrix. Desai [44] also provides some
quantitative and qualitative information about the performance of simulated anneal-
ing after a finite number of steps, by observing the quality of solutions is related to
the number of steps that the algorithm has taken.

Srichander [133] examines the finite-time performance of simulated annealing
using spectral decomposition of matrices. He proposes that an annealing schedule
on the temperature is not necessary for the final solution of the simulated annealing
algorithm to converge to the global minimum with probability 1. Srichander shows
that initiating the simulated annealing algorithm with high initial temperatures pro-
duces an inefficient algorithm in the sense that the number of function evaluations
required to obtain a global minima is very large. A modified simulated anneal-
ing algorithm is presented with a low initial temperature and an iterative schedule
on the size of the neighborhood sets that leads to a more efficient algorithm. The
new algorithm is applied to a real-world example and computational performance is
reported.

Fleischer and Jacobson [58] use a reverse approach to establish theoretical
relationships between the finite-time performance of an algorithm and the charac-
teristics of problem instances. They observe that the configuration space created by
an instance of a discrete optimization problem determines the efficiency of simu-
lated annealing when applied to that problem. The entropy of the Markov chain
embodying simulated annealing is introduced as a measure that captures the entire
topology of the configuration space associated with the particular instance of the
discrete optimization problem. By observing the expected value of the final state in
a simulated annealing algorithm as it relates to the entropy value of the underlying
Markov chain, they present measures of performance that determine how well the
simulated annealing algorithm performs in finite time. Their computational results
suggest that superior finite time performance of a simulated annealing algorithm are
associated with higher entropy measures.
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Nolte and Schrader [111] give a proof of the convergence of simulated annealing
by applying results about rapidly mixing Markov chains. With this proof technique,
it is possible to obtain better bounds for the finite-time behavior of simulated an-
nealing than previously known.

To evaluate the expected run-time required by a simulated annealing algorithm
to reach solution of a pre-specified quality, Wood et al. [161] present an approach
to model and analyze a generic stochastic global optimization algorithm using a se-
quence of stochastic processes, culminating in a backtracking adaptive search pro-
cess. The theory developed for this backtracking adaptive search procedure is then
used to analyze the classic simulated annealing algorithm.

In [118], Rajasekaran presents an analysis of simulated annealing that provides
a time bound for convergence with very high probability. Convergence of simulated
annealing in the limit then follows as a corollary to the established finite-time per-
formance results.

1.3 Relationship to Other Local Search Algorithms

The hill-climbing strategy inherent in simulated annealing has lead to the formu-
lation of other such algorithms (e.g., threshold accepting, the noising method).
Moreover, though different in how they traverse the solution space, both tabu search
and genetic algorithms share with simulated annealing the objective of using local
information to find global optima over solution spaces with multiple local optima.

1.3.1 Threshold Accepting

Questioning the very need for a randomized acceptance function, Dueck and Scheuer
[45] and, independently, Moscato and Fontanari [106] propose the threshold accept-
ing algorithm, where the acceptance probability function is

ak(Δω,ω ′) =
{

1 if Qk ≥ Δω,ω ′
0 otherwise

,

with Qk defined as the threshold value at iteration k. Qk is typically set to be a deter-
ministic, non-increasing step function in k. Dueck and Scheuer [45] report compu-
tational results that suggest dramatic improvements in traveling salesman problem
solution quality and algorithm run-time over basic simulated annealing. Moscato
and Fontanari [106] report more conservative results—they conjecture that simu-
lated annealing’s probabilistic acceptance function does not play a major role in the
search for near-optimal solutions.

Althofer and Koschnick [8] develop a convergence theory for threshold accept-
ing based on the concept that simulated annealing belongs to the convex hull of
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threshold accepting. The idea presented in [8] is that (for a finite Qk threshold
sequence) there can exist only finitely many threshold accepting transition matri-
ces, but simulated annealing can have infinitely many transition matrices because of
the real-valued nature of the temperature at each iteration. However, every simulated
annealing transition matrix for a given problem can be represented as a convex com-
bination of the finitely many threshold accepting transition matrices. Althofer and
Koschnick [8] are unable to prove that threshold accepting will asymptotically reach
a global minimum, but it does prove the existence of threshold schedules that pro-
vide convergence to within an ε-neighborhood of the optimal solutions. Jacobson
and Yucesan [81] prove that if the threshold value approaches 0 as k approaches
infinity, then the algorithm does not converge in probability to the set of globally
optimal solutions.

Hu et al. [77] modify threshold accepting to include a non-monotonic, self-tuning
threshold schedule in the hope of improving the algorithm’s finite-time perfor-
mance. Hu et al. allow the threshold Qk to change dynamically (either up or down),
based on the perceived likelihood of being near a local minimum. These changes
are accomplished using a principle they call dwindling expectation—when the algo-
rithm fails to move to neighboring solutions, the threshold Qk is gradually increased,
in the hope of eventually escaping a local optimum. Conversely, when solution tran-
sitions are successful, the threshold is reduced, in order to explore local optima. The
experimental results based on two traveling salesman problems presented in [77]
showed that the proposed algorithm outperformed previous hill-climbing methods
in terms of finding good solutions earlier in the optimization process.

Threshold accepting’s advantages over simulated annealing lie in its ease of im-
plementation and its generally faster execution time, due to the reduced computa-
tional effort in avoiding acceptance probability computations and the generation of
random numbers [106]. However, compared to simulated annealing, relatively few
threshold accepting applications are reported in the literature [93, 110, 125].

1.3.2 Noising Method

Charon and Hudry [23] advocate a simple descent algorithm called the noising
method. The algorithm first perturbs the solution space by adding random noise
to the problem’s objective function values. The noise is gradually reduced to 0 dur-
ing the algorithm’s execution, allowing the original problem structure to reappear.
Charon and Hudry provide computational results, but do not prove that the algo-
rithm will asymptotically converge to the set of globally optimal solutions. Charon
and Hudry [24] show how the noising method is a generalization of simulated an-
nealing and threshold accepting.

Storer et al. [136] propose an optimization strategy for sequencing problems, by
integrating fast, problem-specific heuristics with local search. Its key contribution is
to base the definition of the search neighborhood on a heuristic problem pair (h, p),
where h is a fast, known, problem-specific heuristic and p represents the problem
data. By perturbing the heuristic, the problem, or both, a neighborhood of solutions
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is developed. This neighborhood then forms the basis for local search. The hope
is that the perturbations will cluster good solutions close together, thus making it
easier to perform local search.

1.3.3 Tabu Search

Tabu search [66] is a general framework for a variety of iterative local search strate-
gies for discrete optimization. Tabu search uses the concept of memory by control-
ling the algorithm’s execution via a dynamic list of forbidden moves. This allows the
tabu search algorithm to intensify or diversify its search of a given problem’s solu-
tion space in an effort to avoid entrapment in local optima. See [67] for a discussion
on the convergence of tabu search algorithms.

Given that simulated annealing is completely memoryless (i.e., simulated anneal-
ing disregards all historical information gathered during the algorithm’s execution),
tabu search provides an alternative mechanism to hill-climb and escape local optima.
Faigle and Kern [50] propose a particular tabu search algorithm called probabilis-
tic tabu search as a meta-heuristic to help guide simulated annealing. Probabilistic
tabu search attempts to capitalize on both the asymptotic optimality of simulated
annealing and the memory feature of tabu search. In probabilistic tabu search, the
probabilities of generating and accepting each candidate solution are set as func-
tions of both a temperature parameter (as in simulated annealing) and information
gained in previous iterations (as in tabu search). Faigle and Kern [50] are then able
to prove asymptotic convergence of their particular tabu search algorithm by using
methods developed for simulated annealing [49, 52]. Note that the results in [50]
build upon work by Glover [67] where probabilistic tabu search was first introduced
and contrasted with simulated annealing.

Vaughan and Jacobson [158] develop a framework, termed tabu guided general-
ized hill climbing, that uses a tabu release parameter that probabilistically accepts
solutions currently on the tabu list. The presented algorithms are modeled as a set of
stationary Markov chains, where the tabu list is fixed for each outer loop iteration.
This framework provides practitioners with guidelines for developing tabu search
strategies to use in conjunction with generalized hill-climbing algorithms that pre-
serve some of the algorithms’ known performance properties. Sufficient conditions
are obtained that indicate how to design iterations for problem-specific tabu search
strategies.

1.3.4 Genetic Algorithms

Genetic algorithms [92] emulate the evolutionary behavior of biological systems.
They generate a sequence of populations of candidate solutions to the underlying
optimization problem by using a set of genetically inspired stochastic solution
transition operators to transform each population of candidate solutions into a
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descendent population. The three most popular transition operators are reproduction,
cross-over, and mutation [38]. Davis and Principe [39] and Rudolph [124] attempt
to use homogeneous finite Markov chain techniques to prove convergence of genetic
algorithms [21], but are unable to develop a theory comparable in scope to that of
simulated annealing.

Zolfaghari and Liang [167] undertake a comparative study of simulated an-
nealing, genetic algorithms, and tabu search for solving binary (considering only
machines and part types) machine-grouping problems of varying types (involving
machine/part types, processing times, lot sizes, and machine capacities). To test
the performance of the three metaheuristics, two binary performance indices and
two generalized performance indices are used for binary and comprehensive ma-
chine/part grouping problems, respectively. The comparisons are made in terms of
solution quality, search convergence behavior, and pre-search effort. The results in-
dicate that simulated annealing outperforms both genetic algorithm and tabu search,
particularly for large problems.

In [107], Muhlenbein presents a theoretical analysis of genetic algorithms based
on population genetics. He counters the popular notion that models that mimic nat-
ural phenomenon are superior to other models. The article argues that evolutionary
algorithms can be inspired by nature, but do not necessarily have to copy a natural
phenomenon. He addresses the behavior of transition operators and designs new ge-
netic operators that are not necessarily related to events in nature, yet still perform
well in practice.

One criticism of simulated annealing is the slow speed at which it converges.
In [41], Delport combines simulated annealing with evolutionary algorithms to im-
prove performance in terms of speed and solution quality. The benefit of this hybrid
system of simulated annealing and evolutionary selection is due to the adjustments
in the cooling schedule based on fast recognition of the thermal equilibrium in terms
of selection intensity, which results in much faster convergence of the algorithm.

Sullivan and Jacobson [139, 140] link genetic algorithms with simulated an-
nealing using generalized hill-climbing algorithms [80]. They first link genetic
algorithms to ordinal hill-climbing algorithms, which can then be used, through
its formulation within the generalized hill-climbing algorithm framework, to form
a bridge with simulated annealing. Though genetic algorithms have proven to be
effective for addressing intractable discrete optimization problems and can be clas-
sified as a type of hill-climbing approach, its link with generalized hill-climbing
algorithms (through the ordinal hill-climbing formulation) provides a means to es-
tablish well-defined relationships with other generalized hill-climbing algorithms
(like simulated annealing and threshold accepting). They also present two formula-
tions of genetic algorithms that provide a first step toward developing a bridge be-
tween genetic algorithms and other local search strategies like simulated annealing.

1.3.5 Generalized Hill-Climbing Algorithms

Generalized hill-climbing algorithms (GHC) (see [80]) provide a framework for
modeling local search algorithms used to address intractable discrete optimization
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problems. All generalized hill-climbing algorithms have the same basic structure,
but can be tailored to a specific instance of a problem by changing the hill-climbing
random variable (which is used to accept or reject inferior solutions) and neighbor-
hood functions. Generalized hill-climbing algorithms are described in pseudo-code
form:

Select an initial solution ω ∈ Ω
Set the outer loop counter bound K and the inner loop counter bounds Mk, k =
1,2, ...,K
Define a set of hill-climbing (random) variables Rk : Ω ×Ω → (−∞,+∞), k =
1,2, ...,K
Set the iteration indices k = m = 1
Repeat while k ≤ K

Repeat while m ≤ Mk

Generate a solution ω ′ ∈ N(ω)
Calculate Δω,ω ′ = f (ω ′)− f (ω)
If Rk(ω,ω ′)≥ Δω,ω ′ , then ω ← ω ′
m ← m+1

Until m = Mk

m ← 1, k ← k +1
Until k = K

Note that the outer and inner loop bounds, K and Mk, k = 1,2, ...,K, respectively,
may all be fixed, or K can be fixed with the Mk, k = 1,2, ...,K, defined as random
variables whose values are determined by the solution at the end of each set of inner
loop iterations satisfying some property (e.g., the solution is a local optima).

Generalized hill-climbing algorithms can be viewed as sampling procedures
over the solution space Ω. The key distinction between different generalized hill-
climbing algorithm formulations is in how the sampling is performed. For example,
simulated annealing produces biased samples, guided by the neighborhood func-
tion, the objective function, and the temperature parameter. More specifically, sim-
ulated annealing can be described as a generalized hill-climbing algorithm by set-
ting the hill-climbing random variable, Rk(ω,ω ′) = −tkln(uk), ω ∈ Ω, ω ′ ∈ N(ω),
k = 1,2, ...,K, with the {uk} independently and identically distributed U(0,1) ran-
dom variables. To formulate Monte Carlo search as a generalized hill-climbing al-
gorithm, set Rk(ω,ω ′) = +∞, ω ∈ Ω, ω ′ ∈ N(ω), k = 1,2, ...,K. Deterministic lo-
cal search, which accepts only neighbors of improving (lower) objective function
value, can be expressed as a generalized hill-climbing algorithm with Rk(ω,ω ′) = 0,
ω ∈ Ω, ω ′ ∈ N(ω), k = 1,2, ...,K. Other algorithms that can be described using
the generalized hill-climbing framework include threshold accepting, some simple
forms of tabu search, and Weibull accepting. For detailed discussions of these algo-
rithms and a description of how they fit into the generalized hill-climbing algorithm
framework, see [80, 85, 139].

Measures for assessing the finite-time performance of generalized hill-climbing
algorithms have been developed, including the expected number of iterations to
visit a predetermined objective function value level. Jacobson et al. [83] introduce
the cyclical simulated annealing algorithm and describe a procedure to estimate
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lower and upper bounds for the expected number of iterations to visit a near-optimal
solution for this algorithm. Computational results with four traveling salesman prob-
lem instances are reported.

1.4 Practical Guidelines

Implementation issues for simulated annealing can follow one of two paths—that of
specifying problem-specific choices (objective function and neighborhood) and that
of specifying generic choices (generation and acceptance probability functions and
the cooling schedule) (see [46]). These choices often depend on the domain of each
specific problem. The principal shortcoming of simulated annealing is that it often
requires extensive computer time. Implementation modifications generally strive to
retain simulated annealing’s asymptotic convergence character, but at reduced com-
puter run-time. The methods discussed here are mostly heuristic.

1.4.1 Problem-Specific Choices

1.4.1.1 Objective Functions

One problem-specific choice involves the objective function specification. In [135],
Stern recommends a heuristic temperature-dependent penalty function as a substi-
tute for the actual objective function for problems where low cost solutions have
neighbors of much higher cost or in cases of degeneracy (i.e., large neighborhoods
of solutions of equal, but high costs). The original objective function surfaces, as
the penalty and the temperature are gradually reduced to 0. This technique is similar
to the noising method presented by Charon and Hudrey in [23], where the penalty
function is described as noise and is reduced at each outer loop iteration of the algo-
rithm. One speed-up technique is to evaluate only the difference in objective func-
tions, Δω,ω ′ , instead of calculating both f (ω) and f (ω ′). In [148], Tovey suggests
several methods of approximating Δω,ω ′ by using surrogate functions (that are faster
to evaluate than Δω,ω ′ , but not as accurate) probabilistically for cases when evalu-
ation of Δω,ω ′ is expensive; this technique is referred to as the surrogate function
swindle.

Straub et al. [137] improve the performance of simulated annealing on problems
in chemical physics by using the continuous normal density distribution instead of
the molecular dynamics of single point particles to describe the potential energy
landscape. Ma and Straub [98] report that using this distribution has the effect of
smoothing the energy landscape by reducing both the number and depth of local
minima.

Yan and Mukai [162] consider the case when a closed-form formula for the ob-
jective function is not available. They use a probabilistic simulation (termed the
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stochastic ruler method) to generate a sample objective function value for an input
solution and then accept the solution if the sample objective function value falls
within a predetermined bound. They also provide a proof of asymptotic conver-
gence by extrapolating the convergence proofs for simulated annealing and analyze
the rate of convergence.

1.4.1.2 Neighborhoods

A key problem-specific choice concerns the neighborhood function definition. The
efficiency of simulated annealing is highly influenced by the neighborhood function
used [105]. The choice of neighborhood serves to enforce a topology. In [46], Eglese
reports that “a neighborhood structure which imposes a ‘smooth’ topology where
the local minima are shallow is preferred to a ‘bumpy’ topology where there are
many deep local minima.” Solla et al. [132] and Fleischer and Jacobson [58] report
similar conclusions. This also supports the result in [72] that shows that asymptotic
convergence to the set of global optima depends on the depth of the local minima.

Another factor to consider when choosing neighborhood functions is the neigh-
borhood size. No theoretical results are available, other than the necessity of reach-
ability (in a finite number of steps) from any solution to any other solution. Cheh
et al. [25] report that small neighborhoods are best, while Ogbu and Smith [113]
provide evidence that larger neighborhoods result in better simulated annealing per-
formance. Goldstein and Waterman [68] conjecture that if the neighborhood size is
small compared to the total solution space cardinality, then the Markov chain can-
not move around the solution space fast enough to find the minimum in a reasonable
time. On the other hand, a very large neighborhood has the algorithm merely sam-
pling randomly from a large portion of the solution space and thus is unable to focus
on specific areas of the solution space. It is reasonable to believe that neighborhood
size is heavily problem specific. For example, problems where the smoothness of its
solution space topology is moderately insensitive to different neighborhood defini-
tions may benefit from larger neighborhood sizes.

Concepts from information theory are used in [54] and [58] to show that the
neighborhood structure can affect the information rate or total uncertainty asso-
ciated with simulated annealing. In [54], Fleischer shows that simulated annealing
tends to perform better as the entropy level of the associated Markov chain increases
and thus conjectures that an entropy measure could be useful for predicting when
simulated annealing would perform well on a given problem. However, efficient
ways of estimating the entropy are needed to transform this result into a practical
tool.

Triki et al. [151] present an empirical study on the efficiency of the simulated
annealing algorithm, as impacted by the landscape and the choice of the neighbor-
hood function. The experiments they conducted follow the observation that it is
possible to compute the exact probability for the algorithm to reach any point in the
landscape, provided that the number of solutions and the number of neighbors per
solution are sufficiently small. A developed computational tool allows to study the
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influence of the tuning of all the main parameters of simulated annealing, as well as
theoretical concepts such as thermodynamic equilibrium and optimal temperature
decrement rules.

Bouffard and Ferland [17] propose a method to improve the simulated annealing
algorithm with a variable neighborhood search to solve the resource-constrained
scheduling problem. The method is compared numerically with other neighbor-
hood search techniques: threshold accepting methods and tabu search. Furthermore,
these techniques are combined with multi-start diversification strategies. The nu-
merical results indicate that using a variable neighborhood search technique indeed
improves the performance.

Another issue on neighborhood function definition addresses the solution space
itself. Chardaire et al. [22] propose a method for addressing 0−1 optimization prob-
lems, in which the solution space is progressively reduced by fixing the value of
strongly persistent variables (which have the same value in all optimal solutions).
They isolate the persistent variables during simulated annealing’s execution by pe-
riodically estimating the expectation of the random variable (a vector of binary ele-
ments) that describes the current solution and fixing the value of those elements in
the random variable that meet threshold criteria.

1.4.2 Generic Choices

1.4.2.1 Generation Probability Functions

Generation probability functions are usually chosen as uniform distributions with
probabilities proportional to the size of the neighborhood. The generation proba-
bility function is typically not temperature dependent. In [59], Fox suggests that
instead of blindly generating neighbors uniformly, adopt an intelligent generation
mechanism that modifies the neighborhood and its probability distribution to ac-
commodate search intensification or diversification, in the same spirit of the tabu
search metaheuristic. Fox also notes that simulated annealing convergence theory
does not preclude this idea. In [148], Tovey suggests an approach with a similar
effect, called the neighborhood prejudice swindle.

1.4.2.2 Acceptance Probability Functions

The literature reports considerable experimentation with acceptance probability
functions for hill-climbing transitions. The most popular is the exponential form
(1.1). Ogbu and Smith [113] consider replacing the basic simulated annealing ac-
ceptance function ak(Δω,ω ′) with a geometrically decreasing form that is indepen-
dent of the change in objective function value. They adopt a probabilistic-exhaustive
heuristic technique in which randomly chosen neighbors of a solution are examined
and all solutions that are accepted are noted, but only the last solution accepted
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becomes the new incumbent. The hope is that this scheme will explore a broader
area of the problem solution space. Their acceptance probability function is defined
for all solutions ω,ω ′ ∈ Ω and for k = 1,2, ...,K as

ak(Δω,ω ′) = ak =
{

a1xk−1 if f (ω ′) > f (ω)
1 otherwise

,

where a1 is the initial acceptance probability value, x ∈ (0,1) is a reducing factor,
and K is the number of stages (equivalent to a temperature cooling schedule). They
also experiment with this method (and a neighborhood of large cardinality) on a per-
mutation flow shop problem and report that its approach found comparable solutions
to the basic simulated annealing algorithm in one-third the computation time.

1.4.2.3 Cooling Schedules

The simulated annealing cooling schedule is fully defined by an initial temperature,
a schedule for reducing/changing the temperature, and a stopping criterion. Romeo
and Sangiovanni-Vincentelli [120] note that an effective cooling schedule is essen-
tial to reducing the amount of time required by the algorithm to find an optimal so-
lution. Therefore, much of the literature on cooling schedules (see [19, 34, 62, 112])
is devoted to this efficiency issue.

Homogeneous simulated annealing convergence theory has been used to design
effective cooling schedules. Romeo and Sangiovanni-Vincentelli [120] suggest the
following procedure for designing a cooling schedule:

1. Start with an initial temperature t0 for which a good approximation of the sta-
tionary distribution πt0 is quickly reached.

2. Reduce t0 by an amount δ (t) small enough such that πt0 is a good starting point
to approximate πt0−δ (t).

3. Fix the temperature at a constant value during the iterations needed for the solu-
tion distribution to approximate πt0−δ (t).

Repeat the above process of cooling and iterating until no further improvement
seems possible.

Generally, the initial temperature is set such that the acceptance ratio of bad
moves is equal to a certain value. In [14], Ben-Ameur proposes an algorithm to com-
pute a temperature which is compatible with a given acceptance ratio. The accep-
tance probability function is shown to be convex for low temperatures and concave
for high temperatures, and a lower bound is provided for the number of required
temperature changes based on a geometric cooling schedule.

Cooling schedules are grouped into two classes: static schedules, which must be
completely specified before the algorithm begins; and adaptive schedules, which
adjust the temperature’s rate of decrease from information obtained during the
algorithm’s execution. Cooling schedules are almost always heuristic; they seek to
balance moderate execution time with simulated annealing’s dependence on asymp-
totic behavior.
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Strenski and Kirkpatrick [138] present an exact (non-heuristic) characterization
of finite-length annealing schedules. They consider extremely small problems that
represent features (local optima and smooth/hilly topologies) and determine proba-
bility distribution of outcomes of annealing process in a finite number of iterations
to gain insights into some popular assumptions and intuition behind cooling sched-
ules. Their experiments suggest that optimal cooling schedules are not monotone
decreasing in temperature. They also show that for the test problem (a white noise
surface), geometric and linear cooling schedules perform better than inverse loga-
rithmic cooling schedules, when sufficient computing effort is allowed. Moreover,
their experiments do not show measurable performance differences between linear
and geometric cooling schedules. They also observe that geometric cooling sched-
ules are not greatly affected by excessively high initial temperatures. The results
presented suggest that even the most robust adaptive cooling schedule “produces
annealing trajectories which are never in equilibrium” [138]. However, they also
conclude that the transition acceptance rate is not sensitive to the degree of close-
ness to the equilibrium distribution.

Christoph and Hoffmann [31] also attempt to characterize optimal cooling sched-
ules. They derive a relationship between a finite sequence of optimal temperature
values (i.e., outer loops) and the number of iterations (i.e., inner loops) at each re-
spective temperature for several small test problems to reach optimality (i.e., the
minimal mean final energy). They find that this scaling behavior is of the form

xm = amν−bm , (1.32)

where a and b are scaling coefficients, xm = exp(−1/tk) is referred to as the temper-
ature, ν is the number of inner loop iterations at temperature xm, and m is the number
of outer loops at which the temperature xm is reduced. The proposed approach is to
solve for the coefficients a and b based on known temperature and iteration param-
eter values for an optimal schedule based on several replications of the algorithm
using (m × ν) iterations for each replication, and then use Equation (1.32) to inter-
polate the optimal cooling schedule for intermediate iterations. They however do not
make any suggestions on how to efficiently solve for the necessary optimal cooling
schedules for a (typically large) problem instance.

Romeo and Sangiovanni-Vincentelli [120] present a theoretical framework for
evaluating the performance of the simulated annealing algorithm. They discuss an-
nealing schedules in terms of initial temperature T = t0, the number of inner loops
for each value of tk, the decrease rate of the temperature (i.e., cooling schedule), and
the criteria for stopping the algorithm. They conclude that the theoretical results
obtained thus far have not been able to explain why simulated annealing is so suc-
cessful even when a diverse collection of static cooling schedule heuristics is used.
Many heuristic methods are available in the literature to find optimal cooling sched-
ules, but the effectiveness of these schedules can only be compared through exper-
imentation. They conjecture that the neighborhood and the corresponding topology
of the objective function are responsible for the behavior of the algorithm.

Cohn and Fielding [34] conduct a detailed analysis of various cooling schedules
and how they affect the performance of simulated annealing. Convergent simulated
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annealing algorithms are often too slow in practice, whereas a number of non-
convergent algorithms may be preferred for good finite-time performance. They
analyze various cooling schedules and present cases where repeated independent
runs using a non-convergent cooling schedule provide acceptable results in practice.
They provide examples of when it is both practically and theoretically justified to
use a very high, fixed temperature, or even fast cooling schedules which have a small
probability of reaching global minima and apply these cooling schedules to travel-
ing salesman problems of various sizes. Fielding [53] computationally studies fixed
temperature cooling schedules for the traveling salesman problem, the quadratic as-
signment problem and the graph partitioning problem and demonstrates that a fixed
temperature cooling schedule can yield superior results in locating optimal and near-
optimal solutions. Orosz and Jacobson [115, 116] present finite-time performance
measures for simulated annealing with fixed temperature cooling schedules. They
illustrate their measures using randomly generated instances of the traveling sales-
man problem.

Another approach to increasing the speed of simulated annealing is to implement
a two-staged simulated annealing algorithm. In two-staged simulated annealing
algorithms, a fast heuristic is used to replace simulated annealing at higher tem-
peratures, with a traditional simulated annealing algorithm implemented at lower
temperatures to improve on the fast heuristic solution. In addition to implement-
ing an intelligent cooling schedule, finding the initial temperature t0 to initialize the
traditional simulated annealing algorithm is important to the success of the two-
staged algorithm. Varanelli and Cohoon [157] propose a method for determining
an initial temperature t0 for two-staged simulated annealing algorithms using tra-
ditional cooling schedules. They note that if t0 is too low at the beginning of the
traditional simulated annealing phase, the algorithm can get trapped in an inferior
solution, while if the initial temperature t0 is too high, the algorithm can waste
too many iterations (hence computing time) by accepting too many hill-climbing
moves.

Azizi and Zolfaghari [11] propose two variations of simulated annealing, tested
on the minimum makespan job shop scheduling problems. In the conventional sim-
ulated annealing, the temperature declines monotonically, providing the search with
a higher transition probability in the beginning of the search and lower probability
toward the end of the search. In [11], an adaptive temperature control scheme with
a tabu list is used that changes temperature based on the number of consecutive
improving moves, resulting in an improved algorithm performance.

In [69], a sample adaptive simulated annealing algorithm, inspired by the idea of
Metropolis algorithm, is constructed on a finite state space. The algorithm can be
viewed as a substitute of the annealing of iterative stochastic schemes. In [108], the
optimal cooling schedule for simulated annealing is formulated to derive a differen-
tial equation for the time-dependent temperature T (t). Based on this equation, the
long-term behavior of T (t), entropy production, and the Kullback–Leibler entropy
are studied. For some simple examples, such as a many-level system and the small
scale traveling salesman problem, the explicit time dependence of the temperature
is obtained.



28 Alexander G. Nikolaev and Sheldon H. Jacobson

1.4.3 Domains—Types of Problems with Examples

Over the past decade, simulated annealing has developed into a popular optimiza-
tion tool. It has been used to address numerous discrete optimization problems as
well as continuous variable problems. Several application articles and surveys have
been published on simulated annealing. Johnson et al. [86, 87] present a series of
articles on simulated annealing applied to certain well-studied discrete optimization
problems. The first in the series of articles uses the graph partitioning problem to
illustrate simulated annealing and highlight the effectiveness of several modifica-
tions to the basic simulated annealing algorithm. The second in the series focuses
on applying lessons learned from the first article to the graph coloring and num-
ber partitioning problems. Local optimization techniques were previously thought
to be unacceptable approaches to these two problems. In [87], it is also observed
that for long run lengths, simulated annealing outperforms the traditional tech-
niques used to solve graph coloring problems. However, simulated annealing did
not compare well with traditional techniques on the number partitioning problem
except for small problem instances. The third article in the series (not yet pub-
lished) uses simulated annealing to approach the well-known traveling salesman
problem.

Koulamas et al. [90] focus on simulated annealing applied to applications in pro-
duction/operations management and operations research. They discuss traditional
problems such as single machine, flow shop and job shop scheduling, lot sizing, and
traveling salesman problems as well as non-traditional problems to include graph
coloring and number partitioning. They conclude that simulated annealing is an ef-
fective tool for solving many problems in operations research and that the degree of
accuracy that the algorithm achieves can be controlled by the practitioner, in terms
of number of iterations and neighborhood functions (i.e., an increased number of
iterations (outer loops) combined with increased number of searches at each iter-
ation (inner loops) can result in solutions with a higher probability of converging
to the optimal solution). In [55], Fleischer discusses simulated annealing from a
historical and evolutionary point of view in terms of solving difficult optimization
problems. Fleischer also summarizes ongoing research and presents an application
of simulated annealing to graph problems.

Steinhofel et al. [134] also address flow shop scheduling problems by applying
logarithmic cooling schedules of simulated annealing-based algorithms to flow shop
scheduling. In the considered problem setting, the objective is to minimize the over-
all completion time (called the makespan). A lower bound is derived for the number
of steps that are needed to approach an optimum solution with a certain probability,
based on the maximum escape depth Γ from local minima of the underlying energy
landscape.

The simulated annealing algorithm has proved to be a good technique for solv-
ing difficult discrete optimization problems. In engineering optimization, simulated
annealing has emerged as an alternative tool to address problems that are difficult
to solve by conventional mathematical programming techniques. The algorithm’s
major disadvantage is that solving a complex system problem may be an extremely
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slow, albeit convergent process, using much more processor time than conventional
algorithms. Consequently, simulated annealing has not been widely embraced as
an optimization algorithm for engineering problems. Attempts have been made to
improve the performance of the algorithm either by reducing the annealing length
or changing the generation and the acceptance mechanisms. However, these faster
schemes, in general, do not inherit the property of escaping local minima. A more
efficient way to reduce the processor time and make simulated annealing a more
attractive alternative for engineering problems is to add parallelism (see [73]). How-
ever, the implementation and efficiency of parallel simulated annealing algorithms
are typically problem dependent. Leite et al. [91] consider the evaluation of parallel
schemes for engineering problems where the solution spaces may be very complex
and highly constrained, with function evaluations varying from medium to high cost.
In addition, they provide guidelines for selecting appropriate schemes for engineer-
ing problems. They also present an engineering problem with relatively low fitness
evaluation cost and strong time constraints to demonstrate the lower bounds of ap-
plicability of parallel schemes.

Many signal processing applications create optimization problems with multi-
modal and non-smooth cost functions. Gradient methods are ineffective in these
situations because of multiple local minima and the requirement to compute gra-
dients. Chen and Luk [27] propose an adaptive simulated annealing algorithm as a
viable optimization tool for addressing such difficult non-linear optimization prob-
lems. The adaptive simulated annealing algorithm maintains the advantages of sim-
ulated annealing, but converges faster. Chen and Luk demonstrate the effectiveness
of adaptive simulated annealing with three signal processing applications: maxi-
mum likelihood joint channel and data estimation, infinite-impulse-response filter
design, and evaluation of minimum symbol-error-rate decision feedback equalizer.
They conclude that the adaptive simulated annealing algorithm is a powerful global
optimization tool for solving such signal processing problems.

Abramson et al. [4] describe the use of simulated annealing for solving the school
timetabling problem. They use the scheduling problem to highlight the performance
of six different cooling schedules: the basic geometric cooling schedule, a scheme
that uses multiple cooling rates, geometric reheating, enhanced geometric reheating,
non-monotonic cooling, and reheating as a function of cost. The basic geometric
cooling schedule found in [156] is used as the baseline schedule for comparison
purposes. Experimental results suggest that using multiple cooling rates for a given
problem yields better quality solutions in less time than the solutions produced by a
single cooling schedule. The conclusion in [4] is that the cooling scheme that uses
the phase transition temperature (i.e., when sub-parts of the combinatorial optimiza-
tion problem are solved) in combination with the best solution to date produces the
best results.

Emden-Weinert and Proksch [47] present a study of a simulated annealing algo-
rithm for the flight pairing subproblem in crew scheduling, which models the match-
ing of flight segments as a preliminary phase to crew rostering. It is revealed that
the algorithm run-time can be decreased and solution quality can be improved by
using a problem-specific initial solution, relaxing constraints, combining simulated
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annealing with a problem-specific local improvement heuristic, and conducting mul-
tiple independent runs.

There is no question that simulated annealing can demand significant compu-
tational time to reach global minima. Recent attempts to use parallel computing
schemes to speed up simulated annealing have provided promising results. Chu
et al. [32] present a new, efficient, and highly general-purpose parallel optimiza-
tion method based on simulated annealing that does not depend on the structure
of the optimization problem being addressed. Their algorithm is used to analyze a
network of interacting genes that control embryonic development and other funda-
mental biological processes. They use a two-stage procedure which monitors and
pools performance statistics obtained simultaneously from all processors and then
mixes states at intervals to maintain a Boltzmann-like distribution of costs. They
demonstrate that their parallel simulated annealing approach leads to nearly optimal
parallel efficiency for certain optimization problems. In particular, the approach is
appropriate when the relative effort required to compute the cost function is large
compared to the relative communication effort between parallel machines for pool-
ing statistics and mixing states.

Chen et al. [26] implement five variants of simulated annealing algorithm from
sequential-to-parallel forms on high-performance computers and applied them to
a set of standard function optimization problems in order to test their perfor-
mances. The experimental results indicate that the traditional approach to paral-
lelizing simulated annealing, namely executing algorithm runs simultaneously on
multiple communicating processors, does not enjoy much success in solving hard
problem instances. Divide-and-conquer decomposition strategy used to traverse the
search space sometimes might find the global optimum function value, but fre-
quently results in high computing times as the problem size increases. A hybrid
version of a genetic algorithm combined with simulated annealing has proven to be
most efficient.

Alrefaei and Andradottir [7] present a modified simulated annealing algorithm
with a constant temperature to address discrete optimization problems and use two
approaches to estimate an optimal solution to the problem. One approach estimates
the optimal solution based on the state most visited versus the state last visited,
while the other approach uses the best average estimated objective function value to
estimate the optimal solution. Both approaches are guaranteed to converge almost
surely to the set of global optimal solutions under mild conditions. They compare
the performance of the modified simulated annealing algorithm to other forms of
simulated annealing used to solve discrete optimization problems.

Creating effective neighborhood functions or neighborhood generation mecha-
nisms is a critical element in designing efficient and effective simulated annealing
algorithms for discrete optimization problems. Tian et al. [147] investigate the appli-
cation of simulated annealing to discrete optimization problems with a permutation
property, such as the traveling salesman problem, the flow shop scheduling problem,
and the quadratic assignment problems. They focus on the neighborhood function of
the discrete optimization problem and, in particular, the generation mechanism for
the algorithm used to address the problem. They introduce six types of perturbation
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schemes for generating random permutation solutions and prove that each scheme
satisfies asymptotic convergence requirements. The results of the experimental eval-
uations on the traveling salesman problem, the flow shop scheduling problem, and
the quadratic assignment problem suggest that the efficiencies of the perturbation
schemes are different for each problem type and solution space. Tian et al. con-
clude that with the proper perturbation scheme, simulated annealing can produce
efficient solutions to different discrete optimization problems that possess a permu-
tation property.

In [5], Ahmed proposes a modification of the simulated annealing algorithm for
solving discrete stochastic optimization problems where the objective function is
stochastic and can be evaluated only through Monte Carlo simulation (i.e., the objec-
tive function cannot be computed exactly or such an evaluation is computationally
expensive). In this modification, the temperature is held constant, and the Metropolis
criterion depends on whether the objective function values indicate a statistically
significant difference at each iteration. The obtained algorithm compares favorably
with three previously proposed methods (see [6, 63, 71]).

Research also continues on the application of simulated annealing to optimization
of continuous functions. Continuous global optimization is defined as the problem
of finding points on a bounded subset of ℜn where some real-valued function f as-
sumes its optimal (maximal or minimal) value. The application of simulated anneal-
ing to continuous optimization generally falls into two classes. The first approach
closely follows the original idea presented by Kirkpatrick et al. [89], where the al-
gorithm mimics the physical annealing process. The second approach describes the
annealing process with Langevin equations, where the global minimum is found
by solving a set of stochastic differential equations (see [9]). Gemen and Hwang
[64] prove that continuous optimization algorithms based on Langevin equations
converge to the global optima. Dekkers and Aarts [40] propose a third stochas-
tic approach to address global optimization based on simulated annealing, which
is similar to the formulation of simulated annealing applied to discrete optimiza-
tion problems. They extend the mathematical formulation of simulated annealing
to continuous optimization problems and prove asymptotic convergence to the set
of global optima based on the equilibrium distribution of Markov chains. They
also discuss an implementation of the proposed algorithm and compare its perfor-
mance with other well-known algorithms on a standard set of test functions from
the literature.

Tsallis and Stariolo [149] discuss and illustrate a new stochastic algorithm (gen-
eralized simulated annealing) for computationally finding the global minimum of a
given (not necessarily convex) energy/cost function defined on a continuous multi-
dimensional space. This algorithm covers, as particular cases, the so-called classical
(Boltzmann machine) and fast (Cauchy machine) simulated annealings and turns out
to be quicker than both. This method, which has been widely used in many fields
as a global optimization tool, is composed of three parts: visiting distribution, ac-
cepting rule, and cooling schedule. The most complicated of these is the visiting
distribution. Although Tsallis and Stariolo [149] did provide a heuristic algorithm
to generate a random number for the visiting distribution, empirical simulations
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have shown that it is inappropriate. Deng et al. [43] propose an alternative method
of generating random numbers based on the results from [99]. Nishimori and Inoue
[109] prove the weak ergodicity of the inhomogeneous Markov process generated
by the generalized transition probability of Tsallis and Stariolo [149] under power-
law decay of the temperature. Del Moral and Miclo [42] study the convergence of
the generalized simulated annealing with time-inhomogeneous communication cost
functions. This study is based on the use of log-Sobolev inequalities and semigroup
techniques in the spirit of a previous article by one of the authors.

1.5 Summary

Simulated annealing optimization algorithms have been well studied in the liter-
ature. These algorithms can be used to optimize single as well as multi-objective
optimization problems. They have been applied in various fields like process sys-
tem engineering, operations research, and smart materials. Recent work on simu-
lated annealing primarily involves ad hoc techniques, adaptive cooling schedules,
and the development of hybrid algorithms.

The popularity and flexibility of simulated annealing has spawned several new
annealing algorithms. Pepper et al. [117] introduce demon algorithms and test them
on the traveling salesman problem. Ohlmann et al. [114] introduce another variant of
simulated annealing termed compressed annealing. They incorporate the concepts
of pressure and volume, in addition to temperature, to address discrete optimization
problems with relaxed constraints. They also introduce a primal/dual metaheuristic
by simultaneously adjusting temperature and pressure in the algorithm.

In [76], Herault presents rescaled simulated annealing, which is designed for
combinatorial problems where the available computational effort is limited. This
generalization performs the rescaling of the energies of the states that are candidates
for a transition, before applying the Metropolis criterion. A direct consequence of
this rescaling is an acceleration of the algorithm’s convergence, by avoiding dives
and escaping from high-energy local minima. Mingjun and Huanwen [103] propose
chaos simulated annealing with chaotic initialization and chaotic sequences replac-
ing the Gaussian distribution. These features improve the rate of convergence and
are efficient and easy to implement.

Once a very popular approach to solving hard combinatorial problems, simulated
annealing is now taking a backseat and giving way to new algorithms and heuristics
designed to better exploit the unique properties and features of problems. However,
simulated annealing continues to be widely used, given its simplicity and ease of
implementation. Moreover, its simple structure is often incorporated and blended
with other metaheuristics. It also remains one of the most analyzed metaheuristics,
which underlines the importance and usefulness of its basic idea.
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Chapter 2
Tabu Search

Michel Gendreau and Jean-Yves Potvin

Abstract This chapter presents the fundamental concepts of tabu search (TS) in a
tutorial fashion. Special emphasis is put on showing the relationships with classical
local search methods and on the basic elements of any TS heuristic, namely the
definition of the search space, the neighborhood structure, and the search memory.
Other sections cover other important concepts such as search intensification and
diversification and provide references to significant work on TS. Recent advances
in TS are also briefly discussed.

2.1 Introduction

Over the last 20 years, hundreds of papers presenting applications of tabu search
(TS), a heuristic method originally proposed by Glover in 1986 [29], to various
combinatorial problems have appeared in the operations research literature. In sev-
eral cases, the methods described provide solutions very close to optimality and are
among the most effective, if not the best, to tackle the difficult problems at hand.
These successes have made TS extremely popular among those interested in finding
good solutions to the large combinatorial problems encountered in many practical
settings. Several papers, book chapters, special issues, and books have surveyed
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the rich TS literature (a list of some of the most important references is provided
in a later section). In spite of this abundant literature, there still seem to be many
researchers who, while they are eager to apply TS to new problem settings, find
it difficult to properly grasp the fundamental concepts of the method, its strengths
and its limitations, and to come up with effective implementations. The purpose
of this chapter is to address this situation by providing an introduction in the form
of a tutorial focusing on the fundamental concepts of TS. Throughout the chapter,
a relatively straightforward, yet challenging and relevant, problem will be used to
illustrate these concepts: the classical vehicle routing problem (CVRP). This prob-
lem will be introduced in the following section. The remainder of the chapter is
organized as follows. The basic concepts of TS, like the search space, neighbor-
hood structure, and short-term tabu lists, are described and illustrated in Section 2.3.
Intermediate, yet critical, concepts, such as intensification and diversification, are
described in Section 2.4. This is followed in Section 2.5 by a brief discussion of
advanced topics and recent trends in TS, and in Section 2.6 by a short list of key
references on TS and its applications. Section 2.7 provides practical tips for new-
comers struggling with unforeseen problems as they first try to apply TS to their
favorite problem. Section 2.8 concludes the chapter with some general advice on
the application of TS to combinatorial problems.

2.2 The Classical Vehicle Routing Problem

Vehicle routing problems have very important applications in the area of distribution
management. As a consequence, they have become some of the most studied prob-
lems in the combinatorial optimization literature and a large number of papers and
books (see [62], for example) deal with the numerous procedures that have been
proposed to solve them. These include several TS implementations that currently
rank among the most effective. The CVRP is the basic variant in that class of prob-
lems. It can formally be defined as follows. Let G = (V , A) be a graph where V is
the vertex set and A is the arc set. One of the vertices represents the depot at which a
fleet of m identical vehicles of capacity Q is based, and the other vertices represent
customers that need to be serviced. With each customer vertex vi are associated a
demand qi and a service time ti. With each arc (vi,v j) of A are associated a cost ci j

and a travel time ti j. The CVRP consists in finding a set of routes such that

• Each route begins and ends at the depot;
• Each customer is visited exactly once by exactly one route;
• The total demand of the customers assigned to each route does not exceed Q;
• The total duration of each route (including travel and service times) does not

exceed a specified value L;
• The total cost of the routes is minimized.

A feasible solution for the problem thus consists in a partition of the customers
into m groups, each of total demand no larger than Q, that are sequenced to yield
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routes (starting and ending at the depot) of duration no larger than L. This problem
will be used in the following to illustrate how various TS concepts can be applied in
practice.

2.3 Basic Concepts

Before introducing the basic concepts of TS, the next section first goes back in
time to try to better understand the genesis of the method and how it relates to
previous work.

2.3.1 Historical Background

Heuristics, i.e., approximate solution techniques, have been used since the begin-
nings of operations research to tackle difficult combinatorial problems. With the
development of complexity theory in the early 1970s, it became clear that, since
most of these problems were NP-hard, there was little hope of ever finding effi-
cient exact solution procedures for them. This realization emphasized the role of
heuristics for solving the combinatorial problems that were encountered in real-
life applications and that needed to be tackled, whether or not they were NP-hard.
While many different approaches were proposed and experimented with, the most
popular one was based on local search (LS) improvement techniques. LS can be
roughly summarized as an iterative search procedure that, starting from an initial
feasible solution, progressively improves it by applying a series of local modifica-
tions (or moves). At each iteration, the search moves to an improving feasible solu-
tion that differs only slightly from the current one (in fact, the difference between
the previous and the new solutions amounts to one of the local modifications men-
tioned above). The search terminates when it encounters a local optimum with re-
spect to the transformations that it considers, an important limitation of the method:
unless one is extremely lucky, this local optimum is often a fairly mediocre solution.
In LS, the quality of the solution obtained and computing times are usually highly
dependent on the richness of the set of transformations (moves) considered at each
iteration of the heuristic.

In 1983, the world of combinatorial optimization was shattered by the appearance
of a paper [43] where it was shown that a new heuristic approach called simulated
annealing (SA) could converge to an optimal solution of a combinatorial problem,
albeit in infinite computing time. Based on an analogy with statistical mechanics, SA
can be interpreted as a form of controlled random walk in the space of feasible so-
lutions. The emergence of SA indicated that one could look for other ways to tackle
combinatorial optimization problems and spurred the interest of the research com-
munity. In the following years, many other new approaches were proposed, mostly
based on analogies with natural phenomena (like TS, ant colony optimization,
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particle swarm optimization, artificial immune systems) which, together with some
older ones, such as genetic algorithms [40], gained an increasing popularity. Now
collectively known under the name of metaheuristics (a term originally coined by
Glover in [29]), these methods have become over the last 20 years the leading edge
of heuristic approaches for solving combinatorial optimization problems.

2.3.2 Tabu Search

Building upon some of his previous work, Fred Glover proposed a new approach,
which he called tabu search, to allow local search methods to overcome local op-
tima [29]. In fact, many elements of this first TS proposal and some elements of
later TS elaborations were introduced in [28], including short-term memory to pre-
vent the reversal of recent moves, and longer term frequency memory to reinforce
attractive components. The basic principle of TS is to pursue LS whenever it en-
counters a local optimum by allowing non-improving moves; cycling back to pre-
viously visited solutions is prevented by the use of memories, called tabu lists,
that record the recent history of the search, a key idea that can be linked to ar-
tificial intelligence concepts. It is also important to remark that Glover did not
see TS as a proper heuristic, but rather as a metaheuristic, i.e., a general strategy
for guiding and controlling inner heuristics specifically tailored to the problems at
hand.

2.3.3 Search Space and Neighborhood Structure

As we just mentioned, TS is an extension of classical LS methods. In fact, a basic TS
can be seen as simply the combination of LS with short-term memories. It follows
that the two first basic elements of any TS heuristic are the definition of its search
space and its neighborhood structure.

The search space of an LS or TS heuristic is simply the space of all possible so-
lutions that can be considered (visited) during the search. For instance, in the CVRP
example described in Section 2.2, the search space could simply be the set of feasi-
ble solutions to the problem, where each point in the search space corresponds to a
set of vehicles routes satisfying all the specified constraints. While in that case the
definition of the search space seems quite natural, it is not always so. In the capac-
itated plant location problem (CPLP), for instance, customers must be served from
plants located in a subset of potential sites. In this context, one could use the full
feasible search space made of binary location variables (a site is open or closed) and
continuous flow variables. A more attractive search space, though, is obtained by re-
stricting the search space to the binary location variables, from which the complete
solution can be obtained by solving the associated transportation problem to get the
optimal flow variables. One could also decide to search for the extreme points of the
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set of feasible flow variable vectors, retrieving the associated location variables by
noting that a plant must be open whenever some flow is allocated to it [13]. It is also
important to note that it is not always a good idea to restrict the search space to fea-
sible solutions; in many cases, allowing the search to move to infeasible solutions is
desirable and sometimes necessary (see Section 2.4.3 for further details).

Closely linked to the definition of the search space is that of the neighbor-
hood structure. At each iteration of LS or TS, the local transformations that can be
applied to the current solution, denoted S, define a set of neighboring solutions in
the search space, denoted N(S) (the neighborhood of S). Formally, N(S) is a sub-
set of the search space made of all solutions obtained by applying a single local
transformation to S. In general, for any specific problem at hand, there are many
more possible (and even, attractive) neighborhood structures than search space defi-
nitions. This follows from the fact that there may be several plausible neighborhood
structures for a given definition of the search space. This is easily illustrated on our
CVRP example that has been the object of several TS implementations. To simplify
the discussion, we suppose in the following that the search space is the feasible
space. Simple neighborhood structures for the CVRP involve moving at each itera-
tion a single customer from its current route; the selected customer is inserted in the
same route or in another route with sufficient residual capacity. An important fea-
ture of these neighborhood structures is the way in which insertions are performed:
one could use random insertion or insertion at the best position in the target route;
alternately, one could use more complex insertion schemes that involve a partial re-
optimization of the target route, such as GENI insertions [24]. Before proceeding
any further it is important to stress that while we say that these neighborhood struc-
tures involve moving a single customer, the neighborhoods they define contain all
the feasible route configurations that can be obtained from the current solution by
moving any customer and inserting it in the stated fashion. Examining the neighbor-
hood can thus be fairly demanding.

More complex neighborhood structures for the CVRP, such as the λ -interchange
[47], are obtained by allowing simultaneously the movement of customers to dif-
ferent routes and the swapping of customers between routes. In [50], moves are
defined by ejection chains that are sequences of coordinated movements of cus-
tomers from one route to another; for instance, an ejection chain of length 3 would
involve moving a customer v1 from route R1 to route R2, a customer v2 from R2

to route R3, and a customer v3 from R3 to route R4. Other neighborhood structures
involve the swapping of sequences of several customers between routes, as in the
cross-exchange [60]. These types of neighborhoods have seldom been used for the
CVRP, but are common in TS heuristics for its time-windows extension, where cus-
tomers must be visited within a pre-specified time interval. We refer the interested
reader to [6, 25] for a more detailed discussion of TS implementations for the CVRP
and the vehicle routing problem with time windows.

When different definitions of the search space are considered for a given prob-
lem, neighborhood structures will inevitably differ to a considerable degree. In the
case of the CPLP, alluded to above, if the search space corresponds to the loca-
tion variables only, one could use operators to change the status of these variables
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(from open to closed and conversely). If, however, the search space is made of the
extreme points of the set of feasible flow variable vectors, one could instead consider
moves defined by the application of pivots to the linear programming formulation
of the transportation problem to move the current solution to an adjacent extreme
point. Thus, choosing a search space and a neighborhood structure is by far the
most critical step in the design of any TS heuristic. It is at this step that one must
make the best use of the understanding and knowledge he/she has of the problem
at hand.

2.3.4 Tabus

Tabus are one of the distinctive elements of TS when compared to LS. As we already
mentioned, tabus are used to prevent cycling when moving away from local optima
through non-improving moves. The key realization here is that when this situation
occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that
reverse the effect of recent moves. For instance, in the CVRP example, if customer
v1 has just been moved from route R1 to route R2, one could declare tabu moving
back v1 from R2 to R1 for some number of iterations (this number is called the
tabu tenure of the move). Tabus are also useful to help the search move away from
previously visited portions of the search space and thus perform more extensive
exploration.

Tabus are stored in a short-term memory of the search (the tabu list) and usually
only a fixed and fairly limited quantity of information is recorded. In any given
context, there are several possibilities regarding the specific information that is
recorded. One could record complete solutions, but this requires a lot of storage
and makes it expensive to check whether a potential move is tabu or not; it is there-
fore seldom used. The most commonly used tabus involve recording the last few
transformations performed on the current solution and prohibiting reverse transfor-
mations (as in the example above); others are based on key characteristics of the
solutions themselves or of the moves.

To better understand how tabus work, let us go back to our reference problem. In
the CVRP, one could define tabus in several ways. To continue our example where
customer v1 has just been moved from route R1 to route R2, one could declare tabu
specifically moving back v1 from R2 to R1 and record this in the short-term memory
as the triplet (v1,R2,R1). Note that this type of tabu will not constrain the search
much and that cycling may occur if v1 is then moved to another route R3 and then
from R3 to R1. A stronger tabu would involve prohibiting moving back v1 to R1,
without consideration for its current route and be recorded as (v1,R1). An even
stronger tabu would be to disallow moving v1 to any other route and would simply
be noted as (v1).

Multiple tabu lists can be used simultaneously and are sometimes advisable. For
example, when different types of moves are used to generate the neighborhood,
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it might be a good idea to keep a separate tabu list for each type. Standard tabu
lists are usually implemented as circular lists of fixed length. It has been shown,
however, that fixed-length tabus cannot always prevent cycling, and some authors
have proposed varying the tabu list length during the search [30, 31, 55, 58, 59].
Another solution is to randomly generate the tabu tenure of each move within some
specified interval; using this approach requires a somewhat different scheme for
recording tabus that are then usually stored as tags in an array (the entries in this
array will usually record the iteration number until which a move is tabu; see [24],
for more details).

2.3.5 Aspiration Criteria

While central to TS, tabus are sometimes too powerful: they may prohibit attrac-
tive moves, even when there is no danger of cycling, or they may lead to an overall
stagnation of the searching process. It is thus necessary to use algorithmic devices
that will allow one to revoke (cancel) tabus. These are called aspiration criteria. The
simplest and most commonly used aspiration criterion, which is found in almost all
TS implementations, consists in allowing a move, even if it is tabu, if it results in
a solution with an objective value better than that of the current best-known solu-
tion (since the new solution has obviously not been previously visited). Much more
complicated aspiration criteria have been proposed and successfully implemented
(see, for instance [39, 65]), but they are rarely used. The key rule in this respect is
that if cycling cannot occur, tabus can be disregarded.

2.3.6 A Template for Simple Tabu Search

We are now in the position to give a general template for TS, integrating the elements
we have seen so far. We suppose that we are trying to minimize a function f (S) over
some domain and we apply the so-called best improvement version of TS, i.e., the
version in which one chooses at each iteration the best available move (this is the
most commonly used version of TS).

Notation

• S, the current solution,
• S∗, the best-known solution,
• f ∗, the value of S∗,
• N(S), the neighborhood of S,
• Ñ(S), the admissible subset of N(S) (i.e., non-tabu or allowed by aspiration),
• T , the tabu list.
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Initialization

Choose (construct) an initial solution S0.
Set S ← S0, f ∗ ← f (S0), S∗ ← S0, T ← /0.

Search

While termination criterion not satisfied do

select S in argminS′∈Ñ(S)[ f (S′)];
if f (S) < f ∗, then set f ∗ ← f (S), S∗ ← S;
record tabu for the current move in T (delete oldest entry if necessary).

2.3.7 Termination Criteria

One may have noticed that we have not specified in our template above a termination
criterion. In theory, the search could go on forever, unless the optimal value of the
problem at hand is known beforehand. In practice, obviously, the search has to be
stopped at some point. The most commonly used stopping criteria in TS are as
follows:

• after a fixed number of iterations (or a fixed amount of CPU time);
• after some number of iterations without an improvement in the objective function

value (the criterion used in most implementations);
• when the objective reaches a pre-specified threshold value.

In complex tabu schemes, the search is usually stopped after completing a
sequence of phases, the duration of each phase being determined by one of the
above criteria.

2.3.8 Probabilistic TS and Candidate Lists

In regular TS, one must evaluate the objective for every element of the neighborhood
N(S) of the current solution. This can prove extremely expensive from the computa-
tional standpoint. An alternative is to instead consider only a random sample N′(S)
of N(S), thus reducing significantly the computational burden. Another attractive
feature of this alternative is that the added randomness can act as an anti-cycling
mechanism; this allows one to use shorter tabu lists than would be necessary if a
full exploration of the neighborhood was performed. One the negative side, it must
be noted that, in that case, one may miss excellent solutions (more on this topic in
Section 2.7.3). Probabilities may also be applied to activating tabu criteria.
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Another way to control the number of moves examined is by means of candidate
list strategies, which provide more strategic ways of generating a useful subset N′(S)
of N(S) (the probabilistic approach can be considered to be one instance of a can-
didate list strategy and may also be used to modify such a strategy). Failure to ade-
quately address the issues involved in creating effective candidate lists is one of the
more conspicuous shortcomings that differentiates a naive TS implementation from
one that is more solidly grounded. Relevant designs for candidate list strategies are
discussed in [34]. We also discuss a useful type of candidate generation approach in
Section 2.4.4. Another interesting approach for the CVRP is the granular TS [63],
where only arcs that are likely to be found in good solutions (i.e., short ones) are
considered, thus reducing the size of the underlying graph.

2.4 Intermediate Concepts

Simple TS as described above can sometimes successfully solve difficult problems,
but in most cases, additional elements have to be included in the search strategy to
make it fully effective. We now briefly review the most important of these.

2.4.1 Intensification

The idea behind the concept of search intensification is that, as an intelligent human
being would probably do, one should explore more thoroughly the portions of the
search space that seem promising to make sure that the best solutions in these areas
are indeed found. From time to time, one would thus stop the normal searching
process to perform an intensification phase. In general, intensification is based on
some intermediate-term memory, such as a recency memory, in which one records
the number of consecutive iterations that various solution components have been
present in the current solution without interruption. For instance, in a CVRP ap-
plication, one could record how long an arc has been used. A typical approach to
intensification is to restart the search from the best currently known solution and to
fix the components that seem more attractive. To continue the CVRP example, one
could fix the arcs that have been used for the largest number of iterations and per-
form a restricted search on the remaining arcs. Another technique that is often used
consists in changing the neighborhood structure to one allowing more powerful or
more diverse moves. In the CVRP example, one could therefore allow more com-
plex insertion moves or switch to an ejection chain neighborhood structure [32]. In
probabilistic TS, one could increase the sample size or switch to searching without
sampling.

Intensification is used in many TS implementations, but it is not always neces-
sary. This is because there are many situations where the search performed by the
normal process is thorough enough. There is thus no need to spend time exploring
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more carefully the portions of the search space that have already been visited, and
this time can be used more effectively as we shall see right now.

2.4.2 Diversification

One of the main problems of all methods based on local search approaches, and
this includes TS in spite of the beneficial impact of tabus, is that they tend to be
too local (as their name implies), i.e., they tend to spend most, if not all, of their
time in a restricted portion of the search space. The negative consequence of this
fact is that, although good solutions may be obtained, one may fail to explore the
most interesting parts of the search space and thus end up with solutions that are
still pretty far from the optimal ones. Diversification is an algorithmic mechanism
that tries to alleviate this problem by forcing the search into previously unexplored
areas of the search space. It is usually based on some form of long-term memory of
the search, such as a frequency memory, in which one records the total number of
iterations (since the beginning of the search) that various solution components have
been present in the current solution or have been involved in the selected moves. For
instance, in the CVRP application, one could note how many times each customer
has been moved from its current route. In cases where it is possible to identify
useful regions of the search space, the frequency memory can be refined to track the
number of iterations spent in these different regions.

There are two major diversification techniques. The first, called restart diversifi-
cation, involves forcing a few rarely used components in the current solution (or the
best-known solution) and restarting the search from this point. In a CVRP heuristic,
customers that have not yet been moved frequently could be forced into new routes.
The second diversification method, continuous diversification, integrates diversifi-
cation considerations directly into the regular searching process. This is achieved
by biasing the evaluation of possible moves by adding to the objective a small term
related to component frequencies (see [56] for an extensive discussion on these two
techniques). A third way of achieving diversification is strategic oscillation as we
will see in the next section.

Before closing this section, we would like to stress that ensuring proper search
diversification is possibly the most critical issue in the design of TS heuristics.
It should be addressed with extreme care fairly early in the design phase and
revisited if the results obtained are not up to expectations.

2.4.3 Allowing Infeasible Solutions

Accounting for all problem constraints in the definition of the search space
often restricts the searching process too much and can lead to mediocre solu-
tions. This occurs, for example, in CVRP instances where the route capacity or
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duration constraints are too tight to allow moving customers effectively between
routes. In such cases, constraint relaxation is an attractive strategy, since it creates
a larger search space that can be explored with simpler neighborhood structures.
Constraint relaxation is easily implemented by dropping selected constraints from
the search space definition and adding to the objective weighted penalties for con-
straint violations.

This, however, raises the issue of finding correct weights for constraint violations.
An interesting way of circumventing this problem is to use self-adjusting penalties,
i.e., weights are adjusted dynamically on the basis of the recent history of the search:
weights are increased if only infeasible solutions were encountered in the last few
iterations and decreased if all recent solutions were feasible (see, for instance, [24]
for further details). Penalty weights can also be modified systematically to drive the
search to cross the feasibility boundary of the search space and thus induce diversi-
fication. This technique, known as strategic oscillation, was introduced as early as
1977 in [28] and used since in several successful TS procedures (an important early
variant oscillates among different types of moves, hence neighborhood structures,
while another oscillates around a selected value for a critical function).

2.4.4 Surrogate and Auxiliary Objectives

There are many problems for which the true objective function is quite costly to
evaluate. When this occurs, the evaluation of moves may become prohibitive, even if
sampling is used. An effective approach to handle this issue is to evaluate neighbors
using a surrogate objective, i.e., a function that is correlated to the true objective, but
is less computationally demanding, in order to identify a (small) set of promising
candidates (potential solutions achieving the best values for the surrogate). The true
objective is then computed for this small set of candidate moves and the best one
selected to become the new current solution; an example of this approach is found
in [15].

Another frequently encountered difficulty is that the objective function may not
provide enough information to effectively drive the search to more interesting areas
of the search space. A typical illustration of this situation is the variant of the CVRP
in which the fleet size is not fixed, but is rather the primary objective (i.e., one is
looking for the minimal fleet size allowing a feasible solution). In this problem,
except for solutions where a route has only one or a few customers assigned to it,
most neighborhood structures will lead to the situation where all elements in the
neighborhood score equally with respect to the primary objective (i.e., all allowable
moves produce solutions with the same number of vehicles). In such a case, it is
absolutely necessary to define an auxiliary objective function to orient the search.
Such a function must measure in some way the desirable attributes of solutions. In
our example, one could, for instance, use a function that would favor solutions with
routes having just a few customers, thus increasing the likelihood that a route can be
totally emptied in a subsequent iteration. It should be noted that coming up with an
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effective auxiliary objective is not always easy and may require a lengthy trial and
error process. In some other cases, fortunately, the auxiliary objective is obvious for
anyone familiar with the problem at hand (see [27], for an illustration).

2.5 Advanced Concepts and Recent Trends

The concepts and techniques described in the previous sections are sufficient to
design effective TS heuristics for many combinatorial problems. Most early TS im-
plementations, several of which were extremely successful, relied indeed almost
exclusively on these algorithmic components. Nowadays, however, most leading
edge research in TS makes use of more advanced concepts and techniques. While
it is clearly beyond the scope of an introductory tutorial, such as this one, to review
this type of advanced material, we would like to give readers some insight into it
by briefly describing some current trends in TS research. Readers who wish to learn
more about this topic should read our survey paper [21] and some of the references
provided in the next section.

A large part of the recent research in TS deals with various techniques for mak-
ing the search more effective. These include methods for exploiting better the in-
formation that becomes available during search and creating better starting points,
as well as more powerful neighborhood operators and parallel search strategies (on
this last topic, see the taxonomy in [16] and the survey in [17]). The numerous tech-
niques for making better use of the information are of particular significance since
they can lead to dramatic performance improvements. Many of these rely on elite
solutions (the best solutions previously encountered) or on parts of these to create
new solutions, the rationale being that fragments or elements of excellent solutions
are often identified quite early in the searching process, but that the challenge is
to complete these fragments or to recombine them [32–34, 53, 61]. Other meth-
ods, such as the reactive TS [4], attempt to find ways of making the search move
away from local optima that have already been visited. An important issue is the
general approach for exploiting the search framework provided by TS. Some favor
simplicity, that is, a search strategy with only a few parameters and based on simple
neighborhood operators, as illustrated by the unified TS [10, 11, 20]. Others propose
complex neighborhood operators, thus leading to large or very large neighborhood
searches [1].

Another important trend in TS (this is, in fact, a pervasive trend in the whole
metaheuristics field) is hybridization, i.e., using TS in conjunction with other
solution approaches such as genetic algorithms [12, 19], Lagrangean relaxation [37],
constraint programming [3, 7, 49], column generation [13], and integer program-
ming techniques (there is a whole chapter on this topic in [34]).

TS research has also started moving away from its traditional application areas
(graph theory problems, scheduling, vehicle routing) to new ones: continuous opti-
mization [5, 8, 9, 42, 54], multi-criteria optimization [38, 42], stochastic program-
ming [2, 46], mixed integer programming [13, 47], real-time decision problems
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[22, 24], etc. These new areas confront researchers with new challenges that, in
turn, call for novel and original extensions of the method.

2.6 Key References

Readers who wish to read other introductory papers on TS can choose among several
ones [26, 33, 36, 39, 57, 65]. The book by Glover and Laguna [34] is the ultimate ref-
erence on TS: apart from the fundamental concepts of the method, it presents a con-
siderable amount of advanced material as well as a variety of applications. It is inter-
esting to note that this book contains several ideas applicable to TS that yet remain
to be fully exploited. The issues of Annals of Operations Research, respectively de-
voted to Tabu Search [35] and Metaheuristics in Combinatorial Optimization [44],
are extremely valuable as well as the books made up from selected papers presented
at the Metaheuristics International Conferences (MIC) in 1995 [48], 1997 [64],
1999 [52], 2001 [51], 2003 [41], and 2005 [18]. A book for the 2009 conference
in Hamburg is also planned. Finally, a special issue of Journal of Heuristics was
devoted to the MIC conference held in Montreal in 2007 [14].

2.7 Tricks of the Trade

Newcomers to TS trying to apply the method to a problem that they wish to solve
are often confused about what they need to do to come up with a successful imple-
mentation. This section is aimed at providing some help in this regard.

2.7.1 Getting Started

The following step-by-step procedure should provide a useful framework for getting
started.

A step-by-step procedure is given as follows:

1. Read one or two good introductory papers to gain some knowledge of the con-
cepts and of the vocabulary.

2. Read several papers describing in detail applications in various areas to see how
the concepts have been actually implemented by other researchers.

3. Think a lot about the problem at hand, focusing on the definition of the search
space and the neighborhood structure.

4. Implement a simple version based on this search space definition and this neigh-
borhood structure.
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5. Collect statistics on the performance of this simple heuristic. It is usually useful
at this point to introduce a variety of memories, such as frequency and recency
memories, to really track down what the heuristic does.

6. Analyze results and adjust the procedure accordingly. It is at this point that one
should eventually introduce mechanisms for search intensification and diversifi-
cation or other intermediate features. Special attention should be paid to diversi-
fication, since this is often where simple TS procedures fail.

2.7.2 More Tips

It is not unusual that, in spite of following carefully the preceding procedure, one
ends up with a heuristic that nonetheless produces mediocre results. If this occurs,
the following tips may prove useful:

1. If there are constraints, consider penalizing them. Letting the search move to
infeasible solutions is often necessary in highly constrained problems to allow
for a meaningful exploration of the search space (see Section 2.4).

2. Reconsider the neighborhood structure and change it if necessary. Many TS im-
plementations fail because the neighborhood structure is too simple. In partic-
ular, one should make sure that the chosen neighborhood structure allows for a
purposeful evaluation of possible moves (i.e., the moves that seem intuitively to
move the search in the right direction should be the ones that are likely to be se-
lected); it might also be a good idea to introduce a surrogate objective to achieve
this (see Section 2.4).

3. Collect more statistics.
4. Follow the execution of the algorithm step by step on some reasonably sized

instances.
5. Reconsider diversification. As mentioned earlier, this is a critical feature in most

TS implementations.
6. Experiment with parameter settings. Many TS procedures are extremely sensi-

tive to parameter settings; it is not unusual to see the performance of a procedure
dramatically improve after changing the value of one or two key parameters (un-
fortunately, it is not always obvious to determine which parameters are the key
ones in a given procedure).

2.7.3 Additional Tips for Probabilistic TS

While it is an effective way of tackling many problems, probabilistic TS creates
problems of its own that need to be carefully addressed. The most important of these
is the fact that, more often than not, the best solutions returned by probabilistic TS
will not be local optima with respect to the neighborhood structure being used. This
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is particularly annoying since, in that case, better solutions can be easily obtained,
sometimes even manually. An easy way to come around this is to simply perform
a local improvement phase (using the same neighborhood operator) from the best
found solution at the end of the TS itself. One could alternately switch to TS without
sampling (again from the best found solution) for a short duration before completing
the algorithm. A possibly more effective technique is to add throughout the search
an intensification step without sampling; in this fashion, the best solutions available
in the various regions of the search space explored by the method will be found and
recorded (similar special aspiration criteria for allowing the search to reach local
optima at useful junctures are proposed in [33]).

2.7.4 Parameter Calibration and Computational Testing

Parameter calibration and computational experiments are key steps in the develop-
ment of any algorithm. This is particularly true in the case of TS, since the number
of parameters required by most implementations is fairly large and since the perfor-
mance of a given procedure can vary quite significantly when parameter values are
modified. The first step in any serious computational experimentation is to select a
good set of benchmark instances (either by obtaining them from other researchers
or by constructing them), preferably with some reasonable measure of their diffi-
culty and with a wide range of size and difficulty. This set should be split into two
subsets, the first one being used at the algorithmic design and parameter calibration
steps, and the second reserved for performing the final computational tests that will
be reported in the paper(s) describing the heuristic under development. The reason
for doing so is quite simple: when calibrating parameters, one always run the risk of
overfitting, i.e., finding parameter values that are excellent for the instances at hand,
but poor in general, because these values provide too good a fit (from the algorith-
mic standpoint) to these instances. Methods with several parameters should thus be
calibrated on much larger sets of instances than ones with few parameters to ensure
a reasonable degree of robustness. The calibration process itself should proceed in
several stages:

1. Perform exploratory testing to find good ranges of parameters. This can be done
by running the heuristic with a variety of parameter settings.

2. Fix the value of parameters that appear to be robust, i.e., which do not seem to
have a significant impact on the performance of the procedure.

3. Perform systematic testing for the other parameters. It is usually more efficient
to test values for only a single parameter at a time, the others being fixed at what
appear to be reasonable values. One must be careful, however, for cross effects
between parameters. Where such effects exist, it can be important to jointly test
pairs or triplets of parameters, which can be an extremely time-consuming task.

The work in [15] provides a detailed description of the calibration process for a
fairly complex TS procedure and can be used as a guideline for this purpose.
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2.8 Conclusion

Tabu search is a powerful algorithmic approach that has been applied with great
success to many difficult combinatorial problems. A particularly nice feature of TS
is that, like all approaches based on local search, it can quite easily handle compli-
cating constraints that are typically found in real-life applications. It is thus a really
practical approach. It is not, however, a panacea: every reviewer or editor of a scien-
tific journal has seen more than his/her share of failed TS heuristics. These failures
stem from two major causes: an insufficient understanding of fundamental concepts
of the method (and we hope that this tutorial will help in alleviating this shortcom-
ing), but also, more often than not, a crippling lack of understanding of the problem
at hand. One cannot develop a good TS heuristic for a problem that he/she does not
know well! This is because significant problem knowledge is absolutely required to
perform the most basic steps of the development of any TS procedure, namely the
choice of a search space and of an effective neighborhood structure. If the search
space and/or the neighborhood structure are inadequate, no amount of TS expertise
will be sufficient to save the day. A last word of caution: to be successful, all meta-
heuristics need to achieve both depth and breadth in their searching process; depth
is usually not a problem for TS, which is quite aggressive in this respect (TS heuris-
tics generally find pretty good solutions very early in the search), but breadth can
be a critical issue. To handle this, it is extremely important to develop an effective
diversification scheme.
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36. Glover, F., Taillard, É.D., de Werra, D.: A user’s guide to tabu search. Ann. Oper. Research

41, 3–28 (1993)
37. Grünert, T.: Lagrangean tabu search. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys

in Metaheuristics, pp. 379–397. Kluwer, Boston (2002)
38. Hansen, M.P.: Tabu search in multiobjective optimisation: MOTS. In: Proceedings of the 13th

International Conference on Multiple Criteria Decision Making, pp. 574–586, Cape Town,
South Africa (1997)

39. Hertz, A., de Werra, D.: The tabu search metaheuristic: how we used it. Ann. Math. Artif.
Intell. 1, 111–121 (1991)

40. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

41. Ibaraki, T., Nonobe, K., Yagiura, M. (eds.): Metaheuristics: Progress as Real Problem Solvers,
Springer, New York, NY (2005)

42. Jaeggi, D.M., Parks, G.T., Kipouros, T., Clarkson, P.J.: The development of a multi-
objective tabu search algorithm for continuous optimisation problems. Eur. J. Oper. Res. 185,
1192–1212 (2008)

43. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optim. Simulated Annealing. Science 220,
671–680 (1983)

44. Laporte, G., Osman, I.H. (eds.): Metaheuristics in combinatorial optimization. Ann. Oper.
Res. 63, J.C. Baltzer AG Science Publishers, Basel (1996)

45. Løkketangen, A., Glover, F.: Probabilistic move selection in tabu search for 0/1 mixed inte-
ger programming problems. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics: Theory and
Applications, pp. 467–488. Kluwer, Boston (1996)

46. Løkketangen, A., Woodruff, D.L.: Progressive hedging and tabu search applied to mixed in-
teger (0,1) multistage stochastic programming. J. Heuristics 2, 111–128 (1996)

47. Osman, I.H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle
routing problem. Ann. Oper. Res. 41, 421–451 (1993)

48. Osman, I.H., Kelly, J.P. (eds.): Meta-heuristics: Theory and Applications. Kluwer, Boston
(1996)

49. Pesant, G., Gendreau, M.: A constraint programming framework for local search methods.
J. Heuristics 5, 255–280 (1999)

50. Rego, C., Roucairol, C.: A parallel tabu search algorithm using ejection chains for the vehicle
routing problem. In: Osman, I.H., Kelly, J.P. (eds.) Meta-heuristics: Theory and Applications,
pp. 661–675. Kluwer, Boston (1996)

51. Resende, M.G.C., de Sousa, J.P. (eds.): Metaheuristics—Computer Decision Making.
Kluwer, Boston (2004)

52. Ribeiro, C.C., Hansen, P. (eds.): Essays and Surveys in Metaheuristics. Kluwer, Boston (2002)
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Abstract Variable neighborhood search (VNS) is a metaheuristic for solving
combinatorial and global optimization problems whose basic idea is a systematic
change of neighborhood both within a descent phase to find a local optimum and
in a perturbation phase to get out of the corresponding valley. In this chapter we
present the basic schemes of VNS and some of its extensions. We then describe a
recent development, i.e., formulation space search. We then present five families of
applications in which VNS has proven to be very successful: (i) exact solution of
large-scale location problems by primal–dual VNS; (ii) generation of feasible so-
lutions to large mixed integer linear programs by hybridization of VNS and local
branching; (iii) generation of good feasible solutions to continuous nonlinear pro-
grams; (iv) generation of feasible solutions and/or improved local optima for mixed
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3.1 Introduction

Optimization tools have greatly improved during the last two decades. This is due
to several factors: (i) progress in mathematical programming theory and algorithmic
design; (ii) rapid improvement in computer performances; (iii) better communica-
tion of new ideas and integration in widely used complex softwares. Consequently,
many problems long viewed as out of reach are currently solved, sometimes in very
moderate computing times. This success, however, has led researchers and prac-
titioners to address much larger instances and more difficult classes of problems.
Many of these may again only be solved heuristically. Therefore thousands of papers
describing, evaluating, and comparing new heuristics appear each year. Keeping
abreast of such a large literature is a challenge. Metaheuristics, or general frame-
works for building heuristics, are therefore needed in order to organize the study of
heuristics. As evidenced by this handbook, there are many of them. Some desirable
properties of metaheuristics [64, 67, 68] are listed in the concluding section of this
chapter.

Variable neighborhood search (VNS) is a metaheuristic proposed by some of the
present authors a dozen years ago [85]. Earlier work that motivated this approach
can be found in [28, 41, 44, 82]. It is based on the idea of a systematic change of
neighborhood both in a descent phase to find a local optimum and in a perturbation
phase to get out of the corresponding valley. Originally designed for approximate
solution of combinatorial optimization problems, it was extended to address mixed
integer programs, nonlinear programs, and recently mixed integer nonlinear pro-
grams. In addition VNS has been used as a tool for automated or computer-assisted
graph theory. This led to the discovery of over 1500 conjectures in that field, the
automated proof of more than half of them as well as the unassisted proof of about
400 of them by many mathematicians.

Applications are rapidly increasing in number and pertain to many fields: loca-
tion theory, cluster analysis, scheduling, vehicle routing, network design, lot-sizing,
artificial intelligence, engineering, pooling problems, biology, phylogeny, reliabil-
ity, geometry, telecommunication design, etc. (see, e.g., [20, 21, 31, 38, 39, 66,
77, 99]). References are too numerous to be all listed here, but many others can be
found in [69] and special issues of IMA Journal of Management Mathematics [81],
European Journal of Operational Research [68], and Journal of Heuristics [89] are
devoted to VNS.

This chapter is organized as follows. In the next section we present the basic
schemes of VNS, i.e., variable neighborhood descent (VND), reduced VNS (RVNS),
basic VNS (BVNS), and general VNS (GVNS). Two important extensions are
presented in Section 3.3: skewed VNS and variable neighborhood decomposition
search (VNDS). A further recent development called formulation space search
(FSS) is discussed in Section 3.4. The remainder of this chapter describes appli-
cations of VNS to several classes of large scale and complex optimization prob-
lems for which it has proven to be particularly successful. Section 3.5 is devoted
to primal–dual VNS (PD-VNS) and its application to location and clustering prob-
lems. Finding feasible solutions to large mixed integer linear programs with VNS
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is discussed in Section 3.6. Section 3.7 addresses ways to apply VNS in continuous
global optimization. The more difficult case of solving mixed integer nonlinear
programming by VNS is considered in Section 3.8. Applying VNS to graph the-
ory per se (and not just to particular optimization problems defined on graphs) is
discussed in Section 3.9. Brief conclusions are drawn in Section 3.10.

3.2 Basic Schemes

A deterministic optimization problem may be formulated as

min{ f (x)|x ∈ X ,X ⊆S }, (3.1)

where S , X , x, and f denote the solution space, the feasible set, a feasible solution,
and a real-valued objective function, respectively. If S is a finite but large set, a
combinatorial optimization problem is defined. If S = R

n, we refer to continuous
optimization. A solution x∗ ∈ X is optimal if

f (x∗)≤ f (x), ∀x ∈ X .

An exact algorithm for problem (3.1), if one exists, finds an optimal solution x∗,
together with the proof of its optimality, or shows that there is no feasible solution,
i.e., X = /0, or the solution is unbounded. Moreover, in practice, the time needed to do
so should be finite (and not too long). For continuous optimization, it is reasonable
to allow for some degree of tolerance, i.e., to stop when sufficient convergence is
detected.

Let us denote Nk (k = 1, . . . ,kmax), a finite set of pre-selected neighborhood struc-
tures, and with Nk(x) the set of solutions in the kth neighborhood of x. Most local
search heuristics use only one neighborhood structure, i.e., kmax = 1. Often succes-
sive neighborhoods Nk are nested and may be induced from one or more metric (or
quasi-metric) functions introduced into a solution space S. An optimal solution xopt

(or global minimum) is a feasible solution where a minimum is reached. We call
x′ ∈ X a local minimum of Equation (3.1) with respect to Nk (w.r.t. Nk for short),
if there is no solution x ∈Nk(x′)⊆ X such that f (x) < f (x′). Metaheuristics (based
on local search procedures) try to continue the search by other means after finding
the first local minimum. VNS is based on three simple facts:

Fact 1 A local minimum w.r.t. one neighborhood structure is not necessarily so for
another;

Fact 2 A global minimum is a local minimum w.r.t. all possible neighborhood
structures;

Fact 3 For many problems, local minima w.r.t. one or several Nk are relatively
close to each other.
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This last observation, which is empirical, implies that a local optimum often pro-
vides some information about the global one. For instance, it might be several vari-
ables with the same value in both solutions. However, it is usually not known which
variables are such. Since these variables usually cannot be identified in advance, one
should conduct an organized study of the neighborhoods of the local optimum until
a better solution is found.

In order to solve Equation (3.1) by using several neighborhoods, facts 1 to 3 can
be used in three different ways: (i) deterministic, (ii) stochastic, (iii) both determin-
istic and stochastic.

We first give in Algorithm 1 the solution move and neighborhood change function
that will be used later.

Algorithm 1 Neighborhood change
Function NeighborhoodChange (x,x′,k)

if f (x′) < f (x) then1
x ← x′ // Make a move2
k ← 1 // Initial neighborhood3

else
k ← k +1 // Next neighborhood4

return x,k

Function NeighborhoodChange() compares the incumbent value f (x) with
the new value f (x′) obtained from the kth neighborhood (line 1). If an improvement
is obtained, the new incumbent is updated (line 2) and k is returned to its initial
value (line 3). Otherwise, the next neighborhood is considered (line 4).

(i) The variable neighborhood descent (VND) method is obtained if a change of
neighborhoods is performed in a deterministic way. It is presented in Algorithm 2,
where neighborhoods are denoted as Nk,k = 1, . . . ,kmax.

Algorithm 2 Variable neighborhood descent
Function VND (x,kmax)

k ← 11
repeat2

x′ ← argminy∈Nk(x) f (y) // Find the best neighbor in Nk(x)3

x,k ← NeighborhoodChange (x,x′,k) // Change neighborhood4

until k = kmax
return x

Most local search heuristics use a single or sometimes two neighborhoods for
improving the current solution (i.e., kmax ≤ 2). Note that the final solution should
be a local minimum w.r.t. all kmax neighborhoods, and thus a global optimum is
more likely to be reached than with a single structure. Beside this sequential order
of neighborhood structures in VND, one can develop a nested strategy. Assume,
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for example, that kmax = 3; then a possible nested strategy is to perform VND with
Algorithm 2 for the first two neighborhoods from each point x′ that belongs to the
third one (x′ ∈ N3(x)). Such an approach is successfully applied in [22, 27, 65].

(ii) The reduced VNS (RVNS) method is obtained if random points are selected
from Nk(x) and no descent is made. Rather, the values of these new points are com-
pared with that of the incumbent and an update takes place in case of improvement.
We also assume that a stopping condition has been chosen like the maximum CPU

time allowed tmax or the maximum number of iterations between two improvements.
To simplify the description of the algorithms we always use tmax below. Therefore,
RVNS uses two parameters: tmax and kmax. It is presented in Algorithm 3.

Algorithm 3 Reduced VNS
Function RVNS(x,kmax, tmax)

repeat1
k ← 12
repeat3

x′ ← Shake(x,k)4
x,k ← NeighborhoodChange (x,x′,k)5

until k = kmax

t ← CpuTime()6

until t > tmax
return x

The function Shake in line 4 generates a point x′ at random from the kth neigh-
borhood of x, i.e., x′ ∈ Nk(x). It is given in Algorithm 4, where it is assumed that
points from Nk(x) are {x1, . . . ,x|Nk(x)|}. RVNS is useful for very large instances

Algorithm 4 Shaking function
Function Shake(x,k)

w ← [1+Rand(0,1)×|Nk(x)|]1
x′ ← xw2

return x′

for which local search is costly. It can be used as well for finding initial solutions
for large problems before decomposition. It has been observed that the best value
for the parameter kmax is often 2 or 3. In addition, a maximum number of iterations
between two improvements is usually used as the stopping condition. RVNS is akin
to a Monte Carlo method, but is more systematic (see, e.g., [86] where results ob-
tained by RVNS were 30% better than those of the Monte Carlo method in solving
a continuous min–max problem). When applied to the p-Median problem, RVNS
gave equally good solutions as the Fast Interchange heuristic of [98] while being 20
to 40 times faster [70].
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(iii) The basic VNS (BVNS) method [85] combines deterministic and stochastic
changes of neighborhood. The deterministic part is represented by a local search
heuristic. It consists in (i) choosing an initial solution x, (ii) finding a direction of
descent from x (within a neighborhood N(x)), and (iii) moving to the minimum
of f (x) within N(x) along that direction. If there is no direction of descent, the
heuristic stops, otherwise it is iterated. Usually the steepest descent direction, also
referred to as best improvement, is used. This is summarized in Algorithm 5, where
we assume that an initial solution x is given. The output consists of a local minimum,
also denoted by x, and its value. As the Steepest descent heuristic may be time-

Algorithm 5 Best improvement (steepest descent) heuristic
Function BestImprovement(x)

repeat1
x′ ← x2
x ← argminy∈N(x) f (y)3

until ( f (x)≥ f (x′))
return x

consuming, an alternative is to use the first descent heuristic. Vectors xi ∈ N(x) are
then enumerated systematically and a move is made as soon as a direction for the
descent is found. This is summarized in Algorithm 6.

Algorithm 6 First improvement (first descent) heuristic
Function FirstImprovement(x)

repeat1
x′ ← x; i ← 02

repeat3
i ← i+14

x ← argmin{ f (x), f (xi)}, xi ∈ N(x)5

until ( f (x) < f (x′) or i = |N(x)|)
until ( f (x)≥ f (x′))

return x

The stochastic phase is represented by the random selection of one point from
the kth neighborhood. The BVNS is given in Algorithm 7.

Note that point x′ is generated at random in step 5 in order to avoid cycling, which
might occur with a deterministic rule.

Example. We illustrate the basic steps on a minimum k-cardinality tree instance
taken from [76], see Figure 3.1. The minimum k-cardinality tree problem on graph
G (k-card for short) consists in finding a subtree of G with exactly k edges whose
sum of weights is minimum.

The steps of BVNS for solving the 4-card problem are illustrated in Figure 3.2.
In step 0 the objective function value, i.e., the sum of edge weights, is equal to 40;
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Algorithm 7 Basic VNS
Function BVNS(x,kmax, tmax)

t ← 01
while t < tmax do2

k ← 13
repeat4

x′ ← Shake(x,k) // Shaking5
x′′ ← BestImprovement(x′) // Local search6
x,k ← NeighborhoodChange(x,x′′,k) // Change neighborhood7

until k = kmax

t ← CpuTime()8

return x
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it is indicated in the right bottom corner of the figure. That first solution is a local
minimum with respect to the edge-exchange neighborhood structure (one edge in,
one out). After shaking, the objective function is 60, and after another local search,
we are back to the same solution. Then, in step 3, we take out 2 edges and add
another 2 at random, and after a local search, an improved solution is obtained with
a value of 39. Continuing in that way, the optimal solution with an objective function
value equal to 36 is obtained in step 8.

(iv) General VNS. Note that the local search step (line 6 in BVNS, Algorithm 7)
may also be replaced by VND (Algorithm 2). This general VNS (VNS/VND) ap-
proach has led to some of the most successful applications reported in the literature
(see, e.g., [2, 27, 30, 32, 34, 36, 37, 65, 71, 92, 93]). The general VNS (GVNS) is
given in Algorithm 8 below.

Algorithm 8 General VNS
Function GVNS (x, �max,kmax, tmax)

repeat1
k ← 12
repeat3

x′ ← Shake(x,k)4
x′′ ← VND(x′, �max)5
x,k ← NeighborhoodChange(x,x′′,k)6

until k = kmax

t ← CpuTime()7

until t > tmax
return x

3.3 Some Extensions

(i) The skewed VNS (SVNS) method [59] addresses the problem of exploring val-
leys far from the incumbent solution. Indeed, once the best solution in a large region
has been found, it is necessary to go quite far to obtain an improved one. Solutions
drawn at random in far-away neighborhoods may differ substantially from the in-
cumbent, and VNS may then degenerate, to some extent, into the multistart heuristic
(in which descents are made iteratively from solutions generated at random, which
is known not to be very efficient). So some compensation for distance from the
incumbent must be made and a scheme called skewed VNS is proposed for that
purpose. Its steps are presented in Algorithms 9, 10, and 11. The KeepBest(x,x′)
function (Algorithm 9) in SVNS simply keeps the best of solutions x and x′. The
NeighborhoodChangeS function (Algorithm 10) performs the move and neigh-
borhood change for the SVNS.

SVNS makes use of a function ρ(x,x′′) to measure the distance between the
incumbent solution x and the local optimum x′′. The distance function used to define
Nk, as in the above examples, could be used also for this purpose. The parameter
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Algorithm 9 Keep best solution
Function KeepBest(x,x′)

if f (x′) < f (x) then1
x ← x′2

return x

Algorithm 10 Neighborhood change for the skewed VNS
Function NeighborhoodChangeS(x,x′,k,α)

if f (x′)−αρ(x,x′) < f (x) then1
x ← x′2
k ← 13

else
k ← k +14

return x,k

Algorithm 11 Skewed VNS
Function SVNS (x,kmax, tmax,α)

xbest ← x1
repeat2

k ← 13
repeat4

x′ ← Shake(x,k)5
x′′ ← FirstImprovement(x′)6
x,k ← NeighborhoodChangeS(x,x′′,k,α)7

until k = kmax

xbest ← KeepBest (xbest ,x)8
x ← xbest9
t ← CpuTime()10

until t > tmax
return x

α must be chosen to allow movement to valleys far away from x when f (x′′) is
larger than f (x) but not too much larger (otherwise one will always leave x). A good
value for α is to be found experimentally in each case. Moreover, in order to avoid
frequent moves from x to a close solution one may take a smaller value for α when
ρ(x,x′′) is small. More sophisticated choices of a function of αρ(x,x′′) could be
made through some learning process.

(ii) The variable neighborhood decomposition search (VNDS) method [70] ex-
tends the basic VNS into a two-level VNS scheme based on decomposition of the
problem. It is presented in Algorithm 12, where td is an additional parameter that
represents the running time allowed for solving decomposed (smaller sized) prob-
lems by basic VNS (line 5).

For ease of presentation, but without loss of generality, we assume that the solu-
tion x represents a set of some attributes. In step 4 we denote by y a set of k solution
attributes present in x′ but not in x (y = x′ \ x). In step 5 we find the local optimum
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Algorithm 12 Variable neighborhood decomposition search
Function VNDS (x,kmax, tmax, td)

repeat1
k ← 12
repeat3

x′ ← Shake (x,k); y ← x′ \ x4
y′ ← BVNS(y,k, td); x′′ = (x′ \ y)∪ y′5
x′′′ ← FirstImprovement(x′′)6
x,k ← NeighborhoodChange(x,x′′′,k)7

until k = kmax

until t > tmax
return x

y′ in the space of y; then we denote with x′′ the corresponding solution in the whole
space S (x′′ = (x′ \y)∪y′). We notice that exploiting some boundary effects in a new
solution can significantly improve solution quality. That is why, in step 6, the local
optimum x′′′ is found in the whole space S using x′′ as an initial solution. If this is
time consuming, then at least a few local search iterations should be performed.

VNDS can be viewed as embedding the classical successive approximation
scheme (which has been used in combinatorial optimization at least since the 1960s,
see, e.g., [52]) in the VNS framework.

3.4 Variable Neighborhood Formulation Space Search

Traditional ways to tackle an optimization problem consider a given formulation
and search in some way through its feasible set X . Given that the same problem can
often be formulated in different ways, it is possible to extend search paradigms to
include jumps from one formulation to another. Each formulation should lend itself
to some traditional search method, its “local search” that works totally within this
formulation, and yields a final solution when started from some initial solution. Any
solution found in one formulation should easily be translatable to its equivalent so-
lution in any other formulation. We may then move from one formulation to another
by using the solution resulting from the local search of the former as an initial so-
lution for the local search of the latter. Such a strategy will of course only be useful
when local searches in different formulations behave differently.

This idea was recently investigated in [87] using an approach that systematically
alternates between different formulations for solving the circle packing problem
(CPP). It is shown there that a stationary point for a nonlinear programming formu-
lation of CPP in Cartesian coordinates is not necessarily a stationary point in polar
coordinates. A method called Reformulation Descent (RD) that alternates between
these two formulations until the final solution is stationary with respect to both
formulations is suggested. Results obtained were comparable with the best known
values, but were achieved some 150 times faster than with an alternative single
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formulation approach. In the same paper the idea suggested above of Formulation
Space Search (FSS) is also introduced, using more than two formulations. Some
research in that direction has also been reported in [74, 83, 88, 90]. One method-
ology that uses the variable neighborhood idea when searching through the formu-
lation space is given in Algorithms 13 and 14. Here φ (φ ′) denotes a formulation
from a given space F , x (x′) denotes a solution in the feasible set defined with that
formulation, and � ≤ �max is the formulation neighborhood index. Note that Algo-
rithm 14 uses a reduced VNS strategy in the formulation space F . Note also that
the ShakeFormulation() function must provide a search through the solution
space S ′ in order to get a new solution x′. Any appropriate method can be used for
this purpose.

Algorithm 13 Formulation change
Function FormulationChange(x,x′,φ ,φ ′, �)

Set �min and �step1
if f (φ ′,x′) < f (φ ,x) then2

φ ← φ ′3
x ← x′4
�← �min5

else
�← �+ �step6

return x,φ , �7

Algorithm 14 Reduced variable neighborhood FSS
Function VNFSS(x,φ , �max)

repeat1
�← 1 // Initialize formulation in F2
while �≤ �max do3

x′,φ ′, �← ShakeFormulation(x,x′,φ ,φ ′,�) // (φ ′,x′)∈(N�(φ),N (x)) at random4
x,φ , �← FormulationChange(x,x′,φ ,φ ′,�) // Change formulation5

until some stopping condition is met
return x6

3.5 Primal–Dual VNS

For most modern heuristics the difference in value between the optimal solution and
the one obtained is completely unknown. Guaranteed performance of the primal
heuristic may be determined if a lower bound on the objective function value is
known. To this end, the standard approach is to relax the integrality condition on the
primal variables, based on a mathematical programming formulation of the problem.
However, when the dimension of the problem is large, even the relaxed problem may
be impossible to solve exactly by standard commercial solvers. Therefore, it seems
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to be a good idea to solve dual relaxed problems heuristically as well. In this way
we get guaranteed bounds on the primal heuristic’s performance. The next problem
arises if we want to get an exact solution within a branch and bound framework
since having the approximate value of the relaxed dual does not allow us to branch
in an easy way, for example, by exploiting complementary slackness conditions.
Thus, the exact value of the dual is necessary.

In primal–dual VNS (PD-VNS) [58] one possible general way to get both the
guaranteed bounds and the exact solution is proposed. It is given in Algorithm 15.

Algorithm 15 Basic PD-VNS
Function PD-VNS (x,kmax, tmax)

BVNS (x,kmax, tmax) // Solve primal by VNS1
DualFeasible(x,y) // Find (infeasible) dual such that fP = fD2
DualVNS(y) // Use VNS do decrease infeasibility3
DualExact(y) // Find exact (relaxed) dual4
BandB(x,y) // Apply branch-and-bound method5

In the first stage a heuristic procedure based on VNS is used to obtain a near-
optimal solution. In [58] it is shown that VNS with decomposition is a very powerful
technique for large-scale simple plant location problems (SPLP) with up to 15,000
facilities and 15,000 users. In the second phase the objective is to find an exact solu-
tion of the relaxed dual problem. Solving the relaxed dual is accomplished in three
stages: (i) find an initial dual solution (generally infeasible) using the primal heuris-
tic solution and complementary slackness conditions; (ii) find a feasible solution
by applying VNS to the unconstrained nonlinear form of the dual; and (iii) solve
the dual exactly starting with the found initial feasible solution using a customized
“sliding simplex” algorithm that applies “windows” on the dual variables, thus sub-
stantially reducing the problem size. On all problems tested, including instances
much larger than those previously reported in the literature, the procedure was able
to find the exact dual solution in reasonable computing time. In the third and final
phase, armed with tight upper and lower bounds obtained from the heuristic primal
solution in phase 1 and the exact dual solution in phase 2, respectively, a standard
branch-and-bound algorithm is applied to find an optimal solution of the original
problem. The lower bounds are updated with the dual sliding simplex method and
the upper bounds whenever new integer solutions are obtained at the nodes of the
branching tree. In this way it was possible to solve exactly problem instances of
sizes up to 7000×7000 for uniform fixed costs and 15,000 × 15,000 otherwise.

3.6 Variable Neighborhood Branching—VNS for Mixed Integer
Linear Programming

The mixed integer linear programming (MILP) problem consists of maximizing
or minimizing a linear function, subject to equality or inequality constraints, and
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integrality restrictions on some of the variables. The mixed integer programming
problem (MILP) can be expressed as follows:

(MILP)

⎡
⎢⎢⎢⎢⎣

min ∑n
j=1 c jx j

s.t. ∑n
j=1 ai jx j ≥ bi ∀i ∈ M = {1,2, . . . ,m}

x j ∈ {0,1} ∀ j ∈B �= /0 ,
x j ≥ 0,integer ∀ j ∈ G
x j ≥ 0 ∀ j ∈ C

where the set of indices N = {1,2, . . . ,n} is partitioned into three subsets B,G , and
C , corresponding to binary, general integer, and continuous variables, respectively.

Numerous combinatorial optimization problems, including a wide range of prac-
tical problems in business, engineering and science, can be modeled as MILP prob-
lems. Several special cases, such as knapsack, set packing, cutting and packing,
network design, protein alignment, traveling salesman, and other routing problems,
are known to be NP-hard [48].

There are several commercial solvers such as CPLEX [75] for solving MILPs.
Methods included in such software packages are usually of branch-and-bound
(B&B) or of branch-and-cut (B&C) types. Basically, those methods enumerate all
possible integer values in some order and perform some restrictions for the cases
where such enumeration cannot improve the current best solution.

The connection between local search-based heuristics and exact solvers may be
established by introducing the so-called local branching constraint [43]. By adding
just one constraint into (MILP), the kth neighborhood of (MILP) is defined. This
allows the use of all local search-based metaheuristics, such as tabu search, simulat-
ing annealing, VNS. More precisely, given two solutions x and y of the (MILP), the
distance between x and y is defined as follows:

δ (x,y) = ∑
j∈B

| x j − y j |.

Let X be the solution space of the (MILP) considered. The neighborhood structures
{Nk | k = 1, . . . ,kmax} can be defined, knowing the distance δ (x,y) between any
two solutions x,y ∈ X . The set of all solutions in the kth neighborhood of y ∈ X is
denoted as Nk(y) where

Nk(y) = {x ∈ X | δ (x,y) ≤ k}.

For the pure 0-1 MILP given above (G = /0), δ (., .) represents the Hamming distance
and Nk(y) may be expressed by the following local branching constraint

δ (x,y) = ∑
j∈S

(1− x j)+ ∑
j∈B\S

x j ≤ k, (3.2)

where S = { j ∈B | y j = 1}.
In [71] we developed a general VNS procedure for solving 0-1 MILPs. An ex-

act MILP solver (CPLEX) is used as a black box for finding the best solution in
the neighborhood, based on the given formulation (MILP) plus the added local
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Algorithm 16 VNS branching
Function VnsBra(total time limit, node time limit, k step, x opt)

TL := total time limit; UB := ∞; first := true1
stat := MIPSOLVE(TL, UB, first, x opt, f opt)2
x cur:=x opt; f cur:=f opt3
while (elapsedtime < total time limit) do4

cont := true; rhs := 1; first := false5
while (cont or elapsedtime < total time limit) do6

TL = min(node time limit, total time limit-elapsedtime)7
add local br. constr. δ (x,x cur)≤ rhs; UB := f cur8
stat := MIPSOLVE(TL, UB, first, x next, f next)9
switch stat do10

case ”opt sol found”:11
reverse last local br. const. into δ (x,x cur)≥ rhs+112
x cur := x next; f cur := f next; rhs := 1;13

case ”feasible sol found”:14
reverse last local br. constr. into δ (x,x cur)≥ 115
x cur := x next; f cur := f next; rhs := 1;16

case ”proven infeasible”:17
remove last local br. constr.; rhs := rhs+1;18

case ”no feasible sol found”:19
cont := false20

if f cur < f opt then21
x opt := x cur; f opt := f cur; k cur := k step;22

else
k cur := k cur+k step;23

remove all added constraints; cont := true24
while cont and (elapsedtime < total time limit) do25

add constraints k cur ≤ δ (x,x opt) < k cur +k step26
TL := total time limit-elapsedtime; UB := ∞; first := true27
stat := MIPSOLVE(TL, UB, first, x cur, f cur)28
remove last two added constraints; cont =false29
if stat = ”proven infeasible” or ”no feasible” then30

cont :=true; k cur := k cur+k step31

branching constraints. Shaking is performed using the Hamming distance defined
above. A detailed description of this VNS branching method is provided in Algo-
rithm 16. The variables and constants used in the algorithm are defined as follows
[71]:

. UB—input variable for CPLEX solver which represents the current upper bound.

. f irst—logical input variable for CPLEX solver which is true if the first solution
lower than UB is asked for in the output; if f irst = false, CPLEX returns the best
solution found so far.
. TL—maximum time allowed for running CPLEX.
. rhs—right-hand side of the local branching constraint; it defines the size of the
neighborhood within the inner or VND loop.
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. cont—logical variable which indicates if the inner loop continues (true) or not
(false).
. x opt and f opt—incumbent solution and corresponding objective function value.
x cur, f cur, k cur—current solution, objective function value and neighborhood
from where VND local search starts.
. x next and f next—solution and corresponding objective function value obtained
by CPLEX in inner loop.

3.7 Variable Neighborhood Search for Continuous Global
Optimization

The general form of the continuous constrained nonlinear global optimization prob-
lem (GOP) is given as follows:

(GOP)

⎡
⎢⎢⎣

min f (x)
s.t. gi(x)≤ 0 ∀i ∈ {1,2, . . . ,m}

hi(x) = 0 ∀i ∈ {1,2, . . . ,r}
a j ≤ x j ≤ b j ∀ j ∈ {1,2, . . . ,n}

,

where x∈ Rn, f : Rn → R, gi : Rn → R, i = 1,2, . . . ,m, and hi : Rn → R, i = 1,2, . . . ,r,
are possibly nonlinear continuous functions, and a,b ∈ Rn are the variable bounds.
A box constraint GOP is defined when only the variable bound constraints are
present in the model.

The GOP naturally arises in many applications, e.g., in advanced engineering de-
sign, data analysis, financial planning, risk management, scientific modeling. Most
cases of practical interest are characterized by multiple local optima and, therefore,
a search effort of global scope is needed to find the globally optimal solution.

If the feasible set X is convex and objective function f is convex, then (GOP)
is relatively easy to solve, i.e., the Karush–Kuhn–Tucker conditions can be applied.
However, if X is not a convex set or f is not a convex function, we can have many
local optima and the problem may not be solved with classical techniques.

For solving (GOP), VNS has been used in two different ways: (i) with neighbor-
hoods induced by using an �p norm and (ii) without using an �p norm.

(i) VNS with �p norm neighborhoods [42, 79, 84, 86]. A natural approach in ap-
plying VNS for solving GOPs is to induce neighborhood structures Nk(x) from an
�p metric such as

ρ(x,y) =

(
n

∑
i=1

|xi − yi|p
)1/p

(1 ≤ p < ∞) (3.3)

or
ρ(x,y) = max

1≤i≤n
|xi − yi| (p → ∞). (3.4)
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The neighborhood Nk(x) denotes the set of solutions in the kth neighborhood of x,
and using the metric ρ , it is defined as

Nk(x) = {y ∈ X | ρ(x,y)≤ ρk} (3.5)

or
Nk(x) = {y ∈ X | ρk−1 < ρ(x,y)≤ ρk}, (3.6)

where ρk, known as the radius of Nk(x), is monotonically increasing with k.
For solving box constraint GOPs, both [42] and [79] use neighborhoods as

defined in Equation (3.6). The basic differences between the two are as follows:
(1) in the procedure suggested in [79] the �∞ norm is used, while in [42] the choice
of metric is either left to the analyst or changed automatically in some predefined
order; (2) the commercial solver SNOPT [49] is used as a local search procedure
within VNS in [79], while in [42], the analyst may choose one out of six different
convex minimizers. A VNS-based heuristic for solving the generally constrained
GOP is suggested in [84]. There, the problem is first transformed into a sequence of
box constrained problems within the well-known exterior point method:

min
a≤x≤b

Fμ,q(x) = f (x)+
1
μ

m

∑
i=1

(max{0,gi(x)})q +
r

∑
i=1

|hi(x)|q, (3.7)

where μ and q ≥ 1 are a positive penalty parameter and penalty exponent, respec-
tively. Algorithm 17 outlines the steps for solving the box constraint subproblem as
proposed in [84]:

Algorithm 17 VNS using a �p norm
Function Glob-VNS (x∗,kmax, tmax)

Select the set of neighborhood structures Nk, k = 1, . . . ,kmax1
Select the array of random distributions types and an initial point x∗ ∈ X2
x ← x∗, f ∗ ← f (x), t ← 03
while t < tmax do4

k ← 15
repeat6

for all distribution types do7
y ← Shake(x∗,k) // Get y ∈Nk(x∗) at random8
y′ ← BestImprovment(y) // Apply LS to obtain a local minimum y′9
if f (y′) < f ∗ then10

x∗ ← y′, f ∗ ← f (y′), go to line 511

k ← k +112

until k = kmax
t ← CpuTime()13

The Glob-VNS procedure from Algorithm 17 contains the following param-
eters in addition to kmax and tmax: (1) Values of radii ρk, k = 1, . . . ,kmax. Those



3 Variable Neighborhood Search 77

values may be defined by the user or calculated automatically in the minimizing
process; (2) Geometry of neighborhood structures Nk, defined by the choice of met-
ric. Usual choices are the �1, �2, and �∞ norms; (3) Distribution used for obtaining
the random point y from Nk in the Shaking step. Uniform distribution in Nk is
the obvious choice, but other distributions may lead to much better performance on
some problems. Different choices of geometric neighborhood shapes and random
point distributions lead to different VNS-based heuristics.

(ii) VNS without using �p norm. Two different neighborhoods, N1(x) and N2(x),
are used in the VNS-based heuristic suggested in [97]. In N1(x), r (a parameter)
random directions from the current point x are generated and a one-dimensional
search along each direction is performed. The best point (out of r) is selected as
a new starting solution for the next iteration, if it is better than the current one.
If not, as in VND, the search is continued within the next neighborhood N2(x).
The new point in N2(x) is obtained as follows. The current solution is moved for
each x j ( j = 1, . . . ,n) by a value Δ j, taken at random from interval (−α,α), i.e.,

x(new)
j = x j + Δ j or x(new)

j = x j −Δ j. Points obtained by the plus or minus sign for
each variable define the neighborhood N2(x). If a relative increase of 1% in the value

of x(new)
j produces a better solution than x(new), the + sign is chosen; otherwise the −

sign is chosen.
Neighborhoods N1 and N2 are used for designing two algorithms. The first, called

VND, iterates over these neighborhoods until there is no improvement in the solu-
tion value. In the second variant, a local search is performed with N2 and kmax is
set to 2 for the shaking step. In other words, a point from the neighborhood N2 is
obtained by generating a random direction followed by a line search along it (as
prescribed for N1) and then by changing each of the variables (as prescribed for N2).

It is interesting to note that computational results reported by all VNS-based
heuristics were very promising. They usually outperformed other recent approaches
from the literature.

3.8 Mixed Integer Nonlinear Programming (MINLP) Problem

The problems we address here are cast in the following general form:

(MINLP)

⎡
⎢⎢⎢⎢⎢⎢⎣

min f (x)
s.t. �i ≤ gi(x)≤ ui ∀i ∈ {1, . . . ,m}

a j ≤ x j ≤ b j ∀ j ∈ N
x j ∈ {0,1} ∀ j ∈B �= /0 ,
x j ≥ 0,integer ∀ j ∈ G
x j ≥ 0 ∀ j ∈ C

where the set of indices N = {1,2, . . . ,n}, as in the formulation of MILP, is parti-
tioned into three subsets B,G and C , corresponding to binary, general integer and
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continuous variables, respectively. Therefore, in the above formulation, the x j are
the decision variables, f : Rn → R is a possibly nonlinear function, g : Rn → Rm is
a vector of m possibly nonlinear functions (assumed to be differentiable), �,u ∈ Rm

are the constraint bounds (which may be set to ±∞), and a,b ∈ Rn are the variable
bounds.

In order to apply VNS for solving (MINLP), one needs to answer three questions:
(i) how to define the set of neighborhoods around any solution x; (ii) how to perform
(local) search starting from any point and finishing with a feasible solution; (iii) how
to get a feasible solution starting from an infeasible point.

(i) Neighborhoods. Naturally, for the set of binary variables x j, j∈B, the Hamming
distance, expressed by local branching constraints (3.2), can be used. For the set of
continuous variables x j, j ∈ G one can use the �p norm (3.3) or (3.4); for the set of
integer variables, either an extension of formula (3.2) given in [43] or (3.6) can be
used. The point x′ ∈Nk(x) denotes a kth neighborhood solution of combined binary,
continuous, and integer parts.

(ii) Local search. The local search phase mainly depends on available software.
The simplest way is just to use an existing commercial solver for MINLP by adding
constraints that define neighborhood Nk. Such an approach for solving (MILP) is ap-
plied in the local branching [43] and VNS branching [71] methods explained earlier.
Since such a solver for MINLP does not exist on the market, it becomes necessary
to split the problem at any branching node into easier subproblems and alternately
solve these subproblems until an improved feasible solution is hopefully found. For
example, integrality conditions may be relaxed in one subproblem, and continu-
ous variables fixed in the next. The partition into subproblems depends mostly on
existing solvers and their qualities. By relaxing all binary and integer variables, a
NLP problem is obtained, whose complexity depends on the properties of f (x) and
gi(x), i ∈ {1, . . . ,m}. If all functions are convex, the problem may be much easier to
solve. The relaxed solution is then used to get a lower bound within a branch and
bound (BB) enumerative procedure. Thus, the quality of the solution obtained in
this local search phase mostly depends on the way different solvers are combined
and on the quality of such solvers.

(iii) Feasible solution. Realistically sized MINLPs can often have thousands (or
tens of thousands) of variables (continuous and integer) and nonconvex constraints.
With such sizes, it becomes a difficult challenge to even find a feasible solution,
and BB algorithms become almost useless. Some good solvers targeting convex
MINLPs exist in the literature [1, 24, 26, 45, 46, 78]; and although they can all be
used on nonconvex MINLPs as well (forsaking the optimality guarantee), their qual-
ity varies wildly in practice with the instance of the problem being solved, resulting
in a high fraction of “false negatives” (i.e., feasible problems for which no feasible
solution was found). The feasibility pump (FP) idea was recently extended to con-
vex MINLPs [25], but again this does not work so well when applied to unmodified
nonconvex MINLPs.

In a recent paper [80] an effective and reliable MINLP heuristic based on
VNS is suggested, called Relaxed-Exact Continuous-Integer Problem Exploration
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(RECIPE for short). RECIPE puts together a global search phase based on VNS
and a local search phase based on a BB-type heuristic. The VNS global phase relies
on neighborhoods defined as hyperrectangles for the continuous and general inte-
ger variables and by local branching constraints for the binary variables. The local
phase employs a BB solver for convex MINLPs [46], which is applied to non-
convex MINLPs heuristically. A local NLP solution using a sequential quadratic
programming (SQP) algorithm [49] supplies an initial constraint-feasible solution
to be employed by the BB as initial upper bound. RECIPE (see Algorithm 18) is
an efficient, effective, and reliable general-purpose algorithm for solving complex
MINLPs of small and medium scale. The original contribution of RECIPE is the
particular combination of some well-known and well-tested tools to produce a very
powerful global optimization method. It turns out that RECIPE, acting on the whole
MINLPLib library [29], is able to find optima equal to or better than those reported
in the literature for 55% of the instances. The closest competitor is SBB+CONOPT
with 37%. The known optima are improved in 7% of the cases.

Algorithm 18 The RECIPE heuristic for solving MINLP
Function RECIPE (a,b,kmax, tmax,x∗)

x∗ = (a+b)/2; t ← 01
while t < tmax do2

k ← 13
while k ≤ kmax do4

i ← 15
while i ≤ b do6

Sample x̄ ∈Nk(x∗) at random7
x ← SQP(x̄)8
if x not feasible then9

x ← x̄10

x′ ← BB (x,k,kmax)11
if x′ is better than x∗ then12

x∗ ← x′; k ← 0; Exit loop i13

i ← i+114

k ← k +115

t ← CpuTime()16

3.9 Discovery Science

In all the above applications, VNS is used as an optimization tool. It can also lead
to results in “discovery science,” i.e., help in the development of theories. This has
been done for graph theory in a long series of papers with the common title “Vari-
able neighborhood search for extremal graphs” that report on the development and
applications of the AutoGraphiX (AGX) system [4, 36, 37]. This system addresses
the following problems:
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• Find a graph satisfying given constraints.
• Find optimal or near optimal graphs for an invariant subject to constraints.
• Refute a conjecture.
• Suggest a conjecture (or repair or sharpen one).
• Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea is then to address all of these problems as parametric combina-
torial optimization problems on the infinite set of all graphs (or in practice some
smaller subset) using a generic heuristic to explore the solution space. This is done
by applying VNS to find extremal graphs with a given number n of vertices (and
possibly also a given number of edges). Extremal graphs may be viewed as a family
of graphs that maximize some invariant such as the independence number or chro-
matic number, possibly subject to constraints. We may also be interested in finding
lower and upper bounds on some invariant for a given graph G. Once an extremal
graph is obtained, VND with many neighborhoods may be used to build other such
graphs. Those neighborhoods are defined by modifications of the graphs such as the
removal or addition of an edge, rotation of an edge. Once a set of extremal graphs,
parameterized by their order, is found, their properties are explored with various
data mining techniques, leading to conjectures, refutations, and simple proofs or
ideas of proof.

The current list of references in the series “VNS for extremal graphs” is given by
[3–8, 10–12, 17–19, 23, 32, 34, 36, 37, 40, 47, 53, 61–63, 72, 73, 94, 95]. Another
list of papers, not included in this series is given in [9, 13–16, 33, 35, 54–57, 60, 96].
Papers in these two lists cover a variety of topics:

(i) Principles of the approach [36, 37] and its implementation [4];
(ii) Applications to spectral graph theory, e.g., bounds on the index for various

families of graphs, graphs maximizing the index subject to some conditions
[3, 17, 23, 40, 57];

(iii) Studies of classical graph parameters, e.g., independence, chromatic num-
ber, clique number, average distance [5, 9–12, 94, 95];

(iv) Studies of little known or new parameters of graphs, e.g., irregularity, prox-
imity, and remoteness [13, 62];

(v) New families of graphs discovered by AGX, e.g., bags, which are obtained
from complete graphs by replacing an edge by a path, and bugs, which are
obtained by cutting the paths of a bag [8, 72];

(vi) Applications to mathematical chemistry, e.g., study of chemical graph
energy, and of the Randić index [18, 19, 34, 47, 53–56, 61];

(vii) Results of a systematic study of 20 graph invariants, which led to almost
1500 new conjectures, more than half of which were proved by AGX and over
300 by various mathematicians [7];

(viii) Refutation or strengthening of conjectures from the literature [6, 33, 56];
(ix) Surveys and discussions about various discovery systems in graph theory,

assessment of the state of the art and the forms of interesting conjectures to-
gether with proposals for the design of more powerful systems [35, 60].
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3.10 Conclusions

The general schemes of variable neighborhood search have been presented and dis-
cussed. In order to evaluate research development related to VNS, one needs a list
of the desirable properties of metaheuristics. Eight of these are presented in Hansen
and Mladenović (2003):

(i) Simplicity: the metaheuristic should be based on a simple and clear principle,
which should be widely applicable;

(ii) Precision: the steps of the metaheuristic should be formulated in precise math-
ematical terms, independent of possible physical or biological analogies which
may have been the initial source of inspiration;

(iii) Coherence: all steps of the heuristics for solving a particular problem should
follow naturally from the metaheuristic principles;

(iv) Effectiveness: heuristics for particular problems should provide optimal or
near-optimal solutions for all or at least most realistic instances. Preferably,
they should find optimal solutions for most benchmark problems for which
such solutions are known;

(v) Efficiency: heuristics for particular problems should take a moderate comput-
ing time to provide optimal or near-optimal solutions, or comparable or better
solutions than the state of the art;

(vi) Robustness: the performance of the metaheuristics should be consistent over a
variety of instances, i.e., not merely fine tuned to some training set and not so
good elsewhere;

(vii) User friendliness: the metaheuristics should be clearly expressed, easy to
understand and, most importantly, easy to use. This implies they should have
as few parameters as possible, ideally none;

(viii) Innovation: the principle of the metaheuristic and/or the efficiency and
effectiveness of the heuristics derived from it should lead to new types of
application.

This list has been completed with three more items added by one member of the
present team and his collaborators:

(ix) Generality: the metaheuristic should lead to good results for a wide variety of
problems;

(x) Interactivity: the metaheuristic should allow the user to incorporate his knowl-
edge to improve the resolution process;

(xi) Multiplicity: the metaheuristic should be able to produce several near-optimal
solutions from which the user can choose.

As shown above, VNS possesses, to a great extent, all of the above properties.
This has led to heuristics which are among the very best ones for many problems.
Interest in VNS is growing quickly. This is evidenced by the increasing number of
papers published each year on this topic (10 years ago, only a few; 5 years ago,
about a dozen; and about 50 in 2007). Moreover, the 18th EURO mini-conference
held in Tenerife in November 2005 was entirely devoted to VNS. It led to special
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issues of IMA Journal of Management Mathematics in 2007 [81], European Journal
of Operational Research [68], and Journal of Heuristics [89] in 2008. In retrospect,
it appears that the good shape of VNS research is due to the following perspec-
tives, strongly influenced by Karl Popper’s philosophy of science [91]: (i) in devis-
ing heuristics favor insight over efficiency (which comes later) and (ii) learn from
heuristic failures.
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20. Audet, C., Báchard, V., Le, Digabel, S.: Nonsmooth optimization through mesh adaptive di-
rect search and variable neighborhood search. J. Global Optim. 41, 299–318 (2008)

21. Audet, C., Brimberg, J., Hansen, P., Mladenović, N.: Pooling problem: alternate formulation
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heuristics for solving the multisource Weber problem. Oper. Res. 48, 444–460 (2000)
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54. Gutman, I., Miljković, O., Caporossi, G., Hansen, P.: Alkanes with small and large Randić
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88. Mladenović, N., Plastria, F., Urošević, D.: Formulation space search for circle packing prob-
lems. Lect. Notes Comput. Sci. 4638, 212–216 (2007)

89. Moreno-Vega, J.M., Melián, B.: Introduction to the special issue on variable neighborhood
search. J. Heuristics 14, 403–404 (2008)
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Abstract Scatter search is an evolutionary metaheuristic that explores solution
spaces by evolving a set of reference points, operating on a small set of solutions
while making only limited use of randomization. We give a comprehensive descrip-
tion of the elements and methods that make up its template, including the most re-
cent elements incorporated in successful applications in both global and combinato-
rial optimization. Path-relinking is an intensification strategy to explore trajectories
connecting elite solutions obtained by heuristic methods such as scatter search, tabu
search, and GRASP. We describe its mechanics, implementation issues, randomiza-
tion, the use of pools of high-quality solutions to hybridize path-relinking with other
heuristic methods, and evolutionary path-relinking. We also describe the hybridiza-
tion of path-relinking with genetic algorithms to implement a progressive crossover
operator. Some successful applications of scatter search and of path-relinking are
also reported.

Mauricio G.C. Resende
Algorithms and Optimization Research Department, AT&T Labs Research, Florham Park, NJ
07932 USA
e-mail: mgcr@research.att.com

Celso C. Ribeiro
Computer Science Department, Universidade Federal Fluminense, Niterói, RJ 22410-240 Brazil
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4.1 Introduction

Scatter search (SS) is a metaheuristic that explores solution spaces by evolving a
set of reference points. It can be viewed as an evolutionary method that operates
on a small set of solutions and makes only limited use of randomization as a proxy
for diversification when searching for a globally optimal solution. The scatter search
framework is flexible, allowing the development of alternative implementations with
varying degrees of sophistication.

The fundamental concepts and principles of the method were first proposed in
the 1970s [5], based on formulations dating back to the 1960s for combining deci-
sion rules and problem constraints. In contrast to other evolutionary methods like
genetic algorithms, scatter search is founded on the premise that systematic designs
and methods for creating new solutions afford significant benefits beyond those de-
rived from recourse to randomization. It uses strategies for search diversification
and intensification that have proved effective in a variety of settings.

Scatter search orients its explorations systematically relative to a set of reference
points that typically consist of good solutions obtained by prior problem-solving
efforts. The criteria for “good” are not restricted to objective function values and
may apply to sub-collections of solutions rather than to a single solution, as in the
case of solutions that differ from each other according to certain specifications.

The scatter search template [7] has served as the main reference for most of
the scatter search implementations to date. The dispersion patterns created by these
designs have been found useful in several application areas. Section 4.2 gives a
comprehensive description of the elements and methods of this template based on
the formulation given in Laguna and Martı́ [13]. It includes the most recent el-
ements incorporated in successful applications in both global and combinatorial
optimization.

Path-relinking is an intensification strategy to explore trajectories connecting
elite solutions obtained by heuristic methods [6]. Path-relinking can be consid-
ered an extension of the combination method of scatter search. Instead of directly
producing a new solution when combining two or more original solutions, path-
relinking generates paths between and beyond the selected solutions in the neigh-
borhood space. It should be noted that the combination method in scatter search is
a problem-dependent element, which is customized depending on the problem and
the solution representation. In particular, in global optimization, where solutions are
represented as real vectors, most scatter search applications perform linear combi-
nations between pairs of solutions. Alternatively, in problems where solutions are
represented as permutations, such as ordering problems, voting methods have been
widely applied. In problems where solutions are represented as binary vectors, such
as knapsack problems, probabilistic scores have provided very good results [13].
This way, one can also view path-relinking as a unified combination method for
all types of problems and in this way it also generalizes the combination methods.
In Section 4.3, we focus on path-relinking, including its mechanics, implementa-
tion issues, randomization, the use of pools of high-quality solutions to hybridize
path-relinking with other heuristic methods, and evolutionary path-relinking.
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Concluding remarks are made in Section 4.4, where some successful applications
of scatter search and of path-relinking are listed.

4.2 Scatter Search

From an algorithmic point of view we can consider that scatter search basically
performs iterations over a set of good solutions called the Reference Set (Ref Set).
It must be noted that the meaning of good is not restricted here to the qual-
ity of the solutions, but also considers the diversity that they add to this set of
solutions.

Once the initial Ref Set is created, a global iteration of the method consists of
three steps: combine, improve, and update the solutions in the Ref Set. We first de-
scribe the five elements in the template. Next, we explain how they interact.

1. A Diversification Generation Method to generate a collection of diverse trial
solutions, using one or more arbitrary trial solutions (or seed solutions) as an
input.

2. An Improvement Method to transform a trial solution into one or more enhanced
trial solutions: neither the input nor the output solutions are required to be feasi-
ble, though the output solutions are typically feasible. If the input trial solution
is not improved as a result of the application of this method, the “enhanced”
solution is considered to be the same as the input solution.

3. A Reference Set Update Method to build and maintain a reference set consisting
of the b “best” solutions found (where the value of b is typically small, e.g.,
no more than 20), organized to provide efficient access by other parts of the
solution procedure. Several alternative criteria may be used to add solutions to
the reference set and delete solutions from the reference set.

4. A Subset Generation Method to operate on the reference set, to produce a subset
of its solutions as a basis for creating combined solutions. The most common
subset generation method is to generate all pairs of reference solutions (i.e., all
subsets of size 2).

5. A Solution Combination Method to transform a given subset of solutions pro-
duced by the Subset Generation Method into one or more combined solutions.

Figure 4.1 shows the interaction among these five methods and highlights the
central role of the reference set. This basic design starts with the creation of an initial
set of solutions P and then extracts from it the reference set (Ref Set) of solutions.
The darker circles represent improved solutions resulting from the application of the
Improvement Method.

The Diversification Generation Method is used to build a large set P of diverse
solutions. The size of P (PSize) is typically at least ten times the size of Ref Set.
The initial reference set is built according to the Reference Set Update Method. For
example, the Reference Set Update Method could consist of selecting b distinct and
maximally diverse solutions from P.
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Fig. 4.1 Scatter search diagram.

A typical construction of the initial reference set starts with the selection of the
best b/2 solutions from P. These solutions are added to Ref Set and deleted from
P. For each solution in P but not in Ref Set, the minimum of the distances to the
solutions in Ref Set is computed. Then, the solution with the maximum of these
minimum distances is selected. This solution is added to Ref Set and deleted from
P and the minimum distances are updated. (In applying this max–min criterion, or
any criterion based on distances, it can be important to scale the problem variables
to avoid a situation where a particular variable or subset of variables dominate the
distance measure and distort the appropriate contribution of the vector components.)
The process is repeated b/2 times. The resulting reference set has b/2 high-quality
solutions and b/2 highly diverse solutions. Note that with this criterion we are con-
sidering as equally important quality and diversity in the original Ref Set. Alternative
designs may include a different composition of the b solutions in this set. For exam-
ple, we could consider just a single solution selected because of its quality (say the
best one in P) and the remaining b−1 solutions in the Ref set could be selected from
P because of their diversity. Since the reference set is the heart of a scatter search
procedure, its initial composition may result in significant changes during the search
process.

The solutions in Ref Set are ordered according to quality, where the best solution
is the first one in the list. The search is then initiated applying the Subset Genera-
tion Method. In its simplest (and typical) form it consists of generating all pairs of
reference solutions. That is, the method would focus on subsets of size 2 resulting
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in (b2 − b)/2 new subsets. The pairs are selected one at a time in lexicographical
order and the Solution Combination Method is applied to generate one or more trial
solutions. These trial solutions are subjected to the Improvement Method, if one is
available. The Reference Set Update Method is applied once again to build the new
Ref Set with the best solutions, according to the objective function value, from the
current Ref Set and the set of trial solutions. A global iteration finishes with the up-
date of the Ref Set. Note that in subsequent iterations we only combine the pairs of
solutions not combined in previous iterations. The basic procedure terminates after
all the generated subsets are subjected to the Combination Method and none of the
improved trial solutions are admitted to Ref Set under the rules of the Reference Set
Update Method. However, in advanced scatter search designs, the Ref Set rebuilding
is applied at this point and the best b/2 solutions are kept in the Ref Set and the other
b/2 are selected from P, replacing the worst b/2 solutions.

It is interesting to observe similarities and contrasts between scatter search and
the original Genetic Algorithm (GA) proposals. Both are instances of what are
sometimes called population-based or evolutionary approaches. Both incorporate
the idea that a key aspect of producing new elements is to generate some form of
combination of existing elements. However, original GA approaches were predi-
cated on the idea of choosing parents randomly to produce offspring and further on
introducing randomization to determine which components of the parents should
be combined. By contrast, scatter search is based on deterministic designs in which
we implement strategic rules to generate new solutions. These rules do not resort to
randomization, as usually happens in GAs. They are based on the structure and
properties of the problem being solved, as well as on the search history. More-
over, GAs usually apply general-purpose combination methods, such as the well-
known crossover operator, while scatter search customizes the combination method
for each particular problem. It should be noted, however, that GAs have been pro-
gressively incorporating more advanced design elements from more powerful meta-
heuristics and solution strategies.

4.2.1 New Strategies in Global Optimization

Egea et al. [2] proposed an evolutionary method for global optimization of complex-
process models, which employs some elements of scatter search and path-relinking.
Regarding scatter search, the method uses a relatively small population size, par-
tially chosen by a quality criterion from an initial set of diverse solutions. It
also performs systematic combinations among the population members. Regard-
ing path-relinking, the new solutions are generated within the areas defined by
every pair of solutions in the population, introducing a bias to generate new so-
lutions which share more properties with the best population members than with
the rest. We mentioned this method here because it introduces new strategies
and modifies some standard scatter search designs. Specifically, it employs the
following:
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• a small population without memory structures, in which repeated sampling is
allowed;

• a new combination method based on wide hyper-rectangles;
• an aggressive population update for a quick convergence;
• a new search intensification strategy called the go-beyond.

Considering its potential applicability to other domains, we describe the go-
beyond strategy, which consists in exploiting promising directions, extending the
combination method.

Figure 4.2 depicts the level curves (contour plots) of the 2D dimensional uncon-
strained function f (x1,x2) in the range x1 ∈ [−6,6] ,x2 ∈ [−2,7], which presents
several minima:

f (x1,x2) = 2+0.01
(
x2 − x2

1

)2
+(1− x1)2 +2(2− x2)2 +7sin(0.5x1)sin(0.7x1x2).

We illustrate in this diagram how the go-beyond strategy works. From a pair of
Ref Set solutions x and y (labeled as population members in the figure and depicted
with black points) a new solution is generated in the corresponding hyper-rectangle,
z, and depicted in the figure (labeled as new solution and represented with a black
square). If z is better than x and y ( f (z) < f (x) and f (z) < f (y)), then we consider
that this is a promising direction and apply the go-beyond strategy, extending the
combination method. In the present problem, this means that we consider a new
hyper-rectangle (solid line) defined by the distance between z and y (its closest ref-
erence set solution). A new solution (depicted with a triangle) is created in this
hyper-rectangle and the process is repeated as long as good solutions are obtained.
Figure 4.2 shows a new solution (starred) created in an area very close to the global
minimum.

4.2.2 New Strategies in Combinatorial Optimization

Martı́ et al. [15] proposed a scatter search algorithm for the well-known max-cut
problem based on the standard design described in this section. Their method ex-
tends the basic scatter search implementation in three different ways. First, it uses
a new selection procedure for constructing a reference set from a population of
solutions. Traditionally, scatter search implementations have used the criterion of
maximizing the minimum distance between the solution under consideration and
the solutions already in the reference set. In such a process, diverse solutions are
selected one by one from the population P and the distances are updated after each
selection. In contrast, Martı́ et al. [15] propose a method that selects all the diverse
solutions at once by solving the maximum diversity problem (MDP). Given a set of
elements S and the corresponding distances between the elements of the set, the
MDP consists in finding the most diverse subset of S of a specified size. The diver-
sity of the chosen subset is given by the sum of the distances between each pair of its
elements. The distance between two max-cut solutions is defined to be the number
of different edges in the cut.
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The use of the MDP within scatter search is based on recognizing that the original
set of elements is given by P \ {the b/2 best solutions}. The MDP scheme is also
used to complete the current Ref Set, which is already partially populated with the
b/2 best solutions from P.

The second extension consists of a dynamic adjustment of the depth parameter
k associated with the ejection chain mechanism, which is at the core of the search-
based improvement method. This local search has an associated parameter that mea-
sures the depth of the search in the ejection chain process. The solution representa-
tion incorporates the information related to the particular k value used to generate
it. In this way, the depth of the ejection chain produced depends on the parameter
values associated with the solutions being combined.

The third extension implements a probabilistic selection of the combination
methods. The probability of selecting one of three methods proposed in [18] for the
max-cut problem is proportional to the number of high-quality solutions generated
by the method in previous iterations. A probability-based mechanism is introduced
to select a combination method each time the solutions are combined. The probabil-
ity of selecting one of the three methods is set to 1/3 at the beginning of the search.
The probability values are then updated at the end of each SS iteration in order to
favor the combination methods that produce solutions of sufficiently high quality to
be included in the reference set.

4.3 Path-Relinking

Path-relinking was originally proposed by Glover [6] as an intensification strategy
to explore trajectories connecting elite solutions obtained by tabu search or scatter
search [8–10]. In the remainder of this chapter, we focus on path-relinking, includ-
ing its mechanics, implementation issues, randomization, the use of pools of high-
quality solutions to hybridize path-relinking with other heuristic methods, and evo-
lutionary path-relinking. We conclude the chapter with some computational results
illustrating the effect of using path-relinking with other heuristics. For complete-
ness, we have included in this section some material that also appears in the chapter
of the handbook on GRASP.

4.3.1 Mechanics of Path-Relinking

We consider an undirected graph G = (S,M) associated with the solution space,
where the nodes in S correspond to feasible solutions and the edges in M correspond
to moves in the neighborhood structure, i.e., (i, j) ∈ M if and only if i ∈ S, j ∈ S,
j ∈ N(i), and i ∈ N( j), where N(s) denotes the neighborhood of a solution s ∈
S. Path-relinking is usually carried out between two solutions: one is called the
initial solution, while the other is the guiding solution. One or more paths in the
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solution space graph connecting these solutions are explored in the search for better
solutions. Local search is applied to the best solution in each of these paths, since
there is no guarantee that this solution is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding solution
g∈ S. Not all solutions in the neighborhood N(s) are allowed to follow s on the path
from s to g. We restrict the choice to those solutions in N(s) that are more similar to
g than s is. This is accomplished by selecting moves from s that introduce attributes
contained in the guiding solution g. Therefore, path-relinking may be viewed as a
strategy that seeks to incorporate attributes of high-quality solutions (i.e., the guid-
ing solutions), by favoring these attributes in the selected moves. After an analysis
of each potential move, the most common strategy is to select a move that results in
the best quality restricted neighbor of s. The restricted neighbors of s are all solu-
tions in the neighborhood of s that incorporate an attribute of the guiding solution
not present in s.

Several alternatives for path-relinking have been considered and combined in re-
cent implementations. These include forward, backward, back-and-forward, mixed,
truncated, greedy randomized adaptive, and evolutionary path-relinking. All these
alternatives involve trade-offs between computation time and solution quality.

Suppose that path-relinking is be applied to a minimization problem between
solutions x1 and x2 such that z(x1) ≤ z(x2), where z(·) denotes the objective func-
tion. In forward path-relinking, the initial and guiding solutions are set to g = x1

and s = x2. Conversely, in backward path-relinking, we set g = x2 and s = x1. In
back-and-forward path-relinking, backward path-relinking is applied first followed
by forward path-relinking. Path-relinking explores the neighborhood of the initial
solution more thoroughly than the neighborhood of the guiding solution because,
as it moves along the path, the size of the restricted neighborhood decreases. Con-
sequently, backward path-relinking tends to do better than forward path-relinking.
Back-and-forward path-relinking does at least as well as either backward or forward
path-relinking but takes about twice as long to compute.

In applying mixed path-relinking [11, 21] between feasible solutions s and t in
S, two paths are started simultaneously, one at s and the other at t. These two paths
meet at some solution r ∈ S, thus connecting s and t with a single path. Algorithm 1
describes a mixed path-relinking procedure for a 0-1 minimization problem, such
as the set covering problem, where xs and xt are binary vectors representing the
solutions to be linked.

The set Δ =
{

j = 1, . . . ,n : xs
j �= xt

j

}
of positions in which xs and xt differ is

computed in line 2. The cardinality of this set is called the Hamming distance be-
tween xs and xt . The best solution, x∗, among xt and xs and its cost, z∗ = z(x∗), are
determined in lines 3 and 4, respectively. The current path-relinking solution, x, is
initialized to xs is line 5. The loop in lines 6 to 16 progressively determines the next
solution in the path connecting xs and xt , until the entire path is traversed. For every
position �∈ Δ , we define x⊕� to be the solution obtained from x by complementing
the current value of x�. Line 7 determines the component �∗ of Δ for which x⊕ � re-
sults in the least cost solution. This component is removed from Δ in line 8 and the
current solution is updated in line 9 by complementing the value of its �th position.
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Algorithm 1 Mixed path-relinking procedure for problems where solutions are
represented by binary vectors

MixedPathRelinking1
Δ ←{ j = 1, . . . ,n : xs

j �= xt
j};2

x∗ ← argmin{z(xs),z(xt)};3
z∗ ← min{z(xs),z(xt)};4
x ← xs;5
while |Δ |> 1 do6

�∗ ← argmin{z(x⊕ �) : � ∈ Δ};7
Δ ← Δ \{�∗};8
x� ← 1− x�;9
if z(x) < z∗ then10

x∗ ← x;11
z∗ ← z(x);12

end13
xs ← xt ;14
xt ← x;15

end16
x ← LocalSearch(x);17
return x ;18

If the test in line 10 detects that the new current solution x improves the best solution
x∗ in the path, then x∗ and its cost are updated in lines 11 and 12, respectively. The
roles of the starting and target solutions are swapped in lines 14 and 15 to implement
the mixed path-relinking strategy. If |Δ| = 0, then the local search is applied to the
best solution in the path in line 16 and the locally optimal solution is returned by the
procedure.

Like back-and-forward path-relinking, the mixed variant explores both neighbor-
hoods N(xs) and N(xt). Unlike back-and-forward path-relinking, it is usually less
than twice as long as the backward or forward variants.

In the case of the set covering problem, there always exists a path connecting
xs and xt . We just need to observe that setting to one all components with value
0 in xs and value 1 in xt results in a series of feasible covers leading from xs to
some feasible solution x. Next, by setting to 0 those components with value 1 in
x and value 0 in xt result again in a series of feasible covers leading from x to xt .
Figure 4.3 illustrates the application of mixed path-relinking to solutions xs and xt

for which the Hamming distance is equal to 5.
One can expect to see most solutions produced by path-relinking to come from

subpaths close to either the initiating or guiding solutions. Resende et al. [18]
showed that this occurs in instances of the max–min diversity problem. In that exper-
iment, a back and forward path-relinking scheme was tested. Figure 4.4 shows the
percentage of best solutions found by path-relinking taken over several instances
and several applications of path-relinking. The 0–10% range in the figure corre-
sponds to subpaths near the initial solutions for the forward path-relinking phase as
well as the backward phase, while the 90–100% range are subpaths near the guiding
solutions. As the figure indicates, exploring the subpaths near the extremities may
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Fig. 4.3 Mixed path-relinking between two solutions with Hamming distance of 5: numbers above
the arrows represent the order in which the moves are performed.
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Fig. 4.4 Percentage of best solutions found at different depths of the path from the initial solution
to the guiding solution on instances of the max–min diversity problem.

produce solutions about as good as those found by exploring the entire path. There
is a higher concentration of better solutions close to the initial solutions explored by
path-relinking.

As shown in Algorithm 2, it is simple to adapt path-relinking to explore only the
neighborhoods close to the extremes. Let ρ , 0 < ρ ≤ 1, be a real parameter that
defines the portion of the path to be explored. Instead of carrying out the main loop
while |Δ|> 1 as in the mixed path-relinking of Algorithm 1, the main loop is applied
while |Δ|> ρ ·δt , where δt is the cardinality of the initial set Δ.
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Algorithm 2 Truncated mixed path-relinking procedure for problems where
solutions are represented by binary vectors

TruncatedMixedPathRelinking1
Δ ←{ j = 1, . . . ,n : xs

j �= xt
j};2

δt ← |Δ |;3
x∗ ← argmin{z(xs),z(xt)};4
z∗ ← min{z(xs),z(xt)};5
x ← xs;6
while |Δ |> ρ ·δt do7

�∗ ← argmin{z(x⊕ �) : � ∈ Δ};8
Δ ← Δ \{�∗};9
x� ← 1− x�;10
if z(x) < z∗ then11

x∗ ← x;12
z∗ ← z(x);13

end14
xs ← xt ;15
xt ← x;16

end17
x ← LocalSearch(x);18
return x ;19

4.3.2 Minimum Distance Required for Path-Relinking

We assume that we want to connect solutions s and t with path-relinking. If the
distance |Δ(s, t)| between s and t, i.e., the number of components in which s and
t differs, is equal to 1, then the path directly connects the two solutions and no
solution, other than s and t, is visited.

If we assume that s and t are both locally optimal, we know that z(s) ≤ z(r) for
all r ∈ N(s) and z(t) ≤ z(r) for all r ∈ N(t). If |Δ(s, t)| = 2, then any path is of the
type s → r → t, where r ∈ N(s)∩N(t), and consequently r cannot be better than
either s or t. Likewise, if |Δ(s, t)| = 3, then any path is of the type s → rs → rt → t,
where rs ∈ N(s) and rt ∈ N(t), and consequently neither rs nor rt can be better than
both s and t.

Therefore, things only get interesting for |Δ(s, t)| > 3. For those cases, any path
is of the type s → rs → w1 → ·· · → wp → rt → t, where w1, . . . ,wp are candidates
to be better than both s and t. Therefore, we do not consider relinking a pair of
solutions s, t unless |Δ(s, t)| ≥ 4.

4.3.3 Randomization in Path-Relinking

Consider again a problem whose solution can be represented as a binary vector of
size n, such as the set covering problem, the satisfiability problem, or the max-cut
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problem. Let us denote the set of solutions spanned by the common elements of
solutions s and t as

S (s, t) := {w ∈ {0,1}n : wi = si = ti, i /∈ Δ(s, t)}\{s, t}, (4.1)

with |S (s, t)| = 2|Δ(s,t)| − 2. The underlying assumption of path-relinking is that
there exist good quality solutions in S (s, t), since this space consists of all solutions
which contain the common elements of two good solutions s and t. Taking into
consideration that the size of this space is exponentially large, we normally adopt a
greedy search where a path of solutions

s = w0,w1, . . . ,w|Δ(s,t)| = t,

is constructed, such that |Δ(wi,wi+1)| = 1, i = 0, . . . , |Δ(s, t)|− 1, and the best so-
lution from this path is chosen. However, by adopting the greedy strategy, we limit
ourselves to exploring a single path from a set of exponentially many paths. By
adding randomization to path-relinking, greedy randomized adaptive path-relinking
(GRAPR) [3] is not constrained to explore a single path.

The pseudo-code for GRAPR for a minimization problem is shown in
Algorithm 3. The main difference with respect to Algorithm 1 are lines 6 and 8–11.
Instead of selecting the move that results in the best solution as is the case in stan-
dard path-relinking, a restricted candidate list (RCL) is constructed with the moves

Algorithm 3 Greedy randomized adaptive path-relinking with a mixed variant
of path-relinking

GreedyRandomizedAdaptivePathRelinking1
Δ ←{ j = 1, . . . ,n : xs

j �= xt
j};2

x∗ ← argmin{z(xs),z(xt)};3
z∗ ← min{z(xs),z(xt)};4
x ← xs;5
Select α ∈ [0,1]⊂ R at random;6
while |Δ |> 1 do7

z− ← min{z(x⊕ �) : � ∈ Δ};8
z+ ← max{z(x⊕ �) : � ∈ Δ};9
RCL ←{� ∈ Δ : z(x⊕ �)≤ z− +α(z+− z−)};10
Select �∗ ∈ RCL at random;11
Δ ← Δ \{�∗};12
x� ← 1− x�;13
if z(x) < z∗ then14

x∗ ← x;15
z∗ ← z(x);16

end17
xs ← xt ;18
xt ← x;19

end20
x ← LocalSearch(x);21
return x ;22
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that result in solutions with costs in an interval that depends on the value of the best
move, the value of the worst move, and a random parameter α . From this set, one
move is selected at random to produce the next step in the path.

GRAPR is useful when path-relinking is applied more than once between the
same pair of solutions as it can occur in evolutionary path-relinking (discussed in
Section 4.3.5).

4.3.4 Hybridization with a Pool of Elite Solutions

Path-relinking is a major enhancement to metaheuristics that generate a sequence of
locally optimal feasible solutions. These metaheuristics include, but are not limited
to, GRASP, variable neighborhood search, tabu search, scatter search, and simulated
annealing. To hybridize path-relinking with these metaheuristics, one usually makes
use of an elite set, i.e., a diverse pool of high-quality solutions found during the
search. The elite set starts empty and is limited in size. Each locally optimal solution
produced by the metaheuristic is relinked with one or more solutions from the elite
set. Each solution produced by path-relinking is a candidate for inclusion in the elite
set where it can replace an elite solution of worse value.

The pool of elite solutions is initially empty. Each locally optimal solution pro-
duced by the metaheuristic and each solution resulting from path-relinking is con-
sidered as a candidate to be inserted into the pool. If the pool is not yet full, the
candidate is simply added to the pool if it differs from all pool members. If the pool
is full and the candidate is better than the incumbent, then it replaces an element
of the pool. In case the candidate is better than the worst element of the pool but
not better than the best element, then it replaces some element of the pool if it is
sufficiently different from every other solution currently in the pool. To balance the
impact on pool quality and diversity, the element selected to be replaced is the one
that is most similar to the entering solution among those elite solutions of quality no
better than the entering solution [20].

Given a local optimum s1 produced by the metaheuristic, we need to select at
random from the pool a solution s2 to be connected with s1 via path-relinking. In
principle, any solution in the pool could be selected. However, one should avoid
solutions that are too similar to s1, because relinking two solutions that are similar
limits the scope of the path-relinking search. If the solutions are represented by
binary vectors, one should favor pairs of solutions for which the Hamming distance
between them is high. A strategy introduced in [20] is to select a pool element at
random with probability proportional to the Hamming distance between the pool
element and the local optimum s1. Since the number of paths between two solutions
grows exponentially with their Hamming distance, this strategy favors pool elements
that have a large number of paths connecting them to and from s1.

Algorithm 4 illustrates the pseudo-code of a hybrid heuristic that uses path-
relinking for minimization. In line 2, the pool of elite solutions P is initially empty.
The loop in lines 3 to 12 makes up an iteration of the hybrid algorithm. In line 4, x is
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Algorithm 4 Hybridization of path-relinking with a heuristic that generates
local optima

HEUR+PR1
Initialize elite set P ← /0;2
while stopping criterion not satisfied do3

x ← HeuristicLocalOptimal();4
if P = /0 then insert x into P;5
else6

xs ← x;7
Choose, at random, a pool solution xt ∈ P;8
x ← PathRelinking(xs,xt);9
Update the elite set P with x ;10

end11

end12
return P ;13

a locally optimal solution generated by procedure HeuristicLocalOptimal(). If
the elite set is empty, then x is inserted into the pool in line 5. Otherwise, x becomes
the initiating solution in lines 7 and a guiding solution is selected at random from
the pool in line 8. The initiating and guiding solutions are relinked in line 9 and
the resulting solution is tested for inclusion into the elite set in line 10. The hybrid
procedure returns the set of elite solutions which includes the best solution found
during the search.

4.3.5 Evolutionary Path-Relinking

Path-relinking can also be applied between elite set solutions to search for new high-
quality solutions and to improve the average quality of the elite set. This can be done
in a post-optimization phase, after the main heuristic stops, or periodically, when the
main heuristic is still being applied [1, 18, 20].

We describe two schemes called evolutionary path-relinking for this purpose.
Both schemes take as input the elite set and return either the same elite set or one
with an improved average cost.

The first scheme, described by Resende and Werneck [20], works with a popu-
lation that evolves over a number of generations. The initial population is the input
elite set. In the kth generation the procedure builds the kth population, which is
initially empty. Path-relinking is applied between all pairs of solutions in popula-
tion k−1. Each solution output from the path-relinking operation is a candidate for
inclusion in population k. The usual rules for inclusion into an elite set are adopted
in evolutionary path-relinking. If population k is not yet full, the solution is accepted
if it differs from all solutions in the population. After population k is full, the solu-
tion is accepted if either it is better than the best solution in the population or it is
better than the worst and is sufficiently different from all solutions in the population.
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Once a solution is accepted for inclusion into population k, it replaces the solution
in population k that does not have a better cost and that is most similar to it. The
procedure halts when the best solution in population k does not have better cost than
the best solution in population k−1.

A variation of the above scheme is described by Resende et al. [18]. In that
scheme, while there exists a pair of solutions in the elite set for which path-relinking
has not yet been applied, the two solutions are combined with path-relinking and the
resulting solution is tested for membership in the elite set. If it is accepted, it then
replaces the elite solution most similar to it among all solutions having worse cost.

Since some elite solutions may remain in the elite set over several applications of
evolutionary path-relinking, greedy randomized adaptive path-relinking [3] can be
used in evolutionary path-relinking to avoid repeated explorations of the same paths
in the solution space in different applications of the procedure.

GRASP with evolutionary path-relinking and scatter search are evolutionary
methods based on evolving a small set of selected solutions (elite set in the for-
mer and reference set in the latter). We can, therefore, observe similarities between
them. In some implementations of scatter search, GRASP is used to populate the
reference set. Note, however, that other constructive methods can be used as well.
Similarly, path-relinking can be used to combine solutions in scatter search, but we
can use any other combination method. From an algorithmic point of view, we may
find two main differences between these methods. The first one is that in scatter
search we do not apply path-relinking to the solutions obtained with GRASP, but
rather, we only apply path-relinking as a combination method between solutions al-
ready in the reference set. The second difference is that in scatter search when none
of the new solutions obtained with combinations are admitted to the reference set
(elite set), it is rebuilt, removing some of its solutions, as specified in the reference
set update method. In GRASP with evolutionary path-relinking we do not remove
solutions from the elite set, but rather, we reapply GRASP and use the same rules
for inclusion in the elite set.

4.3.6 Progressive Crossover: Hybridization with Genetic
Algorithms

Path-relinking was first applied in the context of a genetic algorithm by Ribeiro and
Vianna [22] in order to implement a progressive crossover operator. In this innova-
tive application, the hybridization strategy was applied to a phylogeny problem.

The original proposal was extended and improved in [23]. In this case, a bidi-
rectional (or back and forward) path-relinking strategy is used: given two parent
solutions s1 and s2, one path is computed leading from s1 to s2 and another leading
from s2 to s1. The best solution along them is returned as the offspring resulting
from crossover. This mechanism is an extension of the traditional crossover opera-
tor: instead of producing only one offspring, defined by one single combination of
two parents, it investigates many solutions that share characteristics of the selected
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parents. The solution found by path-relinking corresponds to the best offspring that
could be obtained by applying the standard crossover to the parents.

The experiments reported in [23] make use of the results obtained on one ran-
domly generated instance (TST17) of the phylogeny problem to assess the evolu-
tion of the solutions found by three different genetic algorithm in 1 h (3600 s) of
computations: the random-keys genetic algorithm RKGA [22], the proposed genetic
algorithm GA+PR using path-relinking to implement the progressive crossover oper-
ator, and the simpler genetic algorithm GAUni using uniform crossover. Figure 4.5
presents the solution value at the end of each generation for each of the 100 indi-
viduals in the population. Since the original random-keys genetic algorithm RKGA
made use of elitism, the solution values are restricted to a smaller interval ranging
between 2500 and 2620. The solution values obtained by the two other algorithms
show more variability. The solutions found by algorithm GA+PR are better than
those obtained by RKGA and GAUni, illustrating the contribution of the strategy
based on path-relinking to implement the crossover operator.

Path-relinking was also applied by Zhang and Lai [25] following the strategy
proposed in [22] in the implementation of a genetic algorithm for the multiple-
level warehouse layout problem. Their approach also makes use of path-relinking
when the genetic algorithm seems to be trapped in a locally optimal solution. Once
again, path-relinking was used by Vallada and Ruiz [24] as a progressive crossover
operator within a genetic algorithm for the minimum tardiness permutation flow-
shop problem. It was also applied as an intensification strategy after a number of
generations without improvement to the best solution. The selected individuals are
marked in order not to be selected again during the application of path-relinking.
Path-relinking was also hybridized with a genetic algorithm as a post-optimization
procedure [17]. In this work, the solutions in the final population produced by the
genetic algorithm are progressively combined and refined.

4.3.7 Hybridization of Path-Relinking with Other Heuristics

The basic implementation of GRASP is memoryless because it does not make use
of information collected in previous iterations. The use of path-relinking within a
GRASP procedure, as an intensification strategy applied to each locally optimal
solution, was first proposed by Laguna and Martı́ [12]. It was followed by several
extensions, improvements, and successful applications [19]. Each local minimum
produced by the GRASP is combined with a randomly selected elite solution. The
resulting solution is a candidate for inclusion into the elite set. Evolutionary path-
relinking can be applied periodically to improve the quality of the elite set.

Enhancing GRASP with path-relinking almost always improves the perfor-
mance of the heuristic. As an illustration, Figure 4.6 shows time-to-target plots for
GRASP and GRASP with path-relinking implementations for four different appli-
cations. These time-to-target plots show the empirical cumulative probability distri-
butions of the time-to-target random variable when using pure GRASP and GRASP
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with path-relinking, i.e., the time needed to find a solution at least as good as a
prespecified target value. For all problems, the plots show that GRASP with path-
relinking is able to find target solutions faster than GRASP.

4.4 Applications and Concluding Remarks

There are three main sources where successful applications of scatter search and
path-relinking can be found. First, Chapter 8 of the monograph on scatter search
by Laguna and Martı́ [13] identifies 14 applications, including neural networks,
multi- and mono-objective routing problems, graph drawing, scheduling, and col-
oring problems. A second source of successful implementations of both methodolo-
gies is a special issue of EJOR [14] in which they are classified into the following
seven categories: foundations, nonlinear optimization, optimization in graphs, par-
allel optimization, prediction and clustering, routing, and scheduling. There is also
a third source, which is frequently updated with current applications: the web site
http://www.uv.es/rmarti/scattersearch on scatter search and path-relinking publica-
tions, in which more than 100 implementations are collected.
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Chapter 5
Genetic Algorithms

Colin R. Reeves

Abstract Genetic algorithms (GAs) have become popular as a means of solving
hard combinatorial optimization problems. The first part of this chapter briefly
traces their history, explains the basic concepts and discusses some of their the-
oretical aspects. It also references a number of sources for further research into
their applications. The second part concentrates on the detailed implementation of
a GA. It discusses the fundamentals of encoding a ‘genotype’ in different circum-
stances and describes the mechanics of population selection and management and
the choice of genetic ‘operators’ for generating new populations. In closing, some
specific guidelines for using GAs in practice are provided.

5.1 Introduction

The term genetic algorithm, almost universally abbreviated nowadays to GA, was
first used by John Holland [1], whose book Adaptation in Natural and Artificial
Systems of 1975 was instrumental in creating what is now a flourishing field of re-
search and application that goes much wider than the original GA. Many people now
use the term evolutionary computing or evolutionary algorithms (EAs), in order to
cover the developments of the last 15 years. However, in the context of metaheuris-
tics, it is probably fair to say that GAs in their original form encapsulate most of
what one needs to know.

Holland’s influence in the development of the topic has been very important, but
several other scientists with different backgrounds were also involved in develop-
ing similar ideas. In 1960s Germany, Ingo Rechenberg [2] and Hans-Paul Schwefel
[3] developed the idea of the Evolutionsstrategie (in English, evolution strategy),
while—also in the 1960s—Bremermann, Fogel and others in the USA implemented
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their idea for what they called evolutionary programming. The common thread in
these ideas was the use of mutation and selection—the concepts at the core of
the neo-Darwinian theory of evolution.1 Although some promising results were
obtained, evolutionary computing did not really take off until the 1980s. Note the
least important reason for this was that the techniques needed a great deal of compu-
tational power. Nevertheless, the work of these early pioneers is fascinating to read
in the light of our current knowledge; David Fogel (son of one of the early pioneers)
has documented some of this work in [4].

1975 was a pivotal year in the development of genetic algorithms. It was in
that year that Holland’s book was published, but perhaps more relevantly for those
interested in metaheuristics, that year also saw the completion of a PhD thesis by
one of Holland’s graduate students, Ken De Jong [5]. Other students of Holland’s
had completed theses in this area before, but this was the first to provide a thorough
treatment of the GA’s capabilities in optimization.

A series of further studies followed, the first conference on the nascent subject
was convened in 1985, and another graduate student of Holland’s, David Goldberg,
produced first an award-winning PhD thesis on his application to gas pipeline opti-
mization, and then, in 1989, an influential book [6]—Genetic Algorithms in Search,
Optimization, and Machine Learning. This was the final catalyst in setting off a
sustained development of GA theory and applications that is still growing rapidly.

Optimization has a fairly small place in Holland’s work on adaptive systems, yet
the majority of research on GAs tends to assume this is their purpose. De Jong,
who initiated this interest in optimization, has cautioned that this emphasis may
be misplaced in a paper [7] in which he contends that GAs are not really function
optimizers, and that this is in some ways incidental to the main theme of adaptation.
Nevertheless, using GAs for optimization is very popular, and frequently successful
in real applications, and to those interested in metaheuristics, it will undoubtedly be
the viewpoint that is most useful.

Unlike the earlier evolutionary algorithms, which focused on mutation and could
be considered as straightforward developments of hill-climbing methods, Holland’s
GA had an extra ingredient—the idea of recombination. It is interesting in this re-
gard to compare some of the ideas being put forward in the 1960s in the field of
operational research (OR).

OR workers had by that time begun to develop techniques that seemed able to
provide ‘good’ solutions, even if the quality was not provably optimal (or even near-
optimal). Such methods became known as heuristics. A popular technique, which
remains at the heart of many of the metaheuristics described in this handbook, was
that of neighbourhood search, which has been used to attack a vast range of com-
binatorial optimization problems. The basic idea is to explore ‘neighbours’ of an
existing solution—these being defined as solutions obtainable by a specified opera-
tion on the base solution.

One of the most influential papers in this context was that published by Lin [8],
who found excellent solutions to the travelling salesman problem by investigating

1 Well-meaning attempts to read off the validity or otherwise of Darwinism from the performance
of GAs are illegitimate. GAs are clear examples of ‘intelligent design’.
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neighbourhoods formed by breaking any three links of a tour and re-connecting
them. Empirically, Lin found that these ‘3-optimal’ solutions were of excellent
quality—in the case of the (rather small) problems he investigated, often close to
the global optimum. However, he also made another interesting observation and
suggested a way of exploiting it. While starting with different initial permutations
gave different 3-optimal solutions, these 3-optimal solutions were observed to have
a lot of features (links) in common. Lin therefore suggested that search should be
concentrated on those links about which there was not a consensus, leaving the com-
mon characteristics of the solutions alone. This was not a GA as Holland was de-
veloping it, but there are clear resonances. Much later, after GAs had become more
widely known, Lin’s ideas were re-discovered as ‘multi-parent recombination’ and
‘consensus operators’.

Other OR research of the same era took up these ideas. Roberts and Flores [9]
(apparently independently) used a similar approach to Lin’s for the TSP, while
Nugent et al. [10] applied this basic idea for the quadratic assignment problem.
However, the general principle was not adopted into OR methodology, and rela-
tively little was done to exploit the idea until GAs came on the OR scene in the
1990s.

In what follows, Section 5.2 provides an overview of the basic GA concepts,
Section 5.3 gives a sketch of the theoretical background, while Section 5.4 lists
some important sources for further exploration. The remaining sections focus on
the various stages required for the implementation of a GA.

5.2 Basic Concepts

Assume we have a discrete search space X and a function

f : X �→ IR.

The general problem is to find
arg min

x∈X
f .

Here, x is a vector of decision variables, and f is the objective function. We assume
here that the problem is one of minimization, but the modifications necessary for
a maximization problem are nearly always obvious. Such a problem is commonly
called a discrete or combinatorial optimization problem (COP).

One of the distinctive features of the GA approach is to allow the separation of
the representation of the problem from the actual variables in which it was originally
formulated. In line with biological usage of the terms, it has become customary to
distinguish the ‘genotype’—the encoded representation of the variables, from the
‘phenotype’—the set of variables themselves. That is, the vector x is represented
by a string s, of length l, made up of symbols drawn from an alphabet A , using a
mapping

c : A l �→ X .
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In practice, we may need to use a search space

S ⊆A l ,

to reflect the fact that some strings in the image of A l under c may represent invalid
solutions to the original problem. (This is a potential source of difficulty for GAs
in combinatorial optimization—a topic that is covered in [11].) The string length
l depends on the dimensions of both X and A , and the elements of the string
correspond to ‘genes’, and the values those genes can take to ‘alleles’. This is of-
ten designated as the genotype–phenotype mapping. Thus the optimization problem
becomes one of finding

arg min
s∈S

g,

where the function
g(s) = f (c(s)).

It is usually desirable that c should be a bijection. (The important property of a
bijection is that it has an inverse, i.e., there is a unique vector x for every string s,
and a unique string s for every vector x.) In some cases the nature of this mapping
itself creates difficulties for a GA in solving optimization problems.

In using this device, Holland’s ideas are clearly distinct from the similar method-
ology developed by Rechenberg [2] and Schwefel [3], who preferred to work with
the original decision variables directly. Both Holland’s and Goldberg’s books claim
that representing the variables by binary strings (i.e., A = {0,1}) is in some sense
‘optimal’, and although this idea has been challenged, it is still often convenient
from a mathematical standpoint to consider the binary case. Certainly, much of the
theoretical work in GAs tends to make this assumption. In applications, many rep-
resentations are possible—some of the alternatives that can be used in particular
COPs are discussed in [11].

The original motivation for the GA approach was a biological analogy. In the
selective breeding of plants or animals, for example, offspring are sought that have
certain desirable characteristics—characteristics that are determined at the genetic
level by the way the parents’ chromosomes combine. In the case of GAs, a popula-
tion of strings is used, and these strings are often referred to in the GA literature as
chromosomes. The recombination of strings is carried out using simple analogies of
genetic crossover and mutation, and the search is guided by the results of evaluating
the objective function f for each string in the population. Based on this evaluation,
strings that have higher fitness (i.e., represent better solutions) can be identified, and
these are given more opportunity to breed. It is also relevant to point out here that
fitness is not necessarily to be identified simply with the composition f (c(s)); more
generally, fitness is h( f (c(s))) where h : IR �→ IR+ is a suitable monotonic function
used to eliminate the problem of ‘negative’ fitness.

Perhaps the most fundamental characteristic of genetic algorithms is their use
of populations of many strings. Here again, the German ‘evolution strategy’ (ES)
school initially did not use populations and focused almost exclusively on ‘muta-
tion’ operators which are generally closer in concept to the types of operator used
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in neighbourhood search and its extensions. Holland did use mutation, but in his
scheme it is generally treated as subordinate to crossover. Thus, in Holland’s GA,
instead of the search moving from point to point as in methods based on local
search, the whole set of strings undergoes ‘reproduction’ in order to generate a new
population.

De Jong’s work established that population-based GAs using crossover and mu-
tation operators could successfully deal with optimization problems of several dif-
ferent types, and in the years since his work was published, the application of GAs
to COPs has grown almost exponentially.

These operators and some developments of them are described more fully in
Sections 5.9 and 5.10. At this point, however, it might be helpful to provide a very
basic introduction. Crossover is a matter of replacing some of the genes in one parent
by corresponding genes of the other. An example of one-point crossover would be
the following. Given the parents P1 and P2, with crossover point 3 (indicated by
X), the offspring will be the pair O1 and O2:

P1 1 0 1 0 0 1 0 O1 1 0 1 1 0 0 1
X

P2 0 1 1 1 0 0 1 O2 0 1 1 0 0 1 0

The other common operator is mutation in which a gene (or subset of genes) is
chosen randomly and the allele value of the chosen genes is changed. In the case
of binary strings, this simply means complementing the chosen bit(s). For example,
the string O1 above, with genes 3 and 5 mutated, would become 1 0 0 1 1 0 1.
A simple template for the operation of a genetic algorithm is shown in Figure 5.1.
The individual parts of this very general formulation will be discussed in detail later.

Choose an initial population of chromosomes;
while termination condition not satisfied do

repeat
if crossover condition satisfied then
{select parent chromosomes;
choose crossover parameters;
perform crossover};
if mutation condition satisfied then
{choose mutation points;
perform mutation};
evaluate fitness of offspring

until sufficient offspring created;
select new population;
endwhile

Fig. 5.1 A genetic algorithm template. This is a fairly general formulation, accommodating many
different forms of selection, crossover and mutation. It assumes user-specified conditions under
which crossover and mutation are performed, a new population is created, and whereby the whole
process is terminated.
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5.3 Why Does It Work?

Exactly how and why GAs work is still hotly debated. There are various schools
of thought, and none can be said to provide a definitive answer. A comprehensive
survey is available in [12]. Meanwhile, the following is a brief guide to the main
concepts that have been used.

5.3.1 The ‘Traditional’ View

Holland’s explanation of why it is advantageous to search the space A l rather than
X hinges on three main ideas. Central to this understanding is the concept of a
schema (plural schemata). A schema is a subset of the space A l in which all the
strings share a particular set of defined values. This can be represented by using the
alphabet A ∪∗ ; in the binary case, 1 * * 1, for example, represents the subset of
the 4-dimensional hypercube {0,1}4 in which both the first and the last genes take
the value 1, i.e., the strings {1 0 0 1, 1 0 1 1, 1 1 0 1, 1 1 1 1}.

The first of Holland’s ideas is that of intrinsic (also known as implicit)
parallelism—the notion that information on many schemata can be processed in
parallel. Under certain conditions that depend on population size and schema char-
acteristics, Holland estimated that a population of size M contains information on
O(M3) schemata. However, these schemata cannot actually be processed in parallel,
because independent estimates of their fitness cannot be obtained in general [14].

The second concept is expressed by the so-called Schema Theorem, in which
Holland showed that if there are N(S, t) instances of schema S in the population at
time t, then at the next time step (following reproduction), the expected number of
instances in the new population can be bounded by

E[N(S, t +1)]≥ F(S, t)
F(t)

N(S, t){1− ε(S, t)},

where F(S, t) is the fitness of schema S, F(t) is the average fitness of the popula-
tion, and ε(S, t) is a term that reflects the potential for genetic operators to destroy
instances of schema S.

By failing to appreciate the stochastic and dynamic nature of this relationship,
somewhat extravagant conclusions have been drawn from this theorem, expressed
in the frequently made statement that good schemata will receive exponentially in-
creasing numbers of trials in subsequent generations. However, it is clear that the
Schema Theorem is a result in expectation only, and even then for just one genera-
tion. Any attempt to extrapolate this result for more than one generation is doomed
to failure because the terms are then no longer independent of what is happening in
the rest of the population. Moreover, given the finite population size, it is clear that
any exponential increase cannot last very long.

Holland also attempted to model schema processing (or hyperplane competi-
tions) by means of an analogy to stochastic two-armed bandit problems. This is
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a well-known statistical problem: we are given two ‘levers’ which if pulled give
‘payoff’ values according to different probability distributions. The problem is to
use the results of previous pulls in order to maximize the overall future expected
payoff. In [1] it is argued that a GA approximates an ‘optimal’ strategy which al-
locates an (exponentially) increasing number of trials to the observed better lever;
this is then used to contend for the supposed efficiency of a GA in distinguishing
between competing schemata and hyperplanes.

Early accounts of GAs suggested quite strongly that in a GA we had thus dis-
covered an algorithm that used the best available search strategy to solve not merely
one, but many hyperplane competitions at once: the ‘only case where combinatorial
explosion works in our favour’. Unfortunately, Wolpert and Macready’s ‘No-Free-
Lunch’ Theorem (NFLT) [13] has rather destroyed such dreams.2

In fact, intrinsic parallelism turns out to be of strictly limited application; it
merely describes the number of schemata that are likely to be present in some num-
bers given certain assumptions about string length, population size and (most impor-
tantly) the way in which the population has been generated—and the last assumption
is unlikely to be true except at a very early stage of the search. Even then, only in
very unusual circumstances—that of orthogonal populations [14]—could the hy-
perplane competitions actually be processed in parallel; normally, the competitions
are not independent. The two-armed bandit analogy also fails in at least two ways:
Macready and Wolpert [15] have firstly argued that there is no reason to believe that
the strategy described by Holland as approximated by a GA is an optimal one, while
they also believe there is also a flaw in Holland’s mathematics.

This is not to say that the Schema Theorem in particular, or the idea of a schema
in general, is useless, but that what it says is of limited and mainly short-term
value—principally, that certain schemata are likely to increase their presence in the
next population, and that those schemata will be on the average fitter, and less re-
sistant to destruction by crossover and mutation, than those that do not. Neverthe-
less, several researchers are working on new ways of formulating and understanding
schema theory, while connecting it to other approaches; a recent summary can be
found in [16].

This brings us to the third assumption implicit in the implementation of a GA—
that the recombination of small pieces of the genotype (good schemata) into big-
ger pieces is indeed a sensible method of finding optimal solutions. Goldberg [6]
calls this the building-block hypothesis (BBH). There is certainly some negative
evidence, in that problems constructed to contain misleading building blocks may
indeed be hard for a GA to solve. The failure of the BBH is often invoked as an
explanation when a GA fails to solve particular COPs.

However, the properties of these problems are not usually such that they are
uniquely difficult for GAs. Holland himself, with two other co-workers, looked
for positive evidence in favour of the building-block hypothesis [17] and found

2 The NFLT, put simply, says that on the average, nothing—ant colonies, GAs, simulated an-
nealing, tabu search, etc.—is better than random search. Success comes from adapting the tech-
nique to the problem at hand, which of course implies some input of information from the
researcher.
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the results rather problematical: functions constructed precisely to provide a ‘royal
road’ made up of building blocks of increasing size and fitness turned out to be
much more efficiently solved by ‘non-genetic’ methods.

5.3.2 Other Approaches

By writing his theorem in the form of a lower bound, Holland was able to make a
statement about schema S that is independent of what happens to other schemata.
However, in practice what happens to schema S will influence the survival (or oth-
erwise) of other schemata, and what happens to other schemata will affect what
happens to S, as is made plain by the exact models of Vose [18] and Whitley [19].

Markov chain theory [18, 19] has been applied to GAs [20–22] to gain a better
understanding of the GA as a whole. However, while the results are fascinating in
illuminating some nuances of GA behaviour, the computational requirements are
formidable for all but the smallest of problems, as shown by De Jong et al. [22], for
example.

Shapiro et al. [23] first examined GAs from a statistical mechanics perspective,
and there is a growing literature on this topic. Peck and Dhawan [24] have linked
GAs to global randomized search methods. But one of the difficulties in analyzing
GAs is that there is not a single generic GA, the behaviour of which will charac-
terize the class of algorithms that it represents. In practice, there is a vast num-
ber of ways of implementing a GA, as will be seen in the discussion later, and
what works in one case may not work in another. Some workers have therefore
tried to look for ways of predicting algorithm performance for particular problem
classes.

Reeves and Wright [14] summarize a perspective based on relating GAs to statis-
tical methods of experimental design, which draws upon the biological concept of
epistasis. This expresses the idea that the expression of a chromosome is not merely
a sum of the effects of its individual alleles, but that the alleles located in some
genes influence the expression of the alleles in others. From a mathematical view-
point, epistasis is equivalent to the existence of interactions in the fitness function. If
we knew the extent of these non-linearities, we might be able to choose an appropri-
ate algorithm. Unfortunately, as is explained in [25], it is unlikely that this approach
will be successful, although the literature surrounding the question of epistasis has
produced some useful insights into GAs.

Several authors [26–28] have pointed out connections between GAs and neigh-
bourhood search methods, and this has led to a considerable literature on the anal-
ysis of problem landscapes. The concept of a landscape has been used informally
for many years, but recent work [29, 30] has put the idea on a rigorous mathemat-
ical foundation which is still being explored. Some of its uses in the context of
GAs is described in [31]. It appears that this way of thinking about algorithms has
great potential for unifying different metaheuristics and increasing our understand-
ing of them.
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5.4 Applications and Sources

There are numerous examples of the successful application of GAs to combinatorial
optimization problems. Books such as those by Davis [32] and Chambers [33, 34]
are useful in displaying the range of problems to which GAs have been applied.
In a chapter such as this, it is impossible to give an exhaustive survey of relevant
applications of GAs, but [11] lists some of the more useful and accessible refer-
ences that should be of interest to people who are experimenting with metaheuris-
tics. However, because of the enormous growth in reported applications of GAs, this
list is inevitably incomplete, as well as somewhat dated already. For a time, Alander
attempted to maintain a comprehensive bibliography: an early version of this is in-
cluded in [34]. However, this is one area where the phenomenon of exponential
growth is indubitable, and the sheer number of papers published in the last 15 years
have rather overwhelmed this enterprise. Nonetheless, updates are made available
periodically of selected papers in specific areas—the one of most interest to readers
of this book being the OR bibliography [35], which is claimed to be comprehensive
up to 1998, although it also includes some papers published later.

For more information on applications, and on GAs in general, the reader has
several useful books to choose from: the early ones by Holland, Goldberg and
Michalewicz [1, 6, 36] tend to be over-committed to the schema-processing point
of view, but they are all still useful sources of information. Reeves [37] also reflects
the state of the theory at the time the book was written, although it covers other
heuristic methods too. More recently, Mitchell [38] and Falkenauer [39] demon-
strate a more careful approach to schemata, and Bäck [40] covers the wider field of
evolutionary algorithms. Eiben and Smith [41] also provide an elementary overview
of the whole field, while—in contrast—Spears [42] offers an in-depth study on the
trade-off between mutation and crossover.

All are worth consulting, but the best book now available is the recent work
by De Jong [43]. For a very rigorous theoretical study, there is the book by Vose
[44], which deals mainly with the Markov chain and dynamical systems approach,
while Reeves and Rowe [12] have surveyed in some detail several other theoretical
perspectives on GAs. Another rigorous theoretical study is that by Schmitt [45, 46].

There are now also many conferences on GAs and related topics—too many to
list in detail. The original biennial International Conference on Genetic Algorithms
series [47–53] is still of considerable historical interest3, while the IEEE established
an alternative series under the title of the Congress on Evolutionary Computation
[54–56]. These have now merged, under the auspices of the ACM since 2005, to
create the annual GECCO series of conferences [57–59]. In Europe, there are two
biennial series of somewhat wider scope: the Parallel Problem Solving from Nature
series [67–72] and the International Conference on Artificial Neural Networks and
Genetic Algorithms [77–82], recently renamed the International Conference on
Adaptive and Natural Computing Algorithms [83, 84]. For the theoretically minded,

3 Apart from the intrinsic interest of these papers, it is well worth checking to see if someone has
tried your bright new idea already!
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there is a biennial workshop to consider—the Foundations of Genetic Algorithms
series [85–93].

There are also many journals now publishing GA-related research. The major
GA journals are Evolutionary Computation (MIT Press) and IEEE Transactions
on Evolutionary Computation (IEEE); other theoretical articles appear in journals
related to AI or to complex systems. Most OR journals—INFORMS Journal on
Computing, Computers and OR, Journal of the OR Society, European Journal of
OR, etc.—have frequent papers on GAs, mainly applications. There are discussion
groups on the Internet (comp.ai.genetic), and the moderated news digest at
GA-List-Request@aic.nrl.navy.mil.

5.5 Initial Population

The previous sections have provided an overview of the underlying concepts, but
it should be clear already that implementation of a GA requires many practical
decisions. The major initial questions to consider relate to the population: first its
size and second the method by which its individuals are chosen. The size of the
population has been approached from several theoretical points of view, although
the underlying idea is always of a trade-off between efficiency and effectiveness.
Intuitively, it would seem that there should be some ‘optimal’ value for a given
string length, on the grounds that too small a population would not allow sufficient
room for exploring the search space effectively, while too large a population would
so impair the efficiency of the method that no solution could be expected in a reason-
able amount of time. Goldberg [94, 95] was probably the first to attempt to answer
this question, using the idea of schemata. Unfortunately, from this viewpoint, it ap-
peared that the population size M should increase as an exponential function of the
string length. Experimental evidence [96, 97] suggests that populations of the size
proposed by Goldberg’s theory are not necessary.

A slightly different question that we could ask is regarding a minimum population
size for a meaningful search to take place. In Reeves [98], the initial principle was
adopted that, at the very least, every point in the search space should be reachable
from the initial population by crossover only. This requirement can only be satisfied
if there is at least one instance of every allele at each locus in the whole population
of strings. On the assumption that the initial population is generated by a random
sample with replacement (which is a conservative assumption in this context), the
probability that at least one allele is present at each locus can be found. For binary
strings this is easily seen to be

P∗
2 = (1− (1/2)M−1)l ,

from which we can calculate that, for example, a population of size 17 is enough to
ensure that the required probability exceeds 99.9% for strings of length 50. For q-ary
alphabets, the calculation is somewhat less straightforward, but expressions are
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given in [98] that can be converted numerically into graphs for specified confidence
levels. The results of this work suggested that a population growth of O(log l) would
be sufficient to cover the search space.

Finally, as to how the population is chosen, it is nearly always assumed that ini-
tialization should be random. Rees and Koehler [99], using a model-based approach
that draws on the theoretical work of Vose [18], have demonstrated that sampling
without replacement is preferable in the context of very small populations. More
generally, it is obvious that randomly chosen points do not necessarily cover the
search space uniformly, and there may be advantages in terms of coverage if we
use more sophisticated statistical methods, especially for non-binary alphabets. One
such simple idea is a generalization of the Latin hypercube which can be illustrated
as follows:

Suppose each gene has 5 alleles, labelled 0, . . . ,4. We choose the population
size M to be a multiple of 5, and the alleles in each ‘column’ are generated as an
independent random permutation of 0, . . . ,(M− 1), which is then taken modulo 5.
Figure 5.2 shows an example for a population of size 10. To obtain search space
coverage at this level with simple random initialization would need a much larger
population.

Individual Gene
1 0 1 3 0 2 4
2 1 4 4 2 3 0
3 0 0 1 2 4 3
4 2 4 0 3 1 4
5 3 3 0 4 4 2
6 4 1 2 4 3 0
7 2 0 1 3 0 1
8 1 3 3 1 2 2
9 4 2 2 1 1 3
10 3 2 4 0 0 1

Fig. 5.2 An example of Latin hypercube sampling for l = 6 and |A | = 5. Notice that each allele
occurs exactly twice for each gene.

Another point to mention here is the possibility of ‘seeding’ the initial popula-
tion with known good solutions. Some reports (e.g., in [100, 101]) have found that
including a high-quality solution, obtained from another heuristic technique, can
help a GA find better solutions rather more quickly than it can from a random start.
However, there is also the possibility of inducing premature convergence [102, 103].

5.6 Termination

Unlike simple neighbourhood search methods that terminate when a local optimum
is reached, GAs are stochastic search methods that could in principle run for ever.
In practice, a termination criterion is needed; common approaches are to set a limit
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on the number of fitness evaluations or the computer clock time or to track the
population’s diversity and stop when this falls below a preset threshold. The mean-
ing of diversity in the latter case is not always obvious, and it could relate either
to the genotype or to the phenotype, or even, conceivably, to the fitnesses, but the
most common way to measure it is by genotype statistics. For example, we could
decide to terminate a run if at every locus the proportion of one particular allele rose
above 90%. Some attempts have been made to attack this problem from a theoretical
point of view [104, 105], but as they are based on the idea of finding a probabilis-
tic guarantee that all possible strings have been seen, their practical application is
limited.

5.7 Crossover Condition

Given the stress on recombination in Holland’s original work, it might be thought
that crossover should always be used, but in fact there is no reason to suppose that it
has to be so. Thus, while we could follow a strategy of crossover-AND-mutation to
generate new offspring, it is also possible to use crossover-OR-mutation. There are
many examples of both in the literature. The first strategy initially tries to carry out
crossover, then attempts mutation on the offspring (either or both). It is conceivable
that in some cases nothing actually happens at all with this strategy—the offspring
are simply clones of the parents. Others always do something, either crossover or
mutation, but not both. (Even then, cloning is still possible with crossover if the
parents are too alike.)

The mechanism for implementing such choices is customarily a randomized rule,
whereby the operation is carried out if a pseudo-random uniform deviate exceeds a
threshold value. In the case of crossover, this is often called the crossover rate, often
denoted by the symbol χ . For mutation, we have a choice between describing the
number of mutations per string or per bit; bit-wise mutation, at a rate denoted by μ ,
is more common.

In the -OR- case, there is a further possibility of modifying the relative propor-
tions of crossover and mutation as the search progresses. Davis [32] has argued that
different rates are appropriate at different times: high crossover at the start, high
mutation as the population converges. In fact, he has suggested that the operator
proportions could be adapted online, in accordance with their track record in find-
ing new high-quality chromosomes.

5.8 Selection

The basic idea of selection is that it should be related to fitness, and the original
scheme for its implementation is commonly known as the roulette-wheel method.
It uses a probability distribution for selection in which the selection probability of
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a given string is proportional to its fitness. Figure 5.3 provides a simple example of
roulette-wheel selection (RWS). Pseudo-random numbers are used one at a time to
choose strings for parenthood. For example, in Figure 5.3, the number 0.13 would
select string 1, the number 0.68 would select string 4.

0.00

0.32

0.410.58

0.75

0.00

0.32

0.410.58

0.75
1

2
3

4

5
1

2
3

4

5

Fig. 5.3 Suppose there are five strings in a population with fitnesses {32,9,17,17,25}, respec-
tively. The probability of selection of each individual is proportional to the area of a sector of a
roulette-wheel (or equivalently, to the angle subtended at the centre). The numbers on the spokes
of the wheel are the cumulative probabilities for use by a pseudo-random number generator. On
the left we have standard roulette-wheel selection, with a single pointer that has to be spun five
times. On the right we have SUS, using five connected equally spaced pointers; one spin provides
five selections.

Finding the appropriate number for a given pseudo-random number r requires
searching an array for values that bracket r—this can be done in O(logM) time for
a population of size M. However, this approach has a high stochastic variability, and
the actual number of times NC that chromosome C is selected in any generation may
be very different from its expected value E[NC]. For this reason, sampling without
replacement may be used to ensure that at least the integral part of E[NC] is achieved,
with fractions being allocated using random sampling.

In practice, Baker’s stochastic universal selection (SUS) [106] is a particularly
effective way of realizing this outcome. Instead of a single choice at each stage, we
imagine that the roulette wheel has an equally spaced multi-armed spinner. Spinning
the wheel produces simultaneously the values NC for all the chromosomes in the
population. From the viewpoint of statistical sampling theory, this corresponds to
systematic sampling [107]. Experimental work by Hancock [108] clearly demon-
strates the superiority of this approach, although much published work on applica-
tions of GAs still appears to rely on the basic roulette-wheel method4.

An associated problem is that of finding a suitable measure of fitness for the
members of the population. Simply using the objective function values f (x) is rarely
sufficient, because the scale on which f (x) is measured is important. (For example,
values of 10 and 20 are much more clearly distinguished than 1010 and 1020.)
Also, in some cases, observed values of f may be negative, which complicates

4 Note that the purpose of SUS is not to reduce the total of random numbers needed. Having
generated a multiset of size M as our ‘mating pool’, we still have to decide which pairs mate
together, whereas in RWS we can simply pair them in the order generated.
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fitness-proportional schemes. Further, if the objective is minimization rather than
maximization, a transformation is clearly required.

Some sort of scaling is thus usually applied, and Goldberg [6] gives a simple
algorithm to deal with both minimization and maximization. The method is cum-
bersome, however, and it needs continual re-scaling as the search progresses. Two
alternatives provide more elegant solutions.

5.8.1 Ranking

Ranking the chromosomes in fitness order loses some information, but there is no
need for re-scaling, and selection algorithm is simpler and more efficient. Suppose
the probability of selecting the string that is ranked kth in the population is denoted
by P[k]. In the case of linear ranking, we assume that

P[k] = α +βk,

where α and β are constants. The requirement that P[k] be a probability distribution
gives us one condition:

M

∑
k=1

(α +βk) = 1,

which leaves us free to choose the other parameter in a way that tunes the selection
pressure. This term is loosely used in many papers and articles on GAs. Here, we
mean the following:

Definition 5.1 Selection pressure

φ =
Prob.[selecting fittest string]

Prob.[selecting average string]
.

In the case of linear ranking, we interpret the average as meaning the median string,
so that

φ =
α +βM

α +β (M +1)/2

(This assumes the population size is odd—however, the analysis holds mutatis
mutandis for the case of an even number.) Some simple algebra soon establishes
that

β =
2(φ −1)

M(M−1)
and α =

2M−φ(M +1)
M(M−1)

which implies that 1 ≤ φ ≤ 2. With this framework, it is easy to see that the
cumulative probability distribution can be stated in terms of the sum of an arithmetic
progression, so that finding the appropriate k for a given pseudo-random number r
is simply a matter of solving the quadratic equation
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α k +β
k(k +1)

2
= r,

for k, which can be done simply in O(1) time. The formula is

k =
−(2α +β )±

√
(2α +β )2 +4β r

2β
.

In contrast, searching for k (given a value for r) using ordinary fitness-proportional
selection needs at least O(logM) time.

Other functions can be used besides linear ranking [108, 109] but the above
scheme is sufficiently flexible for most applications.

5.8.2 Tournament Selection

The other alternative to strict fitness-proportional selection is tournament selection,
in which a set of τ chromosomes are chosen and compared, the best one being
selected for parenthood. This approach has similar properties to linear ranking for
τ = 2. It is easy to see that the best string will be selected every time it is compared,
while the median string will be chosen with probability 2−(τ−1). Thus the selection
pressure is given by φ = 2τ−1, which for τ = 2 is similar to linear ranking when
α → 0.

One potential advantage of tournament selection over all other forms is that it
only needs a preference ordering between pairs or groups of strings, and it can thus
cope with situations where there is no formal objective function at all—in other
words, it can deal with a purely subjective objective function!

However, tournament selection is also subject to arbitrary stochastic effects in
the same way as roulette-wheel selection—there is no guarantee that every string
will appear in a given cycle. Indeed, using sampling with replacement there is a
probability of approximately e−1(≈ 0.368) that a given string will not appear at all.
One way of coping with this, at the expense of a little extra computation, is to use
a variance reduction technique from simulation theory. Saliby [110] distinguishes
between the set effect and the sequence effect in drawing items from a finite pop-
ulation. In applying his ideas here, we know that we need τ items to be drawn M
times, so we simply construct τ random permutations5 of the numbers 1, . . . ,M—the
indices of the individuals in the population. These are concatenated into one long
sequence which is then chopped up into M pieces, each containing the τ indices
of the individuals to be used in the consecutive tournaments. If M is not an exact
multiple of τ , there is the small chance of some distortion where the permutations
join, but this is a relatively minor problem.

5 There is a simple algorithm for doing this efficiently—see Nijenhuis and Wilf [111], for example,
or look at the Stony Brook Algorithm Repository [112].
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5.9 Crossover

Crossover is simply a matter of replacing some of the genes in one parent by the
corresponding genes of the other. Suppose we have two strings a and b, each con-
sisting of six variables, i.e.,

(a1,a2,a3,a4,a5,a6) and (b1,b2,b3,b4,b5,b6),

which represent two possible solutions to a problem. One-point crossover (1X) has
been described earlier in the context of a binary alphabet. (Note that we have cho-
sen here to leave the alphabet unspecified, to emphasize that binary representation is
not a critical aspect of GAs.) Two-point crossover (denoted by 2X) is very similar:
two crosspoints are chosen at random from the numbers 1, . . . ,5, and a new solu-
tion produced by combining the pieces of the original ‘parents’. For instance, if the
crosspoints were 2 and 4, the ‘offspring’ solutions would be

(a1,a2,b3,b4,a5,a6) and (b1,b2,a3,a4,b5,b6)

A similar prescription can be given for m-point crossover where m > 1.
An early and thorough investigation of multipoint crossovers is that by Eshelman

et al. [113], who examined the biasing effect of traditional one-point crossover and
considered a range of alternatives. Their central argument is that two sources of
bias exist to be exploited in a genetic algorithm: positional bias and distributional
bias. One-point crossover has considerable positional bias, in that it relies on the
building-block hypothesis, and if this is invalid, the bias may prevent the production
of good solutions.

On the other hand, 1X has no distributional bias, in that the crossover point is
chosen randomly using the uniform distribution. But this lack of bias is not neces-
sarily a good thing, as it limits the exchange of information between the parents.
In [113], the possibilities of changing these biases, in particular by using multi-
point crossover, were investigated and empirical evidence strongly supported the
suspicion that one-point crossover is not the best option. In fact, despite some am-
biguities, the evidence seemed to point to an 8-point crossover operator as the best
overall, in terms of the number of function evaluations needed to reach the global
optimum, averaged over a range of problem types.

Another obvious alternative, which removes any bias, is to make the crossover
process completely random—the so-called uniform crossover. This can be seen most
easily by observing that a crossover operator itself can be written as a binary string
or mask—in fact, when implementing crossover in a computer algorithm, this is the
obvious way to do it. For example, the mask

1 1 0 0 1 1

represents the 2-point crossover used above, where a 1 means that the alleles are
taken from the first parent, while a 0 means they come from the second.

By generating the pattern of 0s and 1s stochastically (using a Bernoulli distribu-
tion) we thus get uniform crossover (UX), which might generate a mask such as
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1 0 1 0 0 1

which implies that the 1st, 3rd and 6th alleles are taken from the first parent, the
others from the second. This idea was first used by Syswerda [114], who implicitly
assumed the Bernoulli parameter p = 0.5. Of course, this is not necessary: we can
bias UX towards one or the other parent by choosing p appropriately.

De Jong and Spears [115] produced a theoretical analysis that was able to char-
acterize the amount of disruption introduced by a given crossover operator exactly.
In particular, the amount of disruption in UX can be tuned by choosing different
values of p.

Of course, there are also many practical considerations that influence the imple-
mentation of crossover. How often do we apply it? Some always do, others use a
stochastic approach, applying crossover with a probability χ < 1. Do we generate
one offspring or two? In many cases there are natural ‘twin’ offspring resulting,
but in more sophisticated problems it may be that only one offspring arises. When
we choose only one from two, how do we do it? In accordance with the stochastic
nature of the GA, we may well decide to choose either of the offspring at random.
Alternatively, we could bias the decision by making use of some other property such
as the fitness of the new individuals or the loss (or gain) in diversity that results in
choosing one rather than the other.

Booker [116] reported significant gains from using an adaptive crossover rate:
the rate was varied according to a characteristic called percent involvement. This
is simply the percentage of the current population that is producing offspring—too
small a value is associated with loss of diversity and premature convergence.

5.9.1 Non-linear Crossover

In cases of non-linear encodings, crossover has to be reinterpreted. One of the most
frequently occurring problems is where the solution space is the space of permu-
tations (Πl) of the numbers 1, . . . , l—well-known examples of this include many
scheduling problems, and the famous travelling salesman problem (TSP).

For instance, the simple-minded application of 1X with crosspoint X = 2 in the
following case produces an infeasible solution:

P1 1 6 3 4 5 2 O1 1 6 1 2 6 5
X

P2 4 3 1 2 6 5 O2 4 3 3 4 5 2

If this represents a TSP, the first offspring visits cities 1 and 6 twice, and never gets
to cities 3 or 4. A moment’s thought is enough to realize that this type of behaviour
will be the rule, not an exception. Clearly we need to think of something rather
smarter if we are to be able to solve such problems.

One of the first ideas for such problems was the PMX (partially mapped
crossover) operator [94], which operates as follows: Two crossover points are cho-
sen uniformly at random between 1 and l. The section between these points defines
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an interchange mapping. Thus, in the example above, PMX (with crosspoints X=2
and Y=5) might proceed as follows:

P1 1 6 3 4 5 2 O1 3 5 1 2 6 4
X Y

P2 4 3 1 2 6 5 O2 2 1 3 4 5 6

Here the crossover points X and Y define an interchange mapping

3 ↔ 1 4 ↔ 2; 5 ↔ 6

on their respective strings, which means that the cut blocks have been swapped and
now appear in different contexts from before. Another possibility is to apply a binary
mask, as in linear crossover, but with a different meaning. Such a mask, generated
as with UX, say, might be the following

1 0 1 0 0 1

which is applied to the parents in turn. First the components corresponding to 1s are
copied from one parent, and then those that correspond to 0s are taken in the order
they appear from the second parent in order to fill the gaps. Thus the above example
generates the following pairs of strings:

P1 1 6 3 4 5 2 -> 1 _ 3 _ _ 2 O1 1 4 3 6 5 2

P2 4 3 1 2 6 5 -> 4 _ 1 _ _ 5 O2 4 6 1 3 2 5

5.10 Mutation

First we note that in the case when crossover-OR-mutation is used, we must first
decide whether any mutation is carried out at all. Assuming that it is the concept of
mutation is even simpler than crossover, and again, this can easily be represented as
a bit-string, so we generate a mask such as

0 1 0 0 0 1

using a Bernoulli distribution at each locus—with a small value of p in this case.
(The above example would then imply that the 2nd and 6th genes are assigned new
allele values.) However, it appears that there are variant ways of implementing this
simple idea that can make a substantial difference to the performance of a GA.
The naive idea would be to draw a random number for every gene in the string
and compare it to μ , but this is potentially expensive in terms of computation if
the strings are long and the population is large. An efficient alternative is to draw a
random variate from a Poisson distribution with parameter λ , where λ is the average
number of mutations per chromosome. A common value for λ is 1—in other words,
if l is the string length, the (bit-wise) mutation rate is μ = 1/l, which as early as
1966 [118] was shown to be in some sense an ‘optimal’ mutation rate. If our Poisson
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random draw proposes that there are (say) m mutations, we draw m random numbers
(without replacement) uniformly distributed between 1 and l in order to specify the
loci where mutation is to take place.

In the case of binary strings, mutation simply means complementing the chosen
bit(s). More generally, when there are several possible allele values for each gene,
if we decide to change a particular allele, we must provide some means of deciding
what its new value should be. This could be a random choice, but if (as in some
cases) there is some ordinal relation between allele values, it may be more sensible
to restrict the choice to alleles that are close to the current value or at least to bias
the probability distribution in their favour.

It is often suggested that mutation has a somewhat secondary function, that of
helping to preserve a reasonable level of population diversity—an insurance policy
which enables the process to escape from sub-optimal regions of the solution space,
but not all authors agree. Proponents of evolutionary programming ([119], for ex-
ample), consider crossover to be an irrelevance, and mutation plays the major role.
The balance between crossover and mutation is often a problem-specific one, and
definite guidelines are hard to give.

However, several authors have suggested some type of adaptive mutation: for
example, Fogarty [120] experimented with different mutation rates at different loci.
Reeves [100] varied the mutation probability according to the diversity in the popu-
lation (measured in terms of the coefficient of variation of fitnesses). More sophis-
ticated procedures are possible, and anecdotal evidence suggests that many authors
use some sort of diversity maintenance policy. In this connection, it should also be
mentioned that there is interest currently in ‘parameter-less’ GAs. It is impossible
to eliminate all parameter values, of course, but there has always been interest in
some sort of adaptation as the search proceeds, not only for mutation rates but also
for other parameters, such as population size. Eiben et al. [121] summarize some of
the recent work in this area.

Finally, it should be no surprise that the values of different parameters interact
with each other, in terms of the overall performance of the GA. For example, choos-
ing a high selection pressure may mean that we also need a high mutation rate in
order to avoid premature convergence. De Jong [43] has an extensive discussion on
such matters.

5.11 New Population

Holland’s original GA assumed a generational approach: selection, recombination
and mutation were applied to a population of M chromosomes until a new set of M
individuals had been generated. This set then became the new population. From an
optimization viewpoint this seems an odd thing to do—we may have spent consid-
erable effort obtaining a good solution, only to run the risk of throwing it away
and thus preventing it from taking part in further reproduction. For this reason,
De Jong [5] introduced the concepts of élitism and population overlaps. His ideas
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are simple—an élitist strategy ensures the survival of the best individual so far by
preserving it and replacing only the remaining (M− 1) members of the population
with new strings. Overlapping populations take this a stage further by replacing only
a fraction G (the generation gap) of the population at each generation. Finally, tak-
ing this to its logical conclusion produces the so-called steady-state or incremental
strategies, in which only one new chromosome (or sometimes a pair) is generated at
each stage. Davis [32] gives a good general introduction to this type of GA.

Slightly different strategies are commonly used in the ES community, which tra-
ditionally designates them either λ ,μ or λ + μ . In the first case, μ(> λ ) offspring
are generated from λ parents, and the best λ of these offspring are chosen to start
the next generation. For the + strategy, μ (not necessarily > λ ) offspring are gen-
erated and the best λ individuals are chosen from the combined set of parents and
offspring.

In the case of incremental reproduction it is also necessary to select members
of the population for deletion. Some GAs have assumed that parents are replaced
by their children. Many implementations, such as Whitley’s GENITOR [109], use
the tactic of deleting the worst member(s) of the population, although (as Goldberg
and Deb [122] have pointed out) this exerts a very strong selective pressure on the
search, which may need fairly large populations and high mutation rates to prevent
a rapid loss of diversity. A milder prescription is to select from the worst p% of the
population (for example, Reeves [100] used p = 50, i.e., selection from those worse
than the median). This is easily implemented when rank-based selection is used. Yet
another approach is to base deletion on the age of the strings.

5.11.1 Diversity Maintenance

As hinted above, one of the keys to good performance (in nature as well as in GAs) is
to maintain the diversity of the population as long as possible. The effect of selection
is to reduce diversity, and some methods can reduce diversity very quickly. This can
be mitigated by having larger populations or by having greater mutation rates, but
other techniques are also often employed.

A popular approach, commonly linked with steady-state or incremental GAs, is
to use a ‘no-duplicates’ policy [32]. This means that the offspring are not allowed
into the population if they are merely clones of existing individuals. The downside,
of course, is the need to compare each current individual with the new candidate,
which adds to the computational effort needed—an important consideration with
large populations. (In principle, some sort of ‘hashing’ approach could be used to
speed this process up, but whether this has ever been tried is not clear.)

We can of course take steps to reduce the chance of cloning before offspring are
generated. For instance, with 1X, the two strings

1 1 0 1 0 0 1
1 1 0 0 0 1 0
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will generate only clones if the crossover point is any of the first three positions.
Booker [116] suggested that before applying crossover, we should examine the
selected parents to find suitable crossover points. This entails computing an
‘exclusive-OR’ (XOR) between the parents, so that only positions between the
outermost 1s of the XOR string (the ‘reduced surrogate’) should be considered as
crossover points. Thus in the example above, the XOR string is

0 0 0 1 0 1 1

so that, as previously stated, only the last three crossover points will give rise to a
different string.

5.12 Representation

As remarked in Section 5.1, the focus in this handbook is on using GAs as optimizers
in a search space, given a suitable encoding and fitness function. We now consider
how the search space S might be constructed in some generic cases.

5.12.1 Binary Problems

In some problems a binary encoding might arise naturally. Consider the operational
research problem known as the knapsack problem, stated as follows.

Example 1 (The 0-1 knapsack problem) A set of n items is available to be packed
into a knapsack with capacity C units. Item i has value vi and uses up ci units of ca-
pacity. Determine the subset I of items which should be packed in order to maximize

∑
i∈I

vi

such that

∑
i∈I

ci ≤C.

If we define

xi =
{

1 if item i is packed
0 otherwise

the knapsack problem can be re-formulated as an integer program:

maximize
n

∑
i=1

xivi,

such that
n

∑
i=1

xici ≤C,
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from which it is clear that we can define a solution as a binary string of length n.
In this case there is thus no distinction between genotype and phenotype.

However, such problems are not necessarily easy to solve with a GA. In this case,
the presence of constraints is likely to cause difficulties—two feasible parents may
not produce feasible offspring, unless special crossover operators are constructed.
In fact, such problems as these are really subset selection problems, which are best
tackled by other means [123], despite the seductiveness of the binary encoding.
It is now widely recognized that ‘natural’ binary encodings nearly always bring
substantial problems for simple GAs.

5.12.2 Discrete (but Not Binary) Problems

There are cases in which a discrete alphabet of higher cardinality than 2 might
be appropriate. The rotor-stacking problem, as originally described by McKee and
Reed [124], is a good example.

Example 2 A set of n rotors are available, each of which has k holes drilled in
it. The rotors have to be assembled into a unit by stacking them and bolting them
together, as in Figure 5.4. Because the rotors are not perfectly flat, stacking them in
different orientations will lead to assemblies with different characteristics in terms
of deviations from true symmetry, with the consequent effect (in operation) that the
assembled unit will wobble as it spins. The objective is to find which of all the
possible combinations of orientations produce the least deviation.

·
·

·

Fig. 5.4 Rotor-stacking problem with n = 5 rotors and k = 3 holes.

In this case a k-ary coding is natural. A solution is represented by a string of
length n, each gene corresponding to a rotor and the alleles, drawn from {1, . . . ,k},
representing the orientation (relative to a fixed datum) of the holes. Thus, the string
(1322) represents a solution to a 4-rotor problem where hole 1 of the first rotor is
aligned with hole 3 of the second and hole 2 of the third and fourth. Of course, it
would be possible to encode the alleles as binary strings, but there seems little point
in so doing—particularly if k is not a power of 2, as there will then be some binary
strings that do not correspond to any actual orientation.

This seems very straightforward, although there is a subtle point that could be
overlooked. The assignment of labels to the holes is arbitrary, and this creates the
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problem of ‘competing conventions’ as it has been called6. For example, given a
natural order for labelling each rotor, the string (3211) represents the same solution
as (1322). This can be alleviated in this case by fixing the labelling for one rotor, so
that a solution can be encoded by a string of length (n−1).

As far as the operators are concerned, standard crossovers can be used here, but
mutation needs some careful consideration in the case of k-ary coding, as outlined
in Section 5.10.

5.12.3 Permutation Problems

There are also some problems where the ‘obvious’ choice of representation is
defined, not over a set, but over a permutation. The TSP is one of many prob-
lems for which this is true. As another example, consider the permutation flowshop
sequencing problem (PFSP).

Example 3 Suppose we have n jobs to be processed on m machines, where the
processing time for job i on machine j is given by p(i, j). For a job permutation
{π1,π2, . . . ,πn}, we calculate the completion times C(πi, j) as follows:

C(π1,1) = p(π1,1)
C(πi,1) = C(πi−1,1)+ p(πi,1) for i = 2, . . . ,n

C(π1, j) = C(π1, j−1)+ p(π1, j) for j = 2, . . . ,m

C(πi, j) = max{C(πi−1, j),C(πi, j−1)}+ p(πi, j)
for i = 2, . . . ,n; j = 2, . . . ,m

The PFSP is then to find a permutation π∗ in the set of all permutations Π such that

f (π∗)≤ f (π) ∀π ∈ Π .

(Several performance measures f (·) are possible; common ones are the maximum
or mean completion time.)

Here the natural encoding (although not the only one) is simply the permutation
of the jobs as used to calculate the completion times. So the solution (1462537), for
example, simply means that job 1 is first on each machine, then job 4, job 6, etc.

Unfortunately, the standard crossover operators patently fail to preserve the per-
mutation except in very fortunate circumstances, as discussed in Section 5.9.1. Some
solutions to this problem were outlined there; more comprehensive discussion of
possible methods of attack is contained in [126, 127], while [100, 128] describe
some approaches of particular relevance to the PFSP.

6 This phenomenon is a common one whenever the coding function c(·) is not injective. It has
been observed in problems ranging from optimizing neural nets to the TSP. Radcliffe, who calls it
‘degeneracy’ [125], has presented the most thorough analysis of this problem and how to treat it.
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5.12.4 Non-binary Problems

In many cases the natural variables for the problem are not binary, but integer or
real-valued. In such cases a transformation to a binary string is required first. (Note
that this is a different situation from the rotor-stacking example, where the inte-
gers were merely labels: here the values are assumed to be meaningful as numbers.)
While the main thrust of metaheuristics research and application is directed to dis-
crete optimization, it is perhaps appropriate to mention these other problems here.

Example 4 It is required to maximize

f (x) = x3 −60x2 +900x+100

over the search space X = {x : x ∈ ZZ;x ∈ {0,31}}, i.e., the solution x∗ is required
to be an integer in the range [0,31].

To use the conventional form of genetic algorithm here, we would use a string
of 5 binary digits with the standard binary to integer mapping, i.e., (0,0,0,0,0) =
0, . . . ,(1,1,1,1,1) = 31. Of course, in practice we could solve such a problem eas-
ily without recourse to encoding the decision variable in this way, but it illustrates
neatly the sort of optimization problem to which GAs are often applied. Such prob-
lems assume first that we know the domain of each of our decision variables, and
second that we have some idea of the precision with which we need to specify our
eventual solution. Given these two ingredients, we can determine the number of bits
needed for each decision variable and concatenate them to form the chromosome.
More information on this topic can be found in [12].

5.13 Random Numbers

As GAs are stochastic in nature, it is clear that a reliable random number source is
very important. Most computer systems have built-in rand() functions, and that is
the usual method of generating random numbers. Not all random number generators
are reliable, however, as Ross [129] has pointed out, and it is a good idea to use one
that has been thoroughly tested, such as those described in the Numerical Recipes
series [130].

5.14 Conclusions

While this exposition has covered the basic principles of GAs, the number of
variations that have been suggested is enormous. Probably everybody’s GA is
unique! Many variations in population size, in initialization methods, in fitness
definition, in selection and replacement strategies, in crossover and mutation are
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obviously possible. Some have added information such as age, or artificial tags, to
chromosomes; others have allowed varying population sizes or induced the forma-
tion of multiple populations in ‘niches’. It is in the nature of GAs that parallel pro-
cessing can often be used to advantage, and here again, there are many possibilities,
ranging from simple parallelization of function evaluations to very sophisticated
implementations that add a spatial aspect to the algorithm.

The GA community has yet to reach a consensus on any of these things, and
in the light of the NFLT, this is perhaps not surprising. However, some ideas do
emerge as a reasonable set of recommendations. From a practitioner’s viewpoint,
Levine made the following observations:

1. A steady-state (or incremental) approach is generally more effective and effi-
cient than a generational method.

2. Don’t use simple roulette-wheel selection. Tournament selection or SUS is
better.

3. Don’t use one-point crossover. UX or 2X should be preferred.
4. Make use of an adaptive mutation rate—one that is fixed throughout the search

(even at 1/l) is too inflexible.
5. Hybridize wherever possible; don’t use a GA as a black box, but make use of

any problem-specific information that you have.

Not everyone will agree with this particular list, and there is a conflict inher-
ent in the first two points, since SUS functions best in a generational setting.
Broadly speaking, however, it is one with which many researchers would be
comfortable. Two other points could be added:

6. Make diversity maintenance a priority.
7. Don’t be afraid to run the GA several times.

Why this last point? Statements are frequently made that GAs can find global
optima. Well, they can—but usually they tend to converge to some other ‘attractor’.
In fact, there is some evidence [131] that even with very large populations the at-
tractors are a subset of the local optima relating to a neighbourhood search. With
practical population sizes, the attractors may not even be restricted to such a set and
may be some distance from global optimality. It thus makes sense to explore several
alternatives.
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40. Bäck, Th.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolution-

ary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)
41. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Berlin

(2007)
42. Spears, W.M.: Evolutionary Algorithms: the Role of Mutation and Recombination. Springer,

New York (2000)
43. De Jong, K.A.: Evolutionary Computation. MIT Press, Cambridge, MA (2006)
44. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge,

MA (1999)
45. Schmitt, L., Nehaniv, C.L., Fujii, R.H.: Linear analysis of genetic algorithms. Theor. Comput.

Sci. 200, 101–134 (1998)
46. Schmitt, L.: Theory of genetic algorithms. Theor. Comput. Sci. 259, 1–61 (2001)
47. Grefenstette, J.J. (ed.): Proceedings of an International Conference on Genetic Algorithms

and their applications. Lawrence Erlbaum Associates, Hillsdale, NJ (1985)
48. Grefenstette, J.J. (ed.): Proceedings of the 2nd International Conference on Genetic Algo-

rithms. Lawrence Erlbaum Associates, Hillsdale, NJ (1987)
49. Schaffer, J.D. (ed.): Proceedings of 3rd International Conference on Genetic Algorithms.

Morgan Kaufmann, San Mateo, CA (1989)
50. Belew, R.K., Booker, L.B. (eds.): Proceedings of 4th International Conference on Genetic

Algorithms. Morgan Kaufmann, San Mateo, CA (1991)
51. Forrest, S. (ed.): Proceedings of 5th International Conference on Genetic Algorithms. Morgan

Kaufmann, San Mateo, CA (1993)
52. Eshelman, L.J. (ed.): Proceedings of 6th International Conference on Genetic Algorithms.

Morgan Kaufmann, San Mateo, CA (1995)
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tional Conference on Artificial Neural Networks and Genetic Algorithms. Springer, Vienna
(2001)

82. Pearson, D.W., Steele, N.C., Albrecht, R.F. (eds.): Proceedings of the 6th International
Conference on Artificial Neural Networks and Genetic Algorithms. Springer, Vienna (2003)

83. Ribeiro, B., Albrecht, R.F., Steele, N.C., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.):
Proceedings of the International Conference on Adaptive and Natural Computing Algorithms.
Springer, Vienna (2005)

84. Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.): Adaptive and Natural
Computing Algorithms; Proceedings of ICANNGA 2007, LNCS 4431/4432. Springer, Berlin
(2007)

85. Rawlins, G.J.E. (ed.): Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo,
CA (1991)

86. Whitley, L.D. (ed.): Foundations of Genetic Algorithms 2. Morgan Kaufmann, San Mateo,
CA (1993)

87. Whitley, D., Vose, M. (eds.): Foundations of Genetic Algorithms 3. Morgan Kaufmann, San
Mateo, CA (1995)

88. Belew, R.K., Vose, M.D. (eds.): Foundations of Genetic Algorithms 4. Morgan Kaufmann,
San Francisco, CA (1997)

89. Banzhaf, W., Reeves, C.R. (eds.): Foundations of Genetic Algorithms 5. Morgan Kaufmann,
San Francisco, CA (1999)

90. Martin, W.N., Spears, W.M. (eds.): Foundations of Genetic Algorithms 6. Morgan Kaufmann,
San Francisco, CA (2001)

91. De Jong, K.A., Poli, R., Rowe, J.E. (eds.): Foundations of Genetic Algorithms 7. Morgan
Kaufmann, San Francisco, CA (2003)

92. Wright, A.H., et al. (eds.): Foundations of Genetic Algorithms 8, LNCS 3469. Springer,
Berlin (2005)

93. Stephens, C.R., et al. (eds.): Foundations of Genetic Algorithms 9, LNCS 4436. Springer,
Berlin (2007)

94. Goldberg, D.E.: Optimal Initial Population Size for Binary-Coded Genetic Algorithms.
TCGA Report 85001. University of Alabama, Tuscaloosa (1985)

95. Goldberg, D.E.: Sizing populations for serial and parallel genetic algorithms. In: Schaffer,
J.D. (ed.): Proceedings of 3rd International Conference on Genetic Algorithms. Morgan
Kaufmann, San Mateo, CA, pp. 70–79 (1989)

96. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE-SMC 16,
122–128 (1986)

97. Schaffer, J.D., Caruana, R.A., Eshelman, L.J., Das, R.: A study of control parameters affecting
online performance of genetic algorithms for function optimization. In: [Schaffer, J.D. (ed.):
Proceedings of 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San
Mateo, CA (1989)], pp. 51–60 (1989)

98. Reeves, C.R.: Using genetic algorithms with small populations. In: [Forrest, S. (ed.): Proceed-
ings of 5th International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo,
CA (1993)], pp. 92–99 (1993)

99. Rees, J., Koehler, G.J.: An investigation of GA performance results for different cardinality
alphabets. In: Davis, L.D., De Jong, K.A., Vose, M.D., Whitley, L.D. (eds.): Evolutionary
Algorithms: IMA Volumes in Mathematics and its Applications, Vol. 111, Springer, New
York, pp. 191–206 (1998) (1999)

100. Reeves, C.R.: A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22, 5–13
(1995)

101. Ahuja, R.K., Orlin, J.B.: Developing fitter GAs. INFORMS J. Comput. 9, 251–253 (1997)



138 Colin R. Reeves

102. Kapsalis, A., Smith, G.D., Rayward-Smith, V.J.: Solving the graphical steiner tree problem
using genetic algorithms. J. Oper. Res. Soc. 44, 397–406 (1993)

103. Levine, D.: GAs: A practitioner’s view. INFORMS J. Comput. 9, 256–257 (1997)
104. Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. Eur. J. Oper. Res.

126, 662–674 (2000)
105. Greenhalgh, D., Marshall, S.: Convergence criteria for genetic algorithms. SIAM J. Comput.

30, 269–282 (2000)
106. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: [Grefenstette, J.J.

(ed.): Proceedings of the 2nd International Conference on Genetic Algorithms. Lawrence
Erlbaum Associates, Hillsdale, NJ (1987)], 14–21 (1987)

107. Lohr, S.L.: Sampling: Design and Analysis. Duxbury Press, Pacific Grove, CA (1999)
108. Hancock, P.J.B.: An empirical comparison of selection methods in evolutionary algorithms.

In: Fogarty, T.C. (ed.) Evolutionary Computing: AISB Workshop, Leeds, UK, April 1994;
Selected Papers, Springer, Berlin, pp. 80–94 (1994)

109. Whitley, D.: The GENITOR algorithm and selection pressure: Why rank-based allocation
of reproductive trials is best. In: [Schaffer, J.D. (ed.): Proceedings of 3rd International Con-
ference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA (1989)], pp. 116–121
(1989)

110. Saliby, E.: Descriptive sampling: A better approach to Monte Carlo simulation. J. Oper. Res.
Soc. 41, 1133–1142 (1990)

111. Nijenhuis, A., Wilf, H.S.: Combinatorial Algorithms for Computers and Calculators.
Academic, New York (1978)

112. Skiena, S.S.: The Stony Brook Algorithm Repository. http://www.cs.sunysb.edu/
∼algorith/major section/1.3.shtml. last accessed 18 August 2010 (2000)

113. Eshelman, L.J., Caruana, R.A., Schaffer, J.D.: Biases in the crossover landscape. In: [Schaf-
fer, J.D. (ed.): Proceedings of 3rd International Conference on Genetic Algorithms. Morgan
Kaufmann, San Mateo, CA (1989)], pp. 10–19 (1989)

114. Syswerda, G. Uniform crossover in genetic algorithms. In: [Schaffer, J.D. (ed.): Proceedings
of 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo, CA
(1989)], 2–9 (1989)

115. De Jong, K.A., Spears, W.M.: A formal analysis of the role of multi-point crossover in genetic
algorithms. Ann. Math. AI 5, 1–26 (1992)

116. Booker, L.B.: Improving search in genetic algorithms. In: Davis, L. (ed.) (1987) Ge-
netic Algorithms and Simulated Annealing. Morgan Kauffmann, Los Altos, CA, pp. 61–73
(1987)

117. Goldberg, D.E., Lingle, R.: Alleles, loci and the traveling salesman problem. In: [Grefen-
stette, J.J. (ed.): Proceedings of an International Conference on Genetic Algorithms and their
applications. Lawrence Erlbaum Associates, Hillsdale, NJ (1985)], pp. 154–159 (1985)

118. Bremermann, H.J., Rogson, J., Salaff, S.: Global properties of evolution processes. In: Pat-
tee, H.H. (ed.) Natural Automata and Useful Simulations, Spartan Books, Washington DC,
pp. 3–42 (1966)

119. Fogel, D.B.: An overview of evolutionary programming. In: Davis, L.D., De Jong, K.A.,
Vose, M.D., Whitley, L.D. (eds.) Evolutionary Algorithms: IMA Volumes in Mathematics
and its Applications, Vol. 111, Springer, New York, pp. 89–109 (1999)

120. Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In: [Schaffer, J.D.
(ed.): Proceedings of 3rd International Conference on Genetic Algorithms. Morgan Kauf-
mann, San Mateo, CA (1989)], pp. 104–109 (1989)

121. Eiben, A.E., Schut, M.C., de Wilde, A.R.: Is self-adaptation of selection pressure and popu-
lation size possible? A case study. In: [Runarsson, T.P., et al. (eds.): Parallel Problem-Solving
from Nature, 9, LNCS 4193. Springer, Berlin (2006)], pp. 900–909 (2006)

122. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic al-
gorithms. In: [Rawlins, G.J.E. (ed.): Foundations of Genetic Algorithms. Morgan Kaufmann,
San Mateo, CA (1991)], pp. 69–93 (1991)



5 Genetic Algorithms 139

123. Radcliffe, N.J., George, F.A.W.: A study in set recombination. In: [Forrest, S. (ed.): Proceed-
ings of 5th International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo,
CA (1993)], pp. 23–30 (1993)

124. McKee, S., Reed, M.B.: An algorithm for the alignment of gas turbine components in aircraft.
IMA J. Math. Manag. 1, 133–144 (1987)

125. Radcliffe, N.J., Surry, P.D.: Formae and the variance of fitness. In: [Whitley, D., Vose, M.
(eds.): Foundations of Genetic Algorithms 3. Morgan Kaufmann, San Mateo, CA (1995)],
pp. 51–72 (1995)

126. Fox, B.R., McMahon, M.B.: Genetic operators for sequencing problems. In: [Rawlins, G.J.E.
(ed.): Foundations of Genetic Algorithms. Morgan Kaufmann, San Mateo, CA (1991)],
pp. 284–300 (1991)

127. Poon, P.W., Carter, J.N.: Genetic algorithm crossover operators for ordering applications.
Comput. Oper. Res. 22, 135–147 (1995)

128. Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking and the flowshop sequencing
problem. Evol. Comput. 6, 45–60 (1998)

129. Ross, P. srandom() anomaly. Genetic Algorithms Digest, http://www.aridolan.com/
maillists/mlframes ns.html. last accessed 18 August 2010, 11:23 (1997)

130. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C : The
Art of Scientific Computing. Cambridge University Press, Cambridge, UK (1992)

131. Reeves, C.R.: The ‘crossover landscape’ and the Hamming landscape for binary search
spaces. In: [De Jong, K.A., Poli, R., Rowe, J.E. (eds.): Foundations of Genetic Algorithms
7. Morgan Kaufmann, San Francisco, CA (2003)], pp. 81–97 (2002)



Chapter 6
A Modern Introduction to Memetic Algorithms

Pablo Moscato and Carlos Cotta

Abstract Memetic algorithms are optimization techniques based on the synergistic
combination of ideas taken from different algorithmic solvers, such as population-
based search (as in evolutionary techniques) and local search (as in gradient-ascent
techniques). After providing some historical notes on the origins of memetic algo-
rithms, this work shows the general structure of these techniques, including some
guidelines for their design. Some advanced topics such as multiobjective optimiza-
tion, self-adaptation, and hybridization with complete techniques (e.g., branch-and-
bound) are subsequently addressed. This chapter finishes with an overview of the
numerous applications of these techniques and a sketch of the current development
trends in this area.

6.1 Introduction and Historical Notes

The generic denomination of “memetic algorithms” (MAs) is used to encompass
a broad class of metaheuristics (i.e., general purpose methods aimed to guide an
underlying heuristic). The method is based on a population of agents and proved
to be of practical success in a variety of problem domains and in particular for the
approximate solution of NP-hard optimization problems.

Unlike traditional evolutionary computation (EC) methods, MAs are intrinsically
concerned with exploiting all available knowledge about the problem under study.
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The incorporation of problem domain knowledge is not an optional mechanism,
but a fundamental feature that characterizes MAs. This functioning philosophy is
perfectly illustrated by the term “memetic.” Coined by R. Dawkins [62], the word
“meme” denotes an analogous to the gene in the context of cultural evolution [177].
In Dawkins’ words:

Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of making pots
or of building arches. Just as genes propagate themselves in the gene pool by leaping from
body to body via sperms or eggs, so memes propagate themselves in the meme pool by
leaping from brain to brain via a process which, in the broad sense, can be called imitation.

This characterization of a meme suggests that in cultural evolution processes, in-
formation is not simply transmitted unaltered between individuals. In contrast, it is
processed and enhanced by the communicating parts. This enhancement is accom-
plished in MAs by incorporating heuristics, approximation algorithms, local search
techniques, specialized recombination operators, truncated exact methods, etc. In
essence, most MAs can be interpreted as a search strategy in which a population of
optimizing agents cooperate and compete [202]. The success of MAs can probably
be explained as being a direct consequence of the synergy of the different search
approaches they incorporate.

The most crucial and distinctive feature of MAs, the inclusion of problem knowl-
edge mentioned above, is also supported by strong theoretical results. As Hart and
Belew [108] initially stated and Wolpert and Macready [276] later popularized in
the so-called No-Free-Lunch Theorem, a search algorithm strictly performs in ac-
cordance with the amount and quality of the problem knowledge they incorporate.
This fact clearly underpins the exploitation of problem knowledge intrinsic to MAs.
Given that the term hybridization is often used to denote the process of incorpo-
rating problem knowledge [39], it is not surprising that MAs are sometimes called
“Hybrid Evolutionary Algorithms” [61] (hybrid EAs) as well. One of the first al-
gorithms to which the MA label was assigned dates from 1988 [202] and was re-
garded by many as a hybrid of traditional genetic algorithms (GAs) and simulated
annealing (SA). Part of the initial motivation was to find a way out of the limita-
tions of both techniques on a well-studied combinatorial optimization problem, the
MIN EUCLIDEAN TRAVELING SALESMAN problem (MIN ETSP). According to
the authors, the original inspiration came from computer game tournaments [111]
used to study “the evolution of cooperation” [8, 190]. That approach had several
features which anticipated many current algorithms in practice today. The compet-
itive phase of the algorithm was based on the new allocation of search points in
configuration phase, a process involving a “battle” for survival followed by the so-
called cloning, which has a strong similarity with “go with the winners” algorithms
[4, 213]. The cooperative phase followed by local search may be better named “go
with the local winners” since the optimizing agents were arranged with a topology
of a two-dimensional toroidal lattice. After initial computer experiments, an insight
was derived on the particular relevance that the “spatial” organization, when cou-
pled with an appropriate set of rules, had for the overall performance of population
search processes. A few months later, Moscato and Norman discovered that they
shared similar views with other researchers [100, 185] and other authors proposing
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“island models” for GAs. Spacialization is now being recognized as the “catalyzer”
responsible for a variety of phenomena [189, 190]. This is an important research
issue, currently only understood in a rather heuristic way. However, some proper
undecidability results have been obtained for related problems [102] giving some
hope to a more formal treatment.

Less than a year later, in 1989, Moscato and Norman identified several au-
thors who were also pioneering the introduction of heuristics to improve the so-
lutions before recombining them [99, 186] (see other references and the discussion
in [177]). Particularly coming from the GA field, several authors were introduc-
ing problem domain knowledge in a variety of ways. In [177] the denomination
of “memetic algorithms” was introduced for the first time. It was also suggested
that cultural evolution can be a better working metaphor for these metaheuris-
tics to avoid “biologically constrained” thinking that was restricting progress at
that time.

Ten years later, albeit unfortunately under different names, MAs have become
an important optimization approach, with several successes in a variety of classical
NP-hard optimization problems. We aim to provide an updated and self-contained
introduction to MAs, focusing on their technical innards and formal features, but
without loosing the perspective of their practical application and open research
issues.

6.2 Memetic Algorithms

Before proceeding to the description of MAs, it is necessary to provide some basic
concepts and definitions. Several notions introduced in Section 6.1 are strongly re-
lated to the field of computational complexity. Nevertheless, they may be presented
in a slightly different way and pace for the sake of the subsequent development.
These basic concepts will give rise to the notions of local search and population-
based search, upon which MAs are founded. This latter class of search settles the
scenario for recombination, a crucial mechanism in the functioning of MAs that will
be studied to some depth. Finally, a basic algorithmic template and some guidelines
for designing MAs will be presented.

6.2.1 Basic Concepts

An algorithm is a detailed step-by-step procedure for solving a computational prob-
lem. A computational problem P denotes a class of algorithmically doable tasks,
and it has an input domain set of instances denoted IP. For each instance x ∈ IP,
there is an associated set solP(x) which denotes the feasible solutions for problem
P given instance x. The set solP(x) is also known as the set of acceptable or valid
solutions.
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We are expected to deliver an algorithm that solves problem P; this means that
our algorithm, given instance x ∈ IP, must return at least one element y from a set
of answers ansP(x) (also called given solutions) that satisfies the requirements of
the problem. This is the first design issue to face. To be precise, depending on the
kind of answers expected, computational problems can be classified into different
categories; for instance:

• finding all solutions in solP(x), i.e., enumeration problems.
• counting how many solutions exist in solP(x), i.e., counting problems.
• determining whether the set solP(x) is empty or not, i.e., decision problems.
• finding a solution in solP(x) maximizing or minimizing a given function, i.e.,

optimization problems.

In this chapter, we will focus on the last possibility, that is, a problem will be con-
sidered solved by finding a certain feasible solution, i.e., either finding an optimal
y∈ solP(x) or giving an indication that no such feasible solution exists. It is thus con-
venient in many situations to define a Boolean feasibility function f easibleP(x,y) in
order to identify whether a given solution y ∈ ansP(x) is acceptable for an instance
x ∈ IP of a computational problem P, i.e., checking if y ∈ solP(x).

An algorithm is said to solve problem P if it can fulfill this condition for any
given instance x ∈ IP. This definition is certainly too broad, so a more restrictive
characterization for our problems of interest is necessary. This characterization is
provided by restricting ourselves to the so-called combinatorial optimization prob-
lems. These constitute a special subclass of computational problems in which for
each instance x ∈ IP:

• the cardinality of solP(x) is finite.
• each solution y ∈ solP(x) has a goodness integer value mP(y,x) obtained by

means of an associated objective function mP.
• a partial order≺P is defined over the set of goodness values returned by the objec-

tive function, allowing determining which of two goodness values is preferable.

An instance x∈ IP of a combinatorial optimization problem P is solved by finding
the best solution y∗ ∈ solP(x), i.e., finding a solution y∗ such that no other solution
y ≺P y∗ exists if solP(x) is not empty. It is very common to have ≺P defining a total
order. In this case, the best solution is the one that maximizes (or minimizes) the
objective function.

As an example of a combinatorial optimization problem consider the 0-1 MUL-
TIPLE KNAPSACK PROBLEM (0-1 MKP). Each instance x of this problem is defined
by a vector of profits V = {v0, . . . ,vn−1}, a vector of capacities C = {c0, . . . ,cm−1},
and a matrix of capacity constraints M = {mi j : 0 � i < m, 0 � j < n}. Intuitively,
the problem consists in selecting a set of objects so as to maximize the profit of
this set without violating the capacity constraints. If the objects are indexed with the
elements of the set Nn = {0,1, . . . ,n− 1}, the answer set ansP(x) for an instance x
is simply the power set of Nn, that is, each subset of Nn is a possible answer. Fur-
thermore, the set of feasible answers solP(x) is composed of those subsets whose
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incidence vector B verifies M ·B � C. Finally, the objective function is defined as
mP(y,x) = ∑i∈y vi, i.e., the sum of profits for all selected objects, the goal being to
maximize this value.

Note that, associated with a combinatorial optimization problem, we can define
its decisional version. To formulate the decision problem, an integer goodness value
K is considered, and instead of trying to find the best solution of instance x, we ask
whether x has a solution whose goodness is equal or better than K. In the above
example, we could ask whether a feasible solution y exists such that its associated
profit is equal or better than K.

6.2.2 Search Landscapes

As mentioned above, having defined the concept of combinatorial optimization
problem the goal is finding at least one of the optimal solutions for a given instance.
For this purpose, a search algorithm must be used. Before discussing search algo-
rithms, three entities must be discussed. These are the search space, the neighbor-
hood relation, and the guiding function. It is important to consider that, for any given
computational problem, these three entities can be instantiated in several ways, giv-
ing rise to different optimization tasks.

Let us start by defining the concept of search space for a combinatorial problem
P. To do so, we consider a set SP(x), whose elements have the following properties:

• Each element s ∈SP(x) represents at least one answer in ansP(x).
• For decision problems: at least one element of solP(x) that stands for a “Yes”

answer must be represented by one element in SP(x).
• For optimization problems: at least one optimal element y∗ of solP(x) is repre-

sented by one element in SP(x).

Each element of SP(x) will be termed a configuration, being related to an answer in
ansP(x) by a growth function g : SP(x) → ansP(x). Note that the first requirement
refers to ansP(x) and not to solP(x), i.e., some configurations in the search space
may correspond to infeasible solutions. Thus, the search algorithm may need to
be prepared to deal with this fact. If these requirements have been achieved, we
say that we have a valid representation or valid formulation of the problem. For
simplicity, we will just write S to refer to SP(x) when x and P are clear from
the context. People using biologically inspired metaphors like to call SP(x) the
genotype space and ansP(x) denotes the phenotype space, so we appropriately refer
to g as the growth function.

To illustrate this notion of search space, consider again the case of the 0-1 MKP.
Since solutions in ansP(x) are subsets of Nn, we can define the search space as the
set of n-dimensional binary vectors. Each vector will represent the incidence vector
of a certain subset, i.e., the growth function g is defined as g(s) = g(b0b1 · · ·bn−1) =
{i | bi = 1}. As mentioned above, many binary vectors may correspond to infea-
sible sets of objects. Another possibility is defining the search space as the set of
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permutations of elements in Nn [101]. In this case, the growth function may consist
of applying a greedy construction algorithm, considering objects in the order pro-
vided by the permutation. Unlike the binary search space previously mentioned, all
configurations represent feasible solutions in this case.

The role of the search space is to provide a “ground” where the search algorithm
will act. Important properties of the search space that affect the dynamics of the
search algorithm are related to the accessibility relationships between the configura-
tions. These relationships are dependent on a neighborhood function N : S → 2S .
This function assigns to each element s ∈ S a set N (s) ⊆ S of neighboring con-
figurations of s. The set N (s) is called the neighborhood of s and each member
s′ ∈N (s) is called a neighbor of s.

It must be noted that the neighborhood depends on the instance, so the nota-
tion N (s) is a simplified form of NP(s,x) since it is clear from the context. The
elements of N (s) need not be listed explicitly. In fact, it is very usual to define
them implicitly by referring to a set of possible moves, which define transitions be-
tween configurations. Moves are usually defined as “local” modifications of some
part of s, where “locality” refers to the fact that the move is done on a single so-
lution to obtain another single solution. This “locality” is one of the key ingredi-
ents of local search, and actually it has also given the name to the whole search
paradigm.

As examples of concrete neighborhood definitions, consider the two represen-
tations of solutions for the 0-1 MKP presented above. In the first case (binary
representation), moves can be defined as changing the values of a number of
bits. If just one bit is modified at a time, the resulting neighborhood structure is
the n-dimensional binary hypercube. In the second case (permutation representa-
tion), moves can be defined as the interchange of two positions in the permutation.
Thus, two configurations are neighboring if, and only if, they differ in exactly two
positions.

This definition of locality presented above is not necessarily related to “close-
ness” under some kind of distance relationship between configurations (except in
the tautological situation in which the distance between two configurations s and s′
is defined as the number of moves needed to reach s′ from s). As a matter of fact,
it is possible to give common examples of very complex neighborhood definitions
unrelated to intuitive distance measures.

An important feature that must be considered when selecting the class of moves
to be used in the search algorithm is its “ergodicity,” that is the ability, given any s∈
S, to find a sequence of moves that can reach all other configurations s′ ∈ S. In many
situations this property is self-evident and no explicit demonstration is required. It is
important since even if we have a valid representation (recall the definition above), it
is necessary to guarantee a priori that at least one optimal solution is reachable from
any given initial solution. Again, consider the binary representation of solutions for
a 0-1 MKP instance. If moves are defined as single bit-flips, it is easily seen that
any configuration s′ can be reached from another configuration s in exactly h moves,
where h is the Hamming distance between these configurations. This is not always
the case though.
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The last entity that must be defined is the guiding function. To do so, we require
a set F whose elements are termed fitness values (typically F ≡ R) and a partial
order ≺F on F (typically, but not always, ≺F≡<). The guiding function is defined
as a function Fg : S →F that associates to each configuration s ∈S a value Fg(s)
that assesses the quality of the solution. The behavior of the search algorithm will
be “controlled” by these fitness values.

Note that for optimization problems there is an obvious direct connection be-
tween the guiding function Fg and the objective function mP (and hence between
partial orders ≺P and ≺F ). As a matter of fact, it is very common to enforce this re-
lationship to the point that both terms are usually considered equivalent. However,
this equivalence is not necessary and, in many situations, not even desirable. For
decision problems, since a solution is a “Yes” or “No” answer, associated guiding
functions usually take the form of distance to satisfiability.

A typical example is the BOOLEAN SATISFIABILITY PROBLEM, i.e., determin-
ing whether a Boolean expression in conjunctive normal form is satisfiable. In this
case, solutions are assignments of Boolean values to variables, and the objective
function mP is a binary function returning 1 if the solution satisfies the Boolean ex-
pression, and returning 0 otherwise. This objective function could be used as guid-
ing function. However, a much more typical choice is to use the number of satisfied
clauses in the current configuration as guiding function, i.e., Fg(s) = ∑i fi(s), the
sum over clause indexes i of fi(s), defined as fi(s) = 0 for a yet unsatisfied clause i,
and fi(s) = 1 if the clause i is satisfied. Hence, the goal is to maximize this number.
Note that the guiding function in this case is the objective function of the associated
NP-hard optimization problem called MAX SAT.

The above differentiation between objective function and guiding function is also
very important in the context of constrained optimization problems, i.e., problems
for which, in general, solP(x) is chosen to be a proper subset of ansP(x). Since the
growth function establishes a mapping from S to ansP(x), the search algorithm
might need processing both feasible solutions (whose goodness values are well de-
fined) and infeasible solutions (whose goodness values are ill-defined in general).
In many implementations of MAs for these problems, a guiding function is defined
as a weighted sum of the value of the objective function and the distance to feasi-
bility (which accounts for the constraints). Typically, a higher weight is assigned to
the constraints, so as to give preference to feasibility over optimality. Several other
remedies to this problem abound, including resorting to multiobjective techniques.

The combination of a certain problem instance and the three entities defined
above induces a so-called fitness landscape [127]. Essentially, a fitness landscape
can be defined as a weighted digraph, in which the vertices are configurations of
the search space S , and the arcs connect neighboring configurations. The weights
are the differences between the guiding function values of the two endpoint con-
figurations. The search can thus be seen as the process of “navigating” the fitness
landscape using the information provided by the guiding function. This is a very
powerful metaphor; it allows interpretations in terms of well-known topographical
objects such as peaks, valleys, and mesas; it is of great utility to visualize the search
progress and to grasp factors affecting the performance of the process. In particular,
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the important notion of local optimum is associated with this definition of fitness
landscape. To be precise, a local optimum is a vertex of the fitness landscape whose
guiding function value is better than the values of all its neighbors. Note that dif-
ferent moves define different neighborhoods and hence different fitness landscapes,
even when the same problem instance is considered. For this reason, the notion of
local optimum is not intrinsic to a problem instance as it is, sometimes, erroneously
considered.

6.2.3 Local vs. Population-Based Search

The definitions presented in Section 6.2.2 naturally lead to the notion of local search
algorithm. A local search algorithm starts from a configuration s0 ∈ S , generated
at random or constructed by some other algorithm. Subsequently, it iterates using
at each step a transition based on the neighborhood of the current configuration.
Transitions leading to preferable (according to the partial order ≺F ) configurations
are accepted, i.e., the newly generated configuration turns to be the current config-
uration in the next step. Otherwise, the current configuration is kept. This process
is repeated until a certain termination criterion is met. Typical criteria are the real-
ization of a pre-specified number of iterations, not having found any improvement
in the last m iterations, or even more complex mechanisms based on estimating the
probability of being at a local optimum [44]. Due to these characteristics, the ap-
proach is metaphorically called “hill climbing.” The whole process is sketched in
Algorithm 1.

Algorithm 1 A local search algorithm

Procedure Local-Search-Engine (current);1
begin2

repeat3
new ← GenerateNeighbor(current);4
if Fg(new)≺F Fg(current) then5

current ← new;6
endif7

until TerminationCriterion() ;8
return current;9

end10

The selection of the particular type of moves (also known as mutation in the
context of GAs) to use does certainly depend on the specific characteristics of the
problem and the representation chosen. There is no general advice for this, since it
is a matter of the available computer time for the whole process as well as other al-
gorithmic decisions that include ease of coding, etc. In some cases some moves are
conspicuous, for example, it can be the change of the value of one single variable or
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the swap of the values of two different variables. Sometimes the “step” may also be
composed of a chain of transitions. For instance, in relation with MAs, Radcliffe and
Surry introduced the concept of Binomial Minimal Mutation, where the number of
mutations to perform is selected according to a certain binomial distribution [229].
In the context of fitness landscapes, this is equivalent to a redefinition of the neigh-
borhood relation, considering two configurations as neighbors when there exists a
chain of transitions connecting them.

Local search algorithms are thus characterized by keeping a single configuration
at a time. The immediate generalization of this behavior is the simultaneous main-
tenance of k (k � 2) configurations. The term population-based search algorithms
has been coined to denote search techniques behaving this way.

The availability of several configurations at a time allows the use of new powerful
mechanisms for traversing the fitness landscape in addition to the standard mutation
operator. The most popular of these mechanisms, the recombination operator, will
be studied in more depth in Section 6.2.4. In any case, note that the general function-
ing of population-based search techniques is very similar to the pseudocode depicted
in Algorithm 1. As a matter of fact, a population-based algorithm can be imagined
as a procedure in which we sequentially visit vertices of a hypergraph. Each vertex
of the hypergraph represents a set of configurations in SP(x), i.e., a population. The
next vertex to be visited, i.e., the new population, can be established according to the
composition of the neighborhoods of the different transition mechanisms used in the
population algorithm. Despite the analogy with local search, it is widely accepted in
the scientific literature to apply the denomination “local” just to one-configuration-
at-a-time search algorithms. For this reason, the term “local” will be used with this
interpretation in the remainder of the chapter.

6.2.4 Recombination

As mentioned in Section 6.2.3, local search is based on the application of a mutation
operator to a single configuration. Despite the apparent simplicity of this mecha-
nism, “mutation-based” local search has revealed itself to be a very powerful mech-
anism for obtaining good quality solutions for NP-hard problems. For this reason,
some researchers have tried to provide a more theoretically solid background to this
class of search. In this line, it is worth mentioning the definition of the Polynomial
Local Search class (PLS) by Johnson et al. [126]. Basically, this complexity class
comprises a problem and an associated search landscape such that we can decide in
polynomial time if we can find a better solution in the neighborhood. Unfortunately,
it is very likely that no NP-hard problem is contained in class PLS, since that would
imply that NP=co-NP [279], a conjecture usually assumed to be false. This fact
has justified the quest for additional search mechanisms to be used as stand-alone
operators or as complements to standard mutation.

In this line, recall that population-based search allowed the definition of general-
ized move operators termed recombination operators. In essence, recombination can
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be defined as a process in which a set Spar of n configurations (informally referred to
as “parents”) are manipulated to create a set Sdesc ⊆ solP(x) of m new configurations
(informally termed “descendants”). The creation of these descendants involves the
identification and combination of features extracted from the parents.

At this point, it is possible to consider properties of interest that can be exhib-
ited by recombination operators [229]. The first property, respect, represents the
exploitation side of recombination. A recombination operator is said to be respect-
ful, regarding a particular type of features of the configurations, if, and only if, it
generates descendants carrying all basic features common to all parents. Note that, if
all parent configurations are identical, a respectful recombination operator is forced
to return the same configuration as a descendant. This property is termed purity and
can be achieved even when the recombination operator is not generally respectful.

On the other hand, assortment represents the exploratory side of recombination.
A recombination operator is said to be properly assorting if, and only if, it can
generate descendants carrying any combination of compatible features taken from
the parents. The assortment is said to be weak if it is necessary to perform several
recombinations within the offspring to achieve this effect.

Finally, transmission is a very important property that captures the intuitive role
of recombination. An operator is said to be transmitting if every feature exhibited
by the offspring is present in at least one of the parents. Thus, a transmitting re-
combination operator combines the information present in the parents but does not
introduce new information. This latter task is usually left to the mutation opera-
tor. For this reason, a non-transmitting recombination operator is said to introduce
implicit mutation.

The three properties above suffice to describe the abstract input/output behav-
ior of a recombination operator regarding some particular features. It provides a
characterization of the possible descendants that can be produced by the operator.
Nevertheless, there exist other aspects of the functioning of recombination that must
be studied. In particular, it is interesting to consider how the construction of Sdesc

is approached.
First of all, a recombination operator is said to be blind if it has no other input

than Spar, i.e., it does not use any information from the problem instance. This
definition is certainly very restrictive and hence is sometimes relaxed as to allow the
recombination operator to use information regarding the problem constraints (so as
to construct feasible descendants) and possibly the fitness values of configurations
y∈Spar (so as to bias the generation of descendants toward the best parents). A typ-
ical example of a blind recombination operator is the classical Uniform crossover
[253]. This operator is defined on search spaces S ≡ Σn, i.e., strings of n symbols
taken from an alphabet Σ. The construction of the descendant is done by randomly
selecting at each position one of the symbols appearing in that position in any of the
parents. This random selection can be totally uniform or can be biased according
to the fitness values of the parents as mentioned before. Furthermore, the selection
can be done so as to enforce feasibility (e.g., consider the binary representation of
solutions in the 0-1 MKP). Note that, in this case, the resulting operator is neither
respectful nor transmitting in general.
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The use of blind recombination operators has been usually justified on the
grounds of not introducing excessive bias in the search algorithm, thus preventing
extremely fast convergence to suboptimal solutions. This is questionable though.
First, note that the behavior of the algorithm is in fact biased by the choice of repre-
sentation and the mechanics of the particular operators. Second, there exist widely
known mechanisms (e.g., spatial isolation) to hinder these problems. Finally, it can
be better to quickly obtain a suboptimal solution and restart the algorithm than using
blind operators for a long time in pursuit of an asymptotically optimal behavior (not
even guaranteed in most cases).

Recombination operators that use problem knowledge are commonly termed
heuristic or hybrid. In these operators, problem information is utilized to guide the
process of constructing the descendants. This can be done in a plethora of ways for
each problem, so it is difficult to provide a taxonomy of heuristic recombination
operators. Nevertheless, there exist two main aspects into which problem knowl-
edge can be injected: the selection of the parental features that will be transmitted
to the descendant and the selection of non-parental features that will be added to it.
A heuristic recombination operator can focus in one of these aspects or in both of
them simultaneously.

As an example of a heuristic recombination operator focusing on the first aspect,
dynastically optimal recombination (DOR) [53] can be mentioned. This operator
explores the dynastic potential (i.e., the set of possible children) of the configura-
tions being recombined, so as to find the best member of this set (note that, since
configurations in the dynastic potential are entirely composed of features taken from
any of the parents, this is a transmitting operator). This exploration is done using a
subordinate complete algorithm, and its goal is thus to find the best combination of
parental features giving rise to a feasible child. Hence, this operator is monotonic in
the sense that any child generated is at least as good as the best parent.

As examples of heuristic recombination operators concentrating on the selec-
tion of non-parental features, one can cite the patching-by-forma-completion oper-
ators proposed by Radcliffe and Surry [228]. These operators are based on gener-
ating an incomplete child using a non-heuristic procedure (e.g., the RARω operator
[227]) and then completing the child using either a local hill climbing procedure
restricted to non-specified features (locally optimal forma completion) or a global
search procedure that finds the globally best solution carrying the specified fea-
tures (globally optimal forma completion). Note the similarity of this latter approach
with DOR.

Finally, there exist some operators trying to exploit knowledge in both of the
above aspects. A distinguished example is the Edge Assembly Crossover (EAX)
[188]. EAX is a specialized operator for the TSP (both for symmetric and for asym-
metric instances) in which the construction of the child comprises two phases: the
first one involves the generation of an incomplete child via the so-called E-sets (sub-
tours composed of alternating edges from each parent); subsequently, these subtours
are merged into a single feasible subtours using a greedy repair algorithm. The au-
thors of this operator reported impressive results in terms of accuracy and speed. It
has some similarities with the recombination operator proposed in [178].
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A final comment must be made in relation to the computational complexity of re-
combination. It is clear that combining the features of several solutions is in general
computationally more expensive than modifying a single solution (i.e., a mutation).
Furthermore, the recombination operation will be usually invoked a large number of
times. For this reason, it is convenient (and in many situations mandatory) to keep
it at a low computational cost. A reasonable guideline is to consider an O(N logN)
upper bound for its complexity, where N is the size of the input (the set Spar and the
problem instance x). Such limit is easily affordable for blind recombination opera-
tors, which are called crossover, a reasonable name to convey their low complexity
(yet not always used in this context). However, this limit can be relatively astrin-
gent in the case of heuristic recombination, mainly when epistasis (non-additive
inter-feature influence on the fitness value) is involved. This admits several solu-
tions depending on the particular heuristic used. For example, DOR has exponential
worst case behavior, but it can be made affordable by picking larger pieces of infor-
mation from each parent (the larger the size of these pieces of information, the lower
the number of them needed to complete the child) [52]. In any case, consider that
heuristic recombination operators provide better solutions than blind recombination
operators, and hence they need not be invoked the same number of times.

6.2.5 A Memetic Algorithm Template

In light of the above considerations, it is possible to provide a general template for
a memetic algorithm. As mentioned in Section 6.2.3, this template is very similar to
that of a local search procedure acting on a set of |pop| � 2 configurations. This is
shown in Algorithm 2.

Algorithm 2 A population-based search algorithm

Procedure Population-Based-Search-Engine;1
begin2

Initialize pop using GenerateInitialPopulation();3
repeat4

newpop ← GenerateNewPopulation(pop);5
pop ← UpdatePopulation (pop, newpop);6
if pop has converged then7

pop ← RestartPopulation(pop);8
endif9

until TerminationCriterion() ;10

end11

This template requires some explanation. First of all, the GenerateInitialPopu-
lation procedure is responsible for creating the initial set of |pop| configurations.
This can be done by simply generating |pop| random configurations or by using a
more sophisticated seeding mechanism (for instance, some constructive heuristic),
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by means of which high-quality configurations are injected in the initial popula-
tion [252]. Another possibility is to use the Local-Search-Engine presented in Sec-
tion 6.2.3 as shown in Algorithm 3.

Algorithm 3 Injecting high-quality solutions in the initial population.

Procedure GenerateInitialPopulation;1
begin2

Initialize pop using EmptyPopulation();3
for j ← 1 to popsize do4

i ← GenerateRandomConfiguration();5
i ← Local-Search-Engine (i);6
InsertInPopulation individual i to pop;7

endfor8
return pop;9

end10

As for the TerminationCriterion function, it can be defined very similarly to the
case of Local Search, i.e., setting a limit on the total number of iterations, reaching a
maximum number of iterations without improvement, or having performed a certain
number of population restarts.

The GenerateNewPopulation procedure is at the core of memetic algorithms. Es-
sentially, this procedure can be seen as a pipelined process comprising nop stages.
Each of these stages consists of taking arity j

in configurations from the previous

stage, generating arity j
out new configurations by applying an operator op j. This

pipeline is restricted to have arity1
in = popsize. The whole process is sketched in

Algorithm 4.

Algorithm 4 The pipelined GenerateNewPopulation procedure.

Procedure GenerateNewPopulation (pop);1
begin2

buffer0 ← pop;3
for j ← 1 to nop do4

Initialize buffer j using EmptyPopulation();5
endfor6
for j ← 1 to nop do7

S j
par ← ExtractFromBuffer (buffer j−1, arity j

in);8

S j
desc ← ApplyOperator (op j , S j

par);9

for z ← 1 to arity j
out do10

InsertInPopulation individual S j
desc[z] to buffer j;11

endfor12

endfor13
return buffernop ;14

end15
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This template for the GenerateNewPopulation procedure is usually instantiated
in GAs by letting nop = 3, using a selection, a recombination, and a mutation opera-
tor. Traditionally, mutation is applied after recombination, i.e., on each child gener-
ated by the recombination operator. However, if a heuristic recombination operator
is being used, it may be more convenient to apply mutation before recombination.
Since the purpose of mutation is simply to introduce new features in the config-
uration pool, using it in advance is also possible. Furthermore, the smart feature
combination performed by the heuristic operator would not be disturbed this way.

This situation is slightly different in MAs. In this case, it is very common to let
nop = 5, inserting a Local-Search-Engine right after applying op2 and op4 (respec-
tively, recombination and mutation). Due to the local optimization performed after
mutation, their combined effect (i.e., mutation + local search) cannot be regarded
as a simple disruption of a computationally demanding recombination. Note also
that the interplay between mutation and local search requires the former to be dif-
ferent than the neighborhood structure used in the latter; otherwise mutations can
be readily reverted by local search, and their usefulness would be negligible.

The UpdatePopulation procedure is used to reconstruct the current population
using the old population pop and the newly generated population newpop. Bor-
rowing the terminology from the evolution strategy [230, 238] community, there
exist two main possibilities to carry on this reconstruction: the plus strategy and
the comma strategy. In the former, the current population is constructed by tak-
ing the best popsize configurations from pop∪ newpop. As to the latter, the best
popsize configurations are taken just from newpop. In this case, it is required to
have |newpop| > popsize, so as to put some selective pressure on the process (the
bigger the |newpop|/popsize ratio, the stronger the pressure). Otherwise, the search
would reduce to a random wandering through S .

There are a number of studies regarding appropriate choices for the UpdatePop-
ulation procedure (see, e.g., [9]). As a general guideline, the comma strategy is usu-
ally regarded as less prone to stagnation, with the ratio |newpop|/popsize� 6 being
a common choice [10]. Nevertheless, this option can be somewhat computationally
expensive if the guiding function is complex and time consuming. Another common
alternative is using a plus strategy with a low value of |newpop|, analogous to the
so-called steady-state replacement strategy in GAs [274]. This option usually pro-
vides a faster convergence to high-quality solutions. However, care has to be taken
with premature convergence to suboptimal regions of the search space, i.e., all con-
figurations in the population being very similar to each other, hence hindering the
exploration of other regions of S .

The above consideration about premature convergence leads to the last compo-
nent of the template shown in Algorithm 2, the restarting procedure. First of all,
it must be decided whether the population has degraded or has not. To do so, it
is possible to use some measure of information diversity in the population such
as Shannon’s entropy [60]. If this measure falls below a predefined threshold, the
population is considered to be in a degenerate state. This threshold depends upon
the representation (number of values per variable, constraints, etc.) and hence must
be determined in an ad hoc fashion. A different possibility is using a probabilistic
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approach to determine with a desired confidence that the population has converged.
For example, in [119] a Bayesian approach is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart procedure
is invoked. Again, this can be implemented in a number of ways. A very typical
strategy is to keep a fraction of the current population (this fraction can be as small
as one solution, the current best) and substituting the remaining configurations with
newly generated (from scratch) solutions, as shown in Algorithm 5.

Algorithm 5 The RestartPopulation procedure.

Procedure RestartPopulation (pop);1
begin2

Initialize newpop using EmptyPopulation();3
#preserved ← popsize ·%preserve;4
for j ← 1 to #preserved do5

i ← ExtractBestFromPopulation(pop);6
InsertInPopulation individual i to newpop;7

endfor8
for j ← #preserved +1 to popsize do9

i ← GenerateRandomConfiguration();10
i ← Local-Search-Engine (i);11
InsertInPopulation individual i to newpop;12

endfor13
return newpop;14

end15

The procedure shown in Algorithm 5 is also known as the random-immigrant
strategy [33]. Another possibility is to activate a strong or heavy mutation operator
in order to drive the population away from its current location in the search space.
Both options have their advantages and disadvantages. For example, when using

the random-immigrant strategy, one has to take some caution to prevent the pre-
served configurations to take over the population (this can be achieved by putting a
low selective pressure, at least in the first iterations after a restart). As to the heavy
mutation strategy, one has to achieve a trade-off between an excessively strong mu-
tation that would destroy any information contained in the current population and a
not so strong mutation that would cause the population to converge again in a few
iterations.

6.2.6 Designing an Effective Memetic Algorithm

The general template of MAs depicted in Section 6.2.5 must be instantiated with
precise components in order to be used for solving a specific problem. This instanti-
ation has to be done carefully so as to obtain an effective optimization tool. We will
address some design issues in this section.
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A first obvious remark is that there exists no general approach for the de-
sign of effective MAs. This observation is based on different proofs depending on
the precise definition of effective in the previous statement. Such proofs may in-
volve classical complexity results and conjectures if “effective” is understood as
“polynomial-time,” the NFL Theorem if we consider a more general set of perfor-
mance measures, and even Computability Theory if we relax the definition to arbi-
trary decision problems. For these reasons, we can only define several design heuris-
tics that will likely result in good-performing MAs, but without explicit guarantees
for this.

This said, MAs are commonly implemented as evolutionary algorithms endowed
with a local search component (recall Section 6.2.5), and as such can benefit from
the theoretical corpus available for EAs. This is particularly applicable to some ba-
sic aspects such as the representation of solutions in terms of meaningful infor-
mation units [59, 228]. Focusing now on more specific aspects of MAs, the first
consideration that must be clearly taken into account is the interplay among the
local search component and the remaining operators, mostly with respect to the
characteristics of the search landscape. A good example of this issue can be found
in the work of Merz and Freisleben on the TSP [85]. They consider the use of a
highly intensive local search procedure—the Lin–Kernighan heuristic [157]—and
note that the average distance between local optima is similar to the average dis-
tance between a local optimum and the global optimum. For this reason, they in-
troduce a distance-preserving crossover (DPX) operator that generates offspring
whose distance from the parents is the same as the distance between the parents
themselves. Such an operator is likely to be less effective if a not-so-powerful local
improvement method, e.g., 2-opt, was used, inducing a different distribution of local
optima.

In addition to the particular choice (or choices) of local search operator, there
remains the issue of determining an adequate parameterization for the procedure,
namely, how much effort must be spent on each local search, how often the local
search must be applied, and—were it not applied to every new solution generated—
how to select the solutions that will undergo local improvement. Regarding the first
two items, there exists theoretical evidence [143, 251] that an inadequate parameter
setting can turn the algorithmic solution from easily solvable to non-polynomially
solvable. Besides, there are obvious practical limitations in situations where the lo-
cal search and/or the fitness function is computationally expensive. This fact admits
different solutions. On the one hand, the use of surrogates (i.e., fast approximate
models of the true function) to accelerate evolution is an increasingly popular op-
tion in such highly demanding problems [104, 155, 272, 273, 283]. On the other
hand, partial lamarckism [42, 112, 212], where not every individual is subject to
local search, is commonly used as well. The precise value for the local search appli-
cation probability (or multiple values when more than one local search procedure is
available) largely depends on the problem under consideration [123], and its deter-
mination is in many cases an art. For this reason, adaptive and self-adaptive mecha-
nisms have been defined in order to let the algorithm learn what the most appropriate
setting is (see Section 6.3.2).
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As to the selection of individuals that will undergo local search, most common
options are random selection and fitness-based selection, where only the best in-
dividuals are subject to local improvement. Nguyen et al. [197] also consider a
“stratified” approach, in which the population is sorted and divided into n levels
(n being the number of local search applications), and one individual per level is
randomly selected. Their experimentation on some continuous functions indicates
that this strategy and improve-the-best (i.e., applying local search to the best n indi-
viduals) provide better results than random selection. Such strategies can be readily
deployed on a structured MA as defined by Moscato et al. [15, 21, 83, 169, 172],
where good solutions flow upward within a tree-structured population, and layers
are explicitly available. Other population management strategies are nevertheless
possible, see [19, 218, 219, 249].

6.3 Algorithmic Extensions of Memetic Algorithms

The algorithmic template and design guidelines described in Section 6.2.6 can
characterize most basic incarnations of MAs, namely population-based algorithms
endowed with static local search for single-objective optimization. However, more
sophisticated approaches can be conceived, and certainly required, in certain appli-
cations. This section is aimed at providing an overview of more advanced algorith-
mic extensions used in the MA realm.

6.3.1 Multiobjective Memetic Algorithms

Multiobjective problems are frequent in real-world applications. Rather than having
a single objective to be optimized, the solver is faced with multiple, partially con-
flicting objectives. As a result, there is no a priori single optimal solution, but rather
a collection of optimal solutions, providing different trade-offs among the objectives
considered. In this scenario, the notion of Pareto-dominance is essential: given two
solutions s,s′ ∈ solP(x), s is said to dominate s′ if it is better than s′ in at least one of
the objectives, and it is no worse in the remaining ones. This clearly induces a partial
order ≺P, since given two solutions it may be the case that none of them dominates
the other. This collection of optimal solutions is termed the optimal Pareto front or
the optimal non-dominated front.

Population-based search techniques, in particular evolutionary algorithms (EAs),
are naturally fit to deal with multiobjective problems, due to the availability of a
population of solutions which can approach the optimal Pareto front from different
directions. There is extensive literature on the deployment of EAs in multiobjec-
tive settings, and the reader is referred to [35, 36, 63, 287], among others, for more
information on this topic. MAs can obviously benefit from this corpus of knowl-
edge. However, MAs typically incorporate a local search mechanism, and it has
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to be adapted to the multiobjective setting as well. This can be done in different
ways [132], which can be roughly classified into two major classes: scalarizing ap-
proaches and Pareto-based approaches. The scalarizing approaches are based on the
use of some aggregation mechanism to combine the multiple objectives into a single
scalar value. This is usually done using a linear combination of the objective values,
with weights that are either fixed (at random or otherwise) for the whole execution
of the local search procedure [266] or adapted as the local search progresses [106].
As to Pareto-based approaches, they consider the notion of Pareto-dominance for
deciding transitions among neighboring solutions, typically coupled with the use of
some measure of crowding to spread the search, e.g., [133].

A full-fledged multiobjective MA (MOMA) is obtained by appropriately com-
bining population-based and local search-based components for multiobjective op-
timization. Again, the strategy used in the local search mechanism can be used to
classify most MOMAs. Thus, two proposals due to Ishibuchi and Murata [121, 122]
and to Jaszkiewicz [124, 125] are based on the use of random scalarization each
time a local search is to be used. Alternatively, a single-objective local search could
be used to optimize individual objectives [120]. Ad hoc mating strategies based on
the particular weights chosen at each local search invocation (whereby the solutions
to be recombined are picked according to these weights) are used as well. A related
approach—including the online adjustment of scalarizing weights—is followed by
Guo et al. [105–107]. On the other hand, a MA based on PAES (Pareto archived
evolution strategy) was defined by Knowles and Corne [134, 135]. More recently, a
MOMA based on particle swarm optimization (PSO) has been defined by Liu et al.
[152, 162]. In this algorithm, an archive of non-dominated solutions is maintained
and randomly sampled to obtain reference points for particles. A different approach
is used by Schuetze et al. [237] for numerical optimization problems. The continu-
ous nature of solution variables allows using their values for computing search di-
rections. This fact is exploited in their local search procedure (HCS for Hill Climber
with Sidestep) for directing the search toward specific regions (e.g., along the Pareto
front) when required.

6.3.2 Adaptive Memetic Algorithms

When some design guidelines were given in Section 6.2.6, the fact that these were
heuristics that ultimately relied on the problem knowledge available was stressed.
This is not a particular feature of MAs, but affects the field of metaheuristics as a
whole. Indeed, one of the keystones in practical metaheuristic problem solving is
the necessity of customizing the solver for the problem at hand [51]. Therefore, it is
not surprising that attempts to transfer a part of this tuning effort to the metaheuristic
technique itself have been common. Such attempts can take place at different levels
or can affect different components of the algorithm. The first—and more intuitive
one—is the parametric level involving the numerical values of parameters, such as
the operator application rates. Examples of this can be found in early EAs, see for
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example [61]. A good up-to-date overview of these approaches (actually broader in
scope, covering more advanced topics than parameter adaptation) can be found in
[247]. Focusing specifically on MAs, this kind of adaptation has been applied in
[11, 164, 175, 176].

A slightly more general approach—termed “meta-lamarckian learning” [204] by
Ong and Keane—takes place at the algorithmic level. They consider a setting in
which the MA has a collection of local search operators available, and how the
selection of the particular operator(s) to be applied to a specific solution can be done
on the basis of past performance of the operator, or on the basis of the similarity of
the solution to previous successful cases of operator application. Some analogies
can also be drawn here with hyperheuristics [54], a high-level heuristic that controls
the application of a set of low-level heuristics to solutions, using strategies ranging
from pure random to performance-based rules. See [28] for a recent comprehensive
overview of hyperheuristics.

In general terms, the approaches mentioned before are based on static, hard-
wired mechanisms that the MA uses to react to the environment. Hence, they can
be regarded as adaptive, but not as self-adaptive [205]. In the latter case, the actual
definition of the search mechanisms can evolve during the search. This is a goal that
has been pursued for long in MAs. Back in the early days of the field, it was already
envisioned that future generations of MAs would work in at least two levels and two
timescales [179]. During the short timescale, a set of agents would be searching in
the search space associated with the problem. The long timescale would adapt the
algorithms associated with the agents. Here we encompass individual search strate-
gies, recombination operators, etc. A simple example of this kind of self-adaptation
can be found in the so-called multi-memetic algorithms, in which each solution car-
ries a gene that indicates which local search has to be applied on it. This can be a
simple pointer to an existing local search operator or even the parametrization of
a general local search template, with items such as the neighborhood to use and
acceptance criterion. [141]. Going beyond, a grammar can be defined to specify a
more complex local search operator [140, 142]. At an even higher level, this evo-
lution of local search operators can be made fully symbiotic, rather than merely
endosymbiotic. For this purpose, two co-evolving populations can be considered: a
population of solutions and a population of local search operators. These two pop-
ulations co-operate by means of an appropriate pairing mechanism that associates
solutions with operators. The latter receive fitness in response to their ability to im-
prove solutions, thus providing a fully self-adaptive strategy for exploring the search
landscape [244–246].

6.3.3 Complete Memetic Algorithms

The combination of exact techniques with metaheuristics is an increasingly pop-
ular approach. Focusing on local search techniques, Dumitrescu and Stüztle [73]
have provided a classification of methods in which exact algorithms are used to
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strengthen local search, i.e., to explore large neighborhoods, to solve exactly some
subproblems, to provide bounds and problem relaxations to guide the search. Some
of these combinations can be also found in the literature on population-based
methods. For example, exact techniques—such as branch-and-bound (BnB) [53]
or dynamic programming [90]—have been used to perform recombination (recall
Section 6.2.4), and approaches in which exact techniques solved some subproblems
provided by EAs date back to 1995 [45]. See also [76] for a large list of references
regarding local search/exact hybrids.

Puchinger and Raidl [220] have provided a classification of this kind of hybrid
techniques in which algorithmic combinations are either collaborative (sequential
or intertwined execution of the combined algorithms) or integrative (one technique
works inside the other one, as a subordinate). Some of the exact/metaheuristic hy-
brid approaches defined before are clearly integrative—i.e., using an exact technique
to explore neighborhoods. Further examples are the use of BnB in the decoding
process [221] of a genetic algorithm (i.e., exact method within a metaheuristic tech-
nique) or the use of evolutionary techniques for the strategic guidance of BnB [139]
(metaheuristic approach within an exact method).

As to collaborative combinations, a sequential approach in which the execution
of a MA is followed by a branch-and-cut method can be found in [131]. Intertwined
approaches are also popular. For example, Denzinger and Offerman [66] combine
genetic algorithms and BnB within a parallel multi-agent system. These two algo-
rithms also cooperate in [45, 88], the exact technique providing partial promising
solutions, and the metaheuristic returning improved bound. A related approach in-
volving beam search and full-fledged MAs can be found in [89, 92, 93].

It must be noted that most hybrid algorithms defined so far that involve exact
techniques and metaheuristics are not complete, in the sense that they do not guaran-
tee an optimal solution (an exception is the proposal of French et al. [86], combining
an integer-programming BnB approach with GAs for MAX-SAT). Thus, the term
“complete MA” may be not fully appropriate. Nevertheless, many of these hybrids
can be readily adapted for completeness purposes, although obviously time and/or
space requirements will grow faster-than-polynomial in general.

6.4 Applications of Memetic Algorithms

This section will provide an overview of the numerous applications of MAs. This
overview is far from exhaustive since new applications are being developed continu-
ously. However, it is intended to illustrate the practical impact of these optimization
techniques. We have focused on recent applications, namely in the last 5 years (that
is, from 2004 onward). Readers interested in earlier applications (which are also
manifold) can refer to [109, 180–182]. We have organized references in five major
areas: machine learning and knowledge discovery (Table 6.1); traditional combina-
torial optimization (Table 6.2); planning, scheduling, and timetabling (Table 6.3);
bioinformatics (Table 6.4); and electronics, engineering, and telecommunications
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Table 6.1 Applications in machine learning and knowledge discovery.

Data mining and Image analysis [37, 67, 68, 77, 211]
knowledge discovery Fuzzy clustering [70]

Feature selection [243, 286]
Pattern recognition [94]

Machine learning Decision trees [144]
Inductive learning [69]
Neural networks [64, 65, 103, 110, 159, 168, 195, 262]

Table 6.2 Applications in combinatorial optimization.

Binary and set problems Binary quadratic programming [173]
Knapsack problem [87, 88, 105, 107, 222]
Low autocorrelation sequences [91]
MAX-SAT [18, 223]
Set covering [125]

Graph-based problems Crossdock optimization [2, 154]
Graph coloring [38]
Graph matching [12]
Hamiltonian cycle [32]
Maximum cut [270]
Quadratic assignment [72, 255]
Routing problems [19, 20, 56, 57, 74]

[80, 145–147]
[218, 259, 263]

Spanning tree [79, 231]
Steiner tree [131]
TSP [21, 161, 163, 196, 271]

Constrained optimization Golomb ruler [46, 48]
Social golfer [47]
Maximum density still life [89, 90]

Table 6.3 Applications in planning, scheduling, timetabling, and manufacturing. (check also [49])

Manufacturing Assembly line [226, 257, 265]
Flexible manufacturing [5, 31, 187, 258]
Lot sizing [16]
Multi-tool milling [13]
Supply chain network [280]

Planning Temporal planning [235]
Scheduling Flowshop scheduling [82, 84, 152, 158, 160, 184, 209, 240, 241]

Job-shop [27, 96–98, 224, 267, 268, 278]
Parallel machine scheduling [184, 277]
Project scheduling [29]
Single machine scheduling [166, 184]

Timetabling Driver scheduling [153]
Examination timetabling [216]
Rostering [3, 22, 206]
Sport league [236]
Train timetabling [239]
University course [151, 215, 233]
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Table 6.4 Applications in bioinformatics.

Phylogeny Phylogenetic inference [43, 93, 275]
Consensus tree [217]

Microarrays Biclustering [208]
Feature selection [55, 284, 285]
Gene ordering [169, 183]

Sequence analysis Shortest common supersequence [42, 92]
DNA sequencing [71]

Protein science Sequence assignment [269]
Structure comparison [140]
Structure prediction [14, 40, 203, 234, 281]

Systems biology Gene regulatory networks [200, 250]
Cell models [232]

Biomedicine Drug therapy design [194, 264]

Table 6.5 Applications in electronics, telecommunications, and engineering.

Electronics Analog circuit design [58, 170]
Circuit partitioning [34]
Electromagnetism [23, 104, 210]
Filter design [254]
VLSI design [7, 171, 256]

Engineering Chemical kinetics [136, 137]
Crystallography [212]
Drive design [24, 25]
Power systems [26]
Structural optimization [129]
System modeling [1, 260]

Computer Science Code optimization [207]
Information forensics [242]
Information theory [41]
Software engineering [6]

Telecommunications Antenna design [114–117]
Mobile networks [128, 225]
P2P networks [174, 191, 192]
Wavelength assignment [78]
Wireless networks [113, 118, 130, 138]

(Table 6.5). As mentioned before, we have tried to be illustrative rather than ex-
haustive, pointing out some selected references from these well-known application
areas.

Although these fields encompass the vast majority of applications of MAs, it
must be noted that success stories are not restricted to these major fields. To cite an
example, there are several applications of MAs in economics, e.g., in portfolio op-
timization [165], risk analysis [167], and labor-market delineation [81]. For further
information about MA applications we suggest querying bibliographical databases
or web browsers for the keywords “memetic algorithms” and “hybrid genetic
algorithms.”
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6.5 Challenges and Future Directions

The future seems promising for MAs. This is the combination of several factors.
First, MAs (less frequently disguised under different names) are showing a remark-
able record of efficient implementations, providing very good results in practical
problems. Second, there are reasons to believe that some new attempts to do theoret-
ical analysis can be conducted. This includes the worst-case and average-case com-
putational complexity of recombination procedures. Third, the ubiquitous nature of
distributed systems, like networks of workstations for example, plus the inherent
asynchronous parallelism of MAs and the existence of web-conscious languages
like Java, all together are an excellent combination to develop highly portable and
extendable object-oriented frameworks allowing algorithmic reuse. These frame-
works might allow the users to solve subproblems using commercial codes or well-
tested software from other users who might be specialists in another area. Fourth,
an important and pioneering group of MAs, that of Scatter Search [95, 148], is chal-
lenging the role of randomization in recombination. We expect that, as a healthy
reaction, we will soon see new types of powerful MAs that blend in a more appro-
priate way both exhaustive (either truncated or not) and systematic search methods.

6.5.1 Learning from Experience

In 1998, Applegate, Bixby, Cook, and Chvatal established new breakthrough re-
sults for the MIN TSP. They solved to optimality an instance of the TSP of 13,509
cities corresponding to all US cities with populations of more than 500 people.
The approach, according to Bixby, “...involves ideas from polyhedral combinatorics
and combinatorial optimization, integer and linear programming, computer science
data structures and algorithms, parallel computing, software engineering, numeri-
cal analysis, graph theory, and more.” The solution of this instance demanded the
use of three Digital AlphaServer 4100s (with a total of 12 processors) and a clus-
ter of 32 Pentium-II PCs. The complete calculation took approximately 3 months
of computer time. The code has certainly more than 1,000 pages and is based on
state-of-the-art techniques from a wide variety of scientific fields.

The philosophy is the same in the case of MAs, that of a synergy of different
approaches. Actually, their approach can possibly be classified as the most com-
plex MA ever built for a given combinatorial optimization problem. One of the
current challenges is to develop simpler algorithms that achieve these impressive
results. The approach of running a local search algorithm (Chained Lin–Kernighan)
to produce a collection of tours, followed by the dynastically optimal recombina-
tion method called tour merging, produced a non-optimal tour only 0.0002% above
the proved optimal tour for the 13,509 cities instance. We take this as a clear proof
of the benefits of the MA approach and that more work is needed in developing
good strategies for complete memetic algorithms, i.e., those that systematically and
synergistically use randomized and deterministic methods and can prove optimality.
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An open line for the design of this kind of algorithms may be the exploitation
of FPT (fixed-parameter tractability) results, see Section 6.5.2. Related to this, it
must be noted that we still lack a formal framework for recombination, similar for
instance to the one for Local Search [126, 279]. In this sense, an interesting new
direction for theoretical research arose after the introduction of two computational
complexity classes: the PMA class (for Polynomial Merger Algorithms problems)
and its unconstrained analogue, the uPMA class (see [180]). These classes are de-
fined analogously to the class of polynomial local search (PLS). Conducting re-
search to identify problems, and their associated recombination procedures, such
that membership, in either PMA or uPMA, can be proved is a definitely important
task. It is also hoped that after some initial attempts on challenging problems, com-
pleteness and reductions for these classes can be properly defined [50].

6.5.2 Exploiting FPT results

An interesting new avenue of research can be established by appropriately linking
results from the theory of fixed-parameter tractability (FPT) and the development
of recombination algorithms. A parameterized problem can be generally viewed as
a problem with two input components, i.e., a pair 〈x,k〉. The former is generally
an instance (i.e., x ∈ IP) of some other decision problem P and the latter is some
numerical aspect of the former (generally a positive integer assumed k � |x|, where
|x| is the size of instance x) that constitutes a parameter, for example, the maximum
node degree in a certain graph-based problem, the maximum number of elements
in the solution of a subset-selection problem. If there exists an algorithm solving
the problem in time O( f (k)|x|α), where f (k) is an arbitrary function depending on
k only, and α a constant independent of k or n, the parameterized problem is said
to be fixed-parameter tractable and the decision problem belongs to the computa-
tional complexity class FPT. Note that by following this parameterized approach,
the complexity analysis becomes multidimensional, in contrast to the classical one-
dimensional approach, in which only the instance size is considered (thus failing to
distinguish structural properties that may make a particular problem instance hard
or easy).

To illustrate this topic, consider one of the most emblematic FPT problems,
namely VERTEX COVER: given a graph G(V,E), find a subset S ⊆ V of k vertices,
such that for every edge (u,v)∈ E, at least u or v is a member of S. Here, the number
k of vertices in S is taken as a parameter and factored out from the problem input.
In general, efficient FPT algorithms are based on the techniques of reduction to a
problem kernel and bounded search trees. To understand the techniques, the reader
may check a method by Chen et al. [30]. This method can solve the parameterized
version of vertex cover in time O(1.271kk2 + kn). Furthermore, using this method
together with the speed-up method proposed by Neidermeier and Rossmanith [199],
the problem can be solved in O(1.271k + n), i.e., linear in n for fixed k. The rele-
vance of this result is more evident by noting that VERTEX COVER is an NP-hard
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problem. Thus, FPT results provide an efficient way for provably solving NP-hard
problems for fixed-parameter values.

The combination of FPT results and recombination operators is an avenue that
goes both ways. In one direction, efficient (i.e., polynomial-time), fixed-parameter
algorithms can be used as “out of the box” tools to create efficient recombination
procedures, i.e., recall some of the procedures mentioned in Section 6.3.3. Con-
versely, since MAs are typically designed to deal with large instances and scale
pretty well with problem size, using both techniques together can produce complete
MAs, thus extending the benefits of fixed-parameter tractability. From a software
engineering perspective, the combination is perfect both from code and from algo-
rithmic reuse.

6.5.3 Belief Search in Memetic Algorithms

As a logical consequence of the possible directions that MAs can take, it is rea-
sonable to affirm that more complex schemes evolving solutions, agents, as well as
representations, will soon be implemented. Some theoretical computer science re-
searchers dismiss heuristics and metaheuristics since they are not scholarly struc-
tured as a formal paradigm. However, their achievements are well recognized.
From [150]:

Explaining and predicting the impressive empirical success of some of these algorithms is
one of the most challenging frontiers of the theory of computation today.

This comment is even more relevant for MAs since they generally present even
better results than single-agent methods. Though metaheuristics are extremely pow-
erful in practice, we agree that one problem with the current trend in applied re-
search is that it allows the introduction of increasingly more complex heuristics,
unfortunately most of the time parameterized by ad hoc values. Moreover, some
metaheuristics, like some ant-systems implementations, can basically be viewed as
particular types of MAs. This is the case if you allow the “ants” to use branch-and-
bound or local search methods. In addition, these methods for distributed recom-
bination of information (or beliefs) have some points in common with blackboard
systems [75], as it has been recognized in the past, yet it is hardly being mentioned
in the current metaheuristics literature [180].

To illustrate how Belief Search can work in an MA setting, consider for exam-
ple PL⊗

n , a multi-agent epistemic logic introduced by Boldrin and Saffiotti [17].
According to this formalism, the opinions shared by a set of n agents can be recom-
bined in a distributed belief. Using it, we can deduce the distributed belief about
properties of solutions, and this can be stronger than any individual belief about it
(see [50] for detailed examples with numerical values).

One interesting application of these new MAs is due to Lamma et al. [149] for
diagnosing digital circuits. In their approach, they differentiate between genes and
“memes.” The latter group codes for the agent beliefs and assumptions. Using a
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logic-based technique, they modify the memes according to how the present beliefs
are contradicted by integrity constraints that express observations and laws. Each
agent keeps a population of chromosomes and finds a solution to the belief revi-
sion problem by means of a genetic algorithm. A Lamarckian operator is used to
modify a chromosome using belief revision directed mutations, oriented by tracing
logical derivations. As a consequence, a chromosome will satisfy a larger number of
constraints. The evolution provided by the Darwinian operators allows agents to im-
prove the chromosomes by gaining on the experience of other agents. Central to this
approach is the Lamarckian operator appropriately called Learn. It takes a chromo-
some and produces a revised chromosome as output. To achieve that, it eliminates
some derivation paths that lead to contradictions.

Surprisingly enough (and here we remark the first possibility of using the the-
ory of fixed-parameter tractability), the learning is achieved by finding a hitting set
which is not necessarily minimal. The authors make this point clear by saying that:
“a hitting set generated from these support sets is not necessarily a contradiction re-
moval set and therefore is not a solution to the belief revision problem.” The authors
might not be aware of the O(2.311k +n) exact algorithm for MIN 3-HITTING SET

[198]. They might be able to use it, but that is anecdotal at the moment. What is
important is that algorithms like this one might be used out-of-the-box if a proper,
worldwide based, algorithmic framework was created.

On the other hand, we noted how results of logic programming and belief revision
might help improve the current status of metaheuristics. The current situation where
everybody comes with new names for the same basic techniques, and where most
contributions are just the addition of new parameters to guide the search, is a futile
research direction. It is possible that belief-search-guided MAs will prove to be
a valid tool to help systematize the construction of these guided metaheuristics.
In particular, the discussion is based on which multi-agent logic performs better,
rather than which parameters work better for specific problems or instances. To
this end, we hope to convince researchers in logic programming to address these
issues and to face the difficult task of guiding MAs for large-scale combinatorial
optimization.

6.6 Conclusions

We believe that the future looks good for MAs. This belief is based on the following.
First of all, MAs are showing a great record of efficient implementations, providing
very good results in practical problems, as the reader may have noted in Section 6.4.
We also have reasons to believe that we are close to some major leaps forward in
our theoretical understanding of these techniques, including, for example, the worst-
case and average-case computational complexity of recombination procedures. On
the other hand, the ubiquitous nature of distributed systems is likely to boost the
deployment of MAs on large-scale, computationally demanding optimization prob-
lems.
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We also see as a healthy sign the systematic development of other particu-
lar optimization strategies. If any of the simpler metaheuristics (SA, TS, VNS,
GRASP, etc.) performs the same as a more complex method (GAs, MAs, Ant
Colonies, etc.), an “elegance design” principle should prevail and we must either
resort to the simpler method, or to the one that has less free parameters, or to
the one that is easier to implement. Such a fact should defy us to adapt the com-
plex methodology to beat a simpler heuristic or to check if that is possible at
all. An unhealthy sign of current research, however, is the attempts to encapsu-
late metaheuristics on stretched confinements. Fortunately, such attempts are be-
coming increasingly less frequent. Indeed, combinations of MAs with other meta-
heuristics such as differential evolution [193, 201, 261], particle swarm optimization
[152, 158, 159, 161, 162, 209, 214, 248, 282], or ant-colony optimization [156] are
not unusual nowadays. As stated before, the future looks promising for MAs.
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12. Bärecke, T., Detyniecki, M.: Memetic algorithms for inexact graph matching. In: Srinivasan,
D., Wang, L. (eds.) 2007 IEEE Congress on Evolutionary Computation, pp. 4238–4245,
Singapore, 25–28 September 2007. IEEE Computational Intelligence Society, IEEE Press
(2007)

13. Baskar, N., Asokan, P., Saravanan, R., Prabhaharan, G.: Selection of optimal machining
parameters for multi-tool milling operations using a memetic algorithm. J. Mater. Process.
Tech. 174(1–3), 239–249 (2006)

14. Bazzoli, A., Tettamanzi, A.G.B.: A memetic algorithm for protein structure prediction in a
3D-Lattice HP model. In: Raidl, G.R., et al. (eds.) Applications of Evolutionary Computing,
vol. 3005, Lecture Notes in Computer Science, pp. 1–10, Berlin, 2004. Springer.

15. Berretta, R., Cotta, C., Moscato, P.: Enhancing the performance of memetic algorithms
by using a matching-based recombination algorithm: Results on the number partitioning
problem. In: Resende, M., Pinho de Sousa, J., (eds.) Metaheuristics: Computer-Decision
Making, pp. 65–90. Kluwer, Boston MA (2003)

16. Berretta, R., Rodrigues, L.F.: A memetic algorithm for a multistage capacitated lot-sizing
problem. Int. J. Prod. Econ. 87(1), 67–81 (2004)

17. Boldrin, L., Saffiotti, A.: A modal logic for merging partial belief of multiple reasoners.
J. Logic Comput. 9(1), 81–103 (1999)

18. Borschbach, M., Exeler, A.: A tabu history driven crossover operator design for memetic
algorithm applied to max-2SAT-problems. In: Keijzer, M. et al. (eds.) GECCO ’08:
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation,
pp. 605–606, Atlanta, GA, USA, 12–16 July 2008. ACM Press.

19. Boudia, M., Prins, C., Reghioui, M.: An effective memetic algorithm with population man-
agement for the split delivery vehicle routing problem. In: Bartz-Beielstein, T., et al. (eds.)
Hybrid Metaheuristics 2007, vol. 4771, Lecture Notes in Computer Science, pp. 16–30.
Springer, Berlin, Heidelberg (2007)

20. Bouly, H., Dang, D.-C., Moukrim, A.: A memetic algorithm for the team orienteering prob-
lem. In: Giacobini, M., et al. (eds.) Applications of Evolutionary Computing vol. 4974,
Lecture Notes in Computer Science, pp. 649–658. Springer, Berlin, Heidelberg (2008)

21. Buriol, L., França, P.M., Moscato, P.: A new memetic algorithm for the asymmetric traveling
salesman problem. J. Heuristics 10(5), 483–506 (2004)

22. Burke, E.K., De Causmaecker, P., van den Berghe, G.: Novel metaheuristic approaches to
nurse rostering problems in belgian hospitals. In: Leung, J. (ed.) Handbook of Schedul-
ing: Algorithms, Models, and Performance Analysis, chapter 44, pp. 44.1–44.18. Chapman
Hall/CRC Press, Boca Raton, FL (2004)

23. Caorsi, S., Massa, A., Pastorino, M., Randazzo, A.: Detection of PEC elliptic cylinders by a
memetic algorithm using real data. Microwave Optical Technol. Lett. 43(4), 271–273 (2004)

24. Caponio, A., Leonardo Cascella, G., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive
memetic algorithm for online and offline control design of pmsm drives. IEEE Trans. Syst.
Man Cybernet. Part B 37(1), 28–41 (2007)

25. Caponio, A., Neri, F., Cascella, G.L., Salvatore, N.: Application of memetic differential
evolution frameworks to PMSM drive design. In: Wang, J. (ed.) 2008 IEEE World Congress
on Computational Intelligence, pp. 2113–2120, Hong Kong, 1–6 June 2008. IEEE Compu-
tational Intelligence Society, IEEE Press (2008)

26. Carrano, E.G., Souza, B.B., Neto, O.M.: An immune inspired memetic algorithm for power
distribution system design under load evolution uncertainties. In: Wang, J. (ed.) 2008 IEEE
World Congress on Computational Intelligence, pp. 3251–3257, Hong Kong, 1–6 June 2008.
IEEE Computational Intelligence Society, IEEE Press (2008)

27. Caumond, A., Lacomme, P., Tchernev, N.: A memetic algorithm for the job-shop with time-
lags. Computers & Or, 35(7), 2331–2356 (2008)



6 A Modern Introduction to Memetic Algorithms 169

28. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: Cotta, C.,
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algorithms. In: Mira, J., Álvarez, J.R. (eds.) Artificial Intelligence and Knowledge Engineer-
ing Applications: A Bioinspired Approach, vol. 3562, Lecture Notes in Computer Science,
pp. 11–20. Springer, Berlin (2005)

269. Volk, J., Herrmann, T., Wuethrich, K.: Automated sequence-specific protein NMR assign-
ment using the memetic algorithm match. J. Biomol. NMR 41(3), 127–138 (2008)

270. Wang, J.: A memetic algorithm with genetic particle swarm optimization and neural network
for maximum cut problems. In: Li, K., Fei, M., Irwin, G.W., Ma, S. (eds.) International
Conference on Life System Modeling and Simulation, vol. 4688, Lecture Notes in Computer
Science, pp. 297–306. Springer, Berlin, Heidelberg (2007)

271. Wang, Y., Qin, J.: A memetic-clustering-based evolution strategy for traveling salesman
problems. In: Yao, J., et al. (eds.) 2nd International Conference on Rough Sets and Knowl-
edge Technology, vol. 4481, Lecture Notes in Computer Science, pp. 260–266. Springer,
Berlin, Heidelberg (2007)
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Chapter 7
Genetic Programming

William B. Langdon, Robert I. McKay and Lee Spector

Abstract Welcome to genetic programming, where the forces of nature are used to
automatically evolve computer programs. We give a flavour of where GP has been
successfully applied (it is far too wide an area to cover everything) and interesting
current and future research but start with a tutorial of how to get started and finish
with common pitfalls to avoid.

7.1 Introduction

Getting computers to automatically solve problems is central to artificial intelli-
gence, machine learning and the broad area covered by what Turing called “machine
intelligence” [1]. As we shall show, this is what genetic programming is actually do-
ing today.

Genetic programming [2] works by applying the power of evolution by natural
selection [3] to artificial populations inside your computer, cf. Figure 7.1. Unlike
in nature, you decide who is fit, who survives and who has children. Like nature,
children are not identical to their parents but suffer random mutations and can be
created by fusing together the genetic characteristics of their parents. Unlike other
approaches to evolving expressions, genetic programming works because it has
defined a way of representing expressions whereby they can be randomly mutated
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Generate Population
of Random Programs

Run Programs and
Evaluate Their Quality

Breed Fitter Programs

Fig. 7.1 The basic control flow for GP, where survival of the fittest is used to find solutions.

and still be syntactically correct expression which can be evaluated. Like nature,
many mutants are not as fit as their parents but, like nature, every so often, a mu-
tant is created which is better. Similarly children produced by sex have genes which
are a random combination of parental genes. Again, every once in a while an im-
proved combination is found and the offspring program is selected for prospers and
in subsequent generations copies of it spread through the evolving population.

Genetic programming can be thought of as like domesticated animals and plants,
where improvements have been made by breeders progressively selecting preferred
characteristics. (Darwin studied the records of breeders of domesticated pigeons.)
Thus you too must impose a direction on evolution, e.g. to control a robot, design a
radio aerial or find a genetic component of breast cancer survival, you must select
programs that are better at doing it. For example, given the cause of death and life
span of 253 Swedish women cancer patients, you might select a program which
correctly predicted more cases of survival for more than 8 years after surgery than
one which was less accurate.

With large populations and/or many generations, selecting individual programs
becomes too tedious to do by hand. Instead we pass the job to a computerized au-
tomatic “fitness function”. On your behalf, it prefers better programmes over the
less good. Ultimately it is your fitness function which guides the evolution of your
population by selecting who will survive and who will have children. The fitness
function is literally a matter of life or death.

There are several fine books on GP ([2, 4] and [5] leap to mind); however, we
strongly encourage doing GP as well as reading about it. There are many good free
(unsupported) GP implementations (e.g. lilGP, ECJ, Beagle1 and TinyGP) but it is
not so hard to write your own.

7.1.1 Overview

The next section describes the main parts of genetic programming, while Section 7.3
describes how you put them together to get a working system. Next Sections 7.4
and 7.5 describe advanced GP techniques. We survey the enormous variety of

1 Darwin was the naturalist onboard HMS Beagle for 5 years [6].
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applications of GP in Section 7.6. This is followed by a collection of trouble-
shooting suggestions (Section 7.7) and by our conclusions (Section 7.8).

7.2 Representation, Initialization and Operators
in Tree-Based GP

7.2.1 Representation

In artificial intelligence it has become accepted wisdom that how information about
the application and its solution is stored (i.e. represented internally within the com-
puting system) and manipulated by it, is crucial to successful implementation. Huge
effort is spent by very clever people on designing the correct representation.

Genetic programming has ignored this. In GP, the evolved program contains
the solution and “representation” refers to the language evolution uses to write
the program. The same representation might be used in a program evolved to
predict breast cancer survival as one evolved to find insider trading in a stock
market.

In GP, programs are usually expressed as syntax trees rather than as lines
of code. For example Figure 7.2 shows the tree representation of the program
max(x+x,x+3*y). The variables and constants in the program (x, y and 3) are
leaves of the tree. In GP they are called terminals, while the arithmetic operations
(+, * and max) are internal nodes called functions. The sets of allowed functions
and terminals together form the primitive set of a GP system.

x x

+ +

max

x

y3

∗

Fig. 7.2 GP syntax tree representing max(x+x,x+3*y).

It is common to represent expressions in prefix notation, e.g. max(x+x,x+3*y)
becomes (max (+ x x) (+ x (* 3 y))). Usually the number of argu-
ments a function takes is known, e.g. sin has one argument but * has two. When
the arity is known, the brackets in prefix-notation expressions are not needed.
This means trees can be represented as simple linear sequences. Usually this is
much more efficient than tree-based representation of programs, which require
the storage and management of numerous pointers. In effect, the function’s name
gives its arity and from the arities the brackets can be inferred. For example, the
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expression (max (+ x x) (+ x (* 3 y))) can be written unambiguously
as max + x x + x * 3 y.

The choice of whether to use such a linear representation or an explicit tree repre-
sentation is typically guided by convenience, efficiency, the genetic operations being
used (some may be more easily or more efficiently implemented in one represen-
tation), and other data one may wish to collect during runs. (It is sometimes useful
to attach additional information to nodes, which may be easier to implement if they
are explicitly represented).

Tree representations are the most common in GP. However, there are other im-
portant representations including linear [4, 7–9] and graph [10–12] based programs.

7.2.2 Initializing the Population

As with other evolutionary algorithms, in GP the individuals in the initial population
are typically randomly generated. There are a number of different approaches to
generating this random initial population, e.g. [13]. However, we will describe two
of the simplest methods (the full and grow methods) and the most widely used
combination of the two known as Ramped half-and-half [2].

In both the full and the grow methods, the initial individuals are generated so
that they do not exceed a maximum depth you decide. The depth of a node is the
number of edges that need to be traversed to reach the node starting from the tree’s
root node (depth 0). The depth of a tree is the depth of its deepest leaf (e.g. the tree in
Figure 7.2 has a depth of 3). The fullmethod generates full trees (i.e. all leaves are
at the same depth). It does this by choosing at random from the available functions
(known as the function set) until the maximum tree depth is reached. Then the tree
is finished by adding randomly chosen leafs from the available terminals (known as
the terminal set). Figure 7.3 shows a series of snapshots of the construction of a full
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Fig. 7.3 Creation of a full tree having maximum depth 2 using full initialization (t = time) [53].
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tree of depth 2. The children of the * and / nodes must be leaves or otherwise the
tree would be too deep. Thus, at steps t = 3, t = 4, t = 6 and t = 7 a terminal must
be chosen. (In this example leafs x, y, 1 and 0 were randomly chosen).

Although, the full method generates trees where all the leaves are at the same
depth, this does not necessarily mean that all initial trees will have an identical
number of nodes (often referred to as the size of a tree) or the same shape. This
happens only if all the functions have the same arity (i.e. have the same number
of inputs.) Nonetheless, even when mixed-arity primitive sets are used, the range
of program sizes and shapes produced by the full method may be limited. The
grow method creates trees of more varied sizes and shapes. Nodes are selected
from the whole primitive set (i.e. functions and terminals) until the depth limit is
reached. Once the depth limit is reached only terminals may be chosen (just as in
the full method). Figure 7.4 illustrates growing a tree with depth limit of 2. In
Figure 7.4 (t = 2) the first argument of the + root node happens to be a terminal.
This prevents that branch from growing any more. The other argument is a function
(-). It can grow one level before its arguments are forced to be terminals to ensure
that the resulting tree does not exceed the depth limit. C++ code for a recursive
implementation of both the full and the grow methods is given below.

+
t = 1 t = 2 t = 3

t = 4 t = 5

+

x

+

−x

+

−x

2

+

−x

2 y

Fig. 7.4 Creation of a five node tree using the grow initialization method with a maximum depth
of 2 (t = time). A terminal is chosen at t = 2, causing the left branch of the root to be closed at that
point even though the maximum depth had not been reached [5].

Because neither the grown or the full method provides a very wide array of
sizes or shapes on their own, Koza proposed a combination called ramped half-
and-half [2]. Half the initial population is constructed using full and half is
constructed using grow. This is done using a range of depth limits (hence the
term “ramped”) to help ensure that we generate trees having a variety of sizes and
shapes.

While these methods are easy to implement and use, the sizes and shapes of
the trees generated are highly sensitive to the number of functions, the number of
inputs they have and the number of terminals. This makes it difficult to control the
sizes and shapes of the trees. For example, if there are many more terminals than
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functions, the grow method will almost always generate very short trees regardless
of the depth limit. Similarly, if the number of functions is considerably greater than
the number of terminals, then the grow method will be like the full method.

//Choose desired depth uniformly at random between min and max depth.
//Choose either full or grow.
SubInit(rnd(max_depth-min_depth)+min_depth, rnd(2), min_depth);

void Individual::SubInit(int depth, BOOL isfull, int min_depth) {
if (depth <= 0)

i=rand_terminal(); // terminal required
else if (isfull || min_depth>0)

i=rand_function(); // function required
else {//grow: terminal allowed 50% of the time

if (rnd(2)) // terminal required
i=rand_terminal();

else // node required
i=rand_function();

}
SETNODE(code[ip],i); //store opcode in Individual
ip++;

for(int a=0;a<argnum(i);a++) {
SubInit(depth-1,isfull, min_depth-1, tree);

}}

C++ code fragment to create a random tree. For efficiency the tree is flattened and
stored in array code (access is via macro SETNODE). SubInit recursively calls
itself until it reaches a leaf of the tree. (Based upon Andy Singleton’s GPquick.)

The initial population need not be entirely random. If something is known about
likely properties of the desired solution, trees having these properties can be used to
seed the initial population.

7.2.3 Selection

As with other evolutionary algorithms, in GP better individuals are more likely to
have more child programs than inferior individuals. Tournament selection is most
often used, followed by fitness-proportionate selection [4], but any standard evolu-
tionary algorithm selection mechanism (e.g. stochastic universal sampling) can be
used.

In tournament selection a number of individuals are chosen at random from the
population. These are compared with each other and the best of them is chosen to
be the parent. When doing crossover, two parents are needed and, so, two selection
tournaments are made. Note that tournament selection only looks at which program
is better than another. It does not need to know how much better. This effectively
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automatically rescales fitness, so that the selection pressure is constant. Thus, a sin-
gle extraordinarily good program cannot immediately swamp the next generation
with its children. If it did, this would lead to a rapid loss of diversity with poten-
tially disastrous consequences for a run. Conversely, tournament selection amplifies
small differences in fitness to prefer the better program even if it is only marginally
superior to the other individuals in a tournament.

Tournament selection, due to the random selection of programs to be included
in the tournament, is inherently noisy. So, while preferring the best, tournament
selection does ensure that even below average programs have some chance of having
children. Since tournament selection is easy to implement and provides automatic
fitness rescaling, it is commonly used in GP.

7.2.4 Recombination and Mutation

Crossover (recombination) and mutation in GP are very different from crossover
and mutation in other evolutionary algorithms. The most commonly used form of
crossover is subtree crossover. Given two parents, subtree crossover randomly (and
independently) selects a crossover point (a node) in each parent tree. Then, it creates
the offspring by replacing the subtree rooted at the crossover point in a copy of the
first parent with a copy of the subtree rooted at the crossover point in the second
parent [2], as illustrated in Figure 7.5.
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Fig. 7.5 Example of subtree crossover. Note that the trees on the left are actually copies of the
parents. So, their genetic material can freely be used without altering the original individuals [5].



192 W.B. Langdon, R.I. McKay and L. Spector

Typical GP primitive sets lead to trees with an average arity of at least two.
This means most of the program will be leaves. So if crossover points were chosen
uniformly, crossovers would frequently swap very small subtrees (even just leafs),
i.e. exchange only very small amounts of genetic material. Whereas in nature (and
many GAs) often both parents contribute more-or-less equally to their offspring’s
genetic code. To counter this, Koza suggested the widely used approach of choos-
ing functions 90% of the time and leaves 10% of the time [2]. Many other types of
crossover and mutation of GP trees are possible (see [5, pp 42–44]).

The most commonly used form of mutation in GP is subtree mutation. It ran-
domly selects a mutation point in a tree and substitutes the subtree rooted there with
a randomly generated subtree (cf. Figure 7.6 and [15]).

3

yx

+

+

Mutation
Point

Randomly Generated
Sub-tree

y

∗

2x

/

yx

+

+

Mutation
Point

y

∗

2x

/

Parents Offspring

Fig. 7.6 Example of subtree mutation [5].

Another common form of mutation is point mutation, which is GP’s rough equiv-
alent of the bit-flip mutation used in genetic algorithms [14]. In point mutation, a
random node is selected and the primitive stored there is replaced with a different
random primitive of the same arity taken from the primitive set. If no other primi-
tives with that arity exist, nothing happens to that node (but other nodes may still be
mutated). When subtree mutation is applied, it changes exactly one subtree. On the
other hand, every node in the tree has a small probability of being mutated by point
mutation. This means point mutation independently changes a random number of
nodes.

In GP normally only one genetic operator is used to create each child. Which
one is used is chosen at random. Typically, crossover is applied with the highest
probability, the crossover rate often being 90% or higher. On the contrary, the mu-
tation rate is much smaller, typically being in the region of 1%. If the sum of all
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the probabilities comes to less than 100% the remaining offspring are created sim-
ply by copying better individuals from the current population. (This is known as
reproduction.)

7.3 Getting Ready to Run Genetic Programming

7.3.1 Step 1: Terminal Set

GP is not typically used to evolve programs in the familiar languages people nor-
mally write programs in. Instead simpler programming languages are used. Indeed
GP can usually be thought of as evolving executable expressions rather than fully
fledged programs. The first two preparatory steps, the definition of the terminal and
function sets, specify the language. Together they define the ingredients that are
available to GP to create computer programs.

Typically the terminal set contains the program’s inputs (e.g. x, y, cf. Table 7.1).
It may also contain functions with no arguments. They might be needed because
they return different values each time they are used, such as a function which returns
random numbers or returns the distance from a robot to an obstacle or because the
function produces side effects. Functions with side effects may change some global
data structures, draw on the screen, print to a file, control the motors of a robot, etc.

Table 7.1 Examples of primitives in GP function and terminal sets.

Function set
Kind of primitive Example
Arithmetic +, *, /
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE
Looping FOR, REPEAT

Terminal set
Kind of primitive Example
Variables x, y
Constant values 3, 0.45
0-arity functions rand, go left

Often an evolved program will need access to constants. We do not know in
advance what their values will be, so GP chooses some randomly. In some imple-
mentations the number of constants is limited and it may be that new ones cannot be
created during the GP run. Instead their values must be chosen as the population is
initialized. Typically this is done by a special terminal that represents an ephemeral
random constant. Every time it is chosen (either at the start or when a new subtree
is created by mutation), a different random value is generated. This is used for that
particular terminal and remain fixed for the rest of the run.

7.3.2 Step 2: Function Set

The function set typically contains only the arithmetic functions (+, -, *, /). How-
ever, all sorts of other functions and constructs typically encountered in computer
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programs can be used, see Table 7.1. Sometimes specialized functions or termi-
nals, which are designed to solve particular problems are used. For example, if
the goal is to evolve art, then the function set might include such actions as
select from pallet and paint.

For GP to work effectively, most function sets are required to have an important
property known as closure [2]. Closure can be broken down into type consistency
and evaluation safety. Finally the primitive set must be able to (i.e. must be sufficient
to) express solutions to the problem.

7.3.2.1 Type Consistency

Crossover (Section 7.2.4) can mix and join nodes arbitrarily. So it is important that
any subtree can be used as any argument for every function in the function set. The
simplest way to achieve this is to ensure all functions return values of the same type
and that each of their arguments also have this type. For example, +, -, *, and / can
can be defined so that they each take two integer arguments and return an integer.
The terminals would also be integers. (Automatic-type conversion, e.g., between
Booleans and integers, default values and polymorphic functions, can also be used to
ensure that crossover always produces syntactically correct and runnable programs.)
Sections 7.4 and 7.5 will describe safe ways to extend GP.

7.3.2.2 Evaluation Safety

The purpose of evaluation safety is to ensure evolved programs can run and thereby
be assigned fitness even when they run into errors. For example, an evolved expres-
sion might divide by 0 or call MOVE FORWARD when facing a wall or precipice. It
is common to use protected versions of numeric functions that can otherwise throw
exceptions, such as division, logarithm, exponential and square root. The protected
version of a function first tests for potential problems with its input(s) before exe-
cuting the corresponding instruction. If a problem is spotted then some default value
is returned. Protected division (often notated with %) checks to see if its second ar-
gument is 0. If so, % typically returns the value 1 (regardless of the value of the first
argument). (The decision to return the value 1 provides the GP system with a simple
way to generate the constant 1, via an expression of the form (% x 0). This com-
bined with a similar mechanism for generating 0 via (- x x) ensures that GP can
easily construct these two important constants.) Similarly, in a robotic application a
MOVE AHEAD instruction can be modified to do nothing if a forward move is illegal
or if moving the robot might damage it. (Braitenberg permitted his imaginary robots
to make dangerous moves as a way of weeding the poor control program from the
better [16].)

An alternative to protected functions is to trap run-time exceptions and strongly
reduce the fitness of programs that generate such errors. However, if the likelihood
of generating invalid expressions is very high, this can lead to too many individuals
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in the population having nearly the same (very poor) fitness. This makes it hard for
selection to choose which individuals might make good parents.

7.3.2.3 Sufficiency

By sufficiency we mean it is possible to express a solution to the problem using the
elements of the primitive set. For example, {AND, OR, NOT, x1, x2, ..., xN} is a suf-
ficient primitive set for logic problems, since it can produce all Boolean functions
of the variables x1, x2, ..., xN. The primitive set {+, -, *, /, x, 0, 1, 2} is unable
to represent transcendental functions, such as sin(x). When a primitive set is insuffi-
cient, GP can often develop programs that approximate the desired solution. Which
may be good enough for the user’s purpose. Adding a few unnecessary primitives in
an attempt to ensure sufficiency tends not to slow down GP overmuch.

7.3.3 Step 3: Fitness Function

The task of the fitness measure is to choose which parents are to have offspring.
That is, which parts of the search space we have just sampled (which is what the
current population has done for us) are worth exploring further. The fitness func-
tion is our primary (and often sole) mechanism for giving a high-level statement of
requirements to GP.

Fitness can be measured in many ways. For example, in terms of the amount of
error between its output and the desired output; the amount of time (fuel, money,
etc.) required; the accuracy of the program in recognizing patterns or classifying
objects; the payoff a game-playing program produces.

Fitness evaluation normally requires executing all the programs in the population,
typically multiple times. While one can compile the GP programs that make up the
population, the overhead of building a compiler is usually substantial, so it is much
more common to use an interpreter to evaluate the evolved programs. Interpreting a
program tree means executing the nodes in the tree in an order that guarantees that
nodes are not executed before the value of their arguments (if any) is known. This
is usually done by traversing the tree recursively starting from the root node and
postponing the evaluation of each node until the values of its children (arguments)
are known. Other orders, such as going from the leaves to the root, are possible. If
none of the primitives have side effects, the two orders are equivalent. Figure 7.7
contains C++ code fragments which implements top down recursive tree evaluation
using a linear data structure for speed.

In some problems we are interested in the output produced by a program. In other
problems we are interested in the actions performed by a program composed of
functions with side effects. In either case the fitness of a program typically depends
on the results produced by its execution on many different inputs or under a variety
of different conditions. For example, the program might be tested on all possible
combinations of inputs x1, x2, ..., xN. Alternatively, a robot control program might
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Fig. 7.7 Example fast interpreter (based on Andy Singleton’s GPquick). The tree is linearized and
functions and terminals within it are replaced by pointers to C++ functions which implement them.
On a typical modern computer the GP individual and the interpreter are held in fast cache. Since
the tree is flatten into the traditional depth first order, the interpreter runs from top of the tree to
the rightmost terminal in one forward pass. This avoids backtracking. Continuous forward motion
suits typical cache architectures.
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be tested with the robot in a number of starting locations. These different test cases
typically contribute to the fitness value of a program incrementally and for this rea-
son are called fitness cases.

Despite all this sophistication and the computational work it does, the fitness
function ultimately boils down to just one bit of information: does this mutated
program beget another child? We do not know the correct answer to this question.
So we add noise (e.g. via tournament selection). Fortunately it is not necessary to
get the answer right all the time, or even most of the time, just as long as we are
right occasionally. We sometimes lose sight of this hard truth. Sometimes it may
be better to accept a less accurate calculation of fitness. If by doing so we reduce
the time taken to calculate a fitness value. Thus allowing us to take the life or death
decision more times.

7.3.4 Step 4: GP Parameters

The most important control parameter is the population size. It is impossible to
make general recommendations for setting optimal parameter values, as these de-
pend too much on the details of the application. However, genetic programming is
in practice robust and it is likely that many different parameter values will work. As
a consequence, one need not typically spend a long time tuning GP for it to work
adequately. Some possible parameter settings are given in the tableau in Table 7.2.

Table 7.2 Typical parameters for example genetic programming run.

Objective: Record your problem here
Function set: For example, +, −, % (protected division) and ×; all operating on floats
Terminal set: For example, x and constants chosen randomly between −5 and +5
Fitness: e.g. sum of absolute errors for a number of fitness cases.

The number of fitness cases may be limited by the amount of training data available
to evaluate the fitness of the evolved individuals. In other cases, e.g. 22-bit even
parity [17], there can be too much training data. Then the fitness function may use a
fraction of the training data. This does not necessarily have to be done manually as
there are a number of algorithms that dynamically change the test set as the GP runs
(see [5, Sect. 10.1]).

Selection: Tournament size 7
Initial pop: Ramped half-and-half (Section 7.2.2) depth range of 2–6
Parameters: As a rule one prefers to have the largest population size that your system can handle

gracefully. Normally the population size should be at least 500 and people often use
much larger populations. (However, some prefer much smaller populations. Typically
these rely on mutation rather than crossover and run many more generations.)
Traditionally, 90% of children are created by subtree crossover. However, the use of
a 50–50 mixture of crossover and a variety of mutations also appears to work well
[5, Chapter 5].
Some implementations do not require arbitrary limits of tree size. Even so, because
of bloat (the uncontrolled growth of program sizes during GP runs [5, Sect. 11.3]), it
is common to impose either a size or a depth limit or both (see Section 7.7.6).

Termination: 10–50 (The most productive search is usually performed in those early generations.)
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7.3.5 Step 5: When to Stop and How to Decide Who is the Solution

The last step, is choosing when to stop the GP and how to decide which of the
thousands of programs that it has evolved to use. Typically we stop either when an
acceptable solution has been found or a maximum number of generations has been
reached. Typically, the single best-so-far individual is used. Although one might
wish to study additional individuals, e.g. to look for particularly short or elegant
solutions.

7.4 Guiding GP with A Priori Knowledge

As described so far, GP is essentially knowledge free: a powerful search mechanism
(evolution) is set free to search the space of all expressions which can be formed
from the function and terminal set. Contrast this with traditional methods, such as
linear regression, in which a very basic search mechanism is used to search a very
restricted set of expressions. Linear regression is often extended to more complex
forms (polynomial regression, log regression, etc.), but this still leaves a vast gap
between the complete search of GP and the very restricted parameter search of clas-
sical regression.

In many applications, the user will know a great deal about the form of acceptable
solutions. It can be highly desirable to incorporate this knowledge into the search,
since it can save the user time, e.g. by enabling the user to exclude solutions which
will not be useful for some reason or to impose a preference ordering on solutions.
Including the user’s background knowledge can also increase data efficiency and so
allow more complex models to be learnt than could possibly be justified solely by
the available data. In some cases, such restriction may be essential, because it may
not be possible to provide meaningful fitness values for all the solutions a GP system
could evolve. Finally, GP search may be more efficient if the user’s knowledge can
be used to increase the concentration of solutions in the search space. This increase
may be non-trivial (in example 3 below it is of many orders of magnitude) but it is
nevertheless the least important reason.

In principle, a wide range of mechanisms could be used to restrict the search
space; in practice, most available systems use some form of grammar, generally an
extension of Context Free Grammars (CFG [18]). The constraints may range over a
wide range of complexity, for example

1. Strongly typed systems (Section 7.3.2.1, [19]): in which only type-consistent
expressions can be evolved.

2. Extended process models: in many domains, such as ecological modelling [20],
there is a known sub-model of processes which are certainly occurring (zoo-
plankton are eating phytoplankton, for example), but there may also be other
unknown processes occurring which require adaptation of this process model
to fit the data.
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3. Dimensional consistency [21]: For example, in physics, equations must be con-
sistent in time (t), length (l) and mass (m) dimensions. For example, integrating
Newton’s second equation of motion gives s = ut + 1

2 at2. s has dimensions of
length. u is a velocity and hence has dimension l/t. 1

2 is a pure number and so
has no dimensions. a is an acceleration and hence has dimension l/t2. Putting
these together, the right-hand side gives l/t× t + lt−2× t2 = l. Which is indeed
the same as the dimensions of the left-hand side (l). Dimensionally inconsis-
tent formulae may fit the data well but they are nevertheless unacceptable.

7.4.1 Context-Free Grammars in GP

CFG-based GP systems are the most widely used, and the simplest to explain, so
we take them as our base case. From the user’s perspective, a CFG-GP system is
very similar to a standard GP system. However, instead of just providing a list of
function and terminal symbols2, the user must provide a grammar specifying the
ways in which they may be used. That is the only change really required; the user
does not have to do anything special with respect to the GP operators (selection,
crossover, mutation); the system takes care of those. For some systems, there may
be one further difference. In a grammar-based system, the fitness function can be
defined in the same way as for standard GP. However, the grammar defines how to
build up more complex expressions from simpler ones. In many cases, it is easier to
define how to build up the meanings of the expressions (i.e. how to evaluate them)
at the same time—we call this “providing a semantics for the grammar”. If this is
done, the fitness function definition may reduce to just a few lines of code, defining
how these values contribute to the fitness. We give a brief example in Section 7.4.1.1
below.

The grammar provides an additional way for the user to interact with the evolving
population. When the CFG-GP system is first run, it may not produce the results
the user desires, e.g. the evolved solution may not fit the data sufficiently well. Or
it may not be acceptable to the user for some other reason. However, the CFG-GP
runs may help the user see how the problem may be solved. Frequently, it is possible
to incorporate this insight into the grammar so as to achieve more useful results in
subsequent runs. This ability to interact with the solution space, through grammar
definitions, is one of the primary practical benefits of grammar-based GP systems.

Of course, the implementation of CFG-GP is a little more complex than simple
tree GP, though this is generally not visible to the user. In GP, the individuals of the
evolutionary population are expression trees; in CFG-GP, the individuals are parse
trees from the grammar, i.e. CFG-GP individuals are paths through the user-supplied

2 A word of caution: GP and grammar terminology were both developed before grammar-based
GP systems and use some of the same words. Unfortunately, when they came together in grammar-
based GP, some inconsistencies arose. Thus, in a CFG-GP system, a (GP) function symbol is a
terminal (in grammar terms), though it is not a member of the GP terminal set. Unfortunately there
does not seem to be any reasonable way to resolve this inconsistency.
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grammar, starting from the grammar’s start symbol (the root of the parse tree). Even-
tually the path will reach terminals of the grammar (i.e. symbols which cannot be
expanded further). The list of terminals (in the order they were encountered) is the
output of the grammar. Typically, this list is an executable program (written in the
language specified by the user’s grammar). It is then run in order to find the fitness
of the CFG-GP individual.

Initialization, which requires ensuring grammar consistency while guaranteeing
to stay within the depth bound, is also a little complex; most systems use a vari-
ant of the grow-tree algorithm described in Section 7.2.2. This is combined with a
counting mechanism, to ensure that it is always possible to complete a parse tree
within the remaining depth. Crossover and mutation are defined in ways that pre-
serve grammar consistency. Mutation replaces a subtree from the grammar with a
random subtree. It creates the random subtree in the same way as the initial popu-
lation is created, except that it starts from the location in the grammar occupied by
the subtree it has just removed, rather than at the root. Crossover is essentially like
normal GP crossover, except that crossover is only allowed between nodes with the
same grammar non-terminal. This ensures, as with mutation, that the offspring is
consistent with the grammar.

7.4.1.1 Example of CFG-GP: Strong Typing in GP

We use Strongly Typed GP [19] as a simple example of grammar use. A GP prob-
lem requiring two types, arithmetic and Boolean, might use a grammar such as in
Table 7.3. Thus the first “arithmetic” rule says that an arithmetic expression may
consist of the sum of two arithmetic expressions, or (| means or) the difference
of two arithmetic expressions, and so on. The second “interaction” rule says that a
Boolean expression may be formed by comparing two arithmetic expressions, with
any of the comparison operators <, = or >. Thus the grammar permits arbitrarily
complex nesting of arithmetic and Boolean expressions, but guarantees that they are
combined in meaningful ways.

In systems which also support semantic specification within the rules, a rule such
as A → A∗A would be expanded to include variables. These variables represent the
values generated by the rule (such as A(A0) → A(A1) ∗ A(A2)). Extra (semantic)
rules then give the values of those variables (such as val(A0) = val(A1) * val(A2)).
Of course, in simple cases like this, where the meaning of ’*’ is already built into

Table 7.3 An example grammar for Boolean and arithmetic types. The following six rules define
how non-terminal symbols A (the start symbol, representing arithmetic expressions) and B (repre-
senting Boolean expressions) can be expanded into 15 (grammar) terminals +−∗/ x 0 if(, , ) < =
> & ∨ ¬ true false.

Arithmetic rules Interaction rules Boolean rules
A → A+A|A−A|A∗A|A/A A → if(B, A, A ) B → B&B|B∨B ¬B
A → x | 0 B → A < A|A = A|A > A B → true | false
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the language in which the GP system is written, the advantage is limited. In more
complex domains or problems where other properties of the expression in addition
to its value may be needed, semantic specification can greatly simplify coding the
problem.

7.4.2 Variants of Grammar-Based GP

7.4.2.1 More Powerful Grammars

Perhaps the most important issue is that the user’s knowledge may not be express-
ible in context-free form. This has led to a wide range of extended-grammar sys-
tems. They fall into two main classes: Context Sensitive Grammars (CSG) [22] and
attribute and other semantic grammars [23].

CSG permit more precise syntactic restrictions on the search space; for some
problem domains, this greater expressiveness is important for encoding the problem.

Attribute grammars extend the semantic specification we described in Sec-
tion 7.4.1.1. In some problems, the semantics may allow us to decide early in the
evaluation process, that the individual will have low fitness. For example, in a con-
straint problem, we may know that if a constraint is breached early in evaluating an
individual, the violation is only going to get worse as we continue with its evalua-
tion. Thus semantic constraints may be used to short-circuit fitness evaluation. But
even more intriguingly, they may be used to avoid creating poor individuals at all.
For example, when we come to cross over individuals, the semantic values attached
to the nodes in an individual might indicate that a crossover at a particular point
would automatically breach a constraint. A system based on semantic grammars
can then simply abort the crossover, never creating the potentially poor individual.
In general, if it is difficult to express the user’s knowledge about the search space in
a CFG, consider using either a CSG or a semantic grammar.

7.4.2.2 More Flexible Representations: GE and Tree Adjunct Grammars

The reduction in search space size provided by a CFG representation can be ben-
eficial for search; but it comes at a cost. The CFG reduces not only the number
of formulae that can be represented in the search space, but also the links between
them. Paradoxically, in some cases this sparser search space might be more difficult
for evolution to search than the original search space. Two approaches have been
introduced to avoid this problem. In the first [24, 25], the CFG representation is
linearized: instead of representing the individuals directly as grammar parse trees,
a coding scheme represents them as linear strings. This approach has led to one of
the most widely used GP systems, known as Grammatical Evolution (GE) [25]. The
other [26] uses an alternative representation from natural language study, Tree Ad-
junct Grammars (TAGs [27]); unlike CFG trees, any rooted subtree of a TAG tree is
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syntactically and semantically meaningful, so that there is much more flexibility in
transforming one TAG tree to another.

In both cases, the syntactic flexibility provides an additional benefit: it is rel-
atively easy to implement new operators (often analogous to biological processes
that occur in DNA evolution) which may simplify search in particular domains.
Practically, this means that where search with standard-GP and CFG-GP systems
has stagnated, it may be worth investigating GE or TAGs. They may be able to solve
problems which are beyond the reach of more classical GP systems.

7.4.2.3 Grammar Learning

A number of more experimental grammar-based systems [28–30] refine the gram-
mar describing the search space as search proceeds. (These systems are usually
based on probabilistic grammars: each grammar rule option has a probability at-
tached to it, indicating the probability that it will be used in generating an individ-
ual.) This has two consequences. It can make for faster search. But more impor-
tantly, it means that the grammar at the end of the search space may give an explicit
representation of the space of solutions (rather than the implicit representation given
by the best individuals in a final GP population).

This explicit representation may be of value in its own right, especially in appli-
cations such as scientific research, where the desired outcome is better understand-
ing of the processes in the domain, rather than simply predictive models. The use of
probabilistic grammars means that the understanding may be quite sensitive, going
beyond just the content of the grammar rules. In some parts of the grammar, the
probabilities may converge close to either 1.0 or 0.0, indicating that that aspect of
the grammar is important in defining a solution to the problem; in others, the prob-
abilities may be more widely spread, indicating that that aspect of the grammar is
not particularly important to the problem solution.

7.5 Expanding the Search Space in Genetic Programming

In Section 7.4 we described some of the ways in which you can give the evolutionary
process a helping hand. For example, by providing domain-specific data types or by
constraining programs to conform to an appropriate grammar. But, in the context
of a particular problem or a particular set of program representations, we do not
necessarily know how to give evolution a helping hand. In which case it can be
useful to expose more, rather than less, of the system’s decisions about data and
control architecture to evolution. Doing so will often incur new costs, some from
the added complexity of the system and some from the expansion of the space of
programs which GP is searching [31]. However in many cases these costs can be
justified by improvements to problem-solving power or scalability.
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We will discuss some of the ways in which researchers have expanded the
purview of the evolutionary process in GP. In Section 7.5.1, we first examine the
evolution of data structures and the ways in which they can be accessed and ma-
nipulated by evolving programs. We then turn to program and control structure.
Section 7.5.2 describes how GP can be used to evolve programs that use subrou-
tines, macros, and more exotic techniques for controlling the flow of execution. The
concept of “development” (here development means the evolved programs build
other structures which then produce the desired behaviors) provides for even more
evolutionary flexibility (Section 7.5.3). The last part of this section (Section 7.5.4)
describes mechanisms by means of which the evolutionary processes themselves
can be allowed to evolve.

7.5.1 Evolving Data Structures and Their Use

The earliest and simplest GP applications evolved programs that used single, simple
data types. The use of multiple—but still simple—data types has been helped in a
variety of ways, for example by the use of strong typing (see Section 7.4 and [19]).
An important technique for evolving programs that use more complex data types is
indexed memory, which was first presented by Teller [32]. An indexed memory is
simply an array of variables of some simple type, accessed using integer indices.
Teller showed that by including indexed memory read and write functions in
the GP function one can evolve programs that use memory in relatively complex
and useful ways. He also showed that the inclusion of indexed memory was useful
in expanding the space of programs over which GP can search, e.g. it can be shown
to include programs for all Turing computable functions.

Indexed memory can be used by evolving programs to implement a wide variety
of more complex data structures, but modern software engineering practice suggests
that it is even more useful for human programmers—and hence possibly also for
GP—to have access to higher level data structures. Langdon has investigated the
extent to which GP can evolve, and subsequently use, more abstract data structures
including stacks, queues and lists [33]. He showed that GP can indeed evolve and
subsequently solve problems using such data structures and that GP with abstract
data types can outperform GP with indexed memory on several problems, including
a context-free language recognition problem and the problem of implementing a
simple four function calculator.

Alternative program representations provide additional opportunities for the evo-
lution and use of data structures. For example, approaches based on polymorphic
functional representations, initially developed by Yu using Haskell [34], have re-
cently been extended by Binard and Felty, using a version of the λ -calculus to which
they have added an operation of abstraction on types [35]. They showed how their
system could evolve and use abstractions for Boolean and list data types which were
not explicitly present in their initial environments.
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To some extent, the ways in which data types and program syntax are interre-
lated determine the ways in which GP can discover and use complex data struc-
tures. Strongly typed GP and polymorphic GP provide two approaches but they do
not exhaust the possibilities. For example, in the Push programming language all
communication between instructions is accomplished via typed global data stacks.
It is not specified by placing the instructions next to each other, as in most pro-
gramming languages. This decouples an evolving program’s type structures from
its control structures and thereby permits greater flexibility (for good or ill) in the
expression of programs that manipulate multiple data types [36, 37].

7.5.2 Evolving Program and Control Structure

Most interesting programs that are written by humans involve the use of control
structures not available in the simplest GP systems. These include mechanisms that
support iteration, recursion, and the definition and use of reusable code modules.
As with data structures, GP researchers have developed a range of techniques for
evolving programs that evolve and use these powerful control abstractions.

Limited forms of iteration are relatively easy to handle through the use of primi-
tive functions that simply repeat the execution of a subexpression some specified
number of times. This was demonstrated in Koza’s first book using do until
structures [2]. A variety of more sophisticated techniques, such as the “restricted
iteration creation” operations of Koza and Andre [38], have been developed to help
GP systems incorporate iteration into evolving programs. Both iteration and recur-
sion present challenges with respect to nontermination; this is generally handled
either by imposing execution limits or by using primitives that are naturally self-
limiting, such as the foldr function in Haskell [39]. While the search space of
recursive programs appears to be rugged, and several early attempts to evolve recur-
sive programs produced negative results (e.g. [40]), more recent research has been
increasingly successful (e.g. [37, 39, 41–44]).

Modular structures can also be incorporated into evolving programs in several
ways. A common approach, pioneered by Koza [45], is to simultaneously evolve a
“main program” (sometimes called a “result producing branch”) and one or more
“automatically defined function” (ADF) branches that can be called by the main
program and possibly by each other (usually with restrictions to prevent nontermi-
nating recursion). This approach has been shown to provide dramatic advantages in
certain problem areas with exploitable regularities. In the original ADF framework
the number of ADFs and the numbers of arguments that they take are specified man-
ually, but the subsequent development of “architecture altering operations” brought
these decisions, as well, under evolutionary control [46].

A variety of other approaches to the evolution and use of modules have also been
developed. For example, in “evolutionary module acquisition” the code for modules
is not evolved in separate branches but rather is extracted from the main programs of
relatively successful individuals in the population [47–49]. “Automatically defined
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macros” allow GP to evolve not only function modules but also control structure
modules that execute code conditionally or repeatedly [50]. And several researchers
have shown how GP can be used to evolve object-oriented programs in which func-
tionality is modularized through the use of classes and objects [51, 52].

More radical forms of control structure evolution have also been explored. For
example, the inclusion of combinators (higher order functions studied in the theory
of functional programming languages) in the function set can allow GP to explore
a large space of control architectures while imposing minimal constraints on pro-
gram syntax [37, 53]. Perhaps the greatest flexibility—and therefore potentially the
most intractable search space— is provided by the Push programming language, in
which programs can contain arbitrary code-manipulation instructions and thereby
transform their own code in arbitrary ways during execution [36, 37]. All of these
innovations have been demonstrated to be useful in certain circumstances, but fur-
ther study is required to determine exactly when.

7.5.3 Evolving Development

In nature an organism’s genes do not interact directly with its environment; rather,
they direct the construction of proteins which form the organism’s body. It is that
body—the phenotype—that interacts with the organism’s environment.

Several GP techniques have been inspired by the biological distinction between
genotype and phenotype and by the process, called ontogeny, by which the genotype
leads to the phenotype (e.g. [54–57]). In the most common approach, developmental
GP, the programs produced by GP are structure-building programs, and it is the
structures that are built by these programs, rather than the programs themselves,
that are tested for fitness in the problem environment.

Typically one begins the developmental process with an “embryo” that consists
of a minimal structure of the appropriate kind. The functions in the GP function set
then, when executed, augment this embryo. For example, if the desired structure is
a neural network then the embryo might consist of a single input node connected to
a single output node and the functions in the GP function set might add additional
nodes and connections [58]. Or if the desired structure is an electrical circuit then
the embryo might consist of a voltage source connected to a load resistance and the
functions in the GP function set might add components and wires [46].

The developmental approach has been successful in a wide range of applica-
tion areas, ranging from the evolution of control systems [59] to the evolution of
quantum circuits [60]. Part of its appeal comes from the way that it facilitates the
application of GP to the evolution of structures that are not themselves best viewed
as computer programs; developmental GP still evolves computer programs, but the
programs build (develop) structures that might be quite different in nature from
computer programs. Other attractions of developmental GP may derive from ways
in which it affects the GP search process. For example, one might expect mutation
to have a different range of effects when applied early in a developmental process
than when applied to the fully developed phenotype (as is done in standard GP).
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Whether this will be the case, and whether a developmental approach will therefore
help or hinder, will depend on the specific problem and program representations.
In biology, however, evolution often proceeds through adjustments to developmen-
tal programs and timing [61], and there is recent evidence that it can also lead to
desirable properties such as robustness and self-repair in GP [62].

When the phenotype is not a computer program, developmental GP makes it
easier to apply GP by making it easier to choose the function set. Because of the
freedom that one has in designing a structure-building function set, developmental
GP also allows you to experiment with different genotype-to-phenotype mappings,
some of which may be more successful than others.

7.5.4 Evolving Evolutionary Mechanisms

The most radical expansions of the GP search space involve evolutionary control of
the evolutionary process itself. There is a long history of research on self-adaptive
mechanisms in evolutionary computation (e.g. see [63, 64]). In most areas outside
of GP this means that numerical parameters of the evolutionary algorithm—for ex-
ample mutation rates—are themselves encoded in the evolving genomes and are
thereby subject to variation and selection. Similar strategies can also be applied to
GP, but because GP involves the evolution of programs it is natural to ask whether a
GP process can also usefully evolve its own utility programs—for example its utility
program for performing mutation—and other aspects of the overall evolutionary al-
gorithm along with the main problem-solving programs that are its primary targets.

Several approaches to self-adaptation in GP have been explored. These include
several “meta-GP” approaches, in which programs implementing genetic operators
(like mutation and crossover) co-evolve with problem-solving programs in separate
populations [11, 65, 66]. In “autoconstructive evolution” these evolving auxiliary
functions are encoded in the problem-solving programs themselves; much as in bi-
ology. Code for reproduction (mate selection, mutation, recombination, etc.) can be
intermingled with, and can interact with, code for survival (problem-solving perfor-
mance) in an individual’s genome [36].

The attractions of these techniques, which allow a GP system to evolve itself as
it runs, stem from the possibility that the resulting systems will be adapted to their
problem environments and therefore more effective than hand-designed systems. As
with the other expansions to the GP search space discussed above, however, there
are significant associated costs and many open research questions about how and
when these costs can be overcome or justified.

7.6 Applications

There are more than 5000 recorded uses of GP. These include an enormous num-
ber of applications. It is impossible to list them all. However we shall start with
a discussion of the general kinds of problems where GP has proved successful
(Section 7.6.1) and the important area of symbolic regression (Section 7.6.2). Next
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come sections which review the main application areas of GP: Image and Sig-
nal processing (Section 7.6.3) Finance (Section 7.6.4) Industrial Process Con-
trol (Section 7.6.5) Medicine and Bioinformatics (Section 7.6.6) Hyper-heuristics
(Section 7.6.7) Entertainment and Computer Games (Section 7.6.8) and Art
(Section 7.6.9). We conclude with a description of some of the human-competitive
results automatically generated by GP (Section 7.6.10).

7.6.1 Where GP Has Done Well

If one or more of the following apply, GP may be suitable.

• The interrelationships among the relevant variables are unknown or poorly un-
derstood. GP can help discover which variables and operations are important;
provide novel solutions to individual problems; unveil unexpected relation-
ships among variables; and, sometimes GP can discover new concepts. These
might then be taken and applied as in a conventional way.

• Finding the size and shape of the ultimate solution is a major part of the
problem.

• Many training data are available in computer-readable form.
• There are good simulators to test the performance of tentative solutions to a

problem, but poor methods to directly obtain good solutions.
In many areas there are tools to evaluate a completed design, (e.g. how far will
this bridge bend under the forecast load.) Such tools solve the direct problem of
working out the behaviour of a solution. However, the knowledge held within
them cannot be easily used to solve the inverse problem of designing an artefact
from its requirements. GP can exploit simulators and analysis tools and “data-
mine” them to solve the inverse problem automatically.

• Conventional mathematical analysis cannot give analytic solutions.
• An approximate solution is acceptable.
• Small improvements are highly prized. Even in mature applications GP can

sometimes discover small delta improvements, which may be very valuable.

Two examples are NASA’s work on satellite radio aerial design [67] and Spec-
tor’s evolution of new quantum computing algorithms that out-performed all pre-
vious approaches [68, 69]. Both of these domains are complex, do not have ana-
lytic solutions, but good simulators existed which were used to define the fitness of
evolved solutions. In other words, people did not know how to solve the problems
but they could (automatically) recognize a good solution when they saw one. In both
cases GP discovered highly successful and unexpected designs. Also the key com-
ponent of the evolved quantum algorithm was extracted and applied elsewhere [70].

7.6.2 Curve Fitting, Data Modelling and Symbolic Regression

There are many very good tools which will fit curves to data; however, typically
they require you to specify the type of curve you want to fit, e.g. a straight line, an
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exponential, a Gaussian distribution. Where GP can help is where the form of the
curve or underlying model is unknown. In fact the main problem can be discovering
the form of the solution or which data to use. This is generally known as symbolic
regression.

By regression we mean finding the coefficients (e.g. slope and y-intercept) of
a predefined function such that the function best fits some data. However, until a
good fit is found the experimenter has to keep trying different functions by hand
until a good model for the data is found. Sometimes, even expert users have strong
biases when choosing functions to fit. For example, in many applications there is a
tradition of using linear models, even when the data might be better fit by a more
complex model. Since GP does not make this assumption, it is well suited to this
sort of discovery task.

For instance, GP can evolve soft sensors [71]. The idea is to evolve a function
which estimates what a real sensor would measure, based on data from other actual
sensors in the system, (e.g. where placing an actual sensor would be expensive.)
Experimental data (e.g. from industrial plant) typically come in large tables where
numerous quantities are reported. Usually we know which variable we want to pre-
dict (e.g. the soft sensor value) and which other quantities we can use to make the
prediction (e.g. the real sensor values). If this is not known, then experimenters
must decide which are going to be their dependent variables before applying GP.
Sometimes there are hundreds or even thousands of variables. (In bioinformatics
the number of variables may approach a million.) It is well known that in these
cases the efficiency and effectiveness of any machine learning or program induction
method, including GP, can dramatically drop as most of the variables are typically
redundant or irrelevant. This forces the system to waste considerable energy on iso-
lating the key features. To avoid this, it is necessary to perform some form of feature
selection, i.e. we need to decide which independent variables to keep and which to
leave out. There are many techniques to do this, its even possible that GP itself can
be used to do feature selection [72].

There are problems where more than one output (prediction) is required. For ex-
ample, Table 7.4 contains data collected from a robot. The left-hand side gives four
control variables, while the right-hand side contains six dependent variables mea-
sured after the robot obeyed the commands. The Elvis robot is shown in Figure 7.8
during the acquisition of a data sample. The roles of the independent and dependent
variables are swapped when GP is given the task of controlling the arm given data
from the robot’s eyes.

There are several GP techniques which might be used to deal with applications
where multiple outputs are required, e.g. GP individuals made of multiple trees, lin-
ear GP with multiple output registers, graph-based GP with multiple output nodes,
and a single GP tree with primitives operating on vectors.

After a suitable data set has been assembled, the GP terminal set (cf. Sec-
tion 7.3.1) must be defined. Since the independent variables will become the evolved
code’s inputs, they must be included in the terminal set. Typically some constants
are also included. Next is the function set (cf. Section 7.3.2). It is often sufficient
to give GP the standard four arithmetical operations (+−×%) and an if. The
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Arm actuator Left eye Right eye
x y size x y size

-376 -626 1000 -360 44 10 29 -9 12 25
-372 -622 1000 -380 43 7 29 -9 12 29
-377 -627 899 -359 43 9 33 -20 14 26
-385 -635 799 -319 38 16 27 -17 22 30
-393 -643 699 -279 36 24 26 -21 25 20
-401 -651 599 -239 32 32 25 -26 28 18
-409 -659 500 -200 32 35 24 -27 31 19
-417 -667 399 -159 31 41 17 -28 36 13
-425 -675 299 -119 30 45 25 -27 39 8

...
...

...
...

...
...

...
...

...
...

continues for a total of 691 lines

Table 7.4 Samples showing the size and location of Elvis’s finger tip as apparent to his two
eyes, given various right-arm actuator set points. GP inverts the mapping and evolves 4 functions
which take data collected by both cameras (which show a target) and output instructions to the four
arm motors so that his arm moves to the target.

Fig. 7.8 Elvis robot sitting with his right hand outstretched. The apparent position and size of a
bright red laser attached to his finger tip is recorded. The data are then used to train a GP to move
the robot’s arm to a spot in three dimensions using only his eyes.

terminal and function sets are the raw components from which GP tries to build its
solutions.

In virtually all symbolic regression applications the fitness function (cf. Sec-
tion 7.3.3) must measure how close the outputs produced by each program are to
the values of the dependent variables, when the corresponding values of the inde-
pendent ones are used as inputs for the program. So, symbolic regression fitness
functions tend to include summing the errors measured for each record in the data
set. Usually either the absolute difference or the square of the error is used.
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7.6.3 Image and Signal Processing

Ford were among the first to consider using GP for industrial signal processing
[66]. They evolved algorithms for pre-processing electronic motor vehicle signals
for possible use in engine monitoring and control.

Several applications of GP for image processing have been for military uses. For
example, QinetiQ evolved programs to pick out ships using SAR radar from space
satellites and to locate ground vehicles from airborne photo reconnaissance. They
also used GP to process surveillance data for civilian purposes, such as predicting
motorway traffic jams from subsurface traffic speed measurements [67]. Satellite
images can also be used for environmental studies and for prospecting for valuable
minerals [24].

Zhang has been particularly active at evolving programs with GP to visually
classify objects (such as human faces) [76].

To some extent, extracting text from images (OCR) can be done fairly reliably
and the accuracy rate on well-formed letters and digits is close to 100%. How-
ever, many interesting cases remain [77] such as Arabic [78] and oriental languages,
handwriting [79–81] (such as the MNIST examples of handwritten digits from IRS
tax returns) and musical scores [82].

The scope for applications of GP to image and signal processing is almost un-
bounded. A promising area is medical imaging. GP image techniques can also be
used with sonar signals [83]. Off-line work on images includes security and veri-
fication. For example, [84] have used GP to detect image watermarks which have
been tampered with.

7.6.4 Financial Trading, Time Series Prediction
and Economic Modelling

GP is very widely used in these areas. It is impossible to describe all its applications
instead we will just hint at a few. Chen has written more than 60 papers on using
GP in finance and economics. He has investigated modelling of agents in stock mar-
kets [85], game theory, evolving trading rules for the S&P 500 [86] and forecasting
the Hong Kong Hang-Seng index.

The efficient markets hypothesis is a tenet of economics. It is founded on the
idea that everyone in a market has “perfect information” and acts “rationally”. If
the efficient markets hypothesis held, then everyone would see the same value for
items in the market and so agree the same price. Without price differentials, there
would be no money to be made from the market itself. Whether it is trading potatoes
in northern France or dollars for yen, it is clear that traders are not all equal and
considerable doubt has been cast on the efficient markets hypothesis. So, people
continue to play the stock market. Game theory has been a standard tool used by
economists to try to understand markets but is often supplemented by simulations
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with both human and computerized agents. GP is increasingly being used as part of
these simulations of social systems.

The US Federal Reserve Bank used GP to study intra-day technical trading on the
foreign exchange markets to suggest the market is “efficient” and found no evidence
of excess returns [87]. This negative result was criticized in [88]. Later work by
Neely et al. suggested that data after 1995 are consistent with Lo’s adaptive markets
hypothesis rather than the efficient markets hypothesis [89]. GP and computer tools
are being used in a novel data-driven approach to try and resolve issues which were
previously a matter of dogma.

From a more pragmatic viewpoint, Kaboudan shows GP can forecast interna-
tional currency exchange rates [90], stocks and stock returns, house prices and con-
sumption of natural gas. Tsang and his co-workers continue to apply GP to a variety
of financial arenas, including betting [91], forecasting stock prices, studying mar-
kets, approximating Nash equilibrium in game theory and arbitrage. Dempster and
HSBC also use GP in foreign exchange trading [92]. Pillay has used GP in social
studies and teaching aids in education, e.g. [93].

7.6.5 Industrial Process Control

Kordon and his coworkers in Dow Chemical have been very active in applying GP
to industrial process control. In [94] Kordon describes where industrial GP stands
now and how it will progress. Another active collaboration is that of Kovacic and
Balic, who used GP in the computer numerical control of industrial milling and
cutting machinery [95]. The partnership of Deschaine and Francone is most famous
for their use of Discipulus for detecting bomb fragments and unexploded ordinance
[96]. Genetic programming has also been used in the food processing industry. For
example, Barriere et al. modelled the ripening of camembert [97].

Lewin, Dassau and Grosman applied GP to the control of an integrated circuit
fabrication plant [98]. GP has also been used to identify the state of a plant to be
controlled (in order to decide which of various alternative control laws to apply).
For example, Fleming’s group in Sheffield used multi-objective GP [99] to reduce
the cost of running aircraft jet engines.

7.6.6 Medicine, Biology and Bioinformatics

Kell and his colleagues in Aberystwyth have had great success in applying GP
widely in bioinformatics [100]. Another very active medical research group is that
of Moore and his colleagues at Vanderbilt [101]. Many medical data sets are very
wide. Some have many thousands of inputs, but relatively few cases. (For example,
a typical GeneChip data set will have tens of thousands of measurements per pa-
tient but may cover less than a hundred people [72]). Such wide data sets tend to
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be avoided by traditional statistical techniques, where often the first reaction is to
try and remove as many attributes as possible. Discarding whole columns of train-
ing data is often called “feature selection”. However, as has been repeatedly shown,
e.g. by the Aberystwyth and Vanderbilt groups, GP can sometimes be successfully
applied directly to very wide data sets.

Computational chemistry is widely used in the drug industry. Some properties of
simple molecules can be calculated. However, the interactions between chemicals
which might be used as drugs and medicinal targets within the body are beyond
exact calculation. Therefore, there is great interest in the pharmaceutical industry
in approximate in silico models which attempt to predict either favourable or ad-
verse interactions between proto-drugs and biochemical molecules. Since these are
computational models, they can be applied very cheaply in advance of the manu-
facturing of chemicals, to decide which of the myriad of chemicals might be worth
for further study. Potentially, such models can make a huge impact both in terms of
money and time without being anywhere near 100% correct. Machine learning and
GP have both been tried. GP approaches include [102, 103].

7.6.7 GP to Create Searchers and Solvers—Hyper-heuristics

A heuristic can be considered to be a rule-of-thumb or “educated guess” that reduces
the search required to find a solution. A meta-heuristic (such as a genetic algorithm)
is a non-problem specific heuristic, i.e. a rule-of-thumb which can be tried on a range
of problems. A hyper-heuristic is a heuristic to choose other heuristics. The differ-
ence between meta-heuristics and hyper-heuristics is that the meta-heuristic operates
directly on the problem search space with the goal of finding optimal or near-optimal
solutions. Hyper-heuristic operate on the heuristics search space (which consists of
the heuristics used to solve the target problem). Their aim is to find good heuristics
for a problem, for a certain class of instances of a problem or even for a particular
instance of the problem.

GP has been very successfully used as a hyperheuristic. For example, GP has
evolved competitive SAT solvers [104], state-of-the-art bin packing algorithms, par-
ticle swarm optimizers, evolutionary algorithms and travelling salesman problem
solvers [105].

7.6.8 Entertainment and Computer Games

Today, a major usage of computers is interactive games. There has been some work
on incorporating artificial intelligence into mainstream commercial games. Natu-
rally the software owners are not keen on explaining exactly how much AI the
games contain or giving away sensitive information on how they use AI. How-
ever, published work on GP and games includes Othello, Poker, Backgammon [106],
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robotics, including robotic football, Corewares, Ms Pac-Man, radio-controlled model
car racing, Draughts, and Chess. Funes [107] reports experiments which attracted
thousands of people via the Internet who were entertained by evolved Tron players.

7.6.9 The Arts

Computers have long been used to create purely aesthetic artefacts. Much of today’s
computer art tends to ape traditional drawing and painting, producing static pictures
on a computer monitor. However, the immediate advantage of the computer screen
— movement — can also be exploited. In both cases evolutionary computation can,
and has been, exploited. Indeed, with evolution’s capacity for unlimited variation,
evolutionary computation offers the artist the scope to produce ever changing works.
The use of GP in computer art can be traced back at least to the work of Karl Sims
and William Latham. Christian Jacob’s work provides many examples. Many recent
techniques are described in [108].

Evolutionary music has been dominated by Jazz [109], which is not to everyone’s
taste. Most approaches to evolving music have made at least some use of interactive
evolution [110] in which the fitness of programs is provided by users, often via the
Internet. The limitation is almost always finding enough people willing to partici-
pate [111]. It is surprising given their monetary value that so far little use has been
made of GP to generate novel cell phone ring tones.

One of the sorrows of AI is that as soon as it works it stops being AI and becomes
computer engineering. For example, the use of computer-generated images has re-
cently become cost-effective and is widely used in Hollywood. One of the standard
state-of-the-art techniques is the use of Reynold’s swarming “boids” [112] to cre-
ate animations of large numbers of rapidly moving animals. This was first used in
Cliffhanger (1993) to animate a cloud of bats. Its use is now commonplace (herds
of wildebeest, schooling fish, and even large crowds of people). In 1997 Craig was
awarded an Oscar.

7.6.10 Human Competitive Results: The Humies

A particularly informative measure of the power of a problem-solving technology is
its track record in solving problems that could only be solved previously by means
of human intelligence and ingenuity. In order to highlight such achievements by ge-
netic and evolutionary computation an annual competition has been held since 2004
at the Genetic and Evolutionary Computation Conference (GECCO), organized by
the Association for Computing Machinery’s Special Interest Group on Genetic and
Evolutionary Computation (ACM SIGEVO). This competition, known as the “Hu-
mies”, awards substantial cash prizes to results deemed “human competitive” as
assessed by objective criteria such as patents and publications [113].
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25 gold, silver and bronze “medals” with cash prizes have been awarded in the
Humies competition, totaling $45,700. Of these, 13 of the medals (4 gold, 7 silver,
2 bronze) have been awarded to teams using GP (as opposed to other genetic and
evolutionary computation methods), in application areas including antenna design,
quantum circuit design, mechanical engineering, optical system design, game strat-
egy design, computer vision, and pure mathematics. Figure 7.9 shows a gold medal
winning result from 2004, an antenna that was designed using GP for NASA’s Space
Technology 5 mission [67]. Figure 7.10 shows a silver medal winning result from
2005, a lens system that duplicates the functionality of the patented Nagler lens
system but with a novel topology [114].

Fig. 7.9 Award winning human-competitive antenna design produced by GP.

Fig. 7.10 Award winning human-competitive lens designed by GP [114, Figure 12].
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7.7 Trouble-Shooting GP

The evolutionary dynamics are often very complex so it often difficult to trou-
bleshoot evolutionary computation system. On the other hand, they can be very
resilient and even GP systems with horrendous bugs can evolve valid solutions.
Nonetheless, we suggest some general issues to keep in mind. To a large extent the
advice in [2, 115] and [33, Chapter 9] also remains sound.

7.7.1 Can You Trust Your Results?

Here we have an interesting divergence between universities and life. Are your re-
sults about your GP system? (e.g. is it better than a GP without mutation?) Or about
your application? (e.g. have you evolved a better image filter?) [5] describes how to
overcome the stochastic nature of evolution and what it means to be better.

In complex applications with powerful techniques, like GP, the danger of learn-
ing the training data and so creating a solution which fits it too faithfully is ever
present [116]. The classic example is where a neural network was asked to find
tanks. It was presented with pictures of fields containing tanks and the same fields
without tanks. After prolonged training, it could differentiate between the two. How-
ever, the final system failed to find tanks. Eventually the problem was traced to the
training images. Since tanks are heavy all the pictures with tanks in them were taken
on one day, the tanks were moved, and some time later another set of pictures were
taken. The ANN had cheated, it had learnt (using brightness) to distinguish pictures
taken early in the day from those taken later and totally ignored the presence or
absence of the tanks. While it humorous and is easy to see after the fact, you must
ensure the machine learning does not play this joke on you.

7.7.2 Study Your Populations

If you are not getting your desired results, take the time to dig around in the pop-
ulations and see what is actually being evolved. For example, if you included a
particular input or function, is it included in the better individuals? Are they using
it in sensible ways? (Sometimes the tree may include an input but it has no or lit-
tle impact on the program’s behaviour, e.g., because it is multiplied by zero.) Is the
primitive being multiply used? Similarly, if you are using grammatical evolution, are
your evolved individuals using your grammar as you expected? Or is the grammar
biasing the system in an undesirable or an unexpected way?

Remember GP is doing genetic search. GP increases the numbers of genes (i.e.
terminals and functions) which appear in above average fitness individuals. You
might keep a count of the number of times important primitives occur in the popu-
lation. Mostly gene numbers vary randomly according to how lucky they are. How-
ever, look out for primitives that become extinct or (if using mutation) reduce to low
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background levels. If this happens, it suggests that the fitness function is driving the
current GP population in an unintended direction.

Is the distribution of fitness values of members of the population (particularly that
of the better programs) dominated by a few values with large gaps between them?
This suggests jumping these gaps may be hard. It also suggests that the next im-
provement may also be separated from the current best. So finding the next improved
solution will require jumping a large gap and so be difficult. Perhaps changing your
fitness function to be more continuous will improve performance considerably.

7.7.3 Studying Your Programs

A major advantage of GP is you create visible programs. You can see how they work.
You can explain how they work to your customers. When presenting GP results, in-
clude a slide of the evolved program. The dot package (http://www.graphviz.org/)
is good a starting point for nicely presented graphs. GP trees can be automatically
converted to dot (http://www.cs.ucl.ac.uk/staff/W.Langdon/lisp2dot.html).

There are methods to automatically simplify expressions (e.g. in Mathematica
and Emacs). However, simply things like removing excess significant digits and
combining constant terms can make your solution more intelligible. After cleaning
up the answer, make sure it still works.

In some cases the details of the trees (e.g. the particular nodes) are less important
than the general size and shape. In [117], Daida describes a way to visualize the
size and shape of either individual trees or an entire population, cf. Figure 7.11. (A
Mathematica implementation is available via http://library.wolfram.com/infocenter/
MathSource/5163/.)

Fig. 7.11 The size and shape of 1,000 individuals in the final generation of runs using a depth limit
of 50 (on the left) and a size limit of 600 (on the right). The inner circle is at depth 50, and the
outer circle is at depth 100. These plots are from [119].



7 Genetic Programming 217

7.7.4 Encourage Diversity

If GP is to benefit from using a population: the population must be diverse. (Oth-
erwise it might be much more efficient to use a hill climbing or other single point
search like simulated annealing.) Sections 7.7.2 and 7.7.3 have described measur-
ing its diversity in terms of its genes (i.e. functions and terminals) and the size
and shape of the programs. You can also consider the variation in the programs’
behaviour (cf., for Boolean problems, [118]). Studying behaviour, as opposed to ge-
netic makeup, avoids the problem that GP populations often bloat [5, Sect. 11.3].
In bloated populations syntactically (i.e. genetically) evolved programs appear dif-
ferent but the difference is in unused code. However, studying the programs’ be-
haviours will show if the population’s phenotypes have converged excessively.

Since mutation and crossover often produce diverse but low fitness individuals
you could restrict studies of population diversity to just the subset of the population
which is selected to have children.

If you suspect the population has converged excessively you could

• Not use the reproduction operator.
• Add one or more mutation operators.
• Use a weaker selection mechanism, e.g., to reduce the tournament size.
• If you are using the “steady state” approach, i.e. you add new programs to

the population immediately, rather than waiting until a whole new population
has been created. You could choose who to overwrite at random. (Often peo-
ple kill the worse member of the population and replace him with the new
child. This is fine but tends to increase the convergence of the population.)
You might want to protect the best member of the population to ensure he is not
deleted.

• Use a generational population model instead of a steady-state model.
• The standard population is panmictic. This means there are no restrictions on

which individual mates with and favourable genetic innovations rapidly spread
through and may take over the whole population. In contrast a large population
may be split into semi-isolated demes [5, Sect. 10.5] which keeps diversity
high by slowing the spread of improvements [33, 120].

Demes are often used in conjunction with parallel hardware. The speed at
which innovations spread is controlled both by the number of emigrants and
how the demes are interconnected. Both all-to-all and toroidal topologies are
common. They have very short paths between demes. Arranging demes in a
ring gives a longer convergence time. Typically many individuals (say 2%) are
transferred between demes for each generation. Over biological timescales,
such a high immigration rate is sufficient to prevent a converged population
diverging into separate species. However, GP is typically not run for so many
generations and, from an engineering standpoint, one has to trade off rapid
take up of good solutions versus searching different locations.

• Use fitness sharing or even multi-objective approaches to encourage the for-
mation of many fitness niches.
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7.7.5 Approximate Solutions Are Better than No Solution

When GP starts, typically, it starts from nowhere, i.e. well behind the state of the art.
For the initial population to evolve, it must contain some programs with an “edge”.
With some advantage, even if slight, over the rest of the population. You must de-
sign your selection and fitness function to amplify this. A typical fitness function
gives a continuous measure of how far a program is from your requirements. The
final program will be a descendent of those you select at the beginning so the fitness
function must not only prefer better than random but also reward approximate solu-
tion to the whole problem which may be refined into a complete solution. Or rather,
an approximate solution to the whole problem.

This is true throughout the run. At every generation the fitness function must seek
out approximate solutions from which better ones can be evolved. Even standing still
may not be enough. Nature tends to the easy thing. In GP this often corresponds to
finding new programs which have the same fitness as their parents. Unfortunately
within a few generations, they can evolve to become very resistant to change and
further progress to your goal (as opposed to theirs) becomes very hard.

Consider (just for illustrative purposes) a problem with just five test cases, four
of which are fairly easy and consequently less important, with the fifth being crucial
and quite difficult. So the population may contain individuals that can do the four
easier tasks, but are unable to make the jump to the fifth. There are several things
you could try: (1) weight the hard task more heavily or (2) use a multi-objective
approach. However, a more fundamental and probably more successful approach is
to redesign how you sort the programs, e.g. (3) divide the task up in some way into
sub-tasks, (4) provide more tasks, or (5) change it from being a binary condition
(meaning that an individual does or does not succeed on the fifth task) to a contin-
uous condition, so that an individual GP program can partially succeed on the fifth
task to a greater or less extent. The idea is to create a smoother gradient for the
evolutionary process to follow.

7.7.6 Control Bloat

If you are running out of memory or your execution times seem inordinately long,
look the size of your evolved expressions. Often they will be growing over time.
It is usually necessary to provide some form of bloat control, cf. [5, Sect. 11.3].
Controlling bloat is also important if one’s goal is to find a comprehensible model,
since in practice these must be small. A large model will not only be difficult to
understand but also may over-fit the training data [121].

7.7.7 Convince Your Customers

For your work to make an impact it must be presented in a form that can convince
others of the validity of its results and conclusions. This might include a pitch within
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a corporation seeking continued financial support for a project, the submission of a
research paper to a journal or the presentation of a GP-based product to potential
customers. [5] contains suggestions on improving written and verbal presentation of
artificial evolution experiments. While [122, e.g., Chapter 14] has many suggestions
about getting your work accepted (and paid for) by your customers.

The burden of proof is on the users of GP. It is important to use the customer’s
language. If the fact that GP discovered a particular chemical is important in a re-
action or drug design, you should make this stand out during the presentation. A
great advantage of GP over many AI techniques in that its results are often sim-
ple equations. Ensure these are intelligible to your customer, e.g., by simplification.
Also make an effort to present your results using your customer’s terminology. Your
GP system may produce answers as trees, but if the customers use spreadsheets,
consider translating the tree into a spreadsheet formula.

Also, one should try to discover how the customers intend to validate GP’s an-
swer. Do not let them invent some totally new data which have nothing to do with
the data they supplied for training (“just to see how well it does...”). Avoid customers
with contrived data. GP is not omnipotent, it knows nothing about things it has not
seen. At the same time you should be scrupulous about your own use of holdout
data. GP is a very powerful machine learning technique. With this comes the ever
present danger of over-fitting. One should never allow performance on data reserved
for validation to be used to choose which answer to present to the customer.

7.8 Conclusions

We have seen how genetic programming works and how to use it. We have hinted
at just two of the many exciting research areas. The first widens the application of
GP by using formal grammars to capture user knowledge and so guide GP. The
second (so far) complementary approach extends GP by doing the opposite! That is,
sometimes GP can benefit from having additional freedom, including the freedom
to evolve parts of itself. We have skimmed through a few of GP’s many applications,
including cases where GP has evolved human competitive solutions. Finally we have
tried to distill some practical “how to” knowledge into a few pages.

To conclude perhaps the best introduction to genetic programming is to create
your own (or borrow someone else’s) and evolve things.
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Chapter 8
Ant Colony Optimization:
Overview and Recent Advances

Marco Dorigo and Thomas Stützle

Abstract Ant Colony Optimization (ACO) is a metaheuristic that is inspired by the
pheromone trail laying and following behavior of some ant species. Artificial ants in
ACO are stochastic solution construction procedures that build candidate solutions
for the problem instance under concern by exploiting (artificial) pheromone infor-
mation that is adapted based on the ants’ search experience and possibly available
heuristic information. Since the proposal of the Ant System, the first ACO algo-
rithm, many significant research results have been obtained. These contributions fo-
cused on the development of high-performing algorithmic variants, the development
of a generic algorithmic framework for ACO algorithms, successful applications of
ACO algorithms to a wide range of computationally hard problems, and the theo-
retical understanding of properties of ACO algorithms. This chapter reviews these
developments and gives an overview of recent research trends in ACO.

8.1 Introduction

Ant Colony Optimization (ACO) [57, 59, 66] is a metaheuristic for solving hard
combinatorial optimization problems. The inspiring source of ACO is the pheromone
trail laying and following behavior of real ants, which use pheromones as a commu-
nication medium. In analogy to the biological example, ACO is based on indirect
communication within a colony of simple agents, called (artificial) ants, mediated
by (artificial) pheromone trails. The pheromone trails in ACO serve as a distributed,
numerical information, which the ants use to probabilistically construct solutions to
the problem being solved and which the ants adapt during the algorithm’s execution
to reflect their search experience.
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The first example of such an algorithm is Ant System (AS) [55, 63–65], which
was proposed using as example application the well-known traveling salesman prob-
lem (TSP) [6, 99, 128]. Despite encouraging initial results, AS could not compete
with state-of-the-art algorithms for the TSP. Nevertheless, it had the important role
of stimulating further research both on algorithmic variants, which obtain much
better computational performance, and on applications to a large variety of different
problems. In fact, there exist now a considerable number of applications of such
algorithms where world class performance is obtained. Examples are applications
of ACO algorithms to problems such as sequential ordering [76], scheduling [18],
assembly line balancing [19], probabilistic TSP [7], 2D-HP protein folding [132],
DNA sequencing [25], protein–ligand docking [98], and packet-switched routing in
Internet-like networks [47]. The ACO metaheuristic provides a common framework
for the existing applications and algorithmic variants [57, 59]. Algorithms which
follow the ACO metaheuristic are called ACO algorithms.

The (artificial) ants in ACO implement a randomized construction heuristic
which makes probabilistic decisions as a function of artificial pheromone trails and
possibly available heuristic information based on the input data of the problem to be
solved. As such, ACO can be interpreted as an extension of traditional construction
heuristics, which are readily available for many combinatorial optimization prob-
lems. Yet, an important difference with construction heuristics is the adaptation of
the pheromone trails during algorithm execution to take into account the cumulated
search experience.

The rest of this chapter is organized as follows. In Section 8.2, we briefly
overview construction heuristics and local search algorithms. In Section 8.3, we
present a specific version of the ACO metaheuristic that focuses on applications to
NP-hard problems. Section 8.4 outlines the inspiring biological analogy and de-
scribes the historical developments leading to ACO. In Section 8.5, we illustrate
how the ACO metaheuristic can be applied to different types of problems and we
give an overview of its successful applications. Section 8.6 gives an overview of
recent developments in ACO and Section 8.7 concludes the chapter.

8.2 Approximate Approaches

Many important combinatorial optimization problems are hard to solve. The notion
of problem hardness is captured by the theory of computational complexity [79, 123]
and for many important problems it is well known that they are NP-hard, that is,
the time needed to solve an instance in the worst case grows exponentially with
instance size. Often, approximate algorithms are the only feasible way to obtain
near-optimal solutions at relatively low computational cost.

Most approximate algorithms are either construction algorithms or local search
algorithms.1 These two types of methods are significantly different, because

1 Other approximate methods are also conceivable. For example, when stopping exact methods,
like Branch & Bound, before completion [10, 95] (for example, after some given time bound,
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construction algorithms work on partial solutions trying to extend these in the best
possible way to complete problem solutions, while local search methods move in
the search space of complete solutions.

8.2.1 Construction Algorithms

Construction algorithms build solutions to a problem under consideration in an in-
cremental way starting with an empty initial solution and iteratively adding appro-
priate solution components without backtracking until a complete solution is ob-
tained. In the simplest case, solution components are added in random order. Often
better results are obtained if a heuristic estimate of the myopic benefit of adding
solution components is taken into account. Greedy construction heuristics add at
each step a solution component that achieves the maximal myopic benefit as mea-
sured by some heuristic information. An algorithmic outline of a greedy construc-
tion heuristic is given in Figure 8.1. The function GreedyComponent returns the
solution component e with the best heuristic estimate as a function of the current
partial solution sp. Solutions returned by greedy algorithms are typically of (much)
better quality than randomly generated solutions. Yet, a disadvantage of greedy con-
struction heuristics is that they typically generate only a limited number of different
solutions. Additionally, greedy decisions in early stages of the construction process
constrain the available choices at later stages, often causing very poor moves in the
final phases of the solution construction.

Fig. 8.1 Algorithmic skeleton of a greedy construction heuristic. The addition of component e to
a partial solution sp is denoted by the operator ⊗.

As an example, consider a greedy construction heuristic for the TSP. In the TSP
we are given a complete weighted graph G = (V,E) with V being the set of vertices,
representing the cities, and E the set of edges fully connecting the vertices. Each
edge is assigned a value dij, which is the length of edge (i, j) ∈ E. The TSP is
the problem of finding a minimal length Hamiltonian circuit of the graph, where an
Hamiltonian circuit is a closed tour visiting exactly once each of the n = |V | vertices
of G. For symmetric TSPs, the distances between the cities are independent of the

or when some guarantee on the solution quality is obtained through the use of lower and upper
bounds), we can convert exact algorithms into approximate ones.
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direction of traversing the edges, that is, dij = d ji for every pair of vertices. In the
more general asymmetric TSP (ATSP) at least for one pair of vertices i, j we have
dij �= d ji.

A simple rule of thumb to build a tour is to start from some initial city and to
always choose to go to the closest still unvisited city before returning to the start
city. This algorithm is known as the nearest neighbor tour construction
heuristic.

Construction algorithms are typically the fastest approximate methods, but the
solutions they generate often are not of a very high quality and they are not guaran-
teed to be optimal with respect to small changes; the results produced by construc-
tive heuristics can therefore often be improved by local search algorithms.

8.2.2 Local Search Algorithms

Local search algorithms start from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood of the current solution. In its most
basic version, known as iterative improvement, the algorithm searches the neighbor-
hood for an improving solution. If such a solution is found, it replaces the current
solution and the local search continues. These steps are repeated until no improv-
ing neighbor solution can be found and the algorithm ends in a local optimum. An
outline of an iterative improvement algorithm is given in Figure 8.2. The procedure
Improve returns a better neighbor solution if one exists, otherwise it returns the
current solution, in which case the algorithm stops.

S
s

s

Fig. 8.2 Algorithmic skeleton of iterative improvement. As input is given a complete solution s in
search space S.

The choice of an appropriate neighborhood structure is crucial for the perfor-
mance of local search algorithms and has to be done in a problem-specific way.
The neighborhood structure defines the set of solutions that can be reached from s
in one single step of the algorithm. An example neighborhood for the TSP is the
k-exchange neighborhood in which neighbor solutions differ by at most k edges.
Figure 8.3 shows an example of a 2-exchange neighborhood. The 2-exchange al-
gorithm systematically tests whether the current tour can be improved by replacing
two edges. To fully specify a local search algorithm, it is necessary to designate
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2−exchange

Fig. 8.3 Schematic illustration of a 2-exchange move. The proposed move reduces the total tour
length if we consider the Euclidean distance between the points.

a particular neighborhood examination scheme that defines how the neighborhood
is searched and which neighbor solution replaces the current one. In the case of
iterative improvement algorithms, this rule is called the pivoting rule [157] and
examples are the best-improvement rule, which chooses the neighbor solution giving
the largest improvement of the objective function, and the first-improvement rule,
which uses the first improved solution found when scanning the neighborhood to
replace the current one. A common problem with local search algorithms is that
they easily get trapped in local minima and that the result strongly depends on the
initial solution.

8.3 The ACO Metaheuristic

Artificial ants used in ACO are stochastic solution construction procedures that
probabilistically build a solution by iteratively adding solution components to par-
tial solutions by taking into account (i) heuristic information about the problem in-
stance being solved, if available, and (ii) (artificial) pheromone trails which change
dynamically at runtime to reflect the agents’ acquired search experience.

A stochastic component in ACO allows the ants to build a wide variety of differ-
ent solutions and hence to explore a much larger number of solutions than greedy
heuristics. At the same time, the use of heuristic information, which is readily avail-
able for many problems, can guide the ants toward the most promising solutions.
More important, the ants’ search experience can be used to influence, in a way remi-
niscent of reinforcement learning [149], the solution construction in future iterations
of the algorithm. Additionally, the use of a colony of ants can give the algorithm in-
creased robustness and in many ACO applications the collective interaction of a
population of agents is needed to efficiently solve a problem.

The domain of application of ACO algorithms is vast. In principle, ACO can be
applied to any discrete optimization problem for which some solution construction
mechanism can be conceived. In Section 8.3.1, we first define a generic problem
representation that the ants in ACO may exploit to construct solutions, and then we
define the ACO metaheuristic.
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8.3.1 Problem representation

Let us consider minimization problems2 and define a general model of a combina-
torial optimization problem.

Definition 8.1 A model P = (S,Ω, f ) of a combinatorial optimization problem con-
sists of

• a search space S that is defined by a finite set of decision variables, each with a
finite domain, and a set Ω of constraints among the variables;

• an objective function f : S �→ IR+
0 to be minimized.

The search space is defined by a finite set of variables Xi, i = 1, . . . ,n, each having
an associated domain Di of values that can be assigned to it. An instantiation of a
variable consists of an assignment of a value v j

i ∈ Di to variable Xi and it is denoted
by Xi = v j

i . A feasible solution s∈ S is an assignment to each variable of a value in its
domain such that all the problem constraints in Ω are satisfied. If Ω is empty, then
the problem is unconstrained and each decision variable can take any value from
its domain, independent of the other variables. In this case, P is an unconstrained
problem model; otherwise it is called constrained. A feasible solution s∗ ∈ S is called
a global minimum of P if and only if we have that f (s∗) ≤ f (s) ∀s ∈ S. We denote
by S∗ ⊆ S the set of all global minima. �

This model of a combinatorial optimization problem can be directly used to de-
rive a generic pheromone model that is exploited by ACO algorithms. To see how, let
us call the instantiation of a variable Xi with a particular value v j

i of its domain a so-
lution component, which is denoted by c j

i . Ants then need to appropriately combine
solution components to form high-quality, feasible solutions. To do so, each solution
component c j

i will have an associated pheromone variable Tij. We denote the set of
all solution components by C and the set of all pheromone variables by T. Each
pheromone variable Tij has a pheromone value τij; this value indicates the desir-
ability of choosing solution component c j

i . Note that, as said before, the pheromone
values are time varying and therefore they are a function of the algorithm iteration
t. In what follows we will, however, omit the reference to the iteration counter and
write simply τij instead of τij(t).

As an example of this formalization, consider the TSP. In this case, the solution
components are the moves from one city to another one. This can be formalized
by associating one variable to each city. Each variable Xi has then associated n−1
values, j = 1, . . . ,n, j �= i. As a result, a pheromone value τij is associated to each
edge connecting two cities. An instantiation of the decision variables corresponds
to a feasible solution, if and only if the set of edges corresponding to the values
of the decision variables forms a Hamiltonian cycle. (Note that for the TSP it is
easy to guarantee that ants generate feasible solutions.) The objective function f (·)
computes for each feasible solution the sum of the edge lengths, that is, the length
of the Hamiltonian cycle.

2 The adaptation to maximization problems is straightforward.
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8.3.2 The Metaheuristic

A general outline of the ACO metaheuristic for applications to static combinato-
rial optimization problems3 is given in Figure 8.4. After initializing parameters and
pheromone trails, the main loop consists of three main steps. First, m ants construct
solutions to the problem instance under consideration, biased by the pheromone in-
formation and possibly by the available heuristic information. Once the ants have
completed their solutions, these may be improved in an optional local search phase.
Finally, before the start of the next iteration, the pheromone trails are adapted to
reflect the search experience of the ants. The main steps of the ACO metaheuristic
are explained in more detail in the following.

Fig. 8.4 Algorithmic skeleton for ACO algorithms applied to combinatorial optimization prob-
lems. The application of a local search algorithm is a typical example of a possible daemon action
in ACO algorithms.

Initialization. At the start of the algorithm, parameters are set and all
pheromone variables are initialized to a value τ0, which is a parameter of the
algorithm.
ConstructAntSolutions.A set of m ants constructs solutions to the prob-

lem instance being tackled. To do so, each ant starts with an initially empty solution
sp = /0. At each construction step, an ant extends its current partial solution sp by
choosing one feasible solution component c j

i ∈ N(sp) ⊆C and adding it to its cur-
rent partial solution. N(sp) is the set of solution components that may be added
while maintaining feasibility and it is defined implicitly by a solution construction
process that the ants implement. If a partial solution cannot be extended maintaining
feasibility, it depends on the particular construction mechanism whether the solution
construction is abandoned or an infeasible, complete solution is constructed. In the
latter case, infeasible solutions may be penalized in dependence of the degree to
which they violate problem constraints.

3 Static problems are those whose topology and costs do not change while they are being solved.
This is the case, for example, for the classic TSP, in which city locations and intercity distances
do not change during the algorithm’s runtime. In contrast, in dynamic problems the topology and
costs can change while solutions are built. An example of such a problem is routing in telecommu-
nications networks [47], in which traffic patterns change all the time.
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The choice of the solution component to add is done probabilistically at each
construction step. Various ways for defining the probability distributions have been
considered. The most widely used rule is that of Ant System (AS) [65]:

p
(

c j
i |sp

)
=

τα
ij ·
[
η
(

c j
i

)]β

∑cl
i∈N(sp) τα

il ·
[
η
(
cl

i

)]β , ∀c j
i ∈ N(sp), (8.1)

where η(·) is a function that assigns to each feasible solution component c j
i ∈N(sp)

a heuristic value, which is usually called the heuristic information. Parameters α
and β determine the relative influence of the pheromone trails and the heuristic
information and have the following influence on the algorithm behavior. If α =
0, the selection probabilities are proportional to [ηij]β and a solution component
with a high heuristic value will more likely be selected: this case corresponds to a
stochastic greedy algorithm. If β = 0, only pheromone amplification is at work.
ApplyLocalSearch. Once complete candidate solutions are obtained, these

may further be improved by applying local search algorithms. In fact, for a wide
range of combinatorial optimization problems, ACO algorithms reach best perfor-
mance when coupled with local search algorithms [66]. More generally, local search
is one example of what have been called daemon actions [57, 59]. These are used
to implement problem specific or centralized actions that cannot be performed by
individual ants.
UpdatePheromones. The pheromone update is intended to make solution

components belonging to good solutions more desirable for ants operating in the
following iterations. There are essentially two mechanisms that are used to achieve
this goal. The first is pheromone deposit, which increases the level of the pheromone
of solution components that are associated with a chosen set Supd of good solutions.
The second is pheromone trail evaporation, which is the mechanism that decreases
over time the pheromone deposited by previous ants. From a practical point of view,
pheromone evaporation is needed to avoid a too rapid convergence of the algorithm
toward a suboptimal region. It implements a useful form of forgetting, favoring the
exploration of new areas of the search space. The pheromone update is commonly
implemented as:

τij = (1−ρ)τij + ∑
s∈Supd|c j

i ∈s

g(s), (8.2)

where Supd is the set of solutions that are used to deposit pheromone, ρ ∈ (0,1] is
a parameter called evaporation rate, g(·) : S �→ IR+ is a function such that f (s) <
f (s′)⇒ g(s)≥ g(s′). It determines the quality of a solution and is commonly called
evaluation function.

ACO algorithms typically differ in the way pheromone update is implemented:
different specifications of how to determine Supd result in different instantiations of
update rule 8.2. Typically, Supd is a subset of Siter ∪{sgb}, where Siter is the set of
all solutions constructed in the current iteration of the main loop and sgb is the best
solution found since the start of the algorithm (gb stands for global-best).
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8.4 History

The first ACO algorithm to be proposed was Ant System (AS). AS was applied to
some rather small TSP instances with up to 75 cities. It was able to reach the perfor-
mance of other general-purpose heuristics like evolutionary computation [55, 65].
Despite these initial encouraging results, AS did not prove to be competitive with
state-of-the-art algorithms specifically designed for the TSP. Therefore, a substan-
tial amount of research in ACO has focused on extending/modifying AS to improve
its performance. In Section 8.4.1 we first briefly introduce the biological metaphor
by which AS and ACO are inspired, and then we present a brief history of the early
developments that have led from the original AS to more performing ACO algo-
rithms.

8.4.1 Biological Analogy

In many ant species, individual ants may deposit a pheromone (a chemical that ants
can smell) on the ground while walking [43, 80]. By depositing pheromone, ants
create a trail that is used, for example, to mark the path from the nest to food sources
and back. Foragers can sense the pheromone trails and follow the path to food dis-
covered by other ants. Several ant species are capable of exploiting pheromone trails
to determine the shortest among the available paths leading to the food.

Deneubourg and colleagues [43, 80] used a double bridge connecting a nest of
ants and a food source to study pheromone trail laying and following behavior in
controlled experimental conditions.4 They ran a number of experiments in which
they varied the ratio between the length of the two branches of the bridge. The most
interesting, for our purposes, of these experiments is the one in which one branch
was longer than the other. In this experiment, at the start the ants were left free to
move between the nest and the food source and the percentage of ants that chose
one or the other of the two branches was observed over time. The outcome was that,
although in the initial phase random oscillations could occur, in most experiments
all the ants ended up using the shorter branch.

This result can be explained as follows. When a trial starts there is no pheromone
on the two branches. Hence, the ants do not have a preference and they select with
the same probability either of the two branches. It can be expected that, on average,
half of the ants choose the short branch and the other half the long branch, although
stochastic oscillations may occasionally favor one branch over the other. However,
because one branch is shorter than the other, the ants choosing the short branch
are the first to reach the food and to start their travel back to the nest.5 But then,
when they must make a decision between the short and the long branch, the higher

4 The experiment described was originally executed using a laboratory colony of Argentine ants
(Iridomyrmex humilis). It is known that these ants deposit pheromone both when leaving and when
returning to the nest [80].
5 In the ACO literature, this is often called differential path length effect.
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level of pheromone on the short branch biases their decision in its favor.6 Therefore,
pheromone starts to accumulate faster on the short branch, which will eventually be
used by the great majority of the ants.

It should be clear by now how real ants have inspired AS and later algorithms:
the double bridge was substituted by a graph, and pheromone trails by artificial
pheromone trails. Also, because we wanted artificial ants to solve problems more
complicated than those solved by real ants, we gave artificial ants some extra ca-
pacities, like a memory (used to implement constraints and to allow the ants to
retrace their solutions without errors) and the capacity for depositing a quantity of
pheromone proportional to the quality of the solution produced (a similar behavior
is observed also in some real ant species in which the quantity of pheromone de-
posited while returning to the nest from a food source is proportional to the quality
of the food source [9]).

In Section 8.4.2 we will see how, starting from AS, new algorithms have been
proposed that, although retaining some of the original biological inspiration, are less
and less biologically inspired and more and more motivated by the need of making
ACO algorithms competitive with other state-of-the-art algorithms. Nevertheless,
many aspects of the original Ant System remain: the need for a colony, the role of
autocatalysis, the cooperative behavior mediated by artificial pheromone trails, the
probabilistic construction of solutions biased by artificial pheromone trails and local
heuristic information, the pheromone updating guided by solution quality, and the
evaporation of pheromone trails are present in all ACO algorithms.

8.4.2 Historical Development

As said, AS was the first ACO algorithm to be proposed in the literature. In fact,
AS was originally a set of three algorithms called ant-cycle, ant-density, and ant-
quantity. These three algorithms were proposed in Dorigo’s doctoral dissertation
[55] and first appeared in a technical report [63, 64] that was published a few years
later in the IEEE Transactions on Systems, Man, and Cybernetics [65]. Other early
publications are [34, 35].

While in ant-density and ant-quantity the ants updated the pheromone directly
after a move from a city to an adjacent one, in ant-cycle the pheromone update was
only done after all the ants had constructed the tours and the amount of pheromone
deposited by each ant was set to be a function of the tour quality. Because ant-cycle
performed better than the other two variants, it was later called simply Ant System
(and in fact, it is the algorithm that we will present in Section 8.4.2.1), while the
other two algorithms were no longer studied.

The major merit of AS, whose computational results were promising but not
competitive with other more established approaches, was to stimulate a number of

6 A process like this, in which a decision taken at time t increases the probability of making the
same decision at time T > t is said to be an autocatalytic process. Autocatalytic processes exploit
positive feedback.
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researchers to develop extensions and improvements of its basic ideas so as to pro-
duce better performing, and often state-of-the-art, algorithms.

8.4.2.1 The First ACO Algorithm: Ant System and the TSP

The TSP is a paradigmatic NP-hard combinatorial optimization problem that has
attracted an enormous amount of research effort [6, 94, 99]. The TSP is a very
important problem also in the context of Ant Colony Optimization because it is the
problem to which the original AS was first applied [55, 63–65], and it has later often
been used as a benchmark to test new ideas and algorithmic variants.

In AS each ant is initially put on a randomly chosen city and has a memory, in
which the partial solution it has constructed so far is stored (initially the memory
contains only the start city). Starting from its start city, an ant iteratively moves
from city to city, which corresponds to adding iteratively solution components as
explained in Section 8.3.2. When being at a city i, an ant k chooses to go to an as yet
unvisited city j with a probability given by Equation (8.1). The heuristic information
is given by ηij = 1/dij and N(sp) is the set of cities that ant k has not yet visited.

The solution construction ends after each ant has completed a tour, that is, after
each ant has constructed a sequence of length n, corresponding to a permutation of
the city indices. Next, the pheromone trails are updated. In AS this is done by using
Equation (8.2), where we have

Supd = Siter (8.3)

and

g(s) = 1/ f (s), (8.4)

where f (s) is the length of the tour s. Hence, the shorter the ant’s tour is, the more
pheromone is received by edges (solution components) belonging to the tour.7 In
general, edges which are used by many ants and which are contained in shorter
tours will receive more pheromone and therefore are also more likely to be chosen
in future iterations of the algorithm.

8.4.2.2 Ant System and Its Extensions

As previously stated, AS was not competitive with state-of-the-art algorithms for
the TSP. Researchers then started to extend it to try to improve its performance.

A first improvement, called the elitist strategy, was introduced in [55, 65]. It
consists in giving the best tour since the start of the algorithm (called sgb) a
strong additional weight. In practice, each time the pheromone trails are updated

7 Note that when applied to symmetric TSPs the edges are considered to be bidirectional and edges
(i, j) and ( j, i) are both updated. This is different for the ATSP, where edges are directed; in this
case an ant crossing edge (i, j) will update only this edge and not edge ( j, i).
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by Equation (8.2), we have that Supd = Siter ∪{sgb} and that g(s),s �= sgb, is given
by Equation (8.4). For sgb we have that g(sgb) = e/ f (sgb), where e is a positive in-
teger. Note that this type of pheromone update is a first example of daemon action
as described in Section 8.3.2.

Other improvements were rank-based Ant System (ASrank), MAX–MIN Ant Sys-
tem (MMAS), and Ant Colony System (ACS). ASrank [30] is in a sense an extension
of the elitist strategy: it sorts the ants according to the lengths of the tours they gen-
erated and, after each tour construction phase, only the (w− 1) best ants and the
global-best ant are allowed to deposit pheromone. The rth best ant of the colony
contributes to the pheromone update with a weight given by max{0,w− r} while
the global-best tour reinforces the pheromone trails with weight w. This can easily
be implemented by an appropriate choice of Supd and g(s) in Equation (8.2).

MMAS [144, 147, 148] introduces upper and lower bounds to the values of the
pheromone trails, as well as a different initialization of their values. In practice, in
MMAS the allowed range of the pheromone trail strength is limited to the interval
[τmin,τmax], that is, τmin ≤ τij ≤ τmax ∀τij, and the pheromone trails are initialized
to the upper trail limit, which causes a higher exploration at the start of the al-
gorithm. In [144, 148] it is discussed how to set the upper and lower pheromone
trail limits in a principled way. Pheromone updates are performed using a strong
elitist strategy: only the best solution generated is allowed to update pheromone
trails. This can be the iteration-best solution, that is, the best in the current iteration,
or the global-best solution. The amount of pheromone deposited is then given by
g(sb) = 1/ f (sb), where sb is either sib, the iteration-best solution, or sgb. In fact,
in MMAS the iteration-best ant and the global-best ant can be used alternately in
the pheromone update. Computational results have shown that best results are ob-
tained when pheromone updates are performed using the global-best solution with
increasing frequency during the algorithm execution [144, 148]. As an additional
means for increasing the explorative behavior of MMAS, occasional pheromone
trail reinitialization is used. MMAS has been improved also by the addition of local
search routines that take the solution generated by ants to their local optimum just
before the pheromone update.

ACS [60, 61, 75] improves over AS by increasing the importance of exploita-
tion of information collected by previous ants with respect to exploration of the
search space.8 This is achieved via two mechanisms. First, a strong elitist strategy
is used to update pheromone trails. Second, ants choose a solution component (that
is, the next city in the TSP case) using the so-called pseudo-random proportional
rule [61]: with probability q0, 0 ≤ q0 < 1, they move to the city j for which the
product between pheromone trail and heuristic information is maximum, that is,

j = argmax
c j

i ∈N(sp)

{
τij ·ηβ

ij

}
, while with probability 1− q0 they operate a biased

exploration in which the probability pij(t) is the same as in AS (see Equation (8.1)).

8 ACS was an offspring of Ant-Q [74], an algorithm intended to create a link between reinforce-
ment learning [149] and Ant Colony Optimization. Computational experiments have shown that
some aspects of Ant-Q, in particular the pheromone update rule, could be strongly simplified
without affecting performance. It is for this reason that Ant-Q was abandoned in favor of the
simpler and equally good ACS.
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The value q0 is a parameter: when it is set to a value close to 1, as it is the case in
most ACS applications, exploitation is favored over exploration. Obviously, when
q0 = 0 the probabilistic decision rule becomes the same as in AS.

Also, as in MMAS, in ACS only the best ant (the global-best or the iteration-best
ant) is allowed to add pheromone after each algorithm iteration; the former is the
most common choice in applications of ACS. The amount of pheromone deposited
is then given by g(sb) = ρ/ f (sgb), where ρ is the pheromone evaporation.

Finally, ACS also differs from most ACO algorithms because ants update the
pheromone trails while building solutions (as it was the case in ant-quantity and in
ant-density, see [55, 63, 64]). In practice, ACS ants “eat” some of the pheromone
trail on the edges they visit. This has the effect of decreasing the probability that
the same path is used by all ants (that is, it favors exploration, counterbalancing this
way the other two above-mentioned modifications that strongly favor exploitation of
the collected knowledge about the problem). Similar to MMAS, ACS also usually
exploits local search to improve its performance.

One could continue by enumerating the modifications that have been proposed
in various other ACO algorithms that have been reported in the literature. Instead,
we refer the interested reader to [66] and here we just give a brief overview of the
various developments on ACO algorithms for NP-hard problems. In Table 8.1 we
give for each of the main ACO variants that have been proposed, the main references
to these algorithms, the year in which they have been proposed, and whether they
have been tested on the TSP. In fact (published) tests of most ACO variants have
been done on the TSP, which again confirms the central role of this problem in ACO
research.

Table 8.1 Overview of the main ACO algorithms for NP-hard problems that have been proposed
in the literature. Given are the ACO algorithm name, the main references where these algorithms
are described, the year they first have been published, and whether the corresponding algorithms
have been tested on the TSP.

ACO algorithm Main references Year TSP
Ant System [55, 63, 65] 1991 Yes
Elitist AS [55, 63, 65] 1992 Yes
Ant-Q [74] 1995 Yes
Ant Colony System [60, 61, 75] 1996 Yes
MMAS [146–148] 1996 Yes
Rank-based AS [29, 30] 1997 Yes
ANTS [104, 105] 1998 No
Best-worst AS [36, 37] 2000 Yes
Population-based ACO [82] 2002 Yes
Beam-ACO [17, 18] 2004 No

8.4.2.3 Applications to Dynamic Network Routing Problems

The application of ACO algorithms to dynamic problems, that is, problems whose
characteristics change while being solved, is among the main success stories in
ACO. The first such application [131] concerned routing in circuit-switched
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networks (e.g., classical telephone networks). The proposed algorithm, called ABC,
was demonstrated on a simulated version of the British Telecom network. The main
merit of ABC was to stimulate the interest of ACO researchers in dynamic prob-
lems. In fact, only rather limited comparisons were made between ABC and state-
of-the-art algorithms, so that it is not possible to judge on the quality of the results
obtained.

A very successful application of ACO to dynamic problems is the AntNet al-
gorithm, proposed by Di Caro and Dorigo [45–48] and discussed in Section 8.5.3.
AntNet was applied to routing in packet-switched networks. It contains a number of
innovations with respect to AS and it has been shown experimentally to outperform
a whole set of state-of-the-art algorithms on numerous benchmark problems. Later,
AntNet has also been extended to routing problems in mobile ad hoc networks, ob-
taining again excellent performance [68].

8.4.2.4 Toward the ACO Metaheuristic

Given the initial success of ACO algorithms in the applications to NP-hard prob-
lems as well as to dynamic routing problems in networks, Dorigo and Di Caro [57]
made the synthesis effort that led to the definition of a first version of the ACO meta-
heuristic (see also [57, 59, 66]). In other words, the ACO metaheuristic was defined
a posteriori with the goal of providing a common characterization of a new class
of algorithms and a reference framework for the design of new instances of ACO
algorithms.

The first version of the ACO metaheuristic was aimed at giving a comprehen-
sive framework for ACO algorithm to “classical” NP-hard problems and for ap-
plications to highly dynamic problems in network routing applications. As such,
this early version of the ACO metaheuristic left a lot of freedom to the algo-
rithm designer in the definition of solution components, of the construction mech-
anism, of the pheromone update, and of the ants’ behavior. This more comprehen-
sive variant of the ACO metaheuristic is presented in many publications on this
topic [57, 59, 66]. Differently, the version of the ACO metaheuristic described in
Section 8.3 is targeted toward the application of ACO algorithms to NP-hard prob-
lems and therefore it is also more precise with respect to the definition of solution
components and of the solution construction procedure. It follows mainly the ver-
sions presented in chapter 3 of [66] or in [21, 22].

8.5 Applications

The versatility and the practical use of the ACO metaheuristic for the solution of
combinatorial optimization problems is best illustrated via example applications to
a number of different problems.

The ACO application to the TSP has already been illustrated in Section 8.4.2.4.
Here, we additionally discuss applications to two NP-hard optimization problems:
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the single machine total weighted tardiness problem (SMTWTP) and the set cover-
ing problem (SCP). We have chosen these problems since they are in several aspects
different from the TSP. Although the SMTWTP is also a permutation problem, it dif-
fers from the TSP in the interpretation of the permutations. In the SCP a solution is
represented as a subset of the available solution entities.

Applications of ACO to dynamic problems focus mainly on routing in data net-
works. To give a flavor of these applications, as a third example, we present the
AntNet algorithm [47].

8.5.1 Example 1: The Single Machine Total Weighted Tardiness
Scheduling Problem (SMTWTP)

In the SMTWTP n jobs have to be processed sequentially without interruption on a
single machine. Each job has an associated processing time p j, a weight w j, and a
due date d j and all jobs are available for processing at time 0. The tardiness of job
j is defined as Tj = max{0,Cj −d j}, where Cj is its completion time in the current
job sequence. The goal in the SMTWTP is to find a job sequence that minimizes the
sum of the weighted tardiness given by ∑n

i=1 wi ·Ti.
For the ACO application to the SMTWTP, we can have for each position i in the

sequence one variable Xi and each variable has n associated values j = 1, . . . ,n. The
solution components model the assignment of a job j to position i in the sequence.

The SMTWTP was tackled in [42] using ACS (ACS-SMTWTP). In ACS-
SMTWTP, the positions of the sequence are filled in their canonical order, that
is, first position one, next position two, and so on, until position n. At each
construction step, an ant assigns a job to the current position using the pseudo-
random-proportional action choice rule, where the feasible neighborhood of an
ant is the list of yet unscheduled jobs. Pheromone trails are therefore defined as
follows: τij refers to the desirability of scheduling job j at position i. This def-
inition of the pheromone trails is, in fact, used in many ACO applications to
scheduling problems [8, 42, 110, 142]. Concerning the heuristic information, the
use of three priority rules allowed to define three different types of heuristic in-
formation for the SMTWTP [42]. The investigated priority rules were (i) the ear-
liest due date rule, that puts the jobs in non-decreasing order of the due dates
d j; (ii) the modified due date rule, that puts the jobs in non-decreasing order of
the modified due dates given by mdd j = max{C + p j,d j} [8], where C is the
sum of the processing times of the already sequenced jobs; and (iii) the appar-
ent urgency rule, that puts the jobs in non-decreasing order of the apparent ur-
gency [118], given by au j = (w j/p j) · exp(−(max{d j −Cj,0})/kp), where k is
a parameter of the priority rule. In each case, the heuristic information was de-
fined as ηij = 1/h j, where h j is either d j, mdd j, or au j, depending on the priority
rule used.

The global and the local pheromone updates are carried out as in the standard
ACS described in Section 8.4.2, where in the global pheromone update g(sgb) is the
total weighted tardiness of the global-best solution.
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In [42], ACS-SMTWTP was combined with a powerful local search algorithm.
The final ACS algorithm was tested on a benchmark set available from ORLIB
at http://people.brunel.ac.uk/∼mastjjb/jeb/info.html. Within the computation time
limits given,9 ACS reached a very good performance and could find in each single
run the optimal or best-known solutions on all instances of the benchmark set [42].

8.5.2 Example 2: The Set Covering Problem (SCP)

In the set covering problem (SCP) we are given a finite set A = {a1, . . . ,an} of
elements and a set B = {B1, . . . ,Bl} of subsets, Bi ⊆ A, that covers A, that is, we
have

⋃l
i=1 Bi = A. We say that a set Bi covers an element a j, if a j ∈ Bi. Each set Bi

has an associated cost ci. The goal in the SCP is to choose a subset C of the sets in
B such that (i) every element of A is covered and that (ii) C has minimum total cost,
that is, the sum of the costs of the subsets in C is minimal.

ACO can be applied in a very straightforward way to the SCP. A binary vari-
able Xi is associated with every set Bi and a solution component c1

i indicates that
Bi is selected for set C (that is, Xi = 1), while a solution component c0

i indicates
it is not selected (that is, Xi = 0). Each solution component c1

i is associated with
a pheromone trail τi and a heuristic information ηi that indicates the learned and
the heuristic desirability of choosing subset Bi. (Note that no pheromone trails are
associated with solution components c0

i .) Solutions can be constructed as follows.
Each ant starts with an empty solution and then adds at each step one subset until a
cover is completed. A solution component c1

i is chosen with probability

pi(sp) =
τα

i · [ηi(sp)]β

∑l∈N(sp) τα
l · [ηl(sp)]β

, ∀c1
i ∈ N(sp), (8.5)

where N(sp) consists of all subsets that cover at least one still uncovered element
of A. The heuristic information ηi(sp) can be chosen in several different ways. For
example, a simple static information could be used, taking into account only the
subset cost: ηi = 1/ci. A more sophisticated approach would be to consider the total
number of elements di covered by a set Bi and to set ηi = di/ci. These two ways of
defining the heuristic information do not depend on the partial solution. Typically,
more accurate heuristics can be developed taking into account the partial solution
of an ant. In this case, it can be defined as ηi(sp) = ei(sp)/ci, where ei(sp) is the so-
called cover value, that is, the number of additional elements covered when adding
subset Bi to the current partial solution sp. In other words, the heuristic information
measures the unit cost of covering one additional element.

An ant ends the solution construction when all the elements of A are covered. In
a post-optimization step, an ant can remove redundant subsets—subsets that only
cover elements that are already covered by other subsets in the final solution—or

9 The maximum time for the largest instances was 20 min on a 450 MHz Pentium III PC with 256
MB RAM. Programs were written in C++ and the PC was run under Red Hat Linux 6.1.
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apply some additional local search to improve solutions. The pheromone update
can be carried out in a standard way as described in earlier sections.

When applying ACO to the SCP, one difference with the previously presented
applications is that the number of solution components in the ant’s solutions may
differ among the ants and, hence, the solution construction only ends when all the
ants have terminated their corresponding walks.

There have been a few applications of ACO algorithms to the SCP [4, 90, 101].
The best results of these ACO algorithms are obtained by the variants that are tested
by Lessing et al. [101]. In their article, they compared the performance of a number
of ACO algorithms with and without the usage of a local search algorithm based
on 3-flip neighborhoods [156]. The best performance results were obtained, as ex-
pected, when including local search and for a large number of instances the compu-
tational results were competitive with state-of-the-art algorithms for the SCP.

8.5.3 Example 3: AntNet for Network Routing Applications

Given a graph representing a telecommunications network, the problem solved by
AntNet is to find the minimum cost path between each pair of vertices of the graph.
It is important to note that, although finding a minimum cost path on a graph is an
easy problem (it can be efficiently solved by algorithms having polynomial worst
case complexity [12]), it becomes extremely difficult when the costs on the edges
are time-varying stochastic variables. This is the case of routing in packet-switched
networks, the target application for AntNet.

Here we briefly describe a simplified version of AntNet (the interested reader
should refer to [47], where the AntNet approach to routing is explained and eval-
uated in detail). As stated earlier, in AntNet each ant searches for a minimum cost
path between a given pair of vertices of the network. To this end, ants are launched
from each network vertex toward randomly selected destination vertices. Each ant
has a source vertex s and a destination vertex d and moves from s to d hopping
from one vertex to the next until vertex d is reached. When ant k is in vertex i, it
chooses the next vertex j to move to according to a probabilistic decision rule which
is a function of the ant’s memory and of local pheromone and heuristic information
(very much like AS, for example).

Unlike AS, where pheromone trails are associated with edges, in AntNet phero-
mone trails are associated with edge-destination pairs. That is, each directed edge
(i, j) has n−1 associated trail values τijd ∈ [0,1], where n is the number of vertices
in the graph associated with the routing problem. In other words, there is one trail
value τijd for each possible destination vertex d an ant located in vertex i can have.
In general, it will hold that τijd �= τ jid . Each edge also has an associated heuristic
value ηij ∈ [0,1] independent of the final destination. The heuristic values can be
set, for example, to the values ηij = 1−qij/∑l∈Ni

qil , where qij is the length (in bits
waiting to be sent) of the queue of the link connecting vertex i with its neighbor
j: links with a shorter queue have a higher heuristic value Ni is the set of neighbors
to vertex i.
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Ants choose their way probabilistically, using as probability a functional compo-
sition of the local pheromone trails τijd and heuristic values ηij. While building the
path to their destinations, ants move using the same link queues as data and experi-
ence the same delays as data packets. Therefore, the time Tsd elapsed while moving
from the source vertex s to the destination vertex d can be used as a measure of the
quality of the path they built. The overall quality of a path is evaluated by a heuristic
function of the trip time Tsd and of a local adaptive statistical model maintained in
each vertex. In fact, paths need to be evaluated relative to the network status because
a trip time T judged of low quality under low congestion conditions could be an ex-
cellent one under high traffic load. Once the generic ant k has completed a path, it
deposits on the visited vertices an amount of pheromone Δτk(t) proportional to the
quality of the path. To deposit pheromone, after reaching its destination vertex, the
ant moves back to its source vertex along the same path but backward and using
high priority queues, to allow a fast propagation of the collected information. The
pheromone trail intensity of each edge lij used by the ant while it was moving from
s to d is increased as follows: τijd(t) ← τijd(t)+ Δτk(t). After the pheromone trail
on the visited edges has been updated, the pheromone value of all the outgoing con-
nections of the same vertex i, relative to destination d, evaporates in such a way that
the pheromone values are normalized and can continue to be used as probabilities:
τijd(t)← τijd(t)/(1+Δτk(t)), ∀ j ∈ Ni.

AntNet was compared with many state-of-the-art algorithms on a large set of
benchmark problems under a variety of traffic conditions. It always compared fa-
vorably with competing approaches and it was shown to be very robust with respect
to varying traffic conditions and parameter settings. More details on the experimen-
tal results can be found in [47].

8.5.4 Applications of the ACO Metaheuristic

ACO has raised a lot of interest in the scientific community. There are now hun-
dreds of successful implementations of the ACO metaheuristic applied to a wide
range of different combinatorial optimization problems. The vast majority of these
applications concern NP-hard combinatorial optimization problems.

Many successful ACO applications to NP-hard problems use local search algo-
rithms to improve the ants’ solutions. Another common feature of most successful
ACO applications is that they use one of the advanced ACO algorithms such as ACS
and MMAS. In fact, AS has been abandoned by now in favor of more performing
variants. Finally, for problems for which ACO algorithms reach very high perfor-
mance, the available ACO algorithms are fine-tuned to the problem under considera-
tion. Apart from fine-tuning parameter settings, this typically involves the exploita-
tion of problem knowledge, for example, through the use of appropriate heuristic
information, informed choices for the construction mechanism, or the use of fine-
tuned local search algorithms. An overview of some successful applications of ACO
algorithms to challenging “static” optimization problems is given in Table 8.2. In
fact, this overview is very incomplete since the currently available ACO applications
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Table 8.2 Some current applications of ACO algorithms. Applications are listed according to
problem types.

Problem type Problem name Authors Year References
Routing Traveling salesman Dorigo et al. 1991, 1996 [64, 65]

Dorigo and Gambardella 1997 [61]
Stützle and Hoos 1997, 2000 [147, 148]

TSP with time windows López Ibáñez et al. 2009 [102]
Sequential ordering Gambardella and Dorigo 2000 [76]
Vehicle routing Gambardella et al. 1999 [77]

Reimann et al. 2004 [127]
Favoretto et al. 2007 [72]
Fuellerer et al. 2009 [73]

Multicasting Hernández and Blum 2009 [91]

Assignment Quadratic assignment Maniezzo 1999 [105]
Stützle and Hoos 2000 [148]

Frequency assignment Maniezzo and Carbonaro 2000 [106]
Course timetabling Socha et al. 2002, 2003 [138, 139]
Graph coloring Costa and Hertz 1997 [39]

Scheduling Project scheduling Merkle et al. 2002 [111]
Weighted tardiness den Besten et al. 2000 [42]

Merkle and Middendorf 2000 [109]
Flow shop Stützle 1997 [142]

Rajendran, Ziegler 2004 [125]
Open shop Blum 2005 [18]
Car sequencing Solnon 2008 [140]

Subset Set covering Lessing et al. 2004 [101]
l-cardinality trees Blum and Blesa 2005 [20]
Multiple knapsack Leguizamón and Michalewicz 1999 [100]
Maximum clique Solnon and Fenet 2006 [141]

Machine Classification rules Parpinelli et al. 2002 [124]
learning Martens et al. 2006 [107]

Otero et al. 2008 [121]
Bayesian networks Campos, Fernández-Luna 2002 [40, 41]
Neural networks Socha, Blum 2007 [135]

Bioinformatics Protein folding Shmygelska and Hoos 2005 [132]
Docking Korb et al. 2006 [97, 98]
DNA sequencing Blum et al. 2008 [25]
Haplotype inference Benedettini et al. 2008 [11]

go into the hundreds. For a more complete overview (covering, however, only ap-
plications until the year 2004), we refer to [66].

Another large class of applications of ACO algorithms is routing problems where
some system properties such as the availability of links or the cost of traversing
links are time varying. This is a common case in telecommunications networks.
As said before, the first ACO applications have been to telephone-like networks
[131], which are circuit-switched, and to packet-switched networks such as the
Internet [47].

Ant-based algorithms have given rise to several other routing algorithms, enhanc-
ing performance in a variety of wired network scenarios, see [44, 133] for a survey.
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More recent applications of these strategies involved the more challenging class of
mobile ad hoc networks (MANETs). Unfortunately, the straightforward application
of the ACO algorithms developed for wired networks has proven unsuccessful due to
the specific characteristics of MANETs (very fast dynamics, link asymmetry) [159].
An ACO algorithm that is competitive with state-of-the-art routing algorithms for
MANETs, while at the same time offering better scalability, has been proposed by
Ducatelle et al. [49, 68]. For an exhaustive list of references on ACO applications
for dynamic network routing problems we refer to [69, 71].

8.5.5 Main Application Principles

ACO algorithms have been applied to a large number of different combinatorial
optimization problems. Based on this experience, one can identify some basic issues
that need to be addressed when attacking a new problem. These issues are discussed
in the following.

8.5.5.1 Definition of Solution Components and Pheromone Trails

Of crucial importance in ACO applications is the definition of the solution compo-
nents and of the pheromone model. Consider, for example, the differences in the
definition of solution components in the TSP and the SMTWTP. Although both
problems represent solutions as permutations, the definition of solution components
(and, hence, the interpretation of the pheromone trails), is very different. In the
TSP case, a solution component refers to the direct successor relationship between
elements, while in the SMTWTP it refers to the allocation of a job to a specific posi-
tion in the permutation. This is intuitively due to the different role that permutations
have in the two problems. In the TSP, only the relative order of the solution com-
ponents is important and a permutation π = (1,2, . . . ,n) has the same tour length
as the permutation π ′ = (n,1,2, . . . ,n−1)—it represents the same tour. On the con-
trary, in the SMTWTP (as well as in many other scheduling problems), π and π ′
would represent two different solutions with most probably very different costs; in
this case the position information is very important.

In some applications, the role of the pheromone trail definition has been inves-
tigated in more depth. Blum and Sampels compare different ways of defining the
pheromone model for shop scheduling problems [23]. In [22], Blum and Dorigo
show that the choice of an inappropriate pheromone model can result in an undesir-
able performance degradation over time. Fortunately, in many applications the solu-
tion components used in high-performing constructive algorithms, together with the
correct choice of the pheromone model, typically result in high-performing algo-
rithms. However, finding the best pheromone model is not always a straightforward
task. Examples of some more complex or unusual choices are the ACO application
to the shortest common supersequence problem [114] or the application of ACO to
protein–ligand docking [98].
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8.5.5.2 Balancing Exploration and Exploitation

Any effective metaheuristic algorithm has to achieve an appropriate balance be-
tween the exploitation of the search experience gathered so far and the exploration of
unvisited or relatively unexplored search space regions. In ACO, several ways exist
for achieving such a balance, typically through the management of the pheromone
trails. In fact, the pheromone trails induce a probability distribution over the search
space and determine which parts of the search space are effectively sampled, that is,
in which part of the search space the constructed solutions are located with higher
frequency.

The best performing ACO algorithms typically use an elitist strategy in which
the best solutions found during the search contribute strongly to pheromone trail
updating. A stronger exploitation of the “learned” pheromone trails can be achieved
during solution construction by applying the pseudo-random proportional rule of
ACS, as explained in Section 8.4.2.2. These exploitation features are then typi-
cally combined with some means to ensure enough search space exploration trying
to avoid convergence of the ants to a single path, corresponding to a situation of
search stagnation. There are several ways to try to avoid such stagnation situations.
For example, in ACS the ants use a local pheromone update rule during solution
construction to make the path they have taken less desirable for subsequent ants
and, thus, to diversify the search. MMAS introduces an explicit lower limit on the
pheromone trail value so that a minimal level of exploration is always guaranteed.
MMAS also uses a reinitialization of the pheromone trails, which is a way of enforc-
ing search space exploration. Finally, an important role in the balance of exploration
and exploitation is played by the parameters α and β in Equation (8.1). Consider, for
example, the influence of parameter α . (Parameter β has an analogous influence on
the exploitation of the heuristic information.) For α > 0, the larger the value of α the
stronger the exploitation of the search experience; for α = 0 the pheromone trails
are not taken into account at all; and for α < 0 the most probable choices taken
by the ants are those that are less desirable from the point of view of pheromone
trails. Hence, varying α could be used to shift from exploration to exploitation and
conversely.

8.5.5.3 ACO and Local Search

In many applications to NP-hard combinatorial optimization problems, ACO al-
gorithms perform best when coupled with local search algorithms. Local search al-
gorithms locally optimize the ants’ solutions and these locally optimized solutions
are used in the pheromone update.

The use of local search in ACO algorithms can be very interesting as the two
approaches are complementary. In fact, ACO algorithms perform a rather coarse-
grained search, and the solutions they produce can then be locally fine-tuned
by an adequate local search algorithm. On the other side, generating appropriate
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initial solutions for local search algorithms is not an easy task. In practice, ants
probabilistically combine solution components which are part of the best locally
optimal solutions found so far and generate new, promising initial solutions for the
local search. Experimentally, it has been found that such a combination of a proba-
bilistic, adaptive construction heuristic with local search can yield excellent results
[26, 61, 147].

Despite the fact that the use of local search algorithms has been shown to be cru-
cial for achieving state-of-the-art performance in many ACO applications, it should
be noted that ACO algorithms also show very good performance when local search
algorithms cannot be applied easily [47, 114].

8.5.5.4 Heuristic Information

The possibility of using heuristic information to direct the ants’ probabilistic solu-
tion construction is important because it gives the possibility of exploiting problem-
specific knowledge. This knowledge can be available a priori (this is the most fre-
quent situation in NP-hard problems) or at runtime (this is the typical situation in
dynamic problems).

For most NP-hard problems, the heuristic information η can be computed at
initialization time and then it remains the same throughout the whole algorithm’s
run. An example is the use, in the TSP applications, of the length dij of the edge
connecting cities i and j to define the heuristic information ηij = 1/dij. However, the
heuristic information may also depend on the partial solution constructed so far and
therefore be computed at each step of an ant’s solution construction. This determines
a higher computational cost that may be compensated by the higher accuracy of the
computed heuristic values. For example, in the ACO applications to the SMTWTP
and the SCP the use of such “adaptive” heuristic information was found to be crucial
for reaching very high performance.

Finally, it should be noted that while the use of heuristic information is rather
important for a generic ACO algorithm, its importance is strongly reduced if local
search is used to improve solutions. This is due to the fact that local search takes
into account information about the cost to improve solutions in a more direct way.

8.6 Developments

In this section, we review recent research trends in ACO. These include (i) the appli-
cation of ACO algorithms to non-standard problems; (ii) the development of ACO
algorithms that are hybridized with other metaheuristics or techniques from mathe-
matical programming; (iii) the parallel implementation of ACO algorithms; and (iv)
theoretical results on ACO algorithms.

8.6.1 Non-standard Applications of ACO

We review here applications of ACO to problems that involve complicating factors
such as multiple objective functions, time-varying data, and stochastic information
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about objective values or constraints. In addition, we review some recent applica-
tions of ACO to continuous optimization problems.

8.6.1.1 Multiobjective Optimization

Frequently, in real-world applications, various solutions are evaluated as a function
of multiple, often conflicting objectives. In simple cases, objectives can be ordered
with respect to their importance or they can be combined into a single-objective by
using a weighted sum approach. An example of the former approach is the applica-
tion of a two-colony ACS algorithm for the vehicle routing problem with time win-
dows [77]; an example of the latter is given by Doerner et al. [51] for a bi-objective
transportation problem.

If a priori preferences or weights are not available, the usual option is to approx-
imate the set of Pareto-optimal solutions—a solution s is Pareto optimal if no other
solution has a better value than s for at least one objective and is not worse than s
for the remaining objectives. The first general ACO approach targeted to such prob-
lems is due to Iredi et al. [93], who discussed various alternatives to apply ACO to
multiobjective problems and presented results with a few variants for a bi-objective
scheduling problem. Since then, several algorithmic studies have tested various al-
ternative approaches. These possible approaches differ in whether they use one or
several pheromone matrices (one for each objective), one or several heuristic infor-
mation, how solutions are chosen for pheromone deposit, and whether one or several
colonies of ants are used. Several combinations of these possibilities have been stud-
ied, for example, in [3, 92]. For a detailed overview of the available multiobjective
ACO algorithms we refer to the review articles by Garcı́a-Martı́nez [78], that also
contains an experimental evaluation of some proposed ACO approaches, and by
Angus and Woodward [5].

8.6.1.2 Dynamic Versions of NP-Hard Problems

As said earlier, ACO algorithms have been applied with significant success to dy-
namic problems in the area of network routing [47, 49]. ACO algorithms have also
been applied to dynamic versions of classical NP-hard problems. Examples are
the applications to dynamic versions of the TSP, where the distances between cities
may change or where cities may appear or disappear [70, 81, 82]. More recently,
applications of ACS to dynamic vehicle routing problems are reported in [54, 117],
showing good results on academic instances of the problem as well as on real-world
instances.

8.6.1.3 Stochastic Optimization Problems

In many optimization problems data are not known exactly before generating a so-
lution. Rather, what is available is stochastic information on the objective function
value(s), on the decision variable values, or on the constraint boundaries due to un-
certainty, noise, approximation or other factors. ACO algorithms have been applied
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to a few stochastic optimization problems. The first stochastic problem to which
ACO was applied is the probabilistic TSP (PTSP), where for each city the probabil-
ity that it requires a visit is known and the goal is to find an a priori tour of minimal
expected length over all the cities. The first to apply ACO to the PTSP were Bianchi
et al. [14], who used an adaptation of ACS. This algorithm was improved by Branke
and Guntsch and, very recently, by Balaprakash et al. [7], resulting in a state-of-
the-art algorithm for the PTSP. Other applications of ACO include vehicle routing
problems with uncertain demands [13] and the selection of optimal screening poli-
cies for diabetic retinopathy [28]; the latter approach builds on the S-ACO algorithm
proposed earlier by Gutjahr [85].

8.6.1.4 Continuous Optimization

Although ACO was proposed for combinatorial problems, researchers started to
adapt it to continuous optimization problems.10 The simplest approach for applying
ACO to continuous problems would be to discretize the real-valued domain of the
variables. This approach has been successfully followed when applying ACO to the
protein–ligand docking problem [98], where it was combined with a local search
that was, however, working on the continuous domain of the variables. Recently,
ACO algorithms that handle continuous parameters natively have been proposed.
An example is the work of Socha and Dorigo [137], where the probability den-
sity functions that are implicitly built by the pheromone model are explicitly rep-
resented by Gaussian kernel functions. Their approach has also been extended to
mixed-variable—continuous and discrete—problems [136]. Other references on this
subject are [134, 151, 153].

8.6.2 Algorithmic Developments

In the early years of ACO research, the focus was in developing ACO variants that
modify the pheromone update or the solution generation mechanism to improve the
algorithmic performance. More recently, researchers have started to explore com-
binations of ACO with other algorithmic techniques. Here, we review some of the
most noteworthy of these recent developments.

8.6.2.1 Hybridizations of ACO with Other Metaheuristics

The most straightforward hybridization of ACO is with local improvement heuris-
tics, which are used to fine-tune the solutions constructed by the ants. Often simple
iterative improvement algorithms are used. However, in various researches other

10 There have been several proposals of ant-inspired algorithms for continuous optimization [15,
67, 116]. However, these differ strongly from the underlying ideas of ACO (for example, they use
direct communication among ants) and therefore cannot be considered as algorithms falling into
the framework of the ACO metaheuristic.
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metaheuristic algorithms have been used as improvement methods. One example
is the use of tabu search to improve ants’ solutions for the quadratic assignment
problem [148, 150]. Interestingly, also more sophisticated hybridizations have been
proposed. A first one is to let the ants start the solution construction not from scratch
but from partial solutions that are obtained either by removing solution components
from an ants’ complete solution [155, 158] or by taking partial solutions from other
complete solutions [1, 2, 152]. Two important advantages of starting the solution
construction from partial solutions are that (i) the solution construction process is
much faster and (ii) good parts of solutions may be exploited directly. Probably the
most straightforward of these proposals is the iterated ants [155], which uses ideas
from the iterated greedy (IG) metaheuristic [130]. Once some initial solution has
been generated, IG iterates over construction heuristics by first removing solution
components of a complete solution s, resulting in a partial solution sp. From sp a
complete solution is then reconstructed using some construction mechanism. In the
iterated ants algorithm, this mechanism is simply the standard solution construction
of the underlying ACO algorithm. Computational results suggest that this idea is
particularly useful if no effective local search is available.

8.6.2.2 Hybridizations of ACO with Branch-and-Bound Techniques

The integration of tree search techniques into constructive algorithms is an appeal-
ing possibility of hybridization since the probabilistic solution construction of ants
can be seen as the stochastic exploration of a search tree. Particularly attractive are
combinations of ACO with tree search techniques from mathematical programming
such as branch-and-bound. A first algorithm is the approximate nondeterministic
tree search (ANTS) algorithm by Maniezzo [105]. The most important innovation
of ANTS is the use of lower bound estimates as the heuristic information for rat-
ing the attractiveness of adding specific solution components. Additionally, lower
bound computations allow the method to prune feasible extensions of partial so-
lutions if the estimated solution cost is larger than that of the best solution found
so far. An additional innovation of ANTS consists in the use of an initial lower
bound computation to influence the order in which solution components are con-
sidered in the solution construction. Computational results obtained with ANTS for
the quadratic assignment and the frequency assignment problems are very promising
[105, 106].

BeamACO, the combination of ACO algorithms with beam-search was proposed
by Blum [18]. Beam-search is a derivative of branch-and-bound algorithms that
keeps at each iteration a set of at most fw nodes in a search tree and expands each of
them in at most bw directions according to a selection based on lower bounds [122];
this results in at most fw ·bw partial candidate solutions. After each step of extending
partial solutions, the best fw partial solutions are kept (where best is rated with re-
spect to a lower bound). BeamACO takes from beam-search the parallel exploration
of the search tree and replaces beam-search’s deterministic solution extension mech-
anism with that of ACO. The results with BeamACO have been very good so far.
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For example, it is a state-of-the-art algorithm for open shop scheduling [18] and for
some variants of assembly line balancing [19].

8.6.2.3 Combinations of ACO with Constraint Programming Techniques

For problems that are highly constrained and for which it is difficult to find feasible
solutions, an attractive possibility is to integrate constraint programming techniques
into ACO. A first proposal in this direction has been made by Meyer and Ernst
[113]. In particular, they integrate a constraint propagation mechanism into the so-
lution construction of the ants to identify earlier in the construction process whether
specific solutions extensions would lead to infeasible solutions. Computational tests
on a highly constrained scheduling problem showed the high potential of this ap-
proach. More recently, Khichane et al. [96] have examined the integration of an
ACO algorithm into a constraint solver.

8.6.3 Parallel Implementations

The very nature of ACO algorithms lends them to be parallelized in the data or
population domains. In particular, many parallel models used in other population-
based algorithms can be easily adapted to ACO. Most parallelization strategies can
be classified into fine-grained and coarse-grained strategies. Characteristics of fine-
grained parallelization are that very few individuals are assigned to one single pro-
cessor and that frequent information exchange among the processors takes place. On
the contrary, in coarse-grained approaches larger subpopulations or even full pop-
ulations are assigned to single processors and information exchange is rather rare.
We refer, for example, to [32] for an overview.

Fine-grained parallelization schemes have been investigated with parallel ver-
sions of AS for the TSP on the Connection Machine CM-2 by attributing a single
processing unit to each ant [27]. Experimental results showed that communication
overhead can be a major problem with this approach on fine-grained parallel ma-
chines, since ants end up spending most of their time communicating to other ants
the modifications they have made to pheromone trails. Similar negative results have
also been reported in [31, 126].

As shown by several researches [27, 31, 50, 103, 115, 143], coarse-grained par-
allelization schemes are much more promising for ACO. When applied to ACO,
coarse-grained schemes run p subcolonies in parallel, where p is the number of
available processors. Subcolonies exchange information according to some pol-
icy that defines the kind of information to be exchanged, how migrants between
the subcolonies are selected, to which colonies the information is sent, when in-
formation is sent, and what is to be done with the received information. Mid-
dendorf et al. [115] investigate different ways of exchanging solutions among
ant colonies. They consider an exchange of the global best solutions among all
colonies and local exchanges based on a virtual neighborhood among subcolonies
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which corresponds to a directed ring. Their main observation was that the best
solutions, with respect to computing time and solution quality, were obtained
by limiting the information exchange to a local neighborhood of the colonies.
Twomey et al. [154] study communication strategies for multi-colony ACO al-
gorithms. They show that the cooperation of multiple homogenous colonies be-
comes less effective for increasing search effort and stronger local search algo-
rithms. Doerner et al. [50] study different frequencies of information exchange
using a fixed-frequency policy. Chen and Zhang [33] propose the use of vari-
able frequency schedules for the migration of ants. In the extreme case, there is
no communication among the subcolonies, resulting in parallel independent runs.
This is the easiest way to parallelize randomized algorithms and can be very ef-
fective as shown in the computational results of Stützle [143] and of Manfrin
et al. [103].

8.6.4 Theoretical Results

The initial, experimentally driven research on ACO has established it as an interest-
ing algorithmic technique. After this initial phase, researchers have started to obtain
insights into fundamental properties of ACO algorithms.

The first question was whether an ACO algorithm, if given enough time, will
eventually find an optimal solution. This is an interesting question, because the
pheromone update could prevent ACO algorithms from ever reaching an optimum.
The first convergence proofs were presented by Gutjahr in [83]. He proved con-
vergence with probability 1− ε to the optimal solution of Graph-Based Ant Sys-
tem (GBAS), an ACO algorithm whose empirical performance is unknown. Later,
he proved convergence to any optimal solution [84] with probability one for two
extended versions of GBAS. Interestingly, convergence proofs for two of the top
performing ACO algorithms in practice, ACS and MMAS, could also be obtained
[66, 145].

Unfortunately, these convergence proofs do not say anything about the speed
with which the algorithms converge to the optimal solution. Recently, a number of
results on the expected runtime when applying ACO algorithms to specific problems
have been obtained. The first results in this direction were obtained by Gutjahr [86]
and since then a number of additional results have been established [53, 88, 89, 119,
120]. For a recent review of this research direction, we refer to [87].

Other research in ACO theory has focused on establishing formal links between
ACO and other techniques for learning and optimization. Birattari et al. [16] re-
late ACO to the fields of optimal control and reinforcement learning; Meuleau and
Dorigo [112] examine the connections between ACO algorithms and probabilis-
tic learning algorithms such as the stochastic gradient ascent and the cross-entropy
method; finally, Zlochin et al. [160] have proposed a unifying framework for so-
called model-based search algorithms that allows a better understanding of what
are the important parts of an ACO algorithm and that will help to a better cross-
fertilization among algorithms.
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While convergence proofs give insight into some mathematically relevant prop-
erties of algorithms, they usually do not provide guidance to practitioners for the
implementation of efficient algorithms. More relevant for practical applications are
research efforts that aim at a better understanding of the behavior of ACO algo-
rithms. Blum and Dorigo [22] have shown that ACO algorithms in general suffer
from first-order deception in the same way as genetic algorithms suffer from de-
ception. They further introduced the concept of second-order deception, which oc-
curs, for example, in situations where some solution components receive updates
from more solutions on average than others they compete with [24]. The first to
study the behavior of ACO algorithms by analyzing the dynamics of the pheromone
model were Merkle and Middendorf [108]. For idealized permutation problems,
they showed that the bias introduced on decisions in the construction process (due
to constraints on the feasibility of solutions) leads to a bias which they call selection
bias.

A review paper on recent advances in ACO theory is [56].

8.7 Conclusions

Since the proposal of the first ACO algorithms in 1991, the field of ACO has at-
tracted a large number of researchers and nowadays a large number of research
results of both experimental and theoretical nature exist. By now ACO is a well-
established metaheuristic. The importance of ACO is exemplified by (i) the bian-
nual conference ANTS (International conference on Ant Colony Optimization and
Swarm Intelligence; http://iridia.ulb.ac.be/∼ants/), where researchers meet to dis-
cuss the properties of ACO and other ant algorithms, both theoretically and exper-
imentally; (ii) the IEEE Swarm Intelligence Symposium series; (iii) various con-
ferences on metaheuristics and evolutionary algorithms, where ACO is a central
topic; and (iv) a number of journal special issues [38, 52, 58, 62]. More information
on ACO can also be found on the Ant Colony Optimization web page: www.aco-
metaheuristic.org. Additionally, a moderated mailing list dedicated to the exchange
of information related to ACO is accessible at: www.aco-metaheuristic.org/mailing-
list.html.

The majority of the currently published articles on ACO are clearly on its ap-
plication to computationally challenging problems. While most researches here are
on academic applications, it is noteworthy that companies have started to use ACO
algorithms for real-world applications [129]. For example, the company AntOptima
(www.antoptima.com) plays an important role in promoting the real-world applica-
tion of ACO. In real-world applications, features such as time-varying data, mul-
tiple objectives, or the availability of stochastic information about events or data
are rather common. Interestingly, applications of ACO to problems that show such
characteristics are receiving increasing attention. In fact, we believe that ACO algo-
rithms will show their greatest advantage when they will be systematically applied
to such “ill-structured” problems for which it is not clear how to apply local search,
or to highly dynamic domains where only local information is available.
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7. Balaprakash, P., Birattari, M., Stützle, T., Yuan, Z., Dorigo, M.: Estimation-based ant colony
optimization algorithms for the probabilistic travelling salesman problem. Swarm Intell.,
3(3), 223–242 (2009)

8. Bauer, A., Bullnheimer, B., Hartl, R.F., Strauss, C.: An ant colony optimization approach
for the single machine total tardiness problem. In: Proceedings of the 1999 Congress on
Evolutionary Computation (CEC’99), pp. 1445–1450. IEEE Press, Piscataway, NJ (1999)

9. Beckers, R., Deneubourg, J.-L., Goss, S.: Modulation of trail laying in the ant Lasius niger
(hymenoptera: Formicidae) and its role in the collective selection of a food source. J. Insect
Behav. 6(6), 751–759 (1993)

10. Bellman, R., Esogbue, A.O., Nabeshima, I.: Mathematical Aspects of Scheduling and Ap-
plications. Pergamon Press, New York, NY (1982)

11. Benedettini, S., Roli, A., Di Gaspero, L.: Two-level ACO for haplotype inference under pure
parsimony. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A. F. T.
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97. Korb, O., Stützle, T., Exner, T.E.: Application of ant colony optimization to structure-based
drug design. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T.
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Blum, C. (eds.) Ant Colony Optimization and Swarm Intelligence: 4th International Work-
shop, ANTS 2004. Lecture Notes in Computer Science, vol. 3172, pp. 1–12. Springer, Berlin
(2004)
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Chapter 9
Advanced Multi-start Methods

R. Martı́, J. Marcos Moreno-Vega, and A. Duarte

Abstract Heuristic search procedures that aspire to find globally optimal solutions
to hard combinatorial optimization problems usually require some type of diversifi-
cation to overcome local optimality. One way to achieve diversification is to re-start
the procedure from a new solution once a region has been explored. In this chapter
we describe the best known multi-start methods for solving optimization problems.
We propose classifying these methods in terms of their use of randomization, mem-
ory, and degree of rebuild. We also present a computational comparison of these
methods on solving the maximum diversity problem in terms of solution quality
and diversification power.

9.1 Introduction

Metaheuristics are high-level solution methods that provide guidelines to design
and integrate subordinate heuristics to solve optimization problems. These high-
level methods characteristically focus on strategies to escape from local optima and
perform a robust search of a solution space. Most of them are based, at least partially,
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on a neighborhood search, and the degree to which neighborhoods are exploited
varies according to the type of method.

Multi-start procedures were originally conceived as a way to exploit a local or
neighborhood search procedure, by simply applying it from multiple random initial
solutions. It is well known that search methods based on local optimization that
aspire to find global optima usually require some type of diversification to overcome
local optimality. Without this diversification, such methods can become reduced
to tracing paths that are confined to a small area of the solution space, making it
impossible to find a global optimum. Multi-start methods, appropriately designed,
incorporate a powerful form of diversification.

There are some problems in which it turns out to be much simpler and more
effective to construct solutions than to apply neighborhood-based procedures. For
example, in constrained scheduling problems it is difficult to define neighborhoods
(i.e., structures that allow transitions from a given solution to so-called adjacent so-
lutions) that maintain feasibility, whereas solutions can be created relatively easily
by an appropriate process of construction. Something similar happens in simulation
optimization where the model treats the objective-function evaluation as a black
box, making the search algorithm context independent. In these problems the gen-
eration of solutions by stepwise constructions, according to information recorded
during the search process, is more efficient than the exploration of solutions in the
neighborhood of a given solution since the evaluation requires a simulation pro-
cess that is usually very time consuming. Therefore, multi-start methods provide an
appropriate framework within which to develop algorithms to solve combinatorial
optimization problems.

The re-start mechanism of multi-start methods can be superimposed on many
different search methods. Once a new solution has been generated, a variety of op-
tions can be used to improve it, ranging from a simple greedy routine to a complex
metaheuristic. This chapter is focused on studying the different strategies and meth-
ods for generating solutions to launch a succession of new searches for a global
optimum.

9.2 An Overview

Multi-start methods have two phases: the first one in which the solution is generated
and the second one in which the solution is typically (but not necessarily) improved.
Then, each global iteration produces a solution (usually a local optima) and the best
overall is the algorithm’s output.

In recent years, many heuristic algorithms have been proposed to solve some
combinatorial optimization problems. Some of them are problem dependent and the
ideas and strategies implemented are difficult to apply to different problems, while
others are based on a framework that can be used directly to design-solving methods
for other problems. In this section we describe the most relevant procedures in terms
of applying them to a wide variety of problems. We pay special attention to the
adaptation of memory structures to multi-start methods.
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The explicit use of memory structures constitutes the core of a large number
of intelligent-solving methods. They include tabu search [14], scatter search [19],
evolutionary path relinking [35], and some hybridizations of multi-start procedures.
These methods focus on exploiting a set of strategic memory designs. Tabu search
(TS), the metaheuristic that launched this perspective, is the source of the term adap-
tive memory programming (AMP) to describe methods that use advanced memory
strategies (and hence learning, in a non-trivial sense) to guide a search.

In the following sections we trace some of the more salient contributions to
multi-start methods of the past two decades (though the origins of the meth-
ods go back somewhat farther). We have grouped them according to four cate-
gories: memory-based designs (Section 9.2.1), GRASP (Section 9.2.2), theoretical
analysis (Section 9.2.3), constructive designs (Section 9.2.4), and hybrid designs
(Section 9.2.5). Based on the analysis of these methods, we propose a classification
of multi-start procedures (Section 9.3) in which the use of memory plays a central
role.

9.2.1 Memory-Based Designs

Many papers on multi-start methods that appeared before the mid-1990s do not use
explicit memory, as notably exemplified by the Monte Carlo random re-start ap-
proach in the context of nonlinear unconstrained optimization. Here, the method
simply evaluates the objective function at randomly generated points. The prob-
ability of success approaches one as the sample size tends to infinity under very
mild assumptions about the objective function. Many algorithms have been pro-
posed that combine the Monte Carlo method with local search procedures [36].
The convergence for random re-start methods is studied in [40], where the prob-
ability distribution used to choose the next starting point can depend on how the
search evolves. Some extensions of these methods seek to reduce the number of
complete local searches that are performed and increase the probability that they
start from points close to the global optimum [28]. More advanced probabilistic
forms of re-starting based on memory functions were subsequently developed in
[37] and [26].

Fleurent and Glover [11] propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of tabu search based on both a set of elite solutions and the intensifica-
tion strategies based on identifying strongly determined and consistent variables.
Strongly determined variables are those whose values cannot be changed without
significantly eroding the objective function value or disrupting the values of other
variables. A consistent variable is defined as one that receives a particular value in a
significant portion of good solutions. The authors propose the inclusion of memory
structures within the multi-start framework as it is done with tabu search. Compu-
tational experiments for the quadratic assignment problem show that these methods
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improve significantly over previous multi-start methods like GRASP and random
restart that do not incorporate memory-based strategies.

Patterson et al. [32] introduce a multi-start framework (Adaptive Reasoning
Techniques, ART) based on memory structures. The authors implement the
short-term and long-term memory functions, proposed in the tabu search frame-
work, to solve the Capacitated Minimum Spanning Tree Problem. ART is an itera-
tive, constructive solution procedure that implements learning methodologies on top
of memory structures. ART derives its success from being able to learn about and
modify the behavior of a primary greedy heuristic. The greedy heuristic is executed
repeatedly, and for each new execution, constraints that prohibit certain solution
elements from being considered by the greedy heuristic are probabilistically intro-
duced. The active constraints are held in a short-term memory. A long-term memory
holds information regarding the constraints that were in the active memory for the
best set of solutions.

Glover [15] proposes approaches for creating improved forms of constructive
multi-start and strategic oscillation methods based on new search principles: per-
sistent attractiveness and marginal conditional validity. These concepts play a key
role in deriving appropriate measures to capture information during prior search.
Applied to constructive neighborhoods, strategic oscillation operates by alternating
constructive and destructive phases, where each solution generated by a constructive
phase is dismantled (to a variable degree) by the destructive phase, after which a new
phase builds the solution anew. The conjunction of both phases and their associated
memory structures provides the basis for an improved multi-start method.

The principle of persistent attractiveness says that good choices derive from
making decisions that have often appeared attractive, but that have not previously
been made within a particular region or phase of search. That is, persistent attractive-
ness also carries with it the connotation of persistently unselected within a specific
domain or interval. The principle of marginal conditional validity specifies that as
more decisions are made, the consequences of imposing them cause the problem
to be more restricted. Consequently, as the search progresses future decisions face
less complexity and less ambiguity about which choices are likely to be preferable.
Therefore, early decisions are more likely to be bad ones or at least to look better
than they should, once later decisions are made. Specific strategies for exploiting
these concepts and their underlying principles are given in [15].

Beausoleil et al. [3] consider a multi-objective combinatorial optimization prob-
lem called Extended Knapsack Problem. By applying multi-start search and path
relinking their solving method rapidly guide the search toward the most balanced
zone of the Pareto-optimal front (the zone in which all the objectives are equally
important). The Pareto relation is applied in order to designate a subset of the best
generated solutions to be the current efficient set of solutions. A max–min crite-
rion applied to the Hamming distance is used as a measure of dissimilarity in or-
der to find diverse solutions to be combined. The performance of this approach is
compared with several state-of-the-art multi-objective evolutionary algorithms for a
suite of test problems taken from the literature.
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9.2.2 GRASP

One of the most well-known multi-start methods is the Greedy Adaptive Search Pro-
cedures (GRASP), which was introduced by Feo and Resende [10]. It was first used
to solve set covering problems [9]. Each GRASP iteration consists of constructing
a trial solution and then applying a local search procedure to find a local optimum
(i.e., the final solution for that iteration). The construction step is an adaptive and
iterative process guided by a greedy evaluation function. It is iterative because the
initial solution is built considering one element at a time. It is greedy because the
addition of each element is guided by a greedy function. It is adaptive because the
element chosen at any iteration in a construction is a function of previously chosen
elements. (That is, the method is adaptive in the sense of updating relevant infor-
mation from one construction step to the next.) At each stage, the next element to
be added to the solution is randomly selected from a candidate list of high-quality
elements according to the evaluation function. Once a solution has been obtained, it
is typically improved by a local search procedure. The improvement phase performs
a sequence of moves toward a local optimum solution, which becomes the output of
a complete GRASP iteration. Some examples of successful applications are given
in [24, 25, 34].

Laguna and Martı́ [25] introduce path-relinking within GRASP as a way to im-
prove multi-start methods. Path-relinking has been suggested as an approach to inte-
grate intensification and diversification strategies in the context of tabu search [18].
This approach generates new solutions by exploring trajectories that connect high-
quality solutions, by starting from one of these solutions and generating a path in
the neighborhood space that leads toward the other solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions. Re-
linking in the context of GRASP consists of finding a path between a solution found
after an improvement phase and a chosen elite solution. Therefore, the relinking
concept has a different interpretation within GRASP, since the solutions found from
one iteration to the next are not linked by a sequence of moves (as in the case of
tabu search). The proposed strategy can be applied to any method that produces
a sequence of solutions; specifically, it can be used in any multi-start procedure.
Based on these ideas, Binato et al. [4] proposed the Greedy Randomized Adaptive
Path-Relinking. Many different designs named Evolutionary Path-Relinking have
also been studied in [35].

Prais and Ribeiro [33] propose an improved GRASP implementation, called re-
active GRASP, for a matrix decomposition problem arising in the context of traffic
assignment in communication satellites. The method incorporates a memory struc-
ture to record information about previously found solutions. In reactive GRASP, the
basic parameter which restricts the candidate list during the construction phase is
self-adjusted, according to the quality of the previously found solutions. The pro-
posed method matches most of the best solutions known.
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9.2.3 Theoretical Analysis

From a theoretical point of view, Hu et al. [22] study the combination of the gradient
algorithm with random initializations to find a global optimum. Efficacy of parallel
processing, choice of the restart probability distribution, and number of restarts are
studied for both discrete and continuous models. The authors show that the uniform
probability is a good choice for restarting procedures.

Boese et al. [5] analyze relationships among local minima from the perspective
of the best local minimum, finding convex structures in the cost surfaces. Based on
the results of that study, they propose a multi-start method where starting points for
greedy descent are adaptively derived from the best previously found local minima.
In the first step, adaptive multi-start heuristics (AMS) generate r random starting
solutions and run a greedy descent method from each one to determine a set of cor-
responding random local minima. In the second step, adaptive starting solutions
are constructed based on the local minima obtained so far and improved with a
greedy descent method. This improvement is applied several times from each adap-
tive starting solution to yield corresponding adaptive local minima. The authors test
this method for the traveling salesman problem and obtain significant speedups over
previous multi-start implementations. Hagen and Kahng [20] apply this method for
the iterative partitioning problem.

Moreno et al. [30] propose a stopping rule for the multi-start method based on a
statistical study of the number of iterations needed to find the global optimum. The
authors introduce two random variables that together provide a way of estimating the
number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed to
find the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus, at
each global iteration, this value is computed and if it is greater than a fixed threshold,
the algorithm stops, otherwise a new solution is generated. The authors illustrate the
method using the median p-hub problem.

Simple forms of multi-start methods are often used to compare other methods
and measure their relative contribution. Baluja [2] compares different genetic al-
gorithms for six sets of benchmark problems commonly found in the GA literature:
traveling salesman problem, job-shop scheduling, knapsack, bin packing, neural net-
work weight optimization, and numerical function optimization. The author uses the
multi-start method (multiple restart stochastic hill-climbing, MRSH) as a baseline
in the computational testing. Since solutions are represented with strings, the im-
provement step consists of a local search based on random flip of bits. The results
indicate that using genetic algorithms for the optimization of static functions does
not yield a benefit, in terms of the final result obtained, over simpler optimization
heuristics. Other comparisons between MRSH and GAs can be found, for example,
in [1] or [43].
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9.2.4 Constructive Designs

Multi-start procedures usually follow a global scheme in which generation and im-
provement are alternated for a certain number of iterations; but there are some ap-
plications in which the improvement can be applied several times within a global
iteration. In the incomplete construction methods, the improvement phase is peri-
odically invoked during the construction process of the partial solution rather than
after the complete construction, as it is usually done. See [7] and [38] for successful
applications of this approach to vehicle routing.

Hickernell and Yuan [21] present a multi-start algorithm for unconstrained global
optimization based on quasirandom samples. Quasirandom samples are sets of de-
terministic points, as opposed to random points, that are evenly distributed over a
set. The algorithm applies an inexpensive local search (steepest descent) on a set
of quasirandom points to concentrate the sample. The sample is reduced replacing
worse points with new quasirandom points. Any point that is retained for a certain
number of iterations is used to start an efficient complete local search. The algo-
rithm terminates when no new local minimum is found after several iterations. An
experimental comparison shows that the method performs favorably with respect to
other global optimization procedures.

Hagen and Kahng [20] implement an adaptive multi-start method for a VLSI
partitioning optimization problem where the objective is to minimize the number of
signals sent between components. The method consists of two phases: (1) generate a
set of random starting points and perform the iterative (local search) algorithm, thus
determining a set of local minimum solutions and (2) construct adaptive starting
points derived from the best local minimum solutions found so far. The authors
add a preprocessing cluster module to reduce the size of the problem. The resulting
clustering adaptive multi-start method (CAMS) is fast and stable and improves upon
previous partitioning results reported in the literature.

Tu and Mayne [41] describe a multi-start with a clustering strategy for con-
strained optimization problems. It is based on the characteristics of non-linear con-
strained global optimization problems and extends a strategy previously tested on
unconstrained problems. In this study, variations of multi-start with clustering are
considered including a simulated annealing procedure for sampling the design do-
main and a quadratic programming (QP) sub-problem for cluster formation. The
strategies are evaluated by solving 18 non-linear mathematical problems and 6 en-
gineering design problems. Numerical results show that the solution of a one-step
QP sub-problem helps predict possible regions of attraction of local minima and can
enhance robustness and effectiveness in identifying local minima without sacrific-
ing efficiency. In comparison with other multi-start techniques, the strategies of this
study are superior in terms of the number of local searches performed, the number
of minima found, and the number of function evaluations required.

Bronmo et al. [6] present a multi-start local search heuristic for a typical ship
scheduling problem. Their method generates a large number of initial solutions with
an insertion heuristic partially based on random elements. The best initial solutions
are improved by a local search heuristic that is split into a quick and an extended
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version. The quick local search is used to improve a given number of the best initial
solutions. The extended local search heuristic is then used to further improve some
of the best solutions found. The multi-start local search heuristic is compared with
an optimization-based solution approach with respect to computation time and solu-
tion quality. The computational study shows that the multi-start local search method
consistently returns optimal or near-optimal solutions to real-life instances of the
ship scheduling problem within a reasonable amount of CPU time.

9.2.5 Hybrid Designs

Ulder et al. [42] combine genetic algorithms with local search strategies to improve
previous genetic approaches for the traveling salesman problem. They apply an it-
erative algorithm to improve each individual, either before or while being combined
with other individuals to form a new solution (offspring). The combination of these
three elements: Generation, Combination, and Local Search, extends the paradigm
of re-start and establishes links with other metaheuristics such as scatter search [15]
or memetic algorithms [31].

Mezmaz et al. [29] hybridize the multi-start framework with a model in which
several evolutionary algorithms run simultaneously and cooperate to compute better
solutions (called island model). They propose a solving method in the context of
multi-objective optimization on the computational grid. The authors point out that
although the combination of these two models usually provides very effective par-
allel algorithms, experiments on large-size problem instances are often stopped be-
fore convergence is achieved. The full exploitation of the cooperation model needs a
large amount of computational resources and the management of the fault tolerance
issue. In this chapter, a grid-based fault-tolerant approach for these models and their
implementation on the XtremWeb grid middleware is proposed. The approach has
been experimented on the bi-objective flow-shop problem on a computational grid
made of 321 heterogeneous Linux PCs within a multi-domain education network.
The preliminary results, obtained after an execution time of several days, demon-
strate that the use of grid computing effectively and efficiently exploits the two
parallel models and their combination for solving challenging optimization prob-
lems. In particular, the effectiveness is improved by over 60% when compared with
a serial metaheuristic..

An open question in order to design a good search procedure is whether it is bet-
ter to implement a simple improving method that allows a great number of global
iterations or, alternatively, to apply a complex routine that significantly improves
a few generated solutions. A simple procedure depends heavily on the initial so-
lution but a more elaborate method takes much more running time and therefore
can only be applied a few times, thus reducing the sampling of the solution space.
Some metaheuristics, such as GRASP, launch limited local searches from numerous
constructions (i.e., starting points). In most tabu search implementations, the search
starts from one initial point and if a restarting procedure is also part of the method,
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it is invoked only a limited number of times. However, the inclusion of re-starting
strategies within the tabu search framework has been well documented in several
papers (see, for example, [13] and [18]). In [27] the balance between restarting and
search depth (i.e., the time spent searching from a single starting point) is studied in
the context of the Bandwidth Matrix Problem. They tested both alternatives and con-
cluded that it was better to invest the CPU time to search from a few starting points
than re-starting the search more often. Although we cannot draw a general conclu-
sion from these experiments, the experience in the current context and in previous
projects indicates that some metaheuristics, like tabu search, need to reach a critical
search depth to be effective. If this search depth is not reached, the effectiveness of
the method is severely compromised.

9.3 A Classification

We have found three key elements in multi-start methods that can be used for clas-
sification purposes: memory, randomization, and degree of rebuild. The choices for
each one of these elements are not restricted to the extreme cases where the element
is simply present or absent, but represent a whole continuum between the extremes
that can be labeled as

• Memory/memoryless
• Systematic/randomized
• Rebuild/build-from-scratch

The Memory classification refers to elements that are common to certain pre-
viously generated solutions. As in the tabu search framework [18], such memory
provides a foundation for incentive-based learning, by means of incentives that rein-
force actions leading to good solutions or deterrents that discourage actions leading
to bad ones. Thus, instead of simply resorting to randomized re-starting processes,
in which the current decisions do not get any benefit from the knowledge accu-
mulated during prior search, specific types of information are identified to exploit
history. On the other hand, memory avoidance (via the memoryless classification)
is employed in a variety of methods where the construction of unconnected solu-
tions is viewed as a means of strategically sampling the solution space. It should
be noted that memory is not restricted to recording good solutions (or attributes of
these solutions) but also includes recording solutions that exhibit diversity.

Starting solutions can be randomly generated or, on the contrary, they can be
generated in a systematic way. Randomization is a very simple way of achieving
diversification, but with no control over the diversity achieved since in some cases
randomization can obtain very similar solutions. Moreover, there are a variety of
forms of diversity that can be more important for conducting an effective search
process than the haphazard outcomes of randomization. More systematic mecha-
nisms are available to control the similarities among solutions produced, as a way
to yield outcomes exhibiting a useful range of structural differences. Between the
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extremes of randomized and systematic (or deterministic) generation of solutions lie
a significant number of possibilities. These can range from imposing deterministic
controls on a randomized process to joining randomized and deterministic processes
in various forms of alternation. The GRASP method discussed later combines sev-
eral of these intermediate possibilities.

The Degree of Rebuild is a measure of the number or proportion of elements that
remain fixed from one generation to another. Most applications build the solution at
each generation from scratch, but some strategies fix (or lock-in) some elements dur-
ing the construction process that have appeared in previously generated solutions.
Such an approach was proposed in the context of identifying and then iteratively
exploiting strongly determined and consistent variables in [13]. This selective way
of fixing elements, by reference to their previous impact and frequency of occur-
rence in various solution classes, is a memory-based strategy of the type commonly
used in tabu search. This type of approach is also implicit in the operation of path-
relinking [17] which generates new solutions by exploring trajectories that connect
high-quality solutions. In this case the process seeks to incorporate the attributes
of previously generated elite solutions by creating inducements to favor these at-
tributes in currently generated solutions. In an extreme case all the elements in the
new solution will be determined (and fixed) by the information generated from the
set of elite solutions considered. This is labeled as (complete) Rebuild.

9.4 The Maximum Diversity Problem

The problem of choosing a subset of elements with maximum diversity from a given
set is known as the Maximum Diversity Problem (MDP). This problem has a wide
range of practical applications involving fields such as medical treatments, envi-
ronmental balance, immigration policies, and genetic engineering [16]. The MDP
has been studied by numerous authors, most prominent among them being Kuo
et al. [23], who described four formulations of the problem, ranging from the most
intuitive to the most efficient, and which also served to show that the MDP is NP
hard. In 1996, Ghosh [12] proposed a multi-start method and proved the complete-
ness of the problem. Later, Glover et al. [16] proposed four deterministic heuristic
methods, two of them constructive and the other two destructive. Silva et al. [39]
presented a multi-start algorithm based on the GRASP methodology. Specifically,
they described three constructive methods, called KLD, KLDv2, and MDI, and two
improvement methods: LS, which is an adaptation of the one proposed by Ghosh,
and SOMA, based on a VNS implementation.

The MDP can be formally described as a combinational optimization problem
which can be stated as follows: let S = {si : i ∈ N} be a set of elements where N =
{1,2, . . . ,n} is the set of indexes. Each element of the set si ∈ S may be represented
by a vector si = (si1 ,si2 , ..,sir). Let di j be the distance between two elements si and s j

and let m (with m < n) be the desired size of the maximum diversity set. Within this
context, the solution of the MDP consists in finding a subset Sel of m elements of S
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( Sel ⊂ S and |Sel| = m) in order to maximize the sum of the distances between the
selected elements. Mathematically, the MDP may be rewritten as a decision problem
in the following terms:

max z = ∑
i< j

di jxix j

subject to
n

∑
i=1

xi = m ,

xi ∈ {0,1} i = 1, . . . ,n

where xi = 1 indicates that element si has been selected.
Two constructive algorithms are proposed in order to use a multi-start scheme to

solve the MDP, one of them with memory and the other without. Each algorithm is
described in turn in the following sections.

9.4.1 Multi-start Without Memory (MSWoM)

The Multi-start Without Memory (MSWoM) algorithm consists of a GRASP-based
constructive procedure and a first improvement local search. This approach was
inspired by a heuristic method proposed in Glover et al. [16]. In each step, the con-
structive procedure adds a high-quality element (given by a greedy function) to the
set Sel. The non-selected elements are contained in the set S− Sel. The set Sel is
initially empty, meaning that all the elements might be selected. The algorithm starts
by selecting an element from S at random and placing it in the set Sel. The distance
from all the non-selected elements si ∈ S−Sel to Sel is then computed as follows:

d(si,Sel) = ∑
s j∈Sel

d(si,s j), (9.1)

which serves to arrange all the non-selected elements. To select the next element
for inclusion in the set Sel, an ordered list L is constructed with all the elements
si ∈ S− Sel at a percent α of the maximum distance. Mathematically, L is defined
as follows:

L = {si ∈ S−Sel/d(si,Sel)≥ dmin +α(dmax −dmin)}, (9.2)

where

dmax = max
si∈S−Sel

d(si,Sel) dmin = min
si∈S−Sel

d(si,Sel)

The next element introduced in set Sel is chosen at random from among the ele-
ments in L so as to ensure it has a minimum quality percentage, set by α . So, it is
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not a purely greedy selection which would lead to a local optimum. This procedure
is repeated until m elements have been chosen (|Sel| = m) such that Sel contains
the solution to the problem. After niter executions of the process, the arithmetic
mean of the niter solutions will typically be worse than if the solution had been
constructed by taking the element with a maximum distance over those already se-
lected, although some of the niter solutions will probably improve on this value.

For the algorithm to have a reactive behavior, the parameter α is initially set at 0.5
and then adjusted dynamically depending on the quality of the solutions obtained;
that is, if after niter/5 consecutive iterations, the best solution has not improved,
then α is increased by 0.1 (up to a maximum of 0.9).

The improvement method is based on a simplification of the local search de-
scribed in [12], which seeks to increase the efficiency of the local search. The pro-
posed method is classified as a first improvement local search which, as described
in [25], not only tends to yield better results than the best improvement strategies
but also requires much less time. It does so by factoring the contribution from each
element si in Sel; that is, for each element si ∈ Sel, its contribution di to the objective
function is as follows:

di = ∑
s j∈Sel

di j = d(si,Sel), (9.3)

with the objective function defined as

z =
1
2 ∑

si∈Sel

di. (9.4)

Subsequently, the element si∗ ∈ Sel with the lowest contribution to the current solu-
tion is selected; that is, the element si∗ ∈ Sel with the lowest value of di∗ , such that
si∗ ∈ Sel is exchanged with the first element s j ∈ S−Sel that increases the value of
the objective function (where the elements in S−Sel are examined in lexicograph-
ical order). The search procedure continues for as long as the objective function
improves by extracting the element from the set Sel which contributes the least and
inserting another from S− Sel which improves the value of the objective function.
When there is no improvement, the second least contributing element is used and so
on. This procedure is continued until no further improvement is obtained.

9.4.2 Multi-start with Memory (MSWM)

Multi-start with memory (MSWM) is the second multi-start algorithm described in
[8]. The method uses memory both in the solution construction and improvement
phases. These strategies are integrated within the tabu search methodology [18].

In each iteration, the constructive algorithm penalizes the frequency of use of
those elements which appeared in previous solutions. The procedure also rewards
those elements which previously appeared in high-quality solutions. To implement
this algorithm, the number of times element si was selected in previous constructions
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is stored in f req[i]. The maximum value of f req[i] for all i is stored in max f req.
The average value of the solutions in which element si has appeared is stored
in quality[i]. In addition, maxq stores the maximum value of quality[i] for all i.
The evaluation of each non-selected element in the current construction is modi-
fied depending on these values, thus favoring the selection of low-frequency, high-
quality elements. This is achieved by using the following expression instead of the
distance described in Equation (9.3) between an element and the set of selected
elements:

d′(si,Sel) = d(si,Sel)−β range(Sel)
f req[i]

max f req
+δ range(Sel)

quality[i]
max q

with
range(Sel) = max

s j∈S−Sel
d(s j,Sel)− min

s j∈S−Sel
d(s j,Sel),

where β and δ are parameters that quantify the contributions of the frequency pe-
nalization and the reward for quality. Both are adjusted experimentally. The purpose
of the range(Sel) parameter is to smooth the changes in the penalty function.

The set Sel is initially empty, meaning any element can be selected. The algo-
rithm starts by selecting an element from S at random and inserting it in the set Sel.
It then computes the distance d′(si,Sel) for each element si ∈ S−Sel, which in the
first construction would correspond with d(si,Sel), since f req[i] = quality[i] = 0.
The chosen element i∗ is the one given as

d′ (si∗ ,Sel) = max
si∈S

{d′(si,Sel)}.

It is then inserted in Sel, after which the frequency vector is updated. This proce-
dure is repeated until m elements have been chosen. Once a solution is constructed,
the quality vector is updated. The tabu multi-start method executes this procedure
niter times, in such a way that with each construction the distances between an
element and the set of those already selected are updated depending on its past
history.

The improvement method is a modification of the one described above with the
added feature of a short-term memory based on the exchange of an element between
Sel and S−Sel. One iteration of this algorithm consists of randomly selecting an el-
ement si ∈ Sel. The probability of selecting this element is inversely proportional
to its associated di value. That element of Sel is substituted by the first element
s j ∈ S−Sel which improves the value of the objective function. If this element does
not exist, then the one which degrades the least objective function is chosen (in such
a way that an exchange is always performed). When this exchange is carried out,
both si and s j take on a tabu status for TabuTenure iterations. Consequently, it is for-
bidden to remove element i j from set Sel (respectively, element si from set S−Sel)
for that number of iterations. The tabu search process continues until MaxIter
consecutive iterations are executed without improving the best value obtained
thus far.
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9.4.3 Experimental Results

To illustrate the behavior of the two multi-start algorithms summarized in this chap-
ter and proposed in [8], we present a comparison with two other previously reported
algorithms. Specifically, the MSWoM and MSWM algorithms are compared with
the D2 constructive algorithm, proposed in [16] along with the improvement method
described in [12], and the KLDv2 algorithm and its respective improvement proce-
dure, presented in [39], which represent the best methods for this problem. All the
algorithms were coded in C and compiled with Borland Builder 5.0, optimized for
maximum speed. The experiments were carried out on a 3-GHz Pentium IV with 1
GB RAM.

The algorithms were executed on three sets of instances:

1. Silva: 20 n×n matrices with random integer values generated from a [0,9] uni-
form distribution with n ∈ [100,500] and m ∈ [0.1n,0.4n].

2. Glover: 20 n× n matrices in which the values are the distances between each
pair of points with Euclidean coordinates randomly generated in [0,10]. These n
points have r coordinates, with r ∈ [2,21].

3. Random: 20 n× n matrices with real weights generated from a (0,10) uniform
distribution with n = 2000 and m = 200. It should be noted that these were the
largest problem instances solved in the references consulted.

Tables 9.1, 9.2, and 9.3 compare MSWoM, MSWM, and D2 + LS, and KLDv2+LS.
These tables show the average percentage deviation for each procedure with re-
spect to the best known solution (in each experiment, since the optimal values are
unknown), the number of best solutions and the number of constructions and im-
provements made by the algorithm in 10 s (stopping criterion).

Table 9.1 Constructive methods—Silva-type examples.
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. (%) 1.722 1.079 0.0377 0.0130
� Best 2 5 12 13
� Const. 5140.5 5 12 13

Table 9.2 Constructive methods—Glover-type examples.
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. (%) 0.018 0.006 0.000 0.000
� Best 16 18 20 20
� Const. 2149.6 971.0 790.4 397.5

Table 9.3 Constructive methods—Random-type examples.
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. (%) 1.270 1.219 0.204 0.099
� Best 0 0 7 15
� Const. 128.1 3.5 12 14.8
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The conclusion that may be drawn from these tables is that the proposed multi-
start methods substantially improve on previous algorithms, with regard to both the
deviation from the best known values and the number of times that value is found.
Moreover, the experiments conducted also show that the use of memory, at least
for the instances tested, leads to better results. Note that in the case of Glover-
type examples, the algorithms studied yield very similar values. This fact indicates
that these are the simplest problem instances and consequently say little about the
quality of each algorithm. At the other extreme are the Random-type examples,
where substantial improvements are obtained with the multi-start methods.

9.5 Conclusion

The objective of this study was to extend and advance the knowledge multi-start
methods. Unlike other well-known methods, these procedures have not yet become
widely implemented and tested as a metaheuristic themselves for solving complex
optimization problems. We have shown new ideas that have recently emerged within
the multi-start area that add a clear potential to this framework which has yet to be
fully explored.

Our findings disclose the fact that memory appears to play an important role
during both the constructive and the improvement phase of a multi-start procedure.
This effect may be due to the fact that the repeated application of the constructive
phase operates primarily as a diversification process, and the introduction of mem-
ory structures guides the diversification in an efficient way. On the other hand, the
benefits associated with the inclusion of memory structures in the local search (im-
provement phase) have been extensively documented in the tabu search literature.
Our results with the Maximum Diversity Problem are in line with these previous
references. The comparison between memory-based and memory-less designs pro-
vides an interesting area for future research.
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Chapter 10
Greedy Randomized Adaptive Search
Procedures: Advances, Hybridizations,
and Applications

Mauricio G.C. Resende and Celso C. Ribeiro

Abstract GRASP is a multi-start metaheuristic for combinatorial optimization
problems, in which each iteration consists basically of two phases: construction
and local search. The construction phase builds a feasible solution, whose neighbor-
hood is investigated until a local minimum is found during the local search phase.
The best overall solution is kept as the result. In this chapter, we first describe
the basic components of GRASP. Successful implementation techniques are dis-
cussed and illustrated by numerical results obtained for different applications. En-
hanced or alternative solution construction mechanisms and techniques to speed up
the search are also described: alternative randomized greedy construction schemes,
Reactive GRASP, cost perturbations, bias functions, memory and learning, local
search on partially constructed solutions, hashing, and filtering. We also discuss
implementation strategies of memory-based intensification and post-optimization
techniques using path-relinking. Hybridizations with other metaheuristics, paral-
lelization strategies, and applications are also reviewed.

10.1 Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective
function f : 2E → R. In its minimization version, we search an optimal solution
S∗ ∈ F such that f (S∗) ≤ f (S), ∀S ∈ F . The ground set E, the cost function f , and
the set of feasible solutions F are defined for each specific problem. For instance,
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in the case of the traveling salesman problem, the ground set E is that of all edges
connecting the cities to be visited, f (S) is the sum of the costs of all edges in S, and
F is formed by all edge subsets that determine a Hamiltonian cycle.

GRASP (greedy randomized adaptive search procedure) [68, 69] is a multistart
or iterative metaheuristic, in which each iteration consists of two phases: construc-
tion and local search. The construction phase builds a solution. If this solution is
not feasible, then it is necessary to apply a repair procedure to achieve feasibility.
Once a feasible solution is obtained, its neighborhood is investigated until a local
minimum is found during the local search phase. The best overall solution is kept
as the result. Extensive literature surveys are presented in [78–80, 156, 157, 160].
The pseudo-code in Figure 10.1 illustrates the main blocks of a GRASP procedure
for minimization, in which Max Iterations iterations are performed and Seed
is used as the initial seed for the pseudo-random number generator.

procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1, . . . ,Max Iterations do
3 Solution← Greedy Randomized Construction(Seed);
4 if Solution is not feasible then
5 Solution← Repair(Solution);
6 end;
7 Solution← Local Search(Solution);
8 Update Solution(Solution,Best Solution);
9 end;
10 return Best Solution;
end GRASP.

Fig. 10.1 Pseudo-code of the GRASP metaheuristic.

Figure 10.2 illustrates the construction phase with its pseudo-code. At each
iteration of this phase, let the set of candidate elements be formed by all elements
of the ground set E that can be incorporated into the partial solution being built,
without impeding the construction of a feasible solution with the remaining ground
set elements. The selection of the next element for incorporation is determined by
the evaluation of all candidate elements according to a greedy evaluation function.
This greedy function usually represents the incremental increase in the cost func-
tion due to the incorporation of this element into the solution under construction.
The evaluation of the elements by this function leads to the creation of a restricted
candidate list (RCL) formed by the best elements, i.e., those whose incorporation
to the current partial solution results in the smallest incremental costs (this is the
greedy aspect of the algorithm). The element to be incorporated into the partial so-
lution is randomly selected from those in the RCL (this is the probabilistic aspect
of the heuristic). Once the selected element is incorporated into the partial solution,
the candidate list is updated and the incremental costs are reevaluated (this is the
adaptive aspect of the heuristic). The above steps are repeated while there exists
at least one candidate element. This strategy is similar to the semi-greedy heuristic
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procedure Greedy Randomized Construction(Seed)
1 Solution← /0;
2 Initialize the set of candidate elements;
3 Evaluate the incremental costs of the candidate elements;
4 while there exists at least one candidate element do
5 Build the restricted candidate list (RCL);
6 Select an element s from the RCL at random;
7 Solution← Solution∪{s};
8 Update the set of candidate elements;
9 Reevaluate the incremental costs;
10 end;
11 return Solution;
end Greedy Randomized Construction.

Fig. 10.2 Pseudo-code of the construction phase.

proposed by Hart and Shogan [97], which is also a multi-start approach based on
greedy randomized constructions, but without local search.

Not always is a randomized greedy construction procedure able to produce a
feasible solution. In case this occurs, it may be necessary to apply a repair procedure
to achieve feasibility. Examples of repair procedures can be found in [60, 61, 129].

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usu-
ally improves the constructed solution. A local search algorithm works in an iter-
ative fashion by successively replacing the current solution by a better solution in
its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible by the repair
heuristic) and using a neighborhood N is given in Figure 10.3.

procedure Local Search(Solution)
1 while Solution is not locally optimal do
2 Find s′ ∈ N(Solution) with f (s′) < f (Solution);
3 Solution← s′;
4 end;
5 return Solution;
end Local Search.

Fig. 10.3 Pseudo-code of the local search phase.

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique, the
strategy used for the evaluation of the cost function value at the neighbors, and the
starting solution itself. The construction phase plays a very important role with re-
spect to this last aspect, building high-quality starting solutions for the local search.
Simple neighborhoods are usually used. The neighborhood search may be imple-
mented using either a best-improving or a first-improving strategy. In the case of the
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best-improving strategy, all neighbors are investigated and the current solution is
replaced by the best neighbor. In the case of a first-improving strategy, the current
solution moves to the first neighbor whose cost function value is smaller than that
of the current solution. In practice, we observed on many applications that quite
often both strategies lead to the same final solution, but in smaller computation
times when the first-improving strategy is used. We also observed that premature
convergence to a bad local minimum is more likely to occur with a best-improving
strategy.

10.2 Construction of the Restricted Candidate List

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development
can focus on implementing appropriate data structures for efficient construction and
local search algorithms. GRASP has two main parameters: one related to the stop-
ping criterion and the other to the quality of the elements in the restricted candi-
date list.

The stopping criterion used in the pseudo-code described in Figure 10.1 is
determined by the number Max Iterations of iterations. Although the prob-
ability of finding a new solution improving the incumbent (current best solution)
decreases with the number of iterations, the quality of the incumbent may only im-
prove with the latter. Since the computation time does not vary much from iteration
to iteration, the total computation time is predictable and increases linearly with the
number of iterations. Consequently, the larger the number of iterations, the larger
will be the computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss
of generality, a minimization problem as the one formulated in Section 10.1. We
denote by c(e) the incremental cost associated with the incorporation of element
e ∈ E into the solution under construction. At any GRASP iteration, let cmin and
cmax be, the smallest and the largest incremental costs, respectively.

The restricted candidate list RCL is made up of the elements e ∈ E with the best
(i.e., the smallest) incremental costs c(e). This list can be limited either by the num-
ber of elements (cardinality based) or by their quality (value based). In the first case,
it is made up of the p elements with the best incremental costs, where p is a param-
eter. In this chapter, the RCL is associated with a threshold parameter α ∈ [0,1].
The restricted candidate list is formed by all elements e ∈ E which can be inserted
into the partial solution under construction without destroying feasibility and whose
quality is superior to the threshold value, i.e., c(e) ∈ [cmin,cmin + α(cmax − cmin)].
The case α = 0 corresponds to a pure greedy algorithm, while α = 1 is equiva-
lent to a random construction. The pseudo-code in Figure 10.4 is a refinement of
the greedy randomized construction pseudo-code shown in Figure 10.2. It shows
that the parameter α controls the amounts of greediness and randomness in the
algorithm.
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procedure Greedy Randomized Construction(α,Seed)
1 Solution← /0;
2 Initialize the candidate set: C ← E;
3 Evaluate the incremental cost c(e) for all e ∈C;
4 while C �= /0 do
5 cmin ← min{c(e) | e ∈C};
6 cmax ← max{c(e) | e ∈C};
7 RCL ←{e ∈C | c(e)≤ cmin +α(cmax − cmin)};
8 Select an element s from the RCL at random;
9 Solution← Solution∪{s};
10 Update the candidate set C;
11 Reevaluate the incremental cost c(e) for all e ∈C;
12 end;
13 return Solution;
end Greedy Randomized Construction.

Fig. 10.4 Refined pseudo-code of the construction phase.

GRASP may be viewed as a repetitive sampling technique. Each iteration pro-
duces a sample solution from an unknown distribution, whose mean and variance
are functions of the restrictive nature of the RCL. For example, if the RCL is re-
stricted to a single element, then the same solution will be produced at all iterations.
The variance of the distribution will be zero and the mean will be equal to the value
of the greedy solution. If the RCL is allowed to have more elements, then many dif-
ferent solutions will be produced, implying a larger variance. Since greediness plays
a smaller role in this case, the average solution value should be worse than that of
the greedy solution. However, the value of the best solution found outperforms the
average value and very often is optimal. It is unlikely that GRASP will find an opti-
mal solution if the average solution value is high, even if there is a large variance in
the overall solution values. On the other hand, if there is little variance in the overall
solution values, it is also unlikely that GRASP will find an optimal solution, even
if the average solution is low. What often leads to good solutions are relatively low
average solution values in the presence of a relatively large variance, such as is the
case for α = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction phase
moves from more greedy to more random. This causes the average time taken by the
local search to increase. Very often, many GRASP solutions may be generated in the
same amount of time required for the local search procedure to converge from a sin-
gle random start. In these cases, the time saved by starting the local search from
good initial solutions can be used to improve solution quality by performing more
GRASP iterations.

These results are illustrated in Table 10.1 and Figure 10.5, for an instance of
the MAX-SAT problem where 1000 iterations were run. For each value of α rang-
ing from 0 (purely random construction for maximization problems) to 1 (purely
greedy construction for maximization problems), we give in Table 10.1 the average
Hamming distance between each solution built during the construction phase and
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Table 10.1 Average number of moves and local search time as a function of the RCL parameter α
for a maximization problem.

α Average distance Average moves Local search time (s) Total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235
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Fig. 10.5 Total CPU time and local search CPU time as a function of the RCL parameter α for a
maximization problem (1000 repetitions for each value of α).

the corresponding local optimum obtained after local search, the average number
of moves from the first to the latter, the local search time in seconds, and the to-
tal processing time in seconds. Figure 10.5 summarizes the values observed for the
total processing time and the local search time. We notice that both time measures
considerably decrease as α tends to 1, approaching the purely greedy choice. In
particular, we observe that the average local search time taken by α = 0 (purely ran-
dom) is approximately 2.5 times that taken in the case α = 0.9 (almost greedy). In
this example, two to three greedily constructed solutions can be investigated in the
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same time needed to apply local search to one single randomly constructed solution.
The appropriate choice of the value of the RCL parameter α is clearly critical and
relevant to achieve a good balance between computation time and solution quality.

Prais and Ribeiro [142] have shown that using a single fixed value for the value
of the RCL parameter α very often hinders finding a high-quality solution, which
could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they call Reactive GRASP, in which the parameter α is
self-tuned and its value is periodically modified accordingly to the quality of the
solutions obtained along the search. In particular, computational experiments on
the problem of traffic assignment in communication satellites [143] have shown
that Reactive GRASP found better solutions than the basic algorithm for many test
instances. These results motivated the study of the behavior of GRASP for different
strategies for the variation of the value of the RCL parameter α:

(R) α self-tuned according to the Reactive GRASP procedure;
(E) α randomly chosen from a uniform discrete probability distribution;
(H) α randomly chosen from a decreasing non-uniform discrete probability

distribution; and
(F) fixed value of α , close to the purely greedy choice.

We summarize the results obtained by the experiments reported in [141, 142].
These four strategies were incorporated into the GRASP procedures developed
for four different optimization problems: (P-1) matrix decomposition for traf-
fic assignment in communication satellite [143], (P-2) set covering [68], (P-3)
weighted MAX-SAT [153, 154], and (P-4) graph planarization [155, 161]. Let
Ψ = {α1, . . . ,αm} be the set of possible values for the parameter α for the first
three strategies. The strategy for choosing and self-tuning the value of α in the case
of the Reactive GRASP procedure (R) is described in Section 10.3. In the case of the
strategy (E) based on using the discrete uniform distribution, all choice probabilities
are equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors considered p(α = 0.1) = 0.5, p(α = 0.2) = 0.25, p(α = 0.3) = 0.125,
p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03, p(α = 0.7) = 0.01,
p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and p(α = 1.0) = 0.005. Finally, in the last
strategy (F), the value of α is fixed as recommended in the original references of
problems P-1 to P-4 cited above, where this parameter was tuned for each problem.
A subset of the literature instances was considered for each class of test problems.
The results reported in [142] are summarized in Table 10.2. For each problem, we
first list the number of instances considered. Next, for each strategy, we give the
number of times it found the best solution (hits), as well as the average CPU time
(in seconds) on an IBM 9672 model R34. The number of iterations was fixed at
10,000.

Strategy (F) presented the shortest average computation times for three out of the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
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Table 10.2 Computational results for different strategies for the variation of parameter α .

R E H F

Problem Instances Hits Time Hits Time Hits Time Hits Time
P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0
Total 124 91 85 78 59

The high number of hits observed by strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

10.3 Alternative Construction Mechanisms

A possible shortcoming of the standard GRASP framework is the independence of
its iterations, i.e., the fact that it does not learn from the search history or from
solutions found in previous iterations. This is so because the basic algorithm dis-
cards information about any solution previously encountered that does not improve
the incumbent. Information gathered from good solutions can be used to imple-
ment memory-based procedures to influence the construction phase, by modifying
the selection probabilities associated with each element of the RCL or by enforcing
specific choices. Another possible shortcoming of the greedy randomized construc-
tion is its complexity. At each step of the construction, each yet unselected candidate
element has to be evaluated by the greedy function. In cases where the difference
between the number of elements in the ground set and the number of elements that
appear in a solution large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the
construction phase of GRASP. They include random plus greedy, sampled greedy,
Reactive GRASP, cost perturbations, bias functions, memory and learning, and local
search on partially constructed solutions.

10.3.1 Random Plus Greedy and Sampled Greedy Construction

In Section 10.2, we described the semi-greedy construction scheme used to build
randomized greedy solutions that serve as starting points for local search. Two other
randomized greedy approaches were proposed in [158], with smaller worst-case
complexities than the semi-greedy algorithm.

Instead of combining greediness and randomness at each step of the construc-
tion procedure, the random plus greedy scheme applies randomness during the
first p construction steps to produce a random partial solution. Next, the algo-
rithm completes the solution with one or more pure greedy construction steps.
The resulting solution is randomized greedy. One can control the balance between
greediness and randomness in the construction by changing the value of the
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parameter p. Larger values of p are associated with solutions that are more random,
while smaller values result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness but in a different way. This procedure is
also controlled by a parameter p. At each step of the construction process, the pro-
cedure builds a restricted candidate list by sampling min{p, |C|} elements of the
candidate set C. Each element of the RCL is evaluated by the greedy function. The
element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameter p, i.e., the
number of candidate elements that are sampled. Small sample sizes lead to more
random solutions, while large sample sizes lead to greedier solutions.

10.3.2 Reactive GRASP

The first strategy to incorporate a learning mechanism in the memoryless construc-
tion phase of the basic GRASP was the Reactive GRASP procedure introduced in
Section 10.2. In this case, the value of the RCL parameter α is not fixed, but instead
is randomly selected at each iteration from a discrete set of possible values. This
selection is guided by the solution values found along the previous iterations. One
way to accomplish this is to use the rule proposed in [143]. Let Ψ = {α1, . . . ,αm}
be a set of possible values for α . The probabilities associated with the choice of
each value are all initially made equal to pi = 1/m, for i = 1, . . . ,m. Furthermore,
let z∗ be the incumbent solution and let Ai be the average value of all solutions found
using α = αi, for i = 1, . . . ,m. The selection probabilities are periodically reevalu-
ated by taking pi = qi/∑m

j=1 q j, with qi = z∗/Ai for i = 1, . . . ,m. The value of qi

will be larger for values of α = αi leading to the best solutions on average. Larger
values of qi correspond to more suitable values for the parameter α . The probabil-
ities associated with the more appropriate values will then increase when they are
reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [141–143], this approach has
been used in power system transmission network planning [41], job shop schedul-
ing [40], channel assignment in mobile phone networks [93], rural road network
development [171], capacitated location [57], strip-packing [11], and a combined
production–distribution problem [43].

10.3.3 Cost Perturbations

The idea of introducing some noise into the original costs is similar to that in the
so-called noising method of Charon and Hudry [48, 49]. It adds more flexibility
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into algorithm design and may be even more effective than the greedy randomized
construction of the basic GRASP procedure in circumstances where the construction
algorithms are not very sensitive to randomization. This is indeed the case for the
shortest path heuristic of Takahashi and Matsuyama [175], used as one of the main
building blocks of the construction phase of the hybrid GRASP procedure proposed
by Ribeiro et al. [165] for the Steiner problem in graphs. Another situation where
cost perturbations can be very effective appears when no greedy algorithm is avail-
able for straightforward randomization. This happens to be the case of the hybrid
GRASP developed by Canuto et al. [46] for the prize-collecting Steiner tree prob-
lem, which makes use of the primal–dual algorithm of Goemans and Williamson
[92] to build initial solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [46], a new solution is built at each iteration using node prizes updated by a per-
turbation function, according to the structure of the current solution. Two different
prize perturbation schemes were used. In perturbation by eliminations, the primal–
dual algorithm used in the construction phase is driven to build a new solution with-
out some of the nodes that appeared in the solution constructed in the previous
iteration. In perturbation by prize changes, some noise is introduced into the node
prizes to change the objective function, similarly to what is proposed in [48, 49].

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [165] incorporate learning mechanisms associated with inten-
sification and diversification strategies. Three distinct weight randomization meth-
ods were applied. At a given GRASP iteration, the modified weight of each edge
is randomly selected from a uniform distribution from an interval which depends
on the selected weight randomization method applied at that iteration. The differ-
ent weight randomization methods use frequency information and may be used to
enforce intensification and diversification strategies. The experimental results re-
ported in [165] show that the strategy combining these three perturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The GRASP
heuristic using this cost perturbation strategy is among the most effective heuristics
currently available for the Steiner problem in graphs.

10.3.4 Bias Functions

In the construction procedure of the basic GRASP, the next element to be introduced
in the solution is chosen at random from the candidates in the RCL. The elements of
the RCL are assigned equal probabilities of being chosen. However, any probabil-
ity distribution can be used to bias the selection toward some particular candidates.
Another construction mechanism was proposed by Bresina [44], where a family of
such probability distributions is introduced. They are based on the rank r(σ) as-
signed to each candidate element σ , according to its greedy function value. Several
bias functions were proposed, such as
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• random bias: bias(r) = 1;
• linear bias: bias(r) = 1/r;
• log bias: bias(r) = log−1(r +1);
• exponential bias: bias(r) = e−r; and
• polynomial bias of order n: bias(r) = r−n.

Let r(σ) denote the rank of element σ and let bias(r(σ)) be one of the bias
functions defined above. Once these values have been evaluated for all elements in
the candidate set C, the probability π(σ) of selecting element σ is

π(σ) =
bias(r(σ))

∑σ ′∈C bias(r(σ ′))
. (10.1)

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[40]. The standard GRASP uses a random bias function.

10.3.5 Intelligent Construction: Memory and Learning

Fleurent and Glover [82] observed that the basic GRASP does not use long-term
memory (information gathered in previous iterations) and proposed a long-term
memory scheme to address this issue in multi-start heuristics. Long-term memory
is one of the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding
the objective or changing significantly other variables. A consistent variable is one
that receives a particular value in a large portion of the elite solution set. Let I(e)
be a measure of the strong determination and consistency features of a solution
element e ∈ E. Then, I(e) becomes larger as e appears more often in the pool of
elite solutions. The intensity function I(e) is used in the construction phase as fol-
lows. Recall that c(e) is the greedy function, i.e., the incremental cost associated
with the incorporation of element e ∈ E into the solution under construction. Let
K(e) = F(c(e), I(e)) be a function of the greedy and the intensification functions.
For example, K(e) = λc(e)+ I(e). The intensification scheme biases selection from
the RCL to those elements e ∈ E with a high value of K(e) by setting its selection
probability to be p(e) = K(e)/∑s∈RCL K(s).

The function K(e) can vary with time by changing the value of λ . For example,
λ may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of λ are given by Fleurent and Glover [82] and
Binato et al. [40].
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10.3.6 POP in Construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions
at one level are likely to be found ‘close to’ good solutions at an adjacent level” [90].
Fleurent and Glover [82] provided a GRASP interpretation of this principle. They
suggested that imperfections introduced during steps of the GRASP construction
can be “ironed out” by applying local search during (and not only at the end of) the
GRASP construction phase.

Because of efficiency considerations, a practical implementation of POP to
GRASP consists in applying local search a few times during the construction phase,
but not at every construction iteration. Local search was applied by Binato et al. [40]
after 40 and 80% of the construction moves have been taken, as well as at the end
of the construction phase.

10.4 Path-Relinking

Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This tech-
nique was originally proposed by Glover [88] as an intensification strategy to ex-
plore trajectories connecting elite solutions obtained by tabu search or scatter search
[89–91].

We consider the undirected graph associated with the solution space G = (S,M),
where the nodes in S correspond to feasible solutions and the edges in M corre-
spond to moves in the neighborhood structure, i.e., (i, j) ∈ M if and only if i ∈ S,
j ∈ S, j ∈ N(i), and i ∈ N( j), where N(s) denotes the neighborhood of a node s ∈ S.
Path-relinking is usually carried out between two solutions: one is called the initial
solution, while the other is the guiding solution. One or more paths in the solution
space graph connecting these solutions are explored in the search for better solu-
tions. Local search is applied to the best solution in each of these paths, since there
is no guarantee that the latter is locally optimal.

Let s ∈ S be a node on the path between an initial solution and a guiding so-
lution g ∈ S. Not all solutions in the neighborhood N(s) are allowed to be the
next on the path from s to g. We restrict the choice only to those solutions that
are more similar to g than s. This is accomplished by selecting moves from s that
introduce attributes contained in the guiding solution g. Therefore, path-relinking
may be viewed as a strategy that seeks to incorporate attributes of high-quality so-
lutions (i.e., the guiding elite solutions), by favoring these attributes in the selected
moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Martı́ [106]. It was followed by several extensions, improvements, and successful
applications [6, 7, 18, 46, 75, 130, 146, 156, 158, 159, 163, 165, 171]. A survey of
GRASP with path-relinking can be found in [157].
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Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figure 10.6 shows time-to-target plots for
GRASP and GRASP with path-relinking implementations for four different appli-
cations. These time-to-target plots show the empirical cumulative probability distri-
butions of the time-to-target random variable when using pure GRASP and GRASP
with path-relinking, i.e., the time needed to find a solution at least as good as a
prespecified target value. For all problems, the plots show that GRASP with path-
relinking is able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of an elite set to collect a diverse pool of
high-quality solutions found during the search. This pool is limited in size, i.e., it
can have at most Max Elite solutions. Several schemes have been proposed for
the implementation of path-relinking, which may be applied as

• an intensification strategy, between each local optimum obtained after the local
search phase and one or more elite solutions;

• a post-optimization step, between every pair of elite solutions;
• an intensification strategy, periodically (after a fixed number of GRASP itera-

tions since the last intensification phase) submitting the pool of elite solutions to
an evolutionary process (see Section 10.4.7);

• a post-optimization phase, submitting the pool of elite solutions to an evolution-
ary process; or

• any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locally optimal solution
obtained by local search and each solution resulting from path-relinking is con-
sidered as a candidate to be inserted into the pool. If the pool is not yet full, the can-
didate is simply added to the pool. Otherwise, if the candidate is better than the
incumbent, it replaces an element of the pool. In case the candidate is better than
the worst element of the pool but not better than the best element, then it replaces
some element of the pool if it is sufficiently different from every other solution cur-
rently in the pool. To balance the impact on pool quality and diversity, the element
selected to be replaced is the one that is most similar to the entering solution among
those elite solutions of quality no better than the entering solution [158].

Given a local optimum s1 produced at the end of a GRASP iteration, we need
to select at random from the pool a solution s2 to be path-relinked with s1. In prin-
ciple, any pool solution could be selected. However, we may want to avoid pool
solutions that are too similar to s1, because relinking two solutions that are simi-
lar limits the scope of the path-relinking search. If the solutions are represented by
|E|-dimensional incidence vectors, we should privilege pairs of solutions for which
the Hamming distance (i.e., the number of components that take on different val-
ues in each solution) between them is high. A strategy introduced in [158] is to
select a pool element s2 at random with probability proportional to the Hamming
distance between the pool element and the local optimum s1. Since the number of
paths between two solutions grows exponentially with their Hamming distance, this
strategy favors pool elements that have a large number of paths connecting them to
and from s1.
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Fig. 10.6 Time-to-target plots comparing running times of pure GRASP and GRASP with path-
relinking on four instances of distinct problem types: three index assignment, maximum satisfia-
bility, bandwidth packing, and quadratic assignment.
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After determining which solution (s1 or s2) will be designated the initial solution
i and which will be the guiding solution g, the algorithm starts by computing the
set Δ(i,g) of components in which i and g differ. This set corresponds to the moves
which should be applied to i to reach g. Starting from the initial solution, the best
move in Δ(i,g) still not performed is applied to the current solution, until the guid-
ing solution is reached. By best move, we mean the one that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by the
path-relinking algorithm.

Several alternatives have been considered and combined in recent implementa-
tions. These include forward, backward, back and forward, mixed, truncated, greedy
randomized adaptive, and evolutionary path-relinking. All these alternatives involve
trade-offs between computation time and solution quality.

10.4.1 Forward Path-Relinking

In forward path-relinking, the GRASP local optimum is designated as the initial
solution and the pool solution is made the guiding solution. This is the original
scheme proposed by Laguna and Martı́ [106].

10.4.2 Backward Path-Relinking

In backward path-relinking, the pool solution is designated as the initial solution
and the GRASP local optimum is made the guiding one. This scheme was orig-
inally proposed in Aiex et al. [7] and Resende and Ribeiro [156]. The main ad-
vantage of this approach over forward path-relinking comes from the fact that, in
general, there are more high-quality solutions near pool elements than near GRASP
local optima. Backward path-relinking explores more thoroughly the neighborhood
around the pool solution, whereas forward path-relinking explores more the neigh-
borhood around the GRASP local optimum. Experiments in [7, 156] have shown
that backward path-relinking usually outperforms forward path-relinking.

10.4.3 Back and Forward Path-Relinking

Back and forward path-relinking combines forward and backward path-relinking.
As shown in [7, 156], it finds solutions at least as good as forward path-relinking
or backward path-relinking, but at the expense of taking about twice as long to
run. The reason that back and forward path-relinking often finds solutions of better
quality than simple backward or forward path-relinking stems from the fact that it
thoroughly explores the neighborhoods of both solutions s1 and s2.
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10.4.4 Mixed Path-Relinking

Mixed path-relinking shares the benefits of back and forward path-relinking, i.e.,
it thoroughly explores both neighborhoods, but does so in about the same time as
forward or backward path-relinking alone. This is achieved by interchanging the
roles of the initial and guiding solutions at each step of the path-relinking procedure.
Therefore, two paths are generated, one starting at s1 and the other at s2. The paths
evolve and eventually meet at some solution about half way between s1 and s2.
The joined path relinks these two solutions. Mixed path-relinking was suggested
by Glover [88] and was first implemented and tested by Ribeiro and Rosseti [163],
where it was shown to outperform forward, backward, and back and forward path-
relinking. Figure 10.7 shows a comparison of pure GRASP and four variants of
path-relinking: forward, backward, back and forward, and mixed. The time-to-target
plots show that GRASP with mixed path-relinking has the best running time profile
among the variants compared.

10.4.5 Truncated Path-Relinking

Since good-quality solutions tend to be near other good-quality solutions, one would
expect to find the best solutions with path-relinking near the initial or guiding so-
lution. Indeed, Resende et al. [151] showed that this is the case for instances of the
max–min diversity problem, as shown in Figure 10.8. In that experiment, a back
and forward path-relinking scheme was tested. The figure shows the average num-
ber of best solutions found by path-relinking taken over several instances and sev-
eral applications of path-relinking. The 0–10% range in this figure corresponds to
subpaths near the initial solutions for the forward path-relinking phase as well as
the backward phase, while the 90–100% range are subpaths near the guiding so-
lutions. As the figure indicates, exploring the subpaths near the extremities may
produce solutions about as good as those found by exploring the entire path. There
is a higher concentration of better solutions close to the initial solutions explored by
path-relinking.

Truncated path-relinking can be applied to either forward, backward, backward
and forward, or mixed path-relinking. Instead of exploring the entire path, truncated
path-relinking only explores a fraction of the path and, consequently, takes a fraction
of the time to run. Truncated path-relinking has been applied in [18, 151].

10.4.6 Greedy Randomized Adaptive Path-Relinking

In path-relinking, the best not yet performed move in set Δ(i,g) is applied to the
current solution, until the guiding solution is reached. If ties are broken determin-
istically, this strategy will always produce the same path between the initial and
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Fig. 10.7 Time-to-target plots for pure GRASP and four variants of GRASP with path-relinking
(forward, backward, back and forward, and mixed) on an instance of the two-path network design
problem.

guiding solutions. Since the number of paths connecting i and g is exponential in
|Δ(i,g)|, exploring a single path can be somewhat limiting.

Greedy randomized adaptive path-relinking, introduced by Binato et al. [39], is
a semi-greedy version of path-relinking. Instead of taking the best move in Δ(i,g)
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Fig. 10.8 Average number of best solutions found at different depths of the path from the initial
solution to the guiding solution on instances of the max–min diversity problem.

still not performed, a restricted candidate list of good moves still not performed
is set up and a randomly selected move from the latter is applied. By applying
this strategy several times between the initial and guiding solutions, several paths
can be explored. Greedy randomized adaptive path-relinking has been applied in
[18, 63, 151].

10.4.7 Evolutionary Path-Relinking

GRASP with path-relinking maintains a pool of elite solutions. Applying path-
relinking between pairs of pool solutions may result in an even better pool of solu-
tions. Aiex et al. [7] applied path-relinking between all pairs of elite solutions as an
intensification scheme to improve the quality of the pool and as a post-optimization
step. The application of path-relinking was repeated until no further improvement
was possible.

Resende and Werneck [158, 159] described an evolutionary path-relinking
scheme applied to pairs of elite solutions and used as a post-optimization step. The
pool resulting from the GRASP with path-relinking iterations is referred to as pop-
ulation P0. At step k, all pairs of elite set solutions of population Pk are relinked and
the resulting solutions made candidates for inclusion in population Pk+1 of the next
generation. The same rules for acceptance into the pool during GRASP with path-
relinking are used for acceptance into Pk+1. If the best solution in Pk+1 is better than
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the best in Pk, then k is incremented by one and the process is repeated. Resende
et al. [151] describe another way to implement evolutionary path-relinking, where
a single population is maintained. Each pair of elite solutions is relinked and the re-
sulting solution is a candidate to enter the elite set. If accepted, it replaces an existing
elite solution. The process is continued while there are still pairs of elite solutions
that have not yet been relinked.

Andrade and Resende [17] used this evolutionary scheme as an intensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions might
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.

Resende et al. [151] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max–min diversity problem.

10.5 Extensions

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [178]. A similar approach was later explored by
Ribeiro et al. [162] in their tabu search algorithm for query optimization in relational
databases. In the context of GRASP implementations, hashing tables were first used
by Martins et al. [122] in their multi-neighborhood heuristic for the Steiner problem
in graphs, to avoid the application of local search to solutions already visited in
previous iterations.

Filtering strategies have also been used to speed up the iterations of GRASP,
see, e.g., [70, 122, 143]. In these cases, local search is not applied to all solutions
obtained at the end of the construction phase, but instead only to some promising
unvisited solutions, defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (variable neighborhood search), proposed by Hansen and
Mladenović [96, 125], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, GRASP and variable neigh-
borhood strategies may be considered as complementary and potentially capable
of leading to effective hybrid methods. A first attempt in this direction was made
by Martins et al. [122]. The construction phase of their hybrid heuristic for the
Steiner problem in graphs follows the greedy randomized strategy of GRASP, while
the local search phase makes use of two different neighborhood structures as a
VND (variable neighborhood descent) procedure [96, 125]. Their heuristic was later
improved by Ribeiro et al. [165], one of the key components of the new algorithm
being another strategy for the exploration of different neighborhoods. Ribeiro and



302 Mauricio G.C. Resende and Celso C. Ribeiro

Souza [164] also combined GRASP with VND in a hybrid heuristic for the degree-
constrained minimum spanning tree problem. Festa et al. [81] studied different vari-
ants and combinations of GRASP and VNS for the MAX-CUT problem, finding
and improving the best known solutions for some open instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP heuristic is
applied to generate the initial population for a genetic algorithm. We may cite, e.g.,
the genetic algorithm of Ahuja et al. [5] for the quadratic assignment problem, which
makes use of the GRASP heuristic proposed by Li et al. [108] to create the initial
population of solutions. A similar approach was used by Armony et al. [27], with
the initial population made up of both randomly generated solutions and those built
by a GRASP algorithm.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [105]. Delmaire et al. [57] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reactive
GRASP algorithm presented in Section 10.3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previously
used. Two two-stage heuristics are proposed in [1] for solving the multi-floor facility
layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu
search to refine it.

Iterated local search (ILS) iteratively builds a sequence of solutions generated by
the repeated application of local search and perturbation of the local optima found
by local search [37]. Lourenço et al. [112] point out that ILS has been rediscovered
many times and is also known as iterated descent [35, 36], large step Markov chains
[120], iterated Lin–Kernighan [100], and chained local optimization [119]. ILS can
be hybridized with GRASP by replacing the standard local search. The GRASP
construction produces a solution which is passed to the ILS procedure. Ribeiro and
Urrutia [166] presented a hybrid GRASP with ILS heuristic for the mirrored travel-
ing tournament problem, in which perturbations are achieved by randomly generat-
ing solutions in the game rotation ejection chain [86, 87] neighborhood.

10.6 Parallel GRASP

Cung et al. [55] noted that parallel implementations of metaheuristics not only
appear as quite natural alternatives to speed up the search for good approximate
solutions but also facilitate solving larger problems and finding improved solutions,
with respect to their sequential counterparts. This is due to the partitioning of the
search space and to the increased possibilities for search intensification and diversi-
fication. As a consequence, parallelism can improve the effectiveness and robustness
of metaheuristic-based algorithms. Parallel metaheuristic-based algorithms are less
dependent on time-consuming parameter tuning experiments and their success is not
limited to a few or small classes of problems.
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Recent years have witnessed huge advances in computer technology and
communication networks. The growing computational power requirements of large-
scale applications and the high costs of developing and maintaining supercomput-
ers have fueled the drive for cheaper high-performance computing environments.
With the considerable increase in commodity computers and network performance,
cluster computing, and, more recently, grid computing [83, 84] have emerged as
real alternatives to traditional supercomputing environments for executing parallel
applications that require significant amounts of computing power.

10.6.1 Cluster Computing

A computing cluster generally consists of a fixed number of homogeneous resources,
interconnected on a single administrative network, which together execute one par-
allel application at a time.

Most parallel implementations of GRASP follow the multiple-walk independent
thread strategy, based on the distribution of the iterations over the processors
[12, 13, 70, 108, 121, 123, 128, 134, 135]. In general, each search thread has to
perform Max Iterations/p iterations, where p and Max Iterations are the
number of processors and the total number of iterations, respectively. Each pro-
cessor has a copy of the sequential algorithm, a copy of the problem data, and an
independent seed to generate its own pseudo-random number sequence. A single
global variable is required to store the best solution found over all processors. One
of the processors acts as the master, reading and distributing problem data, gen-
erating the seeds which will be used by the pseudo-random number generators at
each processor, distributing the iterations, and collecting the best solution found by
each processor. Since the iterations are completely independent and very little in-
formation is exchanged, linear speedups are easily obtained provided that no major
load imbalance problems occur. The iterations may be evenly distributed over the
processors or according to their demands, to improve load balancing.

Martins et al. [123] implemented a parallel GRASP for the Steiner problem in
graphs. Parallelization is achieved by the distribution of the iterations over the pro-
cessors, with the value of the RCL parameter α randomly chosen in the interval
[0.0,0.3] at each iteration. Almost-linear speedups were observed on benchmark
problems from the OR-Library [38] for 2, 4, 8, and 16 processors, with respect to the
sequential implementation. Path-relinking may be used in conjunction with parallel
implementations of GRASP. Almost-linear speedups were also obtained with the
multiple-walk independent-thread implementation of Aiex et al. [7] for the 3-index
assignment problem, in which each processor applies path-relinking to pairs of elite
solutions stored in a local pool.

Alvim and Ribeiro [12, 13] have shown that multiple-walk independent-thread
approaches for the parallelization of GRASP may benefit much from load bal-
ancing techniques, whenever heterogeneous processors are used or if the paral-
lel machine is simultaneously shared by several users. In this case, almost-linear
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speedups may be obtained with a heterogeneous distribution of the iterations over
the p processors in q packets, with q > p. Each processor starts performing one
packet of �Max Iterations/q� iterations and informs the master when it fin-
ishes its packet of iterations. The master stops the execution of each worker proces-
sor when there are no more iterations to be performed and collects the best solution
found. Faster or less loaded processors will perform more iterations than the oth-
ers. In the case of the parallel GRASP heuristic implemented for the problem of
traffic assignment described in [143], this dynamic load balancing strategy allowed
reductions in the elapsed times of up to 15% with respect to the times observed
for the static strategy, in which the iterations were uniformly distributed over the
processors.

For a given problem instance and a target value look4, let time-to-target be
a random variable representing the time taken by a GRASP implementation to
find a solution whose cost is at least as good as look4 for this instance. Aiex
et al. [8] have shown experimentally that this random variable fits an exponential
distribution or, in the case where the setup times are not negligible, a shifted (two-
parameter) exponential distribution. The probability density function p(t) of the
random variable time-to-target is given by p(t) = (1/λ ) ·e−t/λ in the first case or by
p(t) = (1/λ ) ·e−(t−μ)/λ in the second, with the parameters λ ∈ IR+ and μ ∈ IR+ be-
ing associated with the shape and the shift of the exponential function, respectively.

Figure 10.9 illustrates this result, depicting the superimposed empirical and the-
oretical distributions observed for one of the cases studied along the computational
experiments reported in [8], which involved 2400 runs of GRASP procedures for
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Fig. 10.9 Superimposed empirical and theoretical distributions (time-to-target solution values
measured in seconds on an SGI Challenge computer with 28 processors).
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each of five different problem types: maximum independent set [70, 150], quadratic
assignment [108, 152], graph planarization [155, 161], maximum weighted satisfia-
bility [154], and maximum covering [148].

We now assume that p identical processors are available and used to search in
parallel for the same target value look4. Let Xi be the time taken by processor
i = 1, . . . , p to find a solution whose cost is at least as good as look4 and consider
the random variable Y = min{X1, . . . ,Xp}. Since all processors are independent and
fit the same exponential distribution with average equal to λ , the random variable
Y fits an exponential distribution whose average is λ/p. Therefore, linear speedups
can be achieved if multiple identical processors are used independently to search in
parallel for the same target value.

However, we notice that if path-relinking is applied as an intensification step
at the end of each GRASP iteration (see, e.g., [46, 157]), then the iterations are
no longer independent and the memoryless characteristic of GRASP may be de-
stroyed. Consequently, the time-to-target random variable may not fit an exponen-
tial distribution. Aiex et al. [7] have shown experimentally that, even in this case,
the time-to-target random variable may be reasonably approximated by a shifted
(two-parameter) exponential distribution in some circumstances.

In the case of multiple-walk cooperative-thread strategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution
but, also, to find better solutions than independent-thread strategies. The most dif-
ficult aspect to be set up is the determination of the nature of the information to
be shared or exchanged to improve the search, without taking too much additional
memory or time to be collected. Cooperative-thread strategies may be implemented
using path-relinking, by combining elite solutions stored in a central pool with the
local optima found by each processor at the end of each GRASP iteration.

Ribeiro and Rosseti [163] applied this scheme to implement a parallel GRASP
heuristic for the two-path network design problem. One of the processors acts as the
master and handles a centralized pool of elite solutions, collecting and distributing
them upon request. The other processors act as workers and exchange the elite so-
lutions found along their search trajectories. Cooperation between the processors is
implemented via path-relinking using the centralized pool of elite solutions. In this
implementation, each worker may send up to three different solutions to the master
at each GRASP iteration: the solution obtained by local search and the solutions
obtained by forward and backward path-relinking. The performance of the parallel
implementation is quite uniform over all problem instances.

Computational results illustrating the behavior of the independent and coopera-
tive parallel implementations for an instance with 100 nodes, 4950 edges, and 1000
origin-destination pairs are presented below. The plots in Figure 10.10 display the
empirical probability distribution of the time-to-target random variable for both the
independent and the cooperative parallel implementations in C and MPI, for 200
runs on 2, 4, 8, and 16 processors of a 32-machine Linux cluster, with the look4
target value set at 683. We notice that the independent strategy performs better when
only two processors are used. This is so because the independent strategy makes use
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Fig. 10.10 Empirical distributions of the time-to-target random variable for the independent and
the cooperative parallelizations on 2, 4, 8, and 16 processors (target value set at 683).
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of the two processors to perform GRASP iterations, while the cooperative strategy
makes use of one processor to perform iterations and the other to handle the pool.
However, as the number of processors increases, the gain obtained through cooper-
ation becomes more important than the loss of one processor to perform iterations.
The cooperative implementation is already faster than the independent one for eight
processors. These plots establish the usefulness and the efficiency of the cooper-
ative implementation. Other implementations of multiple-walk cooperative-thread
GRASP heuristics can be found, e.g., in Aiex et al. [6, 7].

10.6.2 Grid Computing

Grids aim to harness available computing power from a diverse pool of resources
available over the Internet to execute a number of applications simultaneously. Grids
aggregate geographically distributed collections (or sites) of resources which typi-
cally have different owners and thus are shared between multiple users. The fact that
these resources are distributed, heterogeneous, and non-dedicated requires careful
consideration when developing grid-enabled applications and makes writing parallel
grid-aware heuristics very challenging [83].

Araújo et al. [22] described some strategies based on the master–worker paradigm
for the parallelization in grid environments of the hybrid GRASP with ILS heuris-
tic for the mirrored traveling tournament problem proposed in [166]. In the best of
these strategies, PAR-MP, the master is dedicated to managing a centralized pool of
elite solutions, including collecting and distributing them upon request. The workers
start their searches from different initial solutions and exchange elite solutions found
along their trajectories. Although it leads to improvements in the results obtained by
the sequential implementation, it was not able to make full use of the characteristics
of grid environments.

Araújo [21] proposed an autonomic hierarchical distributed strategy for the
implementation of cooperative metaheuristics in grids, in which local pools of elite
solutions internal to each site support intensification strategies, while a global pool
is used to ensure diversification. This autonomic strategy is much more adapted to
grid computations and leads to better results with respect to both the master–worker
PAR-MP parallel strategy for the mirrored traveling tournament problem and the
sequential hybrid heuristic combining GRASP and ILS for the diameter-constrained
minimum spanning tree problem [114].

Table 10.3 displays comparative results reported in [21] for large National
Football League instances of the mirrored traveling tournament problem with the
number of teams ranging from 16 to 32. For each instance, we give the costs of the
solutions obtained by the sequential implementation and by the hierarchical strategy
running on 10 processors. The running times range from approximately 3 to 10 h, as
observed for instances nfl18 and nfl24, respectively. We notice that the hierar-
chical strategy improved the solutions obtained by the sequential heuristic for eight
out of the nine test instances.
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Table 10.3 Solution costs found by the sequential and grid implementations of the hybrid GRASP
with ILS heuristic for the mirrored traveling tournament problem.

Instance Sequential Grid
nfl16 25.1289 24.9806
nfl18 29.9903 29.9112
nfl20 35.9748 35.9748
nfl22 41.8086 41.8022
nfl24 46.7135 46.5491
nfl26 55.4670 54.8643
nfl28 61.8801 60.9788
nfl30 74.0458 73.9697
nfl32 92.4559 91.4620

Figure 10.11 displays time-to-target plots obtained after 100 runs of the hierar-
chical distributed implementation of the GRASP with ILS heuristic for the diameter-
constrained minimum spanning tree on a typical instance with 100 nodes, using 15,
30, and 60 processors. These plots show that the approach scales appropriately when
the number of processors increases. We display in Table 10.4 some results obtained
by the sequential and the hierarchical distributed implementations of the GRASP
with ILS heuristic for this problem. The distributed strategy runs on 10 processors.
The sequential heuristic is allowed to run by as much as 10 times the time taken by
the grid implementation. We give the number of nodes and edges for each instance,
together with the costs of the best solutions found by each implementation and the
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Fig. 10.11 Time-to-target plots for the hierarchical distributed implementation of the GRASP with
ILS heuristic for the diameter-constrained minimum spanning tree on an instance with 100 nodes
running on a grid environment using 15, 30, and 60 processors.
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Table 10.4 Best solutions found by the sequential heuristic and by the grid implementation
running on 10 processors. The sequential heuristic is allowed to run by as much as 10 times the
time taken by the grid implementation.

Nodes Edges Grid Sequential Time (s)
60 600 738.000 740.000 2300.00
60 600 150.000 152.000 400.00
70 2415 6.981 6.983 230.00
70 2415 7.486 7.499 3000.00
70 2415 7.238 7.245 690.00

100 4950 7.757 7.835 1400.00
100 4950 7.930 7.961 5000.00
100 4950 8.176 8.204 3400.00

time given to the sequential heuristic. These results illustrate the robustness of the
hierarchical distributed strategy (due to the effectiveness of the cooperation through
the pools in two different levels), since it was able to systematically find better so-
lutions than those obtained by the sequential strategy in computation times 10 times
larger.

10.7 Applications

The first application of GRASP described in the literature concerned the set covering
problem [68]. Since then, GRASP has been applied to a wide range of problems. The
main applications areas are summarized below with links to specific references:

• routing [25, 29, 34, 45, 47, 53, 103, 110]
• logic [58, 75, 135, 149, 153, 154]
• covering and partitioning [10, 23, 26, 68, 85, 94]
• location [1, 50, 54, 57, 95, 98, 101, 132, 176, 177]
• minimum Steiner tree [46, 121–123, 165]
• optimization in graphs [2–4, 28, 70, 76, 77, 99, 104, 107, 116, 117, 122, 133,

137, 148, 150, 155, 161, 165, 173]
• assignment [5, 7, 67, 82, 108, 111, 113, 124, 127, 128, 130, 134, 136, 139, 143,

144, 152, 169]
• timetabling, scheduling, and manufacturing [6, 9, 11, 16, 18, 20, 31–33, 40, 43,

52, 56, 59, 64–66, 71, 72, 102, 105, 109, 126, 145, 166–168, 170, 179, 180]
• transportation [25, 30, 64, 67, 172]
• power systems [41, 42, 63]
• telecommunications [2, 14–16, 18, 27, 51, 101, 111, 138, 140, 143, 147, 148,

156, 174]
• graph and map drawing [54, 73, 106, 115, 116, 118, 131, 155, 161]
• biology [19, 62, 74]
• VLSI [23, 24]

The reader is referred to Festa and Resende [80] for a complete annotated
bibliography of GRASP applications.



310 Mauricio G.C. Resende and Celso C. Ribeiro

10.8 Concluding Remarks

The results described in this chapter reflect successful applications of GRASP to
a large number of classical combinatorial optimization problems, as well as to
those that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction procedures and local search methods)
that are often readily available. Contrary to what occurs with other metaheuristics,
such as tabu search or genetic algorithms, which make use of a large number of
parameters in their implementations, the basic version of GRASP requires the ad-
justment of a single parameter.

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; and path-relinking, which beyond allowing the
implementation of intensification strategies based on the memory of elite solutions
opens the way for the development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better quality solutions. To illustrate the effect of additional
extensions on solution quality, Figure 10.12 shows some results obtained for the

Fig. 10.12 Performance of GW approximation algorithm, a single GRASP iteration (GW followed
by local search), 500 iterations of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner tree problems.
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prize-collecting Steiner tree problem, as discussed in [46]. We consider the 40
instances of series C. The figure shows results for 11 different levels of solution
accuracy (varying from optimal to 10% from optimal). For each level of solution
accuracy, the figure shows the number of instances for which each component
found solutions within the accuracy level. The components were the primal–dual
constructive algorithm (GW) of Goemans and Williamson [92], GW followed by
local search (GW+LS), corresponding to the first GRASP iteration, 500 iterations of
GRASP with path-relinking (GRASP+PR), and the complete algorithm, using vari-
able neighborhood search as a post-optimization procedure (GRASP+PR+VNS).
For example, we observe that the number of optimal solutions found goes from 6,
using only the constructive algorithm, to a total of 36, using the complete algorithm
described in [46]. The largest relative deviation with respect to the optimal value
decreases from 36.4% in the first case to only 1.1% for the complete algorithm. It is
easy to notice the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups
both in independent and in cooperative strategies. Cooperative strategies are based
on the collaboration between processors through path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in less
computation time.
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21. Araújo, A.P.F.: Autonomic Parallelization of Metaheuristics in Grid Environments. PhD the-
sis, Department of Computer Science, Catholic University of Rio de Janeiro [In Portuguese]
(2008)
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Chapter 11
Guided Local Search

Christos Voudouris, Edward P.K. Tsang and Abdullah Alsheddy

Abstract Combinatorial explosion is a well-known phenomenon that prevents
complete algorithms from solving many real-life combinatorial optimization prob-
lems. In many situations, heuristic search methods are needed. This chapter describes
the principles of Guided Local Search (GLS) and Fast Local Search (FLS) and sur-
veys their applications. GLS is a penalty-based metaheuristic algorithm that sits on
top of other local search algorithms, with the aim to improve their efficiency and
robustness. FLS is a way of reducing the size of the neighbourhood to improve
the efficiency of local search. The chapter also provides guidance for implement-
ing and using GLS and FLS. Four problems, representative of general application
categories, are examined with detailed information provided on how to build a GLS-
based method in each case.

11.1 Introduction

Many practical problems are NP-hard in nature, which means complete, construc-
tive search is unlikely to satisfy our computational demand. For example, suppose
we have to schedule 30 jobs on 10 machines, satisfying various production con-
straints. The search space has 1030 leaf nodes. Let us assume that we use a very
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clever backtracking algorithm that explores only one in every 1010 leaf nodes. Let us
generously assume that our implementation examines 1010 nodes per second (with
today’s hardware, even the most naı̈ve backtracking algorithm should be expected
to examine only 105 nodes per second). This still leaves us with approximately
300 years to solve the problem, in the worst case. Many real-life problems cannot
be realistically and reliably solved by complete search. This motivates the develop-
ment of local search or heuristic methods.

In this chapter, we describe GLS, a general metaheuristic algorithm and its
applications. GLS sits on top of other heuristic methods with the aim to improve
their efficiency or robustness. GLS has been applied to a non-trivial number of prob-
lems and found to be efficient and effective. It is relatively simple to implement and
apply, with only a few parameters to tune.

The rest of this chapter will be divided into two parts: the first part describes the
GLS and surveys its variants. The second part provides guidelines on how to use
GLS in practical applications.

Part I: Survey of Guided Local Search

11.2 Background

Local search (LS) is the basis of most heuristic search methods. It searches in the
space of candidate solutions, such as the assignment of one machine to each job
in the above scheduling example. The solution representation issue is significant,
though it is not the subject of our discussion here. Starting from a (possibly ran-
domly generated) candidate solution, LS moves to a “neighbour” that is “better”
than the current candidate solution according to the objective function. LS stops
when all neighbours are inferior to the current solution.

LS can find good solutions very quickly. However, it can be trapped in local
optima—positions in the search space that are better than all their neighbours,
but not necessarily representing the best possible solution (the global optimum).
To improve the effectiveness of LS, various techniques have been introduced over
the years. Simulated Annealing (SA), Tabu Search (TS) and Guided Local Search
(GLS) all attempt to help LS escape local optimum. This chapter focuses on
GLS [81].

GLS can be seen as a generalization of techniques such as GENET [15, 78, 79,
87, 88] and the min-conflicts heuristic repair method by Minton et al. [56] devel-
oped for constraint satisfaction problems. GLS also relates to ideas from the area of
Search Theory on how to distribute the search effort (e.g. see [41, 68]).

The principles of GLS can be summarized as follows. As a metaheuristic method,
GLS sits on top of LS algorithms. To apply GLS, one defines a set of features for
the candidate solutions. When LS is trapped in local optima, certain features are
selected and penalized. LS searches the solution space using the objective function
augmented by the accumulated penalties. The novelty of GLS is in the way that
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it selects features to penalize. GLS effectively distributes the search effort in the
search space, favouring promising areas.

11.3 Guided Local Search

As mentioned earlier, GLS augments the given objective function with penalties.
To apply GLS, one needs to define features for the problem. For example, in the
travelling salesman problem [21], a feature could be whether the candidate tour
travels immediately from city A to city B. GLS associates a cost and a penalty with
each feature. The costs can often be defined by taking the terms and their coefficients
from the objective function. For example, in the travelling salesman problem, the
cost of the above feature can simply be the distance between cities A and B. The
penalties are initialized to 0 and will only be increased when the local search reaches
a local optimum. Given an objective function g that maps every candidate solution s
to a numerical value, GLS defines a function h that will be used by LS (replacing g):

h(s) = g(s)+λ × ∑
i is a feature

(pi × Ii(s)), (11.1)

where s is a candidate solution, λ is a parameter of the GLS algorithm, i ranges over
the features, pi is the penalty for feature i (all pi’s are initialized to 0) and Ii is an
indication of whether s exhibits feature i:

Ii(s) = 1 if s exhibits feature i; 0 otherwise. (11.2)

Sitting on top of local search algorithms, GLS helps them to escape local optima
in the following way. Whenever the local search algorithm settles in a local opti-
mum, GLS augments the cost function by adding penalties to selected features. The
novelty of GLS is mainly in the way that it selects features to penalize. The intention
is to penalize “unfavourable features” or features that “matter most” when a local
search settles in a local optimum. A feature with high cost has more impact on the
overall cost. Another factor that should be considered is the current penalty value of
that feature. The utility of penalizing feature i, utili, under a local optimum, s∗, is
defined as follows:

utili(s∗) = Ii(s∗)× ci

1+ pi
(11.3)

where ci is the cost and pi is the current penalty value of feature i. In other words,
if a feature is not exhibited in the local optimum (indicated by Ii), then the utility of
penalizing it is 0. The higher the cost of this feature (the greater ci), the greater the
utility of penalizing it. Besides, the larger the number of times it has been penalized
(the greater pi), the lower the utility of penalizing it again. In a local optimum, the
feature with the greatest util value will be penalized. When a feature is penalized, its
penalty value is always increased by 1. The scaling of the penalty is adjusted by λ .
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By taking the cost and current penalty into consideration in selecting the feature
to penalize, GLS focuses its search effort on more promising areas of the search
space: areas that contain candidate solutions that exhibit “good features”, i.e. fea-
tures involving lower cost. On the other hand, penalties help to prevent the search
from directing all effort to any particular region of the search space.

Naturally the choice of the features, their costs and the setting of λ may affect the
efficiency of a search. Experience shows that the features and their costs normally
come directly from the objective function. In many problems, the performance of
GLS is not too sensitive to the value λ . It means that not too much effort is required
to apply GLS to a new problem. In certain problems, one needs expertise in selecting
the features and the λ parameter. Research aiming to reduce the sensitivity of the λ
parameter in such cases is reported in [55].

11.4 Implementing Guided Local Search

A local search procedure for the particular problem is required for the algorithm to
be implemented. Guided Local Search is repeatedly using this procedure to optimize
the augmented objective function of the problem. The augmented objective function
is modified each time a local minimum is reached by increasing the penalties of one
or more of the features present in the local minimum. These features are selected by
using the utility function (11.3). The pseudo-code for implementing a Guided Local
Search method is presented and explained in Section 11.4.1.

11.4.1 Pseudo-code for Guided Local Search

The pseudo-code for the Guided Local Search procedure is the following:

procedure GuidedLocalSeach(p, g, λ , [I1, . . . , IM], [c1, . . . ,cM], M)
begin

k ← 0;
s0 ←ConstructionMethod(p);
/* set all penalties to 0 */
for i ← 1 until M do

pi ← 0;
/* define the augmented objective function */
h ← g+λ ∗∑ pi ∗ Ii;
while StoppingCriterion do
begin

sk+1 ← ImprovementMethod(sk,h);
/* compute the utility of features */
for i ← 1 until M do
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utili ← Ii(sk+1)∗ ci/(1+ pi);
/* penalize features with maximum utility */
for each i such that utili is maximum do

pi ← pi +1;
k ← k +1;

end
s∗ ← best solution found with respect to objective function g;
return s∗;

end

where p is the problem, g is the objective function, h is the augmented objec-
tive function, λ is a parameter, Ii is the indicator function of feature i, ci is the
cost of feature i, M is the number of features, pi is the penalty of feature i,
ConstructionMethod(p) is the method for constructing an initial solution for prob-
lem p and ImprovementMethod(sk,h) is the method for improving solution sk ac-
cording to the augmented objective function h.

11.4.2 Guidelines for Implementing the GLS Pseudo-code

To understand the pseudo-code, let us first explain the methods for constructing and
improving a solution, as they are both prerequisites for building a GLS algorithm.

11.4.2.1 Construction Method

As with other metaheuristics, GLS requires a construction method to generate an
initial (starting) solution for the problem. In the pseudo-code, this is denoted by
ConstructionMethod. This method can generate a random solution or a heuristic
solution based on some known technique for constructing solutions for the particular
problem. GLS is not very sensitive to the starting solution given that sufficient time
is allocated to the algorithm to explore the search space of the problem.

11.4.2.2 Improvement Method

A method for improving the solution is also required. In the pseudo-code, this
is denoted by ImprovementMethod. This method can be a simple local search
algorithm or a more sophisticated one such as Variable neighbourhood Search [30],
Variable Depth Search [50], Ejection Chains [25] or combinations of local search
methods with exact search algorithms [60].

It is not essential for the improvement method to generate high-quality local min-
ima. Experiments with GLS and various local heuristics reported in [85] have shown
that high-quality local minima take time to produce, resulting in less intervention
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by GLS in the overall allocated search time. This may sometimes lead to inferior
results compared to a simple but more computationally efficient improvement
method.

Note also that the improvement method is using the augmented objective function
instead of the original one.

11.4.2.3 Indicator Functions and Feature Penalization

Given that a construction and an improvement method are available for the problem,
the rest of the pseudo-code is straightforward to apply. The penalties of features are
initialized to zero and they are incremented for features that maximize the utility
formula, after each call to the improvement method.

The indicator functions Ii for the features rarely need to be implemented. Look-
ing at the values of the decision variables can directly identify the features present
in a local minimum. When this is not possible, data structures with constant time
deletion/addition operations (e.g. based on double-linked lists) can incrementally
maintain the set of features present in the working solution, thus avoiding the need
for an expensive computation when GLS reaches a local minimum.

The selection of features to penalize can be efficiently implemented by using the
same loop for computing the utility formula for features present in the local mini-
mum (the other features can be ignored) and also placing features with maximum
utility in a vector. With a second loop, the features with maximum utility contained
in this vector have their penalties incremented by one.

11.4.2.4 Parameter λ

Parameter λ is the only parameter of the GLS method (at least in its basic version)
and in general is instance dependent. Fortunately, for several problems, it has been
observed that good values for λ can be found by dividing the value of the objective
function of a local minimum with the number of features present in it. In these prob-
lems, λ is dynamically computed after the first local minimum and before penalties
are applied to features for the first time. The user only provides parameter α , which
is relatively instance independent. The recommended formula for λ as a function of
α is the following:

λ = α ∗g(x∗)/(no. of features present in x∗), (11.4)

where g is the objective function of the problem and x∗ is a local minimum. Tuning
α can result in λ values, which work for many instances of a problem class.

Another benefit from using α is that, once tuned, it can be fixed in industrial-
ized versions of the software, resulting in ready-to-use GLS algorithms for the end
user.
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11.4.2.5 Augmented Objective Function and Move Evaluations

With regard to the objective function and the augmented objective function, the
program should keep track of the actual objective value in all operations related to
storing the best solution or finding a new best solution. Keeping track of the value
of the augmented objective value (e.g. after adding the penalties) is not necessary
since local search methods will be looking only at the differences in the augmented
objective value when evaluating moves.

However, the move evaluation mechanism needs to be revised to work efficiently
with the augmented objective function. Normally, the move evaluation mechanism
is not directly evaluating the objective value of the new solution generated by the
move. Instead, it calculates the difference Δg in the objective function. This dif-
ference should be combined with the difference in the amount of penalties. This
can be easily done and has no significant impact on the time needed to evaluate a
move. In particular, we have to take into account only features whose state changes
(being deleted or added). The penalties of the features deleted are summed together.
The same is done for the penalties of added features. The change in the amount of
penalties due to the move is then simply given by the difference:

∑
over all features j added

p j − ∑
over all features k deleted

pk, (11.5)

which then has to be multiplied by λ and added to Δg.
Another minor improvement is to monitor the actual objective value not only for

the solutions accepted by the local search but also for those evaluated. Since local
search is using the augmented objective function, a move that generates a new best
solution may be missed. From our experience, this modification does not improve
significantly the performance of the algorithm although it can be useful when GLS
is used to find new best known solutions to hard benchmark instances.

11.4.2.6 Stopping Criterion

There are many choices possible for the StoppingCritetion. Since GLS is not
trapped in local minima, it is not clear when to stop the algorithm. Like other meta-
heuristics, we usually resort to a measure related to the length of the search process.
For example, we may choose to set a limit on the number of moves performed,
the number of moves evaluated or the CPU time spent by the algorithm. If a lower
bound is known, we can utilize it as a stopping criterion by setting the gap to be
achieved between the best known solution and the lower bound. Criteria can also be
combined to allow for a more flexible way to stop the GLS method.

In the next section, we look at the combination of Guided Local Search with Fast
Local Search, a generalized algorithm for speeding up local search, resulting in the
Guided Fast Local Search method. Guided Fast Local Search addresses the issue
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of slow local search procedures and it is particularly useful when applying GLS to
tackle large-scale problem instances.

11.5 Guided Fast Local Search

One factor which affects the efficiency of a local search algorithm is the size of
the neighbourhood. If too many neighbours are considered, then the search could
be very costly. This is especially true if the search takes many steps to reach a
local optimum and/or each evaluation of the objective function requires a significant
amount of computation. Bentley presented in [5] the approximate 2-Opt method to
reduce the neighbourhood of 2-Opt in the TSP. We have generalized this method to a
method called Fast Local Search (FLS). The principle is to use heuristics to identify
(and ignore) neighbours that are unlikely to lead to improving moves in order to
enhance the efficiency of a search.

The neighbourhood chosen for the problem is broken down into a number of
small sub-neighbourhoods and an activation bit is attached to each one of them. The
idea is to scan continuously the sub-neighbourhoods in a given order, searching only
those with the activation bit set to 1. These sub-neighbourhoods are called active
sub-neighbourhoods. Sub-neighbourhoods with the bit set to 0 are called inactive
sub-neighbourhoods and they are not being searched. The neighbourhood search
process does not restart whenever we find a better solution but it continues with the
next sub-neighbourhood in the given order. This order may be static or dynamic (i.e.
change as a result of the moves performed).

Initially, all sub-neighbourhoods are active. If a sub-neighbourhood is examined
and does not contain any improving moves then it becomes inactive. Otherwise, it
remains active and the improving move found is performed. Depending on the move
performed, a number of other sub-neighbourhoods are also activated. In particular,
we activate all the sub-neighbourhoods where we expect other improving moves to
occur as a result of the move just performed. As the solution improves the process
dies out with fewer and fewer sub-neighbourhoods being active until all the sub-
neighbourhood bits turn to 0. The solution formed up to that point is returned as an
approximate local optimum.

The overall procedure could be many times faster than conventional local search.
The bit setting scheme encourages chains of moves that improve specific parts of
the overall solution. As the solution becomes locally better the process is settling
down, examining fewer moves and saving enormous amounts of time which would
otherwise be spent on examining predominantly bad moves.

Although fast local search procedures do not generally find very good solutions,
when they are combined with GLS they become very powerful optimization tools.
Combining GLS with FLS is straightforward. The key idea is to associate features
to sub-neighbourhoods. The associations to be made are such that for each feature
we know which sub-neighbourhoods contain moves that have an immediate effect
upon the state of the feature (i.e. moves that remove the feature from the solution).
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By reducing the size of the neighbourhood, one may significantly reduce the
amount of computation involved in each local search iteration. The idea is to enable
more local search iterations in a fixed amount of time. The danger of ignoring certain
neighbours is that some improvements may be missed. The hope is that the gain in
“search speed” outweighs the loss in “search quality”.

11.6 Implementing Guided Fast Local Search

Guided Fast Local Search (GFLS) is more sophisticated than the basic GLS algo-
rithm as it uses a number of sub-neighbourhoods, which are enabled/disabled during
the search process. The main advantage of GFLS lies in its ability to focus the search
after the penalties of features are increased. This can dramatically shorten the time
required by an improvement method to re-optimize the solution each time the aug-
mented objective function is modified.

In the following sections, we provide the pseudo-code for the method and also
some suggestions on how to achieve an efficient implementation. We first look at the
pseudo-code for Fast Local Search, which is part of the overall Guided Fast Local
Search algorithm.

11.6.1 Pseudo-code for Fast Local Search

The pseudo-code for Fast Local Search is the following:

procedure FastLocalSeach(s, h, [bit1, . . . ,bitL], L)
begin

while ∃bit, bit = 1 do
/* i.e. while active sub-neighbourhood exists */

for i ← 1 until L do
begin

if biti = 1 then
/* search sub-neighbourhood i */
begin

Moves ← MovesForSubneighbourhood(i);
for each move m in Moves do
begin

s′ ← m(s);
/* s′ is the result of move m */
if h(s′) < h(s) then
/* minimization case is assumed here */
begin

/* spread activation */
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ActivateSet ←
SubneighbourhoodsForMove(m);
for each sub-neighbourhood j in
ActivateSet do

bit j ← 1;
s ← s′;
goto ImprovingMoveFound

end
end
biti ← 0; /* no improving move found */

end
ImprovingMoveFound:

continue;
end

return s;
end

where s is the solution, h is the augmented objective function, L is the number of
sub-neighbourhoods, biti is the activation bit for sub-neighbourhood i, MovesFor-
Subneighbourhood(i) is the method which returns the set of moves contained in sub-
neighbourhood i and SubneighbourhoodsForMove(m) is the method which returns
the set of sub-neighbourhoods to activate when move m is performed.

11.6.2 Guidelines for Implementing the FLS Pseudo-code

As explained in Section 11.5, the problem’s neighbourhood is broken down into
a number of sub-neighbourhoods and an activation bit is attached to each one
of them. The idea is to examine sub-neighbourhoods in a given order, search-
ing only those with the activation bit set to 1. The neighbourhood search pro-
cess does not restart whenever we find a better solution but it continues with the
next sub-neighbourhood in the given order. The pseudo-code given above is flex-
ible since it does not specify which bits are initially switched on or off, some-
thing which is an input to the procedure. This allows the procedure to be focused
to certain sub-neighbourhoods and not the whole neighbourhood, which may be a
large one.

The procedure has two points that need to be customized. The first is the break-
ing down of the neighbourhood into sub-neighbourhoods (MovesForSubneighbor-
hood method in pseudo-code). The second is the mapping from moves to sub-
neighbourhoods for spreading activation (SubneighbourhoodsForMove method in
pseudo-code). Both points are strongly dependent on the move operator used.

In general, the move operator depends on the solution representation. Fortunately,
several problems share the same solution representation which is typically based
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on some well-known simple or composite combinatorial structure (e.g. selection,
permutation, partition, composition, path, cyclic path, tree and graph). This allows
us to use the same move operators for many different problems (e.g. 1-Opt, 2-Opt,
Swaps and Insertions).

11.6.2.1 Breaking Down the Neighbourhood into Sub-neighbourhoods

The method for mapping sub-neighbourhoods to moves, which is denoted in the
pseudo-code by SubneighbourhoodToMoves, can be defined by looking at the im-
plementation of a typical local search procedure for the problem. This implemen-
tation, at its core, will usually contain a number of nested for-loops for generating
all possible move combinations. The variable in the outer-most loop in the move
generation code can be used to define the sub-neighbourhoods. The moves in each
sub-neighbourhood will be those generated by the inner loops for the particular sub-
neighbourhood index value at the outer-most loop.

In general, the sub-neighbourhoods can be overlapping. Fast local search is usu-
ally examining a limited number of moves compared to exhaustive neighbourhood
search methods and therefore duplication of moves is not a problem. Moreover,
this can be desirable sometimes to give a greater range to each sub-neighbourhood.
Since not all sub-neighbourhoods are active in the same iteration, if there is no over-
lapping, some improving moves may be missed.

11.6.2.2 Spreading Activation When Moves Are Executed

The method for spreading activation, denoted by SubneighbourhoodsForMove,
returns a set of sub-neighbourhoods to activate after a move is performed. The lower
bound for this set is the sub-neighbourhood where the move originated. The upper
bound (although not useful) is all the sub-neighbourhoods in the problem.

A way to define this method is to look at the particular move operator used.
Moves will affect part of the solution directly or indirectly while leaving other parts
unaffected. If a sub-neighbourhood contains affected parts then it needs to be acti-
vated since an opportunity could arise there for an improving move as a result of the
original move performed.

The Fast Local Search loop is settling down in a local minimum when all the
bits of sub-neighbourhoods turn to zero (i.e. no improving move can be found in
any of the sub-neighbourhoods). Fast Local Search in that respect is similar to other
local search procedures. The main differences are that the method can be focused
to search particular parts of the overall neighbourhood and second, it is working
in an opportunistic way looking at parts of the solution which are likely to con-
tain improving moves rather than the whole solution. In the next section, we look
at Guided Fast Local Search, which uses Fast Local Search as its improvement
method.
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11.6.3 Pseudo-code for Guided Fast Local Search

The pseudo-code for Guided Fast Local Search is given below:

procedure GuidedFastLocalSearch(p, g, λ , [I1, . . . , IM], [c1, . . . ,cM], M, L)
begin

k ← 0;
s0 ←ConstructionMethod(p);
/* set all penalties to 0 */
for i ← 1 until M do

pi ← 0;
/* set all sub-neighbourhoods to the active state */
for i ← 1 until L do

biti ← 1;
/* define the augmented objective function */
h ← g+λ ∗∑ pi ∗ Ii;
while StoppingCriterion do
begin

sk+1 ← FastLocalSearch(sk,h, [bit1, . . . ,bitL],L);
/* compute the utility of features */
for i ← 1 until M do

utili ← Ii(sk+1)∗ ci/(1+ pi);
/* penalize features with maximum utility */
for each i such that utili is maximum do
begin

pi ← pi +1;
/* activate sub-neighbourhoods related
to penalized feature i */
ActivateSet ← SubneighbourhoodsForFeature(i);
for each sub-neighbourhood j in ActivateSet do

bit j ← 1;
end
k ← k +1;

end
s∗ ← best solution found with respect to objective function g;
return s∗;

end

where FastLocalSearch(sk,h, [bit1, . . . ,bitL],L) is the fast local search method as
described in Section 11.6.1, SubneighbourhoodsForFeature(i) is the method which
returns the set of sub-neighbourhoods to activate when feature i is penalized, and
the rest of the definitions are the same than those used in the pseudo-code for GLS
described in Section 11.4.1.
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11.6.4 Guidelines for Implementing the GFLS Pseudo-code

This pseudo-code is similar to that of Guided Local Search explained in
Section 11.4. All differences relate to the manipulation of activation bits for the pur-
pose of focusing Fast Local Search. These bits are initialized to 1. As a result, the
first call to Fast Local Search is examining the whole neighbourhood for improving
moves.

Subsequent calls to Fast Local Search examine only part of the neighbourhood
and in particular all the sub-neighbourhoods that relate to the features penalized by
GLS.

11.6.4.1 Identifying Sub-neighbourhoods to Activate When Features
Are Penalized

Identifying the sub-neighbourhoods that are related to a penalized feature is the task
of SubneighbourhoodsForFeature method. The role of this method is similar to that
of SubneighbourhoodsForMove method in Fast Local Search (see Section 11.6.2.2).

The SubneighbourhoodsForFeature method is usually defined based on an anal-
ysis of the move operator. After the application of penalties, we are looking for
moves which remove or have the potential to remove penalized features from the
solution. The sub-neighbourhoods, which contain such moves, are prime candidates
for activation. Specific examples will be given later in the chapter and in the context
of GLS applications.

Guided Fast Local Search is much faster than basic Guided Local Search espe-
cially in large problem instances when repeatedly and exhaustively searching the
whole neighbourhood is computationally expensive.

11.7 GLS and Other Metaheuristics

GLS is closely related to other heuristic and metaheuristic methods. In this section,
we shall discuss the relationship between GLS and Tabu Search (TS) and GLS and
Genetic Algorithms (GA) and also review the different hybrids and extensions of
GLS and FLS that have been developed in recent years.

11.7.1 GLS and Tabu Search

GLS is closely related to Tabu Search (TS). For example, penalties in GLS can
be seen as soft taboos in TS that guide LS away from local minima. There are
many ways to adopt TS ideas in GLS. For example, taboo lists and aspiration
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ideas have been used in later versions of GLS. Penalties augment the original
objective function. They help the local search to escape local optima. However,
if too many penalties are built up during the search, the local search could be mis-
guided. Resembling the tabu lists idea, a limited number of penalties are used when
GLS is applied to the radio link frequency assignment problem [58]. When the list
is full, old penalties are overwritten [83].

In another GLS work, aspiration (inspired by TS) is used to favour promising
moves [55].

11.7.2 GLS and Genetic Algorithms

As a metaheuristic method, GLS can also sit on top of genetic algorithms (GA)
[27, 33]. This has been demonstrated in Guided Genetic Algorithm (GGA) [44–47].

GGA is a hybrid of GA and GLS. It is designed to extend the domain of both
GA and GLS. One major objective is to further improve the robustness of GLS.
It can be seen as a GA with GLS to bring it out of local optima: if no progress
has been made after a specific number of iterations (this number is a parameter
of GGA), GLS modifies the fitness function (which is the objective function) by
means of penalties, using the criteria defined in Equation (11.3). GA will then use
the modified fitness function in future generations. The penalties are also used to
bias crossover and mutation in GA—genes that contribute more to the penalties are
more likely to changed by these two GA operators. This allows GGA to be more
focussed in its search.

On the other hand, GGA can roughly be seen as a number of GLSs running in
parallel from different starting points and exchanging material in a GA manner. The
difference is that only one set of penalties is used in GGA whereas parallel GLSs
could have used one independent set of penalties per run. Besides, learning in GGA
is more selective than parallel GLS: the updating of penalties is only based on the
best chromosome found at the point of penalization.

11.7.3 GLS Hybrids

Being simple and general, GLS ideas can easily be combined with other techniques.
GLS has been hybridized with several metaheuristics creating efficient frameworks
which were successfully applied to several applications. Below, we review and com-
ment on some of these hybrids of GLS.

GLS was hybridized with two major Evolutionary Computation (EC) techniques,
namely Estimate Distribution Algorithm (EDA) and Evolution Strategy (ES). The
hybrid of GLS with EDA was introduced by Zhang et al. [92]. They proposed a
framework that incorporates GLS within EDA, in which GLS is applied to each
solution in the population of EDA. The framework is successfully applied to the
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Quadratic Assignment Problem. The results show the superiority of EDA/GLS over
GLS alone.

The hybrid of GLS with ES was first studied by Mester and Braysy [52]. The
resulting framework combines GLS and ES into an iterative two-stage procedure.
GLS is used in both phases to improve the local search in the first stage and to
regulate the objective function and the neighbourhood of the modified ES in the
second stage. The principle of FLS is also incorporated into the idea of Penalty
Variable Neighbourhood in which the neighbourhood considered by the local search
is limited to a small set of the neighbours of the penalized feature.

GLS has also been hybridized with Variable Neighbourhood Search (VNS) and
Large Neighbourhood Search (LNS). Kytojoki et al. [42] combine GLS with VNS in
an efficient variable neighbourhood search heuristic, named Guided VNS (GVNS),
which was applied to the vehicle routing problem. The addition to VNS is the use of
GLS to escape local minima. The idea of threshold value borrowed from Threshold
Accepting (TA) is used as a termination condition for every GLS stage. The hybrid
of GLS with LNS is introduced in [89]. In the proposed framework, LNS is applied
when the GLS cannot escape a local optimum after a number of penalizations, with
the aim of increasing the diversity and exploring more promising parts of the search
space. The effectiveness of this hybrid was demonstrated through high-quality re-
sults obtained in a planning optimization problem.

Guided Tabu Search (GTS) is a hybrid metaheuristic which combines GLS with
TS proposed by Tarantilis et al. [73, 74] to solve the vehicle routing problem with
heterogeneous fleet, and then extended to solve another variant of the same general
problem. The basic idea is to control the exploration of TS by a guiding mechanism,
based on GLS, that continuously modifies the objective function of the problem. The
authors propose a new arc (as a feature) selection strategy which consider the rela-
tive arc length according to the rest of customers (di, j/avgi, j rather than di, j, where
avgi, j is the average value of all outgoing arcs from i and j). They argue that this
would lead to a more balanced arc selection, which should improve upon the most
frequently employed strategy based on di, j only. Experimental results confirm the
effectiveness of GTS, producing new best results for several benchmarks. De Backer
et al. [3] also proposed a Guided Tabu Search hybrid in their work on the VRP.

GLS has been also successfully hybridized with Ant Colony Optimization (ACO)
by Hani et al. [29]. This hybrid algorithm was applied to the facility layout problem,
a variant of the Quadratic Assignment Problem (QAP). The basic idea is simple:
GLS sits on top of the basic LS in the ACO.

The hybridization of GLS and Constraint Programming (CP) was introduced by
Gomes et al. [28]. This method, named Guided Constraint Search, borrows ideas
from GLS to improve the efficiency of pure CP methods. The basic principle is to
use a fitness function to choose at each iteration only the N most promising values
of each variable’s domain, defining a sub-space for the CP method. The selection
strategy is inspired from GLS; for each pair, a utility function, penalty parameter
and cost are defined. At each iteration, those features (variable/value pairs) which
were considered but did not belong to a new best solution are deemed bad features
and are penalized.
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11.7.4 Variations and Extensions

The success of GLS motivated researchers to invent new algorithms inspired from
GLS, borrowing the ideas of features, penalties and utilities. Below, we briefly de-
scribe such GLS-inspired algorithms.

Partially based on GLS, which is a centralized algorithm, Basharu et al. [4] intro-
duced an improved version for solving distributed constraint satisfaction problems.
The Distributed Guided Local Search (Dis-GLS) incorporates additional heuristics
to enhance its efficiency in distributed scenarios. The algorithm has been success-
fully applied to the distributed version of the Graph Colouring problem producing
promising results compared to other distributed search algorithms.

Hifi et al. [32] introduced a variant of GLS by proposing a new penalization
strategy. The principle is to distinguish two phases in the search process, namely the
penalty and normal phases. The search process switches between the two phases in
order to either escape local optima or diversify the search to explore another feasible
space. The computational results confirm the high quality of solutions obtained by
the proposed variant.

Tamura et al. [72] propose an improved version of GLS, named the Objective
function Adjustment (OA) algorithm which incorporates the idea of features (from
GLS) alongside the concept of energy function.

Part II: Applications of Guided Local Search

11.8 Overview of Applications

GLS and its descendents have been applied to a number of non-trivial problems and
have achieved state-of-the-art results.

11.8.1 Radio Link Frequency Assignment Problem

In the radio link frequency assignment problem (RLFAP), the task is to assign
available frequencies to communication channels satisfying constraints that prevent
interference [7]. In some RLFAPs, the goal is to minimize the number of frequen-
cies used. Bouju et al. [7] is an early work that applied GENET to radio length
frequency assignment. For the CALMA set of benchmark problems, which have
been widely used, GLS+FLS reported the best results compared to all work pub-
lished previously [84]. In the NATO Symposium on RLFAP in Denmark, 1998,
GGA was shown to improve the robustness of GLS [46]. In the same symposium,
new and significantly improved results by GLS were reported [83]. At the time, GLS
and GGA held some of the best known results in the CALMA set of benchmark
problems.
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11.8.2 Workforce Scheduling Problem

In the workforce scheduling problem (WSP) [2], the task is to assign technicians
from various bases to serve the jobs, which may include customer requests and
repairs, at various locations. Customer requirements and working hours restrict the
service times at which certain jobs can be served by certain technicians. The objec-
tive is to minimize a function that takes into account the travelling cost, overtime
cost and unserved jobs. In the WSP, GLS+FLS holds the best published results for
the benchmark problem available to the authors [77].

11.8.3 Travelling Salesman Problem

The most significant results of GLS and FLS are probably in their application to the
travelling salesman problem (TSP). The Lin-Kernighan algorithm (LK) is a spe-
cialized algorithm for the TSP that has long been perceived as the champion of this
problem [50, 51]. We tested GLS+FLS+2Opt against LK [85] on a set of bench-
mark problems from a public TSP library [61]. Given the same amount of time,
GLS+FLS+2Opt found better results than LK on average. GLS+FLS+2Opt also
out-performed Simulated Annealing [36], Tabu Search [40] and Genetic Algorithm
[23] implementations for the TSP. One must be cautious when interpreting such em-
pirical results as they could be affected by many factors, including implementation
details. But given that the TSP is an extensively studied problem, it takes some-
thing special for an algorithm to outperform the champions under any reasonable
measure (“find the best results within a given amount of time” must be a realistic
requirement). It must be emphasized that LK is specialized for the TSP but GLS and
FLS are much simpler general-purpose algorithms.

GLS hybrids have also been proposed for the TSP including the combination of
GLS with Memetic Algorithms [34] and also with the dynamic-programming based
Dynasearch technique with encouraging preliminary results reported in [12].

Padron and Balaguer [59] have applied GLS to the related Rural Postman
Problem (RPP), Vansteenwegen et al. [80] applied GLS to the related Team
Orienteering Problem (TOP) and Mester et al. [53] applied the Guided Evolution
Strategy hybrid metaheuristic to a genetic ordering problem (a Unidimensional
Wandering Salesperson Problem, UWSP).

11.8.4 Function Optimization

GLS has been applied to general function optimization problems to illustrate that
artificial features can be defined for problems in which the objective function sug-
gests no obvious features. As expected, the results show that GLS spreads its search
effort across solution candidates depending on their quality (as measured by the
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objective function). Besides, GLS consistently found solutions in a landscape with
many local sub-optima [82].

11.8.5 Satisfiability and Max-SAT Problem

Given a set of propositions in conjunctive normal form, the Satisfiability (SAT)
problem is to determine whether the propositions can all be satisfied. The MAX-SAT
problem is a SAT problem in which each clause is given a weight. The task is to
minimize the total weight of the violated clauses. In other words, the weighted
MAX-SAT problem is an optimization problem. Many researchers believe that
many problems, including scheduling and planning can be formulated as SAT and
MAX-SAT problems, hence these problems have received significant attention in
recent years, e.g. see Gent et al. [24].

GLSSAT, an extension of GLS, was applied to both the SAT and the weighted
MAX-SAT problems [54]. On a set of SAT problems from DIMACS, GLSSAT
produced more frequently better or comparable solutions than those produced by
WalkSAT [64], a variation of GSAT [65], which was specifically designed for the
SAT problem.

On a popular set of benchmark weighted MAX-SAT problems, GLSSAT pro-
duced better or comparable solutions, more frequently than state-of-the-art algo-
rithms, such as DLM [66], WalkSAT [64] and GRASP [63].

11.8.6 Generalized Assignment Problem

The Generalized Assignment Problem is a generic scheduling problem in which the
task is to assign agents to jobs. Each job can only be handled by one agent, and
each agent has a finite resource capacity that limits the number of jobs that it can be
assigned to. Assigning different agents to different jobs bear different utilities. On
the other hand, different agents will consume different amounts of resources when
doing the same job. In a set of benchmark problems, GGA found results as good as
those produced by a state-of-the-art algorithm (which was also a GA algorithm) by
Chu and Beasley [11], with improved robustness [47].

GLS hybrids have been proposed for the related QAP. Zhang et al. [92] pro-
posed the GLS/EDA hybrid metaheuristic. In addition, the hybrid of GLS with ACO
(ACO GLS) has been applied to a variation of the QAP [29].

11.8.7 Processor Configuration Problem

In the Processor Configuration Problem, one is given a set of processors, each of
which with a fixed number of connections. In connecting the processors, one ob-
jective is to minimize the maximum distance between processors. Another possible



11 Guided Local Search 339

objective is to minimize the average distance between pairs of processors [9]. In
applying GGA to the Processor Configuration Problem, representation was a key
issue. To avoid generating illegal configurations, only mutation is used. GGA found
configurations with shorter average communication distance than those found by
other previously reported algorithms [45, 46].

11.8.8 Vehicle Routing Problem

In a vehicle routing problem, one is given a set of vehicles, each with its specific
capacity and availability, and a set of customers to serve, each with specific weight
and/or time demand on the vehicles. The vehicles are grouped at one or more depots.
Both the depots and the customers are geographically distributed. The task is to
serve the customers using the vehicles, satisfying time and capacity constraints.
This is a practical problem which, like many practical problems, is NP-hard.

Kilby et al. applied GLS to vehicle routing problems and achieved outstanding
results [38, 39]. As a result, their work was incorporated in Dispatcher, a commercial
package developed by ILOG [3].

Recently, the application of GLS and its hybrids to the VRP have been consid-
erably extended to several variants of the problem. GLS has been applied to the
vehicle routing problem with backhauls and time windows [93], and to the capac-
itated arc routing problem [6]. Guided Tabu Search has been applied to the VRP
with time window [73, 74] and also extended to other variants of the VRP, namely
the VRP with two-dimensional loading constraints [90], the VRP with simultane-
ous pick up and delivery [91] and the VRP with Replenishment Facility [74]. GLS
with VNS [42], as well as GLS with ES [52] hybrids, has been proposed to solve
large-scale VRPs.

11.8.9 Constrained Logic Programming

Lee and Tam [48] and Stuckey and Tam [69] embedded GENET in logic program-
ming languages in order to enhance programming efficiency. In these logic pro-
gramming implementations, unification is replaced by constraint satisfaction [76].
This enhances efficiency and extends applicability of logic programming. Hoos and
Tsang [35] provide a good overview of local search in constraint programming.

11.8.10 Other Applications of GENET and GLS

We have experimented with GLS and FLS on a variety of other problems, including
the Maximum Channel Assignment problem, a Bandwidth Packing problem variant,
graph colouring and the car sequencing problem. Some of these works are available
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for download over the Internet from Essex university’s website [26] but are largely
undocumented due to lack of time during the original development phase of the
algorithm.

GLS and FLS have been successfully applied to the three-dimensional Bin
Packing Problem and its variants [18, 19, 43], VLSI design problems [20] and net-
work planning problems [22, 89]. GLS has been applied to the natural language
parsing problem [14], Graph Set T-colourings Problem [10], query reformulation
[57]. Variations of GLS have been applied to graph colouring [4] and the Multidi-
mensional Knapsack problem [32]. Other applications of GENET include rail traffic
control [37].

GLS and FLS have been incorporated into new software packages, namely iOpt
which is a software toolkit for heuristic search methods [86] and iSchedule [17],
which is an extension of iOpt for planning and scheduling applications (e.g. for
solving problems such as the VRP [16]).

11.9 Useful Features for Common Applications

Applying Guided Local Search or Guided Fast Local Search to a problem requires
identifying a suitable set of features to guide the search process. As explained in
Section 11.3, features need to be defined in the form of indicator functions that,
given a solution, return 1 if the feature is present in the solution or 0 otherwise.

Features provide the heuristic search expert with quite a powerful tool since any
solution property can be potentially captured and used to guide local search. Usually,
we are looking for solution properties, which have a direct impact on the objective
function. These can be modelled as features with feature costs equal or analogous
to their contribution to the objective function value. By applying penalties to fea-
tures, GLS can guide the improvement method to avoid costly (“bad”) properties,
converging faster towards areas of the search space, which are of high quality.

Features are not necessarily specific to a particular problem and they can be used
in several problems of similar structure. Real-world problems, which sometimes
incorporate elements from several academic problems, can benefit from using more
than one feature set to guide the local search in better optimizing the different terms
of a complex objective function.

Below, we provide examples of features that can be deployed in the context of
various problems. The reader may find them helpful and use them in his/her own
optimization application.

11.9.1 Routing/Scheduling Problems

In routing/scheduling problems, one is seeking to minimize the time required by a
vehicle to travel between customers or for a resource to be set-up from one activity
to the next. Problems in this category include the Travelling Salesman Problem,
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Vehicle Routing Problem and Machine Scheduling with Sequence Dependent Set-
up Times.

Travel or set-up times are modelled as edges in a path or graph structure com-
monly used to represent the solution of these problems. The objective function (or
at least part of it) is given by the sum of lengths for the edges used in the solution.

Edges are ideal GLS features. A solution contains either an edge or not.
Furthermore, each edge has a cost equal to its length. We can define a feature for
each possible edge and assign a cost to it equal to the edge length. GLS quickly
identifies and penalizes long and costly edges guiding local search to high-quality
solutions, which use as much as possible the short edges available.

11.9.2 Assignment Problems

In assignment problems, a set of items has to be assigned to another set of items
(e.g. airplanes to flights, locations to facilities people to work). Each assignment of
item i to item j usually carries a cost and depending on the problem, a number of
constraints are required to be satisfied (e.g. capacity or compatibility constraints).
The assignment of item i to item j can be seen as a solution property which is
either present in the solution or not. Since each assignment also carries a cost, this
is another good example of a feature to be used in a GLS implementation.

In some variations of the problem such as the Quadratic Assignment Problem,
the cost function is more complicated and assignments have an indirect impact on
the cost. Even in these cases, we found that GLS can generate good results by as-
signing the same feature costs to all features (e.g. equal to 1 or some other arbitrary
value). Although, GLS is not guiding the improvement method to good solutions
(since this information is difficult to extract from the objective function), it can still
diversify the search because of the penalty memory incorporated and it is capable
of producing results comparable to popular heuristic methods.

11.9.3 Resource Allocation Problems

Assignment problems can be used to model resource allocation applications. A spe-
cial but important case in resource allocation is when the resources available are
not sufficient to service all requests. Usually, the objective function will contain a
sum of costs for the unallocated requests, which is to be minimized. The cost in-
curred when a request is unallocated will reflect the importance of the request or the
revenue lost in the particular scenario.

A possible feature to consider for these problems is whether a request is unal-
located or not. If the request is unallocated then a cost is incurred in the objective
function, which we can use as the feature cost to guide local search. The number of
features in a problem is equal to the number of requests that may be left unallocated,
one for each request. There may be hard constraints which state that certain requests
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should always be allocated a resource, in which case there is no need to define a
feature for them. Problems in this category include the Path Assignment Problem
[1], Maximum Channel Assignment Problem [67] and Workforce Scheduling Prob-
lem [2].

11.9.4 Constrained Optimization Problems

Constraints are very important in capturing processes and systems in the real world.
A number of combinatorial optimization problems deals with finding a solution,
which satisfies a set of constraints or, if that is not possible, minimizes the number
of constraint violations (relaxations). Constraint violations may have costs (weights)
associated with them, in which case the sum of constraint violation costs is to be
minimized.

Local search usually considers the number of constraint violations (or their
weighted sum) as the objective function even in cases where the goal is to find a
solution which satisfies all the constraints. Constraints by their nature can be easily
used as features. They can be modelled by indicator functions and they also incur a
cost (i.e. when violated/relaxed), which can be used as their feature cost. Problems
which can benefit from this modelling include the Constraint Satisfaction and Partial
Constraint Satisfaction Problem, the famous SAT and its MAX-SAT variant, Graph
Colouring and various Frequency Assignment Problems [58].

The features exposed in the past sections will be used in the following case prob-
lems. In particular, we examine the application of GLS to the following problems:

• Travelling Salesman Problem (Routing/Scheduling category),
• Quadratic Assignment Problem (Assignment Problem category),
• Workforce Scheduling Problem (Resource Allocation category),
• Radio Link Frequency Assignment Problem (Constrained Optimization

category).

For each case problem, we provide a short problem description along with guide-
lines on how to build a basic local search procedure, implement GLS and also GFLS
when applicable.

11.10 Travelling Salesman Problem (TSP)

11.10.1 Problem Description

There are many variations of the Travelling Salesman Problem (TSP). Here, we
examine the classic symmetric TSP. The problem is defined by N cities and a sym-
metric distance matrix D = [di j] which gives the distance between any two cities
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i and j. The goal is to find a tour (i.e. closed path), which visits each city exactly
once and is of minimum length. A tour can be represented as a cyclic permutation
π on the N cities if we interpret π(i) to be the city visited after city i, i = 1, . . . ,N.
The cost of a permutation is defined as

g(π) =
N

∑
i=1

diπ(i) (11.6)

and gives the cost function of the TSP.

11.10.2 Local Search

11.10.2.1 Solution Representation

The solution representation usually adopted for the TSP is that of a vector which
contains the order of the cities in the tour. For example, the ith element of the vector
will contain an identifier for the ith city to be visited. Since the solution of the TSP is
a closed path there is an edge implied from the last city in the vector to the first one
in order to close the tour. The solution space of the problem is made of all possible
permutations of the cities as represented by the vector.

11.10.2.2 Construction Method

A simple construction method is to generate a random tour. If the above solution
representation is adopted then all that is required is a simple procedure, which gen-
erates a random permutation of the identifiers of the cities. More advanced TSP
heuristics can be used if we require a higher quality starting solution to be gener-
ated [62]. This is useful in real-time/online applications where a good tour may be
needed very early in the search process in case the user interrupts the algorithm.
If there are no such concerns, then a random tour generator suffices since the GLS
metaheuristic tends to be relatively insensitive to the starting solution and capable
of finding high-quality solutions even if it runs for a relatively short time.

11.10.2.3 Improvement Method

Most improvement methods for the TSP are based on the k-Opt moves. Using k-Opt
moves, neighbouring solutions can be obtained by deleting k edges from the current
tour and reconnecting the resulting paths using k new edges. The k-Opt moves are
the basis of the three most famous local search heuristics for the TSP, namely 2-Opt
[13], 3-Opt [49] and Lin–Kernighan (LK) [50].

The reader can consider using the simple 2-Opt method, which in addition to its
simplicity is very effective when combined with GLS. With 2-Opt, a neighbouring



344 Christos Voudouris, Edward P.K. Tsang and Abdullah Alsheddy

solution is obtained from the current solution by deleting two edges, reversing one
of the resulting paths and reconnecting the tour. In practical terms, this means re-
versing the order of the cities in a contiguous section of the vector or its remainder
depending on which one is the shortest in length.

Computing incrementally the change in solution cost by a 2-Opt move is rela-
tively simple. Let us assume that edges e1 and e2 are removed and edges e3 and
e4 are added with lengths d1, d2, d3, d4, respectively. The change in cost is the
following:

d3+d4−d1−d2. (11.7)

When we discuss the features used in the TSP, we will explain how this evalua-
tion mechanism is revised to account for penalty changes in the augmented objective
function.

11.10.3 Guided Local Search

For the TSP, a tour includes a number of edges and the solution cost (tour length)
is given by the sum of the lengths of the edges in the tour (see Equation (11.6)).
As mentioned in Section 11.9.1, edges are ideal features for routing problems such
as the TSP. First, a tour either includes an edge or not and second, each edge in-
curs a cost in the objective function which is equal to the edge length, as given
by the distance matrix D = [di j] of the problem. A set of features can be defined
by considering all possible undirected edges ei j (i = 1 . . .N, j = i + 1 . . .N, i �= j)
that may appear in a tour with feature costs given by the edge lengths di j. With
each edge ei j connecting cities i and j is attached a penalty pi j initially set to 0
which is increased by GLS during the search. When implementing the GLS algo-
rithm for the TSP, the edge penalties can be arranged in a symmetric penalty ma-
trix P = [pi j]. As mentioned in Section 11.3, penalties have to be combined with
the problem’s objective function to form the augmented objective function which
is minimized by local search. We therefore need to consider the auxiliary distance
matrix:

D′ = D+λ ·P = [di j +λ · pi j]. (11.8)

Local search must use D′ instead of D in move evaluations. GLS modifies P and
(through that) D′ whenever the local search reaches a local minimum.

In order to implement this, we revise the incremental move evaluation formula
(11.7) to take into account the edge penalties and also parameter λ . If p1, p2, p3, p4
are the penalties associated with edges e1, e2, e3, and e4, respectively, the revised
version of Equation (11.7) is as follows:

(d3+d4−d1−d2)+λ ∗ (p3+ p4− p1− p2). (11.9)
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Similarly, we can implement GLS for higher order k-Opt moves.
The edges penalized in a local minimum are selected according to the utility

function (11.3), which for the TSP takes the form

util(tour,ei j) = Iei j(tour) · di j

1+ pi j
, (11.10)

where

Iei j(tour) =
{

1, ei j ∈ tour
0, ei j /∈ tour.

(11.11)

The only parameter of GLS that requires tuning is parameter λ . Alternatively,
we can tune the parameter α parameter which is defined in Section 11.4.2 and
is relatively instance independent. Experimenting with α on the TSP, we found
that there is an inverse relation between α and local search effectiveness. Not so
effective local search heuristics such as 2-Opt require higher α values compared
to more effective heuristics such as 3-Opt and LK. This is probably because the
amount of penalty needed to escape from local minima decreases as the effec-
tiveness of the heuristic increases explaining why lower values for α (and con-
sequently for λ which is a function of α) work better with 3-Opt and LK. For
2-Opt, the following range for α generates high-quality solutions for instances in the
TSPLIB [61]:

1/8 ≤ α ≤ 1/2. (11.12)

The reader may refer to [85] for more details on the experimentation procedure
and the full set of results.

11.10.4 Guided Fast Local Search

We can exploit the way local search works on the TSP to partition the neighbour-
hood in sub-neighbourhoods as required by Guided Fast Local Search. Each city in
the problem may be seen as defining a sub-neighbourhood, which contains all 2-Opt
edge exchanges removing one of the edges adjacent to the city. For a problem with
N cities, the neighbourhood is partitioned into N sub-neighbourhoods, one for each
city in the instance.

The sub-neighbourhoods to be activated after a move is executed are those of the
cities at the ends of the edges removed or added by the move.

Finally, the sub-neighbourhoods activated after penalization are those defined by
the cities at the ends of the edge(s) penalized. There is a good chance that these
sub-neighbourhoods will include moves that remove one or more of the penalized
edges.
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11.11 Quadratic Assignment Problem (QAP)

11.11.1 Problem Description

The Quadratic Assignment Problem (QAP) is one of the most difficult problems in
combinatorial optimization. The problem can model a variety of applications but
it is mainly known for its use in facility location problems. In the following, we
describe the QAP in its simplest form.

Given a set N = {1,2, . . . ,n} and n×n matrices A = [ai j] and B = [bkl ], the QAP
can be stated as follows:

min
p∈ΠN

n

∑
i=1

n

∑
j=1

ai j ·bp(i)p( j), (11.13)

where p is a permutation of N and ΠN is the set of all possible permutations. There
are several other equivalent formulations of the problem. In the facility location con-
text, each permutation represents an assignment of n facilities to n locations. More
specifically, each position i in the permutation represents a location and its contents
p(i) the facility assigned to that location. The matrix A is called the distance matrix
and gives the distance between any two of the locations. The matrix B is called the
flow matrix and gives the flow of materials between any two of the facilities. For
simplicity, we only consider the Symmetric QAP case for which both the distance
and flow matrices are symmetric.

11.11.2 Local Search

QAP solutions can be represented by permutations to satisfy the constraint that each
facility is assigned to exactly one location. A move commonly used for the prob-
lem is simply to exchange the contents of two permutation positions (i.e. swap the
facilities assigned to a pair of locations). A best improvement local search procedure
starts with a random permutation. In each iteration, all possible moves (i.e. swaps)
are evaluated and the best one is selected and performed. The algorithm reaches
a local minimum when there is no move, which improves further the cost of the
current permutation.

An efficient update scheme can be used in the QAP which allows evaluation
of moves in constant time. The scheme works only with best improvement local
search. Move values of the first neighbourhood search are stored and updated each
time a new neighbourhood search is performed to take into account changes from the
move last executed, see [71] for details. Move values do not need to be evaluated
from scratch and thus the neighbourhood can be fully searched in roughly O(n2)
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time instead of O(n3)1. To evaluate moves in constant time, we have to examine all
possible moves in each iteration and have their values updated. Because of that, the
scheme cannot be easily combined with Fast Local Search, which examines only
a number of moves in each iteration therefore preventing the problem to benefit
substantially from GFLS.

11.11.3 Guided Local Search

A set of features that can be used in the QAP is the set of all possible assignments
of facilities to locations (i.e. location–facility pairs). This kind of feature is general
and can be used in a variety of assignment problems as explained in Section 11.9.2.
In the QAP, there are n2 possible location–facility combinations. Because of the
structure of the objective function, it is not possible to estimate easily the impact of
features and assign to them appropriate feature costs. In particular, the contribution
in the objective function of a facility assignment to a location depends also on the
placement of the other facilities with a non-zero flow to that facility.

Experimenting with the problem, we found that if all features are assigned the
same cost (e.g. 1), the algorithm is still capable of generating high-quality solutions.
This is due to the ability of GLS to diversify search using the penalty memory. Since
features are considered of equal cost, the algorithm is distributing search efforts
uniformly across the feature set. Comparative tests we conducted between GLS and
the Tabu Search of [70] indicate that both algorithms are performing equally well
when applied to the QAPLIB instances [8] with no clear winner across the instance
set. GLS, although not using feature costs in this problem, is still very competitive
to state-of-the-art techniques such as Tabu Search.

To determine λ in the QAP, one may use the formula below, which was derived
experimentally:

λ = α ∗n∗ (mean flow)∗ (mean distance), (11.14)

where n is the size of the problem and the flow and distance means are computed
over the distance and flow matrices, respectively (including any possible 0 entries
which are common in QAP instances). Experimenting with QAPLIB instances, we
found that optimal performance is achieved for α = 0.75.

1 To evaluate the change in the cost function (11.13) caused by a move normally requires O(n)
time. Since there are O(n2) moves to be evaluated, the search of the neighbourhood without the
update scheme requires O(n3) time.
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11.12 Workforce Scheduling Problem

11.12.1 Problem Description

We now look at how GLS can be applied to a real-word resource allocation problem
with unallocated requests called the Workforce Scheduling problem (WSP), see [77]
for more details. The problem is to schedule a number of engineers to a set of jobs,
minimizing the total cost according to a function, which is to be explained below.
Each job is described by a triple:

(Loc, Dur, Type), (11.15)

where Loc is the location of the job (depicted by its x and y co-ordinates), Dur is
the standard duration of the job and Type indicates whether this job must be done in
the morning, in the afternoon, as the first job of the day, as the last job of the day or
“don’t care”.

Each engineer is described by a 5-tuple:

(Base, ST, ET, OT limit, Skill), (11.16)

where Base is the x and y co-ordinates of the engineer location, ST and ET are this
engineer’s starting and ending time, OT limit is his/her overtime limit and Skill is
a skill factor between 0 and 1 which indicates the fraction of the standard duration
that this engineer needs to accomplish a job. The cost function to be minimized is
defined as follows:

TotalCost =
NoT

∑
i=1

TCi +
NoT

∑
i=1

OT2
i +

NoJ

∑
j=1

(Dur j +Penalty)×UF j, (11.17)

where

NoT = number of engineers,
NoJ = number of jobs,
TCi = Travelling Cost of engineer i,
OTi = Overtime of engineer i,
Dur j = Standard duration of job j,
UF j = 1 if job j is unallocated; 0 otherwise,
Penalty = constant (which is set to 60 in the tests).

The travelling cost between (x1,y1) and (x2,y2) is defined as follows:

TC((x1,y1),(x2,y2)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δx

2
+Δy

8
, Δx > Δy

Δy

2
+Δx

8
, Δy ≥ Δx

. (11.18)
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Here Δx is the absolute difference between x1 and x2, and Δy is the absolute
difference between y1 and y2. The greater of the x and y differences is halved before
summing. The formula above was specifically designed for the benchmark used
in [77] to convert distances into approximate travel times as observed in realis-
tic trips conducted by engineers. Engineers are required to start from and return
to their base everyday. An engineer may be assigned more jobs than he/she can
finish.

11.12.2 Local Search

11.12.2.1 Solution Representation

We represent a candidate solution (i.e. a possible schedule) by a permutation of the
jobs. Each permutation is mapped into a schedule using the deterministic algorithm
described below:

procedure Evaluation (input: one particular permutation of jobs)

1. For each job, order the qualified engineers in ascending order of the distances
between their bases and the job (such orderings only need to be computed once
and recorded for evaluating other permutations).

2. Process one job at a time, following their ordering in the input permutation. For
each job x, try to allocate it to an engineer according to the ordered list of qualified
engineers:

2.1. to check if engineer g can do job x, make x the first job of g; if that fails to
satisfy any of the constraints, make it the second job of g, and so on;

2.2. if job x can fit into engineer g’s current tour, then try to improve g’s new tour
(now with x in it): the improvement is done by a simple 2-opt algorithm (see
Section 11.10), modified in a such a way that only better tours which satisfy
the relevant constraints will be accepted;

2.3. if job x cannot fit into engineer g’s current tour, then consider the next engi-
neer in the ordered list of qualified engineers for x; the job is unallocated if
it cannot fit into any engineer’s current tour.

3. The cost of the input permutation, which is the cost of the schedule thus created,
is returned.

11.12.2.2 Construction Method

The starting point of local search is generated heuristically and deterministically:
the jobs are ordered by the number of qualified engineers for them. Jobs that can
be served by the fewest number of qualified engineers are placed earlier in the
permutation.
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11.12.2.3 Improvement Method

Given a permutation, local search is performed in a simple way: the pairs of jobs are
examined one at a time. Two jobs are swapped to generate a new permutation if the
new permutation is evaluated (using the Evaluation procedure above) to a lower cost
than the original permutation. Note here that since the problem is also close to the
Vehicle Routing Problem (VRP), one may follow a totally different approach con-
sidering VRP move operators such as insertions and swaps. In this case, the solution
representation and construction methods need to be revised. The reader may refer to
other works (e.g. [3]) for more information on the application of GLS to the VRP.

11.12.3 Guided Local Search

In the workforce scheduling problem, we use the feature type recommended for
resource allocation problems in Section 11.9.3. In particular, the inability to serve
jobs incurs a cost, which plays the most important part in the objective function.
Therefore, we intend to bias local search to serve jobs of high importance. To do so,
we define a feature for each job in the problem:

Ijob j
(schedule) =

{
1, job j is unallocated in schedule
0, job j is allocated in schedule.

(11.19)

The cost of this feature is given by (Dur j + Penalty) which is equal to the cost
incurred in the cost function (11.17) when a job is unallocated.

The jobs penalized in a local minimum are selected according to the utility func-
tion (11.3) which for workforce scheduling takes the form

util(schedule, job j) = Ijob j
(schedule) · (Dur j +Penalty)

1+ p j
. (11.20)

WSP exhibits properties found in resource allocation problems (i.e. unallocated
job costs) and also in routing problems (i.e. travel costs). In addition to the above
feature type and for better performance, we may consider introducing a second fea-
ture type based on edges as suggested in Section 11.9.1 for routing problems and
explained in Section 11.10.3 for the TSP. This feature set can help to aggressively
optimize the travel costs also incorporated in the objective function (11.17). Further-
more, one or both feature sets can be used in conjunction with a VRP-based local
search method.

11.12.4 Guided Fast Local Search

To apply Guided Fast Local Search to workforce scheduling, each job permutation
position defines a separate sub-neighbourhood. The activation bits are manipulated
according to the general FLS algorithm of Section 11.5. In particular
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1. all the activation bits are set to 1 (or “on”) when GFLS starts;
2. the bit for job permutation position x will be switched to 0 (or “off”) if every

possible swap between the job at position x and the other jobs under the current
permutation has been considered, but no better permutation has been found;

3. the bit for job permutation position x will be switched to 1 whenever x is involved
in a swap which has been accepted.

Mapping penalized jobs to sub-neighbourhoods is straightforward. We simply
activate the sub-neighbourhoods corresponding to the permutation positions of the
penalized jobs. This essentially forces Fast Local Search to examine moves, which
swap the penalized jobs.

11.13 Radio Link Frequency Assignment Problem

11.13.1 Problem Description

The Radio Link Frequency Assignment Problem (RLFAP) [58, 75] is abstracted
from the real-life application of assigning frequencies to radio links. The problem
belongs to the class of constraint optimization problems mentioned in Section 11.9.4.
In brief, the interference level between the frequencies assigned to the different links
has to be acceptable; otherwise communication will be distorted. The frequency as-
signments have to comply with certain regulations and physical characteristics of
the transmitters. Moreover, the number of frequencies is to be minimized, because
each frequency used in the network has to be reserved at a certain cost. In certain
cases, some of the links may have pre-assigned frequencies which may be respected
or preferred by the frequency assignment algorithm. Here, we examine a simplified
version of the problem considering only the interference constraints. Information on
the application of GLS to the full problem can be found in [83]. A definition of the
simplified problem is the following.

We are given a set L of links. For each link i, a frequency fi has to be chosen
from a given domain Di. Constraints are defined on pairs of links that limit the
choice of frequencies for these pairs. For a pair of links {i, j} these constraints are
either of type

| fi − f j|> di j, (11.21)

or of type

| fi − f j|= di j, (11.22)

for a given distance di j ≥ 0. Two links i and j involved in a constraint of type
Equation (11.21) are called interfering links, and the corresponding di j is the in-
terfering distance. Two links bound by a constraint of type Equation (11.22) are
referred to as a pair of parallel links; every link belongs to exactly one such pair.

Some of the constraints may be violated at a certain cost. Such restrictions are
called soft, in contrast to the hard constraints, which may not be violated. The
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constraints of type Equation (11.22) are always hard. Interference costs ci j for
violating soft constraints of type Equation (11.21) are given. An assignment of fre-
quencies is complete if every link in L has a frequency assigned to it. We denote by
C the set of all soft interference constraints.

The goal is to find a complete assignment that satisfies all hard constraints and is
of minimum cost:

min∑
C

ci j ·δ (| fi − f j| ≤ di j) (11.23)

subject to hard constraints:

| fi − f j|> di j : for all pairs of links {i, j} involved in the hard constraints,
| fi − f j|= di j : for all pairs of parallel links {i, j},
fi ∈ Di : for all links i ∈ L,

where δ (.) is 1 if the condition within brackets is true and 0 otherwise.

We look next at a local search procedure for the problem.

11.13.2 Local Search

11.13.2.1 Using an Alternate Objective Function

When using heuristic search to solve a combinatorial optimization problem, it is not
always necessary to use the objective function as dictated in the problem formula-
tion. Objective functions based on the original one can be devised which result in
smoother landscapes. These objective functions can sometimes generate solutions
of higher quality (with respect to the original objective function) than if the original
one is used.

In the RLFAP, we can define and use a simple objective function g, which is given
by the sum of all constraint violation costs in the solution with all the constraints
contributing equally to the sum instead of using weights as in Equation (11.23). This
objective function is as follows for a given solution s:

g(s) = ∑
C∪CHard

δ (| fi(s)− f j(s)| ≤ di j), (11.24)

subject to hard constraints:

fi(s) ∈ D′
i: for all links i ∈ L,

where δ (.) is 1 if the condition within brackets is true and 0 otherwise, fi(s)
is the frequency assigned to link i in solution s, CHard is the set of hard inequality
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constraints, C is the set of soft inequality constraints and D′
i is the reduced domain

for link i containing only frequencies which satisfy the hard equality constraints.
A solution s with cost 0 with respect to g is satisfying all hard and soft constraints

of the problem.
The motivation to use an objective function such as Equation (11.24) is closely

related to the rugged landscapes formed in RLFAP, if the original cost function is
used. In particular, high and very low violation costs are defined for some of the
soft constraints. This leads to even higher violation costs to be defined for hard
constraints. The landscape is not smooth but full of deep local minima mainly due
to the hard and soft constraints of high cost. Soft constraints of low cost are buried
under these high costs.

A similar objective function replacement approach has been used successfully
by [54] in the MAX-SAT problem suggesting the universal appeal of the idea in
constrained optimization problems.

11.13.2.2 Solution Representation

An efficient solution representation for the problem takes into account the fact that
each link in RLFAP is connected to exactly one other link via a hard constraint of
type Equation (11.22). In particular, we can define a decision variable for each pair
of parallel links bound by an equality constraint Equation (11.22). The domain of
this variable is defined as the set of all pairs of frequencies from the original domains
of the parallel links that satisfy the hard equality constraint.

11.13.2.3 Construction Method

A construction method can be implemented by assigning to each decision variable
(which assigns values to a pair of links) a random value from its domain. In large
problem instances, it is beneficial to consider a domain pre-processing and reduc-
tion phase. Sophisticated techniques based on Arc-Consistency can be utilized dur-
ing that phase to reduce the domain based on the problem’s hard constraints. These
domains can then be used instead of the original ones for the random solution gen-
eration and also by the improvement method.

11.13.2.4 Improvement Method

An improvement method can be based on the min-conflicts heuristic of Minton et al.
[56] for Constraint Satisfaction Problems. A 1-optimal type move is used which
changes the value of one variable at a time. Starting from a random and complete
assignment of values to variables, variables are examined in an arbitrary static order.
Each time a variable is examined, the current value of the variable changes to the
value (in the variable’s domain) which yields the minimum value for the objective
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function. Ties are randomly resolved allowing moves to solutions with equal cost.
These moves are called sideways moves [65] and enable the local search to examine
plateaus of solutions that occur in the landscapes of many constrained optimization
problems.

11.13.3 Guided Local Search

The most important cost factor in the RLFAP is the constraint violation costs defined
for soft inequality constraints. Inequality constraints can be used to define a basic
feature set for the RLFAP. Each inequality constraint is interpreted as a feature with
the feature cost given by the constraint violation cost ci j as defined in the problem’s
original cost function (11.23).

Hard inequality constraints are also modelled as features by assigning to them
an infinite cost. This results in their utility to be penalized to also tend to infinity.
To implement this in the code, hard constraints are simply given priority over soft
constraints when penalties are applied. This basically forces local search to return
back to a feasible region where penalizing soft constraints can resume.

GLS is especially suited to use the alternate objective function (11.24) because
of the definition of the feature costs described above. The application of penalties
can still force the local search toward solutions which satisfy constraints with high
violation costs while the algorithm is benefiting from the smoother landscape intro-
duced by (11.24).

The λ parameter can be set to 1 provided that we use (11.24) as the objective
function. The same value for λ has also been used in MAX-SAT problems in [54]
where the same approach is followed with respect to smoothing the landscape.

A variation of the GLS method which seems to significantly improve perfor-
mance in certain RLFAP instances is to decrease penalties and not only increase
them [83]. More specifically, the variant uses a circular list to retract the effects of
penalty increases made earlier in the search process, in a way that very much re-
sembles a tabu list. In particular, increased penalties are decreased after a certain
number of increases. The scheme uses an array of size t where the t most recent
features penalized are recorded. The array is treated as a circular list, adding ele-
ments in sequence in positions 1 through t and then starting over at position 1. Each
time the penalty of a feature is increased (by one unit), the feature is inserted in
the array and the penalty of the feature previously stored in the same position is
decreased (by one unit). The rationale behind the strategy is to allow GLS to return
to regions of the search visited earlier in the search process, so introducing a search
intensification mechanism.

11.13.4 Guided Fast Local Search

Best improvement local search for the RLFAP as used in the context of Tabu Search
(for an example, see [31]), evaluates all possible 1-optimal moves over all variables
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before selecting and performing the best move. Given the large number of links
in real-world instances, greedy local search is a computationally expensive option.
This is especially the case for the RLFAP where we cannot easily devise an incre-
mental move update mechanism (such as the one for the QAP) for all the prob-
lem’s variations. The local search procedure described in Section 11.13.2 is already
a faster alternative than best improvement. Using Guided Fast Local Search, things
can be improved further.

To apply Guided Fast Local Search to RLFAP, each decision variable defines a
sub-neighbourhood and has a bit associated with it. Whenever a variable is examined
and its value is changed (i.e. the variable’s parallel links are assigned to another pair
of frequencies because of an improving or sideway move) the activation bit of the
variable remains to 1 otherwise it turns to 0 and the variable is excluded in future
iterations of the improvement loop. Additionally, if a move is performed, activation
spreads to other variables which have their bits set to 1. In particular, we set to 1
the bit of variables for which improving moves may occur as a result of the move
just performed. They are the variables for which one of their links is connected via
a constraint to one of the links of the variable with a modified value. There are five
potential schemes for propagating activation after changing the value of a variable.
They are the following:

1. Activate all variables connected via a constraint to the variable with a modified
value.

2. Activate only variables that are connected via a constraint which is violated. This
resembles CSP local search methods where only variables in conflict have their
neighbourhood searched.

3. Activate only variables that are connected via a constraint which has become
violated as a result of the move (subset of condition 2 and also condition 4).

4. Activate only variables that are connected via a constraint that changed from
violated to satisfied or from satisfied to violated, as a result of the move (superset
of condition 3).

5. Activate variables that fall under either condition 2 or 4.

Experimentation suggests that scheme 5 tends to produce better results for the
real-world instances of RLFAP available in the literature. Fast local search stops
when all the variables are inactive or when a local minimum is detected by other
means (i.e. a number of sideway moves is performed without an improving move
found).

Finally, when a constraint is penalized we activate the variables connected via
the constraint in an effort to find 1-Opt moves which will satisfy the constraint.

11.14 Summary and Conclusions

For many years, general heuristics for combinatorial optimization problems, with
prominent examples such as Simulated Annealing and Genetic Algorithms, heavily
relied on randomness to generate good approximate solutions to difficult NP-Hard
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problems. The introduction and acceptance of Tabu Search [25] by the Operations
Research community initiated an important new era for heuristic methods where
deterministic algorithms exploiting historical information started to appear and to
be used in real-world applications.

Guided local search described in this chapter follows this trend. While Tabu
search is a class of algorithms (where a lot of freedom is given to the manage-
ment of the tabu list), GLS is more prescriptive (the procedures are more concretely
defined). GLS heavily exploits information (not only the search history) to distribute
the search effort in the various regions of the search space. Important structural prop-
erties of solutions are captured by solution features. Solution features are assigned
costs and local search is biased to spend its efforts according to these costs. Penalties
on features are utilized for that purpose.

When local search settles in a local minimum, the penalties are increased for
selected features present in the local minimum. By penalizing features appearing in
local minima, GLS not only escapes the local minima visited (exploiting historical
information) but also diversifies the choices, with regard to the various structural
properties of solutions, as captured by the solution features. Features of high costs
are penalized more often than features of low cost: the diversification process is
directed and deterministic rather than undirected and random.

In general, several penalty cycles may be required before a move is executed
out of a local minimum. This should not be viewed as an undesirable situa-
tion. It is caused by the uncertainty in the information as captured by the fea-
ture costs which forces the GLS to test its decisions against the landscape of the
problem.

The penalization scheme of GLS is ideally combined with FLS which limits
the neighbourhood search to particular parts of the overall solution leading to the
GFLS algorithm. GFLS significantly reduces the computation times required to
explore the area around a local minimum to find the best escape route allowing
many more penalty modification cycles to be performed in a given amount of run-
ning time.

The GLS and GFLS methods are still in their early stages and future research
is required to develop them further. The use of incentives implemented as negative
penalties, which encourage the use of specific solution features, is one promising
direction to be explored. Other interesting directions include fuzzy features with
indicator functions returning real values in the [0, 1] interval, automated tuning
of the λ or α parameters, definition of effective termination criteria, alternative
utility functions for selecting the features to be penalized and also studies about
the convergence properties of GLS.

It is relatively easy to adapt GLS and GFLS to the different problems examined
in this chapter. Although local search is problem dependent, the other structures of
GLS and also GFLS are problem independent. Moreover, a mechanical, step-by-
step procedure is usually followed when GLS or GFLS is applied to a new problem
(i.e. implement a local search procedure, identify features, assign costs and define
sub-neighbourhoods). This makes GLS and GFLS easier to use by non-specialist
software engineers.
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Chapter 12
Iterated Local Search: Framework
and Applications

Helena R. Lourenço, Olivier C. Martin and Thomas Stützle

Abstract The key idea underlying iterated local search is to focus the search not on
the full space of all candidate solutions but on the solutions that are returned by some
underlying algorithm, typically a local search heuristic. The resulting search behav-
ior can be characterized as iteratively building a chain of solutions of this embedded
algorithm. The result is also a conceptually simple metaheuristic that nevertheless
has led to state-of-the-art algorithms for many computationally hard problems. In
fact, very good performance is often already obtained by rather straightforward im-
plementations of the metaheuristic. In addition, the modular architecture of iterated
local search makes it very suitable for an algorithm engineering approach where,
progressively, the algorithms’ performance can be further optimized. Our purpose
here is to give an accessible description of the underlying principles of iterated local
search and a discussion of the main aspects that need to be taken into account for a
successful application of it. In addition, we review the most important applications
of this method and discuss its relationship to other metaheuristics.

12.1 Introduction

The importance of high-performance algorithms for tackling difficult optimization
problems cannot be understated, and in many cases the most effective methods are
metaheuristics. When designing a metaheuristic, simplicity should be favored, both
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conceptually and in practice. Naturally, it must also lead to effective algorithms,
and, if possible, general-purpose ones. If we think of a metaheuristic as simply a
construction for guiding (problem-specific) heuristics, the ideal case is when the
metaheuristic can be used without any problem-dependent knowledge.

As metaheuristics have become more and more sophisticated, this ideal case has
been pushed aside in the quest for greater performance. As a consequence, problem-
specific knowledge (in addition to that built into the heuristic being guided) must
now be incorporated into metaheuristics in order to reach state-of-the-art level. Un-
fortunately, this makes the boundary between heuristics and metaheuristics fuzzy,
and we run the risk of loosing both simplicity and generality. To counter this, we ap-
peal to modularity and try to decompose a metaheuristic algorithm into a few parts,
each with its own specificity. In particular, we would like to have a totally general-
purpose part, so that any problem-specific knowledge built into the metaheuristic
would be restricted to another part. Finally, to the extent possible, we prefer to leave
untouched the embedded heuristic (which is to be “guided”) because of its potential
complexity. One can also consider the case where this heuristic is only available
through an object module, the source code being proprietary; it is then necessary to
be able to treat it as a “black-box” routine. Iterated local search provides a simple
way to satisfy all these requirements.

The essence of iterated local search can be given in a nut-shell: one iteratively
builds a sequence of solutions generated by the embedded heuristic, leading to far
better solutions than if one were to use repeated random trials of that heuristic. This
simple idea [9] has a long history, and its rediscovery by many authors has led to
many different names for iterated local search like iterated descent [7, 8], large-step
Markov chains [62], iterated Lin-Kernighan [46], chained local optimization [61],
and combinations of these [1]. Readers interested in these historical developments
should consult the review in [47]. For us, there are two main points that make an
algorithm an iterated local search: (i) there must be a single chain that is being
followed (this then excludes population-based algorithms); (ii) the search for better
solutions occurs in a reduced space defined by the output of a black-box heuristic.
In practice, local search has been the most frequently used embedded heuristic, but
in fact any optimizer can be used, be it deterministic or not.

The purpose of this review is to give a detailed description of iterated local search
and to show where it stands in terms of performance. So far, in spite of its conceptual
simplicity, it has led to a number of state-of-the-art results without the use of too
much problem-specific knowledge; perhaps this is because iterated local search is
very malleable, many implementation choices being left to the developer.

We have organized this chapter as follows. First we give a high-level presenta-
tion of iterated local search in Section 12.2. Then we discuss the importance of the
different parts of the metaheuristic in Section 12.3, especially the subtleties associ-
ated with perturbing the solutions. In Section 12.4 we go over past work aimed at
testing iterated local search in practice, while in Section 12.5 we discuss similarities
and differences between iterated local search and other metaheuristics. This chapter
closes with a summary of what has been achieved so far and an outlook on what the
near future may look like.
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12.2 Iterating a Local Search

12.2.1 General Framework

We assume that we have been given a problem-specific heuristic optimization
algorithm that from now on we shall refer to as a local search (even if it is not a
true local search). This algorithm is implemented via a computer routine that we
call LocalSearch. The question we ask is “Can such an algorithm be improved by
the use of iteration?” Our answer is “YES,” and in fact the improvements obtained
in practice are usually significant. Only in rather pathological cases where the it-
eration method is “incompatible” with the local search will the improvement be
minimal. In the same vein, in order to have the largest possible improvement, it is
necessary to have some understanding of the way the LocalSearch works. However,
to keep this presentation as simple as possible, we shall ignore for the time being
these complications; the additional subtleties associated with tuning the iteration to
the local search procedure will be discussed in Section 12.3. Furthermore, all issues
associated with the actual speed of the algorithm are omitted in this first section as
we wish to focus solely on the high-level architecture of iterated local search.

Let C be the cost function of our combinatorial optimization problem; C is to be
minimized. We label candidate solutions or simply “solutions” by s and denote by S
the set of all s (for simplicity S is taken to be finite, but it does not matter much).
Finally, for the purposes of this high-level presentation, we assume that the local
search procedure is deterministic and memoryless1: for a given input s, it always
outputs the same solution s∗ whose cost is less than or equal to C (s). LocalSearch
then defines a many to one mapping from the set S to the smaller set S ∗ = {s∗} of
locally optimal solutions. To have a pictorial view of this, we introduce the “basin
of attraction” of a local minimum s∗ as the set of solutions s that are mapped to s∗
under the local search routine. LocalSearch then takes an s∈S as a starting solution
and produces a local optimum s∗ ∈ S ∗ at the bottom of the corresponding basin of
attraction.

Now take an s or an s∗ at random. Typically, the cost distribution has a very
rapidly rising part at the lowest values. In Figure 12.1 we show the kind of dis-
tributions found in practice for combinatorial optimization problems having a finite
solution space. The distribution of costs is bell shaped, with a mean and variance that
is significantly smaller for solutions in S ∗ than for those in S . As a consequence,
it is much better to use local search than to sample randomly in S if one seeks low-
cost solutions. The essential ingredient necessary for local search is a neighborhood
structure. This means that S is a “space” with some topological structure, not just
a set. Having such a space allows one to move from one solution s to a better one in
an intelligent way, something that would not be possible if S were just a set.

1 The reader can check that very little of what we say really uses this property, and in practice,
many successful implementations of iterated local search have non-deterministic local searches or
include memory.
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Fig. 12.1 Probability densities of costs. The curve labeled s indicates the left tail of the cost density
function for all solutions, while the curve labeled s∗ indicates the cost density function for the
solutions that are local optima.

Now the question is how to go beyond this use of LocalSearch. More precisely,
given the mapping from S to S ∗, how can one further reduce the costs found
without opening up and modifying LocalSearch, leaving it as a “black box” routine?

12.2.2 Random Restart

The simplest possibility to improve upon a cost found by LocalSearch is to repeat
the search from another starting point. Every s∗ generated is then independent, and
the use of multiple trials allows one to reach the lower part of the distribution. Al-
though such a “random restart” approach with independent samplings is sometimes
a useful strategy (in particular when all other options fail), it breaks down as the
instance size grows because in the limit, the tail of the cost distribution collapses.
Indeed, empirical studies [47] and general arguments [79] indicate that local search
algorithms on large generic instances lead to costs that (i) have a mean that is a
fixed percentage above the optimum cost; (ii) have a distribution that becomes arbi-
trarily peaked around the mean when the instance size goes to infinity. This second
property makes it impossible in practice to find an s∗ whose cost is even a little bit
lower percentage-wise than the typical cost. Note, however, that there do exist many
solutions of significantly lower cost, it is just that random sampling has a lower and
lower probability of finding them as the instance size increases. To reach those con-
figurations, a biased sampling is necessary; this is precisely what is accomplished
by a stochastic search.

12.2.3 Searching in S ∗

To overcome the problem just mentioned associated with large instance sizes, re-
consider what local search does: it takes one solution from S where C has a large
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mean to a solution in S ∗ where C has a smaller mean. It is then natural to invoke re-
cursion: use local search to go from S ∗ to a smaller space S ∗∗ where the mean cost
is even lower! That would correspond to an algorithm with one local search nested
inside another. Such a construction could be iterated for as many levels as desired,
leading to a hierarchy of nested local searches. But upon closer scrutiny, we see that
the problem is precisely how to formulate local search beyond the lowest level of
the hierarchy: local search requires a neighborhood structure and this is not a priori
given. The fundamental difficulty is to define neighbors in S ∗ so that they can be
enumerated and accessed efficiently. Furthermore, it is desirable for neighbors in
S ∗ to be relatively close according to the distance metric defined in space S ; if
this were not the case, a stochastic search on S ∗ would have little chance of being
effective.

Upon further thought, it transpires that one can introduce a good neighborhood
structure on S ∗ as follows. First, one recalls that a neighborhood structure on set S
directly induces a neighborhood structure on subsets of S : two subsets are neigh-
bors simply if they contain solutions that are neighbors. Second, take these subsets
to be the basins of attraction of the solutions in S ∗; this leads us to associate any
s∗ ∈ S ∗ with its basin of attraction. Then, this immediately provides the “canoni-
cal” notion of neighborhood on S ∗, which can be stated in a simple way: s∗1 and s∗2
are neighbors in S ∗ if their basins of attraction intersect (i.e., they contain neighbor
solutions in S ). Unfortunately this definition has the major drawback that one can-
not in practice list the neighbors of s∗ because there is no computationally efficient
method for finding all solutions s in the basin of attraction of s∗. Nevertheless, we
can stochastically generate neighbors as follows. Starting from s∗, create a random-
ized path in S , s1, s2, ..., si, where s j+1 is a neighbor of s j. Determine the first s j in
this path that belongs to a different basin of attraction so that applying local search
to s j leads to s∗′ �= s∗. Then s∗′ is a neighbor of s∗.

Given this procedure, we can in principle perform a local search2 in S ∗. Extend-
ing the argument recursively, we see that it would be possible to have an algorithm
implementing nested searches, performing local search on S , S ∗, S ∗∗, and so on,
in a hierarchical way. Unfortunately, the implementation of a neighbor search at the
level of S ∗ is too costly computationally because of the number of times one has to
execute LocalSearch. Thus we are led to abandon the (stochastic) search for neigh-
bors in S ∗; instead we use a weaker notion of closeness which then allows for a
fast stochastic search in S ∗. Our construction leads to a (biased) sampling of S ∗.
Such a sampling will be better than a random one if it is possible to find appropri-
ate computational ways to go from one s∗ to another. Finally, one last advantage of
this modified notion of closeness is that it does not require basins of attraction to
be defined; the local search can then incorporate memory or be non-deterministic,
making the method far more general.

2 Note that the local search finds neighbors stochastically; generally there is no efficient way to
ensure that one has tested all the neighbors of any given s∗.
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12.2.4 Iterated Local Search

We want to explore S ∗ using a walk that steps from one s∗ to a “nearby” one,
without the constraint of using only neighbors as defined above. Iterated local search
(ILS) achieves this heuristically as follows. Given the current s∗, we first apply a
change or perturbation that leads to an intermediate state s′, which belongs to S .
Then LocalSearch is applied to s′ and we reach a solution s∗′ in S ∗. If s∗′ passes
an acceptance test, it becomes the next element of the walk in S ∗; otherwise, we
return to s∗. The resulting walk is a case of a stochastic search in S ∗, but where
neighborhoods are never explicitly introduced. This iterated local search procedure
should lead to good biased sampling as long as the perturbations are neither too
small nor too large. If they are too small, one will often fall back to s∗ and few
new solutions of S ∗ will be explored. If on the contrary the perturbations are too
large, s′ will be random, there will be no bias in the sampling, and we will recover a
random restart-type algorithm.

The overall ILS procedure is pictorially illustrated in Figure 12.2. To be com-
plete, let us note that generally the iterated local search walk will not be reversible;
in particular one may sometimes be able to step from s∗1 to s∗2 but not from s∗2 to
s∗1. However, this “unfortunate” aspect of the procedure does not prevent ILS from
being very effective in practice.

perturbation

solution space S

co
st

s* s*’

s’

Fig. 12.2 Pictorial representation of iterated local search. Starting with a local minimum s∗, we
apply a perturbation leading to a solution s′. After applying LocalSearch, we find a new local mini-
mum s∗′ that may be better than s∗.

Since deterministic perturbations may lead to short cycles (for instance of length
two), one should randomize the perturbations or make them adaptive to avoid this
kind of cycling. If the perturbations depend on any of the previous s∗, one has a
walk in S ∗ with memory. Now the reader may have noticed that aside from the
issue of perturbations (which use the structure on S ), our formalism reduces the
problem to that of a stochastic search on S ∗. Then all bells and whistles (diversi-
fication, intensification, tabu, adaptive perturbations, and acceptance criteria, etc.)
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Algorithm 1 Iterated local search
1: s0 = GenerateInitialSolution
2: s∗ = LocalSearch(s0)
3: repeat
4: s′ = Perturbation(s∗,history)
5: s∗′ = LocalSearch(s′)
6: s∗ = AcceptanceCriterion(s∗,s∗′,history)
7: until termination condition met

that are commonly used in that context may be applied here. This leads us to define
iterated local search as a metaheuristic having the high-level architecture given by
Algorithm 1.

In practice, much of the potential complexity of ILS is hidden in the history
dependence. If there happens to be no such dependence, the walk has no memory:3

the perturbation and acceptance criterion do not depend on any of the solutions
visited previously during the walk, and one accepts or not s∗′ with a fixed rule. This
leads to random walk dynamics on S ∗ that are “Markovian,” i.e., the probability of
making a particular step from s∗1 to s∗2 depends only on s∗1 and s∗2. Most of the work
using ILS has been of this type, though studies show that incorporating memory
enhances performance [85].

Staying within Markovian walks, the most basic acceptance criteria will use only
the difference in the costs of s∗ and s∗′; this type of dynamics for the walk is then
very similar in spirit to what occurs in simulated annealing. A limiting case of this is
to accept only improving moves, as happens in simulated annealing at zero temper-
ature; the algorithm then does stochastic descent in S ∗. If we add to such a method
a termination criterion, the resulting algorithm pretty much has two nested local
searches; to be precise, it has a local search operating on S embedded in a stochas-
tic search operating on S ∗. More generally, one can extend this type of algorithm to
more levels of nesting, having a different stochastic search algorithm for S ∗, S ∗∗,
and so on. Each level would be characterized by its own type of perturbation and
stopping rule; to our knowledge, such a construction has never been attempted.

We can summarize this section by saying that the potential power of iterated lo-
cal search lies in its biased sampling of the set of local optima. The efficiency of this
sampling depends both on the kinds of perturbations and on the acceptance criteria.
Interestingly, even with the most naı̈ve implementations of these components, iter-
ated local search is much better than random restart. But still much better results can
be obtained if the iterated local search modules are optimized. First, the acceptance
criteria can be adjusted empirically as in simulated annealing without knowing any-
thing about the problem being optimized. This kind of optimization will be familiar
to any user of metaheuristics, though the questions of memory may become quite
complex. Second, the perturbation can incorporate as much problem-specific infor-
mation as the developer is willing to put into it. In practice, a rule of thumb can

3 Recall that to simplify this section’s presentation, the local search is assumed to have no memory.
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be used as a guide: “a good perturbation transforms one excellent solution into an
excellent starting point for a local search.” Together, these different aspects show
that iterated local search algorithms can have a wide range of complexity, but com-
plexity may be added progressively and in a modular way. (Recall in particular that
all of the fine-tuning that resides in the embedded local search can be ignored if
one wants, and it does not appear in the metaheuristic per se.) This makes iterated
local search an appealing metaheuristic for both academic and industrial applica-
tions. The cherry on the cake is speed: as we shall see soon, one can perform k local
searches embedded within an iterated local search much faster than if the k local
searches are run with random restart.

12.3 Getting High Performance

Given all these advantages, we hope the reader is now motivated to go on and con-
sider the more nitty-gritty details that arise when developing an ILS algorithm for
a new application. In this section, we will illustrate the main issues that need to be
tackled when optimizing an ILS algorithm in order to achieve high performance.

There are four components to consider: GenerateInitialSolution, LocalSearch, Per-
turbation, and AcceptanceCriterion. Before attempting to develop a state-of-the-art
algorithm, it is relatively straightforward to develop a more basic version of ILS.
Indeed, (i) one can start with a random solution or one returned by some greedy
construction heuristic; (ii) for most problems a local search algorithm is readily
available; (iii) for the perturbation, a random move in a neighborhood of higher
order than the one used by the local search algorithm can be surprisingly effec-
tive; and (iv) a reasonable first guess for the acceptance criterion is to force the
cost to decrease, corresponding to a stochastic first-improvement algorithm in S ∗.
Basic ILS implementations of this type usually lead to much better performance
than random restart approaches. The developer can then run this basic ILS to build
his intuition and try to improve the overall algorithm performance by improving
each of the four modules. This should be particularly effective if it is possible to
take into account the specificities of the combinatorial optimization problem under
consideration. In practice, this tuning is easier for ILS than for other, less mod-
ular metaheuristics. The reason may be that the complexity of ILS is reduced by
its modularity, the function of each component being relatively easy to understand.
Finally, the last task to consider is the overall optimization of the ILS algorithm;
indeed, the different components affect one another and so it is necessary to un-
derstand their interactions. However, because these interactions are so problem de-
pendent, we wait till the end of this section before discussing that kind of “global”
optimization.

Perhaps the main message here is that the developer can choose the level of
optimization he wants. In the absence of any optimizations, ILS is a simple, easy
to implement, and quite effective metaheuristic. But with further work on its four
components, ILS can often be turned into a very competitive or even state-of-the-art
algorithm.
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12.3.1 Initial Solution

Local search applied to the initial solution s0 gives the starting point s∗0 of the walk
in S ∗. Starting with a good s∗0 can be important if high-quality solutions are to be
reached as fast as possible.

Standard choices for s0 are either a random initial solution or a solution returned
by a greedy construction heuristic. A greedy initial solution s0 has two main advan-
tages over random starting solutions: (i) when combined with local search, greedy
initial solutions often result in better quality solutions s∗0; (ii) a local search from
greedy solutions takes, on average, less improvement steps and therefore the local
search requires less CPU time.4

The question of an appropriate initial solution for (random restart) local search
carries over to ILS because of the dependence of the walk in S ∗ on s∗0. Indeed, when
starting with a random s0, ILS may take several iterations to catch up in quality with
runs using an s∗0 obtained by a greedy initial solution. Hence, for short computation
times the initial solution is certainly important to achieve the highest possible solu-
tion quality. For larger computation times, the dependence on s0 of the final solution
returned by ILS reflects just how fast, if at all, the memory of the initial solution is
lost when performing the walk in S ∗.

Let us illustrate the trade-offs between random and greedy initial solutions when
using an ILS algorithm for the permutation flow shop problem (PFSP) [82]. That
ILS algorithm uses a straightforward local search implementation and random per-
turbations and always applies the perturbation to the best solution found so far. In
Figure 12.3 we show how the average solution cost (makespan) evolves with the
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Fig. 12.3 The plots show the average solution cost (makespan on the y-axis) as a function of CPU
time (given on the x-axis) for an ILS algorithm applied to the PFSP on instances ta051 and
ta056.

4 Note that the best possible greedy initial solution need not be the best choice when combined with
a local search. For example, in [47], it is shown that the combination of the Clarke–Wright starting
tour (one of the best performing construction heuristics for the travelling salesman problem) with
local search resulted in worse local optima than starting from random initial solutions when using
3-opt. Additionally, greedy algorithms that generate very high-quality initial solutions can be quite
time consuming.
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number of iterations for two instances. The averages are for 10 independent runs
when starting from random initial solutions or from initial solutions returned by
the NEH heuristic [71]. (NEH is one of the best performing constructive heuristics
for the PFSP.) For short runs, the curve for the instance on the right shows that the
NEH initial solutions lead to better average solution cost than random initial solu-
tions. But, for longer times, the picture is not so clear. Sometimes, random initial
solutions lead to better average results as observed on the instance on the left. This
kind of test was also performed for ILS applied to the travelling salesman problem
(TSP) [1]. Again it was observed that the initial solution had a significant influence
on quality for short-to-medium sized runs.

In general, there will not always be a clear-cut answer regarding the best choice
of an initial solution, but greedy initial solutions appear to be recommendable when
one needs low-cost solutions quickly. For much longer runs, the initial solution
seems to be less relevant, so the user can choose the initial solution, which is the
easiest to implement. If, however, one has an application where the influence of the
initial solution does persist for long times, the ILS walk is probably having diffi-
culty in exploring S ∗ and so other perturbations or acceptance criteria should be
considered.

12.3.2 Perturbation

The main drawback of iterative improvement is that it gets trapped in local optima
that are significantly worse than the global optimum. Much like simulated anneal-
ing, ILS escapes from local optima by applying perturbations to the current local
minimum. We will refer to the strength of a perturbation as the number of solution
components that are modified. For instance for the TSP, it is the number of edges
that are modified in the tour, while in the flow shop problem, it is the number of
jobs that are moved by the perturbation. Generally, the local search should not be
able to undo the perturbation, otherwise one will fall back into the local optimum
just visited. Surprisingly, a random move in a neighborhood of higher order than
the one used by the local search algorithm can often achieve this and will lead to a
satisfactory algorithm. Still better results can be obtained if the perturbations take
into account properties of the problem and are well matched to the local search
algorithm.

By how much should the perturbation change the current solution? If the pertur-
bation is too strong, ILS may behave like a random restart, so better solutions will
only be found with a very low probability. On the other hand, if the perturbation
is too small, the local search will often fall back into the local optimum just visited
and the diversification of the search will be very limited. An example of a simple but
effective perturbation for the TSP is the double-bridge move. This perturbation cuts
four edges (and is thus of “strength” four) and introduces four new ones as shown in
Figure 12.4. Notice that each bridge is a two-change, but neither of the two-changes
individually keeps the tour connected. Nearly all ILS studies of the TSP have incor-
porated this kind of perturbation, and it has been found to be effective for all instance
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Fig. 12.4 Schematic representation of the double-bridge move. The four dotted edges are removed
and the remaining parts A, B, C, D are reconnected by the dashed edges.

sizes. This is almost certainly because it changes the topology of the tour and can
operate on quadruples of very distant cities, whereas local search always modifies
the tour among nearby cities. In effect, the double-bridge perturbation cannot be
undone easily, neither by simple local search algorithms such as 2-opt or 3-opt nor
by most local search algorithms based on the Lin–Kernighan heuristic [55], which
is currently the champion local search algorithm for the TSP. (Only very few local
searches include such double-bridge changes in the search, the best known being
the Lin–Kernighan implementation of Helsgaun [40].) Furthermore, this perturba-
tion does not increase much the tour length, so even if the current solution is very
good, one is almost sure the next one will be good, too. These two properties of
the perturbation—its small strength and its fundamentally different nature from the
changes used in local search—make the TSP the perfect application for ILS.

We will now consider optimizing the perturbation assuming the other modules
to be fixed. In problems like the TSP, one can hope to have a satisfactory ILS when
using perturbations of fixed size (independent of the instance size). On the contrary,
for more difficult problems, fixed-strength perturbations may lead to poor perfor-
mance. Of course, the strength of the perturbations used is not the whole story; their
nature is almost always very important and will also be discussed. Finally we will
close by pointing out that the perturbation strength has an effect on the speed of the
local search: weak perturbations usually lead to faster execution of LocalSearch. All
these different aspects need to be considered when optimizing this module.

12.3.2.1 Perturbation Strength

For some problems, an appropriate perturbation strength is very small and seems
to be rather independent of the instance size. This is the case for both the TSP
and the PFSP, and, interestingly, ILS for these problems is very competitive with
today’s best metaheuristic methods. We can also consider other problems where
one is driven instead to large perturbation sizes. Consider the example of an ILS
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algorithm for the quadratic assignment problem (QAP). We use an embedded 2-opt
local search algorithm, the perturbation is a random exchange of the location of k
items, where k is an adjustable parameter, and the perturbation always modifies the
best solution found so far. We applied this ILS algorithm to QAPLIB instances5

from four different classes of QAP instances [86]; computational results are given
in Table 12.1. A first observation is that the best perturbation size is strongly de-
pendent on the particular instance. For two of the instances, the best performance
was achieved when as many as 75% of the solution components were altered by
the perturbation. Additionally, when the perturbation strength is too small, the ILS
performed worse than random restart (corresponding to the perturbation strength n).
However, the fact that random restart for the QAP may perform—on average—
better than a basic ILS algorithm is a bit misleading: in the next section we will
show that by modifying the acceptance criterion, ILS becomes far better than ran-
dom restart. Thus, one should keep in mind that the optimization of an ILS algorithm
may require more than the optimization of the individual components.

Table 12.1 The first column gives the identifier of the QAP instance; the number in the identifier
gives its size n. The successive columns are for perturbation sizes 3,n/12, . . . ,n. A perturbation of
size n corresponds to random restart. The table shows the average solution cost measured across
10 independent runs for each instance. The CPU time for each trial is 30 s. for kra30a, 60 s. for
tai60a and sko64, and 120 s. for tai60b on a Pentium III 500 MHz PC.

Instance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n
kra30a 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
sko64 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
tai60a 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60b 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43

12.3.2.2 Adaptive Perturbations

The behavior of ILS for the QAP and also for other combinatorial optimization
problems [41, 82] shows that there is no a priori single best size for the perturbation.
This observation motivates the possibility of modifying the perturbation strength
and adapting it during the run.

To this end, one approach is to exploit the search history. For the development of
such schemes, inspiration can be taken from what is done in the context of reactive
search [5, 6]. In particular, Battiti and Protasi proposed a reactive search algorithm
for MAX-SAT, which fits perfectly into the ILS framework [5]. They perform a
perturbation scheme which is implemented by a tabu search algorithm and after
each perturbation they apply a standard local improvement algorithm.

Another way of adapting the perturbation is to change its strength during the
search according to an a priori defined scheme. One particular example is employed

5 QAPLIB is accessible at http://www.seas.upenn.edu/qaplib.
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in basic variable neighborhood search (basic VNS) [38, 68]; we refer to Section 12.5
for some explanations on VNS. Other examples arise in the context of tabu search
[36]. In particular, ideas such as strategic oscillations may be useful to derive more
effective perturbations.

12.3.2.3 More Complex Perturbation Schemes

Perturbations can be more complex than random changes in a higher order neighbor-
hood. One rather general procedure to generate s′ from the current s∗ is as follows.
First, gently modify the definition of the instance, e.g., via the parameters defining
the various costs. Second, for this modified instance, run LocalSearch using s∗ as in-
put; the output is the perturbed solution s′. Interestingly, this is the method proposed
in the oldest ILS work we are aware of: Baxter tested this approach with success on
a location problem [9]. This idea seems to have been rediscovered later by Codenotti
et al. in the context of the TSP [18]. They first change slightly the city coordinates.
Then they apply the local search to s∗ using the perturbed city locations, obtain-
ing the new tour s′. Finally, running LocalSearch on s′ using the unperturbed city
coordinates, they obtain the new candidate tour s∗′.

Other sophisticated ways to generate good perturbations consist in optimizing a
sub-part of the problem. Such an approach was proposed by Lourenço [56] in the
context of the job shop scheduling problem (JSP). Her perturbation schemes are
based on defining one- or two-machine sub-problems by fixing a number of vari-
ables in the current solution and solving these sub-problems, either heuristically [57]
or to optimality using for instance Carlier’s exact algorithm [15] or the early–late
algorithm [57]. These schemes work well because (i) local search is unable to undo
the perturbations; (ii) after the perturbation, the solutions tend to be very good and
also have “new” parts that are optimized. More recently, evolutionary algorithms
have been used to generate perturbations for ILS algorithms [59]. The idea in this
approach is to generate a small initial population of solutions by perturbing the best-
so-far solution, to perform a short run of a GA with this population and then to use
the best solution found in this process as a new starting solution for the local search.

12.3.2.4 Speed

In the context of “easy” problems where ILS can work very well with weak (fixed
size) perturbations, there is another reason why that metaheuristic can perform much
better than random restart: Speed. Indeed, LocalSearch will usually execute much
faster on a solution obtained by applying a small perturbation to a local optimum
than on a random solution. As a consequence, iterated local search can run many
more local searches than random restart for the same CPU time. As a qualitative
example, consider again Euclidean TSPs. O(n) local changes have to be applied by
the local search to reach a local optimum from a random starting solution, whereas
empirically a nearly constant number is necessary in ILS when using the s′ obtained
with the double-bridge perturbation. Hence, in a given amount of CPU time, ILS
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can sample many more local optima than random restart can. This speed factor can
give ILS a considerable advantage over other restart schemes.

Let us illustrate this speed factor quantitatively. We compared the number of local
searches performed in a given amount of CPU time for the TSP by (i) random restart;
(ii) ILS using a double-bridge move; (iii) ILS using five simultaneous double-bridge
moves. (For both ILS implementations, we used random starting solutions and the
routine AcceptanceCriterion accepted only shorter tours.) For our numerical tests we
used a 3-opt implementation with standard speed-up techniques. In particular, it
used a fixed radius nearest-neighbor search restricted to candidate lists with the 40
nearest neighbors of each city and “don’t look” bits [11, 47, 62]. Initially, all don’t
look bits were turned off (set to 0). If no improving move was found for a given
node, its don’t look bit was turned on (set to 1) and the node was not considered
as a starting node for finding an improving move in the next iteration. When an arc
incident to a node was changed by a move, the node’s don’t look bit was turned off
again. In addition, after a perturbation we only turned off the don’t look bits of the
25 cities around each of the four breakpoints in the current tour. All three algorithms
were run for 120 s on a 266 MHz Pentium II processor on a set of TSPLIB6 instances
ranging from 100 to 5915 cities. Results are given in Table 12.2. For the smallest
instances, we see that iterated local search ran between 2 and 10 times as many
local searches as random restart. This advantage of ILS grows fast with increasing
instance size: for the largest instance, the first ILS algorithm ran approximately 260
times as many local searches as random restart in our alloted time. Obviously, this
speed advantage of ILS over random restart is strongly dependent on the strength
of the applied perturbation. The larger the perturbation size, the more the solution

Table 12.2 The first column gives the identifier of the TSP instance, where the number in the
identifier specifies the number of cities. The next columns give the number of local searches per-
formed when using (i) random restart (#LSRR); (ii) ILS with a single double-bridge perturbation
(#LS1−DB); (iii) ILS with a five double-bridge perturbation (#LS5−DB). All algorithms were run
for 120 s on a PC with a 266 MHz Pentium processor.

Instance #LSRR #LS1-DB #LS5-DB

kroA100 17,507 56,186 34,451
d198 7715 36,849 16,454
lin318 4271 25,540 9430
pcb442 4394 40,509 12,880
rat783 1340 21,937 4631
pr1002 910 17,894 3345
pcb1173 712 18,999 3229
d1291 835 23,842 4312
fl1577 742 22,438 3915
pr2392 216 15,324 1777
pcb3038 121 13,323 1232
fl3795 134 14,478 1773
rl5915 34 8820 556

6 TSPLIB is accessible at www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.



12 Iterated Local Search: Framework and Applications 377

is modified and generally the longer the subsequent local search takes. This fact is
intuitively obvious and it is confirmed in Table 12.2.

In summary, the optimization of the perturbation depends on many factors, and
problem-specific characteristics play a central role. Finally, it is important to keep
in mind that the perturbation also interacts with the other components of ILS. We
will discuss these interactions in Section 12.3.5.

12.3.3 Acceptance Criterion

ILS does a randomized walk in S ∗, the space of local minima. The perturbation
mechanism together with the local search defines the possible transitions between a
current solution s∗ in S ∗ and a “neighboring” solution s∗′ also in S ∗. The proce-
dure AcceptanceCriterion then determines whether s∗′ is accepted or not as the new
current solution. AcceptanceCriterion has a strong influence on the nature and effec-
tiveness of the walk in S ∗. Roughly, it can be used to control the balance between
intensification and diversification of that search. A simple way to illustrate this is to
consider a Markovian acceptance criterion. A very strong intensification is achieved
if only better solutions are accepted. We call this acceptance criterion Better and
it is defined for minimization problems as

Better(s∗,s∗′,history) =

⎧⎨
⎩

s∗′ if C (s∗′) < C (s∗)

s∗ otherwise.
(12.1)

At the opposite extreme is the random walk acceptance criterion (denoted by RW)
which always applies the perturbation to the most recently visited local optimum,
irrespective of its cost:

RW(s∗,s∗′,history) = s∗′. (12.2)

This criterion clearly favors diversification over intensification.
Many intermediate choices between these two extreme cases are possible. In

one of the first ILS algorithms, the large-step Markov chain algorithm proposed
by Martin et al. [62, 63], a simulated annealing type acceptance criterion was ap-
plied. We call it LSMC(s∗,s∗′,history). In particular, s∗′ is always accepted if it is
better than s∗. Otherwise, if s∗′ is worse than s∗, s∗′ is accepted with probability
exp{(C (s∗)−C (s∗′))/T} where T is a parameter called temperature, which is usu-
ally lowered during the run as in simulated annealing. Note that LSMC approaches
the RW acceptance criterion if T is very high, while at very low temperatures LSMC
is similar to the Better acceptance criterion. An interesting possibility for LSMC
is to allow non-monotonic temperature schedules as proposed for simulated anneal-
ing [43] or tabu thresholding [34]. This can be most effective if it is done using
memory: when further intensification no longer seems useful, increase the temper-
ature to do diversification for a limited time, then resume intensification. Of course,
just as in tabu search, it is desirable to do this in an automated and self-regulating
manner [36].
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A very limited usage of memory in the acceptance criterion is to restart the ILS
algorithm when the intensification seems to become ineffective. (Of course, this is
a rather extreme way to switch from intensification to diversification). For instance
one can restart the ILS algorithm from a new initial solution if no improved solution
has been found for a given number of iterations. The restart of the algorithm can
easily be modeled by the acceptance criterion Restart(s∗,s∗′,history). Let ilast
be the last iteration where a better solution has been found and i be the iteration
counter. Then Restart(s∗,s∗′,history) is defined as

Restart(s∗,s∗′,history) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s∗′ if C (s∗′) < C (s∗)

s if C (s∗′)≥ C (s∗) and i− ilast > ir

s∗ otherwise.

(12.3)

where ir is a parameter that indicates that the algorithm should be restarted if no im-
proved solution was found for ir iterations; s can be generated in different ways. The
simplest strategy is to generate a new solution randomly or by a greedy randomized
heuristic. Clearly many other ways to incorporate memory may and should be con-
sidered, the overall efficiency of ILS being quite sensitive to the acceptance criterion
applied. We now illustrate this with two examples.

12.3.3.1 Example 1: TSP

Let us consider the effect of the two acceptance criteria RW and Better. We per-
formed our tests on the TSP as summarized in Table 12.3. We give the average
percentage over the known optimal solutions when using 10 independent runs on

Table 12.3 Influence of the acceptance criterion for various TSP instances. The first column gives
the identifier of the TSP instance, where the number in the identifier specifies the number of cities.
The next columns give the average percentage over the optimal tour length obtained using: random
restart (RR), iterated local search with RW, and iterated local search with Better. The results are
averaged over 10 independent runs. All algorithms were run for 120 s on a PC with a 266 MHz
Pentium processor.

Instance Δavg(RR) Δavg(RW) Δavg(Better)
kroA100 0.0 0.0 0.0
d198 0.003 0.0 0.0
lin318 0.66 0.30 0.12
pcb442 0.83 0.42 0.11
rat783 2.46 1.37 0.12
pr1002 2.72 1.55 0.14
pcb1173 3.12 1.63 0.40
d1291 2.21 0.59 0.28
fl1577 10.3 1.20 0.33
pr2392 4.38 2.29 0.54
pcb3038 4.21 2.62 0.47
fl3795 38.8 1.87 0.58
rl5915 6.90 2.13 0.66
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our set of benchmark instances. In addition, we also give this number for the ran-
dom restart 3-opt algorithm. First, we observe that both ILS algorithms lead to a
significantly better average solution quality than random restart using the same lo-
cal search. This is particularly true for the largest instances, confirming the claims
made in Section 12.2. Second, given that one expects good solutions for the TSP to
cluster (see Section 12.3.5), a good strategy should incorporate intensification. It is
thus not surprising to see that the Better criterion leads to shorter tours than the
RW criterion.

The runs given in this example are rather short. For much longer runs, the
Better strategy comes to a point where it no longer finds improved tours. In fact,
an analysis of ILS algorithms based on the run-time distribution methodology [42]
has shown that such stagnation situations effectively occur and that the performance
of the ILS algorithm can be considerably improved by additional diversification
mechanisms [84], an occasional restart of the ILS algorithm being the conceptually
simplest case.

12.3.3.2 Example 2: QAP

Let us come back to ILS for the QAP. For this problem we found that the accep-
tance criterion Better together with a poor choice of the perturbation strength
could result in worse performance than random restart. In Table 12.4 we give re-
sults for the same ILS algorithm except that we now also consider the use of the
RW and Restart acceptance criteria. We see that the performance of the ILS algo-
rithms using these acceptance criteria is much better than random restart, the only
exception being for the ILS algorithm with RW for a small perturbation strength
on tai60b.

This example shows that there are strong interdependencies between the pertur-
bation strength and the acceptance criterion. This dependency is rarely completely

Table 12.4 Further tests on the QAP benchmark instances using the same perturbations and CPU
times than for Table 12.1; given is the average solution cost measured across 10 independent runs
for each instance. Here we consider three different choices for the acceptance criterion. Clearly,
the inclusion of diversification significantly lowers the average cost found.

Instance Acceptance 3 n/12 n/6 n/4 n/3 n/2 3n/4 n
kra30a Better 2.51 2.51 2.04 1.06 0.83 0.42 0.0 0.77
kra30a RW 0.0 0.0 0.0 0.0 0.0 0.02 0.47 0.77
kra30a Restart 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77

sko64 Better 0.65 1.04 0.50 0.37 0.29 0.29 0.82 0.93
sko64 RW 0.11 0.14 0.17 0.24 0.44 0.62 0.88 0.93
sko64 Restart 0.37 0.31 0.14 0.14 0.15 0.41 0.79 0.93

tai60a Better 2.31 2.24 1.91 1.71 1.86 2.94 3.13 3.18
tai60a RW 1.36 1.44 2.08 2.63 2.81 3.02 3.14 3.18
tai60a Restart 1.83 1.74 1.45 1.73 2.29 3.01 3.10 3.18

tai60b Better 2.44 0.97 0.67 0.96 0.82 0.50 0.14 0.43
tai60b RW 0.79 0.80 0.52 0.21 0.08 0.14 0.28 0.43
tai60b Restart 0.08 0.08 0.005 0.02 0.03 0.07 0.17 0.43
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understood. But, as a general rule of thumb, when it is necessary to allow for
diversification, we believe it is best to do so by accepting numerous small perturba-
tions rather than by accepting one large perturbation.

Most of the acceptance criteria applied so far in ILS algorithms either are fully
Markovian or make use of the search history in a very limited way. We expect that
there will be many more ILS applications in the future making strong use of the
search history; in particular, alternating between intensification and diversification
is likely to be an essential feature in these applications.

12.3.4 Local Search

So far we have treated the local search algorithm as a black box, which is called
many times by ILS. Since the behavior and performance of the overall ILS algorithm
is quite sensitive to the choice of the embedded heuristic, one should optimize this
choice whenever possible. In practice, there may be many quite different algorithms
that can be used for the embedded heuristic. (As mentioned at the beginning of
the chapter, the heuristic needs not even be a local search.) One might think that
the better the local search, the better the corresponding ILS. Often this is true. For
instance in the context of the TSP, Lin–Kernighan [55] is a better local search than
3-opt, which itself is better than 2-opt [47]. Using a fixed type of perturbation such as
the double-bridge move, one finds that iterated Lin–Kernighan gives better solutions
than iterated 3-opt which itself gives better solutions than iterated 2-opt [47, 84]. But
if we assume that the total computation time is fixed, it might be better to apply more
frequently a faster but less effective local search algorithm than a slower and more
powerful one. Clearly, which choice is best depends on just how much more time is
needed to run the better heuristic. If the speed difference is not large, for instance, if
it is independent of the instance size, then it usually worth using the better heuristic.
This is the most frequent case; in the TSP, for instance, 3-opt is a bit slower than
2-opt, but the improvement in quality of the tours is well worth the extra CPU time,
be it using random restart or iterated local search. The same comparison applies to
using Lin–Kernighan rather than 3-opt. However, there are other cases where the
increase in CPU time is so large compared to the improvement in solution quality
that it is best not to use the “better” local search. For example, again in the context
of the TSP, it is known that 4-opt gives slightly better solutions than 3-opt, but in
standard implementations it is O(n) times slower (n being the number of cities). It
is then better not to use 4-opt as the local search embedded in ILS.

There are also other aspects that should be considered when selecting a local
search. Clearly, there is not much point in having an excellent local search if it
will systematically undo the perturbation; however, this issue is one of globally
optimizing iterated local search, so it will be postponed till the next subsection.
Another important aspect is whether one can really get the speed-ups that were
mentioned in subsection 12.3.2. There we saw that a standard speed-up for local
search was to introduce don’t look bits. These give a large gain in speed if the bits
can also be reset after the application of the perturbation. This requires that the
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developer is able to access the source code of LocalSearch. A state-of-the art ILS
will take advantage of all possible speed-up tricks, and thus the LocalSearch most
likely will not be a true black box.

Finally, there may be some advantages in allowing LocalSearch to sometimes
generate worse solutions. For instance, if we replace the local search heuristic by
tabu search or short simulated annealing runs, the corresponding ILS may perform
better. This seems most promising when standard iterative improvement algorithms
perform poorly. This is indeed the case in the job shop scheduling problem: the use
of tabu search as the embedded heuristic gives rise to a very effective iterated local
search [58].

12.3.5 Global Optimization of ILS

So far, we have considered representative issues arising when optimizing separately
each of the four components of an iterated local search. In particular, when illustrat-
ing various important characteristics of one component, we kept the other compo-
nents fixed. But clearly the optimization of one component depends on the choices
made for the others; as an example, we made it clear that a good perturbation must
have the property that it cannot be easily undone by the local search. Thus, at least
in principle, one should tackle the global optimization of an ILS. Since at present
there is no theory for analyzing a metaheuristic such as iterated local search, we
will just give a rough idea of how such a global optimization can be approached in
practice.

If we reconsider the subsection on the effect of the initial solution, we see
that GenerateInitialSolution is to a large extent irrelevant when the ILS performs
well and rapidly looses the memory of its starting point. Hereafter we assume
that this is the case; then the optimization of GenerateInitialSolution can be ig-
nored and we are left with the joint optimization of the three other components.
Clearly the best choice of Perturbation depends on the choice of LocalSearch while
the best choice of AcceptanceCriterion depends on the choices of LocalSearch and
Perturbation. In practice, we can approximate this global optimization problem by
successively optimizing each component, assuming the others are fixed until no im-
provements are found for any of the components [26]. Thus the only difference with
what has been presented in the previous subsections is that the optimization has to
be iterative. This does not guarantee global optimization of the ILS, but it should
lead to an adequate optimization of the overall algorithm.

Given these approximations, we should be more precise about what we want to
optimize. For most users, it will be the mean (over starting solutions) of the best
cost found during a run of a given length. Then the “best” choice for the different
components is a well-defined problem, though it is intractable without further re-
strictions. Furthermore, in general, the detailed instance that will be considered by
the user is not known ahead of time, so it is important that the resulting ILS algo-
rithm be robust. Thus it is preferable not to optimize it to the point where it is sensi-
tive to the details of the instance. This robustness seems to be achieved in practice:
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researchers implement versions of iterated local search with a reasonable level of
global optimization and then test with some degree of success the performance on
standard benchmarks.

At the risk of repeating ourselves, let us highlight the main dependencies of the
components:

1. The perturbation should not be easily undone by the local search; if the local
search has obvious short-comings, a good perturbation should compensate for
them.

2. The combination Perturbation–AcceptanceCriterion determines the relative bal-
ance of intensification and diversification; large perturbations are only useful
if they can be accepted, which occurs only if the acceptance criterion is not too
biased toward better solutions.

As a general guideline, LocalSearch should be as powerful as possible as long as it
is not too costly in CPU time. Given such a choice, find a well-adapted perturbation
following the discussion in Section 12.3.2; to the extent possible, taking advantage
of the structure of the problem. Finally, set the AcceptanceCriterion routine so that
S ∗ is sampled adequately. With this point of view, the overall optimization of the
ILS is nearly a bottom-up process, but with iteration. Perhaps the core issue is what
to put into Perturbation. In particular, is it possible to consider only weak pertur-
bations? From a theoretical point of view, the answer to this question depends on
whether the best solutions “cluster” in S ∗. In some problems (and the TSP is one
of them), there is a strong correlation between the cost of a solution and its “dis-
tance” to the optimum: in effect, the best solutions cluster together, i.e., have many
similar components. This has been referred to in many different ways: “Massif Cen-
tral” phenomenon [31], principle of proximate optimality [36], and replica symme-
try [66]. If the problem under consideration has this property, it is not unreasonable
to hope to find the true optimum using a biased sampling of S ∗. In particular, it is
clear that it is useful to use intensification to improve the probability of hitting the
global optimum.

There are, however, other types of problems where the clustering is incom-
plete, i.e., where very distant solutions can be nearly as good as the optimum. Ex-
amples of combinatorial optimization problems in this category are QAP, graph
bi-section, and MAX-SAT. When the space of solutions has this property, new
strategies have to be used. Clearly, it is still necessary to use intensification to
get the best solution in one’s current neighborhood, but generally this will not
lead to the optimum. After an intensification phase, one must explore other re-
gions of S ∗. This can be attempted by using “large” perturbations whose strength
grows with the instance. Other possibilities are to restart the algorithm from scratch
and repeat another intensification phase or by oscillating the acceptance crite-
rion between intensification and diversification phases. Additional ideas on the
trade-offs between intensification and diversification are well discussed in the con-
text of tabu search (see, for example, [36]). Clearly, finding an appropriate bal-
ance of intensification vs. diversification is very important but still a challenging
problem.
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12.4 Selected Applications of ILS

ILS algorithms have been applied successfully to a variety of combinatorial opti-
mization problems. In some cases, these algorithms achieve extremely high per-
formance and even constitute the current state-of-the-art algorithms, while in other
cases the ILS approach is merely competitive with other metaheuristics. In this sec-
tion, we give an overview of interesting ILS applications, presenting the core ideas
of these algorithms to illustrate possible uses of ILS. We put a particular emphasis
on the TSP, given its central role in the development of ILS algorithms.

12.4.1 ILS for the TSP

The TSP is probably the best-known combinatorial optimization problem. De facto,
it is a standard test-bed for the development of new algorithmic ideas: a good per-
formance on the TSP is taken as evidence of the value of such ideas. Like many
other metaheuristic algorithms, some of the first ILS algorithms were introduced
and tested on the TSP, the oldest case of this being due to Baum [7, 8]. He coined
his method iterated descent; his tests used 2-opt as the embedded heuristic, ran-
dom 3-changes as the perturbations, and imposed the tour length to decrease (thus
the name of the method). His results were not impressive, in part because some al-
gorithm components were probably not the most appropriate and also because he
tackled non-Euclidean TSPs.

A major improvement in the performance of ILS algorithms came from the large-
step Markov chain (LSMC) algorithm proposed by Martin et al. [62]. They used a
simulated annealing-like acceptance criterion (LSMC) from which the algorithm’s
name is derived. They considered both the application of 3-opt local search and the
Lin–Kernighan heuristic, which is the best performing local search algorithm for the
TSP. But probably the key ingredient of their work is the introduction of the double-
bridge move for the perturbation. This choice made the approach very powerful for
the Euclidean TSP and encouraged much more work along these lines. In particular,
Johnson [46, 47] coined the term “iterated Lin–Kernighan” (ILK) for his implemen-
tation of ILS using Lin–Kernighan as the local search. The main differences with
the LSMC implementation are (i) double-bridge moves are random rather than bi-
ased; (ii) the costs are improving (only better tours are accepted, corresponding to
the choice Better in our notation). Since these initial studies, other ILS variants
have been proposed; Johnson and McGeoch [47] give a summary of the situation
as of 1997 and several additional ILS variants are covered in a 2002 book chapter,
which summarizes early results from the 8th DIMACS implementation challenge
on the TSP [48].

A high-performing ILS algorithm is offered as part of the Concorde software
package and it is available for download at http://www.tsp.gatech.edu/concorde/.
This chained Lin–Kernighan code has been developed by Applegate, Bixby, Chvatal,
and Cook and a detailed description of the code is given in their recent book on the
TSP [2]; this book also contains details on an extensive computational study of this
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code. Noteworthy is also the experimental study by Applegate et al. [1] who per-
formed tests on very large TSP instances with up to 25 million cities. Recently, a new
ILS variant has been proposed that further illustrates the impressive performance of
ILS algorithms on very large TSP instances. Currently, the iterated Lin-Kernighan
variant of Merz and Huhse [65] appears to be the best performing algorithm for very
large TSP instances with several millions of cities when the computation times are
relatively short (in the range of a few hours on a modern PC as of 2008).

A major leap in TSP solving stems from Helsgaun’s Lin–Kernighan implemen-
tation and its iterated version [40]. The main novelty of Helsgaun’s algorithm lies
on the local search side: the Lin–Kernighan variant developed is based on more
complex basic moves than previous implementations. His iterated version of the
Lin–Kernighan heuristic is not really an ILS algorithm like the ones presented in
this chapter since the generation of new starting solutions is through a solution con-
struction method. However, the constructive mechanism is very strongly biased to-
ward the incumbent solution, which makes this approach somehow similar to an ILS
algorithm. The most recent version of this algorithm, along with an accompanying
technical report describing the recent developments, is available for download at
http://www.akira.ruc.dk/∼keld/research/LKH/.

There are a number of other ILS algorithms for the TSP that not necessarily offer
the ultimate state-of-the-art performance but that illustrate various ideas that may be
useful in ILS algorithms. One algorithm, which has already been mentioned before,
is the one by Codenotti et al. [18]. It gives an example of a complex perturbation
scheme, which is based on the modification of the instance data. Various pertur-
bation sizes as well as population-based extensions of ILS algorithms for the TSP
have been studied by Hong et al. [41]. The perturbation mechanism is also the fo-
cus of the work by Katayama and Narisha [49]. They introduce a new perturbation
mechanism, which they called genetic transformation. The genetic transformation
mechanism uses two tours, the best found so far, s∗best, and a second, current local
optimum, s∗. First a random 4-opt move is performed on s∗best, resulting in s∗′. Then
the subtours that are shared among s∗′ and s∗ are kept and the resulting parts are
reconnected with a greedy algorithm. Computational experiments with an iterated
Lin–Kernighan algorithm using the genetic transformation method instead of the
standard double-bridge move have shown that the approach is effective.

An analysis of the run-time behavior of various ILS algorithms for the TSP is
done by Stützle and Hoos [84, 85]; this analysis clearly shows that ILS algorithms
with the Better acceptance criterion show a type of stagnation behavior for long
run-times. To avoid such stagnation, restarts and a particular acceptance criterion to
diversify the search were proposed. The goal of this latter strategy is to force the
search, once search stagnation is detected, to continue from a high-quality solution
that is beyond a certain minimal distance from the current one [84]. As shown in
[42], current state-of-the-art algorithms such as Helsgaun’s iterated Lin–Kernighan
can also suffer from stagnation behavior and, hence, their performance can be fur-
ther improved by similar ideas.

Finally, let us mention that ILS algorithms have been used as components of
more complex algorithms. A clear example is the tour merging approach [2, 21].
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The central idea is to generate a set G of high-quality tours by using ILS and then to
post-process these solutions further. In particular, in tour merging, the optimal tour
(or, if this is not feasible in reasonable computation time, the best possible tour) is
produced from fragments of tours occurring in G.

12.4.2 ILS for Other Problems

ILS algorithms have been applied to a large number of other problems, where often
they achieve state-of-the-art performance or are very close to it.

Single machine total weighted tardiness problem. Congram, Potts and van
de Velde have presented an ILS algorithm for the single machine total weighted
tardiness problem (SMTWTP) [20] based on a dynasearch local search. The per-
turbation mechanism in their ILS algorithm applies a series of random interchange
moves and additionally exploits specific properties of the SMTWTP. In the accep-
tance criterion, Congram et al. introduce a backtrack step: after β iterations in which
every new local optimum is accepted, the algorithm restarts from the best solution
found so far. In our notation, the backtrack step is a particular choice for the his-
tory dependence incorporated into the acceptance criterion. The performance of this
ILS algorithm was excellent, solving almost all available benchmark instances in a
few seconds on the available hardware. A further improvement over this algorithm,
mainly based on an enlarged neighborhood being searched within the dynasearch
local search, was presented by Grosso et al. [37]. This approach outperformed the
first iterated dynasearch algorithm, hence, defining the current state-of-the-art for
solving the SMTWTP.

Single and parallel-machine scheduling. Brucker et al. [12, 13] apply the
principles of ILS to a number of one-machine and parallel-machine scheduling
problems. They introduce a local search method which is based on two types of
neighborhoods. At each step one goes from one feasible solution to a neighboring
one with respect to the secondary neighborhood. The main difference with standard
local search methods is that this secondary neighborhood is defined on the set of
locally optimal solutions of the first neighborhood. Thus, this is an ILS with two
nested neighborhoods; searching in the primary neighborhood corresponds to our
local search phase; searching in the secondary neighborhood is like our perturba-
tion phase. The authors also note that the second neighborhood is problem specific;
this is what is observed in ILS where the perturbation should be adapted to the prob-
lem. The search at a higher level reduces the search space size and at the same time
leads to better results.

Flow shop scheduling. Stützle [82] applied ILS to the permutation flow shop
problem (PFSP) under the makespan criterion. The algorithm is based on a straight
forward first-improvement local search using the insert neighborhood while the per-
turbation is composed of swap moves, which exchange the positions of two adja-
cent jobs, and interchange moves, which have no adjacency constraint. Experimen-
tally, it was found that perturbations with just a few swap and interchange moves
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were sufficient to obtain very good results. Several acceptance criteria have been
compared; the best performing was ConstTemp, which corresponds to choosing
a constant temperature in the LSMC criterion. This ILS algorithm was shown to be
among the top performing metaheuristic algorithms for the PFSP [76]; an adapta-
tion of this ILS algorithm has also shown very good performance on the flow shop
problem with flowtime objective [27]. The ILS algorithm has also been extended to
an iterated greedy (IG) algorithm [77]. The essential idea in IG, and also a few other
algorithms [45, 80], is to perturb the current solution by a destruction/construction
mechanism. In the solution destruction phase, a complete solution is reduced to a
partial solution sp by removing solution components; in the following construction
phase, a complete solution is reconstructed starting from sp by a greedy construc-
tion heuristic. Despite the simplicity of the underlying idea, this IG algorithm is a
state-of-the-art algorithm for the PFSP [77].

ILS has also been used to solve a flow shop problem with several stages in series,
where at each stage a number of machines is available for processing the jobs. Yang
et al. [91] presented such a method; at each stage, instead of a single machine,
there is a group of identical parallel machines. Their metaheuristic has two phases
that are repeated iteratively. In the first phase, the operations are assigned to the
machines and an initial sequence is constructed. The second phase uses an ILS to
find better schedules for each machine at each stage by modifying the sequence of
operations on each machine. Yang et al. also proposed a “hybrid” metaheuristic: they
first apply a decomposition procedure to solve a series of single stage sub-problems;
then they follow with their ILS. The process is repeated until a satisfactory solution
is obtained.

Job shop scheduling. Lourenço [56] and Lourenço and Zwijnenburg [58] used
ILS to tackle the job shop scheduling problem under the makespan criterion. They
performed extensive computational tests, comparing different ways to generate ini-
tial solutions, various local search algorithms, different perturbations, and three ac-
ceptance criteria. While they found that the initial solution had only a very limited
influence, the other components turned out to be very important. Perhaps the heart
of their work is the way they perform the perturbations, which has already been
described in Section 12.3.2.

Balas and Vazacopoulos [4] presented a variable depth search heuristic, which
they called guided local search (GLS). GLS is based on the concept of neighbor-
hood trees, proposed by the authors, where each node corresponds to a solution and
the child nodes are obtained by performing an interchange on some critical arc. They
developed ILS algorithms by embedding GLS within the shifting bottleneck (SB)
procedure and by replacing the reoptimization cycle of SB with a number of cy-
cles of the GLS procedure. They call this procedure SB-GLS1. The later SB-GLS2
variant works as follows. Once all machines have been sequenced, they iteratively
remove one machine and apply GLS to a smaller instance defined by the remaining
machines. Then again GLS is applied on the initial instance containing all machines.
Hence, both heuristics are similar in spirit to the one proposed by Lourenço [56] in
the sense that they are based on re-optimizing a part of the instance and then reap-
plying local search to the full one.
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Kreipl applied ILS to the total weighted tardiness job shop scheduling problem
[53]. His ILS algorithm uses a RW acceptance criterion and the local search consists
in reversing critical arcs and arcs adjacent to them. One original aspect of this ILS is
the perturbation step: Kreipl applies a few steps of a simulated annealing-like algo-
rithm with constant temperature; in the perturbation phase a smaller neighborhood
than the one used in the local search phase is applied. The number of iterations per-
formed during the perturbation phase depends on how good the incumbent solution
is. In promising regions, only a few steps are applied to stay near good solutions,
otherwise, a “large” perturbation is applied to escape from a poor region. Computa-
tional results with the ILS algorithm on a set of benchmark instances have shown a
very promising performance. In fact, the algorithm performance is roughly similar
to a later, much more complex algorithm proposed by Essafi et al. [29]. Interest-
ingly, this latter approach integrates an ILS algorithm as a local search operator
into an evolutionary algorithm, illustrating the fact that ILS can also be used as an
improvement method inside other metaheuristics.

Graph bipartitioning. The graph bipartitioning problem is among the early ILS
applications. Martin and Otto [60, 61] introduced an ILS for this problem follow-
ing their earlier work on the TSP. For the local search, they used the Kernighan–Lin
variable depth local search algorithm [51] which is the analog for this problem of the
Lin–Kernighan algorithm. When considering possible perturbations, they noticed a
particular weakness of the Kernighan–Lin local search: it frequently generates parti-
tions with many “islands,” i.e., the two sets A and B are typically highly fragmented
(disconnected). Thus they introduced perturbations that exchanged vertices between
these islands rather than between the whole sets A and B. Finally, for the acceptance
criterion, Martin and Otto used the Better acceptance criterion. The overall algo-
rithm significantly improved over the embedded local search (random restart of the
Kernighan-Lin local search); it also improved over simulated annealing when the
acceptance criterion was optimized.

MAX-SAT. Battiti and Protasi present an application of reactive search to the
MAX-SAT problem [5]. Their algorithm consists of two phases: a local search phase
and a diversification (perturbation) phase. Because of this, their approach fits per-
fectly into the ILS framework. Their perturbation is obtained by running a tabu
search on the current local minimum to guarantee that the modified solution s′ is
sufficiently different from the current solution s∗. Their measure of difference is just
the Hamming distance; the minimum distance is set by the length of a tabu list that
is adjusted during the algorithm execution. For LocalSearch, they use a standard it-
erative improvement algorithm appropriate for the MAX-SAT problem. Depending
on the distance between s∗′ and s∗, the tabu list length for the perturbation phase is
dynamically adjusted. The next perturbation phase is then started based on solution
s∗′—corresponding to the RW acceptance criterion. This work illustrates very nicely
how one can adjust dynamically the perturbation strength in an ILS run. We conjec-
ture that similar schemes will be useful to adapt the perturbation size while running
an ILS algorithm. In later work, Smyth et al. [81] have developed an ILS algorithm
based on a robust tabu search algorithm that is used in both the local search phase
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and the perturbation phase. The main difference between the two phases is that the
length of the tabu list is strongly increased in the perturbation to drive the search
away from the current solution. Extensive computational tests showed that this al-
gorithm reaches state-of-the-art performance for a number of MAX-SAT instance
classes [42, 81]. Noteworthy is also the ILS algorithm of Yagiura and Ibaraki, which
is based on large neighborhoods for MAX-SAT that are used in the local search
phase [90].

Quadratic assignment problem. ILS algorithms have also reached remarkable
performance on the QAP [83]. Based on the insights gained through an analysis of
the run-time behavior of a basic ILS algorithm with the Better acceptance crite-
rion, Stützle has proposed a number of different ILS algorithms. Population-based
extensions of ILS that use restart-type criteria and additional criteria for maintaining
solution diversity have been the best performing variants. An extensive experimen-
tal campaign has identified this population-based ILS variant as state of the art for
structured QAP instances.

Other problems. ILS has been applied to a number of other problems and we
shortly mention here some of them without attempting to give an exhaustive enu-
meration. A number of ILS approaches for coloring graphs have been proposed
[14, 17, 72]; these approaches generally reach very high-quality colorings and per-
form particularly well on some structured graphs. ILS algorithms have also been
proposed for various vehicle routing problems (VRPs), including time-dependent
VRPs [39], VRPs with time penalty functions [44], the prize-collecting VRP [87],
and a multiple depot vehicle scheduling problem [54]. ILS algorithms have also
been successfully applied to the car sequencing problem proposed in the 2005
ROADEF challenge, as illustrated in [23, 73]. ILS is used as a local search pro-
cedure within a GRASP approach by Ribeiro and Urrutia for tackling the mirrored
traveling tournament problem [74]. Very high-performing ILS algorithms have also
been proposed for problems such as maximum clique [50], image registration [24],
some loop layout problems [10], linear ordering [19, 78], logistic network design
problems [22], a capacitated hub location problem [75], Bayesian networks struc-
ture learning [25], and minimum sum-of-squares clustering [64].

12.4.3 Summary

The examples we have chosen in this section stress several points that have already
been mentioned. First, the choice of the local search algorithm is usually quite crit-
ical if one is to obtain peak performance. In most applications, the best performing
ILS algorithms apply much more sophisticated local search algorithms than simple
best or first-improvement methods. Second, the other components of an ILS also
need to be optimized if state-of-the-art results are to be achieved. This optimization
should be global and should involve the use of problem-specific properties. Exam-
ples of this last point were given in scheduling applications where good perturba-
tions were not simply random, but rather involved re-optimization of significant
parts of the instance (c.f. the job shop case).
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The final picture is one where (i) ILS is a versatile metaheuristic, which can be
easily adapted to different combinatorial optimization problems and (ii) sophisti-
cated perturbation schemes and search diversification are essential ingredients to
achieve the best possible ILS performance.

12.5 Relation to Other Metaheuristics

In this section, we highlight the similarities and differences between ILS and other
well-known metaheuristics. We shall distinguish metaheuristics that are essentially
variants of local search and those that generate solutions using a mechanism that is
not necessarily based on an explicit neighborhood structure. Among the first class,
which we call neighborhood-based metaheuristics, are methods like simulated an-
nealing (SA) [16, 52], tabu search (TS) [36], or guided local search (GLS) [89]. The
second class comprises metaheuristics like GRASP [30], ant colony optimization
(ACO) [28], evolutionary and memetic algorithms [3, 67, 69], scatter search [35],
variable neighborhood search (VNS) [38, 68], and ILS. Some metaheuristics of this
second class, like evolutionary algorithms and ant colony optimization, do not nec-
essarily make use of local search algorithms; however, a local search can be embed-
ded in them, in which case the performance is usually enhanced [28, 69, 70]. The
other metaheuristics in this class explicitly use embedded local search algorithms as
an essential part of their structure. For simplicity, we will assume in what follows
that all the metaheuristics of this second class do incorporate local search algo-
rithms. In this case, such metaheuristics generate iteratively input solutions that are
passed to a local search; they can thus be interpreted as multi-start algorithms in the
most general meaning of that term. This is why we call them here multi-start-based
metaheuristics.

12.5.1 Neighborhood-Based Metaheuristics

Neighborhood-based metaheuristics are extensions of iterative improvement algo-
rithms. They avoid getting stuck in locally optimal solutions by allowing moves to
worse solutions in the neighborhood of the current solution. Metaheuristics in this
class differ mainly by their move strategies. In the case of SA, the neighborhood
is sampled randomly and worse solutions are accepted with a probability, which
depends on a temperature parameter and the degree of deterioration incurred; better
neighboring solutions are usually accepted while much worse neighboring solutions
are accepted with a low probability. In the case of (simple) TS strategies, the neigh-
borhood is explored in an aggressive way and cycles are avoided by declaring tabu
attributes of visited solutions. Finally, in the case of GLS, the evaluation function
is dynamically modified by penalizing certain solution components. This allows the
search to escape from a solution that is a local optimum of the original objective
function.
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Obviously, any of these neighborhood-based metaheuristics can be used as the
local search procedure in ILS. In general, however, these metaheuristics do not halt,
so it is necessary to limit their run time if they are to be embedded in ILS. One par-
ticular advantage of combining neighborhood-based metaheuristics with ILS is that
they often obtain much better solutions than iterative improvement algorithms. But
this advantage usually comes at the cost of larger computation times. Since these
metaheuristics allow one to obtain better solutions at the expense of greater com-
putation times, we are confronted with the following optimization problem when
using them within an ILS:7 “For how long should one run the embedded search
in order to achieve the best trade-off between computation time and solution qual-
ity?” This is analogous to the question of whether it is best to have a fast but not
so effective local search or a slower but a more powerful one. The answer depends
of course on the total computation time available and on how the costs improve
with time.

A different type of connection between ILS, SA, and TS arises from certain sim-
ilarities in the algorithms. For example, SA can be seen as an ILS without a local
search phase (SA samples the original space S and not the reduced space S ∗) and
where the acceptance criteria are LSMC(s∗,s∗′,history). While SA does not employ
memory, the use of memory is the main feature of TS, which makes a strong use of
historical information at multiple levels. Given its effectiveness, we expect that the
integration of memories will become widespread in future ILS applications.8 Fur-
thermore, since TS is a prototype for memory intensive search procedures, it can be
a valuable source of inspiration for deriving ILS variants with a more direct usage
of memory; this can lead to a better balance between intensification and diversifi-
cation in the search.9 Similarly, TS strategies may also be improved by features of
ILS algorithms and by some insights gained from the research on ILS.

12.5.2 Multi-start-Based Metaheuristics

Multi-start-based metaheuristics can be classified into constructive metaheuristics
and perturbation-based metaheuristics.

Well-known examples of constructive metaheuristics are ACO and GRASP,
which both use a probabilistic solution construction phase. An important differ-
ence between ACO and GRASP is that ACO has an indirect memory of the search
process, which is used to bias the construction process, whereas GRASP does not

7 This question is not specific to ILS; it arises for all multi-start-based metaheuristics.
8 In early TS publications, proposals similar to the use of perturbations were put forward under
the name random shakeup [32]. These procedures where characterized as a “randomized series of
moves that leads the heuristic (away) from its customary path” [32]. The relationship to perturba-
tions in ILS is obvious.
9 Indeed, in [33], Glover uses “strategic oscillation” whereby one cycles over these procedures: the
simplest moves are used till there is no more improvement, and then progressively more advanced
moves are used.
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use that kind of memory. An obvious difference between ILS and constructive
metaheuristics is that ILS does not construct solutions. However, both generate a
sequence of solutions, and if the constructive metaheuristic uses an embedded local
search, both go from one local minimum to another. So it might be said that the per-
turbation phase of an ILS is replaced by a (memory-dependent) construction phase
in these constructive metaheuristics. But another connection can be made: ILS can
be used instead of the embedded “local search” in ACO or GRASP. (This is ex-
actly what is done, for example, in [74].) This is one way to generalize ILS, but it is
not specific to these kinds of metaheuristics: whenever one has an embedded local
search, one can try to replace it by an iterated local search.

Perturbation-based metaheuristics differ in the techniques they use to actually
perturb solutions. Before going into details, let us introduce one additional feature
for classifying metaheuristics: we will distinguish between population-based algo-
rithms and those that use a single current solution (a population is of size one). For
example, evolutionary algorithms, memetic algorithms, scatter search, and ACO are
population-based, while ILS uses a single solution at each step. Whether or not a
metaheuristics is population-based is important for the type of perturbation that can
be applied. If no population is used, new solutions are generated by applying per-
turbations to single solutions; this is what happens for ILS and VNS. If a population
is present, one can also use the possibility of recombining several solutions into a
new one. Such combinations of solutions are implemented by “crossover” operators
in evolutionary algorithms or in the recombination of multiple solutions in scatter
search.

In general, population-based metaheuristics are more complex to use than those
following a single solution: they require mechanisms to manage a population of so-
lutions and more importantly it is necessary to find effective operators for the com-
bination of solutions. Most often, this last task is a real challenge. The complexity
of population-based local search methods can be justified if they lead to better per-
formance than non population-based methods. Therefore, one question of interest is
whether using a population of solutions is really useful. Clearly, for some problems
such as the TSP with high cost–distance correlations, the use of a single element in
the population leads to good results, so the advantage of population-based methods
is small or may become only noticeable if very high computation times are invested.
However, for other problems, the use of a population can be an appealing way to
achieve search diversification. Thus, population-based methods may be desirable if
their complexity is not overwhelming. Because of this, population-based extensions
of ILS are promising approaches.

To date, several population-based extensions of ILS have been proposed [41, 83,
85, 88]. The approaches proposed in [41, 85] keep the simplicity of ILS algorithms
by maintaining unchanged the perturbations: one parent is perturbed to give one
child. More complex population-based ILS extensions with mechanisms for main-
taining diversity in the population are considered in [83]. A population of solutions
is used in [88] to restrict the perturbation to explore only parts of solutions where
pairs of solutions differ (similar in spirit to the genetic transformations [49]) and to
reduce the size of the neighborhood in the local search.
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Finally, let us discuss VNS, which is the metaheuristic closest to ILS. VNS begins
by observing that the concept of local optimality is conditional on the neighborhood
structure used in a local search. Then VNS systemizes the idea of changing the
neighborhood during the search to avoid getting stuck in poor quality solutions.
Several VNS variants have been proposed. The most widely used one, basic VNS,
can be seen as an ILS algorithm, which uses the Better acceptance criterion and
a systematic way of varying the perturbation strength. To do so, basic VNS orders
neighborhoods as N1, . . . ,Nm where the order is chosen according to the neighbor-
hood size. Let k be a counter variable, k = 1,2, . . . ,m, and initially set k = 1. If the
perturbation and the subsequent local search lead to a new best solution, then k is
reset to 1, otherwise k is increased by one. We refer to [38] for a description of other
VNS variants.

A major difference between ILS and VNS is the philosophy underlying the two
metaheuristics: ILS has the explicit goal of building a walk in the set of locally
optimal solutions, while VNS algorithms are derived from the idea of systematically
changing neighborhoods during the search.

Clearly, there are major points in common between most of today’s high-
performance metaheuristics. How can one summarize how ILS differs from the
others? We shall proceed by enumeration as the diversity of today’s metaheuris-
tics seems to forbid any simpler approach. When compared to ACO and GRASP,
we see that ILS uses perturbations to create new solutions; this is quite different in
principle and in practice from using construction. When compared to evolutionary
algorithms, memetic algorithms, and scatter search, we see that ILS, as we defined
it, has a population of size one; therefore no recombination operators need be de-
fined. We could continue like this, but we cannot expect the boundaries between all
metaheuristics to be clear-cut. Not only are hybrid methods very often the way to
go, but most often one can smoothly go from one metaheuristic to another. In addi-
tion, as mentioned at the beginning of this chapter, the distinction between heuristic
and metaheuristic is rarely unambiguous. So our point of view is not that ILS has
essential features that are absent in other metaheuristics; rather, when considering
the basic structure of ILS, some simple yet powerful ideas transpire, and these can
be of use in most metaheuristics, being close or not in spirit to ILS.

12.6 Conclusions

ILS has many of the desirable features of a metaheuristic: it is simple, easy to im-
plement, robust, and highly effective. The essential idea of ILS lies in focusing the
search not on the full space of solutions but on a smaller subspace defined by the so-
lutions that are locally optimal for a given optimization engine. The success of ILS
lies in the biased sampling of this set of local optima. How effective this approach
turns out to be depends mainly on the choice of the local search, the perturbation,
and the acceptance criterion. Interestingly, even when using the most naive imple-
mentations of these components, ILS can do much better than random restart. But,
with further work to carefully adapt the components to the problem at hand, ILS
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can often become a competitive or even state-of-the-art algorithm. This dichotomy
is important because the optimization of the algorithm can be done progressively,
and so ILS can be kept at any desired level of simplicity. This, plus the modular
nature of ILS, leads to short development times and gives ILS an edge over more
complex metaheuristics in the world of industrial applications. As an example of
this, recall that ILS essentially treats the embedded heuristic as a black box; then
upgrading an ILS to take advantage of a new and better local search algorithm is
nearly immediate. Because of all these features, we believe that ILS is a promising
and powerful algorithm to solve real complex problems in industry and services, in
areas ranging from finance to production management and logistics. Finally, let us
note that even if this review was presented in the context of tackling combinatorial
optimization problems, in reality much of what we covered can be extended in a
straightforward manner to continuous optimization problems.

Looking ahead toward future research directions, we expect ILS to be applied to
new kinds of problems. Some challenging examples are (i) problems where the con-
straints are so restrictive that most metaheuristics fail; (ii) multi-objective problems
that bring us closer to real problems; and (iii) dynamic or real-time problems where
the data about the instance are received or vary during the solution process.

The ideas and results presented in this chapter leave many questions unanswered.
Clearly, more work needs to be done to better understand the interplay between the
ILS modules GenerateInitialSolution, Perturbation, LocalSearch, and AcceptanceCrite-
rion. Other directions for improving ILS performance are to consider the intelligent
use of memory, explicit intensification and diversification strategies, and greater
problem-specific tuning. The exploration of these issues will certainly lead to higher
performance iterated local search algorithms.
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16. Cerný, V.: A thermodynamical approach to the traveling salesman problem. J. Optim. Theory

Appl. 45(1), 41–51 (1985)
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26. den Besten, M.L., Stützle, T., Dorigo, M.: Design of iterated local search algorithms: An
example application to the single machine total weighted tardiness problem. In: Boers, E.J.W.
et al. (eds.) Applications of Evolutionary Computing. Lecture Notes in Computer Science,
vol. 2037, pp. 441–452. Springer, Berlin (2001)

27. Dong, X., Huang, H., Chen, P.: An iterated local search algorithm for the permutation flow-
shop problem with total flowtime criterion. Comput. Opers. Res. 36(5), 1664–1669 (2009)
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72. Paquete, L., Stützle, T.: An experimental investigation of iterated local search for coloring
graphs. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G. (eds.) Applications
of Evolutionary Computing. Lecture Notes in Computer Science, vol. 2279, pp. 122–131.
Springer, Berlin (2002)

73. Ribeiro, C.C., Aloise, D., Noronha, T.F., Rocha, C., Urrutia, S.: A hybrid heuristic for a multi-
objective real-life car sequencing problem with painting and assembly line constraints. Eur.
J. Oper. Res. 191(3), 981–992 (2008)

74. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur.
J. Oper. Res. 179(3), 775–787 (2007)



12 Iterated Local Search: Framework and Applications 397
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Chapter 13
Large Neighborhood Search

David Pisinger and Stefan Ropke

Abstract Heuristics based on large neighborhood search have recently shown
outstanding results in solving various transportation and scheduling problems. Large
neighborhood search methods explore a complex neighborhood by use of heuristics.
Using large neighborhoods makes it possible to find better candidate solutions in
each iteration and hence traverse a more promising search path. Starting from the
large neighborhood search method, we give an overview of very large scale neigh-
borhood search methods and discuss recent variants and extensions like variable
depth search and adaptive large neighborhood search.

13.1 Introduction

The topic of this chapter is the metaheuristic large neighborhood search (LNS)
proposed by Shaw [50]. In LNS, an initial solution is gradually improved by al-
ternately destroying and repairing the solution. The LNS heuristic belongs to the
class of heuristics known as very large scale neighborhood search (VLSN) algo-
rithms [2]. All VLSN algorithms are based on the observation that searching a large
neighborhood results in finding local optima of high quality, and hence overall a
VLSN algorithm may return better solutions. However, searching a large neighbor-
hood is time consuming; hence various filtering techniques are used to limit the
search. In VLSN algorithms, the neighborhood is typically restricted to a subset of
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the solutions which can be searched efficiently. In LNS the neighborhood is implic-
itly defined by methods (often heuristics) which are used to destroy and repair an
incumbent solution.

The two similar terms LNS and VLSN may cause confusion. We consistently use
VLSN for the broad class of algorithms that searches very large neighborhoods and
LNS for the particular metaheuristic, belonging to the class of VLSN algorithms,
that is described in Section 13.2.

In the rest of the introduction we first define two example problems in
Section 13.1.1. We then define neighborhood search algorithms in Section 13.1.2
and the class of VLSN algorithms in Section 13.1.3. In Sections 13.1.3.1–13.1.3.3
we describe three subclasses of VLSN algorithms. In Section 13.2 we describe the
LNS heuristic and an extension called adaptive large neighborhood search. This is
followed in Section 13.3 by a survey of LNS applications and the chapter is con-
cluded in Section 13.4.

13.1.1 Example Problems

Throughout this chapter we will refer to two example problems: the traveling sales-
man problem (TSP) and the capacitated vehicle routing problem (CVRP). The TSP
is probably the most studied and well-known combinatorial optimization problem.
In the TSP a salesman has to visit a number of cities. The salesman must perform a
tour through all the cities such that the salesman returns to his starting city at the end
of the tour. More precisely we are given an undirected graph G = (V,E) in which
each edge e ∈ E has an associated cost ce. The goal of the TSP is to find a cyclic
tour, such that each vertex is visited exactly once. The sum of the edge costs used
in the tour must be minimized. We recommend [3] for more information about the
TSP.

In the CVRP, which is a generalization of the TSP, one has to serve a set of
customers using a fleet of homogeneous vehicles based at a common depot. Each
customer has a certain demand for goods which initially are located at the depot.
The task is to design vehicle routes starting and ending at the depot such that all
customer demands are fulfilled.

The CVRP can be defined more precisely as follows. We are given an undirected
graph G = (V,E) with vertices V = {0, . . . ,n} where vertex 0 is the depot and the
vertices N = {1, . . . ,n} are customers. Each edge e ∈ E has an associated cost ce.
The demand of each customer i ∈ N is given by a positive quantity qi. Moreover, m
homogeneous vehicles are available at the depot and the capacity of each vehicle is
equal to Q. The goal of the CVRP is to find exactly m routes, starting and ending at
the depot, such that each customer is visited exactly once by a vehicle and such that
the sum of demands of the customers on each route is less than or equal to Q. The
sum of the edge costs used in the m routes must be minimized. We recommend [54]
for further information about the CVRP and vehicle routing problems in general.
An example of a TSP and a CVRP solution is shown in Figure 13.1.
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Fig. 13.1 Left: A TSP solution. Right: A CVRP solution. In the CVRP the depot is marked with a
square and the customers i are marked with nodes each having a demand qi.

13.1.2 Neighborhood Search

In this section we formally introduce the term neighborhood search. We are given
an instance I of a combinatorial optimization problem where X is the set of feasible
solutions for the instance (we write X(I) when we need to emphasize the connection
between instance and solution set) and c : X → R is a function that maps from a
solution to its cost. X is assumed to be finite, but is usually an extremely large set.
We assume that the combinatorial optimization problem is a minimization problem,
that is, we want to find a solution x∗ such that c(x∗)≤ c(x)∀x ∈ X .

We define a neighborhood of a solution x∈X as N(x)⊆X ; that is, N is a function
that maps a solution to a set of solutions. A solution x is said to be locally optimal or
a local optimum with respect to a neighborhood N if c(x) ≤ c(x′)∀x′ ∈ N(x). With
these definitions it is possible to define a neighborhood search algorithm. The al-
gorithm takes an initial solution x as input. It computes x′ = argminx′′∈N(x){c(x′′)},
that is, it finds the cheapest solution x′ in the neighborhood of x. If c(x′) < c(x)
then the algorithm performs the update x = x′. The neighborhood of the new so-
lution x is searched for an improving solution and this is repeated until a local
optimum x is reached. When this happens the algorithm stops. The algorithm is
denoted a steepest descent algorithm as it always chooses the best solution in the
neighborhood.

A simple example of a neighborhood for the TSP is the 2-opt neighborhood
which can be traced back to [16]. The neighborhood of a solution x in the 2-opt
neighborhood is the set of solutions that can be reached from x by deleting two
edges in x and adding two other edges in order to reconnect the tour. A simple
example of a neighborhood for the CVRP is the relocate neighborhood (see, e.g.,
[26]). In this neighborhood, N(x) is defined as the set of solutions that can be cre-
ated from x by relocating a single customer. The customer can be moved to another
position in its current route or to another route.

We define the size of the neighborhood N(·) for a particular instance I as
max{|N(x)| : x ∈ X(I)}. Let I (n) be the (possibly infinite) set of all instances of
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size n of the problem under study. We can then define the size of a neighborhood as
a function f (n) of the instance size n: f (n) = max{|N(x)| : I ∈I (n),x ∈ X(I)}.

The 2-opt neighborhood for the TSP and the relocate neighborhood for the CVRP
have size f (n) = O(n2) where n is the number of cities/customers.

13.1.3 Very Large-Scale Neighborhood Search

Ahuja et al. [2] define and survey the class of VLSN algorithms. A neighborhood
search algorithm is considered as belonging to the class of VLSN algorithms if the
neighborhood it searches grows exponentially with the instance size or if the neigh-
borhood is simply too large to be searched explicitly in practice. Clearly, the class
of VLSN algorithms is rather broad. Ahuja et al. [2] categorize VLSN into three
classes: (1) variable-depth methods, (2) network flow-based improvement methods,
and (3) methods based on restriction to subclasses solvable in polynomial time.
We will describe the three classes in more detail in Sections 13.1.3.1, 13.1.3.2,
and 13.1.3.3, respectively. Notice that although the concept of VLSN was not for-
malized until recently, algorithms based on similar principles have been used for
decades.

Intuitively, searching a very large neighborhood should lead to higher quality
solutions than searching a small neighborhood. However, in practice, small neigh-
borhoods can provide similar or superior solution quality if embedded in a meta-
heuristic framework because they typically can be searched more quickly. Such
behavior is reported in, e.g., [8] and [26]. This shows that VLSN algorithms are
not “magic bullets.” However, for the right applications they provide excellent
results.

As stated earlier, the focus of this chapter is a particular VLSN algorithm called
LNS, which will be described in Section 13.2. The LNS heuristic does not fit well
into any of the three categories defined in Ahuja et al. [2], but it definitely belongs
to the class of VLSN algorithms as it searches a very large neighborhood.

13.1.3.1 Variable-Depth Methods

Larger neighborhoods generally lead to local solutions of better quality, but the
search is more time consuming. Hence, a natural idea is to gradually extend the
size of the neighborhood, each time the search gets trapped in a local minimum.

Variable-depth neighborhood search (VDNS) methods search a parameterized
family of still deeper neighborhoods N1,N2, . . . ,Nk in a heuristic way. A typi-
cal example is the 1-exchange neighborhood N1 where one variable/position is
changed. Similarly, the 2-exchange neighborhood N2 swaps the value of two vari-
ables/positions. In general the k-exchange neighborhood Nk changes k variables.
Variable-depth search methods are techniques that search the k-exchange
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Fig. 13.2 Illustration of the neighborhoods used by VDNS and VNS. The current solution is
marked x. VDNS typically operates on one type of neighborhood with variable depth, while VNS
operates on structurally different neighborhoods N1, . . . ,Nk.

neighborhood partially, hence reducing the time used to search the neighborhood.
See Figure 13.2 for an illustration of variable-depth neighborhoods.

One of the first applications of variable-depth search was the Lin–Kernighan
heuristic [29] for solving the TSP. Briefly, the idea in the Lin–Kernighan heuristic is
to replace as many as n edges when moving from a tour S to a tour T . In even steps
of the algorithm an edge is inserted into the Hamiltonian path, while in odd steps an
edge is deleted to restore a Hamiltonian path. From each Hamiltonian path a Hamil-
tonian cycle is implicitly constructed by joining the two end nodes. The choice for
the edge to be added to the Hamiltonian path is made in a greedy way, maximizing
the gain in the objective function. The Lin–Kernighan algorithm terminates when
no improving tour can be constructed.

The basic idea in a VDNS heuristic is to make a sequence of local moves and to
freeze all moved combinatorial objects to prevent the search from cycling. VDNS
stops when no further local move is possible and returns a best found solution.

An extension of the Lin–Kernighan heuristic, called ejection chains, was pro-
posed by Glover in [19]. An ejection chain is initiated by selecting a set of elements
that will undergo a change of state. The result of this change leads to identifying a
collection of other sets, with the property that the elements of at least one set must
be “ejected from” their current states. State-change steps and ejection steps typi-
cally alternate. In some cases, a cascade of operations may be triggered leading to a
domino effect.

Variable-depth and ejection-chain based algorithms have been applied to several
problems, including the traveling salesman problem [17, 42], the vehicle routing
problem with time windows [51], the generalized assignment problem [56], and
nurse scheduling [14]. Ahuja et al. [2] give an excellent overview of earlier applica-
tions of the VDNS methods.

Frequently, VDNS methods are used in conjunction with other metaheuristic
frameworks, like the filter-and-fan methods in Glover and Rego [20].
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13.1.3.2 Network Flows Based Improvement Algorithms

This family of improvement algorithms use various network flow algorithms to
search the neighborhood. In general they can be grouped in the following three,
not necessarily distinct, categories: (i) minimum cost cycle methods, (ii) shortest
path-based methods, and (iii) minimum cost assignment-based methods. In the fol-
lowing we give a short overview of the methods and refer to the survey of Ahuja
et al. [2] for further details.

Neighborhoods Defined by Cycles

A cyclic exchange neighborhood consists of a sequence of elements being trans-
ferred among a family of subsets. Thompson [52] showed how to find an improving
neighbor in the cyclic exchange neighborhood by finding a negative cost cycle in
an hereto constructed improvement graph. Finding a negative cost subset-disjoint
cycle in the improvement graph is NP-hard, but effective heuristics for searching
the graph exist.

Thompson and Psarafitis [53] and Gendreau et al. [18] applied the cyclic neigh-
borhood to solve the VRP. Ahuja et al. [1] used cyclic exchanges to solve the capac-
itated minimum spanning tree problem.

Neighborhoods Defined by Paths

Path exchanges is a generalization of the swap neighborhood. A large-scale neigh-
borhood can be defined by aggregating an arbitrary number of so-called independent
swap operations [2]. The best neighbor of a TSP tour for the compounded swap
neighborhood can be found in O(n2) time by solving a shortest path problem in an
improvement graph constructed for this purpose.

For the one machine batching problem, Hurink [26] applies a special case of the
compounded swap neighborhood where only adjacent pairs are allowed to switch.
An improving neighbor can be found in O(n2) time by solving a shortest path prob-
lem in the improvement graph.

Considering the single machine scheduling problem, Brueggemann and Hurink
[7] presented an extension of the adjacent pairwise interchange neighborhood which
can be searched in quadratic time by calculating a shortest path in an improvement
graph.

Neighborhoods Defined by Assignments and Matching

The assignment neighborhood was first presented by Sarvanov and Doroshko [48]
for the TSP. It is an exponential neighborhood structure defined by finding minimum
cost assignments in an improvement graph.
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For the TSP, the assignment neighborhood is based on the removal of k nodes,
from which a bipartite graph is constructed. In this graph, the nodes on the left
hand are the removed nodes, and the nodes on the right-hand side are the remaining
nodes. The cost of each assignment is the cost of inserting a node between two
existing nodes. Sarvanov and Doroshko [48] considered the case where k = n/2 and
n is even. Punnen [41] generalized this to arbitrary k and n.

Using the same concept, Franceschi et al. [13] obtained promising results for
the distance-constrained CVRP, reporting 13 cases in which they were able to im-
prove the best-known solution in the literature. The assignment problem, extended
with additional capacity constraints, is solved as an integer programming (IP) prob-
lem. A further improvement is to identify removed nodes and insertion points in a
clever way.

Brueggemann and Hurink [6] presented a neighborhood of exponential size for
the problem of scheduling independent jobs on parallel machines minimizing the
weighted average completion time. The neighborhood can be searched through
matchings in a certain improvement neighborhood.

13.1.3.3 Efficiently Solvable Special Cases

Several NP-hard problems may be solved in polynomial time when restricting the
problem topology or adding constraints to the original problem. Using these special
cases as neighborhoods, one can often search exponentially large neighborhoods in
polynomial time.

Ahuja et al. [2] describe a general method for turning a solution method for a
restricted problem into a VLSN search technique. For each current solution x we
create a well-structured instance of the problem which can be solved in polynomial
time. The well-structured instance is solved, and a new solution x is found. Although
the search method has a large potential, it is not always simple to construct an algo-
rithm which turns x into a well-structured instance.

A Halin graph is a graph that may be obtained by considering a tree with no
nodes of degree 2 in the plane and by joining the leaf nodes by a cycle so that the
resulting graph is planar. A number of NP-hard problems can be solved efficiently
(often in linear time) when restricted to a Halin graph. For instance, Cornuejols et al.
[12] presented a linear-time algorithm for the TSP defined on a Halin graph. Phillips
et al. [38] presented similar results for the bottleneck TSP, and Winter [55] for the
Steiner problem.

Brueggemann and Hurink [7] also present a neighborhood for the single machine
scheduling problem which is based on a dominance rule for sequences. A relaxation
of the dominance rule can be solved in polynomial time by using a shortest process-
ing time first rule.
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13.2 Large Neighborhood Search

The large neighborhood search (LNS) metaheuristic was proposed by Shaw [50].
Most neighborhood search algorithms explicitly define the neighborhood like the
relocate neighborhood described in Section 13.1.2. In the LNS metaheuristic the
neighborhood is defined implicitly by a destroy and a repair method. A destroy
method destructs part of the current solution while a repair method rebuilds the
destroyed solution. The destroy method typically contains an element of stochastic-
ity such that different parts of the solution are destroyed in every invocation of the
method. The neighborhood N(x) of a solution x is then defined as the set of solutions
that can be reached by first applying the destroy method and then the repair method.

To illustrate the destroy and repair concepts, consider the CVRP. A destroy
method for the CVRP could remove, say, 15% of the customers in the current so-
lution, shortcutting the routes where customers have been removed. A very simple
destroy method would select the customers to remove at random. A repair method
could rebuild the solution by inserting removed customers, using a greedy heuristic.
Such a heuristic could simply scan all free customers, insert the one whose insertion
cost is the lowest, and repeat inserting until all customers have been inserted. The
destroy and repair step is illustrated in Figure 13.3.
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Fig. 13.3 Destroy and repair example. The top left figure shows a CVRP solution before the de-
stroy operation. The top right figure shows the solution after a destroy operation that removed
six customers (now disconnected from the routes). The bottom figure shows the solution after the
repair operation has reinserted the customers.
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Algorithm 1 Large neighborhood search
1: input: a feasible solution x
2: xb = x;
3: repeat

4: xt = r(d(x));
5: if accept(xt ,x) then
6: x = xt ;
7: end if
8: if c(xt) < c(xb) then
9: xb = xt ;

10: end if
11: until stop criterion is met
12: return xb

Since the destroy method can destruct a large part of the solution, the neigh-
borhood contains a large amount of solutions which explains the name of the
heuristic. Consider, for example, a CVRP instance with 100 customers. There are
C(100,15) = 100!/(15!×85!) = 2.5×1017 different ways to select the customers
to be removed if the percentage or degree of destruction of the solution is 15%. For
each removal choice there are many ways of repairing the solution, but different
removal choices can of course result in the same solution after the repair.

We now present the LNS heuristic in more details. Pseudocode for the heuristic
is shown in Algorithm 1. Three variables are maintained by the algorithm. The vari-
able xb is the best solution observed during the search, x is the current solution, and
xt is a temporary solution that can be discarded or promoted to the status of current
solution. The function d(·) is the destroy method while r(·) is the repair method.
More specifically, d(x) returns a copy of x that is partly destroyed. Applying r(·)
to a partly destroyed solution repairs it, that is, it returns a feasible solution built
from the destroyed one. In line 2 the global best solution is initialized. In line 4
the heuristic first applies the destroy method and then the repair method to obtain a
new solution xt . In line 5 the new solution is evaluated, and the heuristic determines
whether this solution should become the new current solution (line 6) or whether it
should be rejected. The accept function can be implemented in different ways. The
simplest choice is to only accept improving solutions. Line 8 checks whether the
new solution is better than the best known solution. Here c(x) denotes the objective
value of solution x. The best solution is updated in line 9 if necessary. In line 11 the
termination condition is checked. It is up to the implementer to choose the termina-
tion criterion, but a limit on the number of iterations or a time limit would be typical
choices. In line 12 the best solution found is returned. From the pseudocode it can
be noticed that the LNS metaheuristic does not search the entire neighborhood of a
solution, but merely samples this neighborhood.

The main idea behind the LNS heuristic is that the large neighborhood allows
the heuristic to navigate in the solution space easily, even if the instance is tightly
constrained. This is to be opposed to a small neighborhood which can make the
navigation in the solution space much harder.
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In the original LNS paper [50] the accept method only allowed improving so-
lutions. Later papers like [44, 49] have used an acceptance criteria borrowed from
simulated annealing. With such an acceptance criteria, the temporary solution xt

is always accepted if c(xt) ≤ c(x), and accepted with probability e−(c(xt )−c(x))/T

if c(x) < c(xt). Here T > 0 is the current temperature. The temperature is initial-
ized at T0 > 0 and is decreased gradually, for example, by performing the update
Tnew = αTold at each iteration, where 0 < α < 1 is a parameter. The idea is that T
is relatively high initially, thus allowing deteriorating solutions to be accepted. As
the search progresses T decreases and toward the end of the search only a few or no
deteriorating solutions will be accepted. If such an acceptance criteria is employed,
the LNS heuristic can be viewed as a standard simulated annealing heuristic with a
complex neighborhood definition.

The destroy method is an important part of the LNS heuristic. The most important
choice when implementing the destroy method is the degree of destruction: if only a
small part of the solution is destroyed then the heuristic may have trouble exploring
the search space as the effect of a large neighborhood is lost. If a very large part of
the solution is destroyed then the LNS heuristic almost degrades into repeated re-
optimization. This can be time consuming or yield poor-quality solutions dependent
on how the partial solution is repaired. Shaw [50] proposed to gradually increase
the degree of destruction, while Ropke and Pisinger [44] choose the degree of de-
struction randomly in each iteration by choosing the degree from a specific range
dependent on the instance size. The destroy method must also be chosen such that
the entire search space can be reached, or at least the interesting part of the search
space where the global optimum is expected to be found. Therefore, it cannot fo-
cus on always destroying a particular component of the solution but must make it
possible to destroy every part of the solution.

The implementer of an LNS heuristic has much freedom in choosing the re-
pair method. A first decision is whether the repair method should be optimal in the
sense that the best possible full solution is constructed from the partial solution, or
whether it should be a heuristic assuming that one is satisfied with a good solution
constructed from the partial solution. An optimal repair operation will be slower
than a heuristic one, but may potentially lead to high-quality solutions in a few it-
erations. However, from a diversification point of view, an optimal repair operation
may not be attractive: only improving or identical-cost solutions will be produced
and it can be difficult to leave valleys in the search space unless a large part of the
solution is destroyed in each iteration. The framework also enables the implementer
to choose if the repair method should be hand-coded or if a general-purpose solver
like a mixed integer programming (MIP) or constraint programming solver should
be invoked.

It is worth observing that the LNS heuristic typically alternates between an in-
feasible solution and a feasible solution: the destroy operation creates an infeasible
solution which is brought back into feasible form by the repair heuristic. Alternately
the destroy and repair operations can be viewed as fix/optimize operations: the fix
method (corresponding to the destroy method) fixes part of the solution at its current
value while the rest remains free; the optimize method (corresponding to the repair
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method) attempts to improve the current solution while respecting the fixed values.
Such an interpretation of the heuristic may be more natural if the repair method is
implemented using MIP or constraint programming solvers.

The concept of destroy and repair methods in large neighborhood lends itself best
to problems which naturally can be decomposed into a master problem covering a
number of tasks to be carried out and a set of subproblems which need to satisfy
some constraints. In this case, the destroy methods remove some tasks from the
current solution, and the repair methods reinsert the tasks. Hence, problems where
Dantzig Wolfe decomposition has been used with success are good candidates for
LNS heuristics.

Before closing this section, it should be mentioned that a framework, very sim-
ilar to the LNS, has been proposed under the name ruin and recreate by Schrimpf
et al. [49].

13.2.1 Adaptive Large Neighborhood Search

The adaptive large neighborhood search (ALNS) heuristic was proposed in [44]
and extends the LNS heuristic by allowing multiple destroy and repair methods to
be used within the same search. Each destroy/repair method is assigned a weight that
controls how often the particular method is attempted during the search. The weights
are adjusted dynamically as the search progresses so that the heuristic adapts to the
instance at hand and to the state of the search.

Using neighborhood search terminology, one can say that the ALNS extends the
LNS by allowing multiple neighborhoods within the same search. The choice of
neighborhood to use is controlled dynamically using recorded performance of the
neighborhoods.

Algorithm 2 Adaptive large neighborhood search
1: input: a feasible solution x
2: xb = x; ρ− = (1, . . . ,1);ρ+ = (1, . . . ,1);
3: repeat

4: select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using ρ− and ρ+;
5: xt = r(d(x));
6: if accept(xt ,x) then
7: x = xt ;
8: end if
9: if c(xt) < c(xb) then

10: xb = xt ;
11: end if
12: update ρ− and ρ+;

13: until stop criterion is met
14: return xb

A pseudocode for the ALNS heuristic is shown in Algorithm 2. Compared to the
LNS pseudocode in Algorithm 1, the following have changed. Lines 4 and 12 have
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been added and line 2 has been modified. The sets of destroy and repair methods are
denoted by Ω− and Ω+, respectively. Two new variables are introduced in line 2:
ρ− ∈ R

|Ω−| and ρ+ ∈ R
|Ω+|, to store the weight of each destroy and repair method,

respectively. Initially all methods have the same weight. In line 4 the weight vectors
ρ− and ρ+ are used to select the destroy and repair methods using a roulette wheel
principle. The algorithm calculates the probability φ−

j of choosing the jth destroy
method as follows:

φ−
j =

ρ−
j

∑|Ω−|
k=1 ρ−

k

,

and the probabilities for choosing the repair methods are determined in the same
way.

The weights are adjusted dynamically, based on the recorded performance of
each destroy and repair method. This takes place in line 12: when an iteration of the
ALNS heuristic is completed, a score ψ for the destroy and repair method used in
the iteration is computed using the formula

ψ = max

⎧⎪⎪⎨
⎪⎪⎩

ω1 if the new solution is a new global best,
ω2 if the new solution is better than the current one,
ω3 if the new solution is accepted,
ω4 if the new solution is rejected,

(13.1)

where ω1,ω2,ω3, and ω4 are parameters. A high ψ value corresponds to a successful
method. We would normally have ω1 ≥ ω2 ≥ ω3 ≥ ω4 ≥ 0.

Let a and b be the indices of the destroy and repair methods that were used in the
last iteration of the algorithm, respectively. The components corresponding to the
selected destroy and repair methods in the ρ− and ρ+ vectors are updated using the
equations

ρ−
a = λρ−

a +(1−λ )ψ, ρ+
b = λρ+

b +(1−λ )ψ, (13.2)

where λ ∈ [0,1] is the decay parameter that controls how sensitive the weights are to
changes in the performance of the destroy and repair methods. Note that the weights
that are not used at the current iteration remain unchanged. The aim of the adaptive
weight adjustment is to select weights that work well for the instance being solved.
We encourage heuristics that bring the search forward; these are the ones rewarded
with the ω1,ω2, and ω3 parameters in Equation (13.1). We discourage heuristics
that lead to many rejected solutions as an iteration resulting in a rejected solution
is a wasted iteration, roughly speaking. This is achieved by assigning a low value
to ω4.

The ALNS heuristic described so far is prone to favor complex repair methods
that more often reach high-quality solutions compared to simpler repair methods.
This is fine if the complex and simple repair methods are equally time consuming,
but that may not be the case. If some methods are significantly slower than others,
one may normalize the score ψ of a method with a measure of the time consump-
tion of the corresponding heuristic. This ensures a proper trade-off between time
consumption and solution quality.
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13.2.2 Designing an ALNS Algorithm

The considerations for selecting destroy and repair methods in the LNS heuristic,
mentioned earlier, also hold for an ALNS heuristic. However, the ALNS framework
gives some extra freedom because multiple destroy/repair methods are allowed. In
the pure LNS heuristic we have to select a destroy and repair method that is expected
to work well for a wide range of instances. In an ALNS heuristic we can afford to
include destroy/repair methods that only are suitable in some cases—the adaptive
weight adjustment will ensure that these heuristics seldom are used in instances
where they are ineffective. Therefore, the selection of destroy and repair methods
can be turned into a search for methods that are good at either diversification or
intensification.

Below we will discuss some typical destroy and repair methods. In the discussion
we will assume that our solution is represented by a set of decision variables. The
term variables should be understood in a rather abstract way.

Diversification and intensification for the destroy methods can be accomplished
as follows: to diversify the search, one may randomly select the parts of the solution
that should be destroyed (random destroy method). To intensify the search one may
try to remove q “critical” variables, i.e., variables having a large cost or variables
spoiling the current structure of the solution (e.g., edges crossing each other in an
Euclidean TSP). This is known as worst destroy or critical destroy.

One may also choose a number of related variables that are easy to interchange
while maintaining feasibility of the solution. This related destroy neighborhood was
introduced by Shaw [50]. For the CVRP one can define a relatedness measure be-
tween each pair of customers. The measure could simply be the distance between
the customers and it could include customer demand as well (customers with similar
demand are considered related). A related destroy would select a set of customers
that have a high mutual relatedness measure. The idea is that it should be easy to
exchange similar customers.

Finally, one may use history-based destroy where the q variables are chosen
according to some historical information as presented in [39]. The historical in-
formation could, for example, count how often setting a given variable (or set of
variables) to a specific value leads to a bad solution. One may then try to remove
variables that are currently assigned to an improper value, based on the historical
information.

The repair methods (Ω+) are often based on concrete well-performing heuris-
tics for the given problem. These heuristics can make use of variants of the greedy
paradigm, e.g., performing the locally best choice in each step or performing the
least bad choice in each step. The repair methods can also be based on approxima-
tion algorithms or exact algorithms. Exact algorithms can be relaxed to obtain faster
solution times at the cost of solution quality. Some examples are presented in [4]
and [50]. Time-consuming and fast repair methods can be mixed by penalizing the
time-consuming methods as described earlier.
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Figure 13.4 illustrates, in an abstract way, the many neighborhoods in an ALNS
heuristic. Each neighborhood on the figure can be considered as a unique combina-
tion of a destroy and repair method.

x

N1

N2

N3

N4N5

N∗

ALNS

Fig. 13.4 Illustration of neighborhoods used by ALNS. The current solution is marked with x.
ALNS operates on structurally different neighborhoods N1, . . . ,Nk defined by the corresponding
search heuristics. All neighborhoods N1, . . . ,Nk in ALNS are a subset of the neighborhood N∗
defined by modifying q variables, where q is a measure of the maximum degree of destruction.

In traditional local search heuristics the diversification is controlled implicitly by
the local search paradigm (accept ratio, tabu list, etc.). For the (A)LNS heuristic this
may not be enough. It can often be advantageous to use noising or randomization
in both the destroy and repair methods to obtain a proper diversification. This helps
avoiding stagnating search processes where the destroy and repair methods keep
performing the same modifications to a solution.

Some optimization problems can be split into a number of subproblems, where
each subproblem can be solved individually. Such problems include the bin-packing
problem in which a number of bins are to be filled or the vehicle routing problem
in which a number of routes are to be constructed. For such problems one should
decide whether the subproblems should be solved one by one (sequential heuristics)
or all subproblems should be solved at the same time (parallel heuristics). Sequen-
tial heuristics are easier to implement but may have the disadvantage that the last
subproblem solved is left with variables that do not fit well together. This is to some
extent avoided in parallel heuristics.

A natural extension to the ALNS framework is to have coupled neighbor-
hoods. In principle, one may, for each destroy method di, define a subset Ki ⊆ Ω+

of repair neighborhoods that can be used with di. The roulette wheel selection
of repair neighborhoods will then only choose a neighborhood in Ki if di was
chosen.

As a special case, one may have Ki = /0 meaning that the neighborhood di takes
care of both the destroy and repair steps. One could use an ordinary local search
heuristic to compete with the other destroy and repair neighborhoods, ensuring that
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a thorough investigation of the solution space close to the current solution is made
from time to time.

For some problems it may be sufficient to have a number of destroy and repair
heuristics that are selected randomly with equal probability, that is without the adap-
tive layer. Such heuristics share the robustness of the ALNS heuristics, while having
considerably fewer parameters to calibrate.

13.2.3 Properties of the ALNS Framework

The ALNS framework has several advantages. For most optimization problems we
already know a number of well-performing heuristics which can form the core of
an ALNS algorithm. Due to the large neighborhoods and diversity of the neigh-
borhoods, the ALNS algorithm will explore large parts of the solution space in a
structured way. The resulting algorithm becomes very robust, as it is able to adapt
to various characteristics of the individual instances, and seldom is trapped in local
optima.

The calibration of the ALNS algorithm is quite limited as the adaptive layer
automatically adjusts the influence of each neighborhood used. It is still necessary
to calibrate the individual sub-heuristics used for searching the destroy and repair
neighborhoods, but one may calibrate these individually or even use the parameters
used in existing algorithms.

In the design of most local search algorithms the researcher has to choose be-
tween a number of possible neighborhoods. In ALNS the question is not “either-or”
but rather “both-and.” As a matter of fact, our experience is that the more (rea-
sonable) neighborhoods the ALNS heuristic makes use of, the better it performs
[39, 45].

The ALNS framework is not the only one to make use of several neighborhoods
in an LNS heuristic. Rousseau et al. [47] use two LNS neighborhoods for the vehicle
routing problem with time windows (VRPTW): one removing customers and another
removing arcs. They propose a variable neighborhood descent (VND) where one
neighborhood is used until one is “sufficiently sure” that the search is trapped in a
local minimum in which case the search switches to the other neighborhood. When
the second neighborhood runs out of steam the first neighborhood is used again and
so on.

Perron [35] used an adaptive technique to select repair methods from a portfolio
by assigning weights to the repair methods based on their performance like in the
ALNS. Laborie and Godard [28] propose a framework very similar to ALNS, the
difference being that their framework also dynamically adjusts the parameters of the
individual destroy and repair methods. The ALNS framework described in this sec-
tion assumes that those parameters are fixed in advance. Palpant et al. [34] only use
one destroy and repair method but propose a method for dynamically adjusting the
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scope of the destroy operation in order to find the neighborhood size that allows the
repair operation to be completed within reasonable time. The authors use complex,
time-consuming repair methods.

When implementing an LNS or ALNS heuristic one can choose which “outer”
metaheuristic to use to guide the search (if any). Some simply use a descent ap-
proach (e.g., [4, 50]), some use iterated local search (e.g., [34, 47]), and others use
simulated annealing (e.g., [44, 49]). It is our experience that even a simple outer
metaheuristic improves upon a pure descent approach.

The ALNS is related to the VNS metaheuristics [25, 31] in the sense that both
heuristics search multiple neighborhoods. Since a local optimum with respect to one
neighborhood is not necessarily a local optimum with respect to another neighbor-
hood, changing neighborhoods in the search is a way of diversifying the search.

VNS makes use of a parameterized family of neighborhoods, typically obtained
by using a given neighborhood with variable depth. When the algorithm reaches
a local minimum using one of the neighborhoods, it proceeds with a larger neigh-
borhood from the parameterized family. When the VNS algorithm gets out of the
local minimum it proceeds with the smaller neighborhood. On the contrary, ALNS
operates on a predefined set of large neighborhoods corresponding to the destroy
(removal) and repair (insertion) heuristics. The neighborhoods are not necessarily
well defined in a formal mathematical sense—they are rather defined by the corre-
sponding heuristic algorithm.

A major challenge in designing a good VNS algorithm is to decide in what order
the neighborhoods should be searched. A natural strategy is to order the neighbor-
hoods according to the complexity of searching them, such that one starts with the
least complex neighborhoods, and gradually include the move expensive. ALNS
take a different approach by using roulette wheel selection with adaptive probabili-
ties to decide which neighborhoods to use.

Another related concept is that of hyper-heuristics. Ross [46] describes hyper-
heuristics as heuristics to choose heuristics, that is, algorithms where a master
heuristic is choosing between several sub-ordinate heuristics. Therefore, the ALNS
heuristic can be seen as a kind of hyper-heuristic: the adaptive component is choos-
ing from the set of destroy and repair methods (which usually are heuristics).

A few examples of parallel processing LNS/ALNS implementations exist in the
literature. Perron and Shaw [36] describe a parallel LNS heuristic that is applied to
a network design problem and Ropke [43] describes a framework for implement-
ing parallel ALNS heuristics. The framework is tested on the CVRP and TSP with
pickup and delivery.

13.3 Applications of LNS

So far the LNS heuristic has been most successful within the areas of routing and
scheduling problems. In this section we review the main results for these two prob-
lem classes.
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13.3.1 Routing Problems

In this section we survey applications of LNS heuristics to variants of the TSP and
VRP. There are many examples of applications of LNS to VRP variants, starting
with Shaw’s [50] definition of the LNS heuristic. Many of the heuristics have been
successful and have provided state-of-the-art results at the time of publication. An
incomplete list of papers describing the application of LNS to VRP variants, in
particular the VPRTW, is [4, 5, 10, 13, 22, 23, 30, 39, 40, 44, 45, 47, 49, 50].
Reference [13] does not make the connection to the LNS heuristic, but the approach
described fits nicely in the LNS framework.

Bent and Hentenryck [4] describe an LNS heuristic for the VRPTW. In the
VRPTW the most common objective is to minimize first the number of vehicles
and, for the same number of vehicles, to minimize the total route lengths. Bent and
Hentenryck [4] propose to solve the problem in a two-stage approach. In the first
stage the number of routes is minimized by a simulated annealing algorithm that
uses traditional, small neighborhoods. In the second stage the total route lengths are
minimized with an LNS heuristic. The destroy method uses the relatedness princi-
ple described in Section 13.2.2. The size of the neighborhood is gradually increased,
starting out by only removing one customer and by steadily increasing the number
of customers to remove as the search progresses. At regular intervals, the number of
customers to remove is reset to one and the neighborhood size increase starts over.
The repair method is implemented using a truncated branch-and-bound algorithm.
The LNS algorithm only accepts improving solutions. The results obtained can be
considered as state of the art at the time of publication. A similar algorithm was
also proposed by the same authors [5] for the pickup and delivery problem with time
windows (PDPTW).

Ropke and Pisinger [44] introduce the ALNS extension of the LNS previously
described in Section 13.2.1. The algorithm is applied to the PDPTW. Differences
with the method in [4] are as follows: (i) several different destroy/repair methods
are used, (ii) fast, greedy heuristics are used as repair methods, (iii) the size of the
neighborhood varies from iteration to iteration (the number of customers to remove
is chosen randomly from a predefined interval), and (iv) a simulated annealing ac-
ceptance criterion is used. The heuristic has obtained state-of-the art results for the
PDPTW. In subsequent papers [39, 45] it is shown that many VRP variants (includ-
ing the CVRP and VRPTW) can be transformed into a PDPTW and solved using
an improved version of the ALNS heuristic from [44]. For most of the tested VRP
variants the ALNS heuristic must be considered to be on par with or better than
competing heuristics at the time of publication.

Prescott-Gagnon et al. [40] present an LNS heuristic for the VRPTW with an ad-
vanced repair operator that solves a restricted VRPTW through a heuristic branch-
and-price algorithm. Four destroy methods are used and are chosen based on perfor-
mance as in [44]. Overall, the heuristic reaches better solutions than previous LNS
approaches, probably due to the advanced repair operator.

It should be mentioned that the VRPTW is one of the most studied problem
class from a metaheuristic point of view. We estimate that more than 100 papers
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have been published on the subject. It is therefore remarkable that LNS heuristics,
as a rather young class of heuristics, have been able to be in the forefront of the
development in recent years. We should also mention that the best solutions for the
VRPTW are currently found using a non-LNS heuristic proposed by Nagata and
Bräysy [33].

We are only aware of a few applications of LNS to TSP variants [15, 37, 49]. An
explanation for the lower number of applications could be that the LNS heuristic
is inherently better suited for VRP variants than for TSP variants because of the
partitioning element present in VRPs.

13.3.2 Scheduling Problems

LNS and ALNS lend themselves well to scheduling problems due to the tightly
constrained nature of the problems. Laborie and Godard [28] present results for a
self-adapting large neighborhood search, applied to single-mode scheduling prob-
lems. Godard, Laborie, and Nuijten [21] present a randomized large neighborhood
search for cumulative scheduling. Carchrae and Beck [9] present results for job-shop
scheduling problems. Cordeau et al. [11] present an ALNS heuristic for solving a
technician scheduling problem. Instances with hundreds of tasks and technicians
are solved in less than 15 min. Muller [32] recently presented an ALNS algorithm
for the resource-constrained project scheduling problem. The computational results
show that the algorithm is among the three best on the well-known PSPLIB bench-
mark instances.

13.4 Conclusion

In this chapter we have reviewed the LNS heuristic and its extensions and we have
briefly explained the central concepts in VLSN. Both are interesting concepts and
we hope that these topics will be subject to increased research in the future. We be-
lieve that we have yet to see the full potential from both LNS and VLSN algorithms
in general.

One of the key benefits of the LNS heuristic is that a heuristic can be quickly
put together from existing components: an existing construction heuristic or exact
method can be turned into a repair heuristic and a destroy method based on random
selection is easy to implement. Therefore, we see a potential for using simple LNS
heuristics for benchmark purposes when developing more sophisticated methods.

We do not have any illusions about LNS being superior to all other metaheuris-
tics. We believe that LNS heuristics, in general, work well when the problem con-
sidered involves some kind of partitioning decision, as in, e.g., VRP, bin-packing,
or generalized assignment problems. Such structure seems to be well suited for the
destroy/repair operations. For problems that do not exhibit this structure it is diffi-
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cult to predict the performance of the LNS heuristic and other metaheuristics may
be better suited.

Large neighborhoods are no guarantee for finding better solutions. Increased
complexity of the neighborhood search means that fewer iterations can be performed
by a local search algorithm. Gutin and Karapetyan [24] experimentally compare
a number of small and large neighborhoods for the multidimensional assignment
problem, including various combinations of them. It is demonstrated that some com-
binations of both small and large neighborhoods provide the best results. This could
indicate that hybrid neighborhoods may be a promising direction for future research.
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Chapter 14
Artificial Immune Systems

Julie Greensmith, Amanda Whitbrook and Uwe Aickelin

Abstract The human immune system has numerous properties that make it ripe
for exploitation in the computational domain, such as robustness and fault toler-
ance, and many different algorithms, collectively termed Artificial Immune Sys-
tems (AIS), have been inspired by it. Two generations of AIS are currently in
use, with the first generation relying on simplified immune models and the sec-
ond generation utilising interdisciplinary collaboration to develop a deeper under-
standing of the immune system and hence produce more complex models. Both
generations of algorithms have been successfully applied to a variety of prob-
lems, including anomaly detection, pattern recognition, optimisation and robotics.
In this chapter an overview of AIS is presented, its evolution is discussed, and it
is shown that the diversification of the field is linked to the diversity of the im-
mune system itself, leading to a number of algorithms as opposed to one archetypal
system. Two case studies are also presented to help provide insight into the mech-
anisms of AIS; these are the idiotypic network approach and the Dendritic Cell
Algorithm.

14.1 Introduction

Nature has acted as inspiration for many aspects of computer science. A trivial
example of this is the use of trees as a metaphor, consisting of branched struc-
tures, with leaves, nodes and roots. Of course, a tree structure is not a simulation
of a tree, but it abstracts the principal concepts to assist in the creation of use-
ful computing systems. Bio-inspired algorithms and techniques are developed not
as a means of simulation, but because they have been inspired by the key proper-
ties of the underlying metaphor. The algorithms attempt to improve computational
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techniques by mimicking (to some extent) successful natural phenomena, with the
goal of achieving similar desirable properties as the natural system. This is demon-
strated in both neural networks [17] and genetic algorithms [25].

Artificial Immune Systems (AIS) [20] are algorithms and systems that use the
human immune system as inspiration. The human immune system is a robust, de-
centralised, error tolerant and adaptive system. Such properties are highly desirable
for the development of novel computer systems. Unlike some other bio-inspired
techniques, such as genetic algorithms and neural networks, the field of AIS encom-
passes a spectrum of algorithms that exist because different algorithms implement
different properties of different cells. All AIS algorithms mimic the behaviour and
properties of immunological cells, specifically B-cells, T-cells and dendritic cells
(DCs), but the resultant algorithms exhibit differing levels of complexity and can
perform a range of tasks.

The major part of AIS work to date has been the development of three algorithms
derived from more simplified models: negative selection, clonal selection and im-
mune networks. However, these first-generation AIS algorithms have often shown
considerable limitations when applied to realistic applications. For this reason, a
second generation of AIS is emerging, using models derived from cutting-edge im-
munology as their basis, not simply mechanisms derived from basic models found
in text books.

The aim of this chapter is to give the reader an overview of the field of AIS
by taking a high-level perspective of its evolution. In Section 14.2 an overview of
the major developments in immunology is presented, incorporating a number of
immunological theories. Section 14.3 describes the development of AIS over the
past two decades and the next two sections showcase two particular examples of AIS
algorithms: an idiotypic network in Section 14.4 and the Dendritic Cell Algorithm
(DCA) in Section 14.5. Section 14.6 concludes the chapter, with a summary and
details of potential future trends.

14.2 Immunological Inspiration

The human immune system can be used as inspiration when developing algorithms
to solve difficult computational problems. This is because it is a robust, decen-
tralised, complex, and error-tolerant biological system, i.e. it possesses properties
that make it ideal for certain application areas, such as computer intrusion detection
and pattern recognition. The human system is also well studied within immunology
and is viewed as the most sophisticated of immune systems in nature. Although its
precise function remains undetermined, it is postulated that it has two roles: to pro-
tect the body against invading micro-organisms (pathogens) and to regulate bodily
functions (homeostasis).

Immunologists like to describe the immune system as consisting of two parts,
namely the innate immune system and the adaptive immune system. It was origi-
nally thought that these were two distinct sub-systems with little crossover, with the
innate system responding to known threats and the adaptive immune system tackling
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previously un-encountered threats. However, current research suggests that it is the
interplay between these two systems that provides the high level of protection re-
quired, i.e. the ability to discriminate between ‘self’ and ‘nonself’ entities.

In this section the basic principles of immunology are introduced from the his-
torical perspective of their development. For a more comprehensive, biological view
of the immune system, the interested reader should refer to any of a number of more
standard immunology texts, for example [43] and [15].

14.2.1 Classical Immunology

Until relatively recently, the central dogma of immunology was self–nonself dis-
crimination through the principles of clonal expansion and negative selection. These
concepts have dominated the field since they were first described, as they provide ad-
equate explanation of the function of the adaptive immune system over the lifetime
of an individual.

In 1891, Paul Ehrlich [49] and his colleagues postulated that the defence mech-
anism against pathogens was the generation of immunity through the production
of immunoglobulins termed antibodies. They showed that the antibodies gener-
ated are specific to the pathogen (antigen) being targeted and suggested that the
immune system must remove these antigens before an infection spreads, with-
out responding to its own cells. This led to the theory of the horror autotoxi-
cus, which states that “an organism would not normally mobilise its immuno-
logical resources to effect a destructive reaction against its own tissues” [48].
It was later discovered that a particular type of lymphocyte (white blood cell)
termed a B-cell is responsible for the production of antibodies and that the anti-
bodies are proteins that can potentially bind to the proteins present on the invading
antigens.

Following the characterisation of antibodies, the theory of clonal selection was
proposed by Burnet [12]. This mechanism corroborated the notion of horror auto-
toxicus and found that “an individual somehow manages to prevent all future ability
to respond to auto antigens i.e. self, leaving intact the ability to respond actively
to the universe of other antigens i.e. nonself” [12]. The notion implied that im-
mune function contains a mechanism of tolerance, which Burnet described as an
“irreversibly determined immunological self”. This formed a major constituent of
a theory known as central tolerance and was subsequently proven as valid experi-
mentally, earning Burnet a Nobel Prize for his efforts.

The clonal selection theory has two constituents. First, B-cells are selected to be
fit for purpose during a ‘training period’. Cells expressing receptors (cell surface-
bound antibodies) that can match antigen are kept to form the B-cell population,
but cells that cannot bind to antigens are removed. Once B-cells are released into
the periphery, encounter with external antigens causes the cells to produce free ver-
sions of the B-cell receptor, i.e. antibodies, which can bind to the matching anti-
gen. Second, the process of antibody tuning occurs through somatic hypermuta-
tion and affinity maturation [46]. If a B-cell matches an external antigen, the cell
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clones itself. However, the hypermutation process ensures that exact clones are
not formed; the clones express B-cell receptors that are slight variants on the par-
ent cell’s receptor. This is a type of biological optimisation, ultimately resulting
in antibodies that can bind more successfully to external antigens. The antibodies
can therefore be used as markers of nonself entities within the body. The whole
process is termed affinity maturation and is used to generate the most responsive
antibodies.

As the century progressed, a second class of white blood cell, T-cells, were char-
acterised, and in 1959, the principle of negative selection was proposed by Joshua
Lederberg, a then colleague of Burnet. He established the link between foetal de-
velopment and the generation of tolerance to self-substances, termed self-antigen,
noting the co-occurrence of the initial production of T-cells and tolerance to self-
antigen. This led to the idea that the selection process implied “self learning through
negative selection”, and caused Lederberg to suggest that “whenever produced, lym-
phocytes (T-cells) undergo a period of immaturity during which antigen recognition
results in their death” [48]. He also proposed that further activation of the T-cells in
the tissue is needed for the cells to develop the ability to remove pathogens such as
bacterial agents and virally infected self-cells.

During embryonic development in the womb, T-cells migrate to an immune sys-
tem organ, the thymus. Whilst in the thymus, the newly created T-cells are exposed
to a comprehensive sample of self-antigen. Any T-cell displaying a receptor which
matches a self-antigen is removed. This process continues until puberty, after which
the thymus shrinks to a negligible size. So-called self-reactive T-cells are thus elim-
inated through this filtering process.

14.2.2 The Immunologists’ ‘Dirty Little Secret’

According to Ehrlich’s horror autotoxicus, the immune system should not re-
spond to self and should aim to eliminate all sources of nonself. However, this
phenomenon is not always observed and numerous noteworthy exceptions have
been discovered [43], questioning the credibility of the self–nonself dogma, for
example:

1. Vaccinations and immunisations require adjuvants, namely microbial particles,
that provide additional stimulation of the immune system;

2. What the body classes as self changes over time, an effect termed changing self.
This phenomenon is observed in women during pregnancy;

3. Human intestines are host to colonies of bacteria that serve a symbiotic function.
These organsims are clearly nonself, yet no immune response is mounted;

4. In the western world, an individual’s immune system can sometimes start to
respond to benign particles such as pollen, cat saliva, latex, peanut proteins,
resulting in allergic reactions;

5. An individual’s immune system can sometimes begin to attack its host in the
form of autoimmune diseases, for example, multiple sclerosis and rheumatoid
arthritis.
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14.2.3 Costimulation, Infectious Nonself and The Danger Theory

Three main theories have both challenged and augmented the process of self–
nonself discrimination including:

• Costimulation;
• Infectious nonself;
• Danger signal recognition.

Some of the cells involved in these theories are part of the innate immune system
that was first observed by Metchikoff in 1882 [48]. He noted that invertebrates such
as shrimp and starfish mobilise phagocytes, which ingest invading pathogens, clear-
ing the threat from the host. This first line of defence is also found in humans and
consists of a diverse array of interacting cell types. The innate system was initially
seen as the adaptive system’s lesser counterpart, as it did not appear to be as sophis-
ticated. However, there has been renewed interest in the innate system, as it is now
thought to provide some of the answers to the problems associated with the theories
of adaptive immunity.

The concept of costimulation was introduced in an attempt to overcome a prob-
lem observed in the hypermutation of antibodies, i.e. if the resulting hypermutated
antibodies have a structure that could react to self cells, it would cause horror au-
totoxicus. It was hence suggested that B-cells work in conjunction with T-cells [48]
and that a B-cell would be eliminated if it did not receive a costimulatory signal
from a ‘helper T-cell’. Later it was shown that helper T-cells are also regulated by a
‘stimulator cell’ that provides the costimulatory signals. These professional antigen-
presenting cells are known as dendritic cells (DCs) and are part of the innate immune
system. The process of costimulation casts doubt on the theory of central tolerance,
placing the innate system in control of the immune response.

The infectious nonself model proposed by Janeway in 1989 [34] further improved
understanding of costimulation. Janeway suggested that the DCs perform their own
version of self–nonself discrimination. This is based on their ability to recognise the
signatures of bacterial presence innately, a skill developed over millennia throughout
the evolution of the species. It is shown that DCs contain a repertoire of receptors
on their surface, tuned for binding to molecules produced exclusively by bacteria.
These molecules are collectively termed PAMPs (pathogen-associated molecular
patterns). Janeway showed that the induction of an immune response is facilitated
by the production of costimulatory molecules from DCs. When exposed to PAMPs
and antigen, the DC produces a collection of molecules that assist in their binding
to a T-cell, increasing the time a T-cell remains in contact with a presented antigen.
This timing issue is thought to be crucial in the activation of T-cells.

Infectious nonself can explain the need to add adjuvants to vaccines. Adjuvants
are formed from neutered bacterial detritus, which, according to the theory, provide
the PAMPs necessary to mount an immune response. It also explains why no re-
sponse is mounted to changing self, as the absence of a second signal leads to the
deactivation of T-cells. However, the infectious nonself model cannot explain toler-
ance to symbiotic bacteria, which produce PAMPs, yet are not eradicated from the
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body. Furthermore, this model cannot explain the phenomena of autoimmunity and
its relatively high frequency of occurrence in the western world.

Despite the addition of a second costimulatory signal to the self–nonself model,
it became apparent that a piece of the immunological puzzle was still missing. It was
unclear why the immune system should respond to self or why bacteria producing
PAMPs were not classed as foreign. In 1994, Matzinger proposed that the immune
system is controlled by the detection of damage to the body [42], not the detection
of specific antigen structures or bacterial products. Matzinger suggested that the
activating danger signals do not come from external sources, but are produced by
the cells of the body when a cell dies unexpectedly (necrosis). The danger theory
also proposes that the cells of the innate immune system can actively suppress an
immune response in the absence of danger and in the presence of molecular signals
produced when cells die normally (apoptosis).

DCs are sensitive to both the signals of necrosis and apoptosis in addition to
PAMPs and are attracted to areas in which cells are dying. They collect debris, in-
cluding potential antigens, and all of the molecules found in the extracellular matrix
(their environment) contribute to the regulation of their internal signal processing
mechanism. If a DC is exposed to the molecules from necrosing cells, it transforms
to a mature state. If it is exposed to the suppressive molecules of apoptosing cells,
then it is transformed to a semi-mature state. The DC eventually complexes with a
T-cell, i.e. a DC and T-cell bind if the antigen collected and presented by the DC
has a sufficient binding affinity with the T-cell antigen receptor. If the DC is in the
mature state, the T-cell becomes activated and all entities bearing that antigen are
eliminated. If the DC is semi-mature, the T-cell is tolerised to the presented antigen
and no response to it is generated. In this way, the processing of the input molecular
signals provides the immune system with a sense of context; in other words, if an
entity is foreign but harmless, then the immune system does not waste resources
responding to it.

The peripheral-tolerance danger model can also account for the effects of au-
toimmunity; when a self-protein is present in the same place and at the same time
as the antigen of a pathogen, the immune system may respond to its own tissue,
as both host and foreign antigens are collected by the same DCs. This has been
framed within the context of multiple sclerosis, as the symptoms frequently appear
in combination with bacterial or viral infection.

Despite its ability to explain several key anomalies, acceptance of the danger
theory has been slow within immunology. There has been a lack of experimental
evidence to support Matzinger’s ideas, and no single ‘danger signal’ has been dis-
covered, though characterisation of the molecules involved is improving as molec-
ular techniques advance.

14.2.4 Idiotypic Networks: Interantibody Interactions

In addition to the research on mechanisms of immune discrimination, theories exist
that attempt to explain the various emergent properties of the immune system. One
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of these theories is the idiotypic immune network theory, initially proposed by Jerne
in 1974 [35]. The theory postulates that interactions between immune cells (and not
necessarily external agents) cause modulation in the behaviour of the immune sys-
tem as a whole. This modulation is proposed to lead to the generation of immune
memory, i.e. the ability of the immune system to remember past encounters with
pathogens, and hence provide a secondary response that is both accurate and rapid.
The idiotypic network model does not attempt to contradict the principles outlined
in classical immunology, but provides a complementary theory of antibody stimu-
lation, where antibodies can influence other antibodies in addition to antigens. Idio-
typic models have been developed, although no physical evidence exists to support
the theory.

14.2.5 Summary

Immunologists classify the human immune system into two distinct sub-systems,
the innate and adaptive. Until recently the adaptive system, responsible for modifi-
cation of the immune response over the lifetime of an individual (through the tuning
of B- and T-cells), was viewed as far more sophisticated than its innate counterpart.
The selection mechanisms of the B- and T-cells, and their processes of adaptation
form the major part of the self–nonself principle, which states that the immune sys-
tem is activated in response to the detection of foreign antigen, but does not respond
to self-antigen. However, the adaptive model of immune activation has problems
associated with it and these have led immunologists to look in greater detail at the
innate immune system, adapted over the lifetime of the species, which responds
quickly to invaders based on receptors encoded within the genome. It is now thought
that it is the interaction between the innate and adaptive systems and their cells that
provides the necessary protection, and consequently, there has been fresh interest in
the cells of the innate system, for example DCs. These are responsible for translating
and integrating information from the tissue to the T-cells, which results in either ac-
tivation or tolerisation of the immune system. While the classical self–nonself view
is important to immune function, the interplay between the two systems and the cor-
responding cells influences the ultimate decision as to whether or not to respond to
an antigen.

14.3 The Evolution of Artificial Immune Systems

AIS is the collective name for a number of algorithms inspired by the human im-
mune system. Unlike genetic algorithms, for which there is an archetypal algorithm
and variants thereupon, there exists no single algorithm from which all immune al-
gorithms are derived. However, all research within AIS stems from foundations in
theoretical immunology and numerous parallel streams of research have been con-
ducted over the past 20 years, resulting in the development of distinct sub-streams,
including computational immunology. The evolution of the various approaches that
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exist within AIS is depicted in Figure 14.1, which shows major milestones in re-
search, significant papers (given in quotes) or algorithms that have shaped the field
of AIS. The white-ringed hubs represent the significant works within a particular
sub-stream and the terminating rectangles show branches of the research that are
not currently active. In addition, the proximity of the sub-stream to the stream of
theoretical immunology in the centre represents the extent of the immunological
modelling, with more modern AIS approaches closer to the underlying metaphor.

The diagram also shows that AIS are classified into two distinct groups; first- and
second-generation algorithms. The first-generation algorithms use simplistic models
of immunology as the initial inspiration, for example negative and clonal selection.
In contrast, the second-generation algorithms, for example, the Dendritic Cell Algo-
rithm (DCA) [29], are built on a foundation of interdisciplinary research that allows
for a much finer-grained encapsulation of the underlying immunology. Although
most of the second-generation algorithms are still in their infancy, and require much
more theoretical study, they are showing great promise in a number of application
areas.

In this section each of the sub-streams and its applications are described indi-
vidually and in chronological order, so that the evolution of AIS can be traced. In
particular, negative selection, clonal selection and immune network approaches (the
key first-generation algorithms) are discussed in detail, and the recently developed
second-generation algorithms that use the ‘Conceptual Framework’ methodology,
are also treated.

14.3.1 Computational and Theoretical Immunology

A vein of computational and theoretical immunology lies at the core of AIS, as
the process of developing mathematical models of immunological mechanisms is
similar, at least, in principle to the development of immune-inspired algorithms. It
is not surprising, therefore, that theoretical models of immune phenomena acted as a
foundation for the initial AIS algorithms, clonal and negative selection, and immune
network-based approaches.

In the case of the clonal selection principle, this was initially based on works
carried out in the 1970s by Burnett [12], where affinity metrics were first charac-
terised mathematically. In combination with this model, Jerne’s idiotypic network
model was formalised by Farmer et al. in the 1980s [22] and stipulated the inter-
action between antibodies mathematically. The network model was seen as having
computationally useful properties and provided a network-based approach distinct
from both neural networks and genetic algorithms. The model was also interpreted
by Bersini and Varela [9] with numerous refinements, and the combination of these
two approaches forms the cornerstone of all AIS work that abstracts the idiotypic
network.

Similarly, a theoretical model of the selection of T-cells in the thymus by Perelson
et al. [10] resulted in the development of negative selection as a technique within
AIS. This model detailed the selection of T-cells (based on affinity metrics) to model
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the suitability of a T-cell receptor (TCR) for the detection of potential nonself anti-
gen. The transfer from theoretical immunology to an AIS algorithm was by virtue of
a collaboration between Perelson and Forrest, using Forrest’s expertise in machine
learning to improve Perelson’s model.

It was around this time that the primary algorithms were applied to a bat-
tery of computational tasks and AIS began to diverge from theoretical immunol-
ogy. However, although the initial performance of the developed algorithms was
good, the techniques proved no better than the state-of-the-art algorithms that
already existed in the chosen problem domains. Consequently, AIS researchers
started to turn back to the underlying immunology (both experimental and theo-
retical), as it was assumed that the developed algorithms were based on out-dated,
oversimplified models of the computation actually performed by the human im-
mune system. Of course, theoretical immunology had also progressed since the
1990s.

In 2004, Cohen published a book entitled Tending Adam’s Garden [14] that de-
scribed the immune system as a complex adaptive system. Other similar research
into a systemic perspective of the immune system, paired with the increase in pop-
ularity of interdisciplinary approaches, enticed AIS researchers to renew their in-
terest in the underlying metaphors. At this point, theoretical immunologists were
welcomed into the field of AIS, acting as translators between the complicated and
dynamic world of experimental immunology and computation. The AIS algorithms
developed as a result of this incorporated many new ideas from modern immunol-
ogy and showed promise to out-perform older systems. In addition, in a bid to attract
more researchers with a background in immunology, the AIS community devised a
computational immunology stream as part of its conference [8]. Three examples
of high-quality research in this area include a model of viral dynamics [7], an in-
vestigation into the cellular maximal frustration principle [1], and a model of the
stochastic nature of immune responses [47].

As computational and theoretical immunology becomes more sophisticated, it
seems likely that the boundaries between the two fields will blur, resulting in the
development of more sophisticated AIS algorithms. AIS practitioners are hopeful
that any new system developed will remain faithful to the underlying principles,
as stipulated by the creators of the ‘Conceptual Framework’ [51] approach to AIS
development. Whether this approach will bear fruit is conjecture, but it has certainly
given a lease of life to a field that has strayed far from its initial roots.

14.3.2 Negative Selection Approaches

The first example of an implemented AIS performing a useful computational task
was an incarnation of a self–nonself discrimination system, used for the detec-
tion of computer virus executables [24]. (Incidentally, the precursor to this system
was the original collaboration between computer science and immunology, i.e. the
development of a genetic algorithm-based approach for understanding the mech-
anisms of pattern recognition within the immune system [50].) The self–nonself
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discrimination system involved creating a behaviour profile of sequences of system
calls on a computer network during a period of normal function. To aid in detect-
ing malicious intruders, any subsequent sequences were matched against the normal
profile and any deviations reported as a possible intrusion. This research and its re-
lated work are perhaps the most widely known and popularised AIS to date [23],
as the data used is popular amongst the intrusion detection community, with nearly
one thousand citations.

The approach attracted a great deal of attention from the security community, as
exemplified in the research of Kephart [38]. This was the first attempt to apply AIS
within a commercial setting and consequently introduced AIS to a wider audience.
The research was inspired by the efforts of Forrest et al. [23] and subsequent work
by Hofmeyr and Forrest [32] in their paper Immunity by Design, and inspired a
more systemic approach to AIS development, as pursued by Burgess [11]. Kephart
also attempted to build on the system-profiling approach to intrusion detection by
implementing a heterogeneous AIS. His work, and also that of Burgess, is a good
example of alternative approaches based on the self–nonself principle.

However, the major development in this sub-stream was the introduction of a
true negative selection algorithm in a system named ‘Lisys’, which consisted of
three phases. Here, the first phase was used for the definition of self, i.e. the normal
profile was generated from input data to encompass normal behaviour patterns de-
fined in advance to form a sense of self. The second phase involved the generation
of a set of random detectors containing a representation suitable for matching the
patterns used to create the self-profile. The final phase implemented the detection
of anomalies in previously unseen data by comparing each detector against all self
patterns contained within the self-profile. If any of the randomly generated detectors
matched a self-pattern, the detector was deemed unsuitable and was removed from
the detector set. However, if the detector did not match any self items it was saved
and became part of the pool used for anomaly detection. Thus, when the highly
tuned detector set was presented with unseen test data, if any detector matched a
pattern, the pattern was classed as anomalous and marked accordingly. A depiction
of the algorithm at the core of this system is given in Figure 14.2.

A full description of the multiple-stage negative selection algorithm is given in
the work by Hofmeyr [31], which encoded the detectors as bit strings and used
an r-contiguous bit function for matching. Extensions to the work include the in-
corporation of real values into the encoding, the use of multi-dimensional vector
representations known as V-detectors and the use of adaptable thresholds to reduce
false positives [6]. Negative-selection algorithms have also been employed to solve
fault tolerance problems and numerous other anomaly detection problems.

Despite its initial promise, negative selection has been shown to have a number
of associated problems that can render it somewhat undesirable for use in network
intrusion detection. First, the necessity to create a randomly generated initial de-
tector population can be prohibitive, because, as the dimensionality of the feature
space increases, the number of detectors required to cover it increases exponentially.
Second, negative selection is a one-shot supervised learning algorithm, where the
definition of normal is not updated as time progresses. This is particularly relevant
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Step One: 
Randomly generate initial detector-
population with n detectors to cover 
the feature space,  where each
is one detector. 

Step Two:
Using the training data, define 
regions of ‘self’ space, representing 
normal.   

Step Three: 
Delete all detectors which overlap 
with the defined self region, leaving 
detectors primed to detect nonself 
entities. 

Step Four:
Introduce new pattern (antigen) and 
calculate affinity with nearest 
detector. If affinity is greater than a 
defined threshold, the detector is 
activated and the antigen is classed 
as anomalous (       ). Antigen with 
insufficient affinity are classed as 
normal (       ). 

Fig. 14.2 An illustration of negative selection.

to computer security where what is defined as normal has the tendency to change
over time. Negative selection algorithms can therefore cause excessive numbers of
false positive alerts, which can cripple a system. The problems with the algorithm
are discussed further in Kim and Bentley [39] and are proven theoretically by Stibor
et al. [52]. Although numerous modifications and variants in representation have
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been made, such as the addition of variable length detectors, the algorithm seems fit
for purpose only for small, constrained problems where the definition of normal is
not likely to change and the set encompassing normal is small. For a comprehensive
overview of the negative selection algorithm, the interested reader should refer to
the review by Ji and Dasgupta [36].

14.3.3 Clonal Selection Approaches

During the early years of AIS, researchers recognised that, in addition to the T-cell
inspiration employed by Forrest et al. [32], basic models of B-cells and their corre-
sponding antibodies could act as a good underlying metaphor. B-cells produce an-
tibodies of a specific configuration, and their diversity is stimulated upon encounter
with a foreign antigen, where the resulting B-cell clones vary the receptor configura-
tion in order to perform a biological local search to find the best-fitting receptor. The
B-cell model appeared ripe for exploitation, given the similarities with local search
and optimisation techniques, and in 2000 a theoretical model of the hypermutation
process proposed by Burnet [12] served as inspiration for CLONALG [19], a pop-
ular AIS algorithm involving an abstract version of the cloning and hypermutation
process.

All clonal selection-based algorithms (CSA) essentially centre around a repeated
cycle of match, clone, mutate and replace and numerous parameters can be tuned,
including the cloning rate, the initial number of antibodies and the mutation rate
for the clones. CLONALG, AI-NET, the B-cell algorithm [37] and AIRS [60] all
incorporate this basic functionality. (AI-NET contains constituents of both CSA and
immune network approaches [19].) The CSA used in CLONALG is illustrated in
Figure 14.3.

CSAs have a strong resemblance to genetic algorithms without crossover, but
their notion of affinity and their significantly higher mutation rate (the hypermu-
tation component) distinguish them from similar adaptive algorithms. CSAs also
share properties with both K-means and K-nearest neighbour approaches. The CSA
technique would be most similar to a K-nearest neighbour scheme where K is one,
combined with features of K-means where the position of the centroids is adjusted
(analogous to the creation of memory antibodies). However, again, the affinity met-
rics and the hypermutation components make CSA somewhat distinct from these
methods.

The primary uses of CSA are for pattern recognition and optimisation, exem-
plified by the successful application of an optimised variant of CLONALG termed
Opt-AI [18] to the prediction of protein secondary structure. It is the hypermutation
component of CSA, where a dynamic local search is performed, that implies its suit-
ability for optimisation, and this is exemplified with Opt-IA. Another example of a
CSA is AIRS, a successful multi-class classifier that contains a clonal selection com-
ponent. This system also employs memory cells, created when a stimulated B-cell
has a sustained affinity. Immune memory models frequently accompany clonal se-
lection approaches, but the underlying immunology is rather unclear, even regarding
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Step One: 
Randomly generate initial antibody 
population with n detectors, where 
each       is one antibody. 

Step Two:
Introduce new pattern (antigen       ) 
and select the nearest clone 
(coloured) using a defined distance 
metric such as the Euclidean 
distance. 

Step Three: 
Clone nearest antibody in proportion 
to the affintiy between antibody and 
antigen. The greater the affinity the 
greater the number of clones 
produced.

Step Four:
Mutate clones, with distance of 
mutation inversely proportional to 
affinity. The greater the affinity the 
greater the distance between 
mutant antibodies.  

Step Five:
Find best matching clone and assign 
clone’s class to antigen. Delete other 
superfluous clones and for each 
deletion, replace with new randomly 
generated antibody. Repeat steps 
two to five until a stopping condition 
is met. 

Fig. 14.3 An illustration of clonal selection.
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the existence of such cells. This has made the development of specific models very
difficult but possible, as demonstrated by Wilson et al. [63] with the motif-tracking
algorithm.

The process of repeated filtering of candidate solutions in the form of antibody
populations results in a type of optimisation when taken within an AIS context, al-
though it is debatable whether the solutions provided by the human immune system
itself are optimal. As argued by Timmis and Hart [54], CSA has produced solutions
that have a tendency to be the most robust, though not necessarily the most optimal.
This makes them particularly suited for more complex optimisation problems such
as multi-objective optimisation. Their robustness, coupled with the fact that they
are one of the most well understood of the AIS algorithms, makes them a popular
choice amongst similar techniques.

14.3.4 Idiotypic Network Approaches

In this section, the basic principles of the idiotypic network theory proposed by
Jerne [35] are explained, and a particular example of a hybrid system that combines
an immune network with a clonal selection-based model is presented and discussed.
A more detailed example of an artificial idiotypic network is provided in the case
study in Section 14.4.

In order to understand the principles of the idiotypic network theory, it is neces-
sary to introduce the concepts of epitopes, paratopes and idiotopes. The clonal se-
lection theory states that division occurs for B-cells with receptors that have a high
degree of match to a stimulating antigen’s binding region or epitope pattern and that
these cells then mature into plasma cells that secrete the matching receptors or anti-
bodies into the bloodstream. Once in the bloodstream the antibody combining sites
or paratopes bind to the antigen epitopes, causing other cells to assist with elimi-
nation. Antibody paratopes and antigen epitopes are hence complementary and are
analogous to keys and locks. Paratopes can be viewed as master keys that may open
a set of locks and some locks can be opened by more than one key.

However, Jerne’s network theory suggests that antibodies also possess a set
of epitopes and so are capable of being recognised by other antibodies. Epitopes
unique to an antibody type are termed idiotopes and the group of antibodies shar-
ing the same idiotope belongs to the same idiotype. When an antibody’s idiotope is
recognised by the paratopes of other antibodies, it is suppressed and its concentra-
tion is reduced. However, when an antibody’s paratope recognises the idiotopes of
other antibodies, or the epitopes of antigens, it is stimulated and its concentration
increases.

The idiotypic network theory hence views the immune system as a complex
network of paratopes that recognise idiotopes and idiotopes that are recognised
by paratopes. This implies that B-cells are not isolated, but are communicating
with each other via collective dynamic network interactions. The network contin-
ually adapts itself, maintaining a steady state that reflects the global results of in-
teracting with the environment. This is in contrast to the clonal selection theory,
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which supports the view that promotion of a B-cell to a memory cell is the result
of antibody–antigen interactions only. Jerne states that each individual develops a
unique, self-regulating immune network, and when it is established, it must possess
stable features. He hence proposes that immunological memory may be more de-
pendent upon network changes than upon the endurance of populations of memory
cells.

His theory asserts that antibodies continue communicating even in the absence
of antigens, which produces continual change of concentration levels. A more re-
cent model by Farmer et al. [22] adds additional dynamics that account for the
domination of a single antibody in the presence of antigen, since the cell with the
paratope that best fits the antigen epitope contributes more to the collective response.
It presents itself to the system as the antigenic antibody, which disturbs the network,
inducing further interantibody suppression and stimulation.

Although the theory has been largely ignored by the wider immunology commu-
nity, it has gained much popularity within AIS due to its ability to produce flexible
selection mechanisms. Furthermore, the behaviour of an idiotypic network can be
considered intelligent, as it is both adaptive at a local level, and shows emergent
properties at a global level. The system is also autonomous and completely decen-
tralised, making it ideal for applications such as mobile-robot behaviour arbitra-
tion [40, 41, 59], identifying good matches for recommendation software [13], and
negotiating options for configuring communication software [53].

An early example of AIS research inspired by Jerne’s theory is the system named
‘Jisys’, developed by Hunt and Cooke, and later Timmis [33]. The system was based
on the idiotypic network model formalised by Farmer et al. [22] and later Bersini
and Varela et al. [9] and utilised the concepts of stimulation and suppression effects
within a network of antibodies. The system can be considered as something of a
hybrid, since it also incorporates the concepts of clonal expansion and somatic hy-
permutation within the antibody populations. The system led to the development of
a number of other network-based systems, including ANNIE/RAIN [55], which is
a resource-based unsupervised clustering algorithm and AINET [19]. Components
from ANNIE/RAIN are incorporated into AIRS in addition to elements of clonal
selection.

14.3.5 Danger Theory Approaches

All of the algorithms described above (clonal and negative selection and the immune
networks) diverged from the underlying immunology at an early stage in their
development. This phenomenon often occurs in AIS because, as novel variants
are created, any remaining immune inspiration is abstracted away in order to pro-
duce systems that are easy to characterise computationally. Consequently, the re-
sulting systems may fail to model certain computationally desirable features of the
immune system. In addition, since the algorithms are developed from a computa-
tional perspective, it can be difficult to distinguish AIS approaches from more es-
tablished machine learning techniques. This is exemplified by the similarities of
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CSAs with K-nearest neighbour approaches and evolutionary search techniques.
Although the first-generation algorithms continue to be applied to numerous pat-
tern recognition, detection and classification problems, little progress has been made
with the algorithms themselves for a number of years. This, coupled with the some-
what mediocre performances achieved by such algorithms on benchmark tests, has
recently led AIS researchers to re-think the fundamentals of AIS design [54]. In-
stead of using highly simplified models of isolated immune components, systems
could be designed to incorporate more complex, current and sophisticated models.
The idea gave rise to a hypothesis; would the incorporation of finer grained models
improve the performance of AIS algorithms and make them more applicable?

The Danger Project (Aickelin et al. [2]), a 4-year interdisciplinary collaboration
between an AIS development team and practical immunologists aimed to answer
this fundamental question. Their research was chiefly motivated by the scaling and
false-positive problems associated with negative selection and was based on a proof
of concept paper by Aickelin and Cayzer [3]. Here, the immune system was re-
examined in an attempt to overcome the difficulties and it was postulated that neg-
ative selection-based intrusion detection systems may be missing a key constituent;
danger signals.

As described in Section 14.2, the human immune system cannot rely on self–
nonself discrimination alone, so it seems unreasonable to design AIS systems that
depend only upon this principle. The aim of the Danger Project was to incorporate
the danger theory into AIS, with a view to producing robust intrusion detection
systems, capable of fast real-time analysis and low rates of false alarms. At the
start of the project in 2004, the working methodology of the research team was
unique in AIS; the practical immunologists gave the computer scientists insight into
the actual mechanisms of detection employed by the immune system and the AIS
researchers were able to build abstract computational models of the cells involved
in the detection of danger signals, which formed the basis of novel algorithms and
frameworks. Moreover, the practical immunologists were able to assist in refining
the models by performing experiments to fill in any gaps in knowledge that were
identified.

Two separate areas of research arose out of the danger project in addition to
the published immunological results. The first was the development of the libtis-
sue system, an agent-based framework that facilitated a style of agent-based sim-
ulation to house the novel algorithms [57]. A novel algorithm (termed ‘tlr’) was
developed to test the framework and showed some success when applied to the de-
tection of anomalous system calls [56]. The algorithm is one of the few instances
of AIS where more than one cell type is employed, in this case, DCs and T-cells.
The second research area was the creation of the DCA [26], a second-generation
example, and the newest addition to the mainstream set of AIS algorithms. The
DCA is based on a model of the function of dermal dendritic cells and their abil-
ity to discriminate between healthy and infected tissue. In nature DCs correlate
molecular signals found within tissue and use this information to assess the con-
text of the monitored area. In addition to signal processing, DCs collect debris,
which is processed to form antigen. After a period of time, DCs mature and migrate
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from the tissue to a lymph node, where they present their context information and
their antigen to a population of T-cells, instructing the T-cell with the appropriate
response.

In the DCA, the DC mechanisms are abstracted and used to form the model. To
date the DCA has been applied to port scan detection, insider attack detection, botnet
zombie machine detection, standard machine learning intrusion datasets, robotic se-
curity, schedule overrun detection in embedded systems, sensor networks, and other
real-time, dynamic problems. In numerous cases the algorithm is performing well,
producing low rates of false positives, and a deterministic variant that has enhanced
computational performance is currently under investigation [28]. The algorithm is
described in detail in Section 14.5.

14.3.6 Conceptual Framework Approaches

In parallel with the Danger Project, Stepney et al. [51] also identify the lack of
rigour in the metaphors used to inspire AIS. To overcome this problem, they propose
a framework (the‘Conceptual Framework’) for the successful development of AIS.
The methodology employs an iterative approach for the creation and testing of novel
immune-inspired algorithms and four stages are identified as key:

• Observation: the biological system is probed using practical experimentation.
• Models: computational models are constructed to examine the biological system

further, and abstract models are created from the computational models for trans-
lation into algorithms.

• Algorithms: computational systems are developed, implemented, and studied
theoretically using the abstract models as a blueprint.

• Applications: the developed algorithms are applied to specific problems, with
feedback to the algorithm for refinement.

The design of the framework stipulates that the flow of information between com-
ponents is bi-directional, and involves an iterative process, updating the models and
algorithms as information is incorporated. A framework for constructing algorithms
is certainly necessary in principle, since it clearly defines the role each discipline
must play, i.e. observation by immunologists, modelling by mathematicians, algo-
rithm development by computer scientists and application testing by engineers.

Models of receptor degeneracy by Andrews and Timmis [4] are in development
using the Conceptual Framework approach, with one modification, i.e. no direct col-
laboration with practical immunologists is formed. Instead, sophisticated immuno-
logical literature is used as inspiration to construct a novel computational model.
Here, the constructed model is of T-cell activation within a lymph node, and a com-
putational model of the interactions between T-cells and antigen presenting cells
(e.g. DCs) is implemented using principles of cellular automata. In this work, it is
identified that one key feature of activation is the degeneracy of receptors across the
T-cell population. Degeneracy is defined as “elements which are structurally differ-
ent but produce the same function...”. For example, one particular T-cell receptor
can respond to more than one binding agent with similar effects. Degeneracy is a
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desirable property that is inherent in numerous biological systems and is of partic-
ular interest to AIS as it may enable reduction of the number of detectors required.
This would impact on the dynamics of the first-generation approaches, negative se-
lection included.

The initial model is extended to incorporate tuneable activation thresholds for
the responses of T-cells [5]. Dynamic thresholds are employed based on an exist-
ing immunological model, where the signal strength needed to activate the T-cell is
derived from the frequency and magnitude of the stimulation of the cell over time.
Similar research into formalising threshold methods using a type of process algebra
known as stochastic π calculus has also been carried out and allows for the formu-
lation of models within a defined modelling language [45], utilising the Conceptual
Framework for its development.

Both approaches have yielded immunologically and computationally interesting
results. However, neither technique has matured to the stage of a workable algorithm
and, thus, their applicability to the wider AIS context is still undetermined. It is
hoped that the integration of these mechanisms will impact on the function of AIS
at some point, stimulating others to follow the Conceptual Framework. However, at
the present time, no realistic claims about its effectiveness can be made, as it is too
new to have mature work associated with it.

14.3.7 Summary

AIS is a diverse field of study within bio-inspired computation, with the algorithms
developed as distinct as the various parts of the immune system itself. This results in
not one single AIS algorithm, but a collection of algorithms fit to solve a wide range
of problems. Two generations of AIS are currently in use and development. The
first-generation approaches draw inspiration from theoretical immunology models
in combination with ‘text-book style’ mechanisms. Two major techniques from the
first-generation, clonal and negative selection share properties with other machine-
learning methods, such as K-nearest neighbour. Recently, second-generation algo-
rithms have emerged, based on an interdisciplinary methodology. Although these
approaches are still in the early stages of development, preliminary results, and the
increasing popularity of algorithms like the DCA, suggest that second-generation
algorithms may prove extremely useful.

To reinforce the concepts presented in this section, two examples of immune-
inspired algorithms are examined in more detail. These are the idiotypic network
and the DCA, representing first and second-generation algorithms, respectively.

14.4 Case Study 1: The Idiotypic Network Approach

Systems inspired by the idiotypic network theory include the interaction between
antibodies, in addition to interactions between antibodies and antigens. Such sys-
tems are computationally useful, despite the fact that no immunological evidence
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exists to support the underlying principles. Idiotypic network-based systems are
largely inspired by the Farmer et al. computational model [22] of Jerne’s idiotypic
network theory [35], where binary strings of a given length l represent epitopes and
paratopes. The model simplifies the biology so that each antigen and each antibody
have only one epitope. Each antibody thus has a pair of binary strings [p,e], and
each antigen has a single string [e]. The degree of fit between epitope and paratope
strings is analogous to the affinity between real epitopes and paratopes and uses the
exclusive OR operator to test the bits of the strings (where 0 and 1 yield a positive
score).

Exact matching between p and e is not required and, as strings can match in any
alignment, one needs only to define a threshold value s below which there is no
reaction. For example, if s was set at 6 and there were 5 matches (0 and 1 pairs) for
a given alignment, the score for that alignment would be 0. If there were 6 matches,
the score would be 1 and if there were 7 the score would be 2. The strength of
reaction G for a given alignment is thus

G = 1+ μ , (14.1)

where μ is the number of matching bits in excess of the threshold. The strength of
reaction for all possible alignments mi j between two antibodies i and j is given by

mi j =
q

∑
k=1

Gk, (14.2)

where q is the number of possible alignments. In the Farmer model, differential
equation (14.3) describes continuous antibody concentration changes occurring as
a result of antigen stimulation, interantibody stimulation and suppression, and the
natural death rate. Here, N is the number of antibodies and n is the number of anti-
gens. The match specificities are given by m, with the first index referring to the
epitope and the second to the paratope:

dxi

dt
= c

[
n

∑
j=1

m jixiy j − k1

N

∑
j=1

mi jxix j +
N

∑
j=1

m jixix j

]
− k2xi. (14.3)

The first sum in the square bracket expresses stimulation in response to all anti-
gens. The xiy j terms model that the probability of a potential collision (i.e. match)
between an antibody and an antigen (and hence the probability of stimulation) is de-
pendent on their relative concentrations. The second and third sums represent sup-
pression and stimulation, respectively, in response to all other antibodies. Parameter
k1 allows possible inequalities between interantibody stimulation and suppression,
and the k2 term outside the brackets is a damping factor, which denotes the tendency
of antibodies to die, at a constant rate, in the absence of interactions. Parameter c
is a ‘rate’ constant that simulates both the number of collisions per unit time and
the rate of antibody production when a collision occurs. After each iteration, anti-
body concentrations are usually reduced using some sort of squashing function, for
example, the one shown in Equation (14.4):
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xi(t +1) =
1

1+ exp(0.5− xi(t +1))
. (14.4)

The final antibody selected to tackle the presented antigen is the antibody with the
highest concentration or the best antibody according to a metric that encompasses
concentration and affinity.

Within mobile robotics, many researchers (e.g. Watanabe et al. [59]) encode anti-
gens as environmental signals, and antibodies as robot behaviours, with the epitopes,
paratopes and idiotopes encoded as binary strings. The antibodies have an action
and a precondition (the paratope part), which are taken from fixed sets of actions
and preconditions. They also have an idiotope part—a disallowed condition, which
defines antibody connection. The final antibody structures are determined using a
genetic algorithm that evolves suitable combinations of idiotope parameters, actions
and preconditions. Both Farmer et al. [22] and Vargas et al. [58] have likened this
technique to learning classifier systems (LCS) where antibodies can be thought of as
classifiers with a condition and action part (the paratope) and a connection part (the
idiotope). In LCS the action part must be matched to a condition (antigen epitope)
and the connections show how the classifier is linked to the others. The presence of
environmental conditions causes variations in classifier concentration levels in the
same way that antigens disturb the antibody dynamics.

In contrast to the binary-coding techniques, the work of Whitbrook et al. [61],
which is concerned with mobile robot navigation, uses a fixed idiotope matrix of real
numbers I representing the degree of belief that an antibody–antigen combination is
poor. A variable paratope-matrix of real numbers P, derived from antibody–antigen
reinforcement learning (RL) scores, is used to model antibody–antigen affinities.
Later work by these authors [62] deals with a set of N antibodies, where each is
associated with a particular antigen, i.e. N = n. The technique evolves the action
part of each antibody in the set and there are z sets. There are thus z matching
antibodies for each antigen. The variable paratope is determined by RL as before,
but the idiotope is derived directly from the paratope and is also variable.

P and I are used together to assess similarity between antibodies and hence deter-
mine interantibody stimulation and suppression levels. The antibody with the high-
est affinity to the presented antigen v is selected as the antigenic antibody, i.e. the
antibody with the highest paratope value Piv, i = 1, ...,z. The system works by sup-
pressing antibodies dissimilar to the antigenic antibody and stimulating similar ones.
This is done by comparing the idiotope of the antigenic antibody with the paratopes
of the other antibodies to determine how much each is stimulated and by comparing
the antigenic paratope with the idiotopes of the others to calculate how much each
should be suppressed. If the antigenic antibody is the rth antibody and n is the num-
ber of antigens, Equations (14.5) and (14.6) govern the increase ε and decrease δ in
affinity to v for each of the z matching antibodies, when stimulation and suppression
occur, respectively:

εiv =
n

∑
j=1

(1−Pi j)Ir jxi jxr j i = 1, ..., z , (14.5)
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δiv = k1

n

∑
j=1

Pr jIi jxi jxr j i = 1, ..., z . (14.6)

The new affinity (Piv)2 is hence given by

(Piv)2 = (Piv)1 + εiv −δiv . (14.7)

All concentrations are re-evaluated using a variation of Farmer’s equation, and
the antibody selected is the one with the highest activation, which is a product of
concentration and affinity. The chosen antibody may be the antigenic antibody or it
may be some other that matches the presented antigen, in which case an idiotypic
difference is said to occur. The research has so far shown that both real and virtual
robots can navigate through mazes and other obstacle courses much more success-
fully when they employ the idiotypic selection mechanism, as opposed to relying on
RL only. The authors have also attempted to examine the relationships between the
parameters k1, k2 and c and the rates of idiotypic difference in order to gain insight
into the mechansims that underlie the algorithm’s superior performance.

14.5 Case Study 2: The Dendritic Cell Algorithm (DCA)

The DCA, a second-generation algorithm based on an abstract model of natural
DCs, is one of the most recent additions to the AIS family. It is essentially a meta-
heuristic that uses input signals (heuristic approximations of what is normal and
anomalous) to perform context-sensitive anomaly detection through both correla-
tion and classification. The primary use to date has been the detection of intrusions
in the fields of network [27] and robotic security [44].

Natural DCs are part of the innate immune system and are responsible for ini-
tial pathogen detection, acting as an interface between the innate and adaptive sys-
tems. They exist in three states of differentiation: immature, mature (exposed to the
molecules from necrosing cells) and semi-mature (exposed to the molecules from
apoptosing cells), and it is their terminal state of differentiation that is used by the
adaptive immune system to decide whether or not to respond to a potentially harmful
entity.

The DCA abstracts a multi-resolution model of a natural DC. To this end, four
data types are required:

• Antigen: an enumerated-type object with a value that is used as an identifier for
the suspect data to be classified. For ideal functioning, a number of antigens of
the same value should be used to form an antigen type.

• PAMP signal: a real-valued attribute, where an increase in value is a definite
indicator of anomaly.

• Danger signal: a real-valued attribute, where an increase in value is a probable
indicator of damage, but there is less certainty than with a PAMP signal.

• Safe signal: a real-valued attribute, where an increase in value is a probable in-
dicator of normality within a system. High values of the safe signal can cancel
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out the effects of both the PAMP and the danger signals, possibly reducing the
false-positive rate of the DCA.

Unlike the negative selection approaches, the DCA does not have an adaptive
component and thus requires no formal training phase. Signal processing, the corre-
lation between antigen and signals, is performed at the individual cell level, but the
classification of antigen types occurs at the population level. In other words, each
cell’s input signals are transformed into cumulative output signals, with two output
values per cell; the costimulatory signal (CSM), and the context value k, which is
used to determine the terminal state of the cell. (A negative k represents a semi-
mature cell and a positive k indicates a mature cell.) Each DC executes three steps
per sampling iteration:

1. Sample antigen: the DC collects antigen from an external source (in the form of
an antigen array) and places the antigen in its own data structure for
storage.

2. Update input signals: the DC collects values of all input signals from a defined
input signal array.

3. Calculate interim output signals: at each iteration, each DC generates three tem-
porary output signal values from the received input signals, and these output
values are added to obtain the cell’s CSM and k values.

The DCA works on a static population of cells in which every cell removed
is immediately replaced. Diversity is maintained across the population by random
allocation of lifespan values within a specified range, i.e. when a cell is created
it is given a limited time window for data sampling. This is also thought to add
robustness to the algorithm. However, the lifespan reduces whenever the CSM value
increases, since the CSM value is automatically derived from it. Once the lifespan is
over, the cell ceases its sampling iterations and presents all the collected antigens, so
that its k value can be determined. The cell is then reset and returned to the sampling
iterations with a new lifespan value.

The antigens presented by each cell are processed across all presentations by all
members of the DC population. The anomaly score, Kα , of an antigen type is cal-
culated using the k values presented in conjunction with each antigen type. Initial
implementations of the DCA [30] are based on numerous probabilistic components,
including random sorting of the DC population, probabilities of antigen collection,
decay rates of signals, and numerous other parameters. While the same research
shows that the algorithm can be successfully applied to real-world intrusion data,
the system is very difficult to analyse given the sheer numbers of probabilities and
parameters. Recently, a deterministic DCA [28] has been developed in order to ob-
tain a greater understanding of the algorithm’s function. The pseudocode for the
deterministic version of DCA is given in Algorithm 1.

While the DCA removes the need to define self, it is still necessary to select
a suitable antigen representation and to perform pre-classification of input signals.
This represents a fundamental difference between this approach and negative selec-
tion for example, as the DCA relies on heuristic-based signals that are not absolute
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Algorithm 1 Pseudocode of the deterministic DCA
input : Antigen and Signals
output: Antigen Types and cumulative k values

set number of cells;
initialise DCs();
while data do

switch input do
case antigen

antigenCounter++;
cell index = antigen counter modulus number of cells ;
DC of cell index assigned antigen;
update DC’s antigen profile;

end
case signals

calculate csm and k;
for all DCs do

DC.lifespan -= csm;
DC.k += k;
if DC.lifespan <= 0 then

log DC.k, number of antigen and cell iterations ;
reset DC();

end
end

end
end

end
for each antigen Type do

calculate anomaly metrics;
end

representations of normal or anomalous. Although it bears an intial resemblance to
neural networks, the variable lifespan, the population dynamics and the combined
functionality of filtering, correlation and classification set it apart from these other
approaches. Full details of the DCA are presented in Greensmith [26] and Green-
smith et al. [29].

14.6 Conclusions

This chapter has examined AIS from the underlying immunology and the contro-
versy surrounding competing theories to the application and implementation of im-
mune algorithms as exemplified by the DCA. As mentioned, AIS are distinct from
other fields within bio-inspired computing as not one archetypal system is used,
but different methods are employed for different purposes. There are two reasons
for this: first, the immune system is itself multifunctional, performing many dif-
ferent natural computational tasks, and second, AIS researchers model the immune
system in different ways to suit their goals. For example, clonal selection with its
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hypermutation function performs a type of local search and can be modified to per-
form optimisation. Alternatively, the DCA is based on natural DCs, which are re-
sponsible for initial pathogen detection in tissue and can hence be used for anomaly
detection.

A shift is also evident in the methods used to create and develop AIS algorithms,
from somewhat simplistic models based on outdated immunology to sophisticated
interdisciplinary approaches based on rigourous abstract modelling, see the Danger
Project [2] and Conceptual Framework [51]. While the Conceptual Framework ap-
proaches are not yet mature enough to yield tangible results, the DCA (developed
using this method) is performing well across a range of problems [29] in comparison
with other nature-inspired techniques.

14.6.1 Future Trends in AIS

The percentage of research directed towards specific areas of AIS can be estimated
by looking at the AIS work reported in the 2008 ICARIS annual conference [8].
Exactly half of the papers in these proceedings are related to the application of
first-generation algorithms and their variants. The second largest category is that
of the second-generation approaches, followed by theoretical studies of AIS and
computational immunology. This differs vastly from the state of the field a mere
5 years ago, where the two largest groups of papers were applications of clonal
and negative selection, respectively, followed by idiotypic networks. This change
in focus of the field suggests that, as the characterisation of the second-generation
approaches improves, they will increase in popularity and may eventually dominate
the field. What the future holds for AIS, like any discipline, is uncertain given that
AIS algorithms are still evolving. As our knowledge of immunology increases, at
some point in the future we may have the grounding and computational resources to
build full, biologically accurate computational immune systems, based on both the
innate and adaptive systems and their numerous cell types.
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Chapter 15
A Classification of Hyper-heuristic Approaches

Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa,
Ender Özcan, and John R. Woodward

Abstract The current state of the art in hyper-heuristic research comprises a set of
approaches that share the common goal of automating the design and adaptation of
heuristic methods to solve hard computational search problems. The main goal is to
produce more generally applicable search methodologies. In this chapter we present
an overview of previous categorisations of hyper-heuristics and provide a unified
classification and definition, which capture the work that is being undertaken in this
field. We distinguish between two main hyper-heuristic categories: heuristic selec-
tion and heuristic generation. Some representative examples of each category are
discussed in detail. Our goals are to clarify the mainfeatures of existing techniques
and to suggest new directions for hyper-heuristic research.

15.1 Introduction

The current state of the art in hyper-heuristic research comprises a set of approaches
that share the common goal of automating the design and adaptation of heuris-
tic methods in order to solve hard computational search problems. The motivation
behind these approaches is to raise the level of generality at which search method-
ologies can operate [6]. The term hyper-heuristic was first used in 1997 [21] to
describe a protocol that combines several Artificial Intelligence methods in the con-
text of automated theorem proving. The term was independently used in 2000 [18]
to describe ‘heuristics to choose heuristics’ in the context of combinatorial optimi-
sation. In this context a hyper-heuristic is a high-level approach that, given a partic-
ular problem instance and a number of low-level heuristics, can select and apply an
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appropriate low-level heuristic at each decision point [6, 50]. The idea of automating
the heuristic design process, however, is not new. Indeed, it can be traced back to the
early 1960s [20, 26, 27] and was independently developed by a number of authors
during the 1990s [24, 32, 33, 43, 58, 62]. Some historical notes and a brief overview
of early approaches can be found in [6] and [52], respectively. A more recent re-
search trend in hyper-heuristics attempts to automatically generate new heuristics
suited to a given problem or class of problems. This is typically done by combin-
ing, through the use of genetic programming, for example, components or building
blocks of human-designed heuristics [7].

A variety of hyper-heuristic approaches using high-level methodologies, together
with a set of low-level heuristics and applied to different combinatorial problems,
have been proposed in the literature. The aim of this chapter is to provide an up-
dated version of the hyper-heuristic chapter [6] in the 2003 edition of the Handbook
of Metaheuristics. We present an overview of previous categorisations of hyper-
heuristics and provide a unified classification and definition, which capture all the
work that is being undertaken in this field. Our goals are to clarify the mainfeatures
of existing techniques and to suggest new directions for hyper-heuristic research.

The next section outlines previous classifications of hyper-heuristics. Section 15.3
proposes both a unified classification and a new definition of the term. Sections 15.4
and 15.5 describe the main categories of the proposed classification, giving refer-
ences to work in the literature and discussing some representative examples. Finally,
Section 15.6 summarises our categorisation and suggests future research directions
in the area.

15.2 Previous Classifications

In [57], hyper-heuristics are categorised into two types: (i) with learning and
(ii) without learning. Hyper-heuristics without learning include approaches that use
several heuristics (neighbourhood structures), but select the heuristics to call ac-
cording to a predetermined sequence. Therefore, this category contains approaches
such as variable neighbourhood search [42]. The hyper-heuristics with learning in-
clude methods that dynamically change the preference of each heuristic based on
their historical performance, guided by some learning mechanism. As discussed in
[57], hyper-heuristics can be further classified with respect to the learning mecha-
nism employed, and a distinction is made between approaches which use a genetic
algorithm from those which use other mechanisms. This is because many hyper-
heuristics so far have been based on genetic algorithms. In these genetic algorithm-
based hyper-heuristics the idea is to evolve the solution methods, not the solutions
themselves.

In [2], hyper-heuristics are classified into those which are constructive and
those which are local search methods. This distinction is also mentioned by Ross
[52]. Constructive hyper-heuristics build a solution incrementally by adaptively
selecting heuristics, from a pool of constructive heuristics, at different stages of the



15 A Classification of Hyper-heuristic Approaches 451

construction process. Local search hyper-heuristics, on the other hand, start from a
complete initial solution and iteratively select, from a set of neighbourhood struc-
tures, appropriate heuristics to lead the search in a promising direction.

When genetic programming started being used for hyper-heuristic research in
the late 2000s (see [7] for an overview), a new class of hyper-heuristics emerged.
This new class was explicitly and independently mentioned in [1] and [10]. In the
first class of heuristics, or ‘heuristics to choose heuristics’, the framework is pro-
vided with a set of pre-existing, generally widely known heuristics for solving the
target problem. In contrast, in the second class, the aim is to generate new heuristics
from a set of building blocks or components of known heuristics, which are given
to the framework. Therefore, the process requires, as in the first class of hyper-
heuristics, the selection of a suitable set of heuristics known to be useful in solving
the target problem. But, instead of supplying these directly to the framework, the
heuristics are first decomposed into their basic components. Genetic programming
hyper-heuristic researchers [1, 7, 10] have also made the distinction between ‘dis-
posable’ and ‘reusable’ heuristics. A disposable heuristic is created just for one
problem and is not intended for use on unseen problems. Alternatively, the heuristic
may be created for the purpose of re-using it on new unseen problems of a certain
class.

In [16], hyper-heuristics are classified into four categories: (i) hyper-heuristics
based on the random choice of low-level heuristics, (ii) greedy and peckish hyper-
heuristics, which requires preliminary evaluation of all or a subset of the heuristics in
order to select the best performing one, (iii) metaheuristics-based hyper-heuristics,
and (iv) hyper-heuristics employing learning mechanisms to manage low-level
heuristics.

15.3 The Proposed Classification and New Definition

Building upon some of the previous classifications discussed above and realis-
ing that hyper-heuristics lie at the interface of optimisation and machine learning
research, we propose a general classification of hyper-heuristics according to two
dimensions: (i) the nature of the heuristic search space and (ii) the source of feed-
back during learning. These dimensions are orthogonal in that different heuristic
search spaces can be combined with different sources of feedback and thus different
machine learning techniques.

We consider that the most fundamental hyper-heuristic categories from the pre-
vious classifications are those represented by the processes of

• Heuristic selection: methodologies for choosing or selecting existing heuristics
• Heuristic generation: methodologies for generating new heuristics from com-

ponents of existing heuristics

There is no reason why the higher level strategy (for selecting or generating
heuristics) should be restricted to be a heuristic. Indeed, sophisticated knowledge-
based techniques such as case-based reasoning have been employed in this way
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with good results for university timetabling [14]. This leads us to propose the fol-
lowing more general definition of the term ‘hyper-heuristic’ which is intended to
capture the idea of a method for automating the heuristic design and selection
process:

A hyper-heuristic is an automated methodology for selecting or generating
heuristics to solve hard computational search problems

From this definition, there are two clear categories of hyper-heuristics: heuristic
selection and heuristic generation, which form the first branch in our first dimension
(the nature of the search space). The second level in this dimension corresponds
to the distinction between constructive and local search hyper-heuristics, also dis-
cussed in Section 15.2. Notice that this categorisation is concerned with the nature
of the low-level heuristics used in the hyper-heuristic framework. Our classifica-
tion uses the terms construction and perturbation to refer to these classes of low-
level heuristics. Sections 15.4 and 15.5 describe these categories in more detail,
discussing some concrete examples of recent approaches that can be found in the
literature.

We consider a hyper-heuristic to be a learning algorithm when it uses some feed-
back from the search process. Therefore, non-learning hyper-heuristics are those
that do not use any feedback. According to the source of the feedback during learn-
ing, we propose a distinction between online and offline learning. Notice that in
the context of heuristic generation methodologies, an example of which is genetic
programming-based hyper-heuristics (discussed in Section 15.2), the notions of dis-
posable and reusable have been used to refer to analogous ideas to those of online
and offline learning, as described:

Online learning hyper-heuristics: The learning takes place whilst the algorithm
is solving an instance of a problem. Therefore, task-dependent local properties
can be used by the high-level strategy to determine the appropriate low-level
heuristic to apply. Examples of online learning approaches within hyper-heuristics
are the use of reinforcement learning for heuristic selection and, generally, the
use of metaheuristics as high-level search strategies across a search space of
heuristics.

Offline learning hyper-heuristics: The idea is to gather knowledge in the form
of rules or programs, from a set of training instances, that would hopefully gen-
eralise to the process of solving unseen instances. Examples of offline learning
approaches within hyper-heuristics are learning classifier systems, case-base rea-
soning, and genetic programming.

The proposed classification of hyper-heuristic approaches can be summarised as
follows (see also Figure 15.1):



15 A Classification of Hyper-heuristic Approaches 453

Heuristic selection

Methodologies to select

Heuristic generation

Methodologies to generate

construction
heuristics

perturbation
heuristics

construction
heuristics

perturbation
heuristics

Online 
learning

Offline 
learning

No-
learning

Feedback Nature of the heuristic search space

Hyper-
heuristics

Fig. 15.1 A classification of hyper-heuristic approaches, according to two dimensions: (i) the
nature of the heuristic search space and (ii) the source of feedback during learning.

• With respect to the nature of the heuristic search space:

– Heuristic selection methodologies: Produce combinations of pre-existing
· Construction heuristics
· Perturbation heuristics

– Heuristic generation methodologies: Generate new heuristic methods using
basic components (building blocks) of
· Construction heuristics
· Perturbation heuristics

• With respect to the source of feedback during learning:

– Online learning hyper-heuristics: Learn whilst solving a given instance of a
problem

– Offline learning hyper-heuristics: Learn, from a set of training instances, a
method that would generalise to unseen instances

– No-learning hyper-heuristics: Do not use feedback from the search
process

Note that these categories describe current research trends. There is, however,
nothing to stop the exploration of hybrid methodologies that combine, for example,
construction with perturbation heuristics or heuristic selection with heuristic gener-
ation methodologies. These hybrid approaches are already starting to emerge.

15.4 Heuristic Selection Methodologies

This section is not intended to be an exhaustive survey. The intention is to present a
few examples to give the reader a flavour of the research that has been undertaken
in this area.
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15.4.1 Approaches Based on Construction Low-Level Heuristics

These approaches build a solution incrementally. Starting with an empty solution,
the goal is to intelligently select and use construction heuristics to gradually build
a complete solution. The hyper-heuristic framework is provided with a set of pre-
existing (generally problem specific) construction heuristics and the challenge is to
select the heuristic that is somehow the most suitable for the current problem state.
This process continues until the final state (a complete solution) is obtained. Notice
that there is a natural end to the construction process, that is, when a complete solu-
tion is reached. Therefore the sequence of heuristic choices is finite and determined
by the size of the underlying combinatorial problem. Furthermore, there is, in this
scenario, the interesting possibility of learning associations between partial solution
stages and adequate heuristics for those stages.

Several approaches have been recently proposed to generate efficient hybridisa-
tions of existing construction heuristics in domains such as bin packing [40, 55],
timetabling [13, 14, 53, 54], production scheduling [63], and stock cutting [60,
63]. Both online and offline machine learning approaches have been investigated.
Examples of online approaches are the use of metaheuristics in a search space
of construction heuristics. For example, genetic algorithms [25, 33, 62, 63], tabu
search [13], and other single point-based search strategies [51]. For this type of
hyper-heuristics, recent research is starting to explore the structure of the heuris-
tic search space or hyper-heuristic landscape, in both timetabling [45] and pro-
duction scheduling [46]. Examples of offline techniques are the use of learning
classifier systems [41, 55], messy genetic algorithms [50, 53, 61], and case-based
reasoning [14].

15.4.1.1 Representative Examples

Two hyper-heuristics based on construction heuristics are described here in more
detail. The first approach is online and is based on graph-colouring heuristics for
timetabling problems, whilst the second is offline and is based on bin packing
heuristics.

Graph-colouring hyper-heuristic for timetabling: In educational timetabling,
a number of courses or exams need to be assigned to a number of timeslots, subject
to a set of both hard and soft constraints. Timetabling problems can be modelled as
graph colouring problems, where nodes in the graph represent events (e.g. exams),
and edges represent conflicts between events. Graph heuristics in timetabling use
the information in the graph to order the events by their characteristics (e.g. num-
ber of conflicts with other events or the degree of conflict) and assign them one by
one into the timeslots. These characteristics suggest how difficult it is to schedule
the events. Therefore, the most difficult event, according to the corresponding or-
dering strategy, will be assigned first. The graph-based hyper-heuristic developed in
[13] implements the following five graph colouring-based heuristics, plus a random-
ordering heuristic:
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• Largest degree (LD): Orders the events decreasingly based on the number of
conflicts the event has with the others events.

• Largest weighted degree (LW): The same as LD, but the events are weighted by
the number of students involved.

• Colour degree (CD): Orders the events decreasingly in terms of the number
of conflicts (events with common students involved) each event has with those
already scheduled.

• Largest enrolment (RO): Orders the events decreasingly based on the number of
enrolments.

• Saturation degree (SD): Orders the events increasingly based on the number of
timeslots available for each event in the timetable at that time.

A candidate solution in the heuristic search space corresponds to a sequence
(list) of these heuristics. The solution (timetable) construction is an iterative process
where, at the ith iteration, the ith graph-colouring heuristic in the list is used to order
the events not yet scheduled at that step, and the first e events in the ordered list are
assigned to the first e least-cost timeslots in the timetable (see Figure 15.2).

heuristic list

ROCDLDSDLWSD SDLECDLDSDSD

heuristic list

e12e11e101e 2e 3e 4e 5e 6e 7e 8e 9e

exams

62e 52ee3
e1
e9

…

…

…

e12e3171e 82e 91e 01ee662e 52e1e 9e 3e

order of exams

slots

Fig. 15.2 A solution (timetable) is constructed by iteratively considering each heuristic in the list
and using it to order the events not yet scheduled. The first e events (in the figure e = 5) in the
resulting ordering are assigned to the first e least-cost timeslots in the timetable.

Tabu Search is employed as the high-level search strategy for producing good
sequences of the low-level heuristics. Each heuristic list produced by tabu search
is evaluated by sequentially using the individual heuristics to order the unsched-
uled events and thus construct a complete timetable. Each heuristic in the list is
used to schedule a number e of events. Therefore, the length of the heuristic list
is n/e where n is the number of events to be scheduled. Values in the range of
e = 1, . . . ,5 were tested (details can be found in [13]). This work also highlights
the existence of two search spaces in constructive hyper-heuristics (the heuristic
space and the problem solution). The approach was tested on both course and exam
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timetabling benchmark instances with competitive results. This graph-based hyper-
heuristic was later extended in [51] where a formal definition of the framework is
presented. The authors also compare the performance of several high-level heuris-
tics that operate on the search space of heuristics. Specifically, a steepest descent
method, iterated local search and variable neighbourhood search are implemented
and compared to the previously implemented tabu search. The results suggest that
the choice of a particular neighbourhood structure on the heuristic space is not cru-
cial to the performance. Moreover, iterative techniques such as iterated local search
and variable neighbourhood search were found more effective for traversing the
heuristic search space than more elaborate metaheuristics such as tabu search. The
authors suggest that the heuristic search space is likely to be smooth and to contain
large plateaus (i.e. areas where different heuristic sequences can produce similar
quality). The work also considers hybridisations of the hyper-heuristic framework
with local search operating on the solution space. This strategy greatly improves
the performance of the overall system, making it competitive with state-of-the-art
approaches on the studied benchmark instances.

In a further study [45], the notion of fitness landscapes is used to analyse the
search space of graph-colouring heuristics. The study confirms some observations
about the structure of the heuristic search space discussed in [51]. Specifically, these
landscapes have a high level of neutrality (i.e. the presence of plateaus). Further-
more, although rugged, they have the encouraging feature of a globally convex or
big valley structure, which indicates that an optimal solution would not be isolated
but surrounded by many local minima. The study also revealed a positional bias
in the search space comprising sequences of heuristics. Specifically, changes in the
earlier positions of a heuristic sequence have a larger impact on the solution qual-
ity than changes in the later positions. This is because early decisions (heuristic
choices) in a construction process have a higher impact on the overall quality of the
solution than later decisions.

Classifier system hyper-heuristic for bin packing: Classifier systems [34] are
rule-based learning systems that evolve fixed length stimulus–response rules. The
rules are encoded as ternary strings, made of the symbols {0,1,#}, and have an
associated strength. The system operates in two phases. First, the population of
classification rules is applied to some task; and second a genetic algorithm gen-
erates a new population of rules by selection based on strength, and by the applica-
tion of standard genetic operators. Calculating the strength of each rule is a credit
assignment problem, which refers to determining the contribution made by each sub-
component or partial solution, in decomposable problems being solved collectively
by a set of partial solutions.

In [55], a modern classifier system (accuracy-based classifier system [64]) was
used, in the domain of one-dimensional bin packing, to learn a set of rules that
associate characteristics of the current state of a problem with different low-level
construction heuristics. In the one-dimensional bin packing problem, there is an
unlimited supply of bins, each with capacity c. A set of n items are to be packed into
the bins, the size of each item is given, and items must not overfill any bin. The task
is to minimise the total number of bins required.
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The set of rules evolved by the classifier system is used as follows: given the
initial problem characteristics P, a heuristic H is chosen to pack an item, thus grad-
ually altering the characteristics of the problem that remains to be solved. At each
step a rule appropriate to the current problem state P ′ is selected and the process
continues until all items have been packed. For the training phase a total of 890
benchmark instances from the literature were used. The authors chose four bin pack-
ing heuristics from the literature, the selection being based on those that produced
the best results on the studied benchmark set. These heuristics were as follows:

• Largest-fit-decreasing: Items are taken in order of size, largest first, and put in
the first bin where they fit (a new bin is opened if necessary and effectively all
bins stay open).

• Next-fit-decreasing: An item is placed in the current bin if possible, or else a new
bin is opened into which the piece is placed. This new bin becomes the current
bin.

• Djang and Finch’s (DJD): A heuristic that considers combinations of up to three
items to completely fill partially full bins.

• A variation of DJD: A variation of the previous heuristic that considers combi-
nations of up to five items to completely fill partially full bins.

A simplified description of the current state of the problem is proposed. This
description considers the number of items remaining to be packed and calculates
the percentage of items in each of four size ranges (huge, large, medium and small);
where the size of the items is judged in proportion to the bin size. The approach used
single-step environments, meaning that rewards were available after each action
had taken place. The classifier system was trained on a set of example problems
and showed good generalisation to unseen problems. In [41], the classifier system
approach is extended to multi-step environments. The authors test several reward
schemes in combination with alternate exploration/exploitation ratios and several
sizes and types of multi-step environments. Again, the approach was tested using a
large set of one-dimensional benchmark bin packing problems. The classifier sys-
tem was able to generalise well and create solution processes that performed well
on a large set of NP-hard benchmark instances. The authors report that multi-step
environments can obtain better results than single-step environments at the expense
of a higher number of training cycles.

15.4.2 Approaches Based on Perturbation Low-Level Heuristics

These approaches start with a complete solution, generated either randomly or using
simple construction heuristics, and thereafter try to iteratively improve the current
solution. The hyper-heuristic framework is provided with a set of neighbourhood
structures and/or simple local searchers and the goal is to iteratively select and apply
them to the current complete solution. This process continues until a stopping con-
dition has been met. Notice that these approaches differ from those based on con-
struction heuristics, in that they do not have a natural termination condition. The
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sequence of heuristic choices can, in principle, be arbitrarily extended. This class of
hyper-heuristics has the potential to be applied successfully to different combinato-
rial optimisation problems, since general neighbourhood structures or simple local
searchers can be made available. Hyper-heuristics based on perturbation have been
applied to personnel scheduling [12, 18], timetabling [5, 12], shelf space allocation
[3, 4], packing [23], and vehicle routing problems [50].

So far, the approaches that combine perturbation low-level heuristics in a hyper-
heuristic framework use online learning, in that they attempt to adaptively solve a
single instance of the problem under consideration. Furthermore, the majority of
the proposed approaches are single-point algorithms, in that they maintain a single
incumbent solution in the solution space. Some approaches that maintain a popula-
tion of points in the heuristic space have been attempted [17].

As suggested in [5, 48, 49] perturbation hyper-heuristics can be separated into
two processes: (i) (low-level) heuristic selection and (ii) move acceptance strategy.
The authors classify hyper-heuristics with respect to the nature of the heuristic selec-
tion and move acceptance components. The heuristic selection can be done in a non-
adaptive (simple) way: either randomly or along a cycle, based on a prefixed heuris-
tic ordering [18, 19]. No learning is involved in these approaches. Alternatively,
the heuristic selection may incorporate an adaptive (or online learning) mechanism
based on the probabilistic weighting of the low-level heuristics [12, 44], or some
type of performance statistics [18, 19]. Both non-adaptive and adaptive heuristic
selection schemes are generally embedded within a single-point local search high-
level heuristic.

The acceptance strategy is an important component of any local search heuris-
tic. Many acceptance strategies have been explored within hyper-heuristics. Move
acceptance strategies can be divided into two categories: deterministic and non-
deterministic. In general, a move is accepted or rejected, based on the quality of
the move and the current solution during a single-point search. At any point in the
search, deterministic move acceptance methods generate the same result for the
same candidate solution(s) used for the acceptance test. However, a different out-
come is possible if a non-deterministic approach is used. If the move acceptance
test involves other parameters, such as the current time, then these strategies are
referred to as non-deterministic strategies. Well-known meta-heuristic components
are commonly used as non-deterministic acceptance methods, such as those of great
deluge [38] and simulated annealing [4, 23].

15.4.2.1 Representative Examples

Two hyper-heuristics based on perturbation heuristics are described here. The first
is applied to a real-world packing problem, whilst the second uses large neighbour-
hood heuristics and is applied to five variants of the well-known vehicle routing
problem.

A simulated annealing hyper-heuristic for determining shipper sizes: In
[23] the tabu search hyper-heuristic, originally presented in [12], is integrated
within a simulated annealing framework. That is, a simulated annealing acceptance
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Fig. 15.3 Simulated annealing hyper-heuristic framework.

strategy is combined with the previously proposed heuristic selection mechanism.
Figure 15.3 outlines the simulated annealing-based hyper-heuristic.

The tabu search hyper-heuristic [12] selects the low-level heuristics according
to learned utilities or ranks. The framework also incorporates a dynamic tabu list
of low-level heuristics that are temporarily excluded from the selection pool. The
algorithm deterministically selects the low-level heuristic with the highest rank (not
included in the tabu list) and applies it once regardless of whether the selected move
causes an improvement or not (all moves acceptance). If there is an improvement,
the rank is increased. If the new solution is worse, the rank of the low-level heuristic
is decreased and it is made tabu. The rank update scheme is additive and the tabu
list is emptied each time a non-improvement move is accepted. This general tabu
search approach was evaluated on various instances of two distinct timetabling and
rostering (personal scheduling) problems and the obtained results were competitive
with those obtained using state-of-the-art problem-specific techniques. Apart from
the simulated annealing acceptance criteria, some modifications are also introduced
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in [23]. In particular, a single application of a low-level heuristic h is defined to
be k iterations of h. Therefore, the decision points are set for every k iterations,
and the feedback for updating the quality of heuristic h is based on the best cost
obtained during those k iterations. Additionally, a nonmonotonic cooling schedule
is proposed as a means to deal with the effects of having different neighbourhood
sizes (given by the pool of low-level heuristics used). The methodology was applied
to a packing problem in the cosmetics industry, where the shipper sizes for stor-
age and transportation had to be determined. Real data were used for generating
the instances and the approach was compared with a simpler local search strategy
(random descent), with favourable results.

A general heuristic for vehicle routing problems: In [50], a unified method-
ology is presented, which is able to solve five variants of the vehicle routing prob-
lem: the vehicle routing problem with time windows, the capacitated vehicle routing
problem, the multi-depot vehicle routing problem, the site-dependent vehicle rout-
ing problem and the open vehicle routing problem. All problem variants are trans-
formed into a rich pickup and delivery model and solved using an adaptive large
neighbourhood search methodology (ALNS), which extends a previous framework
presented in [56]. ALNS can be based on any local search framework, e.g. simulated
annealing, tabu search or guided local search. The general framework is outlined in
Figure 15.4, where the repeat loop corresponds to the local search framework at
the master level. Implementing a simulated annealing algorithm is straightforward
as one solution is sampled in each iteration of the ALNS. In each iteration of the
main loop, the algorithm chooses one destroy (N−) and one repair neighbourhood
(N+). An adaptive layer stochastically controls which neighbourhoods to choose
according to their past performance (score, Pi). The more a neighbourhood Ni has
contributed to the solution process, the larger score Pi it obtains, and hence it has a
larger probability of being chosen. The adaptive layer uses roulette wheel selection
for choosing a destroy and a repair neighbourhood.

The pickup and delivery model is concerned with serving a number of transporta-
tion requests using a limited number of vehicles. Each request involves moving
a number of goods from a pickup location to a delivery location. The task is to
construct routes that visit all locations such that the corresponding pickups and

Construct a feasible solution x; set x*:=x

Repeat

Choose a destroy and a repair neighbourhood: N- and N +

using roulette wheel selection based on previously obtained scores (Pi)

Generate a new solution x’ from x using the heuristics

corresponding to the chosen destroy and repair neighbourhoods

If x’ can be accepted then set x:=x’

Update scores Pi of N- and N +

If f(x) < f(x*) set x*:=x

Until a stopping criteria is met

return x*

Fig. 15.4 Outline of the Adaptive Large Neighbourhood framework. N− and N+ correspond to
destroy and repair neighbourhoods respectively, whilst Pi stands for the score associated to the
heuristic i.
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deliveries are placed on the same route and such that a pickup is performed before
the corresponding delivery. Different constraints are added to model the different
problem variants. The proposed framework adaptively chooses among a number of
insertion and removal heuristics to intensify and diversify the search. These com-
peting sub-heuristics are selected with a frequency corresponding to their historic
performance (stored as learned weights for each heuristic). The approach uses a
simulated annealing acceptance strategy with a standard exponential cooling rate.
A large number of tests were performed on standard benchmarks from the literature
on the five variants of the vehicle routing problem. The results proved to be highly
promising, as the methodology was able to improve on the best-known solutions of
over one-third of the tested instances.

15.5 Heuristic Generation Methodologies

This section provides some examples of approaches that have the potential to au-
tomatically generate heuristics for a given problem. Many of the approaches in the
literature to generate heuristics use genetic programming [7], a branch of evolution-
ary computation concerned with the automatic generation of computer programs
[40]. Besides the particular representation (using trees as chromosomes1), it differs
from other evolutionary approaches in its application area. Whilst most applications
of evolutionary algorithms deal with optimisation problems, genetic programming
could instead be positioned in the field of machine learning. Genetic program-
ming has been successfully applied to the automated generation of heuristics that
solve hard combinatorial optimisation problems, such as boolean satisfiability,
[1, 28–30, 39], bin packing [8, 9, 11], travelling salesman problem [36, 37], and
production scheduling [22, 31, 59].

Some genetic programming-based hyper-heuristics have evolved local search
heuristics [1, 29, 30, 36, 37] or even evolutionary algorithms [47]. An alternative
idea is to use genetic programming to evolve a program representing a function,
which is part of the processing of a given problem-specific construction heuristic
[8, 9, 11, 22, 31, 59]. Most examples of using genetic programming as a hyper-
heuristic are offline in that a training set is used for generating a program that acts
as a heuristic, which is thereafter used on unseen instances of the same problem.
That is, the idea is to generate reusable heuristics. However, research on disposable
heuristics has also been conducted [1, 36, 37]. In other words, heuristics are evolved
for solving a single instance of a problem. This approach is analogous to the on-
line heuristic selection methodologies discussed in Section 15.4, except that a new
heuristic is generated for each instance, instead of choosing a sequence of heuristics
from a predefined set.

1 According to the genetic programming literature, programs can be represented in ways other
than trees. Research has already established the efficacy of both linear and graph-based genetic
programming systems.
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The adaptation of heuristic orderings can also be considered as a methodology
for heuristic generation. The adaptive approach proposed in [15] starts with one
heuristic and adapts it to suit a particular problem instance ‘on the fly’. This method
provides an alternative to existing forms of ‘backtracking’, which are often required
to cope with the possible unsuitability of a heuristic. The adaptive method is more
general, significantly easier to implement and produces results that are at least com-
parable (if not better) than the current state-of-the-art examination timetabling algo-
rithms.

15.5.1 Representative Examples

We discuss two representative examples of heuristic generation using genetic
programming. The first evolves packing heuristics that operate on a constructive
framework, whilst the second evolves complete local search algorithms, using com-
ponents of successful, existing local search heuristics, for boolean satisfiability.

Generation of construction heuristics for bin packing: As mentioned earlier,
the one-dimensional bin packing problem involves a set of integer pieces L, which
must be packed into bins of a certain capacity C, using the minimum number of
bins possible. In the online version of the problem, the number of pieces and their
sizes are not known in advance. This is in contrast to the offline version of the
problem where the set of items to be packed is available at the start. An example
of a construction heuristic used in online bin packing is first-fit, which packs a set
of pieces one at a time, in the order that they are presented. The heuristic iterates
through the open bins and the current piece is placed in the first bin into which it fits.

In [8, 9, 11], construction heuristics are evolved for the online bin packing prob-
lem. The evolved heuristics, represented as trees (see Figure 15.5 for an example)
operate within a fixed framework that resembles the operation of the first-fit heuristic
discussed above. The key idea is to use the attributes of the pieces and bin capac-
ities that represent the state of the problem, in order to evolve functions (expres-
sions) that would direct the process of packing. Each evolved function (GP tree) is
applied in turn to the available bins, returning a value. If the value is zero or less
then the system moves on to the next bin, but if the value is positive the piece is
packed into the bin. In this way, it is the expression which decides when to stop the
search for a suitable bin and place the piece. The algorithm (depicted in Figure 15.6)

90
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Fig. 15.5 Evolving one-dimensional packing heuristics with genetic programming.
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For each piece
For each bin b
output := evaluate Heuristic
If (output > 0)
place piece p in bin b
break

End If
End For

End For

Fig. 15.6 Pseudo code showing the overall program structure within which an evolved packing
heuristic operates.

then repeats the process for each of the other pieces until all the pieces have been
packed.

In a genetic programming framework, the set of terminals and functions need
to be specified. The hyper-heuristic framework for online bin packing uses some
attributes that describe the state of the problem to define the terminals. In [8, 9], the
authors use the following terminals:

• S the size of the current item,
• C the capacity of a bin (this is a constant for the problem) and
• F the fullness of a bin (i.e. the total size of all of the items occupying that bin).

Later [11], these three attributes were replaced by two: S, the size of the current
item, and E (= C−F) the emptiness of a bin (i.e. how much space is remaining in
the bin or how much more space can be allocated to it before it exceeds its capacity).
The function set used in [8, 9] consisted of ≤,+,−,×,%, where % is the ‘protected
divide function’[40]. The results in [9] show that a simple genetic programming
system can discover human designed heuristics such as first-fit, whilst in [8, 11],
heuristics that outperformed first-fit were evolved. In [8], it was also shown empir-
ically that the choice of the training instances (categorised according to the piece
size distribution), impacts on the trade-off between the performance and generality
of the heuristics generated and their applicability to new problems.

Generation of local search heuristics for satisfiability testing: The boolean
satisfiability problem consists of finding the true/false assignments of a set of
boolean variables, to decide if a given propositional formula or expression (in con-
junctive normal form) can be satisfied. The problem, denoted as SAT, is a classic
NP-complete problem.

In [28–30] a genetic programming system, named CLASS (Composite Learned
Algorithms for SAT Search), is proposed which automatically discovers new SAT
local search heuristics. Figure 15.7 illustrates a generic SAT local search algorithm,
where the ‘key detail’ is the choice of a variable selection heuristic in the inner
loop. Much research in the past decade has focused on designing a better variable
selection heuristic, and as a result, local search heuristics have improved dramat-
ically since the original method. The CLASS system was developed in order to
automatically discover variable selection heuristics for SAT local search. It was
noted in [28] that many of the best-known SAT heuristics (such as GSAT, HSAT,
Walksat, and Novelty [30]) could be expressed as decision tree-like combinations
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termination condition

Fig. 15.7 A generic SAT local search algorithm. The “variable selection heuristic” is replaced by
the evolved function.

of a set of primitives. Thus, it should be possible for a machine learning system
to automatically discover new, efficient variable selection heuristics by exploring
the space of combinations of these primitives. Examples of the primitives used in
human-designed SAT heuristics are the gain obtained by flipping a variable (i.e. the
increase in the number of satisfied clauses in the formula) or the age of a variable
(i.e. how long since it was last flipped).

The results using CLASS [30] show that a simple genetic programming system
is able to generate local search heuristics that are competitive with efficient imple-
mentations of state-of-the-art heuristics (e.g. Walksat and Novelty variants), as well
as previous evolutionary approaches. The evolved heuristics scale and generalise
fairly well on random instances as well as on more structured problem classes.

15.6 Summary and Discussion

The defining feature of hyper-heuristic research is that it investigates methodologies
that operate on a search space of heuristics rather than directly on a search space
of problem solutions. This feature provides the potential for increasing the level of
generality of search methodologies. Several hyper-heuristic approaches have been
proposed that incorporate different search and machine learning paradigms. We have
suggested an updated definition of the term ‘hyper-heuristic’ to reflect recent work
in the area.

With the incorporation of genetic programming [40], and other methods such
as squeaky wheel optimisation [35], into hyper-heuristic research, a new class of
approaches can be identified, that is, heuristic generation methodologies. These ap-
proaches provide richer heuristic search spaces and thus the freedom to create new
methodologies for solving the underlying combinatorial problems. However, they
are more difficult to implement, than their counterpart, heuristic selection method-
ologies, since they require the decomposition of existing heuristics and the design
of an appropriate framework. We have further categorised the two main classes of
hyper-heuristics (heuristic selection and heuristic generation), according to whether
they use construction or perturbation low-level heuristics. These categories describe
current research trends. However, the possibilities are open for the exploration of
hybrid approaches.
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We also considered an additional orthogonal criterion for classifying hyper-
heuristics with respect to the source of the feedback during the learning process,
which can be either one instance (online approaches) or many instances of the under-
lying problem (offline approaches). Both online and offline approaches are poten-
tially useful and therefore worth investigating. Although having a reusable method
will increase the speed of solving new instances of problems, using online (or dis-
posable) methods can have other advantages. In particular, searching over a space
of heuristics may be more effective than directly searching the underlying problem
space, as heuristics may provide an advantageous search space structure. Moreover,
in newly encountered problems there may not be a set of related instances on which
to train offline hyper-heuristic methods.

Hyper-heuristic research lies in the interface between search methodologies and
machine learning methods. Machine learning is a well-established artificial intelli-
gence sub-field with a wealth of proven tools. The exploration of these techniques
for automating the design of heuristics is only in its infancy. We foresee increasing
interest in these methodologies in the coming years.
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Sevaux, M., Sörensen, K. eds. Adaptive and Multilevel Metaheuristics, Studies in Compu-
tational Intelligence, vol. 136, pp. 3–29. Springer, Berlin (2008)

17. Cowling, P., Kendall, G., Han, L.: An investigation of a hyperheuristic genetic algorithm
applied to a trainer scheduling problem. In: Proceedings of the Congress on Evolutionary
Computation (CEC2002), pp. 1185–1190. Hilton Hawaiian Village Hotel, Honolulu, Hawaii,
USA, 12–17 May (2002)

18. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach for scheduling a sales
summit. In: Selected Papers of the Third International Conference on the Practice And Theory
of Automated Timetabling, PATAT 2000, Konstanz, Germany, Lecture Notes in Computer
Science, pp. 176–190. Springer August (2000)

19. Cowling, P., Kendall, G., Soubeiga, E.: Hyperheuristics: a tool for rapid prototyping
in scheduling and optimisation. In: Cagoni, S., Gottlieb, J., Hart, E., Middendorf, M.,
Goenther, R., (eds.) Applications of Evolutionary Computing: Proceeding of Evo Workshops
2002, Kinsale, Ireland, Lecture Notes in Computer Science, vol. 2279, pp. 1–10. Springer
April 3–4 (2002)

20. Crowston, W.B., Glover, F., Thompson, G.L., Trawick, J.D.: Probabilistic and parametric
learning combinations of local job shop scheduling rules. ONR Research Memorandum,
Carnegie-Mellon University, Pittsburgh, PA (1963)

21. Denzinger, J., Fuchs, M., Fuchs, M.: High performance ATP systems by combining several
ai methods. In: Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI 97), pp. 102–107. Morgan Kaufmann, CA, USA (1997)

22. Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic programming for a classic
one-machine scheduling problem. Advances in Engineering Software, 32(6), 489–498 (2001)

23. Dowsland, K.A., Soubeiga, E., Burke, E.K.: A simulated annealing hyper-heuristic for
determining shipper sizes. Euro. J. Oper. Res. 179(3), 759–774 (2007)

24. Fang, H.L., Ross, P., Corne, D.: A promising genetic algorithm approach to job shop schedul-
ing, rescheduling, and open-shop scheduling problems. In Forrest, S. (ed.) Fifth International
Conference on Genetic Algorithms, San Mateo pp. 375–382. Morgan Kaufmann, CA, USA
(1993).

25. Fang, H.L., Ross, P., Corne, D.: A promising hybrid GA/heuristic approach for open-shop
scheduling problems. In: Cohn, A. (ed.) Eleventh European Conference on Artificial Intelli-
gence. John Wiley & Sons, NJ, USA (1994)

26. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop schedul-
ing rules. In: Factory Scheduling Conference, Carnegie Institue of Technology, May 10–12
(1961)



15 A Classification of Hyper-heuristic Approaches 467

27. Fisher, H., Thompson, G.L.: Probabilistic learning combinations of local job-shop scheduling
rules. In: Muth, J.F., Thompson, G.L. (eds.) Industrial Scheduling, pp. 225–251. Prentice-
Hall, New Jersey (1963)

28. Fukunaga, A.: Automated discovery of composite SAT variable selection heuristics. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), pp. 641–648.
Edmonton, Canada (2002)

29. Fukunaga, A.S.: Evolving local search heuristics for SAT using genetic programming. In:
Genetic and Evolutionary Computation—GECCO-2004, Part II, Lecture Notes in Computer
Science, pp. 483–494. Springer, Edmonton, Canada (2004)

30. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability testing. Evol.
Comput. 16(1), 31–61 (2008)
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Chapter 16
Metaheuristic Hybrids

Günther R. Raidl, Jakob Puchinger and Christian Blum

Abstract Over the last years, so-called hybrid optimization approaches have become
increasingly popular for addressing hard optimization problems. In fact, when look-
ing at leading applications of metaheuristics for complex real-world scenarios, many
if not most of them do not purely adhere to one specific classical metaheuristic
model but rather combine different algorithmic techniques. Concepts from different
metaheuristics are often hybridized with each other, but they are also often combined
with other optimization techniques such as branch-and-bound and methods from the
mathematical programming and constraint programming fields. Such combinations
aim at exploiting the particular advantages of the individual components, and in fact
well-designed hybrids often perform substantially better than their “pure” counter-
parts. Many very different ways of hybridizing metaheuristics are described in the
literature, and unfortunately it is usually difficult to decide which approach(es) are
most appropriate in a particular situation. This chapter gives an overview of this
topic by starting with a classification of metaheuristic hybrids and then discussing
several prominent design templates which are illustrated by concrete examples.

16.1 Introduction

Most of the other chapters of this book illustrate the existence of a large number of
different metaheuristics. Simulated annealing, tabu search, evolutionary algorithms
such as genetic algorithms and evolution strategies, ant colony optimization, particle
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swarm optimization, scatter search, path relinking, the greedy randomized adaptive
search procedure, multi-start and iterated local search, and variable neighborhood
search are—among others—prominent examples. Each of them has an individual
historical background, follows certain paradigms and philosophies, and puts one or
more particular strategic concepts in the foreground.

Over the last years a large number of algorithms were reported that do not purely
follow the concepts of one single traditional metaheuristic, but they combine var-
ious algorithmic ideas, often originating from other branches of optimization and
soft-computing. These approaches are commonly referred to as metaheuristic hy-
brids or hybrid metaheuristics. Note that the lack of a precise definition of these
terms is sometimes subject to criticism. In our opinion, however, the relatively open
nature of these terms is rather helpful, as strict borderlines between related fields
of research are often a hindrance for creative thinking and the exploration of new
research directions.

The motivation behind hybridizations of different algorithmic concepts is usu-
ally to obtain better performing systems that exploit and unite advantages of the
individual pure strategies; i.e., such hybrids are believed to benefit from synergy.
In fact, today it seems that choosing an adequate combination of multiple algo-
rithmic concepts is the key for achieving top performance in solving most difficult
problems. The vastly increasing number of reported applications of metaheuristic
hybrids and dedicated scientific events such as the Workshops on Hybrid Meta-
heuristics [7, 12, 15, 22], the Workshops on Matheuristics [53, 64], and the con-
ferences on the Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems [74] documents the popularity, success,
and importance of this specific line of research.

The idea of hybridizing metaheuristics is not new but dates back to their origins.
At the beginning, however, such combinations were not very popular since several
relatively strongly separated and sometimes competing communities of researchers
existed who tended to consider “their” favorite class of metaheuristics generally
superior to others and dogmatically followed their specific philosophies. For exam-
ple the evolutionary computation community grew up quite isolated and followed
quite strictly the biologically inspired thinking. The situation changed, according
to many researchers, with the no free lunch theorems [104] when people recog-
nized that there cannot exist a general optimization strategy which is always better
than any other. In fact, solving a specific problem most effectively almost always re-
quires a particularly tuned algorithm that is compiled of an adequate combination of
sometimes very problem-specific parts often originating from different metaheuris-
tics and other algorithmic techniques. Exploiting problem-specific knowledge in the
best possible ways, picking the right algorithmic components, and combining them
in the most appropriate way are key ingredients for leading optimization algorithms.

Unfortunately, developing a highly effective hybrid approach is in general a
difficult task and sometimes even considered an art. Nevertheless, there are sev-
eral strategies that have proven successful on many occasions, and they can pro-
vide some guidance. In the next section, we will start with a general classification
of metaheuristic hybrids. The following sections will discuss the most prominent
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algorithmic templates of combinations and illustrate them with selected examples
from the literature. For a more comprehensive review on hybrid metaheuristics, we
recommend the book by Blum et al. [20].

16.2 Classification

Several classifications and taxonomies of hybrid metaheuristics can be found in the
literature. Here we primarily follow the classification from Raidl [87] that com-
bines aspects of the taxonomy introduced by Talbi [94] with the points of view from
Cotta [29] and Blum and Roli [21]. Differentiations with regard to parallel meta-
heuristics and hybridization of metaheuristics with exact optimization techniques
are adopted from El-Abd and Kamel [37] and from Puchinger and Raidl [81], re-
spectively. Figure 16.1 illustrates our classification.

We primarily distinguish hybrid metaheuristics according to four criteria, namely
the kinds of algorithms that are hybridized, the level of hybridization, the order of
execution, and the control strategy.

Hybridized algorithms. First, one might combine (parts of) different metaheuris-
tic (MH) strategies, which is probably the most common approach. Second,
highly problem-specific algorithms, such as entire simulations for acquiring the
quality of candidate solutions, are sometimes used in conjunction with meta-
heuristics. As a third class we consider the combination of metaheuristics with
other more general techniques coming from fields like operations research (OR)
and artificial intelligence (AI). Here, we can further distinguish between com-
binations with exact techniques or with other heuristics and soft-computing
methods. Prominent examples for exact techniques that are often very suc-
cessfully combined with metaheuristics are tree-search-based methods such as
branch-and-bound (B&B), dynamic programming, linear programming (LP) and
mixed integer programming (MIP) methods as well as nonlinear programming
techniques, and constraint programming (CP). For a survey dedicated to combi-
nations of metaheuristics with MIP techniques see [88], for an overview on com-
binations of local search-based methods with CP see [45], and for a review on
combinations of local search methods with exact techniques see [36]. Examples
of other heuristic and soft-computing techniques include neural networks, fuzzy
logic, and several statistical techniques. As a fourth class we want to mention
the combination of metaheuristics with a human interaction component called
human guided search. In particular for problems where it is difficult to quantify
the quality of solutions in mathematically precise ways, where candidate solu-
tions can be well visualized, and where human intuition and intelligence present
a particular advantage, such interactive systems are often highly effective in prac-
tice [60].

Level of hybridization. Hybrid metaheuristics can further be differentiated ac-
cording to the level (or strength) at which the individual algorithms are coupled:
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Fig. 16.1 Classification of metaheuristic (MH) hybrids based on Raidl [87].
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High-level combinations retain in principle the individual identities of the orig-
inal algorithms and cooperate over a relatively well-defined interface; there is
no direct, strong relationship of the internal workings of the algorithms. On the
contrary, algorithms in low-level combinations strongly depend on each other;
individual components or functions of the algorithms are exchanged.

Order of execution. In the simplest case, the batch execution, the individual al-
gorithms are performed in a sequential way, and results of the first algorithm
are used as input for the second. More sophisticated approaches apply the in-
dividual algorithms in an intertwined or even parallel way, and information is
exchanged more frequently, usually in a bidirectional way. Parallel metaheuris-
tics are an important research area by themselves and independent classifications
of hybrid parallel approaches have been proposed in [6, 37]. They distinguish the
following major criteria: (a) the architecture (SIMD: single instruction, multiple
data streams versus MIMD: multiple instructions, multiple data streams), (b) the
granularity of parallelization (fine- or coarse-grained), (c) the hardware (homo-
geneous or heterogeneous), (d) the memory (shared or distributed), (e) task and
data allocation (static or dynamic), and (f) whether the parallel processes run
asynchronously or are synchronized in some way.

Control strategy. Last but not least, we distinguish metaheuristic hybrids accord-
ing to their control strategy, which can be either integrative (coercive) or collab-
orative (cooperative).

In the extremely popular integrative case, one algorithm is the subordinate,
embedded component of another. Examples include the local improvement of
candidate solutions by an inner optimization algorithm (as in memetic algo-
rithms, see also Section 16.3), special techniques for searching large neighbor-
hoods (see Section 16.9.1), indirect or incomplete representations relying on de-
coders (see Section 16.5), and intelligent merging (recombination) of solutions
(see Section 16.6).

In contrast, in collaborative approaches the individual algorithms exchange
information but are not part of each other. For example, the popular island
model [26] for parallelizing evolutionary algorithms is of this type. Collaborative
approaches can further be classified into homogeneous approaches, where several
instances of one and the same algorithm are performed (as in traditional island
models), and heterogeneous approaches. An example for the latter are asyn-
chronous teams (A-Teams) [95]: An A-Team consists of a collection of agents
and memories connected into a strongly cyclic directed network. Each of these
agents is an optimization algorithm that works asynchronously on the target prob-
lem, on a relaxation of it, i.e., a superproblem, or on a subproblem. Information is
exchanged via shared memory. Denzinger and Offermann [32] presented a sim-
ilar multi-agent approach for achieving cooperation between search algorithms
following different search paradigms, such as B&B and evolutionary algorithms.
In especially collaborative combinations, another question is which search spaces
are actually explored by the individual algorithms. Implicit decomposition re-
sults from different initial solutions, parameter settings, or random decisions,
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while an explicit decomposition is obtained when each algorithm works on its
individually defined subspace. Effectively decomposing large problems is often
an important issue in practice. Occasionally, problems decompose in a relatively
natural way, see Sections 16.4 and 16.9, but most often finding a strong decom-
position into weakly related or even unrelated subproblems is a difficult task, and
(self-)adaptive schemes are sometimes applied.

Starting with the next section, we will consider several templates of implement-
ing metaheuristic hybrids, which have successfully been applied on many occasions.

16.3 Finding Initial or Improved Solutions by Embedded
Methods

The most natural way of hybridizing two optimization algorithms is probably to
embed one algorithm into another either for obtaining promising starting solutions
or for possibly improving intermediate solutions.

Problem-specific construction heuristics are often used for finding initial solu-
tions which are then further improved by local search or metaheuristics. A fre-
quently applied and more general strategy for obtaining initial solutions is to solve
a relaxation of the original problem (e.g., the LP relaxation) and eventually repair
the obtained solution in some heuristic way. Examples of such approaches can also
be found in Section 16.7.

The greedy randomized adaptive search procedure (GRASP) [40] systematically
extends the principle of locally improving a starting solution by iterating a ran-
domized construction process, and each of the resulting solutions is then used as a
starting point for local search.

The so-called proximate optimality principle (POP) was first mentioned by
Glover and Laguna in the context of tabu search [48]. It refers to the general in-
tuition that good solutions are likely to have a similar structure and can therefore be
found close to each other in the search space. Fleurent and Glover transferred this
principle in [44] from complete to partial solutions in the context of GRASP. They
suggested that mistakes introduced during the construction process may be undone
by applying local search during (and not only at the end of) the GRASP construction
phase. They proposed a practical implementation of POP in GRASP by applying lo-
cal search at a few stages of the construction phase only. Another application of this
concept can be found in [14] for the job-shop scheduling problem.

Often local search procedures or more sophisticated improvement algorithms
are applied within an outer metaheuristic for “fine-tuning” intermediate candidate
solutions. While the outer metaheuristic is responsible for diversification, the in-
ner improvement algorithm focuses on intensification. For example, most memetic
algorithms [69] rely on this principle: The outer metaheuristic is an evolutionary
algorithm, and intermediate candidate solutions are locally improved. If each inter-
mediate solution is always turned into a local optimum, the evolutionary algorithm
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exclusively searches the space of local optima (w.r.t. the neighborhood structure of
the inner local improvement procedure) only. Memetic algorithms are often more
successful than simple evolutionary algorithms, because intensification is typically
considered a weakness of traditional evolutionary algorithms. By adjusting how
much effort is spent in the local improvement, one can tune the balance between
intensification and diversification. Note that the inner local improvement does not
always have to be just a simple local search. Occasionally, more sophisticated strate-
gies like tabu search or even exact techniques for solving a restricted problem are
applied. This also leads to the related large neighborhood search methods, which
we will consider in Section 16.9.1.

Another example is variable neighborhood search (VNS) [55], where each can-
didate solution undergoes some kind of local improvement and a hierarchy of differ-
ent neighborhood structures is utilized. In especially general variable neighborhood
search, a more sophisticated variable neighborhood descent is used as the inner lo-
cal improvement procedure.

Considering exact techniques, B&B approaches strongly rely on good upper and
lower bounds in order to prune the search tree as strongly as possible. Metaheuristic
techniques are frequently applied to obtain a promising initial solution or to improve
intermediate solutions in order to find tight(er) bounds. Sections 16.6 and 16.8 con-
tain several examples such as [31, 91] that also fall into this category.

16.4 Multi-stage Approaches

Some optimization approaches consist of multiple sequentially performed stages,
and different techniques are applied at the individual stages.

In many complex real-world applications, the problem naturally decomposes into
multiple levels. If the decision variables associated with the lower level(s) have a
significantly weaker impact on the objective value than the higher-level variables or
if the impact of these variable sets is only loosely correlated, it is a very reasonable
approach to optimize the individual levels in a strictly sequential manner. Different
techniques can be applied at the individual levels yielding simple but often very
effective hybrid approaches.

For example, for certain vehicle routing applications where the aim is to deliver
goods to customers, it may be a meaningful approach to first partition the customers
into groups which are then independently treated by finding appropriate delivery
tours; finally, the drivers’ specific time-plans are derived from these tours. For cer-
tain job scheduling problems, it might be feasible to first assign the jobs to machines
and then independently optimize the schedules for each machine. For large com-
munication network design problems it might be wise to first optimize a possibly
redundant backbone infrastructure, then design the individual local access network
structures, and finally decide about the concrete cable laying and technical parame-
ters such as the capacities of the individual links.

We remark that in practice such multi-stage approaches will usually not lead
to optimal solutions, as the sequentially solved subproblems are typically not
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independent. However, for many complicated real-world problems of large size,
as for example when designing a communication infrastructure for a larger city, a
multi-stage approach is the only viable choice. Furthermore, multi-stage approaches
are often very meaningful for relatively quickly finding first approximate solutions.
Therefore, they are frequently used in practice.

Multi-stage approaches are sometimes even applied when such a problem de-
composition is not so obvious but results in algorithmic advantages. Classical pre-
processing techniques, where the problem is usually reduced to a hard-to-solve core
by applying certain problem-specific simplification strategies, are an example.

A more general, systematic approach is based on tools from the field of param-
eterized complexity. It offers both a framework of complexity analysis and toolkits
for algorithm design. One of the tools for algorithm design is known as problem
kernelization. The idea is to reduce a given problem instance in polynomial time to
a so-called problem kernel such that an optimal solution to the problem kernel can,
in polynomial time, be transformed into an optimal solution to the original prob-
lem instance. In [47], Gilmour and Dras propose several different ways of using
the information given by the kernel of a problem instance for making ant colony
system more efficient for solving the minimum vertex cover problem. The most
intuitive version applies the ant colony system directly to the problem kernel and
subsequently transforms the best solution obtained for the kernel into a solution to
the original problem instance.

Multi-level refinement strategies [101] can also be considered as a special class
of multi-stage approaches. They involve a recursive coarsening to create a hierar-
chy of approximations to the original problem. An initial solution is identified for
the coarsest level and is then iteratively refined at each level—coarsest to finest—
typically by using some kind of (meta-)heuristic at each level. Solution extension
operators transfer the solution from one level to the next. In iterated multi-level
algorithms, solutions are not just refined but occasionally also re-coarsened, and
the refinement process is iterated. These strategies have been successfully applied
on several problems including multi-level graph partitioning, graph coloring, very
large traveling salesman problems, vehicle routing, and DNA sequencing.

Variable fixing strategies where variables of the original problem are fixed to
certain values (according to some, usually heuristic, criterion) to perform the op-
timization over a restricted search space are also related to the above-mentioned
strategies. Examples of effective variable fixing strategies are the core concepts for
knapsack problems [77, 85].

Some approaches determine a set of (complete) initial solutions by a first-stage
method and apply one (or even more) other technique(s) for further improving upon
them. For example, occasionally a metaheuristic is used for finding a pool of diverse
high-quality solutions, and merging is performed to identify a single final solution
combining the particularly beneficial properties of the intermediate solutions. We
will consider merging in more detail in Section 16.6.

Tamura et al. [96] tackle a job-shop scheduling problem and start from its ILP
formulation. For each variable, they take the range of possible values and partition it
into a set of subranges, which are then indexed. The encoded solutions of a genetic
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algorithm (GA) are defined so that each position represents a variable, and its value
corresponds to the index of one of the subranges. The fitness of such a chromosome
is calculated using Lagrangian relaxation in order to obtain a bound on the optimal
solution subject to constraints on the variable values which must fall within the
represented ranges. When the GA terminates, an exhaustive search of the region
identified as the most promising is carried out in a second stage.

A special kind of a sequential combination of B&B and a GA is described by
Nagar et al. [70] for a two-machine flow-shop scheduling problem. Candidate so-
lutions are represented as permutations of jobs. In the first stage, B&B is executed
down to a predetermined branching depth k and suitable bounds are calculated and
recorded at each node of the explicitly stored B&B tree. During the execution of the
GA in the second stage, each partial solution up to position k is mapped onto the
corresponding tree node. If the associated bounds indicate that no path below this
node can lead to an optimal solution, the permutation undergoes a mutation that has
been specifically designed to change the early part in a favorable way.

In [99], Vasquez and Hao present a two-stage approach for tackling the 0–1
multi-dimensional knapsack problem (MKP). Given n items and m resources, each
object has an associated profit ci and resource consumptions ai, j, ∀i = 1, . . . ,n,
∀ j = 1, . . . ,m, and each resource has a capacity b j. The goal of the MKP is to choose
a subset of the n objects such that its total profit is maximized without violating the
capacity constraints. In the ILP formulation of the MKP, a binary variable xi ∈ {0,1}
is defined for each object. In the first stage of the proposed hybrid solution method
a series of LP relaxations with additional constraints is solved. They are of the form
∑n

i=1 xi = k where k ∈ {kmin, . . . ,kmax}, i.e., the number of items to be selected is
fixed to k. Each setting of k defines an LP that is solved to optimality. In the second
stage of the process, tabu search is used to search for better solutions around the
usually non-integral optimal solutions of the kmax− kmin +1 LPs. The approach has
been improved in [100] by additional variable fixing.

A combination of tabu search and CP for the job-shop scheduling problem is pre-
sented by Watson and Beck [102]. First an iterated simple tabu search [103] is run
for a limited time. The best resulting solutions are used for initializing a solution-
guided multi-point constructive search (SGMPCS) [13]. SGMPCS is a recent al-
gorithm combining CP tree search with the population concept of metaheuristics.
In the CP tree search, a single variable is chosen (variable-ordering heuristic) and
assigned a value (value-ordering heuristic). The domains of the remaining variables
are reduced accordingly and another variable is chosen, repeating the process as
long as unassigned variables exist or until the partial solution becomes infeasible,
in which case backtracking to the last choice-point is performed. The main idea of
SGMPCS is to perform a standard tree search that is restarted if the number of fail-
ures exceeds a certain limit. The value-ordering heuristic is partly determined by an
incumbent solution: If the value of the chosen variable in this solution is allowed
by its current domain, the variable is assigned that value; else another value is cho-
sen using another kind of value-ordering heuristic. SGMPCS maintains a small set
of solutions which is updated in an elitist way. The tree search is restarted with a
randomly chosen solution from the set until a stopping criterion is met.
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16.5 Decoder-Based Approaches

The hybrid metaheuristic design template considered in this section is particularly
popular for problems where solutions must fulfill certain constraints and a fast con-
struction heuristic yielding feasible solutions exists. In decoder-based approaches,
a candidate solution is represented in an indirect or incomplete way and a problem-
specific decoding algorithm is applied for transforming the encoded solution into
a complete feasible solution. This principle is often applied in evolutionary algo-
rithms, where encoded solutions are denoted as genotypes and the decoded counter-
parts are called phenotypes [51].

A prominent, quite generic way of indirectly representing solutions is by means
of permutations of solution attributes. The decoder is then usually a greedy con-
struction heuristic which composes a solution by trying to add the solution attributes
in the order given by the permutation, i.e., the order of an attribute in the permuta-
tion is the greedy criterion. Cutting and packing problems are examples where such
decoder-based methods are frequently used [59]. The overall performance obviously
depends strongly on the quality and the speed of the decoder. Such approaches are
often straightforward and relatively easy to implement, in particular as standard
metaheuristics with traditional neighborhoods for permutations can directly be ap-
plied. On the downside, more elaborate metaheuristics based on direct encodings
and tuned problem-specific operators are often likely to achieve better performance,
as they might exploit problem-specific features in better ways.

Particularly attractive are decoder-based approaches where the decoder is a more
sophisticated algorithm rather than a simple construction procedure. For example, a
mixed integer linear programming problem (MIP) can be approached by splitting the
variables into the integral and continuous parts. One can then apply a metaheuristic
to optimize the integer part only; for each candidate solution, corresponding optimal
fractional variable values are efficiently determined by solving the remaining LP.
Such approaches are described in conjunction with GRASP by Neto and Pedroso
[71] and in conjunction with tabu search by Pedroso [73].

Glover [49] proposed an alternative parametric tabu search for heuristically solv-
ing MIPs. A current search point is indirectly represented by the solution to the LP
relaxation of the MIP plus additional goal conditions that restrict the domains of a
subset of the integer variables. Instead of considering the goal conditions directly as
hard constraints when applying an LP solver, they are relaxed and brought into the
objective function similarly as in Lagrangian relaxation. In this way, the approach
can also be applied to problems where it is hard to find any feasible integer solution.
The approach further uses a variety of intensification and diversification strategies
based on adaptive tabu memory in order to make the heuristic search more efficient.

Besides problem-specific heuristics and LP solvers, other efficient techniques
are sometimes used as a decoder to augment incompletely represented solutions.
For example, Hu and Raidl [58] consider the generalized traveling salesman prob-
lem in which a clustered graph is given and a shortest tour visiting exactly one node
from each cluster is requested. Their approach is based on VNS and represents a
candidate solution in two different ways: On the one hand, a permutation of clusters
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is given, representing the order in which the clusters are to be visited. A dynamic
programming procedure is used as decoder to derive a corresponding optimal selec-
tion of particular nodes. On the other hand, only the unordered set of selected nodes
from each cluster is given, and the classical chained Lin–Kernighan heuristic for
the traveling salesman problem [66] is used as a decoder to obtain a corresponding
high-quality tour. The VNS uses several types of neighborhood structures defined
for each representations.

Last but not least, decoder-based approaches have recently been used in ant
colony optimization (ACO). For example, Blum and Blesa [19] present a decoder-
based ACO for the general k-cardinality tree problem. Given an undirected graph,
this problem involves finding among all trees with exactly k edges a tree such that
a certain objective function is minimized. In contrast to a standard ACO algorithm
that constructs trees (i.e., solutions) with exactly k edges, the decoder-based ap-
proach of [19] builds l-cardinality trees, where l > k. Subsequently, an efficient
dynamic programming algorithm is applied for finding the best k-cardinality tree
that is contained in the l-cardinality tree. Results show that this approach has clear
advantages over standard ACO approaches.

16.6 Solution Merging

The basic idea of solution merging is to derive a new, hopefully better solution from
the attributes appearing in two or more promising input solutions. The observation
that high-quality solutions usually have many attributes in common is exploited.

In the simplest form, this operation corresponds to the classical recombination
(crossover) which is considered the primary operator in GAs: Usually two parent
solutions are selected and an offspring is constructed by inheriting attributes from
both of them based on random decisions. While such an operation is computation-
ally cheap, created offspring are often worse than the respective parents, and many
repetitions are usually necessary for achieving strong improvements.

Alternatively, one can put more effort into the determination of such offspring.
An established technique is path relinking [50]. It traces a path in the search space
from one parent to a second by always exchanging only a single attribute (or
more generally by performing a move in a simple neighborhood structure toward
the target parent). An overall best solution found on this path is finally taken as
offspring.

This concept can further be extended by considering not just solutions on an
individual path between two parents, but the whole subspace of solutions defined by
the joined attributes appearing in a set of two or more input solutions. An optimal
merging operation returns a best solution from this subspace, i.e., it identifies a
best possible combination of the ancestors’ features that can be attained without
introducing new attributes. Depending on the underlying problem, identifying such
an optimal offspring is often a hard optimization problem on its own, but due to
the limited number of different properties appearing in the parents, it can often be
solved in reasonable time in practice.
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Applegate et al. [8, 9] were among the first to apply more sophisticated merging
in practice. For the traveling salesman problem, they derive a set of different tours
by a series of runs of the chained Lin–Kernighan iterated local search algorithm. The
sets of edges of all these solutions are merged and the traveling salesman problem is
finally solved to optimality on this strongly restricted graph. Solutions are achieved
that are typically superior to the best ones obtained by the iterated local search.

Besides the one-time application of merging to a set of heuristically determined
solutions in a multi-stage way, sophisticated merging can also replace classical re-
combination in evolutionary and memetic algorithms. Aggarwal et al. [1] originally
suggested such an approach for the independent set problem. The subproblem of
identifying the largest independent set in the union of two parental independent sets
is solved exactly by an efficient algorithm. Ahuja et al. [4] apply this concept to a
GA for the quadratic assignment problem. As the optimal recombination problem
is more difficult in this case, they use a matching-based heuristic that quickly finds
high-quality offspring solutions. Optimal merging is also used by Blum [17] in the
context of an evolutionary algorithm for the k-cardinality tree problem. The indi-
viduals are trees with k edges. Crossover first combines two parent trees, producing
hereby a larger l-cardinality tree. Dynamic programming is then used to reduce this
tree to the best feasible subtree with k edges.

Eremeev [38] studies the computational complexity of producing a best possi-
ble offspring from two parents for binary representations from a theoretical point of
view. He concludes that the optimal recombination problem is polynomially solv-
able for the maximum weight set packing problem, the minimum weight set parti-
tion problem, and linear Boolean programming problems with at most two variables
per inequality. On the other hand, determining an optimal offspring is NP-hard for
0/1 integer programming with three or more variables per inequality, like the knap-
sack, set covering, and p-median problems, among others.

Cotta and Troya [30] discuss merging in the light of a more general framework
for hybridizing B&B and evolutionary algorithms. They show the usefulness of ap-
plying B&B for identifying optimal offspring on various benchmarks.

For mixed integer programming, Rothberg [91] suggests a tight integration of an
evolutionary algorithm in a branch-and-cut based MIP solver. At regular intervals
the evolutionary algorithm is applied as a B&B tree node heuristic. Optimal recom-
bination is performed by first fixing all variables that are common in the selected
parental solutions and by applying the MIP solver to this reduced subproblem. Mu-
tation selects one parent, fixes a randomly chosen subset of variables, and calls the
MIP solver for determining optimal values for the remaining problem. Since the
number of variables to be fixed is a critical parameter, an adaptive scheme is applied
to control it. Experimental results indicate that this hybrid is able to find signifi-
cantly better solutions than other heuristic methods for several very difficult MIPs.
This method is integrated in the commercial MIP solver CPLEX1 since version 10.

1 http://www.ilog.com
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16.7 Strategic Guidance of Metaheuristics by Other Techniques

Many successful hybrid metaheuristics use other optimization techniques for guid-
ing the search process. This may be done by either using information gathered by
applying other algorithms such as optimal solutions to problem relaxations or di-
rectly enhancing the functionality of a metaheuristic with algorithmic components
originating from other techniques. In the following two sections we give examples
for both variants.

16.7.1 Using Information Gathered by Other Algorithms

Guiding metaheuristics using information gathered by applying other algorithms
is often a very successful approach that is commonly used. Problem relaxations,
where some or all constraints of a problem are loosened or omitted, are often used
to efficiently obtain bounds and approximate (not necessarily feasible) solutions
to the original problem. The gathered information can be utilized for guiding the
search, since an optimal solution to a relaxation often indicates in which parts of the
original problem’s search space good or even optimal solutions might be found.

Sometimes an optimal solution to a relaxation can be repaired by a problem-
specific procedure in order to make it feasible for the original problem and to use it
as a promising starting point for a subsequent metaheuristic (or exact) search; see
also Section 16.3. For example, Raidl [86] applies this idea in a GA for the MKP.
The MKP’s LP relaxation is solved and a randomized rounding procedure derives
an initial population of diverse solutions from the LP-optimum. Furthermore, the
LP-optimum is also exploited for guiding the repair of infeasible candidate solu-
tions and for local improvement. The variables are sorted according to increasing
LP values. The greedy repair procedure considers the variables in this order and
removes items from the knapsack until all constraints are fulfilled. In the greedy
improvement procedure, items are considered in reverse order and included in the
knapsack as long as no constraint is violated. Many similar examples for exploiting
LP solutions—also including the biasing of variation operators such as recombina-
tion and mutation in evolutionary algorithms—exist.

Plateau et al. [78] combine interior point methods and metaheuristics for solving
the MKP. In a first step an interior point method is performed with early termina-
tion. By rounding and applying several different ascent heuristics, a population of
different feasible candidate solutions is generated. This set of solutions is then the
initial population for a path relinking/scatter search.

Puchinger and Raidl [83] suggest a new variant of VNS: relaxation guided vari-
able neighborhood search. It is based on the general VNS scheme and a new em-
bedded variable neighborhood descent (VND) strategy utilizing different types of
neighborhood structures. For a current incumbent solution, the order in which the
neighborhoods are searched is determined dynamically by first solving relaxations
of them. The objective values of these relaxations are used as indicators for the po-
tential gains of searching the corresponding neighborhoods, and more promising
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neighborhoods are searched first. The proposed approach has been tested on the
MKP but is more generally applicable. Computational experiments involving sev-
eral types of ILP-based neighborhoods show that the adaptive neighborhood order-
ing is beneficial for the heuristic search, improving obtained results.

Occasionally, dual variable information of LP solutions is also exploited. Chu
and Beasley [25] make use of it in their GA for the MKP by calculating so-called
pseudo-utility ratios for the primal variables and using them in similar ways as de-
scribed above for the primal solution values. For the MKP, these pseudo-utility ra-
tios tend to be better indicators for the likeliness of the corresponding items to be
included in an optimal integer solution than the primal variable values and several
other measures, see [85].

Other relaxations besides the LP relaxation are occasionally also exploited in
conjunction with metaheuristics. A successful example is the hybrid Lagrangian GA
for the prize collecting Steiner tree problem from Haouari and Siala [56]. It is based
on a Lagrangian decomposition of a minimum spanning tree-like ILP formulation
of the problem. The volume algorithm, which is a special variant of subgradient
search [11], is used for solving the Lagrangian dual. After its termination, the GA
is started and exploits results obtained from the volume algorithm in several ways:
(a) The volume algorithm creates a sequence of intermediate spanning trees as a
by-product. All edges appearing in these intermediate trees are marked, and only
this reduced edge set is further considered by the GA; i.e., a core of edges is de-
rived from the intermediate primal results when solving the Lagrangian dual. (b) A
subset of diverse initial solutions is created by a Lagrangian heuristic, which greed-
ily generates solutions based on the reduced costs appearing as intermediate results
in the volume algorithm. (c) Instead of the original objective function, an alternate
one, based on the reduced costs that are obtained by the volume algorithm, is used.
The idea is to focus the search even stronger on promising regions of the search
space, where also better solutions with respect to the original objective function can
presumably be found.

Pirkwieser et al. [76] describe a similar combination of Lagrangian decomposi-
tion and a GA for the knapsack constrained maximum spanning tree problem. The
problem is decomposed into a minimum spanning tree and a 0–1 knapsack problem.
Again, the volume algorithm is employed to solve the Lagrangian dual. While graph
reduction takes place as before, the objective function remains unchanged. Instead,
final reduced costs are exploited for biasing the initialization, recombination, and
mutation operators. In addition, the best feasible solution obtained from the volume
algorithm is used as a seed in the GA’s initial population. Results indicate that the
volume algorithm alone is already able to find solutions of extremely high quality
even for large instances. These solutions are polished by the GA, and in most cases
proven optimal solutions are finally obtained.

Dowsland et al. [34] propose an approach where bounding information available
from partial solutions is used to guide an evolutionary algorithm. An indirect, order-
based representation of candidate solutions is applied. Phenotypes are derived by a
specific decoding procedure which is a construction heuristic that is also able to cal-
culate upper bounds for intermediate partial solutions (considering a maximization
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problem). Given a certain target value, which is, e.g., the objective value of the so far
best solution, a bound point is determined for each candidate solution in the popula-
tion: It is the first position in the genotype for which the corresponding partial solu-
tion has a bound that is worse than the target value. A modified one-point crossover
is then guided by this bound information: The crossover point must be chosen in
the part of the first chromosome before its bound point. In this way, recombinations
definitely leading to worse offspring are avoided. The authors successfully tested
this concept on a relatively simple pallet loading problem and a more complex two-
dimensional packing problem with non-identical pieces.

16.7.2 Enhancing the Functionality of Metaheuristics

One of the basic ingredients of an optimization technique is a mechanism for ex-
ploring the search space. An important class of algorithms tackles an optimization
problem by exploring the search space along a so-called search tree. This class of
algorithms comprises approximate as well as complete techniques. An example of
a complete method belonging to this class is B&B. An interesting heuristic deriva-
tive of breadth-first B&B is beam search [72]. While B&B (implicitly) considers
all nodes at a certain level in the search tree, beam search restricts the search to a
certain number of nodes based on bounding information.

One relatively recent line of research deals with the incorporation of algorithmic
components originating from deterministic B&B derivatives such as beam search
into construction-based metaheuristics. Examples are the so-called Beam-ACO al-
gorithms [16, 18] and approximate and nondeterministic tree search (ANTS) pro-
cedures [62, 63]. Note that Beam-ACO can be seen as a generalization of ANTS.
In Beam-ACO, artificial ants perform a probabilistic beam search in which the ex-
tension of partial solutions is done in the ACO fashion rather than deterministically.
The existence of an accurate—and computationally inexpensive—lower bound for
the guidance of the ACO’s search process is crucial for the success of Beam-ACO.

Another successful example concerns the use of CP techniques for restricting the
search performed by an ACO algorithm to promising regions of the search space.
The motivation for this type of hybridization is as follows: Generally, ACO algo-
rithms are competitive with other optimization techniques when applied to problems
that are not overly constrained. However, when highly constrained problems such
as scheduling or timetabling are considered, the performance of ACO algorithms
generally degrades. Note that this is usually also the case for other metaheuristics.
The reason is to be found in the structure of the search space: When a problem
is not overly constrained, it is usually not difficult to find feasible solutions. The
difficulty rather lies in the optimization part, namely the search for good feasible
solutions. On the other side, when a problem is highly constrained the difficulty is
rather in finding any feasible solution. This is where CP comes into play, because
these problems are the target problems for CP applications. Meyer and Ernst [67]
introduced the incorporation of CP into ACO in an application to the single machine
job scheduling problem.
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16.8 Strategic Guidance of Other Techniques by Metaheuristics

Many metaheuristics are based on the principle of local search, i.e., starting from
an initial solution, a certain neighborhood around it is investigated, and if a better
solution can be identified, it becomes the new incumbent solution; this process is
repeated. Thus, the central idea is to focus the search for better solutions on regions
of the search space nearby already identified good solutions.

In comparison, most B&B algorithms choose the next B&B tree node to be pro-
cessed by a best-first strategy: assuming minimization, a node with smallest lower
bound is always selected, since it is considered to be most promising for leading to
an optimal solution. This approach is often the best strategy for minimizing the total
number of nodes that need to be explored until finding an optimum and proving its
optimality. However, good complete solutions—and thus also tight upper bounds—
are often found late during this search. The best-first node selection strategy typ-
ically “hops around” in the search tree and in the search space and does not stay
focused on subregions. When no strong primal heuristic is applied for determining
promising complete solutions, the best-first strategy is often combined with an ini-
tial diving, in which a depth-first strategy is followed at the beginning until some
feasible solution is obtained. In depth-first search, the next node to be processed is
always the one that has been most recently created by branching.

In the last years, several more sophisticated concepts have been proposed with
the aim to intensify B&B search in an initial phase to neighborhoods of promising
incumbents in order to quickly identify high-quality approximate solutions. In some
sense, we can consider these strategies to “virtually” execute a metaheuristic.

Danna et al. [31] describe guided dives, which are a minor, but effective modifica-
tion of the already mentioned simple diving by temporarily switching to depth-first
search. The branch to be processed next in case of guided dives is always the one
in which the branching variable is allowed to take the value it has in an incumbent
solution. Diving is therefore biased toward the neighborhood of this solution. In-
stead of performing only a single dive at the beginning, guided dives are repeatedly
applied at regular intervals during the whole optimization process. This strategy is
trivial to implement, and experimental results indicate significant advantages over
standard node selection strategies.

Fischetti and Lodi [42] propose local branching, an exact approach introducing
the spirit of classical k-OPT local search in a generic branch-and-cut based MIP
solver. The whole problem is partitioned into a k-OPT neighborhood of an initial
solution and the remaining part of the search space by applying a local branching
constraint and its inverse, respectively. The MIP solver is then forced to completely
solve the k-OPT neighborhood before considering the remainder of the problem.
If an improved solution has been found in the k-OPT neighborhood, a new sub-
problem corresponding to the k-OPT neighborhood of this new incumbent is split
off and solved in the same way; otherwise, a larger k may be tried. The process is
repeated until no further improvement can be achieved. Finally, the remaining prob-
lem corresponding to all parts of the search space not yet considered is processed in
a standard way.
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Hansen et al. [55] present a variant of local branching in which they follow the
classical VNS strategy, especially for adapting the neighborhood parameter k. Im-
proved results are reported. Another variant of the original local branching scheme
is described by Fischetti et al. in [43]. They consider problems in which the set of
variables can be naturally partitioned into two levels and fixing the values of the
first-level variables yields substantially easier subproblems; cf. Section 16.4.

Danna et al. [31] further suggest an approach called relaxation-induced neigh-
borhood search (RINS) for exploring the neighborhoods of promising MIP solu-
tions more intensively. The main idea is to occasionally devise a sub-MIP at a node
of the B&B tree that corresponds to a special neighborhood of an incumbent so-
lution: First, variables having the same values in the incumbent and in the current
solution of the LP relaxation are fixed. Second, an objective cutoff based on the ob-
jective value of the incumbent is set. Third, a sub-MIP is solved with the remaining
variables. The time for solving this sub-MIP is limited. If a better incumbent could
be found during this process, it is passed to the global MIP search which is resumed
after the sub-MIP’s termination. In the authors’ experiments, CPLEX is the MIP
solver, and RINS is compared to standard CPLEX, local branching, combinations
of RINS and local branching, and guided dives. Results indicate that RINS often
performs best. CPLEX includes RINS as a standard strategy for quickly obtaining
good heuristic solutions since version 10.

The nested partitioning method proposed by Shi and Ólafsson [92] is another
example where a metaheuristic provides strategic guidance to another technique.
At each iteration the search focuses on a part of the search space called the most
promising region. The remaining part of the search space is called the surrounding
region. The most promising region may, for example, be characterized by a number
of fixed variables. At each step, the most promising region is divided into a fixed
number of subregions. This may be done, for example, by choosing one of the free
variables and creating a subregion for each of the variable’s possible domain value.
Each of the subregions as well as the surrounding region is then sampled. The best
objective function value obtained for each region is called the promising index. The
region with the best index becomes the most promising region of the next iteration.
The next most promising region is thus nested within the last one. When the sur-
rounding region is found to be the best, the method backtracks to a larger region.
The approach may be divided into four main steps: partitioning, sampling, selecting
a promising region, and backtracking. Each of these steps may be implemented in a
generic fashion, but can also be defined in a problem-specific way. In particular the
sampling phase may benefit from the use of metaheuristics instead of performing a
naive random sampling. In a sense, metaheuristics can be seen as enhancements for
guiding the search process of the method. In [5], for example, ant colony optimiza-
tion is applied for sampling, whereas in [93] local search is used for this purpose.

A very different paradigm is followed in constraint-based local search [98]. It
combines the flexibility of CP concepts such as rich modeling, global constraints,
and search abstractions with the efficiency of local search. The Comet programming
language allows the modeling of combinatorial optimization problems in a relatively
natural way. It also provides the necessary abstractions for specifying metaheuristics
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and nondeterministic, local, and hybrid search. The concept of differential objects
is an important aspect of Comet: Constraints maintain their violation and objec-
tive functions their evaluation. They can both return information on the possible
consequences of local search moves by automatically propagating changes using
so-called invariants. The separation of the model and search allows the specification
of generic search procedures such as tabu search, variable neighborhood search,
and hybrid evolutionary search [98]. The authors describe applications of various
hybrid metaheuristics to problems ranging from car sequencing and graph coloring
to scheduling. For example, a tabu search algorithm for the job-shop scheduling
problem is presented, combining local search with complete enumeration as well
as limited backtracking search. Several subsequent publications show the strong re-
search interests in this direction and address issues such as distributed search [68]
and visualization [33].

16.9 Decomposition Approaches

Problem decomposition approaches are another category of powerful techniques for
combining different optimization techniques. Usually, a very hard-to-solve problem
is decomposed into parts which can be dealt with more effectively. Some of the
multi-stage approaches which we discussed in Section 16.4 already follow this ba-
sic idea. Large neighborhood search, heuristic cut and column generation in mixed
integer programming, and constraint propagation by means of metaheuristics are
three other prominent instances of successful decomposition techniques, which we
consider in the following in more detail.

16.9.1 Exploring Large Neighborhoods

A common approach in more sophisticated local search-based metaheuristics is to
search neighborhoods not by naive enumeration but by clever, more efficient algo-
rithms. If the neighborhoods are chosen appropriately, they can be quite large and
nevertheless an efficient search for a best neighbor is still possible in short time.
Such techniques are known as very large-scale neighborhood (VLSN) search [2];
see also [24] for a recent survey. Many of today’s combinations of local search-based
metaheuristics with dynamic programming or MIP techniques follow this scheme.
In the following, we present some examples.

In Dynasearch [27, 28] exponentially large neighborhoods are explored by dy-
namic programming. A neighborhood where the search is performed consists of all
possible combinations of mutually independent simple search steps, and one Dy-
nasearch move corresponds to a set of such simple steps that are executed in parallel
in a single local search iteration. The required independence in the context of Dy-
nasearch means that the individual simple moves do not interfere with each other; in
this case, dynamic programming can be used to find a best combination. Ergun and
Orlin [39] investigated several such neighborhoods in particular for the traveling
salesman problem.
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Particular types of large neighborhoods that can also be efficiently searched
by dynamic programming are cyclic and path exchange neighborhoods [2, 3].
They are often applied in the context of problems where items need to be parti-
tioned into disjoint sets. Examples of such problems are vehicle routing, capac-
itated minimum spanning tree, and parallel machine scheduling. In these neigh-
borhoods, a series of items is exchanged between an arbitrary number of sets in a
cyclic or path-like fashion, and a best move is determined by a shortest path-like
algorithm.

Pesant and Gendreau [75] describe a generic framework for combining CP and
local search. They view and model the original problem as well as the (large) neigh-
borhoods as CP problems. Each of the neighborhoods is solved via a CP-based B&B
that preserves solution feasibility. The framework allows for a relatively generic
problem modeling while providing the advantages of local search. The authors solve
a physician scheduling problem as well as the traveling salesman problem with time
windows, and they approach them by tabu search in which large neighborhoods are
searched by means of the CP-based B&B.

Puchinger et al. [84] describe a hybrid GA for a real-world glass cutting prob-
lem in which large neighborhoods are searched by means of B&B. The GA uses an
order-based representation which is decoded using a greedy heuristic. B&B is ap-
plied with a certain probability, enhancing the decoding phase by generating locally
optimal subpatterns. Reported results indicate that occasionally solving subpatterns
to optimality often increases the overall solution quality.

Quite often, large neighborhoods are described in the form of MIPs and a
MIP solver is applied for finding a good—or the best—neighbor. For example,
Büdenbender et al. [23] present a tabu search hybrid for solving a real-world di-
rect flight network design problem. Neighborhoods are created by fixing a large
subset of the integer variables corresponding to the performed flights and allow-
ing the other variables to be changed. CPLEX is used to solve the reduced prob-
lems corresponding to these neighborhoods. Diversification is achieved by clos-
ing flights frequently occurring in previously devised solutions. Other examples
for MIP-based large neighborhood search can be found in Duarte et al. [35],
where an iterated local search framework is applied to a real-world referee assign-
ment problem, and in Prandtstetter and Raidl [79] where several different MIP-
based neighborhoods are searched within a VNS framework for a car sequencing
problem.

Hu et al. [57] propose a VNS for the generalized minimum spanning tree prob-
lem. The approach uses two dual types of representations and exponentially large
neighborhood structures. Best neighbors are identified by means of dynamic pro-
gramming algorithms and—in case of the so-called global subtree optimization
neighborhood—by solving an ILP formulation with CPLEX. Experimental results
indicate that each considered neighborhood structure contributes to the overall ex-
cellent performance.

Variable neighborhood decomposition search (VNDS) [54] is a variant of VNS
obtained by selecting the neighborhoods so as to obtain a problem decomposition.
VNDS follows the usual VNS scheme, but the neighborhood structures and the lo-
cal search are defined on subproblems rather than on the original problem. Given a
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solution, all but k attributes (usually variables) are kept fixed. For each k, a neigh-
borhood structure Nk is defined. Local search only regards changes on the variables
belonging to the subproblem it is applied to. Successful applications of VNDS in-
clude the edge-weighted k-cardinality tree problem [97] and supply chain manage-
ment planning problems [61].

16.9.2 Cut and Column Generation by Metaheuristics

Cutting plane algorithms [105] are a powerful tool for solving complex MIPs. They
start with a relaxation of the original problem in which most of the constraints—
especially the integrality constraints—are omitted. This relaxation is solved, and
then a separation algorithm is applied for finding further constraints that are ful-
filled by an optimal solution to the original problem but are violated by the current
solution to the relaxed problem. If such constraints, called cuts, could be identified,
they are added to the relaxed LP, which is then solved again. This process is iterated
until no further cuts can be found. If the final solution is infeasible, either a heuristic
repair procedure may be applied, or the cutting plane algorithm is embedded in a
B&B framework yielding an exact branch-and-cut algorithm.

Often, the subproblem of separating a cut (i.e., finding a valid inequality violated
by the current LP solution) is difficult to solve by itself. In such cases, heuristics are
often applied, and also fast metaheuristics have already been successfully used.

One example is the work from Augerat et al. [10], which uses a hierarchy con-
sisting of a simple constructive heuristic, a randomized greedy method, and a tabu
search for separating capacity constraints within a branch-and-cut algorithm for a
capacitated vehicle routing problem. Another more recent example is the branch-
and-cut algorithm for the diameter bounded minimum spanning tree problem by
Gruber and Raidl [52], in which local search and tabu search techniques are used
for separating so-called jump cuts.

One more example concerns the acceleration of Benders decomposition by local
branching, as described by Rei et al. [89]. The basic principle of Benders decom-
position is to project a MIP into the space of complicating integer variables only;
real variables and the constraints involving them are replaced by corresponding con-
straints on the integer variables. These constraints, however, are not directly avail-
able but need to be dynamically generated. According to the classical method, an
optimal solution to the relaxed master problem (including only the already separated
cuts) is needed and an LP involving this solution must be solved in order to separate
a single new cut. Rei et al. [89] improved this method by introducing phases of local
branching on the original problem in order to obtain multiple feasible heuristic so-
lutions. These solutions provide improved upper bounds on one hand, but also allow
the derivation of multiple additional cuts before the relaxed master problem needs
to be solved again.

Column generation algorithms can be seen as dual to cutting plane algorithms.
Instead of starting with a reduced set of constraints and dynamically extending it,
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the set of variables (which correspond to columns in the matrix notation of the MIP)
is restricted, and further variables are iteratively added. Hereby, the essential sub-
problem, called pricing problem, is to identify variables whose inclusion will yield
an improvement. Again, the pricing problem is often difficult by itself, and applying
fast (meta-)heuristics is sometimes a meaningful option. If column generation is per-
formed within an exact LP-based B&B framework, the approach is called branch-
and-price.

Filho and Lorena [41] apply a heuristic column generation approach to graph
coloring. A GA is used to generate initial columns and to solve the pricing problem
at every iteration. Column generation is performed as long as the GA finds columns
with negative reduced costs. The master problem is solved using CPLEX. Puchinger
and Raidl [80, 82] describe an exact branch-and-price approach for the three-stage
two-dimensional bin packing problem. Fast column generation is performed by ap-
plying a hierarchy of four methods: (a) a greedy heuristic, (b) an evolutionary algo-
rithm, (c) solving a restricted form of the pricing problem using CPLEX, and finally
(d) solving the complete pricing problem using CPLEX.

16.9.3 Using Metaheuristics for Constraint Propagation

In CP the mechanism of constraint propagation is used to reduce the domains of
the variables at each node of the B&B search tree. Similarly to cut generation in
mixed integer programming, the search space is reduced by deducing consequences
from the current state of the search. Usually specialized and standard combinatorial
algorithms are used [65].

Galinier et al. [46] present a tabu search procedure to speed up filtering for gen-
eralized all-different constraints. That is,

SomeDifferent(X ,D,G) = {(a1, . . . ,an) | ai ∈ Di ∧ai �= a j∀(i, j) ∈ E(G)}

is defined over a set of variables X = {x1, . . . ,xn} with domains D = {D1, . . . ,Dn}
and an underlying graph G = (X ,E) [90]. The satisfiability of the constraint can be
tested by solving a special graph coloring problem. Tabu search is first applied to
see if it can color the graph. If it does not find a solution, an exact method is applied.
In a second step a similar tabu search procedure is used to determine a large set of
variable/value combinations that are feasible. Finally an exact filtering is applied to
the remaining variable/value pairs checking if some of them can be excluded from
the variable domains. Computational experiments show that the hybrid approach is
comparable to the state of the art on data from a real-world work-force management
problem and is significantly faster on random graph instances for the SomeDifferent
constraint. The authors suppose that the idea of combining fast metaheuristics with
exact procedures can speed up filtering procedures for other NP-hard constraints
as well.
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16.10 Summary and Conclusions

We have reviewed a large number of different possibilities for combining tradi-
tional metaheuristic strategies with each other or with algorithmic techniques com-
ing from other fields. All these possibilities have their individual pros and cons, but
the common underlying motivation is to exploit the advantages of the individual
techniques in order to obtain a more effective hybrid system, benefiting from syn-
ergy. In fact, history clearly shows that the concentration on a single metaheuristic is
rather restrictive for advancing the state of the art when tackling difficult optimiza-
tion problems. Thus, designing hybrid systems for complex optimization problems
is nowadays a natural process.

On the downside, metaheuristic hybrids are usually significantly more complex
than classical “pure” strategies. The necessary development and tuning effort may
be substantially higher than when using a straightforward out-of-the-box strategy.
One should further keep in mind that a more complex hybrid algorithm does not
automatically perform better—an adequate design and appropriate tuning is always
mandatory, and the effort increases with the system’s complexity. Einstein’s advice
of keeping things as simple as possible, but not simpler therefore is especially true
also for metaheuristic hybrids.

We started by presenting a classification of metaheuristic hybrids in which we
pointed out the different basic characteristics. Then we discussed several commonly
used design templates. Note that these templates are not meant as a clear catego-
rization of existing hybrid approaches: Many of the referenced examples from the
literature can be argued to follow more than one design template, and occasionally
the boundaries are fuzzy.

Finding initial or improved solutions by embedded methods might be the most
commonly applied approach. Multi-stage combinations are sometimes straightfor-
ward for problems that naturally decompose into multiple levels and are also oth-
erwise popular as they are typically easier to tune than more intertwined hybrids.
The concept of decoder-based metaheuristics is also quite popular, as they can of-
ten be implemented quickly, once an appropriate construction heuristic is available.
Solution merging was the next design template we discussed and for which numer-
ous successful examples exist. Then we considered cases where metaheuristics are
strategically guided by other techniques. In particular, solutions to relaxations of
the original problem are frequently exploited in various ways. The reverse, strate-
gic guidance of other techniques by metaheuristics, has been particularly successful
in the field of mixed integer programming, where such strategies can help to find
good approximate solutions early within an exact B&B-based method. Last but not
least, there are several different decomposition approaches: Exploring large neigh-
borhoods by specialized algorithms has become particularly popular over the last
years, and occasionally metaheuristics are applied to solve separation or pricing
problems in more complex MIP approaches and propagation subproblems in CP.

As an important final advice for the development of well-performing metaheuris-
tic hybrids, the authors would like to recommend (1) the careful search of the litera-
ture for the most successful optimization approaches for the problem at hand or for
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similar problems and (2) the study of clever ways of combining the most interesting
features of the identified approaches. We hope this chapter provides a starting point
and some useful references for this purpose.

Acknowledgments Günther R. Raidl is supported by the Austrian Science Fund (FWF) under
grant 811378 and by the Austrian Exchange Service (Acciones Integradas, grant 13/2006). NICTA
is funded by the Australian Government as represented by the Department of Broadband, Commu-
nications and the Digital Economy and the Australian Research Council through the ICT Centre
of Excellence program. Christian Blum is supported by grants TIN2005-08818 (OPLINK) and
TIN2007-66523 (FORMALISM) of the Spanish government, and by the EU project FRONTS
(FP7-ICT-2007-1). He also acknowledges support from the Ramón y Cajal program of the Spanish
Ministry of Science and Technology.

References

1. Aggarwal, C., Orlin, J., Tai, R.: Optimized crossover for the independent set problem. Oper.
Res. 45, 226–234 (1997)
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8. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of the traveling
salesman problem. Documenta Mathematica, Extra Volume ICM III, 645–656 (1998)

9. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem:
A Computational Study. Princeton Series in Applied Mathematics. Princeton University
Press, Princeton, NJ (2007)

10. Augerat, P., Belenguer, J.M., Benavent, E., Corberan, A., Naddef, D.: Separating capacity
constraints in the CVRP using tabu search. Eur. J. Oper. Res. 106(2), 546–557 (1999)

11. Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with a subgra-
dient method. Math. Programming, Series A, 87(3), 385–399 (2000)

12. Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G.,
Sampels, M. (eds.): Proceedings of HM 2007 – Fourth International Workshop on Hybrid
Metaheuristics, Lecture Notes in Computer Science. vol. 4771 Springer, Berlin (2007)

13. Beck J. Christopher: Solution-guided multi-point constructive search for job shop schedul-
ing. J. Artif. Intell. Res. 29, 49–77 (2007)

14. Binato, S., Hery, W.J., Loewenstern, D., Resende, M.G.C.: A GRASP for job shop schedul-
ing. In: Ribeiro, C.C., Hansen, P., (eds.) Essays and Surveys on Metaheuristics, pp. 59–79.
Kluwer Academic Publishers, Dordrecht (2001)

15. Blesa Aguilera, M.J., Blum, C., Roli, A., Sampels, M., (eds.): Proceedings of HM 2005 –
Second International Workshop on Hybrid Metaheuristics. Lecture Notes in Computer Sci-
ence. vol. 3636 Springer, Berlin (2005)



492 Günther R. Raidl, Jakob Puchinger and Christian Blum

16. Blum, C.: Beam-ACO: Hybridizing ant colony optimization with beam search: An applica-
tion to open shop scheduling. Comput. Oper. Res. 32(6):1565–1591, 2005.

17. Blum, C.: A new hybrid evolutionary algorithm for the k-cardinality tree problem. In:
Proceedings of the Genetic and Evolutionary Computation Conference 2006, pp. 515–522.
ACM Press, New York, NY, July 8–12 (2006)

18. Blum, C.: Beam-ACO for simple assembly line balancing. INFORMS J. Comput. 20(4),
618–627 (2008)

19. Blum, C., Blesa, M.: Combining ant colony optimization with dynamic programming for
solving the k-cardinality tree problem. In: Proceedings of IWANN 2005 – 8th International
Work-Conference on Artificial Neural Networks, Computational Intelligence and Bioin-
spired Systems, number 3512 in Lecture Notes in Computer Science, pp. 25–33, Springer,
Berlin (2005)

20. Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M.: (eds.) Hybrid Metaheuristics – An
Emerging Approach to Optimization, volume 114 of Studies in Computational Intelligence.
Springer, Berlin (2008)

21. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual
comparison. ACM Comput. Surveys 35(3), 268–308 (2003)

22. Blum, C., Roli, A., Sampels, M. (eds.): Proceedings of HM 2004 – First International Work-
shop on Hybrid Metaheuristics, Valencia, Spain (2004)
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Chapter 17
Parallel Meta-heuristics

Teodor Gabriel Crainic and Michel Toulouse

Abstract We present a state-of-the-art survey of parallel meta-heuristic strategies,
developments, and results. We discuss general design and implementation princi-
ples that apply to most meta-heuristic classes and instantiate these principles for
neighborhood and population-based meta-heuristics. We also identify a number of
trends and promising research directions.

17.1 Introduction

Meta-heuristics are widely acknowledged as essential tools in addressing difficult
problems in numerous and diverse fields. Meta-heuristics actually often offer the
only practical approach to solving complex problems of realistic dimensions.

Even using meta-heuristics, however, the limits of what may be solved in “rea-
sonable” computing times are still reached rapidly for many problem settings,
at least much too rapidly for the growing needs of research and industry alike.
Heuristics do not, in general, guaranty optimality. Moreover, the performance often
depends on the particular problem setting and instance characteristics. Consequently,
a major issue in meta-heuristic design and calibration is not only how to build
them for maximum performance but also how to make them robust, in the sense
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of offering a consistently high level of performance over a wide variety of problem
settings and characteristics.

Parallel meta-heuristics aim to address both issues. Of course, the first goal is
to solve larger problem instances in reasonable computing times. In appropriate
settings, such as cooperative multi-search strategies, parallel meta-heuristics also
prove to be much more robust than sequential versions in dealing with differences in
problem types and characteristics. They also require less extensive, and expensive,
parameter calibration efforts.

The objective of this chapter is to paint a general picture of the parallel meta-
heuristic field. More specifically, we aim to present a state-of-the-art survey of the
main parallel meta-heuristic ideas and strategies and discuss general design and im-
plementation principles that apply to most meta-heuristic classes, to instantiate these
principles for neighborhood- and population-based meta-heuristics, and to identify
a number of trends and promising research directions.

The parallel meta-heuristic field is very broad, while the space available for
this chapter imposes hard choices and limits the presentation. In addition to the
references provided in the following sections, the reader may consult a number
of surveys, taxonomies, and syntheses of parallel meta-heuristics, some address-
ing methods based on particular methodologies, while others address the field in
more comprehensive terms. Methodology dedicated syntheses may be found in
[4, 74–76, 119] for parallel simulated annealing, [2, 16, 17, 93, 104, 132] for
genetic-based evolutionary methods, [26, 34, 41, 72, 151] for tabu search, [59] for
scatter search, [14, 52, 81] for ant-colony methods, and [100] for Variable Neighbor-
hood Search (VNS). Surveys and syntheses that address more than one methodology
may be found in [27, 36–38, 42, 79, 84, 113, 150].

The chapter is organized as follows. Section 17.2 is dedicated to a general
discussion of basic meta-heuristics design principles, the corresponding potential
for parallel computing, and the taxonomy we use to structure the presentation.
Section 17.3 addresses strategies focusing on accelerating computing-intensive
tasks without modifying the basic algorithmic design. Methods based on the de-
composition of the search space are treated in Section 17.4, while strategies based
on the simultaneous exploration of the search space by several independent meta-
heuristics constitutes the topic of Section 17.5. The different cooperation principles
and strategies are the subject of Section 17.6 and we conclude in Section 17.7.

17.2 Meta-heuristics and Parallelism

This section is dedicated to an overview of the main classes of meta-heuristics and
the associated potential for parallel computing. The latter is completed by a discus-
sion of performance indicators for parallel meta-heuristics. The section concludes
with the criteria used in this chapter to describe and classify parallelization strategies
for meta-heuristics.
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17.2.1 Heuristics and Meta-heuristics

Given a set of objects, each with an associated contribution, an objective function
computing the value of a subset of objects out of their respective contributions, and
the feasibility rules specifying how subsets may be built, combinatorial optimization
problems aim to select a subset of objects satisfying these rules and such that the
value of the function is the highest/lowest among all possible combinations. Many
problems of interest may be represented through this framework, including design,
routing, and scheduling. Combinatorial optimization problems are usually formu-
lated as (mixed) integer optimization programs. To define notation, assume that one
desires to minimize an objective function f (x), linear or not, subject to x∈X ⊆R

n.
The set X collects constraints on the decision variables x and defines the feasible
domain. Decision variables are generally non-negative and all or some may be com-
pelled to take discrete values. One seeks a globally optimal solution x∗ ∈ X such
that f (x∗)≤ f (x) for all x ∈X .

In most cases, such formulations are difficult to solve for realistically sized prob-
lem instances, the main issue being the number of feasible solutions – subsets of
objects – that grows exponentially with the number of objects in the initial set.
Once various methods have been applied to re-formulate the problem and bound
the region where the optimal solution is to be found, most solution methods are
based on some form of exploration of the set of feasible (and sometimes, infeasi-
ble) solutions. Explicit enumeration is normally out of the question and the search
for the optimal solution proceeds by implicit enumeration. Branch-and-bound (and
price, and cut, and ...) methods are typical of such approaches and make up one of
the strategies of choice used in the search for optimal solutions to combinatorial
problems. Unfortunately, these methods fail for many instances, even when paral-
lel implementations are used. Thus, heuristics have been, and continue to be, an
essential methodology in addressing combinatorial optimization formulations, of-
ten offering the only practical alternative when dealing with problem instances of
realistic dimensions and characteristics.

A heuristic is any procedure that aims to identify a “good” feasible solution
x̃ ∈ X . Of course, one would like x̃ to be identical to x∗ (if the latter is unique)
or f (x̃) to be equal to f (x∗). For most heuristics, however, one can only hope (and
for some, prove) that f (x̃) is “close” to f (x∗). At the core of many heuristics, one
finds an improving iterative procedure that moves from a given solution to a solution
in its neighborhood, which is better in terms of the objective function value or some
other measure based on the solution characteristics. Thus, at each iteration, such a
local search (LS) procedure identifies and evaluates solutions in the neighborhood
of the current solution, selects the best one relative to given criteria, and implements
the transformations required to establish the selected solution as the current one.
The procedure iterates until no further improvement is possible.

Figure 17.1 illustrates the local search template (for a minimization problem).
The input value x is usually a feasible initial solution. The expression N (x) de-
notes the neighborhood of x, that is, the set of solutions, called neighbors, that can
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Fig. 17.1 Local search template.

be reached from x through a predefined transformation of x called move. Such a
transformation may be simple, e.g., complement the value of an integer-valued vari-
able, or more complex made up of a sequence of operations, e.g., λ -opt modifica-
tions of routes in vehicle routing problems (VRPs). The value of any solution x is
given by c(x), which may be f (x), or more or less loosely related to it or an entirely
different function. Figure 17.2 illustrates the procedure Neighbor, which identifies,
evaluates, and selects solutions in the neighborhood N (x) of the current solution
x, m(x) standing for a neighbor of x obtained by applying the move m. The param-
eter neighbor selection indicates whether the procedure returns the best solution in
N (x) with respect to c(x) or the first solution better than x found while explor-
ing N (x). One denotes these two cases as best-improvement (also called steepest
descent or ascent when maximizing) and first-improvement, respectively.

Fig. 17.2 Procedure Neighbor.

Local search heuristics update the current solution x only when it can be improved
and never backtrack to a previous solution. They therefore stop as soon as a local
optimum solution is found. This inability to continue past the first encountered local
optimum is a major drawback of classical heuristic schemes. Moreover, such pro-
cedures are unable to react and adapt to particular problem instances. Re-starting
and randomization strategies, as well as combinations of simple heuristics offer
only partial and largely unsatisfactory answers to these issues. The class of mod-
ern heuristics known as meta-heuristics aims to address these challenges.

Meta-heuristics have been defined as master strategies (heuristics) that guide
and modify other heuristics to produce solutions beyond those normally identified
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by heuristics such as local search [69, 71]. Compared to exact search methods,
such as branch-and-bound, meta-heuristics cannot generally guarantee a system-
atic exploration of the entire solution space. Instead, they attempt to examine only
parts thereof where, according to certain criteria, one believes good solutions may
be found. Well-designed meta-heuristics avoid getting trapped in local optima or
sequences of visited solutions (cycling) and provide reasonable assurance that the
search has not overlooked promising regions.

Meta-heuristics are iterative procedures, which move at each iteration toward
“good” solutions in the neighborhood of the current solution or of a suitably selected
subset. Unlike local search heuristics, however, meta-heuristics may move to not-
necessarily improving solutions, which constitutes the main mechanism to avoid
stopping at local optima. Additional mechanisms control the evolution of the meta-
heuristic to avoid cycling, learn from previous moves and encountered solutions,
and provide for a thorough search. Meta-heuristics explore a search space that may
be the feasible domain of the problem at hand or only loosely based on it (e.g.,
the search space may include infeasible solutions or may be restricted to a sub-
set of variables only). Many meta-heuristics have been proposed. From the point
of view of parallel-strategy design, however, it is convenient to discuss them ac-
cording to whether their main search mechanism is based on neighborhoods or
populations.

Neighborhood-based meta-heuristics implement explicitly moves to solutions
selected within given neighborhoods and generally proceed following a single tra-
jectory in the search space. Tabu search, simulated annealing, guided local search,
variable neighborhood search, greedy randomized adaptive search, and iterated local
search, belong to this category of meta-heuristics, and define high-level mechanisms
to guide local search explorations of the search space. The high-level mechanisms
monitor the status of the search, determine when particular phases (e.g., diversifi-
cation and intensification) should start, select neighborhoods, and local-search pro-
cedures, etc. Figure 17.3 displays the general design idea for neighborhood-based
meta-heuristics, emphasizing the two major nested loops of their usual implementa-
tion: An outer loop implements the high-level meta-heuristic controlling (guiding)
the global search and the selected local search procedure, while the inner loop exe-
cutes the local search. Notice that the Neighbor(N (x)) procedure called within the
local search implicitly adds a third-level nested loop.

Fig. 17.3 The neighborhood-based meta-heuristic idea.
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Population-based meta-heuristics use a set of solutions to concurrently sample
different regions of the solution space. The search moves to new solutions by recom-
bining elements from different solutions in the current population. We find in this
group evolutionary methods (genetic algorithms), scatter search, and path relinking.
For the purposes of this chapter, we also include in the group ant-based methods and
other swarm-based algorithms. Figure 17.4 displays the general algorithmic idea of
population-based meta-heuristics. There are several loops in an implementation of a
population-based method: the generation of the initial population, the computation
of solution values, which could involve the entire population, and of the global infor-
mation, the generation of new individuals, which may involve local search either as
an individual improvement mechanism (e.g., genetic algorithms and scatter search)
or as a trajectory between two individuals (path relinking).

( )

Fig. 17.4 The population-based metaheuristic idea.

17.2.2 Sources of Parallelism

Parallel/distributed computing means that several processes work simultaneously
on several processors solving a given problem instance. Parallelism thus follows
from a decomposition of the total computational load and the distribution of the
resulting tasks to available processors. The decomposition may concern the algo-
rithm, the problem-instance data, or the problem structure (e.g., mathematical or
attribute-based [28, 29] decomposition). In the first case, denoted functional par-
allelism, different tasks, possibly working on the “same” data, are allocated to dif-
ferent processors and run in parallel, possibly exchanging information. The second
is denoted data parallelism or domain decomposition and refers to the case where
the problem domain, or the associated search space, is decomposed and a particular
solution methodology is used to address the problem on each of the resulting com-
ponents of the search space. The third case is quite recent and generates tasks by
decomposing the problem along sets of attributes. The decomposition could be per-
formed through mathematical programming techniques or heuristically. Then, some
tasks work on subproblems corresponding to particular sets of attributes (i.e., part of
the original search space), while others combine subproblem solutions into whole
solutions to the original problem. According to how “ small” or “large” are the tasks
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in terms of algorithm work or search space, the parallelization is denoted fine- or
coarse-grained, respectively.

From an algorithmic point of view, the main source of parallelism for meta-
heuristics is the concurrent execution of their inner-loop iterations: evaluating neigh-
bors, computing the fitness of individuals, or having ants forage concurrently.
Unfortunately, this is often also the only source of readily available parallelism in
meta-heuristics, most other steps being time dependent and requiring the compu-
tation of the previous steps to be completed. Even when parallelism is available,
synchronization enforcing the time dependency of the meta-heuristic steps yields
significant delays, which makes parallel computation nonrelevant.

A significant amount of parallelism may be found, on the other hand, in the
domain of the problem addressed or in the corresponding search space. Indeed,
there are no data dependencies between the cost or evaluation functions of different
solutions and, thus, these may be computed in parallel. Furthermore, theoretically,
the parallelism in the solution or search space is as large as the space itself. There
are considerable limitations to an efficient exploitation of this parallelism, however.
For obvious reasons, one cannot assign a processor to each solution evaluation. The
solution or search space must therefore be partitioned among processors, thus se-
rializing the evaluation of solutions assigned to the same processor. The resulting
partitions are generally still too large for explicit enumeration and, thus, an exact or
heuristic search method is still required for implicitly exploring it. Partitioning then
raises two issues with respect to an overall meta-heuristic search strategy. First, the
control of an overall search conducted separately on several partitions of the original
space and the comprehensiveness of the solution finally reached. Second, the alloca-
tion of the computing resources for an efficient exploration avoiding, for example,
searching regions with poor-quality solutions. Nonetheless, besides the inner-loop
computations, this is the only other relevant source of parallelism for meta-heuristics
and is exploited in many of the strategies described in this chapter.

Two main approaches are used to partition the search space: domain decompo-
sition and multi-search (the name multiple walks is also found in the literature).
The former explicitly partitions it (see Section 17.4), while the latter implicitly
divides it through concurrent explorations by several methods, denoted in the fol-
lowing “search threads.” Using different search strategies contributes toward a non-
overlapping exploration of the search space, but does not guarantee it and, thus, a
multi-search parallelization rarely provides a proper partition of the search space.
Multi-search strategies, particularly those based on cooperation principles, make up
the bulk of the successful parallel meta-heuristics, however. They are the object of
most recent publications in the field and are addressed in Sections 17.5 and 17.6.

17.2.3 Parallel Meta-heuristics Strategies

We adopt the classification of Crainic and Nourredine [36], generalizing that of
Crainic, Toulouse, and Gendreau [41] (see also [26, 37, 38]; [150] and [42] present
classifications that proceed of the same spirit), to describe the different parallel
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strategies for meta-heuristics. This classification reflects the previous discussion and
is sufficiently general to encompass all meta-heuristic classes, while avoiding a level
of detail incompatible with the scope and dimension limits of the chapter.

The three dimensions of the classification indicate how the global problem-
solving process is controlled, how information is exchanged among processes, and
the variety of solution methods involved in the search for solutions, respectively.
The first dimension, Search Control Cardinality, thus specifies whether the global
search is controlled by a single process or by several processes that may collabo-
rate or not. The two alternatives are identified as 1-control (1C) and p-control (pC),
respectively.

The second dimension, relative to the type of Search Control and Communi-
cations, addresses the issue of information exchanges. In parallel computing, one
generally refers to synchronous and asynchronous communications. In the former
case, all concerned processes stop and engage in some form of communication and
information exchange at moments (number of iterations, time intervals, specified
algorithmic stages, etc.) exogenously determined, either hard-coded or determined
by a control (master) process. In the latter case, each process is in charge of its
own search, as well as of establishing communications with other processes, and
the global search terminates once each individual search stops. To reflect more ad-
equately the quantity and quality of the information exchanged and shared, as well
as the additional knowledge derived from these exchanges (if any), we refine these
notions and define four classes: Rigid (RS) and Knowledge Synchronization (KS)
and, symmetrically, Collegial (C), and Knowledge Collegial (KC).

Because more than one solution method or variant (e.g., different parameter
settings) may be involved in a parallel meta-heuristic, the third dimension indi-
cates the Search Differentiation: do search threads start from the same or differ-
ent solutions and do they make use of the same or different search strategies?
The four cases considered are SPSS, Same initial Point/Population, Same search
Strategy; SPDS, Same initial Point/Population, Different search Strategies; MPSS,
Multiple initial Points/Populations, Same search Strategies; MPDS, Multiple ini-
tial Points/Populations, Different search Strategies. Obviously, one uses “point” for
neighborhood-based methods, while “population” is used for genetic-based evolu-
tionary methods, scatter search, and ant-colony methods.

Based on this classification and the sources of parallelism in meta-heuristics
identified at Section 17.2.2, we address the parallel meta-heuristic strategies in
four groups and sections: 1-control strategies exploiting the intrinsic parallelism of-
fered by the basic, inner-loop, computations of meta-heuristics in Section 17.3, and
strategies based on explicit domain decomposition in Section 17.4, while Sections
17.5 and 17.6 are dedicated to independent and cooperative multi-search strategies,
respectively.

We complete this section with a few notes on measures to evaluate the perfor-
mances of parallel meta-heuristics The traditional goal when designing parallel
solution methods is to reduce the time required to “solve,” exactly or heuristi-
cally, given problem instances or to address larger instances without increasing
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the computational effort. For exact solution methods that run until the optimal
solution is obtained, this translates into the well-known speedup performance mea-
sure, computed as the ratio between the wall-clock time required to solve the prob-
lem instance in parallel with p processors and the corresponding solution time
of the best-known sequential algorithm. A somewhat less restrictive measure re-
places the latter with the time of the parallel algorithm run on a single processor.
See [8] for a detailed discussion of this issue, including additional performance
measures.

Speedup measures are more difficult to define when the optimal solution is not
guaranteed or the exact method is stopped before optimality is reached. Indeed, for
most parallelization strategies, the sequential and parallel versions of a heuristic
yield solutions that are different in value, composition, or both. Thus, an equally
important objective when parallel heuristics are contemplated is to design methods
that outperform their sequential counterparts in terms of solution quality and, ide-
ally, computational efficiency, i.e., the parallel method should not require a higher
overall computation effort than the sequential method or should justify the effort by
higher quality solutions. Search robustness is another characteristic increasingly ex-
pected of parallel heuristics. Robustness with respect to a problem variant is meant
here in the sense of providing “equally” good solutions to a large and varied set of
problem instances, without excessive calibration, neither during initial development
nor when addressing new problem instances. See [37, 38] for a discussion of these
issues.

17.3 Low-Level 1-Control Parallelization Strategies

Parallel strategies that exploit the potential for task decomposition within the inner-
loop computations of meta-heuristics are often labeled “low level” because they
modify neither the algorithmic logic nor the search space. They aim solely to accel-
erate the search and generally do not modify the search behavior of the sequential
meta-heuristic. Typically, the exploration is initialized from a single initial solution
or population, and the search proceeds according to a single meta-heuristic strategy,
only the inner-loop computations being decomposed and simultaneously performed
by several processors.

Most low-level parallel strategies belong to the 1C/RS/SPSS class and are usu-
ally implemented according to the classical master-slave parallel programming
model. A “master” program executes the 1-control sequential meta-heuristic but
dispatches computation-intensive tasks to be executed in parallel by “slave” pro-
grams, as illustrated in Figure 17.5. The master program receives and processes
the information resulting from the slave operations, selects and implements moves
or, for population-based methods, selects parents and generates children, updates
the memories (if any) or the population, and decides whether to activate differ-
ent search strategies or stop the search. The slave programs perform evaluations
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Fig. 17.5 Low-level decomposition strategy.

and return the results to the master which, once all the results are in, resumes
the normal logic of the sequential meta-heuristic. The complete control on the
algorithm execution rests with the master, which decides the work allocation for
all other processors and initiates most communications. No communications take
place among slave programs. Figure 17.6 illustrates this control and communica-
tion scheme. Its instantiations for neighborhood and population-based methods are
presented in Sections 17.3.1 and 17.3.2.

Fig. 17.6 Master-slave configuration.
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17.3.1 Neighborhood-Based 1C/RS/SPSS Meta-heuristics

This is the parallelization of the neighborhood evaluation procedure, depicted in
Figure 17.2, called to compute the next current solution of a local search heuristic
embedded in a neighborhood or population-based (e.g., evolutionary procedures im-
plementing advanced “schooling” for offspring) meta-heuristic. Each iteration of the
appropriate while loop of the procedure generates and evaluates one neighbor of the
current solution and may be executed independently of the other iterations since
no data dependency exists between iterations. The computations of these iterations
may then be distributed over the available p processors as illustrated in Figure 17.7.
The master groups the neighbors into the appropriate number of tasks, which are
then sent to slaves. Each slave then executes the Neighbor procedure on its re-
spective part of the neighborhood and sends back the best one found. The master
waits for all slaves to terminate their computations and, then, selects the best move
and proceeds with the search. See [58] for an application of this strategy to a tabu
search meta-heuristic for the vehicle routing problem with time-window constraints
(VRPTW).

Fig. 17.7 1C/RS strategy: master neighborhood evaluation.

There is no predefined optimal size for the parallel tasks, the granularity
|N (x)|/p of the decomposition depending upon the number p of available pro-
cessors, as well as preoccupations with inter-processor communication times and
balancing work loads among processors, given the computer architecture on which
computations are being performed. Thus, for example, defining each neighbor
evaluation as a single task and dynamically dispatching these on a first-available,
first-served basis to slave processors as they complete their tasks provide maxi-
mum flexibility and good load balancing when the evaluation of neighbors is of
uneven length. For most parallel computer architectures, however, this fine-grained
parallelism may come at too high an overhead cost for creating and exchanging
tasks. When neighbor evaluations are sensibly the same, an often used strategy is to
partition the elements defining the neighborhood into as many groups as available
processors.

Notice that, when the local search procedure returns the first-best neighbor (e.g.,
the simple-serializable-set approach for parallel simulated annealing [74, 82]), the
implemented move will often be different from that of the sequential version and,
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thus, the two algorithms will behave differently. Moreover, the speedup performance
of this strategy will be poor when many “good” neighbors are readily available (e.g.,
when the temperature parameter of simulated annealing is high and most neighbors
are acceptable).

17.3.2 Population-Based 1C/RS/SPSS Meta-heuristics

1C/RS/SPSS parallelism in genetic algorithms is to be found in the loops that
implement the selection, crossover, mutation, and fitness-evaluation operators, the
resulting methods being variably identified in the literature as global parallelization,
master-slave parallelization, and distributed fitness evaluation.

In theory, the degree of parallelism for each of these four operators is equal to
the population size, but overhead costs may significantly decrease the degree of
achievable parallelism. Actually, to be worth parallelizing, the computation must be
significant. It is of little worth, for example, to parallelize a computationally simple
operation like mutation. In other cases, an efficient parallelization can only be imple-
mented on shared memory systems. Thus, for example, the selection operator must
be able to access randomly any individual in the population and its parallelization
on a distributed-memory computer, where individuals are distributed across several
processors, is too costly and inefficient. In practice, only the fitness evaluation can
satisfy these requirements and is often the only practical source of 1C/RS/SPSS
parallelism for genetic–evolutionary methods.

The 1C/RS/SPSS parallel fitness evaluation of a population can be implemented
using the master-slave model. The master partitions the individuals among slaves,
which compute and return the fitness of each individual, as well as aggregate fig-
ures to facilitate the average population fitness to be computed by the master once
all slaves have reported in. Similarly to other 1-control low-level parallelizations,
the execution of a 1C/RS/SPSS genetic–evolutionary algorithm performs the same
search as the sequential program, only faster.

The 1C/RS/SPSS parallelism for ant-colony methods lies at the level of the in-
dividual ants. Ants share information indirectly through the pheromone matrix.
Furthermore, the pheromone matrix is updated once all solutions have been con-
structed, and there are no modifications of the pheromone matrix during a construc-
tion cycle. Consequently, the construction procedure performed by each individual
ant is performed without data dependencies on the progress of the other ants.

Currently, most parallel ant-colony methods implement some form of
1C/RS/SPSS strategy according to the master-slave model, including [14, 49, 118,
120, 141]. The master builds tasks consisting of one or several ants (which can be
assimilated to a “small” colony) and distributes them to the available processors.
Slaves perform their construction heuristic and return their solution(s) to the master,
which updates the pheromone matrix, returns it to the slaves, and so on. To fur-
ther speed up computation, the pheromone update can be computed at the level of
each slave, which computes the update associated with its solutions as well as the
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best solution and sends the aggregated pheromone update and its best solution to
the master. The fine-grained version with central matrix update has been the topic
of most contributions so far and, in general, it outperformed the sequential ver-
sion of the algorithm. It is acknowledged, however, that it does not scale well and,
similarly to other meta-heuristics, this strategy is outperformed by more advanced
multi-search methods.

Scatter search and path relinking implement different evolution strategies, where
a restricted number of elite solutions are combined, the result being enhanced
through a local search or a full-fledged meta-heuristic, usually neighborhood-based.
Consequently, the 1C/RS/SPSS strategies discussed previously regarding the paral-
lelization of local-search exploration apply straightforwardly to the present context,
as in [59, 60, 62] for the p-median and the feature-selection problems.

A different 1C/RS/SPSS strategy for scatter search may be obtained by running
concurrently the combination and improvement operators on several subsets of the
reference set. Here, the master generates tasks by extracting a number of solution
subsets and sending them to slaves. Each slave then combines and improves its so-
lutions, returning its results to the master for the update of the reference set. Each
subset sent to a slave may contain the exact number of solutions required by the
combination operator or a higher number. In the former case [59, 60, 62], the corre-
sponding slave performs an “iteration” of the scatter search algorithm. In the latter
case, several combination-improvement sequences could be executed and solutions
could be returned to the master as they are found or all together at the end of all
sequences. This heavy load for slaves may conduct to very different computation
times and, thus, load-balancing capabilities should be added to the master.

17.3.3 Remarks

We complete the low-level parallelization discussion with two remarks.
A second class of low-level parallelization approaches was defined in the litera-

ture, the so-called probing or look-ahead strategies, parallelizing the sequential fan
candidate list strategy first proposed for tabu search [72, 73]. Probing strategies
belong to the 1C/KS class with any of the search-differentiation models identified
previously. For neighborhood-based methods, probing may allow slaves to perform
a number of iterations before synchronization and the selection of the best neighbor
solution from which to proceed (one may move directly to the last solution identi-
fied by the slave or not). For population-based methods, the method may allow each
slave to generate child solutions, “educate” them through a hill climbing or local-
search procedure, and play out a tournament to decide who of the parents and chil-
dren survive and are passed back to the master. To the best of our knowledge, [39]
is the only paper to ever report results on a parallel implementation of the sequen-
tial fan candidate list strategy. The authors realized a comparative study of several
synchronous tabu search parallelizations for the location-allocation problem with
balancing requirements, including a straightforward 1C/RS/SPSS approach and a
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1C/KS/SPSS method following the model just described (as well as a few p-control
approaches). Both the 1C/KS/SPSS and the 1C/RS/SPSS heuristics yielded better
solutions than sequential tabu search on the tested instances, the former being con-
sistently superior to the latter.

We notice that a rather limited impact of low-level, 1-control parallel strategies
was observed in most cases. Of course, when neighborhoods are large or neighbor-
evaluation procedures are costly, the corresponding gain in computing time may
prove interesting, e.g., the parallel tabu searches of [19, 21, 135] for the Quadratic
Assignment Problem (QAP), [20] for the Traveling Salesman Problem (TSP), and
[115–117] for the task-scheduling problem. Then, when a sufficiently large number
of processors is available, it might prove worthy to combine a 1C/RS/SPSS ap-
proach with more sophisticated strategies into hierarchical solution schemes (e.g.,
[122] were low-level parallelism accelerated the move evaluations of the individ-
ual searches engaged into an independent multi-search procedure for the VRP).
More advanced multi-search strategies generally outperform low-level strategies,
however.

17.4 Domain Decomposition

Domain or search-space decomposition constitutes another major parallelization
strategy, one that is intuitively simple and appealing: divide the search space into
smaller, usually disjoint but not necessarily exhaustive sets, solve the resulting sub-
problems by applying the sequential meta-heuristic on each set, collect the respec-
tive partial solutions, and reconstruct an entire one.

This apparently simple idea may take several forms, however. The most straight-
forward approach consists in partitioning the solution vector, each resulting subset
defining a subproblem. Thus, for example, the arc-design variables of a VRP may be
separated into customer subsets (including the depot in each subset). A number of
factors must then be specified to completely define the search-space decomposition.
First, whether the partition is strict or subsets are allowed to overlap (e.g., “close
by” customers may appear in two subsets in the previous VRP example). Second,
whether search threads consider complete or partial solutions to the problem (in
both cases, search processes access only a restricted portion of the search space).
In the latter case, a complete solution has to be reconstructed at some point. Third,
whether the “moves” performed on a subproblem are restricted to the corresponding
search-space subset or may involve variables in neighboring subspaces creating an
indirect overlapping of subsets.

Strict partitioning restricts the meta-heuristic threads to their subsets and forbids
moves involving solutions belonging to two or more subsets (e.g., arc swaps in-
volving customers in different subsets). This obviously results in part of the search
space being unreachable and the parallel meta-heuristic being non-optimal. Explicit
or implicit overlapping aims to address this issue. But not completely and not with-
out cost. Thus, the only way to guarantee that all potential solutions are reachable
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is to make overlapping cover the entire search space. This corresponds to “no
decomposition” in the case of explicit overlapping and is thus not relevant. For im-
plicit overlapping, it may also deny any gain resulting from decomposition in the
first place or, in the best case, require significant overhead costs to keep most of the
subproblem threads within their own subspaces.

Consequently, strict partitioning or very limited overlapping are the preferred ap-
proaches and a re-decomposition feature is included to increase the thoroughness of
the search and allow all potential solutions to be examined: the decomposition is
modified at regular intervals and the search is restarted using this new decomposi-
tion. This feature provides also the opportunity to define non-exhaustive decomposi-
tions, i.e., where the union of the subsets is smaller than the complete search space.
A complete-solution reconstruction feature is almost always part of the procedure.

This strategy is naturally implemented using 1C/KS schemes, with a MPSS or
MPDS search-differentiation strategy, according to the master-slave programming
model illustrated in Figure 17.8. The master process determines the partition and
sends subsets to slaves, synchronizes their work and collects their solutions, recon-
structs solutions (if required), modifies the partitions, and determines stopping con-
ditions. Slaves concurrently and independently perform the search on their assigned
search-space subsets. The master is illustrated in Figure 17.9, where it is assumed
that each slave performs a local search or a meta-heuristic on its subproblem and re-
turns its current best solution when the master synchronizes activities.

Fig. 17.8 Domain decomposition – master-slave logic.

For neighborhood-based meta-heuristics, as well as for evolutionary methods
embedding such meta-heuristics or local search procedures, one may implement the
search-space decomposition approach by replacing the corresponding local search
with the master-slave strategy of Figure 17.9. A few modifications to the original
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Fig. 17.9 Domain decomposition – master procedure.

meta-heuristic may be required though. Thus, for simulated annealing, the length of
the local search (cooling schedule) of each slave is reduced by a factor equal to p.
The main issue for tabu search is the global tabu list the master has to reconstruct
out of the local memories of the slaves simultaneously with the reconstruction of a
complete solution prior to continuing the search.

A different approach for implementing the 1C/KS scheme of Figures 17.8 and
17.9 is to execute a full meta-heuristic on each subset of the search space, peri-
odically modifying the partition and re-starting the search. Such an approach has
been used for tabu search and proved quite successful for problems for which a
large number of iterations can be performed in a relatively short time and restarting
the method with a new decomposition does not require an unreasonable compu-
tational effort (e.g., [54] for the TSP, [83] for image filtering, and [68] to solve
efficiently in real-time several variants of the same ambulance fleet management
problem instance).

We are not aware of any application of the previous approach to meta-heuristics
other than tabu search, although such applications would be straightforward in most
cases. A similar remark applies to the pC/KS version of search-space decomposi-
tion, a MPSS or MPDS search-differentiation strategy, illustrated in Figure 17.10.
Such an approach was proposed in [136] for the VRP, where the customer set was
partitioned, vehicles were allocated to the resulting regions, and each subproblem
was solved by an independent tabu search. All processors stopped after a number of
iterations that varied according to the total number of iterations already performed.
The partition was then modified by an information exchange phase, during which
tours, undelivered cities, and empty vehicles were exchanged between adjacent pro-
cessors (corresponding to neighboring regions). At the time, this approach did allow
to address successfully a number of problem instances, but the synchronization in-
herent in the design of the strategy hindered its performance. A parallel ant-colony
approach combining this decomposition idea with a master-slave implementation
was presented in [51] (parallelizing the algorithm presented in [123]), where the
master generates an initial solution, defines the partition, and updates the global
pheromone matrix, while slaves execute a savings-based ant colony algorithm [124]
for the resulting restricted VRP.

To complete the presentation, notice that the search behavior and the computa-
tional work performed by the sequential and parallel versions of meta-heuristics,
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Fig. 17.10 Domain decomposition – collegial logic.

as well as the quality of their respective solutions are not the same in most cases
(again, enforcing similar behaviors would require efforts that would take away any
possible benefit from parallelization). Search-space decomposition methods appear
increasingly needed as the dimensions of contemplated problem instances continue
to grow. Clearly, more work is required on how to best combine domain decompo-
sition and the other parallelization strategies, cooperation in particular.

17.5 Independent Multi-search

Independent multi-search is among the earliest parallelization strategies. It is also
the most simple and straightforward p-control parallelization strategy and generally
offers very interesting performances.

The strategy consists in performing several searches simultaneously on the entire
search space, starting from the same or from different initial solutions, and selecting
at the end the best among the best solutions obtained by all searches. It is thus a
straightforward parallelization of the well-known multi-start heuristic.

Independent multi-search methods belong to the pC/RS class of the taxonomy.
No attempt is made to take advantage of the multiple search threads running in
parallel other than to identify the best overall solution once all programs stop. This
earns independent search strategies their rigid synchronization classification.

Independent multi-search methods turn out to be effective, simply because of
the sheer quantity of computing power they allow one to apply to a given problem.
This was established empirically by several papers, including the tabu searches in
[10] for the QAP and [137] for the job shop scheduling problems, in which excellent
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results were obtained when compared to the best existing heuristics at the time. Both
studies also attempted to establish some theoretical justifications for the efficiency
of independent search. Battiti and Tecchiolli [10] derived models that showed that
the probability of “success” increased and the corresponding average time to “suc-
cess” decreased with the number of processors (provided the tabu procedure did not
cycle). On the other hand, Taillard [137] showed that the conditions required for
the parallel method to be “better” than the sequential one are rather strong, where
“better” was defined as “the probability the parallel algorithm achieves success by
time t with respect to some condition (in terms of optimality or near-optimality), is
higher than the corresponding probability of the sequential algorithm by time pt.”
However, the author also mentioned that, in many cases, the empirical probabil-
ity function of iterative algorithms was not very different from an exponential one,
implying that independent multi-thread parallelization is an efficient strategy. The
results for the job shop problem seemed to justify this claim. Similar results may
also be found in [142].

This combination of simplicity of implementation and relatively good perfor-
mances explains the popularity of the pC/RS/MPSS strategy for the parallelization
of neighborhood-based meta-heuristics, e.g., tabu search for the VRP [122, 140] and
production planning [12]; GRASP for the QAP [92, 112, 114], the Steiner problem
[95, 96], and the 2-path telecommunication network design [125–127]; simulated
annealing for graph partitioning [6, 7, 43, 91] (in the first two contributions the sim-
ulated annealing threads were enhanced with a simple tabu search to avoid cycling
and were part of a multi-level implementation) and the TSP [99] (where each search
thread was a simulated annealing procedure with an adaptive temperature sched-
ule controlled by a genetic algorithm); and variable neighborhood search for the
p-median problem [61].

Independent multi-search pC/RS/MPSS applications to non-genetic evolution-
ary methods have also been proposed for scatter search [60, 62], as well as for ant-
colony optimization for set covering [118], the TSP [134], and the VRP [50]. Stützle
[134] also presented a mathematical analysis and empirical results that suggest the
behavior of pC/RS ant-colony parallel algorithms is similar to that of neighborhood-
based meta-heuristics, i.e., assuming that the probability of finding the best solution
is exponentially distributed with respect to time, independent multi-colony strate-
gies are likely to find better solutions than a sequential implementation for properly
selected performance targets.

In theory, pC/RS independent multi-search may be as easily adapted to parallel
evolutionary meta-heuristics by running the same (MPSS) or different (MPDS) evo-
lutionary method on disjoint populations. In practice, however, most evolutionary-
genetic pC/RS parallelizations used small-sized populations, an “initial” population
of size n being separated into n/p groups for the p available processors [77, 130],
a strategy that did not perform well when compared to sequential algorithms with
optimized population size for the particular problem instance. Indeed, while small
populations speed up the computation of genetic operators such as fitness evaluation
and crossover, they also display well-documented adverse impacts on the diversity
of the genetic material, leading to premature convergence of the search. Running
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several full-sized population genetic methods in parallel [23, 24] avoids this issue
and offers performances similar to those observed for the other meta-heuristics: a
computation effort multiplied by the number of independent search threads and gen-
erally being outperformed by cooperative strategies.

17.6 Cooperative Search Strategies

Independent multi-search strategies seek to accelerate the exploration of the search
space toward a better solution (compared to sequential search) by initiating simul-
taneous search threads from different initial points (with or without different search
strategies). Cooperative search strategies go one step further and integrate mecha-
nisms to share, while the search is in progress, the information obtained from this
diversified exploration. The sharing and, eventually, creation of new information
yields in many cases a collective output with better solutions than a parallel inde-
pendent search.

Cooperative multi-search methods launch several independent search threads,
each defining a trajectory in the search space from a possibly different initial
point or population by using a possibly different meta-heuristic or search strategy.
The information-sharing cooperation mechanism specifies how these independent
meta-heuristics interact the global search behavior of the cooperative parallel meta-
heuristic emerging from the local interactions among them. Such similarities with
systems where decisions emerge from interactions among autonomous and equal
“colleagues” have inspired the name collegial control for the classes of strategies
described in this section.

Cooperative search may be viewed as a bottom-up meta-heuristic specifying the
components and their interactions, and it may thus become a “new” meta-heuristic
in its own right. The key challenge of cooperation is to ensure that meaningful in-
formation is exchanged in a timely manner yielding a global parallel search that
achieves a better performance than the simple concatenation of the results of the
individual threads, where performance is measured in terms of computing time and
solution quality. Toulouse, Crainic, and Gendreau [144] have proposed a list of fun-
damental issues to be addressed when designing cooperative parallel strategies for
meta-heuristics: What information is exchanged? Between what processes is it ex-
changed? When is information exchanged? How is it exchanged? How is the im-
ported data used? Implicit in their taxonomy and explicitly stated in later papers,
the issue of whether the information is modified during exchanges or whether new
information is created completes this list.

These decisions are more than implementation details, they constitute the core
design parameters of a cooperative meta-heuristic. For example, a cooperative strat-
egy could have a set of independent meta-heuristics re-start periodically from
the current-best overall solution. The specification that all independent search
threads are re-started periodically from the current-best solution of all the inde-
pendent programs makes up the cooperation mechanism. It tells when programs
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interact (periodically; the period length is usually clearly stated), what informa-
tion is exchanged (the best solutions and the overall best), between what search
threads (all), what to do with the exchanged information (re-start from the imported
solution).

The information to be shared among cooperating search threads should aim to
improve the performance of the receiving programs and create a global, “complete”
image of the status of the search. “Good” solutions are the most often exchanged
type of information. In many cases, this takes the form of the current-best solution
a search thread sends to the others or, as in the previous example, the overall best
being sent to all. Not all such strategies are profitable, however.

It has been observed that sending out all current-best solutions is often counter
productive, particularly when the meta-heuristic starts on a series of improving
moves or generations, as solutions are generally “similar” (particularly for
neighborhood-based procedures) and the receiving threads have no chance to actu-
ally act on the in-coming information. It has also been observed that always sending
the overall best solution to all cooperating threads is generally bad as it rapidly de-
creases the diversity of the parts of the search space explored and, thus, increases
the amount of worthless computational work (many threads will search in the same
region) and brings an early “convergence” to a not-so-good solution. Sending out
local optima only, exchanging groups of solutions, and implementing random se-
lection procedures for the solutions to send out, the latter generally biased toward
good or good-and-different solutions, are among the strategies aimed at addressing
these issues. (A different strategy was proposed in [3], where the negative impact
of best solution broadcasts followed by search re-initialization was countered by
having half the tabu searches regularly apply a diversification procedure, while the
other half engaged in an intensification phase.)

So-called context information may also be exchanged. Context information refers
to data collected by a meta-heuristic during its own exploration, such as the sta-
tistical information relative to the presence of particular solution elements in im-
proving solutions (e.g., the medium and long-term memories of tabu search). Such
exchanges show great promise as part of guiding heuristics for the overall search
(see Section 17.6.3), but are not much used yet and significant research is needed to
define and qualify them.

Search threads may exchange information directly or indirectly. Direct exchanges
of information between two or more threads often occur when the concerned pro-
grams agree on a meeting point in time to share information. But not always. Thus, a
search thread may send – broadcast – its information to one or several other threads
without prior mutual agreement. Receiving search threads must then include capa-
bilities to store such information without disturbing their own search trajectories
until ready to consider it. Failure to implement such mechanisms may result in bad
performances, as has been observed for strategies combining uncontrolled broad-
casting of information and immediate acceptance of received data.

Indirect exchanges of information are performed through independent data struc-
tures that become “central” sources of information search threads may access
asynchronously to post information and read information already posted. Such a
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data structure is denoted blackboard in computer science and artificial-intelligence
vocabulary; memory, pool, and data warehouse are equivalent terms found in the
parallel meta-heuristic literature (due to the role assigned to the elements it contains,
the terms reference and elite set are also sometimes used; in the following, we use
“blackboard” for general discussions and an appropriate one among the others when
addressing specific topics). Blackboards could be centralized or distributed. Central-
ized blackboards have been used in most parallel meta-heuristic contributions. They
post information generated by all the search threads, which, in turn, may read this in-
formation independently. The distributed approach has several blackboards located
on the sites of the search threads, which thus become hosts, and only a subset of
threads may post and access information stored on a given local blackboard. Note
that a blackboard which only posts information generated by its host can support
direct asynchronous interactions between the host and a subset of “adjacent” search
threads. The number of blackboards in such a distributed implementation could thus
be as large as the number of search threads. More complex, hierarchical structures
may be contemplated, in particular for grids or loosely coupled distributed systems,
but have yet to be studied.

Communications proceed according to an interaction topology represented by a
communication graph specifying the processes that may engage in direct exchanges.
Each node of the graph represents a search thread or a blackboard. Edges define
pairs of search threads or of a search thread and a blackboard that may communi-
cate directly. They therefore specify the direct flow of information in the cooperative
system. Communication graphs may mirror the physical interconnection topology
of the parallel computer executing the parallel program. Often, however, the com-
munication graph is logically defined to suit the requirements of the cooperation
strategy. Typical interaction topologies found in the parallel meta-heuristic litera-
ture are complete graphs (Figure 17.11), rings, grids (Figure 17.12), toruses, and
stars (Figure 17.13).

When and how information is shared specifies how frequently cooperation ac-
tivities are initiated and whether, in order to engage in these activities, concerned
search threads must synchronize, i.e., each stopping its activities and waiting for all
others to be ready, or not. One identifies these two cases as synchronous and asyn-
chronous communications, respectively. The accumulated knowledge of the field
indicates for both cases that exchanges should not be too frequent to avoid exces-
sive communication overheads as well as premature “convergence” to local optima
[145–148].

Synchronous cooperation activities are initiated based on conditions external
to all, or to all but one of the individual programs. In the example above, where
programs interact periodically, the cooperative search strategy is synchronous, ex-
changes being initiated when exogenously specified conditions, e.g., time or the
number of iterations, are reached. These conditions are applied in the same way to
all search threads, and communications cannot start until all have reached the desig-
nated status. The goal of synchronous cooperative strategies is to re-create a state of
complete knowledge at particular points in the global search and, thus, to hopefully
guide the global search into a coordinated evolution toward the desired solution to
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Fig. 17.11 Complete-graph communication scheme.
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Fig. 17.12 Grid communication scheme – diffusion-based cooperation.
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Fig. 17.13 Star communication scheme – memory-based cooperation.

the problem. As we will see in the following sections, this goal is rarely attained.
Moreover, synchronization results in significant time inefficiencies as communica-
tions are initiated only when the slowest search thread is ready to start. We refer to
such strategies as p-control, knowledge synchronous, pC/KS, with any of the SPDS,
MPSS, or MPDS search differentiation approaches (appropriately applied).

A cooperation strategy is asynchronous when programs initiate cooperation
activities according to their own internal state only, without coordination with other
programs. Thus, for example, a search thread may make available its current best
solution by posting it on a blackboard or may ask for an external solution after it
failed to improve the quality on its best solution for a certain number of iterations.
Asynchronous communications provide the means to build cooperation and infor-
mation sharing among search threads without incurring the overheads associated
with synchronization. As we will see in Sections 17.6.2 and 17.6.3, they also bring
adaptivity to cooperation strategies, to the extend that the parallel cooperative meta-
heuristic may react and dynamically adapt to the exploration of the search space of
the particular problem instance being addressed. This is more likely to yield a glob-
ally emergent exploration strategy of the search space than synchronous approaches.

Asynchronous cooperation is fully distributed, cooperative activities being in-
stantiated independently and concurrently by search threads, and are referred to as
p-control collegial, pC/C, strategies (Section 17.6.2). Shared information may not
just be exchanged; however, it may also be modified or used to infer knowledge.
Thus, for example, statistical information may be gathered regarding configurations
of solution elements in the best exchanged solutions, or the solutions gathered in
a particular blackboard may form an elite population yielding new individuals to
be shared among cooperating search threads. We refer to such settings as p-control
knowledge collegial, pC/KC, strategies (Section 17.6.3).
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It is worth noticing that cooperation is somewhat biased toward intensifying the
search in regions of the solution space that have already been explored and where
interesting solutions have been identified. This is particularly true for simple coop-
eration mechanisms based on synchronization or only exchanging current best solu-
tions. It is thus important to equip the cooperation mechanisms with diversification
capabilities. The introduction of probabilistic selection of exchanged solutions con-
stitutes an example of such a mechanism. Advanced pC/KC cooperation strategies
go further through creation of new solutions and guidance information as described
in the following subsections.

The main principles of cooperative p-control parallelization are the same for
neighborhood- and population-based meta-heuristics, even though denominations
and implementation approaches may differ. One thus finds, for example, coarse-
and fine-grained island models for genetic-based evolutionary methods, the dif-
ferentiation following from the cardinality of the population of each participating
meta-heuristic, few (even down to 1 in some implementations) and many individu-
als, respectively. Similarly, multi-colony is the term generally used in the ant-colony
meta-heuristic community. The presentation that follows identifies these differences
without dedicating subsections to each meta-heuristic class.

17.6.1 pC/KS Synchronous Cooperative Strategies

According to the cooperative pC/KS scheme, the independent cooperating meta-
heuristics enter into an information exchange phase at pre-determined intervals,
phase that must be completed before any program can restart its exploration from
that synchronization point.

Many proposed pC/KS cooperative search meta-heuristics follow a strategy
where all threads synchronize at each point using a complete-graph communication
model (Figure 17.11) and use a master-slave implementation. In this setting, a mas-
ter process, which may or not also include one of the participating meta-heuristics,
initiates the other threads, stops all threads at synchronization points, gathers the
sharable information, updates the global data, decides on the termination of the
search and, either effectively terminates it or distributes the shared information
(a good solution, generally, the overall best solution in many cases) and the continue-
search signal to the other meta-heuristic threads.

The pC/KS implementation of VNS for the p-median problem proposed in [61]
followed this idea, as well as the tabu search-based implementations proposed for
the TSP [94], the VRP (using ejection chains) [121, 122], the QAP [46] and the task
mapping problem [45], the last two contributions attempting to overcome the limi-
tations of the master-slave setting by allowing processes, on terminating their local
search phases, to synchronize and exchange best solutions with processes running
on neighboring processors. A more sophisticated pC/KS approach was proposed
in [108], where the master dynamically adjusted the search-strategy parameters
of cooperating tabu searches according to the results each thread obtained so far.
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Computational results reported for the 0-1 Multi-dimensional Knapsack Problem
showed that this dynamic adjustment of search parameters was indeed beneficial.

The master-slave implementation model has been applied to evolutionary methods
as well. In coarse-grained island implementations of cooperating genetic methods
[43, 133], the master stops the cooperating meta-heuristics and initiates the migra-
tion operator to exchange among the independent populations the best or a small
group of some of the best individuals in each. Applied to ant-colony systems [53]
(also for a satisfiability problem), this strategy divided the colony into several sub-
colonies, each assigned to a different processor. Each slave sent to the master its best
solution once its ants finished searching. The master then updated the pheromone
matrix and started a new search phase.

Alternatively, pC/KS cooperative schemes can be implemented by having each
search thread empowered to initiate synchronization once it reaches a pre-determined
status. It then broadcasts its sharable data, current best solution or group of solutions,
followed by similar broadcasts performed by the other search threads. Once all in-
formation is shared, each thread performs its own import procedures on the received
data and proceeds with its exploration of the search space until the next synchroniza-
tion event. Such an approach was proposed for simulated annealing [48], where the
search threads transmitted their best solutions every n steps and re-started the search
after updating their respective best solutions. This cooperative method outperformed
an independent multi-thread search approach, both obtaining better results than the
sequential version in terms of solution quality.

Most synchronous coarse-grained island parallelizations of genetic-based evolu-
tionary methods fall under this category, where migration operators are applied at
regular intervals, e.g., [152] for satisfiability problems, where the best individual of
each population migrated to replace the worst of the receiving population, [55] for
multi-objective telecommunication network design with migration following each
generation, and [22–24, 78, 93] for graph-partitioning, the latter implementing a
hierarchical method, where the fitness computation was performed at the second
level (through a master-slave implementation; the overhead due to the paralleliza-
tion of the fitness became significant for larger numbers of processors). A similar
strategy was proposed for the multi-ant-colony algorithms [97, 98]. Each colony has
its own pheromone matrix and may (homogeneous) or may not (heterogeneous) use
the same update rule. Colonies synchronize after a fixed number of iterations to ex-
change elite solutions that are used to update the pheromone matrix of the receiving
colony.

Several of these studies [22–24, 93] compared different implementations of
coarse-grained parallel genetic methods and contributed to show that synchronous
pC/KS strategies outperform independent search approaches. They also showed
the superiority of dynamically determined synchronization points, as well as that
of asynchronous communications. Similar conclusions were obtained with parallel
simulated annealing for the graph partitioning problem [88–91] and with tabu search
with location problems with balancing requirements [39, 40] .

The previous strategies are based on global exchanges of information, gathered at
synchronization points during the computation and distributed to all search threads.
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The interest of these strategies follows from the fact that they use the best knowledge
available at the synchronization points to attempt to guide the exploration. Global
information sharing has obvious drawbacks, however. When each independent pro-
gram is guided by the same set of best solutions, the global search lacks diver-
sity and, eventually, all threads will focus on the same regions of the search space.
Designing globally efficient synchronous cooperative strategies has proved to be
difficult in most cases.

Synchronized cooperation may alternatively be based on direct local exchanges
of information, global information sharing taking place through diffusion. To design
such a cooperative strategy, the complete communication graph used previously is
replaced by a less densely connected communication topology such as ring, torus,
or grid graphs. The topology restricts to a few neighbors the direct communications
a search thread may engage in, as illustrated in Figure 17.12 for a grid communica-
tion graph where, for example, the search thread on node 6 can share information
only with threads on nodes 2, 5, 7, and 10. Following synchronization, each thread
continues its search based on information obtained from programs adjacent in the
communication graph. Even though no direct global exchanges take place, informa-
tion is still shared through diffusion. Thus, for example, assuming the meta-heuristic
at node 6 received and accepted the best solution of node 2 at synchronization point
i and the program at node 10 receives and accepts the solution of node 6 at synchro-
nization point i+1, information from search thread on node 2 passed to the method
on node 10. Through diffusion, the search threads on nodes 2 and 10 shared some
information even though they are not adjacent.

This idea has not been as broadly explored as the global-exchange strategy, even
though synchronous cooperative mechanisms based on local exchanges and diffu-
sion have a less negative impact on the diversity of the search-space exploration.
A number of applications were proposed for coarse-grained [15, 143] and fine-
grained [56, 57, 101, 103] genetic-based evolutionary methods with good results.
(It is interesting to recall that [101, 103] was part of a larger body of contributions
[102, 104–107] where hill-climbing heuristics were embedded into genetic algo-
rithms to improve—“educate”—individuals and the impact of this hybridization on
the behavior and performance of genetic methods was studied.) An application to
ant-colony optimization methods was also proposed with similar results [98].

Cooperation based on asynchronous information sharing generally outperforms
synchronous methods, however, and are the topic of Section 17.6.2.

17.6.2 pC/C Asynchronous Cooperative Strategies

Historically, independent and synchronous cooperative methods were the first multi-
search approaches to be developed. However, because of the shortcomings of these
methods, discussed at length in the previous subsections, attention has increasingly
been turned toward asynchronous strategies, which now largely define the “state-
of-the-art” in parallel multi-search meta-heuristics. These asynchronous procedures
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all follow the same general pattern: starting from possibly different initial solutions
and using possibly different search strategies, p threads explore simultaneously the
search space, exchanging and, eventually, creating information according to a mech-
anism moved by the internal logic of each participating search thread and the state of
the search. Asynchronous cooperative strategies belong either to the pC/C or to the
pC/KC class of the taxonomy, the main difference between the two being whether
or not any “new” knowledge is inferred on the basis of the information exchanged
between the search threads; pC/KS strategies are addressed in Section 17.6.3.

Most genetic-based evolutionary asynchronous cooperative meta-heuristics be-
long to the pC/C class. They generally implement a coarse-grained island model,
where migration is triggered within individual populations, selected migrant
individuals being directed toward either all other populations or a dynamically se-
lected subset. An early comparative study of coarse-grained parallel genetic meth-
ods for the graph-partitioning problem numerically showed the superiority of the
pC/C strategy (with migration toward a subset of populations) over synchronous
approaches [93]. Currently, this is the most popular strategy for multi-population
parallel genetic methods [17].

The sharing of information in most asynchronous cooperative search strategies
outside the genetic-evolutionary community is based on some form of centralized
blackboard model, most often denoted central memory [26, 40, 41] and illustrated in
Figure 17.13. According to this pC/C cooperation model, whenever a search thread
identifies sharable information it sends it to the central memory, from where, when
needed, it also retrieves information sent by the other cooperating search threads.
(Information retrieval on distributed-memory systems passes through a request to
the processor running the central-memory processes.) The sharable information cor-
responds to a locally improving solution, the most successful implementations send-
ing new local optima only, according to the already mentioned information-sharing
parsimony principle.

The need for cooperation is particular to each type of meta-heuristic involved
in the cooperation. Following again the principle of parsimonious communications,
such activities are often initiated at algorithmic steps involving a choice of solu-
tions or a modification of the current solution from where the next local search will
proceed, e.g., diversification moves in tabu search or neighborhood changes in vari-
able neighborhood search. It may also be triggered by a priori rules, e.g., a fixed
number of iterations, particularly when no such algorithmic steps exist, e.g., the
tabu searches based on continuous diversification strategies. Central-memory-based
asynchronous cooperative algorithms thus provide the environment of an indirect
exchange of information between cooperating search threads, in particular among
the one that stored the sharable information in the central memory and the one that
accessed this information through a request for knowledge to the central memory.

Most current implementations of this approach manage the central-memory
information following an algorithmic template similar to the one illustrated in
Figure 17.14. The input variable memory size specifies the capacity of the central
memory, i.e., the number of solutions that can be stored in the memory. Incoming
solutions are automatically accepted when the memory is not full. Acceptance is
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Fig. 17.14 Memory template.

conditional to the relative interest of the incoming solution compared to the “worst”
solution in the memory, otherwise. In most cases, the comparison is based on the
evaluation function for the corresponding search space or the value of the objec-
tive function of the original problem. The rWorst solution of a full memory is then
replaced with the incoming solution when the value of the latter is better (lower,
for minimization problems) than that of the former. Diversity measures may mod-
ify this choice in more advanced strategies (which may also delete a larger part,
half, usually, of the population in memory). The template also illustrates the ran-
dom solution-extraction process, which follows the request of a cooperating search
thread for a solution from memory. The random selection may be uniform or biased
to favor solutions with the best ranking based on, for example, solution values.

Several central-memory-based cooperative search strategies are described in the
literature, including simulated annealing applications to graph partitioning [88–91]
and the TSP [129], and the master-slave implementation of a pC/C/MPSS coop-
eration mechanism for VNS applied to the p-median problem [33]. In the latter
work, individual VNS processes communicated exclusively with a master process,
which kept, updated, and communicated the current overall best solution (it also
initiated and terminated the algorithm). Solution updates and communications were
performed following messages from the individual VNS threads, which proceeded
with the “normal” VNS exploration for as long as the solution was improved. When
the solution was not improved, it was communicated to the master (if better than
the one at the last communication) and the overall best solution was requested from
the master. The search was then continued starting from the best overall solution
in the current neighborhood. Computational results on TSPLIB problem instances
with up to 11849 customers showed that the cooperative strategy yielded significant
gains in terms of computation time without loosing on solution quality, which was
comparable to that of the best results in the literature (when available).

To the best of our knowledge, Crainic, Toulouse, and Gendreau were the first to
propose a central-memory approach for asynchronous tabu search in their
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comparative study for multi-commodity location with balancing requirements [40].
Their method, where individual tabu searches sent to the memory their local best
solutions when improved and imported a probabilistically selected (rank-biased)
solution from the memory before engaging in a diversification phase, outperformed
in terms of solution quality the sequential version (which was also bested in terms
of wall-clock computing time) as well as pC/RS/MPDS, pC/KS (varying the syn-
chronization mechanisms and the Search-Differentiation strategies), and broadcast-
based asynchronous pC/C cooperative strategies. The same approach was applied
to the fixed cost, capacitated, multicommodity network design problem with sim-
ilar results [32]. Over the last few years, several other authors have implemented
fairly similar approaches to a variety of problems, including the partitioning of in-
tegrated circuits for logical testing [1], two-dimensional cutting [11], the loading of
containers [13], labor-constrained scheduling [18], and VRPTW [86].

The same broad strategy was also followed when meta-heuristics belonging
to different types were sequentially applied to a given problem. The two-phase
approach of Gehring and Homberger for the VRPTW [63–65, 80] is a typical
example of such a method, where each search thread first applies an evolution
strategy to reduce the number of vehicles, followed by a tabu search to minimize
the total distance traveled. A somewhat different two-phase pC/C parallel strat-
egy was proposed in [9] for the Steiner problem, where each phase, using reactive
tabu search and path relinking, respectively, implemented the pC/C asynchronous
central-memory strategy, all processes switching from the first to the second phase
simultaneously.

The central-memory pC/C approach has proved efficient in handling the problem
of premature “convergence” in cooperative search. The memory contains a large set
of different solutions and cooperating search threads may import different solutions
even when their cooperation activities are taking place in a short time span. Further-
more, the probabilistic solution-extraction strategies used by the central-memory
program yield a cooperation that continuously evolves with respect to the search
threads indirectly exchanging information.

The central-memory approach also allows for more flexibility in terms of the
different meta-heuristic (and exact, eventually) methods that can be combined in a
same set of cooperating programs. One can thus have methods that heuristically
construct new solutions, execute neighborhood-based improving meta-heuristics,
evolve populations of solutions, or perform post-optimization procedures on solu-
tions in the memory. One can thus select cooperating methods that complement each
other, as illustrated in the study of Crainic and Gendreau [31], where a genetic-
method thread was added to an asynchronous multi-thread tabu search for multi-
commodity location-allocation with balancing requirements [40]. The tabu searches
were aggressively exploring the search space, while the genetic method contributed
toward increasing the diversity of solutions exchanged among the cooperating meth-
ods. The genetic method was launched once a certain number of elite solutions iden-
tified by the tabu searches were recorded in the central memory, using this memory
as initial population. Asynchronous migration subsequently transferred the best so-
lution of the genetic pool to the central memory, as well as solutions of the central
memory toward the genetic population. This strategy did perform well, especially on
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larger instances. It also yielded an interesting observation: the best overall solution
was never found by the genetic thread, but its inclusion allowed the tabu search
threads to find better solutions through what appears as a more effective diversifica-
tion of the global search.

Memory-based pC/C cooperative search is also computationally efficient as no
costs are incurred for inter-program synchronizations. No broadcasting is taking
place and there is no need for complex mechanisms to select the threads that will
receive or send information and to control the cooperation. The central memory is
thus an efficient implementation device that allows for a strict asynchronous mode
of exchange, with no predetermined connection pattern, where no process is inter-
rupted by another for communication purposes, but where any thread may access
at all times the data previously sent out by any other search thread. These positive
qualities of the central-memory cooperation concept have naturally opened the way
to the development of more advanced pC/KC mechanisms where new information
is generated based on the data exchanged among cooperating threads. This is the
topic of Section 17.6.3 but, first, we look at a different asynchronous cooperative
search strategy based on direct information exchanges among search threads.

As mentioned earlier, one can implement direct asynchronous exchanges through
local memories (blackboards). Hosted by each search thread and storing information
that the host makes available for sharing, such memories can be read directly and
asynchronously by adjacent search threads according to their own internal logic.
Information is thus shared globally through diffusion processes.

A pC/C cooperative strategy based on these ideas and denoted multi-level
cooperative search was proposed by Toulouse, Thulasiraman, and Glover [149]. The
mechanism may be instantiated with any search differentiation strategy (the authors
used MPSS) and enforces the principle of controlled diffusion of information. Each
search thread works at a different level of aggregation of the original problem (one
processor works on the original problem) and communicates exclusively with the
threads working on the immediate higher and lower aggregation levels. Improved
solutions are exchanged asynchronously at various moments dynamically deter-
mined by each thread according to its own logic, status, and search history. Received
solutions are used to modify the search at the receiving level. An incoming solution
will not be transmitted further until a number of iterations have been performed,
thus avoiding the uncontrolled diffusion of information. Excellent results have been
obtained for graph and hypergraph partitioning problems [110, 111], network de-
sign [35], feature selection in biomedical data [109], and covering design [44]. In
all these cases, the proposed method is either the current best or is on the par with
the best meta-heuristics for the problem.

17.6.3 pC/KC Asynchronous Cooperative Strategies

The exchanges performed by cooperating search threads constitute a rich source
of data for constructing an approximate image of the status of the global search.
It has been thus widely observed that globally optimal solutions are often similar,
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e.g., in the values taken by a large number of variables. Then, because the solutions
exchanged are generally locally good, being local optima in many cases, one may
assume that the statistical properties of the best solutions exchanged are likely to
approximate the statistical properties of the set of globally optimal solutions, and
that this likelihood should increase in time with the evolution of the cooperative
search. It then appears interesting to process the exchanged solutions to extract
knowledge about these characteristics, and then use this knowledge to guide the
search performed by the cooperating threads.

A particular form of knowledge-creation mechanism follows from the obser-
vation that the exchanged solutions form an elite population. New solutions may
then be created by applying any available evolutionary meta-heuristic, solutions that
improve upon their parents and thus directly enhance the global search. Moreover,
these new solutions contribute to diversify the sharable information and may thus
lead one or several cooperating threads to explore new regions of the search space.

Cooperative strategies including mechanisms to create new information and solu-
tions based on the solutions exchanged belong to the p-control knowledge collegial
(pC/KC) class.

Historically, two main classes of pC/KC cooperative mechanisms are found in
the literature, both based on the idea of exploiting a set of elite solutions exchanged
by cooperating search threads, but differing in the information that is kept in mem-
ory: adaptive-memory methods [128] store partial elements of good solutions and
combine them to create new complete solutions that are then improved by the coop-
erating threads; while central-memory methods exchange complete elite solutions
among neighborhood and population-based meta-heuristics and use them to create
new solutions and knowledge to guide the cooperating threads [26, 38, 40]. The dif-
ferences between the two approaches are becoming increasingly blurred, however,
as the latter approach generalizes the former.

The adaptive-memory terminology was coined by Rochat and Taillard in a paper
[128] proposing tabu search-based heuristics for the VRP and the VRPTW that
are still among the most effective ones for both problems. (For more on adaptive-
memory concepts, see [70, 138, 139].) The main idea is to keep in the memory
the individual components (in routing problems, the vehicle routes) making up the
elite solutions as they are found by the cooperating threads, together with memories
counting the frequency of each element in the best solutions encountered so far. The
elements are ranked according to the attribute values of their respective solutions,
the objective value, in particular. When a cooperating thread completes its current
search, it sends its best solution to the adaptive memory and, then, probabilistically
selects tours in the memory to construct an initial solution for its next search. In
almost all cases, the new solution will be made up of routes from different elite
solutions, thus inducing a powerful diversification effect.

The adaptive-memory approach has been applied very successfully to the
VRPTW [5] and [131], the latter proposing a set-covering heuristic to select the ele-
ments that will generate the new initial solution of a cooperating thread and to real-
time vehicle routing and dispatching [66], within a two-level parallelization scheme:
a pC/KC/MPSS cooperating adaptive-memory scheme was implemented at the first
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level while, at the second level, each individual tabu search thread implemented the
route decomposition of Taillard [136] with the help of several slave processors.

Badeau et al. [5] also reported a number of interesting findings for the develop-
ment of asynchronous multi-thread procedures, whether they used adaptive mem-
ory or not. First, the performance of their method with respect to the quality of
the solution was almost independent of the number of search processes (as long as
this number remained within reasonable bounds) for a fixed computational effort
(measured in terms of the overall number of calls to the adaptive memory by all
search threads). Second, while traditional parallelization schemes rely on a one-to-
one relationship between actual processors and search processes, it turned out that
their method did run significantly faster when using more search processes than the
number of available processors, because this allowed to overcome the bottlenecks
created when several threads were trying to access simultaneously the processor
on which the adaptive memory was located. Furthermore, computational evidence
showed that it is not, in general, a good idea to run a search thread concurrently with
the adaptive-memory-management procedure on the same processor.

Central-memory mechanisms keep full solutions, as well as attributes and context
information sent by the search threads involved in cooperation. They include
adaptive-memory concepts as special cases and are thus offering increased gen-
erality and flexibility. Cooperating methods may construct new solutions, execute
a neighborhood-based improving meta-heuristic, implement a population-based
meta-heuristic, or perform post-optimization procedures on solutions in the mem-
ory. Improving meta-heuristics aggressively explore the search space, while
population-based methods (e.g., genetic algorithms [31, 86, 87] and path relinking
[30]) contribute toward increasing the diversity of shared information (solutions)
among the cooperating methods. Exact solution methods may participate to the co-
operation either to build solutions or to seek out optimal ones (on restricted ver-
sions of the problem, eventually). Moreover, once complete solutions are stored in
the central memory, statistics and information-extraction and creation mechanisms
may be built based on any individual element of these solutions or combinations
thereof. Memories recording the performance of individual solutions, solution com-
ponents, or search threads may be added to the central memory and statistics, learn-
ing schemes, and guidance mechanisms may be gradually built.

Population-based methods, genetic algorithms, in particular, are often used to
create new solutions. As described in Section 17.6.3, Crainic and Gendreau [31]
proposed in an early study to use the “young” set of elite solutions in the central
memory to populate a genetic method and, then, to asynchronously migrate elite
solutions between the two populations. The concept evolved and the set of elite
solutions in the central memory is currently viewed as the population to be simul-
taneously evolved by the cooperating threads, including one or more evolutionary
methods [30, 47, 85–87].

The cooperative meta-heuristic proposed by Le Bouthiller and Crainic [86] (also
used in [85, 87]) for the VRPTW had thus two simple genetic algorithms with
order and edge recombination crossovers, respectively, evolving the same popu-
lation with two tabu search methods that perform well sequentially, the Unified
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Tabu of Cordeau, Laporte, and Mercier [25] and Taburoute of Gendreau, Hertz,
and Laporte [67]. The cooperating threads shared information about their respec-
tive good solutions identified so far. When a thread improved its best solution,
it sent it to the central memory, where they were considered “in-training” until
they went through the post-optimization process (2-opt, 3-opt, Or-opt, and ejection-
chain procedures used to reduce the number of vehicles and the total traveled dis-
tance) and become “adults.” The pool of adults in the central memory formed the
elite population for the genetic operators and the tabu search procedures, which
required solutions when needed (at regular intervals for the Unified Tabu and at
diversification time for Taburoute). This algorithm, without any calibration or tai-
loring, proved to be competitive with the best meta-heuristics of its day in linear
speedups.

The goal of Le Bouthiller, Crainic, and Kropf [85, 87] was to improve upon
this pC/C cooperative scheme by extracting new knowledge from the information
exchanged, in order to guide the individual threads and, hopefully, yield a more effi-
cient global search. The authors also aimed for a guidance mechanism independent
of particular features of the problem class at hand, e.g., routes in vehicle routing
problems, and thus selected to work with one of the atomic elements of the prob-
lem: the arc.

The basic idea was that an arc that appears often in good solutions and less fre-
quently in bad solutions may be worthy of inclusion in a tentative solution and vice
versa. To implement this idea, the authors considered the frequency of inclusion of
arcs in three subsets of solutions in the pool, the elite (e.g., the 10% best), average
(between the 10 and 90% best), and worst (the last 10%) groups of solutions. An arc
with a high frequency in a given group signals that the meta-heuristics participat-
ing to the cooperation have often produced solutions that include that arc. Patterns
of arcs were then defined, representing subsets of arcs with similar frequencies of
inclusion or not in particular population groups. Guidance was obtained by transmit-
ting arc patterns to the individual threads indicating whether the arcs in the pattern
should be “fixed” or “prohibited” to intensify or diversify the search, respectively
(“fix” and “prohibit” were performed by using the patterns to bias the selection
of arcs during moves or reproduction). The computing time allocated to the coop-
erative method was divided into four phases: two phases of diversification at the
beginning to broaden the search, followed by two intensification phases to focus
the search around promising regions. (A dynamic version of this mechanism where
phases are triggered by the evolution of the population diversity and best-solution
value is presented in [85].) Excellent performances in terms of solution quality and
computing efficiency were observed when this pC/KC method was compared to the
best-performing methods of the day.

The versatility and flexibility of the central-memory concept is also seen in
the methods that start to be proposed to address so-called rich (combinatorial
optimization) problems displaying multiple “attributes” characterizing their feasi-
bility and optimality structures. The general approach when addressing such multi-
attribute problems is to either simplify them or to sequentially solve a series of
particular cases, where part of the overall problem is fixed or ignored, or both. It is
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well-known that this leads to suboptimal solutions, however, and thus methods are
being proposed to comprehensively address rich combinatorial problems, account-
ing for “all” their attributes simultaneously.

According to the best knowledge of the authors, Crainic et al. [30] (see also
[47]) were the first to propose such a methodology in the context of designing wire-
less networks, where seven attributes were considered simultaneously. The authors
proposed a pC/KC/MPDS parallel cooperative meta-heuristic that had tabu search
solvers work on limited subsets of attributes only, while a genetic method amal-
gamated the partial solutions attained by the tabu search procedures into complete
solution to the initial problem. The global search proceeded in three phases. To ini-
tiate the search, tabu searches started from randomly generated solutions and sent
their improving solutions to the central memory to build the starting population for
the evolutionary method. In the second phase, tabu search threads requested solu-
tions at diversification time, solutions that were extracted probabilistically biased
toward the best (by objective value). Finally, the third phase was activated when the
global search stalled and made use of a guidance mechanism based on solution at-
tributes different from the objective value to direct the searches of the cooperating
threads toward regions of the search space where those attributes displayed desired
values.

A generalization of this approach, denoted Integrative Cooperative Search (ICS)
was introduced recently [28, 29]. In ICS, independent exact or meta-heuristic so-
lution methods, the Partial Solvers, work on different subsets of attributes of the
problem, while other algorithms, the Integrators combine the resulting partial solu-
tions and improve them. Each Partial Solver is designed to investigate a subset of
the problem attribute set and construct the set of corresponding elite Partial Solu-
tions (more than one solver may be assigned to the same attribute subset, in which
case, they are organized according to the central memory cooperation model). Each
Integrator selects solutions from the different Partial Solution sets and constructs,
and possibly improves, complete solutions to the original problem, which become
part of the central memory. It is noteworthy that this is a particular case of evolution,
where parents and offspring are in different populations and are conceptually dif-
ferent. Consequently, the method is not evolving the populations of elite partial and
complete solutions in the strict sense of the term, by replacing individuals. It is rather
a continuous process yielding, for each Integrator thread, one or several individuals,
which enrich the set of complete solutions. Partial Solvers and Integrators cooperate
through the central memory and an adaptive Global Search Coordinator. The lat-
ter is a device that monitors the central memory and the information exchanged to
maintain an image of the context of the global search and of the performance and
evolution of each individual search thread. Guidance mechanisms are built based
on this information, in particular to steer Partial Solvers toward different regions of
their search subspaces.

The last two contributions belong to a development trend still in its infancy,
requiring work to fully describe its behavior and characterize its performance. The
preliminary results are very promising, however, and also illustrate the interest of
the pC/KC central-memory asynchronous cooperation idea.
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17.7 Perspectives

We presented a state-of-the-art survey of the main parallel meta-heuristic ideas and
strategies, discussed general design and implementation principles, and instantiated
these principles for neighborhood- and population-based meta-heuristics. The sur-
vey was structured along the lines of a taxonomy of parallel meta-heuristics, which
provides a rich framework for analyzing these design principles and strategies,
reviewing the literature, and identifying trends and promising research directions.

To sum up, four main classes of strategies are found in the parallel meta-
heuristics field: low-level decomposition of computing-intensive tasks with no
modification to the original algorithm, direct decomposition of the search space,
independent multi-search, and cooperative multi-search. Historically, this series cor-
responds to the development sequence of parallel strategies, which, initially, was
proposed mainly for genetic methods, simulated annealing, and tabu search. The
range of targeted meta-heuristics has broadened in recent years, multi-search strate-
gies taking center stage. A number of studies identifying and characterizing general
strategies were also proposed (see references in the Introduction) and successfully
applied to various meta-heuristics and problem classes.

This is not to say that the research on parallel meta-heuristics is over. Far from
it. As pointed out in the paper and summarized in the following, many open ques-
tions and challenges still face the community, both in terms of general methodology
and its instantiation to the particular context of given meta-heuristics and problem
classes. Indeed, such instantiations lead not only to well-adapted and performing
implementations for the meta-heuristic and problem class considered, but also to
a broader understanding of the methodology and its implications. This is certainly
true for the more recent methods, e.g., ant-colony and other swarm-based methods,
but also for the more “traditional” meta-heuristic classes where one still observes a
lack of comprehensive studies focusing on these issues.

Returning to the four classes of strategies mentioned above, one should emphasize
that each addresses a particular need and, therefore, they are all part of the parallel-
meta-heuristic toolbox. Low-level parallelization strategies accelerate computing-
intensive tasks, particularly the evaluation of a population or neighborhood, and
should prove effective in addressing similar needs for swarm-inspired methods.
Consequently, while the research issues are less challenging, the impact of these
strategies in actual implementations may be significant, particularly as part of hier-
archical strategies.

A similar case can be made for domain decomposition. Following a short period
of intensive work, this strategy has been less studied in recent times. The increase
in memory and computing power of contemporary computers might explain this
fact. The dimensions of the problem instances one faces keep increasing, how-
ever, and strategies that provide the means to efficiently address them are certainly
needed. The decomposition of the search space of the problem at hand is a “natural”
approach to attacking such problems. Research is required, however, on advanced
ways to dynamically perform this decomposition and the reconstruction of whole
solutions. The relations to the implicit-decomposition (attribute-based) methods and
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the integration with cooperative-search strategies also constitute a challenging and
promising research field.

Independent multi-search offers an easy access to parallel meta-heuristic com-
putation. The straightforward parallelization of the multi-start strategy resulting
in the simultaneous exploration of the search space by (possibly different) search
threads starting from different initial solutions has proved its worth in numerous
studies. When one looks for a “good” solution without investment in methodologi-
cal development or actual coding, independent multi-search is the appropriate tool.
More refined techniques, cooperative search in particular, are needed for better
results, however.

Asynchronous cooperation provides a powerful, flexible, and adaptable frame-
work for parallel meta-heuristics that consistently achieved good results in terms
of computing efficiency and solution quality for many meta-heuristic and problem
classes. It is increasingly acknowledged as a meta-heuristic class in its own right and
constitutes a rich and challenging research field. Among the many research issues
of significant interest, we mention four.

First, the exchange and utilization of context data, in particular the memories
local to the search threads, to construct an image of the status of the global search.
Such a process may prove of great interest in better identifying the regions of the
search space already visited and the ones where it would be interesting to direct the
search (promising or not yet visited regions). It could also be extended to investigate
the relative performance of the individual searches participating to the cooperation
and either dynamically adjust the search parameters of some or even replacing a
poorly performing method with a better performing one.

The second issue we identify is that of learning and extracting of information
from the shared data. One could, in fact, see the previous issue as a particular case
of this field aimed at creating new solutions and new information, e.g., patterns
of attributes in given subsets of solutions in the central memory. The goal is to
(1) enrich the population of elite solutions, or parts thereof, that are shared among
cooperating search threads and (2) build guidance mechanisms that bring in a more
consistent (and, sometimes, more directive) way the status of the global search to
the search decisions of individual search threads. Research is this direction is still at
the very beginning but has proved its worth. Of particular interest in this context are
the studies aimed at the integrative cooperative methods, where the search space is
indirectly partitioned according to subsets of problem attributes, and search threads
address either the resulting subproblems or the integrative processes constructing
and improving complete solutions.

More research is also warranted in mixing particular meta-heuristics and strate-
gies. With respect to the latter issue, there is interest in the possible linkages between
central-memory and multi-level strategies. Indeed, while it is important to preserve
the multi-level data-exchange mechanisms that provide the means to control the
diffusion of information, the introduction of a central memory, with guidance, even-
tually, could enhance the global search by, on one hand, more rapidly making avail-
able pertinent information and, on the other hand, creating new sharable data. With
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respect to methods, we should study not only how the parallel strategies apply to
the newer meta-heuristics (e.g., swarm-based) but also how these behave while
part of a cooperative algorithm and to what extent and how the behavior of the
latter is modified. Of equally significant interest is the role of exact methods in
cooperation.

It is noteworthy, finally, that cooperation in cooperative search methods takes
place at two different levels. The first is the direct and explicit information sharing
specified by the cooperation mechanism, that is, by the algorithmic design of the
cooperation. In this sense, it is a top-down and “local” process, exchanges taking
place between particular search threads or searches and the memory, at moments
determined by the algorithmic logic of search initiating communications. The sec-
ond level is that of the implicit cooperation, where information spreads across all
the cooperating methods through a diffusion process and correlated interactions.
Implicit cooperation is bottom up and global. It is not specified algorithmically.
It is rather an emergent phenomenon produced by the correlated local interactions
among searches. Many research issues are related to indirect cooperation and how
to harness it to enhance the optimization capabilities of cooperative meta-heuristics.
The main issue is thus how to design such systems (essentially through the selec-
tion of search algorithms and direct cooperation strategies) to obtain a system-wide
emergent behavior that fulfills some specific requirements, e.g., an efficient explo-
ration of the solution space. This area of research is close to similar efforts in other
fields focusing on systems that display emergent behavior through self-organization
and complex adaptive behaviors, e.g., decentralized autonomic computing and so-
cial robotics. A number of concepts have been proposed in these contexts (e.g.,
nonlinear dynamical systems, chaos theory, attractors and system equilibrium) but
have not yet resulted in significant advances for cooperative search. Research in
this area will thus probably continue to be mostly empirical for some time in the
future, while theoretical models are being built and put to the test. The global effort
in these directions will provide us with the design tool for more powerful parallel
meta-heuristics.
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J.M.: Solving feature subset selection problem by a parallel scatter search. Eur. J. Oper.
Res. 169, 477–489, (2006)
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135. Taillard, É.D.: Robust taboo search for the quadratic assignment problem. Parallel Comput.
17, 443–455, (1991)
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Chapter 18
Reactive Search Optimization: Learning While
Optimizing

Roberto Battiti and Mauro Brunato

Abstract Reactive Search Optimization advocates the integration of sub-symbolic
machine learning techniques into search heuristics for solving complex optimiza-
tion problems. The word reactive hints at a ready response to events during the
search through an internal online feedback loop for the self-tuning of critical param-
eters. Methodologies of interest for Reactive Search Optimization include machine
learning and statistics, in particular reinforcement learning, active or query learn-
ing, neural networks, and meta-heuristics (although the boundary signalled by the
“meta” prefix is not always clear).

18.1 Introduction

The final purpose of Reactive Search Optimization (RSO) is to simplify the life for
the final user of optimization. While researchers enjoy designing algorithms, testing
alternatives, tuning parameters, and choosing solution schemes—in fact this is part
of their daily life—the final users’ interests are different: solving a problem in the
most effective way without requiring a costly adaptation and learning curve.

Reactive Search Optimization has to do with learning for optimizing, with the
insertion of a machine learning component into a solution process so that algorithm
selection, adaptation, integration are done in an automated way and a comprehensive
solution is delivered to the final user. The diversity of tasks, stochasticity, dynamicity
which is intrinsic in real-world tasks can be dealt with in a seamless manner. The
interaction with the final user is simplified and made human: no complex technical
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questions are asked about parameters, but the focus is kept on the problem’s detailed
characteristics and user preferences. In fact, the user wants to maintain control of
the problem definition, including of course hard and soft constraints, preferences,
weights. This is the part which cannot be automated, while the user is happy to
delegate issues related to algorithm choices and tuning.

Needless to say, studying and designing satisfactory solutions to the above final
goal is a long-term enterprise with opportunities for PhD students and researchers of
this century, but we feel that the road is clear and that preliminary results of interest
abound.

Apart from the above concrete issues related to the final user, Reactive Search
Optimization also addresses a scientific issue related to the reproducibility of results
and to the objective evaluation of methods. In fact, if an intelligent user is actively
in the loop between a parametric algorithm and the solution of a problem, judging
about an algorithm in isolation from its user—in some cases its creator—becomes
difficult if not impossible. Are the obtained results a merit of the algorithm or a merit
of its intelligent user? In some cases the second case holds, which explains why even
some naı̈ve and simplistic techniques can obtain results of interest if adopted by a
motivated person, not to say by a researcher in love with his pet algorithm and under
pressure to get something published.

Now that the long-term vision is given, let us come to a more detailed definition.

Reactive Search Optimization (RSO) advocates the integration of machine
learning techniques into search heuristics for solving complex optimization
problems. The word reactive hints at a ready response to events while alter-
native solutions are tested, through an internal online feedback loop for the
self-tuning of critical parameters. Its strength lies in the introduction of high-
level skills often associated to the human brain, such as learning from the past
experience, learning on the job, rapid analysis of alternatives, ability to cope
with incomplete information, quick adaptation to new situations and events.

If one considers the dictionary definition of reactive, see the box below, the
“ready response to some treatment, situation, or stimulus” is the part of interest
to us. The contrary in our context is inactive, inert, unresponsive. For sure, its con-
trary is not proactive! In fact, when the level of automation increases, the final user
wins, but the work becomes much more challenging for the researcher: he has to
be fully proactive to anticipate the different adaptation needs of a Reactive Search
Optimization algorithm.

re·ac·tive
1: of, relating to, or marked by reaction or reactance
2 a: readily responsive to a stimulus b: occurring as a result of stress or emotional
upset

re·ac·tion
Date: circa 1611
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1 a: the act or process or an instance of reacting b: resistance or opposition to a force,
influence, or movement . . .
2: a response to some treatment, situation, or stimulus “her stunned reaction to the
news” . . .
3: bodily response to or activity aroused by a stimulus: a: an action induced by
vital resistance to another action ; especially : the response of tissues to a foreign
substance (as an antigen or infective agent) . . .
4: the force that a body subjected to the action of a force from another body exerts
in the opposite direction
5 a (1): chemical transformation or change : the interaction of chemical entities (2):
the state resulting from such a reaction b: a process involving change in atomic nuclei

(derived from: Merriam-Webster online dictionary)

Before dwelling on the technical details, let us briefly mention some relevant
characteristics of Reactive Search Optimization when applied in the context of local
search-based processes.

Learning on the job Real-world problems have a rich structure. While many al-
ternative solutions are tested in the exploration of a search space, patterns and
regularities appear. The human brain quickly learns and drives future decisions
based on previous observations. This is the main inspiration source for inserting
online machine learning techniques into the optimization engine of RSO.

Rapid generation and analysis of many alternatives Often, to solve a problem
one searches among a large number of alternatives, each requiring the analysis
of what-if scenarios. The search speed is improved if alternatives are generated
in a strategic manner, so that different solutions are chained along a trajectory in
the search space exploring wide areas and rapidly exploiting the most promising
solutions.

Flexible decision support Crucial decisions depend on several factors and prior-
ities which are not always easy to describe before starting the solution process.
Feedback from the user in the preliminary exploration phase can be incorporated
so that a better tuning of the final solutions takes the end user preferences into
account.

Diversity of solutions The final decision is up to the user, not the machine. The
reason is that not all qualitative factors of a problem can be encoded into a com-
puter program. Having a set of diverse near-best alternatives is often crucial for
the decision maker.

Anytime solutions The user decides when to stop searching. A first complete
solution is generated rapidly, better and better ones are produced in the following
search phases. The more the program runs, the bigger the possibility to identify
excellent solutions, but if you want a solution fast you are going to get it!

Methodologies of interest for Reactive Search Optimization include machine
learning and statistics, in particular neural networks, artificial intelligence, rein-
forcement learning, active or query learning.
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When one considers the source of information that is used for the algorithm
selection and tuning process, it is important to stress that there are at least three
different possibilities:

1. Problem-dependent information. This is related to characteristics of the spe-
cific problem. For example, a local search scheme for the Traveling Salesman
Problem needs a different neighborhood definition w.r.t. a scheme for the net-
work partitioning problem.

2. Task-dependent information. A single problem consists of a set of instances
or tasks with characteristics which can be radically different. For example,
a Traveling Salesman task for delivering pizza among a set locations in Los
Angeles can be very different from a pizza delivery task in Trento, a small and
pleasant town in the Alps.

3. Local properties in configuration space. When one considers a local search
scheme based on perturbation one builds a trajectory in configuration space
given by successive sample points generated by selecting and applying the
local moves. In poetic terms, one travels along a fitness surface with peaks and
valleys which can vary a lot during the trip. For example, the size and depth of
the attractors around local minimizers can vary from a reasonably flat surface
to one characterized by deep wells. If a scheme for escaping local minimizers
is adapted also to the local characteristics, better results can be expected.

Now, the first possibility is the typical source of information for off-line algo-
rithm selection and parameter tuning, while the last two possibilities are the starting
point for the online schemes of RSO, where parameters are dynamically tuned based
on the current optimization state and previous history of the search process while
working on a specific instance.

Intelligent optimization, a superset of Reactive Search Optimization, refers to
a more extended area of research, including online and off-line schemes based on
the use of memory, adaptation, incremental development of models, experimental
algorithmics applied to optimization, intelligent tuning, and design of heuristics.

The RSO approach of learning on the job is to be contrasted with off-line pa-
rameter tuning. This orthogonal approach is studied, for example in [79, 80], that
proposes methods to predict per-instance and per-parameter run-times with reason-
able accuracy. These predictive models are then used to predict which parameter
settings result in the lowest run-time for a given instance, thus automatically tuning
the parameter values of a stochastic local search (SLS) algorithm on a per-instance
basis by simply picking the parameter configuration that is predicted to yield the
lowest run-time. An iterated local search (ILS) algorithm for the algorithm con-
figuration problem is proposed in [81]. The approach works for both deterministic
and randomized algorithms and can be applied regardless of tuning scenario and
optimization objective.

Online and off-line strategies are complementary: in fact, even RSO methods
tend to have a number of parameters that remain fixed during the search and can
hence be tuned by off-line approaches.

The following part of this chapter is organized as follows. First the different
opportunities for RSO strategies are listed and briefly commented. Section 18.2



18 Reactive Search Optimization: Learning While Optimizing 547

describes different RSO schemes that have been introduced in the literature. A much
more extended presentation has been recently published in [14]. Then sample appli-
cations of Reactive Search Optimization principles are illustrated in Section 18.3.

The brevity of this chapter does not allow for a complete listing and examination:
we ask the omitted authors for forgiveness and encourage authors of novel work to
get in touch with us. The Reactive Search Optimization community1 and software2

web sites are two additional sources of information which can be mined for more
detailed interests.

18.2 Different Reaction Possibilities

The design principles of many superficially different techniques for diversifying the
search in a responsive manner according to the RSO principles of learning while op-
timizing are strongly related. The unifying principle is that of using online reactive
learning schemes to increase the robustness and to permit more hands-off usage of
software for optimization.

For brevity we concentrate this review chapter on reactive techniques applied to
single local search streams. Other possibilities related to using more than one search
stream, aka population-based methods, genetic algorithms, evolutionary techniques,
range from adaptive portfolios to restart strategies, to racing techniques, to intelli-
gent and reactive solver teams [14].

18.2.1 Reactive Prohibitions

It is part of commonsense that the discovery of radically new solutions which is
associated to real creativity demands departing from the usual way of doing things,
avoiding known solutions. The popular concepts of “lateral thinking” and “thinking
outside the box” are related to shifting the point of view, observing an old problem
with new eyes, discarding pet hypotheses.

Techniques that apply lateral thinking to problems are characterized by the
shifting of thinking patterns, away from entrenched or predictable thinking to
new or unexpected ideas. A new idea that is the result of lateral thinking is
not always a helpful one, but when a good idea is discovered in this way it is
usually obvious in hindsight, which is a feature lateral thinking shares with a
joke.

There are a number of mental tools or methods that can be used to bring
about lateral thinking. These include the following:

. . .

1 http://reactive-search.org/
2 http://reactive-search.com/
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Provocation: Declare the usual perception out of bounds, or provide some
provocative alternative to the usual situation under consideration. . . .

As an example see the provocation on cars having square wheels.
Challenge: Simply challenge the way things have always been done or

seen, or the way they are. This is done not to show there is anything wrong
with the existing situation but simply to direct your perceptions to exploring
outside the current area.

For example you could challenge coffee cups being produced with a han-
dle. There is nothing wrong with coffee cups having handles so the challenge
is a direction to explore without defending the status quo. The reason for the
handle seems to be that the cup is often too hot to hold directly. Perhaps coffee
cups could be made with insulated finger grips . . .

There are many other techniques . . . All these tools are practical matters for
circumstances where our normal automatic perceptions and pattern matching
tend to keep us trapped “within the box”.

(derived from Wikipedia “lateral thinking” voice, Jan 2008)

When one reflects about the above connections, it is not surprising to see ideas re-
lated to using “prohibitions” to encourage diversification and exploration (the tech-
nical terms for true creativity in the context of optimization heuristics) in different
contexts and different times. For example, they can be found in the denial strategy
of [121]: once common features are detected in many suboptimal solutions, they are
forbidden.

The full blossoming of “intelligent prohibition-based heuristics” starting from
the late 1980s is greatly due to the role of F. Glover in the proposal and diffusion of a
rich variety of meta-heuristic tools under the umbrella of Tabu Search (TS) [68, 69],
but see also [73] for an independent seminal paper. It is evident that Glover’s ideas
have been a source of inspiration for many approaches based on the intelligent use
of memory in heuristics.

The main competitive advantage of TS with respect to alternative heuristics based
on local search like Simulated Annealing (SA) lies in the intelligent use of the past
history of the search to influence its future steps. Because TS includes now a wide
variety of methods, we prefer the term prohibition-based search when the investi-
gation is focussed onto the use of prohibition to encourage diversification.

Let us assume that the feasible search space is the set of binary strings with a
given length L: X = {0,1}L. X (t) is the current configuration and N(X (t)) the set
of its neighbors, i.e., configurations that can be explored in the following step (Sec-
tion 18.2.2 is mainly focused on neighborhoods). In prohibition-based search some
of the neighbors are prohibited, a subset NA(X (t)) ⊂ N(X (t)) contains the allowed
ones. The general way of generating the search trajectory is given by

X (t+1) = BEST-NEIGHBOR( NA(X (t)) ), (18.1)

NA(X (t+1)) = ALLOW(N(X (t+1)),X (0), . . . ,X (t+1)). (18.2)



18 Reactive Search Optimization: Learning While Optimizing 549

The set-valued function ALLOW selects a subset of N(X (t+1)) in a manner that de-
pends on the entire search trajectory X (0), . . . ,X (t+1).

By analogy with the concept of abstract data type in Computer Science [2], and
with the related object-oriented software engineering framework [49], it is useful
to separate the abstract concepts and operations of TS from the detailed implemen-
tation, i.e., realization with specific data structures. In other words, policies (that
determine which trajectory is generated in the search space, what the balance of in-
tensification and diversification is, etc.) should be separated from mechanisms that
determine how a specific policy is realized. A first classification distinguishes be-
tween strict-TS, which prohibits only the moves leading back to previously visited
configurations, and fixed-TS, which prohibits only the inverses of moves which have
been applied recently in the search, their recency being judged according to a pro-
hibition parameter T , also called tabu tenure.

Let μ−1 denote the inverse of a move, for example, if μi is changing the i-th
bit of a binary string from 0 to 1, μi

−1 changes the same bit from 1 to 0. A neigh-
bor is allowed if and only if it is obtained from the current point by applying a
move such that its inverse has not been used during the last T iterations. In detail,
if LASTUSED(μ) is the last usage time of move μ (LASTUSED(μ) = −∞ at the
beginning):

NA(X (t)) = {X = μ ◦X (t) s. t. LASTUSED(μ−1) < (t −T )}. (18.3)

If T changes with the iteration counter depending on the search status, and in
this case the notation is T (t), the general dynamical system that generates the search
trajectory comprises an additional evolution equation for T (t):

T (t) = REACT(T (t−1),X (0), . . . ,X (t)), (18.4)

NA(X (t)) = {X = μ ◦X (t) s. t. LASTUSED(μ−1) < (t −T (t))}, (18.5)

X (t+1) = BEST-NEIGHBOR(NA(X (t))). (18.6)

Rules to determine the prohibition parameter by reacting to the repetition of
previously visited configurations have been proposed in [26] (reactive-TS, RTS for
short). In addition, there are situations where the single reactive mechanism on T
is not sufficient to avoid long cycles in the search trajectory and therefore a second
reaction is needed [26].

The prohibition parameter T used in Equation (18.3) is related to the amount of
diversification: the larger T , the longer the distance that the search trajectory must
go before it is allowed to come back to a previously visited point. In particular, the
following relationships between prohibition and diversification are demonstrated
in [11] for a search space consisting of binary strings with basic moves flipping
individual bits:

• The Hamming distance H between a starting point and successive points along
the trajectory is strictly increasing for T +1 steps:

H(X (t+Δ t),X (t)) = Δ t for Δ t ≤ T +1.
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• The minimum repetition interval R along the trajectory is 2(T +1):

X (t+R) = X (t) ⇒ R ≥ 2(T +1).

In general, because a larger prohibition value implies a more limited choice of
moves, it makes sense to set T to the smallest value that guarantees a sufficient
degree of diversification.

In reactive-TS [26] the prohibition T is determined through feedback (i.e., reac-
tive) mechanisms during the search. T is equal to one at the beginning (the inverse
of a given move is prohibited only at the next step), it increases only when there is
evidence that diversification is needed, it decreases when this evidence disappears.
The evidence that diversification is needed is signaled by the repetition of previ-
ously visited configurations. This criterion needs to be generalized when the search
space dimension becomes very large, so that the exact repetition of configurations
can become very rare even if the trajectory is confined. In this case, one can monitor
an appropriate distance measure from a given starting configuration. An insufficient
growth of the distance as a function of the number of steps can be taken as evidence
of confinement, see, for example, [20].

A more radical escape mechanism can be triggered when the basic prohibition
mechanism is not sufficient to guarantee diversification. In [26] the escape (a num-
ber of random steps) is triggered when too many configurations are repeated too
often. Further details about applications, implementation, and data structures can be
found in [14].

A reactive determination of the T value can change the process of escaping from
a local minimum in a qualitative manner: one obtains an (optimistic) logarithmic
increase in the strict-TS algorithm, and an (pessimistic) increase that behaves like
the square root of the number of iterations in the reactive case [14].

Robust stochastic algorithms related to the previously described deterministic
versions can be obtained in many ways. For example, prohibition rules can be sub-
stituted with probabilistic generation-acceptance rules with large probability for
allowed moves, small for prohibited ones, see, for example, the probabilistic-TS
[68]. Asymptotic results for TS can be obtained in probabilistic TS [56]. In a differ-
ent proposal (robust-TS) the prohibition parameter is randomly changed between an
upper and a lower bound during the search [122].

Finally, other possibilities which are softer than prohibitions exist. For example,
the HSAT [67] variation of GSAT introduces a tie-breaking rule into GSAT: if more
than one move produces the same (best) Δ f , the preferred move is the one that
has not been applied for the longest span. HSAT can be seen as a “soft” version of
Tabu Search: while TS prohibits recently applied moves, HSAT discourages recent
moves if the same Δ f can be obtained with moves that have been “inactive” for a
longer time.

18.2.2 Reacting on the Neighborhood

Local search based on perturbing a candidate solution is a first paradigmatic case
where simple online adaptation and learning strategies can be applied. Let X be the
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search space, X (t) the current solution at iteration (“time”) t. N(X (t)) is the neigh-
borhood of point X (t), obtained by applying a set of basic moves μ0,μ1, . . . ,μM to
the current configuration:

N(X (t)) = {X ∈X such that X = μi(X (t)), i = 0, . . . ,M}.

Local search starts from an admissible configuration X (0) and builds a search
trajectory X (0), . . . ,X (t+1). The successor of the current point is a point in the neigh-
borhood with a lower value of the function f to be minimized. If no neighbor has
this property, i.e., if the configuration is a local minimizer, the search stops:

Y ← IMPROVING-NEIGHBOR( N(X (t)) ), (18.7)

X (t+1) =
{

Y if f (Y ) < f (X (t))
X (t) otherwise (search stops).

(18.8)

IMPROVING-NEIGHBOR returns an improving element in the neighborhood. In a
simple case this is the element with the lowest f value, but other possibilities exist,
as we will see in what follows.

Online learning strategies can be applied in two contexts: selection of the neigh-
bor or selection of the neighborhood. While these strategies are part of the standard
bag of tools, they in fact can be seen as simple forms of reaction to the recent history
of evaluations.

When the neighborhood is fixed, one can modify the unresponsive strategy which
considers all neighbors before selecting one of the best moves (best-improvement
local search) and obtain a very simple reactive strategy like FIRSTMOVE. FIRST-
MOVE accepts the first improving neighbor if one is found before examining all
candidates. The simple adaptation is clear: the exact number of neighbors evaluated
before deciding the next move depends not only on the instance but also on the
particular local properties in the configuration space around the current point. On
the average, less neighbors will need to be evaluated at the beginning of the search,
when finding an improving move is simple, more neighbors when the trajectory
goes deeper and deeper into a given local minimum attractor.

When the neighborhood is changed depending on the local configuration one
obtains, for example, the Variable Neighborhood Search (VNS) [72]. VNS considers
a set of neighborhoods, defined a priori at the beginning of the search, and then uses
the most appropriate one during the search.

Variable Neighborhood Descent (VND) [74], see Figure 18.1, uses the default
neighborhood first and the ones with a higher number only if the default neighbor-
hood fails (i.e., the current point is a local minimum for N1), and only until an im-
proving move is identified, after which it reverts back to N1. When VND is coupled
with an ordering of the neighborhoods according to the strength of the perturba-
tion, one realizes the principle use the minimum strength perturbation leading to an
improved solution, which is present also in more advanced RSO methods. The con-
sideration of neighborhoods of increasing diameter (distance of its members w.r.t.
the starting configuration) can be considered as a form of diversification. A strong
similarity with the design principle of Reactive Tabu Search is present, see later in
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1. function VariableNeighborhoodDescent (N1, . . . ,Nkmax )
2. repeat until no improvement or max CPU time elapsed
3. k ← 1 // index of the default neighborhood
4. while k ≤ kmax:
5. X ′ ← BestNeighbor (Nk(X)) // neighborhood exploration
6. if f (X ′) < f (X)
7. X ← X ′ ; k ← 1 // success: back to default neighborhood
8. else
9. k ← k +1 // try with the following neighborhood

Fig. 18.1 The VND routine. Neighborhoods with higher numbers are considered only if the default
neighborhood fails and only until an improving move is identified. X is the current point.

this chapter, where diversification through prohibitions is activated when there is
evidence of entrapment in an attraction basin and gradually reduced when there is
evidence that a new basin has been discovered.

An explicitly reactive-VNS is considered in [35] for the Vehicle Routing Prob-
lem with Time Windows (VRPTW), where a construction heuristic is combined
with VND using first-improvement local search. Furthermore, the objective func-
tion used by the local search operators is modified to consider the waiting time to
escape from a local minimum. A preliminary investigation about a self-adaptive
neighborhood ordering for VND is presented in [78]. The different neighborhoods
are ranked according to their observed benefits in the past.

Let us also note some similarities between VNS and the adaptation of the search
region in stochastic search techniques for continuous optimization, see the discus-
sion later in this chapter. Neighborhood adaptation in the continuous case, see for
example, the Affine Shaker algorithm in [25], is mainly considered to speed-up con-
vergence to a local minimizer, not to jump to nearby valleys.

A related possibility to cause a more radical move when simple ones are not
sufficient to escape from a local minimum is iterated local search (ILS). ILS is
based on building a sequence of locally optimal solutions by perturbing the current
local minimum and applying local search after starting from the modified solution.
The work about large-step Markov chain of [94–96, 126] contains very interesting
results coupled with a clear description of the principles.

In VNS minimal perturbations maintain the trajectory in the starting attraction
basin, while excessive ones bring the method closer to a random sampling, there-
fore loosing the boost which can be obtained by the problem structural properties.
A possible solution consists of perturbing by a short random walk of a length which
is adapted by statistically monitoring the progress in the search. Memory and re-
active learning can be used in a way similar to [20] to adapt the strength of the
perturbation to the local characteristics in the neighborhood of the current solution
for the considered instance. Creative perturbations can be obtained by temporarily
changing the objective function with penalties so that the current local minimum
is displaced, like in [31, 45]; see also the later description about reactively chang-
ing the objective function or by fixing some configuration variables and optimizing
sub-parts of the problem [92].
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18.2.3 Reacting on the Annealing Schedule

A widely popular stochastic local search technique is the Simulated Annealing (SA)
method [88] based on the theory of Markov processes. The trajectory is built in a
randomized manner: the successor of the current point is chosen stochastically, with
a probability that depends only on the difference in f value w.r.t. the current point
and not on the previous history:

Y ← NEIGHBOR( N(X (t)) ),

X (t+1) ←

⎧⎪⎨
⎪⎩

Y if f (Y )≤ f (X (t))
Y if f (Y ) > f (X (t)), with probability p = e−( f (Y )− f (X (t)))/T

X (t) if f (Y ) > f (X (t)), with probability (1− p).

(18.9)

SA introduces a temperature parameter T which determines the probability that
worsening moves are accepted: a larger T implies that more worsening moves tend
to be accepted and therefore a larger diversification occurs. An analogy with energy-
minimization principles in physics is present and this explains the “temperature
term,” as well as the term “energy” to refer to the function f .

If the local configuration is close to a local minimizer and the temperature is
already very small in comparison to the upward jump which has to be executed to
escape from the attractor, the system will eventually escape, but an enormous num-
ber of iterations can be spent around the attractor. The memoryless property (current
move depending only on the current state, not on the previous history) makes SA
look like a dumb animal indeed. It is intuitive that a better performance can be
obtained by using memory, self-analyzing the evolution of the search, developing
simple models, and activating more direct escape strategies aiming at a better usage
of the computational resources devoted to optimization.

Even if a vanilla version of a cooling schedule for SA is adopted (starting temper-
ature Tstart, geometric cooling schedule Tt+1 = α Tt , with α < 1, final temperature
Tend), a sensible choice has to be made for the three involved parameters Tstart, α , and
Tend. The work [130] suggests to estimate the distribution of f values. The standard
deviation of the energy distribution defines the maximum-temperature scale, while
the minimum change in energy defines the minimum-temperature scale. These tem-
perature scales tell us where to begin and end an annealing schedule.

The analogy with physics is further pursued in [89], where concepts related to
phase transitions and specific heat are used. The idea is that a phase transition is
related to solving a sub-part of a problem. After a phase transition corresponding to
the big reconfiguration occurs, finer details in the solution have to be fixed, and this
requires a slower decrease of the temperature.

When the parameters Tstart and α are fixed a priori, the useful span of CPU time
is practically limited. After the initial period the temperature will be so low that the
system freezes and, with large probability, no tentative moves will be accepted any-
more in the remaining CPU time of the run. For a new instance, guessing appropriate
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parameter values is difficult. Furthermore, in many cases one would like to use an
anytime algorithm, so that longer allocated CPU times are related to possibly better
and better values until the user decides to stop. Non-monotonic cooling schedules
are a reactive solution to this difficulty, see [1, 46, 105]. The work [46] suggests
to reset the temperature once and for all at a constant temperature not only high
enough to escape local minima but also low enough to visit them, for example, at
the temperature Tfound when the best heuristic solution is found in a preliminary SA
simulation.

A non-monotonic schedule aims at exploiting an attraction basin rapidly by de-
creasing the temperature so that the system can settle down close to the local mini-
mizer, increasing the temperature to diversify the solution and visit other attraction
basins, decreasing again after reaching a different basin. The implementation details
have to do with determining an entrapment situation, for example, from the fact that
no tentative move is accepted after a sequence tmax of tentative changes and deter-
mining the detailed temperature decrease–increase evolution as a function of events
occurring during the search [1, 105]. Enhanced versions involve a learning process
to choose a proper value of the heating factor depending on the system state. Let
us note that similar “strategic oscillations” have been proposed in tabu search, in
particular in the reactive tabu search of [26], see later in this chapter, and in variable
neighborhood search.

Modifications departing from the exponential acceptance rule and other adap-
tive stochastic local search methods for combinatorial optimization are considered
in [99, 100]. The authors appropriately note that the optimal choices of algorithm
parameters depend not only on the problem but also on the particular instance and
that a proof of convergence to a globally optimum is not a selling point for a spe-
cific heuristic: in fact a simple random sampling or even exhaustive enumeration
(if the set of configurations is finite) will eventually find the optimal solution, al-
though they are not the best algorithms to suggest. A simple adaptive technique
is suggested in [100]: a perturbation leading to a worsening solution is accepted
if and only if a fixed number of trials could not find an improving perturbation.
The temperature parameter is eliminated. The positive performance of the method
in the area of design automation suggests that the success of SA is “due largely
to its acceptance of bad perturbations to escape from local minima rather than to
some mystical connection between combinatorial problems and the annealing of
metals.”

“Cybernetic” optimization is proposed in [60] as a way to use probabilistic in-
formation for feedback during a run of SA. The idea is to consider more runs of SA
running in parallel and to aim at intensifying the search (by lowering the tempera-
ture parameter) when there is evidence that the search is converging to the optimum
value.

The application of SA to continuous optimization (optimization of functions de-
fined on real variables) is pioneered by [48]. The basic method is to generate a new
point with a random step along a direction eh, to evaluate the function and to ac-
cept the move with the exponential acceptance rule. One cycles over the different
directions eh during successive steps of the algorithm. A first critical choice has to
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do with the range of the random step along the chosen direction. A fixed choice
obviously may be very inefficient: this opens a first possibility for learning from the
local f surface. In particular a new trial point x′ is obtained from the current point
x as

x′ = x+ RAND(−1,1)vheh,

where RAND(−1,1) returns a random number uniformly distributed between −1
and 1, eh is the unit-length vector along direction h, and vh is the step-range param-
eter, one for each dimension h, collected into the vector v. The vh value is adapted
during the search to maintain the number of accepted moves at about one-half of the
total number of tried moves. Although the implementation is already reactive and
based on memory, the authors encourage more work so that a “good monitoring of
the minimization process” can deliver precious feedback about some crucial internal
parameters of the algorithm.

In Adaptive Simulated Annealing (ASA), also known as very fast simulated re-
annealing [82], the parameters that control the temperature cooling schedule and the
random step selection are automatically adjusted according to algorithm progress.
If the state is represented as a point in a box and the moves as an oval cloud around
it, the temperature and the step size are adjusted so that all of the search space
is sampled at a coarse resolution in the early stages, while the state is directed to
promising areas in the later stages.

A reactive determination of parameters in an advanced simulated annealing ap-
plication for protein folding is presented in [75].

18.2.4 Reacting on the Objective Function

In the above methods, the objective function f remains the guiding source of in-
formation to select the next move. Reactive diversification to encourage exploration
of areas which are distant from a locally optimal configuration has been considered
though an adaptive selection of the neighborhood or of the neighbor based on the lo-
cal situation and on the past history of the search process. A more direct way to force
diversification is to directly prohibit configurations or moves to create a pressure to
reach adequate distances from a starting point.

This part considers a different way to achieve similar results, by reactively chang-
ing the function guiding the local search. For example, the act of visiting a local min-
imum may cause a local increase of the evaluation function value so that the point
becomes less and less appealing, until eventually the trajectory is gently pushed to
other areas. Of course, the real objective function values and the corresponding con-
figurations are saved into memory before applying the modification process. The
physics analogy is that of pushing a ball out of a valley by progressively raising the
bottom of the valley.

A relevant problem for which objective function modifications have been ex-
tensively used is maximum satisfiability (MAX-SAT): the input consists of logic
variables—with false and true values—and the objective is to satisfy the maximum
number of clauses (a clause is the logical OR of literals, a literal is a variable or its
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negation). The decision version is called SAT, one searches for a variable assign-
ment, if any exists, which makes a formula true.

The influential algorithm GSAT [117] is based on local search with the standard
basic moves flipping the individual variables (from false to true and vice versa).
Different noise strategies to escape from locally optimal configurations are added
to GSAT in [115, 116]. In particular, the GSAT-with-walk algorithm introduces ran-
dom walk moves with a certain probability. A prototypical evaluation function mod-
ification algorithm is the breakout method proposed in [98] for the related constraint
satisfaction problem. The cost is measured as the sum of the weights associated to
the violated constraints. Each weight is one at the beginning, at a local minimum
the weight of each nogood is increased by one until one escapes from the given
local minimum (a breakout occurs). Clause-weighting has been proposed in [114]
for GSAT. A positive weight is associated with each clause to determine how often
the clause should be counted when determining which variable to flip. The weights
are dynamically modified during problem solving and the qualitative effect is that
of “filling in” local optima while the search proceeds. Clause-weighting and the
breakout technique can be considered as “reactive” techniques where a repulsion
from a given local optimum is generated in order to induce an escape from a given
attraction basin.

New clause-weighing parameters are introduced and therefore new possibilities
for tuning the parameters based on feedback from preliminary search results. The
algorithm in [113] suggests to use weights to encourage more priority on satisfy-
ing the “most difficult” clauses. One aims at learning how difficult a clause is to
satisfy. These hard clauses are identified as the ones which remain unsatisfied after
a try of local search descent followed by plateau search. Their weight is increased
so that future runs will give them more priority when picking a move. More algo-
rithms based on the same weighting principle are proposed in [63, 64], where clause
weights are updated after each flip: the reaction from the unsatisfied clauses is now
immediate as one does not wait until the end of a try (weighted GSAT or WGSAT).
If weights are only increased, after some time their size becomes large and their
relative magnitude will reflect the overall statistics of the SAT instance, more than
the local characteristics of the portion of the search space where the current con-
figuration lies. To combat this problem, two techniques are proposed in [64], either
reducing the clause weight when a clause is satisfied or storing the weight incre-
ments which took place recently, which is obtained by a weight decay scheme (each
weight is reduced by a factor φ before updating it). Depending on the size of the in-
crements and decrements, one achieves “continuously weakening incentives not to
flip a variable” instead of the strict prohibitions of Tabu Search. The second scheme
takes the recency of moves into account, the implementation is through a weight
decay scheme updating so that each weight is reduced before a possible increment
by δ if the clause is not satisfied:

wi ← φ wi +δ ,

where one introduces a decay rate φ and a “learning rate” δ . A faster decay (lower φ
value) will limit the temporal extension of the context and imply a faster forgetting
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of old information. A critique of some warping effects that a clause-weighting dy-
namic local search can create on the fitness surface is present in [123]: in particular
let us note that the fitness surface is changed in a global way after encountering a
local minimum. Points which are very far from the local minimum, but which share
some of the unsatisfied clauses, will also see their values changed.

A more recent proposal of a dynamic local search (DLS) for SAT is in [124].
The authors start from the Exponentiated Sub-Gradient (ESG) algorithm [112],
which alternates search phases and weight updates and develop a scheme with low
time complexity of its search steps: Scaling and Probabilistic Smoothing (SAPS).
Weights of satisfied clauses are multiplied by αsat, while weights of unsatisfied
clauses are multiplied by αunsat, then all weights are smoothed toward their mean w̄:
w ← w ρ +(1−ρ) w̄. A reactive version of SAPS (RSAPS) is then introduced that
adaptively tunes one of the algorithm’s important parameters.

A similar approach of dynamically modifying the objective function has been
proposed with the term of Guided Local Search (GLS) [127, 128] for other appli-
cations. GLS aims at enabling intelligent search schemes that exploit problem- and
search-related information to guide a local search algorithm. Penalties depending
on solution features are introduced and dynamically manipulated to distribute the
search effort over the regions of a search space. A penalty formulation for TSP in-
cluding memory-based trap-avoidance strategies is proposed in [129]. One of the
strategies avoids visiting points that are close to points visited before, a general-
ization of the previously described STRICT-TS strategy. A recent algorithm with an
adaptive clause weight redistribution is presented in [83]. It adopts resolution-based
preprocessing and reactive adaptation of the total amount of weight to the degree of
stagnation of the search.

Let us note that the use of a dynamically modified (learned) evaluation function
is related to the machine learning technique of reinforcement learning (RL). Early
applications of RL in the area of local search is presented in [33, 34]. Some rein-
forcement learning approaches for optimization are also discussed in [8]. Recent
work includes [15], on-the-fly parameter tuning for evolutionary algorithms in [55],
and the presentation in [14].

18.3 Applications of Reactive Search Optimization

It must be noted that Reactive Search Optimization is not a rigid algorithm but
a general framework: specific algorithms have been introduced for unconstrained
and constrained tasks, with different stochastic mechanisms and rules for selecting
neighbors. As it usually happens in heuristics, the more specific knowledge about a
problem is used, the better the results. Nonetheless, it was often the case that sim-
ple RSO versions realized with very limited effort could duplicate the performance
of more complex schemes because of their simple embedded feedback loop and
without intensive parameter and algorithm tuning. A long-term goal of RSO is the
progressive shift of the learning capabilities from the algorithm user to the algorithm
itself, through machine learning techniques.
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The RSO framework and related algorithms and tools have been and are being
applied to a growing number of “classical” discrete optimization problems, continu-
ous optimization tasks, and real-world problems arising in widely different contexts.
The Web, see for example, Google scholar, lists thousands of citations to the sem-
inal papers, the following list is a selection of some applications we are aware of.
We are always happy to hear from users and developers interested in RSO principles
and applications.

In the following we summarize some applications in “classical” combinatorial
tasks in Section 18.3.1, where by classical we mean abstract definitions of prob-
lems which have been extensively studied in the Computer Science and Operations
Research community.

Then we present applications in the area of neural networks in Section 18.3.2,
where RSO has been used to solve the optimization problems related to machine
learning. Let us note that the synergy between optimization and machine learning
is explored in the opposite direction in this case, i.e., of using optimization to solve
machine learning tasks.

Then we discuss versions of RSO for continuous optimization tasks in Sec-
tion 18.3.3.

Finally, in Section 18.3.4, we present some applications to problems which are
closer to the real application areas. These problems are of course related to their
abstract and clean definitions but usually contains more details and require more
competence in the specific area to make substantial progress.

18.3.1 Classic Combinatorial Tasks

The seminal paper about RSO for Tabu Search (Reactive Tabu Search) presented
preliminary experimental results on the 0-1 Knapsack Problem and on the Quadratic
Assignment Problem [26]. A comparison with Simulated Annealing on QAP tasks is
contained in [27]. An early experimental comparison of Reactive Search Optimiza-
tion with alternative heuristics (Repeated Local Minima Search, Simulated Anneal-
ing, Genetic Algorithms, and Mean Field Neural Networks) is presented in [28].
An application of a self-controlling software approach to Reactive Tabu Search is
presented in [57] with results on the QAP problem.

18.3.1.1 Knapsack and Related Problems

A reactive local search-based algorithm (adaptive memory search) for the 0/1-
Multidemand Multidimensional Knapsack Problem (0/1-MDMKP) is proposed in
[5]. The 0/1-MDMKP represents a large class of important real-life problems, in-
cluding portfolio selection, capital budgeting, and obnoxious and semi-obnoxious
facility location problems. A different application is considered in [76] for the dis-
junctively constrained knapsack problem (DCKP), a variant of the standard knap-
sack problem with special disjunctive constraints. A disjunctive constraint is a cou-
ple of items for which only one item is packed.
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18.3.1.2 Problems on Graphs

A reactive tabu search algorithm for Minimum Labeling Spanning Tree is consid-
ered in [39, 40], together with other meta-heuristics. The problem is as follows:
Given a graph G with a color (label) assigned to each edge one looks for a span-
ning tree of G with the minimum number of different colors. The problem has
several applications in telecommunication networks, electric networks, multi-modal
transportation networks, among others, where one aims at ensuring connectivity by
means of homogeneous connections.

The graph partitioning problem has been a test case for advanced local search
heuristics starting at least from the seminal Kernighan and Lin paper [84], which
proposes a variable-depth scheme. This is is fact a simple prohibition-based (tabu)
scheme where swaps of nodes among the two sets of the partitions are applied and
the just swapped nodes are kept fixed during a sequence of tentative moves in search
of an improving chain. Greedy, Prohibition-based, and Reactive Search Optimiza-
tion Heuristics for Graph Partitioning are proposed and compared in [11], Multilevel
Reactive Tabu Search techniques, based on producing coarse versions of very large
graphs are considered for Graph Partitioning in [10].

An RSO scheme is applied to the Maximum Clique Problem (MCP) in graphs in
[19, 23]. A clique is a subset of nodes which are mutually interconnected, the prob-
lem is related to identifying densely interconnected communities and, in general, to
clustering issues. A relaxed quasi-clique version of the problem where some edged
may be missing is addressed in [38].

The work in [132] introduces a new algorithm that combines the stigmergic ca-
pabilities of Ant Colony Optimization (ACO) with local search heuristics to solve
the maximum and maximum-weighted clique problem. The introduced Reactive
Prohibition-based Ant Colony Optimization for MCP (RPACOMCP) complements
the intelligent ant colony search with a prohibition-based diversification technique,
where the amount of diversification is determined in an automated way through a
feedback (history-sensitive) scheme.

In [111] the authors address the problem of computing a graph similarity measure
which is generic in the sense that other well-known graph similarity measures can
be viewed as special cases of it. They propose and compare two algorithms, an
Ant Colony Optimization based algorithm and a Reactive Search Optimization, and
show that they obtain complementary results: while the RSO technique achieves
good solutions in shorter times, the proposed ACO method eventually attains a better
quality.

A classification of methods to manage the prohibition period (Tabu tenure) in the
literature is presented in [54] together with a new reactive Tabu tenure adaptation
mechanism. The generic method is tested on the k-coloring problem.

A Reactive Tabu Search algorithm with variable clustering for the unicost Set
Covering Problem (SCP) is proposed in [86]. Unicost SCPs arise in graph theory
when one must select a minimum covering of edges by nodes or nodes by cliques.
In addition, in many practical applications (crew scheduling, political redistricting,
conservation biology, etc.) the relative variation in the weights may be small enough
to warrant a unicost model.



560 Roberto Battiti and Mauro Brunato

18.3.1.3 Vehicle Routing Problems

A reactive tabu search version for the vehicle routing problem with time windows
is designed in [44], while a version of the Vehicle Routing Problem with Backhauls
(VRPB) is considered in [50, 104].

A heuristic approach based on a hybrid operation of RTS and Adaptive Memory
Programming (AMP) is proposed in [91] to solve the VRPB. One is given a set of
customers, some of which are linehauls (delivery points) and some are backhauls
(collection points), a set of homogeneous vehicles and a depot. A distinguishing
feature of this model is that all backhaul customers must be visited after all linehaul
customers are served on each route. RTS is used with an escape mechanism which
manipulates different neighborhood schemes in order to continuously balance in-
tensification and diversification during the search process. The adaptive memory
strategy takes the search back to the unexplored regions of the search space by
maintaining a set of elite solutions and using them strategically with the RTS. The
authors in [101] address the pickup and delivery problem with time windows using
reactive tabu search.

A reactive VNS technique for VRPTW is also proposed in [35]. Vehicle routing
with soft time windows and Erlang travel times is studied in [109].

18.3.1.4 Satisfiability and Related Problems

Maximum satisfiability is considered in [20, 21, 97], reactive Scaling and Proba-
bilistic Smoothing (SAPS) in [124], constraint satisfaction in [102]. Reactive local
search techniques for the Maximum k-Conjunctive Constraint Satisfaction Problem
(MAX-k-CCSP) in [22]. A worst-case analysis of tabu search as a function of the
tabu list length for the MAX-TWO-SAT problem is presented in [97], with applica-
tions also to a reactive determination of the prohibition.

18.3.2 Neural Networks and VLSI Systems with Learning
Capabilities

While derivative-based methods for training from examples have been used with
success in many contexts (error back-propagation is an example in the field of neural
networks), they are applicable only to differentiable performance functions and are
not always appropriate in the presence of local minima. In addition, the calculation
of derivatives is expensive and error-prone, especially if special-purpose VLSI hard-
ware is used. A radically different approach is used in [29]: the task is transformed
into a combinatorial optimization problem (the points of the search space are bi-
nary strings) and solved with the Reactive Search Optimization algorithm. To speed
up the neighborhood evaluation phase a stochastic sampling of the neighborhood is
adopted and a “smart” iterative scheme is used to compute the changes in the per-
formance function caused by changing a single weight. RSO escapes rapidly from
local minima, it is applicable to non-differentiable and even discontinuous functions
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and it is very robust with respect to the choice of the initial configuration. In addi-
tion, by fine-tuning the number of bits for each parameter one can decrease the size
of the search space, increase the expected generalization, and realize cost-effective
VLSI.

Reactive Tabu Search in Semi-supervised Classification is proposed in [133].
With a linear kernel their RTS implementation can effectively find optimal global
solutions for the primal Mixed Integer Programming Transductive Support Vector
Machine (MIP-TSVM) with relatively large problem dimension.

In contrast to the exhaustive design of systems for pattern recognition, control,
and vector quantization, an appealing possibility consists of specifying a general
architecture, whose parameters are then tuned through Machine Learning (ML).
ML becomes a combinatorial task if the parameters assume a discrete set of values:
the RTS algorithm permits the training of these systems with low number of bits
per weight, low computational accuracy , no local minima “trapping”, and limited
sensitivity to the initial conditions [16, 17].

Special-purpose VLSI modules have been developed to be used as components of
fully autonomous massively parallel systems for real-time adaptive applications. In
contrast to many “emulation” approaches, the developed VLSI completely reflects
the combinatorial structure used in the learning algorithms.

Applications considered are in the area of pattern recognition (Optical Char-
acter Recognition), event triggering in High Energy Physics [3], control of non-
linear systems [28], and compression of EEG signals [24]. The first product was
the TOTEM chip [16, 18] and more general special-purpose VLSI realizations are
described in [3, 4]. A parallel neurochip for neural networks implementing the Re-
active Tabu Search algorithm and application case studies are presented in [52].
A Fast Programmable Gate Array (FPGA) implementation of the TOTEM chip is
presented in [6].

18.3.3 Continuous Optimization

A simple benchmark on a function with many suboptimal local minima is consid-
ered in [29], where a straightforward discretization of the domain is used. A novel
algorithm for the global optimization of functions (C-RTS) is presented in [30],
in which a combinatorial optimization method cooperates with a stochastic local
minimizer. The combinatorial optimization component, based on Reactive Search
Optimization, locates the most promising boxes, where starting points for the lo-
cal minimizer are generated. In order to cover a wide spectrum of possible ap-
plications with no user intervention, the method is designed with adaptive mech-
anisms: in addition to the reactive adaptation of the prohibition period, the box
size is adapted to the local structure of the function to be optimized (boxes are
larger in “flat” regions, smaller in regions with a “rough” structure). An application
of intelligent prohibition-based strategies to continuous optimization is presented
in [43].

A Reactive Affine Shaker method for continuous optimization is studied in [36,
37]. The work presents an adaptive stochastic search algorithm for the optimization
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of functions of continuous variables where the only hypothesis is the pointwise com-
putability of the function. The main design criterion consists of the adaptation of a
search region by an affine transformation which takes into account the local knowl-
edge derived from trial points generated with uniform probability. Heuristic adapta-
tion of the step size and direction allows the largest possible movement per function
evaluation. The experimental results show that the proposed technique is, in spite of
its simplicity, a promising building block to consider for the development of more
complex optimization algorithms, particularly in those cases where the objective
function evaluation is expensive.

A Gregarious Particle Swarm Optimizer (GPSO) is proposed in [106]. The par-
ticles (the different local searchers) adopt a reactive determination of the step size,
based on feedback from the last iterations. This is in contrast to the basic parti-
cle swarm algorithm, in which no feedback is used for the self-tuning of algorithm
parameters. The novel scheme presented, when tested on a benchmark for contin-
uous optimization, besides generally improving the average optimal values found,
reduces the computation effort.

18.3.4 Real-World Applications

Reactive search schemes have been applied to a significant number of “real-world”
problems; this term refers to applications where domain-specific knowledge is
required. Rather than defining classes with properties common to many prob-
lems, these applications aim at the “pointwise” solution of a specific issue with
detailed modeling, therefore providing an essential benchmark for optimization
techniques.

18.3.4.1 Power Distribution Networks

A real-world application in the area of electric power distribution, service restora-
tion in distribution systems is studied in [125]. Fast optimal setting for voltage con-
trol equipment considering interconnection of distributed generators is proposed
in [103], service restoration in distribution systems in [66], and distribution load
transfer operation in [65].

18.3.4.2 Industrial Production and Delivery

A continuation of the previously mentioned work on VRPTW [44] is proposed
in [108] to aid in the coordination and synchronization of the production and deliv-
ery of multi-product newspapers to bulk delivery locations. The problem is modeled
as an open vehicle routing problem with time windows and zoning constraints. The
methodology is applied to the newspaper production and distribution problem in a
major metropolitan area.
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In the field of industrial production planning, [58] studies applications of mod-
ern heuristic search methods to pattern sequencing problems. Flexible job-shop
scheduling is studied in [41, 42]. The plant location problem is studied in [53].
The work in [59] is dedicated to solving the continuous flow-shop scheduling prob-
lem. Adaptive self-tuning neurocontrol is considered in [107]. The objective is to
construct an adaptive control scheme for unknown time-dependent nonlinear plants.

18.3.4.3 Telecommunication Networks

Various applications of RSO focussed on problems arising in the design and man-
agement of telecommunication networks. RSO for traffic grooming in optical WDM
networks is considered in [12]. Optimal conformance test selection is studied in
[51]. Conformance testing is used to increase the reliability of telecommunica-
tion applications. Locating hidden groups in communication networks is addressed
in [93] by using hidden Markov models. A communication network is a collection
of social groups that communicate via an underlying communication medium. In
such a network, a hidden group may try to camouflage its communications among
the typical communications of the network. The task of increasing Internet capacity
is considered in [62]. The Multiple-choice Multi-dimensional Knapsack Problem
(MMKP) with applications to service level agreements and multimedia distribution
is studied in [76, 77], where the dynamic adaptation of the resource allocation model
is considered for multi-session multimedia. High-quality solutions, reaching the op-
timum for several instances, are obtained through a reactive local search scheme.
In the area of wireless and cellular communication networks, the work in [13] con-
siders the optimal wireless access point placement for location-dependent services
and the work in [61] proposes a tabu search heuristic for the dimensioning of 3G
multi-service networks.

18.3.4.4 Vehicle Routing and Dispatching

Real-time dispatch of trams in storage yards is studied in [131].
In the military sector, simple versions of Reactive Tabu Search are considered

in [87] in a comparison of techniques dedicated to designing an unmanned aerial ve-
hicle (UAV) routing system. Hierarchical Tabu Programming is used in [7] for find-
ing underwater vehicle trajectories. Aerial reconnaissance simulations is the topic
of [110]. The authors in [9] use an adaptive tabu search approach for solving the
aerial fleet refueling problem.

18.3.4.5 Industrial and Architectural Design

In the automotive sector, RSO is used in [71] for improving vehicle safety: a mixed
reactive tabu search method is used to optimize the design of a vehicle B-pillar
subjected to roof crush.



564 Roberto Battiti and Mauro Brunato

Reactive Tabu Search and sensor selection in active structural acoustic control
problems are considered in [85].

The solution of the engineering roof truss design problem is discussed in [70]
An application of reactive tabu search for designing barrelled cylinders and domes
of generalized elliptical profile is studied in [32]. The cylinders and domes are opti-
mized for their buckling resistance when loaded by static external pressure by using
a structural analysis tool.

18.3.4.6 Biology

A reactive stochastic local search algorithm is used in [90] to solve the Genomic
Median Problem (GMP), an optimization problem inspired by a biological issue.
It aims at finding the chromosome organization of the common ancestor of mul-
tiple living species. It is formulated as the search for a genome that minimizes a
rearrangement distance measure among given genomes. Additional applications in
bio-informatics include, for example [120], which proposes an adaptive bin frame-
work search method for a beta-sheet protein homopolymer model. A novel approach
is studied based on the use of a bin framework for adaptively storing and retrieving
promising locally optimal solutions. Each bin holds a set of conformations within a
certain energy range and one uses an adaptive strategy for restarting a given search
process with a conformation retrieved from these bins when the search stagnates. An
adaptive mechanism chooses which conformations should be stored, based on the
set of conformations already stored in memory, and biases choices when retrieving
conformations from memory in order to overcome search stagnation. The energy
and diversity thresholds for each bin are dynamically modified during the search
process.

An adaptive meta-search method that alternates between two distinct modes of
the search process at different levels is proposed in [118, 119] for protein folding.
The high-level process ensures that unexplored promising parts of the search land-
scape are visited and the low-level search provides the thorough exploration of local
neighborhoods. Multiple search processes are used in an intelligent way.

Finally, visual representation of data through clustering is considered in [47].
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Chapter 19
Stochastic Search in Metaheuristics

Walter J. Gutjahr

Abstract Stochastic search is a key mechanism underlying many metaheuristics.
The chapter starts with the presentation of a general framework algorithm in the
form of a stochastic search process that contains a large variety of familiar meta-
heuristic techniques as special cases. Based on this unified view, questions concern-
ing convergence and runtime are discussed on the level of a theoretical analysis.
Concrete examples from diverse metaheuristic fields are given. In connection with
runtime results, important topics as instance difficulty, phase transitions, parame-
ter choice, No-Free-Lunch theorems, or fitness landscape analysis are addressed.
Furthermore, a short sketch of the theory of black-box optimization is given, and
generalizations of results to stochastic search under noise are outlined.

19.1 Introduction

The aim of this chapter is to present a unified view of stochastic search which is
used as a core mechanism in many metaheuristics. Not every metaheuristic applies
a probabilistic mechanism to organize the exploration of the search space; there are,
e.g., deterministic versions of Tabu Search. Interestingly enough, however, the in-
corporation of “random” (or more precisely, pseudo-random) steps into the algorith-
mic design is rather the usual than the exceptional case in the field of metaheuristics.
Thus, it makes sense to have a closer look at this feature.

One would expect that all metaheuristics that perform stochastic search have
some properties in common. Admittedly, at the moment, we are still far away
from a general theory containing every stochastic metaheuristic as a special case.
Nevertheless, some observations are available that are not restricted to a particular
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metaheuristic algorithm, but have been made, possibly in different appearance, for
several seemingly unrelated algorithms.

The emphasis of this chapter is on results that lead to a deeper understanding
of principles and properties common to more than one stochastic metaheuristic.
Because of this goal, we concentrate on theoretical results, which can be rigorous
or (at least) precise, where “rigorous” is understood in a mathematical sense, and
“precise” means that some form of analytic derivation (although not necessarily a
rigorous one) is used for predicting numerical experimental outcomes. It is clear that
experimental results are at least as important—presumably even more important.
However, they usually contribute to a smaller degree to a unifying understanding,
so we shall not focus on them here.

The chapter is organized as follows: In Section 19.2, we develop a common
formal framework capturing the essential features of most stochastic metaheuris-
tics, and we shortly address the motivation for applying stochastic search in meta-
heuristic algorithms. Sections 19.3 and 19.4 are devoted to convergence results
and to results dealing with required optimization time, respectively. The practi-
cally important issue of parameter choice in metaheuristics is briefly outlined in
Section 19.5. Section 19.6 discusses “No-Free-Lunch” theorems and their implica-
tions for stochastic search, in particular the desirability of a problem-specific fitness
landscape analysis. Some techniques for the last are outlined in Section 19.7. The
purest form of stochastic search algorithms are (stochastic) black-box optimizers,
which are discussed in Section 19.8. Section 19.9 outlines an important special ap-
plication area of metaheuristics, namely optimization under uncertainty or noise.
Section 19.10, finally, concludes the chapter.

19.2 General Framework

The aim of the stochastic search algorithms investigated in this chapter is the exact
or approximative solution of combinatorial optimization (CO) problems of the form

f (x)→ min such that x ∈ S, (19.1)

where S is a finite search space, f is a real-valued function called objective function,
and “min” can be replaced by “max.” The function f is also called cost function
(if to be minimized) or fitness function (if to be maximized). We consider iterative
algorithms A of the following general type: In iteration t, algorithm A uses a memory
Mt and a list Lt of solutions xi ∈ S. The list Lt contains new “trial points” for the
optimization. The algorithm proceeds as follows:

1. Initialize M1 according to some rule.
2. In iteration t = 1,2, . . ., until some stopping criterion is satisfied,

a. determine the list Lt as a function g(Mt ,zt) of Mt and of a random influence
zt ;

b. determine the objective function values f (xi) of all xi ∈ Lt and form a list L+
t

containing the pairs (xi, f (xi));
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c. determine the new memory content Mt+1 as a function h
(
Mt ,L

+
t ,z′t

)
of the

current Mt , of the list of solution-value pairs L+
t , and of a random influence

z′t .

The currently proposed (approximate) solution xcurr
t in iteration t results as some

function of
(
Mt ,L

+
t

)
specified by A. Also the stopping criterion defined by A de-

pends on
(
Mt ,L

+
t

)
.

In this formalism, one can imagine zt and z′t as vectors of (pseudo-)random num-
bers that are used by the stochastic algorithm. The function g(Mt ,zt) specifies, for
a given memory Mt , a probability distribution for the list of new search points; the
function h

(
Mt ,L

+
t ,z′t

)
specifies, to given memory Mt and current list L+

t of solution-
value pairs, a probability distribution for the new content of the memory. If the
functions g and h are independent of zt resp. z′t , we obtain the special case of a
deterministic search algorithm.

The generic algorithm above, which is an extension of the generic black-box
optimizer presented in [12] (discussed in Section 19.8), covers most—if not all—
stochastic metaheuristics. We shall outline this by giving two special examples:

• Simulated Annealing (SA): A neighborhood structure on S is used. Mt consists of
a single element, the current search point x. Also Lt consists of a single element,
the currently investigated neighbor solution y to x. To determine Lt from Mt ,
choose a random neighbor y to the element x in Mt . To update Mt to Mt+1, decide
by the stochastic acceptance rule used in SA whether y is accepted or not. If yes,
Mt+1 contains y, otherwise it contains x.

• Canonical Genetic Algorithm (GA): Mt consists of k solutions, and Lt also con-
sists of k solutions. To determine Lt from Mt , apply the operators mutation and
crossover to the solutions in Mt . This yields Lt . To update Mt to Mt+1, apply
fitness-proportional selection to the population contained in Lt , using the corre-
sponding objective function values. The result gives Mt+1.

In principle, the functions g and h may use any information on the problem in-
stance. The important special case where g and h are only allowed to use the knowl-
edge of the search space S and of the problem type, but not of the concrete problem
instance, is denoted as black-box optimization and will be dealt with in Section 19.8.

An important observation is that by construction, the “states”
(
Mt ,L

+
t

)
visited

during the execution of the algorithm form a Markov process in discrete time1:
The distribution of the next state

(
Mt+1,L

+
t+1

)
only depends on the current state(

Mt ,L
+
t

)
. Considering the objective function f as given, already (Mt) (t = 1,2, . . .)

can be seen as a Markov process, since (via L+
t , which results from Mt ) the distri-

bution of Mt+1 only depends on Mt . This allows the application of Markov process
theory to the analysis of stochastic search algorithms.

We may use the described algorithmic framework for giving a rough classifica-
tion of several stochastic metaheuristics:

1 Since g and h do not depend on the iteration counter t, the Markov process is homogeneous.
Dependence on t can easily be modeled by adding t as a component to the memory Mt .
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1. Stochastic Local Search Algorithms: Examples are Iterated Local Search (ILS),
Simulated Annealing (SA), Generalized Hillclimbers (GHCs), or Variable Neigh-
borhood Search (VNS). Mt contains a small, fixed number of solutions (e.g., in-
cumbent solution, current search point, and current neighbor) derived by using a
neighborhood structure on S.

2. Population-Based Stochastic Search Algorithms: Examples are GAs and basic
forms of Estimation-of-Distribution Algorithms (EDAs). Mt contains a “popula-
tion” of solutions. The size of this population is a parameter of the
algorithm.

3. Model-Based Stochastic Search Algorithms: The concept of model-based search
has been introduced by Zlochin et al. [89]. This group of metaheuristics con-
tains Ant Colony Optimization (ACO), some more elaborated forms of EDAs,
or Cross-Entropy Optimization. Here, Mt consists of a vector of real-valued
parameters, e.g., a pheromone vector in ACO, sometimes also of additional
information.

Although metaheuristics as Particle Swarm Optimization (PSO) or some variants
of Evolution Strategies (ES) do not deal with CO problems, but rather with contin-
uous search spaces S instead, these metaheuristics can be used for CO problems
as well by means of suitable problem encodings. For example, the Binary PSO
algorithm proposed by Kennedy and Eberhart [51] maintains vectors interpreted
as positions, best positions, and velocities of “particles,” from which discrete so-
lutions can be derived by a probabilistic mechanism. In the classification above,
this leads us to the model-based class with Mt containing a list of vectors of real
numbers.

We close this section with the question of the general motivation for introduc-
ing stochastic elements (the random variables zt and z′t above) into a metaheuristic.
Perhaps the simplest reason is that care must be taken to prevent a search algo-
rithm from cycling through a small portion of the search space. Let us look at a
simple example. Assume that we perform search in the set S = {0,1}n of binary
strings of length n, with some cost function f on S. For simplicity, let us suppose
that all occurring cost values are different from each other. Our algorithm always
stores the current solution x as well as the solution w visited before x has been
visited, and it iteratively moves from the current x to the lowest cost neighbor so-
lution y of x different from w, where x and y are called neighbors if they differ
exactly in one bit position. This deterministic search algorithm is able to quickly
find a locally optimal solution (i.e., a solution that does not have a neighbor with
lower cost), but neither is it able to stop at a local optimum xloc nor does it typically
leave the neighborhood of some suboptimal xloc in order to continue the search for
the global optimum. Of course, this undesirable behavior can be avoided by in-
creasing our “tabu list” (consisting only of w in the naive algorithm above), but
this comes at the price of increased computational cost. An alternative way to give
the search process the freedom to leave local optima is to allow random moves
from a solution point to a neighbor. Whenever we choose this alternative, it is much
easier to ensure that no point in the solution space is excluded from the search in
advance.
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19.3 Convergence Results

The search process
(
Mt ,L

+
t

)
is only helpful if it leads us to an optimal solution of

Equation (19.1) or, at least, to a good approximation to an optimal solution. Ideally,
the current solution xcurr

t derived from the state at time t becomes an element of the
set S∗ of optimal solutions in some iteration t1 and remains unchanged in subse-
quent iterations. This behavior is denoted as convergence to the optimum. Since we
consider stochastic search algorithms, the definition of convergence has to be modi-
fied. In probability theory, there are several different notions for the convergence of
a stochastic process. One of the most natural in our context is convergence in prob-
ability: A stochastic search algorithm A converges to the optimum in probability, if
the probability of the event xcurr

t ∈ S∗ converges (in the mathematical sense of the
word) to unity as t → ∞.

Convergence to the optimum in probability can be achieved easily even by simple
stochastic search algorithms: Consider the (usually very inefficient) random search
algorithm, where Lt consists in each iteration of a single solution xt that is chosen at
random from S according to some fixed distribution independently of Mt (and hence
of the previous iterations). Let Mt contain the best-so-far solution xbsf

t encountered
up to iteration t −1: The variable xbsf

t is initialized arbitrarily for t = 1, and in each
iteration where f (xt) turns out as better than f

(
xbsf

t

)
, xbsf

t is set to xt . If for each
iteration t, we choose the currently proposed solution xcurr

t as the best-so-far solution
xbsf

t , random search converges to the optimum in probability. However, the runtime
until hitting an optimal solution may be huge.

Interestingly, some more efficient algorithms (from a practical point of view) do
not share the mentioned convergence property. For example, Rudolph [68] showed
that the canonical GA, as described in the previous section, with xcurr

t defined as the
best element of the current generation, never converges to the optimum in probabil-
ity; this is simply due to the fact that by possible mutations, the probability of the
event that the current population does not contain an element from S∗ has always
a strictly positive lower bound. By adding the “elite” solution xbsf

t as an additional
component to the memory Mt , the algorithm can be made convergent to the optimum
in probability.2

For a stochastic search algorithm A, it would be desirable that not only the
probability of xcurr

t ∈ S∗ converges to one but exploitation of the search experi-
ence increases the average fitness of the sample points, i.e., of the elements of
Lt , which is not the case for random search. If for an algorithm A, that part of
the memory Mt that is responsible for the generation of the list Lt of sample
points converges to some state supporting only optimal (or at least good) solu-
tions, one can expect that the quality of the sample points improves during the pro-
cess, such that the search algorithm will arrive at the optimum faster than random
search.

2 Elitism as a mechanism ensuring convergence of a GA has already been analyzed in [39], which
appears to be the first paper on GA convergence.



578 Walter J. Gutjahr

Convergence results of the last kind are harder to show (and require stricter con-
ditions on algorithms and parameter choices), but there exist such results in the
literature for several metaheuristics. The first of them were derived for SA. For SA
with a logarithmic cooling scheme, Hajek [38] gave necessary and sufficient con-
ditions for the current search point xt (the solution contained in Mt) to converge
in probability to S∗. Contrary to the best-so-far solution xbsf

t which does not influ-
ence the process itself, the current search point xt defines the candidates for the
next sample point and thus determines the distribution of Lt . If xt gradually fo-
cuses more and more on promising regions of the search space instead of doing
“blind” random search (as in the first, high-temperature phase of SA), the chance
of detecting the global optimum is increased compared to the random search algo-
rithm. Therefore, convergence of xt is more meaningful than convergence of xbsf

t
only.

In the ACO case, the “sample-generating” part of the memory Mt consists of
the vector τt of pheromone values determining the distribution of the solutions to
be sampled in the current iteration. For algorithms of the MAX-MIN-Ant-System
type developed by Stützle and Hoos [74] using “elitism” (i.e., incorporating also
xbsf

t into Mt ), conditions have been given in [29] and in [72] ensuring that not only
xbsf

t converges to the optimum but also τt converges to a limiting vector that only
allows the generation of an optimal solution. A related result for Cross-Entropy
Optimization was shown by Margolin [54].

What have these results for different metaheuristics in common? Typically, when
proving a “strong” form of convergence for a stochastic search algorithm in the just-
mentioned sense, the parametrization of the algorithm has to be chosen in such a
way that a proper balance between exploration and exploitation is preserved: When
the emphasis is too much on the exploration pole, random search-type behavior
results, and the sample-generating part of the memory Mt does not converge at
all. On the other hand, when exploitation is emphasized too much, one does ob-
tain convergence, but it is usually “premature” convergence to a suboptimal so-
lution. By keeping the balance, convergence is still ensured, but slowed down to
allow the detection of a global optimum. The concrete form of the exploration–
exploitation trade-off depends on the algorithm under consideration. For example,
for SA, high values of the temperature parameter favor exploration, low values favor
exploitation.

In the context of some stochastic metaheuristics, it has turned out as convenient
to approach the question of convergence via a system dynamics approach. For ex-
ample, for PSO, Trelea [78] identifies attractors, i.e., stable fixed points of a dy-
namic process concretizing our generic

(
Mt ,L

+
t

)
dynamics to the PSO case. In

the case of convergence, only attractors can be limiting points. In [78], also the
exploration–exploitation trade-off and its connection to parameter choice are ex-
plicitly addressed.

A very small selection of convergence results for stochastic metaheuristics have
been mentioned in this section. For some other results, see, e.g., [48, 79] (GHCs),
[26, 27] (EDAs), [28, 75] (ACO), or [35] (VNS).
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19.4 Runtime Results

From the viewpoint of applications, the question whether and in which sense a
stochastic search algorithm A converges is less relevant than the question what
amount of computation times A requires for finding an optimal or a sufficiently
good solution. Theoretical investigations must start with the convergence issue nev-
ertheless, since important performance measures are undefined or infinite if A has a
nonzero probability of never arriving at an optimum, as, e.g., in the case of prema-
ture convergence.3

Typical performance measures in the runtime analysis of stochastic search algo-
rithms are (among others) as follows:

• The probability μt = Pr{xcurr
t ∈ S∗} that the current solution in iteration t is

optimal. He and Yu [44] (cf. also [87]) call 1−μt the convergence rate.
• The expected value or the distribution of the first hitting time (FHT) T1, defined

by T1 = min{t ≥ 1 : xcurr
t ∈ S∗} .

• The expected value or the distribution of the time until a solution with a relative
cost deviation from the optimum of less than some ε has been found.

The measures above relate to a single given problem instance, say, a fixed distance
matrix in a case of a TSP. In order to obtain more general information, one is usually
rather interested in the behavior of A for a class of problem instances. In complexity
analysis, all instances of a given problem of a certain size n are considered (say, all
[n×n] distance matrices in the case of a TSP), where a suitable measure for instance
size is applied. Then, the dependence of a fixed performance measure on n is studied.
Since algorithm A has a different expected first hitting time for each instance of
size n, some sort of aggregation is necessary. The two most important options for
aggregation are to consider either the worst case performance over all instances of
size n or the average case performance, given some probability distribution on the
set of instances of size n.

19.4.1 Some Methods for Runtime Analysis

The mathematical analysis of the runtime of stochastic search algorithms is still
in its infancies. Each metaheuristic field has developed some specific techniques
for analyzing computation times on selected optimization problems. However, a
few general methods that turned out as successful for more than one metaheuristic
algorithm can be identified. Below, we shortly outline four of these methods. The
reader is also referred to [33, 64] for more details.

3 To ask, say, for the expected time until first hitting an optimal solution without being sure that
the optimum will be reached, is as meaningless as to ask “How much training time would it take in
the average for a randomly selected person to win an olympic gold medal?” Also by being content
with an approximate solution of a certain minimum quality (call it the “silver medal”) instead of
the optimal solution, one does not escape this difficulty.
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(1) Markov Chain Theory. As noted in Section 19.2, the process (Mt) is a Markov
process. In cases where the memory content Mt can only take finitely many values,
the state space for this process is finite, i.e., (Mt) is a (homogeneous) Markov chain.
An example is GAs, where Mt contains a population of solutions x ∈ S. In the prob-
abilistic literature, much is known about Markov chains, and some results can be
exploited for the analysis of corresponding stochastic search algorithms. Following
He and Yao [42], let us suppose, e.g., that by construction of A, states of Mt contain-
ing an optimal solution are never left again during the process (they are “absorbing
states”), whereas other states have a probability larger than zero of being left in the
next iteration (they are “transient states”). Let A and T denote the set of absorbing
states and of transient states, respectively, and let j = |A| and k = |T|. Giving the
j states in A the lowest and the k states in T the highest indices, the probability
transition matrix P of the Markov chain (Mt) can be decomposed in the form

P =
[

I j 0
R T

]
,

where I j is the [ j× j] identity matrix, 0 is the [ j×k] matrix with all elements equal to
zero, and R and T are [k× j] and [k×k] matrices, respectively. He and Yao [42] show
by direct application of a classical Markov chain result that the vector m containing
as the ith component the expected first hitting time mi of the set of absorbing (i.e.,
optimal) states when starting from transient state i is given by

m = (Ik −T )−1(1, . . . ,1)t ,

where Ik is the [k×k] identity matrix. In principle, this would allow the computation
of expected first hitting times, but the matrix Ik − T is usually difficult to invert.
Thus, the result can only be applied in cases where P has some special form (see,
e.g., [64]).

(2) Level Sets. This method evolved in papers on the analysis of evolutionary
algorithms (EAs) such as [8] or [11]. It tries to circumvent the state-space explosion
for growing n, unavoidable in the direct application of the Markov chain approach,
by grouping solutions into classes, where the fitness values are used as a natural
criterion for defining the classes. Certain ranges of the fitness function (“levels”)
correspond to certain subsets (“level sets”) of the search space S. The level sets have
to be ordered in such a way that if x ∈ A j and y ∈ Ak for two level sets A j and Ak

with j < k, it must always hold that f (x) < f (y). In the cases easiest to analyze, the
stochastic search algorithm A never returns to a level set corresponding to a lower
fitness value after it has already visited a level set corresponding to a higher fitness
value. For example, this monotonicity property is satisfied if A relies on the best-so-
far solution xbsf

t for the update from
(
Mt ,L

+
t

)
to
(
Mt+1,L

+
t+1

)
, since xbsf can never

decrease for increasing t. Now, if it is possible to determine a lower bound for the
probability that the process jumps from some level j to a higher level k > j, an
upper bound for the expected staying time in level j can be derived, and from those
bounds, one can obtain an upper bound for the time until the highest (i.e., optimal)
level is reached.
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This idea has turned out as fruitful for runtime analysis purposes not only in the
field of EAs but also in the ACO field (see, e.g., [33, 34, 37]). In the PSO field,
the level-set method has recently been applied by Sudholt and Witt [76]. For an
extension of the method using the concept of potential functions, see [84].

(3) Drift Analysis. Drift analysis derives from martingale theory and has been
applied for the analysis of SA (see [69]) and later for that of EAs (see, e.g., [41,
43]). Consider again the Markov process (Mt) and suppose that xcurr

t can be derived
directly from Mt , i.e., xcurr

t = xcurr(Mt). (If also the information in L+
t is required

for getting xcurr
t , the process

(
Mt ,L

+
t

)
must be considered instead of (Mt).) Based

on xcurr
t , a distance V (M) between state M and the set of states supporting optimal

solutions may be defined. For example, one may set V (M) = | f (xcurr(M))− f ∗|,
where f ∗ is the objective function value of the optimal solution. The one-step mean
drift in state M is defined as the conditional expectation

E(V (Mt)−V (Mt+1) |Mt = M) = V (M)−∑
M′

P(M,M′)V (M′),

where P(M,M′) is the transition probability from state M to state M′. If the mean
drift is always zero, the process V (Mt) is a martingale, which means that an optimal
solution can only be found by chance. Hopefully, however, the drift generated by a
stochastic search algorithm is positive, such that there is a tendency of the process
to approach the set of optimal solutions.

He and Yao [41] show that from a lower bound on the mean drift, an upper
bound on the expected first hitting time can be derived: If the mean drift in state
M is larger or equal to some constant clow > 0 for any M with V (M) > 0, then the
expected first hitting time after start in state M1 satisfies E(T1 |M1) ≤ V (M1)/clow.
With the help of this and similar lemmas, the behavior of some EAs on simple test
functions has been successfully analyzed. The generality of the formalism shows
that drift analysis should be applicable in principle to every type of stochastic search
algorithms.

(4) Stochastic Approximation. In some cases, where the process (Mt) itself ap-
pears too difficult for a mathematical analysis, one may try to obtain asymptotic
approximations to this process for limiting cases concerning special parameter
values. An example is given in [32, 34], where the behavior of the Ant System
variant of ACO, developed by Dorigo et al. [13], is analyzed on simple test prob-
lems for the case of small learning rate ρ for the pheromone update (ρ is usu-
ally called “evaporation rate” in the ACO literature). In Ant System, the solution
quality achieved in iteration t can also decrease compared to iteration t −1. There-
fore, the level-set method is not applicable to this algorithm, contrary to some
variants of MAX-MIN-Ant-System. However, letting ρ become small allows the
application of the theory of slow learning that has been developed early in the
learning literature (see [63]). As stated in Section 19.2, in ACO, the memory Mt

contains a vector of pheromone values. In the limiting case ρ → 0, the dynam-
ics of this vector becomes deterministic and can be described by a system of
differential equations. A similar approach has been pursued by Purkayastha and
Baras [66].
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Stochastic approximation techniques of this type may also be helpful for the
analysis of other stochastic search algorithms where the memory content Mt lies in
a continuous state space, e.g., EDAs or PSO. Indeed, in one of the first articles using
an approach of this type, Gonzales et al. [26] refer to the analysis of PBIL, which is
a special EDA.

19.4.2 Instance Difficulty and Phase Transitions

The methods presented in Section 19.4.1 aim at the analysis of a stochastic meta-
heuristic A for a special problem instance (S, f ). As noted at the beginning of
Section 19.4, the topic of interest is typically not the behavior of A for a single
instance, but for a class of instances, say the instances of size n of a given CO prob-
lem. The class may contain instances with completely different properties, such that
the concepts of worst-case and of average-case analysis come into play.

In the case of some simple problems such as Generalized OneMax, which will be
described in Section 19.4.3, the degree of difficulty is the same for all instances of
size n. This is not true anymore for most CO problems relevant in applications.
However, it seems that the degree of difficulty is usually not completely “scat-
tered” among the instances, but often depends on some characteristic parameters
of instances which are called control parameters or order parameters. In the sem-
inal paper by Cheesman et al. [9], it has been shown experimentally that for some
fundamental NP-hard combinatorial decision problems, such as k-SAT, Hamilton
Circuits or Graph Coloring, different regions of the set of instances, such as “under-
constrained” or “overconstrained” regions, have to be distinguished; their boundary
is defined by a critical value αc of a control parameter, and the probability of the ex-
istence of a solution with the required properties changes abruptly from near zero to
near one when passing the boundary. The larger the instance size n, the sharper is the
transition. In analogy to phenomena in physics as the melting of ice, this behavior
is called phase transition. The computation time required for solving the problem
is typically high near the phase transition and low for control parameter values far
from αc (“easy–hard–easy pattern”); sometimes, also “easy–hard” or “hard–easy”
patterns are found.

Similar phase transition phenomena have also been observed in NP-hard combi-
natorial optimization problem, e.g., Number Partitioning [24], resource-constrained
project scheduling problems [45], TSPs [88], independent-set problems [3], Max
k-SAT [1] and vertex-cover problems [40]—problems that form the natural range of
application for stochastic search algorithms.

Whereas Cheesman et al. [9] use computational experiments for investigating
the phase transition phenomenon in CO, essential progress in a theoretical un-
derstanding of this phenomenon has been achieved during the last decade by the
physics literature, especially by the approach of applying concepts from statistical
mechanics to CO. Martin et al. [55] and Monasson [59] give introductions to
this field. Statistical mechanics investigations of CO problems usually start with
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the Boltzmann distribution4 on the search space S, which is given by p(x) =
(1/ZT )exp(− f (x)/T ), where x ∈ S is a solution, p(x) is the probability of x, f
is the cost function (called energy in the physics literature), the parameter T ≥ 0 is
called temperature, and the normalization factor ZT = ∑y∈S exp(− f (y)/T ) is called
the partition function. The two boundary cases T = ∞ and T = 0 produce a uniform
distribution on S, resp. a distribution that is concentrated on the set of global optima,
the so-called ground states. The crucial idea is that by letting T tend to zero and in-
vestigating the partition function ZT in this asymptotic limit, information on global
optima is obtained, in particular information on the optimal cost function value f ∗
(“ground-state energy”) or on the number of global optima.

In order to get from single problem instances to instance classes, the quantities
derived from the partition function are averaged over the distribution of instances
within the class of interest. As an example, consider the number partitioning prob-
lem (NPP) with n items, the weights of which are represented by b-bit integers. A
solution x consists in a partition of the set of given items into two subsets, and the
cost function is the absolute difference between the total weights of the two subsets.
Here, the ratio b/n turns out as the relevant control parameter. The statistical me-
chanics approach predicts a phase transition around b/n ∼ 1, with an exponentially
growing search cost for b large compared to n, and polynomially growing cost for b
small compared to n (see, e.g., [57]). This is in good agreement with experimental
results.

From a practical point of view, the results on phase transitions indicate that for
testing or tuning a metaheuristic algorithm, a suitable choice of the instance dis-
tribution is very important. In particular, it does not make too much sense to mix
instances from the “easy” and from the “hard” region, since the last will dominate
the average behavior, which may mask the information that can be obtained for the
easier instances.

19.4.3 Some Notes on Special Runtime Results

For reasons that will be discussed in Section 19.6, it is rather unlikely that for a
stochastic search algorithm, universal positive runtime results (i.e., results valid for
all CO problems predicting computation times of practical interest) can be obtained.
Therefore, the promising way is to investigate different problems separately from
each other, starting with very simple ones in order to develop useful analytical tech-
niques, and successively progressing to the hard CO problems found in applications.

As a consequence of the necessity to study runtime issues separately for the sin-
gle problems, the literature on analytical runtime results for stochastic search heuris-
tics is rather dispersed. An overview would be beyond the scope of this chapter. We
focus therefore on some few key issues. Readers interested in more details may

4 The relevance of this distribution in the field of stochastic search is also underlined by the fact
that one of the oldest general-purpose stochastic search techniques, namely SA, approximates at
each fixed temperature level T the corresponding Boltzmann distribution.
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consult, e.g., the survey [64], which addresses the evolutionary algorithms field
excluding the swarm-intelligence metaheuristics ACO and PSO, and the survey con-
cerning ACO provided in [33].

Typical simple problems investigated in the literature consist of artificially con-
structed test functions, usually pseudo-boolean functions, i.e., functions mapping
the set S = {0,1}n of binary strings x = (x1, . . . ,xn) of length n into the reals. Ex-
amples are the OneMax fitness function f (x) = ∑n

i=1 xi, the LeadingOnes fitness
function f (x) = ∑n

i=1 ∏i
j=1 x j, or the Needle-in-a-Haystack (NIAH) fitness function

f (x) = ∏n
j=1 x j. These three functions (instances) can be generalized to problems

(classes of instances). For example, the Generalized OneMax problem contains the
fitness functions n−dH(x, x∗), with dH denoting the Hamming distance and x∗ ∈ S
being an arbitrary fixed solution. (The OneMax function is the special case where
x∗ = (1, . . . ,1).) Also more general classes have been successfully analyzed in the
literature. For example, Droste et al. [11] have shown that for all linear pseudo-
boolean functions, the expected first hitting time E(T1) of a simple EA, the (1+1)
EA, grows as θ(n logn) in the instance size n. In [81], some results on quadratic
pseudo-boolean functions have been derived; this class already contains NP-hard
optimization problems. Also for more complex EAs and for other stochastic meta-
heuristics, results concerning pseudo-boolean functions have been proved in the
meantime (see the cited surveys).

Part of the literature analyzes the behavior of stochastic search algorithms on
practically relevant problems from the complexity class P, i.e., problems for which
polynomial-time solution algorithms exist. Such problems are good benchmarks for
testing a metaheuristic algorithm which should be able to solve them by requiring
only a low computational overhead compared to a problem-specific algorithm. In
particular, sorting problems (e.g., [70]), maximum matching problems (e.g., [25]),
and minimum spanning tree problems (e.g., [60, 62]) have been analyzed in an EA
or ACO context. As expected, the investigated metaheuristics perform worse than
the respective “tailored” algorithms, but they usually remain efficient in the sense
that only polynomially growing runtime is required.

Very few works exist that analyze stochastic metaheuristics on NP-hard prob-
lems. Witt [83] investigates the behavior of the (1+1) EA on a variant of the NPP (see
Section 19.4.2) for which a fully polynomial approximation scheme exists. Within
O(n2) steps, the (1+1) EA finds a solution that is at least (4/3)-approximate. For
the maximum clique problem on random planar graphs, Storch [73] proves that
SA with constant temperature finds an optimal solution in linear time with over-
whelming probability, while the (1+1) EA needs θ(n6) iterations. For the vertex
cover problem, Friedrich et al. [19] show that the (1+1) EA can produce arbitrarily
poor solutions, whereas the evolutionary multi-objective optimizer SEMO performs
sufficiently well. The poor performance of the (1+1) EA can also be remedied by
applying multistarts, as Oliveto et al. [65] demonstrate.

The issue of the possible advantage of random multistart also raises another in-
teresting question. Whether or not random multistart is beneficial depends on the
distribution of the first hitting time T1. Therefore, results that do determine not only
the expected value E(T1) but the entire distribution of the random variable T1 would
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be very useful. Only few results of this type seem to exist. We give two examples.
Garnier et al. [20] show that for the first hitting time T1(n) of (1+1) EA on a OneMax
instance of size n, the re-normalized value (T1(n)− en logn)/n converges in distri-
bution to−e logZ+C as n→∞, where Z is exponentially distributed with parameter
λ = 1 and C is a constant. Ladret [53] proves that for the first hitting time T1(n) of
(1+1) EA on a LeadingOnes instance, the re-normalized value (T1(n)−mn2)/n3/2

with m = (e− 1)/2 converges in distribution to a normal distribution with mean 0
and variance 3(e2 −1)/8.

19.5 Parameter Choice

One of the most important questions for the application of a metaheuristic algorithm
is how its parameters should be chosen in order to obtain a good algorithmic per-
formance for the application case at hand. Considering the functions g and h of the
generic algorithm of Section 19.2, we may distinguish between sampling param-
eters contained in g (they govern the distribution of the sample points in Lt) and
learning parameters contained in h (they determine the type and amount of influ-
ence of the fitness values observed in the sampled trial points on the new memory
content Mt+1). Examples of sampling parameters are mutation rate and crossover
rate in GAs. Examples of learning parameters are temperature in SA and the learn-
ing rates used in ACO and in some EDAs, respectively.

A first question in this context is whether it is better to keep parameters constant
during the optimization run or whether they should better be changed dynamically.
There are good empirical and theoretical arguments for the second alternative. Con-
vergence results for more than one stochastic search algorithm are based on dynamic
parameter schemes. For example, the classical convergence results [38] for SA re-
quire that the temperature parameter T is gradually decreased. Similarly, in [29], one
of two indicated options for obtaining convergence of an ACO algorithm consists in
gradually reducing the learning rate ρ . It seems that such a dynamic management of
a central parameter of a stochastic search algorithm is a key instrument for achieving
an exploration–exploitation balance.

Despite this intuitive consideration, it is surprisingly hard to verify the benefits
of a dynamic parameter scheme by demonstrating rigorously that performance mea-
sures as the expected first hitting time can be improved if the parameter values are
not kept constant. For example, in the SA literature there has been a long discussion
about the question “to cool or not to cool?”: Is it really advantageous to decrease
T during the optimization process, as experimental customs and theoretical conver-
gence results suggest, or can the same performance be achieved by applying the so-
called Metropolis algorithm that works at fixed, constant temperature T ? Artificial
examples of test functions for which the regular SA with a decreasing temperature
scheme is more efficient have been known since the beginning of the 1990s, but it
was not before 2005 that Wegener [80] presented a natural optimization problem
(the minimum spanning tree problem) for which SA can be shown to outperform
Metropolis.
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In cases where there is no reason suggesting that a gradual reduction of the ba-
sic parameter of a stochastic search algorithm might be beneficial, we may still be
interested in knowing whether it is better to keep the parameter at a fixed value
or to let it oscillate in some way in order to give the process a higher degree of
variability. Jansen and Wegener [49] investigate this question analytically for the
(1+1) EA, applied to simple test functions such as OneMax and LeadingOnes (see
Section 19.4.3). It turns out that the static variant where the parameter under consid-
eration, the mutation probability p of the (1+1) EA, is fixed to a constant is better for
some test functions than the dynamic variant where p is cyclically changed and is
worse for some other test functions. The choice between the static and the dynamic
scheme for a specific test function can make the difference between polynomial and
exponential runtime.

Apart from the question whether or not parameters should be changed dynami-
cally during the process, implementers of metaheuristics are always confronted with
the question of how the parameter values should be adapted to properties of concrete
problem instances, in particular to the size n of the instance.

Let us give an example from the ACO domain showing how analytical results
can help to get insight into this issue (for details, cf. [33]). First investigations of
the runtime of certain ACO variants [34, 61] seemed to indicate that for the Gener-
alized OneMax problem, one has to apply comparably high values of the learn-
ing rate ρ to obtain the favorable expected first hitting time of order θ(n logn)
that has been known for the (1+1) EA. In [37], it is demonstrated that a natural
ACO algorithm of MAX-MIN-Ant-System type can solve Generalized OneMax
within expected time of order θ(n logn) also for a small value of ρ independent
of the problem size n. Similar results are obtained for the LeadingOnes problem.
More than that: As soon as one passes from a fitness function giving much “guid-
ance” to the search process, as it is provided by OneMax or LeadingOnes, to a fit-
ness function where parts of the optimal solution have to be identified rather by
trial-and-error than by the guidance delivered via the neighborhood structure, it
becomes essential for the efficiency of the search process that ρ is chosen small
enough. Consider, e.g., a combination of the functions OneMax and NIAH ex-
plained in Section 19.4.3, defined by f (x) =

(
∏k

i=1 xi
) · (∑n

i=k+1 xi +1
)
. For the

maximization of this function, it is necessary that the correct bits on the first part
of length k of the string are found by trial-and-error (this is the NIAH part), and
the remaining n− k bits are optimized as for a OneMax problem. It is shown in
[37] that this problem can only be solved efficiently if the learning rate ρ is de-
creased with increasing problem size n, but not too fast: For k = log2 n, a scheme
of order θ(n−3) is suitable to obtain polynomial expected first hitting time. On the
other hand, both (1+1) EA and ACO with constant ρ require exponential expected
time.

Another example is the following. In [76], Sudholt and Witt show that for the
Binary PSO algorithm, keeping the (usually applied) bound vmax on the velocity of
the particles fixed when increasing the instance size n leads to an extreme decline
of the performance. Scaling vmax to n by the function vmax = ln(n−1) considerably
improves the runtime behavior on the considered test functions.
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19.6 No-Free-Lunch Theorems

Looking at the co-existence of a considerable number of stochastic metaheuristics, a
natural question would be to ask which is the “best” of them. In more specific terms:
Can we derive a universal result stating that for all CO problems, some stochastic
search algorithm A1 always performs better than some other stochastic search algo-
rithm A2? To have results of this type would be extremely valuable by simplifying
the complex landscape of metaheuristics, but the hope to obtain them broke down
when Wolpert ad Macready [85] published their famous No-Free-Lunch (NFL) the-
orems for optimization. Basically, they state that in the average over all possible
fitness functions, no black-box search algorithm (may it be deterministic or stochas-
tic) can be better than straightforward random search.

Before discussing this surprising result in more detail, we have to formulate the
setting for which it holds in precise terms. It is not an essential restriction to assume
that in our formulation (19.1) of a CO problem, the range of the function f is some
finite subset Y of the set of reals: we might simply restrict the range to the image
of the finite set S under f . Evidently, for fixed S and Y , there exist |Y ||X | different
mappings (fitness functions) f : S → Y . Assume that each of them has the same
probability. Furthermore, let us restrict ourselves to search algorithms A (they can
be deterministic or stochastic, i.e., the functions g and h introduced in Section 19.2
can depend on the random influences z and z′ or not) with the property that the
list Lt always contains only sample points x ∈ S that have not yet been visited in
previous iterations—in other words, with the property that the sets Lt are disjoint
for t = 1,2, . . . , tmax, where tmax is the iteration in which algorithm A terminates. (Of
course, this is a strong assumption, since it presupposes that A stores information
on already visited sample points in the memory Mt ; its consequences, especially for
stochastic search, where memory is saved to some extent by re-sampling, have not
been fully investigated up to now.)

It is rather clear that under these circumstances, the fitness values observed in
the sample points from S that have already been visited before some iteration t do
not give any information on the fitness values in the sample points that have not yet
been visited. Let us denote the set

⋃{Lu|u < t} of already visited points (solutions)
by Sv(t), such that S\Sv(t) is the set of yet unvisited points. By the assumption of a
uniform distribution on the set of all possible fitness functions f , the function values
f (x) for x ∈ S \Sv(t) are independent from the (observed) function values in points
from Sv(t). Therefore, no matter which rule algorithm A applies to determine Lt , the
information on the fitness values on Sv(t) gathered in iterations u = 1, . . . , t−1 is of
no use for getting any hint how to explore the yet completely unknown domain S \
Sv(t). As a consequence, every rule is equally efficient in the average; in particular,
it is neither more efficient nor less efficient than random search. To each fitness
function f for which A performs better than random search, there is another fitness
function for which it performs worse.5

5 There seem to be close relations between NFL theorems and the well-known philosophical in-
duction problem that plays also a role in AI approaches to inductive reasoning. Suppose that the
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Of course, this result does not imply that on a special given problem, every
stochastic search algorithm has the same performance. However, it seems that the
NFL theorems force us to investigate search algorithms separately for each problem,
because if A1 dominates A2 on some problem P1, there must be another problem P2

where A2 dominates A1.
Some researchers have drawn rather radical implications from the NFL theorems,

questioning the field of metaheuristics as a whole. For example, Whitley and Wat-
son [82] report that one extreme reaction consists in the conclusion that there are no
effective general-purpose search methods at all. Already early, there has been a re-
sistance against such over-interpretations, and authors have begun to investigate the
limitations of the NFL theorems. Their arguments proceed mainly along two lines:

1. Complexity Issues. Whereas the NFL theorems hold for the set of all possible
fitness functions, it is usually not this set we encounter in practice when solving
optimization problems. Rather than that, the objective functions in classical CO
problems have comparably low Kolmogorov complexity (KC). Droste et al. [10]
show by a concrete example that NFL theorems need not to hold in classes of
functions with restricted complexity, and that “intelligent” search algorithms are
able in such a context to outperform random search. English [14, 15] demon-
strates that for search spaces S of medium to large size, almost all functions
f : S → Y are “random” (in the sense of having a high KC), and he argues that
random functions do not pose practical problems for heuristic optimization, be-
cause for them already simple optimizers discover good solutions quickly. On the
other hand, “hard” problems are rare and therefore not represented adequately by
the average-case consideration of the NFL theorems. Further results on the rela-
tion between KC and NFL theorems are presented, e.g., in [6, 7].

2. Influence of Fitness Landscape Properties. Igel and Toussaint [46, 47] prove a
sharpened NFL theorem giving a sufficient and necessary condition (closedness
of the set of fitness functions under permutation) for the NFL theorem to hold.
Using this condition, they show that if a non-trivial neighborhood structure on S
has an influence on the fitness, the NFL theorem does not hold. In particular, a set
of fitness functions satisfying certain steepness constraints obviate the NFL the-
orem. (Suitable steepness constraints may, e.g., exclude a case where by a move
from a solution to an immediate neighbor solution, the cost function jumps from
a global maximum to a global minimum.) Therefore, most practical applications
do not fall under the NFL verdict. A similar conclusion is drawn in [52].

function evaluation of f (x) in the solution x ∈ S is not done by an algorithmic computation, but
rather by the observation of some real-world system (say, x is a control vector for a chemical plant,
and f (x) is the observed value of an outcome variable). Then the “NFL insight” that there is no
logical argument why the observation of f (x1), . . . , f (xt−1) for some sample solutions x1, . . . ,xt−1
should provide any information on f (xt) for the sample solution xt /∈ {x1, . . . ,xt−1}, basically
amounts to the intriguing claim by David Hume that we do not have any logical justification for
the step called “inductive conclusion,” although this step is indispensable in science as in everyday
life.
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One may be relieved about the fact that NFL results do not have the consequence
that developing efficient metaheuristics is a futile goal, but one should not miss the
message: Since complexity properties are hard to deal with in applications (KC is
not computable!), it is only the structure of the fitness landscape that may “give us a
free lunch” when applying general-purpose search algorithms. This leads us to the
topic of fitness landscape analysis.

19.7 Fitness Landscape Analysis

A fitness landscape is formally defined as a triple (S,d, f ), where S and f are search
space and fitness function, respectively, and d is a distance function on S assigning
to each pair (x,x′) of solutions x, x′ ∈ S a nonnegative integer distance [58, 71]. (If
a neighborhood structure on S—as used by ILS, SA, or VNS—is given, d is derived
in a natural way as the shortest distance in the neighborhood graph. Conversely,
given d, solutions x, x′ with d(x,x′) = 1 are considered as neighbors.) In the liter-
ature, several quantities characterizing properties of the fitness landscape that are
relevant for search algorithms have been defined (see, e.g., [58, 67]). For the sake of
shortness, let us restrict ourselves to two examples:

• The fitness distance correlation (FDC) is defined as

ρ( f ,dopt) = cov( f ,dopt)/ [σ( f )σ(dopt)],

where dopt is the distance of a solution to the nearest optimal solution, and cov
and σ denote covariance and standard deviation, respectively. For a maximization
problem, a value of ρ( f ,dopt) near the minimum possible value of −1 indicates
that the fitness is ideally correlated with the distance to the optimum solution;
such landscapes are easy for stochastic local search algorithms or GAs. On the
other hand, a value of ρ( f ,dopt) around 0 makes the problem harder, and a value
near 1 indicates that the problem is “deceptive.”

• The random walk correlation function is defined as the average of

r(s) =
1

σ2( f )(m− s)

m−s

∑
t=1

( f (xt)− f̄ )( f (xt+s)− f̄ ),

where x1, . . . ,xm is a sampled random walk on the neighborhood graph of S,
σ2( f ) denotes the variance of the fitness, and f̄ is the mean fitness.

Experimentally, a considerable effect of fitness landscape measures as those above
on the efficiency of stochastic search algorithms has been observed.

One of the most interesting parameters in fitness landscape analysis and simul-
taneously a crucial parameter for the performance of stochastic local search algo-
rithms is the number Nloc of local optima. Fitness landscapes with a large num-
ber of local optima are “rugged” and hard for optimization. Reidys and Stadler
[67] give a “correlation length conjecture” for the estimation of Nloc from the
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so-called correlation length � = −[ln(|r(1)|)]−1, where r is the random walk corre-
lation function defined above. Empirical evidence supports this conjecture. Garnier
and Kallel [21] describe a general technique for estimating Nloc by performing re-
peated local search with M random start solutions and observing the multiplicities
by which the found local optima are covered. Moreover, the methodology provides
bounds on the search complexity for detecting all local optima. Eremeev and Reeves
[16] are even able to determine confidence intervals for Nloc.

For some problems, the number of local optima can also be estimated ana-
lytically. For example, by means of the statistical-mechanics approach outlined
in Section 19.4.2, Ferreira and Fontani [17] derive the expression Nloc ∼ 2.764 ·
2n n−3/2 for the average number of local optima of the NPP problem (see
Section 19.4.2) under a uniform distribution model, which is in good agreement
with simulation results. Considering the fact that an NPP instance of size n has 2n

feasible solutions, we see that a simple ILS implementation will presumably not be
very efficient in this case, compared to complete enumeration, unless if one single
local search run should take distinctly less than O(n3/2) time.

19.8 Black-Box Optimization

The basic forms of most stochastic metaheuristics are characterized by the property
that the algorithms do not exploit any information about the specific problem in-
stance (say, the distance matrix in a TSP), but only use information on the search
space, including aspects as neighborhood structure, and on the concrete problem
type under consideration. In our generic framework, this scenario is represented by
the condition that the functions g and h are not allowed to depend on the problem
instance. One may imagine then that the algorithm A repeatedly calls a “black-box”
procedure returning fitness values to given solutions x, but A does not “know” how
these fitness values are determined. In this case, A is called a black-box optimizer.

From the viewpoint of a unified theory of stochastic search, it is interesting to
investigate the potential of black-box optimizers independently from their concrete
algorithmic mechanisms. Recently, some articles have started to study this issue. In
[12], Droste et al. investigate upper and lower bounds for the expected first hitting
times of stochastic black-box optimizers. The authors introduce a generic stochas-
tic search algorithm “Black-Box Algorithm 1” which is essentially the generic
algorithm of Section 19.2 with Lt restricted to a single element and Mt consist-
ing of the entire search history, i.e., the sequence (x1, f (x1), . . . ,xt−1, f (xt−1)) of
solutions visited before iteration t, together with their fitness values. In an algo-
rithm “Black-Box Algorithm 2,” the size of the memory Mt is restricted by a size
bound s(n) depending on the instance size n (which can be seen as a property of
S and does therefore not violate the black-box restriction). As a measure of perfor-
mance, the expected optimization time in the worst case over all instances of size n
is used.

For obtaining lower bounds on E(T1), the authors apply Yao’s [86] minimax prin-
ciple, which can be stated as follows: The expected optimization time of a stochastic
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search algorithm A in the worst case over all instances is lower bounded by the
expected value of the optimization time of an optimal deterministic search algo-
rithm, where the last expected value is taken with respect to an arbitrary instance
distribution.

Droste et al. investigate sorting problems, for which they obtain linear lower
bounds (and, depending on the measure for “sortedness” which is used as the fit-
ness function, linear or slightly super-linear upper bounds), classes of simple func-
tions such as the linear pseudo-boolean functions, and some more complex pseudo-
boolean functions as well as special classes of unimodal functions. To give a flavor
of the type of results, let us consider the Generalized OneMax example, for which
in [12], the lower bound n/ log(2n + 1)− 1 is derived.6 It is intuitively clear why
we obtain a lower bound of order O(n/ logn) here: Since there are n + 1 different
fitness function values, each call of the black-box procedure determining the fitness
of a solution x gives us log2(n + 1) bits of information. On the other hand, since
there are 2n possibilities for the optimal solution x∗, we need a total information
of n bits to identify x∗. Thus, an optimally designed search procedure will require
about n/ log2(n) black-box calls.

Teytaud and Gelly [77] present lower bounds for black-box optimizers on prob-
lems with continuous search space and consider the scenario where only pairwise
comparisons between fitness values are allowed to govern the search process instead
of the overall information contained in the fitness value.

Another interesting perspective is presented by Borenstein and Poli [6]; it re-
lates NFL theorems, fitness landscape analysis, and black-box optimization to each
other. The authors argue that it is not sufficient to analyze the fitness landscape for
itself; only by connecting it to the operators used during the search, the information
contained in it becomes relevant. A “proper” black-box optimizer should not have
any a priori preference for any regions of the search space, but rather select new
sample points (in our notation: the elements of Lt ) on the basis of their distance
from already visited points. This requires that the applied search operators are in
some sense consistent with the metric structure on S, which is described in [6] in
algebraic terms.

Finally, let us mention that several practically applied variants of stochastic meta-
heuristics are not black-box optimizers, but use in addition to a black-box-type core
mechanism also information on the problem instance. An example is the use of
problem-specific heuristic values in ACO. We might call such algorithms gray-box
optimizers, distinguishing them also from the “white-box” optimization techniques
of mathematical programming (MP). Some metaheuristics, such as GRASP or Ex-
treme Optimization, are inherently “gray-box.” Perhaps the most radical form of
gray-box optimizers are hybrids between metaheuristics and MP approaches such
as Local Branching [18], which have been termed matheuristic algorithms.

6 Note that both EA and ACO algorithms typically solve this problem in O(n logn) time [11, 37],
which differs from the lower bound by a factor of order O((logn)2). This overhead may partly be
explained by the effort for re-sampling already visited solutions.
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19.9 Stochastic Search Under Noise

In applications, it often happens that decisions under uncertainty have to be made,
where certain parameters of an optimization problem are not deterministically
known in advance. Often, it is possible to represent these parameters, by using an
appropriate stochastic model, as random variables. This leads to stochastic opti-
mization problems where the objective function and sometimes also the constraints
are disturbed by “noise.” In this chapter, we restrict ourselves to stochastic combi-
natorial optimization (SCO) problems of the following frequently occurring form,
which is a natural extension of the deterministic CO problem (19.1):

E( f (x,ω))→ min such that x ∈ S. (19.2)

Therein, E denotes the expectation operator, and ω is a random influence with a
distribution given by the stochastic model of the problem (ω is not to be confounded
with the random variables z and z′ used by the stochastic search algorithm, see
Section 19.2). As in the deterministic case, “min” can be replaced by “max.” As
an example, consider the stochastic total tardiness problem, where a set of jobs
1, . . . ,n together with their due dates d1, . . . ,dn are given. Each job has a processing
time Yi which is a random variable with known distribution. The objective is to
find a sequential arrangement x of the n jobs such that the expected value of the
sum of their tardiness values is minimized, where the tardiness of job i is given as
(Ci − di)+, with Ci denoting the completion time of job i. Note that Ci = Ci(x,Y )
depends on both the solution x and the vector Y of random processing times. Here,
ω can be considered as identical to Y , and f (x,ω) = ∑n

i=1(Ci(x,ω)−di)+.
In the literature on stochastic optimization, several methods have been developed

to solve problems of the form (19.2). In particular, metaheuristic algorithms have
also been applied in this field; a recent survey is given in [4]. A survey focusing on
EAs can be found in [50].

Basically, three different approaches to solve problems of the form above by a
metaheuristic search algorithm following a black-box optimization paradigm7 can
be distinguished: (i) If possible, a procedure for the numerical computation of the
expectation in Equation (19.2) is implemented, and the problem is solved in the
same manner as a deterministic CO problem, performing black-box calls of the nu-
merical procedure to obtain fitness evaluations. Often, this requires a large amount
of computation time or is even infeasible. (ii) A sample of random instances for
the uncertain parameters, distributed according to the given stochastic model, is
generated as an approximation to the exact distribution, and after that, large-scale
optimization averaging over this sample is done. This is called a fixed-sample ap-
proach. (iii) In a variable-sample approach, sampling and optimization are not two
successive phases, but rather alternate during the iterations of the search algorithm.
This allows the use of smaller sample sizes.

7 For approaches using “white-box” mathematical programming techniques such as the Integer
L-Shaped Method, see, e.g., [23].
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General-purpose variable sample SCO algorithms have been derived from certain
metaheuristics as SA [2, 22, 36], ACO [5, 30, 31], or VNS [35]. The structure of
these algorithms is an extension of our generic scheme of Section 19.2. All we
have to do is to replace in step 2b of the generic algorithm the evaluation of the
objective function values f (xi) by the determination of sample average estimates
F̃(xi) = ∑N

ν=1 f (xi,ων) approximating F(xi) = E( f (xi,ω)), where the ων form a
random sample for the uncertain parameter ω according to the given distribution.
The sample size N needs not to be fixed over the iterations, but can be chosen as a
function of Mt . Typically, N is gradually increased to improve the accuracy of the
estimate.

Using this approach and applying suitable schemes for N = N(Mt), convergence
results for the mentioned modifications of SA, ACO, or VNS have been derived in
[30, 35, 36] by generalizations of the known convergence results for the correspond-
ing basic metaheuristics.

19.10 Conclusions

In the past, metaheuristics have evolved in different scientific sub-communities, to a
certain extent separately from each other. Although a strong tendency to a crosslink-
ing between these sub-communities can be observed in the last years (see [56]),
which already resulted in considerable synergy effects as well as in the establish-
ment of a joint experimental methodology, a common theoretical framework en-
abling an immediate exploitation of progress in one of the metaheuristic subfields
by other subfields seems still to be lacking. Much work will have to be done yet for
achieving a unified understanding of metaheuristic algorithms.

One of the key elements around which a holistic view of the different metaheuris-
tic techniques might be organized is the role that stochastic search takes in most of
them. The results cited in this chapter may indicate possible starting points for a
process leading to a general theory of stochastic search, but this process will still to
have take place. Anyway, the fascination of many successes in solving real-world
problems by particular metaheuristics should not lead the community astray from
the attempt to envisage also the “big picture” by looking at what the single meta-
heuristic paradigms have in common.

As discussed in Section 19.6, it is not probable that one single metaheuristic
will turn out as “superior” to the others and expel them from the application fields.
Rather than that, it may be anticipated that the current situation of a co-existence of
different metaheuristics will prevail. This makes it especially desirable to increase
our understanding of the specific benefits of each of them in a framework within
which they can be compared.

Many important topics have been excluded in this chapter, such as stochastic
search in (non-linear) continuous, in multi-objective, or in dynamic optimization.
Issues as, e.g., runtime analysis, are even less developed in these areas than in single-
objective static CO, and many related open problems represent a challenge for future
research.
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71. Schiavinotto, T., Stûtzle, T.: A review of metrics on permutations for search landscape analy-
sis. Comput. Oper. Res. 34, 3143–3153 (2007)

72. Sebastiani, G., Torrisi, G.L.: An extended ant colony algorithm and its convergence analysis.
Methodol. Comput. Appl. Probability 7, 249–263 (2005)



19 Stochastic Search in Metaheuristics 597

73. Storch, T.: How randomized search heuristics find maximum cliques in planar graphs. Pro-
ceedings of 8th Annual Conference on Genetic and Evolutionary Computation, Seattle,
Washington, USA pp. 567–574 (2006)
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Chapter 20
An Introduction to Fitness Landscape Analysis
and Cost Models for Local Search

Jean-Paul Watson

Abstract Despite their empirical effectiveness, our theoretical understanding of
metaheuristic algorithms based on local search (and all other paradigms) is very lim-
ited, leading to significant problems for both researchers and practitioners. Specifi-
cally, the lack of a theory of local search impedes the development of more effective
metaheuristic algorithms, prevents practitioners from identifying the metaheuris-
tic most appropriate for a given problem, and permits widespread conjecture and
misinformation regarding the benefits and/or drawbacks of particular metaheuris-
tics. Local search metaheuristic performance is closely linked to the structure of the
fitness landscape, i.e., the nature of the underlying search space. Consequently, un-
derstanding such structure is a first step toward understanding local search behavior,
which can ultimately lead to a more general theory of local search. In this chapter,
we introduce and survey the literature on fitness landscape analysis for local search,
placing the research in the context of a broader, critical classification scheme de-
lineating methodologies by their potential to account for local search metaheuristic
performance.

20.1 Introduction

Despite widespread success, very little is known about why local search metaheuris-
tics work so well and under what conditions. This situation is largely due to the
fact that researchers typically focus on demonstrating, and not analyzing, algorithm
performance. Most local search metaheuristics are developed in an ad hoc manner.
A researcher devises a new search strategy or a modification to an existing strategy,
typically arrived at via intuition. The algorithm is implemented, and the resulting
performance is compared with that of existing algorithms on sets of widely available
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benchmark problems. If the new algorithm outperforms existing algorithms, the
results are published, advancing the state of the art. Unfortunately, most researchers
(including, often, the author) fail to actually prove that the proposed enhancement(s)
actually led to the observed performance increase (as typically, multiple new fea-
tures are introduced simultaneously) or whether the increase was due to fine tun-
ing of the algorithm or associated parameters, implementation tricks, flaws in the
comparative methodology, or some other factor(s). Hooker [10] refers to this ap-
proach to algorithm development as the competitive testing paradigm, arguing that
“this modus operandi spawns a host of evils that have become depressingly familiar
to the algorithmic research community” and that the “emphasis on competition is
fundamentally anti-intellectual” [10], (p. 33). However, although few would argue
with Hooker’s criticisms, the competitive testing paradigm remains the dominant
paradigm for developing new algorithms—independent of whether they are exact or
approximate, or based on constructive or local search.

Due largely to the widespread practice of competitive testing, theoretical results
concerning the operation of local search metaheuristics are very limited. In partic-
ular, we currently lack fundamental models of local search metaheuristic behav-
ior. The importance of behavioral models cannot be understated. Ideally, behavioral
models enable practitioners to identify those problems for which a particular local
search metaheuristic is likely to be effective and those problem instances that are
likely to be more difficult than others. The broad availability of behavioral models
would enable researchers to identify fundamental similarities and differences be-
tween different local search metaheuristics and identify new research directions in
order to improve the performance of existing local search algorithms. In contrast, the
current lack of behavioral models has led to several undesirable side-effects, includ-
ing widespread conjecture and mythology regarding the benefits and/or operation of
particular local search metaheuristics.

A foundational concept in the development of behavioral models of local search
metaheuristics is the notion of a fitness landscape, i.e., the topological structure over
which search is being executed. Given a specific landscape structure—defined by a
search space, objective function, and neighborhood operator, a local search meta-
heuristic can be viewed as a strategy for navigating this structure in the search for
optimal or near-optimal solutions. Given this context, the effectiveness of a particu-
lar metaheuristic is a function of how “well tuned” the navigation strategy is to the
given landscape. Consequently, knowledge of the fitness landscape structure is key
to developing effective metaheuristics and consequently has been a primary focus in
the theoretical analysis of local search metaheuristics. The objective of this chapter
is to survey the prior research on fitness landscape analysis for local search meta-
heuristics and assess the potential of these efforts to explain one or more aspects of
metaheuristic behavior/performance.

To facilitate focus and brevity, our emphasis is on local search metaheuristics,
e.g., tabu search, simulated annealing, and variable neighborhood search. These al-
gorithms, which iteratively modify a single solution via repeated perturbations, con-
trast to both constructive (e.g., GRASP and ant colony optimization) and evolution-
ary (e.g., genetic algorithms and genetic programming) metaheuristics. However,
fitness landscape analysis does play a role in these paradigms as well. For example,
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local search is widely used in both GRASP and ant colony optimization to post-
process solutions generated by the core constructive procedures. Similarly, fitness
landscape analysis has long been central in genetic algorithm theory, although the
analysis is significantly complicated by the presence of a population of solutions
and multi-parent recombination. Where appropriate, we cite relevant literature in
both of these sub-fields. Subsequently, where there is no risk of confusion, we refer
to local search metaheuristics simply as metaheuristics.

We begin in Section 20.2 by formally introducing the concept of a fitness land-
scape and a local search metaheuristic. Next, we introduce in Section 20.3 a classi-
fication scheme for models of local search metaheuristic behavior, specifically fo-
cusing on the objectives of any particular analysis; such objectives are often implicit
or unspecified in the literature, and making the objectives explicit allows for an as-
sessment of the ultimate utility of a given methodology. We survey the broad range
of landscape structures identified by various researchers in Section 20.4, discussing
their role in, and ability to account for, metaheuristic performance. Most models
of local search metaheuristic performance are implicit, in that they do not propose
specific models of metaheuristic run-time dynamics. In Section 20.5, we survey the
limited exceptions—which are exemplars of the types of models that ultimately will
inform a rigorous theory of local search. Finally, we conclude in Section 20.6.

20.2 Combinatorial Optimization, Local Search, and the Fitness
Landscape

We begin by formally defining a combinatorial optimization problem (COP), before
introducing the concepts of a fitness landscape and a local search metaheuristic.
First, we explicitly differentiate a problem (e.g., Boolean satisfiability) from a prob-
lem instance (e.g., a 100-variable, 300-clause instance of random k-SAT with k = 3).
We denote a combinatorial optimization problem by Π and an instance of Π by Ω.
Ω is drawn from some (possibly infinite) universe of possible problem instances,
which we denote UΠ.

An instance Ω of a combinatorial optimization problem Π is fully specified by
two components: the state space and the objective function. The state space S is a
finite, although typically astronomically large, set of possible solutions to Ω. The
objective function F assigns a numeric “worth” to each state s ∈ S. The only formal
restriction on F is that there must exist a total order of the co-domain, such that a
maximal or minimal value is well defined. Typically, F : S → R+ or F : S → Z+. The
objective function is commonly referred to as a fitness function.

Given a COP instance Ω, the ultimate objective is to locate a solution s ∈ S such
that F(s) is optimal, i.e., minimal or maximal. Without loss of generality, we assume
the objective is minimization unless otherwise noted.

Local search proceeds via iterative modifications to complete solutions s ∈ S,
in contrast to constructive and population-based metaheuristics. We further restrict
our attention to the subset of local search metaheuristics that operate via iterative
modifications to a single complete solution s, i.e., we ignore more complicated local
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search metaheuristics that employ elite pools and strategies such as optima linking
[30] and path relinking [8]. In doing so, our goal is pragmatic: to discuss the state of
local search theory with respect to the simplest (albeit still effective) class of local
search metaheuristic before tackling more complex powerful derivatives.

All single-solution local search metaheuristics consist of the following four core
components: the state space, the objective function, the move operator, and the nav-
igation strategy. Search begins from an initial solution s = sinit that is generated
either at random or via some heuristic procedure and proceeds via a sequence of
iterations. The move operator specifies the set of allowable modifications (i.e., the
neighborhood) to the current solution s at any given iteration, one of which is se-
lected by the navigation strategy to serve as the basis for the next iteration. The best
solution encountered in any iteration is stored and returned when the algorithm ter-
minates, typically after a time limit is exceeded or maximal number of iterations is
completed. We now explore each of these four components in more detail, provid-
ing simple examples of each as applied to both the well-known Traveling Salesman
Problem (TSP) and Maximum Satisfiability Problem (MAX-SAT).

20.2.1 The State Space and the Objective Function

Both the state space S and the objective function F are taken directly from Ω,
the problem instance under consideration. For example, in an n-city TSP instance,
the state space consists of the set of n! permutations, each representing a possible
tour; the objective function simply returns the total length of the input tour. In an
n-variable, m-clause MAX-SAT instance, the state space consists of the set of 2n

Boolean vectors of length n; the objective function returns the number of the m
clauses that are satisfied in a solution s ∈ S. In general, although we do not consider
the issue here, the details of how solutions are represented can impact the definition
of both the move operator and the navigation strategy. However, this is typically not
the case for many well-known combinatorial optimization problems—including the
TSP and MAX-SAT.

20.2.2 The Move Operator

Given a state space S, the notion of locality in a local search algorithm is provided
by the move or neighborhood operator N. N defines the set of allowable modifica-
tions to the current solution s in any given iteration. In single-solution local search
algorithms, N : S → P(S), where P(S) denotes the power set of S. More complicated
move operators, e.g., those whose domain and/or codomain are cross products of S
and P(S), respectively, are found primarily in evolutionary algorithms and other re-
lated approaches such as optima linking, path relinking, and scatter search; see [14]
for a discussion of these and related issues. Given a solution s, the set N(s) is known
as the neighborhood of s. Similarly, if s′ ∈N(s), then s′ is said to be a neighbor of s.

Local search metaheuristics often employ rather simple move operators. For ex-
ample, the most widely used move operator for MAX-SAT maps each solution s∈ S
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to the subset of n solutions (where n is the total number of Boolean variables) in S
that differ from s in the value of a single variable assignment; this is known as the
“1-flip” neighborhood. Similarly, most local search metaheuristics for the TSP are
based in part on the 2-opt move operator [19], where the neighbors of a solution
s ∈ S are defined as the subset of

(n
2

)
solutions in S obtained by inverting the sub-

tour between any pair of distinct cities on the tour specified by s. More complex
move operators can be obtained via straightforward generalization of these basic
operators, e.g., k-flip move operators in MAX-SAT and k-opt move operators in
the TSP.

Move operators can vary significantly in their attempts to maintain “logical” lo-
cality. Both the 1-flip and 2-opt move operators induce minimal disruptions to the
current solution s: 1-flip inverts the value of a single Boolean variable, while 2-opt
changes exactly 2 edges. However, in local search algorithms such as iterated local
search [20], the differences between neighboring solutions can be much more sub-
stantial, e.g., under the generalized k-opt move operator for the TSP [13]. In both
cases, however, the perturbation is local in the sense that a neighboring solution is
obtained via a single application of a move operator. We raise this issue to note that
a “local” search metaheuristic may in fact proceed by making drastic modifications
to individual solutions.

Mathematically, the move operator N induces a relation on the space S×S, and
the properties of this relation can influence the performance of local search. For sim-
plicity, we refer to the relation induced by N simply as N. Although both the 1-flip
and 2-opt move operators are symmetric, in that s′ ∈ N(s) ⇒ s ∈ N(s′), this is gen-
erally not required. Further, N is necessarily transitive and anti-reflexive. Beyond
defining the immediate neighborhood, a move operator also defines the connectiv-
ity of the search space, i.e., what solutions can be reached via a finite sequence of
moves from an initial solution. A move operator N is said to induce a connected
search space if from an arbitrary solution there always exists a sequence of moves
to an optimal solution. N is said to induce a fully connected search space if there
exists a sequence of moves between any two arbitrary solutions. Both the 1-flip and
2-opt move operators induce fully connected, and consequently connected, search
spaces. However, many powerful, problem-specific move operators induce discon-
nected search spaces, e.g., see [25].

20.2.3 The Navigation Strategy

The mechanism for selecting some neighbor s′ ∈ N(s) at each iteration of local
search is embodied in the navigation strategy, which we denote by Δ. One of the
simplest navigation strategies follows the basic principle of gravity: select a neigh-
bor s′ ∈ N(s) with F(s′) < F(s). Two well-known variants of this greedy strat-
egy form the core of nearly all navigation strategies. In next-descent search, the
neighbors N(s) are randomly ordered, and the first neighbor s′ ∈ N(s) such that
F(s′) < F(s) is selected. In steepest-descent search, the neighbor that provides the
maximal decrease in the objective function value (argmins′∈N(s)F(s′)) is selected,
with ties broken randomly.
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By iterating greedy descent, local search will eventually arrive at a solution s ∈ S
from which no immediate improvement in the value of the objective function is
possible; s is known as a local optimum, such that ∀s′ ∈ N(s),F(s′) ≥ F(s). Unless
s is also a globally optimal solution, the navigation strategy must then guide search
to unexplored regions of the search space. When there exists a neighbor s′ ∈ N(s)
such that F(s) = F(s′), s is actually contained in a plateau, which may or may not
be locally optimal; this issue is discussed further in Section 20.2.4.

Within the local search community, strategies for escaping or avoiding local op-
tima are commonly referred to as metaheuristics. Formally, a metaheuristic is a
heuristic that dynamically alters the behavior of a core local search heuristic, typi-
cally in response to the properties of recently visited solutions. In most local search
metaheuristics, the core heuristic is greedy descent; a metaheuristic is activated
when the descent strategy becomes trapped in a local optimum, and deactivated once
search is successfully directed toward new regions of the search space. Conceptu-
ally, metaheuristics and greedy descent are distinct forms of navigation strategies,
each operating at a different level of abstraction. However, in practice, the boundary
between the two is often fuzzy, for example, in simulated annealing. Consequently,
metaheuristics are often viewed as atomic entities, such that the distinction between
the core heuristic and the metaheuristic is ignored. We present them as such, while at
the same time acknowledging any intended distinction between the core and meta-
heuristic.

Perhaps the most obvious way to escape a local optimum is to generate a new
starting solution sinit and then re-initiate greedy descent. This process can be iterated
until a global optimum is located. The resulting metaheuristic is commonly referred
to as iterated descent, which is distinct from the next-descent and steepest-descent
procedures. In practice, iterated descent is a simple way to improve the performance
of a core greedy descent strategy. Further, iterated descent can locate very high-
quality solutions for some combinatorial optimization problems, e.g., see Beveridge
et al. [2].

Clearly, the probability of iterated descent locating a global optimum approaches
1 as the number of greedy descents approaches ∞. However, from a practical stand-
point, iterated descent is only effective if the fitness distribution of the local optima
assumes a certain form, i.e., one in which the left tail of the distribution is non-
negligible. For many well-known combinatorial optimization problems, the fitness
distribution of local optima in small problem instances satisfies this requirement. At
the same time, it has been empirically demonstrated that such tails typically vanish
at larger problem sizes (for example in the TSP ), causing iterated descent to perform
poorly due to what has come to be known as a “central limit catastrophe” [13].

20.2.4 The Fitness Landscape

Given a local search metaheuristic A and a combinatorial optimization problem Π,
we are interested in determining what makes a particular instance Ω ∈ UΠ easy
or difficult for A. Problem difficulty, or equivalently search cost, is dictated by the
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interaction of A with the underlying search space. For example, suppose all globally
optimal solutions to Ω reside in a small region of the search space containing other-
wise poor local optima. If A consistently biases search toward regions of the search
space containing generally high-quality local optima, then the cost (on average) of
locating optimal solutions to Ω using A is likely to be large. In contrast, if A inten-
sifies search in regions of the search space with poor local optima, then A is more
likely to locate optimal solutions to Ω in shorter run-times.

Due to the central role of the search space in determining problem difficulty,
much of the research on models of problem difficulty for local search has concen-
trated identifying structural features of the search space that are likely to influence
the cost of local search. Given a local search metaheuristic A, the search space is
defined by the combination of (1) the state space S, (2) the move operator N, and
(3) the objective function F. Formally, we define the search space L = (S,N,F) as a
vertex-weighted directed graph G = (V,E) in which

1. V = S
2. ∀v ∈V , the weight wv of v is equal to F(v)
3. E = {(i, j)|i �= j∧∃i, j : i ∈ N( j)}.

Within the local search community, the graph G is known as a fitness landscape, a
concept first introduced by the theoretical biologist Sewall Wright in 1932 [44].

We provide two examples of very simple fitness landscapes in Figure 20.1; in
general, landscapes are high dimensional and extremely difficult to visualize. In
both examples, S = {1,2, ...,20} and N(x) = {x−1,x+1}, subject to the boundary
conditions N(1) = {20,2} and N(20) = {19,1}. Type I fitness landscapes are char-
acterized by deep, punctuated valleys with abrupt changes in the fitness of neigh-
boring solutions. In contrast, Type II fitness landscapes are dominated by plateaus
of equally fit neighboring solutions, with discrete jumps in fitness between the
plateaus. We differentiate between the two types of fitness landscapes for three
reasons. First, different terminology is associated with the two landscape types.
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Fig. 20.1 Examples of Type I (left figure) and Type II (right figure) fitness landscapes.
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Second, Type I and Type II landscapes have different implications for the design
of metaheuristic navigation strategies. Third, these two types are representative of
the fitness landscapes found in most NP-hard optimization problems. For example,
the TSP and MAX-SAT, respectively, possess Type I and Type II fitness landscapes.

In a Type I fitness landscape, the two key features of interest are local optima and
global optima. A local optimum is a point x∈ S such that ∀y∈N(x), F(x)≤ F(y). In
our example Type I landscape, the following vertices are local optima: 3, 7, 13, 16,
and 18. A global optimum is a point x ∈ S that is both locally optimal and ∀y ∈ S,
F(x)≤ F(y). In our example Type I landscape, vertex 13 is the sole global optimum.
The attractor basin of a local optimum s consists of all s′ ∈ S such that s results with
non-zero probability when a descent-based procedure is applied to s′; as first noted
by Reeves [31], attractor basin membership may be stochastic due to the different
forms of randomization commonly associated with descent procedures.

Plateaus are the dominant feature of Type II fitness landscapes. Informally, a
plateau is simply an interconnected region of the fitness landscape where all points
have equal fitness. Formally, a plateau is defined as a set P ⊆ S such that

1. ∀x ∈ P, F(x) = C for some constant C
2. For any two points x,y ∈ P there is a sequence of solutions {x,a1, ...,an,y} such

that ∀i, ai ∈ S and F(x) = F(a1) = ... = F(an) = F(y) = C
3. (a) a1 ∈ N(x), (b) ∀i �= n−1,ai+1 ∈ N(ai), and (c) y ∈ N(an)

If for some x ∈ P there exists a y ∈ N(x) such that F(y) < C, the plateau is called
a bench, and all such solutions y are called exits. If there are no exits from a
plateau, then the plateau is locally optimal. If the plateau is locally optimal and
∀x ∈ S,C ≤ F(x), then the plateau is also globally optimal. All benches, local op-
tima, and global optima are labeled in our example Type II fitness landscape. There
are many additional nuances regarding the terminology of features found in Type II
fitness landscapes; an overview is provided by Frank et al. [7].

The qualitative differences between Type I and Type II fitness landscapes have
an important impact on the design of navigation strategies and metaheuristics for lo-
cal search. For example, both next-descent and steepest-descent typically terminate
once a solution s is located with no lower fitness neighbors. The implicit, built-in
assumption is that the local optimum s is not a member of a plateau, or that if s is
a member of a plateau, then the plateau itself is locally optimal. In general, these
assumptions do not hold when dealing with Type II fitness landscapes; if greedy
descent terminates at a local optimum, it is possible that the optimum resides on a
bench, from which an exit may exist. Additionally, the attractor basins in Type II
fitness landscapes are often very shallow. For example, Frank et al. [7] have shown
that in MAX-SAT, it is often possible to escape a local optimum by accepting a
single non-improving move. Consequently, the emphasis on navigation strategies in
Type II fitness landscapes is on moving quickly from one plateau to another, either
by finding an exit from a bench or by temporarily accepting non-improving moves.
In contrast, in Type I fitness landscapes the emphasis is on escaping local optima
with potentially large and deep attractor basins.
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20.3 Landscape Analysis and Cost Models: Goals
and Classification

As discussed previously, most research on local search focuses on developing newer,
better performing algorithms. The goal in such research is clearly to demonstrate al-
gorithm performance. Paul Cohen notes in his book Empirical Methods for Artificial
Intelligence ([5], p. 249) that “It is good to demonstrate performance, but it is even
better to explain [emphasis added] performance.” The hard sciences advance via the
development of accurate models of the object or objects of interest, models that are
both consistent with existing observations and suggest new behavioral hypotheses.
Currently, models of local search metaheuristics for any combinatorial optimization
problem are rare to non-existent.

In developing a model of a given object, we generally concentrate on capturing
specific behaviors or small sets of behaviors. In the context of local search meta-
heuristics, the behavior of interest is generally the cost required to locate an optimal
solution (or, more generally, a solution with a given quality threshold) to a problem
instance. Due to the stochastic nature of local search (with the sole noted exception
of some variants of tabu search), search cost is a random variable with a particular
distribution. Cost models of local search metaheuristics are behavioral models that
capture various aspects of the cost distribution. Most often, we focus on the average
or typical search cost, as defined by either the distribution mean or median. It is
well known that given a fixed problem size (e.g., 100-city TSPs), the average search
cost across instances can vary by many orders of magnitude. One objective in devel-
oping cost models is to account for a significant proportion, and ideally all, of this
variability. A more aggressive, penultimate objective is to develop cost models that
account for the entire distribution of search cost.

In this section, we discuss a general classification scheme for cost models of local
search metaheuristics. We consider three different types of cost models, differing in
both the type of information upon which they are based and the extent to which they
attempt to explicitly capture metaheuristic run-time dynamics. Static cost models
(Section 20.3.1) are functions of one or more features of the fitness landscape and
only implicitly consider metaheuristic dynamics. In contrast, quasi-dynamic and
dynamic cost models (Sections 20.3.2 and 20.3.3, respectively) are based on anal-
yses of metaheuristic run-time behavior. Quasi-dynamic cost models are functions
of simple summary statistics of metaheuristic behavior. In contrast, dynamic cost
models explicitly model low-level metaheuristic behavior using Markov chains.

20.3.1 Static Cost Models

Static cost models are strictly based on fitness landscape features; metaheuristic
dynamics are completely and explicitly ignored. In a static cost model, the inde-
pendent variables are fitness landscapes features, or combinations thereof, and the
dependent variable is the mean or median search cost. To facilitate model evaluation,
static cost models are expressed as linear or multiple regression models. Under this



608 Jean-Paul Watson

formulation, the accuracy of a static cost model can be naturally quantified as the
r2 value of the corresponding regression model, i.e., the proportion of the total vari-
ability accounted for by the model. Most static cost model considered to date are
based on a single feature of the fitness landscape. For purposes of brevity, we often
denote a static cost model based on the feature X as the X static cost model or sim-
ply the X model. Similarly, given the close relationship between static cost models
and regression models, we frequently use the two terms interchangeably. Finally,
regression methods make certain assumptions (e.g., model errors are homogeneous
across the range of the independent variable) in order to generate valid statistical
inferences concerning model parameters. These assumptions are generally not sat-
isfied in metaheuristic research. The motivation in using regression models is to
(1) quantify overall model accuracy using the associated r2 value and (2) analyze
worst-case deviations from a predicted/expected value. Failure to satisfy regression
assumptions does not impact our ability to achieve either of these objectives.

The quality of a static cost model is tied to the model r2: models with larger r2

values are more accurate. However, there are limits on the absolute level of accu-
racy that we can reasonably expect to achieve. As discussed in Section 20.4, the
most accurate static cost models of local search only yield r2 ≈ 0.25 in the worst
case, which is typically observed for the most difficult sets of problem instances. Al-
though failure to develop more accurate static cost models, despite intense research
effort, is not evidence for their impossibility, there does appear to be a practical
limit on what can be achieved. Because static cost models ignore metaheuristic dy-
namics, the existence of models with even r2 ≈ 0.5 is in some sense surprising. In
expressing fitness landscape features as atomic numeric quantities, there is also the
obvious potential for loss of information. Further, there are practical (although not
theoretical) limits on the accuracy with which we can measure various quantities,
including search cost.

20.3.2 Quasi-dynamic Cost Models

A first-order approach to improving static cost models is to incorporate coarse-
grained information concerning metaheuristic run-time behavior. For example, we
might track simple summary statistics that capture defining characteristics of the set
of solutions generated by a metaheuristic. Given such summary statistics, we can
then construct regression models relating these summary statistics to search cost,
and quantify model accuracy as the resulting r2. We refer to such cost models as
quasi-dynamic cost models. The “quasi-dynamic” modifier derives from the fact
that the model is based on aggregate statistics relating to run-time behavior, as op-
posed to an explicit model of metaheuristic run-time dynamics. The sole difference
between static and quasi-dynamic cost models is in the nature of the information
captured in the independent variable(s).

Most of the issues relating to possible limitations on the accuracy of static cost
models equally apply to quasi-dynamic cost models. However, because they ac-
count for some aspects of run-time behavior, we would expect in some sense the
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accuracy of quasi-dynamic cost models to be higher than that of static cost mod-
els, although less than the fully dynamic cost models considered below. Empirical
evidence supports this observation: some of the most accurate cost models of local
search metaheuristics developed to date are quasi-dynamic [35] and achieve a worst
case accuracy of r2 ≈ 0.65.

20.3.3 Dynamic Cost Models

Because they are respectively based on fitness landscape features and summary
statistics of run-time behavior, static and quasi-dynamic cost models yield no di-
rect insight into the dynamical behavior of local search. To gain insight as to why
particular landscape or run-time statistics are highly correlated with search cost, we
turn to dynamic cost models. Dynamic cost models are high-resolution models (e.g.,
Markov models) of the run-time behavior of local search metaheuristics. Research
on dynamic cost models can be traced to Hoos [11], who used Markov models
to posit an explanation for certain run-time behaviors observed for Walk-SAT and
other local search algorithms in the Random 3-SAT phase transition region. How-
ever, the ability of these models to account for variability in problem difficulty was
not considered.

To date, dynamic cost models are represented as Markov chains which coarse-
grain the search space in some way. In one common approach, each state of the
Markov chain captures the distance i to the nearest target (e.g., optimal) solution,
in addition to other algorithm-specific attributes. Transitions in the Markov chain
correspond to iterations of the local search metaheuristic. A dynamic cost model is
constructed by specifying a set of states and then estimating the various transition
probabilities between the states. The details of the estimation process are algorithm
dependent. The search cost predicted by a dynamic cost model is defined as the
mean number of iterations until an absorbing state (i.e., a state with i = 0) is en-
countered. For some Markov chains, analytic formulas for the mean time to absorp-
tion are easily derived. When analytic formulas are not immediately available, it is
pragmatic to resort to simulation of the cost model to estimate mean search cost.

To quantify the accuracy of a dynamic cost model, straightforward linear re-
gression models can be used, in which the predicted and actual search costs serve
as the independent and dependent variables, respectively; model accuracy is then
quantified by the r2 value of the linear model. Dynamic cost models differ from
their static counterparts in that they explicitly consider the metaheuristic and move
beyond simple numeric characterizations of either fitness landscape features or run-
time behavior. Consequently, we a priori anticipate higher levels of accuracy than
are possible for static and quasi-dynamic cost models. This conjecture is supported
in practice; r2 values in excess of 0.90 are reported in the literature. However, the
near-perfect accuracy does not come without costs: dynamic cost models are gener-
ally more expensive to construct than static or quasi-dynamic cost models and are
generally far less intuitive.
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20.3.4 Descriptive Versus Predictive Cost Models

For all practical purposes, the cost models we discuss are purely descriptive, in that
they provide a posteriori explanations for why one problem instance is more diffi-
cult than another for a given local search metaheuristic. In principle, cost models
could be used to compute a relatively tight confidence interval, via standard regres-
sion techniques, for the expected cost required to locate an optimal solution to a
new problem instance. However, because the most accurate cost models to date (as
discussed below) are functions of the set of all optimal solutions to a problem in-
stance, the effort required to generate the prediction actually exceeds that of simply
locating an optimal solution. Given an accurate cost model, the problem of run-
time prediction is essentially equivalent to the problem of estimating the value of
the model parameters. The nature of the cost-accuracy trade-off in model parameter
estimation is currently an open research question.

This does not imply that cost models are a scientific curiosity, useless in practice.
Cost models have been used to make specific predictions regarding the behavior of
local search metaheuristics (e.g., see [42]). Further, and perhaps most importantly,
cost models can explicitly identify those features of the fitness landscape that are
overwhelmingly responsible for problem difficulty in local search. By identifying
such features, we are enabling algorithm designers to focus on the areas most likely
to yield performance improvements and to move beyond the ad hoc, benchmark-
driven design methodology that is current employed [10].

20.4 Fitness Landscape Features and Static Cost Models

The performance of any local search metaheuristic is dictated by the interaction of
the metaheuristic with the underlying fitness landscape. Toward understanding this
interaction, researchers have initiated numerous investigations of the structural char-
acteristics of the fitness landscapes of various combinatorial optimization problems.
As a result, several fitness landscape features have been identified that have been
shown, via abstract argument or concrete inference, to influence problem difficulty
for local search. Examples of such features include1 the following:

• The number and/or distribution of local optima
• The strength and size of local optima attractor basins
• The size and extension of the search space

Although the importance of these features is widely acknowledged, little or no em-
pirical evidence exists to substantiate the extent to which any of these features,
or combination thereof, is actually correlated with local search cost. Because the
strength of the relationships has not, in general, been quantified, it is possible or

1 Kauffman (p. 44, [16]) provides a more comprehensive list developed for adaptive local search
algorithms.
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even likely that the prime factor(s) dictating problem difficulty for local search have
either yet to be identified or remain largely unexplored.

Structural features of the fitness landscape also have, or at least should have, a
major influence on the design of metaheuristics. Local search metaheuristics differ
largely in their approach to escaping the attractor basins of local optima, and the
complexity of the proposed escape mechanisms—in terms of algorithmic details—
is highly variable. Ideally, designers tailor a metaheuristic to the class of fitness
landscapes that the algorithm is likely to encounter. Yet, very few concrete details
are known about attractor basin strength, i.e., the expected computational effort re-
quired to escape local optima. This is true for nearly all combinatorial optimiza-
tion problems. Consequently, it is unclear whether further attention on novel escape
mechanisms is warranted, or if researchers should shift their focus to designing
more effective high-level search strategies, such as those associated with advanced
implementations of tabu search.

While important, the study of factors such as local optima attractor basin strength
is not necessarily a driver in overall problem difficulty. In particular, we observe that
once the problem of escaping local optima is solved, the broader issue of how to per-
form effective global search remains open. We now survey those global structural
features of the fitness landscape that have been proposed to account for the vari-
ability in problem difficulty for local search. We present the motivation behind each
feature, summarize prior research, and identify limitations. It should be noted that
not all of these features have been investigated explicitly in the context of a cost
model of local search. However, the objective of correlating the presence of partic-
ular features with search difficulty is a common, necessary theme. For illustrative
purposes, we additionally provide in some cases graphics illustrating cost model ac-
curacy drawn from the author’s own research on job-shop scheduling (JSP). Finally,
we note that an alternative, complementary perspective on fitness landscape analysis
is provided in [12].

20.4.1 The Number of Optimal Solutions

One of the most intuitive measures of problem difficulty is the number of globally
optimal solutions in a fitness landscape. It should be difficult to locate a global
optimum if they are relatively rare. Conversely, if global optima are numerous, then
it should be relatively easy for local search to find one.

The relationship between the number of globally optimal solutions and prob-
lem difficulty for local search was originally analyzed in the context of MAX-SAT
and the more general MAX-CSP [4]. The motivation behind this research was to
develop an explanation for the easy-hard-easy pattern in problem difficulty ob-
served in the phase transition regions of these problems [17, 28]. It was initially
conjectured that the peak in search cost was due to changes in the number of op-
timal solutions. Yokoo [45] proved that this was not the case, by showing that the
mean number of optimal solutions varies in no special way near the phase transi-
tion region. In a more refined analysis, Clark et al. demonstrated a relatively strong
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negative log10− log10 correlation between the number of globally optimal solutions
and search cost for three MAX-SAT metaheuristics, with r-values ranging anywhere
from −0.77 to −0.91. However, the cost model failed to account for the large cost
variance observed for problems with small numbers of optimal solutions, where
model residuals varied over three or more orders of magnitude. A similar situation
is exhibited in the JSP for tabu search.

In Figure 20.2, we show a scatter plot of the mean search cost required by tabu
search (see [41] for details) to locate an optimal solution to 6 job, 6 machine random
JSPs, as a function of the number of optimal solutions to a problem instance. The
model is not overly accurate, with r2 = 0.2223, and the graphic clearly demonstrates
the very large residuals common to cost models based on the number of optimal
solutions.
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Fig. 20.2 Scatter plot of the number of globally optimal solutions versus search cost for 6 job, 6
machine random job-shop problems; the least-squares fit line is super-imposed.

The distribution of the number of optimal solutions depends in large part on the
nature of the objective function, specifically whether all or a fraction of solution
attributes dictate solution fitness. For example, the number of optimal solutions to
instances of the 2D integer Euclidean Traveling Salesman Problem is generally very
small and is frequently equal to 1 [36]. The reason is straightforward: tour length
is a function of all the cities in the instance, and the likelihood of two tours having
identical lengths is relatively small given randomly sampled inter-city distances. The
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likelihood of a single optimal solution is even higher if real-valued city coordinates
are allowed. A similar situation is observed in the Permutation Flow-Shop Problem
[39]. In contrast, the fitness of solutions in the JSP is dictated by a subset of job
orderings, i.e., those on the critical path. Consequently, large plateaus of solutions
are common in the JSP [40].

While intuitive, the accuracy of static cost models based on the number of opti-
mal solutions is clearly limited. Further, there is anecdotal evidence that accuracy
decreases as larger problem instances are considered.

20.4.2 The Distance Between Local Optima

The cost of local search is also influenced by the size of the search space. Search in
most metaheuristics is heavily biased toward local optima, suggesting that the size
of the sub-space of local optima may be strongly correlated with problem difficulty.
A straightforward approach to quantifying the size of the local optima sub-space
is to simply measure the mean distance between a sample of random local optima;
large distances should be indicative of large sub-spaces. This notion of quantify-
ing search space size was first introduced by Mattfeld et al. [21] in the context
of the JSP. However, Mattfeld et al. did not investigate the ability of the metric
to account for the variability in problem difficulty across a fixed set of instances;
rather, they used the metric to account for differences between distinct types of JSP
instances.

In Figure 20.3, we show a scatter plot of the mean search cost required by tabu
search (again see [41] for details) to locate an optimal solution to 6 job, 6 machine
random JSPs, as a function of the mean distance between random local optima. Ac-
curacy is similar to the static cost model based on the number of optimal solutions,
with r2 = 0.2744. Similarly, the accuracy of such models tends to decrease with
increases in problem size and the graphic exhibits very large residuals, varying over
several orders of magnitude.

20.4.3 The Distance Between Local and Global Optima

The number of globally optimal solutions and the size of the search space S are
conceptually independent; it is possible to embed as many as |S| optimal solutions
within a search space S. Undoubtedly, both factors influence problem difficulty for
local search. If we fix |S| and assume that attractor basin strength and size remain
relatively constant, we expect problems to become easier as the number of optimal
solutions grows. Analogously, it should be more difficult to locate an optimal solu-
tion as the number of optimal solutions shrinks. It follows that both the number of
optimal solutions and the distance between local optima are, in isolation, unlikely to
account for a significant proportion of the variability in problem difficulty for local
search.
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Fig. 20.3 Scatter plot of the mean distance between random local optima versus search cost for 6
job, 6 machine random job-shop problems; the least-squares fit line is super-imposed.

To correct for these flaws, we now discuss a measure that simultaneously ac-
counts for the impact of both features on problem difficulty: the mean distance be-
tween random local optima and the nearest optimal solution. The intuition is that
problem difficulty for local search is proportional to the total distance that must
be traversed between an initial solution (e.g., a random local optima) and a tar-
get solution (e.g., an optimal solution). This measure was first introduced in the
context of MAX-SAT by Singer et al. [35]. Well-known local search algorithms
for MAX-SAT rapidly descend from poor-quality initial solutions to near-optimal
“quasi-solutions,” and subsequent search is restricted to the space of such quasi-
solutions. Singer et al. hypothesized that the search cost was proportional to the
size of the quasi-solution sub-space, which in turn could be estimated by the mean
distance between the first quasi-solution encountered and the nearest optimal solu-
tion. Their experimental results demonstrated a very strong (r ≈ 0.95) correlation
between this metric and search cost for easy MAX-SAT instances; for more difficult
instances, the accuracy degraded only slightly to r ≈ 0.75.

In Figure 20.4, we show a scatter plot of the mean search cost required by tabu
search (again see [41] for details) to locate an optimal solution to 6 job, 6 machine
random JSPs, as a function of the mean distance between random local optima and
the nearest optimal solution. The r2 value for the corresponding static cost model is
equal to 0.6424, similar to the accuracy obtained by Singer et al. With few excep-
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Fig. 20.4 Scatter plot of the mean distance between random local optima and the nearest optimal
solution versus search cost for 6 job, 6 machine random job-shop problems; the least-squares fit
line is super-imposed.

tions, residuals vary over roughly 1 to 1.5 orders of magnitude; the improvement
is significant relative to static cost models based strictly on the number of optimal
solutions or the mean distance between local optima. Clearly, the static cost model
based on the measure proposed by Singer et al. is a landmark achievement, repre-
senting the first reasonably accurate cost model of any local search metaheuristic,
for any combinatorial optimization problem. Previously proposed models achieved
accuracy of at most r2 ≈ 0.3 in the worst case, in contrast to the r2 ≈ 0.6, achieved
by Singer et al.

20.4.4 Fitness-Distance Correlation

Another factor hypothesized to influence problem difficulty for adaptive local
search algorithms is the correlation between solution fitness and the distance to
an optimal solution, often simply denoted as FDC (fitness-distance correlation)
[18, 22, 24, 37]. In a problem instance with high FDC, good solutions tend to be
tightly clustered or, equivalently, share many solution attributes in common. Con-
sequently, an adaptive search algorithm should be able to exploit these similarities
during search. For example, Schneider et al. [33] introduce an adaptive local search
algorithm for the Traveling Salesman Problem that, after identifying the edges
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common to a set of high-quality local optima, restricts subsequent search to the
sub-space of solutions with only those edges. Similarly, Sourlas [37] introduced an
adaptive simulated annealing algorithm for the TSP that determines those edges ap-
pearing infrequently in high-quality solutions and prevents subsequent search from
generating tours containing those edges. FDC has also been used to account for
differences in the relative difficulty of problem instances, e.g., see [15]. As with
correlation length, we do not further consider FDC in the context of cost models
for local search due to most (basic forms of) local search metaheuristics being non-
adaptive in the evolutionary algorithm sense. Further, there is little evidence that
FDC can account for a significant proportion of variability in search cost observed
for a set of fixed-sized problem instances.

20.4.5 Solution Backbones

Recently, a number of researchers (e.g., [1] and [36]) have hypothesized that the
backbone of a problem instance may be correlated with problem difficulty. Infor-
mally, the backbone of an instance is the set of solution attributes or variables that
possess identical values in all optimal solutions; as a consequence, the definition
of a backbone depends on the representation scheme used to encode solutions. The
intuition behind the backbone measure is that the majority of effort in local search
may be spent assigning correct values to backbone variables. Non-backbone vari-
ables appear to be significantly less constrained, enabling search to quickly locate
an optimal solution once the backbone is located.

The recent interest in backbones is due in large part to the observation that large-
backboned problem instances begin to appear in large quantities near the critical
region of the Random 3-SAT phase transition [34] [27] [23] [35]; the coincidence
of the two observations immediately leads to the hypothesis that backbone size is
correlated with problem difficulty. More recently, Achlioptas et al. [1] argue that the
shift from small-to large-backboned instances in the phase transition region suggests
that the most difficult instances may in fact have a backbone size of 0.5, although
this hypothesis has not been verified. Slaney and Walsh [36] analyze the correlation
between problem difficulty and backbone size for constructive search algorithms
for a number of NP-hard optimization problems. For the Traveling Salesman and
Number Partitioning Problems, they report a weak-to-moderate correlation (e.g.,
r between 0.138 and r = 0.388) between backbone size and the cost of locating an
optimal solution.

20.4.6 Landscape Correlation Length

A number of researchers have hypothesized that the “ruggedness” of a fitness land-
scape is likely to be highly correlated with problem difficulty for adaptive search
algorithms such as genetic and other evolutionary algorithms [16, 38, 43]. A fit-
ness landscape is said to be rugged if there is a rapid change in the fitness between
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nearby solutions in the landscape. If the fitness of nearby solutions is uncorrelated,
we cannot expect adaptive search to outperform a random walk, i.e., there is no
structure to exploit. Ruggedness is frequently quantified as the landscape correla-
tion length, which captures the maximal distance between two arbitrary solutions
for which there still exists significant correlation between their fitness values [43].
We do not consider correlation length in the context of static cost models of lo-
cal search for two reasons. First, most local search metaheuristics are not adaptive,
such that correlation length is unlikely to have a major impact on problem diffi-
culty. Second, and more importantly, the extensive research on landscape correlation
lengths indicates that for a wide range of well-known NP-hard optimization prob-
lems, the correlation length is strictly a function of problem size [32]. For example,
the correlation length in an n-city TSP is given by n/2, while in an n-vertex Graph
Bi-Partitioning Problem, it is given by (n− 3)/8 [38]. Perhaps most dramatically,
Rana [29] showed that the landscape correlation length is effectively constant over
the easy-hard-easy pattern in problem difficulty observed for Random 3-SAT. Con-
sequently, correlation length fails to account for any of the variability in problem
difficulty observed in sets of fixed-sized problem instances.

20.4.7 Phase Transitions

Much of research on problem difficulty within the artificial intelligence and com-
puter science communities has focused on the identification of so-called phase tran-
sitions in problem difficulty [9]. A phase transition in a combinatorial optimiza-
tion problem identifies an order parameter that partitions the universe of problem
instances into subsets with differing degrees of expected difficulty. For example,
the clause-to-variable ratio m/n in Random 3-SAT induces a clear pattern: as m/n
ranges from 0 to ∞, the degree of problem difficulty exhibits a well-known easy-
hard-easy pattern [3]. While successful in identifying inter-partition differences in
problem difficulty, phase transitions fail to account for the often considerable vari-
ability within a partition; the latter can vary over many (e.g., 6 or more) orders of
magnitude, even for small problem instances. The failure to explain intra-partition
variance in problem difficulty should not, however, be viewed as a deficiency of
phase transition models; phase transition research was initially motivated by the
desire to generate difficult test problems, and this goal has been achieved.

20.5 Fitness Landscapes and Run-Time Dynamics

Fitness landscape analysis and the associated static cost models are only a first step
toward a more general theory of local search metaheuristics. Rather, the ultimate
objective is to develop models linking the fitness landscape structure with models
of metaheuristic search dynamics. In contrast to work on fitness landscape analysis,
research addressing metaheuristic dynamics is very limited. This is due in part to the
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difficulty of the modeling and the relatively recent emphasis on dynamics modeling.
In this section, we survey this research, highlighting the accuracy of the models, and
the insights they facilitate.

As discussed previously, static cost models only correlate fitness landscape struc-
tures with search cost; metaheuristic dynamics are completely ignored. An interme-
diate between static and dynamic cost models are quasi-dynamic cost models, which
are based on summary information concerning metaheuristic dynamics. One exam-
ple is introduced by Watson et al. [42] in the context of tabu search and the JSP. In
Section 20.4.3, we introduced a related static cost model based on the mean distance
between random local optima and the nearest optimal solution. However, Watson et
al. observe that random local optima are not representative of the solutions visited
by tabu search during execution. Instead, they proposed a quasi-dynamic cost model
based on the mean distance between solutions actually visited by tabu search and
the nearest optimal solution.

In Figure 20.5, we show a scatter plot of the mean cost required by tabu search to
locate an optimal solution to 6 job, 6 machine random JSPs, as function of the mean
distance between solutions visited by tabu search and the nearest optimal solution.
The r2 value for the corresponding quasi-dynamic cost model is 0.7808, represent-
ing a 21% increase over the corresponding static cost model; greater improvements
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Fig. 20.5 Scatter plot of the mean distance between solutions visited by tabu search and the nearest
optimal solution versus search cost for 6 job, 6 machine random job-shop problems; the least-
squares fit line is super-imposed.
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in accuracy were obtained for larger problem instances. With few exceptions, the
predicted costs are within a factor of five of the observed costs, representing a
marked improvement in accuracy relative to the best available static cost models
presented previously.

While quasi-dynamic cost models clearly illustrate the improved accuracy that is
facilitated by linking fitness landscape structure and metaheuristics dynamics, they
provide only indirect insight into metaheuristic dynamics, which is—we argue—
the primary objective in developing any theory of local search metaheuristics. Most
metaheuristics are randomized, if implicitly (e.g., through specification of an initial
starting solution), such that Markov chains can be used to explicitly model search
dynamics. There are two primary challenges in developing such Markov models:
(1) aggregating elements of the search space, in order to avoid exponential numbers
of states and (2) estimating the state transition probabilities.

To date, the majority of dynamic models of metaheuristics (which, as discussed
below, are very limited) follow Pappadimitriou [26] in aggregating states based on
their distance to the nearest optimal solution. Depending on the metaheuristic, it may
further be necessary to replicate states in order to account for memory mechanisms,
e.g., of the form found employed in tabu search [42].

Hoos [11] proposed a Markov model based on distance aggregation in the con-
text of MAX-SAT. The objective of Hoos’ analysis was to provide an explanation for
specific stagnation behavior in (at the time) state-of-the-art local search metaheuris-
tics for MAX-SAT, in which the run-time cost required to locate optimal solutions
for certain instances could not be explained by existing models. Hoos hypothesized
that the observed stagnation behavior was caused by the presence of sub-optimal
“traps,” which caused search to be drawn away from regions of the state space con-
taining optimal solutions and introduced a branched Markov model to represent the
search dynamic. Using posited transition probabilities, Hoos demonstrated that the
model accurately captured the search dynamics observed by MAX-SAT local search
metaheuristics on this class of problem instance.

Watson et al. [42] introduced Markov models for a tabu search algorithm for
the JSP. The contents of short-term memory were abstractly represented as the cur-
rent “gradient” or change in the distance to the nearest optimal solution observed
between the current and previous iteration of the tabu search metaheuristic and em-
bedded in the Markov state capturing distance to the nearest optimal solution. Tran-
sition probabilities were estimated by periodically observing the tabu search algo-
rithm, computing the current search gradient and the distance to the nearest optimal
solution; transition probabilities were then estimated using the aggregate sample,
for each problem instance.

The resulting Markov models were then simulated to compute the distribution of
the number of tabu search iterations required to locate an optimal solution. Com-
parison of the simulated and empirical results indicated that the proposed Markov
model accurately predicts the observed search costs; predicted mean search cost was
within a factor of five of the observed value, and the full search cost distribution
was reasonably approximated by the Markov model. Although beyond the present
scope, Watson et al. also discuss novel observations regarding the linkages between
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static, quasi-dynamic, and dynamic cost models in the context of tabu search. Fur-
ther, the model allowed the authors to propose and test certain hypotheses regarding
metaheuristic behavior for the JSP, including the lack of benefit due to alternate ini-
tialization strategies. For completeness and contrast with corresponding results for
static and quasi-dynamic cost models, we shown in Figure 20.6 the predicted versus
actual search costs for 6 job, 6 machine random JSPs. The r2 for the model is a
remarkable 0.96, with predictions in nearly all cases within a factor of two of the
observed values.
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Fig. 20.6 Scatter plot of the predicted versus actual search cost for 6 job, 6 machine random job-
shop problems, using a Markov model; the least-squares fit line is super-imposed.

Most recently, Fournier [6] introduced a Markov model to account for a simple
stochastic local search metaheuristic for MAX-SAT. In contrast to Hoos and Watson
et al. the search space is aggregated in terms of solution quality. Each discrete value
of solution quality (the number of unsatisfied clauses) is represented by a state in
the Markov chain. The state transition matrix then specifies the probability of tran-
sitioning from a state with quality q to a neighboring state with solution quality q′.
The resulting Markov chain is then simulated and compared against experimental
results to assess model quality, which in turn provides information concerning the
accuracy of the proposed metaheuristic dynamics.
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Fournier’s analysis focuses on a simple metaheuristic for MAX-SAT, called
RSAT, which simply selects a neighbor at each iteration with a probability in pro-
portion to the neighbor’s quality. This is in contrast to Hoos and Watson et al. who
analyze metaheuristics closely related to the state of the art for their respective prob-
lems. Further, Fournier’s analysis is primarily concerned with average behavior over
an ensemble of instances. In particular, the transition matrix is estimated from a
large sample of instances, aggregated into a single ensemble estimate. Not unex-
pectedly, the accuracy of the model on a per-instance basis is limited, although the
model (with some minor, noted exceptions) accurately captures metaheuristic dy-
namics at the ensemble level.

While limited, the research into dynamic models of metaheuristic behavior has
lead to impressive advances—relative to simple models based on fitness landscape
features—in cost model accuracy. This progression in accuracy is graphically illus-
trated in Figures 20.4 through 20.6. Although far from representing a general theory
of local search metaheuristics, such dynamic models do provide the first steps in
that general, key direction.

20.6 Conclusions

Despite the high level of research activity in local search metaheuristics over the
last two decades, comparatively little progress has been made in the theoretical
foundations of the field. Most research focuses either on the application of ex-
isting metaheuristics to new problems or the development of new metaheuristics.
Ideas and techniques are routinely re-introduced and re-invented, and it is often
difficult to assess the novelty and/or contribution of new research. Recently, the
roots of a theory of local search have begun to emerge. The type of model dis-
cussed in this chapter, we believe, provides a basis for a more general theory of
local search. Specifically, we have seen examples of how researchers have used
fitness landscape analysis to better understand the mechanisms underlying meta-
heuristic search and how these mechanisms give rise to various observed behaviors.
Model generalization to both other problems and a wider range of metaheuristics
is a significant outstanding challenge. Similarly, the implications of these models
for metaheuristic design are largely unknown and unexplored. Even with inefficient
and ad hoc development methodologies, researchers have continued to make signif-
icant advances in the effectiveness of local search metaheuristics. By developing a
generalized theory of local search, it should be possible to more precisely focus fu-
ture research and, as a consequence, significantly accelerate the rate of advances in
the field.
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Chapter 21
Comparison of Metaheuristics

John Silberholz and Bruce Golden

Abstract Metaheuristics are truly diverse in nature—under the overarching theme
of performing operations to escape local optima, algorithms as different as ant
colony optimization, tabu search, harmony search, and genetic algorithms have
emerged. Due to the unique functionality of each type of metaheuristic, comparison
of metaheuristics is in many ways more difficult than other algorithmic comparisons.
In this chapter, we discuss techniques for meaningful comparison of metaheuristics.
We discuss how to create and classify instances in a new testbed and how to make
sure other researchers have access to the problems for future metaheuristic com-
parisons. Further, we discuss the disadvantages of large parameter sets and how to
measure complicating parameter interactions in a metaheuristic’s parameter space.
Last, we discuss how to compare metaheuristics in terms of both solution quality
and runtime.

21.1 Introduction

Metaheuristics are truly diverse in nature—under the overarching theme of perform-
ing operations to escape local optima (we assume minima in this chapter without
loss of generality), algorithms as different as ant colony optimization [12], tabu
search [16], and genetic algorithms [23] have emerged. Due to the unique function-
ality of each type of metaheuristic, comparison of metaheuristics is in many ways
more difficult than other algorithmic comparisons.
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In this chapter, we discuss techniques for meaningful comparison of metaheuris-
tics. In Section 21.2, we discuss how to create and classify instances in a new testbed
and how to make sure other researchers have access to the problems for future meta-
heuristic comparisons. In Section 21.3, we discuss the disadvantages of large param-
eter sets and how to measure complicating parameter interactions in a metaheuris-
tic’s parameter space. Last, in Sections 21.4 and 21.5, we discuss how to compare
metaheuristics in terms of both solution quality and runtime.

21.2 The Testbed

It seems natural that one of the most important parts of a comparison among heuris-
tics is the testbed on which the heuristics are tested. As a result, the testbed should
be the first consideration when comparing two metaheuristics.

21.2.1 Using Existing Testbeds

When comparing a new metaheuristic to existing ones, it is advantageous to test
on the problem instances already tested by previous papers. Then, results will
be comparable on a by-instance basis, allowing relative gap calculations between
the two heuristics. Additionally, trends with regard to specific types of problem
instances in the testbed can be made, making analysis of the new metaheuristic
simpler.

21.2.2 Developing New Testbeds

While ideally testing on an existing testbed would be sufficient, there are many
cases when this is either insufficient or not possible. For instance, when writing a
metaheuristic for a new problem, there will be no testbed for that problem, so a
new one will need to be developed. In addition, even on existing problems where
heuristic solutions were tested on non-published, often randomly generated problem
instances, such as those presented in [15, 25], a different testbed will need to be used.
Last, if the existing testbed is insufficient (often due to being too small to effectively
test a heuristic), a new one will need to be developed.

21.2.2.1 Goals in Creating the Testbed

The goals of a problem suite include mimicking real-world problem instances while
providing test cases that are of various types and difficulty levels.
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One key requirement of the testbed that is especially important in the testing of
metaheuristics is that large problem instances must be tested. For small instances,
optimal solution techniques often run in reasonable runtimes while giving the ad-
vantage of a guaranteed optimal solution. It is, therefore, critical that metaheuris-
tic testing occurs on the large problems for which optimal solutions could not be
calculated in reasonable runtimes. As discussed in [19], it is not enough to test
on small problem instances and extrapolate the results for larger instances; algo-
rithms can perform differently in both runtime and solution quality on large problem
instances.

While it is desirable that the new testbed be based on problem instances found
in industrial applications of the problem being tested (like the TSPLIB, [28]), it is
typically time intensive to do this sort of data collection. Often real-world data is
proprietary and, therefore, difficult to obtain. Furthermore, the problem instances
generated will typically be small in number and size. For instance, real-world prob-
lem instances used for testing on the generalized traveling salesman problem pro-
posed in [13] all had fewer than 50 nodes. In addition, there were only two real-
world problem instances proposed; nearly all of the problem instances used in that
paper did not come from real-world data, and all of the larger problem instances
were artificial.

As a result, it is generally more reasonable to create a testbed based on existing
well-known problem instances than it is to create one from scratch. For instance,
many testbeds have been successfully made based on the TSPLIB. In the case of the
generalized traveling salesman problem, [13] established a well-used testbed based
on a simple extension to TSPLIB problem instances. Another example of such an
extension can be found in [2], in which the authors tested several different modified
versions of 10 benchmark VRP problems and reported computational results on
each variation.

21.2.2.2 Accessibility of New Test Instances

When creating a new testbed, the focus should be on providing others access to the
problem instances. This will allow other researchers to more easily make compar-
isons, ensuring the problem instances are widely used. One way to ensure this would
be to create a simple generating function for the problem instances. For instance, the
clustering algorithm proposed in [13] that converted TSPLIB instances into clus-
tered instances for the generalized traveling salesman problem was simple, making
it easy for others to create identical problem instances. Additionally, publishing the
problem instances tested is another effective way to make them accessible. This was
an effective technique used, for instance, in [7, 31].

In developing a new testbed, capturing real aspects of a problem is important.
For instance, in the problem instances found in [13], the clustering algorithm placed
nodes in close proximity to each other in the same cluster, capturing real-life char-
acteristics of this problem.
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21.2.2.3 Geometrically Constructed Problem Instances

One problem in the analysis of metaheuristics, as discussed in more detail in Sec-
tion 21.4 is finding errors for the algorithms. Even when using advanced techniques,
it is typically difficult to determine optimal solutions for large problem instances. A
way to minimize the difficulty in this step is to use geometrically constructed so-
lutions for which optimal or near-optimal solutions are apparent. This removes the
burden on the metaheuristics designer to also implement an exact approach, relax-
ation results, or a tight lower bound. Instead, the designer can use the specially
designed problem instances and provide a good estimate of the error of each meta-
heuristic tested.

A number of papers in the literature have used this approach. For instance, in
[6], problem instances for the split delivery vehicle routing problem were generated
with customers in concentric circles around the depot, making estimation of optimal
solutions possible visually. Other examples of this approach are found in [5, 20–22].

21.2.3 Problem Instance Classification

Regardless of whether an existing or new testbed is used, classifying the problem
instances being tested is critical to the proper analysis of heuristics. Differentiating
factors between problem instances should be noted prior to any experimentation,
and heuristic performance on each type of problem instance should be discussed.
A good example of such analysis is found in [17], an experimental evaluation of
heuristics for the resource-constrained project scheduling problem. That paper split
problem instances by three key problem instance parameters, the network complex-
ity, resource factor, and resource strength, analyzing the effects of each on the per-
formance of the heuristics. Especially in testbeds based on real-world data, this clas-
sification of problem instances and subsequent analysis could help algorithm writers
in industry with a certain type of dataset to determine which method will work the
best for them.

21.3 Parameters

Though deciding upon a quality testbed is critical when comparing solution qual-
ities and runtimes, it is also important to compare the actual algorithms. This can
be accomplished in part by considering the complexity of the algorithms; if two
algorithms produce similar results but one is significantly simpler than the other,
then the simpler of the two is a superior algorithm. Algorithms with a low degree of
complexity have a number of advantages, including being simple to implement in
an industrial setting, being simple to reimplement by researchers, and being simpler
to explain and analyze.
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A number of measures of simplicity exist. Reasonable metrics include the num-
ber of steps of pseudocode needed to describe the algorithm or the number of lines
of code needed to implement the algorithm. However, these metrics are not particu-
larly useful, as they vary based on programing language and style in the case of the
lines of code metric and pseudocode level of detail in the case of the pseudocode
length metric. A more meaningful metric for algorithmic complexity is the number
of parameters used in the algorithm.

Parameters are the configurable components of an algorithm that can be changed
to alter the performance of that algorithm. Parameters can either be set statically
(for instance, creating a genetic algorithm with a population size of 50) or based on
the problem instance (for instance, creating a genetic algorithm with a population
size of 5

√
n, where n is the number of nodes in the problem instance). In either of

these cases, the constant value of the parameter or the function of problem instance
attributes used to generate the parameter must be predetermined by the algorithm
designer.

Each major type of metaheuristic has a number of parameters that must be set
before algorithm execution. Consider Table 21.1, which lists basic parameters re-
quired for major types of metaheuristics. Though these are guidelines for the min-
imum number of parameters typical in different types of algorithms, in practice,
most metaheuristics have more parameters. For instance, a basic tabu search proce-
dure can have just one parameter, the tabu list length. However, some procedures
have many more than that one parameter. The tabu search for the vehicle routing
problem presented in [33] uses 32 parameters. Likewise, algorithms can have fewer
than the “minimum” number of parameters by combining parameters with the same
value. For instance, the genetic algorithm for the minimum label spanning tree prob-
lem in [32] uses just one parameter, which functions both to control the population
size and to serve as a termination criterion.

21.3.1 Parameter Space Visualization and Tuning

Metaheuristics using many parameters are more complex than procedures with few
parameters for a number of reasons. First, the effort needed to tune or understand
these parameters is far greater as the number of parameters increases. A brute-force
technique for parameter tuning involves testing m parameter values for each of the
n parameters, a procedure that should test nm configurations over a subset of the
problem instances. Assuming we choose to test just three values for each parameter,
we must test nine configurations for an algorithm with two parameters and 2,187
values for an algorithm with seven parameters. While this number of configura-
tions is likely quite reasonable, the number needed for a 32-parameter algorithm,
1,853,020,188,851,841, is clearly not reasonable. The size of the parameter space
for an algorithm with a large number of parameters expands in an exponential man-
ner, making the search for a good set of parameters much more difficult as the num-
ber of parameters increases. While, of course, there are far better ways to search for
good parameter combinations than brute-force search, the size of the search space
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Table 21.1 Popular metaheuristics and their standard parameters.

Name Parameters

Ant colony optimization Pheromone evaporation parameter
Pheromone weighting parameter

Genetic algorithm Crossover probability
Mutation probability
Population size

Harmony search Distance bandwidth
Memory size
Pitch adjustment rate
Rate of choosing from memory

Simulated annealing Annealing rate
Initial temperature

Tabu search Tabu list length

Variable neighborhood search None

still increases exponentially with the number of parameters, meaning a large number
of parameters makes this search much more difficult.

Larger numbers of parameters also make the parameter space much harder to
visualize or understand. As a motivating example, consider the relative ease with
which the parameter space of an algorithm with two parameters can be analyzed.
We analyzed the two-parameter metaheuristic due to [30] for solving the gener-
alized orienteering problem on a few random problems from the TSPLIB-based
large-scale orienteering problem dataset considered in that paper. To analyze this
algorithm, we chose a number of parameter configurations in which each parameter
value was close to the parameter values used in that paper. For each parameter set,
the algorithm was run 20 times on each of five randomly selected problem instances
from all the TSPLIB-based instances used. The optimal solutions are known for
each of the five problem instances tested.

The resulting image, shown in Figure 21.1, is a testament to the simplicity of
analysis of an algorithm with just two parameters. In this figure, different values of
the parameter i are shown on the x-axis, while different values of the parameter t
are shown on the y-axis. Parameter i is an integral parameter with small values,
so results are plotted in three columns representing the three values tested for that
parameter: three, four, and five. For each parameter set (a pair of i and t), a horizontal
line is plotted with width normalized by the average error of the algorithm over the
20 runs for each of the five problem instances tested. A narrow width corresponds
to an average error near the best performance of the testing, which is 2.53%, while
a wide width corresponds to an average error near the worst performance of the
testing, which is 4.08%. In a dense parameter space, the same sort of visualization
could be gleaned by coloring dots with colors relating to the error or by presenting
a three-dimensional depiction, where the z-coordinate is the error.
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Fig. 21.1 Depiction of solution quality of a metaheuristic for the generalized orienteering problem
over its two-dimensional parameter space. The x-axis is the parameter i at three separate values
and the y-axis is the parameter t over a large range of values. The widths in the figure represent
error of the algorithm; a small width represents a small error.

It is immediately clear that the two lower values tested for i, 3 and 4, are superior
to the higher value of 5 on the problem instances tested. Further, it appears that
higher values of t are preferred over lower ones for all of the values of i tested,
ignoring a single outlier with higher error for low i and high t.

This sort of simplistic visual analysis becomes more difficult as the dimension-
ality of the parameter space increases. It is certainly possible to visualize a three-
dimensional parameter space in which the color at each point represents the solution
quality of the algorithm with that parameter set, though this technique suffers from
difficulties in viewing the interior points in a cubic parameter space with the exterior
points in the way. Though visualizations of four-dimensional spaces do exist (see,
for instance, [18]), the visualizations do not provide information that is nearly as
intuitive, decreasing the simplicity with which the parameter space can be visual-
ized. Certainly no simple visualizations are available for 32-dimensional parameter
spaces.

21.3.2 Parameter Interactions

This is not the only downside of metaheuristics with a large number of parameters.
Another shortcoming is apparent in the susceptibility of a large parameter set to
exhibit complex parameter interactions. These complex interactions might lead to,
for instance, multiple locally optimal solutions in the parameter space in terms of
solution quality. In a more practical optimization sense, this concept of parameter
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interaction implies that optimizing parameters individually or in small groups will
become increasingly ineffective as the total number of parameters increases.

Parameter interaction is a topic that has been documented in a variety of works.
For instance, in [10] the authors observe non-trivial parameter interactions in genetic
algorithms with just three parameters. These authors note that the effectiveness of a
given parameter mix is often highly based on the set of problem instances consid-
ered and the function being optimized, further noting the interdependent nature of
the parameters. To a certain extent, it is often very difficult to avoid parameter inter-
actions such as these. In the case of genetic algorithms, for instance, a population
size parameter, crossover probability parameter, and mutation probability parame-
ter are typically used, meaning these algorithms will typically have at least the three
parameters considered by Deb and Agrawal. However, there have been genetic algo-
rithms developed that operate using only one parameter [32] or none [29], actually
eliminating the possibility of parameter interactions.

Though to some degree there is parameter interaction in algorithms with a small
number of parameters, we believe that the level of interaction increases dramatically
with the number of parameters. To our knowledge, no research has been done on the
effects of the number of parameters in a metaheuristic or heuristic on the parameter
interactions for that algorithm. However, we propose a simple experiment to test
this hypothesis.

First, the experimenter should select a combinatorial optimization problem for
which a large number of metaheuristics have been developed. Reasonable choices
might be the traveling salesman problem or the vehicle routing problem. Next,
the experimenter should obtain implementations of a number of those metaheuris-
tics, preferably of different types (genetic algorithm, tabu search, simulated an-
nealing, ant colony optimization, etc.) and necessarily with a range of number of
parameters.

The next step would be to test the parameter interactions using methods de-
signed for this purpose on a representative set of problem instances for the prob-
lem considered. One method that could capture parameter interactions of any or-
der would be a full-factorial design, in which a reasonable maximum and min-
imum value is selected for each parameter and each combination of high and
low values for each parameter is tested. However, the number of configurations
tested with this method is exponential; a 32-parameter algorithm would require
4,294,967,296 configurations to be tested, which is almost certainly not reason-
able. Even a 10-parameter algorithm, which is not uncommon in metaheuristics
today, would require tests on over 1,000 configurations, likely a computational
burden.

Thus, a better design might be the Plackett–Burman method [27], which requires
a number of configurations that is linear in the number of parameters considered.
Though this method is limited in that it can only show second-order parameter in-
teractions (the interactions between pairs of parameters), this is not an enormous
concern as most parameter interactions are of the second-order variety [24].

In either of these two designs, the number and magnitude of parameter interac-
tions will be measured for each of the algorithms, and a comparison of the intensity
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of the interactions will be possible. We believe that not only will the number and
magnitude of second-order interactions increase as the size of the parameter set
increases, but the same will be true for the higher-order interactions measured
through the full-factorial design (if it is possible to use this design).

21.3.3 Fair Testing Involving Parameters

Though the effect of parameters on algorithmic simplicity is an important considera-
tion, it is not the only area of interest in parameters while comparing metaheuristics.
The other major concern is one of fairness in parameter tuning—if one algorithm is
tuned very carefully to the particular set of problem instances on which it is tested,
this can make comparisons on these instances unfair. Instead of tuning parameters on
all the problem instances used for testing, a fairer methodology for parameter setting
involves choosing a representative subset of the problem instances to train param-
eters on, to avoid overtraining the data. The complementary subset can be used for
testing and comparing metaheuristics. A full description of one such methodology
can be found in [9].

21.4 Solution Quality Comparisons

While it is important to gather a meaningful testbed and to compare the metaheuris-
tics in terms of simplicity by considering their number of parameters, one of the
most important comparisons involves solution quality. Metaheuristics are designed
to give solutions of good quality in runtimes better than those of exact approaches.
To be meaningful, a metaheuristic must give acceptable solutions, for some defini-
tion of acceptable.

Depending on the application, the amount of permissible deviation from the opti-
mal solution varies. For instance, in many long-term planning applications or appli-
cations critical to a company’s business plan the amount of permissible error is much
lower than in optimization problems used for short-term planning or for which the
solution is tangential to a company’s business plans. Even for the same problem, the
amount of permissible error can differ dramatically. For instance, a parcel company
planning its daily routes to be used for the next year using the capacitated vehi-
cle routing problem would likely have much less error tolerance than a planning
committee using the capacitated vehicle routing problem to plan the distribution of
voting materials in the week leading up to Election Day.

As a result, determining a target solution quality for a combinatorial optimiza-
tion problem is often difficult or impossible. Thus, when comparing metaheuristics
it is not sufficient to determine if each heuristic meets a required solution quality
threshold; comparison among the heuristics is necessary.
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21.4.1 Solution Quality Metrics

To compare two algorithms in terms of solution quality, a metric to represent the so-
lution quality is needed. In this discussion of the potential metrics to be selected, we
assume that solution quality comparisons are being made over the same problem in-
stances. Comparisons over different instances are generally weaker, as the instances
being compared often have different structures and almost certainly have different
optimal values and difficulties.

Of course, the best metric to use in solution quality comparison is the deviation
of the solutions returned by the algorithms from optimality. Finding the average
percentage error over all problems is common practice, as this strategy gives equal
weight to each problem instance (instead of, for instance, giving preference to prob-
lem instances with larger optimal solution values).

However, using this metric requires knowledge of the optimal solution for every
problem instance tested. However, this is a presupposition that likely cannot always
be made. If optimal solutions are available for every problem instance tested upon,
the problem instances being considered are likely not large enough, since exact al-
gorithms can provide solutions in reasonable runtimes.

This introduces the need for new metrics that can provide meaningful informa-
tion without access to the optimal solution for all (or potentially any) problem in-
stances. Two popular metrics that fit this description are deviation from best-known
solutions for a problem and deviation between the algorithms being compared.

Deviation from best-known solution or tightest lower bound can be used on prob-
lems for which an optimal solution was sought but optimal solutions were not ob-
tained for some problem instances within a predetermined time limit. In these cases,
deviation from best-known solution or tightest relaxation is meaningful because for
most problem instances the best-known solution or tightest relaxation will be an
optimal solution. An example of the successful application of this approach can be
found in [14]. In that paper, a metaheuristic, optimal solution, and relaxation of that
optimal solution are all created. Though the optimal solution was not run on the
largest problem instances due to the excessive runtime required, the low error of the
metaheuristic from the optimal solution on the smaller problems (0.25%) reinforces
moderate deviations from the relaxed solutions over all problem instances (6.09%).

The metric can also be used for problems for which no optimal solution has been
published, though the resulting deviations are less meaningful. It is unclear to a
reader how well the algorithm performs without an understanding of how close the
best-known solutions or tight lower bounds are to optimal solutions.

Though it also addresses the issue of not having access to optimal solutions, a
metric of deviation between the algorithms being compared operates differently—
any evaluation of solution quality is done in relation to the other algorithm(s) being
considered. This method has the advantage of making the comparison between the
algorithms very explicit—all evaluations, in fact, compare the two or more algo-
rithms. However, these comparisons lack any sense of the actual error of solutions.
Regardless of how an algorithm fares against another algorithm, its actual error as
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compared to the optimal solution is unavailable using this metric. Therefore, using a
metric of deviation from another algorithm loses much of its meaningfulness unless
accompanied by additional information, such as optimal solutions for some of the
problem instances, relaxation results for the problem instances, or deviation from
tight lower bounds (to give a sense of the global optimality of the algorithms).

21.4.2 Multiobjective Solution Quality Comparisons

Though this section has focused on solution quality comparisons of single-objective
heuristics, much work has also been done on the comparison of heuristics seeking
to optimize multiple objective functions. For a detailed overview of multiobjective
optimization and some of the difficulties encountered in comparing multiobjective
metaheuristics, see [8]. For an example of the application of metaheuristics to mul-
tiobjective optimization problems, see [26].

21.5 Runtime Comparisons

While it is necessary that a metaheuristic demonstrates good solution quality to be
considered viable, having a fast runtime is another critical necessity. If metaheuris-
tics did not run quickly, there would be no reason to choose these approaches over
exact algorithms.

At the same time, runtime comparisons are some of the most difficult compar-
isons to make. This is fueled by difficulties in comparing runtimes of algorithms that
compiled with different compilers (using different compilation flags) and executed
on different computers, potentially on different testbeds.

21.5.1 The Best Runtime Comparison Solution

The best solution is, of course, to get the source code for the algorithm, compile it
on the same computer with the same compilation flags as your own code, and run
both algorithms on the same computer. This is certainly the best solution in terms
of runtime comparison, as the runtimes for a given problem are then directly com-
parable. Further, assuming the code can be obtained, this is a relatively simple way
to compare the solution qualities. However, this technique for comparing algorithm
runtimes is often not possible.

One case in which it is not possible is if the algorithms were programed in dif-
ferent languages. This implies that their runtimes are not necessarily directly com-
parable. Though attempts have been made to benchmark programing languages in
terms of solution qualities (see, for instance, [4]), these benchmarks are susceptible
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to the type of program being run, again rendering any precise comparison difficult.
Further invariants in these comparisons include compiler optimizations. The pop-
ular C compiler gcc has over 100 optimization flags that can be set to fine-tune
the performance of a C program. As most papers do not report compiler optimiza-
tion flags along with computational results, it would be difficult to obtain the exact
scalar multiplier for a C program without additional information. Therefore, while
the technique of obtaining a scalar multiplier between programing languages will
almost certainly allow comparisons accurate to within an order of magnitude be-
tween algorithms coded in different programing languages, these methods cannot
provide precise comparisons.

21.5.2 Other Comparison Methods

It is sometimes not possible to obtain the source code for the algorithm to which
we compare. The source code may have been lost (especially in the case of older
projects) or the authors may be unwilling to share their source code. While this
does make runtime comparison harder, it does not excuse authors from performing
these computations—they are critical to the comparison of two algorithms. Two
major approaches remain for a researcher to compare runtimes between the two
algorithms, each with advantages and disadvantages.

The first is to reimplement another researcher’s code in the same language as your
code, running it on the same computer on the same problem instances. This has the
advantage of actually running the same algorithm on the same hardware with the
same compiler on the same computer, all positive attributes of a comparison. How-
ever, this approach suffers from two major weaknesses. First, some algorithms are
not clear on certain details of the approach, making an exact reimplementation dif-
ficult. While statistical tests can be used to prove that solution qualities returned by
the two algorithms are not statistically significantly different between the two im-
plementations, this makes direct comparison of the results more difficult. Second,
there is no guarantee that the approach used to reimplement another researcher’s
code is really similar to their original code. For instance, the other researcher may
have used a clever data structure or algorithm to optimize a critical part of the code,
yielding better runtime efficiency. As there is little incentive for a researcher to per-
form the hard work of optimizing the code to compare against, but much incentive
to optimize one’s own code, we believe it is fair to say that reimplementations typ-
ically overstate the runtime performance of a new algorithm over an existing one
(see [3] for a humorous view of issues such as these).

The other approach does not suffer from these weaknesses. In this approach,
published results of an algorithm over a publicly available dataset are compared
to a new algorithm’s results on the same dataset. While the dataset being tested is
the same and the algorithms being compared are the algorithms as implemented
by their developers, the computer used to test these instances is different, and the
compiler and compiler flags used are likely also not the same. This approach has the
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advantage of simplicity for the researcher—no reimplementation of other algorithms
is needed. Further, the implementations of each algorithm are the implementations
of their authors, meaning there are no questions about implementation as there were
in the reimplementation approach. However, the problem then remains to provide
a meaningful comparison between the two runtimes. Researchers typically solve
this issue by using computer runtime comparison tables such as the one found in
[11] to derive conservative runtime multipliers between the two algorithms. These
comparison tables are built by running a benchmarking algorithm (in the case of
[11], this algorithm is a system of linear equations solved using LINPACK) and
comparing the time to completion for the algorithm. However, it is well known that
these sorts of comparisons are imprecise and highly dependent on the program being
benchmarked, and the very first paragraph of the benchmarking paper makes sure
to mention the limitations of this sort of benchmarking: “The timing information
presented here should in no way be used to judge the overall performance of a
computer system. The results only reflect one problem area: solving dense systems
of equations.” Hence, the multipliers gathered in this way can only provide a rough
idea of runtime performance, clearly a downside of the approach.

21.5.3 Runtime Growth Rate

Regardless of the comparison method used to compare algorithms’ runtimes, the
runtime growth rate can be used as a universal language for the comparison of run-
time behaviors of two algorithms. While upper bounds on runtime growth play an
important role in the discussion of heuristic runtimes, metaheuristic analysis often
does not benefit from these sorts of metrics. Consider, for instance, a genetic al-
gorithm that terminates after a fixed number of iterations without improvement in
the solution quality of the best solution to date. No meaningful worst-case analysis
can be performed, as there could be many intermediate best solutions encountered
during the metaheuristic’s execution. Even in metaheuristics where such analysis is
possible (for instance, a genetic algorithm with a fixed number of generations be-
fore termination), the worst-case runtime will often not be representative of how
the algorithm will actually perform on problem instances, decreasing its value. As a
result, the worst-case runtime is a bad choice for asymptotic analysis.

A much better approach for asymptotic analysis is fitting a curve to the run-
times measured for each of the algorithms. Regression analysis is a well-known
technique that matches functions to a set of measurement points, minimizing the
sum-of-squares error of the matching. These asymptotic results help indicate how
an algorithm might perform as the problem size increases. Though there is no guar-
antee that trends will continue past the endpoint of the sampling (motivating testing
on large problem instances), asymptotic runtime trends are key to runtime analyses.
Even if one algorithm runs slower than another on small- or medium-sized problem
instances, a favorable asymptotic runtime suggests the algorithm may well perform
better on large-sized problem instances, where metaheuristics are most helpful.
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21.5.4 An Alternative to Runtime Comparisons

Though the focus thus far has been on runtime comparisons, there are other forms of
computational complexity comparison that do not rely on runtimes. One of the most
intriguing, counting the number of representative operations the algorithm uses, is
discussed in [1]. In this scheme, the number of a selected set of bottleneck operations
is compared without any regard for the total execution time of the algorithms being
compared.

There are several clear advantages to this approach over runtime comparisons.
As described in [1], it removes the invariants of compiler choice, programer skill,
and power of computation platform, providing complexity measures that are easier
to replicate by other researchers. However, this approach suffers from the fact that
it is often difficult to identify good operations that each algorithm being compared
will implement. The only function sure to be implemented by every procedure is
the evaluation of the function being optimized. As a result, comparisons of this type
often only compare on the optimization function, losing information about other
operations, which could potentially be more expensive or more frequently used. As
a result, in the context of metaheuristic comparison this technique is best if used
along with more traditional runtime comparisons.

21.6 Conclusion

We believe following the procedures described in this chapter will increase the qual-
ity of metaheuristic comparisons. In particular, choosing an appropriate testbed and
distributing it so other researchers can access it will result in more high-quality com-
parisons of metaheuristics, as researchers will test on the same problem instances.
In addition, expanding the practice of creating geometric problem instances with
easy-to-visualize optimal or near-optimal solutions will increase understanding of
how metaheuristics perform in a global optimization sense.

Furthermore, it is important to recognize that the number of algorithm param-
eters has a direct effect on the complexity of the algorithm and on the number of
parameter interactions, which complicates analysis. If the number of parameters is
considered in the analysis of metaheuristics, this will encourage simpler, easier-to-
analyze procedures.

Finally, good techniques in solution quality and runtime comparisons will ensure
fair and meaningful comparisons are carried out between metaheuristics, producing
the most meaningful and unbiased results possible.
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