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Paul Shaw

Abstract Constraint programming and local search are two different optimization
paradigms which, over the last two decades or so, have been successfully com-
bined to form hybrid optimization techniques. This chapter describes and compares
a number of these works, with the goal of giving a clear picture of research in this
domain. We close with some open topics for the future.

1 Introduction

This chapter describes ways in which constraint programming (CP) and local search
(LS) can be usefully combined. Researchers have been looking at ways to combine
these two approaches for around 20 years now. As we shall see, these combinations
can take on a variety of guises: diverse examples include using LS in propagation
and pruning rules, using CP to make moves in an LS process, and performing local
moves on the decision path in a search tree. Focacci et al. describe a number of
these in [28].

LS and CP offer two different and contrasting ways of solving combinatorial
optimization problems. LS works on a complete assignment of values to variables
and navigates through the search space by making “moves”: each move is selected
from one available in the “neighborhood” and modifies part of the complete assign-
ment. Roughly speaking, the neighborhood is the set of possible moves available
from an assignment (see [1] for elaboration) – we will not need a more formal
definition here.

CP can be seen as both a modeling and a solving technology. In terms of
modeling, CP provides high-level structural constraints, such as the element con-
straint and all-different, very often resulting in more compact and readable models
than alternative approaches, such as integer programming. In terms of solving, CP
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builds up a partial solution constructively by heuristically making assignments to
variables (which can later be undone through backtracking). Before each heuristic
assignment, inference rules and algorithms are used to reduce the set of possible
values for variables not yet in the partial solution (constraint propagation).

We examine different ways that CP and LS methods have been used together to
solve combinatorial optimization problems. This chapter does not, however, explore
what might be considered the more “classic” methods of combining complete and
LS techniques which either: (a) Run an LS method to provide a good upper bound
on the objective function, then switch to a complete method for establishing proof,
or, (b) run an LS method on each solution found by a tree-based method, in order to
produce better solutions faster and provide tighter bounds for the complete method,
or, (c) more complex combinations of the above where the two methods are per-
haps run in parallel with communication of solutions and bounds being carried out
throughout the search process. These kinds of methods, although interesting in their
own right, have no character specific to CP and are not mentioned further here.

2 Local Search on CP Models

In this chapter, when we refer to combinations of LS and CP, we are, for the most
part, referring to a combination of searches: a fusion of an inherently LS method
with the classic constructive incremental process of CP. In contrast to this general
theme, this first section describes combinations using only the modeling aspects of
CP in combination with LS methods for finding and improving solutions to these
models.

2.1 Min-Conflicts and Related Algorithms

Min-conflicts is an appealing technique described in [64]. The idea is both sim-
ple and effective, and based on the authors’ observations of the Guarded Discrete
Stochastic (GDS) network [2], a system based on neural networks.

In min-conflicts, and indeed in many of the methods discussed in the chapter,
constraints may be violated during the search process, and that violation is often
measured and treated as an objective function in the classical sense.1 The essential
idea of min-conflicts is to always take a local decision which minimizes the total
number of conflicts. One may consider the number of conflicts for a constraint as
(an approximation of) the number of variables that must change value in order to

1 These techniques (min-conflicts included) are often geared toward the solution of decision prob-
lems, but optimization problems can be solved in the usual manner, through a series of such
decision problems with a tightening upper bound on the objective function.
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satisfy it. For binary CSPs, the number of constraints violated is typically used. Two
versions of min-conflicts are offered up in [64]: one based on LS (min-conflicts hill
climbing), the other based on a complete tree-search technique. We concentrate only
on the LS version here, but the other is mentioned in Sect. 5.

In min-conflicts, an initial solution to the problem is generated by assigning
values to variables in turn, each instantiation choosing a value for the variable under
investigation which minimizes the number of conflicts with variables that have
already been given values. When this first “greedy” solution has been generated,
min-conflicts enters a local improvement phase which tries to reduce the number of
conflicts to zero by the following process:

while conflicts exist
choose a variable x in conflict
choose a value for x which minimizes conflicts on x

end while

How variables and values are chosen in case of ties (what conflicting variable, which
value which minimizes conflicts), can depend upon implementation, but [64] sug-
gests using random tie-breaking for the value.

To the best of our knowledge, the authors of the min-conflicts heuristic were the
first to clearly communicate on a major reason that LS can work so much better than
constructive search when good solutions are quickly sought. In [64], when speaking
of the GDS network, the authors write:

Our second hypothesis was that the network’s search process uses information about the
current assignment that is not available to a constructive backtracking program.

The point here is that the LS algorithm always has global information available to it
on the quality of the current state of the algorithm: all variables contribute to its eval-
uation and the evaluation of its next move. By contrast, a constructive method has
comparatively little information on which to base its next decision. Methods such
as promise [34], constrainedness [37], and impacts [87] have been put forward for
constructive backtracking algorithms, but their evaluations are essentially statistical
in nature and hold none of the solidity of the conflicts measure.

Min-conflicts worked successfully, comparing so well to the GDS network that
min-conflicts replaced it in the long-term scheduling component of the Hubble
Space Telescope. However, it was realized by the authors and others that min-
conflicts could fall foul of local minima. A simple example: consider the system,
A; B; C 2 0; 1, A C B C C D 1, A ¤ C , B ¤ C . The only solution to this
system is ABC D 001 (goal state). Further assume that the initial solution is 100,
produced by assigning A,B, and C in order, minimizing conflicts on the way. This
initial solution violates only one constraint: B ¤ C , and so has a cost of 1. From
this initial position, to reach the goal, the assignment must pass through one of the
three neighboring assignments of the goal state: namely 101, 011, or 000 (recall that
min-conflicts may only change one variable assignment at a time). Table 1 shows
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Table 1 Cost contributions of assignments of min-conflicts at a local minimum

Assignment Contribution

Label ABC A C B C C D 1 A ¤ C B ¤ C Total

Start 100 0 0 1 1
Goal 001 0 0 0 0
Goal Nei. 1 000 1 1 1 3
Goal Nei. 2 011 1 0 1 2
Goal Nei. 3 101 1 1 0 2

the cost of the five important assignments (start state, goal state, and the three neigh-
bors of the goal state). Notice that it is impossible for min-conflicts to reach the goal
state from the start state as all states neighboring the goal are of higher cost than the
starting state.

The local minimum problem of min-conflicts was addressed by the breakout
method [66] and GENET [24].2 The breakout method is largely inspired by min-
conflicts, whereas GENET takes much of its design from GDS (which was the
system on which min-conflicts itself was based). Both methods escape local minima
by adjusting the way in which constraint violations are counted: each constraint is
assigned a weight (initially one), which may be modified by a learning process.

In both methods, a greedy min-conflicts type of approach is pursued until a local
minimum is reached. In the breakout method, a local minimum is one where the
number of violated constraints cannot be strictly decreased. In GENET, sideways
(cost neutral) moves are allowed and the greedy phase terminates when the network
has had the same state for two successive iterations. When in the local minimum
state, both methods increase the weights of all currently violated constraints by one,
and the greedy process is restarted from the current point. In experiments, both
methods are shown to strongly dominate the min-conflicts hill climbing method.

Yugami et al. [115] describe another method for breaking out of local minima,
named EFLOP. The idea of EFLOP is that it can be used as a diversification method
that a hill climber can call when confronted with a local minimum. EFLOP will
change the value of a conflicting variable, even if that increases the number of con-
flicts, and then will go on to try to repair the new conflicts created, without ever
changing the value of a variable more than once. In this way, the repair effect prop-
agates through the network until no newly created conflicts can be repaired. The
resulting assignment is then given back to the hill climber as a point from which to
continue. The method is similar in spirit to that of an ejection chain in LS (see for
example [113]) where changing a solution element has a cascading effect on others.
The authors report significant gains when the EFLOP module is plugged into the
min-conflicts hill climber or GSAT [98].

2 Later, GENET was generalized to Guided Local Search [110], a meta-heuristic based on penal-
ization of the cost function.
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2.2 SAT-Based Methods

Another well-used technique for solving CSPs using LS methods is to translate the
CSP problem to an SAT problem, and then use one of the well-known SAT solving
techniques (such as WalkSAT [97]).

There are various ways of translating CSPs to SAT. In [112], Walsh describes two
methods: the direct encoding and the logarithmic encoding. In the direct encoding,
one propositional variable xij is introduced for each unary assignment Xi D j in
the CSP. Clauses of the form _j 2 Domain.Xi /xij are introduced to assure that each
CSP variable is assigned a value. Finally, each constraint is encoded by introducing
one clause for each tuple of incompatible values. For example, if X1 D 1 is incom-
patible with X2 D 3, then this translates to the clause :x11 _:x23. Note that clauses
assuring that each CSP variable must take on exactly one value, rather than at least
one value are not necessary. If, for example, a solution is found with both x11 and
x12 true, then either the value 1 or 2 can be chosen for the variable X1: both will
give legal solutions.

In the logarithmic encoding, bi D dlog2.jDomain.Xi /j/e variables are introduced
to encode the binary representation of the value of Xi . This representation is more
compact (in terms of variables) than the direct encoding, but the constraints of the
CSP translate to longer clauses (proportional to the sums of the logs of the domain
sizes of the variables in the constraint). Furthermore, for any i , if bi is not a power
of two, then additional clauses are required to rule out the combinations of values
which do not correspond to a domain value of Xi in the CSP. Walsh showed that in
both encodings, the unit propagation rule performs less filtering than arc consistency
on the original problem.

Gent [38] describes a SAT encoding of CSPs called the support encoding which
he showed as performing equivalent filtering to arc consistency on the original prob-
lem. The support encoding uses one propositional variable per CSP domain value
as for the direct encoding but describes the constraints differently. The supports of
each domain value are described by clauses. If, for example, on a binary constraint
between X1 and X2, value 1 of X1 is only compatible with values 3 and 5 of X2,
this would translate as a clause: x11 ) x23 _ x25. In this formulation, clauses are
also added to ensure that each CSP variable takes exactly one value. Of particular
interest is that this formulation seems quite compatible with the operation of LS
methods: a variant of WalkSAT performed on average over an order of magnitude
faster on the support encoding than on the direct encoding.

More recently, more complete translations of CP models have been proposed:
Huang [46] describes a universal framework for translating CP models to SAT
models based on the logarithmic encoding, translating much of the MiniZinc
language [102]. The Sugar solver [105, 106] also operates by translating CSP
models to SAT, but in this case by using an order encoding, where each SAT
variable yx;a represents the truth value of the relation x � a in the original CSP
formulation.
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2.3 Localizer and Comet

Localizer [62, 63] was the first attempt at creating a language for the specification
of LS algorithms. The modeling language is reminiscent of languages for CP, but
with differences. First of all, the notion of an expression (say x C y) is central.
Furthermore, when one writes z D x C y in Localizer, this means that the value of
z is computed from the values of x and y. (z is not a variable, has no domain, and
its value cannot be decided by the system by a search procedure.) Localizer refers
to the hlhsi D hexpri construct as an invariant, and ensures that at any time during
the computation, in our example of z D x C y, the value of z is equal to the value
of x plus the value of y. This is performed by incremental calculations to maintain
the value of z whenever x or y changes value. Invariants can also be created over
more complex structures, such as sets. This means that Localizer can maintain, for
example, the set of best variables to flip in a GSAT-type implementation, as shown
in Fig. 1. The set Candidates maintains the set of variables which are among the
best to flip. This set is updated incrementally whenever one of the gain expressions
changes. These gain expressions are themselves computed from the current SAT
assignment and a statement of the clauses of the problem (not shown). Localizer
then makes a move by changing the value of one of these variables to its negation.

Localizer maintains invariants through a differencing approach, which we briefly
describe. Consider the expressions and invariants in a Localizer program to form
a directed acyclic graph. Each node represents an expression, with a directed arc
connecting expression a to expression b when b directly mentions a.

Consider that arcs in the graph have the same rank as their source nodes. Nodes
with no incoming arcs are labeled with rank 0. Other nodes are ranked one more
than their highest ranked incoming arc. Consider the example z D P

1�i�n xi CP
2�i�n xi�1xi . A graph corresponding to this invariant is shown in Fig. 2. In this

graph, all “x” nodes have rank 0, all multiplication nodes have rank 1, and the node
corresponding to z has rank 2.

Localizer proceeds by labeling each node according to its topological rank in its
“planning” phase. Then, whenever the state of the system changes (here, expressed
by the xi expressions), the “execution” phase incrementally maintains the value of z
by minimally recomputing parts of z following the topological order. Essentially, all
changes are processed at level k before moving to level k C 1. This means that no
part of an invariant is considered more than once, and node values are never changed

maxGain: int = max (i in 1..n) gain[i];
Candidates: fintg = f

i : int j select i from 1..n where gain[i] = maxGain and gain[i] � 0
g;
. . .
move a[i] := !a[i]
where i from Candidates

Fig. 1 A Localizer code using a GSAT technique (taken from [63])
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Fig. 2 Graph representation
of a localizer invariant

.

.

.

.

.

.

.

+
z

.

.

.

.

.

.

*

*

*

x1

x2

x3

xn-1

xn

more than once. The recalculation of the invariant is done in an incremental way.
At level k C 1, the current and previous values (before the update) of nodes at level
k are available in order to recalculate the nodes at level k C 1. For example, if the
value of x2 changes, then x1x2 and x2x3 are recalculated (in constant time), then z
is recalculated in constant time by applying the difference of the new and old values
of x2, x1x2 and x2x3 to z.

Localizer also includes an element constraint which complicates the calculation
of invariants as just described: element.e; x1; : : : ; xn/ evaluates to the eth element of
the x array. However, often it is very natural to write invariants such as pos1 D 1 C
element.prev1; pos1; : : : ; posn/. This example is taken from a TSP-based model and
maintains the position (pos) of each town according to the position of the previous
town. Unfortunately, this invariant is deemed illegal by the topological rule because
the same expression (pos1) is mentioned on the left and right hand sides of the
equality and so the topological ordering constraint rule is violated. In Localizer, this
is treated by so-called dynamic invariants. This means that some of the planning
phase is delayed until the index of an element constraint is known by the execution
phase. At that point, the element expression element.e; x1; : : : ; xn/ depends only
on the eth x expression. So long as this is not the same as the left-hand side of the
invariant (which would provoke an error), a planning phase is invoked to produce
a topological order for the graph after (in a topological sense) this point. Planning
and execution phases are interleaved as necessary to evaluate all invariants.

The Comet system [107,108] grew out of work on Localizer, but has some impor-
tant differences. Localizer is mostly declarative in nature with some imperative parts
for generating initial solutions. By contrast, Comet is a full-function imperative
programming language with features oriented toward modeling and search.
However, as for other constraint modeling systems embedded in an imperative
language (for example, IBM ILOG CP Optimizer in CCC, Java, or .NET), the way
in which the constraint model is created is declarative in style. Unlike Localizer,
Comet has some built-in machinery to evaluate constraint violations in a constraint
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function void minConflictSearch(ConstraintSystem S) f
incfintg[] var = S.getVariables();
range Size = var.getRange();
while (S.violations() > 0)

selectMax(i in Size)(S.getViolations(var[i]))
selectMin(v in var[i].getDomain())

(S.getAssignDelta(var[i], v))
var[i] := v;

g

Fig. 3 A comet implementation of min-conflicts (from [109])

system, which allows the specification of the constraint model in more traditional
form (through constraints rather than invariants).

Comet also has language features to iterate over, evaluate, and select different
decisions, allowing a compact definition of search methods. Additionally, the impact
of a potential move on the objective function can be evaluated using methods such
as getAssignDelta(var, value) (change the value of a single variable)
and getSwapDelta(var1, var2) (swap the values of two variables). Finally,
mechanisms such as closures and checkpoints [107], allow complex control methods
such as events and neighborhood evaluation to be specified more easily.

Figure 3 shows a small code (taken from [109]) which implements a min-
conflicts heuristic using Comet. S.getViolations is used to select the variable
which is involved in the most violated constraints and S.getAssignDelta is
used to choose a value for it which reduces the violation measure by the largest
amount (even if this amount is negative). This process continues until the total
number of violations reaches zero, meaning a solution is found that satisfies all
the constraints. Of course, as for min-conflicts, this state might never be reached.

2.4 Some Other Methods

Without aiming to be exhaustive, but rather restricting ourselves to the most
CP-oriented methods (see [45] for additional references), we also very briefly
mention some other techniques where LS has been applied to solve CP-based
models.

In [111], Walser reports results on an LS technique on linear pseudo-boolean
problems. In particular, excellent results are reported on the progressive party prob-
lem [11], which was considered a very difficult problem at the time.

In [21], Codognet and Diaz use a tabu search method on CSP models. Their
method changes the value of a single variable at each move and uses a variable
penalty which is computed from a combination of constraint penalties. Experiments
are carried out on simple examples such as n-queens, magic square, number par-
titioning, and all-interval series. Results show that on some problem classes, the
method outperforms other approaches.
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Solnon [101] describes a method for solving CSP using an ant colony optimiza-
tion approach. In Solnon’s method, each variable assignment is represented by a
node in a graph, and an arc is present between all nodes which correspond to dif-
ferent variables. After each ant completes its journey, its trajectory is improved by a
classic LS algorithm. Additionally, a local search is used as a fast way of initializing
the pheromone trails.

Galinier and Hao [32] present a method for constraint solving using LS. In par-
ticular, they specify a set of supported constraints (including global constraints)
along with precise penalty functions (following [67]). They apply their method to
SAT, graph-coloring, max-clique, frequency assignment, and the progressive party
problem. The method is demonstrated to be very competitive.

In [86], Årgen et al. describe methods for performing LS over set variables
with incremental updates of data structures. The authors apply their methods to the
progressive party problem. In [85], the same authors also describe a method of syn-
thesizing incremental update algorithms for LS from a description based on second
order logic.

Finally, [36] shows how LS can be effective on quantified boolean formulas,
which is a generalization of the standard NP models treated by CP.

3 Using CP to Evaluate Neighborhoods

One main area where CP and LS meet is when an essentially LS method uses CP
to make and evaluate moves in the neighborhood of the current solution. Typically,
such methods address optimization problems and maintain a complete assignment
which satisfies all problem constraints, in contrast with many of the algorithms al-
ready presented which try to reduce constraint violations. These methods then move
from feasible solution to feasible solution, in an attempt to improve the objective
value.

These methods maintain the current solution not in the constrained variables
themselves, but in a so-called passive representation which is a simple array s

holding, for each variable, its value in the current solution. By contrast, the active
representation is the constraint model itself with variables, domains, and constraints
acting between them. When a new solution to be accepted is produced in the active
representation, it is copied to s for safekeeping.

This section presents various methods for using CP to evaluate and make moves
in an LS process. All the techniques may be implemented by traditional CP engines
supporting a sufficiently flexible user-definable depth-first search.
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3.1 Constraint Checking

In [5], De Backer et al. propose to integrate CP into an LS method in perhaps the
simplest possible way. The CP system is only used to check the validity of solu-
tions and determine the values of auxiliary constrained variables (including the cost
variable), not to search for solutions (via backtracking, for example). The search
is performed by an LS procedure. When the procedure needs to check the valid-
ity of a potential solution, it is handed to the CP system. The authors studied their
integration in the context of vehicle routing problems.

When the CP system performs propagation and validity checks, it instantiates the
set of decision variables with the proposed solution. The constraints then propagate
and constrained variables (for example, any auxiliary variables whose values are
taken from propagation from the decision variables) have their domains reduced. If
any variable has no legal values, the proposed solution is illegal.

Improvement heuristics generally only modify a very small part of a solution.
Therefore, testing the complete solution in the above manner can be inefficient.
The authors try to avoid this inefficiency in two ways: by reducing the amount of
work carried out by the CP system to perform each check, and bypassing the CP
checks altogether. In the context of vehicle routing, it is often the case that routes
are independent (have no constraints acting between them). For these problems, only
the routes involved in the modification proposed by the move need to be instantiated
in the active representation. Normally, this means just one or two routes will be
instantiated.

The second method of increasing efficiency is to perform custom tests on the
more important “core” constraints without using the general propagation mecha-
nism [92]. Only if these fast checks succeed is the proposed solution handed to the
CP system to be fully evaluated.

3.2 Exploring the Neighborhood Using Tree Search

In [73,74], Pesant and Gendreau propose a framework for LS in which a new “neigh-
borhood” constraint model is coupled with a standard model of the problem, and
represents the neighborhood of the current solution. The idea is that the set of solu-
tions to this new combined model is the set of legal neighbors of the current solution.
This setup is depicted in Fig. 4.

The left part of the figure shows the variables and constraints of the model of the
problem (the principal model). On the right, there is another set of variables and
constraints, which together represent a model of the neighborhood of the current
solution. These variables are coupled to the principal model via interface constraints
which ensure that a choice of neighbor in the “neighborhood model” enforces the
appropriate values of decision variables in the principal model with respect to the
current solution.
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Fig. 4 Interaction of the neighborhood model with interface constraints

As a simple example, suppose that the principal model has n 0–1 variables
xŒ1� : : : xŒn� and that we wish to perform an LS over a neighborhood which flips
each variable (changes its value from 0 to 1 or vice versa). We suppose a passive
representation of the current solution (as in the previous section) which is a simple
integer array s of n elements. In this case, the neighborhood model would consist of
a single variable f with n domain values (say 1 : : : n). f D a would mean that the
ath 0–1 variable in the principal model would have a value different from that in the
current solution, while the other constrained variables would take their values as in
the current solution. The interface constraints are as follows:

.f D i/ , .xŒi � ¤ sŒi �/ 8 i 2 f1 : : : ng

To explore the neighborhood of the current solution, a backtracking search proce-
dure then finds all solutions to the combined model, normally through exploring all
combinations of values of the neighborhood variables: here, this means instantiating
just the variable f (so a search tree of depth 1). This exploration is very natural in
a CP context–one may also select the best (lowest cost) neighbor to move through a
standard branch-and-bound search over the model.

It should be noted that the neighborhood model is configured according to the
current solution vector s. That is, constants in the neighborhood model are taken
from the values of the current solution. This means that, in general, the neighbor-
hood model is recreated anew at each move, the previous one being discarded.

3.2.1 An Example

We give a more realistic example of a complex move which may be implemented us-
ing the constrained neighborhood framework. Consider an allocation problem, like a
generalized assignment problem, where n objects are allocated to m containers. This
problem might have capacity constraints on the containers, a complex cost function,
and other side constraints, but that is not our concern here–we are only interested in
how a solution is represented and the decision variables. Our passive representation
of a solution will store the container si into which object i is placed. Our principal
constraint model will contain n decision variables xŒ1� : : : xŒn� each with domain
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a b c d e f

Fig. 5 A 3-rotation move

f1 : : : mg. The neighborhood we consider is a rearrangement of the positions of any
three objects without changing the numbers of objects in each container. We call
this a 3-rotation. The move is depicted in Fig. 5. In the figure, after the move, the
diagonally striped object will have moved to container C , the horizontally striped
object to container F , and the vertically striped object to container B .

We will create a neighborhood model with three variables p, q, r , representing
the objects involved in the move. Each of these variables has domain f1 : : : ng iden-
tifying the objects to be involved in the move. We will assume that in the move,
object p will move to q’s container, q to r’s container, and r to p’s container.

The interface constraints for this neighborhood can be written as:

p ¤ q; p < r; q < r (1)

xŒp� D sŒq�; xŒq� D sŒr�; xŒr� D sŒp� (2)

p ¤ i ^ q ¤ i ^ r ¤ i ) xŒi � D sŒi � 8 i 2 f1 : : : ng (3)

Line (1) constrains which objects can be involved in the move. Some symme-
tries need to be broken if moves are not to be duplicated. For example, p D 1;

q D 2; r D 3 identifies the same move as p D 2; q D 3; r D 1. These can be
broken by the constraints p < r , q < r . Note also that three different objects should
be identified and so p ¤ q. Line (2) places the objects involved in the move in their
new positions. For this, the element expression is used on the solution vector s. Line
(3) states that objects not involved in the move stay where they are currently.

Observe that whenever two objects appear in the same container, the move ac-
tually taken (so long as the third object is elsewhere) is a swap of two objects. If
desired, we could limit ourselves to true 3-rotations by asserting that all objects
must be in different containers. This could be done by replacing line (1) above by:

sŒp� ¤ sŒq�; sŒp� < sŒr�; sŒq� < sŒr�

3.2.2 Flexibility and Efficiency

The main advantage of this framework is that propagation takes place between the
principal and neighborhood model, and specifically, domain filtering may be carried
out on the neighborhood variables, reducing the number of neighbors explored. This
filtering is carried out by the interface constraints, based on the current domains of
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the decision variables of the principal model. The final result is that neighbors which
are illegal or do not meet acceptance criteria (like being better than the current so-
lution in terms of cost) may be directly filtered out of the neighborhood variables.
This filtering tends to be most effective when the search tree for the neighborhood
variables is deep (neighborhoods are large) and the neighborhood has a large pro-
portion of illegal neighbors. Experiments with the 3-opt operator on TSPs with time
windows in [73] indicate that few neighbors are actually acceptable (typically a
few percent), increasing the efficiency of the CP technique. GENIUS-CP [75] is
very general technique for inserting customers into a route, and implemented in
the CP framework. The authors report that one does pay a price for using CP in
terms of efficiency (up to an order of magnitude over a custom approach), but their
technique extends naturally to TSPs with multiple time windows and pickup-and-
delivery problems, which the custom heuristic [35] was incapable of doing. In [91],
the flexibility of the method is demonstrated via the application of several different
constraint-based neighborhood operators in a style based on variable neighborhood
search (VNS) [65].

Although the above framework is extremely flexible, natural, and exploits the
power of CP’s propagation in order to reduce neighborhood sizes, this benefit is not
obtained when either the neighborhood is largely feasible, or when opportunities
for propagation are limited (for instance when the depth of the search tree on the
neighborhood variables is low). For example, in the “flip” example already given,
exploring the neighborhood through a single depth search tree which instantiates the
f variable could result in a total of n2 variable fixings.

To attempt to address this, Shaw et al. [100] describe a method which reduces
the number of variable fixings to O.n log n/ for the “flip” example. The method
works on an explicit representation of the neighborhood as a series of neighbors,
each neighbor represented by an object called a “delta” which stores the variables
to change together with their new values.3 One attraction of this method is that it
allows the creation of very general, unstructured, or randomly ordered neighbor-
hoods, specifiable via general codes, and not constrained to what can be described
by a constraint model. For this reason, this method is used in an open framework
in the Solver module of IBM ILOG CP (which provides operators to randomize,
concatenate, interleave and sample general neighborhood structures).

Figure 6 shows an actual CCC code sample for solving a vehicle routing prob-
lem using the IBM ILOG CP product. This code uses a greedy approach (via the
use of IloImprove4) which accepts the first neighbor which decreases the over-
all cost. (By adding one additional line of code, it is also possible to accept the
neighbor which decreases cost by the greatest amount.) The neighborhood is a com-
bination of all possible two-opt [59] moves, all moves which relocate every node
before each other node, and all moves which interchange the positions of two nodes.

3 Not all neighbors have to be available before exploration can start, but can be generated on the
fly to keep memory consumption low.
4 Meta-heuristics such as simulated annealing or tabu search can be used by changing
IloImprove to IloSimulatedAnnealing or IloTabuSearch.
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// env = environment, a management object
// curSol = current solution
// solver = the CP solver instance
IloNHood nh = IloTwoOpt(env) + IloRelocate(env) + IloExchange(env);
IloNHood rnh = IloRandomize(env, nh);
IloGoal move = IloSingleMove(env, curSol, rnh, IloImprove(env));
while (solver.solve(move))

cout << "Objective value = " << solver.getObjValue() << endl;

Fig. 6 IBM ILOG CP example of local search for vehicle routing

The “C”operator is used to concatenate these three different basic neighborhoods
into one. This simple but powerful method can be used to implement a VNS [65].
Here, instead of using a VNS method (which could be achieved by using nh instead
of rnh in the call to IloSingleMove), the order of moves in the neighborhood
is randomized each time a move is accepted (by using IloRandomize), so that a
random improving move will be taken each time. A loop calling solve on the CP
solver actually performs the greedy moves. When no improving move exists in the
neighborhood, the call to solve returns a false value, and the loop exits with the
locally optimal solution in curSol.

The method described in [100], and used in IBM ILOG CP, gains efficiency by
using a divide and conquer approach: a binary search tree is created where on the left
branch the first half of the neighborhood is explored, and on the right branch, the sec-
ond half is explored. This is continued recursively until only one neighbor remains
at the leaf node. Each node in the search tree can thus be associated with a part of the
complete neighborhood. If this part of the neighborhood does not change a variable
x (that is, x does not appear in any “delta” for this part of the neighborhood), then
the value of x in the current solution s can be assigned to x. This last rule, which
allows different neighbors to share variable fixings, reduces the number of fixings
by a factor of O.n= log n/ when neighbors change a constant number of variables.

Pesant and Gendreau also propose an adaption of their method which allows
similar logarithmic efficiency gains to be achieved. The idea is to map the divide
and conquer approach of Shaw et al. to a variable instantiation strategy. Instead of
instantiating the neighborhood variables by fixing them, a deeper search tree can be
created by dividing the domain of a neighborhood variable in two at each branch.
This will eventually instantiate the neighborhood variables but will crucially allow
propagation to the principal model’s decision variables higher in the (now deeper)
search tree.

3.3 Large Neighborhood Search

Large Neighborhood Search (LNS) is a technique first coined in [99], but
whose origins date back to the shuffling technique described in [3]. Similar
work uses different nomenclature: Mimausa [60], forget-and-extend [17] and
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ruin-and-recreate [94]. In [40], Sect. 10.7 also briefly mentions such an approach
in general terms, there called referent-domain optimization, and [104] proposes a
technique with similar motivation.

LNS has been applied to a variety of problems, with most of these having a
vehicle routing [10,76,99], scheduling [3,41], or a network/graph aspect [15,20]. It
is also used in commercial products, such as IBM ILOG CP Optimizer [55].

The simplest way to think about LNS is that of iteratively relaxing a part (nor-
mally called the fragment) of the current solution and then re-optimizing that part.
Figure 7 shows how this method works for the traveling salesman problem (TSP).
Figure 7a shows a solution to the TSP, in Fig. 7b,c a set of arcs is chosen and
removed from a region of the space, and then in Fig. 7d this partial solution is com-
pleted to produce a new, improved solution of lesser total distance.

An outline of how LNS is normally implemented is shown in Fig. 8 (adapted
from [72]). At a high level, the technique is extremely simple. It is normally a hill
climber (however see [76]) which is executed until some time limit is exhausted,
although other criteria can be used, such as a number of iterations, or a number of
iterations without improving the current solution.

Solution

a b c d

Choose Relax Reoptimize

Fig. 7 Operation of LNS on the traveling salesman problem

Create initial feasible solution
while optimal not found and time remaining do

Choose part of problem (the fragment)
Freeze the part of the solution not in the fragment

(that is, fix it to its value in the current solution)
Search the remaining sub-problem for an improving solution
if improvement found then

Adopt the improved solution as the current one
end if

end while

Fig. 8 Typical implementation of large neighborhood search
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The general description of LNS makes reference to two components: a method to
choose the fragment of the problem to relax, and a method to re-optimize the chosen
fragment: we discuss both, beginning with the latter.

3.3.1 The Re-Optimization Method

LNS is specified in very general terms, and this leaves the implementation of the
re-optimization method open. Techniques which have already been used with LNS
are greedy methods [76], LS [103], decomposition-oriented techniques [68], mixed-
integer programming methods [79] (for linear models), or CP [99]. In fact, virtually
any technique which can be used to solve a complete problem can be used to
re-optimize a fragment in LNS. However, for CP techniques, the re-optimization
is generally based on a tree-search, which could be depth-first search, limited dis-
crepancy search (LDS) [44], restarts [52], or indeed any other techniques one might
imagine. Using CP as the re-optimization method allows the addition of a constraint
on the objective which excludes non-improving solutions. This can accelerate the
search through increased propagation.

Using CP for the re-optimization process also increases the robustness of the
search as side-constraints can be efficiently handled in the re-optimization, meaning
that LNS is much better able to handle richer models with more complex con-
straints than standard neighborhood search. This is demonstrated in [53] where side
constraints are progressively added to a problem, and in [9], which successfully ex-
tends an LNS solution for vehicle routing [8] to one for pickup-and-delivery, which
is considerably more constrained. Likewise, Røpke and Pisinger [76] and Laborie
and Godard [55] introduce LNS methods which perform well over a wide range of
vehicle routing and scheduling problem classes.

When re-optimizing the fragment, we have found that a tree search which works
better than others for solving the whole problem will continue to work better than
others when embedded in LNS as a re-optimization procedure.5 We know of no
strong contradictions of this rule of thumb–if any exist, their analysis might yield
interesting directions of the design of LNS re-optimization methods. That said,
an almost ubiquitous modification is made to any global solution method when
it is embedded in LNS, and that it to limit its run time in some way ([13] is an
exception). Common methods are to limit the number of backtracks in a depth-
first search [16, 71], or to limit the number of discrepancies [6] in a depth-first
search [99]. Perron [70] compares both of these methods, amortized search [58],
as well as hybrids.

The general idea is to find a balance between avoiding exponential time explo-
ration of unpromising fragments, and attempting to improve the solution as much as
possible at each re-optimization. Another choice in the re-optimization is whether

5 This is important, as here we can draw on a wealth of knowledge on general-purpose and problem-
dependent branching heuristics.
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to stop as soon as an improving solution is found (as done in [71]), or to continue up
until the limit to see if better improvements can be found in the same re-optimization
(as done in [13, 99]).

3.3.2 Selecting the Fragment

One natural way of selecting the fragment of the solution to be relaxed is to do this
in a completely random fashion. This technique can sometimes be effective. For
example, [69] uses a completely random technique (but then moved to a more struc-
tured technique in [70]), [23] shows good results with random selection (although
biased selection is shown to perform better), and [71] uses a random selection as one
of two methods for fragment selection. Although a random choice has its merits (it
may avoid pathological behavior, and is thus useful in portfolio-based techniques–
see Sect. 3.3.3), using only random choice is seldom the best way to produce good
solutions quickly. This was recognized from early on, for example, the shuffle of [3]
relaxes the order of all operations on a set of machines–each machine has either
a fully fixed or fully free order (while still respecting problem constraints). Later,
other more general shuffles were performed in [16], but here again the fragments
chosen have a certain cohesion, for example, operations falling in a certain time
window, or operations on the critical path.

We should ask ourselves the question, what makes a good fragment? To be useful,
a fragment must contain at least one good solution. (In the typical implementation of
LNS, this solution should be better than the current solution, but some implementa-
tions allow cost-neutral moves [71] or degradation of the current solution [76].) For
some problems, we can determine some basic conditions that need to be satisfied if
cost is to have a hope of being reduced. For example, in a job-shop scheduling prob-
lem with a makespan objective, we know that the critical path must be changed to
reduce the makespan. This dictates that some operations on the critical path should
be present in the fragment, if the fragment is to be useful [13].

Other less strict rules can be used to select the fragment which we might consider
would generate fragments with improving solutions. For example, Fig. 7 shows a
fragment selection criterion based on distance from a randomly chosen node n in
the TSP tour: for example, one might relax the k closest nodes to the central node n.
The intuition here is that when we relax the fragment, the relaxed nodes will have the
possibility for position interchange in the current tour. Now, assuming the current
tour is not too bad (if it is bad, then almost any reasonable fragment selection will
allow improvements to be found), then nodes which are far apart are also far apart
in the tour. This implies that interchange of these nodes would introduce long arcs,
and hence a large distance penalty. By contrast, when the fragment is localized,
interchange of nodes can be carried out without introducing long arcs.

Given the fact that a fragment can be selected that contains a better solution–
or has a reasonable chance of containing one–the fact that the solution is available
is not enough. (We could place the whole problem in the fragment, which would
guarantee it contained the global optimum.) In reality, the re-optimization method
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(Assume solution elements are x1 : : : xn)
Initial fragment F D fig where i is randomly drawn from f1 : : : ng (F ’s universe)
while jF j < f do

Let e D random element of F

Let z be an non-increasing ordering of all e0 2 F C according to R.s; e; e0/

(F C is the complement of F , the indexes of the elements not in the fragment)
k D 1 C bjF C jyd c where y is uniformly and randomly chosen in Œ0 : : : 1/

Add the kth element of z to F

end while
return F

Fig. 9 Shaw’s method for choosing a fragment

must have a reasonable chance of finding the solution using the limited resources
at its disposal. There is thus an interplay between the fragment selection and the
re-optimization method, but the general idea is to keep the fragment as small as
possible, while maintaining a reasonable chance of finding an improving solution.
In this way, the re-optimization process has the best chance of finding the good
solution or solutions. Similarly, smaller fragments allow the re-optimization process
to be limited more, which increases the speed of examination of different fragments.
A common mechanism, first used in [99] but since replicated elsewhere, is to begin
with a small fragment, and gradually increase its size when improving solutions
become difficult to find.

Although the use of some problem structure is useful for choosing the fragment,
the first generic framework for doing this was introduced in [99]. We outline the
approach in Fig. 9. It assumes the existence of a real valued function R.s; x; y/

which takes the current solution s, and two solution elements. The solution elements
could be variables, but could also correspond to more structured objects such as a
nodes in a TSP or operations in a scheduling problem. R delivers a measure of
how related x and y are in solution s. The interpretation of this is that if R.s; x; y/

is high, then x and y should tend to be included in the fragment together, or not
at all, and if R.s; x; y/ is low, then putting both x and y in the fragment is less
desirable. In [99], vehicle routing problems were treated, where an objective which
was to reduce the number of vehicles used, and then total distance as a secondary
objective. For two customers x and y, R.s; x; y/ D 1=.C.x; y/ C Vs.x; y// where
C.x; y/ is a normalized distance (in the range 0 : : : 1) between the two customers
x and y and Vs.x; y/ evaluates to 0 if the two customers are served by the same
vehicle in the current solution s and to 1 otherwise.6 The idea of favoring customers
served by the same vehicle for inclusion in the fragment comes from the observation
that the only way of reducing the number of vehicles (primary objective) is to free
all customers on at least one vehicle. Unless some specific provision is provided for
that, the distance measure alone is unlikely to achieve it.

6 An error appeared in the original paper which indicated the opposite result for Vs.x; y/.
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The selection method also has two parameters f � 1 (fragment size) and d � 1

(determinism). The former indicates the desired size of the fragment, and the lat-
ter a measure of how deterministically the selection will follow R: d D 1 means
that R will be ignored and random choice will be used, while d D 1 means that
R will be followed for each choice.7 Shaw [99] reports that the tuning of the de-
terminism parameter was reasonably simple, and for medium sized VRPs (around
100 customers) values around 10–20 were reasonable, with performance suffering
badly only for values of d outside 3 : : : 30. Pisinger and Røpke [78] also discuss
fragment selection methods based on the distance between customers in a vehicle
routing context. They use Kruskal’s algorithm [54] to generate clusters of customers
which are close together.

3.3.3 Learning in Large Neighborhood Search

A few ideas have been put forward to attempt to ease the design and tuning of LNS
methods (see discussion in [14]). The first is the aforementioned one of starting with
a small fragment size and increasing it when finding improving solutions is becom-
ing too hard. This is normally controlled by a number of LNS iterations without an
improvement in the current solution.

In an attempt to alleviate the work involved in designing fragment selection, Per-
ron and Shaw [72] propose a method called Propagation Guided LNS which tries
to determine what solution elements should be placed in the fragment together. The
method works by using the propagation mechanism itself. It can be viewed as a
variation on Fig. 9 where each time a solution element is added to the fragment, it
is assigned as in the current solution s, and propagation on the sub-problem out-
side the fragment is observed. The strength of the propagation of x to y (where x

is newly added to the fragment and y is outside the fragment) defines R.s; x; y/.
The method continues like this until the desired fragment size is attained, at which
point it records the fragment for use in the subsequent re-optimization process, but
discards the partial assignment corresponding to it in the constraint solver. Perron
and Shaw show that the method can outperform hard-designed fragment selection
on the car sequencing problem.

A common learning mechanism applied in the context of LNS is that of algorithm
portfolios [43]. LNS is particularly amenable to such a technique as it is an iterative
combination of two separate techniques: fragment choice and re-optimization. Thus,
a portfolio of algorithms can be proposed for each technique. In [70], Perron uses
a portfolio of algorithms for the re-optimization technique for a network design
problem. He ascribes a weight to each algorithm and uses reinforcement learning to
reward (increase the weight of) algorithms which produce improving solutions. The
weights drop after a certain number of trials without improvement. An algorithm

7 Setting d D 1 does not eradicate randomness from the algorithm, only for one part of it.
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is selected proportionally according to its weight in relation to others. However,
Perron’s main aim in [70] is to investigate restart strategies, and does not perform
any detailed analysis of his portfolio scheme.

Røpke and Pisinger [77] present a method which uses portfolios for both the
fragment selection method and the re-optimization method for pickup-and-delivery
problems. They use three fragment selection methods, five re-optimization methods
and optionally apply noise to the objective function to help diversify the (largely
greedy) re-optimization method. A feedback learning approach controls a biased
choice of fragment selection, re-optimization method, and the application of noise
to the objective function. Their fragment selection methods are based on that of [99],
a completely random method, and a method which tries to place high-cost solution
elements into the fragment (reminiscent of squeaky wheel optimization [47]). Re-
optimization methods are founded on a regret-based technique. The authors method
demonstrates greatly increased robustness over a standard LNS approach (allow-
ing them to develop a very general heuristic applicable to many different types of
routing problem [76]), and produces state-of-the-art results on pickup-and-delivery
problems with time windows.

Laborie and Godard [55] also present a portfolio method and apply it to a large
number of different single-mode scheduling problems. Their framework also pro-
poses using a feedback learning approach on fragment selection and re-optimization
methods, but their study is limited to the selection of fragment. Three fragment
selection methods are used: random selection, selection of operations in a time win-
dow, and selection of operations occurring in connected components or strongly
connected components of the precedence graph of the problem. Results show that
the resulting algorithm is extremely robust over a large number of scheduling prob-
lem classes and, despite its generality, can improve on the best ad-hoc methods
created for several of these classes.

In [18], Caseau et al. present a general method for learning combinations of
heuristics for vehicle routing problems. They use LNS with fragment selection
as in Fig. 9 as one of the building blocks of their system. Their LNS method is
parametrized with a learned fragment size f , a learned determinism parameter d ,
and a learned re-optimization method, which can be constructed from other basic
building blocks. Results show that the learning process can better hand-crafted
algorithms.

4 Local Search for Pruning and Propagation

LS has been used as a means of demonstrating that the current partial solution to
a problem has no legal extension (resulting in pruning) or that certain value as-
signments cannot be made in any legal extension (resulting in domain filtering, or
propagation as it is also known). Although this area has not been widely explored,
this section describes some pieces of work which have successfully used LS to re-
duce search tree size through pruning and/or propagation.
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In [96], Harvey and Sellmann describe how to increase pruning and propagation
on the Social Golfer Problem. The social golfer problem can be stated as follows:
32 golfers want to play in 8 groups of 4 each week for 9 weeks, such that no pair
of players play together more than once. Is this possible? The problem can be gen-
eralized to one of determining a w week schedule of g groups of golfers, with each
group of size s. Harvey and Sellmann’s method depends on finding witnesses to
the insolubility of the current sub-problem. These witnesses are clique structures
contained in a residual graph representation of the sub-problem.

Consider that a golfing schedule is being built week by week, in chronological
order, and that a graph is maintained in which each golfer is represented by a node
and a pair of golfers that have already played together in previous weeks is repre-
sented by an arc connecting their respective nodes. If a clique of size k is present in
this graph, then it means that the golfers involved in the clique must play in differ-
ent groups from now on. If, when scheduling the current week by building groups
for that week, we get to a situation where none of the golfers in the clique have
been scheduled, but less than k groups remain available this week, then the current
partial assignment cannot be completed as each of the k golfers in the clique must
be put into a different group. Harvey and Sellmann use an extension of this prun-
ing rule to perform propagation and describe an orthogonal rule which reasons on
golfers rather than on groups in a week. The authors use a randomized LS approach
with intensification and diversification steps to find the cliques. Results show that
significant gains can be made both in terms of number of backtracks and run time.

Focacci and Shaw [30] present a method for pruning the search tree based on the
application of a dominance rule, the detection of the rule’s applicability at any node
being carried out by an LS process. The method could be considered an implemen-
tation of Symmetry Breaking by Dominance Detection [26, 29]. Focacci and Shaw
argue that aggressive pruning of a search tree by dominance rules can be detrimental
to the success of a search algorithm. For example, consider a Euclidean TSP where
a 2-opt [59] dominance rule is applied. That is, any branch of the search tree which
constructs a partial tour where two arcs cross (and is therefore not 2-optimal) is
pruned, as we know that any tour which is not 2-optimal cannot be globally optimal.
This aggressive pruning rule may result in no solution being found for some consid-
erable time, which could be a problem for online optimization. Furthermore, since
solutions may be found considerably later with the dominance rule active, even time
to produce a proof may suffer since good upper bounds (which can also significantly
help pruning) are not provided quickly. The solution proposed in [30] is quite gen-
eral (a similar technique is used in [31]) and can be applied to decision as well as
optimization problems, but the following description is based on the TSP.

The authors propose to apply a dominance rule which prunes the current branch
only if there is no hope of extending it to a solution which can better the best solu-
tion found so far. This is done in the context of the TSP and TSP with time windows.
Here, imagine that we are to construct a simple path between nodes A and Z, pass-
ing through nodes fB; C; : : : ; Y g. Imagine two partial TSP tours t1 D A ! B ! C

and t2 D A ! D ! B ! E ! C ! F ! G. Assume that all extensions of
t1 have already been fully explored and that t2 is the current partial tour. We form t
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Fig. 10 Operation of Focacci and Shaw’s dominance detection

from t1 by appending to it all nodes in t2 not already in t1, ensuring that t ends at the
same node as t2, node G in our case.8 Assume that after performing this operation
t D A ! B ! C ! D ! E ! F ! G. Observe that with this construction, t

always visits at least all the nodes in t2 and terminates at the same node. Figure 10
shows the relationships between the three partial tours. Now, assume that the length
of a (partial) tour is given by the function L and that in our case L.t/ � L.t2/.
Given that t visits at least all of the nodes of t2 and any extension of t will start at
the same node as t2, we can safely say that the best extension of t will be better than
the best extension of t2. However, we have already explored the best extension of
t , because we have explored the best extension of t1 (a smaller partial tour). Thus,
we can prune the current search tree branch t2. If L.t/ > L.t2/, then we still have
options. In particular, we formed t from t1 by an arbitrary extension order. Any ex-
tension which maintains G at the end of the partial tour is legal to form t . If any one
of these extensions verifies L.t/ � L.t2/, then search can be pruned.

Focacci and Shaw propose to search for an improving extension t via an LS
process which, in the case of our example, would perturb the order of the nodes
D, E , F , while keeping G at the end as needed, as well as the root of the partial
tour (ABC ) coming from t1. This is done using a relocate operator which can move
any node in the free part of the partial tour to another position in the free part (see
Fig. 10). The extension to the TSP with time windows simply adds another condition
to check. Assume that the total time of a (partial) tour is given by the function T .
Then, search can be pruned if L.t/ � L.t2/ ^ T .t/ � T .t2/.

Results reported indicate that the proposed approach can often work much better
than a pure CP approach without dominance rules or indeed than standard applica-
tion of dominance rules which prune every branch which corresponds to a partial
tour that can be improved using the relocation operator.

8 If t1 already contained G, then the dominance detection would not be possible using t1.



Constraint Programming and Local Search Hybrids 293

Galinier et al. [33] describe a method to facilitate propagation of the some-
different constraint [90]. The some-different constraint is a generalization of the
all-different constraint [88] where only a subset of all pairs, freely specifiable to
the constraint, must be different. This global constraint is capable of encoding any
graph coloring problem and hence achieving arc consistency for it is NP-hard.

The authors approach the problem by using a tabu search algorithm to find sup-
ports (solutions to the constraint). The aim is to quickly find a support for each
domain value of each variable. For those variable-value assignments for which
a support cannot be easily found, the suspicion is that they have no support,
and this can be found out by the application of a complete technique, such as
DSATUR [12]. The LS algorithm is reminiscent of min-conflicts but is based on
tabu search [40] and works as follows. Initially, each variable is assigned an arbitrary
value from its domain. Then, the search attempts to minimize the number of conflicts
(¤ constraints violated) using a tabu criterion which forbids a variable taking on its
previous value for a certain number of iterations. When a solution to the constraint
(a support) is found, then it is added to a “support store”.

After the first support is found, the algorithm changes its behavior, as it is no
longer based solely on reducing the number of conflicts, but a weighted combination
of conflicts and on covering (in the support sense) variable-value assignments not
yet represented in the support store. In this way, the tabu search algorithm tries to
provide a support for as many variable-value assignments as quickly as possible. The
tabu search algorithm is stopped after a certain number of iterations after which it
is considered that continued search is not as productive as the use of other methods.
After the tabu search has found as many supports as possible, a complete method
(DSATUR) is launched for each variable-value assignment for which a support has
not yet been found. This is done for x D a by assigning a to x and then using
DSATUR to try to find a solution to the remaining sub-problem. If this sub-problem
proves soluble, then a support for x D a has been found, otherwise a is removed
from the domain of x.

Combined with a number of reduction procedures, Galinier et al. report that their
algorithm reduces average run time on real workforce management data by a factor
of 34 over a standard CP approach.

5 Other Integrations

Various other integrations of LS in CP have been proposed where the interaction
of the CP and LS techniques is more intimate. Often, the methods are based on
the combination of a constructive technique (including propagation) and a repair
technique, but could simply be the use of a non-systematic search idea inside a
complete search method. Much work could potentially fall into this fairly weak
classification, and so while this section is necessarily not exhaustive, it does attempt
to present a reasonable overview of the current situation.
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In [114], Yokoo describes a weak commitment strategy for solving constraint
satisfaction problems. The algorithm is complete and the main idea is based on
the complete min-conflicts method [64]. The complete min-conflicts method is es-
sentially a depth-first search using a min-conflicts heuristic for variable and value
choice. First, a tentative assignment to each variable is made which greedily at-
tempts to minimize total conflicts as described in Sect. 2.1. Then, a depth-first search
chooses first a variable in conflict, assigning it a value which does not conflict with
previous assignments and conflicts minimally with future tentative assignments.
If all values conflict with previous assignments, the algorithm backtracks.

Yokoo observes that in depth-first search mistakes are very costly to undo.
Yokoo’s weak commitment strategy also uses tentative assignments, but instead of
backtracking one level when a dead end is reached, it entirely abandons the cur-
rent partial assignment. Search then continues by building a new partial assignment,
using, where possible, the previous assignment as new tentative assignment val-
ues and adding the previous abandoned assignment to a no-good store to avoid
re-exploration of the same space. One can think of the weak commitment method as
a type of improved iterative sampling [56], where the variable/value choice heuristic
is based on min-conflicts, and a no-good is added at each dead end.

Yokoo observed good results on graph coloring and 3-SAT problems, better than
either the complete min-conflicts method or the breakout method.

Richards and Richards [89] describe Learn-SAT, whose principles draw heavily
on the weak commitment method. Their algorithm uses the same process of aban-
doning the search process when a dead end is encountered, and of no-good addition.
However, Learn-SAT also including a “learning-by-merging”component which per-
forms resolution on the clauses which lead to a variable’s domain becoming empty,
generating a new clause for each dead end encountered. Experiments demonstrate
that the method can outperform relsat [48], the best complete SAT solver of the time.

Ginsberg and McAllester [39] describe how gradient methods from GSAT can
be used in a complete technique. The method used, known as partial order dynamic
backtracking (PDM), works by generating no-goods in directed form (A D a ^
B D b ^ C ¤ c ) D ¤ d instead of A ¤ a _ B ¤ b _ C D c _ D ¤ d )
when a violation is detected. The value of right hand side (conclusion) variable is
then modified by the algorithm in order to remove the violation. PDM allows some
freedom in the choice of the conclusion variable of any new no-good generated.
This freedom allows PDM to start from a tentative total assignment, and then use a
GSAT-inspired conflict-based rule to repair (that is, to add as conclusions in a no-
good set) the variables which are most in conflict. In this way, a complete search is
created, based on information normally only available to an LS technique.

It should be noted, however, that the choice of next variable to repair is not as
free in PDM as in GSAT. PDM introduces so-called safety conditions to guaran-
tee integrity of the algorithm, which specify partial orders on the variable choice.
Ginsberg and McAllester demonstrate that their methods compare very well with
WalkSAT and TABLEAU, dominating TABLEAU on unsatisfiable SAT instances.

Jussien and Lhomme [49] introduce the decision-repair algorithm which com-
bines a constructive search and propagation with an LS over the decisions made
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in the constructive search path. This incomplete method works by constructing a
solution using heuristics and constraint propagation in the “classic” way until the
last decision D made creates an inconsistency. Instead of undoing D in the normal
depth-first search manner, decision-repair tries to find a conflict, which is a strict
subset of the decisions already taken (not including D) which are together incon-
sistent with D. At least one of these decisions needs to be negated if D is to be
kept. The authors introduce a heuristic to decide which decision(s) to negate based
on a tabu search criterion. The most recent k conflicts found during the search are
maintained, and the algorithm first chooses to negate a decision which appears most
often in this conflict set. If more decisions need to be negated to ensure D can be
accepted, then these follow the same rule. Experiments on open shop scheduling
problems show the technique to be competitive with leading approaches.

Prestwich [80] introduces CLS (constrained local search), later to be renamed
IDB (incomplete dynamic backtracking) [83]. Like [49], the method is incomplete,
and can be considered as performing an LS on the search decisions already taken
in a tree search. The difference between decision-repair and IDB is based on how
the repair of past search decisions is carried out. In [49], conflicts are used both
as a predicate and as a heuristic to decide on the decisions(s) whereas IDB either
uses random selection, or an ad-hoc heuristic with random tie-breaking. Once the
repair variables are chosen, in [49], each repaired decision is negated, whereas IDB
simply discards the chosen decisions. Prestwich has applied IDB quite widely with
excellent results: see for example [80–82]. In particular, in [81], Prestwich argues
that IDB delivers the scalability of LS compared to classic backtracking because of
the flexible choice of the variable to change.

In [95], Sellmann and Ansótegui describe Disco-Novo-GoGo, a restarting tech-
nique which uses backtracking search “probes” to perform an LS over a complete
assignment. The essential idea is to encode a value choice heuristic as a complete
(normally illegal) assignment H . A backtrack-limited depth-first search then instan-
tiates the problem variables in a random order, fixing each variable, where possible,
to its preferred value from H : this is done on the left branch of the search tree,
whereas other values are considered equivalent and are explored in random order on
other branches. If the backtracking search finds a solution or proves there is none,
the entire search process can be stopped. If the backtracking limit has been attained
(which is usual), then the heuristic assignment is updated as follows. For any vari-
able which is fixed to a different from its value in H , its current value is copied to
H . For any unassigned variable that has had its value from H filtered from its do-
main, a random value from its current domain is transferred to H . The remainder of
H remains unchanged. This basic mechanism is embedded in a double loop which
varies the fail limit and a number of trials. The authors report significant speedups
over standard restart techniques.

Zhang and Zhang [116] report on a method which combines an LS procedure
with backtracking and propagation. The idea is to successively generate, in a ran-
domized way, partial solutions to the problem which do not violate the constraints
between variables in the partial solution. Then, for each one of these partial solu-
tions, a combined LS and backtracking phase is entered where first a tree search
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technique with propagation tries to extend the partial solution to a complete one.
This tree search is normally limited in the number of branches it can carry out. If
the tree search does not succeed, a local move is carried out on the partial solution
to try to improve its quality. The authors use the criterion of the number of con-
straints satisfied by the partial solution. This extension attempt using propagation
and backtrack followed by a local movement on the partial solution is repeated until
a solution is found or an iteration limit is exceeded. In the latter case, the method
begins again with a completely new partial solution. The authors succeed in closing
some open quasi-group problems using their method.

Schaerf [93] describes an incomplete method. The technique extends a partial
solution until a dead end is reached. (A static variable ordering is used and Schaerf
defines a dead end as being when the next variable to be assigned has no legal values
consistent with previous assignments.) At this point, an LS method is invoked which
attempts to change the values of the variables in the current partial assignment to
allow further constructive search to take place. The method continues in this way,
interleaving construction and repair, until a solution is found.

When repair takes place, the objective function takes into account (a) conflicts
existing between variables in the partial solution, (b) the value of the bound on the
objective function, and (c) a “lookahead” which is a count of the number of domain
values remaining in the variables not yet given a value. The idea is to reduce (a) and
(b), but increase (c). The LS procedure is largely greedy but is randomized and may
make sideways (non-objective changing) moves. In addition, the different constraint
types in the problem have independent and dynamically changing weights according
to how often they are violated.

The algorithm is evaluated on timetabling and tournament scheduling problems.
Schaerf compares LS (for example min-conflicts) to a combination of the LS method
embedded (and suitably modified) in the constructive procedure. Results show that
the combined method significantly outperforms the LS method on these problems.

At around the same time, David [25] also introduced an incomplete method very
similar to that of Schaerf. A partial solution is extended until a dead-end is reached,
at which point action is taken to try to repair the current partial assignment. David
concentrates on examination timetabling problems, and the repair methods are ded-
icated to the problem. Four different repair techniques are tried before the method
marks an examination as “not scheduled,” and continuing with the remaining exam-
inations. Thus, the method may produce partial schedules (which are presumably
executed by temporarily procuring extra staff), but produces results in a determinis-
tic time frame (under a few seconds).

Caseau and Laburthe [19] present an incremental local optimization approach to
solving vehicle routing problems where a traditional constructive approach to build-
ing a solution is followed, but the partial solution is improved each time the solution
is extended. The authors begin with an empty schedule and use a classical insertion
approach to solution construction. At each insertion, the most “constrained” cus-
tomer is inserted. Before insertion, a limited search examines the potential impact
of insertion in different routes and the best insertion point is chosen. After insertion,
a more thorough LS process improves the solution. Results show that the method
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scales much better than performing all insertions and then applying LS. The au-
thors find very good solutions to problems with around 500 customers in around
10 s. Finally, to further improve their solutions, the authors also examine overlaying
a limited amount of backtracking over their methods. For example, the decision to
open a new route or not when inserting a customer could be the subject of a back-
track point.

Kamarainen and El Sakkout [51] describe a method called local probing, a type
of probe-backtrack search [50]. In probe-backtrack search, at each node in a tree
search, a probe is executed which tries to find a solution. This probe is some heuris-
tic or algorithm which treats only a subset of the constraints of the problem (the
“easy” constraints). If the probe produces a solution which also happens to satisfy
the remaining “hard” constraints of the problem, search can stop. Otherwise, the so-
lution provided by the probe is analyzed to find a violation of the “hard” constraints,
and a variable involved in the conflict is chosen for branching. This method as de-
scribed is not related to LS, but LS may be used in the probe. In [51], the authors
concentrate on scheduling problems. A probe is implemented which respects only
precedence constraints and the objective, while relaxing (ignoring) capacity con-
straints of resources. Resource capacities which are violated by the probe mean that
too many tasks execute at the same time. For a time when resources are oversub-
scribed, a branch is created which orders a pair of tasks (via the addition of a new
precedence constraint in the “easy” constraints), driving the search toward satisfac-
tion of the capacity constraints.

Lever [57] studies a network routing problem and proposed a combination of
tree search and LS for solving it. At a high level, the search is one based upon tree
search with propagation which decides for each potential demand whether it will be
routed or not. After each positive decision in the search tree, the demand is routed
with those already present, which may result in capacity violations in the network.
The infeasibility is repaired using an LS process. If the LS process does not succeed
in legally placing the new demand in conjunction with those already placed within
a certain limit, then the branch is pruned in the search tree, and the order is not
placed. Thus, the method is not complete, but can use constraint propagation to
determine that certain demands must be routed, for example. Lever demonstrates
that his method compares well to probe-backtrack search [50] on this problem.

Crawford [22] uses an LS technique to identify hard-to-satisfy clauses in an
SAT formulation and from that, variables which should be prioritized for early as-
signment inside a complete technique. Although the idea seems promising, results
indicate that only a 10% reduction in the number of backtracks is obtained.

Mazure et al. [61] mostly follow the same idea as [22], the essential difference
being that Mazure et al. run the LS process before each instantiation of a variable in
the complete process. After each LS, the variable which was the most “unsatisfiable”
(by appearing most in unsatisfied clauses) is chosen for branching. (The technique
can also find solutions when the LS technique delivers an assignment which satisfies
all constraints.) The authors compare their method to standard techniques (such as
choosing a variable in the shortest clause) and demonstrate large speedups on some
problems.
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Benoist and Bourreau [7] describe “branch-and-move,” a technique which uses
LS to guide a traditional depth-first search process. The idea of branch and move
is to perform LS on a tentative assignment to the unassigned variables, trying to
reduce constraint “unhappiness.” The unhappiness is defined for each constraint as
distance measure of the tentative assignment from the closest support. The algorithm
uses this information to generate branching decisions which concentrate on taking
corrective action to please the most unhappy constraint. The authors apply their
algorithm to a TV-break scheduling problem, and find that their methods outperform
MIP, LS, and standard CP techniques.

6 Conclusion

We have described, through reference to work carried out over the last two decades,
how CP and LS methods can be combined. While we could not be exhaustive (in par-
ticular, there is much research in the SAT community which could be influential, for
instance, using LS to prove non-satisfiability of SAT instances [4, 27, 84]), we have
tried to show how the domain has progressed in many different ways. That said,
we believe that there is still much to be done in this promising area. We list some
possibilities:

1. LNS has been an extremely effective technique, but to our knowledge, there is
very little work using LNS as a move operator inside another meta-heuristic tech-
nique, such as tabu search ([76] uses simulated annealing). Likewise, we also
know of no work trying to apply LNS to decision problems rather than optimiza-
tion problems. Finally, it would be interesting to see if intensification techniques
such as streamlining [42] could be used to better explore larger fragments.

2. LS for increasing filtering power [30, 96] is also a technique which deserves
more attention. The idea of finding a witness which shows that extensions to a
partial solution are fruitless is a powerful technique. Until now, these techniques
have been applied at a problem level. Of interest would be to find out if such
techniques can be applied to certain global constraints, or groups of constraints,
allowing their inferences to be re-used in different problems.

3. As it maintains a complete assignment and an exact evaluation of this assign-
ment, LS can be a good technique for finding out where the difficult part of a
problem may lie. We believe that more work (in the spirit of [61]) deserves to be
carried out to analyze the information derived from LS in order to perform better
branching.

As the problems we face become larger and more challenging and application
areas for optimization and automated reasoning widen, solving these problems will
result in hybridization through necessity: no single domain has all the best tricks.
So, we should look forward to more hybridization in the future, in which CP and LS
will certainly play a big part.
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