

HYBRID OPTIMIZATION

Springer Optimization and Its Applications

VOLUME 45

Managing Editor
Panos M. Pardalos (University of Florida)

Editor—Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y.Ye (Stanford University)

Aims and Scope

Optimization has been expanding in all directions at an astonishing rate during the
last few decades. New algorithmic and theoretical techniques have been developed,
the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge
of all aspects of the field has grown even more profound. At the same time, one of
the most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in all areas
of applied mathematics, engineering, medicine, economics, and other sciences.

The Springer Optimization and Its Applications series publishes undergradu-
ate and graduate textbooks, monographs, and state-of-the-art expository work that
focus on algorithms for solving optimization problems and also study applications
involving such problems. Some of the topics covered include nonlinear optimization
(convex and nonconvex), network flow problems, stochastic optimization, opti-
mal control, discrete optimization, multi-objective programming, description of
software packages, approximation techniques and heuristic approaches.

For more titles published in this series, go to
http://www.springer.com/series/7393

HYBRID OPTIMIZATION

The Ten Years of CPAIOR

Edited By

MICHELA MILANO
Università di Bologna, Italy

PASCAL VAN HENTENRYCK
Brown University, USA

ABC

Editors
Michela Milano
Università di Bologna
Dipartimento di Elettronica

Informatica e Sistemistica
Viale Risorgimento 2
40136 Bologna
Italy
michela.milano@unibo.it

Pascal Van Hentenryck
Brown University
Department of Computer Science
02912 Providence Rhode Island
USA
pvh@cs.brown.edu

ISSN 1931-6828
ISBN 978-1-4419-1643-3 e-ISBN 978-1-4419-1644-0
DOI 10.1007/978-1-4419-1644-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010937791

Mathematics Subject Classification (2010): 68Txx, 90-XX

c� Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Cover illustration: Photo entitled ‘Flaming Moss Reeds’ taken by Charis Tyligadas

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book celebrates the 10 years of CPAIOR, the International Conference on the
integration of Artificial Intelligence (AI) and Operations Research (OR) techniques
in Constraint Programming (CP). CPAIOR started in 1999 as a workshop series.
It was first held in Ferrara, (Italy) and was co-organized by the Italian Associ-
ation of Artificial Intelligence (AI*IA) and the Italian Association of Operations
Research (AIRO). The workshop success went far beyond the expectations and re-
ceived around 40 submissions and 70 participants from all over Europe and US.
Such a large and lively community motivated researchers to organize the work-
shop for the following four editions, respectively, in Paderborn (Germany) in 2000,
Ashford (United Kingdom) in 2001, Le Croisic (France) in 2002, and Montreal
(Canada) in 2003. In 2004, CPAIOR became an International Conference with for-
mal proceedings published as Springer LNCS. It was organized in Nice (France)
with more than 100 participants. CPAIOR was then organized in Prague (Czech Re-
public) in 2005, Cork (Ireland) in 2006, Brussels (Belgium) in 2007, Paris (France)
in 2008, Pittsburgh (USA) in 2009, while the upcoming meeting in 2010 will take
place in Bologna (Italy). CPAIOR achieved in Paris the record number of 150 par-
ticipants. CPAIOR main aim is to provide a forum for researchers in combinatorial
optimization that exploits the hybridization of CP, AI, and OR techniques.

Constraint programming was always an integration technology as the original
constraint programming languages already featured linear programming and satis-
fiability solvers. However, CP research in the early 1990s increasingly focused on
the deep integration of OR techniques in finite domain solvers, which had become
the essence of constraint programming. This cross-fertilization led to exciting re-
sults and have changed the way we look at combinatorial optimization. It led to new
alleys for research, produced innovative optimization systems, provided more effec-
tive solutions to complex optimization problems, and enabled new application areas
for optimization. This book glances through these exciting developments with the
hope to draw readers to learn more and pursue this line of research.

The next 10 years of CPAIOR are likely to be interesting: They will certainly
build on the foundations established in the last decade but will likely feature inno-
vative, and far-reaching contributions that cannot be anticipated now.

The authors of the book chapters are eminent and well known researchers and
have significantly contributed to the success story of the CPAIOR research field.

v

vi Preface

They come from Universities, Research Centers, and industry. We would like to
thank all of them for their contribution.

Warm thanks go to reviewers of the collection for their invaluable contribution
to the improvement of the chapter structure and content: Luca Benini, Agostino
Dovier, Susanne Heipke, Holger Hoos, Narendra Jussien, Joao Marques-Silva,
Meinolf Sellmann, Gilles Pesant, Jean-Charles Regin, Andrea Shaerf, Peter Stuckey,
Mark Wallace, and Tallys Yunes.

Bologna, Italy Michela Milano
Rhode Island, USA Pascal Van Hentenryck
May 2010

Contents

Preface . v

Contributors . ix

The Ten Years of CPAIOR: A Success Story . 1
Michela Milano and Pascal Van Hentenryck

Hybrid Modeling . 11
John N. Hooker

Global Constraints: A Survey . 63
Jean-Charles Régin

Decomposition Techniques for Hybrid MILP/CP Models
applied to Scheduling and Routing Problems .135
Pedro M. Castro, Ignacio E. Grossmann, and Louis-Martin
Rousseau

Hybrid Solving Techniques .169
Tobias Achterberg and Andrea Lodi

Over-Constrained Problems .191
Willem-Jan van Hoeve

A Survey on CP-AI-OR Hybrids for Decision Making Under
Uncertainty .227
Brahim Hnich, Roberto Rossi, S. Armagan Tarim,
and Steven Prestwich

Constraint Programming and Local Search Hybrids .271
Paul Shaw

vii

viii Contents

Hybrid Metaheuristics .305
Christian Blum, Jakob Puchinger, Günther Raidl, and Andrea Roli

Learning in Search .337
Philippe Refalo

What Is Autonomous Search? .357
Youssef Hamadi, Eric Monfroy, and Frédéric Saubion

Software Tools Supporting Integration .393
Tallys Yunes

Connections and Integration with SAT Solvers: A Survey
and a Case Study in Computational Biology .425
Fabien Corblin, Lucas Bordeaux, Eric Fanchon, Youssef Hamadi,
and Laurent Trilling

Bioinformatics: A Challenge to Constraint Programming .463
Pedro Barahona, Ludwig Krippahl, and Olivier Perriquet

Sports Scheduling .489
Michael A. Trick

Stimuli Generation for Functional Hardware Verification
with Constraint Programming .509
Allon Adir and Yehuda Naveh

Contributors

Tobias Achterberg IBM, CPLEX Optimization, Schoenaicher Str. 220,
71032 Boeblingen, Germany, achterberg@de.ibm.com

Allon Adir IBM Research – Haifa, Haifa University Campus,
Haifa 31905, Israel, adir@il.ibm.com

Pedro Barahona Centro de Inteligência Artificial, Dep. de Informática,
Universidade Nova de Lisboa, 2825 Monte de Caparica, Portugal, pb@di.fct.unl.pt

Christian Blum ALBCOM Research Group, Universitat Politècnica de Catalunya,
Barcelona, Spain, cblum@lsi.upc.edu

Lucas Bordeaux Microsoft Research, Cambridge, UK, lucasb@microsoft.com

Pedro M. Castro Unidade de Modelação e Optimização de Sistemas Energéticos,
Laboratório Nacional de Energia e Geologia, 1649-038 Lisboa, Portugal,
pedro.castro@ineti.pt

Fabien Corblin TIMC-IMAG, Grenoble, France, Fabien.Corblin@imag.fr

Eric Fanchon TIMC-IMAG, Grenoble, France, Eric.Fanchon@imag.fr

Ignacio E. Grossmann Departement of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213, USA, grossmann@cmu.edu

Youssef Hamadi Microsoft Research, 7 JJ Thomson Avenue, Cambridge,
CB3 0FB, United Kingdom
and
LIX Ecole Polytechnique, F-91128 Palaiseau, France, youssefh@microsoft.com

Brahim Hnich Faculty of computer science, Izmir University of Economics,
Izmir, Turkey, brahim.hnich@ieu.edu.tr

John N. Hooker Carnegie Mellon University, Pittsburgh, PA, USA,
john@hooker.tepper.cmu.edu

Ludwig Krippahl Centro de Inteligência Artificial, Departamento de Informática,
Universidade Nova de Lisboa, 2825 Monte de Caparica, Portugal,
ludi@di.fct.unl.pt

ix

achterberg@de.ibm.com
adir@il.ibm.com
pb@di.fct.unl.pt
cblum@lsi.upc.edu
lucasb@microsoft.com
pedro.castro@ineti.pt
Fabien.Corblin@imag.fr
Eric.Fanchon@imag.fr
grossmann@cmu.edu
youssefh@microsoft.com
brahim.hnich@ieu.edu.tr
john@hooker.tepper.cmu.edu
ludi@di.fct.unl.pt

x Contributors

Andrea Lodi DEIS, University of Bologna, Viale Risorgimento
2, 40136 Bologna, Italy, andrea.lodi@unibo.it

Michela Milano Università di Bologna, Dipartimento di Elettronica, Informatica e
Sistemistica, Viale Risorgimento 2, 40136 Bologna, Italy, michela.milano@unibo.
it

Eric Monfroy Universidad Santa Marı́a, Valparaı́so, Chile,
Eric.Monfroy@inf.utfsm.cl
and
LINA, Université de Nantes, France, Eric.Monfroy@univ-nantes.fr

Yehuda Naveh IBM Research – Haifa, Haifa University Campus,
Haifa 31905, Israel, nahev@il.ibm.com

Olivier Perriquet Centro de Inteligência Artificial, Departamento de Informática,
Universidade Nova de Lisboa, 2825 Monte de Caparica, Portugal,
olivier@perriquet.net

Steven Prestwich Department of Computer Science, University College Cork,
College Road, Cork, s.prestwich@cs.ucc.ie

Jakob Puchinger Mobility Department, Austrian Institute of Technology,
Vienna, Austria, jakob.puchinger@ait.ac.at

Günther Raidl Institute of Computer Graphics and Algorithms, Vienna University
of Technology, Vienna, Austria, raidl@ads.tuwien.ac.at

Philippe Refalo IBM, Les Taissounieres, 1681, route des Dolines, 06560 Sophia
Antipolis, France, philippe.refalo@fr.ibm.com

Jean-Charles Régin Université de Nice-Sophia Antipolis, I3S/CNRS, 2000,
Route des Lucioles - Les Algorithmes - bt. Euclide B BP 121 - 06903 Sophia
Antipolis, Cedex, France, jcregin@gmail.com

Andrea Roli DEIS, Campus of Cesena, Alma Mater Studiorum Università di
Bologna, Cesena, Italy, andrea.roli@unibo.it

Roberto Rossi Logistics, Decision and Information Sciences, Wageningen
University, “De Leeuwenborch”, Hollandseweg 1, 6706KN, Wageningen, roberto.
rossi@wur.nl

Louis-Martin Rousseau Department de Mathématiques et Génie Industriel, École
Polytechnique de Montréal, Montréal, Canada, louis-martin.rousseau@polymtl.ca

Frédéric Saubion LERIA, Université d’Angers, Angers, France,
Frederic.Saubion@univ-angers.fr

Paul Shaw IBM, 1681 route des Dolines, 06560 Valbonne, France,
paul.shaw@fr.ibm.com

S. Armagan Tarim Department of Management, Hacettepe University, Ankara,
Turkey, armagan.tarim@hacettepe.edu.tr

andrea.lodi@unibo.it
michela.milano@unibo.it
michela.milano@unibo.it
Eric.Monfroy@inf.utfsm.cl
Eric.Monfroy@univ-nantes.fr
nahev@il.ibm.com
olivier@perriquet.net
s.prestwich@cs.ucc.ie
jakob.puchinger@ait.ac.at
raidl@ads.tuwien.ac.at
philippe.refalo@fr.ibm.com
jcregin@gmail.com
andrea.roli@unibo.it
roberto.rossi@wur.nl
roberto.rossi@wur.nl
louis-martin.rousseau@polymtl.ca
Frederic.Saubion@univ-angers.fr
paul.shaw@fr.ibm.com
armagan.tarim@hacettepe.edu.tr

Contributors xi

Michael A. Trick Tepper School of Business, Carnegie Mellon University,
Pittsburgh, PA 15213, USA, trick@cmu.edu

Laurent Trilling TIMC-IMAG, Grenoble, France, Laurent.Trilling@imag.fr

Pascal Van Hentenryck Brown University, Department of Computer Science,
02912 Providence Rhode Island, USA, pvh@cs.brown.edu

Willem-Jan van Hoeve Tepper School of Business, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA, USA, vanhoeve@andrew.cmu.edu

Tallys Yunes Department of Management Science, School of Business
Administration, University of Miami, Coral Gables, FL 33124-8237, USA,
tallys@miami.edu

trick@cmu.edu
Laurent.Trilling@imag.fr
pvh@cs.brown.edu
vanhoeve@andrew.cmu.edu
tallys@miami.edu

The Ten Years of CPAIOR: A Success Story

Michela Milano and Pascal Van Hentenryck

Abstract The purpose of this chapter is to introduce the collection that celebrates
the 10 years of CPAIOR. First, a short overview of research topics addressed by
the ever growing CPAIOR community is presented. Then, a short chapter summary
follows that describes the book structure and its content.

1 Introduction

This book celebrates the 10 years of CPAIOR, the international conference on the
integration of Artificial Intelligence (AI) and Operations Research (OR) techniques
in Constraint Programming (CP). CPAIOR started in 1999 as a workshop series (first
held in Ferrara, Italy). In 2004, CPAIOR became an International Conference with
formal proceedings [1, 2, 4–7] to provide a forum for research in combinatorial op-
timization that exploits the hybridization of CP, AI, and OR techniques. Constraint
programming was always an integration technology as the original constraint pro-
gramming languages already featured linear programming and satisfiability solvers.

Constraint programming from its inception featured an innovative “modeling”
language. Instead of formulating an optimization problem as a set of linear
inequalities, constraint programming describes an application by expressing its
substructures (the so-called global constraints) and combining them with vari-
ous combinators. These substructures capture important building blocks arising
in many applications and are often (but not always) computationally tractable.
In the early 1990s, part of constraint programming research focused on efficient
algorithms and theoretical results for deciding the satisfiability of global constraints
in conjunction with the domains of their variables and for filtering the variable
domains. Edge-finding algorithms and the alldifferent constraints are beautiful
illustrations of this line of research which significantly boosted the effectiveness of

M. Milano (�)
Università di Bologna, Dipartimento di Elettronica, Informatica e Sistemistica,
Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: michela.milano@unibo.it

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 1,
c� Springer Science+Business Media, LLC 2011

1

michela.milano@unibo.it

2 M. Milano and P. Van Hentenryck

constraint programming to tackle combinatorial applications in scheduling and ros-
tering. Later in the 1990s, the integration of CP and OR moves from satisfiability to
optimization through the concept of cost-based filtering which used reduced costs to
filter domains in global optimization constraints. This direct link to linear program-
ming, the emergence of modeling languages integrating constraint and mathematical
programming, and the CPAIOR workshops provided a fertile ground for researchers
to explore hybrid optimization techniques. It first led to a better understanding of the
strengths and limitations of each paradigm, then to a recognition of their comple-
mentarities and, finally, to the design of truly hybrid optimization methods and tools.

Hybrid decomposition methods provide a compelling illustration of these
synergies. These hybridizations recognize that CP is excellent to explore highly
constrained combinatorial spaces quickly, while mathematical programming is
particularly strong at deriving lower bounds. For instance, in logical Benders de-
composition, the master problem, which ignores some combinatorial constraints,
is solved with an MIP solver, while the subproblem tackles the combinatorial
constraints using constraint programming. In constraint-based column generation,
the master problem is a linear program and the columns are generated by using
constraint programming to solve a combinatorial subproblem (e.g., a shortest path
under side constraints). Other hybridizations, such as large neighborhood search,
also exploit the strength of constraint programming to explore highly constrained
combinatorial spaces to move from solutions to solutions in a local search. These
beautiful results are not only effective from a computational standpoint; they also
enable practitioners to use the rich language of constraint programming and its
ability to handle side constraints.

Constraint programming models are often closer to applications than their OR
counterparts. It is important, however, to recognize that they do not prescribe any
optimization technology. CP models can be linearized automatically and solved by a
MIP solver; they can be translated to conjunctive normal form and solved by a SAT
solver; or they can be handled directly by constraint-based local search. Once again,
these developments have opened new avenues for combinatorial optimization since
the same models can now be solved jointly or separately by different technologies.
In particular, global constraints can now provide a filtering algorithm for constraint
programming, a linearization and cut generation algorithm for mathematical pro-
gramming, and automatic differentiation for local search. Optimization systems are
now being built along these lines, although practical implementations lag behind the
conceptual frameworks.

The cross-fertilization between CP, AI, and OR also confronted some
fundamental “philosophical” differences in how to build optimization systems.
In mathematical programming, the solver is often seen as a black-box, while con-
straint programming solvers often leave considerable lattitude, including the ability
to program the search. Significant research in constraint programming in recent
years has focused on automating search in order to ease the use of the technology.
At the same time, mathematical programming is moving toward a more expressive
constraint language, showing how the two fields are impacting each other.

The Ten Years of CPAIOR 3

This book glances through exciting developments in the field of Hybrid
Optimization with the hope to draw readers to learn more and pursue this line of
research. It is unrealistic for an introduction to do justice to the wealth of research
that emerged from CPAIOR in the last 10 years. Instead, it presents a small blueprint
that should help readers approaching and understanding the existing results and the
challenges in this area. This short summary highlights the flurry of activities and
accomplishments at the intersection of CP, AI, and OR for combinatorial optimiza-
tion. The field of hybrid optimization holds tremendous promises, and it is now
attacking stochastic optimization and over-constraint problems, which are also ripe
with hybridization opportunities. Hybrid optimization also faces many challenges.
Paramount among these, at least in the short term, is ease of use. Optimization
systems have to be developed in order to support the theoretical and conceptual
progress, they should contain explanations and sensibility analysis of their results,
and tools to understand performance. Theoretical progress is also needed to under-
stand the strengths, limitations, and applicability of various contributions and help
practitioners decide how to design effective hybrid solutions. In the long term, the
challenges are even more daunting. Due to progress in telecommunications, glob-
alization, and consolidation, optimization problems are increasingly large-scale
and dynamic and integrate subproblems that used to be solved separately. The
new interdisciplinary field of Computational Sustainability [3], that aims to apply
techniques from computer and information science, operations research, applied
mathematics, and statistics for balancing environmental, economic, and societal
needs for sustainable development, poses new challenges to hybrid optimization. At
the same time, computer devices are invading our homes, our cars, and our phones,
generating a wealth of new optimization applications with new requirements. The
next 10 years of CPAIOR are likely to be interesting: They will certainly built on
the foundations established in the last decade but will likely feature innovative, and
far-reaching contributions that cannot be anticipated now.

2 Chapter Overview

The contributions collected in the book cover some of the main topics of the CP-AI-
OR literature. The book is conceptually divided into five parts:

� Modeling practice in hybrid systems (Chapter “Hybrid Modeling”)
� Hybrid problem solving techniques, including global constraints, hybrid solvers,

decomposition method, and techniques for over-constrained problems (Chapters
“Global Constraints: A Survey”, “Decomposition Techniques for Hybrid
MILP/CP Models Applied to Scheduling and Routing Problems”, “Hybrid
Solving Techniques” and “Over-Constrained Problems”)

� Search strategies that integrate tree search, local search, meta-heuristic and learn-
ing (Chapters “A Survey on CP-AI-OR Hybrids for Decision Making Under
Uncertainty”, “Constraint Programming and Local Search Hybrids”, “Hybrid
Metaheuristics”, “Learning in Search” and “What is Autonomous Search?”)

4 M. Milano and P. Van Hentenryck

� Tools enabling integration and integrations of CP and MIP with SAT solvers
(Chapters “Software Tools Enabling Integration” and “Connections and
Integration with SAT Solvers: A Survey and a Case Study in Computational
Biology”)

� Applications that benefit from the integration (Chapters “Bioinformatics: A
Challenge to Constraint Programming”, “Sports Scheduling” and “Stimuli
Generation for Functional Hardware Verification with Constraint Programming”)

In the following, we give an outline of the book by providing a short description of
each chapter.

Hybrid Modeling

The chapter provides a comprehensive list of practical guidelines and supporting
theory for CP, Mixed Integer Linear Programming (MILP) modeling and for their
integration.

CP modeling heavily relies on the use of global constraints that represent a struc-
tured problem component, compactly expressing a set of elementary constraints
and in general encapsulates specialized, efficient, and effective filtering algorithms.
On the other hand, MILP modeling relies on linear inequations. Some or all the
variables are restricted to integer values. The solution process is based on linear re-
laxation that can be tightened by the addition of cutting planes. The key to building
MILP formulation is to recognize the structure of feasible sets that are representable
in MILP models.

The chapter discusses ways to integrate the two modeling styles and proposes
guidelines for integrated modeling. A number of examples are provided to support
the theory.

Global Constraints: A Survey

The chapter provides a comprehensive survey and an interesting classification of
global constraints and their weighted version into the following categories: solution
based, counting, balancing, combinations of basic constraints, sequencing, distance,
geometric, summation-based, graph-based, order-based constraints. For each cate-
gory, a list of global constraints along with details on their filtering algorithms are
presented. Global constraints are a very powerful mean for the integration of OR
techniques into CP. Many filtering algorithms embedded in global constraints are
in fact graph algorithms and are based either on dynamic programming or on the
linear programming relaxation or on lagrangean relaxation or on combinatorial re-
laxations. The chapter ends with a discussion on important aspects related to global
constraint filtering algorithms.

The Ten Years of CPAIOR 5

Decomposition Techniques for Hybrid MILP/CP Models Applied
to Scheduling and Routing Problems

Decomposition is a mean for integration: it applies when the original problem can
be decomposed into two subproblems: one is MILP and another is CP subproblem.

Each model is solved separately and information obtained while solving one sub-
problem is used for the solution of the other subproblem.

The chapter overviews in detail two decomposition methods that are widely used
in hybrid systems: Benders Decomposition and Column Generation.

The chapter shows two important applications tackled with decomposition tech-
niques: scheduling and vehicle routing.

Hybrid Solving Techniques

The chapter describes hybrid algorithms that merge MIP techniques into CP and
viceversa. Examples of the first kind of integration is the linearization of global
constraints, the use of relaxations within global constraints, and cost based filter-
ing. The most significant example of the second integration is the SCIP framework,
whose description covers half of the chapter. The SCIP framework, born mainly in
the OR community, is the first significant attempt to incorporate in MIP some of the
expressiveness of CP into the final hybrid systems.

Over-Constrained Problem

In over-constrained problems, constraints do not allow any solution to the problem.
After a brief historical review on the over-constrained problem literature, the chapter
focusses on soft global constraints that can be violated. When a soft global constraint
is violated, we measure the degree of violation and we wish to minimize the overall
amount of violation.

Three soft global constraints are presented in detail, namely, the soft alldifferent,
the soft global cardinality constraint, and the soft regular constraint, while many
others are listed and references provided.

A Survey on CP-AI-OR Hybrids for Decision Making
Under Uncertainty

This chapter considers problems where decision variables appear together with ran-
dom variables that are not controllable by the decision makers but are observable.

6 M. Milano and P. Van Hentenryck

An example is considered in the chapter, namely, single and multi-stage stochastic
knapsack. First, a number of stochastic applications solved with hybrid approaches
are listed. Then, algorithmic approaches are outlined and basically grouped into
three categories: search and filtering based on stochastic reasoning, reformulation
based and sample based approaches. The first two categories are in turn divided into
general purpose and problem specific techniques, while sample based approaches
are divided into the sample average approximation approach, forward sampling and
sample aggregation. A discussion on related modeling frameworks concludes the
chapter.

Constraint Programming and Local Search Hybrids

In the recent years, many attempts have been performed for integrating constraint
programming and local search methods. The chapter, after describing the main local
search methods used in conjunction with constraint programming, presents basically
three ways of integrating the two. The first is a loose integration where constraint
programming is simply used to check the consistency of a local search state. The
second, tighter integration, uses constraint programming to explore the neighbor-
hood of a given reference solution. The third way to integrate CP and LS concerns
the use of local search for enhancing propagation and filtering.

Hybrid Metaheuristics

This chapter is devoted to the presentation of hybrid meta-heuristics: the authors
provide examples and literature overviews concerning five important categories of
hybrid metaheuristics. More specifically the chapter focuses on the hybridization
of metaheuristics with (meta-)heuristics, constraint programming, tree search meth-
ods, problem relaxations, and dynamic programming. Each of the five categories
mentioned above is treated in its own subsection. In each subsection, first, two rep-
resentative examples are outlined, and then, a short literature overview is provided.

Learning in search

The chapter considers search in constraint programming, integer programming, and
SAT and aims at describing techniques that help the search strategy to require as
little as possible user intervention.

The first part of the chapter focuses on recent advances in strategy learning. Then
restart is discussed as an effective method that plays a fundamental role together
with no-good learning and clause learning in SAT solvers. Finally, the last part con-
siders the combined effect of strategy learning, restart, and clause learning on the
problem solving process.

The Ten Years of CPAIOR 7

What is Autonomous Search?

Autonomous search is a particular case of adaptive system that modifies and adapts
itself to the problem considered in order to improve performance. The kind of adap-
tation can be either supervised or self-adaptation. The chapter focuses on the solver
architecture containing the problem model/encoding, an evaluation function, the
solving algorithms, the parameters to be configured, and the control component.
An architecture for autonomous solvers is presented along with computation rules
and their control. Finally, some case studies are discussed.

Software Tools Enabling Integration

A number of tools enabling integration have been developed both in the Constraint
Programming and in the OR community.

This chapter first presents a number of features that facilitate integration and
then describes a number of tools namely BARON, Comet, Ecli pse, G12, ILOG
Optimizer and OPL development studio, SCIP, SIMPL, Xpress-Mosel, COIN-OR,
Microsoft Solver Foundation, Prolog IV, SALSA, and TOoLS. For each tool, its
main features are described with specific emphasis on the ones enabling of support-
ing integration.

Connections and Integration with SAT Solvers:A Survey
and a Case Study in Computational Biology

An important breakthrough in constraint satisfaction over the past decade has been
the advent of highly scalable solvers for Propositional Satisfiability (SAT). After an
introduction on the integration of SAT solvers in CP, and their common features,
the chapter focuses on gene regulatory network (GRN) deciphering. A GRN ab-
stracts the interactions between several genes of a cell. The chapter describes the
GRN deciphering modeling in CLP and in SAT and the corresponding experimental
results.

Bioinformatics: A Challenge to Constraint Programming

The chapter is focussed on bioinformatics, a rapidly growing field at the intersec-
tion of biology and computer science. It reports the main problems where constraint
programming, properly integrated with other techniques, plays an important role.
The main applications covered by the chapter can be identified into: analysis of

8 M. Milano and P. Van Hentenryck

sequence data, such as sequence comparison and pattern matching along with evo-
lutionary methods and population genetics problems; RNA structures, for which
there are several solutions based on local search and dynamic programming; pro-
tein structure prediction and determination problems along with protein interaction
models; system biology modeling complex network of interactions of which life
is made.

Sports Scheduling

The purpose of this chapter is to highlight the role integer programming, constraint
programming, metaheuristics, and combinations thereof has played in advancing the
theory and practice of sports scheduling. Two major sports scheduling problems are
considered: The Constrained Break Optimization Problem and the Traveling Tour-
nament Problem along with some variants. Both of these problems have been the
subject of many papers in the last years, and both have proven to be very challeng-
ing problems. The chapter outlines some challenges and opportunities for the field.

Stimuli Generation for Functional Hardware Verification
with Constraint Programming

Stimuli generation for functional hardware verification is the process of creating
test cases with the intent of revealing unknown bugs in hardware designs, before
the design is cast in silicon. After a description of the problem at hand, the chapter
shows how CSP techniques are used for stimuli generation, and also some of the
extension of these techniques that are needed for this specific domain. Then, the
chapter concentrates on general aspects of modeling stimuli generation problems as
CSPs, and describes specific areas of application within the domain and the general
CSP model for each area. Challenges of current research interest are also highlighted
at the end of the chapter.

References

1. Barták R, Milano M (eds) (2005) Integration of AI and OR techniques in constraint program-
ming for combinatorial optimization problems. In: Second international conference, CPAIOR
2005, Prague, Czech Republic, May 30–June 1, 2005, Proceedings. Lecture notes in computer
science, vol 3524. Springer, Berlin

2. Beck JC, Smith BM (eds) (2006) Integration of AI and OR techniques in constraint program-
ming for combinatorial optimization problems. In: Third international conference, CPAIOR
2006, Cork, Ireland, May 31–June 2, 2006, Proceedings. Lecture notes in computer science,
vol 3990. Springer, Berlin

The Ten Years of CPAIOR 9

3. Gomes CP (2009) Challenges for constraint reasoning and optimization in computational
sustainability. In: Proceedings of the int.l conference on principles and practice of constraint
programming – CP 2009, pp 2–4

4. Van Hentenryck P, Wolsey LA (eds) (2007) Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems. In: 4th international conference,
CPAIOR 2007, Brussels, Belgium, May 23–26, 2007, Proceedings. Lecture notes in computer
science, vol 4510. Springer, Berlin

5. Perron L, Trick MA (eds) (2008) Integration of AI and OR techniques in constraint program-
ming for combinatorial optimization problems. In: 5th international conference, CPAIOR 2008,
Paris, France, May 20–23, 2008, Proceedings. Lecture notes in computer science, vol 5015.
Springer, Berlin

6. Régin J-C, Rueher M (eds) (2004) Integration of AI and OR techniques in constraint programm-
ing for combinatorial optimization problems. In: First international conference, CPAIOR 2004,
Nice, France, April 20–22, 2004, Proceedings. Lecture notes in computer science, vol 3011.
Springer, Berlin

7. van Hoeve WJ, Hooker JN (eds) (2009) Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems. In: 6th international conference,
CPAIOR 2009, Pittsburgh, PA, USA, May 27–31, 2009, Proceedings. Lecture notes in
computer science, vol 5547. Springer, Berlin

Hybrid Modeling

John N. Hooker

Abstract The modeling practices of constraint programming (CP), artificial
intelligence, and operations research must be reconciled and integrated if the
computational benefits of combining their solution methods are to be realized
in practice. This chapter focuses on CP and mixed integer/linear programming
(MILP), in which modeling systems are most highly developed. It presents practical
guidelines and supporting theory for the two types of modeling. It then suggests
how an integrated modeling framework can be designed that retains, and even en-
hances, the modeling power of CP while allowing the full computational resources
of both fields to be applied and combined. A series of examples are used to compare
modeling practices in CP, MILP, and an integrated framework.

1 Modeling as a Key to Hybrid Problem Solving

The solution methods of constraint programming (CP), artificial intelligence, and
operations research have complementary strengths. Recent research shows that these
strengths can be profitably combined in hybrid algorithms, many of which are de-
scribed in subsequent chapters of this book. Under the right conditions, one need
not choose between CP, AI, and OR, but can have the best of all three worlds.

There is more to integration, however, than combining algorithmic techniques.
There is also the issue of problem formulation. CP, AI, and OR have developed
their own distinctive modeling styles, which poses the question of how to formulate
problems that are to be solved by hybrid methods. Whereas the solution methods of
the three fields can be seen as related and complementary, the modeling styles seem
very different and possibly irreconcilable.

For example, one can contrast CP models with mixed integer/linear program-
ming (MILP) models developed in the OR community. CP organizes its models

J.N. Hooker (�)
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: john@hooker.tepper.cmu.edu

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 2,
c� Springer Science+Business Media, LLC 2011

11

john@hooker.tepper.cmu.edu

12 J.N. Hooker

around high-level global constraints, each of which represents a structured
collection of simpler constraints. The solver may have a large library of global
constraints for which special-purpose algorithms have been designed. The modeler
selects constraints that correspond to the major structural elements of the problem
and combines them with some low-level constraints as needed to complete the
formulation.

An advantage one might claim for this approach is that the selection of global
constraints reveals the special structure of the problem and allows the solver to ex-
ploit it. It may also result in a fairly succinct model that is easier to read and debug
because the global constraints reflect how the modeler thinks about the problem.
Such a model can be seen as a theory or explanation that helps us understand the
phenomenon described by the model. Scientific theories, after all, are essentially
explanatory models of phenomena. On the other hand, a model that uses high-level
global constraints may have to be reformulated for solvers that recognize different
sets of constraints.

An MILP model takes the opposite approach. It uses a very small set of primi-
tive terms, namely linear inequalities. The problem is broken down into elementary
ideas that can be captured with inequality constraints, perhaps using auxiliary vari-
ables and other devices. Advanced modeling systems allow one to abbreviate the
formulation with loops and if-then statements that generate a large number of con-
straints, but the formulation must nonetheless be conceived in terms of inequality
constraints.

An advantage cited for this approach is the independence of model and method.
Once the model is written, it can be submitted to any MILP solver. In fact, there
are libraries of MILP instances that have been used, without alteration, as testbeds
for several generations of solvers. In addition, the user need not be familiar with
a library of meta-constraints. Finally, inequality constraints are suitable for the
highly developed relaxation technology of MILP, including strong cutting planes,
Lagrangean relaxation, and so forth. On the negative side, the model may be long,
nonintuitive, and hard to debug. The solver may be unable to exploit substructure
that global constraints would have revealed, aside from a few special types of struc-
ture that can be automatically recognized by more sophisticated solvers.

The modeling issue must be resolved if hybrid solvers are to harness the comple-
mentary strengths of CP and MILP. CP methods rely heavily on the application of
specialized filtering methods to global constraints and must therefore know where
global constraints appear in the problem. MILP methods rely heavily on relaxation
methods and cutting planes that have been developed for inequality constraints and
therefore require that inequality constraints appear in the model.

The modeling issue is important in practice. Developing a formulation and the
associated data is an expensive undertaking. Models must typically be reformulated,
updated, and debugged many times. While reasonably fast solution is desirable, it
is equally essential that solution software support and simplify modeling activities.
Practitioners frequently report that the greatest benefit of developing a model is not
so much the ability to obtain a solution as the clearer understanding of the problem
one obtains from the modeling exercise.

Hybrid Modeling 13

Practical application also requires interaction between modeling and the solution
process. There are typically alternative ways to formulate a problem, some of which
result in much faster solution than others. A practitioner can begin with a straight-
forward model and solve it on a small problem instance. The model can then be
altered and refined as the instances are scaled up, so as to maintain tractability. A
practical modeling system should support this kind of trial-and-error process.

This chapter focuses on integrating the modeling styles of CP and MILP in par-
ticular, because it is in these areas that modeling systems are most highly developed.
After a brief review of current hybrid modeling systems and some basic terminol-
ogy, the chapter is organized in three major sections. The first two sections develop
guidelines for CP and MILP modeling, respectively. They introduce the necessary
theory and present a series of examples to illustrate good modeling practice. The
third section suggests how these modeling practices may be merged into a unified
approach, based on ideas that have evolved in the CP-AI-OR community over the
last decade or more. It illustrates the ideas by showing how each of the examples
discussed earlier may be rendered in an integrated modeling framework. The chap-
ter concludes by assessing the extent to which the particular strengths of CP and
MILP modeling carry over into an integrated framework.

It is possible to develop modeling languages that specify the search procedure
as well as the problem (e.g., [21, 40]). Although algorithmic modeling is beyond
the scope of this chapter, it may become a key component of integrated modeling
systems.

2 Modeling Systems

A number of modeling systems implement CP/MILP hybrid modeling to a greater
or lesser extent. A pioneering effort is ECLi PSe [2, 4, 15, 50], a Prolog-based con-
straint logic programming system that provides an interface with linear and MILP
solvers. ECLi PSe was recently revised to accept models written in MiniZinc, a
CP-based modeling system [41]. OPL Studio [22] provides a modeling language
that expresses both MILP and CP constraints. A script language allows one to write
algorithms that call the CP and MILP solvers repeatedly. Mosel [17,18] is a special-
ized programming language that interfaces with various solvers, including MILP
and CP solvers.

SCIL [3] is an MILP solver with a modeling language that designates specially
structured sets of inequalities. SIMPL [5, 62] is a hybrid solver with a high-level
modeling language that integrates CP and MILP modeling. The solver processes
each constraint with both CP-based and MILP-based techniques that are combined
in a branch-infer-and relax algorithmic framework. SCIP [1] is a callable library
that gives the user control of a solution process that can involve both CP and MILP
solvers. G12 [53] is a CP-based and hybrid system that accepts models written in
the Zinc modeling language and uses a mapping language (Cadmium) to associate
the models with underlying solvers and/or search strategies.

14 J.N. Hooker

There has been some investigation of integrated modeling beyond the CP/MILP
interface. The modeling language in the Comet system [21], which evolved from an
earlier system Localizer [40], allows CP and MILP constraints as well as high-level
constraint-based specifications of local search. The global optimization package
BARON [54, 55] combines nonlinear (as well as linear) integer programming with
CP-style domain reduction, although it uses a modeling system (AIMMS) that does
not support CP-style constraints. Some general discussions of integrated modeling
include [26, 29, 62].

No attempt is made here to describe currently available modeling languages, be-
cause they evolve rapidly. The emphasis is on general principles that should inform
the design of any integrated modeling system. In fact, none of the existing systems
implement all of these principles or fully integrate CP and MILP modeling. Yet the
necessary concepts and technology have reached a stage where a seamlessly inte-
grated modeling system is within reach. Perhaps the discussion to follow will help
encourage efforts in this direction.

3 Basic Terminology

For present purposes, a problem consists of a stock of variables x1; : : : ; xn and a
set of constraints. Each variable xj is associated with a domain that can be viewed
as a set of permissible values for xj . A solution is any tuple x D .x1; : : : ; xn/ for
which each xj belongs to its domain. Each constraint is associated with a set of
solutions that satisfy it. The goal is to find a feasible solution, which satisfies all the
constraints.

When there is an objective function f .x/, the goal is to find an optimal solution,
which can without loss of generality be defined as a feasible solution that mini-
mizes f .x/ subject to the constraints. That is, an optimal solution Nx is one such that
f . Nx/ � f .x/ for all feasible solutions x.

The terminology here is borrowed from both CP and OR, with constraints and
domains defined roughly as in CP, and the various types of solutions as in OR. It is
important to note that the domain of a variable need not consist of numbers, although
this is the normal practice in OR. In CP, a domain may consist of arbitrary objects,
or even sets of objects.

CP methods are typically designed to find feasible solutions and OR methods to
find optimal solutions, but this is not a fundamental difference. CP methods can find
optimal solutions by adding the constraint f .x/ � U to the problem and gradually
reducing the bound U until no feasible solution can be found.

The modeling task is (a) to identify variables, domains, constraints, and per-
haps an objective function that formulate the desired problem, and (b) to express
the constraints and objective function in a form that allows solution by available
software.

Hybrid Modeling 15

4 CP Modeling

The concepts of domain consistency, filtering, propagation, and global constraints
are essential to understanding CP modeling practice. Once these are defined, guide-
lines for CP modeling can be stated and illustrated with a series of examples. These
examples will recur in later sections to show how they can be formulated as MILP
models and in an integrated modeling context. For further practice, one can consult
the tutorials on CP modeling in [49, 52].

4.1 Consistency, Filtering, and Propagation

A central concept in CP solution technology is domain consistency, also known as
generalized arc consistency or hyperarc consistency. A problem is domain consis-
tent if every element of every domain is consistent with the constraint set. That is,
for each element v in the domain of any variable xj , there is at least one feasible
solution in which xj D v. Another way to put this is that each variable’s domain is
equal to the projection of the feasible set onto that variable.

CP solvers typically achieve or approximate domain consistency for individual
constraints by means of filtering algorithms that remove inconsistent values from
domains. The smaller domains obtained by filtering a constraint become the starting
point for filtering another constraint, in a process known as constraint propagation.
It is important to note that constraint propagation does not necessarily achieve do-
main consistency for the problem as a whole, even if the filtering algorithms achieve
it for every individual constraint.

The advantage of filtering domains is that the search algorithm spends less time
enumerating values that cannot be part of a feasible solution. If filtering reduces
every domain to a singleton and achieves domain consistency as well, then a feasible
solution is at hand.

A somewhat weaker form of consistency is bounds consistency, which applies
when there is a natural ordering for the elements of a domain. A problem is bounds
consistent if for each domain, its smallest value is consistent with the constraint set,
and likewise for its largest value.

4.2 Global Constraints

CP modeling relies heavily on the use of global constraints. A global constraint
represents a set of more elementary constraints that exhibit special structure when
considered together. Each individual constraint typically involves only a few of the
variables that appear in the global constraint and might be viewed as “local” in that
sense.

16 J.N. Hooker

A practice of using global constrains, rather than writing out the more elementary
constraints, has several advantages: (a) it is more convenient; (b) it yields a more
natural and readable model that is more easily debugged; (c) it alerts the solver
that the model contains special structure that might have been overlooked if the
elementary constraints had been written. In particular, filtering algorithms designed
for a global constraint can generally remove more values than filtering algorithms
designed for the more elementary constraints.

An example of a global constraint is the well-known all-different constraint,
which can be written alldiff.X/ and requires that the variables in the set
X D fx1; : : : ; xkg take pairwise distinct values. It replaces a set of more elementary
constraints in the form of inequations xi ¤ xj for 1 � i < j � k.

Filtering is more effective when applied to an alldiff constraint than when ap-
plied to the individual inequations it represents. Suppose, for example, that variables
x1; x2; x3 all have domain fa; bg. The constraint alldiff.fx1; x2; x3g/ allows fil-
tering to reduce each domain to the empty set if domain consistency is achieved.
By contrast, achieving domain consistency for the individual inequations x1 ¤ x2,
x1 ¤ x3, x2 ¤ x3 removes no values from the domains. It is therefore better mod-
eling practice to use the alldiff.

4.3 Example: Sudoku Puzzles

The popular sudoku puzzle (Fig. 1) illustrates how global constraints can be used in
modeling, in this case alldiff constraints. A sudoku puzzle consists of a 9� 9

grid whose cells must be filled with digits 1; : : : ; 9 so that each row and each column
of the grid contains nine distinct digits. In addition, each of the nine 3� 3 subsquares
of the grid must contain nine distinct digits. Some of the cells have preassigned
digits.

The first task in formulating a model is normally to define the variables. In this
case, a natural scheme is to let xij be the digit in row i and column j , so that each
xij has domain f1; : : : ; 9g. The domain could of course be any set of nine distinct
objects, not necessarily numbers, without affecting the problem. Let Xi� be the set
of variables in the i th row, namely fxi1; : : : ; xi9g, and let X�j be the set of variables

Fig. 1 A sudoku puzzle

6 7 4 1 2 5

8 4

4 3 8 2 6

2 1 6 3

5 6

3 4 6 5

4 7 3 2 5

9 5

5 1 7 9 3 2

Hybrid Modeling 17

in the j th column. Also let Xk` contain the variables corresponding to the cells in
the 3� 3 square in position k; `, for k; ` 2 f1; 2; 3g. Suppose the content of cell i; j

is preassigned aij for all .i; j / 2 S . Then, the problem can be formulated

alldiff.Xi�/; alldiff.X�i /; i D 1; : : : ; 9

alldiff.Xk`/; k; ` D 1; 2; 3

xij D aij ; all .i; j / 2 S

xij 2 f1; : : : ; 9g; all i; j (1)

Propagation is more effective if the alldiffs are filtered simultaneously. If the
modeling system has a multiple alldiff constraint (not yet standard), the first
two lines of (1) should be replaced with

multiAlldiff

Xi�; X�i ; i D 1; : : : ; 9;

Xk`; k; ` D 1; 2; 3

!
(2)

Moreover, the alldiffs in the first line of (1) have special structure, in that they
define a Latin square. If at some point a specialized filter is developed for Latin
squares, a global constraint LatinSquare.X/ can be added to the model, where
X is the matrix of variables xij . The new constraint is redundant of the alldiffs,
but redundancy can result in better propagation.

4.4 CP Modeling Guidelines

At least four principles should guide the formulation of CP models. They will also
carry over into an integrated modeling framework.

1. A specially-structured subset of constraints should be replaced by a single global
constraint that captures the structure, when a suitable one exists. This produces
a more succinct model and can allow more effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when possible, to
exploit more effectively the special structure of the constraints.

3. The addition of redundant constraints (i.e., constraints that are implied by the
other constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including both (or
parts of both) in the model may improve propagation. This is especially helpful
when some constraints are hard to write in one formulation but suitable for the
other. The dual formulations normally contain different variables, which should
be defined in terms of each other through the use of channeling constraints.

The sudoku formulation illustrates Principle 1, because each alldiff con-
straint represents many inequations. If the multiAlldiff constraint is used as
in (2), this again accords with Principle 1, because the multiAlldiff replaces
twenty-seven alldiff constraints with overlapping variable sets.

18 J.N. Hooker

The sudoku model (1) also illustrates Principle 3, because one of the alldiff
constraints is redundant. If the numbers in rows 1–8 are all different, and those in
columns 1–9 are all different, then row 9 necessarily contains nine different num-
bers. Nonetheless, it is good modeling practice to include a redundant alldiff
constraint for row 9.

A practice of including redundant constraints may appear contrary to the goal
of writing perspicuous models, because it makes the models longer. Yet redundant
constraints can sometimes result in a more intuitive statement of the problem, as in
the sudoku example. When redundancy is introduced by dual formulations, the two
formulations can be separated in the model statement for clarity. It is natural (as well
as computationally advantageous) to make each one as complete as possible, rather
than arbitrarily dropping some constraints for the sake of removing redundancy.

In other cases, however, the modeler may become aware of redundant constraints
after completing the formulation. Adding them complicates the model, as in the case
of the LatinSquare constraint in the sudoku model. Yet the redundant constraints
can be written separately for clarity, and the model continues to provide an ex-
planatory theory–perhaps even a better theory, because it includes some “theorems”
(redundant constraints) along with the “axioms” (original constraints). It can be a
good exercise to think through some of the consequences of a model by deriving
redundant constraints.

4.5 Example: Car Sequencing

A car sequencing example, adapted from [52], introduces three important global
constraints. An assembly line makes fifty cars a day. To simplify matters, suppose
that only four types of cars are manufactured, although in practice there could be
hundreds. Each car type is defined by the options installed, as indicated in Table 1.
In this example, the only available options are air conditioning and a sun roof. The
table also shows how many cars of each type are required on a given day.

The problem is to sequence the car types so as to meet production requirements
while observing the capacity constraints of the assembly line. The constraints are
that at most three cars in any sequence of five can be given air conditioning, and at
most one in any sequence of three can be given a sun roof. Figure 2 shows a feasible
solution for a smaller instance of the problem.

A natural decision variable for this problem is the type ti of car to assign to
each position i in the sequence. To make sure that the production requirements are

Table 1 Options and
production level required
for each car type

Type Air cond. Sun roof Production

a No No 20
b Yes No 15
c No Yes 8
d Yes Yes 7

Hybrid Modeling 19

Fig. 2 A feasible solution for a small instance of the car sequencing problem in which the pro-
duction requirements are .Da; Db; Dc; Dd/ D .1; 3; 1; 2/. The brackets indicate subsequences in
which assembly line capacity constraints are enforced

met, a constraint is needed that counts the number of times each type occurs in the
sequence. The cardinality constraint, also known as the generalized cardinality or
gcc constraint, serves the purpose [47, 48]. It is written cardinality.X; v; l; u/,
where X is a set of variables, v D .v1; : : : ; vk/ a tuple of values (not necessarily
numerical), l D .`1; : : : ; `k/ a tuple of lower bounds, and u D .u1; : : : ; uk/ a tuple
of upper bounds. The constraint says that, for each i , at least `i and at most ui of
the variables in X must take the value vi . The production requirements for the car
sequencing problem can be written with a single cardinality constraint,

cardinality .ft1; : : : ; t50g; .a; b; c; d /; .20; 15; 8; 7/; .20; 15; 8; 7// (3)

The alldiff constraint is a special case of a cardinality constraint in which
each value is allowed to appear at most once. The alldiff constraints in the
sudoku model (1) can therefore be replaced with cardinality constraints. It is best
to follow Principle 2, however, by using the more specific alldiff constraint.
Although filtering methods designed specifically for alldiff are likely to have
the same result as cardinality filters (either typically achieves domain consis-
tency), an alldiff filter generally runs faster.

The capacity constraints in the car sequencing problem limit the number of times
each option occurs in subsequences of a specified length. However, the variables xi

indicate what type of car occurs in position i of the sequence, not which option. We
know only that types b and d use the air conditioning option, and types c and d use
the sun roof option. This requires a slightly different kind of counting than provided
by the cardinality constraint. One must count the number of times type b or d occurs
in a subsequence, and the number of times type c or d occurs. The among constraint
was developed for such situations [10]. It can be written among .X; S; `; u/, where

20 J.N. Hooker

X is a set of variables, S a set of values (not necessarily numerical), and ` and u
are lower and upper bounds. The constraint requires that at least ` and at most u
variables in X have a value that is among those in S .

Constraints of this kind can enforce the capacity constraints by applying them to
every subsequence of five variables for air conditioners and every subsequence of
three variables for sun roofs:

among
�ftj ; : : : ; tjC4g; fb; d g; 0; 3

�
; j D 1; : : : ; 46

among
�ftj ; tjC1; tjC2g; fc; d g; 0; 1

�
; j D 1; : : : ; 48

Although this is a correct formulation, it fails to recognize that the among con-
straints are closely related. They apply to overlapping subsequences of variables of
equal length. Faster and more effective filters can be designed if one exploits this
structure (Principle 1). For this reason, scheduling formulations frequently use the
constraint sequence .x; S; q; `; u/, where x D .x1; : : : ; xn/ is a tuple of variables,
S a set of values, and q an integer [10, 23, 38]. The constraint says that in any se-
quence of q consecutive variables xj ; : : : ; xjCq�1, at least ` and at most u variables
must take a value in S . The capacity constraints can now be more compactly writ-
ten as the second and third constraints in the complete car sequencing model that
appears below.

cardinality .ft1; : : : ; t50g; .a; b; c; d /; .20; 15; 8; 7/; .20; 15; 8; 7//

sequence ..t1; : : : ; t50/; fb; d g; 5; 0; 3/

sequence ..t1; : : : ; t50/; fc; d g; 3; 0; 1/

ti 2 fa; b; c; d g; i D 1; : : : ; 50 (4)

4.6 Example: Employee Scheduling

Employee scheduling is one of the most successful application areas for CP,
and several well-studied global constraints have been developed for it. A small
nurse scheduling problem, adapted from [16, 26, 49], illustrates dual formulations
(Principle 4) and channeling constraints.

Four nurses are to be assigned to 8-h shifts. Shift 1 is the daytime shift, while
shifts 2 and 3 occur at night. The schedule repeats itself every week. In addition,

1. Every shift is assigned exactly to one nurse.
2. Each nurse works at most one shift a day.
3. Each nurse works at least 5 days a week.
4. To ensure a certain amount of continuity, no shift can be staffed by more than

two different nurses in a week.
5. To avoid excessive disruption of sleep patterns, a nurse cannot work different

shifts on two consecutive days.
6. Also, a nurse who works shift 2 or 3 must do so at least 2 days in a row.

Hybrid Modeling 21

Table 2 Employee
scheduling viewed as
assigning workers to shifts.
A feasible solution is shown

Sun Mon Tue Wed Thu Fri Sat

Shift 1 A B A A A A A
Shift 2 C C C B B B B
Shift 3 D D D D C C D

Table 3 Employee
scheduling viewed as
assigning shifts to workers
(shift 0 corresponds to a day
off). A feasible solution
is shown

Sun Mon Tue Wed Thu Fri Sat
Worker A 1 0 1 1 1 1 1
Worker B 0 1 0 2 2 2 2
Worker C 2 2 2 0 3 3 0
Worker D 3 3 3 3 0 0 3

We can formulate the problem by assigning nurses to shifts or by assigning shifts
to nurses. Rather than select one alternative, Principle 4 recommends using both.
This not only sidesteps a difficult modeling decision but can result in faster solution
than either model would permit if used in isolation. Table 2 displays a feasible as-
signment of nurses to shifts, and Table 3 displays the equivalent assignment of shifts
to nurses.

We first write a model that assigns nurses to shifts. Let wsd be the nurse assigned
to shift s on day d , where the domain of wsd is the set of nurses fA; B; C; Dg. Con-
straint 1 is satisfied automatically, by virtue of the notation. Constraint 2 says in
effect that three different nurses work each day:

alldiff .w1d ; w2d ; w3d / ; d D 1; : : : ; 7 (5)

Because there are 21 shifts in a week, constraint 3 implies that each nurse will work
at least five and at most 6 days a week. This is readily expressed with a cardinality
constraint:

cardinality .W; .A; B; C; D/; .5; 5; 5; 5/; .6; 6; 6; 6// (6)

where W is the set of variables wsd.
Constraint 4 requires that for each shift s, at most two nurses are assigned to the

variables ws1; : : : ; ws7 corresponding to the 7 days of the week. Thus, while con-
straint 2 counts the number of times a value occurs, constraint 3 counts the number
of different values that occur. One therefore uses the nvalues.X; `; u/ global con-
straint [8, 11], which requires that the variables in X take at least ` and at most u
different values.

nvalues .fws1; : : : ; ws7g; 1; 2/ ; s D 1; 2; 3

Because alldiff is a special case of nvalues with ` D u D n, one could
have used nvalues rather than alldiff to express constraint 2. However, again
following Principle 2, it is better to use the more specific constraint.

The remaining constraints are difficult to express in terms of variables wsd, and
there are no obvious global constraints that capture them. One can therefore move

22 J.N. Hooker

to an alternative model in which variable tid is the shift assigned to nurse i on day
d , and where shift 0 denotes a day off. Constraint 1 is satisfied in this model by
assigning different shifts to the nurses on each day:

alldiff .tAd ; tBd ; tCd ; tDd / ; d D 1; : : : ; 7

Constraint 2 is automatically satisfied by virtue of the notation. Constraint 3 says
that each nurse gets at most 2 days off in a week (and at least one, because the other
nurses get at most 2 days off):

cardinality .fti1; : : : ; ti7g; 0; 1; 2/ ; i D A; B; C; D

Thus, Constraints 1–3 are enforced in both models, a redundancy that can speed
solution.

Constraint 4 is not easily expressed in terms of the variables tid . However, these
variables are suitable for Constraints 5 and 6, which refer to patterns of shifts that
each nurse may work. This allows one to use the stretch constraint [13, 20, 45],
written stretch.x; v; `; u; P /, where x D .x1; : : : ; xn/ and P is a set of patterns.
The constraint requires, for each vi , that any stretch of variables with value vi in the
sequence x1; : : : ; xn has length at least `i and at most ui . A stretch is a maximal
subsequence of consecutive variables that take the same value. A pattern is a pair
.v; v0/ of distinct values. The constraint requires that whenever a stretch of value v
immediately precedes a stretch of value v0, the pair .v; v0/ occurs in P . Constraints
5 and 6 can be written

stretch-cycle ..ti1; : : : ; ti7/; .2; 3/; .2; 2/; .6; 6/; P / ; i D A; B; C; D

where P consists of all patterns that include a day off

P D f.s; 0/; .0; s/ j s D 1; 2; 3g
One must use the cyclic version of stretch because the schedule is cyclic, and a
stretch can extend across the weekend.

Constraints 5 and 6 can also be written as a regular constraint [46], which gen-
eralizes stretch and can often be processed at least as efficiently. A regular
constraint models allowable sequences of values as expressions in a regular lan-
guage, which can in turn be represented by a deterministic finite automaton. How-
ever, it is not straightforward to represent cyclic stretches with an automaton,
due in part to the necessity of introducing additional variables. The more specific
stretch constraint is therefore used in the present model.

Finally, the two models are linked with channeling constraints that relate the
variables wsd with the variables tid:

wtidd D i; all i; d

twsds D s; all s; d
(7)

The first constraint says that the nurse assigned to the shift to which nurse i is
assigned on day d should be nurse i , and analogously for the second constraint.

Hybrid Modeling 23

For (7) to be valid, one must interpret w0d as the nurse that is off duty on day d .
When a problem instance requires more than one nurse to be off duty on a given
day, it is necessary to define a dummy shift (representing a day off) for each nurse.

Note that variables occur as subscripts in the constraints (7). This powerful mod-
eling device does not occur in MILP but is frequent in CP. A CP or integrated
modeling system can parse an expression of the form xt , where t is a variable with
a finite domain, by replacing it with a new variable y and adding the constraint
element.t; .xv1

; : : : ; xvk
/; y/. The values v1; : : : ; vk belong to the domain of t ,

and the element constraint requires that y take the same value as the variable in
the list xv1

; : : : ; xvk
whose subscript is the value of t . Thus, the modeling system

interprets the constraints (7) as

yid D i; all i; d

zsd D s; all s; d

element .tid; .w0d ; : : : ; w3d /; yid/ ; all i; d

element .wsd; .tAd; : : : ; tDd/; zsd/ ; all s; d

Filtering methods have been developed for the element constraint as for any
other global constraint, and they allow the channeling constraints (7) to improve
propagation when the dual formulation is used. The dual formulation also speeds
solution by allowing all the elements of the problem to be written as high-level
global constraints (in one formulation or the other), which appears to be impossible
if either formulation is used alone.

4.7 Assignment and Circuit Problems

Assignment and circuit problems illustrate several lessons in CP, MILP, and in-
tegrated modeling. The assignment problem can be viewed as one in which the
objective is to find a minimum cost assignment of m tasks n to workers (m � n).
Each task is assigned to a different worker, and no two workers are assigned the
same task. If m < n, some of the workers will not be assigned tasks. If assigning
worker i to task j incurs cost cij, the problem is simply stated:

min
X

i

cixi

alldiff.x1; : : : ; xn/; xi 2 Di ; i D 1; : : : ; n (8)

where xi is the worker assigned to task i . The domain Di of xi is the set of workers
who can do task i .

The assignment problem can be viewed as a sequencing problem in which the
cost depends on which item appears in each position of the sequence. The circuit
problem, by contrast, is a sequencing problem in which the cost depends on which

24 J.N. Hooker

item follows which in the sequence. The sequence is circular in the sense that the
first item is viewed as following the last. The problem can be written

min
X

i

cxi xiC1

alldiff.x1; : : : ; xn/; xi 2 Di ; i D 1; : : : ; n (9)

where cn;nC1 is identified with cn1. If each domain Di is f1; : : : ; ng, the problem can
be viewed as seeking a shortest hamiltonian circuit on a complete directed graph,
where cij is the length of edge .i; j /. This is the famous traveling salesman problem,
in which the vertices are cities that the salesman must visit before returning to his
home city. One can deal with edges .i; j / that are missing from the graph by setting
cij D 1. Unfortunately, filtering the alldiff has no effect because every domain
is complete.

Although the two formulations (8) and (9) are almost identical, they represent
vastly different problems. The assignment problem is very easy to solve, whereas
the traveling salesman problem is notoriously hard.

An alternate formulation for the circuit problem uses the circuit.y1; : : : ; yn/

constraint [14, 32]. Here, yi denotes the vertex after vertex i in the circuit, and the
constraint requires that the yi s describe a hamiltonian circuit. The circuit problem
can be written

min
X

i

ciyi

circuit.y1; : : : ; yn/; yi 2 D0i ; i D 1; : : : ; n (10)

This formulation has the advantage that missing edges can be explicitly repre-
sented in the domains. Domain D0i of yi contains j if and only if .i; j / is an edge
of the graph. Filtering the circuit constraint can therefore have an effect. On the
other hand, achieving domain consistency is much harder for circuit than for
alldiff [26, 32].

Rather than choosing between formulations (9) and (10), Principle 4 recom-
mends using both. The channeling constraints are xiC1Dyxi

for i D 1; : : : ; n� 1,
and x1 D yxn

. The “first” vertex in the circuit can be arbitrarily defined to be ver-
tex 1 (i.e., x1D 1) without loss of generality. Propagation of incomplete domains
D0i through these constraints can remove elements from the domains Di , so that
alldiff filtering can now have an effect. Both objective functions can be used as
bounds on cost, so that the dual formulation becomes

min z

z �
X

i

cxi xiC1
; z �

X
i

ciyi

alldiff.x1; : : : ; xn/; xi 2 Di ; i D 1; : : : ; n

circuit.y1; : : : ; yn/; yi 2 D0i ; i D 1; : : : ; n

x1 D yxn
D 1; xiC1 D yxi

; i D 1; : : : ; n � 1

xi 2 f1; : : : ; ng; yi 2 Di ; i D 1; : : : ; n: (11)

Hybrid Modeling 25

5 MILP Modeling

An MILP model is an optimization problem in which the objective function is linear
and the constraints are linear inequalities. Some or all of the variables are restricted
to integer values. A major advantage of such a model is that it provides a ready-made
continuous relaxation, obtained simply by dropping the integrality constraints. The
relaxation is a linear programming problem whose solution provides a bound on
the optimal value of the original problem. A “tighter” relaxation provides a bound
that is closer to the optimal value. Such a bound can be very useful in a solution
algorithm, for example, by pruning the search tree. In addition, the solution of the
relaxation may be integral, in which case it solves the original MILP. Even when the
solution is nonintegral, it may provide valuable clues on how to conduct a branching
search.

Because integer-valued variables are present in an MILP model, its continuous
relaxation can often be tightened by the addition of cutting planes. These are valid
inequalities that are satisfied by all the feasible solutions of the MILP but “cut
off” part of the feasible set of the continuous relaxation. MILP solution methods
rely heavily on relaxation and cutting plane technology. Both general-purpose and
special-purpose families of cutting planes have been developed, the latter for prob-
lems with special structure (see [39] for a survey).

A wide variety of problems can be given MILP models, although it is often not
obvious how to do so, and the MILP formulation may require additional variables
and constraints that obscure the underlying structure of the problem. Yet even when
an MILP format is not appropriate for the original model, it may be advantageous
for the solver to reformulate parts of the problem as an MILP to harness the power
of the relaxation technology. The best strategy for using MILP formulations is there-
fore to write constraints in MILP format when it is natural to do from a modeling
point of view and to allow the solver to reformulate other constraints as MILPs
when this benefits the solution process. The present section focuses on how to write
MILP formulations, while Sect. 6 explores the role of these formulations in inte-
grated modeling.

The key to building MILP formulations is to recognize the structure of feasible
sets that are representable by MILP models. It can be shown that MILP models
are always equivalent to disjunctions of systems of knapsack inequalities. These
lead to guidelines for writing models as disjunctions and for converting these to
proper MILP models. Existing MILP modeling systems require the user to do the
conversion by hand, but an integrated system would do so automatically.

This section therefore begins with knapsack modeling and then proceeds to show
how knapsack modeling can be combined with disjunctive modeling to exploit the
full resources of MILP problem formulation. Further examples and discussion of
MILP modeling can be found in [19, 57–60].

The MILP modeling guidelines presented here omit some familiar modeling de-
vices because they are subsumed by more general concepts of integrated modeling.
These include special ordered sets, semi-continuous variables, and indicator con-
straints. These techniques are not actually part of MILP modeling but are extensions

26 J.N. Hooker

that system developers have provided for convenience or computational efficiency.
We will see that an integrated system provides the same capabilities, but in a more
general and more principled way.

5.1 Knapsack Modeling

MILP formulations frequently involve counting ideas that can be expressed as knap-
sack inequalities. For present purposes, a knapsack inequality can be defined to be
one of the form ax � ˇ (or ax � ˇ), where some (or all) of the variables xj may
be restricted to integer values.

The term “knapsack inequality” derives from the fact that the integer knap-
sack problem can be formulated with such an inequality. The problem is to pack
a knapsack with items that have the greatest possible value while not exceeding a
maximum weight ˇ. There are n types of items. Each item of type j has weight aj

and adds value cj . If xj is the number of items of type j put into the knapsack, the
problem can be written

max cx

ax � ˇ

xj 2 Z; all j (12)

A wide variety of modeling situations involve this same basic idea. A classic
example is the capital budgeting problem, in which the objective is to allocate a
limited amount of capital to projects so as to maximize revenue. Here, ˇ is the
amount of capital available. There are n types of projects, and each project j has
initial cost aj and earns revenue cj . Variable xj represents the number of projects
of type j that are funded.

Typically, an MILP model contains a system of many knapsack inequalities.
There may also be purely linear constraints in which all the variables are contin-
uous. Some important special cases of knapsack systems include set packing, set
covering, and set partitioning problems, as well as logical constraints.

Set packing. The set packing problem begins with a collection of finite sets Sj for
j D 1; : : : ; n that may partially overlap. It seeks a largest subcollection of sets that
are pairwise disjoint.

Suppose, for example, that there are n surgeries to be performed, and the objec-
tive is to perform as many as possible this morning. Surgery j requires a specific set
Sj of surgeons and other personnel. Because the surgeries must proceed in parallel,
no two surgeries with overlapping personnel can be performed. This is a set packing
problem.

The set packing problem can be formulated with 0–1 knapsack inequalities. Let
AijD1 when item i belongs to set Sj , and Aij D 0 otherwise. Let variable xjD1

when set j is selected. The knapsack inequality
Pn

jD1 Aij xij � 1 prevents the

Hybrid Modeling 27

selection of any two sets containing item i . Thus, the system Ax � e of knap-
sack inequalities, where e is a vector of ones, prevents the selection of any two
overlapping sets. The objective is to maximize

Pn
jD1 xj subject to Ax � e and

x 2 f0; 1gn, which is an MILP problem.

Set covering. The set covering problem likewise begins with a collection of sets Sj

but seeks the minimum subcollection that contains all the elements in the union of
the sets. For example, one may wish to buy a minimum collection of songbooks that
contains all the songs that appear in at least one book. Here, Sj is the set of songs
in book j .

If Aij and xj are as before, the knapsack inequality
Pn

jD1 Aij xj � 1 ensures
that item i is covered. The set covering problem is to minimize

Pn
jD1 xj subject to

Ax � e and x 2 f0; 1gn. The objective function in this or the set packing problem
can be generalized to cx by attaching a weight cj to each set Sj , to represent the
cost or benefit of selecting Sj .

Set partitioning. The set partitioning problem seeks a subcollection of sets such
that each element is contained in exactly one of the sets selected. The constraints are
therefore Ax D e, which are a combination of the knapsack constraints Ax � e and
Ax � e. The problem is to minimize or maximize cx subject to these constraints.

An important practical example of set partitioning is the airline crew rostering
problem. Crews must be assigned to sequences of flight legs while observing com-
plicated work rules. For example, there are restrictions on the number of flight legs
a crew may staff in one assignment, the total duration of the assignment, the layover
time between flight legs, and the locations of the origin and destination.

Let Sj be a set of flight legs that can be assigned to a single crew, where j

indexes all possible such sets. A set Sj is selected (xj D 1) when it is assigned to a
crew, incurring cost cj . This is a partitioning problem because each flight leg must
be staffed by exactly one crew and must therefore appear in exactly one selected Sj .
Although there may be millions of sets Sj and therefore millions of variables xj ,
the model can be quite practical when its continous relaxation is solved by a column
generation method; that is, by adding variables (and the associated columns of A) to
the problem only when they can improve the solution. Typically, only a tiny fraction
of the columns are generated.

Clique Inequalities. A collection of set packing constraints in a model can some-
times be replaced or supplemented by a clique inequality, which substantially
tightens the continuous relaxation. For example, the 0–1 inequalities

x1Cx2 � 1

x1 Cx3 � 1

x2Cx3 � 1 (13)

are equivalent to the clique inequality x1Cx2Cx3 � 1. One can see that the clique
inequality provides a tighter relaxation from the fact that x1 D x2 D x3 D 1=2

violates it but satisfies (13). It should therefore replace (13) in the model.

28 J.N. Hooker

To generalize this idea, define a graph whose vertices j correspond to 0–1
variables xj . The graph contains an edge .i; j / whenever xj C xj � 1 is implied
by a constraint in the model. If the induced subgraph on some subset C of vertices
is a clique, then

P
j2C � 1 is a valid inequality and can be added to the model.

Logical Conditions. Logical conditions on 0–1 variables can be formulated as
knapsack inequalities that are similar to set covering constraints. Suppose, for ex-
ample, that either plants 2 and 3 must be built, or else plant 1 must not be built. For
the moment, regard xj as a boolean variable that is true when plant j is built, and
false otherwise. The condition can be written

:x1 _ x2 _ x3 (14)

where _means “or” and :means “not.” Such a condition is a logical clause, mean-
ing that it is a disjunction of literals (boolean variables or their negations). Because
the clause states that at least one of the literals must be true, it can be written as an
inequality .1 � x1/ C x2 C x3 � 1 by viewing xj as true when xj D 1 and false
when xj D 0. This is equivalent to the knapsack inequality �x1 C x2 C x3 � 0.

Any logical condition built from “and,” (^) “or,” “not,” and “if” can be converted
to a set of clauses and given an MILP model on that basis. “B if A” is written
A) B and is equivalent to :A _ B . Consider, for example, the condition, “If
plants 1 and 2 are built, then plants 3 and 4 must be built.” It can be written

.x1 ^ x2/) .x3 ^ x4/

The implication can be eliminated to obtain :.x1 ^ x2/ _ .x3 ^ x4/. The nega-
tion is then brought inside using De Morgan’s Law, resulting in the expression
:x1 _ :x2 _ .x3 ^ x4/. The conjunction is now distributed:

.:x1 _ :x2 _ x3/ ^ .:x1 _ :x2 _ x4/

This conjunction of two clauses can be written as two knapsack constraints:

�x1 � x2 C x3 � �1

�x1 � x2 C x4 � �1

5.2 MILP Representability

MILP modeling achieves its full power when the model is allowed to contain aux-
iliary variables in addition to the variables of the original problem space, because
this allows the model to represent disjunctions of discrete alternatives. The auxil-
iary variables can be either continuous or discrete and frequently appear in practical
models. It is known precisely what kind of problems can be represented with MILP
models in this way, due to theorems proved in [31] and generalized in [28].

Hybrid Modeling 29

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

...........
..

...........
..

...........
..

...........
..

...........
..

............
.

............
.

............
.

............
.

............
.

............
.

·

...

...

...

..

...

...

a b

Fig. 3 (a) A mixed integer polyhedron Q (horizontal lines) where Q D P \ .R � Z/ and P is
bounded by the dashed line. (b) The recession cone of Q

Formally, a subset S of R
nCp is MILP representable if it is the projection onto x

of the feasible set of a model of the form

Ax C BuCDı � b

x 2 R
n � Z

p ; u 2 R
m; ı 2 f0; 1gq

Some of the auxiliary variables are real-valued (uj) and some are binary (ıj).
To state the representability theorems, some definitions are necessary. Let a

mixed integer polyhedron be the nonempty intersection of any polyhedron in R
nCp

with R
n � Z

p . Such a polyhedron is illustrated in Fig. 3. A vector r 2 R
nCp is a

recession direction of a polyhedron P 2 R
nCp if one can go forever in the direction

r without leaving P . That is, for any x 2 P , x C ˛r 2 P for all ˛ � 0. A rational
vector r is a recession direction of a mixed integer polyhedron Q if it is a recession
direction of a polyhedron whose intersection with R

n �Z
p is Q. The recession cone

of a mixed integer polyhedron is the set of all its recession directions (Fig. 3).

Theorem 1. A nonempty set S 2 R
n � Z

p is MILP representable if and only if it
is the union of finitely many mixed integer polyhedra in R

n � Z
p having the same

recession cone.

Each mixed integer polyhedron Qk in the finite union can be described by
a knapsack system. The theorem therefore states in effect that any MILP repre-
sentable set can be modeled as a disjunction of knapsack systems (i.e., at least one
of the systems must be satisfied). If Qk D fx 2 R

n � Z
p j Akx � bkg, the

disjunction is _
k2K

�
Akx � bk

�
; x 2 R

n � Z
p (15)

This suggests a principle for creating MILP models, because practical problems
frequently present a set of alternative actions or situations. If the alternatives can be
modeled by knapsack systems, then the problem takes the form of a disjunction of
such systems. An MILP model can now be written, provided the knapsack systems

30 J.N. Hooker

describe mixed integer polyhedra with the same recession cone. The recession cone
condition is normally satisfied in practice by adding a few innocuous constraints.

There remains the question, however, as how to convert the disjunction (15) of
knapsack systems into an MILP model. There are two standard ways: a big-M for-
mulation and a convex hull formulation. Both require 0–1 auxiliary variables, and
the convex hull formulation requires continuous auxiliary variables as well.

First, the big-M formulation. Consider any nonempty MILP representable set
S 2 R

n � Z
p . From Theorem 1, S is the union of mixed integer polyhedra Qk

defined earlier, where the Qks have the same recession cone. Then, S has the sharp
big-M formulation

Akx � bk �M k.1 � ık/; k 2 K

x 2 R
n � Z

p; ık 2 f0; 1g; k 2 K (16)

where

M k D bk �min
`¤k

n
min

x

n
Akx

ˇ̌̌
A`x � b`; x 2 R

n � Z
p
oo

(17)

Note that there are binary auxiliary variables ık . When ık D 1, the kth knapsack
system Akx � bk is enforced. When ık D 0, the kth system is deactivated by sub-
tracting a vector M k of large numbers from the right-hand side. The formulation is
sharp in the sense that the components of M k are chosen to be as small as possible,
but it remains a valid formulation if larger values of M k are used. If Qk is the same
as before,

Theorem 2. A set S 2 R
n � Z

p is MILP representable if and only if it has a sharp
big-M representation (16), where S DSk2K Qk .

The convex hull formulation of (15) introduces continuous auxiliary variables
by disaggregating x into a sum

P
k2K xk , where each xk corresponds to Qk . The

formulation is

x D
X
k2K

xk

Akxk � bkık; k 2 KX
k2K

ık D 1

x 2 R
n � Z

p; ık 2 f0; 1g; k 2 K (18)

Theorem 3. A set S 2 R
n�Z

p is MILP representable if and only if it can be formu-
lated as (18), where S DSk2K Qk . Furthermore, (18) is a convex hull formulation
if Ak � bk is a convex hull formulation of Qk for each k 2 K .

Model (18) is a convex hull formulation of S when its continuous relaxation
describes the closure of the convex hull of S . The continuous relaxation is obtained
by dropping the integrality constraints; that is, by replacing the last line of (18) with

Hybrid Modeling 31

x 2 R
nCp; 0 � ık � 1; k 2 K

The system Akx � bk is a convex hull formulation of Qk when it describes the
closure of the convex hull of Qk . A convex hull formulation has the tightest possible
continuous relaxation.

It can be shown that (18) provides a convex hull relaxation of S when the polyhe-
dra Qk do not have the same recession cone, even though (18) is not a representation
of S in this case. That is,

Theorem 4. The continuous relaxation of (18), when projected onto x, describes
the closure of the convex hull of S DSk2K Qk even when the Qks do not have the
same recession cone.

Similarly, the big-M formulation (16) provides a valid relaxation of S even when
the polyhedra Qk do not have the same recession cone.

In some modeling contexts, it is useful to associate user-defined 0–1 variables ık

explicitly with each term k of a disjunction by writing (15) as

_
k2K

�
Akx � bk

�
ık

(19)

The variables ık become the 0–1 auxiliary variables in the MILP formulation of the
disjunction and are available for use elsewhere in the problem as well. If the solver
branches on the disjunction, it sets ık D 1 when the kth disjunct is enforced. It
enforces term k of the disjunction when ık is fixed to one and removes term k from
the disjunction when ık D 0.

5.3 Example: Fixed-Charge Problems

A simple fixed-charge problem illustrates MILP model construction. The cost z of
manufacturing quantity x of some product is zero when x D 0 and is f C cx when
x > 0, where f is the fixed cost and c the unit variable cost. The problem is to
minimize cost.

There are two alternatives, corresponding to a zero or positive production level,
each giving rise to a different cost calculation. The feasible set S is illustrated in
Fig. 4. It is described by a disjunction of linear systems that, in this case, contain
only continuous variables:

�
x D 0

z � 0

�
_
�

x � 0

z � cx C f

�
(20)

The disjuncts respectively describe the polyhedra P1 and P2 in Fig. 4a. The reces-
sion cone of P1 is P1 itself, and the recession cone of P2 is f.z; x/ j z � cx � 0g.

32 J.N. Hooker

Fig. 4 (a) Feasible set of a fixed-charge problem, consisting of the union of polyhedra P1 (heavy
vertical line) and P2 (darker shaded area). (b) Feasible set of the same problem with the bound
x � U , where P 0

2 is the darker shaded area. In both (a) and (b), the convex hull of the feasible set
is the entire shaded area

Thus, by Theorem 1, S is not MILP representable. For example, one can write the
big-M formulation (17) as

0 � x �M 1
1 ı x � 0

z � �M 1
2 ı z � cx C f �M 2

2 .1 � ı/

ı 2 f0; 1g

where the 0–1 variables ı1; ı2 are replaced by 1�ı and ı (because they sum to one).
But this formulation is not well defined because from (17),

M 1
1 D �minf�x j x � 0; z � cx C f g D 1

Also the convex hull formulation (18) of (20) becomes

x D x1 C x2 z D z1 C z2

x1 D 0 x2 � 0

z1 � 0 z2 � cx2 C f ı

ı 2 f0; 1g (21)

Hybrid Modeling 33

One can eliminate the constraint x1 D 0 (and the corresponding aggregation
constraint x D x1 C x2) by replacing x2 with x, and similarly for the constraint
z1 � 0. So (21) simplifies to

x � 0; z � cx C f ı; ı 2 f0; 1g
which does not correctly represent the feasible set. However, its continuous re-
laxation correctly describes the closure of the convex hull of the feasible set, as
predicted by Theorem 4. For if one replaces ı 2 f0; 1g with 0 � ı � 1 and projects
out ı, the result is z � cx, x � 0. This is illustrated in Fig. 4a.

The recession cones can be equalized by placing an upper bound U on x in
the second disjunct of (20). The recession cone of each of the resulting polyhedra
P1; P 02 is the same, as illustrated in Fig. 4b, and the feasible set is therefore MILP
representable. The big-M formulation becomes

0 � x �M 1
1 ı 0 � x � U CM 2

1 .1 � ı/

z � �M 1
2 ı z � cx C f �M 2

2 .1 � ı/

ı 2 f0; 1g (22)

From (17), .M 1
1 ; M 1

2 ; M 2
1 ; M 2

2 / D .U;�f; 0; f /. So (22) simplifies to

0 � x � Uı; z � cx C f ı; ı 2 f0; 1g (23)

which is a correct formulation. The convex hull formulation becomes

x D x1 C x2 z D z1 C z2

0 D x1 0 � x2 � Uı

z1 � 0 z2 � cx2 C f ı

ı 2 f0; 1g

which again simplifies to (23). In this case, the big-M formulation happens to be a
convex hull formulation.

5.4 MILP Modeling Guidelines

Theorems 1–3 imply that an MILP model can be formulated by regarding the prob-
lem as a disjunction of knapsack systems corresponding to discrete alternatives. The
disjunction is then converted to a big-M or convex hull formulation. In practice, it
may be convenient to identify several disjunctions, each of which is converted to a
set of MILP constraints. This suggests the following guidelines for MILP modeling:

1. Try to conceive the problem as posing one or more choices among discrete
alternatives.

2. Formulate each alternative using a system of knapsack inequalities.

34 J.N. Hooker

3. Write each choice of alternatives as a disjunction of knapsack systems. Some
of the disjunctions may have only one disjunct, indicating that there is only one
alternative.

At this point, the disjunctions are converted to MILP formulations as follows. The
conversion would be automatic in an integrated modeling system.

4. Adjust the linear systems so that in each disjunction, all of the disjuncts describe
mixed integer polyhedra with the same recession cone. This can be done manu-
ally as well; the options are discussed in Sect. 6.2.

5. Convert each disjunction to a big-M or a convex hull formulation. The convex
hull formulation normally has a tighter continuous relaxation, unless the big-M
model happens to be a convex hull formulation as well. The big-M formulation
normally contains fewer variables, particularly when there are many disjuncts,
unless the convex hull formulation can be simplified. The choice between the
formulations rides on whether the tighter relaxation is worth the overhead of
additional variables.

Not all useful MILP models evolve naturally from this disjunctive approach. An
example is the standard 0–1 model for the circuit (traveling salesman) problem,
discussed below.

5.5 Example: Facility Location

A capacitated facility location problem illustrates the above modeling guidelines.
There are m possible locations for factories, and n customers who obtain products
from the factories. A factory installed at location i incurs fixed cost fi and has
capacity Ci . Each customer j has demand Dj . Goods are shipped from factory i to
customer j on trucks, each with capacity Kij , and each incurring a fixed cost cij .
The problem is to decide which facilities to install, and how to supply the customers,
so as to minimize total cost (Fig. 5).

Fig. 5 A facility location problem

Hybrid Modeling 35

The basic decision, for each location i , is whether to install a factory at that
location. This presents two discrete alternatives that can be represented as a disjunc-
tion. To describe each alternative with knapsack systems, let xij be the quantity of
goods shipped from factory i to customer j , and let wij be the number of trucks on
which they are transported. Then, if zi is the total cost incurred at location i , the two
alternatives for location i are represented by the disjunction

0
BBBBBBBB@

X
j

xij � Ci

0 � xij � Kij wij ; all j

zi � fi C
X

j

cij wij

wij 2 Z; all j

1
CCCCCCCCA
_

xij D 0; all j

zi � 0

!
(24)

The alternative on the left corresponds to installing a factory at location i . The first
constraint enforces the factory’s capacity limit, and the second does the same for the
truck capacities. The third constraint computes the cost incurred at location i . Note
that each wij is integer valued, which means that this disjunct describes a mixed
integer polyhedron. The disjunct on the right corresponds to the case in which no
factory is installed at location i .

Customer demand can be satisfied by imposing the constraint
P

i xij � Dj

for each customer j . Each of these constraints can be viewed as a separate dis-
junction with only one alternative. The objective is to minimize total cost, given
by
P

i zi .
This completes the modeler’s task. At this point the modeling system takes over

by converting (24) to an MILP formulation. It must first ensure that the two dis-
juncts in (24) have the same recession cone. As it happens, they do not. The cone
for the first polyhedron is f.xi ; wi ; zi / j xi D 0; wi � 0; zi �Pj cij wij g where
xi D .xi1; : : : ; xin/ and wi D .wi1; : : : ; win/, while the cone for the second is
f.xi ; wi ; zi / j xi D 0; zi � 0g. The cones can, in theory, be equalized if the in-
nocuous constraints wij � 0 and zi � Pj cij wij are added to the second disjunct.
This yields a disjunction that can be given an MILP model:

0
BBBBBBBB@

X
j

xij � Ci

0 � xij � Kij wij ; all j

zi � fi C
X

j

cij wij

wij 2 Z; all j

1
CCCCCCCCA
_

0
BBBB@

xij D 0; all j

wij � 0; all j

zi �
X

j

cij wij

1
CCCCA (25)

36 J.N. Hooker

Using (18), the convex hull formulation of (25) is

xij D x1
ij C x2

ij ; wij D w1
ij C w2

ij ; zi D z1
i C z2

i ; all jX
j

x1
ij � Ciıi

0 � x1
ij � Kij w1

ij ; all j

z1
i � fi ıi CPj cij w1

ij

x2
ij D 0; w2

ij � 0 all j

z2
i �

X
j

cij w2
ij

ıi 2 f0; 1g; wij 2 Z; all j

Because the auxiliary 0–1 variables corresponding to the two disjuncts sum to one,
they can be written as ıi and 1�ıi ; the latter does not appear because the right-hand
sides in the second disjunct are all zero. The constraints x2

ij D 0 can be dropped
(along with the aggregation constraints xij D x1

ij C x2
ij) if x1

ij is replaced by xij ,
and similarly for the constraints w2

ij � 0 and z2
i �

P
j cij w2

ij . Because zi can be
replaced by fi ıi CPj cij wij in the objective function

P
j zj , the complete MILP

model becomes

min
X

i

0
@fi ıi C

X
j

cij wij

1
A

X
j

xij � Ciıi ; all i

0 � xij � Kij wij ; all i; jX
i

xij � Dj ; all j

ıi 2 f0; 1g; wij 2 Z; all i; j (26)

Although each disjunction (25) is given a convex hull formulation in the MILP
model (26), the model as a whole is not a convex hull formulation of the problem.

Using (16), the big-M model for the disjunction (25) is

X
j

xij � Ci CM 1
1i .1 � ıi /

0 � xij � Kij wij CM 1
2ij .1 � ıi /; all j

zi � fi ıi CPj cij wij �M 1
3i .1 � ıi /

0 � xij �M 2
1ij ıi ; all i; j

wij � �M 2
2ij ıi all i; j

z2
i �

X
j

cij wij �M 2
3iıi ; all i

ıi 2 f0; 1g; wij 2 Z; all j
(27)

It can be verified from (17) that M 1
1i D �Ci , M 2

1ij D Ci , and all the other big-M s
are zero in the sharp formulation. The big-M formulation (27) therefore reduces to
the same model as the convex hull formulation.

It is unclear how the disjunction (25) could be obtained automatically, and per-
haps unrealistic to expect the user to equalize the recession cones in this way

Hybrid Modeling 37

manually. A more practical alternative is for the modeling system to equalize the
recession cones by imposing reasonable lower and upper bounds on every variable,
or to ask the user to provide bounds.

5.6 Examples: Piecewise Linear and Indicator Constraints

Piecewise linear and indicator constraints were not discussed in the section on CP
but illustrate some important points for MILP modeling.

Piecewise linear functions are a very useful modeling tool because they provide a
means to approximate separable nonlinear functions within a linear modeling frame-
work. Typically, we wish to model a function of the form g.x/ D P

j gj .xj / by
approximating each nonlinear term gj .xj / with a piecewise linear function fj .xj /.
The function fj .xj / is set to a value equal to (or close to) gj .xj / at a finite number
of values of xj and is defined between these points by a linear interpolation.

For convenience, we drop the subscripts and refer to fj .xj / as f .x/. We suppose
that f .x/ is piecewise linear in the general sense that it is linear on possibly disjoint
intervals Œai ; bi � and undefined outside these intervals, as illustrated by Fig. 6. More
precisely, x 2 Si2I Œai ; bi � and

f .x/ D
8<
:

f .ai /C x � ai

bi � ai

Œf .bi /� f .ai /� if x 2 Œai ; bi � and ai < bi

f .ai / if x D ai D bi

(28)

In many applications, each bi D aiC1, which means f .x/ is continuous.

Fig. 6 A piecewise linear function. The domain of x is ŒL; U �

38 J.N. Hooker

A disjunctive formulation is natural and convenient for a function of this form:

_
i2I

0
B@

x D �ai C �bi

z D �f .ai /C �f .bi /

�C � D 1; �; � � 0

1
CA (29)

where disjunct i corresponds to x 2 Œai ; bi �, and z is a variable that represents f .x/.
Because the disjuncts of (29) define polyhedra with the same recession cone (all

the polyhedra are bounded), the following convex hull formulation can be automat-
ically generated:

x D
X
i2I

�i ai C �i bi

z D
X
i2I

�if .ai /C �i f .bi /

�i C �i D ıi ; i 2 IX
i2I

ıi D 1

�i ; �i � 0; ıi 2 f0; 1g; i 2 I (30)

This is similar to a well-known textbook model that dispenses with the multipli-
ers �i but applies only when f .x/ is continuous [34]:

x D
kC1X
iD1

�iai ; z D
kC1X
iD1

�i f .ai /;

kC1X
iD1

�i D 1

�i � ıi�1 C ıi ; i D 2; : : : ; k

�1 � ı1; �kC1 � ık;

kX
iD1

ıi D 1

�i � 0; i D 1; : : : ; k C 1I ıi 2 f0; 1g; i D 1; : : : ; k (31)

where akC1 D bk . This model, however, is not as tight as (30). Moreover, (30) is
“locally ideal,” meaning that the 0–1 variables take integer values at all the vertices
of the polyhedron described by the continuous relaxation [44]. Apparently, model
(30) was unrecognized in the literature until described by Sherali [51] in 2001, but it
is an immediate result of the disjunctive MILP formulation. Although Sherali proves
that (30) is locally ideal, no proof is necessary, because any convex hull formulation
of a disjunction is locally ideal. Model (30) can also be adapted to the case in which
f .x/ is lower semi-continuous, as noted in [51].

For continuous functions f .x/, one can use the incremental cost model, which
contains no more variables than (31), but is equivalent to the tight model (30) and
locally ideal [51]:

x D a1 C
kC1X
iD2

xi ; z D f .a1/C
kC1X
iD2

f 0i
a0i

xi

0 � xi � a0i ; i D 2; : : : ; k C 1

Hybrid Modeling 39

a0i ıi � xi � a0i ıi�1; i D 2; : : : ; k

a02ı2 � x2 � a02; 0 � xkC1 � a0kC1ık

ıi 2 f0; 1g; i D 2; : : : ; k (32)

Here a0i D ai � ai�1 and f 0i D f .ai /� f .ai�1/.
Most MILP solvers allow one to model a continuous piecewise linear function by

defining the multipliers �i in the textbook model (31) to be a special ordered set of
type 2 (SOS2). In this case, one need only to write the constraints on the first line of
(31). The SOS2 condition requires that at most two of the variables �i be nonzero,
where any two nonzero variables must be adjacent (i.e., �i and �iC1 for some i). The
condition is enforced directly by the branching mechanism. It simplifies the model
by eliminating the 0–1 variables ıi , but it sacrifices the tight continuous relaxation
provided by the 0–1 model (30) or (32).

An integrated solver can implement SOS2 branching simply by branching on the
terms of the disjunction (29) in the normal fashion. This has the effect of permitting
only adjacent multipliers to be nonzero. In fact, this disjunctive approach is more
general than SOS2 because it is not restricted to continuous functions. If desired,
one can dispense with the 0–1 formulation (30) simply by instructing the solver not
to generate a relaxation for the disjunction. Thus, there is no need for a separate
SOS2 option in the modeling system.

There are recent proposals for modeling piecewise linear functions with a log-
arithmic number of 0–1 variables [36, 56]. However, we will see that in an in-
tegrated modeling context, piecewise linear functions can be efficiently modeled,
and a relaxation provided, without the use of any auxiliary variables or special
ordered sets.

Indicator constraints are constraints that are enforced only when a 0–1 variable
is equal to one (or equal to zero). They, too, are naturally expressed in disjunctive
form, and there is no need for a modeling system to offer this feature separately.

Suppose, for example, that we wish to enforce the system Ax � b only when
ı D 1. The advantage of having an indicator constraint option in a modeling system
is that it obviates the use of a big-M construction like

Ax � b �M.1� ı/

Yet one can achieve the same purpose by writing the disjunction

.Ax � b/ı

The second disjunct, corresponding to ı D 0, is understood to be empty because it
does not appear. The system will enforce Ax � b when ı D 1, as desired.

A semi-continuous variable x is a related idea in which x is forced to zero when
ı D 0 and to be within bounds L � x � U when ı D 1. One can define x to be
semi-continuous by writing .L � x � U /ı _ .x D 0/.

40 J.N. Hooker

5.7 Example: Car Sequencing

It will be useful to compare an MILP model of the car sequencing problem with
the CP model developed earlier. In this problem, there are four discrete alternatives
at each position i in the manufacturing sequence–car types a, b, c, and d. Each
alternative implies a choice of options. If we let ACi D 1 when air conditioning is
installed at position i , and SRi D 1 when a sun roof is installed, the four alternatives
can be written as follows for each position i :

�
ACi D 0

SRi D 0

�
_
�

ACi D 1

SRi D 0

�
_
�

ACi D 0

SRi D 1

�
_
�

ACi D 1

SRi D 1

�

The convex hull formulation of this disjunction is

ACi D AC a
i C AC b

i C AC c
i C AC d

i

SRi D SR a
i C SR b

i C SR c
i C SR d

i

AC a
i D 0;

SR a
i D 0;

AC b
i D ıib;

SR b
i D 0;

AC c
i D 0;

SR c
i D ıic;

AC d
i D ıid

SR d
i D ıid

ıia C ıib C ıic C ıid D 1

ıij 2 f0; 1g; j D a; b; c; d

This simplifies to
ACi D ıib C ıid; SRi D ıic C ıid

ıib C ıic C ıid � 1

ıij 2 f0; 1g; j D b; c; d

The complete MILP model can now be written by combining the above with con-
straints that meet demand and observe the assembly line capacity constraints:

ACi D ıib C ıid; SRi D ıic C ıid; i D 1; : : : ; 50

ıib C ıic C ıid � 1; i D 1; : : : ; 50

ıij 2 f0; 1g; j D b; c; d; i D 1; : : : ; 50

50X
iD1

ıia D 20;

50X
iD1

ıib D 15;

50X
iD1

ıic D 8;

50X
iD1

ıid D 7; i D 1; : : : ; 50

iC4X
jDi

ACj � 3; i D 1; : : : ; 46

iC2X
jDj

SRj � 1; j D 1; : : : ; 48 (33)

Hybrid Modeling 41

5.8 Network Flow Models

The continuous relaxation of an MILP model sometimes describes an integral poly-
hedron, in the sense that the integer variables take integer values at every vertex. In
such cases, one can easily solve the MILP model by solving its continuous relax-
ation with a linear programming algorithm that finds a vertex solution. There is a
strong incentive to use an MILP formulation when it has this integrality property.

In practice, the most common MILP models with the integrality property are
capacitated network flow models, of which assignment models are a special case.
The matrix of constraint coefficients in these problems is totally unimodular, which
ensures that the continuous relaxation of the model describes an integral polytope if
all the right-hand sides are integral.

A network flow model is defined on a directed network in which the net supply
Si of flow at each node i is given. If .i; j / represents an arc that is directed from
node i to node j , then Cij is the arc capacity and variable yij represents the flow on
.i; j /. If arc .i; j / is missing from the network, one can nonetheless include yij in
the model and set Cij D 0. The flow model isX

j

yij �
X

j

yji D Si ; all i

0 � yij � Cij; all i; j (34)

There is typically an objective function that measures cost, such as
P

ij cij yij ,
where cij is the unit cost of sending flow on arc .i; j /.

Due to total unimodularity, the model (34) describes an integral polytope if the
supplies and capacities are all integral. This means that if the flows are restricted to
be integral, the resulting MILP model can be solved by solving its continuous relax-
ation (34). This is a particularly easy problem to solve because there are specialized
algorithms for computing minimum cost network flows.

5.9 Assignment Problems

The assignment problem discussed in Sect. 4.7 assigns m tasks to n workers
(m � n). It is a special case of a network flow problem, which means that the
MILP model is totally unimodular. This provides a strong incentive to use an MILP
formulation at some stage of the solution process.

The flow network corresponding to an assignment problem is bipartite, as illus-
trated in Fig. 7. If m < n, then dummy task nodes are created so that supply balances
demand. The cost cij is set to zero for a dummy task i . A unit flow yij D 1 indicates
that worker i is assigned task j . The flow model therefore reduces to

nX
jD1

yij D
nX

jD1

yji D 1; i D 1; : : : ; n

yij � 0; all i; j (35)

42 J.N. Hooker

Fig. 7 A flow model for an assignment problem

This model can be solved very rapidly with specialized algorithms. Obviously,
the solution is meaningful only if each yij 2 f0; 1g, but this is assured by total
unimodularity.

5.10 Circuit Problems

Circuit problems have been given several MILP formulations [42], but by far the
most popular is the subtour elimination formulation. If binary variable yij D 1

when vertex j immediately follows i in the hamiltonian circuit, then the traveling
salesman problem on n cities can be written

min
X
ij

cij yij

X
j

yij D
X

j

yj i D 1; all i

X
.i;j /2ı.S/

yij � 1; all S � f1; : : : ; ng with 2 � jS j � n � 1

yij 2 f0; 1g; all i; j (36)

where S is a subset of vertices and ı.S/ is the set of edges .i; j / for which i 2 S and
j 62 S . The assignment constraints (line 2) ensure that exactly one vertex precedes,
and exactly one vertex follows, each vertex in the tour. Line 3 contains the subtour
elimination constraints, which rule out circuits on fewer than n vertices. This is
accomplished by requiring, for each proper subset S of the vertices, that at least one
edge in the circuit connect a vertex in S with a vertex outside S .

In practice, the formulation is not actually written out because it contains expo-
nentially many constraints. Rather, a traveling salesman solver generates separating
subtour elimination constraints as they are needed. A separating constraint is one
that cuts off the solution of the current linear relaxation without cutting off any fea-
sible solutions. Several families of strong cutting planes have been identified for the
problem, along with separation heuristics. A survey of this work can be found in [6].

Hybrid Modeling 43

5.11 Example: Sudoku Puzzles

The sudoku problem can be formulated with assignment constraints, although a
large number of 0–1 variables are necessary to do so. Let 0–1 variable yijt D 1

when digit t appears in cell i; j . Let Jk` be the set of cells .i; j / in the 3� 3 square
in position k; `. Then, the MILP model is

9X
jD1

yijt D
9X

jD1

yjit D 1; i; t D 1; : : : ; 9 .a/

X
.i;j /2Jk`

yijt D 1; k; ` D 1; 2; 3; t D 1; : : : ; 9 .b/

9X
tD1

yijt D 1; i; j D 1; : : : ; 9 .c/

yijaij
D 1; all .i; j / 2 F .d/

yijt 2 f0; 1g; all i; j; t (37)

Constraints (a) enforce the alldiff condition for the rows and columns, and con-
straints (b) do the same for the 3� 3 squares. Constraints (c) ensure that exactly one
digit appears in each cell. Constraints (d) take care of the preassigned cells.

6 Integrated Modeling

It is time to address the question as to how the seemingly incompatible modeling
styles of CP and MILP can be integrated. CP relies on the use of global constraints,
so that it can exploit problem substructure with its filtering algorithms and prop-
agation methods. MILP requires that the problem be reduced to linear inequality
constraints, so that it can obtain linear relaxations and strengthen them with cutting
planes.

A simple solution is to follow the CP practice of building a model around global
constraints, but to create new global constraints that represent sets of inequalities.
Different constraints can be designed for inequality sets with different kinds of spe-
cial structure, so that the solver can take advantage of this structure when it generates
cutting planes. A general-purpose constraint can be defined for an MILP inequality
set that has no particular structure.

Because MILP models can always be constructed by conceiving the problem as
a disjunction of linear systems, it may be more natural in many cases to write the
problem in disjunctive form rather than translate the disjunctions to MILP models.
The solver can make the translation automatically. It is therefore useful for a general-
purpose MILP global constraint to accept disjunctions of linear systems as well as
a single linear system.

44 J.N. Hooker

The proposal, therefore, is that the modeler write parts of the problem with
CP-style global constraints and other parts with global constraints that represent
structured sets of linear inequalities, depending on which is more natural and best
reveals the structure of the problem to the solver.

Such a model allows the solver to take full advantage of both CP and MILP
solution technology. CP-style global constraints are explicitly present, which allows
the solver to apply its repertory of filtering and propagation techniques. Inequality
constraints are also explicitly present, identified by their structure, which allows the
solver to generate MILP-based relaxations and cutting planes. This is already an
advance over commercial MILP systems, which do not permit the user to identify
most types of special structure in subsets of constraints.

Furthermore, MILP relaxation technology can be applied even when a constraint
is written in CP style. If a CP constraint in the model has an alternative MILP
formulation, the solver always has the option of generating the MILP formula-
tion along with any useful cutting planes for the sake of obtaining a relaxation.
Alternatively, the solver may generate a relaxation that is based on a polyhedral
analysis of that particular constraint, rather than on an MILP model of it. The over-
all advantage of this scheme is that it allows the solver to exploit the wide variety
of filtering and relaxation methods that appear in the CP, MILP, and CP-AI-OR
literatures.

There are some technical issues that must be clarified if the generated inequality
relaxations are to replicate the full advantage of MILP technology. One is a variable
mapping issue that arises when MILP translations of global constraints create aux-
iliary variables. When the auxiliary variables map to the same set of variables in the
original model, the solver must use the same auxiliary variables in all the transla-
tions. Also, care must be taken when simplifying the individual MILP translations,
so that the combined translations provide a correct model.

Not only are the full computational resources of CP and MILP simultaneously
available but they are mutually reinforcing in all the ways that have been described
in the literature and the remainder of this book. CP-based filtering, for example, re-
sults in tighter MILP models and relaxations, which in turn provide bounds for more
effective domain reduction. Thus, an integrated model supports integrated problem
solving.

The remainder of this section begins with a summary of guidelines for integrated
modeling. It then reviews the problems that have been so far introduced and in-
dicates how they might be formulated in an integrated modeling system. It shows
how relaxations can be generated and addresses the technical issues just mentioned.
Because hybrid methods often use decomposition methods to combine solution
techniques, the section concludes with two illustrations of how decomposition can
be introduced into a model. This not only tells the solver how the problem may be
decomposed but it may allow the model to be written with high-level global con-
straints that would not otherwise be applicable.

Hybrid Modeling 45

6.1 Integrated Modeling Guidelines

Because it is proposed that an integrated model be built around global con-
straints much as in CP modeling, CP modeling guidelines continue to apply.
They must be augmented, however, with principles for incorporating MILP-based
global constraints. In view of the above discussion, the following principles seem
appropriate.

1. A specially-structured subset of constraints should be replaced by a single global
constraint that captures the structure, when a suitable one exists.

2. A global constraint can be one familiar to the CP community or a collection of
inequalities whose structure has been studied in the MILP literature.

3. Constraints that are more naturally formulated as disjunctions of linear systems
should normally be left in this form, rather than converting them to MILP models.

4. A global constraint should be replaced by a more specific one when possible.
5. Redundant constraints can improve propagation. However, the solver should

be relied upon to generate the MILP equivalent of a CP constraint in the
model.

6. When two formulations of a problem are natural and intuitive, both (or parts of
both) may be included in the model to improve propagation. This is especially
helpful when some constraints are hard to write in one formulation but suitable
for the other. Channeling constraints should be used to define variables in the two
formulations in terms of each other.

7. Decomposition can be introduced into a model when it would alert the solver to
a useful decomposition strategy or when it would permit the use of high-level
global constraints that would not otherwise be applicable. This can be accom-
plished with a subproblem global constraint, described below.

6.2 Example: Facility Location

The facility location problem is naturally expressed as an MILP model. The pri-
mary elements of the problem are a disjunction of alternatives (install the factory or
not) and additional linear inequalities (customer demand). Following Principle 3, it
should be written in disjunctive form rather than converting it to an MILP.

It is therefore convenient to invent a general-purpose MILP global constraint
linear._kSk/, which enforces the disjunction of the linear systems Sk . A spe-
cial case is linear.S/, which enforces a single linear system S . Any integrality
restrictions on the variables are given when the variable domains are specified. The
facility location model can be written

46 J.N. Hooker

linear

0
BBBBBBBB@

0
BBBBBBBB@

X
j

xij � Ci

0 � xij � Kij wij ; all j

zi � fi C
X

j

cij wij

wij 2 Z; all j

1
CCCCCCCCA
_

xij D 0; all j

zi � 0

!
1
CCCCCCCCA

; all i

linear

0
BB@

min
X

i

zi

X
i

xij � Dj ; all j

1
CCA

xij ; zi 2 R; wij 2 Z; all i; j (38)

The objective function is placed in a linear constraint because it can be viewed
as a linear inequality, namely

P
i zi � U , where U is any upper bound on the

minimum cost.
As noted in Sect. 5.5, the mixed integer polyhedra described by the two terms

of the disjunction in (38) have different recession cones. It is therefore impossible
for the solver to generate an MILP model for the disjunction. However, the purpose
of creating an MILP model is to obtain its continuous relaxation. The continuous
relaxations of the convex hull and big-M formulations are valid relaxations for the
problem, even though the formulations do not correctly model the problem.

This suggests that the linear constraint can be accompanied by a parameter
that has three possible values.

Relaxation only. The solver simply generates a valid relaxation of the disjunction
based on the big-M or convex hull formulation. It does not strengthen the relaxation
with cutting planes, because these formulations may not be valid MILP models.

User-defined recession cones. The solver assumes that the modeler has equalized
the recession cones by hand, perhaps simply by placing reasonable bounds on the
variables. The solver creates a valid MILP model and perhaps strengthens it with
cutting planes.

System-defined recession cones. The solver automatically equalizes the recession
cones, again perhaps by placing bounds on the variables. It is a research issue how
these bounds can be adjusted automatically so that the resulting relaxation is rea-
sonably tight.

6.3 Examples: Piecewise Linear and Indicator Constraints

A piecewise linear function (28) can be modeled with a specialized global constraint
as well as with a disjunctive constraint similar to (29). Such a global constraint might
take the form

piecewiselinear .x; z; a; b; f.a/; f.b//

Hybrid Modeling 47

Fig. 8 Convex hull relaxation of a piecewise linear function (shaded area)

where a D .a1; : : : ; am/, f.a/ D .f .a1/; : : : ; f .am//, and similarly for b and f.b/.
The variable z represents f .x/. The piecewiselinear constraint is not only
convenient but can have computational advantages. It can provide a convex hull re-
laxation without introducing any continuous or 0–1 auxiliary variables, and it allows
for intelligent branching.

The relaxation is obtained by computing the convex envelope of the graph of
f , as illustrated in Fig. 8. This can be quickly accomplished with computational
geometry techniques. The relaxation consists of the few inequalities that define the
convex hull. The solver can branch on the constraint by splitting the domain of x.
For example, if the value of x in the solution of the current relaxation is between b1

and a2 in Fig. 8, the domain is split into intervals Œa1; b1� and Œa2; U �. The convex
hull relaxation is recomputed for each branch and becomes tighter. There is evidence
that this approach can reduce computation substantially relative to standard MILP
techniques [43, 62].

An indicator constraint can also be expressed as a global constraint, namely a
conditional constraint. In general, a conditional constraint has the form A) B ,
where A is a set of constraints on discrete variables, and B is an arbitrary set of
constraints that are enforced when A becomes satisfied. An indicator constraint that
enforces Ax � b when ı D 1 can be written .ı D 1/) .Ax � b/.

However, when B consists of linear inequality constraints, it may be best to write
a conditional constraint as a disjunction of linear systems, because this invokes the
generation of convex-hull relaxations. Thus, .ı D 1/) .Ax � b/ can be written
in the disjunctive form .Ax � b/ı as suggested earlier. To equalize recession cones,
the modeling system can automatically add user-supplied bounds L � x � U to
the disjunction, which becomes

Ax � b

L � x � U

!
ı

_ .L � x � U / (39)

The system now generates a convex-hull MILP model for (39).

48 J.N. Hooker

Similarly, a set of conditional constraints of the form .ıi D 1/) .Aix � bi /

for i 2 I should be written _
i2I

�
Ai x � bi

�
ıi

The disjunct corresponding to ıi D 0 for all i 2 I does not appear because it is
empty.

6.4 Network Flow Problems

An MILP model is the preferred choice for a network flow problem, not only be-
cause it is a natural and intuitive formulation, but also because it has the substantial
advantage of total unimodularity. However, there is no need to write out the individ-
ual network flow constraints, and even if one did, the solver might not recognize the
network flow structure. Principles 1 and 2 call for a global constraint to represent
the inequality set. Such a constraint might be written

networkFlow .y; f; C/ (40)

where y is a matrix of flow variables yij , f is a vector of net supplies fi , and C is
a matrix of arc capacities Cij . On encountering a constraint of the form (40), the
modeling system automatically generates the MILP model (34).

A minimum cost network flow problem can be stated by minimizing the objective
function

P
ij yij subject to (40).

6.5 Assignment Problems

The assignment problem is naturally written in its CP form (8), using the alldiff
constraint. The MILP model (35) is also useful due to its total unimodularity, but
the solver should be relied upon to generate it (Principle 5). Generating this model
raises the important technical issue of variable mapping.

The solver generates the MILP assignment constraints (35) when it encounters
the alldiff constraint in the CP model. But this alone is not adequate. Fast algo-
rithms for the MILP assignment model use an objective function

P
ij cij yij that is

expressed in terms of the 0–1 variables yij , and not the objective function
P

i cixi

that appears in the CP model (8).
To make this more precise, recall that the variable subscript in

P
i cixi

is parsed
by generating an element constraint. The CP model actually sent to the solver is
therefore

min
X

i

zi

element .xi ; .ci1; : : : ; cin/; zi / ; i D 1; : : : ; n

alldiff .x1; : : : ; xn/ ; xi 2 Di ; i D 1; : : : ; n (41)

Hybrid Modeling 49

The solver can now create MILP translations for the element constraints as well as
the alldiff. The i th element constraint can be given an MILP model by writing
a convex hull formulation of the disjunction

W
j .zi D cij /:

zi D
nX

jD1

cij y0ij ;

nX
jD1

y0ij D 1; y0ij 2 f0; 1g; j D 1; : : : ; n (42)

The MILP translation of (41) that results in

min
X

i

zi

zi D
nX

jD1

cij y0ij ;

nX
jD1

y0ij D 1; i D 1; : : : ; n

nX
jD1

yij D
nX

jD1

yji D 1; i D 1; : : : ; n

y0ij 2 f0; 1g; i D 1; : : : ; n (43)

The variables yij , y0ij are related to the original variables xi by way of variable
mapping constraints

xi D
nX

jD1

jyij ; xi D
nX

jD1

jy0ij ; i D 1; : : : ; n (44)

The difficulty is that (43) is not an assignment problem with the integrality
property, unless variables yij are identified with variables y0ij . The solver can ac-
complished this by mapping the variables xi to the same set of 0–1 variables yij

whenever it creates an MILP model containing variables defined as in (44). This
means that the yij s become global variables rather than local to a specific MILP
translation. If the original model contains only an alldiff constraint and an ob-
jective function, the solver can now exploit the total unimodularity of the MILP
translation once it verifies that the translated objective function has the right form.

The practice of mapping variables in the original model to global variables in the
MILP translations can be called global variable mapping. Such a practice ensures
that one can use the succinct CP model (8) for an assignment problem without sac-
rificing any of the advantages of an MILP model. However, MILP variables that are
not mapped to an original variable should remain local. This is illustrated in the car
sequencing example below.

6.6 Circuit Problems

From a modeling point of view, a CP formulation of the circuit (traveling salesman)
problem is superior to an MILP formulation. A CP formulation is more natural and

50 J.N. Hooker

contains only one constraint, as opposed to exponentially many constraints in the
most popular MILP model. The question remains, however, as to which of the two
CP formulations is better in an integrated modeling context–the alldiff formu-
lation (9) or the circuit formulation (10).

The circuit formulation seems more intuitive, because it is conceived in terms
of a circuit, as opposed to an assignment. The variables yi in the circuit formu-
lation refer to the next vertex in the hamiltonian circuit, which allows one to indicate
missing edges from the graph by removing elements from the variable domains.

The circuit formulation is superior from a technical point of view as well, be-
cause it allows for more effective propagation and relaxation. Consider the situation
with the alldiff formulation. No filtering can take place because the variable do-
mains are complete. In addition, the totally unimodular MILP model of alldiff
constraint is of little use in the context of a circuit problem, because it has no vari-
ables in common with the MILP translation of the objective function. To see this,
recall that the alldiff.x1; : : : ; xn/ constraint is translated

nX
jD1

yij D
mX

jD1

yji D 1; yij 2 f0; 1g; i D 1; : : : ; n (45)

where the xi s are mapped to the auxiliary variables yij by

xi D
X

j

jyij (46)

However, the objective function
P

i cxi xiC1
of (9) is parsed as

X
i

zi ; element ..xi ; xiC1/; C; zi / ; i D 1; : : : n (47)

where C is the matrix of coefficients cij . The i th element constraint sets zi equal to
the element of C in position .xi ; xiC1/. This can be translated to an MILP model by
writing a convex hull formulation of the disjunction

W
jk.zi D cjk/:

zi D
X

jk

cjkıijk;
X

jk

ıijk D 1; ıijk 2 f0; 1g; all j; k

where the xi s are mapped to the auxiliary variables ıijk by

ıijk D 1, .xi ; xiC1/ D .j; k/ (48)

Because (46) and (48) are different mappings, the solver does not (and should not)
identify the variables ıijk with the variables yij . So the MILP translation (45) of
the alldiff has no variables in common with the MILP translation (47) of the
objective function, and the resulting MILP model of the problem is useless as a
relaxation.

Hybrid Modeling 51

The circuit formulation, on the other hand, allows for filtering, even
though achieving domain consistency is much harder than for alldiff. Also
the circuit constraint allows one to harness the advanced relaxation methods
that have been developed for the MILP formulation (36) of the constraint. The
solver would not actually generate the entire MILP formulation, because of its
exponential size, but would generate separating subtour elimination constraints and
strong separating cuts as needed, much as a specialized traveling salesman solver
would do. The difficulty that arose with the alldiff constraint does not occur
here, because the variables yij that occur in the MILP translation (36) of circuit
also occur in the MILP translation of the objective function

P
i ciyi

. The latter
is simply

P
ij cij yij , and both MILP translations use the same variable mapping

yi DPj jyij .
In addition, it is possible to write a relaxation of the circuit constraint solely

in terms of the original variables yi , provided they take numerical values. It is argued
in [33] that a proper choice of these values can exploit structure in the objective
function.

The dual model (11), which uses both alldiff and circuit constraints, may
be advantageous when some other constraints in the problem are best expressed in
terms of the xi variables (Principle 6). In such cases, the MILP-based relaxation
of alldiff may be useful even though it does not connect with the objective
function.

6.7 Example: Sudoku Puzzles

The sudoku puzzle is most naturally modeled with alldiff constraints, as in (1).
It may also be advantageous for the solver to generate the MILP model (37), which
is not totally unimodular but may provide a useful relaxation. The solver can easily
generate the assignment constraints for each alldiff. If the solver uses global
variable mapping, the combined assignment constraints provide the desired relax-
ation.

MILP-based relaxations for alldiff contain 0–1 variables yij , and not the
original variables xi . Polyhedral relaxations in the original variables have been
studied for the alldiff constraint [24, 61] and the multiAlldiff constraint
[35,37], provided those variables take numerical values such as 1; : : : ; n. The solver
may choose to generate these in addition to the MILP model, particularly, if the yij s
do not occur in the relaxations of the objective function or other constraints.

6.8 Example: Car Sequencing

The CP-based formulation (4) of the car sequencing model is very appropriate for
an integrated modeling context, due to its simplicity and the fact that it harnesses

52 J.N. Hooker

the filtering power of cardinality and sequence constraints. It may be useful
for the modeling system to generate the MILP model (33) automatically, because
it provides a relaxation. However, the generation of such a model raises another
important technical point.

The cardinality constraint in the CP model (4) translates immediately to the
desired MILP constraints in (33), namely

50X
iD1

ıia D 20;

50X
iD1

ıib D 15;

50X
iD1

ıic D 8;

50X
iD1

ıid D 7; i D 1; : : : ; 50 (49)

using the variable mapping

.ıij D 1/) .ti D j /; j D a; b; c; d (50)

There may appear to be a difficulty in translating the two sequence constraints,
however. For the first sequence constraint in (4), disjunctions of the form

.ACi D 0/ _ .ACi D 1/ _ .ACi D 0/ _ .ACi D 1/ (51)

are converted to the MILP model

ACi D ıib C ıid; i D 1; : : : ; 50

ıia C ıib C ıic C ıid D 1

iC4X
jDi

ACj � 3; i D 1; : : : ; 46 (52)

which simplifies to

ACi D ıib C ıid; i D 1; : : : ; 50

ıib C ıid � 1

iC4X
jDi

ACj � 3; i D 1; : : : ; 46 (53)

If global variable mapping is used, the variables ıij in (53) are the same as those in
(49), because they are mapped to the same original variables ti using (50). Similarly,
the second sequence constraint yields the MILP model

SRi D ıic C ıid; i D 1; : : : ; 50

ıia C ıib C ıic C ıid D 1

iC2X
jDi

SRj � 1; i D 1; : : : ; 48 (54)

Hybrid Modeling 53

which simplifies to

SRi D ıic C ıid; i D 1; : : : ; 50

ıic C ıid � 1

iC2X
jDi

SRj � 1; i D 1; : : : ; 48 (55)

The variables ACi and SRi are local to MILP translation because they are not
mapped to any of the original variables.

The difficulty is that when the MILP formulations (53) and (55) are merged, the
constraints involving ıij s are not equivalent to the corresponding constraints in the
desired MILP model (33):

ACi D ıib C ıid; SRi D ıic C ıid; i D 1; : : : ; 50

ıib C ıic C ıid � 1; i D 1; : : : ; 50 (56)

The two inequalities ıib C ıid � 1 and ıic C ıid � 1 are not equivalent to the
inequality ıib C ıic C ıid � 1 in (56).

The problem is that (52) and (53) are equivalent only in the sense that they specify
the same disjunction (51). Because the auxiliary variables ıij s are global variables,
the two formulations must be equivalent in the space that includes the ıij s as well as
the ACi s. In general, when an MILP translation based on disjunctions is simplified,
it must be simplified to a formulation that is equivalent in the auxiliary variables
as well as the variables in the disjuncts, if the auxiliary variables are global. It is
therefore essential to use the formulation (52) rather than (53), and similarly to use
(54) rather than (55). If this is done, the result is the desired MILP model (33).

6.9 Example: Employee Scheduling

The CP idiom is especially well suited for employee scheduling problems, be-
cause several global constraints are expressly designed for this purpose–such as
the stretch constraint in the CP model of Sect. 4.6. Writing an MILP model for
stretch is not straightforward and should not be attempted in the original model.
How the solver might generate an MILP translation presents an interesting research
issue, as does the task of finding linear relaxations that are not based on MILP
formulations.

6.10 Decomposition: Machine Assignment and Scheduling

A machine assignment and scheduling problem illustrates the usefulness of decom-
position in modeling (Principle 7). A set of n jobs are to be assigned to m machines.
The jobs assigned to each machine must be scheduled so that they do not overlap
and are processed within their time windows. The time window for each job j

54 J.N. Hooker

consists of a release time rj and a deadline dj . Each job j has a processing time of
pij on machine i . For simplicity, suppose the cost of assigning job j to machine i

is a constant cij .
The assignment portion of the problem is modeled simply by letting xj be the

machine assigned to job j . For the scheduling component, a number of well-studied
global constraints are available. The simplest is a disjunctive scheduling constraint,
which might be written disjunctive .ft1; : : : ; tng/, where tj is the start time of
job j . The constraint requires that start times be set so that each job runs inside its
time window and starts after the previous job finishes. The time window of each job
j is enforced by setting the domain of each xj to the interval Œrj ; dj � pj �, where
pj is the processing time of job j . Filtering algorithms for the constraint use edge
finding and other methods to reduce the domains of the tj s [7].

One would like to write a model for the assignment and scheduling problem that
uses disjunctive constraints:

linear

0
B@min

X
j

cxj j

rj � tj � dj � pxj j ; all j

1
CA

disjunctive
�ftj j xj D ig� ; all i

tj 2 R; xj 2 f1; : : : ; mg; all j (57)

Each disjunctive constraint schedules the jobs on one of the machines. The
difficulty is that the disjunctive constraints are not well defined until the values
of the xj s are known, because the variable list in the constraints depends on the xj s.
In principle, an enhanced disjunctive constraint could be designed to filter
the tj and xj domains simultaneously, but there is apparently no such enhanced
constraint in current systems.

By introducing decomposition into the model, however, one can retain the
disjunctive constraints. One approach is to define a global constraint that spec-
ifies a subproblem in which the values of certain variables are assumed to be known.
The constraint could be written

subproblem.X; C1; : : : ; Ck/

to enforce constraints C1; : : : ; Ck after the values of the variables in set X are fixed.
The model (57) can be written

linear

0
@min

X
j

cxjj

1
A

subproblem

0
B@
fx1; : : : ; xng;
disjunctive

�ftj j xj D ig� ; all i ,

linear
�
rj � tj � dj � pxjj ; all j

�
1
CA

tj 2 R; xj 2 f1; : : : ; mg; all j (58)

Hybrid Modeling 55

The variables xj function as constants inside the subproblem, which means that the
disjunctive constraints are well defined. Also the time window constraints set
the variable domains to ranges appropriate for the assigned machine.

The solver may be able to exploit the decomposition structure that is identified in
the model. In this case, it might use a Benders method, because the outer problem
and the subproblem use disjoint sets of variables (the xj s and the tj s, respectively).
The disjunctive constraint would be associated with an algorithm that gener-
ates a logic-based Benders cut. The cut is added to the main problem, which is then
re-solved. For example, if the scheduling problem on machine i is infeasible, the
disjunctive filter may discover that a small subset J of the jobs assigned to
machine i are responsible for the infeasibility. Then, a Benders cut

W
j2J .xj ¤ i/

can be added to the constraint set outside the subproblem. This constraint set is
then re-solved to obtain new trial values of the xi s, and so on until an optimal
solution is obtained. This process has been used in a number of contexts (e.g.,
[12, 24, 25, 27, 30]) and is discussed further in Chapter “Decomposition Techniques
for Hybrid MILP/CP Models Applied to Scheduling and Routing Problems”.

An important generalization of disjunctive scheduling is cumulative scheduling,
which allows tasks to be run simultaneously subject to one or more resource con-
straints. Each task consumes each resource at a certain rate, and there is a limit on
the total rate of consumption–a limit that may vary with time. Several versions of
the cumulative global constraint exist for this situation, and logic-based Ben-
ders cuts have been developed for some of them as well as for the disjunctive
constraint. Although filtering technology for disjunctive and cumulative
is highly developed [7], it may be useful to generate MILP formulations or linear
relaxations that are not based on MILP models [26].

6.11 Decomposition: Routing and Frequency Assignment

A final example, adapted from [52], illustrates decomposition in a more complex
setting. The arcs of a directed network represent optical fibers with limited capacity
(Fig. 9). There are requests for communication channels to be established between
certain pairs of nodes. The channels must be routed over the network, and they
must be assigned frequencies so that all the channels passing along any given arc
have different frequencies. There are a limited number of frequencies available, and
it may not be possible to establish all the channels requested. The objective is to
maximize the number of channels established.

The problem can be decomposed into its routing and frequency-assignment ele-
ments. The routing problem is amenable to an MILP formulation, and the frequency
assignment problem is conveniently written with alldiff constraints–provided
that a subproblem constraint is used to fix the flows before the frequency assign-
ment problem is stated.

The routing problem is similar to the well-known multi-commodity network
flow problem. This problem generalizes the capacitated network flow problem dis-
cussed above by distinguishing several commodities that must be transported over
the network. There is a net supply of each commodity at each node, and the total

56 J.N. Hooker

Fig. 9 A message routing and frequency assignment problem. Two message channels are re-
quested from i to j and one from i 0 to j 0. The arcs have capacity 2, and frequencies A, B are
available. The dashed lines show an optimal solution

flow on each arc must be within the arc capacity. In the message routing problem,
each origin-destination pair represents a different commodity.

The message routing problem is not identical to the multicommodity flow prob-
lem because the net supplies are not fixed due to the fact that some requests may not
be satisfied. As a result, one would not be able to use a global constraint designed
for multicommodity flow problems, even if one existed. Nonetheless, it is fairly easy
to write the MILP constraints directly.

For each pair of nodes .i; j /, let Dij be the number of i -to-j channels requested
(possibly zero). A key decision is which requests to honor, and one can therefore
let integer variable yij be the number of channels from i to j that are actually
established. (It is assumed here that different channels from i to j can be routed
differently.) The net supply of commodity .i; j / is yij at node i , �yij at node j ,
and zero at other nodes. Let xijk` be the flow of commodity .i; j / on arc .k; `/, and
Ck` the capacity of the arc. To simplify notation, arcs missing from the network can
be viewed as arcs with a capacity of zero. The flow model is

linear

0
BBBBBBBBBBBBBBBBBBBBBBB@

max
X

ij

yij

X
`¤i

xiji` �
X
k¤i

xijki D yij; all i; j

X
`¤j

xijj` �
X
k¤i

xijkj D �yij; all i; j

X
`¤i;j;k

xijk` �
X

`¤i;j;k

xij`k D 0; all i; j; k with k ¤ i; j

X
ij

xijk` � Ck`; all k; `

xijk` � 0; all i; j; k; `

0 � yij � Dij; all i; j

1
CCCCCCCCCCCCCCCCCCCCCCCA

xijk`; yij 2 Z; all i; j; k; `

Hybrid Modeling 57

Once the communications channels are routed, a frequency fij can be assigned
to each pair i; j so that the frequencies assigned to channels passing through any
given arc are all different. The model is therefore completed by writing

subproblem

 ˚
xijk`; all i; j; k; `

�
;

alldiff
�ffij j xijk` > 0g� ; all k; `

!

fij 2 F; all i; j with i ¤ j

where F is the set of available frequencies.

7 Conclusions

A scheme for integrating CP and MILP modeling styles has been proposed, in
which structured sets of MILP inequalities appear as global constraints alongside
the global constraints of CP. It remains to assess, however, whether a scheme of this
sort can deliver the advantages of both CP and MILP modeling in a single frame-
work.

It has already been argued that the full computational resources of both CP and
MILP are available in an integrated setting, where they can also be combined for
greater effect. CP-style global constraints continue to appear in the model whenever
they provide the best modeling approach, and they can be subjected to any filtering
or propagation methods available to a CP solver. MILP relaxation technology can
also be brought to bear, even in cases where it would not be applied in a commercial
MILP solver, because structured sets of inequalities are identified. Even when con-
straints are not written in inequality form, the integrated solver can generate MILP
translations when they are useful. This results in an MILP-based relaxation that is as
effective as any obtained from a conventional MILP model, provided certain tech-
nical issues are handled correctly. Global constraints can be given linear relaxations
that are not based on an MILP model and therefore cannot be used in MILP solvers.
Beyond this, the potential of integrated problem solving can be tapped, because CP
filtering and MILP relaxations are mutually reinforcing.

The key advantages of CP-based modeling are the power of the modeling lan-
guage, the relative conciseness and naturalness of its formulations, and their ability
to reveal problem structure to the solver. These advantages are clearly retained, and
again enhanced, because the lexicon of global constraints is increased to encompass
structural ideas from MILP.

The key advantages of MILP modeling–apart from its ability to harness MILP
relaxation technology, which is retained–are its reliance on a small set of primitives
(linear inequalities) and the relative independence of model and solution method.
Integrated modeling obviously sacrifices the first advantage, because it relies on a
sizable collection of global constraints. Yet it must be asked whether this is actually
a sacrifice.

58 J.N. Hooker

The difficulty in using global constraints is presumably that one must be familiar
with a large number of them to be able to write a model. Yet one frequently writes
an MILP model, or at least important parts of it, by identifying such patterns as
flow balances, fixed charges, packing or covering constraints, and so forth, and then
reducing them to inequality form. One must therefore be familiar with a number
of modeling ideas in any case. Integrated modeling only spares one the labor (and
errors) of writing micro-constraints that can be generated automatically. Moreover,
a well-organized list of constraints can alert the modeler to patterns that might oth-
erwise have been overlooked in the problem. It can provide a vocabulary that helps
one to learn and distinguish modeling ideas, much as a technical vocabulary assists
learning in any field.

Global constraints seem to be proliferating day by day, but new constraints tend
to be variations on old ones. A well-known global constraints catalog [9] lists 313
constraints, but on close examination, one can identify about thirty basic modeling
ideas among these, of which the other constraints are variations and extensions. A
good modeling system can organize constraints along various dimensions, so that
one can generally find what one needs, much as one finds the relevant function in a
spreadsheet.

Independence of model and method presents a more serious challenge to in-
tegrated modeling, and the matter deserves careful examination. It should be ac-
knowledged at the outset, however, that the issue is not independence of model
and method, because no modeling language achieves it, but independence of model
and solver. Good MILP modelers know that one must think about the solution
method when writing a model. The constraints must be chosen to result in a tight re-
laxation, the variables chosen to allow effective branching, redundant constraints
added, symmetry considered, special ordered sets used when applicable, and so
forth. Nonetheless, MILP does achieve independence of model and solver (with
the possible exception of special ordered sets), because a given MILP model will
run on almost any solver.

Reliance on global constraints undeniably links the model with the solver, be-
cause different solvers offer different libraries of constraints. The library of available
constraints grows as solvers advance, and the best way to write a model evolves ac-
cordingly. Static collections of models used for benchmarking software, such as
MIPLIB, are an impossibility, because the formulations must change with the solu-
tion technology to take full advantage of the software.

Independence of model and solver is frequently discussed as though it was an un-
mitigated advantage, when in fact it has both positive and negative aspects. A fixed
modeling language provides the convenience of being able to run a model on any
solver, but that very characteristic blocks progress in solution technology. Integrated
methods, for example, can sometimes yield orders of magnitude in computational
speedup, but only if one is willing to move beyond traditional MILP modeling.

As for benchmarking, a standard set of MILP models allows one to compare
a wide variety of solvers, but at the cost of restricting one’s attention to certain
kinds of solvers. Benchmarking sets can equally well consist of problem statements
(as opposed to models), so that one can reformulate the problems as necessary for

Hybrid Modeling 59

new solvers. This allows one to monitor progress in modeling practices as well as
algorithms. Some popular benchmarking libraries, such as MIPLIB, contain models
for which the underlying problems are actually unknown, which means that they
cannot be reformulated. This practice does not seem optimal for progress in either
modeling or solution technology.

In summary, integrated modeling forgoes the convenience of solver indepen-
dence, but it compensates with more convenient modeling and a wider repertory
of solution methods. Even the inconvenience of incompatible solvers may fade over
time, because software vendors will have an incentive to converge toward a univer-
sal set of global constraints. They may want to satisfy as many customers as possible
by implementing all the global constraints they prefer to use.

The discussion here has focused on CP and MILP, but integrated modeling can in
principle be broadened to encompass nonlinear constraints, local search heuristics
and other AI-based search procedures, stochastic models and methods, and even
simulation. Ideally, a single modeling system would allow one to write problem
formulations to which the solver can apply any combination of methods that might
be effective.

References

1. Achterberg T, Berthold T, Koch T, Wolter K (2008) A new approach to integrate CP and MIP.
In: Perron L, Trick MA (eds) Proceedings of the international workshop on integration of
artificial intelligence and operations research techniques in constraint programming for combi-
natorial optimization problems (CPAIOR 2008). Lecture notes in computer science, vol 5015.
Springer, Berlin, pp 6–20

2. Ajili F, Wallace M (2004) Hybrid problem solving in ECLiPSe. In: Milano M (ed) Constraint
and integer programming: toward a unified methodology. Kluwer, Dordrecht, pp 169–206

3. Althaus E, Bockmayr A, Elf M, Kasper T, Jünger M, Mehlhorn K (2002) SCIL–Symbolic
constraints in integer linear programming. In: 10th European symposium on Algorithms (ESA
2002). Lecture notes in computer science, vol 2461. Springer, New York, pp 75–87

4. Apt K, Wallace M (2006) Constraint logic programming using ECLiPSe. Cambridge Univer-
sity Press, Cambridge

5. Aron I, Hooker JN, Yunes TH (2004) SIMPL: a system for integrating optimization techniques.
In: Régin JC, Rueher M (eds) Integration of AI and OR techniques in constraint programming
for combinatorial optimization problems (CPAIOR 2004). Lecture notes in computer science,
vol 3011. Springer, Berlin, pp 21–36

6. Balas E, Fischetti M (2002) Polyhedral theory for the asymmetric traveling salesman problem.
In: Gutin G, Punnen AP (eds) The traveling salesman problem and its variations. Kluwer,
Dordrecht, pp 117–168

7. Baptiste P, Pape CL, Nuijten W (2001) Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems. Kluwer, Dordrecht

8. Beldiceanu N (2001) Pruning for the minimum constraint family and for the number of distinct
values constraint family. In: Walsh T (ed) Principles and practice of constraint programming
(CP 2001). Lecture notes in computer science, vol 2239. Springer, London, pp 211–224

9. Beldiceanu N, Carlsson M, Rampon JX (2009) Global constraint catalog. http://www.emn.fr/
x-info/sdemasse/gccat/

10. Beldiceanu N, Contejean E (1994) Introducing global constraints in CHIP. Math Comput
Model 12:97–123

http://www.emn.fr/x-info/sdemasse/gccat/
http://www.emn.fr/x-info/sdemasse/gccat/

60 J.N. Hooker

11. Bessière C, Hebrard E, Hnich B, Kiziltan Z, Walsh T (2005) Filtering algorithms for the nvalue
constraint. In: Barták R, Milano M (eds) Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems (CPAIOR 2005). Lecture notes in com-
puter science, vol 3524. Springer, Berlin, pp 79–93

12. Bockmayr A, Pisaruk N (2003) Detecting infeasibility and generating cuts for mixed integer
programming using constraint progrmaming. In: Gendreau M, Pesant G, Rousseau LM (eds)
Proceedings of the international workshop on integration of artificial intelligence and opera-
tions research techniques in constraint programming for combintaorial optimization problems
(CPAIOR 2003). Montréal, Canada

13. Bourdais S, Galinier P, Pesant G (2003) Hibiscus: a constraint programming application to staff
scheduling in health care. In: Rossi F (ed) Principles and practice of constraint programming
(CP 2003). Lecture notes in computer science, vol 2833. Springer, Berlin, pp 153–167

14. Caseau Y, Laburthe F (1997) Solving small TSPs with constraints. In: Naish L (ed) Proceed-
ings, fourteenth international conference on logic programming (ICLP 1997), vol 2833. MIT,
Cambridge, pp 316–330

15. Cheadle AM, Harvey W, Sadler AJ, Schimpf J, Shen K, Wallace MG (2003) ECLiPSe: a tuto-
rial introduction. Technical Report IC-Parc-03-1, IC-Park, Imperial College London

16. Cheng BMW, Lee JHM, Wu JCK (1996) Speeding up constraint propagation by redundant
modeling. In: Freuder EC (ed) Principles and practice of constraint programming (CP 1996).
Lecture notes in computer science, vol 1118. Springer, Berlin, pp 91–103

17. Colombani Y, Heipcke S (2002) Mosel: an extensible environment for modeling and program-
ming solutions. In: Jussien N, Laburthe F (eds) Proceedings of the international workshop
on integration of artificial intelligence and operations research techniques in constraint pro-
gramming for combinatorial optimization problems (CPAIOR 2002). Le Croisic, France, pp
277–290

18. Colombani Y, Heipcke S (2004) Mosel: an overview. white paper, DASH Optimization
19. Guéret C, Heipcke S, Prins C, Sevaux M (2000) Applications of optimization with Xpress-MP.

White paper, Dash Optimization
20. Hellsten L, Pesant G, van Beek P (2004) A domain consistency algorithm for the stretch

constraint. In: Wallace M (ed) Principles and practice of constraint programming (CP 2004).
Lecture notes in computer science, vol 3258. Springer, Berlin, pp 290–304

21. Hentenryck PV, Michel L (2005) Constraint based local search. MIT, Cambridge
22. Hentenryck PV, Michel L, Perron L, Régin JC (1999) Constraint programming in OPL. In:

International conference on principles and practice of declarative programming (PPDP 1999).
Paris

23. van Hoeve WJ, Pesant G, Rousseau LM, Sabharwal A (2006) Revisiting the sequence con-
straint. In: Benhamou F (ed) Principles and practice of constraint programming (CP 2006).
Lecture notes in computer science, vol 4204. Springer, Berlin, pp 620–634

24. Hooker JN (2000) Logic-based methods for optimization: combining optimization and con-
straint satisfaction. Wiley, New York

25. Hooker JN (2004) A hybrid method for planning and scheduling. In: Wallace M (ed) Principles
and practice of constraint programming (CP 2004). Lecture notes in computer science, vol
3258. Springer, Berlin, pp 305–316

26. Hooker JN (2007) Integrated methods for optimization. Springer, Heidelberg
27. Hooker JN (2007) Planning and scheduling by logic-based Benders decomposition. Oper Res

55:588–602
28. Hooker JN (2009) A principled approach to mixed integer/linear problem formulation. In:

Chinneck JW, Kristjansson B, Saltzman M (eds) Operations research and cyber-infrastructure
(ICS 2009 proceedings). Springer, Berlin, pp 79–100

29. Hooker JN, Kim HJ, Ottosson G (2001) A declarative modeling framework that integrates
solution methods. Ann Oper Res 104:141–161

30. Jain V, Grossmann IE (2001) Algorithms for hybrid MILP/CP models for a class of optimiza-
tion problems. INFORMS J Comput 13:258–276

31. Jeroslow RG (1987) Representability in mixed integer programming, I: characterization results.
Discrete Appl Math 17:223–243

Hybrid Modeling 61

32. Kaya LG, Hooker JN (2006) A filter for the circuit constraint. In: Benhamou F (ed) Principles
and practice of constraint programming (CP 2006). Lecture notes in computer science, vol
4204. Springer, Berlin, pp 706–710

33. Kaya LG, Hooker JN (2008) The circuit polytope. Manuscript, Carnegie Mellon University
34. Keha AB, de Farias IR, Nemhauser GL (2004) Models for representing piecewise linear cost

functions. Oper Res Lett 32:44–48
35. Kruk S (2009) Some facets of multiple alldifferent predicate. In: Belotti P (ed) Workshop on

bound reduction techniques for constraint programming and mixed-integer nonlinear program-
ming, at CPAIOR

36. Li HL, Lu HC, Huang CH, Hu NZ (2009) A superior representation method for piecewise
linear functions. INFORMS J Comput 21:314–321

37. Magos D, Mourtos I, Appa G (2008) A polyhedral approach to the alldifferent system. Tech-
nical report, Technological Educational Institute of Athens

38. Maher MJ, Narodytska N, Quimper CG, Walsh T (2008) Flow-based propagators for the
SEQUENCE and related global constraints. In: Stuckey PJ (ed) Principles and practice of
constraint programming (CP 2008). Lecture notes in computer science, vol 5202. Springer,
Heidelberg, pp 159–174

39. Marchand H, Martin A, Weismantel R, Wolsey L (2002) Cutting planes in integer and mixed
integer programming. Discrete Appl Math 123:397–446

40. Michel L, Hentenryck PV (1999) Localizer: a modeling language for local search. INFORMS
J Comput 11:1–14

41. Nethercote N, Stuckey PJ, Becket R, Brand S, Duck GJ, Tack G (2007) Minizinc: towards
a standard CP modelling language. In: Bessière C (ed) Principles and practice of constraint
programming (CP 2007). Lecture notes in computer science, vol 4741. Springer, Heidelberg,
pp 529–543

42. Orman AJ, Williams HP (2006) A survey of different integer programming formulations of the
travelling salesman problem. In: Kontoghiorghes EJ, Gatu C (eds) Optimisation, economics
and financial analysis, advances in computational management science. Springer, Berlin, pp
933–106

43. Ottosson G, Thorsteinsson E, Hooker JN (2002) Mixed global constraints and inference in
hybrid CLP-IP solvers. Ann Math Artif Intell 34:271–290

44. Padberg M (2000) Approximating separable nonlinear functions via mixed zero-one programs.
Oper Res Lett 27:1–5

45. Pesant G (2001) A filtering algorithm for the stretch constraint. In: Walsh T (ed) Principles and
practice of constraint programming (CP 2001). Lecture notes in computer science, vol 2239.
Springer, Berlin, pp 183–195

46. Pesant G (2004) A regular language membership constraint for finite sequences of variables.
In: Wallace M (ed) Principles and practice of constraint programming (CP 2004). Lecture notes
in computer science, vol 3258. Springer, Berlin, pp 482–495

47. Quimper CG, López-Ortiz A, van Beek P, Golynski A (2004) Improved algorithms for the
global cardinality constraint. In: Wallace M (ed) Principles and practice of constraint program-
ming (CP 2004). Lecture notes in computer science, vol 3258. Springer, Berlin, pp 542–556

48. Régin JC (1996) Generalized arc consistency for global cardinality constraint. In: National
conference on artificial intelligence (AAAI 1996). AAAI, Portland, pp 209–215

49. Régin JC (2004) Modeling problems in constraint programming. In: Tutorial presented at
conference on Principles and Practice of constraint programming (CP 2004). Toronto

50. Rodošek R, Wallace M, Hajian M (1999) A new approach to integrating mixed integer pro-
gramming and constraint logic programming. Ann Oper Res 86:63–87

51. Sherali HD (2001) On mixed-integer zero-one representations for separable lower-semi-
continuous piecewise-linear functions. Oper Res Lett 28:155–160

52. Simonis H (2009) Modelling in CP: tutorial presented at CPAIOR 2009. http://4c.ucc.ie/
hsimonis/slidescpaior.pdf

53. Stuckey PJ, de la Banda MG, Maher M, Marriott K, Slaney J, Somogyi Z, Wallace M, Walsh T
(2005) The G12 project: mapping solver independent models to efficient solutions. In: van
Beek P (ed) Principles and practice of constraint programming (CP 2005). Lecture notes in
computer science, vol 3668. Springer, Berlin, pp 314–327

http://4c.ucc.ie/hsimonis/slidescpaior.pdf
http://4c.ucc.ie/hsimonis/slidescpaior.pdf

62 J.N. Hooker

54. Tawarmalani M, Sahinidis NV (2002) Convexification and global optimization in continu-
ous and mixed-integer nonlinear programming: theory, algorithms, software, and applications.
Springer, Berlin

55. Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear pro-
grams: a theoretical and computational study. Math Program 99:563–591

56. Vielma JP, Nemhauser GL (2008) Modeling disjunctive constraints with a logarithmic number
of binary variables and constraints. In: Integer programming and combintorial optimization
proceedings (IPCO 2008). Lecture notes in computer science, vol 5035, pp 199–213

57. Williams HP (1999) Model building in mathematical programming, 4th edn. Wiley, New York
58. Williams HP (2006) The formulation and solution of discrete optimization models. In: Appa G,

Pitsoulis L, Williams HP (eds) Handbook on modelling for discrete optimization. Springer,
Berlin, pp 3–38

59. Williams HP (2009) Logic and integer programming. Springer, Berlin
60. Williams HP, Brailsford SC (1997) The splitting of variables and constraints in the formulation

of integer programming models. Eur J Oper Res 100:623–628
61. Williams HP, Yan H (2001) Representations of the all different predicate of constraint satis-

faction in integer programming. INFORMS J Comput 13:96–103
62. Yunes TH, Aron I, Hooker JN (2010) An integrated solver for optimization problems. Oper

Res 58:342–356

Global Constraints: A Survey

Jean-Charles Régin

Abstract Constraint programming (CP) is mainly based on filtering algorithms;
their association with global constraints is one of the main strengths of CP because
they exploit the specific structure of each constraint. This chapter is an overview
of these two techniques. A collection of the most frequently used global constraints
is given and some filtering algorithms are detailed. In addition, we try to identify
how filtering algorithms can be designed. At last, we identify some problems that
deserve to be addressed in the future.

1 Introduction

Constraint Programming (CP) is mainly based on the exploitation of the structure
of the constraints and CP accepts to have constraints whose structure are different.
This idea seems to be exploited only in CP: we do not want to loose the structure of
the constraints. Other techniques such as SAT or MIP impose to model the problem
while respecting some rules: having only boolean variables and 3 clauses for SAT,
or having only linear constraints for MIP.

This specificity of CP allows the use of any kind of algorithm for solving a prob-
lem. We could even say that we want to exploit as much as possible the capability
to use different algorithms. Currently, when a problem is modelled in CP, it is pos-
sible that a large variety of algorithms are used at the same time and communicate
with each other. It is really conceivable to have at the same time flow algorithms,
dynamic programming, automaton transformations, etc.

J.-C. Régin (�)
Université de Nice-Sophia Antipolis, I3S/CNRS, 2000, route des
Lucioles - Les Algorithmes - bt. Euclide B BP 121 - 06903 Sophia Antipolis, Cedex, France
e-mail: jcregin@gmail.com

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 3,
c� Springer Science+Business Media, LLC 2011

63

jcregin@gmail.com

64 J.-C. Régin

1.1 CP Principles

In CP, a problem is defined from variables and constraints. Each variable is associ-
ated with a domain containing its possible values. A constraint expresses properties
that have to be satisfied by a set of variables.

In CP, a problem can also be viewed as a conjunction of sub-problems for which
we have efficient resolution methods. These sub-problems can be very easy like
x < y or complex like the search for a feasible flow. These sub-problems corre-
spond to constraints. Then, CP uses for each sub-problem the available resolution
method associated with it in order to remove from the domains the values that can-
not belong to any solution of the sub-problem. This mechanism is called filtering.
By repeating this process for each sub-problem, so for each constraint, the domains
of the variables are going to be reduced.

After each modification of the variable domains, it is useful to reconsider all
the constraints involving this variable, because that modification can lead to new
deductions. In other words, the domain reduction of one variable may lead to deduce
that some other values of some other variables cannot belong to a solution and so
on. This mechanism is called propagation.

Then, and in order to reach a solution, the search space will be traversed by
assigning successively a value to each variable. The filtering and propagation
mechanisms are, of course, triggered when a modification occurs. Sometimes, an
assignment may lead to the removal of all the values of a domain : we say that a
failure occurs, and the latest choice is reconsidered: there is a backtrack and a new
assignment is tried. This mechanism is called the search.

So, CP is based on three principles : filtering, propagation and search. We could
represent it by reformulating the famous Kowalski’s definition of Algorithm
(AlgorithmD LogicC Control) [78] as:

CP D filteringC propagationC search (1)

where filtering and propagation correspond to Logic and Search to Control.

1.2 Global Constraints

One of the most interesting properties of a filtering algorithm is arc consistency. We
say that a filtering algorithm associated with a constraint establishes arc consistency
if it removes all the values of the variables involved in the constraint that are not
consistent with the constraint. For instance, consider the constraint x C 3 D y with
the domain of x equals to D.x/ D f1; 3; 4; 5g and the domain of y equal to D.y/ D
f4; 5; 8g. Then, the establishing of arc consistency will lead to D.x/ D f1; 5g and
D.y/ D f4; 8g.

Since constraint programming is based on filtering algorithms, it is quite impor-
tant to design efficient and powerful algorithms. Therefore, this topic caught the
attention of many researchers, who discovered a large number of algorithms.

Global Constraints: A Survey 65

As we mentioned it, a filtering algorithm directly depends on the constraint it
is associated with. The advantage of using the structure of a constraint can be em-
phasized on the constraint x � y. Let min.D/ and max.D/ be, respectively, the
minimum and the maximum value of a domain. It is straightforward to establish
that all the values of x and y in the range Œmin.D.x//; max.D.y//� are consistent
with the constraint. This means that arc consistency can be efficiently and easily
established by removing the values that are not in the above ranges. Moreover, the
use of the structure is often the only way to avoid memory consumption problems
when dealing with non-binary constraints. In fact, this approach prevents you from
explicitly representing all the combinations of values allowed by the constraint.

Thus, researchers interested in the resolution of real life applications with con-
straint programming, and notably those developing languages that encapsulate CP
(like PROLOG), designed specific filtering algorithms for the most common sim-
ple constraints (like D;¤; <;�; : : :). They also developed general frameworks to
exploit efficiently some knowledge about binary constraints (like AC-5 [150]). How-
ever, they have been confronted with two new problems: the lack of expressiveness
of these simple constraints and the weakness of domain reduction of the filtering
algorithms associated with these simple constraints. It is, indeed, quite convenient
when modelling a problem in CP to have at one’s disposal some constraints corre-
sponding to a set of constraints. Moreover, these new constraints can be associated
with more powerful filtering algorithms because they can take into account the si-
multaneous presence of simple constraints to further reduce the domains of the
variables. These constraints encapsulating a set of other constraints are called global
constraints.

Initially, global constraints were defined as a set of constraints having the same
type for which an efficient algorithm were known. Then, this latter point has been
relaxed.

One of the most famous examples is the ALLDIFF constraint, especially because
the filtering algorithm associated with this constraint is able to establish arc consis-
tency in a very efficient way.

An ALLDIFF constraint defined on X , a set of variables, states that the values
taken by variables must be all different. This constraint can be represented by a set of
binary constraints. In this case, a binary constraint of difference is built for each pair
of variables belonging to the same constraint of difference. But the pruning effect
of arc consistency for these constraints is limited. In fact, for a binary ALLDIFF

constraint between two variables i and j , arc-consistency removes a value from
domain of i only when the domain of j is reduced to a single value. Let us suppose
we have a CSP with 3 variables x1, x2, x3 and an ALLDIFF constraint involving
these variables with D.x1/ D fa; bg, D.x2/ D fa; bg and D.x3/ D fa; b; cg.
Establishing arc consistency for this ALLDIFF constraint removes the values a and b

from the domain of x3, while arc-consistency for the ALLDIFF represented by binary
constraints of difference does not delete any value. We will see later that the filtering
algorithm associated with a global constraint is stronger than the conjunction of the
independent filtering algorithms of the local constraints corresponding to the global
constraint.

66 J.-C. Régin

Mo Tu We Th . . .
peter D N O M
paul D B M N
mary N O D D
. . .

AD fM,D,N,B,Og, PD fpeter, paul, mary, . . . g
WD fMo, Tu, We, Th, . . . g

M: morning, D: day, N: night B: backup, O: day-off

Fig. 1 An assignment
timetable

We can further emphasize the advantage of global constraints on a more realistic
example that involves global cardinality constraints (GCC).

A GCC is specified in terms of a set of variables X Dfx1; : : : ; xpg which take
their values in a subset of V Dfv1; : : : ; vd g. It constrains the number of times a
value vi 2V is assigned to a variable in X to be in an interval Œli ; ui �. GCCs arise
in many real life problems. For instance, consider the example derived from a
real problem and given in [37] (cf. Fig. 1). The task is to schedule managers for a
directory-assistance center, with five activities (set A), seven persons (set P) over
seven days (set W). Each day, a person can perform an activity from the set A. The
goal is to produce an assignment matrix that satisfies the following global and local
constraints:

� General constraints restrict the assignments. First, for each day we have a min-
imum and maximum number for each activity. Second, for each week, a person
has a minimum and maximum number for each activity. Thus, for each row and
each column of the assignment matrix, there is a global cardinality constraint.

� Local constraints mainly indicate incompatibilities between two consecu-
tive days. For instance, a morning schedule cannot be assigned after a night
schedule.

Each general constraint can be represented by as many min/max constraints as
the number of involved activities. Now, these min/max constraints can be easily
handled with, for instance, the atmost/atleast operators proposed in [149]. Such
operators are implemented using local propagation. But as noted in [37]: “The prob-
lem is that efficient resolution of a timetable problem requires a global computation
on the set of min/max constraints, and not the efficient implementation of each of
them separately.” Hence, this way is not satisfactory. Therefore, global cardinality
constraints associated with efficient filtering algorithms (like ones establishing arc
consistency) are needed.

In order to show the difference in global and local filtering, consider a GCC asso-
ciated with a day (cf Fig. 2). The constraint can be represented by a bipartite graph
called a value graph (left graph in Fig. 2). The left set corresponds to the person set,
the right set to the activity set. There exists an edge between a person and an activity
when the person can perform the activity. For each activity, the numbers between
parentheses express the minimum and the maximum number of times the activity
has to be assigned. For instance, John can work in the morning or in the day but

Global Constraints: A Survey 67

Fig. 2 An example of a
global cardinality constraint
(GCC)

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

O (0,2)

not in the night; one manager is required to work in the morning, and at most two
managers work in the morning. We recall that each person has to be associated with
exactly one activity.

Encoding the problem with a set of atmost/atleast constraints leads to no deletion.
Now, we can carefully study this constraint. Peter, Paul, Mary, and John can work
only in the morning and during the day. Moreover, morning and day can be assigned
together to at most four persons. Thus, no other persons (i.e. Bob, Mike, nor Julia)
can perform activities M and D. So we can delete the edges between Bob, Mike,
Julia and D, M. Now, only one possibility remains for Bob: N, which can be assigned
at most once. Therefore, we can delete fmike,Ng and fjulia,Ng edges. This reasoning
leads to the right graph in Fig. 2. It corresponds to the establishing of arc consistency
for the global constraint.

Filtering is a local mechanism because it is associated to each constraint inde-
pendently. If a constraint is decomposed into some other constraints, then the set
of filtering are less efficient because they have less information. We can formally
emphasize this idea by the following property:

Property 1. The establishing of arc consistency on CD^fC1; C2; : : : ; Cng, the
conjunction of the constraints C1; C 2; : : : Cn is stronger (that is, cannot re-
move fewer values) than the establishing of arc consistency of the network
.[C2CX.C /;DX.C/; fC1; C2; : : : ; Cng/.
Proof. The set of tuples of C D ^fC1; C2; : : : ; Cng corresponds to the set of so-
lution of .[C2CX.C /;DX.C/; fC1; C2; : : : ; Cng/. Therefore, the establishing of arc
consistency of ^fC1; C2; : : : ; Cng removes all the values that do not belong to a
solution of .[C2CX.C /;DX.C/; fC1; C2; : : : ; Cng/ which is stronger than the arc
consistency of the previous network. ut

Therefore, arc consistency on global constraints is a strong property. The follow-
ing proposition is an example of the gap between arc consistency for a global con-
straint and arc consistency for the network corresponding to this global constraint.

Property 2. Arc Consistency for CDALLDIFF.X/ corresponds to the arc consis-
tency of a Constraint Network with an exponential number of constraints defined by:
8A � X : jD.A/j D jAj) D.X�A/ is reduced to D.X/�D.A/, where D.A/

is the union of domain variable of A.

68 J.-C. Régin

Proof. Hall’s theorem states that an assignment problem in the bipartite graph G D
.X; Y; E/ has a solution covering X if and only if 8A � X jAj � j� .A/j. In
addition, we can easily prove that if there is A � X such that jAj D j� .A/j, then
no element of X � A can be assigned to an element of � .A/. Thus, by defining
for each subset A of X the constraint jD.A/j D jAj) D.X � A/ is reduced to
D.X/ �D.A/, we establish arc consistency of the constraint. ut

However, in practice, it is possible to observe results that are not so marked. We
can emphasize this idea on the following graph colouring problem: choose colours
for the nodes of a graph so that adjacent nodes are not the same color. The kind of
graph that we will colour is one with n� .nC1/=2 nodes, where n is odd and where
every node belongs to exactly two maximal cliques of size n.

For example, for nD 5, there is a graph consisting of the following maximal
cliques:

c0Df0; 1; 2; 3; 4g; c1Df0; 5; 6; 7; 8g; c2Df1; 5; 9; 10; 11g;
c3Df2; 6; 9; 12; 13g, c4Df3; 7; 10; 12; 14g; c5Df4; 8; 11; 13; 14g

The minimum number of colours needed for this graph is n since there is a clique
of size n. Consequently, our problem is to find out whether there is a way to color
such a graph in n colours.

We compare the results obtained with the ALLDIFF constraint and without it (that
is only binary constraints of difference are used). Times are expressed in seconds:

Clique size
27 31 51 61
#fails time #fails time #fails time #fails time

binary 6D 1 0.17 65 0.37 24512 66.5 ? >6 h

ALLDIFF 0 1.2 4 2.2 501 25.9 5 58.2

These results show that using global constraints establishing arc consistency is
not systematically worthwhile when the size of the problem is small, even if the
number of backtracks is reduced. However, when the size of problem is increased,
efficient filtering algorithms are needed.

Thus, we can recapitulate some strong advantages of global constraints:

� Expressiveness: it is more convenient to define one constraint corresponding to a
set of constraints than to define independently each constraint of this set.

� Powerful filtering algorithms can be designed because the set of constraints can
be taken into account as a whole. Specific filtering algorithms make it possible
to use Operations Research techniques or graph theory.

A lot of global constraints have been developed. Simonis proposed the first state
of the art [141], Régin wrote a book chapter about them [117], Beldiceanu defined
a catalogue [9] which tries to be exhaustive and van Hoeve and Katriel gave a re-
cent presentation of some of them [63]. In this chapter, we try to present the most
important ones by considering the number of applications, the number of references

Global Constraints: A Survey 69

or the number of papers that are dedicated to them. We do not claim that we are
totally objective, because we also speak about the constraints we know the best.

This chapter is organized as follows. First, we recall some preliminaries about
Constraint Programming. Then, we present a general arc consistency algorithm,
and we recall the complexity of table constraints. We also explain how flow can
be computed and detailed some flow properties that are useful to build filtering al-
gorithms. Then, we propose a collection of global constraints based on the constraint
type. For most of them, we explain the ideas on which the filtering algorithms are
based. Next, we consider the designs of filtering algorithm and we try to identify
some general principles. Before concluding, we look at some problems that deserve
to be addressed in the future.

2 Preliminaries and Notations

A finite constraint network N is defined as a set of n variables X D fx1; : : : ; xng,
a set of current domains D D fD.x1/; : : : ; D.xn/g where D.xi / is the finite set of
possible values for variable xi , and a set C of constraints between variables. We
denote by D0 D fD0.x1/; : : : ; D0.xn/g the set of initial domains of N . Indeed, we
consider that any constraint network N can be associated with an initial domain D0

(containing D), on which constraint definitions were stated.
A constraint C on the ordered set of variables X.C / D .x1; : : : ; xr / is a subset

T .C / of the Cartesian product D0.x1/ � 	 	 	 � D0.xr / that specifies the allowed
combinations of values for the variables x1; : : : ; xr . An element of D0.x1/ � 	 	 	 �
D0.xr / is called a tuple on X.C /. jX.C /j is the arity of C .

We will use the following notations:

� .x; a/ denotes the value a of the variable x

� var.C; i/ represents the i th variable of X.C /

� index.C; x/ is the position of variable x in X.C /

� �Œk� denotes the kth value of the tuple �

� �Œx� represents �Œindex.C; x/� when no confusion is possible
� D.X/ denotes the union of domains of variables of X (i.e. D.X/ D [x2X D.x/)
� #.a; �/ is the number of occurrences of the value a in the tuple �

Let C be a constraint. Here are some definitions:

� A tuple � on X.C / is valid if 8.x; a/ 2 �; a 2 D.x/.
� C is consistent if there exists a tuple � of T .C / which is valid.
� A tuple � of T .C / involving .x; a/ (that is with a D �Œindex.C; x/�) is called a

support for .x; a/ on C .
� A value a2D.x/ is consistent with C if x 62X.C / or there exists a valid support

for .x; a/ on C (i.e. a valid tuple � with .x; a/ 2 �).
� A constraint is arc consistent if 8x 2 X.C /; D.x/ ¤ ; and 8a 2 D.x/, a is

consistent with C.

70 J.-C. Régin

A filtering algorithm associated with a constraint C is an algorithm which re-
moves some values that are inconsistent with C ; and that does not remove any
consistent values. If the filtering algorithm removes all the values inconsistent with
C , we say that it establishes the arc consistency of C , or that C is domain consistent.

The propagation is the mechanism that consists of calling the filtering algorithm
associated with the constraints involving a variable x each time the domain of this
variable is modified. Note that if the domains of the variables are finite, then this
process terminates because a domain can be modified only a finite number of times.

We introduce a theorem that will be useful in this chapter. This theorem is based
on hypergraph and is due to [67]. Unfortunately, we were not able to find the orig-
inal paper. Thus, we propose to reformulate it in a simpler form which is easier to
understand.

First, we recall the definition of Bipartite Constraint Graph introduced by
Jegou [68].

Definition 1 (Jegou). Let C be a set of constraints. The bipartite constraint
graph of C is the bipartite graph BCG.C/ D .XB ; YB ; EB/ where XB , YB are
node sets and EB an edge set defined as follows:

� Each constraint C 2 C is associated with a node yi

� XB D [C2CX.C /

� YB D fyi s.t. Ci is associated with yi g
� EB D ffxi ; yj g s.t. xi 2 XB ; yj 2 YB and xi 2 X.Cj /g

Then, we have the expected theorem

Theorem 1 (Janssen and Villarem). Let C be a set of constraints. If the bipar-
tite constraint graph of C has no cycle, then establishing arc consistency for the
constraint network N D .[C2CX.C /;DX.C/; C/ is equivalent to establish arc con-
sistency for the constraint defined by the conjunction of the constraints of C that is
^fC1; C2; : : : ; Cng.
Proof. Clearly, if a value .x; a/ is consistent with ^fC1; C2; : : : ; Cng, then it is also
consistent with N. On the other hand, the bipartite constraint graph of N has no cy-
cle, and therefore, two constraints have at most one variable in common and so C can
be represented by disjoint paths, each one of the form C1; x1; C2; x2; : : : ; xm�1; Cm

where xi are variables and Ci constraints of C and for each constraint Ci , i D
1 : : : .m � 1/: X.Ci / \ X.CiC1/ D fxig and for each pair of constraints Ci and
Cj : jX.Ci/ \ X.Cj /j � 1 and C1 may only share a variable with C2 and Cm may
only share a variable with Cm�1. If a value .xi ; a/ of this path is consistent with
the two constraints in which it can be involved, then it is straightforward to extend
its support to a complete assignment of all the variables and so .xi ; a/ is consistent
with the conjunction of constraints ^fC1; C2; : : : ; Cng ut

We have an immediate useful corollary

Corollary 1. Let C be a constraint and .X.C /;DX.C /; fC1; : : : ; Cmg/ be a con-
straint network equivalent to C . If the bipartite constraint graph of the constraint
set of this network has no cycle, then establishing arc consistency of C is equivalent
to establish arc consistency of the constraint network.

Global Constraints: A Survey 71

3 Global Constraints Collection

We can identify at least five different categories of global constraints:

� Classical Constraints. This category contains all usual constraints, such as
ALLDIFF, GCC, REGULAR, SEQUENCE, PATH, etc.

� Weighted Constraints. This category contains constraints which are associated
with some costs, such as the cardinality with cost (COST-GCC), the SHORTER

PATH, the KNAPSACK, BIN-PACKING, etc. Usually, a summation is implied and
there is a limit on it. A lot of NP-Hard constraint are in this category. The name
of these constraints often contains “weighted”, “cost based”, “with cost”, etc.

� Soft Constraints. This category contains the relaxation of classical or weighted
constraints when they cannot be satisfied. In general, the soft version of a con-
straint involves an additional cost variable which measures the distance to the
satisfaction. Formally, these constraints have been introduced by Petit et al. [101],
and the well known local search based language Comet is mainly based on these
constraints [151].

� Constraints on Global Variables. This category contains the constraints that are
not defined on classical variable, but rather on set variables or on graph vari-
ables. Set variables have been proposed independently by Gervet [55] and Puget
[103]. Régin implemented global constraints on set variables in ILOG Solver
[120]. The HDR thesis of Gervet [57] contains a lot of interesting ideas and
is certainly the best reference on this topic. Some information can be found
in [56, 58, 128, 129, 153].

� Open Constraints. This category is new and has been proposed by van Hoeve and
Régin [63]. The idea is to define constraint on set of variables that are not close
at the definition. More precisely, we do not know exactly the variables that will
be involved in the constraint: we only know that some variables are involved and
that some others could be involved. van Hoeve and Régin presented an efficient
AC filtering algorithm for some open global cardinality constraints and extended
this result to conjunctions of them, in case they are defined on disjoint sets of
variables.1 Maher studied some variations of the model proposed by van Hoeve
and Régin [89].

In this chapter, we consider only constraints belonging to the two first categories:
the classical and weighted constraints.

1 van Hoeve and Régin gave an example of a scheduling alternative: consider a set of activities
and suppose that each activity can be processed either on the factory line 1 formed by the set of
unary resources R1, or on the factory line 2 formed by the set of unary resources R2. Thus, at
the beginning, the set of resources that will be used by an activity is not known. Also the set of
activities that will be processed by a resource is not known. However, it is useful to express that
the activities that will be processed on each line must be pairwise different. This can be done by
defining two ALLDIFF constraints, involving the start variables of each activity, and by stating that
a start variable will be involved in exactly one ALLDIFF constraint. van Hoeve and Régin showed
how arc consistency can be efficiently establish for the conjunction of these 2 alldiff constraints.

72 J.-C. Régin

We can identify two main groups among these constraints: the constraints that
are mainly defined by their functions and the constraints that are defined by the
underlined technique they use. This latter group corresponds to Formal Language
based Constraints, which mainly contains REGULAR and GRAMMAR constraints,
whereas the former group contains several types of constraints:

� Solution based Constraints. It mainly contains constraints that are defined from
any problem P and TABLE constraints.

� Counting Constraints. It mainly contains: ALLDIFF, PERMUTATION, global car-
dinality (GCC), global cardinality with cost (COST-GCC) and cardinality matrix
constraints (CARD-MATRIX).

� Balancing Constraints. It mainly contains: BALANCE, DEVIATION and SPREAD

constraints.
� Constraint Combination based Constraints. It mainly contains: MAX-SAT, OR

and AND constraints.
� Sequencing Constraints. It mainly contains: AMONG, SEQUENCE, generalized

sequence (GEN-SEQUENCE), and global sequencing constraints (GSC).
� Distance Constraints. It mainly contains: INTER-DISTANCE and sum of inequal-

ities constraints (SUM-INEQ).
� Geometric Constraints. It mainly contains: DIFF-N constraints.
� Summation based Constraints. It mainly contains: SUBSET-SUM and KNAPSACK

constraints.
� Packing Constraints. It mainly contains: symmetric alldiff (SYM-ALLDIFF),

STRETCH, K-DIFF, number of distinct value (NVALUE), and BIN-PACKING con-
straints.

� Graph based Constraints. It mainly contains: CYCLE, PATH, TREE, and weighted
spanning tree (WST) constraints.

� Order based Constraints. It mainly contains: lexicographic (LEXICO�) and SORT

constraints.

First, we will consider individually each type of these constraints and then we
will study the formal language based constraints.

3.1 Solution Based Constraints

Often when we are solving a real problem, the various simple models that we come
up with cannot be solved within a reasonable period of time. In such a case, we may
consider a sub-problem of the original problem, say P . Then, we build a global
constraint that is the conjunction of the constraints involved in that sub-problem.

The main issue is to define an efficient filtering algorithm associated with P . This
task can be difficult. There are several ways to try to solve it, and we will discuss
this question in Sect. 4 of this chapter. However, we will focus our attention here on
two possibilities:

� A generic algorithm is used.
� Or all the solutions of P are enumerated and a Table constraint is used.

Global Constraints: A Survey 73

3.1.1 Generic Constraint (GENERIC)

Suppose that you are provided with a function, denoted by EXISTSOLUTION(P),
which is able to know whether a particular problem P D .X; C;D/ has a solu-
tion or not. In this section, we present two general filtering algorithms establishing
arc consistency for the constraint corresponding to P , that is the global constraint
C.P / D ^C.

These filtering algorithms correspond to particular instantiations of a more gen-
eral algorithm: GAC-Schema [29].

For convenience, we denote by PxDa the problem P in which the domain of X

is restricted to a, in other words PxDa D .X; C [fx D ag;D/.
Establishing arc consistency on C.P / is done by looking for supports for the

values of the variables in X . A support for a value .x; a/ on C.P / can be searched by
using any search procedure since a support for .x; a/ is a solution of problem PxDa.

A First Algorithm

A simple algorithm consists of calling the function EXISTSOLUTION with PxDa as
a parameter for every value a of every variable x involved in P , and then to remove
the value a of x when EXISTSOLUTION.PxDa/ has no solution. Algorithm 1 is a
possible implementation.

This algorithm is quite simple but it is not efficient because each time a value
will be removed, the existence of a solution for all the possible assignments needs
to be recomputed.

If O.P / is the complexity of function EXISTSOLUTION.P / then we can recapit-
ulate the complexity of this algorithm as follows:

Consistency checking Establishing arc consistency

Best Worst Best Worst

From scratch ˝.P / O.P / nd �˝.P / nd �O.P /

After k Modifications k �˝.P / k �O.P / knd �˝.P / knd �O.P /

Algorithm 1: Simple general filtering algorithm establishing arc consistency
SIMPLEGENERALFILTERINGALGORITHM(C.P /: constraint; deletionSet: list): Bool
for each x 2 X do

for each a 2 D.x/ do
if: EXISTSOLUTION.PxDa/ then

remove a from D.x/

if D.x/ D ; then return False
add .x; a/ to deletionSet

return True

74 J.-C. Régin

A Better General Algorithm

This section shows how a better general algorithm establishing arc consistency can
be designed provided that function EXISTSOLUTION.P / returns a solution when
there is one instead of being Boolean.

First, consider that a value .x; a/ has been removed from D.x/. We must study
the consequences of this deletion. So, for all the values .y; b/ that were supported by
a tuple containing .x; a/ another support must be found. The list of the tuples con-
taining .x; a/ and supporting a value is the list SC.x; a/; and the values supported
by a tuple � is given by S.�/.

Therefore, Line 1 of Algorithm 2 enumerates all the tuples in the SC list and Line
2 enumerates all the values supported by a tuple. Then, the algorithm tries to find a
new support for these values either by “inferring” new ones (Line 3) or by explicitly
calling function EXISTSOLUTION (Line 4).

Here is an example of this algorithm: Consider X D fx1; x2; x3g and 8x 2 X;

D.x/ D fa; bg; and T .C.P // D f.a; a; a/; .a; b; b/; .b; b; a/; .b; b; b/g (i.e. these
are the possible solutions of P .)

Algorithm 2: function GENERALFILTERINGALGORITHM

GENERALFILTERINGALGORITHM(C.P /: constraint; x: variable; a: value, deletionSet:
list): Bool
// SC.x; a/: list of tuples supported by .x; a/

// S.�/ : list of values supported by the tuple �

// this function studies the consequence of the deletion of the value a of D.x/

for each � 2 SC.x; a/ do1
for each .z; c/ 2 � do remove � from SC.z; c/

for each .y; b/ 2 S.�/ do2
// .x; a/ was the valid support of .y; b/

remove .y; b/ from S.�/

if b 2 D.y/ then
// we search for another valid support for .y; b/

// first by inference
� SEEKINFERABLESUPPORT.y; b/3
if � ¤ nil then add .y; b/ to S.�/

else
// second we explicitly check if P has a solution when y D b

� EXISTSOLUTION.PyDb/4
if � ¤ nil then

// a valid support is found
add .y; b/ to S.�/

for k = 1 to jX.C/j do add � to SC.var.C.P /; k/; �Œk�/
else

// there is no valid support : b is deleted from D.y/

remove b from D.y/

if D.y/ D ; then return False
add .y; b/ to deletionSet

return True

Global Constraints: A Survey 75

First, a support for .x1; a/ is sought: .a; a; a/ is computed and .a; a; a/ is added
to SC.x2; a/ and SC.x3; a/, .x1; a/ in .a; a; a/ is added to S..a; a; a//. Second, a
support for .x2; a/ is sought: .a; a; a/ is in SC.x2; a/ and it is valid, therefore it is a
support. There is no need to compute another solution.

Then, a support is sought all the other values. Now, suppose that value a is re-
moved from x2, then all the tuples in SC.x2; a/ are no longer valid: .a; a; a/ for
instance. The validity of the values supported by this tuple must be reconsidered,
that is the ones belonging to S..a; a; a//, so a new support for .x1; a/ must be
sought and so on.

The programme which aims to establish arc consistency for C.P / must
create and initialize the data structures (SC; S), and call function GENERAL-
FILTERINGALGORITHM.C.P /; x; a; deletionSet/ (see Algorithm 2) each time a
value a is removed from a variable x involved in C.P /, in order to propagate the
consequences of this deletion. deletionSet is updated to contain the deleted values
not yet propagated. SC and S must be initialized in a way such that:

� SC.x; a/ contains all the allowed tuples � that are the current support for some
value, and such that �Œindex.C.P /; x/� D a.

� S.�/ contains all values for which � is the current support.

Function SEEKINFERABLESUPPORT of GENERALFILTERINGALGORITHM

“infers” an already checked allowed tuple as support for .y; b/ if possible, in
order to ensure that it never looks for a support for a value when a tuple supporting
this value has already been checked. The idea is to exploit the property: “If .y; b/

belongs to a tuple supporting another value, then this tuple also supports .y; b/”.
Therefore, elements in SC.y; b/ are good candidates to be a new support for .y; b/.
Algorithm 3 is a possible implementation of this function.

The complexity of the GENERALFILTERINGALGORITHM is given in the
following table:

Consistency checking Establishing Arc consistency

best worst best worst

From scratch ˝.P / O.P / nd �˝.P / nd �O.P /

After k modifications ˝.1/ k �O.P / nd �˝.P / knd �O.P /

Moreover, the space complexity of this algorithm is O.n2d/, where d is the size
of the largest domain and n is the number of variables involved in the constraint.

Algorithm 3: function SEEKINFERABLESUPPORT

SEEKINFERABLESUPPORT.y: variable, b: value/: tuple
// we search whether .y; b/ belong to a valid tuple supporting another value
while SC.y; b/ ¤ ; do

� first.SC.y; b//

if � is valid then return � /* � is a support */
else remove � from SC.y; b/

return nil

76 J.-C. Régin

This space complexity depends on the number of tuples needed to support all the
values. Since there are nd values and only one tuple is required per value, we obtain
the above complexity.

3.1.2 Table Constraint (TABLE)

A TABLE constraint is a constraint defined explicitly by the list of allowed tuples
or by the list of forbidden tuples. This constraint is one of the most useful con-
straints. GAC-Schema or one of its recent variations [54, 76, 85, 87] can be used for
establishing arc consistency.

We would like to emphasize the complexity of such an algorithm because we
will reuse it several times in this chapter. Consider for instance a TABLE constraint
involving r variables and a tuple set containing T elements. For every value a of
every variable x, we can define T .x; a/ the subset of T containing the tuples in-
volving .x; a/. For a given variable x, all these lists are disjoint and the sum of their
size is bounded by jT j. Searching for a valid support for .x; a/ is equivalent to find
a valid tuple in T .x; a/. We can use a method which do not repeat several time the
same validity check of an element of T .x; a/. Therefore, all the searches for a valid
support for .x; a/ can be done with at most jT .x; a/j validity checks. So, for one
variable, the overall cost for all the values in the domain is r jT j, where r is the cost
of one validity check because the T .x; a/ sets are disjoint. We can amortize the cost
of validity checks: if we discover that a tuple is no longer valid, then we can remove
it from each of the set T .x; a/ for each value .x; a/ it contains. This does not cost
more than checking the validity of the tuple once. However, this means that globally
a tuple can be checked unvalid only once, so globally the cost of all checks is in
O.r jT j/. This number is also the maximum number of time the support of a value
of x can be no longer valid. Therefore, the time complexity for establishing arc
consistency and for maintaining it for one branch of the tree search is in O.r jT j/:
Proposition 1. Let C be a TABLE constraint involving r variables and defined by
the set T of allowed tuples. The time complexity for establishing arc consistency for
C and for maintaining it for one branch of the tree search is in O.r jT j/.

3.2 Counting Constraints

Counting constraints ensure rules defined on the number of times values are taken
in any solution. These constraints express conditions that are strongly related to
assignment problems that can be solved by the flow theory. Therefore, we suggest
to consider first the Flow theory and then to present the counting constraints and
the way their filtering algorithms are based on flow theory. This presentation also
clearly shows how OR algorithms can be integrated into CP.

Global Constraints: A Survey 77

3.2.1 Flow Theory

Preliminaries

The definitions about graph theory come from [146]. The definitions, theorems and
algorithms about flow are based on [2, 26, 82, 146].

A directed graph or digraph G D .X; U / consists of a node set X and an
arc set U , where every arc .u; v/ is an ordered pair of distinct nodes. We denote by
X.G/ the node set of G and by U.G/ the arc set of G.

A path from node v1 to node vk in G is a list of nodes Œv1; : : : ; vk� such that
.vi ; viC1/ is an arc for i 2 Œ1 : : : k � 1�. The path contains node vi for i 2 Œ1 : : : k�

and arc .vi ; viC1/ for i 2 Œ1 : : : k�1�. The path is simple if all its nodes are distinct.
The path is a cycle if k > 1 and v1 D vk .

If fu; vg is an edge of a graph, then we say that u and v are the ends or the
extremities of the edge. A matching M on a graph is a set of edges and no two of
which have a common node. The size jM j of M is the number of edges it contains.
The maximum matching problem is that of finding a matching of maximum size.
M covers X when every node of X is an endpoint of some edge in M .

Let G be a graph for which each arc .i;j / is associated with two integers lij and
uij , respectively, called the lower bound capacity and the upper bound capacity
of the arc.

A flow in G is a function f satisfying the following two conditions:

� For any arc .i; j /, fij represents the amount of some commodity that can “flow”
through the arc. Such a flow is permitted only in the indicated direction of the
arc, i.e., from i to j . For convenience, we assume fij D 0 if .i;j / 62 U.G/.

� A conservation law is observed at each node: 8j 2 X.G/ WPi fij DPk fjk .

We will consider two problems of flow theory:

� The feasible flow problem: Does there exist a flow in G that satisfies the capac-
ity constraint? That is, find f such that 8.i; j / 2 U.G/ lij � fij � uij .

� The problem of the maximum flow for an arc .i; j /: Find a feasible flow in G

for which the value of fij is maximum.

Without loss of generality (see p. 45 and p. 297 in [2]), and to overcome notation
difficulties, we will consider that:

� If .i; j / is an arc of G, then .j; i/ is not an arc of G.
� All boundaries of capacities are non-negative integers.

In fact, if all the upper bounds and all the lower bounds are integers and if there
exists a feasible flow, then for any arc .i; j / there exists a maximum flow from j

to i which is integral on every arc in G (See [82] p. 113.)

Flow Computation

Consider, for instance, that all the lower bounds are equal to zero and suppose that
you want to increase the flow value for an arc .i;j /. In this case, the flow of zero

78 J.-C. Régin

on all arcs, called the zero flow, is a feasible flow. Let P be a path from j to i

different from Œj; i �, and val D min.fuij g [fupq s.t. .p; q/ 2 P g/. Then, we can
define the function f on the arcs of G such that fpq D val if P contains .p; q/

or .p; q/ D .i; j / and fpq D 0 otherwise. This function is a flow in G. (The
conservation law is obviously satisfied because .i; j / and P form a cycle.) We have
fij > 0, hence it is easy to improve the flow of an arc when all the lower bounds
are zero and when we start from the zero flow. It is, indeed, sufficient to find a path
satisfying the capacity constraint.

The main idea of the basic algorithms of flow theory is to proceed by successive
modifications of flows that are computed in a graph in which all the lower bounds
are zero and the current flow is the zero flow. This particular graph can be obtained
from any flow and is called the residual graph:

Definition 2. The residual graph for a given flow f , denoted by R.f /, is the di-
graph with the same node set as in G. The arc set of R.f / is defined as follows:
8.i; j / 2 U.G/:

� fij < uij , .i; j / 2 U.R.f // and upper bound capacity rij D uij � fij .
� fij > lij , .j; i/ 2 U.R.f // and upper bound capacity rj i D fij � lij .

All the lower bound capacities are equal to 0.

Figures 3 and 4 are examples of flow and residual graph of the example given in
Fig. 2.

Instead of working with the original graph G, we can work with the residual
graph R.f o/ for some f o. From f 0 a flow in R.f o/, we can obtain f another flow
in G defined by:8.i; j / 2 U.G/ W fij D f o

ij Cf 0ij �f 0j i . And from a path in R.f o/

we can define a flow f 0 in R.f o/ and so a flow in G:

orientation

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

2
2

0

1

1

Fig. 3 A flow from s to t . For convenience, the arc .t; s/ is omitted. All arcs have a minimum
capacity of 0 and a maximum capacity of 1, excepted the outgoing arcs from s where the capacities
are given in parenthesis. For instance, the arc .s; D/ has a minimum capacity equals to 1 and a
maximum equals to 2

Global Constraints: A Survey 79

Orientation : bold edge
thin edge

peter

paul

mary

john

bob

mike

julia

M (1,2)

D (1,2)

N (1,1)

B (0,2)

t s

O (0,2)

Fig. 4 The residual graph for the flow given in Fig. 3. For convenience, the arc .t; s/ and .s; t / are
omitted. All arcs have a minimum capacity of 0 and a maximum capacity of 1

Definition 3. We will say that f is obtained from f o by sending k units of flow
along a path P from j to i if:

� P is a path in R.f o/ � f.j; i/g
� k � min.frij g [fruvs:t:.u; v/ 2 P g/
� f corresponds in R.f o/ to the flow f 0 defined by:

 f 0pq D k for each arc .p; q/ 2 P [f.i; j /g

 f 0pq D 0 for all other arcs.

If k is not mentioned, it will be assumed that k D min.frij g [fruvs:t:.u; v/ 2 P g/:
In the previous definition, the path must be different from Œj; i �, otherwise f 0 will
be the zero flow.

The following proposition shows that the existence of a path in the residual graph
is a necessary and sufficient condition:

Theorem 1. Let f o be any feasible flow in G, and .i; j / be an arc of G.

� There is a feasible flow f in G with fij > f o
ij if and only if there exists a path

from j to i in R.f o/� f.j; i/g.
� There is a feasible flow f in G with fij < f o

ij if and only if there exists a path
from i to j in R.f o/� f.i; j /g.

Proof. see [82] p. 112. ut

Maximum Flow Algorithm

Theorem 1 gives a way to construct a maximum flow in an arc .i; j / by iterative
improvement, due to Ford and Fulkerson:

Begin with any feasible flow f 0 and look for a path from j to i in R.f 0/ �
f.j; i/g. If there is none, f 0 is maximum. If, on the other hand, we find such a
path P , then define f 1 obtained from f 0 by sending flow along P . Now, look for a

80 J.-C. Régin

path from j to i in R.f 1/� f.j; i/g and repeat this process. When there is no such
path for f k , then f k is a maximum flow.

A path can be found in O.m/, thus we have2:

Property 3. A maximum flow of value v in an arc .i; j / can be found from a feasible
flow in O.mv/.

Feasible flow algorithm

For establishing a feasible flow, several methods exist. For instance, it is possible to
transform this problem into one in which all the lower bounds capacities are equal
to zero and searching for a particular maximum flow value for one arc. (See [2]
p. 169.) However, there is a simple method which repeatedly searchs for maximum
flows in some arcs:

Start with the zero flow f o. This flow satisfies the upper bounds. Set f D f o,
and apply the following process while the flow is not feasible:

(1) pick an arc .i; j / such that fij violates the lower bound capacity in G

(i.e. fij < lij).
(2) Find P a path from j to i in R.f /� f.j; i/g.
(3) Obtain f 0 from f by sending flow along P ; set f D f 0 and goto .1/

If, at some point, there is no path for the current flow, then a feasible flow does not
exist. Otherwise, the obtained flow is feasible.

Property 4. Let kij be the infeasibility number w.r.t. the zero flow of each
arc .i; j / in G. We can find a feasible flow in G or prove there is none in
O.m

P
.i;j /2U.G/ kij /.

Flow Properties

The most interesting property for us is a Corollary of Theorem 1.

Corollary 2. Let f o be any feasible flow in G, and .i; j / be an arc of G. The flow
value fij is constant for any feasible flow f if and only if:

� There is no path from j to i in R.f o/ � f.j; i/g.
� There is no path from i to j in R.f o/ � f.i; j /g.

We will also consider a specific case which is useful for our purpose:

Corollary 3. Let f o be any feasible flow in G, and .i; j / be an arc of G with
f o

ij D 0. The flow value fij is equal to 0 for any feasible flow f if and only if i and
j belong to two different strongly connected components of R.f o/.

2 This complexity comes from the integer capacities. In this case, the flow is augmented by at least
one for each iteration.

Global Constraints: A Survey 81

The search for strongly connected components can be done in O.mCnCd/ [146].
The advantage of this proposition is that all the arcs .i; j / with a constant 0 flow
value can be identified by only one identification of the strongly connected compo-
nents in R.f o/.

This corollary is used in the following way: suppose that i represents a variable
and j a value of i . Now, if the constraint is equivalent to the search of a feasible
flow in a graph where .i; j / is an arc if j belongs to D.i/, then the corollary gives
us a necessary and sufficient condition to determine when .i; j / is consistent with
the constraint.

This is exactly the reasoning used for the global cardinality constraint as we will
see later in this chapter.

3.2.2 Alldiff and Permutation Constraints (ALLDIFF, PERMUTATION)

The ALLDIFF constraint constrains the values taken by a set of variables to be pair-
wise different. The PERMUTATION constraint is an ALLDIFF constraint in which
jD.X.C //j D jX.C /j.

Definition 4. An alldiff constraint is a constraint C defined by

ALLDIFF.X/ D f� s.t. � is a tuple on X.C / and 8ai 2 D.X.C // W #.ai ; �/ � 1g
This constraint is used in a lot of real world problems such as rostering or re-

source allocation. It is quite useful to express that two things cannot be at the same
place at the same moment.

A filtering algorithm establishing arc consistency for the ALLDIFF is given in
[110]. Its complexity is in O.m/ with m D P

x2X jD.x/j, after the computation
of the consistency of the constraint which requires O.

p
nm/. When the domains

of the variables are intervals, [93] proposed a filtering algorithm establishing bound
consistency with a complexity which is asymptotically the same as for sorting the
internal endpoints. If the interval endpoints are from an integer range of size O.nk/

for some constant k, the algorithm runs in linear time. Therefore, Melhorn’s al-
gorithm is linear for a permutation constraint. Lopes et al. [88] have designed an
original and simple algorithm having the same complexity. A comparison between
several algorithms is available in [144].

On the other hand, [84] has proposed an algorithm which considers that the do-
mains are intervals, but which can create “holes” in the domain, that is the resulting
domain will be union of intervals. His filtering algorithm is in O.n2d/.

In the original paper, Régin’s filtering algorithm is based on matching theory, but
we can also use the flow theory in order to obtain almost the same algorithm. We
will not describe this algorithm here, because we prefer to detail a more general con-
straint : the global cardinality constraint. From this constraint, we can immediately
obtain a filtering algorithm for the ALLDIFF constraint.

82 J.-C. Régin

3.2.3 Global Cardinality Constraint (GCC)

A global cardinality constraint (GCC) constrains the number of times every value can
be taken by a set of variables. This is certainly one of the most useful constraints
in practice. Note that the ALLDIFF constraint corresponds to a GCC in which every
value can be taken at most once.

Definition 5. A global cardinality constraint is a constraint C in which each value
ai 2 D.X.C // is associated with two positive integers li and ui with li � ui

defined by

GCC.X; l; u/ D f� s.t. � is a tuple on X.C /

and 8ai 2 D.X.C // W li � #.ai ; �/ � uig
This constraint is present in almost all rostering or car-sequencing problems.
A filtering algorithm establishing arc consistency for this constraint has been pro-

posed by Régin [112]. The consistency of the constraint can be checked in O.nm/

and the arc consistency can be computed in O.m/ providing that a maximum flow
has been defined. Two other algorithms establishing bound consistency for this con-
straint have been developed by Quimper et al. [105] and Katriel et al. [74]. The first
one is original whereas the second is an adaptation of Régin’s algorithm [112].

We propose to describe Régin’s algorithm here.
This algorithm is mainly based on the following observation: a GCC C is

consistent if there is a flow in a directed graph N.C / called the value network
of C [112]:

Definition 6. Given C D gcc.X; l; u/ a GCC; the value network of C is the di-
rected graph N.C / with lower bound capacity and upper bound capacity on each
arc. N.C / is obtained from the value graph GV.C /, by:

� Orienting each edge of GV.C / from values to variables. For such an arc .u; v/:
luv D 0 and uuv D 1.

� Adding a node s and an arc from s to each value. For such an arc .s; ai /: lsai
D li ,

usai
D ui .

� Adding a node t and an arc from each variable to t . For such an arc .x; t/: lxt D
1, uxt D 1.

� Adding an arc .t; s/ with lts D uts D jX.C /j.
Figures 3 and 4 are examples of flow and residual graph of the example of the GCC

given in Fig. 2.

Proposition 2. Let C be a GCC and N.C / be the value network of C ; the following
two properties are equivalent:

� C is consistent.
� There is a feasible flow in N.C /.

Global Constraints: A Survey 83

Proof. sketch of proof: We can easily check that each tuple of T .C / corresponds
to a flow in N.C / and conversely. ut

From Corollary 3, we immediately have:

Proposition 3. Let C be a consistent GCC and f be a feasible flow in N.C /. A
value a of a variable x is not consistent with C if and only if fax D 0 and a and x

do not belong to the same strongly connected component in R.f /.

For our problem, a feasible flow can be computed in O.nm/, therefore, we have
the same complexity for the check of the constraint consistency. Moreover, flow
algorithms are incremental.

The search for strongly connected components can be done in O.m C n C d/

[146], thus a good complexity for computing arc consistency for a GCC is obtained.

Corollary 4. Let C be a consistent GCC and f be a feasible flow in N.C /. Arc
consistency for C can be established in O.mC nC d/.

Here is a recapitulation of the complexities:

Consistency Arc consistency

From scratch O.nm/ O.mC nC d/

After k modifications O.km/ O.mC nC d/

3.2.4 Cardinality Matrix Constraint (CARD-MATRIX)

This constraint has been proposed by Régin and Gomes [123].
Cardinality matrix problems are the underlying structure of several real world

problems such as rostering, sports scheduling , and timetabling. These are hard com-
putational problems given their inherent combinatorial structure. The cardinality
matrix constraint takes advantage of the intrinsic structure of the cardinality matrix
problems. It uses a global cardinality constraint per row and per column and one
cardinality (0,1)-matrix constraint per symbol. This latter constraint corresponds to
solving a special case of a network flow problem, the transportation problem, which
effectively captures the interactions between rows, columns, and symbols of cardi-
nality matrix problems.

In order to show the advantage of this constraint, consider a restricted form of
the cardinality matrix problems: the alldiff matrix problem [59]. In this case, each
value has to be assigned at most once in each row and each column. The alldiff
matrix characterizes the structure of several real world problems, such as design
of scientific experiments or fiber optics routing. Consider the following example: a
6 � 6 matrix has to be filled with numbers ranging from 1 to 6 (this is a latin square
problem). A classical model in CP consists of defining one variable per cell, each

84 J.-C. Régin

variable can take a value from 1 to 6, and one ALLDIFF constraint per row and one
ALLDIFF constraint per column. Now, consider the following situation:

1 2
2 1
3 4
4 5

In this case, the ALLDIFF constraints are only able to deduce that:

� only values 5 and 6 can be assigned to cells .5; 3/ and .6; 3/

� only values 3 and 6 can be assigned to cells .5; 4/ and .6; 4/.

However, with a careful study, we can see that the value 6 will be assigned either
to .5; 3/ and .6; 4/ or to .5; 4/ and .6; 3/, which means that the other columns of
rows 5 and 6 cannot take these values and therefore we can remove the value 6 from
the domains of the corresponding variables (the ones with a
 in the figure). The
cardinality (0,1)-matrix automatically performs these inferences.

Definition 7. A cardinality matrix constraint is a constraint C defined on a Matrix
M D xŒi; j � of variable s taking their values in a set V , and on two sets of cardinal-
ity variables rowCardŒi; j � and colCardŒi; j � and

CARD-MATRIX.M; V; rowCard; colCard/ D f� s.t. � is a tuple on X.C /

and 8ak 2 V;8i 2 Row.M / W #.ak; vars.i;�; M // D rowCardŒi; k�

and 8ak 2 V;8j 2 Col.M / W #.ak ; vars.�; j; M // D colCardŒj; k�g
If the matrix is form only by (0,1)-variable, then we say that we have a (0,1)-matrix.

Régin and Gomes proposed an AC filtering algorithm for matrix variables of the
card-(0,1)-Matrix constraint by a similar method to the one used for GCCs[123].
A similar constraint, althrough expressed in a quite different way, with the same
kind of algorithm to establish arc consistency, is given in [77].

Experimental results have shown that the CARD-MATRIX constraint outperforms
standard constraint based formulations of cardinality matrix problems.

3.2.5 Global Cardinality Constraint with Costs (COST-GCC)

A global cardinality constraint with costs (COST-GCC) is the conjunction of a GCC

constraint and a sum constraint:

Definition 8. A cost function on a variable set X is a function which associates
with each value .x; a/, x 2 X and a 2 D.x/ an integer denoted by cost.x; a/.

Global Constraints: A Survey 85

Definition 9. A global cardinality constraint with costs is a constraint C asso-
ciated with cost a cost function on X.C /, an integer H and in which each value
ai 2 D.X.C // is associated with two positive integers li and ui ; and defined by

COST-GCC.X; l; u; cost; H/ D f� s.t. � is a tuple on X.C /

and 8ai 2 D.X.C // W li � #.ai ; �/ � ui

and ˙
jX.C /j
iD1 cost.var.C; i/; �Œi �/ � H g

This constraint is used to model some preferences between assignments in re-
source allocation problems.
Note that there is no assumption made on the sign of costs.

The integration of costs within a constraint is quite important, especially to solve
optimization problems, because it improves back-propagation, which is due to the
modification of the objective variable. In other words, the domain of the variables
can be reduced when the objective variable is modified. Caseau and Laburthe [38]
have used an ALLDIFF constraint with costs, but only the consistency of the con-
straint has been checked, and no specific filtering has been used. The first given
filtering algorithm comes from [49] and [50], and is based on reduced cost. A filter-
ing algorithm establishing arc consistency has been given by Régin [114, 116]. The
consistency of this constraint can be checked by searching for a minimum cost flow
and arc consistency can be established in O.j�jS.m; nC d; 	// where j�j is the
number of values that are taken by a variable in a tuple, and where S.m; nCd; 	/ is
the complexity of the search for shortest paths from a node to every node in a graph
with m arcs and n nodes with a maximal cost 	 .

3.3 Balancing Constraints

Pesant and Régin introduced the notion of balancing constraints [100].
Many combinatorial problems require of their solutions that they achieve a cer-

tain balance of given features. Balance is often important in assignment problems or
in problems with an assignment component. We give a few examples. In assembly
line balancing, the workload of the line operators must be balanced. In rostering, we
may talk of fairness instead of balance because of the human factor. Here, we want
a fair distribution of weekends off or of night shifts among workers, for example.
In vehicle routing, one dimension of the problem is to partition the customers into
the different routes - balancing the number of customers served on each route, the
quantity of goods delivered, or the time required to complete the route may be of
interest.

We could describe the balance in the following way:

� The average value should be close to a given target, corresponding to the ideal
value

� There should be no outliers, as they would correspond to an unbalanced situation
� Values should be grouped around the average value

86 J.-C. Régin

Pesant and Régin claimed that statistics provide appropriate mathematical con-
cepts to express this, and they proposed the first constraints based on statistic: the
SPREAD constraint and bound consistency filtering algorithms associated with it.
Roughly, the SPREAD constraint is defined on a set of numerical variables and com-
bines the mean of these variables with the standard deviation. Schaus et al. noticed
that this idea can be generalized to the concept of Lp norm [131–133].

Definition 10. Let X D fx1; x2; : : : ; xng be a set of n variables, � be a variable,
L be a cost variable and the Lp.X; �/-norm defined as Lp.X; �/ D Œ

Pn
iD1 jxi �

�jp/�
1
p . The balance constraint is the constraint C defined on X , f�g and L, and

associated with a value of p such that C holds if and only if Lp.X; �/ D L andPn
iD1 xi D n� where the different norm are:

� L0 D jfx 2 X s.t. x ¤ � is the number of values different from the mean

� L1 DPx2X jx � �j is the sum of deviations from the mean

� L2 DPx2X .x � �/2 is the sum of square deviations from the mean

� L1 D maxx2X jx � �j is the maximum deviation from the mean it is denoted
by BALANCE.X; �; L; p/

Note that the balancing constraint considers simultaneously the two sums.
None of these balance criteria subsumes the others. For instance, the mini-

mization of L1 does not imply in general a minimization of criterion L2. This is
illustrated on the following example. Assume a constraint problem with four solu-
tions given in Fig. 5. The most balanced solution depends on the chosen norm. Each
solution exhibits a mean of 100 but each one optimizes a different norm. Choosing
the “best” criteria is an old question which has no definitive answer.

Pesant and Régin considered the case where p D 2 and named the constraint
SPREAD. They gave a bound consistency filtering algorithm for the X variables
in O.n2/. Note that the SPREAD constraint in its general form considers � and L

(i.e. �) as variables and not constants. Then, Schaus et al. proposed to simplify the
algorithm when � is a given constant [132]. They also derived some other filtering
algorithms for L, X and �. Having � as a constant is quite frequent in practice.
However, this is not always the case, for instance when X variables measures a

sol. num. solution L0 L1 L2 L1

1 100 100 100 100 30 170 2 140 9800 70
2 60 80 100 100 120 140 4 120 4000 40
3 70 70 90 110 130 130 6 140 3800 30
4 71 71 71 129 129 129 6 174 5046 29

Fig. 5 Illustration showing that no balance criterion defined by the norm L0, L1, L2 or L1

subsumes the others. The smallest norm is indicated in bold character. For example, solution 2 is
the most balanced according to L1

Global Constraints: A Survey 87

slack or an overflow, the ideal should be to have no overflow, so 0 for the mean, but
we do not have negative x, because it has no practical meaning (an underflow does
not compensate an overflow).

Next, Schaus et al. studied the DEVIATION constraint, that is the BALANCE

constraint with pD 1 [131]. They proposed efficient bound consistency filtering
algorithms (in O.n/) when considering the mean as a constant value. Further inves-
tigations and recent developments can be found in Schaus’s PhD thesis [130].

3.4 Constraint Combination Based Constraints

3.4.1 Max-SAT Constraint (MAX-SAT)

A lot of work have been carried out in order to improve the computation of min-
imization of the number of violated constraints in an over-constrained problem
(Max-CSP).

Several algorithms have been designed. First, Partial Forward Checking [51],
which has been improved by PFC-DAC [81,155], and then by PFC-MRDAC [80].3

The major drawback of these algorithms is that there are ad-hoc algorithms based
on a branch-and-bound procedure and they mainly consider only binary constraints.
Therefore, their integration into a CP Solver is not easy. Thus, Régin et al. have
proposed to define a constraint corresponding to this specific problem like any other
global constraint [124].

Definition 11. Let C D fCi ; i 2 f1; : : : ; mgg be a set of constraints, cost.C/ be a set
of cost variables associated with the constraints of C and unsat a variable. A Max-
SAT constraint is a constraint ssc.C; cost.C/; unsat/ defined by the conjunction of
the constraint

unsat D
X
C2C

cost.C /

and the set of disjunctive constraints

fŒ.C ^ .cost.C / D 0//_ .C ^ .cost.C / D 1//�; C 2 Cg

It is denoted by MAX-SAT.C/

Then, Régin et al. integrated some classical algorithms defined for solving
over-constrained problem as filtering algorithm of this global constraint. Let
P D .X; D; C/ be a constraint network.

3 This algorithm can be viewed as a generalization of the constructive disjunction in the case where
several constraints must be satisfied and not only one.

88 J.-C. Régin

Notation 1

� v�.P / is the number of violated constraint of P

� v.P / is any lower bound of v�.P /

� v�..x; a/; P / is the number of violated constraints of P when x D a

� v..x; a/; P / is any lower bound of v�..x; a/; P /

Definition 12. Two sub-problems Q1 D .X;D;K/ and Q2 D .X;D;L/ of P are
constraint disjoint if K \ L D ;
Theorem 2 (Régin et al.). Given P D .X;D; C/, a constraint network and Q et
set of sub-problems of P that are pairwise constraint disjoint then:

v�.P / �
X
Q2Q

v�.Q/ �
X
Q2Q

v.Q/

Then we have two corollaries:

Corollary 5. Let obj be a value. If
P

Q2Q v.Q/ > obj , then there is no solution
of P with v�.P / � obj .

Corollary 6. Let obj be a value and a be a value of a variable x involved in a sub-
problem Q of Q. If

P
R2.Q�Q/ v.R/C v..x; a/; Q/ > obj , then there is no solution

of P with v�..x; a/; P / � obj.

This corollary will permit to remove some inconsistent values.
The main issue is the computation of a set Q and the choice of v.Q/ for a given

problem Q.
Régin et al. noted that PFC-MRDAC algorithm proposes, in fact, to build the

set Q in the following way: we begin with the set of constraints K D C and we
order the variables (in any order). Then, we select the variable in that order. When a
variable x is selected, we take all the constraints of K involving x in order to create
a sub-problem denoted by Q.x/ and we remove from K these constraints before
considering the next variable.

From the specific construction of Q, we obtain a value of v.Q/ which is easy to
compute: since each sub-problem is defined from a variable x which is involved in
all the constraints of the sub-problem, we can compute for each value a of x the
number of constraints violated if x D a, and we define v.Q/ as the value having the
smallest number of violations. This information can be maintained efficiently.

Then, several improvements of this integration, and so also of PFC-MRDAC
algorithm, have been proposed notably to deal efficiently with interval variables
[102, 125]. At last, a new algorithm based on conflict set has been proposed [125].
A conflict set is a set of constraints which is inconsistent.

Some information about this constraint can also be found in Régin’s HDR
thesis [120].

Global Constraints: A Survey 89

3.4.2 Or and And Constraints (AND, OR)

Lhomme [86] studied the logical combination of constraints, sometimes called
meta-constraints because it noticed that although these constraints are extremely
useful for modelling problems, they have either poor filtering algorithms or are not
very efficient.

First, Lhomme considered the constraint OR.C1; C2/ which is satisfied if C1 is
satisfied or if C2 is satisfied. He showed that the constructive disjunction (See [152]
for more information) establishes arc consistency for this constraint, but construc-
tive disjunction is complex to implement and not very efficient. Hence, he proposed
another algorithm much more efficient. It is based on the following remarks:

� Let x be a variable involved in C1 and in C2. If we find a support for .x; a/ on C1,
then it is useless to search for a support for .x; a/ on C2 because .x; a/ satisfies
the disjunction (i.e. has a support on at least one constraint)

� It is useless to search for supports for variables of X.C2/ that are not in X.C1/,
because C1 can be true, and in this case, all the values of these variables are con-
sistent with the OR constraint. The same reasoning can be applied for variables
of X.C1/ that are not in X.C2/.

Therefore, Lhomme established the following Proposition:

Proposition 4. Let CD OR.C1; C2/ be the constraint equals to the disjunction be-
tween the constraint C1 and the constraint C 2. Then, C is arc consistent if and only
if the values of the variables of .X.C1/ \ X.C2// are consistent either with C1 or
with C2.

Lhomme also addressed the constraint equivalent to the conjunctions of two
constraints C1 and C2. We have already mentioned the difference between estab-
lishing arc consistency for the constraints taken separately and for the constraint
C D AND.C1; C2/. Lhomme proposed an algorithm based on the simultaneous
search for support for the variables involved in both constraints. Unfortunately, such
a search imposes the availability of some functions for each constraints which is
rarely the case. However, this is the case for TABLE constraints given in extension
and Lhomme gave an algorithm for them.

The principles given in this section can be easily generalized to combinations of
several constraints and not only two.

3.5 Sequencing Constraints

Sequencing constraints are useful in rostering or car sequencing problems to con-
strain the number of time some values are taken by any group of k consecutive
variables. For instance, they are used to model that on an assembly line, at most one
car over three consecutive cars can have a sun roof. They are based on a conjunction
of AMONG constraints, which are defined as follows.

90 J.-C. Régin

3.5.1 Among Constraint (AMONG)

Definition 13. Given X a set of variables, l and u two integers with l � u and V

a set of values. The among constraint ensures that at least l variables of X and at
most u will take a value in V , that is

AMONG.X; V; l; u/ D ft j t is a tuple of X and l �Pa2V #.a; �/ � ug
This constraint has been introduced in CHIP [17].
It is straightforward to design a filtering algorithm establishing arc consistency

for this constraint. For instance, we can associate with each variable xi of X a .0; 1/

variable yi defined as follows: yi D 1 if and only if xi D a with a 2 V . Then,
the constraint can be rewritten l � P

yi � u. Note that the AMONG constraint is
sometimes directly defined in that way, that is by involving only this set Y of .0; 1/

variables.
The SEQUENCE constraint is a conjunction of gliding AMONG constraints.

3.5.2 Sequence Constraint (SEQUENCE)

Definition 14. Given X a set of variables, q, l and u three integers with l � u and
V a set of values. The sequence constraint holds if and only if for 1 � i � nq C 1

AMONG.fxi ; : : : ; xiCq�1g; V; l; u/ holds. More precisely

SEQUENCE.X; V; q; l; u/ D f t j t is a tuple of X and for each sequence S

of q consecutive variables: l �Pv2V #.v; t; S/ � ug
This constraint has been introduced in CHIP [17].
Several filtering algorithms have been proposed for this constraint. First, it is pos-

sible to use only the set of overlapping AMONG constraints, but this does not lead to
efficient domain reductions. The CARD-PATH constraint of Beldiceanu and Carls-
son can also be used [10]. However, the filtering algorithm does not establish arc
consistency. Some pseudo polynomial algorithms for establishing arc consistency
have been designed. Bessiere et al. [27] gave a domain consistency propagator that
runs in O.nqdq/ time. van Hoeve et al. [64] proposed an encoding into a REGU-
LAR constraint which runs in O.n2q/ time. The first strongly polynomial algorithm
(in O.n3/) establishing arc consistency has been proposed by van Hoeve et al.
[64,65]. Then, several polynomial algorithms with different complexities have been
introduced by Brand et al. [33] and, at last, a very nice model leading to the best
filtering algorithm is described in [90]. We propose to describe quickly some of
these algorithms because it is rare to obtain several algorithms while using different
approaches, and this could be useful for some other constraints.

For the sake of clarity, we will use the two equivalent representations of the
AMONG constraint. The one using the X variable set and the other using the Y

variable set.
First, van Hoeve et al. [64] remarked that when l is equal to u then arc con-

sistency can be established in linear time. In this case, in any solution xi will be
equal to xiCq because for two among constraints we have yi C : : : yiCq�1 D l and

Global Constraints: A Survey 91

yiC1C : : : yiCq D l . So, by adding these new equality constraints and by using the
filtering algorithm associated with each AMONG constraint, arc consistency will be
established by the propagation mechanism.

Then, three strongly polynomial filtering algorithms establishing arc consistency
have been proposed. There are based on different concepts: cumulative sum, differ-
ence constraint and flow.

FA Based on Cumulative Sum

A set of nC 1 new variables si are introduced. A variable si correspond to the sum
of the yj variables for j D 1 to i . The S variables are encoded as follows: s0 D 0

and si D yi C si�1. Then, the constraints sj � sjCq � l and sjCq � sj C u
for 1 � j � n � q C 1 are added to the model. Brand et al. [33] have proposed
this model and shown that enforcing singleton bound consistency on these variables
establishes arc consistency for the SEQUENCE constraint. In addition, they proved
that the complexity of maintaining arc consistency on a branch of the tree search
is in O.n3/. This model is also a reformulation (and an improvement) of the first
filtering algorithm establishing arc consistency in polynomial time of van Hoeve
et al. [64, 65].

FA Based on Difference Constraint

This approach uses different constraints, that is constraints of the form S � S 0Cd ,
for encoding the SEQUENCE constraint. It has been proposed by Brand et al. [33] and
it uses the S variables like in the previous approach, but the constraint si D yiCsi�1

is replaced by the two equivalent constraints si�1 � si � si�1C1 and yi , si�1 �
si � 1. The consistency of a set of distance constraints can be checked by searching
for the presence of negative cycle in a graph (see [42] or [39] Sect. 24.4). Thus, an
AC filtering algorithm can be simply derived by using the current assignment of the
Y variables in order to define the set DC of distance constraints. After checking the
consistency of DC, the boundaries of the Y variables are explicitly tested. That is,
if DC implies that si�1 � si �1 then yi D 1 and if DC implies that si � si�1 then
yi D 0. The authors show that this FA can be maintained during the search with a
complexity on a branch of the tree search in O.n2 log.n//.

FA Based on Flow

This clever approach has been proposed in [90]. The idea is to represent a
SEQUENCE constraint by an integer linear programme formed by the AMONG

constraints it contains. Then, the specific structure of the obtained matrix (it has
the consecutive ones property for the columns) is exploited and the model is trans-
formed into a network flow problem. Thus, the computation of some properties of

92 J.-C. Régin

the flow problem, like the constant arc for all feasible flow, leads to an AC filtering
algorithm. This approach has two main advantages: the problem is just transformed
into a flow problem and so there is no need to write any specific algorithms; and the
complexity is reduced. This FA, indeed, can be maintained during the search with
a complexity on a branch of the tree search in O.n2/. Maher et al. use an existing
transformation from matrix having the consecutive ones property to a network flow
problem. This transformation is explained in [2] and leads to a flow which is not re-
ally easy to understand. We propose here to try to directly explain the obtained flow.

Consider the following problem: 9 variables from x1 to x9, a sequence of width
4, l D 1, and u D 3, meaning that at least one variable and at most 3 variables of
each sequence of 4 consecutive variables must be set to 1. Figure 6. The graph on
which the flow is defined is built as follows:
First, we define the nodes:

� We create a source s and a sink t .
� We create as many W-nodes as there are complete sequences. For the ex-

ample, we have 6 complete sequences, so we create 6 W-nodes: w1; : : : ; w6.

W1 W2 W3 W4 W5 W6

TB T12 T23 T34 T45 T56 TE

s

t

Fig. 6 The graph associated with a sequence problem

Global Constraints: A Survey 93

A W-node is a windows node and corresponds to a sequence. Node W 1 rep-
resents the sequence x1; x2; x3; x4, node W 2 the sequence x2; x3; x4; x5 etc.

� We create as many T-node as there are no empty intersection between consecutive
W-nodes and we add 2 special T-node: TB and TE. A T-node is a transition node
and represents what two W-nodes have in common. Node T12 corresponds to
the W-nodes W 1 and W 2, node T 23 corresponds to the W-nodes W 2 and W 3,
etc. Node TB corresponds to the beginning of the sequence and node TE to the
end of the sequence.

Then, we define the arcs:

� There is an arc from t to s.
� There is an arc from s to each W-node. The required quantity of flow (i.e. the

flow must be equal to this value) in each arc is Œu � l� corresponding to the slack
we have for sequence from the minimum (i.e. l).

� There is an arc from each T-node but TB to t . The required quantity of flow in
each arc is Œu � l� corresponding to the slack we have for a sequence from the
minimum (i.e. l), excepted for TE for which the required quantity of flow is u.

� There is an arc from s to TB. The required quantity of flow in this arc is l . The
idea is that each sequence must have at least l units of flow. TB is used to receive
this quantity and then to transmit it to the other T-nodes.

� There is an arc from any W-node to the two T-nodes associated with it. Node
W i is linked to T-node T .i � 1/i and node T i.i C 1/. W 1 is linked to TB and
T12, and W 6 is linked to T 5 and TE . All these arcs are (0,u-l) arcs (the flow
traversing them has a value in Œ0; u � l�).

� There are arcs between T-nodes. Each T-node T i.i C 1/, excepted TB and TE,
has one entering arc and one leaving arc. The entering arc represents the variable
which is in W i but not in W.i C 1/, and the leaving arc represents the variable
which is in W.i C 1/ and not in W i . For instance, the arc from T12 to T 56

represents variable x5. TB has 4 (the width) leaving arcs corresponding to the
4 first variables x1; x2; x3; x4 and TD has 4 entering arcs corresponding to the
4 last variables x6; x7; x8; x9. All these arc are (0,1) arcs and their flow value
corresponds to the value of the variable in any solution.

Now, a feasible flow in this graph corresponds to a solution of the problem. The
intuitive idea is that we send the minimum unit of flow TB and this quantity of
flow will be propagated to the sequences thanks to arcs defined by x variables. The
arcs leaving s and entering t ensure the flow conservation and express the fact that
some sequences have more 1 than others. Then, arc consistency of the variables x

is computed by searching for constant values for the arcs corresponding to these
variables, which can be done thanks to Corollary 2 (See Flow Properties).

Figure 7 shows an example of feasible flow for some values of x variables. The
arcs having a constant flow value equal to 0 have been removed.

Some experiments given in [33,90] show that the algorithms based on cumulative
sums and the flows are the best in practice. The latter one seems to be more robust.

++Some generalizations or variations of the SEQUENCE constraint have also been
studied.

94 J.-C. Régin

W1 W2 W3 W4 W5 W6

TB T12 T23 T34 T45 T56 TE

s

t

2 1 1 2 1 1 2 0,11,2 0,1

Fig. 7 A feasible flow when x1 D 0; x2 D f0; 1g; x3 D 0; x4 D 0; x5 D 1; x6 D f0; 1g;
x7 D 1; x8 D 1; x9 D f0; 1g. The arcs that cannot carry any unit of flow in any feasible flow
have been removed. Number indicates the flow value. They are separated by comma when there
are several possible flow values for other solutions

3.5.3 Generalized Sequence Constraint (GEN-SEQUENCE)

This constraint generalizes the SEQUENCE constraint by adding some other AMONG

constraints. These AMONG constraints must be defined using the same set of values
V than the SEQUENCE.

Definition 15. Given X an ordered set of variables, Q a set of ordered subsets of X

(i.e subset of consecutive variables of X) where each subset Qi is associated with
two numbers li and ui and V a set of values. The generalized sequence constraint
holds if and only if for each Qi 2 Q AMONG.Qi ; V; li ; ui / holds. More precisely

GEN-SEQUENCE.X; V;Q; flig; fuig/ D ft j t is a tuple of Xand 8Qi 2 Q
li �Pv2V #.v; t; Qi / � uig

This constraint has been proposed by van Hoeve et al. [64]. The authors gave an
FA establishing arc consistency for it, whose complexity is in O.n4/. This algorithm

Global Constraints: A Survey 95

is based on the same idea as the cumulative sum for the SEQUENCE constraint.
However, Maher et al. [90] also considered this constraint in order to try to apply
the modeling idea of representing the constraint by a flow. Sometimes, the obtained
matrix satisfies the consecutive one property and the method can be applied and
so a quadratic AC filtering algorithm exists. It is also possible that the matrix will
satisfy the consecutive one property if the subset of X is reordered. Such a result
can be obtained in polynomial time (see [90]). However, for some matrices, it will
not be possible to obtained the desired property. In this case, an encoding based on
difference can be used leading to an AC Filtering algorithm whose complexity is
in O.nmC n2 log.n// for any branch of the tree search, where m is the number of
element of Q.

3.5.4 Global Sequencing Constraint (GSC)

The global sequencing constraint (GSC) has been designed mainly to try to solve
some car sequencing instances. It combines a SEQUENCE constraint and global car-
dinality constraints.

A global sequencing constraint C is specified in terms of an ordered set of vari-
ables X which take their values in D, some integers q, min and max and a given
subset V of D. On one hand, a GSC constrains the number of variables in X in-
stantiated to a value vi 2 D to be in an interval Œli ; ui �. On the other hand, a GSC

constrains for each sequence Sj of q consecutive variables of X.C /, that at least
min and at most max variables of Sj are instantiated to a value of V .

Definition 16. Given X an ordered set of variables, m; M; q three positive integers,
a set of values D in which each value ai 2 D is associated with two positive integers
li and ui , and a set of values V . The global sequencing constraint is defined by

GSC.X; D; flig; fuig; V; m; M; q/ D ft j t is a tuple of X

and 8ai 2 D W li � #.ai ; t/ � ui

and for each sequence S of q consecutive
variables: m �Pvi2V #.vi ; t; S/ �M g

This constraint has been proposed by Régin [126].
It arises in car sequencing or in rostering problems. A filtering algorithm is de-

scribed in [126]. It is based on the reformulation of the problem mainly using flows
and it has been implemented in ILOG Solver. Thanks to it, some problems of the
CSP-Lib have been closed, and a recent and nice experimental study of [65] shows
that this constraint leads to good results for solving some car sequencing instances
of the CSP-Lib. In fact, 12 problems are solved by a CP model only if it uses this
constraint.

About sequencing constraints, some other combinations of AMONG constraints
with or without cardinality constraints have been considered. For instance, Régin
[121] studied several combinations of AMONG constraints. He mainly showed that
in general a combination of AMONG constraints is an NP-Complete problem. Nev-
ertheless, if the AMONG constraints are pairwise value disjoint (i.e. the set of values

96 J.-C. Régin

associated with each AMONG constraint are disjoint), then it is possible to represent
the set of AMONG constraints by a unique GCC and so to obtain a polynomial AC
filtering algorithm. In addition, Régin proposed some kind of shaving or singleton
arc consistency to improve the combination of AMONG and cardinality constraints.
He applied his result to the inter-distance constraint.

At last, we need to mention two other variations of the sequencing constraints that
have been recently considered: the multiple sequence and the SLIDING-SUM. The
multiple sequence has been introduced in [33] and combines several SEQUENCE

constraints provided that the values counted by each SEQUENCE are pairwise dis-
joint. Then, an AC filtering algorithm based on the REGULAR constraint has been
proposed. The SLIDING-SUM has been introduced by Beldiceanu [9] and is a gen-
eralization of the SEQUENCE constraint to non (0,1) variables, that is the sum of
variable is directly considered. An efficient bound consistency filtering algorithm
has been proposed for this constraint in [90].

3.6 Distance Constraints

3.6.1 Inter-Distance Constraint (INTER-DISTANCE)

Régin [113] introduced, under the name “Global Minimum Constraint”, a constraint
defined on X a set of variables stating that for any pair of variable x and y of X the
constraint jx � yj � k is satisfied. This constraint is mentioned in [66].

Definition 17. An inter-distance constraint is a constraint C associated with an
integer k and defined by

INTER-DISTANCE.k/ D f� s.t. � is a tuple of X.C /

and 8ai ; aj 2 � W jai � aj j � kg
This constraint is present in frequency allocation problems or in scheduling prob-

lems in which tasks require p contiguous units of resource to be completed.
A filtering algorithm has been proposed for this constraint [113]. Note that there

is a strong relation between this constraint and the SEQUENCE constraint. An 1=q

SEQUENCE constraint constrains two variables assigned to the same value to be
separated by at least q � 1 variables, with regard to the variable ordering. Here, we
want to select the values taken by a set of variables such that all pairs of values are
at least k units apart.

Then, a bound consistency algorithm has been proposed by Artiouchine
and Baptiste [5, 6]. This algorithm runs in O.n3/. It has been improved later
by Quimper et al. [104] for running in O.n2/.

3.6.2 Sum and Binary Inequalities Constraint (SUM-INEQ)

This constraint is the conjunction of a sum constraint and a set of distance con-
straints, that is constraints of the form xj � xi � c.

Global Constraints: A Survey 97

Definition 18. Let SUM.X; y/ be a sum constraint, and Ineq be a set of binary
inequalities defined on X . The sum and binary inequalities constraint is a con-
straint C associated with SUM.X; y/ and Ineq defined by:

SUM-INEQ.X; y; Ineq/ D f� s.t. � is a tuple of X [y

and .
PjX j

iD1 �Œi �/ D �Œy�

and the values of � satisfy Ineqg
This constraint has been proposed by Régin and Rueher [127]. It is used to min-

imize the delays in scheduling applications.
Bound consistency can be computed in O.n.mC n log n//, where m is the num-

ber of inequalities and n the number of variables. It is also instructive to remark that
the bound consistency filtering algorithm still works when y D ˙ iDn

iD1 ˛i xi where ˛i

are non-negative real numbers.

3.7 Geometric Constraints

The most famous geometric constraint is the DIFF-N constraint. We quote [17]: “The
DIFF-N constraint was introduced in CHIP in order to handle multi-dimensional
placement problems that occur in scheduling, cutting or geometrical placement
problems. The intuitive idea is to extend the ALLDIFF constraint which works on
a set of domain variables to a non-overlapping constraint between a set of objects
defined in a n-dimensional space.”

Definition 19. Consider R a set of multidirectional rectangles. Each multidirec-
tional rectangle i is associated with two sets of variables Oi D foi1; : : : ; oing and
Li D fli1; : : : ; ling. The variables of Oi represent the origin of the rectangle for ev-
ery dimension, for instance the variable oij corresponds to the origin of the rectangle
for the j th dimension. The variables of Li represent the length of the rectangle for
every dimension, for instance the variable lij represents the length of the rectangle
for the j th dimension. A diff-n constraint is a constraint C associated with a set R

of multidirectional rectangles, such that:

DIFF-N.R/ D f� s.t. � is a tuple of X.C /

and 8i 2 Œ1; m�;8j 2 Œ1; m�; j ¤ i; 9k 2 Œ1; n�

s.t. �Œoik� � �Œojk �C �Œljk � or �Œojk � � �Œoik�C �Œlik�g
This constraint is mainly used for packing problems. In [20], an O.d/ filter-

ing algorithm for the non-overlapping constraint between two d-dimensional boxes
and so a filtering algorithm for the non-overlapping constraint between two convex
polygons are presented.

Some other geometric constraints, often based on the notion of non-overlapping
objects, have been studied. Unfortunately, the papers are often difficult to under-
stand. More information can be found in [1, 11, 20, 25].

98 J.-C. Régin

3.8 Summation Based Constraints

Some variations of constraints based on the summation problems have been pro-
posed. Trick proposed, under the name “knapsack constraint”, a SUBSET-SUM

constraint whose filtering is pseudo polynomial and based on dynamic program-
ming [147,148]. This paper triggered some other researches such as Pesant’s one on
REGULAR constraints. Then, Shaw introduces another filtering algorithm which is
polynomial but not characterized [140]. This means that we do not have a property
defining the values that are removed by the algorithm. On the other hand, Fahle and
Sellmann introduced a KNAPSACK constraint involving an objective to maximize
(the profit) [48]. This constraint is closer to the original knapsack problem whereas
the Trick’s one is more related to the subset sum problem.

3.8.1 Subset-Sum Constraint (SUBSET-SUM)

The subset sum problem is: given a set of integers, does the sum of some non-empty
subset equal exactly zero? For example, given the set �7, �3, �2, 5, 8, the answer
is yes because the subset �3, �2, 5 sums to zero. The problem is NP-Complete.
Trick proposed to consider the following variations: given a set of 0–1 variables
X D fx1; : : : ; xng where each variable xi is associated with a coefficient ˛i and L

and U tow bounds, find an assignment of variables such that L �Pxi2X ˛i xi � U .
For the sake of clarity, we will use the name SUBSET-SUM constraint for the Trick’s
knapsack constraint.

Definition 20. A Subset-Sum constraint is a constraint C defined on 0–1 variables
and associated with a set of n D jX.C /j coefficients : A D f˛1; : : : ; ˛ng and two
bounds L and U such that

SUBSET-SUM.X; A; L; U / D f� s.t. � is a tuple of X.C /

and L � ˙n
iD1˛i �Œi �/ � U g

Trick proposed to use the classical dynamic programming approach to check
whether the constraint is consistent or not. We reproduce some parts of his
presentation:

Define a function f .i; b/ equals to 1 if the variables x1; : : : xi can fill a knapsack
of size b and 0 otherwise, with i D 1 : : : n and b D 0 : : : U . We define then the
dynamic programming recursion as follows:

� f .0; 0/ D 1

� f .i; b/ D max.f .i � 1; b/; f .i � 1; b � ˛i //

The second point means that there are two possibilities to have f .i; b/ equals to
1: either f .i � 1; b/ is true (i.e. equals to 1) and if we set xi to 0 then f .i; b/ will
also be true, or f .i � 1; b � ˛i / is true and then by setting xi to 1 we increasing
b � ˛i to b and f .i; b/ will also be true.

Then, Trick introduced the idea of visualizing these recursion equation as a net-
work with one node for every Œi; b/ and edges going from .i � 1; b/ to .i; b0/ that is

Global Constraints: A Survey 99

i = 0 i = 1 i = 2 i = 3 i = 4
b = 0

b = 1

b = 2

b = 3

b = 4

b = 5

b = 6

b = 7

b = 8

b = 9

b = 10

b = 11

b = 12

i = 0 i = 1 i = 2 i = 3 i = 4

b = 0

b = 1

b = 2

b = 3

b = 4

b = 5

b = 6

b = 7

b = 8

b = 9

b = 10

b = 11

b = 12

Fig. 8 On the left, the knapsack (or subset-sum) graph proposed by Trick [148] for the constraint
10 � 2x1 C 3x2 C 4x3 C 5x4 � 12. On the right, the resulting graph after establishing arc
consistency

between nodes with a 1 value of f (See Fig. 8: a horizontal edge from .i � 1; b/ to
.i; b/ corresponds to the assignment xi D 0 and an edge from .i�1; b/ to .i; bC˛i /

corresponds to the assignment xi D 1).
Trick proved that:

� The consistency of constraint is equivalent to the existence of a path from the
node .0; 0/ to the nodes .4; 10/, .4; 11/ or .4; 12/.

� Any node which does not belong to such a path can be removed from the graph,
and once all these nodes have been deleted then the value .xi ; 0/ is consistent if
there exists a b, an arc from .i � 1; b/ to .i; b/, and the value .xi ; 1/ is consistent
if there exists a b, and an arc from .i � 1; b/ to .i; b C ˛i /.

Figure 8 gives an example of such pruning.
Trick gave an algorithm establishing arc consistency whose space and time com-

plexity is in O.nU 2/, thus pseudo-polynomial.
We can show that there is no need of an extra filtering algorithm and that this

complexity can be reduced. In fact, we can reformulate the problem with a set of
binary constraints in a way similar as the one used by Beldiceanu et al. [15] for
reformulating automaton based constraints. For i D 1 : : : n, a binary constraint at
the level i is simply defined by: .Si D Si�1 OR Si D Si�1 C ˛i /. In addition,
the constraints defining the initial and the final summation are added: S0 D 0 and

100 J.-C. Régin

L � Si � U . This reformulation satisfies Corollary 1 (See Preliminaries section);
therefore, establishing AC on this reformulation corresponds to establish AC on
the SUBSET-SUM constraint. It is not difficult to maintain AC for each constraint
of the form .Si D Si�1 OR Si D Si�1 C ˛i /. The complexity depends on the
size of the domain and the number of allowed combinations for each constraint.
Clearly, each value v of Si has at most 2 compatible values v and v � ˛i , so there
are 2U allowed tuples per constraint. Thus, by Proposition 1 on the complexity for
establishing arc consistency for TABLE constraint, we can establish and maintain
AC for this constraint with a time complexity in O.2 � 2U / D O.U /. Since there
are n constraints, the overall complexity is O.nU /.

Note that this reformulation can be improved. For instance, we can add the con-
straint Si �Pi

jD1 ˛i .
We could also benefit from this representation and easily deal with non binary

variables by adding some other OR parts into the binary constraints or by chang-
ing the reformulation in order to use ternary constraints of the form .Si�1; Xi ; Si /

where Si D Xi � ˛i C Si�1 instead of binary constraints. The overall complexity
is multiplied by d , that is the size of the domains.

At last, we need to mention that Shaw [140] gave another filtering algorithm for
the SUBSET-SUM constraint. Unfortunately, his algorithm is too much complex to
be included here.

3.8.2 Knapsack Constraint (KNAPSACK)

Fahle and Sellmann proposed to study the constraint corresponding to the classical
knapsack problem [48].

The knapsack problem is defined as follows: Given a set of items, each with a
weight and a profit, determine the number of each item to include in a collection
so that the total weight is less than a given limit and the total profit is as large as
possible.

Definition 21. A knapsack constraint is a constraint C defined on 0–1 variables
where xi is the variable representing the belonging of item i to the knapsack, and
associated with a set of n D jX.C /j integer weights : W D fw1; : : : ; wng, a set of n

integer profits P D fp1; : : : ; png and a capacity K and a lower bounds B such that

KNAPSACK.X; W; P; K; B/ D f� s.t. � is a tuple of X.C /

and ˙n
iD1wi �Œi � � K and ˙n

iD1pi�Œi � � Bg
The knapsack problem is NP-hard in general, therefore, Fahle and Sellmann do

not propose to establish AC but give a weaker filtering algorithm having a low com-
plexity. Then, Sellman in collaboration with some other researchers improved some
aspects of the algorithm [73, 135, 137].

The algorithm is mainly based on a nice observation made by Dantzig [41]:
Unlike the integer problem, the fractional problem is easy to solve:

� First, we arrange the items in non-decreasing order of efficiency, that is we as-
sume that p1=w1 � p2=w2 � : : : � pn=wn.

Global Constraints: A Survey 101

� Then, we select the most efficient item until doing so would exceed the
capacity K . When this point is reached, we have reached the critical item
denoted by s (and represented by the variable xs) such that

Ps�1
iD1 wj � K andPs�1

iD1 wj C ws > K . If we put the maximum fraction of xs that can fit into the
knapsack (K �Ps�1

iD1 wj), then we obtain an optimal solution whose profit is
OP DPs�1

jD1 pj C ps

ws
.K �Ps�1

iD1 wj /.

We will denote by relax.C /, the fractional version of the KNAPSACK constraint C

and by OP .relax.C // the optimal profit of the relax.C /. Fahle and Sellmann defined
the following property:

Property 5. Let i be an item and xi the 0–1 variable associated with it.

� If OP .relax.C ^ .xi D 0// < B , then xi D 1 (because without xi we cannot
reach the minimum of the required profit) and i is named a mandatory item.

� If OP .relax.C ^.xi D 1// < B , then xi D 0 (because by imposing item i we can-
not reach the minimum of the required profit)4 and i is named a forbidden item.

In order to apply these rules as quickly as possible, Fahle and Sellmann identified
all the items satisfying the previous property in linear time plus the time to sort the
items by weight.

First, for each item i , they define si the critical item of relax.C ^ .xi D 0//.
Then, they made two observations:

� If s is the critical item of relax.C /, then the items from 1 to s�1 are not forbidden
and the items from s C 1 to n are not mandatory.

� If, for two items i and j , we have wi � wj , then si � sj .

Hence, if we traverse the items of f1; : : : ; sg by non-decreasing weight, then all
si items can be identified by a single linear scan of the items of fs; : : : ng, because
the search for the next critical item can begin at the location of the current critical
item, and it always advance in one direction. If we constantly keep track of the sum
of weights and the sum of profits of all items up to the current critical item, then we
only need linear time to determine all mandatory elements.

Similarly, for each item i , we can define si the critical item of relax
.C ^ .xi D 1//. And we can show that if we traverse the items in fs; : : : ; ng by
non-decreasing weight, each critical item is always to the left of the previous criti-
cal item, and we can identify the all forbidden elements with a single linear scan.

Sellmann [135] noticed that the same result can be obtained by sorting the items
by non-increasing efficiency (i.e. ei D pi=wi). This approach avoid needing to sort
twice the items.

In addition, Katriel et al. [73] proved that if i and j are two items with i � j � s

and such that ei � ej and wi � wi and if i is not mandatory then j is not mandatory.
They proposed a (complex) algorithm based on this idea.

4 Note that imposing an item means that the problem is equivalent to the problem where the item
is ignored and K becomes K � wi and B becomes B � pi .

102 J.-C. Régin

3.9 Packing Constraints

We propose to study different kinds of packing constraints, that is constraints which
impose conditions on how items can be grouped together, for instance by pair or by
limiting the number of consecutive variables having the same value.

3.9.1 Symmetric Alldiff Constraint (SYM-ALLDIFF)

The symmetric alldiff constraint constrains some entities to be grouped by pairs. It is
a particular case of the ALLDIFF constraint, a case in which variables and values are
defined from the same set S . That is, every variable represents an element e of S

and its values represent the elements of S that are compatible with e. This constraint
requires that all the values taken by the variables are different (similar to the classical
ALLDIFF constraint) and that if the variable representing the element i is assigned
to the value representing the element j , then the variable representing the element
j is assigned to the value representing the element i .

Definition 22. Let X be a set of variables and � be a one-to-one mapping from
X [D.X/ to X [D.X/ such that

8x 2 X : �.x/ 2 D.X/; 8a 2 D.X/: �.a/ 2 X and �.x/ D a, x D �.a/.

A symmetric alldiff constraint defined on X is a constraint C associated with �

such that:

SYM-ALLDIFF.X; �/ Df� s.t. � is a tuple on X

and 8a 2 D.X/ W #.a; �/ D 1

and a D �Œindex.C; x/�, �.x/ D �Œindex.C; �.a//�g
This constraint has been proposed by Régin [115]. It is useful to be able to ex-

press certain items that should be grouped as pairs, for example in the problems of
sports scheduling or rostering. Arc consistency can be established in O.nm/ after
computing the consistency of the constraint which is equivalent to the search for a
maximum matching in a non-bipartite graph, which can be performed in O.

p
nm/

by using the complex algorithm of [94].
In [115], another filtering algorithm is proposed. It is difficult to characterize

it but its complexity is O.m/ per deletion. In this paper, it is also shown how the
classical ALLDIFF constraint plus some additional constraints can be useful to solve
the original problem. The comparison between this approach, the SYM-ALLDIFF

constraint, and the ALLDIFF constraint has been carried out in [62].

3.9.2 Stretch Constraint (STRETCH)

This constraint has been proposed by Pesant [97]. It can be seen as the opposite
of the SEQUENCE constraint. The STRETCH constraint aims to group the values
by sequence of consecutive values, whereas the sequence is often used to obtain a
homogeneous repartition of values.

Global Constraints: A Survey 103

A STRETCH constraint C is specified in terms of an ordered set of variables
X.C / D fx1; : : : ; xpg which take their values in D.C / D fv1; : : : ; vd g, and two set
of integers l D fl1; : : : ; ld g and u D fu1; : : : ; ud g, where every value vi of D.C /

is associated with li the i th integer of L and ui the i th integer of U . A STRETCH

constraint states that if xj D vi , then xj must belong to a sequence of consecutive
variables that also take value vi and the length of this sequence (the span of the
stretch) must belong to the interval Œli ; ui �.

Definition 23. A stretch constraint is a constraint C associated with a subset of
values V � D.C / in which each value vi 2 D.C / is associated with two positive
integers li and ui and defined by

STRETCH.X; V; flig; fuig/ D ft s.t. t is a tuple of X.C /

and 8xj 2 Œ1 : : : jX.C /j�; .xj D vi and vi 2D.C //

, 9p; qwith q � p, q � p C 1 2 Œli ; ui �

s.t. j 2 Œp; q�and 8k 2 Œp; q� xk D vig
This constraint is used in rostering or in car sequencing problems (especially in

the paint shop part).
A filtering algorithm has been proposed by Pesant [97]. The case of cyclic se-

quence (that is, the successor of the last variable is the first one) is also taken into
account by this algorithm. Its complexity is in O.m2 max.u/ max.l//. Pesant also
described some filtering algorithms for some variations of this constraint, notably
one that deals with patterns and constrains the successions of patterns (that is some
patterns cannot immediately follow some other patterns). An AC filtering algorithm
based on dynamic programming and running in O.nd 2/, where n is the number of
variables and d the number of values, is described in [61].

Note that this constraint can be easily represented by an automaton and so fil-
tered by the techniques presented in the regular language based constraints section,
notably by reformulating it.

3.9.3 k-diff Constraint (K-DIFF)

The K-DIFF constraint constrains the number of variables that are different to be
greater than or equal to k.

Definition 24. A k-diff constraint is a constraint C associated with an integer k

such that

K-DIFF.X; k/ Df� s.t. � is a tuple on X.C /and
jfai 2 D.X.C // s.t. #.ai ; �/ � 1gj � kg

This constraint has been proposed by Régin [111]. It is useful to model some
parts of over-constrained problems where it corresponds to a relaxation of the
ALLDIFF constraint.

A filtering algorithm establishing arc-consistency is detailed in [111]. Its com-
plexity is the same as for the ALLDIFF constraint, because the filtering algorithm of

104 J.-C. Régin

the ALLDIFF constraint is used when the cardinality of the maximum matching is
equal to k. When this cardinality is strictly greater than k, we can prove that the
constraint is arc consistent (see [111].)

3.9.4 Number of Distinct Values Constraint (NVALUE)

The number of distinct values constraint constrains the number of distinct values
taken by a set of variables to be equal to another variable.

Definition 25. A number of distinct values constraint is a constraint C defined
on a variable y and a set of variables X such that

NVALUE.X; y/ Df� s.t. � is a tuple on X.C / and

jfai 2 D.X.C // s.t. #.ai ; �/ � 1gj D �Œy�g
This constraint is quite useful for modeling some complex parts of problems.
A filtering algorithm based on the search of a lower bound of the dominating set

problem [40] has been proposed by Beldiceanu [8]. When all the domains of the
variables are intervals, this lead to an O.n/ algorithm if the intervals are already
sorted.

3.9.5 Bin Packing Constraint (BIN-PACKING)

The bin packing problem is defined as follows: objects of different volumes must
be packed into a finite number of bins of capacity V in a way that minimizes the
number of bins used. Note that the problem can be viewed as the conjunction of two
problems: for any bin, the problem to be solved is a subset sum problem and the
goal is then to minimize the number of bins that are globally needed.

Shaw introduced the first constraint for one-dimensional bin packing [140] un-
der the name of “Pack constraint”. This constraint is mainly based on propagation
rules incorporating knapsack-based reasoning. It also deals with lower bounds on
the number of bins needed.

The more detailed and complete document about bin packing constraint is the
PhD thesis of Schaus [130]. Some part of the following presentation is taken from
his thesis.

We consider here a version which is more general than the classical bin packing
because we accept bins with different capacities.

Definition 26. Let m be a set of bins, L D fl1; : : : ; lmg be a set of loads (also
named capacities) such that each bin i is associated with the load li , I be a set
of n items, S D fs1; : : : ; sng be a set of sizes such that each item j is associated
with the size sj . A bin packing constraint is a constraint C defined on a set of n

variables whose values express the bins in which the corresponding item may be
placed, such that

BIN-PACKING.X; L; S; m/ D f� s.t. � is a tuple of X.C /

and 8b D 1 : : : m ˙n
iD1..�Œi � D b/:si / � lbg

Global Constraints: A Survey 105

When the capacities (i.e. loads) are large, Sellmann proposes in [135] to palli-
ate the pseudo-polynomial time by weakening the propagation strength by dividing
down item sizes and bin capacities.

The filtering algorithm proposed by Shaw essentially works separately on each
bin with a knapsack reasoning and detects non packable bins or non packable items
into bins. The relaxation is that an item can be used in more than one bin.

Shaw also introduces a failure detection test based on fast bin-packing lower
bound algorithms, because the general problem can be relaxed to the classical bin-
packing problem with a fixed capacity (i.e. all bins have the same capacity).

Hence, bin-packing lower bounds can be very useful to detect quickly inconsis-
tencies by comparing the lower bound to the number of available bins m. If the
lower bound is larger than m in the reduced problem, then the constraint fails.

In order to be able to integrate the items that have been already packed into
bins and the difference of capacities between items, Shaw proposed the following
reduction:

� Take the maximum load Lmax as capacity for all the bins
� The set of items to be packed is U [fa1; : : : ; amg, where

 U is the set of unassigned items

 For each bin i , we create an item ai for taking into account the already packed

items into bin i and the fact that li may be smaller than Lmax. Let Ri be the
sum of the size of the items already packed into i . The size of ai is Ri C
Lmax � li .

Then, Shaw uses the Martello and Toth lower bound denoted L2 [92] to compute
a lower bound on the number of bins required. If this number is larger than m, then
the constraint is not consistent. The bound L2 can be computed in linear time when
the items are sorted by non increasing sizes. Therefore, the complexity is n plus the
time to sort the ai values.

Schaus proposed different other lower bounds based on different approaches.
First, Schaus proposed to slightly modify the reformulation to the standard bin
packing problem. Instead of considering for Lmax, the largest capacity of the bins,
he proposed to considered the largest free space capacity of the bins (the size of
the already assigned items are deduced from the maximum load of the bin). Then,
he investigated the possibility to use the recent lower bound L3 of Labbé et al. [79].

At last and contrary to Shaw who proposed to work on each bin separately,
Schaus proposed to consider the bins globally and to relax the belonging property
and to accept to split an item among several bins. His idea is emphasized on the
following example.

Consider 5 bins with capacity 5, and 11 items of size 1 and another of size 2 with
the additional constraint that 9 items of size 1 and the item of size 2 can be placed
only in the bins 4 and 5. Clearly, there is no solution because we need to put 9 items
of size 1 and 1 of size 2, that is a size of 11 in two bins whose added capacity is
only 10. Shaw’s algorithm is unable to detect this inconsistency.

Schaus used a network flow to detect such inconsistencies. More information can
be found in [130]. The algorithm is close to the one used to solve the preemptive

106 J.-C. Régin

scheduling problem, hence this method is called filtering based on preemption
relaxation. Experimental results confirm the improvement of Schaus’s method over
Shaw’s one.

Shaus also considered a generalisation of the bin packing constraint which in-
corporates precedence constraints between items. A precedence constraint between
items a and a0 is satisfied if item a is placed in a bin Bi , and item a0 in a bin Bj ,
with i < j . An original filtering algorithm dealing with that constraint is detailed
in [134].

3.10 Graph Based Constraints

Some constraints are naturally defined as properties that a graph has to satisfy, or as
problems of the graph theory. These constraints are named graph based constraints.
They cause some problem of definition because it is often more convenient to de-
fine a graph variable (See [83] for the original introduction of the concept or [119]
and [44] for a more detailed presentation) but graph variables are not classical CP
variables.

3.10.1 Cycle Constraint (CYCLE)

We present here only the cycle/2 constraint. Here is the idea of this constraint [17]:
“The cycle constraint was introduced in CHIP to tackle complex vehicle routing
problems. The cycle/2 constraint can be seen as the problem of finding N distinct
circuits in a directed graph in such a way that each node is visited exactly once.
Initially, each domain variable xi corresponds to the possible successors of the i th

node of the graph.”

Definition 27. A cycle constraint is a constraint C associated with a positive inte-
ger n and defined on a set X of variables, such that:

CYCLE.X; n/ D f� s.t. � is a tuple of X.C /

and the graph defined from the arcs .k; �Œk�/

has nconnected components
and every connected component is a cycleg

This constraint is mentioned in the literature but no filtering algorithm is
explicitly given. It is mainly used for vehicle routing problems or crew scheduling
problems.

3.10.2 Path Constraint (PATH)

Some PATH constraints have been designed in existing solvers for a long time now.
However, until recently, there were no publication about this constraint. In our

Global Constraints: A Survey 107

opinion, this comes from two facts. First, searching for a simple path from a node
i to a node j which traverses a given node k is an NP-Complete problem! This
means that it will be difficult to find a filtering algorithm able to find some manda-
tory nodes. Second, the relaxation of the notion of simple path for path leads to the
simple filtering: let d.i; j / be the minimum distance from node i to node j , then
d.i; k/ C d.k; j / is a lower bound of the distance of a simple path from i to j

which traverses the node k. This lower bound can easily be modelled by the con-
straint d.i; k/C d.k; j / � d.i; j /. This filtering has been used for solving a lot of
problems, for instance network design [83].

Motivated by scheduling applications where it is often critical to evaluate the
makespan or the earliest or latest completion time, Michel and Van Hentenryck [95]
addressed the problem of maintaining the longest paths in directed acyclic graph
(DAG). This problem is also known as Dynamic Heaviest Path [71]. The Heaviest
Path problem or longest path problem is defined as follows: Given a DAG G D
.V; E/ with a weight w.e/ for each edge e, compute for each node v the weight of
the heaviest path from the source of G to v, where the weight of the path is the sum
of the weight of the edges it contains. Then the Dynamic Heaviest Path problem or
the Maintenance of Longest Path problem is to efficiently update this information
when a small change is performed on G. Efficient means that the running time is
proportional to the size of the portion of the graph that is affected by the change.
There is no constraint definition here, but principles are close to the one used to
maintain properties, which is a common task in CP, hence we mention these works.
Several algorithms have been proposed and refined [71, 72, 95]. The best algorithm
maintain the information in O.k ı k Cjıj log.jıj/ for arc insertion and O.k ı k/
for arc deletion, where k ı k and jıj measure the change in the input and output.
The same result has been obtained on Cyclic < 0 graphs, that is graph whose cycles
have strictly negative lengths.

3.10.3 Path Partitioning Constraint (PATH-PARTITION)

Beldiceanu and Lorca [22] have proposed the path partitioning constraint which is
defined as follows:

Definition 28. A path partitioning constraint is a constraint C defined on a di-
graph D D .V; A/, and associated with an integer k and a set T � V of potential
final nodes such that

PATH-PARTITION.X; k; T / D f� such that � is a tuple on X.C /

and the digraph defined by � is a set of
k connected components such that each one
is an elementary path that ends up in T .g

In general, the path partitioning problem is NP-Complete (even for kD 2). How-
ever, for some cases the problem becomes polynomial for instance for interval
graph. It is also polynomial for acyclic digraphs. In this case, the problem can be

108 J.-C. Régin

transformed into a flow problem, and it is possible to compute the minimum number
of paths partitioning the digraph by computing a minimum feasible flow. The au-
thors nicely exploited this idea to derive a filtering algorithm for this particular case.
Then, they used the dominance theory to get a general necessary condition for the
path partitioning constraint.

3.10.4 Shorter Path Constraint (SHORTER-PATH)

Sellmann defined the shorter path constraint [136,139]. This constraint searches for
paths whose length is smaller than a given threshold value.

Definition 29. A shorter path constraint is a constraint C defined on a graph G

whose edges have a cost in W, and associated with an integer k and two nodes of
G: a source s and a sink t

SHORTER-PATH.X; W; k; s; t/ D f� such that � is a tuple on X.C / and
�defined a path from sto t in Gwhose
the sum of the edges is smaller than k.g

Sellmann proposed a relaxation of the constraint such that an efficient filtering
algorithm can be designed. He also developed filtering for directed acyclic graph
and general digraph with non-negative costs or graph that at least does not con-
tain any negative weight cycle. An experimental study showed the advantage of
this approach [53]. Unfortunately, it is not really easy to measure the difference
of strengths between the new proposed filtering and the one we mentioned at the
beginning of this section.

3.10.5 Tree Constraint (TREE)

The TREE constraint has been proposed by Beldiceanu et al. [18]. This constraint
enforces the partitioning of a digraph into a set of vertex-disjoint anti-arborescences.
An anti-arborescence is roughly a tree with the edges oriented in the opposite way:
from the nodes to the root. A digraph A is an anti-arborescence with anti-root r if
there exists a path from all vertices of A to r and the undirected graph associated
with the digraph A is a tree.

Definition 30. A tree constraint is a constraint C defined on a digraph D, and
associated with an integer k such that

TREE.X; k/ D f� such that � is a tuple on X.C /

and the digraph defined by � is
a set of k vertex disjoint anti-arborescencesg

Beldiceanu et al. [18] gave a linear consistency checking algorithm and an AC Fil-
tering algorithm whose time complexity is in O.nm/ where n is the number of
nodes of the digraph and m its number of arcs.

Global Constraints: A Survey 109

In another paper [19], the authors proposed to extend the original tree constraint
with the following useful side constraints (we reproduce their presentation):

� Precedence constraints: a node u precedes a node v if there exists a directed path
from u to v.

� Incomparability constraints: two nodes u and v are incomparable if there is no
directed path from u to v or from v to u.

� Degree constraints that restrict the in-degrees of the nodes in the tree partition.
� Constraints on the number of proper trees, where a proper tree is a tree involving

at least two nodes.

Combining the original problem with precedence or with incomparability con-
straints leads to an NP-Hard problem; therefore, the authors gave a set of necessary
structural conditions combining the input graph with the graphs associated with
these side constraints.

At last, two other variations of the tree constraint have been derived by
Beldiceanu et al. [21] under the generic term of undirected forest:

� The RESOURCE-FOREST constraint. In this version, a subset of vertices are
resource vertices and the constraint specifies that each tree in the forest must con-
tain at least one resource vertex. They describe a hybrid-consistency algorithm
that runs in O.mCn/ time for the resource-forest constraint and so improves the
algorithm for the tree constraint.

� The PROPER-FOREST constraint. In this variant, there is no requirement about the
containment of resource vertices, but the forest must contain only proper trees,
i.e., trees that have at least two vertices each. They describe an O.mn/ hybrid-
consistency algorithm.

3.10.6 Weighted Spanning Tree Constraint (WST)

The weighted spanning tree constraint (wst constraint) is a constraint defined on a
graph G each of whose edges has an associated cost, and associated with a global
cost K . This constraint states that there exists in G a spanning tree whose cost is at
most K . This constraint has been introduced in a more general form by Dooms and
Katriel [46]. Instead of considering the weighted spanning tree problem, they in-
troduced the “Not-Too-Heavy Spanning Tree” constraint. This constraint is defined
on undirected graph G and a tree T and it specifies that T is a spanning tree of G

whose total weight is at most a given value I , where the edge weights are defined
by a vector. The WST constraint is a simplified form of this constraint.

Definition 31. A weighted spanning tree constraint is a constraint C defined on a
graph G, and associated with cost a cost function on the edge of G, and an integer
K such that

WST.X; cost; K/ D f� such that � is a tuple on X.C /

and the graph defined by � is a tree whose cost is � Kg

110 J.-C. Régin

This kind of constraint does not often arise explicitly in real world applications,
but it is used frequently as a lower bound of more complex problems such as Hamil-
tonian path or node covering problems. For instance, the minimum spanning tree is
a well known bound of the travelling salesman problem.

It is straightforward to see that checking the consistency of this constraint is
equivalent to finding a minimum spanning tree and to check if its cost is less
than K . Moreover, arc consistency filtering algorithms are based on the computation
for every edge e of the cost of the minimum spanning tree subject to the condi-
tion that the tree must contain e [46]. These two problems were solved for a long
time. The search for a minimum spanning tree can be solved by several methods
(Kruskal, Prim, etc.). The second problem is close of another problem called “Sen-
sitivity Analysis of Minimum Spanning Trees” [145]. The best algorithms solve this
problem in linear time. Unfortunately, they are quite complex to understand and to
implement (see [43] or [91] for instance).

Régin proposed a simpler and easy to implement consistency checking and AC
filtering algorithms for the WST constraint [122]. This algorithm is based on the
creation of a new tree while running Kruskal’s algorithm for computing a minimum
spanning tree. Then, we find lowest common ancestors (LCA) in this tree by using
the equivalence between the LCA and the range minimum query problem. A recent
simple preprocessing leads to an O.1/ algorithm to find any LCA. The proposed
algorithm is also fully incremental and try to avoid traversing all the edges each
time a modification occurs. Its complexity is the same as the weighted spanning tree
computation, that is linear plus the union-find operations.

Some variations of the weighted spanning tree constraint have been proposed.
For instance, Dooms and Katriel [45] introduced the Minimum spanning tree

constraint, which is specified on two graph variables G and T and a vector W of
scalar variables. The constraint is satisfied if T is a minimum spanning tree of G,
where the edge weights are specified by the entries of W . They gave a bound con-
sistency algorithm for all the variables.

On the other hand, the robust spanning tree problem with interval data has been
addressed in [4]. This problem is defined as follows : given an undirected graph with
interval edge costs, find a tree whose cost is as close as possible of that minimum
spanning tree under any possible assignment of costs.

In conclusion of the Graph based Constraint section, we would like to mention
some other works that have been carried out for some constraints like isomor-
phism, subgraph isomorphism or maximum clique. In fact, these algorithms are
more dedicated to the resolution of a complex problem than to the filtering of a
constraint corresponding to these problems. Hence, we do not detail them. Sorlin
and Solnon have presented a filtering algorithm for the isomorphism problem
[142, 143]. Zampelli et al. considered the subgraph isomorphism constraint [156].
This work improves Régin’s algorithm [111]. At last, Régin defined a maximum
clique constraint [118].

Global Constraints: A Survey 111

3.11 Order Based Constraints

3.11.1 Lexicographic Constraint (LEXICO)

The lexicographic ordering constraint X �lex Y over two ordered set of variables X

and Y holds if the word defined by the assignment of X is lexicographically smaller
than the word defined by the assignment of Y .

Definition 32. A lexicographic ordering constraint is a constraint C defined on
two sets of ordered variables X D fx1; : : : ; xng and Y D fy1; : : : ; yng such that

LEXICO � .X; Y / Df� s.t. � is a tuple on X [Y s.t. either 8i 2 Œ1 : : : n� �Œi � �
�Œi C n�g or 9j; 1 � j � nwith �Œj � < �Œj C n�

and 8i 2 Œ1 : : : j � �Œi � D �Œi �g
It is sometimes denoted by X �lex Y .

A variation of this constraint is used to take into account the multidirectionnality
in GAC-Schema [29]. Then, it has been formally defined by Frisch et al. [52] where
a filtering algorithm is proposed. Carlsson and Beldiceanu showed that this con-
straint can be represented by an automaton [35], therefore with the reformulation of
the automaton given in the section about formal based language constraints we have
an efficient AC filtering algorithm.

A nice reformulation has been proposed by Quimper (Personal communication):
we define a variable N whose value is the first index for which we will have xi < yi .
Then for each i , we define the ternary constraint satisfying:

� .N D i/) .xi < yi /

� .N < i/) .xi D yi /

� .N � i/) .xi � yi /

Note that if N > i , then xi and yi are not constrained.
If all the constraints share only one variable N, then the bipartite constraint graph

has no cycle and from Corollary 1, establishing arc consistency for this reformula-
tion will establish arc consistency for the original constraint.

3.11.2 Sort Constraint (SORT)

This constraint has been proposed by Bleuzen–Guernalec and Colmerauer [32]:
“A sortedness constraint expresses that an n�tuple .y1; : : : ; yn/ is equal to the
n�tuple obtained by sorting in increasing order the terms of another n�tuple
.x1; : : : ; xn/”.

Definition 33. A sort constraint is a constraint C defined on two sets of variables
X D fx1; : : : ; xng and Y D fy1; : : : ; yng such that

SORT.X; Y / D f� s.t. � is a tuple on X.C /and 9f a permutation of Œ1 : : : n� s.t.
8i 2 Œ1 : : : n� �Œxf .i/� D �Œyi �g

112 J.-C. Régin

The best filtering algorithm establishing bound consistency has been proposed
by Melhorn and Thiel [93]. Its running time is O.n/ plus the time required to sort
the interval endpoints of the variables of X . If the interval endpoints are from an
integer range of size O.nk/ for some constant k, the algorithm runs in linear time,
because this sort becomes linear.

A sort constraint involving 3 sets of variables has also been proposed by Zhou
[157, 158]. The n added variables are used for making explicit a permutation link-
ing the variables of X and those of Y . Well known difficult job shop scheduling
problems have been solved thanks to this constraint.

3.12 Formal Language Based Constraints

Formal Language based Constraints are constraints defined from Automata or from
Grammars. Recently, they have been intensively studied. They attracted a lot of
researchers and this topic has certainly been the most active of the community in
the last 5 years. However, the results that have been obtained are surprising because
they tend to show that there is no need of specific algorithms for these constraints.

These constraints appeared 10 years after the graph based constraints which is
also surprising because some computer scientists like kidding by saying that in com-
puter science everything can be viewed from a graph theory or from the automaton
theory.

3.12.1 Regular Language Based Constraints (REGULAR)

The explicit use of an automaton for representing a constraint and for deriving
a filtering algorithm from this representation has been proposed by Carlsson and
Beldiceanu [15, 34–36]. They aimed at finding a more efficient filtering algorithm
for the lexicographic constraint. They were not the first to use an automaton in CP:
Vempaty [154] introduced the idea of representing the solution set by a minimized
deterministic finite automaton and Amilastre, in his Ph.D. Thesis [3], generalized
this approach to non-deterministic automata and introduced heuristic to reduce their
size. However, Carlsson and Beldiceanu were the first to design a filtering algorithm
based on automata.

A bit afterwards and independently, Pesant [98, 99] introduced in a well written
paper, the REGULAR constraint which ensures that the sequence of values taken by
variables belongs to a given regular language.

We propose to study this constraint and the different filtering algorithms that have
been associated with it.

First, we recall the definition of deterministic and non deterministic finite
automata. This part is mainly inspired from [99].

Global Constraints: A Survey 113

A Deterministic Finite Automaton (DFA) is defined by a 5-tuple .Q; ˙; ı; q0; F /

where

� Q is a finite set of states.
� ˙ is an alphabet, that is a set of symbols.
� ı W Q �˙ ! Q is a partial transition function5.
� q0 is an initial state,
� F � Q is the set of final (or accepting states).

Given an input string, the automaton starts in the initial state q0 and processes the
string one symbol at a time applying the transition function ı at each step to modify
the current state. The string is accepted if and only if the last state reached belongs
to the set of final states F . The language recognized by DFA’s are precisely regular
languages.

Thus, the definition of the regular membership constraint is immediate:

Definition 34. Let M D .Q; ˙; ı; q0; F / be a deterministic finite automaton. A
regular language membership constraint is a constraint C associated with M

such that

REGULAR.X; M / D f� s.t. � is a tuple on X.C /and the sequence of values of �

belongs to the regular language recognized by M g
We reproduce Example 2 given in [99]. In rostering problems, the assignment

of consecutive shifts must often follow certain patterns. Consider a sequence of 5
variables with D.x1/ D fa; b; c; og, D.x2/ D fb; og, D.x3/ D fa; c; og, D.x4/ D
fa; b; og and D.x5/ D fag subject to the following constraints : between a’s and b’s,
a’s and c’s or b’s and c’s, there should be at least one o. In addition, the sequences
a; o; c, b; o; a and c; o; b are forbidden. This problem can be represented by a finite
automaton (See Fig. 9). Unfortunately, there is no explanation or help about the
construction of the automata in any of the papers published on this topic.

Fig. 9 A Deterministic Finite
Automaton for a common
pattern in rostering [99].
Integers are state. All states
are final

2

3

5

6

7

1

4

o

a

b

c

o

o

o

o

a

b

o

b

c
o

c

aa

b

c

5 A partial function ı.q; x/ does not have to be defined for any combination of q 2Q and x 2 ˙ ;
and if ı.q; x/ is defined and equal to q0 then it does not exist another symbol y such that
ı.q; y/ D q0.

114 J.-C. Régin

Then, Pesant proposed a consistency checking and a filtering algorithm based on
an idea similar as the one proposed by Trick for the KNAPSACK constraint [148].
A specific directed graph is built and the node that does not belong to some paths
are deleted and this lead to domain reductions. For a constraint C, we will denote by
LD.C / this digraph. it is built as follows:

The digraph contains several layers. Each layer contains a different node for each
state of the automaton. More precisely, if fq0; q1; : : : ; qsg are the states, then the
layer i contains the nodes fqi

0; qi
1; : : : ; qi

sg. If n variables are involved in the con-
straint, then there are nC1 layers. There are arcs only between nodes of consecutive
layers. The arcs between layer i and layer i C 1 correspond to the variable xi . An
arc from node qi

j to node qiC1
k

is admissible for inclusion only if there exists some
v 2 D.xi / such that ı.qj ; v/ D qk . The arc is labelled with the value v allowing the
transition between two states. In the first layer, the only node with outgoing arcs is
q1

0 since q0 is the only initial state. Figure 10 shows the layered digraph associated
with previous example.

The computation of the consistency of the constraint C and the establishment of
arc consistency correspond to path property in the layered digraph LD.C /. Pesant
proved that

� The constraint is consistent if and only if there exists a path from q1
0 to a node of

the layer nC 1

� A value .xi ; a/ is consistent with C if and only if there is a path q1
0 to a node of

the layer n C 1 which contain an arc from a node of layer i to a node of layer
i C 1 labelled by a.

The implementation of these properties can be done simply by removing all the
nodes of LD.C / which are not contained in any path from q1

0 to a node of the layer
n C 1. The deletion of these nodes lead to the removal of arcs and so may lead to
the disappearance of arcs labelled by a given value. In this case, this means that a

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

x1 x2 x3 x4 x5

value o
value a
value b
value c

L1 L2 L3 L4 L5 L6

Fig. 10 The initial layered digraph associated with a deterministic finite automaton for a common
pattern in rostering [99]. Li represents the nodes of the layer. For convenience, a node qi

j , that is
the node of the state qj in the layer i is represented by the index j

Global Constraints: A Survey 115

1 1

2

3

4

1

5

6

7

1

2

4

5

7

1

2

5

7

2

x1 x2 x3 x4 x5

value o
value a
value b
value c

L1 L2 L3 L4 L5 L6

Fig. 11 The “after pruning” layered digraph associated with a deterministic finite automaton for
a common pattern in rostering [99]. Li represents the nodes of the layer. For convenience, a node
qi

j , that is the node of the state qj in the layer i is represented by the index j

value is no longer consistent with the constraint and can be deleted from its domain.
Figure 11 is an example of such a deletion process for the previous example. For
instance, if nodes .L5; 3/ and .L5; 6/ have no successor, then they will be deleted.
Thus, node .L4; 6/ will be removed and also node .L3; 3/. Then, there is no longer
any dotted edge for x2 which means that value .x2; b/ is deleted.

Pesant proved that the identification of inconsistent values can be performed by
2 breadth first searches: one in the digraph starting from the node corresponding to
the initial state and one in the transpose digraph starting from nodes corresponding
to final states. Each node without any outgoing arc or any incoming arc is deleted.
Thus, if n is the number of variables involved in C , d the number of symbols and
s be the number of states, then the consistency and the arc consistency of C can be
established in O.nds/ [99]. Pesant also proposed an incremental versions of the fil-
tering algorithm by maintaining the layered digraph and by considering the deletion
of the value of a variable.

At the same time,6 Beldiceanu et al. proposed a nice reformulation of the problem
[12, 15]. The main idea is to reformulate the automaton into transition constraints.
A transition constraint is a constraint corresponding to the transition function.
It involves 3 variables, two having for values the states and one having for value
the symbols. In other word, the allowed combinations of values of a transition con-
straint is the set of 3-ary tuples .qi ; v; qj / such that ı.qi ; v/ D qj . We will denote
by T .ı; x; y; z/ such a constraint defined on the variable x, y and z. Then, instead
of defining explicitly the graph like with Pesant’s algorithm, only n C 1 transition
constraints are defined. All the transition constraints are defined from the same set
of tuples. Each transition constraint is defined on 2 state variables that is variables

6 This is really at the same time because the two papers were presented during the same session at
the same conference: CP’04.

116 J.-C. Régin

whose domain is the set of possible states and one x variable containing symbols.
The first transition constraint is T .ı; Q1; x1; Q2/ where Q1 contains only the initial
state, that is the state q0, x1 is the first variable and Q2 is the variable representing
the state that can be reached from q0 by using the transition ı involving a sym-
bol of x1. The second transition constraint is T .ı; Q2; x2; Q3/ and so on until
T .ı; Qn; xn; QnC1/ which is the last one and where QnC1 contains only the final
state of the automaton.

The transition constraint can be easily built from an automaton: each arc of the
automaton corresponds to a tuple of the constraint. More precisely, if there is an arc
(i.e a transition) from the state 3 to the state 6 with the symbol o then the triplet
.3; o; 6/ is an allowed combination of the transition constraint and conversely. The
following table contains all the triplets of the transition constraint corresponding to
the automata of the previous example:

.1; o; 1/ .1; a; 2/ .1; b; 3/ .1; c; 4/ .2; a; 2/

.2; o; 5/ .3; b; 3/ .3; o; 6/ .4; o; 7/ .4; c; 4/

.5; o; 5/ .5; a; 2/ .5; b; 3/ .6; o; 6/ .6; b; 3/

.6; c; 4/ .7; o; 7/ .7; c; 4/ .7; a; 2/

Thus, the reformulation replaces the REGULAR constraints by the constraints

T1 D T .ı; Q1; x1; Q2/, T2 D T .ı; Q2; x2; Q3/, T3 D T .ı; Q3; x3; Q4/

T4 D T .ı; Q4; x4; Q5/, T5 D T .ı; Q5; x5; Q6/

with Q1 D 1.

The strong result of the paper of Beldiceanu et al. [12] is that the establishment
of arc consistency for the reformulate problem is equivalent to the establishment of
the arc consistency for the REGULAR constraint because the reformulated problem
satisfies Corollary 1 of Preliminaries Section.

The establishment of arc consistency for a constraint of arity r with t allowed
tuples and the maintenance of this arc consistency can be performed in O.rt/ (See
Proposition 1 of TABLE constraint Section). Thus, for n transition constraints of
arity 3, we can establish arc consistency in O.njıj/ which is equivalent to O.nds/
with d symbols and s states because by definition of a deterministic finite automaton
when the symbol and the state are given for ı, then there is only one result, so
O.jıj/ D O.ds/. The overall time complexity is exactly the same as the Pesant’s
algorithm.

In addition, Quimper et al. [106, 107] showed that in practice this method
performs very well and better for some instances than the Pesant’s approach.
Furthermore, having a direct to access the transition constraints or to the state vari-
ables may be useful to model some others constraints easily. Either by changing the
tuples of the transition constraints or by defining new constraints involving the state
variables. For instance, the constraint Max.N; fx1; : : : ; xng/ which ensures that N

is the maximum value taken by x1 to xn may be implemented by a set of ternary
constraint QiC1 D max.xi C Qi / [107]. Hence, the reformulation seems to be
definitely an interesting approach.

However, this approach also shows clearly the limit of such a model: each vari-
able representing the symbols is involved in only one constraint and each state

Global Constraints: A Survey 117

variable is involved in at most 2 constraints. Therefore, it will be difficult to ex-
press some more complex constraints notably the one involving several variables in
any order.

In order to improve the expressiveness of the REGULAR constraint Beldiceanu
et al. [12, 15] proposed two improvements : the use of Non deterministic finite au-
tomata instead of deterministic finite automata DFA and the addition of counters.
We will detail the first aspect and not the second because it leads to a more com-
plex reformulation and the conditions for establishing arc consistency are also more
complex. We encourage the reader to look at the paper of Beldiceanu et al. for more
information.

Non deterministic Finite Automaton (NFA) differs from DFA only by the defi-
nition of ı the transition function. In a DFA, ı is a function which returns a state
from a state and a symbol whereas in an NFA ı returns a set of state from a state
and a symbol. NFA have the same power as DFA, in the sense that they recog-
nize only regular languages, but they can do so with exponentially fewer states than
a DFA.

The reformulation used to model a DFA can also be used to model an NFA.
The transition constraints are changed in order to take into account the ı function
of an NFA. This does not cause any particular problem because TABLE constraints
does not make any assumption on the properties of the tuples it contains. However,
the number of tuples of each constraint is increased from ds to ds2 because for a
given state and a given symbol we can have several states in an NFA. The total time
complexity for establishing arc consistency is in O.nds2/, that is a factor of s more
than for a DFA. Since the number of state for an NFA may have exponentially fewer
states than an equivalent DFA this can be worthwhile.

3.12.2 Context-Free Language Based Constraints(GRAMMAR)

Sellmann noticed that we can see any assignment of variables x1; : : : xn as a word
D.x1/ : : : D.xn/ whose letters are the values assigned to the variables. Therefore, it
is convenient to use formal languages to describe certain features that we would like
our solution to exhibit. Since languages are recognized by grammars, he defined the
GRAMMAR Constraint.

First, we recall the formal definition of a grammar. A grammar is a set of rules
for forming strings in a formal language. These rules that make up the grammar
describe how to form strings from the language’s alphabet that are valid according
to the language’s syntax.

Definition 35. A grammar is a tuple .N; ˙; P; S/ where

� N is a finite set of non-terminal symbols
� ˙ a finite set of terminal symbols (the alphabet)
� S a start symbol
� P a set of production rules such that P � .N [˙/�N.N [�/� � .N [�/� We

define by LG the language given by G

118 J.-C. Régin

We recall that � is the Kleene star operator : if V is a set of symbol, then V � is
the set of all string over symbol in V including the empty set
.

Definition 36. Let G D .N; ˙; P; S/ be a grammar. A grammar constraint is a
constraint C associated with G defined by

GRAMMAR.X; G/ D f� s.t. � is a tuple on X.C /

and the sequence of values of � is word of LGg
Formal language theory is very rich and propose some categorization of lan-

guages. For instance, we have already seen regular languages. As we mentioned it,
DFAs and NFAs recognize regular languages. Left regular grammars also generate
exactly all regular languages. Hence, there is a direct one-to-one correspondence
between the rules of a left regular grammar and those of a non-deterministic
finite state automaton, such that the grammar generates exactly the language the
automaton accepts.

Definition 37. A regular grammar is a formal grammar .N; ˙; P; S/ where the
rules of P are of the following forms

� A! a, where A is a non-terminal in N and a is a terminal in ˙

� A!
, where A is in N and
 is the empty string. and either
� A! Ba, where A and B are in N and a is in ˙ . In this case, the grammar is a

left regular grammar or of the form
� A! aB , where A and B are in N and a is in ˙ . In this case, the grammar is a

right regular grammar.

An example of a right regular grammar G with N DfS; Ag, ˙ D fa; b; cg,
P consists of the following rules:
S ! aS

S ! bA

A!

A! cA

and S is the start symbol. This grammar describes the same language as the regular
expression a � bc� (See Wikipedia).

It is possible to automatically build a finite automaton from a regular grammar.
Let G D .N; ˙; P; S/ be a left regular grammar, then the automaton A D
.Q; ˙; ı; q0; F / equivalent to G is defined as follows:

� Q D N [fqtg where qt is a new terminal state.
� q0 D S

� The rules of P define ı and F :

 if Pi D A! aB then ı.A; a/ D B

 if Pi D A! a then ı.A; a/ D qt

 if Pi D A!
 then A 2 F

Similar rules can be defined if the grammar is right regular.

Global Constraints: A Survey 119

Such a transformation means that we can use the filtering algorithms (or the
reformulations) designed for the DFA or the NFA to establish arc consistency for
regular grammars. So for regular grammars, we already have interesting filtering
algorithms.

However, grammars are more general than automata and there exist more com-
plex and more powerful grammars. Sellmann proposed to investigate constraints
based on grammars higher up in the Chomsky hierarchy [70, 138].

We recall the Chomsky’s hierarchy. We reproduce here the presentation of [138]:

Definition 38. Let ˛ and ˇ be string of symbols and non-terminal; and G D
.N; ˙; P; S/ be a grammar.

� If for all productions .˛ ! ˇ/ 2 P we have ˇ is at least as long as ˛, then the
grammar is context sensitive also named Type-1 grammar;

� P �N � .N [˙/� then the grammar is context-free also named Type-2
grammar;

� P �N �.˙�N [˙/� then the grammar is regular also named Type-3 grammar.

Note that a context-free grammar is a grammar in which all the production rules
are of the form V !w, where V is a non terminal symbol and w a string of ter-
minal and/or non-terminal. The “context-free” notion comes from the fact that a
non-terminal V can always be replaced by w, without considering its context.

Unfortunately, it is PSPACE Complete to decide if a Type-1 grammar recog-
nizes a given word. Since the Type-3 are equivalent to automaton for which filtering
algorithms exist, Sellmann proposed to consider the context-free grammar.

The consistency algorithm and the filtering algorithm establishing arc consis-
tency designed by Sellmann are mainly based on the Cocke–Younger–Kasami
(CYK) algorithm that determines whether a string can be generated by a given
context-free grammar and, if so, how it can be generated. The algorithm employs
bottom-up parsing and dynamic programming.

The standard version of CYK operates on context-free grammars given in
Chomsky normal form (CNF). Thus, Sellmann proposed to work with grammar
under this form. The complexity of the algorithms is asymptotically the same as the
CYK complexity that is O.n3jP j/. Kadioglu and Sellmann improved the behaviour
and the incremental aspect of the algorithm [69].

In parallel to the work of Sellmann and at the same time7, Quimper and Walsh
[106–109] proposed also a GRAMMAR constraint dedicated to context-free grammar
and associated with two filtering algorithms : the first one based on CYK and the
second one based on another parser written by Earley [47]. The algorithm based on
the CYK parser is different from Sellmann’s algorithm but has the same complexity.
The second algorithm is original and has the same time complexity as the others:
O.n3jP j/.

7 Once again it was exactly at the same time, because the two papers were presented at the same
conference : CP’06

120 J.-C. Régin

On the other hand, Katsirelos et al. [75] showed that it is possible to reformu-
late the GRAMMAR constraint into a REGULAR constraint. The transformation is
currently quite complex but it is promising.

These algorithms are complex and we will not detail them in this chapter.
In conclusion about the formal language constraints, we note that it seems not so

easy to define constraints via automata or grammars. The future will show whether
it is really the case or not.

4 Filtering Algorithm Design

There are several ways to design a filtering algorithm associated with a constraint.
However, for global constraints, we can identify different and important types of
filtering algorithms:

� Filtering algorithms based on a generic algorithm: GENERIC constraints, TABLE

constraints, REGULAR constraints, GRAMMAR constraints, etc. In this case, there
is no new algorithm to write provided that an algorithm checking the consistency
of the constraint is given or the list of allowed combinations is computed (TABLE

constraint) or an automaton is designed (REGULAR constraint) or a grammar is
defined (GRAMMAR constraint).

� Filtering algorithms based on model reformulation. There are several possibi-
lities:

 Either from the simultaneous presence of constraints the filtering algorithm
consists of adding some new constraints,

 Or a reformulation of the constraint is made, like for the REGULAR constraint
or the SUBSET-SUM.

 Or the constraint is remodelled as a flow like for the SEQUENCE constraint, or
by as set of cardinality constraints like for the CARD-MATRIX constraint.

� Filtering algorithms based on existing algorithms. This idea is to be helped by
existing results, like the ones based on dynamic programming (SUBSET-SUM) or
flow (GCC).

� Filtering algorithms based on ad-hoc algorithms.

For the two first cases, there is no real new algorithm that is written.
We propose to discuss in more detail the constraint addition idea, the reuse of

existing properties and the design of ad-hoc algorithms.
For convenience, we introduce the notion of pertinent filtering algorithm for a

global constraint:

Definition 39. A filtering algorithm associated with C D ^fC1; C2; : : : ; Cng is per-
tinent if it can remove more values than the propagation mechanism called on the
network .[C2CX.C /;DX.C/; fC1; C2; : : : ; Cng/.

Global Constraints: A Survey 121

4.1 Algorithms Based on Constraints Addition

A simple way to obtain a pertinent filtering algorithm is to deduce from the
simultaneous presence of constraints, some new constraints. In this case, the global
constraint is replaced by a set of constraints that is a superset of the one defining the
global constraint. That is, no new filtering algorithm is designed.

For instance, consider a set of 5 variables: X D fx1; x2; x3; x4; x5gwith domains
containing the integer values from 0 to 4; and four constraints ATLEAST.X; 1; 1/,
ATLEAST.X; 1; 2/, ATLEAST.X; 1; 3/, and ATLEAST.X; 1; 4/ which mean that each
value of f1; 2; 3; 4g has to be taken at least one time by a variable of X in every
solution.

An ATLEAST.X; #time; val/ constraint is a local constraint. If such a constraint
is considered individually, then the value val cannot be removed while it belongs
to more than one domain of a variable of X . A filtering algorithm establishing arc
consistency for this constraint consists of assigning a variable x to val if and only if
x is the only one variable whose domain contains val.

Thus, after the assignments x1D 0, x2D 0, and x3D 0, no failure is detected.
The domains of x4 and x5, indeed, remain the same because every value of
f1; 2; 3; 4g belongs to these two domains. Yet, there is obviously no solution in-
cluding the previous assignments, because 4 values must be taken at least 1 time
and only 2 variables can take them.

For this example, we can deduce another constraint by applying the following
property: if 4 values must be taken at least 1 time by 5 variables, then the other
values can be taken at most 5� 4 D 1, that is we have ATMOST.x; 1; 0/.

This idea can be generalized for a GCC.X; l; u/. Let card.ai / be a variable asso-
ciated with each value ai of D.X/ which counts the number of domains of X that
contain ai . We have li � card.ai / � ui . Then, we can simply deduce the constraintP

ai2D.X/ card.ai / D jX j; and each time the minimum or the maximum value of
card.ai / is modified, the values of li and ui are accordingly modified and the GCC

is modified.
This method is usually worthwhile because it is easy to implement. However,

the difficulty is to find the constraints that can be deduced from the simultaneous
presence of other constraints.

4.2 Filtering Algorithms Based on Existing Algorithms

The idea is to link the global constraints and some common properties of the graph
theory and then to automatically derive filtering algorithm from these properties.
It has mainly been proposed by Beldiceanu.

More precisely, the property that has to be satisfied by a global constraint may
sometimes be expressed by some properties in graph theory. This is clear for some
global constraints based on graph theory, like an assignment problem (see the
ALLDIFF constraint for instance) or a TREE constraint for which the equivalent

122 J.-C. Régin

properties defining a tree are well known and simple (see Chap. 3 in [26]): a tree
is connected graph without cycle, or a tree is a connected graph with n� 1 arcs, etc.
Of course, the goal is to reduce the number of properties that are considered and try
to factorize the results.

First, Beldiceanu proposed to describe global constraints in term of graph prop-
erties [7], but the goal, at that time, was mainly to try to express the constraints in
given formalism and to organize the existing global constraints (this will lead to
the well known catalogue of global constraints [9]). In this model, a constraint is
represented by a graph whose nodes correspond to variables involved in the con-
straint and whose arcs correspond to primitives constraints. At the beginning, it is
not known which of these primitives constraints will be respected. For instance, an
NVALUE constraint imposes that a set of variables take at most n different values.
The graph representing this constraint will have edges corresponding to binary con-
straints of equality, but we do not know which ones are going to be violated and
which ones will be respected. At the end, the satisfied constraints have to respect
some properties, for the NVALUE constraint, the number of connected component
of the graph has to be equal to n. Thus, this method identifies the solutions of a
global constraint to the sub-graphs of a unique initial digraph, which satisfy a set of
properties defining the constraint. Then, Hanak [60] tried to exploit this description
in order to derive automatically filtering algorithms. However, this is really from
2005 and 2006, that Beldiceanu proposed to consider the most common properties
and to derive from them and from the initial digraph some boundaries about the
possible sub-graphs that are solutions [16]. These boundaries provide the necessary
conditions to the satisfiability of a lot of global constraints. Then, some filtering
algorithms may be automatically derived from these properties [13, 14, 23, 24]: a
filtering algorithm consists in the identification of the arcs of the initial digraph that
belong (or not) to the sub-graphs corresponding to the solutions of the constraints.
Therefore, a filtering algorithm removes some edges that do not satisfy some prop-
erties on the digraph (for instance on the absence of cycle) or imposes some edges
to be in the digraph in order to satisfy some other properties (for instance, if the
graph must be connected, any bridge will be imposed).

There is a relation between Beldiceanu’s work and the notion of Graph Variable
introduced during the Rococo project [83]. Graph variables have been presented in
detail in [119]. Then, they have been more formalized in [44]. A graph variable is a
variable that will be instantiated to a sub-graph of an initial graph while respecting
some properties. The list of edges, the list of nodes, and the neighbourhood of each
node, can be viewed as set variables and the filtering algorithm remove from the
possible part of these sets or add to the required part of these sets some elements
in order to respect some constraints. In addition, it is possible to define a condition
for the existence of an arc (for instance, that an equality constraint exists between
the variables corresponding to its extremities), therefore the two approaches are
certainly close.

This method is quite interesting when the problem can be naturally expressed as a
graph problem. This can lead to elegant solutions for designing filtering algorithms.
Unfortunately, it is not obvious to represent some problems in graph theory (a sum

Global Constraints: A Survey 123

or a knapsack seem to be good examples) and this method did not bring any major
result. Maybe, the research has been too much focused on the factorization of strong
properties.

4.3 Dedicated Filtering Algorithms

The last method to design a pertinent filtering algorithm is to use the structure of
the constraint in order to define some properties identifying that some values are not
consistent with the global constraint.

The use of the structure of a constraint has four main advantages:

� The search for a support can be speeded up.
� Some inconsistent values can be identified without explicitly checking for every

value whether it has a support or not.
� The call of the filtering algorithm, that is the need to check the consistency of

some values, can be limited to some events that can be clearly identified.
� A better incrementality.

For instance, consider the constraint .x < y/, then:

� The search for a support for a value a of D.x/ is immediate because any value
b of D.y/ such that b > a is a support, so a is consistent with the constraint if
a < max.D.y//.

� We can immediately state that max.D.x// < max.D.y// and min.D.y// >

min.D.x// which means that all values of D.x/ greater than or equal to
max.D.y// and all values of D.y/ less than or equal to min.D.x// can be
removed.

� Since the deletions of values of D.y/ depends only on max.D.y// and the dele-
tions of values of D.x/ depends only on min.D.x//, the filtering algorithm must
be called only when max.D.y// or min.D.x// are modified. It is useless to call
it for the other modifications.

A good example of such filtering algorithm is given in [96]. We propose here a
simpler example for a well-known problem: the n-queens problem.

The n-queens problem involves placing n queens on a chess board in such a way
that none of them can capture any other using the conventional moves allowed by a
queen. In other words, the problem is to select n squares on a chessboard so that any
pair of selected squares is neither aligned vertically, horizontally, nor diagonally.

This problem is usually modeled by using one variable per queen; the value of
this variable represents the column in which the queen is set. If xi represents the
variable corresponding to queen i (that is the queen in row i), the constraints can be
stated in the following way. For every pair .i; j /, with i ¤ j , xi ¤ xj guarantees
that the columns are distinct; and xi C i ¤ xj C j and xi � i ¤ xj � j together
guarantee that the diagonals are distinct.

124 J.-C. Régin

Fig. 12 Rules of the ad-hoc
filtering algorithm for the
n-queens problem

queen
i x x x

i C 1

i C 2 X

queen
i x x

i C 1

i C 2

i C 3 X X

These relations are equivalent to defining an ALLDIFF constraint on the variables
xi , an ALLDIFF constraint on the variables xi C i , and an ALLDIFF constraint on the
variables xi � i .

We propose to use a specific constraint that is defined on xi and try to take into
account the simultaneous presence of three ALLDIFF constraints. Consider a queen
q: if there are more than three values in its domain, this queen cannot lead to the
deletion of one value of another queen, because three directions are constrained (the
column and the two diagonals) and so at least one value of queen q does not belong
to one of these directions. Therefore, a first rule can be stated:

� While a queen has more than three values in its domain, it is useless to study
the consequence of the deletion of one of its values because nothing can be de-
duced. From a careful study of the problem, we can deduce some other rules (see
Fig. 12):

� If a queen i has 3 values fa; b; cg, with a < b < c in its domain then the value b

of queens i � k and the value b of queen i C k can be deleted if b D aC k and
c D b C k.

� If D.xi / D fa; bg with a < b, then the values a and b of queens i � .b � a/ and
of queens i C .b � a/ can be deleted.

� If D.xi / D fag, then the value a C j for all queens i C j , and the value a � j

for all queens i � j can be deleted.

Therefore, a careful study of a constraint can lead to efficient filtering algorithms.
This method is certainly the most promising way. However, it implies a lot of work.
In [30], it is proposed to try to use first the general arc consistency algorithm in order
to study if the development of a powerful filtering algorithm could be worthwhile
for the considered problem. Using the solver itself then solves the consistency of the
constraint.

5 Discussion

5.1 Incrementality and Amortized Complexity

Two points play an important part in the quality of a filtering algorithm: the incre-
mentality and the amortized complexity. These points are linked together.

The incremental behaviour of a filtering algorithm is quite important in CP, be-
cause the algorithms are systematically called when a modification of a variable

Global Constraints: A Survey 125

involved in the constraint occurs. However, the algorithm should not be focus only
on this aspect. Sometimes, the computation from scratch can be much more quicker.
This point has been emphasized for general filtering algorithms based on the list
of supported values of a value [31]. An adaptive algorithm has been proposed
which outperforms both the non-incremental version and the purely incremental
version. There are two possible ways to improve the incremental behaviour of the
algorithm:

� The previous computations are taken into account when a new computation is
made in order to avoid doing the same treatment twice. For instance, this is the
idea behind the last support in some general filtering algorithms.

� The filtering algorithm is not systematically called after each modification. Some
properties that cannot lead to any deletions are identified, and the filtering algo-
rithm is called only when these properties are not satisfied. For instance, this is
the case for the model we present to solve the n-queens problem.

When a filtering algorithm is incremental, we can expect to compute its amor-
tized complexity. This is the complexity in regard to the number of deletions, or for
one branch of the tree-search. This is why the complexity can be analyse after a cer-
tain number of modifications. The amortized complexity is often more accurate for
filtering algorithm. Moreover, it can lead to new interesting algorithms that are not
too systematic. For instance, there is a filtering algorithm for the symmetric alldiff
constraint that is based on this idea. The filtering algorithm establishing arc con-
sistency calls another algorithm A n times; therefore, its complexity is n � O.A/.
Another algorithm has been proposed in [115], which can be described as follows:
pick a variable then run A, and let k be the number of deletions made by A. Then
you can run A for k other variables. By proceeding like that, the complexity is O.A/

per deletions. Of course, the algorithm does not necessarily establish arc consistency
but this may be a good compromise.

5.2 Incomplete Algorithms and Fixed-Point Property

Some global constraints correspond to NP-Complete problems. Hence, it is not
possible to check polynomially the consistency of the constraint to establish arc
consistency. Nevertheless, some filtering algorithms can be still proposed. This is
the case for a lot of constraints: the DIFF-N constraint, the SEQUENCE constraint,
the NVALUE constraint, the KNAPSACK constraint, the BIN-PACKING constraint
and so on.

When the problem is NP-Complete, the filtering algorithm considers a relaxation,
which is no longer difficult. Currently, the filtering algorithms associated with such
constraints are independent of the definition of the problem. In other words, a propa-
gation mechanism using them will reach a fixed-point. That is, the set of values that
are deleted is independent from the ordering according to the constraints defined and
from the ordering according to the filtering algorithms called. In order to guarantee

126 J.-C. Régin

such a property, the filtering algorithm is based either on a set of properties that can
be exactly computed (not approximated), or on a relaxation of the domains of the
variables (that is, the domains are considered as ranges instead of as a set of enu-
merated values). The loss of the fixed-point property leads to several consequences:
the set of values deleted by propagation will depend on the ordering along with the
stated constraints and on the ordering along with the variables involved in a con-
straint. This means that the debugging will be a much more difficult task because
fewer constraints can lead to more deleted values, and more constraints can lead to
fewer deleted values.

In the future, we will certainly need filtering algorithms with which the fixed-
point property of the propagation mechanism will be lost, because more domain-
reductions could be done with such algorithms. For instance, suppose that a filtering
algorithm is based on the removal of nodes in a graph that belong to a clique of
size greater than k. Removing all the values that do not satisfy this property is an
NP-Complete problem; therefore, the filtering algorithms will not be able to do it.
However, some of these values can be removed, for instance by searching for one
clique for every node (if a clique of size � k is found, then the node is deleted
else it remains in the graph). The drawback of this approach is that it will be diffi-
cult to guarantee that for a given node the graph will be traversed according to the
same ordering of nodes. This problem is closed to the canonical representation of
a graph; and currently this problem is unclassified: we do not know whether it is
NP-Complete or not.

5.3 Identification of the Filtering

It is important to understand precisely the advantages and the drawbacks of some
filtering algorithms, notably when the underlined problem of the constraint is an
NP-Complete problem. In this case, we cannot establish arc consistency. Thus, a
relaxation of the problem is considered and then some rules leading to domain re-
duction of the variables are defined. However, it is not really clear to figure out the
filtering performance even for the relaxed problem.

It could be much more convenient if each constraint was associated with well
defined filtering algorithm. For instance, if a constraint corresponds to an NP-
Complete problem, then it could be interesting to show that the filtering algorithm
established for this constraint is in fact an AC filtering algorithm for a specific
relaxation of the constraint. It would help us a lot in the comparison of filtering
algorithms.

5.4 Closure

In general, a filtering algorithm removes some values that do not satisfy a property.
The question is “Should a filtering algorithm be closed with regard to this property?”

Global Constraints: A Survey 127

Consider the values deleted by the filtering algorithm. Then, the consequences of
these new deletions can be:

� Taken into account by the same pass of the filtering algorithm.
� Or ignored by the same pass of the filtering algorithm.

In the first case, there is no need to call the filtering algorithm again, and in
the second case, the filtering algorithm should be called again. When the filtering
algorithm is good, usually the first solution is the good one, but when the filtering
algorithm consists of calling another algorithm for every variable or every value, it
is possible that any deletion calls the previous computations into question. Then, the
risk is to have to check again and again the consistency of some values. It is also
possible that the filtering algorithm internally manages a mechanism that is closed
to the propagation mechanism of the solver, which is redundant.

In this case, it can be better to stop the filtering algorithm when some modi-
fications occur in order to use the other filtering algorithms to further reduce the
domains of the variable and to limit the number of useless calls.

5.5 Power of a Filtering Algorithm

Arc consistency is a strong property, but establishing it costs sometimes in practice.
Thus, some researchers have proposed to use weaker properties in practice. That is,
to let the user to choose which type of filtering algorithm should be associated with
a constraint. In some commercial CP Solvers, such as ILOG-CP, the user is pro-
vided with such a possibility. Therefore, it is certainly interesting to develop some
filtering algorithms establishing properties weaker than arc consistency. However,
arc consistency has some advantages that must not be ignored:

� The establishing of arc consistency is much more robust. Sometimes, it is time
consuming, but it is often the only way to design a good model. During the
modelling phase, it is very useful to use strong filtering algorithms, even if,
sometimes, some weaker filtering algorithms can be used to improve the time
performance of the final model. It is rare to be able to solve some problems
in a reasonable amount of time with filtering algorithms establishing properties
weaker than arc consistency and not be able to solve these problems with a filter-
ing algorithm establishing arc consistency.

� There is a room for the improvement of filtering algorithms. Most of the CP
solvers were designed before the introduction of global constraints in CP. We
could imagine that a solver especially designed to efficiently handle global con-
straints could lead to better performance. On the other hand, the behaviour of
filtering algorithms could also be improved in practice, notably by identifying
more quickly the cases where no deletion is possible.

� For binary CSPs,for a long time, it was considered that the Forward Checking
algorithm (the filtering algorithms are triggered only when some variables are

128 J.-C. Régin

instantiated) was the most efficient one, but several studies showed that the sys-
tematic call of filtering algorithms after every modification is worthwhile (for
instance see [28]).

All industrial solver vendors aim to solve real world applications and claim that
the use of strong filtering algorithms is often essential.

Thus, we think that the studies about filtering algorithms establishing properties
weaker than arc consistency should take into account the previous points and mainly
the second point. On the other hand, we think that it is really worthwhile to work on
techniques stronger than arc consistency, such as singleton arc consistency which
consists of studying the consequences of the assignments of every value to every
variable.

6 Conclusion

Filtering algorithms are one of the main strengths of CP. In this chapter, we have
presented several useful global constraints with references to the filtering algorithms
associated with them. We have also detailed these filtering algorithms for some con-
straints. In addition, we have tried to identify several ways to design new filtering
algorithms based on the existing work. At last, we have identified some problems
that deserve to be addressed in the future.

References

1. Ågren M, Beldiceanu N, Carlsson M, Sbihi M, Truchet C, Zampelli S (2009) Six ways of
integrating symmetries within non-overlapping constraints. In: CPAIOR’09, pp 11–25

2. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, NJ
3. Amilhastre J (1999) Reprsentation par un automate d’ensemble de solutions de problme de

satisfaction de contraintes. PhD thesis, University of Montpellier II
4. Aron I, Van Hentenryck P (2002) A constraint satisfaction approach to the robust spanning

tree problem with interval data. In: Proceedings of UAI, pp 18–25
5. Artiouchine K, Baptiste P (2005) Inter-distance constraint: an extension of the all-different

constraint for scheduling equal length jobs. In: CP, pp 62–76
6. Artiouchine K, Baptiste P (2007) Arc-b-consistency of the inter-distance constraint. Con-

straints 12(1):3–19
7. Beldiceanu N (2000) Global constraints as graph properties on a structured network of ele-

mentary constraints of the same type. In: Proceedings CP, pp 52–66
8. Beldiceanu N (2001) Pruning for the minimum constraint family and for the number of dis-

tinct values constraint family. In: Proceedings CP’01. Pathos, Cyprus, pp 211–224
9. Beldiceanu N (2005) Global constraint catalog. In: SICS technical report, pp T–2005–08

10. Beldiceanu N, Carlsson M (2001) Revisiting the cardinality operator and introducing the
cardinality-path constraint family. In: Proceedings ICLP, vol 2237, pp 59–73

11. Beldiceanu N, Carlsson M (2001) Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraints. Proceedings CP’01, pp 377–391

12. Beldiceanu N, Carlsson M, Debruyne R, Petit T (2005) Reformulation of global constraints
based on constraint checkers. Constraints 10(4):339–362

Global Constraints: A Survey 129

13. Beldiceanu N, Carlsson M, Demassey S, Petit T (2006) Filtrage bas sur des proprits de
graphes. In: Proceedings of JFPC’06

14. Beldiceanu N, Carlsson M, Demassey S, Petit T (2006) Graph-based filtering. In: Proceedings
of CP’06, pp 59–74

15. Beldiceanu N, Carlsson M, Petit T (2004) Deriving filtering algorithms from constraint check-
ers. In: CP’04, pp 107–122

16. Beldiceanu N, Carlsson M, Rampon J-X, Truchet C (2005) Graph invariants as necessary
conditions for global constraints. In: Proceedings of CP’05, pp 92–106

17. Beldiceanu N, Contejean E (1994) Introducing global constraints in chip. Math Comput
Model 20(12):97–123

18. Beldiceanu N, Flener P, Lorca X (2005) The tree constraint. In: Proceedings of CPAIOR05,
pp 64–78

19. Beldiceanu N, Flener P, Lorca X (2008) Combining tree partitioning, precedence, and incom-
parability constraints. Constraints 13(4):459–489

20. Beldiceanu N, Guo Q, Thiel S (2001) Non-overlapping constraints between convex polytopes.
In: Proceedings CP’01, Pathos, Cyprus, 2001, pp 392–407

21. Beldiceanu N, Katriel I, Lorca X (2006) Undirected forest constraints. In: CPAIOR’06,
pp 29–43

22. Beldiceanu N, Lorca X (2007) Necessary condition for path partitioning constraints. In:
CPAIOR’07, pp 141–154

23. Beldiceanu N, Petit T, Rochart G (2005) Bornes de caractristiques de graphes. In: Proceedings
of JFPC’05

24. Beldiceanu N, Petit T, Rochart G (2005) Bounds of graph characteristics. In: Proceedings of
CP’05, pp 742–746

25. Beldiceanu N, Carlsson M, Poder E, Sadek R, Truchet C (2007) A generic geometrical con-
straint kernel in space and time for handling polymorphic k-dimensional objects. In: CP’07,
pp 180–194

26. Berge C (1970) Graphe et Hypergraphes. Dunod, Paris
27. Bessiere C, Hebrard E, Hnich B, Kiziltan Z, Quimper C-G, Walsh T (2007) Reformulating

global constraints: the slide and regular constraints. In: Proceedings of SARA’07, pp 80–92
28. Bessière C, Régin J-C (1996) Mac and combined heuristics: two reasons to forsake fc (and

cbj?) on hard problems. In: CP96, second international conference on principles and practice
of constraint programming, Cambridge, USA, pp 61–75

29. Bessière C, Régin J-C (1997) Arc consistency for general constraint networks: preliminary
results. In: Proceedings of IJCAI’97, Nagoya, pp 398–404

30. Bessière C, Régin J-C (1999) Enforcing arc consistency on global constraints by solving
subproblems on the fly. In: Proceedings of CP’99, Alexandria, VA, USA, pp 103–117

31. Bessière C, Régin J-C (2001) Refining the basic constraint propagation algorithm. In:
Proceedings of IJCAI’01, Seattle, WA, USA, pp 309–315

32. Bleuzen-Guernalec N, Colmerauer A (1997) Narrowing a 2n-block of sortings in o(nlog(n)).
In: Proceedings of CP’97, Linz, Austria, pp 2–16

33. Brand S, Narodytska N, Quimper C-G, Stuckey P, Walsh T (2007) Encodings of the sequence
constraint. In: Proceedings of CP 2007, pp 210–224

34. Carlsson M, Beldiceanu N (2002) Arc-consistency for a chain of lexicographic ordering con-
straints. Technical Report T2002:18, SICS

35. Carlsson M, Beldiceanu N (2002) Revisiting the lexicographic ordering constraint. Technical
Report T2002:17, SICS

36. Carlsson M, Beldiceanu N (2004) From constraints to finite automata to filtering algorithms.
In: European Symposium on Programming (ESOP’04), pp 94–108

37. Caseau Y, Guillo P-Y, Levenez E (1993) A deductive and object-oriented approach to a com-
plex scheduling problem. In: Proceedings of DOOD’93

38. Caseau Y, Laburthe F (1997) Solving various weighted matching problems with constraints.
In: Proceedings CP97, Austria, pp 17–31

39. Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press,
Cambridge

130 J.-C. Régin

40. Damaschke P, Müller H, Kratsch D (1990) Domination in convex and chrodal bipartite graphs.
Inform Process Lett 36:231–236

41. Dantzig G (1957) Discrete variable extremum problems. Oper Res 5:226–277
42. Dechter R, Meiri I, J Pearl (1991) Temporal constraint network. Artif Intell 49(1–3):61–95
43. Dixon B, Rauch M, Tarjan R (1992) Verification and sensitivity analysis of minimum span-

ning trees in linear time. SIAM J Comput 21(6):1184–1192
44. Dooms G, Deville Y, Dupont P (2005) Cp(graph): introducing a graph computation domain

in constraint programming. In: Proceedings of CP’05
45. Dooms G, Katriel I (2006) The minimum spanning tree constraint. In: CP’06, pp 152–166
46. Dooms G, Katriel I (2007) The not-too-heavy spanning tree constraint. In: Proceedings of

CPAIOR07, pp 59–70
47. Earley J (1970) An efficient context-free parsing algorithm. Commu ACM 2(13):94–102
48. Fahle T, Sellmann M (2002) Cost based filtering for the constrained knapsack problem. Ann

Oper Res 115(1–4):73–93
49. Focacci F, Lodi A, Milano M (1999) Cost-based domain filtering. In: Proceedings CP’99,

Alexandria, VA, USA, pp 189–203
50. Focacci F, Lodi A, Milano M (1999) Integration of cp and or methods for matching problems.

In: Proceedings CP-AI-OR 99, Ferrara, Italy
51. Freuder E, Wallace R (1992) Partial constraint satisfaction. Artif Intell 58:21–70
52. Frisch A, Hnich B, Kiziltan Z, Miguel I, Walsh T (2002) Global constraints for lexicographic

orderings. In: CP’02, pp 93–108
53. Gellermann T, Sellmann M, Wright R (2005) Shorter path constraints for the resource con-

strained shortest path problem. In: CPAIOR’05, pp 201–216
54. Gent I, Jefferson C, Miguel I, Nightingale P (2007) Data structures for generalised arc

consistency for extensional constraints. In: Proceedings of AAAI’07, Vancouver, Canada,
pp 191–197

55. Gervet C (1994) Conjunto: constraint logic programming with finite set domains. In: Pro-
ceedings ILPS-94

56. Gervet C (2006) Constraints over structured domains. In: Handbook of constraint program-
ming. Elsevier, Amsterdam

57. Gervet C (2006) Programmation par Contraintes sur Domaines Ensemblistes. Habilitation à
diriger des Recherches, Université de Nice-Sophia Antipolis

58. Gervet C, Van Hentenryck P (2006) Length-lex ordering for set csps. In: AAAI
59. Gomes C, Regin J-C (2003) The alldiff matrix. Technical report, Intelligent Information In-

stitute – Cornell University
60. Hanak D (2003) Implementing global constraints as structured graphs of elementary con-

straints. Sci J Acta Cybern 16:241–258
61. Hellsten L, Pesant G, van Beek P (2004) A domain consistency algorithm for the stretch

constraint. In: Proceedings of CP’04, pp 290–304
62. Henz M, Müller T, Thiel S (2003) Global constraints for round robin tournament scheduling.

Eur J Oper Res 153(1):92–101
63. van Hoeve W-J, Katriel I (2006) Global constraints. In: Handbook of constraint programming.

Elsevier, Amsterdam
64. van Hoeve W-J, Pesant G, Rousseau L-M, Sabharwal A (2006) Revisiting the sequence con-

straint. In: Proceedings of CP 2006, Nantes, France, pp 620–634
65. van Hoeve W-J, Pesant G, Rousseau L-M, Sabharwal A (2009) New filtering algorithms for

combinations of among constraints. Constraints 14:273–292
66. ILOG (1999) ILOG Solver 4.4 User’s manual. ILOG S.A
67. Janssen P, Vilarem M-C (1988) Problmes de satisfaction de contraintes: Techniques de rsolu-

tion et application la synthse de peptides. Technical Report 54, CRIM
68. Jégou P (1991) Contribution à l’Etude des Problèmes de Satisfaction de Contraintes:

Algorithmes de Propagation et de Résolution, Propagation de Contraintes dans les Réseaux
dynamiques. PhD thesis, Université de Montpellier II

69. Kadioglu S, Sellmann M (2008) Efficient context-free grammar constraints. In: AAAI-08,
pp 310–316

Global Constraints: A Survey 131

70. Kadioglu S, Sellmann M (2009) Grammar constraints. Constraints 15(1):117–144
71. Katriel I (2004) Dynamic heaviest paths in dags with arbitrary edge weights. In: CPAIOR’04,

pp 190–199
72. Katriel I, Michel L, Van Hentenryck P (2005) Maintaining longest paths incrementally.

Constraints 10(2):159–183
73. Katriel I, Sellmann M, Upfal E, Van Hentenryck P (2007) Propagating knapsack constraints

in sublinear time. In: AAAI-07, pp 231–236
74. Katriel I, Thiel S (2003) Fast bound consistency for the global cardinality constraint. In: Pro-

ceedings CP’03, Kinsale, Ireland, pp 437–451
75. Katsirelos G, Narodytska N, Walsh T (2009) Reformulating global grammar constraints.

In: CPAIOR’09, pp 132–147
76. Katsirelos G, Walsh T (2007) A compression algorithm for large arity extensional constraints.

In: Proceedings of CP’07, Providence, USA, pp 379–393
77. Kocjan W, Kreuger P (2004) Filtering methods for symmetric cardinality constraints. In: First

international conference, CPAIOR 2004, Nice, France, pp 200–208
78. Kowalski R (1979) AlgorithmD logicC control. Comm ACM 22(7):424–436
79. Labbé M, Laporte G, Martello S (2003) Upper bounds and algorithms for the maximum

cardinality bin packing problem. Eur J Oper Res 149(3):490–498
80. Larrosa J, Meseguer P, Schiex T, Verfaillie G (1998) Reversible DAC and other improvements

for solving Max-CSP. In: Proceedings AAAI, pp 347–352
81. Larrosa J, Meseguer P (1996) Exploiting the use of DAC in Max-CSP. In: Proceedings of

CP’96
82. Lawler E (1976) Combinatorial optimization: networks and matroids. Holt, Rinehart and

Winston
83. Le Pape C, Perron L, Régin J-C, Shaw P (2002) Robust and parallel solving of a network

design problem. In: CP’02, Ithaca, NY, USA, pp 633–648
84. Leconte M (1996) A bounds-based reduction scheme for constraints of difference.

In: Constraint-96, second international workshop on constraint-based reasoning, Key West,
FL, USA

85. Lecoutre C, Szymanek R (2006) Generalized arc consistency for positive table constraints.
In: Proceedings of CP’06, Providence, USA, pp 284–298

86. Lhomme O (2004) Arc-consistency filtering algorithms for logical combinations of con-
straints. In: Proceedings of CP-AI-OR’04, Nice, France

87. Lhomme O, Régin J-C (2005) A fast arc consistency algorithm for n-ary constraints. In: Pro-
ceedings of AAAI’05, Pittsburgh, USA, pp 405–410

88. Lopez-Ortiz A, Quimper C-G, Tromp J, van Beek P (2003) A fast and simple algorithm
for bounds consistency of the alldifferent constraint. In: IJCAI’03, Acapulco, Mexico,
pp 245–250

89. Maher M (2009) Open constraints in a boundable world. In: CPAIOR, pp 163–177
90. Maher M, Narodytska N, Quimper C-G, Walsh T (2008) Flow-based propagators for the

sequence and related global constraints. In: Proceedings CP 2008, pp 159–174
91. Manku G (1994) An o(mC n log* n) algorithm for sensitivity analysis of minimum spanning

trees. citeseer.ist.psu.edu/manku94om.html
92. Martello S, Toth P (1990) Knapsack problems. Wiley, New York
93. Melhorn K, Thiel S (2000) Faster algorithms for bound-consistency of the sortedness and the

alldifferent constraint. In: Proceedings of CP’00, Singapore, pp 306–319
94. Micali S, Vazirani VV (1980) An O.

pjV jjEj/ algorithm for finding maximum matching in
general graphs. In: Proceedings 21st FOCS, pp 17–27

95. Michel L, Van Hentenryck P (2003) Maintaining longest paths incrementally. In: CP’03,
pp 540–554

96. Pachet F, Roy P (1999) Automatic generation of music programs. In: Proceedings of CP’99,
Alexandria, VA, USA, pp 331–345

97. Pesant G (2001) A filtering algorithm for the stretch constraint. In: Proceedings CP’01,
Pathos, Cyprus, pp 183–195

132 J.-C. Régin

98. Pesant G (2003) A regular language membership constraint for sequence of variables.
In: Workshop on modelling and reformulation constraint satisfaction problems, pp 110–119

99. Pesant G (2004) A regular language membership constraint for finite sequences of variables.
In: Proceedins of CP’04, pp 482–495

100. Pesant G, Régin J-C (2005) Spread: a balancing constraint based on statistics. In: CP’05,
pp 460–474

101. Petit T, Régin J-C, Bessière C (2001) Specific filtering algorithms for over-constrained prob-
lems. In: Proceedings CP’01, Pathos, Cyprus, pp 451–465

102. Petit T, Régin J-C, Bessière C (2002) Range-based algorithms for max-csp. In: Proceedings
CP’02, Ithaca, NY, USA, pp 280–294

103. Puget J-F (1994) A c++ implementation of clp. Technical report, ILOG S.A
104. Quimper C-G, López-Ortiz A, Pesant G (2006) A quadratic propagator for the inter-distance

constraint. In: AAAI-06
105. Quimper C-G, van Beek P, López-Ortiz A, Golynski A, Sadjad SB (2003) An efficient bounds

consistency algorithm for the global cardinality constraint. In: Proceedings CP’03, Kinsale,
Ireland, pp 600–614

106. Quimper C-G, Walsh T (2006) Global grammar constraints. In: CP’06, pp 751–755
107. Quimper C-G, Walsh T (2006) Global grammar constraints. Technical report, Waterloo

University
108. Quimper C-G, Walsh T (2007) Decomposing global grammar constraints. In: CP’07,

pp 590–604
109. Quimper C-G, Walsh T (2008) Decomposing global grammar constraints. In: NECTAR,

AAAI-08, pp 1567–1570
110. Régin J-C (1994) A filtering algorithm for constraints of difference in CSPs. In: Proceedings

AAAI-94, Seattle, Washington, pp 362–367
111. Régin J-C (1995) Développement d’outils algorithmiques pour l’Intelligence Artificielle.

Application à la chimie organique. PhD thesis, Université de Montpellier II
112. Régin J-C (1996) Generalized arc consistency for global cardinality constraint. In: Proceed-

ings AAAI-96, Portland, Oregon, pp 209–215
113. Régin J-C (1997) The global minimum distance constraint. Technical report, ILOG
114. Régin J-C (1999) Arc consistency for global cardinality with costs. In: Proceedings of CP’99,

Alexandria, VA, USA, pp 390–404
115. Régin J-C (1999) The symmetric alldiff constraint. In: Proceedings of IJCAI’99, Stockholm,

Sweden, pp 425–429
116. Régin J-C (2002) Cost based arc consistency for global cardinality constraints. Constraints

7(3-4):387–405
117. Régin J-C (2003) Global constraints and filtering algorithms. In: Milano M (ed) Constraints

and integer programming combined Kluwer, Dordrecht
118. Régin J-C (2003) Using constraint programming to solve the maximum clique problem.

In: CP’03, Kinsale, Ireland, pp 634–648
119. Régin J-C (2004) Modeling problems in constraint programming. In: Tutorial CP’04 Avail-

able at www.constraint-programming.com/people/regin/papers/modelincp.pdf
120. Régin J-C (2004) Modélisation et Contraintes globales en programmation par contraintes.

Habilitation à diriger des Recherches, Université de Nice-Sophia Antipolis
121. Régin J-C (2005) Combination of among and cardinality constraints. In: Proceedings of

CP-AI-OR’05
122. Régin J-C (2008) Simpler and incremental consistency checking and arc consistency filtering

algorithms for the weighted spanning tree constraint. In: CPAIOR’08, pp 233–247
123. Régin J-C, Gomes C (2004) The cardinality matrix constraint. In: CP’04, Toronto, Canada,

pp 572–587
124. Régin J-C, Petit T, Bessière C, Puget J-F (2000) An original constraint based approach for

solving over constrained problems. In: Proceedings of CP’00, Singapore, pp 543–548
125. Régin J-C, Petit T, Bessière C, Puget J-F (2001) New lower bounds of constraint violations

for over-constrained problems. In: Proceedings CP’01, Pathos, Cyprus, pp 332–345

Global Constraints: A Survey 133

126. Régin J-C, Puget J-F (1997) A filtering algorithm for global sequencing constraints. In:
CP97: Third international conference on principles and practice of constraint programming,
pp 32–46

127. Régin J-C, Rueher M (2000) A global constraint combining a sum constraint and difference
constraints. In: Proceedings of CP’00, Singapore, pp 384–395

128. Sadler A, Gervet C (2004) Hybrid set domains to strengthen constraint propagation and
reduce symmetries. In: CP, pp 604–618

129. Sadler A, Gervet C (2008) Enhancing set constraint solvers with lexicographic bounds.
J Heuristics 14(1):23–67

130. Schaus P (2009) Solving balancing and bin-packing problems with constraint programming.
PhD thesis, Université catholique de Louvain Louvain-la-Neuve

131. Schaus P, Deville Y, Dupont P, Régin J-C (2007) The deviation constraint. In: CPAIOR’07,
pp 260–274

132. Schaus P, Deville Y, Dupont P, Régin J-C (2006) Simplification and extension of the spread
constraint. In: CP’06, Workshop on constraint propagation and implementation, pp 72–92

133. Schaus P, Deville Y, Dupont P, Régin J-C (2007) Simplification and extension of the SPREAD
constraint. In: Future and trends of constraint programming, ISTE, Washington DC, pp 95–99

134. Schaus P, Deville Y (2008) A global constraint for bin-packing with precedences: application
to the assembly line balancing problem. In: AAAI-08, pp 369–374

135. Sellmann M (2003) Approximated consistency for knapsack constraints. In: CP’03,
pp 679–693

136. Sellmann M (2003) Cost-based filtering for shorter path constraints. In: CP’03, pp 694–708
137. Sellmann M (2004) The practice of approximated consistency for knapsack constraints. In:

AAAI-04, pp 179–184
138. Sellmann M (2006) The theory of grammar constraints. In: CP’06, pp 530–544
139. Sellmann M, Gellermann T, Wright R (2007) Cost-based filtering for shorter path constraints.

Constraints 12(2):207–238
140. Shaw P (2004) A constraint for bin packing. In: CP’04, pp 648–662
141. Simonis H (1996) Problem classification scheme for finite domain constraint solving. In:

CP96, Workshop on constraint programming applications: an inventory and taxonomy, Cam-
bridge, USA, pp 1–26

142. Sorlin S, Solnon C (2004) A global constraint for graph isomorphism problems. In:
CPAIOR’04, pp 287–302

143. Sorlin S, Solnon C (2008) A parametric filtering algorithm for the graph isomorphism prob-
lem. Constraints 13(4):518–537

144. Stergiou K, Walsh T (1999) The difference all-difference makes. In: Proceedings of IJCAI’99,
Stockholm, Sweden, pp 414–419

145. Tarjan R (1982) Sensitivity analysis of minimum spanning trees and shortest path trees. In-
form Process Lett 14(1):30–33

146. Tarjan RE (1983) Data structures and network algorithms. In: CBMS-NSF regional confer-
ence series in applied mathematics. SIAM, Philadelphia

147. Trick M (2001) A dynamic programming approach for consistency and propagation for knap-
sack constraints. In: Proceedings of CPAIOR’01

148. Trick M (2003) A dynamic programming approach for consistency and propagation for knap-
sack constraints. Ann Oper Res 118:73–84

149. Van Hentenryck P, Deville Y (1991) The cardinality operator: a new logical connective for
constraint logic programming. In: Proceedings of ICLP-91, Paris, France, pp 745–759

150. Van Hentenryck P, Deville Y, Teng CM (1992) A generic arc-consistency algorithm and its
specializations. Artif Intell 57:291–321

151. Van Hentenryck P, Michel L (2003) Control abstractions for local search. In: CP’03, pp 66–80
152. Van Hentenryck P, Saraswat V, Deville Y (1998) Design, implementation, and evaluation of

the constraint language cc(fd). J Logic Program 37(1–3):139–164
153. Van Hentenryck P, Yip J, Gervet C, Dooms G (2008) Bound consistency for binary length-lex

set constraints. In: AAAI, pp 375–380

134 J.-C. Régin

154. Vempaty N (1992) Solving constraint satisfaction problems using finite state automata.
In: AAAI-92, pp 453–458

155. Wallace R (1994) Directed arc consistency preprocessing as a strategy for maximal constraint
satisfaction. In: Proceedings ECAI, pp 69–77

156. Zampelli S, Deville Y, Solnon C, Sorlin S, Dupont P (2007) Filtering for subgraph isomor-
phism. In: CP, pp 728–742

157. Zhou J (1996) A constraint program for solving the job-shop problem. In: Proceedings of
CP’96, Cambridge, pp 510–524

158. Zhou J (1997) Computing smallest cartesian products of intervals: application to the jobshop
scheduling problem. PhD thesis, Université de la Méditerranée, Marseille

Decomposition Techniques for Hybrid
MILP/CP Models applied to Scheduling
and Routing Problems

Pedro M. Castro, Ignacio E. Grossmann, and Louis-Martin Rousseau

Abstract This chapter provides a review of decomposition algorithms for models
that are formulated as hybrid mixed-integer linear/constraint programming prob-
lems, such as logic Benders Decomposition and Constraint Programming-Based
Column Generation. We first focus the decomposition techniques on single stage
scheduling problems with parallel machines where the hybrid model provides a
natural representation as the decisions decompose into assignment and sequencing
decisions. We describe a general decomposition algorithm for the hybrid MILP/CP
model in terms of a Benders decomposition scheme, as well as in terms of a branch
and cut framework. We then consider Vehicle Routing and Crew Rostering appli-
cations to illustrate how a Hybrid Branch-and-Price method can be applied, and we
discuss the different models that have been proposed in the literature.

1 Introduction

Many discrete/continuous optimization problems can be formulated either as mixed-
integer linear programs (MILP) or as constrained programming (CP) problems.
A number of authors have compared alternative MILP and CP based formulations
for solving a variety of problems [38, 42]. Some of their main findings include the
following:

� MILP based techniques are efficient when the LP relaxation is tight and the mod-
els have a structure that can be effectively exploited, as well as having objective
functions involving several or many variables.

� CP based techniques are better suited for handling highly constrained discrete
optimization problems that involve few variables in the objective function or the
search of a feasible solution.

P.M. Castro (�)
Unidade de Modelação e Optimização de Sistemas Energéticos, Laboratório Nacional de Energia
e Geologia, 1649-038 Lisboa, Portugal
e-mail: pedro.castro@ineti.pt

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 4,
c� Springer Science+Business Media, LLC 2011

135

pedro.castro@ineti.pt

136 P.M. Castro et al.

Since the two approaches appear to have complementary strengths, in order to solve
difficult problems that are not effectively solved by either of the two, several re-
searchers have proposed models that integrate the two paradigms. The integration
between MILP and CP can be achieved in two ways [42, 43, 77]:

(a) By combining MILP and CP constraints into one hybrid model. In this case, a
hybrid algorithm that integrates constraint propagation with linear programming
in a single search tree is also needed for the solution of the model [39, 68].

(b) By decomposing the original problem into two subproblems: one MILP and
one CP subproblem. Each model is solved separately and information obtained
while solving one subproblem is used for the solution of the other subproblem
[9, 47, 72].

It is the major objective of this paper to provide a review of the decomposition
approach based on MILP and CP subproblems and apply it to single stage schedul-
ing problems with parallel machines and vehicle routing problems. This chapter
relies heavily on the articles by Jain and Grossmann [47], Rousseau et al. [70], and
Gualandi and Malucelli [31].

2 Literature Review

A number of papers have compared the performance of CP- and MILP-based ap-
proaches for solving a number of different problems, for example, the modified
generalized assignment problem [20], the template design problem [62], the pro-
gressive party problem [74], and the change problem [38]. Properties of a number
of different problems were considered by Darby-Dowman and Little [19], and their
effect on the performance of CP and MILP approaches were presented. As discussed
earlier, these papers showed that MILP is very efficient when the relaxation is tight,
and the models have a structure that can be effectively exploited. CP works better for
highly constrained discrete optimization problems where expressiveness of MILP is
a major limitation.

Most of the attempts [39, 68] to integrate CP and MILP use constraint propaga-
tion along with linear programming in a single search tree to obtain bounds on the
objective and to reduce the domains of the variables. In these approaches, a com-
plete CP model and at the least a corresponding partial MILP model are required.
This is because CP is a richer modeling tool and not all CP constraints may be easily
reformulated as MILP constraints. These approaches in some sense perform redun-
dant computations because a constraint-propagation problem and a simplex problem
are solved at every node. For some problems, this may be justified because they are
intractable for either of the two methods. Rodosek et al. [68] presented a systematic
approach for transforming a CP model into a corresponding MILP model. However,
automatic translation from a CP model to an MILP model may result in a poor

Decomposition Techniques for Hybrid MILP/CP Models 137

model involving numerous big-M constraints (poor LP relaxations). In this case, the
advantage of performing “Global Reasoning” using LP relaxation is essentially lost.
If automatic translation is not used, then the user has to model the problems for both
approaches.

Hooker et al. [46] have argued that a new modeling paradigm may be required
to perform efficient integration of MILP- and CP-based approaches. The model-
ing framework is motivated by the Mixed Logic/Linear modeling framework that
was proposed by Hooker and Osorio [45]. Ottosson et al. [57] presented algorithms
for solving such models. For a production-planning problem, they showed that the
computational performance of the proposed method vis-a-vis pure MILP and CP
approaches was significantly better. Bockmayr and Kasper [8] did an interesting
analysis of CP and MILP approaches, and presented a unifying framework, Branch
and Infer, that can be used to develop various integration strategies. They divide
constraints for both MILP and CP into two different categories, primitive and non-
primitive. Primitive constraints are those for which there exists a polynomial-time
solution algorithm, and nonprimitive constraints are those for which this is not true.
The interesting aspect about this classification is that some of the primitive con-
straints in CP are nonprimitive in MILP and vice versa. They also discussed how
nonprimitive constraints can be used to infer primitive constraints and the use of
symbolic constraints for MILPs. Raman and Grossmann [64, 65] earlier modeled
discrete/continuous optimization problems with disjunctions and symbolic con-
straints in the form of logic propositions. This model, which they denoted as a
Generalized Disjunctive Program (GDP), can be converted all or in part into an
MILP. They presented the idea of w-MIP representability, which is similar to the
idea of primitive constraints. They showed that it is computationally efficient to
transform w-MIP representable disjunctions into linear constraints and proposed a
hybrid branch-and-bound algorithm that handles the non w-MIP representable dis-
junctions directly.

In general, it is not clear whether a general integration strategy will always per-
form better than either a CP or an MILP approach by itself. This is especially true
for the cases where one of these methods is a very good tool to solve the problem at
hand. However, it is usually possible to enhance the performance of one approach
by borrowing some ideas from the other. For example, Raman and Grossmann [64]
used logic cuts that were written as logic propositions to improve the performance
of MILP models. Ideas on edge-finding [3,11] that were used for guiding the search
in MILPs to solve jobshop problems were exploited by Caseau and Laburthe [12,13]
and Le Pape [49] to develop efficient inference engines for scheduling algorithms
in CP. Furthermore, there are a number of similarities in some of the underlying
ideas of both approaches. For example, probing and integer preprocessing in MILP
is in some ways similar to constraint propagation. Chandru and Hooker [16] give
an interesting operations-research perspective on consistency methods and logical
inference. Also, Hooker [41] deals with the subject of MILP and CP integration in
detail.

138 P.M. Castro et al.

2.1 Hybrid MILP/CP Algorithms for Scheduling

Hybrid MILP/CP algorithms have been shown to be potentially better approaches
than standalone MILP and CP models, particularly in scheduling problems.
Scheduling can be viewed as involving two decisions: (a) job-machine assign-
ment; (b) job sequencing on every machine, so as to meet some operational goal.
Jain and Grossmann [47] have proposed a relaxed MILP master problem to find
the assignments and CP feasibility subproblems to check if the assigned jobs can
be sequenced on every unit. In the case of infeasible assignments, integer cuts are
added to avoid infeasible solutions in subsequent iterations. The scheduling prob-
lem involved finding a minimum cost assignment of jobs with release and due dates
to unrelated parallel machines involved in a single production stage, and orders of
magnitude reduction in computational time were achieved by the decomposition
algorithm.

The MILP and CP models are linked through the infeasibility cuts, so these are
the most critical elements of the decomposition algorithm. On the one hand, they
should be rigorous so that only infeasible assignments, and not feasible or even
optimal solutions, are eliminated from the solution space. On the other hand, they
should be of high quality so that fewer iterations are involved. Conceptually, hybrid
MILP/CP algorithms can be applied to a wide variety of problems but are only
practical if rigorous and strong cuts can be found.

Harjunkoski and Grossmann [37] extended the algorithm to multistage processes.
They found that contrary to the single stage case, it was not possible to solve se-
quencing problems separately, one for each machine, since the stages and machines
are connected. Two main complications arose. First, the sequencing problem needed
to be solved simultaneously for every job and machine, resulting in large CP prob-
lems. Second, the infeasible CPs did not provide useful information about the reason
for the infeasibility. While the same is true in single stage, the integer cuts that could
be derived in a straightforward manner were even weaker since they involved all the
machines. To yield better cuts, the CP feasibility subproblem was replaced by a
minimization problem that measured the violation of the due dates through slack
variables. However, the hybrid MILP/CP algorithm failed to find the optimal solu-
tion in some test problems, showing that the proposed cuts were not rigorous.

Following the same line of research, Maravelias and Grossmann [53] used
the Shifting Bottleneck Procedure (SBP) [2, 5] for the solution of the multistage
(job-shop) problem with fixed job-unit assignments. In its first stage, infeasibili-
ties that are due to the assignments on a single machine are detected, leading to
cuts similar to those of Jain and Grossmann [47]. However, since SBP is a heuris-
tic algorithm, a feasible partial solution from the master problem may be found
infeasible by the SBP. In such cases, the iterative algorithm will terminate with a
suboptimal solution. Nevertheless, the algorithm did find the optimal solution in
all ten test instances solved and exhibited a better performance than the hybrid
MILP/CP scheme of Harjunkoski and Grossmann [37].

For the single stage problem with parallel machines, Maravelias and Grossmann
[53] proposed a preprocessing algorithm that generates knapsack constraints and

Decomposition Techniques for Hybrid MILP/CP Models 139

cover cuts for certain subsets of jobs that can be added to the cut pool of the MILP
master problem a priori. Further details are given later, including a computational
performance of the hybrid MILP/CP algorithm with and without these cuts.

The same authors also addressed the more complex multipurpose plant structure,
where a particular unit can handle jobs belonging to different production stages [52].
The underlying MILP scheduling model relies on a single continuous-time grid
with event points rather than on sequencing variables [47]. Their hybrid MILP/CP
algorithm consists on:

� A master MILP to select the type and number of jobs to be performed as well as
the job-unit assignments

� A CP feasibility, when minimizing cost, or optimization subproblem to derive
a feasible schedule (when maximizing profit or minimizing makespan). At each
iteration, specialized integer cuts are added to the master problem to exclude
infeasible or previously obtained assignments

All the cuts are rigorous to avoid cutting off feasible solutions. Overall, the com-
putational results showed that for some classes of problems the algorithm was orders
of magnitude faster than a standalone MILP model.

A hybrid algorithm MILP/CP for an industrial application consisting on a two-
stage process with shared intermediate storage was developed by Timpe [75]. The
master MILP model employs a discrete-time representation and is responsible for
lot-sizing and the assignment component. Total cost minimization is used as the
objective function. The CP model then tries to do the sequencing using makespan
minimization as the objective function, avoiding objective functions consisting on
large sums, for which CP solvers cannot deduce anything and propagation is poor.
If unsuccessful, any infeasibility can be located very accurately so that the result-
ing cuts can be very efficient. Nevertheless, they are not valid cuts in the sense
that they cutoff infeasible solutions only. While the quality of the resulting solu-
tions was hard to estimate, with the lower bound provided by the relaxation of the
MILP being rather weak, the algorithm could successfully generate good feasible
solutions quickly, thus allowing the system to work in an environment very close to
production.

The decomposition procedure of Jain and Grossmann [47] has been interpreted
as a logic-based Benders decomposition [40]. Hooker [44] has shown that a Benders
approach can succeed in a variety of planning and scheduling problems in which the
Benders cuts are less obvious. Focus was set on single stage cumulative scheduling
problems rather than disjunctive scheduling problems, where tasks must be run one
at a time, and on two alternative objective functions to cost, makespan and tardi-
ness minimization. By assuming the same release date for all jobs, relatively simple
Benders cuts were derived, which can be further simplified when all the deadlines
are the same. Unfortunately, no cuts were proposed for the general case. Overall,
the Benders method was found to be several orders of magnitude faster than either
CP or MILP. An important advantage is that it can be terminated early while still
yielding a feasible solution and a lower bound on the optimal value. (This does
not apply to the minimum cost problems, for which all intermediate solutions are
infeasible).

140 P.M. Castro et al.

The original problem of Jain and Grossmann [47] was more thoroughly tackled
by Castro and Grossmann [14] and Sadykov and Wolsey [72].

Castro and Grossmann [14] have tested five alternative formulations to the hy-
brid MILP/CP model. Besides the standalone CP and MILP models that rely on the
concept of general precedence, discrete and continuous-time MILP models with a
single or multiple time grids were also involved. In particular, the discrete-time for-
mulation was the best performer. For the most complex problem, the first master
problem generated by the hybrid MILP/CP algorithm was more or less as difficult
to solve as the full-space MILP from which it originated, with the disadvantage of
not providing useful information. Thus, other alternatives should be considered in
addition to improving the algorithm.

Sadykov and Wolsey [72] have proposed seven different algorithms ranging
from pure MILP formulations to branch-and-cut and branch-and-price MILP/CP
approaches. The results showed that it is important to develop as tight an MILP
formulation as possible. When using an MILP/CP algorithm, it is important to
tighten the IP formulation and also control its size through the addition of few
strong cuts instead of many weak cuts, to reduce the number of feasibility tests
and avoid increasing the solution time. Overall, instances with up to 54 jobs and
nine machines were solved with an MILP/CP algorithm with either a tightened
IP or a column generation algorithm with a combined MILP/CP algorithm for the
subproblem.

For the simpler single machine problem, Sadykov [71] proposed a branch-and-
check algorithm for the problem of minimizing the weighted number of late jobs
subject to release dates. Five variants of the algorithm were studied, each using a
different strategy to generate infeasibility cuts. Besides the weak (no-good) cuts of
Jain and Grossmann [47], two other ways of generating cuts were proposed: (a) us-
ing the modified Carlier algorithm; (b) deriving generalized tightening inequalities
(CP based cuts); with the former being more efficient in cases of sufficient speed of
the modified Carlier algorithm.

Hybrid CP/MILP methods have also been reported in the literature. Correa
et al. [18] have addressed the problem of dispatching and conflict free routing of
automated guided vehicles (AGVs) in a flexible manufacturing system. The CP
master problem determines both the assignment of the transportation requests to
the vehicles and the expected times of the pick-up and the deliveries based on the
shortest path routes, neglecting the possible conflicts. The MILP subproblem then
tries to find the collision free routes satisfying the schedule. When no solution
is found, logic cuts are generated and sent back to the master problem. Three
reasons were given to switch the order of the models in the decomposition algo-
rithm. The first is the existence of many nonlinear constraints in the scheduling
part, which are better handled by CP. The second is that CP allowed design-
ing a specific search strategy, where selection heuristics in combination with the
ILOG’s OPL Studio slice-based search, were implemented. The third is that for fixed
assignments, the MILP subproblem has a very strong minimum cost flow problem
structure and thus can be solved efficiently by the network simplex together with
branch-and-bound.

Decomposition Techniques for Hybrid MILP/CP Models 141

A more complex hybrid MILP/CP algorithm with four model layers has been
developed by Rasmussen and Trick [66]. The scope is sports scheduling, and the
problem consists on designing a double round robin schedule with a minimum num-
ber of breaks. In the upper-most level, a CP model generates feasible home-away
patterns. An IP model is then used to find a subset of patterns with a minimum
number of consecutive home or away games. The next step is to check for feasibil-
ity, and necessary and sufficient conditions for a team allocation to exist, as well as
necessary conditions for a game assignment to exist, are given. An MILP optimiza-
tion model is involved in this process and Benders cuts are given for each of the
conditions. If all the necessary conditions are met, a team allocation (to patterns)
has already been found in the process. However, there can still be no feasible game
assignment, so a CP model is used to check if a given subset of patterns can play
the required number of mutual games. Overall, few iterations are involved and sav-
ings of several orders of magnitude in computational time were observed for hard
instances when comparing to previous approaches.

Artigues et al. [1] propose exact hybrid methods based on integer linear pro-
gramming and constraint programming for an integrated employee timetabling and
job-shop scheduling problem. Each method investigates the use of a constraint pro-
gramming (CP) formulation associated with a linear programming (LP) relaxation.
Under a CP framework, the LP-relaxation is integrated into a global constraint us-
ing in addition reduced cost-based filtering techniques. The paper proposes two CP
formulations of the problem yielding two different LP relaxations. The first formu-
lation is based on a direct representation of the problem. The second formulation is
based on a decomposition in intervals of possible operation starting times. The the-
oretical interest of the decomposition-based representation compared to the direct
representation is shown through the analysis of dominant schedules. Computational
experiments on a set of randomly generated instances confirm the superiority of the
decomposition-based representation. In both cases, the hybrid methods outperforms
pure constraint programming for employee cost minimization while it is not the case
for makespan minimization. The experiments also investigate the interest of the pro-
posed integrated method compared to a sequential approach and show its potential
for multiobjective optimization.

Scheduling problems in the forest industry, which have received significant
attention in the recent years, have contributed many challenging applications for
optimization technologies. In this context, El Hachemi et al. [25] proposed a
solution method based on constraint programming and mathematical programming
for a log-truck scheduling problem. The problem consists of scheduling the trans-
portation of logs between forest areas and woodmills, as well as routing the fleet
of vehicles to satisfy these transportation requests. The objective is to minimize
the total cost of the nonproductive activities such as the waiting time of trucks and
forest log-loaders and the empty driven distance of vehicles. The authors propose a
CP model to address the combined scheduling and routing problem and an integer
programming model to deal with the optimization of deadheads. Both of these
models are combined through the exchange of global constraints. The whole
approach is validated on real industrial data.

142 P.M. Castro et al.

2.2 Hybrid Column Generation Approaches

Constraint Programming-based column generation is a decomposition method that
can model and solve very complex optimization problems. The general framework
was first introduced in Junker et al. [48]. It has since been applied in areas such
as airline crew scheduling [27, 73], vehicle routing [70], cutting-stock [26], and
employee timetabling [35].

All these optimization problems may be decomposed in a natural way: They may
be viewed as selecting a subset of individual patterns within a huge pool of possible
and weighted patterns. The selected combination is the one with the lowest cost to
fulfil some given global requirements. The selection problem can be formulated as
an integer linear program with one column for each possible pattern and a corre-
sponding integer variable representing the number of times the pattern should be
selected. The design of the possible patterns is itself a hard constrained satisfaction
problem and its solution set may be too large to be written out explicitly. Delayed
column generation is then the only way to address such a formulation (see, for ex-
ample, [17] for details on the approach). The LP-relaxation of the integer program,
the master problem, is solved iteratively on a restricted set of columns. At each it-
eration, the pricing problem is to generate new entering columns, i.e., new possible
patterns, which may improve the current solution of the master problem. The pro-
cess ends when no such columns exist. The current solution is an optimal fractional
solution of the initial linear program. To solve Integer Linear Programs, it is nec-
essary to embed the column generation procedure into an enumeration search tree,
namely a Branch-and-Price algorithm [6, 50].

In such approach, the pattern design subproblem is often solved several times.
In each iteration, it is preferable to compute several solutions at once to limit the
number of iterations of the column generation process. An optimization variant of
the problem is often considered since the expected patterns (i.e., the most improving
columns) are the ones with the most negative reduced costs in the master problem.

In routing, crew scheduling or employee timetabling applications, the rules defin-
ing the allowed individual patterns are often multiple and complex. Traditionally,
they have been handled by dynamic programming techniques [22]. Instead, the use
of a constraint programming solver to tackle the pricing problem adds flexibility to
the whole solution procedure. For its modeling abilities, CP is more suited as rules
are often prone to change.

Hence, CP-based column generation is an easily adaptable solution method: the
problem decomposition makes the pattern design subproblem independent from the
global optimization process, leaving the CP component alone to handle variations
within the definition of the patterns. The recent introduction of both ergonomic and
effective optimization constraints in the CP component can have a great impact on
the success of this approach to solve various large-size optimization problems.

In the last decade, the CP-CG framework has been applied to several different
applications. In a recent survey, Gualandi et al. [31] classifies these applications
into four different types:

Decomposition Techniques for Hybrid MILP/CP Models 143

A: CP used as a simple black-box solver
B: CP-pricing solved by using optimization constraints
C: Method enhancements
D: Computational comparison among different approaches

Constraint Programming can generally also be used to generate the initial feasible
solutions fed to the column generation algorithm, or can be embedded into a primal
heuristic that constructs an integer solution from the optimal linear relaxation of the
master problem. Therefore, the classification considers also when CP is used within
the column generation algorithm. Gualandi and Malucelli distinguish four phases as
follows:

I: CP used in the initialization phase
II: CP used to solve the pricing subproblem

III: CP used to heuristically construct an integer solution for the master problem
from the linear relaxation solution

IV: CP used within a branch-and-price algorithm

Table 1 summarizes the types and phases classifications of the different applica-
tions of CP-based column generation.

In Sect. 4, we illustrate the application of CP-based column generation ot vehicle
routing and crew scheduling problems. We present and compare the different models
which have been used to solve these problems.

Table 1 Applications of CP-based column generation

Application References Type Phase

Urban transit crew management [79, 80] A,D II,IV

Airline planning [32, 33] A I, III

[34]

Traveling tournament problem [24] A II, IV

Two-dimensional bin packing [61] A II,IV

Graph coloring [30] A, C II, III, IV

Airline crew assignment [48] B II, III

[26]

[73]

[27]

[73] C II, III

Vehicle routing with time windows [70] B II, IV

[69] C II

Constrained cutting stock [26] B II

Employee timetabling [21] B II, IV

Grouping cabin crew [36] D I

Wireless mesh networks [10] B, D II

Multi-machine assignment scheduling [72] B,D II,IV

144 P.M. Castro et al.

3 Applications to Scheduling

The decomposition algorithms described in this section, which were proposed by
Jain and Grossmann [47], were motivated by the work of Bockmayr and Kasper [8].
These algorithms are based on the premise that combinatorial problems may some-
times have some characteristics that are better suited for MILP and others that
are better handled by CP. For these problems, pure MILP- and pure CP-based ap-
proaches may not perform well. As discussed earlier, most of the prior work on
integrating the two approaches uses at least one of the models in complete form
(usually CP).

3.1 Methodology

In the algorithms that we present, the problem is solved using relaxed MILP and CP
feasibility models. Consider a problem, which when modeled as an MILP, has the
following structure,

(M1): min cT x (1)

s.t. Ax C By C C v � a (2)

A0x C B 0y C C 0v � a0 (3)

x 2 f0; 1gn; y 2 f0; 1gm; v 2 <p (4)

This is an optimization problem that has both continuous (v) and binary (x and y)
variables, and only some of the binary variables (x) have non-zero objective-
function coefficients. The constraint set can be divided into two subsets. In the first
set of constraints (2), the polyhedral structure is represented efficiently in the MILP
framework (e.g. assignment constraints) and has a significant impact on the LP re-
laxation. The second set of constraints (3), on the other hand, is assumed not to
affect the LP relaxation significantly and is sometimes large in number because
of the limited expressive power of MILP methods. The same problem can also be
modeled as a CP. Note that more constructs are available in the CP framework to
model the problem (e.g., logical constraints, disjunctions, all-different operator, etc.;
Marriott and Stuckey [54]). For this reason, the MILP and CP models of the same
problem may have different variable definitions and constraint structures. However,
an equivalence can be established between the constraints and a complete labeling
of variables can be derived in one framework from the values of variables in the
other one. Let us assume that the equivalent CP model is

(M2): min f .x/ (5)

s.t. G.x; y; v/ � 0 (6)

x; y; v 2 D (7)

Decomposition Techniques for Hybrid MILP/CP Models 145

where x, y, and v, are the CP variables. The domain of these variables D can be
continuous, discrete, or boolean. Generally, these variables do not have a one-to-one
correspondence with the MILP variables (x, y, v), although a mapping between the
sets of variables x can be established. This is because these variables are needed
to calculate the objective function. It may or may not be the case for the variables
(y,v) and (y,v). Usually, equivalence can also be established between the sets of
constraints.

Consider a class of problems with the above mentioned MILP and CP model
structures. Furthermore, assume that it is difficult to solve this problem as an MILP
because there is a large number of constraints in the constraint set (3) and finding
feasible solutions for them is hard. Assume also that the broader expressive power
of CP results in the smaller constraint set (6). Even though the constraint set in CP
is much smaller, it may still not be efficient to solve the problem using CP because
finding an optimal solution and proving optimality can be difficult for CP (lack of
linear programming relaxations). Ideally, one would like to combine the strength of
MILP to handle the optimization aspect of the problem by using LP relaxation and
the power of CP to find feasible solutions by using better constraint formulations. To
achieve this goal, Jain and Grossmann [47] proposed a hybrid model for this class of
problems that can be solved using either a decomposition algorithm or a branch-and-
bound algorithm. The main advantage of the proposed methods is that smaller LP
and CP subproblems are solved. The hybrid model involves MILP constraints, CP
constraints, and equivalence relations. The objective function in the hybrid model
(M3) is the same as in the MILP model (M1). The constraints for this problem
include MILP constraints (2), equivalence relations that relate MILP variables x to
CP variables x, and a reduced set of CP constraints that are derived from the CP
constraint set (6) by assuming that the set of CP variables x is fixed.

(M3): min cT x (8)

s.t. Ax C By C C v � a (9)

x, x (10)

G.x; y; v/ � 0 (11)

x 2 f0; 1gn; y 2 f0; 1gm; v 2 <p (12)

x; y; v 2 D (13)

It should be noted that the hybrid model (M3) requires at least some variables (x)
of the MILP model (M1) and all the variables .x; y; v/ of the CP model (M2).
The values of the CP variables obtained using model (M3) will always satisfy all
the constraints of the CP model (M2). Furthermore, the optimal solution for the
problem at hand is given by the values of the CP variables .x; y; v/ obtained by
solving the hybrid model (M3) to optimality. It should be noted that the values of
the MILP variables (y,v) obtained from the model (M3) may not be valid for the
Model (M1) because the model (M3) does not include the MILP constraint set (3).

146 P.M. Castro et al.

Jain and Grossmann [47] proposed a decomposition algorithm to solve the hybrid
MILP/CP model (M3). The basis for this algorithm is a relaxed MILP problem and
a CP feasibility problem, both of which can be solved efficiently. The relaxed MILP
model is used to obtain a solution that satisfies the constraint sets (9) and (12) and
optimizes the objective function (8). The solution obtained for the relaxed MILP is
used to derive a partial CP solution by using the equivalence relation (10). A CP
feasibility model then verifies whether this solution can be extended to a full-space
solution that satisfies the constraints (11) and (13) of the model. If the partial solu-
tion from the MILP can be extended, then the full-space solution obtained will also
have the same value of the objective function. In this paper, we present two methods
to search the solution space and obtain the optimal solution. Both of these ideas
are essentially the same and use the same relaxed MILP and CP feasibility models.
However, the difference lies in the order in which the CP subproblems are solved.

3.1.1 MILP/CP-Based Decomposition Method

This algorithm has some similarities to the Benders decomposition method [7].
The algorithm is summarized in Fig. 1. In this method, a relaxed MILP model of
the problem, with (8) as the objective and (9) and (12) as constraints, is solved to

Fig. 1 Benders decomposition algorithm

Decomposition Techniques for Hybrid MILP/CP Models 147

optimality. Note that integrality constraints on the variable y can be dropped if that
makes the relaxed MILP problem easier to solve. If there is no solution, then the
original problem is infeasible. Otherwise, values of x are used to determine val-
ues of the equivalent CP variables x. A CP feasibility problem then tries to extend
this partial solution to a complete solution x; y; v that satisfies the constraints (11)
and (13). If there exists a feasible solution, then this solution is the optimal solution
of the problem and the search is terminated. Otherwise, the causes for infeasibility
are inferred as cuts and added to the relaxed MILP model of the problem. These
cuts could be general “no good” cuts Hooker et al. [46]. In the context of the model
(M3), these cuts have the following form for iteration k,

X
i2T k

xi �
X

i2F k

xi � Bk � 1; T k D fi jxk
i D 1g; F k D fi jxk

i D 0g; Bk D jT k j
(14)

Here, xk D Œxk
1 ; xk

2 ; :::� represents the optimal values of x in iteration k. These
general “no good” cuts may be rather weak. For this reason, whenever possible
stronger cuts .Qkx � qk/ that exploit the special structure of the problem should be
used. The problem-specific cuts should not only cut off the current partial solution,
but also eliminate partial solutions with similar characteristics. Cuts are a means
of communication between the relaxed MILP and CP feasibility models and play a
very important role in the success of these methods. The entire procedure is repeated
until the solution obtained using the relaxed MILP model can be extended to a full
feasible solution, or the relaxed MILP problem becomes infeasible. Assuming that
the general “no good” cuts (14) are used, we can establish the following convergence
proof for the MILP/CP-based decomposition method [47]:

Theorem 1. If the MILP/CP decomposition method is applied to solve problem
(M3) with the cuts in (14), then the method converges to the optimal solution or
proves infeasibility in a finite number of iterations.

There are two ways in which this method can be implemented. The easier, but
less efficient approach is to solve the relaxed MILP model from scratch whenever
the cuts are updated. A more efficient approach will be to use a branch-and-cut
algorithm where the relaxed MILP problem is considered at each node and up-
dated at certain nodes (e.g., those that are integer feasible) with the corresponding
cuts [63].

3.1.2 Branch-and-Cut Method

This algorithm extends the basic branch-and-bound (B&B) algorithm for mixed in-
teger problems to solve problems that are represented using the hybrid MILP/CP
model (M3). The idea is in principle straightforward, although it is non-trivial to
implement. In the B&B algorithm, the current best integer solution is updated when-
ever an integer solution with an improved objective-function value is found. In the

148 P.M. Castro et al.

proposed algorithm, an additional CP feasibility problem is solved to ensure that
the integer solution obtained for the relaxed MILP problem can be extended in the
full space. It is only in this case that the current best integer solution for the relaxed
MILP problem is updated. If it cannot be extended, then the best current integer so-
lution is not updated and cuts are added to the current and all other open nodes. The
proposed branch-and-cut method involves solving a series of LP subproblems ob-
tained by branching on the integer variables. An LP subproblem p for the proposed
algorithm has the form,

min cT x

s.t. Ax C By C C v � a

Qx � q

xLB
p � x � xUB

p

yLB
p � y � yUB

p

x 2 <n; y 2 <m; v 2 <p

xLB
p ; xUB

p ; yLB
p ; yUB

p 2 f0; 1g

The difference in various LP subproblems is only in the upper and lower bounds for
all the integer variables. Also, the set of cuts is updated as the search progresses. The
objective-function value for any feasible solution of the problem in the full space
provides an upper bound (UB) of the objective function. Let P denote the set of LP
subproblems to be solved. The branch-and-cut (B&C) method can be summarized
as follows:

1. Initialization. UB D1, P D fp0g. LP subproblem p0 is generated by using the
same lower and upper bounds on the integer variables as the original problem,
and it does not include any cuts.

2. Check if there are any more problems to be solved. If P D ;, then go to step 5;
else go to 3.

3. Fathom a Node. Select and remove an LP subproblem p from the set P . The
criterion for selecting an LP is also called a node selection rule. There are many
different rules for selecting an LP, and they play a key role in the efficiency of
the B&C algorithm [55]. Solve LP subproblem p.

� If the LP is infeasible or the optimal value of the objective function (lower
bound) is greater than UB , then go to step 2.

� If any one of the integer variables does not have integral values, then go to
step 4.

� If the solution has integral values for all the integer variables, then determine
the CP variables x using the values of LP variables x. For fixed x solve the
following CP feasibility problem that tries to extend this partial solution.

Find v; y

s.t. G.x; y; v/ � 0

y; v 2 D

Decomposition Techniques for Hybrid MILP/CP Models 149

If the CP problem is feasible, then update UB; otherwise, add the cuts in (14) or
infer the causes for infeasibility to generate tighter cuts and add them to all the
LP subproblems belonging to set P by updating the set .Q; q/. Go to step 2.

4. Branch on a Variable. Of all the variables that have been assigned non-integral
values, select one according to some prespecified branching variable selection
rule [55]. Let us denote this integer variable by zp. Generate two LP subproblems
p1 and p2 and add them to set P . The subproblem p1 is generated by specifying
the floor of the optimal value of zp as the upper bound for zp , and the subproblem
p2 is generated by specifying the ceiling of the optimal value of zp as the lower
bound of zp . Go to step 2.

5. Termination. If UB D 1, then the problem does not have a feasible solution
or it is unbounded. Otherwise, the optimal solution corresponds to the current
value UB .

For the proposed decomposition and B&C methods to be successful, it is of course
very important to choose suitable relaxed MILP and CP feasibility models. Further-
more, rather than using the cuts in (14) inferring strong cuts, Qx � q, as causes
for infeasibility of CP feasibility models can significantly reduce the number of
problems to be solved. These cuts, however, are non-trivial and should be derived
whenever possible for each class of problems at hand. It is also worth emphasiz-
ing that the proposed algorithms do not impose any restriction on the structure of
the equivalence relation in (10). It can even be procedural. It should be noted that
hybrid models similar to the ones presented in this section can also be solved us-
ing OPL [76]. In OPL, the solution algorithm for the hybrid model solves an LP
subproblem involving all the linear constraints, as well as a constraint-propagation
subproblem involving all the constraints at every node of the search tree. Usually, all
the original CP constraints (6) are needed in the hybrid MILP/CP OPL model. Fur-
thermore, the equivalence relations (10) must be written in closed form as equations,
inequalities, or symbolic relations. Even though the algorithms presented in this sec-
tion are limited to the MILP models that have only a subset of binary variables with
non-zero coefficients in the objective function, they can in principle be generalized
for MILP models that have both binary and continuous variables in the objective
function. The partial solution will then involve both binary and continuous variables
and the CP problem will extend this partial solution in the full space. However, in
such a case, the biggest challenge is to derive effective cuts that exclude partial so-
lutions that are feasible for the master problem but cannot be extended in the full
space.

3.2 Single-Stage Scheduling Problem

Jain and Grossmann [47] considered a specific scheduling problem that falls into
the class of those that can be tackled by a decomposition method. It consists of
finding a least-cost schedule to process a set of orders i 2 I using a set of dissimilar

150 P.M. Castro et al.

parallel machines m 2 M . Processing of an order can only occur after its release
date ri and must be completed at the latest by its due date di . It is assumed that a
particular order can be processed on any of the machines. The processing cost and
the processing time of order i in machine m are given by ci;m and pi;m, respectively.

3.2.1 Hybrid MILP/CP Model

The hybrid MILP/CP algorithm reported in Jain and Grossmann [47] has the fol-
lowing main components. The relaxed MILP master problem includes (15) as the
objective function, (16)–(21) as the model constraints and (22) as the integer cuts.
Set I k

m gives the orders that were allocated to unit m in iteration k and for which
no valid sequence could be found by solving the CP feasibility problem, see (23).
Binary variables Xi;m indicate that order i is assigned to unit m, while continuous
variables T si give the time at which order i starts to be processed.

min
X
i2I

X
m2M

ci;mXi;m (15)

T si � ri 8i 2 I (16)

T si � di �
X

m2M

pi;mXi;m 8i 2 I (17)

X
m2M

Xi;m D 1 8i 2 I (18)

X
m2M

pi;mXi;m � max
i
fdig �min

i
frig 8m 2M (19)

T si � 0 8i 2 I (20)

Xi;m 2 f0; 1g 8i 2 I; m 2 M (21)

X
i2I k

m

Xi;m � jI k
mj � 1 8m 2 M; k D f1; 2; :::K � 1g (22)

I k
m D fi 2 I W Xk

i;m D 1g 8m 2M; k D f1; 2; :::K � 1g (23)

With the assignments (Xk
i;m) from the master problem (iteration k) one can de-

termine the variable superscript zi by (24). Then, a total of m independent CP
subproblems are generated to identify if a feasible schedule can be obtained.

Decomposition Techniques for Hybrid MILP/CP Models 151

Equations (25)–(28) are written using ILOG’s OPL modeling language [76], valid
up to OPL Studio 3.7.1. Note that in (28), tm is the unary resource corresponding to
machine m.

zi D m 8i 2 I; m 2M; Xk
i;m D 1 (24)

i:start � ri 8i 2 I; Xk
i;m D 1 (25)

i:start � di � pi;zi
8i 2 I; Xk

i;m D 1 (26)

i:duration D pi;zi
8i 2 I; Xk

i;m D 1 (27)

i requires tzi
8i 2 I; Xk

i;m D 1 (28)

Knapsack Constraints and Cover Cuts

Earlier hybrid methods have focused on the development of integer cuts during the
iterative (or branch-and-cut) scheme [9, 47]. However, these tend be rather weak
with many cuts being required for large problem sizes. Eventually, the problem
becomes intractable and we end up with no solution since the first feasible sched-
ule is also the optimal one. In order to widen the scope of the hybrid algorithm,
Maravelias [51] has added a pre-processing stage that results in orders of magnitude
savings in computational effort. It basically identifies infeasible assignments and
generates constraints that are added to the cut-pool of the master problem, making
it tighter.

The pre-processing algorithm of Maravelias [51] consists of three phases. The
first two involve knapsack constraints and are given in Algorithms 1–2. The third
adds cover cuts [4, 78] for pairs of jobs that are not examined by the procedures of
Algorithms 1 and 2, see Algorithm 3.

Algorithm 1: Pre-processing algorithm of Maravelias [51] for single stage
plants: Phase1

forall .m 2M /

forall .i; i 0 2 I W ri � ri 0 ^ di � di 0 /

S D union.i 00 2 I W ri � ri 00 ^ di 00 � di 0 /

If

� P
i 002S

pi 00;m > di 0 � ri

�
then

Add Knapsack constraint C1 WD P
i 002S

pi 00 ;mXi 00;m > di 0 � ri

152 P.M. Castro et al.

Algorithm 2: Pre-processing algorithm of Maravelias [51] for single stage
plants: Phase 2

forall .m 2M /

forall .i 2 I /

S=union.i 0 2 I W ri � ri 0 ^ di 0 � di /

A WD mini 02Snfigfri 0g � ri ; B WD di �maxi 02Snfigfdi 0g
C:=minfA; Bg
If

� P
i 02S

pi 0 ;m > di � ri � C

�
then

Add Knapsack constraint C2 WD P
i 02S

pi 0 ;mXi 0 ;m > di � ri � C

Algorithm 3: Pre-processing algorithm of Maravelias [51] for single stage
plants: Phase 3

forall .m 2M /

forall .i 2 I /

If
�
pi;m C pi 0 ;m > maxfdi � ri 0 ; di 0 � rig

�
then

Add Knapsack constraint C1 WD Xi;m CXi 0 ;m � 1

Slot 1 Slot 2 Slot 3 Slot T-2 Slot T-1

T-1T-2432
1

min ri
ieI

max di
ieI

δ
T

Fig. 2 Uniform time grid for discrete-time formulation

3.2.2 Discrete-Time MILP Model (DT)

An alternative to the decomposition algorithm is to use full-space models rely-
ing on a concept for event representation other than sequencing variables. Note
that CP models for scheduling implicitly rely on general precedence sequencing
variables [15]. The following discrete-time formulation [14] uses a single uniform
time grid to keep track of the orders, see Fig. 2. It is a simplification of the general
Resource-Task Network model of Pantelides [58]. If the problem data consist of in-
teger values, setting the integer length ı D 1 ensures accuracy. With this parameter
and the maximum values for both release and due dates, one can easily specify the
number of time points t 2 T in the grid.

The model is very simple and the resulting mathematical problem is very tight.
There are only two sets of variables and constraints besides the objective function.
Binary variables Ni;m;t indicate that order i starts to be processed in unit m at time
point t . Continuous variables Rm;t then give the machines availability (they are
equal to 1 if the unit is idle and 0 otherwise). Set It;m gives the orders that can start
to be processed in unit m at point t . Note that because of the release and due dates,

Decomposition Techniques for Hybrid MILP/CP Models 153

each order can only start on a subset of the time points in the grid. The objective
function is given by (29). The resource balances for the machines are given by (30),
while (31) ensures that every order must be processed in exactly one machine.

min
X
t2T

X
m2M

X
i2It;m

Ni;m;tci;m (29)

Rm;t D
�
1jtD1 CRm;t�1jt¤1

� � X
i2It;m

Ni;m;t

C
X

i2It�pi;m;m

Ni;m;t�pi;m
8m 2 M; t 2 T (30)

X
m2M

X
t2T

Ni;m;t D 1 8i 2 I (31)

3.2.3 Continuous-Time MILP Model (CT)

Castro and Grossmann [14] have proposed a continuous-time formulation that uses
a different time grid per machine. Contrary to the discrete-time grid, the location of
the grid’s time points are not known a priori but are going to be determined by the
solver as part of the optimization. Furthermore, the number of time points to use
cannot accurately be predicted. Since the solution space is very much dependent
on the number of elements in set T and so is the computational effort, an iterative
search heuristic procedure is typically employed. One just keeps incrementing the
elements in T , one by one, up to the point the objective function stops improving.
The corresponding nonuniform time grid is shown in Fig. 3, with continuous vari-
ables Tt;m giving the time associated to point t of grid m. Note that the m time grids
are totally independent.

It can be assumed without the loss of generality that all orders can be processed
on a single time interval, whereas in the discrete-time model they typically span
several intervals. This is the reason why (32) differs from (30). Besides (29) and
(31) (with Im;t D I), there are three other constraints. Equation 33 state that the

Slot 1 Slot 2 Slot T-2 Slot T-1

T-1T-232
1

[min ri,
ieI

,max di]
ieI

T

Fig. 3 Nonuniform time grid for continuous-time formulation

154 P.M. Castro et al.

difference in time between two consecutive time points must be greater than the
processing time of the order being processed in the machine. Equations (34) and
(35) are the release and due date constraints, where the time horizon (H) should be
set to the maximum due date.

Rm;t D
�
1jtD1 CRm;t�1jt¤1

��X
i2

Ni;m;tC
X
i2I

Ni;m;t�1 8m 2M; t 2 T (32)

TtC1;m � Tt;m �
X
i2I

Ni;m;tpi;m 8m 2M; t 2 T (33)

Tt;m �
X
i2I

Ni;m;tri 8m 2M; t 2 T (34)

Tt;m �
X
i2I

Ni;m;t .di � pi;m/CH

1 �

X
i2I

Ni;m;t

!
8m 2M; t 2 T (35)

3.3 Computational Studies

In this section, the performance of the hybrid MILP/CP algorithm is evaluated,
with and without the cuts proposed by Maravelias [51], and compared to that of
the discrete- (DT) and continuous-time (CT) MILP models. Eight test problems
(P3-P10) taken from Castro and Grossmann [14] are used for this purpose. The
hybrid MILP/CP algorithms have been implemented in ILOG OPL Studio 3.7.1,
which uses CPLEX 9.1 for the solution of the MILP master problems. The full-space
MILP models have been implemented in GAMS and solved using both CPLEX 9.1
and CPLEX 11.1. They were all solved to optimality using default options, unless
otherwise stated, by a laptop with an Intel Core2 Duo T9300 processor running at
2.5 GHz, 4 GB of RAM, and running Windows Vista Enterprise. The results are
listed in Table 2.

Table 2 Computational results for hybrid MILP/CP algorithm (ITD iterations; ICD integer cuts;
PH1�3 D Cuts from Phase 1� 3)

Jain and Grossmann [47] Maravelias [51]

Problem Optimum IT IC CPUs CPUs IT IC PH1 PH2 PH3

P3 (jIj D 15, jMj D 5) 116 11 16 0.16 0.12 1 0 262 39 12

P4 (jIj D 15, jMj D 5) 105 6 5 0.02 0.17 2 1 152 21 0

P5 (jIj D 20, jMj D 5) 159 29 62 1.09 0.44 1 0 536 56 12

P6 (jIj D 20, jMj D 5) 144 24 30 0.3 0.36 1 0 378 33 0

P7 (jIj D 25, jMj D 5) 51 1847 � 12400a 76.4 58 139 713 95 45

P8 (jIj D 25, jMj D 5) 54 451 � 3600a 85 27 69 717 97 64

P9 (jIj D 30, jMj D 5) 53 368 811 69.1 7.72 4 7 1020 106 11

P10 (jIj D 30, jMj D 5) 75 � � � 7200b 1 0 1043 120 65

aInterrupted, solution from relaxed MILPD 50.
bInterrupted during solution of first relaxed MILP, solution foundD 73, best possibleD 68.46.

Decomposition Techniques for Hybrid MILP/CP Models 155

With the exceptions of P4 and P6, the pre-processing algorithm of Mar-
avelias [51] achieves large savings in computational time compared to the original
cuts proposed by Jain and Grossmann [47]. Notice that there can be more than 1,000
cuts generated, which have the effect of leading to better assignments by the relaxed
master MILP problem, which is measured by the requirement of fewer iterations
and integer cuts. In this respect, P9 needs just 4 iterations as opposed to 368 by
the original Jain and Grossmann [47] algorithm. The practical consequence is the
ability to solve P7-8 and P11 in more or less one minute, with the latter approach
being unable to find the solution in one-hour or more. Naturally, adding a large
number of cuts makes the master problem harder to solve so if few iterations are
involved it is better not to add them (only for the smaller instances).

Despite its very good performance, the approach of Maravelias [51] was unable
to complete even the first iteration of P10 up to 2-h of computational time. How-
ever, the full-space formulations of the time grid based formulations are able to
solve this problem relatively fast as seen in Table 3 where the number of orders and
machines is displayed (jIj, jMj). Notice that the discrete-time formulation is very
tight, with the integrality gap being equal to zero for P3 and P9. Because of this,
and despite leading to one order of magnitude larger MILPs, it is able to solve all
problems in less than 8 s, while its continuous-time counterpart is slightly worse,
particularly in problem P10. It is interesting to note that these savings compared to
the decomposition algorithm can be attributed to the great progress that has been
achieved with MILP solvers (e.g., see the comparison between CPLEX 9.1 and
11.1 in Table 3, where the computational time of the former does not include the
model generation time, which is somewhat important for the discrete-time formu-
lation). Jain and Grossmann [47] found these solvers to be orders of magnitude
slower in 2001 for an MILP model with general precedence sequencing variables.
On the other hand, compared to the decomposition algorithm, the limitation of the
full space methods is that one has to specify the number of time intervals for the
discrete and continuous models (jTj). In Table 3, the values chosen yield the same
objective value as the one found by the decomposition algorithm.

Table 3 Computational results for discrete- (DT) and continuous-time formulations (RMIPD
solution from relaxed linear problem, DVD discrete variables, EQD constraints)

Castro and Grossmann [14] DT Castro and Grossmann [14] CT
Problem jTj RMIP DV EQ CPUsa CPUsb jTj RMIP DV EQ CPUsa CPUsb

P3 371 116 13320 1871 2.64 2.58 6 113:03 405 121 0:81 0:74

P4 371 104 16950 1871 1.31 4.19 8 104 405 121 0:05 0:41

P5 381 158:5 18790 1926 7.34 4.38 7 155:8 635 146 140 15:6

P6 381 142:94 23320 1926 6.52 7.21 9 143 845 186 15:8 0:59

P7 294 50:25 13548 1496 0.92 3.19 6 45:21 655 131 29:2 8:8

P8 294 53:71 13273 1496 1.9 3.92 6 48:13 655 131 27:3 18:8

P9 294 53 18063 1501 2.59 4.23 7 50 935 156 8:9 3:42

P10 294 73:85 16753 1501 5.64 7.36 7 69:72 935 156 4322 952

aCPLEX 9.1.
bCPLEX 11.1.

156 P.M. Castro et al.

4 Applications to Vehicle Routing and Crew Scheduling

Vehicle Routing Problems (VRP) and Crew Scheduling Problems are widely present
in today’s industries since they are at the core of the transportation industry of
both human and merchandise. They account for a significant portion of the oper-
ational cost of many organization such as airlines, freight carrier, or public transit
companies.

The VRP can be described as follows: given a set of customers C , a set of ve-
hicles V , and a depot d , find a set of routes of minimal length, starting and ending
at d , such that each customer in C is visited by exactly one vehicle in V . Each cus-
tomer having a specific demand, there are usually capacity constraints on the load
that can be carried by a vehicle. In addition, there is a maximum amount of time
that can be spent on the road. The time window variant of the problem (VRPTW)
imposes the additional constraint that each customer c must be visited after time
ac and before time bc . One can wait in case of early arrival, but late arrival is not
permitted.

In a typical Crew Scheduling Problem, a set of trips has to be assigned to some
available crews. The goal is to assign a subset of the trips, which represent seg-
ments of bus routes or flight legs, to each crew in such a way that no trip is left
unassigned. As usual, not every possible assignment is allowed since a number of
constraints must be observed. Additionally, a cost function has to be minimized. In
almost all cases, the trips are defined as the nodes of a network whose arcs specify
which connections are allowed and which ones are impossible. Crew rostering can
be interpreted as vehicle routing where the capacity and time windows constraints
are replaced by rules coming out of union agreements. This makes Crew Rostering
Problems more complex to define formally. In the remainder of this chapter, we will
use the notation of the VRP as its definition is more precise.

The Set Covering formulations of the VRP consist of selecting, among the pos-
sible sets of customers who can be visited by the same vehicle, the optimal set
of routes. Letting r be a feasible route in the original graph (which contains N

customers); R be the set of all possible routes r ; cr be the cost of visiting all the cus-
tomers in r ; A D .air/ be a Boolean matrix expressing the presence of a particular
customer (denoted by index i 2 f1::N g) in route r ; and xr a Boolean variable spec-
ifying whether the route r is chosen (xr D 1) or not (xr D 0), the Set Partitioning
Problem is defined as .S/:

min
X
r2R

crxr

s:t
X
r2R

airxr D 1 8i 2 f1::N g

x 2 f0; 1gN

This formulation, however, poses some problems. First, since it is impractical
to construct and store the set R because of its very large size, it is usual to work

Decomposition Techniques for Hybrid MILP/CP Models 157

with a partial set R0 that is enriched iteratively by solving the pricing problem.
Second, the Set Partitioning formulation is difficult to solve when R0 is small and
it allows negative dual values which can be problematic for the subproblem (a neg-
ative dual means a negative marginal cost to service a customer). That is why, in
general, the following relaxed Set Covering formulation is used instead as a Master
Problem .M /:

min
X
r2R0

crxr

s:t
X
r2R0

airxr � 1 8i 2 f1::N g

x 2 Œ0; 1�N

To enrich R0, it is necessary to find new routes that offer a better way to visit the
customers they contain, that is, routes which present a negative reduced cost. The
reduced cost of a route is calculated by replacing the cost of an arc (the distances
between two customers) dij by the reduced cost of that arc cij D dij � �i where
�i is the dual value associated with customer i . The dual value associated with a
customer can be interpreted as the marginal cost of visiting that customer in the
current optimal solution (given for R0). The objective of the subproblem is then the
identification of a negative reduced cost path, that is, a path for which the sum of
the travelled distance is inferior to the sum of the marginal costs (dual values). Such
a path represents a novel and better way to visit the customers it serves.

The optimal solution of .M / has been identified when there exists no more neg-
ative reduced cost path. This solution can, however, be fractional, since .M / is a
relaxation of .S/, and thus does not represent the optimal solution to .S/ but rather
a lower bound on it. If this is the case, it is necessary to start a branching scheme in
order to identify an integer solution.

Most column generation methods make use of dynamic programming to solve
the shortest path subproblem where the elementary constraint (i.e., the constraint
imposing that a path does not go through the same node more than once) has been
relaxed [23]. This method is very efficient. But since the problem allows negative
weight on the arcs, the path produced may contain cycles (since negative cost cy-
cles decrease the objective function). However, applications of column generation
in Crew Scheduling generally present an acyclic subproblem graph (one dimension
of the graph being time) which eliminates this problem. Since routing problems are
cyclic by nature, the subproblem reduces to an elementary shortest path problem
with resource constraints (ESPPRC). One has to find negative cost elementary paths
from the depot to the depot, satisfying capacity and time constraints. A solution
procedure based on dynamic programming for this problem is proposed in [28].

Constraint programming methods can not only identify elementary negative re-
duced cost paths by working on the smaller original cyclic graph, but also allow the
addition of any form of constraints on the original problem (which is not the case
with the dynamic programming approach). It is thus possible to deal with multiple

158 P.M. Castro et al.

Table 4 Parameters of the set, position and arc based models

N D 0::n The set of all customers
0; nC 1 Copies of the depot
N 0 D 1::nC 1 The set of all nodes except the initial depot
dij Distance from node i to node j

tij Travel time from node i to node j

ai ; bi Bounds of node i ’s time window
li Load to take at node i

�i Dual value associated with node i

C Capacity of the vehicle
cij D dij � �i Reduced cost to go from node i to node j

time windows, precedence constraints among visits or any logical implication sat-
isfying special customer demands. In fact, the case of multiple time windows TSP
was addressed successfully in [60].

The original motivation to use constraint programming-based column generation
[48] to solve airline crew assignment problems was that some problems were too
complex to be modeled easily by pure Operational Research (OR) methods. Thus,
the use of constraint programming to solve the subproblem in a column generation
approach provided both the decomposition power of column generation and the
modeling flexibility of constraint programming.

We divide these CP models in three classes namely the set-based models,
position-based model and arc-based models and illustrate these models on the pric-
ing problem of CP-based column generation approach to the VRPTW, with the
parameters of Table 4.

4.1 Set Based Model

To solve complex Crew Rostering Problems, Junker et al. [48] and Fahle et al. [27]
propose to model the constrained shortest path problem in CP using a single set vari-
able Y , which contains the nodes to be included in the negative reduced cost column.
The value of a set variable is a set of integers selected from an initially given do-
main. The current domain of a set variable is defined by a lower and an upper bound,
which are also called required set req(Y) and possible set pos(Y). The value of the
set variable has to be a superset of req(Y) and a subset of pos(Y). Set variables re-
place an array of boolean variables and generally lead to more compact constraint
models and more efficient and powerful propagation algorithms. The model thus
looks extremely simple as all its complexity and efficiency are hidden in the struc-
ture of the underlying network and the global constraint NegativeReducedCost.

Decomposition Techniques for Hybrid MILP/CP Models 159

4.1.1 Variables

Y � N The set of all clients in path to be generated

4.1.2 Objective

minimize z Reduced cost of column

4.1.3 Constraints

NegativeReduceCost(Y; c; z) Y is a shortest path with z < 0.
Y 2 F Y is feasible.

The feasibility region F is formulated as a CP model using any combination of
local and global constraints and possibly including additional variables. Since the
Crew Rostering problem for which this approach was designed is by nature acyclic
(the underlying network is time directed), it is easy to compute in polynomial time
the shortest path covering nodes in Y .

A special constraint, NegativeReduceCost, is also introduced to improve prun-
ing and efficiency of the overall method. This constraint, which ensures that the
nodes in Y are part of a feasible path, also enforces bound consistency by solving
a shortest path problem on both the required and possible sets of Y . An incremen-
tal implementation of the Shortest Path algorithm ensures that the filtering is done
efficiently.

Numerical results based on data of a large European airline are presented in [48]
and demonstrate the potential of the approach. However, set variables cannot be used
to model Vehicle Routing Problem. Since these problems are defined over networks
which contain cycles, the construction of a complete solution from the set of visits
included in Y would require solving a TSP.

4.2 Position Based Model

A second model to the Crew Rostering Problem, simultaneously and independently
proposed by Yunes et al. [79], is based on an array of finite domain variables
Xp2P 2 N which identify which node or task in N is to be performed by a bus
driver in position p 2 P . This model is quite straightforward, flexible and works
without the addition of dedicated global constraints.

160 P.M. Castro et al.

4.2.1 Variables

XŒp� 2 N 8p 2 P Identifies client visited in p.
T Œp� 2 Œmini2N .ai /:: maxi2N .bi /� 8p 2 P Starting time of service in p.
LŒp� 2 Œ0::C � 8p 2 P Load taken by the vehicle in p.

4.2.2 Objective

minimize
P

i2N cXŒl�1�; XŒl� Reduced cost of the column

4.2.3 Constraints

AllDifferent(X) Conservation of flow.
Tp�1 C tXp�1;Xp

� Tp 8p 2 N Time window constraints.
Lp�1 C lXp

D Lp 8i 2 N Capacity constraints.

The AllDifferent constraint imposes that all clients in the path cannot be visited
more than once, thus making sure that the path generated is elementary.

In [80], the author mentioned that the hybrid column generation algorithms based
on this model for solving these problems always performed better, when obtaining
optimal solutions, than isolated CP or MIP approaches. All the proposed algorithms
have been implemented and tested over real-world data obtained from the urban
transit company serving the city of Belo Horizonte in Brazil.

The level of propagation achieved by such model is not sufficient to solve Vehicle
Routing Problem which contains more than around 5 or 6 customers per routes.
However, in a context where routes tend to naturally contain very few customers,
the position-based model has the advantage of introducing much less variables than
the arc-based model presented next.

4.3 Arc Based Model

To solve vehicle routing with time window with longer routes, Rousseau et al. [70]
based their model on variables which identify the transitions between successive
nodes (or trips). We present here the main component of this model.

4.3.1 Variables

Si 2 N 0 8i 2 N Direct successor of node i .
Ti 2 Œai ; bi � 8i 2 N [fnC 1g Time of visit of node i .
Li 2 Œ0; C � 8i 2 N [fnC 1g Truck load before visit of node i .

Decomposition Techniques for Hybrid MILP/CP Models 161

4.3.2 Objective

minimize
P

i2N ciSi
Reduced cost of the column.

4.3.3 Constraints

AllDifferent(S) (1) Conservation of flow.
NoSubTour(S) (2) SubTour elimination constraint.
Ti C tiSi

� TSi
8i 2 N (3) Time window constraints.

Li C li D LSi
8i 2 N (4) Capacity constraints.

The S variable identifies the direct successor of each node of the graph, but for
the sake of brevity we will refer to these variables only as successor variables. The
nodes which are left out of the chosen path are represented with self loops and thus
have their Si value fixed to the value i . Constraint sets (3) and (4) enforce the respect
of the capacity and time windows by propagating the information about the time and
load when a new arc becomes known.

The AllDifferent (1) constraint is used to express conservation of flow in the
network. The nature of the decision variable already enforces that each node has ex-
actly one outgoing arc, but we also need to make sure it also has exactly one ingoing
arc. To do so, it is necessary to insure that no two nodes have the same successor,
which is the role of the AllDifferent constraint. This property is obtained by solving
a matching problem in a bipartite graph and by maintaining arc consistency in an
incremental fashion as described in [67].

The NoSubTour (2) constraint, illustrated in Fig. 4, is taken from the work of
Pesant et al. [59]. For each chain of customers, we store the name of the first and
last visit. When two chains are joined together (when a variable is fixed and a new
arc is introduced), we take two actions. First, we update the information concerning
the first and last visits of the new (larger) chain, and then, we remove the value of
the first customer from the domain of the Successor variable of the last customer.

This model has never been tested in the context of Crew Rostering Problem, but
it was used as a basis for the network reduction model proposed by [33] for Tail
Assignment Problems.

Fig. 4 NoSubTour constraint i jβi
εj

162 P.M. Castro et al.

4.3.4 Redundant Constraints

In order to improve solution time, [70] introduced redundant constraints, which do
not modify the solution set but allow improved pruning and filtering. These are the
CP equivalent of valid inequalities (cuts) usually added to MIP formulations in order
to improve its linear relaxation.

TSPTW Constraints

The constraints introduced in [59], which perform filtering based on time window
narrowing, are included in the present method. These constraints maintain for each
node (say i) the latest possible departure time and the node (say j) associated with
this time. When the domain of Si is modified, the constraint first verifies that j is
still in the domain of Si and if so performs no filtering.

Arc Elimination Constraints

Rousseau et al. [70] also introduced a new family of redundant constraints that can
reduce the number of explored nodes of the search tree by reducing the number of
arcs of the subproblem graph. The idea is to eliminate arcs which we know will
not be present in the pricing problem optimal solution. Such a practice is known as
cost-based filtering or optimization constraints (introduced in [29]) since it filters
out feasible solutions but not optimal ones.

The proposed arc eliminating constraints can reduce the size of the original graph
based on the following idea: if the dual value associated with a customer is not suf-
ficiently large, it may then not be worth the trip to visit this customer. Again, these
constraints are valid only if the triangular inequality holds for resource consump-
tion. Otherwise, the visit of an intermediate customer could yield savings in some
resources and thus allow the visit of extra customers. Since this inequality does not
hold when j D i (in the following equations), the constraint was not defined over
self-loop.

The Arc Elimination constraint of type one (a second type of constraint is de-
tailed in [70]) is defined as follows: given an arc .i; j /, if for all other customers
k that are elements of the domain of the successor variable of j (Sj), it is always
cheaper to go directly from i to k (dik) than to travel through j (dij C djk � �j),
then the arc .i; j / can be eliminated from the subproblem graph since it will never
be part of an optimal solution.

i j

k

λ

8i 2 N ,8j 2 Si W j 6D i impose that .8k 2 Sj W k 6D i 6D j .dijCdjk��j >

dik//) Si 6D j

Decomposition Techniques for Hybrid MILP/CP Models 163

4.4 Solving the Integer Problem

The optimal solution to the master problem (M) is obtained once we have proven
that no negative reduced cost path exits. Unfortunately, this solution is not always
integral (therefore, not a solution to (S)) and a branching scheme is thus needed to
close the integrality gap.

The set-based approach of Junker et al. [48] solves (S) approximately by
applying a branch-and-bound algorithm on the set of obtained columns, once (M)
has been solved to optimality. Yunes et al. [80], in their position-based model, im-
plement a full branch-and-price algorithm that solve (S) exactly. Using ABACUS
[56], they choose to branch on the original variable of (S), that is the variables
associated to the columns. Constraint Programming is quite useful in this case since
it allows to state that a given path is forbidden once its associated variable as been
fixed to 0. In [70] arc-based model, the branching scheme uses branching variables
fBi 2 N 0ji 2 N g, a set of successor variables similar to those used to describe the
subproblem. Once the optimal solution of the master problem (M) has been found,
the most fractional variable is chosen as the next branching (B) variable to be fixed.
To do so, they first calculate the flow that traverses each arc fij D P

r2R0 f r
ij xr ,

wheref r
ij is a boolean value indicating whether j is the successor of i in route r .

Then, for each customer i , they compute the number of positive flow outgoing arcs
oi D P

j2f1::N g.fij > 0/. Finally, they select the Bi variable which is associated
with the maximum value of oi and a branch on the value j which maximizes fij .
The whole branch-and-price algorithm is implemented as a CP model and solved
with a CP solver in order to take advantage of the available tree search mechanisms.

5 Conclusions

This paper has provided a review of decomposition algorithms for models that are
formulated as hybrid mixed-integer linear/constraint programming problems, focus-
ing on single stage machine scheduling problems crew rostering and vehicle routing
problems. A general decomposition algorithm for the hybrid MILP/CP model was
first presented in terms of a Benders decomposition scheme and a branch and cut
method. Computational results were presented to compare the hybrid model for the
single stage scheduling problem, with full-space discrete and continuous-time MILP
models. The computational results show that the decomposition algorithm is only
competitive in small to medium scale problems, while the full space MILP mod-
els are significantly faster in the larger problems. This is largely attributed to the
very significant advances that have been achieved with LP based branch and bound
methods. Although these results are somewhat discouraging for the decomposition
techniques, it should be noted that the branch and cut implementation is likely to
be much faster, and could still hold promise compared to full space methods, which
require specifying the number of intervals, a choice that is non-trivial, particularly
in continuous-time models.

164 P.M. Castro et al.

The Constraint Programming-Based Column Generation framework was then
presented and illustrated on the Vehicle Routing and Crew Rostering Problems. This
framework is flexible since it can handle not only resource based constraints but also
constraints of almost any structure, while still providing acceptable performance on
known benchmark problems. While the CP-based column generation framework has
been introduced to handle modeling issues arising from complex constraints, it is
now a valid option even for those problems having an NP-hard pricing subproblem
as reported by Gualandi and Malucelli [31]. The framework is, however, more ef-
ficient when application dependent global constraints with cost are designed and
implemented.

References

1. Artigues C, Gendreau M, Rousseau L-M, Vergnaud A (2009) Solving an integrated employee
timetabling and jobshop scheduling problem via hybrid branch-and-bound. Comput Oper Res
36(8):2330–2340

2. Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop scheduling.
Manage Sci 34(3):391–401

3. Applegate D, Cook B (1991) A computational study of the job shop scheduling problem. Oper
Res Soc Am 3:149–156

4. Balas E (1975) Facets of the knapsack polytope. Math Program 8 (2), 146–164
5. Balas E, Vazacopoulos A (1998) Guided local search with shifting bottleneck for job shop

scheduling. Manage Sci 44(2):262–275
6. Barnhart C, Johnson L, Nemhauser G, Savelsbergh M, Vance P (1998) Branch-and-Price:

column generation for solving huge integer programs. Oper Res 46:316–329
7. Benders, J. F., 1962. Partitioning procedures for solving mixed-variables programming prob-

lems. Numer Math 4:238–252
8. Bockmayr A, Kasper T (1998) Branch-and-infer: a unifying framework for integer and finite

domain constraint programming. INFORMS J Comput 287–300
9. Bockmayr A, Pisaruk N (2003) Detecting infeasibility and generating cuts for mixed integer

programming using constraint programming. In: Proceedings CPAIOR’03. p 24
10. Capone A, Carello G, Filippini I, Gualandi S, Malucelli F (2010) Solving a resource allocation

problem in wireless mesh networks: a comparison between a CP-based and a classical column
generation. Networks 55:221–233

11. Carlier J, Pinson E (1989) An algorithm for solving the job-shop problem. Manage Sci 35:
164–176

12. Caseau Y, Laburthe F (1994). Improving clp scheduling with task intervals. In: Hentenryck PV
(ed) Logic programming: proceedings of the 11th International Conference. MIT, Cambridge,
pp 369–383

13. Caseau Y, Laburthe F (1996) Cumulative scheduling with task intervals. In: Maher M (ed)
Logic programming: proceedings of the 1996 Joint International Conference and Symposium.
MIT, Cambridge, pp 363–377

14. Castro PA, Grossmann IE (2006) An efficient MILP model for the short-term scheduling of
single stage batch plants. Comput Chem Eng 30(6–7):1003–1018

15. Castro PM, Grossmann IE, Novais AQ (2006) Two new continuous-time models for the
scheduling of multistage batch plants with sequence dependent changeovers. Ind Eng Chem
Res 45(18):6210–6226

16. Chandru V, Hooker J (1999) Optimization methods for logical inference. Wiley, New York
17. Chvátal V (1983) Linear programming. Freeman, New York

Decomposition Techniques for Hybrid MILP/CP Models 165

18. Correa AI, Langevin A, Rousseau L-M (2007) Scheduling and routing of automated guided
vehicles: a hybrid approach. Comput Oper Res 34(6):1688–1707

19. Darby-Dowman K, Little J (1998) Properties of some combinatorial optimization problems
and their effect on the performance of integer programming and constraint logic programming.
INFORMS J Comput 10:276–286

20. Darby-Dowman K, Little J, Mitra G, Zaffalon M (1997) Constraint logic programming and
integer programming approaches and their collaboration in solving an assignment scheduling
problem. Constraints 1:245–264

21. Demassey S, Pesant G, Rousseau L-M (2006) A cost-regular based hybrid column generation
approach. Constraints 11(4):315–333

22. Desrosiers J, Dumas Y, Solomon MM, Soumis F (1995) Time constrained routing and schedul-
ing. In: Ball MO, Magnanti TL, Monma CL, Nemhauser GL (eds) Network Routing, vol 8
of Handbooks in operations research and management science. North-Holland, Amsterdam,
pp 35–139

23. Desrosiers J, Solomon MM, Soumis F (1993) Time constrained routing and scheduling. Hand-
books of operations research and management science, vol 8. North-Holland, Amsterdam,
pp 35–139

24. Easton K, Nemhauser GL, Trick MA (2002) Solving the travelling tournament problem: a
combined inte- ger programming and constraint programming approach. In: Proceedings of
practice and theory of automated timetabling. Lecture notes in computer science, vol 2740.
Springer, Berlin, pp 100–112

25. El Hachemi N, Gendreau M, Rousseau L-M A hybrid constraint programming approach to the
log-truck scheduling problem, Ann Oper Res DOI 10.1007/s10479-010-0698-x

26. Fahle T, Sellmann M (2002). Constraint programming based column generation with knapsack
subproblems. Ann Oper Res 115:73–94

27. Fahle T, Junker U, Karisch SE, Kohl N, Sellmann M, Vaaben B (2002) Constraint programming
based column generation for crew assignment. J Heuristics 8(1):59–81

28. Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for the elementary
shortest path problem with resource constraints: application to some vehicle routing problems.
Networks 44(3):216–229

29. Focacci F, Lodi A, Milano M (1999) Solving TSP through the Integration of OR and CP tech-
niques. Electron Notes Discrete Math 1

30. Gualandi S (2008) Enhancing constraint programming-based column generation for integer
programs. PhD thesis, Politecnico di Milano

31. Gualandi S, Malucelli F (2009) Constraint programming-based column generation. 4OR A Q
J Oper Res 7(2):113–137

32. Grönkvist M (2004) A constraint programming model for tail assignment. In: Proceedings of
integration of AI and OR techniques in CP for combinatorial optimization. Lecture notes in
computer science, vol 3011. Springer, Berlin, pp 142–156

33. Grönkvist M (2006) Accelerating column generation for aircraft scheduling using constraint
propagation. Comput OR 33(10):2918–2934

34. Gabteni S, Grönkvist M (2006) A hybrid column generation and constraint programming opti-
mizer for the tail assignment problem. In: Proceedings of integration of AI and OR techniques
in CP for combinatorial optimization. Lecture notes in computer science, vol 3990. Springer,
Berlin, pp 89–103

35. Gendron B, Lebbah H, Pesant G (2005) Improving the cooperation between the master problem
and the subproblem in constraint programming based column generation. In: Proceedings of
2th International Conference on Integration of AI and OR techniques in Constraint Program-
ming for Combinatorial Optimization Problems – CPAIOR’05. LNCS, vol 3524. Springer,
Berlin, 217–227

36. Hansen J, Liden T (2005) Group construction for airline cabin crew: comparing constraint
programming with branch and price In: Proceedings of integration of AI and OR techniques
in CP for combinatorial optimization. Lecture notes in computer science, vol 3524. Springer,
Berlin, pp 228–242

166 P.M. Castro et al.

37. Harjunkoski I, Grossmann I (2002) Decomposition techniques for multistage scheduling
problems using mixed-integer and constraint programming methods. Comput Chem Eng
26(11):1533–1552

38. Heipcke S (1999). Comparing constraint programming and mathematical programming ap-
proaches to discrete optimisation – the change problem. J Oper Res Soc 50(6):581–595

39. Heipcke S (1999) An example of integrating constraint programming and mathematical pro-
gramming. In: Electron Notes Discrete Math 1

40. Hooker J, Ottosson G (2003) Logic-based Benders decomposition. Math Program 96(1):33–60
41. Hooker JN (2000) Logic-based methods for optimization: combining optimization and

constraint satisfaction. Wiley, New York
42. Hooker JN (2002) Logic, optimization, and constraint programming. INFORMS J Comput

14(4):295–321
43. Hooker JN (2007). Integrated methods for optimization. Springer, New York
44. Hooker JN (2007). Planning and scheduling by logic-based benders decomposition. Oper Res

55(3):588–602
45. Hooker JN, Osorio MA (1999) Mixed logic/linear programming. Discrete Appl Math 96–97

(395–442)
46. Hooker JN, Ottosson G, Thorsteinsson ES, Kim HJ (1999) On integrating constraint propaga-

tion and linear programming for combinatorial optimization. In: Proceedings of the sixteenth
national conference on artificial intelligence (AAAI-99), AAAI. The AAAI/MIT, Cambridge,
pp 136–141

47. Jain V, Grossmann IE (2001) Algorithms for hybrid MILPCP models for a class of optimization
problems. INFORMS J Comp 13(4):258–276

48. Junker U, Karisch SE, Kohl N, Vaaben B, Fahle T, Sellmann M (1999) A framework for
constraint programming based column generation. In: Principles and practice of constraint
programming, Lecture notes in computer science, pp 261–274

49. Le Pape C (1994) Implementation of resource constraints in ILOG schedule: a library for the
development of constraintbased scheduling systems. Intell Sys Eng 3:55–66

50. Lübbecke ME (2005) Dual variable based fathoming in dynamic programs for column gener-
ation. Eur J Oper Res 162(1):122–125

51. Maravelias CT (2006) A decomposition framework for the scheduling of single- and multi-
stage processes. Comput Chem Eng 30(3):407–420

52. Maravelias CT, Grossmann IE (2004). A hybrid MILPCP decomposition approach for the con-
tinuous time scheduling of multipurpose batch plants. Comput Chem Eng 28(10):1921–1949

53. Maravelias CT, Grossmann IE (2004). Using MILP and CP for the scheduling of batch chemi-
cal processes. In: Proceedings CPAIOR’04. pp 1–20

54. Marriott K, Stuckey PJ (1998). Programming with constraints. MIT, Cambridge
55. Nemhauser GL, Wolsey LA (1988). Integer and combinatorial optimization. Wiley, New York
56. OREAS GmbH (1999) ABACUS: a Branch-And-CUt system, Ver. 2.3. User’s Guide and

Reference Manual.
57. Ottosson G, Thorsteinsson ES, Hooker J (2002) Mixed global constraints and inference in

hybrid CLP-IP solvers. Ann Math Artif Intell 34(4):271–290
58. Pantelides CC (1994). Unified frameworks for the optimal process planning and scheduling.

In: Second conference on foundations of computer aided operations. Cache Publications,
New York, p 253

59. Pesant G, Gendreau M, Potvin J-Y, Rousseau J-M (1998) An exact constraint logic program-
ming algorithm for the traveling salesman problem with time windows. Transp Sci 32:12–29

60. Pesant G, Gendreau M, Potvin J-Y, Rousseau J-M (1999) On the flexibility of constraint pro-
gramming models: from single to multiple time windows for the traveling salesman problem.
Eur J Oper Res 117:253–263

61. Pisinger D, Sigurd M (2007) Using decomposition techniques and constraint programming for
solving the two-dimensional bin-packing problem. J Comput 19(1):36–51

62. Proll L, Smith B (1998) Integer linear programming and constraint logic programming ap-
proaches to a template design problem. INFORMS J Comput 10:265–275

Decomposition Techniques for Hybrid MILP/CP Models 167

63. Quesada I, Grossmann IE (1992) An LP/NLP based branch-andbound algorithm for convex
MINLP optimization problems. Comput Chem Eng 16:937–947

64. Raman R, Grossmann IE (1993) Symbolic integration of logic in MILP branch and bound
techniques for the synthesisof process networks. Ann Oper Res 42:169–191

65. Raman R, Grossmann IE (1994) Modelling and computational techniques for logic based inte-
ger programming. Comput Chem Eng 18: 563–578

66. Rasmussen RV, Trick MA (2007) A Benders approach for the constrained minimum break
problem. Eur J Oper Res 177(1):198–213

67. Régin J-C (1994). A filtering algorithm for constraints of difference in CSPs. In: Proceedings
of the twelfth national conference on artificial intelligence (AAAI-94), pp 362–367

68. Rodosek R, Wallace M, Hajian M (1999) A new approach to integrating mixed integer pro-
gramming and constraint logic programming. Ann Oper Res 86:63–87

69. Rousseau L-M (2004) Stabilization issues for constraint programming based column gen-
eration. In: Proceedings of integration of AI and OR techniques in CP for combinatorial
optimization. Lecture notes in computer science, vol 3011. Springer, Berlin, pp 402–408

70. Rousseau L-M, Gendreau M, Pesant G, Focacci F (2004) Solving VRPTWs with constraint
programming based column generation. Ann Oper Res 130(1):199–216

71. Sadykov R (2008). A branch-and-check algorithm for minimizing the weighted number of late
jobs on a single machine with release dates. Eur J Oper Res 189(3):1284–1304

72. Sadykov R, Wolsey L (2006) Integer programming and constraint programming in solving a
multimachine assignment scheduling problem with deadlines and release dates. INFORMS J
Comput 18(2):209–217

73. Sellmann M, Zervoudakis K, Stamatopoulos P, Fahle T (2002) Crew assignment via con-
straint programming: integrating column generation and heuristic tree search. Ann Oper Res
115(1):207–225

74. Smith BM, Brailsford SC, Hubbard PM, Williams HP (1996) The progressive party prob-
lem: Integer linear programming and constraint programming compared. Constraints 1(1/2):
119–138

75. Timpe C (2002) Solving planning and scheduling problems with combined integer and con-
straint programming. OR Spectr 24(4):431–448

76. Van Hentenryck P (1999) The OPL optimization programming language. MIT, Cambridge
77. Van Hentenryck P (2002). Constraint and integer programming in OPL. INFORMS J Comput

14(4):345–372
78. Wolsey LA (1975) Faces for a linear inequality in 0-1 variables. Math Program 8(2):165–178
79. Yunes TH, Moura AV, de Souza CC (2009) Solving very large crew scheduling problems to

optimality. In: Proceedings of ACM symposium on applied computing, vol 1. ACM, New York,
pp 446–451

80. Yunes TH, Mour AV, de Souza CC (2005) Hybrid column generation approaches for urban
transit crew management problems. Transp Sci 39(2):273–288

Hybrid Solving Techniques

Tobias Achterberg and Andrea Lodi

Abstract Hybrid methods have always been one of the most intriguing directions
in these 10–15 years spent in creating and enhancing the relationship between con-
straint programming and operations research. Three main hybridization contexts
have been explored: hybrid modeling, hybrid solving (algorithmic methods) and
hybrid software tools. In this chapter we concentrate on the algorithmic side of the
hybridization.

1 Introduction

Since the mid Nineties and with the creation of the CPAIOR venue, a great impor-
tance has been given to the communication between communities, namely those of
constraint programming (CP) and operations research (OR), that had evolved in a
rather separate way but looking at very related, almost coincident questions. In that
context, the development of “hybrids” has of course been one the most intriguing
issues, the rationale being that the combination of the best features of both CP and
OR would have led to stronger methods.

It is hard to say if such an integration goal has been accomplished within the
first 10–15 years of our surveying. For sure, there is now a much deeper under-
standing among the players and such an understanding gave rise to very interesting
work on rather all domains in which hybrids could be devised. Specifically, three
main hybridization directions have been explored: hybrid modeling, hybrid solving
(algorithmic methods), and hybrid software tools.

T. Achterberg (�)
IBM, CPLEX Optimization Schoenaicher Str. 220, 71032 Boeblingen, Germany
e-mail: achterberg@de.ibm.com

A. Lodi (�)
DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
e-mail: andrea.lodi@unibo.it

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 5,
c� Springer Science+Business Media, LLC 2011

169

achterberg@de.ibm.com
andrea.lodi@unibo.it

170 T. Achterberg and A. Lodi

In this chapter, we concentrate on the algorithmic side of the hybridization, and
we survey some of the milestones in such an integration process. Of course, the
chapter is strongly connected to second chapter on “Hybrid Modeling”, to Chapter
“Decomposition Techniques for Hybrid MILP/CP Models Applied to Scheduling
and Routing Problems” on decomposition methods, and to Chapter “What is Au-
tonomous Search?” on software tools supporting integration. In particular,

� In the second Chapter “Hybrid Modeling”, Hooker discusses the idea that, in or-
der to obtain an effective hybrid algorithm, one should start with a hybrid model
which allows the solver to integrate CP and OR in a way that exploits the model
structure (creating a sort of positive loop). The most relevant examples of this
approach are discussed by Hooker [14].

� In Chapter “Decomposition Techniques for Hybrid MILP/CP Models Applied to
Scheduling and Routing Problems”, Castro and Grossmann show that a clever de-
composition in the model between a part that mostly benefits from CP techniques
and another one, instead of having a (mixed) integer programming, (M)IP, flavor
can lead to extremely good results in several applied contexts including schedul-
ing. Relevant examples of this approach are, e.g., Jain and Grossmann [15] and
Sadykov and Wolsey [30].

The algorithmic hybridizations discussed in this chapter are somehow in between
the two approaches described in Chapters “Hybrid Modeling” and “Decomposition
Techniques for Hybrid MILP/CP Models Applied to Scheduling and Routing Prob-
lems”. On the one hand, there is no explicit decomposition and the model remains
unique but the integration is certainly looser than that described by Hooker in the
sense that the modeling aspect is mostly associated with either CP or MIP. Thus, the
techniques described here combine different solving technologies within a unique
algorithm driven by either a CP or an MIP model depending on the focus the hybrid
framework should have.

For the reasons discussed above, this chapter should be seen as complementary to
Chapters “Hybrid Modeling” and “Decomposition Techniques for Hybrid MILP/CP
Models Applied to Scheduling and Routing Problems”. Thus, a “passionate” (of hy-
bridization) reader most certainly needs to look at the three chapters together to get
the full picture. As mentioned, Chapter “What is Autonomous Search?” completes
the reading by providing a detailed overview on the software environments using or
developing hybrid algorithms.

We assume throughout the chapter the basics as well as the classical terminology
of both CP and OR and especially MIP. We present some less standard concepts in
detail whenever needed.

The chapter is split into two parts. In the first part, we discuss algorithmic ap-
proaches in which OR (mostly IP) components are used within a CP framework
to deal with those aspects in which constraint programming has been tradition-
ally weak(er). This is discussed in Sect. 2. In the second part, we present more
or less the opposite direction, i.e., a fine integration of CP concepts within an
MIP framework. This is discussed in Sect. 3. Finally, some conclusions are drawn
in Sect. 4.

Hybrid Solving Techniques 171

2 Exploiting OR Techniques within CP

CP modeling is based on the so-called global constraints1, i.e., higher level struc-
tured collections of simpler constraints representing fundamental structures of the
overall problem. Modeling by global constraints is very flexible, compact, and
shows immediately which are the main characteristics of the problem at hand. In
addition, with each global constraint, there is an associated propagation algorithm
that prunes variable-value assignments which are proven infeasible.

Propagation algorithms have been the first, ante litteram, form of integration of
OR techniques, and in particular graph theoretic algorithms, in CP. A classical ex-
ample is that of the most famous among the global constraints, the ALLDIFF. The
ALLDIFF constraint is defined on a set of variables ŒX1; : : : ; Xn� ranging over fi-
nite domains ŒD1; : : : ; Dn�. It is satisfied if and only if each variable is assigned
a different value. The structure of the ALLDIFF constraint has been recognized to
be the one of a flow in a graph and polynomial time propagation algorithms to
enforce arc-consistency have been designed by Régin [27] by exploiting such a
structure.

Although the roots of the propagation algorithm for the ALLDIFF are clearly in
the OR context, this does not strictly qualify as a form of hybridization. Indeed,
finding an effective and efficient algorithm to prune the solution space by removing
values from variables’ domains is intrinsically in the CP framework, actually it is
what CP does.

The hybridization we will discuss in the following are instead specifically de-
signed to take advantage of the strength of an approach to recover the weakness of
another. That is sometimes achieved by exploiting an OR technique with a rather
different flavor.

It is common sense that a crucial reason to use CP is the aforementioned flexibil-
ity of its modeling paradigm and, indeed, many of the hybrid approaches exploit CP
on the modeling side. Of course, however, the first problem to be considered, once
a CP model has been selected and a mathematical programming based algorithm
has to be integrated, is the mapping of such a model (or part of it) into a traditional
MIP one.

To deal with such a mapping, almost all authors have followed the seminal path
disclosed by RodoLsek, Wallace and Hajian [29] of associating a binary variable xij

with each discrete choice j of the CP variable Xi in the (finite) domain Di . Then,

xij D 1, Xi D j and
X

j2Di

xij D 1: (1)

In the rest of the section, we discuss three basic hybridization approaches
(Sects. 2.1–2.3) that appeared in the literature around the same period at the end

1 Chapter “Global Constraints: A Survey” of the book is devoted to this topic.

172 T. Achterberg and A. Lodi

of the nineties and have, as a common denominator, the solution of linear repre-
sentations of the CP model. In Sect. 2.4, a couple of more specialized examples of
integration will be presented.

Finally, note that the role of OR and MIP within CP has been extensively dis-
cussed by Milano et al. [21] and Milano and Wallace [23].

2.1 Interaction Between CP & MIP Solvers

A first formal approach in which both a CP and a MIP solver were extensively ex-
ploited is due to RodoLsek, Wallace and Hajian [29] and RodoLsek and Wallace [28].
The model is expressed by using the CP paradigm and the basic scheme implies
a linearization of the constraints by means of the mapping (1) at each node of the
search tree. The main idea is indeed that performing both a “local” constraint prop-
agation by CP and a “global” propagation by solving the continuous relaxation of
the problem, one can obtain a stronger reduction of the search space. Specifically,

� Local. CP is in charge of the search decisions, i.e., to construct a feasible solution
and to perform local propagation based on global constraints.

� Global. The associated continuous relaxation is obtained by dropping the inte-
grality requirement on the binary variables defined by the mapping (1) and solved
by the simplex algorithm (more generally, a general-purpose linear program-
ming, LP, solver). This is used as a global propagation to detect the infeasibility
of a node, i.e., a partial solution which cannot be completed, so as to stop the
search at high(er) tree levels.

The rationale behind such a hybridization mechanism is that the two propagations
are inherently different as shown by a slight adaptation of an example given in [28].
From the one side, given the following simple constraint on the domain variables X

and Y

X W 0::3; Y W 0::1; X C 2Y D 3; (2)

a (local) constraint propagation immediately detects that values 0 and 2 can be re-
moved from the domain of variable X because they do not give rise to feasible
complete assignments. The continuous relaxation of the associated MIP can also
exclude 0 from the domain of X , it cannot exclude 2.

On the other hand, constraint propagation is unable to detect any inconsistency
in the constraints

X W 1::10; Y W 1::10; Z W 0::1; 2XC2YCZ � 23; XCY � 11; XCYC10Z � 12;

(3)
while the continuous relaxation of the associated MIP is infeasible.

It is easy to see that in the approach described above the main focus remains
on the infeasibility detection as in the classical CP tradition. In other words, if
there exists a penalty function ranking feasible solutions, the associated optimiza-
tion problem is reduced to a sequence of feasibility problems where one requires to

Hybrid Solving Techniques 173

improve the current incumbent solution. More precisely, if the penalty function to
be minimized is written as

Pn
iD1 CiXi and the current incumbent solution has value

best, then the problem formulation is enhanced through the constraint

nX
iD1

CiXi � best � "; (4)

where " is a small positive value2.
Unfortunately, the continuous relaxation of constraint (4) (after mapping) usually

does not (globally) propagate very much and this results in a rather weak exploita-
tion of the penalty function to abort the search at high levels of the tree.

2.2 Linearizing Global Constraints

In the previous section, we have already presented the mapping which leads to the
linearization of the global constraints of the CP model in order to obtain the asso-
ciated MIP representation. However, the linearization problem in its full generality
has been considered by Refalo [26] whose contribution is discussed in detail in this
section.

From the one side, Refalo [26] noted that solving the continuous relaxation pro-
vides a lower bound (by again considering minimization problems) that can be used
to prune the search space (in a weak way, see previous section) but also a relaxed
solution which, in turn, can be very useful to guide the search toward optimal solu-
tions. This idea has been used for example by Milano and van Hoeve [22] to produce
a ranking of the variables in order to first explore promising parts of the search space
and quickly improve the incumbent solution3.

On the other hand, Refalo [26] noted that an MIP representation of a global con-
straint is not restricted to the linear constraints that are required to make such a
linearization valid. In other words, the idea is to generate cutting planes with the
aim of improving the linear representation/relaxation of a global constraint on the
fly, i.e., when the current relaxed solution violates them. This approach, which is
standard in MIP branch-and-cut algorithms, has the advantage of improving the
current representation only when needed while keeping the relaxation under control
in terms of size. From a CP perspective, the integration of a cutting plane genera-
tion phase is very clean in the sense that the linear representation is used not only
to detect the infeasibility of a partial solution (a node in the tree) but also to propa-
gate new constraints. Focacci, Lodi and Milano [9] discussed several ways of using

2 One is allowed to use " D 1 if all variables can only assume integer values and the C coefficients
are integer as well.
3 It must be noted that in [22] the authors solve the continuous relaxation of one of the global
constraints by a combinatorial algorithm and not by a general-purpose LP solver.

174 T. Achterberg and A. Lodi

cutting planes in CP global constraints ranging from a straightforward integration
to more sophisticated ones involving the use of a Lagrangean relaxation of the cuts.
(The use of Lagrangean relaxation in conjunction with cuts will be discussed in
more detail in Sect. 2.4.)

Before ending the section, we would like to emphasize that, building upon the
work in [28, 29], the contribution of Refalo’s work [26] has been giving a detailed
and systematic way of producing and updating linear representations of global con-
straints and extending the use of the information associated with them.

It is also worth noting that the goal of collecting useful pieces of information
from linear representations does not necessarily require the reformulation of all
constraints to produce a complete MIP. Indeed, as shown for example in [22], even a
local reformulation of single global constraints can be very effective both for propa-
gation and to guide the search. In addition, the special structure generally associated
with global constraints allows polyhedral4 cutting planes to be generated.

2.3 Cost-Based Domain Filtering

Focacci, Lodi and Milano [8, 11] looked at the linearization of a global constraint
from a slightly different perspective. Again, the idea relies on having a linear relax-
ation of the global constraint itself. However, the propagation due to the objective
function is used not only in the weak (and already too expensive) traditional way
to remove partial solutions, but also to filter variable-value assignments through the
use of reduced costs. In linear programming theory, the reduced cost of a variable
xij is the change in the current value of the objective function due to an increase of
1 unit in the value of xij . In other words, the reduced costs are a gradient function
measuring the variable-value assignment cost and, because of this, they are partic-
ularly suitable for traditional CP domain propagation. More precisely, let best be
the value of the incumbent solution, and let LB be the optimal value of the linear
relaxation of the global constraint at hand (at the current node) representing a lower
bound on the overall objective function. Moreover, let Ncij be the reduced cost of the
binary variable xij . Then,

LB C Ncij � best) Xi 6D j; (5)

i.e., value j can be eliminated from the domain of variable Xi in case the reduced
cost of the associated binary variable xij would make the current lower bound value
greater than or equal to the incumbent value.

4 A cutting plane is often referred to as polyhedral when its separation is based on the knowledge of
the structure of the underlying polyhedron. That is in opposition to the so-called general-purpose
cutting planes, like Chvátal–Gomory cuts, whose derivation only relies on algebraic properties like
integrality.

Hybrid Solving Techniques 175

This technique has been well-known5 in MIP for decades but, in general, it is ex-
tensively applied only at the root node of the search tree with the rationale that
variable fixing in the internal nodes is “implicitly” achieved6 through more so-
phisticated techniques. In the CP context, instead, the technique called Cost-based
Filtering has a partially different flavor. First, CP relies on filtering variable-value
assignments as its main tool. Second, as already mentioned, traditionally the im-
pact of the objective function is very limited. Third, the reduced cost computation
is somehow incremental, in the sense that a re-optimization of the linear relaxation
generally does not require re-calculation of the reduced costs from scratch.

The third aspect of the method being incremental has been particularly stressed
in [8] where the authors used the path constraint to model the famous Traveling
Salesman Problem (TSP) where a traveling salesman is looking for the shortest tour
visiting n cities exactly once. In this case, the linear relaxation considered was the
Assignment Problem which is (a) solvable in O.n3/ time through a combinatorial
algorithm, (b) integer valued, and (c) fully incremental in the sense that any re-
optimization after a branching decision has been taken requires only O.n2/ time. In
the most general case, i.e., when the linear relaxation is solved by a general-purpose
LP solver, such a very clean incremental re-computation is not possible but if the
dual simplex algorithm is used, the number of iterations (so-called pivots) is small
in practice.

Finally, we like to stress that the Cost-based Filtering technique is fully general,
the only requirements being (a) the availability of a gradient function like the re-
duced costs and (b) the fact that solving the relaxation is indeed giving a valid lower
bound on the overall objective function.

2.4 Specialized OR Methods within Hybrid Algorithms

In the Sects. 2.1–2.3, we have surveyed three fully general techniques that integrate
OR elements within a CP framework. The common denominator of those tech-
niques is the solution of a linear representation of either the entire or part of the
problem modeled within a CP paradigm. However, the way in which the informa-
tion provided by the solution of these associated linear programs is algorithmically
exploited differs in the described frameworks.

In the following, we describe two specialized OR methods which have been used
within hybrid algorithms of the type described above.

Lagrangean Relaxation of Cuts. As already mentioned in Sect. 2.2, there are several
ways of using cutting plane generation within CP once a linear representation of a

5 It is often referred to as reduced cost fixing.
6 An implicit fixing is achieved because no branching will be performed on the binary variable
associated with the variable-value assignment because its value will be moved toward integrality,
e.g., by tightening the relaxation through cutting planes.

176 T. Achterberg and A. Lodi

global constraint has been obtained. Of course, the cuts can be generated, as often
done by MIP solvers, at the root node of the search tree so as to tighten the initial
relaxation or can be separated at any node of the tree. However, in the CP context
in which the number of explored search nodes is in general very high, the addition
of too many cuts can result in a slow algorithm in which the computational effort
associated with any node is too high, mainly because of the size of the resulting LP7.

One idea introduced by Focacci, Lodi and Milano [9] is the one of relaxing the
cuts (at given reference points) in a Lagrangean fashion, i.e., by dualizing them
in the objective function through appropriate penalties. More precisely, if a valid
cutting plane, say ˛T x � ˛0 has been generated, its Lagrangean relaxation (or
dualization) is obtained by putting it into the objective function as

min
nX

iD1

X
j2Di

cij xij C �.˛T x � ˛0/; (6)

where
Pn

iD1

P
j2Di

cij xij is the linearization of the objective function (4) and
� � 0 is the penalty term. In other words, if the cut is violated by a given solu-
tion x�, then ˛T x� � ˛0 > 0 and it gives a positive contribution to the objective
function, i.e., penalizes it proportionally to �.

This idea has been effectively used by Focacci, Lodi and Milano [10] for solving
the time constrained variant of the TSP in which each city must be visited within a
specific time window. In particular, the cuts separated at the root node can be dual-
ized into the objective function by selecting optimal penalty values �’s, one per each
cut and precisely the dual value associated with that cut in the optimal LP solution8.

The effect of such a relaxation is to keep the size of the linear representation
“small” and at the same time being able to deal with a much tighter relaxation of
the path constraint which has been very useful in [10] to solve large TSP with time
windows instances. (Some additional tricks have been used to make the relaxation
effective such as removing, purging, the cuts when they are no more useful, see [11]
for details.)

Finally, note that once a group of constraints (cuts in this case) has been relaxed
in a Lagrangean fashion, the remaining linear program sometimes shows a structure
that can be exploited by solving it with a combinatorial algorithm, which is generally
more efficient than a general-purpose technique. This is true in [11] where, once the
cuts have been dualized, the remaining relaxation is the Assignment Problem (see
Sect. 2.3 above).

Additive Bounding. The additive bounding procedure has been proposed by
Fischetti and Toth [7] as an effective technique for computing bounds for com-
binatorial optimization problems. Intuitively, the approach consists of solving a
sequence of relaxations of a given problem, each producing an improved bound.

7 Note that in MIP such a problem exists as well but it is less crucial since in the branch-and-cut
algorithm branching is not conceived as the primary tool like it is instead in CP.
8 The interested reader is referred to Nemhauser and Wolsey [25] for a detailed treatment of
Lagrangean relaxation.

Hybrid Solving Techniques 177

More precisely, we suppose we have a set of d bounding procedures B1; : : : ; Bd

for our problem, which is expressed in minimization form and with a cost vector c.
In addition, we assume that every bounding procedure Bh returns a lower bound
value LBh and a reduced cost vector Nch. It is not difficult to prove that in case
the bounding procedures B1; : : : ; Bd are applied in sequence, and procedure Bh

receives on input instead of the original cost vector the reduced cost vector returned
by Bh�1, i.e., Nch�1, then

LB D
dX

hD1

LBh (7)

is a valid lower bound for the overall problem.
The additive bounding approach has been disregarded in the last 15 years by

the OR community due to the increasing availability of reliable and fast LP solvers
which allow to solve the full LP relaxation in “one shot.” However, Lodi, Milano and
Rousseau [17] revisited it in the CP context by showing its interest in particular in
conjunction with the enumeration strategy called Limited Discrepancy Search (LDS,
see Harvey and Ginsberg [13]). Again, one of the reasons why the additive bounding
idea is particularly interesting for CP is that enumeration is a strong ingredient of
CP, thus getting a cheap improvement in the bound without the price of solving large
LPs is appealing.

LDS is one of the most well-known search strategies used in CP. A discrepancy
is a branching decision which does not follow the suggestion of the heuristic9 and
the basic idea of LDS is that the search space is explored by fixing the amount of
discrepancies one is allowed to accept. In other words, the solution space is split into
slices with fixed discrepancy k and it is explored for increasing values of k itself.
In particular, the variant of LDS used in [17] is called Decomposition Based Search
(DBS, see Milano and van Hoeve [22]) and splits the domain of each CP variable
Xi into a bad set Bi and a good one Gi . Thus, a discrepancy corresponds to assign
a value j 2 Bi to variable Xi .

It is not hard to see that the condition that fixes the cardinality of the discrepancy
set to k can be easily expressed as the linear constraint

nX
iD1

X
j2Bi

xij D k; (8)

where of course
P

j2Bi
xij � 1 must hold as well.

The main observation in [17] is that imposing constraint (8) during search en-
ables the definition and solution of an additional relaxation which can be used in
conjunction with any combinatorial relaxation associated with a global constraint in
additive fashion. Specifically, Lodi, Milano and Rousseau [17] use the Assignment
Problem relaxation of the ALLDIFF constraint as a primary bounding procedure and

9 Recall that in CP the rule that selects the next variable-value assignment to be instantiated is
called heuristic.

178 T. Achterberg and A. Lodi

the resulting reduced cost vector is used to “feed” the simple relaxation defined by
the discrepancy constraint (8). Such a bound improvement has been proven very
useful to solve difficult instances of asymmetric TSP and Resource Constrained As-
signment Problems (see, [17] for details).

More sophisticated additive algorithms are also described in [17] for the spe-
cial case in which the ALLDIFF constraint is used. However, the additive bounding
technique is a general bounding approach having the two major characteristics of
(a) establishing a non-trivial link between search and bound and (b) providing a
sometimes non-negligible improvement without the cost of solving large LPs.

3 Exploiting CP Techniques within MIP

As mentioned in Sect. 2, it is common to use an LP relaxation inside a CP solver as
an additional propagation engine and to direct the search. From a high-level perspec-
tive, a typical branch-and-cut MIP solver is just a special case of such an LP based
CP solver, namely one that supports only linear constraints and integrality condi-
tions. Just like a CP solver, an MIP solver traverses a search tree that represents
a recursively defined decomposition of the search space, and it performs domain
propagation at the nodes to reduce the size of the tree. In particular, it solves the LP
relaxations to provide bounds on the objective function.

From a practical point of view, however, state-of-the-art MIP and CP solvers
are very different regarding the concepts that are emphasized in the implementa-
tions. The most important aspect of a CP solver is its propagation engine. Each
individual propagation algorithm has to be specifically tailored toward the class of
constraints that is addressed by the propagator, and the CP framework has to support
the efficient interaction between multiple propagation algorithms. The communi-
cation between the different constraint types is mainly done via the domains of
the variables, and this communication must be extremely fast in order to obtain a
high throughput of search tree nodes. An example of a specifically tailored prop-
agation algorithm can be found in SAT solvers, which can also be seen as a very
special case of CP solvers: Moskewicz et al. [24] discovered that to propagate SAT
clauses it suffices to track the bounds of only two of the involved variables. This
so-called two watched literals scheme turned out to be a major advancement in SAT
solving technology as it greatly improves the performance of the SAT propagation
engine.

Although an MIP solver also employs domain propagation on the linear con-
straints, the central object in the solving process clearly is the LP relaxation, and
the search process is primarily guided by the LP solutions and the dual bounds that
are provided by the LP. A lot of tricks are employed to speed up the LP solves, for
example, by recording warm start bases to be able to resolve LP relaxations of child
nodes in few iterations and by storing dual norms to obtain faster steepest edge pric-
ing in the dual simplex solver. Typical MIP branching rules [3] are based on primal
and dual information from the LP relaxation and try to increase the dual objective

Hybrid Solving Techniques 179

bound that is provided by the LP. Many of the primal heuristics [4] to find feasible
solutions take the LP solution as a starting point and try to turn it into an integer
feasible solution.

It is common knowledge in the MIP community that an MIP model can usually
be solved better if its LP relaxation is close to the convex hull of integer feasi-
ble points. Therefore, one of the central topics in MIP research is to derive cutting
planes to tighten the LP relaxation, see, for example, [16] for a survey and [32] for
implementation details. Efficient MIP solvers need very efficient implementations
of several cutting plane procedures and good heuristic procedures to control the
interaction among them. The same holds true for primal heuristics and branching
rules. In contrast, efficient domain propagation is not that crucial for an MIP solver,
as most of its run time is consumed in the LP solves.

CP has very rich and expressive modeling capabilities. In fact, one can view a
CP solver as a relatively simple framework that is extended by a whole library of
constraint specific algorithms. The expressiveness of the modeling language that
a CP solver supports is directly connected to the domain propagation algorithms
that the solver implements. On the other hand, an MIP solver is limited to linear
constraints and integrality. This limitation is exploited in today’s solvers to achieve
a very high performance for this special case.

The question arises as to how one should combine CP and MIP solving technolo-
gies. The answer to this question, in our view, strongly depends on the focus that the
hybrid technology should have. In theory, there is no difference; in both cases, one
will end up with a CP solver that solves LP relaxations. In practice, the tradeoff to
be made is between expressiveness and performance.

In this section, we focus on a performance oriented approach, represented by the
CP/MIP framework SCIP [1,2], which tries to extend a tightly integrated MIP solver
in order to incorporate some of the expressiveness of CP into the final hybrid system.
Note that the solver performance comes with the downside of more complicated
interfaces between the different solver components, as the amount of information
they have to share is relatively large.

3.1 Design Concepts

Our approach for building a hybrid CP/MIP solver is based on a core framework that
provides the necessary infrastructure and plugins which implement the semantics of
the constraints and provide additional functionality to speed up the solving process.
The core algorithms of CP and MIP solvers that have to be efficiently supported by
the framework are the following:

Presolving. The given problem instance is transformed into an equivalent (usually
smaller) problem instance. The transformation has to be stored such that one can
easily crush a vector of the original space into a vector of the transformed space,
and uncrush a transformed vector into a corresponding original vector.

180 T. Achterberg and A. Lodi

QQ 1 Q2

x̌x̌

Fig. 1 LP based branching on a single fractional variable

Branch-and-bound. The problem instance is successively divided into subprob-
lems, usually by splitting the domain of a variable into two disjoint parts (branch-
ing), see Fig. 1. The dissection of a subproblem ends if it is infeasible, an optimal
solution for the subproblem can be identified, or if it can be proven that no bet-
ter solution than the currently best known one can be contained in the subproblem
(bounding).

Relaxation. A relaxation of the problem at hand is obtained by dropping some of the
constraints. The relaxation should be chosen such that it can be solved efficiently.
Its solution provides a dual bound on the objective value which can be used for the
bounding step in branch-and-bound. Moreover, the primal solution to the relaxation
can be used to guide the branch-and-bound search, and implications found for the
relaxation are valid for the original problem as well.

Typically, MIP solvers use the LP relaxation, which is obtained by dropping the
integrality restrictions of the variables. One example of implications derived from
the LP are reduced cost fixings [25], see Sect. 2.3. In a hybrid system, the LP re-
laxation arises as the intersection of linear relaxations of the individual constraints
in the problem instance. In SCIP, it is also possible to use alternative relaxations
such as NLP or SDP, but the support for the LP relaxation is far more elaborate and
efficient.

Cutting plane separation. After having solved the LP relaxation of a subproblem, it
is possible to exploit the integrality restrictions in order to tighten the relaxation and
thereby improve the bound obtained. This is achieved by adding linear inequalities
that are valid for all integer feasible solutions of the problem but violated by the
current LP solution, see Fig. 2. This approach of tightening a relaxation of a general
problem, ideally until the convex hull of all feasible solutions has been obtained,
can be seen as an extension to the approach of Crowder, Johnson, and Padberg [5].

Domain propagation. After having tightened a variable’s domain in the branching
step of branch-and-bound, domain propagation infers additional domain reductions

Hybrid Solving Techniques 181

Q QI

x̌x̌

Fig. 2 A cutting plane separates the LP solution Lx from the convex hull QI of integer points of Q

x1

x2

x3

x4

x1

x2

x3

x4

r

r

r

r

r

r

r

r

y

y

y

y

y

y

y

y

g

g

g

g

g

g

g

g

b

b

b

b

b

b

b

b

Fig. 3 Domain propagation on an ALLDIFF constraint. In the current subproblem on the left hand
side, the values red and yellow are not available for variables x1 and x2 (for example, due to
branching). The propagation algorithm detects that the values green and blue can be ruled out for
the variables x3 and x4

on the variables by inspecting the individual constraints and the current domains
of the involved variables. Figure 3 illustrates domain propagation on the example
of the ALLDIFF constraint, which imposes that all variables of the constraint take
pairwise different values.

One can view domain propagation as finding implications for another relaxation
of the problem, namely the relaxation that arises by only keeping one constraint and
the integrality conditions.

Conflict analysis. Infeasible subproblems are analyzed to identify the reason of
the infeasibility and to extract additional valid constraints. These can be applied
later during the search to prune the search tree and to improve the subproblems’
relaxations.

The most important plugins in SCIP are the constraint handlers. They define
the semantics of the constraint types that are supported by the solver. This concept
is similar to typical constraint programming libraries, in which each class of con-
straints is represented by a set of constraint specific algorithms. These algorithms
are accessed through an abstract interface.

182 T. Achterberg and A. Lodi

In terms of the interface, the main difference between different CP frameworks
is the amount of information a constraint handler has to provide. In this regard,
there is a tradeoff between ease of implementation and performance of the resulting
solver. The more information a constraint handler provides about the structure of
the constraints, the more conclusions the other components of the solver can derive.
Consequently, the search space will usually be traversed in a more efficient way and
a smaller number of branch-and-bound nodes are needed to solve the problem.

In the extreme case, a constraint handler is just an oracle which inspects a given
solution vector and attributes it to be feasible for its constraints or infeasible. With-
out providing further information to the framework, this leads to an almost complete
enumeration of all vectors of the search space, because apart from bounding, no
parts of the search space can be pruned. The other extreme case can be found in an
MIP solver: here, all components of the solver have perfect information about the
constraint structure and can exploit this knowledge at every place in the algorithm.

SCIP tries to exploit as much structural information as possible within a reason-
able application programming interface (API). Of course, this comes at the cost of a
more complex constraint handler interface and a pretty high learning investment for
new users. On the other hand, this interface leads to high performing code, as can
be seen in Hans Mittelmann’s MIP solver comparison in Fig. 4. In the following, we
will discuss some of the design decisions in SCIP and how they impact the ability to
exploit certain structure in the solver. Additionally, we highlight the infrastructure
that SCIP provides to support an efficient implementation of plugin algorithms such
as cutting plane separation or domain propagation, and we provide a brief overview
of the main steps in the branch-and-bound solution process as implemented in SCIP.

3.2 Interfacing to the Framework

The plugin concept of SCIP facilitates the implementation of self-contained solver
components that can be employed by a user to solve his particular hybrid model.
For example, if some user implemented a constraint handler for a certain class of
constraints, he could make this plugin publicly available in order to enable all other

Fig. 4 Geometric mean of results taken from the homepage of Hans Mittelmann (July 29, 2010).
Unsolved or failed instances are accounted for with the time limit of 2 h. Figure from scip.zib.de

scip.zib.de

Hybrid Solving Techniques 183

SCIP users to use such constraints in their models. Since all MIP specific compo-
nents that come with the SCIP distribution are implemented as plugins, more general
applications can immediately benefit from these components.

Such a modular code design has the consequence that all communication between
the plugins has to pass through a unified interface defined by the framework. In
SCIP, this communication interface is mainly based on the MIP relaxation of the
problem. The actual semantics of the various (potentially non-linear) constraints in
the model is hidden from all plugins except the responsible constraint handler.

An important aspect of this information hiding is the loss of the dual view, i.e.,
the column-based representation of the problem. By looking at the columns of the
constraint system Ax � b, a typical MIP solver knows exactly how the feasibility
of the constraints is affected if the value of a particular variable changes. Such data
are, for instance, used for dual presolving reductions such as the identification of
parallel and dominated columns and for symmetry detection.

Therefore, SCIP and other CP solvers with an open constraint interface suffer
from some handicaps when compared to specialized MIP solvers. To attenuate this
drawback, SCIP demands from the constraint handlers to provide a limited amount
of dual information to the framework, namely the number of constraints that may
block the increase or decrease of each variable. This information suffices to enable
the most important dual presolving operations such as dual fixing and dual bound
reduction and helps guide primal heuristics and branching, see Achterberg [1]. Nev-
ertheless, it is not enough to fully support dual algorithms that–like parallel column
identification and symmetry detection–need to know precisely the coefficients in the
constraints.

The requirement to provide this (limited) dual information has the obvious draw-
back that the development of a constraint handler is slightly more complicated. One
cannot restrict the focus on the primal view of the problem, which is typically eas-
ier to understand. Moreover, forgetting to provide the dual information essentially
means to remove a dual constraint from the problem and thus may lead to invalid
presolve reductions or dual domain propagations that cut off the optimal solution.

The loss of dual information arises from decomposing the problem formula-
tion into individual constraints. An additional remedy to this issue is provided by
the constraint handler approach itself. Other branch-and-cut frameworks such as
ABACUS [31] treat each individual constraint as an isolated object. In contrast, a
constraint handler in SCIP, which manages all constraints of a certain type, can still
perform operations on multiple constraints. In particular, if the limited dual infor-
mation reveal that some variables are contained only in a single class of constraints,
then the corresponding constraint handler can apply dual presolving methods on
these variables. Some dual methods are already incorporated into the linear con-
straint handler of SCIP 1.2. Others, such as symmetry detection and parallel column
aggregation, are not yet available.

On the primal side, the plugin concept with its information hiding has also a dis-
advantage compared to MIP solvers, namely, that it is impossible to consider multi-
ple constraints at the same time to derive conclusions such as presolving reductions,
domain propagations, or cutting planes. Again, this drawback is mitigated by the

184 T. Achterberg and A. Lodi

constraint handler approach in which each constraint handler can look at all con-
straints of the corresponding type at once. For example, the linear constraint handler
exploits this possibility so as to detect redundant constraints or to add equations to
other linear constraints in order to reduce the number of non-zero coefficients in the
constraint matrix. Another tool to partly address this issue is given by some of the
infrastructure components in SCIP, namely the implication graph, the clique table,
and the MIP relaxation (that is the LP relaxation and the integrality information).
These data structures capture global relationships between the variables that can be
exploited in the various plugins.

Finally, a more subtle drawback of the plugin approach of SCIP is its memory
footprint and poor locality. An MIP solver can store the whole problem matrix A in
a single memory block. In contrast, the problem data in SCIP are stored locally in
the constraint handlers, which means that the data are distributed across the memory
address range. This usually leads to a degradation in the cache usage of the CPU
and consequently to a performance loss. Additionally, since SCIP manages an MIP
relaxation of the problem and additionally employs a black-box LP solver as sub-
algorithm to manage the LP relaxation, most of the problem data are copied several
times. This yields a significant increase in the memory consumption. Moreover,
treating the LP solver as a black box and passing information through an interface
layer abandons the opportunity for runtime improvements, namely to take certain
shortcuts and to exploit integrality during the LP solves.

3.3 Infrastructure Provided by the Framework

As indicated in the previous section, the abstraction of constraints and the infor-
mation hiding that comes with it limit the amount of global problem structure that
the solver can exploit. One task of the framework of a hybrid solver is to provide
infrastructure to facilitate the communication between the plugins, in particular the
different constraint handlers. SCIP offers a variety of such infrastructure compo-
nents, each of which can be seen as a relaxation of the problem:

Dual information. As described above, constraint handlers have to provide a lim-
ited amount of dual information about their constraints, namely the number of
constraints that prevent each variable to be increased or decreased arbitrarily. These
variable locks basically say how many constraints can potentially be violated by
shifting a variable upward or downward. They are exploited for dual presolving and
dual domain propagation as well as in primal heuristics and branching rules.

Implication graph. The implication graph stores logical implications on binary
variables x 2 f0; 1g of the form

x D 0! y � b; x D 0! y � b; x D 1! y � b; or x D 1! y � b:

(9)

Hybrid Solving Techniques 185

Such implications are, for example, used by the complemented mixed integer round-
ing cut separator [18, 19] to derive stronger cutting planes.

Clique table. The clique table Q stores relations between binary variables xj 2
f0; 1g, j 2 Q 2 Q, namely, set packing constraintsX

j2Q

xj � 1:

These cliques may contain both the positive literal xj and the negative literal Nxj of
a binary variable. Thereby, the clique table is a compact representation of implica-
tions (9) between binary variables.

Variable aggregation graph. The variable aggregation graph stores equality
relations between variables of the form

yi D
nX

jD1

aij xj C bi :

These are found during the presolving phase of the algorithm and used to remove
variables yi from the problem instance by replacing their occurrences with the cor-
responding affine linear sum of variables xj . Constraint handlers can check the
variable aggregation graph and optionally perform the corresponding substitution in
their own constraint data structures. This could lead to further presolving reductions
and problem simplifications. Sometimes, however, performing such a substitution is
not possible because it would violate the structure of the constraint. For example, in
the ALLDIFF.y1; y2; y3/ constraint, we cannot substitute, say, y1 WD 2xC3 because
the ALLDIFF.y1; y2; y3/ cannot be translated into an equivalent ALLDIFF constraint
on x, y2, and y3. Instead, the original variables are kept in the constraint and the
variable aggregation graph is used as an efficient and transparent way to automat-
ically perform the necessary crushing and uncrushing operations to map original
variables to active variables of the presolved model.

MIP relaxation. The most important infrastructure component to facilitate commu-
nication between plugins is the MIP relaxation of the problem, which consists of a
linearization of the constraints plus the bounds and integrality information for the
variables. The MIP relaxation is populated by the constraint handlers and the cutting
plane separators. It is automatically updated whenever the search process moves to
a different subproblem in the search tree.

The MIP relaxation is used extensively during the search process: Primal heuris-
tics search for feasible solutions to the MIP relaxation and hope that these are also
feasible for the full model; Cutting plane separators add violated inequalities to
tighten the LP relaxation by exploiting the integrality information; Reduced cost
fixing exploits dual LP information and the integrality restrictions; Branching rules
to split the problem into subproblems are guided by the primal LP solution and the
dual LP bound; The dual LP bound is used in the bounding step of branch-and-
bound; Conflict analysis converts the dual ray of an infeasible LP relaxation into a
globally valid conflict constraint that can help prune the search tree later on.

186 T. Achterberg and A. Lodi

All of these components are independent of the abstract constraints in the model
and only use the information provided by the MIP relaxation. Therefore, if the model
to be solved has a tight MIP relaxation, it is likely that the solving process can
greatly benefit from these MIP-specific SCIP plugins.

In addition to the “communication infrastructure,” a hybrid framework like SCIP

has to provide a “bookkeeping infrastructure” that helps ease the implementation of
constraint handlers and improve the performance of the code. In this regard, SCIP

offers the following main concepts:

Search tree. The search tree can be easily defined in the branching rules by methods
to create children of the currently active search node. The node selection rule defines
the ordering of the open nodes in the node priority queue. Individual nodes and
whole sub-trees can be marked to be pruned or reevaluated by domain propagation,
which is exploited in the so-called non-chronological backtracking [20] that SCIP

applies automatically after having derived conflict constraints.

Event mechanism. An efficient domain propagation needs to process the constraints
and variables in a sparse fashion: only those constraints need to be evaluated again
for which the data of at least one of the involved variables have been modified since
the last inspection of the constraint. This process is supported by the event mech-
anism in SCIP: a constraint can “watch” the status of variables and be informed
whenever the status (for example, the bounds of the variable) changes. The list of
constraints that watch the status of a variable has to be dynamically adjustable to fa-
cilitate efficient propagation schemes such as the two-watched literals scheme [24].
Using this scheme, each set covering or bound disjunction constraint only needs to
watch two of the involved variables, but this pair of “watched literals” has to be
changed over time.

Besides watching the status of variables, events can also be used to be informed
about new feasible solutions that have been discovered, about the switching of sub-
problems in the search tree, or about the solving of an LP relaxation.

Solution pool. The solution pool of SCIP collects all feasible solutions that have
been discovered during the search process. From a practical perspective, these sub-
optimal solutions can be useful since often the model does not capture all aspects
of the real-world problem and therefore a sub-optimal solution might be useful
for the decision makers. From a solver perspective, the solutions in the solution
pool can be used, for example, to guide primal heuristics like crossover [4] or
RINS [6].

Cut pool. The cut pool stores cutting planes that have been separated by constraint
handlers or cutting plane separators. It is used to collect cuts that are non-trivial to
derive and for which it is therefore more efficient to keep them in the pool instead
of having to find them again by a separation algorithm. Often, not all available cuts
are simultaneously present in the LP relaxation. The pool provides an efficient way
to add these cuts dynamically to the LP if they are violated by the current LP
solution.

Hybrid Solving Techniques 187

Separation storage and cut filtering. During each round of cutting plane separa-
tion, the cutting planes produced by the separation algorithms are collected in the
separation storage. At the end of each round, the set of cutting planes is automati-
cally filtered in order to reduce the number of cuts that enter the LP relaxation [1].
The goal of the cut filtering is to obtain an almost orthogonal set of cuts, each of
them having a large Euclidean violation with respect to the current LP solution.

Pricing storage. The pricing storage is the analogous to the separation storage for
new columns found in a branch-and-price algorithm. It collects new columns pro-
duced by pricing algorithms before they enter the LP relaxation.

3.4 Solution Process

We conclude the section by giving a brief overview of how SCIP solves a given
constraint programming instance and which role the user plugins play in this
process.

The solution process of SCIP, as sketched in Fig. 5, is controlled by the frame-
work. The user methods, in particular the constraint specific algorithms, are incorpo-
rated into the control flow by means of plugins. At each step in the solution process,
the callback methods of the applicable plugins are executed to perform the required
tasks. The plugins interact with the infrastructure of SCIP to return the requested
information to the main solution algorithm of the framework.

Problem
Specification

Solved

Restart

Presolving

Node Selection

Primal Heuristics

Primal Heuristics

Primal Heuristics

Primal Heuristics

Domain Propagation

Constraint Enforcement

LP Solving

Calling LP Solver

Variable Pricing

Cut Separation

Fig. 5 Flow chart of the solution process in SCIP

188 T. Achterberg and A. Lodi

After the user has specified his CP problem instance in terms of variables and
constraints, the presolver plugins and the presolving methods of the constraint han-
dlers are called to simplify the problem instance. Then, the actual search commences
by creating the root node of the search tree and by selecting the root as the first node
to be processed. Primal heuristics are called at various places in the solving loop, and
each heuristic plugin can specify when it should be called. For example, heuristics
like farthest insert for the TSP that do not depend on an LP solution can be called
before the LP relaxation is solved. Very fast heuristics such as rounding are best
to be called inside the cutting plane loop, whereas more time consuming heuris-
tics such as diving should only be called once at the end of the node processing
cycle.

After a node has been selected and applicable heuristics have been called, do-
main propagation is applied by calling the domain propagation plugins and the
domain propagation methods of the constraint handlers. If specified in the parameter
settings, the next step is to solve one or more relaxations of the problem, with the
LP relaxation being directly supported by the framework.

The LP solving loop consists of an inner pricing loop in which the pricer plugins
produce additional variables, and an outer cutting plane loop in which the cut sepa-
rators and the cut callbacks of the constraint handlers add cutting planes to the LP
relaxation. Cutting plane separators, in particular reduced cost fixing, can tighten
the bounds of the variables, which triggers another call to the domain propagators
in order to infer further domain reductions.

Eventually, no more improvements of the relaxation can be found and the con-
straint enforcement is executed. If the relaxation of the current node becomes
infeasible during the process, the node can be pruned and another node is se-
lected from the search tree for processing. Otherwise, the constraint handlers have
to check the final solution of the relaxation for feasibility. If the solution is fea-
sible for all constraints, a new incumbent has been found and the node can be
pruned. Otherwise, the constraint handlers have the options to add further cutting
planes or domain reductions, or to conduct a branching. In particular, if there are
integer variables with fractional LP value, the integrality constraint handler calls
the branching rule plugins to split the problem into subproblems. Finally, a new
unprocessed node is selected from the search tree by the current node selector
plugin and the process is iterated. If no unprocessed node is left, the algorithm
terminates.

After processing a node, there is also the option to trigger a restart, which is
an idea originating from the SAT community (see, e.g., [12]). Restarting means to
exploit collected knowledge such as incumbents, cutting planes, and variable fixings
in a subsequent repeated presolving step and to restart the tree search from scratch.
Our experiments with SCIP indicate that in the MIP context, restarts should only be
applied at the root node, and only if a certain fraction of the variables have been fixed
while processing the root node. This is in contrast to SAT solvers, which usually
perform periodic restarts throughout the whole solution process.

Hybrid Solving Techniques 189

4 Conclusions

We have reviewed the algorithmic side of the hybridization between constraint pro-
gramming and operations research (more precisely mixed integer programming) by
discussing some of the milestones in such a process.

The implicit question is of course how one should combine CP and MIP solving
technologies. The answer to this question, in our view, strongly depends on the
focus that the hybrid framework should have. In theory, there is no difference: in
both cases one will end up with a CP solver that solves LP relaxations. In practice,
the tradeoff to be made is between expressiveness and performance.

More precisely, when the expressiveness of the model has very high importance,
e.g., on the applied contexts in which a basic model can be iteratively complicated
by the addition of heterogeneous side constraints, the algorithmic approaches in
which OR (mostly IP) components are used within a CP framework tend to be
preferable. This has been described in Sect. 2. On the other hand, in order to ob-
tain stronger performance, the reverse order is preferable, i.e., the extension of a
tightly integrated MIP solver to incorporate some of the expressiveness of CP into
the final hybrid system. This has been discussed in Sect. 3.

Acknowledgments We are grateful to the editors Michela Milano and Pascal Van Hentenryck for
their support and patience. We are indebted to an anonymous referee for a very careful reading and
useful suggestions.

References

1. Achterberg T (2007) Constraint integer programming. PhD thesis, Technische Universität
Berlin. http://opus.kobv.de/tuberlin/volltexte/2007/1611/

2. Achterberg T (2009) SCIP: solving constraint integer programs. Math Program Comput
1(1):1–41

3. Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper Res Lett 33:42–54
4. Berthold T (2006) Primal heuristics for mixed integer programs. Master’s thesis, Technische

Universität Berlin
5. Crowder H, Johnson EL, Padberg MW (1983) Solving large scale zero-one linear programming

problems. Oper Res 31:803–834
6. Danna E, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighborhoods to im-

prove MIP solutions. Math Program 102(1):71–90
7. Fischetti M, Toth P (1989) An additive bounding procedure for combinatorial optimization

problems. Oper Res 37:319–328
8. Focacci F, Lodi A, Milano M (1999) Cost-based domain filtering. In: Jaffar J (ed) Principles

and practice of constraint programming – CP99. Lecture notes in computer science, vol 1713.
Springer, New York, pp 189–203

9. Focacci F, Lodi A, Milano M (2000) Cutting planes in constraint programming: an hybrid
approach. In: Dechter R (ed) Principles and practice of constraint programming – CP00.
Lecture notes in computer science, vol 1894. Springer, Berlin, pp 187–201

10. Focacci F, Lodi A, Milano M (2002) A hybrid exact algorithm for the TSPTW. INFORMS J
Comput 14:403–417

11. Focacci F, Lodi A, Milano M (2002) Optimization-oriented global constraints. Constraints
7:351–365

http://opus.kobv.de/tuberlin/volltexte/2007/1611/

190 T. Achterberg and A. Lodi

12. Gomes C, Selman B, Kautz H (1998) Boosting combinatorial search through randomization.
In: Proceedings of the fifteenth national conference on artificial intelligence (AAAI-98)

13. Harvey W, Ginsberg M (1995) Limited discrepancy search. In: Proceedings of the 14th IJCAI.
San Francisco, CA, Morgan Kaufmann, pp 607–615

14. Hooker JN (2007) Integrated methods for optimization. Springer, Berlin
15. Jain V, Grossmann IE (2001) Algorithms for hybrid MILP/CP models for a class of optimiza-

tion problems. INFORMS J Comput 13:258–276
16. Klar A (2006) Cutting planes in mixed integer programming. Master’s thesis, Technische

Universität Berlin
17. Lodi A, Milano M, Rousseau L-M (2006) Discrepancy-based additive bounding procedures.

INFORMS J Comput 18:480–493
18. Marchand H (1998) A polyhedral study of the mixed knapsack set and its use to solve mixed in-

teger programs. PhD thesis, Faculté des Sciences Appliquées, Université catholique de Louvain
19. Marchand H, Wolsey LA (2001) Aggregation and mixed integer rounding to solve MIPs. Oper

Res 49(3):363–371
20. Marques-Silva JP, Sakallah KA (1999) GRASP: a search algorithm for propositional satisfia-

bility. IEEE Trans Comput 48:506–521
21. Milano M, Ottosson G, Refalo P, Thorsteinsson ES (2002) The role of integer programming

techniques in constraint programming’s global constraints. INFORMS J Comput 14:387–402
22. Milano M, van Hoeve WJ (2002) Reduced cost-based ranking for generating promising sub-

problems. In: Van Hentenryck P (ed) Principles and practice of constraint programming –
CP02. Lecture notes in computer science, vol 2470. Springer, Berlin, pp 1–16

23. Milano M, Wallace M (2006) Integrating operations research in constraint programming. 4OR
4:175–219

24. Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: engineering an effi-
cient SAT solver. In: Proceedings of the design automation conference

25. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York
26. Refalo P (2000) Linear formulation of constraint programming models and hybrid solvers. In:

Dechter R (ed) Principles and practice of constraint programming – CP00. Lecture notes in
computer science, vol 1894. Springer, London, pp 369–383

27. Régin JC (1994) A filtering algorithm for constraints of difference in CSPs. In: Hayes-Roth
B, Korf R (eds) Proceedings of the national conference on artificial intelligence – AAAI94,
pp 362–367

28. RodoLsek R, Wallace M (1998) A generic model and hybrid algorithm for hoist scheduling
problems. In: Maher MJ, Puget J-F (eds) Principles and practice of constraint programming –
CP98. Lecture notes in computer science, vol 1520. Springer, London, pp 385–399

29. RodoLsek R, Wallace MG, Hajian MT (1999) A new approach to integrating mixed integer
programming with constraint logic programming. Ann Oper Res 86:63–87

30. Sadykov R, Wolsey LA (2006) Integer programming and constraint programming in solving a
multi-machine assignment scheduling problem with deadlines and release dates. INFORMS J
Comput 18:209–217

31. Thienel S (1995) ABACUS – A Branch-and-Cut System. PhD thesis, Institut für Informatik,
Universität zu Köln

32. Wolter K (2006) Implementation of cutting plane separators for mixed integer programs. Mas-
ter’s thesis, Technische Universität Berlin

Over-Constrained Problems

Willem-Jan van Hoeve

Abstract Over-constrained problems are ubiquitous in real-world applications. In
constraint programming, over-constrained problems can be modeled and solved us-
ing soft constraints. Soft constraints, as opposed to hard constraints, are allowed to
be violated, and the goal is to find a solution that minimizes the total amount of
violation. In this chapter, an overview of recent developments in solution methods
for over-constrained problems using constraint programming is presented, with an
emphasis on soft global constraints.

1 Introduction

In the context of constraint programming, combinatorial optimization problems are
modeled using variables and constraints over subsets of these variables. When the
constraints in a model do not allow any solution to the problem, we say that the
problem is over-constrained. Unfortunately, most combinatorial problems found in
real-world applications are essentially over-constrained. Practitioners typically cir-
cumvent this inherent difficulty when modeling the problem by ignoring certain
aspects of the problem. The resulting model, that hopefully allows a solution, then
serves as a relaxation of the original problem.

Instead of removing constraints, one may wish to slightly modify (some of) the
constraints, thereby maintaining a model that is as close as possible to the original
problem description. A natural way to modify constraints in an over-constrained set-
ting is to allow some constraints to be (partly) violated. In constraint programming,
constraints that are allowed to be violated are called soft constraints. Solving the
original problem then amounts to finding a solution that minimizes the overall cost
of violation, or to optimize the original objective function given a threshold value
on the total amount of violation that is acceptable.

W.-J. van Hoeve
Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
e-mail: vanhoeve@andrew.cmu.edu

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 6,
c� Springer Science+Business Media, LLC 2011

191

vanhoeve@andrew.cmu.edu

192 W.-J. van Hoeve

This chapter gives an overview of techniques to handle over-constrained
problems in the context of constraint programming. Following the nature of this col-
lection, the focus will be on recent developments that are most relevant to CPAIOR,
over (roughly) the last 10 years. Interestingly, in 1998, the first paper appeared that
marked the start of the recent research efforts that will be discussed in this chapter,
that of soft global constraints.

1.1 A Brief Historical Overview

We start by presenting a brief overview of soft constraints and over-constrained
problems in constraint programming. The most influential early works on soft con-
straints are the framework for Constraint Hierarchies by Borning et al. [17], and the
Partial-CSP framework by Freuder and Wallace [26]. The latter includes the Max-
CSP framework that aims to maximize the number of satisfied constraints. Since in
this framework each constraint is either violated or satisfied, the objective is equiv-
alent to minimizing the number of violated constraints. It has been extended to the
Weighted CSP framework by Larrosa [42] and Larrosa and Schiex [43], associating
a degree of violation (not just a Boolean value) to each constraint and minimizing
the sum of all weighted violations. The Possibilistic-CSP framework in [76] asso-
ciates a preference to each constraint (a real value between 0 and 1) representing
its importance. The objective of the framework is the hierarchical satisfaction of the
most important constraints, i.e., the minimization of the highest preference level for
a violated constraint. The Fuzzy-CSP framework in [22, 24], and [72] is somewhat
similar to the Possibilistic-CSP but here a preference is associated to each tuple of
each constraint. A preference value of 0 means the constraint is highly violated and 1
stands for satisfaction. The objective is the maximization of the smallest preference
value induced by a variable assignment. The last two frameworks are different from
the previous ones since the aggregation operator is a min=max function instead of
addition. With valued-CSPs [77] and semi-rings [14], it is possible to encode Max-
CSP, weighted CSPs, Fuzzy CSPs, and Possibilistic CSPs.

Even though the above approaches allow to model a wide range of over-
constrained problems, certain aspects arising in practical problems cannot be
represented, as argued by Petit, Régin and Bessière [61]. First, it is important
to distinguish hard constraints that must always be satisfied (for example, due to
physical restrictions) and soft constraints, that are allowed to be violated. All above
frameworks, except for Max-CSP, allow to model this distinction. However, in most
practical problems, not all soft constraints are equally important. Instead, they are
usually subject to certain rules, such as “if constraint c1 is violated, then c2 cannot
be violated,” or “if constraint c3 is violated, a new constraint c4 becomes active”.
Rules of this nature cannot be modeled using the above frameworks, which was
one of the main motivations to introduce the meta-constraint framework by Petit
et al. [61]; see also Petit [59]. In this framework, a cost variable is associated to
each soft constraint, representing the degree of violation for that constraint. If the
cost variable is 0, the constraint is satisfied. By posting meta-constraints on these

Over-Constrained Problems 193

cost variables, we can easily model additional rules and preferences among the
soft constraints. For example, if zi represents the cost variable of soft constraint
ci (for i D 1; 2; 3; 4), the above rules can be modeled as .z1 > 0/ ! .z2 D 0/,
and .z3 > 0/ ! c4, respectively. In addition, Petit et al. [61] show that the
meta-constraint framework can be used to model the Max-CSP, Weighted CSP,
Possibilistic CSP, and Fuzzy CSP frameworks in a straightforward manner.

An important aspect of the meta-constraint framework is that it allows to propa-
gate information from one (soft) constraint to the other through the domains of the
cost variables using domain filtering algorithms. This can be done even for global
constraints (and soft global constraints) that encapsulate a particular combinato-
rial structure on an arbitrary number of variables. The first such filtering algorithm
was given by Baptiste [5], while Petit et al. [62] introduce soft global constraints
in the context of their meta-constraint framework. Since then, several papers have
appeared that present filtering algorithms for soft global constraints, many of which
use methods from operations research (e.g., matchings and network flows), or com-
puter science (e.g., formal languages). Therefore, the developments in the area of
soft global constraints are an exemplary illustration for the successful integration of
CP, AI, and OR over the last 10 years.

1.2 Outline

The main focus of this chapter is on soft global constraints. We first introduce ba-
sic constraint programming concepts in Sect. 2. Then, in Sect. 3, we introduce soft
constraints and show how they can be treated as hard optimization constraints us-
ing the meta-constraint framework of Petit et al. [61]. Section 4 presents soft global
constraints: We discuss in detail the soft alldifferent constraint, the soft global
cardinality constraint, and the soft regular constraint. This section also provides
a comprehensive overview of other soft global constraints that have appeared in
the literature. Section 5 discusses constraint-based local search and shows the par-
allel between soft global constraints and constraint-based local search. Finally, we
present a conclusion and an outlook in Sect. 6.

2 Constraint Programming

We first introduce basic constraint programming concepts. For more information on
constraint programming, we refer to the books by Apt [4], Dechter [21], and Rossi
et al. [71]. For more information on global constraints, we refer to [35, 67], and
Chapter “Global Constraints: A Survey” of this collection.

Let x be a variable. The domain of x, denoted by D.x/, is a set of values that can
be assigned to x. In this chapter, we only consider variables with finite domains. For
a set of variables X , we denote D.X/ DSx2X D.x/.

194 W.-J. van Hoeve

A constraint C on a set of variables X D fx1; x2; : : : ; xkg is defined as a subset
of the Cartesian product of the domains of the variables in X , i.e., C � D.x1/ �
D.x2/�	 	 	�D.xk/. A tuple .d1; : : : ; dk/ 2 C is called a solution to C . We also say
that the tuple satisfies C . A value d 2 D.xi / for some i D 1; : : : ; k is inconsistent
with respect to C if it does not belong to a tuple of C , otherwise it is consistent. C

is inconsistent if it does not contain a solution. Otherwise, C is called consistent.
A constraint is called a binary constraint if it is defined on two variables. If it is
defined on an arbitrary number of variables, we call it a global constraint.

A constraint satisfaction problem, or a CSP, is defined by a finite set of variables
X D fx1; x2; : : : ; xng with respective domains D D fD.x1/; D.x2/; : : : ; D.xn/g,
together with a finite set of constraints C , each on a subset of X . This is written as
P D .X ; D ; C /. The goal is to find an assignment xi D di with di 2 D.xi / for i D
1; : : : ; n, such that all constraints are satisfied. This assignment is called a solution to
the CSP. A constraint optimization problem, or COP, is a CSP .X ; D ; C / together
with an objective function f W D.x1/ � 	 	 	 �D.xn/! R that has to be optimized.
This is written as P D .X ; D ; C ; f /. A variable assignment is a solution to a COP
if it is a solution to its associated CSP. An optimal solution to a COP is a solution
that optimizes the objective function. In this chapter, we assume that the objective
function is to be minimized, unless stated otherwise.

The solution process of constraint programming interleaves constraint propaga-
tion and search. The search process essentially consists of enumerating all possible
variable-value combinations, until we find a solution or prove that none exists. We
say that this process constructs a search tree. To reduce the exponential number of
combinations, domain filtering and constraint propagation is applied at each node
of the search tree. A domain filtering algorithm operates on an individual constraint.
Given a constraint, and the current domains of the variables in its scope, a domain
filtering algorithm removes domain values that do not belong to a solution to the
constraint. Since variables usually participate in several constraints, the updated do-
mains are propagated to the other constraints, whose domain filtering algorithms in
effect become active. This process of constraint propagation is repeated for all con-
straints until no more domain values can be removed, or a domain becomes empty.

In order to be effective, domain filtering algorithms should be computationally
efficient, because they are applied many times during the solution process. Further,
they should remove as many inconsistent values as possible. If a domain filtering
algorithm for a constraint C removes all inconsistent values from the domains with
respect to C , we say that it makes C domain consistent.1 In other words, all remain-
ing domain values participate in at least one solution to C . More formally:

Definition 1 (Domain consistency). A constraint C on the variables x1; : : : ; xk is
called domain consistent if for each variable xi and each value di 2 D.xi / .i D
1; : : : ; k/, there exist a value dj 2 D.xj / for all j ¤ i such that .d1; : : : ; dk/ 2 C .

1 In the literature, domain consistency is also referred to as hyper-arc consistency or generalized
arc consistency.

Over-Constrained Problems 195

In practice, one usually tries to develop filtering algorithms that separate the
check for consistency and the actual domain filtering. That is, we would like to
avoid applying the algorithm that performs the consistency check for each individual
variable-value pair. Moreover, one typically tries to design incremental algorithms
that re-use data structures and partial solutions from one filtering event to the next,
instead of applying the filtering algorithm from scratch every time it is invoked.

In the context of constraint optimization problems, we define optimization con-
straints in the following way. Let variable z represent the value of the objective
function f .X/ to be minimized, where X D fx1; x2; : : : ; xng is a set of variables.
The corresponding “optimization constraint” can then be defined as

C.X; z; f / D f.d1; : : : ; dn; d /jdi 2 D.xi /; d 2 D.z/; f .d1; : : : ; dn/ � d g: (1)

In other words, C allows only those tuples in the Cartesian product of variables in X

that have an objective function smaller than the maximum value of z (we assume z is
to be minimized). An optimization constraint is different from a standard inequality
constraint mainly because its right-hand side (the value representing the current best
solution) will change during the search for a solution. Note that in this definition,
we add the function f as an argument to C for syntactical convenience.

It should be noted that we intentionally define z to be not equal to f .X/ in (1).
The reason for this is that the relation f .X/ � z allows us to establish domain
consistency on several optimization constraints efficiently. In particular, it implies
that we can filter the domains of variables in X with respect to max D.z/, and to
potentially increase min D.z/ with respect to X . If we would have used the rela-
tion f .X/ D z in (1) instead, the task of establishing domain consistency becomes
NP-complete for general optimization constraints.

In some cases, the objective function aggregates several sub-functions, e.g., z D
z1C z2C	 	 	C zk , where zi D fi .Xi /, and Xi is a set of variables, for i D 1; : : : ; k.
We apply the concept of optimization constraint to each of these variables zi and
functions fi correspondingly.

3 From Soft Constraints to Hard Optimization Constraints

So far, all constraints in a given CSP or COP are defined as hard constraints that
must always be satisfied. We next focus on soft constraints that are allowed to be
violated. When a soft constraint is violated, we assume that we can measure to what
degree it is violated, and that we wish to minimize the overall amount of violation.
As discussed in Sect. 1.1, there exist several frameworks to handle soft constraints,
and we will focus on the meta-constraint framework introduced by Petit et al. [61],
Petit [59].

The meta-constraint framework of Petit et al. [61] for over-constrained prob-
lems works as follows. With each soft constraint, we associate a particular measure
of violation, and a “cost” variable that represents this violation. As we will see
later, the eventual effectiveness of a soft constraint depends heavily on the measure

196 W.-J. van Hoeve

of violation that is applied. We then transform each soft constraint into a hard
optimization constraint and minimize an aggregation function on the cost variables.
The aggregation function can, for example, be a weighted sum, or a weighted max-
imum, of the cost variables. In addition, we can post meta-constraints over the cost
variables to model preferences among soft constraints, or more complex relation-
ships, as indicated in Sect. 1.1.

Let us first consider a small motivating example, taken from Petit et al. [62], to
illustrate the application and potential of this framework.

Example 1. Consider the constraint x � y where x and y are variables with re-
spective domains specified by the intervals D.x/ D Œ9000; 10000� and D.y/ D
Œ0; 20000�. We soften this constraint by introducing a cost variable z, representing
the amount of violation for the constraint. In this case, we let z represent the gap
between x and y if the constraint is not satisfied, that is, z represents maxf0; x�yg.
Suppose the maximum amount of violation is 5, i.e., D.z/ D Œ0; 5�. This allows us
to deduce that D.y/ D Œ8995; 20000�, based on the relation x � y � 5. We can
use the semantics of this constraint to obtain the updated domain efficiently by only
comparing the bounds of the variables. If we would not exploit the semantics but in-
stead list and check all possible variable-value combinations, reducing D.y/ would
take at least jD.x/j 	 8995 checks.

The example above demonstrates how we can exploit the semantics of a con-
straint to design efficient filtering algorithms for soft constraints. Moreover, it shows
that we can perform “back-propagation” from the cost variable to filter the domains
of the other variables. This is crucial to make soft global constraints (and optimiza-
tion constraints in general) effective in practice [5, 25].

We next formally introduce violation measures and the transformation of soft
constraints into hard optimization constraints, following the notation of van Hoeve
et al. [37].

Definition 2 (Violation measure). A violation measure of a constraint C.x1; : : : ;

xn/ is a function � W D.x1/ � 	 	 	 �D.xn/ ! RC such that �.d1; : : : ; dn/ D 0 if
and only if .d1; : : : ; dn/ 2 C .

Definition 3 (Constraint softening). Let z be a variable with finite domain D.z/
and C.x1; : : : ; xn/ a constraint with a violation measure �. Then,

soft-C.x1; : : : ; xn; z; �/ D f.d1; : : : ; dn; d / j di 2 D.xi /; d 2 D.z/;

�.d1; : : : ; dn/ � d g
is the soft version of C with respect to �.

In the definition of soft-C , z is the cost variable that represents the measure of viola-
tion of C ; max D.z/ represents the maximum amount of violation that is allowed for
C , given the current state of the solution process. Note that soft-C is an optimization
constraint, since we assume that z is to be minimized.

In addition to Definition 2, we usually require that the violation measure allows
us to “back-propagate” the domain of the cost variable z to the domains of the other

Over-Constrained Problems 197

variables efficiently when we apply Definition 3. That is, we need to be able to
remove inconsistent domain values from D.x1/; : : : ; D.xn/, based on D.z/. The
violation measures discussed in this chapter possess that property.

For most global constraints, there exist several natural ways to evaluate the de-
gree to which it is violated, and these are usually not equivalent. Two general
measures are the variable-based violation measure and the decomposition-based
violation measure, both introduced by Petit et al. [62].

Definition 4 (Variable-based violation measure). Let C be a constraint on the
variables x1; : : : ; xn and let d1; : : : ; dn be an instantiation of variables such that
di 2 D.xi / for i D 1; : : : ; n. The variable-based violation measure �var of C is the
minimum number of variables that need to change their value in order to satisfy C .

For the decomposition-based violation measure, we make use of the binary de-
composition of a constraint [20].

Definition 5 (Binary decomposition). Let C be a constraint on the variables
x1; : : : ; xn. A binary decomposition of C is a minimal set of binary constraints
Cdec D fC1; : : : ; Ckg (for integer k > 0) on the variables x1; : : : ; xn such that the
solution set of C equals the solution set of

Tk
iD1 Ci .

Note that we can extend the definition of binary decomposition by defining the
constraints in Cdec on arbitrary variables, such that the solution set of

Vk
iD1 Ci is

mapped to the solution set of C and vice versa as proposed in [70].

Definition 6 (Decomposition-based violation measure). 2 Let C be a constraint
on the variables x1; : : : ; xn for which a binary decomposition Cdec exists and let
d1; : : : ; dn be an instantiation of variables such that di 2 D.xi / for i D 1; : : : ; n.
The decomposition-based violation measure �dec of C is the number of violated
constraints in Cdec.

Example 2. The alldifferent constraint specifies that a given set of variables
take pairwise different values. Consider the following over-constrained CSP:

x1 2 fa; bg; x2 2 fa; bg; x3 2 fa; bg; x4 2 fb; cg;
alldifferent.x1; x2; x3; x4/:

The following table shows the value of �var and �dec for a number of different
variable assignments:

(x1; x2; x3; x4) �var �val

.a; a; b; c/ 1 1

.a; a; b; b/ 2 2

.a; a; a; b/ 2 3

.b; b; b; b/ 3 6

2 In [62], the decomposition-based violation measure is referred to as primal graph based violation
cost.

198 W.-J. van Hoeve

The table shows that �dec can be more distinctive than �var. For example, the
assignments .a; a; b; b/ and .a; a; a; b/ are equivalent with respect to �var, while
�dec is able to distinguish them.

Next, we convert the alldifferent constraint into a soft-alldifferent
constraint and introduce a variable z that measures its violation. For the sake of
this example, we assume that its domain is D.z/ D f0; 1; 2g:

x1 2 fa; bg; x2 2 fa; bg; x3 2 fa; bg; x4 2 fb; cg; z 2 f0; 1; 2g
soft-alldifferent.x1; x2; x3; x4; z; �/:

We can choose � to be any measure of violation, for example, �dec or �var. This
choice impacts the solution space; the assignment .a; a; a; b/ is allowed by �var

since its violation value is 2, but not by �dec because its violation value of 3 is
higher than the maximum of D.z/.

The variable-based and decomposition-based violation measures can be viewed
as “combinatorial violation measures,” as they are based on the combinatorial
structure of the global constraint. Other violation measures were introduced by
Beldiceanu and Petit [10]. For example, they introduce the refined variable-based
violation measure, that applies the variable-based violation measure to a specific
subset of variables only. Furthermore, they introduce the object-based violation
measure, that can be applied to high-level modeling objects such as activities in
a scheduling context. Finally, they propose specific violation measures based on the
graph properties-representation of global constraints [7].

In addition to these general violation measures, alternative measures exist for
specific constraints. For example, van Hoeve et al. [37] introduce the value-based
violation measure for the global cardinality constraint and the edit-based violation
measure for the regular constraint.

After we have assigned a violation measure to each soft constraint, we can recast
our problem as follows. Consider a CSP of the form P D .X; D; C /. Suppose, we
partition the constraint set C into a subset of hard constraints Chard and a subset
of constraints to be softened Csoft. We soften each constraint ci 2 Csoft using the
violation measure it has been assigned and a cost variable zi .i D 1; : : : ; jCsoftj/
representing this measure. We choose an aggregation function f W D.z1/ � 	 	 	 �
D.zjCsoftj/ ! R over the cost variables to represent the overall violation to be
minimized. Then, we transform the CSP into the COP QP D . QX; QD; QC ; f / where
QX D X [fz1; : : : ; zjCsoftjg, QD contains their corresponding domains, and QC con-

tains Chard and the softened version of each constraint in Csoft. Note that if our initial
problem P is a COP rather than a CSP, we need to define an objective function that
balances the original objective and the aggregation of the cost variables.

4 Soft Global Constraints

In this section, we present several soft global constraints, together with, for some
of them, detailed filtering algorithms establishing domain consistency. We will
consider in detail the soft alldifferent constraint in Sect. 4.3, the soft global

Over-Constrained Problems 199

Table 1 Best worst-case time complexity for three hard global constraints on n variables and
their soft counterparts. Here, “consistency check” denotes the time complexity to verify that
the constraint is consistent, while “domain consistency” denotes the additional time complex-
ity to make the constraint domain consistent, given at least one solution. Each algorithm is
based on a graph with m arcs

Violation Consistency Domain
Constraint measure check consistency References

alldifferent O.m
p

n/ O.m/ [65]
soft-alldifferent Variable-based O.m

p
n/ O.m/ [62]

soft-alldifferent Decomposition-based O.mn/ O.m/ [34]

gcc O.m
p

n/ O.m/ [64]
soft-gcc Variable-based O.m

p
n/ O.m/ [82]

soft-gcc Value-based O.m
p

n/ O.m/ [82]

regular O.m/ O.m/ [57]
soft-regular Variable-based O.m/ O.m/ [37]
soft-regular Edit-based O.m/ O.m/ [37]

cardinality constraint in Sect. 4.6, and the soft regular constraint in Sect. 4.7. An
interesting observation for these soft global constraints is that the corresponding
filtering algorithms establish domain consistency in the same worst-case time com-
plexity as their hard counterparts, as shown in Table 1. Finally, in Sect. 4.8, an
overview of other soft global constraints will be presented.

Some of the presented filtering algorithms rely on matching theory or network
flow theory. We present below the basic definitions that we will use in this chapter.
For more information we refer to Schrijver [78] and Ahuja et al. [3].

4.1 Matchings

Let G D .V; E/ be a graph with vertex set V and edge set E . A matching M � E

is a subset of edges such that no two edges in M are incident to a common vertex.
A vertex that is incident to an edge in M is said to be covered by M. A vertex that
is not incident to any edge in M is called an M -free vertex. A maximum matching
or maximum-size matching is a matching in G of maximum size.

Let c WV ! N be a “capacity” function on the vertices of G. A capacitated
matching M � E is a subset of edges such that each vertex v 2 V is incident to at
most c.v/ edges in M . Note that a capacitated matching is equivalent to a “normal”
matching if c.v/ D 1 for all v 2 V . A maximum (capacitated) matching in a vertex-
capacitated graph is a capacitated matching of maximum size.

4.2 Network Flows

Let D D .V; A/ be a directed graph (or network) and let s; t 2 V represent
the “source” and the “sink,” respectively. An arc a 2 A from u to v will also be
represented as .u; v/.

200 W.-J. van Hoeve

A function f W A! R is called a flow from s to t , or an s � t flow, if

.i/ f .u; v/ � 0 for each .u; v/ 2 A;

.ii/
X

uW.u;v/2A

f .u; v/ D
X

wW.v;w/2A

f .v; w/ for each v 2 V n fs; tg: (2)

Property (2).ii/ ensures flow conservation, i.e., for a vertex v ¤ s; t , the amount of
flow entering v is equal to the amount of flow leaving v.

The value of an s � t flow f is defined as

value.f / D
X

vW.s;v/2A

f .s; v/ �
X

uW.u;s/2A

f .u; s/:

In other words, the value of a flow is the net amount of flow leaving s, which by
flow conservation must be equal to the net amount of flow entering t:

In a flow network, each arc a 2 A has an associated “demand” d.a/ and “ca-
pacity” c.a/, such that 0 � d.a/ � c.a/. We say that a flow f is feasible in the
network if d.a/ � f .a/ � c.a/ for every a 2 A. If the demand d and capacity
c are integer-valued, it can be shown that if there exists a feasible flow, there also
exists an integer feasible flow in D.

Let wWA ! R be a “weight” (or “cost”) function on the arcs. We define the
weight of a directed path P as weight.P / D P

a2P w.a/. Similarly for a directed
circuit, the weight of a flow f is defined as

weight.f / D
X
a2A

w.a/f .a/:

A feasible flow f is called a minimum-weight flow if weight.f / � weight.f 0/ for
any feasible flow f 0.

Let f be an s� t flow in G. The residual graph of f (with respect to c and d) is
defined as Df D .V; Af /, where the arc set Af is defined as follows. For all arcs,
a D .u; v/ 2 A:

� If f .a/ < c.a/, then .u; v/ 2 Af with residual demand maxfd.a/ � f .a/; 0g,
residual capacity c.a/ � f .a/, and residual weight w.a/

� If f .a/ > d.a/, then .v; u/ 2 Af with residual demand 0, residual capacity
f .a/ � d.a/, and residual weight �w.a/

4.3 Soft Alldifferent Constraint

The alldifferent constraint on a set of variables specifies that all variables
should take pairwise different values. Here we consider two measures of violation to
soften the alldifferent constraint: The variable-based violation measure �var and

Over-Constrained Problems 201

the decomposition-based violation measure �dec. For alldifferent.x1; : : : ; xn/,
we have

�var.x1; : : : ; xn/ DPd2D.X/ max .jfi j xi D d gj � 1; 0/;

�dec.x1; : : : ; xn/ D ˇ̌˚.i; j / j xi D xj ; for i < j
�ˇ̌

:

If we apply Definition 3 to the alldifferent constraint using the measures �var

and �dec, we obtain soft-alldifferent.x1; : : : ; xn; z; �var/ and soft-alldif-
ferent.x1; : : : ; xn; z; �dec/. Each of the violation measures �var and �dec gives rise
to a different domain consistency filtering algorithm for soft-alldifferent.

4.4 Variable-Based Violation Measure

A domain consistency filtering algorithm for the variable-based soft-alldif-
ferent constraint was presented by Petit et al. [62]. It makes use of bipartite
matchings.

Throughout this section, let X be a set of variables. The value graph of X is
a bipartite graph G .X/ D .V; E/ where V D X [D.X/ and E D f.x; d/ j
x 2 X; d 2 D.x/g [44]. It was first observed by Régin [65] that a solution to
alldifferent.X/ is equivalent to a matching covering X in the corresponding
value graph. For the variable-based soft-alldifferentconstraint, we can exploit
the correspondence with bipartite matchings in a similar way.

Lemma 1 (Petit et al. [62]). Let M be a maximum-size matching in the value
graph G .X/. For alldifferent.X/, the minimum value of �var.X/ is equal to
jX j � jM j.
Theorem 1 (Petit et al. [62]). The constraint soft-alldifferent.X; z; �var/

is domain consistent if and only if

.i/ All edges in the value graph G .X/ belong to a matching M in G .X/ with
jX j � jM j � max D.z/

.ii/ min D.z/ � jX j � jM j, where M is a maximum-size matching in G .X/.

We can apply Theorem 1 to establish domain consistency for soft-alldiffe-
rent.x1; : : : ; xn; z; �var/ as follows. First, we compute a maximum matching M in
the value graph. This can be done in O.m

p
n/ time [32], where m is the number of

edges in the graph. We then distinguish the following cases:

� If n � jM j > max D.z/, the constraint is inconsistent.
� If n�jM j < max D.z/, the constraint is consistent, and moreover all domain val-

ues are consistent. Namely, if we change the value of any variable, the violation
increases with at most 1 unit.

� If n�jM j D max D.z/, the constraint is consistent, and only those domain values
d 2 D.x/ whose corresponding edge .x; d/ belongs to a maximum matching

202 W.-J. van Hoeve

are consistent. We can identify all consistent domain values in the same way as
for the hard alldifferent constraint. That is, we direct the edges in M from
X to D.X/, and edges not in M from D.X/ to X . Then, an edge belongs to
any maximum matching if and only if it belongs to M; or it belongs to a path
starting from an M -free vertex, or it belongs to a strongly connected component.
All these edges can be identified, and the corresponding domain values can be
removed, in O.m/ time [65, 80].

Finally, we can update min D.z/ to be the maximum of its current value and n�jM j.
The algorithm above separates the check for consistency and the actual domain

filtering. Moreover, it can be implemented to behave incrementally; after k domain
changes, a new matching can be found in O.minfkm;

p
nmg/ time, by re-using the

previous matching.

Example 3. Consider the following CSP:

x1 2 fa; bg; x2 2 fa; bg; x3 2 fa; bg; x4 2 fb; cg; z 2 f0; 1g;
soft-alldifferent.x1; x2; x3; x4; z; �var/:

The corresponding value graph is depicted in Fig. 1a. The bold edges indicate a
maximum-size matching, covering three variables. Hence, the minimum value of
�var is 4 � 3 D 1, which is equal to max D.z/. This allows us to remove edge
.x4; b/, as it does not belong to a matching of size 3. Also, note that we can remove
value 0 from D.z/, since it does not belong to any solution.

An alternative domain consistency algorithm for the variable-based soft-
alldifferent constraint was given by van Hoeve et al. [37], based on the cor-
respondence to a minimum-weight network flow. In that work, additional arcs
are introduced to the network whose weights reflect the violation measure. A
similar approach is presented in the next section, for the decomposition-based
soft-alldifferent constraint.

a

b

c

x1

x2

x3

x4

a

w=0
w=1
w=2
w=3

w=1w=0
w=2

w=
0

ts

a

b

c

x1

x2

x3

x4

b

Maximum matching in the value graph Minimum-weight flow in the value network

Fig. 1 Graph representation for the soft-alldifferent constraint. In figure (a), the value graph
for the variable-based soft-alldifferent is depicted; bold edges form a maximum matching.
In figure (b), the extended value network for the decomposition-based soft-alldifferent is
presented. For all arcs, the capacity is 1. For some arcs, the weight w is given. For all other arcs,
the weight is 0

Over-Constrained Problems 203

4.5 Decomposition-Based Violation Measure

A first filtering algorithm for the decomposition-based soft-alldifferent
constraint was given by Petit et al. [62]. It does not necessarily establish domain
consistency, and runs in O.m2n

p
n/ time, where n is the number of variables and

m is the sum of the cardinalities of their domains. A domain consistency filtering
algorithm was given in van Hoeve [34], running in O.mn/ time. Here, we present
the latter algorithm.

The filtering algorithm for the decomposition-based soft-alldifferent con-
straint by van Hoeve [34] exploits the correspondence with a minimum-weight
network flow. Let us first introduce the network representation of the hard all-
different constraint, which can be viewed as an extension of the value graph. For
a set of variables X , we define the value network of X as a directed graph D.X/ D
.V; A/, with vertex set V D X[D.X/[fs; tg, and arc set A D As[AX[At , where

As D f.s; x/ j x 2 Xg;
AX D f.x; d/ j x 2 X; d 2 D.x/g;
At D f.d; t/ j d 2 D.X/g;

with “capacity” function c.a/ D 1 for all a 2 A. An integer flow f of value jX j in
D.X/ corresponds to a solution to the constraint alldifferent.X/; the solution
is formed by assigning x D d for all arcs a D .x; d/ 2 AX with f .a/ D 1.
Moreover, those arcs form a maximum-size matching in the graph induced by AX

(i.e., the value graph).
If the alldifferent constraint cannot be satisfied, there does not exist a flow of

value jX j in the value network. Therefore, for the soft-alldifferent constraint,
we adapt the value network in such a way that a flow of value jX j becomes possible,
and moreover represents a variable assignment whose violation measure is exactly
the cost of the network flow. This is done as follows.

In the graph D.X/ D .V; A/, we replace the arc set At by QAt D f.d; t/ j d 2
D.x/; x 2 Xg, with capacity c.a/ D 1 for all arcs a 2 QAt . Note that QAt contains
parallel arcs if two or more variables share a domain value. If there are k parallel
arcs .d; t/ between some d 2 D.X/ and t , we distinguish them by numbering
the arcs as .d; t/0; .d; t/1; : : : ; .d; t/k�1 in a fixed but arbitrary way. One can view
the arcs .d; t/0 to be the original arc set At .

We next apply a “cost” function w W A ! N as follows. If a 2 QAt , i.e., a D
.d; t/i for some d 2 D.X/ and integer i , we define w.a/ D i . Otherwise, w.a/ D 0.
Let the resulting digraph be denoted by Ddec.X/. We have the following result.

Lemma 2 (van Hoeve [34]). Let X be a set of variables, and let f be an integer
s � t flow of value jX j in Ddec.X/. Let NX be the variable assignment fx D d j
.x; d/ 2 AX ; f .x; d/ D 1g. For alldifferent.X/, �dec. NX/ D weight.f /.

Example 4. For the problem in Example 2, the extended value network Ddec.X/ is
presented in Fig. 1b. Bold arcs indicate a minimum-weight flow of weight 1, corre-
sponding to the variable assignment x1 D a; x2 D b; x3 D a; x4 D c. Indeed, this
assignment violates one not-equal constraint, x1 ¤ x3.

204 W.-J. van Hoeve

To illustrate how the cost structure of Ddec represents the decomposition-based
violation measure, suppose we were to assign all variables to value b. Then, there
are three units of flow that need to use an arc in QAt with positive cost, while one
unit of flow can use the arc in QAt without violation cost. Indeed, for the first variable
assigned to b, say x1, there is no violated binary constraint and the corresponding
unit of flow may use the arc without violation cost. The second variable assigned
to b, say x2, violates one binary constraint, namely x1 ¤ x2. Indeed it uses the
arc with the next lowest possible cost, i.e., 1. The following variable assigned to b,
say x3, violates two binary constraints (involving x1 and x2), which corresponds to
using the arc with cost 2. Finally, the fourth variable assigned to b, x4, violates three
binary constraints and uses the arc with cost 3. Together, they exactly constitute the
decomposition-based violation of value 6.

Theorem 2 (van Hoeve [34]). The constraint soft-alldifferent.X; z; �dec/ is
domain consistent if and only if

.i/ For every arc a 2 AX there exists an integer feasible s � t flow f of value jX j
in Ddec.X/ with f .a/ D 1 and weight.f / � max D.z/.

.ii/ min D.z/ � weight.f / for a feasible minimum-weight s � t flow f of value
jX j in Ddec.

We can apply Theorem 2 to establish domain consistency for soft-alldiffe-
rent.X; z; �dec/ as follows. We first compute a minimum-weight flow f in Ddec.
Since the only positive costs are on arcs in QAt , this can be done in O.mn/ time,
where m is the number of arcs in the graph, and n is the number of variables in X

[34]. If weight.f / > max D.z/, we know that the constraint is inconsistent.
Consistent domain values d 2 D.x/ for x 2 X correspond to arcs a D .x; d/ 2

AX for which there exists a flow g with g.a/ D 1, value.g/ D jX j and weight.g/ �
max D.z/. To identify these arcs, we apply a theorem from flow theory stating that
a minimum-weight flow g with g.a/ D 1 can be found by “re-routing” the flow f

through a shortest directed cycle C containing the arc a in the residual graph of f .
Then weight.g/ D weight.f /Cweight.C /. In other words, for each arc a D .x; d/

with f .a/ D 0, we need to compute a shortest d � x path in the residual graph. If
the weight of this path exceeds max D.z/ � weight.f /, the value d 2 D.x/ is
inconsistent.

In order to find the shortest d � x paths, we first consider the strongly connected
components in the graph induced by AX . For all arcs .x; d/ in these components,
the shortest d � x path will remain within the component and has cost 0; indeed, if
the path would visit t , the cost cannot decrease since f is a minimum-weight flow.

We next consider all arcs .x; d/ between two strongly connected components.
Observe that we can assume that the shortest d � x path must visit t exactly once.
Therefore, we can split the path into two parts: The shortest d � t path and the
shortest t � x path. Now, all vertices inside a strongly connected component have
the same shortest distance to t , and also the same shortest distance from t (pos-
sibly visiting other strongly connected components). Therefore, we can contract

Over-Constrained Problems 205

the strongly connected components in the graph induced by AX and use the re-
sulting acyclic “component graph.” Since the algorithm to compute the strongly
connected components also provides the topological order and inverse topological
order of the component graph, we can apply these to efficiently compute the short-
est distance to and from t for every component. Hence, a shortest d � x path is the
shortest path from the component to which d belongs to t , plus the path from t to
the component to which x belongs. All these computations can be done in O.m/

time [19, 80].
Finally, we update min D.z/ D weight.f / if min D.z/ < weight.f /. Again, this

algorithm separates the consistency check from the actual domain filtering. More-
over, the algorithm can be implemented to behave incrementally. After k domain
changes, we can re-compute a minimum-weight flow in O.km/ time.

4.6 Soft Global Cardinality Constraint

The global cardinality constraint (gcc) was introduced by Régin [66]. It is defined
on a set of variables and specifies for each value in the union of their domains an
upper and lower bound to the number of variables that are assigned to this value.

Throughout this section, let X D fx1; : : : ; xng be a set of variables and let
ld ; ud 2 N with ld � ud for all d 2 D.X/.

Definition 7 (Global cardinality constraint).

gcc.X; l; u/ D f.d1; : : : ; dn/ j di 2 D.xi / 8i 2 f1; : : : ; ng;
ld � jfi j di D d gj � ud 8d 2 D.X/g:

The gcc is a generalization of the alldifferent constraint; if we set ld D 0 and
ud D 1 for all d 2 D.X/, the gcc is equal to the alldifferent constraint.

In order to define measures of violation for the gcc, it is convenient to introduce
for each domain value a “shortage” function s W D.x1/� 	 	 	 �D.xn/�D.X/! N

and an “excess” function e W D.x1/ � 	 	 	 �D.xn/ �D.X/! N as follows [37]:

s.X; d/ D
	

ld � jfx j x 2 X; x D d gj if jfx j x 2 X; x D d gj � ld ;

0 otherwise;

e.X; d/ D
	 jfx j x 2 X; x D d gj � ud if jfx j x 2 X; x D d gj � ud ;

0 otherwise:

For gcc.X; l; u/, the variable-based violation measure �var can then be expressed in
terms of the shortage and excess functions:

�var.X/ D max

0
@ X

d2D.X/

s.X; d/;
X

d2D.X/

e.X; d/

1
A

206 W.-J. van Hoeve

provided that X
d2D.X/

ld � jX j �
X

d2D.X/

ud : (3)

Note that if condition (3) does not hold, there is no variable assignment that satisfies
the gcc, and �var cannot be applied. Therefore, van Hoeve et al. [37] introduced the
following violation measure for the gcc, which can also be applied when assump-
tion (3) does not hold.

Definition 8 (Value-based violation measure). For gcc.X; l; u/, the value-based
violation measure is

�val.X/ D
X

d2D.X/

.s.X; d/C e.X; d// :

Example 5. Consider the over-constrained CSP

x1 2 f1; 2g; x2 2 f1g; x3 2 f1; 2g; x4 2 f1g;
gcc.x1; x2; x3; x4; Œ1; 3�; Œ2; 5�/:

That is, value 1 must be taken between 1 and 2 times, while value 2 must be taken
between 3 and 5 times. The violation measures for all possible tuples are:

.x1; x2; x3; x4/
P

d2D.X/ s.X; d/
P

d2D.X/ e.X; d/ �var �val

.1; 1; 1; 1/ 3 2 3 5

.2; 1; 1; 1/ 2 1 2 3

.1; 1; 2; 1/ 2 1 2 3

.2; 1; 2; 1/ 1 0 1 1

For both the variable-based and value-based violation measures for the
soft-gcc constraint, van Hoeve et al. [37] present domain consistency filter-
ing algorithms, running in O.n.m C n log n// and O..n C k/.m C n log n// time
respectively, where n is the number of variables, m is the sum of the cardinali-
ties of the variable domains, and k is the cardinality of the union of the variable
domains. Their algorithms are based on an extension of the value network for
the decomposition-based soft-alldifferent constraint. They apply the same
concept of adding “violation arcs” to allow feasible flows with cost equal to the
corresponding variable assignment. A more efficient approach based on matching
theory, running in O.m

p
n/ time, was proposed by Zanarini [82], and we describe

their method below.

4.6.1 Two Capacitated Matchings

Similar to the method proposed by Petit et al. [62], the approach taken by Zanarini
et al. [82] for the soft-gcc uses the value graph representation. Recall from

Over-Constrained Problems 207

Sect. 4.3 that for a set of variables X , the value graph of X is a bipartite graph
G .X/ D .V; E/ where V D X [D.X/ and E D f.x; d/ j x 2 X; d 2 D.x/g.
For the soft-gcc, the goal is to find two capacitated maximum matchings, one
minimizing the shortage function and one minimizing the excess function. These
matchings can then be used to measure the overall violation cost.

For a constraint gcc.X; l; u/, we define two vertex-capacitated value graphs
Ge.X/ and Gs.X/, by extending the value graph with a “capacity” function
c W V ! N on its vertices. For both Ge.X/ and Gs.X/, we define c.x/ D 1 for
each vertex x 2 X . For the vertices d 2 D.X/, we define c.d/ D ld for Gs.X/ and
c.d/ D ud Ge.X/. We will slightly abuse terminology and refer to a capacitated
matching as simply a matching.

We first focus on minimizing the excess function. Let Me be a maximum match-
ing in the value graph Ge. If jMej D jX j, the edges in Me correspond to a partial
assignment satisfying the upper capacities u of the values in the gcc. If jMej < jX j,
exactly jX j� jMej variables must be assigned to a saturated value, which equals the
total excess for all domain values, i.e.,

P
d2D.X/ e.X; d/ D jX j � jMej.

Analogously for the shortage function, let Ms be a maximum matching in the
value graph Gs. Edges in Ms correspond to a partial assignment satisfying the lower
capacities l of the values in the gcc. If jMsj < P

d2D.X/ ld , one or more values have
not enough variables assigned to them. In fact, the difference corresponds to the total
shortage of all domain values, i.e.,

P
d2D.X/ s.X; d/ DPd2D.X/ ld � jMsj.

4.6.2 Variable-Based Violation Measure

We can characterize domain consistency for the variable-based soft-gcc as
follows.

Theorem 3 (Zanarini et al. [82]). The constraint soft-gcc.X; l; u; z; �var/ is do-

main consistent if and only if min D.z/ � max
n
jX j � jMej ;Pd2D.X/ ld � jMsj

o
,

and either

.i/ max
n
jX j � jMej ;Pd2D.X/ ld � jMsj

o
< max D.z/, or

.ii/ jX j � jMej D max D.z/ and
P

d2D.X/ ld � jMsj < max D.z/, and all edges
in Ge belong to a maximum matching, or

.iii/ jX j � jMej < max D.z/ and
P

d2D.X/ ld � jMsj D max D.z/, and all edges
in Gs belong to a maximum matching, or

.iv/ jX j � jMej D P
d2D.X/ ld � jMsj D max D.z/, and all edges in Ge and Gs

belong to a maximum matching.

To establish domain consistency algorithmically, we first compute maximum
matchings Me and Ms in the value graphs Ge and Gs, respectively. An algorithm
to compute such capacitated matchings was given by Quimper et al. [64]. It is a
generalization of the Hopcroft–Karp algorithm and, similar to the Hopcroft–Karp

208 W.-J. van Hoeve

algorithm, runs in O.m
p

n/, where n D jX j and m is the number edges in the

value graph. If max
n
jX j � jMej ;Pd2D.X/ ld � jMsj

o
> max D.z/, we know the

constraint is inconsistent.
Next, we filter the inconsistent edges and corresponding domain values. Using

the cardinalities of Me and Ms, we can easily determine which of the four cases
of Theorem 3 applies. In case .ii/, .iii/, or .iv/, we can identify all edges that do
not belong to a maximum matching in O.m/ time, similar to the approach for the
variable-based soft-alldifferent constraint in Sect. 4.4.

Once again, the algorithm separates the check for consistency and the actual
domain filtering, and it can be implemented to behave incrementally.

Notice that Theorem 3 is an extension of Theorem 1 for the variable-based
soft-alldifferent constraint by Petit et al. [62]. In fact, when the upper bounds
ud are 1 for all d 2 D.X/, the two filtering algorithms are equivalent.

Beldiceanu and Petit [10] discuss the variable-based violation measure for a dif-
ferent version of the soft-gcc. Their version considers the parameters l and u to
be variables instead of constants. Hence, the variable-based violation measure be-
comes a rather poor measure, as we trivially can change l and u to satisfy the gcc.
For this reason, they introduce the refined variable-based violation measure, and ap-
ply it to their version of the soft-gcc by restricting the violation measure to the set
of variables X , which corresponds to the soft-gcc described above. Beldiceanu
and Petit [10] do not provide a filtering algorithm, however.

4.6.3 Value-Based Violation Measure

For the value-based soft-gcc, domain consistency can be characterized as follows.

Theorem 4 (Zanarini et al. [82]). The constraint soft-gcc.X; l; u; z; �val/ is do-
main consistent if and only if min D.z/ � jX j � jMej CPd2D.X/ ld � jMsj, and
either

.i/ jX j � jMej CPd2D.X/ ld � jMsj < max D.z/, or

.ii/ jX j C jMej D max D.z/ � 1 and all edges belong to a maximum matching in
at least one of Ge or Gs, or

.iii/ jX j C jMej D max D.z/ and all edges belong to a maximum matching in both
Ge and Gs.

The filtering algorithm for the value-based soft-gcc proceeds similar to the
algorithm for the variable-based soft-gcc. We first need to compute maximum
matchings Me and Ms, again in O.m

p
n/ time, which allows us to perform the

consistency check. We then remove all edges and corresponding domain values in
O.m/ time if we are in cases .ii/ and .iii/.

Over-Constrained Problems 209

4.7 Soft Regular Constraint

The regular constraint was introduced by Pesant [57] (related concepts were intro-
duced by Beldiceanu [11]). It is defined on a fixed-length sequence of finite-domain
variables and it states that the corresponding sequence of values taken by these vari-
ables belongs to a given regular language. Particular instances of the regular con-
straint can, for example, be applied in rostering problems or sequencing problems.

Before we introduce the regular constraint, we need the following defini-
tions [33]. A deterministic finite automaton (DFA) is described by a 5-tuple M D
.Q; ˙; ı; q0; F / where Q is a finite set of states, ˙ is an alphabet, ı W Q�˙ ! Q

is a transition function, q0 2 Q is the initial state, and F � Q is the set of final (or
accepting) states. Given an input string, the automaton starts in the initial state q0

and processes the string one symbol at the time, applying the transition function ı

at each step to update the current state. The string is accepted if and only if the last
state reached belongs to the set of final states F . Strings processed by M that are
accepted are said to belong to the language defined by M , denoted by L.M /. For
example, with M depicted in Fig. 2, strings aaabaa and cc belong to L.M / but not
aacbba. The languages recognized by DFAs are precisely regular languages.

Given an ordered sequence of variables X D x1; x2; : : : ; xn with respective finite
domains D.x1/; D.x2/; : : : ; D.xn/ � ˙ , there is a natural interpretation of the set
of possible instantiations of X , i.e., D.x1/�D.x2/� 	 	 	 �D.xn/, as a subset of all
strings of length n over ˙ .

Definition 9 (Regular language membership constraint). Let M D .Q; ˙; ı;

q0; F / denote a DFA and let X D x1; x2; : : : ; xn be a sequence of variables with
respective finite domains D.x1/; D.x2/; : : : ; D.xn/ � ˙ . Then

regular.X; M / D f.d1; : : : ; dn/ j di 2 D.xi /; d1d2 	 	 	dn 2 L.M /g :

Here, we consider two measures of violation for the regular constraint: The
variable-based violation measure �var and the edit-based violation measure �edit

that was introduced by van Hoeve et al. [37].
Let s1 and s2 be two strings of the same length. The Hamming distance

H.s1; s2/ is the number of positions in which they differ. Associating with a
tuple .d1; d2; : : : ; dn/ the string d1d2 	 	 	dn, the variable-based violation measure
can be expressed in terms of the Hamming distance:

�var.X/ D minfH.D; X/ j D D d1 	 	 	dn 2 L.M /g:

Fig. 2 A representation of a
DFA with each state shown as
a circle, final states as a
double circle, and transitions
as arcs

a b a

c

a b a

c

q0 q1 q2 q3

q4

210 W.-J. van Hoeve

Another distance function that is often used for comparing two strings is the
following. Again, let s1 and s2 be two strings of the same length. The edit dis-
tance E.s1; s2/ is the smallest number of insertions, deletions, and substitutions
required to change one string into another. It captures the fact that two strings that
are identical except for one extra or missing symbol should be considered close to
one another. The edit distance is probably a better way to measure violations of
a regular constraint than the Hamming distance. Consider, for example, a regu-
lar language in which strings alternate between pairs of a’s and b’s, for example,
“aabbaabbaa” belongs to this language. The string “abbaabbaab” does not belong
to the language, and the minimum Hamming distance, i.e., to any string of the same
length that belongs to the language, is 5 (that is, the length of the string divided
by 2) since changing either the first a to a b or the first b to an a has a domino
effect. On the other hand, the minimum edit distance of the same string is 2, since
we can insert an a at the beginning and remove a b at the end. In this case, the edit
distance reflects the number of incomplete pairs whereas the Hamming distance is
proportional to the length of the string rather than to the amount of violation.

Definition 10 (Edit-based violation measure). For regular.X; M /, the edit-
based violation measure is

�edit.X/ D minfE.D; X/ j D D d1 	 	 	dn 2 L.M /g:

Example 6. Consider the CSP

x1 2 fa; b; cg; x2 2 fa; b; cg; x3 2 fa; b; cg; x4 2 fa; b; cg;
regular.x1; x2; x3; x4; M /

with DFA M as in Fig. 2. We have �var.c; a; a; b/ D 3, because we need to change
the value of at least 3 variables; corresponding valid strings with Hamming distance
3 are, for example, aaba or cccc. On the other hand, we have �edit.c; a; a; b/ D 2,
because we can delete the value c at the front and add the value a at the end, thus
obtaining the valid string aaba.

A graph representation for the regular constraint was presented by Pesant [57].
Recall that M D .Q; ˙; ı; q0; F /.

Theorem 5 (Pesant [57]). A solution to regular.X; M / corresponds to an s � t

path in the digraph R D .V; A/ with vertex set

V D V1 [V2 [[VnC1 [fs; tg
and arc set A D As [A1 [A2 [[An [At ;

where Vi D fqi
k
j qk 2 Qg for i D 1; : : : ; nC 1;

and As D f.s; q1
0g;

Ai D f.qi
k
; qiC1

l
/ j ı.qk; d / D ql for d 2 D.xi /g for i D 1; : : : ; n;

At D f.qnC1
k

; t/ j qk 2 F g:

Over-Constrained Problems 211

Fig. 3 Graph representation
for the regular constraint of
Example 6, after filtering
inconsistent arcs

s

t

x1 x2 x3 x4

a

c

c c c

a

b b

b

a a

a

q0

q1

q2 q2 q2 q2 q2

q3q3q3q3q3

q4 q4 q4 q4 q4

q1 q1 q1 q1

q0 q0 q0 q0

V1 V2 V3 V4 V5

Theorem 5 can be applied to filter the regular constraint to domain consistency,
by removing all arcs (and corresponding domain values) that do not belong
to an s � t path in R. For the regular constraint in Example 6, Fig. 3 gives
the corresponding graph representation, after filtering inconsistent arcs. Observe
that the filtering algorithm has correctly removed domain value b from D.x1/

and D.x4/.
Whenever the regular constraint cannot be satisfied there does not exist an

s � t path in R. Therefore, for the soft-regular constraint, van Hoeve et al. [37]
extend the digraph R in such a way that an s � t path always exist and has a cost
corresponding to the respective measure of violation. For both the variable-based
and the edit-based soft-regular constraint, again particular weighted “violation
arcs” are added to R to make this possible.

4.7.1 Variable-Based Violation Measure

For the variable-based soft-regular constraint, we add the following violation
arcs to the graph R of Theorem 5:

Asub D f.qi
k; qiC1

l
/ j ı.qk; d / D ql for some d 2 ˙; i D 1; : : : ; ng:

We next apply a “cost” function w W A! N as follows. For all arcs a 2 A, w.a/ D 1

if a 2 Asub and w.a/ D 0 otherwise. Let the resulting digraph be denoted by Rvar

(see Fig. 4 for an illustration on Example 6).
The input automaton of this constraint specifies the allowed transitions from state

to state according to different values. The objective here, in counting the minimum
number of substitutions, is to make these transitions value independent. Therefore,
the violation arcs in Asub are added between two states (qi

k
; qiC1

l
) if there already

exists at least one valid arc between them. This means that an s� t path using a vio-
lation arc is in fact a solution where a variable takes a value outside its domain. The
number of such variables thus constitutes a minimum on the number of variables
which need to change value.

212 W.-J. van Hoeve

s

t
c c c

a

a

b

b

a a

a

b
c

q0 q0 q0 q0 q0

q1q1q1q1q1

q2 q2 q2 q2 q2

q3q3q3q3q3

q4

V1 V2 V3 V4 V5

q4 q4 q4 q4

x1 x2 x3 x4a
s

t

q0 q0 q0 q0

q1q1q1q1q1

q2 q2 q2 q2 q2

q3q3q3q3q3

q4 q4 q4 q4 q4

q0

V1 V2 V3 V4 V5

x1 x2 x3 x4b

Fig. 4 (a) Graph representation for the variable-based soft-regular constraint. Dashed arcs
indicate the inserted weighted arcs with weight 1. (b) Example: arcs and associated path used in
solution x1 D c; x2 D a; x3 D a; x4 D b of weight 3, corresponding to three substitutions from
valid string aaba

Theorem 6 (vanHoeve et al. [37]). The constraint soft-regular.X; M; z; �var/

is domain consistent if and only if

.i/ Every arc a 2 A1[[An belongs to an s�t path P in Rvar with weight.P / �
max D.z/

.ii/ min D.z/ � weight.P / for a minimum-weight s � t path in Rvar

The filtering algorithm must ensure that all arcs corresponding to a variable-value
assignment are on an s�t path with cost smaller than max D.z/. Computing shortest
paths from the initial state in the first layer to every other node and from every node
to a final state in the last layer can be done in O.n jıj/ time through topological
sorts because of the special structure of the graph (it is acyclic), as observed by
Pesant [57]. Here jıj denotes the number of transitions in the corresponding DFA.
Hence, the algorithm runs in O.m/ time, where m is the number of arcs in the
graph. The computation can also be made incremental in the same way as proposed
by Pesant [57].

A similar filtering algorithm for the variable-based soft-regular constraint
was proposed by Beldiceanu [11]. That filtering algorithm does not necessarily
achieve domain consistency, however.

4.7.2 Edit-Based Violation Measure

For the edit-based soft-regular constraint, we add the following violation arcs
to the graph R representing the regular constraint. As in the previous section, we
add Asub to allow the substitution of a value. To allow deletions and insertions, we
add violation arcs

Adel D f.qi
k; qiC1

k
/ j i D 1; : : : ; ngg n A

and Ains D f.qi
k; qi

l / j ı.qk; d / D ql for some d 2 ˙; k ¤ l; i D 1; : : : ; nC 1g:

Over-Constrained Problems 213

s

t

b b

a

b

a

c cc

a a

a

b b

c

c

b
a

a

a a a a

a a

c c c

b b
a

aa

x1 x2 x3 x4

q0

q1 q1 q1 q1 q1

q2q2q2q2q2

q3 q3 q3 q3 q3

q4q4q4q4q4

q0 q0 q0 q0

V1 V2 V3 V4 V5

a
s

t

x1 x2 x3 x4

V1 V2 V3 V4 V5

q0 q0 q0 q0 q0

q1q1q1q1q1

q2 q2 q2 q2 q2

q3q3q3q3q3

q4 q4 q4 q4 q4

b

Fig. 5 (a) Graph representation for the edit-based soft-regular constraint. Dashed arcs indicate
the inserted weighted arcs with weight 1. (b) Example: arcs and associated path used in solution
x1 D c; x2 D a; x3 D a; x4 D b of weight 2, corresponding to one deletion (c in position 1) and
one insertion (a in position 4) from valid string aaba

We extend the cost function w of the previous section such that w.a/ D 1 if a 2
Adel or a 2 Ains. Let the resulting digraph be denoted by Redit (see Fig. 5 for an
illustration on Example 6).

Deletions are modeled with the arcs introduced in Adel, which link equivalent
states of successive layers. The intuition is that by using such an arc it is possible
to remain at a given state and simply ignore the value taken by the corresponding
variable. The arcs in Ains allow a path to make more than one transition at any given
layer. Since a layer corresponds to a variable and a transition is made on a symbol
of the string, this is equivalent to inserting one or more symbols. Of course, one has
to make sure only to allow transitions defined by the automaton.

Theorem 7 (vanHoeve et al. [37]). The constraint soft-regular.X; M; z; �edit/

is domain consistent if and only if

.i/ Every arc a 2 A1 [[An belongs to an s � t path P in Redit with
weight.P / � max D.z/

.i i/ min D.z/ � weight.P / for a minimum-weight s � t path P in Redit

For the filtering algorithm, we proceed slightly different from the variable-based
soft-regular constraint because the structure of the graph is not the same: Arcs
within a layer may form (positive weight) directed circuits. We compute once and
for all the smallest cumulative weight to go from qi

k
to qi

l
for every pair of nodes

and record it in a table. This can be done through breadth-first-search from each
node since every arc considered has unit weight. Notice that every layer has the
same “insertion” arcs – we may preprocess one layer and use the result for all of
them. In all, this initial step requires �.jQj jıj/ time. Then, we can proceed as be-
fore through topological sort with table lookups, in O.n jıj/ time. The overall time
complexity is therefore O..nC jQj/ jıj/ D O.m/, where m is the number of arcs
in the graph. The last step follows from jQj � n, because otherwise some states
would be unreachable.

214 W.-J. van Hoeve

4.8 Other Soft Global Constraints

We next present, in brief, a comprehensive3 overview of other soft global constraints
that have appeared in the literature.

4.8.1 Soft Cumulative Constraint

The cumulative constraint can be applied to model and solve resource constraints
that appear for example in scheduling and packing problems [2]. It is defined on a
set of ‘activities,’ each of which has an associated variable representing the starting
time, a given fixed duration, a given fixed time window in which it can be executed,
and a given fixed amount of resource consumption. For example, when scheduling
jobs on machines such that any two jobs cannot overlap, jobs correspond to activ-
ities, machines represent the (unary) resource, and each job has a unary resource
consumption.

For the restricted version of the cumulative constraint on unary resources,
Baptiste et al. [5] consider the soft version in which the number of late activities
(i.e., that are completed after their associated deadline) is to be minimized. They
provide a filtering algorithm that is able to identify that some activities must be on
time, while others must be late. It is the first soft global constraint with an associated
filtering algorithm reported in the literature.

Petit and Poder [60] propose a version of the soft-cumulative constraint that
aims to minimize the amount of over-load of the resource, while enforcing the time
windows for the activities as hard constraints. They present a filtering algorithm for
the variable-based violation measure on this constraint. Petit and Poder [60] also
provide an experimental comparison between their soft global cumulative con-
straint and the Valued-CSP approach (see Sect. 1.1) on over-constrained scheduling
problems, showing the computational advantage of the soft cumulative constraint.

4.8.2 Soft Precedence Constraint

Lesaint et al. [46] introduce the soft-precedence constraint. It groups together
hard precedence constraints and (weighted) soft precedence constraints among cer-
tain objects. In the telecommunication application that motivates their work, the
objects correspond to features in a call-control feature subscription configuration
problem. The soft-precedence constraint states that all hard precedence con-
straints be respected, while the total weight of respected soft precedence constraints
is equal to a given value. Achieving domain consistency on soft-precedence is
NP-hard, and therefore Lesaint et al. [46] propose filtering rules based on lower and
upper bounds to the problem.

3 Comprehensive to the best of our knowledge.

Over-Constrained Problems 215

4.8.3 Soft Constraints for a Timetabling Application

Cambazard et al. [18] present three soft global constraints that are applied to solve
a particular problem class from the 2007 International Timetabling competition.
The three soft global constraints are problem-specific; their purpose is to derive and
exploit good bounds for this particular problem class.

4.8.4 Soft Balancing Constraints

Balancing constraints appear in many combinatorial problems, such as fairly dis-
tributing workloads (or shifts) over employees, or generating spatially balanced
experimental designs. Because a perfect balance is generally not possible, it is natu-
ral to soften the balancing constraint and minimize the induced cost of violation, as
proposed by [73], following earlier work by Pesant and Régin [58].

For a set of variables X D fx1; : : : ; xng and a given fixed sum s, Schaus [73]
defines as a measure of violation for the balancing constraint the Lp-norm of .X �
s=n/, assuming that

Pn
iD1 xi D s. The Lp-norm of .X � s=n/ is defined as

kX � s=nkp D

nX
iD1

jxi � s=nj
! 1

p

;

with p � 0. Schaus [73] then introduces the constraint soft-balance.X; s; z; Lp/

that holds if and only if
Pn

iD1 xi D s and kX � s=nkp � z.
Different values of p lead to different realizations of the soft-balance con-

straint. For example, for L0, we measure the number of different values from the
mean, while for L1, we sum the deviations from the mean. For L2, we sum the
squared deviations from the mean (which is equivalent to the variance). Finally, for
L1, we measure the maximum deviation from the mean.

When the L1-norm is applied, the resulting soft-balance constraint cor-
responds to the deviation constraint introduced by Schaus et al. [75]. Bound
consistency filtering algorithms for the deviation constraint were given by Schaus
et al. [74].

When the L2-norm is applied, the resulting soft-balance constraint corre-
sponds to the spread constraint, introduced by Pesant and Régin [58]. The spread
constraint is more general however, as it allows to represent the mean and standard
deviation as (continuous) variables. Pesant and Régin [58] also provide filtering al-
gorithms for the spread constraint.

4.8.5 Soft Same Constraint

The same constraint is defined on two sequences of variables of equal length and
states that the variables in one sequence use the same values as the variables in the
other sequence. It can be applied to timetabling problems and pairing problems.

216 W.-J. van Hoeve

van Hoeve et al. [37] present a domain consistency filtering algorithm for the
variable-based soft same constraint. Similar to the algorithms for the decomposition-
based soft-alldifferent and soft-regular constraints presented before, it is
based on the addition of “violation arcs” to a network flow representation of the
problem.

4.8.6 Soft All-Equal Constraint

The ALLEQUAL constraint states that a given set of variables should all be as-
signed an equal value. The soft-ALLEQUAL constraint was introduced by Hebrard
et al. [30] as the inverse of the (decomposition-based) soft-alldifferent con-
straint. Hebrard et al. [30] show that finding a solution to the decomposition-based
soft-ALLEQUAL constraint is NP-complete. Therefore, they propose to filter the
constraint using an approximation algorithm, which can be implemented to run in
linear amortized time.

Hebrard et al. [31] study the relationship between the soft-ALLEQUAL con-
straint and the soft-alldifferent constraint in more detail. They consider vari-
ants of the two constraints by combining the variable-based violation measure and
the decomposition-based violation measure with the minimization objective and the
maximization objective, respectively. In particular, they show that bounds consis-
tency on the minimization-version of the decomposition-based soft-ALLEQUAL

constraint can be established in polynomial time.
A related soft global constraint, named SIMILAR, was proposed by Hebrard

et al. [29] to bound similarities between (partial) solutions, for example, based on
the Hamming distance.

4.8.7 Soft Sequence Constraint

The sequence constraint was introduced as a global constraint by Beldiceanu and
Contejean [9]. It is defined on an ordered sequence of variables X , a fixed number q,
a fixed set of domain values S , and fixed lower and upper bounds l and u. It states
that for every subsequence of q consecutive variables, the number of variables taking
a value from S must be between l and u. The sequence constraint can be applied
to model problems such as car sequencing or nurse rostering [38, 39].

The soft-sequence constraint was studied by Maher et al. [49]. For each
subsequence of q consecutive variables, they apply a violation measure that rep-
resents the deviation from the lower bound l or upper bound u. The violation
measure for the soft-sequence is the sum of the violations for all subse-
quences. Maher et al. [49] present a domain consistency filtering algorithm for this
soft-sequence constraint based on a particular minimum-weight network flow
representation.

Over-Constrained Problems 217

4.8.8 Soft Slide Constraint

The slide constraint was introduced by Bessiere et al. [13]. It is an extension of
the sequence constraint, as well as a special case of the cardinality path con-
straint [8]. The slide constraint allows to “slide” any constraint over an ordered
sequence of variables, similar to the sequence constraint. Additionally, it allows to
slide the particular constraint over more than one sequence of variables. Bessiere et
al. [12] show how the edit-based and variable-based soft-slide constraints can be
reformulated in terms of hard slide constraints using sequences of additional vari-
ables. The slide constraint can similarly be applied to encode the variable-based
and edit-based soft-regular constraints.

4.8.9 Soft Context-Free Grammar Constraint

The context-free grammar constraint (CFG) is an extension of the regular con-
straint; it restricts an ordered sequence of variables to belong to a context-free
grammar [63,79]. The soft-CFG constraint was presented by Katsirelos et al. [41]
as a special case of the weighted context-free grammar constraint. They propose
domain consistency filtering algorithms for the variable-based (or Hamming-based)
and edit-based versions of the soft-CFG constraint.

4.8.10 ˙ -Alldifferent, ˙ -Gcc, and ˙ -Regular Constraints

The ˙-alldifferent constraint was introduced by Métivier et al. [50] as a varia-
tion of the soft-alldifferent constraint. In the softalldifferent constraint
as discussed in Sect. 4.3, all variables and all not-equal constraints are equally im-
portant. In order to be able to model preferences among variables and constraints,
the ˙-alldifferent constraint allows to associate a weight to variables and not-
equal constraints. These weights have to be taken into account when evaluating the
amount of violation of the constraint.

For the variable-based ˙-alldifferent constraint, a weight is associated to
each variable, and the goal is to find an assignment whose total weighted viola-
tion is within the allowed bound defined by the cost variable. Métivier et al. [50]
present a domain consistency filtering algorithm based on a weighted network flow
representation.

Similarly, for the decomposition-based ˙-alldifferent constraint, a weight
is associated to each not-equal constraint. For this constraint, achieving domain
consistency is NP-hard, however. Therefore, Métivier et al. [50] propose filtering
algorithms based on relaxations of the constraint.

[51] present a filtering algorithm for the decomposition-based soft-gcc with
preferences (the ˙-gcc constraint), and for a distance-based soft-regular

218 W.-J. van Hoeve

constraint with preferences (the ˙-regular constraint). The ˙-gcc and other (soft)
global constraints are applied by Métivier et al. [52] to model and solve nurse ros-
tering problems.

4.8.11 Soft Global Constraints for Weighted CSPs

Lee and Leung [45] consider soft global constraints in the context of the weighted
CSP framework, where costs are associated to the tuples of variable assignments
(see Sect. 1.1). In particular, Lee and Leung [45] study the extension of the flow-
based soft global constraints of van Hoeve et al. [37] in a weighted CSP setting.
They show that the direct application of the flow-based filtering algorithms of van
Hoeve et al. [37] can enforce so-called ¿-inverse consistency in weighted CSPs. Lee
and Leung [45] further show how to modify the flow-based algorithms to achieve
stronger forms of consistency in weighted CSPs.

4.8.12 Soft Global Constraints for Preference Modeling

Joseph et al. [40] study soft global constraints for preference modeling in the context
of multi-criteria decision support and social choice theory. Their underlying model
applies several objective functions and binary preference relations. They apply soft
global constraints to build hierarchical preference models.

4.8.13 Global Constraint for Max-CSP

The Max-CSP framework aims to maximize the number of satisfied constraints,
or equivalently minimize the number of violated constraints (see also Sect. 1.1).
Because Max-CSP problems can occur as a subproblems of real-world applications,
Régin et al. [68,69] propose to encapsulate the Max-CSP problem as a single global
constraint, which can be applied as a soft global constraint. Régin et al. [68] propose
a filtering algorithm based on a lower bound on the number of constraint violations,
for example, using ‘conflict sets’. A conflict set is a set of constraints that leads to a
contradiction. For example, the set of constraints fx < y; y < z; z < xg is a conflict
set, and we can infer that at least one constraint in this set must be violated in any
solution. Régin et al. [69] provide new lower bounds based on conflict-sets, where
the constraints in the Max-CSP subproblem can be of any arity.

4.8.14 Soft Open Global Constraints

Traditionally, a (global) constraint has a fixed scope of variables on which it is
defined. Many practical applications require the scope of a constraint to be less
rigid, however. For example, suppose we need to execute a set of activities on dif-
ferent machines, such that on each machine no two activities overlap. Assuming

Over-Constrained Problems 219

unit processing times, we can model the non-overlapping requirement using an
alldifferent constraint on the starting time variables of the activities for each
machine. However, the scope of each such alldifferent constraint is unknown
until we have assigned the activities to the machines. Constraints of this nature are
called open constraints [6,23,36]. During the search for a solution, variables can be
added to, or removed from, the scope of an open constraint dynamically.

Maher [47] considers soft open global constraints and investigates when a filter-
ing algorithm for the closed version of a constraint is sound for the open version.
The property of contractibility introduced by Maher [48] can be used for this pur-
pose. Maher [47] shows that the contractibility of a soft constraint is independent
on the contractibility of the associated hard constraint and relies solely on the vi-
olation measure that is applied. He further shows that the decomposition-based
violation measure and various versions of the edit-based violation measure lead to
contractible soft open global constraints. For such soft open global constraints, one
can therefore safely apply the existing filtering algorithm for the closed version of
the constraint in an open setting. Maher [47] presents a corresponding filtering algo-
rithm for the open soft-regular constraint under a weighted edit-based violation
measure, building on the existing algorithm for the soft-regular constraint by
van Hoeve et al. [37].

5 Constraint-Based Local Search

Local search methods provide an alternative to complete systematic search methods
(such as constraint programming) for solving combinatorial problems [1, 81]. Con-
ceptually, local search iteratively moves from one solution to a neighboring one,
with the aim of improving the objective function. Therefore, local search algorithm
are based on a definition of a neighborhood and cost evaluation functions. In many
cases, local search can quickly find solutions of good quality, but in general, it is
not able to prove optimality of a solution. Local search is a natural approach to
solve over-constrained problems, where the objective is to minimize some specified
measure of violation of the problem.

In the literature, local search algorithms have been largely described using low-
level concepts close to the actual computer implementation. The first modeling
language for local search was Localizer [54, 55], which offered a generic and re-
usable way of implementing different local search methods. In constraint-based
local search, the aim is to model the problem at hand using constraints and objectives
to which then any (suitable) local search can be applied. One of the earliest of such
general approaches was developed by Galinier and Hao [27], see also [28]. In that
work, a library of constraints is presented that can be used to model a problem. To
each constraint, a penalty function is associated that is used in the evaluation func-
tion of the Tabu Search engine underlying the system. A similar approach was taken
by Michel and Van Hentenryck [53] for the system Comet, and by Bohlin [15, 16]
for the system Composer.

220 W.-J. van Hoeve

Essential to constraint-based local search is that the solution method can be
derived from the constraints of the problem. That is, the definition of neighborhoods
as well as the evaluation functions can be based on the combinatorial properties of
the constraints. Also global constraints can be used for this purpose. For exam-
ple, Nareyek [56] applies global constraints to define improvement heuristics for
scheduling problems.

The evaluation functions (or penalty functions) for constraints in local search
are closely related to the violation measures for soft global constraints in constraint
programming. For example, in the system Comet, to each constraint, a measure of
violation is associated similar to those that are used to define soft global constraints.
In constraint-based local search, the violation measures play a different role, how-
ever. Instead of filtering variable domains, they are applied to compute a “gradient”
with respect to the violation measure. That is, for each variable-value pair, we can
define the additional amount of violation if we were to assign this variable to the
value.

In the context of constraint-based local search, Van Hentenryck and Michel [81]
present violation measures for several global constraints, including alldifferent,
atmost, atleast, multi-knapsack, sequence, systems of not-equal constraints,
and arbitrary (weighted) constraint systems.

6 Conclusion and Outlook

In this chapter, we have presented an overview of techniques to handle over-
constrained problems in constraint programming. The main focus has been on recent
developments in the area of soft global constraints. Starting from initial works by
Baptiste et al. [5], Petit et al. [61], and especially Petit et al. [62], the field of soft
global constraint has developed into a mature and established approach to modeling
and solving over-constrained problems in constraint programming.

We have presented detailed filtering algorithms for the soft-alldifferent
constraint, the soft-gcc constraint, and the soft-regular constraint. In addition,
we have given a comprehensive overview of other soft global constraints that have
been studied in the literature. The techniques for handling soft global constraints are
often based on methods from graph theory, network flows, and regular languages,
which reflect the synergy between constraint programming, operations research, and
artificial intelligence; the focus of this collection.

Several soft global constraints that appeared in the literature have been applied
successfully to solve practical (over-constrained) problems, as we have seen in
Sect. 4.8. Nevertheless, so far no commercial constraint programming solver offers
soft global constraints as part of their product. Given the increasing interest of the
research community as well as the growing number of successful applications, it
would be highly desirable if soft global constraints were added to these commercial
solvers.

Over-Constrained Problems 221

Many research challenges remain in this area. Perhaps the most important one is
the issue of aggregating effectively different soft global constraints. It is likely that
a weighted sum of the associated cost variables is not the most effective aggrega-
tion. Other approaches, such as minimizing the maximum over all cost variables, or
applying a (soft) balancing constraint to the cost variables [73], appear to be more
promising.

Finally, as was discussed in Sect. 5, the violation measures for soft global con-
straints are closely related to constraint-based evaluation functions in local search.
Therefore, integrating local search and constraint programming based on soft global
constraints appears to be an interesting and promising avenue for future research.

Acknowledgements As parts of this chapter are based on the paper [37], I wish to thank Gilles
Pesant and Louis-Martin Rousseau.

References

1. Aarts E, Lenstra JK (eds) (2003) Local search in combinatorial optimization. Princeton
University Press, Princeton

2. Aggoun A, Beldiceanu N (1993) Extending CHIP in order to solve complex scheduling and
placement problems. Math Comput Model 17(7):57–73

3. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows Prentice Hall, New Jersey
4. Apt KR (2003) Principles of constraint programming. Cambridge University Press, Cambridge
5. Baptiste P, Le Pape C, Péridy L (1998) Global constraints for partial CSPs: a case-study of

resource and due date constraints. In: Maher MJ, Puget J-F (eds) Proceedings of the fourth
international conference on principles and practice of constraint programming (CP). Lecture
notes in computer science, vol 1520. Springer, Berlin, pp 87–101

6. Barták R (2003) Dynamic global constraints in backtracking based environments. Ann Oper
Res 118(1–4):101–119

7. Beldiceanu N (2000) Global constraints as graph properties on a structured network of ele-
mentary constraints of the same type. In: Dechter R (ed) Proceedings of the sixth international
conference on principles and practice of constraint programming (CP). Lecture notes in com-
puter science, vol 1894. Springer, Berlin, pp 52–66

8. Beldiceanu N, Carlsson M (2001) Revisiting the cardinality operator and introducing the
cardinality-path constraint family. In: Codognet P (ed) Proceedings of the 17th international
conference on logic programming (ICLP). Lecture notes in computer science, vol 2237.
Springer, Berlin, pp 59–73

9. Beldiceanu N, Contejean E (1994) Introducing global constraints in CHIP. Math Comput
Model 20(12):97–123

10. Beldiceanu N, Petit T (2004) Cost evaluation of soft global constraints. In: Régin J-C,
Rueher M (eds) Proceedings of the first international conference on the integration of AI and
OR techniques in constraint programming for combinatorial optimization problems (CPAIOR).
Lecture notes in computer science, vol 3011. Springer, Heidelberg, pp 80–95

11. Beldiceanu N, Carlsson M, Petit T (2004) Deriving filtering algorithms from constraint
checkers. In: Wallace M (ed) Proceedings of the tenth international conference on principles
and practice of constraint programming (CP). Lecture notes in computer science, vol 3258.
Springer, Berlin, pp 107–122

12. Bessiere C, Hebrard E, Hnich B, Kiziltan Z, Quimper C-G, Walsh T (2007) Reformulating
global constraints: the slide and regular constraints. In: Miguel I, Ruml W (eds) Proceedings of
7th international symposium on abstraction, reformulation, and approximation (SARA). Lec-
ture notes in computer science, vol 4612. Springer, Berlin, pp 80–92

222 W.-J. van Hoeve

13. Bessiere C, Hebrard E, Hnich B, Kiziltan Z, Walsh T (2008) SLIDE: a useful special case of the
CARDPATH constraint. In: Ghallab M, Spyropoulos CD, Fakotakis N, Avouris NM, (eds) Pro-
ceedings of the 18th European conference on artificial intelligence (ECAI). IOS, Amsterdam,
pp 475–479

14. Bistarelli S, Montanari U, Rossi F (1997) Semiring-based constraint satisfaction and optimiza-
tion. J ACM 44(2):201–236

15. Bohlin M (2004) Design and implementation of a graph-based constraint constraint model for
local search. PhD thesis, Mälardalen University, Licentiate Thesis No. 27

16. Bohlin M (2005) A local search system for solving constraint problems. In: Seipel D, Hanus M,
Geske U, Bartenstein O (eds) Applications of declarative programming and knowledge man-
agement. Lecture notes in artificial intelligence, vol 3392. Springer, Berlin, pp 166–184

17. Borning A, Duisberg R, Freeman-Benson B, Kramer A, Woolf M (1987) Constraint hier-
archies. In: Proceedings of the ACM conference on object-oriented programming systems,
languages, and applications (OOPSLA), pp 48–60

18. Cambazard H, Hebrard E, O’Sullivan B, Papadopoulos A (2008) Local search and constraint
programming for the post enrolment-based course timetabling problem. In: Proceedings of the
7th international conference on the practice and theory of automated timetabling (PATAT)

19. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms – second
edition. MIT, Cambridge

20. Dechter R (1990) On the expressiveness of networks with hidden variables. In: Proceed-
ings of the 8th national conference on artificial intelligence (AAAI). AAAI/MIT, Cambridge,
pp 555–562

21. Dechter R (2003) Constraint processing Morgan Kaufmann, San Mateo
22. Dubois D, Fargier H, Prade H (1993) The calculus of fuzzy restrictions as a basis for flexible

constraint satisfaction. In: Proceedings of the second IEEE international conference on fuzzy
systems, vol 2, pp 1131–1136

23. Faltings B, Macho-Gonzalez S (2002) Open constraint satisfaction. In: Van Hentenryck P
(ed) Proceedings of the 8th international conference on principles and practice of constraint
programming (CP 2002). Lecture notes in computer science, vol 2470. Springer, Heidelberg,
pp 356–370

24. Fargier H, Lang J, Schiex T (1993) Selecting preferred solutions in fuzzy constraint satisfaction
problems. In: Proceedings of the first European congress on fuzzy and intelligent technologies

25. Focacci F, Lodi A, Milano M (2002) Optimization-oriented global constraints. Constraints
7(3):351–365

26. Freuder EC, Wallace RJ (1992) Partial constraint satisfaction. Artif Intell 58(1–3):21–70
27. Galinier P, Hao JK (2000) A general approach for constraint solving by local search. In: Pro-

ceedings of the second international workshop on integration of AI and OR techniques in
constraint programming for combinatorial optimization problems (CPAIOR)

28. Galinier P, Hao JK (2004) A general approach for constraint solving by local search. J Math
Model Algorithm 3(1):73–88

29. Hebrard E, O’Sullivan B, Walsh T (2007) Distance constraints in constraint satisfaction. In:
Veloso MM (ed) Proceedings of the twentieth international joint conference on artificial intel-
ligence (IJCAI), pp 106–111. Available online at http://ijcai.org/.

30. Hebrard E, O’Sullivan B, Razgon I (2008) A soft constraint of equality: complexity and approx-
imability. In: Stuckey PJ (ed) Proceedings of the 14th international conference on principles
and practice of constraint programming (CP). Lecture notes in computer science, vol 5202.
Springer, Berlin, pp 358–371

31. Hebrard E, Marx D, O’Sullivan B, Razgon I (2009) Constraints of difference and equality: a
complete taxonomic characterization. In: Gent IP (ed) Proceedings of the 15th international
conference on principles and practice of constraint programming (CP). Lecture notes in com-
puter science, vol 5732. Springer, Berlin, pp 424–438

32. Hopcroft JE, Karp RM (1973) An n5=2 algorithm for maximum matchings in bipartite graphs.
SIAM J Comput 2(4):225–231

33. Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading

Over-Constrained Problems 223

34. van Hoeve W-J (2004) A hyper-arc consistency algorithm for the soft alldifferent constraint. In:
Wallace M (ed) Proceedings of the tenth international conference on principles and practice of
constraint programming (CP). Lecture notes in computer science, vol 3258. Springer, Berlin,
pp 679–689

35. van Hoeve W-J, Katriel I (2006) Global constraints. In: Rossi F, Van Beek P, Walsh T (eds)
Handbook of constraint programming, chapter 6. Elsevier, New York

36. van Hoeve W-J, Régin J-C (2006) Open constraints in a closed world. In: Beck JC, Smith BM
(eds) Proceedings of the third international conference on the integration of AI and OR tech-
niques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture
notes in computer science, vol 3990. Springer, Heidelberg , pp 244–257

37. van Hoeve W-J, Pesant G, Rousseau L-M (2006) On global warming:flow-based soft global
constraints. J Heuristics 12(4):347–373

38. van Hoeve W-J, Pesant G, Rousseau L-M , Sabharwal A (2006) Revisiting the sequence con-
straint. In: Benhamou F (ed) Proceedings of the twelfth international conference on principles
and practice of constraint programming (CP). Lecture Notes in Computer Science, vol 4204.
Springer, Berlin, pp 620–634

39. van Hoeve W-J, Pesant G, Rousseau L-M, Sabharwal A (2009) New filtering algorithms for
combinations of among constraints. Constraints 14:273–292

40. Joseph R-R, Chan P, Hiroux M, Weil G (2007) Decision-support with preference constraints.
Eur J Oper Res 177(3):1469–1494

41. Katsirelos G, Narodytska N, Walsh T (2008) The weighted CFG constraint. In: Perron L,
Trick MA (eds) Proceedings of the 5th international conference on the integration of AI and
OR techniques in constraint programming for combinatorial optimization problems (CPAIOR).
Lecture notes in computer science, vol 5015. Springer, Heidelberg, pp 323–327

42. Larrosa J (2002) Node and arc consistency in weighted CSP. In: Dechter R, Kearns M, Sutton
R (eds) Proceedings of the eighteenth national conference on artificial intelligence. AAAI,
Canada, pp 48–53

43. Larrosa J, Schiex T (2003) In the quest of the best form of local consistency for weighted CSP.
In: Gottlob G, Walsh T (eds) Proceedings of the eighteenth international joint conference on
artificial intelligence. Morgan Kaufmann, San Francisco, pp 239–244

44. Lauriere J-L (1978) A language and a program for stating and solving combinatorial problems.
Artif intell 10(1):29–127

45. Lee JHM, KL Leung (2009). Towards efficient consistency enforcement for global constraints
in weighted constraint satisfaction. In: Boutilier C (ed) Proceedings of the twenty-first inter-
national joint conference on artificial intelligence (IJCAI), pp 559–565. Available online at
http://ijcai.org/.

46. Lesaint D, Mehta D, O’Sullivan B, Quesada L, Wilson N (2009) A soft global precedence
constraint. In: Boutilier C (ed) Proceedings of the twenty-first international joint conference on
artificial intelligence (IJCAI), pp 566–571. Available online at http://ijcai.org/.

47. Maher MJ (2009) SOGgy constraints: soft open global constraints. In: Gent IP (ed) Proceedings
of the 15th international conference on principles and practice of constraint programming (CP).
Lecture notes in computer science, vol 5732. Springer, Heidelberg , pp 584–591

48. Maher MJ (2009) Open contractible global constraints. In: Boutilier C (ed) Proceedings of
the twenty-first international joint conference on artificial intelligence (IJCAI), pp 578–583.
Available online at http://ijcai.org/

49. Maher MJ, Narodytska N, Quimper C-G, Walsh T (2008) Flow-based propagators for the
SEQUENCE and related global constraints. In: Stuckey PJ (ed) Proceedings of the 14th inter-
national conference on principles and practice of constraint programming (CP). Lecture notes
in computer science, vol 5202. Springer, Heidelberg , pp 159–174

50. Métivier J-P, Boizumault P, Loudni S (2007) ˙-alldifferent: softening alldifferent in weighted
CSPs. In: Proceedings of the 19th IEEE international conference on tools with artificial Intel-
ligence (ICTAI), IEEE, pp 223–230

51. Métivier J-P, Boizumault P, Loudni S (2009) Softening Gcc and regular with prefer-
ences. In: Proceedings of the 2009 ACM symposium on applied computing (SAC) ACM,
pp 1392–1396

224 W.-J. van Hoeve

52. Métivier J-P, Boizumault P, Loudni S (2009) Solving nurse rostering problems using soft global
constraints. In: Gent IP (ed) Proceedings of the 15th international conference on principles
and practice of constraint programming (CP). Lecture notes in computer science, vol 5732.
Springer, Berlin, pp 73–87

53. Michel L, Van Hentenryck P (2002) A constraint-based architecture for local search. In: Pro-
ceedings of the ACM conference on object-oriented programming systems, languages, and
applications (OOPSLA), pp 101–110

54. Michel L, Van Hentenryck P (2000) Localizer. Constraints 5:43–84
55. Michel L, Van Hentenryck P (1997) Localizer: a modeling language for local search. In:

Smolka G (ed) Proceedings of the third international conference on principles and practice of
constraint programming (CP). Lecture notes in computer science, vol 1330. Springer, Berlin,
pp 237–251

56. Nareyek A (2001) Using global constraints for local search. In: Constraint programming
and large scale discrete optimization: DIMACS workshop constraint programming and large
scale discrete optimization, September 14–17, 1998, DIMACS Center. DIMACS series in dis-
crete mathematics and theoretical computer science, vol 54. American Mathematical Society,
pp 9–28

57. Pesant G (2004) A regular language membership constraint for finite sequences of variables.
In: Wallace M (ed) Proceedings of the tenth international conference on principles and practice
of constraint programming (CP). Lecture notes in computer science, vol 3258. Springer, Berlin,
pp 482–495

58. Pesant G, Régin J-C (2005) Spread: a balancing constraint based on statistics. In: van Beek P
(ed) Proceedings of the 11th international conference on principles and practice of constraint
programming (CP). Lecture notes in computer science, vol 3709. Springer, Berlin, pp 460–474

59. Petit T (2002) Modélisation et Algorithmes de Résolution de Problèmes Sur-Contraints. PhD
thesis, Université Montpellier II. In French

60. Petit T, Poder E (2008) Global propagation of practicability constraints. In: Perron L, Trick MA
(eds) Proceedings of the 5th international conference on the integration of AI and OR tech-
niques in constraint programming for combinatorial optimization problems (CPAIOR). Lecture
notes in computer science, vol 5015. Springer, Berlin, pp 361–366

61. Petit T, Régin J-C, Bessière C (2000) Meta constraints on violations for over constrained
problems. In: Proceedings of the 12th IEEE international conference on tools with artificial
intelligence (ICTAI). IEEE, pp 358–365

62. Petit T, Régin J-C, Bessière C (2001) Specific filtering algorithms for over-constrained prob-
lems. In: Walsh T (ed) Proceedings of the seventh international conference on principles
and practice of constraint programming (CP). Lecture notes in computer science, vol 2239.
Springer, Berlin, pp 451–463

63. Quimper C-G, Walsh T (2006) Decomposing global grammar constraints. In: Benhamou F
(ed) Proceedings of the twelfth international conference on principles and practice of con-
straint programming (CP). Lecture notes in computer science, vol 4204. Springer, Heidelberg,
pp 751–755

64. Quimper C-G, López-Ortiz A, van Beek P, Golynski P (2004) Improved algorithms for the
global cardinality constraint. In: Wallace M (ed) Proceedings of the tenth international con-
ference on principles and practice of constraint programming (CP). Lecture notes in computer
science, vol 3258. Springer, New York, pp 542–556

65. Régin J-C (1994) A filtering algorithm for constraints of difference in CSPs. In: Proceedings
of the twelfth national conference on artificial intelligence (AAAI), vol 1. AAAI, pp 362–367

66. Régin J-C (1996) Generalized arc consistency for global cardinality constraint. In: Proceedings
of the thirteenth national conference on artificial intelligence and eighth innovative applications
of artificial intelligence conference (AAAI/IAAI), vol 1. AAAI/MIT, pp 209–215

67. Régin J-C (2003) Global constraints and filtering algorithms. In: Milano M (ed) Constraint and
integer programming – toward a unified methodology. Operations research/computer science
interfaces, chapter 4, vol 27. Kluwer Academic, Dordrecht

Over-Constrained Problems 225

68. Régin J-C, Petit T, Bessière C, Puget J-F (2000) An original constraint based approach for
solving over constrained problems. In: Dechter R (ed) Proceedings of the sixth international
conference on principles and practice of constraint programming (CP). Lecture notes in com-
puter science, vol 1894. Springer, Berlin, pp 543–548

69. Régin J-C, Petit T, Bessière C, Puget J-F (2001) New lower bounds of constraint violations
for over-constrained problems. In: Walsh T (ed) Proceedings of the seventh international con-
ference on principles and practice of constraint programming (CP). Lecture notes in computer
science, vol 2239. Springer, Berlin, pp 332–345

70. Rossi F, Petrie C, Dhar V (1990) On the equivalence of constraint satisfaction problems. In:
Proceedings of the 9th European conference on artificial intelligence (ECAI), pp 550–556

71. Rossi F, Van Beek P, Walsh T (eds) (2006) Handbook of constraint programming. Elsevier,
Amsterdam

72. Ruttkay Z (1994) Fuzzy constraint satisfaction. In: Proceedings of the first IEEE conference on
evolutionary computing, pp 542–547

73. Schaus P (2009) Solving balancing and Bin-packing problems with constraint programming.
PhD thesis, Université catholique de Louvain

74. Schaus P, Deville Y, Dupont P (2007) Bound-consistent deviation constraint. In: Bessiere C
(ed) Proceedings of the 13th international conference on principles and practice of constraint
programming (CP). Lecture notes in computer science, vol 4741. Springer, Berlin, pp 620–634

75. Schaus P, Deville Y, Dupont P, Régin J-C (2007) The deviation constraint. In: Van Hentenryck
P, Wolsey LA (eds) Proceedings of the 4th international conference on the integration of AI and
OR techniques in constraint programming for combinatorial optimization problems (CPAIOR).
Lecture notes in computer science, vol 4510. Springer, Berlin, pp 260–274

76. Schiex T (1992) Possibilistic constraint satisfaction problems or “How to handle soft con-
straints?”. In: Dubois D, Wellman MP (eds) Proceedings of the eighth annual conference on
uncertainty in artificial intelligence. Morgan Kaufmann, San Francisco, pp 268–275

77. Schiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and
easy problems. In: Proceedings of the fourteenth international joint conference on artificial
intelligence. Morgan Kaufmann, San Francisco, pp 631–639

78. Schrijver A (2003) Combinatorial optimization – polyhedra and efficiency. Springer, Berlin
79. Sellmann M (2006) The theory of grammar constraints. In: Benhamou F (ed) Proceedings of

the twelfth international conference on principles and practice of constraint programming (CP).
Lecture notes in computer science, vol 4204. Springer, Heidelberg , pp 530–544

80. Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J Comput 1:146–160
81. Van Hentenryck P, Michel L (2005) Constraint-based local search. MIT, Cambridge
82. Zanarini A, Milano M, Pesant G (2006) Improved Algorithm for the Soft Global Cardinality

Constraint. In: Beck JC, Smith BM (eds) Proceedings of the third international conference on
the integration of AI and OR techniques in constraint programming for combinatorial optimiza-
tion problems (CPAIOR). Lecture notes in computer science, vol 3990. Springer, New York,
pp 288–299

A Survey on CP-AI-OR Hybrids for Decision
Making Under Uncertainty

Brahim Hnich, Roberto Rossi, S. Armagan Tarim, and Steven Prestwich

Abstract In this survey, we focus on problems of decision making under uncer-
tainty. First, we clarify the meaning of the word “uncertainty” and we describe the
general structure of problems that fall into this class. Second, we provide a list of
problems from the Constraint Programming, Artificial Intelligence, and Operations
Research literatures in which uncertainty plays a role. Third, we survey existing
modeling frameworks that provide facilities for handling uncertainty. A number of
general purpose and specialized hybrid solution methods are surveyed, which deal
with the problems in the list provided. These approaches are categorized into three
main classes: stochastic reasoning-based, reformulation-based, and sample-based.
Finally, we provide a classification for other related approaches and frameworks in
the literature.

1 Introduction

In this work, we survey problems in which we are required to make decisions under
uncertainty, and we categorize existing hybrid techniques in Constraint Program-
ming (CP), Artificial Intelligence (AI), and Operations Research (OR) for dealing
with them. The word uncertainty is used to characterize the existence, in these
problems, of uncontrollable or “random” variables,1 which cannot be influenced
by the decision maker. In addition to these random variables, problems also com-
prise controllable or “decision” variables, to which a value from given domains has
to be assigned. More specifically, a problem classified as deterministic with respect
to the degree of uncertainty does not include random variables, while a stochastic
problem does.

1Alternatively, in the literature, these variables are also denoted as “stochastic”.

B. Hnich (�)
Faculty of computer science, Izmir University of Economics, Izmir, Turkey
e-mail: brahim.hnich@ieu.edu.tr

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 7,
c� Springer Science+Business Media, LLC 2011

227

brahim.hnich@ieu.edu.tr

228 B. Hnich et al.

Random variables are typically employed to model factors such as the customer
demand for a certain product, the crop yield of a given piece of land during a year,
the arrival rate of orders at a reservation center, and so forth. A continuous or discrete
domain of possible values that can be observed is associated with each random
variable. A probabilistic measure – typically a probability distribution – over such
a domain is assumed to be available in order to fully quantify the likelihood of
each value (respectively, range of values in the continuous case) that appears in the
domain.

The decision making process comprises one or more subsequent decision stages.
In a decision stage, a decision is taken by the decision maker who assigns a value
to each controllable variable related to this decision stage of the problem and, sub-
sequently, the uncontrollable variables related to this stage are observed, and their
realized values become known to the decision maker.

It should be noted that, in this work, we do not consider situations in which
the decision maker has the power to modify the probability distribution of a given
random variable by using his decisions. Random variables are therefore fully un-
controllable. To clarify, this means that a situation in which the decision maker has
the option of launching a marketing campaign to affect the distribution of customer
demands will not be considered.

This work is structured as follows: in Sect. 2, we employ a motivating exam-
ple and a well established OR modeling framework – Stochastic Programming – in
order to illustrate key aspects associated with the process of modeling problems of
decision making under uncertainty; in Sect. 3, we provide a list of relevant problems
from the literature on hybrid approaches for decision making under uncertainty and,
for each problem, we also provide a short description and a reference to the work
in which such a problem has been proposed and tackled; in Sect. 4, we introduce
frameworks, from AI and from CP that aim to model problems of decision making
under uncertainty; in Sect. 5, we classify existing hybrid approaches for tackling
problems of decision making under uncertainty into three classes: in the first class
(Sect. 6), we identify general and special purpose approaches that perform “stochas-
tic reasoning”; in the second class (Sect. 7), we list approaches, general and special
purpose, that use reformulation; and in the third class (Sect. 8), we categorize ap-
proximate techniques based on a variety of strategies employing sampling; finally,
in Sect. 9, we point out connections with other related works, and in Sect. 10, we
draw conclusions.

2 Decision Making Under Uncertainty

Several interesting real world problems can be classified as “stochastic”. In this
section, we use a variant of the Stochastic Knapsack Problem (SKP) discussed in
[34] as a running example to demonstrate ideas and concepts related to stochastic
problems.

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 229

2.1 Single-Stage Stochastic Knapsack

A subset of k items must be chosen, given a knapsack of size c into which to fit the
items. Each item i; if included in the knapsack, brings a deterministic profit ri . The
size !i of each item is stochastic, and it is not known at the time the decision has
to be made. Nevertheless, we assume that the decision maker knows the probability
mass function PMF.!i / [31], for each i D 1; : : : ; k. A per unit penalty cost p has
to be paid for exceeding the capacity of the knapsack. Furthermore, the probability
of the plan not exceeding the capacity of the knapsack should be greater than or
equal to a given threshold � . The objective is to find the knapsack that maximizes
the expected profit.

We now discuss Stochastic Programming, which is one of the most well known
modeling approaches in OR for problems of decision making under uncertainty,
such as the SKP. We arbitrarily chose to employ such a framework to introduce
the key concepts of decision making under uncertainty. In the next sections, the
following frameworks will be also introduced: Stochastic Boolean Satisfiability,
Probabilistic Constraint Satisfaction Problems, Event-Driven Probabilistic Con-
straint Programming, and Stochastic Constraint Programming.

Stochastic Programming (SP) [11, 32] is a well established technique often used
for modeling problems of decision making under uncertainty. A Stochastic Pro-
gram typically comprises a set of decision variables defined over continuous or
discrete domains, a set of random variables also defined over continuous or dis-
crete domains and, for each random variable, the respective probability density
function (PDF) if continuous or probability mass function (PMF) if discrete. De-
cision and random variables are partitioned into decision stages. Within a decision
stage, first, all the associated decision variables are assigned values; and second,
all the associated random variables are observed. A set of constraints is usu-
ally enforced over decision and random variables in the model. These constraints
may be hard, that is they should always be met regardless of the values that are
observed for the random variables, or they may be chance-constraints [15]. Chance-
constraints are constraints that should be satisfied with a probability exceeding a
given threshold. If the problem is an optimization one, it may minimize/maximize
an objective function defined over some expressions on possible realizations (for ex-
ample, maximize the worst case performance of the stochastic system under control,
or minimize the difference between the maximum and minimum values a per-
formance measure may take to increase the robustness of a system) or some
probabilistic measure – such as expectation or variance – of decision and random
variables in the model.

To clarify these concepts, we now introduce a Stochastic Programming model
for the single-stage SKP (Fig. 1). The objective function maximizes the trade-off
between the reward brought by the objects selected in the knapsack (those for which
the binary decision variable Xi is set to 1) and the expected penalty paid for buying
additional capacity units in those scenarios in which the available capacity c is not
sufficient. Control actions that are performed after the uncertainty is resolved – such

230 B. Hnich et al.

Fig. 1 A Stochastic
Programming formulation
for the single-stage SKP. Note
that Œy�C D maxfy; 0g and E

denotes the expected value
operator

Objective:

max

	Pk
iD1 ri Xi � pE

hPk
iD1 !i Xi � c

iC

Subject to:

Pr
nPk

iD1 !i Xi � c
o
� �

Decision variables:
Xi 2 f0; 1g 8i 2 1; : : : ; k

Random variables:
!i ! item i weight 8i 2 1; : : : ; k

Stage structure:
V1 D fX1; : : : ; Xkg
S1 D f!1; : : : ; !kg
L D ŒhV1; S1i�

as buying additional capacity at a high cost – are called, in SP, “recourse actions”.
The only chance-constraint in the model ensures that the capacity c is not exceeded
with a probability of at least � . There is only a single decision stage in the model.
Decision stages define how uncertainty unfolds in the decision making process. In
other words, what the alternation should be between decisions and random variable
observations. In a decision stage hVi ; Si i, first we assign values to all the decision
variables in the set Vi , then we observe the realized values for all the random vari-
ables in the set Si . More specifically, in the single decision stage hV1; S1i of the
SKP, first, we select all the objects that should be inserted into the knapsack, that is,
we assign a value to every decision variable Xi 2 V1, 8i 2 1; : : : ; k; second, we
observe the realized weight !i 2 S1 for every object i 2 1; : : : ; k.

We now introduce a numerical example for the single-stage SKP.

Example 1. Consider kD 5 items whose item rewards ri are f16; 16; 16; 5; 25g. The
discrete PMFs for the weight !i of item i D 1; : : : ; 5 are, respectively:
PMF.!1/Df10.0:5/; 8.0:5/g, PMF.!2/Df9.0:5/; 12.0:5/g, PMF.!3/Df8.0:5/;

13.0:5/g, PMF.!4/Df4.0:5/; 6.0:5/g, PMF.!5/Df12.0:5/; 15.0:5/g.
The figures in parenthesis represent the probability that an item takes a certain

weight. The other problem parameters are c D 30, p D 2 and � D 0:6.

As discussed, the problem has a single decision stage. This means that every
decision has to be taken in a proactive way, before any of the random variables is
observed. Therefore, the optimal solution can be expressed as a simple assignment
for the decision variables Xi , 8i 2 1; : : : ; k. More specifically, the optimal solution
for Example 1 proactively selects items f1; 4; 5g and achieves an expected profit of
45:75. Such a solution can be validated using a scenario tree, as shown in Fig. 2. This
tree considers every possible future realization for the random variables !i , 8i 2
1; : : : ; k. Since every random variable in the problem takes each of the possible
values in its domain with uniform probability, all the paths in the scenario tree are
likely to be equal. Therefore, it is easy to compute the expected profit of such an
assignment and the expected additional capacity required. By plugging these values

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 231

ω

ω

ω

ω

ω
ω

ω

ω

ω

ω

ω
ω

ω
ω

ω

ω
ω
ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

Fig. 2 Scenario tree representing the solution of the single-stage SKP in Example 1

into the objective function, the profit associated with this solution can be easily
obtained (i.e., 46 � 2 	 0:125 D 45:75). Finally, it can be easily verified that the
chance-constraint in the model is also satisfied by this solution. In fact, a shortage is
observed only in 4 out of 32 scenarios; therefore, the chance constraint is satisfied,
in this solution, with probability 0:875 � � D 0:6.

The problem discussed in the former paragraphs only comprises a single decision
stage. However, in general, stochastic programs may comprise multiple decision
stages, that is a sequence of decisions and observations. In order to clarify this, we
slightly modify the SKP presented above in such a way as to allow for multiple
decision stages. Therefore, we introduce the multi-stage SKP.

232 B. Hnich et al.

2.2 Multi-Stage Stochastic Knapsack

The single-stage problem description and assumptions are valid here with the excep-
tion that the items are considered sequentially, starting from item 1 up to item k. In
other words, first we take the decision of whether inserting or not a given object into
the knapsack, then we immediately observe its weight, which is a random variable,
before any further item is taken into account.

A stochastic programming model for the multi-stage SKP is shown in Fig. 3. The
model is similar to the one presented in Fig. 1, but the structure of the objective
function is different. In this new model, expectation (E!i

) and maxXi
operators are

nested and parameterized each by, respectively, the random variable !i over which
the expectation is computed and the decision variable Xi that should be assigned in
order to maximize the objective function value. This means, in practice, that an ob-
ject may be selected or not, depending on the realized weights for previous objects.
The stage structure is also different, because now the problem comprises multiple
decision stages that alternate decisions and observations according to the arrival
sequence of the objects.

We refer, once more, to the Example 1 presented above. The numerical data intro-
duced there can be used to obtain an instance of the multi-stage SKP. As discussed,
the problem now has multiple decision stages. This means that decisions are taken
in a dynamic way, and they are alternated with observations for random variables.
Therefore, the optimal solution is now expressed by using a solution tree. A solu-
tion tree encodes full information on how to act at a certain decision stage, when
some random variables have been already observed. More specifically, the optimal
solution tree for the instance of the multi-stage SKP defined by the data in Example
1 achieves an expected profit of 47:75 and it is shown in Fig. 4. To clarify: at the root
node, no uncertainty has been unfolded. The optimal solution tree in Fig. 4 shows

Objective:
maxX1fr1X1 C E!1fmaxX2 r2X2 C E!2f: : : fmaxXk�1 rk�1Xk�1C

E!k fmaxXk rkXk C pŒ
Pk

iD1 !i Xi � c�Cgg : : :ggg
Subject to:

Pr
nPk

iD1 !i Xi � c
o
� �

Decision variables:
Xi 2 f0; 1g 8i 2 1; : : : ; k

Random variables:
!i ! item i weight 8i 2 1; : : : ; k

Stage structure:
Vi D fXi g 8i 2 1; : : : ; k

Si D f!ig 8i 2 1; : : : ; k

L D ŒhV1; S1i; hV2; S2i; : : : ; hVk; Ski�

Fig. 3 Stochastic programming formulation for the multi-stage SKP

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 233

ω

ω

ω

ω

ω

ω

ω
ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

ω
ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

ω

Fig. 4 Solution tree for the multi-stage SKP in Example 1

that it is always optimal to take item 1 in the knapsack. Nevertheless, depending
on the observed value for the weight of item 1, two alternative decisions may be
optimal: not taking item 2 if the observed weight for item 1 is 10; or taking item
2 if the observed weight for item 1 is 8. To reiterate, since every random variable
in the problem takes each of the possible values in its domain with uniform prob-
ability, all the paths in the solution tree are likely to be equal. Therefore, it is easy
to compute the expected profit of such an assignment and the expected additional
capacity required. By plugging these values into the objective function, the profit
associated with this solution can be easily obtained. Finally, it can be also easily

234 B. Hnich et al.

verified that the chance-constraint in the model is also satisfied by this solution.
In fact, a shortage is observed only in 12 out of 32 scenarios, therefore the chance
constraint is satisfied, in this solution, with probability 0:625 � � D 0:6.

In this section, we discussed the SKP; in Sect. 3, we provide a further list of
problems from the literature discussing hybrid approaches to decision making under
uncertainty.

3 A Collection of Stochastic Problems

In this section, we provide a list of nine other problems of decision making under
uncertainty for which hybrid approaches have been proposed in the literature. This
list is comprehensive in the sense that it contains representative problems for each
hybrid CP-AI-OR approach for decision making under uncertainty surveyed in this
work.
The problems are:

� Stochastic queueing control problem [8, 74, 75]
� Scheduling Conditional Task Graphs [40]
� Stochastic reservation [5]
� Job shop scheduling (JSP) with probabilistic durations [3]
� Two-stage stochastic matching problem [33]
� Production/inventory management [78]
� Stochastic template design [52, 71]
� Scheduling internal audit activities [60]
� Stochastic sequencing with release times and deadlines [57]

For each of these problems, we provide a textual description. The reader may refer
to the respective works where these problems were first introduced to obtain a more
detailed description. In Sect. 5, we discuss and classify the hybrid solution methods
proposed for modeling and solving these problems.

3.1 Stochastic Queueing Control Problem

In a facility with front room and back room operations, the aim is to switch work-
ers between the rooms in order to cope with changing customer demand. Customer
arrival and service time are stochastic and the decision maker seeks a policy for
switching workers such that the expected customer waiting time is minimized, while
the staff in the back room remains sufficient to perform all work. The problem
was originally proposed and analyzed in [8]. Terekhov and Beck investigated it in
[74, 75].

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 235

3.2 Scheduling Conditional Task Graphs

This is the problem, discussed in [40], of scheduling conditional task graphs in the
presence of unary and cumulative resources, minimizing the expected makespan.
Conditional task graphs are directed acyclic graphs containing activities linked by
precedence relations. Some of the activities represent branches. At run time, only
one of the successors of a branch is chosen for execution, depending on the occur-
rence of a condition labeling the corresponding arc. Since the truth or the falsity
of those conditions is not known a priori, the problem is stochastic. Therefore,
all the possible future scenarios must be taken into account while constructing the
schedule.

3.3 Stochastic Reservation

This problem, introduced in [5], is a particular application of the stochastic multi-
knapsack problem. A travel agency may aim at optimizing the reservation of holiday
centers during a specific week with various groups in the presence of stochastic
demands and cancellations. The requests are coming according a given probability
distribution and they are characterized by the size of the group and the price the
group is willing to pay. The requests cannot specify the holiday center. However,
the travel agency, if it accepts a request, must inform the group of its destination and
must commit to it. Groups can also cancel the requests at no cost. Finally, the agency
may overbook the centers, in which case the additional load is accommodated in
hotels at a fixed cost.

3.4 Job Shop Scheduling with Probabilistic Duration

This problem was originally proposed in [3]. The problem is a classic Job Shop
Scheduling (JSP) (see [23], p. 242) in which the objective is to find the minimum
makespan. In contrast to the classic formulation for the JSP presented in [23] the
authors assume, in this case, that the job durations are probabilistic. The objective is
therefore accordingly modified to account for uncertainty: the authors search for a
proactive plan, consisting of a partial order among activities and of resource-activity
allocations, which attains the lowest possible makespan with probability greater or
equal to a given threshold.

3.5 Two-Stage Stochastic Matching Problem

We consider the minimum cost maximum bipartite matching problem discussed
in [33]. The task is to buy edges of a bipartite graph which together contain

236 B. Hnich et al.

a maximum-cardinality matching in the graph. The problem is formulated as a
two-stage stochastic program with recourse, therefore edges can be bought either
during the first stage, or with a recourse action after uncertainty has been resolved.
There are two possible variants of this problem. In the first, the uncertainty is in the
second stage edge-costs, that is, the cost of an edge can either increase or decrease
in the second stage. In the second variant, all edges become more expensive in the
second stage, but the set of nodes that must be matched is unknown. This prob-
lem can model real-life stochastic integral planning problems such as commodity
trading, reservation systems, and scheduling under uncertainty.

3.6 Production/Inventory Management

Uncertainty plays a major role in production and inventory management. In this
simplified production/inventory planning example, there are a single product, a
single stocking point, production capacity constraints, service level constraints,
and a stochastic demand. The objective is to find a replenishment plan associated
with the minimum expected total cost. The cost components taken into account
are inventory holding costs and fixed replenishment (or setup) costs. The optimal
plan gives the timing of the replenishments as well as the order quantities, which
depend upon the previously realized demand. This production/inventory manage-
ment problem has been investigated in [71, 78]. In [69], the authors investigate the
same problems under the assumption that the production capacity constraints are
relaxed.

3.7 Stochastic Template Design

The deterministic template design problem (prob002 in CSPLib2) is described as
follows. We are given a set of variations of a design, with a common shape and
size and such that the number of required pressings of each variation is known. The
problem is to design a set of templates, with a common capacity to which each
must be filled, by assigning one or more instances of a variation to each template.
A design should be chosen that minimizes the total number of runs of the tem-
plates required to satisfy the number of pressings required for each variation. As an
example, the variations might be for cartons for different flavors of cat food, such
as fish or chicken, where ten thousand fish cartons and twenty thousand chicken
cartons must be printed. The problem would then be to design a set of templates by
assigning a number of fish and/or chicken designs to each template such that a min-
imal number of runs of the templates is required to print all thirty thousand cartons.

2 http://www.csplib.org

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 237

Proll and Smith [55] address this problem by fixing the number of templates and
minimizing the total number of pressings. In the stochastic version of the problem
[52], the demand for each variation is uncertain. In compliance with produc-
tion/inventory theory, the authors incorporate two conventional cost components:
scrap cost, incurred for each template that is produced in excess of the realized
demand, and shortage cost, incurred for each unit of demand not fulfilled. The ob-
jective is then to minimize the expected total cost.

3.8 Scheduling Internal Audit Activities

Based on costs and benefits that change over time, the focus of the internal audit
scheduling problem is how often to conduct an internal audit on an auditable unit.
Auditable units are the units upon which internal control procedures are applied
in order to safeguard assets and assure the reliability of information flows. The
problem, originally introduced in [60], can be stated as follows. We consider a
planning horizon comprising of N time periods. We are given a set of M audit
units over which random losses may accrue over time. Losses in each period are as-
sumed to have a known PMF that could easily be estimated from available historical
data. The distribution of losses may vary from period to period, that is, it is non-
stationary. Losses at different periods are assumed to be independent. Auditing is a
time-consuming task, and the auditing team is given a strict deadline for performing
an audit. Specifically, an audit must be completed in T time periods. Therefore after
T periods, the accrued losses drop to zero. If a team has already started auditing a
unit at a given time period, then no other audit can be initiated during this period for
the given audit team. The timing of audits are fixed once and for all at the beginning
of the planning horizon and cannot be changed thereafter, even if it is suspected
that certain auditable units have accrued unexpected losses. The objective is to find
the optimal audit schedule while respecting the maximum loss criteria. That is, the
invariant audit cost (i.e., fixed audit costs incurred each time an audit is conducted)
and expected total discounted audit losses (i.e., cumulative losses accrued at the end
of each period) are minimized by satisfying a minimum probability ˛ that the losses
will not exceed a predetermined level (allowed maximum loss) in any given audit
period for any auditable unit.

3.9 Stochastic Sequencing with Release Times and Deadlines

The problem, introduced in [57], consists in finding an optimal schedule to process
a set of orders using a set of parallel machines. The objective is to minimize the
expected total tardiness of the plan. Processing an order can only begin after its
release date and should be completed at the latest by a given due date for such an
order. An order can be processed on any of the machines. The processing time of a

238 B. Hnich et al.

given order, when processed on a certain machine, is a random variable. A solution
for this problem consists in an assignment for the jobs on the machines and in a
total order between jobs on the same machine. A job will be processed on its re-
lease date if no other previous job is still processing, or as soon as the previous job
terminates.

4 Frameworks for Decision Making Under Uncertainty
in CP and AI

In Sect. 2, we introduced SP, a well established OR framework for decision making
under uncertainty. In this section, we introduce other existing frameworks for de-
cision making under uncertainty from AI and CP. Stochastic Boolean Satisfiability
extends a well established AI modeling framework, Propositional Satisfiability, by
considering uncertainty. Probabilistic CSP, Event-Driven Probabilistic Constraint
Programming, and Stochastic Constraint Programming set the scene for dealing
with uncertainty in CP. Where appropriate, we describe connections and similari-
ties among these different frameworks.

4.1 Stochastic Boolean Satisfiability

The Boolean Satisfiability (SAT) community have investigated problems involv-
ing uncertainty, with the Stochastic Satisfiability (SSAT) framework. SSAT aims to
combine features of logic and probability theory and has been applied to probabilis-
tic planning, belief networks, and trust management. We base our discussion on a
recent survey [43].

4.1.1 Definitions

The SAT problem is to determine whether a Boolean expression has a satisfying la-
beling (set of truth assignments). The problems are usually expressed in conjunctive
normal form (CNF): a conjunction of clauses c1 ^ : : : ^ cm where each clause c is
a disjunction of literals l1 _ : : : _ ln and each literal l is either a Boolean variable v
or its negation Nv. A Boolean variable can be labeled true (T) or false (F). Many con-
straint problems can be SAT-encoded (modeled as a SAT problem) and vice-versa.
In fact any SAT problem can be viewed as a Constraint Satisfaction Problem (CSP)
with binary domains and non-binary constraints via the non-binary encoding [77]:
for example, a clause a_b_ Nc corresponds to the constraint (or conflict) preventing
the assignments fa F; b F; c T g. The SSAT terminology is somewhat
different than that of SP but there are many correspondences.

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 239

An SSAT problem ˚ D Q1v1 : : : Qnvn is specified by:

� A prefix ˚ D Q1v1 : : : Qnvn that orders the Boolean variables v1 : : : vn of the
problem and quantifies them. Each variable vi is quantified by its quantifier Qi

either as existential (9) or randomized (

R

)
� A matrix : a Boolean formula containing the variables, usually in CNF

An existential variable is a standard SAT variable (corresponding to a decision vari-
able in SP), while a randomized variable vi is a Boolean variable that is true with
associated probability �i (corresponding to a random variable in SP). Sequences
of similarly quantified variables may be grouped together into (existential or ran-
domized) blocks, and an SP stage corresponds to an existential block followed by
a randomized block. The values of existential variables may be contingent on the
values of (existential or randomized) variables earlier in the prefix, so an SSAT so-
lution takes the form of an assignment tree (corresponding to the solution tree in SP)
specifying an assignment to each existential variable for each possible instantiation
of the randomised variables preceding it in the prefix. An optimal assignment tree is
one that yields the maximum probability of satisfaction; alternatively, the decision
version of SSAT asks whether the probability of satisfaction exceeds a threshold � .

SSAT is simpler than a Stochastic Program in three ways: the variable domains
are Boolean only (as in SAT), the constraints (clauses) are of a fixed type (as in
SAT), and no distinction is made between scenarios in which different clauses are
violated. The latter means that SSAT is akin to a stochastic program with a single
chance-constraint.

4.1.2 Restrictions and Generalizations

Some special cases have been identified in the literature: if all variables are random-
ized then we have a MAJSAT problem; if the prefix has only an existential block
followed by a randomized block, then we have an E-MAJSAT problem; and if each
block contains a single variable, then we have an Alternating SSAT (ASSAT) prob-
lem. SSAT has also been extended by the addition of universal quantifiers (8) to give
Extended SSAT (XSSAT). A formula 8v must be true for both v D T and v D F .
XSSAT subsumes Quantified Boolean Formulae (QBF), which is the archetypal
PSPACE-complete problem: QBF is XSSAT without randomized quantifiers.

4.2 Probabilistic Constraint Satisfaction Problems

The Probabilistic CSP framework, proposed in [19], is an extension of the CSP
framework [1] that deals with some decision problems under uncertainty. This ex-
tension relies on a differentiation between the agent-controllable decision variables
and the uncontrollable parameters whose values depend on the occurrence of uncer-
tain events. The uncertainty on the values of the parameters is assumed to be given
under the form of a probability distribution.

240 B. Hnich et al.

4.2.1 Definitions

A probabilistic CSP is a CSP equipped with a partition between (controllable)
decision variables and (uncontrollable) parameters, and a probability distribution
over the possible values of the parameters. More specifically, the authors define a
Probabilistic CSP as a 6-tuple P D h�; W; X; D; C; pri, where � D f�1; : : : ; �pg
is a set of parameters; W DW1 � 	 	 	 �Wp, where Wi is the domain of �i ; X D
fx1; : : : ; xng is a set of decision variables; DDD1 � : : : �Dn, where Di is the
domain of xi ; C is a set of constraints, each of them involving at least one deci-
sion variable; and pr W W ! Œ0; 1� is a probability distribution over the parameter
assignments. Constraints are defined as in classical CSP. A complete assignment of
the parameters (i.e., of the decision variables) is called a “world” (i.e., a “decision”).

The authors consider successively two assumptions concerning the agents aware-
ness of the parameter values at the time the decision must imperatively be made.

� “No more knowledge”: the agent will never learn anything new before the dead-
line for making a decision; all it will ever know is already encoded by the
probability distribution.

� “Complete knowledge”: the actual parameters will be completely revealed before
the deadline is reached (possibly, just before), so that it useful to the agent to
compute off-line a ready-to-use conditional decision, that the agent will be able
to instantiate on-line, as soon as it knows what the actual parameters are.

For the first case, a solution is an unconditional decision that is most likely to be
feasible according to world probabilities. For the second case, a solution provides a
set of decisions with their conditions of applicability – i.e., under which world(s) a
given decision should be used – together with the likelihood of occurrence of these
conditions, which also follows from world probabilities.

4.3 Event-Driven Probabilistic Constraint Programming

In Event-driven Probabilistic Constraint Programming (EDP-CP), which is an ex-
tension of the Probabilistic CSP framework, some of the constraints can be desig-
nated by the user as event constraints. The user’s objective is to maximize his/her
chances of realizing these “events”. In each world – as defined in the Probabilis-
tic CSP framework – events are subject to certain pre-requisite constraints and to
certain conditions. If a pre-requisite is unsatisfied in a given world, then the event
is also classed as unsatisfied in that world; and if a condition is unsatisfied in a
world, then the event is classed as satisfied in that scenario. Intuitively, this means
that in EDP-CP it is possible to express the fact that the feasibility of certain event
constraints may depend on the satisfaction of other constraints (denoted as “prereq-
uisite constraints”) under certain “conditions”. In order to model such situations, a
new meta-constraint – the dependency meta-constraint – is introduced.

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 241

4.3.1 Definitions

An EDP-CP is a 9-tuple P = hX ;D;�;W; E ; C;H; �; Pri where:

� X = fx1; : : : ; xng is a set of decision variables.
� D = D1 � : : : �Dn, where Di is the domain of Xi .
� � D f�1; : : : ; �lg is a set of uncertain parameters.
� WD W1 � : : : �Wl , where Wi the domain of �i .
� E = fe1; : : : ; emg is a set of event constraints. Each ei may either be probabilistic

(involving a subset of X and a subset of �) or deterministic (involving only a
subset of X).

� C = fc1; : : : ; cog is a set of dependency meta-constraints. For each dependency
meta-constraint ci W DEPENDENCY.e; p; f / we have e 2E , where p may be
either a probabilistic or a deterministic prerequisite constraint, and f is a deter-
ministic condition constraint.

� H D f〈∞; : : : ; hpg is a set of hard constraints. Each hi may either be probabilistic
(involving a subset of X and a subset of �) or deterministic (involving only a
subset of X).

� � is any expression involving the event realization measures on the event con-
straints in E .

� Pr WW ! Œ0; 1� is a probability distribution over uncertain parameters.

An optimal solution to an EDP-CP P = hX ;D;�;W; E ; C;H; �; Pri is any as-
signment S to the decision variables such that:

1. The hard constraints are satisfied in each possible world.
2. There exists no other assignment satisfying all the hard constraints with a strictly

better value for � , according to the DEPENDENCY constraints introduced in the
model.

4.3.2 Relations to Other Frameworks

The Event-driven Probabilistic Constraint Programming (EDP-CP) framework,
proposed in [67], extends both the Probabilistic CSP framework [19] and the
Dependent-chance Programming framework [38]. In contrast to probabilistic CSP,
which treats all probabilistic constraints uniformly, EDP-CP distinguishes between
event, prerequisite, condition, and hard constraints. Furthermore, in Dependent-
chance Programming a feasible solution satisfies all event constraints, while in
EDP-CP such a requirement is relaxed. This gives the decision-maker more flex-
ibility in modeling. Finally, the notion of constraint dependency introduced in
[67] comprises condition constraints, in addition to the event and prerequisite con-
straints. As the authors remark, constraint dependency without condition constraints
does not guarantee optimal plans since in certain instances common variables may
take values which break the link between two dependent constraints.

242 B. Hnich et al.

4.4 Stochastic Constraint Programming

Stochastic Constraint Programming (SCP) was first introduced in [78] in order
to model combinatorial decision problems involving uncertainty and probability.
According to Walsh, SCP combines together the best features of CP (i.e., global
constraints, search heuristics, filtering strategies, etc.), of SP (expressiveness in rep-
resenting problems involving random variables), and of Stochastic Satisfiability.

4.4.1 Definitions

An m-stage Stochastic Constraint Satisfaction Problem (SCSP) is defined, accord-
ing to [78], as a 7-tuple hV; S; D; P; C; �; Li3, where V is a set of decision variables
and S is a set of random variables, D is a function mapping each element of V and
each element of S to a domain of potential values. In what follows, we assume
that both decision and random variable domains are finite. P is a function mapping
each element of S to a probability distribution for its associated domain. C is a set
of chance-constraints over a non-empty subset of decision variables and a subset
of random variables. � is a function mapping each chance-constraint h 2 C to �h

which is a threshold value in the interval .0; 1�, indicating the minimum satisfaction
probability for chance-constraint h. Note that a chance-constraint with a threshold
of 1 (or without any explicit threshold specified) is equivalent to a hard constraint.
L D ŒhV1; S1i; : : : ; hVi ; Sii; : : : ; hVm; Smi� is a list of decision stages such that each
Vi � V , each Si � S , the Vi form a partition of V , and the Si form a partition of S .

To solve an m-stage SCSP an assignment to the variables in V1 must be found
such that, given random values for S1, assignments can be found for V2 such that,
given random values for S2, : : :, assignments can be found for Vm so that, given
random values for Sm, the hard constraints are satisfied and the chance constraints
are satisfied in the specified fraction of all possible scenarios. The solution of an
m-stage SCSP is represented by means of a policy tree. A policy tree is a set of
decisions where each path represents a different possible scenario and the values
assigned to decision variables in this scenario. The policy tree, in fact, corresponds
to the solution tree adopted in SP.

Let S denote the space of policy trees representing all the solutions of a SCSP.
We may be interested in finding a feasible solution, i.e., a policy tree s 2 S, that
maximizes the value of a given objective function f .	/ over a set bS � S of random
variables (edges of the policy tree) and over a set bV � V of the decision variables
(nodes in the policy tree). A stochastic constraint optimization problem (SCOP) is
then defined in general as maxs2S f .s/.

3 The original formulation, proposed in [78], does not directly encode the stage structure in the
tuple and actually defines a SCSP as a 6-tuple; consequently the stage structure is given separately.
We believe that a more adequate formulation is the one proposed in [30], that explicitly encodes
the stage structure as a part of the tuple, giving a 7-tuple.

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 243

Fig. 5 Stochastic Constraint
Programming formulation
for the single-stage SKP

Objective:

max

	Pk
iD1 ri Xi � pE

hPk
iD1 !i Xi � c

iC

hV; S; D; P; C; �; Li:
V D fX1; : : : ; Xkg
S D f!1; : : : ; !kg
D D fX1; : : : ; Xk 2 f0; 1g; D.!1/; : : : ; D.!k/g
P D fPDF.!1/; : : : ; PDF.!k/g
C D

n
Pr
nPk

iD1 !i Xi � c
o
� �

o
L D ŒhfX1; : : : ; Xkg; f!1; : : : ; !kgi�

Unlike SP, SCP offers a richer modeling language which supports chance-
constraints over global, nonlinear, and logical constraints in addition to linear ones.

It is easy to reformulate the running example discussed in Sect. 2 (SKP) as a
single-stage SCOP, the respective model is given in Fig. 5. As in the SP model, in
the SCP model, we have sets of decision and random variables with their respec-
tive domains. For the random variables, the respective PMF is specified. There is a
chance-constraint with an associated threshold � . In fact, the SCOP in Fig. 5 fully
captures the structure of the stochastic program in Fig. 1.

5 A Classification of Existing Approaches

In previous sections, we stressed the fact that this survey is centered on “un-
certainty,” and we also clarified the precise meaning we associate with the term
uncertainty. Other literature surveys tend to merge uncertainty with other concepts;
in Sect. 9, we will briefly discuss related works in these different areas, and the
reader may refer to these surveys for more details. Furthermore, there exist surveys
that are more explicitly focused on pure AI [10] or OR [62] techniques, but little
attention has been dedicated so far to hybrid techniques.

In this section, we propose a classification for existing hybrid approaches and
frameworks that blend CP, AI, and OR for decision making under uncertainty. The
integration of CP, AI, and OR techniques for decision making under uncertainty is
a relatively young research area. We propose to classify existing approaches in the
literature within three main classes (Fig. 6).

� The first class comprises those approaches that perform some form of “stochastic
reasoning” by using dedicated – general or special purpose – search procedures,
filtering algorithms, neural networks, genetic algorithms, etc.

� The second class, in contrast, includes approaches that exploit reformulation –
once again employing either a specialized analytical derivation for a given prob-
lem or general purpose techniques – in order to produce a deterministic model
that can be solved using existing solvers.

244 B. Hnich et al.

Fig. 6 A classification of hybrid approaches in CP-AI-OR for decision making under uncertainty

� Finally, the third class comprises incomplete approaches that exploit sampling in
order to attain a near-optimal solution for problems of optimization under uncer-
tainty. We believe that approaches based on sampling are particularly attractive
and deserve a dedicated class. In fact, a high level of complexity is a typical trait
of decision problems involving uncertainty, therefore it seems that the only fea-
sible way of tackling many of these problems consists in developing effective
approximation strategies.

Before discussing further this classification, it is worth mentioning that we believe
it would be impractical to list all existing applications of hybrid methods from CP,
AI, and OR in decision making under uncertainty. For this reason, we aim rather to
classify the different strategies – and not the specific applications – adopted in the
literature for solving this class of problems using hybrid approaches. Nevertheless,
for each strategy mentioned in this section, we will report some of the respective
applications.

In Sect. 6, we will discuss approaches performing “stochastic reasoning”; in
Sect. 7, we will discuss approaches that exploit reformulation; and finally in Sect. 8,
we will discuss incomplete approaches that exploit sampling.

6 Approaches Based on Stochastic Reasoning

In this section, we will analyze existing approaches that perform some sort of
“stochastic reasoning” by using dedicated – general or special purpose – tech-
niques. These techniques take several different forms: search procedures, filtering
algorithms, neural networks, genetic algorithms, etc.

First, we shall distinguish between general purpose and problem specific strate-
gies (Fig. 7).

General purpose strategies aim to develop frameworks that provide modeling and
solving facilities to handle generic problems of decision making under uncertainty.
The modeling frameworks proposed in the literature typically aggregate concepts
from different domains, for instance global constraints from CP, chance-constraints

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 245

Fig. 7 A classification of hybrid approaches in CP-AI-OR for decision making under uncertainty:
approaches based on stochastic reasoning

and random variables from SP (OR). These frameworks exploit well established
AI strategies, such as forward checking procedures and genetic algorithms in the
solution process.

Problem specific strategies typically develop specialized reasoning algorithms
that, during the search, are able to perform inference by exploiting the specific struc-
ture of the problem. For instance, a typical approach is to encapsulate the reasoning
within a dedicated global constraint that prunes decision variable domains according
to the underlying stochastic reasoning.

In addition, both general purpose and problem specific strategies may be com-
plete or heuristic. We shall now discuss in more detail these two different classes
of approaches based on stochastic reasoning by providing pointers to works in the
literature.

6.1 General Purpose Strategies

We survey four different general purpose strategies for modeling and solving
different classes of problems of decision making under uncertainty. These are Prob-
abilistic CSP, Stochastic CP, Evolving Parameterized Policies, and Stochastic SAT.

246 B. Hnich et al.

6.1.1 Probabilistic CSP

One of the first general purpose frameworks for modeling uncertainty in CP is the
Probabilistic CSP [19]. In the Probabilistic CSP, a distinction is made between con-
trollable and uncontrollable variables which correspond, respectively, to decision
and random variables in SP. As in SP, a PDF is associated with each uncontrol-
lable variable. The authors discuss two different settings. Under the first of these
settings, for each of the possible realizations that may be observed for the uncon-
trollable variables, the best decision is determined. This strategy corresponds to the
wait-and-see policy in SP ([32], p. 8) and it presents a posterior analysis. The sec-
ond setting simply corresponds to a conventional single stage stochastic program
where an optimal decision has to be taken before observing the realized values for
the uncontrollable variables. The optimal decision, in this second case, is the one
that guarantees the maximum likelihood to result feasible with respect to the given
PDFs for the uncontrollable variables.

The authors propose two algorithms for solving Probabilistic CSPs. The first
algorithm, used for solving problems formulated under the first setting discussed,
borrows ideas from solution methods developed in for solving Dynamic CSPs [18]
and, in particular, reuses a procedure proposed in [21]. The second proposed algo-
rithm consists of a depth first branch and bound algorithm and of a forward checking
procedure. These are employed to solve problems formulated under the second set-
ting discussed.

6.1.2 Stochastic Constraint Programming

The Probabilistic CSP represents the first attempt to include random variables, and
thus uncertainty, within the CP framework. Nevertheless, only in [78] a clear link
is established between CP and SP with the introduction of SCP. We have already
discussed in detail SCP as a modeling framework in Sect. 4.4. In [78], Walsh dis-
cusses the complexity of Stochastic CSPs, and proposes a number of complete
algorithms and of approximation procedures for solving them. Namely, a backtrack-
ing algorithm and a forward checking procedure are proposed, which resemble those
proposed in [19] for Probabilistic CSPs. Nevertheless, we want to underscore the
fact that the key difference between a Probabilistic CSP and a Stochastic CSP is
that the former does not handle multiple decision stages.

In [2] Balafoutis et al. build on the SCP framework introduced in [78], they cor-
rect a flaw in the original forward checking procedure for Stochastic CSPs and they
also extend this procedure in order to better take advantage of probabilities and thus
to achieve stronger pruning. In addition, arc-consistency is defined for Stochastic
CSPs and an arc-consistency algorithm able to handle constraint of any arity is in-
troduced. Tests are carried on random binary Stochastic CSPs formulated as single
and multi-stage problems.

In [13], Bordeaux and Samulowitz investigate two extensions to the original
SCP framework. First, they investigate situations in which variables are not ordered

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 247

sequentially, corresponding to situations in which the future can follow different
branches; they show that minor modifications allow the framework to deal with
nonsequential forms. Second, they investigate how to extend the framework in such
a way as to incorporate multi-objective decision making. An algorithm is proposed,
which solves multi-objective stochastic constraint programs in polynomial space.

Global chance-constraints – which we discussed in Sect. 4.4 – were introduced
first in [58], and they bring together the reasoning power of global constraints from
CP and the expressive power of chance-constraints from SP. A general purpose ap-
proach for filtering global chance-constraints is proposed in [30]. This approach is
able to reuse existing propagators available for the respective deterministic global
constraint which corresponds to a given global chance-constraint when all the ran-
dom variables are replaced by constant parameters. In addition, in [57], Rossi et al.
discuss some possible strategies to perform cost-based filtering for certain classes of
Stochastic COPs. These strategies exploit well-known inequalities borrowed from
SP and used to compute valid bounds for any given Stochastic COP that respects
some mild assumptions. Examples are given for a simplified version of the SKP pre-
viously discussed and for the stochastic sequencing problem discussed in Sect. 3.9.

6.1.3 Evolved Parameterized Policies

Inspired by the success of machine learning methods for stochastic and adversarial
problems, a recent approach to Stochastic CSPs/COPs called Evolved Parame-
terised Policies (EPP) is described in [53]. Instead of representing a policy explicitly
in a Stochastic Constraint Program, an attempt is made to find a rule that decides, at
each decision stage, which domain value to assign to the decision variable(s) at that
stage. The quality of a rule can be determined by constructing the corresponding
policy tree and observing the satisfaction probability of each chance constraint (and
the value of the objective function if there is one). Evolutionary or other nonsystem-
atic search algorithms can be used to explore the space of rules.

EPP treats a Stochastic CSP/COP problem as an unconstrained noisy optimiza-
tion problem with at worst the same number of (real-valued) variables. This allows
a drastic compression of the policy tree into a small set of numbers, and this com-
pression together with the use of evolutionary search makes EPP scalable to large
multi-stage Stochastic CSPs/COPs. It has the drawback that only policies of a
relatively simple form can be discovered, but it results much more robust than a
scenario-based approach on a set of random multi-stage problems [53]. Moreover,
arbitrarily complex rules could be discovered by using artificial neural networks
instead of these simple functions, a neuroevolutionary approach that has been suc-
cessfully applied to many problems in control [24, 29, 64].

6.1.4 Stochastic SAT

Another general purpose framework for modeling and solving a well established
class of problems under uncertainty in AI – and especially in planning under

248 B. Hnich et al.

uncertainty – is Stochastic SAT. We introduced the modeling framework in Sect. 4.1.
Current SSAT algorithms fall into three classes: systematic, approximation, and
non-systematic.

The systematic algorithms are based on the standard SAT backtracking algo-
rithm – the Davis–Putnam–Logemann–Loveland (DPLL) algorithm [16, 17] – and
correspond roughly to some current SCSP algorithms. The first such algorithms
were described in [36], in particular, the evalssat algorithm for XSSAT which
formed the basis for future systematic SSAT algorithms. evalssat did not use
branching heuristics as in current SAT and CSP solvers, though [36] also used some
restricted branching heuristics, but assigned variables in the order specified by the
prefix. However, it did use SAT-based techniques (unit propagation and pure vari-
able elimination) and reasoning on the probability threshold � to prune the search
tree. The policy-based SCSP algorithm of [78] is essentially evalssat with for-
ward checking. Systematic algorithms have also been devised for special cases of
XSSAT. MAXPLAN [45], ZANDER [46] and DC-SSAT [44] use special techniques
for planning problems modelled as XSSAT problems.

The sampleevalssat approximation algorithm uses random sampling to
select paths, then uses SAT techniques to search the restricted tree to maximize � .
The APPSSAT algorithm [42] considers scenarios in decreasing order of probabil-
ity to construct a partial tree for the special case of planning problems modeled as
SSAT problems.

The randevalssat algorithm [36] is based on the sampleevalssat al-
gorithm mentioned above, but applies stochastic local search to the existential
variables in a random set of scenarios, thus it is non-systematic. Other ways
of applying local search were described in [41], including periodically restart-
ing randevalssat with different sampled scenarios, an approach used by the
WALKSSAT algorithm [79].

6.2 Problem Specific Strategies

In the previous section, we discussed general purpose solution methods that bring
together CP, AI, and OR techniques for decision making under uncertainty. We will
now discuss some special purpose approaches proposed in the literature that perform
stochastic reasoning on specific problems.

6.2.1 Scheduling Conditional Task Graphs

The work of [40] describes a complete, special purpose approach that concerns
the problem – discussed in Sect. 3.2 – of scheduling conditional task graphs. Sim-
ilarly to the approach in [56], the authors propose an analytical formulation of the
stochastic objective function, in this case based on the task graph analysis, and a
conditional constraint able to handle such a formulation efficiently. The authors

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 249

show the benefit of such an approach by comparing the results with a determinis-
tic model, which disregards uncertainty, and with a scenario-based formulation [71]
that requires an exponential number of scenarios to fully represent the stochastic
objective function.

6.2.2 Computing Optimal R,S Policy Parameters Under Service
Level Constraints

Another special purpose strategy is presented in [58], and proposes a dedicated
global chance-constraint for computing replenishment cycle inventory policy pa-
rameters under service level constraints. More specifically, the problem considered
in this work is the production/inventory problem described in Sect. 3.6. Computing
optimal replenishment cycle policy parameters for such a problem is a complex task
[69]. By using a dedicated global chance-constraint, the authors were able to per-
form the complex stochastic reasoning required to compute optimal replenishment
cycle policy parameters. Such a complete algorithm performs a numerical integra-
tion step in order to compute the real service level provided in each period by a
given set of policy parameters and the associated expected total cost.

6.2.3 Computing Optimal R,S Policy Parameters Under a Penalty
Cost Scheme

Similarly, a dedicated global constraint has been proposed in [56] in order to solve to
optimality the problem of computing optimal replenishment cycle policy parameters
under a penalty cost scheme. Such a problem has been investigated in [70], but in
this work, the authors could only solve the problem in a heuristic way, by employing
a piecewise linear approximation of the convex cost function in the problem in order
to build up a deterministic equivalent MIP model. In [56], the authors were able to
embed a closed-form non-linear analytical expression for such a convex cost func-
tion within a global constraint, thus obtaining a complete model able to compute
optimal replenishment cycle policy parameters.

6.2.4 Cost-based Filtering for Stochastic Inventory Control

The work in [68] has a different flavor. In this case, the underlying model is the de-
terministic equivalent CP formulation proposed in [73] for computing near-optimal
replenishment cycle policy parameters under service level constraints. The CP for-
mulation was originally proposed as a reformulation of the MIP model in [69]. Such
a reformulation showed significant benefits in terms of efficiency. The authors, in
[68], propose three independent cost-based filtering strategies that perform stochas-
tic reasoning and that are able to significantly speed up the search when applied to
the original CP model in [73].

250 B. Hnich et al.

6.2.5 Evolutionary Search for Replenishment Cycle Policies

A recent application of a genetic algorithm to a multi-stage optimization problem
in inventory control is described in [51]. Each chromosome represents a replenish-
ment cycle policy plan as a list of order-up-to levels, with a level of 0 representing
no order, and the fitness of a chromosome is averaged over a large number of sce-
narios. This approach is enhanced in [50] by hybridizing the genetic algorithm with
the SARSA temporal difference learning algorithm [61]. This is shown to greatly
improve the performance of genetic search for replenishment cycle policies, both
with and without order capacity constraints.

6.2.6 Neuroevolutionary Inventory Control

One may evolve an artificial neural network to optimally control an agent in an un-
certain environment. The network inputs represent the environment and its outputs
the actions to be taken. This combination of evolutionary search and neural net-
works is called neuroevolution. A recent paper [54] applies neuroevolution to find
optimal or near-optimal plans in inventory control, following no special policy. The
problems are multi-stage and involve multi-echelon systems (they have more than
one stocking point). Such problems have no known optimal policy and rapidly be-
come too large for exact solution. The inputs to the network are the current stock
levels and the outputs are the order quantities.

7 Reformulation-Based Approaches

In this section, we will analyze existing approaches that are based on a reformulation
that produces a deterministic model, which can be solved using an existing solver.

Once more, we shall distinguish between general purpose and problem specific
strategies (Fig. 8).

Hybrid general purpose reformulation strategies have recently appeared espe-
cially at the borderline between CP and OR. These typically take the form of a high
level language – such as Stochastic OPL – used to formulate the problem under un-
certainty, and of a general purpose compiler that can handle the high level stochastic
model and produce a compiled deterministic equivalent one. Often, the compilation
relies on a well known technique in SP: scenario-based modeling. In addition, due
to the complexity of stochastic programs in general, approximation strategies are
often proposed in concert with these general purpose frameworks in order to make
the size of the compiled model manageable.

In contrast, problem specific strategies aim to fully exploit the structure of the
problem in order to produce a deterministic – and possibly equivalent – model
that can be handled efficiently by existing solver. In many cases, in order to ob-
tain a model that is manageable by existing solvers, it is necessary to introduce

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 251

Fig. 8 A classification of hybrid approaches in CP-AI-OR for decision making under uncertainty:
approaches based on a deterministic reformulation

some assumptions that affect the completeness and, thus, the quality of the solu-
tion found in the deterministic model. We will provide examples of applications in
which a special purpose deterministic equivalent model is built, which is equivalent
to the original model and also examples in which the deterministic model can only
approximate the original stochastic model.

7.1 General Purpose Strategies

We survey two different general purpose strategies based on reformulation for
modeling and solving classes of problems of decision making under uncertainty.
These are Scenario-based Stochastic CP and Event-Driven Probabilistic Constraint
Programming.

7.1.1 Scenario-Based Stochastic Constraint Programming

The first general purpose framework based on reformulation that we present is
Scenario-based Stochastic Constraint Programming, which was proposed by Tarim
et al. in [71]. The novelty in this work is the fact that the authors adopt a se-
mantics for stochastic constraint programs based on scenario trees. By using this
semantics, the authors can compile stochastic constraint programs into conventional
(non-stochastic) constraint programs and they can therefore use existing constraint
solvers to effectively solve this class of problems.

252 B. Hnich et al.

In a scenario based approach – frequently used in SP [11] – a scenario tree is
generated which incorporates all possible realizations of discrete random variables
into the model explicitly. A path from the root to an extremity of the event tree
represents a scenario. With each scenario, a given probability is associated. Within
each scenario, we have a conventional (non-stochastic) constraint program to solve.
All we need to do is to replace the random variables by the values taken in the
scenario, and ensure that the values found for the decision variables are consistent
across scenarios, as certain decision variables are shared across scenarios. Con-
straints are defined (as in traditional constraint satisfaction) by relations of allowed
tuples of values, and can be implemented with specialized and efficient algorithms
for consistency checking. Furthermore, the scenario-based view of stochastic con-
straint programs also allows later-stage random variables to take values which are
conditioned by the earlier-stage random variables. This is a direct consequence of
employing the scenario representation, in which random variables are replaced with
their scenario dependent values.

Scenario-based SCP has been outlined in Sect. 4.4. Tarim et al. [71] not only de-
fined a general way to compile stochastic constraint programs into conventional
constraint programs, but they also proposed a language, Stochastic OPL, which
is based on the OPL constraint modeling language [28]. Using this language,
the authors modeled optimization problems under uncertainty from a variety of
fields, such as portfolio selection, agricultural planning, and production/inventory
management (Sect. 3.6). We will not discuss the language in detail, but in the
Appendix, we show how to model the single and multi-stage SKP problems of
Sect. 2 by using the Stochastic OPL.

Among the benefits of the scenario based approach in [71] is the fact that it al-
lows multiple chance-constraints and a range of different objectives to be modeled.
The authors point out that each of these changes would require substantial mod-
ifications in the backtracking and forward checking algorithms proposed in [78].
The scenario based view allows each of these extensions to be modeled easily using
stochastic OPL, compiled down into standard OPL, and solved by means of existing
solvers. It should be noted that the approach is general and the compilation need not
necessarily be performed using OPL, but it can be implemented using any available
CP language and/or software package. The main drawback of this approach is the
fact that the scenario tree required to model a given problem grows exponentially in
size when random variable domains are large, thus leading to large models that are
difficult to solve.

In addition to this general purpose modeling/solving framework the authors also
proposed some techniques to improve the efficiency of the solution process. In or-
der to do so, they proposed scenario reduction techniques, such as Monte Carlo
Sampling or Latin Hypercube Sampling [65], to reduce the number of scenarios
considered in the model. Their experimental results show the effectiveness of this
approach, which in practice is able to find high quality solutions using a small num-
ber of scenarios. Finally, inspired by robust optimization techniques used in OR
[35], the authors also proposed some techniques to generate robust solutions, that
is, solutions that adopt similar (or the same) decisions under different scenarios.

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 253

7.1.2 Event-Driven Probabilistic Constraint Programming

We now briefly discuss a second general purpose framework based on reformu-
lation: Event-Driven Probabilistic Constraint Programming [67]. This framework
was introduced to address different problems than those for which SCP is a suitable
modeling tool. Event-Driven Probabilistic Constraint Programming, as the name
suggest, is connected to Probabilistic CSPs and, mainly, to Dependent-chance Pro-
gramming [37, 38].

Sometimes, a complex probabilistic decision system undertakes multiple tasks,
called events here, and the decision-maker wishes to maximize chance functions
which are defined as the probabilities of satisfying these events. This is especially
useful in situations where a particular measure of the “reliability” or “robustness”
of a given plan has to be maximized. The Event-Driven Probabilistic Constraint
Programming modeling framework allows users to designate certain probabilistic
constraints, involving both decision and random variables, as events whose chance
of satisfaction must be maximized, subject to hard constraints which should be
always satisfied, and also logical dependencies among constraints. Event-Driven
Probabilistic Constraint Programming builds on Dependent-chance Programming
and provides more expressiveness to the user, in order to capture a more realis-
tic and accurate measure of plan reliability [59]. It also provides an exact solution
method, employing scenario-based reformulation, in contrast to the approximate
genetic algorithm in [38].

7.2 Problem Specific Strategies

We now discuss some problem specific strategies based on deterministic equivalent
reformulations.

7.2.1 Stochastic Queueing Control Problem

In [74,75], the authors propose a set of deterministic equivalent CP models for solv-
ing the stochastic queueing control problem discussed in Sect. 3.1. [75] not only
provides the first application of CP to solve a stochastic queueing control problem
but it also provides a complete approach for a problem for which only a heuristic al-
gorithm [8] existed. Three deterministic equivalent constraint programming models
and a shaving procedure are proposed. The complete models provide satisfactory
performances when compared with the heuristic procedure, which nevertheless re-
mains superior in terms of solution quality over time. A hybrid method is therefore
proposed, which combines the heuristic in [8] with the best constraint programming
method. Such a hybrid approach performs better than either of these approaches
separately.

254 B. Hnich et al.

The interesting aspect of this work is that, as in [60], all the stochastic informa-
tion is encoded as constraints and expected values, and there is no need of random
variables or scenarios. The three models proposed explore different sets of variables
and different configurations for the constraint set, for instance using duality. Nev-
ertheless, all the three models use predefined constraints available in standard CP
solvers.

7.2.2 A Stochastic Allocation and Scheduling Problem

The problem, discussed in [39], is the scheduling problem described in Sect. 3.2
applied to multiprocessor systems on chip: given a conditional task graph char-
acterizing a target application and a target architecture, with alternative memory
and computation resources, the authors compute an allocation and schedule that
minimize the expected value of communication costs, since – as they point out –
communication resources are one of the major bottlenecks in modern multiproces-
sor systems on chips. The approach they propose is complete and efficient. As in the
previous cases, it is based on a deterministic equivalent reformulation of the orig-
inal stochastic integer linear programming model. More specifically, the authors
employ logic-based Benders’ decomposition. The stochastic allocation problem
is solved through an Integer Programming solver, while the scheduling problem
with conditional activities is handled with CP. The two solvers interact through no-
goods. Once more, one of the main contributions is the derivation of an analytical
deterministic expression employed in order to compute the expected value of com-
munication costs in the objective function. This expression makes it possible for
the authors to transform the original stochastic allocation problem into a determin-
istic equivalent one that can be solved using any available Integer Programming
solver.

7.2.3 Scheduling Internal Audit Units

In [60], the authors analyze the problem of scheduling internal audit units discussed
in Sect. 3.8. A stochastic programming formulation is proposed with Mixed Integer
Linear Programming and CP certainty-equivalent models. Both the models trans-
form analytically the chance-constraints in the model into deterministic equivalent
ones. In experiments, neither approach dominates the other. However, the CP ap-
proach is orders of magnitude faster for large audit times, and almost as fast as the
MILP approach for small audit times.

Finally, we discuss works in which the deterministic model obtained through re-
formulation for a given stochastic program is not “equivalent”; rather, it is based
on some simplifying assumption, which makes it possible to obtain a compact de-
terministic formulation able to provide a near-optimal solution and an approximate
value for the cost of such a solution, or a bound for such a cost.

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 255

7.2.4 Job Shop Scheduling with Probabilistic Durations

In [3], an approximate deterministic reformulation is employed to compute valid
bounds to perform cost-based filtering. In this work, the authors analyze the JSP
problem discussed in Sect. 3.4, in which the objective is to find the minimum
makespan. In contrast to the classic formulation presented in [23], in [3] the authors
assume that the job durations are probabilistic. The objective is therefore accord-
ingly modified to account for uncertainty. More specifically, the authors search for a
proactive plan, consisting of a partial order among activities and of resource-activity
allocations, which attains the lowest possible makespan with probability greater or
equal to a given threshold. For this problem, the authors propose a deterministic
formulation, which depends on a given nonnegative parameter q. A correct choice
of such a parameter guarantees that the minimum makespan for the deterministic
model is a lower bound for the minimum makespan that can be attained with a cer-
tain threshold probability in the original model. This deterministic model can be
efficiently solved with classic constraint programming techniques and can provide
tight bounds at each node of the search tree that are employed to perform cost-based
filtering. A number of heuristic techniques are proposed for correctly choosing a
“good” value for the parameter q.

7.2.5 Production/Inventory Control Problem

Consider the production/inventory problem discussed in Sect. 3.6. The determinis-
tic reformulation proposed in Tarim et al. [73] relies on some mild assumptions –
discussed in [69] – concerning order-quantities. Under these assumptions, it was
possible for the authors to obtain analytical deterministic expressions for enforc-
ing the required service level in each period of the planning horizon, and to compute
the expected total cost associated with a given set of policy parameters. By using
these expressions, it was possible for the authors to formulate a deterministic model
by employing standard constraints available in any CP solver. In [58], the authors
compare the solutions obtained through a complete formulation with those obtained
with the model in [73]. This comparison shows that the assumptions do not sig-
nificantly compromise optimality, whereas they allow the construction of a model
that can significantly outperform the complete one and solve real-world instances
comprising long planning horizons and high demand values.

7.2.6 Local Search for Stochastic Template Design

In [52], the stochastic template design problem discussed in Sect. 3.7 is reformulated
as a deterministic equivalent constrained optimization problem, using all possi-
ble scenarios and a novel modeling technique to eliminate non-linear constraints.
The result is a standard integer linear program that proved to be hard to solve by

256 B. Hnich et al.

branch-and-bound. However, a local search algorithm design for linear integer
programs performed very well, and was more scalable than the Bender’s decom-
position algorithm in [72].

8 Approaches Based on Sampling

In this section, we will discuss sample-based approximation strategies for solving
problems of decision making under uncertainty. Due to the complexity of these
problems in general, several works in the literature have been devoted to analyzing
the effectiveness of heuristic approaches based on sampling. In Fig. 9, it is possible
to observe how three main trends have been identified in the CP and AI literature,
which apply sampling in a hybrid setting for solving problems of decision making
under uncertainty: the Sample Average Approximation approach (SAA), Forward
Sampling, and Sample Aggregation.

� In OR, and particularly in SP, the state-of-the-art technique that applies sampling
in combinatorial optimization is the Sample Average Approximation approach
[34]. In this approach, a given number of samples is drawn from the random
variable distributions, and the combinatorial problem of interest is repeatedly
solved by considering different samples as input in each run. The real expected

Fig. 9 A classification of hybrid approaches in CP-AI-OR for decision making under uncertainty:
approaches based on sampling

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 257

cost/profit of a solution produced for a given sample is then computed by
simulating a sufficient number of samples. Among all the solutions computed,
the one that provides the minimum expected cost (or the maximum expected
profit) is retained. Two criteria are given by the authors: one for deciding when a
given sample size is no more likely to produce better solutions, and another for
deciding if the increasing sample size may lead to better solutions.

� Forward sampling, as the name suggests, is a sort of forward checking that em-
ploys samples in order to make inference about which values are not consistent
in decision variable domains or about the expected cost/profit of associated with
a given (partial) assignment for decision variables, which is assessed against the
generated samples by computing, for instance, the expected profit/cost of such
an assignment with respect to these samples.

� Sample aggregation is a strategy in which a number of samples are generated, for
each of these samples a deterministic problem is solved, then the results obtained
for all these samples are aggregated and analyzed according to some rule. The
“best” among these decisions is implemented in practice. For instance, a possible
rule may always choose the decision that is optimal for the highest number of
samples.

In the CP and AI literature, sampling is often applied in concert with a so called
“online” optimization strategy. Online refers to the fact that decisions and obser-
vations are interleaved in the problem, and each time an observation occurs an
optimization step takes place to compute the next decision, by taking into account
the PDF of future random variables and the observed values for the past ones. It is
easy to notice that a multi-stage stochastic program subsumes an online strategy if
the decision maker has a complete knowledge of the PDF of the random variables in
the problem. In this case, we may compute the entire solution tree at the beginning,
and use it in order to find the best following decision each time a random variable
is observed. Nevertheless, several reasons justify the use of an online strategy (also
called a “rolling horizon” approach in the OR literature and especially in Inventory
Control). The most compelling reason for using an online approach is that it does
not require the decision maker to have a complete knowledge of the PDFs of the
random variables. Consider, for instance, the SKP introduced in the previous sec-
tions. If the problem is formulated as a multi-stage stochastic program and we have
a full knowledge about the possible weights that can be observed for all the objects,
the policy tree will prescribe exactly what to do in each possible future course of
action. Nevertheless, if at some stage one of the objects takes a weight that is not
part of the PDF we considered for such an object, the policy tree will not be able
to prescribe an appropriate action. In contrast, an online approach would simply
take into consideration this weight in the following optimization step and it would,
however, provide a valid decision to be implemented next.

Stochastic problems solved using online strategies, and to which either forward
sampling or sample aggregation strategies are applied, appear in a number of works
within the CP and AI literatures. In what follow, we shall classify some of these
works on the basis of which sampling technique is applied.

258 B. Hnich et al.

8.1 Sample Average Approximation

In this section, we provide a pointer to a work that proposes to apply SAA to a
modified version of a classic matching problem: the two-stage stochastic matching
problem.

8.1.1 Two-stage Stochastic Matching Problem

In [33], Katriel et al. consider the two-stage stochastic matching problem discussed
in Sect. 3.5. The authors prove lower bounds and analyze efficient strategies. We
do not provide here a general survey for this work, as the reader may refer to the
cited article for more details. Instead, we focus on one of the authors’ contributions
in which they firstly observe that, in this problem, with independently activated
vertices the number of scenarios is extremely large. However, in such a situation,
there is often a black box sampling procedure that provides, in polynomial time, an
unbiased sample of scenarios; then they observe that one can use the SAA method
to simulate the explicit scenarios case and, under some mild assumptions, obtain a
tight approximation guarantee. The main observation is that the value of the solution
defined by taking a polynomial number of samples of scenarios tightly approximates
the value of the solution defined by taking all possible scenarios.

8.2 Forward Sampling

In this section, we survey two relevant works in which forward sampling is applied:
the multi-choice stochastic knapsack with deadlines and the JSP with probabilistic
durations.

8.2.1 Multi-Choice Stochastic Knapsack with Deadlines

In [5], the authors analyze different techniques for performing online stochastic op-
timization. A benchmark problem is proposed in order to assess all these different
techniques. The benchmark is stemmed from the authors’ industrial experience and
it consist of a Multi-Choice Stochastic Knapsack with Deadlines. This problem cor-
responds, in practice, to the stochastic reservation problem discussed in Sect. 3.3
and it is used to test four different online strategies exploiting combinations of
the stochastic and combinatorial aspects of the problem. These strategies are for-
ward sampling, average values, most likely scenario analysis, and yield management
techniques.

Initially, the authors propose two naive order handling policies: a first-come/
first-serve policy and a best-fit policy. Furthermore, in order to assess the quality

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 259

of a given policy, the authors also discuss “far seeing” strategies, which assume
advanced knowledge of the realized demand and can therefore solve the associated
deterministic multi-choice knapsack problem.4

One of the strategies used in this work to estimate the quality of a given policy –
for instance first-come/first-serve or best-fit – employs forward sampling in order
to generate samples from the current date to the end of the planning horizon. The
evaluation of a sample can be done, for instance, by simulating the behavior of a
best-fit strategy for the specific sample. The policy evaluation then will be a measure
(for instance the average) over the evaluations of many generated samples.

8.2.2 Job Shop Scheduling with Probabilistic Durations

Forward sampling is also employed in [3]. We recall that in this work the authors
analyze the JSP problem discussed in Sect. 3.4, in which the authors assume that
the job durations are probabilistic. A number of algorithms are proposed for solving
this problem through sampling. First, a branch-and-bound procedure is introduced,
which exploits at each node of the search tree a Monte Carlo simulation approach
to compute – with respect to the partial assignment associated with such a node –
a valid lower bound for the minimum possible makespan that may be attained with
a probability greater or equal to the given threshold. Since sampling is employed
for computing the bound, confidence interval analysis is employed to estimate if the
attainment probability associated with the given makespan is a sufficiently reliable
estimate. Second, the authors propose a number of heuristic techniques that aim
to limit the amount of time spent on Monte Carlo simulation during the search by
using the deterministic makespan as an oracle for selecting and simulating only
the most promising plans in order to save CPU time and to dedicate more time to
the exploration of the search space rather than on simulating non-promising plans.
Finally, dedicated tabu search strategies are proposed in order to introduce a valid
alternative to the constructive search techniques above, which are mainly based on
tree-search.

8.3 Sample Aggregation

In this section, we discuss works in which two alternative sample aggregation strate-
gies are employed: the “Consensus” strategy and the “Regret” strategy. The problem
to which these strategies are applied is, once more, the multi-choice stochastic knap-
sack with deadlines.

4 We recall that in SP this corresponds to using a wait-and-see policy and performing a posterior
analysis.

260 B. Hnich et al.

8.3.1 Multi-Choice Stochastic Knapsack with Deadlines

In [27], the authors consider the same Online Multi-Choice Knapsack with Dead-
lines problem considered in [5]. In order to solve this problem, the authors employ
the following online algorithm. The algorithm receives a sequence of online requests
and starts with an empty allocation. At each decision point, the algorithm considers
the current allocation and the current request, and chooses a bin in which to allo-
cate the request, which is then included in the current assignment. Eventually, the
algorithm returns the final allocation and the respective value. In order to decide in
which bin to allocate a given request, the algorithm employs a function “chooseAl-
location” which is based on two black boxes: a function “getSample” that returns
a sample of the arrival distribution; and a function “optSol” that, given the current
assignment and a request, returns an optimal allocation of the request by taking
into account the past decisions. The authors then consider four possible options for
implementing “chooseAllocation”:

� The best-fit strategy discussed in [5].
� A strategy called “Expectation” – in practice performing a forward sampling —

that generates future requests by sampling and that evaluates each possible
allocation for a given request (i.e., in which bin to fit such a request) against
the samples.

� A strategy called “Consensus”, which was introduced in [47], and whose key
idea is to solve each sample only once. More specifically, instead of evaluating
each possible bin at a given time point with respect to each sample, “con-
sensus” executes the optimization algorithm only once per sample. The bin to
which the request is eventually allocated by this optimization step is then credited
with the respective profit, while the other bins receive no credit. The algorithm
eventually returns the bin with which the highest profit is associated.

� A strategy called “Regret” [6,7] based on a sub-optimality approximation, which
is a fast estimation of the loss caused by sub-optimal allocations. The key steps
in the process of choosing a bin resemble the “consensus” algorithm. But in “re-
gret,” instead of assigning some credit only to the bin selected by the optimal
solution, the suboptimality approximation is used to compute, for each possi-
ble request allocation, an approximation of the best solution that makes such a
choice. Therefore, every available bin is given an evaluation for every sample at
a given time, at the cost of a single optimization.

Consensus and regret are two examples of what we previously defined as “sample
aggregation” strategies.

9 Related Works

In this section, we will first briefly discuss Stochastic Dynamic Programming, a
related and well established technique in OR that deals with decision making under
uncertainty. We will also clarify why this technique has not been covered in the

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 261

former sections. Second, we will cast our work within a broader picture, and contrast
our survey with existing similar works that address the topics of uncertainty and
change.

9.1 Stochastic Dynamic Programming

An alternative and effective technique for modeling problems of decision making
under uncertainty is Dynamic Programming. In [4], Bellman explicitly states that
Dynamic Programming was initially conceived for modeling multi-stage decision
processes. He also argues that these processes arise in practice in a multitude of di-
verse field and in many real life problems, for instance in stock control, scheduling
of patients through a medical clinic, servicing of aircraft at an airfield, etc. Dynamic
Programming has been applied to a multitude of deterministic multi-stage decision
problems, but in [4], Bellman also discussed its application to stochastic multi-stage
decision processes. As in the deterministic case, in the stochastic case, the modeling
also relies mainly on the development of adequate functional equations capturing
the dynamics of the system, and the expected cost (or profit) function associated
with the possible decisions and affected by the random variables in the problem.
The multi-stage decision process, in Dynamic Programming, is typically defined
recursively, starting from a bounding condition that describes a degenerate state of
the system that can be easily characterized. Depending on the specific nature of
the process being analyzed (Markovian, Semi-Markovian, etc. – see [25], Chapter
“Constraint Programming and Local Search Hybrids”), it is possible to exploit its
structure to devise efficient solution methods or closed form solutions for the opti-
mal control policy, which corresponds to the policy tree that constitutes a solution
of a given Stochastic Program.

In this work, we mainly focused on the connections between and integration of
SP, CP, and AI. So far Dynamic Programming has not played a role as significant
as SP in the development of hybrids approaches for decision making under un-
certainty. For this reason, Stochastic Dynamic Programming, and its extension to
infinite horizon case Markov Decision Processes are not thoroughly covered here.
For more details on Stochastic Dynamic Programming the reader may refer to the
seminal work of Bellman [4], and to the works of Bertsekas [9], Warren [49], Sutton
and Barto [66], and Gosavi [25].

9.2 Related Modeling Frameworks

Recently, the topic of decision making under uncertain and dynamic environment
has been discussed in two literature surveys [14,76]. Nevertheless, these two works
discuss a variety of different problems that can hardly be classified within a unique
group. For instance, consider a problem whose structure changes dynamically over
time. As an example, we may refer to the Dynamic Constraint Network discussed
in [18], in which, from time to time, new facts that become known about the model

262 B. Hnich et al.

induce a change in the constraint network. We find that such a problem has almost
nothing in common with a problem where some parameters are random – thus may
assume a certain value with a given probability – and a decision has to be taken
proactively, before the realized values for these parameters are known. As an ex-
ample for this second class, we may consider the proactive JSP problem discussed
in [3], in which an optimal plan – that achieves a minimum makespan with a certain
probability – has to be determined before the actual job durations are known. Also
consider, as in [22], a CSP in which we allow some of the constraints to be violated
by a solution, and in which we search for a solution that tries to satisfy the original
constraint problem as much as possible; or, alternatively, consider a CSP, as in [26],
in which some of the values in the decision variable domains may suddenly become
unavailable after a solution has been computed and for which we are looking for
robust solutions that can be “repaired” with little effort. These two latter examples,
again, significantly differ from the previous ones and among each others.

A clear and comprehensive classification of all these different problems and
frameworks is still missing. For this reason, in this section, we propose a classi-
fication in three distinct classes, and we try to position in each of these classes some
of the frameworks proposed in the literature.

In our classification (Fig. 10), there are three criteria based on which a particular
framework is classified: Degree of Change, Degree of Satisfiability, and Degree of
Uncertainty.

� With respect to the Degree of Change, “static” refers to a classic, static CSP,
while “dynamic” refers to the fact that the model is assumed to change dynami-
cally, since constraints are added/removed. The solution has to be flexible enough
to be adapted to these changes without too many modifications and with lim-
ited computational effort. Existing frameworks that, with respect to the Degree

Fig. 10 A classification for existing frameworks based on problem structure

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 263

of Change, are classified as “dynamic” are Dynamic Constraint Satisfaction
(Dechter [18]); Conditional CSP (Minton et al. [48]); and Super-solutions in CP
(Hebrard et al. [26]).

� With respect to the Degree of Satisfiability “crisp” refers to a classic CSP in
which all the constraints have to be satisfied by a given solution, while “soft”
refers to the fact that some of the constraints in the model may be violated by
a solution. The aim is to find a solution that typically violates the minimum
number of constraints or that, in general, minimizes some violation measure.
Existing frameworks that, with respect to the Degree of Satisfiability, are clas-
sified as “soft” are Partial Constraint Satisfaction (Freuder [20]); Constraint
solving over semi-rings (Bistarelli et al. [12]); and Valued Constraint Satisfaction
(Schiex et al. [63]).

� With respect to the Degree of Uncertainty, “deterministic” refers to classic CSPs,
while “stochastic” refers to the existence of uncontrollable (random) variables
in the model for which a probability distribution is given. Stochastic problems
present an alternation of decisions and observations. Constraints are assigned a
satisfaction threshold that must be met by any given solution.

Some of the frameworks presented in the literature do, in fact, cover more than one
of the classes presented, and for this reason, the circles are intersecting each others.
Clearly, this classification does not cover several other frameworks that in the years
have been proposed to deal with other problem classes.

We have introduced pointers to relevant frameworks that can be either classified
under Degree of Change (“dynamic”) or Degree of Satisfiability (“soft”). Problems
that are classified as “stochastic” with respect to their Degree of Uncertainty have
been widely surveyed in the former part of this work. We argue that such a classi-
fication better positions the existing works with respect to aspects that are, in fact,
orthogonal among each others.

10 Conclusions

In this survey, we focused on hybrid CP-AI-OR methods for decision making under
uncertainty. First, we explicitly defined what “uncertainty” is and how it is possi-
ble to model by using SP, a well established existing modeling framework in OR.
We surveyed additional existing frameworks – one from AI and one from CP –
for modeling problems of decision making under uncertainty and we also identified
the relevant connections among these frameworks. Second, we introduced a list of
problems from the literature in which uncertainty plays a role and we categorized
existing hybrid techniques that have been proposed for tackling these problems into
three classes. In the first class, we identified general and special purpose approaches
that perform “stochastic reasoning”. In the second class, we listed approaches, once
more general and special purpose, that use reformulation. In the third class, we
categorized approximate techniques based on a variety of strategies employing sam-
pling. Finally, we pointed out connections with other related works.

264 B. Hnich et al.

Appendix

In [71] Stochastic OPL, a language for modeling stochastic constraint programs, is
proposed. We will now show how the single and multi-stage SKP problems intro-
duced in Sect. 2 can be easily modeled using such a language.

In Fig. 11, the Stochastic OPL model for the single stage SKP is presented.
As in the model presented in Fig. 1, the objective function maximizes the revenue
brought by the objects in the knapsack minus the expected penalty for exceeding
capacity. Chance-constraint prob(sum(i in Items) W[i]*x[i] <= c)
>= � ensures that the capacity is not exceeded with a probability higher than � .

We now refer to the numerical Example 1 for SKP. In Fig. 12, the Stochastic
OPL data file corresponding the numerical instance in Example 1 is presented.
We recall that the strategy proposed in [71] employs a scenario-based formula-
tion. In fact, it is easy to see that, given the random variables in the example
and the values in their domains, there are a total of 32 scenarios that should
be considered. Each row for variable W in Fig. 12 has, in fact, 32 entries (i.e.
[<10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8>]). There are in total 5 rows, each having 32
entries, so a column – containing all the entries at the same position in each row –
therefore, fully encodes one of the possible 32 scenarios. The probability of each
of the 32 scenarios is provided using the array myrand. By using the compilation
strategy proposed in [71], any model and data file written using Stochastic OPL
can be easily compiled into a classic (deterministic) constraint program and solved
by using classic solvers. The optimal solution for Example 1 – computed using

int k = ...;
int p = ...;
int c = ...;
float � = ...;
range Items 1..k;
range onestage 1..1;
stoch myrand[onestage]=...;
float W[Items,onestage]ˆmyrand = ...;
float r[Items] = ...;
dvar float+ z;
dvar int x[Items] in 0..1;

maximize sum(i in Items) x[i]*r[i] - expected(p*z)
subject tof

z >= sum(i in Items) W[i]*x[i] - c;
prob(sum(i in Items) W[i]*x[i] <= c) >= �;

g;

Fig. 11 Stochastic OPL formulation for the single-stage SKP

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 265

k = 5;

p = 2;

c = 30;

� = 0.6;

W = [

[<10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,8,8,8,

8,8,8,8,8,8,8,8,8,8,8,8,8>],

[<9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,9,9,9,9,9,9,

9,9,12,12,12,12,12,12,12,12>],

[<8,8,8,8,13,13,13,13,8,8,8,8,13,13,

13,13,8,8,8,8,13,13,13,13,8,8,8,8,13,13,13,13>],

[<4,4,6,6,4,4,6,6,4,4,6,6,4,4,6,6,4,4,

6,6,4,4,6,6,4,4,6,6,4,4,6,6>],

[<12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,

12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15>]

];

myrand = [

<0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125)>

];

r = [16,16,16,5,25];

Fig. 12 Stochastic OPL Data File for the single-stage SKP

the compiled OPL code obtained from the Stochastic OPL model and data file
presented – selects items f1; 4; 5g and achieves an expected profit of 45:75, as
shown in Fig. 2.

The SKP can be also formulated as a multi-stage stochastic constraint program
as shown in Fig. 3. In Fig. 13, the Stochastic OPL model for the multi-stage SKP is
presented. The model is similar to the one presented in Fig. 11. Nevertheless, now,
the weight of each object is observed at a different decision stage. Therefore, we
have an array of k random variables (stoch W[Items]) in contrast to the pre-
vious model that only had one random variable (myrand) to model the probability
distribution of the possible scenarios. In Fig. 14, the data file corresponding to the
numerical instance in Example 1 is presented. The optimal solution for Example
1, when the problem is formulated as a multi-stage Stochastic COP, can be com-
puted using the compiled OPL code obtained from the Stochastic OPL model in
Fig. 13 and from the data file presented in Fig. 14. This solution takes the form
of a policy tree – graphically rendered in Fig. 4 – and achieves an expected profit
of 47:75.

266 B. Hnich et al.

int k = ...;
int p = ...;
int c = ...;
float � = ...;
range Items 1..k;
stoch W[Items]=...;
float r[Items] = ...;
dvar float+ z;
dvar int x[Items] in 0..1;

maximize expected(sum(i in Items) x[i]*r[i]) - p*expected(z)
subject tof

z >= sum(i in Items) W[i]*x[i] - c;
prob(sum(i in Items) W[i]*x[i] <= c) >= �;

g;

Fig. 13 Stochastic OPL formulation for the multi-stage SKP

Fig. 14 Stochastic OPL Data
File for the multi-stage SKP k = 5;

p = 2;
c = 30;
� = 0.6;
W = [

<10(0.5),8(0.5)>,
<9(0.5),12(0.5)>,
<8(0.5),13(0.5)>,
<4(0.5),6(0.5)>,
<12(0.5),15(0.5)>

];
r = [16,16,16,5,25];

Acknowledgements S. Armagan Tarim and Brahim Hnich are supported by the Scientific and
Technological Research Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027.
S. Armagan Tarim is supported also by Hacettepe University BAB.

R. Rossi has received funding from the European Community’s Seventh Framework Pro-
gramme (FP7) under grant agreement no 244994 (project VEG-i-TRADE). S.A. Tarim and Brahim
Hnich are supported by the Scientific and Technological Research Council of Turkey (TUBITAK)
under SOBAG-1001. S.A. Tarim is supported by Hacettepe University-BAB.

References

1. Apt K (2003) Principles of constraint programming. Cambridge University Press, Cambridge
2. Balafoutis T, Stergiou K (2006) Algorithms for stochastic csps. In: Benhamou F (ed) Principles

and practice of constraint programming, CP 2006, Proceedings. Lecture notes in computer
science, vol 4204. Springer, Heidelberg, pp 44–58

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 267

3. Beck JC, Wilson N (2007) Proactive algorithms for job shop scheduling with probabilistic
durations. J Artif Intell Res 28:183–232

4. Bellman RE (1957) Dynamic Programming. Princeton University Press, Princeton
5. Benoist T, Bourreau E, Caseau Y, Rottembourg B (2001) Towards stochastic constraint

programming: a study of online multi-choice knapsack with deadlines. In: Walsh T (ed) Princi-
ples and practice of constraint programming, CP 2001, Proceedings. Lecture notes in computer
science, vol 2239. Springer, Heidelberg, pp 61–76

6. Bent R, Van Hentenryck P (2004) Regrets only! online stochastic optimization under time
constraints. In: Proceedings of the nineteenth national conference on artificial intelligence,
sixteenth conference on innovative applications of artificial intelligence, San Jose, California,
25–29 July 2004, pp 501–506

7. Bent R, Katriel I, Van Hentenryck P (2005) Sub-optimality approximations. In: van Beek P (ed)
Principles and practice of constraint programming- CP 2005. 11th International Conference,
Sitges, Spain, 1–5 October 2005. Lecture notes in computer science, vol 3709. Springer,
Heidelberg, pp 122–136

8. Berman O, Wang J, Sapna KP (2005) Optimal management of cross-trained workers in services
with negligible switching costs. Eur J Oper Res 167(2):349–369

9. Bertsekas DP (1995) Dynamic programming and optimal control. Athena Scientific, Belmont
10. Bianchi L, Dorigo M, Gambardella L, Gutjahr W (2009) A survey on metaheuristics for

stochastic combinatorial optimization. Nat Comput 8(2):239–287
11. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer Verlag,

New York
12. Bistarelli S, Montanari U, Rossi F (1995) Constraint solving over semirings. In: Proceedings of

the fourteenth international joint conference on artificial intelligence, IJCAI ’95, pp 624–630
13. Bordeaux L, Samulowitz H (2007) On the stochastic constraint satisfaction framework. In:

SAC ’07: Proceedings of the 2007 ACM symposium on applied computing, New York,
pp 316–320

14. Brown KN, Miguel I (2006) Uncertainty and change. In: Rossi F, van Beek P, Walsh T (eds)
Handbook of constraint programming, chapter 21. Elsevier, Amsterdam

15. Charnes A, Cooper WW (1963) Deterministic equivalents for optimizing and satisficing under
chance constraints. Oper Res 11(1):18–39

16. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Comm
ACM 5(7):394–397

17. Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM
7(3):201–215

18. Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks. In: Proceed-
ings of the 7th national conference on artificial intelligence, AAAI ’88, pp 37–42

19. Fargier H, Lang J, Martin-Clouaire R, Schiex T (1995) A constraint satisfaction framework for
decision under uncertainty. In: UAI ’95: Proceedings of the eleventh annual conference on un-
certainty in artificial intelligence, 18–20 August 1995, Montreal, Quebec, Canada, pp 167–174

20. Freuder EC (1989) Partial constraint satisfaction. In: Proceedings of the eleventh interna-
tional joint conference on artificial intelligence, IJCAI ’89. Morgan Kaufmann, San Francisco,
pp 278–283

21. Freuder EC, Hubbe PD (1995) Extracting constraint satisfaction subproblems. In: Proceedings
of the fourteenth international joint conference on artificial intelligence, IJCAI ’95, Montral,
Qubec, Canada, 20–25 August 1995. Morgan Kaufmann, San Francisco, pp 548–557

22. Freuder EC, Wallace RJ (1992) Partial constraint satisfaction. Artif Intell 58(1–3):21–70
23. Garey MR, Johnson DS (1979) Computer and intractability. a guide to the theory of NP-

completeness. Bell Laboratories, Murray Hill, New Jersey
24. Gomez FJ, Schmidhuber J, Miikkulainen R (2006) Efficient non-linear control through

neuroevolution. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Machine learning: ECML
2006. 17th European conference on machine learning, Berlin, Germany, 18–22 September
2006 Proceedings. Lecture notes in computer science, vol 4212. Springer, Heidelberg,
pp 654–662

268 B. Hnich et al.

25. Gosavi A (2003) Simulation-based optimization: parametric optimization techniques and
reinforcement learning. Kluwer, Norwell

26. Hebrard E, Hnich B, Walsh T (2004) Super solutions in constraint programming. In: Régin J-C,
Rueher M (eds) Integration of AI and OR techniques in constraint programming for combinato-
rial optimization problems. First international conference, CPAIOR 2004, Nice, France, 20–22
April 2004, Proceedings. Lecture notes in computer science, vol 3011. Springer, Heidelberg,
pp 157–172

27. Van Hentenryck P, Bent R, Vergados Y (2006) Online stochastic reservation systems. In: Beck
JC, Smith BM (eds) Integration of AI and OR techniques in constraint programming for combi-
natorial optimization problems. Third international conference, CPAIOR 2006, Cork, Ireland,
31 May–2 June 2006, Proceedings. Lecture notes in computer science, vol 3990. Springer,
Heidelberg, pp 212–227

28. Van Hentenryck P, Michel L, Perron L, Régin J-C Constraint programming in opl. In: Nadathur
G (ed) PPDP’99: Proceedings of the international conference on principles and practice
of declarative programming. Lecture notes in computer science, vol 1702. 29 September–1
October 1999, pp 98–116

29. Hewahi NM (2005) Engineering industry controllers using neuroevolution. AI EDAM
19(1):49–57

30. Hnich B, Rossi R, Tarim SA, Prestwich SD (2009) Synthesizing filtering algorithms for
global chance-constraints. In: Principles and practice of constraint programming, proceedings,
CP 2009, Proceedings. Lecture notes in computer science, vol 5732. Springer, Heidelberg,
pp 439–453

31. Jeffreys H (1961) Theory of probability. Clarendon Press, Oxford, UK
32. Kall P, Wallace SW (1994) Stochastic programming. Wiley, Chichester
33. Katriel I, Kenyon-Mathieu C, Upfal E (2007) Commitment under uncertainty: two-stage

stochastic matching problems. In: Arge L, Cachin C, Jurdzinski T, Tarlecki A (eds) Au-
tomata, languages and programming. 34th international colloquium, ICALP 2007, Wroclaw,
Poland, 9–13 July 2007, Proceedings. Lecture notes in computer science, vol 4596. Springer,
Heidelberg, pp 171–182

34. Kleywegt AJ, Shapiro A, T Homem-De-Mello (2001) The sample average approximation
method for stochastic discrete optimization. SIAM J Optim 12(2):479–502

35. Littman ML, Goldsmith J, Mundhenk M (1998) The computational complexity of probabilistic
planning. J Artif Intell Res 9:1–36

36. Littman ML, Majercik SM, Pitassi T (2001) Stochastic boolean satisfiability. J Automat Reas
27(3):251–296

37. Liu B (1997) Dependent-chance programming: a class of stochastic optimization. Comput
Math Appl 34:89–104

38. Liu B, Iwamura K (1997) Modelling stochastic decision systems using dependent-chance pro-
gramming. Eur J Oper Res 101:193–203

39. Lombardi M, Milano M (2006) Stochastic allocation and scheduling for conditional task graphs
in mpsocs. In: Benhamou F (ed) CP 2006: principles and practice of constraint programming.
12th international conference, CP 2006, Nantes, France, 25–29 September 2006, Proceedings.
Lecture notes in computer science, vol 4204. Springer, Heidelberg, pp 299–313

40. Lombardi M, Milano M (2007) Scheduling conditional task graphs. In: Bessiere C (ed) CP
2007: principles and practice of constraint programming. 13th international conference, CP
2007, Providence, RI, USA, 23–27 September 2007, Proceedings. Lecture notes in computer
science, vol 4741. Springer, Heidelberg, pp 468–482

41. Majercik SM (2000) Planning under uncertainty via stochastic satisfiability. PhD thesis,
Durham, NC, USA. Supervisor-Littman, Michael L

42. Majercik SM (2007) Appssat: approximate probabilistic planning using stochastic satisfiability.
Int J Approx Reason 45(2):402–419

43. Majercik SM (2009) Stochastic boolean satisfiability. In: Frontiers in artificial intelligence and
applications, vol 185, chapter 27. IOS Press, Amsterdam, pp 887–925

A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty 269

44. Majercik SM, Boots B (2005) Dc-ssat: a divide-and-conquer approach to solving stochastic
satisfiability problems efficiently. In: Veloso MM, Kambhampati S (eds) Proceedings of the
twentieth national conference on artificial intelligence and the seventeenth innovative appli-
cations of artificial intelligence conference, 9–13 July 2005, Pittsburgh, Pennsylvania, USA.
AAAI Press/The MIT Press, Cambridge, MA, pp 416–422

45. Majercik SM, Littman ML (1998) Maxplan: a new approach to probabilistic planning. In:
Proceedings of the fourth international conference on artificial intelligence planning systems,
Pittsburgh, Pennsylvania, USA. AAAI Press, pp 86–93

46. Majercik SM, Littman ML (2003) Contingent planning under uncertainty via stochastic satis-
fiability. Artif Intell 147(1–2):119–162

47. Michel L, Van Hentenryck P (2004) Iterative relaxations for iterative flattening in cumulative
scheduling. In: Zilberstein S, Koehler J, Koenig S (eds) ICAPS 2004: proceedings of the
fourteenth international conference on automated planning and scheduling, 3–7 June 2004,
Whistler, British Columbia, Canada. AAAI Press, CA, USA, pp 200–208

48. Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems. Artif Intell 58(1–3):161–205

49. Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality
(Wiley Series in Probability and Statistics). Wiley-Interscience, New York

50. Prestwich SD, Tarim A, Rossi R, Hnich B (2008) A cultural algorithm for pomdps from
stochastic inventory control. In: Blesa MJ, Blum C, Cotta C, Fernández AJ, Gallardo JE, Roli
A, Sampels M (eds) Hybrid metaheuristics. 5th International Workshop, HM 2008, Málaga,
Spain, 8–9 October 2008. Proceedings. Lecture notes in computer science, vol 5296. Springer,
pp 16–28

51. Prestwich SD, Tarim A, Rossi R, Hnich B (2008) A steady-state genetic algorithm with re-
sampling for noisy inventory control. In: Rudolph G, Jansen T, Lucas SM, Poloni C, Beume N
(eds) PPSN X: parallel problem solving from nature. 10th international conference, Dortmund,
Germany, September 13–17, 2008, Proceedings. Lecture notes in computer science, vol 5199.
Springer, pp 559–568

52. Prestwich SD, Tarim SA, Hnich B (2006) Template design under demand uncertainty by inte-
ger linear local search. Int J Prod Res 44(22):4915–4928

53. Prestwich SD, Tarim SA, Rossi R, Hnich B (2009) Evolving parameterised policies for stochas-
tic constraint programming. In: Principles and practice of constraint programming, CP 2009,
Proceedings. Lecture notes in computer science, vol 5732. Springer, pp 684–691

54. Prestwich SD, Tarim SA, Rossi R, Hnich B (2009) Neuroevolutionary inventory control in
multi-echelon systems. In: 1st international conference on algorithmic decision theory, Lecture
notes in computer science, vol 5783. Springer, pp 402–413

55. Proll L, Smith B (1998) Integer linear programming and constraint programming approaches
to a template design problem. INFORMS J Comput 10(3):265–275

56. Rossi R, Tarim SA, Hnich B, Prestwich SD (2007) Replenishment planning for stochastic
inventory systems with shortage cost. In: Van Hentenryck P, Wolsey LA (eds) Integration of
AI and OR techniques in constraint programming for combinatorial optimization problems. 4th
International Conference, CPAIOR 2007, Brussels, Belgium, 23–26 May 2007, Proceedings.
Lecture notes in computer science, vol 4510. Springer Verlag, pp 229–243

57. Rossi R, Tarim SA, Hnich B, Prestwich SD (2008) Cost-based domain filtering for stochastic
constraint programming. In: Stuckey PJ (ed) Principles and practice of constraint program-
ming. 14th international conference, CP 2008, Sydney, Australia, 14–18 September 2008.
Proceedings Lecture notes in computer science, vol 5202. Springer, pp 235–250

58. Rossi R, Tarim SA, Hnich B, Prestwich SD (2008) A global chance-constraint for stochastic
inventory systems under service level constraints. Constraints 13(4):490–517

59. Rossi R, Tarim SA, Hnich B, Prestwich SD, Guran C (2009) A note on liu-iwamura’s
dependent-chance programming. Eur J Oper Res 198(3):983–986

60. Rossi R, Tarim SA, Hnich B, Prestwich SD, Karacaer S (2008) Scheduling internal audit ac-
tivities: a stochastic combinatorial optimization problem. J Comb Optim

61. Rummery GA, Niranjan M (1994) On-line q-learning using connectionist systems. Technical
report, CUED/F-INFENG/TR 166, Cambridge University

270 B. Hnich et al.

62. Sahinidis NV (2004) Optimization under uncertainty: State-of-the-art and opportunities. Com-
put Chem Eng 28:971–983

63. Schiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and
easy problems. In: Proceedings of the fourteenth international joint conference on artificial
intelligence, IJCAI ’95. Morgan Kaufmann, San Francisco, pp 631–639

64. Stanley KO, Miikkulainen R (2002) Evolving neural network through augmenting topologies.
Evol Comput 10(2):99–127

65. Stein ML (1987) Large sample properties of simulation using latin hypercube sampling.
Technometrics 29:143–151

66. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press,
Cambridge

67. Tarim SA, Hnich B, Prestwich SD, Rossi R (2008) Finding reliable solution: event-driven
probabilistic constraint programming. Ann Oper Res 171(1):77–99

68. Tarim SA, Hnich B, Rossi R, Prestwich SD (2009) Cost-based filtering techniques for stochas-
tic inventory control under service level constraints. Constraints 14(2):137–176

69. Tarim SA, Kingsman BG (2004) The stochastic dynamic production/inventory lot-sizing prob-
lem with service-level constraints. Int J Prod Econ 88:105–119

70. Tarim SA, Kingsman BG (2006) Modelling and computing (Rn ,Sn) policies for inventory
systems with non-stationary stochastic demand. Eur J Oper Res 174:581–599

71. Tarim SA, Manandhar S, Walsh T (2006) Stochastic constraint programming: a scenario-based
approach. Constraints 11(1):53–80

72. Tarim SA, Miguel I (2005) A hybrid benders’ decomposition method for solving stochastic
constraint programs with linear recourse. In: Hnich B, Carlsson M, Fages F, Rossi F (eds)
Recent advances in constraints. Joint ERCIM/CoLogNET international workshop on constraint
solving and constraint logic programming, CSCLP 2005, Uppsala, Sweden, June 20–22, 2005,
revised selected and invited papers, Lecture notes in computer science, vol 3978. Springer,
pp 133–148

73. Tarim SA, Smith B (2008) Constraint programming for computing non-stationary (R,S)
inventory policies. Eur J Oper Res 189:1004–1021

74. Terekhov D, Beck JC (2008) A constraint programming approach for solving a queueing con-
trol problem. J Artif Intell Res 32:123–167

75. Terekhov D, Beck JC (2007) Solving a stochastic queueing control problem with constraint
programming. In: Van Hentenryck P, Wolsey LA (eds) Integration of AI and OR techniques
in constraint programming for combinatorial optimization problems. 4th international confer-
ence, CPAIOR 2007, Brussels, Belgium, May 23–26, 2007, Proceedings. Lecture notes in
computer science, vol 4510. Springer, Heidelberg, pp 303–317

76. Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: a
survey. Constraints 10(3):253–281

77. Walsh T (2000) Sat v csp. In: Dechter R (ed) Principles and practice of constraint programming,
CP 2000, Proceedings. Lecture notes in computer science, vol 1894. Springer, Heidelberg,
pp 441–456

78. Walsh T (2002) Stochastic constraint programming. In: van Harmelen F (ed) European confer-
ence on artificial intelligence, ECAI’2002, Proceedings. IOS Press, Amsterdam, pp 111–115

79. Zhuang Y, Majercik SM Walkssat: an approach to solving large stochastic satisfiability prob-
lems with limited time. Technical report

Constraint Programming and Local
Search Hybrids

Paul Shaw

Abstract Constraint programming and local search are two different optimization
paradigms which, over the last two decades or so, have been successfully com-
bined to form hybrid optimization techniques. This chapter describes and compares
a number of these works, with the goal of giving a clear picture of research in this
domain. We close with some open topics for the future.

1 Introduction

This chapter describes ways in which constraint programming (CP) and local search
(LS) can be usefully combined. Researchers have been looking at ways to combine
these two approaches for around 20 years now. As we shall see, these combinations
can take on a variety of guises: diverse examples include using LS in propagation
and pruning rules, using CP to make moves in an LS process, and performing local
moves on the decision path in a search tree. Focacci et al. describe a number of
these in [28].

LS and CP offer two different and contrasting ways of solving combinatorial
optimization problems. LS works on a complete assignment of values to variables
and navigates through the search space by making “moves”: each move is selected
from one available in the “neighborhood” and modifies part of the complete assign-
ment. Roughly speaking, the neighborhood is the set of possible moves available
from an assignment (see [1] for elaboration) – we will not need a more formal
definition here.

CP can be seen as both a modeling and a solving technology. In terms of
modeling, CP provides high-level structural constraints, such as the element con-
straint and all-different, very often resulting in more compact and readable models
than alternative approaches, such as integer programming. In terms of solving, CP

P. Shaw (�)
IBM, 1681 route des Dolines, 06560 Valbonne, France
e-mail: paul.shaw@fr.ibm.com

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 8,
c� Springer Science+Business Media, LLC 2011

271

paul.shaw@fr.ibm.com

272 P. Shaw

builds up a partial solution constructively by heuristically making assignments to
variables (which can later be undone through backtracking). Before each heuristic
assignment, inference rules and algorithms are used to reduce the set of possible
values for variables not yet in the partial solution (constraint propagation).

We examine different ways that CP and LS methods have been used together to
solve combinatorial optimization problems. This chapter does not, however, explore
what might be considered the more “classic” methods of combining complete and
LS techniques which either: (a) Run an LS method to provide a good upper bound
on the objective function, then switch to a complete method for establishing proof,
or, (b) run an LS method on each solution found by a tree-based method, in order to
produce better solutions faster and provide tighter bounds for the complete method,
or, (c) more complex combinations of the above where the two methods are per-
haps run in parallel with communication of solutions and bounds being carried out
throughout the search process. These kinds of methods, although interesting in their
own right, have no character specific to CP and are not mentioned further here.

2 Local Search on CP Models

In this chapter, when we refer to combinations of LS and CP, we are, for the most
part, referring to a combination of searches: a fusion of an inherently LS method
with the classic constructive incremental process of CP. In contrast to this general
theme, this first section describes combinations using only the modeling aspects of
CP in combination with LS methods for finding and improving solutions to these
models.

2.1 Min-Conflicts and Related Algorithms

Min-conflicts is an appealing technique described in [64]. The idea is both sim-
ple and effective, and based on the authors’ observations of the Guarded Discrete
Stochastic (GDS) network [2], a system based on neural networks.

In min-conflicts, and indeed in many of the methods discussed in the chapter,
constraints may be violated during the search process, and that violation is often
measured and treated as an objective function in the classical sense.1 The essential
idea of min-conflicts is to always take a local decision which minimizes the total
number of conflicts. One may consider the number of conflicts for a constraint as
(an approximation of) the number of variables that must change value in order to

1 These techniques (min-conflicts included) are often geared toward the solution of decision prob-
lems, but optimization problems can be solved in the usual manner, through a series of such
decision problems with a tightening upper bound on the objective function.

Constraint Programming and Local Search Hybrids 273

satisfy it. For binary CSPs, the number of constraints violated is typically used. Two
versions of min-conflicts are offered up in [64]: one based on LS (min-conflicts hill
climbing), the other based on a complete tree-search technique. We concentrate only
on the LS version here, but the other is mentioned in Sect. 5.

In min-conflicts, an initial solution to the problem is generated by assigning
values to variables in turn, each instantiation choosing a value for the variable under
investigation which minimizes the number of conflicts with variables that have
already been given values. When this first “greedy” solution has been generated,
min-conflicts enters a local improvement phase which tries to reduce the number of
conflicts to zero by the following process:

while conflicts exist
choose a variable x in conflict
choose a value for x which minimizes conflicts on x

end while

How variables and values are chosen in case of ties (what conflicting variable, which
value which minimizes conflicts), can depend upon implementation, but [64] sug-
gests using random tie-breaking for the value.

To the best of our knowledge, the authors of the min-conflicts heuristic were the
first to clearly communicate on a major reason that LS can work so much better than
constructive search when good solutions are quickly sought. In [64], when speaking
of the GDS network, the authors write:

Our second hypothesis was that the network’s search process uses information about the
current assignment that is not available to a constructive backtracking program.

The point here is that the LS algorithm always has global information available to it
on the quality of the current state of the algorithm: all variables contribute to its eval-
uation and the evaluation of its next move. By contrast, a constructive method has
comparatively little information on which to base its next decision. Methods such
as promise [34], constrainedness [37], and impacts [87] have been put forward for
constructive backtracking algorithms, but their evaluations are essentially statistical
in nature and hold none of the solidity of the conflicts measure.

Min-conflicts worked successfully, comparing so well to the GDS network that
min-conflicts replaced it in the long-term scheduling component of the Hubble
Space Telescope. However, it was realized by the authors and others that min-
conflicts could fall foul of local minima. A simple example: consider the system,
A; B; C 2 0; 1, A C B C C D 1, A ¤ C , B ¤ C . The only solution to this
system is ABC D 001 (goal state). Further assume that the initial solution is 100,
produced by assigning A,B, and C in order, minimizing conflicts on the way. This
initial solution violates only one constraint: B ¤ C , and so has a cost of 1. From
this initial position, to reach the goal, the assignment must pass through one of the
three neighboring assignments of the goal state: namely 101, 011, or 000 (recall that
min-conflicts may only change one variable assignment at a time). Table 1 shows

274 P. Shaw

Table 1 Cost contributions of assignments of min-conflicts at a local minimum

Assignment Contribution

Label ABC AC B C C D 1 A ¤ C B ¤ C Total

Start 100 0 0 1 1
Goal 001 0 0 0 0
Goal Nei. 1 000 1 1 1 3
Goal Nei. 2 011 1 0 1 2
Goal Nei. 3 101 1 1 0 2

the cost of the five important assignments (start state, goal state, and the three neigh-
bors of the goal state). Notice that it is impossible for min-conflicts to reach the goal
state from the start state as all states neighboring the goal are of higher cost than the
starting state.

The local minimum problem of min-conflicts was addressed by the breakout
method [66] and GENET [24].2 The breakout method is largely inspired by min-
conflicts, whereas GENET takes much of its design from GDS (which was the
system on which min-conflicts itself was based). Both methods escape local minima
by adjusting the way in which constraint violations are counted: each constraint is
assigned a weight (initially one), which may be modified by a learning process.

In both methods, a greedy min-conflicts type of approach is pursued until a local
minimum is reached. In the breakout method, a local minimum is one where the
number of violated constraints cannot be strictly decreased. In GENET, sideways
(cost neutral) moves are allowed and the greedy phase terminates when the network
has had the same state for two successive iterations. When in the local minimum
state, both methods increase the weights of all currently violated constraints by one,
and the greedy process is restarted from the current point. In experiments, both
methods are shown to strongly dominate the min-conflicts hill climbing method.

Yugami et al. [115] describe another method for breaking out of local minima,
named EFLOP. The idea of EFLOP is that it can be used as a diversification method
that a hill climber can call when confronted with a local minimum. EFLOP will
change the value of a conflicting variable, even if that increases the number of con-
flicts, and then will go on to try to repair the new conflicts created, without ever
changing the value of a variable more than once. In this way, the repair effect prop-
agates through the network until no newly created conflicts can be repaired. The
resulting assignment is then given back to the hill climber as a point from which to
continue. The method is similar in spirit to that of an ejection chain in LS (see for
example [113]) where changing a solution element has a cascading effect on others.
The authors report significant gains when the EFLOP module is plugged into the
min-conflicts hill climber or GSAT [98].

2 Later, GENET was generalized to Guided Local Search [110], a meta-heuristic based on penal-
ization of the cost function.

Constraint Programming and Local Search Hybrids 275

2.2 SAT-Based Methods

Another well-used technique for solving CSPs using LS methods is to translate the
CSP problem to an SAT problem, and then use one of the well-known SAT solving
techniques (such as WalkSAT [97]).

There are various ways of translating CSPs to SAT. In [112], Walsh describes two
methods: the direct encoding and the logarithmic encoding. In the direct encoding,
one propositional variable xij is introduced for each unary assignment Xi D j in
the CSP. Clauses of the form _j2Domain.Xi /xij are introduced to assure that each
CSP variable is assigned a value. Finally, each constraint is encoded by introducing
one clause for each tuple of incompatible values. For example, if X1D 1 is incom-
patible with X2D 3, then this translates to the clause:x11_:x23. Note that clauses
assuring that each CSP variable must take on exactly one value, rather than at least
one value are not necessary. If, for example, a solution is found with both x11 and
x12 true, then either the value 1 or 2 can be chosen for the variable X1: both will
give legal solutions.

In the logarithmic encoding, bi Ddlog2.jDomain.Xi /j/e variables are introduced
to encode the binary representation of the value of Xi . This representation is more
compact (in terms of variables) than the direct encoding, but the constraints of the
CSP translate to longer clauses (proportional to the sums of the logs of the domain
sizes of the variables in the constraint). Furthermore, for any i , if bi is not a power
of two, then additional clauses are required to rule out the combinations of values
which do not correspond to a domain value of Xi in the CSP. Walsh showed that in
both encodings, the unit propagation rule performs less filtering than arc consistency
on the original problem.

Gent [38] describes a SAT encoding of CSPs called the support encoding which
he showed as performing equivalent filtering to arc consistency on the original prob-
lem. The support encoding uses one propositional variable per CSP domain value
as for the direct encoding but describes the constraints differently. The supports of
each domain value are described by clauses. If, for example, on a binary constraint
between X1 and X2, value 1 of X1 is only compatible with values 3 and 5 of X2,
this would translate as a clause: x11) x23 _ x25. In this formulation, clauses are
also added to ensure that each CSP variable takes exactly one value. Of particular
interest is that this formulation seems quite compatible with the operation of LS
methods: a variant of WalkSAT performed on average over an order of magnitude
faster on the support encoding than on the direct encoding.

More recently, more complete translations of CP models have been proposed:
Huang [46] describes a universal framework for translating CP models to SAT
models based on the logarithmic encoding, translating much of the MiniZinc
language [102]. The Sugar solver [105, 106] also operates by translating CSP
models to SAT, but in this case by using an order encoding, where each SAT
variable yx;a represents the truth value of the relation x � a in the original CSP
formulation.

276 P. Shaw

2.3 Localizer and Comet

Localizer [62, 63] was the first attempt at creating a language for the specification
of LS algorithms. The modeling language is reminiscent of languages for CP, but
with differences. First of all, the notion of an expression (say x C y) is central.
Furthermore, when one writes z D x C y in Localizer, this means that the value of
z is computed from the values of x and y. (z is not a variable, has no domain, and
its value cannot be decided by the system by a search procedure.) Localizer refers
to the hlhsi D hexpri construct as an invariant, and ensures that at any time during
the computation, in our example of z D x C y, the value of z is equal to the value
of x plus the value of y. This is performed by incremental calculations to maintain
the value of z whenever x or y changes value. Invariants can also be created over
more complex structures, such as sets. This means that Localizer can maintain, for
example, the set of best variables to flip in a GSAT-type implementation, as shown
in Fig. 1. The set Candidates maintains the set of variables which are among the
best to flip. This set is updated incrementally whenever one of the gain expressions
changes. These gain expressions are themselves computed from the current SAT
assignment and a statement of the clauses of the problem (not shown). Localizer
then makes a move by changing the value of one of these variables to its negation.

Localizer maintains invariants through a differencing approach, which we briefly
describe. Consider the expressions and invariants in a Localizer program to form
a directed acyclic graph. Each node represents an expression, with a directed arc
connecting expression a to expression b when b directly mentions a.

Consider that arcs in the graph have the same rank as their source nodes. Nodes
with no incoming arcs are labeled with rank 0. Other nodes are ranked one more
than their highest ranked incoming arc. Consider the example z D P

1�i�n xi CP
2�i�n xi�1xi . A graph corresponding to this invariant is shown in Fig. 2. In this

graph, all “x” nodes have rank 0, all multiplication nodes have rank 1, and the node
corresponding to z has rank 2.

Localizer proceeds by labeling each node according to its topological rank in its
“planning” phase. Then, whenever the state of the system changes (here, expressed
by the xi expressions), the “execution” phase incrementally maintains the value of z
by minimally recomputing parts of z following the topological order. Essentially, all
changes are processed at level k before moving to level k C 1. This means that no
part of an invariant is considered more than once, and node values are never changed

maxGain: int = max (i in 1..n) gain[i];
Candidates: fintg = f

i : int j select i from 1..n where gain[i] = maxGain and gain[i] � 0
g;
. . .
move a[i] := !a[i]
where i from Candidates

Fig. 1 A Localizer code using a GSAT technique (taken from [63])

Constraint Programming and Local Search Hybrids 277

Fig. 2 Graph representation
of a localizer invariant

.

.

.

.

.

.

.

+
z

.

.

.

.

.

.

*

*

*

x1

x2

x3

xn-1

xn

more than once. The recalculation of the invariant is done in an incremental way.
At level k C 1, the current and previous values (before the update) of nodes at level
k are available in order to recalculate the nodes at level k C 1. For example, if the
value of x2 changes, then x1x2 and x2x3 are recalculated (in constant time), then z
is recalculated in constant time by applying the difference of the new and old values
of x2, x1x2 and x2x3 to z.

Localizer also includes an element constraint which complicates the calculation
of invariants as just described: element.e; x1; : : : ; xn/ evaluates to the eth element of
the x array. However, often it is very natural to write invariants such as pos1 D 1C
element.prev1; pos1; : : : ; posn/. This example is taken from a TSP-based model and
maintains the position (pos) of each town according to the position of the previous
town. Unfortunately, this invariant is deemed illegal by the topological rule because
the same expression (pos1) is mentioned on the left and right hand sides of the
equality and so the topological ordering constraint rule is violated. In Localizer, this
is treated by so-called dynamic invariants. This means that some of the planning
phase is delayed until the index of an element constraint is known by the execution
phase. At that point, the element expression element.e; x1; : : : ; xn/ depends only
on the eth x expression. So long as this is not the same as the left-hand side of the
invariant (which would provoke an error), a planning phase is invoked to produce
a topological order for the graph after (in a topological sense) this point. Planning
and execution phases are interleaved as necessary to evaluate all invariants.

The Comet system [107,108] grew out of work on Localizer, but has some impor-
tant differences. Localizer is mostly declarative in nature with some imperative parts
for generating initial solutions. By contrast, Comet is a full-function imperative
programming language with features oriented toward modeling and search.
However, as for other constraint modeling systems embedded in an imperative
language (for example, IBM ILOG CP Optimizer in CCC, Java, or .NET), the way
in which the constraint model is created is declarative in style. Unlike Localizer,
Comet has some built-in machinery to evaluate constraint violations in a constraint

278 P. Shaw

function void minConflictSearch(ConstraintSystem S) f
incfintg[] var = S.getVariables();
range Size = var.getRange();
while (S.violations() > 0)

selectMax(i in Size)(S.getViolations(var[i]))
selectMin(v in var[i].getDomain())

(S.getAssignDelta(var[i], v))
var[i] := v;

g

Fig. 3 A comet implementation of min-conflicts (from [109])

system, which allows the specification of the constraint model in more traditional
form (through constraints rather than invariants).

Comet also has language features to iterate over, evaluate, and select different
decisions, allowing a compact definition of search methods. Additionally, the impact
of a potential move on the objective function can be evaluated using methods such
as getAssignDelta(var, value) (change the value of a single variable)
and getSwapDelta(var1, var2) (swap the values of two variables). Finally,
mechanisms such as closures and checkpoints [107], allow complex control methods
such as events and neighborhood evaluation to be specified more easily.

Figure 3 shows a small code (taken from [109]) which implements a min-
conflicts heuristic using Comet. S.getViolations is used to select the variable
which is involved in the most violated constraints and S.getAssignDelta is
used to choose a value for it which reduces the violation measure by the largest
amount (even if this amount is negative). This process continues until the total
number of violations reaches zero, meaning a solution is found that satisfies all
the constraints. Of course, as for min-conflicts, this state might never be reached.

2.4 Some Other Methods

Without aiming to be exhaustive, but rather restricting ourselves to the most
CP-oriented methods (see [45] for additional references), we also very briefly
mention some other techniques where LS has been applied to solve CP-based
models.

In [111], Walser reports results on an LS technique on linear pseudo-boolean
problems. In particular, excellent results are reported on the progressive party prob-
lem [11], which was considered a very difficult problem at the time.

In [21], Codognet and Diaz use a tabu search method on CSP models. Their
method changes the value of a single variable at each move and uses a variable
penalty which is computed from a combination of constraint penalties. Experiments
are carried out on simple examples such as n-queens, magic square, number par-
titioning, and all-interval series. Results show that on some problem classes, the
method outperforms other approaches.

Constraint Programming and Local Search Hybrids 279

Solnon [101] describes a method for solving CSP using an ant colony optimiza-
tion approach. In Solnon’s method, each variable assignment is represented by a
node in a graph, and an arc is present between all nodes which correspond to dif-
ferent variables. After each ant completes its journey, its trajectory is improved by a
classic LS algorithm. Additionally, a local search is used as a fast way of initializing
the pheromone trails.

Galinier and Hao [32] present a method for constraint solving using LS. In par-
ticular, they specify a set of supported constraints (including global constraints)
along with precise penalty functions (following [67]). They apply their method to
SAT, graph-coloring, max-clique, frequency assignment, and the progressive party
problem. The method is demonstrated to be very competitive.

In [86], Årgen et al. describe methods for performing LS over set variables
with incremental updates of data structures. The authors apply their methods to the
progressive party problem. In [85], the same authors also describe a method of syn-
thesizing incremental update algorithms for LS from a description based on second
order logic.

Finally, [36] shows how LS can be effective on quantified boolean formulas,
which is a generalization of the standard NP models treated by CP.

3 Using CP to Evaluate Neighborhoods

One main area where CP and LS meet is when an essentially LS method uses CP
to make and evaluate moves in the neighborhood of the current solution. Typically,
such methods address optimization problems and maintain a complete assignment
which satisfies all problem constraints, in contrast with many of the algorithms al-
ready presented which try to reduce constraint violations. These methods then move
from feasible solution to feasible solution, in an attempt to improve the objective
value.

These methods maintain the current solution not in the constrained variables
themselves, but in a so-called passive representation which is a simple array s

holding, for each variable, its value in the current solution. By contrast, the active
representation is the constraint model itself with variables, domains, and constraints
acting between them. When a new solution to be accepted is produced in the active
representation, it is copied to s for safekeeping.

This section presents various methods for using CP to evaluate and make moves
in an LS process. All the techniques may be implemented by traditional CP engines
supporting a sufficiently flexible user-definable depth-first search.

280 P. Shaw

3.1 Constraint Checking

In [5], De Backer et al. propose to integrate CP into an LS method in perhaps the
simplest possible way. The CP system is only used to check the validity of solu-
tions and determine the values of auxiliary constrained variables (including the cost
variable), not to search for solutions (via backtracking, for example). The search
is performed by an LS procedure. When the procedure needs to check the valid-
ity of a potential solution, it is handed to the CP system. The authors studied their
integration in the context of vehicle routing problems.

When the CP system performs propagation and validity checks, it instantiates the
set of decision variables with the proposed solution. The constraints then propagate
and constrained variables (for example, any auxiliary variables whose values are
taken from propagation from the decision variables) have their domains reduced. If
any variable has no legal values, the proposed solution is illegal.

Improvement heuristics generally only modify a very small part of a solution.
Therefore, testing the complete solution in the above manner can be inefficient.
The authors try to avoid this inefficiency in two ways: by reducing the amount of
work carried out by the CP system to perform each check, and bypassing the CP
checks altogether. In the context of vehicle routing, it is often the case that routes
are independent (have no constraints acting between them). For these problems, only
the routes involved in the modification proposed by the move need to be instantiated
in the active representation. Normally, this means just one or two routes will be
instantiated.

The second method of increasing efficiency is to perform custom tests on the
more important “core” constraints without using the general propagation mecha-
nism [92]. Only if these fast checks succeed is the proposed solution handed to the
CP system to be fully evaluated.

3.2 Exploring the Neighborhood Using Tree Search

In [73,74], Pesant and Gendreau propose a framework for LS in which a new “neigh-
borhood” constraint model is coupled with a standard model of the problem, and
represents the neighborhood of the current solution. The idea is that the set of solu-
tions to this new combined model is the set of legal neighbors of the current solution.
This setup is depicted in Fig. 4.

The left part of the figure shows the variables and constraints of the model of the
problem (the principal model). On the right, there is another set of variables and
constraints, which together represent a model of the neighborhood of the current
solution. These variables are coupled to the principal model via interface constraints
which ensure that a choice of neighbor in the “neighborhood model” enforces the
appropriate values of decision variables in the principal model with respect to the
current solution.

Constraint Programming and Local Search Hybrids 281

Neighborhood
Variables

Problem
Variables

Constraint Model Of
Problem (Principal Model)

Problem
Constraints

Interface
Constraints

Constraint Model
Of Neighborhood

Fig. 4 Interaction of the neighborhood model with interface constraints

As a simple example, suppose that the principal model has n 0–1 variables
xŒ1� : : : xŒn� and that we wish to perform an LS over a neighborhood which flips
each variable (changes its value from 0 to 1 or vice versa). We suppose a passive
representation of the current solution (as in the previous section) which is a simple
integer array s of n elements. In this case, the neighborhood model would consist of
a single variable f with n domain values (say 1 : : : n). f D a would mean that the
ath 0–1 variable in the principal model would have a value different from that in the
current solution, while the other constrained variables would take their values as in
the current solution. The interface constraints are as follows:

.f D i/, .xŒi � ¤ sŒi �/ 8 i 2 f1 : : : ng

To explore the neighborhood of the current solution, a backtracking search proce-
dure then finds all solutions to the combined model, normally through exploring all
combinations of values of the neighborhood variables: here, this means instantiating
just the variable f (so a search tree of depth 1). This exploration is very natural in
a CP context–one may also select the best (lowest cost) neighbor to move through a
standard branch-and-bound search over the model.

It should be noted that the neighborhood model is configured according to the
current solution vector s. That is, constants in the neighborhood model are taken
from the values of the current solution. This means that, in general, the neighbor-
hood model is recreated anew at each move, the previous one being discarded.

3.2.1 An Example

We give a more realistic example of a complex move which may be implemented us-
ing the constrained neighborhood framework. Consider an allocation problem, like a
generalized assignment problem, where n objects are allocated to m containers. This
problem might have capacity constraints on the containers, a complex cost function,
and other side constraints, but that is not our concern here–we are only interested in
how a solution is represented and the decision variables. Our passive representation
of a solution will store the container si into which object i is placed. Our principal
constraint model will contain n decision variables xŒ1� : : : xŒn� each with domain

282 P. Shaw

a b c d e f

Fig. 5 A 3-rotation move

f1 : : : mg. The neighborhood we consider is a rearrangement of the positions of any
three objects without changing the numbers of objects in each container. We call
this a 3-rotation. The move is depicted in Fig. 5. In the figure, after the move, the
diagonally striped object will have moved to container C , the horizontally striped
object to container F , and the vertically striped object to container B .

We will create a neighborhood model with three variables p, q, r , representing
the objects involved in the move. Each of these variables has domain f1 : : : ng iden-
tifying the objects to be involved in the move. We will assume that in the move,
object p will move to q’s container, q to r’s container, and r to p’s container.

The interface constraints for this neighborhood can be written as:

p ¤ q; p < r; q < r (1)

xŒp� D sŒq�; xŒq� D sŒr�; xŒr� D sŒp� (2)

p ¤ i ^ q ¤ i ^ r ¤ i) xŒi � D sŒi � 8 i 2 f1 : : : ng (3)

Line (1) constrains which objects can be involved in the move. Some symme-
tries need to be broken if moves are not to be duplicated. For example, p D 1;

q D 2; r D 3 identifies the same move as p D 2; q D 3; r D 1. These can be
broken by the constraints p < r , q < r . Note also that three different objects should
be identified and so p ¤ q. Line (2) places the objects involved in the move in their
new positions. For this, the element expression is used on the solution vector s. Line
(3) states that objects not involved in the move stay where they are currently.

Observe that whenever two objects appear in the same container, the move ac-
tually taken (so long as the third object is elsewhere) is a swap of two objects. If
desired, we could limit ourselves to true 3-rotations by asserting that all objects
must be in different containers. This could be done by replacing line (1) above by:

sŒp� ¤ sŒq�; sŒp� < sŒr�; sŒq� < sŒr�

3.2.2 Flexibility and Efficiency

The main advantage of this framework is that propagation takes place between the
principal and neighborhood model, and specifically, domain filtering may be carried
out on the neighborhood variables, reducing the number of neighbors explored. This
filtering is carried out by the interface constraints, based on the current domains of

Constraint Programming and Local Search Hybrids 283

the decision variables of the principal model. The final result is that neighbors which
are illegal or do not meet acceptance criteria (like being better than the current so-
lution in terms of cost) may be directly filtered out of the neighborhood variables.
This filtering tends to be most effective when the search tree for the neighborhood
variables is deep (neighborhoods are large) and the neighborhood has a large pro-
portion of illegal neighbors. Experiments with the 3-opt operator on TSPs with time
windows in [73] indicate that few neighbors are actually acceptable (typically a
few percent), increasing the efficiency of the CP technique. GENIUS-CP [75] is
very general technique for inserting customers into a route, and implemented in
the CP framework. The authors report that one does pay a price for using CP in
terms of efficiency (up to an order of magnitude over a custom approach), but their
technique extends naturally to TSPs with multiple time windows and pickup-and-
delivery problems, which the custom heuristic [35] was incapable of doing. In [91],
the flexibility of the method is demonstrated via the application of several different
constraint-based neighborhood operators in a style based on variable neighborhood
search (VNS) [65].

Although the above framework is extremely flexible, natural, and exploits the
power of CP’s propagation in order to reduce neighborhood sizes, this benefit is not
obtained when either the neighborhood is largely feasible, or when opportunities
for propagation are limited (for instance when the depth of the search tree on the
neighborhood variables is low). For example, in the “flip” example already given,
exploring the neighborhood through a single depth search tree which instantiates the
f variable could result in a total of n2 variable fixings.

To attempt to address this, Shaw et al. [100] describe a method which reduces
the number of variable fixings to O.n log n/ for the “flip” example. The method
works on an explicit representation of the neighborhood as a series of neighbors,
each neighbor represented by an object called a “delta” which stores the variables
to change together with their new values.3 One attraction of this method is that it
allows the creation of very general, unstructured, or randomly ordered neighbor-
hoods, specifiable via general codes, and not constrained to what can be described
by a constraint model. For this reason, this method is used in an open framework
in the Solver module of IBM ILOG CP (which provides operators to randomize,
concatenate, interleave and sample general neighborhood structures).

Figure 6 shows an actual CCC code sample for solving a vehicle routing prob-
lem using the IBM ILOG CP product. This code uses a greedy approach (via the
use of IloImprove4) which accepts the first neighbor which decreases the over-
all cost. (By adding one additional line of code, it is also possible to accept the
neighbor which decreases cost by the greatest amount.) The neighborhood is a com-
bination of all possible two-opt [59] moves, all moves which relocate every node
before each other node, and all moves which interchange the positions of two nodes.

3 Not all neighbors have to be available before exploration can start, but can be generated on the
fly to keep memory consumption low.
4 Meta-heuristics such as simulated annealing or tabu search can be used by changing
IloImprove to IloSimulatedAnnealing or IloTabuSearch.

284 P. Shaw

// env = environment, a management object
// curSol = current solution
// solver = the CP solver instance
IloNHood nh = IloTwoOpt(env) + IloRelocate(env) + IloExchange(env);
IloNHood rnh = IloRandomize(env, nh);
IloGoal move = IloSingleMove(env, curSol, rnh, IloImprove(env));
while (solver.solve(move))

cout << "Objective value = " << solver.getObjValue() << endl;

Fig. 6 IBM ILOG CP example of local search for vehicle routing

The “C”operator is used to concatenate these three different basic neighborhoods
into one. This simple but powerful method can be used to implement a VNS [65].
Here, instead of using a VNS method (which could be achieved by using nh instead
of rnh in the call to IloSingleMove), the order of moves in the neighborhood
is randomized each time a move is accepted (by using IloRandomize), so that a
random improving move will be taken each time. A loop calling solve on the CP
solver actually performs the greedy moves. When no improving move exists in the
neighborhood, the call to solve returns a false value, and the loop exits with the
locally optimal solution in curSol.

The method described in [100], and used in IBM ILOG CP, gains efficiency by
using a divide and conquer approach: a binary search tree is created where on the left
branch the first half of the neighborhood is explored, and on the right branch, the sec-
ond half is explored. This is continued recursively until only one neighbor remains
at the leaf node. Each node in the search tree can thus be associated with a part of the
complete neighborhood. If this part of the neighborhood does not change a variable
x (that is, x does not appear in any “delta” for this part of the neighborhood), then
the value of x in the current solution s can be assigned to x. This last rule, which
allows different neighbors to share variable fixings, reduces the number of fixings
by a factor of O.n= log n/ when neighbors change a constant number of variables.

Pesant and Gendreau also propose an adaption of their method which allows
similar logarithmic efficiency gains to be achieved. The idea is to map the divide
and conquer approach of Shaw et al. to a variable instantiation strategy. Instead of
instantiating the neighborhood variables by fixing them, a deeper search tree can be
created by dividing the domain of a neighborhood variable in two at each branch.
This will eventually instantiate the neighborhood variables but will crucially allow
propagation to the principal model’s decision variables higher in the (now deeper)
search tree.

3.3 Large Neighborhood Search

Large Neighborhood Search (LNS) is a technique first coined in [99], but
whose origins date back to the shuffling technique described in [3]. Similar
work uses different nomenclature: Mimausa [60], forget-and-extend [17] and

Constraint Programming and Local Search Hybrids 285

ruin-and-recreate [94]. In [40], Sect. 10.7 also briefly mentions such an approach
in general terms, there called referent-domain optimization, and [104] proposes a
technique with similar motivation.

LNS has been applied to a variety of problems, with most of these having a
vehicle routing [10,76,99], scheduling [3,41], or a network/graph aspect [15,20]. It
is also used in commercial products, such as IBM ILOG CP Optimizer [55].

The simplest way to think about LNS is that of iteratively relaxing a part (nor-
mally called the fragment) of the current solution and then re-optimizing that part.
Figure 7 shows how this method works for the traveling salesman problem (TSP).
Figure 7a shows a solution to the TSP, in Fig. 7b,c a set of arcs is chosen and
removed from a region of the space, and then in Fig. 7d this partial solution is com-
pleted to produce a new, improved solution of lesser total distance.

An outline of how LNS is normally implemented is shown in Fig. 8 (adapted
from [72]). At a high level, the technique is extremely simple. It is normally a hill
climber (however see [76]) which is executed until some time limit is exhausted,
although other criteria can be used, such as a number of iterations, or a number of
iterations without improving the current solution.

Solution

a b c d

Choose Relax Reoptimize

Fig. 7 Operation of LNS on the traveling salesman problem

Create initial feasible solution
while optimal not found and time remaining do

Choose part of problem (the fragment)
Freeze the part of the solution not in the fragment

(that is, fix it to its value in the current solution)
Search the remaining sub-problem for an improving solution
if improvement found then

Adopt the improved solution as the current one
end if

end while

Fig. 8 Typical implementation of large neighborhood search

286 P. Shaw

The general description of LNS makes reference to two components: a method to
choose the fragment of the problem to relax, and a method to re-optimize the chosen
fragment: we discuss both, beginning with the latter.

3.3.1 The Re-Optimization Method

LNS is specified in very general terms, and this leaves the implementation of the
re-optimization method open. Techniques which have already been used with LNS
are greedy methods [76], LS [103], decomposition-oriented techniques [68], mixed-
integer programming methods [79] (for linear models), or CP [99]. In fact, virtually
any technique which can be used to solve a complete problem can be used to
re-optimize a fragment in LNS. However, for CP techniques, the re-optimization
is generally based on a tree-search, which could be depth-first search, limited dis-
crepancy search (LDS) [44], restarts [52], or indeed any other techniques one might
imagine. Using CP as the re-optimization method allows the addition of a constraint
on the objective which excludes non-improving solutions. This can accelerate the
search through increased propagation.

Using CP for the re-optimization process also increases the robustness of the
search as side-constraints can be efficiently handled in the re-optimization, meaning
that LNS is much better able to handle richer models with more complex con-
straints than standard neighborhood search. This is demonstrated in [53] where side
constraints are progressively added to a problem, and in [9], which successfully ex-
tends an LNS solution for vehicle routing [8] to one for pickup-and-delivery, which
is considerably more constrained. Likewise, Røpke and Pisinger [76] and Laborie
and Godard [55] introduce LNS methods which perform well over a wide range of
vehicle routing and scheduling problem classes.

When re-optimizing the fragment, we have found that a tree search which works
better than others for solving the whole problem will continue to work better than
others when embedded in LNS as a re-optimization procedure.5 We know of no
strong contradictions of this rule of thumb–if any exist, their analysis might yield
interesting directions of the design of LNS re-optimization methods. That said,
an almost ubiquitous modification is made to any global solution method when
it is embedded in LNS, and that it to limit its run time in some way ([13] is an
exception). Common methods are to limit the number of backtracks in a depth-
first search [16, 71], or to limit the number of discrepancies [6] in a depth-first
search [99]. Perron [70] compares both of these methods, amortized search [58],
as well as hybrids.

The general idea is to find a balance between avoiding exponential time explo-
ration of unpromising fragments, and attempting to improve the solution as much as
possible at each re-optimization. Another choice in the re-optimization is whether

5 This is important, as here we can draw on a wealth of knowledge on general-purpose and problem-
dependent branching heuristics.

Constraint Programming and Local Search Hybrids 287

to stop as soon as an improving solution is found (as done in [71]), or to continue up
until the limit to see if better improvements can be found in the same re-optimization
(as done in [13, 99]).

3.3.2 Selecting the Fragment

One natural way of selecting the fragment of the solution to be relaxed is to do this
in a completely random fashion. This technique can sometimes be effective. For
example, [69] uses a completely random technique (but then moved to a more struc-
tured technique in [70]), [23] shows good results with random selection (although
biased selection is shown to perform better), and [71] uses a random selection as one
of two methods for fragment selection. Although a random choice has its merits (it
may avoid pathological behavior, and is thus useful in portfolio-based techniques–
see Sect. 3.3.3), using only random choice is seldom the best way to produce good
solutions quickly. This was recognized from early on, for example, the shuffle of [3]
relaxes the order of all operations on a set of machines–each machine has either
a fully fixed or fully free order (while still respecting problem constraints). Later,
other more general shuffles were performed in [16], but here again the fragments
chosen have a certain cohesion, for example, operations falling in a certain time
window, or operations on the critical path.

We should ask ourselves the question, what makes a good fragment? To be useful,
a fragment must contain at least one good solution. (In the typical implementation of
LNS, this solution should be better than the current solution, but some implementa-
tions allow cost-neutral moves [71] or degradation of the current solution [76].) For
some problems, we can determine some basic conditions that need to be satisfied if
cost is to have a hope of being reduced. For example, in a job-shop scheduling prob-
lem with a makespan objective, we know that the critical path must be changed to
reduce the makespan. This dictates that some operations on the critical path should
be present in the fragment, if the fragment is to be useful [13].

Other less strict rules can be used to select the fragment which we might consider
would generate fragments with improving solutions. For example, Fig. 7 shows a
fragment selection criterion based on distance from a randomly chosen node n in
the TSP tour: for example, one might relax the k closest nodes to the central node n.
The intuition here is that when we relax the fragment, the relaxed nodes will have the
possibility for position interchange in the current tour. Now, assuming the current
tour is not too bad (if it is bad, then almost any reasonable fragment selection will
allow improvements to be found), then nodes which are far apart are also far apart
in the tour. This implies that interchange of these nodes would introduce long arcs,
and hence a large distance penalty. By contrast, when the fragment is localized,
interchange of nodes can be carried out without introducing long arcs.

Given the fact that a fragment can be selected that contains a better solution–
or has a reasonable chance of containing one–the fact that the solution is available
is not enough. (We could place the whole problem in the fragment, which would
guarantee it contained the global optimum.) In reality, the re-optimization method

288 P. Shaw

(Assume solution elements are x1 : : : xn)
Initial fragment F D fig where i is randomly drawn from f1 : : : ng (F ’s universe)
while jF j < f do

Let e D random element of F

Let z be an non-increasing ordering of all e0 2 F C according to R.s; e; e0/

(F C is the complement of F , the indexes of the elements not in the fragment)
k D 1C bjF C jyd c where y is uniformly and randomly chosen in Œ0 : : : 1/

Add the kth element of z to F

end while
return F

Fig. 9 Shaw’s method for choosing a fragment

must have a reasonable chance of finding the solution using the limited resources
at its disposal. There is thus an interplay between the fragment selection and the
re-optimization method, but the general idea is to keep the fragment as small as
possible, while maintaining a reasonable chance of finding an improving solution.
In this way, the re-optimization process has the best chance of finding the good
solution or solutions. Similarly, smaller fragments allow the re-optimization process
to be limited more, which increases the speed of examination of different fragments.
A common mechanism, first used in [99] but since replicated elsewhere, is to begin
with a small fragment, and gradually increase its size when improving solutions
become difficult to find.

Although the use of some problem structure is useful for choosing the fragment,
the first generic framework for doing this was introduced in [99]. We outline the
approach in Fig. 9. It assumes the existence of a real valued function R.s; x; y/

which takes the current solution s, and two solution elements. The solution elements
could be variables, but could also correspond to more structured objects such as a
nodes in a TSP or operations in a scheduling problem. R delivers a measure of
how related x and y are in solution s. The interpretation of this is that if R.s; x; y/

is high, then x and y should tend to be included in the fragment together, or not
at all, and if R.s; x; y/ is low, then putting both x and y in the fragment is less
desirable. In [99], vehicle routing problems were treated, where an objective which
was to reduce the number of vehicles used, and then total distance as a secondary
objective. For two customers x and y, R.s; x; y/ D 1=.C.x; y/C Vs.x; y// where
C.x; y/ is a normalized distance (in the range 0 : : : 1) between the two customers
x and y and Vs.x; y/ evaluates to 0 if the two customers are served by the same
vehicle in the current solution s and to 1 otherwise.6 The idea of favoring customers
served by the same vehicle for inclusion in the fragment comes from the observation
that the only way of reducing the number of vehicles (primary objective) is to free
all customers on at least one vehicle. Unless some specific provision is provided for
that, the distance measure alone is unlikely to achieve it.

6 An error appeared in the original paper which indicated the opposite result for Vs.x; y/.

Constraint Programming and Local Search Hybrids 289

The selection method also has two parameters f � 1 (fragment size) and d � 1

(determinism). The former indicates the desired size of the fragment, and the lat-
ter a measure of how deterministically the selection will follow R: d D 1 means
that R will be ignored and random choice will be used, while d D 1 means that
R will be followed for each choice.7 Shaw [99] reports that the tuning of the de-
terminism parameter was reasonably simple, and for medium sized VRPs (around
100 customers) values around 10–20 were reasonable, with performance suffering
badly only for values of d outside 3 : : : 30. Pisinger and Røpke [78] also discuss
fragment selection methods based on the distance between customers in a vehicle
routing context. They use Kruskal’s algorithm [54] to generate clusters of customers
which are close together.

3.3.3 Learning in Large Neighborhood Search

A few ideas have been put forward to attempt to ease the design and tuning of LNS
methods (see discussion in [14]). The first is the aforementioned one of starting with
a small fragment size and increasing it when finding improving solutions is becom-
ing too hard. This is normally controlled by a number of LNS iterations without an
improvement in the current solution.

In an attempt to alleviate the work involved in designing fragment selection, Per-
ron and Shaw [72] propose a method called Propagation Guided LNS which tries
to determine what solution elements should be placed in the fragment together. The
method works by using the propagation mechanism itself. It can be viewed as a
variation on Fig. 9 where each time a solution element is added to the fragment, it
is assigned as in the current solution s, and propagation on the sub-problem out-
side the fragment is observed. The strength of the propagation of x to y (where x

is newly added to the fragment and y is outside the fragment) defines R.s; x; y/.
The method continues like this until the desired fragment size is attained, at which
point it records the fragment for use in the subsequent re-optimization process, but
discards the partial assignment corresponding to it in the constraint solver. Perron
and Shaw show that the method can outperform hard-designed fragment selection
on the car sequencing problem.

A common learning mechanism applied in the context of LNS is that of algorithm
portfolios [43]. LNS is particularly amenable to such a technique as it is an iterative
combination of two separate techniques: fragment choice and re-optimization. Thus,
a portfolio of algorithms can be proposed for each technique. In [70], Perron uses
a portfolio of algorithms for the re-optimization technique for a network design
problem. He ascribes a weight to each algorithm and uses reinforcement learning to
reward (increase the weight of) algorithms which produce improving solutions. The
weights drop after a certain number of trials without improvement. An algorithm

7 Setting d D1 does not eradicate randomness from the algorithm, only for one part of it.

290 P. Shaw

is selected proportionally according to its weight in relation to others. However,
Perron’s main aim in [70] is to investigate restart strategies, and does not perform
any detailed analysis of his portfolio scheme.

Røpke and Pisinger [77] present a method which uses portfolios for both the
fragment selection method and the re-optimization method for pickup-and-delivery
problems. They use three fragment selection methods, five re-optimization methods
and optionally apply noise to the objective function to help diversify the (largely
greedy) re-optimization method. A feedback learning approach controls a biased
choice of fragment selection, re-optimization method, and the application of noise
to the objective function. Their fragment selection methods are based on that of [99],
a completely random method, and a method which tries to place high-cost solution
elements into the fragment (reminiscent of squeaky wheel optimization [47]). Re-
optimization methods are founded on a regret-based technique. The authors method
demonstrates greatly increased robustness over a standard LNS approach (allow-
ing them to develop a very general heuristic applicable to many different types of
routing problem [76]), and produces state-of-the-art results on pickup-and-delivery
problems with time windows.

Laborie and Godard [55] also present a portfolio method and apply it to a large
number of different single-mode scheduling problems. Their framework also pro-
poses using a feedback learning approach on fragment selection and re-optimization
methods, but their study is limited to the selection of fragment. Three fragment
selection methods are used: random selection, selection of operations in a time win-
dow, and selection of operations occurring in connected components or strongly
connected components of the precedence graph of the problem. Results show that
the resulting algorithm is extremely robust over a large number of scheduling prob-
lem classes and, despite its generality, can improve on the best ad-hoc methods
created for several of these classes.

In [18], Caseau et al. present a general method for learning combinations of
heuristics for vehicle routing problems. They use LNS with fragment selection
as in Fig. 9 as one of the building blocks of their system. Their LNS method is
parametrized with a learned fragment size f , a learned determinism parameter d ,
and a learned re-optimization method, which can be constructed from other basic
building blocks. Results show that the learning process can better hand-crafted
algorithms.

4 Local Search for Pruning and Propagation

LS has been used as a means of demonstrating that the current partial solution to
a problem has no legal extension (resulting in pruning) or that certain value as-
signments cannot be made in any legal extension (resulting in domain filtering, or
propagation as it is also known). Although this area has not been widely explored,
this section describes some pieces of work which have successfully used LS to re-
duce search tree size through pruning and/or propagation.

Constraint Programming and Local Search Hybrids 291

In [96], Harvey and Sellmann describe how to increase pruning and propagation
on the Social Golfer Problem. The social golfer problem can be stated as follows:
32 golfers want to play in 8 groups of 4 each week for 9 weeks, such that no pair
of players play together more than once. Is this possible? The problem can be gen-
eralized to one of determining a w week schedule of g groups of golfers, with each
group of size s. Harvey and Sellmann’s method depends on finding witnesses to
the insolubility of the current sub-problem. These witnesses are clique structures
contained in a residual graph representation of the sub-problem.

Consider that a golfing schedule is being built week by week, in chronological
order, and that a graph is maintained in which each golfer is represented by a node
and a pair of golfers that have already played together in previous weeks is repre-
sented by an arc connecting their respective nodes. If a clique of size k is present in
this graph, then it means that the golfers involved in the clique must play in differ-
ent groups from now on. If, when scheduling the current week by building groups
for that week, we get to a situation where none of the golfers in the clique have
been scheduled, but less than k groups remain available this week, then the current
partial assignment cannot be completed as each of the k golfers in the clique must
be put into a different group. Harvey and Sellmann use an extension of this prun-
ing rule to perform propagation and describe an orthogonal rule which reasons on
golfers rather than on groups in a week. The authors use a randomized LS approach
with intensification and diversification steps to find the cliques. Results show that
significant gains can be made both in terms of number of backtracks and run time.

Focacci and Shaw [30] present a method for pruning the search tree based on the
application of a dominance rule, the detection of the rule’s applicability at any node
being carried out by an LS process. The method could be considered an implemen-
tation of Symmetry Breaking by Dominance Detection [26, 29]. Focacci and Shaw
argue that aggressive pruning of a search tree by dominance rules can be detrimental
to the success of a search algorithm. For example, consider a Euclidean TSP where
a 2-opt [59] dominance rule is applied. That is, any branch of the search tree which
constructs a partial tour where two arcs cross (and is therefore not 2-optimal) is
pruned, as we know that any tour which is not 2-optimal cannot be globally optimal.
This aggressive pruning rule may result in no solution being found for some consid-
erable time, which could be a problem for online optimization. Furthermore, since
solutions may be found considerably later with the dominance rule active, even time
to produce a proof may suffer since good upper bounds (which can also significantly
help pruning) are not provided quickly. The solution proposed in [30] is quite gen-
eral (a similar technique is used in [31]) and can be applied to decision as well as
optimization problems, but the following description is based on the TSP.

The authors propose to apply a dominance rule which prunes the current branch
only if there is no hope of extending it to a solution which can better the best solu-
tion found so far. This is done in the context of the TSP and TSP with time windows.
Here, imagine that we are to construct a simple path between nodes A and Z, pass-
ing through nodes fB; C; : : : ; Y g. Imagine two partial TSP tours t1 D A! B ! C

and t2 D A ! D ! B ! E ! C ! F ! G. Assume that all extensions of
t1 have already been fully explored and that t2 is the current partial tour. We form t

292 P. Shaw

COMMON
END NODEA

A

B C

C ED F GB

A D B GCE F

EXTENSION

t1

t2

t
(Potential dominating assignment)

(Current partial assignment)

(Previsouly explored)

COMMON
ROOT OF
TOUR LOCAL SEARCH

FREE ZONE

Fig. 10 Operation of Focacci and Shaw’s dominance detection

from t1 by appending to it all nodes in t2 not already in t1, ensuring that t ends at the
same node as t2, node G in our case.8 Assume that after performing this operation
t D A ! B ! C ! D ! E ! F ! G. Observe that with this construction, t

always visits at least all the nodes in t2 and terminates at the same node. Figure 10
shows the relationships between the three partial tours. Now, assume that the length
of a (partial) tour is given by the function L and that in our case L.t/ � L.t2/.
Given that t visits at least all of the nodes of t2 and any extension of t will start at
the same node as t2, we can safely say that the best extension of t will be better than
the best extension of t2. However, we have already explored the best extension of
t , because we have explored the best extension of t1 (a smaller partial tour). Thus,
we can prune the current search tree branch t2. If L.t/ > L.t2/, then we still have
options. In particular, we formed t from t1 by an arbitrary extension order. Any ex-
tension which maintains G at the end of the partial tour is legal to form t . If any one
of these extensions verifies L.t/ � L.t2/, then search can be pruned.

Focacci and Shaw propose to search for an improving extension t via an LS
process which, in the case of our example, would perturb the order of the nodes
D, E , F , while keeping G at the end as needed, as well as the root of the partial
tour (ABC) coming from t1. This is done using a relocate operator which can move
any node in the free part of the partial tour to another position in the free part (see
Fig. 10). The extension to the TSP with time windows simply adds another condition
to check. Assume that the total time of a (partial) tour is given by the function T .
Then, search can be pruned if L.t/ � L.t2/ ^ T .t/ � T .t2/.

Results reported indicate that the proposed approach can often work much better
than a pure CP approach without dominance rules or indeed than standard applica-
tion of dominance rules which prune every branch which corresponds to a partial
tour that can be improved using the relocation operator.

8 If t1 already contained G, then the dominance detection would not be possible using t1.

Constraint Programming and Local Search Hybrids 293

Galinier et al. [33] describe a method to facilitate propagation of the some-
different constraint [90]. The some-different constraint is a generalization of the
all-different constraint [88] where only a subset of all pairs, freely specifiable to
the constraint, must be different. This global constraint is capable of encoding any
graph coloring problem and hence achieving arc consistency for it is NP-hard.

The authors approach the problem by using a tabu search algorithm to find sup-
ports (solutions to the constraint). The aim is to quickly find a support for each
domain value of each variable. For those variable-value assignments for which
a support cannot be easily found, the suspicion is that they have no support,
and this can be found out by the application of a complete technique, such as
DSATUR [12]. The LS algorithm is reminiscent of min-conflicts but is based on
tabu search [40] and works as follows. Initially, each variable is assigned an arbitrary
value from its domain. Then, the search attempts to minimize the number of conflicts
(¤ constraints violated) using a tabu criterion which forbids a variable taking on its
previous value for a certain number of iterations. When a solution to the constraint
(a support) is found, then it is added to a “support store”.

After the first support is found, the algorithm changes its behavior, as it is no
longer based solely on reducing the number of conflicts, but a weighted combination
of conflicts and on covering (in the support sense) variable-value assignments not
yet represented in the support store. In this way, the tabu search algorithm tries to
provide a support for as many variable-value assignments as quickly as possible. The
tabu search algorithm is stopped after a certain number of iterations after which it
is considered that continued search is not as productive as the use of other methods.
After the tabu search has found as many supports as possible, a complete method
(DSATUR) is launched for each variable-value assignment for which a support has
not yet been found. This is done for xD a by assigning a to x and then using
DSATUR to try to find a solution to the remaining sub-problem. If this sub-problem
proves soluble, then a support for xD a has been found, otherwise a is removed
from the domain of x.

Combined with a number of reduction procedures, Galinier et al. report that their
algorithm reduces average run time on real workforce management data by a factor
of 34 over a standard CP approach.

5 Other Integrations

Various other integrations of LS in CP have been proposed where the interaction
of the CP and LS techniques is more intimate. Often, the methods are based on
the combination of a constructive technique (including propagation) and a repair
technique, but could simply be the use of a non-systematic search idea inside a
complete search method. Much work could potentially fall into this fairly weak
classification, and so while this section is necessarily not exhaustive, it does attempt
to present a reasonable overview of the current situation.

294 P. Shaw

In [114], Yokoo describes a weak commitment strategy for solving constraint
satisfaction problems. The algorithm is complete and the main idea is based on
the complete min-conflicts method [64]. The complete min-conflicts method is es-
sentially a depth-first search using a min-conflicts heuristic for variable and value
choice. First, a tentative assignment to each variable is made which greedily at-
tempts to minimize total conflicts as described in Sect. 2.1. Then, a depth-first search
chooses first a variable in conflict, assigning it a value which does not conflict with
previous assignments and conflicts minimally with future tentative assignments.
If all values conflict with previous assignments, the algorithm backtracks.

Yokoo observes that in depth-first search mistakes are very costly to undo.
Yokoo’s weak commitment strategy also uses tentative assignments, but instead of
backtracking one level when a dead end is reached, it entirely abandons the cur-
rent partial assignment. Search then continues by building a new partial assignment,
using, where possible, the previous assignment as new tentative assignment val-
ues and adding the previous abandoned assignment to a no-good store to avoid
re-exploration of the same space. One can think of the weak commitment method as
a type of improved iterative sampling [56], where the variable/value choice heuristic
is based on min-conflicts, and a no-good is added at each dead end.

Yokoo observed good results on graph coloring and 3-SAT problems, better than
either the complete min-conflicts method or the breakout method.

Richards and Richards [89] describe Learn-SAT, whose principles draw heavily
on the weak commitment method. Their algorithm uses the same process of aban-
doning the search process when a dead end is encountered, and of no-good addition.
However, Learn-SAT also including a “learning-by-merging”component which per-
forms resolution on the clauses which lead to a variable’s domain becoming empty,
generating a new clause for each dead end encountered. Experiments demonstrate
that the method can outperform relsat [48], the best complete SAT solver of the time.

Ginsberg and McAllester [39] describe how gradient methods from GSAT can
be used in a complete technique. The method used, known as partial order dynamic
backtracking (PDM), works by generating no-goods in directed form (A D a ^
B D b ^ C ¤ c)D ¤ d instead of A ¤ a _ B ¤ b _ C D c _ D ¤ d)
when a violation is detected. The value of right hand side (conclusion) variable is
then modified by the algorithm in order to remove the violation. PDM allows some
freedom in the choice of the conclusion variable of any new no-good generated.
This freedom allows PDM to start from a tentative total assignment, and then use a
GSAT-inspired conflict-based rule to repair (that is, to add as conclusions in a no-
good set) the variables which are most in conflict. In this way, a complete search is
created, based on information normally only available to an LS technique.

It should be noted, however, that the choice of next variable to repair is not as
free in PDM as in GSAT. PDM introduces so-called safety conditions to guaran-
tee integrity of the algorithm, which specify partial orders on the variable choice.
Ginsberg and McAllester demonstrate that their methods compare very well with
WalkSAT and TABLEAU, dominating TABLEAU on unsatisfiable SAT instances.

Jussien and Lhomme [49] introduce the decision-repair algorithm which com-
bines a constructive search and propagation with an LS over the decisions made

Constraint Programming and Local Search Hybrids 295

in the constructive search path. This incomplete method works by constructing a
solution using heuristics and constraint propagation in the “classic” way until the
last decision D made creates an inconsistency. Instead of undoing D in the normal
depth-first search manner, decision-repair tries to find a conflict, which is a strict
subset of the decisions already taken (not including D) which are together incon-
sistent with D. At least one of these decisions needs to be negated if D is to be
kept. The authors introduce a heuristic to decide which decision(s) to negate based
on a tabu search criterion. The most recent k conflicts found during the search are
maintained, and the algorithm first chooses to negate a decision which appears most
often in this conflict set. If more decisions need to be negated to ensure D can be
accepted, then these follow the same rule. Experiments on open shop scheduling
problems show the technique to be competitive with leading approaches.

Prestwich [80] introduces CLS (constrained local search), later to be renamed
IDB (incomplete dynamic backtracking) [83]. Like [49], the method is incomplete,
and can be considered as performing an LS on the search decisions already taken
in a tree search. The difference between decision-repair and IDB is based on how
the repair of past search decisions is carried out. In [49], conflicts are used both
as a predicate and as a heuristic to decide on the decisions(s) whereas IDB either
uses random selection, or an ad-hoc heuristic with random tie-breaking. Once the
repair variables are chosen, in [49], each repaired decision is negated, whereas IDB
simply discards the chosen decisions. Prestwich has applied IDB quite widely with
excellent results: see for example [80–82]. In particular, in [81], Prestwich argues
that IDB delivers the scalability of LS compared to classic backtracking because of
the flexible choice of the variable to change.

In [95], Sellmann and Ansótegui describe Disco-Novo-GoGo, a restarting tech-
nique which uses backtracking search “probes” to perform an LS over a complete
assignment. The essential idea is to encode a value choice heuristic as a complete
(normally illegal) assignment H . A backtrack-limited depth-first search then instan-
tiates the problem variables in a random order, fixing each variable, where possible,
to its preferred value from H : this is done on the left branch of the search tree,
whereas other values are considered equivalent and are explored in random order on
other branches. If the backtracking search finds a solution or proves there is none,
the entire search process can be stopped. If the backtracking limit has been attained
(which is usual), then the heuristic assignment is updated as follows. For any vari-
able which is fixed to a different from its value in H , its current value is copied to
H . For any unassigned variable that has had its value from H filtered from its do-
main, a random value from its current domain is transferred to H . The remainder of
H remains unchanged. This basic mechanism is embedded in a double loop which
varies the fail limit and a number of trials. The authors report significant speedups
over standard restart techniques.

Zhang and Zhang [116] report on a method which combines an LS procedure
with backtracking and propagation. The idea is to successively generate, in a ran-
domized way, partial solutions to the problem which do not violate the constraints
between variables in the partial solution. Then, for each one of these partial solu-
tions, a combined LS and backtracking phase is entered where first a tree search

296 P. Shaw

technique with propagation tries to extend the partial solution to a complete one.
This tree search is normally limited in the number of branches it can carry out. If
the tree search does not succeed, a local move is carried out on the partial solution
to try to improve its quality. The authors use the criterion of the number of con-
straints satisfied by the partial solution. This extension attempt using propagation
and backtrack followed by a local movement on the partial solution is repeated until
a solution is found or an iteration limit is exceeded. In the latter case, the method
begins again with a completely new partial solution. The authors succeed in closing
some open quasi-group problems using their method.

Schaerf [93] describes an incomplete method. The technique extends a partial
solution until a dead end is reached. (A static variable ordering is used and Schaerf
defines a dead end as being when the next variable to be assigned has no legal values
consistent with previous assignments.) At this point, an LS method is invoked which
attempts to change the values of the variables in the current partial assignment to
allow further constructive search to take place. The method continues in this way,
interleaving construction and repair, until a solution is found.

When repair takes place, the objective function takes into account (a) conflicts
existing between variables in the partial solution, (b) the value of the bound on the
objective function, and (c) a “lookahead” which is a count of the number of domain
values remaining in the variables not yet given a value. The idea is to reduce (a) and
(b), but increase (c). The LS procedure is largely greedy but is randomized and may
make sideways (non-objective changing) moves. In addition, the different constraint
types in the problem have independent and dynamically changing weights according
to how often they are violated.

The algorithm is evaluated on timetabling and tournament scheduling problems.
Schaerf compares LS (for example min-conflicts) to a combination of the LS method
embedded (and suitably modified) in the constructive procedure. Results show that
the combined method significantly outperforms the LS method on these problems.

At around the same time, David [25] also introduced an incomplete method very
similar to that of Schaerf. A partial solution is extended until a dead-end is reached,
at which point action is taken to try to repair the current partial assignment. David
concentrates on examination timetabling problems, and the repair methods are ded-
icated to the problem. Four different repair techniques are tried before the method
marks an examination as “not scheduled,” and continuing with the remaining exam-
inations. Thus, the method may produce partial schedules (which are presumably
executed by temporarily procuring extra staff), but produces results in a determinis-
tic time frame (under a few seconds).

Caseau and Laburthe [19] present an incremental local optimization approach to
solving vehicle routing problems where a traditional constructive approach to build-
ing a solution is followed, but the partial solution is improved each time the solution
is extended. The authors begin with an empty schedule and use a classical insertion
approach to solution construction. At each insertion, the most “constrained” cus-
tomer is inserted. Before insertion, a limited search examines the potential impact
of insertion in different routes and the best insertion point is chosen. After insertion,
a more thorough LS process improves the solution. Results show that the method

Constraint Programming and Local Search Hybrids 297

scales much better than performing all insertions and then applying LS. The au-
thors find very good solutions to problems with around 500 customers in around
10 s. Finally, to further improve their solutions, the authors also examine overlaying
a limited amount of backtracking over their methods. For example, the decision to
open a new route or not when inserting a customer could be the subject of a back-
track point.

Kamarainen and El Sakkout [51] describe a method called local probing, a type
of probe-backtrack search [50]. In probe-backtrack search, at each node in a tree
search, a probe is executed which tries to find a solution. This probe is some heuris-
tic or algorithm which treats only a subset of the constraints of the problem (the
“easy” constraints). If the probe produces a solution which also happens to satisfy
the remaining “hard” constraints of the problem, search can stop. Otherwise, the so-
lution provided by the probe is analyzed to find a violation of the “hard” constraints,
and a variable involved in the conflict is chosen for branching. This method as de-
scribed is not related to LS, but LS may be used in the probe. In [51], the authors
concentrate on scheduling problems. A probe is implemented which respects only
precedence constraints and the objective, while relaxing (ignoring) capacity con-
straints of resources. Resource capacities which are violated by the probe mean that
too many tasks execute at the same time. For a time when resources are oversub-
scribed, a branch is created which orders a pair of tasks (via the addition of a new
precedence constraint in the “easy” constraints), driving the search toward satisfac-
tion of the capacity constraints.

Lever [57] studies a network routing problem and proposed a combination of
tree search and LS for solving it. At a high level, the search is one based upon tree
search with propagation which decides for each potential demand whether it will be
routed or not. After each positive decision in the search tree, the demand is routed
with those already present, which may result in capacity violations in the network.
The infeasibility is repaired using an LS process. If the LS process does not succeed
in legally placing the new demand in conjunction with those already placed within
a certain limit, then the branch is pruned in the search tree, and the order is not
placed. Thus, the method is not complete, but can use constraint propagation to
determine that certain demands must be routed, for example. Lever demonstrates
that his method compares well to probe-backtrack search [50] on this problem.

Crawford [22] uses an LS technique to identify hard-to-satisfy clauses in an
SAT formulation and from that, variables which should be prioritized for early as-
signment inside a complete technique. Although the idea seems promising, results
indicate that only a 10% reduction in the number of backtracks is obtained.

Mazure et al. [61] mostly follow the same idea as [22], the essential difference
being that Mazure et al. run the LS process before each instantiation of a variable in
the complete process. After each LS, the variable which was the most “unsatisfiable”
(by appearing most in unsatisfied clauses) is chosen for branching. (The technique
can also find solutions when the LS technique delivers an assignment which satisfies
all constraints.) The authors compare their method to standard techniques (such as
choosing a variable in the shortest clause) and demonstrate large speedups on some
problems.

298 P. Shaw

Benoist and Bourreau [7] describe “branch-and-move,” a technique which uses
LS to guide a traditional depth-first search process. The idea of branch and move
is to perform LS on a tentative assignment to the unassigned variables, trying to
reduce constraint “unhappiness.” The unhappiness is defined for each constraint as
distance measure of the tentative assignment from the closest support. The algorithm
uses this information to generate branching decisions which concentrate on taking
corrective action to please the most unhappy constraint. The authors apply their
algorithm to a TV-break scheduling problem, and find that their methods outperform
MIP, LS, and standard CP techniques.

6 Conclusion

We have described, through reference to work carried out over the last two decades,
how CP and LS methods can be combined. While we could not be exhaustive (in par-
ticular, there is much research in the SAT community which could be influential, for
instance, using LS to prove non-satisfiability of SAT instances [4, 27, 84]), we have
tried to show how the domain has progressed in many different ways. That said,
we believe that there is still much to be done in this promising area. We list some
possibilities:

1. LNS has been an extremely effective technique, but to our knowledge, there is
very little work using LNS as a move operator inside another meta-heuristic tech-
nique, such as tabu search ([76] uses simulated annealing). Likewise, we also
know of no work trying to apply LNS to decision problems rather than optimiza-
tion problems. Finally, it would be interesting to see if intensification techniques
such as streamlining [42] could be used to better explore larger fragments.

2. LS for increasing filtering power [30, 96] is also a technique which deserves
more attention. The idea of finding a witness which shows that extensions to a
partial solution are fruitless is a powerful technique. Until now, these techniques
have been applied at a problem level. Of interest would be to find out if such
techniques can be applied to certain global constraints, or groups of constraints,
allowing their inferences to be re-used in different problems.

3. As it maintains a complete assignment and an exact evaluation of this assign-
ment, LS can be a good technique for finding out where the difficult part of a
problem may lie. We believe that more work (in the spirit of [61]) deserves to be
carried out to analyze the information derived from LS in order to perform better
branching.

As the problems we face become larger and more challenging and application
areas for optimization and automated reasoning widen, solving these problems will
result in hybridization through necessity: no single domain has all the best tricks.
So, we should look forward to more hybridization in the future, in which CP and LS
will certainly play a big part.

Constraint Programming and Local Search Hybrids 299

References

1. Aarts E, Lenstra JK (eds) (1997) Local search in combinatorial optimization. Princeton
University Press, Princeton

2. Adorf HM, Johnston MD (1990) A discrete stochastic neural network algorithm for constraint
satisfaction problems. In: Proceedings of the international joint conference on neural networks

3. Applegate D, Cook W (1991) A computational study of the job-shop scheduling problem.
ORSA J Comput 3(2):149–156

4. Audemard G, Simon L (2007) GUNSAT: a greedy local search for unsatisfiability. In: Pro-
ceedings of IJCAI-07, pp 2256–2261

5. De Backer B, Furnon V, Shaw P, Kilby P, Prosser P (2000) Solving vehicle routing problems
using constraint programming and metaheuristics. J Heuristics 6(4):501–523

6. Beck JC, Perron L (2000) Discrepancy-bounded depth first search. In: Proceedings of CP-AI-
OR 2000

7. Benoist T, Bourreau E (2003) Improving global constraints support by local search. In: The
CP 2003 workshop on cooperative solvers in constraint programming

8. Bent R, Van Hentenryck P (2004) A two-stage hybrid local search for the vehicle routing
problem with time windows. Transporatation Sci 38(4):515–530

9. Bent R, Van Hentenryck P (2006) A two-stage hybrid algorithm for pickup and delivery ve-
hicle routing problems with time windows. Comput Oper Res 33(4):875–893

10. Bent R, Van Hentenryck P (2007) Randomized adaptive spatial decoupling for large-scale
vehicle routing with time windows. In: Proceedings of AAAI-07, pp 173–178

11. Brailsford SC, Hubbard PM, Smith B, Williams HP (1996) The progressive party problem: a
difficult problem of combinatorial optimisation. Comput Oper Res 23:845–856

12. Brelaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):251–256
13. Carchrae T, Beck JC (2005) Cost-based large neighborhood search. In: Workshop on the

combination of metaheuristic and local search with constraint programming techniques
14. Carchrae T, Beck JC (2008) Principles for the design of large neighborhood search. J Math

Model Algorithm 8(3):245–270
15. Caseau Y (2006) Combining constraint propagation and meta-heuristics for searching a max-

imum weight hamiltonian chain. Oper Res 40:77–95
16. Caseau Y, Laburthe F (1995) Disjuntive scheduling with task intervals. Technical Re-

port 95–25, Laboratoire d’Informatique de l’École Normale Superieure, Departement de
Mathématiques et d’Informatique

17. Caseau Y, Laburthe F, Le Pape C, Rottembourg B (2001) Combining local and global search
in a constraint programming environment. Knowl Eng Rev 16:41–68

18. Caseau Y, Silverstein G, Laburthe F (2001) Learning hybrid algorithms for vehicle routing
problems. Theor Pract Logic Program 1(6):779–806

19. Caseau Y, Laburthe F (1999) Heuristics for large constrained vehicle routing problems.
J Heuristics 5:281–303

20. Chabrier A, Danna E, Le Pape C, Perron L (2004) Solving a network design problem. Ann
Oper Res 130:217–239

21. Codognet P, Diaz D (2001) Yet another local search method for constraint solving. In:
Proceedings of the international symposium on stochastic algorithms: foundations and
applications, pp 73–90

22. Crawford JM (1993) Solving satisfiability problems using a combination of systematic and
local search. In: Second DIMACS challenge: cliques, coloring, and satisfiability

23. Danna E, Perron L (2003) Structured vs. unstructured large neighborhood search: a case study
on job-shop scheduling problems with earliness and tardiness costs. In: Proceedings of CP
2003, pp 817–821

24. Davenport A, Tsang E, Wang C, Zhu K (1994) GENET: a connectionist architecture
for solving constraint satisfaction problems by iterative improvement. In: Proceedings of
AAAI-94

300 P. Shaw

25. David P (1997) A constraint-based approach for examination timetabling using local repair
techniques. In: Selected papers from the second international conference on practice and the-
ory of automated timetabling, pp 169–186

26. Fahle T, Schamberger S, Sellmann M (2001) Symmetry breaking. In: Proceedings of CP 2001,
pp 93–107

27. Fang H, Ruml W (2004) Complete local search for propositional satisfiability. In: Proceedings
of AAAI-04, pp 161–166

28. Focacci F, Laburthe F, Lodi A (2001) Local search and constraint programming. In: Proceed-
ings of the metaheuristics international conference (MIC ’01), pp 451–454

29. Focacci F, Milano M (2001) Global cut framework for removing symmetries. In: Proceedings
of CP 2001, pp 77–92

30. Focacci F, Shaw P (2002) Pruning sub-optimal search branches using local search. In: Pro-
ceedings of CP-AI-OR 2002, pp 181–189

31. Fukunaga AS, Korf RE (2005) Bin-completion algorithms for multicontainer packing and
covering problems. In: Proceedings of IJCAI-05, pp 117–124

32. Galinier P, Hao J-K (2004) A general approach for constraint solving by local search. J Math
Model Algorithm 3(1):78–88

33. Galinier P, Hertz A, Paroz S, Pesant G (2008) Using local search to speed up filtering algo-
rithms for some NP-hard constraints. In: Proceedings of CP-AI-OR 2008, pp 298–302

34. Geelen PA (1992) Dual viewpoint heuristics for binary constraint satisfaction problems.
In: Proceedings of ECAI-92, pp 31–35

35. Gendreau M, Hertz A, Laporte G, Stan M (1998) A generalized insertion heuristic for the
traveling salesman problem with time windows. Oper Res 46(3):330–335

36. Gent I, Hoos H, Rowley A, Smyth K (2003) Using stochastic local search to solve quantified
boolean formulae. In: Proceedings of CP 2003, pp 348–362

37. Gent IP, MacIntyre E, Prosser P, Walsh T (1996) The constrainedness of search. In: Proceed-
ings of AAAI-96, pp 246–252

38. Gent IP (2002) Arc consistency in SAT. In: Proceedings of ECAI – 02, pp 121–125
39. Ginsberg M, McAllester DA (1994) GSAT and dynamic backtracking. In: International con-

ference on the principles of knowledge representation (KR94), pp 226–237
40. Glover F, Laguna M (1997) Tabu Search. Kluwer, Boston
41. Godard D, Laborie P, Nuijten W (2005) Randomized large neighborhood search for cumula-

tive scheduling. In: Proceedings of ICAPS, pp 81–89
42. Gomes C, Sellmann M (2004) Streamlined constraint reasoning. In: Proceedings of CP 2004,

pp 274–289
43. Gomes C, Selman B (1997) Algorithm portfolio design: theory vs. practice. In: Proceedings

of UAI-97, pp 190–197
44. Harvey W, Ginsberg M (1995) Limited discrepancy search. In: Proceedings of IJCAI-95,

pp 607–615
45. Hoos H, Tsang E (2006) Chapter 5. Local search methods. In: Handbook of constraint pro-

gramming. Elsevier, Amsterdam
46. Huang J (2008) Universal booleanization of constraint models. In: Proceedings of CP 2008,

pp 144–158
47. Joslin DE, Clements DP (1999) “Squeaky wheel” optimization. J Artif Intell Res 10:353–373
48. Bayardo RJ Jr, Schrag RC (1997) Using CSP look-back techniques to solve real-world SAT

instances. In: Proceedings of AAAI-97, pp 203–208
49. Jussien N, Lhomme O (2002) Local search with constraint propagation and conflict-based

heuristics. Artif Intell 139(1):21–45
50. Kamarainen O, El Sakkout H (2002) Local probing applied to network routing. In: Proceed-

ings of CP-AI-OR 2004, pp 173–189
51. Kamarainen O, El Sakkout H (2002) Local probing applied to scheduling. In: Proceedings of

CP 2002, pp 155–171
52. Kautz H, Horvitz E, Ruan Y, Gomes C, Selman B (2002) Dynamic restart policies. In: Pro-

ceedings of AAAI-02, pp 674–682

Constraint Programming and Local Search Hybrids 301

53. Kilby P, Prosser P, Shaw P (2000) A comparison of traditional and constraint-based heuristic
methods on vehicle routing problems with side constraints. Constraints 5(4):389–414

54. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc Am Math Soc 7(1):48–50

55. Laborie P, Godard D (2007) Self-adapting large neighborhood search: application to single-
mode scheduling problems. In: Proceedings of MISTA-07, pp 276–284

56. Langley P (1992) Systematic and nonsystematic search strategies. In: Proceedings of the first
international conference on artificial intelligence planning systems, pp 145–152

57. Lever J (2005) A local search/constraint propagation hybrid for a network routing problem.
Int J Artif Intell Tool 14(1):43–60

58. Lhomme O (2002) Amortized random backtracking. In: Proceedings of CP-AI-OR 2002, pp
21–32

59. Lin S (1965) Computer solutions of the traveling salesman problem. Bell Syst Tech J
44:2245–2269

60. Mautor T, Michelon P (1997) Mimausa : a new hybrid method combining exact solution and
local search. In: Second international conference on meta-heuristics

61. Mazure B, Saı̈s L, Grégoire É (1998) Boosting complete techniques thanks to local search
methods. Ann Math Artif Intell 22:319–331

62. Michel L, Van Hentenryck P (1999) Localizer: a modeling language for local search.
INFORMS J Comput 11(1):1–14

63. Michel L, Van Hentenryck P (2000) Localizer. Constraints 5:43–84
64. Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a heuristic repair

method for constraint-satisfaction and scheduling problems. Artif Intell 58(1):161–205
65. Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24(11):

1097–1100
66. Morris P (1993) The breakout method for escaping from local minima. In: Proceedings of

AAAI-93, pp 40–45
67. Nareyek A (2001) Using global constraints for local search. In: Constraint programming and

large scale discrete optimization. DIMACS, Vol 57, pp 9–28
68. Palpant M, Artigues C, Michelon P (2004) LSSPER: Solving the resource-constrained project

scheduling problem with large neighborhood search. Ann Oper Res 131:237–257
69. Perron L (2002) Parallel and random solving of a network design problem. In: AAAI work-

shop on probabilistic approaches in search, pp 35–39
70. Perron L (2003) Fast restart policies and large neighborhood search. In: Proceedings of

CP-AI-OR 2003
71. Perron L, Shaw P (2004) Combing forces to solve the car sequencing problem. In: Proceed-

ings of CP-AI-OR 2004, pp 225–239
72. Perron L, Shaw P, Furnon V (2004) Propagation guided large neighborhood search.

In: Proceedings of CP 2004, pp 468–481
73. Pesant G, Gendreau M (1996) A view of local search in constraint programming.

In: In Proceedings of CP ’96, pp 353–366
74. Pesant G, Gendreau M (1999) A constraint programming framework for local search methods.

J Heuristics 5(3):255–279
75. Pesant G, Gendreau M, Rousseau J-M (1997) GENIUS-CP: A generic single-vehicle routing

algorithm. In: Proceedings of CP ’97, pp 420–433
76. Pisinger D, Røpke S (2007) A general heuristic for vehicle routing problems. Comput Oper

Res 34(8):2403–2435
77. Røpke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup

and delivery problem with time windows. Transportation Sci 40:455–472
78. Røpke S, Pisinger D (2006) A unified heuristic for a large class of vehicle routing problems

with backhauls. Eur J Oper Res 171(3):750–775
79. Prescott-Gagnon E, Desaulniers G, Rousseau L-M (1999) A branch-and-price-based large

neighborhood search algorithm for the vehicle routing problem with time windows. Networks
54(4):190–204

302 P. Shaw

80. Prestwich S (2000) A hybrid search architecture applied to hard random 3-SAT and low-
autocorrelation binary sequences. In: Proceedings of CP 2000, pp 337–352

81. Prestwich S (2001) Local search and backtracking vs non-systematic backtracking. In: AAAI
2001 Fall symposium on using uncertainty within computation, pp 109–115

82. Prestwich S (2001) Trading completeness for scalability: hybrid search for cliques and rulers.
In: Proceedings of CP-AI-OR 2001, pp 159–174

83. Prestwich S (2002) Combining the scalability of local search with the pruning techniques of
systematic search. Ann Oper Res 115:51–72

84. Prestwich S, Lynce I (2006) Local search for unsatisfiability. In: Proceedings of SAT 2006,
pp 283–296

85. Årgen M, Flener P, Pearson J (2005) Incremental algorithms for local search from existential
second-order logic. In: Proceedings of CP 2005, pp 47–61

86. Årgen M, Flener P, Pearson J (2005) Set variables and local search. In: Proceedings of CP-
AI-OR 2005, pp 19–33

87. Refalo P (2004) Impact-based search strategies for constraint programming. In: Proceedings
of CP 2004, pp 557–571

88. Régin JC (1994) An filtering algorithm for constraints of difference in CSPs. In: Proceedsings
of AAAI-94, pp 362–367

89. Richards ET, Richards B (1998) Non-systematic search and learning: an empirical study. In:
Proceedings of CP-98, pp 370–384

90. Richter Y, Freund A, Naveh Y (2006) Generalizing AllDifferent: the SomeDifferent con-
straint. In: Proceedings of CP 2006, pp 468–483

91. Rousseau L-M, Gendreau M, Pesant G (2002) Using constraint-based operators to solve the
vehicle routing problem with time windows. J Heuristics 8(1):43–58

92. Savelsbergh MWP (1985) Local search in routing problems with time windows. Ann Oper
Res 4:285–305

93. Schaerf A (1997) Combining local search and look-ahead for scheduling and constraint satis-
faction problems. In: Proceedings of IJCAI-97, pp 1254–1259

94. Schrimpf G, Schneider J, Stamm-Wilbrandt H, Dueck G (2000) Record breaking optimization
results using the ruin and recreate principle. J Comput Phys 159:139–171

95. Sellmann M, Ansótegui C (2006) Disco-Novo-GoGo: integrating local search and complete
search with restarts. In: Proceedings of AAAI-06, pp 1051–1056

96. Sellmann M, Harvey W (2002) Heuristic constraint propagation – using local search for in-
complete pruning and domain filtering of redundant constraints for the social golfer problem.
In: Proceedings of CP-AI-OR 2002, pp 191–204

97. Selman B, Kautz HA, Cohen B (1994) Noise strategies for improving local search. In: Pro-
ceeedings of AAAI-94, pp 337–343

98. Selman B, Levesque H, Mitchell D (1992) A new method for solving hard satisfiability prob-
lems. In: Proceedings of AAAI-92, pp 440–446

99. Shaw P (1998) Using constraint programming and local search methods to solve vehicle rout-
ing problems. In: Proceedings of CP ’98, pp 417–431

100. Shaw P, De Backer B, Furnon V (2002) Improved local search for CP toolkits. Ann Oper Res
115:31–50

101. Solnon C (2002) Ants can solve constraint satisfaction problems. IEEE transactions on evo-
lutionary computation 6(4):347–357

102. Stuckey PJ, De La Banda MG, Maher M, Marriott K, Slaney J, Somogyi Z, Wallace M,
Walsh T (2005) The G12 project: mapping solver independent models to efficient solutions.
In: Proceedings of the 21st international conference on logic programming. Lecture notes in
computer science, vol 3668 . Springer, Heidelberg, pp 9–13

103. Taillard E (2003) Heuristic methods for large centroid clustering problems. J Heuristics
9(1):51–73

104. Taillard ED, Voss S (2001) POPMUSIC: Partial optimization metaheuristic under special
intensification conditions. In: Hansen P, Ribeiro C (eds) Essays and surveys in metaheuristics.
Kluwer, pp 613–629

Constraint Programming and Local Search Hybrids 303

105. Tamura N, Banbara M (2008) Sugar: A CSP to SAT translator based on order encoding. In:
Second international CSP solver competition, pp 65–69

106. Tamura N, Taga A, Kitagawa S, Banbara M (2006) Compiling finite linear CSP into SAT. In:
Proceedings of CP 2006, pp 590–603

107. Van Hentenryck P, Michel L (2003) Control abstractions for local search. In: Proceedings of
CP 2003, pp 65–80

108. Van Hentenryck P, Michel L (2005) Constraint-based local search. MIT Press, Cambridge
109. Van Hentenryck P, Michel L, Liu L (2004) Constraint-based combinators for local search. In:

Proceedings of CP 2006, pp 47–61
110. Voudouris C, Tsang E (1999) Guided local search and its application to the travelling sales-

man problem. Eur J Oper Res 113:469–499
111. Walser JP (1997) Solving linear pseudo-boolean constraint problems with local search. In:

Proceedings of AAAI-97, pp 269–274
112. Walsh T (2000) SAT v CSP. In: Proceedings of CP 2000, pp 441–456
113. Yagiura M, Ibaraki T, Glover F (2004) An ejection chain approach for the generalized assign-

ment problem. INFORMS J Comput 16(2):133–151
114. Yokoo M (1994) Weak-commitment search for solving constraint satisfaction problems. In:

Proceedings of AAAI-94, pp 313–318
115. Yugami N, Ohta Y, Hara H (1994) Improving repair-based constraint satisfaction methods by

value propagation. In: Proceedings of AAAI-94, pp 344–349
116. Zhang J, Zhang H (1996) Combining local search and backtracking technqiues for constraint

satisfaction. In: Proceedings of AAAI-96, pp 369–374

Hybrid Metaheuristics

Christian Blum, Jakob Puchinger, Günther Raidl, and Andrea Roli

Abstract One of the most interesting recent trends for what concerns research on
metaheuristics is their hybridization with other techniques for optimization. In fact,
the focus of research on metaheuristics has notably shifted from an algorithm-
oriented point of view to a problem-oriented point of view. In other words, in
contrast to promoting a certain metaheuristic, as, for example, in the eighties and the
first half of the nineties, nowadays researchers focus much more on solving, as best
as possible, the problem at hand. This has inevitably led to research that aims at com-
bining different algorithmic components for the design of algorithms that are more
powerful than the ones resulting from the implementation of pure metaheuristic
strategies. Interestingly, the trend of hybridization is not restricted to the com-
bination of algorithmic components originating from different metaheuristics, but
has also been extended to the combination of exact algorithms and metaheuristics.
In this chapter, we provide an overview of the most important lines of hybridization.
In addition to representative examples, we present a literature review for each of the
considered hybridization types.

1 Introduction

The term metaheuristics was coined in the Artificial Intelligence and Operations
Research communities [23, 50]. It refers to general techniques for optimization that
are not specific to a particular problem. Genetic and evolutionary algorithms, tabu
search, simulated annealing, iterated local search, ant colony optimization, etc., are
typical representatives falling under this generic term. Each of them has an individ-
ual historical background, follows certain paradigms and philosophies, and puts one
or more particular strategic concepts in the foreground.

C. Blum (�)
ALBCOM Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: cblum@lsi.upc.edu

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 9,
c� Springer Science+Business Media, LLC 2011

305

cblum@lsi.upc.edu

306 C. Blum et al.

Over the last years, a large number of algorithms were reported that do not
purely follow the concepts of one single traditional metaheuristic. On the con-
trary, they combine various algorithmic ideas, often originating from other branches
of Artificial Intelligence, Operations Research, and Computer Science in general.
These approaches are commonly referred to as hybrid metaheuristics. The lack of
a precise definition of this term is sometimes subject to criticism. In our opinion,
however, the relatively open nature of this term is rather helpful, as strict border-
lines between related fields of research are often a hindrance for creative thinking
and the exploration of new research directions.

The motivation behind the hybridization of different algorithmic concepts is usu-
ally to obtain better performing systems that exploit and unite advantages of the
individual pure strategies, that is, hybrids are believed to benefit from synergy.
In fact, choosing an adequate combination of multiple algorithmic concepts is often
the key for achieving top performance in solving many hard optimization problems.
However, developing a highly effective hybrid approach is, in general, a difficult task
and sometimes even considered an art. Nevertheless, there are several hybridization
types that have proven successful on many occasions, and they can provide some
guidance.

The growing popularity of this line of research is documented by rather
recent conferences and workshops such as CPAIOR [81, 106], Hybrid Metaheuris-
tics [6, 13], and Matheuristics [73]. Moreover, the first book specifically devoted to
hybrid metaheuristics has recently been published in 2008 [19]. In this chapter, we
provide an overview of hybrid metaheuristics by illustrating prominent and paradig-
matic examples, which range from the integration of metaheuristic techniques
among themselves to the hybridization of metaheuristics with constraint and math-
ematical programming. The interested reader can find other reviews on hybrid
metaheuristics in [19, 32, 39, 72, 92, 94].

2 Examples and Literature Overview

This section is devoted to the presentation of examples and short literature
overviews concerning five important categories of hybrid metaheuristics. More
specifically we focus on the hybridization of metaheuristics with (meta-)heuristics,
constraint programming, tree search methods, problem relaxations, and dynamic
programming. Each of the five categories mentioned above is treated in its own
subsection. In each subsection, first, two representative examples are outlined, and
then, a short literature overview is provided.

2.1 Hybridization of Metaheuristics with (Meta-)Heuristics

The hybridization of metaheuristics with (meta-)heuristics is quite popular,
especially for what concerns the use of local search methods inside population-
based methods. Indeed, most of the successful applications of evolutionary

Hybrid Metaheuristics 307

computation and ant colony optimization make use of local search procedures for
refining the generated solutions. This is because the major strength of population-
based methods is to be found in their exploration capability. At the start of the
search, they generally try to capture a global picture of the search space, and typ-
ically, rather simple and less problem-dependent operations are then iteratively
applied to derive diverse new solutions successively focusing the search on more
promising regions of the search space. Conversely, the strength of local search
methods is their rather fast intensification capability, that is, the capability of
quickly finding better solutions in the vicinity of given starting solutions. In sum-
mary, population-based methods are good in identifying promising areas of the
search space in which local search methods can then quickly determine the best
solutions. Therefore, this type of hybridization is often very successful. In the
field of evolutionary algorithms, these hybrids even carry their own name, memetic
algorithms [66].

In contrast to rather standard lines of hybridization, in this section, we present
two examples that recently have received considerable attention. First, we present
so-called multilevel techniques, and as a second example, we shortly outline the
main idea of hyper-heuristics.

2.1.1 Multilevel Techniques

Multilevel techniques [110, 111] are heuristic frameworks with the potential of
making the search process of a metaheuristic more effective and efficient. They have
their origin in multigrid methods (see [24] for an overview) and have been discov-
ered for combinatorial optimization by Walshaw et al. with the application to mesh
partitioning [112], the traveling salesman problem [109], and graph coloring [110].

The basic idea of a multilevel technique is simple. Starting from the original
problem instance under consideration, smaller and smaller instances are obtained
by successive coarsening until some stopping condition is satisfied. This process
generates a hierarchy of problem instances in which the problem instance assigned
to a certain level is always smaller than (or of equal size as) the problem instance
assigned to the next higher level. Then, a solution to the smallest problem instance
is computed and successively transformed into a solution to the instance of the next
level until a solution for the original problem instance is obtained. At each level,
the determined solution may be subject to a refinement process. This is where meta-
heuristics come into play. They may be used for the generation of the solution to
the lowest level, as well as for the refinement step at the other levels. This idea is
illustrated in Fig. 1. In some multilevel approaches, a solution obtained for the orig-
inal problem in this way is further used to guide a successive re-coarsening, which
is again followed by the refinement process, and both of these phases are iterated to
obtain even better solutions.

In general, applying metaheuristics in the context of a multilevel framework is
only possible if an efficient and sensible way of coarsening a problem instance, and
expanding solutions to higher levels, can be found. This is the case, for example,

308 C. Blum et al.

P

P 1

P n�1

P n

s

s1

sn�1

sn

Refinement

Refinement

Refinement

Refinement

coarsen

coarsen

expand

expand

Fig. 1 General idea of a multilevel technique. The original problem instance is P . By means of
an iterative process this problem instance is simplified until a stopping criterion causes to stop
this process at some level n with instance P n. Then, a metaheuristic may be used to generate
a solution sn for instance P n, which is subsequently expanded into a solution sn�10

to instance
P n�1 of the next higher level. A metaheuristic may then be used to refine solution sn�10

, resulting
in a possibly improved solution sn�1. This process is repeated until a solution for the original
problem instance is obtained

for many graph-based problems, where the coarsening of a problem instance is
done by means of edge contractions. A recent survey over existing applications is
given in [111].

Finally, so-called variable fixing strategies are to some extent related to multi-
level techniques. Hereby, variables of the original problem are fixed to certain values
(according to some, usually heuristic, criterion) and so optimization is performed
over the resulting restricted search space. Examples of effective variable fixing
strategies are the core concepts for knapsack problems [85, 90].

2.1.2 Hyper-Heuristics

One of the main arguments in favor of metaheuristics has always been their
generality. In principle, any metaheuristic can be applied to any combinatorial
optimization problem. However, in recent years the main focus of many meta-
heuristic works has been on performance rather than generality. In other words, in
many cases researchers tried to obtain the best possible performance for a specific
problem, which led to a higher degree of customization. More customization, in
turn, led to a decreasing amount of generality.

With this in mind, a recent branch of research on metaheuristics explicitly aims
at the development of general methods that can potentially be applied to many
related problems without much adaption. The aim is to raise the level of gener-
ality at which optimization systems operate. Algorithms adhering to this goal are
nowadays known as hyper-heuristics [25]. They work on a higher level than clas-
sical metaheuristics, in the sense that they do not directly operate on the search
space of the problem under consideration. Instead, they operate on a search space

Hybrid Metaheuristics 309

consisting of lower-level heuristics–or even metaheuristics–for the tackled problem.
Hyper-heuristics are broadly concerned with selecting the right (meta-)heuristic at
any situation.

Timetabling and scheduling problems have shown to be a natural field of ap-
plication for hyper-heuristics (see, for example, [26, 34]). In fact, one of the first
applications of a hyper-heuristic is the one to the open shop scheduling (OSS) prob-
lem [41], even though in the term hyper-heuristics was still to come. The OSS prob-
lem can be formalized as follows. Given is a finite set of operations ODfo1; :::; ong
which is partitioned into disjoint subsets M D fM1; : : : ; MjM jg. The operations in
Mi 2M have to be processed on the same machine. For the sake of simplicity, each
set Mi 2 M of operations is identified with the machine they have to be processed
on, and therefore Mi is referred to as a machine. Set O is additionally partitioned
into disjoint subsets J D fJ1; : : : ; JjJ jg, where the set of operations Jj 2 J is
called a job. Moreover, each operation o 2 O has a fixed processing time p.o/.
Each machine can process at most one operation at a time. Operations must be pro-
cessed without preemption (that is, once the processing of an operation has started,
it must be completed without interruption). Operations belonging to the same job
must be processed sequentially. A solution is obtained by assigning to each oper-
ation a time at which its processing is started. Together with the processing times,
these starting times imply stopping times for all operations. The goal is to minimize
the maximal stopping time, which is known as makespan optimization.

Fang et al. [41] proposed the use of an evolutionary hyper-heuristic that works
on individuals with the following representation. Each individual is a string
sD .a0; h0; : : : ; an; hn/ where all ai 2 f1; : : : ; jJ jg refer to jobs and all hi 2 H re-
fer to heuristics identifiers, where H is a set of different heuristics. Given a string s,
a schedule builder generates a solution as follows. For i D 1; : : : ; n, it schedules the
first unscheduled operation of the ai -th job with unscheduled operations according
to heuristic hi . The schedule builder keeps a circular list of uncompleted jobs to
determine the ai -th job with a modulo operation. The resulting hyper-heuristic
can accordingly be seen as an evolutionary algorithm that works with an indirect
representation.

2.1.3 Literature Overview

As mentioned already in the introduction to this section, the most popular way of
hybridizing different (meta-)heuristic components concerns the use of local search
methods within population-based techniques. In the field of evolutionary computa-
tion (EC), this type of hybridization has even developed into its own branch of re-
search known as memetic algorithms. Interestingly, in recent years, a few examples
have appeared for the use of components from population-based methods within
metaheuristics based on local search. One of these examples concerns population-
based iterated local search [103] where iterated local search is extended from
working on a single solution to working on a population which is managed in the
style of evolution strategies. Concerning additional examples, the paper by Lozano
and Garcı́a-Martı́nez [68] advocates the use of an evolutionary algorithm as a

310 C. Blum et al.

perturbation technique within iterated local search, while Resende et al. [96] devise
several versions of a hybrid algorithm based on greedy randomized adaptive search
procedures (GRASP) and path relinking methodologies for the max–min diversity
problem. The hybrids include, for example, evolutionary path relinking where the
pool of elite solutions is evolved in order to be both diverse and of high quality.

Another example is the so-called proximate optimality principle (POP), which
was first mentioned by Glover and Laguna in the context of tabu search [49]. It refers
to the general intuition that good solutions are likely to have a similar structure and
can therefore be found close to each other in the search space. Fleurent and Glover
transfered this principle in [44] from complete to partial solutions in the context of
GRASP. They suggested that mistakes introduced during the construction process
may be undone by applying local search during (and not only at the end of) the
GRASP construction phase. They proposed a practical implementation of POP in
GRASP by applying local search at a few stages of the construction phase only.
Another application of this concept can be found in [11] for the job shop scheduling
problem.

Recent hybridizations based on a technique called problem kernelization are re-
lated to multilevel strategies and variable fixing. Problem kernelization can be seen
as a more systematic approach based on tools from the field of parameterized com-
plexity. The idea is to reduce a given problem instance in polynomial time to a
so-called problem kernel such that an optimal solution to the problem kernel can
be transformed in polynomial time to an optimal solution to the original problem
instance. In [47], Gilmour and Dras propose several different ways of using the in-
formation given by the kernel of a problem instance, making the ant colony system
more efficient for solving the minimum vertex cover problem. The most intuitive
version applies the ant colony system directly to the problem kernel and subse-
quently transforms the best solution obtained for the kernel into a solution to the
original problem instance.

An important branch of hybridization is the enhancement of metaheuristics with
additional techniques for improving run-time, results, or both. Montemanni and
Smith [78] propose an algorithm to solve the frequency assignment problem that
is based on tabu search. Hereby, tabu search is enhanced by heuristic manipulation,
a mechanism based on the idea that adding constraints to a problem results in a
search space reduction, which, in turn, may facilitate the solution of the problem.
Another example is the paper by Chaves et al. [28] that proposes a solution method
for the capacitated centered clustering problem based on so-called clustering search.
Hereby, a metaheuristic is used to create a set of initial solutions. These solutions are
then clustered. Finally, local search is used to find possibly better solutions within
the cluster regions.

2.2 Hybridization of Metaheuristics With Constraint
Propagation Techniques

The rationale for integrating metaheuristics and constraint programming (CP) is that
their respective strengths have a high degree of complementarity, and therefore, it is

Hybrid Metaheuristics 311

natural to try to combine them in order to exploit possible synergies. Informally,
we may ascribe the success of such combinations to the fact that metaheuristic
algorithms are very effective in finding good-quality solutions to optimization prob-
lems while requiring a limited amount of computational resources. CP, instead, is
particularly effective in finding feasible solutions to constrained problems. More-
over, the respective strengths are also a weakness of the counterpart, as it is known
that metaheuristics are, in general, not particularly effective in tackling constraint
satisfaction problems, while CP alone usually does not achieve an extraordinary
high performance in solving (loosely constrained) optimization problems.

The integration of (meta-)heuristics and CP dates back to the late 1990s with the
works by Pesant and Gendreau [82, 83] and their follow-ups [36, 100]. It is to be
also noted that CPAIOR conferences have contributed considerably to research in
this specific area.

In this section, we outline two among the most recent and paradigmatic ex-
amples of combination of metaheuristics and constraint propagation techniques.
In Sect. 2.3, examples concerning tree-search will be illustrated. These two exam-
ples are chosen on purpose as they have a quite different nature and they show two
of the main perspectives from which the integration of metaheuristics and CP can
be conceived. The interested reader is also referred to Chap. 8 of this book which
provides an in-depth discussion of the integration of local search and CP methods.

2.2.1 Ant Colony Optimization Hybridized with Constraint Programming

The combination of ant colony optimization (ACO) and CP is a representative ex-
ample of the hybridization of two, considerably different, constructive techniques.
ACO is a population-based metaheuristic inspired by the ant foraging behavior and
further formalized as a model-based search metaheuristic [14,38]. In ACO, solutions
are built in parallel by a probabilistic constructive procedure. The parameters of the
probabilistic model upon which the procedure is based are dynamically adjusted by
using a learning mechanism, very similar in spirit to reinforcement learning. In ACO
terminology, it is common to denote the construction of one solution by the action
of an ant which iteratively adds a solution component to the current partial solution.
The choice of the component is probabilistic and biased toward components with a
higher value of pheromone, which accounts for the attractiveness of a solution com-
ponent. Once the solution is built, its components are rewarded by adding a quantity
of pheromone positively correlated with solution quality. This operation increases
the probability that a component belonging to a high-quality solution is chosen in
the successive iteration. A more formal, yet slightly simplified, description of the
general algorithm consists in viewing the ant’s solution construction as the defini-
tion of one path along the search tree from the root note to one leaf. In one iteration
of the algorithm, m solutions are independently built. The decisions taken at the
choicepoints are based on a probabilistic model, whose parameters are updated as a
function of the quality of the m solutions constructed. Thus, paths leading to good-
quality solutions are reinforced from iteration to iteration and decisions which led

312 C. Blum et al.

to good-quality solutions are more likely to be taken in the future. The overall result
of this process is that good-quality solutions emerge by sampling the tree on the ba-
sis of a dynamic probabilistic model. For the sake of completeness, we also remark
that the probabilistic model is usually combined with heuristic information, and the
resulting search process is a mixture of randomized greedy search and learning.

The integration of ACO and CP holds the hope of effectively combining the
learning capabilities of ACO with CP’s power of constraint handling. The descrip-
tion we provide in the following is a succinct illustration of the main ideas behind
the techniques proposed by Meyer in [76], in which this combination is described
along with experimental results for a machine scheduling problem with sequence-
dependent setup times.

The combination of ACO and CP can be seen from two dual standpoints. It is
worthwhile to briefly outline both of them, even though the resulting method is vir-
tually the same. The first perspective consists in focusing on solution construction
in ACO and viewing CP as a tool employed by the ants while constructing a solu-
tion. Indeed, the usual approach for constraint handling in ACO–and metaheuristics
in general–is to relax (a subset of) the problem constraints and penalize complete
solutions violating such constraints. This procedure might not be very effective, es-
pecially in case of tightly constrained optimization problems. Hence, if ants use
CP for finding a feasible solution, search is concentrated on finding a good-quality
solution among the feasible ones and a large amount of computational effort can
be saved. It is crucial at this point to observe that, in this algorithmic scheme, the
probabilistic/greedy decision mechanism of ACO comes into play in the context
of variable and value selection. In other words, while CP provides filtering, ACO
is in charge of performing labeling. Reverting this point of view, we can interpret
ACO as a heuristic for guiding search at each node inside a CP framework. Thus,
variable and value selection is not only based on heuristics, but also on informa-
tion derived from search history in the form of a probabilistic model, dynamically
updated by means of a learning mechanism. Hence, the second perspective for in-
terpreting ACO and CP hybrids is that ACO learns an effective labeling inside a
CP solution process. As an example, let us consider Algorithm 1, which is a slight
variation of the original one from [76], in which we show a general scheme of a
solver based on CP and ACO. The algorithm is a variant of a classical CP search.
The main differences are the procedure propagate and label that makes use of
the probabilistic construction mechanism of ACO for variable and value order-
ing and the procedure update probabilistic model that updates the pheromone
values.

Besides the already mentioned work by Meyer (and references therein), for com-
pleteness, we also mention another work that combines ACO with CP for tackling
CSPs. In this work, the objective function that ACO tries to maximize is the number
of assigned variables1 and the algorithm has been successfully applied to the car
sequencing problem [64].

1 A very similar approach has been proposed by Prestwich [88].

Hybrid Metaheuristics 313

Algorithm 1 CP-with-ACO
Input: Variables x1; : : : ; xn, domains D1; : : : ; Dn, constraints c1; : : : ; cn

Output: A feasible assignment, optimal w.r.t. a given objective function or nil if no feasible
solution exists

Setup initial domains for variables x1; : : : ; xn

Post initial constraints
while search not completed do

for each ant do
propagate and label.x1; : : : ; xn/

end for
update probabilistic model
if new best solution found then

Post upper bound constraint
end if

end while

2.2.2 Solution-Guided Multi-Point Constructive Search

Solution-guided multi-point constructive search (SGMPCS) was introduced by
Beck [9]. It defines a framework in which it is possible to combine any CP technique
with search characteristics typical for metaheuristics. It is commonly acknowl-
edged that effective metaheuristics optimize the balance between intensification–
extensive search in the proximity of good-quality solutions and exploitation of
search information–and diversification–exploration of unvisited search space ar-
eas [23]. This very property is exploited inside a CP search by SGMPCS, whose
pseudo-code is shown in Algorithm 2, as it appears in [9]. The algorithm starts by
building a set of elite solutions E which will be used to guide solution construction;
this set of solutions will also be updated during search, and it can be initially de-
rived by collecting the best solutions returned by several runs of the best performing
metaheuristic algorithms for the problem at hand. In the following, we will assume
that the cost function has to be minimized. In this description, we focus only on the
part of the algorithm from lines 11 to 18, as the first part is a slight variation of lo-
cal search without solution guidance. Here, one elite solution r is randomly chosen
among the set E and used as a reference for the value heuristic of the CP search
process (line 14). Before starting the CP search, an upper bound on the objective
function is set (line 4 and line 12). Two policies can then be adopted, depending on
the propagation strength: (a) global bound, that is, the upper bound is set to c� � 1,
where c� is the (integer) cost of the best solution found so far, and (b) local bound,
that is, the bound is either set to the cost of the worst elite solution minus one, or the
cost of the starting solution minus one.

The CP search is performed in line 14. Let x be the decision variable chosen
by the variable heuristic to be assigned, and let v be the value assigned to x in r ;
if v is in dom.x/ then the assignment hx D vi is made, otherwise another value
in dom.x/ is chosen by any other value heuristic. In this way, the elite solution
serves as a reference and search is first focused on the neighborhood of r , thus

314 C. Blum et al.

Algorithm 2 SGMPCS-basic
1: initialize elite solution set E

2: while termination criteria unmet do
3: if randŒ0; 1/ < p then
4: set upper bound on cost function
5: set fail limit, l

6: s search.;; l/

7: if s ¤ ; ^ s is better than worst.E/ then
8: replace worst.E/ with s

9: end if
10: else
11: r randomly chosen element of E

12: set upper bound on cost function
13: set fail limit, l

14: s search.r; l/

15: if s ¤ ; ^ s is better than r then
16: replace r with s

17: end if
18: end if
19: end while
20: return best.e/

performing a kind of intensification.2 Search then continues until the search limit is
reached, and the set of elite solutions is eventually updated. The search limit l can
be chosen in such a way that it is progressively increased and the algorithm ulti-
mately performs an exhaustive search, thus preserving the completeness of the CP
search.

The combination of the solution-guided value heuristic and CP search, with a
bound on the objective function, provides a very effective and robust solver, as in-
deed proved by recent results on the job shop scheduling problem [113], where an
iterated tabu search is used to initialize SGMPCS.

2.2.3 Literature Overview

The publications on the integration of metaheuristics and CP are abundant in the
literature and range from theory of algorithms to applications. A survey on possible
ways of integrating metaheuristics and CP is provided by Focacci et al. in [45]. With
a bit of oversimplification, we can consider three main approaches for the integration
of metaheuristics (especially local search) and CP:

1. Metaheuristics are applied before CP, providing a valuable input, or vice versa.
2. Metaheuristics, mainly local search, use CP to efficiently explore the neighbor-

hood of the current solution.

2 A similar strategy has also been proposed in [77].

Hybrid Metaheuristics 315

3. CP applies a metaheuristic in order to improve a solution (i.e., a leaf of the tree)
or a partial solution (i.e., an inner node). Metaheuristic concepts can also be used
to obtain incomplete but efficient tree exploration strategies.

The first approach can be seen as an instance of cooperative search, and it rep-
resents a rather loose integration. The second approach combines the advantages
of a fast search space exploration by means of a metaheuristic with the efficient
neighborhood exploration performed by a systematic method. A prominent ex-
ample of such a kind of integration are large neighborhood search and related
approaches [27,99] and CP-based local branching [65]. More examples can be found
in [37, 82, 83]. The third approach preserves the search space exploration based on
a systematic search (such as tree search), but sacrifices the exhaustive nature of the
search [48,55,56,77]. The hybridization is usually achieved by integrating concepts
and working mechanisms developed for metaheuristics (e.g., probabilistic choices,
aspiration criteria, heuristic construction) into tree search methods. For example,
instead of a chronological backtracking, a backjumping based on search history or
information retrieved from local search samples can be performed. Other examples
of this approach can be found in [63, 87, 98].

2.3 Hybridizing Metaheuristics with Tree Search

Optimization techniques can be characterized by their way of exploring the search
space. Some algorithms consider the search space of an optimization problem in
form of a tree, the so-called search tree, which is generally defined by an underlying
solution construction mechanism. Each path from the root node of the search tree to
one of the leafs corresponds to a step-by-step construction of a candidate solution.
Inner nodes of the tree are partial solutions to the given problem. The process of
moving from an inner node to one of its child nodes is called a solution construction
step, or an extension of a partial solution.

The above mentioned class of tree search algorithms comprises incomplete and
complete techniques. Examples of incomplete methods are constructive heuristics,
such as greedy methods, and metaheuristics such as ACO [38] and GRASP [42].
Construction-based metaheuristics are iterative algorithms that employ repeated
probabilistic solution constructions at each iteration. While ACO algorithms include
a learning component, GRASP algorithms generally do not. An example of a com-
plete method is branch & bound and its variants. An intersting heuristic version of a
breadth-first branch & bound is beam search [80]. While branch & bound (implic-
itly) considers all nodes of a certain level of the search tree, beam search restricts
the search to a certain number of nodes based on the bounding information.

In the following, we outline two different examples of hybridizing metaheuristics
with tree search techniques. The first one uses branch & bound concepts within
the solution construction process of a metaheuristic, while the second one exploits
the fact that sub-problems of the original problem instance can often be efficiently
solved by MIP solvers.

316 C. Blum et al.

2.3.1 Beam-ACO

Both incomplete and complete tree-search algorithms have advantages as well
as disadvantages. While ACO and GRASP generally find good solutions in a
reasonable amount of computation time, they do not incorporate mechanism for
avoiding the waste of computation time due to visiting the same solution more
than once. Complete techniques on the other side guarantee to find an optimal
solution. However, a user might not be prepared to accept overly large running
times. Therefore, a relatively recent line of research promotes the incorporation of
features originating from deterministic branch & bound derivatives such as beam
search into construction-based metaheuristics. Examples are probabilistic beam
search (PBS) [20], incomplete and non-deterministic tree search (ANTS) proce-
dures [69–71], and Beam-ACO algorithms [15,17]. In the following, we outline the
idea of Beam-ACO, which is the most prominent example.

As explained already in Sect. 2.2, standard ACO algorithms work basically as fol-
lows. At each iteration, first, a number of na artificial ants probabilistically construct
solutions independently from each other. Hereby, the probabilities for the different
extensions of the current partial solution are generated by means of greedy infor-
mation and so-called pheromone values. Second, some of the solutions constructed
in the current iteration, or in earlier iterations, are used for updating the pheromone
values. This causes a change in the probability distribution over the search space
that is computed on the basis of the greedy information and the pheromone values.
The aim of the pheromone update is to focus the search over time on areas of the
search space where high quality solutions can be found.

The central idea behind beam search is to allow the extension of partial solutions
in several possible ways. At each step, the algorithm chooses at most b�kbwc fea-
sible extensions of the partial solutions stored in a set B , called the beam. Hereby,
kbw is the so-called beam width that limits the size of B , and � � 1 is a parame-
ter of the algorithm. The choice of feasible extensions is done deterministically by
means of a greedy function that assigns a weight to each feasible extension. At the
end of each step, the algorithm creates a new beam B by selecting up to kbw partial
solutions from the set of chosen feasible extensions. For this purpose, beam search
algorithms calculate–in the case of minimization–a lower bound value for each cho-
sen extension. Only the maximally kbw best extensions–with respect to the lower
bound–are chosen to constitute the new set B . Finally, the best found complete so-
lution is returned.

The main idea of Beam-ACO is the non-independent probabilistic construction
of na solutions per iteration, in the way of beam search. In other words, Beam-ACO
performs at each iteration a beam search where kbw D na. Hereby, the choice of
feasible extensions is done probabilistically in the ACO-way. This algorithm has
the advantage of using complementary types of information about the problem at
hand: greedy information as well as bounding information. The benefits of using
both types of information can be easily explained by means of an example: Let us
consider the search tree shown in Fig. 2. The unique optimal solution is depicted in
gray. For simplicity let us assume that the greedy information does not differentiate

Hybrid Metaheuristics 317

Fig. 2 Example of a search tree. The path of light gray nodes corresponds to the construction
of the unique optimal solution. Moreover, available bounding information indicates that the black
nodes cannot belong to the optimal solution

between the two children of a father node (that is, the two extensions of any father
node have the same greedy value). Moreover, let us assume that available bounding
information indicates that the nodes colored in black cannot belong to the optimal
solution. Now, let us assume that we employ a probabilistic solution construction
mechanism in which the probabilities for different extensions are proportional to
their (relative) greedy value. This means that all extensions have a probability of
0.5 to be selected. An algorithm that does not consider the bounding information
has, for each solution construction, a probability of 0:0625 to generate the optimal
solution. On the other side, a (probabilistic) beam search algorithm with kbw � 2

will solve this problem in only one run. A deeper analysis of the benefits of the use
of complementary problem information is given in [22].

2.3.2 Large Neighborhood Search Based on MIP Solvers

Similarly, as CP is sometimes used for searching large neighborhoods (see
Sect. 2.2), other tree search methods are also utilized for this purpose. Especially
linear programming based branch & bound techniques, including branch-and-cut,
are often a promising option when the problem at hand can be expressed by a mixed
integer programming (MIP) model. The availability of highly effective general
purpose MIP solvers, which are typically based on sophisticated branch-and-cut
frameworks but nevertheless can be relatively easily applied, makes this approach
particularly interesting in practice.

In many cases, directly solving the whole MIP is practically impossible due to
excessive time or memory requirements. By fixing an appropriate portion of the
variables and/or adding further constraints to the MIP in conjunction with a current
incumbent solution, the whole search space is restricted to a certain large neighbor-
hood of the incumbent. The intention is that this sub-problem can then be solved
efficiently by the MIP-solver, possibly yielding a new incumbent. By iterating this
approach, a large neighborhood search is performed. Of course, this concept can
also be embedded into other, more sophisticated metaheuristic frameworks.

318 C. Blum et al.

In the literature, numerous successful examples exist for such approaches.
Among the more generally applicable ones is local branching [43], which works
on MIPs with binary variables (x1; : : : ; xn/ 2 f0; 1gn and defines a neighborhood
for a current solution x D .x1; : : : ; xn/ in correspondence to the classical k-opt
neighborhood by applying the so-called local branching constraint:

�.x; x/ WD
X
j2S

.1 � xj / C
X

j2f1;:::;ngnS
xj � k ; (1)

where S corresponds to the index set of the 0–1 variables that are set to one in the
incumbent solution, i.e., S D fj D 1; : : : ; n j xj D 1g. �.x; x/ resembles the
Hamming distance between x and x for integer values. The choice of parameter k

is, in general, critical, because too small values lead to strongly restricted neigh-
borhoods that often do not contain better solutions, while too large values result in
excessive running times for solving the sub-problem. Therefore, the local branching
framework includes a strategy for dynamically adapting k.

A successful problem-specific example for large neighborhood search by means
of solving sub-MIPs via branch-and-cut has been described by Prandtstetter and
Raidl for the Car Sequencing Problem (CarSP) [86]. This problem comes from the
automobile manufacturing industry and has been used by the French Operations
Research Society for the ROADEF Challenge 2005, which was a publicly open
competition. The goal is to find a cost-effective arrangement of commissioned cars
along a production line, i.e., a permutation. Although the individual cars are similar,
each automobile requires particular components to be installed by different working
bays along the assembly line. In addition to the different configurations of cars,
each vehicle has to be painted with a specific color. The objective is to minimize
the number of color changes while at the same time smoothing the workload in the
assembly bays. To achieve the latter, restrictions of the form “No more than lc cars
are allowed to require component c in any subsequence of mc consecutive cars”
are imposed, and their violation is penalized by additional costs in the objective
function.

In their work, Prandtstetter and Raidl describe a hybrid generalized vari-
able neighborhood search (VNS) with embedded variable neighborhood descent
(VND) [53]. Eight different types of neighborhood structures are exploited within
the VND. Straight-forward are the neighborhoods induced by swapping two cars
or moving one car to some other position, respectively. They can efficiently be
examined by direct enumeration and incremental evaluation. Applying only these
neighborhood structures, however, leads in general to solutions of moderate qual-
ity only. Therefore, the more powerful �-exchange neighborhood structure is also
included: A set of � cars is selected either uniformly at random or by some greedy
strategy that prefers cars involved in conflicts or color changes inducing high
costs. These cars are then released from their current positions and reassigned in
an optimal way, while all other cars remain fixed. A direct enumeration of this
neighborhood would lead to excessive running times already for rather small �, as
the neighborhood size grows exponentially with �. Instead, Prandtstetter and Raidl

Hybrid Metaheuristics 319

introduced a special integer linear programming (ILP) formulation for the CarSP
and utilize the MIP-solver ILOG CPLEX3 for searching these neighborhoods. To
avoid too long running times for larger �, CPLEX is aborted when a certain time
limit is exceeded and the so far best solution (if available) is returned.

Using this MIP-solver based large neighborhood search within the VNS substan-
tially improves the overall solution quality. In the documented tests, � is increased
up to 65, i.e., 65 cars are released and tried to be optimally reassigned. Although
this VNS did not take part at the competition as it was developed a little later and a
fair comparison to the winning algorithms is hard due to the different hardware and
imposed time limits, results clearly document that this VNS is highly competitive.

2.3.3 Literature Overview

The hybridization of metaheuristics with tree search techniques is probably one of
the most popular hybridization approaches. Therefore, it is impossible to mention all
works that have appeared in this field. In the following, we focus on a representative
selection of papers, different to the ones mentioned already above, that is, different
to Beam-ACO and large neighborhood search.

One of the first works on a combination of branch & bound with an evolutionary
algorithm is the one by Nagar et al. [79] for a two-machine flow-shop scheduling
problem. The proposed algorithm falls into the category of multi-stage approaches.
Candidate solutions are represented as permutations of jobs. In the first stage, branch
& bound is executed down to a predetermined level k. Hereby, suitable bounds are
calculated and stored at each node of the branch & bound tree. The second stage
consists in the execution of the evolutionary algorithm. Each generated partial solu-
tion is mapped onto the corresponding tree node. If the associated bounds indicate
that no path below this node can lead to an optimal solution, the partial solution is
subject to the application of a guided mutation operator.

Exact tree search methods have been used quite a few times in solution merging,
which is based on the idea of deriving new and hopefully better solutions from
the attributes originating from two or more input solutions. Solution merging is
used in crossover operators of evolutionary algorithms, but also, for example, in
path relinking [51]. Applegate et al. [3, 4] were among the first to apply tree search
methods in the context of merging. They present an application to the traveling
salesman problem (TSP) where a set of different solutions is derived by a series of
runs of the chained Lin-Kernighan iterated local search algorithm. The sets of edges
of all these solutions are merged and the TSP is finally solved to optimality on the
resulting (reduced) graph. Solutions are achieved that are typically superior to the
best ones obtained by the iterated local search approach alone. Cotta and Troya [33]
discuss merging in the context of a more general framework for combining branch &
bound with evolutionary algorithms. They show the usefulness of applying branch
& bound for identifying optimal offspring for different problems.

3 http://www.ilog.com

320 C. Blum et al.

The examples mentioned above are characterized by a subordinate use of an exact
method within the metaheuristic. However, the literature also offers examples where
metaheuristics are used for guiding the search process of an exact technique, or a
heuristic derivate. For example, Rothberg [97] suggests a tight integration of an
evolutionary algorithm in a branch-and-cut based MIP solver. The evolutionary al-
gorithm is applied at regular intervals as a branch & bound tree node heuristic.
Another example concerns the works presented in [21, 46]. In the proposed algo-
rithms, the control flows of beam search and a memetic algorithm are intertwined:
phases of beam search and the memetic algorithm alternate. Beam search purges its
queue of open partial solutions by excluding those ones whose upper bounds are
worse than the value of the best solution found by the memetic algorithm. On the
other side, beam search guides the search of the memetic algorithm by injecting
information about promising regions of the search space into the population.

Another example where metaheuristics may be used as a subordinate technique is
diving, which is a mechanism for focusing the search process of branch & bound in
an initial phase to neighborhoods of promising incumbents in order to quickly iden-
tify high-quality solutions. For example, Danna et al. [35] describe guided dives,
a diving variant consisting in temporarily switching from breadth-first search to
depth-first search. The branch to be processed next is chosen to be the one in which
the branching variable is allowed to take the value it has in an incumbent solution.
This results in a bias of the search process toward the neighborhood of this solution.
Guided dives are repeatedly applied at regular intervals during the whole optimiza-
tion process.

Finally, we want to mention some examples for the hybridization of meta-
heuristics with backtracking. In [57], the authors describe applications of various
hybrid metaheuristics to problems ranging from car sequencing and graph coloring
to scheduling. For example, a tabu search algorithm for the job shop schedul-
ing problem is presented, combining local search with complete enumeration as
well as limited backtracking search. Nested partitioning proposed by Shi and
Ólafsson [101] is another example were breadth-first search combined with back-
tracking is used to explore the search space under the guidance of a metaheuristic.
However, instead of variable-value assignments, in nested partitioning, the nodes of
the search tree correspond explicitly to subspaces of solutions which are evaluated
by a metaheuristic. In [1], for example, ACO is applied for this evaluation process,
whereas in [102] local search is used for the same purpose.

2.4 Hybridization of Metaheuristics With Problem Relaxation

Guiding metaheuristics by problem relaxation has become another extremely popu-
lar hybridization approach in recent years. A so-called relaxed problem is obtained
by simplifying or omitting constraints from the original problem formulation. The
hope is, first, that the relaxed problem can be efficiently solved, and second, that the
structure of an optimal solution to the relaxed problem together with its objective

Hybrid Metaheuristics 321

function value can be used in some way for solving the original problem. For exam-
ple, the optimal solution value of a relaxed problem can be seen as a bound for the
optimal solution value of the original problem. Therefore, it can be used in a branch
& bound algorithm for discarding parts of the search tree. An important type of re-
laxation in combinatorial optimization concerns dropping the integrality constraints
of the involved variables from an MIP formulation. The resulting linear program-
ming (LP) relaxation can then be solved to optimality by efficient methods such as
the well-known simplex algorithm.

In the following, we present two examples of hybrid metaheuristics based on
problem relaxations. The first one concerns a two-phase approach, in which prob-
lem relaxation is the crucial component of the first phase, and tabu search is used
in the second phase. The second example concerns relaxation guided VNS, where
the order in which neighborhoods are considered depends on their improvement-
potential, which in turn is determined by problem relaxation.

2.4.1 Searching in the Vicinity of Non-Integral Solutions

The algorithm by Vasquez and Hao [107, 108] for the multi-dimensional 0–1 knap-
sack problem (MKP) is a prime example for a hybrid metaheuristic guided by
problem relaxation. The main idea consists in solving a number of relaxed prob-
lems obtained by dropping the integrality constraints to optimality. This is done in
a first phase. Afterward, in a second phase, tabu search is used to search around
the optimal solutions to the relaxed problems. Hereby, care is taken that tabu search
always stays within a sphere around the non-integral solutions. In the following, we
outline this approach in more detail.

The MKP can be stated as follows. Given are n objects, where each object i has
a profit ci . Moreover, given are m resources, where each resource j has a capacity
bj , and each object i has a requirement aij of each resource j . Introducing a binary
decision variable xi 2 f0; 1g for each object i , the goal is the maximization of the
total profit. This can be expressed as the following integer program:

max
nX

iD1

ci 	 xi (2)

subject to

aij 	 xi � bj j D 1; : : : ; m (3)

xi 2 f0; 1g i D 1; : : : ; n (4)

Note that the LP relaxation, which is obtained by replacing (4) by inequalities
0 � xi � 1, 8i D 1; : : : ; n, may not be very helpful as it is known that the structure
of an optimal solution to it may have not much in common with the structure of

322 C. Blum et al.

an optimal solution to the original MKP. Therefore, the main idea by Vasquez and
Hao was to add a constraint that fixes the number of items to be packed to a certain
value k, i.e.,

nX
iD1

xi D k; (5)

where k 2 IN , in addition to dropping the integrality constraints. In this way, the
optimal solutions to the relaxed problems are generally closer in structure to good
(or optimal) solutions to the original MKP. Relaxed problems are then solved to
optimality for all k between a lower bound kmin and an upper bound kmax, where
0 � kmin � kmax � n. These bounds are computed by solving a linear program for
each of them. We refer to [107] for more details.

In the second phase of the algorithm, tabu search is used to search around the
non-integral solutions of the optimally solved relaxed problems. For each k, tabu
search is restricted to solutions where exactly k objects are selected. Moreover, the
distance of considered solutions to the computed optimal solution to the correspond-
ing relaxed problem is restricted. In [108], the presented method is further enhanced
by various variable fixing strategies.

2.4.2 Relaxation Guided Variable Neighborhood Search

VNS, including diverse variants such as VND, is a relatively simple but successful
metaheuristic concept [53]. It relies on the principle of searching different neighbor-
hood structures in a systematic way. When a sequence of neighborhood structures is
used in which one neighborhood structure is entirely contained in the next one and
a best improvement step function is performed, it is clear that these neighborhood
structures will be applied in increasing order with respect to the size. In other cases,
especially when neighborhood structures of different types but rather comparable
size are to be used, the best order is usually unknown, and it also remains unclear
how it can be determined. Even worse, in different phases of the search, different
neighborhood orderings might be beneficial.

Puchinger and Raidl [89] therefore introduced relaxation guided variable neigh-
borhood search (RGVNS). It follows the general VNS scheme but incorporates
relaxation guided VND (RGVND), where the neighborhoods are ordered according
to so-called improvement-potentials. These estimates are determined by computing
bounds on the objective function values of the optimal solutions within each neigh-
borhood. Such bounds are obtained by solving relaxations of the original problems
associated with the neighborhoods.

It is therefore a prerequisite for developing an RGVNS approach that relaxed
versions of the considered neighborhoods are available. Solving such relaxations
should be much faster than searching the original neighborhoods. Another important
aspect is that the bounds need to be reasonable estimates of the objective values of
the best solutions in the neighborhood. Cases where the relaxations are misleading
should not occur too frequently.

Hybrid Metaheuristics 323

In [89], the multi-dimensional knapsack problem is used as an example to evalu-
ate the RGVNS concept. Two neighborhood structures that are both parameterized
by an integer k � 1 are defined and formulated as ILPs. In the first neighborhood
structure, k items are removed from the knapsack, and any combination of items
that were outside the knapsack before the removal are allowed to be added as long
as the solution remains feasible. In the second neighborhood structure, k items not
yet packed are forced to be added to the knapsack and any previously packed item
is allowed to be removed to ensure the feasibility of the solution.

The RGVNS uses these neighborhoods with the item number k ranging from
1 to 10. The order in which the neighborhoods are considered is always dynamically
determined by solving the LP-relaxations and sorting the neighborhoods according
to decreasing solution values.

2.4.3 Literature Overview

In the following, we provide a representative selection of different approaches where
LP relaxations are exploited in combination with metaheuristic approaches. A more
general overview on combinations of metaheuristics with LP and ILP techniques is
given in [72].

The probably most obvious way to utilize an optimal solution to the LP relax-
ation of a problem at hand is to directly derive a heuristic integer solution which is
feasible for the original problem. Depending on the problem, this can be achieved by
simple rounding or more sophisticated repairing strategies. For example, Raidl and
Feltl [93] present a hybrid genetic algorithm (GA) for the generalized assignment
problem. The LP relaxation of the problem is solved and its solution is exploited by a
randomized rounding procedure to create an initial population of promising integral
solutions. As these solutions are often infeasible, randomized repair and improve-
ment operators are applied, yielding an even more meaningful initial population for
the genetic algorithm.

Optimal solutions to LP relaxations are often exploited for guiding local
improvement or for repairing infeasible candidate solutions. In [91], the multi-
dimensional knapsack problem is considered again. The items are sorted according
to increasing LP-values of their corresponding variables. A greedy repair procedure
removes the items in this order from the knapsack until all constraints are fulfilled.
In a greedy improvement procedure, items are considered in reverse order and
included in the knapsack as long as no constraint is violated.

Dual variable values that come as a by-product of solving LP relaxations can also
be exploited. Chu and Beasley [29] make use of them in their GA for the MKP by
calculating pseudo-utility ratios for the variables and using them in similar ways as
described above for the primal solution values. These pseudo-utility ratios tend to
give better indications of the likeliness of the corresponding items to be included in
an optimal solution.

A successful example for using further relaxation techniques is the hybrid
Lagrangian GA for the prize collecting Steiner tree problem by Haouari and
Siala [54]. It is based on a Lagrangian decomposition of a minimum spanning

324 C. Blum et al.

tree such as ILP formulation of the problem. The volume algorithm is used for
solving the Lagrangian dual [5]. After its termination, the GA is started, exploiting
results obtained from the volume algorithm: The original graph is reduced by dis-
carding edges, meaningful initial solutions are generated, and the objective function
is modified by considering reduced costs.

For the knapsack constrained maximum spanning tree problem, a similar com-
bination of Lagrangian decomposition and a genetic algorithm is described in
Pirkwieser et al. [84]. A combination of a Lagrangian relaxation approach and a
VND metaheuristic, which is also based on similar principles, has recently been
developed for a real-world fiber optic network design problem by Leitner and
Raidl [67].

Tamura et al. [104] tackle a job-shop scheduling problem and start from its ILP
formulation. For each variable, they take the range of possible values and partition it
into a set of subranges, which are then indexed. The encoded solutions of a GA are
defined so that each position represents a variable, and its value corresponds to the
index of one of the subranges. The fitness of such a chromosome is calculated using
Lagrangian relaxation in order to obtain a bound on the optimal solution subject
to constraints on the variable values which must fall within the represented ranges.
When the GA terminates, an exhaustive search of the region identified as the most
promising is carried out in a second stage.

Reimann [95] introduces an ACO algorithm for the symmetric TSP where an op-
timal solution to the minimum spanning tree (MST) relaxation is used for biasing
the search of the artificial ants toward edges that form part of the minimum span-
ning tree. The proposed algorithm is based on computational experience indicating
that an optimal solution to the symmetric TSP has about 70–80% of the edges in
common with an optimal MST solution.

2.5 Hybridization of Metaheuristics With Dynamic Programming

Dynamic programming (DP) is another example of an optimization method from
Operations Research and control theory that can be successfully integrated with
metaheuristics, both in the case of constructive and local search techniques. DP
provides a method for defining an optimal strategy that leads from an initial state to
the final goal and it has been successfully applied to many optimization and control
problems [10].

In this section, we illustrate two representative examples of hybrid solvers ob-
tained by integrating DP with metaheuristics such as iterated local search, EC
and ACO.

2.5.1 Iterated Dynasearch

Iterated dynasearch is a hybrid metaheuristic that uses DP as a neighborhood explo-
ration strategy inside iterated local search [59]. The rationale behind this integration

Hybrid Metaheuristics 325

is that, in simple local search strategies such as iterative improvement (a.k.a. de-
scent search or hill climbing), the larger the neighborhood, the better the quality
of the local optimum returned (on average). Suitable neighborhoods are often
of exponential size, making it impractical to perform an explicit exhaustive lex-
icographic enumeration. Therefore, more computationally efficient neighborhood
exploration techniques are required. In some cases, DP can make it possible to com-
pletely explore an exponential size neighborhood in polynomial time and space. In
this paragraph, we illustrate the principles of iterated dynasearch with respect to
its application to the single-machine total weighted tardiness scheduling problem
(SMTWTSP) [31]. Further contributions to this work can be found in the recent
literature [2, 52].

The SMTWTSP consists in finding the processing order of n jobs on one machine
such that the total tardiness is minimized. More formally, for each of the n jobs, a
processing time pj , a positive weight wj , and a due date dj are given. Jobs are
available at time zero and must be processed one at a time on the machine without
interruption. Once a job ordering is provided, for each job, a completion time Cj

can be computed, along with its tardiness Tj D maxfCj�dj; 0g. Hence, the function
to be minimized is

Pn
jD1 wj Tj .

For the moment, let us simply focus on the design of a suitable neighborhood
structure for a best improvement local search. A natural neighborhood structure
can be defined in terms of job permutations. Any permutation of n objects can be
obtained by the repeated application of swaps. In a swap, two objects are exchanged
and the resulting neighborhood is called 2�exchange. In general, the k�exchange
neighborhood, defined by sequences of swaps involving k objects, has an O.nk/

size. Therefore, for efficiency concerns, usually only the cases of k 2 f2; 3g are
considered.

The dynasearch swap neighborhood of a job sequence � D .�.1/; : : : ; �.n// is
composed of all the permutations of � that can be generated by a series of inde-
pendent swaps. Two swap moves fi; j g and fk; lg are independent if maxfi; j g <

minfk; lg or minfi; j g > maxfk; lg. This neighborhood has size 2n�1�1; however,
the independence of moves makes it possible to define a recursive enumeration al-
gorithm based on DP such that the resulting exploration is polynomial in time and
space.

Let �k be the partial job sequence ordering with minimum total weighted tardi-
ness among the possible allowed orderings of the sequence .�.1/; : : : ; �.k// and let
F.�k/ be the total weighted tardiness of �k . This partial sequence can be obtained
from a partial optimal sequence �i , 0 � i < k, by adding job �k . Two cases must
be considered:

1. i D k � 1: job �k is simply appended to �i .
2. i < k � 1: job �k is first appended to �i and then immediately swapped with job

�.iC1/, hence the final sequence becomes .�.1/; : : : ; �.i/; �.k/; : : : ; �.iC1//.

In both cases, the total tardiness F.�k/ can be easily evaluated by choosing
the minimum of tardiness values computed as sum of independent contributions.

326 C. Blum et al.

Algorithm 3 Iterated dynasearch
1: s GenerateInitialSolution()
2: Os BestImprovement(s ; dynasearch swap neighborhood)
3: while termination conditions not met do
4: s0 Perturbation(Os; sequence of random swaps)
5: Os0 BestImprovement(s0 ; dynasearch swap neighborhood)
6: Os ApplyAcceptanceCriterion(Os0 ; Os; history)
7: end while

The best sequence �n can be computed recursively in a DP algorithm that runs in
O.n3/ and requires O.n/ space.4

A best-improvement local search based on the dynasearch neighborhood has,
on average, a better performance than a best-improvement local search using the
2�exchange or the 3�exchange neighborhoods. In other words, the average total
tardiness of the local optimum returned in the case of the dynasearch neighborhood
is lower. Furthermore, this local search can be taken as the inner local search compo-
nent for an iterated local search (ILS) algorithm [103], as illustrated in Algorithm 3.
The algorithm iteratively perturbs the current solution s to provide an initial solution
for a best improvement local search5. The local optimum found by the local search
replaces the current solution s depending on the given acceptance criterion. In a nut-
shell, ILS performs a local search in the sampled space of local optima, rather than
in the global search space.

2.5.2 Dynamic Programming for Solving Subproblems

In [18], Blum and Blesa present the use of a DP algorithm in two different meta-
heuristics for the k-cardinality tree (KCT) problem. The general idea of their
approaches is not limited to the KCT problem and can, potentially, be used for other
subset problems. Basically, the idea is to let the metaheuristic generate objects that
are bigger than solutions, containing in general an exponential number of solutions
to the problem under consideration. DP is then used to efficiently find for each ob-
ject the best solution that it contains. In the following, we explain how this idea was
implemented in the context of the KCT problem.

Technically, the KCT problem can be described as follows. Let G.V; E/ be an
undirected graph in which each edge e 2 E has a weight we � 0, and each node
v 2 V has a weight wv � 0. Furthermore, we denote by Tk the set of all k-cardinality
trees in G, that is, the set of all trees in G with exactly k edges. The problem consists
of finding a k-cardinality tree Tk 2 Tk that minimizes

4 For brevity, we omit the details and point the interested reader to [31].
5 In general, any local search algorithm can be used.

Hybrid Metaheuristics 327

f .Tk/ D
 P

e2ETk

we

!
C
 P

v2VTk

wv

!
; (6)

where ETk
denotes the set of edges and VTk

the set of nodes of Tk . When G is itself
a tree, the KCT problem can be solved efficiently by DP [16]. This fact was used
by Blum and Blesa within their ACO approach and their EC approach presented
in [18].

The main idea of the ACO approach is as follows. At each iteration, a number
of na artificial ants step-by-step construct trees in G. However, instead of aborting
the tree construction once k edges have been added, the tree construction is con-
tinued until the tree has k < l � jV j � 1 edges. Then, DP is applied to each of
the constructed l-cardinality trees in order to find the best k-cardinality trees they
contain. The resulting k-cardinality trees are then used for updating the pheromone
values.

Concerning the EC approach presented in [18], DP is used within the crossover
operator, which needs two different k-cardinality trees as input. Then, the two trees
are merged, resulting in a tree that contains more than k edges. Finally, DP is applied
to this bigger tree in order to obtain the best k-cardinality tree it contains. This
resulting tree is the output of the crossover operator.

Both algorithm versions obtain better solutions faster than their standard coun-
terparts. This holds especially for large input graphs.

2.5.3 Literature Overview

Besides the approaches outlined above, a few other hybrids involving DP have
appeared in the literature. In the following, we shortly present a representative selec-
tion. For example, Hu and Raidl [60] use DP within an evolutionary algorithm as a
mechanism for generating the best solution that can be obtained from an incomplete
solution. They consider the generalized TSP in which a clustered graph is given and
a shortest tour visiting exactly one node from each cluster is requested. Their algo-
rithm is based on VNS. Among other ways of representing a candidate solution, a
permutation of clusters is given, representing the order in which the clusters are to
be visited. A DP procedure is then used to derive a corresponding optimal selection
of particular nodes from each cluster.

A somewhat related approach is presented in [40] where a dynamic facility lay-
out problem with unequal sizes of departments is considered. Department sizes may
even change from one period to the next. The proposed algorithm combines an
evolutionary technique and DP in the following way. A number of T evolution-
ary algorithms run in parallel, one for each of T periods. In each case, a solution is
a layout for the respective period. However, a solution to the original problem is a
sequence of T periods. Therefore, the evaluation of a layout of a single period must
take into account the best combination of layouts that can be generated given the
current populations. This is done by DP.

328 C. Blum et al.

In [61], DP is used purely as a decoder for tackling the rectangle packing prob-
lem with general spatial costs, which consists in packing given rectangles without
overlap in the plane so that the maximum cost of the rectangles is minimized.

The following examples deal with hybridizations based on problem decompo-
sitions. In [114], the authors propose a hybrid method that combines adaptive
memory, sparse DP, and reduction techniques to reduce and explore the search
space. The first step consists in the generation of a bi-partition of the variables.
This bi-partition results in a small core problem with at most 15 variables. This
small problem is solved using the forward phase of DP. The space defined by the
remaining variables is explored using tabu search. Hereby, each partial solution is
completed with the information stored during the forward phase of DP. The au-
thors state that their approach can be seen as a global intensification mechanism,
since at each iteration, the move evaluations involve solving a reduced problem
implicitly.

The application of DP to subproblems is also proposed in [105], in which the
authors introduce and tackle a multidrug cancer chemotherapy model to simulate
the possible response of the tumor cells under drug administration. The objective is
to minimize the tumor size under a set of constraints. A so-called adaptive elitist GA
is combined with a local search technique called iterative dynamic programming.
This local search technique works by subdividing the problem into subproblems
and optimizing the subproblems separately by DP.

Finally, we would like to point out an interesting heuristic version of DP known
as bounded dynamic programming in which at each level the number of states is
heuristically reduced. In this way, the authors of [8] were able to find most optimal
solutions to benchmark instances of the simple assembly line balancing problem in
a reduced amount of computation time.

3 Discussion and Conclusions

The process of designing and implementing effective hybrid metaheuristics can be
rather complicated and involves knowledge about a broad spectrum of algorith-
mic techniques, programming and data structures, as well as algorithm engineering
and statistics. In fact, it is hardly possible to provide guidelines for the successful
development of hybrid metaheuristics. For the development of well-performing al-
gorithms, the authors can only recommend (1) the careful search of the literature for
the most successful optimization approaches for the problem at hand or for similar
problems, and (2) the study of different ways of combining the most promising fea-
tures of the identified approaches. This chapter may serve as a starting point for this
purpose.

Indeed, for the extraction of useful guidelines for the development of hybrid
metaheuristics, it is probably necessary to improve the research methodology
that is nowadays commonly used in the metaheuristics field. The used research

Hybrid Metaheuristics 329

methodology is characterized by an ad hoc approach that consists in mixing
different algorithmic components without many serious attempts to identify the
contribution of different components to the algorithms’ performance. In our opin-
ion, the research community should move toward a sound scientific methodology
consisting of theoretical models for describing properties of hybrid metaheuristics
and using an experimental methodology as done in natural sciences. In fact, among
the key points of the engineering process of a hybrid metaheuristic are scientific
testing and the statistical assessment of the results.

The goal of scientific testing [58] is to abstract from actual implementations
and study, empirically and through predictive models, the effect of algorithmic
components. This investigation approach can be particularly useful in the case of
conjectures on algorithm behavior that, while being widespread in the community,
have not yet been subject to validation. Scientific testing of algorithms requires sci-
entists to formulate one or more hypotheses and test them both via experiments and
theoretical models, trying to clearly isolate the algorithmic components under in-
vestigation (i.e., comparisons must be made ceteris paribus –all other things being
equal). This methodology assures not only the generation of sound results, but it
also makes it possible to generalize them.

Testing (metaheuristic) algorithms is also an empirical process with several
sources of stochasticity–concerning both the algorithm and the problem instances.
Hence, a proper statistical methodology has to be adopted, both to support conjec-
tures and inferences and to validate results. This part is often overlooked, while it is
of fundamental importance. In particular, the application of a sound statistical anal-
ysis should be one of the mandatory requirements for publications. Guidelines on
a sound statistical approach to Artificial Intelligence can be found in the book by
Cohen [30].

Researchers interested in this topic can find useful contributions in the litera-
ture about Artificial Intelligence and Operations Research addressing the issues of
experimental methodology. Besides the already cited paper by Hooker [58], we
mention the very well known paper by Johnson [62] that can be seen as an in-
troduction to empirical testing from a theoretician’s point of view. Furthermore,
discussions on the overall experimental methodology or just one of its issues,
such as parameter tuning or the statistical assessment of results, can be found in
[7, 12, 74, 75].

We are convinced that research on hybrid metaheuristics is still in its early
stages. In the years to come, most publications on metaheuristic applications will
be concerned with hybrids. We hope that this chapter contributes to give some more
structure and guidance to this very interesting line of research.

Acknowledgements This work was supported by grant TIN2007-66523 (FORMALISM) of the
Spanish Government. In addition, Christian Blum acknowledges support from the Ramón y Cajal
program of the Spanish Ministry of Science and Innovation.

330 C. Blum et al.

References

1. Al-Shihabi S (2004) Ants for sampling in the nested partition algorithm. In: Blum C, Roli A,
Sampels M (eds) Proceedings of HM 2004 – first international workshop on hybrid meta-
heuristics, pp 11–18

2. Angel E, Bampis E (2005) A multi-start dynasearch algorithm for the time dependent single-
machine total weighted tardiness scheduling problem. Eur J Oper Res 162(1):281–289

3. Applegate DL, Bixby RE, Chvátal V, Cook WJ (1998) On the solution of the traveling sales-
man problem. Documenta Mathematica, Extra Volume ICM III:645–656

4. Applegate DL, Bixby RE, Chvátal V, Cook WJ (2007) The traveling salesman problem: a
computational study. Princeton Series in Applied mathematics. Princeton University Press,
Princeton

5. Barahona F, Anbil R (2000) The volume algorithm: producing primal solutions with a sub-
gradient method. Math Program A 87(3):385–399

6. Bartz-Beielstein T, Blesa Aguilera MJ, Blum C, Naujoks B, Roli A, Rudolph G, Sampels M
(eds) (2007) In: Proceedings of HM 2007 – fourth international workshop on hybrid meta-
heuristics. Lecture notes in computer science, vol 4771. Springer, Berlin

7. Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) (2009) Empirical methods for
the analysis of optimization algorithms. Springer, Heidelberg

8. Bautista J, Pereira J (2009) A dynamic programming based heuristic for the assembly line
balancing problem. Eur J Oper Res 194(3):787–794

9. Beck JC (2007) Solution-guided multi-point constructive search for job shop scheduling. J Ar-
tif Intell Res 29:49–77

10. Bertsekas DP (2007) Dynamic programming and optimal control, 3rd edition. Athena Scien-
tific, Nashua

11. Binato S, Hery WJ, Loewenstern D, Resende MGC (2001) A GRASP for job shop schedul-
ing. In Ribeiro CC, Hansen P (eds) Essays and surveys on metaheuristics. Kluwer, Boston,
pp 59–79

12. Birattari M (2009) Tuning metaheuristics: a machine learning perspective, vol 197. Studies in
computational intelligence. Springer, Berlin

13. Blesa Aguilera MJ, Blum C, Cotta C, Fernández AJ, Gallardo JE, Roli A, Sampels M (eds)
(2008) In: Proceedings of HM 2008 – fifth international workshop on hybrid metaheuristics.
Lecture notes in computer science, vol 5296. Springer, Berlin

14. Blum C (2005) Ant colony optimization: introduction and recent trends. Phys Life Rev
2(4):353–373

15. Blum C (2005) Beam-ACO–hybridizing ant colony optimization with beam search: an appli-
cation to open shop scheduling. Comput Oper Res 32:1565–1591

16. Blum C (2007) Revisiting dynamic programming for finding optimal subtrees in trees. Eur J
Oper Res 177(1):102–115

17. Blum C (2008) Beam-ACO for simple assembly line balancing. INFORMS J Comput
20(4):618–627

18. Blum C, Blesa MJ (2009) Solving the KCT problem: large-scale neighborhood search and
solution merging. In: Alba E, Blum C, Isasi P, León C, Gómez JA (eds) Optimization Tech-
niques for Solving Complex Problems. Wiley, Hoboken, pp 407–421

19. Blum C, Blesa Aguilera MJ, Roli A, Sampels M (eds) (2008) Hybrid metaheuristics – an
emerging approach to optimization. Studies in computational intelligence, vol 114. Springer,
Berlin

20. Blum C, Cotta C, Fernández AJ, Gallardo JE (2007) A probabilistic beam search algorithm for
the shortest common supersequence problem. In: Cotta C, van Hemert JI (eds) Proceedings of
EvoCOP 2007 – seventh european conference on evolutionary computation in combinatorial
optimisation. Lecture notes in computer science, vol 4446. Springer, Berlin, pp 36–47

21. Blum C, Cotta C, Fernández AJ, Gallardo JE, Mastrolilli M (2008) Hybridization of meta-
heuristics with branch and bound derivatives. In: Blum et al. (eds) Hybrid metaheuristics – an
emerging approach to optimization. Studies in computational intelligence, vol 114. Springer,
Berlin, pp 85–116

Hybrid Metaheuristics 331

22. Blum C, Mastrolilli M (2007) Using branch&bound concepts in construction-based meta-
heuristics: exploiting the dual problem knowledge. In: Bartz-Beielstein et al. (eds) Proceed-
ings of HM 2007 – fourth international workshop on hybrid metaheuristics. Lecture notes in
computer science, vol 4771. Springer, Berlin, pp 123–139

23. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and concep-
tual comparison. ACM Comput Surv 35(3):268–308

24. Brandt A (1988) Multilevel computations: review and recent developments. In: McCormick
SF (ed) Multigrid methods: theory, applications, and supercomputing, proceedings of the 3rd
copper mountain conference on multigrid methods. Lecture notes in pure and applied mathe-
matics, vol 110. Marcel Dekker, New York, pp 35–62

25. Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an
emerging direction in modern search technology. In: Glover F, Kochenberger G (eds) Hand-
book of metaheuristics. International series in operations research & management science,
vol 57. Kluwer, Dordrecht, pp 457–474

26. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic
for educational timetabling problems. Eur J Oper Res 176(1):177–192

27. Caseau Y, Laburthe F (1999) Effective forget-and-extend heuristics for scheduling problems.
In: Proceedings of CP-AI-OR’02 – fourth international workshop on integration of AI and
OR techniques in constraint programming for combinatorial optimization problems

28. Chaves AA, Correa FA, Lorena LAN (2008) Clustering search heuristic for the capacitated
p-median problem. In: Corchado E, Corchado JM, Abraham A (eds) Innovations in hybrid
intelligent systems. Advances in soft computing, vol 44. Springer, Berlin, pp 136–143

29. Chu PC, Beasley JE (1998) A genetic algorithm for the multidimensional knapsack problem.
J Heuristics 4:63–86

30. Cohen PR (1995) Empirical methods for artificial intelligence. The MIT Press, Cambridge
31. Congram RK, Potts CN, van de Velde SL (2002) An iterated dynasearch algorithm for

the single-machine total weighted tardiness scheduling problem. INFORMS J Comput
14(1):52–67

32. Cotta C (1998) A study of hybridisation techniques and their application to the design of
evolutionary algorithms. AI Comm 11(3–4):223–224

33. Cotta C, Troya JM (2003) Embedding branch and bound within evolutionary algorithms. Appl
Intell 18:137–153

34. Cowling PI, Chakhlevitch K (2007) Using a large set of low level heuristics in a hyperheuristic
approach to personnel scheduling. In: Dahal KP, Tan KC, Cowling PI (eds) Evolutionary
scheduling. Springer, Berlin, pp 543–576

35. Danna E, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Math Program Ser A 102:71–90

36. De Backer B, Furnon V, Shaw P (2000) Solving vehicle routing problems using constraint
programming and metaheuristics. J Heuristics 6:501–523

37. Dell’Amico M, Lodi A (2002) On the integration of metaheuristic strategies in constraint pro-
gramming. In: Rego C, Alidaee B (eds) Metaheuristic optimization via memory and evolution.
Operations research/computer science interfaces series, vol 30. Springer, Berlin, pp 357–371

38. Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge
39. Dumitrescu I, Stuetzle T (2003) Combinations of local search and exact algorithms.

In: Günther R, Raidl et al. (eds) Applications of evolutionary computation. Lecture notes
in computer science, vol 2611. Springer, Berlin, pp 211–223

40. Dunker T, Radons G, Westkämper E (2005) Combining evolutionary computation and
dynamic programming for solving a dynamic facility layout problem. Eur J Oper Res
165(1):55–69

41. Fang H-L, Ross PM, Corne C (1994) A promising hybrid GA/Hybrid approach for open-
shop scheduling problems. In: Cohn A (ed) Proceedings of ECAI 1994 – eleventh european
conference on artificial intelligence. Wiley, Hoboken, pp 590–594

42. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Global Op-
tim 6:109–133

332 C. Blum et al.

43. Fischetti M, Lodi A (2003) Local branching. Math Program Ser B 98:23–47
44. Fleurent C, Glover F (1999) Improved constructive multistart strategies for the quadratic as-

signment problem using adaptive memory. INFORMS J Comput 11:198–204
45. Focacci F, Laburthe F, Lodi A (2003) Local search and constraint programming. In: Glover F,

Kochenberger G (eds) Handbook of metaheuristics. International series in operations research
& management science, vol 57. Kluwer, Dordrecht, pp 369–403

46. Gallardo JE, Cotta C, Fernández AJ (2007) On the hybridization of memetic algorithms with
branch-and-bound techniques. IEEE Trans Syst Man Cybern B 37(1):77–83

47. Gilmour S, Dras M (2006) Kernelization as heuristic structure for the vertex cover problem.
In: Dorigo M et al. (eds) Proceedings of ANTS 2006 – 5th international workshop on ant
colony optimization and swarm intelligence. Lecture notes in computer science, vol 4150.
Springer, pages 452–459

48. Ginsberg ML (1993) Dynamic backtracking. J Artif Intell Res 1:25–46
49. Glover F (1968) Surrogate constraints. Oper Res 16(4):741–749
50. Glover F, Kochenberger G (eds) (2003) Handbook of metaheuristics. International series in

operations research & management science, vol 57. Kluwer, Dordrecht
51. Glover F, Laguna M, Martı́ R (2000) Fundamentals of scatter search and path relinking. Con-

trol Cybern 39(3):653–684
52. Grosso A, Della Croce F, Tadei R (2004) An enhanced dynasearch neighborhood for the

single-machine total weighted tardiness scheduling problem. Oper Res Lett 32(1):68–72
53. Hansen P, Mladenović N (1999) An introduction to variable neighborhood search. In: Voss S,

Martello S, Osman IH, Roucairol C (eds) Metaheuristics, advances and trends in local search
paradigms for optimization. Kluwer, Boston, pp 433–458

54. Haouari M, Siala JC (2006) A hybrid Lagrangian genetic algorithm for the prize collecting
Steiner tree problem. Comput Oper Res 33(5):1274–1288

55. Harvey WD (1995) Nonsystematic backtracking search. PhD thesis, CIRL, University of
Oregon, Eugene, Orgeon

56. Harvey WD, Ginsberg ML (1995) Limited discrepancy search. In: Mellish CS (ed) Pro-
ceedings of IJCAI 1995 – 14th international joint conference on artificial intelligence, vol
1. Morgan Kaufmann, San Mateo, pp 607–615

57. Van Hentenryck P, Michel L (2005) Constraint-based local search. MIT Press, Cambridge
58. Hooker JN (1995) Testing heuristics: we have it all wrong. J Heuristics 1(1):33–42
59. Hoos H, Stützle T (2005) Stochastic local search – foundations and applications. Morgan

Kaufmann , San Francisco
60. Hu B, Raidl GR (2008) Effective neighborhood structures for the generalized traveling

salesman problem. In: van Hemert JI, Cotta C (eds) Evolutionary computation in combi-
natorial optimisation – EvoCOP 2008. Lecture notes in computer science, vol 4972. Springer,
pp 36–47

61. Imahori S, Yagiura M, Ibaraki T (2005) Improved local search algorithms for the rectangle
packing problem with general spatial costs. Eur J Oper Res 167(1):48–67

62. Johnson DS (2002) A theoretician’s guide to the experimental analysis of algorithms. In:
Johnson DS, Goldwasser MH, McGeoch CC (eds) Data structures, near neighbor searches,
and methodology: fifth and sixth DIMACS implementation challenges. American Mathemat-
ical Society, Providence, pp 215–250

63. Jussien N, Lhomme O (2002) Local search with constraint propagation and conflict-based
heuristics. Artif Intell 139:21–45

64. Khichane M, Albert P, Solnon C (2008) Integration of ACO in a constraint programming
language. In Ant colony optimization and swarm intelligence, 6th international workshop,
ANTS 2008. Lecture notes in computer science, vol 5217. Springer, Berlin

65. Kiziltan Z, Lodi A, Milano M, Parisini F (2007) CP-based local branching. In: Principles and
practice of constraint programming – CP 2007. Lecture notes in computer science, vol 4741.
Springer, Berlin

66. Krasnogor N, Smith J (2005) A tutorial for competent memetic algorithms: model, taxonomy,
and design issues. IEEE Trans Evol Comput 9(5):474–488

Hybrid Metaheuristics 333

67. Leitner M, Raidl GR (2008) Lagrangian decomposition, metaheuristics, and hybrid ap-
proaches for the design of the last mile in fiber optic networks. In: Blesa Aguilera et al. (eds)
Proceedings of HM 2008 – fifth international workshop on hybrid metaheuristics. Lecture
notes in computer science, vol 5296. Springer, Berlin, pp 158–174

68. Lozano M, Garcı́a-Martı́nez C (2010) Hybrid metaheuristics with evolutionary algorithms
specializing in intensification and diversification: overview and progress report. Comput Oper
Res 37(3):481–497

69. Maniezzo V (1999) Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS J Comput 11(4):358–369

70. Maniezzo V, Carbonaro A (2000) An ANTS heuristic for the frequency assignment problem.
Future Generat Comput Syst 16:927–935

71. Maniezzo V, Milandri M (2002) An ant-based framework for very strongly constrained
problems. In: Dorigo M, Di Caro G, Sampels M (eds) Proceedings of ANTS 2002 – 3rd inter-
national workshop on ant algorithms Lecture notes in computer science, vol 2463. Springer,
Berlin, pages 222–227

72. Maniezzo V, Stützle T, Voss S (eds) (2009) Matheuristics – hybridizing metaheuristics and
mathematical programming. Annals of information systems, vol 10. Springer, Heidelberg

73. Matheuristics 2008. http://astarte.csr.unibo.it/matheuristics2008/. Accessed April 2009
74. McGeoch CC (1996) Toward an experimental method for algorithm simulation. INFORMS J

Comput 8(1):1–15
75. McGeoch CC (2001) Experimental analysis of algorithms. Not Am Math Soc 48(3):304–311
76. Meyer B (2008) Hybrids of constructive meta-heuristics and constraint programming: a case

study with ACO, chapter 6. Blum et al. (eds) Hybrid metaheuristics – an emerging approach
to optimization. Studies in computational intelligence, vol 114. Springer, Berlin

77. Milano M, Roli A (2002) On the relation between complete and incomplete search: an
informal discussion. In: Proceedings of CP-AI-OR’02 – fourth international workshop on in-
tegration of AI and OR techniques in constraint programming for combinatorial optimization
problems pp 237–250

78. Montemanni R, Smith DH (2010) Heuristic manipulation, tabu search and frequency assign-
ment. Comput Oper Res 37(3):543–551

79. Nagar A, Heragu SS, Haddock J (1995) A meta-heuristic algorithm for a bi-criteria scheduling
problem. Ann Oper Res 63:397–414

80. Ow PS, Morton TE (1988) Filtered beam search in scheduling. Int J Prod Res 26:297–307
81. Perron L, Trick MA (eds)(2008) Proceedings of CPAIOR 2008 – 5th international confer-

ence on the integration of ai and or techniques in constraint programming for combinatorial
optimization problems. Lecture notes in computer science, vol 5015. Springer, Berlin

82. Pesant G, Gendreau M (1996) A view of local search in constraint programming. In: Princi-
ples and practice of constraint programming - CP’96. Lecture notes in computer science, vol
1118. Springer, Heidelberg, pp 353–366

83. Pesant G, Gendreau M (1999) A constraint programming framework for local search methods.
J Heuristics 5:255–279

84. Pirkwieser S, Raidl GR, Puchinger J (2007) Combining Lagrangian decomposition with an
evolutionary algorithm for the knapsack constrained maximum spanning tree problem. In:
Cotta C, van Hemert JI (eds) Evolutionary computation in combinatorial optimization – Evo-
COP 2007. Lecture notes in computer science, vol 4446. Springer, Berlin, pp 176–187

85. Pisinger D (1999) Core problems in knapsack algorithms. Oper Res 47:570–575
86. Prandtstetter M, Raidl GR (2008) An integer linear programming approach and a hybrid vari-

able neighborhood search for the car sequencing problem. Eur J Oper Res 191(3):1004–1022
87. Prestwich S (2002) Combining the scalability of local search with the pruning techniques of

systematic search. Ann Oper Res 115:51–72
88. Prestwich S (2008) The relation between complete and incomplete search, chapter 3. Blum et

al. (eds) Hybrid metaheuristics – an emerging approach to optimization. Studies in computa-
tional intelligence, vol 114. Springer, Berlin

89. Puchinger J, Raidl GR (2008) Bringing order into the neighborhoods: relaxation guided vari-
able neighborhood search. J Heuristics 14(5):457–472

334 C. Blum et al.

90. Puchinger J, Raidl GR, Pferschy U (2006) The core concept for the multidimensional
knapsack problem. In: Gottlieb J, Raidl GR (eds) Evolutionary computation in combinato-
rial optimization – EvoCOP 2006. Lecture notes in computer science, vol 3906. Springer,
Berlin, pp 195–208

91. Raidl GR (1998) An improved genetic algorithm for the multiconstrained 0–1 knapsack prob-
lem. In: Fogel DB et al. (eds) Proceedings of the 1998 IEEE international conference on
evolutionary computation. IEEE Press, pp 207–211

92. Raidl GR (2006) A unified view on hybrid metaheuristics. In: Almeida F, Blesa Aguilera MJ,
Blum C, Moreno Vega JM, Pérez Pérez M, Roli A, Sampels M (eds) Proceedings of HM 2006
– third international workshop on hybrid metaheuristics. Lecture notes in computer science,
vol 4030. Springer, Berlin, pp 1–12

93. Raidl GR, Feltl H (2004) An improved hybrid genetic algorithm for the generalized assign-
ment problem. In: Haddadd HM et al (eds) Proceedings of the 2003 ACM symposium on
applied computing. ACM Press, pp 990–995

94. Raidl GR, Puchinger J, Blum C (2010) Metaheuristic hybrids. In: Gendreau M, Potvin JY
(eds) Handbook of metaheuristics. Springer, 2nd edition

95. Reimann M (2007) Guiding ACO by problem relaxation: a case study on the symmetric TSP.
In: Bartz-Beielstein et al. (eds) In: Proceedings of HM 2007 – fourth international work-
shop on hybrid metaheuristics. Lecture notes in computer science,vol 4771. Springer, Berlin,
pp 45–55

96. Resende MGC, Martı́ R, Gallego M, Duarte A (2010) GRASP and path relinking for the
max–min diversity problem. Comput Oper Res 37(3):498–508

97. Rothberg E (2007) An evolutionary algorithm for polishing mixed integer programming so-
lutions. INFORMS J Comput 19(4):534–541

98. Schaerf A (1997) Combining local search and look-ahead for scheduling and constraint sat-
isfaction problems. In: Proceedings of IJCAI 1997 – 15th international joint conference on
artificial intelligence. Morgan Kaufmann, San Mateo, CA, pp 1254–1259

99. Shaw P (1998) Using constraint programming and local search methods to solve vehicle rout-
ing problems. In: Maher M, Puget J-F (eds) Principle and practice of constraint programming
– CP98. Lecture notes in computer science, vol 1520. Springer, Berlin, pp 417–431

100. Shaw P, De Backer B, Furnon V (2002) Improved local search for CP toolkits. Ann Oper Res
115:31–50

101. Shi L, Ólafsson S (2000) Nested partitions method for global optimization. Oper Res
48(3):390–407

102. Shi L, Ólafsson S, Chen Q (2001) An optimization framework for product design. Manage
Sci 47(12):1681–1692

103. Stützle T (2006) Iterated local search for the quadratic assignment problem. Eur J Oper Res
174(3):1519–1539

104. Tamura H, Hirahara A, Hatono I, Umano M (1994) An approximate solution method for
combinatorial optimisation. Trans Soc Instrum Control Eng 130:329–336

105. Tse S-M, Liang Y, Leung K-S, Lee K-H, Mok TS-K (2007) A memetic algorithm for
multiple-drug cancer chemotherapy schedule optimization. IEEE Trans Syst Man Cybern B
37(1):84–91

106. Van Hentenryck P, Wolsey LA (eds) (2007) Proceedings of CPAIOR 2007 – 4th international
conference on the integration of AI and OR techniques in constraint programming for combi-
natorial optimization problems. Lecture notes in computer science, vol 4510. Springer, Berlin

107. Vasquez M, Hao J-K (2001) A hybrid approach for the 0–1 multidimensional knapsack prob-
lem. In: Nebel B (ed) Proceedings of the 17th international joint conference on artificial
intelligence, IJCAI 2001, Seattle, Washington. Morgan Kaufman, pp 328–333

108. Vasquez M, Vimont Y (2005) Improved results on the 0–1 multidimensional knapsack prob-
lem. Eur J Oper Res 165(1):70–81

109. Walshaw C (2002) A multilevel approach to the travelling salesman problem. Oper Res
50(5):862–877

110. Walshaw C (2004) Multilevel refinement for combinatorial optimization problems. Ann Oper
Res 131:325–372

Hybrid Metaheuristics 335

111. Walshaw C (2008) Multilevel refinement for combinatorial optimisation: boosting meta-
heuristic performance. In: Blum et al. (eds) Hybrid metaheuristics – an emerging approach
to optimization. Studies in computational intelligence, vol 114. Springer, Berlin, pp 85–116,
pages 261–289

112. Walshaw C, Cross M (2000) Mesh partitioning: a multilevel balancing and refinement algo-
rithm. SIAM J Sci Comput 22(1):63–80

113. Watson J-P, Beck JC (2008) A hybrid constraint programming/local search approach to the
job-shop scheduling problem. In: Integration of AI and OR techniques in constraint program-
ming for combinatorial optimization problems. Lecture notes in computer science, vol 5015.
Springer, Berlin, pp 263–277

114. Wilbaut C, Hanafi S, Fréville A, Balev S (2009) Tabu search: global intensification using
dynamic programming. Control Cyber 35(3):579–598

Learning in Search

Philippe Refalo

Abstract This chapter focuses on the recent improvements in solution search that
are based on learning. We will describe some learning methods applied in areas such
as mixed-integer programming, constraint programming, and those used for satis-
faction problems. Instead of being exhaustive, we will concentrate on some of the
most exciting advances. In particular, we will focus on pseudo-cost strategies used in
general-purpose mixed-integer programming solvers, on the strategy learning used
for automatic search in constraint programming, and on no-good generation in SAT
solvers. Several examples are given to illustrate the effectiveness of learning in these
areas. Some practical results are also given using the integration of different learning
techniques.

1 Introduction

Search has always been a fundamental aspect of problem solvers. Recently, in areas
such as mixed-integer programming (MIP), constraint programming (CP), or satis-
fiability (SAT), search techniques have experienced a revival, for various reasons.

MIP solvers have put emphasis on the linear relaxation since the beginning
through the development and strengthening of cutting planes [27, 28]. Although
generic strategies were developed since the 1970s for solving integer programs (see
Sect. 2.1 of this chapter), tightening linear relaxations was not sufficient. During the
last years, the integration of local search techniques in integer programming has
reinforced the efficiency of MIP solvers in finding good solutions [13, 14].

In clause SAT solvers, the recent tremendous progress is due to better propaga-
tion techniques [26] but mostly to new schemes for learning clauses during search
that in turn improve search strategies [16, 25].

In CP, the global constraint euphoria of the nineties has given way to an emphasis
on search techniques. This cultural evolution took some time to occur. The reason

P. Refalo (�)
IBM, Les Taissounieres, 1681, route des Dolines, 06560 Sophia Antipolis, France
e-mail: philippe.refalo@fr.ibm.com

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 10,
c� Springer Science+Business Media, LLC 2011

337

philippe.refalo@fr.ibm.com

338 P. Refalo

is that one of the biggest source of pride of the CP community about their solvers
was the possibility to program complex search for solutions. This has turned to the
situation where, for many problems, there was no hope to find any solution without
programming search.

The need to give a larger audience access to CP solvers has lead to the develop-
ment of autonomous searches for CP. CP solvers have moved from toolkits where
users needed to program their own strategies to almost back-box solvers including
efficient search strategies mixing backtrack search, restart, and local search.

The overall trend is to have an efficient search that requires as little as possible
from the user. Because the user knows his model but usually not the way it is going
to be solved. As a consequence, the solution search needs to extract knowledge from
the model and also to learn via self-observation. Learning is thus obviously closely
related to search autonomy. Learning plays an important role not only to learn the
right solver parameters but to acquire knowledge about the structure of the prob-
lem. This knowledge acquisition that we will call structural learning permits one
to infer high-level information on problem solutions in order to improve problem
solving. In practice, this is exploited by inferring new constraints and by being able
to distinguish important variables and values in order to make appropriate decisions.

In this chapter, we will try to mention several approaches to learning in search
but instead of being exhaustive, we will concentrate on some of the most exciting
advances.

We will first focus on recent advances in strategy learning. Historically, integer
programming solvers were the first to face the problematic of designing general-
purpose solvers able to solve efficiently very different problems in terms of size and
structure. We will review the existing strategies’ improvements by learning, and we
will present recent CP strategies that have been inspired by integer programming
strategies and the variations that have been developed subsequently.

After a section on search restarts that plays a fundamental role in recent CP
and SAT solvers, we will overview clause learning in SAT solvers. Intelligent
clause learning is a key technique in the efficient solution of satisfiability problems.
Although clause learning has been used for a long time in CP, the exploitation of
clauses is different in SAT. We will present some recent works that integrate a SAT-
like clause management in CP. Finally, we will illustrate the combination of clause
generation, restart, and strategy learning.

2 Strategy Learning

The search strategies we consider under analysis are those used for a complete solu-
tion of a problem, whether it is an integer program, a CP, or an SAT problem (a set
clauses to satisfy). By complete, we mean that the search is able to find a solution
to the problem, or to prove that there is none, or to prove optimality in the case of
an optimization problem.

Learning in Search 339

A common approach for searching solutions is backtrack search. At each step
(or node of the search tree), backtrack search chooses a nonassigned variable x of
the problem and a set of values E or a value (in that case E D fvg) and states the
choice point

x 2 E or x … E

The constraint x 2 E is added to the current problem (the node problem) and a
constraint processing is triggered. That processing can be constraint propagation
which infers domain reductions, linear relaxation solving which computes a relaxed
optimal solution, and a lower bound to the problem or unit clause propagation in
SAT solvers that fixes Boolean variables to true or false. This constraint processing
checks that no constraint is violated. When there are violated constraints, the search
procedure backtracks to the last choice point by undoing constraint additions and
tries the first unexplored branch encountered. When every variable is instantiated,
and no constraint is violated, a solution is found.

The performance of backtrack search (or the number of nodes it traverses) varies
dramatically depending on the strategy used to choose a variable and values. More-
over, the strategy may need to be different depending on the nature of the problem.
In an optimization problem, finding a solution is often easy and the emphasis is on
finding good quality solutions. This may involve different strategies than for a prob-
lem where we just want a solution. Similarly, a strategy to find good solutions may
be different from the ones that prove optimality.

However, there are a few general principles for reducing the search effort that
can be widely applied and that are worth mentioning here.

Since all variables have to be instantiated, first choosing the variable that max-
imally constrains the rest of the search space reduces the search effort in general.
This principle called first-fail in the CP community is popular and widely applied
[19]. It is often implemented by choosing the variable having the smallest domain
first or the one that participates in the largest number of constraints or a combina-
tion of both. In integer programming, the chosen variable is the one that constrains
the objective function the most. In SAT solvers, this strategy uses variations around
choosing the variable appearing in the largest number of clauses.

As to the choice of a value, a solution can be reached more quickly if one chooses
values that maximize the number of possibilities for future assignments. As we will
see in the next section, for finding good quality solutions, integer programming
solvers apply the principle by choosing the values that constrain the least the objec-
tive function. But choosing the right value is often difficult and is less likely to obey
general rules. A knowledge of the structure of the problem (or of the structure of the
solutions) is often helpful.

Finally, a general principle is to make good choices at the top of the search tree.
Choices made at the top of the search tree have a huge impact on its size and a bad
choice can have disastrous effects. This is especially true for depth-first search back-
track algorithms where the whole sub-tree below a choice needs to be explored
before reconsidering that choice. This leads to a high variability in terms of compu-
tation time [17] that can be broken by search restart (see Sect. 3).

340 P. Refalo

It is interesting to see that the integer programming community has applied these
principles since the early seventies. In integer programming, the emphasis is on find-
ing optimal solutions. As described in the next section, an estimation of the objective
function improvement is associated to a variable. According to these principles, the
variable chosen first is the one involving the largest improvement; then the branch
chosen first is the one that involves the least improvement.

2.1 Strategy Learning in Integer Programming

In integer programming solvers, designing a search strategy is considered a com-
plex task. It is true that the underlying concepts of integer programming that need
to be understood (i.e., relaxed optimal solution, dual values, reduced costs) are not
very intuitive. As a consequence, a class of techniques for efficient general-purpose
strategies in integer programming have emerged. The emphasis of integer program-
ming being optimization, these techniques are based on estimating the importance of
a variable with respect to the variation of the objective function value. This criterion
is called a pseudo-cost and is learned by observing the variations of the objective
function value through the search space.

Pseudo-costs are introduced briefly in [3] and fully described in [15]. They are
widely used in modern integer programming solvers such as CPLEX [1].

In integer programming problems, constraints are linear, and the domain of a
variable is an interval of real or integer values. In addition to that, there is a linear
cost function to be minimized (the maximization case is ignored, as it is similar).
Integer programming solvers maintain a relaxed optimal solution at each node. This
solution is given by a linear solver (such as the simplex method) applied to the node
problem where integrality conditions on integer variables have been removed. This
relaxed solution on a variable x is noted x�. The value of the objective function
in this solution is z�. It is a lower bound on the optimal value of the problem. The
value z� increases as variables are instantiated during search. It is the amount of that
increase that is used to select variables.

Consider a variable x whose noninteger value is x� Dbx�cCf where 0 < f < 1.
One can force x to an integer value by creating the choice point

x � bx�c or x � dx�e
Let z� be the objective function value before the choice point. Let �down be
the increase of the objective value when adding the constraint x � bx�c and �up be
the increase of the objective value when adding the constraint x � dx�e.

The values �down and �up can be computed for each variable having a noninteger
value by solving two linear programs. From the first principle above, the variable to
be chosen is the one having a maximum impact on the objective. In practice, it is
the one that maximizes the weighted sum

v.x/ D ˛ min.�down; �up/C ˇ max.�down; �up/

Learning in Search 341

Fig. 1 Example of a search
node in integer programming

obj = 100
x* = 0.0 x* = 1.0

x* = 0.7

x ³ 1x £ 0

obj = 60

obj = 80

Usually, more importance is given to the maximum of �down and �up. For ˛ D 1,
choosing ˇ greater than 3 gives good results (see [23]).

From the second principle above, the first branch to explore is the one that creates
the smallest improvement in the objective function value with the hope of getting
solutions with a low objective value earlier.

The pseudo-costs of a variable x measure the increase of the objective function
value per unit of change of x when adding the constraint x�bx�c or x�dx�e. The
down pseudo cost PCdown.x/ D �down=f corresponds to the decrease of x� and the
up pseudo-cost PCup.x/ D �up=.1� f / corresponds to the increase of x�.

Example 1. Consider the excerpt of a search tree in Fig. 1. The search branches
on variable x by stating first x � 0 and then x � 1. Each branching involves a
variation of the objective function value (obj). For the branch x � 1 the objective
values moves up from 60 to 80 while the value x� of the variable moves from 0:7

to 1. Thus, the variations are �down D 40 and �up D 20 and the pseudo-costs are
PCdown.x/ D 40=0:7 D 57:1 and PCup.x/ D 20=0:3 D 66:6.

A fundamental observation about pseudo-costs is that experiments reveal that the
pseudo-costs of a variable tend to be close from one node to another (see [15] and
[23]). As a consequence, we can avoid solving two linear programs (one for �down

and one for �up) for each noninteger variable at each node, which is computationally
very expensive. We can estimate that the up and down pseudo-costs of a variable x

at a node are likely to be the average of the ones observed so far when choices are
made on x. This averaged pseudo-cost (PCe) is used to compute an estimation of
v.x/ from an estimation of the objective function variation:

�e
down D f � PCe

down.x/ if x � bx�c is added

�e
up D .1 � f / � PCe

up.x/ if x � dx�e is added

At the beginning of search, pseudo-costs are unknown. Having pseudo-costs at
this time is extremely important since choices made high in the tree are crucial.
Computing explicit pseudo-costs by bounding up and down variables that have a
noninteger value can degrade performance significantly [3]. A trade-off consists
of performing a limited number of dual simplex iterations [23]. The approximated
pseudo-cost computed in this way is usually replaced by the first one observed.

342 P. Refalo

2.2 Impacts-Based Strategies in Constraint Programming

The most popular strategies in CP are based on first selecting variables having the
minimum domain size [19]. Ties can be broken with the dynamic degree of vari-
ables [7]. A variation consists in using the ratio between the size of the domain
and the degree of the variable [5] which is often considered as the best strategy for
solving binary constraint satisfaction problems(CSP). Another one is to look at the
neighboring structure of the variable [4,33]. All these heuristics are dynamic but do
not adapt themselves to the problem by learning information. In this section, as well
as in the next one, we described heuristics that can be seen as a generalization of
minimum domain size and degree-based choices to incorporate some learning.

Impact-ordering heuristics were first described in [30] for finding solutions to
constraint programs. The idea is to provide efficient heuristics for solving constraint
programs inspired by pseudo-costs strategies. Impacts are based on learning. It ex-
ploits parts of the search tree that are apparently not useful � because they do not
lead to a solution � in order to learn information about the importance of variables
and values. Following this idea, some variations have been developed in [9] that are
presented in the next section.

As with pseudo-costs, the basic idea of impacts is rather intuitive. In CP, when a
value is assigned to a variable, constraint propagation reduces the domains of other
variables. We consider that the number of all possible combinations of values for
the variables (the Cartesian product) is an estimation of the search size. An impact
measures the importance of an assignment x D a for the search space reduction. Im-
pacts are obtained from the domain reduction involved by assignments made during
search.

Therefore, an estimation of the size of the search tree is the product of every
variable domain size:

P D ˇ̌Dx1

ˇ̌ � : : : � jDxn j
If we look at this product before (Pbefore) and after (Pafter) an assignment xi D a,

we have an estimation of the importance of this assignment for reducing the search
space. This reduction rate is called the impact of the assignment

I.xi D a/ D 1 � Pafter

Pbefore

The higher the impact, the greater the search space reduction. From this definition,
an assignment that fails has an impact of 1:

The impact of assignments can be computed for every value of all noninstanti-
ated variables, but this can create a huge overhead. From the experiments we have
made, impacts, like pseudo-costs, do not vary much from node to node. The impact
value distribution of a given assignment almost always presents a sharp and unique
peak centered on the average value. For instance, the distribution of impact values
thorough the search tree of an assignment in a multidimensional knapsack problem
is shown in Fig. 2. An important consequence is that the impact of an assignment at

Learning in Search 343

120

100

80

60

40

20

0
0.0 0.1 0.2 0.3 0.4

Impact value

N
um

be
r

of
 a

ss
ig

nm
en

ts

0.5 0.6 0.8 0.9 1.0

Fig. 2 Impact distribution of an assignment x D 1 in a multi-dimensional knapsack problem

a given node can be the average of the observed impacts of this assignment up to
this point. If K is the index set of impacts observed so far for assignment xi D a, NI
is the averaged impact:

NI .xi D a/ D
P

k2K

I k.xiDa/

jKj
An important consequence is that impacts do not need to be computed explicitly at
each node, but are available almost for free.

The impact of a variable xi can be the average of impacts NI .xi D a/ for a 2 Dxi
.

A more accurate measure would use only the values remaining in its domain. Thus,
if the current domain of xi at a node is D

0

xi
, we have

QI .xi / D

P
a2D

0
xi

NI .xi D a/

ˇ̌
D

0

xi

ˇ̌
This approach is not accurate enough. The goal is to choose a variable having the
largest impact when assigning to it one of the values remaining in its domain. Since
it is assumed that each value will be tried (the hypothesis is that the problem is
infeasible as mentioned above), we need to consider the search reduction if every
value of the domain is tried. Let P be the product of the domain sizes at a node and

344 P. Refalo

consider a variable xi . The estimation of the size of the search space when trying
xi D a with a 2 D

0

xi
is

P � .1 � NI .xi D a//

This is an estimation of the size of the search tree for xi D aj . If we were to try
every value, an estimation of the search tree would be the sum of the estimation for
each value remaining in the domain:

X
a2D

0
xi

P � .1 � NI .xi D a//

The value P is a constant at a node, and it is not relevant to compare the impact of
several variables at the same node. Finally, the impact of a variable that depends on
its current domain is defined as

I .xi / D 1 �
X

a2D
0
xi

1 � NI .xi D a/

Experiments we have made comparing the use of the average impact QI .x/ and
the use of the sum of impacts on values I .x/ show that using I .x/ is much more
efficient over all the problems we have tested.

Example 2. A simple illustration of impact averaging is made on an instance of a
bin-packing problem. Let us consider instance u120 00 of Falkenauers bin-packing
problems, from OR-Library1 (120 objects needs to be packed and the bins capacity
is 150). Here is a straightforward CP model for this problem.

xo 2 f0; : : : ; 120g for o D 1 to 120 // object position variable
lb 2 f0; : : : ; 150g for b D 1 to 120 // load of a bin
minimize .l1 > 0/C .l2 > 0/C : : :C .l120 > 0/

s.t. w1 � .x1 D b/C w2 � .x2 D b/C 	 	 	 C .x120 D b/ D lb for b D 1 to 120

We ran several random searches on this problem (by choosing variables and values
randomly) for a few thousand nodes to give an equal chance for all variables and
value to be instantiated in different parts of the tree.

Figure 3 shows the impact value obtained for the weight of each position variable.
Weights are sorted increasingly. It is interesting to see the clear correlation between
the object size and the impact of the corresponding variable. The increasing impacts
variable ordering matches the increasing weight ordering of the objects. Starting
with variables having the largest impact amounts to starting with heaviest objects
first. Thus, impact measure rediscovers an efficient strategy for placing objects in
bin-packing problems that starts with the heaviest or largest objects first.

1 instances are described at http://people.brunel.ac.uk/mastjjb/jeb/orlib/binpackinfo.html

http://people.brunel.ac.uk/mastjjb/jeb/orlib/binpackinfo.html

Learning in Search 345

1.0

0.9

0.8

0.7

0.6

0.5

Im
pa

ct
 v

al
ue

Object weight

0.4

0.3

0.2

0.1

0.0
20 29 36 41 43 49 58 69 73 79 84 91

Fig. 3 Size of objects and impact of the corresponding position variable in a bin-packing problem

As was said previously, some effort must be made before starting search to com-
pute impacts. This helps differentiate variables at the root node and to make better
choices at the beginning of the search when this is crucial. One approach is to try
every value for every variable. However, on problems where domains are large, this
can be more costly than solving the problem itself. In [30], an efficient method is
described that recursively splits the domain of a variable until a given depth. This
has the advantage of being independent from the size of the variable domain and still
to provide information precise enough to avoid starting search in the wrong way.

Figure 4 shows the effect of impacts when solving decision multi-dimensional
knapsack problems. These problems are modeled by a set of linear constraints over
binary variables. They are usually hard for CP solvers. Five problems come from the
smaller set of the operations research library2 where the cost function is constrained
to take its optimal value (problems mknap1-*). Four other problems are isolated
sub-problems of a real-life configuration problem (problems mc*). These problems
have up to 11 constraints and 50 variables. The time limit is 1,500 s and we used
depth-first search together with constraint propagation.

Classical CP search strategies do not make sense here because the domain size
of uninstantiated variables is always two and the degree tends to be the same for
all variables. We instead run a random strategy that serves as a reference. We then

2 Problems are available at http://mscmga.ms.ic.ac.uk/jeb/orlib/mdmkpinfo.html

http://mscmga.ms.ic.ac.uk/jeb/orlib/mdmkpinfo.html

346 P. Refalo

Random Impact w/o init. Impact + init.
Problems Time Ch.pts. Time Ch.pts. Time Ch.pts.

mknap1-0 0.02 2 0.02 2 0.03 2
mknap1-2 0.02 10 0.05 15 0.03 26
mknap1-3 0.03 408 0.06 304 0.05 186
mknap1-4 0.55 11485 0.24 3230 0.05 434
mknap1-5 48.91 1031516 1.7 29418 0.22 4247
mknap1-6 >1500 >1500 50.46 902319
mc3923 14.67 491445 197.65 5862508 0.38 11768
mc3800 2.28 75270 248.81 7348618 0.06 1769
mc3888 53.40 1784812 33.93 1007735 1.36 44682
mc3914 26.91 899114 305.56 9084462 0.44 14390

Fig. 4 Impact strategies on multiknapsack decision problems

compare the use of impact strategies with and without initializing impacts. The strat-
egy is randomized in the sense that ties are broken randomly. Impacts are initialized
here by instantiating every variable to 0 and then to 1 and computing the correspond-
ing impact. One can observe that initialization of impacts dramatically improves
performance by allowing good choice at the beginning of the search. Making wrong
choices high in the tree can have disastrous effects with depth-first search.

2.3 Conflict-Directed Strategies in Constraint Programming

A classical strategy in CP makes use of the dynamic degree of a variable. The de-
gree of a variable is the number of variables it is linked to via constraints. The
dynamic degree is simply the number of uninstantiated variables linked to the vari-
able. This measure is widely used for solving CSP and constraint programs and often
for breaking ties when selecting variables with the minimum domain size strategy.

In [6], a new degree measure was introduced. It can be seen as a generalization
of the dynamic degree. It is based on the learning of constraints that fail the most.
Each time a dead-end is reached (due to a domain wipe-out), the method increases
a counter fails(c) of each constraint c responsible for the wipe-out.

Using these counters, they define a new estimation (called weighted-degree) for
a variable that counts the number of failures of constraints connected to the variable:

Ewd.x/ D
X

c2S;x2vars.c/

fails.c/

Here, vars.c/ is the set of variables of the constraint c. The estimation used in
[6] is indeed more dynamic as it sums up the fails(c) counters only for constraints
having at least a free variable. When solving binary CSPs, one can observe that the
dynamic degree of a variable amounts to the estimator Ewd.x/ where fails(c)D 1.

Learning in Search 347

The strategy is then quite intuitive. If one wants to apply the first-fail principle
and choose the most constrained variable at a node, one can start with variables
having the largest Ewd.x/ value. In [6], this estimator is combined with the domain
size and the strategy chooses the variable having the smallest ratio

domain size.x/ = Ewd.x/

They compared the weighted-degree against the classical degree measure by replac-
ing it in various standard strategies such as the one minimizing the ratio domain
size over the degree. Their most interesting results were obtained on frequency allo-
cation problems where they could achieve orders of magnitude improvements over
standard strategies. Here also, learning a low-level characteristic (the number of fail-
ures) of a solver behavior on a given problem can lead to significant improvements.
The intuition behind the estimator is easy to understand. However, a formal expres-
sion of it in terms of model formulation and models data is difficult because the
estimator operates at the frontier between the constraint formulation and the solver.

Starting from the work of [30], Cambazard and Jussien proposed in [9] another
measure for the impact of an assignment based on explanations provided by the CP
solver. An explanation is the reason for the removal of a value a in the domain of the
variable x, it is a set E containing the set of instantiations D made by the search pro-
cedure and the set of constraints C of the model involved in the inference such that

D [C ˆ fx ¤ ag

In practice, the solver keeps a trace of the inference chain each time an instanti-
ation occurs to compute sets D and C for every value removed. As a consequence
for every explanation, performing constraint propagation on the set D [C leads to
the right-hand side (the removal of the value a from the domain of x). At any stage
of the search, all explanations are stored in the set E . The set of explanations of
a removal x ¤ a computed through the whole search is noted E.x ¤ a/. This is
where the learning occurs: exploiting the set of explanations can lead to a different –
and more accurate in some cases – view on the problems in terms of variable and
value selection strategy.

In [9], statistics on explanations are used to compute new estimators for values.
The impact of an assignment y D b is the number of times it appears in all expla-
nations or in explanations for removal of values that are still in the domains (the
latter is theoretically more accurate). The size of explanations is also taken into ac-
count in order to give more importance to occurrences in shorter explanations. Their
evaluation of an assignment is thus

C.y D b/ D
X

e2E such that .yDb/2e

1= jej

The estimator for a variable is computed by summing up the value evalua-
tions over the current domain of the variable, exactly as for regular impacts (see
Formula 2.2). They also propose taking into account the age A.d; e/ of an

348 P. Refalo

instantiation d in an explanation. In the formula above this amounts to sum up
1

jej�A.yDb;e/
instead of 1= jej only.

Following the work of [6] on conflict-based degree, they also introduce an evalu-
ation of constraints where the evaluation sums up the 1 jej value for each explanation
e where the constraint appears. The new weighted degree of a variable x is obtained
by summing up the evaluation C.c/ for each constraint c where x appears.

Experiments were conducted in [9]. The explanation-based impacts cannot com-
pete with regular impact on multidimensional knapsack problems (some of those
presented in Fig. 4). However, they could achieve better results on the structured
random problems they generated. They also show that they are able to produce re-
sults comparable to Boussemart et al. [6] on frequency allocation problems by using
a strategy that minimizes the ratio domain size over the explanation based degree
described above.

3 Search Restarts for Exploiting Learning

Restarting search, that is stopping the search process and restarting it from scratch
from time to time depending of a given policy, is an effective technique when using
randomized strategies [17]. The basic idea is to give equal chances to all parts of
the search space to be explored at the beginning of the search. As an example, if the
assignment x D 1 is the first made in backtrack search, the other branch x ¤ 1 will
be explored only when the whole sub-tree under x D 1 is fully traversed. This sub-
tree can be huge and restarting search from time to time gives the choice x ¤ 1 some
probability to be explored earlier. Search restarts have proved to be practically very
effective and it is nowadays a common component of Boolean satisfaction (SAT)
solvers and CP solvers (see [2, 18, 26] and [30]).

When learning the importance of variables and value, restarting search plays the
fundamental role of permitting the solver to use the information learned during the
previous run to start a new, and hopefully smaller, search tree by making more ap-
propriate choices at the beginning when this is crucial. Taking the example of impact
measures described earlier, as the search progresses, we get more and more accu-
rate impacts. We learn in a way what the important assignments and variables are.
Consequently, we may discover that variables assigned high in the search tree are
not as important as they looked at the beginning. Therefore, it can be beneficial to
restart search from time to time in order to use the most recent impact information
with the hope that the new search tree will be smaller.

An important aspect is to decide about restart policy. Restart policies can be
grouped in three classes:

1. A fixed restart criteria: once a limit is reached (number of branching failures,
time, or any other measure) the search is restarted.

Learning in Search 349

2. A geometrically increasing limit: this makes the restart procedure complete,
because we will surely reach a limit sufficiently large to be able to find a so-
lution or to prove that none exists.

3. An optimal approach was proposed by Luby et al. in [24]. It is based on the
following sequence of run lengths: 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . . This
policy is optimal in the sense that the expected running time is only a logarithmic
factor slower than the true optimal policy when using randomized algorithms
such as Las Vegas algorithms.

Search restarts can lead to huge improvements in computation time. It has been
used extensively in SAT and CP solvers. An example of improvement obtained by
restarts is given in Sect. 7.

4 Clause Learning

Clause learning aim is to improve the performance of backtrack search algorithms
by generating explanations for failure (backtrack) points, and then adding the
explanations as new constraints to the original problem (initiated in [34] and fur-
ther developed for instance in [11]) . These explanations are mostly clauses, named
conflict-clauses or no-goods [32]. The goal of learning clauses from a conflict is
to improve the solver’s efficiency in finding a solution or proving that the problem
is infeasible by avoiding to recreate the same failure conditions in another part of
the search. Judicious clause learning is one of the main reasons for the tremendous
improvements in SAT problem solving over the last decade.

4.1 Clause Learning for Satisfiability Problems

Solving SAT problems in a complete way is based on variable instantiation and
backtracking when a failure is encountered [10]. At each node of the search tree,
similarly to CP some inferences are performed called unit propagation. Assume we
have a clause x _ :y _ z and that the search has set x to false and y to true. Unit
propagation consists in deducing that z must be set to true to satisfy the clause and
propagates this fixing by seeking another clause where this new assignment permits
to fix a variable. This process is performed until a fix-point is reached (no more
fixing can be deduced).

As the search progresses, the reasons for all these assignments are recorded in
an oriented graph called the implication graph [25]. Such a graph is represented in
Fig. 5. On the left part are the assignments made by the search procedure (with a
grey background) and on the right part are the fixings made by propagation. For
instance in this figure, a has been instantiated to true by the search procedure and
this has fixed p to true (due to a clause :a _ p in the model). Then, b was fixed
to false and together with a fixed to true propagation has fixed q to false (due to a

350 P. Refalo

a

b

c e

q

p

f g u

u

fail

Fig. 5 Implication graph leading to a failure

a p

q

e f gc

b

u

u

fail

Cut 1

Cut 2

Cut 3

Fig. 6 Edge-cuts of the implication graph

clause :a _ b _ :q in the model). Observe that the graph in Fig. 5 shows a failure
that is obtained when fixing c to true (we were able to fix u to true and also to false).
This graph is thus called a conflict graph because it represents an explanation for the
failure. There might be other failures involved at this level but for efficiency reasons,
SAT solvers usually analyze only the first one encountered.

Once this graph is generated, how to generate additional clauses? This is quite
simple: any cut that separates the vertices of the instantiation level and the fail ver-
tex is called an edge-cut, and it corresponds to a clause that does not exclude any
solution of the problem. The clause contains the negation of the literal that is on the
left side of every cut edges. For instance in Fig. 6.

Learning in Search 351

� The edge-cut Cut 1 separates the instantiations from the rest of the graph and
leads to the clause :a _ b _ :c that forbids the same configuration of instantia-
tions. This is unlikely to happen if we backtrack on the last choice (c = true) and
such cuts are generally avoided.

� The edge-cut Cut 2 leads to the clause :p _ q _ :c which is more likely to be
encountered in another part of the search tree because it does not depend directly
on the instatiation made by search; we could have other reasons than a D true
and b D false to obtain p D true and q D false.

� Finally, the edge-cut Cut3 leads to the clause:f and such a unary clause permits
to fix immediately f to false because fixing f to true always leads to a failure.

Now, the main decision that a search procedure needs to take is that: which con-
flict clause to add? A naive way of benefiting from conflict-clauses is to add a clause
for every edge-cut. This approach can generate a huge number of clauses. However,
it was used by earliest satisfiability solvers. Many improvements were made since
the satisfiability solver GRASP [25] that was the first to select a clause to accelerate
the search. Recent solvers use heuristics for choosing a few (in practice, often just
one) interesting conflict clauses to add to the original problem. These clauses are
then managed as a database where clauses are added but also removed when their
activity level or the date of the latest activity is too low.

The extension of a clause model with additional clauses maintains model ho-
mogeneity and permits one to refine the search strategies that are mostly based on
statistics about literal occurrences in clauses. This is somewhat related to cutting
plane generation in integer programming solvers [35] where linear constraint addi-
tions refine the linear relaxations and improve the search strategy.

While clause learning is now an old technique in CP, clauses were handled differ-
ently. The huge performance improvement that it brings for solving SAT problems
has motivated some recent research about handling clauses in a similar way as they
are in SAT solvers.

4.2 Clause Learning in Constraint Programming

Learning from failures is not new in the constraint satisfaction problem field. No-
good recording [12] as well as conflict-directed backjumping [11, 29] has been
used for a while for solving CSP. A no-good is a set of assignments that cannot be
extended to a solution. When a failure is encountered during a depth-first search,
the set of assignments that led to the failure is obviously a no-good. By combining
different no-goods responsible for the failure of every choice in a choice point, one
can obtain a no-good whose deepest assignment in the search tree is higher than the
decisions that created the failures. Backtracking higher to this deepest assignment
is called backjumping.

352 P. Refalo

Clauses generated by SAT solvers and no-goods in constraint satisfaction are
exploited differently but they are closely related. Both are based on the resolution
principle. As a no-good

:.x1 D v1 ^ x2 D v2 ^ : : : ^ xn D vn/

is equivalent to the clause

.x1 ¤ v1 _ x2 ¤ v2 _ : : : _ xn ¤ vn/

It is tempting to manage these clauses, as in SAT solvers, not only for backjumping
but also for generating new constraints from failures that will be propagated to fur-
ther reduce the variables domains. In [21], no-goods are generated from the reasons
(or explanation) of the removal of a value in a domain. These no-goods are com-
bined to create new ones that augment the solved model. This obviously increases
domain reduction.

The fundamental difference with SAT solvers lies in the uniformity of the con-
straint model: in SAT solvers, clause generation augments the basic model and has
a direct impact on further clause generation, on logical inferences and on the search
strategy which is mostly based on statistics about literal occurrences. Clause gener-
ation in SAT solvers also helps recover hidden model structures. In CP, the benefit
can be less significant. CP are often structured, and the strong inferences made by
global constraints make clause generation no longer an essential feature but rather a
way among others to make domain reductions. As for global constraints, the impact
on performance can be tremendous.

A restricted but effective use of no-good is presented in [22] where search restarts
are used. After each run, and before the next restart, a set of clauses forbidding the
already explored search space is added to the model. This avoids restarts scanning
the same parts of the search space several times. This restricted use has the ad-
vantage of being efficiently implemented and does not generate a huge amount of
clauses since restart cutoffs are often large and the number of clauses depends on the
number of variables and on the number of restarts. This idea has been exported to CP
in [31] and in CSP in [8]. Clauses generated after each run are handled in a global
constraint exploiting the well-known watched literals propagation mechanism [26].

Practical results on structured problems demonstrate the effectiveness of the
method. It benefits from the advantages of restart with a negligible overhead com-
pared to depth-first search. In [8], an order of magnitude improvement is reported on
solving hard radio-link frequency decision problems. In [31], the combination of im-
pacts, restarts, and clause generation involves significant improvements. It is at the
basis of the automatic search procedure available in the CP Optimizer product [20].

We give here some details about the combination and experimental results as it
illustrates the combination of several types of learning during search. The idea is
to use impact based strategies and search restarts to exploit the impacts learned.
In addition, conflict clauses are added to avoid re-exploring the same parts of the
search and to restart more often, without increasing the cutoff.

Learning in Search 353

x = 1 x ¹ 1

y ¹ 1

x ¹ 2

y ¹ 2

z ¹ 3

z ¹ 1

x = 2

x = 3

y = 1

y = 2

y = 3

z = 2

z = 1

Clause Generation

Fig. 7 Clause generation from search restarts

Figure 7 shows an example explaining the way these clauses are generated. On
the left part of the figure, a search tree exploration fails because a fail limit has
been reached. From this partial tree, clauses are generated to avoid re-exploring the
same nodes. For instance, to avoid re-exploring the sub tree below yD 1, the clause
x ¤ 3 _ y ¤ 1 is added. These clauses (which are no-goods in this case since they
are the negation of an assignment) are grouped together in a global constraint and
propagated using the watched-literal technique. Clauses with a low activity are
removed from time to time to avoid memory explosion.

This approach has been tested on decision multi-knapsack problems from OR-
Library. These are optimization multi-knapsack problems whose objective function
is replaced by an equation forcing the function to be equal to the optimal value of
the problem. In Fig. 8, the comparison of four methods is presented:

1. Impact estimators described in Sect. 2.2 with a depth-first search procedure
2. Impacts with increasing restarts (the cutoff is a fail limit initialized at 100 and it

increases geometrically)
3. Impacts with increasing restarts and the no-good generation described above
4. Impact with constant restarts (cutoff = 1,000) and no-good generation

Before search, impacts are initialized by branching once on each value (0 and 1)
for every variable. The Figure gives the computation time in seconds. The last line
show the number of instances unsolved. The first result is that restart helps a lot.
Conflict addition helps also but when it allows search to restart every 1,000 fails, we
can solve more instances and reduce significantly the computation time for instances
that could be solved otherwise.

354 P. Refalo

Impact Impact
Impact Impacts + incr. restarts + constant restarts

Instances + depth-first search + incr. restarts + conflicts + conflicts

SENTO1 0.17 5.00 0.39 2.30
SENTO2 1.38 1.94 0.22 0.61
WEING1 3.97 22.98 1.78 19.28
WEING8 20.11 8.92 4.17 0.42
WEISH01 156.78 1000.00 635.02 5.39
WEISH015 2.22 3.06 0.41 2.14
WEISH016 0.23 1.94 0.22 0.34
WEISH017 24.55 0.53 0.59 1.98
WEISH018 6.30 0.09 6.66 5.86
WEISH019 432.67 66.13 1.83 12.38
WEISH020 36.72 28.88 0.73 1.67
WEISH021 59.42 27.70 54.59 4.72
WEISH022 50.69 1.06 0.16 2.94
WEISH023 360.92 1000.00 184.09 17.81
WEISH024 885.64 191.31 13.77 45.36
WEISH025 1000.00 1000.00 166.47 11.31
WEISH026 1000.00 0.31 336.20 4.16
WEISH027 1000.00 1000.00 477.28 5.83
WEISH028 1000.00 1000.00 1000.00 6.97
WEISH029 1000.00 1.05 1000.00 8.56
WEISH030 1000.00 4.19 812.52 3.78
unsolved 7 6 2 0

Fig. 8 Effect of clause generation on decision multi-dimensional knapsack problems

5 Conclusion

This chapter has emphasized some of the learning techniques that are responsible
for recent improvement in SAT and CP solvers.

Strategies based on learning (like impact-based strategies as well as conflict-
based strategies) have proved their efficiency on practical problems. The underlying
variables and values selection methods remains quite intuitive and they can even
compete with special-purpose strategies. Interestingly, learning-based strategies are
still exploring the first-fail principle. However, whatever the strategy, it must not be
trusted in any case and all the time. Some randomization needs to be introduced.

This not only introduces diversity in a strategy that is conservative but also can
improve it by applying learning to search areas that were not considered promising
a priori.

Structural learning carried out by clause generation is an essential reason for
the improvements of SAT solvers during the last decade. In CP, the problem of
obtaining some structural information for solving a model has always been deferred

Learning in Search 355

to the user. Thus, the large number of global constraints developed for CP solvers.
Despite this, clause learning can still be an effective method for solving CP models.

Many of the ideas presented in this chapter have been there for quite some time
(pseudo-costs in integer programming or no-goods for CP, for instance). However,
they are now used again, improved and adapted in the perspective of designing an
autonomous search. There is a strong need for autonomous search from people that
solve problems. In industry, the time devoted to optimization projects has decreased.
The size of optimization teams in companies where optimization is not the primary
objective has decreased as well. Prototypes that solve complex problems must of-
ten be developed in a few days and they need to produce good solutions from the
beginning. There is often no time for developing a dedicated method even if it ex-
ists in the academic literature. Flexibility and rapid adaptation to model changes are
the priority. Thus, the need for rapid modeling tools but also for solvers that find
good solutions without needing an expert user. Here is the challenge for the learn-
ing schemes of search methods and this will certainly be an active research area in
the next decade.

References

1. ILOG CPLEX 11.0. (2009) User Manual. ILOG, S.A., Gentilly, France
2. Baptista L, Marques-Silva J (2000) Using randomization and learning to solve hard real-world

instances of satisfiability. In: CP ’02: Proceedings of the 6th international conference on prin-
ciples and practice of constraint programming, London, 2000. Springer, London, pp 489–494

3. Benichou M, Gauthier JM, Girodet P, Hentges G, Ribiere G, Vincent O (1971) Experiments in
mixed-integer linear programming. Math Program (1):76–94

4. Bessiere C, Chmeiss A, Sais L (2001) Neighborhood-based variable ordering heuristics for the
constraint satisfaction problem. In: Proceedings of CP 2001, pp 565–569

5. Bessière C, Régin J-C (1996) MAC and combined heuristics: Two reasons to forsake FC (and
CBJ?) on hard problems. In: CP96: second international conference on principles and practice
of constraint programming, Cambridge, pp 61–75

6. Boussemart F, Hemery F, Lecoutre C, Sais L (2004) Boosting systematic search by weight-
ing constraints. In: 16th European conference on artificial intelligence (ECAI’04)e, Valencia,
Spain, August 2004, pp 149–164

7. Brélaz D (1979) New methods to color the vertices of a graph. Comm ACM (22):251–256
8. Tabary S, Lecoutre C, Sas L, Vidal V (2007) Nogood recording from restarts. In: Proceed-

ings of the 20th international joint conference on artificial intelligence (IJCAI’07), Hyderabad,
India, 2007, pp 131–136

9. Cambazard H, Jussien N (2006) Identifying and exploiting problem structures using
explanation-based constraint programming. Constraints 11(4):295–313

10. Davis M, Logemann G, Loveland D (1962) A machine program for theorem proving. Comm
ACM (5):394–397

11. Dechter R (1986) Learning while searching in constraint-satisfaction-problems. In: 5th AAAI,
Philadelphia, pp 178–185

12. Dechter R (1990) Enhancement schemes for constraint processing: backjumping, learning and
cutset decomposition. Artif Intell 41(3):273–312

13. Rothberg E, Danna E, Le Pape C (2005) Exploring relaxation induced neighborhoods to im-
prove MIP solutions. Math program 102(1):71–90

14. Fischetti M, Lodi A (2003) Local branching. Math program 98:23–47

356 P. Refalo

15. Gauthier J-M, Ribiere G (1977) Experiments in mixed-integer linear programming using
pseudo-costs. Math program (12):26–47

16. Goldberg E, Novikov Y (2007) Berkmin: A fast and robust sat-solver. Discrete Appl Math
155(12):1549–1561

17. Gomes C (2003) Complete randomized backtrack search (survey). In: Milano M (ed)
Constraint and integer programming: toward a unified methodology. Kluwer, Dordrecht,
pp 233–283

18. Gomes CP, Selman B, Kautz H (1998) Boosting combinatorial search through randomization.
In: 15th AAAI, Madison, July 1998, pp 431–437

19. Haralick R, Elliot G (1980) Increasing tree search efficiency for constraint satisfaction prob-
lems. Artif Intell (14):263–313

20. IBM ILOG CP OPtimizer 1.0 (2007) User Manual. IBM, Gentilly, France
21. Katsirelos G, Bacchus F (2003) Unrestricted no-good recording in CSP search. In: Proceedings

of CP’03, pp 873–877
22. Lynce I, Baptista L, Marques-Silva J (2001) Complete search restart strategies for satisfiability.

In: IJCAI workshop on stochastic search algorithms, pp 1–5
23. Linderoth J, Savelsberg M (1999) A computational study of search strategies for mixed integer

programming. INFORMS J Computing 11(2):173–187
24. Luby M, Sinclair A, Zuckerman D (1993) Optimal speedup of Las Vegas algorithms. Inform

Process Lett pp 173–188
25. Marques-Silva J, Sakallah K (1996) Grasp—a new search algorithm for satisfiability. In:

ICCAD ’96: Proceedings of the 1996 IEEE/ACM international conference on computer-aided
design, Washington, DC, USA, 1996. IEEE Computer Society, pp 220–227

26. Moskewicz MW, Madigan CF, Malik S (2001) Chaff: engineering an efficient SAT solver. In:
Design automation conference, pp 530–535

27. Nemhauser G, Wolsey L (1988) Integer and combinatorial optimization. Wiley, New York
28. Padberg M, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-scale

symmetric traveling salesman problems. SIAM Rev 33(1):60–100
29. Prosser P (1993) Hybrid algorithms for the constraint satisfaction problem. Comput Intell

9:268–299
30. Refalo P (2004) Impact-based search strategies for constraint programming. In: Proceedings

of 6th international conference CP 2004, Toronto, October 2004. Springer, pp 369–383
31. Refalo P (2005) No-good learning and search restart for impact based strategies. In: Proceed-

ings of INFORMS annual meeting, San Francisco, October 2005
32. Schiex T, Verfaillie G (1993) Nogood recording for static and dynamic CSP. In: Proceeding of

the 5th IEEE international conference on tools with artificial intelligence (ICTAI’93), Boston,
MA, November 1993, pp 48–55

33. Smith B (1999) The Brelaz heuristic and optimal static ordering. In: Proceedings of CP’99,
(Alexandria, VA), pp 405–418

34. Stallman R, Sussman G (1977) Forward reasoning ad dependency-directed backtracking in a
system for computer aided circuit analysis. Artif Intell (9):135–196

35. Wolsey LA (1998) Integer programming. Wiley, New York

What Is Autonomous Search?

Youssef Hamadi, Eric Monfroy, and Frédéric Saubion

Abstract Autonomous search is a particular case of adaptive systems that improve
their solving performance by modifying and adjusting themselves to the problem at
hand, either by self-adaptation or by supervised adaptation. We propose a general
definition and a taxonomy of search processes with respect to their computation
characteristics. For this purpose, we decompose solvers into components and their
configurations. Some computation rules between computation stages are used to for-
malize the solver modifications and adaptations. Using these rules, we then sketch
out and classify some well known solvers and try to answer the question: “What is
Autonomous Search?”

1 Introduction

The selection and the correct setting of the most suitable algorithm for solving a
given problem has already been investigated many years ago [87]. The proposed
abstract model suggested to extract features in order to characterize the problem,
to search for a suitable algorithm in the space of available algorithms and then to
evaluate its performances with respect to a set of measures. These considerations
are still valid and this general problem can indeed be considered at least from two
complementary points of view:

� Selecting solving techniques or algorithms from a set of possible available tech-
niques

� Tuning an algorithm with respect to a given instance of a problem

To address these issues, the proposed approaches include tools from different
computer science areas, especially from machine learning. Moreover, they have

Y. Hamadi (�)
Microsoft Research, 7 JJ Thomson Avenue, Cambridge, CB3 0FB, United Kingdom
and
LIX Ecole Polytechnique, F-91128 Palaiseau, France
e-mail: youssefh@microsoft.com

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 11,
c� Springer Science+Business Media, LLC 2011

357

youssefh@microsoft.com

358 Y. Hamadi et al.

been developed to answer the algorithm selection problem in various fields as de-
scribed in the recent survey of K. Smith-Miles [90]. In this chapter, we focus on the
restriction of this general question to constraint satisfaction and optimization prob-
lems. Therefore, constraint solvers and optimization techniques constitute the core
of our study.

1.1 Related Approaches

The problem of finding the best configuration in a search space of heuristic algo-
rithms is also related to the recent notion of hyper-heuristics [10, 11, 21]. Hyper-
heuristics are methods that aim at automating the process of selecting, combin-
ing, generating, or adapting several simpler heuristics (or components of such
heuristics) to efficiently solve computational search problems. Hyper-heuristics are
also defined as “heuristics to choose heuristics” [23] or “heuristics to generate
heuristics” [8]. This idea was pioneered in the early 60’s with the combination of
scheduling rules [20, 36]. Hyper-heuristics that manage a set of given available ba-
sic search heuristics by means of search strategies or other parameters have been
widely used for solving combinatorial problems (see Burke et al. [11] for a recent
survey).

From a practical point of view, Burke et al. [12] proposed a comprehensive classi-
fication of hyper-heuristics considering two dimensions: the nature of the heuristics
and the source of the feedback for learning. They thus distinguish between heuris-
tics that select heuristics from a pre-existing set of search heuristics and heuristics
that generate new heuristics from basic components. Concerning the feedback, they
identify three categories: online learning, offline learning, and no learning. The dis-
tinction between online and offline processes was previously proposed in order to
classify parameter setting in evolutionary algorithms [29], distinguishing parameter
tuning (offline) from parameter control (online).

� As classical offline mechanisms, we may mention portfolio algorithms [50,100],
where previously acquired knowledge is used in order to select the suitable solv-
ing method with regard to a given problem instance. M. Gagliolo et al. [44] use
reinforcement learning based techniques for algorithm selection.

� Online control of heuristics has been widely addressed, for instance, in adaptive
strategies in evolutionary computation [67, 93], in adaptive neighborhood selec-
tion for local search [19, 59, 85], or in constraint programming solvers [27].

When considering parameter setting, the space of possible algorithms is the set
of possible configurations of a given algorithmic scheme induced by the possible
values of its parameters that control its computational behavior. Parameter tuning of
evolutionary algorithms has been investigated for many years (we refer the reader
to the book [68] for a recent survey). Adaptive control strategies were also pro-
posed for other solving approaches such as local search [58,84]. Offline mechanisms

What Is Autonomous Search? 359

are also available for tuning parameters, such as the work of Hutter et al. [51],
which proposes to use a local search algorithm in order to automatically find a good
(i.e., efficient) configuration of an algorithm in the parameters space. Including this
work, a more complete view of the configuration of search algorithms is presented
in the PhD thesis of F. Hutter [61]. Revac [80, 81] is a method that uses informa-
tion theory to identify the most important parameters and calibrate them efficiently.
We may also mention that racing techniques [17, 101–103] can be used to choose
suitable parameter settings when faced to multiple choices.

Another important research community that focuses on very related problems
has been established under the name Reactive Search by R. Battiti et al. [5,7]. After
focusing on local search with the seminal works on reactive tabu [18] or adaptive
simulated annealing [62], this community is now growing through the dedicated
conference LION [4].

It clearly appears that these approaches share common principles and purposes
and have been developed in parallel in different but connected communities. Their
foundations rely on the fact that, since the solving techniques and search heuris-
tics are more and more sophisticated and the problems structures more and more
intricate, the choice and the correct setting of a solving algorithm is becoming an
intractable task for most users. Therefore, there is a rising need for an alternative
problem solving framework. According to the above brief historical review, we have
remarked that these approaches have indeed their own specificities that are induced
by their seminal supporting works. In this chapter, we propose to integrate the main
motivations and goal into the more general concept of Autonomous Search (AS)
[54, 55].

1.2 Autonomous Search

An Autonomous Search system should provide the ability to advantageously modify
its internal components when exposed to changing external forces and opportunities.
It corresponds to a particular case of adaptive systems with the objective of improv-
ing its problem solving performance by adapting its search strategy to the problem
at hand. Internal components correspond to the various algorithms involved in the
search process – heuristics, inference mechanisms, etc. External forces correspond
to the evolving information collected during this search process – search landscape
analysis (quality, diversity, entropy, etc.), external knowledge (prediction models,
rules, etc.), etc . This information can be either directly extracted from the problem
or indirectly computed through the perceived efficiency of algorithm’s components.
Examples of collected information include the size of the search space (exact or
estimated), the number of sub-problems, etc. Computed information includes the
discriminating degree of heuristics, the pruning capacity of inference techniques,
etc. Information can also refer to the computational environment which can often
vary, e.g., number of CPU cores.

360 Y. Hamadi et al.

Many pieces of work are distributed over various research areas and we see
benefits in providing an overview of this new trend in problem solving. Never-
theless, Autonomous Search is particularly relevant to the constraint programming
community, where many work has been conducted to improve the efficiency of con-
straint solvers. These improvements often rely on new heuristics, parameters, or
hybridization of solving techniques and therefore, solvers are becoming more and
more difficult to design and manage. In this chapter, we thus propose to focus on
recent advances in Autonomous Search for constraint solving. To this end, we pro-
pose a description of the architecture of generic constraint solvers. Our purpose is
not to present an abstract computation rule system but rather to give a taxonomy of
the various components and configurations of a solver. We then want to propose a
classification of basic search processes. For example, we try to differentiate offline
tasks from online processes, tuning (adjustment of parameters and heuristics before
solving) from control, etc. Note that previous taxonomies and studies have already
been proposed for specific families of solving techniques or for specific solving
purposes [12, 25, 29, 31, 44]. Therefore, these works may use different terms and
concepts. Based on these works, our purpose is thus to provide a comprehensive
classification methodology that would be able to handle these previously identi-
fied principles and that would be precise enough to cover wider families of solving
methods, especially with regard to their components and solving processes. Here,
we apply our classification methodology to various representative solvers. We can
then define Autonomous Search as search processes that integrate control in their
solving process, either by self adaptation (in which the rule application strategy is
modified during solving by the solver itself) or by supervised adaptation (in which
an “external” mechanism modifies the solving process). We finally propose some
challenges for performance evaluation and continuous search.

1.3 Chapter Organization

This chapter is organized as follows. In Sect. 2, we describe the general architec-
ture of solvers we consider and the specificities of autonomous solvers. We also
formalize the basic solving mechanisms based on a set of rules. In Sect. 3, we illus-
trate different solver architectures by providing examples from the literature and we
characterize these solvers using our previous description framework. In Sect. 4, we
point out some future research directions and highlighting the main challenges that
must be tackled for designing more autonomous systems.

2 Solvers Architecture

In this section, we present the general basic concepts related to the notion of solver
in the context of general constraint problems solving, which provides a general
introduction on problem solving. By general problems, we mean optimization or

What Is Autonomous Search? 361

constraint satisfaction problems, whose variables may take their values over various
domains (integers, real numbers, Boolean, etc.). In fact, solving such problems is
the main interest of different but complementary communities in computer science:
operation research, global optimization, mathematical programming, constraint pro-
gramming, artificial intelligence, etc. Among the different underlying paradigms
that are associated to these research areas, we may try to identify common princi-
ples, which are shared by the resulting solving algorithms and techniques that can
be used for the ultimate solving purpose.

2.1 General Architecture

As it has finally been suggested by the notion of metaheuristics [40], solvers could
be viewed as a general skeleton whose components are selected according to the
problem or the class of problems to be solved. Indeed, from our point of view,
we want to look carefully at the components of the solver that define its struc-
tural properties and at its parameters or external features that define its behavior.
On one hand, one has to choose the components of the solver and on the other
hand one should configure how these internal components are used during the
solving process. We identify the core of the solver which is composed by one or
several solving algorithms. Note that here we distinguish between the solver and
the solving algorithm, which is a part of the solver but corresponds to the real
operational solving process. A basic solving algorithm corresponds to the man-
agement of solving techniques, abstracted by the notion of operators, making use
of a solving strategy that schedules the use of these operators. A solving algo-
rithm is designed of course according to the internal model, that defines the search
space, and uses a function to evaluate the elements of the search spaces. All these
components can be subjected to various parameters that define their behavior. A
given parametrization defines thus what we call a configuration of the solver. At
this level, a control layer can be introduced, especially in an autonomous solver, to
manage the previous components and modify the configuration of the solver during
the solving process. The general description of a solver architecture is illustrated
by Fig. 1.

2.1.1 Problem Modeling/Encoding

The encoding of the problem is considered apart from the solver itself. In fact, most
of the time, a solver is designed for a specific encoding framework that induces a
specific internal representation that corresponds to the model. While the classic Con-
straint Satisfaction Problem (CSP) modeling framework [95] is commonly used as a
description tool for all solving methods, the internal encoding of the problem and its
possible configurations involve different representations (e.g., complete vs. partial

362 Y. Hamadi et al.

Fig. 1 The general
architecture of a solver

Model

Evaluation

Strategy

Operators

Parameters

Control

Algorithm

Configuration

assignments, etc.). One should note that different modeling and encoding paradigms
can be used. In constraint programming [3,26,48,75], one could encode constraints
as tuples of allowed values or using a more declarative first order language with re-
lations and functions. Moreover, other paradigms can be used to encode CSPs, such
as SAT [14], and various transformation schemes have been investigated [15,57,96].
On the metaheuristics side, the encoding of the possible configurations of the prob-
lem has a direct impact on the search space and on the search landscape. For
instance, one may include directly some of the constraints of the problem in the
encoding as this is the case when using permutations for the Traveling Salesman
Problem (TSP [1]), which corresponds to the constraint: Each city is visited once
and only once. In genetic algorithms [24, 33, 72] or local search [2, 53], encoding
may have a significant impact on the performance of the algorithm. The encoding of
continuous optimization problems (i.e., over real numbers) also requires providing
suitable data structures, for instance, floating point representation for genetic algo-
rithms [63] or continuous and interval arithmetic in constraint programming [9].
The internal representation of the model can be considered as a component of the
solver. This representation has of course a direct computational impact on the eval-
uation function and also on the solving techniques that are implemented through
operators.

2.1.2 The Evaluation Function

The evaluation function is related to the nature of the problem. From a general point
of view, a function is needed to evaluate possible configurations of the problem with

What Is Autonomous Search? 363

regard to its constraints and variables values. An evaluation function may evaluate
the number of conflicts or check the satisfiability of a given constraint set, or use
particular consistency notions (global or local). Such a function can also be used to
prune the search space when dealing with optimization problems. Again, this notion
is more classically used in the context of metaheuristics than in classic complete
constraint programming solvers. But it seems rather intuitive to have such a function
to assess the current search state in order to be able to check if the solver has reached
a solution or not. Moreover, this evaluation function clearly appears when dealing
with constraint optimization problems and using branch and bound algorithms.

2.1.3 The Solving Algorithm

Our purpose is to distinguish between the basic structure of the algorithm and its
configurable components. For instance, in a classic complete constraint solver, the
skeleton of the algorithm is the basic backtracking process whose heuristics and
propagation rules can be configured. In an evolutionary algorithm, the core of the
solver is constituted by the population management. A solver may include the fol-
lowing components that we have to take into account:

� A set of operators: operators are used in the solving process to compute search
states. These operators may basically achieve variable instantiation, constraint
propagation, local moves, recombination or mutation operators, selection, etc.
Most of the time, they are parameterized and use an evaluation function to
compute their results (e.g., number of violated constraints or evaluation of the
neighborhood in local search algorithms). Note that these operators may be used
to achieve a complete search (i.e., able to find a solution or prove unsatisfiabil-
ity of the problem) or to perform an incomplete search (i.e., find a solution if
possible or a suboptimal solution).

– Concerning tree search based methods, the notion of operator for performing
solving steps during the search process rather corresponds to basic solving
techniques. For instance, if we consider a classic backtracking based solver
in constraint programming, we need an enumeration operator that is used to
assign values to variables and reduction operators that enforce consistencies
in order to reduce the domains of the variables. The search process then cor-
responds to the progressive construction of a search tree whose nodes are
subjected to the application of the previously described operators. When con-
sidering numerical variables over intervals, we may add splitting operators.
Of course, these operators may include heuristics concerning the choice of the
variables to be enumerated, the choice of the values but also other parameters
to adjust their behavior. Indeed, constraint propagation can be formalized by
means of rules [3,34], which support operators-based description and provide
a theoretical framework to assess properties of the solver such as termination.

– On the metaheuristics side, in evolutionary computing [24, 33, 43], we usu-
ally consider variation operators (mutation operators and recombination

364 Y. Hamadi et al.

operators) and selection operators. Considering an evolutionary algorithm,
it is possible to establish some convergence properties such as the famous
schemata theorem [56]. There exist some general purpose operators as, for
instance, the uniform crossover [91] or the Gaussian mutation [64]. To get
better performances, these operators are often designed with respect to the
specificities of the problem to be solved. In local search[2], local moves are
based on neighborhoods functions.

All these operators are most of the time subjected to parameters that may modify
their behavior but, more importantly that also control their application along the
search process.

� A solving strategy: the solving strategy schedules how operators are used. Back
to previous example, in a complete tree-based search process, the strategy will
consist in alternating enumeration and constraint propagation. The strategy can
be subjected to parameters that will indicate which operators to choose in the
general scheduling of the basic solving process. Concerning metaheuristics, it is
clear that the strategy corresponds for instance to the management of the temper-
ature schedule in simulated annealing or the tabu list in tabu search.

2.1.4 Configuration of the Solver: The Parameters

The solver usually includes parameters that are used to modify the behavior of its
components. A configuration of the solver is then an instance of the parameters to-
gether with its components. Parameters are variables that can be used in the general
search process to decide how the other components are used. These parameters may
correspond to various data that will be involved in the choice of the operator to be
applied at a given search state. For instance, we may consider the probability of
application of the operators (e.g., genetic operators in evolutionary algorithms, the
noise in random walk for local search algorithms [89]) or to some tuning of the
heuristics themselves (e.g., tabu list length in Tabu Search [41]).

Setting of the parameters is an important issue for evolutionary algorithms [68].
Setting of the parameters for local search algorithms is also handled in [7]. In con-
straint programming, much work has been done to study basic choice heuristics (see
[27] for instance), but also to evaluate the possible difficulties related to the classic
use of basic heuristics such as heavy-tailed problems [45] (these studies particularly
demonstrate the benefit of randomization when solving multiple instances of a given
family of problem compared to the use of a single predefined heuristics) .

2.1.5 Control

Modern solvers also include external or internal mechanisms that allow the solver
to change its configuration by selecting the suitable operators to apply, or tuning the
parameters, or adding specific information to the model. These mechanisms often

What Is Autonomous Search? 365

include machine learning techniques and will be detailed later. Of course, control
rules will often focus on the management of the parameters and/or of the operators
of the solver.

2.1.6 Existing Classifications and Taxonomies

As mentioned in the introduction, we may identify at least three important domains
where related work has already been conducted. These lines of work have led to the
use of different terminologies and concepts that we try to recall here.

In evolutionary computing, parameter setting [68] constitutes a major issue and
we may recall the taxonomy proposed by Eiben et al. [29] (see Fig. 2).

Methods are classified depending on whether they attempt to set parameters
before the run (tuning) or during the run (control). The goal of parameter tuning
is to obtain parameters values that could be useful over a wide range of problems.
Such results require a large number of experimental evaluations and are generally
based on empirical observations. Parameter control is divided into three branches
according to the degree of autonomy of the strategies. Control is deterministic when
parameters are changed according to a previously established schedule, adaptive
when parameters are modified according to rules that take into account the state of
the search, and self-adaptive when parameters are encoded into individuals in order
to evolve conjointly with the other variables of the problem.

In [88], Eiben and Smit recall the difference between numeric and symbolic pa-
rameters. In [82], symbolic parameters are called components whose elements are
operators. In this chapter, we choose to use the notions of parameters for numeric
parameters. As defined above, the operators are configurable components of the
solver that implement solving techniques.

In [5], reactive search is characterized by the integration of machine learning
techniques into search heuristics. A classification of the source of information that
is used by the algorithm is proposed to distinguish between problem dependent
information, task dependent information, and local properties.

In their survey [12], Burke et al. propose a classification of hyper-heuristics that
are defined as “search methods or learning mechanisms for selecting or generat-
ing heuristics to solve computational search problems.” As mentioned above, this
classification also distinguishes between two dimensions: the different sources of
feedback information and the nature of the heuristics search space. This classifica-
tion is summarized in Fig. 3.

Fig. 2 Control taxonomy proposed by Eiben et al. [29]

366 Y. Hamadi et al.

Fig. 3 Classification of hyper-heuristics proposed by Burke et al. [12]

The feedback, when used, corresponds here to the information that is learned
during solving (online) or using a set of training instances (offline). The authors
identify two families of low level heuristics : construction heuristics (used to incre-
mentally build a solution) and perturbation heuristics (used to iteratively improve
a starting solution). The hyper-heuristics level can use heuristics selection method-
ologies, that produce combinations of pre-existing low level heuristics, or heuristics
generation methodologies, that generate new heuristics from basic blocks of low
level heuristics.

Another interesting classification is proposed in [44], in which Gagliolo et al. are
interested in the algorithm selection problem [87] and describe the different selec-
tion techniques according to the following points of views. The problem consists in
assigning algorithms from a set of possible alternative solving methods to a set of
problem instances in order to improve the performance. Different dimensions are
identified with regard to this algorithm selection problem :

� The nature of the problems to be solved : decision vs. optimization problems
� The generality of the selection process : selection of an algorithm for a set of

instances or selection of an algorithm for each instant
� The reactivity of the selection process : the selection can be static and made

before ruining all the selected algorithms or can be dynamically adapted during
execution

� The feedback used by the selection process : the selection can be made from
scratch or using previously acquired knowledge

� The source of feedback: as in the previous classification, when learning is used
in the selection process, one may consider offline (using separated training in-
stances) or online (updating information during solving) learning techniques

As claimed in the introduction, autonomous search aims at providing a more
uniform description and characterization of these different trends, which have close
relationships.

What Is Autonomous Search? 367

2.2 Architecture of Autonomous Solvers

We may define autonomous solvers as solvers that contain control in their search
process (i.e., the solvers described in Sect. 3.2). We want to study such autonomous
systems with respect to their specific control methods.

A general control process includes a strategy that manages the modification of
some of the solver’s components and behavioral features after the application of
some solving functions. The overall strategy to combine and use components and
parameters can be based on learning that uses information from the current solving
process or from previous solved instances (see remarks in Sect. 2.1.6). Therefore,
modifications are often based on a subset of search states. Given a solver, we have
to consider the interactions between the heuristics and the strategy which selects the
heuristics at a meta-level (notion of hyper-heuristics).

On the one hand, one can consider the solver and its history and current envi-
ronment (i.e., the previously computed search states and eventually other external
information related to previous computations) as an experimental system, which is
observed from an external point of view. Such a supervised approach then consists
in correctly controlling the solver by adjusting its components according to criteria
and decision rules (these rules may be automatically generated by means of statistics
and machine learning tools or even by human experts). On the other hand, one may
consider that the solver changes the environment at each step of the solving pro-
cess and that this environment returns feedback information to the solver in order to
manage its adaptation to this changing context (different types of feedback may be
taken into account as mentioned in Sect. 2.1.6). In this case, we will use self adap-
tation. To illustrate these ideas, we propose a high level picture of an autonomous
search system (see Fig. 4).

Supervised adaptation

Solver
Changeable configuration

Interpret data

Environment
interaction

eventmeasurement
feedback

Fig. 4 The global architecture of an autonomous search system

368 Y. Hamadi et al.

2.2.1 Control by Self Adaptation

In self adaptation, the adaptive mechanism is coupled with the search components,
directly changing them in response to their actions. Self-adaptive techniques are
tightly integrated with the search process and should usually require little over-
head. The algorithm is observing its own behavior in an online fashion, modifying
its parameters accordingly. This information can be either directly collected on
the problem or indirectly computed through the perceived efficiency of individual
components. Because the adaptation is done online, there is an important trade-off
between the time spent computing heuristic information and the gains that are to
be expected from this information. Therefore, we can consider that the strategy de-
pends on the set of computed states and changes during solving.

2.2.2 Control by Supervised Adaptation

Supervised adaptation works at a higher level. It is usually external and its mech-
anisms are not coupled with the search process. It can be seen as a monitor that
observes the search and analyzes it. Then, it modifies the components of the solver
(or requires the solver to modify its components) in order to adapt it. Supervised
adaptation can use more information, e.g., learning-based knowledge. In some
cases, we can imagine that typical supervised actions could be “compiled” into self-
adaptive mechanisms.

2.3 Searching for a Solution vs. Solutions for Searching

It appears now that the problem of building a good Autonomous Search solver is
more ambitious than finding a solution to a given instance of a problem. Indeed,
inspired by the seminal consideration of John Rice [87] when he was abstracting the
problem of finding the best algorithm for solving a given problem, we need to take
into account at least three important spaces in which an autonomous search process
takes place.

� The search space: the search space is induced by the encoding of the problem
and corresponds to the set of all potential configurations of the problem that one
has to consider in order to find a solution (or to find all solutions, or to find
an optimal solution). This search space can also be partitioned, for optimization
problems, into the set of feasible solutions and infeasible solutions with respect
to the constraints of the problem.

� The search landscape: the search landscape is related to the evaluation function
that assigns a quality value to the elements of the search space. If indeed this
notion is rather of limited use in the area of complete solvers, this is a crucial
notion when using heuristics or metaheuristics, search algorithms whose purpose
is to explore and exploit this landscape in order to find solutions. Most of the

What Is Autonomous Search? 369

Model

Evaluation

Parameters

Search Space

Search Landscape

Algorithms’ Space

Solver

Select

Search

Solve

Fig. 5 The solver and its action with respect to different spaces

metaheuristics are designed accordingly to the management of this exploration–
exploitation balance and the characteristics of the search landscapes, often use
geographical metaphors: How to travel across plateaus? How to escape from a
local optimum by climbing hills?

� The algorithms’ space: according to the previous description of solvers archi-
tecture, we have highlighted that a solver consists of components that define its
structural properties together with a set of behavioral features (parameters and
control rules). As mentioned before, given a basic algorithmic skeleton, we may
consider a set of possible solvers that correspond to the possible components
choices and configurations. This algorithms’ space can also be composed of dif-
ferent solvers when dealing with portfolio-based algorithm selection.

The relationships between these spaces are illustrated in Fig. 5. Indeed, the ulti-
mate autonomous search purpose can be formulated as: finding a suitable algorithm
that is able to efficiently explore and exploit the search landscape in order to suitably
manage the search space and find solutions to the initial problem.

2.4 A Rule-Based Characterization of Solvers

As already mentioned, the solving techniques used for solving such problems may
include very different features from complete tree based solvers to local search or
evolutionary algorithms. In this presentation, we will attempt to abstract theses solv-
ing features in order to be able to address general solving algorithms, focusing
on their autonomous aspects as described above. Indeed, such rule-based formal-
izations have already been proposed for modeling some constraint programming
solving processes [3, 34] and also for hybrid solvers including local search [79].
Here, our purpose is not really to prove some properties of the solvers but rather to
highlight their basic operational mechanisms in order to classify them with regard
to their behavioral and structural characteristics.

370 Y. Hamadi et al.

When using a solver, one may distinguish two main tasks that correspond indeed
to different but closely related levels of technical accuracy that can be achieved by
more or less specialized users:

� The component design: this phase, consists in choosing the suitable components
described in Sect. 2.1.3 that should be included in the solver with regard to the
problem characteristics for instance. As mentioned above, these components con-
stitute the architecture of the solver.

� The configuration of the solver through parameters settings and control: this
second phase consists in defining through control features how the components
can be used during the solving process.

Based on this consideration and on the general solver architecture depicted in
Fig. 1, we propose a formal description in the next section.

2.4.1 Formal Description

We define here some basic notions in order to characterize the behavior of solvers
with a computationally oriented taxonomy. This approach will allow us to character-
ize the solvers. We first recall some basic concepts related to constraint satisfaction
and optimization problems.

Definition 1 (CSP). A CSP is a triple .X; D; C /, where X D fx1; : : : ; xng is a set
of variables whose values are restricted to given domains D D fD1; : : : ; Dng. There
exists a bijective mapping that assigns each variable xi to its corresponding domain,
that will be noted Dxi

. We consider a set of constraints C as a set of relations over
the variables X .

Definition 2 (Search Space). The search space S is a subset of the possible con-
figurations of the problem and can be the Cartesian product of domains ˘x2X Dx .
The choice of the internal representation (i.e., the model) defines the search space.
An element s of the search space will be called a candidate solution.

Definition 3 (Solution). A feasible solution is an assignment of values to variables,
which can be seen as an element of S (i.e., given an assignment � W X ! ˘n

iD1Di ,
�.xi / 2 Dxi

), and which satisfies all the constraints of C . In the context of op-
timization problems, we also consider an objective function f W S ! R. An
optimal solution is a feasible solution maximizing or minimizing, as appropriate,
the function f .

We have now to define, according to Sect. 2, the different elements that are in-
cluded in the solver.

Definition 4 (Evaluation Functions). We denote by E the set of evaluation func-
tions e W S ! R.

What Is Autonomous Search? 371

Definition 5 (Parameters). We denote by P the set of parameters and a parametri-
zation � is a mapping that assigns a value to each parameter. We denote by ˘ the
set of parameterizations.

Definition 6 (Solving operators). We denote by ˝ a set of solving operators
(operators for short) that are functions o W 2S ! 2S .

Definition 7 (Solving strategy). We denote by H the set of solving strategies that
are functions h W 2S �˘ � E ! ˝ .

For the, sake of simplicity, in the following, we refer to solving strategies as
strategies. Solving strategies and solving operators are the key-points of the solving
algorithm (see Fig. 1): a strategy manages some operators to compute the solutions.
We obtain:

Solving algorithm D solving strategyC solving operators

The granularity to describe a solving algorithm can vary a lot. We now give some
examples for various granularities.

Consider a complete solver based on domain reduction and enumeration (usual
backtrack search). First, let us consider a fine granularity. Then, the operators could
be functions to reduce one variable with a given constraint or enumeration func-
tion to split the domain of a variable. A strategy h for achieving the maintaining of
arc-consistency (MAC) would be to schedule (with respect to the given parametriza-
tion) and apply reduction functions up to obtaining a candidate solution (i.e., the
Cartesian product of the current domains in terms of usual CSP) which is general
arc consistent (GAC). The fact that the candidate solution is GAC or not would
be given by the evaluation function. Then, h would apply an enumeration, which it
would select with respect to the parametrization, e.g., a first fail to select the variable
with the smallest domain. Then again, h would apply a pruning phase by scheduling
operators up to reaching solutions.

Now, consider a coarse granularity. We could consider operators to enforce GAC
and the other ones to enumerate with respect to a given enumeration strategy. The
role of h in this case would only be to sequence a reduction operator (leading directly
to a GAC candidate solution) with an enumeration (selected with respect to the same
parameters as before). The process (one reduction, one operation) would iterate and
terminate when reaching the solutions. In this case, the evaluation function is just
needed to verify that a solution is reached.

Similarly, we can consider the same two granularities for a local search solver.
The fine granularity would consider operators that are computation of neighbors,
moves, or restart; the strategy would schedule these operators with respect to the
parameters: for best-improvement hill climbing search, it could select the neigh-
borhood function that computes all the neighbors and return the best one; for first
improvement search, an operator that computes a better neighbor. The strategy
would thus iterate neighborhood computation and moves until reaching a solution
that cannot be improved (with respect to the evaluation function or given a number
of moves). It could then perform a restart, and so on.

372 Y. Hamadi et al.

Coarse grain operators would be a complete local search or a restart. The strategy
would then iterate a local search followed by a restart (or by a perturbation of the
current optimum as in Iterated Local Search [60]).

We can see here that, depending on the level of details we want for describing a
solving algorithm, we can model operators and strategies with different granulari-
ties. Note that there is a close relationship between the strategy and the parameters,
and changes in the strategy can also be managed by means of parameters related to
the strategy.

We now formalize the solving processes as transitions using rules over computa-
tion states.

Definition 8 (Computation State). Given a CSP .X; D; C /, a search space S , a
set of operators ˝ , a set of evaluation functions E , a set of parameters P , and a set
of solving strategies H , a computation state is a tuple < O; S ; e; �; hjS > where:

� O � ˝ , where O is the set of operators currently used in the solver,
� S � S , is the current subset of candidate solutions,
� e 2 E , is an evaluation function,
� � 2 ˘ is the current parametrization,
� h 2 H is the current solving strategy.

Comments:

� It is important to note that ˝ , E , and H are sets that may not be yet computable.
For example, H represents the set of all possible strategies, either already ex-
isting or that will be discovered by the solver (as defined in Definition 12).
Similarly, all the operators of ˝ are not known since they can be designed later
by the solver. However, O is known and all its operators as well.

� S corresponds to the internal basic search structure: the search state. For instance,
if we consider a genetic algorithm, the search state will be a population. In the
case of a complete backtracking solver, it will consist in an incomplete assign-
ment, maybe associated with some no good records.

� O is the current set of operators available in the solver at a given stage and that
are extracted from a set ˝ of potential operators that could be used in this solver.
Indeed, some solvers may use new solving operators that are produced online
or offline according to a general specification or according to design rules. Note
that an operator allows the solver to perform a transition from one search state to
another. This is therefore the key concept of the solving process and we want to
keep it as general as possible to handle various solving paradigms (as mentioned
above).

� The evaluation function e must evaluate the candidate solutions. This evaluation
is used by the strategy in order to drive the basic solving task and by the control
in order to drive the solver behavior.

� The solving strategy h will be used to select the suitable operator to apply on the
current candidate solutions with respect to the current parametrization � and the
evaluation function e.

What Is Autonomous Search? 373

Note that, for the sake of simplicity, we restrict here solvers to have only one
evaluation function and one search space at a time. This is generally the case, but
this framework could be easily generalized to capture more “exotic” situations.

We denote by CS the set of computation states. Note that a computation state
corresponds in fact to a search state together with the current configuration of the
solver.

Definition 9 (Computation Rules). A computation rule is a rule �
�

0 where � and
� 0 are computation states from CS .

2.4.2 Identification of Computation Rules

We identify here specific families of computation rules with respect to the way they
modify the computation states.

� Solving: The fundamental solving task of a classic solver consists in computing
a new state from the current one according to a solving strategy that chooses
the suitable operator to apply with respect to the current candidate solution, the
parametrization, and the evaluation function. This corresponds to the following
rule:

[Solv] Solving
< O; S ; e; �; hjS >

< O; S ; e; �; hjS 0 >
where S 0 D o.S/ and o D h.S; �; e/ 2 O .

� Parametrization: The modification of the solver’s parameters changes its config-
uration and can be used either to tune the solver before running it or to adjust its
behavior during the run. A parametrization rule can be abstracted as:

[Par] Parametrization
< O; S ; e; �; hjS >

< O; S ; e; � 0; hjS >

� Evaluation function modification: Since we address here autonomous systems
that are able to modify not only their configuration trough their parameters but
also their internal components, we have to consider more intricate rules. A first
way to adapt the solver to changes is to modify its evaluation function, which
directly induces changes on the search landscape. This is the case when changing
weights or penalties in the evaluation function (there are many examples, for
instance [66, 83]).

374 Y. Hamadi et al.

[EvalCh] Evaluation modification

< O; S ; e; �; hjS >

< O; S ; e0; �; hjS >

� Operators modification: Another possibility to modify the internal configuration
of the solver is to change its set of operators. Note that operators can be added or
discarded from the set O .

[OpCh] Operators modification

< O; S ; e; �; hjS >

< O 0; S ; e; �; hjS >

� Strategy modification: Similarly, solving strategies can be changed to manage
differently the operators and achieve a different solving algorithm. As mentioned
above, a backtracking algorithm can apply different strategies for enforcing local
consistency at each node, or in hybrid solving one may switch from complete to
approximate methods.

[StratCh] Strategy modification

< O; S ; e; �; hjS >

< O; S ; e; �; h0jS >

� Encoding modification: We also have to take into account solvers that will be able
to change their encoding during execution. As this is the case for the evaluation
modification, such changes will affect the search landscape.

[EncCh] Encoding modification

< O; S ; e; P; hjS >

< O; S 0; e; P; hjS >

Note that applying one of these rules (except [Res]) will generally require ap-
plying other computation rules. For example, a change of encoding ([EncCh]) will
certainly require a change of operators ([OpCh]), of evaluation function ([EvalCh]),
of strategy ([StratCh]), and of parametrization ([Par]). However, a change of strat-
egy does not always imply a change of operators. Consider the fine grain description
of the complete solver given above (reduction functions and enumeration operators).
Then, the same operators can be used for an MAC or a full look-ahead algorithm:
only the strategy has to be changed.

2.4.3 Control of the Computation Rules and Solvers

The most important part of our characterization concerns the control of the algo-
rithm to finally build the solver. The control is used to act on the configuration of

What Is Autonomous Search? 375

the solver through its parameters but also to modify the internal components of the
solver (parameters, operators, strategies, etc.).

Definition 10 (Control). Let SCS be the set of all the finite sequences of elements
of CS . A control function K W SCS ! R is a function that selects a computation
rule from the set R according to a sequence of computation states.

A solver state can be defined by a set of computation rules, and a sequence of
computation states that have previously been computed.

Definition 11 (Solver State). A solver state is a pair .R; ˙/ where:

� R is a set of computation rules as defined above
� ˙ is a sequence of computation states that are recorded along the solving process.

Starting from a solver state .R; ˙/, with ˙ D .�0; : : : ; �n/ the next state is
obtained as .R; ˙ 0/ where 9r 2 R, such that K.˙/ D r and ˙ 0 D .�0; : : : ; �n;

�nC1 D r.�n//.

Note that in practice, a solver state does not contain the complete history. Thus,
the sequence of computation states is either limited to a given length, or only the
most relevant computation states are kept.

Definition 12 (Solver). A solver is a pair .K; R/ composed of a control function K

and a set of computation rules R that will define a sequence of solver states.

A way of describing a solver is to use regular expressions to schedule computa-
tion rules to describe its control. Let’s come back to the rules defined in Sect. 2.4. We
consider the set of rules R D Par[Res[EvalCh[EncCh[OpCh[StratCh where
Par represents some parametrization rules ŒPar�, EvalCh some evaluation modifica-
tion rules ŒEvalCh�. Given two subsets R1 and R2 of R, R�1 means that zero or more
rules of R1 are sequentially applied and R1R2 means the sequential application of
one rule of the subset R1 followed by the application of one rule of R2. R1jR2 cor-
responds to use of one rule from R1 or one from R2. These notations will be used
in the following section to highlight the characteristics of the solvers by means of
the sequences of rules that they apply in their solving processes. We now have:

Solver D ControlC Configured Solving Algorithms

We recall that we stated before that Solving algorithm D Solving Strategy C
Solving Operators. Coming back to Fig. 3 that shows a classification of hyper-
heuristics, we can notice that we obtain similar distinction here: solvers correspond
to the hyper-heuristics of Fig. 3, solving algorithms to heuristics search space,
strategies to heuristics selection or generation, and operators to construction or per-
turbation heuristics. We can finally identify an autonomous solver:

Definition 13 (Autonomous Solver). Consider a solver given by a regular ex-
pression ex of computation rules from R D Par [Solv [EvalCh [EncCh [

376 Y. Hamadi et al.

OpCh [StratCh. A solver is autonomous if ex contains at least a rule from
Par [EvalCh [EncCh [OpCh [StratCh (i.e., ex is not only composed of rules
from Solv).

In fact, an autonomous solver is a solver that modifies its configuration during
solving, using a control rule. Of course, there are various degrees in this auton-
omy scale. We can now come back to the previous taxonomy of offline/tuning and
online/control (e.g., for parameters). Consider a solver given by a regular expression
ex of computation rules from R D Par[Solv[EvalCh[EncCh[OpCh[StratCh,
and the word w given by flattening this expression ex. The offline/tuning of a solver
consists of the rules that appear in ex before the first Solv rule of ex. The on-
line/control is composed of all the rules that appear after the first rule Solv and
that are not of the Solv family of rules.

In the next section, we illustrate how these rules are used in real solvers and how
they can be used to characterize families of solvers within our autonomous search
scope.

3 Case Studies

In this section, we will not attempt to present an exhaustive view of existing solvers
but we will rather choose some representative solvers or algorithms in order to il-
lustrate different solving approaches and how the previous computation rules can
be used to characterize these approaches. As mentioned in the introduction, au-
tonomous search has been indeed investigated for many years, across many different
areas and under different names. Therefore, we could not imagine providing an ex-
haustive discussion of all approaches. In our opinion, since autonomous search is
a rising trend in problem solving, we rather propose to identify how autonomous
mechanisms have been used in the literature and try to point out some future chal-
lenges for designers of such solvers.

3.1 Tuning Before Solving

As in [29,68], we use the word tuning for the adjustment of the different components
of the algorithm before trying to solve an instance (see end of Sect. 2.4.3).

3.1.1 Preprocessing Techniques

Even if preprocessing is not directly linked to the core of the solving mechanism but
relies on external processes, we have to consider it as an important component in the
design of modern solvers. Nowadays, efficient solvers (e.g., DPLL) use simplifica-
tion preprocessing before trying to solve an instance (see for instance the SAT solver

What Is Autonomous Search? 377

SatElite [30]). Note that the model transformation can maintain equisatisfiability or
a stronger equivalence property (the set of solutions is preserved).

3.1.2 Parameter Tuning on Preliminary Experiments

Such a tuning phase may consist in setting correct parameters in order to adjust the
configuration of the solver. Here, these settings are performed according to a given
set of preliminary experiments. Tuning before solving will correspond to the con-
figuration of the solver and then its use for properly solving the problem. Therefore,
the general profile of the solvers will be mainly described as :

ŒConfig�Solv�

where ŒConfig� is of the form .ParjEvalChjOpChjEncCh/�.

Empirical Manual Tuning: we include in this family the classic tuning task involved
when using single metaheuristics based solvers where experiments are required to
tune the various parameters [82, 88]. Of course, there exist similar studies in con-
straint programming to choose the suitable variable and value choice heuristics,
and this task is often not formalized. Most of the time, parameters are tuned in-
dependently since it appears difficult to control their mutual interaction without a
sophisticated model. Here, the parametrization is not really part of the solver but
rather a preliminary experimental process.

Solver : Solv�

Deciding the Size of a Tabu List: experiments or other previous analysis can be used
to extract general parameters or heuristics’ settings. In the context of Tabu Search
for SAT, [77] have used an extensive offline experimental step to determine the
optimal length of a tabu list. They used simple regression to derive the length of the
list according to the number of variables n. Remarkably, the length is independent
of the size of the constraints, and their formula applies to any hard-random k-SAT
instance. Therefore, the parametrization can be included as a the first step of the
solving process.

Solver : Par Solv�

Automatic Parameter Tuning by an External Algorithm: recently, [51] proposed an
algorithm to search for the best parameters in the parameter space and therefore
to automatically tune a solver. Now, if we consider that this automated process is
included in the solver, we have then the following description.

Solver : .Solv�Par/�Solv�

Note that .Solv�Par/� corresponds to a series of runs and parameter tuning, which
is achieved automatically.

378 Y. Hamadi et al.

3.1.3 Components Setting Before Solving

We consider here methods that consist in choosing the correct components of the
solver by using experiments and/or external knowledge that has been acquired apart
from the current solving task. This knowledge can be formulated as general rules,
can use more or less sophisticated learning techniques, or may also use an external
computation process.

A. Learning Solver’s Components

External mechanisms can be used before tuning to discover or learn efficient com-
ponents for the solver.

Discovering heuristics: in [37], genetic programming is used to discover new ef-
ficient variable selection heuristics for SAT solving with local search algorithms.
Candidate variable selection heuristics are evaluated on a set of test instances. This
automatic process can be inserted before solving (the variable selection heuristics
can induce a change of parameters or operators depending on the description gran-
ularity). Note that here the first Solv� is not applied to the problem at hand.

Solver : .Solv�.OpChjPar//�Solv�

The choice heuristics can be parameters of the operators in our formalism, heuris-
tics discovering can be considered as the selection of suitable operators and their
parametrization.

Learning evaluation functions: in [16], a new method is proposed in order to learn
evaluation functions in local search algorithms and improve search efficiency based
on previous runs.

Solver : .Solv�EvalCh/�Solv�

B. Empirical Prediction of Instances Hardness

The following techniques are based on a learning component (e.g., clustering tools),
which can be used to detect automatically the suitable heuristics and strategies to
apply.

Portfolio-based: in SATzilla [100], offline linear basis function regression and clas-
sifiers are used on top of instances-based features to obtain models of SAT solvers
runtime. During the exploitation phase, instances features are used to select the best
algorithm from a portfolio of tree and local search based SAT solvers. We may also
cite the works of Gebruers et al. [38] and Guerri et al. [42] that use case based rea-
soning and learning techniques to choose the appropriate solving technique among

What Is Autonomous Search? 379

constraint programming and integer linear programming. In these solvers schemes,
the first Solv� corresponds again to preliminary experiments.

Solver : Solv�.OpChjStratChjParjEvalCh/�Solv�

Parameter-based : in [49,50], the authors use an approach similar to SATzilla. They
showed that it is possible to predict the runtime of two stochastic local searches
(SLS). In this work, the selection of the best method to apply on a given instance is
changed into the selection of the best parameters of a given SLS algorithm.

Solver : ParSolv�

3.2 Control During Solving

The control of the solver’s behavior during the run can be achieved by either mod-
ifying its components and/or its parameters. This corresponds, for instance, to an
online adjustment of the parameters or heuristics. Such control can be achieved
by means of supervised control schemes or by self adaptive rules. Of course, such
approaches often rely on a learning process that tries to benefit from previously en-
countered problems along the search or even during the solving of other problems.
Therefore, the profile of the solvers will generally be:

.ŒConfig�Solv�/�

where ŒConfig� is of the form .ParjEvalChjOpChjEncCh/�. Note that the outter �
loop represents indeed the control loop.

3.2.1 Controlling Encoding

Hansen [47] proposes an adaptive encoding in an evolutionary algorithm in order
to solve continuous function optimization problems. The representations of the so-
lutions are changed along the search to reach an optimal representation that could
simplify the solving of the initial problem.

Solver : .EncChSolv�/�

3.2.2 Controlling Variable Orderings and Values Selection
in Search Heuristics

We consider here approaches where the heuristics functions change during the
search with respect to the current state and parameters.

380 Y. Hamadi et al.

Hybrid approaches to discover efficient variable ordering: To illustrate this kind of
approach, we may mention the SAT solving technique of [78] where a Tabu Search
is used at each node of a DPLL to find the next variable to branch on.

Solver : ..OpChStratCh/Solv�ParSolv�/�

A conflict-driven heuristic: in [13], important variables are deemed to be the ones
linked to constraints that have frequently participated in dead-ends. During the
search, this information is collected and used to order variables. Eventually, the
system has enough knowledge to branch on important variables and quickly solve
the problem. The system “learns” weights from conflicts that are used in the com-
putation of the variable selection heuristics, this corresponds to an update of the
parameters each time a conflict is met.

Solver : .ParSolv�/�

Implicit feed-back loops in modern DPLL solvers: in modern SAT solvers such as
the one presented in [32], many implicit feed-back loops are used. For instance, the
collection of conflicts feeds the variable selection heuristic, and the quality of unit
propagation is sometimes used to control the restart strategy. Similarly, the deletion
of learned clauses which is necessary to preserve performances uses activity-based
heuristics that can point to the clauses that were the least useful for the unit propa-
gation engine. Therefore, it induce changes in the model itself and in the heuristics
parameters.

Solver : ..EncChjPar/Solv�/�

Adapting neighborhood during the search: variable neighborhood search [59, 71,
85] consists in managing simultaneously several neighborhood functions and or pa-
rameters (according to the description granularity) in order to benefit from various
exploration/exploitation facilities.

Solver : ..OpChjPar/Solv/�

3.2.3 Evolving Heuristics

Hyper-heuristics: hyper-heuristics [10] is a general approach that consists in man-
aging several meta heuristics search methods from a higher strategy point of view.
Therefore, it is closely related to autonomous search and has already been applied
for many problems (e.g., SAT solving [8]). Since they switch from one solving tech-
nique to another, hyper-heuristics could be characterized by:

Solver : ..OpChjStratChjParjEvalCh/�Solv�/�

What Is Autonomous Search? 381

Learning Combinations of Well-known Heuristics: in the ACE project [28], learn-
ing is used to define new domain-based weighted combinations of branching heuris-
tics (for variable and value selection). ACE learns the weights to apply through a
voting mechanism. Each low-level heuristic votes for a particular element of the
problem (variable, value). Weights are updated according to the nature of the run
(successful or not). The learning is applied to a given class of problems. The combi-
nation is learned on a set of representative instances and used during the exploitation
step. A similar approach has been used in [39] in order to learn efficient reduction
operators when solving numerical CSPs.

Solver : .ParSolv�/�

3.2.4 Controlling Evaluation Function

This aspect may concern local search algorithms that use, for instance, adaptive
weighting of the constraints in their evaluation function [74,94]. Constraint weight-
ing schemes solve the problem of local minima by adding weights to the cost of
violated constraints. These weights increase the cost of violating a constraint and so
change the shape of the cost surface with respect to the evaluation function. Note
that these techniques are also widely used in SAT solvers [14].

Solver : .EvalChSolv�/�

3.2.5 Parameters Control in Metaheuristics Algorithms

We consider here approaches that change the parameters during the search with
respect to the current state and other parameters. Of course, these parameters have a
direct influence on the heuristics functions, but these latter functions stay the same
during the solving process.

Reactive Search: in [7] (formerly presented in [6]), Battiti et al. propose a survey
of so-called reactive search techniques, highlighting the relationship between ma-
chine learning and optimization processes. In reactive search, feedback mechanisms
are able to modify the search parameters according to the efficiency of the search
process. For instance, the balance between intensification and diversification can
be automated by exploiting the recent past of the search process through dedicated
learning techniques.

Solver : .ParSolv�/�

Adaptive Genetic Algorithms: adaptability is well-known in evolutionary algo-
rithms design. For instance, there are classical strategies to dynamically compute
the usage probability of GA search operators [92, 97, 98]. Given a set of search op-
erators, an adaptive method has the task of setting the usage probability of each
operator. When an operator is used, a reward is returned. Since the environment is

382 Y. Hamadi et al.

nonstationary during evolution, an estimate of the expected reward for each operator
is only reliable over a short period of time [99]. This is addressed by introducing a
quality function, defined such that past rewards influence operator quality by an ex-
tent that decays exponentially with time. We may also mention other works that use
more sophisticated evaluation functions, rewards computation, and operator proba-
bility adjustment in order to manage dynamically the application parameters of the
EA [35, 70, 76].

Solver : .ParSolv�/�

3.3 Control During Solving in Parallel and Distributed Search

The solvers described in this section also belong to the previous family of solvers
that include control within their proper solving process. But here, due to the par-
allel/distributed architecture of solver, the sequence of computation rules is more
difficult to schedule. Thus, the profile could be described as .ŒConfig�jSolv�/�

Value-ordering in Portfolio-based Distributed Search: in [86], the authors present
a portfolio-based distributed search. The system allows the parallel execution of
several agent-based distributed search. Each search requires the cooperation of a set
of agents which coordinate their local decisions through message passing. An agent
is part of multiple distributed search, and maintains the context of each one. Each
agent can aggregate its context to dynamically rank the values of its local variables.
The authors define several efficient portfolio-based value-ordering heuristics. For
instance, one agent can pick up the value which is used most frequently in competing
search, or the one which is most supported in other searches, etc.

Solver : .ParjSolv�/�

Adaptive Load-balancing Policies in Parallel Tree-based Search: Disolver is an
advanced Constraint Programming library which particularly targets parallel search
[46]. This search engine is able to dynamically adapt its interprocesses knowledge-
sharing activities (load balancing, bound sharing). In Disolver, the end-user can
define constraint-based knowledge sharing policies by adding new constraints. This
second modeling can be linked to the constraint-based formulation of the problem to
control the knowledge sharing according to the evolution of some problem compo-
nents. For instance, the current value of the objective function can be used to allow
answers to incoming load-balancing requests when the quality of the current subtree
is perceived as good, etc. Interestingly, since the control of the knowledge sharing
policies is made through classical constraints, it is automatically performed by the
constraint propagation engine. We can see this as a dynamic adjustment of knowl-
edge sharing activities, and assimilate it to model (learned clauses) and parameters
(selection heuristics) change.

Solver : ..EncChjPar/jSolv�/�

What Is Autonomous Search? 383

Control-based Clause Sharing in Parallel SAT Solving: Conflict driven clause
learning, one of the most important component of modern DPLL, is crucial to the
performance of parallel SAT solvers. Indeed, this mechanism allows clause sharing
between multiple processing units working on related (sub-)problems. However,
without limitation, sharing clauses might lead to an exponential blow up in com-
munication or to the sharing of irrelevant clauses. In [52], the authors propose new
innovative policies to dynamically select shared clauses in parallel solvers. The first
policy controls the overall number of exchanged clauses whereas the second one
additionally exploits the relevance or quality of the clauses. This dynamic adapta-
tion mechanism allows to reinforce/reduce the cooperation between different solvers
which are working on the same SAT instance.

Solver : .ParjSolv�/�

These case studies led us to consider some open questions for the development
of these future solvers.

4 Challenges and Opportunities

In the following, we discuss some of the main challenges that must be taken into
account if one wants to define and implement a solver based on the previously de-
scribed architecture.

4.1 Performance Evaluation

There exists an optimal search strategy for a particular problem. However, deter-
mining such strategy could require much more computational power than solving
the problem at hand. One possible way to assess the performance of AS systems is
to run them on artificial problems where the optimal strategy is well known and to
see if their adaptive mechanisms are able to build a strategy close to the optimal.
One typical example is the mix “n-queens C pigeon-hole” problem [13], where a
naive strategy endlessly finds a solution to the first subproblem before failing on the
second one. In contrast, more suitable heuristics are able to detect the difficulty of
the second problem and focus on it early in the search process1.

The efficiency of an AS system can also be measured as its ability to maintain
the competitiveness of its search strategy in a changing environment. Here, the goal
is more to assess the reaction-time of the system under changing settings rather

1 Remark here that an optimal strategy would state the unsatisfiability of the problem from the
analysis of the second subproblem.

384 Y. Hamadi et al.

than the ultimate quality of the produced strategies. This second level of efficiency
can be measured through the dynamic addition of subproblems. With the previous
example, the pigeon-hole subproblem could be introduced during the search and
a good strategy would quickly focus on it. Optimal strategy and reaction time are
important to assess the performance against a particular problem.

Combinatorial search is often used in well identified domains which generate
similar instances. The performance of an AS system can therefore be assessed
against a particular domain. For instance, supervised adaptation can benefit from
these similarities to converge on an efficient strategy. Note that supervised adap-
tation faces the problem of instance characterization. A perfect characterization is
able to detect the repetition of an instance while a partial one is just able to detect
the repetition of instance characteristics [49, 50]. This second case is more realistic
both spatially, and technically: we can hardly imagine production scenarios where
an end-user would solve the same problem multiple times. However, it is clear for
us that ideally, an AS solver should be better at solving the same instance for the
second time.

A major challenge associated to AS is that classical tools for algorithm analysis
typically provide weak support for understanding the performance of autonomous
algorithms. This is because autonomous algorithms exhibit a complex behavior that
is not often amenable to a worst-case/average case analysis. Instead, autonomous
algorithms should be considered as full-fledged complex systems and studied
as such.

4.2 Continuous Search

Continuous computation addresses the issue not of finding the best (boundedly op-
timal) use of time in solving a given problem, but the best use of idle computational
resources between bouts of problem solving. This approach broadens the definition
of a “problem” to include not just individual instances, but the class of challenges
that a given computational system is expected to face its lifetime. Eventually, the
end of the current search is just another event for the AS system. As an effect, the
priority of its long lasting self-improving task is raised and the task becomes fore-
ground. The latest resolution is here to enrich the knowledge of the system and is
eventually exploited during this new task. We can envision a wide range of actions
that can be overtaken by the search algorithm while it is idle, in order to improve its
solving strategy:

� Analyzing the strategies that have succeeded and failed during the last runs.
� Performing costly machine learning techniques in order to improve a supervised

tuning method.
� Using knowledge compilation techniques in order to compile new deduction

rules, or new patterns that were detected in the recently solved problems and
that can prove useful for future problems of the same application area.

What Is Autonomous Search? 385

� Exchange gained knowledge with similar AS systems, e.g., features-based
prediction function.

In fact, such a continuous system would include a self-adaptive strategy during
the solving process while it could switch to a supervised controller while waiting
for another problem instance. This architecture would allow it to react dynamically
to incoming event during solving and to exploit the knowledge acquired through its
successive experiences.

The performance evaluation of an AS to be able to work in continuous search
mode is also an important problem which is highly related to the arrival rate and
to the quality of new problem instances. Here quality corresponds on how good the
instances are for the AS to gain important knowledge on the whole problem class.

4.3 Automated Generation of Components

As previously cited, some studies have explored the possibility to automatically
generate components of the algorithm, for instance in order to discover heuristics
as in [37] or to manage a set of operators that are generated during the run as in
[73]. Starting from these preliminary works, one could look one step forward and
try to automatize the full algorithmic design process. For instance, the specifica-
tion of the problem could be used to automatically generate suitable neighborhood
for local search operators [69]. Indeed, one could detect that the problem corre-
sponds to a permutation encoding and then define a swap-based neighborhood. If
the domain of the variable is binary, then one could use a flip based neighbor-
hood. Once the skeleton of the operators has been defined, it could be interesting
to benefit from approaches that could allow the solver to build new operators, such
a genetic programming [65]. Indeed, there already exist some tools to facilitate the
design of local search based algorithms [53] or for evolutionary algorithms [22], but
they appear more as library for developers than integrated autonomous solutions for
users.

5 Conclusion

In this chapter, we have proposed a taxonomy of search processes with respect to
their computation characteristics. To this end, we have presented the general basic
concepts of a solver architecture: the basic components of a solver and its config-
urations. We have then identified autonomous solvers as solvers that can control
their solving process, either by self adaptation (internal process) or by supervised
adaptation (external process).

We have proposed a rule-based characterization of autonomous solvers: the idea
is to formalize solvers adaptations and modifications with some computation rules
that describe solver transformation. Using our formalism, we could then classify,

386 Y. Hamadi et al.

characterize, and identify in the scope of autonomous search some representative
existing solvers by outlining their global mechanism.

Our description framework allows us to handle solving techniques:

� Of various and different types: either complete, incomplete, or hybrid,
� Based on different computation paradigms: sequential, distributed, or parallel
� Dedicated to different problem families: CSP, SAT, optimization.

This work was also an attempt to highlight the links and similarities between
different communities that aim at building such autonomous solvers and that may
benefit from more exchanges and more collaborative approaches (including con-
straint programming, SAT, machine learning, numerical optimization, clustering,
etc.).

We have identified the notion of control in autonomous constraint solvers and
two main techniques for achieving it: control by supervised adaptation and control
by self-adaptation, depending on the level of interaction between the solver, its en-
vironment, and the control itself. These two control management approaches are
indeed complementary. Moreover, they open new challenges for the design of more
autonomous search systems that would run continuously, alternating (or combining
or executing in parallel), solving and self-improving phases.

Of course, an important remaining issue is evaluating performances of such sys-
tems with respect to or compared to classical criteria, used in solver competitions for
instance. We think that the performance evaluation of an autonomous search may
actually focus on three points:

� Show that an autonomous search can (re)discover the best known or approximate
a very good strategy for a specific problem

� Show the ability of an autonomous search to adapt itself to a changing
environment

� Show that an autonomous search could adapt itself and converge to an efficient
strategy for a class of problems

One might consider the development of new types of autonomous search sys-
tems, by considering missing ones, for instance, the rule-based formulation pre-
sented here could be used here to identify new patterns that no solver matches. An
other future direction is also to focus on general meta-level control of the adaptation
strategy: this could be seen as the solving of an optimization problem whose solu-
tions would contain the optimal configuration of the autonomous search system. As
described in Sect. 4.2, continuous search is also a challenge: how to continuously
adapt the solver for the current task while preparing it and improving it as well for
the future tasks. Last but not least, we think that the automated generation of solver
components should further develop and evolve.

Acknowledgements The authors would like to thank warmly Michela Milano and Pascal Van
Hentenryck for their invitation to contribute to this book and the reviewers of this chapter for their
helpful comments.

What Is Autonomous Search? 387

References

1. Applegate D, Bixby R, Chvatal V, Cook W (2007) The traveling salesman problem: a com-
putational study (Princeton Series in Applied Mathematics). Princeton University Press,
Princeton

2. Aarts E, Lenstra JK (eds) (2003) Local search in combinatorial optimization. Princeton
University Press, Princeton

3. Apt K (2003) Principles of constraint programming. Cambridge University Press, Cambridge
4. Battiti R, Brunato M (eds) (2008) Learning and intelligent optimization second international

conference, LION 2007 II, selected papers. Lecture Notes in Computer Science, vol 5313.
Springer, Berlin

5. Battiti R, Brunato M (2010) Handbook of Metaheuristics, 2nd edn. chapter Reactive search
optimization: learning while optimizing. Springer

6. Battiti R, Brunato M, Mascia F (2007) Reactive search and intelligent optimization. Technical
report, Dipartimento di Informatica e Telecomunicazioni, Univerita di Tranto, Italy

7. Battiti R, Brunato M, Mascia F (2008) Reactive search and intelligent optimization. Opera-
tions research/computer science interfaces, vol 45. Springer, Heidelberg

8. Bader-El-Den M, Poli R (2008) Generating sat local-search heuristics using a gp hyper-
heuristic framework, artificial evolution. In: 8th International conference, Evolution Arti-
ficielle, EA 2007. Revised selected papers. Lecture notes in computer science, vol 4926.
Springer, Berlin, pp 37–49

9. Benhamou F, Granvilliers L (2006) Continuous and interval constraints. In: Rossi F, van Beek
P, Walsh T (eds) Handbook of constraint programming, chapter 16. Elsevier, Amsterdam

10. Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Handbook of meta-
heuristics, chapter Hyper-heuristics: an emerging direction in modern search technology.
Kluwer, Dordrecht, pp 457–474

11. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R (2009) A survey of hyper-heuristics.
Technical Report No. NOTTCS-TR-SUB-0906241418-2747, School of Computer Science
and Information Technology, University of Nottingham, Computer Science

12. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward J (2010) Handbook of meta-
heuristics, chapter A classification of hyper-heuristics approaches, Springer

13. Boussemart F, Hemery F, Lecoutre C, Sais L (2004) Boosting systematic search by weight-
ing constraints. In: López de Mántaras R, Saitta L (eds) Proceedings of the 16th European
conference on artificial intelligence, ECAI’2004. IOS Press, Amsterdam, pp 146–150

14. Biere A, Heule M, van Maaren H, Walsh T (eds) (2009) Handbook of satisfiability. Frontiers
in artificial intelligence and applications, vol 185. IOS Press, Amsterdam

15. Bordeaux L, Hamadi Y, Zhang L (2006) Propositional satisfiability and constraint program-
ming: a comparative survey. ACM Comput Surv 9(2):135–196

16. Boyan J, Moore A, Kaelbling P (2000) Learning evaluation functions to improve optimization
by local search. J Mach Learn Res 1:1–2000

17. Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring
metaheuristics. In: GECCO ’02: Proceedings of the genetic and evolutionary computation
conference. Morgan Kaufmann, San Francisco, CA, pp 11–18

18. Battiti R, Tecchiolli G (1994) The reactive tabu search. INFORMS J Comput 6(2):126–140
19. Crispim J, Brandão J (2001) Reactive tabu search and variable neighbourhood descent ap-

plied to the vehicle routing problem with backhauls. In: Proceedings of the 4th metaheuristics
international conference, Porto, MIC 2001, pp 631–636

20. Crowston W, Glover F, Thompson G, Trawick J (1963) Probabilistic and parametric learning
combinations of local job shop scheduling rules. Technical report, ONR Research Memoran-
dum No. 117, GSIA, Carnegie-Mellon University, Pittsburg, PA, USA

21. Cowling P, Kendall G, Soubeiga E (2002) Hyperheuristics: a tool for rapid prototyping in
scheduling and optimisation. In: Applications of evolutionary computing, EvoWorkshops
2002: EvoCOP, EvoIASP, EvoSTIM/EvoPLAN. Lecture notes in computer science, vol 2279.
Springer, London, pp 1–10

388 Y. Hamadi et al.

22. Cahon S, Melab N, Talbi E, Schoenauer M (2003) Paradiseo-based design of parallel and
distributed evolutionary algorithms. In: Artificial evolution, 6th international conference, evo-
lution artificielle, EA 2003. Lecture notes in computer science, vol 2936. Springer, Berlin,
pp 216–228

23. Cowling P, Soubeiga E (2000) Neighborhood structures for personnel scheduling: a summit
meeting scheduling problem (abstract). In: Burke EK, Erben W (eds) Proceedings of the
3rd international conference on the practice and theory of automated timetabling, Constance,
Germany

24. De Jong K (2006) Evolutionary computation: a unified approach. The MIT Press, Cambridge,
MA

25. De Jong K (2007) Parameter setting in EAs: a 30 year perspective. In: Lobo F, Lima C,
Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational
intelligence, vol 54. Springer, Berlin, pp 1–18

26. Dechter R (2003) Constraint processing. Morgan Kaufmann, San Francisco, CA
27. Epstein S, Freuder E, Wallace R, Morozov A, Samuels B (2002) The adaptive constraint

engine. In: Principles and practice of constraint programming – CP 2002, 8th international
conference. Lecture notes in computer science, vol 2470. Springer, London, pp 525–542

28. Epstein S, Freuder E, Wallace R (2005) Learning to support constraint programmers. Comput
Intell 21(4):336–371

29. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms.
IEEE Trans Evol Comput 3(2):124–141

30. Eén N, Mishchenko A, Sörensson N (2007) Applying logic synthesis for speeding up sat.
In: Theory and applications of satisfiability testing – SAT 2007. Lecture notes in computer
science, vol 4501. Springer, Heidelberg, pp 272–286

31. Eiben AE, Michalewicz Z, Schoenauer M, Smith JE (2007) Parameter control in evolution-
ary algorithms. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary
algorithms. Studies in computational intelligence, vol 54. Springer, Berlin, pp 19–46

32. Eén N, Sörensson N (2003) An extensible sat-solver. In: Theory and applications of satisfi-
ability testing, 6th international conference, SAT 2003. Lecture notes in computer science,
vol 2919. Springer, Heidelberg, pp 502–518

33. Eiben A, Smith JE (2003) Introduction to evolutionary computing. Natural computing series.
Springer, Heidelberg

34. Fruewirth T, Abdennadher S (2003) Essentials of constraint programming. Springer,
Heidelberg

35. Fialho A, Da Costa L, Schoenauer M, Sebag M (2008) Extreme value based adaptive op-
erator selection. In: Rudolph G et al (ed) Parallel problem solving from nature - PPSN X,
10th international conference. Lecture notes in computer science, vol 5199. Springer, Berlin,
pp 175–184

36. Fisher H, Thompson L (1963) Industrial scheduling, chapter Probabilistic learning combina-
tions of local job-shop scheduling rules. Prentice Hall, Englewood Cliffs, NJ

37. Fukunaga A (2008) Automated discovery of local search heuristics for satisfiability testing.
Evol Comput 16(1):31–61

38. Gebruers C, Guerri A, Hnich B, Milano M (2004) Making choices using structure at the in-
stance level within a case based reasoning framework. In: Integration of AI and OR techniques
in constraint programming for combinatorial optimization problems, First international con-
ference, CPAIOR. Lecture notes in computer science, vol 3011. Springer, Berlin, pp 380–386

39. Goualard F, Jermann C (2008) A reinforcement learning approach to interval constraint prop-
agation. Constraints 13(1–2):206–226

40. Glover F, Kochenberger G (2003) Handbook of metaheuristics (International series in opera-
tions research & management science). Springer, Berlin

41. Glover F, Laguna M (1997) Tabu search. Kluwer Academic, Dordrecht
42. Guerri A, Milano M (2004) Learning techniques for automatic algorithm portfolio selection.

In: Proceedings of the 16th European conference on artificial intelligence, ECAI’2004. IOS
Press, Amsterdam, pp 475–479

What Is Autonomous Search? 389

43. Goldberg D (1989) Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley Professional, Boston

44. Gagliolo M, Schmidhuber J (2008) Algorithm selection as a bandit problem with unbounded
losses. Technical report, Tech. report IDSIA - 07 - 08

45. Gomes C, Selman B, Crato N, Kautz H (2000) Heavy-tailed phenomena in satisfiability and
constraint satisfaction problems. J Autom Reason 24(1/2):67–100

46. Hamadi Y (2003) Disolver : a distributed constraint solver. Technical Report MSR-TR-
2003-91, Microsoft Research

47. Hansen N (2008) Adaptative encoding: how to render search coordinate system invariant. In:
Parallel problem solving from nature – PPSN X, 10th international conference. Lecture notes
in computer science, vol 5199. Springer, Berlin, pp 204–214

48. Van Hentenryck P (1989) Constraint satisfaction in logic programming. The MIT Press,
Cambridge, MA

49. Hutter F, Hamadi Y (2005) Parameter adjustment based on performance prediction: towards
an instance-aware problem solver. Technical Report MSR-TR-2005-125, Microsoft Research,
Cambridge, UK

50. Hutter F, Hamadi Y, Hoos H, Brown KL (2006) Performance prediction and automated tuning
of randomized and parametric algorithms. In: 12th International conference on principles and
practice of constraint programming (CP’06)

51. Hutter F, Hoos H, Stützle T (2007) Automatic algorithm configuration based on local search.
In: Proceedings of the 22nd conference on artifical intelligence (AAAI ’07), pp 1152–1157

52. Hamadi Y, Jabbour S, Sais L (2009) Control-based clause sharing in parallel SAT solving. In:
IJCAI 2009, Proceedings of the 21st international joint conference on artificial intelligence,
pp 499–504

53. Van Hentenryck P, Michel L (2005) Constraint-based local search. The MIT Press,
Cambridge, MA, USA

54. Hamadi Y, Monfroy E, Saubion F (2008) Special issue on autonomous search. In: Constraint
programming letters, vol 4

55. Hamadi Y, Monfroy E, Saubion F (2008) What is autonomous search? Technical Report
MSR-TR-2008-80, Microsoft Research

56. Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press,
Ann Arbor, MI

57. Hoos H (1999) Sat-encodings, search space structure, and local search performance. In: Pro-
ceedings of the 16th international joint conference on artificial intelligence, IJCAI 99. Morgan
Kaufmann, San Francisco, CA, pp 296–303

58. Hoos H (2002) An adaptive noise mechanism for walksat. In: AAAI/IAAI, pp 655–660
59. Hu B, Raidl G (2006) Variable neighborhood descent with self-adaptive neighborhood-

ordering. In: Proceedings of the 7th EU meeting on adaptive, self-adaptive and multilevel
metaheuristics

60. Hoos H, Stuetzle T (2004) Stochastic local search: foundations & applications (The Morgan
Kaufmann Series in Artificial Intelligence). Morgan Kaufmann, San Francisco, CA

61. Hutter F (2009) Automating the configuration of algorithms for solving hard computational
problems. PhD thesis, Department of Computer Science, University of British Columbia

62. Ingber L (1989) Very fast simulated re-annealing. Math Comput Model 12(8):967–973
63. Janikow C, Michalewicz Z (1991) An experimental comparison of binary and floating point

representations in genetic algorithms. In: 4th International conference on genetic algorithms,
pp 3136

64. Kjellström G (1991) On the efficiency of gaussian adaptation. J Optim Theory Appl
71(3):589–597

65. Koza J (1992) Genetic programming: on the programming of computers by means of natural
selection. The MIT Press, Cambridge, MA

66. Kazarlis S, Petridis V (1998) Varying fitness functions in genetic algorithms: studying the rate
of increase of the dynamic penalty terms. In: Parallel problem solving from nature – PPSN V,
5th international conference. Lecture notes in computer science, vol 1498, pp 211–220

390 Y. Hamadi et al.

67. Kramer O (2008) Self-adaptive heuristics for evolutionary computation. Springer, Berlin
68. Lobo F, Lima C, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms.

In: Studies in computational intelligence, vol 54. Springer, Berlin
69. Monette J-N, Deville Y, Van Hentenryck P (2009) Operations research and cyber-

infrastructure, chapter Aeon: synthesizing scheduling algorithms from high-level models.
Springer, New York, pp 43–59

70. Maturana J, Fialho A, Saubion F, Schoenauer M, Sebag M (2009) Compass and dynamic
multi-armed bandits for adaptive operator selection. In: Proceedings of IEEE Congress on
evolutionary computation CEC, IEEE Press, Piscataway, NJ, pp 365–372

71. Mladenovic N, Hansen P (1997) Variable neighborhood search. Comput Oper Res
24(11):1097–1100

72. Michalewicz Z (1992) Genetic algorithms C data structures D evolution program. Artificial
intelligence. Springer, Berlin

73. Maturana J, Lardeux F, Saubion F (2010) Autonomous operator management for evolution-
nary algorithms. J Heuristics, Springer, pp 1–29

74. Morris P (1993) The breakout method for escaping from local minima. In: Proceedings of the
11th national conference on artificial intelligence (AAAI93). AAAI Press, Menlo Park, CA,
pp 40–45

75. Marriott K, Stuckey P (1998) Programming with constraints: an introduction. The MIT Press,
Cambridge, MA

76. Maturana J, Saubion F (2008) A compass to guide genetic algorithms. In: Rudolph G et al
(ed) Parallel problem solving from nature – PPSN X, 10th international conference. Lecture
notes in computer science, vol 5199. Springer, Berlin, pp 256–265

77. Mazure B, Sais L, Grégoire E (1997) Tabu search for sat. In: AAAI/IAAI, pp 281–285
78. Mazure B, Sais L, Grégoire E (1998) Boosting complete techniques thanks to local search

methods. Ann Math Artif Intell 22(3-4):319–331
79. Monfroy E, Saubion F, Lambert T (2004) On hybridization of local search and constraint

propagation. In: Logic programming, 20th international conference, ICLP 2004. Lecture notes
in computer science, vol 3132. Springer, Berlin, pp 299–313

80. Nannen V, Eiben AE (2006) A method for parameter calibration and relevance estimation
in evolutionary algorithms. In: Genetic and evolutionary computation conference, GECCO
2006, proceedings. ACM, New York, NY, pp 183–190

81. Nannen V, Eiben AE (2007) Relevance estimation and value calibration of evolutionary algo-
rithm parameters. In: IJCAI 2007, proceedings of the 20th international joint conference on
artificial intelligence, pp 975–980

82. Nannen V, Smit S, Eiben A (2008) Costs and benefits of tuning parameters of evolutionary
algorithms. In: Parallel problem solving from nature – PPSN X, 10th international conference.
Lecture notes in computer science, vol 5199. Springer, Berlin, pp 528–538

83. Pullan WJ, Hoos HH (2006) Dynamic local search for the maximum clique problem. J Artif
Intell Res (JAIR) 25:159–185

84. Patterson D, Kautz H (2001) Auto-walksat: a self-tuning implementation of walksat. Electron
Notes Discrete Math 9:360–368

85. Puchinger J, Raidl G (2008) Bringing order into the neighborhoods: relaxation guided variable
neighborhood search. J Heuristics 14(5):457–472

86. Ringwelski G, Hamadi Y (2005) Boosting distributed constraint satisfaction. In: Principles
and practice of constraint programming – CP 2005, 11th international conference. Lecture
notes in computer science, vol 3709. Springer, Berlin, pp 549–562

87. Rice J (1975) The algorithm selection problem. Technical Report CSD-TR 152, Computer
science department, Purdue University

88. Smit S, Eiben A (2009) Comparing parameter tuning methods for evolutionary algorithms.
In: Proceedings of the 2009 IEEE Congress on evolutionary computation (CEC 2009). IEEE
Press, Piscataway, NJ, pp 399–406

89. Selman B, Kautz H, Cohen B (1994) Noise strategies for improving local search. In: AAAI,
pp 337–343

What Is Autonomous Search? 391

90. Smith-Miles K (2008) Cross-disciplinary perspectives on meta-learning for algorithm selec-
tion. ACM Comput Surv 41(1):1–25

91. Sywerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings of the third
international conference on genetic algorithms. Morgan Kaufmann, San Francisco, CA,
pp 2–9

92. Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Beyer
H-G (ed) Proc. GECCO’05. ACM, New York, NY, pp 1539–1546

93. Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo FG, Lima CF,
Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Springer, Heidelberg,
pp 77–90

94. Thornton J (2000) Constraint weighting for constraint satisfaction. PhD thesis, School of
Computing and Information Technology, Griffith University, Brisbane, Australia

95. Tsang E (1993) Foundations of constraint satisfaction, 1st edn. Academic, London
96. Walsh T (2000) SAT v CSP. In: Proceedings of CP 2000. Lecture notes in computer science,

vol 1894. Springer, Berlin, pp 441–456
97. Wong Y-Y, Lee K-H, Leung K-S, Ho C-W (2003) A novel approach in parameter adaptation

and diversity maintenance for GAs. Soft Comput 7(8):506–515
98. Whitacre J, Tuan Pham Q, Sarker R (2006) Credit assignment in adaptive evolutionary

algorithms. In: Genetic and evolutionary computation conference, GECCO 2006. ACM,
New York, NY, pp 1353–1360

99. Whitacre J, Pham T, Sarker R (2006) Use of statistical outlier detection method in adaptive
evolutionary algorithms. In: Proceedings of the genetic and evolutionary computation confer-
ence (GECCO). ACM, New York, NY, pp 1345–1352

100. Xu L, Hutter F, Hoos HH, Leyton-Brown K (2008) Satzilla: portfolio-based algorithm selec-
tion for sat. J Artif Intell Res 32:565–606

101. Yuan B, Gallagher M (2004) Statistical racing techniques for improved empirical evaluation
of evolutionary algorithms. In: Yao X et al (ed) Parallel problem solving from nature – PPSN
VIII, 8th international conference. Lecture notes in computer science, vol 3242. Springer,
Berlin, pp 172–181

102. Yu-Hui Yeh F, Gallagher M (2005) An empirical study of hoeffding racing for model selection
in k-nearest neighbor classification. In: Gallagher M, Hogan J, Maire F (eds) IDEAL. Lecture
notes in computer science, vol 3578. Springer, Berlin, pp 220–227

103. Yuan B, Gallagher M (2007) Combining meta-eas and racing for difficult EA parameter
tuning tasks. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary
algorithms. Studies in computational intelligence, vol 54. Springer, Berlin, pp 121–142

Software Tools Supporting Integration

Tallys Yunes

Abstract This chapter provides a brief survey of existing software tools that
enable, facilitate, and/or support the integration of different optimization tech-
niques. We focus on tools that have achieved a reasonable level of maturity and
whose published results have demonstrated their effectiveness. The description of
each tool is not intended to be comprehensive. We include references and links to
detailed accounts of each tool for the interested reader, and we recommend that
the reader consult the developers and/or vendors for the latest information about
upgrades and improvements. Our purpose is to summarize the main features of
each tool, highlighting what it can (or cannot) do, given the current version at
the time of writing. We conclude the chapter with suggestions for future research
directions.

1 Introduction

This chapter provides a brief survey of existing software tools that enable, facilitate,
and/or support the integration of different optimization techniques. By optimization
techniques, we mean linear programming (LP), mixed-integer linear programming
(MILP), nonlinear programming (NLP), constraint programming (CP), local search
(LS), large neighborhood search (LNS), and their derivatives. Integration can occur
in many ways and at different levels. It ranges from a simple information exchange
between two solvers implementing two versions of the same mathematical model,
to a full-fledged synchronization of multiple methods that interact closely during an
iterative search procedure. Decomposition methods such as branch-and-price (B&P)
[12] and Benders decomposition [14] also lend themselves to effective integrated

T. Yunes (�)
Department of Management Science, School of Business Administration,
University of Miami, Coral Gables, FL 33124-8237, USA
e-mail: tallys@miami.edu

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 12,
c� Springer Science+Business Media, LLC 2011

393

tallys@miami.edu

394 T. Yunes

approaches and are, therefore, also covered here. Due to space limitations, we were
not able to include a comprehensive list of all the available tools. We focus, however,
on those tools that have achieved a reasonable level of maturity and whose published
results have demonstrated their effectiveness.

The tools typically come in two main categories: high level and low level. High-
level tools are those that offer a high-level modeling language to the user and do
not necessarily require computer programming at the level of languages such as
C, CCC, Java , or Prolog. Low-level tools are those that require the user to write
low-level code to be able to take advantage of their integration abilities. This is
usually done in one of two ways: writing code that includes calls to a library of
functions or object classes (the tool’s API), or writing code in a computer program-
ming language that has been enriched with new declarations and commands that
provide access to the underlying algorithms and solvers (e.g., extensions to the Pro-
log language). We decided, however, not to separate the tools into the above two
groups. Because of the rapidly evolving nature of optimization software and the
ongoing introduction of new features and interfaces, such a classification would
soon be obsolete. Moreover, some tools are actually a mixture of both high- and
low-level features. Therefore, we have opted to list the tools in plain alphabetical
order.

The description of each tool focuses on its defining characteristics and does not
attempt to list all of its facilities. We include references and links to detailed ac-
counts of each software for the interested reader, and we recommend that the reader
consult the developers and/or vendors of each tool for the latest information about
upgrades and improvements. Our purpose is to summarize the main features of each
tool, highlighting what it can (or cannot) do, given the current version at the time of
writing. The contents of the following sections have been taken from published ma-
terial about each tool, such as: user manuals, web sites, books, and research papers.
We have tried, to the extent possible, to stay true to the software descriptions pro-
vided by the respective authors and developers. Changes to those descriptions have
been kept to a minimum, and were made with the sole intent of improving clarity
and removing biases and subjective statements. Finally, the code excerpts presented
in this chapter are for illustration purposes only and do not intend to represent the
best way of modeling any particular problem.

This chapter is organized as follows. Section 2 presents the main features that are
currently available to facilitate the integration of optimization techniques. Descrip-
tions of each tool appear in Sects. 3–11. For each tool, excluding those in Sect. 11,
we include a data sheet, which is a table summarizing some of its characteristics
for easy reference, such as: supported features, solvers and platforms, details on
availability, references, and additional notes. When available, developers’ names
are listed in alphabetical order. Some tools also include a “coming soon” paragraph
with new features that are currently under development. Section 12 concludes the
chapter with final remarks and directions for future research.

Software Tools Supporting Integration 395

2 Existing Features That Facilitate Integration

In this section, we provide a classification scheme for the different kinds of features
and functionalities that can appear in a software system supporting the integration
of different optimization techniques. The purpose of this classification is to create
an organized hierarchy of features that can be easily referenced in the subsequent
sections.

1. User interface: how the user interacts with (i.e., furnishes a model to) the tool

a. Graphical interface/IDE available (assumes the tool has a high-level modeling
language)

b. Tool can read an input file with model description written in a high-level lan-
guage

c. User writes code to use the tool’s API

2. Solver support: kinds of solvers that are part of (or can interface with) the tool

a. LP, MILP
b. NLP
c. CP
d. SAT

3. Relaxation support: kinds of model relaxations that are supported by the tool

a. Linear
b. Nonlinear
c. Lagrangian
d. Domain store (from a CP solver)

4. Inference mechanisms: forms of inference supported by the tool

a. Preprocessing (upfront elimination/tightening of variables and constraints)
b. Cutting planes
c. Domain filtering/reduction
d. Logical resolution mechanisms (as in satisfiability problems)

5. Search mechanisms: forms of search supported by the tool

a. Complete branching (e.g., tree search, branch-and-bound)
b. Incomplete branching (e.g., LDS)
c. Simple local search (no metaheuristic)
d. Metaheuristics (e.g., tabu search, simulated annealing)

6. Decomposition mechanisms: forms of decomposition supported by the tool

a. Dantzig–Wolfe
b. Column generation/B&P (master problem and pricing problem can potentially

be solved by different techniques)
c. Benders

396 T. Yunes

7. Search control: how much control the user has over the search mechanisms

a. High-level (via modeling language), declarative (i.e., fixed forms of control)
b. High-level, imperative (detailed and flexible control)
c. Low-level (coding through an API)

We will refer back to this classification scheme in the data sheet of each tool. For
instance, to indicate that a certain tool has an IDE, interfaces with a SAT solver, and
supports Benders decomposition, we use the codes 1a, 2d, and 6c.

The classification scheme above refers to the support for integration only. Hence,
if a given tool accepts LP files as input (a kind of high-level input), but requires low-
level coding for access to its integration features, its user interface will be classified
as 1c, rather than 1b.

3 BARON

BARON [57] was developed with the main purpose to find global solutions to
nonlinear and mixed-integer nonlinear programs. It is based on the idea of branch-
and-reduce, which can be seen as a modification of branch-and-bound in which a
variety of logical inferences made during the search tree exploration help reduce
variable domains and tighten the problem relaxation. Two of the main domain re-
duction techniques used by BARON are:

Optimality-based range reduction: Let xj � xU
j � 0 be a constraint that is active

at the optimal solution of the relaxation of the current search node (i.e., variable
xj is at its upper bound), and let �j > 0 be the corresponding Lagrange multiplier.
If we know an upper bound U and a lower bound L on the value of the optimal
solution, a valid lower bound for xj can be calculated as xU

j � .U � L/=�j . (An
analogous procedure can be used to calculate an improved upper bound for xj .). If
variable xj is at neither of its bounds in the solution of the relaxation, we can probe
its bounds (temporarily fix xj at its bounds, and resolve the relaxation) to obtain
possibly better bounds. This technique extends to arbitrary constraints of the type
gi .x/ � 0.

Feasibility-based range reduction: This is a process that generates constraints
that cut off infeasible parts of the search space. For instance, given a constraintPn

jD1 aij xj � bi , one of the constraints below is valid for a pair .i; h/ with
aih ¤ 0:

xh � 1

aih

0
@bi �

X
j¤h

min
n
aij xU

j ; aij xL
j

o1A ; aih > 0 (1)

xh � 1

aih

0
@bi �

X
j¤h

min
n
aij xU

j ; aij xL
j

o1A ; aih < 0 (2)

Software Tools Supporting Integration 397

The above inequalities can be interpreted as an approximation to the optimal bound
tightening procedure that involves solving the 2n linear programs

8<
:min ˙ xk s:t:

nX
jD1

aij xj � bi ; i D 1; : : : ; m

9=
;; k D 1; : : : ; n (3)

BARON makes extensive use of (1) and (2) throughout the search, along with a lim-
ited use of (3), mostly at the root node, for selected variables. Nonlinear analogues
of (1) and (2) are also utilized throughout the search.

For a given problem, BARON’s global optimization strategy integrates conven-
tional branch-and-bound with a wide variety of range reduction tests. These tests
are applied to every subproblem of the search tree in pre- and postprocessing steps
to contract the search space and reduce the relaxation gap. Many of the reduction
tests are based on duality and are applied when the relaxation is convex and solved
by an algorithm that provides the dual, in addition to the primal, solution of the
relaxed problem. Another crucial component of the software is the implementation
of heuristic techniques for the approximate solution of optimization problems that
yield improved bounds for the problem variables. Finally, the algorithm incorporates
a number of compound branching schemes that accelerate convergence of standard
branching strategies.

Typically, the relaxed problem is constructed using factorable programming
techniques (see [42, 43]), so that the relaxations are exact at the variable bounds.
Therefore, the tightness of the relaxation depends on the tightness of the variable
bounds. BARON implements the construction of underestimators for many noncon-
vex terms such as: bilinearities (xixj), linear fractional terms (xi =xj), univariate
terms such as xn with n odd, etc. Note that outer approximations do not need to be
linear.

BARON comes in the form of a callable library. The software has a core com-
ponent which can be used to solve any global optimization problem for which the
user supplies problem-specific subroutines, primarily for lower and upper bounding.
In this way, the core system is capable of solving very general problems. In addi-
tion to the general purpose core, the BARON library also provides ready-to-use
specialized modules covering several classes of problems. These modules work
in conjunction with the core component and require no coding on the part of the
user. Some of the available problem classes are: separable concave quadratic pro-
gramming, separable concave programming, problems with power economies of
scale (Cobb–Douglas functions), fixed-charge programming, fractional program-
ming, univariate polynomial programming, linear and general linear multiplicative
programming, indefinite quadratic programming, mixed integer linear program-
ming, and mixed integer semi-definite programming.

BARON includes a factorable NLP module, which is the most general of the
supplied modules that do not require any coding from the user. The input to this
module is through BARON’s parser and it can solve fairly general nonlinear pro-
grams where the objective and constraints are factorable functions (i.e., recursive

398 T. Yunes

Table 1 BARON data sheet

Feature Description

Tool name BARON: Branch-and-Reduce Optimization Navigator
User interface 1b, 1c
Solver support 2a, 2b
Relaxation support 3a, 3b
Inference mechanisms 4a, 4b, 4c
Search mechanisms 5a, 5c
Decomposition mechanisms N/A
Search control 7aC some added flexibility through GAMS, 7c
Written in C and Fortran
Supported platforms Linux, Windows, AIX
Main developers Nikolaos Sahinidis and Mohit Tawarmalani
Availability Available under the AIMMS and GAMS modeling languages.

See http://archimedes.cheme.cmu.edu/baron/baron.html.
References [57]
Notes Also available on the NEOS server.

compositions of sums and products of functions of single variables). Most functions
of several variables used in nonlinear optimization are factorable and can be easily
brought into separable form. The types of functions currently allowed in this module
include exp(x), ln(x), x˛ for ˛ 2 IR, and ˇx for ˇ 2 IR.

The theoretical and empirical work that is embodied in BARON earned Nikolaos
Sahinidis and Mohit Tawarmalani the 2004 INFORMS Computing Society Prize
and the 2006 Beale–Orchard–Hays Prize from the Mathematical Programming So-
ciety. BARON is customarily used as a benchmark code when it comes to solving
global optimization problems.

Most of BARON’s specialized modules require the use of an LP solver. An NLP
solver is optional, but frequently beneficial. The current release (8.1) can work with
many different LP, NLP, and SDP solvers such as OSL, CPLEX, CONOPT, MINOS,
SDPA, and SNOPT.

BARON’s data sheet appears in Table 1.

Coming soon to BARON: The ability to solve MILP relaxations for problems that
involve a combinatorial component.

4 Comet

One of the main innovations of Comet [59] is constraint-based local search (CBLS);
a computational paradigm based on the idea of specifying local search algorithms
as two components: a high-level model describing the application in terms of con-
straints, constraint combinators, and objective functions, and a search procedure
expressed in terms of the model at a high level of abstraction. CBLS makes it pos-
sible to build local search algorithms compositionally, to separate modeling from
search, to promote reusability across many applications, and to exploit problem

Software Tools Supporting Integration 399

structure to achieve high performance. The computational model underlying CBLS
uses constraints and objectives to drive the search procedure toward feasible or high-
quality solutions. Constraints incrementally maintain their violations, and objectives
maintain their values. Moreover, constraints and objectives are differentiable and
can be queried to evaluate the effect of moves on their violations and values.

Comet is an object-oriented language featuring both a constraint-based local
search engine and a constraint-programming solver. Comet models for these two
paradigms are essentially similar and are expressed in modeling languages featur-
ing logical and cardinality constraints, global/combinatorial constraints, numerical
(possibly nonlinear) constraints, and vertical extensions for specific application ar-
eas (e.g., scheduling abstractions). The search components are also expressed in a
rich language for controlling graph- and tree-search explorations. The constraint-
programming solver also views combinatorial optimization as the combination of
model and search components. It provides the traditional expressiveness of con-
straint programming with a language for expressing search algorithms.

Comet also features high-level abstractions for parallel and distributed comput-
ing, based on parallel loops, interruptions, and work stealing. In addition, it provides
a declarative language for specifying model-driven visualizations of various aspects
of an optimization algorithm. Finally, being an open language, Comet allows pro-
grammers to add their own constraints and objectives, as well as their own control
abstractions.

To illustrate some of Comet’s modeling constructs, let us consider the well-
known n-queens problem. We are given an n � n chessboard. The objective is to
place n queens on the chessboard so that no two queens can attack each other
(i.e., no two queens lie on the same row, column or diagonal). Figure 1 shows a

01. import cotls;
02. Solver<LS> m();
03. int n = 16;
04. range Size = 1..n;
05. UniformDistribution distr(Size);
06. var{int} queen[Size](m,Size) := distr.get();
07.
08. ConstraintSystem<LS> S(m);
09. S.post(alldifferent(queen));
10. S.post(alldifferent(all(i in Size) queen[i] + i));
11. S.post(alldifferent(all(i in Size) queen[i] - i));
12. m.close();
13.
14. int iter = 0;
15. while (S.violations() > 0 && iter < 50*n) {
16. selectMax(q in Size)(S.violations(queen[q]))
17. selectMin(v in Size)(S.getAssignDelta(queen[q],v))
18. queen[q] := v;
19. iter++;
20. }

Fig. 1 Comet model for the n-queens problem

400 T. Yunes

Comet model for the n-queens problem using local search. The algorithm is based
on the min-conflict heuristic [45] but uses a greedy heuristic to select the variables.
Because no two queens can be placed on the same column, we can assume that the
i-th queen is placed on the i-th column, and variable queen[i] represents the row
assigned to the i-th queen. We start by including the local solver library and the
local solver (lines 01 and 02). Line 06 declares the incremental variables (queen)
and performs an initial random assignment of queens to rows. The three all different
constraints in lines 09–11 check for violations of the row and diagonal constraints.
Then, at each iteration, we choose the queen violating the most constraints (line
16) and move it to a position (row) that minimizes its violations (line 17). These
steps are repeated until a feasible solution is found (the constraint system S has
no violations) or the number of iterations becomes greater than 50n (line 15). The
expression S.getAssignDelta(queen[q],v) queries the constraint system
to find out the impact of assigning value v to queen q. This query is performed in
constant time because of the invariants maintained in each of the constraints. The
assignment queen[q]:= v in line 18 induces a propagation step that recomputes
the violations of all constraints.

More recently, Comet has added support for CP, LP, and MIP solvers, as well as
the ability to do column (variable) generation during search. To access the above
solvers, the user can write statements like Solver<CP> m();, Solver<LP>
m(); or Solver<MIP> m(); instead of Solver<LS>. Variable creation and
constraint posting are modified accordingly. To create finite domain CP variables for
the n-queens problem, we can write var<CP>int queen[Size](m,Size).

The linear solvers supported by the current Comet release (1.2) are LP SOLVE
and the COIN-OR LP solver CLP.

Comet’s data sheet appears in Table 2.

Coming soon to Comet: A uniform GUI/Visualization tool and CP set variables.

Table 2 Comet data sheet

Feature Description

Tool name Comet
User interface 1b, 1c
Solver support 2a, 2c
Relaxation support 3a, 3d
Inference mechanisms 4a, 4c
Search mechanisms 5a, 5b, 5c, 5d
Decomposition mechanisms 6b
Search control 7a, 7b, 7c
Written in CCC and Assembly
Supported platforms Linux, Mac OS X, Windows XP
Developers Laurent Michel and Pascal Van Hentenryck
Availability Free for noncommercial use at http://www.dynadec.com. See

also http://www.comet-online.org.
References [59]
Notes Also includes an ODBC module to grant access to databases.

Software Tools Supporting Integration 401

5 ECLiPSe

ECLiPSe [7, 61] is a Prolog-based system whose aim is to serve as a platform for
integrating various Logic Programming extensions, in particular, Constraint Logic
Programming (CLP). The kernel of ECLiPSe is an efficient implementation of stan-
dard (Edinburgh-like) Prolog as described in basic Prolog texts [20]. It is built
around an incremental compiler which compiles the ECLiPSe source code into
WAM-like code [62], and an emulator of this abstract code. The ECLiPSe logic
programming system was originally an integration of ECRC’s SEPIA [44], Mega-
log [16], and parts of the CHIP [24] system. It was then further developed into a
Constraint Logic Programming system with a focus on hybrid problem solving and
solver integration. ECLiPSe is now an open-source project, with the support of Cisco
Systems.

There are two ways of running ECLiPSe programs. The first is using an interac-
tive graphical user interface to the ECLiPSe compiler and system, which is called
tkeclipse. The second is through a more traditional command-line interface. The
graphical user interface provides many useful features such as a tracer (for debug-
ging), a scratch-pad (to experiment with small pieces of code), statistics (e.g., CPU
and memory usage), predicate library help, etc.

ECLiPSe has introduced many specific language constructs to overcome some
of the main deficiencies of Prolog, such as: the ability to use named structures
with field names, loop/iterator constructs, a multidimensional array notation, pat-
tern matching for clauses, soft cuts, a string data type, etc.

ECLiPSe allows the use of different constraint solvers in combination. The dif-
ferent solvers may share variables and constraints. This can be done by combining
the eplex and ic solver libraries of ECLiPSe. The eplex library gives access
to LP and MIP solvers (linear numeric constraints and integrality constraints), and
the ic library implements typical constraint propagation algorithms (finite domain
constraints and interval constraints). In a hybrid model, the ic solver communi-
cates new tightened bounds to the eplex solver. These tightened bounds have
typically been deduced from nonlinear constraints (e.g., global constraints) and
thus the linear solver benefits from information which would not otherwise have
been available to it. On the other hand, the eplex solver often detects incon-
sistencies which would not have been detected by the ic solver. Moreover, it
returns a bound on the optimization function that can be used by the ic con-
straints. Finally, the optimal solution returned by eplex to the “relaxed” problem
comprising just the linear constraints can be used in a search heuristic that can fo-
cus the ic solver on the most promising parts of the search space. Other useful
libraries are colgen (support for column generation) and repair (helps propa-
gate solutions generated by a linear solver to other variables handled by the domain
solver).

To illustrate the ECLiPSe syntax, let us consider a simple example. We are given
a time instant t , and three tasks such that the running time of tasks 1 and 2 are,
respectively, 3 and 5 time units. We want to find start times for each task such

402 T. Yunes

01. :- lib(ic), lib(eplex).
02. overlap(S,D,T,B) :- ic:(B #= ((T $>= S)and(T $=< S+D-1))).
03. hybrid(Time,[S1,S2,S3],Obj) :-
04. ic:(Obj $:: -1.0Inf..1.0Inf),
05. ic:([S1,S2,S3]::1..20),
06. overlap(S1,3,Time,B1), overlap(S2,5,Time,B2),
07. ic:(B1+B2 #= 1),
08. eplex:(S1+3 $=< S3), eplex:(S2+5 $=< S3),
09. eplex:eplex_solver_setup(min(S3),Obj,

[sync_bounds(yes)],[ic:min,ic:max]),
10. labeling([B1,B2,S1,S2]).

Fig. 2 ECLiPSe model illustrating solver integration

that two constraints are satisfied: exactly one of tasks 1 and 2 is running at time t ,
and both tasks 1 and 2 precede task 3. The corresponding ECLiPSe code appears
in Fig. 2. Line 01 loads the ic and eplex libraries. Line 02 defines a predicate
that associates a boolean variable B with whether a task with start time S and du-
ration D is running at time T. Lines 04 and 05 give initial domains to the Obj
variable, which stores objective function bounds, and to the start time variables S1,
S2, S3. To enforce the first constraint, we state in line 07 that exactly one of the
boolean variables B1 and B2 has to be equal to 1. Note that the prefix ic: indi-
cates that all of the above constraints are posted to the ic solver. We ask the eplex
solver to handle the second constraint in line 08, while line 09 sets up the objec-
tive (minimize S3), and passes ic bounds to the linear solver before the problem is
solved ([sync bounds(yes)]). The statement [ic:min,ic:max] triggers
the LP solver in case of bound changes on the ic side. We search for a solu-
tion by labeling variables in line 10. To send a constraint, say x C 2 � y, to
both the eplex and ic solvers at once, we could write [eplex,ic]:(X + 2
$>= Y).

Three decomposition techniques that are amenable to hybridization are column
generation, Benders decomposition, and Lagrangian relaxation. All three have been
implemented in ECLiPSe and used to solve large problems.

The current release of ECLiPSe (6.0) can interface with the following LP/MIP
solvers: CPLEX, Xpress-MP (versions developed until 2005), and the COIN-OR
LP solver CLP.

ECLiPSe’s data sheet appears in Table 3.

Coming soon to ECLiPSe: Integration with the Gecode [56] constraint solver li-
brary; improved propagator support; new and more efficient global constraints such
as cardinality, 2-D alldifferent, sequence, etc.; search annotations and search tree
display. See http://www.eclipse-clp.org/reports/roadmap.html for a road map of fu-
ture ECLiPSe releases.

Software Tools Supporting Integration 403

Table 3 ECLiPSe data sheet

Feature Description

Tool name ECLiPSe

User interface 1a (Saros prototype under development), 1b, 1c
Solver support 2a, 2c
Relaxation support 3a, 3c, 3d
Inference mechanisms 4c
Search mechanisms 5a, 5b, 5c, 5d
Decomposition mechanisms 6b, 6c
Search control 7a, 7b, 7c
Written in ECLiPSe/Prolog
Supported platforms Linux, Mac OS X, Solaris, Windows
Developers See list at http://sourceforge.net/projects/eclipse-clp
Availability Freely available at http://www.eclipseclp.org
References [7, 61]

6 G12

The G12 project [55] started by National ICT Australia (NICTA) seeks to develop
a software platform for solving large-scale industrial combinatorial optimization
problems. The core design involves three languages: Zinc, Cadmium, and Mercury
(group 12 of the periodic table). Zinc [13,28] is a declarative modeling language for
expressing problems independently of any solving methodology. Cadmium [25] is
a mapping language for mapping Zinc models to underlying solvers and/or search
strategies, including hybrid approaches. Finally, the existing Mercury language [54]
will be extended as a language for building extensible and hybridizable solvers.
The same Zinc model, used with different Cadmium mappings, allows the user
to experiment with different complete, local, or hybrid search approaches for the
same problem. Cadmium mappings also enable the application of preprocessing
steps (e.g., bounds tightening) and transformation steps (e.g., linearization of sub-
problems) to the original Zinc model. Some of the features provided by Zinc are:
mathematical notation-like syntax (overloading, iterations, sets, arrays), expressive
constraints, support for different kinds of problems (including preferences, i.e., soft
constraints), interface to hybrid solvers (like lazy FD), separation of data from
model, high-level data structures and data encapsulation, extensibility (user defined
functions), reliability (type checking, assertions), and annotations which allow non-
declarative information (such as search strategies) and solver-specific information
(such as variable representations) to be layered on top of the declarative model.
Another G12 component is MiniZinc [47], which is a subset of Zinc that provides
many modeling capabilities while being easier to implement. The target language
of MiniZinc is FlatZinc, a low-level solver input language that offers an easier way
for solver writers to provide reasonable MiniZinc support.

To illustrate the Zinc language, let us consider the following trucking example
from [50]. We are given T trucks, each having a cost Cost[t] and an amount of

404 T. Yunes

01. int: P; type Per = 1..P;
02. int: T; type Trucks = 1..T;
03. array[Per] of int: Dem; array[Trucks] of int: Cost;
04. array[Trucks] of int: Load; array[Trucks] of int: K;
05. array[Trucks] of int: L; array[Trucks] of int: U;
06. array[Per] of var set of Trucks: x;

07. constraint forall(p in Per)(
sum_set(x[p],Load) >= Dem[p]);

08. constraint forall(t in Trucks)(
sequence([bool2int(t in x[p])|p in Per],L[t],U[t],K[t]));

09. solve minimize sum(p in Per)(sum_set(x[p], Cost));

Fig. 3 Zinc model for the trucking

material it can load Load[t]. We are also givenP time periods. In each time period
p, a given demand of material (Dem[p]) has to be shipped. Each truck t also has
constraints on usage: in each consecutiveK[t] time periods, it must be used at least
L[t] and at most U[t] times. The Zinc model of this problem appears in Fig. 3. In
each time period p, we need to choose which trucks to use in order to ship enough
material and satisfy the usage limits. Hence, variable x[p] represents the subset of
trucks used in period p. In line 07, the sum set.S; f / function returns

P
e2S f .e/;

in line 08, sequence.Œy1; : : : ; yn�; `; u; k/ constrains the sum of each subsequence
of y variables of length k to be between ` and u. As it stands, this model is directly
executable in a finite domain solver which supports set variables. In Zinc, we can
control the search by adding an annotation on the solve statement. For example,

solve :: set_search(x,"first_fail","indomain","complete")
minimize sum(p in Per)(sum_set(x[p], Cost));

indicates that we label the x variables with smallest domain first (first fail)
by first trying to exclude an unknown element of the set and then including it
(indomain) in a complete search.

To use Dantzig–Wolfe decomposition and column generation on the trucking
model, we need to annotate the model to explain what parts define the subproblems,
which solver is to be used for each subproblem, and which solver is to be used for
the master problem. The annotations would look as follows

array[Per] of var set of Trucks: x :: colgen_var;

constraint forall(p in Per)(
sum_set(x[p],Load) >= Dem[p] ::

colgen_subproblem_constraint(p,"mip"));

solve :: colgen_solver("lp") :: lp_bb(x, most_frac, std_split)
minimize sum(p in Per)(sum_set(x[p], Cost));

which means that variables x will be used in column generation. The subprob-
lems numbered 1 through P are defined in terms of their constraints and their
solver (mip). Finally, the solver for the master problem and the search specification

Software Tools Supporting Integration 405

Table 4 G12 data sheet

Feature Description

Tool name The G12 Project
User interface 1b, 1c
Solver support 2a, 2c, 2d
Relaxation support 3a, 3d
Inference mechanisms 4a, 4b, 4c, 4d
Search mechanisms 5a, 5b, 5c, 5d
Decomposition mechanisms 6a, 6b
Search control 7a, 7b, 7c
Written in Mercury and CCC
Supported platforms Linux, Mac OS X, Windows
Developers See list at http://www.nicta.com.au/research/projects/

/constraint programming platform (full URL was split
in two lines)

Availability See http://www.g12.csse.unimelb.edu.au
References [13, 28, 47, 50, 55]

(branch-and-bound selecting the most fractional variable first and performing a stan-
dard split) are attached to the solve statement. Since column generation is to be
used, the transformation must linearize the master constraints and objective func-
tion. This can be done in Zinc by giving linear definitions to the sum set and
sequence constraints. For the complete details, see [50].

The G12 facilities have been successfully used for a variety of computational
experiments involving problems such as radiation, cumulative scheduling, and hoist
scheduling. Another hybrid algorithm supported by G12 is Lazy-FD, which is a
tight integration of FD and SAT that has shown consistently good performance on
FD problems [48].

Zinc/MiniZinc (as of version 0.9) has been interfaced to a number of finite do-
main solvers (including Gecode [56] and ECLiPSe [61]), LP solvers (including
CPLEX, GLPK, and COIN-OR CLP through COIN-OR OSI), and SAT solvers (in-
cluding MiniSAT and TiniSAT).

G12’s data sheet appears in Table 4.

Coming soon to G12: Propagation-based solving where individual constraints
can be annotated with the solver where they should be sent, for example, x >=
y::lp::fd means that the constraint x >= y is sent to both the LP and
finite domain solvers; and annotation of models to split the problem into two parts:
this-then-that, where the first part is solved and used as input for the second part.

7 IBM ILOG CP Optimizer and OPL Development Studio

The ILOG OPL Development Studio [58] (OPL for short) is designed to support
ILOG CPLEX as well as ILOG CP Optimizer [36,37]. OPL allows users to develop
single models in either technology or multimodel solutions that use either or both

406 T. Yunes

technologies combined. A scripting language (ILOG Script for OPL) provides an
additional level of control, enabling the user to create algorithms that run multiple
models sequentially or iteratively, and to exchange information among them. OPL
also includes an integrated development environment (IDE), which is a graphical
user interface providing all the typical development facilities and support, including:
searching for conflicts between constraints in infeasible mathematical programming
(MP) models, visualizing the state of variables at some point during the search for a
solution, connecting to a database or to a spreadsheet to read and write data, debug-
ging, etc. The current OPL version as of this writing is 6.0.1.

Since version 2.0, the ILOG CP Optimizer provides a new scheduling language
supported by an automatic search that is meant to be robust and efficient (i.e., its de-
fault behavior, without much user intervention or fine tuning, should perform well
on average). This new scheduling model was designed with the requirement that it
should, among other things, be accessible to mathematical programmers, be simple
and nonredundant, fit naturally into a CP paradigm, and be expressive enough to
handle complex applications. The scheduling language is available in CCC, Java,
and C#, as well as in OPL itself. The automatic search is based on a self-adapting
LNS that iteratively unfreezes and reoptimizes a selected fragment of the current so-
lution. ILOG CP Optimizer introduces a conditional interval formalism that extends
classical constraint programming by introducing additional mathematical concepts
(such as intervals, sequences, or functions) as new variables or expressions to cap-
ture the temporal aspects of scheduling. For example:

Interval variables: An interval variable a is a decision variable whose domain
dom(a) is a subset of f?g [fŒs; e/ j s; e 2 ZZ; s � eg. If dom(a) D ?, the in-
terval is said to be absent (present otherwise). An absent interval variable is not
considered by any constraint or expression on interval variables in which it is in-
volved. To model the basic structures of scheduling problems, a number of special
constraints on interval variables exist, such as precedence constraints and time span-
ning constraints.

Sequence variables: Sequence variables are a type of decision variable whose
value is a permutation of a set of interval variables. They are inspired by problems
that involve scheduling a set of activities on a disjunctive resource. Constraints
on sequence variables are provided for ruling out illegal permutations (sequencing
constraints) or for stating a particular relation between the order of intervals in
the permutation and the relative position of their start and end values (no-overlap
constraints).

Cumul Function Expressions: Cumul Function Expressions are expressions that are
used to represent the usage of a cumulative resource over time. This usage is repre-
sented as a sum of individual contributions of intervals (some time intervals make
the resource consumption go up, others make it go down).

In a recent study of three problems from the scheduling literature, compact
models written in OPL for CP Optimizer produced results that, on average, outper-
formed state-of-the-art problem-specific approaches for those problems (see [36]
for details).

Software Tools Supporting Integration 407

To illustrate the integration capabilities of OPL, CPLEX, and CP Optimizer, we
will briefly go over the steps to solve a configuration problem using column gener-
ation. We will use the CP Optimizer engine to generate new possible configurations
and the CPLEX engine to solve the problem of selecting the best combination of
configurations. This configuration problem involves placing objects of different ma-
terials (glass, plastic, steel, wood, and copper) into bins of various types (red, blue,
green), subject to capacity (bin type dependent) and compatibility constraints (e.g.,
red bins cannot contain plastic or steel). All objects must be placed into a bin and
the total number of bins must be minimized. The idea is to write a model file that
uses CP to generate bin configurations, a second model file that uses CPLEX to
select a subset of configurations, and a script file that coordinates the execution
of the previous two and passes information from one to the other. The generation
model (generate.mod) has a color variable to indicate the bin color and ob-
ject variables indicating how many objects of each material are included in the bin.
It then writes the compatibility constraints as logical expressions and imposes the
bin capacity constraints. The selection model (select.mod) has one variable for
each configuration created as input and an objective that minimizes the number
of bins produced. The only constraint is to satisfy the demand for each material.
The script model appears in Fig. 4. Line 01 associates the internal name genBin
to the actual generation model, while lines 02–04 set up and start the search. The
loop of line 05 asks for all solutions and adds them (line 07) to the data struc-
ture (n is the variable that tells how many objects of each material are in the bin).
When no more solutions exist, line 09 ends the search. With all variables now avail-
able, line 10 associates the internal name chooseBin with the selection model
and line 12 passes the data (variables) to it. Lines 14 and 15 solve the problem and
wrap up.

01. var genBin = new IloOplRunConfiguration("generate.mod");
02. genBin.oplModel.addDataSource(data);
03. genBin.oplModel.generate();
04. genBin.cp.startNewSearch();
05. while (genBin.cp.next()) {
06. genBin.oplModel.postProcess();
07. data.Bins.add(genBin.oplModel.newId,

genBin.oplModel.colorStringValue,
genBin.oplModel.n.solutionValue);

08. }
09. genBin.cp.endSearch();

10. var chooseBin = new IloOplRunConfiguration("select.mod");
11. chooseBin.cplex = cplex;
12. chooseBin.oplModel.addDataSource(data);
13. chooseBin.oplModel.generate();
14. chooseBin.cplex.solve();
15. chooseBin.oplModel.postProcess();

Fig. 4 ILOG script for OPL example

408 T. Yunes

Table 5 ILOG CP optimizer/OPL data sheet

Feature Description

Tool name ILOG CP Optimizer and OPL Development Studio
User interface 1a, 1b, 1c
Solver support 2a, 2c
Relaxation support 3a, 3c, 3d
Inference mechanisms 4a, 4b, 4c
Search mechanisms 5a, 5b
Decomposition mechanisms 6b, 6c
Search control 7a, 7b, 7c
Written in CCC
Supported platforms AIX, Linux, Mac OS X, Solaris, Windows (full OPL IDE

available only under Windows)
Availability Commercial, academic and student licenses available. See

http://www.ilog.com.
References [36, 37, 58]
Notes ILOG CP Optimizer only handles discrete decision variables

This example generated all variables a priori before solving the optimization
model. It is possible, of course, to implement an iterative hybrid algorithm that starts
with a subset of the variables and transfers dual information (shadow prices) to the
generation problem so that it can look for a new (improving) variable to be added to
the optimization (master) problem. Then, as usual, this process is repeated until no
improving variables exist.

The CP Optimizer/OPL data sheet appears in Table 5.

8 SCIP

Solving Constraint Integer Programs (SCIP [2, 4]) is an implementation of the con-
straint integer programming (CIP) paradigm, which is an integration of CP, MILP,
and SAT methodologies. It can be used either as a black box solver or as a frame-
work by adding user plug-ins written in C or CCC. SCIP allows total control of
the solution process and access to detailed information from the solver. A number
of predefined macros facilitate implementation by encapsulating commonly used
function calls into a simpler interface. SCIP comes with more than 80 default plug-
ins that turn it into a full solver for MILP and pseudo-Boolean optimization.

A constraint integer program (CIP) is defined as the optimization problem

c� D minfcx j C .x/; x 2 ZZI � IRNnI g; (4)

where C D fC1; : : : ; Cmg is a set of constraints and I �N Df1; : : : ; ng. By defi-
nition, the constraint set C has to be such that once the integer variables have been
assigned values, the remaining problem becomes a linear program.

SCIP is a framework for branching, cutting, pricing, and propagation, and its
implementation is based on the idea of plug-ins, which makes it very flexible and
extensible. Here is a list of the main types of SCIP plug-ins and their roles:

Software Tools Supporting Integration 409

Constraint handlers: These are the central objects of SCIP. Each constraint handler
represents the semantics of a single class of constraints and provides algorithms
to handle constraints of the corresponding type. The primary task of a constraint
handler is to check a given solution for feasibility with respect to all constraints
of its type existing in the problem instance. To improve the performance of the
solving process, constraint handlers may provide additional algorithms and infor-
mation about their constraints to the framework, such as: presolving methods to
simplify the problem, propagation methods to tighten variable domains, linear re-
laxations, branching decisions, and separation routines

Domain propagators: Constraint-based domain propagation is supported by the
constraint handler concept of SCIP. In addition, SCIP features two dual domain
reduction methods that are driven by the objective function, namely objective prop-
agation and root reduced-cost strengthening.

Conflict analyzers: SCIP generalizes conflict analysis to CIP and, as a special case,
to MIP [1]. There are two main differences between CIP and SAT solving in the
context of conflict analysis: CIP variables are not necessarily binary and the infeasi-
bility of a subproblem in the CIP search tree is usually caused by the LP relaxation
of that subproblem. Because it is NP-hard to identify a subset of the local bounds
of minimal cardinality that make the LP infeasible, SCIP uses a greedy heuristic
approach based on an unbounded ray of the dual LP.

Cutting plane separators: SCIP features separators for a myriad of cuts [10, 29,
34,39,41,49,52] in addition to f0; 1=2g-cuts and multi-commodity-flow cuts. For a
survey, see [64]. For cut selection, SCIP uses efficacy and orthogonality (see [6,11]),
and parallelism with respect to the objective function.

Primal heuristics: SCIP has 23 different heuristics, which can be classified into
four categories: rounding, diving, objective diving, and improvement [15].

Node selectors and branching rules: SCIP implements most of the well-known
branching rules, including reliability branching [5] and hybrid branching [3], and
it allows the user to implement arbitrary branching schemes. Several node selection
strategies are predefined, such as depth-first, best-first, and best-estimate [27]. The
default search strategy is a combination of these three.

Presolving: SCIP implements a full set of primal and dual presolving reductions for
MIP problems, such as removing redundant constraints, fixing variables, strength-
ening the LP relaxation by exploiting integrality information, improving constraint
coefficients, clique extractions, etc. It also uses the concept of restarts, which are a
well-known ingredient of modern SAT solvers.

Additional SCIP features include:

� Variable pricers to dynamically create problem variables;
� Relaxators to provide relaxations and dual bounds in addition to the LP relax-

ation, e.g., semi-definite or Lagrangian, working in parallel or interleaved;
� Dynamic cut pool management;
� Counting of feasible solutions, visualization of the search tree, and customization

of output statistics.

410 T. Yunes

The fundamental search strategy in SCIP is the exploration of a branch-and-bound
tree. All involved algorithms operate on a single search tree, which allows for a very
close interaction between different constraint handlers. SCIP manages the branch-
ing tree along with all subproblem data, automatically updates the LP relaxation,
and handles all necessary transformations due to problem modifications during the
presolving stage. Additionally, a cut pool, cut filtering, and a SAT-like conflict anal-
ysis mechanism are available. SCIP provides its own memory management and
plenty of statistical output.

In addition to allowing the user to integrate MILP, CP, and SAT techniques, SCIP
can also be used as a pure MILP or as a pure CP solver. Computational results shown
on the benchmark web pages of Hans Mittelmann1 indicate that SCIP is one of the
fastest noncommercial MILP solvers currently available.

SCIP uses an external LP solver to handle the LP relaxations. The current release
(1.1.0) can interface with CPLEX, Xpress-MP, Mosek, SoPlex, and the COIN-OR
LP solver CLP. The ZIB Optimization Suite (http://zibopt.zib.de) offers a complete
integrated bundle of SCIP, SoPlex, and ZIMPL (a MILP modeling language). Fur-
thermore, precompiled binaries including SoPlex or CLP can be found on the SCIP
web page.

SCIP’s data sheet appears in Table 6.

Coming soon to SCIP: interface to the LP solver QSopt, support for FlatZinc [47]
models; improved pseudo-boolean performance. Further down the road: exact

Table 6 SCIP data sheet

Feature Description

Tool name SCIP – Solving Constraint Integer Programs
User interface 1c
Solver support 2a, 2c, 2d
Relaxation support 3a, 3c, 3d
Inference mechanisms 4a, 4b, 4c, 4d
Search mechanisms 5a, 5b, 5c
Decomposition mechanisms 6b
Search control 7c
Written in C
Supported platforms Should compile with any ANSI C compiler
Developers Tobias Achterberg, Timo Berthold, Stefan Heinz, Thorsten

Koch and Kati Wolter
Availability SCIP is distributed under the ZIB Academic License (see

http://zibopt.zib.de/academic.txt). Source code and binaries
are available at http://scip.zib.de.

References [2, 4]
Notes SCIP is part of the ZIB Optimization Suite. Also available on

the NEOS Server.

1 http://plato.asu.edu/ftp/milpf.html.

Software Tools Supporting Integration 411

integer programming techniques (sound solver without rounding errors); ad-
ditional global CP constraints; MINLP capabilities (nonlinear and nonconvex
constraints).

9 SIMPL

SIMPL [8, 65] is based on two principles: algorithmic unification and constraint-
based control. Algorithmic unification begins with the premise that integration
should occur at a fundamental and conceptual level, rather than postponed to the
software design stage. Optimization methods and their hybrids are viewed, to the
extent possible, as special cases of a single solution method that can be adjusted
to exploit the structure of a given problem. This goal is addressed with a search-
infer-and-relax algorithmic framework, coupled with constraint-based control in the
modeling language. The search-infer-and-relax scheme encompasses a wide variety
of methods, including branch-and-cut (B&C) methods for integer programming,
branch-and-infer methods for constraint programming, popular methods for con-
tinuous global optimization, nogood-based methods as Benders decomposition and
dynamic backtracking, and even heuristic methods such as local search and greedy
randomized adaptive search procedures (GRASPs) [26].

Constraint-based control allows the design of the model itself to tell the solver
how to combine techniques so as to exploit problem structure. Highly-structured
subsets of constraints are written as metaconstraints, which are similar to global
constraints in constraint programming. Syntactically, a metaconstraint is written
much as linear or global constraints are written, but it is accompanied by parameters
that specify how the constraint is to be implemented during the solution process. A
metaconstraint may specify how it is to be relaxed, how it will filter domains, and/or
how the search procedure will branch when the constraint is violated. When such
parameters are omitted, a prespecified default behavior is used.

The relaxation, inference, and branching techniques are devised for each con-
straint’s particular structure. For example, a metaconstraint may be associated with a
tight polyhedral relaxation from the integer programming literature and/or an effec-
tive domain filter from constraint programming. Because constraints also control the
search, if a branching method is explicitly indicated for a metaconstraint, the search
will branch accordingly. The selection of metaconstraints to formulate the problem
determines how the solver combines algorithmic ideas to solve the problem.

To illustrate the above ideas, we consider the following integer knapsack problem
with a side constraint (see Chap. 2 of [32]):

min 5x1 C 8x2 C 4x3

s:t: 3x1 C 5x2 C 2x3 � 30

alldifferent.x1; x2; x3/

xj 2 f1; 2; 3; 4g; 8 j

412 T. Yunes

01. DECLARATIONS
02. n = 3; limit = 30;
03. cost[1..n] = [5,8,4]; weight[1..n] = [3,5,2];
04. discrete range xRange = 1 to 4;
05. x[1..n] in xRange;
06. OBJECTIVE
07. min sum i of cost[i]*x[i]
08. CONSTRAINTS
09. totweight means {
10. sum i of weight[i]*x[i] >= limit
11. relaxation = {lp, cp} }
12. distinct means {
13. alldifferent(x)
14. relaxation = {lp, cp} }
15. SEARCH
16. type = {bb:depth}
17. branching = {x:first, distinct:most}

Fig. 5 SIMPL model for the hybrid knapsack problem

A SIMPL model for the above problem is shown in Fig. 5. The model starts with
a DECLARATIONS section in which constants and variables are defined. Line 07
defines the objective function. In the CONSTRAINTS section, the two constraints
of the problem are represented by the (named) metaconstraints totweight and
distinct, and their definitions show up in lines 10 and 13, respectively. The
relaxation statements in lines 11 and 14 indicate the relaxations to which those
constraints should be posted. Both constraints will be present in the LP and in the
CP relaxations. Because the alldifferent constraint is not linear, submitting
it to an LP relaxation means that it will be automatically transformed into a linear
approximation (in this case, the convex hull formulation) of the set of its feasible
solutions (see [63]). In the SEARCH section, line 16 indicates that we will do branch-
and-bound (bb) with depth-first search (depth). The branching statement in
line 17 says that we will branch on the first of the x variables that is not integer
(branching on a variable means branching on its indomain constraint). Once all x’s
are integer, the most violated of the alldifferent constraints will be used for
branching (distinct:most). Initially, bounds consistency maintenance in the
CP solver removes value 1 from the domain of x2 and the solution of the LP relax-
ation is x D .2 2

3
; 4; 1/. After branching on x1 � 2, bounds consistency determines

that x1 � 2, x2 � 4, and x3 � 2. At this point, the alldifferent constraint
produces further domain reduction, yielding the feasible solution .2; 4; 3/. Notice
that no LP relaxation had to be solved at this node. In a similar fashion, the CP
solver may be able to detect infeasibility even before the linear relaxation has to be
solved.

In [65], SIMPL was used to model and solve four classes of problems that had
been successfully solved by custom implementations of integrated approaches,
namely: production planning, product configuration, machine scheduling, and
truss structure design. Computational results indicate that the high-level models

Software Tools Supporting Integration 413

Table 7 SIMPL data sheet

Feature Description

Tool name SIMPL: A Modeling Language for Integrated Problem Solving
User interface 1b, 1c
Solver support 2a, 2c
Relaxation support 3a, 3d
Inference mechanisms 4a, 4b, 4c
Search mechanisms 5a
Decomposition mechanisms 6c
Search control 7a, 7c
Written in CCC
Supported platforms Linux
Developers Ionuţ Aron, John Hooker and Tallys Yunes
Availability Free for academic use. Preliminary demo version available at

http://moya.bus.miami.edu/	tallys/simpl.php.
References [8, 65]
Notes Looking to expand the development group.

implemented in SIMPL either match or surpass the performance of the original
special-purpose codes at a fraction of the implementation effort.

SIMPL requires external solvers to handle the problem relaxations. The current
release (0.08.22) can use CPLEX as an LP solver and ECLiPSe as a CP solver.
Other solvers can be added by deriving an object class and implementing standard
interface methods.

SIMPL’s data sheet appears in Table 7.

Coming soon to SIMPL: Interfaces to NLP solvers; additional LP and CP solvers;
preprocessing; cutting plane generation. Further down the road: support for SAT
solvers; local and incomplete search; branch-and-price; high-level search language;
GUI and IDE.

10 Xpress-Mosel

The Xpress-Mosel language [22] (Mosel for short) is a modeling language that is
part of the FICO Xpress suite of mathematical modeling and optimization tools2.
It allows the user to formulate the problem, solve it with a suitable solver engine, and
analyze the solution, using a fully-functional programming language specifically
designed for this purpose. Mosel programs can be run interactively or embedded
within an application. The language is integrated within the Xpress-IVE visual
development environment. In addition to the usual features available in standard
modeling languages, it provides support for arbitrary ranges, index sets, sparse ob-
jects, and a debugger that supports tracing and analyzing the execution of a model.

2 Originally developed by Dash Optimization under the name Xpress-MP.

414 T. Yunes

Mosel is an open, user-extensible language. The Mosel distribution includes
extension libraries (so-called modules), one of which provides control of the Xpress-
Optimizer (module mmxprs), through optimization statements in the Mosel pro-
gram. Other solver modules give access to formulating and solving nonlinear
problems (module mmnl handles QCQP, MIQCQP and convex NLP), the Stochastic
Programming tool Xpress-SP3, and the Constraint Programming software Xpress-
Kalis (module kalis). In Mosel, CP and MIP solving may be used sequentially,
for instance, employing CP constraint propagation as a preprocessing routine for
LP/MIP problems; or in parallel as would happen, for example, when CP solving is
used as cut or variable generation routine during an MIP branch-and-bound search.
We now provide a simplified example of the former type of integration to illustrate
Mosel’s modeling constructs (taken from [30, 31]). Due to space limitations, we
omit the data and variable declarations in our Mosel models.

Consider a project scheduling problem in which a set of tasks (TASKS) with
a certain default duration (DUR(i), in weeks) have to be executed (e.g., a real
estate development project). Precedence constraints exist between given pairs of
tasks (ARC(i,j)) and, if the manager is willing to spend extra money (COST(i)),
it is possible to reduce the duration of each task by save(i), up to a certain amount
(MAXW(i)) (this is sometimes referred to as crashing). Assume that we know the
earliest project completion date without crashing (Finish) and the client is willing
to pay BONUS dollars for every week the work finishes early. To maximize the
manager’s profit, we will solve this problem in two stages: first (Fig. 6), we use the

01. model "Crashing CP"
02. uses "kalis"
03. declarations
04. start: array(TASKS) of cpvar
05. duration: array(TASKS) of cpvar
06. lbstart, ubstart: array(TASKS) of integer
07. end-declarations
08. forall(j in TASKS) setdomain(start(j),0,Finish)
09. forall(j in TASKS) setdomain(duration(j),

DUR(j)-MAXW(j),DUR(j))
10. forall(i,j in TASKS | exists(ARC(i,j)))
11. start(i) + duration(i) <= start(j)
12. forall(i in TASKS) do
13. lbstart(i) := getlb(start(i))
14. ubstart(i) := getub(start(i))
15. end-do
16. initializations to "raw:"
17. lbstart as "shmem:lbstart" ubstart as "shmem:ubstart"
18. end-initializations
19. end-model

Fig. 6 Mosel CP model for project crashing. File name: crash1.mos

3 Recently turned into open-source and available from the Xpress website.

Software Tools Supporting Integration 415

01. model "Crashing master (CP + LP)"
02. uses "mmxprs", "mmjobs"
03. declarations
04. CPmodel: Model
05. end-declarations
06. res := compile("crash1.mos"); load(CPmodel,"crash1.bim")
07. run(CPmodel); wait
08. initializations from "raw:"
09. lbstart as "shmem:lbstart" ubstart as "shmem:ubstart"
10. end-initializations
11. declarations
12. start: array(TASKS) of mpvar
13. save: array(TASKS) of mpvar
14. end-declarations
15. Profit := BONUS*save(N) - sum(i in 1..N-1) COST(i)*save(i)
16. forall(i,j in TASKS | exists(ARC(i,j)))
17. Precm(i,j) := start(i) + DUR(i) - save(i) <= start(j)
18. start(N) + save(N) = Finish
19. forall(i in 1..N-1) save(i) <= MAXW(i)
20. forall(i in 1..N-1) do
21. lbstart(i) <= start(i); start(i) <= ubstart(i)
22. end-do
23. maximize(Profit)
24. end-model

Fig. 7 Mosel LP model for project crashing

CP solver to find bounds on the start times of each task (start(i)), and then we
use those bounds in an LP optimization model (Fig. 7). In Fig. 6, line 02 indicates
we will use the CP module and lines 04 and 05 declare the start time and duration
variables. Note that the actual duration of a task is a variable because we do not
know a priori by how many weeks each task will be crashed. The calculated bounds
on task start times, which are declared in line 06, will be retrieved from the CP solver
in lines 12–15, and passed to the LP model through a shared memory space in lines
16–18. Lines 08 and 09 declare the variable domains. Lines 10 and 11 create and
post the precedence constraints. In Fig. 7, the master model includes the optimizer
module in line 02 and declares a CP model in line 04. In lines 06 and 07, the CP
model from Fig. 6 is compiled, loaded, and run. Line 09 retrieves from the shared
memory space the bounds on task start times obtained by the CP model. We declare
the variables of the optimization model in lines 11–14 and the objective function in
line 15. Task number N is a virtual task introduced so that its start time represents
the completion time of the project. Lines 17 and 18 state the precedence constraints
and tie the project completion time to the known duration Finish. Line 19 limits
the crash amounts, and lines 20–22 use the bounds retrieved from the CP model to
tighten the domain of start(i).

Two successful, and more intricate, implementations of hybrid algorithms using
Mosel appeared in [17] and [51].

Xpress-Mosel’s data sheet appears in Table 8.

416 T. Yunes

Table 8 Xpress-Mosel data sheet

Feature Description

Tool name Xpress-Mosel
User interface 1a, 1b, 1c
Solver support 2a, 2b, 2c
Relaxation support 3a, 3b, 3d
Inference mechanisms 4a, 4b, 4c
Search mechanisms 5a, 5b
Decomposition mechanisms 6a, 6b, 6c
Search control 7a, 7b, 7c
Supported platforms AIX, HP-UX, Linux, Solaris, Windows (Xpress-IVE available

on Windows only)
Main developer Yves Colombani
Availability Commercial, academic and student licenses available. See

http://www.dashoptimization.com or www.fico.com.
References [21, 22, 30]

Coming soon to Xpress-Mosel: support for multiple problems in the same model
file, introducing the concept of local scoping i.e., variables and constraints are no
longer necessarily global and instead can be defined in the context of a specific sub-
problem (useful in the implementation of user-defined heuristics); a new feature of
Xpress-Kalis that introduces the possibility to work with automatic LP/MIP relax-
ations of CP constraints (linear constraints and global constraints like alldifferent,
occurrence, etc.). The LP/MIP representation is generated automatically and solved
by Xpress-Optimizer with numerous configuration options as to how, where, and
when to solve the MP problem(s).

11 Other Hybrid Tools

This section covers a few other software tools that include some level of support for
integration.

11.1 COIN-OR

Computational Infrastructure for Operations Research (COIN-OR) [40] is a project
aimed at spurring the development of open-source software for the OR community.
Its objectives include speeding the development and deployment of models, algo-
rithms, and cutting-edge computational research, as well as providing a forum for
peer review of software similar to that provided by archival journals for theoreti-
cal research. While not being a hybrid tool per se, the COIN-OR initiative can be
viewed as a hybrid set of tools that could, in principle, be combined. The COIN-OR

http://www.dashoptimization.com
www.fico.com

Software Tools Supporting Integration 417

repository is composed of many different projects divided into categories such as
developer tools, graph algorithms, abstract interfaces (e.g., OSI), metaheuristics,
and optimization packages that can handle distinct types of problems (determinis-
tic linear and nonlinear (both continuous and discrete), deterministic semi-definite
continuous, and stochastic). For further details, see http://www.coin-or.org.

11.2 Microsoft Solver Foundation

Recently, the Microsoft Solver Foundation (version 1.1) has added links to a number
of well-known solvers through its Solver Plug-in System, namely CPLEX, Xpress-
MP, Mosek, and Gurobi. There is also support for CP solvers. For more details, see
http://www.solverfoundation.com.

11.3 Prolog IV

Prolog IV [46] is an ISO-compliant replacement for the Prolog III language. It
incorporates all the main features of Prolog III with some important changes. It
allows programmers to express a wide variety of constraints over real and rational
numbers, integers (finite domains), booleans, and lists. In addition to expressing
classical linear programming problems on discrete and continuous quantities, it
permits, among other things, the use of mixed real/integers problems, and the
use of boolean operations to formalize constraint disjunctions. The algorithms in-
clude a nonoptimized algorithm for lists (different from Prolog III), Gauss and
Simplex algorithms for equations and linear inequalities over rationals, and an
interval method for approximate solving of nonlinear constraints over reals. The
compiler is integrated into a complete graphic programming environment featuring
tools such as a project editor, a multiwindow text editor, grapher, debugger, and
online help.

11.4 SALSA

SALSA [38] is a language dedicated to specifying local, global, and hybrid search
algorithms. It provides the user with the ability to specify the way the global search
tree is explored. SALSA attempts to make the creation of hybrid algorithms a less
tedious and less error-prone task by providing a high-level language that offers the
ability to perform nonmonotonic operations and hypothetical reasoning. It proposes
to consider logic and control separately and because it is not a standalone language,
it works in cooperation with a host programming language. SALSA allows the pro-
grammer to specify the choice mechanisms that are responsible for generating the

418 T. Yunes

moves of a search algorithm, and it offers primitives for composing the transitions
from one state to the next. In global search, goals and constraints describe prop-
erties of final states, while in local search, invariants, and neighborhoods describe
properties of all states. However, because the basic branching mechanism of global-
search and local-search algorithms are very much alike, SALSA allows for hybrid
combinations by expressing neighborhoods and choices in the same formalism.

11.5 ToOLS

The purpose of ToOLS [23] (templates of on-line search) is twofold: to help a con-
straint programmer to build complex customized search algorithms, and to offer
readymade search components for engineers, improving algorithm reuse, and cap-
italization. ToOLS is part of a finite-domain constraint solver library called Eclair,
developed in the high-level language Claire [18]. ToOLS divides the description of a
search algorithm into three parts (or components): a complete search tree defined by
a refinement-based search scheme, a set of conditions restricting the exploration of
the tree, and a combination of several partial explorations. Each component can also
be reused separately. A search algorithm is a Claire object created by a functional
composition of constructors called ToOLS primitives. A special function (solve,
solveAll or minimize) specifies the goal of the search (satisfaction or optimization)
and is applied to a single algorithm object. ToOLS has been successfully used to
implement LNS methods applied to satellite observation scheduling and military
applications.

12 Conclusion

The availability of software tools for integrated optimization has dramatically in-
creased since the first CP-AI-OR workshop held in 1999. Today, it is possible to
exploit the power of hybrid algorithms without having to spend several days (or
even months) writing and debugging computer code. Both academia and industry
recognize the need for better optimization software that facilitates the integration
of solution techniques, and this chapter provides a brief overview of some existing
software packages.

Despite the tremendous progress over the past 10 years, there is still much room
for improvement. In [60], Wallace, Caseau and Puget mention that “to make an
impact, our technology must be made useable so that (1) highly qualified experts
can develop solutions very quickly,” and “(2) less expert users can also exploit
the technology successfully.” This greater accessibility was one of the fundamental
forces behind the increased adoption and dissemination of traditional OR tech-
niques. Moreover, the authors also make a case for the need to “make the user’s
task more manageable.” We could, for instance, “identify general problem features

Software Tools Supporting Integration 419

that correlate with suitable algorithms. Define simple rules about when to use one
problem solving method and when to use another one. Categorize which forms
of hybridization work best for which kinds of problems and algorithms.” This
means that our software tools could greatly benefit from a database of meta mod-
els (see [19]). Over the years, the OR and CP communities have gathered a wealth
of knowledge about what works and what does not work; what kinds of mathe-
matical formulas are more suitable representations of certain real-life phenomena;
what kinds of symmetries typically arise in a given class of problems or from a
given choice of variables; which cutting planes are effective for a given class of
optimization problem; etc. Most of this knowledge resides in the minds of our best
modelers when it should be residing in the software itself. The next generation of
modeling tools needs to extract more information from the user. The creation of a
new model should start with an electronic questionnaire that will collect informa-
tion about the nature and structure of the problem. It could, for instance, present a
tree hierarchy to the user and allow him/her to click on the nodes that have a rela-
tionship to that particular problem, as depicted in Fig. 8. To input a problem that
combines location, routing, and scheduling aspects, the user simply clicks on more
than one node. Similar hierarchies can be used to gather information about the prob-
lem domain (e.g., manufacturing, finance, marketing), as well as the nature of the
objective function and constraints (e.g., does it include uncertainty/randomness?).
In possession of this extra knowledge, the modeling tool will be in a better position
to choose its own default parameters, to suggest modeling constructs (constraints,
cuts, relaxations, decompositions), and even to flag potentially ineffective choices
made by the users as they input the model.

In [33], Hooker argues that “we should take full advantage of the graphical user
interface to empower modelers. A metaconstraint should be invoked by opening a
window on the computer screen, not by typing a statement. The window should
present various options for refining the constraint and importing data. The model
as a whole should be depicted graphically, with an opportunity to click on modules
for a more detailed look.” Once again, it all boils down to accessibility. By making

Model

Transportation

Transshipment

Shortest Path

Routing

VRPTW

Facility Location

Capacitated Uncapacitated

Scheduling

Machine

Disjunctive Cumulative

Crew

Fig. 8 Hypothetical hierarchy of models. Users click on the nodes that are relevant to their
problem

420 T. Yunes

our models easier to build, and therefore easier to understand, we can reach out to a
larger audience. Software packages that implement some of these ideas include Vi-
sual CHIP [9], CHIP Factory [53], and the computer simulation software Arena [35].
Visualization also plays an important role in solution analysis and model tuning. The
visualization capabilities of tools like CHIP and Comet represent an important step
in that direction. When combined with the kind of metamodeling information dis-
cussed above, such a graphical modeling environment would be able to prepopulate
its window with some of the necessary modules. All of this automatic behavior, of
course, must be available while also staying out of the way of the expert user.

The development and growth of hybrid modeling tools has created exciting new
challenges and numerous research directions. The general trend seems to be one of
unification rather than separation. Over the next 10 years, our tools will be able to
do more, while asking for less of our guidance. It is unlikely that the software exper-
tise will ever substitute the human expertise, but significant improvements over the
current state-of-the-art are definitely possible. By being aware of these strengths and
weaknesses, we have taken an important step toward a new generation of software
tools for integrated optimization.

Acknowledgments The author would like to thank Timo Berthold, Stefan Heinz, Susanne
Heipcke, Katya Krasilnikova, Michela Milano, Philippe Refalo, Nick Sahinidis, Kish Shen,
Helmut Simonis, Peter Stuckey, Pascal Van Hentenryck, and Mark Wallace for answering techni-
cal questions, and for providing feedback on the presentation of the material and on the accuracy
of the information about each software tool.

References

1. Achterberg T (2007) Conflict analysis in mixed integer programming. Discrete Optim
4(1):4–20 Special issue: Mixed Integer Programming

2. Achterberg T (2008) SCIP: solving constraint integer programs. Math Program Comput
1(1):1–41

3. Achterberg T, Berthold T (2009) Hybrid branching. In: van Hoeve WJ, Hooker J (eds) Inte-
gration of AI and OR techniques in constraint programming for combinatorial optimization
problems, 6th international conference, CPAIOR 2009. Lecture notes in computer science,
vol 5547. Springer, Berlin, pp 309–311

4. Achterberg T, Berthold T, Koch T, Wolter K (2008) Constraint integer programming: a new ap-
proach to integrate CP and MIP. In: Perron L, Trick M (eds) Proceedings of the conference on
integration of AI and OR techniques in constraint programming for combinatorial optimization
problems (CP-AI-OR). Lecture notes in computer science, vol 5015. Springer, Berlin, pp 6–20

5. Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Oper Res Lett 33:42–54
6. Andreello G, Caprara A, Fischetti M (2007) Embedding cuts in a branch and cut framework: a

computational study with f0; 1=2g-cuts. INFORMS J Comput 19(2):229–238
7. Apt KR, Wallace M (2007) Constraint logic programming using ECLiPSe. Cambridge Univer-

sity Press, Cambridge
8. Aron ID, Hooker JN, Yunes TH (2004) SIMPL: a system for integrating optimization tech-

niques. In: Rgin J, Rueher M (eds) Proceedings of the conference on integration of AI and OR
techniques in constraint programming for combinatorial optimization problems (CP-AI-OR).
Lecture notes in computer science, vol 3011. Springer, Berlin, pp 21–36

Software Tools Supporting Integration 421

9. Baader F, Comon H, Smolka G (1997) Visual CHIP: a visual language for defining constraint
programs. In: Annual workshop of the ESPRIT working group “constructions of computational
logic II” (CCL), Dagstuhl

10. Balas E (1975) Facets of the knapsack polytope. Math Program 8:146–164
11. Balas E, Ceria S, Cornuéjols G (1996) Mixed 0-1 programming by lift-and-project in a branch-

and-cut framework. Manage Sci 42:1229–1246
12. Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998) Branch-and-

price: column generation for solving huge integer programs. Oper Res 46:316–329
13. Becket R, Brand S, Brown M, Duck GJ, Feydy T, Fischer J, Huang J, Marriott K, Nethercote

N, Puchinger J, Rafeh R, Stuckey PJ, Wallace MG (2008) The many roads leading to Rome:
solving Zinc models by various solvers. In: Proceedings of the 7th international workshop on
constraint modeling and reformulation (ModRef)

14. Benders JF (1962) Partitioning procedures for solving mixed-variables programming prob-
lems. Numer math 4:238–252

15. Berthold T (2006) Primal heuristics for mixed integer programs. Master’s thesis, Technische
Universität Berlin, Berlin

16. Bocca J (1991) Megalog – a platform for developing knowledge base management systems.
In: Proceedings of the second international symposium on database systems for advanced ap-
plications (DASFAA), Tokyo, Japan

17. Bockmayr A, Pisaruk N (2003) Detecting infeasibility and generating cuts for MIP using CP.
In: Fifth international workshop on integration of AI and OR techniques in constraint program-
ming for combinatorial optimization problems (CP-AI-OR), Montréal, Canada, pp 24–34

18. Caseau Y, Josset FX, Laburthe F (1999) CLAIRE: combining sets, search and rules to bet-
ter express algorithms. In: Proceedings of the international conference on logic programming
(ICLP), pp 245–259

19. Caseau Y, Silverstein G, Laburthe F (2001) Learning hybrid algorthms for vehicle routing
problems. Theory Pract Log Program 1(6):779–806

20. Clocksin WF, Mellish CS (1981) Programming in prolog. Springer, Berlin
21. Colombani Y, Daniel B, Heipcke S (2004) Mosel: a modular environment for modeling

and solving problems. In: Kallrath J (ed) Modeling languages in mathematical optimization.
Kluwer Academic, Boston, pp 211–238

22. Colombani Y, Heipcke S (2002) Mosel: an extensible environment for modeling and program-
ming solutions. In: Proceedings of the international workshop on integration of AI and OR
techniques in constraint programming for combinatorial optimization problems (CP-AI-OR)

23. de Givry S, Jeannin L (2003) ToOLS: a library for partial and hybrid search methods. In: Fifth
international workshop on integration of AI and OR techniques in constraint programming for
combinatorial optimization problems (CP-AI-OR), Montréal, Canada, pp 124–138

24. Dincbas M, Van Hentenryck P, Simonis M, Aggoun A, Graf T, Berthier F (1988) The constraint
logic programming language CHIP. In: Proceedings of the international conference of fifth
generation computer systems, pp 693–702

25. Duck GJ, Stuckey PJ, Brand S (2006) ACD term rewriting. In: Etalle S, Truszczynski M (eds)
Proceedings of the 22nd international conference on logic programming (ICLP). Lecture notes
in computer science, vol 4079. Springer, Heidelberg, pp 117–131

26. Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Global Optim
6:109–133

27. Forrest JJ, Hirst JPH, Tomlin JA (1974) Practical solution of large scale mixed integer pro-
gramming problems with UMPIRE. Manage Sci 20(5):736–773

28. Garcia de la Banda M, Marriott K, Rafeh R, Wallace M (2006) The modelling language Zinc.
In: Benhamou F (ed) Proceedings of the 12th international conference on principles and prac-
tice of constraint programming (CP). Lecture notes in computer science, vol 4204. Springer,
Heidelberg, pp 700–705

29. Gomory RE (1960) Solving linear programming problems in integers. In: Bellman R, Hall
JM (eds) Symposia in applied mathematics X, combinatorial analysis. AMS, Providence, RI,
pp 211–215

422 T. Yunes

30. Guéret C, Heipcke S, Prins C, Sevaux M (2002) Applications of optimization with Xpress-MP.
Dash optimization. Blisworth, UK. http://www.dashoptimization.com/applications book.html

31. Heipcke S (2005) Hybrid MIP/CP solving with Xpress-Optimizer and Xpress-Kalis. Xpress
Whitepaper, FICO. http://www.dashoptimization.com

32. Hooker JN (2000) Logic-based methods for optimization: combining optimization and con-
straint satisfaction. Wiley-Interscience Series in Discrete Mathematics and Optimization

33. Hooker JN (2007) Good and bad futures for constraint programming (and operations research).
Constraint Program Lett 1:21–32 Special Issue on the next 10 years of constraint programming

34. Johnson EL, Padberg MW (1982) Degree-two inequalities, clique facets and biperfect graphs.
Ann Discrete Math 16:169–187

35. Kelton WD, Sadowski RP, Sturrock DT (2007) Simulation with arena, 4th edn. McGraw Hill,
New York

36. Laborie P (2009) IBM ILOG CP Optimizer for detailed scheduling illustrated on three prob-
lems. In: Hooker JN, van Hoeve WJ (eds) Proceedings of the conference on integration of AI
and OR techniques in constraint programming for combinatorial optimization problems (CP-
AI-OR). Lecture notes in computer science, vol 5547. Springer, Berlin, pp 148–162

37. Laborie P, Rogerie J, Shaw P, Vilı́m P, Wagner F (2008) ILOG CP Optimizer: detailed schedul-
ing model and OPL formulation. Tech. Rep. 08-002, ILOG. Availableathttp://www2.ilog.com/
techreports/

38. Laburthe F, Caseau Y (2002) SALSA: a language for search algorithms. Constraints
7(3–4):255–288

39. Lechford AN, (2002) Lodi a strengthening Chvátal-Gomory cuts and Gomory fractional cuts.
Oper Res Lett 30(2):74–82

40. Lougee-Heimer R (2003) The common optimization interface for operations research. IBM J
Res Dev 47(1):57–66

41. Marchand H (1998) A polyhedral study of the mixed knapsack set and its use to solve mixed
integer programs. Ph.D. thesis, Faculté des Sciences Appliquées, Université Catholique de
Louvain

42. McCormick GP (1976) Computability of global solutions to factorable nonconvex programs:
Part I – convex underestimating problems. Math Program 10:147–175

43. McCormick GP (1983) Nonlinear programming: theory, algorithms and applications. Wiley-
Interscience, New York

44. Meier M, Kay P, Van Rossum E, Grant H (1989) SEPIA programming environment. In: Pro-
ceedings of the workshop on PROLOG programming environments NACLP’89, pp 82–86

45. Minton S, Johnson MD, Philips AB (1990) Solving large-scale constraint satisfaction and
scheduling problems using a heuristic repair method. In: Proceedings of the eighth national
conference on artificial intelligence (AAAI-90), Boston, pp 17–24

46. Narboni G (1999) From prolog III to prolog IV: the logic of constraint programming revisited.
Constraints 4(4):313–335

47. Nethercote N, Stuckey PJ, Becket R, Brand S, Duck GJ, Tack G (2007) MiniZinc: towards a
standard CP modelling language. In: Bessière C (ed) Proceedings of the 13th international con-
ference on principles and practice of constraint programming (CP). Lecture notes in computer
science, vol 4741. Springer, Heidelberg, pp 529–543

48. Ohrimenko O, Stuckey PJ, Codish M (2007) Propagation D lazy clause generation. In:
Bessière C (ed) Proceedings of the 13th international conference on principles and practice of
constraint programming (CP). Lecture notes in computer science, vol 4741. Springer, Berlin,
pp 544–558

49. Padberg MW, van Roy TJ, Wolsey LA (1985) Valid inequalities for fixed charge problems.
Oper Res 33(4):842–861

50. Puchinger J, Stuckey PJ, Wallace M, Brand S (2008) From high-level model to branch-and-
price solution in G12. In: Perron L, Trick M (eds) Proceedings of the conference on integration
of AI and OR techniques in constraint programming for combinatorial optimization problems
(CP-AI-OR). Lecture notes in computer science, vol 5015. Springer, Berlin, pp 218–232

http://www.dashoptimization.com/applications_book.html
http://www.dashoptimization.com
Available at http://www2.ilog.com/techreports/
Available at http://www2.ilog.com/techreports/

Software Tools Supporting Integration 423

51. Sadykov R (2004) A hybrid branch-and-cut algorithm for the one-machine scheduling prob-
lem. In: Régin J, Rueher M (eds) Proceedings of the conference on integration of AI and OR
techniques in constraint programming for combinatorial optimization problems (CP-AI-OR).
Lecture notes in computer science, vol 3011. Springer, Berlin, pp 409–414

52. Savelsbergh MWP (1994) Preprocessing and probing techniques for mixed integer program-
ming problems. ORSA J Comput 6:445–454

53. Simonis H (2000) Finite domain constraint programming methodology. In: Second interna-
tional conference and exhibition on the practical application of constraint technologies and
logic programming (PACLP), Manchester, UK. Tutorial

54. Somogyi Z, Henderson F, Conway T (1996) The execution algorithm of Mercury, an efficient
purely declarative logic programming language. J Log Program 29(1–3):17–64

55. Stuckey PJ, Garcia de la Banda M, Maher MJ, Marriott K, Slaney JK, Somogyi Z, Wallace M,
Walsh T (2005) The G12 project: mapping solver independent models to efficient solutions.
In: van Beek P (ed) Proceedings of the 11th international conference on principles and practice
of constraint programming (CP). Lecture notes in computer science, vol 3709. Springer, Berlin,
pp 13–16

56. Tack G (2009) Constraint propagation – models, techniques, implementation. Ph.D. thesis,
Saarland University, Germany. http://www.gecode.org

57. Tawarmalani M, Sahinidis NV (2004) Global optimization of mixed-integer nonlinear pro-
grams: a theoretical and computational study. Math Program 99:563–591

58. Van Hentenryck P, Lustig I, Michel L, Puget JF (1999) The OPL optimization programming
language. MIT Press, Cambridge, MA

59. Van Hentenryck P, Michel L (2005) Constraint-based local search. MIT Press, Cambridge,
MA, USA

60. Wallace M, Caseau Y, Puget JF (2004) Open perspectives. In: Milano M (ed) Constraint and
integer programming: toward a unified methodology. Kluwer, Dordrecht, pp 331–365

61. Wallace M, Novello S, Schimpf J (1997) ECLiPSe: a platform for constraint logic program-
ming. ICL Syst J 12:159–200

62. Warren DHD (1983) An abstract prolog instruction set. Tech. Rep. 309, SRI International.
http://www.ai.sri.com/pubs/files/641.pdf

63. Williams HP, Yan H (2001) Representations of the all different predicate of constraint satis-
faction in integer programming. INFORMS J Comput 13(2):96–103

64. Wolter K (2006) Implementation of cutting plane separators for mixed integer programs.
Master’s thesis, Technische Universität Berlin, Berlin

65. Yunes T, Aron ID, Hooker JN (2010) An integrated solver for optimization problems. Oper
Res 58(2):342–356

http://www.gecode.org
http://www.ai.sri.com/pubs/files/641.pdf

Connections and Integration with SAT Solvers:
A Survey and a Case Study in Computational
Biology

Fabien Corblin, Lucas Bordeaux, Eric Fanchon, Youssef Hamadi,
and Laurent Trilling

Abstract Boolean constraints play a fundamental rôle in optimization and
constraint satisfaction. The resolution of these constraints has been the subject of
intense and successful work during the past decade, and SAT solvers have reached a
spectacular maturity. This chapter gives a brief overview of the relevant literature on
modern SAT solvers and on the recent efforts to better integrate Boolean reasoning
with other constraint satisfaction techniques. As a case study that illustrates the use
of SAT and CP, we consider an application in computational biology: the task to
build gene regulatory networks (GRNs). We report on experiments made on this
problem with a combined SAT/CP approach.

1 Introduction

This chapter focuses on Boolean constraints. An important breakthrough in con-
straint satisfaction over the past decade was the advent of highly scalable solvers
for Propositional Satisfiability (SAT). This new technology revolutionized the way
Boolean reasoning is done in constraint satisfaction, and has recently generated con-
siderable interest from other areas of optimization. In Constraint Programming (CP),
there is naturally a desire to benefit from the techniques developed specifically for
the treatment of Booleans, but also to take inspiration from the methods and ideas
that were instrumental in the success of SAT solvers.

This chapter gives a brief overview of the breakthroughs related to SAT and of the
recent CP work inspired from SAT. Our goal is not to give a detailed introduction
to either SAT or CP; two recent handbooks will be useful references for readers
interested in such introductions: [11] for SAT and [93] for CP. There is no shortage
of literature on the two fields: for instance, a book chapter by [45] gives another,
accessible overview of SAT; [12] give a comparative survey of SAT and CP.

F. Corblin (�)
TIMC-IMAG, Grenoble, France
e-mail: Fabien.Corblin@imag.fr

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 13,
c� Springer Science+Business Media, LLC 2011

425

Fabien.Corblin@imag.fr

426 F. Corblin et al.

To illustrate the modeling and problem resolution approaches in SAT and CP, we
consider in this survey the task to build gene regulatory networks (GRNs), called in
our specific context GRN deciphering, and use it as a case study. This general prob-
lem is interesting because it is representative of the novel applications of constraints
in computational biology, and because approaches based on both SAT and CP have
been used to tackle it, mainly in the PhD thesis of the first author. Part of this chapter
is therefore based on prior work of which a more detailed presentation can be found
in [23, 24]; the focus here differs from this prior work in that we mainly describe
and compare the SAT and CP approaches used for the problem.

2 Boolean Constraints as Part of the Bigger Picture

Boolean constraints play an important rôle in optimization and constraint satisfac-
tion as they are ubiquitous in applications. We distinguish between the following
classes of applications:

Problems with Boolean decisions. Propositional logic plays a fundamental rôle
in computer science, and in some application areas such as hardware verification,
some problems are naturally expressed in a purely Boolean form: this happens for
instance when we directly encode digital circuit to verify their equivalence. Many
other problems are not purely propositional but at least part of their decisions are
Boolean. For instance in a portfolio optimization problem, we may have one binary
decision for each investment: whether or not it should be included in the portfolio.

Problems with a Boolean structure. By Boolean structure, we mean the com-
bination of (non-Boolean) constraints by logical connectives such as disjunctions,
negations, or implications. A simple example of Boolean structure is the constraint
x � y � 8 _ y � x � 8 stating that the distance between two points x and y on the
real line is at least 8. Even the problems in which decisions are not Boolean often
exhibit a rich Boolean structure, and their resolution involves Boolean reasoning.
For instance in software verification [22, 30, 67] problems tend to be formulated as
complex Boolean combinations of simple (e.g., numerical) constraints: the Boolean
structure encodes the control flow of the program, and the numerical relations en-
code the basic operations (increment, assignment of integer variables, addition, etc.).
But disjunctions, implications, and other logical combinations of constraints are in
fact present in all other areas of applications: from disjunctive scheduling and re-
source allocation to configuration or computational biology.

The fundamental rôle of Booleans has long been recognized in all areas of op-
timization and constraint satisfaction. This is true for technologies related to the
whole range of problems mentioned above. Let us mention for instance:

 The practical resolution of the SAT problem (satisfiability of a propositional
logical formula, typically in Conjunctive Normal Form) is a very well-studied
problem. The solvers GRASP [74] and then Chaff [78] paved the way for a
generation of highly scalable complete SAT solvers. These solvers have quickly

Connections and Integration with SAT Solvers 427

become a widely used and fundamental building block originally used by many
verification tools: see e.g., [18] for an influential early work, [17, 18, 73] for a
recent overview, and [17] for a general reference on Model-Checking. But it was
also soon recognized that these solvers were versatile enough to be used in other
application areas, for instance, AI planning [64].

 CP systems have traditionally provided support for Boolean constraints (see e.g.,
[20,31]). Boolean decisions are a particular case of Finite-Domain variables and
are naturally integrated in the constraint propagation engine used by CP tools.
It is also natural to encode problems with a Boolean structure in CP thanks to
reified constraints, which are provided by most systems: if we have a constraint
C a reified version of C is the constraint b $ C where an extra Boolean variable
b captures the truth value of C ; the variable b can in turn be subject to arbitrary
constraints, thereby naturally expressing logical combinations of constraints. It
is, however, well-known by now that this type of integration of Booleans in CP
solvers performs poorly. Recent work has therefore attempted to handle Booleans
in CP more effectively using the dedicated techniques proposed in SAT. We dis-
cuss some of this work in the next Section.

 In the Operations Research literature, Booleans have been widely studied for
decades. In particular, a whole sub-field of Integer Programming is dedicated to
so-called pseudo-Boolean variables, whose value is in f0; 1g. Linear constraints
on this type of variables obviously represent a formalism that is close to SAT, and
slightly more general. This formalism is also appropriate for some optimization
problems, whereas SAT is restricted to constraint satisfaction. Surveys of Pseudo-
Boolean optimization are, e.g., [13] for a mathematical programming viewpoint
and [95] for a SAT approach. Some recent work has naturally experimented with
Pseudo-Boolean solvers based on modern SAT solvers, for instance [34].
OR has focused not only on Boolean decisions but also on Boolean structure: dis-
junctions, implications, and other Boolean combinations of constraints are often
found in OR applications. Some authors such as John Hooker have argued that
logical combinations of linear constraints should in fact be at the heart of a princi-
pled approach to modeling in Mixed Integer Linear Programming [52]. A survey
on Booleans in OR is beyond the scope of this chapter; we simply mention that
there is a large body of results on the relaxation and inference on disjunctions
and other Boolean combinations of linear constraints; see for instance [51].

 In Theorem Proving and Automated Reasoning, an interesting recent trend
largely motivated by the rise of modern SAT solvers is Satisfiability Modulo
Theories (SMT). In the classical, “purist” approach to first-order theorem prov-
ing, concepts such as the integers or the reals are described by a theory (logical
axioms) rather than natively supported. In contrast, the basic idea in SMT is
to use dedicated solvers for some important theories: linear arithmetic or unin-
terpreted functions, but also arrays, or bit-vectors, etc. The latter theories may
appear exotic to an audience specialized in optimization but they play an impor-
tant role in verification problems. Note also that the diversity of SMT theories
is reminiscent of the early CLP(X) literature [56]. Although the work in CP was

428 F. Corblin et al.

overwhelmingly specialized on Finite Domain constraints during the last decade,
it is good to remember that early CLP systems included constraints on such var-
ious domains as lists [21], functions [50], or strings and languages [112], as well
as dedicated numerical solvers–for instance for linear constraints [65] or non-
linear constraints [19] on the reals. Some of the recent work in SMT is heavily
inspired from this research and is in a sense reviving it.
SAT solvers play a central role in modern SMT solvers: the whole search process
is guided by the resolution of the Boolean structure of the problem, an SAT solver
is used for that purpose, and this solver somehow “orchestrates” the calls to the
other theory solvers. This approach is particularly suited for problems where the
Boolean structure is very rich (e.g., in software verification). The modern, SAT-
based approach to SMT is perhaps best presented under the DPLL(X) framework
[80]. A recent reference on the decision procedures used for several interesting
SMT theories is [67]. The leading SMT tool is at the time of this writing the Z3
solver [28].

3 Brief Overview of SAT and its Integration in CP

In the following, we give a general but concise overview of the complementary
approaches of SAT and CP with respect to a number of aspects: community, tech-
niques, and approach to problem solving. On the way, we survey some proposals of
integration of SAT techniques into CP. We conclude the Section by an overview of
the integration of SAT solvers into CP solvers.

3.1 Community and Approach to Research

SAT and CP over Finite Domains are of course not fundamentally different tech-
nologies: it is striking for instance that for both of them the most widely used
algorithms are backtracking techniques using inference, including forms of con-
straint propagation that are in essence very similar. The connections between SAT
and CP have indeed been noticed for some time and have generated a substantial
literature (see e.g., [38, 113]). The view, expressed by some members of the CP
community, that SAT is essentially a sub-field of CP, is not without justification;
the vision defended by the CP-AI-OR conference and some authors (in particular
[51]) is that techniques and sub-areas should be integrated and unified rather than
fragmented.

However, it is also fair to observe that the SAT sub-community has been suc-
cessful in the last decade largely because it has managed to follow an independent
and original approach, with more focus on some techniques and practices that also
exist in CP but have somehow been overlooked. One defining feature of the SAT

Connections and Integration with SAT Solvers 429

community is its strong emphasis on experimental science. Some authors, e.g., [44],
have also defended the view of CP as an empirical science, but it is undeniably SAT
that has reached the highest standards of experimental comparison.

There are several factors to that success. First, SAT problems can be easily
converted into a Conjunctive Normal Form that is very simple and regular, thus
providing a standard input format for SAT solvers. Second, the SAT community
has been able to collect a large amount of instances in this format and make them
publicly available. These instances include, in particular, many industrial ones,
which allow to gain a better understanding of “real-world” problems. Third, the
SAT competition1, now organized every other year, has been successful and influen-
tial, and has for the past decade provided a high-quality evaluation of the different
techniques. Many solvers enter the SAT competition, because the event itself is at-
tractive, but also because the cost of entering is not unreasonably high: the input
format is simple, and competitors have been able to a large extent to reuse the code
of some influential SAT solvers including Chaff [78] and more recently MiniSAT
[33]. Both were distributed open-source, were fairly compact, and provided high-
quality code that could be extended reasonably easily.

One outcome of this heavily empirical approach is that the mix of heuristic and
techniques used in modern SAT solvers such as MiniSAT has been thoroughly eval-
uated and refined. Of course, these solvers do not avoid the NP-completeness barrier
and remain of limited scalability for many instances, especially artificial ones (ran-
domly generated, or hand-crafted); but their main strength lies in their ability to
solve large industrial problems in a surprisingly robust and efficient way. In compar-
ison, CP solvers lack robustness and are more difficult to use (the default heuristic
of a CP solver rarely does the job), which is seen as a restriction to its widespread
acceptance [87]. It has also been argued by [87] that unlike SAT with its compe-
tition, CP lacks good indicators for measuring the progress achieved in the field.
Recent attempts have nevertheless been made to improve this with, in particular, a
proposal of XML format for CSP instances and a CSP competition based on this
format [94], and the proposal of Zinc [75], whose ambition is to become a standard
language and which is already used by solvers such as Gecode [99]. Agreement on
standards is nonetheless reputedly slow in the CP community. One reason is that CP
uses a richer language than SAT by nature–although it must be said that the SMT
community has the same problem and yet has rapidly been able to agree on a format,
a library2 and a competition. Another, perhaps more fundamental reason is that the
CP approach is not in general a black-box approach in which a problem is simply
described using some format and solved. We come back to this point later on.

1 www.satcompetition.org.
2 www.smtlib.org.

430 F. Corblin et al.

3.2 Techniques Used in SAT and CP

Modern SAT solvers are often called DPLL solvers, after the Davis–Putnam–
Logemann–Loveland procedure originally proposed for first-order theorem-proving
[26, 27]. More specifically the procedure of [27] is a form of first-order resolution
method, while the one in [26] is closer to search-based methods. DPLL solvers
are of course restricted to the propositional case. They are essentially (depth-first)
search-based solvers: in other words they use backtracking, just like CP solvers; but
they also use forms of resolution. The main components of these modern algorithms
are very close to the ones used in mainstream CP solvers such as Ilog Solver [86] or
Gecode [99]:

3.2.1 Propagation

The basic form of reasoning done both in SAT and CP tools is propagation. SAT
solvers specialize in one type of constraints: clauses. A clause is a disjunction of
literals l1 _ 	 	 	 _ lm (each literal is a variable or its negation), and the role of propa-
gation is to efficiently detect when all literals but one become false, in which case the
remaining one must be forced to true. The technique universally3 used for that pur-
pose in SAT solvers is the watching technique introduced with the solver Chaff [78].
For each clause, the basic observation is the following: if we arbitrarily choose two
literals of the clause, then as long as those literals are not invalidated nothing can be
propagated from the clause. The solver maintains a dynamic list of watching clauses
for each literal; when a literal is falsified we only need to revise the clauses that are
currently watching it (note that they are in general only a subset of the clauses in
which the literal appears): two new correct (non-invalidated) watched literals are
selected or, if such literals cannot be found, a unit clause or conflict is detected. A
key feature of the watching technique is that the number of dependencies of each
clause is independent of the clause length (we always watch two literals), whereas
with propagation methods based on static dependency lists we have a number of
dependencies equal to the clause length, which do not scale well for large clauses.
Another interesting characteristic is that no work is needed to update the watches on
backtrack, whereas the data-structures used by most propagation algorithms in CP
(e.g., AC algorithms like [6]) need to be backtrackable.

In contrast, in CP propagation is traditionally based on static dependency lists.
However, watching techniques inspired from SAT have generated some recent CP
work: a simple example is given by the Element constraint, which is for the form
T ŒI � D X , where T is an array of Finite-Domain variables, and I and X are two
Finite-Domain variables. [40] remark that the watching technique naturally applies
for this constraint: for instance, any value v of the domain of I is supported as long

3 We have to note, however, that several components of Chaff are being patented and that this may
restrict, in particular, the use of watching, at least in industrial tools and applications.

Connections and Integration with SAT Solvers 431

as we have a value w that is common to the domains of X and T Œv�. Once such
a w is found, watches can be used to avoid any work unless w is removed from
the domain of either X or T Œv�. Watching has also been used for other complex
constraints including AllDifferent [41].

A thorough introduction to the general propagation mechanisms used in CP
solvers can be found in [98]. More details on the propagation algorithms for a num-
ber of constraints and on the key notion of arc-consistency can also be found in [7].

3.2.2 Execution Tracing and Analysis

Under this slightly unconventional term, we mean that in SAT whenever a literal l

is deduced by propagation the solver keeps track of the reason of this deduction,
i.e., it records the constraint r.l/ from which l was deduced. Note that the reason
that is recorded is really execution-dependent: it may be the case that l is in fact a
logical consequence of several other clauses, but the custom approach is simply to
keep track of the one clause that happens to be selected first during the propagation.
Note also that r.l/ is necessarily of the form l1 _ 	 	 	 _ lp _ l where all the other
literals li are falsified. The data-structure obtained by this book-keeping is usually
referred to as the implication graph: each literal that is valid in the current context
is seen as a node and each clause is in this context seen an oriented (hyper-)arc from
:l1; 	 	 	 ;:lp to l . The definition of implication graph comes from GRASP [74]; the
idea of execution tracing has also been investigated in CP, notably under the name
explanation [60].

Execution tracing in SAT solvers is used to understand conflicts: when the se-
quence of decisions and propagations hits a contradiction (“leaf” of the search tree),
it is in general not the case that all decisions and propagated literals play a role
in this conflict. Conflict analysis inspects the trace (implication graph), collects the
literals that really play a part in the conflict, and feeds this knowledge to the propaga-
tion, heuristic and backtracking components. In SAT, the computation of first UIP
introduced by [74] has become, since Chaff [117], the standard conflict analysis
technique. Some solvers such as MiniSAT [33] include improvements that further
simplify the explanations computed by the first UIP scheme, but are nonetheless
essentially based on it. The idea of first UIP is to “replay” the execution backward
starting from the conflict, to collect the literals that justify the conflict, and to stop as
soon as we are left with exactly one literal from the current decision level (first Unit
Implication Point). We would not describe conflict analysis in details, the reader is
referred to [45,74,117]. There are three ways in which conflict analysis benefits the
search: clause learning, heuristic tuning, and non-chronological backtracking.

 Clause learning means that when a conflict is hit, a constraint (clause) is dynami-
cally created which will increase the power of constraint propagation (a property
which is called empowerment by [82]). The usage of learnt clauses is evaluated
during the search and clauses that are not used enough are erased after some
time, to keep propagation fast. With clause learning SAT solvers have the ability
to produce fairly general resolvents: in a sense modern SAT solvers, although

432 F. Corblin et al.

search-based, have most of the reasoning power of purely deductive, resolution-
based SAT solvers. Recent results by [83] shed light on that aspect and show that
DPLL solvers are effectively able to produce general resolution proofs.
Learning techniques are also used in CP under the name of no-good recording
techniques, see for instance [62, 97]. Note also that resolution in SAT is a par-
ticular case of the Cutting Plane generation techniques used in the Operations
Research literature for linear constraints [51, 71, 72].

 Heuristics in SAT rely on the idea of giving higher priority to the variables that
are involved in conflicts; such heuristics are called activity-based. An influential
activity-based heuristic was the VSIDS heuristic, proposed in Chaff [78], and
which is still used with some variations in most SAT solvers. VSIDS associates
scores (or activities) to each variable; the branching strategy always selects one of
the variables with the highest score (in solvers such as MiniSAT the ordering can
be maintained efficiently using data-structures such as heaps [33]); when a con-
flict is met the scores of the variables involved in it are bumped; scores are also
regularly decayed, which means that the search will tend to branch on variables
involved in recent conflicts. Since most SAT solvers use random restarts [46],
also used in CP, it is interesting to note that activity-based heuristics mix well
with restarts: when the solver restarts the heuristic information has been updated
by the last conflicts, and the solver has a higher chance to focus on “important”
variables, for instance, those that form a “backdoor” [115]. A recent improve-
ment of the branching strategy used in SAT solvers is the caching strategy of
[81], which can be seen in CP terms as a value selection heuristic.
In CP, activity-based heuristics have been proposed recently, notably the
DomWdeg heuristic of [14], which is inspired from VSIDS and is consid-
ered a good default heuristic used by several CP solvers. Another example of
activity-based CP heuristic is the Impact heuristic of [89], which is inspired from
Integer Programming techniques.

 Non-chronological backtracking means that after a conflict SAT solvers do not
simply undo the last decisions but instead backtrack “intelligently” based on the
conflict analysis, using the notion of asserting clause [45, 74]. In particular, if
the conflict analysis revealed that a number of recent decisions are unrelated to
the conflict, the backtracking will be able to jump over those decisions, thereby
avoiding superfluous branchings were the same conflict would happen again.
Similar techniques have been experimented with in CP, see for instance
[43, 70, 85].

As we have seen, there have been attempts to integrate most of the SAT tech-
niques in CP. An early reference on the use of several similar techniques in CSP is
for instance [29]. These techniques have, however, not often become part of main-
stream CP solvers. Non-chronological backtracking is to our knowledge not very
widely used, perhaps because of the granularity of the representation in CP: the
fine-grained representation used in SAT is appropriate for a fine-grained analysis
of conflicts, whereas in CP complex constraints sometimes make this more diffi-
cult. No-good recording is to the best of our knowledge not very widely used either:
one challenge is that adding constraints dynamically in CP is costly, and no-goods

Connections and Integration with SAT Solvers 433

are not as natural to represent in CP as they are in SAT (where a no-good is a
clause, which happens to be the type of constraint naturally handled). Execution
tracing is in general costly in CP, especially with variables with large domains–
in contrast in SAT, every variable is affected by propagation at most once along a
search branch; the data-structures needed for book-keeping are simple and of lin-
ear size. Activity-based heuristics are perhaps the most successful example of an
SAT-inspired technique widely adopted by CP, as they are used in many CP solvers
including Abscon [68] and Gecode [99].

We have focussed on complete, mainly search-based, SAT and CP techniques.
We should mention that other techniques are of interest, for instance, local search
techniques. These techniques typically work by generating candidate assignments,
for instance at random, and making moves in the assignment space, for instance
by changing the value of some variables, guided by the variation in the quality of
the assignment. Local search methods are incomplete: they will often ultimately be
probabilistically guaranteed to find a solution if one exists, but they are not in gen-
eral able to prove the unsatisfiability of a problem. Until the generation of modern
DPLL solvers, local search techniques such as GSAT, WalkSat and its successors
[77, 100, 101] were the state of the art in SAT (see [63] for a recent survey of local
search in SAT). However, the SAT competition has consistently shown that local
search techniques are ineffective for “structured,” industrial instances, and currently
these methods are essentially competitive for artificial problems such as randomly
generated ones. In CP, local search is more widely used because of its ability to
solve optimization problems–non-globally but sometimes in a spectacularly scal-
able way. Comet is an influential recent CP system that integrates local search
techniques [109].

3.3 Problem Solving in SAT and CP

We consider how the techniques introduced in the previous sub-section are used to
model and solve problems in practical applications of SAT and CP.

 Modeling. The input of SAT solvers is a low-level machine-readable format that
humans cannot directly use to write real problems; instead people typically use a
pre-processor that generates the instances from some other application data. This
is in contrast with the high-level approach of CP, whose main strength is global
constraints [5, 91, 111] and where modeling languages such as OPL [108] allow
to express problems at a very high level, thereby making their structure more
explicit.
A consequence is that SAT, like Mixed Integer Linear Programming, is a tech-
nology that is good at solving large numbers of small constraints. In contrast
CP is good for problems that can be modeled by a small number of complex
constraints, assuming good propagators are available for these constraints. Tradi-
tionally, CP is good for integrating complex, application-specific algorithms, for
instance, specialized propagators for scheduling [4]; but it is a weak technology

434 F. Corblin et al.

for reasoning on large numbers of Booleans or linear constraints: the reasoning
on Booleans is poor and slow in the absence of dedicated SAT techniques; the
reasoning on linear constraints is too local without linear relaxation and dedi-
cated Linear Programming techniques. Of course, a major goal of the CP-AI-OR
conference along the past decade has, precisely, been to improve this by combin-
ing CP, SAT, and OR techniques.

 Use of the Solvers. Another important feature of SAT solvers is that they are
black-box solvers : users encode a problem and the solver solves it; no heuristic
tuning is in general needed (or indeed possible). In contrast, CP libraries and
languages rarely obtain a good performance with their default heuristic, and the
user is rather asked to use the CP tool to write a dedicated strategy using, for
instance, a dedicated programming language [108, 110].
A consequence is that SAT is a remarkably autonomous technology, in the sense
discussed in [49]: it is able to solve problems without any intervention from the
user. Some members of the CP community believe that the problems that can be
solved without help by an SAT solver are problems that are reasonably easy–for
the more challenging problems, the CP approach requiring the intervention of
an expert is often unavoidable. If this is true, the ability of SAT to solve easy
problems easily is nonetheless a valuable asset: it results in an ease of use of the
technology for solving the majority of problems; it has been noticed [87] that this
ease of use is something that CP lacks.

3.4 Integration of SAT Solvers into CP Solvers

The advantages of using SAT solvers within CP solvers are obvious, as CP solvers
can thereby benefit from a better handling of many small constraints (especially
if these are almost directly expressed in a Boolean form). We distinguish mainly
between two approaches to the use of SAT in CP in the recent literature:

3.4.1 Use of SAT to Solve the Boolean Structure

The most obvious lesson from SAT for CP is that Boolean variables can be better
handled in CP by using specialized code and data-structures, rather than by treating
them as normal Finite-Domain variables. Improving the handling of Booleans was
an original motivation behind the work on the Minion solver [39], which proposed
to rethink some traditional assumptions of the design of CP solvers, such as the
data-structures used for backtracking. Although no literature is, to our knowledge,
published on this aspect, our understanding is that other CP solvers including Comet
[109] and Ilog CP optimizer are now using similar ideas.

Further inspiration for improving the way Boolean structure is solved in CP
solvers can be taken from SMT. Work has been devoted to reasoning on disjunctions
and other Boolean combinations of constraints in CP [3, 69], but these techniques

Connections and Integration with SAT Solvers 435

are not widely used in mainstream CP solvers. Work in SMT has been influenced by
the Nelson-Oppen procedure [79] for theory integration and what would be called
solver cooperation in the CP community. But current SMT solvers are in general
SAT-based, and they probably represent the most advanced example of integration
of SAT and other constraint solving techniques. In the DPLL(X) schema of [80],
the SAT solver is central and is essentially used to solve the Boolean structure of
the problem; some Boolean variables essentially correspond to the truth value of
some constraints, and when an SAT solution is found, the solver for the theory X

is called. A noticeable feature of the DPLL(X) framework is that the interaction be-
tween the SAT solver and the theory solvers is rich: the theory solver can be used to
check the validity of the constraints, to make some inference (theory propagation),
but also to communicate some information back to the SAT solver, mainly in the
form of explanations of the conflicts. Note that this architecture is the reminiscent
of Bender’s decomposition techniques familiar to the CP-AI-OR community (see
e.g., [51, 54]): the SAT solver plays the role of the master; the solver for theory X
is a slave, communication between the slave and the master helps guiding the mas-
ter when conflicts happen. Another example of use of SAT to solve the Boolean
structure of a mixed problem is [36], in which the rest of the constraints are real
non-linear.

A particularly relevant theory for CP is Satisfiability Modulo the Theory of Lin-
ear Integer Arithmetic. It focuses on Boolean combinations of linear constraints,
also called Quantifier-Free Presburger Arithmetic in the literature. This logical the-
ory has received some attention in the verification literature [66], and state-of-the-art
simplex-based techniques used by SMT solvers for (real and integer) linear con-
straints are described in [32]. It is interesting to note that Quantifier-Free Presburger
Arithmetic is a natural logical fragment for expressing combinatorial problems.4

For instance, most global constraints are defined naturally as Boolean combinations
of linear constraints. In fact, the core constraint language of some early CLP(FD)
solvers such as GNU-Prolog [31] was mainly Boolean combinations of linear con-
straints. Quantifier-Free Presburger Arithmetic has also received recent attention in
CP, for instance in applications to geometrical reasoning [16].

3.4.2 Translations to SAT

The more radical approach for using SAT is to translate constraints into SAT: the
SAT tool solves not only the Boolean structure of a problem, but the whole of it.
Encodings of constraints into SAT have been studied for some time, for instance,

4 There is one difference between combinatorial applications and verification, though: in CP, the
variables typically have small domains, whereas in verification and theorem proving the goal is
in general to prove properties in Quantifier-Free Presburger Arithmetics for numbers of arbitrary
sizes. Like for Integer Programming, small domain properties can nevertheless be proven [102],
so that the decision problem can always be reduced to finite domains. These bounds are, however,
often very large, compared to the domains used in classical CP applications.

436 F. Corblin et al.

with the support encoding of binary constraints by [61]; see [84] for a survey. But
this subject has received increased attention in recent years, leading to interesting
results.

A key CP concept is the notion of (generalized) arc-consistency (GAC) (see [7]
for a survey of this notion): given a constraint C over n variables .x1; : : : ; xn/,
let Sol.C / represent the set of solutions to C , i.e., the set of tuples .v1; : : : ; vn/

that satisfy the relation C ; a value a of the domain of any variable xi is said to be
supported iff there is a tuple t 2 Sol.X/ that assigns value a to xi ; the domains
of all variables are arc-consistent w.r.t. C if for each i , each value a in the do-
main of xi is supported. Arc-consistency (more precisely the largest arc-consistent
domains) characterizes the optimal domain reduction that can be obtained for the
constraint C . An obvious observation is that when we decompose a constraint into
more basic constraints–for instance, into Boolean constraints in Conjunctive Normal
Form–reaching arc-consistency on the decomposition is often weaker than
arc-consistency on the original constraint. As a simple example consider:

all different.x1; x2; x3/ x1; x2; x3 2 f0; 1g

One possible SAT translation is the following: we introduce one variable for each
value of each domain: one Boolean variable for Œx1 D 0� and one for Œx1 D 1�, etc.
We add constraints to guarantee that each xi takes exactly one value:

.Œx1 D 0� _ Œx1 D 1�/; .:Œx1 D 0� _ :Œx1 D 1�/;

.Œx2 D 0� _ Œx2 D 1�/; .:Œx2 D 0� _ :Œx2 D 1�/;

.Œx3 D 0� _ Œx3 D 1�/; .:Œx3 D 0� _ :Œx3 D 1�/

Then, the constraint all different .x1; x2; x3/ can be decomposed by preventing two
variables from taking the same value at the same time, as follows:

.:Œx0 D 0� _ :Œx1 D 0�/; .:Œx0 D 1� _ :Œx1 D 1�/;

.:Œx0 D 0� _ :Œx2 D 0�/; .:Œx0 D 1� _ :Œx2 D 1�/;

.:Œx1 D 0� _ :Œx2 D 0�/; .:Œx1 D 1� _ :Œx2 D 1�/

However, this encoding does not allow a good propagation for the SAT solver: if
we propagate all the clauses by unit propagation (thereby reaching GAC for each
clause), then on this example we obtain no deduction at all. In contrast, GAC on the
original constraint should remove all values for all domains, proving inconsistency.

We say that an SAT encoding of a constraint is GAC-preserving if unit propaga-
tion on the encoding makes the same deductions as a GAC propagator on the original
constraint. A major theme in the study of translations from CP into SAT has been the
question: How do we encode constraints to SAT in a GAC-preserving way? A num-
ber of results have recently been obtained on this question. An important class of
relations that can be decomposed in a GAC-preserving way are all relations that can
be expressed concisely in the Decomposable Negation Normal Form (DNNF) intro-
duced by [25]. The decomposition is discussed, e.g., in [59]; it is also used indirectly

Connections and Integration with SAT Solvers 437

by, e.g., [88], who study the decomposition of grammar constraints. Grammar con-
straints are an example of constraints that have connections with DNNF5 and for
which an efficient GAC-preserving encoding can be found. [88] use such an encod-
ing for a nurse scheduling problem and show that a pseudo-Boolean solver applied
to the decomposition gives very good results.

Other results on GAC-preserving translations have been obtained for instance
by [2] for the Table, Regular, Among, and Sequence constraints. It is shown in
[9] that for AllDifferent and related constraints a decomposition can be obtained
that computes weaker forms of consistency than GAC, namely bound and range
consistency. By adding redundant clauses (or creating those clauses automatically
by resolution as shown in [107]), one can reach a stronger global level of con-
sistency than GAC; this idea has been explored for some table constraints by,
e.g., [8].

The question, Which constraints can efficiently be decomposed in a GAC-preser-
ving way? has only been answered recently by [10]. It had been observed that
some propagators, including the well-known GAC propagator for AllDifferent of
[90], seemed difficult to decompose into SAT. [10] prove that a concise GAC-
preserving decomposition of AllDifferent is indeed impossible. Their result gives
a precise characterization of the constraints that can be efficiently decomposed into
SAT: a concise GAC-preserving CNF encoding exists only if the GAC property of
the constraint can be verified by a concise monotone circuit. Results from circuit
complexity can therefore be used to show that some constraints are intrinsically
non-decomposable as they would require an SAT encoding of exponential size (to
this date, AllDifferent is the most significant known example). Compact SAT en-
codings of these constraints are of course still possible, but they will in general lead
to a weaker form of reasoning than GAC.

There are a number of reasons why decomposing constraints (into SAT, linear
constraints, or a combination of the two) is interesting, and why the results we have
just surveyed briefly are therefore exciting.

 First, this approach is simply performant in some cases, as some examples will
show in the rest of this paper with our case study. We also note that SAT is
one of the possible target solvers that can be used as back-end in systems such
as G12 [103], and that other modeling systems in the AI literature are based
on a compilation to SAT, see for instance [15] or the literature on Answer Set
Programming [37]. Experiments on the systematic encoding of CP problems to
SAT are reported by [55].

 Second as noticed by some authors, decomposing constraints in a CP system
has some advantages compared to writing a propagator. It is simpler: there is

5 Similar results on the decomposition of grammars were obtained for another class of graphical
models, in probabilistic reasoning: [76] show how the membership problem for context-free gram-
mars can be encoded in a formalism called Case Factor Diagrams that can essentially be thought
of as the probabilistic equivalent to DNNF; probabilistic reasoning by a simple propagation on
these diagrams is shown to be equivalent to global reasoning.

438 F. Corblin et al.

less code to write and maintain as we can rely on a basic, small number of
propagators. The incrementality of the propagator is also often guaranteed by the
incrementality of the Boolean reasoning. It is interesting to note that the internals
of the propagators defined for some global constraints, for instance, the Element
propagator of [40], can to a large extent be seen as reimplementing incremen-
tal data-structures that more or less mimic the effects which would naturally be
obtained by a decomposition into SAT.

 Third, an encoding is something that solvers can reason with more easily than
a propagator: an encoding gives a complete view of the internals of the con-
straint to SAT or LP tools, whereas a propagator is a black box. A large set
of tools are directly applicable on a decomposition: (1) conflict analysis can
naturally be done (whereas analysing conflicts of global constraints is reput-
edly challenging); (2) inference techniques such as resolution or cutting plane
generation can apply on the variables and constraints introduced by the decom-
position, which describe the internals of the constraint; (3) there is a natural
notion of linear relaxation that directly applies to an SAT decomposition, whereas
defining the interaction between propagators and an LP solver can otherwise be
challenging.

An appealing perspective emerging from the results we have surveyed and the
view of many researchers in the CP-AI-OR community is that of using CP as a
high-level approach for modeling, and a mix of other technologies such as SAT (but
also Mixed Integer Linear Programming) for the actual resolution. This approach is
to a large extent the one we follow in our case study in the rest of this paper. What
the high-level language of CP brings is a modeling framework that is easier from a
user viewpoint and which at the same time better reflects the problem structure than
low-level languages do, since it allows to explicitly use some patterns or specific
high-level (global) constraints. Some recent solvers that follow this direction are
SCIP [1] and SIMPL [116].

Because of the structure-rich CP encoding, the translation SAT and/or linear
programming tools can be optimized and take into consideration the level of propa-
gation obtained. From the results we have surveyed emerges a better understanding
of the question: What is a good SAT encoding? This question has somehow been
overlooked by the SAT community and its answer is greatly clarified by the CP
notion of arc-consistency. Note that the art of encoding constraints into SAT in a
way that is GAC-preserving has a parallel in Linear Programming: in LP, a good
encoding of a constraint is ideally a Convex Hull Relaxation.6 For literature about
Convex-Hull (and weaker) encodings of some constraints, see for instance [51,114].
We also note that [53] goes slightly further than we did in this survey by defining a
“good SAT encoding” as one that (1) is GAC-preserving and (2) for which a Convex
Hull Relaxation can be obtained.

6 A Convex Hull Relaxation is the tightest possible linear relaxation that can be obtained for a
constraint [51].

Connections and Integration with SAT Solvers 439

4 Application to GRN Deciphering

We now switch to the fast-growing field of systems biology for our case study. This
area is a rich source of various types of problems where constraint solving can be
very efficient. In recent years, it has become increasingly clear that the right concept
to understand the inner working of cells is the concept of network. It is quite rare that
an observable property (phenotypic trait) can be explained as the result of the action
of a single protein. The general rule is that phenotypes are the result of the action
of networks involving many actors interacting one with the other. The interest is
thus shifting, with the rise of systems biology, from the study of single molecular
objects (genes and proteins) to the study of networks of interacting molecules and
genes.

A GRN is a particular kind of such network in which each gene is able to pro-
duce a specific regulatory protein at a rate which depends on the cellular context,
defined by the concentrations of proteins. In other words, the production rate of a
given protein depends on the quantities of proteins in the system. A single gene
can be influenced by several proteins in the system, including the protein produced
by the single gene itself. The set of all the influences between genes, mediated by
the proteins produced, can be represented by an interaction graph. The proteins are
generally abstracted away and one speaks of interaction between genes.

These molecular networks have complex behavior because the interactions are
highly non-linear and because there are generally many feedback loops. This makes
human reasoning on such systems impossible for anything but the smallest networks
(two or three nodes), and calls for automated formal methods.

Another aspect is that the data often have a qualitative flavor. It may be sufficient
to represent a protein concentration by two (low/high) or three (low/medium/high)
levels. The number of levels required rarely exceeds four or five. The formalism
which is described in Sect. 4.1 is well suited to the level of knowledge which
is generally available in systems biology. All the state variables, as well as all
the model parameters, are integers, and simple rules define the evolution of the
system.

Modeling is a part of a discovery process which is generally composed of many
rounds of experimentation and modeling. The basic question addressed here is
how to build a model of a biological phenomenon, based on some partial knowl-
edge about the network architecture and behavior? In this field, an originality of
our work is that everything is represented as constraints: the generic evolution
rules, the architecture of the particular network at hand, and the knowledge on its
behavior.

We describe here how we exploit constraint-based technologies to assist the
process of building models of molecular networks using experimental data as
constraints. We have developed a tool, GNBox, which provides high-level func-
tionalities to biologists engaged in the modeling process. Among these:

 Proof of inconsistency between the assumed architecture and the behavior

 Inference of model parameters

440 F. Corblin et al.

 Automatic model revision

 Inference of properties (about behaviors, kinetics of reactions, thresholds) shared

by all solutions

The GRN deciphering task consists to a use these type of queries in order to build
efficiently a GRN.

GNBox makes use of two technologies: CP and SAT. The network evolution
rules and the queries describing the above functionalities are first expressed in CP.
To increase the efficiency, a translation scheme to SAT has been devised.

Section 4.1 introduces the notion of GRN, describes succintly a particular biolog-
ical phenomenon, and presents the discrete formalism of R. Thomas which is used
here to describe the dynamics of GRNs. This formalism is particularly well suited
to a qualitative reasoning on GRNs. We name Thomas-GRNs the GRNs whose dy-
namics are described by R. Thomas formalism. We explain in Sect. 4.2 how the
evolution rules of Thomas-GRNs are modeled in CLP, and how this CLP formula-
tion is translated into SAT. We present in Sect. 4.3 five examples of queries to show
the possible tasks of GRN deciphering. Finally, we discuss the performances with
CP and SAT solvers and give related works and perspectives of the GRNs decipher-
ing task in Sect. 4.4.

4.1 Thomas-GRNs

A GRN abstracts the interactions between several genes of a cell. We use in this
article, as example, a specific biological phenomenon, the immunity control by the
lambda-phage in the bacteria E. coli. The GRN involved in this phenomenon, which
we now call �GRN for short, has been modeled by [104].

An interaction can be either an activation or an inhibition. For instance, in the
�GRN, the gene cI inhibits gene cII : it means that it is possible that the concentra-
tion of protein cI being low (under a certain threshold), the concentration of protein
cII tends to increase, while it is not the case if cI is high (above this threshold).
Remember that each gene produces a protein which is specific of this gene. In sim-
ple systems like the one considered here, the correspondance between genes and
proteins is one to one. We will here make an abuse of language by not always dis-
tinguishing genes and proteins. But strictly speaking, a given gene is present in one
or a few copies in each cell, whereas regulatory proteins are diffusable molecules
whose amounts are defined by concentrations.

In many biological interactions the influence of one gene on another can be repre-
sented as a sigmoid function: there is a threshold in the concentration of the protein
at which the effect on the production of the target protein changes steeply from
efficient to inefficient. In a discrete modeling, sigmoids are approximated by step
functions.

The interactions between the genes are traditionally represented by an interaction
graph: see Fig. 1 for the interaction graph of the �GRN example. In this graph, the

Connections and Integration with SAT Solvers 441

Fig. 1 Interaction graph for the �GRN
system. The nodes are the genes of the
�GRN. The arrows are interactions,
where the label express the threshold
t

p
c from which the interaction is effective

cI cro

cII n

t2
cI

t 2
cI

t 2
cI

t 1
cI

t 1
cro

t 3
cro

t 3
cro

t 2
cro

t 1
cII

t 1
n

nodes represent the genes. An arrow from a node a to a node b models the fact that
the concentration of a can influence the production rate of b. Each arrow carries
one label: a threshold at which the interaction changes its activity status. These
thresholds, noted t

p
c , with c the component (gene) and p the index of a threshold

on c, are model parameters. The integer values of the threshold parameters define
the order between them, which have sometimes been determined experimentally.
In the �GRN, for the gene cI, t1

cI is the threshold for the interaction on N and t2
cI is

the threshold for the three interactions on cI (itself), cro, and cII (cf. Fig. 1). The
order between these two thresholds is assumed to be known and is the following:
t1
cI < t2

cI . For the gene cro, we have: t1
cro < t2

cro < t3
cro.

We present informally in the following the asynchronous logical description
created by the biologist R. Thomas and his collaborators [106], which relates the
interaction graph of a GRN and its dynamical behavior. The main goal of this
formalism is to obtain a qualitative understanding of the network dynamics by rea-
soning on discrete entities. This formalism has been proposed from the beginning
of GRN studies [105]. It has largely been applied to the analysis of GRNs, for ex-
ample, those described in [35, 47, 96, 104] or those described in [57, 58, 92], which
use a very similar discrete formalism.

It can be described as follows:

1. The formalism is purely discrete:

 The thresholds t
p
c take discrete values between 1 and maxc . In the �GRN, for

the species cI as we have t1
cI < t2

cI , then t1
cI D 1 and t2

cI D 2, and maxcI D 2.
In the general case, note that t

p
c and maxc are not known.

 The concentration of each protein produced by the gene c in a state (see be-
low) S is modeled by a discrete variable, noted Sc . Sc ranges over 0:: maxc .
For the �GRN, we obtain 3, 4, 2, and 2 discrete values for the concentrations
of cI, cro, cII, and N, respectively.

 A discrete concentration state S , or just state, of the system is represented by
an ordered list of discrete values, each value representing the concentration
of a protein. For instance, a possible state S of the �GRN is S D hScI D
0; Scro D 1; ScII D 0; SN D 0i, or S D h0; 1; 0; 0i for short. This state

442 F. Corblin et al.

is interpreted as follows: the concentration of proteins cI, cII, and N are all
below their lowest threshold, while the concentration of cro is between its first
and second thresholds. In the �GRN, we have 3 � 4 � 2 � 2 D 48 different
states.

2. The dynamics of a Thomas-GRN is the set of all the possible successions of states
according to the transition rule. This rule is based on the following notions:

a. Continuity: it is clear that the concentrations evolve continuously. Conse-
quently, a successor of a given state S is necessarily a state adjacent to S .

b. Tendency: in a given state, the system can be thought of as tending to evolve
toward a state, called focal state. The complex mix of influences between
the genes of the system is therefore reduced to abstractions of the form “in
state h0; 1; 0; 0i, the system tends to evolve toward the focal state h2; 0; 0; 0i”.
The focal state of a state S is noted FS and the value of each of its components
c is denoted Fc;S .

c. Asynchronicity: in a given transition, the system cannot cross two or more
thresholds simultaneously.

Then, the transition rule can be expressed as follows:

 If the system’s current state S is different from its focal state FS , then the
concentration of only one of its components c will change, by one unit, in the
direction indicated by Fc;S . This is done independently for each component so
that a state S can have several successors. We thus obtain a non-deterministic
transition system.

 If the system’s current state is equal to its focal state, the system is said to be
in a steady state and no concentration changes.

For instance, if the state h0; 1; 0; 0i has h2; 0; 0; 0i as focal state, then the set of
possible successors is constituted of h1; 1; 0; 0i (move along the first dimension
toward value 2) and h0; 0; 0; 0i (second dimension, towards value 0).

3. This leaves the question of how each component Fc;S of the focal state of a state
S is defined. This definition is by case: component c is influenced by a number
of other components with associated thresholds. These influences split the con-
centration space in several regions called cellular contexts of c. For instance, the
gene cro is influenced by cI with threshold t2

cI and cro (itself) with threshold t3
cro;

depending on the current discrete values of ScI and Scro, the tendency Fcro;S can
take different values. We obtain four exclusive possible cases for Fcro;S according
to the membership of S to one of the cellular context of cro:

Fcro;S D

8̂̂
<
ˆ̂:

K1
cro if ScI < t2

cI ^ Scro < t3
cro

K2
cro if ScI < t2

cI ^ Scro � t3
cro

K3
cro if ScI � t2

cI ^ Scro < t3
cro

K4
cro if ScI � t2

cI ^ Scro � t3
cro

(1)

Connections and Integration with SAT Solvers 443

The complete focal equation system for �GRN is given in Appendix 1. The
parameters K l

c (where l is the index of the corresponding cellular context
and c is the component) are called discrete kinetic parameters (they charac-
terize the kinetics of the system). These parameters are in general not known
(as the parameters maxc and t

p
c). There are, however, constraints on these

parameters that are imposed by additional hypotheses about composition of inter-
actions and properties on these compositions. For instance, we add a hypothesis
about the observation of inhibition of cI on cro according to the threshold t2

cI .
This hypothesis is modeled by the following observability constraint: K3

cro <

K1
cro _ K4

cro < K2
cro. In the same manner, the observation of the inhibition

of cro on itself according to the threshold t3
cro is modeled by the constraint:

K2
cro < K1

cro _ K4
cro < K3

cro. We add also additivity constraints which define the
composition function of several interactions on a same gene like a sum. The con-
sidered constraints in the case of �GRN are given in Appendix 2. For instance,
for the two inhibitions (discussed previously) influencing cro, we add the follow-
ing constraints: K3

cro � K1
cro ^ K4

cro � K2
cro and K2

cro � K1
cro ^ K4

cro � K3
cro.

Note that we could left undefined this composition function or define it in another
manner.

Note that the transition rule (continuity, tendency, and asynchronicity) permits to
represent in intension a transition system using the concept of focal state. Such a
transition system is constructed using constraints in Sect. 4.2.1.

4.2 Thomas-GRNs Formalization in CLP and SAT

We model the transition rule using a high-level description in terms of multi-valued
variables and arbitrary numerical/Boolean constraints in Sect. 4.2.1 to use finite do-
main solvers. We explain briefly in Sect. 4.2.2 how this formalization in CLP is
translated into a Boolean encoding in order to use SAT solvers.

4.2.1 The CLP Encoding of Thomas-GRNs

Let a Thomas-GRN with n components ci , i 2 1::n, whose discrete concentrations
take values in 0:: maxci

(there are maxci
interaction from ci). A model M of this

Thomas-GRN is a couple formed by a representation of the focal equation system
(in term of cellular contexts and discrete kinetic parameters, see Definition 2 and
Constraint 4.2) and a set of additional constraints. The key point is the encod-
ing of the relation between a state S D hSc1

; :::; Scn
i and its possible successors

S 0 D hS 0c1
; :::; S 0cn

i for the model M by using variables relative to the focal state
FS D hFc1;S ; :::; Fcn;S i. The predicate successor.S; S 0/ is true if and only if S 0
is a possible successor of S for the model M is given in Constraint 4.1. It is

444 F. Corblin et al.

defined with the help of two predicates, on the one hand focal state.M; S; FS /

true if and only if FS is the focal state of S for the model M , on the other hand
transition rule.S; S 0; FS / true if and only if the transition S � S 0 complies with
the three points a, b, and c given in point 2 of the Sect. 4.1 with FS the focal
state of S .

Constraint 4.1

successor.M; S; S 0/
def,

focal state.M; S; FS /^
transition rule.S; S 0; FS /

To define focal state.M; S; FS / by Constraint 4.2, we must define the interac-
tions and the resulting cellular contexts for each component of the GRN.

Definition 1. An interaction is a triplet .c0; t
p
c0 ; c/ associated to an edge from node

c0 to node c in the interaction graph and labeled by t
p
c0 . Each interaction .c0; t

p
c0 ; c/

onto the target c is associated to a unique index r , 1 � r � rc , where rc is the
number of edges with target c in the interaction graph. We note i r

c the interaction
onto c with index r .

The cellular contexts of each component c are hyper-rectangle regions of the
concentration space induced by the set of interactions onto gene c for the model
M , fi r

c j1 � r � rcg. More precisely, each interaction .c0; t
p
c0 ; c/ is associated

with a threshold t
p
c0 which defines a hyperplane partitioning the concentration space

in two regions. Thus, the rc influences onto c induce a partition of the space in
lc D 2rc regions. Indeed, for the viewpoint of c, all the states in a same cellular
context of c are on the same influence. Before turning to the formal definition of
this notion (Definition 2 below), note that a cellular context is fully specified by the
data of rc Booleans (one for each threshold) specifying the position of this cellular
context regarding each threshold (0 if the region is below the threshold, 1 if it is
above).

Definition 2. Let c a component with rc interactions onto it.
Let V D .V1; :::; Vr ; :::; Vrc

/ a list of rc Booleans. Let l the integer such as l � 1

is equal to the decimal value of the binary number composed of component of
V : for example, V D .1; 0/ corresponds to l D 3. The cellular context of c char-
acterized by V is the region composed of all the states S checking the condition
Cellcl

c;S :

Cellcl
c;S

def,
rĉ

rD1

.i r
c D .c0; t

p
c0 ; c/ ^ Vr , Sc0 � t

p
c0/

Connections and Integration with SAT Solvers 445

Constraint 4.2

focal state.M; S; FS /
def,V

c

Vlc

lD1
Cellcl

c;S) Fc;S D K l
c

Example 1. For a state S with ScI D 2 and Scro D 1, we obtain Cellc3
cro;S D true

and so by implication Fcro;S D K3
cro (cf. (1)).

The predicate transition rule.S; S 0; FS / is defined by the Constraint 4.3. The
o operator is the concatenation of lists and exactly one.L/ is true if exactly one
Boolean of the list L of Booleans is true.

Constraint 4.3

transition rule.S; S 0; FS /
def,V

c.LBupc , S 0c D Sc C 1/ ^V
c.LBdownc , S 0c D Sc � 1/ ^

.Bst , S D S 0/ ^V
c.Sc � 1 � S 0c � Sc C 1/ ^ �

point aV
c.LBupc) Sc < Fc;S / ^V
c.LBdownc) Sc > Fc;S / ^

.Bst , S D FS /

9=
; point b

exactly one.LBup o LBdown o ŒBst�/ ^ �
point c

Several intermediate variables appear to factorize common expressions (such as
S 0c D Sc C 1) of the formalization of point b and c. LBup and LBdown are lists of
Boolean variables, and Bst is a Boolean variable. LBupc and LBdownc are the ele-
ments of index c of lists LBup and LBdown. Each of these variables are associated
to one of the 2 � n C 1 possible directions in concentration space. LBupc , respec-
tively, LBdownc is true if and only if the transition S � S 0 increases, respectively
decreases, the value of the component c of 1 unit. Bst is true if and only if S � S 0
is a stationary transition (S equals S 0).

A rapid examination shows that the number of Booleans necessary for expressing
a transition between two states, namely Cellcl

c;S , Bdownc , Bupc , Bstc stays linear

according the number of species. In the case of the Cellcl
c;S one can note that their

number grows exponentially according to the inside branching factor of the inter-
action graph. Fortunately, this factor is rarely above 4. It should be remarked also
that a path composed of successive states requires for its definition a number of
constraints which is proportional to the size of the path.

The main predicate of our tool GNBox is path.M; Path; L/ true if P ath is a
possible succession of L states for the model M , presented in Constraint 4.4.

446 F. Corblin et al.

Constraint 4.4

path.M; Path; L/
def,V

i21::L�1 successor.Pathi ; PathiC1/

Example 2. For the �GRN model M with the focal equation system and constraints
in Appendix 1 and 2, and the three following additional constraints:

 All the values of parameters K l
cI , K l

cII and K l
n are known to be equal to 0 except

K6
cI D 1, K2

cII D 1, K1
n D 1,

 K2
cro D 3, K3

cro D 1 (K1
cro and K4

cro are not known),

 path.M; ŒS1; S2; S3�; 3/ ^ S1 D h1; 2; 0; 1i ^ S2 D h1; 3; 0; 1i,
we have one unique possible instantiated model possible where K1

cro D 3 and
K4

cro D 0, and two possible states S3: S3 D h0; 3; 0; 1i or S3 D h1; 3; 0; 0i.
We can check the set of solutions for this very specific (pedagogic) query. The

first two additional constraints (values of parameters K l
c) are consistent with the

constraints in Appendix 2. The third additional constraint enforces that Fcro;S1 D
K1

cro (because Cellc1
cro;S1 is true for S1 D h1; 2; 0; 1i) and S1cro < Fcro;S1 (be-

cause Bupcro is true for the constraint successor.S1; S2; FS1/). By deduction we
have: 2 < K1

cro and so the domain of K1
cro is reduced to the singleton f3g. Ac-

cording to the constraint ..K2
cro < K1

cro/ _ .K4
cro < K3

cro// in Appendix 2 and the
second additional constraint, we obtain that the domain of K4

cro is reduced to f0g.
Finally, from S2 D h1; 3; 0; 1i, FS2 D hK3

cI; K2
cro; K4

cII; K4
ni D h0; 3; 0; 0i, and

successor.S2; S3; FS2/, we obtain the two possible states S3, S3 D h0; 3; 0; 1i
and S3 D h1; 3; 0; 0i. This is due to the fact that only the Booleans BdowncI and
Bdownn can be true (tendency with the values of Sc and Fc;S known) and only one
of the two can be true in a given solution (asynchronicity).

4.2.2 The SAT Encoding

In the following, we present our procedure to replace a multivalued variable by a
set of Boolean variables and clauses, and the ideas behind our Boolean encoding of
integer constraints.

We chose two manners to encode as Boolean variables the multivalued variables
of the model. For every integer variable Sc , Fc;S , K l

c , t
p
c and maxc , we introduce

systematically as many Boolean variables as the size z of their domains, and a set of
clauses specifying that exactly one of these new Boolean variables is true (each of
these variables corresponding to a value in the domain of the integer variable). The
exactly one constraint is the conjunction of a at least one (ALO) constraint and
a at most one (AMO) constraint. Their encoding are those given in [42], where
we consider two manners to encode AMO : (1) of [42] for ALO encoding, (2) and
(3) for ladder AMO encoding, and (4) for pairwise AMO encoding. For the pairwise
AMO encoding, the number of clauses is quadratic according to z. For the ladder

Connections and Integration with SAT Solvers 447

AMO encoding, z�1 ladder variables are added and the number of clauses is linear
according to z.

We have to encode only relations with at most two multivalued variables (but
exactly one constraint) with small domains. In spite of the apparent lack of heavy
encoding problems, we cannot use the trivial way, based on the truth table of the
initial relation, to obtain a clausal form. We would face an exponential explosion
of the number of generated clauses according to the size of the variable domains.
By taking into account the fact that exactly one of the Boolean variables for each
possible value of a multivalued variable is true, we get a more efficient encoding.

Example 3. Let us consider a relation of the type B , X D Y , with the domains
f0; 1g, f0; 1; 2g f1; 2; 3g for B , X and Y , respectively (such as BupcI , ScI D
ScI C 1, see definition of the predicate successor in Sect. 4.2.1). Let x0, x1, x2, y1,
y2, y3, and b be the Boolean variables which are linked to the multivalued variables
X , Y , and B (B being considered in CP as a finite domain variable). To encode this
relation, we introduce six clauses relative to the conjunction of the two following
formulae:

 B) X D Y : .:b _ :x1 _ y1/ ^ .:b _ x1 _ :y1/ ^ .:b _ :x2 _
y2/ ^ .:b _ x2 _ :y2/

 X D Y) B: .b _ :x1 _ :y1/ ^ .b _ :x2 _ :y2/

The previous example gives an idea of the encoding algorithm of a relation B ,
X D Y . The algorithm loops on the values of B , then those of X and finally those
of Y , and produces the implication (clauses) on the values of the different variables.

To do the encoding of our model, we need a procedure for every type of relation:
B1 _ B2, B1 ^ B2, B1 , B2, X D Y , X ¤ Y , X � Y , X < Y , B) X D Y ,
X D Y) B , B) X < Y , X < Y) B and B , V

i Bi , where the B

variables are Booleans and the X and Y variables are potentially multivalued. The
size of the CNF representation for all these relations is linear according to the size
of the multivalued variable domains (which is the number of species in the system).

4.3 Five Examples of GRN Deciphering Queries

We present five queries relative to the �GRN example and give their results. For all
queries, the variable M is the model containing the focal equations of the �GRN
given in Appendix 1 and the constraints about hypotheses of interaction composi-
tions and thresholds order given in Appendix 2. The execution times for Queries 2,
3, and 4 are given in Sect. 4.4.

4.3.1 Query 1: Models Consistent with the Existence of One Steady State

The first example of query concerns the imposition of one non specified steady
state. Expressing that state S is a steady state means imposing the existence of a

448 F. Corblin et al.

path of two states beginning in the state hScI; Scro; ScII ; Sni and reaching the same
state hScI; Scro; ScII; Sni

Query 1
path.M; ŒS; S�; 2/

The Query 1 leads to a coherence (in about 0:05 second). The CNF formula with
the ladder AMO encoding contains 1; 727 variables and 4; 071 clauses, and with the
pairwise AMO encoding, the formula contains 1; 651 variables and 3; 972 clauses.
The number of variables for the ladder AMO encoding is greater because, the lad-
der variables. The number of clauses for the ladder AMO encoding is surprinsingly
greater. This is due to the low number of Booleans used in the exactly one con-
straint (the ladder AMO encoding beginning to be interesting from 8 Booleans in
at most one constraint).

For the discussion on functionalities (see Sect. 4.4), we note Query 1’ the Query
1 where we enumerate on the values of S in order to find all the possible steady
states. The Query 1’ permits to obtain 25 possible steady states (in about 0:1 s).

4.3.2 Query 2: Models Consistent with Biological Observations

The main query, in the case of �GRN, concerns the existence of models consistent
with the two possible observed behaviors in response to an infection of a bacterial
cell by a �-phage virus. These behaviors are (a) the reachability of the lytic attractor,
represented in the discrete Thomas formalism as a cycle between the two states
h0; 2; 0; 0i and h0; 3; 0; 0i from the initial state h0; 0; 0; 0i; and (b) the reachability of
the lysogenic state h2; 0; 0; 0i from the same initial state. The fact that two different
attractors can be reached from the same initial state is due to the non-determinism
that appears at this level of abstraction. These observations come from [104]. The
formal expression of the reachability of the lytic attractor and the reachability of the
lysogenic attractor is the following:

Query 2

S0 D h0; 0; 0; 0i ^
S1 D h2; 0; 0; 0i ^
L D 48 ^
path.M; ŒS1; S1�; 2/ ^ path.M; ŒS0; :::; S1�; L/ ^
S2 D h0; 2; 0; 0i ^
S3 D h0; 3; 0; 0i ^
S23 D h0; S23cro; 0; 0i ^ S23cro 2 2::3 ^
path.M; ŒS2; S3; S2�; 3/ ^ path.M; ŒS0; :::; S23�; L/

Connections and Integration with SAT Solvers 449

where S0 is the initial state, S1 is the representation of the lysogenic attractor,
S2 and S3 the two states of the lytic attractor, and 48 is the number of state for
�GRN where all t

p
c are equal to p. The Query 2 leads to a coherence of the set of

constraints.

4.3.3 Query 3: Diameter of the Network Taking into Consideration
the Biological Observations

The Query 2 is more general than the Query 1 in the sense that it involves paths
of states with a given length. The knowledge of this length is necessary to generate
a finite system of constraints. A straightforward way to overcome this problem is
to consider paths with a length equal to the total number of discrete states (in the
case where we enforce one reachability of state – see Query 4 for the case where
we enforce multi-reachabilities of states). In the case of �GRN, we have a discrete
concentration space of 48 states. But to face efficiently this important issue we must
find the maximal length of a path without cycles in models consistent with the be-
haviors presented in Query 2. This maximal length is the diameter of the network,
DQ2, relative to the constraints of Query 2. The query to find the diameter of the
network is:

Query 3
Query 2 ^
L 2 1::47 ^
path.M; Path; L/ ^
alldif path.Path/

where alldif path.Path/ is true if all elements of Path are different one for an-
other. The CLP encoding chosen for alldif path.Path/ is straightforward (without
any propagation optimization), and we obtain a quadratic number of disjunctive
constraints (enforcing that it exists a component on which two states differ). The
enumeration of the values of L in an increasing order allows to identify a maximal
value DQ2 of L for which this query is coherent. The Query 3 leads by enumeration
of L to a coherence for L D 43 and an incoherence for L D 44. So, the diameter is
DQ2 D 43.

4.3.4 Query 4: Models Consistent with Biological Observations
and Induction Hypotheses

From the Query 2, we want to add hypotheses about the ultraviolet (U.V.) pertur-
bation of the cell in lysogenic phase which leads the cell into the lytic phase. This
process is called induction. The hypotheses consist in imposing a succession of
“checkpoints” through which the system must go. The starting state is h1; 0; 0; 0i

450 F. Corblin et al.

corresponding to a decrease, due to U.V. irradiation, of the concentration of cI in
the stationary state of the lysogenic phase. After this, four states must be reach in
a specific order, and finally the lytic cycle must be reached. In this query, we want
to express the reachability of the two attractors (lytic and lysogenic), with the addi-
tional specification of mandatory intermediate states. The formal expression is the
following:

Query 4

Query 2 ^
path.M; Path induction; 189/ ^
St0 D h1; 0; 0; 0i ^
St1 D h1; 1; 0; 0i ^
St2 D h0; 1; 0; 0i ^
St3 D h0; 1; 0; 1i ^
St lytic D h0; St lyticcro; 0; 0i ^ St lyticcro 2 2::3 ^
reach.ŒSt0; St1; St2; St3; St lytic�; Path induction/

where all the St variables are the “checkpoints,” and more precisely St0 is the
representation of the lysogenic attractor after perturbation by U.V. irradiation and
St lytic a state of the lytic attractor. The length 189 for the path of induction
Path induction is chosen according to the fact that in the worst case the four paths
(multi-reachabilities) included into Path induction can be of length 48 (189 D
48 � 4 � 3). The predicate reach.LS; Path/ is true if LS is a list of states of Path
(reachabilities of each state of LS), and if it is possible to find the states of LS in
Path in the same order as in LS (reachabilities in a specific order, in other terms LS
is a subsequence of Path):

reach.LS; Path/
def, length.LS; L1/ ^V

i 2 1::L1 element.LSi ; Path; Indexi / ^V
i 2 1::L1�1 Indexi � IndexiC1

where length.List; Length/ is true if List is a list of length Length, and
element.E; Path; I / is true if E is the element of the list Path at the index I (by
starting to 0):

element.E; Path; I /
def, length.Path; L2/ ^

I 2 0::L2 � 1 ^V
i 2 0::L2�1 i D I) Pathi D E

We give these formalizations to show exactly what are the type of constraints that
we use, and that we must translate into CNF to be able to use SAT solvers (see
Sect. 4.2.2). The Query 4 leads to a coherence of the set of constraints.

Connections and Integration with SAT Solvers 451

For the performance discussion (see Sect. 4.4), we note Query 4’ the Query 4
where the hypotheses of composition of interactions on the gene n are removed.
The Query 4’ leads to a coherence (obviously because Query 4 is coherent and
Query 4’ is weaker than Query 4).

4.3.5 Query 5: Inference of Necessary Hypotheses Among the Hypotheses
About Composition of Interactions

From the Query 2 with L D 48, we want to identify the hypotheses about composi-
tion of interactions which must be true. Each of these 20 hypotheses appear in one
line (except the first two) of Appendix 2. In order to learn what are the necessary hy-
potheses among them, we reify each of these constraints Ci by introducing Booleans
Bi such that Bi , Ci . We obtain a new set of constraints composed of the con-
straints of Query 2, minus the constraints Ci , and plus the constraint

V
i Bi , Ci .

To infer necessary properties about composition of interactions, we enumerate
the possible values of the Booleans Bi and look at the true assigments to identify the
necessary hypotheses. In order to avoid redundant solutions (the solution Bi ^ Bk

and the solution Bi ^ Bj ^ Bk are redundant for example, because .Bi ^ Bk/ _
.Bi ^ Bj ^ Bk/ , .Bi ^ Bk/), we enumerate the values of the Bi by increasing
value of their sum, and add constraints to avoid redundant solutions.

We use a SAT solver directly called from the CLP program. The CLP program
controls, in this case, the enumeration of the integer equal to the sum of the Bi ,
the rest of the enumeration being done by the SAT solver with a blocking clause
mechanism for enumeration.

The Query 5 leads to (in about 1 second) a disjunction which is reduced to only
one conjunction of two Booleans that evaluate to true: B8 ^ B10, where B8 ,
.K3

cro < K1
cro _ K4

cro < K2
cro/ is the observability constraint about the ‘inhibition’ of

cI on cro, and B10 , .K2
cro < K1

cro _ K4
cro < K3

cro/ is the observability constraint
about the ‘inhibition’ of cro on itself.

4.4 Discussion

The Table 1 gives for some selected queries: the coherence of the constraint system
(Sol.), the runtime in seconds with the CP version (Perf. CP), and for each type
of AMO encoding (ladder and pairwise): the time in seconds to construct the SAT
instance with the CLP program (const. CNF), the runtime with MiniSAT (MiniSAT
2.0 beta) and the parallel SAT solver ManySAT [48]. on the generated SAT instance,
and the size of the SAT instance in terms of number of variables and number of
clauses (size CNF). The runtimes are obtained on an Intel Xeon computer with
two quadricores at 2.33 GHz each with 8Gbytes of RAM. The CP and MiniSAT
executions use only one CPU, and the Manysat executions use four CPUs.

452 F. Corblin et al.

Table 1 Comparative performances on selected queries

ladder AMO encoding pairwise AMO encoding

Perf. const. Perf. Perf. size const. Perf. Perf. size

Query Sol. CP CNF MiniSAT ManySAT CNF CNF MiniSAT ManySAT CNF

Q.2 true 3.8 0.6 0:2 0:5 20;766 0.5 0:4 0:5 18;790

L = 43 84;696 83;571

Q.2 true 5.1 0.6 0:2 0:5 22;976 0.6 0:3 0:6 20;780

L = 48 94;046 92;801

Q.3 true 43,375 1.1 78:3 34:4 33;678 1.0 74:3 16:1 30;771

LD 43 154;699 153;061

Q.3 false 74,666 1.0 510:5 149:8 34;513 1.1 452:5 126:5 31;540

LD 44 158;966 157;292

Q.4 true 13.5 2.3 3:9 2:9 73;682 2.5 5:9 2:5 66;563

310;613 375;131

Q.4’ true 4.2 2.3 33:3 2:9 73;534 2.5 34:8 2:7 66;415

310;301 374;819

As it was expected on queries with only small domain integer variables, the SAT
solvers are more effective (see Query 2 and Query 3 in Table 1). But for Query 4,
where we enforce reachability of successive states in a path, it is necessary to intro-
duce variables with large domains (the length of the path). We see in this case that
the number of clauses for the ladder AMO encoding is lower than for the pairwise
AMO encoding. Between Query 4 and Query 40 (where we relax some constraints),
the time to obtain consistency for CP solver decreases by a factor approximately
equal to 3, but it increases by a factor of about 10 for the MiniSAT solver. This ef-
fect is rare but appears in some queries, the propagation being a part of a complex
system whose performance is difficult to predict.

When we want to learn properties, such as the identification of the diameter or
properties on composition of interactions, the problem turns into the optimization of
a parameter p in a formula F.p/. An SAT solver can only indicate the satisfiability
of F.p/. So we must be able to monitor calls to SAT solver on F.p/ in terms of
the value of p. The hybrid version of the tool (SAT integrated to CLP) enables to
achieve this easily to finely control the enumeration of certain variables before the
call for SAT (see Query 5).

5 Conclusion

To summarize our overview of SAT, CP, and their use and integration in applications,
we look back at a table of [12], in which the authors highlighted distinctive features
of SAT and CP. There has been significant interest in SAT from the CP-AI-OR
community since the writing of this prior paper, and it is interesting to identify
recent or ongoing trends.

Connections and Integration with SAT Solvers 453

On the subject of methodology, one thing we have noticed in this paper is how
the CP approach, in which modeling is done at a high level and in a structured form,
can in fact complement the low-level approach of SAT: our biology application in
Sect. 4 illustrates how modeling can be done elegantly using Constraint (Logic)
Programming, and then a conversion to other tools including SAT (but also Lin-
ear Programming tools) can be used for efficient resolution. This approach relieves
the modeler from having to deal directly with an inconvenient, low-level format
such as CNF, or matrix representation for an LP. Our case study illustrates a clear
recent trend: SAT encodings have been studied quite thoroughly in the CP literature
over the last years, as shown in our brief survey of translations into SAT in Sect. 3.4.
The advantage of “thinking in CP, solving using SAT” is that the SAT encoding can
be informed by the high-level patterns and global constraints that are explicit in the
model, so that each constraint is encoded in a way that achieves Generalized Arc
Consistency or is experimentally efficient. Another recent trend since the writing of
this Table is a shift of CP toward more automatic, general-purpose, heuristic tuning,
witnessed for instance by the fact that dynamic heuristics such as DomWdeg [14]
are now adopted by many solvers.

In terms of application area, it is probably fair to say that SAT is increasingly
seen as but one component within more complex constraint solving tools, and that
it is therefore expanding beyond its initial application area of hardware verification.
The integration of SAT solver techniques is clear in SMT solvers, but also in some
recent CP solvers which essentially integrate an SAT solver for the treatment of
Boolean structure. Fig. 2 noted the importance of optimization as opposed to simply
satisfiability; “pure CP techniques” are by themselves not often very good at opti-
mization but an integrated approach where CP is used as an integration framework
for a number of techniques including, for instance, Linear Programming, excels in
these problems, and SAT is definitely part of the methods that contribute to a suc-
cessful integration.

The architecture of SAT solvers has not significantly changed since the time of
this writing–or indeed since the work on Chaff [78]! It is more difficult to guess
how CP software architectures will evolve in a near future. Integration is here again
probably a key word, as exemplified by some recent developments such as SCIP [1],
SIMPL [116] or Comet [109], in which Local Search, Linear Programming, CP, and
SAT techniques cooperate.

Last, in terms of evolution of the communities, noticeable efforts have been made
recently in the CP community toward better benchmarking practices and a higher
measurability of progress. An indication of this is that the CSP 2009 competition
attracted up to 14 solvers in some tracks, and that many solvers included some
techniques inspired indeed from SAT (restarts, dynamic heuristic, learning in some
cases). Fig. 2 noted that the SAT approach has traditionally been “bottom-up” with
incremental improvements based on the common DPLL basis. In contrast, [12] de-
scribed CP’s approach as a “top-down” one in which “there is no such thing as

454 F. Corblin et al.

SAT CP

M
et

ho
do

lo
gy

low-level
provides an “assembly language”

for decision procedures
black box

not meant to be directly used by human;
target language for translators

automatic
little room (or need) for informing

solver of problem specific information

high-level
notion of CP language with

rich set of constructs and constraints
glass box

meant to be used programmatically;
direct integration in applications

parameterised
everything can (and, typically,

needs to) be tuned

A
pp

lic
at

io
ns focus on decision problems

theorem proving, hardware and
software verification;

importance of complete solvers

focus on optimisation
scheduling, resource allocation;

importance of online optimisation
and fast, approximate optima

A
rc

hi
te

ct
ur

e

homogeneous
relatively small programs;

unique type of constraints (clauses);
very efficient, but hyper-specialised

algorithms and data structures

open
large systems and libraries, open to

(possibly user-defined) new constraints;
algorithms from OR, graph theory

etc., can be integrated

E
vo

lu
ti

on

bottom-up approach
incremental improvements of

established state-of-the-art DPLL;
little room for exotic proposals

good measurability of progress
large set of industrial CNF instances;

successful annual competition;
state-of-the-art methods well identified

top-down approach
large set of algorithms provided;

no disciplined approach to integrate
new algorithms in state-of-the-art
poor measurability of progress

no problem definition format;
comparing performance of non-tuned

solvers is considered meaningless

Fig. 2 Some distinctive features between SAT and CP

a state-of-the-art algorithm that would be incrementally improved; instead, there
is a toolbox that is incrementally enriched.” The solvers that participated in the
competition seem to exhibit a more mixed approach and show signs that the clear
separations drawn between SAT and CP in Fig. 2 are blurring.

Connections and Integration with SAT Solvers 455

Appendix 1: Focal Equations of the �GRN Model

FcI;S D

8̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂:

K1
cI

K2
cI

K3
cI

K4
cI

K5
cI

K6
cI

K7
cI

K8
cI

if

if

if

if

if

if

if

if

ScI < t2
cI ^ Scro < t1

cro ^ ScII < t1
cII

ScI < t2
cI ^ Scro < t1

cro ^ ScII � t1
cII

ScI < t2
cI ^ Scro � t1

cro ^ ScII < t1
cII

ScI < t2
cI ^ Scro � t1

cro ^ ScII � t1
cII

ScI � t2
cI ^ Scro < t1

cro ^ ScII < t1
cII

ScI � t2
cI ^ Scro < t1

cro ^ ScII � t1
cII

ScI � t2
cI ^ Scro � t1

cro ^ ScII < t1
cII

ScI � t2
cI ^ Scro � t1

cro ^ ScII � t1
cII

Fcro;S D

8̂̂̂
<̂
ˆ̂̂̂:

K1
cro

K2
cro

K3
cro

K4
cro

if

if

if

if

ScI < t2
cI ^ Scro < t3

cro

ScI < t2
cI ^ Scro � t3

cro

ScI � t2
cI ^ Scro < t3

cro

ScI � t2
cI ^ Scro � t3

cro

FcII;S D

8̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂̂
ˆ̂̂̂:

K1
cII

K2
cII

K3
cII

K4
cII

K5
cII

K6
cII

K7
cII

K8
cII

if

if

if

if

if

if

if

if

ScI < t2
cI ^ Scro < t3

cro ^ Sn < t1
n

ScI < t2
cI ^ Scro < t3

cro ^ Sn � t1
n

ScI < t2
cI ^ Scro � t3

cro ^ Sn < t1
n

ScI < t2
cI ^ Scro � t3

cro ^ Sn � t1
n

ScI � t2
cI ^ Scro < t3

cro ^ Sn < t1
n

ScI � t2
cI ^ Scro < t3

cro ^ Sn � t1
n

ScI � t2
cI ^ Scro � t3

cro ^ Sn < t1
n

ScI � t2
cI ^ Scro � t3

cro ^ Sn � t1
n

Fn;S D

8̂̂
ˆ̂<
ˆ̂̂̂:

K1
n

K2
n

K3
n

K4
n

if

if

if

if

ScI < t1
cI ^ Scro < t2

cro

ScI < t1
cI ^ Scro � t2

cro

ScI � t1
cI ^ Scro < t2

cro

ScI � t1
cI ^ Scro � t2

cro

456 F. Corblin et al.

Appendix 2: Constraints of the �GRN Model

t1
cI � t2

cI ^ alldif .Œt1
cI ; t2

cI�/

t1
cro � t2

cro � t3
cro ^ alldif .Œt1

cI ; t2
cI; t3

cro�/

K1
cI � K5

cI ^ K2
cI � K6

cI ^ K3
cI � K7

cI ^ K4
cI � K8

cI

K1
cI < K5

cI _ K2
cI < K6

cI _ K3
cI < K7

cI _ K4
cI < K8

cI

K3
cI � K1

cI ^ K4
cI � K2

cI ^ K7
cI � K5

cI ^ K8
cI � K6

cI

K3
cI < K1

cI _ K4
cI < K2

cI _ K7
cI < K5

cI _ K8
cI < K6

cI

K1
cI � K2

cI ^ K3
cI � K4

cI ^ K5
cI � K6

cI ^ K7
cI � K8

cI

K1
cI < K2

cI _ K3
cI < K4

cI _ K5
cI < K6

cI _ K7
cI < K8

cI

K3
cro � K1

cro ^ K4
cro � K2

cro

K3
cro < K1

cro _ K4
cro < K2

cro

K2
cro � K1

cro ^ K4
cro � K3

cro

K2
cro < K1

cro _ K4
cro < K3

cro

K5
cII � K1

cII ^ K6
cII � K2

cII ^ K7
cII � K3

cII ^ K8
cII � K4

cII

K5
cII < K1

cII _ K6
cII < K2

cII _ K7
cII < K3

cII _ K8
cII < K4

cII

K3
cII � K1

cII ^ K4
cII � K2

cII ^ K7
cII � K5

cII ^ K8
cII � K6

cII

K3
cII < K1

cII _ K4
cII < K2

cII _ K7
cII < K5

cII _ K8
cII < K6

cII

K1
cII � K2

cII ^ K3
cII � K4

cII ^ K5
cII � K6

cII ^ K7
cII � K8

cII

K1
cII < K2

cII _ K3
cII < K4

cII _ K5
cII < K6

cII _ K7
cII < K8

cII

K3
n � K1

n ^ K4
n � K2

n

K3
n < K1

n _ K4
n < K2

n

K2
n � K1

n ^ K4
n � K3

n

K2
n < K1

n _ K4
n < K3

n

Acknowledgement This work was supported by Microsoft Research through its European PhD
Scholarship Programme.

References

1. Achterberg T, Berthold T, Koch T, Wolter K (2008) Constraint integer programming: A new
approach to integrate CP and MIP. In: Proceedings of International Conference on Integration
of AI and OR Techniques in Constraint Programming (CP-AI-OR), pp 6–20

2. Bacchus F (2007) GAC via unit propagation. In: Proceedings of International Conference on
Principles and Practice of Constraint Programming (CP), pp 133–147

Connections and Integration with SAT Solvers 457

3. Bacchus F, Walsh T (2005) Propagating logical combinations of constraints. In: Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI), pp 35–40

4. Baptiste P, Le Pape C, Nuijten W (2001) Constraint-Based Scheduling. Springer, Berlin
5. Beldiceanu N, Carlsson M, Demassey S, Petit T (2007) Global constraint catalogue: Past,

present and future. Constraints 12(1):21–62
6. Bessière C (1994) Arc-consistency and arc-consistency again. Artif Intell 65(1):179–190
7. Bessiere C (2006) Constraint propagation. In: Handbook of Constraint Programming, chap. 3
8. Bessiere C, Hebrard E, Walsh T (2003) Local consistencies in SAT. In: Proceedings of Inter-

national Conference on Theory and Applications of Satisfiability Testing (SAT), pp 299–314
9. Bessiere C, Kastirelos G, Narodytska N, Quimper C-G, Walsh T (2009) Decompositions of

all different, global cardinality and related constraints. In: Boutilier C (ed) Proceedings of the
21st International Joint Conference on Artificial Intelligence (IJCAI), Pasadena, California,
USA, July 11–17, pp 419–424

10. Bessiere C, Kastirelos G, Narodytska N, Walsh T (2009) Circuit complexity and decom-
positions of global constraints. In: Boutilier C (ed) Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI), Pasadena, California, USA, July 11–17,
pp 412–418

11. Biere A, Heule M, Van Maaren H, Walsh T (2009) Handbook of Satisfiability. IOS Press,
Amsterdam

12. Bordeaux L, Hamadi Y, Zhang L (2006) Propositional satisfiability and constraint program-
ming: A comparative survey. ACM Comput. Surv. 38(4)

13. Boros E, Hammer PL (2002) Pseudo-boolean optimization. Discrete Appl Math 123(1-3):
155–225

14. Boussemart F, Hemery F, Lecoutre C, Sais L (2004) Boosting systematic search by weight-
ing constraints. In: Proceedings of European Conference on Artificial Intelligence (ECAI),
pp 146–150

15. Cadoli M, Schaerf A (2005) Compiling problem specifications into SAT. Artif Intell 162
(1-2):89–120

16. Carlsson M, Beldiceanu N, Martin J (2008) A geometric constraint over k-dimensional ob-
jects and shapes subject to business rules. In: Proceedings of International Conference on
Principles and Practice of Constraint Programming (CP), pp 220–234

17. Clarke E, Biere A, Raimi R, Zhu Y (2001) Bounded model checking using satisfiability solv-
ing. Formal Methods Syst Des 19(1):7–34

18. Clarke EM, Grumberg O, Peled DA (1999) Model checking. The MIT Press, Cambridge,
MA, USA

19. Cleary JG (1987) Logical arithmetic. Future Comput Syst 2(2):125–149
20. Codognet P, Diaz D (1993) Boolean constraints solving using CLP(FD). In: Proceedings

of the International Symposium on Logic Programming, MIT Press, Cambridge, MA, USA,
pp 525–539

21. Cohen J, Koiran P, Perrin P (1991) Meta-level interpretation of CLP(Lists). In: Benhamou
F, Colmerauer A (eds) Constraint Logic Programming, Selected Research, The MIT Press,
Cambridge, MA, USA, pp 457–481

22. Collavizza H, Rueher M, Van Hentenryck P (2008) CPBPV: a constraint-programming frame-
work for bounded program verification. In: Proceedings of International Conference on
Principles and Practice of Constraint Programming (CP), pp 327–341

23. Corblin F (2008) Conception et mise en œuvre d’un outil dclaratif pour l’analyse des rseaux
gntiques discrets. Ph.D. thesis, Universit Joseph Fourier

24. Corblin F, Tripodi S, Fanchon E, Ropers D, Trilling L (2009) A declarative constraint-based
method for analyzing discrete gene regulation networks. Biosystems 98(2):91–104

25. Darwiche A, Marquis P (2002) A knowledge compilation map. J AI Res (JAIR) 17:229–264
26. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving.

Commun ACM 5(7):393–397
27. Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM

7(3):201–215

458 F. Corblin et al.

28. De Moura LM, Bjorner N (2008) Z3: An efficient SMT solver. In: Proceedings of Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pp 337–340

29. Dechter R (1990) Enhancement schemes for constraint processing: Backjumping, learning,
and cutset decomposition. Artif Intell 41(3):273–312

30. Delzanno G, Podelski A (2001) Constraint-based deductive model checking. Int J Softw Tools
Technol Transf 3(3):250–270

31. Diaz D, Codognet C (2001) Design and implementation of the GNU prolog system. J Funct
Log Program 2001(6)

32. Dutertre B, De Moura LM (2006) A fast linear-arithmetic solver for DPLL(T). In: Proceed-
ings of International Conference on Computer-Aided Verification (CAV), pp 81–94

33. Eén N, Sörensson N (2003) An extensible SAT-solver. In: Proceedings of International Con-
ference on Theory and Applications of Satisfiability Testing (SAT), pp 502–518

34. Eén N, Sörensson N (2006) Translating pseudo-boolean constraints into SAT. J Satisf Boolean
Model Comput (JSAT) 2:1–26

35. Fanchon E, Corblin F, Trilling L, Hermant B, Gulino D (2005) Modeling the molecular net-
work controlling adhesion between human endothelial cells: Inference and simulation using
constraint logic programming. In: Danos V, Schachter V (eds) Computational Methods in
Systems Biology, vol 3082. Springer, Berlin, pp 104–118

36. Franzle M, Herde C, Teige T, Ratschan S, Schubert T (2007) Efficient solving of large non-
linear arithmetic constraint systems with complex boolean structure. J Satisf Boolean Model
Comput (JSAT) 1:209–236

37. Gelfond M (2008) Answer sets. In: Handbook of Knowledge Representation, Elsevier, Ams-
terdam, pp 285–316

38. Génisson R, Jégou P (2000) On the relations between SAT and CSP enumerative algorithms.
Discrete Appl Math 107(1-3):27–40

39. Gent IP, Jefferson C, Miguel I (2006) Minion: A fast scalable constraint solver. In: Proceed-
ings of European Conference on Artificial Intelligence (ECAI), pp 98–102

40. Gent IP, Jefferson C, Miguel I (2006) Watched literals for constraint propagation in min-
ion. In: Proceedings of International Conference on Principles and Practice of Constraint
Programming (CP), pp 182–197

41. Gent IP, Miguel I, Nightingale P (2008) Generalised arc consistency for the alldifferent
constraint: An empirical survey. Artif Intell 172(18):1973–2000

42. Gent IP, Nightingale P (2004) A new encoding of alldifferent into SAT. In: 3rd Interna-
tional Workshop on Modelling and reformulating Constraint Satisfaction Problems (CP2004),
pp 95–110

43. Ginsberg ML (1993) Dynamic backtracking. J AI Res (JAIR) 1:25–46
44. Gomes C, Selman B (2007) The science of constraints. Constraint Program Lett 1:15–20
45. Gomes CP, Kautz H, Sabharwal A, Selman B (2009) Satisfiability solvers. In: van Harme-

len, Lifschitz, Porter (eds) Handbook of Knowledge Representation, Elsevier, Amsterdam,
pp 89–134

46. Gomes CP, Selman B, Kautz HA (1998) Boosting combinatorial search through randomiza-
tion. In: Proceedings of National Conference on Artificial Intelligence (AAAI), pp 431–437

47. Guespin-Michel J, Bernot G, Comet JP, Mrieau A, Richard A, Hulen C, Polack B (2004)
Epigenesis and dynamic similarity in two regulatory networks in pseudomonas aeruginosa.
Acta Biotheor 52(4):379–390

48. Hamadi Y, Jabbour S, Sais L (2009) ManySAT: a parallel SAT solver. J Satisf Boolean Model
Comput 6:245–262

49. Hamadi Y, Saubion F, Monfroy E, What is Autonomous Search. In: What Is Autonomous
Search? pp 357–391

50. Hickey TJ (1991) Functional constraints in CLP languages. In: Benhamou F, Colmerauer A
(eds) Constraint Logic Programming, Selected Research, The MIT Press, Cambridge, MA,
USA, pp 355–381

51. Hooker J (2006) Integrated Methods for Optimization. Springer, Heidelberg

Connections and Integration with SAT Solvers 459

52. Hooker J (2009) A principled approach to mixed integer/linear problem formulation. In:
Chinneck J, Kristjansson B, Saltzman M (eds) Operations research and cyber-infrastructure.
Springer, New York, pp 79–100

53. Hooker J (2009) Some observations on boolean logic and optimization. In: Talk, RUTCOR,
Rutgers University

54. Hooker J, Ottoson G (2003) Logic-based benders decomposition. Math Program 96:33–60
55. Huang J (2008) Universal booleanization of constraint models. In: Proceedings of Interna-

tional Conference on Principles and Practice of Constraint Programming (CP), pp 144–158
56. Jaffar J, Maher M (1994) Constraint logic programming: A survey. J Log Program (19-20),

503–581
57. de Jong H, Geiselmann J, Batt G, Hernandez C, Page M (2004) Qualitative simulation of the

initiation of sporulation in Bacillus subtilis. Bull Math Biol 66(2):261–299
58. de Jong H, Gouzé JL, Hernandez C, Page M, Sari T, Geiselmann J (2004) Qualitative

simulation of genetic regulatory networks using piecewise-linear models. Bull Math Biol
66(2):301–340

59. Jung JC, Barahona P, Katsirelos G, Walsh T (2008) Two encodings of DNNF theories. In:
ECAI workshop on Inference methods based on Graphical Structures of Knowledge

60. Jussien N (2003) The versatility of explanations in constraint programming. Tech. rep., École
des Mines de Nantes; Habilitation thesis

61. Kasif S (1990) On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artif Intell 45(3):275–286

62. Katsirelos G, Bacchus F (2005) Generalized nogoods in CSPs. In: Proceedings of National
Conference on Artificial Intelligence (AAAI), pp 390–396

63. Kautz H, Sabharwal A, Selman B (2009) Incomplete algorithms. In: Handbook of Satisfia-
bility. IOS Press, Amsterdam

64. Kautz HA, Selman B (1992) Planning as satisfiability. In: Proceedings of European Con-
ference on Artificial Intelligence (ECAI), John Wiley and Sons, New York, NY, USA,
pp 359–363

65. Kelly AD, Macdonald AD, Marriott K, Sondergaard H, Stuckey PJ, Yap RHC (1995) An
optimizing compiler for CLP(R). In: Proceedings of International Conference on Principles
and Practice of Constraint Programming (CP), pp 222–239

66. Kroening D, Ouaknine J, Seshia SA, Strichman O (2004) Abstraction-based satisfiability
solving of Presburger arithmetic. In: Proceedings of International Conference on Computer-
Aided Verification (CAV), pp 308–320

67. Kroening D, Strichman O (2008) Decision Procedures – An algorithmic Point of View.
Springer, Heidelberg

68. Lecoutre C, Tabary S (2006) Abscon 109: a generic CSP solver. In: Proceedings of 2nd
International CSP Solver Competition, pp 55–63

69. Lhomme O (2004) Arc-consistency filtering algorithms for logical combinations of
constraints. In: Proceedings of International Conference on Integration of AI and OR Tech-
niques in Constraint Programming (CP-AI-OR), pp 209–224

70. Lynce I, Marques Silva J (2002) The effect of nogood recording in DPLL-CBJ SAT algo-
rithms. In: Proceedings of International Workshop on Constraint Solving and Constraint
Logic Programming (CSCLP), pp 144–158

71. Manquinho VM, Marques Silva JP (2005) On applying cutting planes in dll-based algorithms
for pseudo-boolean optimization. In: Proceedings of International Conference on Theory and
Applications of Satisfiability Testing (SAT), pp 451–458

72. Marchand H, Martin A, Weismantel R, Wolsey LA (2002) Cutting planes in integer and mixed
integer programming. Discrete Appl Math 123(1-3):397–446

73. Marques-Silva J (2008) Model checking with Boolean satisfiability. J Algorithms 63(1-3):
3–16

74. Marques Silva JP, Sakallah KA (1999) GRASP: A search algorithm for propositional satisfi-
ability. IEEE Trans Comput 48(5):506–521

75. Marriott K, Nethercote N, Rafeh R, Stuckey PJ, Garcia de la Banda M, Wallace M (2008)
The design of the zinc modelling language. Constraints 13(3):229–267

460 F. Corblin et al.

76. McAllester DA, Collins M, Pereira P (2004) Case-factor diagrams for structured probabilistic
modeling. In: Proceedings of International Conference on Uncertainty in Artificial Intelli-
gence (UAI), pp 382–391

77. McAllester DA, Selman B, Kautz HA (1997) Evidence for invariants in local search. In:
Proceedings of National Conference on Artificial Intelligence (AAAI), pp 321–326

78. Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering an ef-
ficient SAT solver. In: Proceedings of International Design Automation Conference (DAC),
pp 530–535. ACM

79. Nelson G, Oppen DG (1979) Simplification by cooperating decision procedures. ACM Trans
Program Lang Syst 1(2):245–257

80. Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving SAT and SAT Modulo Theories: From
an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J ACM 53(6):937–977

81. Pipatsrisawat K, Darwiche A (2007) A lightweight component caching scheme for satisfia-
bility solvers. In: Proceedings of International Conference on Theory and Applications of
Satisfiability Testing (SAT), pp 294–299

82. Pipatsrisawat K, Darwiche A (2008) A new clause learning scheme for efficient unsatisfi-
ability proofs. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp 1481–1484

83. Pipatsrisawat K, Darwiche A (2009) On the power of clause-learning sat solvers with restarts.
In: Proceedings of International Conference on Principles and Practice of Constraint Pro-
gramming (CP), pp 654–668

84. Prestwich S (2009) CNF encodings. In: Handbook of Satisfiability, chap. 2, IOS Press, Ams-
terdam, pp 75–98

85. Prosser P (1993) Hybrid algorithms for the constraint satisfaction problem. Comput Intell
9:268–299

86. Puget JF (1994) A CCC implementation of CLP. Tech. rep., ILOG, inc. ILOG Solver
Collected Papers

87. Puget JF (2004) CP’s next challenge: simplicity of use. In: Proceedings of International Con-
ference on Principles and Practice of Constraint Programming (CP), p. invited talk. Springer,
Heidelberg

88. Quimper CG, Walsh T (2007) Decomposing global grammar constraints. In: CP, Springer,
Heidelberg, pp 590–604

89. Refalo P (2004) Impact-based search strategies for constraint programming. In: Proceed-
ings of International Conference on Principles and Practice of Constraint Programming (CP),
pp 557–571

90. Regin JC (1994) A filtering algorithm for constraints of difference in csps. In: Proceedings of
National Conference on Artificial Intelligence (AAAI), pp 362–367

91. Regin JC (2010) Global constraints. In: Global Constraints: A Survey, pp 63–134
92. Ropers D, de Jong H, Page M, Schneider D, Geiselmann J (2006) Qualitative simulation of

the carbon starvation response in Escherichia coli. Biosystems 84(2):124–152
93. Rossi F, van Beek P, Walsh T (2006) Handbook of Constraint Programming. Elsevier,

Amsterdam
94. Roussel O, Lecoutre C (2009) XML representation of constraint networks: Format XCSP 2.1.

arXiv.org
95. Roussel O, Manquinho V (2009) Pseudo-boolean and cardinality constraints. In: Handbook

of Satisfiability, chap. 22, IOS Press, Amsterdam, pp 695–734
96. Sànchez L, van Helden J, Thieffry D (1997) Establishment of the dorso-ventral pattern dur-

ing embryonic development of Drosophila melanogaster: a logical analysis. J Theor Biol
187:377–389

97. Schiex T, Verfaillie G (1994) Stubborness: A possible enhancement for backjumping and
nogood recording. In: Proceedings of European Conference on Artificial Intelligence (ECAI),
pp 165–172

98. Schulte C, Stuckey PJ (2008) Efficient constraint propagation engines. ACM Trans Program
Lang Syst (TOPLAS) 31(1)

Connections and Integration with SAT Solvers 461

99. Schulte C, Tack G, Lagerkvist M (2006) Gecode. In: INFORMS Annual Meeting
100. Selman B, Kautz HA, Cohen B (1994) Noise strategies for improving local search. In:

Proceedings of National Conference on Artificial Intelligence (AAAI), pp 337–343
101. Selman B, Levesque HJ, Mitchell DG (1992) A new method for solving hard satisfiabil-

ity problems. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp 440–446

102. Seshia SA, Bryant RE (2005) Deciding quantifier-free presburger formulas using parameter-
ized solution bounds. Log Methods Comput Sci 1(2)

103. Stuckey PJ, Garcı́a de la Banda MJ, Maher MJ, Marriott K, Slaney JK, Somogyi Z,
Wallace M, Walsh T (2005) The G12 project: Mapping solver independent models to effi-
cient solutions. In: Proceedings of International Conference on Principles and Practice of
Constraint Programming (CP), pp 13–16

104. Thieffry D, Thomas R (1995) Dynamical behaviour of biological regulatory networks – ii.
immunity control in bacteriophage lambda. Bull Math Biol 57:277–297

105. Thomas R, D’Ari R (1990) Biological Feedback. CRC Press, Boca Raton, FL, USA
106. Thomas R, Kaufman M (2001) Multistationarity, the basis of cell differentiation and memory.

ii. logical analysis of regulatory networks in term of feedback circuits. Chaos 11:180–195
107. del Val A (1994) Tractable databases: How to make propositional unit resolution complete

through compilation. In: Proceedings of International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp 551–561

108. Van Hentenryck P (1999) The OPL Optimization Programming Language. MIT Press,
Cambridge, MA, USA

109. Van Hentenryck P, Michel L (2005) Constraint-Based Local Search. MIT Press, Cambridge,
MA, USA

110. Van Hentenryck P, Perron L, Puget JF (2000) Search and strategies in OPL. ACM Trans
Comput Log (TOCL) 1(2):285–320

111. Van Hoeve WJ, Katriel I (2006) Global constraints. In: Handbook of Constraint Program-
ming, chap. 6, Elsevier, Amsterdam

112. Walinsky C (1989) Clp(sigma*): Constraint logic programming with regular sets. In: Pro-
ceedings of International Conference on Logic Programming (ICLP), pp 181–196

113. Walsh T (2000) SAT v CSP. In: Proceedings of International Conference on Principles and
Practice of Constraint Programming (CP), Springer, Heidelberg, pp 441–456

114. Williams HP, Yan H (2001) Representations of the all different predicate of constraint satis-
faction in integer programming. INFORMS J Comput 13(2):96–103

115. Williams R, Gomes CP, Selman B (2003) Backdoors to typical case complexity. In: Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI), pp 1173–1178

116. Yunes T, Aron I, Hooker J (2009) An integrated solver for optimization problems. Tech. rep.
Working Paper

117. Zhang L, Madigan CF, Moskewicz MW, Malik S (2001) Efficient conflict driven learning in
boolean satisfiability solver. In: Proceedings of International Conference on Computer Aided
Design (ICCAD), pp 279–285

Bioinformatics: A Challenge to Constraint
Programming

Pedro Barahona, Ludwig Krippahl, and Olivier Perriquet

Abstract Bioinformatics is a rapidly growing field at the intersection of biology
and computer science. As such, it poses a wealth of problems, opportunities, and
challenges for both areas. This paper overviews some of these issues, with an
emphasis on those that seem most amenable to constraint programming (CP) ap-
proaches and where CP has made some progress. Since bioinformatics is tightly
focused on real-life applications, this paper does not expand on theoretical princi-
ples but, rather, tries to give an idea of the practical issues. At this light, the paper
briefly presents the selected problems together with the solutions found so far, that
illustrate the versatility of CP techniques that have been used in this area and the
need to integrate them with other complementary techniques to handle realistic
applications.

1 Introduction

Bioinformatics arose from the need to manage the large datasets of sequence
information generated by molecular biology research. From the outset, this interdis-
ciplinary field was strongly focused on practical applications, and that is still one of
its main features. As molecular biology grew from sequence analysis to structural
biochemistry, the scope of bioinformatics broadened to include molecular model-
ing, molecular dynamics, and macromolecular interaction simulations. Nowadays,
bioinformatics is still growing, ranging in applications from spectroscopy data pro-
cessing to biodiversity studies and the modeling of evolutionary processes, and in
techniques from simulated annealing to reasoning over ontologies. Of this large field
and diverse applications, this article will focus on some problems that seem most
amenable to constraint programming (CP) and declarative approaches and on some

P. Barahona (�)
Centro de Inteligência Artificial, Dep. de Informática, Universidade Nova de Lisboa,
2825 Monte de Caparica, Portugal
e-mail: pb@di.fct.unl.pt

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 14,
c� Springer Science+Business Media, LLC 2011

463

pb@di.fct.unl.pt

464 P. Barahona et al.

CP, and related, solutions that have been proposed so far. The goal is to provide an
overview of some interesting applications of CP in this area and to share the authors’
perspective on what may be the main challenges in this endeavor.

1.1 Data Sources

One of the most salient features of current bioinformatics is the abundance of data,
which is often overwhelming in both quantity and complexity. Taking bioinformat-
ics in a broad sense, in some areas, the information is proprietary and may be costly
to obtain. For example, this is the case in drug design, quantitative structure–activity
relationship (QSAR), and other areas that involve large financial investments from
private companies. In this paper, we will not address those data sources. Rather, we
will focus on freely available data on molecular biology, such as gene sequences,
protein structure, and metabolic pathways, as these are accessible to any academic
researchers who may wish to explore CP applications to bioinformatics. Still, one
should note that there is also a large amount of data and problems in the private sec-
tor, mostly with pharmaceutical companies. Where relevant, we shall mention the
most accessible and useful sources of data for researchers interested in those areas
where free databases are available.

1.2 About This Article

In the following five sections, we summarize aspects of different areas of bioinfor-
matics. Neither the topics chosen nor the aspects on which we focus are meant
to cover bioinformatics in a comprehensive manner. Rather, the selection aims
at bringing out those problems that the authors feel are more interesting for the
CP community. Section 1 covers the analysis of sequence data, such as sequence
comparison and pattern matching, but also includes evolutionary models, such as
phylogenetic trees, and population genetics problems. Strictly speaking, not all of
these involve sequence data. Phylogenetic trees can be calculated from phenotypes
and, in the example chosen for population genetics problems, the estimation of ge-
netic diversity from single nucleotide polymorphisms (SNPs), data can be obtained
from restriction fragment lengths instead of direct sequences. The decision to group
these problems together is not meant to express some clear partition but rather some
basic similarities both at the computational and biochemical level.

Section 3 is about modeling RNA structures. Since RNA structure is largely
dominated by base pairings, a good portion of this problem can be reduced to
more abstract and general problems involving graphs and finite domain variables.
Though there are open problems in these areas, there are several well-established
and efficient solutions using local search or dynamic programming algorithms. Nev-
ertheless, these problems are interesting because the problem domains are close to

Bioinformatics: A Challenge to Constraint Programming 465

the classical domains where CP is often applied. In fact, CP approaches have been
used in RNA structure modeling since even before CP became recognized as an
autonomous field.

Sections 4 and 5 address protein structure and interaction. Proteins are crucial
parts in life’s machinery, involved in most biochemical reactions, and are the ex-
pression of the organism’s genes. Proteins are thus a focus of interest (and funding)
in current bioinformatics and biochemistry research. The main challenge for CP here
is probably the integration of CP algorithms with the software and methods used by
this research community. The problems are hard to solve, and though there are suc-
cessful solutions using molecular dynamics, local search and other approaches, CP
seems to have a definite contribution to make in this area, if only it can be meshed
with the other applications necessary to make the jump from theoretical studies to
solving real-life problems. Section 4 is an overview of protein structure prediction
and determination problems, and Sect. 5 focuses the problem of modeling interac-
tions between proteins for which the structure is known.

Section 6 is about systems biology. Admittedly, the authors’ decision to in-
clude systems biology in bioinformatics would not meet consensual approval among
either the bioinformatics or the systems biology community. But from the perspec-
tive of the CP researcher, systems biology is part of the same broad problem of
applying computer science to solving biological problems. In systems biology, these
problems are the complex networks of interactions of which life is made, from gene
regulation to ecosystems but, in this paper, we focus on metabolic pathways and
gene regulation.

Finally, Sect. 7 concludes the paper by highlighting some common points of in-
terest and challenges with the application of CP technology to these diverse and
complex problems.

2 Sequence Analysis

The study of gene and protein sequences is ideally suited to CP, both because of
the power of CP to solve finite-domain combinatorial problems and because, in this
field, it is often possible to separate the abstract problem of processing sequences of
symbols from the more concrete, and often messier, issues of biological processes
and noisy data collection. However, sequence analysis was the original reason for
bioinformatics research, and there are well-established algorithms based on dynamic
programming (e.g., the Smith–Waterman algorithm [1] for sequence alignments,
and the Sankoff recursions in sequence complementarity matching for RNA struc-
ture prediction [2]) that, aided by specialized heuristics, can efficiently solve most
problems in this field. As a result, it is hard for CP solvers to compete with algo-
rithms such as FASTA [3] or BLAST [4].

Even so, there are some problems in sequence analysis where the versatility of CP
can be a determining advantage relative to existing approaches. For example, when-
ever one wishes to include the parameters that evaluate substitutions and deletions

466 P. Barahona et al.

into the problem itself [5] or to consider additional constraints based on prior knowl-
edge of conserved regions [6]. There are also specific related problems where the
declarative nature and expressiveness of CP can simplify the implementation. For
instance, the determination of the optimal dispensation ordering of nucleotides for
pyrosequencing, a technique where DNA is sequenced by coupling a light-emitting
reaction to the DNA-polymerase reaction. Each base in the sequence is deter-
mined by detecting the emission of light when the right nucleotide is dispensed,
and the dispensation order is important to make the process both faster and less
expensive [7].

Apart from specific applications involving more restricted data sources, such as
when working directly with teams sequencing new genes, the main data source
for gene and protein sequence analysis would be GenBank, an open-access gene
sequence database supported by the NIH [8]. GenBank contains approximately a
hundred million gene sequences with an average of a thousand base pairs each,
covering 140,000 different organisms. It also provides basic search features based
on BLAST, and several specialized adaptations of this algorithm to more specific
searches (e.g., primers, conserved domains, particular proteins, and so forth).

2.1 Phylogenetic Trees

Sequence analysis problems in bioinformatics are not restricted to sequence de-
termination or alignment. From that data, much can be inferred about the origin
of organisms and species. Phylogenetic trees, which represent the evolutionary re-
lationships between taxonomic groups, are often calculated from gene or protein
sequences. Or they can be constructed from phenotype descriptors, sets of states
assigned to characters observed in the taxonomic groups being studied, such as the
presence or absence of wings or a metabolic pathway. But, even in these cases, the
problem, at least computationally, is similar to generating these trees from sequence
data, since in both cases the goal is to distribute all sets of attributes in the way that
best represents their relationships according to given criteria.

Phylogenetic trees are usually calculated using algorithms that fall outside the
scope of this paper, such as Markov chain Bayesian inference or distance matrix
methods. However, there are promising results worth noting in the application of
CP related techniques to this problem. One example is to use a fundamental prop-
erty of rooted phylogenetic trees. Since each leaf represents a taxonomic group to
classify and each interior node a most recent common ancestor (mrca) of the subtree
that starts at that node, by labeling each interior node with a measure of how long
ago the mrca lived (or how distant it is from its current descendants) we obtain a
min-ultrametric tree, a tree for which the path from the root to any leaf goes through
nodes labeled in a strictly increasing order. Using this property as a constraint,
[9,10] approached the computation of phylogenetic trees as a constraint satisfaction
problem.

Bioinformatics: A Challenge to Constraint Programming 467

Answer-set programming has also been applied to phylogenetic trees. This form
of declarative programming, geared toward processing rules with constraints, was
used to enumerate phylogenetic trees for a set of taxa constrained to a maximum
specified number of incompatible characters [11]. Characters are considered incom-
patible with a phylogenetic tree, in the strict sense, if they appear more than once.
The reasoning is that it is more parsimonious to assume that all taxa that share a
common character do so because they share a common ancestor with that character.

Another example of applying answer-set programming is in assembling phylo-
genetic trees by combining phylogenetic quartets. Quartet-based phylogeny recon-
struction is a phylogenetic method in two steps. First, unrooted phylogenetic trees
are estimated for all combinations of four taxa in the set of taxonomic groups to
classify. In the second step, these quartets are combined to generate the complete
tree. If all quartets are available and correct, the algorithm is polynomial in time.
The problem arises when some quartets are ambiguous and thus cannot be gener-
ated with confidence or when the topology of some quartets are inconsistent with
each other and cannot all fit in the same tree. In this case, the problem becomes one
of minimizing the number of quartets that are rejected when assembling the tree, and
much harder to solve. This process was implemented using answer-programming by
combining the ultrametric tree constraint with the constraint that all used quartets
must be compatible [12].

2.2 Haplotypes and SNP

The genetic variation of a population is a bioinformatics area where constraint solv-
ing and optimization has been applied. Rather than analyzing the external features
of the individuals (their phenotypes), these studies focus instead on their genotypes
(the ADN of their chromosomes). More specifically, many studies concentrate on
variation in specific positions of the genome sequence, known as SNPs, where mu-
tations are known to have occurred. If not under selection pressure, one of the variant
tends to fixate, eventually, in the population, eliminating the polymorphism. Thus,
for most SNPs, there are only two different nucleotide bases present in a given
population.

Diploid individuals inherit one chromosome (or haplotype) from each of its par-
ents. Denoting by A and a the two alleles (the two different nucleotide bases) of an
SNP, an individual may inherit the combinations AA, aa, Aa, or aA. The latter two
cases (biallelic or heterozygous SNP) cannot be easily distinguished by current ex-
perimental sequencing techniques that may only distinguish the cases AA, aa, and
Aa or aA, that we will denote by 0, 1, and 2, respectively.

Given a set of m SNPs sites in some genomic block, all n individuals typically
present different genotypes (n � 3m). However, when a section of the genotype
includes relatively closely spaced SNPs, linkage disequilibrium is higher and re-
combination is less likely. Although a set of n genotypes is explained by at most
2n haplotypes, it can generally be explained also by a much lower number of

468 P. Barahona et al.

haplotypes, and this smaller number of haplotypes is a better measure of popula-
tion diversity. For example, the six genotypes 21212, 21110, 01112, 11212, 21211
can be explained by a set of only four haplotypes, 01110, 11011, 11110, and 01111,
suitably combined. Genotype 21212, for instance, can be explained by the combi-
nation of haplotypes 01110 and 11011.

The haplotype inference problem (also known as phasing) can then be stated as
follows: given a population of n individuals exhibiting a set of n genotypes find the
set of unique haplotypes that exist in the population and find the pair of haplotypes
that might exist in each individual, along with the respective probabilities.

The first computational approach to address this problem was Clark’s subtrac-
tion method [13]. It first creates a set G of all genotypes in the population. The
haplotypes that explain the genotypes in G with at most one biallelic SNP can be
deterministically inferred and are used to initialize a set H. Then, it selects a hap-
lotype from H and checks whether it can explain any of the genotypes in G. For
each of these genotypes, it creates the complementary haplotype that is added to H
and eliminates the genotype from G. The method proceeds until the genotype set G
becomes empty.

This greedy algorithm aims at keeping small the cardinality of the resulting hap-
lotype set. However, there are many possible orderings in which the haplotypes
are selected from set H only upper bound on the cardinality of the set H are ob-
tained, although certain heuristics (e.g., select the haplotype from H that explains
more genotypes in G) have been shown to yield tight upper bounds on the minimum
number of haplotypes.

In fact, assuming that nature is parsimonious, the haplotype inference problem
can be reformulated into a minimization problem. As proposed in [14], the pure
parsimonious haplotype inference (or haplotype inference by pure parsimony, HIPP)
consists of finding the set of minimal cardinality that explains the genotypes of a
population. The author then proposed an integer programming formulation and a
technique, referred to as RTIP, that reduces the problem size without jeopardizing
optimality.

The problem was shown to be NP-Hard in [15], who proposed a code (SDPHap-
ler) to find approximate solutions (this problem was shown to be APX-hard [16]).
Polynomial solutions were proposed, for instances, when all genotypes have at most
two heterozygous sites [17], and other “islands of tractability” were investigated in
[18]. For the general case, some IP based systems such as PolyIP [19] were de-
veloped with optimization techniques (e.g., cutting planes), adapted for the HIPP.
Alternatively, Clark’s reduction method was adapted to a branch and bound search
minimization algorithm [20].

In addition to other IP and branch and bound formulations exploiting different
techniques to improve efficiency, a constraint based system, SHIP, was proposed in
[21] that formulated HIPP as a SAT problem. The core algorithm basically encodes
a solution of the problem as a set of k haplotypes with O(n2m) constraints and
O(m2C nm), where n is the population size and m the number of SNPs, and proves
whether the problem is satisfiable. The base algorithm obtains an optimal solution
by iterating the size k of the haplotype set starting in some lower bound.

Bioinformatics: A Challenge to Constraint Programming 469

The authors present a number of improvements on the model, some of which
are common to RTIP to reduce the problem size and others meant to break some
symmetries. Of course, the computation of a good lower bound is of great impor-
tance in this problem and this is done by an approximate solution to a max-clique
in a graph encoding incompatibilities of the genotypes. This lower bound estimate
was subsequently improved [22] by solving an SAT problem through local search
(based on the SKC variant of WalkSAT). An extensive comparison of HIPP solvers
is presented in [23] that also compute tight upper bounds for the HIPP problem by
making Clark’s reduction algorithm less greedy in the inclusion of haplotypes in
set H (by a technique named delayed selection). Moreover, they present a solver,
RPoly, based on pseudo-boolean optimization and that uses an encoding similar to
that of PolyIP, but with some optimizations that allow a significant reduction on the
number of variables. The extensive performance comparison of a number of solvers
for the HIPP problem on a set of 329 problem instances clearly states that the ILP
approaches are significantly less efficient than the SAT (SHIP) and PBO (RPoly) ap-
proaches, by solving much less instances in 1,000 s (30% of the problem instances,
against 81% of SHIP and 94% by RPoly). Competitive results were obtained with
an answer set programming approach that relies on an underlying SAT solver simi-
lar to SHIP, which was also applied to HIPAG, a variation of the HIPP problem that
only takes into account biallelic genotypes [24]. Finally, the HIPP problem has been
addressed by a two level ant colony optimization approach which reportedly outper-
forms RPoly in the number of instances solved, but is in general much slower [25].

Although the various approaches seem to show an advantage in solving the HIPP
problem with some hybrid techniques, some issues remain regarding the practical
use of solutions to the HIPP problem. On the one hand, there may exist a large
number of solutions. Lynce et al. [23] computed the set of all solutions of a small
instance, SU100kb.25, with 34 genotypes and 15 sites, and found 48 different solu-
tions with 17 haplotypes, 14 of which are common to all solutions. Computing the
set of all solutions to the HIPP problem is #P-Complete which makes it very dif-
ficult to obtain the correct solution. Moreover, [26] have shown with experimental
evidence on true haplotype data (not computationally obtained, but experimentally
derived) that three of seven sets have solutions that are not parsimonious (in the
worst case, the true solution has 32 haplotypes compared to the 28 haplotypes of
the HIPP solution). The authors then propose to focus on the computation of back-
bones (the set of haplotypes that belong to all solutions found), namely those that are
implicit (the explicit backbones are easy to compute, and correspond to the initial
haplotypes selected in Clark’s reduction method).

3 RNA Structure

RNA molecules are generally transient messengers carrying genetic information
from DNA to the ribosome, where it is translated into proteins. For years, this
“Central Dogma” was even thought to hold universally, but it is now known that
many noncoding RNA (ncRNA) are directly functional in the cell, some even

470 P. Barahona et al.

playing roles similar to those of proteins. The growing number of RNA families
being discovered in the last decades [27] led to an increased interest in modeling
RNA structures.

RNA folding is not driven by the same forces that guide protein folding [28,29],
being dominated by the hydrogen bonds formed between complementary bases, so
its modeling follows different approaches from those deployed for proteins. The
base pairing in RNA can be represented by a graph, describing structural elements
such as stems and pseudoknots. RNA secondary structure is defined by the graph
of pairings between bases in the same RNA molecule. Secondary structure graphs
do not exactly cover the whole set of pairings, but a large portion of them that
can be drawn in the plane in a tree-like fashion. More precisely, there is a one-to-
one correspondence between secondary structures and rooted oriented trees, such a
restriction leading to very interesting mathematical properties [30]. Most RNA sec-
ondary structure elements involve several bases in a row pairing with another set of
contiguous bases running in the opposite direction along the RNA sequence. This ar-
rangement of stacked base pairs is called a stem, or an helix (due to its twisted form
in 3D), and one can imagine it as the RNA sequence running to one side, looping and
then coming back the other way with the two segments fitting together like a zipper.

Some elements, called pseudoknots, do not fulfill the definition of secondary
structure. In a pseudoknot, the two sets of contiguous bases zip together in the same
direction, a rarer configuration due to the need to twist the RNA chain in order to
accommodate this relative placement. As RNA folding is believed to be partially hi-
erarchical [31], this level of representation is not only useful for algorithmic reasons
but also corresponds to the biological assumption that RNA starts to fold driven by
these base pairings. Thus, the graphs of nucleotide contacts represent an important
aspect of the kinetics of RNA folding, even if they do not give the complete pic-
ture of its three dimensional structure. While these graphs of secondary structure –
structural elements stabilized by these local interactions between base pairs – are
generally computed with combinatorial and discrete methods, a more detailed de-
scription of the tertiary structure – the overall spacial configuration of the molecule
– is best tackled by geometric and continuous approximations methods.

In both cases, the related problems (structure prediction or display, structural ho-
mology finding, etc.) in the most general form are NP-hard and require adequate
strategies to be solved. However, only a few of these questions were modeled using
constraints, probably because, in the case of secondary structure, efficient polyno-
mial algorithms were found that can solve most instances of this problem in practice,
while, in the case of the tertiary structure, the number of known structures only
increased recently, and the problem of determining RNA tertiary structure has at-
tracted less interest from the research community in contrast with protein structures.

3.1 Questions Related to Secondary Structure

Secondary structure prediction is probably the problem that received most atten-
tion and to which a wider range of techniques were applied (for a rapid and

Bioinformatics: A Challenge to Constraint Programming 471

recent overview of structure prediction at different levels, see [32] for instance).
Disregarding the pseudoknot configurations, the ab initio prediction of RNA sec-
ondary structure by combinatorial optimization (maximizing the number of pairings
under certain rules or minimizing an energy function) is solvable via a low complex-
ity dynamic programming algorithm for a single sequence [33,34], or even for a set
of aligned sequences using stochastic context-free grammars [35] or other similar
approaches. As these solutions are very efficient, a CP formulation of the problem
would not be an improvement unless more is required.

In the case of SAPSSARN [36], which was one of the first attempts to introduce
constraints for RNA secondary structure prediction, the additional feature is inter-
activity. The authors propose a dynamic treatment of constraints during structure
prediction, where the computation of each predicted structure is interactive with the
user, who may add or remove constraints. The interaction allowed by a constraint
formulation of the question would not be possible during the computation if using
a dynamic programming approach. In a similar perspective, the same authors pro-
posed later, with RNASEARCH [37], a CP approach for RNA secondary structure
display in the 2D space that optimizes the layout of the tree-like secondary structure
of RNA – including pseudoknots – by trying to minimize stem overlaps.

Another source of interest in constraints is their expressive style. Their proxim-
ity to natural language leads to a direct formulation of a problem that may help
avoid being trapped in a rigid algorithmic formulation. This is the case with [38,39]
that takes advantage of the declarative nature of constraint network modeling for
RNA motif search. A set of conserved RNA features, called a signature, is defined
by a series of constraints. A set of template constraint types are defined to handle
sequence content, distances, and pair stacking in helices that model the usual struc-
tural elements (the approach is not restricted to secondary structure alone). As the
problem of finding RNA occurrences that satisfy a given signature is NP-complete
for sufficiently general signatures, the previous works traditionally developed two
approaches. The grammatical approach models the signature by a context-free
grammar, excluding pseudoknots, thus falling into a case where the search can be
performed by dynamic programming. Other approaches define the signature as a
set of interrelated motifs and perform an exhaustive search using pattern matching
techniques. The authors observe that a natural constraint network model formulation
emerges from the direct description of the problem: the variables representing the
target positions searched in the genomic sequence, the domains being intervals over
integers. The specific constraint types and potentially huge domain size call for an
adaptation of the usual CP schemes (filtering, backtracking) and for the creation of
dedicated reduction operators (a preprocessing of data using specific data structures
such as k-factor trees to speed up the search of potential occurrences). Functional
RNA are also often interacting with other ligands and the traditional methods are
unable to find RNA motifs in interaction with other molecules. The authors simply
define and consider a new type of constraint to model the interactions between dif-
ferent molecules. The introduction of a descriptive language, with the scope of the
description of new generations of RNA patterns, may have some similarities with an
earlier attempt for a programming language dedicated to RNA secondary structure

472 P. Barahona et al.

[40] that could not use at that time all the constraint techniques that were developed
during the last years. Both these works take full advantage of the handy declarative
nature of constraints.

Constraints may also appear as a heuristic reduction for a polynomial algorithm.
When several homologous sequences are available, but are not enough to compute a
good starting alignment, a possible strategy is to search for a common secondary
structure while aligning the sequences at the same time by maximizing a score
which reflects both the structure and the alignment. Such an alignment, respectful
of a (previously unknown) consensus structure, is called a structural alignment and
when dealing with two sequences, the related problem is usually termed pairwise
secondary structure prediction, or pairwise structural alignment. An early dynamic
programming solution was provided by Sankoff [2] but the high algorithmic com-
plexity of the exact recursion set he proposed makes them inapplicable on natural
sequences and calls for heuristic reductions. The method became popular and stimu-
lated a series of work trying to reduce the complexity. Part of the most recent works
[41,42] use alignment constraints, based for instance on nucleotide alignment poste-
rior probabilities. These constraints, defined over the possible structural alignments,
drastically reduce the computation requirements but do not really call for dedicated
CP techniques.

This reduction on the computationally demanding Sankoff algorithm implicitly
suggests that the two approaches – dynamic programming (for which there exists a
polynomial algorithm) and CP modeling – could be combined. Apart from the direct
use of the constraint technique apparatus, the frequent occurrence of its terminology
may lead to unexpected and potentially fruitful connections between remote areas.
Secondary structures are, for instance, a special case of outer-planar graphs, which
are graphs of low treewidth. Such tree decompositions are actually often used in CP
modeling, and it would not be surprising that migrations of these ideas would help
bridge CP techniques with different approaches such as dynamic programming.

3.2 Ab Initio 3D Structure Prediction

Less surprising is the use of constraints in three-dimensional structure prediction.
Beyond the direct descriptivity of the question by constraints, the CP formalism
also allows for the integration of information of very different nature, whatever their
origin. Concerning RNA ab initio 3D structure prediction, still not much has been
done and this should be related to the little number of available known structures,
explained by a rather recent increase of interest for RNA. The McSYM research
project, started at the University of Montreal in the 90s [43, 45], was the first work
addressing that question. MC-Sym builds 3D ribonucleic acid structures from low-
resolution data by combining symbolic and numerical computations. The symbolic
step generates all-atom sketches of 3D structures, using constraints derived from
different sources, such as nuclear magnetic resonance (NMR) spectroscopy data,
X-Ray crystallography, chemical modifications, secondary structure information,

Bioinformatics: A Challenge to Constraint Programming 473

and so forth. The conformational search space is defined by spatial relations among
RNA bases, which are encoded by transformation matrices that correspond to the
transformation of a base referential into another. The inference engine is imple-
mented as a Boolean constraint solver that accepts or refuses a structure whether or
not all the given and inferred constraints are satisfied or not. In a context where
the efforts are focused on a tighter connection between the different levels of
structural description [46], CP appears to be an easily extensible framework that
allows for the exploration and the discovery of more general structural rules. Two
decades ago, comparative sequence analysis had started to reveal novel tertiary in-
teractions between more than two bases [47], later confirmed with examples from
the accumulated knowledge of 3D structures. The elucidation of the relationships
between sequences and RNA motifs – in the broadest sense: recurrent structural el-
ements subjects to constraints [48] – becomes one of the current challenges in RNA
structure comprehension.

Although CP terminology is more flexible than alternative approaches, it usually
implies an NP-hard formulation of the problem. When a polynomial approach ex-
ists, as in RNA secondary structure calculations, the benefits then strongly depend
on the new types of information the constraints can handle. When, on the contrary,
the question is more directly expressible by constraints, it usually calls for dedi-
cated methods that can enrich the corpus of CP techniques while also providing
new domains of application.

4 Protein Structure Modeling

Modeling protein structures is a complex problem due to the size and flexibility of
these macromolecules, as proteins consist of long polymers of amino acid residues,
typically containing thousands of atoms, intricately folded in a structure determined
by physical and chemical interactions between these atoms and with the solvent,
usually water or a lipid membrane. One can conceive of two different categories of
protein modeling problems. One is protein structure prediction, where the structure
of the molecule is to be estimated from chemical and physical considerations. The
other is the determination of a protein structure given a set of constraints obtained
from experimental data, such as NMR spectroscopy.

The most important source of macromolecular structure information is the pro-
tein data bank (PDB), which contains nearly 60,000 structures, mostly of proteins
but also including nucleic acids and protein/nucleic acid complexes. It is an open
access database that can be accessed or downloaded from several organizations (see
the Worldwide PDB site at www.wwpdb.org). The structure files include the atomic
coordinates, the identification of each atom and monomer or ligand in a compound
dictionary that specifies additional structural data (such as chemical bonds), and of-
ten specific experimental information such as atom occupancy factors for X-Ray
crystallography structures or NMR constraints.

474 P. Barahona et al.

4.1 Structure Prediction

Protein structure prediction is generally seen as an optimization problem, the goal
being to find the structural configuration that minimizes the free energy of the
system. Since the system includes both the protein and all the solvent molecules
surrounding it, and since the free energy includes both enthalpy and the contribution
of entropy factors that are difficult to compute, this is a computationally intensive
problem. Furthermore, the assumption that the correct structure is at the global en-
ergy minimum seems not to hold universally, and may in some cases correspond to
a local minimum where the structure is retained during folding due to high energy
barriers [49]. Thus, the traditional approach to protein structure prediction relies on
molecular dynamics or simulated annealing, based on models of the physical prop-
erties of these macromolecules (ab initio structure prediction). It often resorts to
using supercomputers or networks to meet the large computational demands, one
of the most famous examples being the Folding@Home project [50]. More recently,
protein structure prediction has become dominated by methods that rely on identify-
ing structural features that the target protein has in common with the ever increasing
set of known protein structures. Even so, there have been advances in the application
of CP to these problems using lattice models of protein structure and interaction.

4.1.1 Lattice and HP Models

Despite its importance and the interest it generates, a definitive solution to the prob-
lem of predicting protein structures still eludes all research efforts and approaches
proposed over the last decades, both because of the difficulty in computing the free
energy of the system and the complexity of the structure. But, since proteins are
composed of chains of amino acids (more accurately amino acid residues) connected
by peptide bonds, the problem can be simplified if rather than considering protein
models at an atom level, proteins are modeled at the amino acid level. This way,
the variables represent amino acids, either their centers of mass or the alpha carbon
in the protein backbone, with the main difference being the way protein chain is
considered, either by following the backbone or the average of the atomic positions
at each amino acid residue. In both cases, these models are rather simplified repre-
sentations, since most physical and chemical properties depend on atoms or small
chemical groups and are difficult to assign to amino acids abstractions.

Still, a number of simplified models have been proposed (see [51] for an
overview) assuming some simplified characterization of the amino acids and plac-
ing them in some lattice structure. Among these models, the HP model [52] is worth
considering. In this simplified model, amino acids are labeled by their hydrophilic
nature, being classified as either hydrophobic (H) or as hydrophilic or polar (P).
Since the solvent is water, H amino acids tend to be packed in the interior of the
protein. The HP models this tendency indirectly by minimizing an energy function
modeled by the (negative) number of contacts between H amino acids that are
neighbors in the lattice.

Bioinformatics: A Challenge to Constraint Programming 475

The original problem was formulated for a two dimensional square lattice, but it
can easily be extended to a three dimensional cubic grid. In both the square and the
cubic lattice, the problem has been shown to be NP-complete (respectively in [53]
and [54]).

Although the problem was not formulated as a constraint problem and some al-
gorithms were used to solve it for not using CP technology (e.g., [55–59]), such
model can be adequately formulated as a finite domain constraint optimization prob-
lem: find the position of the amino acids (in the finite set of vertices of the lattice)
that satisfy some constraints (successive amino acids in the protein chain must be
neighbors, and no two amino acids can occupy the same position) and optimize the
objective function (number of contacts between H amino acids).

As such, [60] were the first to attempt to address this problem as a constraint
optimization problem with a cubic lattice. An interesting feature of this problem is
that it presents many geometric symmetries (namely rotations). To handle this and
other types of symmetries, the authors proposed what was claimed to be the first
declarative method that could be applied to arbitrary symmetries [61]. Among other
tests, the authors have shown that they could improve the number of search steps
and run times of one to two orders of magnitude to find optimal solutions in cubic
lattices for proteins of around 30 amino acids.

This model can be improved in two complementary forms, either by changing
the energy function or the lattice that is considered. The HPNX model [62] is an
extension of the HP model in the first direction. Now in addition to hydrophobic
(H) and polar (P) amino acids are classified as negatively charged (N) and neutral
hydrophilic (X), and each amino acid pair in contact has a weighted contribution to
the energy function (see Table 1, below). These models have been addressed by CP
[62], but they do not overcome some important drawbacks of the cubic lattice with
respect to structure prediction.

On the one hand, the model prevents, by design, that two amino acids with the
same parity in the protein chain establish a contact, which is unreasonable. More-
over, the right angles between amino acids are not very realistic. In fact, [63] has
shown that a face-centered cubic lattice, FCC, (a conformation that guarantees opti-
mal packing of spheres [64]) would better approximate the packing of amino acids
in a protein, and [65] have shown that the FCC lattice lead to root mean square de-
viations (RMSDs) of 1.78 Å with respect to the real conformation, rather than the
RMSD of 2.84 Å obtained with a cubic lattice.

Table 1 Comparison of the contact scores for the HP (left) and HPNX (right) models

H P

H �1 0
P 0 0

H P N X

H �4 0 0 0
P 0 1 �1 0
N 0 �1 1 0
X 0 0 0 0

476 P. Barahona et al.

Obtaining optimal solutions for the HP model on FCC lattices is very hard. In ad-
dition to various heuristic approaches (hydrophobic zipper [66], genetic algorithms
[67], chain-growth, [59] and approximate algorithms, [68]) a number of CP tech-
niques have been applied with significant success. An interesting model has been
proposed in [69] that rather than solving the structure determination problem di-
rectly, converts it into a threading problem by adjusting the amino acid sequence
to precomputed hydrophobic cores. They showed how to compute such hydropho-
bic cores for both cubic and FCC lattice models. In particular, they were able to
find maximally hydrophobic cores for the FCC lattice for up to 100 H amino acids
within seconds.

However, threading the sequences to the hydrophobic cores is still a difficult
problem. Again a CP approach was proposed [70], combining path constraints and
all-different constraints, to obtain a self-avoiding path constraint that was subse-
quently used in threading the amino acid sequences to the cores. The results obtained
for randomly generated proteins are quite satisfactory for small proteins (100% suc-
cess to proteins with 25 H amino acids with runs of 15 min) but the success rate
decays for longer proteins (only 50% success for proteins with 100 H amino acids).

A different approach to find minimal energy HP models in FCC lattices was pro-
posed in [71] that applied a tabu search metaheuristic to local search. However, the
authors have shown in [72] how to use CP techniques to improve good solutions pre-
viously found with tabu search in order to exploit such large neighborhoods (LNS –
large neighborhood search). For any solution (i.e., a sequence of n amino acids)
they randomly select an internal subsequence and perform a systematic search for
alternatives, keeping the structure of the prefix and postfix sequences. By adopting a
number of relevant modeling decisions (e.g., heuristics and redundant constraints),
they obtained quite good results in a set of benchmarks (the Harvard instances). In
particular, they describe how the LNS search rapidly improves the tabu search so-
lutions, but it must be noticed that the approach uses very substantial computing
power (60 Intel base, dual core, dual processor Dell Poweredge 1885 blade server)
running for a few seconds after a tabu search taking a few minutes. However, they
cannot find optimal solutions that [69] could find in some randomly generated se-
quences, finding instead solutions within 3–10% of the optimum in runs of a few
hours.

An improvement of the lattice models is explored in [73] where the authors use
more information, namely secondary structures and disulfide bonds as additional
constraints and subsequently replace the HP amino acid based model with an all
atom model to allow an effective measurement of the RMSD between some known
proteins and the predicted models (PDB code 1YPA, with RMSD of 9.2A within
116.9 h of computation).

The large computational time required led to the proposal of a specialized solver
for lattice models [74]. The authors define special purpose encodings for the do-
mains to improve propagation in a number of specialized constraints useful in these
problems (e.g., a constraint, next, to enforce a sequence of amino acids and various
constraints that model the spatial distance of amino acids and are useful to han-
dle contacts between spatially near amino acids). Then, the authors present COLA,

Bioinformatics: A Challenge to Constraint Programming 477

a constraint solver that exploits parallel search in constrained optimization problems
and assess its performance in the protein structure determination. The authors also
address the specification of rigid groups useful for the modeling of secondary struc-
tures in protein structures, which were addressed in a later implementation [75].
A pure CP was shown to be improved by its hybridization with local search, and
discuss how to improve performance in future work.

Their experiments show significant speed-ups over general purpose constraint
solvers such as SICStus and GNU Prolog, but are not directly comparable with
the HP model, as they adopt a more comprehensive set of values for any pair of
amino acids in contact, without abstracting them into the H and P categories. The
comparisons made with protein structures taken from the PDB are also made in
terms of the minimal energy solutions obtained, rather than the difference between
spatial conformations obtained (e.g., in RMSD) making it hard to assess the results
obtained.

HP and lattice models seem a promising way of modeling this problem. One po-
tential advantage of lattice models is the possibility of coupling local search methods
in parallel with constraint propagation, improving the enumeration heuristics, and
the efficiency with which desired solutions can be found. Experience with PSICO
(see below) suggests that without the simplicity and geometric elegance of lattice
models this coupling of local search with constraint propagation is not feasible,
since the domains of the atomic coordinates are too large at the early stages of the
computation to allow the application of any energy function. Thus, without the lat-
tice models, it seems that one must separate the process in two stages, constraint
processing followed by local search for refining the structures.

However, and despite the promising results obtained with lattice models, it seems
that, by themselves, these models are not competitive in real-life folding problems.
The best predictors in the critical assessment of techniques for protein structure pre-
diction (CASP) favor very different approaches, such as threading algorithms [76]
or metaservers aggregating predictions from ab initio calculations and ROSETTA
fragment insertion [77, 78]. The overview of the first decade of CASP, in 2005,
classifies three different types of structural prediction problems [79]. When there
is a good sequence similarity between the target protein and a protein, or proteins,
with known structure, it is possible to infer the structure of the target by homology
modeling followed by suitable refinement with local search. If the target protein is
more distantly related to known structures, it is still possible to identify folds, local
structures that are stable and common to several proteins, and to use this informa-
tion to assemble the target structure. Finally, even when no good homology match
is found, the large number of structures known makes it possible to choose structure
fragments that are good candidates for assembling the target structure, based on sec-
ondary structure propensity and sequence compatibility. This is the approach used
in the highly successful ROSETTA algorithm, and the current trend in protein struc-
ture prediction. Still, prior to this shift to template-based optimization algorithms,
there is some mention of lattice models being used in conjunction with ab initio
computations to try to predict protein structure [80] that may possibly be useful in
practice when integrated with these more informed methods.

478 P. Barahona et al.

4.2 Protein Structure Determination

From a CP perspective, structure determination from experimental data can be seen
as conceptually different from structure prediction, since the latter aims at finding
an energy minimum, or simulating folding dynamics, while the former must pro-
vide structural models consistent with constraints derived from experimental data.
However, the classical approach in the biochemistry community has been to treat
structure determination also as an optimization problem, using well established al-
gorithms for simulated annealing and molecular dynamics (e.g., the widely used
DYANA/CYANA software [81]). In this approach, the experimental constraints are
simply treated as additional factors in the function to optimize. This has the advan-
tage of making the method implicitly more resistant to experimental noise, but at
the cost of not using the constraints to narrow down the search space.

Although X-Ray crystallography is the main experimental technique for the de-
termination of macromolecular structures, in this case, the experimental data contain
the positions of all atoms, requiring only the deconvolution of the X-Ray diffraction
patterns in order to obtain the structure. Computationally, the more interesting prob-
lem is with NMR spectroscopy, which accounts for approximately 15% of known
protein structures. This technique provides distance constraints between atom pairs
and angular constraints on the relative orientation of interatomic bonds, and it is
from this set of constraints that the structure must be computed. One example of the
application of CP to process these structural constraints is processing structural in-
formation with CP and optimization (PSICO). This algorithm considers the atomic
coordinate triplets as variables with a continuous domain defined by solid shapes
defined by sets of cuboid volumes, due to the convenient property of retaining that
shape when intersected with other similarly shaped volumes. With this represen-
tation of the atomic coordinate domains, it is possible to propagate interatomic
distance constraints efficiently [82], and even include more generic geometric con-
straints on the relative coordinates of rigid groups or their orientation with respect
to a torsion angle [83].

The propagation of distance constraints is easy to illustrate for the simpler case of
an upper bound on the distance between two atoms. This is one kind of information
that can be obtained from NMR experiments. If two atoms can be, at most, separated
by a distance of d, then each atom must be within a neighborhood of distance d of
the other atom. These neighborhoods can be computed from the domain of each
atom and the constraint propagated by intersecting the domain of each atom with
this d neighborhood of the other atom. Lower bounds on the allowed distances can
be propagated by adding cuboid volumes contained in the domain of each atom to
identify regions from which the atom must be excluded in order to respect these
constraints.

This approach led to some promising results. For example, with proteins ranging
from 400 to 700 non-Hydrogen atoms and 10,000–15,000 constraints, the solu-
tions found had RMSD values from 2 to 3 Å, taking a few minutes to calculate
[82]. In addition, there were promising preliminary results with the propagation of
higher order constraints defining rigid groups of atoms and their spatial relations.

Bioinformatics: A Challenge to Constraint Programming 479

These constraints are propagated by calculating which parts of the domain of each
atom are inaccessible to that atom due to the constraint imposed by the group and
the domains of the other atoms. These groups range from small parts of amino acid
residues joined by bonds that are free to rotate to large secondary structure elements
such as alpha helices, and the results on randomly generated groups and groups
simulating secondary structure elements showed that this algorithm can improve
pruning significantly even for small groups. For larger groups, it is even faster than
propagating the set of binary distance constraints on those atoms [83].

5 Protein Interaction

Modeling how two proteins interact (protein docking) is a similar problem to the
modeling of protein structures in the sense that the goal is to obtain a macromolec-
ular structure. However, the starting point is the known structures of the interacting
partners, so the problem is not so much predicting the folding of the molecules in-
volved but, rather, how two known structures best fit together. Although this fit is
governed by intermolecular “forces,” such as electrostatics and entropy contribu-
tions from the solvent, since the interaction is not covalent, it is very weak at any
single point, requiring a large surface of contact to stabilize the protein complex.
Thus, most protein docking algorithms rely on a geometric filtering stage that iden-
tifies those configurations with the largest contact surface.

A widely used class of protein docking algorithms is based on the fast Fourier
transform (FFT) computation of correlation matrices [84]. In this approach, each
docking partner is represented as a three-dimensional matrix in which numerical
values distinguish between the surface regions (e.g., positive value), the core of
the molecule (e.g., negative value), and the empty surrounding space (zero). The
correlation matrix indicates the total score for each relative placement of these ma-
trices, thus distinguishing the configurations with a large surface contact from those
with smaller surface contacts or forbidden overlaps with the core regions. Thought
the FFT algorithm is efficient in time, of O(n3log.n/3), the need to represent all
grids as numerical matrices results in a significant memory footprint. In practice, a
CP approach based on a simpler representation of the protein shapes can perform
the calculations in less time and with orders of magnitude lower memory require-
ments [85].

This algorithm, BiGGER, represents each protein shape as a grid, conceptually,
just like in the FFT approach. However, the grids defining core and surface regions
for each partner are encoded as sets of line segments that, for each (Z,Y) pair, de-
fine the arrays of cells corresponding to surface and core regions along the X axis.
Unlike FFT, the search does not involve computing all the correlation matrices but
actually searching through the spatial configurations by placing one partner in a
position relative to the other. The encoding of the grids makes it easy to restrict
the search space by maintaining bounds consistency on the constraints that forbid
core–core overlaps, and those requiring a minimum value for the surface–surface

480 P. Barahona et al.

overlaps (branch and bound) or, and more significantly, restrict the search space
to configurations consistent with geometric constraints obtained from experimen-
tal data.

Empirical results suggest that knowing even a few residues in one partner that
must be in contact with the other protein partner may be enough, in most cases, to
guide the search to the right complex structure [86], and this can be done efficiently
in a flexible manner by enforcing a cardinality constraint on a subset of a given
set of potential contacts [85]. The reasoning is that experimental data on residue
contacts are usually obtained from either the perturbation of the residue during the
interaction (as measured by spectroscopy) or the perturbation in the formation of
the complex by mutating or otherwise modifying one residue. Such data suggest
that the residue is at the interface, but there are other possibilities that give the same
results, such as conformational changes in the protein, either during the formation
of the complex or due to the changes in that residue. The ability to specify a set of
candidate contacts, each of which can be between one residue of one partner and
any residue of the other, and to impose a constraint on how many of those must be
verified, allows the user to model quite naturally the uncertainty in the experimental
data. For example, given ten potential interface residues, one may require that at
least five of those, not specified in advance, must be present at the interface of the
model complex. As is characteristic of CP, apart from helping to narrow down the
right structures, this also reduces the search time (by about an order of magnitude).

This approach contrasts with the classical approach in the biochemistry com-
munity which is, much like with the determination of protein structures, to include
the experimental constraints as additional factors in an energy function that is being
minimized. HADDOCK [87,88] (High Ambiguity Driven biomolecular DOCKing),
for example, is a docking application based on local-search NMR assignment and
structure calculation software that predicts protein complexes by minimizing the
violation of geometric constraints included in the global function.

As with protein structure modeling, it seems that the potential of CP techniques
has not yet been fully appreciated by the biochemistry community. The problem, we
feel, lies mostly with the difficulty of crossing the gap between theoretical studies
and proof-of-concept of the algorithms, and the actual application to real-life prob-
lems, as the latter requires a tighter collaboration with the researchers involved in
those problems and the integration of the CP solvers in the often large and complex
processing pipeline that goes from the data to the final refined model.

6 Systems Biology

Systems biology is a new area in biology which aims at understanding biologi-
cal systems at the higher level of the interactions between all components [89]. In
particular, biological networks of gene expression and regulation, protein interac-
tion, metabolic pathways, and such processes required for life. The development of
computational models plays a key role in systems biology [90], and a number of

Bioinformatics: A Challenge to Constraint Programming 481

techniques have been used to model different levels of abstractions of such systems.
In Boolean networks for gene regulation, only the presence or absence of substances
is represented and the systems dynamics is modeled by state transitions: variables
denote whether a gene is expressed and Boolean functions relate variables in dif-
ferent states [91]. A richer expressiveness is obtained in qualitative networks [92]
where multivalued variables are used to represent various degrees of, for example,
gene expression. Other computational formalisms developed for systems verifica-
tion have also been applied to biological systems such as Petri-nets [93], p-calculus
[94], and other types of spatial/temporal calculi [95]. Still, the continuous behavior
of biological systems is better captured by means of sets of ordinary equations. Var-
ious systems exist that exploit one or more of these formalisms, such as BIOCHAM
[96] that allows the representation and reasoning about these systems at different
levels of detail ranging from Boolean networks, to temporal logics and differential
equations.

Despite existing proposals for incorporating differential equations as first order
constraints in the CP paradigm [97], its use in modeling biological processes has
been limited [98] given the problems of scalability of the approach.

Nevertheless, CP has been applied to specific problems in systems biology. For
example, [99] analyses and proposes extensions to the concurrent CP paradigm (CC)
to model systems biology problems. They analyze Timed CC, Timed Default CC,
and Hybrid CC extensions (Hcc), and show how the latter can express differential
equations and initial value problems in addition to algebraic constraints. This allows
the modeling of system behavior by means of a sequence of alternating point and
interval phases. The authors also show how to model a number of key aspect of
biological systems in Hcc constructs, such as Reaching thresholds, time and con-
centrations, kinetics, gene interaction, and stochastic behavior, and illustrate these
concepts in a comprehensive example of cell differentiation for a population of X.
Laevis cells.

An alternative to modeling changes is to model steady state behavior of molecu-
lar networks. These can now be represented by means of graphs, and reason about
the behavior of the networks by finding some patterns of reaction as paths in these
graphs. This was a major motivation for the development of CP(Graphs) [100],
where a new domain (graphs) was introduced in the CP and a set of (global) con-
straints where specified (such as path and reachable constraints). Some filtering
algorithms where proposed and tested in the analysis of metabolic networks, namely
for finding metabolic pathways that are in use in the cell, given a list of reactions
detected with DNA chips.

Answer-set programming has also been applied to metabolic pathway and gene
expression data, as a declarative approach to processing the rules and constraints
that characterize these problems. One example is the check for consistency between
metabolic pathway databases, which store the theoretical or presumed knowledge
about the reactions occurring inside an organism, and experimental data, such as
gene expression data derived from DNA microarrays or direct measures of metabo-
lite levels in the organism [101]. This approach processes the rules implied by the
presumed influence of regulator genes and the assumed reaction pathways with the

482 P. Barahona et al.

experimental data about metabolite levels and gene expression. If data and theo-
retical assumptions are inconsistent, this method also identifies minimal subsets of
regulatory influences that can account for the inconsistency.

Another example is an action language designed to describe metabolic pathways
or other biological networks, their changes and queries about such systems [102].
This language describes the properties that change and the actions that cause such
changes, and has the important property that any description in this language be
automatically translated into an answer-set program and take advantage of the effi-
ciency of answer-set solvers.

In essence, systems biology poses several challenges to CP and declarative ap-
proaches in general, by addressing system dynamics problems. Some problems fall
somewhat outside the main stream of current CP research but open the possibility of
addressing new domains and exploit constraint technology (e.g., filtering) to these
domains.

As for data sources, a good starting point would be the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [103], a knowledge base combining information
on metabolic pathways, functional hierarchies that include genes, proteins, drugs,
diseases and organisms, and several annotated databases on genes and ligand com-
pounds. From a CP perspective, perhaps the most interesting part of KEGG would
be the PATHWAY database, describing metabolic pathways, which are chains of
biochemical reactions catalyzed by enzymes and regulated by the activity of the
genes that code for each enzyme. The study of metabolic pathways combines graph
problems with dynamic systems modeled by differential equations, both fields of
interest to CP researchers.

7 Conclusion

This article is an overview of the application of CP technology to the broad area
of bioinformatics, an application domain with increasing importance due to the ad-
vances in biological and biochemical experiments, and the huge amount of data that
must be subsequently processed. In this paper, we have shown that the relationship
between CP and bioinformatics holds in both directions. On the one hand, CP pro-
gramming has shown its potential in many bioinformatics applications, and for some
specific models and problems, we have provided examples where it is the most ap-
propriate computational approach to deal with them. Nevertheless, we acknowledge
that realistic applications in bioinformatics (as well as in other application areas),
given the wealth of questions raised by the ever increasing amounts of experimental
data being collected, usually demand a variety of computational techniques. When
attempting to solve realistic bioinformatics problems, a comprehensive analysis of
these problems should thus be made, both by computer scientists and biologists and
biochemists, to determine whether CP can effectively be used, in which subprob-
lems and how these relate to the whole application.

Bioinformatics: A Challenge to Constraint Programming 483

Once such cautions are taken, one must recognize that the computational prob-
lems that bioinformatics poses, some of which were addressed in the previous
sections, have been a source of inspiration for CP. They have provided new domains
where CP can be applied, of which we can refer lattice structures, spatial cuboids,
graphs, and even temporal domains (differential equations and timed events). The
complexity of such problems demand the exploitation of advanced CP techniques
to improve search and a number of them have been already applied, namely various
types of global constraints, specialized heuristics, the interaction of CP and local
search, and the exploitation of some forms of parallel execution. We can only fore-
see that, given the increasingly importance of bioinformatics and the rich problems
it poses, this trend can only continue in the years to come.

References

1. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol
Biol 147:195–197

2. Sankoff D (1985) Simultaneous solution of the RNA folding, alignment and protosequence
problems. SIAM J Appl Math 45:810–825

3. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science
227(4693):1435–1441

4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search
tool. J Mol Biol 215(3):403–410

5. Roland HC Yap (2001) Parametric sequence alignment with constraints. Constraints
6(2–3):157–172

6. Will S, Busch A, Backofen R (2008) Efficient sequence alignment with side-constraints by
cluster tree elimination. Constraints 13(1–2):110–129

7. Carlsson M, Beldiceanu N (2004) Multiplex dispensation order generation for pyrosequenc-
ing. In: CP’2004 workshop on CSP techniques with immediate application, Toronto, Canada,
27 September 2004

8. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004) GenBank: update.
Nucleic Acids Res 32(Database issue):D23–D26

9. Gent IP, Prosser P, Smith BM, Wei W (2003) Supertree construction using constraint pro-
gramming. In: Proc CP2003. Lecture notes in computer science, vol 2833. Springer, Berlin

10. Moore NC, Prosser P (2008) The ultrametric constraint and its application to phylogenetics.
J Artif Intell Res 32:901–938

11. Brooks DR, Erdem E, Erdogan ST, Minett JW, Ringe D (2007) Inferring phylogenetic trees
using answer set programming. J Automat Reason 39(4):471–511

12. Wu G, You JH, Lin G (2007) Quartet-based phylogeny reconstruction with answer set pro-
gramming. IEE/ACM Trans Comput Biol Bioinform 4(1):139–152

13. Clark AG (1990) Inference of haplotypes from PCR-amplified samples of diploid popula-
tions. Mol Biol Evol 77:111–122

14. Gusfield D (2003) Haplotype inference by pure parsimony. In: 14th Annual symposium on
combinatorial pattern matching (CPM03). Springer, Heidelberg, pp 144–155

15. Huang Y-T et al (2005) An approximation algorithm for haplotype inference by maximum
parsimony. J Comput Biol 12:1261–1274

16. Lancia G et al (2004) Haplotyping populations by pure parsimony: complexity of exact and
approximation algorithms. INFORMS J Comput 16:348–359

17. Cilibrasi R et al (2005) On the complexity of several haplotyping problems. In: 5th Workshop
on algorithms in bioinformatics (WABI 2005). Springer, Mallorca, pp 128–139

484 P. Barahona et al.

18. Sharan R et al (2006) Islands of tractability for parsimony haplotyping. IEEE/ACM Trans
Comput Biol Bioinform 3:303–311

19. Brown D, Harrower I (2006) Integer programming approaches to haplotype inference by pure
parsimony. IEEE/ACM Trans Comput Biol Bioinform 3(2):141–154

20. Wang L, Xu Y (2003) Haplotype inference by maximum parsimony. Bioinformatics
19:1773–1780

21. Lynce I, Marques-Silva J (2006) Efficient haplotype inference with Boolean satisfiability. In:
AAAI conference on artificial intelligence, pages 104109, July 2006

22. Lynce I, Marques-Silva J, Prestwich S (2008) Boosting haplotype inference with local search.
Constraints 13(1):155–179

23. Lynce I, Graa A, Marques-Silva J, Oliveira AL (2008) Haplotype inference with boolean
constraint solving: an overview. In: Proceedings of 20th IEEE international conference on
tools with artificial intelligence (ICTAI 08), Dayton, OH, 2008

24. Erdem E, Erdem O, Türe F (2009)In: HAplo-ASP: haplotype inference using answer set
programming, LPNMR09. Lecture notes in computer science, vol 5753. Springer, Berlin, pp
573–578

25. Benedettini S, Roli A, Di Gaspero L (2008) Two-level ACO for haplotype inference under
pure parsimony. In: ANTS conference, 2008, pp 179–190

26. Climer S, Jäger G, Templeton AR, Zhang W (2009) How frugal is mother nature with hap-
lotypes? Bioinformatics 25(1):68–74

27. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet
2(12):919–929

28. Tinoco I, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281
29. Moore PB (1999) The RNA folding problem. In: The RNA world, 2nd edn. CSHL Press,

Cold Spring Harbor, pp 381–401
30. Waterman MS (1995) RNA secondary structure. In: Introduction to computational biology.

Chapman and Hall, London, pp 327–343
31. Wu M, Tinoco I (1998) RNA folding causes secondary structure rearrangement. Proc Natl

Acad Sci USA 95:11555–11560
32. Capriotti E, Marti-Renom MA (2008) Computational RNA structure prediction. Curr Bioin-

form 3(1):32–45
33. Nussinov R, Jacobson AB (1980) Fast algorithm for predicting the secondary structure of

single stranded RNA. Proc Natl Acad Sci USA 77:6309–6313
34. Jaeger JA, Turner DH, Zuker M (1989) Improved predictions of secondary structures for

RNA. Proc Natl Acad Sci USA 86:7706–7710
35. Knudsen B, Hein J (1999) RNA secondary structure prediction using stochastic context-free

grammars and evolutionary history. Bioinformatics 15(6):446–454
36. Gaspin C, Westhof E (1995) An interactive framework for RNA secondary structure predic-

tion with a dynamical treatment of constraints. J Mol Biol 254(2):163–174
37. Gaspin C (2001) RNA secondary structure determination and representation based on con-

straints satisfaction. Constraints 6(2–3):201–221
38. Thebault P, de Givry S, Schiex T, Gaspin C (2006) Searching RNA motifs and their inter-

molecular contacts with constraint networks. Bioinformatics 22(17):2074–2080
39. Zytnicki M, Gaspin C, Schiex T (2008) Darn! a weighted constraint solver for RNA motif

localization. Constraints 13(1–2):91–109
40. Billoud B, Kontic M, Viari A (1996) Palingol: declarative programming language to de-

scribe nucleic acids secondary structures and to scan sequence databases. Nucleic Acids Res
24(8):1395–1404

41. Harmanci AO, Sharma G, Mathews DH (2007) Efficient pairwise RNA structure prediction
using probabilistic alignment constraints in dynalign. BMC Bioinformatics 8:130

42. Dowell RD, Eddy SR (2006) Efficient pairwise RNA structure prediction and alignment us-
ing sequence alignment constraints. BMC Bioinformatics 7:400

43. Major F, Turcotte M, Gautheret D, Lapalme G, Fillion E, Cedergren R (1991) The com-
bination of symbolic and numerical computation for three-dimensional modeling of RNA.
Science 253:1255–1260

Bioinformatics: A Challenge to Constraint Programming 485

44. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Bridging the gap in RNA struc-
ture prediction. Curr Opin Struct Biol 17(2):157–165

45. Gautheret D, Major F, Cedergren R (1993) Modeling the threedimensional structure of RNA
using discrete nucleotide conformational sets. J Mol Biol 229:1049–1064

46. Shapiro BA, Yingling YG, Kasprzak W, Bindewald E (2007) Bridging the gap in RNA struc-
ture prediction. Curr Opin Struct Biol 17(2):157–165

47. Gutell RR, Power A, Hertz GZ, Putz EJ, Stormo GD (1992) Identifying constraints on
the higher-order structure of RNA: continued development and application of comparative
sequence analysis methods. Nucleic Acids Res 20:5785–5795

48. Leontis NB, Lescoute A, Westhof E (2006) The building blocks and motifs of RNA architec-
ture. Curr Opin Struct Biol 16(3):279–287

49. Lazaridis T, Karplus M (2000) Effective energy functions for protein structure prediction.
Curr Opin Struct Biol 10(2):139–145

50. Shirts MR, Pande VS (2000) Screen savers of the world, unite! Science 290:1903–1904
51. Dill KA, Bromberg S, Yue K, Fiebig KM, Yee DP, Thomas PD, Chan HS (1995) Principles

of protein folding – a perspective of simple exact models. Protein Sci 4:561–602
52. Lau KF, Dill KA (1989) A lattice statistical mechanics model of the conformational and

sequence spaces of proteins. Macromolecules 22:3986–3997
53. Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M (1998) On the

complexity of protein folding. J Comput Biol 5(3):423–466
54. Berger B, Leighton T (1998) Protein folding in the hydrophobic-hydrophilic (HP) model is

NP-complete. J Comput Biol 5(3):27–40
55. Yue K, Dill KA (1996) Folding proteins with a simple energy function and extensive confor-

mational search. Protein Sci 5(2):254–261
56. Abkevitch VI, Gutin AM, Shakhnovich EI (1995) Impact of local and non-local interactions

oin thermodynamics and kinetics of protein folding. J Mol Biol 252:460–471
57. Unger R, Moult J (1996) Local interactions dominate folding in a simple protein model.

J Mol Biol 259:988–994
58. Hinds DA, Levitt M (1996) From structure to sequence and back again. J Mol Biol

258:201–209
59. Bornberg-Bauer E (1997) Chain growth algorithms for HP-type lattice proteins. In: Proceed-

ings of RECOMB97. 1st International conference on Research in computational molecular
biology, pp 47–55

60. Backofen R (1998) Constraint techniques for solving the protein structure prediction prob-
lem. In: Proceedings of CP98. Lecture notes in computer science, vol 1520, pp 72–86

61. Backofen R, Will S (2002) Excluding symmetries in constraint-based search. Constraints
7(3):333–349

62. Backofen R, Will S, Bornberg-Bauer E (1999) Application of constraint programming tech-
niques for structure prediction of lattice proteins with extended alphabets. Bioinformatics
15(3):234–242

63. Bagci Z, Jernigan RL, Bahar I (2002) Residue coordination in proteins conforms to the clos-
est packing of spheres. Polymer 43:451–459

64. Cipra B (1998) Packing challenge mastered at last. Science 281:1267
65. Park BH, Levitt M (1995) The complexity and accuracy of discrete state models of protein

structure. J Mol Biol 249:493–507
66. Cooperativity in protein-folding kinetics. Proc Natl Acad Sci USA 90:1942–1946 (1993)
67. Unger R, Moult J (1993) Genetic algorithms for protein folding simulations. J Mol Biol

231:75–81
68. Agarwala R, Batzoglou S, Dancik V, Decatur SE, Farach M, Hannenhalli S, Muthukrishnan

S, Skiena S (1997) Local rules for protein folding on a triangular lattice and generalized
hydrophobicity in the HP-model. J Comput Biol 4(2):275–296

69. Backofen R, Will S (2006) A constraint-based approach to fast and exact structure prediction
in three-dimensional protein models. Constraints 11(1):5–30

70. Backofen R, Will S (2001) Fast, constraint-based threading of HP-sequences to hydrophobic
cores. In: Proceedings of CP01. Lecture notes in computer science, vol 2239, pp 494–508

486 P. Barahona et al.

71. Cebrian M, Dotu I, Van Hentenryck P, Clote P (2008) Protein structure prediction on the face
centered cubic lattice by local search. In: Proceedings of AAAI08, pp 241–245

72. Dot I, Cebrin M, Van Hentenryck P, Clote P (2008) Protein structure prediction with large
neighborhood constraint programming search. In: Proceedings of CP08. Lecture notes in
computer science, vol 5202, pp 82–96

73. Dal Pal A, Dovier A, Fogolari F (2004) Constraint logic programming approach to protein
structure prediction. BMC Bioinformatics 5:186

74. Dal Pal A, Dovier A, Pontelli E (2007) A constraint solver for discrete lattices, its paraleliza-
tion and application to protein structure prediction. Software Pract Ex 37(13):1405–1449

75. Cipriano R, Pal AD, Dovier A (2008) A hybrid approach mixing local search and constraint
programming applied to the protein structure prediction problem. In: Proceedings of WCB08,
Paris, May 2008

76. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics
9:40

77. Fischer D (2006) Servers for protein structure prediction. Curr Opin Struct Biol 16:178–182
78. Bonneau R, Tsai J, Ruczinski I, Chivian D, Rohl C, Strauss CE, Baker D (2001) Rosetta in

CASP4: progress in ab initio protein structure prediction. Proteins 45(S5)119–126
79. Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure

prediction. Curr Opin Struct Biol 15:285–289
80. Skolnick J, Kolinski A, Kihara D, Betancourt M, Rotkiewicz P, Boniecki M (2001) Ab initio

protein structure prediction via a combination of threading, lattice folding, clustering, and
structure refinement. PROTEINS Suppl 5:149–156

81. Gntert P, Mumenthaler C, Wthrich K (1997) Torsion angle dynamics for NMR structure
calculation with the new program DYANA. J Mol Biol 273:283–298

82. Krippahl L, Barahona P (2002) PSICO: solving protein structures with constraint program-
ming and optimisation. Constraints 7:317–331

83. Krippahl L, Barahona P (2003) Propagating N-ary rigid-body constraints. In: Francesca Rossi
(ed) CP’2003: principles and practice of constraint programming, October 2003. Lecture
notes in computer science, vol 2833. Springer, pp 452–465

84. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molec-
ular surface recognition: determination of geometric fit between proteins and their ligands by
correlation techniques. Proc Natl Acad Sci USA 89(6):2195–2199

85. Krippahl L, Barahona P (2005) Applying constraint programming to rigid body protein dock-
ing. In: van Beek P (ed) CP’2005: principles and practice of constraint programming. Lecture
notes in computer science, vol 3709. Springer, Berlin, pp 373–387

86. Krippahl L, Moura JJ, Palma PN (2003) Modeling protein complexes with bigger. Proteins
52(1):19–23

87. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein–protein docking
approach based on biochemical and/or biophysical information. J Am Chem Soc 125:1731–
1737

88. de Vries SJ, van Dijk ADJ, Krzeminski M, van Dijk M, Thureau A, Hsu V, Wassenaar T,
Bonvin AMJJ (2007) HADDOCK versus HADDOCK: New features and performance of
HADDOCK2.0 on the CAPRI targets. Proteins 69:726–733

89. Kitano H (ed) (2001) Foundations of system biology. MIT Press, Camdridge
90. Bower JM, Bolouri H (eds) (2001) Computational modeling of genetic and biochemical net-

works. MIT Press, Camdridge
91. Kauffman SA (1993) The origins of order. Oxford University Press, New York
92. Thieffry D, Thomas R (1998) Qualitative analysis of gene networks. Pac Symp Biocomput

3:77–88
93. Reddy VN, Mavrovouniotis ML, Liebman ML (1993) Petri net representation in metabolic

pathways. Proc Int Conf Intell Syst Mol Biol 1:328–336
94. Regev A, Silverman W, Shapiro E (2001) Representation and simulation of bio-chemical

processes using the pcalculus process algebra. Pac Symp Biocomput 6:459–470
95. Cardelli L (2005) Abstract machines of systems biology. Trans Comput Syst Biol 3737:

145–168

Bioinformatics: A Challenge to Constraint Programming 487

96. Calzonne L, Fages F, Soliman S (2006) BIOCHAM. An environment for modeling biological
systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807

97. Cruz J, Barahona P (2003) Constraint satisfaction differential problems. In: Proceedings of
CP03. Lecture notes in computer science, vol 2833, pp 259–273

98. Cruz J, Barahona P (2005) Constraint reasoning in deep biomedical models. Artif Intell Med
34:77–88

99. Bockmayr A, Courtois A (2002) Using hybrid concurrent constraint programming to model
dynamic biological systems. In: ICLP02. Lecture notes in computer science, vol 2401,
pp 85–99

100. Dooms G, Deville Y, Dupont P (2005) CP (Graph): introducing a graph computation domain
in constraint programming. In: Proceedings of CP05. Lecture notes in computer science,
vol 3709, pp 211–225

101. Gebser M, Schaub T, Thiele S, Usadel B, Veber P (2008) Detecting inconsistencies in large
influence networks with answer set programming. In: International conference on logic pro-
gramming, 2008

102. Dworschak S, Grell S, Nikiforova VJ, Schaub T, Selbig J (2008) Modeling biological net-
works by action languages via answer set programming. Constraints 13(1–2):21–65

103. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic
Acids Res 28:27–30

Sports Scheduling

Michael A. Trick

Abstract Sports scheduling has been an extremely active area of research over the
past twenty years. One important reason for this is that the computational methods
for creating playable sports schedules have improved enough to be useful to real
sports leagues. A key aspect to these computational improvements has been the de-
velopment of hybrid methods that combine two or more of integer programming,
constraint programming, metaheuristics, or other core optimization approaches.
While there is a broad range of models and applications in sports scheduling, there
have been two main classes of problems studied: break minimization problems and
travel minimization problems. I illustrate how hybrid methods can be used for these
two problems, as well as provide some comments on other, lesser studied problems.
I also give some directions for further research in this area.

1 Introduction and Scope

Sports scheduling has been an extremely active area of research over the last decade
or so. There have been dozens of papers written describing successes both in the-
ory and in practice. Many of these successes have been on integer or constraint
programming approaches, or approaches that combine those methods.

There are a number of reasons for this interest in sports scheduling. First, sports is
economically important. The thirty-two teams in the National Football League (US)
are each worth more than US$1 billion; the league earns more than US$6 billion
per year in television rights fees alone. European football teams can have similar
valuations (such as Manchester Uniteds value of US$1.8 billion). Fans pay billions
to attend sporting events; television networks pay billions to broadcast them; and
sports web pages are some of the most popular on the Internet. While a beautiful

M.A. Trick (�)
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: trick@cmu.edu

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 15,
c� Springer Science+Business Media, LLC 2011

489

trick@cmu.edu

490 M.A. Trick

schedule may not have the same effect as, say, a beautiful goal to win the World
Cup, the schedule does have a significant effect on the income of sports teams and
leagues as well as the satisfaction of the fans.

Second, sports scheduling research is challenged at roughly the size of practical
sports leagues. Most sports leagues have between 8 and 30 teams; most algorithms
for creating schedules begin to have difficulty in the 8 to 20 team range. This makes
for great interaction between theory and practice: leagues want schedules at exactly
the size that we can, with some improvements in our algorithms, provide them. And
the relatively small size of challenging instances makes the problem appealing to
work on: significant computer resources are not needed just to handle the data.

Third, integer and constraint programming models differ in how they model
sports schedules. In an integer program, a typical variable would be x[i,j,t],
a binary variable for which 1 corresponds to team i playing at team j in period t .
A constraint programming model for this would have variables plays[i,t]. The
domain for this variable would be all the teams; i playing at j in time t would
correspond to having this variable take on value j . With such different variables,
integer and constraint programming formulations often take on quite different
forms, making it an interesting research question to compare, contrast, and perhaps
combine the two models.

And fourth, there is no denying that there is more general interest in a sports
schedule than, say, a building construction schedule. For a researcher, there is a
great reward when teams are playing due to the outcome of some optimization.

One drawback to sports scheduling is that there are about as many sports schedul-
ing problems as there are sports leagues. Every league has different requirements
and objectives. While this might lead to a plethora of algorithms and approaches
with no overriding lessons, that has not been the case: there are some general in-
sights that we have gained from the last decade of work.

The purpose of this paper is not to be a complete survey. For that, Kendall et al.
[30] have put together an excellent annotated bibliography on scheduling in sports.
Other recent surveys include those by Rasmussen and Trick [41], Drexl and Knust
[14], and Briskorn [7].

Rather, the purpose of this paper is to highlight the role integer programming,
constraint programming, metaheuristics, and combinations thereof has played in
advancing the theory and practice of sports scheduling. Practically every approach
in this area has appeared in some form in a sports scheduling problem. This survey
brings out that.

To illustrate this breadth of technique, I will concentrate on two major sports
scheduling problems: The Constrained Break Optimization Problem and the Trav-
eling Tournament Problem. Both of these problems have been the subject of many
papers in the last years, and both have proven to be very challenging problems.
I will follow those up with a selection of other, generally less studied, problems,
which illustrate further the role that IP, CP, and metaheuristics play in this area.
In the concluding section, I will outline some challenges and opportunities for
the field.

Sports Scheduling 491

2 Constrained Minimum Break Scheduling

As a basis, we will consider a scheduling problem over n sports teams (n is often
assumed to be even). Pairs of teams will meet in games. A round robin tourna-
ment is a tournament where all teams meet all other teams a fixed number of times.
For a single round robin tournament, this number is one; for a double round robin
tournament, this number is two; and so on.

Games in the tournament are scheduled in slots where each team plays at most
one game in a slot. If n is even, then a single round robin tournament can be sched-
uled in n � 1 slots, with each team playing exactly one game per slot; an odd n

requires at least n slots. A compact schedule is one that uses the minimum number
of slots. If a team does not play in a slot, it is said to have a bye.

For the problems we look at, each team has a venue, and games are played at the
venue of one of the two participating teams, called the home team. The other team is
then the away team for this game. Normally, for a double round robin tournament,
the schedule is required to be balanced: for every pair, one game between them
is at one venue and the other is at the other. For a single round robin tournament,
balanced means simply that the deviation between the number of home games for a
team versus the number of away games for a team is not more than 1.

The sequence of home games, away games, and byes that a team plays during
the tournament is known as its home away pattern. For many leagues, finding good
home away patterns is key to finding good schedules. For some leagues, one key
aspect is a break. A break occurs when a team plays at home in consecutive slots
or plays away in consecutive slots. An ideal schedule would have no breaks: the
team would play HAHAHAHA: : :. It is clear that in a round robin schedule, not
every team can have no breaks, since there are only two such home away patterns,
one beginning with H and another beginning A, and teams with the same pattern
cannot play each other. de Werra [58] showed that n � 2 breaks were required for
single round robin tournaments, and gave a constructive technique for creating such
a schedule.

If the goal were simply to create minimum break schedules, de Werra’s work
essentially answered the question. His constructions are extremely fast and can be
applied to problems of practically any size. Certainly, schedules for thousands of
teams could be generated in a matter of seconds.

For most leagues, however, there are additional constraints, even when minimiz-
ing breaks is of paramount importance. Rasmussen and Trick [41] outline a number
of these constraints, dividing them as follows:

1. Place constraints. Constraints ensuring that a team plays home or away in a
certain slot.

2. Top team and bottom team constraints. Special considerations for teams known
or suspected to be particularly strong or weak.

3. Break constraints. Limits on where breaks may occur.
4. Game constraints. Requirements that particular games occur (or do not occur) in

particular slots.

492 M.A. Trick

5. Complementarity constraints. Requirements that particular teams do not both
play at home in a slot.

6. Pattern Constraints. Limits on the home away patterns requiring or precluding
certain patterns.

7. Separation Constraints. Limits on how closely two teams can play against each
other.

In addition, there may be costs or profits associated with having a particular game
in a particular slot, giving an objective function to be maximized.

Adding these sorts of constraints and objective leads to a constrained minimum
break problem (CMBP).

Ideally, one would simply formulate CMBP as an integer or constraint program
and solve it. This approach has been explored by a number of researchers, including
Henz, Müller and Thiele [27], Trick [50], and Briskorn and Drexl [10]. While some
types of problems are solvable with these approaches, current approaches generally
require excessive time even for problems with just ten or so teams.

2.1 Multiple Step Approach

To attack the CMBP, then, there have been a number of papers that use a decom-
position approach. This sports scheduling problem naturally decomposes into four
steps and, although the order of the steps vary and some steps are combined, these
four steps are used in almost all solution methods for solving variations of the con-
strained minimum break problem. The four steps are:

Step 1 Generate patterns.
Step 2 Find a pattern set for placeholders.
Step 3 Find a timetable for placeholders.
Step 4 Allocate teams to placeholders.

To illustrate these phases, and to show how various constraints can be embedded
in them, we will go back to the work of Nemhauser and Trick [38] in scheduling a
college basketball conference.

At that time, the Atlantic Coast Conference basketball league consisted of nine
teams, generally in the south-eastern United States. A perennial powerhouse, the
league had lucrative television contracts, a rabid fan base, and coaches with strong
views on how the schedule affected the success of their teams. Scheduling up to that
time had been done manually, a two-week process that resulted in good schedules.
Could schedules be generated faster and at higher quality?

Nemhauser and Trick adopted the four steps given above. They were not the first
to do so. Russell and Leung [45] had used a similar approach a few years earlier for
a minor league baseball league as did Scheuder [48] for Dutch football.

For the ACC problem, we began by generating all feasible home/away/bye pat-
terns. For this problem, there were many requirements on the schedule (pattern
constraints in the above list): it needed to be mirrored, teams could not play three

Sports Scheduling 493

consecutive weekends at home or away, and so on. It turned out that there were
only 38 feasible patterns for the nine teams to play. These were found by enumer-
ating the 2,038 possible patterns and discarding the infeasible ones. This completed
step 1.

Step 2 involved finding sets of nine patterns that might form a feasible schedule.
Since the schedule was compact, each time slot consisted of four teams at home, four
away teams, and one team with a bye. While this is not sufficient to define a feasible
pattern set, no complete characterization of feasibility is known. This was solved
via integer programming, adding “no-good” constraints to generate all pattern sets.
There were 17 pattern sets, which completed step 2.

For step 3, we generated all timetables again by integer programming. Here,
the variables are binary variables x[i,j,t], for team i plays at j during slot t .
These timetables are created for each of the 17 pattern sets. Again, “no-goods” were
added to ensure the generation of all timetables. There were 826 timetables found,
completing step 3.

The final step is to replace the “placeholders” with actual teams. Up until now,
the teams were simply numbered 1–9. In this phase, it was decided that, for instance,
team 3 is DUKE, team 4 is UNC, and so on. This was done by complete enumeration
of the 9! possibilities for each of the 826 timetables. It is in this phase that most of
the idiosyncratic constraints are added. For instance, it was wanted that Duke and
UNC not be played consecutively by any other team (both teams were strong at the
time, so it was felt to be unfair to have to play both in succession). So any schedule
that had the two consecutively was eliminated. With the list of constraints, there
were 17 feasible schedules. We chose three to show to the ACC and the ACC then
chose one to play.

The complete enumeration in the final step was, perhaps, a strange choice to
make. Surely, we could have created an integer program for this, couldn’t we? A
natural way to model the final step was as a quadratic assignment problem, and that
approach was taken by Schreuder [48] years earlier. But for this league’s problem,
even with a quadratic assignment objective, formulating a number of the constraints
was difficult. So, we went with a complete enumeration.

Very shortly after publication of this paper, Martin Henz [25] showed that con-
straint programming could be used for each of the steps and, in particular, could
decrease the computation time for Step 4 from 24 h to just a few seconds. This
paper, originally written a month after the Nemhauser and Trick paper, finally ap-
peared in Operations Research three years later. Even with this delay, this paper was
the first constraint programming paper to appear in the flagship operations research
journal. Since that time, there have been a number of constraint programming papers
published in Operations Research.

The ACC problem is no longer useful as a benchmark. Between faster computers
and better algorithms, it is possible to formulate and solve the entire problem as a
constraint program, obviating the need for the multiple steps. The Sports Scheduling
Group, a company formed by Nemhauser and Trick, use a single constraint program
to schedule the ACC and other sports leagues.

494 M.A. Trick

There are still many cases where the multiple step approach is appropriate, and it
is often used in practical league scheduling ([16] for instance) due to its simplicity
and ease of implementation.

On the algorithmic side, there has been much interest in developing alternative
techniques to solve either individual steps or multiple steps at once. For instance,
Schaerf [47] considered a scheduling problem where constraint programming was
used in step 4. Zhang [59] showed how to formulate the steps as satisfiability prob-
lems, and applied that approach to a different college basketball conference. Drexl
and Knust [14] show how many of the constraints in these sports scheduling prob-
lems can be handled as resource constrained scheduling problems, bringing another
type of solver into consideration.

Rasmussen and Trick [41] developed an approach that mixed up the steps. Rather
than generating all pattern sets, followed by all timetables, and then all schedules,
they first found one pattern set and then tried to generate timetables from that. If a
timetable was found, then a schedule was developed for that timetable. If, however,
no timetable was found, then a constraint was generated to feed back to the previous
step. The constraint could be as simple as a “no-good” (“do not use this pattern set”)
to a more complicated constraint (“Do not use this set of 3 patterns”). In the worst
case, this approach is simply the multiple step approach done in a different order.
If the constraints are strong enough, however, they can preclude the generation of
useless pattern sets or timetables. This is an example of a logic-base Benders ap-
proach [28], which we will see again in the next section. This approach proved to
be much faster than the standard multiple step approach for a variety of constrained
minimum break problems. This approach was used by Rasmussen to schedule the
Danish football league [40].

2.2 Schedule then Break

It is also possible to do the steps in a completely different order. When Steps 3 and 4
are done before Steps 1 and 2, the approach is known as a “schedule then break”
approach. First, it is known who plays whom when, and then the venues are chosen
so as to minimize breaks (or some other objective).

In a “schedule then break” approach, the first phase is to find a schedule without
home/away assignments. For the first phase, [27] looked at constraint program-
ming approaches to this phase. Their most significant work was to develop an
arc-consistent propagation method based on non-bipartite matching (correspond-
ing to Regin’s work on bipartite matching approaches to the all-different
constraint). Since every time slot in a sports scheduling problem is a non-bipartite
matching problem, the improved propagation is needed to effectively generate
schedules. Trick [49] compared this approach to an integer programming model.
In general, integer programming outperforms constraint programming when an
objective is considered, but CP is better at identifying infeasibility.

The second phase of a “schedule then break” approach is to determine the
home/away patterns relative to the assigned games. This problem was introduced by

Sports Scheduling 495

Régin [43] who provided a constraint programming approach to the break problem.
This was followed by Trick [49] who showed that an appropriate integer program
could solve larger instances than the constraint program. This set off a flurry of activ-
ity that well illustrates the range of approaches that can be used in sports scheduling
problems. Elf, Jünger, and Rinaldi [19] showed a relationship to the maximum cut
problem and applied their excellent integer programming cutting plane system to
that problem, solving large instances very quickly. Miyashiro and Matsui linked
this problem to semidefinite programming [37] and also showed the polynomial-
ity of the special case of determining whether at most one break per team was
possible [36]. On the structural side, Post and Woeginger [39] and Brouwer, Post,
and Woeginger [11] were able to give tight bounds on how many breaks might be
needed for particular schedules.

A somewhat different approach has been taken in a series of papers by Briskorn
and Drexl [8, 9] and Knust and Lücking [31]. In this work, the requirement to have
at most one break per team is a hard constraint, and the objective is to minimize a
cost function based on when teams play each other.

2.3 Future Directions

Constrained Break Minimization Tournaments have formed the basis for many prac-
tical league schedules and for a tremendous amount of research. It has proven to be
a good test-bed for the wide variety of methods in integer programming, constraint
programming, and combinations thereof. Despite this, there are, I believe, a number
of interesting directions for researchers to consider:

1. Non Round Robin Scheduling. Most of the work to date has involved single or
double round robin scheduling. Not every league has that structure, so it would
be interesting to know what works on more general game numbers.

2. Better results on non-mirrored schedules. de Werra showed that for a mirrored
double round-robin tournament 3n � 6 breaks were required. What if the tour-
nament does not have to be mirrored but there was a separation requirement
between the games between any two opponents? If there was no separation
requirement, then n� 2 breaks suffice, but the value is not known even for sepa-
ration of 2 (no repeaters in the language of the Traveling Tournament Problem).

3. Better handling of costs. The papers by Briskorn and Drexl and Knust and
Lücking have a nice, general cost structure, but the requirement of a minimum
number of breaks is very strong, particularly in the context of place constraints.
Can this be generalized to allow breaks at a penalty or to have a bound on the
number of breaks?

4. Non compact scheduling. Essentially, all the work has been done on compact
schedules. There are interesting non-compact scheduling problems (in the United
States, both professional basketball and professional hockey have noncompact
schedules). What is the right way to handle these sorts of problems?

496 M.A. Trick

3 Traveling Tournament Problem

The Traveling Tournament Problem (TTP) was inspired by work done by Trick with
Major League Baseball (USA). Trick, together with his partner, baseball executive
Doug Bureman, had worked with Major League Baseball since 1996 to create better
schedules.

Major League Baseball (MLB) is a league of thirty baseball teams spread
throughout the United States and Canada. With more than US$3 billion in annual
revenues and an average team value of US$286 million, baseball is a large business
in the sporting world. The schedule is also one of the largest of any sport. Each team
plays 162 games over the course of the 182 day season. This gives a total of 2,430
games to be scheduled. Fortunately, the effective size of the schedule is somewhat
smaller since teams will generally play two to four games against the same oppo-
nent on consecutive days in a “series” of games. Teams currently play 52 series in a
season, so the league schedule is effective to schedule 780 series. This is somewhat
simplified further since MLB has two sub-leagues: the American League with 14
teams and the National League with 16 teams. Except for six series per team, teams
play within their leagues. So the National League problem is to schedule 16 teams
over 46 time slots, and the American League problem is 14 teams over 46 time slots.
Even with these simplifications, these are large scheduling problems.

A key aspect of MLB’s schedule is the travel teams undertake. Because the sched-
ule is so full and the United States is so large, teams do not return to their home city
in between games. Instead, they stay in the city of the game during a series and then
travel to the next city if there are consecutive away series. So if the Pittsburgh team
plays 3 games in New York, then 4 games in Miami, and then 3 games in Atlanta,
the Pittsburgh team would travel from Pittsburgh to New York to Miami to Atlanta
before returning to Pittsburgh. One key objective to MLB is to minimize the total
amount of travel. The alternative objective of minimizing deviation of travel among
the teams, which might seem fairer, is not liked. Given the geography of the teams,
teams in the center of the country (Chicago and that area) can, in minimum distance
schedules, travel half the distance of a team on the West Coast, like Seattle. A mini-
mum deviation schedule will simply have Chicago travel extra to bring its travel up
to that of Seattle, which makes for an unattractive schedule.

Working against a wish for minimum travel is a need to have good flow to the
schedule. With few exceptions, each team will play two series in a week. MLB
strongly prefers that teams spend not more than two weeks at home or two weeks
away due to fan interest, wear-and-tear on the plays, and other concerns. So teams
cannot simply embark on an efficient tour of all the other cities: they must return
home after at most four series. In fact, MLB has a strong preference that teams
spend no more than three consecutive series at home or three consecutive series
away. MLB and the teams also do not like to have single series at home or on the
road due to the logistical and marketing problems such series cause. Ideally, all
homestands would be two or three series, as would be all road trips.

MLB has many other requirements on the schedule. For instance, no team may
be at home or on the road three consecutive weekends; teams must play half their

Sports Scheduling 497

weekends at home; teams cannot begin or end the season with three away series; and
so on. Further, individual teams may have requirements and requests. While teams
generally own their own stadium or at least have first rights to any date, there are
some concerts and other activities that may take precedence, making the stadium un-
available for a home game on particular dates. Teams also have preferences for play-
ing either home or away on major holidays based on other activities in their cities.

This description gives only a hint of the objectives and constraints that go into
creating MLB’s schedule. For more than twenty years, MLB’s schedule was cre-
ated by a husband and wife team Henry and Holly Stephenson. Starting with the
2005 schedule, MLB’s schedule has been created by a small company, the Sports
Scheduling Group (SSG), consisting of Bureman, Trick, George Nemhauser, and
Kelly Easton. SSG has provided schedules for five of the six seasons 2005–2010
(the remaining season’s schedule was provided by the company Optimal Planning
Solutions with techniques also based on operations research).

MLB’s schedule, while challenging, does not make for a good research bench-
mark for a number of reasons:

1. MLB has no clear objective function. In its full form, the constraints lead to
a clearly infeasible problem. Much of the skill in creating a playable schedule
is in trading off violations of constraints, ensuring no team has an unplayable
schedule.

2. There is just one instance per year, with little variation in problem size or com-
plexity.

3. MLB would like to keep certain aspects confidential, including the requests and
requirements of the teams. Teams may make certain requests for reasons that are
not yet public. For instance, if the team knows a star player is to retire, they may
request a particular matchup or timing of that player’s final home game. Making
the full problem public would compromise that confidentiality.

To offset these disadvantages, Easton, Nemhauser, and Trick created a prob-
lem class called the Traveling Tournament Problem (TTP). This problem abstracts
out the key issues of MLB’s problem without including all the detail of the “real”
problem.

The TTP is defined as follows:

Input: n, the number of teams; D an n by n integer distance matrix; L, U integer
parameters.

Output: A double round robin tournament on the n teams such that

� The length of every home stand and road trip is between L and U inclusive, and
� The total distance traveled by the teams is minimized.
� If i plays at j in slot k, then j does not play at i in slot k C 1.

The parameters L and U define the tradeoff between distance and pattern con-
siderations. For L D 1 and U D n � 1, a team may take a trip equivalent to a
traveling salesman tour. For small U , teams must return home often, so the distance

498 M.A. Trick

traveled will increase. For much of the work in the literature L D 1 and U D 3,
corresponding roughly to the requirements of MLB.

The last constraint is a “no-repeater” requirement: most of the work has included
the requirement but some of the published literature does not.

Example 1. NL6 is an instance over n D 6 teams. Its distance matrix D is

0 745 665 929 605 521
745 0 80 337 1090 315
665 80 0 380 1020 257
929 337 380 0 1380 408
605 1090 1020 1380 0 1010
521 315 257 408 1010 0

If we label the teams ATL, NYM, PHI, MON, FLA, and PIT, respectively, (the
names come from MLB cities from the year 2000), the optimal TTP solution for
L D 1 and U D 3 is

Slot ATL NYM PHI MON FLA PIT

0 FLA @PIT @MON PHI @ATL NYM
1 NYM @ATL FLA @PIT @PHI MON
2 PIT @FLA MON @PHI NYM @ATL
3 @PHI MON ATL @NYM PIT @FLA
4 @MON FLA @PIT ATL @NYM PHI
5 @PIT @PHI NYM FLA @MON ATL
6 PHI @MON @ATL NYM @PIT FLA
7 MON PIT @FLA @ATL PHI @NYM
8 @NYM ATL PIT @FLA MON @PHI
9 @FLA PHI @NYM PIT ATL @MON

with distance traveled of 23,916.

The TTP has proven to be a remarkably challenging problem. Despite significant
effort, until 2008 (nine years after the problem was first announced), the instance
above was the largest instance solved to provable optimality. Currently, the largest
instance (with non-structured D) solved to provable optimality is the 10 team NL10
instance.

There are a number of properties of the TTP that make it a good challenge for
computational work:

1. Instances can be generated of whatever size desired.
2. The data requirements for an instance are not extensive.
3. There are different variants that can be explored by varying L and U or ignoring

the “no-repeater” requirement.
4. Different structures on D can make the problem easier or harder.
5. While very small (4 team and 6 team) instances are easy, even small problems

such as 8 team instances provide a challenge.

Sports Scheduling 499

The TTP has also been a very good test-bed for experimenting with integer
programming, constraint programming, metaheuristics, and various combinations.
Since 2001, there has been a repository of solution values at http://mat.tepper.cmu.
edu/TOURN that tracks the best upper and lower bounds found to date for the TTP
and its variants.

3.1 Exact Approaches

A natural approach to this problem would be to use formulations like that in the
previous section: integer programs with binary variables x[i,j,t] being 1 if i

plays at j in timeslot t or constraint programs with variables plays[i,t] taking
on value j in that case. Unfortunately, such formulations have not been successful
in attacking the TTP. In CPAIOR 2005, Trick [51] reported on experiments with
the integer programming formulation. For the NL6 example, the “natural” integer
programming formulation for NL6 gives an initial linear relaxation value of 2,186
(the optimal value is more than 10 times that value). Days of computation were
needed to close the gap.

In that same paper, Trick reported on a better formulation for this problem
that harkened back to branch-and-price approaches. Instead of a variable for
every game in every slot, Trick proposed a variable for every road-trip. So
trips3[i,i1,i2,i3,t] would correspond to a binary variable that is 1 if
and only if team i visits team i1 in slot t , i2 in t C 1, and i3 in t C 2 (there would
be similar variables for length 1 and length 2 road-trips). Such a formulation has
far more variables but both the objective and constraints are much simpler than
the “natural” formulation. The result is a model that solves much faster. The initial
relaxation value for NL6 is 21624.7, and the model is solved in minutes with current
optimization codes.

This approach can be seen as a simplification of the first approaches proposed
by Easton, Nemhauser, and Trick [17, 18]. In that approach, there is a variable for
each “tour” or complete schedule for a team. The large number of tours requires a
branch-and-price approach. In this approach, there is a master problem that tries to
choose the best set of tours, choosing one tour per team. This is typically an integer
program. The subproblem then tries to find better tours to add to the master problem,
using the dual values from the linear relaxation to the master problem. For the TTP,
the subproblem can be well formulated as a constraint program. More details of this
sort of CP-based branch-and-price can be found in the tutorial [18].

For many years, this approach was the only successful complete approach to the
TTP. With this approach, the authors were able to solve NL8 (unfortunately without
the “no-repeater” constraint, making their work incomparable to other work), albeit
on a 20 machine parallel cluster with days of computation time.

Irnich [29] extended and enhanced this approach by exploiting the network struc-
ture of the subproblem. By formulating this as a shortest path problem over an
expanded network, he is able to generate solutions to the subproblem much faster.

http://mat.tepper.cmu.edu/TOURN
http://mat.tepper.cmu.edu/TOURN

500 M.A. Trick

Further enhancements in this careful implementation (with credit given to Ulrich
Schrempp) lead to a much faster approach than the one given by Easton, Nemhauser,
and Trick and was the first to solve NL8 with the no-repeater constraint.

3.2 Lower Bounds

One key concept introduced in [17] was a lower bound called the Independent Lower
Bound (ILB). It is possible to calculate, for each team i , the minimum amount of
travel i would have to do independent of the other teams’ schedules. One way to do
this is to generate all roadtrips for i and find the minimum distance set that contains
all other teams: this is a straightforward integer or constraint program. The ILB is
then the sum of each team’s minimum travel. For the problem sizes of interest, the
ILB can be calculated in essentially no time.

Other than the bounds one gets from branch-and-bound, there has been little
success in improving on this lower bound. Urrutia, Ribeiro, and Melo [55] noted that
for some sizes, one can argue that not every team can travel the minimum distance
so the lower bound can be slightly improved.

Benoise et al. [6] in CPAIOR 2001 created a single constraint program for the
entire problem. By relaxing a single global constraint, the problem broke into pieces
equivalent to the problems solved by the independent lower bound. Costs were mod-
ified by adopting a lagrangian optimization approach to violations of the relaxed
constraint. The modified costs led to different costs for the individual team prob-
lems, leading to improved lower bounds.

Cheung [13] further improved the independent lower bound for the mirrored TTP
using a combinatorial, or logic-based, Benders decomposition approach [28]. In a
mirrored TTP, the schedule is made up of two halves: the first n � 1 slots and the
last n � 1 slots. The schedules in the two halves are identical with the exception of
the venue of each game, which is reversed in the second half.

In a Benders approach, the model has two types of variables: master variables (x)
and subproblem variables (y). The master problem consists of the x variables along
with any constraints that only depend on x. The subproblem consists of variables y

along with all constraints that depend on y or on both x and y. The master problem
is solved to get a candidate master solution x0. The subproblem is then solved with
the x variables fixed to x0 to get solution y0. The solution to the overall problem is
.x0; y0/. In addition to y0, the subproblem generates a constraint for the master prob-
lem that says, essentially, “To find a better solution, x must satisfy this constraint”.
In traditional Benders’ approaches, this constraint is formed from the dual values of
the subproblem. In logic based Benders’ approach there is much more flexibility in
the constraint. A simple constraint is the “no-good” constraint that says x ¤ x0: in
order to get a better solution, choose something other than x0.

In the TTP as formulated by Cheung, the variables in the master problem cor-
respond road trips. For each team, a set of road-trips is generated (minimizing
distance traveled), so the initial solution to the master problem is simply the set

Sports Scheduling 501

of trips that form the independent lower bound. The subproblem then tries to
schedule the chosen trips. If the subproblem is able to schedule them, then the
resulting solution is the optimal solution to the TTP. Otherwise, a set of mutu-
ally infeasible trips is generated, and a constraint is added to the master problem
prohibiting that set. This is repeated until the subproblem is feasible. Along the
way, each solution to the master problem gives a lower bound on the optimal TTP
solution. In this way, Cheung was able to provide excellent lower bounds to the
mirrored TTP.

Mitchell, Trick, and Waterer [35] took this idea and applied it to the full TTP.
Like Cheung, they noted that the subproblem becomes much more difficult to solve,
but they were able to generate some new lower bounds for some of the instances.

Perhaps, the most exciting recent work in this area came in the CPAIOR 2009
conference, where Uthus, Riddle, and Guesgen [57] used DFS� (a variant on depth-
first-search where bounds are kept on possible solutions) to attack this problem.
In this approach, games are assigned team by team and round by round. The key is
to quickly determine a lower bound on a solution based on the current partial as-
signments. Initially, this bound is just the independent lower bound, but this bound
gets updated as assignments get made. The insight of this paper is that these bounds
can be precomputed, greatly speeding up the process. This work can find optimal
solutions (it is the fastest known way to prove NL8), but also generates good heuris-
tic solutions and excellent lower bounds along the way. By way of example, for
the lower bound of NL12, the work of [55] increased the lower bound by 9 above
the independent lower bound; the work of [35] increased it by a further 54. Uthus,
Riddle, and Guesen increased it by a further 696!

3.3 Feasible Solutions

Given the difficulty in finding optimal solutions to the TTP, it is natural to look
for heuristic solutions. The most successful such approaches have been based on
local search methods. Anangnostopoulos et al. [1], in the work that first appeared
in CPAIOR 2003, gave a local search heuristic based on simulated annealing. The
main problem with these sorts of approaches is that most local moves from a TTP
solution lead to infeasibilities. If i previously played j in a slot and a local search
move causes i to play k, then the schedule must be further modified to have i play
j (and not play k) at some other time. To handle this, the authors develop ejection
chains from their moves that try to restore feasibility relative to the base round-robin
constraints.

This approach was further improved by Vergados and Van Hentenryck [24] in
CPAIOR 2006. For many of the instances, the solutions found by this approach are
still the best solutions known.

Lim, Rodrigues, and Zhang [32] had a similar approach based on simulated
annealing with a similar set of moves. This approach put more emphasis on the
assignment of teams to a schedule. Given a solution to the TTP, clearly the names

502 M.A. Trick

of the teams can be permuted to get an alternative feasible solution. By judicious re-
naming, the authors were often able to get better solutions, particularly for instances
of the TTP with simpler cost structures.

A standard alternative to simulated annealing is tabu search. Di Gaspero and
Schaerf [22] proposed a family of tabu search solvers and analyzed a number of
combinations of the resulting neighborhood structures. The approach worked very
well on a number of larger instances.

One surprising approach was given by Ribeiro and Urrutia [44] who came up
with approaches to the mirrored TTP. In their three-step approach, their first phase
created a schedule, the second phase assigned teams, and the third phase set the
venues. For the final phase, local search with simple neighborhoods are used to
repair any infeasibilities that come up. The interesting thing is that their mirrored
solutions were often better than the best known non-mirrored solutions, particularly
for larger instances.

This was further improved by Araujo et al. [5] who looked at parallelizing
improvements to this approach using grid computing.

One approach that appears promising but that requires more work was intro-
duced by Henz [26] which used large-neighborhood search. In regular local search,
small changes are made. So in [1] a typical move would be to swap the home base
of a game, or to switch the round in which a game is played. While the ejection-
chain approach would then make the neighborhood somewhat larger, there are still
relatively few neighboring solutions. In large-neighborhood search, a much larger
portion of the solution is relaxed. For instance, all the games in 5 rounds might be
released, leading to an optimization problem over those 5 rounds to find the best
neighbor. While Henz notes that preliminary results are not encouraging, there has
been significant work recently on large neighborhood search that might be applied,
suggesting this direction might be worth revisiting.

One final approach for finding good feasible solutions is given by Rasmussen
and Trick [42] where they define the timetable constrained distance minimization
problem (TCDMP). In the TCDMP, the schedule of games is given without the
home/away assignments and the goal is to set the home/away assignments. In keep-
ing with the theme that sports scheduling offers interesting combinations of integer
and constraint programming approaches, this paper gave four solutions approaches
to this problem: integer programming, constraint programming, a hybrid approach
that generated patterns by CP and chose patterns by IP, and a branch-and-price ap-
proach with an integer programming master problem and a constraint programming
subproblem. The hybrid approach was the best approach. Rasmussen and Trick then
used this approach to find good solutions for the TTP by improving initial solutions
with moves that reallocate the home/away patterns.

3.4 Further Work and the Future of the TTP

While I have outlined the major papers on the TTP in general, there has been much
work on variants and special cases. One special case that attracted a lot of effort is

Sports Scheduling 503

on the “constant” TTP, where the distance matrix D has Dij D 1 for all i ¤ j

[21, 56]. Other work has been done on the mirrored TTP [12] and the TTP where
the venues are fixed [34].

The TTP has inspired work in most of the field represented by integer program-
ming, constraint programming, metaheuristics, and combinations thereof. In the
papers listed, we have seen Benders’ approaches, simulated annealing, branch-and-
price, tabu search, multi-phase approaches, special cases, and much more.

The TTP, despite significant effort by many researchers, is definitely not solved.
The fact that NL10, a ten team instance, is still open means that there is still work
to do. Here are a few directions that researchers might consider:

1. A more serious effort at an integer programming formulation. Most of the work
in integer programming has been the “formulate and put it into CPLEX” version.
A more serious effort would involve identification of facets and cuts combined
with judicious choice of formulation. Even the obvious odd set constraints that
come from the underlying bipartite matching have not been seriously tested.

2. A more serious effort at constraint programming. Since much of the initial testing
with constraint programming in the early 2000s, there has been significant work
on relevant global constraints such as the stretch constraint and various cardinal-
ity constraints. It would be worthwhile determining which of these constraints
can help.

3. Improved lower bounds. Essentially all the lower bound work has been based on
the independent lower bound. Are there any other lower bounds that can be used?

4. Different values of U . There has been little work except for the L D 1; U D 3

case. While it is not likely that L D 1; U D 4 will lead to different approaches
or insights, L D 1; U D n would be an interesting approach and one that might
take research in a different direction.

5. Different D metrics. Are there easy D values (beyond the constant distance ma-
trix)? Even for circular distances, where the points are arranged on a cycle with
unit edges, with distances corresponding to the shortest path on the cycle, the
instance of size 10 is not solved. Such an instance was designed so that the “Trav-
eling Salesman Problem” aspects would be trivial. Are there any interesting D

matrices for which the TTP is easy?

4 Further Models

While Constrained Minimum Break Scheduling and the Traveling Tournament
problems are two important problem in sports scheduling, there are many others
of interest that illustrate aspects of constraint programming, integer programming,
and combinations thereof.

One early work, presented in 1997, in applying constraint programming to a
sports problem was the work of McAloon, Tretkoff, and Wetzel [33]. In this prob-
lem, the goal is to find a round robin schedule that assigns each game to one of n=2

504 M.A. Trick

venues in each slot. No team should be assigned more than twice to any venue over
the course of the tournament. The paper gives a constraint programming formulation
and notes the typical behavior of these sorts of problems that the solvable instances
end sharply at approximately 12 teams. Urban and Russell [54] introduced a variant
of this problem, inspired by the needs of a football coach to schedule intra-squad
workouts on various drill stations. While integer-programming based approaches
were limited to 10 teams or so, a followup paper on constraint programming ap-
proaches [46] was able to solve 16 team problems. Lim, Rodrigues, and Zhang [32]
used simulated annealing to find good feasible solutions quickly for about that size.

In addition to scheduling teams, there has been some interest in scheduling um-
pires, referees, or other sports officials. Some problems are similar to the Traveling
Tournament Problem where the travel of the officials is of paramount importance.
Some early work was done by Evans [20] who scheduled the umpires for Major
League Baseball using a mixture of matching optimization, heuristic rules, and
human intervention. This problem was formalized in the CPAIOR paper by Trick
and Yildiz [52] where the Traveling Umpire Problem was defined, allowing, for in-
stances of various sizes. This paper used another variant of Benders cuts to guide
a large neighborhood search, further illustrating the ability of sports problems to
integrate various optimization approaches. Other work by Trick and Yildiz [53]
uses matching optimization to develop an optimized cross over for a genetic pro-
gramming approach. This work has been applied to schedule the umpires for Major
League Baseball for the past five years.

There has also recently been much work on referee assignment where travel is
not an issue. The work by Duarte and Ribeiro [15], Duarte, Ribeiro and Urrutia
[3] and Duarte, Ribeiro, Urrutia, and Haeusler [4] in particular illustrate the variety
of approaches that can be applied to such problems. These problems tend to be
somewhat easier than other sports scheduling problems, allowing the optimal or
near-optimal solution of instances with up to 500 teams.

5 Conclusions

We have looked at some of the key problems in sports scheduling: break minimiza-
tion, travel minimization, venue assignment, and referee assignment. This is not
close to an exhaustive survey of all of sports scheduling. There are dozens more is-
sues that might be addressed. But it is clear that there is some commonality among
these various threads. First, for almost all problems, there is a very sharp divide be-
tween solvable and currently unsolvable instances. Second, that divide occurs for
seemingly small instances, often in the range of 10 or 12 teams. Third, practically
every type of problem can be attacked with a wide variety of techniques: integer
programming, constraint programming, metaheuristic approaches, satisfiability, hy-
brid approaches, and so on. Fourth, the state of the art for our techniques make them
applicable to real sports leagues, but not routinely. Many real sports leagues are
scheduled using specially-developed software.

Sports Scheduling 505

In the next few years, I believe there will be increasing interest in sports schedul-
ing. As the excellent annotated bibliography by Kendall, Knust, Riveiro, and Urrutia
[30] shows, there has been a steady increase in sports scheduling papers. Since very
few problem types have been “solved” in the sense that a definitive result on the best
algorithm is known, it seems likely that further improvements will be made in the
upcoming years. And, while it is impossible to be certain where these developments
will come from, I think there are a few likely trends.

As our techniques get better, it is likely that we will begin combining issues into
our instances. For instance, the Traveling Tournament Problem includes travel and
break issues, but does not include “carry-over” issues [2, 23] where teams worry
about who their opponent played in the previous week. It would be straightforward
to formulate a version of the Traveling Tournament Problem with carry-over but
such a problem would seem to be very difficult. It would also be possible to com-
bine the Traveling Tournament Problem with the Traveling Umpire Problem to find
schedules good for both the teams and the officials.

I think it is also likely that the best techniques in the future will be ones that
combine various “pure” approaches. Neither constraint programming nor integer
programming have shown themselves to be particularly good at this sort of problem.
Short of a miraculous new cutting plane or domain reduction approach, it seems the
best approaches will combine multiple approaches.

This field is also likely to have increasing effect on the practice of sports schedul-
ing. Many leagues, including some large and prosperous leagues, are still scheduled
essentially by hand. But economic pressures and our field’s ability to handle more
and more of the needs of the leagues will lead to more real-world implementations.

Overall, sports scheduling has been an excellent test-bed for examining issues in
optimization, heuristics, and real-world implementation. It certainly will remain so
for years to come.

References

1. Anagnostopoulos A, Michel L, Van Hentenryck P, Vergados Y (2006) A simulated annealing
approach to the traveling tournament problem. J Sched 9:177–193

2. Anderson I (1999) Balancing carry-over effects in tournaments. In: Combinatorial designs and
their applications, Chapman and Hall, London

3. AR Duarte, Ribeiro CC, Urrutia S (2009) A hybrid ils heuristic to the referee assignment
problem with an embedded mip strategy. In: Hybrid metaheuristics. Lecture notes in computer
science, vol 4771

4. Duarte AR, Ribeiro CC, Haeusler SU, Haeusler EH (2007) Referee assignment in sports
leagues. In: Practice and theory of automated timetabling VI. Lecture notes in computer sci-
ence. Springer, Heidelberg, pp 158–173

5. Araujo A, Boeres C, Rebello V, Ribeiro C, Urrutia S (2007) Exploring grid implementations
of parallel cooperative metaheuristics: a case study for the mirrored traveling tournament prob-
lem. In: Metaheuristics: Progress in Compless Systems Optimization, pp 297–322

6. Benoist T, Laburthe F, Rottembourg B (2001) Lagrange relaxation and constraint programming
collaborative schemes for traveling tournament problems. In: Proceedings CPAIOR’01, Wye
College (Imperial College), Ashford, Kent UK

506 M.A. Trick

7. Briskorn D (2008) Sports leagues scheduling: models, combinatorial properties, and optimiza-
tion algorithms. Springer, Berlin

8. Briskorn D, Drexl A (2009) A branch-and-price algorithm for scheduling sports leagues. J Oper
Res Soc 60:84–93

9. Briskorn D, Drexl A (2009) A branching scheme for finding cost-minimal round-robin tourna-
ments. Eur J Oper Res 197:68–76

10. Briskorn D, Drexl A (2009) Ip models for round robin tournaments. Comput Oper Res
36(3):837–852

11. Brouwer AE, Post GF, Woeginger GJ (2008) Note: Tight bounds for break minimization in
tournament scheduling. J Combin Theor A 115(6):1065–1068

12. Cheung K (2008) Solving mirrored traveling tournament problem benchmark instances with
eight teams. Discrete Optim 5:138–143

13. Cheung K (2009) A benders approach for computing lower bounds for the mirrored traveling
tournament problem. Discrete Optim 6:189–196

14. Drexl A, Knust S (2007) Sports league scheduling: Graph- and resource-based models. Omega
35:465–471

15. Duarte A, Ribeiro C (2008) Refeee assignment in sports leagues. In: 19th International Conv-
erence on Multiple Criteria Decision Making

16. Durán G, Guajardo M, Miranda J, Sauré D, Souyris S, Weintraub A, Wolf R (2007) Scheduling
the chilean soccer league by integer programming. Interfaces 37(6):539–552

17. Easton K, Nemhauser G, Trick M (2001) The traveling tournament problem: Description and
benchmarks. In: Walsh T (ed) Principles and practice of constraint programming - CP 2001.
Lecture notes in computer science, vol 2239. Springer, Berlin, pp 580–585

18. Easton K, Nemhauser G, Trick M (2003) Solving the traveling tournament problem:
a combined integer programming and constraint programming approach. In: Burke E,
De Causmaecker P (eds) Practice and theory of automated timetabling IV. Lecture notes in
computer science, vol 2740. Springer, Berlin, pp 100–109

19. Elf M, Jünger M, Rinaldi G (2003) Minimizing breaks by maximizing cuts. Oper Res Lett
31:343–349

20. Evans J (1988) A microcomputer-based decision support system for scheduling umpires in the
american baseball league. Interfaces 18:42–51

21. Fujiwara N, Imahori S, Matsui T, Miyashiro R (2007) Constructive algorithms for the constant
distance traveling tournament problem. In: Practice and theory of automated timetabling VI,
pp 135–146

22. Gaspero LD, Schaerf A (2007) A composite-neighborhood tabu search approach to the travel-
ing tournament problem. J Heuristics 13(2):189–207

23. Guedes A, Ribeiro C (2009) A hybrid heuristic for minimizing weighted carry-over effects in
round robin tournaments. In: Proceedings of the 4th Multidisciplinary International Conference
on Scheduling Theory and Applications

24. Hentenryck P, Vergados Y (2006) Traveling tournament scheduling: a systematic evaluation
of simulated annealling. In: Beck J, Smith B (eds) Integration of AI and OR techniques in
constraint programming for combinatorial optimization problems. Lecture notes in computer
science, vol 3990. Springer, Berlin, pp 228–243

25. Henz M (2001) Scheduling a major college basketball conference - revisited. Oper Res
49:163–168

26. Henz M (2004) Playing with constraint programming and large neighborhood search for trav-
eling tournaments. In: Burke E, Trick M (eds) Proceedings of practice and theory of automated
timetabling, 2004, pp 23–32

27. Henz M, Müller T, Thiel S (2004) Global constraints for round robin tournament scheduling.
Eur J Oper Res 153:92–101

28. Hooker JN (2005) A hybrid method for planning and scheduling. Constraints 10:385–401
29. Irnich S (2010) A new branch-and-price algorithm for the traveling tournament problem. Eur J

Oper Res, 204:218–228
30. Kendall G, Knust S, Ribeiro CC, Urrutia S (2010) Scheduling in sports: an annotated bibliog-

raphy. Comput Oper Res 37(1):1 – 19

Sports Scheduling 507

31. Knust S, Lücking D (2009) Minimizing costs in round robin tournaments with place con-
straints. Comput Oper Res 36(11):2937–2943

32. Lim A, Rodrigues B, Zhang X (2006) A simulated annealing and hill-climbing algorithm for
the traveling tournament problem. Eur J Oper Res 174(3):1459–1478

33. McAloon K, Tretkoff C, Wetzel G (1997) Sports league scheduling. In: Proceeding of the 3rd
ILOG optimization suite international users conference, Paris, 1997

34. Melo R, Urrutia S, Ribeiro C (2009) The traveling tournament problem with predefined venues.
J Sched 12(6):607–622

35. Mitchell S, Trick M, Waterer H (2008) Benders approaches to sports Scheduling, presented at
Mixed Integer Programming, New York, NY

36. Miyashiro R, Matsui T (2005) A polynomial-time algorithm to find an equitable home-away
assignment. Oper Res Lett 33:235–241

37. Miyashiro R, Matsui T (2006) Semidefinite programming based approaches to the break min-
imization problem. Comput Oper Res 33(7):1975–1982

38. Nemhauser G, Trick M (1998) Scheduling a major college basketball conference. Oper Res
46(1):1–8

39. Post G, Woeginger G (2006) Sports tournaments, home-away assignments, and the break min-
imization problem. Discrete Optim 3(2):165–173

40. Rasmussen R (2008) Scheduling a triple round robin tournament for the best Danish soccer
league. Eur J Oper Res, 185(2):795–810

41. Rasmussen R, Trick M (2007) A Benders approach for constrained minimum break problem.
Eur J Oper Res 177(1):198–213

42. Rasmussen R, Trick M (2009) The timetable constrained distance minimization problem. Ann
Oper Res 171(1):45–59

43. Régin JC (2001) Minimization of the number of breaks in sports scheduling problems using
constraint programming. DIMACS Series in Discrete mathematics and theoretical computer
science, vol 57. Springer, Heidelberg, pp 115–130

44. Ribeiro C, Urrutia S (2007) Heuristics for the mirrored traveling tournament problem. Eur J
Oper Res 179(3):775–787

45. Russell R, Leung J (1994) Devising a cost effective schedule for a baseball league. Oper Res
42(4):614–625

46. Russell R, Urban T (2006) A constraint programming approach to the multiple-venue, sport-
scheduling problem. Comput Oper Res 33:1895–1906

47. Schaerf A (1999) Scheduling sport tournaments using constraint logic programming. Con-
straints 4:43–65

48. Schreuder J (1992) Combinatorial aspects of construction of competition dutch professional
football leagues. Discrete Appl Math 35:301–312

49. Trick M (2001) A schedule-then-break approach to sports timetabling. In: Burke E, Erben W
(eds) Practice and theory of automated timetabling III. Lecture notes in computer science, vol
2079. Springer, Heidelberg, pp 242–252

50. Trick M (2003) Integer and constraint programming approaches for round robin tournament
scheduling. In: Burke E, De Causmaecker P (eds) Practice and theory of automated timetabling
IV. Lecture notes in computer science, vol 2740. Springer, Heidelberg, pp 63–77

51. Trick M (2005) Formulations and reformulations in integer programming. In: Proceedings
CPAIOR’05, Prague, Czech Republic

52. Trick M, Yildiz H (2007) Bender’s cuts guided large neighborhood search for the traveling
umpire problem. In: Proceedings CPAIOR’07, Brussels, Belgium

53. Trick M, Yildiz H (2009) Locally optimized crossover for the traveling umpire problem. Tepper
School Working Paper

54. Urban T, Russell R (2003) Scheduling sports competitions on multiple venues. Eur J Oper Res
148:302–311

55. Urrutia S, Ribeiro C, Melo R (2007) A new lower bound to the traveling tournament problem.
In: Proceedings of the IEEE symposium on computational intelligence in scheduling

56. Urrutia S, Ribeiro CC (2006) Maximizing breaks and bounding solutions to the mirrored trav-
eling tournament problem. Discrete Appl Math 154(13):1932–1938

508 M.A. Trick

57. Uthus DC, Riddle PJ, Guesgen HW (2009) Dfs* and the traveling tournament problem. In:
CPAIOR ’09: Proceedings of the 6th international conference on integration of AI and OR
techniques in constraint programming for combinatorial optimization problems, pp 279–293

58. de Werra D (1981) Scheduling in sports. In: Hansen P (ed) Studies on graphs and discrete
programming. North-Holland, Amsterdam, pp 381–395

59. Zhang H (2003) Generating college conference basketball schedules by a sat solver. In: Pro-
ceedings of the fifth international symposium on the theory and applications of satisfiability
testing, pp 281–291

Stimuli Generation for Functional Hardware
Verification with Constraint Programming

Allon Adir and Yehuda Naveh

Abstract We survey the application of constraint programming techniques for
stimuli generation in functional hardware verification, which can be considered the
largest and most important industrial application of constraint programming. We
provide a thorough introduction to the application domain, aimed at people unfa-
miliar with this area. We show the sources of constraints and the unique aspects
of the constraint satisfaction problems (CSPs) arising in this field. We then present
CSP models of a wide variety of stimuli generation problems, as well as the state
of the art techniques used to solve them. We also discuss the current challenges in
this area, and the prospects of solving them by advancing constraint programming
technology beyond the state of the art.

1 Introduction

Over the last 10 years, constraint programming has developed into a mature disci-
pline, both in its academic research and in its application to practical problems. The
various chapters of the current book provide an evident manifestation of this devel-
opment. However, we think that the single-most important industrial application of
constraint programming has received very little attention in the past. This applica-
tion is stimuli generation for functional hardware verification. The purpose of this
chapter is to bring this application into the spotlight of the constraint programming
community and to share our enthusiasm for applying constraint programming to
this domain. In a nutshell, this excitement is the result of a central theme that lies
at the basis of the domain: The pressing (and continuously developing) business
need for a solution in a multibillion dollar industry, coupled with the unique tech-
nical challenges imposed by this need. In the last two decades, this theme has
resulted in a constant stream of innovation in applying and enhancing cutting-edge

A. Adir (�) and Y. Naveh (�)
IBM Research – Haifa, Haifa University Campus, Haifa 31905, Israel
e-mail: adir@il.ibm.com; nahev@il.ibm.com

M. Milano and P. Van Hentenryck (eds.), Hybrid Optimization, Springer Optimization
and Its Applications 45, DOI 10.1007/978-1-4419-1644-0 16,
c� Springer Science+Business Media, LLC 2011

509

adir@il.ibm.com
nahev@il.ibm.com

510 A. Adir and Y. Naveh

CP techniques for this domain. More importantly, we have reason to believe that the
business pressure will only increase in the coming decade, resulting in more sophis-
tication and ingenuity of the solutions, and hopefully in a much closer involvement
of the academic community.

Stimuli generation for functional hardware verification is the process of creat-
ing test cases (or ‘stimuli’) with the intent of revealing unknown bugs in hardware
designs, before the design is cast in silicon. We will dive deeper into this sentence
in subsequent sections. However, it is important to understand its direct relation to
constraint programming at the outset. Given a hardware design, only a very limited
number of tests are valid for the design.1 All other tests do not constitute legal in-
put for the design, and are hence useless. Moreover, almost all valid tests are not
interesting in the sense that they do not exercise the hardware design in prone-to-
bugs areas. The task of creating a valid and interesting test becomes increasingly
difficult when the complexity of the design grows. For modern designs, even of
medium complexity, this becomes infeasible when using ordinary procedural tech-
niques. This is where constraint programming comes in. It is possible to state all the
constraints that a test must abide by in order to be legal (this set of constraints ac-
tually constitutes the architecture of the design), as well as the constraints imposed
on the test by the current verification goal. A solution to the resulting constraint
problem constitutes a valid and interesting test.

All high-end hardware manufacturers use the above concept to produce meaning-
ful stimuli for testing their hardware. Some manufacturers such as IBM(R) [1] rely
on proprietary constraint solvers developed in-house to solve this problem. Others
such as Intel (R) [2], adapt external off-the-shelf solvers to the stimuli-generation
problem. Some manufacturers of less complex designs rely on electronic design au-
tomation (EDA) tool vendors (e.g., Cadence (R) and Synopsys (R)) for their stimuli
generation needs. Those EDA tools, in turn, are based on internally developed con-
straint solvers [3, 4].

This mode of operation means that a big portion of the activity in constraint
programming, both in the development of constraint-solving tools and their use,
takes place at a relatively small number of corporations: either high-end hardware
manufacturers or EDA tool vendors. This differs greatly from the more traditional
applications of CP such as scheduling, routing, or planning, where the typical users
are medium-sized companies with varying needs (e.g., vehicle routing, machine
scheduling, or assignment of technical workers). The number of companies using
traditional CP applications is much larger than the number of high-end hardware
manufacturers and EDA vendors, and each comes with its own scenarios and re-
quirements. This results in higher visibility of their needs, even outside the company,
and tend to stimulate discussions on the abstractions of the individual problems and
the generic ways to solve them. This is the input that has driven the direction for the
application of constraint programming in the last decade.

1 Take, for example, the design of a processor. Then a test is simply a program, i.e., a sequence
of assembly instructions, to be run on the processor. Only a very limited number of instruction
sequences (including their parameters) form a valid program.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 511

On the other hand, huge corporations such as IBM, Intel, Cadence, and Synop-
sys, are able to allocate their own R&D resources in order to create a solution most
suitable for their strong business needs. This resulted in increased activity centered
around constraint programming for hardware verification in all those corporations.
However, the pressing needs and development pressure, possibly coupled with the
tendency to remain reserved about new technology, did not support externalization
of the technical achievements coming from those R&D organizations, and prevented
a long-lasting and broad academic dialog between the companies and academia.
Consequently, the importance of stimuli generation based on constraint program-
ming, and its unique potential for innovations, have gone largely unnoticed by the
academic community. We hope this chapter will serve to rectify this anomaly and
stimulate a broad and fruitful dialog between the industrial stimuli-generation and
academic CP communities.

IBM pioneered the research and development in this domain and published the
first technical papers, as well as periodic reviews of the topic. The first identification
of the potential use of constraint-solving techniques for stimuli generation was pub-
lished as early as 1992 [5]. Shortly afterwards, the general use of AI techniques in
this domain, with an emphasis on a model-based test generation (MBTG) approach,
was reported at IAAI in 1994 [6]. In 1995, CP techniques were incorporated into the
MBTG framework [7]. The following years focused on intensive adaptation of gen-
eral CSP methods to stimuli generation, culminating in a 2002 article in the IBM
Systems Journal, which reviewed the problem and outlined those adaptations [8].
A more AI-perspective of the subject, including the advancements in AI techniques
since 1994, and the central business aspects of the problem, was published at IAAI
in 2006 [9], with a longer version in AI Magazine [1].

In the current chapter, we will cover and expand on the main ideas presented
in the previous publications. However, in general, we will focus on the prob-
lem domain, showing its breadth and depth in a way that emphasizes the fit for
constraint-programming techniques. Further details of the technicalities of each of
the problems described here can be found in the cited technical references within
each section, which are typically oriented for an electrical engineering audience.
This chapter also presents some of the more advanced CP techniques we developed,
which were only mentioned in passing in the previous publications.

CSP has also been used for software testing, see e.g., [10, 11]. However, this use
is inherently different from the use of CSP for hardware verification. In software
testing, constraints serve mainly to define parameters to the test so it would reach
a particular block of code, some program path, or some synchronization conditions
between threads. The constraints are derived directly from the conditional state-
ments on the data at each node in the program path, and in most cases are linear
or can be easily linearized. The main challenge is then to perform symbolic calcu-
lation on those constraints, possibly with the aid of a linear solver. In contrast, the
bulk of constraints in hardware verification serve to enforce validity and quality of
the test (defined in more detail in Sect. 3). These constraints are defined over many
hardware parameters (not only data), including memory addresses, control registers,
and instruction semantics. This results in a much richer and more complex, highly

512 A. Adir and Y. Naveh

nonlinear, CSP. At any rate, CSP is only one of a number of methods used for
checking software, and in no way does it occupy the central role it has in hardware
verification.

In the next section, we introduce the domain of functional hardware verification.
In Sect. 3, we show how CSP techniques are used for stimuli generation, and also
some of the adaptations of these techniques that are needed for this specific do-
main. Section 4 discusses general aspects of modeling stimuli generation problems
as CSP’s, and Sect. 5 then describes specific areas of application within the domain,
and the general CSP model for each area. In Sect. 6, we describe some advanced top-
ics and challenges of current research interest. In Sect. 7, we conclude the chapter
and look into the future of this field.

2 Functional Hardware Verification

The following is a high-level presentation of the domain of hardware verification
and the related terminology referred to in the subsequent discussion.

2.1 Verification Process

Hardware verification [12] is the process of demonstrating that the hardware is im-
plemented correctly according to its specification. Verification is performed as part
of the hardware design cycle, starting from the point where the requirements of
potential or actual customers are analyzed and a specification for the hardware archi-
tecture is compiled, up to the verification of the full physical systems that include the
fabricated chips. During the design and verification cycle, the hardware specifica-
tion is used as a basis for the hardware design. There may be several designs, each a
refinement of the preceding one. For example, the process can start with a high-level
formal definition of the implementation that matches the specification, then move
to a detailed implementation of this formal design in terms of logical flow of sig-
nals between data elements (the register transfer level or RTL), and finally to a full
physical circuit design ready for manufacturing (also known as tape-out) in the fab.

The design is created hierarchically. The basic element is at the designer level
and constitutes a block designed by one or very few designers. Blocks are used to
construct units with higher-level functions (e.g., a floating-point unit). A chip is a
collection of units packaged together. The full system hardware can include multiple
chips and devices for handling their connectivity, memory management, and I/O.

The verification follows the path of the hardware design process – checking the
preservation of the semantics between the designs in their various abstraction levels
and their correspondence to the specification. All elements of the design hierarchy
are verified, from the blocks up to the entire system. Manufacture testing is a related
process in which every manufactured element is tested to ensure successful fabrica-
tion and quality.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 513

In general, the rule is that the later a bug is detected, the higher the cost for
its repair [12]. Moving up the design hierarchy, the faults become more complex
to detect and fix but still incur a relatively moderate cost. Bugs found after chip
fabrication may require an additional tape-out, which can cost millions of dollars
and cause a possible delay in product delivery. A bug found after the hardware is
delivered to customers can reach hundreds of millions of dollars in complex repair
processes and damage to brand image. Consequently, the objective of verification
is to try and find the bugs as early as possible. Pre-silicon verification techniques
aim at finding as many bugs as possible before the chip is fabricated. The target
of the verification is the design of the hardware as implemented in a formal hard-
ware description language (HDL), such as VHDL or Verilog. The main method for
accomplishing this is simulation-based verification.

Simulation refers to the process of mimicking the behavior of the hardware –
as opposed to running the actual hardware. This can be done at very different lev-
els and by various technologies. Design simulation refers to the simulation of the
hardware, based on the design of the hardware as implemented in the high-level
HDL. Hardware emulation is technology for performing this design simulation us-
ing dedicated hardware. This speeds the simulation significantly when compared to
performing the design simulation in software (the more common and less expensive
approach).

Unfortunately, pre-silicon, simulation-based verification often does not succeed
in uncovering all the design bugs. Design simulation in software, and even in hard-
ware emulation, is still relatively slow and cannot provide the number of cycles
needed to achieve sufficient coverage of the design. Another reason for these escape
bugs is that not all the verified aspects of the hardware can be accurately modeled
and checked through simulation. Thus, post-silicon verification is still required. This
starts with the early bring-up of the manufactured chip with relatively simple test-
ing and continues with full system testing of the hardware using benchmarks and
complex customer applications such as operating systems.

Hardware verification is thus a broad domain that targets a variety of tasks and
includes vastly differing technologies. The targets of the verification are also varied
– functional verification checks that the hardware performs its functions as specified,
performance verification checks that the hardware performs these functions within
the planned time limits, and power verification checks that the functions can always
be executed within the required power constraints. In this chapter, we concentrate
mainly on functional verification.

2.2 Formal Verification

In the current chapter, we are interested in simulation-based functional verifica-
tion of hardware [12], and more specifically in stimuli generation, as presented
above. There is, however, a complementary functional verification paradigm that is

514 A. Adir and Y. Naveh

being used in parallel with simulation-based verification. This goes under the gen-
eral name of formal verification, or more specifically theorem proving and bounded
model checking (BMC) [13, 14]. In formal verification, the design is modeled as a
set of logical expressions, corresponding to the gate-level functionality of the hard-
ware design. Then, generally speaking, theorem proving formally proves that the
design under verification (DUV) is functionally equivalent (i.e., same inputs result
in same outputs) to a reference design, and BMC proves that an assertion represent-
ing a bug (typically modeled by a conjunction of the logical expression representing
the assertion, with the design logic) can or cannot be reached within a specified
number of cycles from some initial state.

The great advantage of formal methods over simulation-based methods is that
the former are complete, and can prove that a DUV is functionally correct.2 How-
ever, the big drawback is that today’s formal methods can deal only with small
designs, typically smaller than a single unit of a processor. Therefore, current indus-
try practice combines the two methods, where formal methods serve to check the
smaller design structures, and simulation-based methods check the integrated larger
structures. All in all, however, for complex designs, more than 90% of verification
resources are spent on simulation-based methods.

Formal verification methods use two major algorithmic schemes at their cores.
The first is theorem proving over binary decision diagram (BDD) representations of
the design, and the second is Boolean satisfiability (SAT) solving. For example, in
BMC, the design logic in conjunction with the bug assertion is modeled as a SAT
expression, and a proof that the expression is unsatisfiable constitutes a proof that
the bug cannot be reached within the specified number of cycles. In recent years,
satisfiability modulo theories (SMT) have been utilized to extend the capabilities of
BMC, for example, by allowing verification experts to deal with data and not only
control logic [15, 16]. SMT raises the abstraction level at which the design logic
can be represented, as it allows, for example, arithmetic and other constraints over
integer numbers, and is not limited to the bit-level representation. However, it is still
far from the abstraction and expressibility levels of CSP.

The algorithmic basis behind formal methods has been studied and published ex-
tensively by the SAT community, whereas in the case of simulation-based methods
we are only now starting to see a strong interest from the CSP research community.
In the rest of this chapter, we will deal only with simulation-based methods, where
constraint programming serves as a core technological basis.

2.3 Simulation-based Verification and Stimuli Generation

The essence of simulation-based (or dynamic) verification is to test how the de-
sign conducts itself when confronted with challenging stimuli. Stimuli generation,
in turn, deals with the problem of creating the appropriate stimuli in order to test the

2 This statement is somewhat weakened in the case of BMC, as the proof is only for a specific set
of assertions, and only within a limited number of cycles.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 515

DUV as thoroughly as possible. The nature and abstract level of the stimuli depends
on the object being tested and the level of verification. Automatic test-pattern gen-
erator (ATPG) tools [17] test the manufacturing of circuits by applying sequences
of lowest-level bit-vectors at the circuit’s input interfaces. A full processor can be
tested by generating test programs in the assembly language of the processor. At the
highest abstraction level, system level stimuli can include commands that produce
transactions involving multiple system devices.

Good stimuli first needs to be valid with respect to the requirements imposed by
the DUV. It should also be of high quality in the sense that it tests the behavior of the
DUV in some desired circumstances to improve the coverage of the tested behaviors,
reach challenging corner cases, and hopefully trigger a bug. Also, the stimuli had
better be able to expose the bug if it indeed occurs during the test execution (and not
render it unobservable, for example, by masking its effects).

The most basic, technology-free method for generating stimuli is to write them
by hand. Surprisingly enough, this is still being done, especially if there are only a
few simple directed stimuli that are needed, or when there is no available technology
to generate the type of stimuli required. Needless to say, this method is limited in
capacity, expensive, error-prone, and often cannot achieve the precise stimuli that is
required. A technology for automatic stimuli generation is therefore needed.

2.3.1 Targeted Versus Massive Pseudo-Random Stimuli Generation

There are several stimuli generation technologies for particular verification domains
that are designed to create a single targeted test to meet some specific requirement
(or declare that the requirement cannot be met at all or within the given time limit).
ATPG tools [17], for example, have the ability to generate a stimuli that would
manifest a specific fault in the manufactured circuits–for example, observing if
some signal line is “stuck-at” some value independent of the inputs. Adir et al. [18]
presents a stimuli generator whose test brings the processor to some specified micro-
architectural state or declares that state unreachable. Another tool [19] can produce
inputs for floating point instructions that cause the arithmetic result to have some
specified desired properties.

In all these cases, any single stimuli that meets the requirement would suffice
for the task. However, for most verification tasks, even if such analytic tools were
available, the verification engineer doesn’t know in advance precisely where to look
for the bugs. The common approach is then massive generation of different stimuli.

In general, it is impossible to comprehensively test all the possible behaviors of
the DUV, but one still wants to test the design with as many tests as can be han-
dled with the available verification platform. The most naive implementation of this
massive-generation approach is to create a multitude of random tests. However, ran-
dom stimuli generation would still need to be constrained to generate only tests
which are both valid and that meet any user requests. It must also control the dis-
tribution of the generated test instances in order to bias for the more “interesting”
tests. This bias should be controlled by the user, or potentially by some internal

516 A. Adir and Y. Naveh

expert-knowledge of the stimuli generation tool itself. A good distribution should
still not completely rule out any specific valid test since one never knows where the
bug may eventually hide.

It is also possible to combine massive pseudo-random and targeted stimuli gen-
eration approaches when the verification process follows a plan listing specific tasks
that need to be covered by the stimuli. The verification can start with massive test-
ing using relatively random stimuli that are generated with little effort. Coverage
measurement tools can keep track of the events that are actually covered by the
stimuli. In time, the coverage pace will inevitably decline as only the hard-to-hit
events remain. At this point, verification can continue by applying the more directed
generation technology to hit these rare (but important) specific events.

2.3.2 Test Specification Language

Stimuli generators generally provide the user with some control over the properties
of the tests to be produced. In the trivial (though quite common) case, this amounts
to a set of parameters the user can specify to configure the generator. However, more
sophisticated stimuli generators support richer languages that describe the desired
test template.

In order to better exploit the power of automatic massive generation, it makes
sense to re-use the same (manually created) test specification to build many different
test instances. This implies the need for a test specification language that is abstract
enough to describe a multitude of tests and a pseudo-random stimuli generator that
can generate a different test each time it is invoked.

For example, the stimuli generator in [20] produces stimuli for a processor in
the form of an assembly test program. The test-template language [21] allows the
user to describe the desired test program with various levels of abstraction. The user
can ask for general high-level processor events such as interrupts or cache misses,
or for certain instruction types like a general loading instruction. The user can also
be more explicit and ask for a specific load instruction like a load-word or specify
the instruction completely along with the register and memory resources to be used.
A good test template describes only the properties that are crucial for the test and
leaves room for the stimuli generator to “fill-in” the missing details. Such a test
template corresponds to many possible concrete tests that are generated according
to the biased-random distribution provided by the automatic stimuli generator. The
test template can also include directives to control this distribution. This can be
done by directly specifying the distribution in the template or by configuring some
internal expert-knowledge of the tool.

The template language can support a hierarchy of priorities for the user direc-
tives. The crucial properties of the test would be specified to be mandatory and the
directives controlling the events that are merely desired in general can be defined in
various levels of “softness”. As shown in Sect. 5.1, user directives in the test tem-
plate specification can translate into hard and soft constraints, and can be added to
the CSP used in the stimuli generation process.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 517

Test Program Template Test Program
Variable: addr = 0x100 Resource Initial Values:
Variable: reg R6=8, R3=-25,..., R17=-16
Bias: Resource-Dependency(GPR) = 30 100=7, 110=25,..., 1F0=16
Bias: Alignment(4) = 50

Instructions:
Instruction: Load R5 ? 500: Load R5 FF0

Bias: Alignment(16) = 90 :
Repeat (addr < 0x200) 504: Store R4 ! 100
Instruction: Store reg! addr 508: Sub R5 R6-R4
Select 50C: Store R4 ! 110

Instruction: Add ? reg + ? 510: Add R6 R4+R3
Bias: SumZero :

Instruction: Sub ? ? - ? 57C: Store R4 ! 1F0
addr = addr + 0x10 580: Add R9 R4+R17

Fig. 1 Test template and corresponding test

Figure 1 shows an example of a test template and a corresponding generated test.
The test template describes a scenario beginning with a load from some unspeci-
fied address into the R5 register. A directive attached to the load template specifies
a requirement for a strong bias (90) toward addresses aligned to 16 bytes. This
bias was met by the stimuli generator, as can be seen by the actual load instruction
that starts the test and is shown on the right side of the figure. The template con-
tinues by describing a “table-walk” scenario that stores the contents of randomly
selected registers into memory addresses ranging from address 0x100 to 0x200, in
increments of 16. Each Store instruction is followed by either an Add or a Sub
instruction. The first source register used for each Add instruction is the same as the
source register of the previousStore. Additionally, the template requests a number
of bias constraints controlling such things as interdependency between instructions
and alignment of addresses.

2.3.3 Static Versus Dynamic Stimuli Generation

Static stimuli generation refers to a generation process that is not aware of the state
of the DUV. The entire test can be generated offline, that is, independent of the sim-
ulation environment and can thus employ general tools that are not available during
simulation. It can also potentially employ more complex procedures to generate the
test, such as generating the stimuli out of its simulation order.

A dynamic stimuli generator, on the other hand, generates the test in simulation
order and keeps track of the state of the DUV as the generation progresses. This can
be done either by performing the generation online (i.e., on the simulation environ-
ment itself as the generated test is being simulated) or offline by using a reference
model. A reference model is an application that simulates the hardware according
to its functional specification, that is, without any bugs. It can be implemented in
software, based directly on the specification and independent of the DUV.

518 A. Adir and Y. Naveh

A dynamic test generator can exploit the knowledge of the machine state to more
easily maintain the test validity and quality; for example, suppose the generator
wants to generate a load instruction in which the address is computed by the addition
of a base register value and a displacement field of the instruction. Suppose now that
for the load instruction to be valid, it must avoid some reserved memory region. To
improve the verification value of the load instruction, the generator’s built-in expert-
knowledge can recommend using a word-aligned address. In order to meet these
constraints, the dynamic generator can refer to the current value of the selected base
register and adjust the displacement to avoid the reserved area and make the address
word aligned. A static stimuli generator would not be able to do this because it
would not know the current values of the registers. It could precede the load with an
instruction that loads an appropriate value into the base register – but such reloading
can interfere with the required test scenario. Section 6.1 shows how the dynamic
knowledge of resource values can be handled by a CSP engine.

2.3.4 Checking

Checking is the process of detecting that the DUV is not behaving as expected, im-
plying that a bug has been triggered by the stimuli. For example, the environment
can monitor the behavior of the DUV as it is being tested by examining internal
states or transactions taking place at its external or internal interfaces. The mon-
itored events can then be analyzed for bugs immediately as they occur, or after
the simulation ends, based on more complete traces of the simulation. Section 6.4
shows how CSP modeling can assist such off-line checking of a processor’s shared
memory architecture. This method of checking can be handled by the simulation
environment independently of the stimuli generator and thus has the advantage of
being applicable to a greater variety of stimuli sources. However, the stimuli gen-
erator can also help the checking process, for example, by including self-checks
inside the stimuli itself or by avoiding the masking of bugs (i.e. where one part of
the stimuli hides the erroneous effects of a bug that occurs in another part of the
stimuli).

The stimuli generator can also assist the checking by adding to the test informa-
tion about the behavior that is expected of the DUV when the test is executed. The
stimuli generator can find out this expected behavior by running the stimuli on a
reference-model of the DUV. Thus, any inconsistency between the actual behavior
of the DUV and the behavior predicted by the reference model indicates a bug in
the DUV (or, less likely in the reference model itself).

2.3.5 Test Benches

A test bench is a comprehensive library of code used to generate, monitor, and
check predefined stimuli to the design [12]. Once implemented, the test bench is
connected to the simulator of the DUV to perform the actual testing. There are

Stimuli Generation for Functional Hardware Verification with Constraint Programming 519

well-established methodologies but no strict rules regarding test bench design. It
is commonly made from a collection of independent components performing the
various functions in a distributed manner. Nevertheless, some uniformity between
different test benches exists as the result of test bench development and deployment
environments provided by major EDA vendors. The common paradigm is to code all
the test bench components with a language that includes a comprehensive collection
of verification-oriented constructs.

SystemVerilog [22] and e [23] are popular test bench languages that have be-
come IEEE standards. Both languages include constructs to support the wide range
of functions required, including stimuli generation, checking based on a reference
model, monitoring, and coverage measurement and reporting. The test bench devel-
oper uses a rich object-oriented typing language (with some aspect-oriented features
in the case of the e language [24]) to define the structures of the objects that make
up the stimuli. The object types and the level of abstraction with which they are
defined naturally derives from the verification target and level. Some examples are
raw data for block level arithmetic computations, instruction objects on the proces-
sor level, or communication packets on the higher system level. The strong relation
of test benches and in particular object types to constraint programming is discussed
at length in the next section.

3 Constraint Satisfaction for Stimuli Generation

3.1 Introduction and Motivation

As mentioned, the basic problem of stimuli generation for functional hardware ver-
ification lies in creating tests that abide by all architectural validity rules, by the
current verification scenario, and by a general requirement for the test to be interest-
ing (i.e., reach prone-to-bugs areas, and be substantially different from other tests).

All those requirements can be stated as constraints on the final test-case.
Architectural validity constraints are specified in the design specification document.
Examples for such constraints are ‘load-word instructions must be word-aligned’,
‘if hypervisor bit is off, access to memory is restricted’, ‘data written by processor
A and read by processor B abides with specified cache-coherency rules’, and of
course, ‘after instruction of type A C B ! C; the values of registers A, B , C are
such that ACB D C . There are typically several hundred such rules defined in the
architecture of a modern processor.

A second source of constraints is the verification scenario targeted by the verifica-
tion engineer, who is responsible for ensuring that the tests cover all suspected areas
of the DUV. The scenario can typically be stated as a set of constraints, such as ‘the
load instruction must hit a page-boundary’ (e.g., see the test-template example in
Figure 1). Finally, requirements for the test to be interesting can be formulated as a
large set of expert-knowledge constraints, such as ‘add instructions must have a sum

520 A. Adir and Y. Naveh

of zero’, or ‘subsequent load instructions should hit the same cache-line’. Obviously,
a complete set of expert-knowledge constraints would typically be self-contradicting
and contradict the current-scenario constraints. Therefore, expert-knowledge con-
straints are modeled as soft constraints [25]. The stimuli generator can use these soft
constraints to inject interesting random “background noise” to the basic scenario de-
scribed by the verification engineer. The user can also be given some control over
the type and intensity of this background noise.

While the three types of constraints mentioned above are an inherent feature of
stimuli generation and exist in all its forms, the exact form of the constraints, as well
as the number of variables in the problem, the number of constraints, and the number
of soft constraints, varies greatly from problem to problem. We discuss these details
below while describing each of the specific stimuli-generation problems.

With this view in mind, it is clear that constraint programming is an ideal option
for stimuli generation. On the one hand, using procedural code, it can be extremely
difficult, or even impossible in practice, to create a valid and interesting test that
would be complex enough to reach deep areas in the design (e.g., a test consist-
ing of 1,000 assembly instructions for a processor). On the other hand, stating the
constraints is a relatively straightforward task. The ideal solution is an algorithm
that solves the (soft) constraint problem and outputs a valid and interesting test to
satisfy the current verification scenario. In fact, the strong dichotomy between the
extreme difficulty in creating tests by procedural code, and the elegance of writing
the constraint model for this case, makes stimuli generation a prime example of
the so-called ‘holy grail of computer science’ [26]: the user states the problem, the
computer solves it.

A second critical reason in support of constraint programming for stimuli gener-
ation is the dynamic character of the problem and the business pressure for fast
results. It is well recognized that time scales of development between different
generations of the same processor decrease drastically. In the current business en-
vironment, time to market becomes exceedingly smaller, while design complexity
grows. This means that stimuli for new generations of the designs must be created
more quickly. Maintaining and changing procedural code between different gener-
ations may be a nonsimple, time-consuming, and prone-to-bugs task. In contrast,
changing the form of constraints when the design changes can be very simple as
one needs only to remove, add, or change some of the constraints of the original
model. In Sect. 4, we present the modeling aspects and platforms that support this
type of rapid changes in the CSP model.

3.2 Unique Requirements

The above arguments make it clear why constraint programming in general is suit-
able as a solution scheme for stimuli generation. However, taking a closer look at
the problem, we can find inherent peculiarities that are not seen in other application
domains for CSP. The unique aspects of CSPs for stimuli generation are discussed

Stimuli Generation for Functional Hardware Verification with Constraint Programming 521

in length in [1, 8]. Here we summarize the most important of those aspects, which
add to the technical challenge of this domain and create a broad arena for innovation
and creativity.

� Requirement to randomly sample the solution space A complete set of archi-
tectural, expert-knowledge, and verification task constraints defines a single soft
CSP. (In what follows, we refer to this soft CSP as plain ‘CSP’ even though it
contains soft constraints.) However, we expect to obtain many different tests out
of this single CSP. Moreover, we want the tests to be distributed as uniformly as
possible among all possible tests that conform to the CSP. Essentially, we want
to reach a significantly different solution each time we run the solver on the same
CSP [27].

� Constraint hierarchy Expert knowledge is entered as a set of soft constraints;
these constraints may be applied in a multitiered hierarchy (Borning Hierarchy
[28]) according to their perceived importance in any specific verification sce-
nario. While constraint hierarchies also appear in other applications, stimuli
generation stands out in terms of both the number of soft constraints in the model
and the depth of the hierarchy. See the chapter by van Hoeve in this book for a
thorough discussion of soft constraints [25].

� Huge domains Many of the CSP variables have exponentially large domains.
The simplest examples are address and data variables that can have domains of
the order of 264 or larger. Handling such variables, and in particular pruning the
search space induced by these variables by using constraint propagation, cannot
be done using regular methods, that frequently rely on the relative smallness of
the domain.

� Conditional problems Many of the verification problems are conditional; de-
pending on the value assigned to some variables, extensive parts of the CSP
may become irrelevant. (In early literature these problems were also known
as ‘dynamic CSP’ [29]). Conditional problems also occur in other applica-
tions (e.g., vehicle configuration). However, we encounter a different flavor of
these problems. In one typical scenario, a full problem may consist of several
weakly coupled CSPs, where the number of those CSPs is itself a CSP variable.
Sections 6.2 and 6.6 describe such scenarios.

� Generic modeling of domain-specific propagators Some of the relevant con-
straint propagators are extremely complex and require months to implement.
However, the hardware specification may change on the same time scale, ren-
dering the implementation obsolete. Therefore, we need a generic model of the
propagator, where, by changing some parameters of the model, the propagation
algorithm becomes suitable for the new problem. One clear example of such a
case would be described in Sect. 5.4.

� Computationally hard propagators These are abundant in the verification of
floating point units. See Sect. 6.7.

The various hardware manufacturers and EDA tool vendors have coped with
those problems in different ways, and with various degrees of success. Intel has
been adapting the ILOG solver to handle those problems [2]. IBM, Cadence, and

522 A. Adir and Y. Naveh

Synopsys have all developed their in-house solver, which was built with those prob-
lems in mind. To the best of our knowledge, out of the three, IBM has been the most
open about the methods it implemented in its solver. Some of the methods used to
overcome the above challenges are presented by Naveh et al. [1] in the section titled
“The Generation Core Toolbox”. We provide a deeper look at some of the solutions
in Sect. 6 below. However, for many of these challenges, we are still far from an
ultimate and satisfying solution.

3.3 Alternatives to Constraint Programming
and Hybrid Approaches

While constraint programming is a clear candidate for solving the stimuli genera-
tion problem, there are other approaches, both declarative and procedural, that are
favored for particular cases. Those include integer linear programming (ILP), satis-
fiability programming (SAT), satisfiability modulo theories (SMT), manual writing
of tests, and creation of tests by specific procedural algorithms.

3.3.1 Declarative Alternatives

The first three cases (ILP, SAT, and SMT) have similar advantages to CP, but have
limited expressibility compared to CP. Therefore, when the constraints in the prob-
lem are not linear or Boolean disjunctions of linear expressions, it is preferable to
use CP; otherwise, the model needs to be translated into the appropriate ILP, SAT,
or SMT model, and this can create a severe maintenance problem when the design
changes. On the other hand, when the problem can be naturally expressed in one of
those frameworks, it is certainly advantageous to use the appropriate ILP, SAT, or
SMT solver, since their algorithms are tuned for the respective problem in a man-
ner superior to that of a general purpose CSP solver. From our experience, whole
verification problems cannot be naturally expressed as ILP, SAT, or SMT problems.
However, there are subproblems that can typically be expressed in this manner;
in such cases, some form of cooperation between the CSP and the other solver is
needed. An example where a SAT solver is used for the stimuli generation for a float-
ing point unit in the context of processor verification is discussed below in Sect. 6.7.
Another example, where an ILP solver was used in conjunction with a CSP solver
in the context of verification of a system on chip is described by Nahir et al. [30].

3.3.2 Hybrid Approaches

Given the unique advantages of each of the approaches, and given the complex-
ity and possible heterogeneity of the problem, hybridization between the various
approaches is called for. However, designing, implementing, and maintaining hybrid

Stimuli Generation for Functional Hardware Verification with Constraint Programming 523

solvers is a difficult task, and to the best of our knowledge only recently have such
efforts resulted in working industrial applications in the stimuli generation domain.
Still, designing various hybridization schemes is at the front of present research
activity, as we describe below.

One relatively simple way of hybridization is the master/slave scheme. Such an
approach has proved successful in at least two major cases: floating point unit valida-
tion [19], and architectural validation [31]. In both these cases, complex arithmetic
scenarios are needed in the general context of processor verification. For example,
consider the case where as part of a long test, an assembly instruction implementing
a � b D c needs to be generated with some constraints on a, b, and c [32]. The
processor verification problem carries with it the usual bag of complex constraints
which are best written as a CSP, and solved by ordinary CP approaches. However,
now the additional arithmetic constraints need to be satisfied simultaneously with
all processor constraints. Such constraints are hard to propagate and can be a major
inhibitor if modeled as regular constraints for the CP solver.

We overcome this problem by incorporating a new object, called a ‘restrictor’
into the CP solver. A restrictor has the same interface as a constraint, that is, a
propagation function. However, it generally returns only a small subset of the math-
ematically supported domains, and it can return different subsets each time it is
called on the same input domains. A restrictor can be added to the CSP at any place
a constraint can be added, and the solver treats the restrictor in exactly the same way
it treats a constraint, except that once it calls a restrictor and the restrictor does not
guarantee to return the full mathematically propagated domains (this is the ordinary
case), then the solver can no longer deduce that a CSP is unsatisfiable. In addition, in
this case, the solver may call the same restrictor more than once even if no domains
were reduced by other constraints or by instantiation steps.

In the case of [19] and [31], restrictors are used to model the hard arithmetic
constraints, while ordinary constraint objects model all other processor constraints.
The restrictors are implemented in this case by calling a stochastic local search en-
gine which solves the arithmetic subproblem a predefined number of times, each
time providing a different solution. Then, the values for each variable are aggre-
gated from all solutions and returned as the output domains of the restrictor. This
way, each output domain value is guaranteed to have at least one support for this
constraint. Once the restrictor has finished its task, control goes back to the CP en-
gine which continues with an ordinary maintain-arc-consistency (MAC) scheme.
Note that the stochastic solver called by the restrictor finds solutions to the arith-
metic problem out of the input domains specified to the restrictor. Hence, when the
MAC solver returns to this restrictor after reducing domains of any one variable,
the restrictor would now find solutions under the reduced domains. Such solutions
are known to exist because only supported values were returned in the previous call
to the restrictor. In fact, the restrictor may internally save all previous solutions in
order to come up faster with a solution in subsequent calls, after domains have been
reduced by the MAC solver.

Another important cooperation between a CP solver, a stochastic solver, and gen-
eral logic algorithms was presented in [33]. In that paper, we presented a framework

524 A. Adir and Y. Naveh

for applying logical manipulation of the problem, reminiscent of systematic solving,
in order to make the problem more suitable for stochastic local search. A simple
example of such manipulation is just calling the systematic CP solver’s reach-arc-
consistency function before sending the problem into the stochastic solver. This may
reduce the state-space for the stochastic solver. However, other techniques presented
in the above paper go beyond reaching arc-consistency, and are shown to dramati-
cally affect the state-space (size and topography, e.g., elimination of local minima)
in favor of subsequent stochastic search.

Additional hybridization schemes which we are at an early stage of evaluation
are: translation of some constraints into SAT or ILP and running a SAT or ILP
solver on those constraints (CP/SAT–ILP master/slave scheme). The incorporation
of the results into the larger CSP is then done as described above for incorporating
restrictor results; Running a SAT solver over the reified truth-values of constraints
(SAT/CP master/slave scheme) – this somewhat resembles the mode of operation of
an SMT solver, except that the underlying theory is not restricted and has the full
expression power of the CP solver; Adapting clause-learning techniques from SAT
into the systematic CP solver; And applying exhaustive search methods at critical
stages of the stochastic local search solver.

3.3.3 Procedural Alternatives

Procedural algorithms are typically used when the verification problem is very sim-
ple, and a basic test can be created by a simple program or a few lines of script.
This can occur in a variety of cases. The most obvious case is when the design has
a straightforward architecture. Another common case is when the design is in the
first stages of development and is still saturated with bugs. Then, even simple tests
are sufficient for finding most low-hanging bugs. Note, however, that this stage in
the verification is performed by the designer of the module rather than by actual
verification teams.

3.3.4 Manual Alternatives

At the other extreme, there is often the need to target a very specific and rare scenario
in the design. Here, a generic constraint solver may not be able to solve the highly
specific problem, even if the scenario can be expressed as a set of constraints on
the design. In this case, there is no alternative but to resort to a highly specific test
written manually by a dedicated verification expert.

3.4 Concrete Example

As discussed in Sect. 2.3.5, industrial test benches use object types to describe the
various hardware scenarios to be tested. Constraint programming dictates that these

Stimuli Generation for Functional Hardware Verification with Constraint Programming 525

struct Packet f
%sourceAddress : uint (bits : 8);
%targetAddress : uint (bits : 8);
%payloadSize : uint (bits : 16);
%payload : list of uint(bits : 8);
parityType : bool;
%parity : uint (bits : 8);

keep sourceAddress != targetAddress;
keep payloadSize == payload.size();
keep payloadSize in [4..1024];
keep (parityType == TRUE) == (parity == calculateParity(payload));
keep soft parityType == TRUE;
keep soft payloadSize ==
select f 20 : 4; 20 : [5..10]; 20 : 1024; 40 : others; g;
g;

Fig. 2 Constrained packet definition in e

object types be defined as classes with constraints on the class properties. The con-
straints can be used to define the valid domains of the properties and to relate the
properties of a class among themselves or with relation to properties of other objects.
Constraints can be defined as hard (mandatory) or with a hierarchy of softness.

Figure 2 (based on Nahir and Ziv (Private communication)) shows an example
of a definition of a packet object type in the e language. A packet object has six
properties. sourceAddress and targetAddress are 8-bit integers specifying the source
and destination of the packet. payloadSize is an integer specifying the size of the
payload property, which is in turn a list of 8-bit integers embodying the data being
sent in the packet. parityType is a Boolean property indicating whether or not the
parity property needs to be computed for the packet.

The constraints on the packet properties follow, each prefixed by the keyword
keep, or keep soft in the case of a soft constraint. Note, the constraint can use a
previously defined function like calculateParity. The last constraint defines a desired
distribution for the payload sizes between 4 and 1,024 (20% for 4, 20% for sizes
between 5 and 10, etc). parityType is not a physical property that would appear
in the actual packet, rather it is a virtual property to assist in the definition of the
constraints used in the packet generation process. This is indicated by the % symbol,
which precedes only the physical properties of the object.

Constraints can also create a relationship between different objects. For example,
one can define a stimuli of 1,000 packets, where every packet uses a targetAddress
different from the one used in the preceding packet. The constraints can be defined
on object types as in the figure but also on specific object instances. One can also im-
port a library of predefined object types and then impose additional constraints upon
them as required by the specific application. This enables, for example, a scheme
for prioritizing soft constraints where the later a soft constraint appears in the class
definition, the higher its priority. Another interesting aspect of CSP modeling for a

526 A. Adir and Y. Naveh

test bench with dynamic generation is the ability to configure the constraints dynam-
ically as the stimuli is simulated on the DUV – including the modification, addition,
or removal of constraints – all according to the current state of the simulator.

A test bench environment that supports these languages needs to have some CSP
capabilities for handling these types of constraints. Various EDA vendors, like Syn-
opsys, Cadence, and Mentor Graphics provide test-bench environments based on
SystemVerilog. In addition, Cadence’s Specman is also based on e. As each EDA
vendor provides its own CSP engine, there are a variety of such engines to support
the constraint-related aspects of the standards. The actual technique used to solve the
CSP is often not entirely hidden from the user. For example, for some time, Specman
solved the CSP property-by-property, in the order in which the properties were de-
clared in the object types. This affected the way that the constraints and the order
of properties had to be defined if one wanted to cause or avoid biasing the distribu-
tion of property combinations or if one simply wanted to improve the success rates
of the CSP engine. A recently publicized version of Specman [34] now groups the
properties into related sets, where each set is solved together and the solution order
for the different sets is automatically determined following dedicated heuristics.

4 Modeling for Verification with CP

4.1 Introduction

With a model-based approach to verification tool design, the knowledge of the archi-
tecture is kept separate from the control, which is the tool’s main engine. Typically
the model is kept in some database ontological tool, while the engine is a pro-
gram written in code. This approach has proved extremely apt for many types of
verification tools for various reasons. Typically, many stages of the verification pro-
cess are performed while the architecture is still evolving. Maintaining the changing
knowledge of the architecture is much easier when it is placed in a separate formal
declarative knowledge base; rather than hidden, often implicitly, in various parts of
the code. The separation of knowledge from control also facilitates using the same
tool for different designs or for various generations of the same design. In addition
to a description of the relevant aspects of the design, the modeled knowledge can
also include heuristic knowledge on how best to verify those design aspects. This is
what we term expert-knowledge.

The ever-increasing complexity of today’s designs raises the demands from the
modeling technologies. The modeling language must be (1) expressive enough to
describe the complex intricacies of the architecture and its expert knowledge, (2)
formal enough to facilitate maintenance, and (3) be easily convertible to the repre-
sentation that is required for the operational needs of the verification tool. As more
and more verification tools are using CP as part of their engine, this internal repre-
sentation is essentially a CSP.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 527

In the next section, we describe various CSP models pertaining to different ver-
ification needs. Once each of the models is defined, it is input into a generic solver
with abilities described in Sect. 3.2, and the solution of the CSP is then used to create
the stimuli.

4.2 Distributed Model

The CSP model of the hardware design is highly distributed by nature. In a full hard-
ware system, different entities (component types, hardware transactions between
the components, configuration) carry different packages of constraints. However,
the distribution of the model exists even for single-unit designs and is related to the
various business areas responsible for creating different parts of the model.

At least three such areas exist, and are depicted in Fig. 3. First, hardware engi-
neers contribute constraints specifying the architecture of the hardware (in the case
of system verification, this actually means several teams of engineers, one per com-
ponent type). Second, domain experts contribute expert knowledge in the form of
soft constraints (those two functions are represented collectively by the ‘knowledge
engineer’ in Fig. 3). Lastly, verification engineers contribute constraints that ensure
the current verification task is accomplished.

While all three teams share the ultimate goal of releasing hardware with no bugs,
each handles quite a different set of constraints and may use somewhat different
terminology. The architecture team deals with hard constraints with one-to-one
mapping to the formal specification of the hardware. The expert-knowledge team
adds soft constraints that are less exact by nature and retain a level of fluidity in def-
inition. The verification team adds hard constraints on the one hand and tunes the
soft constraint parameters on the other hand. The three teams also work according
to very different time scales. Expert knowledge is rather robust, major parts of it
are valid across designs, and may remain intact for years. Architectural constraints
are strictly valid for a single design, but may migrate between different generations
of the design. For any new design, constraints must be added, deleted, or rewritten.
Verification task constraints are short-lived and may change within weeks.

Fig. 3 Distributed sources
of constraints

Generation engine
and Constraint

Solver

Architecture Model
and Expert Knowledge

Test-
Template

Functional
Reference

Model

SimulationTest programTest programTest Program

Knowledge
Engineer

Verification
Engineer

528 A. Adir and Y. Naveh

All those distributed parts of the model ultimately form one single CSP, and
therefore relate to the same CSP variables. It is up to the tool developer to provide
a modeling platform that, on the one hand, would be easily usable by the different
teams and in the different time scales, but on the other hand, would share the same
variables between all parts of the distributed model. The front end of the platform
may appear differently to each user, in each case providing a different modeling
language. However, a common back end should recognize the various types of con-
straints and synchronize between them.

We have found that the architecture and expert-knowledge teams can share the
same front end as they are both aware of the same aspects of the design. For ex-
ample, a constraint specifying that a particular data transfer needs to cross a page
boundary can be both an architectural constraint (typically, in this case, the archi-
tecture may forbid a page cross), or an expert knowledge constraint, as a page cross
stimulates complex hardware mechanisms that may reveal previously unreached be-
havior. On the other hand, a higher-level language is found more suitable for the
verification teams. In the case of system level verification, for example, the task
may involve transactions, components, and special instructions. The basic entities
of the front end provided to the verification teams are formed from the higher-level
entities modeled by the architecture and expert-knowledge team. So a verification
engineer can ask for several transactions of a given type (as modeled by the ar-
chitecture team) to pass through various components, using a given value of data
(where the data parameter is again modeled by the architecture team). In addition,
the verification engineer can request the test to be more strongly biased by any of the
different forms of biasing created by the expert-knowledge team. For example, the
engineer may request a specific type of data contention to occur in the test by choos-
ing the relevant data contention entity which was modeled by the expert-knowledge
team in terms of constraints forcing re-use of the same memory range in different
transactions.

4.3 A CSP-Oriented Modeling Language

IBM has developed a general ontology-based, constraint-oriented, modeling plat-
form called ClassMate. Its main (though not exclusive) deployment is for model-
ing verification domains for various CSP-based stimuli generators. The modeling
language therefore includes first-class constructs particularly appropriate for the
subsequent treatment of the modeled information as a CSP, such as soft and hard
constraints and value domains. However, no verification-specific constructs are de-
fined at this level.

The ClassMate language is basically an object-oriented typing language. As the
first step in modeling a new problem domain, the user defines a meta-language that
includes the most basic types of this domain. For example, in the verification do-
main, the meta-language may include such constructs as ‘component’, ‘register’,
‘instruction’, ‘contention’, and so on.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 529

A Type definition is in essence a definition of the collection of the type’s
instances – termed the extent of the type. These instances can be explicitly mod-
eled and then enumerated in the type definition, but the language includes basic
built-in types and instances such as integer, boolean, string, and others with the im-
plied domain of instances. The instances of the integer type, for example, are all the
integers. Another method for more finely defining the extent of a type is by means
of constraints. For example, the following is the definition of the type SmallEven-
Fibonacci with an extent including all even Fibonacci numbers between 1 and 100.
The constraints appear inside square brackets, and % is the modulo operator:

type SmallEvenFibonacci W integerfŒ1; 100�g
Œ $this%2 DD 0I IsFibonacciNumber.$this/ �

The above definition of the SmallEvenFibonacci type is an example for defining
a type as a refinement of another base type, where the refinement here is performed
by restricting the extent of the base type. The integer type is first refined to the set
of integers between 1 and 100, and then further refined to only the even Fibonacci
numbers among them.

The language also supports structured types where each field of the structure
is, in turn, of some predefined type. The full extent of a structured type is the set
of tuples resulting from the cross-product of the extents of the field types. This
extent can again be further refined by specifying constraints on the allowed tuples.
A structured type can also refine a given base type by inheriting from the base type
and then adding more fields to the structure, or limiting the extent by adding further
constraints or domain limitations to the structure fields.

Figure 4 shows the types involved in the modeling of a memory operand used by
a CSP-based test program generator such as the one described in Sect. 5.1. The Reg-
isterOperand type is a record with the following fields: index (there are 32 registers
indexed 0–31), data (the registers are the size of 8 hex digits, i.e., 32 bits), and length
(in bytes; in this case, 32 bits are 4 bytes). The data field is a refinement of the built-
in type called bitstream. The bitstream type is similar to the integer type except that
integer domains are defined by enumerating integers and integer ranges, whereas
bitstream domains are defined with binary or hexadecimal masks that include “dont-
care” positions. 0xXXXXXXXX is a bitstream domain including all the numbers
that are representable with 8 hexadecimal digits. An example instance of the Regis-
terOperand type is the tuple < index W 5; data W 0x000A2300; length W 4 >.

The MemoryOperand type is defined very similarly, except that the address
is more conveniently represented as a 32-bit bitstream and the operand length is
left unrestricted. The type HalfWordMemoryOperand is a refinement of Memory-
Operand. The domain of the data field is restricted to 16-bit values and the length
field is restricted to the value 2. HalfWordMemoryOperand also includes two new
fields: baseRegister of the RegisterOperand type and a displacement that is a 16-bit
bitstream. An example instance of the HalfWordMemoryOperand could be the tuple

< address W 0x000A2340; data W 0xABCD; length W 2; baseRegister W<
index W 5; data W 0x000A2300; length W 4 >; displacement W 0x0040 >.

530 A. Adir and Y. Naveh

type RegisterOperand: record
f

index: integer f[0,31]g;
data: bitstream f 0xXXXXXXXX g;
length:integer f 4 g;
g
type MemoryOperand: record
f

address: bitstream f 0xXXXXXXXX g;
data: bitstream;
length: integer;
g
type HalfWordMemoryOperand: record MemoryOperand
f

data: bitstream f 0xXXXX g;
length:integer f 2 g;
baseRegister: RegisterOperand;
displacement: bitstream f 0xXXXX g;
[
$address = $baseRegister.data + $displacement;
Overflow($baseRegister.data, $address);

]
g

Fig. 4 A classMate type for a memory operand of an instruction

The constraint addressD $baseRegister:dataC$displacement restricts the extent
of the HalfWordMemoryOperand type to only those tuples in which the address field
equals the sum of the baseRegister’s data field and the displacement (the $ notation
is used to access variables defined in the ClassMate record from the constraints.) The
example tuple given above is thus a valid instance of the HalfWordMemoryOperand
type, that is, it satisfies all constraints.

The object of the Overflow constraint that follows is to restrict the extent of the
HalfWordMemoryOperand type to only those tuples that correspond to an “over-
flow” event when the memory operand is actually used in a test program. The precise
constraint propagator of the Overflow restriction is presumably implemented by the
user in some code library that can be used by the particular test program genera-
tor when solving the corresponding CSP. The Overflow constraint is an example of
an “expert-knowledge” type of constraint. It does not represent an architectural re-
striction of memory operands but merely describes the types of memory operands
desired for verification purposes. Such expert-knowledge constraints are commonly
not mandatory. The ClassMate language enables the modeling person to indicate
that constraints are hard or soft and also to prioritize the soft constraints.

It is important to note that ClassMate is only a modeling platform particularly
adapted to model CSPs and not a CSP engine that can solve the modeled problems.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 531

It provides a platform to model the information and also run-time libraries that pro-
vide reflection of the modeled information for any tool that chooses to solve the
CSPs using CSP engines. The modeling platform (which also includes a graphical
user interface) provides the strength of modeling very different systems (due to the
separation between language and meta-language), the agility in quick adaptation to
next-generation models (because of the stability of the model language, the ability
to just change parameters or add or remove constraints), and the direct formation of
a CSP model at its back end (because of the first-class status of constraints in the
language).

5 Examples of CP models

5.1 Processor Modeling

Lichtenstein et al. [6] first described a model-based test program generator for pro-
cessor verification. Adir et al. [20] described how an advanced version of the tool
models the processor instructions and related expert-knowledge in a form that is
directly translatable to a CSP.

Figure 5 shows a model of a Load-Word instruction that loads four bytes from
memory. The operands are arranged in a tree structure with the attribute names (in
bold) and value domains. The Load instruction is modeled with two operands: the
source memory and the target register. The source memory operand, in turn, has
two sub-operands: the base register and the displacement (immediate field) that are
used to compute the loaded address. The arcs in the figure denote relations between
attributes and correspond to constraints. These relations are imposed by the archi-
tectural definition of the instruction. For example, the source memory address is

Load−Word

base

target

displacement

source
units
address

Memory

4

units
address

data

GPR

[0:31]
1

data

family

units
address

data

GPR

[0:31]
1

family

source.address = base.data + displacement.data

base.address target.address

family

data

 [0:2 −1]

32[0:2 −1]

[0:2 −1]

16[0:2 −1]

[0:2 −1]

 32

32

32

PageCross

Fig. 5 Model of a load-word instruction

532 A. Adir and Y. Naveh

the sum of the value of the base register and the displacement (source.address D
base.dataC displacement.data in Fig. 5). Relations such as this one, which can be
expressed as equations with arithmetic, Boolean, and bitwise operators, are stated
directly in the model. The modeling of relations with more complex semantics can
refer to an external implementation for the propagation in CCC, which the model-
ing engineer needs to provide.

Instruction-specific expert knowledge can also be modeled as part of the instruc-
tion model. As an example, consider the instruction “add Rt RaCRb”. The
probability of randomly generating an instance of the add instruction in which
data(Ra)C data(Rb) D 0 is negligible. Verification engineers may decide to give
this combination a higher probability of appearing in tests because it may stim-
ulate complex underflow mechanisms in the processor’s arithmetic unit. In this
case, they can model a corresponding “expert-knowledge” relation between the
attributes data(Ra) and data(Rb). Figure 5 includes an expert-knowledge constraint
represented by the dashed arc, which constrains the address attribute so that the
word access crosses a page boundary. Such expert-knowledge relations are typi-
cally translated into soft constraints that can be adjusted, added, or removed from
the actual CSP using user directives according to the specific requirements of the
verification engineer.

5.2 Verifying ADL-based Systems with Random CSPs

As seen above, many verification tools have a model-based design, enabling knowl-
edge of the hardware architecture being verified to be separate from the main control
of the tool. Several vendors provide a hardware architecture modeling framework to
automatically create a family of tools for early design exploration and other tasks in
the design cycle, including verification tools; and in some cases, even major parts
of the design itself. The modeling is performed using what is termed an architecture
description language or ADL (although this term is also used in the context of soft-
ware architecture modeling). CoWare [35] and Target [36], for example, provide
platforms where the model can be used to create parts of the design and various
tools including simulators, a compiler, assembler, and stimuli generators. Figure 6
shows an example from [37] showing part of the modeling of an add instruction
with the LISA language [38] supported by CoWare’s Processor Designer [35] with

OPERATION add d
f

DECLARE GROUP Dest, Src1, Src2 = register ;
CODING Dest, Src2, Src1 0b01000 0b1000
SYNTAX “ADD” “.D” Src1 “,” Src2 “,” Dest
BEHAVIORDest = Src1 + Src2;
g

Fig. 6 Modeling syntax and semantics in LISA

Stimuli Generation for Functional Hardware Verification with Constraint Programming 533

operation MYLOAD
f out AR Target, in AR Base, in imm8 Displacement g
f out VAddr, in MemDataIn32 g f
assign VAddr = Base + Displacement;
assign Target = MemDataIn32;
g

Fig. 7 TIE description of a load instruction

information on its binary encoding, string mnemonic structure, and behavioral se-
mantics. Other parts of the modeling for the instruction provide more details about
the intended implementation, which enables cycle-accurate simulation of the in-
struction.

A related technology is that of configurable processors such as the one supported
by Tensilica [39] and Arc [40], where the designer can construct the processor ac-
cording to his or her particular requirements by configuring many aspects of a basic
given processor. Tensilica performs this configuration using the TIE language [41].

In such model-based design environments, the main onus of verification falls
more on the provider of the environment and less on the designer. The environment
must be capable of producing valid designs and tools (when used properly). Rimon
et al. [42] describes how such verification can be executed by testing the framework
on randomly generated processor architecture models. Just as in any random stim-
uli generation, these random processor models perform better when biased toward
interesting designs and so as to cover many possible design types. A CSP-based
processor model–as shown in Fig. 5–is automatically created for the randomly gen-
erated configuration and the test generator is then used to verify the design resulting
from the random model.

Thus, the processor model, together with its many CSPs, needs to be configurable
based on the configuration in the TIE language. For example, the TIE description in
Figure 7 of a load instruction results in a CSP similar to the one shown in Fig. 5. Here
VAddr and MemDataIn32 are names of TIE interfaces. The TIE designer can assign
a value to VAddr, then read the data from that memory address on the MemDataIn32
interface.

5.3 Micro-architectural Events

The term architecture in this chapter refers to a high-level specification of the de-
sign, for example, as required by a software engineer writing an application to be
executed on the design. The micro-architecture is a much lower-level description
of the design, mainly required by the designer as directives on how the design
is to implement the architecture. Modern microprocessors have several micro-
architectural mechanisms, not necessarily visible to the programmer, which improve

534 A. Adir and Y. Naveh

performance but increase the complexity of the design, thereby increasing the risk
of bugs. Examples of such mechanisms include multiple execution units supporting
concurrent execution, out-of-order execution, pipelining,3 and caching.

A major problem for test program generators is how to trigger specific desired
micro-architectural events by means of an architecture level assembly program. Adir
et al. [18] describes a micro-architecture CSP-based approach that can deal with this
difficulty. The model proposed includes several customizable building blocks that
describe micro-architectural components (such as out-of-order queues or pipeline
stages) and mechanisms (such as instruction flushing from the pipeline). These
are defined using fixed properties such as the size of the queue or the cache-line
replacement policy. The model also includes some dynamic properties of the micro-
architectural components that refer to their state as instructions flow through them.
The possible test instructions themselves are also modeled in terms of the timing of
their passage through the possible execution stages (such as pipeline stage entry and
exit time, time of flushing if relevant, etc.).

For example, the model may define that the pipeline property of any load instruc-
tion is one of two possible load-store pipelines, depending on which of them has the
first stage free when the load is issued for execution. The first stage of this pipeline
requires two cycles to complete. The first stage of the pipeline is full if an instruction
was issued to the pipeline during the previous cycle, or if the stage was full in the
previous cycle and the instruction is stalled. All these dynamic properties are then
represented as CSP variables that are constrained, based on the micro-architectural
characteristics of the components. The number of instructions included in the test
must be decided in advance and all the timing variables of the instructions are added
to the CSP and constrained as required. The user can also add constraints that spec-
ify some specific desirable micro-architectural event. The CSP solution includes
a precise cycle-accurate description of the flow of all the instructions of the test
through the micro-architectural components. More importantly, the required archi-
tectural test program can also be deduced from the CSP solution.

For example, suppose the user wants to hit the following micro-architectural
event: an instruction, I1, enters stage 1 of a pipeline and stalls there for several
cycles. One cycle later, another instruction I2 enters stage 3 of the pipeline and also
stalls, during which time a misalign type exception is generated (by another instruc-
tion I3) that causes I2 but not I1 to be flushed (i.e., prematurely exit the pipeline).
Note that the event refers to three abstract instructions but the test may need to in-
clude many more to cause the precise desired timing. Figure 8 shows the constraints
that the user can define to specify this event.

3 A pipeline is a micro-architecture mechanism that enables the concurrent computation of mul-
tiple instructions. The computation of a single instruction is broken into stages that are handled
in corresponding stages of the pipeline. An instruction enters the pipeline and goes one by one
through all the stages. Each stage can handle just one instruction at a time, but the pipeline can
concurrently handle instructions at various stages.

Stimuli Generation for Functional Hardware Verification with Constraint Programming 535

I[1].pipeline = I[2].pipeline
I[1].stage[1].stall time > 0
I[2].stage[3].stall time > 0
I[2].stage[3].entry = I[1].stage[1].entry+1
I[3].flush = true
I[3].flush time � I[2].stage[3].entry
I[3].flush time � I[2].stage[3].exit
I[1].destiny=finished
I[2].destiny=flushed

Fig. 8 Using constraints to define a micro-architectural event

5.4 Address Translation

Most modern processor architectures provide a virtual address space for their soft-
ware applications. The operating system maps these virtual addresses to physical
hardware resources (such as memory, disk, or I/O ports) using address translation
mechanisms. The translation is executed primarily using hardware mechanisms such
as translation tables in memory and control registers. Address translation also com-
monly plays a part in memory protection and caching mechanisms by maintaining
related properties for basic translated memory units such as pages or segments. The
operating system maintains these resources through software, but the translation it-
self is executed by the hardware.

Gutkovich and Moss [43] demonstrates the modeling of the address translation
mechanism of Intel’s IA-32 architecture as a CSP. The logical address is translated
first through a segment descriptor table and then possibly also through a page table
with possible exceptions occurring on the way. All the relevant translation properties
such as the initial, intermediate, and final addresses, the table entries that were used,
and their fields, are modeled as CSP variables. These are then constrained accord-
ing to the architectural definitions and also potentially with user-defined constraints
(such as avoiding exceptions).

Adir et al. [44] describes a generic platform for modeling translation mechanisms
as flowcharts that are then automatically converted into CSPs. This is an appropriate
approach due to the procedural nature of the address translation architecture. The
flowchart describes the possible successive stages of the translation process, each
linked to its antecedent by a set of conditions. Each stage comes with a set of proper-
ties that are related to properties in previous stages. These property transformations
and edge traversal conditions are then converted into corresponding constraints in
the CSP.

A simplified example is shown in Fig. 9. The initial stage has a Virtual-Address
attribute providing the virtual address to be translated into a physical address, an
Access-Type attribute indicating the type of access (e.g., data or instruction fetch),
and a Control-Register attribute providing the value of a register that controls
the translation process. From this stage, the translation may proceed through
one of three possible edges, depending on the value of the Control-Register.

536 A. Adir and Y. Naveh

Fig. 9 Translation modeling with CSP

The transformation associated with the corresponding edge links the attributes
of the succeeding stage with the attributes of the preceding one. In the figure,
AŒi; k] designates a bitstream, which is the sub-stream of bitstream A between bit i

and bit k. The symbol ‘j’ designates bitwise-or.
Translation tables are widely used in various translation mechanisms. A model

of a translation table includes a set of specific properties, such as its size and en-
try fields. It also provides a match condition, which defines whether a table entry
translates a given address. In addition, it specifies the transformations between the
attributes of the stages connected by the translation table and various additional
constraints between table attributes. As the figure shows, there are different trans-
formations and succeeding stages, depending on whether a matching entry is found
in the table (i.e., the match condition is satisfied).

The size of the CSP can become quite large; up to 270 variables with 599 con-
straints for PowerPC address translation, and 218 variables with 493 constraints for
address translation on an InfiniBand bus. Note that many of the variables are 64-bit
numbers, and the constraints may be complex as they deal with bit indexes and bit
fields of those numbers. However, in the solution to the CSP, only one path out of
the many possible paths of the flowchart is actually taken. Thus, the whole CSP
becomes highly conditional (meaning that large parts of the problem are dropped
dynamically, depending on the values of some of the variables in the solution [29])
and a CSP engine with strong support for conditional CSPs is required to enable
reasonable performance [45]. Performance can also improve if the constraints that

Stimuli Generation for Functional Hardware Verification with Constraint Programming 537

define the taken path are given propagation precedence over those that relate the
properties on the path stages. On the other hand, such a precedence approach may
lead to many deep backtracks on hard problems, requiring heuristic tuning of the
precedence relations.

5.5 System Modeling

Figure 10 presents a view of a hardware system. A hardware system is composed
of various hardware components such as processors, memories, and busses, con-
nected to each other. Verification of the system as a whole can find bugs in the way
the components interact with each other, and can find bugs in each of the units by
creating system-level stimuli, which is difficult to create in the context of a single
component.

The system model of the system level test generator of [47] is composed of
three different parts. First, a model of all component types (e.g., processor, memory)
that includes all constraints resulting from the specification of this component. For
example, the following constraint may be specified for a bus: [at any time, the accu-
mulated number of bytes flowing into a bus minus the number of bytes flowing out
of a bus cannot exceed X]. This constraint makes sure that the buffers in the bus do
not overflow, and it may limit the test case inputs for components even if they are
distant from the bus.

Fig. 10 IBM’s system Z. Reproduced with permission from [46]

538 A. Adir and Y. Naveh

Second, the configuration is modeled. The number of instances of each compo-
nent type is specified, as well as the connectivity between the various components.

Third is a model of all possible transactions between the components. This in-
cludes the component types that are the initiator and target of the transaction, and the
constraints particular to that transaction. For example, a transaction of type ‘data-
transfer’ may specify a processor as the initiating component type, a memory as the
target component type, and a set of variables that include the data being transferred,
the processor’s source register, the memory target address, and more. The follow-
ing constraint needs to be added to the model to mimic the correct behavior of the
system when the transaction takes place: [After a ‘store’ instruction from register X
in CPU-Y to address Z in MEM-W, the data value of address Z is equal to the data
value of register X].

A CSP for a system interaction to be generated into the test can now be con-
structed by adding the constraints induced by the component types participating in
the interaction (including at least the initiator and target of the transaction) and the
constraints related to the particular interaction.

The model can also include expert-knowledge constraints that are specific to a
system. For example, the following constraint all transactions in the system must go
through the same bus ensures traffic congestion through the chosen bus, thus over-
stressing the bus and increasing the probability of exposing a bug related to data
contention and race conditions. As usual, the expert-knowledge constraints are soft.

Lastly, the user may specify constraints related to the verification task at hand.
For example the user can request that all transactions would use, at most, two mem-
ories, or that a transaction would go through path lengths larger than some number,
where the path length is defined as the number of components on the path.

All in all, the final model contains constraints describing each of the component
types, constraints describing the valid and interesting interactions between any two
component types, and constraints defining what constitutes a valid path (e.g., num-
ber on components of a specified type on the path, separation between them). Now,
for any transaction, it is up to the CSP solver to find an initiating component, a tar-
get component, a path between them, and input stimuli to the initiating component,
such that all the constraints are satisfied. Section 6.5 discusses some of the issues
involved in solving this kind of CSP.

The separation of the model into separate sets of constraints is necessary for
allowing fast maintenance and changes in the model. This is particularly important
in system verification because this level of verification is done toward the end of
the verification activity when time-lines are inevitably short. Thus, when the design
changes at the last minute, only the model of the affected entity needs to be changed,
leaving all other areas of the model intact.

5.6 Automatic Test-pattern Generation

The process of manufacturing chips (for a presumably verified design) can be quite
error prone in itself. The percentage of error-free elements (termed yield) can get

Stimuli Generation for Functional Hardware Verification with Constraint Programming 539

as low as a few points. Automatic test pattern generation (ATPG) tools [17] look
for manufacturing problems by applying sequences of signal vectors at the circuit’s
input interfaces. The resulting values at the circuit’s outputs are then compared with
the values expected from a valid circuit.

ATPGs target potential faults in the circuit – the most common are “stuck-at”
faults where some internal signal is stuck at 0 or at 1 regardless of the inputs. ATPGs
can then be used to create a test suite that covers all observable production faults of
this kind. A single test can expose several faults in the circuit but most ATPGs
eventually need to target a single stuck-at fault at the output of some specific logical
gate. For example, if a specific “AND” gate is suspected of being stuck at 0, then the
test would need to ensure that both inputs to the gate are 1. The test would indeed
need to select a sequence of inputs to the entire circuit that would eventually justify
such a setup at the internal gate’s inputs and also that if a 0 indeed results in the
output of the gate then this bad value is observable, that is, it propagates to at least
one of the circuit’s outputs.

The ATPG problem as thus described is NP-complete with regards to the number
of binary inputs to the circuits, and most ATPG tools employ dedicated technolo-
gies that involve various search strategies and heuristics. Some of these are SAT
based, which appears appropriate given the boolean-logical nature of the problem.
Abramovici et al. [48], Hentenryck et al. [49], Simonis [50], Brand [51] demonstrate
how the problem can be modeled and solved as a CSP. The approach presented
in [49] and extended in [51] models the gates as implementing logical functions
on variables with domains that include values beyond just 0 and 1. For example, the
value “d” represents a signal with value 1 that should really have been 0, and the
value “dnot” represents a signal with value 0 that should really have been 1. Thus,
for example “0 or d D d” because a wrong value of 1 that propagates through an
“OR” gate results in a wrong value of 1 at the output of the gate. Other signal val-
ues like “irrelevant” or “uncontrollable” are also proposed. The states of the signals
connected as input/outputs to the circuit gates are modeled as CSP variables with
these extended logical domains. Every gate is modeled as a constraint between the
gate’s input and output signals that corresponds to the function of the gate. Other
constraints set the input signals to the targeted gate as implied from the targeted
fault, and also require that at least one of the circuit output signals has a value
of d or dnot. The CSP engine then searches using local propagations at the gate
points. This differs from many common ATPG tools that take a more global control
strategy. Yet, [51] was able to report reasonable results with various types of logics
(i.e., variable domains) on several benchmark sequential circuits.

6 Advanced Topics and Challenges

6.1 Dynamic Test Program Generation

Consider a stimuli generator for a processor that generates an assembly program,
one instruction after the other, in program order. The generator is also dynamic in

540 A. Adir and Y. Naveh

that it keeps track of the state of the resources, such as registers or memory locations,
as they should be when the program (as generated so far) will be executed on the
verified processor. This is done using a reference model, during generation time,
which simulates the correct behavior of the processor. As seen in the example in
Fig. 5, knowing the current values of the resources is useful for maintaining the
validity and quality of the generated instructions.

Gutkovich and Moss [43] propose a method of supporting dynamic resource val-
ues within the framework of a CSP for the instruction. The CSP for the instruction
includes data and address variables for the participating resources (similar to Fig. 5).
A “customized” constraint defined on these CSP variables refers to tables main-
tained in the reference model to determine the current values of the resources and
project the address and data variables accordingly. In addition, for the sake of perfor-
mance, the domain reductions for each of the address and data variables are delayed
until enough is known about the other. For example, in the case of a memory re-
source, the bounding of the data variable can be delayed until the address variable
is also bound. Such delaying tactics can be relaxed when the domains are smaller,
as is more natural in the case of register resources.

It is possible for the current values of the resources to be still undetermined even
in the reference model since the reference model would know only about the re-
sources that were referred to so far in the test. Thus, the bounding of a data variable
for some resource can have the side effect of updating that resource in the refer-
ence model tables. A dilemma related to such implementation occurs when the CSP
includes variables for multiple resources that may become identical. For example,
consider a CSP for an Add instruction that sums two memory operands. One needs
to ensure that the data variables of the two memory resources are bound to the same
values if the addresses are the same. One way of handling this is simply to add a
direct constraint that relates these data and address variables. When using MAC-3,
another approach is possible. Whenever a data variable of some resource is bound,
all the custom constraints that relate the address and data variables of resources of
the same type to the reference model are tagged as needing further propagation be-
fore the MAC-3 fixed point is reached. This solution also nicely handles the case of
overlapping non-identical resources.

6.2 Problem Partitioning

CSPs for many verification problems tend to be relatively large with many com-
plex constraints over a large number of variables with large domains. For example,
[18] models a whole test program as a CSP with tens of thousands of variables
and constraints. As a result, only short tests can be handled with reasonable per-
formance. The test generator in [18] targets micro-architectural events that can be
hit with a relatively short sequence of instructions. However, most stimuli genera-
tors aim at tasks that require much longer scenarios [52]. This enables, for example,

Stimuli Generation for Functional Hardware Verification with Constraint Programming 541

hitting more events in a single test and testing the design while its resources are
already “warm” with the effects of previous instructions (e.g., full buffers, caches,
pipelines).

Thus, various kinds of partitioning techniques are employed to enable the gen-
eration of long tests. There are basically two generic approaches to problem parti-
tioning: divide and conquer, and abstraction. With the divide and conquer approach
the CSP is split into a set of subproblems with a much higher constraint density
inside the subproblems than among them. For example, the test program generator
in [20] creates and solves a CSP for every instruction of the test separately, one
after the other in program order. The generator of [47] creates a test with system
level interactions and similarly solves a separate CSP for every interaction. The ob-
vious problem with the divide and conquer approach is that the CSP is often not so
neatly divisible and there are still some (hopefully few) constraints that relate the
subproblems, which may lead to ultimate failure if ignored while the subproblems
are solved. The simplest solution is backtracking, but this can be of limited value,
depending on the type of the interproblem constraints. Bin et al. [8] propose using
a separate CSP for the interproblem constraints, which shares the variables with the
subproblem CSPs. Then, arc-consistency is reached in the inter-problem CSP before
every subproblem CSP is solved.

Bin et al. [8] discuss the application of CSP abstraction [53] to test generation.
This is particularly appropriate for cases where the CSP is highly dynamic in the
sense that many components of the problem are conditional and would not be rele-
vant in the final solution. First, a separate CSP is constructed and solved to determine
the “structure” of the base problem and only then the base CSP is solved with far
fewer potentially irrelevant components. For example, a generator that creates an
address translation following the flowchart approach described in [44] can start by
solving a CSP to decide which translation path to take and then continue with solv-
ing a CSP for just the chosen path. The problem with abstraction-type partitioning
is that a solution cannot be guaranteed for the lower-level CSP once the higher-level
CSP is solved.

Adir et al. [54] shows how CSP abstraction can be used in the verification
of various types of parallelism in processor architectures such as Super-scalar,
Multi-threaded, and VLIW architectures. Very long instruction word (VLIW) is a
performance-enhancing mechanism that considers a short sequence of basic instruc-
tions as a single “long-word” instruction and executes the constituent instructions
concurrently. Figure 11 shows the model for a VLIW with places (slots) for up
to four instructions to be executed concurrently. The VLIW model here (based on
STMicroelectronics’ ST100 and ST200 [55] architectures) defines four slot types
each enumerating the valid instructions for a slot (including Nop indicating an empty
slot). Every physical slot points to one or more slot types. The architecture imposes
constraints on the composition of the VLIW such as requiring no more than two
loads, or prohibiting more than one instruction of the VLIW to write over the same
resource. The proposed solution is to first solve a CSP problem to decide on the
composition of the slots that is, what instruction types are to be placed in each of

542 A. Adir and Y. Naveh

Fig. 11 VLIW modeling

ST1 ST3 ST4ST2

− No more than two load/store/copy

− No more than one coprocessor ST=Slot Type
− No more than two arithmetic

Coproc
Arith

Nop

Arith
Nop

Store
Au
Nop

Load
Copy
Nop

the four slots. Then a second CSP is constructed for deciding on the properties of the
four selected instruction types such as resources used and access types, in a manner
similar to that shown in Fig. 5.

6.3 Compliance Validation

Verification refers to the entire process of uncovering bugs in a design, while the
scope of compliance validation is ensuring that the architecture specification has
been correctly interpreted by the designer during the implementation. The impor-
tance of validating architecture compliance has been exacerbated in recent years
due to a trend for standardization at all design levels. This is partly due to a shift
from custom ASICs toward SoC (system on a chip) designs, which include ready-
made components with well-established and recognized architectures. Companies
responsible for such designs and the respective organizations defining the stan-
dards obviously have a strong drive to ensure that the design complies with its
specification.

It is important to note that the types of errors that should be targeted here are dif-
ferent from the types of errors caused by a bad implementation of a well-understood
specification. However, ensuring that a specification was understood correctly is a
much more feasible task than ensuring that it was implemented correctly. Although
finite, the specification describes how the design must behave in a potentially infi-
nite number of scenarios. To be confident in the correctness of an implementation,
one must either simulate enough test cases until a sufficient level of coverage is
reached, or formally prove the correctness of all the scenarios. However, to check
against misinterpretations, it should suffice to ensure that each of the finite number
of requirements made in the specification was understood correctly.

Adir et al. [31] describes a technique for validating the compliance of a processor
design to a processor architecture specification by targeting certain cognitive models
of possible human misinterpretations. These can include misreading an ambiguous
text, forgetfulness, or a wrong association with a similar but different specification

Stimuli Generation for Functional Hardware Verification with Constraint Programming 543

prec = 32−bit

OE = 0

OE 0

inst_is_setting_overflow = false

1
10

OE = 1

inst_is_setting_overflow = true

OE

N1 N2

N3 N4

1 2

prec = 64−bit

11 12
65

mode = 32−bitmode = 64−bit

43

0 OE 1

64bit_overflow_occured = false
64_bit_overflow_occured = true

7 8

OE 1OE

32bit_overflow_occured = false
32bit_overflow_occured = true

OE 0

9

Fig. 12 Flowchart for the overflow setting process

that is familiar or seems reasonable to the reader. The association can be with some
other behavior in the same specification or with behavior from another architecture.

The approach here is to model the processes performed by the instructions of the
architecture as flowcharts. The edges are labeled with transition conditions, based on
the current machine state or instruction properties, and the actions are concentrated
at the leaves. To this flowchart are added false edges and nodes to mimic behaviors
that are not part of the specification.

Figure 12 shows a flowchart that describes the overflow flag (OE) setting by
the fixed-point instructions. The architecture distinguishes between instructions that
may set the OE bit and those that should not. This distinction is made by the two
edges exiting the root node. The sub-tree of node N1 specifies that the OE bit must
keep the same value that it had before the operation. A “precision” field of the
fixed-point instructions defines if the operation is to be performed on all 64 bits of
the input registers or only on the least significant 32 bits. This is represented by the
two edges E5 and E6. Finally, the edges exiting nodes N3 and N4 lead to the setting
or un-setting of the OE bit, depending on the occurrence of an overflow.

The architecture also defines a general precision mode of either 32 or 64 bits,
configurable in the control register. However, the precision mode is not applicable
to instructions that have a precision field. One may think that the precision mode
does have an effect on these instructions, thereby overriding the precision field. This
misinterpretation is captured by the false (dashed) edges.

Thus, in a False edge misinterpretation, the process goes down a false edge in-
stead of the right true edge (e.g., E12 instead of E5) because of wrongly assuming
the existence of the false edge. In a Wrong edge misinterpretation, the process goes
down a wrong true edge instead of the right true edge coming out of the same node
(e.g., E6 instead of E5) because of a misinterpretation of the conditions of the true
edges. Now, on top of these definitions, one can define various types of coverage
models such as for every path of the flowchart test the case where the path is wrongly
not followed due to some wrong or false edge on the way. The system proposed in
[31] can be used to create a test suite that covers all the misinterpretations targeted
by the coverage model.

544 A. Adir and Y. Naveh

Variable domains:
inst is setting overflow D ftrue; falseg
prec D f32; 64g
mode D f32; 64g
32bit overflow occurred D ftrue; falseg
64bit overflow occurred D ftrue; falseg
Instruction D fadd 64; add 32; load; store; : : : g
operand1 D f0xXXXXXXXXg
operand2 D f0xXXXXXXXXg
Constraints:
Prefix: E2 inst is setting overflow D true
True-edge: E5 prec D 64

False-edge: E12 mode D 32

True-suffix: E7 64bit overflow occurred D false
False-suffix: E10 32bit overflow occurred D true
Instruction-Semantics:
.Instruction D add 64/! .inst is setting overflow D true/

.Instruction D add 64/! .64bit overflow occurred $ operand1C operand2
> 0xFFFFFFFF/

.Instruction D add 64/! .32bit overflow occurred $ operand1Œ0 W 31�

Coperand2Œ0 W 31� > 0xFFFF/

There are also similar constraints for other instructions of the architecture

Fig. 13 CSP for a false-edge misinterpretation

The system works by producing a machine state and an instruction instance
that exposes the targeted misinterpretation, if it exists. For example, consider the
flowchart in Fig. 12 and the false-edge misinterpretation that takes edge E12 instead
of E5. Figure 13 shows the CSP corresponding to this misinterpretation. The re-
sources should be initialized so that the instruction flows through a prefix path from
the root of the flowchart down to node N2 and continues on edge E5. This ensures
that if there are no misinterpretations, the flow will pass through E5. The transition
constraint of the false edge E12 must also be satisfied. This is because the test must
lead the flow along the false edge in the event of a misinterpretation. Finally, the test
must also ensure that taking E12 by mistake is observable. This is done by finding
two suffix paths leading down to leaf nodes–one from N3 and the other from N4, so
that the two leaves at the end of these two paths have different assignments. In our
example, the prefix path is E2 to which are added the true edge E5 and the false
edge E12. The two suffix paths E7 and E10 are appropriate because they end in
different assignments.

The flowchart is modeled as a CSP in which variables represent the relevant parts
of the machine state (in our example, the status and control registers) and instruction
properties (in our example, the precision field and data operands, and the distinction
of the instruction as setting the overflow). The transition and conditions are modeled
as constraints. The system then searches for appropriate prefix and suffix paths based
on the assignments in the leaves and then uses a CSP engine to find an appropriate
machine state and instruction field setting to test for the misinterpretation. For our

Stimuli Generation for Functional Hardware Verification with Constraint Programming 545

example, a solution could be an add 64 instruction (assuming it is of the type that
sets the overflow bit and that its precision field is 64) that causes an overflow beyond
the 32nd bit but not beyond the 64th bit. In addition, the 32-mode bit in the control
register should be set to match the false edge E12.

6.4 Checking the Processor’s Memory Model

A memory model (or memory consistency model [56]) is that part of the processor’s
architecture that specifies how memory appears to behave with respect to applica-
tions running on the processor. The strongest and most intuitive memory model
for a programmer is sequential consistency [57] with which “. . . the result of any
execution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.” This memory model is the most
natural for a programmer to work with. Unfortunately, it would impede many com-
mon processor design optimization techniques.

Consider, for example, a load instruction that takes many cycles to complete
(because it requires a slow memory access) and is followed in the program by some
quick arithmetic operation that only manipulates internal registers independent of
the load. With an out-of-order architecture, the processor can opt to perform the
arithmetic operation before it performs the load. Another common optimization is to
speculate on the direction to be taken by a conditional branch and to start performing
the instructions following the branch in the speculated direction in advance (with
hopefully a small probability of paying the penalty for mistaken speculation). It
could be very difficult to completely hide the effects of such optimizations from
the programmer. Many processor architectures define memory models that are more
relaxed than sequential consistency and thus do not completely hide the effects of
these optimizations and yet provide a reasonable model for the programmer with
which to work. For example, in general, the PowerPC architecture does not allow
a process to observe that its own operations were performed out of order but in
some cases it does allow a process to observe that another process’ operations were
performed out of order. Thus it is possible for a program running on one process
to include two stores and for another process to observe the memory modifications
performed by these two stores in reverse order to their original program order.

Checking that a processor observes the rules of the memory model can be carried
out by simulating multiprocess programs. While the program is simulated, several
monitors accumulate a history of memory operations (loads and stores) as they are
actually performed in the system. Once this trace is available, the actual checking
can be executed off-line. The inputs to the checker include the program that was
executed and the trace information gathered by the monitors while it was executed.
The checker’s task is then to try to detect violations of the processor’s memory
model if these indeed exist and are observable in the trace.

In general, checking such traces for memory consistency is known to be an
NP complete problem, though additional information like mapping loads to the

546 A. Adir and Y. Naveh

stores that created the loaded values together with store order information or
limiting the number of participating processors or addresses can make the prob-
lem tractable [58, 59]. This calls for various heuristic search methods including
SAT-based techniques [60, 61]. The tool presented in [61] can also use constraint-
logic-programming with Prolog to check the legality of test execution with respect
to a given memory model that is specified using an extended type of predicate logic.

Recent (unpublished) work at IBM Research – Haifa also demonstrated how CSP
can be used by a checker that verifies that a processor observes the rules of the
memory model while a multiprocess program is executed on it. Several alternative
approaches to modeling the problem with CSP were tried. For example, in the se-
quential consistency model, the trace must be consistent with some total ordering
of all the operations. The problem of the CSP is to come up with some such total
order if possible (or declare a violation of the memory model if no such order ex-
ists). The operations can be modeled as vertices of an ordered graph where the edges
represent the view order. The CSP includes a Boolean variable for every potential
ordered edge. The constraints of the CSP require that the order be total (handled
by N 2 constraints for antisymmetry, N 3 for transitivity, and N 2 for totality). Also,
every load operation must be ordered after the store operation that wrote the loaded
value and all other stores must be ordered either before the mapped store or after the
load (i.e., the loaded value is not masked by another store). This requires an addi-
tional Boolean CSP variable between all load-store pairs that indicates whether the
load is mapped to the store. A solution to the CSP would then provide a fully spec-
ified view order of all the observed operations that explains how memory appears
to the programmer in a manner consistent with the architectural specification of the
memory model.

Figure 14 shows an example of an attempt to solve such a CSP. The dashed
arrows correspond to reduced CSP variables. Suppose that the stores are somehow
known to be before operation Op1 and the loads to be after operation Op2. In part A
of the figure, the CSP engine tries to reduce an order variable so that Op1 is ordered
before Op2. This leads to failure because any reduction of the variables ordering the
two stores leads to a contradiction in the constraint that prohibits the masking of
stores from the observing loads. Part B orders Op2 before Op1, which now enables
several possible solutions to the CSP, such as the view order given at the bottom of
the figure.

Store 2 AStore 1 A

Op2Op1

Load A 1Load A 2

?

Store 2 AStore 1 A

Load A 1Load A 2

Op2Op1

A. Failing View Order B. Successful View Order

Load A 2Store 2 ALoad A 1Store 1 AOp2 Op1

Fig. 14 View order CSP

Stimuli Generation for Functional Hardware Verification with Constraint Programming 547

Other modeling techniques were tried, based on the formal definition of the
PowerPC memory model in [62]. Here, the model includes a separate, potentially
different, partial view order per process. The constraints of the CSP further limit
and relate the different view orders according to the particular requirements of the
PowerPC memory model. Another variation was to model the graph vertices as in-
teger CSP variables (instead of Boolean variables for the edges). The view order is
then derived from the numeric relationship between the variables. This approach re-
duces the number of constraints but makes their propagation more difficult. Further
study is still in progress with these approaches and a publication can be expected.

6.5 System Verification: Coupling of the Transaction Path CSP
with the Unit CSPs

When generating stimuli for a whole system, a multitude of components need to be
taken into account. During regular operation of the system, the components interact
among themselves. It is this interaction that needs to be stimulated and verified for
correctness of behavior. From a high-level point of view, the verification engineer
thinks of such interactions in terms of transactions being executed between the var-
ious components (a lower-level approach would be extremely difficult to manage at
the system level). So the engineer can request, say, a direct-memory access (DMA)
transaction involving data going from the USB to a memory component inside a
micro-processor through various busses and bridges (see Fig. 15). The user may
specify various additional constraints, such as the required length of the data trans-
ferred, the memory addresses of interest, and more. In addition, the user can specify
explicit requests at the system level; for example, that the number of components
between the USB and the memory components be smaller than (or larger than) some
number, that certain components be included or excluded from the transaction, that
two neighboring bridges on the path would be of identical type, and so on.

PLB

Interrupt
Controller

Micro-
processor

DSPPLB
Arbiter

DMA
Engine

Custom
Logic

PCI

EMACUSB

SRAM1 Bridge Express
Bridge

Fig. 15 Schematic view of a direct-memory-access transaction in a hardware system

548 A. Adir and Y. Naveh

Once the user specifies the required transaction and additional unit- and system-
level constraints, the tool must find a valid transaction satisfying all user and
architectural constraints, and as many bias (soft) constraints as possible. A bias con-
straint can be at the unit level, for example, cross a memory page boundary, or at
the system level, for example, choose components that were heavily used already
by previous transactions – thus maximizing congestion on some components during
simulation.

However, there is another challenge in generating such stimuli. This stems from
the fact that the choice of components participating in the transaction determines
the set of unit-level constraints to be satisfied. For example, the transaction of
Fig. 15 can pass either through a regular ‘bridge’ or an ‘express bridge’. The two
bridges have very different behaviors, and therefore impose different architectural
constraints. We therefore have a highly conditional problem, where each component
introduces a set of constraints into the system-level constraint problem however; this
set of constraints is conditional on the component being ultimately part of the solu-
tion of the transaction.

It turns out that this conditional problem is much too large to be solved by stan-
dard conditional-CSP algorithms. This is mainly because of the scale of the full
problem compared to the size of the final solution. For example, a typical 32-way
system of processors, their memories and the various interconnecting and I/O com-
ponents may be composed of several hundred components, while the solution for a
single transaction may involve only five or ten components participating in the trans-
action. Under this scale of conditionality, even sophisticated conditional-pruning
techniques [45] fail to be useful.

The most naive approach to tackle this problem is to partition the CSP into two;
first, the system-level CSP that includes all constraints relating explicitly to the iden-
tity of the components participating in the transaction. For example, the types of
components required by the transaction, the connectivities of the components, the
user-defined constraints, and the general biases related to the component selection.
Once this CSP is solved, we have a solution for the components participating in
the transaction. We can now proceed with the second part of the CSP and formu-
late and solve the lower-level constraints related to the properties of those specific
components.

This approach has an obvious drawback in that the full CSP may be unsolvable
over the chosen components. For example, a user may request a particular memory
region that is nonexistent in the chosen memory, or two components may be chosen
such that their lower-level interface is incompatible for the transaction. Of course,
there are much more complex examples where the incompatibility of the chosen
components results from interaction of two or more low-level constraints.

We solve this problem by doing a static analysis of the system, one time per
system. In this analysis, for each transaction type, we choose all possible combi-
nations of ‘principal components’, where a principal component has a significant
amount of logic such that it introduces enough constraints to influence the lower-
level CSP. For each such choice of a set of principal components, we run the
lower-level (full) CSP up to the first arc-consistency level. We then save the reduced

Stimuli Generation for Functional Hardware Verification with Constraint Programming 549

arc-consistent domains of this CSP. Once we have this static knowledge, we add
it in the form of constraints on the component-choice (high-level) CSP each time
we generate a transaction of this type in that system. In addition, when the user
specifies constraints on the low-level CSP variables, we add those constraints to
the component-choice CSP as well. Then, the combination of the reduced-domains
constraints and the user-specified constraints result in pruning of incompatible com-
ponents out of this CSP.

This method proved itself in the sense that it drastically reduced the number
of failures of the lower-level CSP because of bad component choices at the higher
level. However, it still has one major drawback. For large systems, the static analysis
can be very time-consuming, taking hours or even days to analyze all transactions
(lazy analysis, done only when a given transaction is requested for the first time,
may somewhat reduce the pain here, but means that a transaction which is ordinarily
generated in seconds may now take more than an hour to generate). This analysis
needs to be done each time the system is changed, even if the change involves only a
single repositioning of a component. Hence, the method is viable only at later stages
of the system verification phase, when the system being verified is relatively stable.

With the expected persistent growth in complexity of systems, coupled with de-
creasing time available for verification at the system level, it is clear to us that more
powerful techniques that are able to cope with the full-system CSP will need to
be developed in the foreseeable future. We think this particular problem can serve
as an important test bench for state of the art CSP decoupling and decomposition
algorithms. In addition, it can stimulate research in graph-based CSP, where paths
on a graph (connected components participating in a transaction in our case) are
treated as CSP variables among other variables introduced by each of the nodes of
the graph.

6.6 Complex Data Transfers: Unbounded Vector Constraints

Figure 16 describes a clustering network in which two or more nodes are connected
via a high-performance network. Typically, each node contains a CPU unit responsi-
ble for managing the data transfer from the node’s side, a memory component where

Cpu

Mem

Node #1 Node #2

Sender Receiver

Clustering
Adaptor

Clustering
Adaptor

Clustering

Network
Cpu

Mem

Fig. 16 Sender and receiver nodes in a clustering network

550 A. Adir and Y. Naveh

Fig. 17 Linked list
in memory, specifying
the chunks of data
to be transmitted

Head = 0x2000

0x2000

0x3000

0x4000

Address = 0xC800

Address = 0xC000

Address = 0xF000

Length = 128

Length = 256

Length = 1024

Next = 0x3000

Next = 0x4000

Next = 0x0000

data is being stored and retrieved, and a high-end clustering adapter responsible for
sending or receiving the data in the most efficient way. The InfiniBand protocol
is an example of such a modern cluster communication scheme. The most impor-
tant aspect of this network is the requirement for fast and reliable transfers of huge
amounts of data (for example, think of an online video being broadcast to clients).

One of the most common features in all implementations of clustering networks
is that data is often transferred from fragmented sources in memory. This means
that it is up to the CPU to create an ordered list, or ‘vector’, of all memory regions
from which data is to be retrieved (or to which it should be stored). For example, the
CPU can create the linked list, of Fig. 17. In this list, the first element, ‘or head’ is
located in some reserved space in memory recognized by the network adapter, and
points to the first actual data-element descriptor. Each such descriptor contains the
memory location of the chunk of data to be transferred (start position and length),
and a pointer to the next descriptor. The adapter then recognizes all those chunks
and sends them to the network (or receives the chunks from the network and places
them in the specified locations).

The challenge in verifying this system is that the adapter implements extremely
complex mechanisms for fetching the chunks, concatenating them, breaking again,
and sending into the network in the most efficient way. These mechanisms are prone
to bugs and innovative tests must be designed in order to verify their correctness. In
many cases, the verification engineer, who has an intimate understanding of the
mechanisms, would require some specific relations between the various chunks
of data in memory. The engineer must be provided with the most simple way of
specifying those relations, while not limiting all other (unspecified) aspects of the
transfer.

For the user to do his or her job in the most natural way, we have come up
with a generic modeling structure for vectors as in Fig. 18. Here, the modeler can
specify the CSP variables that comprise each of the general vector elements (for
example, in the figure, ‘address’, ‘length’, ‘memory address’, and ‘next’ variables).
These variables are duplicated for all elements in the vector. In addition, the user
can add specific variables for each of the vector elements. Finally, the user can add

Stimuli Generation for Functional Hardware Verification with Constraint Programming 551

Vector Size

Address Address

Instance #2Instance #1

Total Length

Data Descriptors

Instance #0

Next Next

Length LengthMM_Address MM_Address Address

Next

Length MM_Address

Fig. 18 Vector model of the clustering data transfer. Size of the vector is also a CSP variable

constraints on all elements, for example: “mm-address[i+1]Dmm-address[i]C 1”,
or they can add constraints that are specific to a single element.

One important aspect of this scheme is the question of the length of the vector.
Of course, if the user requires a vector of some length, they could just specify so.
However, as with all parameters of the test, if there is no reason to specify the length,
then it is best left unspecified, and it is then up to the stimuli generator to decide
the length. This decision can be influenced by two aspects: first, the length can
be biased by the generic expert knowledge – for example, it may be sometimes
beneficial to have very long transfers to reach deeply into the adapter. At other times,
short transfers may be beneficial because they can stress the adapter by passing
more transfers in a shorter period of time. Second, there may be an upper-bound
imposed on the length because of constraints that become unsatisfiable for some
element n. Then, only a vector with less than n elements can provide a satisfying
solution.

When the length is not specified by the user, it needs to be determined by the
CSP solver. To this end, we treat the length as a regular CSP variable, with do-
main extending from 0 to some large number. The algorithmic problem of solving
this ‘unbounded CSP’ in an efficient way, while still enabling solutions with large
enough lengths, is still open. The problem stems from the fact that as long as the
domain of the length variable is large, the CSP can be thought of as a disjunction of
different CSPs, each with a given length out of this domain. Therefore, propagation
into the length domain may be very weak (it may require a complete solution to a
sub-CSP to determine that a specific length value is infeasible). On the other hand,
just choosing a length randomly may result in an infeasible solution, and would
require many backtracks on this domain. Note that depending on the nature of the
constraints on the length variable, the feasibility or infeasibility of the length may

552 A. Adir and Y. Naveh

not be monotonic. It may happen that the problem is infeasible for length k, but fea-
sible for k C 1, and we do not want to miss all the large-length results just because
we encountered one infeasible length k.

Currently, the test generator of [47] solves the problem by separating it into two
CSPs. The first CSP includes all constraints that are likely to affect the length of the
vector. Once this CSP is solved, we proceed to solve the complete CSP, including
all constraints, with the only difference being that now the domain of the length
variable is fixed to a single element. The challenge in this method is to identify all
the constraints of importance for fixing the length. This requires expert knowledge,
and sometimes fine-tuning of the method. Drawing the line in the wrong place may
result in a CSP as hard to solve as the original (with too many constraints identified),
or an infeasible choice of length for the full CSP (too few constraints identified).

6.7 Floating Point Unit Verification: A Small and Hard CSP

It is well recognized today that the processor’s floating point (FP) unit is one of the
most difficult hardware elements to verify. This unit, the workhorse of numerical
number crunching, is steadily increasing in complexity to keep track with demand.
In addition, it is almost impossible to find acceptable workarounds to bugs shipped
in the hardware. While the operating system may avoid a memory niche to circum-
vent a rare corner case bug in the load-store unit, it is expected that any numerical
calculation can be executed with correct answer by the FP unit.

It turns out that many interesting verification scenarios for the FP unit can be tar-
geted by constraining the test with four types of constraints applied simultaneously
to three FP numbers [19]. A floating point number is represented by a mantissa and
an exponent, as in Fig. 19 in which three 64-bit FP numbers are shown. The four
types of constraints are:

� Operation: a � 2˛ op b � 2ˇ D c � 2� , with ‘op’ being any of the floating point
operations ‘+’, ‘-’, ‘*’, ‘/’, and more.

� Mask: a list of bits in each of the six variables a, b, c, ˛, ˇ, 	 that are forced to
be 0, and another list of bits forced to be 1.

⊗

mantissa:53

mantissa:53

mantissa:53

exp:11

exp:11

exp:11

Fig. 19 Exponent and mantissa representation of an IEEE floating point number

Stimuli Generation for Functional Hardware Verification with Constraint Programming 553

� Range: each of the six variables constrained to be in some given range
� Number-of-ones: the number of bits equal to 1 in each of the six variables con-

straint to be in some range (e.g., in a, the number of 1’s is between 5 and 8).

This CSP is very small: it is composed of six variables, and, at most, 19
constraints (usually fewer, although the ‘operation’ constraint is always present).
However, the CSP is one of the hardest to solve that we have encountered. In par-
ticular, consider the case where the domain of the variable c is a single element,
where a and b have an unrestricted initial domain, and where the only constraint is
‘operation’ with the operation being ‘multiply’. Then, this problem reduces to a fac-
torization problem of a 53-bit number (or more if dealing with a 128-bit processor).
Moreover, the propagation problem here is even harder than simple factorization,
and even if computation speed is not a problem, representing propagated domains in
memory becomes infeasible. Once the mask, range, and number-of-ones constraints
are added, it becomes clear that any MAC-based algorithm is unable to tackle this
problem.

We approach the floating point verification problem by first trying to solve it
analytically where possible. Some operators (e.g., plus or minus) lend themselves
more easily to analytic approaches than others (e.g., multiply or divide). Even in
such cases, this approach cannot solve the full problem, so we address it in stages
by solving a simplification analytically, and then using CSP or iterative methods to
solve the actual problem. We refer to this as the ‘semi-analytic’ method in Fig. 20.

In cases where analytic solutions are not available, we resort to three different
CSP solving routines. First is SAT, in which each bit of the CSP variables is rep-
resented by a single SAT variable, and the ‘operation’ (and other) constraints are
transformed into clause constraints on those bits. Second is heuristic search, where
simple search methods are adapted for each type of operation or constraint. Third is
full-fledged stochastic local search.

SAT ...Stochastic
search

Heuristic
search

Choose
engine Analytic

solution

solution

Floating point task
‘unsatisfiable’

‘unsatisfiable’

‘time-out’

Choose search
engine

Semi-
Analytic

Fig. 20 Toolbox of solvers participating in the creation of stimuli for floating point unit

554 A. Adir and Y. Naveh

ZChaff SVRH
Maximal length 64 bit 128 bit
Average time per solution 200.5 s 0.97 s
Solution times with the largest ratio 2,861 s 0.3 s
Solution times with the smallest ratio 25 s 5.7 s
Quality of solution (extreme case) 0p0=0x43F0000000000000, 0p0=0x070E342575271FFA,

0p1=0xB180000000000000 0p1=0x9560F399ECF4E191
Reports unsatisfiable YES NO

Fig. 21 Comparison of stochastic search algorithm SVRH with ZChaff SAT solver for a floating
point verification benchmark

Whenever available, analytic and semi-analytic methods beat all other methods
in terms of runtimes by a few orders of magnitude. When we resort to search meth-
ods, stochastic local search solves the largest number of problems in the least time
[32, 63]. Figure 21 shows such a comparison for a benchmark of 133 hard prob-
lems in which the operation is multiply, and constraints are a combination of range,
number-of-ones, and mask types. Details of the experiment, including how we mod-
eled the problem as a SAT and a CSP problem, were provided in [63]. We see that
not only stochastic search is faster by two orders of magnitude than SAT in average,
it is also able to deal with longer floating point numbers (ZChaff’s memory exploded
on 128-bit problems), and it provides better quality solutions (the trivial solution
that ZChaff found and is shown in the figure is not very helpful from a verification
point of view). However, unlike SAT and heuristic search methods, stochastic local
search is incomplete and cannot report that an instance is unsatisfiable. This is a se-
rious drawback because it is impossible for the verification engineer writing down
the constraints to know in advance whether they are asking for too much in terms
of the ability to satisfy their request. Finally, we note that we have not conducted
recent experiments with newer SAT solvers. However, judging from the magnitude
of the difference shown in Fig. 21, we do not expect such experiments to change the
conclusions in any drastic way.

7 Conclusions

We have presented the vast and widespread application of stimuli generation for
functional hardware verification. It is now widely accepted that the most potent
solution technology for this application is constraint programming. While our pre-
sentation specifically highlighted the activities done at IBM, it should be recognized
that all high-end hardware manufacturers, as well as EDA tool providers, use con-
straint programming in the most sophisticated ways to create stimuli for verification
of hardware. Still, IBM rightfully claims the right of priority for this domain, having
worked extensively in the field already in 1994 [5–7].

Stimuli Generation for Functional Hardware Verification with Constraint Programming 555

While the work in the field has been both long-standing and extensive, we can in
no way consider it a complete work. Indeed, as time passes and hardware becomes
even more complex, with heavy time-to-market pressure and highly demanding
users, the challenges of verification become ever greater. Scientists and engineers
working in the field feel the pressure to push the technological envelope on a weekly
basis. This pressure translates directly into increasing challenges to the constraint
solver at the core of the stimuli generation tools. More complex hardware designs
require the ability to cope with ever-larger and more entangled CSPs. The require-
ment to create more tests in less time translates into the necessity to solve those CSPs
faster. There are numerous challenges that still need to find their optimal solution.
Some were described in Sect. 6 in detail. Others are still at the initial level of com-
prehension and can, at this stage, only be discussed orally. Either way, it is certain
that another lively, challenging, and fruitful decade is waiting for anyone who will
be working on the next-generation solutions in applying CP to stimuli generation.

Acknowledgments We are grateful to Amir Nahir, Gil Shurek, and Avi Ziv with whom we held
extensive discussions. The material and book [12] for the Verification Course given by them at
the Technion, Israel Institute of Technology, formed the basis for many of the ideas presented
in Sect. 2. We also thank Eitan Marcus for his contribution to the sections related to checking
and to Merav Aharoni, Sigal Asaf, and Yoav Katz for some of the figures in this chapter. The
advancements in CP for verification presented here could not have been accomplished without the
innovation, talent, and dedication of dozens of researchers and engineers at IBM Research – Haifa,
and without the continuous feedback of verification engineers across IBM. The work of all those
people is described and cited in many places in this chapter.

References

1. Naveh Y, Rimon M, Jaeger I, Katz Y, Vinov M, Marcus E, Shurek G (2007) Constraint-based
random stimuli generation for hardware verification. AI Mag 28:13–30

2. Moss A (2007) Constraint patterns and search procedures for CP-based random test generation.
In: Haifa verification conference, pp 86–103

3. Cadence web page (2007) Incisive Enterprise Specman Products. http://www.cadence.com/rl/
Resources/datasheets/specman elite ds.pdf; We are not aware of an academic publication of
Cadence’s constraint solver

4. Iyer MA (2003) Race a word-level ATPG-based constraints solver system for smart random
simulation. In: Proceedings of the international test conference, 2003, (ITC’03), pp 299–308

5. Chandra AK, Iyengar VS (1992) Constraint solving for test case generation: a technique for
high-level design verification. In: Proceedings of IEEE international conference on computer
design: VLSI in computers and processors, ICCD’92, pp 245–248

6. Lichtenstein Y, Malka Y, Aharon A (1994) Model based test generation for processor verifi-
cation. In: Sixth annual conference on innovative applications of artificial intelligence, Menlo
Park, USA, 1994. American association for artificial intelligence, pp 83–94

7. Lewin D, Foumier L, Levinger M, Roytman E, Shurek G (1995) Constraint satisfaction for
test program generation. In: Proceedings of the IEEE fourteenth annual international phoenix
conference on computers and communication, pp 45–48

8. Bin E, Emek R, Shurek G, Ziv A (2002) Using a constraint satisfaction formulation and
solution techniques for random test program generation. IBM Syst J 41:386–402

556 A. Adir and Y. Naveh

9. Naveh Y, Rimon M, Jaeger I, Katz Y, Vinov M, Marcus E, Shurek G (2006) Constraint-based
random stimuli generation for hardware verification. In: Innovative applications of artifical
intellegence (IAAI’06).

10. Zhang J, Wang X (2001) A constraint solver and its application to path feasibility analysis. In:
Proceedings of international journal of software engineering and knowledge engineering.

11. Godefroid P, Klarlund N, Sen K (2005) Dart: directed automated random testing. In: Proceed-
ings of the ACM SIGPLAN conference on programming language design and implementation,
PLDI’05, pp 213–223

12. Wile B, Goss JC, Roesner W (2005) Comprehensive functional verification - the complete
industry cycle. Elsevier, UK

13. Kropf T (1999) Introduction to formal hardware verification. Springer, Berlin
14. Clarke EM, Grumberg O, Peled DA (1999) Model Checking. MIT Press, Cambridge
15. Ganai MK, Gupta A (2006) Accelerating high-level bounded model checking. In: Proceedings

of the IEEE/ACM international conference on computer-aided design, ICCAD’06, pp 794–801
16. Armando A, Mantovani J, Platania L (2008) Bounded model checking of software using SMT

solvers instead of SAT solvers. Int J Software Tool Tech Tran 11(1):69–83
17. Lavagno L, Martin G, Scheffer L (2006) Electronic design automation for integrated circuits

handbook. CRC Press, Boca Raton
18. Adir A, Bin E, Peled O, Ziv A (2003) Piparazzi: a test program generator for micro-architecture

flow verification. In: High-level design validation and test workshop, 2003. 8th IEEE Interna-
tional, pp 23–28

19. Aharoni M, Asaf S, Fournier L, Koifman A, Nagel R (2003) FPGen - a test generation
framework for datapath floating-point verification. In: High-level design validation and test
workshop. Eighth IEEE international, 2003, pp 17–22

20. Adir A, Almog E, Fournier L, Marcus E, Rimon M, Vinov M, Ziv A (2004) Genesys-Pro:
innovations in test program generation for functional processor verification. IEEE Design and
Test of Computers 21:84–93

21. Behm M, Ludden J, Lichtenstein Y, Rimon M, Vinov M (2004) Industrial experience with test
generation languages for processor verification. In: Design automation conference, 2004. 41st
Proceedings, pp 36–40

22. SystemVerilog web page (2009). http://www.systemverilog.org/
23. IEEE Standard(2008) Functional verification language e 3 Aug 2008
24. Hollander Y, Morley M, Noy A (2001) The e language: a fresh separation of concerns. In:

Proceedings of technology of object-oriented languages and systems, TOOLS’01
25. van Hoeve WJ (2009) Over-constrained problems. In: Hybrid Optimization: The Ten years of

CPAIOR – edited collection. In: The Ten Years of CPAIOR: A Success Story, Springer, pp 1–9
26. Freuder E (1996) In pursuit of the holy grail. ACM Comput Surv 63
27. Dechter R, Kask K, Bin E, Emek R (2002) Generating random solutions for constraint sat-

isfaction problems. In: 18th national conference on artificial intelligence, Menlo Park, USA.
American association for artificial intelligence, pp 15–21

28. Borning A, Freeman-Benson B, Willson M (1992) Constraint hierarchies. Lisp Symbol Com-
put 5:223–270

29. Mittal S, Falkenhainer B (1989) Dynamic constraint satisfaction problems. In: 8th national
conference on artificial intelligence, Menlo Park, USA. American association for artificial
intelligence, pp 25–32

30. Nahir A, Shiloach Y, Ziv A (2007) Using linear programming techniques for scheduling-based
random test-case generation. In: Proceedings of the Haifa verification conference (HVC’06),
pp 16–33

31. Adir A, Asaf S, Fournier L, Jaeger I, Peled O (2007) A framework for the validation of
processor architecture compliance. In: Design automation conference, 2007, DAC ’07. 44th
ACM/IEEE, pp 902–905

32. Naveh Y (2008) Guiding stochastic search by dynamic learning of the problem topography.
In: Perron L, Trick MA (eds) CPAIOR. Lecture notes in computer science, vol 5015. Springer,
pp 349–354

Stimuli Generation for Functional Hardware Verification with Constraint Programming 557

33. Sabato S, Naveh Y (2007) Preprocessing expression-based constraint satisfaction problems
for stochastic local search. In: Hentenryck PV, Wolsey LA (eds) CPAIOR. Lecture notes in
computer science, vol 4510. Springer, pp 244–259

34. Cadence web page (2009) The new generation testcase utility. http://www.cadence.com/
community/blogs/fv/archive/2009/01/08/the-new-generation-testcase-utility.aspx

35. CoWare web page (2009) Coware processor designer. http://www.coware.com/products/ pro-
cessordesigner.php

36. Target web page (2009) http://www.retarget.com
37. Pees S, Hoffmann A, Zivojnovic V, Meyr H (1999) Lisa-machine description language for

cycle-accurate models of programmable dsp architectures. In: Design automation conference,
1999. 36th Proceedings, pp 933–938

38. Zivojnovic V, Pees S, Meyr H (1996) Lisa-machine description language and generic machine
model for hw/sw co-design. In: IEEE workshop on VLSI signal processing IX, pp 127–136

39. Tensilica web page (2009). http://www.tensilica.com
40. ARC web page (2009) ARC configurable CPU/DSP cores. http://www.arc.com/ config-

urablecores
41. Tensilica web page (2009) Create TIE processor extensions. http://www.tensilica.com/ prod-

ucts/xtensa/extensible/create tie.htm
42. Rimon M, Lichtenstein Y, Adir A, Jaeger I, Vinov M, Johnson S, Jani D (2006) Addressing test

generation challenges for configurable processor verification. In: High-level design validation
and test workshop, 2006. Eleventh annual IEEE international, pp 95–101

43. Gutkovich B, Moss A (2006) CP with architectural state lookup for functional test generation.
In: High-level design validation and test workshop, 2006. Eleventh annual IEEE international,
pp 111–118

44. Adir A, Founder L, Katz Y, Koyfman A (2006) DeepTrans - extending the model-based ap-
proach to functional verification of address translation mechanisms. In: High-level design
validation and test workshop, 2006. Eleventh annual IEEE international, pp 102–110

45. Geller F, Veksler M (2005) Assumption-based pruning in conditional CSP. In: van Beek P (ed)
CP 2005. Lecture notes in computer science, vol 3709. Springer, pp 241–255

46. Chencinski EW, Check MA, DeCusatis C, Deng H, Grassi M, Gregg TA, Helms MM,
Koenig AD, Mohr L, Pandey K, Schlipf T, Schober T, Ulrich H, Walters CR (2009) IBM
system z10 I/O subsystem. IBM J Res Dev 53:1–13

47. Emek R, Jaeger I, Naveh Y, Bergman G, Aloni G, Katz Y, Farkash M, Dozoretz I, Goldin A
(2002) X-Gen: A random test-case generator for systems and socs. In: 7th IEEE international
high-level design validation and test workshop, HLDVT-02, pp 145–150

48. Abramovici M, Breuer M, Friedman A (1995) Digital systems testing and testable design.
Wiley IEEE Press, New York

49. Hentenryck PV, Simonis H, Dincbas M (1992) Constraint satisfaction using constraint logic
programming. In: Artificial intelligence, 58(1-3):113–159

50. Simonis H (1989) Test generation using the constraint logic programming language chip. In:
Proceedings of the 6th international conference on logic programming (ICLP ’89), pp 101–112

51. Brand S (2001) Sequential automatic test pattern generation by constraint programming. In:
CP2001 post conference workshop modelling and problem formulation

52. Hartman A, Ur S, Ziv A (1999) Short vs long: Size does make a difference. In: Proceedings of
the high-level design validation and test workshop, pp 23–28

53. Ellman T (1993) Abstraction by approximate symmetry. In: IJCAI’93: Proceedings of the
13th international joint conference on artificial intelligence, Morgan Kaufmann Publishers,
San Francisco, 1993, pp 916–921

54. Adir A, Arbetman Y, Dubrov B, Liechtenstein Y, Rimon M, Vinov M, Calligaro M, Cofler A,
Duffy G (2005) VLIW - a case study of parallelism verification. In: Design automation confer-
ence, 2005. 42nd Proceedings, pp 779–782

55. STMicroelectronics web page (2009) STMicroelectronics demonstrates complex multi-
media application on VLIW micro core. http://www.st.com/stonline/press/news/year2002/
t1124p.htm

558 A. Adir and Y. Naveh

56. Adve SV, Gharachorloo K (1996) Shared memory consistency models: A tutorial. In: Com-
puter,pp 66–76

57. Lamport L (1979) How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans Comput C-28:690–691

58. Gibbons P, Korach E (1992) The complexity of sequential consistency. In: Parallel and dis-
tributed processing, 1992. Proceedings of the Fourth IEEE Symposium on 1–4 December 1992,
pp 317–325

59. Cantin J, Lipasti M, Smith J (2005) The complexity of verifying memory coherence and
consistency. In: IEEE transactions on parallel and distributed systems, pp 663–671

60. Gopalakrishnan G, Yang Y, Sivaraj H (2004) QB or not QB: an efficient execution verification
tool for memory orderings. In: Lecture notes in computer science: computer aided verification,
pp 401–413

61. Yang Y, Gopalakrishnan G, Lindstrom G, Slind K (2004) Nemos: a framework for axiomatic
and executable specifications of memory consistency models. In: Parallel and distributed pro-
cessing symposium, 2004. Eighteenth international proceedings, pp 26–30

62. Adir A, Attiya H, Shurek G (2003) Information-flow models for shared memory with an appli-
cation to the powerpc architecture. In: IEEE transactions on parallel and distributed systems,
vol 14(5), pp 502–515

63. Naveh Y (2004) Stochastic solver for constraint satisfaction problems with learning of high-
level characteristics of the problem topography. In: First international workshop on local search
techniques in constraint satisfaction, LSCS’04.

	Hybrid Optimization
	Preface
	Contents
	Contributors
	The Ten Years of CPAIOR: A Success Story
	Hybrid Modeling
	Global Constraints: A Survey
	Decomposition Techniques for Hybrid MILP/CP Models applied to Scheduling and Routing Problems
	Hybrid Solving Techniques
	Over-Constrained Problems
	A Survey on CP-AI-OR Hybrids for Decision Making Under Uncertainty
	Constraint Programming and Local Search Hybrids
	Hybrid Metaheuristics
	Learning in Search
	What Is Autonomous Search?
	Software Tools Supporting Integration
	Connections and Integration with SAT Solvers: A Survey and a Case Study in Computational Biology
	Bioinformatics: A Challenge to Constraint Programming
	Sports Scheduling
	Stimuli Generation for Functional Hardware Verification with Constraint Programming

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

