
Chapter 6 

Advanced Topics on the MUSA method 

6.1 Computational Issues 

The computational difficulty of the MUSA method is based on the number of 
variables and the number of constraints in the formulated LP. The method consists 
of two distinct stages: in the first stage an initial LP is solved in order to obtain an 
optimum value for the selected error function, while in the second stage a heuristic 
algorithm is used (solving a number of LPs) in order to explore the multiple or 
near optimal solutions space. 

As a rule, the computational effort (CE) of a single LP may be estimated using 
the following expression: 

2

v cCE N N∝ ⋅   (6.1) 

where Nv and Nc are the number of variables and constraints of the LP, respec-
tively. 

For example, the initial LP in the basic, and the generalized, MUSA method 
has M + 2 constraints and 2M + (α–1) + ∑(αi –1) variables, while in the post-
optimality analysis stage n LPs are solved having M + 3 constraints (the number 
of variables remains the same). Without loss of generality, we may assume that 
α = αi ∀ i, and therefore, the computational effort for the basic MUSA method is: 

[ ] 2 22 ( 1)( 1) ( 2) ( 3)CE M n α M n M∝ + + − + + +⎡ ⎤⎣ ⎦  (6.2) 

where M is the number of customers, n is the number of criteria, and α is the num-
ber of overall (or marginal) satisfaction levels. 

As shown in expression (6.2), the computational difficulty of the MUSA 
method is heavily affected by the number of customers (see also Figure 6.1), 
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which is quite reasonable, since M determines the number of cases in a regression-
type model. 
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Fig. 6.1 Computational difficulty for the basic MUSA method 

For this reason, the Dual Linear Program (DLP) of the MUSA formulation may 
be considered, in order to reduce the computational effort. In the case of the basic 
MUSA method, LP (4.17) may be written in the following form: 
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where w, z, and σ are the vectors of the model variables, 1x and 0x are vectors of 
size x with ones and zeros, respectively, Θ and Ψ are matrices of size M×∑(αi–1) 
and M×(α–1), respectively, where θij and ψij are given according to formula (4.16), 
and Λ is a matrix of size M×2M having the following form: 
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The dual of LP (6.3) can be written as follows: 
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where u is the vector of dual variables with size M + 2. 
The complexity of DLP (6.4) is based only on (α–1) + ∑(αi–1) constraints, 

since –1 ≤ ui ≤ 1 are just boundary constraints. Thus the computational difficulty 
of DLP (6.4) is significantly smaller compared to the original LP (4.17). 

It should be noted that the previous discussion refers only to the basic or the 
generalized MUSA method. The computational difficulty changes if we consider 
alternative objective functions for the post-optimality analysis stage. As shown in 
Table 6.1, the alternative MUSA methods presented in section 5.3 have different 
number of constraints and variables, while a different number of LPs has to be 
solved during the post-optimality analysis stage. Figure 6.2 shows the computa-
tional effort for these extensions of the MUSA method for a given number of cri-
teria n and satisfaction levels α and αi (the computational effort has been estimated 
using formula (6.1)). As expected, the complexity appears smaller for the general-
ized MUSA and the MUSA II methods, while MUSA III variation requires the 
highest computational effort. 

6.2 Reliability Evaluation and Error Indicators 

6.2.1 Average Fitting Indices 

The reliability evaluation of the results is mainly related to the level of fitting to 
the customer satisfaction data, and the stability of the post-optimality analysis re-
sults. 
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Table 6.1 Problem size of alternative post-optimality approaches 

Extension Number of LPs Number of constraints Number of variables 
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Fig. 6.2 Computational difficulty for the alternative MUSA methods 

The fitting level of the MUSA method refers to the assessment of a preference 
collective value system (value functions, weights, etc.) for the set of customers 
with the minimum possible errors. For this reason, the optimal values of the error 
variables indicate the reliability of the value system that is evaluated. 

Although several fitting measures may be assessed, all these indicators depend 
on the optimum error level and the number of customers. Grigoroudis and Siskos 
(2002) propose the following simple average fitting index AFI1: 

*

1 1
100

F
AFI

M
= −   (6.5) 
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where F* is the minimum sum of errors of the initial LP, and M is the number of 
customers. 

AFI1 is normalized in the interval [0, 1], and it is equal to 1 if F* = 0, i.e. when 
the method is able to evaluate a preference value system with zero errors. Simi-
larly, AFI1 takes the value 0 only when the pairs of the error variables σ+

j and σ–
j 

take the maximum possible values. It is easy to prove that σ+
j · σ–

j = 0 ∀ j, i.e. the 
optimal solution has at least one zero error variable for each customer, given that 
the MUSA method is similar to goal programming modeling (Charnes and Coo-
per, 1961). 

An alternative fitting indicator is based on the percentage of customers with 
zero error variables, i.e. the percentage of customers for whom the estimated pref-
erence value systems fits perfectly with their expressed satisfaction judgments. 
This average fitting index AFI2 is assessed as follows: 

0
2

M
AFI

M
=   (6.6) 

where M0 is the number of customers for whom σ+ = σ– = 0 
Although the previous fitting indicators are rather simple and can be easily cal-

culated, they present several disadvantages. For example, AFI1 may rarely take 
large values, since usually F* << 100M. This is justified by the fact that it is un-
reasonable all the error variables in a regression-type model to have their maxi-
mum possible values, i.e. σ+

j + σ–
j = 100 ∀ j. For this reason, AFI1 usually overes-

timates the fitting ability of the MUSA method. On the other hand, AFI2 examines 
only the existence of non-zero errors, without taking into account the values of 
these error variables. For this reason, in several cases AFI2 underestimates 
MUSA’s fitting level. Additionally, the values of AFI2 may not give a reliable in-
dication for the overall fitting ability of the MUSA method, since a small (or high) 
value of AFI2 does not imply a respective small (or high) sum of errors. 

To overcome these disadvantages, a new fitting indicator may be assessed, 
which will be able to examine separately every level of overall satisfaction and to 
calculate the maximum possible error value for each one of these levels. As shown 
in Figure 6.3, for the estimation of y*m, 0 ≤ y*m ≤ 100 holds and thereby, the maxi-
mum overestimation (σ+) and underestimation (σ–) errors are 100 – y*m and y*m, re-
spectively. Thus, the overall maximum error for every overall satisfaction level is 
the maximum of the previous expressions. 

Using this approach, an alternative formulation of AFI1 may be developed. The 
new average fitting index AFI3 takes into account the maximum values of the error 
variables for every global satisfaction level, as well as the number of customers 
that belongs to this level: 
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Fig. 6.3 Maximum error values for the m-th overall satisfaction level 
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 (6.7) 

where pm is the frequency of customers belonging to the ym satisfaction level. 
Consequently, AFI3 may be considered as a variation of AFI1, for which AFI3≤ 

AFI1 can be proved to hold. Although AFI3 appears more reliable, all of the 
aforementioned average fitting indicators are highly affected by potential inconsis-
tencies in customer satisfaction judgments. Therefore, the examination of all these 
indices may give a more complete view for the fitting ability of the MUSA 
method. 

 
 

6.2.2 Other Fitting Indicators 

One of the most useful tools, which may serve as an alternative fitting indicator 
of the MUSA method, is the variance diagram of the added value curve. This vari-
ance diagram (Figure 6.4) shows the value range that the customers’ set gives for 
each level of the ordinal satisfaction scale. Therefore, it can be considered as a 
confidence interval for the estimated added value function. 

This diagram depends upon the estimated satisfaction values and the optimal 
values of the error variables as well. The development process of this diagram 
consists of the following steps (Grigoroudis and Siskos, 2002): 

Step 1: 
For each customer j, the evaluated satisfaction value *m

jy�  is calculated according 
to the formula: 
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Fig. 6.4 Variance diagram of the added value curve 

* *m m

j j jy y σ σ+ −= + −�   (6.8) 

where y*m is the satisfaction value of level m, and σ+
j,·σ–

j are the corresponding er-
ror variables for customer j. 

Step 2: 
The maximum and minimum satisfaction curves *

max

my  and *

min

my  accordingly, are 
calculated for each level m of the ordinal satisfaction scale, using the following 
formula: 
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Another fitting indicator is the prediction table of global satisfaction, which is 
developed in a similar way according to the following steps (Grigoroudis and 
Siskos, 2002): 

Step 1: 
For each customer j, the evaluated satisfaction value *m

jy�  is calculated according 
to (6.8). 

 

Step 2: 
Based on the previous value, the evaluated satisfaction level m

jy�  is calculated for 
each customer j, according to the formula: 
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Step 3: 
Using the actual (as expressed by the customers) and the estimated level of global 
satisfaction, m

jy  and m

jy�  accordingly, the number of customers belonging to each 
of these levels is calculated. 

The general form of a prediction table is presented in Figure 6.5, and includes 
the following results for each actual and evaluated satisfaction level: 

• Nij: the number of customers that have declared to belong to global satisfaction 
level i, while the model classifies them to level j. 

• Rij: the percentage of customers of actual global satisfaction level i that the 
model classifies to level j. 

• Cij: the percentage of customers of estimated global satisfaction level j that 
have declared to belong to level j. 

Rij and Cij are calculated according to the formulas: 

1 1

,       ,ij ij

ij ijα α

ij ij
i j

N N
R C i j

N N
= =

= = ∀

∑ ∑
  (6.11) 

while the overall prediction level (OPL) is based on the sum of the main diagonal 
cells of the prediction table, and it represents the percentage of correctly classified 
customers: 
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In general, it should be mentioned that the fitness of the MUSA method is not 
satisfactory when a high percentage of customers appears away from the main di-
agonal of the prediction table, i.e. a significant number of customers having de-
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clared to be very satisfied is predicted to have a low satisfaction level and vice 
versa. 
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Fig. 6.5 Prediction table of global satisfaction 

 
 

6.2.3 Average Stability Index 

The stability of the results provided by the post-optimality analysis is not re-
lated to the degree of fitness of the MUSA method. More specifically, during the 
post-optimality stage, n LPs are formulated and solved, which maximize repeat-
edly the weight of each criterion. The mean value of the weights of these LPs is 
taken as the final solution, and the observed variance in the post-optimality matrix 
indicates the degree of instability of the results. Thus, an average stability index 
ASI may be assessed as the mean value of the normalized standard deviation of the 
estimated weights: 
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where bj
i is the estimated weight of the i-th criterion in the j-th post-optimality 

analysis LP. 
ASI is normalized in the interval [0, 1], and it should be noted that when this 

index takes its maximum value, then: 

1    ,j

i iASI b b i j= ⇔ = ∀   (6.14) 

where bi is the final estimated weight for criterion i. 
On the other hand, if ASI takes its minimum value, then: 

1   if  
0    ,

0  if  
j

i

i j
ASI b i j

i j

=⎧
= ⇔ = ∀⎨ ≠⎩

  (6.15) 

It should be emphasized that the aforementioned stability index refers to the 
basic or the generalized MUSA method. In case of alternative objective functions 
during the post-optimality analysis stage, formula (6.13) should be modified tak-
ing into account the number of LPs solved during this stage (see Table 6.1). 

Generally, apart ASI, the variance of the weights during post-optimality analy-
sis (see section 9.5.4) is also able to provide valuable information for the stability 
analysis of the results provided by the MUSA method. This diagram can give a 
confidence interval for the estimated weights, and can identify possible competi-
tiveness in the criteria set, i.e. the existence of certain customer groups with dif-
ferent importance levels for the satisfaction criteria. 

6.3 Selection of Parameters and Thresholds 

6.3.1 Preference Thresholds 

The problem of selecting appropriate model parameters is focused on the pref-
erence values γ, γi, and the tradeoff threshold ε during the post-optimality analysis. 

In this section, it is examined how different values of these parameters may af-
fect the fitting and stability level of the MUSA results. For this reason, a large 
number of indicative customer satisfaction data sets have been used. These data 
sets present different characteristic properties (e.g. number of criteria, number of 
satisfaction levels, consistency of judgments and stability level, etc.). One of the 
most important results of this analysis is that the selection of preference thresholds 
γ and γi depends mainly on the stability of the results. 

In particular, in case of stable results, the average fitting index AFI1, as well the 
average stability index ASI, have high values (~100%) for γ = γi = 0. The increase 
of γ and γi will cause a relatively small reduction of the fitting and stability level of 
the results, as shown in Figure 6.6(a). This finding may be justified by the fact that 
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the preference thresholds provide a lower bound for the model variables zm and wik 
(see formula (5.3)). For example, by increasing γi, the MUSA method is forced to 
assign a minimum weight of γi (αi–1) to each criterion. Thereby, the initially 
achieved fitting and stability level of the results is decreased. Consequently, in 
case of stable results, it is preferred to set γ = γi = 0 (or at least very small values 
for the preference thresholds). 

In case of unstable results, ASI may take rather small values (e.g. <50%) for 
γ = γi = 0, while AFI1 may retain a relatively high level (e.g. >80%). Figure 6.6(b) 
reveals a competitive relation between ASI and AFI1 in this case: the increase of 
preference thresholds γ and γi may improve the stability of the results, but it will 
decrease the fitting level of the model. As previously noted, this is justified by the 
fact that the preference thresholds determine the minimum value of the criteria 
weights. Thus, in case of instability, the increase of γ and γi will decreas the vari-
ability observed in the post-optimality table, and therefore, it will increase the av-
erage stability index. 
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Fig. 6.6 Modification of AFI1 and ASI for different values of γ 

Generally, the process proposed in Figure 6.7 should be considered when se-
lecting appropriate values for the preference thresholds γ and γi. This process is 
based on the work of Jacquet-Lagrèze and Siskos (1982) in the area of ordinal re-
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gression modeling. Moreover, it should be emphasized that special attention 
should be given when modifying the preference thresholds, because of the follow-
ing main reasons: 

• An arbitrarily large increase of the preference thresholds may falsify the cus-
tomer satisfaction data set; large values of γ and γi require stronger assumptions 
for the preference conditions (5.1). 

• Based on the assessed values of γi the minimum weight of criterion i is γi (αi–1). 
This assumption should be verified by the decision-maker. 

Apply MUSA method with zero 
preference thresholds

(γ = γi = 0)

Is the value of ASI 
acceptable?

YES

The solution of the MUSA method 
is satisfactory

END

Is it possible to increase the 
preference thresholds

γ and γi?

NO

The MUSA method cannot provide 
a solution with the desired stability 

level

NO

Increase preference thresholds γ, γi

and apply the MUSA method
YES

 
Fig. 6.7 A process for selecting preference thresholds 

 
 

6.3.2 Post-optimality Thresholds 

The post-optimality threshold ε  does not affect the fitting ability of the model, 
since all the alternative fitting indices do not depend on the post-optimality results. 
Moreover, it should be noted that usually, in real world applications, F* > 0, and 
thus ε may be assessed as a small percentage of the optimal value of the objective 
function F. 

Similarly to the previous analyses, a large number of customer satisfaction data 
sets have been used, in order to examine the effect of post-optimality threshold on 
the stability level of the MUSA results. These experiments show that the increase 
of ε causes a decrease of the average stability index ASI, regardless of the stability 
level of results. This is rather expected, since an increase of ε implies an increase 
of the near optimal solutions space (see Figure 4.10). 
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As shown in Figure 6.8, the decrease of ASI is larger in case of unstable results 
because F* is larger and, thus, the overall tradeoff value (1+ε)F* is larger in the 
post-optimality analysis. For this reason, the results presented in Figure 6.8(a)-(b) 
are not straightforward comparable (i.e. for the same value of ε, the tradeoff value 
1+ε)F* is larger for unstable results than for stable results). 
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Fig. 6.8 Modification of ASI for different values of ε 

Consequently, ε is a near optimal solutions threshold that should be always se-
lected as a small percentage of F*. The modification of ε should take into account 
the following: 

• A very large value of ε will falsify the information provided by the post-
optimality analysis, and decrease the stability ability of the model. 

• A very low value of ε will not give the ability to explore the near optimal solu-
tions space during post-optimality analysis. 
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6.4 Experimental Comparison Analysis 

6.4.1 Design of the simulation process 

The experimental research is the most important approach for comparing alter-
native methodologies. The main aim of this section is to present an experimental 
comparison analysis for different customer satisfaction evaluation models. The 
comparison concerns the MUSA method and the ordered conditional probability 
models (ordered Logit-Probit analysis), since all these models require the same 
type of input data, while they respect the qualitative form of the examined vari-
ables. 

The first stage of the experimental comparison analysis refers to the design of 
the simulation process and aims at generating customer satisfaction data sets with 
different predefined characteristics. In particular, the data generation procedure is 
based on the principal that customer behavior (satisfaction judgments) may be ex-
plained through an explicitly defined set of value functions for a set of satisfaction 
criteria. 

As Figure 6.9 shows, the data generation algorithm for the presented experi-
ment consists of the following main steps: 

Step 1: 
In this initial step, the main parameters of the data sets are defined. These parame-
ters include: 

1. The number of satisfaction criteria n. 
2. The number of the overall satisfaction levels α, as well as the number of the 

satisfaction levels of each satisfaction criterion αi (i = 1, 2, …, n). 
3. The deviation level De (with De∈ [0, 1]). 
4. The desirable size of the data set M. 

In addition, a set of value functions for the overall satisfaction Y* and the marginal 
satisfaction biX

*
i (i = 1, 2, …, n) is selected in this step. For these value functions, 

the following monotonicity and normalization constraints must hold: 
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 (6.16) 

where it should be noted that the marginal value functions are written in a non-
normalized form, in order to reduce the number of parameters; this way, it is not 
necessary to estimate the criteria weights. 
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Step 2: 
The main properties of the data set are defined through this step. These properties 
are largely determined by the value functions assessed in the previous step. How-
ever, generating random data based on these value functions does not guarantee a 
consistent data set. For this reason, in the current step, a matrix of excluding val-
ues for every possible data combination is developed. This matrix is assessed ac-
cording to the following formula: 

( )
*

11 2

0  if  :
, ,    1 2 ,

1  otherwise

j

n
i k

j j e
jn j i

k b x y D
E i i i i , , α=

∃ − ≤
= =

⎧
⎪
⎨
⎪
⎩

∑… …  (6.17) 

The matrix E(.) is able to determine if any data combination (i1, i2, …, in) is con-
sistent, thus E(i1, i2, …, in) = 0, or inconsistent thus E(i1, i2, …, in) = 1. 

Step 3: 
The last step refers to the data generation process according to the aforementioned 
properties and assumptions. This process may be considered as a type of Monte 
Carlo simulation analysis. Analytically, the procedure consists of the following 
steps: 

1. Generation of a set of random numbers (v1, v2, …, vn), which corresponds to the 
satisfaction of a fictitious customer for each one of the defined satisfaction cri-
teria. These numbers are generated randomly, i.e. vj ~ U(1, αj), respecting the 
selected satisfaction levels. 

2. If the previous data combination is inconsistent, that is E(i1, i2, …, ij) = 1, these 
numbers are rejected and a new random data set is generated. In the opposite 
case, the optimal level of the overall value function y*m is calculated. In order to 
achieve the maximum consistency between y*m and the data combination 
(v1, v2, …, vn) the following is applied: 

* ** *

1 1

minj j

n n
v vm k

j j j j
k

j j

b x y b x y
= =

− = −∑ ∑   (6.18) 

3. The values (y*m, v1, v2, …, vn) are added in the data set and the previous steps 
are repeated starting with the generation of a new set of random numbers 
(v1, v2, …, vn). The algorithm ends when the desired data set size is reached. 
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Define parameters for value functions
- number of criteria (n)
- number of satisfaction levels (α, αi)

Choose value function
- global satisfaction value function Y*

- partial satisfaction value function biXi
*, i=1, 2, ..., n (non-normalized)

Define deviation level De and size of dataset M

Generate matrix of excluding values for every combination i1, i2, ..., in (ij=1, 2, ..., αi)
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Generate random numbers v1, v2,..., vn  with vj ~ U(1,αj) j=1, 2, ..., n

Add values {y*m, v1, v2, ..., vn} to the data table

where y*m so that: * ** *

1 1

minj j

n n
v vm k

j j j j
k

j j

b x y b x y
= =

− = −∑ ∑

Is data table complete?
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NO
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END
 

Fig. 6.9 Data generation algorithm 
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Using the presented algorithm, 16 different customer satisfaction data sets have 
been generated. These data sets are characterized by four different properties, as 
shown in Table 6.2. For each one of these properties (deviation level, number of 
customers, number of criteria, and number of satisfaction scales), 2 different val-
ues have been chosen, based on a series of pre-tests that are able to discriminate 
the results estimated by the MUSA method and the Logit-Probit analysis. This is 
the main reason for the large difference of the chosen deviation levels (5% and 
40%). Moreover, the selected size of the data sets (500 and 1000 customers) is 
similar to the number of customers participating in real-world satisfaction surveys. 

Table 6.2 Properties of the generated data sets 

Deviation level 
(De) 

Number of customers
(M) 

Number of criteria 
(n) 

Number of satisfaction 
levels (α=αi) 

0.05-0.40 500-100 3-5 3-5 

 
Finally, it should be noted that different families of value functions have been 

defined for each one of these generated data sets. Similarly, these sets of value 
functions present different characteristics, concerning the weights of the criteria 
and the shape of the assumed curve: 

• The coefficient of variation may be used in order to measure differences in the 
distribution of criteria weights. For the defined value functions, the coefficient 
of variation for the selected weights ranges in [0.43, 0.73] with an average of 
0.53. 

• As noted in section 4.3.3, the average demanding indices are able to indicate 
the shape of a value function. For the defined value functions, these indices 
have the maximum possible range (i.e. [–1, 1]), with an average of –0.01. 

Finally, for reasons of simplicity and without loss of generality, an equal num-
ber of satisfaction levels have been assumed for the selected overall and marginal 
value functions, i.e. α = αi ∀ i. 

 
 

6.4.2 Simulation Results 

The generated customer satisfaction data sets are used in order to compare the 
evaluation results provided by the MUSA method, as well as other alternative 
models. The presented results do not focus on the analysis of customer satisfac-
tion, but rather on how these models behave for each one of the experimental data 
sets. 

Table 6.3 presents a summary of the simulation results for the MUSA method. 
The fitting level of the MUSA method is rather high, since AFI1 ranges between 
87.9% and 99.1%, with an average of 94.5% for the generated data sets. This justi-
fies the ability of the MUSA method to effectively evaluate a value system for the 



166  6. Advanced Topics on the MUSA method 

set of customers. However, ASI appears to have smaller values. Although this in-
dex has an average of 75.1%, there are particular data sets where the MUSA 
method is not able to achieve a high level of stability. Since ASI is calculated from 
the results of the post-optimality analysis, these data sets refer to the cases where 
customers’ judgments do not appear homogenous. This probably indicates a com-
parative relation among the criteria weights, given the variability observed in the 
post-optimality analysis table, and it is caused by the chosen high deviation level 
De. Finally, in order to examine if the MUSA method is able to accurately esti-
mate the defined experimental parameters, the hit rate ability of the model is cal-
culated. In this case, the hit rate is defined as the average absolute deviation be-
tween the initially assumed and the finally estimated criteria weights. As shown in 
Table 6.3, the estimation accuracy of the MUSA is relatively high, since the hit 
rate ranges between 82% and 99.2%, with an average of 93.9%. However, it 
should be noted that the increase of the number of parameters for the value func-
tions, increases the degrees of freedom of the MUSA method, and thus the hit rate 
is decreased. 

Table 6.3 Simulation results for the MUSA method 

Index Statistics Value 

AFI1 Range 0.879-0.991 

 Average 0.945 

ASI Range 0.120-0.986 

 Average 0.751 

Hit rate Range 0.820-0.992 

 Average 0.939 

 
Another important objective of the experimental analysis is to examine the in-

fluence of the parameters of the MUSA method to the fitting and the stability level 
of the estimated results. For this reason, a series of one-way ANOVA analyses 
have been performed in order to analyze the influence of each parameter of the 
experiment to the calculated AFI and ASI indices. Tables 6.4 and 6.5 present the 
summary results for this analysis of variance, from where the following points 
raise: 

• The chosen deviation level of the experiment does not affect ASI, but influ-
ences AFI. This is more or less expected, since De determines the consistency 
of the satisfaction judgments and therefore it is strongly related with the fitting 
ability of the MUSA method. 

• The size of the data set (number of customers) does not seem to affect the fit-
ting and stability level of the MUSA method. 

• Similarly, both AFI and ASI are not influenced by the chosen number of criteria 
and the number of satisfaction levels. However, these parameters may have a 
greater impact on the stability level (p-value less than 10%). 
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• The distribution of criteria weights, as measured by the average coefficient of 
variation, seems to affect ASI because large differences in the selected criteria 
weights generate data sets with heterogeneous customer preferences, which 
lead to an increased variability in the post-optimality analysis. 

Table 6.4 Summary results for one-way ANOVA (AFI) 

Factors SS df MS F p-value 

Deviation level 0.013 1 0.013 32.477 0.000 

Number of customers 0.000 1 0.000   0.000 0.985 

Number of criteria 0.000 1 0.000   0.011 0.917 

Number of satisfaction levels 0.000 1 0.000   0.011 0.917 

Distribution of weights 0.001 3 0.000   0.206 0.890 

 

Table 6.5 Summary results for one-way ANOVA (ASI) 

Factors SS df MS F p-value 

Deviation level 0.036 1 0.036 0.501 0.491 

Number of customers 0.000 1 0.000 0.000 0.993 

Number of criteria 0.202 1 0.202 3.385 0.087 

Number of satisfaction levels 0.202 1 0.202 3.385 0.087 

Distribution of weights 0.618 3 0.206 5.920 0.010 

 
Similarly to the previous analysis, the generated customer satisfaction data sets 

have been used in the conditional probability models. As presented in section 
2.3.1, the estimated parameters of these models include the threshold values of the 
dummy dependent variable y* (overall satisfaction) and the coefficients of the in-
dependent variables xi (marginal satisfaction) in the regression formula (this for-
mula relates y* and xi in a weighted sum expression). Since the conditional prob-
ability models have a different philosophy (assumptions, interpretation of 
parameters, etc.) compared to the MUSA method, a straightforward comparison of 
the results provided by this approaches is not possible. However, the thresholds of 
the dummy dependent variables may indicate the shape of the overall value func-
tion, while the regression coefficients represent a measure of the relative impor-
tance for the satisfaction criteria. 

The simulation results for the ordered Probit and Logit analysis are presented in 
Tables 6.6 and 6.7, where a summary of t-test statistics is given for each one of the 
aforementioned parameters (the p-value represents the probability of error under 
the hypothesis of accepting the values of the estimated parameters). Overall, it ap-
pears that the fitting ability of these models is satisfactory, since in most of the 
generated data sets the p-value is small (p < 0.0001). However, in many cases (al-
most 40% of the generated data sets) the Probit and Logit models are not able to 
achieve a high fitting level. These cases do not only concern data sets where the 
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MUSA method is not able to provide reliable results, but they also refer to data 
sets where AFI and ASI indicators of the MUSA method have relatively high val-
ues. Finally, it should be noted that the estimated results of the Probit analysis do 
not differ significantly from those provided by the Logit analysis. 

Table 6.6 Simulation results for the Probit model 

Parameters Index Statistics Value 

Thresholds t-test Range 0.000-26.040 

  Average 14.581 

 p-value Range 0.000-1.000 

  Average 0.125 

Regression coefficients t-test Range –5.878-19.410 

  Average 5.793 

 p-value Range 0.000-1.000 

  Average 0.292 

Table 6.7 Simulation results for the Logit model 

Parameters Index Statistics Value 

Thresholds t-test Range 0.000-22.709 

  Average 13.351 

 p-value Range 0.000-1.000 

  Average 0.125 

Regression coefficients t-test Range –5.417-18.246 

  Average 5.584 

 p-value Range 0.000-1.000 

  Average 0.272 

 
Apart from the fitting and stability analyses, the prediction table of global satis-

faction (see Figure 6.5) may also be used in order to compare the estimated results 
of the MUSA method and the conditional probability models. To this end, formula 
(6.12) is used to calculate the OPL for each one of the generated data sets. A sum-
mary of the analysis, regarding the prediction ability of these alternative models, is 
given in Table 6.8, where it should be noted that for all the examined data sets, the 
OPL of the MUSA method is higher compared to the other models. 

Table 6.8 Overall prediction level for alternative models 

Model Range Average 

MUSA 0.701-1.000 0.885 

Probit analysis 0.622-1.000 0.784 

Logit analysis 0.622-1.000 0.764 
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Furthermore, in case of highly consistent and homogenous data sets, a high 
prediction index appears for all alternative approaches. In general, the most impor-
tant differences between the prediction levels achieved by the MUSA method and 
the Logit-Probit analysis concerns data sets with greater number of estimated pa-
rameters (e.g. number of criteria, number of satisfaction levels, etc.). Moreover, it 
seems that the size of the data sets does not affect the OPL, while the prediction 
index between the Probit and the Logit analysis is similar for all the data sets of 
the experiment. 

The main result of the presented experimental comparison analysis is the high 
prediction ability of all alternative models, although OPL is slightly higher for the 
MUSA method. However, the fitting and stability level of the MUSA method is 
significantly higher compared to the conditional probability models for all data 
sets of the experiment. Moreover, in case of inconsistent and non-homogenous 
data, poor stability results may appear for all alternative approaches. 

The presented experiment may be considered as a pilot analysis, since a larger 
number of data sets is required, in order to increase the reliability of the findings. 
Moreover, additional parameters and desired properties of the generated data sets 
may be examined (e.g. parameters of the MUSA method). The presented results 
examine the effect of several parameters to the fitting and the stability level of the 
MUSA method using one-way ANOVA analysis. For this reason, future research 
may focus on other alternative customer satisfaction evaluation models or examine 
how several combinations of these parameters may affect the reliability of the re-
sults. Finally, it should be noted that the development of an unbiased data genera-
tion process for satisfaction judgments is rather difficult, since it requires a strong 
assumption about the preference model of the customers. In the presented experi-
ment, this assumption appears through the assumed value functions during the first 
step of the simulation process. 
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